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From the perspective of human mobility, the COVID-19
pandemic constituted a natural experiment of enormous reach
in space and time. Here, we analyse the inherent multiple
scales of human mobility using Facebook Movement maps
collected before and during the first UK lockdown. Firstly, we
obtain the pre-lockdown UK mobility graph and employ
multiscale community detection to extract, in an unsupervised
manner, a set of robust partitions into flow communities at
different levels of coarseness. The partitions so obtained
capture intrinsic mobility scales with better coverage than
nomenclature of territorial units for statistics (NUTS) regions,
which suffer from mismatches between human mobility and
administrative divisions. Furthermore, the flow communities
in the fine-scale partition not only match well the UK travel to
work areas but also capture mobility patterns beyond
commuting to work. We also examine the evolution of
mobility under lockdown and show that mobility first
reverted towards fine-scale flow communities already found in
the pre-lockdown data, and then expanded back towards
coarser flow communities as restrictions were lifted. The
improved coverage induced by lockdown is well captured by
a linear decay shock model, which allows us to quantify
regional differences in both the strength of the effect and the
recovery time from the lockdown shock.
1. Introduction
Spatiotemporal patterns of population mobility reveal important
aspects of human geography, such as social and economic
activity [1], the evolution of cities and economic areas [2], the
response to natural disasters [3] or the spread of human
infectious diseases [4]. Whilst mobility patterns are linked to, and
influenced by, both geographical and administrative boundaries
[5], they are also a direct reflection of social behaviour and thus
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provide additional insights into the natural evolution of socio-economic interactions at the population level.

The increasing access to detailed and continuously updated mobility datasets from various sources (e.g.
mobile devices [5], GPS location traces [6], Twitter data [3]) opens up the opportunity to develop
further quantitative approaches to harness the richness of such data [7–9].

Access to mobility data has recently become more widespread due to the COVID-19 pandemic, which
prompted governments across the world to impose a range of restrictions on the daily activities and
movements of their citizens [10]. Such mobility data were of immediate use to refine and assess
interventions targeting the spread of COVID-19 [11–15] and to evaluate the unequal effects of the
pandemic across populations [12]. Yet, from the perspective of mobility, the pandemic also constituted
a natural experiment of enormous reach in space and time that accelerated both the sharing of such
datasets and the study of a severe mobility shock, in which human activities were curtailed to
reduced areas for a sustained period [16–21].

An important aspect of mobility is the presence of inherent spatial and temporal scales as a result of e.g.
administrative divisions, patterns of social interactions, jobs and occupations, as well as diverse means of
transportation [1]. Recent work [6,22] has shown that this multiscale, nested structure of human activities
contributes to the scale-free behaviour that had been previously found empirically [7,8,23].

Here, we apply data-driven, unsupervised network methods to study the multiscale structure of UK
mobility in data collected before and during the first COVID-19 lockdown. Data from user-enabled,
anonymized ‘Facebook Movement maps’ between UK locations [24] are used to construct directed,
weighted mobility graphs which are then analysed using unsupervised multiscale community
detection [25–28] to extract inherent flow communities at different levels of coarseness. Hence, the
inherent mobility scales emerge directly as robust flow communities in the data, obtained here
through a scale selection algorithm.

Our results show that multiscale flow communities extracted from the baseline, pre-lockdown data
broadly agree with the hierarchy of nomenclature of territorial units for statistics (NUTS) administrative
regions, yet with distinctive features that result from commuting patterns cutting across administrative
divisions. In addition, the flow communities at the fine scale not only match well travel to work areas
(TTWAs) [29], a geography of local labour markets computed by the UK Office for National Statistics from
2011 Census data on residency and place of work for workers older than 16 years, but also capture human
mobility patterns beyond commuting to work. We then quantify the extent to which mobility patterns
under lockdown conform to the flow communities found in pre-lockdown data using data collected during
the first UK COVID-19 lockdown (March–June 2020). We find that the imposition of lockdown reverted
mobility towards the local, fine-scale pre-lockdown flow communities, and as restrictions were lifted,
mobility patterns expanded back towards the coarser pre-lockdown flow communities, thus providing
empirical evidence for the presence of a quasi-hierarchical intrinsic organization of human mobility at
different scales [6]. Finally, we find regional differences in the response to the lockdown, in both the
strength of the mobility contraction and the time scale of recovery towards pre-lockdown mobility levels.
2. Results
We use mobility data provided by Facebook under the ‘Data for Good’ programme [24] to construct
directed, weighted networks of human mobility in the UK. The anonymized datasets (‘Facebook
Movement maps’ [24,30]), which are collected from user-enabled location tracking, quantify frequency
of movement of individuals between locations over time, thus capturing temporal changes in
population mobility before and during the COVID-19 pandemic [18,19]. For details of the network
construction, see §4.1.

