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ADDITIOlSrS TO THE LIBRAEY

From December 1, 1873, to June 1, 1876.

Anierican Association for the Advancement of Science. Proceedings. Twenty-second.

twenty-third Meetings. 8". Memoirs. I. 4 . Salem, 1874-5.

Alr.\ny.—Institute. Transactions. Vol. VIT, VIII. 1872-6. 8°. Proceedings. Vol.

I. a-4, II. 1. 1871-4. .8°.

New York State Cabinet of Natural History. Twenty-third, twenty-fifth

Annual Reports. 1870-2. 8°.

New York State Library. Fifty-sixth Annual Report. 1874. 8°.

Boston.—American Academy of Arts and Sciences. Proceedings. Vol. VIII-X.

1868-75. 8°.

Society of Natural History. Memou's. Vol. II. i. 1, ii. 4, iii. 1-5, iv. 1-4.

1871-6. 4°. Proceedings. Vol. XV. 4, XVI, XVII, XVIII. 1-2. 1873-6.

8 . Henz, N. M. The Spiders of the United States. (Occasional Papers.

II). 1875. 8".

Buffalo.—Society of Natural Sciences. Bulletin. Vol. I. 4, II. III. 1-2. 1874-6. 8°.

CAMBRIDGE.

—

Museum of Com'parative Zoology. Illustrated Catalogue. No. IV-VIII.

1871-4. 4°. Bulletin. Vol. II. 3-5, III. 1-14. 1871-6. 8". Annual

Report. 1870-1875. 8°.

'him'HEXPOijis.-- Minnesota Academy of Natural Sciences. Bulletin. 1874. 8°.

New York.—Lyceum of Natural History. Annals. Vol. XI. 3-6. 1875. 8°.

PouGHKEEPSiE.

—

Society of Natural Science. Proceedings. Vol. I. 1-2. 1876. 8°.

St. Louis.—Academy of Science. Transactions. Vol. III. 2. 1875. 8°.

Sxh^M.—Essex Institute. Bulletin. Vol. V. 6-12, VI, VII. 1-7. 1873-5. 8°.

Peabody Academy of Science. Memoirs. Vol. I. 4. 1875. 4\

San Francisco.— California Academy of Sciences. Proceedings. Vol. I. 1854-7

(2d ed. 187.3), III. 2. 1873. 8°.

Savannah.— Georgia Historical Society. Jones, C. C, Jr. Se.'-geant Wm. Jasper.

An Address before the Georgia Historical Society, Jan. 3, 1876. 8°.

Washington.—Surgeon GeneraVs Office. Annual Report of tlie Surgeon General,

U. S. Army. 1874. 8°. Circular No. 8. Report on the Hygiene of

the U. S. Army. 1875. 4\

United States Naval Observatory. Astronomical and Meteorological Observa-

tions. 1871, 1873. 4".

Worcester.—A77ierican Antiquarian Society. Proceedings. No. 62-65. 1874-5. 8°.



vi Additions to the Lihrary.

Amsterdam.—Koninklijke Akademie van Wetensrhappen. Yerslagen en Mededeelingen.

Afdeel. Natuurkunde. Tweede Reeks. Deel VII. ISTS. 8". Jaarboek.

1872. 8°.

Augsburg.—Naturhistorischer Verein. Bericht XXII, XXIII. 1873-5. 8°.

Basel.—Naturforschende Geselbchaft. Bericht iiber die Verhandlungen. I-YIII. 1 835-

1849. 8°. Yerhandhmgen. Theil YI. 1-2. 1874-5. 8°.

BATAVIA.

—

Natuurkundige Vereeniging. Natimrkundig Tijdschrift voor Nederlandsch

Indie. Deel XXII, XXIII. 1871-3. s°.

Societe des Arts et des Sciences. Tijdschrift. Yol. XX. 4-fi, XXI. 1-2. 1872-4.

8°. Notulen. X. 4. XI. 1-4. 1873-4. 8°. Codicum Arabicoriim ( 'atalogus.

1873. 8°. Alphabetische Lijst van Kaarten. 1873. 8°.

Belfast.—Natural History and Philosophical Society. Proceedings. Session 1872-3,

1873-4, 1874-5. 8°.

Berlin.—Konigliche Akademie der Wissenschaften. Physikalische Abhandlungen.

1838, 1841, 1842. 1845, 1849. 4°. Mathematische Abhandlungen. 1845.

4°. Bericht iiber die Yerhandhmgen. 1854-5. 8°. Monatsbericht.

1856-9. 8°.

Bologna.—Accademia delle Scienze delV Instituto di Bologna. Rendiconto. 1873-4. 8".

Bonn.—Naturhistorischer Verein der preussischen Rheinlande und Westplialens. Yer-

handlungen. Jahrg. XXIX. 2, XXX, XXXI, XXXII. 1. 1872-5. 8°.

Bordeaux.—Societe des Sciences Physiques et Naturelles. Memoires. T. IX, X,

II. Ser. I. 1. 1873-5. 8°.

Societe Linneenne. Actes. T. XXYII. 2, XXYIII. 1872. 8°.

Bremen.—Naturwissenschaftlicher Verein. Abhandlungen. Bd. III. 4, IV. 1. 1873-4,

8°. Beilage. No. 3. 1873. 4°.

Brunn.—Naturforscher Verein. Yerhandhmgen. Bd. Y, VI, XI, XII. 1866-74. 8°.

Brussels.—Academie Royale des Sciences, des Lettres et des Beaux-Arts de Belgique,

Memoires. T. XL. 1873. 4°. Memoires Couronnes et Memoires des

Savants I^trangers. T. XXXYII, XXXVIII. 1873-4. 4°. Memoires

Couronnes et Autres Memoires. T. XXIII. 1873. 8°. Bulletins.

II. Ser. T. XXXY-XXXYII. 1872-4. 8°. Annuaire. 1874. 8°.

Centieme anniversaire de fondation. 1872. 2 vols. 8°.

Observatoire Royal. Annales. T. XXI, XXII. 1872-3. 4°.

Observations des phenomenes periodiques. 1872. 4°. Notices extraits

de r Annuaire pour 1874. 16°. Quetelet, A. Congres international

de statistique. 1873. 4°. Quetelet, E. La comete de Coggia. 8°.

pp. 10. Quetelet, E. Rapport sur I'areography de M. Terby. 8 \ p. 6.

Societe Entomologique de Belgique. Annales. T. I-XIV, XYI. 1857-1873.

8°. Compte-rendu. Ser. IL No. 18. 1875. 8°.

Societe Geologique de Belgique. Annales. T. I. 1874. 8°.

Buenos Ayres.—Academia Nacional de Ciencins Exactas. Boletin. Entrega I.

1874. 8°.

Calcutta.—A9ia<ic Society of Bengal. Journal. 1873. I. 2-4, II. 3-4; 1874; 1875, 1.,

II. 1-3. 8°. Proceedings. 1873. v-x, 1874, 1875. 8°.

Carlsruhe.—Polytechnische Schule. Programm. 1875-6. 8°. Riffel, A. Ueber die

anatomischen und physiologischen Eigenschaften der ausseren Haut.

Tubingen, 1875. 8°.



Additiuns to the Lihrary. vii

Catania.—Accademia Gioenia di Scienze Naturali. Atti. Ser. III. T. VII, VIII.

1872-3. 4°. Carta geologica della citta di Catania e dintonii. Per Car-

melo Scinto-Patti. 8 Tavole.

Chemnitz.—Naturwibsenschaftlidie Gesellschaft. Bericht IV. 1873. 8°.

Cherbourg.—Societe Nationale des Sciences Naturelks. Memoires. T. XVII, XVIII.

1873. 8". Catalogue de la bibliotheque. 2"* partie, 1" livr. 1873. 8°.

Chur.—Naturfurschende Gesellschaft Graubiindens. Jahresbericht. Neue Folge. XV
-XVII. 18G9-72. 8°.

Copenhagen. — Kongelige Danske Videnskaberaes Selskab. Oversigt over Forliandlin-

ger. 1873, 1874, 1875, i. 8°.

Danzig.—Naturforschende Gesellschaft SchrLfteu. Neue Folge. Bd. III. 2-3. 1873-4.

8°.

Dijon.—Academie des Sciences, Arts et Belles Lettres. Memoires. III. Ser. T. I.

1871-3. 8°.

DORPAT.— Gelehfte Estnische Gesellscliaft. Verhaudluiigeu. Bd. VIII. 2. 1875. 8°.

Sitzungstaericht. 1874. 8°.

Naturforscher Gesellschaft. Sitzung.sberichte. Bd. III. 1-6, IV. 1. 1869-75.

8°. Archiv fiir die Naturkunde Liv-, Ehsl- uud Kurland.s. I. Ser. Bd.

V. 1-4, VI, VII, 1-4. 1870-5. II. Ser. Bd. V, VII. 1-2. 1867-75. 8 .

Dresden.—Kais. Leopold.- Carolin. Deutsche Akademie der Naturforscher. Leopoldiiia.

HeftVII-X. 1871-4. 4°.

Naturwissenschaftliche Gesellschaft Isis. Sitzungsberichte. 1873, Apr.-Dec,

1874, Jan.-Sept., 1875, Jau.-Dec. 8°.

Verein fur Erdkunde. Jahresbericht. X, XI, XII. 1874-5. 8°.

Dublin.—Royal Irish Academy. Transaetious. Vol. XXIV; Antiquities, Ft. ix; Vol.

XXV; Science, Pt. i-xx. 1872-5. 4^. Proceedings. Vol. X. 4; Series

II. Vol. II. 1-3. 1870-5. 8°.

Edinburgh.— Geological Society. Transactions. Vol. II. 3. 1874. 8°.

Emden.—Naktrfwschende Gesellschaft. Kleine Schriiten. XVII. Hannover, 1875. 4°.

Jahresbericht. LIX, LX. 1873-4. 8°.

Erfurt.—Konigl. Akademie gemeinniitziger Wissenschaften. Jalirbuch. Neue Folge.

Heft. VII. 1873. 8°.

Falmouth. — Royal Cornwall Polytechnic Society. Forty-second Annual Report.

1874. 8°.

FiRENZE.

—

R. Comitato Geohgico d'ltalia. Bolletino. 1873, 1874, 1875. i-iv. 8°.

Frankfurt a. M.—Neue Zoologische Gesellschaft. Der Zoologische Garten. Jahrg.

XIV. 7-12, XV, XVI. 1-6. 1873-5. 8°.

Freiburg i. B.—NatMrforschende Gesellschaft. Berichte. Bd. VI. 1-2. 1873. 8'.

Geneve.—Institut National Genevois. Bulletin. T. XX. 1875. 8".

Societe de Physique et d^ Histoire Naturelle. Memoires. T. XXIII. XXIV.
1. 1873-5. 4°.

Glasgow.—Philosophical Society. Proceedings. Vol. IX. 1873-5. 8°.

Gorlitz.—Naturforschende Gesellschaft. Abhandhmgen. Bd. XV. 1875. 8°.

Goteborg. — Kongl. Vetenskaps och Vitterhets-Samhallr'. Handlingar. Ny Tidsfoljd.

Haftet XII-XIV. 1873-4. 8°.

Halle.—Naturfarschende Gesellschaft. Abhandhmgen. Bd. XII. 3-4, XIII. 2. 4°.

Bericht. 1873, 1874. 4".

Nalurwissenschaftlicher Verein fiir Sachsen und Thilringen. Zeitschrift der

gesammten Naturwissenschaften. Bd. VII-X. Berlin, 1873-4. 8°.



viii Additions lo the Lihrary.

Hamburg.—Xaturwissemchafllicher Verein. Abhandlungon. Bd. V. -i, VI. 1. 1873. 4".

Hannover.—Naturhislorische Gesellschaft. Jahresbericht. XXII-XXIV. 1872-4. 8°.

Harlem.—Musee Teyler. Archives. Vol. III. 3. 1873. 8°.

Heidelberg. — NaturMstorisch-Medecinischer Verein. Verhandlungen. Neue Folge.

Bd. I. 1, 3. 1874-6. 8°.

Helsingfors.—Societas Sdentiarum Fennica. Ofversigt af Forhandlingar. XIV-

XVI. 1871-4. 8'. Bidrag till Kannedom af Finlands Natur och Folk.

Haft. XVIII, XIX, XXI, XXII, XXIII. 1871-3. 8\

Hermannstadt.—Siehenhurgischer Verein. Verhandlungen. Jahrg. XXV. 1875. 8".

Hobart Town.—Royal Society of Tasmania. Monthly Notices for 1872. 8".

KoNiGSBERG.

—

Konigl. physikalisch- okonomische Gesellschaft. Schriften. Jahrg. XIV-

XV. 1873-4. 4°.

Krakau.—K.k. Ste7-nivarte. Materialy do Kllimatografii Galicyi. Rok 1872-1874. 8'.

Lausanne.—Societe Vaudoise des Sciences Naturelles. Bulletin. II. Ser. No. 64-65,

71-75. 1870-1876. 8°.

Leiden.—Sternwarte. Annalen. Bd. IV. Haag, 1875. 4^

Leipzig.—Astronomische Gesellschaft. Vierteljahrsschrift. Jahrg. VIII. 3-4, IX, X.

1-3. 1873-5. 8°. Publication XIII. 1874. 4".

Liege.—Societe Royalf. des Sciences. Memoires. II. Ser. T. IV, V. 1873-4. 8".

LiNZ.

—

Handels- und Geiuerbekammer. Bericht. 1870, 1871, 1872. 8°. Bericht iiber die

Lage und Bediirfnisse des Kleingewerbes in Oberosterreich. 1872. 8 .

Liverpool.—Literary and Philosophical Society. Proceedings. No. XXVII-XXIX.

1872-5. 8°.

London.—Mathematical Society. Proceedings. No. 62-86. 1873-6. 8°.

Luxembourg.—Institut Royal Grand-Ducal. Publications. T. XIII. Section des Sci.

Nat. et Mathemat. T. XIV, XV. 1873-5. 8°. Observations Meteo-

rologiques faites a Luxembourg par F. Renter. Vol. II. 1874. 8 .

Lyon.—Academie des Sciences, Belles-Lettres et Arts. Memoires. Classe des Sciences.

T. XX. 1873-4. 8=.

Manchester.—Literary and Philosophical Society. Memoirs. III. Ser. Vol. IV.

1871. 8°. Proceedings. A^ol. VIII-XII. 1869-73. 8°.

Scientific Students Association. Annual Report. 1872,1873. 8".

Melbourne.—Royal Society of Victoria. Transactions and Proceedings. Vol. X, XI.

1874. 8°.

Metz.—Academie. Memoires. Annee L-LV. 1868-74. 8°. Tables generales.

1819-1871. 8\

Mexico.—Sociedad de Geografia y Estadistica. Boletin. Ill Epocha. T. II. 5-6.

1875. 8°.

MiLANO.

—

Reale Instituio Lomhardo. Rendiconti. Serie II. Vol. VI. 6-20. VII. 1-16.

1873-4. 8 .

Reale Osservatorio di Brera. Publicazione. No. II, IV, V, VII-X.

1873-5. 4°.

Societd Italiana di Scienze Xaturali. Atti. Vol. XV. 3-5. XVI, XVII. 1-3.

1872-5. 8°.
.

MONTPELLiER.

—

Academie des Sciences et des Lettres, Memoires. Lettres, T. V. 4 ; Sci-

ences, T. VIIL 2; Medecine, T. IV. 6. 1870-2. 4°.

Moscow,

—

Societe Imperiale des Naturalistes. Nouveaux Memoires, T- XIII. 4, 1874,

4°. Bulletin. 1873, ii-iv, 1874, i-iv. 8°,



Additions to the Library. IX

MUNCHEN.

—

Konkjl. Bayerische Akademie der Wissenschaften. 8itziingsberifhte der phi-

losoph.- philolog. und histor. Classe. 1872. iv-v, 1873, 1874. i-iii. 8 .

Sitzungsberichte der mathemat.-physikal. Classe. 1872. iii, 1873. 1874.

i-ii. 8".

Bietz, W. Der Antheil der konigl. Bayer. Akademie an der Eutwick-

lung der Electricitatslehre. Miinchen, 1873. 4".

Bisc'hoff, T. L. W. von. Ueber den Einfluss des Freih. Justus v. Liebig

auf die Entwicklung der Physiologie. Miinchen, 1874. 4°.

DoUinger, J. von. Rede, 25 Juli, 1873. Miinchen, 1874. 8".

Pettenkofer, Max von. Dr. Justus Freih. von Liebig. zum Gedaclitniss.

Miinchen, 1874. 4°.

Prantl, K. von. Gedachtnissrede auf F. A. Trendelenburg. Miinchen,

1873. 4°.

Vogel, A. Justus Freili. von Liebig als Begriinder der Agrikultur-

Chemie. Miinchen, 1874. 4.

Sternwarte. Annalen. Bd. XIX. 1873. 8°. Supplementbd. XIII.

1874. 8°.

Landesioirtlischaftlicher Verein in Boyern. Haus- nnd Landwirthschafts

Kalender. 1874. 4°.

Napoli.—Societd Reale di NapoU. Accademia delle Scienze Fisiclie e Matematiche.

Atti. Vol. V. 1873. 4° Rendiconto. Anno IX-XI. 1870-72. 4°.

Neu-Brandenburg.— Verein dm- Freunde der Naturgeschichte in Meckknbvjy. Archiv.

Jahrg. XXVII-XXIX. 1873-5. 8°.

Neuchatel.—Societe des Sciences NatMrelles. Bulletin. T. IX, X. 1-2. 1871-5. 8".

Offenbach A. M.— Verein fiir Ndturkunde. Bericht XIII, XIY. 1871-3. 8°.

Paris. — Societe d'Acclimatation. Bulletin Mensuel. II Ser. T. X. 6-1 1. Ill Ser.

T. I. 2-12, II, IIL 1. 2. 1873-6. 8°.

Societe Geologique de franee. Bulletin. Ill Ser. T. I. 1-5, II. 1-5, 7,

and Tables, III. 1-2, 4-5. S, IV. 1. 1872-6. 8'.

Societe Americaine. Annuaire. 1873. 8°.

Peag.—Konigl. hohmische Akademie der Wissenschaften. Abhandlungen. Sechste

Folge. Bd. VI, VIL 1873-4. 4°. Sitzungsberichte. 1872. ii, 1873,

1874. 8°.

K. k. Sternwarte. Astronomische. magnetische und meteorologische

Beobachtungen. 1873, 1874. 4°.

PuLKOWA.

—

Nicolai Hauptsternwarte. Jahresbericht. 1871-2, 1872-3. 8°.

Dollen, "W. Die Zeitbestimnumg vermittelst des tragbaren Durchgangs-

instruments im Verticale des Polarsterns. Zweite Abhandluug. St.

Petersburg, 1874. 4^.

Quebec.—Literary and Historical Society. Transactions. New Series. Part X, XI.

1873-5. 8°.

Regensburg.—Zoologisch- mineralogischer Verein. Abhandlungen. Heft X. Miinchen,

1875. 8°. Correspondenz- Blatt. Jahrg. XXVIL XXVIII. 1873-4.8".

Historischer Verein vom Oberpfalz und Regenshurg. Verhandhmgen. Bd.

XXIX, XXX. Verzeichniss iiber Bd. I-XXX. 1874. 8°.

Riga.—Naturforscher Verein. Correspondenzblatt. Jahrg. XX. 1874. 8°.

St, G ALLEN,—Naturwissenschaftliche Gesellschaft, Bericht. 1872-3, S'',



X Additions to tlie Lihvary.

Santiago. — Uniuersidad de Ckik. Annies. T. XXVIII-XLIY. 1866-73. 8".

Memorias preseatados al Congreso Nacional de 1874, viz. : Memoria de

Relaciones Esteriores e de Colonizacion ; del Interior ; de Justicia,

Culto e Instruccion Publica ; de Guerra ; de Marina. Santiago and

Valparaiso. 1874. 5 vols. 8°.

Anuario de la Oficina Central Meteorolojica de Santiago de Chile.

1871-2. 8°.

Briseno, R. Estadistica Bibliogralica de la Literatura Chiliena. Santiago.

1862. 4'.

Doraeyko, D. Iguacio. Quarto Apendice al Reino Mineral de Chile.

Santiago, 1874. 8°.

Varas, J. A- Colonizacion de Llanquihue, Valdivia, Arauco. Santiago,

1872. 8°.

St. Petersburg.—Jardin Imperial de Botanique. Trudi 1. 2, II, III. 1872-4. 8'.

Schiveizerische Naturforschende Gesellscha/t. Verhandhmgeu in SchafEhausen, 1873.

Jahresversammlung LVI. 8°.

Stockholm.— Kowjl. Svenska Vetenskaps Akademien. Handlingar. Ny Foljd. Bd.

IX. 2, X, XII. 1870-3. 4°. Bihang till Handlingar. Bd. I, II.

1872-5. 8°. Ofversigt. Arg. XXVIII-XXXI. 1871-4. 8°.

Meteorologiska Jagttagelser. Bd. XII-XIV. 1870-2. 4°.

Minnesteckning ofver J. A. von Hartniansdorff. 1872. 8°.

Minnesteckning ofver Hans Jarta. 1874. 8°.

Stuttgart.— Verein fiir vaterliindische Naturkunde in Wilrttemberg. Jahreshefte.

Jahrg. XXX, XXXI. 1874-5 8°.

Sydney.— Government Observatory. Results of Meteorological Observations. 1872,

1873. 8°.

Toronto. Magnetical Observatory. Monthly Meteorological Register. 1873-4. 8°.

General Meteorological Register. 1873-5. 8°. Abstracts and Results

of Meteorological Observations, 1841-71. 1875. 8°. Third Report of

the Meteorological Office of the Dominion of Canada. 1873. 8".

Upsala.— 7i'e.oi« Societas Scientiarum. Nova Acta. Ser. Ill, T. VIII. 2. 1873°.

4°. Bulletin Meteorologique Mensuel. IV, V. 1-6. 1872-3. 4°.

WiEN.

—

Kaiserliche Akademie der Wissenschaften. Sitzungsberichte. Math.- naturwiss.

Olasse. Abtheil. i, ii, Bd. LXIII, LXIV. Abtheil. i, Bd. LXV-LXXI.

1871-5. 8^

Wex, G. Ueber die Wasserabuahme in den Quellen, Fliissen und

Stromen. Wien, 1878. 4°.

K. k. geologisclie Reichsanstalt. Abhandlungen. Bd. V, VI, VII, 1-3,

VIII. 1. 1871-5. 4°. Jahrbuch. Bd. XIX. 4, XX-XXV. 1869-75. 8°.

Verhandlungen. Jahrg. 1869. No. 14^-18, 1870-3, 1874. No. 1-13,

16-18, 1875. 8". General Register zu Jahrbuch XI-XX und Ver-

handlungen 1860-1870. 8°.

Hauer, F. v. Zur Erinnerung an Wilhelm Haidinger. 8°.

A'. A;, zoologisch- botanische Gesellschaft. Verhandlungen. Bd. XXIII,

XXIV. 1873-4. 8".

Wiesbaden. — Nassauischer Verein fiir Naturkunde. Jahrbiicher. Jahrg. XXV-
XXVIII. 1871-~1. 8°.



Addiiiovs in the Lihrcvn/. xi

WuRZBURG.— Physihiliscli- rnedicinifiche Gesellscha/f. Sitzimgsberichte. 1868-74. 8"^.

Festschrift ziir Feier des fiinfundzwanzigjahriges Bestehens der Gresell-

schaft. 1875. 4°.

Kolliker. A. Festrede, 8. December, 1874. 8°.

Zurich.—Natwforschende Gesellschaft. Yierteljahrsshrift. Jahrg. XIV-XVII. 1869

-72. 8°.

Agardh, J. U. Till Algernes Systematik. Xya Bidrag. Lund, 1872. 4".

Frmn the Author.
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I. Report ox the Dr edgings in the region of St. George's

Banks, in 1872.* By S. I. Smith and O. Harger.

[Published by permission of tlie Superintendent of the U. S. Coast Survey.]

During the summer of 1872, a series of dredgings was carried on

by the authors in the neighhorliood of St. George's Banks. The work

was undertaken at the instance of Professor Baird, United States

Commissioner of Fish and Fisheries, and carried on, through the

cooperation of the Coast Survey, from the steamer Bache, on board

of which accommodations were furnished for two persons, with the

necessary apparatus. On board the steamer we were received and

treated throughout with the utmost courtesy by Commander J. A.

Howell, and the other officers of the vessel. Lieutenants Jaques,

Hagerman, Jacob and Rush ; and although the dredging was carried

on in connection with the special hydrographic work of the Coast

Survey, all these gentlemen manifested a degree of interest in our

work equal to that which they felt in their own.

On account of the lateness of the season at which operations were

begun, the weather was most of the time cpiite unfavorable for dredg-

ing, so that the number of hauls made with the dredge was much

smaller than had been expected, and no opportunities were afforded

for using the large traAvl or the rake dredges which had been pro-

vided, with the rest of the outfit for the natural history department

of the expedition, by the United States Fish Commissioner. Still, the

collections which were made from these comparatively few dredgings

have proved rich and very important, giving nearly the only informa-

tion which we possess of the character of the fauna of the fishing

banks, and adding very largely to the knowledge of the distribution,

both geographical and bathymetrical, of the marine animals of our

northern coast.

* The text of this report was written and presented to the Superintendent of the

Coast Survey, very nearly in its present form, in December, 1872, but its publication

has been unavoidably delayed until the present. The figures illustrating some of the

species mentioned have been added since the report was first prepared.

Trans. Connecticut Acad., Vol, III. 1 xily, 1874.
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After we were obliged, late in September, to leave the expedition.

Prof. A. S, Packard, Jr., and Mr. Caleb Cooke, of Salem, Mass., went

in the steamer on another trip, which was mainly devoted to dredg-

ing. On this trip a number of successful hauls were made at differ-

ent localities along the northern extremity of George's Bank, in 40 to

150 fathoms. The region visited on this trip was quite distant from

any of the localities examined by us, and the bottom, in the deeper

dredgings, was of an entirely different character, so that the collec-

tions made by Prof Packard and Mr. Cooke contain many species

not found by us, and add very greatly to the value of the results.

We wish specially to acknowledge the assistance rendered us in

the preparation of this report by Professor Verrill, who has identified

all the worms mentioned, and the more difficult mollusks and

radiates.

The following table will facilitate references to the localities at

which the dredgings were made. The letters in the first column are

the same as those used by Professor Verrill in his papers in the

American Journal of Science. When more than one haul of the

dredge was made at any of the localities, the number of hauls is indi-

cated in parenthesis.

station.
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west. The first haul, («), in 25 fathoms, soft sandy bottom, gave the

following species

:

Crustacea,
*

Eupagurus Bernhardiis Brandt ; a1>undant.

Crangon 'oulgarls Fabricins ; abundant.

Conilera poUta Harger (Stimpson).

Epelys montosus Smith (Stimpson).

Balanus porcatus Costa ; common.

Annelida.

(Jistenides gramdata Malmgren.

TURBELLARIA.

Meckelia lurida (?) Verrill.

MOLLUSCA.

JBela turricuki (Montagu).

B. harptdaria H. and A. Adams (Couthouy).

Buccinwn tindatum Linne ; very large and abundant.

Nejitunea pygmoia H. and A. Adams (Gould) ; abundant.

Tritia trlvittata H. and A. Adams (Say) ; abundant.

Lunatia heros H. and A. Adams (Say).

L. hnma.cxdata H. and A. Adams (Totten).

Crepidida plana Say {iingniformis Stimpnon) ; several, living.

Ensatella Americana Verrill (Gould).

Modiolaria nigra Loven (Gray).

Radiata.

Ee/iinarachnius parma Gray; very abundant.

Sydractinia polyclina Agassiz.

At the second haul (^), in '^(^ fathoms, the bottom was of the same

character, but a greater variety of species was obtained.

Crustacea,

Cancer irroratus Say, young ; common.

Eupagurus Bernhardus Brandt; a)>undant.

E. pubescens Brandt ; common.

Crangon vulgaris Fabricins ; abundant,

/ Pandahis annulicornis Leach ; common.

Stenothoe peltata Smith, sp. nov. [Plate III, figures 5-8.]

Fhotis (?) sp.

Ampelisca sp.

Xenoclea megachir Smith, sp. nov, [Plate HI, figures 1-4.]

Vnciola irrorata Say.

Bulichta sp.
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Annelida.

Aphrodita aculeata Linne.

Clymenella torquata Verrill ; tubes only.

Tu KBELLARIA.

Meckelia lurida (?) Verrill.

M. ingens (?) Leidy.

MOLLUSCA.

Bela turricula (Montagu).

B. harpidaria H. and A. Adams (Couthouy).

Adtnete viridula (O. Fabricius).

Buccimtm undatum Linne ; large and abundant.

JSFeptunea pygmma H. and A. Adams (Gould) ; large and common.

Lunatia heros H. and A. Adams (Say).

" " var. triseriata (Say).

(Jrepidula plana Say {xinguifornds Stimpson).

Siliqua costata H. and A. Adams (Say).

Yoldia Umatilla Stimpson (Say).

Modiolaria nigra Loven (Gray).

Farrella familiaris Smitt (Gros) ; abundant.

Gemellaria loricata Busk (Linne).

Radiata.

Echinarachnius parma Gray ; very abundant.

Asterias vulgaris Stimpson.

Campanidaria verticillata Lamarck (Linne).

Sertularia cupressina Linne.

8. latiusculaf Stimpson.

Hydrallmania falcata Hincks (Linne) ; abundant.

Five successful hauls were made on the line of soundings running

east from George's Bank, on the parallel of 41° 25' north latitude, to

63° 20' west longitude. The first of these hauls (c), beginning at the

western end of the line, was in about longitude 66° 45' west, from 28

fathoms, coarse sandy bottom, September 16. Here the following

species occixi-red.

Crustacea.

Cancer irroratus Say, young ; abundant.

Eupagurus Bernhardus Brandt.

Crangon vulgaris Fabricius ; common.

Pandalus annulicornis Leach.

Ampelisca sp.

Annelida.

Nereis pelagica Linne.
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TURBELLARIA.

Meekelia lurida (?) Verrill.

MOLLUSCA,

Bela harpularia H. and A. Adams (Coutliouy).

Tritia trivittata H. and A. Adams (Say) ; common,

Lunatia heros H. and A. Adams (Say), variety triseriata ; common.
L. imrnaculata H. and A. Adams (Totten).

Crepidula fornicata Lamarck (Linne) ; one dead specimen.

Scalaria Groenlandica Sowerby.

Clidiophora trilineata Carpenter.

Mactra solidissima Chemnitz (Gray).

Astarte castanea Say.

Crenella glandula H. and A. Adams (Totten).

Ostrea Virginica Lister ; only dead sjjecimens.

Glandula arenicola Verrill ; abundant.

Radiata.

Strongylocentrotus Drdhachiensis A. Agassiz.

Echinarachnius 2)arma Gray.

At the second haul {d), longitude 66° 24-8' west, 50 fathoms, sandy

and shelly bottom, August 31, the following species occuiTed.

Pycnogonida.

Nymphon grossipes Kroyer.

Crustacea.

Cancer irroratus Say
;
young.

Ilyas coarctatus Leach ; abundant.

Eupagurus Bernhardtis Brandt ; common.

E. Kroyerii Stimpson; common.

E. ptnhescens Brandt ; common.

Pandalus annulicornis Leach ; common.

Vetumnus serratiis Goes.

Melita dentata Boeck
(
Gammariis purpuratus Stimpson).

3Icera Dance, Bate (Stimpson) ; common.

Cerapus rubricornis Stimpson ; common.

Podocerus nitidus Stimpson.

Unciola irrorata Say ; common.

Palanus porcatus Costa; common.

AlSTNELIDA.

Aphrodita aculeata Linne.

Harmothoe imhricata Malmgren (Linne).

Phyllodoce catenida Verrill. [Plate IV, figure 3.]
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Nereis pelagica Linne ; abundant.

Cistenides gramdata Malmgren.

Thelepus cineinnatus Malmgren (Fabricius).

Potamilla ocidifera Verrill (Leidy).

P. neglecta Malmgren.

Spirorbis nautiloidesf Lamarck. [Plate IV, figure 4.]

Gephyrea,

PJiascolosoma cmrnentariuin Verrill.

MOLLUSCA.

Bela turricula (Montagu).

jB. harpidaria H. and A. Adams (Couthouy).

B. pleurotomaria H. and A. Adams (Couthouy).

B. decussata (Couthouy).

Neptunea curta Verrill (Jeffreys sp. ; Fasus Islandicus Gould).

N. decenicostata (Say).

N. pygmo&a H. and A. Adams (Gould).

lAmatia immaculata PI. and A. Adams (Totten).

Natica clausa Broderip and Sowerby ; common.

Amauropsis helicoides Stimpson ; rare.

Crepidida plana Say [unguiformis Stimpson).

Acirsa horealis Mon^h (Beck).

Margarita ohscura Gould (Couthouy).

Hanleia niendicaria Carpenter (Mighels and Adams).

Entalis striolata Stimpson. [Plate I, figure 3.]

^olis sp.

Thracia trvncata Mighels and Adams.

Cyprina Islandica Lamarck (Linne).

Cardium pinnulatum Conrad ; abundant.

Cyclocardia borealis Coni-ad ; common.

Astarte castanea Say.

A. quadrans Gould.

Modiolaria discors Beck (Linne).

Pecten Islandicus Chemnitz (Mtlller).

Anomia aculeata Gmelin ; abundant.
" " smooth variety.

Boltenia clavata Stimpson.

Pera crystallina Verrill (Moller)
;
young. [Plate VIII, figure 1.]

Amaroeciuni sp.

Cettidaria ternata Johnston (Busk).

" " var, duplex Smitt.

Caberea Ellisii Smitt (Fleming).
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Bugula Murrayana Busk (Bean) ; abundant.

Cellaria Jistulosa Liune.

Biscopora Skenei Smitt.

Cellepora scabra Smitt (Fabricius).

C. ramulosa Linne, var. ; with the two last species abundant on
hydroid stems.

Radiata.

Strongylocentrotus Brohachiensis A. Agassiz.

Cribrella sanguinoknta Liitken.

Beptasterias compta Verrill.

Ophiopholis aculeata Gray ; common.

Amphipholis elegans Ljungman.

Ophioglypha robusta Lyman.

Hydracthiia polyclina Agassiz.

Eudendrium ramosiwi Ehrenberg.

E. capillare Alder (?)

Tubularia indivisa Linne.

Gonothyrma Boveni AUman.

Campamdaria verticdlata Lamarck (Linne) ; common. *

C. Hincksii Alder.

G. voliibilis Alder (Linne).

Bafoea dumosa Sars (Fleming) ; abundant on Bryozoa.

B. gracillima G. O. Sars (Alder) ; with last, common.

Galycella syringa Hincks (Linne) ; common.

Guspidella humilis Hincks.

Haleciuyyi Beanii Johnston.

H. tenellum Hincks.

Sertidarella polyzonias Gray, var. gigantea Hincks; common.

S. triciispidata Hincks (Alder) ; common.

Biphasia fallax Agassiz (Johnston) ; abundant.

Sertidaria cupressina Linne ; common.

S. latiuscula Stimpson.

S. abietina Linne.

Hydrallmania falcata Hincks ; very abundant.

Urticina crassicornis Ehrenberg.

Sponges.

ThecopJiora ihla Wyville Thompson. [Plate VII, figure 1.]

Other undetermined species.

At the third haul (e), longitude 65" 58-3', 60 fathoms, shelly and

sandy bottom, September 16, the following were found:
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Crustacea.

Hyas coarctatus Leach ; abundant.

Eupagurus Kroyerii Stimpson ; abundant.

E. pubescens Brandt ; abundant.

Sabinea septemcarinata Owen ; one specimen.

Pandalus annulicornis Leach ; common.

Paramphithoe pulchella Bruzelius (Kroyer).

Melita dentata Boeck {Gammarus purpuratas Stmipson).

Podoceriis nitidus Stimpson.

Caprella sp.

Balanus porcatus Costa ; common.

Annelida.

Harmothoe imbricata Malmgren.

Bhynchobolus capitatus Verrill (Oersted sp., not of Claparede).

Thelepus cincinnatas Malmgren (Fabricius).

Spirorbis nautiloidesf Lamarck. [Plate IV, ifigure 4.]

Gephyrea.

Phascolosoma cmmentariutn Verrill.

Mollusca.

Bela molacea (Mighels and Adams).

B, harpularia H, and A. Adams (Couthouy).

Neptunea curta Verrill (Jeftreys sp. ; Fiisus Islandicus Gould).

N. decemcostata (Say).

N'. pygmcea H. and A. Adams (Gould) ; common.

iMuatia heros H. and A. Adams (Say), variety triseriata.

Natica clausa Brodei'ip and Sowerby.

Amnuropsis helicoides Stimpson ; rare.

' Stylifer Stimpsonii Verrill; parasitic on Strongylocentrotus Dr'6-

bachiensis A. Agassiz. [Plate I, figure 1.]

Aporrhais occidentalls Sowerby.

Acirsa borealis Morch (Beck).

Margarita obscura Gould (Couthouy) ; common.

Diodora noachina Gray (Linne).

Hanleia mendicaria Carpenter (Mighels and Adams).

Cylichna alba Loven (Brown).

Entalis striolata Stimpson ; common. [Plate I, figure 3.]

Bendronotus arborescens Alder and Hancock.

Cyprina Islandica Lamarck (Linne) ; very abundant.

Cardium pinmdattivi Conrad; common.

Astarte castanea Say. «

A. quadrans Gould.
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Astarte undata Gould. [Plate I, figures 6-9.]

Modiolaria corrugata Morch (Stimpson).

Pecten tenuicostattis Mighels.

P. Islandicus Chemnitz (Miiller).

Anomia aculeata Gmelin, smooth variety ; common.

Cellularia ternata Johnston (Busk) ; common.

JBagula Murrayana Busk (Bean),

GellariaJistulosa Linne.

Piscopora Skenei Smitt, variety,

Cellepora scahra Smitt (Fabricius) ; with the last on hydrqid stems,

Radiata.

Lophothurla P\ibricii Verrill.

Psolus phantapus Oken.

Strongylocentrotus Drobachiensis A. Agassiz ; abundant.

Echinarachnius parma Gray ; abundant.

Crossaster papposus Miiller and Troschel.

Crihrella sanguinolenta Liltken.

Hgdractinia polyclina Agassiz ; common.

Eudendrium capillare Akler.

E. raniosuni Ehrenberg.

Tubularia indivisa Linne ; common,

Campanular'ia iiertlcillata Lamarck (Linne) ; common,

C. Hincksii Alder,

C. voluhilis Alder.

Gonothyrma hyalina Hincks.

Lafoea dumosa Sars (Fleming) ; common,

L. gracillinia G. O. Sars (Alder).

Grammaria ahietina^ Sars.

Goppinia arcta Hincks (Dalyell) ; on hydroid stems.

Sertularella tricuspidata Hincks (Alder) ; abundant.

Piphasia mirabilis Verrill.

P. fallax Agassiz,

Serlularia latiuscida Stimpson.

S. cupressina Linne.

Hydrallmania falcata Hincks (Linne) ; common.

Epizoantlms Americanus Verrill ; coating shells inhabited by Eupa-

gurus piihescens, and also on hydroid stems. [Plate VIH, fig. 2.]

Urticma crassicornis Ehrenlierg.

At the fourth haul (/), longitude 65° 5i)-3', 65 fathoms, the bottom

composed of dead shells, September 15, midnight, the following

occurred :

Trans. Conn. Acad., Vol. III. 2 ,
July, 1873.
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Crustacea,

Eupagurus Kroyerii Stimpsoii.

E. puhescens Brandt.

Crangon vulgaris Fabricius.

MOLLUSCA.

Beta decussata (Couthouy).

Natica clausa Broderip and Sowerby.

Stylifer Stimpsonil Verrill
;
parasitic on Strongylocentrottis Bro-

hachiensis A. Agassiz. [Plate I, figure 1.]

Acirsa borealis Morch (Beck).

Margarita, ohscnra Gould (C?outhouy), variety.

Mactra solidissima Chemnitz (Gray); abundant.

Cyprina Islandica Lamarck (Linne) ; common.

Cyclocardia borealis Conrad.

Astarte undata Gould. [Plate I, figures 6-9.]

Crenella glandula H. and A. Adams (Totten).

Radiata.

Strongylocentrotus Brobachiensis A. Agassiz ; common.

Echinarachnius parma Gray ; abundant.

Hydractinia polyclina Agassiz.

Tubularia indivisa Linne.

Campnnularia vertieillata Lamarck (Linne).

Sertularella tricitspidata Hiiicks (Alder) ; common.

Sertularia ciipressina Linne.

Epizoanthus Americamis Verrill ; coating shells inhabited by Eupa-

gurus pubescens. [Plate VIII, figure 2.]

Urticina crassicornis Ehrenbei'g.

The fifth haul {g) on this line was made on the evening of Septem-

ber 15, to the east of the bank, in longitude 65° 42*3' west, at a

depth of about 430 fathoms, on a bottom of sand, gravel, small and

large stones. Here the following species occuiTed

:

Pycnogonida.

Pycnogonum Uttorale Mtiller {pelagicum Stimpson) ; common.

Ckustacea.

Eupagurus Kroyerii Stimpson ; common.

Pandalus annulicornis Leach ; several specimens.

Thysanopoda sp, ; several specimens, perhaps not from the bottom.

Unciola irrorata Say ; several specimens.

Melita dentata Boeck.

Scalpelhaii Stroemi Sars ; on hydroid stems. [Plate III, fig. 9.]

Annelida,

Nothria conchylega Malmgren (Sars) ; abundant. [Plate VII, fig. 3,]
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Nephthys circinata Yerrill, sp. nov.

LximbriconereisfragHis ffirsted (Mtiller).

Leodice vivida Verrill [Eunice vivida Stimpson), [Plate Y, fig. 5.]

Mhynchoholus capitatus Verrill (CErsted sp., not of Claparede).

Gephyrea.

Phascolosoma tubicola Verrill.

MOLLUSCA.

Beta cancellata (Mighels and Adams).

Neptunea pygmma H. and A. Adams (Gould).

Z/unatia Groenlandica (Mollcr).

L. immaculata H. and A. Adams (Totten).

Natica clausa Broderip and Sowerby.

Margarita ohscura Gould (Couthouy).

Diodora noachina Gray (Tjinne), variety princep)s (Mighels and

Adams).

Entails striolata Stimpson. [Plate I, figure 3.]

Astarte lens Stimpson ; dvv^arf variety.

Cryptodon obesns Verrill. [Plate I, figure 11.]

Pecten pustulosiis Verrill.

Vescictdaria armata Verrill ; on Sertularia argentea.

Several other species of Bryozoa.

Radiata.

Lopthothuria squamata, Verrill.

Pentaeta asshnills (Duben and Koren).

Schizaster fragilis Agassiz (Duben and Koren).

Strongylocentrotas Probac/iiensis A. Agassiz ;
several.

Echinarac/mixs p((riiia Gray ; common.

Ophioglypha Sarsii Lyman ; common.

Eudendritim ramosuvi Ehrenberg (Linne).

Tubidaria indivisa Linne.

Campanularia virticillata Lamarck (Linne).

Lafoea graclUhna G. O. Sars (Alder).

Calycella producta G. O. Sars.

Halecinm robustuui Vei-rill.

Sertularella Gayi Hincks (Lamoroux).

S. triciispidata Ilincks (Aldei-) ; with reproductive capsules.

Sertularia argentea Linne, slender variety; with reproductive

capsules.

Epizoanthus Americanus Verrill ; upon small stones.

Urticina crassicornis Erhenberg
;
young specimens.

U. nodosa Verrill (Fabricius) ; two large specimens.
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On the line of soundings from near Cape Sable, Nova Scotia, to lati-

tude 41° 25' north, longitude 63° 20' west, two successful hauls were

made September 12, on Le Have Bank. The first (A), latitude 42° 56-5'

north, longitude 64° 51 '3' west, 45 fathoms, gravelly and stony bot-

tom, gave the following species :

Crustacea.

Hyas coarctatus Leach ; very abundant.

Eupagurus Kroyerii Stimpson ; abundant.

Hippolyte spina Leach ; several specimens.

a. pusiola Kroyer. ^

Syrrhoe crenulata Goes ; a single specimen.

Tiron acanthurus Lilljeborg ; one specimen.

Paramphitho'e cataphracta Smith (Stimpson).

Tritropis aculeata Boeck, and several undetermined Amphipods.

Annelida and Gephyrea.

Nychia cirrosa Malmgren (Pallas).

Eunod nodosa Malmgren (Sars).

JELarmothoe imhricata Malmgren (Linne).

Nereis pelagica Linne ; abundant.

Nothria conchylega Malmgren (Sars) ; very abundant. [Plate VII,

figure 3.]

Spiocluetopterus (?) ; tubes only.

Cistenides granulala Malmgren,

Thelepus cincinnatus Malmgren (Fabricius).

Potamilla ocidifera Verrill (Leidy).

P. neglecta Malmgren ; very abundant.

Spirorhis valida, Verrill, sp. nov.

S. hicidus Morch.

Phascolosoma ccementarium Verrill.

TURBELLARIA.

Leptoplana ellipsoides Girard.

MOLLUSCA.

Bela violacea (Mighels and Adams).

Admete viridula Stimpson (O. Fabricius).

Buccinunn undatwm Linne ; common.

Neptunea deeemcostata (Say).

N. pygmoea H. and A. Adams (Gould) ; common.

Trophon Gnvneri Loven ; three sjDecimens.

Lunatia Groenkwdica. (Moller).

Natica clausa Broderip and Sowerby ; abundant.

Grepidula plana Say {unguiformis Stimpson); one alive.

TVichotropis horealis Sowerby; abundant.
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Aporrhais occidentalls Sowerby.

Turritella erosa Couthoiiy ; common.

Scalaria Groerdandica Sowerby ; abuudant.

Margarita cinerea Gould ; common.

M. Groenlandica Moller {M. undulata Gould).

Trachydermon album Carpenter (Montagu).

Entails striolata Stimpson; abundant. [Plate I, figure 3.]

Dendronotus arhoreseens Alder and Hancock.

Mya, truncata Linne.

Cardiian pinnulaturn Conrad ; common.

Cyclocardia N'ovanglim Morse ; common.

Astarte elliptica (Brown); very abundant. [Plate I, figure 10.]

A. Banksii Leach; common. [Plate I, figure 12.]

A. undata Gould ; common. [Plate I, figures 6-9.]

Pecten Islaudicus Chemnitz (Mtiller) ; abundant.

Boltenia Molteni.

Cynthia carnea Verrill.

Terehrattdina sep)tentrionalis (Couthouy) ; common.

Mhynchonella psittacea (Gmelm).

Myriozoum coaretatam Smitt (Sars) ; common.

Eschara papposa Packard.

Escharoides rosacea Smitt.

Cellepora avicidaris Hincks.

Radiata.

Lophothuria Fahricii Verrill.

Strongylocentrotus Drobachlensis A. Agassiz; common.

Grossaster papposus Mtiller and Troschel; young.

Pteraster milltaris Mtiller and Troschel.

OphiophoUs acideata Gray ; common.

Ophioglypha Sarsii Lyman.

0. robusta Lyman.

Clytia Johnstoni Hincks (Alder).

Hydractinia polyclina Agassiz ; abundant.

Eudendriunti cappilare Alder.

Tubidaria indivisa Linn^ ; common.

Cainpanularia verticillata Lamarck (Linn6).

C. IIi7icksii Alder.

Lafoea graclllhna G. O. Sars.

Calycella syringa Hincks (Linne).

Sertularella tricuspidata Hincks (Alder); common.

S. polyzonias Gray, variety gigantea Hincks.

Thuiaria articulata Fleming (Pallas).

Urticina crassicornis Ehrenberg ; abundant.
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At the second haul [i), latitude 41° 44' north, longitude 64° 36'

west, 60 fathoms, coarse gravel, stones, and sponges, the following

occurred

:

Pycnogonida.

Nymphon grossipes Kroyer,

Crustacea.

Hyas coarctatus Leach.

H. araneus Leach.

Eupagurus Kroyerii Stimpsou ; abundant.

Sabinea septemcarinata Owen; two specimens.

Tritropis aculeata Boeck.

Acanthozone cuspidata Boeck.

Annelida.

Eunoa nodosa Malragren (Sars).

Harmothoe imhricata Malmgren (Linne).

Lagisca rarispina Malmgren (Sars).

Nothria conchylega Malmgren (Sars) ; abundant. [Plate VII, fig. 3.]

Thelepiis cinclnnatus Malmgren (Fabricius).

I*otamUla neglecta M'dlmgYQn ; abundant.

Spirorhis valida VeiTill.

MOLLUSCA.

Adrnete viridula Stimpson (O. Fabricius) ; common,

Trophon Gunneri Loven.

Natica clausa Broderip and Sowerby.

Aporrhais occidentalis Sowei'by.

Turritella reticulata Mighels and Adams.

Margarita cinerea Gould.

Hanleia mendicaria Carpenter (JVlighels and Adams).

Trachydermon album Carpenter (Montagu).

Entalis striolata Stimpson ;
abundant.

uEolis rufibranc.hialis Alder and Hancock (?).

Cardium pinmdatum Conrad.

Terebratulina septentrionalis (Couthouy) ; common.

Atnarcecium glabrum Verrill.

Discopora Skefiei Smitt.

Radiata.

Gribrella sanguinolenta Liitken.

Ophiopholis aculeata Gray ;
abundant.

Ophioglypha Sarsii Lyman.

Lafoea gracillima G. O. Sars.

Sertularella tricuspidata Hincks.
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Sertularella polyzoiiias Gray, variety gigantea Hincks.

Hydrallmaniafalcata Hincks, var. tenerrima (Stimpson).

Aglaophenia myriophylhdn Laraoroux (Linne),

Granimaria abietina Sars.

Many species of sponges were also obtained, but most of them are

as yet undetermined. Among them is Thecophora ibla W. Thompson.

On leaving Halifax, N. S., September 11, one haul (j/) was made
just off Chebucto Head, in 20 fathoms, soft mud and fine sand with

decaying seaweed. Here the following were found:

Crustacea.

Hyas araneus Leach ; common.

Eupagtiriis pubescens Brandt.

Diastylis quadrispinosa G. O. Sars ; common.

D. sculpta G. O. Sars.

Halii-ages fidvocinctus Boeck (Sars).

Gammarus ornatus Edwards
;
perhaps from floating sea-weed.

Ampelisca sp. ; common.

MonoGxdodes borealis Boeck.

Annelida.

Harmothoe imbricata Malmgren (Linn6).

Goniada maculata OErsted.

Brada sp.

Cistenides granulata Malmgren.

Mollusca.

Aporrhais occidentcdis Sowerby; common.

Turritella reticulata Mighels and Adams ;
common.

Margarita varicosa IMighels and Adams ; common.

M. obscura Gould (C'outhouy), variety.

Thracia niyopsis Beck.

Macoma proxima (Gray).

Astarte elliptica (Brown). [Plate I, figure 10.]

Anomia aculeata Gmelin.

Terebratidina septentrioualis (Couthouy).

Rhynchonella psittacea (Gmelin).

Grisia eburnea Lamoroux (Linne). [Plate II, figures 3-4.]

Flustra papyrea (Pallas).

Radiata.

Ophiopholis aculeata Gray.

Ophioglypha robusta Lyman.

Manania auricula Clark (?)

Hydrallmania falcata Hincks (Linne).
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The dredging while Dr. Packard and Mr. Cooke were on board the

Bache was at five localities. First (o), just on the northwestern bor-

der of George's Bank, latitude 42° 5' north, longitude 67° 49' west,

in 110 fathoms, three hauls were made from a bottom of soft sandy

mud with a few stones, and the following collected :

Crustacea.

Caridion Gordonl Goes ; one small specimen.

Ilarpina fusiformis (Stimpson) ; common.

Stegocephalus ampulla Bell ; one large specimen.

Unciola irrorata Say ; common.

Anthura brachiata Stimpson.

Annelida.

Lmnillaf mollis G. O. Sars.

Pholoe mimita Malmgren.

Nephthys ciliata Malmgren (Miiller). [Plate V, figure 1.]

N. ingens Stimpson.

Phyllodoce sp.

Eteone depressa jNIalmgren (?).

Nereis pelagica Linne ; common.

Lumbriconereis fragilis Oersted (Mtiller). [Plate V, figure 2.]

Ninoe nigripes Verrill. [Plate V, figure 3.]

Leodice vivida Verrill (Stimpson). [Plate V, figure 5.]

Nothria coiwhylega Malmgren (Sars). [Plate VII, figure 3.]

N. opalina Verrill ; common. [Plate VII, figure 4.]

Goniada maculata CErsted.

Rhynchoholus capitatus Verrill (CErsted sp., not of Claparede).

Ammotrypane fimhriata Verrill.

"

Eamenia crassa CErsted.

Trophonia aspera Verrill (Stimpson).

Sternaspis fossor Stimpson.

Scolecolepis cirrata Malmgren (Sars).

Nbtom,asti(S latericins Sars.

Ancistria capillaris Verrill.

Maldane Sarsii Malmgren.

Rhodine Zioveni Malmgren.

Nicomache lumhrlcalis Malmgren (Fabriciusj.

Axiothea catenata Malmgren (?).

Praxilla pnetermissa Malmgren.

P. gracilis Malmgren.

P. species undetermined.

Am.m,ochares assimilis Sars. [Plate V, figure 4.]

Ampharete arctiea Malmgren.
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Ampharete Finrnarchira (?) Malmgren (Sars).

A. gracilis Malmgren.

Amphicteis Gunneri Malmgren (Sars) ; abundant.

Samytha sexcirrata Malmgren (Sars).

Samythella elongata Verrill.

Melinna cristata Malmgren (Sars.)

Amphitrite cirrata Miiller.

Pista cristata Malmgren (Mtiller). [Plate IV, figure 2.]

Grymma spiralis Verrill. [Plate IV, figure 1.]

Terebellides Stroemi Sars.

Polycirrus sp.

Sahella pavonia (?) Malmgren.

Fotamilla neglecta Malmgren.

Protxda media Stimpson ; tubes only. [Plate VI.]

P. horealis (?) Sars ; tubes only.

Gephyrea.

Phascolosoma cmmentarium Verrill.

P. boreale Keferstein (?)

P. tuhicola Verrill.

Chcetoderma nitidulitm Loven, [Plate VIII, figures 3-4.]

TURBELLARIA.

Meckelia lurida (?) Verrill.

MOLLUSCA.

Pleurotoniella Packardii Verrill ; one living.

Adniete viridula Stimj^son (O. Fabricius).

JVeptunea pygmcea H. and A. Adams (Gould) ; common.

Ringicula nitida Verrill. [Plate I, figure 2.]

Lunatia Groenlandica (Mollei').

Natica clausa Broderip and Sowerby.

Velutina Icevigata (Linne).

Margarita citterea Gould.

Lepeta, cmca Mtiller.

Trachydermon alburn Carpenter (Montagu).

Cyliclina alba Loven (Brown).

Philine s]>.

Entalis striolata Stimpson ; common.

JVecera arctiea Sars.

Thracia myopsis Beck.

Macoma proxinta (Gray).

Gardiuni pinnidatum Conrad.

Astarte lens Stimpson, d^varf var. ; common.

Teans. Conn. Acad., Vol. ITI. 3 August, 1874.
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Cryptodon Gouldii H. and A. Adams (Pliilippi).

Yoldia obesa Stimpson.

Leda tenuisulcata Stimpson (Couthouy) ; common.

(Jrenella glandula H. and A. Adams (Totten),

Pecten Ishindlcus Chemnitz (Mullei").

P. tenuicostatus Mighels.

Aiioniia acideata Gmelin.

Ascldiopsis complanata Verrill (Fabricius).

TerebratuUna septentrionalis (Couthouy).

Dtscofascigera lucernaria Sars.

Cellularia sp.

Bugula avicularia Busk, va.vietj /astigiata.

Radiata.

Lophothuria Fabricii Verrill.

Pentacta assimilis (Duben and Koren).

Thyone scabra Verrill.

Schizaster fragilis Agassiz (Duben and Koren) ; several.

Ctenodiscus crispatus Duben and Koren.

Ophioglypha affinis Lyman.

0. Sarsii Lyman.

Opiopholis aculeata Gray.

Ophiacantha spimdosa Mtlller and Troschel.

Archaster arcticus Sars.

Pennatida acideata Danielsen.

Gerianthus borealis Verrill. [l^late 11, figure 5.]

Second (jo), a little to the southeast of the first, latitude 42° 3', lon-

gitude 67° 49', 85 fathoms, one haul from a bottom of the same char-

acter as at first locality :

Crustacea.

Harpina. fusiformis Smith (Stimpsoji) ; common.

Aknelida.

Antinoe Sarsii Kinberg.

Neplithys ingens Stimpson.

N. circinata Verrill, sp. nov.

Lmnbriconereis fragilis (Ersted (Miiller). [Plate V, figure 2.]

Nothria eonchylega Malmgren (Sars). [Plate VII, figure 3.]

^4 rnmotrypanefirnbriata Verril 1

.

JEmnenia crassa Oersted.

Trophonia aspera Verrill (Stimpson).

Sternaspis fossor Stimpson.

Ghoetozone setosa Malmgren.
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Ancistria capillaris Verrill.

Maldane Sarsii Malmgren.

Mhodine Loveni Malmgren.

Praxilla praetermissa Malmgren.

Anmiochares assiniilis Sars.

Ampharete (irctica Malmgren.

Ainphirteis Sundevalli Malmgren.

Terehellides Stroetni Sars.

Polycirrus sp.

Gepuyrea.

Phascolosoma cmmentarium Verrill.

MOLLUSCA.

Natica clausa Broderip and Sowerby.

Scalarla Grcenlandlc<i Sowerby.

Yoldia obesa Stimpson.

Y. thraciformis Stim))Son (Storer).

Radiata.

Schizaster fragiUs Agassiz (l)uben and Koren).

Edwardsia sp.

Third (</), still farther to the southeast, latitude 42°, longitude 67°

42', two hauls in 45 fathoms, coarse sandy bottom

:

Crustacea.

Hyas coarctatus Leach ; very abundant.

Cancer Irroratus Say ; one young specimen.

Eupagurus Bernhardus Brandt.

E. Kroyeri Stimpson ; common.

E. puhescens Brandt ; common.

Crangon vulgaris Fabricius ; abundant.

Hippolyte pusiola Kroyer.

Pandalus annidicomls Leach ; common.

Vertin)i7iKS serratus Goes.

Paramphithoe cataphracta. Smith (Stimpson).

P. pnlchella Bruzelius.

Phoxus Kroyeri Stimpson.

Melita dentata Boeck,

Pontogeneia inermis Boeck ; one specimen.

Gerapus rubricornis Stimpson.

Xenoclea rnegachir Smith, sp. nov. [Plate III, figures 1-4.]

JJnciola irrorata Say.

Balanus porcatus Costa.
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Annelida.

Harmothoe imhricata Malmgren.

JOagisca propinqua Malmgren.

Eusyllis phosphorea Verrill, sp. nov. [Plate VII, figure 2.]

Nereis pelagica Linne.

Leodice vivida Verrill (Stimpson). [Plate V, figure 5.]

Nothria conchylega Malmgren (Sars). [Plate VII, figure 3.

J

Am7noehares assirtdlis Sars. [Plate V, figure 4.]

Amphitrite Groenlandica Malmgren.

Thelepus cincinnatus Malmgren (Fal)ricius).

Chone infundibidiformis Kroyer.

Spirorhis nautiloides Lamarck ?

MOLLUSCA.

Hela harpularia H. and A. Adams (Couthouy).

B. pleuroto)7iaria H. and A. Adams (Couthouy).

JB. turricida (Montagu).

Buccimim utidatum Linne.

Neptunea curta Verrill (Jeffreys sp., Fusus Islatulicus Gould).

N. pygmoea H. and A. Adams (Gould).

Lunatia heros H. and A. Adams, variety triserlata (Say).

L. immaculata H. and A. Adams (Totten).

Turritella erosa Couthouy,

T. acicula Stimpson.

Margarita obscura Gould (Couthouy) ; common.

Diodora noachina Gray (Linne).

Hauleia mendicaria Cai-penter ; large specimens.

Mactra so^^V?^ss^m a Chemnitz (Gray).

Gyprina Islandiea Lamarck (Linne).

Gardium pinnulatnm Conrad ; common.

Astarte quadrans Gould.

Leda tenuisidcata Stimpson (Couthouy) ; common.

Grenella glandida H. and A. Adams (Totten).

Modiola modiolus Turton (Linne).

Modiolaria Imvigata (Gi-ay).

Pecten tenuicostatus Mighels.

P. Islandicus Chemnitz (Mtiller).

Anomia aculeata Gmelin.

Glandula arenicola Verrill.

Gellularla ternata Johnston (Busk).

Gemellaria loricata Busk (Linne).

Bugula Murrayana Busk (Bean).

Cellepora tuberosa D'Orhigny.
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Kadiata.

Lophothuria Fabricii Verrill,

Strongylocentrotus Drbhachiensis A. Agassiz ; common.
Ecliinarachnius parma Gray ; very abundant.

Solaster endeca Forbes.

Crossaster papposus Mtiller and Troschel.

Crihrella sanguhiolenta Liitken.

Asterias mdgaris Stimpson.

Leptasterias Stimpsoni Verrill.

OphiophoUs acideata Gray ; common.

Ophioglypha robusta Lyman.

Eudendriuni rarnosum Ehrenberg (Linne).

E. capillare Alder.

Campanularia verticillata Lamarck ; common.

C. Hincksii Alder.

Lafoea dumosa Sars (Fleming) ; common.

Calycella syringa Hincks (Linne).

Grammaria ahictina Sars {G. robusta Stimpson).

Coppinia arcta Hincks ; on hydroid stems.

Halecium labrosum Alder.

Sertularella polyzonias Gray (Linne) ; common.
" " variety gigantea Hincks.

S. tricvspidota Hincks (Alder) ; abundant.

Sertularia abietina Linne; one, very large.

S. latiuscula Stimpson.

S. cupressina Linne ; common.

S. argentea Ellis and Solander. [Plate HI, figure 2.]

Hydvallmania fidcata Hincks; abundant.

Third (r), north and a little east of the last, latitude 42° 3', longi-

tude 67° 31', in 40 fathoms, coarse sandy bottom:

Crustacea.

Eupagnrus Bemhardns Brandt.

Annelida.

Dodecaceria concharum CErsted.

Spirorbis quadrangidaris Stimpson.

MOLLUSCA.

Bela harpidaria H. and A. Adams (Couthouy).

Natica clausa Broderip and Sowei-by.

Scalaria Groenlandica Sowerby.

Margarita obsciira Gould (Couthouy).

Mactra solidissima Chemnitz (Gray).
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Cyprina Islandica Lamarck (Ijinne).

Cardiwrn pinnulatum Conrad.

Astarte castanea Say.

Pecten temdcostatus Migliels.

Cellularia sp.

Bugula Murrayana Busk (Bean).

Radiata.

Echinarachnms parma Gray.

Hydractinia polyclina Agassiz.

Sertularella polyzonias Gray, var. gigantea Hincks.

Sponges.

Ghalina oculata Bowerbank, and a massive siliceous sponge.

Fifth {s) a little to northeast of the bank, latitude 42° 11', longi-

tude 67° iV, two hauls in 150 fathoms, soft sandy mud with a few

pebbles

:

Crustacea.

Hyas coarctatus Leach.

Eupagurus Bernhardus Brandt.

E. Kroyeri Stimpson.

E. puhescens Brandt.

Ptilocheirus pingxiis Stimpson.

JEga psora Bate and Westwood.

Conilera polita Harger (Stimpson).

JBalanus porcatus Costa.

Annelida.

LcBtraonicefilicornis Kinberg.

Harmothoe imbricata Malmgren (Linne).

Antinoe angusta Verrill, sp. nov.

Eucranta villosa Malmgren.

Nepthys ingens Stimpson.

Eumbrieonereis /ragllis CErsted (Miiller). [Plate V, figure 2.]

Nothria conchylega Malmgren (Sars). [Plate VII, figure 3.]

N', opalina Verrill. [Plate VII, figure 4.]

Goniada maculata Ql^i'sted.

Scalihregma inflation Rathke.

Spiochcetopterus (?) ; tubes exactly like those of this genus.

Scolecolepis cirrata Malmgren (Sars).

Ancistria capillaris Verrill.

Maldane Sarsii Malmgren ; abundant.
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Cistenides granulata Malmgren.

Amphicteis Gunneri Malmgren (Sars).

Amage auricula Malmgren.

Smythella elongata Verrill.

Melinna cristata Malmgren (Sars).

Pista cristata Malmgren (Sars). [Plate IV, figure 2.]

Grymcea spiralis Verrill. [Plate IV, figure 1.]

Terebellides Stroemi Sars.

Protula borealis Sars ? ; tubes only.

Gephyrea.

PhasGolosoma cmmentariutn Verrill.

P. boreale Keferstein (?)

P. tubicola Verrill.

MOLLUSCA.

Adniete viridula Stimpson (Miiller).

Neptunea pygmoia H. and A. Adams (Gould) ; abundant.

Ringicida nitida Verrill ; one living. [Plate I, figure 2.]

Lunatia Grmnlandica (M oiler).

Natica clausa Broderip and Sowerby.

Veliitina zonata Gould.

Torrellia vestita Jeffreys ; one specimen.

Aporrhais occidentalis Sowerby.

Margarita cirierea Gould.

M. obscura Gould (Couthouy).

Trachydermon album Carpenter.

Scaphander puncto-striatus Stimpson ; one very large.

Gylichna alha Loven (Brown).

Entalis striolata Stimpson ; abundant. [Plate I, figure ;^.]

Dentalium occidentale Stim})son ; one specimen.

Nemra arctica Sars

Thracia myopsis Beck.

Cardium pinmdatum Conrad.

Astarte quadrans Gould.

A. lens Stimpson, dwarf variety ; common.

Yoldia obesa Stimpson.

Deda tenuisulcata Stimpson (Couthouy).

Area peetunculoides Scacchi ; several.

Pecten pustulosus Verrill ; one living.

Anomia aculeata Gmelin.

Glandula arenicokt Verrill ; common.

Terebratulina septentriorialis (Couthouy) ; abundant.
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Hornerea lichenoides Smitt (Linne).

Discoporella verrucaria Smitt,

Gellularia ternata Johnston, var. gracilis {arctica Busk sp.).

G. Peachii Busk.

Gcd)erea Ellisii Smitt (F'leming).

JBugula Murrayana Busk (Bean) ; abundant.

jB. avicularia Busk, var. fastigiata.

Gellepora scahra Smitt (Fabricius).

G. ramulosa (Linne).

Radiata.

Thyone scahra Verrill.

Schizaster fragilis Agassiz (Duben and Koren) ; several.

Echinarachnius parina "Gray.

Solaster furcifer Duben and Koren ; one specimen.

Archaster arcticus Sars ; one specimen.

Ophioglypha Sarsii Lyman.

O. affinis Lyman.

Ophiacantha spinxdosa Milller and Troschel.

Glytia Johnstoni Hincks.

Eudendrium capillare Alder.

Sertularella tricuspidata Hincks (Alder).

S. Gayi Hincks (Lamoroux).

Sertularia cnpressina Linne.

Pennatula aculeata Danielsen.

Virgidaria Lyungmanii KoUiker.

Bolocera Tuedice Gosse ; tentacles only.

Urticina crassicornis Ebrenberg.

GeHanthus borealis Verrill. [Plate II, figure 5.]

The lists of species from all the localities (a, 5, c, d, e, /', q, r,) on

George's Bank itself, show that tlie fauna of that region is almost

exactly the same as in the Bay of Fundy, at the same de))ths and on

similar bottom. To be sure, on the one hand, several arctic species,

not yet found in the Bay of Fundy, occurred upon the Bank ; but on

the other hand, several apparently more southern forms were found,

as the species of Grepidxda and Stylifer. The two dredgings {h

and i) upon LeHave Bank seem to indicate, as we might expect, a

somewhat more arctic fauna than that upon George's Bank, since

several arctic species, not known from George's Bank or the Bay of

Fundy, occurred there, though Grepidula phiita was also found.

The dredgings in deep water near the Banks indicate a fauna quite

different from that upon the Banks themselves. This is undoubtedly
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partially owing to the diiference in the character of the bottom as

well as to the diiference in depth. Of the species occurring in deep

water, a much larger proportion than in the shallower waters are the

same as those of northern Europe, At the greatest depth reached

by the dredge, about 430 fathoms, at the locality [g) east of George's

Bank, almost all the species which were not also found in shallow

water are European. Some of these species, however, were dredged

in 1872, by Prof. Veri-ill, in the central part of the Bay of Fundy,

east of Grand Menan Island, in 95 to 106 fathoms, where the char-

acter of the bottom was quite similar to that of our deepest dredg-

ing.

At each of the three deepest of Dr. Packard's dredgings, (o) 110

fathoms, {p) 85 fathoms, and (s) 150 fathoms, the bottom was com-

posed of soft sandy mud, very ditferent in character from that at any

of the localities examined by us. The fauna of the bottom at these

three places was essentially the same, and, although many of the

species, on account of the character of the bottom, were diiferent

from those at the locality in 430 fatlioms, about the same proportion

are identical with European species.

Although the dredgings in deep water were so few, the facts pre-

sented in the foregoing lists with reference to the bathymetrical dis-

tribution of species, are important and very interesting. Of the

species enumerated from 430 fathoms, considerably more than half

are well known shallow water forms, many of them even occurring

between tides in the Bay of Fundy and at other points on the coast,

while nearly all the species mentioned are also found at less than 50

fathoms depth. The same remarks Avill apply to the deeper dredg-

ings of Dr. Packard and Mr. Cooke. The species from the deepest

dredging belong apparently to as highly organized groups of animals

as do those from shallow water. We were not able to detect any

decrease in the intensity of the colors in individuals from this depth.

The colors of Pandalus an?iidlcor>ns, Eupagurus Kroyerl^ Unciola

in-orata^ and Urticina crassicornis, all brightly - colored species,

seemed to have lost none of their intensity at the depth of 430

fathoms.

Besides the investigation of the fauna of the bottom by means of

the dredge, every opportunity Avas employed for collecting those

animals which live in })art or wholly at the surface of the water.

Notwithstanding the unfavorable character of the weather during

most of the time we were at sea, towing nets were used, whenever

soundings were being made, and usually with very good results.

Nets of small size were several times successfully used even Avhen the

Trans. Conn. Acad., Vol. III. 4 August, 1874.
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steamer was under weigh. In this way a great number of surface

species were collected, and a large proportion of them are additions

to the fauna of our coast. Many of these species belong to genera

previously known only from much farther south, or from the eastern

or southern Atlantic, while quite a number are undescribed.

August 29, on and near Cultivator Shoal {k), where the surface

temperature of the water was 62°, the following were taken : Trachy-

nema digitale A. Agassiz, Pleurobrachia rhododactyla Agassiz, species

of Sagitta and Aidolytus, several species of Copeopod Crustacea,

Calliopius Icevhisculus Boeck (among floating rock-weed), the young

of some Brachyuran in the zoea and megalops stages of growth, and

a species of 31otella (?).