Our data cover mobility patterns in all four nations of the UK before, during and after the first
nationwide COVID-19 lockdown, which was imposed on 24 March 2020 (see below for more details).
In the following, we first analyse the pre-lockdown baseline mobility, from which we obtain intrinsic
partitions at different scales and then explore how the changes after lockdown mobility restrictions
were imposed map onto those baseline scales.

2.1. The directed graph of baseline UK mobility: quasi-reversibility and commuting
travel patterns

By using pre-lockdown mobility data (average of 45 days before 10 March 2020), we construct a strongly
connected directed graph G with weighted adjacency matrix A≠AT (figure 1a). The N = 3125 nodes of this
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Figure 1. Multiscale structure in the baseline mobility network. (a) Using mobility data averaged over 45 days before 10 March
2020, we create a weighted directed graph (N = 3125 nodes, E = 34 224 edges) with edge weights equal to the average daily
number of trips between geographic tiles (nodes). The stationary distribution π (equation (2.3)) of the associated random walk
indicates high centrality of urban areas. (b) Multiscale community detection on the baseline mobility network using Markov
stability (MS) analysis. We find optimized MS partitions that are robust both across scales (blocks of low normalized variation
of information, NVI(s, s0)) and within scale (dips in NVI(s)). To find robust optimal partitions, we first determine basins in
Block NVI(s) (the pooled diagonal of NVI(s, s0)) and then find the minima of NVI(s) for each basin (see §4.2). This selection
process leads to nine robust scales (s1,…, s9), from finer to coarser. (c) The graph partitions for the six scales with the lowest
Block NVI are plotted on the UK map, with different colours indicating different communities.
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graph correspond to geographic tiles (width between 4.8 and 6.1 km, see electronic supplementary
material, figure S1a), and the directed edges have weights Aij corresponding to the average daily
number of inter-tile trips from tile i to j (see §4.1 for the notion of ‘trip’ within the Facebook dataset,
and some of its caveats). The total average number of daily inter-tile trips is 2 475 527, compared with
10 416 968 intra-tile trips. The matrix A is very sparse, with 99.7% of its entries equal to zero, i.e. there
are no direct trips registered between the overwhelming majority of tile pairs. Furthermore, the non-zero
edge weights are highly heterogeneous, ranging from 1.4 to 6709 daily trips (average 72.3, coefficient of
variation 2.8), underscoring the large variability in trip frequency across the UK.

To assess the directionality of the baseline network, we first compute the pairwise relative asymmetry
(PRA) for each pair of tiles ij,

0 � PRAij :¼
jAij � Ajij
Aij þ Aji

� 1, ð2:1Þ

defined for pairs where Aij +Aji > 0. The distribution of the PRAij (electronic supplementary material,
figure S3) shows that 25% of the tile pairs have PRA≥ 0.23, a substantial asymmetry, including 3226
one-way connections (8.64% of the total) with PRA = 1. It is thus helpful to use network analysis tools
that can deal with directed graphs [31].

A natural strategy for the analysis of directed graphs is to employ a diffusive process on the graph to
reveal important properties of the network, such as node centrality [32,33] or graph substructures [27],
while respecting edge directionality. We consider a discrete-time random walk on graph G defined in
terms of the N ×N transition probability matrix M:

M :¼ Dþ
outA, ð2:2Þ

where Dþ
out is the pseudo-inverse of Dout = diag(dout), the diagonal matrix of out-strengths dout =A 1N. A

key property of the random walk is its stationary distribution π, a 1 ×N node vector defined through the
equation

p ¼ pM: ð2:3Þ

The component πi is a measure of centrality (or importance) of node i; a high value of πi means that the
random walk on G is expected to visit node i often at stationarity [34]. This is equivalent to PageRank
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without teleportation [35]. As expected, the centralities πi are highly correlated (R2 = 0.97) with another
node centrality measure, the out-strengths dout,i. Interestingly, the centralities πi are also correlated with
the intra-tile mobility (R2 = 0.83), a measure that is not used in the computation of π (see electronic
supplementary material, figure S2 for details). Therefore, urban areas display high centrality due to
the concentration of human mobility in those areas (figure 1a).

A random walk on a directed graph might still not display strong directionality at equilibrium. This is
our finding here: the random walk defined by M fulfils approximately the detailed balance condition,

PM ≃ PMT with
kPM�PMTkF

kPMkF
¼ 0:033,

where P ¼ diagðpÞ and ‖ · ‖F denotes the Frobenius norm (see electronic supplementary material, figure
S3 and [27,36] for a more in-depth discussion). The random walk for our mobility graph is therefore close
to being time reversible at equilibrium [34], so that the probability of following a particular trajectory
from node i to j is almost equal to the probability of going back on the same trajectory from j to i.
This property coincides with our intuition that most journeys in the mobility network are linked to
commuting travel patterns.
pen
Sci.10:230405
2.2. Unsupervised community detection reveals intrinsic multiscale structure in the baseline
mobility data

To extract the inherent scales in the UK mobility data, we apply multiscale community detection to the
baseline directed network. We use Markov stability (MS) [25], a methodology that reveals intrinsic,
robust graph partitions across all scales through a random walk Laplacian that simulates individual
travel on the network based on the observed average daily trips. As random walkers explore the
network, they remain contained within small subgraphs (communities) at shorter times and then spill
over onto larger communities at longer times. This definition of communities (and partitions) in terms
of random walks makes the MS framework generally applicable to a wide range of network
topologies, including directed networks, in contrast to standard hierarchical community detection
algorithms [37–39]. MS uses an optimization to identify graph communities in which the flow of
random walkers is contained over extended periods, uncovering a sequence of robust graph partitions
of increasing coarseness (regulated by the Markov scale s). In the context of our mobility network,
this set of partitions captures intrinsic scales of human mobility present in the data. See [25–28,40,41]
and §4.2 for details of the methodology.

Figure 1b summarizes the MS analysis for our network, which was carried out with the
PyGenStability Python package [42]. We find nine robust MS partitions H(si) at different levels of
resolution (s1,…, s9) from fine to coarse, which comprise flow communities at different scales of
human mobility (see electronic supplementary material, table S1 and figure S4 for further statistics
and visualizations). Figure 1c shows that these data-driven flow communities correspond to
geographic areas, even though our data only contain relational mobility flows without explicit
geographic information. Furthermore, the nine partitions have a strong quasi-hierarchical structure,
which is not imposed a priori by our graph partitioning method (see electronic supplementary
material, figures S4 and S5). The obtained partitions thus reflect an inherent multiscale structure in the
patterns of UK human mobility.
2.3. Comparing the intrinsic mobility scales at baseline with administrative nomenclature of
territorial units for statistics regions

Next, we compare the MS partitions with NUTS regions, administrative and geographic regions defined
at three hierarchical levels: NUTS1 build upon NUTS2 in turn consisting of NUTS3 regions. In the UK,
the 174 NUTS3 regions represent counties and groups of unitary authorities; the 40 NUTS2 regions are
groups of counties; and the 12 NUTS1 regions correspond to England regions, plus Scotland, Wales and
Northern Ireland as whole nations (see electronic supplementary material, table S2 for further statistics).
Our baseline data cover 170 NUTS3 regions, where the missing four are sparsely populated regions in the
Scottish Highlands and Islands. The NUTS regions serve as a standard reference point for policy-making,
and served to inform regionalized responses to COVID-19 in England (e.g. lockdowns in the North of
England were applied to local authorities that form the NUTS2 region of Greater Manchester,
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Figure 2. A posteriori comparison between MS partitions and NUTS regions. (a) The MS partitions across all scales are compared
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shows the regional improvements where administrative divisions do not conform naturally to mobility patterns. Fine scale: H(s1)
captures boundary areas fragmented under NUTS3 (e.g. Cornwall–Devon boundary, North Wales, among many others). Medium
scale: H(s2) captures densely connected areas in Central and East London, fragmented under NUTS2, as well as the commuter
belt in Birmingham. Coarse scale: H(s4) naturally captures Greater London’s commuter belt that is excluded from the London
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Lancashire and West Yorkshire [43]). Comparing the data-driven MS partitions with NUTS regions is
thus meant to explore to what degree administrative regions capture the patterns of mobility at the
different scales and potential mismatches thereof.

In figure 2, we use the normalized variation of information (NVI; equation (4.3)) to evaluate the
similarity of each of the three NUTS levels to the MS partitions at all scales. The best match of each
NUTS level (as given by the minimum of NVI) is close to one of the robust partitions: NUTS3
corresponds closely to H(s1); NUTS2 to H(s2) and NUTS1 to H(s4). Hence, these three MS partitions of
the mobility network capture the fine, medium and coarse scales in the UK, yet with some significant
deviations from the administrative NUTS divisions. For instance, Greater London is separated from
the rest of the South East at the level of NUTS1 regions, whereas the whole South East of England
forms one flow community in partition H(s4). Similarly, the south of Wales is connected strongly via
flows to the South West of England in partition H(s4), which is not reflected in the NUTS1 regions.
On the other hand, the correspondence between NUTS3 regions and the fine MS partition H(s1) is
strongest (lower value of NVI), with fewer such discrepancies between administrative and flow
communities.