East of George's Bank, in latitude 41° 20' to 30', longitude 63°

to 63° 30', September 14, during the day, many species were taken,

but as they all occurred, with many additional species, on the follow-

ing day, it is not necessary to enumerate them separately.

On the evening of September 14, from nine to ten o'clock, still east

of the Bank (m), in latitude 41° 25', longitude 63° 55', while the sur-

face temperature was 65°, the following forms occurred : Pleuro-

hrachia sp. ; a species of Salpa in abundance ; several species of

Heteroi^ods and Pteropods, among the latter Sjnrialis Gouldii

Stimpson, and species of Styliola j a species of Sagitta,' a species of

Sapphiri^ia and a great many other Copeopods ; species of Syj^eria,

Phrosina^ and of another allied genus ; a species of Thysa)iopoda,

which was beautifully phosphorescent
;
young Brachyura in the zoea

and megalops stages, and the young of some Macrouran.

September 15, on the same line of soundings, in latitude 41° 25',

longitude 65° 5' to 30', the temj^erature of the water varying from 66°

to V0°, but most of the time at the latter point, very many species

occurred, and among them the following: Physalia pelagica Lamarck

(Portuguese man-of-war), Cestum Veneris Lesueur (?), Stomolophus

meleagris Agassiz, Charyhdea periphylla Peron and Lesueur, Pelagia

cyanella Peron and Lesueur ; species of Salpa and Sagitta in great

abundance ; Lepas pectinata Spengler and L. fascicularis Ellis and

Solander ; two species of Sapphirina and many other genera of Coj^e-

opoda ; species of Oxycephalus, Platyscelus, Pronoe^ Anchyloinera^

ThyropuSy Phronima (?), and Hyperia; Calliopius Imviiiscidus Boeck,

common among floating rock-weed ; species of Lucifer and Mysis ;

Latreiites ensiferus Stimpson, JVautdognq)sus mimdus Edwards, and

Neptunus Sayi Stimpson among gulf-weed, and the latter frequently

seen swimming at some distance from the sea-weed ; three species of

Heteropods and ten species of Pteropods, all new to our coast.
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Among the Pteropods are Styliola acus (Eschscholtz sp.), and four

other species of the same genus, two of Pleuropus, Spirialis Gouldii,

etc. Many of these species and genera are quite new to the fauna of

the United States, and nearly all of them to the coast of New
England. They are nearly all, as far as known, characteristic Gulf

Stream forms.

Notes on some of the Species enumerated ; by S. I. Smith.*

Crustacea.

Eupagurus Bernhardus Brandt.

Pagurus Bernhardus (Linne sp.) Fabricius, Entomologia systematica, ii, p. 469, 1793,

and Supplementum, p. 411, 1798.

Pagurus (subgenus Eupagurus, section SirejJtodactylus) Bernhardus Brandt, Midden-

dorff's Sibirische Reise, Krebse, p. 106, 1851.

Eupagurus Bernhardus Stimpson, Crust. Pacific Shores of North America, Journal

Boston Soc. Nat. Hist., vi, p. 483 (separate copies, p. 43), 1857.

1 have recently f wrongly given Stimpson as authority for this and

the next species, not having at the time access to Brandt's work, and

not being able to comprehend his absurdly complex nomenclature

from the quotation of his names by other authors.

Eupagurus pubescens Brandt.

Pagurus p>ubescei-ts Kroyer (in part), Gronlands Amfipoder, p. 68, 1838, and Natur-

historisk Tidsskrift, ii, p. 251, 1839.

Pagurus (subgenus Eupagurus, section Orthodactylus) pubescens Brandt, op. cit., p.

Ill, 1851.

Eupagurus pubescens Stimpson, Prodromus descriptionis Animalium evertebratorum,

etc.. Proceedings Acad. Nat. Sci., Pliiladelphia, 1858, p. 237 (separate copies, p.

75), 1859, and Notes on North American Crustacea, Annals Lyceum Nat. Hist.,

New York, vii, p. 89 (separate copies, p. 43), 1859.

This species is common on our eastern coast north of Cape Cod,

but is not quite as abundant as the last species and is seldom found

at low water. South of Cape Cod it is apparently confined to the

deeper and colder waters.

*With the exception of the portion relating to the Crustacea, these notes have had

the benefit of Professor Verrill's revision, and the descriptions of all the new species

have been copied from his pubhshed papers, or, in the case of those here for the first

time described, have been prepared by him specially for these pages, and are marked

by his initials.

\ Report upon the Invertebrate Animals of Vineyard Sound, in Report of the U. S.

Commissioner of Fish and Fisheries, Part I, 1873 (published in 1874).
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Eupagurus Kroyeri Stimpson.

Notes on North American Crustacea, Annals Lyceum Nat. Hist., vii, p. 89 (43)'

1859.

This species is A^ery closely allied to the last and is very easily con-

founded with it, especially when young. The diflerences in the rela-

tive proportions of the chelipeds and ambulatory legs, given by

Stimpson, will not hold for distinguishing the two species, but the

diiferences in the amount of pubescence and especially in the form

and armature of the chelipeds seem to be constant characters, suffi-

cient for distinguishing them.

The Kroyeri has about the same range, on our coast, as the last

species, although I have never seen it south of Cape Cod, but is

apparently less abundant and more confined to the deeper waters.

Sabinea septemcarinata Owen (Sabine sp.)

This species was dredged in 68 fathoms off Casco Bay in the sum-

mer of 1878. It has also been found by Mr. Whiteaves in the Gulf

of St. Lawrence and by Dr. Packard on the coast of Labrador. It is

an exceedingly arctic and circumpolar species.

Caridon Gordoni Goes (Bate sp. ?)

Goes, Crustacea decapoda podophthalma marina Suecipe (from (Efversight af Kongl.

Vetenskaps-Akad. Forliandlingar, Stockholm, IHtiS), p. 10.

We have dredged this species in 50 fathoms in the Bay of Fundy,

and Dr. Packard and Mr. Cooke obtained it on Cashe's Ledge in 1873.

Our specimens agree well with the detailed description given by Goes,

except that they have a well developed epipodus (" flagellum") upon

the second, third and fourth cephalothoracic legs, as in some species of

Hippolyte^ while Goes says of the second legs, " nee palpo nee (quoad

viderim) flagello ullo instructis," and of the third to fifth, " flagellum

basale nullum inspicere potui." From the guarded manner in which

Goes mentions these wholly negative characters, I am inclined to re-

gard them as doubtful. Our specimens agree so completely in all

other respects that it seems highly improbable that they should be

distinct from the European species.

Diastylis quadrispinosa G. 0. Sars.

(Efversight af Kongl. Vetenskaps-Akademiens Forhandlingar, 1871, Stockholm, p.

27 ; and Beskrivelse af de Paa Fregatten Josephiens Expedition Fundne Cumaeeer,

in Kongl. Svenska Vetenskaps-Akademiens Handliugar, ix, p. 28, plates 10, 11,

figs. 51-61, 1871.

This is the most abundant species of the genus from off Buzzard's

Bay and Vineyard Sound to Nova Scotia. It ranges north at least

as far as the Gulf of St. Lawrence.
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Diastylis sculpta G- 0. Sars.

Loc. cit., CEfversight, p. 71 ; Handlingar, p. 24, pis. 1-9, figs. 1-49.

This species is not uncommon in Casco Bay and the Bay of Fundy.

Phoxus Kroyeri Stimpson.

Marine Invertebrates of Grand Manan, p. 58, 1853.

We have dredged this species in 10 to 29 fathoms in and off Viue-

yai'd Sound, on sandy and muddy bottoms in shallow water in Casco

Bay, and have found it from low water to 20 fathoms in the Bay of

Fundy. Mr. Whiteaves has dredged it in the Gulf of St. Lawrence

in 200 fathoms, muddy bottom.

Our species is very closely allied to, and probably identical with,

the P. Holbollii Kroyer which is found in Greenland, Iceland and

northern Scandinavia.

Harpina fusiformis Smith.

Phoxus fusiformis Stimpson, Marine Invertebrates of Grand Manan, p. 57, 1853.

This species is very likely identical with the II. plwiiosa Boeck

{Phoxus plumosus Kroyer), which has very nearly the same range as

Phoxus Holhollii.

We have dredged our species in 20 to 60 fathoms, muddy bottom,

in the Bay of Fundy. Mr. Whiteaves has dredged it frequently, in

the Gulf of St, Lawrence.

Stenothoe peltata Smith, sp. nov.

Plate IV, figures 5 to 8.

Female. Eyes round and nearly white in alcoholic specimens.

Antennuloe considerably shorter than the epimera of the fourth seg-

ment; first segment of the peduncle stout, fully as long as the head,

the second shorter, and the third very short and like the segments of

the flagellum ; flagellum scarcely longer than the peduncle, com-

posed of about eight segments. Antennje slightly longer than the

antennula?; the ultimate and penultimate segments of the peduncle

about equal in length; flagellum about as long as the flagellum of the

antennulae. Second epimeron (figure 5) rudely ovate, twice as high as

broad ; third somewhat rectangular, no wider than the second but

considerably deeper ; foiirth (figure 6) very large, slightly deeper than

the third and a third or a fourth longer than deep, being about as long

as the first five segments of the thorax, the inferior margin regularly

curved and the posterior convex in outline. First legs (figure 7)

small and slender; merus triangular and broader distally than the

carpus, which is not quite twice as long as broad and has the lateral

margins parallel
;
propodus narrower but slightly longer than the

carpus and narrowed distally ; dactylus about half as long as the jjro-
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podus. Second legs (figure 5) stouter; merus short triangular;

carpus much broader than long and only slightly produced beneath

the propodus; propodus about as long as the breadth of the epinieron,

nearly twice as long as broad
;
palmary margin (figure 8) convex in

outline, slightly oblique, with an acute lobe and a spine at the pos-

terior angle, within which the tip of the dactylus closes. Third and

fourth legs slender and nearly naked. Basal segment in the fifth legs

slender, foitr times as long as broad, not wider than the merus. Sixth

and seventh legs slightly shorter than the fifth, the basal segments

posteriorly dilated and squamiform in both pairs, but broader in the

seventh than in the sixth. Posterior caudal stylets with the ramus

slightly longer than the peduncle.

Length of largest specimen, from front of head to tip of telson,

about 6™"'.

The mandibles are without palpi or molar tubercles, and in all

other characters the species agrees with the genus Stenothoe as

restricted by Boeck, but it seems to be very distinct from either of

the European species.

Near Cultivator Shoal (haul Z*), 30 fathoms, soft, sandy bottom,

August 29.

Syrrhoe crenulata Goes.

Crustacea amphipoda maris Spetsbergiam alluentis, CEfversight af Kongl. Vetens-

kaps-Akad. Forhandlingar, Stockholm, 1865, p. 527. pi. xl, fig. 25; Boeck, Crus-

tacea amphipoda borealia et arctica (Vidensk.-Selskabs Forhandlinger, Christiania,

1870), p. 67, 1870.

We have also dredged this species, in 1872, in 12 fathoms in John-

son's Bay, near Eastport, Maine, and in 90 to 100 fathoms off Grand

Menan, and have examined specimens dredged, in 1873, in 30 fath-

oms, in Gaspe Bay, Gulf of St. Lawrence. Our specimens have all

been considerably larger than the one figured by Goes, but otherwise

agree perfectly. It seems to be an exceedingly arctic form, being

found in Europe from Spitzbergen to the western coast of Norway.

Tiron acanthurus Liiijeborg.

Boeck, op. cit., p. 69. Syrrhoe hicmpis Goes, loc. cit., p. 528, pi. xl, fig. 26. f Thes-

sarops hastata Norman, Annals and Magazine Nat. Hist., IV, ii, p. 412, pi. xxii, figs.

4-7, 1868.

This species has apparently not been noticed on our coast before.

It has been found in Greenland, Finmark, and on the western coast

of Norway, while Norman's TJcessarops was from the English coast.

CEdiceros lynceus Sars.

Oversigt over nordsk-arct. Krebsdyr. Forhandl. i Vidensk-Selsk. i Christiania, 1858,

p. 143 (teste Boeck); Boeck, op. cit., p. 82. CEdiceros propinquus Goes, loc. cit..
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p. 526, 1865, pi. xxxix, fig. 19. Monoculodes nuhilius Packard, Memoirs Boston

See. Nat. Hist, i, p. 398, 1867.

We dredged this species in the Bay of Fundy in 1868 and 18Y2,

the latter year in 60 to 80 fathoms ; in Casco Bay, in 27 ftithonis, in

1873, and Dr. Packard and Mr. C-ooke obtained it at several local-

ities, in the " Gulf of Maine," from 50 to 90 fathoms, on the expedi-

tion of the Bache in 1873. I have also examined specimens dredged

in the Gulf of St. Lawrence by Mr. Whiteaves and on the coast of

Labrador by Dr. Packard. It extends to Greenland, Iceland, Spitz-

bergen and Finmark.

Monoculodes borealis Boeek.

Op. cit, p. 88, 1870. (Ediceros affinis Goes, loc. cit., p. 527, pi. xxxix, fig. 21', 1865

(non Bruzelius).

This species is recorded from Spitzbergen and northern Norway
by Goes and Boeck, but seems not to have been noticed on this side

of the Atlantic before.

Paramphithoe pulchella Bruzelius (Kroyer sp.)

We have dredged this species off Casco Bay and in the Bay of

Fundy, on hard bottoms, in from 40 to 90 fathoms, and it was

dredged on Cashe's Ledge and Stellwagen's Bank, in 1873, by Dr.

Packard and Mr. Cooke. It extends north to the Gulf of St. Law-

rence, and, according to Boeck, to Greenland, Iceland, Spitzbergen,

and the western coast of Norway.

Paramphithoe cataphracta Smith.

AmpMthonotus cataphi-adus Stimpson, Synopsis of the Marine Invertebrata of Grand

Manan, p. 52, 185.'i (description copied in Bate, Catalogue of Amphipodus Crus-

tacea in the British Museum, p. 152, 1862.)

This species is apparently a true Paramphithoe, as restricted by

Boeck, and closely allied to, if not identical Avith, P. pano2)la Bru-

zelius [Aynphithoe pjaaopla Kroyer). Boeck places Pleustes tiibercii-

latus Bate as a synonym of Kroyer's species, and if he is correct in

this, our species is undoubtedly distinct. The cataphracta appears to

be an inhabitant of hard or coarse sandy and shelly bottoms from 5

to 50 fathoms. We have dredged it sparingly in Casco Bay and the

Bay of Fundy, and Dr. Packard has dredged it on the coast of

Labrador.

VertUmnuS serratUS ? Goes (Fabricius sp.)

Acanfhonotm serratus Stimpson, Synopsis of the Marine Invertebrata of Grand

Manan, p. 52, 1853.

Our specimens all differ from the descriptions and figures given by

Boeck and Kroyer in the armature of the posterior margin of the
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thii'd segment of the abdomen. In our specimens the upper process

from this margin is armed with four or five teeth above and at the

tip, while the lower process is armed with five or six teeth similarly

situated, but with no teeth on the lower margin except just at the

tip. In Kroyer's figure (Gronlands Ampfipoder, plate ii, figure 8)

the upper process is represented as terminating in a single tooth and

the lower process as toothed along both sides ; Boeck's description

agrees with this except that he says there are two teeth at the tip of

the upper process.

It is not uncommon on hard bottoms in from 5 to 50 fathoms in

the Bay of Fundy. We have also dredged it in Casco Bay and have

received it from the Gulf of St. Lawrence, where it was dredged by

Mr. Whiteaves.

Acanthozone cuspidata Boeck.

This species is quite common on hard, and especially on spongy

bottoms in 5 to 40 fathoms in the Bay of Fundy, although it is not

mentioned by Stimpson in his work on Grand Menan. We have also

dredged it in Casco Bay, and Mr. Whiteaves has obtained it in the

Gulf of St. Lawrence. It ranges to Greenland, Spitzbergen and

Finmark.

BybliS Gaimardi Boeck (Kroyer Bp.)

We have frequently dredged this species in Casco Bay and the

Bay of Fundy, on muddy bottoms in 10 to 60 fathoms. It extends

north to the Gulf of St. Lawrence (Whiteaves), Labrador (Packard),

and, according to Boeck, to Greenland, Iceland, Spitzbergen and

Norway. The Ampelisca Gahnardi of Bate, and Bate and West-

wood, is not this species but a true Ampelisca.

All the species of this sub-family are undoubtedly tube dwellers.

Lilljeborg noticed the habit in HaploOps ; it has been observed in

species of Ampelisca by Professor Verrill and myself. In this

species, the glands which secrete the cementing fluid are situated

principally in the meral and basal segments of the third and fourth

pairs of thoracic legs.

Xenoclea megachir Smith, sp. nov.

Plate IV, figures 1 to 4.

Male. Eyes large, black, very slightly elongated, and approaching

closely the edges of the triangular prominence of the inferior angle

of the front margin of the head. Peduncle of the anteninila' about

as long as the head and the first two segments of the thorax, the

second segment longest, the first and third about equal in length,
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flagellum about as long as the peduncle and composed of twelve to

sixteen segments. Antennae a little longer than the antennulae

;

ultimate and penultimate segments of the peduncle sub-equal in

length ; flagellum slightly shorter than the peduncle and composed

of eleven to fifteen segments. First epimeron (figure 1) as broad as

high ; second (figiu-e 2) broader than high ; third (figure 3) and

fourth not broader than high and successively deeper than the first

and second ; fifth (figure 4) slightly deeper than the fourth and its

terminal portion as broad. In the first legs (figure 1), the carpus

longer and broader than the propodus, which is somewhat oval and

twice as long as broad ; the dactylus slender, slightly curved and

fully as long as the propodus. The inferior distal margin of the pro-

podus is regularly curved to a short distance from the extremity,

where there is a small but deep emargination, beyond which and

round upon the short distal margin the edge is serrate with minutely

crenulated teeth ; the posterior margin is furnished with numerous

slender seta? and with a single stout spine at the emargination near

the distal end. The inner edge of the dactylus is armed with a series

of acute teeth directed obliquely toward the tip. In the second pair

of legs (figure 2) the propodus is very stout, about twice as long as

the epimeron and scarcely one-half longer than broad ; the palmary

margin oblique and armed near the middle with two stout obtuse

teeth ; the dactylus stout and its inner edge sinuous. Third (figure

3) and fourth pair of legs alike ; ischium and carpus short, each

nearly or quite as broad as long; merus fully as long as the epimeron

and half as broad as long
;
propodus slender, not more than half as

broad as the carpus but twice as long ; dactylus slender, about half

as long as the propodus. Basal segment in the fifth legs (figure 4)

squamiform, oval, nearly as broad as long and with a mai-ked angular

emargination at the inferior posterior angle ; carpus only slightly

longer than the breadth of the raerus ; dactylus slightly curved and

acute. Second and third segments of the abdomen with the inferior

portion of the posterior margin sinuous, and the inferior angle

prominent, but scarcely less than right-angled. The outer rami in

all the caudal stylets slightly shorter than the inner, and all the rami

armed with short spines above and more slender spines at the tips.

Telson stout, about as broad as long and scarcely more than half as

long as the peduncle of the posterior caudal stylets, the posterior

margin with a few setiform hairs each side.

In the female the hands in the second pair of limbs are propor-

tionally much smaller and more abundantly provided with hairs,

while the teeth, or lobes of tha palmary margin, are further apart and

Teans. Conn. Acad., Yol. III. 5 August, 1874.
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separated by a broad and deep, rounded sinus ; the dactyhis is not

so stout, and has the inner margin evenly curved and serrated.

Length, from front of head to tip of telson, 5 5 to Y'o""'.

I refer this species with some hesitation to Boeck's genus Xenoclea,

which is known to me only from the very short diagnosis of the genus

and of the single species X. Batei, given in his Crustacea Amphipoda
Borealia et Arctica, p. 155. " Pedes 3tii et 4ti paris articulo Imo
latissimo" of the generic diagnosis would scarcely apply to our

species, but in all the other generic characters it agrees perfectly, as

it does also with the diagnosis of the sub-family Photinoe, except

that the mandibles each bear six serrated spines instead of the usual

numbei-, four.

Near Cultivator Shoal (haul J), 30 fathoms, soft, sandy bottom,

August 29 ; and on the northern side of George's Bank (haul q),

north latitude 42°, west longitude 67° 42', 45 fathoms, coarse sandy

bottom. Also, in 18 fathoms, off Watch Hill, Rhode Island.

When first examining the alcoholic specimens of this species, I

noticed a peculiar opaque glandular structure filling a large portion

of the third and fourth pairs of thoracic legs, which in most, if not

all, the non-tul)e-building Amjihipoda are wholly occui)ied by muscles.

A further examination shows that the terminal segment (dactylus) in

these legs is not acute and claw-like, biit truncated at the tip and

apparently tubular. In this sjiecies, a large cylindrical portion of

the gland lies along each side of the long basal segment, and these

two portions uniting at the distal end pass through tlie ischial and

along the jiosterior side of the meral and carpal segments and doubt-

less connect with the tubular dactylus. (See Plate III, figure 3.)

There can be no doubt that these are the glands which secrete the

cement with which the tubes are built, and that these two pairs of

legs are specialized for that purpose. A hasty examination revealed

a similar structiu'e of the corresponding legs in Ainjy/iithoe macidata,

Ptilocheirus pinguis, Cerapus rubricomis, Byblis Gaimardi, and a

species of Ampelisca. In all these except the last two a very large

proportion of the gland is in the basal segment. In the Amphithoe

this segment is thickened and the gland is in the middle. In the

Cerapus it is very broad and almost entirely filled by the gland, with

only very slender muscles through the middle, and the orifice in the

dactylus is not at the very tip but sub-terminal on the posterior side.

In the Ptilocheirus the gland forms three longitudinal masses in the

basal segment and is also largely developed in the meral and carpal

segments. The dactylus is long and slender and the orifice sub-ter-

minal. In Ampelisca and Byhlis (which, like Saploops, are tube-

building genera) the meral segments of the specialized legs are nearly
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as large as the basal and contain a proportionally large part of the

gland.

ScapellTim Stroemi Sars.

Plate in, fignre 9.

I am not aware that a description of this species has yet been pub-

lished, although the name was used by Prof. Michael Sars in his list

of animals living at great depths in the sea, published in 1869,* and

the species has since been incidentally figured, without any detail,

on the stems of Mopsea borealis, by Dr. G. O. Sars in his recent work
on " Some Remarkable Forms of Animal Life from Great Depths off"

the Norwegian Coast" (Plate V, figure 2). Dr. G. O, Sars has, how-

ever, very kindly compared a drawing of one of our specimens, and

he writes me that it agrees in every detail Avith the Norwegian form.

It is very distinct from any of the species described in Darwin's great

work, and also from the species recently described from the Challenger

Expedition.

Since our specimens were obtained from 430 fathoms. Dr. Packard

and Mr. Cooke have dredged in 50 to 70 fathoms near Cashe's Ledge,

and in 142 fathoms, 20 miles east of Cape Race (both localities within

the " Gulf of Maine"). AH the specimens were attached to stems of

hydroids. On the Norwegian coast the species has the same habit

and has been found by Dr. G. O. Sars in from 80 to 300 fathoms.

Annelida.

Lsenilla (?) mollis 6. 0. Sars.

Bidrag til Kundskaben om Christianiafjordens Fauna, iii, p. 7, plate xiv, figs. 1-12,

1873.

Body large, rather stout, medially convex. Head short and

broad, narrowed posteriorly, prominently rounded laterally, and pro-

duced into two very small conical points anteriorly. The anterior

eyes are larger than the others, situated on the outer and upper sur-

face of the lateral prominences, and look outward and upward ; the

posterior pair are nearer together, on the lateral slopes of the nar-

rowed part of the head. The median tentacle is wanting in our speci-

men, but its basal segment is of moderate size and cylindro-conical

;

the antennje are slender, and nearly three times the length of the

head, banded with brown ; the palpi are rather slender and regularly

tapered, smooth, or nearly so, four or five times the length of the

head. The dorsal and tentacular cirri and the scales are wanting in

the single specimen obtained. The lateral appendages are large and

* Forhandlinger i Videnskabs-Selskabet i Christiania, 1868, p. 259, 1869.
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prominent, with large fascicles of long, slender seta? in the lower rami,

and much shorter and stouter ones in the upper rami. The appenda-

ges, including setae, equal or exceed the breadth of the body. Breadth

of body, exclusive of appendages, 7™™
; length of the latter, without

setaa, S-S"^"" ; with setaj, 10'""; length of body to the 15th segment,

25™"\ The setae of the upper ramus are very stout, and all of nearly

the same form, the upper ones being merely smaller and stouter than

the rest ; they are nearly straight or slightly recurved, with rather

conspicuous, moderately close transverse series of denticles, which ex-

tend nearly to the ends, leaving only stout, naked, straight tips. The

setae of the lower ramus are much longer and far more slender, with

a long, slender shaft, and a slightly expanded terminal portion, which

is conspicuously, but not closely, spiniilated on both sides to the tips

;

many of these are nearly straight, but most are slightly curved ; the

upper ones are most slender, and mostly have the tips only very

slightly bidentate, and the spinules exceed the diameter of the setae

and increase toward the end, the last ones projecting considerably

beyond the tip ; the middle ones are about twice as stout, having the

terminal part more expanded ; their spinulation is similar, but the

tips are more distinctly, though slightly, bidentate, the denticles be-

ing partially obscured by the terminal spinules that project beyond

them ; the lower ones are moi-e slender and like the upper ones in

form and character.

Near St. George's Bank, 110 fathoms, mud. Coast of Norway, 40-

200 fathoms (G. O. Sars).

Our specimen is imperfect, but the head and seta? are quite peculiar.

The latter are remarkable for the length of the spinules, and for the

minuteness of the denticles at the tips.—A. E, V.

Antinoe angusta Verriii, sp. nov.

Body narrow, rather slender, elongated, tapering gradually pos-

teriorly. Head small, short, rounded, broader than long, the lateral

lobes short, not prolonged into points anteriorly, but obtusely rounded

;

the lateral borders also well rounded. Eyes small, nearly equal ; the

postei-ior pair situated on the dorsal side of the vertex ; the anterior

pair farther apart on the outer and upper surfoce of the lateral promi-

nences. Tentacle long and very slender, about three times the length

of the head; antennae small and short, scarcely one-third as long as

the head
;
palpi moderately large, glabrous, considerably longer than

the tentacle. Dorsal cirri slender, pretty regularly but not closely

covered with slender papillae. The lateral appendages, except ante-

riorly, bear large fascicles of long, fine capillary setae, which gives a
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villous appearance to the sides. The elytra, in our specimen, are

wanting. The color, in alcohol, is light brown, crossed by lighter

transverse lines. Length, 15™'"
; breadth, without appendages, 2"""

;

breadth, including setae, 4'"™.

On the middle segments the setae of the upper ramus are quite

unequal in size and length ; the upper ones are stout, with the ends

more or less recurved ; the middle ones are still larger and more than

twice as long, slightly curved, and, like the former, conspicuously

transversely serrulate almost to the extreme tips ; the lower ones are

shorter, less stout, and slightly curved. The seta3 of the lower ramus

are longer and extremely slender; the upper ones are mostly but

slightly expanded in the middle, with very long, flexil)le capillary

tips, finely tapered to the end, and very minutely serrulate or nearly

smooth ; the median ones are stouter, more expanded in the middle,

with long, acuminate, slender, sharp tips, and with conspicuous, rather

distant spinules on one or both sides, which become very fine and

moi'e crowded distally ; tlie lower ones are much shorter, and have

shorter but still very slender tips, and fewer and more distant spi-

nules. The ventral cirri are slender, tapered, with few, distantly scat-

tered, small papillae.—A. E. V.

Near Saint George's Bank, 150 fathoms, mud (locality s).

Antinoe Sarsi Kinberg.

Maliagren, Nordiska Hafs-Annulater, (Efversigt Kongl. Yetenskaps-Akad. For-

handlingar, Stockholm, 1865, p. 75, pi. 9, fig. G ; Annulata PolychiBta, p. 13, 1867.

Our specimen of this species agrees very well with jMalmgren's

figures and description. It is much larger and stouter than the pre-

ceding, and the head is longer and quite different in form, the lateral

lobes extending forward into acute conical points.

The set£e are similar to tliose of the former, but the median and in-

ferior setae of the lower ramus are relatively somewhat stouter and have

the tips less attenuated and elongated, while the spinules are larger

and more conspicuous, especially on the upper setae of the lower ramus.

Near Saint George's Bank, 85 fathoms, mud. Gulf of Saint Law-

rence (Whiteaves, t. Mcintosh).—A. E. V.

Encranta villosa Maimgren.

Eucranta villosa Maimgren, Nordiska Hafs-Annulater, CEfversigt af Kongl. Vetens-

kaps-Akad. Forhandlingar, Stockholm, 1865, p. 80, pi. 10, fig. 9 ;
Annulata Poly

chajta, p. 1-1, 1867.

? Eujiolynoe occidentalis Mcintosh, Annals and Magazine Nat. Hist., IV, vol. xiii, p.

264, pi. 9, figs. 8-13, 1874.

This large species is easily distinguished, even when destitute of
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its scales, by the short, stout, strongly curved setae of the upper ra-

mus, and much longer, slender, fascicled settle of the lower ramus,

among which the upper ones have a strongly spinulose, slender, acu-

minate, terminal portion, with a nearly straight, split, or forceps-like,

slender tip, while the middle and lower ones have a short, cuspidate

terminal portion, with few large spinules, and naked acute tips.

I am unable to find anything in the figures and description of the

species recently described by Mcintosh to indicate that it is distinct

from the present species, with which, however, he has not compared it.

Near Saint George's Bank, 150 fathoms, mud (locality s). Gulf of

Saint Lawrence, 110 fathoms (Whiteaves, t. Mcintosh).—A. E. V.

Nephthys circinata Verriii, sp. nov.

Body slender, elongated, ratlier depressed, tapering gradually pos-

teriorly. Head sub-pentagonal, rather broader than long ; a pair of

short, tapering antennae at the anterior angles, about one-fourth as

long as the width of the anterior border of the head ; another pair of

longer, slender, tapering antenna; at the lateral angles ; tentacular

cirri long and tapering. Proboscis smooth towai'd the base ; its dis-

tal portion with rows of slender acute papillae, which increase rapidly

in length toward the end, where they become very prominent.

The lateral appendages, including the setae, are as long as the

breadth of the body ; the setae are very numerous, long and slender.

The caudal cirrus is long and slender, tapering to a slender tip.

Length of body, 50'"'"; diameter, 2-5'"'"
; diameter, including append-

ages, 5'"'".

The lateral appendages of the middle region are moderately long,

the rami separated by a space scarcely equal to half their height.

Superior ramus, with a short, broad ovate, obtuse, or slightly acumi-

nate upper lamella, directed outward, and considerably exceeding the

setigerous lobe, and a much smaller ovate median lamella ; branchial

cirrus long, rather slender, tapered, curved downward and inward (cir-

cinate), forming rather more than a complete whorl ; the appendage at

its base, on the anterior segments, is short and broad, subtruncate dis-

tally, and with a small papilliform process projecting downward from

its lower angle, nearly in contact with the branchial cirrus
;
on the

median segments it is broad and long-ovate, unequally acuminate,

leaf-like. The lower ramus has a very long and wide ligulate lamella,

directed obliquely upward and outward, usually more than twice as

long as the setigerous lobe, and about equal to it in width ; its lower

edo-e at about the middle is sometimes incurved, and its tip is acumi-

nate and blunt-pointed ; the ventral cirrus is slender and tapered.



Smith and Harger— St. George's Banks Dredgings. 39

The capillary seta? form large fascicles and are very long and slender,

nearly smooth, and with very attenuated tips ; their length is about

three times that of the appendages themselves; the transversely

marked seta? are scarcely one-fourth as long, and about the same in

diameter, with very slender tips.—A. E. V.

East of Saint George's Bank, 430 fathoms (locality </) ; north of

Saint George's Bank, 85 fathoms, mud (locality jk»).

Nephthys ingens Stimpson.

SjTiopsis of the Marine Invertebrata of Grand Manan, p. 33, 1853; Verrill, Report

on the Invertebrate Animals of Vineyard Sound and Adjacent Waters, in Report

of U. S. Commissioner of Fish and Fisheries, part I, IS'ZS, p. 583 (separate copies,

p. 289), plate xii, figs. 59, 60, 1874.

? Neplithys incisa Malmgren, Q5fversigt af Kongl. Yet.-Akad. Forhandlingar, 1865, p.

105, plate xii, fig. 21.

This is the most common and abundant species on muddy bottoms

in the deep water along the whole New" England coast. It occurs at

all depths from 2 to 430 fathoms.

It is easily distinguished by the stout quadrangular body, deeply

incised posteriorly; by the blackish setae, and by the remarkably

elongated and widely separated rami of the posterior appendages.

There is a long, odd, median papilla on the dorsal side of the proboscis,

and a smaller one beneath ; the papillffi in the longitudinal rows are

rather small.—A. E. V.

Phyllodoce catenula Verrill.

Report on the Invertebrate Animals of Vineyard Sound, in Report of U. S. Commis-

sioner of Fish and Fisheries, part I, 1873, p. 587, 1874 ; Exploration of Casco Bay

by the U. S. Fish Commission, Proceedings American Association for the Ad-

vancement of Science, 1873, p. 380, pi. 3, fig. 1, 1874.

Plate IV, figure 3.

George's Bank, 50 fathoms (locality d). It also occurs at Watch
Hill, llhode Island, in 4 to 6 fathoms, among rocks and alga?, and in

tide-pools ; at Wood's Hole, at surface, evening, July 3 ; in Cuasco

Bay, 8 to 30 fathoms ; and is very common in the Bay of Fundy,

from low-water to 50 fathoms.

This species is closely allied to P. ptdchella Malmgren, from north-

ern Europe, but differs somewhat in the form of the head, which is

shorter and rounder in the latter; the branchia? also differ in form.

Eusyllis phosphorea Verrill, sp. nov.

Plate VII, figure 3.

Body slender, elongated, tapering gradually posteriorly. Head, in

alcoholic specimens, broader than long, well-rounded in front, the

posterior margin incurved ; but in living specimens the head is longer
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than broad and slightly narrowed posteriorly. Eyes small, but con-

spicuous, wide apart, the anterior considerably farther apart than the

posterior ones. Palpi large in presex'ved specimens, broad ovate, and

well rounded anteriorly, in contact at their bases; but in living speci-

mens more elongated and oblong, exceeding the length of the head.

Antennffi (or tentacles) long and slender, distinctly and rather regu-

larly annulated, but not moniliform. Tentacular cirri, in preserved

specimens, similar to the antennae ; the upper ones are of about the

same length, but the lower are little more than half as long. Dorsal

cirrus of the second segment is as long as, or even longer than, the

antennoe. The dorsal cirri on the 3d, 4th, and 5th segments are

shorter, about equal, longer than the lower tentacular cirrus, and

about half as long as the dorsal cirri of the succeeding segments, which

are alternately longer and shorter, the longer ones about half as long

as the breadth of the body. While living, the alternate dorsal cirri

are usually held extended and curled up over the back. The two

anal cirri are long and slender ; in one preserved specimen they ai-e

more than twice the breadth of the body, while in the same specimen

the dorsal cirri on the second and third segments preceding the anal

one are considerably longer than those on the segments farther for-

ward.

The setae are all compound, rather long, mostly considerably bent,

with a short, acute -triangular terminal piece, which is very distinctly

bidentate at the tip.

Color of body, when living, deep salmon, or light yellowish orange,

with dark brown intestinal line, darker posteriorly ; eyes dark brown.

Length, when living, about 25'""'; breadth, rS""".

Saint George's Bank, 45 fathoms, among hydroids; Bay of Fundy,

off Grand Menan, 52 fathoms, among hydroids.

This species, when living, was most brilliantly phosphorescent,

with a bright green light, so intense- as to be distinctly visible in

daylight, or close to a large kerosene lamp.—A. E. V.

Ninoe nigripes Verriii.

Report on the Invertebrate Animals of Vineyard Sound, in Report of U. S. Commis-

sioner of Fish and Fisheries, part I, 1873, p. 595, 1874; Proceedings American

Association for Advancement of Science, 1873, p. 382, pi. 3, fig. 5, 1874.

Plate V, figure 3.

Locality o, 110 fathoms. Also Fisher's Island Sound, Vineyard

Sound, and Buzzard's Bay, and waters outside, in 8 to 29 fathoms,

mud; Casco Bay, 10 to 68 fathoms; off the coast of Maine, at various

depths to 107 fathoms.
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Leodice vivida Verriii.

Eunice vivida Stimpson, Marine Invertebrata of Grand Manan, p. 35, 1853.

Leodice vivida Verrill. American Journal of Science, III, vol. v, p. 9, January, 1873.

Plate V, figure 5.

Nothria conchylega Maimgren.

OnupMs conchylega Sars, Beskrivelsir og lagttagelser, p. 61, pi. 10, fig. 28 {teste

Maimgren), 1835.

Onuphis Eschrichti (Ersted, Gronlands Annulata Dorsibranchiata, p. 20, pi. 3, figs.

33-41, 45, 1843.

Northia conchylega Johnston, Catalogue of British "Worms, p. 138, 1865.

Nothria conchylega Maimgren, Annulata Polychseta, p. 66, 1867.

Plate VII, figure 3.

This species is abundant in the deeper waters, especially upon hard

bottoms, on the whole northern coast of Xew England, and in the

Gulf of St. Lawrence. Maimgren records it, in 30 to 250 fathoms,

fnmi Greenland, Spitzbergen, Finmark, and the coast of Norway.

The name " Nothi'ia " was substituted for Northia (Johnston) by

Maimgren for reasons that are scarcely sufiicient. The latter name

was, however, previously in use for a genus of shells (Gi'ay, 1847),

and must be rejected on that account.

Nothria opalina Ven-iii.

American Journal of Science, III, vol. v, p. 102, 1873.

Plate VII, figure 4.

Body long and slender, narrowed anteriorly, much depressed and

of nearly uniform width throughout most of its length ; the five ante-

rior segments much longer than the others. Palpi inferior, rather

larcre, hemispherical ; antennne small, ovate, close together, on the

front of head. Three central tentacles very long and slender, taper-

ing, acute, the basal portion regtdarly annulated and thickened for a

considerable distance, beyond which the surface is smooth, with an

occasional distant annulation ; the central odd one is somewhat

shorter and more slender than the two adjacent ones, which reach to

or beyond the 10th segment ; outer pair much shorter, being less

than half the length of the central ones. Tentacular cirri small

and very slender. Lateral appendages or "feet" of the first six se

tigerous segments similar in structure but more prominent than the

following ones, from which they also difier in having the ventral

cirrus well developed, long and tapering, but shorter and thicker on

the first segment than on the five following. Those of the first pair

have a stout stalk, which terminates in a small, bhuitly rounded se-

tigerous lobe, with a long, slender, subterminal cirrus-like lobe above,

Trans. Conn. Acad., Vol. III. 6 August, 1874.
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longer than the stalk ; dorsal cirrus arising from near the base, longer

and more slender than the terminal cirrus ; branchial filament simple,

long and very slender, about equalling the dorsal cirrus and united

to it above its base; ventral cirrus ovate, tapering, blunt, arising

from near the base. The second pair of feet are similar to those of

the first, except that in the largest specimens there are two branchial

filaments, and the ventral cirrus is longer and more slender. The 3d,

4th, 5th, and 6th pairs have essentially the same structure, but the

ventral cirrus becomes gradually longer to the 6th, where it is longer

than the stalk and nearly equal to the terminal cirrus. The succeed-

ing feet are much shorter ; the ventral cirrus is a mere conical papilla,

which soon disappears ; the terminal cirriform lobe becomes smaller

and disappears after the 10th pair; the branchial filament becomes

larger and longer to the middle region, where it exceeds in length

half the diameter of the body, while the dorsal cirrus at the same time

becomes smaller and shorter, until it is less than one-fourth the length

of the branchia.

The setae of the anterior feet consist of slender, acutely pointed,

curved ones, mixed with much stouter, blunt pointed compound ones

;

farther back there are two fascicles of more slender acute setae, and

in the lower bundles a few long, stout, bidentate hooks, with a thin,

rounded, terminal expansion.

Color, in alcohol, pale yellowish white, but everywhere very bril-

liantly iridescent, with opaline lustre and colors.

Length, Y5 to 125"""
; diameter, 2*5 to 4""".

Common in 110 and 150 fathoms, haiils s and o. It was also

dredged in 1873, off Casco Bay, in 30 to 94 fathoms, and on Jeffrey's

Bank, in 79 to 105 fathoms. It was also abundant, on muddy bot-

toms in deep water, at all the localities in the Gulf of Maine examined

by Dr. Packard and Mr. Cooke hi 1873.

G-oniada maculata CErsted.

Ann. Dan. consp., p. 33, figs. 16, 23, 91, 95, 97, 98 (t. Malmgren). Glycera viri-

descens Stimpson, Marine Invertebrata of Grand Manan, p. 53, 1853.

North of Saint George's Bank, 110 and 150 fathoms, mud (local-

ities o and s) ; Saint George's Bank, 20 fathoms (locality j). Off

Casco Bay, 30 to 90 fathoms, mud. Bay of Fundy, 20 to 70 fathoms.

Common in the Gulf of Maine, 60 to 100 fathoms. Northern coasts

of Europe, from Finmark to Scotland, 10 to 130 fathoms (Malmgren).

—A. E. V.
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Rhynchobolus capitatus Verriii.

Glycera capitata (Ersted, Gronl. Ann. Dorsibranchiata, p. 44, plate VII. figs. 87,

88, 90-94, 96, 99 ; Malmgren, Annulata Polychseta, p. 70, 1867 {non Claparede).

This species is furuisliecl with four well-developed jaws, and there-

fore belongs to the genus Rynchoholus, as constituted by Claparede.

The species without jaws, which he refers to Glycera., must be distinct.

Saint George's Bank, 60 fathoms (locality e) ; 20 fathoms (locality

j)\ 110 fathoms (locality o) ; east of Saint George's, 430 fathoms

(locality g). Greenland, Iceland, Spitzbergen, and northern coasts of

Europe to Great Britain.—A. E, V.

Samythella VerriU.

Body elongated, composed of about 50 segments, 15 of which bear

fascicles of setie; and posteriorly about 35 bear uncini only, but

have a small conical papilla above the uncigerous lobe, as in Melinna •

the uncini commence on the 4th setigerous ring. Branchiae six, placed

side by side in a continuous transverse row. Cephalic lobe oblique,

somewhat shield-shape, with a narrowed prominent front. Buccal

lobe shorter. Tentacles numerous, smooth and slender.

This genus is closely allied to Sumytha of Malmgren, in the struc-

ture of the head and number of branchiae, but diifers in having a

much larger number of segments (in this respect approaching

Melinyia)^ and in having only 15 setigerous segments, instead of 17.

Samythella elongata Verrili.

American Journal of Science, III, vol. v, p. 99, 1873.

Body slender, composed of 54 segments in the specimens examined,

tapering regularly to the posterior end. Cephalic lobe about as

broad as long, broadly rounded posteriorly, with the postero-lateral

corners prominent and well rounded, the sides slightly incurved and

rapidly narrowing to the front, which is about half the width of the

back, and subtruncate, projecting forward ; the middle region is a

raised and convex oblong area as wide as the front edge, into which

it runs. Buccal lobe a little shorter. Tentacles numerous, slender,

tapering. Branchia? subequal, slender, tapering, about twice the

length of the cephalic lobe. Setse numerous and long in all the fas-

cicles except the first three, the longest nearly one-third the diameter

of the body. The posterior end of the body is surrounded by about

eight small papilloe, of which the two ujjper ones are largest.

Length of largest specimen, in alcohol, 40'"'"; diameter, 2-5 to 3'"'".

The tubes consist of a thin and tough lining, to which a close layer

of sand, in grains of moderate and nearly uniform size, is firmly

cemented.
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G-rymaea spiralis Verriii.

Am. Journal of Science, III, vol. vii, p. 407, fig. 2, and plate V, fig. 4, April, 18T4.

Plate IV, figure 1.

Body long and slender, spirally coiled, composed Fig. i.*

of over 150 segments, of which about 120 bear fas-

cicles of slender set:*. Branchiae long filiform, two

or three times the diameter of body, arising in three

clusters on each side, easily detached and often par-

tially absent. Setae on the first six or seven seg-

ments a little longer than the following ones. Gen-

eral color dark red. Tube composed of firmly

cemented mud and sand, coiled in a double spiral,

the two halves revolving in opposite directions.

Also dredged, in 1872, ofi' Grand Menan Island,

Bay of Fundy, in 60 fathoms; and in 187;^, off Casco

Bay, in 90 fathoms, mud ; and in 80 fathoms on Jeffrey's Bank.

? Potamilla neglecta Maimgren.

(Efversigt af Kongl. Vet.-Akad. Forliandlingar, 1865, p. 401, plate 27, fig 84.

Sabella neglecta Sars, Reise i Lofot. og Finm., p. 83 (t. Maimgren).

This species was very abundant at localities d, h, ^, q, and also

occurred in 110 fathoms (locality o).

The tubes are long and tough, covered externally with sand. One

specimen from Le Have Bank, 45 fathoms (locality A), had a large

number of young ones within the tube, adhering to its inner surface.

—A. E. V.

SpirorblS valida Verrill, sp. nov.

Tubes much larger than usual in the genus, round, strong, thick,

opaque, white, transversely wrinkled, rather rapidly enlarging, sinis-

tral, or coiling in the same direction with the hands of a watch ; in

some specimens, found attached to flat shells, the tubes form low,

rapidly enlarging spirals of several turns, the last whorl enveloping

and concealing the others externally, except near its termination,

where it rises obliquely upon the preceding one, but leaving a broad,

shallow umbilicus in which the previous whorls are visible ; in other

specimens, attached to convex univalve shells {Turritella erosa, etc.),

the whorls rest upon the upper side of each of the preceding ones,

forming an elevated and often somewhat irregular spiral, increasing

in size upward, with a small umbilicus, and usually with the last part

of the upper whorl slightly free from the preceding one and ascending

* Tube of Grymoea spiralis, natural size.
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obliquely. Diameter of the larger tubes, at end, 1-75""" to 2""";

height of the more elevated spirals, 3'""' to 5""".

There are 15 large branchiae in the adult specimens : 8 on the left

side, 7 on the right, with the operculum ; the pinnae are long, slender,

extending to near the ends of the branchiae, which have slender and

short, naked tips. Operculum large, Avhite, calcareous, irregularly

obconic, obliquely truncated, with the outer surface concave, the

dorsal side gibbous, the margin slightly sinuous but entire, except

for a small notch, or emargination, in the dorsal edge ; the dorsal por-

tion is translucent, while the ventral portion is opaque and contains

small, round, ova-like bodies
; the pednncle is rather sliort and stout

gradually expanding into the base of the operculum, but swollen in

the middle, on the dorsal side. Collar, in the specimens examined,

considerably mutilated, apparently with a sinuous but not revolute

anterior margin, and with a long posterior dorsal point. The region

covered by the collar bears, at least on the left side, three large fjxs-

cicles of slender, acute, yellowish seta^, both above and below ; the

anterior fascicles are directed forward, and the upper anterior one is

larger than the other fascicles.

Le Have Bank, 45 and GO fathoms (localities h and ^).

The size of this species is exceptionally large, and the branchiae are

unusually numerous for the genus Spirorbis, to which I refer it with

some hesitation. When living specimens can be studied it may prove

to be a new genus. It has, like Vermilia, a calcareous operculum,

but in form and structure this organ resembles that of some species

of Spiro7'bis.—A. E. V.

? Spirorbis nautiloides Lamarck.

Anim. sans Vert., ed. I, vol. v, p. 359, 1818. ? Spirorbis communis Quatrefages,

Histoire naturelle des Anneles, vol. ii, p. 489.

Plate IV, figure 4.

The species figured agrees pretty well with that described by

Quatrefages, but may not be the same as that of Lamai-ck, which is

regarded by several writers as synonymous with it, and by others

with S. horealis, the species so abundant on Facus at low-water mark,

on our shores.

The present species is seldom, if ever, found at low-water mark, and

occurs chiefly on stones and shells in deep water. The tubes are

opaque, white, cylindrical, rather closely coiled, the terminal portion

not erect, and the surface is more or less conspicuously marked with

lines of growth.

Abundant on the hard bottoms at Saint George's Bank; Casco
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Bay; Cashe's Ledge; and in the Bay of Fimdy, 10 to 106 fathoms.

—

A. E. y.

Protula media stimpson.

Marine Invertebrata of Grand Manan, p. 30, 1853.

Plate VI.

This species usually forms much contorted and irregularly bent

tubes, which are cylindrical and nearly smooth, but with irregular

lines of growth.

North of Saint George's Bank, 110 fathoms (locality o). Often

brought up by fishermen on Saint George's Bank, attached to shells

and stones. Abundant on Cashe's Ledge, 50 to 70 fathoms ; ofi"

Grand Menan, 30 to 50 fathoms ; oif Casco Bay.—A. E. V.

? Protula borealis Sars.

Vidensk. Selsk. Forhandlinger, 1871, p. 417 (separate copies, p. 14).

Numerous empty tubes from the muddy bottoms in 110 and 150

fathoms (localities o and s) diifer considerably in form from those of

the P. media., ordinarily met with, and may be this species, if distinct.

But they may, very likely, prove to be only a variation of the former,

due to the muddy character of the bottom. The tubes are much less

bent and contorted, often but slightly curved, or nearly straight,

nearly smooth, but with occasional ridges or folds, indicating periods

of growth.—A. E. V.

Gephteea.

Phascolosoma CSementarium Verrill (Quatrefages sp.).

American Journal of Science, III, vol. v, p. 99, 1873 ; and Report upon the Inverte-

brate Animals of Vineyard Sound, in Report of U. S. Commissioner of Fish and

Fisheries, part I, 1873, p. 627, pi. xviii, fig. 92, 1874.

Very common on the coast of New England, from Long Island

Sound northward, in 5 to 430 fathoms, in dead univalve shells.

Phascolosoma tubicola Verriii.

American Journal of Science, III, vol. v, p. 99, 1873; Proceedings American Asso-

ciation for Advancement of Science, 1873, p. 388, 1874.

Body versatile in form ; in contraction short, cylindrical, oval or

fusiform, 12 to 25'""' long, 2-5 to 4""" in diameter; in full extension

the body is moi-e or less fusiform, gradually tapering anteriorly into

the long, slender, nearly cylindrical retractile portion, which is longer

than the rest of the body, and bears, near the end, a circle of about

ten to sixteen simple, slender tentacles, beyond which the terminal
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])ortion is often extended into a short proboscis, witli the montli at

the end ; below the tentacles there is sometimes a dilation, but this is

without special spines or granules, and like the rest of the retractile

portion in texture. The posterior end of the body is bluntly rounded,

and the skin is transversely wrinkled and rough, and covered with

small, round, somewhat raised verrucas or suckers, to which dirt ad-

heres, and at the end nearly always bears from 3 to 8 small, but

prominent, peculiar bodies, having a slender pedicle and a clavate or

globular head ; their nature is doubtful. (They may be sense-organs,

but should be examined on living s])ecimens.) At about the poste-

rior third of the proper body is an irregular zone of numerous, dark

brown, hard chitiuous hooks, arranged in several rows, broad triangu-

lar in form, with acute points directed forward ; among the hooks are

also a few suckers ; the middle region is covered with small, round,

slightly raised suckers, which become much more prominent and

crowded at the anterior end toward the base of the retractile portion,

and have here the form of small, subconical, elevated warts, to which

dii't usually adheres firmly ; the retractile portion is covered through-

out with minute conical verruca? or paj^illte, most prominent toward

the base.

In many respects P. cmmentarium agrees very closely with this,

but it has the posterior end much smoother, and with less conspicu-

ous suckers ; the hooks are not so numerous, less acute, and lighter

colored; the anterior part of the body has smaller and less j^rominent

suckers or A'erructe ; the skin is lighter colored, thinner, and more

translucei^t, and there is a zone bearing several rows of minute, slen-

der, acute, chitinous spinules, a little l>elow the tentacles.

Haiils^^ o, and s, 85 to 110 fathoms. It has also been dredged, in

60 to 94 fathoms, off Casco Bay.

? Phascolosoma boreale Keferstein.

Beitrage zur Anat. und syst. Kentniss der Sipimculiden, p. 206.

This species is rather short and thick, obtuse posteriorly, nearly

smooth to the naked eye, and destitute of both hooks and distinct

suckers, but the skin is minutely wrinkled transversely, and covered

with almost microscopic slender papillte, and is minutely specked

with dirty yellowish brown ; the retractile i)ortion is more distinctly

granulated anteriorly. The tentacles are rather numerous, small, and

simple.

Dredged also off Casco Bay, 64 fathoms; Cashe's Ledge, 50 to 72

fathoms ; and iii the Gulf of St. Lawrence (Whiteaves).
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MOLLUSCA.

Pleurotomella Packardii VerriU.

American Journal of Science, III, vol. v, 1873, p. 15 (December, 1872).

Shell thin, fragile, translucent, pale flesh-colored, moderately stout,

with an acute, somewhat turreted spire. Whorls nine ; the apical

whorls, for about two and one-half turns, are nearly smooth, regular,

convex, chestnut-colored ; below this the whorls are shouldered, strong-

ly convex in the middle, but with a smooth concave band below the

suture, corresponding to the posterior notch in the outer lip; the whorls

are crossed below the sub-sutural band by about 16 strong, prominent,

rounded, somewhat oblique ribs, most prominent on the middle of the

whorl, but not angulated ; on the last whorl these ribs become very

oblique below the middle, and follow the curve of the edge of the

lip, nearly fading out anteriorly ; the surface between the ribs is

marked by faint lines of growth and by fine, unequal, slightly raised

revolving lines, which pass over the ribs without intei-ruption. They

become more evident on the lower part of the last whorl, and are

very faint on the sub-sutural band, which is more decidedly marked

by receding, strongly curved lines of growth. The aperture is rather

broad above, elongated below, sub-oval, outer lip very thin, sharp,

prominent above, separated from the preceding whorl by a wide and

very deep sinus, extending back for about one-fifth of the circumfer-

ence of the whorl ; the anterior border of the lip is incurved near the

end, and obliquely truncate, forming a short, straight canal. Colu-

mella simple, nearly straight, its inner edge toward the end sharp,

and obliquely excurved. No operculum. Length, 21 •2"""
; breadth,

11-2'""'; length of aperture, 120™'"; breadth of same, 5-0""". The

absence of eyes and operculum, great size of the posterior sinus, and

character of the apex, indicate that this shell represents a new genus.

One living specimen from (o) 110 fathoms.

Ringicula nitida Verriii.

American Journal of Science, III, vol. v, 1S73, p. 16 (December, 1872).

Plate I, figure 2,

Shell small, white, smooth, broad oval, with five Avhorls, spire rap-

idly and regularly tapered, sub-acute, shorter than the aperture.

Whorls very convex, regularly rounded, the sutures well impressed
;

a well marked, impressed, revolving line just below the suture ; the

surface otherwise nearly smooth, but with more or less distinct,

distant, microscopic revolving lines, most distinct anteriorly. Aj^er

ture somewhat crescent-sha})ed. Outer lip evenly rounded, forming



Smith and Harger—St. George's Banks Dredgings. 49

the segment of a circle, the border regularly thickened, receding a

little posteriorly, near the suture. Callus on the body whorl narrow,

nearly even, but a little swollen in the middle and slightly raised.

Columella stout, recurved at the end, with two strong, very promi-

nent, equal, spiral folds—tlie anterior one projecting beyond the canal,

with the end rounded. Length, 4-2"""
; breadth, S'l""" ; length of

aperture, 2-5 """
; breadth of aperture, -11""",

From 110 and 150 fatlioras (localities s and o).

Torellia vestita Jeffreys.

This shell in form and size somewhat resembles large specimens of

Margarita helicina, but it has a ciliated epidermis resembling that of

Veliitina laevigata. The spire is small and low; whorls four, the

last large, well rounded, forming the bulk of the shell. Suture deep.

Umlnlicus small and deep, somewhat concealed by the reflected outer

edge of the columella, which recedes in front and joins the outer lip

at an obtuse angle, forming a broad, shallow, anterior emargination

;

inner border of the columella a little excavated near the body whorl,

slightly swollen in the middle. Outer lip sharp, regularly rounded.

Epidermis thick, greenish, with conspicuous lines of growth, finely

reticulated by raised revolving lines, along which arise numerous

slender, but short, hair-like processes. Shell beneath the epidermis

white, nearly smooth. Length, 7*5™"^; breadth, 10™™; length of

aperture, 6'"™
; breadth, 4-5""".

Only one specimen, dead and inhabited by a Phascolosoma, was

found in 1872. Since this, however, during the explorations of 1873,

it was dredged by Dr. Packard and Mr. Cooke, in 52 to 90 fathoms,

on Cashe's Ledge, ofl:" the coast of Maine.

Stylifer Stimpsonii Verriii.

American Journal of Science, III, vol. iii, p. 283, 1872.

Plate I, figure 1.

Shell white, short, swollen, broad oval; spire short, rapidly enlarg-

ing. Whorls four or five, the last one forming a large part of the

shell ; convex, rounded, with the suture impressed ; surface smooth,

or with faint striae of growth. Color, when living, pale orange yel-

low. Length, about 4™'"
; breadth, 3"'".

Parasitic on Strongylocentrotus Drobachiensis. In 32 fathoms oft'

the coast of New Jersey (Capt. Gedney) ; 60 and 65 fathoms (e and

/), George's Banks ; 8 fathoms off" Fisher's Island, mouth of Long

Island Sound.

Trans. Conn. Acad., Yol. III. 7 August, 1874.
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Astarte undata Gould.

VerriD, American Journal of Science, III, vol. iii, pp. 213, 287, 1872; and Report

on the Invertebrate Animals of Vineyard Sound, in Report of U. S. Commissioner

of Fish and Fisheries, part I, 1873, p. 384, pi. 29, fig. 203, 1874.

Plate I, figures 6 to 9.

The figures given in Gould's works are scarcely characteristic of

this, the most abundant species of the northern coast of New England,

and we here publish several figures, prepared by Professor Verrill,

which more fully illustrate the different forms of the species. The

name undata was proposed by Gould for a form of his Astarte sid-

cata.

Astarte lens Stimpson.

Astarte crebricostata G-ould, Invertebrata of Massachusetts, 2d edition, edited by

Binney, p. 126, fig. 440, 1870 (not of Forbes, teste Verrill).

Astarte lens Stimpson, MS., Gould, op. cit., p. 127
; Verrill, American Journal of

Science, III, vol. iii, pp. 213, 287, 1872.

Plate I, figures 4 and 5,

This species seems to be more exclusively a deep-water form than

the last, although the specimens dredged by us at the localities {g, o,

and s) mentioned are all much smaller than the common form of the

species in the Bay of Fuiuly, and may well be regarded as a dwarf

variety.

Pecten pustuloSUS VerriU.

American Journal of Science, III, vol. v, 1873, p. 14 (December, 1872).

Upper valve more convex than the lower, a little swollen toward

the umbo ; length and breadth nearly equal, the margin diverging

nearly at right angles from the beak to the middle of the anterior and

posterior borders, on each of which tliere is an obtuse angle, from

which the outline of the ventral margin forms a regular curve, nearly

semicircular, but a little produced ventrally ; the surface with about

14 radiating rows of relatively large, prominent, round, hollow vesi-

cles, those in the middle rows nearly hemispherical, while part of

those of the lateral ones ai"e subconical and smaller ; seven or eight

of the rows are first developed, at a short distance from the apex of

the shell, the other ones afterward coming in between the primary

ones ; the rows are distant in the middle and more crowded together

toward the borders; between the rows of vesicles the surface is

marked by distant, fine, impressed grooves, which pass between and

separate the vesicles ; on the umbos, above the origin of the vesicles,

the border of the groove rises into a thin, slightly elevated lamella.

Lower valve with fine, close, slightly raised, concentric lamellae, be-
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coming faint toAvard the beak. Auricles unoqiuil,,tliat of the upper

valve small, and a little projecting posteriorly, much longer and more
prominent, with a deep, curved emargination anteriorly, its surface

with concentric lamellae and radiating rows of small, conical vesicles
;

that of the lower valve with a deep, angular byssal notch anteriorly,

its surface with concentric lamelhi3 and faint radiating ridges. Color

yellowish white. Length, 7-5"""
; height, 8-0"""

; thickness, 2-5""",

East of St. George's Banks {g), in 430 fathoms, dead but fresh

valves; and north of the Banks, locality {s), 150 fathoms, living.

Pera crystallina VerriU.

Clavelina crystallina Moller, Naturliistorisk Tidsskrift, vol. iv, p. 95, 1842.

Pera imllucida Stimpson, Proceedings Boston Soc. Nat. Hist., vol. iv, p. 232, 1852.

Pera crystallina Verrill, American Journal of Science, III, vol. iii, p. 213, pi. 8, fig.

9, 1872.

Plate VIII, figure 1.

This species was described by Stimpson from specimens, adhering

to stems Sertidarelkt polyzonias, variety gigantea, taken in 30 fathoms

on St. George's Banks. Professor Verrill records it from Murray

Bay, Gulf of St. Lawrence.

Glandula arenicola Verrill.

American Journal of Science, III, vol. iii, pp. 211, 288, 1872 ; Report on the Inver-

tebrate Animals of Vineyard Sound, in Report of U. S. Commissioner of Fish and

Fisheries, 1873, p. 701, 1874.

This species, which was dredged by us in immense numbers in 28

fathoms (haul c), has also been dredged, by Dr. Dawson, at Murray

Bay, Gulf of St. Lawrence, by Mr. T. M. Prudden, in Buzzard's Bay,

and off New London, Conn., by A. E, Verrill.

Thyone scabra Verriii.

American Journal of Science, 111, vol. v, p. 100, 1873.

Thyone fusus ? Verrill, American Journal of Science, III, vol. v, p. 14, 1873 (mow

Koren).

Body fusiform, gi-adually tapered behind, with a long, slender, pos-

terior portion, covered throughout with very numerous, rather rigid,

slender, scabrous papillae ; skin rather rigid, scabrous with small,

rough points, which project from the plates. Tentacles ten ; eight

large ones much elongated and arborescently divided from near the

base ; the two small ones are very short, nearly sessile, subdivided

from the base. The calcareous plates of the skin are very flat, some-

what imbricated, irregularly oval, triangular, or subpolygonal, with

an undulated or crenulated margin, pierced by about 20 to 24 unequal

round openings, tAvo or three central ones larger than the rest, the
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interspaces mostly.as wide as the pores ; from the center of the upper

side arises an open, slender, flat, acute spinous process, composed of

two anastomosing pieces. The plates of the papillae or suckers are

narrow, elongated, bent into a bow-shape, the middle expanded and

usually pierced by about four pores, two of which are larger ; the

ends are also usually dilated and pierced with small pores ; from the

middle arises a flat, spinous process, similar to that of the skin-plates,

but smaller.

Length, in alcohol, about 50"""
;

greatest diameter, 6 to 9™™

;

length of longest tentacles, 7"5™™. Color of pi-eserved specimens,

yellowish brown.

Localities o and s, 110 and 150 fathoms. Also dredged, in 1873,

oflT Casco Bay.

This species resembles T. raphanus Duben and Koren (Troschel

sp.) in form, but the latter has long-stalked tentacles, branching only

near the ends, and the plates of the skin are different in form, and in

the perforations, and lack the spinous processes which give the species

its rough, scabrous surface,

? Charybdea periphylla Peron and Lesueur.

Verrill, Report upon the Invertebrate Animals of Vineyard Sound, p. 724, 1874.

This species, originally described and figured by Peron and Lesueur

from mutilated specimens taken under the equator in the Atlantic

Ocean, is doubtfully identified b)' Professor Verrill with a specimen

obtained by us east of George's Banks.

The body in the alcoholic specimen is elevated, bell-shaped, rounded

above, with a marked constriction toward the border ; transparent,

the inner cavity showing through as a large, conical, dark reddish

brown spot, with the apex slightly truncated. Border dcejily divided

into sixteen long, flat lobes, which are of nearly uniform breadth

throughout, and slightly rounded, or sub-truncate, at the end ; the

edges and end thin and more or less frilled ; the inner side with two

sub-marginal carinae. Eyes inconspicuous, but small bright red

specks are scattered over the marginal lobes. The intervals between

the lobes are narrow and generally smoothly rounded, without dis-

tinct evidence of the existence of tentacles, except that, in one of

these intervals, there is a small and short papilliform process, with

brown pigment at the base. The ovaries are mostly wanting, but

portions are to be seen as slightly convoluted organs in the mar-

ginal region, opposite the intervals between the lobes.
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Lafoea gracillima G- 0. Sars (Alder sp.).

Lafoea fruticosa Hincks, History of British Hydroid Zoophytes, p. 202, pi. 41, fig. 2,

1868; and Annals and Magazine Nat. Hist, IV, vol. xiii, pp. 132, 148, pi. G, figs.

6-10, pi. 7, fig. 16. 1874.

Lafoea gracillima G. 0. Sars (Alder sp.), Bidrag til Kundskaben om Norges Hydroi-

der, in Vidensk.-Selskabs Forhandlinger, Christiania, for 1873, p. 115 (27), pi. 4,

figs. 19-21.

Hincks reports this species from 100 fathoms off the coast of

Iceland, and G. O. Sars from a depth of 150 fathoms off the Norwegian

coast. It has been dredged by Professor Verrill in the Bay of Fundy

and in Casco Bay.

Halecium robnstum Verrill.

American Journal of Science, III, vol. v, 1873, p. 9, December, 1872.

Stem stout and coarse, composed of many tubes ; branches stout,

tapering, compound except at tips, pinnately or bipinnately branched,

the branchlets spreading at an angle of aboiit 45°
;
yellowish white

and translucent, about '5 of an inch long, divided by simple distant

constrictions, the long internodes usually bearing from two to four

hydroids. Hydrothecoe alternate, large, deep, somewhat vase-shaped,

with an even, slightly evei'ted rim, below which there is a slight con-

striction ; the middle region is slightly smaller, gradually narrowed

toward the base, with a simple diaphragm near the base within.

The hydrothecJB are articulated upon slightly prominent projections

from the stem, in an oblique and excentric position, so as to produce

a decidedly geniculated appearance. Most of the hydrothecse are

sim^jle, but some have one or two slightly pi'ominent secondary rims

near the margin. Height about 100'"™.

East of St. George's Bank, 430 fathoms (haul g).

Sertularella polyzonias Gray, var. gigantea Hincks.

Annals and Magazine Nat. Hist, IV, vol. xiii, p. 151, pi. 7, figs. 11, 12, 1874.

Diphasia mirabilis Verriii.

American Journal of Science, III, vol. v, 1873, p. 9, December, 1872.

Stem stout, rather rigid, narrowed at base, pinnately branched,

somewhat flexuous between the branches, which are alternate, stout,

rigid, straight, constricted at base, spreading at an angle of about

45°. Hydrothecae on the main stem in two rows, nearly opposite
;

on the branches mostly in six regular rows, occupying all sides of the

branches, those in the adjacent rows alternating. The hydrothecae

have large, appressed, somewhat swollen bases, but the upper portion

is rapidly narrowed, prominent and curved outward; aperture

strongly bilabiate, operculated. Reproductive capsules not observed.

Le Have Bank, 60 fathoms (haul e).
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Pennatula aculeata Danieisen.

Pennatula aculeata Danieisen, Forhandlinger i Vedenskabs-Selskabet i Cliristiania,

1858, p. 25 (teste Kolliker) ; VerriU, loc. cit., p. 100, 1873.

Pennatula phosphorea, var. aculeata, Kolliker, Anatomisch-systematische Beschrei-

bung der Alcyonarien, 1 Abtheilung, 1 Halfte, p. 134, pi. 9, fig. 73, 1870 (from

Ahandlungeu d. Senckenberg. Naturf. Gesellschaft. Frankfort, Bd. vii).

Pennatula Canadensis Whiteaves, Annals and Magazine of Natural History, IV, vol.

X, p. 346, November, 1872.

Pennatula, near P. phospliorea VerriU, Am. Journal of Science, III, vol. v, p. 5, 1873.

Localities o and s, 110 and 150 fathoms. Also dredged by Mr.

Whiteaves in 200 fathoms in the Gulf of St. Lawrence.

Virgularia Lyungmanii Kolliker.

Op. cit, 2 HaKte, 1 Heft, p. 196, pi. 13, figs. 133, 134, 1871; Verrill, American

Journal of Science, III, vol. v, p. 100, 1873 ; "Whiteaves, Report on a Second

Deep-sea Dredging Expedition to the Gulf of St. Lawrence, p. 13, 1873.

This species was described by Kolliker from specimens obtained in

30 to 80 fathoms, among the Azores, by the Josephine Expedition

sent ont by the Swedish government. It was also dredged in 1872,

in the Gulf of St. Lawrence, at a depth of 200 fathoms, by Mr.

Whiteaves.

Urtlcina nodosa Verriii.

Actinia nodosa Fabricius, Fauna Groenlandica, p. 350, 1780.

Urticina digitata Verrill, Am. Jour, of Science, III, vol. v, p. 5, 1873 (not of MiiUer?).

This species has been dredged also in deep water off" Casco Bay

(Professor Verrill), and in the Gulf of St. Lawrence (Mr. Whiteaves).

Cerianthiis borealis Verrill.

American Journal of Science, III, vol. v, 1873, p. 5, December, 1872.

Plate II, figure 5.

Body much elongated, tapering gradually to the abactinal opening,

the surface smooth but more or less sulcated longitudinally.

Marginal tentacles very numerous and unequal, the inner ones

longest, in the largest specimens 56'"'" long, and 3™"' in diameter

at base, gradually tapering, acute ; the outer ones 25'""' and less

in length. Oral tentacles numerous, crowded in several rows, in

the largest specimens about 25""" long, slender, acute. Color of

body olive-brown or dark chestnut-brown, sometimes pale bluish or

purplish just below the tentacles ; disk pale yellowish-brown ; space

within the oral tentacles, around the mouth, deep brown, witli lighter

radiating lines ; oral tentacles pale chestnut-brown ; marginal ones

deep salmon or yellowish-brown, the longest usually barred tr^s-

versely with six to eight dark reddish-brown spots, each spot partially

divided along the median line into two lateral ones
;
part of the tenta-

cles often have flake white spots on each side, at the base.
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The two largest specimens, dredged in 1872, in 28 fathoms, east of

Grand Menan, by Professor Verrill, measured 125""" across the

disk and tentacles, but their bodies were mutilated. Entire ones

of much smaller size were dredged by Dr. Packard and Mr. Cook in

110 and 150 fathoms, soft muddy bottom, hauls ^s' and o. The largest

of these was 200'""' long, and like other species of the genus,

iidiabited a thick, tough, felt-like, muddj^ tube. It was also dredged,

in 1873, in Casco Bay, from 7 to 94 fathoms. One of these speci-

mens, dredged off Seguin Island, in 70 fathoms, was 450'"'" long, 40"""

in diameter, and 175'"'" across the tentacles. A small specimen has

been dredged in 18 fathoms off Watch Hill, R. I.

Epizoanthus Americanus Verriii.

Plate VIII, figure 2.