To evaluate further how the MS partitions capture the patterns of mobility, we compute two
measures: the coverage C (equation (4.5)) (i.e. the ratio of mobility that remains within communities
relative to the total mobility) and the average nodal containment NC (equation (4.7)) (i.e. the ratio of
the outflow from each node that remains within its community relative to the total outflow from that
node, then averaged over all nodes). High values of these measures (normalized between 0 and 100%)
indicate that mobility flows are captured within the boundaries of the communities of the partition.

Table 1 shows that MS partitions are substantially better at reflecting baseline mobility than NUTS
divisions since they have higher values for both average C and NC measures at all scales and
especially at the finer scales. We have also evaluated both measures at a local level. Electronic
supplementary material, figure S6a shows that the median of the coverage of individual communities
Ck (equation (4.4)) is significantly higher for MS partitions (as compared with NUTS) for the fine and
medium scales (p < 0.0001, Mann–Whitney). Electronic supplementary material, figure S6b shows that
the median of the nodal containment of individual nodes NCi (equation (4.6)) is also significantly
higher for MS partitions relative to NUTS regions at fine, medium and coarse levels (p < 0.001, Mann–
Whitney). Indeed, the maps in figure 2b–d show that NCi(MS) >NCi(NUTS) in regions where the
administrative NUTS boundaries cut through conurbations or closely connected towns or cities. A
prominent example is Greater London, where the NUTS2 regions split areas in Central and East
London that are tightly linked and thus captured better by the medium MS partition H(s2), and,
similarly, the NUTS1 region of Greater London does not include its wider commuter belt that is



Table 1. Containment of baseline mobility flows within MS partitions compared with corresponding NUTS regions. MS partitions
capture better the mobility patterns, as shown by higher values for both the average coverage C (equation (4.5)) and the
average nodal containment NC (equation (4.7)).

fine scale middle scale coarse scale

H(s1)/NUTS3 H(s2)/NUTS2 H(s4)/NUTS1

C (%) MS 92.1 98.4 99.7

NUTS 90.1 95.2 98.9

NC (%) MS 86.6 95.5 98.1

NUTS 72.8 88.3 95.8
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naturally captured by the coarse MS partition H(s4). Similar commuter belt effects are observed, e.g. on
the medium level for Birmingham, and on the fine level for Plymouth, which has associated flows across
the Cornwall–Devon boundary.
Sci.10:230405
2.4. Comparing the fine mobility scale at baseline with labour-related travel to work areas
We next compare the MS partitions with TTWAs, a different geography that divides the UK into 228 local
labour markets computed from 2011 Census data recording place of residency and place of work [29].
Our baseline network has mobility data for 197 of the 228 TTWAs, with missing areas in rural areas
of Scotland, Wales and the North of England (see figure 3a and further statistics in electronic
supplementary material, table S3).

The TTWAs are intended to reflect local labour markets, and the ensuing commuting between home
and place of work, and are thus expected to be linked to small scales. Indeed, as measured by the NVI,
the TTWA division is most similar to the NUTS3 level of all NUTS divisions (see electronic
supplementary material) and, consistently, most similar to the fine-scale MS partition, H(s1).
Reassuringly, H(s1) is more similar to TTWA than to NUTS3, since both the TTWA division and our
MS partitions are data driven with a basis in mobility patterns. Yet, there are local discrepancies, e.g.
H(s1) combines multiple TTWAs into a single cluster in Cornwall or Northern Ireland, whereas the
single TTWA in Greater London corresponds to several smaller communities in H(s1) (figure 3a).

As mentioned earlier, we evaluate how the TTWA division captures the patterns of mobility. We find
that the coverage CðTTWAÞ ¼ 95:9% is higher than for both NUTS3 and H(s1) (table 1), but the median of
the coverage of individual communities Ck, a local measure of coverage, is not significantly higher for the
TTWAs relatively to H(s1) (figure 3b). Furthermore, the average nodal containment NCðTTWAÞ ¼ 81:3%
is lower than H(s1) (table 1), and its local version shows that the median of the nodal containment of
individual nodes NCi is significantly lower for TTWA (p < 0.0001, Mann–Whitney, figure 3c). Hence,
the fine MS partition H(s1) captures better the mobility patterns in our baseline data than the TTWA
division. This can be explained by potential changes in commuting patterns since the 2011 Census
data on which the TTWAs are based, and by the fact that Facebook mobility data also includes trips
for leisure, commercial and other activities beyond commuting to work.
2.5. The contraction of the UK mobility under lockdown and its relation to the baseline
mobility multiscale network