This species lives upon stones as well as upon shells inhabited by

Eupagiiriis. The specimens from 430 fathoms {g) were on stones,

while those from 60 and 65 fathoms {s and /') were on shells. It

ranges from off the coast of New Jersey to the Gulf of St. Lawrence.

Sponges.

Most of the sponges obtained have not yet been sufficiently studied to

be reported upon, but the two following species are of special interest.

Hyalonema longissimum Sars.

G. 0. Sars, on some Remarkal^le Forms of Animal Life from the Great Deptlis off

the Norwegian Coast, p. TO, pi. 6, figs. 35-i5, 1872.

Only a single and somewhat abnormal specimen of this remarkable

species was dredged by us in 430 fathoms, but it has since been

dredged in considerable abundance by Professor Verrill, in 95

fathoms, off Casco Bay, and by Dr. Packard and Mr. Cooke on

Cashe's Ledge.* Mr. Whiteaves reports it also from deep water in

the Gulf of St. Lawrence.

TheCOphora ibla WyvlUe Thompson.

Depths of the Sea, p. 147, fig. 2-i, 1873; Verrill, American Journal of Science, III,

vol. vii, p. 500, pi. 8, fig. 8, 1874.

Plate VII, figure 1.

This species, first described by Wy ville Thompson, from specimens

dredged in 344 fathoms, off the Shetland Islands, l)y the Porcupine

expedition, and dredged by us in 50 and 60 fathoms (hauls e and d),

has since been dredged by Dr. Packard and Mr. Cook on Cashe's

Ledge and Jeffrey's Ledge in the Gulf of Maine.

* American .Tournal of Science, III, vol. vi, p. 440, 1873.
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EXPLANATION OF PLATES.

Plate I.

Figure 1.

—

Stylifer Stimpsonii Verrill ; specimen from 60 fathoms, George's Bank

(haul i) ; enlarged 10 diameters.

Figure 2.

—

Ringicula nitida Verrill ; specimen from 110 fathoms; enlarged 14 diameters.

Figure 3.

—

Entalis striolata Stimpson ; several views of animal, with the foot in differ-

ent states of expansion ; enlarged about 1^ diameters.

Figure 4.

—

Astarte lens Stimpson ; adult ; natural size.

Figure 5.—The same
;
young specimen ; natural size.

Figure 6.

—

Astarte undaia Gould ; inside of valves, showing the hinge ; natural size.

Figure 7.—The same
;
young specimen ; natural size.

Figure 8.—The same ; adult specimen ; natural size.

Figure 9.—Variety of the same ; adult specimen ; natural size.

Figure 10.

—

Astarte elliptica (Brown) ; natural size.

Figure 11.

—

Cryptodon obesus Verrill; inside of valve ; enlarged 3 diameters.

Figure 12.

—

Astarie Baiiksii lie&ch. ; natural size.

Figure 1 was drawn from nature by S. I. Smith; 2, 5, 6, 7, 8, 9, 11, by Professor

Verrill ; 3, by J. H. Emerton : the rest from Binney's Gould.

Plate II.

Figure 1.

—

Sertularia argentea Ellis and Solander ; a branch bearing reproductive

capsules (gonothecse) with the soft parts removed ; much enlarged.

Figure 2.

—

Alcyonium carneum Agassiz ; three of the polyps fully expanded ; much
enlarged.

Figure 3.— Crista eburnea Lamouroux ; a cluster of branches, enlarged.

Figure 4.—The same ; a branch bearing ovicells, more highly magnified.

Figure 5.— Gerianthus borealis Verrill; entire animal removed from its tube and fully

expanded ; about one-third natural size.

Figures 1 and 2 were drawn from nature by Professor Verrill ; 3 and 4 by Profes-

sor A. Hyatt ; 5 by J. H. Emerton.

Plate III.

Figure 1.

—

Xenodea megachir Smith, male ; one of the first pair of legs with its epime-

ron, seen from the outside ; enlarged 20 diameters.

Figure 2.—The same ; one of the second pair of legs, seen in the same position and

enlarged the same amount.

Figure 3.—The same ; one of the third pair of legs, with its epimeron and gill, seen

from the outside, and showing the glandular organ within
; enlarged 20 diameters

;

a, the tip of the dactylus, showing the perforation ; enlarged 100 diameters.

Figure 4.—The same ; one of the fifth pair of legs, with its epimeron and gOl, seen

from the outside ; enlarged 20 diameters.

Figure 5.

—

Stenothoe peltata Smith, female ; one of the second pair of legs, with its

epimeron, seen from the outside ;
enlarged 16 diameters.

Figure 6.—The same ; one of the fourth pair of legs, with its epimeron, seen from the

outside ;
enlarged 16 diameters.

Figure 7.—The same; one of the first pair of legs, seen from the outside
; enlarged 50

diameters.

Figure 8.—The same ; distal portion of the propodus, with the dactylus, of one of the

second pair of legs, seen from the outside ; enlarged 125 diameters.

Figure 9.

—

ScaJpellum Stroemi Sars ; side view ; enlarged 5 diameters.

All the figures were drawn on wood, from alcoholic specimens, by S. I. Smith.
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Plate IV.

Figure 1.— Gnjmcea spiralis Yerrill; head and anterior part of body ; enlarged.

Figure 2.—Pista cristata Afalmgren
; head and anterior part of l)ody

; enhirged.

Figure .'i.

—

Phyllodoce catemda Verrill ; dor.'^al view of anterior part of body and liead,

and extended proboscis : enlarged about 4 diameters.

Figure 4.—? SpirorUs nautiloides Lamarck
; entire animal ; much enlarged.

All the figures were drawTi from life hj J. H. Emerton.

Pl.\te V.

Figure I —Nephthys ciliata Rathke ; one of the lateral appendages ; enlarged 10

diameters.

Figure 2.

—

Lumbriconereis fragilis ffirsted ; anterior part of body and head, dorsal

view ; enlarged about G diameters.

Figure 3.

—

Ninoe nigripes Verrill ; one of the lateral appendages from the middle })art

of the body
;
greatly enlarged.

Figure 4.

—

Ammochares assimilis Sars ; entire animal ; enlarged about 4 diameters.

Figure 5.

—

Leodice vivida\QVT\]\] head and anterior part of the body and 12th seg-

ment ; dorsal view ; enlarged about 4 diameters.

Figure 1 was copied from Ehlers ; all the others were drawn from nature by J. H.

Emerton.
Plate VI.

Protula media Stimpson ; animal removed from the tube ; enlarged 4 diameters.

Drawn from life by J. H. Emerton, from a specimen dredged near Grand Menan,

Bay of Fundy, by Professor Verrill, in 1872.

Plate VII.

Figure 1.

—

Thecophora ibla W. Thompson; specimen from 60 fathoms, Le Have Bank

(haul i) ; natural size.

Figure 2.

—

Eusyllis iJhosplwrea Verrill ; anterior and posterior portions of the animal

;

dorsal view ; much enlarged.

Figure .3.

—

Nothria conchylega Malmgren ; anterior portion ; enlarged.

Figure 4.

—

Nothria opalina Verrill ; anterior portion ; enlarged.

Figure I was drawn from nature by Sherman ; the others from life by J. H. Emerton.

Plate VIII.

Figure 1.

—

Pera crystallina Verrill ; enlarged 3 diameters.

Figure 2.

—

Epizoanthus Americanus Verrill ; a single polyp expanded ; enlarged about

6 diameters.

Figure 3.

—

Chcetoderma nitidulum Loven ; entire animal ; enlarged 4 diameters.

Figure 4.—The same
;
posterior portion with the gills expanded ; enlarged 24 diame-

ters.

Figure 1 was drawn from nature by Professor Verrill ; the others were drawn from

life by J. H. Emerton.

ERRATA.

Page 1, line 13, for Hagerman, read Hagenman.
13, " 34, " capypilare, read capillare.

" 28, " 19, '• Caridon, read Caridion.
35, " 3, " Scapellum, read Scalpellum.

" 58, " 14, •' branches, read branchlets.
" 60, " 12,

' Plate X. read Plate IX.
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EXPLANATION OF PLATES.

Plate I.

Figure 1.

—

Stylifer Stimpsonii Verrill; specimen from 60 fathoms, George's Bank

(haul i)
; enlarged 10 diameters.

Figure 2.

—

Ringicula nitida Verrill ; specimen from 110 fathoms ; enlarged 14 diameters.

Figure .3.

—

Entalis striolata Stimpson ; several views of animal, with the foot in differ-

ent states of expansion
; enlarged about 1^ diameters.

Figure 4.

—

Astarte lens Stimpson ; adult ; natural size.

Figure 5.—The same
;
young specimen ; natural size.

Figure 6.

—

Astarte undata Gould ; inside of valves, showing the hinge
; natural size.

Figure 7.—The same
;
young specimen ; natural size.

Figure 8.—The same ; adult specimen ; natural size.

Figure 9.—Variety of the same ; adult specimen ; natural size.

Figure 10.

—

Astarte elliptica (Brown) ; natural size.

Figure 11.

—

Cryptodon ohesus Verrill ; inside of valve ;
enlarged .3 diameters.

Figure 12.

—

Astarte Banksii Leach ; natural size.

Figure 1 was drawn from nature by S. I. Smith; 2, 5, 6, 7, 8, 9, 11, by Professor

Verrill ; 3, by J. H. Emerton ; the rest from Binney's Gould.

Plate II.

Figure 1.

—

Sertularia argentea Ellis and Solander ; a branch bearing reproductive

capsules (gonothecse) with the soft parts removed ; much enlarged.

Figure 2.

—

Alcyonium carneum Agassiz ; three of the polyps fully expanded ; much
enlarged.

Figure 3.— Crista eburnea Lamouroux ; a cluster of branches, enlarged.

Figure 4.—The same ; a branch bearing ovicells, more highly magnified.

Figure 5.— Cerianthus horealis Verrill ; entire animal removed from its tube and fully

expanded ; about one-third natural size.

Figures 1 and 2 were drawn from nature by Professor Verrill ; 3 and 4 by Profes-

sor A. Hyatt ; 5 by J. H. Emerton.

Plate III.

Figure 1.

—

Xenoclea megachir Smith, male ; one of the first pair of legs with its epime-

ron, seen from the outside ; enlarged 20 diameters.

Figure 2.—The same ; one of the second pair of legs, seen in the same position and

enlarged the same amount.

Figure 3.—The same ; one of the third pair of legs, with its epiraeron and gill, seen

from the outside, and showing the glandular organ within
; enlarged 20 diameters

;

a, the tip of the dactylus, showing the perforation ; enlarged 100 diameters.

Figure 4.—The same ; one of the fifth pair of legs, with its epimeron and gill, seen

from the outside ; enlarged 20 diameters.

Figure 5.

—

Stenothoe peltata Smith, female ; one of the second pair of legs, with its

epimeron, seen from the outside ;
enlarged 16 diameters.
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Plate IV.

Figure 1.— Gryrmm spiralis Verrill; liead and anterior part of body
; enlarged.

Figure 2.

—

Pista cristata Malmgren
; head and anterior part of body

; enlarged.

Figure :5.

—

Phyllodoce catenula Verrill ; dorsal view of anterior part of body and head,

and extended proboscis : enlarged about 4 diameters.

Figure i.—? Spirorbis nautiloides Lamarck
; entire animal ; much enlarged.

All the figures were drawn from life by J. H. Emerton.

Platb V.

Figure 1 —Nephthys ciliata Rathke ; one of the lateral appendages ; enlarged 10

diameters.

Figure 2.

—

Lumbriconereis fragilis (Ersted ; anterior part of body and head, dorsal

view ; enlarged about G diameters.

Figure 3.

—

Nino'e nigripes Verrill ; one of the lateral appendages from the middle part

of the body
;
greatly enlarged.

Figure 4.

—

Ammochares assimilis Sars ; entire animal ; enlarged about 4 diameters.

Figure 5.

—

Leodice vivida Verrill ; head and anterior part of the body and 1 2th seg-

ment ; dorsal view ; enlarged about 4 diameters.

Figure 1 was copied from Ehlers ; all the others were drawn from nature by J. H.

Emerton.
Plate VI.

Protula media Stimpson ; animal removed from the tube ; enlarged 4 diameters.

Drawn from life by J. H. Emerton, from a specimen dredged near Grand Menan,

Bay of Fundy, by Professor Verrill, in 1872.

Plate VII.

Figure 1.

—

Thecop}io7-a ibla "W. Thompson ; specimen from 60 fathoms, Le Have Bank

(haul i) ; natural size.

Fjgure 2.

—

Eusyllis pliosphorea Verrill ; anterior and posterior portions of the animal

;

dorsal view ; much enlarged.

Figure 3.

—

Nofhria conchylega Malmgren ; anterior portion ; enlarged.

Figure 4.

—

Nbthria opalina Verrill ; anterior portion ; enlarged.

Figure I was drawn from nature by Sherman ; the others from life by J. H. Emerton.

Plate VIII.

Figure 1.

—

Pera crystalUna Verrill ; enlarged 3 diameters.

Figure 2.

—

Epizoanthus Americanus Verrill ; a single polyp expanded ; enlarged about

6 diameters.

Figure 3.

—

Chcetoderma nitidulum Loven; entire animal; enlarged 4 diameters.

Figure 4.—The same
;
posterior portion with the gills expanded ; enlarged 24 diame-

ters.

Figure 1 was drawn from nature by Professor Verrill ; the others were drawn from

life by J. H. Emerton.

Errata.

5, line 30, for Vetumnus, read Vertumnus.

" 9, last line, for 1873, read 1874.

" 11, line 31, for virticillata, read verticillata.

Trans. Conn. Acad., Vol. III. 8 July, 1875.
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Descriptions of New and Rare Species of Hypeoids from

THE New England Coast. By S. F. Clark/.

A
The material for this paper was gathered while at work on the

Hydroids hi the Museum of Yale College. This colleetion is mostly

from the New England Coast, and is very large and complete.

Obelia bictispidata, sp. nov.

Plate IX, fig. 1.

The stem is erect, slender, straight or nearly so, compound, con-

sisting of many united tubes Avhich gradually diminish in number

toward the top, varying in color from a light horn, to a light whitish

brown, sparingly branched, and with three or four annulations just

above the origin of each • branch ; branches short, ascending, slender

and irregularly arranged, sometimes one, and often two branches

starting from a node ; branches few, very short, slender and ascending.

Hydrothecre very deeply cainpainilate, narrow, tapering slightly

toward the base, very hyaline, and with eight to ten longitudinal

lines extending from the distal extremity nearly to the base ; the

rim is armed with very acute teeth, varying in number from sixteen

to twenty- two, and arranged in pairs, the spaces in which the longi-

tudinal lines terminate being a trifle wider and deeper than the alter-

nate spaces ; the pedicels supporting the hydrothecse are long and

tapering, consisting of about fifteen annulations. Gonothecfe un-

known.

Height of largest specimens, about three inches (80"'"^).

The specimens from which this species is described were taken in 3-5

fathoms, on the reefs near Thimble Islands, Long Island Sound, Sep-

tember 23, 1874.

This species is closely allied to 0. Mdentata, but is readily distin-

guished from the latter by its entirely diiFerent habit, the narrower

and deeper calycles, and by the long tapering pedicels upon which

the calycles are supported.

Obelia bidentata, sp. nov.

Plate IX, fig. 2.

Stems clustered, straight or slightly flexuous, compound, composed,

at the base, of eight vor ten slender, united tubes, varying in color

from a light horn to a dingy wdiite, densely branched, and with three
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or four auimliitions just al)ove the origin of each branch; mode of

branching irregular, two branches often starting from a node, some-

times an alternate arrangement of branches on opposite sides of the

stem, one branch at each node. A few o\ the lowest branches some-

times attain a considerable length and resemble the main stem, the

upper ones are short, sparingly branched and with the pinnae diverg-

ing at a slight angle ; the branchlets and ends of the branches are

simple, slender, translucent, and very graceful. Ilydrothec* very

deeply canipanulate, tapering slightly toward the base, and with nine

to twelve longitudinal lines extending from the distal extremity

nearly to the base; the rim is ornamented with from eighteen to

twenty-four very aciite teeth, arranged in pairs, the spaces in which

the longitudinal markings terminate being a trifle wider and deeper

than the alternate spaces ; the pedicels supporting the hydrothecae

are usually short and stout, consisting of three to six strong rings, but

some of the hydrothecae near the base of the stem have the pedicel

slightly tapering, and composed of from ten to twelve annulations.

GonotheciB unknown.

The largest specimen has a height of about 6 inches (150'"'").

We have had this species from but one locality, Greenport, Long

Island, where it was collected August 5th, 1874, in considerable

abundance, on the piles of the wharves at low^ water,—U. S. Fish

Commission.

0. hideiitata resembles 0. gelatinosa in the delicacy and grace of

its habit, in the flexibility of the compound stem and branches, and

in the pellucid whiteness of the upper portion of its branches and

branchlets.

Campanularia pygmaea, sp- nov.

Plate IX, fig. 9.

Stem often creeping, with short, stout, coarsely annulated, upright

pedicels, sometimes with one or two short, annulated branches, each

bearing a single calycle. Ilydrothecpe large, deep campanulate,

tapering slightly toward the base, and with longitudinal lines at

regular intervals, extending down al)out one-fourth the length of the

calycle ; the rim is ornamented with from ten to fourteen square-cut

denticles, which are more or less hollowed out above, and separated

by rather shallow evenly i-ounded notches, of about the same breadth.

Gonotheca? unknown. Height about 1""".

Found gi-owing on a specimen of Sertularia latlusoda, from Casco

Bay, Maine,—U. S. Fish Commission.
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Campanularia noliformis McCrady.

Plate X, fig. 5.

A few specimens of this species were collected at low-water, near

Savin Rock, in the latter part of September, 1 874, attached to Zostera

marina.

The hydrarium agrees very well with McC-rady's description. We
were not fortunate enough to find the gonotheca?.

This is the first time this species has been recorded since McCrady

described it from the harbor of Charleston, S. Carolina, in 1857.

Campanularia calceolifera Hincks.

Ann. and Mag. of Nat. Hist., vol. viii, Aug., 1871, page 78, pi. vi.

Plate X, figs. 7, 8.

Stem filiform, slender, flexuous, sometimes slightly branched, ringed

at the base and above the origin of the branches, light horn-coloi',

with the upper portions pellucid white; branches short, curving out-

ward, undivided, and bearing but two or three calycles. Hydro-

thecse alternate, broadly campanulate, deep, with a slightly everted

entire rim, and borne on annulated pedicels of variable length, those

on the upper portion of the stem consisting of five to eight rings,

those near the base, of twelve to twenty. At each bend, of the stem

a single hydrotheca is given otf, and tliese all ciirving outward give

to this species a very gracefu.1 habit. Gonotheca? axillary, borne on

pedicels consisting of three or four rings, largest at the distal ex-

tremity and tapering gradually toward the base, with a peculiar in-

curved coil or twist at the distal end near the opening ; the apei*ture

is shield-shaped and placed in a depression on one side of the distal

end. An internal membrane extends inward from the shield-shaped

opening and terminates in a circular orifice near the distal extremity.

Height about one inch (25""").

Noank, Conn., from the bottom of an old scow, Sept. 9, 1874, with

gonothecse; piles of wharves at Woods Hole, Mass., Aixg., 1871,

with gonothecse—U. S. Fish Commission.

Hincks' figures represent the hydrothecae as being more everted

than they are in the American specimens ; otherwise they exactly

correspond. This is the first time this species has been recoi'ded

from the American coast.
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Gonothyraea tenuis, sp. nov.

Plato X, tig. 8.

Stem simple, somewhat iiexuous, slender, and aniiulated ahovc the

origin of each of the numerous branches, wliich are an-auged alter-

nately, some simple and some compound, the latter l)earing numerous
brancldets, the lower branches sometimes half the length of the main
stem ; base of the stem and of the lower branches light horn-color,

the ui)])er portions of the same and all of the brancldets jjellucid

white; branches and branchlets spreading, giving quite a bushy ap-

pearance to a Avell develo])ed colony. Hydrotheca' variable in size,

deeply campanulate, tapering quite rapidly from a little below the

middle to the base ; the rim is ornamented with teeth which show
considerable variation, both in number and in shape ; in some cases

they are quite sharj) and shallow, while on other calycles upon the

same stem they are of a castellated form and sometimes slightly

emarginate ; in number they vary from ten to sixteen; the i)edicels

which support the hydrotheca? also vary greatly, some being com-

posed of but three or four annulations, others of as many as fourteen.

Gonothecge axillary, very much elongated, narrow, obconic, taper-

ing gradually from the distal to the proximal end, borne on short

pedicels of but three to live rings ; the nnmber of medusa? holding

planuhe contained in each reproductive capsule varies from two to

five and the number of planula^ in each medusa varies to the same

extent ; the tentacles of the medusa? vary considerably in length

and in number, some of them being over half as long as the diameter

of the medusa, Avhile others are not more than one-third that length,

in number they vary from eight to fourteen. The planuliB at the

time of liberation are regularly cylindrical, and their length is equal

to nearly foiir times the width. Height usually 1 to 1-25 inches (25

to 38'""^).

New Haven, Conn., on piles of Long Wharf, June 2nd, 1875,—

S. F. Clark. Found in consideral)le abundance at low-watei', loaded

with reproductive capsules. The large size of the latter, together

with the clusters of extracapsular medusa, make this quite a showy

species for one of such humble growth,

Opercularella pumila, sp. nov.

Plate IX, figs. 3, 4, 5.

Stem rather stout, erect or creeping, slightly flexuous, amudated

throughout, sparingly branched ; branches erect, undivided, some-
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times attaining a considerable length. Hydrothecae largest in the

middle, tapering very slightly toward the base, rapidly converging at

the distal end, and supported on short annulated pedicels, consisting

of three to five rings. Gonothecje fusiform, with the tapering neck

often somewhat elongated ; length about twice that of the hydro-

thecffi. They contain one to three small globular or ovate immature

raedusoids. The pedicels consist of three to six annulations. In the

creeping form the hydrothecre appear at intervals borne on short

ringed stalks consisting of about three to six rings.

Portland, Maine, August, 1873, with gonothecae, on piles of wharves;

off Montauk Pt., Long Island, 5-15 fathoms, August, 1874,—U. S.

Fish Commission.

This species closely resembles O. lacerata of Hincks, from which it

is distinguished by the forms both of the hydrotheca? and gonothecae.

The hydrothecae are also smaller than those of 0. lacerata. As the

reproduction has not been traced in this species, it can only be refer-

red to the genus provisionally. I am inclined to think, from the

shape of the gonothecte and from the fact that they often contain

two or three distinct reproductive bodies, that it may not belong

under Opercularella.

Opercularella lacerata Hincks.

Campanularia lacerata Johnston, Brit. Zooph., p. Ill, PI. xsviii, fig. 3.

Opercularella lacerata Hincks, Brit. Hydr. Zoopli., p. 194, PI. xxxix, fig. I.

Plate IX, fig. 6.

Stem erect, simple, slightly flexuous, more or less annulated through-

out, sparingly branched ; branches short undivided. Hydrothecae

ovato-fusiform and borne on short pedicels of but two or three annula-

tions; operculum composed of six to eight segments. Gonothecae,

of the female colonies, a trifle wider at the distal end, and tapering

very slightly toward the base, supported on short ringed pedicels
;

the medusoid (sporosac) containing the planuhi? is quite large, the

diameter being about equal to the length of the gonotheca ; from

two to five planulfe in each medusoid.

New Haven, Conn., on piles of Long Wharf, May 13th, 1875, with

extracapsular medustB.—S. F. Clark.

The hydrothecae in this species average about one tliird larger than

those of 0. pumila ; the segments of the opercula are more deeply

cleft ; and there are differences in the form of the gonothecae.
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Calycella syringa "incks. Peculiar variety.

Plate X, figs. 1 , 2, 3.

Sertularia syringa L'mn., Syst. 1311.

Calicella syringa Hiucks, Oat. Devon Zooph., 23; Aim. N. 11. (3d .son), VIIT, 294.

Calycella syringa Hiueks, Jiritisli Hydroid Zoophytes, Vol. I, p. 206, Plate xxxix,

figs. 2, 2a.

Stem simple, creeping, nearly smooth. HydrothecjB hyaline, color-

less or tinged with a light horn-color, cylindrical, romided oft" helow,

with an everted rim, to which is attached an opercnlnm consisting

of from five to eight segments and supported on twisted j)edicels of

considerable length, with eight to fifteen twists; some of the liydi'o-

theca' have an addition in the shape of a wide ring, ornamented with

from ten to fourteen longitudinal markings, which rises for some dis-

tance above the rim and on the summit of which there is borne

either the operculum or another ring ; in some cases there are as

many as four of these rings with an operculum at the summit. The

opercula usually point upward, but are occasionally deflected into

the ealycle.

From Casco Bay, Me., 9 fathoms,—U. S. Fish Commission.

Halecium articulosum, sp- nov.

Plate X, fig. 6.

Stem dark brown and tapering gradually, very stout, sparingly

branched, compound, consisting of many, slender, anastomosing, ser-

pentine tubes ; branches short and irregularly arranged on all sides of

the main stem ; branchlets few and very short ; both branches and

branchlets are divided into very short, stout internodes by distinct

joints placed at right angles to the stem ; branches and branchlets

simple, whitish, delicate, becoming more numerous toward the top of

the stem. The internodes become shorter very gradually toward the

ends of the branches and branchlets. Hydrothecte alternate, short

and wide, one to each segment ; some of them have a cup within a

cup, as is so often the case in the species of Halecium. Gonothecje

borne in rows on the upper side of the pinnae. The female gono-

thecaj are large, obovate, and have the opening on one side and

nearer the distal than the proximal end ; the male gonothecse are

oblong, subcylindrical, and, like the female, are sessile. Height of the

largest specimens, 5 niches (125'""').

Eastern end of Long Island Sound, 8-12 fathoms; Coxe's Ledge,

S. E. of Block Island, 17-21 fathoms; Casco Bay, Maine; Eastport,

Me.,—U. S. Fish Commission.
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H. articulosiini resembles H. pluniosiini^ but has a stouter habit

;

the iuteruocles are shorter and stouter ; and it may also be dis-

tinguished by the direction of the joints, at right angles to the stem,

and by the very wide-mouthed calycles. The female gonothecse some-

what resemble those of M. Beanii^ but are of a stouter build ; they

are relatively larger at the distal extremity, the orifice is differently

shaped and is differently situated, being nearer the distal extremity.

Sertularia argentea Ellis and Soiander, vaj\ divaricata nov.

Plate X, fig. 7.

Stem simple, stout, erect, straight or slightly flexuous, of a deep

horn color, regularly jointed, each joint having two or three branches
;

branches alternate, sparingly branched, diverging at right angles

from the main stem and all in the same plane, divided quite regularly

by joints, each bearuig two pairs of hydrothecte, much resembling

a young shoot of the usual form of S. argentea. Hydrothecte nearly

opposite, curving strongly outwards, with a bilabiate mouth, the

upper lip being considerably smaller than the lower ;
hydrothecse are

also scattered along the stem in pairs. Gonothecae unknown.

Collected at Oasco Bay, Me., 1878,—U. S. Fish Commission.

I at first thought that this was a distinct species, but I have since

had intermediate forms which prove quite conclusively that it is only

a variety of S. argentea. Considerable variation is shown in the

hydrotliecae of this variety ; some of them, on the same stem, are

more directly opposite and curve outwards more than others.

Plumularia Verrillii, sp. nov.

Plate X, fig. 9.

Stems erect, simple, straight or slightly curved, slender, two to

four inclies high, of a bright horn-color, branched and regularly

jointed by transverse divisions; the branches have their origin near

the base of the stem, are ei-ect and resemble the main stem in all par-

ticulars; pinnae occasionally branched, regularly arranged on two

sides of the main stem and branches, sej^arated by an angle of ninety

degrees, composed of long similar joints, each bearing a hydrotheca

and a number of nematophores ; occasionally there is an odd, intermedi-

ate joint bearing only one or two nematophores and no hydrotliecae

;

a single pinna to each joint. Nematophores sessile, compound, large,

tapering to the base, with a round cup-like opening : there are four

to six on each hydrotheca-bearing joint, one on eacli side of the upper
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edge of the hydrotheca, two or three between the Iiyth-otheca and

the proximal end of the joint, and occasionally one at the distal end
;

on tlie main stem there are usnally two in each axil and two or three

on eaeli joint. ITydrotlieca^ small, sliallow, ahout equal in depth to

the length of the nematophores, attached to the stem by their

entire length; rim entire. Gonotheca? borne in the axils of the

stem and of the branclied ])innfe, sessile, tapering at the base, the

remaining portion either i-egularly cylindrical or slightly sw^ollen in

the middle; aperture large, terminal. Height, 2-5 inches (64""").

Eastport, Maine, 10-20 fathoms, 1868,—A. E. Verrill and S. I.

Smith.

P. Verrillil is a beautiful little, peHucid, white species, with a deli-

cate, graceful habit which readily distinguishes it from any of the

forms now known upon our coast. It is the second genuine Plumu-

laria from the New England coast, both having been discovered by

Professor Verrill. The previously described species {P. tenella Ver-

rill) was dredged in 1871, off Gay Head, Martha's Vineyard, in 10

fathoms. It has since been dredged in 4-5 fathoms oif the Thimble

Islands, near New Haven, Conn., and it was also found on the piles

at Greenport, Long Island, August 5th, 1874, with gonothecae. It

differs greatly from the present species in the form of the gonothecae,

w^hich are in the shape of an elegantly curved cornucopia, slender at

the base and gradually enlarged to the end, and with a cluster of

nematophores at the base. The hydrotbecae are also different in form.

EXPLANATION OF PLATES.

Plate IX.

Figure 1. Ohelia hicuspidata ; from Thimble Islands.

Figure 2. Ohelia bidentata ; from Greenport, Long Island.

Figure 3. Opercularelld pumila ; creeping form.

Figure 4. The same, yoimg, with stem erect ; from ofiE Montauk.

Figure 5. The same, from Portland, Me., showing a more luxuriant growth ;
a and

c, the hydrarium ; h, gonotheca, enlarged 32 diameters.

Figure 6. Opercularella lacerata ; a, hydrarium ;
b, gonotheca ; c, medusoid ; d, un-

developed planulse.

Figure 7. Campanularia calceolifera ; from Noank, Conn.

Figure 8. The same ; a, hydrotheca ; b, gonotheca ; from Noank, Conn.

Figure 9. Campanularia pygmcea ; from Casco Bay.

Trans. Conn. Acad., Vol. III. 9 July, 1875.
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Plate X.

Figure 1. Galycella syringa ; from Casco Bay, showing a peculiar variation in the

operculum.

Figure 2. The same, showing the variation in the size and shape of the hydrotheeas

and in the length of the pedicel.

Figure 3. The same, with one secondary ring.

Figure 4. Clytia Johnstoni, from Noank, Conn.

Figure 5. Campanularia noliformis, showing variations in the pedicels.

Figure 6. Halecium articulosum ; from Coxe's Ledge. A, a branch bearing both

hydrothecte and gonothecse ; a, gonothecas ; 6, hydrotheca3. B, a branch with hydro-

thecae only ; h, a branchlet ; c, hydrothecis.

Figure 7. Sertularia argentea, var. diva?-icata ; from Casco Bay.

Figure 8. Gonothyrcea tenuis ; a, branch with hydrothecae ; h, gonotheca with extra-

capsular medusa; ; c, medusa with radiating tubes and tentacles ; d, planulse.

Figure 9. Plumularia Verrillii; a, branch showing hj^drotheca; and nematophores

and the arrangement of the joints ; b, gonotheca ; c, a single joint.



III. Ox TIIK ClIONDUODITE FROM Till': Tll,I,Y-F()STKK IkOX MlNK,

BuKWSTKR, Kkw York. By Edward S. Dana.

WITH THREE PLATES.

The interesting discovery by Seacchi,* of the existence of three

types in the crystals of the Yesnvian huniite, gives especial interest to

the study of chondrodite— a mineral identical with humite in chemi-

cal composition, and yet very diiferent in appearance, as well as in

origin and method of occurrence. The same subject of humite has

since been more exhaustively investigated by vom Kath,f with the

entire confirmation of Scacchi's views. These authors have shown that

the crystals of humite are to be divided into three groups, all bear-

ing the same relation to each other in respect to their lateral axes,

while the vertical axis has a distinct value for each type. In other

words, the planes occurring upon a given crystal bear simple relations

to each other, whereas only very complex symbols result when the

planes of one type are referred to the axes of another. For a full

explanation of this subject reference must be made to the valuable

memoirs al)ove alluded to. It will be sufficient to give as an example

the symbols of the occurring pyramids of the r series on the second

and third types of chondrodite (see beyond)
; (1) as referred to their

own axes
; (2) as referred to the axes of the second type.

(1

II.
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The chemical composition of the three types of humite has been

most recently investigated by vom Rath,* and although analyses lead

to somewhat different results in the three cases, he concludes that in

composition they are still essentially the same, and that the cause of

the variation in crystalline form is not to be found in the relative

amount of fluorine present, as has been often assumed.

A further remarkable peculiarity true of two of the three types is

their hemihcdral character, which is clearly set forth in the memoirs

referred to. These points are alluded to here because of their direct

bearing on the crystallization of chondrodite, which forms the sub-

ject of this j^aper,

Chondrodite was first shown by Rammelsberg to be identical with

humite in chemical composition, but its ci-ystallographic relation to it

was not brought out until the investigations of Kokscharow. He
showed, in his " Materialien zur Mineralogie Russlands," vol. vi, p. 73,

1870, that the crystals from Pargas, Finland, were identical in form

and angles with type II of humite. Vom Rath has followed with the

description of crystals from Nya-Kopparberg, Sweden, and px'oved

that the same fact is true of them.

The study of the chondrodite from the Tilly-Foster iron mine,

Brewster, Putnam Co., New York, which I have been able to make

during the past season, has shown that it, too, is for the most part iden-

tical in crystalline form with type II of humite, but that at the same

time crystals exist belonging to type I, and others which belong to

type III. Further than this, the chemical composition of the second

type crystals, as shown by an analysis by Mr. G. W. Hawes (p. 21),

agrees with great exactness with that of the Swedish mineral anal-

yzed by vom Rath. Moreover, the detailed study of these crystals

has shown that while they agree with humite in the character of

their hemihedrism, as well as in angles, they surpass it in the multi-

plicity of secondary planes. Thus a single solid angle has been

observed M^hich was modified by fifteen distinct and well-defined,

though very minute, planes. This, as will be seen when the facts

are described in detail, implies a delicacy in the action of the

crystallogenic forces at work which is unparalleled, and sustains the

opinion that chondrodite, or humite, is unique among mineral species.

The method of occurrence at the Tilly-Foster iron mine has been

fully described by Prof. Dana in a memoir entitled, " Serpentine

pseudomorphs and other kinds, etc.," Journal of Science, viii, pp. 371,

* Pogg. Ann., cxlvii, 246, 18'72.
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447, 1874. It may be of interest, liowever, to review tlie subject again

so far as the chondroilite itself is immediately concerned.

The chondrodite forms the gangue of the magnetite, being every-

where disseminated through it in varying [troportions. In tlie parts

of the mine wliere the ore is purest and perfectly firm and solid,—the

so-called " blue ore,"—the associated chondrodite is sparsely sprin-

kled through it in small yellow grains, showing no trace of crystal-

line form. Occasionally, however, the firmer ore contains the chon-

drodite in very large but im})erfect crystals, or crystalline masses,

associated directly with enstatite and enveloped with dolomite, which

have a dark, rich brown color, and a brilliant luster on the fracture.

A distinctly laminated structure is uniformly ])resent, which is per-

haps due to cleavage (?) (See page 21.) Isolated grains imbedded in

dolomite often show traces of crystalline faces, though nothing that

admits of even approximate determination. An analysis of this vari-

ety of the mineral gave Mr. Breidenbaugh (Am. J. Sci., Ill, vi, 209),

Si 35-42, Fe 5-72, Mg 54-22, Fl 9-00= 104-3G; equivalent of oxygen replaced by-

fluorine, 3-79.

In the lai'ger portion of the mine as no-w opened the soft " yellow

ore" predominates : the chondrodite is present in it in much larger

quantities, and, like the other minerals present, it has almost uni-

versally suiFered extensive alteration. A long list of these products

of alteration has been fully described by Prof. Dana in the memoir

already alluded to. The chondrodite forms the main portion of the

material taken out, and many tons of this refuse matter are yearly

thrown away. It vai'ies much in color, but is generally of a light

yellow; it iisually has more or less of a soapy feel and shows a vari-

ety of transition-products between the semi-altered material and

serpentine. The chondrodite in this " yellow ore" is generally mas-

sive ; but occasionally fragments of large coarse crystals have been

found, some of which measure five or six inches in length. These

are always more or less altered ; moreover, the material of which

they are formed is far from homogeneous, masses of magnetite, and

also chlorite, being often enclosed. Dolomite is the most constantly

associated mineral and occurs in rhombohedrons of considerable

size ; these, as well as the crystals of chondrodite, are often coated

with magnetite.

Better crystals of chondrodite than those just mentioned are some-

times found in what Avere once cavities in this massive material.

Unfortunately these have all suffered from the general alteration and

now have little or no luster, and often are not even smooth. These

cavities are almost invariably filled with a soft mealy serpentine,
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which can be cut out with a knife. These crystals vary in size, being

sometimes an inch or two in length. A crystallographic examination

of them is seldom possible, but a few of the crystals found allow of

it, and the results are described beyond. The form is usually very

simple, and the color varies from a deep red to a light yellow. This

may be said to be the common method of occurrence at the locality.

Forti;nately, matei'ial much l)etter adapted for crystallographic

study also occurs, though this is very rarely true. Narrow veins

are sometimes met with, two or three inches across, which were

originally lined with more or less perfectly crystallized chondrodite

and also with dodecahedrons of magnetite, crystals of rijDidolite, and

rarely apatite, and then subsequently filled in with dolomite. Where

this has been the case and the dolomite has remained intact the

chondrodite has been protected and the crystals have retained per-

fectly their luster and color. Only in a few instances were the ciys-

tals polished when covered simply by a soft serpentine. The chem-

ical composition of this chondrodite is given beyond, after the

description of the crystals. It has a deep, gai'net-red color, and

a luster equal to that of the finest Binnenthal blende.

1. Description of Crystals belonging to Type II.

The remark of vom Rath in regard to the irregularity of form of

the Swedish chondrodite is eminently true of the Bi'ewster crystals.

For in the same little group no two are alike ; so that each one de-

serves and requires an especial study.

The first point to be determined was the values of the fundamental

angles. Some difficulty was found in obtaining these from the fact

that many crystals, though faultless in luster, yet gave uncertain

measurements. This was due to the fractured condition of many of

the planes, which, though often not very apparent at first sight, yet

gave rise to a variety of reflected images in the goniometer, of which

no one could be accepted as trustworthy. All the larger crystals

show a multitude of internal fractures; and, where such crystals

have been subjected to altering influences, this circumstance has has-

tened their destruction, and in all cases the external condition of the

planes has been more or less aflected. The direction of the fracture

lines was in most cases entirely irregular, though in a number of

cases they were distinctly parallel to e^{-l-i). The presence of these

cracks gave the crystals the appearance of having suffered sudden

contraction, by which the planes had been irregularly drawn inward,

forming re-entrant angles ; in fact, in this respect, as in general

appearance, this chondrodite might be aptly compared to a resin.
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Tlie smallest crystals proved to be free from this cause of irregu-

larity, and one of tliem, on which the faces were exceptionably bril-

liant, was chosen for careful measurement. It may be added that all

the nieasui-cnients were made Avith an Oertling goniometer, pi-ovidod

with two telescopes.

The mean of 30 measurements of A {0=.00\) on r' (—-2^247)

gave: 135° 18' 50". The maxinumi variation from the mean given

was ±45". The mean of 30 measurements of ^ on (i"|— -^=z205
J

gave: 140° 55' 48". Maximum variation -4-45".

These were accepted as the fundamental angles, and as the agree-

ment l)etween the other anoles measured and the calculations made

Table I.

Ghondrodite. Hwmite.
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attempt to correct them was deemed desirable. Calculated from

these angles the parameters are :

a (vert.)=l-57236 ; ^'^l; c=l-08630;

and the angle for the fundamental prism is

J/s,Z(llO/sllO)==85° 15' 46" or 94° 44' 14".

It may be added that the angle of A on / behind (siY) was meas-

ured with equal care, and found to be 135° 18' 40".

The preceding table* (I) includes the principal angles measured on

the same crystal, and also those calculated from the above parame-

ters ; in addition, the corresponding angles for humite, type II, are

also given, as calculated by vom Rath. The angles of the maci-o-

domes agree very closely, it will be observed, in chondrodite and

humite ; in the brachydomes, on the other hand, there is a divergence

of 6 or 7 minutes.

The angles given in table I, and also in tables XII, XIII, XIV,

for types I and III, are the actual angles. In all the other tables,

however, the supplement (normal) angles, as measured and calculated,

are uniformly given. The reason for this was that these angles hav-

ing special reference to the sphere of projection, and being chiefly of

value in calculating with it, it did not seem worth while to change

them from the form in which they had been used.

It is necessary to explain, also, the system of symbols and let-

ters here and subsequently employed. The fundamental foi-m adopted

is the same as that used in Dana's " Mineralogy," and first suggested

by the author of that work in Am. J. Sci. II, xiv, 175, 185. It is to

be remembered that Scacchi made the prism of the r series (i. e., «-3)

the fundamental prism, and gave to the vertical axes lengths, in the ratio

of 7 : 5 : 9 to each other, for types I, II and III respectively. Vom
Rath followed him in this latter respect, but for the vertical prism

took that of the 7i series (i. e., 7, or 110 of Dana). Prof Dana took a

modified view of the relations of the three forms, and chose for

the fundamental macrodome in each type the plane making with

A{ 0) an angle of 122° to 125° : thus on humite (vom Rath), type I,

124° 17', II, 122° 28', III, 125° 15'. In this view the vertical axes

have one-third (I), one-half (TI) and one-quarter (III) of the lengths

assumed by Scacchi ; in other words, their relation to each other are

* Both the symbols of Naiimann (in the form used in Dana's "Mineralogy") and also

of Miller are given; the signs belonging to each plane omitted Jiere, as the relations of

the planes are shown with sufficient clearness on the spherical projection, Plate xiii.
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as 7
: |: fl or 28 : ;^0 : 27. Tlie method adopted by Seacclii and vom

liatli lias the advaiitao-o of exi)ressing the sinij>lest })Ossil)le iminer-

ical ratios between tlie three tyi)es. It is the view of tlie aiitlior

above referred to, however, tliat the variation in the anuU' ot

^^1-7(01]) is to be regarded in tlie same light as the variation in the

vertical axes of the rhoiubohedral carbonates, or in the orthorhombic

sulphates ;
or in other Avords, the three types form an isoniorjihous

series, and the variation observed is no greater than is constantly

seen in analogous isomorphous groups. This view seems to find con-

firmation in the crystallographic relations of humite and chrysolite, a

subject already discussed by Scacchi, Rammelsberg and vom Kath,

Taking the fundamental form, as in Dana's " Mineralogy" (here i-sz^T"

of other authors), the lateral axes are nearly identical with those of

humite, while the vertical axis (1 •25928 Kokscharow) has exactly the

ratio of -^jj to that of humite, type II, and f to that of humite, type

III ; in other words, we have the ratios :

Humite.

Chrysolite. III. I. II.

24 : 27 : 28 : 30.

If we adopt the vertical axes of Scacchi and quadruple that of chry-

solite, we obtain

II. I. Chrysolite. III.

5:7:8:9
These relations were in effect lirought out by Scacchi when he showed

that what he called the common fundamental form of humite, ob-

tained by dividing the vertical axes by 7 (I), 5 (II), and 9 (III) re-

spectively, was nearly identical with that accepted by him for chry-

solite. This fact seemed to Rammelsberg of so much importance that

he proposed to refer all the planes of humite to this common funda-

mental form ; and in this he has been folloAved by Kokscharow. The

result of this will be seen in the following table, which gives the

symbols thus obtained for the two common macrodomes in each tyj)e.

I.
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It will be seen from these few examples that the plan proposed in-

troduces a set of common molecular axes at the expense of all crys-

tallographic simplicity in the relations of the several planes of each

type. Moreover, the view of Rammelsberg loses some of its plausi-

bility, if, as shown by vom Rath, the vertical axes do not stand in

direct relation to the amount of fluorine present. The view of Prof.

Dana here advocated seems to have the advantage of presenting all

the relations in their most natural light.

It may be added, as completing the history of the subject, that

DesCloizeanx refers all the humite planes to one, and that the second,

type.

In regard to the letters employed, it seemed to ofler the simplest

solution of an obvious difficulty to retain all the letters of Scacchi for

the second type, and for the third to use simply the corresponding

Greek letters in the same order, and for the first type to use the cor-

responding capital letters. It was not deemed advisable to use the

same letter for two planes, on different types, which bore no imme-

diate relation to each other.

Table II.

A= O(OOl).

Table III.

C= w(OlO).
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In the tables, II, III, IV, are given the angles as measured

in a series of crystals (each crystal is numbered). They are import-

ant as showing how far the angles are constant. Some considerable

variations from calculated angles in a few instances are to be ex-

plained by the cause of irregulai'ity already mentioned—the occur-

rence of irregular fractures across the planes. In table V are given

the su])plement angles calculated for all the planes on e- and also the

angles measured on the several crystals (as before numbered). The

angles ai-e in pairs corresponding to 201 and iiOl, or 3OI and 201 in

each case. (Compare the spherical projection, plate xiii.)

Table IV.

Angles measured on C = i-i (010).



76 E. S. Dana— Chondroditefrom the Tilly-Foster Iron Mine.

Table V.

Angles measured on e-= 2-j (201 and 201).

e'
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toward the eye the projection gives it but little width. As a mat-

ter of fact the crystals have C uniformly well developed and are

generally attached approximately by the extremity of the bracliy-

diagonal axis. This having been explained, it will be clear that wliilc

tig. 3 is an almost exact rei)roduction of an actual crystal, Hg. 5, by
the other method of projection, gives an entirely false idea of its

ap])carance. It is certainly true that the latter method shows the

hemihedrism in its true light, but this should not weigh against the

other more important consideration.

The crystals from Avhich the partial figures, 7, 10, 16, 17, were drawn

were united, along with others quite as diverse, in one small fragment

only half an inch in length. It is to be noted that figures 14 and 15

are really more different than would appear at first glance. The
crystals drawn in figures 16 and 19 also occurred closely conjoined

in the same group ; and other examples might be mentioned. One
crystal of a very prismatic appearance (when placed in an inverted

position) is shown in figure 1 9.

Presence of minute />/«>* ^^s.—The most remarkable feature of the

mineral from this locality is yet to be mentioned. I refer to the mul-

titude of minute planes which modify many of the solid angles.

One single case will be discussed in detail, as the planes admitted of

more than usually exact determination ; it serves well to illustrate

the subject. A horizontal projection of a portion of the crystal is

shown in fig. 14. The crystal itself was small, and unfortunately so

imbedded in dolomite that it was for the most part rough and be-

yond even approximate measurements. The part available shoAved

G (i-1) faultless; also r^ good; and less satisfactory r^, r^ and

r*. On the solid angle between 6', r^ and r^ a large number of

miniite planes were observed ; they were so extremely small (all

covering a surface not "OS of an inch in breadth) that any exact

measurements seemed at first hopeless. They were sharply defined,

however, and brilliant, and when the attempt was made it was found

that they gave perfectly distinct though fiiint reflections. It may be

remarked here that measurements in this case were only made possi-

ble by the substitution of a cross, cut in tin foil and illuminated very

brilliantly by a gas l)urner, for the ordinary spider lines in the second

telescope—a device for Avhich I am indebted to Prof Schrauf of

Vienna.*

The measurements were all made with the greatest care, though, as

will be readily ixnderstood, the exact adjustment of planes so small

* Ber. Ak. Wien, Ixvii, 1873.
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was not an easy task. The symbols were calculated from the angles

thus obtained. But as even then some doubt remained as to the de-

gree of dependence which was to be placed in them, the measure-

ments were all repeated with the same care as before. Tlie result

was perfectly satisfactory, as the variation in no case exceeded tlie

probable error of observation given to each angle when measured for

the first time. This variation in most cases did not exceed ±2'.

The following supplement angles were obtained for the more promi-

nent planes: C/^r'^ gave 33° 33' (required 33° 32f )
; and C/^r*

gave 25° 53' (required 25° 58'); and r^^r^ gave 31° 31' (required 31°

38'). The following table contains the angles for each of these mi-

nute planes as measured on 6', and r"^ and also on ^-, itself one of

this group.

Table VI.
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The calculated symbols are also striven with the aii^jles which be-

long to theui. It will be noticed tliat /- (27= 021) is itself one ot

the minute planes of the same character as those suironndino-

it, and its presence gives a reality to them whiclj they would not

otherwise have, and .shows what degree of reliance is to be placed on

the angles. Cases of a similar character will be noted hereafter.

The symbols * calculated for this series of ])lanes are certainly not

simple; and yet a moment's consideration will sliow that this was
exactly what Avas to be expected. Crowded togetlicr so closely,

they would be abnormal if occurring on crystals of any species, while

this becomes still more true for a mineral like chondrodite. The
constantly recurring, common planes have ratios which in anv

other species Avould be considered next to impossible : thus, in tyj)e

II, 1 : -^ :
-i-:

I ; and in type III, 1, ^, ^, 4, ^, ^^. It is to be noticed

that these are the true ratios of the r series of pyramids, which exist

no matter what change be n\ade in the assumed axes. It is not sur-

prising, then, that these secondary planes should themselves have sym-

bols totally at variance with the accepted law of simplicity of the

indices. Many cases of planes with what may be called abnormal

indices have been described, but frequently they are to be explained

as has been done by Brezina in the case of the f|--7 (25-0'24), which he

proved to exist in wiserine, as a tendency to a plane Avith a simjjle

index (1-7=101), which has resulted in a plane Avith approximately

the given index. The case in hand, hoAvever, is quite different.

It will be noticed, hoAvever, that, laAvless as they appear at first,

there is an attempt at system in the symbols given. Thus in the

ratio of the brachydiagonal to the vertical axis, we have

:

x'
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supposition. It is to be noticed that when ratios of this character are

allowed, a slight change in the measured angle will alter entirely the

calculated index ; the liberty in this respect is not, however, quite so

great as it would stem at first sight to be. For example, the ratios

t(M) ^"<^ f(ff ) approach pretty closely to each other, and it might be a

question which was to be accepted as the true ratio of the two axes

for a certain plane ; and yet if the ratio of one of these axes with

the third be unqiiestionably expressed in sevenths, e. g., f , then there

seems little doubt but that the ratio f is to be accepted, for that would

give 8*4'7 or f-2, while the other supposition would give .35-72'63 or|--^f.

This principle has been accepted in obtaining all the indices given in

the following tables.

A remarkable fact connected with these planes,—in fact, implied in

what has already been said,—is that there is so little tendency among
them to lie in zo^es. For example, cc^, a-^, y~ and y^ lie very nearly

in a zone with each other and Z^, and yet the reflections in the gonio-

meter deny that this is exactly true, while no satisfactory indices

can be obtained on this supposition, (.e^, i^ and y^ are, however,

in a zone.)

In regard to these planes two points are to be noticed. In the first

place, the question suggests itself whether, if referred to a common
fundamental form (see above), or to that of either of the other types,

the relations of the planes would be at all more simple. This is an-

swered in the negative, as will be seen to be necessary if the trial is

made, and also evidently because planes whose normals make angles

of a few degrees only with one another can never bear simple rela-

tions to each other, no matter wliat axes be assumed.

In the second place, it might be urged that such ratios as those

above given being accepted, there is no reason why we should at-

tempt to express the relations of the prominent planes—those of

humite, type II, for example, with simple numbers (see above, page

7). But, as has just been stated, the attempt to refer these planes

themselves to other axes leads to disastrous results, while further, as

has been shown, these planes are truly secondary and subordinate

and bear no relations to other types of the species.

This case has l)een dwelt ujjon at considerable length, because it

was believed that theoretically the existence of such planes w^as a

matter of some interest and importance, and because this single crys-

tal offered opportunities for exact determination which did not exist

to the same degree in any other case. Almost all of tlie twenty and

more smaller crystals examined showed some of these secondary

planes. In some cases, however, there was a tendency to rounded edges
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without the foniiation of distinct planes, as is so common in many
species ; and then nothing of course couhl he done.

The foUowing tables, VII, VIII, TX, X, include the measured

angles, with the symbols obtained, and the corresponding angles be-

longing to them, for a considerable number of these minute planes.

Those occurring on each individual crystal are arranged together, be-

ing expressed by the same letter, and where the crystal has been

figured, this is also indicated. Upwards of one-hundred of these

planes were measured, and an attempt was made in every case to ob-

tain a satisfactory index. It was concluded, however, to discard the

Table VII.

M
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larger portion as untrustwortliy, retaining those which had given the

best angles. It is not pretended that the symbols deduced are, even

in the majority of cases, correct beyond question ; for the angles,

while perfectly reliable in some cases, are in others somewhat uncer-

tain, and for reasons already explained this throws still greater doubt

over the indices which calculation may produce.

Table VIII.
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Table IX.
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Crystals of simjyler habit.—The crystals thus far described have

all been of a more or less complicated character. But allusion has

been made to some very simple crystals, which also deserve descrip-

tion. The distinction is in most cases probably unimportant,

though lielieved to be of interest at first. The simple crystals are

uniformly large; they are so generally altered, and appear so differ-

ently from their small brilliant relatives, that it was supposed that

they differed from them at least in the purity of the original mate-

rial, if not more essentially. One brilliant exception, however, to the

general rule in regard to the altered condition of these crystals, in the

form of an isolated crystal of faultless luster, and deep red color,

about f of an inch in length, as well as numerous examples of transi-

tion products between the altered and unaltered material, made it

probable that all the crystals in question were originally of the same

character. Some examples are given in figures 3, 4 and 5. The

angles could be measured approximately only with a hand goniom-

eter, but there is no question that they, as well as others, belong

to type II. On one of them ±r was observed.

In what has been said exception must be made in regard to the

large coarse crystals, and crystalline masses, mentioned in the early

part of this article, and which are made up of a more or less hetero-

geneous mass of chondrodite, magnetite and sometimes rijjidolite
;

some, at least, of these last, belong to type I. (See p. 25.)

Twins.—The humite crystals of Vesuvius, as well as the Swedish

chondrodite, has been shown by vom Rath to possess so great a ten-

dency to twinning that it is a little remarkable that the contrary

should be true of the mineral from Brewster. Figs. 20, 21, show the

only method of twinning which has been found, as well as the only

distinct twin-crystal. The axis of revolution here is the vertical axis

of the crystal, and the composition-face the basal plane A. Unfor

tunately the crystal in question was quite imperfect, and all that was

available is shown in the figure. The plane H (/-?=iOO) gave no

reflections, so that all measurements were made on e^(that is 201

and 201) ; in this case these planes were similar in luster as a result of

the twinning. A revolution of the kind mentioned (in a perfectly

symmetrical crystal) would, so far as this half of the crystal goes, have

the effect only of making it holohedral, giving no re-entrant angles
;

but, in case of any irregularity, it might give, as here, a re-entrant

angle in the planes which are hemihedral in their occurrence.

The measurement of the re-entrant angle here observed gave for

*w2^to2, 10° 38' and 10° 40'; required 10° 39'. The other angles

measured on the same crystal are given in the following table.
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Table XI.
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tion of the plane. It will be noticed that the four planes upon which

the inclination of * was measured are so situated, that any variation

from the true position in the index would sliow itself very conspicu-

ously. The fundamental angles for * are as follows :

*/s^l(001)= 88° 51' 41''

^^^(lOO)^: 34 32 38

*/s (7(010)r= 55 28 49

In figure 16 a crystal, or portion of one, is exhibited which is holo-

hedral. It is irregular in this respect, however, that r^ forms a re-

entrant angle with r^. This is not a point of special importance, as an

irregularity such as this is often observed ; but, in view of the crystal

which has just been described, it is possible that here also there has

been a semi-revolution parallel to the basal plane. A more interest-

ing crystal, already once alluded to, is shown in fig. 4. It is con-

spicuously hemimorphic, as far as the form goes. It is large, and

admits only of approximate measurements, but there is no doubt but

that the planes as given have been determined correctly. In view of

the fact that a revolution parallel to would produce just the eifect

we have liere, and as such a twinning law has been shown to exist in

another conspicuous case, it is altogether probable that this forms an

ample explanation of what is observed. Another exactly parallel

case is noted under the description of two crystals of the 3d type.

The above described crystal was somewhat altei-ed, and so far imbedded

in the matrix that any experiments as to its pyro-electrical character

were out of the question.

Chemical composition.—I am glad to be able to add here the re-

sults of a chemical examination of the chondrodite of the 2d type

from this locality, by Mr. G. \¥. Hawes of the Sheffield Scientific

School. It obviously increases much the value of this memoir. An
analysis by Mr. Breidenbaugh has already been quoted (p. 3).

The material analyzed by Mr. Hawes consisted of fragments of

crystals of the 2d type, selected with great care to avoid the pres-

ence of any altered material. It had a deep garnet-red color and a

brilliant vitreous luster. Its specific gravity as determined by Mr.

Hawes was 3-22.

Analysis I. Analysis II.

Silica 34-10 34-05

Magnesia 53*17 53-72

Ferrous oxide 7-17 7-28

Alumina -48 "41

Fluoi-ine 4-14 3-88

99-06 99-34
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Following- the view of Kammelsberg, that the higher values of each
constituent are nearest to the truth, Mr. Hawes's analysis becomes as

follows. For comparison the results obtained by vom Rath for 2cl

type crystals from Vesuvius and from Sweden are added.

Chondrodite.

Brewster, N. Y., Hawes. Swed

Silica 34-10

. Magnesia 53-72

Ferrous oxide 7 '2

8

Alumina 0-48

Fhiorine 4-14

99-72

Silicon 15-91

Magnesium 32-23

Iron 5-66

Aluminum 0-26

Fluorine 4-14

Oxygen 39*78
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but some interest in <>• results liave been obtained whicli are described

in the closing pages of this paper.

2. Description of (Jri/stals of Type III.

Since it was shown by Kokscharow that the Pargas chondrodite

was identical with the second tyjie of humite, it was natural to ex-

pect that further investigation would prove the existence also of the

two remaining types. Up to the present time that expectation has

been unfulfilled, and it has been reserved for the Brewster locality to

give this confirmation of Scacchi's interesting discovery. The crystals

of the 3d type are exceedingly rare, three or four specimens being all

that have thus far been foiind, and from these only two individual

crystals could be obtained which allowed of measurement. Fortu-

nately these two crystals are very satisfactory, bemg small and bril-

liant, and establish the fact as well as a hundred could do. Figures 11

and 12 show one of the crystals, and figure 13 the other. The appear-

ance of the first crystal is best shown in the second of these figures.

As will be seen, the planes are the same as in humite, and they are for

the most part hemihedral and situated in the same way ; i.e., they in-

clude +p',+p', +//, and -p\-~p\—fj\ ^\\(\.—v\-y\-v\—v' as

also 1^,1^,1*. Ill the n{v) series the planes are distinct in the negative

half, but the crystal is incomjjlete, and it is a little uncertain whether

the -|- series should not in part be added in the symmetrical drawing

fig. 11; on humite. III, these planes are both positive and negative.

No brachydomes are visible, the edge being rounded and rough. ni~

of Scacchi may also be present, but that is a little doubtful.

The second crystal is of very different form, and Avhile the first was

affixed to the rock so that only one-half was developed, this one was

imbedded in bnicite, and entirely free in it. It was perfectly formed

on all sides, being almost as perfect as the projected drawing, with the

exception, however, of the acute (brachydiagonal) edge, which was

mostly broken. When only the upper part of the crystal is considered,

it will be seen that the hemihedrism is like that in the other case, ex-

cept that (f is holohedral. For macrodomes there are /'(f-7^023),

z-(l-73=011), /'(2-7— 021), /'(4-7=:041); the last has not been observed

on humite. On measuring the planes below it was found that they

were not distributed as was expected in accordance with the mono-

clinic character of the crystal ; instead, either exti-emity of the brachy-

diagonal axis was diffei'ently developed. This is clear in the figure, it

being but a more complicated repetition of what was observed in one
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of the very simple crystals of the 2d type (see fig. 4 and page 18).

There are present also at one extremityit ^'(t"^^^'^^''^)? though the plane

could only be approximately measured. This is probably also to be

explained as having resulted from a revolution parallel to the basal

plane. The crystal was very small and not at all adapted to expei*i-

mcnts having in view the discovery of any proper hemimorphic

developiuent. The angles measured on both these crystals are con-

tained in the following tables.

Table XII.
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Taijle XIII.

Chondrodite.
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Very little further can be said in regard to the crystals of tlie 3d

type. Those observed had a somewhat diiferent color from those of

type II ; that is, the color was more yellowish, less of a pure garnet-

led—though this may be accidental. No analysis was possible of

coui'se; and even the sjjecitic gravity was out of the question also, for

the one loose crystal, in addition to its small size, had imbedded in

it a still smaller crystal of ripidolitc, making any gravity determina-

tions obviously uurelial)Ie.

The method of occurrence was much like that of the brilliant crys-

tals of the second type ; that is, they w^ere found implanted on the

massive rock adjoining small veins. The associated minerals Avere

magnetite, ripidolite in clear transparent crystals, and, probably as a

later formation, brucite.

3. Description of Crystals of Type I.

The occurrence of large, coarse crystals of quite impure chon-

drodite, imbedded in the massive material, has already been de-

scribed ; these belong, at least in part, to the first of Scacchi's

types. As has been remarked, the crystals of this character do

not often admit of exact determination, but in two cases they

were so good as to allow of their crystallographic relations being

accurately made out. The accompanying wood-cuts, figui'es 22

and 23, give faithful representations of their appearance and size.

RU

«^
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were, of course, destitute of all luster, but they were mostly smooth

and large enough to allow of the convenient use of the hand gonio-

meter.

R"^ on 7^" (behind) gave measurements varying, in a series of trials,

from 78° to 79", required 79° 4'.

7t" on R' (behind) gave 62^, required 63° l'.

i?" on R^ (l)ehind) gave 72 , required 71 174-

Zil' on R" (behind) gave 72 , required 71 17^.

These angles on both crystals were identical within the allowed

error of observation (say 30'). The above are the best angles

afforded by any of the planes.

It is entirely impossible to refer these angles to any of the forms of

the second type. When compared with the third type, it is seen

that on making the supposition that R' and W (front) are p^ and p*

respectively, and R"^ and R^ (behind) are p* and p^, we obtain for:

p\\ p' (behind)=77° 12'; pV p' (behind)~65'^ 6';

p'^ p' (behind)=:70° 32'; pV p' (behind)=:7l° 37'.

It will be seen, by comparing these with the ])reviously given angles,

that the measured angles correspond much better with the iirst type,

and my confidence in them is so great that this would alone be re-

garded as sufficient to establish the point ; and that, without refer-

ence to the fact that tlie supposed method of occurrence of the third

tyj^e planes is contrary to all the laws of the species.

The decisive proof is derived froTU the fact that both crystals are

certainly holohedral, the planes on both sides being similar with the

exception of R\ and there is nothing of the obliquity which is ob-

served in the hemihedral forms.

The measured angles of C on _Z?\ right and left, were identical,

though not obtainable with exactness ; the measurements gave 152^°

-154° : this is also true for C on R\ right and left,= 140i°-142^°.

3
In the first crystal e/'::^ i (035) occurs, and in the other J'^

o

(l-7=r01 1). The occurrence of C is also to be noticed, as it is rare on

humite; in fig. 23, the oscillatory combination of 7^"* and R" will be

also observed.

The following table includes the most important angles for the oc-

curring })lanes, calculated from the fundamental form of the second

type on the assumption that the lateral axes are equal, and the vertical

axes have the ratio of 14 : 15. The measured angles are also added

thouo"h only approximate ; in the form given they were obtained imme-

diately from the measurements over the top of the crystals (see above).
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Tahmc XIV.

Chondrodite. Humite.
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when unbroken it must have been nearly an inch in length. In the

condition in which it was found it showed only the brachydomes e'

ande^, with the pyramids ?^^, n^, and m^ ; it had the deep garnet-red

color of crystals of the second type, and with the exception of the uni-

versally i^resent fractures was perfectly clear and transparent.

On the optical jDroperties of the mineral hi question, we have, as

far as I have been able to find, no information except what has been

giveu by DesCloizeaux, Manuel de Mineralogie, 1862, p. 141. He
says :

" Double refraction energetic
;
positive bisectrix normal to ^ *

;

optic-axes situated in the jdane parallel to the base ; divergence in

oil for red and yellow rays, 82° 14'. Dispersion almost nothing;

Guided by the above, a section was cut from the crystal described,

which was pai-allel to C', i. e., perpendicular to the brachydomes pres-

ent. The examination of this section showed : i st, that the acute

bisectrix is normal to G (i-i, 010) ; 2d, that this bisectrix is positive
;

3d, that the optic-axial angle is large, the axes being seen only when
oil is used ; but 4th, that the axes do not lie in the hasal jjlane, but in

a plane making an angle of about 15 t° with it. This last point was

so unexpected and anomalous that every effort was made to explain

the measiirements in soine other way, but with no success. The

planes on the crystal had been carefully measured, before the slicing,

and the angles agi-eed perfectly with those of type II for the planes

mentioned, so that it was impossible to assume that the crystal had

not been correctly put into position. By means of a staiiroscope,

made by Fuess in Berlin, after the excellent pattern of Groth,* the posi-

tion of the two axes of polarization, as referred to e^, and also to e^ in

plane C, were carefully determined. The measurements were repeated

twenty times, the error arising from an imperfect adjustment of the

Nicols being eliminated in the usual mannei*. The result was as

follows

:

Supplement angle made by the plane of the axes

—

with e^(|-^=r203), 18° 9' ; hence with the basal plane, (J, 25" 50'.

withe^(2-^=201), 45° 9'; " " « " 25° 46'.

In order to confirm these results, other crystals were sought, which

would admit of like determinations. None could be found which

would serve for measm-ing the axial angle ; but two small ones, on

which the plane C was naturally developed, proved to be clear

enough to allow of measurements with the stauroscope. The first

*See Pogg. Ann., cxliv, 34, 1870.
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nloiie gave accurate results; on it tlie angle of the same plane with

6"(|-?=i206) was deterniined with equal care. The results were

:

4° 55' for the angle with ea; and hence 25° 59' with G.

The agreement with the angles given above is as close as could be

desired. In the other case, the rather rare plane B (^-^r=100) was pres-

ent ; the crystal was minute, however, and the determination only

approximate. It was found that the normal to the axial plane made
with B an angle of 65°-V0°, and hence with the normal to the basal

plane 20°-25°.

With so ample confirmation the point made cannot be even ques-

tioned, and it remains to reconcile it with the crystallographic proper-

ties of the species. It will be seen at once that the position of the optic

axes is totally at variance with the accepted orthorhombic character

of the crystals ; but it conforms to the rule for monoclinic crystals, as

one axis of polarization is normal to the plane of symmetry C, and

the others lie in it, or in other words, the optic-axes lie in a plane per-

pendicular to the axis of symmetry. The angles measured and cal-

culated, given in the various tables, show that the variation from the

rectangular type, if it really exist, must be very slight, as the agree-

ment between the angles measured and those calculated on the

assumed prismatic basis is very close—it being remarked that some con-

siderable variations in the angles given in the tables are amply ex-

plained by the imperfection of the crystals. Note the angles measured

for m^/\m^ on the twin crystal described on page 18. It was not to

be expected that the variation in the optical character of the crystals

would be so decided in view of the slight divergence which is possi-

ble in the crystalline form. I reserve for the future the careful re-

vision of the angles of this species, when I shall hope to be able to

command a more abundant supply of satisfactory material. It may

be added that the hemihedral character of the second and third types

of humite long ago suggested the idea that they were oblique inform
;

but all the crystallographic investigations thus far have seemed to

deny this. In the Mineralogy of Brook and Miller, the form is made

oblique, but this seems to be due to a misunderstanding of the planes

occurring on the crystals.

It would have been interesting to extend these observations to the

two remaining types, but the material did not allow of it. It was

also desired to investigate the same subject for humite, but, though

some good specimens are to be found in the Yale cabinet, there were

no satisfactory crystals to be had, and the matter is left for others,

who have a larger choice of specimens. The axes as already men-

tioned do not appear distinctly except in oil ; in the first-mentioned
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section they admitted of good measurements. The mean of thirty

determinations of the angle for red rays gave

—

2Ht>'=88° 48' : the extremes being 88** 36' and 89° O'.

With a yeHow light (sodium) the angle was essentially the same,

but tlie mean was 10' or 15' smaller, which would indicate that the

dispersion is /3]>?^, but the matter cannot be considered to be beyond
doubt. No other dispersion was observed, that is, none parallel or

perjDcndicular to the plane of polarization.

The index of refraction of the oil employed, as determined by Pro-

fessor Wright and myself, was 1"466.

In conclusion, I have to expi-ess my very great obligations to Prof.

Allen for his kindness in giving me free use of all the specimens in

his valuable cabinet. Both of the crystals of the third type, as well

as several others mentioned, came from his collection ; in fact it was

Prof. Allen who first made known the special interest connected with

the 'locality. To Mr. Cosgriff, the superintendent of the Tilly-

Foster Iron Mine, I am also much indebted for his uniform kind-

ness and courtesy to me at the several occasions when I have

visited the mine ; as also for the gift of several fine specimens.



IV.—Ox THE Til.vxscEN DENTAL CiKVEs s'mi/ smmy=asu\XHiunx-\-b.
With Plates XIV—XXXVII. By II. A. Newton and A. W.
Phillips.

1. Algebraic curves have been studied hitherto more than trans-

ceudeutal. A few of tlie latter have beeu giveu in the text books,

but attempts to classify the numerous varieties of transcendental

curves have been rare.

From the form of a transcendental curve it is not easy to state an

equation that can represent it. The simpler inverse problem of

describing the curve from the equation is naturally the first to be

undertaken. The forms that result may, when compared, suggest the

solution of the direct problem. We have thought it worth while,

therefore, to select for study a single one of the numberless transcen-

dental equations, and to exhibit a few of the very many plane curves

which that one equation furnishes. 1 he equation selected is,

sin y sin my =l asinx sin nx-{-b, ( 1

)

in which there are four arbitrary constants a, b, m, and n, with two

coordinates, x and y.

2. We assume that ui and u are each less than unity. If either,

for example >;/, is greater than unity, we may change the unit for y
in the ratio of 1 :m\)j writing y'=:zmy. The first member of Eq. (l)

. 1 , . . , , . 1
then becomes siny' sin — y', where the coefficient of y is — , which is

less than unity.

In the equation thus changed, we have assumed in our figures the

units for x and y equal, and the axes rectangular. The effect of a

different supposition in either particular can be readily understood.

3. Curves xchose equations <ire y=zasi)ixsinmx. It was found

convenient to draw several auxiliary curves whose equations are of

the form,
y=zaii\\\x^mnix. (2)

A convenient arlutrary value being assumed for a, to m was given in

turn all the values of the proper fractions, which, reduced to their

lowest terms, have denominators less than 12. The forms of these

curves are shown on plates XIV and XV, excepting a few in which

m has 11 for denominator. In fig. 37 is shown the beginning of the

curve when m has the irrational value s/\. The axis of x is drawn

Trans. Conn. Acad., Vol. III. 13 August, 1875.
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in the figures. The origin is the point at the left of each figure

where the curve touches the axis of x.

P p'
It will be convenient at times to put m= — , and nz=z —, where/?, ^,

p', and r/, are integers, and the fractions are reduced to their lowest

terms.

4. Properties of the curves of Eq. (2). By inspection of the curves

on plates XIV and XV, and of their equations, we readily deduce the

following properties :

a. The value of y is not greater than a.

h. When either x or inx is a multiple of ;r, ;y=:0.

c. There are maxima or minima values of // when wi tan ,r= — tan ma*.

(/. When ni is rational the values of y repeat ; after qn if p and q
are both odd ; after 'Iqn if either^:) or q is even.

e. When m is irrational the curve does not repeat its form.

/'. The curve is symmetrical about the axis of y, and about an axis

through the middle point of each cycle.

g. If p or q is even., the curve is symmetrical about the point y=0,
qn
^'

h. There are, in each distance -Iq-n: along ,<, p-\-q maxima, and an

equal number of minima values of y.

5. The value of y in Eq. (2) may be regarded as made up of two

a a
parts, since y=La&mx %\nnix=z~ go^[\ ~m)x—— cos(l-|-m)a.'. In

fig. 22, where mz=L^, these parts are sej^arately shown. The continu-

a
ous line represents the curve yz=: — qo^[\—^)j\ having one com-

])lete oscillation in a distance of IQn along ii-. By laying ofl" below

and above this curve the second part of y, that is— — cos(l -|-f)^,

we have the curve y=.a%mx sinf.«.

6. Use of the auxiliary curves, Eq. (2). To draw the curves from

equation (1), even after all the usual devices for saA'ing labor have

been employed, requires the frequent solution of equations of the

form sin a; sin?;? 35:= c. This equation gives a set of values of x for

each cycle of the curve. To find each value of x requires a solution

l)y trial and error, a very simple process, but when often repeated

quite tedious. By the curves figs. 1-37 carefully traced on cross-

section paper we may by merely running the eye along the line y=.c
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obtain by iiispoctit)ii all the values of x to a sutHcieiit degree oi"

accuracy.

7. Equation (1) when a=zb=zO. The ecjuatiou

siny sin wymO, ['A)

consists of the two equations sinyzrO, and sin ?>iy=:0, and is satisfied

by the values i/:=l7r, and i/ii/=f7r, where / is 0, or any integer. In

fig. 60 the horizontal lines belong to the equation sin // sin |- ;y^=0. They

consist of two series, one at intervals of ;r, the other at intervals of

2^7r. Tf through the intersections of the curve in fig. 25 with the

axis of .(• there be drawn lines peri)endicular to that axis, the lines for

smx sin |a*r=:0 would be obtained. The heavy lines of fig. 60 I'epre-

sent double lines, corresponding to points of tangency in fig. 25.

8. Equation (1) ivhere a=0. The equation (1) becomes by mak-

ing a=0, and for convenience changing the axes,

sina'sinwia-^J. (4)

This does not contain y, and therefore represents straight lines

parallel to the axis of y. If the straight line y=b be drawn parallel

to the axis of a^ to cut the curve y=s\nx sminx, and through the

several points of intersection straight lines be drawn parallel to the

axis of y, these lines will evidently be those represented by the equa-

tion since iimutxz=.b.

In fig. 60 the vertical lines rei»resent the equation sinx sm^x:='f.

If the curve in fig. 26 be cut by a line parallel to the axis of x and

distant from it two-fifths of the largest ordinate, the intersections will

correspond with the intersections of any horizontal line in fig. 66 by

the several vertical lines.*

9. Equation (1) iohere a=\, b=0, m=zn—\. The equation

sin y sin ?/=sin x sin x (5)

becomes sin y= ±sin .', or ;/z=Itt ±:-'', I being 0, or an integer. The

cvirve consists of two series of parallel equidistant straight lines, the

one parallel to //=.>', the other to y=-x, and both cutting the axes

at intervals of rr. The locus is represented in fig. 38, where the origin

is any point of intersection.

1

10. Equation (1) v^here a=\, b=0, m.=n= — . The equation

sin y sin—V— sina; sin —x (6)
q' q

is one of the simpler examples of equation (1).

* The unit of abscissas in plates XIV and XV is smaller than in the other plates.
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a. It is satisfied if y^=-'X.^ or if y-=. —x. Hence the two straight lines

y= zb'*' form part of the locus of equation (6).

h. If 'llqn-^x l)e put for cc, / being an integer, the equation is un

changed, whether q be odd or even.

c. If q be odd the equation will be unchanged if lq7r-\-.i' be jnit for x.

d. The curve repeats itself to the right and left, and also above and

below, at intervals of qn \i q is odd., and at intervals of Iqn

if q is even.

e. Straight lines parallel to yr=±./', and cu.tting the axes at intervals

of qrr, or 2q7t, according as q is odd or even, belong to the

locus of equation (6).

f. These straight lines divide the infinite plane of coordinates into

equal squares for a given value of q. Each square contains a

similar and equal portion of the locus. If q is odd, that portion

is not always similarly placed, ibr it may have two positions

with respect to an axis.

g. If q is even, isolated points at the centers of the squares {f)
belong to the locus.

h. The equation (6) is satisfied if sin ^=:0, and 9my=.0. Hence the

locus of (6) passes through the angular points of all the squares

formed by the lines sin a;z=0, and sin y^O (Art. V.)

i. A few curves representing equation (6) are shown in figs. 40-4'?.

The axes are not drawn. Any point of intersection of straight

lines that is sui'rounded by an oval may he taken for the origin.

The several propositions of this article will be more easily un-

derstood by inspection of the curves.

11, Equation (1) lolien a=l, bz=0, ni=:n:= /- . In this case the

equation becomes,

smy8iu±--y=:iiinx't^m^.x. (7)
q' q

The properties of the curves of equation (7) are in many respects like

those of equation (tj).

a. The two straight lines y:=: ±cc belong to the locus.

b. If p and q are both odd, the equation is unchanged, if y or x is

increased or diminished by multiples of qyt.

c. If either /» or q is eve)t, the equation is unchanged if y or x is

increased or diminished by multiples of 2q7r.

d. The curve repeats in the direction of either axis ; at intervals of

qTT if p and q are both odd, at intervals of '2q7r if either jd or q
is even.
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e. Straight linos itanvllel to y=i^.r and cutting tlu' axi's at intervals

oiqn, or 2fy7r, according as ]>-\-q is even or odd, belong to the

locus of equation (7).

f. Tliese sti-aight lines divide the plane of coordinates into ecjual

squares for any given value of m. Each square contains a

similar and equal portion of tlie locus, though not always

siniilarly placed,

g. Eqixation (7) is satisfied if sin.v sin?y^T=iO, and siny siii///y— 0.

Hence the locus passes through all the angular points of the

rectangles formed by these two series of parallel straight lines

(Art. 7).

h. If 2^-\-Q is ^<^<^ isolated points appear, belonging to the locus, at

the centers of the squares.

i. The maxima and minima values of y are determined by the equa-

tion £- tan a*:^ — tan^^a? (Art. 4, c). This equation represents
q q

straight lines parallel to the axis of y. There are 2(jij) + (/) of

the lines (Art. 4, h) in an interval of 2q7T.

j. The same equation in y gives the maxima and minima values of x.

k. These equations are also the conditions of the isolated and double

points. Hence there can be isolated or double points only

at the intersections of the lines i- tan xz= — tan ^-x with the
q q

lines -L- tany=: — tan i-y.

q q
I. The propositions {i), {J), and (k) hold equally true for any values

of a and b in equation (1), and there are similar properties if m
is not equal to n.

771. The figs. 48-65, 68, and 70, represent curves belonging to equa-

tion (7). Any point where two straight lines meet, and that is

surrounded by an oval may be the origin.

91. Tf through the double points on the line y=:x vertical and horizon-

tal lines be di'awn, these lines will pass through all the points

of maxima and minima ordinates and abscissas. By their

intersections they will mark all the possible positions of double

points for any values of a and b.

12. Equatio7i (1) lohen a=l, b=iO, m-=.u=:an irrational number.

The equation
sin y sin \/i y=sin x sin \/i ;r, (8)

represents a class of curves tliat do not repeat their forms but change
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continually throughout the plane of coordinates. The curve is sym-

metrical about either axis, and also about either line yz=. i.e. These

two lines belong to the curve.

The origin and a portion of tlie curve, principally in the first

quadrant, are given in fig. 67, ])late XXII.

13. Equation (1) when «—: — 1, JirzO, ^/i=in-= — If (j is eiwn the

equation

sin y sin

—

y =: — sm x sin —x (9)
q q

merely changes the sign of the second member if we substitute 5';r -fa;

for X. Hence the curves in figures 40, 42, 44, and 47 represent equa-

tion (9), when q is eium, the origin being at an isolated point.

But if q is odd we obtain new forms which have these properties.

a. The origin is an isolated point.

b. If q=l, the locus consists solely of points (fig. 39).

c. li q=z3, each point is surrounded by one closed curve (fig. 93).

d. If q=5, each ^aoint is surrounded by two closed curves (fig. 74).

e. The resemblance of these figvires to parts of figs. 40, 42, and 44,

and the law ol' their formation makes it unnecessary to give

further examples.

f. A dot and four suiTounding closed curves in fig. 47, would fairly

represent the element for equation (9), when ^1=9.

14. Equation (1) when az=. — 1, 5=0, m:=.n=. ^L. Curves whose

equations are of the form

sin wsini^y=: — sin x sin ^x (10)
q q

are shown in figures 69, 71, 99, and 108. There are no straight lines

belonging to the locus. The origin is at any one of the isolated

points. The first two are placed beside figures 68 and 70 for ease in

comparing.

The following propositions of Art. 11, for equation (7) apply also

to equation (10), without change of terms, viz : i, c, c7, g.^ /,J, and h.

15. Equation (1) when az=.\^ l>=0, m=z], and ji= i_ . The figures
9'

76-79, and 81, represent curves whose equations are

siny sin2/=sin£«sin-£--a;. (11)
9'
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Ill tlu' tlirection of// tliev repeat at intervals of tt. In (ln' direction

of .(• they repeat at intervals of qTT^ or 2(/'7r, according as p'-\-q' is

even or odd.

Fig. 80 gives a similar cnrve except that r/= — I.

16. Equation (1) idieji a=^\, b^=.0^ in-z l^^-Mu\n,=:i-L. The eqna-
q q

tion (11) is a special case of the equation

sin y sin ±- y := sin a; sin :^ a-. (12)
q q'

Examples of curves from equation (12) are given in figures 82-91,

123, and 141. The number of different curves that this equation gives

us is quite large, even if q and q are limited to small numbers. If

11 is the maximum value of q and q' , the number of inde]>endent

curves belonging to the equation is nearly a thousand. Equations (5),

(6), (7) and (11) are special cases of (12).

IV. Further consideration of the curves of equation (12).

a. If the parallel straight lines sin,r sin:^ir=0 be drawn (Art. 7) the

plane of coordinates is divided by those lines into portions.

When two lines coincide the portion between them may be

regarded as real but infinitessimal. In crossing any of these

lines the sign of the second member of (12) changes from plus

to minus, or vice-versa.

h. In like manner in crossing any of the parallel lines sin y sin ^y=zO,
^

q

the sign ot the first member changes.

c. The lines dny sin ^(/--O, and sinic sin^,r=0, divide the plane

q q

into rectangles (some of Avhieh are infinitessimal). The curve

of equation (12) passes through each of the angular points of

these rectangles.

d. Since the signs of the two members of (12) must be alike the curve

passes at any angle of a rectangle into the rectangle vertically

opposite. It passes from a rectangle only at the angles.

e. If, however, any rectangle is of infinitessimal breadth and finite

length, the curve at its extremity becomes tangent to the line

that limits the infinitessimal parallelogram.

/. If a rectangle becomes infinitessimal in both directions, the curve

has at that point an isolated or a double point.

f/.
The horizontal and vertical lines of fig. 148, and the rectangles

formed by them, illustrate the above propositions. The con-
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tiiiuous closed line represents the curve of equation (12) in this

case. The axis of y is the heavy vertical line, and the axis of

X the upper heavy horizontalline. These heavy lines are double

lines.

h. Several of the propositions of Art. 11 apply to equation (12) with

p .
p'

evident modifications. If — is not equal to —„ there are no

straight lines belonging to the locus.

i. We may regard the plane of the curve as divided into equal

rectangles by lines parallel to the axes, the altitudes of the

rectangles being qrr, or 25-7?, according as p-\-q is even or odd,

and whose bases are q'n, or 25-' tt, according as p' -\-q' is even

or odd. The curve (12) repeats itself in each of these rectangles

without any variation, through the whole extent of the plane.

j. The origin of (12) is a real double point.

18. Effect of a change of the value of a in equation {\),ichenb=iO.

The effect of a change in the value of the coefficient of the second

member may be observed by comparing some of the figures : for

example, figs. 38 with 39 ; figs. 41 with 93 ; figs. 45 with 72 and 73

;

figs. 77 with 80; figs. 43 with 74 and 75 ; figs. 123 with 131-135;

figs. 136 with 141 and 145.

1 9. The effect of the change of this factor can be better observet).

in the simpler equation

siny=^ sin x, (13)

where k represents a as assuming several values. Figure 130 repre-

sents a faisceau of curves for equation (13). The origin is the nodal

point near the lower left hand corner of the figure. Let k change

from — cc to -j- 00 .

a. If ^'rroo
, we have the vertical eqiiidistant straight lines.

b. If k=. — 2, we have the curved lines represented by uniform fine

dots. At the origin it is tangent to y= — 2x.

c. If A:= — 1, we have the straight lines in which dots and strokes

alternate.

d. If /<;— — ^, we have the continuous curved lines.

e. If A'-nO, we have horizontal straight lines.

f If k=:^, we have the heavy dotted curved lines.

g. If k=zl, we have straight lines of which y=x is one, and the others

are similarly marked.

A. If k=z2, we have the curved lines consisting of a stroke and three

dots alternating.



Newton and Phillips on certain TransceMilental Curves. Kif)

i. If X-=-|-a:,we liaA'e vertical lines iigaiii. The curve is at the

origin always tangent to yz=ikx. The faisceau has nodal points

wherever .r and y are both multiples of n.

20. If we consider in like manner the faisceau of curves

sin y sin fy=:A;sin x sin fit', ( 1 4)

for various values of k (fig. 148), we shall find similar but more com-

plicated changes. The origin is the intersection of the heavy lines

near the top of the figure. The figure represents the loci for six

values of Jc, viz: oc, —1, — |, 0, +1, and -\-2. Each of the six loci

passes through each nodal point, if isolated points be counted as

branches of a locus.

a. For kz=. oc, we have the vertical straight lines. The heavy line is

a double line.

b. For k=. — 1, we have the uniformly dotted curves.

c. For k-=i—^, we have the curves represented by strokes and four

dots alternating.

d. For X-=:0, we have horizontal straight lines, the heavy lines being

double.

e. For A,=rl, we have the continuous curves (compare fig. 14V).

f. For A'=2, we have the curved lines consisting of a long stroke and

a short stroke alternating.

By removal upward or downward a distance of Stt, the curve (b)

coincides with (e). In general any one of the curves by such change

coincides with that one for which k has an equal value with opposite

sign.

21. We may in like manner obtain a faisceau of curves from the

equation

sin y sin my-^k sin x sin nx-\-b, (15)

by giving to k different values.

The curve will be the horizontal lines siny sin myz=b (Art. 8), if

kz=zO. It will be the vertical lines sin x sin mx=0, if kz=0. For

other values of k, the curve will pass through all the points of inter-

sections of these series of straight lines. Figure 66 represents (with

the axes interchanged) the vertical and horizontal lines in a special

case.

The lines of maxima and minima values of x and y, and the pos-

sible positions of double points (Art. 11, i, ./, k,), are independent of

k and b. The origin is not upon the curve if k and b are finite.

Trans. Conn. Acad., Vol. III. 14 October, 1875.
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22. Chayige of value of h in equation {!). It remains to consider

the effect of a change in the constant b in equation (I). That it may

change entirely the appearance of the locus will be seen by a glance

at figures 92, 93, and 94. The same curves are superposed in fig. 95.

Though each locus may have its own double points, they cannot

when superposed cut each other.

23. In the figures 96-103, the curves of the equation

sin y sin fi/=— sm x sin ^x-\-k (16)

are shown for certain specified values of k. The origin is the place

of the isolated point in fig. 99. The several curves if superposed will

not intersect. The values of k were selected so as to furnish curves

with double points.

24. A series of twelve curves from the equation

sin y sin x\y^ —sin x sm^jX-\-k (1 V)

is given in the figures 104-115. By tracing any selected portions of

the figure through the series the effect of the change in k will be

seen. As in equation (16) values of k were chosen which give (except

fig. 108) real double jDoints. In each case other curves of the series

with real double points might have been given.

25. Another series of fourteen curves is given in figures 116-129

from the equation

sin y sin ^y=sm x s'm^x-{-k. (18)

The complete series would give 18 curves with double or isolated

points. The omitted curves are those having isolated points, one at

the beginning and one at the end of the series, one between figs. 127

and 128, and one between figs. 129 and 130.

26. Similar partial series can be seen in figs. 136-138, in figs.

139-143, and in figs. 144-146.

27. The superposition of the several curves of a series is shown in

figure 147 where the curves represent the equation

siny sin fy= sin x sin fx-\-l:

A little more than one complete figure of the curves is shown. The

oi-igin is at the double point near the top of the figure. The value of

k varies from curve to curve by intervals of -i^, and it cannot numeri-

cally exceed 2, The full line corresponds to kz=0.

The multiple that k is of -j-^ is denoted by the number of dots

between the long strokes of the lines.

The multiple that k is of — i is denoted by the number of short

strokes between the long strokes in the lines.



JVewtou and l*/ifl//ps on certain Transcendental Curves. lOT

28. The resemblance of lig. 147 to a series of contour lines in sur-

veying, suggests a corresponding treatment of the equation. Let

2:=sin// sin/y?y— asina- ^mn.r—b (19)

be the equation of a surface, and let it be intersected by planes

parallel to the plane of .*-y, and we may obtain the groups of curves

described in Arts. 22-27.

The surface of equation (19) may be described by continuous mo-
tion, as follows : Let sr=:siny sin my be a plane curve (figs. 1-37), and
let it move parallel to itself so that each point of it shall describe a

straight line parallel to the axis of .v. The curve shall then describe

a cylindrical surface whose equation is

zz=.%mi/ •t^mtny. (20)

Let z=z — am\x^\\\nx— b be the equation of a second plane curve,

and let this curve move parallel to the plane xz, in such a manner

that the axis of x of the curve shall always lie in the cylindrical sur-

face (20), The curve will describe by its motion the surface of

equation (19).

The surface will consist of one contini;ous sheet lying between the

two parallel planes sr^it (l + ^-j-^'*), the positive numerical values of

a and h being here taken.

29. By means of the two arbitrary constants, a and h, in equation

(1) the curve may be made to pass through any two points of the

plane.

In a rectangle whose base is 2*7' ;r, and altitude IqTt, there are

'^{p-\-q){p' -\-q') possible positions of double points (Art. 11, k.) If

the curve passes through such a point it must have there two branches

real or imaginary.

Hence we may assign to a and b such values that the curve will

have double points, in general, at any two of the ^{l^-\-q){l)'-{-q')

possible positions.

ERRATUM m PLATE XVI.

In figure 40, plate XVI, there is a series of ovals about one-half of the real double

points. There should be added to the curve, as represented, a like series of ovals

around each of the remaining real double points.



v. On the Equilibrium of Heterogeneous Substances.

By J. WlLLARD GiBBS.

"Die Energie der Welt ist constant.

Die Entropie der Welt strebt elnem Maximum zu."

Clausius.*

The comprehension of the hiws which govern any material system

is greatly facilitated by considering the energy and entropy of the

system in the various states of which it is capable. As the difference

of the values of the energy for any two states represents the com-

bined amount of work and heat received or yielded by the system

when it is brought from one state to the other, and the difference of

entropy is the limit of all the possible values of the integral I -t'-i

{dQ denoting the element of the heat received from external sources,

and t the temperature of the part of the system receiving it,) the

varying values of the energy and entropy characterize in all that is

essential the effects producible by the system in passing from one

state to another. For by mechanical and thermodynamic con-

trivances, supposed theoretically perfect, any supply of work and

heat may be transformed into any other which does not differ from

it either in the amount of work and heat taken together or in the

value of the integral /——. But it is not only in respect to the

extei'ual relations of a system that its energy and entropy are of

predominant importance. As in the case of simply mechanical sys-

tems, (such as are discussed in theoretical mechanics,) which are capable

of only one kind of action upon external systems, viz., the perform-

ance of mechanical work, the function which expresses the capability

of the system for this kind of action also plays the leading part in

the theory of equilibrium, the condition of equilibrium being that

the variation of this function shall vanish, so in a thermodynamic

system, (such as all material systems actually are,) which is capable of

two different kinds of action upon external systems, the two functions

which express the twofold capabilities of the system afford an almost

equally simple criterion of equilibrium.

*Pogg. Ann. Bd. cxxv (1865), S. 400; or Mechanische Warmetheorie, Abhand. ix., S. 44.
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CRITERIA OP EQUlLIBRIUiM AND STABILITY.

Tlie criterion of equilibrium for a material system Avhicli is isolated

from all external influences may be expressed in either of the follow-

ing entirely equivalent forms

:

I. M>r the equilibrium of any isolated si/stem it is necesmn/ and
sufficient that in all possible variations of tlie state of the system

which do not alter its energy^ the variation of its entropy shall either

vanish or be negative. If e denote the energy, and ;/ the entropy of

the system, and we use a subscript letter after a variation to indicate

a quantity of which the value is not to be varied, the condition of

equilibrium may be written

{^V)e ^0- (1)

II. For the equilibrium of any isolated system it is 7iecessary and
sufficient that in cdl possible variations in the state of the system

which do not alter its entropy^ the variation of its energy shall either

vanish or be positive. This condition may be written

(d>),^ 0. (2)

That these two theorems are equivalent will appear from the con-

sideration that it is always possible to increase both the energy and

the entropy of the system, or to decrease both together, viz., by

imparting heat to any part of the system or by taking it away. For,

if condition (l) is not satisfied, there must be some variation in the

state of the system for which

6i]> and de =zQ;

therefore, by diminishing both the energy and the entropy of the

system in its varied state, we shall obtain a state for which (considered

as a variation from the original state)

6i]z=i and (^f <0;

therefore condition (2) is not satisfied. Conversely, if condition (2)

is not satisfied, there must be a variation in the state of the system

for which
(Jf < and 6i]^^0\

hence there must also be one for which

^f rz: and (J// > ;

therefore condition (1) is not satisfied.

The equations which express the condition of equilibrium, as also

its statement in words, are to be interpreted in accordance with the

o-eneral usage in respect to differential equations, that is, infinitesimals
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of higher orders than the first relatively to those which express the

amount of change of the system are to be neglected. Biit to distin-

guish the dilFerent kinds of equiliVjriam in respect to stability, we
must have regard to the absolute values of the variations. We will

use A as the sign of variation in those equations which are to be con-

strued strictly, i. e., in which infinitesimals of the higher orders are

not to be neglected. With this understanding, Ave may express the

necessary and sufticient conditions of the difi:erent kinds of equi-

librium as follows;—for stable equilibrium

(^V)e<0, i.e., (A^),^>0: (3)

for neutral equilibrium there must be some variations in the state of

the system for which

(A//)^:=rO, i. e., {A5)^^ = 0, (4)

while in general

(^V)e ^0, i.e., (A£)^^0; (5)

and for unstable equilibrium tliere must be some variations for which

(A;;),>0, (6)

i. e., there must be some for which

(^f),<0,
"

(V)

while in general
((^;/),^0,i.e, (^6),^0. (8)

In these criteria of equilibrium and stability, account is taken only

oi possible variatic>ns. It is necessary to explain in what sense this is

to be understood. In the first place, all variations in the state of

the system which involve the transportation of any matter through

any finite distance are of course to be excluded from consideration,

although they may be capable of expression by infinitesimal varia-

tions of quantities which perfectly determine the state of the system.

For example, if the system contains two masses of the same sub-

stance, not in contact, nor connected by other masses consisting of

or containing the same substance or its components, an infinitesimal

increase of the one mass with an equal decrease of the other is not to

be considered as a possible variation in the state of the system. In

addition to such cases of essential impossibility, if heat can pass by

conduction or radiation from every j^art of the system to every other,

only those variations are to be rejected as impossible, which involve

changes which are prevented by passive forces or analogous resist-

ances to change. But, if the system consist of parts between which

there is supposed to be no thermal communication, it will be neces-

sary to regard as impossible any diminution of the entropy of any of
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tliese parts, as sueli a change can not take place witliout the passage

of heat. This limitation may most conveniently he applied to the

second of the above forms of the condition of equilibrium, which will

then become

(^^V, ;/", etc. = t*. (9)

?/, //", etc., denoting the entropies of the various parts between which

there is no communication of heat. When the condition of equi-

librium is thus expressed, the limitation in respect to the conduction

of heat will need no farther consideration.

In order to apply to any system the criteria of equilibriiim which

have been given, a knowledge is requisite of its passive forces or

resistances to change, in so far, at least, as they are capable of pre-

venting change. (Those passive forces which only retard change,

like viscosity, need not be considered.) Such properties of a system

are in general easily recognized upon the most superficial knowledge

of its nature. As examples, we may instance the passive force of

friction which prevents sliding when two surfaces of solids are

pressed together,—that which prevents the different components of

a solid, and sometimes of a fluid, from having different motions one

from another,—that resistance to change which sometimes prevents

either of two forms of the same substance (simple or compound),

which are capable of existing, from passing into the other,—that

which prevents the changes in solids which imply plasticity, (in other

words, changes of the form to which tlie solid tends to return,) when

the deformation does not exceed certain limits.

It is a characteristic of all these passive resistances that they pre-

vent a certain kind of motion or change, however the initial state of

the system may be modified, and to whatever external agencies of force

and heat it may be subjected, within limits, it may be, but yet within

limits which allow finite variations in the values of all the quanti-

ties which express the initial state of the system or the mechanical

or thermal influences acting on it, without producing the change in

question. The equilibrium which is due to such passive properties

is thus widely distinguished from that caused by the balance of the

active tendencies of the system, where an external influence, or a

change in the initial state, infinitesimal in amount, is sufticient to pro-

duce change either in the positi^-e or negative direction. Hence the

ease with which these passive resistances are recognized. Only in

the case that the state of the system lies so near the limit at which

the resistances cease to be operative to prevent change, as to create a
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doubt whether the case falls within or witliout the limit, will a moi'e

accurate knowledge of these resistances be necessary.

To establisli the validity of the criterion of equilibrium, we will

consider first the sufficiency, and afterwards the necessity, of the con-

dition as expressed in either of the two equivalent forms.

In the first place, if the system is in a state in which its entropy is

greater than in any other state of the same energy, it is evidently in

equilibrium, as any change of state must involve either a decrease of

entropy or an increase ot energy, which are alike impossible for an iso-

lated system.. We may add that this is a case of stable equilibrium, as

no infinitely small cause (whether relating to a variation of the initial

state or to the action of any external bodies) can produce a finite

change of state, as this Avould involve a finite decrease of entropy or

increase of energy.

We will next suppose that the system has the greatest entropy

consistent with its energy, and therefore the least energy consistent

with its entropy, but that there are other states of the same energy

and entropy as its actual state. In this case, it is impossible that

any motion of masses should take place ; for if any of the energy

of the system should come to consist of vis viva (of sensible motions),

a state of the system identical in other respects but without the

motion would have less energy and not less entropy, which would be

contrary to the supposition. (But we cannot apply this reasoning J,o

the motion within any mass of its different components in different

directions, as in diffiision, when the momenta of the components

balance one another.) Nor, in the case supposed, can any conduction

of heat take place, for this involves an increase of entropy, as heat is

only conducted from bodies of higher to those of lower temperature.

It is equally impossible that any changes should be produced by the

transfer of heat by radiation. The condition which we have sup-

posed is therefore sufficient for equilibrium, so far as the motion of

masses and the transfer of heat are concerned, but to show that the

same is true in regard to the motions of diffusion and chemical or

molecular changes, when these can occur without being accompanied

or followed by the motions of masses or the transfer of heat, we must

have recourse to considerations of a more general nature. The fol-

lowing considerations seem to justify the belief that the condition is

sufficient for equilibrium in every respect.

Let us suppose, in order to test the tenability of such a hypothesis,

that a system may have the greatest entropy consistent with its

energy without being in equilibrium. In such a case, changes in the
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state of the system must take place, but these will necessarily be

such that the energy and the entropy will remain unchanged and

the system will continue to satisfy the same condition, as initially, of

having the greatest entropy consistent with its energy. Let us con-

sider the change which takes place in any time so short that the

change may be regarded as uniform in nature throughout that time.

This time must be so chosen that the change does not take place in it

infinitely slowly, which is always easy, as the change which we sup-

pose to take place cannot be infinitely slow except at particular

moments. Now no change whatever in the state of the system,

which does not alter the value of the energy, and which commences

with the same state in which the system was supposed at the com-

mencement of the short time considered, will cause an increase of

entropy. Hence, it Avill generally be possible by some slight varia-

tion in the circumstances of the case to make all changes in the state

of the system like or nearly like that which is supposed actually to

occur, and not involving a change of energy, to involve a necessary

decrease of entropy, which would render any such change impossible.

This variation may be in the values of the variables which determine

the state of the system, or in the values of the constants which deter-

mine the nature of the system, or in the form of the functions which

express its laws,—only there must be nothing in the system as modi-

fied which is thermodynamically impossible. For example, we might

suppose teraperatiire or pressure to be varied, or the composition of

the diiFerent bodies in the system, or, if no small variations which

could be actually realized would produce the required result, we

might suppose the properties themselves of the substances to undergo

variation, subject to the general laws of matter. If, then, there is

any tendency toward change in the system as first supposed, it is a

tendency which can be entirely checked by an infinitesimal variation

in the circumstances of the case. As this supposition cannot be

allowed, we must believe that a system is always in equilibrium

when it has the greatest entropy consistent with its energy, or, in

other words, when it has the least energy consistent with its entropy.

The same considerations will evidently apply to any case in which

a system is in such a state that A;? ^ for any possible infinites-

imal variation of the state for which Ae= 0, even if the entropy is

not the least of which the system is capable with the same energy.

(The term possible has here the meaning previously defined, and the

character A is used, as before, to denote that the equations are to be

Trans. Conn. Acad., Vol. III. 15 October, 1875.
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construed strictly, i. e., without neglect of the infinitesimals of the

higher orders.)

The only case in which the sufficiency of the condition of equi-

librium which has been given remains to be proved is that in which

in our notation dj] ^ for all possible variations not affecting the

energy, but for some of these variations A// > 0, that is, when the

entroj^y has in some respects the characteristics of a minimum. In

this case the considerations adduced in the last paragraph will not

apply without modification, as the change of state may be infinitely

slow at first, and it is only in the initial state that the condition

Sr^^ -S holds true. But the differential coefficients of all orders of

the quantities which determine the state of the system, taken with

respect of the time, must be functions of these same quantities.

None of these differential coefficients can have any value other than

0, for the state of the system for which 8ri^ ^0. For otherwise, as

it would generally be possible, as before, by some infinitely small

modification of the case, to render impossible any change like or nearly

like that which might be supposed to occur, this infinitely small

modification of the case would make a finite difference in the value

of the differential coefficients which had before the finite values, or

in some of lower orders, which is contrary to that continuity which

we have reason to expect. Such considerations seem to justify us

in regarding such a state as we are discussing as one of theoretical

equilibrium ; although as the equilibrium is evidently unstable, it

cannot be realized.

We have still to prove that the condition enunciated is in every

case necessary for equilibrium. It is evidently so in all cases in

which the active tendencies of the system are so balanced that

changes of every kind, except those excluded in the statement of

the condition of equilibrium, can take place reversibly, (i. e., both in

the positive and the negative direction,) in states of the system dif-

fering infinitely little from the state in question. In this case, we

may omit the sign of inequality and write as the condition of such a

state of equilibrium

(0»,rr:0, i.e., {6e\= (10)

But to prove that the condition previously enunciated is in every

case necessary, it must be shown that whenever an isolated system

remains without change, if there is any infinitesimal variation in its

state, not involving a finite change of position of any (even an infini-

tesimal part) of its matter, which would diminish its energy by a
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quantity which is not infinitely small relatiA^ely to the variations

of the quantities which determine tlie state of the system, without

altering its entropy,—or, if the system has thermally isolated parts,

without altering the entropy of any such part,—this variation

involves changes in the system which are prevented by its passive

forces or analogous resistances to change. Now, as the described

variation in the state of the system diminishes its energy without

altering its entropy, it must be regarded as theoretically possible to

produce that variation by some process, perhaps a very indirect one,

so as to gain a certain amount of work (above all expended on the

system). Hence we may conclude that the active forces or tenden-

cies of the system favor the variation in question, and that equi-

librium cannot subsist unless the variation is prevented by passive

forces.

The preceding considerations will suffice, it is believed, to establish

the validity of the criterion of equilibrium which has been given.

The criteria of stability may readily be deduced from that of equi-

librium. We will now proceed to apjily these principles to systems

consisting of heterogeneous substances and deduce the special laws

which apply to different classes of phenomena. For this purpose we

shall use the second form of the criterion of equilibrium, both because

it admits more readily the introduction of the condition that there

shall be no thermal communication between the different parts of the

system, and because it is more convenient, as respects the form of

the general equations relating to equilibrium, to make the entropy

one of the independent variables which determine the state of the

system, than to make the energy one of these variables.

THE CONDITIONS OF EQUILIBRIUiNt FOR HETEROGENEOUS MASSES IN

CONTACT WHEN UNIXFLtTENCED BY GRAVITY, ELECTRICITY, DISTORTION

OF THE SOLID MASSES, OR CAPILLARY TENSIONS.

In order to arrive as directly as })ossible at the most characteristic

and essential laws of chemical equilibrium, we will first give our

attention to a case of the simplest kind. We will examine the con-

ditions of equilibrium of a mass of matter of various kinds enclosed

in a rigid and fixed envelop, which is impermeable to and unalter-

able by any of the substances enclosed, and perfectly non-conducting

to heat. We will suppose that the case is not complicated by the

action of gravity, or by any electrical influences, and that in the

solid portions of the mass the pressure is the same in every direction.
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We will farther simplify the problem by supposing that the varia-

tions of the parts of the energy and entropy which depend upon the

surfaces separating heterogeneous masses are so small in comparison

with the variations of the parts of the energy and entropy which

depend upon the quantities of these masses, that the former may be

neglected by the side of the latter; in other words, we will exclude

the considerations which belong to the theory of capillarity.

It will be observed that the siipposition of a rigid and non-

conducting envelop enclosing the mass under discussion involves no

real loss of genei-ality, for if any mass of matter is in equilibrium, it

would also be so, if the whole or any part of it were enclosed in an

envelop as supposed ; therefore the conditions of equilibrium for a

mass thus enclosed are the general conditions which must always

be satisfied in case of equilibrium. As for the other suppositions

which have been made, all the circumstances and considerations

which are here excluded will afterward be made the subject of

special discussion.

Conditions relating to the Equilibrium between the initially existing

Hoinogeneons Partt^ of the given Mass.

Let us first consider the energy of any homogeneous part of the

given mass, and its variation for any j^ossible variation in the com-

position and state of this part. (By homogeneous is meant that the

part in question is uniform throughout, not only in chemical com-

position, but also in physical state.) If we consider the amount and

kind of matter in this homogeneous mass as fixed, its energy 5 is a

function of its entropy ?/, and its volume v, and the differentials

of these quantities are subject to the relation

ds. =. t di] - • p dv
.,

(11)

t denoting the (absolute) temperature of the mass, and p its pressure.

For t di] is the heat received, and p do the work done, by the mass

during its change of state. But if we consider the matter in the

mass as variable, and write mj, jn^, . . . m„ for the quantities of the

various substances /S'j, /Sg, . . . N„ of which the mass is composed, s

will evidently be a function of //, v, m^., ^2, . . . ?>?„, and we shall

have for the complete value of the differential of e

de:=ztdi] — pdv -{- f.i^dm^-\- I.i.,dm2 . . . -|-//„(?ot„, (12)

yUj, yWg, . . . //„ denoting the diflferential coefficients of s taken with

respect to m,, nio, . . . m„.

The substances /S',, 62, . . . /S'„, of which we consider the mass

composed, must of course be such that the values of the differen-
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tials c?mj, dm^., . . . dm^ shall be indeiDendent, and shall express

every possible variation in the composition of the homogeneous mass
considered, including those produced by the absorption of substances

different from any initially pi-esent. It may therefore be necessary

to have terms in the equation relating to component substances

which do not initially occur in the homogeneous mass considered,

provided, of course, that these substances, or their components, are

to be found in some part of the whole given mass.

If the conditions mentioned are satisfied, the choice of the sub-

stances which we are to i-egard as the components of the mass con-

sidered, may be determined entirely by convenience, and independently

of any theory in regard to the internal constitution of the mass. The
number of components will sometimes be greater, and sometimes

less, than the number of chemical elements present. For example,

in considering the equilibrium in a vessel containing water and free

hydrogen and oxygen, we should be obliged to recognize three com-

ponents in the gaseous part. But in considering the equilibrium of

dihite sulphuric acid with the vapor which it yields, we shoiild have

only two components to consider in the liquid mass, sulphuric acid

(anhydrous, or of any particular degree of concentration) and (addi-

tional) water. If, however, we are considering sulphuric acid in a

state of maximum concentration in connection with substances which

might possibly afford water to the acid, it must be noticed that the

condition of the independence of the differentials will require that we
consider the acid in the state of maximum concentration as one of

the components. The quantity of this component will then be capa-

ble of variation both in the positive and in the negative sense, while

the quantity of the other component can increase but cannot decrease

below the value 0.

For brevity's sake, we may call a substance S^ an actual component

of any homogeneous mass, to denote that the quantity ra^ of that

substance in the given mass may be either increased or diminished

(although we may have so chosen the other component substances

that m^ =. 0) ; and we may call a substance S^ a possible component

to denote that it may be combined with, but cannot be substracted

from the homogeneous mass in question. In this case, as we have

seen in the above example, we must so choose the component sub-

stances that Wj rz 0.

The units by which we measure the substances of which we regard

the given mass as composed may each be chosen independently. To

fix our ideas for the purpose of a general discussion, we may suppose
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all substances measured by weight oi' mass. Yet in special cases, it

may be more convenient to adopt chemical equivalents as the units

of the component substances.

It may be observed that it is not necessary for the validity of

equation (12) that the variations of nature and state of the mass to

which the equation refers should be such as do not disturb its homo-

geneity, provided that in all parts of the mass the variations of

nature and state are infinitely small. For, if this last condition be

not violated, an equation like (12) is certainly valid for all the infin-

itesimal parts of the (initially) homogeneous mass; i. e., if we write

2>f, Z>//, etc., for the energy, entropy, etc., of any infinitesimal part,

dDe = t dDt] - p dBv -\- /< ^ dDm ^-\- fi.^ dJDni^ ...-{-/'« dDm„^ (13)

whence we may derive equation (12) by integrating for the whole

initially homogeneous mass.

We will now suppose that the whole mass is divided into parts so

that each part is homogeneous, and consider such variations in the

energy of the system as are due to variations in the composition and

state of the several parts i*emaining (at least approximately) homoge-

neous, and together occupying the whole space within the envelop.

We will at first suppose the case to be such that the component sub-

stances are the same for each of the parts, each of the substances

aSj, *S'2, . . . Sn being an actual component of each part. If we

distinguish the letters referring to the different parts by accents,

the variation in the energy of the system may be expressed by

Se' -\- Se" -\- etc., and the general condition of equilibrium requires

that
(Jt'+.f^f" -h etc, ^ (14)

for all variations which do not conflict with the equations of condi-

tion. These equations must express that the entropy of the whole

given mass does not vary, nor its volume, nor the total quantities of

any of the substances ^Sj, aS^j, . . . Sn- We will suppose that there

are no other equations of condition. It will then be necessary for

equilibrium that

i; 8r,' ^ p' 6v' H-///(Jm,' -\- i.i„' dm^J .

J^t" 67}" - p" 6v" -\- 1.1 ^" dm ^" + lA^" dm.J' .

-I- etc. ^

for any values of the variations for which

6if -f 67]" + 67/" 4- etc. = 0,

Sv' -j- 6v"+ 6v"' + etc. = 0,

+ /'„' 6m.:
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(18)

drn^' -\- dm/' + dm/" + etc. = 0,
]

dm./ + dm/' + dm/" + etc. =: 0,

and dm/ -\- dm/' -j- dm/" -\- etc. = 0.

For this it is evidently necessary and sufficient that

t' = t" =zt"'z:i etc. (19)

y=y =y' — etc. (20)

/Yj' = //,"=///"= etc.^

f.i/ — H/' z= ^i/" = etc.
[

^21)

lA,! z= pi/' = fx/" =. etc. J

Equations (19) and (20) express the conditions of thermal and
mechanical equilibrium, viz., that the temperature and the pressure

must be constant throughout the whole mass. In equations (21) we
have the conditions characteristic of chemical equilibrium. If we
call a quantity //„ as defined by such an equation as (12), the potential

for the substance >S, in the homogeneous mass considered, these con-

ditions may be expressed as follows

:

The potential for each cotnponent substance must be constant

throughout the lohole mass.

It will be remembered that we have supposed that there is no

restriction upon the freedom of motion or combination of the com-

ponent substances, and that each is an actual component of all parts

of the given mass.

The state of the whole mass will be completely determined (if we

regard as immaterial the position and form of the various homoge-

neous parts of which it is composed), when the values are determined

of the quautities of whicli the variations occur in (15). The number

of these quantities, which we may call the independent variables, is

evidently {n -\- 2) k, k denoting the number of homogeneous parts

into which the whole mass is divided. All the quantities which

occur in (19), (20), (21), are functions of these variables, and may be

regarded as known functions, if the energy of each part is known as

a function of its entropy, volume, and the quantities of its com-

ponents. (See eq. (12).) Therefore, equations (19), (20), (21), may

be regarded as {v - 1) {n -\- 2) independent equations between the

independent variables. The volume of the whole mass and the total

quantities of the various substances being known afford n-\- \ addi-

tional equations. If we also know the total energy of the given

mass, or its total entropy, we will have as many equations as there

are independent variables.
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But if any of the substances S^, S.^ . . . S„ are only possible com-

ponents of some parts of the given mass, the variation 6m of the

quantity of such a substance in such a part cannot have a negative

value, so that the general condition of equilibrium (15) does not

require that the potential for that substance in that part should be

equal to the potential for the same substance in the parts of which it

is an actual component, but only that it shall not be less. In this

case instead of (21) we may write

for all parts of which ^S'j is an actual component, and

for all parts of which S^ is a possible (but not actual) com- i

ponent,
'

Ih = ^^2 y (22)

for all parts of which iS'g is an actual component, and

for all parts of which S2 is a possible (but not actual) com-

ponent,
etc.,

J/j, M2, etc., denoting constants of which the value is only deter-

mined by these equations.

If we now suppose that the components (actual or possible) of the

various homogeneous parts of the given mass are not the same, the

result will be of the same character as before, provided that all the

different components are indej^endeyit, (i. e., that no one can be made

out of the others,) so that the total quantity of each component is

fixed. The general condition of equilibi'ium (15) and the equations

of condition (16), (17), (18) Avill require no change, except that, if

any of the substances S^ , S2 . . . S„ is not a component (actual or

possible) of any part, the term fx dm for that substance and part will

be wanting in the former, and the 6m in the latter. This will require

no change in the form of the particular conditions of equilibrium as

expressed by (19), (20), (22); but the number of single conditions

contained in' (22) is of course less than if all the component sub-

stances were components of all the parts Whenever, therefore, each

of the different homogeneous parts of the given mass may be regarded

as composed of some or of all of the same set of substances, no one

of which can be formed out of the others, the condition which (with

equality of temperature and pressure] is necessary and sufficient for

equilibrium between the different parts of the given mass may be

expressed as follows:
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The potentUd for each of the component substances must luioe a
constant value in all parts of the given mass of iddch that substance

is an actual conxponeyit^ and have a value not less than this in all

parts of which it is a possible componetit.

The number of equations aftbrded by these conditions, after elimina-

tion of J/j, iT/g, . . . Jf„, will be less than {n +• 2) (k - 1) by the num-
ber of terms in (15) in which the variation of the form dm is either

necessarily nothing or incapable of a negative value. The number of

variables to be determined is diminished by the same number, or, if

we choose, Ave may write an equaticm of the form m — for each of

these terms. But when the substance is a possible component of the

part concerned, there will also be a condition (expressed by ^ ) to

show whether the supposition that the substance is not an actual

component is consistent with equilibrium.

We will now suppose that the substances S-^^, 8^, . . . iS„ are not

all independent of each other, i. e., that some of them can be formed

out of others. We will first consider a very simple case. Let S^ be

composed of S^ and So combined in the ratio of a. to b, S^ and S2

occurring as actual components in some parts of the given mass, and

/S'g in other parts, which do not contain S^ and S2 as separately

A^ariable components. The general condition of equilibrium will

still have the form of (15) with certain of the terms of the form

/< dm omitted. It may be written more briefly [(23)

^{tSi/) - 2{pdv)-^:::^{/.i,(hn^)-^2{/'2dm2) ' .-\-^^{Mn<^'n„)^0,

the sign ^ denoting suumiation in regard to the difierent parts of

the given mass. But instead of the three equations of condition,

2 6m 1=0, 2" dm2 = 0, 2 6m^ — 0, (24)

we shall have the two,

2Sm,+^^2Sm, = 0,]

The other equations of condition,

2 Sij = 0, :2 dv = 0, ^ Sm^ = 0, etc., (26)

will remain unchanged. Now as all values of the variations which

satisfy equations (24) will also satisfy equations (25), it is evident

that all the particular conditions of equilibrium which we have

already deduced, (19), (20), (22), are necessary in this case also.

When these are satisfied, the general condition (23) reduces to

M, 2 6)n , -f 3f, 2 6m 2+ M^ 2 6m 3^0. (27)

Trans. Conn. Acad. 16 October. 1875.

;. (25)
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For, although it may be that //j', for example, is greater than J/^,

yet it can only be so when the following Sin^' is incapable of a nega-

tive value. Hence, if (27) is satisfied, (23) must also be. Again, if

(23) is satisfied, (27) must also be satisfied, so long as the variation

of the quantity of every substance has the value in all the parts of

which it is not an actual component. But as this limitation does not

affect the range of the possible values of 2 6m ^, 2 dni^, and 2E Sm^,

it may be disregarded. Therefore the conditions (23) and (27) are

entirely equivalent, when (19), (20), (22) are satisfied. Now, by

means of the equations of condition (25), we may eliminate 2 6m^

and ^6)712 from (27), which becomes

- a 31^ 2 6m ^ — hM^ 2 6m^ + {a + h) M^:S 6m ^ ^ 0, (28)

i.e., as the value of 2 6m^ may be either positive or negative,

a M^ \-bM2 — {a-\-h) M^, (29)

which is the additional condition of equilibrium which is necessary

in this case.

The relations between the component substances may be less

simple than in this case, but in any case they will only affect the

equations of condition, and these may always be found without diffi-

culty, and will enable us to eliminate from the general condition of

equilibrivim as many variations as there are equations of condition,

after which the coefficients of the remaining variations may be set

equal to zero, except the coefficients of variations which are incapable

of negative values, which coefficients must be equal to or greater

than zero. It will be easy to perform these operations in each par-

ticular case, but it may be interesting to see the form of the resultant

equations in general.

We will suppose that the various homogeneous parts are considered

as having in all n comjjonents, «Sj, aS'^, . . . iS„, and that there is no

restriction upon their freedom of motion and combination. But we

Avill so far limit the generality of the problem as to suppose that

each of these components is an actual component of some part of

the given mass.* If some of these components can be formed out of

others, all such relations can be expressed by equations such as

^^ ©a+ P S/, + etc. = n e, 4- A i5,+ etc. (30)

where ©a, <Si, ®a, etc. denote the units of the substances /S„, Si,, S^, etc.,

* When we come to seek the conditions of equilibrium relating to the formation of

masses unlike any previously existing, we shall take up de novo the whole problem

of the equilibrium of heterogeneous masses enclosed in a non-conducting envelop,

and give it a more general treatment, which will be free from this limitation.
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(that is, of certain of tlie substances »S'j, ^S'^,
. . . N,,,) and «-, /:/, h

etc. denote numbers. These are not, it will be observed, equations

between abstract quantities, but the sign =z denotes qualitative as

well as quantitative equivalence. We will suppose that there are

r independent equations of this character. The equations of con-

dition relating to the component substances may easily be derived

from these equations, but it will not be necessary to consider them
particularly. It is evident that they will be satisfied by any values

of the variations which satisfy equations (18); hence, the particular

conditions of equilibrium (19), (20), (22) must be necessary in this

case, and, if these are satisfied, the general equation of equilibrium

(15) or (2.3) will reduce to

J/, >; dm
1 + J/g :^ drii^ . . . -}- 31^2 6m„^ 0. (31)

This will appear from the same considerations which were used in

regard to equations (2.3) and (27). Now it is evidently possible to

give to 2 Sm^, 2 dm,„ 2 Snii., etc. values proportional to a, fi, — ;<:,

etc. in equation (-30), and also the same values taken negatively,

making 2 dm =^ in each of the other terms ; therefore

aM^ + pM,-\- etc. . . . - « J/^. -XM,^ etc. ::^ 0, (32)
or,

a M„ -\- f-i M,, + etc. = u M^ -\- X 31^ + etc. (33)

It will be observed that this equation has the same form and coeifi-

cients as equation (30), JI taking the place of ©. It is evident that

there must be a similar condition of equilibrium for every one of the

r equations of which (30) is an example, which may be obtained sim-

ply by changing © in these equations into 3f, When these condi-

tions are satisfied, (31) will be satisfied with any possible values of

2 6m I, 2 Sni^, , . . 2 drii^. For no values of these quantities are

possible, except such that the equation

{2dm,)(S,-^{2dm.,)(B2 . . . -\-{2dm,)e„=0 (84)

after the substitution of these values, can be derived from the r equa-

tions like (30), by the ordinary processes of the reduction of linear

equations. Therefore, on account of the correspondence between (31)

and (34), and between the r equations like (33) and the r equations

like (30), the conditions obtained by giving any possible values to

the variations in (31) may also be derived from the r equations like

(33) ; that is, the condition (31) is satisfied, if the r equations like

(33) are satisfied. Therefore the r equations like (33) are with

(19), (20), and (22) the equivalent of the general condition (15)

or (23).
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For determining the state of a given mass when in equilibrium

and having a given vohime and given energy or entropy, the condi-

tion of equilibrium affords an additional equation corresponding to

each of the r independent relations between the n component sub-

stances. But the equations which express our knowledge of the

matter in the given mass will be correspondingly diminished, being

n — r m number, like the equations of condition relating to the

quantities of the component substances, which may be derived from

the former by differentiation.

Conditions relating to the possible formation of Masses Unlike any

Preiiiousli/ Existing.

The variations which we have hitherto considered do not embrace

every possible infinitesimal variation in the state of the given mass,

so that the particular conditions already formed, although always

necessary for equilibrium (when there are no other equations of con-

dition than such as we have supposed), are not always sufficient.

For, besides the infinitesimal variations in the state and composition

of different parts of the given mass, infinitesimal masses may be

formed entirely different in state and composition from any initially

existing. Such parts of the whole mass in its varied state as

cannot be regarded as parts of the initially existing mass which

have been infinitesimally varied in state and composition, we will

call ne^o parts. These will necessai'ily be infinitely small. As it is

more convenient to regard a vacuum as a limiting case of extreme

rarefaction than to give a special consideration to the possible for-

mation of empty spaces within the given mass, the term new parts

Avill be used to include any empty spaces which may be formed,

when such have not existed initially. We will use De, D?], Dv, Dm^,
X>w?2, . . . Din^ to denote the infinitesimal enei'gy, entropy, and vol-

ume of any one of these new parts, and the infinitesimal quantities

of its components. The component substances 8^,8^,. . . S„ must

now be taken to include not only the independently variable com-

ponents (actual or possible) of all parts of the given mass as initially

existing, but also the components of all the new parts, the possible

formation of which we have to consider. The character S will be

used as before to express the infinitesimal variations of the quantities

relating to those parts which are only infinitesimally varied in state

and compc^sition, and which for distinction we will call orif/inal parts,

including under this term the empty sj^aces, if such exist initially,

within the envelop bounding the system. As we may divide the

given mass into as many parts as we choose, and as not only the
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initial bounclarie!^, but also the movements of these bomidaries during
any variation in the state of the system are arbitrary, we may so

define the parts which we have called original, that we may consider

them as initially homogeneous and remaining so, and as initially con-

stituting the whole system.

The most general value of the energy of the whole system is

evidently

^68-\-^J)^, (35)

the first summation relating to all the original parts, and the second

to all the new parts. (Throughout the discussion of this problem, the

letter 6 or D following ^ will sufficiently indicate whether the sum-

mation relates to the original or to the new parts.) Therefore the

general condition of equilibrium is

:^de-it- :^6e^0, (36)

or, if w^e substitute the value of de taken from equation (12), [(37)

^De^^{tSii) - 2{2>dv)-\-2{i.i^dm^)-{.:£{iJ^6m.,) . . +^^(/v?w„)^ 0.

If any of the substances S ^^ S^^ . . . *S'„ can be formed out of others,

we will suppose, as before (see page 122), that such relations are

expressed by equations betw^een the units of the different substances.

Let these be

«j ®1 -f «2 ®2 • • • + ^nSn^ j

^1 ®i + ^''s ®3 • • • + '''n ®n = >• ^equations, (38)

etc.
)

The equations of condition will be (if there is no restriction upon the

freedom of motion and composition of the components)

:E6t] + ^D)]=Q, (39)

:E6v -\-2I>V:=iO, (40)

and n — r equations of the form

+ h„ (:S' 8m„ + '2 Dm.„) = |'

^^ {2 6m^ +2 Dm,) + z, (2 Sm., + 2 Dm„) . . ^ (41)*

+ /„ {2 Sm„ + 2 Dm„)=
etc.

* In regard to the relation between the coefficients in (41) and those in (38), the

reader will easily convince himself that the coefficients of any one of equations (41)

are such as would satisfy all the equations (38) if substituted for Sj, .S'^, . . . S„; and

that this is the only condition which these coefficients must satisfy, except that the

.fi _ r sets of coefficients shall be independent, i. e., shall be such as to form inde-

pendent equations ; and that this relation between the coefficients of the two sets of

equations is a reciprocal one.
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Xow, using Lagrange's ''method of multipliers,"* we will sul)-

tract 7' {:^ 6rf + I^ Dr>) -P(2:'o\' -\- 2: I)r) from the first member
of the general condition of equilibrium (^H), 7' and P being constants

of which the value is as vet arbitrary. We might proceed in the

same way with the remaining equations of condition, but we may
obtain the same result more simply in another way. We will first

observe that

+ (:i" 6m„ + >: Dm„) S„= 0, (42)

which equation would hold identically for any possible values of the

quantities in the parentheses, if for r of the letters 3j, 3^, . . . ^„ were

substituted their values in terms of the others as derived from equa-

tions (38). (Although 2 ,, Sg^ . . . 3n do not represent abstract quanti-

ties, yet the operations necessary for the reduction of linear equations

are evidently applicable to eqiuitious (38).) Therefore, equation (42)

will hold true if for 3^, Sg, . . . 2„ we substitute n numbers which

satisfy equations (38). Let 3/,, J/j, . . . 3I„ be such numbers, i. e.,

let

^»j J/j + bo 3I2 . . . + b^ J/„ = 0,
'^ r equations, (43)

etc.
)

then
J/j {:^Sm^^ :^Dm^) + M2 {2 6m2-h2Dm2) . . .

+ J/„ {:S 6m„ + 2i' Din„) = 0. (44)

This expression, in which the values of « — r of the constants J/,, J/g?

. . . JI„ are still arbitrary, we will also subtract from the first mem-

ber of the general condition of equilibrium (37), which will then

become

2D€+ 2 {t d>;) - :^ (/) dv) -{- 2 (;/ ,6m,) . . + 2: (//„ 6m„)

- T2 d// + 1^2 6v - M, 2 6m , . . . + J/'„ v (^m„

- T2Dr^-\-F:SDv -3/, :2Dm, .. . -J/„ >Z)w„^0. (45)

That is, having assigned to T, P, Jl,, JJ^, . . . 3/„ any values con-

sistent with (43), we may assert that it is necessaiy and sufficient for

equilibrium that (45) shall hold true for any variations in the state

of the system consistent with the equations of condition (39), (40),

(41). But it will always be possible, in case of equilibrium, to assign

such values to T, P, M,^ Jf^, . . M^, without violating equations (43),

* On account of the sign ^ in (37), and because some of the variations are incapable

of negative values, the successive steps in the reasoning vriU be developed at greater

length than would be otherwise necessary.
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tli:it (4">) shall lioM Inic tor all va^iati^•n^ in ihc slate of the system

ami ill tlie <]uaiititi('s ot' tlie various Hulistanees eomposiiitj it, even

tlioui;;li these v;iriati<>iis an- not consistent with the e(|nations of con-

dition (39), (40), (41), For, when it is not |>ossil)le \i, dn this, it

must be possil)le by a|i|)lyin«; (45) to variations in the HyKtcrn not

necessarily restricletl by the etjuations of condition (-M*), (40), (41) to

obtain conditions in re«:;ard to 7\ /\ .l/,, .1/,,, . . . M„, Home of

which will be inconsistent with others or with c(|nalions (4:i). 'I'liese

conditions we will repreBoiit by

-1=0, 7?^ 0, etc., (JC.)

.1, />, etc. beint; lineai- functions of 7', /', .1/,, .1/.,, . . .1/,. Then it

will be possible to deduce fioni these conditions a sinj^le condition of

the ft)rin

n A + /i n + etc. ^0, (47)

(K, fi, v\c. beini; positive constants, which cannot hold true consist-

ently with ecpuvtions (43). Hut it is evident from the form of (47)

tliat, like any of the eontlitions (40), it couhl have been obtained

directly from (4')) by applying this formula to a certain chanj.(e in

tlie system (|)erha])S not restrictcil by the ecpiations ot condition (30),

(40), (41)). Now as (47) cannot hold true consistently with eqs. (43),

it is evident, in the tirst place, that it cannot contain 7'or /*, there-

fore in the diange in the system just mentioneil (for which (45)

reduces to (47))

2^6>/ + ::: J>/f=^\ and 2: O/- -f 2:' />>/" = 0,

so that the equations of condition (39) aiid (40) are satisfied. Again,

for the same reason, the homogeneous function of the first degree of

JAj, J/o, . . . J/„ in (47) must be one of which the value is fixed by

eqs. (43). l)ut the value thus fixed can only be zero, as is evident

from the form of these equations. Therefore

(
>

()///
, + :^' it/n

,
) J/, + ( :i" 6)n , + ::i" Um^ ) j/, . . .

+ (
^" (h,}„ + :i lJni„) J/„— (4 8)

for any values of ^/^, M^ . . . J/„ which satisfy eqs. (43), and

theretore

(I^'fJ///, + >Z>///i) 3j+ (:^'(J;«2 + ^"^'"2) 2j • • •

+ (
>'

d'i/,„ + > Jjjn„) 2„ = (49)

for any numerical values of 2^^, Z2, . • . 3„ wdiich satisfy e«is, (3ft).

This equation (40) will therefore hold true, if for r of the letters

3,2.,.. 3„ we substitute their values in terms of the others

taken from eqs. (38), and therefore it will hold true when we use
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<Sj, ®2, • • • ©n, as before, to denote the units of the various com-

ponents. Thus understood, the equation expresses that the vahies

of the quantities in the parentheses are such as are consistent with

the equations of condition (41). The change in the system, there-

fore, which we are considering, is not one which violates any of the

equations of condition, and as (45) does not hold true for this change,

and for all values of 2\ P, J/^, J/2, • • • ^^A which are consistent

with eqs. (43), the state of the system cannot be one of equilibrium.

Therefore it is necessary, and it is evidently sufficient for equilibrium,

that it shall be possible to assign to 2\ P, 31^, 31^, . . . M„ such values,

consistent with eqs. (43), that the condition (45) shall hold true for

any change in the system irrespective of the equations of condition

(39), (40), (41).

For this it is necessary and sufficient that

t=2\ p = P, (50)

for each of the originalparts as previously defined, and that

Be - TDi]^PDr - J/, X*;//, - M^Dm^ ... - 3I,,Dm„^ 0, (52)

for each of the 7iew parts as previously defined. If to these condi-

tions we add equations (43), we may treat 1\ P, J/^, J/g, . . . J/„

simply as unknown quantities to be eliminated.

In regard to conditions (51), it will be observed that if a sub-

stance, 6' J, is an actual component of the part of the given mass

distinguished by a single ac<^ent, dtn^' may be either positive or

negative, and we shall have fi^' = M^ ; but if S^ is only a possible

component of that part, (Sm^' will be incapable of a negative value,

and we will have /^^'^ M^.

The formula^ (S*^)- (51), ^^^^^ (43) express the same particular con-

ditions of equilibrium which we have before obtained by a less gen-

eral process. It remains to discuss (52). This formula must hold

true of any infinitesimal mass in the system in its varied state which

is not approximately homogeneous with any of the surrounding

masses, the expressions i>£, J9//, i>y. Dm ^, J)in2, . . . Dm„ denoting

the energy, entropy, and volume of this infinitesimal mass, and the

quantities of the substances S^, S.y, . . . *S'„ which we regard as com-

posing it, (not necessarily as independently variable components).

If there is more tlian one way in which this mass may be considered

as composed of these substances, we may choose whichever is most

convenient. Indeed it follows directly from the relations existing

between J/j, J/g, . . . and J/„ that the result Avould be the same in
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any case. Now, if we assume tliat the values of i>f, />;/, JDo, Drn^,

Dm.^, . . . Din„ are proportional to the values of f, //, v, m,, jh.^, . . .

m„ for any large homogeneous mass of similar composition, and of

the same temperature and pressure, the condition is equivalent to

this, that

€ - T?^ +Pv - 3Ij m^ -3I2 in^ ... - iT/„m„ ^ (53)

for any large homogeneous body which can be formed out of the

substances aS'j, S2 . . . S„.

But the validity of this last transformation cannot be admitted

without considerable limitation. It is assumed that the relation

between the energy, entropy, volume, and the quantities of the dif-

ferent components of a very small mass surrounded by substances

of diiferent composition and state is the same as if the mass in ques-

tion formed a jaart of a large homogeneous body. We started,

indeed, with the assumption that we might neglect the part of the

energy, etc., depending upon the surfaces separating heterogeneous

masses. Now, in many cases, and for many purposes, as, in general,

when the masses are large, such an assumption is quite legitimate,

but in the case of these masses which are formed within or among
substances of different nature or state, and which at their first forma-

tion mi;st be infinitely small, the same assumption is evidently

entirely inadmissible, as the siirfaces must be regarded as infinitely

large in proportion to the masses. We shall see hereafter what

modifications are necessary in our formula in order to include the

parts of the energy, etc., which are due to the surfaces, but this will

be on the assinnption, which is usual in the theory of capillarity,

that the radius of curvature of the surfaces is large in proportion to

the radius of sensible molecular action, and also to the thickness of

the lamina of matter at the surface which is not (sensibly) homoge-

neous in all respects with either of the masses which it separates.

But although the formula? thus modified will apply with sensible

accuracy to masses (occurring within masses of a diftei'ent nature)

much smaller than if the terms relating to the surfaces were omitted,

yet their failure when applied to masses infinitely small in all their

dimensions is not less absolute.

Considerations like the foregoing might render doubtful the validity

even of (52) as the necessary and sufiicient condition of equilibrium

in regard to the formation of masses not approximately homogeneous

with those previously existing, when the conditions of equilibrium

between the latter are satisfied, unless it is shown that in establishing

this formula there have been no quantities neglected relating to the

Trans. Conn. Acad., Vol. III. 17 October, 1875.
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mutual actiou of the new and the original parts, which can aftect the

result. It will be easy to give such a meaning to the expressions

7>f, Di}, DiJ, D„i^, Dni^, . . . Dm„ that this shall be evidently the

case. It will be observed that the quantities represented by these

expressions have not been pei-fectly defined. In the first place, we

have no right to assume the existence of any surface of absolute dis-

continuity to divide the new parts from the original, so that the

position given to the dividing surface is to a certain extent arbitrary.

Even if the surface separating the masses were determined, the

energy to be attributed to the masses separated would be partly

arl)itrary, since a part of the total energy depends upon the mutual

action of the two masses. We ought perhaps to consider the case

the same in regard to the entropy, although the entropy of a system

never depends upon the mutual relations of parts at sensible dis-

tances from one another. Now the condition (52) will be valid if

the quantities Df, 7>//, l>f, I)m^, Dm.-, . . . I))u„ are so defined that

none of the assmuptious which have been made, tacitly or otherwise,

relating to the formation of these new parts, shall be violated. These

assumptions are the following:—that the relation between the varia-

tions of the energy, entropy, volume, etc., of any of the original parts

is not aifected by the vicinity of the new parts; and that the energy,

entropy, volume, etc., of the system in its varied state are correctly

represented by the sums of the energies, entropies, volumes, etc., of

the various parts (original and new), so far at least as any of these

quantities are determined or aftected by the formation of the new

parts. We will suppose Z>f, Dij, iJv, Dm ^, Dni^ . . . Dm,, to be

so defined that these conditions shall not be violated. This may be

done in various ways. We may suppose that the jjosition of the

surfaces separating the new and the original parts has been fixed in

any suitable way. Tiiis Avill detej-mine the space and the matter

belonging to the parts separated. If this does not determine the

division of the entropy, we may suppose this determined in any suit-

able arbitrary way. Thus we may suppose the total energy in and

about any ne\v part to be so distributed that equation (12) as applied

to the original parts shall not be violated by the formation of the

new parts. Or, it may seem more simple to suppose that the

imaginary surface which divides any new part from the original is

so placed as to include all the matter which is affected by the

vicinity of the new formation, so that the part or parts which we

regard as original may be left homogeneous in the strictest sense,

including uniform dentilties of eneryij and entropy., up to the very
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bounding surface. The homogeneity of the new parts is of no con-

sequence, as we have made no assumption in that respect. It may
l)e doubtful whether we can consider the new parts, as thus hounded,

to be infinitely small even in tlieir earliest stages of development. But

if they are not infinitely small, the only way in which this can aftect

the validity of our formuhe will be that in virtue of the equations of

condition, i. e., in virtue of the evident necessities of the case, finite

variations of the energy, entropy, volume, etc., of the original parts

will be caused, to which it might seem that equation (12) would not

apply. But if the nature and state of the mass be not varied, equa-

tion (12) will hold true of finite dift'erences. (This appears at once,

if we integrate the equation under the above limitation.) Hence,

the equation will hold true for finite diiferences, provided that the

nature and state of the mass be infinitely little varied. For the dif-

ferences may be considered as made up of two parts, of which the

first are for a constant nature and state of the mass, and the second

are infinitely small. We may therefore regard the new parts to be

bounded as supposed without prejudice to the validity of any of our

results.

The condition (52) understood in either of these ways (or in

others which will suggest themselves to the reader) will have a per-

fectly definite meaning, and will be valid as the necessary and sufii-

cient condition of equilibi-ium in regard to the formation of new

parts, when the conditions of equilibrium in regard to tlie original

parts, (50), (51), and (43), are satisfied.

In regard tf) the condition (53), it may be shown that with (50),

(51), and (43) it is always suflicient for equilibrium. To prove this,

it is only necessary to show that when (50), (51), and (43) are satis-

fied, and (52) is not, (53) will also not be satisfied.

We will first observe that an expression of the form

_ e+ Tij- Pv^ J/, m^ + J/, "^2 • • • + -K i'^n (54)

denotes the work olnainable V)y the formation (by a reversible pro-

cess) of a body of which f, ;/, v, m^, in.^, . . . m„ are the energy,

entropy, volume, and the quantities of the components, within a

medium having the pressure P, the temperature 7] and tlie potentials

31 , J/2, . . . M„. (The medium is supposed so large that its prop-

erties are not sensibly altered in any part by the formation of the

body.) For f is the energy of the body formed, and the remaining

terms represent (as may be seen by applying equation (12) to the

medium) the decrease of the energy of the medium, if, after the
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formation of the body, the joint entropy of the medium and the

hody, their joint volumes and joint quantities of matter, were the

same as the entropy, etc., of the medium before the formation of the

body. Tliis consideration may convince us that for any given finite

values of v and of T, P, 31^ , etc. this expression cannot be infinite

when f, //, m,, etc. are determined by any real body, whether homo-

geneous or not, (but of the given volume), even when T, P, 3/j, etc.

do not represent the values of the temperature, pressure, and poten-

tials of any real substance. (If the substances *S',, /Sg, . . . S„ are

all actual components of any homogeneous part of the system of

which the equilibrium is discussed, that part will aiford an example

of a body having the temperature, pressure, and potentials of the

medium supposed.)

Now by integrating equation (12) on the supposition that the

nature and state of the mass considered i-emain unchanged, we obtain

the equation

which will hold true of any homogeneous mass whatever. Therefore

for any one of the original parts, by (50) and (51),

f - T)]-\-Pv-M^ m
J
- J/2 »«2 • • • — ^^n ^''„ = 0. (56)

If the condition (52) is not satisfied in regard to all possible new

parts, let JVhe a new part occurring in an original part O, for which

the condition is not satisfied. It is evident that the value of the

expression

s—Ti] + Pv - M^ m^ — 31^ m^ . . . —3f„m„ (57)

applied to a mass like including some very small masses like JV,

will be negative, and will decrease if the number of these masses like

JV is increased, until there remains within the whole mass no portion

of any sensible size without these masses like iV, which, it will be

remembered, have no sensible size. But it cannot decrease without

limit, as the value of (54) cannot become infinite. Now we need not

inquire whether the least value of (57) (for constant values of T, P,

M^, J/g* • • • -^^") would be obtained by excluding entirely the

mass like 0, and filling the whole space considered with masses like

iV, or whether a certain mixture would give a smaller value,—it is

certain that the least possible value of (57) per unit of volume, and

that a negative value, will be realized by a mass having a certain

homogeneity. If the new part iVfor which the condition (52) is not

satisfied occurs between two diflferent original parts 0' and 6>", the

aigument need not be essentially varied. We may consider the
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value of (57). for u body consisting of masses like O' and 0" sepa-

rated by a lamina i\^. This value may be decreased by^increasing

the extent of this lamina, which may be done within a given volume

by giving it a convoluted form ; and it will be evident, as before,

that the least possible value of (57) will be for a homogeneous mass,

and that the value will be negative. And such a mass will be not

merely an ideal combination, but a body capable of existing, for as the

expression (57) has for this mass in the state considered its least pos-

sible value per unit of volume, the energy of the mass included in a

unit of volume is the least possible for the same matter with the

same entropy and volume,—hence, if confined in a non-conducting

vessel, it will be in a state of not unstable equilibrium. Therefore

when (50), (51), and (43) are satisfied, if the condition (52) is not sat-

isfied in regard to all possible new parts, there will be some homo-

geneous body which can be formed out of the substances aS'^, ^Sg, . . .