The first nationwide COVID-19 lockdown in the UK was imposed on 24 March 2020, instructing the
British public to stay at home except for limited purposes. Over the following months, restrictions
were gradually eased to allow pupils to return to school (1 June 2020 in England but 17 August 2020
in Scotland), businesses to reopen (non-essential shops reopened on 13 June 2020 in England but 13
July in Scotland) and people to travel more freely for leisure purposes (13 May 2020 in England but 8
July 2020 in Scotland) [44]. We have analysed the response to these restrictions using the time-
dependent Facebook Movement maps [24] from 10 March to 18 July 2020 (131 days or 18 weeks). We
construct mobility networks for each day, G(d ), and week, G(w), defined on the same nodes (i.e. tiles)
as the baseline network G (see §4.1).
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Figure 4a shows the temporal change of the number of trips (intra-tile, inter-tile and total) relative to
10 March 2020, the first day of our study period. It is interesting to note that the decrease in mobility was
already taking hold rapidly from 10 March, two weeks before the official enforcement of the lockdown.



Table 2. Parameters of temporal response of DCðtÞ for the MS partitions. Estimated values and 95% confidence intervals for
the amplitude α and characteristic time 1/λ of the external stimulus, and the characteristic recovery time 1/β towards pre-
stimulus values obtained from fitting the activation response function (2.4) to the coverage values of the fine, medium and
coarse MS partitions (figure 4b). Electronic supplementary material, table S4 provides all fitting parameters for all nine MS
partitions.

α (95% CI) 1/β (95% CI) 1/λ (95% CI)

Fine scale 0.042 (0.036–0.050) 16.4 (12.5–21.5) 2.0 (1.6–2.7)

Medium scale 0.0086 (0.0074–0.0101) 18.8 (14.6–24.3) 1.9 (1.5–2.5)

Coarse scale 0.0014 (0.0012–0.0016) 20.9 (15.7–28.0) 2.0 (1.6–2.6)
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We find that whilst the total number of trips remained largely unchanged throughout the period, the
number of inter-tile trips decreased sharply to approximately 25% of the initial value, followed by a
steady increase towards levels of approximately 50% at the end of the study period in mid-July 2020.
Conversely, the number of intra-tile trips increased to a maximum of 130% after lockdown before
decreasing steadily to approximately 105% by mid-July 2020. Therefore, lockdown induced a
redistribution from inter-tile to intra-tile trips as a result of a reduction in commuting and long-
distance travel, with mobility reverting to local neighbourhoods.

The observed contraction of human mobility towards local neighbourhoods is consistent with
the multiscale structure that was already present in the baseline mobility network pre-lockdown. The
coverage C of all MS partitions increased over lockdown, with larger relative improvement for the finer
scales (figure 4b and electronic supplementary material, figure F8). The surge in coverage induced by
lockdown, which then decays towards its pre-lockdown value, can be modelled with a simple linear
model under an external stimulus αe−λt. The relative change from the initial value is then given by [45],

DCðtÞ : ¼ CðtÞ � Cðt0Þ
Cðt0Þ ¼ a

b� l
(e�lt � e�bt), ð2:4Þ

fromwhichwe estimate the amplitude (α) and characteristic time (1/λ) of the external stimulus, aswell as the
characteristic recovery time (1/β) of the system towards its pre-stimulus value (see §4 for details). Figure 4b
shows the fits of DCðtÞ (dashed lines) with estimated parameters in table 2. The fineMS partition exhibits the
largest relative increase DCðtÞ peaking at approximately 6%. The medium and coarse partitions peak at
approximately 1 and 0:1%, respectively. This is also captured by the values of α and indicates that during
lockdown people reverted to local mobility neighbourhoods already present in pre-lockdown patterns.
The adaptation to the new COVID-19 situation and the pre-announcement of lockdown occurs quickly
(over a characteristic time of 1/λ∼ 2 weeks), signifying that adoption was fast and was already in
progress before the official start date of lockdown. Mobility patterns then returned towards pre-lockdown
values over longer time scales 1/β between 16.4 weeks (fine scale) and 20.9 weeks (coarse scale) reflecting
a slow re-adaptation following the new situation and loosening of restrictions.