S„ which will not satisfy condition (53).

Therefore, if the initially existing masses satisfy the conditions

(50), (51), and (43), and condition (53) is satisfied by every homoge-

neous body which can be formed out of the given matter, there will

be equilibrium.

On the other hand, (53) is not a necessary condition of equilibrium.

For we may easily conceive that the condition (52) shall hold true

(for any very small formations within or between any of the given

masses), while the condition (53) is not satisfied (for all large masses

formed of the given matter), and experience shows that this is very

often the case. Supersaturated solutions, superheated water, etc.,

are familiar examples. Such an equilibrium will, however, be practi-

cally unstalde. By this is meant that, although, strictly speaking,

an infinitely small disturbance or change may not be suflicient to

destroy the equilibrium, yet a very small change in the initial state,

perhaps a circumstance which entirely escapes our powers of percep-

tion, will be sufficient to do so. The presence of a small portion of

the substance for which tlie condition (53) does not hold true, is suffi-

cient to produce this result, when this substance forms a variable

component of the original homogeneous masses. In other cases,

when, if the new substances are formed at all, different kinds must be

formed simultaneously, the initial presence of the different kinds,

and that in immediate proximity, may be necessary.

It will be observed, that from (56) and (53) we can at once obtain

(50) and (51), viz., by applying (53) to bodies differing infinitely

little from the various homogeneous ])arts of the given mass. There-
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fore, the condition (56) (relating to the various homogeneous parts

of the given mass) and (53) (relating to any bodies which can be

formed of the given matter) with (43) are always sufficient for equi-

librium, and always necessary for an equilibrium which shall be

practically stable. And, if we choose, we may get rid of limitation

in regard to equations (43). For, if we compare these equations

with (38), it is easy to see that it is always immaterial, in applying

the tests (56) and (53) to any body, how we consider it to be com-

posed. Hence, in applying these tests, we may consider all bodies to

be composed of the ultimate components of the given mass. Then

the terms in (56) and (53) which relate to other components than

these will vanish, and we need not regard the equations (43). Such

of the constants M ^, M.^ . . . 3I„ as relate to the ultimate compo

ponents, may be regarded, like T and P, as unknown quantities sub-

ject only to the conditions (56) and (53).

These two conditions, which are sufficient for equilibrium and

necessary for a practically stable equilibrium, may be united in one,

viz., (if we choose the ultimate components of the given mass for

the component substances to which Wj, w-g, . . . m^ relate) that it

shall be possible to give such values to the constants T, P, J/j, J/2?

. . . M^ in the expi'ession (o*?) that the value of the expression for

each of the homogeneous parts of the mass in question shall be as

small as for any body whatever made of the same components.

Effect of Solidity of any Part of the given Mass.

If any of the homogeneous masses of which the equilibrium is in

question are solid, it will evidently be proper to treat the proportion

of their components as invariable in the application of the criterion

of equilibrium, even in the case of compounds of variable proportions.,

i. e., even when bodies can exist which are compounded in pro-

portions infinitesimally varied from those of the solids considered.

(Those solids which are capable of absorbing fluids form of course an

exception, so far as their fluid components are concerned.) It is true

that a solid may be increased by the formation of new solid matter

on the surface where it meets a fluid, which is not homogeneous with

the previously existing solid, but such a deposit will properly be

treated as a distinct part of the system, (viz., as one of the parts

which we have called new). Yet it is worthy of notice that if a homo-

geneous solid which is a compound of variable proportions is in

contact and equilibrium with a fluid, and the actual components of

the solid (considered as of variable composition) are also actual com-
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poiients of the fluid, and tlie condition (53) is satisfied in regard to
all bodies which can l)e formed out of the actual components of the
fluid, (which will ahvaj-s be the case unless the fluid is practically

unstable,) all the conditions will hold true of the solid, which would
be necessary for equilibrium if it were fluid.

This follows directly from the principles stated on the preceding
pages. For in this case the value of (57) will be zero as determined
either for the solid or for the fluid considered with reference to their

ultimate components, and will not be negative for any body Avhatever

which can be formed of these components; and these conditions are

sufficient for equilibrium independently of the solidity of one of the

masses. Yet the point is perhaps of sufficient importance to demand
a more detailed consideration.

Let xS„ . . . >% be the actual components of the solid, and aS'^, . . . S,,

its possible components (which occur as actual components in the

fluid); then, considering the proportion of the components of the

solid as variable, we shall have for this body by equation (12)

cW= t d)j - ^y civ' -f- //,/ dmJ . . . H- //; dm.J

+ pi/dm^' . . . i-jutdn^. (58)

By this equation the potentials j.ij . . . /u^.' are perfectly defined.

But the difierentials dm„' . . . dmi.', considered as independent, evi-

dently express variations w^hich are not possible in the sense required

in the criterion of equilibrium. We might, however, introduce them
into the genei-al condition of equilibrium, if we should express the

dependence between them by the j^roper equations of condition.

But it will be more in accordance with our method hitherto, if we
consider the solid to have only a single independently variable com-

ponent S^, of Avhich the nature is represented by the solid itself. We
may then write

6e'=t' dif — p' dv' -f- jjj 6niJ. (59)

In regard to the relation of the potential /^/ to the potentials occur-

ring in equation (58) it will be observed, that as we have by integra-

tion of (58) and (59)

a' =: t' if - p' v' -\- /.(„' mj . . . + pij nij, (60)

and e'= t' ?/ — p' v' + /jJ mj ; (61)

therefore /.tj jt/J = /.tj mj . . . -\-f.i,'m,'. (62)

Now, if the fluid has besides S^, . . . S,, and *S/, . . . S^. the actual

components S/ . . . /S„, we may write for the fluid



130 J W. Gibbs—Eqailibriain of Heterogeneous Substances.

+ 11," Sm," . . . + /.It" 6m,r-{-pi/' dm/' . . . + //„" f^?«„", (63)

and as by suppusition

nij ®^ = mj ©„...+ »'*</' ®.v (6*)

equations (43), (oO), and (51) will give in this ease on elimination of

the constants T, P, etc.,

t'=:t", p'=p", (65)

and
mj M.' = '".,' I-'.." • • +w^; //,/'• (66)

Equations (65) and (66) may be regarded as expressing the condi-

tions of equilibrium between the solid and the fluid. The last con-

dition may also, in virtue of (62), be expressed by the equation

w,,'//,,' . . . -j-n,; /.i; = mj /j„" . . . +';/*,>;'. (67)

But if condition (53) holds true of all bodies which can be formed

of «S'„ . . . S^, S,„ . . . iSi; S, . . . /8„, we may write for all such bodies

£ — t" ?/-\-p" V — //„" m„ ... — //,/' m„ — //;," nh

. . . — /V'w'i- — l-h' nil . . . M„"m„^ 0. (68)

(In applying this formula to various bodies, it is to be observed that

only the values of the unaccented letters are' to be determined by

the different bodies to which it is applied, the values of the accented

letters being already determined by the given fluid.) Now, by (60),

(65), and (67), the value of the first member of this condition is zero

when applied to the solid in its given state. As the condition must

hold true of a body differing infinitesimally from the solid, we shall

have

dt' — t" dif -\-p" di^' — l^i„" dnij . . . ^" dnij

— f.i,," dm,! ... - /V'fW= 0, (69)

or, by equations (58) and (65),

{l-i,,'— l^a') dm,; . . . -[_(//,/-;/;') c?;/,;

+ {Ih'-^u") dm,; ... 4- (/V-yWi") dm,'^ 0. (70)

Therefore, as these differentials are all independent,

^,; = Ma", • mJ= mJ\ M>'= /</'',
' • • Mh'^ /'x"; (71)

which with (65) are evidently the same conditions which we would

have obtained if we had neglected the fact of the solidity of one of

the masses.
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We have supposed the solid to be homogeneous. But it is evident

that in any case the above conditions must hold for every separate

point where the solid meets the fluid. Hence, the temperature and

pressure and the potentials for all the actual components of the solid

must have a constant value in the solid at the surface where it meets

the fluid. Now, these quantities are determined by the nature and

state of the solid, and exceed in number the independent variations

of which its nature and state ai'e capable. Hence, if we reject as

improbable the supposition that the nature or state of a body can

vary Avithout affecting the value of any of these quantities, we may
conclude that a solid which varies (continuously) in nature or state

at its surface cannot be in equilibrium with a stable fluid which con-

tains, as independently variable components, the variable components

of the solid. (There may be, however, in equilibrium with the same

stable fluid, a finite number of different solid bodies, composed of the

variable components of the fluid, and having their nature and state

completely determined by the fluid.)*

Effect of Additional Equations of Condition.

As the equations of condition, of which we have made use, are

such as always apply to matter enclosed in a rigid, impermeable, and

non-conducting envelop, the particular conditions of equilibrium

which we have found will always be sufficient tor equilibrium. But

the number of conditions necessary for equilibrium, will be dimin-

ished, in a case otherwise the same, as the number of equations

of condition is increased. Yet the problem of equilibrium which has

been treated will sufficiently indicate the method to be pursued in all

cases and the general nature of the results.

It will be observed that the position of the various homogeneous

parts of the given mass, which is otherwise immaterial, may deter-

mine the existence of certain equations of condition. Thus, when

difterent parts of the system in which a certain substance is a vari-

able component are entirely separated from one another by parts of

which this substance is not a component, the quantity of this sub-

stance will be invariable for each of the parts of the system which are

thus separated, which will be easily expressed by equations of condi-

tion. Other equations of condition may arise from the passive forces

.(or resistances to change) inherent in the given masses. In the prob-

* The solid has been considered as subject only to isotropic stresses. The effect of

other stresses will be considered hereafter.

Trans. Conn. Acad., Vol. III. 18 November, 1875.
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lem which we are next to consider there are eqnations of condition

due to a cause of a different nature.

Eff'ect of a Diaphragm {EqniUbrmm of Osmotic Forces).

If the given mass, enclosed as before, is divided into two parts,

each of which is homogeneous and fluid, by a diaphragm which is

capable of supporting an excess of pressure on either side, and is per-

meable to some of the components and impermeable to others, we

shall have the equations of condition

6,f-\-6v"=% (72)

(W=iO, 6v"=0, (73)

and for the components which cannot pass the diaphragm

6mJ=0, dmj'=0, Sm,,'= 0, Sm,," z=0, etc., (74)

and for those which can

dm,,' + d)j/,"= 0, Sm/ -f Stn/' = 0, etc. (75)

With these equations of condition, the general condition of equilib-

rium (see (15)) will give the following particular conditions:

t'= t", (76)

and for the components which can pass the diaphragm, if actual com-

ponents of both masses,

/'//=/'/', Mt'=^h", etc., (77)

but not 2^'= p"
>

nor iA,lz=if.i^\ i.(f;
= ii,'\ etc.

Again, if the diaphragm is pei'meable to the components in certain

proportions only, or in proportions not entirely determined yet sub-

ject to certain conditions, these conditions may be expressed by

equations of condition, which will be linear equations between 6m^\

Sm^'t etc., and if these be known the deduction of the i^articular con-

ditions of equilibrium will present no difficulties. We will however

observe that if the components aS',, S2, etc. (being actual components

on each side) can pass the diaphragm simultaneously in the propor-

tions a
J,

a^, etc. (without other resistances than such as vanish with

the velocity of the current), values proportional to a^, a^, etc. are

possible for dni^\ Sm^', etc. in the general condition of equilibrium,

6m ^", Sm^"^ etc. having the same values taken negatively, so that

we shall have for one particular condition of equilibrium

^1 /'/+ "2 '"2' + ^^^- — '-^1 " 1" + ^h Ih" -^ etc. (78)

There will evidently be as many independent equations of this form
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as there are independent combinations of the elements which can

pass the diaj^hragra.

These conditions of equilibrium do not of course depend in any

way upon the supposition that the volume of each fluid mass is kept

constant, if the diaphragm is in any case supposed immovable. In

fact, we may easily obtain the same conditions of equilibrium, if we

suppose the volumes variable. In this case, as the equilibrium must

be preserved by forces acting upon the external surfaces of the fluids,

the variation of the energy of the sources of these forces must appear

in the general condition of equilibrium, which will be

6t'-\-6e" -^P' dv'-ifP" SV'^O, (79)

JP and P" denoting the external forces per unit of area. (Compare

(14).) From this condition we may evidently derive the same

internal conditions of equilibrium as before, and in addition the

external conditions
p' — P\ p"z=P". (80)

In the preceding paragraphs it is assumed that the permeability of

the diajjhragm is perfect, and its impermeability absolute, i. e., that it

offers no resistance to the passage of the components of the fluids in

certain proportions, except such as vanishes with the velocity, and

that in other proportions the components cannot pass at all. How
far these conditions are satisfied in any particular case is of course to

be determined by experiment.

If the diaphragm is permeable to all the n components without

restriction, the temperature and the potentials for all the components

must be the same on both sides. Now, as one may easily convince

himself, amass having n components is capable of only /i + 1 inde-

pendent variations in nature and state. Hence, if the fluid on one

side of the diaphragm remains without change, that on the other side

cannot (in general) vary in nature or state. Yet the pressure will

not necessarily be the same on both sides. For, although the pres-

sure is a function of the temperature and the n potentials, it may be

a many-valued function (or any one of several functions) of these

variables. But when the pi-essures are different on the two sides,

the fluid which has the less pressure will be practically unstable, in

the sense in which the term has been used on page 133. For

£"_?;" 7/' +/>"?/'—/.</'»*,"— /1
2" ??^2" . . . — //„"/>/„"= 0, (SI)

as appears from equation (12) if integrated on the supposition that

the nature and state of the mass remain unchanged. Therefore, if

p<}j" while t'-t'\ ;t,'= ;:,", etc.
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f," _t' //' -\-p'v"- /.i^'m," - J^to'ms" . . . - /-'n m„" <^0. (82)

This relation indicates the instability of tlie fluid to which the single

accents refer. (See page 133.)

But independently of any assumption in regard to the permeability

of the diaphragm, the following relation will hold true in any case in

which eacli of the two fluid masses may be regarded as unifonn

throughout in nature and state. Let the character d be used with

the variables which express the nature, state, and quantity of the

fluids to denote the increments of the values of these quantities actu-

ally occurring in a time either flnite or infinitesimal. Then, as the

heat received by the two masses cannot exceed t'T>}/ -\-t" v>if', and as

the increase of their energy is equal to the difference of the heat

they receive and the work they do,

Di' + T>b" -St' litf + «"d//'— />'du'— p"iyv", (83)

i.e., by (12),

yu,'Dm,'+/(i"Dm/' + //2'n?;4' + /<2"Dm2" + etc. ^0, (84)

or
(///' — ///) r.m/'+ (/^2"-/^2') ^>m,"+ etc. ^0. (85)

It is evident that the sign = liolds true only in the limiting case in

which no motion takes place.

DEFINITION AND PROPERTIES OF FUNDAMENTAL EQUATIONS.

The solution of the problems of equilibrium which we have been

considering has been made to depend upon the equations which

express the relations between the energy, entropy, volume, and the

quantities of the various components, for homogeneous combinations

of the substances which are found in the given mass. The nature of

such equations must be determined by experiment. As, however, it

is only differences of energy and of entropy that can be measured, or

indeed, that have a physical meaning, the values of these quantities

are so far arbitrary, that we may choose independently for each

simple substance the state in which its energy and its entropy are

both zero. The values of the energy and .the entropy of any com-

pound body in any particular state will then be fixed. Its energy

will be the sum of the work and heat expended in bringing its com-

ponents from the states in which their energies and their entropies

are zero into combination and to the state in question ; and its

entropy is the value of the integral / — for any reversible process
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by which that change is effected [dQ denoting an element of the

heat communicated to the matter thns treated, and t the temperature

of the matter receiving it). In the determination botli of the energy

and of the entropy, it is understood that at the close of the process,

all bodies whicli have been used, other than those to which the deter-

minations relate, have been restored to their original state, with the

exception of the sources of the work and heat expended, which must

be used only as such sources.

We know, however, a priori, that if the quantity of any homoge-

neous mass containing it. independently variable components varies

and not its nature or state, the quantities f, ?/, v, »i,, m^, . . . ni„ will

all vary in the same proportion ; therefore it is sufficient if we learn

from experiment the relation between all but any one of these quan-

tities for a given constant value of that one. Or, we may consider

that we have to learn from experiment the relation subsisting

between the n i- 2 ratios of the n -{- 3 quantities f, //, v, m^, ra^,

. . . m„. To fix our ideas we may take for these ratios , -, —?, —-.

etc., that is, the separate densities of the components, and the ratios

£ If
- and -, which may be called the densities of energy and entropy.

But when there is but one comj^onent, it may be more convenient to

choose — , — , — as the three variables. In any case, it is only a func-m ni, ni j 7 .,

tion of w. -f- 1 independent variables, of which the form is to be deter-

mined by experiment.

Now if £ is a known function of ;/, w, m^, m^, . . . m^, as by equa-

tion (12)

de-=.td)] - p dv + // , dm j
-|- /ig ^^2 • • • + /v„ dm„, (86)

t,p,' 1^1, ^2') • • • A'n ^'"^ functions of the same variables, which may
be derived from the original function by differentiation, and may
therefore be considered as known functions. This will make n -\- S

independent known relations between the 2n + 5 variables, e, /;, v

m^, 7712, • • • "^n» t,P, /-^i-, 1^2, /'n- These are all that exist, for

of these variables, n + 2 are evidently independent. Now upon

these relations depend a very large class of the properties of the

compound considered, —we may say in general, all its thermal,

mechanical, and chemical properties, so far as active tendencies are

concerned, in cases in which the form of the mass does not require

consideration. A single equation from which all these relations may
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be deduced we will call a fundamental equation for the substance in

question. We shall hereafter consider a more general form of the fun-

damental equation for solids, in which the pressure at any point is not

supposed to be the same in all directions. But for masses subject only

to isotropic stresses an equation between f, //, w, m^,m^, . . . m„ is

a fundamental equation. There are other equations which possess

this same property.*

Let
'/'=f-^'A (87)

then by differentiation and comparison with (86) we obtain

d ij' =z — i/dt — pdv -f- /^j dni^ -\- m^ dm^ . . . + /.i^dm^. (88)

If, then, y- is known as a function of t, v, m^, m.^, . . . m„, we can

find If, p, J-i 1, /'>, • • A'n i" terms of the same variables. If we then

substitute for //' in our original equation its value taken from eq. (87),

we shall have again 7i -\- 3 independent relations between the same

2n + 5 variables as before.

Let
X=£+pv, (89)

then by (86),

dx — tdi] + V dp 4-/^1 dm^ + //g dm^ ... -|- //„ drn^. (90)

If, then, X be known as a function of }i,p, m^, m.^, . , . rn„, we can

find t, V, yUj, /<2» • • • /^n i" terms of the same variables. By elimi-

nating J, we may obtain again n + 3 independent relations between

the same 2?/ + 5 variables as at first.

Let
^ = e - ttf +pv, (91)

then, by (86)

di^=:. — ffdt + V dp + ;<j dm^ + 1.(2 dm „ . . . + ^^dm^. (92)

If, then, ^ is known as a function of ^, /?, mj, mg, . . . ;;?„, we can

* M. Massieu (Comptes Rendus, T. Ixix, 1869, p. 858 and p. 1057) has shown

how all the properties of a fluid " which are considered in thermodynamics" may be

deduced from a single function, which he calls a characteristic function of the fluid

considered. In the papers cited, he introduces two different functions of this kind

;

viz., a function of the temperature and volume, which he denotes by 1/), the value of

— t + tn ~ f
which in our notation would be 7 or —r— ;

and a function of the temperature

and pressure, which he denotes by V^', the value of which in our notation would be

— e + tr/ —pv — C
1 or -7-. In both cases he considers a constant quantity (one kilogram)

of the fluid, which is regarded as invariable in composition.
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find If, V, yUj, /.i.j,, • • • Mn i^i terms of the same variables. By elimi-

nating C, we may obtain again n -{- S independent relations between

the same 2n + 5 variables as at first.

If we integrate (86), supposing the quantity of the compound sub-

stance considered to vary from zero to any finite value, its nature

and state remaining unchanged, we obtain

s=ztff — pv + /^ 1 in
J + //^ »« 3 . . . + //„ ?n„, (93

)

and by (87), (89), (91)

Tlie last three equations may also be obtained directly by integrating

(88), (90), and (92).

If we differentiate (93) in the most general manner, and compare

the result with (86), we obtain

— V dp -\- tjdt + m^ dfi^ -\- in^ dji^ . . . + )n„dii„-=. 0, (97)
or

dp=i- dt H
i

<?/<! H df.i^ . . . H df.1^ = 0. (98)

Hence, there is a relation between the n + 2 quantities t, p, jli^, fi.^,

. . . yt/„, which, if known, will enable us. to find in terms of these quan-

tities all the ratios of the n + 2 quantities //, v, m^, m^ . . . m„.

With (93), this will make n + S independent relations between the

same 2n + 5 variables as at first.

Any equation, therefore, between the quantities

+ /v„ m„.
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the subscript nuraertils refer, (but not excluding tlie case in which

// z= 1 and the composition of tlie body is invariable,) there is a rela-

tion between the quantities enumerated in any one of the above sets,

from which, if known, with the aid only of general principles and

relations, we may deduce all the relations subsisting for such a mass

between the quantities e, i/-, x, I', '/, v, rjt ^, m.^, . . , ///„, t, p, /.ij, ju.^,

. . . //„. It will be observed that, besides the equations which

define i/:, x, and 'C, there is one finite equation, (93), which subsists

between these qiiantities independently of the form of the fundamental

equation.

Other sets of quantities might of course be added which possess

the same property. The sets (100), (101), (102) are mentioned on

account of the important properties of the quantities i/-, j, 'Q, and

because the equations (88), (90), (92), like (86), ufiTord convenient

definitions of the potentials, viz.,

;,,=(*) ={'PL) =(m =(^) (104)

etc., where the subscript letters denote the quantities which remain

constant in the differentiation, m being written for brevity for all the

letters m^, mg, . . . in„ except the one occurring in the denominator.

It will be observed that the quantities in (103) are all independent

of the quantity of the mass considered, and are those which must, in

general, have the same value in contiguous masses in equilibrium.

0)1 the quantities i/\ j, t.

The quantity //' has been defined for any homogeneous mass by the

equation

if'
-€ ~ tt]. (105)

between



J. W. Gihbs—Equilibrium of Heterogeneous Substances. 145

We may extend this definition to any material system whatever
which has a nniform temperature throughout.

If we compare two states of the system of the same temperature,

we have

f-f' = f'- 6" -?;(;/ -,/'). (106)

If we suppose the system brought from the first to the second of

these states without change of temperature and by a reversible pro-

cess in which W is the work done and Q the heat received by the

system, then

£'-f":rrTF- Q, (107)

and t{if' ^ i/)=Q. (108)
Hence

//''-//'" = IF; (109)

and for an infinitely small reversible change in the state of the

system, in which the temperature remains constant, we may write

~dip = dW. (110)

Therefore, — //' is the force function of the system for constant

temperature, just as — £ is the force function for constant entropy.

That is, if we consider if: as a function of the temperatm-e and the

variables which express the distribution of the matter in space, for

every different value of the temperature — ?/' is the different force

function required by the system if maintained at that special

temperature.

From this we may conclude that when a system has a uniform

temperature throughout, the additional conditions which are necessary

and sufficient for eqiiilibrium may be expressed by

(d^')<^0-* (111)

* This general condition of equilibrium might be used instead of (2) in such prob-

lems of equilibrium as we have considered and others which we shall consider here-

after with evident advantage in respect to the brevity of the formulas, as the limitation

expressed by the subscript i in (111) applies to every part of the system taken sepa-

rately, and diminishes by one the number of independent variations in the state of

these parts which we have to consider. The more cumbersome course adopted in this

paper has been chosen, among other reasons, for the sake of deducing all the particular

conditions of equilibrium from one general condition, and of having the quantities

mentioned in this general condition such as are most generally used and most simply

defined ; and because in the longer formulae as given, the reader will easily see in each

case the form which they would take if we should adopt (111) as the general condi-

tion of equilibrium, which would be in effect to take the thermal condition of equilibrium

for granted, and to seek only the remaining conditions. For example, in the problem

treated on pages 116 fE., we would obtain from (111) by (88) a condition precisely like

(15), except that the terms 16?]', tSrj"^ etc. would be wanting.

Trans. Conn. Acad., Vol. III. 19 January, 1876.
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When it is not possible to bring the system from one to the other

of the states to which //'' and '/'" relate by a reversible process without

altering the temperature, it will be observed that it is not necessary

for the validity of (107)-(109) that the temperature of the system

should remain constant during the reversible process to which TTand

Q relate, provided that the only source of heat or cold used has the

same temperature as the system in its initial or final state. Any

external bodies may be used in the process in any Avay not affect-

ing the condition of reversibility, if restored to their original con-

dition at the close of the process ; nor does the limitation in regard

to the use of heat apply to such heat as may be restored to the

source from which it has been taken.

It may be interesting to show directly the equivalence of the condi-

tions (111) and (2) when applied to a system of which the temperature

in the given state is uniform throughout.

If there are any variations in the state of such a system which do

not satisfy (2), then for these variations

6e<Q and 6}] = Q.

If the temperature of the system in its varied state is not uniform,

we may evidently increase its entropy without altering its energy

by supposing heat to pass from the warmer to the cooler parts.

And the state having the greatest entropy for the energy f -|- (Je will

necessarily be a state of uniform temperature. For this state (regarded

as a variation from the original state)

dE<Q and 6i]>Q.

Hence, as we may diminish both the energy and the entropy by cool-

ino- the system, there must be a state of uniform temperature for

which (regarded as a variation of the original state)

rff < and (J// = 0.

From this we may conclude that for systems of initially uniform tem-

perature condition (2) will not be altered if we limit the variations

to such as do not disturb the uniformity of temperature.

Confining our attention, then, to states of uniform temperature, we

have by differentiation of (105)

6s - tdi}=dil^-\-})dt. (112)

Now there are evidently changes in the system (produced by heating

or cooling) for which

de - t (h/ = and therefore Si/^ -[-7jdt=:0, (113)
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neither S/; nor dt having the value zero. This consideration is suffi-

cient to show that the condition (2) is equivalent to

de — tdf/^0. (114)

and that the condition (111) is equivalent to

Sif^-^}/6t^0 . (115)

and by (112) the two last conditions are equivalent.

In such cases as we have considered on pages 115-137, in which

the form and position of the masses of which the system is composed

is immaterial, uniformity of temperature and pressure are always

necessary for equilibrium, and the remaining conditions, when these

are satisfied, may be conveniently expressed by means of the func-

tion ?, which has been defined for a homogeneous mass on page 142,

and which we will here define for any mass of uniform temperature

and pressure by the same equation

t,^£ — ttj-\-pv. (Ii6)

For such a mass, the condition of (internal) equilibrium is

m,,^o. (117)

That this condition is equivalent to (2) will easily appear from con-

siderations like those used in respect to (111).

Hence, it is necessary for the equilibrium of two contiguous masses

identical in composition that the values of C as determined for equal

quantities of the two masses should be equal. Or, when one of three

contiguous masses can be formed out of the other two, it is necessary

for equilibrium that the value of C for any quantity of the first mass

should be equal to the sum of the values of t. for such quantities of the

second and third masses as together contain the same matter. Thus,

for the equilibrium of a solution composed of a parts of water and b

parts of a salt which is in contact with vapor of water and crystals of

the salt, it is necessary that the value of t, for the quantity a-\-b oi the

solution should be equal to the sum of the values of C for the quanti-

ties a of the vapor and b of the salt. Similar propositions will hold

true in more complicated cases. The reader will easily deduce these

conditions from the particular conditions of equilibrium given on

page 128.

In like manner we may extend the definition of x to any mass or

combination of masses in which the pressure is everywhere the same,

using e for the energy and v for the volume of the whole and setting

as before

X=e-\-pv. (118)
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If we denote by Q the heat received by the combined masses from

external sources in any process in which the pressure is not varied,

and distinguish the initial and final states of the system by accents

we have
/' - / = 6" - 6' +p {v" - v') = Q. (119)

This function may therefore be called the heat function for constant

pressure (just as the energy might be called the heat function for

constant volume), the diminution of the function representing in all

cases in which the pressure is not varied the heat given out by the

system. In all cases of chemical action in which no heat is allowed

to escape the value of j remains unchanged.

POTENTIALS.

In the definition of the potentials /i^, /Yg, etc., the energy of a

homogeneous mass was considered as a function of its entropy, its

volume, and the quantities of the various substances composing it.

Then the potential for one of these substances was defined as the dif-

ferential coefficient of the energy taken with respect to the variable

expressing the quantity of that substance. Now, as the manner in

which we consider the given mass as composed of various substances

is in some degree arbitrary, so that the energy may be considered as

a function of various different sets of variables expressing quantities

of component substances, it might seem that the above definition

does not fix the value of the potential of any substance in the given

mass, until we have fixed the manner in which the mass is to be con-

sidered as composed. For example, if we have a solution obtained

by dissolving in water a certain salt containing water of crystalliza-

tion, we may consider the liqviid as composed of nig weight-units of the

hydrate and myy of water, or as composed of m, of the anhydrous

salt and w„, of water. It will be observed that the vahies of m,, and

m, are not the same, nor those of m„- and m,,,, and hence it might

seem that the potential for water in the given liquid considered as

composed of the hydrate and water, viz.,

(^\
\d»ijy/fi, V, ms

would be different from the potential for water in the same liquid con-

sidered as composed of anhydrous salt and water, viz.,
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The value of the two expressions is, however, the same, for, although

?>?„• is not equal to w„,, we may of course suppose chuyy to he equal to

clm^, and then the numerators in the two fractions will also be equal,

as they each denote the increase of energy of the liquid, when the

quantity (hn^y or drn^, of water is added without altering the entropy

and volume of the liquid. Precisely the same considerations will

apply to any other case.

In fact, we may give a definition of a potential which shall not pre-

suppose any choice of a particular set of substances as the components

of the homogeneous mass considered.

Definition.—If to any homogeneous mass we suppose an infinitesi-

mal quantity of any substance to be added, the mass remaining

homogeneous and its entropy and volume remaining unchanged, the

increase of the energy of the mass divided by the quantity of the

substance added is the potential for that substance in the mass con-

sidered. (For the purposes of this definition, any chemical element or

combination of elements in given proportions may be considered a

substance, whether capable or not of existing by itself as a homoge-

neous body.)

In the above definition we may evidently substitute for entropy,

volume, and energy, respectively, either temperature, volume, and

the function ij-
; or entropy, pressure, and the function x ; or tempera-

ture, pressure, and the function ;;. (Compare equation (104).)

In the same homogeneous mass, therefore, we may distinguish the

potentials for an indefinite number of substances, each of which has a

perfectly determined value.

Between the potentials for diiferent substances in the same homo-

geneous mass the same equations will subsist as between the units

of these siibstances. That is, if the substances, *S„, /S',„ etc., ^S^, Si, etc.,

are components of any given homogeneous mass, and are such that

a 2„ + /^ g, + etc. = n ©, + ^ ©/+ etc., (120)

©a, S45 etc., 2i, S/, etc. denoting the units of the several substances,

and «, /j, etc., «, A, etc. denoting numbers, then if /<„, ^,„ etc., /z^, /^„

etc. denote the potentials for these substances in the homogeneous

mass,
a i-ia+ /^ yWi + etc. = H f-ik + A /^, + etc. (121)

To show this, we will suppose the mass considered to be very large.

Then, the first number of (121) denotes the increase of the energy of

the mass produced by the addition of the matter represented by the

first member of (120), and the second member of (121) denotes the
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increase of energy of the same mass produced by the addition of the

matter represented by the second member of (120), the entropy and

volume of the mass remaining in each case unchanged. Therefore, as

the two members of (120) represent the same matter in kind and

quantity, the two members of (121) must be equal.

But it must be understood that equation (120) is intended to

denote equivalence of the substances represented in the mass con-

sidered, and not merely chemical identity ; in other words, it is sup-

posed that there are no passive resistances to change in the mass

considered which prevent the substances represented by one member

of (120) from passing into those represented by the other. For

example, in respect to a mixture of vapor of water and free hydrogen

and oxygen (at ordinary temperatures), we may not write

but water is to be treated as an independent substance, and no neces-

sary relation will subsist between the potential for water and the

potentials for hydrogen and oxygen.

The reader will observe that the relations expressed by equations

(43) and (51) (which are essentially relations between the poten-

tials for actual components in different parts of a mass in a state of

equilibrium) are simply those which by (121) would necessary sub-

sist between the same potentials in any homogeneous mass containing

as variable components all the substances to which the potentials

relate.

In the case of a body of invariable composition, the potential for

the single component is equal to the value of t, for one unit of the

body, as appears from the equation

1;=: /.nn (122)

to which (96) reduces in this case. Therefore, when n = \, the fun-

damental equation between the quantities in the set (102) (see page

143) and that between the quantities in (103) may be derived either

from the other by simple substitution. But, with this single excep-

tion, an eqiiation between the quantities in one of the sets (99)-(103)

cannot be derived from the equation between the quantities in

another of these sets without differentiation.

Also in the case of a body of variable composition, when all the

quantities of the components except one vanish, the potential for

that one will be equal to the value of t, for one unit of the body.

We may make this occur for any given composition of the body by
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choosing as one of the components the matter constituting the body

itself, so that the value of ? for one unit of a body may always be

considered as a potential. Hence the relations between the values of

? for contiguous masses given on page 1 47 may be regarded as rela-

tions between potentials.

The two following propositions afford definitions of a potential

which may sometimes be convenient.

The potential for any substance in any homogeneous mass is equal

to the amount of mechanical work required to bring a unit of the

substance by a reversible process from the state in which its energy

and entropy are both zei'o into combination with the homogeneous

mass, which at the close of the process must have its original volume,

and which is supposed so large as not to be sensibly altered in any

part. All other bodies used in the process must by its close be

restored to their oi'iginal state, except those used to supply the

work, which must be used only as the source of the work. For, in

a reversible process, when the entropies of other bodies are not

altered, the entropy of the substance and mass taken together will

not be altered. But the original entropy of the substance is zero;

therefore the entropy of the mass is not altered by the addition of the

substance. Again, the work expended will be equal to the increment

of the energy of the mass and substance taken together, and therefore

equal, as the original energy of the substance is zero, to the increment

of energy of the mass due to the addition of the substance, which by

the definition on page 149 is equal to the potential in question.

The potential for any substance in any homogeneous mass is equal

to the work required to bring a unit of the substance by a reversible

process from a state in which //' = and the temperature is the same

as that of the given mass into combination with this mass, which at

the close of the process must have the same volume and temperature

as at first, and which is supposed so large as not to be sensibly

altered in any part. A source of heat or cold of the temperature

of the given mass is allowed, with this exception, other bodies are

to be used only on the same conditions as before. This may be

shown by applying equation (109) to the mass and substance taken

together.

The last proposition enables us to see very easily, how the value of

the potential is affected by the arbitrary constants involved in the

definition of the energy and the entropy of each elementary sub-

stance. For we may imagine the substance brought from the state

in which tp=zQ and the temperature is the same as that of the given
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mass, first to any specified state of the same temperature, and then

into combination with the given mass. In the first part of the pro-

cess the work expended is evidently represented by the value of y.'

for the unit of the substance in the state specified. Let this be

denoted by </'', and let /< denote the potential in question, and W the

work expended in bringing a unit of the substance from the specified

state into combination with the given mass as afoi-esaid ; then

lx=ip'-^W. (123)

Now as the state of the substance for which 6=0 and ?/= is

arbitrary, we may simultaneously inci-ease the energies of the unit of

the substance in all possible states by any constant C, and the

entropies of the substance in all possible states by any constant K.

The value of //•, or £ — t //, for any state would then be increased by

C -^ t K, t denoting the temperature of the state. Applying this

to if:' in (123) and observing that the last term in this equation is

independent of the values of these constants, we see that the potential

would be increased by the same quantity C — t K, t being the tem-

perature of the mass in which the potential is to be determined.

ON COEXISTENT PHASES OF MATTER.

In considering the different homogeneous bodies which can be

formed out of any set of component substances, it will be convenient

to have a term which shall refer solely to the composition and ther-

modynamic state of any such body without regard to its quantity or

form. We may call such bodies as differ in composition or state dif-

ferent phases of the matter considered, regarding all bodies which

differ only in quantity and form as different examples of the same

phase. Phases which can exist together, the dividing surfaces being

plane, in an equilibrium which does not depend upon passive resist-

ances to change, we shall call coexistent.

If a homogeneous body has n independently variable components,

the phase of the body is evidently capable of n. -|- 1 independent vari-

ations. A system of r coexistent phases, each of which has the same

n independently variable components is capable of « + 2 — r varia-

tions of phase. For the temperature, the pressure, and the poten-

tials for the actual components have the same values in the different

phases, and the variations of these quantities are by (97) subject to

as many conditions as there are different phases. Therefore, the num-

ber of independent variations in the values of these quantities, i. e.,

the number of independent variations of phase of the system, will be

n+2 -r.
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Or, when the r bodies considered have not the same independently-

variable components, if we still denote by n the number of indeperud-

ently variable components of the r bodies taken as a whole, the

number of independent variations of phase of which the system is

capable will still be w+2 — r. In this case, it will be necessary to

consider the potentials for more than 71 component substances. Let

the number of these potentials be n-\-h. We shall have by (97), as

before, r relations between the variations of the temperature, of the

pressure, and of these n-^h potentials, and we shall also have by (43)

and (51) h relations between these potentials, of the same form as the

relations which subsist between the units of the different component

substances.

Hence, if r = w + 2, no variation in the phases (remaining coex-

istent) is possible. It does not seem probable that r can ever exceed

n + 2. An example of nz=.\ and rz=.Z is seen in the coexistent solid,

liquid, and gaseous forms of any substance of invariable composition.

It seems not improbable that in the case of sulphur and some other

simple substances there is more than one triad of coexistent phases

;

but it is entirely improbable that there are four coexistent phases of

any simple substance. An example of /i = 2 and r-=.4: \s seen in a

solution of a salt in water in contact with vapor of water and two

different kinds of crystals of the salt.

Concerning n -{- \ Coexistent Phases.

We will now seek the differential equation which expresses the

relation between the variations of the tem})erature and the pressure

in a system of w -f 1 coexistent phases [n denoting, as before, the

number of independently variable components in the system taken as

a whole).

In this case we have n + 1 equations of the general form of (97)

(one for each of the coexistent phases), in which we may distinguish

the quantities //, v, m^, Wg, etc. relating to the different phases by

accents. But t and^ will each have the same value throughout, and

the same is true of /Vj, /'g, etc., so far as each of these occurs in the

different equations. If the total number of these potentials is n + h,

there will be h independent relations between them, corresponding to

the h independent relations between the units of the component sub-

stances to which the potentials relate, by means of which we may

eliminate the variations of h of the potentials from the equations of

the form of (97) in which they occur.

Trans. Conn. Acad., Vol. III. 20 January, 1876.
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Let one of these equations be

v' dp=z 7]' dt + mj djj>a + "Tin-i df.ii + etc., (124)

and by the proposed elimination let it become

v' dp= If dt + A^' dj-i^ + A^ df.i2 . . . + A„' d/.j„. (125)

It will be observed that //„, for example, in (124) denotes the poten-

tial in the mass considered for a substance *S'„ which may oi- may not

be identical with any of the substances S^, S2, etc. to which the

potentials in (125) relate. Now as the equations between the poten-

tials by means of which the elimination is performed are similar to

those which subsist between the units of the corresponding sub-

stances, (compare equations (38), (43), and (51),) if we denote these

units by (Sa, ©4, etc., ©i, ©g, etc., we must also have

m„'(S„ + m;®,, + etc. = .4j'(5i-|-^2'®2 • • • +^J„'®„- (126)

But the first member of this equation denotes (in kind and quantity)

the matter in the body to which equations (1 24) and (125) relate. As

the same must be true of the second memV)er, we may regard this same

body as composed of the quantity A ^' of the substance aS,, with the

quantity A^' of the substance 1S2, etc. We will therefore, in accord-

ance with our general xisage, write m^' tn^', etc. for A^', A2', etc. in

(125), which will then become

v' dp = 7/ dt -f »2i' d/.i^ + m^ dyi^ • • • + "*«' d^^- (127)

But we must remember that the components to which the m/, mg',

etc. of this equation relate are not necessarily independently variable,

as are the components to which the similar expressions in (9V) and

(124) relate. The rest of the /i + 1 equations may be reduced to a

similar form, viz.,

v" dp = 7f dt -\- m^" di-i^ ^-m^'dj.i^ . . +m„"dp„, (128)

etc.

By elimination of f?/< j, d/^i^, . . . dfi„ from these equations we obtain

v m
v" m
v'" rn

'"n
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When n=L 1,

{m" v' ~ m' v") dp = {m" if - m //") dt, (130)

or, if we make ni' =. 1 and m" =. 1, we liave the usual formula

dt v'-v" t{v"-v'y ^ ^

in which Q denotes the heat absorbed by a unit of the substance in

passing from one state to the other without change of temperature or

pressure.

Co7icerning Cases in which the Number of Coexistent Phases is less

than /i-J- 1.

When M> 1, if the quantities of all the components /S'j, /Sg, . . . S„

are proportional in two coexistent phases, the two equations of the

form of (127) and (128) relating to these phases will be sufficient

for the elimination of the variations of all the potentials. In fact,

the condition of the coexistence of the two phases together with the

condition of the equality of the n — 1 ratios of «*/, m^ ^ , . . m„'

with the n — \ ratios of m^\
^'^-z" > • • • ''*"' ^^ sufficient to detei'mine

/> as a function of t if the fundamental equation is known for each of

the phases. The ditferential equation in this case may be expressed

in the form of (130), m' and m" denoting either the quantities of any

one of the components or the total quantities of matter in the bodies

to which they relate. Equation (131) will also hold true in this case,

if the total quantity of matter in each of the bodies is unity. But

this case differs from the preceding in that the matter which absorbs

the heat Q in passing from one stat j to another, and to which the other

letters in the formula relate, alt-iough the same in quantity, is not in

general the same in kind at different temperatures and pressures.

Yet the case wall often occur that one of the phases is essentially

invariable in composition, especially when it is a crystalline body,

and in this case the matter to which the letters in (131) relate will

not vary with the temperature and pressure.

When n = 2, two coexistent phases are capable, when the temper-

ature is constant, of a single variation in phase. But as (130) will

hold true in this case when m/ : m^' : : m^" : m^", it follows that for

constant temperature the pressure is in general a maximum or a min-

imum when the composition of the two phases is identical. In like

manner, the temperature of the two coexistent phases is in general a

maximum or a minimum, for constant pi-essure, when the composition

of the two phases is identical. Hence, the series of simultaneous

values of t and p for which the composition of two coexistent phases
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is identical separates those simultaneous values of t and p for which

no coexistent phases are possible from those for which there are two

pair of coexistent phases. This may be applied to a liquid having

two independently variable compouents in connection with the vapor

which it yields, or in connection with any solid which may be formed

in it.

When n = 3, we have for three coexistent phases three equations

of the form of (127), from which we may obtain the following,

V rn

v" m
v'" rn

dp=i dt--\- m.

tn.

djJi^. (132)

Now the value of the last of these determinants will be zero, when

the composition of one of the three phases is such as can be produced

by combining the other two. Hence, the pressure of three coexistent

phases will in general be a maximum or minimum for constant tem-

perature, and the temperature a maximum or minimvim for constant

pressure, when the above condition in regard to the composition of

the coexistent phases is satisfied. The series of simultaneous values

of t and p for which the condition is satisfied separates those simul-

taneous values of t and p for which three coexistent phases are not

possible, from those for which there are two triads of coexistent

phases. These propositions may be extended to higher values of ;i,

and illustrated by the boiling temperatures and pressures of saturated

solutions of ?^ — 2 different solids in solvents having two independ-

ently variable components.

INTERNAL STABILITY OF HOM()(iENEOUS FLUIDS AS INDICATED BY

FUNDAMENTAL EQUATIONS.

We will now consider the stability of a fluid enclosed in a rigid

envelop which is non-conducting to heat and impermeable to all the

components of the fluid. The fluid is supposed initially homogeneous

in the sense in which we have before used the word, i. e., uniform in

every respect throughout its whole extent. Let <Sj, S.^., , . . >S„ be

the ultiiiiate components of the fluid ; we may then consider every

body which can be formed out of the fluid to be composed of S^, S2,

. . . aS„, and that in only one way. Let m^, m^, . . . m„ denote

the quantities of these substances in any such body, and let f, ?/, v,

denote its energy, entropy, and volume. The fundamental equation

for compounds of iS^, ^.Sg, . . . S„, if completely determined, will give

us all possible sets of simultaneous values of these variables for homo-

geneous bodies.
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Now, if it is possible to assign such values to the constants T, F,
M^, J/2, . . . 3f„ that the value of the expression

^ - T,/-\-Pv ~ J/, m, - 3/2 W2 . . . - 3f„m„ (133)

shall be zero for the given fluid, and shall be positive for every other

phase of the same
' components, i. e., for every homogeneous body*

not identical in nature and state with the given fluid (but composed
entirely oi S^, S^, . . . /S„), the condition of the given fluid will be
stable.

For, in any condition whatever of the given mass, whether or not

homogeneous, or fluid, if the value of the expression (133) is not

negative for any homogeneous part of the mass, its value for the

whole mass cannot be negative ; and if its value cannot be zero for

any homogeneous part which is not identical in phase with the mass
in its given condition, its value cannot be zero for the whole except

when the whole is in the given condition. Therefore, in the case

supposed, the value of this expression for any other than the given

condition of the mass is positive. (That this conclusion cannot be

invalidated by the fact that it is not entirely correct to regard a

composite mass as made up of homogeneous parts having the

same properties in respect to energy, entropy, etc., as if they were

parts of larger homogeneous masses, will easily appear from consider-

ations similar to those adduced on pages 131-133.) If, then, the

value of the expression (133) for the mass considered is less when it

is in the given condition than when it is in any other, the energy of

the mass in its given condition must be less than in any other condi-

tion in which it has the same entropy and volume. The given con-

dition is therefore stable. (See page 110.)

Again, if it is possible to assign such values to the constants in

(133) that the value of the expression shall be zero for the given

fluid mass, and shall not be negative for any phase of the same com-

ponents, the given condition will be evidently not unstable. (See

page 110.) It will be stable unless it is possible for the given matter

in the given volume and with the given entropy to consist of homo-

geneous parts for all of which the value of the expression (133) is zero,

but which are not all identical in phase with the mass in its given con-

dition. (A mass consisting of such parts would be in equilibrium, as

we have already seen on pages 133, 134.) In this case, if we disre-

gard the quantities connected with the surfaces which divide the

* A vacuum is throughout this discussion to be regarded as a limiting case of an

extremely rarified body. We may thus avoid the necessity of the specific mention of a

vacimm in propositions of this kind.
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homogeneous parts, we must regard the given condition as one of

neutral equilibiium. But in regard to these homogeneous parts,

which we may evidently consider to be all diiFerent phases, the fol-

lowing conditions must be satisfied. (The accents distinguish the

letters referring to the different parts, and the unaccented letters

refer to the whole mass.)

Tf' + jf + etc. = ;^, 1

v' -f v" -j- etc. =: y,
I

m/ + m/' + etc. = w,, 1^ (134)

//?2' + ''*3 "+ etc. = ^2, j

etc. J

Now the values of //, y, m^, m^, etc. are determined by the whole

fluid mass in its given state, and the values of -„ —„ etc., —r, —^,

etc — —-^ etc., etc., are determined by the phases of the various

parts. But the phases of these parts are evidently determined by

the phase of the fluid as given. They form, in fact, the whole set of

coexistent phases of which the latter is one. Hence, we may regard

(134) as n + 2 linear equations between ?>', u", etc. (The values of

v' v" etc. are also subject to the condition that none of them can be

negative.) Now one solution of these equations must give us the

given condition of the fluid ; and it is not to be expected that they

will be capable of any other solution, unless the number of different

homogeneous parts, that is, the number of different coexistent phases,

is o-reater than w + 2. We have already seen (page 153) that it is

not probable that this is ever the case.

We may, however, remark that in a certain sense an infinitely large

fluid mass will be in neutral equilibrium in regard to the formation

of the substances, if such there are, other than the given fluid, for

which the value of (133) is zero (when the constants are so deter-

mined that the value of the expression is zero for the given fluid,

and not negative for any substance) ; for the tendency of such a for-

mation to be reabsorbed will diminish indefinitely as the mass out of

which it is formed increases.

When the substances aS'j, aS^, . . . S„ are all independently vari-

able components of the given mass, it is evident from (86) that the

conditions that the value of (133) shall be zero for the mass as given,

and shall not be negative for any phase of the same components, can

only be fulfilled when the constants T, P, M^, J/g, . . . M„ are equal

to the temperature, the pressure, and the several potentials in the given
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mass. If we give these values to the constants, the expression (133)

will necessarily have the value zero for the given mass and we shall only

have to inquire whether its value is positive for all other phases.

But when *S^j, aS^o, • . . S„ are not all independently variable compo-
nents of the given mass, the values which it will he necessary to give

to the constants in (133) cannot be determined entirely from the

properties of the given mass ; but T and P must be equal to its

temperature and pressure, and it will be easy to obtain as many equa-

tions connecting J/,, J/g, . . . M„ with the potentials in the given

mass as it contains independently variable components.

When it is not possible to assign such values to the constants in

(133) that, the value of the expression shall be zero for the given

fluid, and either zero or positive for any phase of the same compo-

nents, we have already seen (pages 129-134) that if equilibrium

subsists without passive resistances to change, it must be in virtue of

properties which are peculiar to small masses surrounded by masses

of different nature, and which are not indicated by fundamental

equations. In this case, the fluid will necessarily be unstable, if we
extend this term to embrace all cases in which an initial disturbance

confined to a small part of an indefinitely large fluid mass will cause

an ultimate change of state not indefinitely small in degree through-

out the whole mass. In the discussion of stability as indicated by
fundamental equations it will be convenient to use the term in this

sense.*

* If we wish to know the stability of the given fluid when exposed to a constant tem-

perature, or to a constant pressure, or to both, we have only to suppose that there is

enclosed in the same envelop with the given fluid another body (which cannot combine

with the fluid) of which the fundamental equation is e = Ti], or e = — Pv. or e = Ti]

— Pv. as the case may be, (Tand P denoting the constant temperature and pressure,

which of course must be those of the given fluid,) and to apply the criteria of page

110 to the whole system. When it is possible to assign such values to the constants

in (133) that the value of the expression shall be zero for the given fluid and positive

for every other phase of the same components, the value of (133) for the whole system

will be less when the system is in its given condition than when it is in any other.

(Changes of form and position of the given fluid are of course regarded as immaterial.)

Hence the fluid is stable. When it is not possible to assign such values to the con-

stants that the value of (133) shall be zero for the given fluid and zero or positive for

any other phase, the fluid is of course unstable. In the remaining case, when it is

possible to assign such values to the constants that the value of (133) shall be zero

for the given fluid and zero or positive for every other phase, but not without the

value zero for some other phase, the state of equilibrium of the fluid as stable

or neutral wiU be determined by the possibility of satisfying, for any other than

the given condition of the fluid, equations like (134), in which, however, the first

or the second or both are to be stricken out, according as we are considering the
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In determining for any given positive values of T and P and any-

given values whatever of 3/,, M^, . . . M„ whether the expression

(133) is capable of a negative value for any phase of the components

aSj, aS'o, . . . /8„, and if not, whether it is capable of the value zero

for any other phase than that of which the stability is in question, it

is only necessary to consider phases having the temperature T and

pressure P. For we may assume that a mass of matter represented

by any values of m^, m^, • • • m„is capable of at least one state ot

not unstable equilibrium (which may or may not be a homogeneous

state) at this temperature and pressure. It may easily be shown

that for such a state the value of e — T?^-^ Pv must be as small as

for any other state of the same matter. The same will therefore be

true of the value of (133), Therefore if this expression is capable of

a negative value for any mass whatever, it will have a negative value

for that mass at the temperature T and pressure P. And if this

mass is not homogeneous, the value of (133) must be negative for at

least one of its homogeneous parts. So also, if the expression (133) is

not capable of a negative value for any phase of the comj)onents,

any phase for which it has the value zero must have the temperature

T and the pressure P.

It may easily be shown that the same must be true in the limiting-

cases in which T=.0 and P=:0. For negative values of P, (133)

is always capable of negative values, as its value for a vacuum is Pv.

For any body of the temperature T and pressure P, the expression

(133) may by (91) be reduced to the form

t, — J/i m, — 31^ m^ ... —M„m„. (135)

We have already seen (pages 131, 132) that an expression like

(133), when T, P, Jifj, J/g, . . . J/„ and v have any given finite

values, cannot have an infinite negative value as applied to any real

body. Hence, in determining whether (133) is capable of a negative

value for any phase of the components aS'j, S^, . . . jS„, and if not,

whether it is capable of the value zero for any other phase than that

of which the stability is in question, we have only to consider the

least value of which it is capable for a constant value of v. Any
body giving this value must satisfy the condition that for constant

volume
de - T(h/ — J/, dm^ — J/^ dot^ ... — 3f„dm„^ 0, (136)

stability of the fluid for constant temperature, or for constant pressure, or for both.

The number of coexistent phases will sometimes exceed by one or two the number of

the remaining equations, and then the equilibrium of the fluid will be neutral in

respect to one or two independent changes.
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or, if we substitute the value of de taken from equation (86), usinj^ sub-
script a . . . g for the quantities rehiting to the actual components of

the body, and subscript h . . . k for those relating to the possible,

t dt] 4- //„ dm, . . . + M, dm^ -\- j.i^ dm^ . . . -+- jm dm.^

— Tdtf - 31^ dm^ — Jfs f^^'h • • • - M„dm„^ 0. (137)

That is, the temperature of the body must be equal to T, and the

potentials of its components must satisfy the same conditions as if it

were in contact and in equilibrium with a body having potentials

M^, M2, . . . M„. Therefore the same relations must subsist betAveeu

//„... //,„ and M^ . . . Jf„ as between the units of the corresponding

substances, so that

m,/.i, . . . j-m^ju„ = m^ TJf^ . . . + m„ Jf„; (138)

and as we have by (93)

£= t}]^p V -h IX, m„ . . . -\- pij m„ (139)

the expression (133) will reduce (for the body or bodies for which it

has the least value per unit of volume) to

{F-p)v, (140)

the value of which will be positive, null, or negative, according as

the value of

P— jo (141)

is positive, null, or negative.

Hence, the conditions in regard to the stability of a fluid of which all

the ultimate components are independently variable admit a very sim-

ple expression. If the pressure of the fluid is greater than that of any

other phase of the same components which has the same temperature

and the same values of the potentials for its actual components, the

fluid is stable without coexistent phases ; if its pressure is not as great

as that of some other such phase, it will be unstable ; if its pressure is

as great as that of any other such phase, but not greater than that

of every other, the fluid will certainly not be unstable, and in all

probability it will be stable (when enclosed in a rigid envelop which

is impermeable to heat and to all kinds of matter), but it will be one

of a set of coexistent phases of which the others are the phases which

have the same pressure.

The considerations of the last two pages, by which the tests

relating to the stability of a fluid are simplified, apply to such bodies

as actually exist. But if we should form arbitrarily any equation as

a fundamental equation, and ask whether a fluid of which the proper-

Tbans. Conn. Acad., Vol. III. 21 January, 1876.
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ties were given by that equation would be stable, the tests of stability-

last given would be insufficient, as some of our assumptions might

not be fulfilled by the equation. The test, however, as first given

(pages 156-159) would in all eases be sufficient.

Stability in respect to Continuous Changes of Phase.

In considering the changes which may take place in any mass, we

have already had occasion to distinguish between infinitesimal changes

in existing phases, and the formation of entirely new phases. A
phase of a fluid may be stable in regard to the former kind of change,

and unstable in regard to the latter. In this case it may be capable

of continued existence in virtue of properties which prevent the com-

mencement of discontinuous changes. But a phase which is unstable

in regard to continuous changes is evidently incapable of permanent

existence on a large scale except in consequence of passive resistances

to change. We will now consider the conditions of stability in

respect to continuous changes of phase, or, as it may also be called,

stability in respect to adjacent phases. We may use the same gen-

eral test as before, except that the expression (133) is to be applied

only to phases which difier infinitely little from the phase of which

the stability is in question. In this case the component substances

to be considered will be limited to the independently variable com-

ponents of the fluid, and the constants M^, M^., etc. must have the

values of the potentials for these components in the given fluid. The

constants in (133) are thus entirely determined and the value of the

expression for the given phase is necessarily zero. If for any infi-

nitely small variation of the phase, the value of (133) can become

negative, the fluid will be unstable ; but if for every infinitely small

variation of the phase the value of (133) becomes positive, the fluid

will be stable. The only remaining case, in which the phase can be

varied without altering the value of (133) can hardly be expected to

occur. The phase concerned woiild in such a case have coexistent

adjacent phases. It will be sufficient to discuss the condition of sta-

bility (in respect to continuous changes) without coexistent adjacent

phases.

This condition, which for brevity's sake we Avill call the condition

of stability, may be written in the form

f" _ t' rf -^p'v" - fA^' m , " . . . - /V ni^' > 0, (142)

in which the quantities relating to the phase of which the stability is

in question are distinguished by single accents, and those relating to
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the other phase by double accents. This condition is by (93) equiva-

lent to

5" _ t' if +p' v" -II,' )>i," ... — //„' m„"

— f' + «'?/—;/«' + /<, '/>i/ . . . -!-//„' w„'>0, (143)

and to

^t'ff+pv"-,i,'m," . . . -//:»?„"

4. t" if - if v" + 1.1 ,"m^" . . . + Mn" mj' > 0. (144)

The condition (143) may be expressed more briefly in the form

z/f> ^ J/; — ^>z/ti + /<, z/?Hj . . . -\-/.4„Jm„, (145)

if we use the character J to signify that the condition, although

relating to infinitesimal differences, is not to be interpreted in accord-

ance with the usual convention in respect to differential equations

with neglect of infinitesimals of higher orders than the first, but is

to be interpreted strictly, like an equation between finite differences.

In fact, when a condition like (145) (interpreted strictly) is satisfied

for infinitesimal diffei'ences, it must be possible to assign limits within

which it shall hold true of finite differences. But it is to be remem-

bered that the condition is not to be applied to any arbitrary values

of Jyj, z/u, Zlm,, . . . Jnin, but only to such as are determined by a

change of phase. (If only the quantity of the body which determines

the value of the variables should vary and not its phase, the value of

the first member of (145) would evidently be zero.) We may free

ourselves from this limitation by making v constant, which will

cause the term — p Av to disappear. If we then divide by the con-

stant V, the condition will become

in which form it will not be necessary to regard v as constant. As

we may obtain from (86)

V V V V

we see that the stability of anyphase in regard to continuous changes

depends ujion the same conditions in regard to the second and higher

differential coefficients of the density of energy regarded as a function

of the density of entropy and the densities of the several components^

which would make the density of energy a minimum, if the necessary

conditions in regard to the first differential coefficients were fulfilled.

When //= 1, it may be more convenient to regard m as constant
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in (145) than v. Regarding m a constant, it appears that the stability

of a phase depends upon the same conditions in regard to the second

and higher differential coefficients of the energy of a unit of mass

regarded as a function of its entropy and volume, which would make

the energy a minimum, if the necessary conditions in regard to the

first differential coefficients were fulfilled.

The formula (144) expresses the condition of stability for the phase

to which t', p\ etc. relate. But it is evidently the necessary and

sufficient condition of the stability of all phases of certain kinds of

matter, or of all phases within given limits, that (144) shall hold true

of any two infinitesimally diffi^ring phases within the same limits, or,

as the case may be, in general. For the purpose, therefore, of such

collective determinations of stability, we may neglect the distinction

between the two states compared, and write the condition in the form

— 1/ ^t-\-v ^p — m^ J/4^ . . . —m„JjJ„>0, (148)

or

Comparing (98), we see that it is necessary and sufficient for the sta-

bility in regard to continuous changes of all the phases within any

given limits, that within those limits the same conditions should be

fulfilled in respect to the second and higher differential coefficients of

the pressure regarded as a function of the temperature and the sev-

eral potentials, which would make the pressure a minimum, if the

necessary conditions witb i-espect to the first difierential coefficients

were fiilfilled.

By equations (87) and (94), the condition (142) may be brought to

the form

->-?/' ~ t' if —p' v' -\- /.ii' m^' . . . -\. ^(J m„'>0. (150)

For the stability of all phases within any given limits it is necessary

and sufficient that within the same limits this condition shall hold

true of any two phases which differ infinitely little. This evidently

requires that when v' =. d", m^' = iii ^\ . . . in„' = rnj\

f ~'/'+{t" -t'),/'>0; (151)

and that when t' — t"

f +P' '^" - /< 1
' >/*i" . • . 4- /'„' mj'

- f ~ P'
'''

-\- M i ">
i'

+/'„'/>?„' >U. (152)

These conditions may be written in the form
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[JV'4-//Z/«]„,^<0, (153)

{Aip+pAv~i.i^Jm^ . . . -/<„Jw„],>0, (154)

in which the subscript letters indicate the quantities which are to be

resjarded as constant, m standing for all the quantities m, . . . m„.

If these conditions hold true within any given limits, (150) will also

hold true of any two iniinitesimally differing phases within the same

limits. To prove this, we will consider a third phase, determined

by the equations
t"' = t', (155)

and
v"' = v", m/" = m,", . . . m„"' = m„". (156)

Now by (153),

r'-'/'"+(«"'-«") v"<o; (157)

and by (154),

- //'' —p'v' H-/<,'//^i' . . . 4- yU„' //<„'> 0. (158)

Hghcg
'

r + t" rf+p'v"'-fx,'m,"' . . . -yu„'m„"'

_^/ ^t'" if -p'v' +j.{^'m,' . . . +jj„'m„'>0, (159)

which by (155) and (156) is equivalent to (150). Therefore, the con-

ditions (153) and (154) in respect to the phases within any given

limits are necessary and sufficient for the stability of all the phases

within those limits. It will be observed that in (153) we have the

condition of thermal stability of a body considered as unchangeable

in composition and in volume, and in (154), the condition of mechan-

ical and chemical stability of the body considered as maintained at a

constant temperature. Comparing equation (88), we see that the

condition (153) will be satisfied, if -^ <0, i. e., if --^ or #-^ (the spe-

cific heat for constant volume) is positive. When n=. 1, i. e., when

the composition of the body is invariable, the condition (154) will

evidently not be altered, if we regard m as constant, by which the

condition will be reduced to

[z/z/'-fjo J4,,„>0. (160)

d^ lb dp
This condition will evidently be satisfied if 3-^ ^^^ i- *?-, if -7- or

_ rf^JL (the elasticity for constant temperature) is positive. But
dv

when 7i> 1, (154) may be abbreviated more symmetrically by making

v constant.

Again, by (91) and (96), the condition (142) may be brought to

the form
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c^" + t" if -p" v" - fx.'m," . . . - //„' m„"

-t,' -t'lf ->rp'v" +fi,'m^' . . . +//„'m„'>0. (161)

Therefore, for the stability of all phases within any given limits it is

necessary and sufficient that within the same limits

[JC + //^« - v44„<0, (162)

and
[A^- fx^Am^ . . . -<-yW„Jm„],,>0, (.163)

as may easily be proved by the method used with (153) and (154).

The first of these formulae expresses the thermal and mechanical con-

ditions of stability for a body considered as michangeable in compo-

sition, and the second the conditions of chemical stability for a body

considered as maintained at a constant temperature and pressure. If

'/i= 1, the second condition falls away, and as in this case ? = m/<,

condition (162) becomes identical with (148).

The foregoing discussion will serve to illustrate the relation of the

general condition of stability in regard to continuous changes to

some of the principal forms of fundamental equations. It is evident

that each of the conditions (146), (149), (154), (162), (163) involve

in general several particular conditions of stability. We will now

give our attention to the latter. Let

fp = € — t' 7/ +p' V — ^i^' )n^ . . . — /<„'«<„, (164)

the accented letters referring to one phase and the unaccented to

another. It is by (142) the necessary and sufficient condition of the

stability of the first phase that, for constant values of the quantities

relatino- to that phase and of v, the value of $ shall be a minimiim

when the second phase is identical with the first. Diflerentiating

(164), we have by (86)

d^ = {t - t') ch] — {p —jo') dn + (//j — /i/) dm^

... - (Af„ - /^„')f?m„. (165)

Therefore, the above condition requires that if we regard v,m^, . . .

m„ as having the constant values indicated by accenting these letters,

t shall be an increasing function of ;/, when the variable phase differs

sufficiently little from the fixed. But as the fixed phase may be any

one within the limits of stability, t must be an increasing function of

// (within these limits) for any constant values of v, 'm^, . . . m,^.

This condition may be written

(j4J
^^- (^^^)

X^ijlv, nit, . . . m„
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When this condition is satisfied, the value of ^, foi* any ijiven vahies

oft?, wij, . . . ;/^„ will be a minimum when t-=.t'. And therefore, in

applying the general condition of stability relating to the value of

<^, we need only consider the phases for which t = t'.

We see again by (165) that the general condition requires that

if we regard ^, y, ni^., . . . m„ as having the constant values indicated

by accenting these letters, //j shall be an increasing function of m,,

when the variable phase difters sufficiently little from the fixed. But

as the fixed phase may be any one within the limits of stability, /.i
,

must be an increasing function of m
j
(within these limits) for any

constant values of ^, v, mg, . . . m„. That is,

(i^) >0- (16V)

When this condition is satisfied, as well as (166), ^ will have a min-

imum value, for any constant values of v, m^^ . • . ?/*„, when t=it'

and yu, = ///; so that in applying the general condition of stability

we need only consider the phases for which t-=.t' and //j = yu/.

In this way we may also obtain the follov\^ing particular conditions

of stability :

(4^) >0, (168)
\nm^lt^ w, m,, ma, . . . ??i„

(4^\ >0. (169)
\Amjt, V, mi, . . . m„_,

When the 7i-\- 1 conditions (166)-(169) are all satisfied, the value

of ^, for any constant value of v, will be a minimum when the tem-

perature and the potentials of the variable phase are equal to those

of the fixed. The pressures will then also be equal and the phases

will be entirely identical. Hence, the general condition of stability

will be completely satisfied, when the above particular conditions are

satisfied.

From the manner in which these particular conditions have been

derived, it is evident that we may interchange in them a/, m^, . . . m„

in any way, provided that we also interchange in the same way

^, //,, . . . //„. In this way we may obtain different sets of n -\- 1

conditions which are necessary and sufficient for stability. The quan-

tity V might be included in the first of these lists, and ~ p in the

second, except in cases w^hen, in some of the phases considered, the

entropy or the quantity of one of the components has the value zero.
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Then the condition that that quantity shall be constant would create

a restriction upon the variations of the phase, and cannot be substi-

tuted for the condition that the volume shall be constant in the state-

ment of the general condition of stability relative to the minimum

value of 0.

To indicate more distinctly all these particular conditions at once,

we observe that the condition (144), and therefore also the condition

obtained by interchanging the single and double accents, must hold

true of any two infinitesimally difiering phases within the limits of

stability. Combining these two conditions we have

i^t" - t') [rf - rf) - {p" -p') W - ^')

+ (/^i" - /^i') (^i" - '-'^x) • • ' (/^"" - Z^"') «'-O>0, (170)

which may be written more briefly

AtAr]— ApAv-{- Jf^^Am^ . . . +J//„Jm„>0. (IVI)

This must hold true of any two infinitesimally differing phases within

the limits of stability. If, then, we give the value zero to one of the

differences in every term except one, but not so as to make the phases

completely identical, the values of the two differences in the remain-

ing term will have the same sign, except in the case of Ap and Av,

which will have opposite signs. (If both states are stable this will

hold true even on the limits of stability.) Therefore, within the

limits of stability, either of the two quantities occurring (after the

sign A) in any term of (IVI) in an increasing function of the other,

—except p and v, of which the opposite is true,—when we regard as

constant one of the quantities occurring in each of the other terms,

but not such as to make the phases identical.

If we write <^? for A in (166)-(169), we obtain conditions which are

always sufficient for stability. If we also substitute ^ for >, we

obtain conditions which are necessary for stability. Let us consider

the form which these conditions will take when ?/, v, m,, . . . m.„ are

regarded as independent variables. When dv = 0, we shall have

dt dt
,

dt ^at=i— drj -\- -— dm , . . . + -^— dm.
dt] dm^ dm^

d\x.—^-^di]-\-^^dm. . . . + 4^dm„
[ .,^„,^* d}] dm^ ^ dm„ \ (172)

_ d^„
, ,

dfA^ , c?w_ ,du„=z -^-dn -{--z— dm, . . . -\--~^dm„
dt] dm^^ ^ dm„
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Let us write i?„+i for the determinant of the order n + 1

d'^e
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with respect to continuous changes.* Here, evidently, one of the

conditions (166)-(169) must cease to hold true. Therefore, one of the

differential coefficients formed by changing J into d in the first mem-

bers of these conditions must have the value zero. (That it is the

numerator and not the denominator in the differential coefficient

which vanishes at the limit appears from the consideration that the

denominator is in each case the differential of a quantity which is

necessarily capable of progressive variation, so long at least as the

phase is capable of variation at all under the conditions expressed

by the subscript letters.) The same will hold true of the set of dif-

ferential coefficients obtained from these by interchanging in any

way rj, m^, . . . m„, and simultaneously interchanging t, j.i^, . . . /J„

in the same way. But we may obtain a more definite result than this.

Let us give to rj or t, to m^ or j.i^, .. . to m„_j or /y„_i, and to v,

the constant values indicated by these letters when accented. Then

by (165)

d^=iMu - l<)dm,. {Ill)

Now

""-"•'=(,17.) '('"•-'"•') (^'«>

approximately, the differential coefficient being interpreted in accord-

ance with the above assignment of constant values to certain vari-

ables, and its value being determined for the phase to which the

accented letters refer. Therefore,

and

d^ = 1^^] {m„ - m„') dm,,, (179)

^ = -m^y(m„-m„')^. (180)

The quantities neglected in the last equation are evidently of the

same order as (v;?„ — w^„')^. Now this value of ^ will of course be

different (the differential coefficient having a different meaning)

according as we have made // or t constant, and according as we have

made m^ or /^^ constant, etc. ; but since, within the limits of stability,

the value of <?, for any constant values of «?„ and ?j, Avill be the least

when t^p, 1^1 . . . //„_i have the values indicated by accenting these

letters, the value of the differential coefficient will be at least as small

* The limits of stability with respect to discontinuous changes are formed by phases

which are coexistent with other phases. Some of the properties of such phases have

already been considered. See pages 152-156.
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when we give these variables these constant values, as when we
adopt any other of the suppositions mentioned above in re<^ard to the

quantities remaining constant. And in all these relations we may-

interchange in any way //, >«,, . . . «?„, if we intercliange in the same
way t, p(^, . . . i.i„. It follows that, within the limits of stability,

when we choose for anj^ one of the differential coefficients

dt dii
J

c///„

d7f dw^; ' ' ' dm„ (^^1)

the quantities following the sign d in the numerators of the others

together with v as those which are to remain constant in diiferentia-

tion, the value of the differential coefficient as thus determined will

be at least as small as when one or more of the constants in differen-

tiation are taken from the denominators, one being still taken from

each fraction, and v as before being constant.