To highlight the local differences in the temporal response to the lockdown, figure 5 shows the
parameters of the temporal fits for the community coverages DCk for all the communities in the fine-
scale MS partition. We observe that urban centres like London, Birmingham, Liverpool or Manchester
experience the strongest changes in the fine-scale coverage (high values of α) yet with faster recovery
times (low values of 1/β). Conversely, rural areas, which were already more constrained to local
communities pre-lockdown, exhibit smaller but long-lived effects in the coverage at the local level.
Our method also captures divergent trends across the different nations of the UK. For example,
Scottish regions show longer time scales of recovery than most regions in England, consistent with the
fact that Scotland maintained more stringent lockdown restrictions for a longer time [44], e.g.
domestic travel restrictions were eliminated in Scotland only on 8 July 2020 and schools reopened on
17 August 2020, in contrast to 13 May and 1 June 2020 in England, respectively.
3. Discussion
Taking advantage of recent data availability, we have studied here the intrinsic multiscale structure of
human mobility using, as a motivating example, UK data collected before and during the first
COVID-19 lockdown. Firstly, we generated a directed mobility graph from geospatial Facebook
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Figure 5. Regional differences in the temporal response to the lockdown. The maps show the fitting parameters of the activation
response function for the weekly coverage Ck of the communities in the finest MS partition. (a) The shock amplitude α is high for
urban centres (most notably London, Birmingham, Manchester and Glasgow) and low for rural areas. (b) The time scale of recovery
1/β is low for urban centres but high for rural areas, especially in Cornwall, Scotland or the Morecambe Bay area in North West
England. Scotland shows longer recovery times due to different calendars for the lifting of restrictions relative to the rest of the UK.
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Movement maps collected before lockdown, and exploited multiscale graph clustering (MS) to identify
inherent flow communities at different levels of resolution (or scales) in the baseline data in an
unsupervised manner. Three of the MS partitions so identified are of similar granularity to the NUTS
hierarchy, yet with improved mobility coverage and nodal containment, also revealing areas of
mismatch between human mobility and administrative divisions. Furthermore, we find that the fine
MS partition, which captures local mobility in our data, shows high similarity to the division into
TTWAs obtained from census residency and work location data to characterize local labour markets.

We then analysed spatiotemporal mobility data collected during the first UK COVID-19 lockdown.
We found increased mobility coverage for MS partitions, especially at the fine scale, suggesting that
the mobility contraction during this natural experiment reverted to scales already present in the pre-
lockdown data. Indeed, given that our MS communities are found through a random walk on a graph
weighted by pre-lockdown trip frequency of natural mobility, the fine scales capture frequent trips
that were not suppressed during lockdown, whereas the coarse scales are associated with less
frequent trips over longer geographic distances for leisure or business.

The enhancement of coverage induced by lockdown is well captured by a linear decay model, whose
parameters allow us to quantify regional differences, including differing trends across urban and rural
areas and across the UK nations consistent with distinct lockdown regulations.

In this study, we have identified intrinsic communities at different scales extracted from a static network
(our pre-lockdown baseline) and then studied how changes in mobility over the early months of the
pandemic evolved relative to those inherent communities. The aim was to test the relevance of the
inherent scales under this natural experiment by quantifying the extent to which mobility patterns
conformed to communities derived from the baseline configuration. A complementary approach would
be to instead obtain communities through additional analysis of the sequence of daily (or weekly)
mobility networks using temporal community detection, e.g. via the recently proposed flow stability
[46], an extension of MS to temporal networks. This would be an interesting direction for future research.

Our study has several limitations. Whilst the ‘Facebook Movement map’ data is aggregated from 16
million UK Facebook users who enable location sharing (over 20% of the total UK population), the
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observed sample might be biased and not representative of the general UK population [30]. Furthermore,
inter-tile flows with fewer than 10 trips within an 8 h period are suppressed to prevent individual
identification. In densely populated areas, our observed mobility data are thus more likely to be
representative of human mobility, whereas this assumption is less likely to hold in rural areas, a
limitation that can have an effect on comparisons with NUTS regions and TTWAs. However, such low-
frequency connections account for a comparatively small number of the total trips and are not expected
to affect the obtained MS partitions. This study also assumes rates of utilization and activation of
location sharing within the Facebook app remain constant, yet this limitation is mitigated by the
derivation of flow partitions from average baseline data, rather than post-pandemic mobility information.

Our work contributes to the current interest in the study of intrinsic scales in human mobility [22].
A recent study identified ‘spatial containers’ from granular GPS traces [6] organized in a nested
hierarchy specific to each individual. Similarly, we also reveal a multiscale organization of human
mobility, but instead obtain a data-driven, unsupervised quasi-hierarchical community structure at the
population level. Because our MS community detection is based on a diffusion on a mobility graph,
the flow communities at different scales provide insights into the importance of physical and political
geographies, and reveal the scales at which lockdown introduced frictions by restricting natural mobility.
pen
Sci.10:230405
4. Methods
4.1. Mobility data and network construction

4.1.1. Data

FacebookMovement maps [24,30] provide movement data between geographic tiles as codified by the Bing
Maps Tile System [47]. For the UK, there are 5436 geographic tiles with widths between 4.8 and 6.1 km (see
electronic supplementary material, figure S1a). For users that enable location sharing, Facebook computes
the dominant tiles, in which the user spends the most time over adjacent 8 h time windows. The ‘trips’
correspond to movements between dominant tiles across adjacent time windows. The dataset then
provides the number of trips within each tile and to any other tile at intervals of 8 h for all users. The data
are anonymized by Facebook prior to release using proprietary aggregation methods, including the
addition of small amounts of random noise, spatial smoothing and dropping counts of less than 10 trips
within an 8 h period to avoid identifiability. Our data further aggregate the three 8 h datasets for a given
day. The data used in this study are the most comprehensive publicly available mobility dataset providing
origin–destination data over time and covering the period of the COVID-19 pandemic. To our knowledge,
no other dataset was available in the UK with better spatial and temporal resolution.