Now we have seen that none of these differential coefficients, as

determined in any of these ways, can have a negative value within

the limit of stability, and that some of them must have the value zero

at that limit. Therefore, in virtue of the relations just established

one at least of these differential coefficients determined by considerino-

constant the quantities occurring in the numeratoi-s of the others

together with v, will have the value zero. But if one such has the

value zero, all such will in general have the same value. For if

for example, has the value zero, we may change the density of the

component S„ without altering (if we disregard infinitesimals of

higher orders than the first) the temperature or the potentials, and

therefore, by (98), without altering the pressure. That is, we may
change the phase without altering any of the quantities t,j), /<j, , . .

/,/„, (In other words, the phases adjacent to the limits of stability

exhibit apj^roncimateli/ the relations characteristic of neutral equili-

brium.) Now this change of phase, which changes the density of

one of the components, will in general change the density of the

others and the density of entropy. Therefore, all the other differen-

tial coefficients formed after the analogy of (182), i, e., formed from

the fractions in (181) by taking as constants for each the quantities in

the numerators of the others together with u, will in general have

the value zero at the limit of stability. And the relation which

characterizes the limit of stability may be expressed, in general, by

setting any one of these differential coefficients equal to zero. Such
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an equation, when tlie fundamental eqnation is known, may be

reduced to the form of an equation between the independent variables

of the fundamental equation.

Again, as the determinant (IVS) is equal to the product of the

differential coefficients obtained by writing d for A in the first

members of (166)-(169), the equation of the limit of stability may be

expressed by setting this determinant equal to zero. The form of

the differential equation as thus expressed will not be altered by the

interchange of the expressions ;/, «?.j, . . . »?„, but it will be altered

by the substitution of v for any one of these expressions, which will

be allowable whenever the quantity for which it is substituted has

not the value zero in any of the phases to which the formula is to be

applied.

The condition formed by setting the expression (182) equal to zero

is evidently equivalent to this, that

that is, that

3=0, (183)

or by (98), if we regard ^, //j, ... /^„ as the independent variables,

(It?) = '"^ <'««>

In like manner we may obtain

(186)
d^p d^p d^p^-"' ^? = "'-

• • diAZ7' = '^-

Any one of these equations, (185), (186), may be regarded, in gen-

eral, as the equation of the limit of stability. We may be certain

that at every phase at that limit one at least of these equations will

hold true.

GEOMETRICAL ILLITSTRATIONS.

Surfaces in tchich the Composition of the Body represented is

Constant.

In vol. ii, p. 382, of the Trans. Conn. Acad., a method is described of

representing the thermodynamic properties of substances of invariable

composition by means of surf^xces. The volume, entropy, and energy
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of a constant quantity of a substance are represented by rectangular

co-ordinates. This method corresponds to the first kind of limda-

raental equation described on pages 140-144. Any other kind of

fundamental equation for a substance of invariable composition will

suggest an analogous geometrical method. Thus, if we make m con-

stant, the variables in any one of the sets (99)-(103) are reduced to

three, which may be represented by rectangular co-ordinates. This

will, however, afford but four different methods, for, as has already

(page 150) been observed, the two last sets are essentially equivalent

when n = \.

The method described in the preceding volume has certain advan-

tages, especially for the purposes of theoretical discussion, but it may
often be more advantageous to select a method in which the proper-

ties represented by tM'o of the co-ordinates shall be such as best serve

to identify and describe the different states of the substance. This

condition is satisfied by temperature and pressiire as well, perhaps, as

by any other properties. We may represent these by two of the

co-ordinates and the potential by the third. (See page 143.) It

will not be overlooked that there is the closest analogy between these

three quantities in respect to their parts in the general theory of

equilibrium. (A similar analogy exists between volume, entropy, and

energy.) If we give m the constant value unity, the third co-ordinate

will also represent C, which then becomes equal to /<.

Comparing the two methods, we observe that in one

v = x, i]— y, €= z, (187)

dz dz ^ dz dz ,^^^

and in the other

t-z.x^ p=-y, i.i^'C,z=.z, (189)

dz dz dz dz
, ^

uX clx
Now ^— and ^— are evidently determined by the inclination of the

dx dy
(Txi (XX

tangent plane, and z — -^ x — -^y is the segment which it cuts ofi"

on the axis of Z. The two methods, therefore, have this reciprocal

relation, that the quantities represented in one by the position of a

point in a surface are represented in the other by the position of a

tangent plane.
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The surfaces detined by equations (187) and (189) may be distin-

guished as the v-7]-e surface, and the t-2>'C surface, of the substance to

which they relate.

In the t-p-'C surface a line in which one part of the surface cuts

another represents a series of pairs of coexistent states. A point

through whicli pass three different parts of the surface represents a

triad of coexistent states. Through such a point will evidently pass

the three lines formed by the intersection of these sheets taken two

by two. The perpendicular projection of these lines upon the i>t

plane will give the curves which have recently been discussed by Pro-

fessor J. Thomson.* These curves divide the space about the projec-

tion of the triple point into six parts which may be distinguished as

follows : Let C^'^^, C^^',
^^*-' denote the three ordinates determined for

the same values of p and t by the three sheets passing through the

triple point, then in one of the six spaces

^(n<Ki)<^(s,^
(191)

in the next space, separated from the fornier by the line for which

^(n<^(S)<^(z)^
(192)

in the third space, separated from the last by the line for which

^(Sj<^(n^^W (193)

in the fourth ?(«> < ?(^) < C^''\ (194)

in the fifth C^^> < tS^^ < ?(^), (195)

in the sixth C<^> < ?(^) < ?(«>. (196)

The sheet which gives the least values of 'C, is in each case that which

represents the stable states of the substance. From this it is evident

that in passing around the projection of the triple point we pass

through lines representing alternately coexistent stable and coexistent

unstable states. But the states represented by the intermediate

values of ? may be called stable relatively to the states represented

by the highest. The differences C^^^ — ^^'>, etc. represent the amount

of woi"k obtained in bringing the substance by a reversible process

from one to the other of the states to which these quantities relate,

in a medium having the temperature and pressure common to the

two states. To illustrate such a process, we may suppose a plane

perpendicular to the axis of temperature to pass through the points

* See the Keports of the British Association for 1871 and 1872 ; and Philosophical

Magazine, vol. xlvii. (1874), p. 447.
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representing tlie two states. This will in genorul cut tlie double line

formed by the two sheets to which the symbols [L) and ( T^) refer.

The intersections of the plane with the two sheets will connect the
double point thus determined with the i)oints representino- the

initial and linal states of the process, and thus form a reversible path
for the body between those states.

The geometrical relations which indicate tlie stability of any state

may be easily obtained by applying the principles stated on pp. 156 ff.

to the case in which there is but a single component. The expres-

sion (133) as a test of stability will reduce to

e -t'T/-\-p'v - /.I'm, (197)

the accented letters referring to the state of which the stability is in

question, and the unaccented letters to any other state. If we con-

sider the quantity of matter in each state to be unity, this expression

may be reduced by equations (91) and (96) to the form

^-l''+(«-0v-(7^-/>V, (198)

which evidently denotes the distance of the point {t',p', t') below the

tangent plane for the point {t, p, t), measured parallel to the axis of 'Q.

Hence if the tangent plane for every other state passes above the

point representing any given state, the latter will be stable. If any

of the tangent planes pass below the point rejjresenting the given

state, that state will be unstable. Yet it is not always necessary to

consider these tangent planes. For, as has been observed on page-

160, we may assume that (in the case of any real substance) there

will be at least one not unstable state for any given temperature and

pressure, except when the latter is negative. Therefore the state

represented by a point in the surface on the positive side of the

plane jo= will be unstable only when there is a point in the surface

for which t and p have the same values and C a less value. It follows

from what has been stated, that where the surface is doubly convex

upwards (in the direction in which 'C is measured) the states repre-

sented will be stable in respect to adjacent states. This also appears

directly from (162). But where the surface is concave upwards in

either of its principal curvatures the states represented will be unsta-

ble in respect to adjacent states.

When the number of component substances is greater than unity,

it is not possible to represent the fundamental equation by a single

surface. We have therefore to consider how it may be represented

by an infinite number of surfaces. A natural extension of either of

the methods already described will give us a series of surfaces in
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which every one is the v-7]-e surface, or every one the t-p-l surface for

a body of constant composition, the proportion of the components

varying as we pass from one surface to another. But for a simultaneous

view of the properties which are exhibited by compounds of two or

three comj^onents without change of temperature or pressure, we may
more advantageously make one or both of the quantities t or p con-

stant in each surface.

Surfaces and Curves in tchich the Composition of the Body repre-

sented is Variable and its Temperature and Pressure are Constant.

When there are three components, the position of a point in the

J^I^plane may indicate the composition of a body most simply, per-

haps, as follows. The body is supposed to be composed of the quan-

tities ?7«j, //ig, i^a '^^ tlie substances ^S*,, /S'g, S^^ the value of m^ -("

mg + mg being unity. Let Pj, P^, P3 be any three points in the

plane, which are not in the same straight line. If we suppose masses

equal to m^, mg, m^ to be placed at these three points, the center of

gravity of these masses will determine a point which will indicate

the value of these quantities. If the triangle is equiangular and has

the height unity, the distances of the point from the three sides will

be equal numerically to «?j, m,, m^. Now if for every possible

phase of the components, of a given temperature and pressure, we

lav off from the point in the X- Y plane which represents the compo-

sition of the phase a distance measured parallel to the axis of Z and

representing the value of C (when ni^-\-n)2-\-'mQ=.\), the points

thus determined will form a surface, which may be designated as the

mj-mg-^Vg-C surface of the substances considered, or simply as their

m-t, surface, for the given temperature and pressure. In like manner,

when there are but two component substances, we may obtain a

curve, which we will suppose in the X-Z plane. The coordinate y
may then represent temperature or pressure. But we will limit our-

selves to the consideration of the properties of the m-X, surface for

w =r 3, or the m-l curve for n =z 2, regarded as a surface, or curve,

which varies with the temperature and pressure.

As by (96) and (92)

and (for constant temperature and pressure)

d'Q = f.1^ dm J -f- yWg ^^'^2 + /^3 dm^,

if we imagine a tangent plane for the point to which these letters

relate, and denote by l' the ordinate for any point in the plane,
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and by >«,', wig'j "^a'j ^^^^ distances of the foot of this ordinate from

the three sides of the triangle Pj P3 Pg, we may easily obtain

C' = /(,mj' + /-/o Wo' + Ms "'3', (199)

which we may regard as the equation of the tangent plane. There-

fore the ordinates for this plane at P^, P,, and P3 are equal respect-

ively to the potentials yu,, yUg? 'i^^*^ /'s- -"^nd in general, the ordinate

for any point in the tangent plane is equal to the potential (in the

phase represented by the point of contact) for a substance of which

the composition is indicated by the position of the ordinate. (See

page 149.) Among the bodies which may be formed of S^, aS^, and

-83, there may be some which are incapable of variation in composi-

tion, or which are capable only of a single kind of variation. These

will be represented by single points and curves in vertical planes.

Of the tangent plane to one of these curves only a single line will be

fixed, which will determine a series of potentials of which only two
will be independent. The phase represented by a separate point will

determine only a single potential, viz., the potential for the substance

of the body itself, which will be equal to 'C.

The points representing a set of coexistent phases have in general

a common tangent plane. But when one of these points is situated

on the edge where a sheet of the surface terminates, it is sufficient if

the plane is tangent to the edge and passes below the surface. Or,

when the point is at the end of a separate line belonging to the sur-

face, or at an angle in the edge of a sheet, it is sufficient if the plane

pass through the point and below the line or sheet. If no part of the

surface lies below the tangent plane, the points where it meets the

plane will represent a stable (or at least not unstable) set of co-

existent phases.

The surface which we have considered represents the relation

between 'C, and m^, m^, m„ for homogeneous bodies when t and jo

have any constant values and ni^ -|- m^ -f-^s = 1- It will often be

useful to consider the surface which represents the relation between

the same variables for bodies which consist of parts in different but

coexistent phases. We may suppose that these are stable, at least in

regard to adjacent phases, as otherwise the case would be devoid of

interest. The point which represents the state of the composite

body will evidently be at the center of gravity of masses equal to

the parts of the body placed at the points representing the phases of

these parts. Hence from the surface representing the properties of

homogeneous bodies, which may be called the primitive surface, we

Trans. Conn. Acad., Vol. III. 23 January, 1876.
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may easily construct the surface representing the properties of bodies

which ai-e in equilibrium but not homogeneous. This may be called

the secondary or derived surface. It will consist, in general, of

various portions or sheets. The sheets which represent a combina-

tion of two phases may be formed by rolling a double tangent plane

upon the primitive surface : the part of the envelop of its successive

positions which lies between the curves traced by the points of con-

tact will belong to the derived surface. When the primitive surface

has a triple tangent plane or one of higher order, the triangle in the

tangent plane formed by joining the points of contact, or the smallest

polygon without re-entrant angles which includes all the points of

contact, will belong to the derived surface, and will represent masses

consisting in general of three or more phases.

Of the whole thermodynamic surface as thus constructed for any

temperature and any positive pressure, that part is especially impor-

tant which gives the least value of !: for any given values of Wj, ?«2?

m^. The state of a mass represented by a point in this part of the

surface is one in which no dissipation of energy would be possible if

the mass were enclosed in a i-igid envelop impermeable both to

matter and to heat ; and the state of any mass composed of aS^, aSj, S^

in any proportions, in which the dissipation of energy has been com-

pleted, so far as internal processes are concerned, (i. e., under the

limitations imposed by such an envelop as above supposed,) would be

represented by a point in the part which we are considering of the

in-'Q surface for the temperature and pressure of the mass. We may
therefore briefly distinguish this part of the surface as the surface of

dissipated energy. It is evident that it forms a continuous sheet, the

projection of which upon the X- Y plane coincides with the triangle

Pj P2 P3, (except when the pressure for which the m-? surface is

constructed is negative, in which case there is no surface of dissipated

energy,) that it nowhere has any convexity upward, and that the

states which it represents are in no case unstable.

The general properties of the m-t, lines for two component sub-

stances are so similar as not to require separate consideration. We
now proceed to illustrate the use of both the surfaces and the lines

by the discussion of several particular cases.

Three coexistent phases of two component substances may be

represented by the points A, B, and C, in figure ], in which I is

measured toward the top of the page from PjPg, '" , toward the left

from P2Q2, and m^ toward the right from P,Qi. It is supposed

that P1P2 = 1- Portions of the curves to which these points belong
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are seen in the figure, and will be denoted by the symbols (A), (B),

(C). We may, for convenience, speak of these as separate curves,

without implying anything in regard to their possible continuity in

parts of the diagram remote from their common tangent AC. The
line of dissipated energy includes the straight line AC and portions

of the primitive curves (A) and (C). Let us first consider how the

diagram will be altered, if the temper-

ature is varied while the pressure re-

mains constant. If the temperature

receives the increment dt, an ordinate

of which the position is fixed will

'd'Q^

Q.

b

Fig. 1.

P.

receive the increment
(
-^ 1 dt, or

\dt I p^ m
— // dt. (The reader will easily con-

vince himself that this is true of the

ordinates. for the secondary line AC, as well as of the ordinates for

the primitive curves.) Now if we denote by ;/' the entropy of the

phase represented by the point B considered as belonging to the

curve (B), and by rf the entropy of the composite state of the same
matter represented by the point B considered as belonging to the

tangent to the curves (A) and (C), t (?/' — //') will denote the heat

yielded by a unit of matter in passing from the first to the second

of these states. If this quantity is positive, an elevation of temper-

ature will evidently cause a part of the curve (B) to protrude below

the tangent to (A) and (C), which will no longer form a part of the

line of dissipated energy. This line will then include portions of the

three curves (A), (B), and (C), and of the tangents to (A) and (B)

and to (B) and (C). On the other hand, a lowering of the tempera-

ture will cause the curve (B) to lie entirely above the tangent to (A)

and (C), so that all the phases of the sort represented by (B) will be

unstable. If t {i/ — ;/") is negative, these efl:ects will be produced by

the opposite changes of temperature.

The effect of a change of pressure while the temperature remains

constant may be found in a manner entirely analogous. The varia-

dp or V dp. Therefore, if thetion of any ordinate will be
( ^^
\dplt,;,i

volume of the homogeneous phase represented by the point B is

a greater than the volume of the same matter divided betAveen the

the phases represented by A and C, an increase of pressure will give

diagi'am indicating that all phases of the sort represented by curve

(B) are unstable, and a decrease of pressure will give a diagram indi-
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eating two stable pairs of coexistent phases, in each of which one of

the pliases is of the sort represented by the curve (B). When the

relation of the volumes is the reverse of that supposed, these results

will be produced by the opposite changes of pressure.

When we have four coexistent phases of three component substances,

there are two cases which must be distinguished. In the iirst, one of

the points of contact of the primitive surface with the qiaadruple

tangent plane lies within the triangle formed by joining the other

three ; in the second, the four points may be joined so as to form a

quadrilateral without re-entrant angles. Figure 2 repi-esents the

projection upon the A'^ Y plane (in which ni^, m^, m^ are measured)

of a part of the snrftice of dissipated energy, when one of the points

of contact D falls within the triangle formed by the other thi-ee A, B,

0. This surface includes the triangle ABC in the quadruple tangent

plane, portions of the three sheets of the primitive surface which

touch the triangle at its vertices, EAF, GBH, ICK, and portions of

the three developable surfaces formed by a tangent plane rolling

upon each pair of these sheets. These developable surfaces are repre-

FlG. 2.

sented in the figure by ruled surfaces, the lines indicating the direc-

tion of their rectilinear elements. A point within the triangle ABC
represents a mass of which the matter is divided, in general, between

three or four different phases, in a manner not entirely determined by

the position of a point. (The quantities of matter in these phases are

such that if placed at the cori-esponding points. A, B, C, D, their

center of gravity would be at the point representing the total mass.)
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Such a mass, if exposed to constant temperature and pressure, would
be in neutral equilibrium. A point in the developable surfaces repre-

sents a mass of which the matter is divided between two coexisting

phases, which are represented by the extremities of the line iu the

figure passing through that point. A point in the primitive surface

rejjresents of course a homogeneous mass.

To determine the eftect of a change of temperature without change
of pressure upon the general features of the surface of dissipated

energy, we must know whether heat is absorbed or yielded by a

mass in passing from the phase represented by the point D in the

primitive surface to the composite state consisting of the phases A,
B, and C which is represented by the same point. If the first is the

case, an increase of temperature will cause the sheet (D) (i. e., the

sheet of the primitive surface to which the point D belongs) to sep-

ai-ate from the plane tangent to the three other sheets, so as to be

situated entirely above it, and a decrease of temperature, will cause

a part of the sheet (D) to protrude through the plane tangent to

the other sheets. These effects will be produced by the opposite

changes of temperature, when heat is yielded by a mass passing

from the homogeneous to the composite state above mentioned.

In like manner, to determine the effect of a vai-iation of pressure

without change of temperature, we must know whether the volume

for the homogeneous phase represented by D is greater or less than

the volume of the same matter divided between the phases A, B, and

C. If the homogeneous phase has the greater volume, an increase of

pressure will cause the sheet (D) to separate from the plane tangent to

the other sheets, and a diminution of pressure will cause a pai't of the

sheet (D) to protrude below that tangent plane. And these effects

will be produced by the opposite changes of pressure, if the homoge-

neous phase has the less volume. All this appears from precisely the

same considerations which were used in the analogous case for two

component substances.

Now when the sheet (D) rises above the plane tangent to the other

sheets, the general features of the surface of dissipated energy are

not altered, except by the disappearance of the point D. But when

the sheet (D) protrudes below the plane tangent to the other sheets,

the surface of dissipated energy will take the form indicated in figure 3.

It will include portions of the four sheets of the primitive sui-face,

portions of the six developable surfaces formed by a double tangent

plane rollino- upon these sheets taken two by two, and portions of

three triple tangent planes for these sheets taken by threes, the sheet

(D) being always one of the three.
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But when the points of contact with the quadruple tangent plane

which represent the four coexistent phases can be joined so as to

form a quadrilateral ABCD (fig. 4) without reentrant angles, the

surface of dissipated energy will include this plane quadrilateral,

portions of the four sheets of the primitive surface which are tangent

to it, and portions of the four developable surfaces formed by double

Fig. 4. Fig. 5.

tangent planes rolling upon the four pairs of these sheets which corres-

pond to the four sides of the quadrilateral. To determine the gen-

eral eifect of a variation of temperature upon the surface of dissipated

energy, let us consider the composite states represented by the point

I at the intersection of the diagonals of the quadrilateral. Among
these states (which all relate to the same kind and quantity of matter)

there is one which is composed of the phases A and C, and another

which is composed of the phases B and D. Now if the entropy of

the first of these states is greater than that of the second, (i. e., if

heat is given ovit by a body in passing from the first to the second

state at constant temperature and pi'essure,) which we may suppose

without loss of generality, an elevation of temperature while the

pi'essure remains constant will cause the triple tangent planes to

(B), (D), and (A), and to (B), (D), and (C), to rise above the

triple tangent planes to (A), (C), and (B), and to (A), (C),

and (D), in the vicinity of the point I. The surface of dissipated

energy will therefore take the form indicated in figure 5, in which

there are two plane triangles and five developable surfaces besides

portions of the four primitive sheets. A diminution of temperature

wall give a different but entirely analogous form to the surface of dis-

sipated energy. The quadrilateral ABCD will in this case break

into two triangles along the diameter BD. The effects produced by
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variation of the pressure wliile the temperature remains constant will

of course be similar to those described. By considering the diiference

of volume instead of the difference of entropy of the two states repi-e-

sented by the point I in the quadruple tangent plane, we may distin-

guish between the effects of increase and diminution of pressure.

It should be observed that the points of contact of the quadruple

tangent plane with the primitive surface may be at isolated points or

curves belonging to the latter. So also, in the case of two component

substances, the points of contact of the triple tangent line may be at

isolated points belonging to the primitive curve. Such cases need

not be separately treated, as the necessary modifications in the pre-

ceding statements, when applied to such cases, are quite evident.

And in the remaining discussion of this geometrical method, it will

generally be left to the reader to make the necessary limitations or

modificatioiis in analogoiis cases.

The necessary condition in regard to simultaneous variations of

temperature and pressure, in order that four coexistent phases of

three components, or three coexistent phases of two components, shall

remain possible, has already been deduced by purely analytical pro-

cesses. (See equation (129).)

We will next consider the case of two coexistent phases of identi-

cal composition, and first, when the number of components is two.

The coexistent phases, if each is variable in composition, will be

represented by the point of contact of two curves. One of the

curves will in general lie above the other except at the point of con-

tact ; therefore, when the temperature and pressure remain constant,

one phase cannot be varied in composition without becoming unstable,

while the other phase will be stable if the proportion of either com-

ponent is increased. By varying the temperature or pressure, we

may cause the upper curve to protrude below the other, or to rise

(relatively) entirely above it. (By comparing the volumes or the

entropies of the two coexistent phases, we may easily determine

which result would be produced by an increase of temperature or

of pressure.) Hence, the temperatures and pressures for which two

coexistent phases have the same composition form the limit to the

temperatures and pressures for which such coexistent phases are pos-

sible. It will be observed that as we pass this limit of temperature

and pressure, the pair of coexistent phases does not simply become

unstable, like pairs and triads of coexistent phases which we have

considered before, but there ceases to be any such pair of coexistent

phases. The same result has already been obtained analytically on
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page 155. But on that side of the limit on which the coexistent

phases are possible, there will be two pairs of coexistent phases for

the samj values of t and />, as seen in figure 6. If the curve AA' repre-

sents vapor, and the curve BB' liquid, a liquid

(represented by) B may exist in contact with

a vapor A, and (at the same temperature and

pressure) a liquid B' in contact with a vapor

A', If we compare these phases in respect to

their composition, we see that in one case the
^^' ^' vapor is richer than the liquid in a certain

component, and in the other case poorer. Therefore, if these liquids

are made to boil, the effect on their composition will be opposite. If

the boiling is continued under constant pressure, the temperature will

rise as the liquids approach each other in composition, and the curve

BB' will rise relatively to the curve AA', until the curves are tangent

to each other, when the two liquids become identical in nature, as also

the vapors which they yield. In composition, and in the value of 'Q per

unit of mass, the vapor will then agree with the liquid. But if the

curve BB' (which has the greater curvature) represents vapor, and

AA' represents liquid, the effect of boiling will make the liquids A
and A' differ more in composition. In this case, the relations indi-

cated in the figure will hold for a temperature higher than that for

which (with tlie same pressure) the curves are tangent to one another.

When two coexistent phases of three component substances have

the same composition, they are represented by the point of contact of

two sheets of the primitive surface. If these sheets do not intersect

at the point of contact, the case is very similar to that which we have

just considered. The upper sheet except at the point of contact

represents unstable phases. If the temperature or pressure are so

varied that a part of the upper sheet protrudes through the lower, the

points of contact of a double tangent plane rolling upon the two

sheets will describe a closed curve on each, and the surface of dissi-

pated energy will include a portion of each sheet of the primitive sur-

face united by a ring-shaped developable surface.

If the sheet having the greater curvatures represents liquid, and

the other sheet vapor, the boiling temperature for any given pressure

will be a maximum, and the pressure of saturated vapor for any given

temperature will be a minimun, when the coexistent liquid and vapor

have the same composition.

But if the two sheets, constructed for the temperature and pressure

of the coexistent phases which have the same composition, intersect
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at the point of contact, the wliole primitive surface as seen from
below will in general present four re-entrant furrows, radiating from

the point of contact, for each of which a developable surface may he

formed by a rolling double tangent plane. The diiferent parts of the

surface of dissipated energy in the vicinity of the })oint of contact are

represented in figure 7. ATB, ETF are parts of one sheet ot the

primitive surface, and CTD, GTH are parts of the other. These are

united by the developable surfaces BTC, DTE, FTG, HTA. Now
we may make either sheet of the primitive surface sink relatively to

the other by the pi'oper variation of temperature or pressure. If the

sheet to which ATB, ETF belong is that which sinks relatively, these

parts of the surface of dissipated energy will

be merged in one, as well as the developable

surfaces BTC, DTE, and also FTG, HTA.
.(The lines CTD, BTE, ATE, HTG will

separate from one another at T, each forming

a continuous curve.) But if the sheet of the

primitive surface which sinks relatively is

that to which CTD and GTH belong, then

Fig. 7. these parts will be merged in one in the sur-

fiice of dissipated energy, as will be the developable surfaces BTC,

ATH, and also DTE, FTG.
It is evident that this is not a case of maximum or minimum tem-

perature for coexistent phases under constant pressure, or of maximum

or minimum pressure for coexistent phases at constant temperature.

Another case of intei*est is when the composition of one of three

coexistent phases is such as can be produced by combining the other

two. In this case, the primitive surface must touch the same plane

in three points in the same straight line. Let us distinguish the parts

of the primitive surface to which these points belong as the sheets (A),

(B), and (C), (C) denoting that which is intermediate in position.

The sheet (C) is evidently tangent to the developable surface formed

upon (A) and (B). It may or it may not intersect it at the point of

contact. If it does not, it must lie above the developable sur-

face, (unless it represents states which are unstable in regard

to continuous changes,) and the surface of dissipated energy

will include parts of the primitive sheets (A) and (B), the develop-

able surface joining them, and the single point of the sheet (C)

in which it meets this developable surface. Now, if the tempera-

ture or pressure is varied so as to make the sheet (C) rise above the

Tkans. Conn. Acad., Vol. III. 24 February, 1876.
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(levelopable surface formed on the sheets (A) and (B), the surface of

dissipated energy will be altered in its general features only by the

removal of the single point of the sheet (C). But if the temperature

or pressure is altei-ed so as to make a part of the sheet (C) protrude

through the developable surface formed on (A) and (B), the surface

b of dissipated energy will have the

form indicated in figure 8. It

will include two plane triangles

ABC and A'B'C, a part of each of

the sheets (A) and (B), represented

in the figure by the spaces on the

left of the line aAiV'a' and on the

\ right of the line bBB'b', a small
^i«- 8- " part CC of the sheet (C), and de-

velopable surfaces formed upon these sheets taken by pairs ACC'A',

BCC'B', aABb, a'A'B'b'. the last two being dilFerent portions of the

same developable surface.

But if, when the primitive surface is constructed for such a

temperature and pressui-e that it has three points of contact with

the same plane in the same straight line, the sheet (C) (which has

the middle position) at its point of contact with the triple tangent

plane intersects the developable surface formed upon the other sheets

(A) and (B), the surface of dissipated energy will not include this

developable surface, but will consist of portions of the three primi-

tive sheets with two developable surfaces formed on (A) and (C) and

on (B) and (C). These developable surfaces meet one another at

the point of contact of (C) with the triple tangent plane, dividing the

portion of this sheet which be-

c 7 longs to the surface of dissipated

energy into two parts. If now
the temperature or pressure are

varied so as to make the sheet

((3) sink relatively to the de-

velopable surface formed on (A)

b' and (B), the only alteration in

the general features of the sur-

face of dissipated energy will

be that the developable surfaces

formed on (A) and (C) and on (B) and (C) will separate from

one another, and the two parts of the sheet (C) will be merged in

one. But a contrary variation of temperature or pressure will give a
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surface of dissipated energy such as is represented in figure (9), con-

taining two plane triangles ABC, A'B'C belonging to triple tangent

planes, a portion of the sheet (A) on the left of the line aAA'a', a por-

tion of the sheet (B) on the right of the line bBB'b', two separate

portions cCy and c'C'y' of the sheet (C), two separate portions aACc
and a'A'C'c' of the developable surface formed on (A) and (C), two

separate portions bBC;/ and h'B'C'y' of the developable surface

formed on (B) and (C), and the portion A'ABB' of the developable

surface formed on (A) and (B).

From these geometrical relations it appears that (in general) the

temperature of three coexistent phases is a maximum or minimum for

constant pressure, and the pressure of three coexistent phases a maxi-

mum or mininuim for constant temperature, when the composition of

the three coexistent phases is such that one can be formed by com-

bining the other two. This result has been obtained analytically

on page 156.

The preceding examples are amply sufficient to illustrate the use

of the m-'C, surfaces and curves. The physical properties indicated by

the nature of the siirface of dissipated energy have been only occa-

sionally mentioned, as they are often far more distinctly indicated by

the diagrams than they could be in words. It will be observed that

a knowledge of the lines which divide the various different portions

of the surface of dissipated energy and of the direction of the recti-

linear elements of the developable surfaces, as projected upon the

JC-Y' plane, without a knowledge of the form of the m-'Q surface in

space, is sufficient for the determination (in respect to the quantity

and composition of the resulting masses) of the combinations and

separations of the substances, and of the changes in their states of

aggregation, which take place when the substances are exposed to

the temperature and pressure to which the projected lines relate,

except so far as such transformations are prevented by passive re-

sistances to change.

CRITICAL PHASES.

It has been ascertained by experiment that the variations of two

•coexistent states of the same substance are in some cases limited in

one direction by a terminal state at which the distinction of the

coexistent states vanishes.* This state has been called the critical

state. Analogous properties may doubtless be exhibited by com-

pounds of variable composition without change of tempei-ature or

* See Dr. Andrews " On the continuity of the gaseous and liquid states of matter."

Phil. Trans., vol. 159, p. 575.
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pivssuro. For if, ;it iiiiy given tcniixTutuiv and pressure, two liquids

nre ca})iil)le of forming a stable mixture in any ratio in
^ : m^ less than

rt, and in any greater than A, n and h being the values of that ratio

for two coexistent ))hases, while either can form a stable mixture with

a third licjuid in all jtroportions, and any small quantities of the iirst

and second can unite at once with a great quantity of the third to

form a stable mixture, it may easily be seen that two coexistent mix-

tures of the three liquids may be varied in composition, the tempera-

ture and pressure remaining the same, from initial phases in each of

which the (piantity of the third liquid is nothing, to a terminal phase

in whicli the distinction of the two phases vanishes.

In general, we may define a critical phase as one at which the dis-

tinction between coexistent i>hases vanishes. We may suppose the

coexistent phases to be stable in respect to continuous changes, for

although I'elations in some icspects analogous might be imagined to

hold true in regard to ])hases which are unstable in respect to con-

tinuous changes, the discussion of siudi cases would be devoid of

interest. But if the coexistent jthases and the critical phase are

unstable only in respect to the possible formation of phases entirely

ditferent from the critical and adjacent phases, the liability to such

changes will in no respect affect the relations between the critical and

adjacent jdiases, and need not be considered in a theoretical discussion

of these relations, although it may prevent an experimental realiza-

tion of the phases considered. For the sake of brevity, in the follow-

ing discussion, ])hases in tlu^ vicinity of the critical phase will gen-

erally be called stable, if they are unstable only in respect to the

formation of phases entirely different from any in the vicinity of the

critical phase.

Let us first consider the number of independent variations of which

a critical phase (while remaining such) is capable. If we denote by

n the number of indejiendently variable components, a pair of coexis-

tent phases will be capable of n independent variations, which may be

expressed by the variations of ti of the quantities t, p, //^, //^, ...//„.

If we limit these variations by giving to n — 1 of the quantities the

constant values which they have for a certain critical phase, we

obtain a linear* series of pairs of coexistent phases terminated by the

critical phase. If we now vary infinitesimally the values of these

n — l quantities, we shall have for the new set of values considered con-

stant a new linear series of pairs of coexistent phases. Now for every

pair of phases in the first series, there must be pairs of phases in the

* This tonn is used to cliaracterize a series having a single degree of extension.
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second series differing infinitely little from the pair in the first, and

vice versa^ therefore the second series of coexistent phases must be

terminated by a critical phase wliic^h differs, but differs infinitely

little, from the first. We see, therefore, that if we vary arbitrarily

the values of any n — 1 of the quantities <,^>», /^ j, /^g? • • • Hn-, ii« deter-

mined by a critical phase, we obtain one and only one critical phase

for each set of varied values ; i. c., a critical phase is capable of

w— 1 independent variations.

The quantities t,]>, //j, //g, • • . /^„, have the same values in two

coexistent phases, but the ratios of the quantities ^/, w, m,, rti,^^. . . m„,

are in general different in the two j)hases. Or, if for convenience we
compare equal volumes of the two phases (which involves no loss of

generality), the quantities //, mj, mg, , , . m„ will in general have

different values in two coexistent phases. Aj)plying this to coexis-

tent phases indefinitely near to a critical phase, we see that in the

immediate vicinity of a critical phase, if the values of n of the quanti-

ties t, J), /u^, //g? • • • Mn, iii'ti regarded as constant (as well as v), the

variations of either of the others will be infinitely small compared

with the variations of the quantities ?;, m^, rn^, . . . m„. This con-

dition, which we may write in the form

(-1^) =0, (200)

characterizes, as we have seen on page 171, the limits which divide

stable from unstable phases in respect to continuous changes.

In fact, if we give to the quantities t, /j^, yUg, . . . yw„_i constant

values determined by a i)air of coexistent phases, and to * a series

of values increasing from the less to the greater of the values which it

has in these coexistent phases, we determine a linear series of phases

connecting the coexistent phases, in some part of which yu„—since it

has the same value in the two coexistent phases, but not a uniform

value throughout the series (for if it had, which is theoretically im-

probable, all these phases would be coexistent)—must be a decreasing

function of ", or of m„, if v also is sujjposed constant. Therefore,

the series must contain phases which are unstable in respect to con-

tinuous changes. (See page 168.) And as such a pair of coexistent

phases may be taken indefinitely near to any critical phase, the

unstable jdiases (with resi)ect to continuous changes) must approach

indefinitely near to this phase.
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Critical phases have similar pi'operties with reference to stability

as determined with regard to discontinuous changes. For as every

stable phase which has a coexistent phase lies upon the limit which

separates stable from unstable phases, the same must be true of any

stable critical phase. (The same may be said of critical phases which

are unstable in regard to discontinuous changes if we leave out of

account the liability to the particular kind of discontinuous change

in respect to which the critical phase is unstable.)

The linear series of phases determined by giving to n of the quanti-

ties t,p,Mi-'M2i ' • • /'" ^^^ constant values which they have in any

pair of coexistent phases consists of unstable phases in the part

between the coexistent phases, but in the part beyond these phases in

eithei" direction it consists of stable phases. Hence, if a critical phase

is varied in such a manner ihntn of the quantities t,p, /.i^, yUg, . . . /v„

remain constant, it will remain stable in respect both to continuous and

to discontinuous changes. Therefore, yu„.is an increasing function of

m„ when t, v, j^i^, /.I2, • • • /'n-i have constant values determined by

any critical phase. But as equation (200) holds true at the critical

phase, the following conditions must also hold true at that phase

:

fd^/n„\ = 0, (201)

\d}n„^)t, V,
^0. (202)

If the sign of equality holds in the last condition, additional condi-

tions, concerning the differential coefficients of higher orders, must be

satisfied.

Equations (200) and (201) may in general be called the equations

of critical phases. It is evident that there are only two independent

equations of this character, as a critical phase is capable oi n—l inde-

pendent variations.

We are not, however, absolutely certain that equation (200) will

always be satisfied by a critical phase. For it is possible that the

denominator in the fraction may vanish as well as the numerator for

an infinitesimal change of phase in which the quantities indicated

are constant. In such a case, we may suppose the subscript n to

refer to some different component substance, or use another differen-

tial coefficient of the same general form (such as are described on

page 171 as characterizing the limits of stability in respect to con-

tinuous changes), making the corresponding changes in (201) and

(202). We may be certain that some of the formula^ thus formed

will not fail. But for a perfectly rigorous method there is an advan-
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tage ill the use of ;;, y, ^jj/n,, . . . m„ as independent variables. The

condition that the phase may be vai'ied without altering any of the

quantities t, //,, //.,, ...//„ will then be expressed by the equation

i?„+i=0, (203)

in which /i„^^ denotes the same determinant as on page 169. To
obtain the second equation characteristic of critical phases, we observe

that as a phase which is critical cannot become unstable when \aried

so that n of the quantities ^, jt), /<j, //g? • • • /'« remain constant, the

differentia] of ^n^., for constant volume, viz.,

^-^»+l^„-i- ^^-^"+l dm . -U ^J^ dm„
dtn„

+ (204)
d// dm

I

cannot become negative when n of the equations (1V2) are satisfied.

Neither can it have a positive value, for then its value might become

negative by a change of sign of d?/, dm^, etc. Therefore the expres-

sion (204) has the value zero, if w of the equations (172) are satisfied.

This may be expressed by an equation

aS=0, (205)

in which S denotes a determinant in which the constituents are the

same as in ^„+i, except in a single horizontal line, in which the

differential coefficients in (204) are to be substituted. In whatever

line this substitution is made, the equation (205), as well as (203),

will hold true of every critical phase without exception.

If we choose t, p, m^, m^, . . . m„ ?is independent variables, and

write V for the determinant

d^i dH dn

(206)

and V for the determinant formed from this by substituting for the

constituents in any horizontal line the expressions

IE, i^, . . .
i^ (20V)

the equations of critical phases will be

Z7= 0, V— 0. (208)

It results immediately from the definition of a critical phase, that

an infinitesimal change in the condition of a mass in such a phase

dm^^
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may cause the mass, if it remains in a state of dissipated energy (i. e.,

in a state in which the dissipation of energy by internal processes is

complete), to cease to be homogeneous. In this respect a critical phase

resembles any phase which has a coexistent phase, but diifers from

such phases in that the two parts into which the mass divides when

it ceases to be homogeneous differ infinitely little from each other and

from the original phase, and that neither of these parts is in general

infinitely small. If we consider a change in the mass to be deter-

mined by the values of dij, dv, dtn^, dm 2, . . . dw„, it is evident

that the change in question Avill caiise the mass to cease to be homo-

geneous whenever the expression

^f '""-% *+ '-i^'
'"'•' ••+^17 *"" <^'''>

has a negative value. For if the mass should remain homogeneous,

it would become imstable, as Ji„+i would become negative. Hence,

in general, any change thus determined, or its reverse (determined by

giving to dr/, dv, dm^, dm^, . . . dm„ the same values taken nega-

tively), will cause the mass to cease to be homogeneous. The condi-

tion which must be satisfied with refei'ence to dij, dv, diit^, dm^,

. . . dm„, in order that neither the change indicated, nor the

reverse, shall destroy the homogeneity of the mass, is expressed by

equating the above expression to zero.

But if we consider the change in the state of the mass (supposed to

remain in a state of dissipated energy) to be determined by arbitrary

values of vi-f 1 of the differentials dt, dp, f^/',, djx^, . . . dj.i„, the case

will be entirely different. For, if the mass ceases to be homogeneous,

it will consist of two coexistent phases, and as applied to these only

n of the quantities t, p, /<,, //g, • • . yw„ will be independent. There-

fore, for arbitrary variations of n+l of these quantities, the mass

must in general remain homogeneous.

But if, instead of supposing the mass to remain in a state of dissi-

pated energy, we suppose that it remains homogeneous, it may easily

be shown that to certain values of u-\-l of the above differentials

there will correspond three different phases, of which one is stable

with respect both to continuous and to discontinuous changes, another

is stable with respect to the former and unstable with respect to the

latter, and the third is unstable with respect to both.

In general, however, if 91 of the quantities p, t, /a
^, /<^, . . . //„,

or n arbitrary functions of these quantities, have the same constant

values as at a critical phase, the linear series of phases thus deter-

mined will be stable, in the vicinity of the critical phase. But if less
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than n of these quantities or functions of tlie same together with cer-

tain of the quantities ?;, u, wij, Wj, . . . m„, or arbitrary functions of

the latter quantities, have the same values as at a critical phase, so

as to determine a linear series of phases, the differential of i?„+i in

such a series of phases will not in general vanish at the critical phase,

so that in general a part of the series will be unstable.

We may illustrate these relations by considering separately the

cases in which n^^\ and m= 2. If a mass of invariable composi-

tion is in a critical state, we may keep its volume constant, and

destroy its homogeneity by changing its entropy (i. e,, by adding or

subtracting heat—probably the latter), or we may keep its entropy

constant and destroy its homogeneity by changing its volume ; but if

we keep its pressure constant we cannot destroy its homogeneity by
any thermal action, nor if we keep its temperature constant can we
destroy its homogeneity by any mechanical action.

When a mass having two independently variable components is in

a critical phase, and either its volume or its pressure is maintained

constant, its homogeneity may be destroyed by a change of entropy

or temperature. Or, if either its entropy or its temperature is main-

tained constant, its homogeneity may be destroyed by a .change

of volume or pressure. In both these cases it is supposed that

the quantities of the components remain unchanged. But if we

suppose both the temperature and the pressure to be maintained con-

stant, the mass will remain homogeneous, however the proportion of

the components be changed. Or, if a mass consists of two coexistent

phases, one of which is a critical phase having two independently

variable components, and either the temperature or the pressure of

the mass is maintained constant, it will not be possible by mechanical

or thermal means, or by changing the quantities of the components,

to cause the critical phase to change into a pair of coexistent phases,

so as to give three coexistent phases in the whole mass. The state-

ments of this paragraph and of the preceding have reference only to

infinitesimal changes.*

* A brief abstract (which came to the author's notice after the above was in type)

of a memoir by M. Duolaux, " Sur la separation des liquides melanges, etc." will be

found in Comptes Bendus, vol. Ixxxi. (1875), p. 815.

Trans. Conn. Acad., Vol. III. 26 February, 1876.
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ON THE VALUES OF THE POTENTIALS WHEN THE QUANTITY OF ONE

OF THE COMPONENTS IS VERY SMALL.

If Ave apply equation (97) to a homogeneous mass having two inde-

pendently variable components S^ and S^, and make t, p, and m,

constant, we obtain

i'Ilh\ +mrp] -^0. (210)
\dm2/t,p, m^

or

Therefore, for ^2=0, either

f^') =0, (211)

/^2\ ^ ^_ (212)
\dm2}t,p, 7/1,

Now, whatever may be the composition of the mass considered,

we may always so choose the substance S^ that the mass shall consist

solely of that substance, and in respect to any other variable com-

ponent S2, we shall have m2=-0. But equation (212) cannot hold

true in general as thus applied. For it may easily be shown (as has

been done with regard to the potential on pages 148, 149) that the

value of a diiferential coefficient like that in (212) for any given mass,

when the substance S^ (to which ^3 ^"^^ Ma relate) is determined, is

independent of the particular substance which we may regard as the

other component of the mass; so that, if equation (212) holds true

when the substa.nce denoted by S^ has been so chosen that W2=0, it

must hold true without sucli a restriction, Avhich cannot generally

be the case.

In fact, it is easy to prove directly that equation (211) will hold

ti'ue of any phase which is stalile in regard to continuous changes

and in which m^^^O, (/^w^g *'^ capable of negative as icell as positive

values. For by (171), in any pliase having that kind of stability, //j

is an increasing function of w/ j when t,p, and m.^ are regarded as

constant. Hence, //j will have its greatest value when the mass con-

sists wholly of aSj, i. e., when mg^rO. Therefore, if w^2 is capable

of negative as well as positive values, equation (211) must hold true

for rn.^ = 0. (This appears also from the geometrical representation

of potentials in the m-t, curve. See page 177.)

But if Wg is capable only of positive values, we can only conclude

from the preceding considerations that the value of the differential

coefficient in (211) cannot be positive. Nor, if we consider the physi-

cal significance of this case, viz., that an increase of m.^ denotes an
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addition to the mass in question of a substance not before contained

in it, does any reason appear for supposing that this differential coeffi-

cient has generally the value zero. To fix our ideas, let us suppose

that S^ denotes water, and 8^ a salt (either anhydrous or any partic-.

ular hydrate). The addition of the salt to water, previously in a

state capable of equilibrium with vapor or with ice, will destroy the

possibility of such equilibrium at the same temperature and pressure.

The liquid will dissolve the ice, or condense the vapor, which is

brought in contact with it under such circumstances, which shows
that //j (the potential for water in the liquid mass) is diminished by
the addition of the salt, when the temperature and pressure are main-

tained constant. Now there seems to be no a priori reason for

supposing that the ratio of this diminution of the potential for water

to the quantity of the salt which is added vanishes with this quantity.

We should rather expect that, for small quantities of the salt, an

effect of this kind would be proportional to its cause, i. e., that the

differential coefficient in (211) would have a finite negative value for

an infinitesimal value of m^. That this is the case with respect to

numerous watery solutions of salts is distinctly indicated by the

experiments of Wtillner* on the tension of the vapor yielded by such

solutions, and of Rtldorfff on the temperature at which ice is formed

in them ; and unless we have experimental evidence that cases are

numerous in which the contrary is true, it seems not unreasonable

to assume, as a general law, that when tn^ has the value zero and is

incapable of negative values, the differential coefficient in (211) will

have a finite negative value, and that equation (212) will therefore

hold true. But this case must be carefully distinguished from that

in which m^ is capable of negative values, which also may be illus-

trated by a solution of a salt in water. For tliis purpose let S^

denote a hydrate of the salt which can be ciystallized, and let S.-,

denote water, and let us consider a liquid consisting entirely of 8^

and of such temperature and pressure as to be in equilibrium with

crystals of S^. In such a liquid, an increase or a diminution of the

quantity of water would alike cause crystals of 8^ to dissolve, which

requires that the differential coefficient in (211) shall vanish at the

particular phase of the liquid for which m, = 0.

Let us return to the case in which m.^\^ incapable of negative values,

and examine, without other restriction in regard to the substances

* Fogg. Ann., vol. ciii. (1858), p. 529 ; vol. cv. (1858), p. 85; vol. ex. (1860), p. 564.

\ Pogg. Ann., vol. cxiv. (1861), p. 63.
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denoted by *S'i and S^, the relation between //g and ^ tor any con-

stant temperature and pressure and for such small values of -^ that

the differential coefficient in (211) may be regarded as having the same

constant value as when m^ = 0, the values of t, p, and m
^
being un-

changed. If we denote this value of the differential coefficient by

— the value of^ will be positive, and will be independent of m^.
m^ '

Then for small values of '^, we have by (210), approximately,

^2

i. e.,

^\dm2/t, p, m,

\rtlog rn2/t,p, Ml

If we write the integral of this equation in the form

pi2=Alog-^^, (215)

J^ like A will have a positive value depending only upon the tempera-

ture and pressure. As this equation is to be applied only to cases in

which the value of m^ is very small compared with ^)t^, we may

regard —- as constant, when temperature and pressure are constant,

and write

p(^ = A\og—^, (216)

C denoting a positive quantity, dependent only upon the temperature

and pressure.

We have so far considered the composition of the body as varying

only in regard to the proj^ortion of two comi^onents. But the argu-

ment will be in no respect invalidated, if we suppose the composition

of the body to be capable of other variations. In this case, the quan-

tities A and 6' will be functions not only of the temperature and

pressure but also of the quantities which express the composition of

the substance of which together with S^ the body is composed. If

the quantities of any of the components besides yS'a are very small

(relatively to the quantities of others), it seems reasonable to assume

that the value of ju^, and therefore the values of .1 and C, will be

nearly the same as if these components were absent.
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Hence, if the independently variable components of any body are

aS„, . . . Sg, and S/,, . . . /iS'^., the quantities of the latter being very small

as compared with the quantities of the former, and are incapable of

negative values, we may express approximately the values of the

])otentials for S,„ . . . /Si. by equations (subject of coui-se to the uncer-

tainties of the assumptions which have been made) of the form

M,.= A,\og^'f^; (217)

//,=A•log-^^ (218)
V

in which A,^, C\, . . . A^., C^. denote functions of the temperature, the

pressure, and the ratios of the quantities ni„, . . . rn^.

We shall see hereafter, when we come to consider the properties of

gases, that these equations may be verified experimentally in a very

large class of cases, so that we have considerable reason for believing

that they express a general law in regard to the limiting values of

potentials.*

ON CERTAIN POINTS KELATING TO THE MOLECULAR CONSTITUTION OF

BODIES.

It not unfrequently occurs that the number of proximate compo-

nents which it is necessary to recognize as independently variable in

a body exceeds the number of components which would be sufficient

to express its ultimate composition. Such is the case, for example, as

has been remarked on page 117, in regard to a mixture at ordinary

temperatures of vapor of water and free hydrogen and oxygen.

This case is explained by the existence of three sorts of molecules in

the gaseous mass, viz., molecules of hydrogen, of oxygen, and of

hydrogen and oxygen combined. In other cases, which are essentially

the same in principle, we suppose a greater number of different sorts

of molecules, which differ in composition, and the relations between

* The reader will not fail to remark that, if we could assume the universality of this

law, the statement of the conditions necessary for equilibrium between different

masses in contact would be much simplified. For, as the potential for a substance

which is only & possible component (see page 117) would always have the value — oo^

the case could not 6ccur that the potential for any substance should have a greater

vakie in a mass in which that substance is only a possible component, than in another

mass in which it is an actual component; and the conditions (22) and (51) might be

expressed with the sign of equality without exception for the case of possible

components.
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these may be more complicated. Other cases are explained by mole-

cules which differ in the quantity of matter which they contain, but

not in the kind of matter, nor in the proportion of the different kinds.

In still other cases, there appear to be different sorts of molecules,

which differ neither in the kind nor in the quantity of matter which

they contain, but only in the manner in which they are constituted.

What is essential in the cases referred to is that a certain number of

some sort or sorts of molecules shall be equivalent to a certain number

of some other sort or sorts in respect to the kinds and quantities of

matter which they collectively contain, and yet the former shall never

be transformed into the latter within the body considered, nor the

latter into the former, however the proportion of the numbers of the

different sorts of molecules may be varied, or the composition of the

body in other respects, or its thermodynamic state as represented by

temperature and pressure or any other two suitable variables, pro-

vided, it may be, that these variations do not exceed certain limits.

Thus, in the example given above, the temperature must not be

raised beyond a certain limit, or molecules of hydrogen and of oxygen

may be transformed into molecules of water.

The differences in bodies resulting from such differences in the con-

stitution of their molecules are capable of continuous variation, in

bodies containing the same matter and in the same thermodynamic

state as determined, for example, by pressui-e and temperature, as the

numbers of the molecules of the different sorts are varied. These

differences are thus distinguished from those which depend upon the

manner in which the molecules are combined to form sensible masses.

The latter do not cause an increase in the number of variables in the

fundamental equation ; but they may be the cause of different values

of which the function is sometimes capable for one set of values of

the independent variables, as, for example, when we have several

different values of t, for the same values of ^, jo, m^, ni^, . . . m„, one

perhaps being for a gaseous body, one for a liquid, one for an amor-

phous solid, and others for different kinds of crystals, and all being

invariable for constant values of the above mentioned independent

variables.

But it must be observed that when the differences in the constitu-

tion of the molecules are entirely determined by the quantities of

the different kinds of matter in a body with the two variables which

express its thermodynamic state, these differences will not involve

any increase in the number of variables in the fundamental equation.

For example, if we should raise the temperature of the mixture of
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vapor of water and free hydrogen and oxygen, which we have just

considered, to a point at which the numbers of the] different sorts of

molecules are entirely determined by the temperature and pressure

and the total quantities of hydrogen and of oxygen which are present,

the fundamental equation of such a mass would involve but four inde-

pendent variables, which might be the four quantities just mentioned.

The fact of a certain part of the matter j^resent existing in the

form of vapor of water would, of course, be one of the facts which

determine the nature of the relation between ? and the independent

variables, which is expressed by the fundamental equation.

But in the case first considered, in which the quantities of the

different sorts of molecules are not determined by the temperature

and pressure and the quantities of the difierent kinds of matter in the

body as determined by its ultimate analysis, the components of which

the quantities or the potentials appear in the fimdamental equation

must be those which are detei-mined by the proximate analysis of the

body, so that the variations in their quantities, with two variations

relating to the thermodynamic state of the body, shall include all the

variations of which the body is capable.* Such cases present no

especial difficulty; there is indeed nothing in the physical and

chemical jiroperties of such bodies, so far as a certain range of experi-

ments is concerned, Avhich is different from what might be, if the

proximate components were incapable of farther reduction or trans-

formation. Yet among the the various phases of the kinds of matter

concerned, represented by the different sets of values of the variables

which satisfy the fundamental equation, there is a certain class which

merit especial attention. These are the phases for which the entropy

has a maximum value for the same matter, as determined by the

ultimate analysis of the body, with the same energy and volume. To

fix our ideas let us call the proximate components S^, . . . S„^ and the

ultimate components S„^ . . . *S/, ; and let m^, . . . m„ denote the

quantities of the former, and m„, . , . m^, the quantities of the latter.

It is evident that m^ . . . m^ are homogeneous functions of the first

degree of m,, . . . J7^„; and that the relations between the substances

aSj, . . . /8„ might be expressed by homogeneous equations of the first

degree between the units of these substances, equal in number to the

difference of the numbers of the proximate and of the ultimate com-

* The terms proximate or ultimate are not necessarily to be understood in an abso-

lute sense. All that is said here and in the following paragraphs will apply to many

cases in which components may conveniently be regarded as proximate or ultimate,

which are such only in a relative sense.
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ponents. The phases in question are those for which 7/ is a maximum

for constant values of £, v, w„, . . . m,,
;

or, as they may also be

described, those for which e is a minimum for constant values of ?;, v,

m„ . . . ni,, ; or for which 'Q is a minimum for constant values of

t, p, m„, . . . m,,. The phases which satisfy this condition may be

readily determined when the fundamental equation (which will con-

tain the quantities m^, . . . ni„ or yWj, . . . //„,) is known. Indeed it is

easy to see that we may express the conditions which determine these

phases by substituting /<j, ...//„ for the letters denoting the units

of the corresponding substances in the equations which express the

equivalence in ultimate analysis between these units.

These phases may be called, with reference to the kind of change

which we are considering, phases of dissipated energ}^ That we

have used a similar term before, with reference to a diiferent kind of

changes, yet in a sense entirely analogous, need not create confusion.

Tt is chai-acteristic of these phases that we cannot alter the values

of wij, . . . Wn in any real mass in such a phase, while the volume of

the mass as well as its matter remain unchanged, without diminish-

in o- the energy or increasing the entropy of some other system.

Hence, if the mass is large, its equilibrium can be but slightly dis-

turbed by the action of any small body, or by a single electric spark,

or by any cause which is not in some way proportioned to the effect

to be produced. But when the proportion of the proximate compo-

nents of a mass taken in connection with its temperature and pressure

is not such as to constitute a phase of dissipated energy, it may be

possible to cause great changes in the mass by the contact of a very

small body. Indeed it is possible that the changes produced by such

contact may only be limited by the attainment of a phase of dissipated

energy. Such a result will probably be produced in a fluid mass by

contact with another fliiid which contains molecules of all the kinds

which occur in the first fluid (or at least all those which contain

the same kinds of matter which also occur in other sorts of molecules),

but which differs from the first fluid in that the quantities of the

various kinds of molecules are entirely determined by the ultimate

composition of the fluid and its temperature and pressure. Or, to

speak without reference to the molecular state of the fluid, the result

considered would doubtless be brought about by contact with another

fluid which absorbs all the proximate components of the first,

S ... aS'„, (or all those betw-ien which there exist relations of equiva-

lence in respect to their ultimate analysis), independently, and with-

out passive resistances, but for which the phase is completely deter-
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mined by its temperature and pressure and its ultimate composition (in

respect at least to the particular substances just mentioned). By the

absorption of the substances 8^, . . . S^ independently and without
passive resistances, it is meant that when the absorbing body is in

equilibrium with another containing these substances, it shall be
possible by infinitesimal changes in these bodies to produce the ex-

change of all these substances in either direction and independently.
An exception to the preceding statement may of course be made for

cases in which the result in question is prevented by the occurrence of
some other kinds of change ; in other words, it is assumed that the

two bodies can remain in contact preserving the properties which
have been mentioned.

The term catalysis has been applied to such action as we are con-

sidering. When a body has the property of reducing another, with-

out limitation with respect to the proportion of the two bodies, to a

phase of dissipated energy, in regard to a certain kind of molecular

change, it may be called a perfect catalytic ar/ent with respect to the

second body and the kind of molecular change considered.

It seems not improbable that in some cases in which molecular

changes take place slowly in homogeneous bodies, a mass of which

the temperature and pressure are maintained constant will be finally

brought to a state of equilibrium which is entirely determined by its

temperature and pressure and the quantities of its ultimate compo-

nents, while the various transitory states through which the mass
passes, (which are evidently not completely defined by the quantities

just mentioned,) may be completely defined by the quantities of cer-

tain proximate components with the temperature and pressure, and

the matter of the mass may be brought by processes approximately

reversible from permanent states to these varioiis transitory states.

In such cases, we may form a fundamental equation with reference to

all possible phases, whether transitory or permanent; and we may
also form a fundamental equation of different import and containing

a smaller number of independent variables, which has reference solely

to the final phases of equilibrium. The latter are the phases of dissi-

pated energy (with reference to molecular changes), and when the

more general form of the fundamental equation is known, it will be

easy to derive from it the fundamental equation for these permanent

phases alone.

Now, as these relations, theoretically considered, are independent

of the rapidity of the molecular changes, the question naturally arises,

whether in cases in which we are not able to distinguish such trausi-

Trans. Conn. Acad., Vol. III. 26 February, 1876.
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tory phases, they may not still have a theoretical significance. If so,

the consideration of the subject from this point of view, may assist

us, in such cases, in discovering the foi-m of the fundamental equation

with reference to the ultimate components, which is the only equation

required to express all the properties of the bodies which are capable

of experimental demonstration. Thus, when the phase of a body is

completely determined by the quantities of n independently vari-

able components, with the temperature and pressure, and we have

reason to suppose that the body is composed of a greater number

n' of proximate components, which are therefore not independ-

ently variable (while the temperature and pressure remain constant),

it seems quite possible that the fundamental equation of the body

may be of the same form as the equation for the phases of dissi-

pated energy of analogous compounds of n' proximate and n ultimate

components, in which the proximate components are capable of

independent variation (without variation of temperature or pressure).

And if such is found to be the case, the fact will be of interest as

affording an indication concerning the proximate constitution of the

body.

Such considerations seem to be especially applicable to the very

common case in which at certain temperatures and pressures, regarded

as constant, the quantities of certain proximate components of a

mass are capable of independent variations, and all the phases pro-

duced by these variations are permanent in their nature, while at other

temperatures and pressures, likewise regarded as constant, th^ quan-

tities of these proximate components are not capable of independent

variation, and the phase may be completely defined by the quantities

of the ultimate components with the temperature and pressure. There

may be, at certain intermediate temperatures and pi*essures, a condi-

tion with respect to the independence of the proximate components

intermediate in character, in which the quantities of the proximate

components are independently variable when we consider all phases,

the essentially transitory as well as the permanent, but in which these

quantities are not independently variable when we consider the

permanent phases alone. Now we have no reason to believe that the

passing of a body in a state of dissipated energy from one to another

of the three conditions mentioned has any necessary connection with

any discontinuous change of state. Passing the limit which separates

one of these states from another will not therefore involve any dis-

continuous change in the values of any of the quantities enumerated

in (99)-(103) on page 143, if >y/,, wig, . . . m„, //j, //g? • • • yWn are



J. W. Gi.bbs— Equilibrium of Heterogeneous Substances. 203

understood as always relating to the ultimate components of the body.

Therefore, if we regard masses in the diiferent conditions mentioned
above as having different fundamental equations, (which we may sup-

pose to be of any one of the five kinds described on page 143,) these

equations will agree at the limits dividing these conditions not only

in the values of all the variables which appear in the equations, but

also in all the difi'erential coefficients of the first order involving these

variables. We may illustrate these relations by supposing the values

of t, />, and 'Q for a mass in which the quantities of the ultimate com-
ponents are constant to be represented by rectilinear coordinates.

Where the proximate composition of such a mass is not determined

by t and jo, the value of I will not be determined by these variables,

and the points representing connected values of t, ^>, and ^ will form

a solid. This solid will be bounded in the direction opposite to that

in which l is measured, by a surface which represents the phases of

dissipated energy. In a part of the figure, all the phases thus repre-

sented may be permanent, in another part only the phases in the

bounding surface, and in a third part there may be no such solid

figure (for any phases of which the existence is experimentally

demonstrable), but only a surface. This surface together with the

bounding surfaces representing phases of dissipated energy in the

parts of the figure mentioned above forms a continuous sheet, without

discontinuity in regard to the direction of its normal at the limits

dividing the different parts of the figure which have been mentioned.

(There may, indeed, be different sheets representing liquid and

gaseous states, etc., but if we limit our consideration to states of one

of these sorts, the case will be as has been stated.)

We shall hereafter, in the discussion of the fundamental equations

of gases, have an example of the derivation of the fundamental equa-

tion for phases of dissipated energy (with respect to the molecular

changes on which the proximate composition of the body depends)

from the more general form of the fundamental equation.

THE CONDITIONS OF EQUILIBRIUM FOR HETEROGENEOUS MASSES UNDER

THE INFLUENCE OF GRAVITY.

Let US now seek the conditions of equilibrium for a mass of various

kinds of matter subject to the influence of gravity. It will be con-

venient to suppose the mass enclosed in an immovable envelop which

is impermeable to matter and to heat, and in other respects, except

in regard to gravity, to make the same suppositions as on pages 115,

116. The energy of the mass will now consist of two parts, one of
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which depends upon its intrinsic nature and state, and the other npon

its position in space. Let Dtn denote an element of the mass, Ds the

intrinsic energy of this element, h its height aboA'e a fixed horizontal

plane, and g the force of gravity ; then the total energy of the mass

(when without sensible motions) will be expressed by the formula

fI)e-\-fghDm., (219)

in which the integrations include all the elements of the mass ; and

the general condition of equilibrium will be

dfBe + 6fg hDm ^ 0, (220)

the variations being subject to certain equations of condition. These

must express that the entropy of the whole mass is constant, that the

surface bounding the whole mass is fixed, and that the total quanti-

ties of each of the component substances is constant. We shall sup-

pose that there are no otlier equations of condition, and that the

independently variable components are the same throughout the

whole mass ; and we shall at first limit ourselves to the consideration

of the conditions of equilibrium with respect to the changes which

may be expressed by infinitesimal variations of the quantities which

define the initial state of the mass, without regarding the possibility

of the formation at any place of infinitesimal masses entirely different

from any initially existing in the same vicinity.

Let Z>//, Dv., JJm^, . . . J)m„ denote the entropy of the element

J)ni, its volume, and the quantities which it contains of the various

components. Then

Dm = Dm^ . . . + Dm„, (221)

and

dJ)m= dBm^ • • • + ^-Z>m„. (222)

Also, by equation (12),

6D€ = t SDrj —^ dUv + ju^ SJJm^ . . . -f yM„ 6J)m„. (223)

By these equations the general condition of equilibrium may be

reduced to the form

ft SDi] ~fp 6Dv +f/i, SBm^ . . . -f ///„ dDm„

+fg 6h Biti -\-fg h 6Dm ^ . . . -\- fgh dDm„ ^0. (224

)

Now it will be observed that the different equations of condition

affect different parts of this condition, so that we must have, sepa-

rately,

ft 6Dt] i 0, if fSDt]= ; (225)
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-fp 6Bv -\-fg 6h Urn ^ 0, (220)

if the bounding surface is unvaried
;

y7<i 61>m^ + fgh 6Bm^ ^0, if fSDm^ = ;

(227)

y>„ SJ}ni„ +fg h 61>m„ ^ 0, if f6Dm^= 0.

From (225) we may derive the condition of thermal equilibrium,

«z= Const. (328)

Condition (226) is evidently the ordinary mechanical condition of

equilibrium, and may be transformed by any of the usual methods.

We may, for example, apply the formula to such motions as might

take place longitudinally within an infinitely narrow tube, terminated

at both ends by the external surface of the mass, but otherwise

of indeterminate form. If we denote by m the mass, and by v the

volume, included in the part of the tube between one end and a

transverse section of variable position, the condition will take the

form
— fp ddv +fg Sh dm ^ 0, (229)

in which the integrations include the whole contents of the tube.

Since no motion is possible at the ends of the tube,

fp Sdv + fdv dp =fd{p Sv) z= 0, (230)

Again, if we denote by y the density of the fluid,

dh
fg dh dm :=fg -^ Sv y dv =.fg y Sv dh. (231

)

By these equations condition (229) may be reduced to the form

fSv {dp -{- g y dh) ^ 0. (232)

Therefore, since Sv is arbitrary in value,

dp= — g y dh, (233)

which will hold true at any point in the tube, the difierentials being

taken with respect to the direction of the tube at that point. There-

fore, as the form of the tube is indeterminate, this equation must

hold true, without restriction, throughout the whole mass. It evi-

dently requires that the pressure shall be a function of the height

alone, and that the density shall be equal to the first derivative of

this function, divided by — g.

Conditions (227) contain all that is characteristic of chemical

equilibrium. To satisfy these conditions it is necessary and sufficient

that
yu

J -f- ^ A = Const. \

(2-34)

//„ -f gh =. Const. )
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The expressions /^j, . . . /^„ denote quantities which we have called

the potentials for the several components, and which are entirely

determined at any point in a mass by the nature and state of the

mass about that point. We may avoid all confusion between these

quantities and the potential of the force of gravity, if we distinguish

the former, when necessary, as intrinsic potentials. The relations

indicated by equations (234) may then be expressed as follows

:

When afluid mass is in equilibrium under the influence of gravity^

and has the same independently variable components throughout^ the

intrinsic potentials for the several components are constant in any
given level, and diminish uniformly as the height increases, the differ-

ence of the values of the intrinsic potential for any component at two

different levels, being equal to the work done by the force of gravity

when a unit of matter fallsfrom the higher to the lower level.

The conditions expressed by equations (228), (233), (234) are

necessary and sufficient for equilibrium, except with respect to the

possible formation of masses which are not approximately identical in

phase with any previously existing about the points where they may
be formed. The possibility of such formations at any point is evidently

independent of the action of gravity, and is determined entirely by

the phase or phases of the matter about that point. The conditions

of equilibrium in this respect have been discussed on pages 128-134.

But equations (228), (233), and (234) are not entirely independent.

For with respect to any mass in which there are no surfaces of dis-

continuity (i. e., surfaces where adjacent elements of mass have finite

differences of phase), one of these equations will be a consequence of

the others. Thus by (228) and (234), we may obtain from (97),

which will hold true of any continuous variations of phase, the equa-

tion

V dpz^ — g {m
J

. . . -f- m„) dh
; (235)

or dp= - gy dh
; (236)

which will therefore hold true in any mass in which equations (228)

and (234) are satisfied, and in which there are no surfaces of discon-

tinuity. But the condition of equilibrium expressed by equation

(233) has no exception with respect to surfaces of discontinuity;

therefore in any mass in which such surfaces occur, it will be necessary

for equilibrium, in addition to the relations expressed by equations

(228) and (234), that there shall be no discontinuous change of pressure

at these surfaces.

This superfluity in the particular conditions of equilibrium which

we have found, as applied to a mass which is everywhere continuous
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in phase, is due to the fact that we have made the elements of volume

variable in position and size, while the matter initially contained in

these elements is not supposed to be confined to them. Now, as the

different components may move in different directions when the

state of the system varies, it is evidently imi)ossible to define the

elements of volume so as always to include the same matter ; we
must, therefore, suppose the matter contained in the elements of

volume to vary ; and therefore it would be allowable to make these

elements fixed in space. If the given mass has no surfaces of discon-

tinuity, this would be much the simplest plan. But if there are any

surfaces of discontinuity, it will be possible for the state of the given

mass to vary, not only by infinitesimal changes of phase in the fixed

elements of volume, but also by movements of the surfaces of discon-

tinuity. It would therefore be necessary to add to our general con-

dition of equilibrium terms relating to discontinuous changes in the

elements of volume about these surfaces,—a necessity which is

avoided if we consider these elements movable, as we can then sup-

pose that each element remains always on the same side of the surface

of discontinuity.

Method of treating the preceding jyrohlem^imiiMch the elements of

volume are regarded as fixed.

It may be interesting to see in detail how the particular conditions

of equilibrium may be obtained if we regard the elements of volume

as fixed in position and size, and consider the possibility of finite as

well as infinitesimal changes of phase in each element of volume. If

we use the character A to denote the differences determined by such

finite differences of phase, we may express the variation of the intrin-

sic energy of tlie whole mass in the form

fSBe + fABe, (237)

in which the first integral extends over all the elements which are

infinitesimally varied, and the second over all those which experience

a finite variation. We may regard both integrals as extending

throughout the whole mass, but their values will be zero except for

the parts mentioned.

If we do not wish to limit ourselves to the consideration of masses

so small that the force of gravity can be regarded as constant

in direction and in intensity, we may use T to denote the potential of

the force of gravity, and express the variation of the part of the

energy which is due to gravity in the form

-y r 6Dm -fT ADm. (238)
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We shall then have, for the general condition of equilihrium,

fSDe + /AUt -jTSDm - fTADm ^ ; (239)

and the equations of condition will be

fSDi^ -\-fADt] — 0, (240)

. . .
'

. . .
[

(241)

fdl)m„ + fABrn^ = 0. )

We may obtain a condition of equilibrium independent of these equa-

tions of condition, by subtracting these equations, multiplied each

by an indeterminate constant, from condition (239). If we denote

these indeterminate constants by T, 31^, . .. M„, we shall obtain

after arranging the terms

/ SDs — T 6Dm — TdDtj - iHf, SDm^ . . . ^ M„ 6Dm„

fADe-TADm - TADi]-M^ ADm^ . . . -M„dI>m„^o^ (242)

The variations, both infinitesimal and finite, in this condition are

independent of the equations of condition (240) and (241), and are

only subject to the condition that the varied values of J)e, i>//,

Dm^, . . . lJm„ for each element are determined by a certain change

of phase. But as we do not suppose the same element to experi-

ence both a finite and an infinitesimal change of phase, we must have

SJ)e~ FdDm - TdBi] - 31^ SBrn^ . . . - M„ SBm.„^0, (243)

and

ADs— TADm - TAD??— M^ ADm, ... - 3/„ JX>w„^0. (244)

By equation (12), and in virtue of the necessary relation (222), the

first of these conditions reduces to

{t — T) dDi] + (yu, - r— J^/,) SBm^ . . .

+ (yu„ - r- M„) dDm„^0
; (245)

for which it is necessary and suflicient that

t = r, (246)

V* (247)

* The gravitation potential is here supposed to be defined in the usual way. But if

it were defined so as to decrease when a body falls, we would have the sign + instead

of — in these equations ; i. e., for each component, the sum of the gravitation and

intrinsic potentials would be constant throughout the whole mass.
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Condition (244) may be reduced to the form

ADe^ TJDj] - {r-\-M^)JBm, ..._(]"+ ]\QJJ)m„^0; (248)

and by (246) and (247) to

JDe - tJDj) - //, JBm^ ... — //„ JZ>^/?„^ 0. (249)

If values determined subsequently to the change of phase are distin-

guished by accents, this condition may be written

J)s' - t Df/ - //j Diu^' ... - /.i„Brn„'

— Be + t D)i -{- 1.1^ Bm^ ... + //„ Bm^ 0, (250)

which may be reduced by (93) to

Be' - tB)]' - //, Bm^, ... - j.i„Bi>i„' -]- pBv^O. (251)

Now if the element of volume Bv is adjacent to a surface of discon-

tinuity, let us suppose Bi\ Bif, Bm^\ . . . Bm„' to be determined

(for the same element of volume) by the phase existing on the other

side of the surface of discontinuity. As ^, //,,.. . //„ have the same

values on both sides of this surface, the condition may be reduced by

(93) to

— p'Bv +pBv^O. (252)

That is, the pressure must not be greater on one side of a surface of

discontinuity than on the other.

Applied more generally, (251) expresses the condition of equilibrium

with respect to the possibility of discontinuous changes of phases at

any point. As Bv' = Bv, the condition may also be written

Be' - tB}/ +pBij' - yt<, i>m,', ... - u„Bm„'^0, (253)

which must hold true when t, p, /a^, . . . //„ have values determined

by any point in the mass, and Ba', Bt/, Bv', Btn^ , . . . BmJ, have

values determined by any possible phase of the substances of which

the mass is composed. The application of the condition is, however,

subject to the limitations considered on pages 128-134. It may

easily be shown (see pages 160, 161) that for constant values of t, //,,

. . . //„, and of Bv' , the first member of (253) will have the least possi-

ble value when Be', Bif, Bm j
', . . . Bm^ are determined by a phase

for which the temperature has the value t, and the potentials the

values yt<,, . . . //„. It will be sufficient, therefore, to consider the

condition as applied to such phases, in which case it may be reduced

by (93) to

p—p'^O. (254)

That is, the pressure at any point must be as gieat as that of any

phase of the same components, for which the temperature and the

Trans. Conn. Acad., Vol. III. 27 April, 1876.
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potentials have the same values as at that point. We may also

express this condition by saying that the pressure nnist be as great

as is consistent with equations (246), (247). This condition with the

equations mentioned will always be sufficient foi- equilibrium ;
when

the condition is not satisfied, if equilibrium subsists, it will be at

least practically unstable-

Hence, the phase at any point of a fluid mass, which is in stable

equilibrium under the influence of gravity (whether this force is due

to external bodies or to the mass itself), and which has throughout

the same independently variable components, is completely deter-

mined by the phase at any other point and the difierence of the

values of the gravitation potential for the two points.

FUNDAMENTAL EQUATIONS OF IDEAL GASES AND GAS-MIXTUKES.

For a constant quantity of a perfect or ideal gas, the product of

the volume and pressure is proportional to the temperature, and the

variations of energy are proportional to the variations of tempera-

ture. For a unit of such a gas we may write

p v:= a t^

de z=. c dt,

a and c denoting constants. By integration, we obtain the equation

e= ct+E,

in which S also denotes a constant. If by these equations we elimin-

ate t and p from (11), we obtain

s-E , a £-E ,
de =z d?} dv,

C V c

or
d€ , dv

c vt = dv - (/—

.

The integral of this equation may be written in the form

c log =: // — a log V — JI,

where ^denotes a fourth constant. We may regard ^as denoting the

energy of a unit of the gas for ^=0 ; ^its entropy for ^=1 and v=zl
;

a its pressure in the latter state, or its volume for t=l and p=zl
;

c its specific heat at constant volume. We may extend the application

of the equation to any quantity of the gas, without altering the

values of the constants, if we substitute — , -, — for e, ri, v. respec-m m m i i-> i y

tively. This will give



J. W. Gibbs—B,quilibriu)n of Heterogeneous Substances. 211

1 £—Em 7; ^_ , m
, ,

c loar = — — H + aXocf—. (255)em in v

This is a fundamental equation (see pages 140-144) for an ideal gas of

invariable composition. It Avill be observed that if we do not have

to consider the properties of the matter which forms the gas as ap-

pearing in any other form or combination, but solely as constituting

the gas in question (in a state of jjurity), we may without loss of

generality give to E and H the value zero, or any other arbitrary

values. But when the scope of our investigations is not thus limited,

we may have determined the states of the substance of the gas for

which ez=:Q and ;/=:0 with reference to some other form in which the

substance appears, or, if the substance is compound, the states of its

components for which ez=.0 and ;/=0 may be already determined ; so

that the constants E and H cannot in general be treated as arbitrary.

We obtain from (255) by differentiation

; , 1 , <x , / cE c+a f/ \ y

f^ de= -dt/ dv + ( ^r- + — -2 (^ni, 256)
f^m m V \e— Jlini m m^/ '8-E'.

whence, in virtue of the general relation expressed by (86),

e —Em
c m (257)

8—Em , ^ ,

p = a , (258)
cv

u = E+ —-^\c m. + a m - ?/). (259)

We may obtain the fundamental equation between //•, t, i\ and ?n

from equations (87), (255), and (257). Eliminating £ we have

if' =z Em + c m t — ^ //,

and c losr t=: ^+ « log -
;

and eliminating //, we have the fundamental equation

/ m\
= Em ^ mty<- — H - c log t + (/ log -

J.
(260)

Differentiating this equation, we obtain

/ 1 y \ T amt
dip =- m\H+ cXo^t-^ «log

-J
dt ^- dv

j.Ie + t Ic + <i - H - c\ogt + a log '-^1 jdm • (261

)
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whence, by the general equation (88),

1] = m {H+ c log «; + a log —
J

,

(262)

am t , .

/> =—

-

(263)

c + a - Il—c\ogt-\-alog — \. (264)

From (260), by (87) and (91), we obtain

'C, = Em, -\- ')nt\c —H— c log t + a log —
]
+ p v,

and eliminating v by means of (263), we obtain the fundamental equa-

tion

? = Eyn + m tic + a - H - {c-^a) log ^ + a log — |. (265)

From this, by differentiation and comparison with (92), we may
obtain the equations

// z=. m (Hi- (c + a) log « — a log —
|,

(266)

a m t

^=-^, (267)

lx = E -{- tic + a — H - (e+«) log t + a log —
j. (268)

The last is also a fundamental equation. It may be written in the

form

or, if we denote by e the base of the Naperian system of logarithms,

E—c—a c + a fi—E

p = ae " t "" e ""^ (270)

The fundamental equation between Xi V-, Pi ^"d m may also be

easily obtained ; it is

(c+«)log7 =--H+a\og^, (271)
^ ^ * {c-\-a)m m ^ a' ^ '

which can be solved with respect to x-

Any one of the fundamental equations (255), (260), (265), (270),

and (271), which are entirely equivalent to one another, may be



J. W. Gibbs—Eqtcilibriuin of IJeterogeneoKs ySiibstances. 213

regarded as defining an ideal gas. It will be observed that most of

these equations might be abbreviated by the use of different con-

stants. In (270), for example, a single constant might be used for

H—c—a—

"

C -\- €t

a e '^
, and another for

^ The equations have been given

in the above form, in order that the relations between the constants

occurring in the different equations might be most clearly exhibited.

The sum c + a is the specific heat for constant pressure, as appears if we
diflerentiate (266) regarding jt> and in as constant.*

* We may easily obtain the equation between the temperature and pressure of a

saturated vapor, if we know the fundamental equations of the substance both in the

gaseous, and in the liquid or solid state. If we suppose that the density and the specific

heat at constant pressure of the liquid may be regarded as constant quantities (for such

moderate pressures as the liquid experiences while in contact with the vapor), and

denote this specific heat by A;, and the volume of a unit of the liquid by V. we shall

have for a unit of the liquid

t dr/ = k dt,

whence
7] = k log t + H\

where H' denotes a constant. Also, from this equation and (97),

dfi — - (k log t + R')dt+V dp,

whence
11 = kt— kt log t—H't+Vp + E% (a)

where E' denotes another constant. This is a fundamental equation for the substance

in the liquid state. If (268) represents the fundamental equation for the same sub-

stance in the gaseous state, the two equations will both hold true of coexistent liquid

and gas. Eliminating u we obtain

p H—H' + k—c—a k—c—a, E—E' V p

a a a at a t

If we neglect the last term, which is evidently equal to the density of the vapor

divided by the density of the liquid, we may write

C
log p=A— Blog t -,

A, B, and C denoting constants. If we make similar suppositions in regard to the

substance in the solid state, the equation between the pressure and temperature of

coexistent solid and gaseous phases wiU of course have the same form.

A similar equation will also apply to the phases of an ideal gas which are coexis-

tent with two different kinds of solids, one of which can be formed by the combina-

tion of the gas with the other, each being of invariable composition and of constant

specific heat and density. In this case we may write for one solid

/x ,

-- k't-k't log t- H't + V'p + E',

and for the other
ji., = k"t-k"t log t-H"t+ V"p + E",

and for the gas

^;, = E-^t(c + a-H— (c + a) log f + a log — j.
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The preceding fundamental equations all apply to gases of constant

composition, for which the matter is entirely determined by a single

Now if a unit of the gas unites with the quantity /i of the first solid to form the

quantity \ + l of the second it will be necessary for equilibrium (see pages 121, 122)

that

^3+A^, =(1 +A)//.,.

Substituting the values of /i,, //._,, //;j, given above, we obtain after arranging the

terms and dividing by at

when

loo; — = A- Bios t + D —

,

^ a
^

t I
'

_ H+AH'-{l+l)H"-c-a-lk' + {l + 'A)k'

„ (WA)Jc"-lk'-c~a
a

E+lE'-{\+l)E" (1+A)F"-AF'— , L) — .

a a

We may conclude from this that an equation of the same form may be applied to

an ideal gas in equilibrium with a liquid of wliich it forms an independently variable

component, wlien the specific heat and density of the liquid are entirely determined

by its composition, except that the letters A. B, C, and D must in this case be under-

stood to denote quantities which vary with the composition of the liquid. But to

consider the case more in detail, we have for the liquid by (a)

- - —u=ki-kt loo; t-H't+ Vp + E',m
where k, H% V, E' denote quantities which depend only upon the composition of the

liquid. Hence, we may write

C = bt-kt log (~m + V]) + E,

where k, H, V, and B denote functions of m^, rwj, etc. (the quantities of the several

components of the liquid). Hence, by (92),

dk ^ dk , dH. dV dE
// ,
= ^T—t- -—t log If — --

—

1+ -^—2}+ 1— .

am
I

dm, dm-i dm, dm,

If the component to which this potential relates is that which also forms the gas, we

shall have by (269)

•p H—c—a c + a, /"j— -^
log ^ = + log t+'-^--

.

a a a at

Eliminating /^
i

, we obtain the equation

log^=^-51ogi-y+ i>-y-,

in which A, B, C, and D denote quantities which depend only upon the composition

of the liquid, viz

:

\ I d-H. rfk
A = —[ H- c-a-\-^,—

a \ dm, dm,.

B=L(^-c-a)
a \dm, )'
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variable (m). We may obtain correspoiulincj fundamental equations

for a mixture of gases, in which the proportion of the components

shall be variable, from the following considerations.

It is a rule which admits of a very general and in many cases very

exact experimental verification, that if several liquid or solid sub-

stances which yield difi^erent gases or vapors are simultaneously in

equilibrium with a mixture of these gases (cases of chemical action

between the gases being excluded,) the pressure in the gas-mixture

is equal to the sum of the pressures of the gases yielded at the same

temperature by the various liquid or solid substances taken separately.

Now the potential in any of the liquids or solids for the substance

which it yields in the form of gas has very nearly the same value

when the liquid or solid is in equilibrum with the gas-mixture as

when it is in equilibrium with its own gas alone. The difference of

the pressure in the two cases will cause a certain difference in the

values of the potential, but that this difference will be small, we may
infer from the equation

C^) =(,*) , (272)
\ dp ft, m \dm^lt,p,m ^

which may be derived from equation (92). In most cases, there will

be a certain absorption by each liquid of the gases yielded by the

others, but as it is well known that the above rule does not apply to

cases in which such absorption takes place to any great extent, we

may conclude that the effect of this circumstance in the cases with

which we have to do is of secondary importance. If we neglect the

slight differences in the values of the potentials due to these cii-cum-

stances, the rule may be expressed as follows

:

The pressure in a mixture of different gases is equal to the sum of

the pressures of the different gases as existing each by itself at the

same temperature avid with the same value of its potential.

To form a precise idea of the practical significance of the law as

thus stated with reference to the equilibrium of two liquids with a

mixture of the gases which they emit, when neither liquid absorbs the

gas emitted by the other, we may imagine a long tube closed at each

end and bent in the form of a W to contain in each of the descending

C= - (^-y-l ^=- ^ •

a \ dm
I
/ a am

,

With respect to some of the equations which have here been deduced, the reader

may compare Professor Kirchhoff " Ueber die Spannung des Dampfes von Mischungen

aus Wasser und Schwefelsaure," Pogg. Ann., vol. civ. (18.58), p. 612
;
and Dr. Raukine

"On Saturated Vapors,'' Phil. Mag., vol. xxxi. (1866), p. 199.
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loops one of the liquids, and above these liquids the gases which they

emit, viz., the separate gases at the ends of the tube, and the mixed

gases in the middle. We may suppose the whole to be in equilibrium,

the difference of the pressures of the gases being balanced by the

proper heights of the liquid columns. Now it is evident from the

principles established on pages 203-210 that the potential for either

gas will have the same value in the mixed and in the separate gas

at the same level, and therefore according to the rule in the form

which we have given, the pressure in the gas-mixture is equal to the

sum of the pi'essures in the separate gases, a/^ (^Aese joressiwes being

measured at the same level. Now the experiments by which the rule

has been established relate rather to the gases in the vicinity of the

surfaces of the liquids. Yet, although the differences of level in these

surfaces may be considerable, the corresponding differences of pres-

sure in the columns of gas will certainly be very small in all cases

which can be I'egarded as falling under the laws of ideal gases, for

which very great pressures are not admitted.

If we apply the above law to a mixture of ideal gases and distin-

guish by subscript numerals the quantities relating to the different

gases, and denote by ^'^ the sum of all similar terms obtained by

changing the subscript numerals, we shall have by (270)

-ff, —Cj— a, Ci+a, fi^—E,(a, a, ttit \

, a^ e t e /, (273)

It will be legitimate to assume this equation provisionally as the

fundamental equation defining an ideal gas-mixture, and afterwards

to justify the suitableness of such a definition by the properties which

may be deduced from it. In particular, it will be necessary to show

that an ideal gas-mixture as thus defined, when the proportion of its

components remains constant, has all the properties which have

already been assumed for an ideal gas of invariable composition ; it

will also be desirable to consider more rigorously and more in detail

the equilibrium of such a gas-mixture with solids and liquids, with

respect to the above rule.

By differentiation and comparison with (98) we obtain

= ^^\ («,+«,- ^-7—^) e t e ;, (274)
V t
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H-i—Cj—a., c^ l^i—E.2 )

etc.

(275)

Equations (275) indicate that the relation between the temperature,

the density of any compcfnent, and the potential for that component, is

not aifected by the presence of the other components. They may
also be written

etc. )

Eliminating yu,, /<2, etc. from (273) and (274) by means of (275)

and (276), we obtain

(277)

7= ^lyn^ir^ +M,c,log «+m,«ilog ^j. (278)

E({uation (277) expresses the familiar principle that the pressure in a

gas-mixture is equal to the sum of the pressures which the component

gases would possess if existing separately with the same volume at

the same temperature. Equation (278) expresses a similar principle

in regard to the entropy of the gas-mixture.

From (276) and (277) we may easily obtain the fundamental equa-

tion between //', t, v, m^^ ni^, etc. For by substituting in (94) the

values of jo, ji^, /.i^, etc. taken from these equations, we obtain

'p=2^(^£.\m,-\-m^t
|
c, -^, -c.log « + «,log "^j). (279)

If we regard the proportion of the various components as constant,

this equation may be simplified by writing

m for ^j wZj,

c m for ^
J

(c , m
J ),

am for 2^ (a^m^),

Em for ^j (£', mj),

and Hm-am log m for ^j (H^ m^—a^ m^ log rn^).

The values of c, a, -E, and JT, will then be constant and m will denote

the total quantity of gas. As the equation Avill thus be reduced to the

Trans. Conn. Acad., Vol. III. 28 April, 1876.
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form of (260), it is evident that an ideal gas-mixture, as defined by

(278) or (279), when the proportion of its components remains un-

changed, will have all the properties which we have assumed for an

ideal o-as of invariable composition. The relations between the specific

heats of the gas-mixture at constant volume and at constant pressure

and the specific heats of its components are expressed by the equations

c = ^'^-\ (280)m
and

,;^_«=^' !!hj£i+^. (281)

We have already seen that the values of t, v, m^, /.i^ in a gas-

mixture are such as are possible for the component G^ (to which

/«j and /<j relate) existing separately. If we denote by jOj, j/^, //'j,

£,, ^'j, Cj the connected values of the several quantities which the

letters indicate determined for the gas 6^j as thus existing sepa-

rately, and extend this notation to the other components, we shall

have by (273), (274), and (279)

whence by (87), (89), and (91)

The quantities p, //, '/', €, j, ? relating to the gas-mixture may
therefore be regarded as consisting of parts which may be attrib-

uted to the several components in such a manner that between the

parts of these quantities which are assigned to any component, the

quantity of that component, the potential for that component, the

temperature, and the volume, the same relations shall subsist as if

that component existed separately. It is in this sense that we

should understand the law of Dalton, that every gas is as a vacuum

to every other gas.

It is to be remarked that these relations are consistent and pos-

sible for a mixture of gases which are not ideal gases, and indeed

without any limitation in regard to the thei'modynamic properties of

the individual gases. They are all consequences of the law that the

pressure in a mixtuz-e of dilFerent gases is equal to the sum of the

pressures of the different gases as existing each by itself at the same

tempei'ature and with the same value of its potential. For let

Pii V\i ^n '/'i' /I'l' ^1 ' P2-> etc.; etc. be defined as relating to the

different gases existing each by itself with the same volume, tem-

perature, and potential as in the gas-mixture ; if

'/=-i'/n
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the,, l^\ =iP):
and therefore, by (98), the quantity of any component gas <t

^ in tlie

gas-mixture, and in the separate gas to which p^, //j, eic. relate, is

the same and may be denoted by the same symbol )ii ^. Also

whence also, by (93)-(96),

All the same relations will also hold true whenever the value of t/^

for the gas-mixture is equal to the sum of the values of this func-

tion for the several component gases existing each by itself in

the same quantity as in the gas-mixture and with the temperature

and volume of the gas-mixture. For if ^^j, //j, fj, i/\,
Xi-> ^i ? 2^21

etc. ; etc. are defined as relating to the components existing thus

by themselves, we shall have

'I- =^ lip I,

whence

\drn^ /i, V, m \dm^ ft, v

Therefore, by (88), the potential //j has the same value in the gas-

mixture and in the gas G^ existing separately as supposed. More-

over,

'^=^
idiJv, nT ~ ^A~df)v, ra

" ^'^'^^'

whence

Whenever different bodies are combined without communication of

work or heat between them and external bodies, the energy of the

body formed by the combination is necessarily equal to the sum of the

energies of the bodies combined. In the case of ideal gas-mixtures,

when the initial temperatures of the gas-masses which are combined

* A subscript m after a differential coefficient relating to a body having several

independently variable components is used here and elsewhere in this paper to indi-

cate that each of the quantities m^,m2, etc., unless its differential occurs in the

expression to which the suffix is applied, is to be regarded as constant in the differ-

entiation.
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are the same, (whether these gas-masses are entirely different gases,

or gas-mixtures differing only in the proportion of their components,)

the condition just mentioned can only be satisfied when the tempera-

ture of the resultant gas-mixture is also the same. In such com-

binations, therefore, the final temperature will be the same as the

initial.

If we consider a vertical column of an ideal gas-mixture which is

in equilibrium, and denote the densities of one of its components at

two different points by y^ and ;//, we shall have by (275) and (234)

i^i-/"/ g[h'-h)

^=e "'* =e ""'*
. (284)

From this equation, in which we may regard the quantities distin-

guished by accents as constant, it appears that the relation between

the density of any one of the components and the height is not

affected by the presence of the other components.

The work obtained or expended in any reversible process of com-

bination or separation of ideal gas-mixtures at constant temperature,

or when the temperatures of the initial and final gas-masses and of

the only external source of heat or cold which is used are all the same,

will be found by taking the difference of the sums of the values of ip

for the initial, and for the final gas-raasses. (See pages 145, 146).

It is evident from the form of equation (279) that this work is equal

to the sum of the quantities of work which would be obtained or

expended in producing in each different component existing separately

the same changes of density which that component experiences in

the actual process for which the w^ork is sought.*

We will now return to the consideration of the equilibrium of a

liquid with the gas which it emits as affected by the presence of

difterent gases, when the gaseous mass in contact with the liquid may

be regarded as an ideal gas-mixture.

It may first be observed, that the density of the gas which is

emitted by the liquid will not be affected by the presence of other

gases which are not absorbed by the liquid, when the liquid is pro-

tected in any way from the pressure due to these additional gases.

This may be accomplished by separating the liquid and gaseous

* This result has been given by Lord Rayleigh, (Phil. Mag., vol. xlix, 1875, p. 311).

It will be observed that equation (279) might be deduced immediately from this

principle in connection with equation (260) which expresses the properties ordinarily

assumed for perfect gases.
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masses by a diaphragm which is permeable to the liquid. It will

tlien be easy to maintain the liquid at any constant pressure which is

not greater than that in the gas. The potential in the liquid for the

substance which it yields as gas will then remain constant, and there-

fore the potential for the same substance in the gas and the density

of this substance in the gas and the part of the gaseous pressure

due to it will not be affected by the other components of the gas.

But when the gas and liquid meet under ordinary circumstances,

i. e., in a free plane s\irfi\ce, the pressure in both is necessarily the

same, as also the value of the potential for any common component

aSj. Let us suppose the density of an insoluble component of the gas

to vary, while the composition of the liquid and the temperature

remain unchanged. If we denote the increments of pressure and of

the potential for S^ by djj and c?/<j, we shall have by (272)

\dp lt,m \dmjt,p,m

the index (l) denoting that the expressions to which it is affixed refer

to the liquid. (Expressions without such an index will refer to the

gas alone or to the gas and liquid in common.) Again, since the gas

is an ideal gas-mixture, the relation between p^ and /u^ is the same

as if the component aS'j existed by itself at the same temperature,

and therefore by (268)

(///
J
= a

J
t d log p^.

Therefore
(dv \^^^
-—

I
dp. (285)

dmjt,p,m ^

This may be integrated at once if we regard the differential coeffi-

cient in the second member as constant, which will be a very close

approximation. We may obtain a result more simple, but not quite

so accurate, if we write the equation in the form

-^ dp, (286)
dm

^ ft, 2), m

where ;/j denotes the density of the component /S^ in the gas, and

integrate regarding this quantity also as constant. This wdll give

where jt?/ and p/ denote the values of ^j and p -when the insoluble

component of the gas is entirely wanting. It will be observed that

p—p' is nearly equal to the pressure of the insoluble component, in

the phase of the gas-mixture to which pi relates. /S', is not neces-
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sarily the cmly common component of the gas and liquid. If there

are others, we may find the increase of the part of the pressure in the

gas-mixture belonging to any one of them by equations differing from

the last only in the subscript numerals.

Let us next consider the effect of a gas which is absorbed to some

extent, and which must therefore in strictness be regarded as a com-

ponent of the liquid. We may commence by considering in general

the equilibrium of a gas-mixture of two components /8, and IS^ with a

liquid formed of the same components. Using a notation like the

previous, we shall have by (98) for constant temperature,

and
dp = y^^^ di.i^-\-yf^ dji^

;

whence

Now if the gas is an ideal gas-mixture,

a.t -, dp. -, , a^t ^ dp„
du.=i —^ dpx-=. -^-', and au^ =i —^ rt», = -=-^,
^' Pv Vx Pz 72

therefore

l^-\]^dp,=
[\-^^l

dp^. (288)

We may now suppose that S^ is the principal component of the

liquid, and aS's is a gas which is absorbed in the liquid to a slight

extent. In such cases it is well known that the ratio of the densities

of the substance S2 in the liquid and in the gas is for a given tem-

perature approximately constant. If we denote this constant by A,

we shall have

^r.L- ^^^dp^={\-A)dp^. (289)

It would be easy to integrate this equation regarding ;/ j as variable,

but as the variation in the value of », is necessarily very small we
(L)

shall obtain sufficient accuracy if we regard }^i
as well as

;(/i
as con-

stant. We shall thus obtain

(^'^-l)(/>,-^p,')=(l-^)i5„ (290)

where ^1' denotes the pressure of the saturated vapor of the pure

liquid consisting of S^. It will be observed that when ^=1, the

presence of the gas S^ will not affect the pressure or density of the

gas S^. When ^<^1, the pressure and density of the gas S^ are

greater than if S.^ were absent, and when A^\, the revei-se is true.
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The properties of an ideal gas-mixture (according to the definition

which we have assumed) when in equilibrium with liquids or solids

have been developed at length, because it is only in respect to these

properties that there is any variation from the properties usually

attributed to perfect gases. As the pressure of a gas saturated with

vaporis usually given as a little less than the sum of the pressure of the

gas calculated from its density and that of saturated vapor in a space

otherwise empty, while oxir formulae would make it a little more, when

the gas is insoluble, it would appear that in this respect our formulae

are less accurate than the rule which would make the pressure of the

gas saturated with vapor equal to the sum of the two pressures

mentioned. Yet the reader will observe that the magnitude of the

quantities concerned is not such that any stress can be laid upon

this circumstance.

It will also be observed that the statement of Dalton's law which we
have adopted, while it serves to complete the theory of gas-mixtui-es

(with respect to a certain class of properties), asserts nothing with

reference to any solid or liquid bodies. But the common rule that

the density of a gas necessary for equilibrium with a solid or liquid

is not altered by the presence of a different gas which is not absorbed

by the solid or liquid, if construed strictly., will involve consequences

in regard to solids and liquids which are entirely inadmissible. To

show this, we will assume the correctness of the rule mentioned. Let

aS'j denote the common component of the gaseous and liquid or solid

masses, and /Sg the insoluble gas, and let quantities relating to the

gaseous mass be distinguished when necessary by the index (g), and

those relating to the liquid or solid by the index (l). Now while the

gas is in equilibrium with the liquid or solid, let the quantity which

it contains of ^'2 receive the increment dm^., its volume and the

quantity which it contains of the other component, as well as the

temperature, remaining constant. The potential for S^ in the gaseous

mass will receive the increment

\ani2l t, V, m

and the pressure will receive the increment

\dm.
I

dnic
[dm2 ft, V, m

Now the liquid or solid remaining in equihbrium with the gas must

experience the same variations in the values of /u j and p. But by (272)

\ dpJt,m \dmjt,j>,
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Therefore,

\dmjt,2], m i dp
Y*^^

\dm2/t, V, 1

It will be observed that the first member of this equation relates

solely to the liquid or solid, and the second member solely to the

gas. Now we may suppose the same gaseous mass to be capable of

equilibrium with several diiferent liquids or solids, and the first mem-

ber of this equation must therefore have the same value for all such

liquids or solids ; which is quite inadmissible. In the simplest case, in

which the liquid or solid is identical in substance with the vapor

which it yields, it is evident that the expression in question denotes

the reciprocal of the density of the solid or liquid. Hence, when a

gas is in equilibrium with one of its components both in the solid

and liquid states (as when a moist gas is in equilibrium with ice and

water), it would be necessary that the solid and liquid should have

the same density.

The foregoing considerations appear sufiicient to justify the defini-

tion of an ideal gas-mixture which we have chosen. It is of course

immaterial whether we regard the definition as expressed by equation

(273), or by (279), or by any other fundamental equation which can

be derived from these.

The fundamental equations for an ideal gas-mixture corresponding

to (255), (265), and (271) may easily be derived from these equations

by using inversely the substitutions given on page 217. They are

^,(c. m,) log '-^^£^=r,-\.2, {a,m, log^-^,^J, (291)

= V^^.{-.>n^^og^-^^-B,m,Y (292)

- 2^ {c,m,+a, m,) t log t +^\ [ct, m, t log ^h^^^^). (293)

The components to which the fundamental equations (273), (279),

(291) (292), 293) refer, may themselves be gas-mixtures. We may

for example apply the fundamental equations of a binary gas-mixture
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to a mixture of hydrogen and air, or to any ternary gas-mixture in

wliich the proportion of two of the components is fixed. In fact, tlie

form of equation (279) which applies to a gas-mixture of any pai'ticu-

lar number of components may easily be reduced, when the propor

tions of some of these components are fixed, to the form whicli ai)plies

to a gas-mixture of a smaller niunber of components. The necessary

substitutions will be analogous to those given on page 217. But the

components must be entirely different from one another with respect

to the gases of which they are formed by mixture. We cannot, for

example, apply equation (279) to a gas-mixture in which the com-

ponents are oxygen and air. It would indeed be easy to form a

fundamental equation for such a gas-mixture with reference to the

designated gases as components. Such an equation might be derived

from (279) by the proper substitutions. But the result would be an

equation of more complexity than (279). A chenncal compound,

however, with respect to Dalton's law, and with respect to all the

equations which have been given, is to be regarded as entirely differ-

ent from its components. Thus, a mixture of hydrogen, oxygen, and

vapor of water is to be regarded as a ternary gas-mixture, having the

three components mentioned. This is certainly true when the quanti-

ties of the compound gas and of its components are all independently

variable in the gas-mixture, without change of temperature or pres-

sure. Cases in which these quantities are not thus independently

variable will be considered hereafter.

Inferences in regard to Potentials iti Liquids and Solids.

Such equations as (264), (268), (276), by which the values of

potentials in pure or inixed gases may be derived from quantities

capable of direct measurement, have an interest which is not confined

to the theory of gases. For as the potentials of the independently

variable components which are common to coexistent liquid and gas-

eous masses have the same values in each, these expressions will

generally afford the means of determining for liquids, at least ap-

proximately, the potential for any independently variable compon-

ent Avhich is capable of existing in the gaseous state. For although

every state of a liquid is not such as can exist in contact with a

gaseous mass, it will always be possil)le, when any of the components

of the liquid are volatile, to bring it by a change of pressure

alone, its temperature and composition remaining unchanged, to

a state for which there is a coexistent phase of vapor, in which

Trans. Conn. Acad., Vol. III. 29 May, KSTfi.
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the values of the potentials of the volatile components of the liquid

may be estimated from the density of these substances in the vapor.

The variations of the potentials in the liquid due to the change of

pressure will in general be quite trifling as compared with the

variations which are connected with changes of temperature or ot

composition, and may moreover be readily estimated by means of

equation (272). The same considerations will apply to volatile solids

with respect to the determination of the potential for the substance

of the solid.

As an application of this method of determining the potentials

in liquids, let us make use of the law of Henry in regard to the

absorption of s^ases by liquids to determine the relation between

the quantity of the gas contained in any liquid mass audits potential.

Let us consider the liquid as in equilibrium with the gas, and let

m'-^^ denote the quantity of the gas existing as such, rn'-^^ the

quantity of the same substance contained in the liquid mass, yUj the

potential for this substance common to the gas and liquid, v^^'> and

v^^^ the volumes of the gas and liquid. When the absorbed gas

forms but a very small part of the liquid mass, we have by Henry's

law

^ = .4 J-, (204)

where ^1 is a function of the temperature ; and by (-'76)

ni (G)

;., = i?+CMog-^^, (295)
v^

B and C also denoting functions of the tenq>erature. Therefore

m (L)

It will be seen (if we disregai-d the difference of notation) that this

equation is equivalent in form to (216), which was deduced from

a jorior* considerations as a probable relation between the quantity

and the potential of a small component. When a liquid absoi'bs

several gases at once, there will be sevei'al equations of the form of

(296), which will hold true simultaneously, and which we may regard

as equivalent to equations (217), (218). The quantities A and C in

(216), with the corresponding quantities in (21 7), (218), were regarded

as functions of the temperature and pressure, but since the potentials

in liquids are but little affected by the pressure, we might anticipate

that these quantities in the case of liquids miglit be regarded as func-

tions of the temperature alone.
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In regard to equations (216), (2lV), (218), we may now observe

that by (264) and (276) they are shown to hokl true in ideal gases or

gas-mixtures, not only for components which form only a small part

of the whole gas-mixture, but without any such limitation, and not

only approximately but absolutely. It is noticeable that in this case

quantities A and C are functions of the temperature alone, and do

not even depend upon the nature of the gaseous mass, except upon

the particular component to which they relate. As all gaseous bodies

are generally supposed to approximate to the laws of ideal gases when

sufficiently rarefied, we may regard these equations as approximately

valid for gaseous bodies in general when the density is sufficiently

small. When the density of the gaseous mass is very great, but

the separate density of the comjionent in question is small, the equa-

tions will probably hold true, but the values of A and C may not be

entirely independent of the pressure, or of the composition of the mass

in respect to its principal components. These equations will also

apply, as we have just seen, to the potentials in liquid bodies for com-

ponents of which the density iu the liquid is very small, whenever

these components exist also in the gaseous state, and conform to the

law of Henry. This seems to indicate that the law expressed by

these equations has a very general application.

Considerations relating to the Increase of Entropy due to the

Mixture of Gases by Diffusion.

From equation (278) we may easily calculate the increase of

entropy which takes place when two different gases are mixed by

diffusion, at a constant temperature and pressure. Let us suppose

that the quantities of the gases are such that each occupies initially

one half of the total volume. If we denote this volume by F, the

increase of entropy will be
V V

m , a^ log F-f mg a^ log F- m^ a^ log — - m^ a^ log -^,

or {7n^ «, + >«2 ^'2) log 2.

p F -,
pV

Now m^a-^ = ---, and m.^ a^ = —y.

Therefore the increase of entropy may be represented by the expres-

sion

^- log 2. (297)

It is noticeable that the value of this expression does not depend

upon the kinds of gas which are concerned, if the quantities are such

as has been supposed, except that the gases which are mixed must be
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of different kinds. If we should bring into contact two masses of the

same kind of gas, they would also mix, but there would be no in-

crease of entropy. But in regard to the relation which this case

bears to the preceding, we must bear in mind the following considera-

tions. When we say that when two different gases mix by diffusion,

as we have supposed, the energy of the whole remains constant, and

the entropy receives a certain increase, we mean that the gases could

be separated and brought to the same volume and temperature which

they had at first by means of certain changes in external bodies, for

example, by the passage of a certain amount of heat from a warmer

to a colder body. But when we say that when two gas-masses of the

same kind are mixed under similar circumstances there is no change

of energy or entropy, we do not mean that the gases which have been

mixed can be separated without change to external bodies. On the

contrary, the separation of the gases is entirely impossible. We call

the energy and entropy of the gas-masses when mixed the same as

when they were unmixed, because we do not recognize any difference

in the si\bstance of the two masses. So when gases of different kinds

are mixed, if we ask what changes in external bodies are necessary to

bring the system to its original state, we do not mean a state in

which each particle shall occupy more or less exactly the same posi-

tion as at some previous epoch, but only a state which shall be

undistinguishable from the previous one in its sensible properties.

It is to states of systems thus incompletely defined tliat the problems

of thermodynamics relate.

But if such considerations explain why the mixture of gas-masses

of the same kind stands on a different footing from the mixture of

gas-masses of different kinds, the fact is not less significant that the

increase of entropy due to the mixture of gases of different kinds, in

such a case as we have supposed, is indej^endent of the nature of the

gases.

Now we may without violence to the general laws of gases which

are embodied in our equations suppose other gases to exist than such

as actually do exist, and there does not appear to be any limit to the

resemblance which there might be between two such kinds of gas.

But the increase of entropy due to the mixing of given volumes of

the gases at a given temperature and pressure would be independent

of the degree of similarity or dissimilarity between them. We might

also imaoine the case of two gases which should be absolutely identi-

cal in all the properties (sensible and molecular) which come into

play while they exist as gases either pure or mixed with each other,
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but which sliouhl differ in respect to the attractions between tlieir

atoms antl the atoms of some other substances, and therefore in tlieir

tendency to combine Mith such sul)stances. In tlie mixture of such

gases by diffusion an increase of entropy wouhl take ))hice, although

the process of mixture, dynamically considered, might be absolutely

identical in its minutest details (e\ en with i-espect to the i)recise path

of each atom) with processes which might take ]>lace without any

increase of entropy. In sucli respects, entropy stands strongly con-

trasted with energy. Again, when such gases have been mixed, there

is no more irapossil)ility of the separation of the two kinds of molecules

in virtue of their ordinary motions in the gaseous mass without any

especial external influence, than there is of the separation of a lumio-

geneous gas into the same two parts into which it has once been

divided, after tliese have once been mixed. In other words, the

impossibility of an uncompensated decrease of entropy seems to be

reduced to improbability.

There is perhaps no fact in tlie molecular theory of gases so well

established as that the number of molecules in a given volume at a

given temperature and .pressure is the same for every kind of gas

when in a state to which the laws of ideal gases apply. Hence the

quantity —— in (297) must be entirely determined by the number of

molecules which are mixed. And the increase of entropy is therefore

determined by the number of these molecules and is independent of

their dynamical condition and of the degree of difference between

them.

The result is of the same nature when the volumes of the gases

which are mixed are not equal, and when more than two kinds of gas

are mixed. If we denote by v^, v^? etc., the initial volumes of the

different kinds of gas, and by V as before the total volume, the

increase of entropy may be written in the form

:E^ {m^ a^) log V- :S^ {m, a, logy J.

And if we denote by r,, rg, etc., the numbers of the molecules of the

several different kinds of gas, we shall have

r^ = (Jm^ «!, ?'2 = Cm^ a.^, etc.,

where (J denotes a constant. Hence

V ^:V:: m^a^ : 2 ^{m^a.^) ::1\ : ^, r^
;

and the increase of entropy may be written

^^^ilog^i^i -^i(^ilog^i)
^ (298)

C
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The Phases of Dissipated Energy of an Ideal Gas-ndxtare loith

Components v^hivh are Vhemically Related.

We will now pass to the considevation of the phases of dissipated

energy (see page 200) of an ideal gas-mixture, in which the number

of the proximate components exceeds that of the ultimate.

Let us first suppose that an ideal gas-mixture has for proximate

components the gases 6r,, 6^3, and 6^g, the units of which are

denoted by @^, @2, @3, and that in ultimate analysis

@3 = A,®, +A2@2, (299)

A, and A2 denoting positive constants, such that Aj + Ag = 1. The

phases which we are to consider are those for uiiich the energy of

the gas-mixture is a minimum for constant entropy and volume and

constant quantities of G^ and 6rg, as determined in ultimate analysis.

For such phases, by (86),

/^i 8m ^
4- //g 6m. ^ + fx^ Sm^^O. (300)

for such values of the variations as do not affect the quajitities of

(tj and 6rg as determined in ultimate analysis. Values of dm^,

6ino, (Si)ip^ proportional to A,, A,, — 1, and only such, are evidently

consistent with this restriction : therefore

Aj Ml + Ao ^2 = 1^2- (301)

If we substitute in this equation values of fi^, /^2? /'a taken from

(2*76), we obtain, after arranging the terms and dividing by t,

^1 «i log V+ '^^ ""' ^""^ "V ~ "'^ ^""^
"zT
^ -^+ Slog^—?, (302)

where

^ = A, JTj+ Aa^o — ^3-A,Cj-A2C2-f Cg-Ajffj-Aatta + ^s^ (•'^03)

^czrAjCj-fA^eo-Cg, (304)

G~\^E^-\-\„E^— E^. (305)

If we denote by /^, and fi^ the volumes (determined under stand-

ard conditions of temperature and pressure) of the quantities of

the gases G
^^
and G^ which are contained in a unit of volume of the

gas 6^3, we shall have

/A = ^'\and /i. = ^-|^, (300)

and (302) will reduce to the form

log
"^^ T\ a ^ = - +— log ^ - —

.

(307)
^\nj' A B. 'C

m„ V 3 "3 "s
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Moreover, as by (277)

pv = {(fi hi
^ + a.^ »*3 + rtg iii^) f, (;508)

we have on eliminating v

/:?, ii.2 fi, + /3.^ — 1

loff
^1 '"2 P

.

»i3 («! m, -{- «3 Wig -f «3 ?>?.3)

^ ^' C

3 3 ^^ 3 ^

where

^' == A
J
Cj -f- ^ 2 <^2 - *'3 + '^

1
^'

I + '^ 2 ^i! — «3- ("^ 1 ")

It will be observed that the quantities /ij, /J.^ will always be posi-

tive and have a simple relation to unity, and that the value of

/i, -f /!^2 ~ 1 will be positive or zero, according as gas G^ is formed

of (tj and G2 with or without condensation. If we should assume,

according to the rule often given for the specific heat of compound

gases, that the thermal capacity at constant volume of any quantity

of the gas 6^3 is equal to the sum of the thermal capacities of the

quantities which it contains of the gases G^ and G.^, the value of B
would be zero. The heat evolved in the formation of a miit of the gas

6^3 out of the gases G ^ and G2, without mechanical action, is by

(283) and (257)

A
,
(c, « + ^1) + A2 (c'2 t-^KJ - (C3 t+U^),

or Bt -\- a,

which will reduce to C when the above relation in regard to the

specific heats is satisfied. In any case the quantity of heat thus

evolved divided by ^3 t^ will be equal to the differential coefficient of

the second member of equation (307) with respect to t. Moreover,

the heat evolved in the formation of a unit of the gas G.^ out of the

gases 6r, and G2 imder constant pressure is

Bt + C+A,«i t 4- A..a2t-a,,t=zB't-\-C,

which is equal to the differential coefficient of the second member of

(309) with respect to t, multiplied by a^ t'^

.

It appears by (307) that, except in the case when ji ^ + f-j^ = 1,

for any given finite values oi' iii ^, in.,, ni^, and t (infinitesimal values

being excluded as well as infinite), it will always be possible to

assign such a finite value to v that the mixture shall be in a state of

dissipated energy. Thus, if Ave regard a mixture of hydrogen, oxy-

gen, and vapor of water as an ideal gas-mixture, for a mixture con-

taining any given quantities of these three gases at any given tem-
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perature there will be a certain volume at which the mixture will be

in a state of dissipated energy. In such a state no such phenomenon

as explosion will be possible, and no formation of water by the action

of platinum. (If the mass should be expanded beyond this volume,

the only possible action of a catalytic agent would be to resolve the

water into its components.) It may indeed be true that at ordinary

temperatures, except when the quantity either of hydrogen or of

oxygen is very small compared with the quantity of water, the state

of dissipated energy is one of such extreme rarefaction as to lie

entirely beyond our power of experimental verification. It is also to

be noticed that a state of great rarefaction is so unfavorable to any

condensation of the gases, that it is quite probable that the catalytic

action of platinum may cease entirely at a degree of rarefaction far

short of what is necessary for a state of dissipated energy. But with

respect to the theoretical demonstration, such states of great rarefac-

tion are precisely those to which we should suppose that the laws of

ideal gas-mixtures would apply most perfectly.

But when the compound gas G^ is formed of 6r, and G^ without

condensation, (i. e., when /i, -\- (i.^ =r 1,) it appears from equation (307)

that the relation between iit^, m.^, and rn^ which is necessary for a

phase of dissipated energy is determined by the temperature alone.

In any case, if we regard the total quantities of the gases G^ and

6^2 (^s determined by the ultimate analysis of the gas-mixture), and

also the volume, as constant, the quantities of these gases which

appear uncombined in a phase of dissipated energy will increase with

the temperature, if the formation of the compound 6^3 without

change of volume is attended with evolution of heat. Also, if we

regard the total quantities of the gases G^ and G^, and also the

pressure, as constant, the quantities of these gases which appear un-

combined in a phase of dissipated energy, will increase with the

temperature, if the formation of the compound G^ under constant

pressure is attended with evolution of heat. If J5 = 0, (a case, as

has been seen, of especial importance), the heat obtained by the

formation of a unit of G^ out of G^ and G2 without change of volume

or of temperature will be equal to C. If this quantity is positive,

and the total quantities of the gases G^ and G2 and also the volume

have given finite values, for an infinitesimal value of t we shall have

(for a phase of dissipated energy) an infinitesimal value either pf m^

or of ^2, and for an infinite value of t we shall have finite (neither in-

finitesimal nor infinite) values of m,, m^, and m^. But if we suppose

the pressure instead of the volume to have a given finite value (with
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suppositions otherwise tlie same), we shall have for infinitesimal

values of ^ an infinitesimal value either of w/ , or Wig, and for infinite

values of t finite or infinitesimal values of rit^ according as /j, -|- /i^

is equal to or greater than unity.

The case which we have considered is that of a ternary gas-mix-

ture, but our results may easily be generalized in this respect. In

fact, whatever the number of component gases in a gas-mixture, if

there are relations of equivalence in ultimate analysis l)etween these

components, such relatioTis may be expressed by one or more equa-

tions of the form

A ,
(S^

, + A2 C'^io + A 3 (SV^ + etc. in 0, (31 1)

where @j, (S^g? ^^c. denote the units of the various component gases,

and A,, A 2, etc. denote positive or negative constants such that

2^ A , =: 0. From (311) with (R6) we may derive for phases of dis-

sipated energy,

Aj //j + A2 11-2 + ^^3 /'3 + ^tc. =0,

or ^^j (A,//,) = 0. (312)

Hence, by (276),

^,[^,a,\og~^) = A + B\o^t ^
J,

(313)

where A, B and (' are constants determined by the equations

A = 2, {X,II, - A,c, - X,a,), (314)

B=^,{\,c,\ (315)

C=2,{X,E,). (316)

Also, since 2^ ^^ — ^1 ('"'^
1
"' 1 ) ^

^' J
(A , «j log «?

,
) — ^ (A ^ a ,

) log JS"
J (« J m

,

)

-f ^^(A,«,)log/> = .4 + ^'log<--^, (317)

where
B' = 2, (A,c,-f A,«J. (318)

If there is more than one equation of the form (311), we shall have

more than one of each of the forms (313) and (317), which will hold

true simultaneously for phases of dissipated energy.

It will be observed that the relations necessary for a phase of dis-

sipated energy between the volume and temperature of an ideal gas-

mixture, and the quantities of the components which take part in

the chemical processes, and the pressure due to these components, are

not affected by the presence of neutral gases in the gas-mixture.

Trans. Conn. Acad., Vol. III. ::0 May, 187(3.
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From equations (312) and (234) it follows that if there is a phase

of dissipated energy at any point in an ideal gas-mixture in equili-

In-iuni under the iutiuence of gravity, the whole gas-mixture must

consist of such phases.

The equations of the phases of dissipated energy of a binary gas-

mixture, the components of which are identical in substance, are com-

paratively simple in form. In this case the two components have the

same potential, and if we write /i for — (the ratio of the volumes of

equal quantities of the two components under the same conditions of

temperature and pressure), we shall have

log ^ = -^- H log t - —-, (319)
3—1 a, cto «2 ^

m^ V d ^ <£

log i-^^i — —
1 lost-—: ; (-3^^)

/
,

V /3—

1

«2 «P «2 ^

where

^ = c, -C2, i?' = Ci — Cg +«j — rtg, (322)

C=iE^~E^. (323)

Gas-mixtures with Convertible Gom,ponents.

The equations of the phases of dissipated energy of ideal gas-mix-

tures which have components of which some are identical in ultimate

analysis to others have an especial interest in relation to the theory

of gas-mixtures in which the components are not only thus equivalent,

but are actually transformed into each other within the gas-mixture

on variations of temperature and pressure, so that quantities of these

(proximate) components are entirely determined, at least in any per-

manent phase of the gas-mixture, by the quantities of a smaller

number of ultimate components, with the temperature and pi-essure.

Such gas-inixtures may be distinguished as having convertible com-

ponents. The very general considerations adduced on pages 197-203,

which are not limited in their application to gaseous bodies, suggest

the hypothesis that the equations of the phases of dissipated energy

of ideal gas-mixtures may apply to such gas-mixtures as have been

described. It will, however, be desirable to consider the matter more

in detail.
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In the first place, if we consider tlic case of a gas-mixture wliich

only diifers from an ordinary ideal gas-mixture for which some of

the components are equivalent in that there is perfect freedom

in regard to the ti'ansformation of these components, it follows at

once from the general formula of equilibrium (l) or (2) that equili-

brium is only possible for such phases as we have called phases of

dissipated energy, for which some of the characteristic equations have

been deduced in the preceding pages.

If it should be urged, that regarding a gas-mixture which has

convertible components as an ideal gas-mixture of which, for some

reason, only a part of the phases are actually capable of existing, we

might still suppose the particular phases which alone can exist to be

determined by some other principle than that of the free convertibility

of the components (as if, perhaps, the case were analogous to one

of constraint in mechanics), it may easily be shown that such a hypo-

thesis is entirely untenable, when the quantities of the proximate

components may be varied independently by suitable variations of the

temperature and pressure, and of the quantities of the ultimate com-

ponents, and it is admitted that 'the relations between the energy,

entropy, volume, temperature, pi-essure, and the quantities of the

several proximate components in the gas-mixture are the same as for

an ordinary ideal gas-mixture, in which the components are not con-

vertible. Let us denote the quantities of the n' proximate compo-

nents of a gas-mixture A by m^, m^, etc., and the quantities of its n

ultimate components by nii, nio, etc. {n denoting a number less than

w'), and let us suppose that for this gas-mixture the quantities £, ?/, u,

«, /J, >«j, ^2, etc. satisfy the relations characteristic of an ideal gas-

mixture, while the phase of the gas-mixture is entirely determined by

the values of m-i, mg, etc., with two of the quantities f, 7, w, (?,/).

We may evidently imagine such an ideal gas-mixture B having n'

components (not convertible), that every phase of A shall correspond

yfMh one of B in the values of £, 7, v, t, p, m j
, mg , etc. Now let us give

to the quantities mj, mg, etc. in the gas-mixture A any fixed values,

and for the body thus defined let us imagine the v-7]-e surfiice (see

page 1 74) constructed ; likewise for the ideal gas-mixture B let us

imagine the v-i]-£ surface constructed for every set of values of

m^, m^, etc, which is consistent with the given values of m^, ixi^-,

etc. i. e., for every body of which the ultimate composition would be

expressed by the given values ofm ,
, mg , etc. It follows immediately

from our supposition, that every point in the v-f]-£ surface relating to

A must coincide with some point of one of the v-if-e surfaces relating
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to £ not only in respect to position but also in respect to its tangent

plane (which represents temperature and pressure) ; therefore the

«-//-£ surface relating to A must be tangent to the varioiis v-r,-e sur-

faces relating to B, and therefore must be ai] envelop of these sur-

faces. P'roni this it follows that the points which represent phases

common to both gas-mixtures must represent the phases of dissipated

energy of the gas-mixture B.

The properties of an ideal gas-mixture which are assumed in

regard to the gas-mixture of converti1)le components in the above

demonstration are expressed by equations (277) and (278) with the

equation

e:=:£A'\>",f-^"'iE,). (824)

It is usual to assume in regard to gas-mixtures liaving convertible

components that the convertibility of the components does not affect

the relations (277) and (324). The same cannot be said of the equa-

tion (278). But in a very important class of cases it will be sufficient

if the applicability of (277) and (324) is admitted. The cases referred

to are those in which in certain phases of a gas-mixture the compo-

nents are convertible, and in other phases of the same proximate

composition the components are not convertible, and the equations of

an ideal gas-mixture hold true.

If there is only a single degree of convertibility between the com-

ponents, (i. e., if only a single kind of conversion, with its reverse, can

take place among the components,) it Avill be sufficient to assume, in

regard to the phases in which conversion takes place, the validity of

equation (277) and of the following, which can be derived from (324)

by differentiation, and comparison with equation (11), which expresses

a necessary relation,

\t d )} —p dv - 2j (c^m^) dt] „. = 0.* (325)

We shall confine our demonstration to this case. It will be observed

that the physical signification of (325) is that if the gas-mixture is

subjected to such changes of volume and temperature as do not alter

its proximate composition, the heat absorbed or yielded may be cal-

culated by the same formula as if the components were not conver-

tible.

Let us suppose the thermodynamic state of a gaseous mass J/, of

such a kind as has just been described, to be varied while within the

limits within which the components are not convertible. (The quan-

tities of the proximate components, therefore, as well as of the ulti-

* This notation is intended to indicate that ?;i|, m.^, etc. are regarded as constant
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mate, are supposed constant). If we vise the same metliod of geome-

trical representation as before, the point representing- the vohime,

entropy, and energy of the mass will describe a line in the n-ij-f: sur-

face of an ideal gas-mixture of inconvertible components, the form

and position of this surface being determined by the proximate comi)0-

sition of 31. Let us now suppose the same mass to be carried beyond

the limit of inconvertibility, the variations of state after passino- the

limit being such as not to alter its proxinuxte composition. It is

evident that this will in general be possible. Exceptions can only

occur when the limit is formed liy phases in which the proximate

composition is uniform. The line traced in the region of convertibility

must belong to the same »-?/-£ surface of an ideal gas-mixture of in-

convertible components as before, continued beyond the limit of

inconvertibility for the components of 31, since the variations of

volume, entropy and energy are the same as would be possible if the

components were not convertible. But it must also belong to the

v-7]-8 surface of the body J/, which is here a gas-mixture of conver-

tible components. Moreover, as the inclination of each of these

surfaces must indicate the temperature and pressure of the phases

through which the body passes, these two surfaces must be tangent

to each other along the line which has been traced. As the y-;/-£

surface of the body 31 in the region of convertibility must thus be

tangent to all the surfaces representing ideal gas-mixtiires of every

possible proximate composition consistent with the ultimate composi-

tion of 31, continued beyond the region of inconvertibility, in which

alone their form and position may be capable of experimental demon-

stration, the former surface must be an envelop of the latter sui-faces,

and therefore a continuation of the surface of the phases of dissipated

energy in the region of inconvertibility.

The foregoing considerations may give a measure of a priori prob-

ability to the results which are obtained by applying the ordinary

laws of ideal gas-mixtures to cases in which the components are con-

vertible. It is only by experiments upon gases in phases in which

their components are convertible that the validity of any of these

results can be established.

The very accurate determinations of density which have been made

for the peroxide of nitrogen enable us to subject some of our equa-

tions to a very critical test. That this substance in the gaseous state

is properly regarded as a mixture of different gases can hardly be

doubted, as the proportion of the components derived from its density

on the supposition that one component has the molecular formula
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NOg and the other the formula N^O^ is the same as that derived

from the depth of the color on the supposition that the absorption of

light is due to one of the components alone, and is proportioned to

the separate density of that component.*

MM. Sainte-Claire Deville and Troostf have given a series of deter-

minations of what we shall call the relative densities of peroxide of

nitrogen at various temperatures under atmospheric pressure. We
use the terra relative density to denote Avhat it is usual in treatises on

chemistry to denote by the term density, viz., the actual density of a

gas divided by the density of a standard perfect gas at the same

pressure and temperature, the standard gas being air, or more strictly,

an ideal gas which has the same density as air at the zero of the

centigrade scale and the pressure of one atmos])here. In order to

test our equations by these determinations, it will be convenient to

transform equation (320), so as to give directly the relation between

the relative density, the pressure, and the temperature.

As the density of the standard gas at any given temperature and

P
pressure may by (263) be expressed by the formula -^—, the relative

density of a binary gas-mixture may be expressed by

Now by (263)

a t

7>= (m, +^2)-^. (326)
^ ^ pv

a^ 7n^ -\- ao ni^ =: —

.

(327)

By giving to ^3 and m^ successively the value zero in these equa-

tions, we obtain

O
I ^2

where D-^ and Z>2 denote the values of D when the gas consists

wholly of one or of the other component. If we assume that

JJ,=2IJ„ (329)

we shall have

From (326) we have
«i = 2a2. (330)

m , -{- n/^ :=. JJ ,

*Salet, "Sur la coloration du peroxyde d'azote," Comptes Eendiis, vol. Ixvii, p. 488.

f Comptes Rendus, vol. Ixiv, p. 237.
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and from (327), by (828) unci (;i80),

2 m, -{-»i.,z= I>J~-=i2J)-
,

whence

m, = (D,~lJ)i^-^, (331)

m, = 2(7>-y>,)f3-
(•'^^2)

By (327), (331), and (332) we obtain from (320)

los^~ r.\ = log^ . (333)^2 (Z> - i>i) a, a^ a„ °
« ^ '

This formula will be more convenient for purposes of calculation if

we introduce common logarithms (denoted by log,g) instead of

hyperbolic, the temperature of the ordinary centigrade scale t, instead

of the absolute temperature t, and the pressure in atmospheres p„t

instead of p the pressure in a rational system of units. If we also

add the logarithm of a, to both sides of the equation, we obtain

•°g.» -^(i-S-x = ^ + 1 '"=» <' +^"^" - ^3- (^•^*)

where A and C denote constants, the values of which are closely con-

nected with those of A and 0.

From the molecular formula? of peroxide of nitrogen NO^ and

NgO^, we may calculate the relative densities

14 + 32
^^^^^ _ ^ .^ ^^^^^ j^ — !^jhlf ,0691 r= 3.178. (335)

1 2
' -

2 ^ '

The determinations of MM. Deville and Troost are satisfactorily

represented by the equation

iogio
2 (i> - 1.589) ^,+ 273' ^ ^

which o'ives

i)= 3.178+ (y - VW(3.178H-0)

3118.6 ,

where log ^o^J= 9.47056 - f_^^ - logi oP<u-

In the first part of the following table are given in successive col-

umns the temperature and pressure of the gas in the several experi-

ments of MM. Deville and Troost, the relative densities calculated

from these numbers by equation (336), the relative densities as

observed and the difference of the observed and calculated relative
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densities. It will be observed that these differences are quite small,

in no case reaching .03, and on the average scarcely exceeding .01.

The significance of such correspondence in favor of the hypothesis by
means of which equation (336) has been established is of course

diminished by the fact that two constants in the equation have been

determined from these experiments. If the same equation can be

shown to give correctly the relative densities at other pressures than

that for Avhich the constants have been determined, such correspon-

dence will be much more decisive.

t.
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peroxide of nitrogen by (333), (334), and (336) will not be aliected

by the presence of free nitrogen, if the pressure expressed bv ^> or

jt),„ and contained implicitly in the symbol IJ (see equation (320) l)y

which D is defined) is understood to denote the total pressure dimin-

ished by the pressure due to the free nitrogen. The determinations

of Playfiiir and Wanklyn are given in the latter part of the

above table. The pressures given are those obtained by subtracting

the pressure due to the free nitrogen from the total pi-essure. We
may suppose such reduced pressures to have been used in the reduction

of the observations by which the numbers in the column of observed

relative densities were obtained. Besides the relative densities

calculated by equation (336) for the temperatures and (reduced)

pressures of the observations, the table contains the relative densities

calculated for the same tem])eratures and the pressure of one atmos-

phere.

The reader will observe that in the second and third experiments

of Playfair and Wanklyn there is a very close accordance between

the calculated and observed values of D, while in the second

and fourth experiments there is a considerable diiference. Now the

weight to be attributed to the several determinations is very diifer-

ent. The quantities of peroxide of nitrogen which were used in the

several experiments were respectively .2410, .5893, .3166, and .2016

grammes. For a rough approximation, Ave may assume that the

probable errors of the relative densities are inversely proportional to

these numbers. This would make the probable error of the first and

fourth observations two or three times as great as that of the second

and considerably greater than that of the third. We must also

observe that in the first of these experiments, the observed relative

density 1.783 is greater than 1.687, the relative density calculated by

equation (336) for the temperature of the experiment and the pres-

sure of one atmosphere. Now the number 1.687 we may regard as

established directly by the experiments of Deville and Troost.

For in seven successive experiments in this part of the series the

calculated relative densities difter from the observed by less than .01.

If then we accept the numbers given by experiment, the efiect of

diluting the gas with nitrogen is to increase its relative density. As

this result is entirely at variance with the facts observed in the case

of other gases, and in the case of this gas at lower temperatures,

as appears from the three other determinations of Playfair and

Wanklyn, it cannot possibly be admitted on the strength of a single

Trans. Conn. Acad., Vol. III. 31 Mat, 187r,.
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observation. The first experiment of this series cannot therefore

properly be used as a test of our equations. Similar considerations

apply with somewhat less force to the last experiment. By compar-

ing the temperatures and pressures of the three last experiments

with the observed relative densities, the reader may easily convince

himself that if we admit the substantial accuracy of the determina-

tions in the two first of these experiments (the second and third of

the series, which have the greatest weight), the last determination of

relative density 2.588 must be too small. In fact, it should evidently

be greater than the number in the preceditig experiment 2.645.

If we confine our attention to the second and third expei'iments of

the series, the agreement is as good as could be desired. Nor will

the admission of errors of .152 and .120 (certainly not large in deter-

minations of this kind) in the first and fourth experiments involve

any serious doubt of the substantial accuracy of the second and third,

when the difference of weight of the determinations is considered.

Yet it is much to be desired that the relation expressed by (336), or

with more generality by (334), should be tested by more numerous

experiments.

It should be stated that the numbers in the column of pressures are

not quite accurate. In the experiments of Deville and Troost

the gas was subject to the actual atmospheric pressure at the time of

the experiment. This A^aried from 747 to 764 millimeters of mercury.

The precise pressure for each experiment is not given. In the ex-

periments of Playfair and Wanklyn the mixture of nitrogen and

peroxide of nitrogen was subject to the actual atmospheric pressure

at the time of the experiment. The numbers in the column of pres-

sures express the fraction of the whole pressure wliich remains after

substracting the part due to the free nitrogen. But no indication is

given in the published account of the experiinents in regard to the

height of the barometer. Now it may easily be shown that a varia-

tion of j^^xs ill t.he value of p can in no case cause a variation of more

than .005 in the value of D as calculated by equation (336). In any

of the experiments of Playfair and Wanklyn a variation of more

than 30""" in the height of the barometer would be necessary to

produce a variation of .01 in the value of D. The errors due to this

source cannot therefore be very serious. They might have been

avoided altogether in the discussion of the experiments of Deville

and Troost by using instead of (336) a formula expressing the

relation between the relative density, the temperature, and the actual

density, as the reciprocal of the latter quantity is given for each ex-
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perimeiit of this series. It seemed best, however, to make a triHiiio;

sacrifice of accxiracy for the sake of simplicity.

It might be thought that the experiments under discussion would

be better represented by a formula in which the term containing log t

(see equation (333)) was retained. But an examination of the figures

in the table will show that nothing important can be gained in this

respect, and there is hardly sufticient motive for adding another term

to the formula of calculation. Any attempt to determine the real

values of A, B', and C in equation (333), (assuming the absolute

validity of such an equation for peroxide of nitrogen,) from the ex-

periments under discussion would be entirely misleading, as the

reader may easily convince himself.

From equation (336), however, the following conclusions may
deduced. By comparison with (334) we obtain

. ,

^' C ^ 311S.6A+— log.o « - 7 = 9-47056 ^,
which must hold true approximately between the temperatures 11*^

and 90'\ (At higher temperatures the relative densities vary too

slowly Avith the temperatures to afibrd a critical test of the accuracy

of this relation.) By diiFerentiation we obtain

Jlf_S'C_ 3118.6

a^t *" ¥~ W~'

where 31 denotes the modulus of the common system of logarithms.

Now by comparing equations (333) and (334) we see that

MC C
C = = .43429—

.

Hence
B'i-^ C= 7181 «2 = 3590 «j,

which may be regarded as a close approximation at 40'-' or 50^', and

a tolerable approximation between the limits of temperature above

mentioned. Now B' t + C represents the heat evolved by the con-

version of a unit of NOg into NgO^ under constant pressure. Such

conversion cannot take place at constant pressure without change of

temperature, which renders the experimental verification of the last

equation less simple. But since by equations (322)

B' = B+a^ - rt2 = ^+ i«i,

we shall have for the temperature of 40*^'

Bt-\- C;=3434a,.

Now B t -\- (J reiH-esents the decrease of energy when a unit of NOg is

transformed into NgO^ without change of temperature. It therefore
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represents the excess of the heat evolved over the work done by

external forces when a mass of the gas is compressed at constant

temperatnre until a unit of NO 3 has been converted into NgO^.

This quantity will be constant if J3 =zO, i. e., if the specific heats at

constant volume of NO^ and N2O4 ^i"e the same. This assumption

would be more simple from a theoretical stand-jjoint and perhaps

safer than the assumption that B' = 0. li B =1 0, B' = a^. If we

wish to embody this assumption in the equation between Z>, p^ and t,

we may substitute

2977 4
6.5228 + log,

„
{t, + 273) ^ j^i^^

for the second member of equation (336). The relative densities

calculated by the equation thus modified from the temperatures and

pressures of the experiments under discussion will not diflTer from

those calculated from the unmodified equation by more than .002 in

any case, or by more than ,001 in the first series of experiments.

It is to be noticed that if we admit the validity of the volumetrical

relation expressed by equation (333), which is evidently equivalent

to an equation between p, t, y, and ni (this letter denoting the quan-

tity of the gas without reference to its molecular condition), or if we

admit the validity of the equation only between certain limits of

temperature and for densities less than a certain limit of density, and

also admit that between the given limits of temperature the specific

heat of the gas at constant volume may be regarded as a constant

quantity when the gas is sufficiently rarefied to be regarded as con-

sisting wholly of NO2,—or, to speak without reference to the m.olecu-

lar state of the gas, when it is rarefied until its relative density D
approximates to its limiting value Z>,,—we must also admit the

validity (within the same limits of temperature and density) of all the

calorimetrical relations which belong to ideal gas-mixtures with

convertible components. The premises are evidently equivalent to

this,—that we may imagine an ideal gas with convertible components

such that between certain limits of temperature and above a certain

limit of density the relation between p, t, and v shall be the same for

a unit of this ideal gas as for a unit of peroxide of nitrogen, and for

a very ^reat value of (witliin the given limits of temperature) the

thermal capacity at constant volume of the ideal and actual gases

shall be the same. Let us regard t and v as independent variables

;

we may let these letters and p refer alike to the ideal and real gases,

but we must distinguish the entropy ?/' of the ideal gas from the

entropy tf of the real gas. Now by (88)
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dn dp

therefore

d dt]
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potentials for those components which it is convenient to regard as

the ultimate components of the gas-mixture.

In the case of a binary gas-mixture with convertible components,

the components will have the same potential, which may be denoted

by //, and the fundamental equation will be

Ci+ a, // — -£/, c.2-i-a.2 /U — E2

p= a^L^t e -\-a.^L^t e ^
, (342)

where
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(In the particular case when a, = 2 «„ tliis equation will he e(iuiva-

lent to (333)). By (347) and (348) we may easily eliminate i^i from

(346).

The reader will observe that the relations thus deduced from the

fundamental equation (342) without any reference to the different

components of the gaseous mass are equivalent to those which relate

to the phases of dissipated energy of a binary gas-mixture with com-

ponents which are equivalent in substance but not convertible, except

that the equations derived from (342) do not give the quantities of

the proximate components, but relate solely to those properties which

are capable of direct experimental verification without the aid of any

theory of the constitution of the gaseous mass.

The practical apj^lication of these equations is rendered more simple

by the fact that the ratio a^'.a^ will always bear a simple relation to

unity. When a, and «2 are equal, if we write a for their common
value, we shall have by (342) and (345)

2? V =1 a m t, (3.50)

and by (345) and (346)

m C2~C| E. —E2
at

(.351)

ij -j- 2^2^ ^

By this equation we may calculate directly the amount of heat

required to raise a given quantity of the gas from one given tempera-

ture to another at constant volume. The equation shows that the

amount of heat will be independent of the volume of the gas. The

heat necessary to produce a given change of temperature in the gas

at constant pressure, may be found by taking the difference of the

values of J, as defined by equation (89), for the initial and final states

of the gas. From (89), (350), and (351) we obtain

Cj—Cj, El— Est

Z _ Z^{cit-\-at+B^) + L2{c2t + at+E^)t "" e "^
^ .g^^)

L^+L„t e

By differentiation of the two last equations we may obtain directly

the specific heats of the gas at constant volume and at constant pres-

sure.

The fundamental equation of an ideal ternary gas-mixture with a

single relation of convertibility between its components is
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Hi—Ci — a^ c, +a| n^—E^
a, , a, ttjt

p = a^ e t e

a., ^ O'i o,>t

4- r/g e ' t e

+ «3 e t ^ e
, (353)

where Aj and X.^ have the same meaning as on page 230.

{I'o he continued.)

ERRATA.

Page 167, formula (168), for m, read fi^.

" formula (169), for to,, . . . m„_j read/z,, . . . //«— i-

Page 239. formula (333), for— read _iL.
t ttat



VI. The Hydroids op the Pacific Coast of the United States,

SOUTH OF Vancouver Island. With a Report upon those
IN THE Museum of Yale College. Bv S. F. Clari

Read Jan. 19. 18 T 6.