4.1.2. Network construction

Given a directed graph G, a weakly connected component (WCC) is a subgraph where each pair of nodes
in the WCC is connected by an undirected path. Similarly, in a strongly connected component (SCC), each
pair of nodes is connected by a directed path [48]. The largest WCC is denoted as LWCC and the largest
strongly connected component as LSCC.

As a baseline, we use pre-lockdown data consisting of mobility flows averaged over the 45 days
before 10 March 2020. To obtain the baseline network G, we remove the self-loops (i.e. we do not
include intra-tile trips) and we define G as the LSCC of the graph of flows. As shown in electronic
supplementary material, figure S1, the LWCC and LSCC are similar and 98.8% of the WCCs are
singletons, and hence, the LSCC captures the large majority of relevant flows while simplifying the
mathematical interpretation of the results.

We also use time series of mobility flows from 10 March to 18 July 2020 inclusive (131 days or 18
weeks) to build daily mobility networks G(d ), d = 1,…, 131 and weekly mobility networks G(w), w =
1,…, 18 (by averaging the daily networks over calendar weeks). In all cases, the networks are defined
on the same set of nodes as G, and we remove self-loops as earlier.

4.2. Multiscale community detection with Markov stability analysis
Here, we provide a brief outline of the MS framework. For a fuller description, see the electronic
supplementary material and in-depth treatments, including extensions to other types of graph
processes, in references [25–27,40].
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Consider a weighted and directed graph G with adjacency matrix A. Let L ¼ I �Dþ

outA denote the
random walk Laplacian matrix, where I is the identity matrix, and Dþ

out denotes the pseudo-inverse of
the diagonal out-degree matrix. The matrix L defines a continuous-time Markov process on G
governed by the diffusive dynamics

dp
dr

¼ �pL, ð4:1Þ

where p(r) is a 1 ×N node vector of probabilities, and r is the Markov scale. The solution to this equation
is given by p(r) = p(0)exp(− Lr), and the matrix exponential defines transition probabilities of the Markov
process (see electronic supplementary material). This process converges to a stationary distribution π
given by πL = 0.

The goal of MS is to obtain partitions of the graph into c(r) communities such that the probability flow
described by (4.1) is optimally contained within the communities as a function of r. MS solves this
problem by maximizing the following function:

HðrÞ ¼ argmax
H

Tr[HT(P expð�LrÞ � pTp)H], ð4:2Þ

where P ¼ diagðpÞ, and the matrix H(r) is a N × c(r) partition indicator matrix with H(r)ij = 1 if i is part of
community j, and 0 otherwise. We thus obtain a series of optimized partitions over the Markov scales
described by the matrices H(r). The scales are more naturally described in log scale, so we redefine the
Markov scale as s = log10(r). The optimization (4.2) is carried out using the Louvain algorithm [49]
through the implementation in the PyGenStability python package [42].
5

4.2.1. Comparing partitions with the normalized variation of information

To assess the quality of the partitions, we use the NVI as a similarity measure for partitions [50,51].
Consider two partitions described by H(s) and H(s0) with potentially different numbers of
communities. The NVI is defined as follows:

0 � NVIðs, s0Þ : ¼ VIðs, s0Þ
Hðs, s0Þ � 1, ð4:3Þ

where VI(s, s0) is the variation of information [52] and Hðs, s0Þ is the joint entropy between H(s) and H(s0).
The NVI is a metric, and low values indicate a high similarity between the partitions [51]. Using NVI has
the advantage of being a universal similarity metric [53], i.e. if H(s) and H(s0) are similar under any non-
trivial metric, then they are also similar under NVI [51].
4.2.2. Scale selection algorithm

After obtaining optimized partitions H(s) for a sequence of m Markov scales S = {s1, s2,…, sm}, we select
partitions that describe the network structure robustly at different levels of resolution. Robust partitions
are persistent across scales and reproducible under the non-convex Louvain optimization for its
particular scale [27]. We formalize these requirements using NVI as follows: (i) the persistence across
scales is assessed by computing the pairwise NVI for partitions across different scales s and s0 leading
to a m ×m symmetric matrix denoted by NVI(s, s0), where regions of low values indicate high
persistence across scales; (ii) for each Markov scale s, the robustness is evaluated by repeating the
Louvain optimization (300 times in our study) with different random initialization and computing the
average pairwise NVI for the resulting ensemble of partitions, denoted by NVI(s), such that low
values indicate strong reproducibility of the optimization.

As an aid to scale selection, we propose here an algorithm that processes the information contained in
NVI(s, s0) and NVI(s) sequentially. First, we use tools from image processing to evaluate the block
structure of the NVI(s, s0) matrix and apply average pooling [54] with a kernel of size k (and padding)
such that the pooled diagonal dNVIðsÞ quantifies the average pairwise similarity of all partitions
corresponding to scales in the neighbourhood BkðsÞ ¼ fu [ S : 0 , ju� sj � kg of scale s. We then
compute the smoothed version of dNVIðsÞ, denoted Block NVI(s). Blocks of low values of NVI(s, s0)
correspond to basins around local minima of the Block NVI(s). We then obtain the minimum of
NVI(s) for each basin and determine those as the robust scales of the network. Our scale selection
algorithm is implemented in the PyGenStability package [42].
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4.3. Measures of flow containment: coverage and nodal containment

Consider the adjacency matrix A of the mobility graph G and a N × c indicator matrix H for a partition of
G into c communities. Let us also define ~A, the adjacency matrix of the graph with self-loops that contains
the intra-tile flows on the diagonal. Then F ¼ HT ~AH is the c × c lumped adjacency matrix where the
element ðHT ~AHÞkl corresponds to the mobility flow from community k to community l. The coverage
of community k, CkðHÞ, is defined as follows:

0 � CkðHÞ :¼ ðD̂þFÞkk � 1, ð4:4Þ
where D̂þ is the pseudo-inverse of D̂ ¼ diagðd̂Þ, where d̂ ¼ F 1c. CkðHÞ can be interpreted as the
probability of the lumped Markov process to remain in state k; hence, high values of CkðHÞ indicate
that community k covers well the flows emerging from the community.

The coverage of a partition CðHÞ is standard and is defined as the ratio of flows contained within
communities by the total amount of flow [55]. It is easy to see that this is given by the weighted average

0 � CðHÞ ¼
P

k d̂kCkðHÞP
k d̂k

� 1: ð4:5Þ

High values of CðHÞ indicate that mobility flows are contained well within the communities of the
partition and movement across different communities is limited.

The nodal containment NCi of node i quantifies the proportion of flow emerging from i that is
contained within its community in a partition H,

0 � NCiðHÞ :¼ ðAHÞiCi

di
� 1, ð4:6Þ

where Ci is the community of node i and di = (A 1N)i. Large values of NCi indicate that the mobility flows
emerging from node i are largely contained within its assigned community, indicating a good node
assignment. Hence, NCi measures the containment of flows from a node-centred perspective.

To obtain a partition-level measure, we define the average nodal containment NC(H )

0 � NCðHÞ :¼ 1
N

XN
i¼1

NCiðHÞ � 1, ð4:7Þ

where N is the number of nodes.

4.4. Response to an exponentially decaying shock
The response of a variable x(t) to a shock can be modelled as a linear ordinary differential equation under
a stimulus R(t),

dx
dt

¼ �bxþ RðtÞ, xð0Þ ¼ 0, ð4:8Þ

where 1/β is the characteristic relaxation time of the system, and we assume here an exponentially
decaying external stimulus R(t) : = α e−λt, with amplitude α≥ 0 and characteristic decay time 1/λ. The
solution of (4.8) is given by [45]

xðtÞ ¼ a

b� l
ðe�lt � e�btÞ:

We use the Levenberg–Marquardt algorithm [56] implemented in the LMFIT [57] python package to fit
the activation response function x(t) to a set of n data points ð~ti, ~xiÞ by minimizing the sum of squares

x2 :¼
Xn
i¼1

(xð~tiÞ � ~xi)
2 ð4:9Þ

to determine parameter estimates â, b̂ and l̂. Confidence intervals are obtained from an F-test [58].

Ethics. This work did not require ethical approval from a human subject or animal welfare committee.
Data accessibility. Data used in this study were accessed through Facebook’s ‘Data for Good’ program: https://
dataforgood.facebook.com/dfg/tools/movement-maps. Shapefiles for the NUTS (2018) regions and TTWAs (2011)
in the UK are available from the Open Geography Portal https://geoportal.statistics.gov.uk/ under the Open
Government Licence v. 3.0 and contain OS data © Crown copyright and database right 2023. We host data of the
UK mobility networks alongside code to reproduce all results and figures in our study on GitHub: https://github.
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