The Museum is indebted for its collection of Californian Hydroids

chiefly to Pro!'. D. C. Eaton, who has presented during the last two or

three years, a large number of specimens, that were received by him

with dried algtt? from that coast. They were collected and sent to

him by Dr. C. W. Anderson, Santa Cruz, Cal. ; Dr. L. N. Dimmick,

Santa Barbara, Cal. ; Mi-s. Ellwood Cooper, Santa Barbara, Cal.
;

and ^Nliss jNIitchell of Vancouver Island. All the specimens received

from these sources were collected in tide-pools along the shore or

attached to algae, washed in froui deeper water. A few alcoholic

specimens have also been received from San Diego, Cal., collected on

the piles of the Avharves and along the shore, by Dr. E. Palmer, and

a fine specimen of Plumularia setacea was dredged in six to eight

fathoms, oil' San Diego, by Mr. Henry Hemphill.

Some of the species, including most of the Sertnlarid(e, do not

seem to be injured by being dried, but others, as the Campannlaridce,

ai'e usually rendered useless for description. The specimens of the

two species of <ampanularia described below are unusually well

preserved, both hydrothecae and gonothecae being in good condition.

There has been very little published on the hydroids of the

western coast of North America, up to tlie present time. In 1857

Dr. Trask* described and figured nine new species of Zoophytes

from the Bay of San Francisco and adjacent localities. Five of

these are Bryozoa ; the remaining four represent three genera of the

family Sertularidie, as follows: Sertularia anguind, S./ureata, Sertu-

lareUa turgida and HydvaUmania Franciscana, all of which, so far

as I am aware, are peculiar to that coast ; unless indeed the last

named species prove to be identical with H. falcata of Europe,

* Proceedings of the California Academy of Natural Sciences, vol. i, March, 1357.

Dr. J. B. Trask.

Trans. Conn. Acad., Vol. III. 1 June, 1876.
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Africa and New England. In 1860 Andrew Murray* described and

figured five species from the Californian coast, of which three are

new, and the other two, Sertidaria labrata and Plumalaria gracilis^

are synonymous with two of Trask's species, viz : Sertularia anguina

and Plumularia Franciscana. Mr. Alexander Agassizf in 1865

described seven species and recorded seven others from the Bay of

San Francisco ; and he had three of the same from the Gulf of Georgia,

W. T. Five species were also mentioned by him from the North

Pacific. Two of these five northern species, Bougainvillia Mertensii

Ag. and Cotidina Greenei A. Ag., are also found at San Francisco.

The latter species having also been collected at Santa Barbara,

Cal., has the wide j-ange of nearly three thousand miles upon our

western coast. Professor Allman mentions having found sixteen

species in a collection from the Californian coast, siil)mitted to him

for examination ; two of them, Lafoea. dumosa and Sertularia pumila,

are common on the European and New England coasts, and the former

species is also recorded from South Africa. The collection in the

Museum of Yale College contains twelve species and one variety. Of

these four are new ; nine are recorded only from the Pacific coast of

North America, as yet; and three, Halecium. tenellum^ ISertularia

argentea and Phmiidaria setacea, are also common on the European

shores; the first two of these have also been found on the New England

coast, from Maine to Long Island Sound. The most common form on

the Californian coast is the showy Aglaophenia struthionides, which is

apparently as abundant there as Sertularia argentea and S. pumila are

upon our eastern shores, for it forms the bulk of every package sent

to lis from the western coast. The folloAving table gives a list of all

the Hydroids known on the western coast of the United States, from

Vancouver's Island to San Diego, with the range of tlie different

species and the names of some of the collectors.

List of Hydroida known to occur between San Diego and Vancouver

Island.

Coryne rosaria A. Ag. Bay of San Francisco, Cal. (A. Agassiz).

Tubularia elegans Clark. San Diego, Cal. (Dr. 15. Palmer).

Thamnocnidia tubiilaroides A. Ag. Bay of San Francisco, Cal. (A. Agassiz).

* Tlie Annals and Magazine of Natural History, Series 3, No. XXVIII, April, 1860.

Descriptions of new species of Hydroids from the Californian Coast. By Andrew

Murray.

\ Illustrated Catalogue of the Museum of Comparative Zoology. No. II. North

American Acalephre. By Alexander Agassiz. 1805.^
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Par3'plia microcephala A. Ag.

Bimeria gracilis Clark.

Bougainvillia Mertensii Agassiz.

Eudendrium, sp.

Campauularia everta Clark.

Campanularia fusiformis Clark.

Campanularia cyliudrica Clark.

Laomedea rigida A. Ag.

Laomedea Pacifica A. Ag.

Lafoea dumosa Sars.

Halecium tenellum Hincks.

Sertularia angiiina Trask.

Sertularia anguina, var robusta Clark.

Sertularia argeutea E. and S.

Sertularia pumila Linn.

Sertularia Greenei Murray.

Bay of Sau Francisco, Cal. (A. Agassiz).

Sau Diego, Cal. (E. Palmer).

Bay of San Francisco, Cal. (A. Agassiz).

Santa Cruz, Cal. (C. W. Anderson).

San Diego, Cal. (H. Hemphill), to Vancouver

Island (J. M. Dawson).

Vancouver Island (J. M. Dawson).

Santa Cruz, Cal. (C. W. Anderson).

Bay of San Francisco, Cal. (A. Agassiz).

Gulf of Georgia (A. Ag.) to Bay of San

Francisco (A. Agassiz).

San Diego, Cal. (Dr. E. Palmer).

Santa Cruz, Cal. (C. "W. Anderson), to Van-

couver Island (J. M. Dawson).

San Diego, Cal. (H. Hemphill), to Vancouver

Island (J. M. Dawson).

Santa Barbara, Cal. (Mrs. EUwood Cooper).

Sertularia furcata Trask.

Sertularia corniculaia Murray.

Sertularella turgida Clark (Trask).

Plumularia setacea Lamarck.

Santa Barbara, Cal. (Mrs. P]llwood Cooper),

to Vancouver Island (J. M. Dawson).

San Diego (Dr. E. Palmer), to Bay of San

Francisco (J. B. Trask).

Bay of San Francisco (A. Murray).

San Diego, Cal., to Vancouver Island (J. M.

Dawson).

San Diego, Cal. (Dr. E. Palmer), to Van-

couver Island (J. M. Dawson).

Aglaophenia struthionides Clark (Murray). San Diego, Cal. (D. C. Cleveland), to Van-

couver Island (Miss Mitchell).

This list of twenty-four species is very small compared with that of the

eastern coast, from Maine to New York, the fauna of the latter region

containing five times as many species as that of the former, notwith-

standing that the i-egion included on the western coast is over thirteen

hundred miles in length, while that of the New England coast is only

about eight hundred. It should be borne in mind however that

most of the collecting on the Pacific coast has been done along the

shore, the dredge having been little used, and there is little doubt that

when the fauna has been more thoroughly investigated the number

of Hydroids may be at least doubled. Such a variety as exists on

the New England coast can hardly be expected from our Pacific

shores south of Vancouver Island, for the waters there do not afford

the same diversity in temperature.
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Bimeria (?) gracilis, sp. nov.

riate XXXVIII, figure 3.

Stems clustered, rooted by a creeping stolon, erect, simple, delicate,

not divided by distinct joints, thickly branched ; branches suberect,

the larger ones reaching to the end of the stem and resembling the

main stalk, the smaller ones bear but one or two hydranths and are

also unjointed; perisarc extending over the hydranths and partially

covering the tentacles, annulated at the base of each branch and

branchlet. Sporosacs developed from the hydrophyton, a single one

at the base of each hydranth-bearing branchlet, oval or ovate, sup-

ported by a short peduncle consisting of one or two annulations.

Hydranths large, tapering uniformly from the distal end to the base,

provided with about ten or twelve tentacles and with a large,

rounded or slightly conical proboscis. Height of best specimen,

55"'"'.

Collected on the jtiles of wharves at San Diego, Cal., by Dr. E.

Palmer, 18'75.

Our specimens were not in a good condition when they arrived,

having been crowded in a tin can with many other things, which

pressed them all out of shape, and the quantity of alcohol not being

sufficient to preserve so much animal matter, the hydi-oids suffered

considerably; the hydranths and sporosacs especially were in a very

worn and mutilated state. It is not easy to determine just how far

the perisarc extends upon the hydranth, but it certainly covers tlie

body of the latter, and it must, I think, be developed over a portion

of the tentacles, for after soaking them in a dilute solution of caustic

potash for forty-eight hours the tentacles still retained their normal

position, nor did they show any decrease in size. The potash seemed

to act very slowly, for after being in the warm solution forty-eight

hours the hydranths were not entirely dissolved out. The fact of

the tentacles being unaftected would seem to indicate that they are

entirelv protected by chitin, but tentacles so protected would be of

little or no use to the animal, and I think it more j)rol)able that the

distal portions are free and may be contracted into the basal covering.

It is impossible to determine from our specimens how the tentacles

are held, whethei- in a single erect verticil as in Garveia or with

each alternate tentacle depressed, as in Bimeria vestita of Wright.

With such imi)erfect data I feel some doubt about placing this species

in the genus Bimeria, and only do so provisionally.
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Tubularia elegans, sp. nov.

Plate XXXVIII, figure 2.

Stems clustered, rooted by a creeping stolon, erect, unbranched,

more or less annulated at intervals toward the base. Hydranths

large, with about thirty tentacles in the proximal set and twenty to

twenty-four in the distal. Gonophores borne in clusters just inside

the proximal tentacles, twelve to twenty in a cluster, each of the

larger ones crowned with four conical tubercles. Height of tine.st

specimen, 75""".

Collected on the piles of the wharf at San Diego, by Dr. E. Palmer

1875. Intermingled with it and often attached to it were numerous

shoots of Blmeria. Many of the young had attached themselves to

the parent stalk, giving at first sight the appearance of branching

stems. ,

The specimens from which this species is described were crowded in

the same can with the Bimeria described above, and are in the same

dilapidated condition. There is a Tubularian, Tha/mnocnidla tuhular-

oides, from the Bay of San Francisco, described by A. Agassiz (Cat.

of N. A. Acalephje, p. 196), which he says "is readily distinguished

from its eastern congeners by the stoutness of the stem and large size of

the head." The description is a very meagi-e one, but from these two

characters I conclude that it must be distinct from T. elegans, for the

latter spetaes has neither a stouter stem nor larger head than Tham-

nocnidia spectahilis of the New England coast.

Eudendrium, sp.

Plate XXXVIII, figure 1.

We have also received from the California coast the perisarc or

chitinous portion of what I take to be a species of Eudendrium.

Stems stout, erect, dark horn color, strongly annulated throughout,

rather sparingly branched ; branches sub-erect, springing from all

sides of the stem and much divided. Hydranths borne at the ex-

tremity of the short ramuli. The entire perisarc is strongly ringed,

giving it a close resemblance to the trachete of an insect. Height of

largest specimen, 80"'"'"

Santa Cruz, Bay of Monterey, Cal.,—Dr. C. W. Anderson.

Campanularia everta, sp. nov.

Plate XXXIX, figure 4.

Stems rather stout, arising at intervals from the creeping stolon,

with two annulations at the base of the hydrothecte, the lower one



254 S. F. Clark—HydrOlds of the Pacific Coast.

smaller than the upper; the remainder of the stem has a wavy outline

or is slightly annulated, Hydrothec^ broadly campanulate, not

deep, tapering more or less gradually from the distal end to the base,

the rim strongly everted and bearing about fifteen rather shallow

teeth. Gonothecje, large, turgid, nearly cylindrical, tapering a little

at the base, borne on short, stout peduncles and with the aperture

terminal, small and cylindrical.

Found creeping on an Alga from San Diego, Cab,—H. Hemphill.

This is a very pretty form and may readily be distinguished by the

broad hydrothecae with their strongly everted, toothed rims. The

peculiar shape of the gonothecte is also very characteristic.

Campanularia cylindrica, sp. nov.

Plate XXXIX, figures 1-r'.

Stems are simple, unbranched pedicels, of very variable length,

more or less annulated over the entire length and with a single well-

marked ring at the base of the hydrothecje, rooted by a creeping,

twisted stolon. Hydrothecte campanulate, nearly cylindrical, taper-

ing but very slightly toward the base, varying greatly in depth, rim

armed with about fifteen very shallow, sharply pointed teeth. The
gonothecse also show considerable variation in size, there being occa-

sionally one or two which are at least twice the size of the ordinary

form; they are subfusiform, tapeiing sliglitly more toward the proxi-

mal than the distal end, supported on short pedicels with one or two

annulations.

Campanularia fusiformis, sp. nov.

Plate XXXIX, figures 2-2-.

Hydrocaulus simple, creeping, bearing the pedicels at irregular

intervals; ])edicels of variable length, usually two or three times

the length of the hydrothec;^, never more than six times their

length, with a more or less w^avy outline. Hydrotheca? small, deeply

campanulate, tapering at the base, rim ornamented witli about twelve

stout, shallow, acute teeth, a single distinct annulation at the base.

GonotheciB small, fusiform, constricted at both ends, sessile, aperture

small, terminal.

Vancouver Island,—J, M. Daw^son. Found growing on Sertularia

angidna var. rohusta.

This species is closely allied to C. cylindrica of the Californian

coast from which it may be distinguished by the size of the hydro-
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thecffi and by their shajjc, not being rounded at the base ; by the form

of tlie gonotliectp, wliicli are sessile and liave a circular terminal

aperture.

Found creeping on the old stems of a MtdendriuniWke form,

taken at Santa Cruz, Cal., Bay of Monterey, by Dr. C. W. Anderson.

The variation in the lengtli of the stems is very great ; sometimes

they are aboiit equal to the length of the hydrothecjje, and again

they will be five or six times that length. The stolon is quite

uniformly twisted and is at least twice the diameter of the stems.

Halecium tenellum. Hincks.

Halecium tenellum Hincks, Annuls and Map;, of Nat. Hist., 3, VIII. 252, pi. VI.

Plate XXXIX, figure 5.

Some very good specimens of this delicate species have been

received from San Diego. There were no gonothecfe but the hydro-

some is so exactly similar to our New England specimens and to the

figure and description of Hincks that I do not hesitate to call it the

same. A glance at our figure will show how exactly it corresponds.

Found parasitic on a species of Bimeria, collected on the piles of

wharves, San Diego, Cal.,—Dr. E. Palmer, 18Y5.

Sertularia anguina Trask.

Sertularia anguina Trask, Proc. Cal. Acad. Nat. Sci., 112, Plate V, fig. 1. March

30, 1857.

Sertularia Inhrata Murray, Ann. and Mag. for April, 1860, 250, Plate XI, fig. 2.

Plate XL, figures 1, P, 2.

Stems clustered, simple, erect, straight from the proximal end to

the first branch, above the first branch flexuous, becoming more and

more so toward the distal end, sparingly branched, divided by trans-

verse joints into short internodes, those below the first branch bearing

a single pair of nearly opposite hydrothecre, while those above the

first branch have three hydrotheese and give origin to a single branch
;

branches regularly alternate, ascending, slightly curved, mostly short,

a few have a much larger growth and exactly imitate the main stems

in every particular; color corneous. Hydrotheca3 nearly opposite,

somewhat flask-shaped or tapering evenly to the distal end with-

out any constriction or flask-shaped neck ; aperture usually entire,

slightly oblique, facing toward the stem, or with the outer margin

much more produced than the inner and in some cases showing a dis-
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tinctly sinuous outline. Gonothecse unknown. Height of largest

specimen, 75"'"'. Plentiful on a large species of Mytilus from Mon-

terey, Tomales Pt., Punta Reyes, and on old shells, Bay of San Fran-

cisco (Dr. Trask) ; Santa Cruz,—Dr. Anderson; Vancouver Island,

—J. M, Dawson.

Our specimens of S. anguina agree so closely with Hinck's descrip-

tion and figures of S. filicula that I cannot separate the trophosomes,

but the gonosomes being unknown, I prefer to let the species remain

distinct rather than to unite them on such incomplete data. Murray

also noticed the similarity to *S'. filicula although he only possessed

" a minute portion without vesicles."

Dr. Trask says of his specimens, " Their affinity is witli that of 8.

fallax of Johnston more nearly than with any other species with

which I am acquainted." He could not have known (^f ^i. filicula at

that time or he would at once have noticed the much closer resem-

blance to that form. Pie also says that his specimens have four

hydrothecie between each pair of branchlets, while ours have but

three: one pair opposite each othei- and one odd cell in the axil of the

branch. His description and figure agree so well, however, in evei'y

other respect that I am inclined to regard this as an error of observa-

tion.

This description has been made from specimens which were dried

before they were sent to iis and have since been soaked out in warm

water. The perisarc being very stout and durable I do not think

that it can have changed to any great extent.

Sertularia anguina, variety robusta Clark.

Plate XL, figures 3, 4, 5.

The variety robusta differs from the ordinary form in having a stouter

stem, larger hydrotheca% longer pinnjie, and in being in every way a

much larger and stouter form. The mode of growth, the branching,

the shape and arrangement of the hydrothecae are the same as in the

normal form. Gonothecae borne on the pinnae, more or less fusiform,

arising from just below the hydrotheca^, distal extremity slightly

curved to one side, the terminal aperture, large, circulai'. Length of

largest specimens, 100""".

San Diego, Cal.,—Henry Hemphill ; taken from kelp roots washed

ashore during a storm.

San Diego, Cal.,—D. C. Cleveland, 1875; Santa Cruz, Cal., Bay of

Monterey,— Dr. C. W. Anderson ; Vancouver Island,—J. M. Dawson.

This variety is very similar to S. abietina of Linmeus in many
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respects. It lias the same mode of growth, the same robust habit,

tlie same style and airangement of hydrothecse. There is quite a dif-

erence in the natural size figures of .S. ahietlna given by Uincks and
by Johnston. Our specimens from the New England coast agree very
well with Johnston's figure, which is just about twi(!e the size of

Hincks' H""ure.

Sertularia argentea Ellis and Solander (Linn.)

Three fine specimens of this widely distributed species have been
found at Santa Barbara, California ; they are in good condition and
loaded wdth gonothectB. The only characteristic which shows any
variation is the gonotheca?, which are proportionally a trifle longer

and also have the orifice a little larger than in our east coast speci-

mens. This slight difference being the only one and this character

varying considerably in the same specimen, I should not think of sep-

arating them.

Santa Barbara, Cal.,—INtrs. Ellwood Cooper. Height of largest

specimen, 160""".

Sertularia Greenei Murray.

Sertularia tricuspidata Murray, Ann. and Mag. for April, I860, p. 250, PI. XI, lig. 1.

Sertularia Greenei Murray, Ann. and Mag., v, p. 504, 1860.

Cotulina Greenei A. Aga.ssiz, Cat. of N. Amer. Acalepha?, 1865, p. 147.

Plate XXXVIII, figure 6.

Stems erect, slender, densely clustered, simple, thickly branched,

basal portion straight, above the first branch becoming slightly flex-

uous, forming a graceful arc between each two branches, color cor-

neous, usually darkest at the base
;
joints placed at right angles to

the stem and very irregularly distributed, forming iuternodes which

bear from one to eight pairs of hydrothecEe ; branches alternate, erect,

many of them short; some of the lower ones equal in length to the

main stem and closely resembling it in every respect; others from

the middle portion of the stem are of a medium length aiul, like the

longest branches from the lower part of the stem, reach to the extrem-

ity of the main stem forming a corymb-like structure, Tlie branch-

lets, like the branches, are mostly short, but a few are of considerable

length, extending to the ends of the branches. Ilydrothecse sub-alter-

nate, tapering uniformly to the distal end, Avith oblique, toothed

apertures, which face toward the stem ; on the outer edge of the

aperture are two large, prominent teeth separated by a deep notch.

Trans. Conn. Acad., Vol. III. 33 June, 187G.



258 ;S'. F. Clark—Hydroicts of the Pacific Coast.

Gonotheciu borne in rows on the upper sides of the branclilets ; the

upper j>ortion cylindrical, the proximal half tapering toward the base,

aperture terminal, in a small cylindrical process elevated from the

center of the distal end. Height of largest specimens, 90""".

Bay of San Francisco, Cal.,—Murray ; Santa Cruz, Cal.,—Dr. C. W.
Anderson; Santa Barbara, Cal.,—Mrs. EUwood Cooper; Vancouver

Island,—J. M. Dawson.

This is an interesting form as it is the only member of the Sertu-

laridm on the American coast having the peculiar aperture to the

goriothecae, by Agassiz called bottle-shaped, though it is by no means

an uncommon form among our CainjKinidar'uloe,— Obelia yelatlnosa,

0. genicnlata and 0. dichotoma having the same general form of

gonotliecae.

A peculiar discrepancy occurs in the descriptions of Murray and

A. Agassiz in regard to the number of teeth on the rims of the

hydrothecae ; the former describes them with three teeth, the centi'al

one being larger than the two lateral, while Agassiz describes them

with four, two prominent exterior points and two smaller ones near

the stem. We have quite a large supply of specimens in a good state

of preservation and after having carefully examined them all, I cannot

find a single hydrotheca that would afford any reason for changing

the above description of tvio teeth upon the rim of each cell.

I should judge from Murray's figure that his specimens were not

well preserved and by contracting had thrown out the inner margin

of the rim, giving it, in some views, the appearance of a tooth. But

how he made out one tooth to be much larger than the other two, I

am at a loss to understand. And the fact of Agassiz having seen

four teeth I am at present unable to account for.

Sertularia furcata Trask.

Sertularia furcata Trask, Proc. Cal. Acad. Nat. Sci., Mar. 30, 1857, 112, Plate V,

figs. 2, a, b, 0, d, e.

Plate XXXIX, figure 3.

Stems short, unbranched, rooted by a creeping stolon, simple, spread-

ing in every direction forming dense verticillated clusters around the

pieces of fucus on which it is usually found, attached to the stolon

by a short, slender, twisted process about the length of an internode,

divided by transverse joints into short regular internodes each bearing

a single pair of hydrothecte, color corneous. Hydrothecije oppo-

site, deeply immersed in the stem, with two large, sharp teeth on
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the outer margin and a large aperture generally reaching to the

stem. Gonotlieca3 large, sessile, generally borne near the base of the

steins though occasionally found scattered over the entire length, of

an elongated oval form, sometimes slightly compressed, with a large

circular, terminal aperture. Height of largest s|)ecimen, 45""".

Bay of San Francisco and Farallone Islands,—Trask ; Santa Cruz,

Cal., Bay of ^lonterey,—C. W. Anderson ; San Diego, Cal.,—Dr. E.

Palmer ; Santa Barbara, Cal.,—Mrs. Ellwood Cooper ; Santa Barbara,

Cal.,—Dr. L. X. Dimmick.

S. furcata seems to be more nearly allied to aS', Greenei than to

any other Sertularian of the west coast known to us, both having

the same style of hydrothecte, arranged in about the same manner

and with similarly toothed apertures. It is the same style seen in S.

operculata of Linnteus.

-iS'. furcata may be readily <listinguished from S. (xreenei by its

entirely different gonothecfe, by the different size of the aperture in

the hydrothccae, by the extent to which the hitler are immei-sed in

the stem and by the habit or mode of growth. In general appearance

it strongly reminds one of the Sertalaria puudla of the New England

coast.

Sertularella turgida <'iaiis (Trask).

Sarlularia turgida Trask, Proc. Cal. Acad. Nat. Sei.. Mar. 30, 1857, 11."., Plate IV,

fig. 1.

Sertularia turgida A. Agassiz, Cat. N. Am. Acalepha3, p. 145, 1865.

Plate XXXVIII, figures 4, 5.

Stems attached by a creeping stolon, sparingly branched, attached

to the stolon by a pedicel consisting of three or four rings, short,

stout, simple, spreading in every direction from the branches of fucus

and pieces of laminaria which seem to be the favorite stations of this

species, divided by oblique joints into shori, stout internodes each

bearing a single hydrotheca, color light corneous ;
branches stout,

erect, usually about half the length of the main stem and very irregu-

larlv arranged, in some cases alternately, in others all the branches

spring from one side of the stem and sometimes there seems to be

no regular arrangement. Hydrotheca? large, full, alternate, deeply

immersed in the stem, the inner angle of the proximal end extending

more deeply into the stem than the outer, aperture large, armed with

three stout teeth, two of which are larger than the other and are

situated on the outer side of the rim, facing the stem, the third tooth
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is on the inner margin of the rim midway between the other two.

Gonothecae, arising in the axils of the hydrotheca?, are large and of

two forms ; the larger form, similar to the gonotheea of Sertu-

larella polyzonias Gray (Linn.), is obovate, sessile, armed with a

few stout, blunt spines around the distal end, aperture, terminal

and at the outer end of a small cylindrical process formed by a

constriction or a very sudden tapering near the extremity and

surrounded by a number of the largest spines ; the smallei' form is

supplied Avith about twice as many spines as the larger foi'm and is

shorter and proportionally broader, the broadest portion being nearer

to the distal end ; this variation in form undoubtedly indicates a sexual

difference, the smaller form proba1>ly being the male find the larger

the female gonothecje ; both forms have the surface more or less

roughened by transverse Avrinkles. Length of largest specimen,

38""".

Bay of San Francisco, Monterey, Tomales Point, Cal„ on mollusca

and alga^,—Trask ; Santa Ci-uz, Bay of Monterey, Cal.,—Dr. C. W.
Anderson ; San Diego, Cal.,—D. C. Cleveland ;

Vancouver Island,

—J. M. Dawson.

The nearest ally of S. turglda is the ^S. polyzonias of Gray, to

which in many respects it bears a striking resemblance.

Hydrallmania Franciscana Clark (Trask).

Plumularia Franciscana Trask, Proc. Cal. Acad, of Nat, Sci., vol. i, p. 113, PI. IV,

fig. 3.

Plumularia gracilis Murray, Ann. and Mag. of Nat. Hist, for April, 1800, p. 251,

PI. XII, fig. 1.

Trask and Murray both had representatives of a species which they

referred to the genus Plwnularia and whicli, from their descriptions

and figures, undoul)tedly belongs to Hinck's genus Ilydmllmania,

though at the time their descriptions were published, this genus had

not been recognized. This sjiecies is certainly very close to II.

falcata of Hincks, but Murray, who had an opportunity of comparing

the two, says they are distinct.

Unfortunately we have had no specimens.

Bay of San Francisco, Cal., among rejectamenta on the beach,

—Trask.
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Plumularia setacea Lamarck.

Sertularia piiinata, [3, Linn., Syst. Nat., 11! 12.

Sertularia setacea Pallas, Elench., p. 148.

Plumularia setacea Lamk.. An. s. Vert. (2d ed.), ii, 165.

Plate XLI, figures 1, 2.

Stems simple, slender, erect, rooted by a creeping stolon and
divided by transverse joints into short internodes of uniform size,

regularly branched
;
pinn.e alternate, regulai-ly arranged, one from

each internode, arising from the stem by a pi-ominent process pro-

duced from the outer and upper side of each internode, divided by trans-

verse or slightly oblique joints into internodes of two sizes arranged

alternately. In large specimens 150"'"'. to 800'""'. long, the main stems

are considerably branched, the branches alternately arranged and

clustered, extending quite or nearly to the distal end of the stem;

the branches give off" l)ranchlets, which like themselves resemble the

main stems in every particular. Hydrotheca? with an even rim, small,

borne on the larger sized internodes of the pinna>. Nematophores

compound, those on the pinn;v not quite equal in length to the hydro-

thecfe, those on the main stems a little longer than the hydrothecae;

three on each internode of the stem, two in the axil of each pinna,

one on the opposite side of the internode near the bnse, one only on

the upper side of the smaller joints of the pinn{\3 and three on the-

larger joints, one just below the hydrotheca, and one on each side of

the apertui-e Gonotheca^ sessile, l)orne in the axils of the pinna*

;

female elongate oval, produced at the distal end into a tubular neck

with a discoidal, terminal orifice ; male, smaller than the female,

fusiform, and with a much smaller aperture.

Santa Cruz, Cal.,— C. W. Anderson; San Diego, Cal,—Dr. H Pal-

mer; San Diego, Cal.,—H. Hemphill; Vancouver Island,—Dawson.

Most of our specimens consist of dense clusters of the delicate

shoots, about 50'""'' to 80"""* long, and usually attached to some large,

coarse alga. Ellis' old name of " iSea Bristle.^'''' was well chosen, for

it conveys quite an accurate idea of the appearance of these smaller

forms. The larger forms are more branched, usually of a darker

color and have a closer resemblance to hair than to bristles; one of

our largest specimens from San Diego consists of a tuft 200"""- in

length composed of about three hundred branched shoots ; this liad

been washed ashore and was found by Dr. Palmer; a still larger

specimen was dredged off San Diego in six to ten fathoms by IVIr.

Hemphill, which measures .300"""- in length and forms a thick cluster

of about a thousand shoots.
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Aglaophenia struthionides Clark (Murray).

Flumulari'i stridhmmles Murray. Ann. and Mag. of Nat. Hist, for April, 1870, 251,

Plate XII, fig. 2.

Arjlanphenia franciscana A. Agassiz, Cat. N. A. Acalephai, p. 140, 1865.

Plate XLI, figures 3-3''.

Stems rooted by a creeping stolon, simple, erect or spreading in

every direction, divided by slightly oblique joints into very short

internodes of equal length, each bearing a single pinna, varying

from the lightest to the darkest horn-color; shoots tall, stout, plumose,

tapering slightly toward the base, the distal end abruptly pointed
;

pinna' slightly curved, sub-erect, unbranched, not in the same plane,

the sides bearing the hydrothecie curving toward each other, divided

into short internodes by slightly oblique joints, each internode bear-

ing a single hydrotheca. Hydrotheca^ large, cu}>shaped, expanding

toward the distal end, aperture large, patulous, rim denticulated,

armed usually with eleven, sometimes nine, sharp, uneven teeth.

Nematophores tubular, the lateral ones of medium size, projecting

ear-like from the sides of the hydrothecae, the anterior one long,

adnate for the greater part of its length, free near the distal end,

extending nearly or quite to the edge of the toothed rim, aperture

small, discoidal, terminal ; those upon the corbula3 are a trifle larger

than the lateral ones and are arranged in transverse rows, the ends

of which do not meet. Corbuhe large, cylindrical, with numerous

rido-es (ten to sixteen) composed of oblique rows of nematophores

;

usually from two to six hydrotheca? at the base of the corbula. In

luxurious specimens the corbula- are very abundant, there being

between seventy and eighty t)n a single shoot. Length of largest

specimen, 150""""

Bay of San Francisco,- -Trask ; San Francisco, Cal.,— A. Agassiz;

Santa Barbara, Cal.,—L. F. Dimmick ;
Santa Barbara, Cal.,—Mrs.

EUwood Cooper ; Santa Cruz, Cal., Bay of Monterey,—C. W. Ander-

son* San Diego, Cal.,—D. C. Cleveland; Vancouver Ishmd,—Miss

Mitchell ; Vancouver Island,—J. M. Dawson.

In the various lots of Hydroids which we have received from the

western coast, this species has always been the most abundant. It

seems to be as common and as widely disti'ibuted on the western

coast of the United States as tSertularia puniila is upon the eastern

coast. Both are also very often found parasitic on algiie, but A. stru-

thionide-s is often found in deeper water than N. pui/td-a.
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As ^Murray r(>inarl<s, tliis species is nearly allied to Phinmhirla

rrf'sfafa, the A. phmui of Liuna'us, but is imicli elosev in lialtit, tiie

liydrotliecfB are Avider-inouthed and shallower and the teeth upon tlie

rim are unequal. An inipoi-tant error occurs in the synonyniv ol'liiis

species given bj'^ Mr. A. Agassiz. lie has, under the name .\<ihio-

phenia Franciscana the foHowing synonymy :

Plumularai Franci.'^caiia Trask.

Plumularla struthiontdes Murray.

The Pluriiidarla Franciscana of Trask l)elongs to tlie geiuis Jfi/-

drallmanki: of llincks, as a glance at the figures and description of

Trask will show; and it is synonymous witli the Phnnalarid gracilis

of Murray. Hence the name of the above descriljed species should not

be A. Franciscana, but .1. struthionides.

EXPLANATION OF PLATES. '

Plate XXXVIII.

Figure 1.

—

Eudendrium, s]). ; from Santa Cruz, Cal.

Figure 2.

—

Tubularia elegans; a, cluster of medusas buds; a, a', and«", buds in differ-

ent stages of development ; a'", an actinula escaping.

Figure 3.

—

Bimeria gracilis ; a, a' and a", sporosacs.

Figure 4.

—

Sertularella turgida ; a, the gonangium or gonotheea.

Figure 5.

—

Sertularella tur/jida ; another form of gonotheea.

Figure 6.

—

Sertularia Greenei ; a. and a', the gonangia (gouothecte) ; h, hydrotheca.

Plate XXXIX.

Figure 1.— Campanularia cylindrica ; la, the same showing the full length of the

pedicel; 1 fc, the female gonotheea ; Ic, an abnormally dev^eloped 'lydrotheca ; \d,

the male gonotheea.

Figure 2.

—

Campanularia Jusiformis ; '2a, '2h, and 2d, the same showing the amount of

variation in the width and depth of the hydrotheca? ; 2e, 2/1 and 2(/. the gonothecse

;

r, the rootstock or creeping stem.

Figure 3.

—

Sertularia furcata ; a, and a', the gonothecte.

Figure 4.— Campamdaria everta; a, and a', the gonotheea?; r, the creeping stem.

Figure 5.

—

H^lecium tenellum ; from San Diego, Cal. ; r, the creeping stem.

Plate XL.

Figure 1.

—

Sertularia anguina; la, a single hydrotheca showing the outline of the

outer margin of the rim.

Figure 2.

—

Sertularia anguina; a portion of the main stem.

Figure 3.

—

Sertularia anguina, var. rohusta; a portion of the main stem.

Figure 4.—The same
;
portion of a branch ; a, gonotheea.

Figure 5. — The same; with a monstrosity, a. at the extremity of the branch.
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Plate XLI.

Figure 1.

—

Plumularia setacea ; portion of a branch with neinatophores and female

gonothecaj, a.

Figure 2.—The same; a portion of the main stem; n, uematophores ; /;, hydrothecaj

;

2a, male gonotheca.

Figure 3.

—

Aglaophenia struthionides ; a portion of a pinna ; 3a, 36, and 3c, different

views of the same; n and «', nematophores ; h, hydrotheca; 3tZ, cortaula; «, the

body of the eorbula; 6, the wing-like processes at the base; n, and -«', the

nematophores; /*, the hydrothecte.



VII. On the Anatomy and Habits of Nereis virens. By
Frederick M. Turnbull.

Read January 19, 1876.*

The Nereis [Alitta) virens^ which is one of the Largest and most

common of our marine annellids, is found under stones or burrowing

in the sand and mud of sheltered shores, both at low-water mark,

and at a considerable distance farther up. It grows to the length of

eighteen inches or more, and is quite stout in its proportions.

It is very active and voracious, feeding on other worms and vari-

ous kinds of marine animals which it finds when burrowing in the

sand.f It will even devour its own immediate relatives, if hungry

when it meets them. It suddenly thrusts out its proboscis and

seizes its prey with the two powerful jaws, then withdraws the pro-

boscis, the jaws closing at the same time. In this way it

w'ill tear large pieces from the body of its victim, being able, at

one bite, to cut in two a worm of its own size. One which I had

confined in a small dish of water, bit its own body in two pieces

at the middle. As the proboscis is turned inside out, when it is pro-

truded, whatever has been siez<'d by the jaws will be drawn by them

inside the proboscis as soon as the latter resumes its natural jjosition,

the proboscis then acting as a sort of gizzard.

These worms, by secreting a viscid fluid, will surround themselves

in a few minutes with a translucent sheath which binds the grains of

sand together, forming a loose and flexible tube. They remain most

of the time in these tubes, Avhich are nearly always situated in sand

and mud or under flat stones, and they move in them with consider-

* Abstract of a graduation thesis presented at tlie Sheffield Scientific School, June,

1875.

f Later observations show that this species does not restrict itself to an animal

diet. Several large specimens, taken by me in October, 1875, had the intestine com-

pletely filled witli algte of several species, among which Ulva latissima was most

abundant. The algas were torn into fragments and large shreds and rolled together

into long pellets, but even after passing through the intestine their nature could be

easily recognized.

—

a. k. verrill.

Trans. Conn. Ac.\d., Vol. III. 34 August, 1876.
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al)le freedom and rapidity, pusliiiig themselves along by means of

their aciculse, setse and ligula^, the acicuhe being controlled by

special muscles. They hold their tentacular cirri straight out in

front of them, as they move, in order to have warning of anything

that they may approach.

The tautog, scnp and other fishes dig them out of the sand and

devour them eagerly. But at certain times, especially at night, they

leave their burrows, and swim about like eels or snakes, in large num-

bers, and at such times fall an easy prey to many kinds of fishes.

This habit seems to be connected with the season of reproduction.

They were thus observed swimming at the surface in the day time,

near Newport, in April, 1 872, by Mr. T. M. Prudden and Mr. T. H.

Russell, and several times by Professor Verrill, later in the season.

At Watch Hill, R. I., April 12th, 1873, Professor Verrill found great

niimbers of the males swimming in the pools among the rocks at low-

water, and discharging their milt. The males were also seen swim-

ming in the tide-pools and shallow waters at Savin Rock, April, 1875,

by Professor D. C Eaton and Mr. Kleeberger. The JVereis virens is

abundant at all seasons of the year, in most places along the sandy

and muddy shores, both of the sounds and estuaries, burrowing near

low-water mark. It occurs all along the coast, from New York to

the Arctic Ocean, and is also found on the northern coasts of Europe.*

The body consists of a large number of rings or segments. This

number varies with the size and age of the worm. It may be less than

one hundred, or as many as two hundred. The increase in length

takes place by the addition of new posterior segments, in advance of

the caudal segment. New segments may also be formed when a part

of the body is broken oif, and in this way a considerable part of the

posterior portion of the body can be completely reproduced. The head

(figs. 1 and 17) is very fully developed, being provided with two

pairs of eyes and two pairs of antennae. It is attached to the dorsal

side of the first segment, wliich is called the buccal or mouth-ring

(figs. 1 and 15, d), because it contains the mouth (fig. 15, ni). There

are also four feelers, called tentacular cini (fig. 1, ee, ee', e and e'),

arising from the buccal ring on each side of the head.

The abdominal rings (fig. 1, g) follow the buccal ring. Each one

of these has a pair of lateral lamelliform appendages (figs. 1 and 1 7, A),

used as paddles in swimming and also Serving the purpose of gills.

The last segment or ring of the body bears a pair of cirri, similar to

the tentacular cirri, and also contains the anal orifice.

* See, for habits of this and allied species, Professor VerriU's report in First Report

of U. S. Commission of Pish and Fisheries, p. 318. 1873.
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The mules are easily distinguished from the females by ditferences

in color and in the form of the side appendages. The color of the

body in the male is an intense steel-blue, which blends into green at

the base of the lateral appendages. These have a rich and brilliant

sea-green color which is heightened by the complimentary effect of

the luimerous red blood-vessels they contain. The latter are especially

noticeable toward the posterior end of the body where the skin is

thinner and less opaque, so that the appendages, with their network

of ca|»illaries, appear bright red.

In the female the body is of a dull greenish color, with a slight tinge

of orange and red. The appendages are orange-green at the base,

and become bright orange toward their extremities ; but sometimes

they are greenish throughout. The whole surface of the skin, in both

male and female, is iridescent, reflecting bright hues when placed in

the light.

The head (figs. 1 and 15, a) is small, and flattened on the doisal and

ventral sides. From the position of the anterior eyes the sides taper

toward the anterior extremity, where it is rounded oft' and terminated

by a pair of small antenna (figs. 1 and 15, h, b). There are two pairs

of eyes on the upper surface of the head, one pair near its base and

another pair more anterior and farther apart. The anterior eyes are

situated near the middle and on the broadest portion of the head.

On each side of the head, attached to its anterior half and also to the

buccal ring, is a large antenna or palpus, as it is sometimes called (figs.

1 and 15, c). These are stout, fleshy and somewhat contractile organs.

Each has a small rounded lobe at the tip (figs. 1 and 15, c').

The buccal segment and the head constitute the cephalic or head

region. The tegument about the mouth is wrinkled and folded lon-

gitudinally, presenting an appearance like the mouth of a purse, when

drawn together by strings. The tentacular cirri are long, slender

and quite flexible. They receive their nerves from the first abdominal

nerve-ganglion, whereas the antennae receive theirs from the head-

ganglion.

There are four pairs of tentacular cirri, two dorsal (fig. 1 , ee, ee') and

two ventral (fig. 1, e, e'). The ventral ones are situated nearer to the

palpi than the doi'sal, and hence the two are called respectively the

internal and external tentacular cirri. The relative lengths of the ten-

tacular cirri are shown in fig. 1. The two large dorsal tentacular cirri

(ee, ee) are longer in the male than in the female. In the male they

will reach to about the middle of the ninth segment, when laid along

the back. In the female they will reach to about the middle of the
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fifth segment. The other tentacular cirri have more nearly the same

length in both sexes.

The abdominal segments increase in size to about the eighth, and

then remain nearly the same for some distance along the middle

region, but the posterior rings decrease in size, causing the body to

taper until it becomes quite slender. The appendages, also, are longer

and broader along the middle region than toward either extremity.

On the ventral side of the segments the part continuous with the feet

is smooth, l)ut the other parts show the strong transverse muscles

(fig. 26), which, by their contraction, lessen the size of the body cavity.

The lateral appendages or feet of Nereis virens are quite compli-

cated and wonderful organs. They are biramous (fig, 12), having

two rami, one dorsal (A) and the other ventral (B). The aciculse of

each foot arise from a crypt which is attached by shroud-like muscles

to the base of the foot. The sette arise from the interior of the

two rami. The feet are complicated by the addition of other organs,

serving for locomotion, sensation and respiration.

The respiratory organs, often called liguhne, are moi-e or less flatten-

ed lobes with their teguments very thin and filled \\\i\\ a rich vascu-

lar netw'ork (figs. 22, s^ 25, 26). The upper ramus has two ligulae, a

superior one (fig. 12, h) on its upper, and an inferior one (fig. 12, d) on

its lower side. At the base of the superior ligula, on a sort of shoulder

of its upper edge, is the dorsal cirrus (fig. 12, a). There are also two

setigerous lobes smaller than the liguhe, one on each side of the open-

ing through which the sette protrude (fig. 12, c and k). The anterior

(c) is longer than the other [k) and is connected with the inferior ligula

{d) of the upper ramus. The acicula is attached to the inner walls

of the ramus forming a partition, which terminates with the end of

the acicula between the lolies c and d, (fig. 12) and generally forms,

in the middle and posterior parts of the body, a third and smaller lobe

(fig. 12, r').

The lower i-anius lacks a superior ligula, but it has an inferior one

(fig. 12,^) more rounded and not so broad as the others. In the lower

ramus, as in the upper, there is normally only one fascicle of setae,

but in the lower ramus it is divided into two clusters by the acicula,

which, by its attachment to the inner walls of the ramus, forms a par-

tition. Here, as in the u])per ramus, there are two flattened setiger-

ous lobes, about equal in length, one on each side of the o])ening for

the setae (fig. 12, / and e), and the partition formed by the acicula

extends to the extremity of the anterior one, dividing it into two small

lobes (fig. 12, e and e).
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The inferior ligiihi of the u])per nuiius, with its two hjhes (tig. 12,

c, d) corresponds, apparently to the lobe (e) and its divisions, while

the lobe {k) of the upper ramus corresponds to the lobe (/) of the

lower ramus. In the upper ramus, the acicula and its partition do
not divide the bunch of setae, as it coAies out above the acicula.

The ventral cirrus arises from a slight protuberance of the inferior

side of the lower ramus (fig. 12, h).

The feet are not all alike from one end of the body to the other

;

they change in form most along the anterior region, and in the first

five the variation is considerable ; along the middle and posterior

regions, it is slight in comparison,

I have figured tlu' first five, the forty-fifth, and the one hundred-and-

ninth feet of a female worm, having one hundred and twenty-one

segments; also the first, fifth, forty-fifth, and one hundred-and-ninth in

a male worm of nearly equal size, but having one hundred and sixty-

one segments. These figures show the posterior view of the feet.

Those of the female will be first described, and then compared with

those of the male.

In the first foot of the female (fig. 3) the upper ramus has only the

doi'sal cirrus and the superior ligula developed. The former is about

one-fifth longer and a little less than one-third as broad as the latter,

being very well dcA^eloped, wdiile the ligula is somewhat rudimentary.

The ligula is rounded and simple in shape, having a constriction at its

base. Of the lower ramus, all the parts are present. The posterior

setigerous lobe (/') is longer than the anterior setigerous lobe (e), and

is oval and flattened. The anterior setigerous lobe {e) is seen to be

divided by the acicula into two smaller terminal lobes (e and e'), in-

dicated by dotted lines where they are covered by the posterior seti-

gerous lobe (/"). The inferior ligula {g), of the lower ramus, is of

about the same size and shape as the superior ligula [h], and the infe-

rior cirrus (//), is like the superior cirrus {<(). The setse of the lower

ramus, as shown in the figure, extend just Ijeyond the posterior seti-

gerous lobe (/'). They are somewhat rudimentary and are for the

most part blunt. The acicula is also rather small.

The second foot (fig. 4) has the anterior setigerous lobe (e), and the

acicula a little larger and better developed, and the dorsal cirrus is

seen to be a little shorter than that of the first foot; otherwise the

second foot is scarcely different from the first.

In the third foot (fig. 5) the upper ramus has developed an inferior

ligula, setjB and acicula. It also has an anterior setigerous lobe

(c). This lobe is a part of the inferior ligula [d). It shows more
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distinctly in some of my figures of the feet of the male. The superior

ligula is of about the same size and shape as the inferior ligula. The

lower ramus is a little more developed than it is in either the first or

second feet, but the inferior cirrus (A) is shorter.

The fourth foot (fig. 6) is more highly developed than the third
;

but the inferior cirrus is shorter in comparison with the lower ramus.

The fifth foot (fig. 7) is still more highly developed than the fourth,

and the superior ligula is larger than it is in the preceding feet. The

dorsal and ventral cirri are both smaller. If we now compare the fig-

ure of the fifth with the figures of the first and second feet, the differ-

ence is seen to be considerable, particularly in the length of the cirri.

The superior ligula {b) begins to increase in size at the fifth foot,

and continues to do so, until in the forty fifth (fig. 8, h) it is

larger than any other part of the foot. It has also become flat

and pointed. The shoulder (?") is much larger. The inferior ligula

[d) is also flat and pointed. A posterior setigerous lobe {k) is now

large enough to be easily seen. The posterior setigerous lobe (/) of

the lower ramus is somewhat pointed, and its lower edge is oblique.

The anterior setigerous lobe (e) is now as long as the posterior seti-

gerous lobe, and its two divisions are nearly equally developed. The

inferior ligula {g) is rounded and somewhat tapering toward its

extremity. The dorsal and venti'al cirri are now quite small, particu-

larly the latter, while otherwise the foot is much larger. The setse

have become longer and more perfect, from the anterior toward the

posterior, attaining their maximum in the middle region of the body.

The aciculiB are also larger here than in either the anterior or pos-

terior regions ; although, in the posterior region they are longer in

comparison with the size of the foot than anywhere else.

The one hundred and ninth foot (fig. 9), as shown by the figures, is

nearly the same in form as the forty-fifth, but smaller.

On comparing the first, fifth, forty-fifth and hundred and ninth

feet of the female with the same in the male, we find that there is a

marked difference in the cirri. The dorsal cirrus in the first foot of

the male (fig. 10) is one-half longer than it is in the female, and it is

larger in proportion. In the fifth foot (fig. 1 1 ) the difference is the

same. In the forty-fifth (fig. 12) the dorsal cirrus of the male is longer

and also slenderer than it is in the female. In the one hundred and

ninth foot (fig. 13) the dorsal cirri are about the same in length, but

those of the male are more slender.

The difference between the dorsal cim decreases toward the posterior

end of the bodi/, being greatest in the anterior segments.
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The ventral cirrus of the first foot of the raale (tig, 10) is not quite

so long as the dorsal cirrus, but it is a little longer than the venti'al

cirrus of the female. In the fifth foot (fig. 11) it is a little longer and

much more slender than it is in the female. In the forty-fifth (fig. 12)

it is twice as long and of the same diameter as it is in the female.

In the one hundred and ninth (fig. 13) there is the same difference

which we see in the foi'ty-fifth.

The difference between the ventral cirri of the male and female, in-

creases from anterior to ^yosterior, being greatest m the posterior seg-

ments.

Beginning with the forty-fifth foot (fig. 12) a shoulder {x) appears on

the dorsal side of the lower ramus in the male. It increases in size and

definiteness farther back, but finally disappears. This shoulder

is never seen in the female, and is a good character for distinguishing

the sexes, but it requires microscopic examination. The difterence

between the cirri of the male and female is suflicient to distinguish

them without the use of a lens.

The setae under the microscope are very delicate and beautiful (figs.

2. la). They consist of two parts, the shaft (a) and the blade (J).

The shaft has a transversely striated appearance, which is exceedingly

regular. The blade is held in a sort of socket in the end of the shaft,

and one edge is toothed like a saw. There are two forms : one in

which the blade is short, having its extremity blunt and slightly

hooked (fig. 2), and one with the blade tapering to a fine point,

the blade being long and slender (fig. 2a). The length varies and

with it the delicacy of the point. In most of the setae the latter is

so sharp that it seems to vanish, and can be seen only with a high

power. Those setse which are hooked have the hooks and toothed

edge turned upward; and these are always confined to the lower

ramus, and to the lower side of the latter in both bunches. In the

middle and posterior regions these hooked setae disappear, their place

being taken by the other kind ; but the latter are shorter than those in

the upper part of the bunch. The same forms of seta? are found in

both male and female. Those of the anterior feet are shorter than

those in the middle region. When viewed by transmitted light the

bunches present all the colors of the spectrum.

The aciculge (figs. 12 and 22) are simple thorns, in the form of an

elongated cone, generally a little bent. They are black, except at the

base, showing through the translucent integuments of the foot. At

the base they are hollow and therefore lighter colored.
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Muscular System.

The walls of the body contain two muscular layers, which are

well defined. The first is thick on the ventral side of the body

(fig. 22, k), but is thinner elsewhere. It forms in each ring a muscular

plane of transverse fibres. The second is placed within the jjreceding

and is formed of great fascia? which are attached to the interannuiar

partitions (fig. 16, b). This layer does not exist on the ventral side,

between the bases of the feet. The interannuiar partitions (fig. 16, a)

are attached to the intestine, which they hold in place, dividing the

general cavity of the body into a series of chambers (fig. 16) ; but as

the inner subcutaneous layer does not extend over the ventral floor

of the cavity, the chambers open into one another beneath the intes-

tine. I have already mentioned the muscles attached to the fleshy

knobs, which hold the aciculfe. These muscles (fig. 22), when they

contract all together, force the aciculae outward. When difterent ones

contract they move the aciculffi to one side.

The Nereis virens in swimming moves its body laterally, like a

snake. It sometimes has also an undulatory movement, up and down.

These motions are all produced by the subcutaneous miiscles. The

lateral appendages are used as paddles, but their principal use is to

push the worm along in its tube, and for crawling. They are greatly

aided by the stifle aciculffi, controlled by their special muscles (fig.

22), and by the seta\ When burrowing, the proboscis is used to push

away the sand in front and is then withdrawn, while the body is moved
forward partly by a vermicular motion and partly by the side ap-

pendages.
Alimentary Syste)n.

The proboscis is a very remarkable organ and constitutes a formid-

able weapon. It is divided by M. DeQuatrefages into three regions:

the pharyngeal, the dental, and the oesophageal (figs. 16-18). The
mouth has already been partially described. The walls of its cavity

are connected by several small, delicate muscles, with the walls of the

body cavity, as I have shown in figure 16, m and n. The pharyngeal

region commences immediately back of the buccal cavity (figs. 16 and

20, x), and has two muscular partitions (fig. 16, c).

The dental region (20 and 16, jo) is very muscular, and is provided

with a considerable number of small teeth, or denticles, which are

arranged in groups on the anterior, inner surface of its walls. It also

has two large and powerful jaws attached by their hollow bases to the

muscles of the posterior inner surface. The worm has the power of

turning this dental region inside out.
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Whoii the proboscis is iiisido the body, it takes the position sliown

in tiniires 16 and 20, tlie cesojthagus being curved and pushed back

against the intestine ; but when it is forced out, the oesophagus

straightens, and that part of the proboscis which is protruded takes

the position shown in figures 1 7 and 1 8, these figures sliowing the ar-

rangement of the jaws and denticles, figure 17 giving the dorsal

view and figure 18 the ventral view; the buccal ring is very much

stretched ; and the head, antenna^ and tentacular cirri are forced over

on the back (fig. 17). The jaws are imbedded in and attached to

the special muscles, in such a manner that the more the proboscis is

l^rotrudcd the farther apart their points move, and when the probos-

cis is withdrawn they close like a pair of scissors, their points crossing.

The jaws (fig. 19) are curved like hooks, and have their inner concave

edge denticulated with about ten teeth. They and the denticles are

composed of a black chitinous material. The denticles, which are

conical and pointed, are not attached to muscles, but are simply im-

bedded in the surface. The number and size- of the denticles, and

even their positions, vary considerably in the different specimens ex-

amined. T think it would be hard to fi.nd two specimens exactly alike

in this respect. Among seven worms, I found five with one denticle,

one with two denticles, and one with seven denticles on the median

anterior area of the dorsal side (fig. 17, o).

Among six worms, I found two with two denticles and four with

none at all on the posterior median area of the dorsal side (fig. 17, t).

On the left submedian anterior area of the dorsal side (fig. 17, I), the

number of denticles varied from three to eight ; and on the right sub-

median anterior area of the dorsal side (fi:g. 17, I') from two to eight.

In only one case did the two last areas have the same number of den-

ticles. On the left submedian posterior area of the dorsal side (fig.

17, s) the number of denticles varied from none to five; and on the

light submedian posterior area of the dorsal side (fig. 1 7, s') from

one to four.

The denticles on the lateral and ventral posterior areas (fig. 17 and

18, r) vai-y considerably in number, position and size. Among four

worms, the number of denticles on the right lateral anterior area (figs.

17 and 18, n) varied from twelve to twenty-five; and on the left lat-

eral anterior area (figs. 17 and 18, n') from eleven to thirty.

Among five worms the number of denticles on the anterior median

area of the ventral side (fig. 18, y) varied from four to twelve. On

each of the two submedian * areas of the ventral side (fig. 18, x')

there was one denticle.

Trans. Conn. Acad., Vol. III. 35 August, 1876.
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In some of the large worms the denticles are as small as those of

smaller worms, while in other cases they are much larger. The large

denticles probahly are knocked off in some way and new ones grow

in their place. This would account in part for the large number of

very small denticles, and also for the variations in number.

Attached to the anterior end of the oesophagus, one on each side,

are two salivary glands (figs. IH and 20, j). These are free except at

one end, and are ciliated on their outer surface. The intestine proper

(figs. 16 and 20, r) is straight and is constricted somewhat by the

muscular partitions of each segment through which it passes. It is

brilliant greenish yellow in color and is surrounded by a regular cap-

illary network of blood vessels (fig. 20).

The internal surface of the oesophagus is tessellated with low, rounded

papillae or tubercles, "^rhese are regular in shape and equal in size.

Their sides are diag<mal to the length of the oesophagus. They show

through the walls of the oesophagus, so that its outside appears tessel-

lated with dark squares, and as the oesophagus is stretched or con-

tracted they become diamond shaped. The tubercles are of a dull

color, between brown and yellowish green.

The intei'ior surface of the intestine is also covered with regular

longitudinal rows of low, rounded tubercles, which are much smaller

than those of the (esophagus. They are greenish-yellow like the out-

side of the intestine. The end of the oesophagus projects into the

cavity of the intestine, and its opening, which has sphincter and also

longitudinal muscles, can be enlarged or contracted to a considerable

extent. The outer surface of this end of the oesophagus is continuous

with and like the internal surface of the intestine. The latter secretes

a brown fluid in its interior and probably acts as a hepatic organ.

The dental portion of tlie proboscis acts like a gizzard, and the

oesophagus is pi'obably a sort of stomach.

Circulation and Respiration.

The circulatory system is highly developed and complicated. The

blood is red, and the vascular system is complete and closed. The

principal vessels have a longitudinal course, occupying the whole

length of the median line of the l)ody, one as a dorsal (figs. 20-

24, a), and the other as a ventral vessel (Ji). They are contractile, and

by a sort of peristaltic motion the blood is pushed forward in the

dorsal vessel, and in the op])osite direction by the ventral vessel.

The dorsal vessel is visible for nearly its whole length thi'ough the

more or less transparent walls of the body, and its blood can be seen
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moving in a series of waves toward the liead. The ventral vessel

sends oif, in each segment of the body, except a few in the region of

the proboscis, two smaller vessels, one on each side. These two ves-

sels fork, each sending a branch to the inferior ramus of the foot of

the next segment to the rear (tigs. 20-24, /"), and another larger

branch ic) around the intestine, by the side of the transverse parti-

tion, to the dorsal vessel, receiving, also, on its vvay, a vessel from

the upper ramus of the foot of its own segment {d). Jiesides these

principal lateral vessels, there are five other vessels on each side in

each segment, coming from the ventral vessel (iig. 20). These form

a loose but regular network that surrounds the intestine and is

connected with live other convoluted vessels, which join the dorsal

vessel. This network on the intestine probably supplies the hepatic

organ with material for its secretion, and very likely may receive

nutritive material from the digested food. The blood moves in

waves, at regular intervals, through the peripheral vessels (figs. 20-

24, c) to the dorsal vessel, but I could not see in which direction the

blood moved in the network. The blood is forced into it at each pul-

sation of the dorsal vessel, l)ut the normal flow may be in the opposite

direction. The peiipheral vessels are also connected with this network

(tig. 20). The dorsal and ventral vessels are connected at the posterior

extremity of the body by a simple peripheral vascular ring (fig. 23, c),

in which the blood flows from the ventral to the dorsal vessel. In

the region of the proboscis, the ventral vessel sends lateral branches

directly to all the feet but the first three (figs. 20 and 21). It then

sends a pair of vessels to the oesophagus (figs. 20 and 21, e), which

pass back along the oesophagus, one on each side, as far as the intestine,

being connected with smaller vessels on the surface of the oesophagus.

The ventral vessel next sends otf a pair of vessels which expand into

capillary networks, one on each side (figs. 20, 21, s and g). Each of

these networks sends small branches to the first three feet on its

own side, and then merges into a vessel (figs. 20 and 21, A), which

goes to the base of the tentacular cirri. The ventral vessel now goes

upward to the under surface of the proboscis, and there divides into

three branches (figs. 20, 21, t, t and /). The middle branch (fig. 21, 1)

passes under a muscle and along the median line of the ventral sur-

face, as tar as the pharynx, where it divides into two, forming a small

vascular ring (fig. 21, n) about the latter. The two lateral branches

pass upward and backward on the proboscis, each expanding

into a remarkably rich and delicate network on its own side of the

proboscis (figs. 20 and 21 , u). From each of these networks a vessel
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(?;) passes to the base of the head, where it joins tlie dorsal vessel

(«), thus completing the circulation. From tliis junction small

vessels probably go into the head and antennae. The lateral vessel

passing to the lower ramus divides into branches ramifying on that

portion which is continuous with the foot on the ventral side of the

segment, and also over the lower ramus (tigs. 22 and 26). There a

connection is made with vessels of the upper ramus, and I think

this is done by the vessel marked x in figures 22 and 24, because it is

quite large at the base of the inferior ligula of the upper ramus, and

grows smaller at first and then swells out again before joining the

vessels of the iipper ramus, in the superior ligula. The branch d

(figs. 20, 22 and 24), coming from the dorsal ramus, receives blood

from that organ and also from a peculiar and beautiful arrangement

of capillaries on the dorsal side of the body (fig. 25).

In the first four segments, in the region of the proboscis, the dorsal

vessel has no branches, but in the remaining segments, commencing

with the fifth, it has five pairs of long peripheral branches (fig, 20, e, c'),

corresponding to the peripheral vessels of the posterior part of the

body. They are not attached to the proboscis, but are simply con-

nected with the dorsal and ventral vessels by their ends. The one

coming from the dorsal vessel in the fifth segment is connected with

the ventral vessel in the fourth segment (fig. 20.) The first three

feet probably do not act as gills, as very little blood is sent to them.

The two networks (figs. 20 and 21, u) on the proboscis are probably

for carrying on the exchange between the blood and the liquid of the

body cavity.

The respiration is carried on by the red fluid in the beautiful ar-

rangement of capillaries on the body and feet, especially the latter.

The flat ligulie of the feet are exceedingly delicate in structure and

take the place of gills, absorbing the oxygen from the water to purify

the blood received from the ventral vessel, which then returns to the

dorsal vessel.

The disposition of this respiratory arrangement is shown in figures

22, 24, 25 and 26.

Tlie Nervous System.^
IfTuw -

The nervous system of Nereis vi7^ens {Ggs. 27 and 28) is complicated

and well developed, being composed of a series of ganglia, sending

out branches and connected by nervous cords. It lies mainly on the

ventral floor of the body beneath the large ventral vessel. The first

and largest ganglion (figs, 27 and 28, a), analogous to the brain of

higher animals, is situated in the head. It is composed of several
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smaller ganglia joined together. It bears tlie eyes, on fo\ir short ner-

vous peduncles, on its dorsal side. In front it sends four nerves to the

antennje (/>, b and c, c, iigs. 27 and 28). Laterally it sends out

two branches called the connectives [d, d), which pass around

the mouth and proboscis to join the first of the abdominal gan-

glia (A, tig. 27). Near the junction of the connective with the

head ganglion, is a small ganglion sending nerves to the internal

tentacular cirri (e, e, figs. 27 and 28). The connectives, near their

lower extremity, send two nerves {g, g, fig. 27) to a series of ganglia

and nerves on the ventral side of the proboscis {to, w, fig. 27). There

is also an accessory connective (figs. 27 and 28, d') on each side, })ass-

ing from the first abdominal ganglion to the ganglion supplying the

external tentacular cirri {e',e', figs. 27 and 28). This accessory connec-

tive also has a ganglion {ii\ fig. 27) at the middle, sending nerves to

the muscular partitions of the proboscis.

Each of the first three abdominal ganglia sends, from its anterior por-

tion, on each side, a nerve that forks, one branch (fig. 27, n) going to the

muscular partition and the other (o) passing through the partition to

the preceding segment. In the remaining abdominal ganglia, begin-

ning with the fourth, the branches ti and o become separate nerves

(fig. 27). From the posterior portion of these ganglia a nervous trunk

on each side (w), goes to each foot, where there is a small ganglion

(k) sending off a cutaneous branch and a branch (^), supplying nerves

to the foot.

The ganglia (fig. 28, e, e) and the head-ganglion {a) send some very

slender nerves (fig. 28, 2, z) to a series of ganglia on the dorsal side of

the proboscis (y, y). In figure 27 the series of ganglia {ii\ w) are

drawn as if the proboscis had been revolved about a line drawn

through its anterior end, so that the ventral surface would be upper-

most. In figure 28 the ganglia (y, y) are in their natural position.

The dorsal ganglia (fig. 28, x, x) are connected with the ventral

ganglia (fig. 27, v, v) by means of nervous cords; the dorsal ganglia

(s, s, fig. 28) with the ventral ganglia (fig. 27, 1, 1), by means of nerves

[)assing around the proboscis outside the points of the retracted jaws

(/,/); and the dorsal ganglia {t, t, fig. 28) with the ventral ganglia

(^5 p, fig.27) by means of two short, thick nervous commissures which

send off the nerves {k, u, figs. 27 and 28). These two nerves {((, u)

terminate in the ganglia (r, r, figs. 27 and 28).

These gangba and iierves of the proboscis lie on its walls, under-

neath the muscles.
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The sense-organs are the four eyes, the four antennte, the tentacular

cirri, and the dorsal and ventral cirri of tlie feet ; also the long slender

cirri of the posterior extremity. The antenna- and cirri are organs of

touch.

Organs of Reproduction.

The sexes are separate, and the genital organs appear as simple

glandular bodies, ovaries or spermaries, which project from the ven-

tral sLiiface into the cavity of the body, between the transverse mus-

cular partitions. At the sexual period they are tilled with eggs or

spermatic particles, although at other times they can scarcely be seen.

Neither the spermaries nor the ovaries have special excretory ducts,

which open upon the surface of the body. The sperm and ova are

discharged into the cavity of the body, wdiich at this period is often

filled with them. At the base of the lower ramus of each foot (fig. 22,

g) is a glandular body, called the segmental organs. Some of these

are normally kidneys, as ui-ea has been found in them, but some are

usxxally modified to act as oviducts, having a trumpet-shaped mouth

opening into the body cavity and communicating with the exterior.

I found the segmental organs all along the body beyond the region of

the proboscis, but was unable to find the trumpet-shaped tubes.

These are probably situated in the posterior segments, as Professor

Verrill has seen the male worms discharging their milt from that

portion of the body. The fecundation takes 2:)lace in the water.

EXPLANATION OF PLATES.

Plate XLII.

Figure 1.

—

Nereis virens, female; dorsal view of the anterior portion of the body; a,

head, with four eyes ; 6, h, antennte ; c, c, palpi ; c', c', lobes of palpi ; cZ, buccal

ring ; ee, ee, longer dorsal pair of tentacular cirri ; ee', ee', shorter dorsal pair of

tentacular cirri ; e, e, longer ventral pair of tentacular cirri ; e', e', shorter ventral

pair of tentacular cirri; h, lateral appendages; g, abdominal rings.

Fig. 2 and 2a.—Two forms of setaj; a, shaft; h, blade.

Pig_ 3.—First lateral appendage of female, posterior view ; lettering the same as in

fig. 8.

Fig. 4.—Second lateral appendage of female, posterior view ; lettering the same as in

fig. 8.

-pig, 5.—Third lateral appendage of female, posterior view ; lettering the same as in

fig. 8.

Pig_ 6.—Fourth lateral appendage of female, posterior view ; lettering the same as in

fig. 8.

Pig. 7.—Fifth lateral appendage of female, posterior view ; lettering the same as in
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Fig- 8.—Fortj'^-fifth lateral appendage of female, posterior view; A. upper ramus; B,

lower ramus; a, dorsal cirrus; &, superior ligula of upper ramus; c, anterior

setigerous lobe : /c, posterior setigerous lobe ; d, inferior ligula of upper ramus

;

e, e,' divisions of anterior setigerous lobe of lower ramus
; /; posterior setigerous

lobe;
f/,

inferior ligula; h, ventral cirrus; i, shoulder of upper ramus; s, s', sets
;

y, y', aciculEe.

Fig. 9.—One hundred and nintli lateral appendage of female, posterior view ; lettering

the same as in fig. 8.

Fig. 10.—First lateral appendage of male, posterior view; lettering the same as in

fig. 8.

Fig. 11.— Fifth lateral appendage of male, posterior view; lettering the same as in

fig. 8.

Fig. 12.—Forty-fifth lateral appendage of male, posterior view; '•, extra division of

anterior setigerous lobe ; x, shoulder, peculiar to the male, on the dorsal edge of

the lower ramus ; otherwise the lettering is the same as in fig. 8.

Fig. 13.—One hundred and ninth lateral appendage of male, posterior view; lettering

the same as in fig 8.

Plate XLIII.

Fig. 15.

—

Nereis virens; ventral view of the head and mouth, the proboscis withdrawn;

'7, head ; b, h, antennae ; c, c, palpi ; c', c', lobes of palpi ; d, buccal ring ; ee', ee',

shorter dorsal pair of tentacular cirri ; e, e, longer ventral pair of tentacular cirri

;

e,' e,' shorter ventral pair of tentacular cirri ; ?n, mouth
; g, abdominal rings ; h, h,

lateral appendages.

Fig. 1 fi.

—

Nereis virens; the walls of the body are cut through longitudinally on the dorsal

side, so as to show the perivisceral cavity with the alimentary canal; m, mouth;

«, muscles of mouth ; x, pharyngeal region of the proboscis ; c, muscular partitions

of proboscis; 6, perivisceral cavity: p, dental region of proboscis; o, oesopha-

geal region of proboscis
;

j. salivary glands ; r, intestine proper ; a, muscular

partitions.

Fig. 17.—Head of Nereis virens, with the proboscis protruded, dorsal view; a, head;

b, b, antennae ; c, c, palpi ; c', c', lobes of palpi ; d, buccal ring ; ee, longer dorsal

pair of tentacular cirri ; ee', ee', shorter dorsal pair of tentacular cirri ; e, e, longer

ventral pair of tentacular cirri ; e', e', shorter ventral pair of tentacular cirri
; /, /,

jaws; 0, anterior median area of dorsal side; I, I', left and right anterior sub-

median areas of dorsal side ; w, «', anterior lateral areas ; i, posterior median area

of dorsal side ; s, s', left and right posterior sub-median areas of dorsal side ; ?•,

posterior lateral and ventral areas.

Fig. 18.—Protruded proboscis, ventral side; /, /, jaws; w, w', anterior lateral areas;

y. anterior median area of ventral side ; x, %', left and right anterior sub-median

areas of ventral side ; r, posterior lateral and ventral areas.

Fig. 19.—Jaw of Nereis virens, much enlarged.

Figs. 27 and 28.—Nervous system o( Nereis virens ; h, abdominal ganglia; 7i, n, nerves

to muscular partitions ; o, o, nerves passing through partition to preceding segment

;

TO, m, nervous trunlcs to feet ; k, k, ganglia sending off a cutaneous branch and a

branch (i) supplying nerves to tlie feet ; d, d, connectives ; d', d', accessory connect-

ives
; g, g, nerves communicating with the ganglia of the proboscis ; e, e, ganglia

sending branches to the internal or ventral tentacular cirri ; e', e', ganglia sending
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brancbes to the external or dorsal tentacular cirri ; a, head-ganglion with four

eyes ; h, b, nerves to antennae ; c, c, nerves to palpi ; iv, iv, series of ganglia and

nerves on the ventral side of proboscis
; /, /, jaws, ventral side ; ?/, y, the series of

ganglia and nerves on the dorsal side of the proboscis; / / jaws, dorsal side.

In figure 27 the proboscis has been revolved about a line passing through g, g, so

that the ventral side is uppermost. The head and abdominal ganglia are in their nat-

ural position. The position of figure 28 is reversed so as to show the relations of the

dorsal ganglia y, y, to the ventral ganglia w, w (fig. 27).

Plate XLIV.

Fig. 20.—Circidation of blood in Nereis virens, and also the alimentary canal in its

natural position ; to, mouth ; x, pharyngeal region of proboscis
; p, dental region

of proboscis; o, oesophageal region of proboscis; r, intestine, covered with a

vascular network, which is connected in each segment with the large dorsal and

ventral vessels by short Ijranches
; j, salivary glands ; a, large dorsal vessel ; b.

large ventral vessel; c, c', c'', peripheral vessels; d, branches from the dor-

sal side of the feet; e, branch to oesophagus
; /, /'', branches to the ventral side

of the feet; s, lateral branch, supplying the vascular network {g) and first three

lateral appendages; A", vessel from network (g) to base of tentacular cirri; t,

branch from the vascular network (u) on the proboscis, to the large ventral vessel

(6) ; V, branch from the large dorsal vessel (a), at base of head, to the network (u)

on the proboscis.

Fig. 21.—Diagram, showing the disposition of the large ventral vessel, and its branches

on both sides, in the anterior portion of the body ; I, continuation of the large

ventral vessel along the median ventral line beneath the muscles of the proboscis

;

n, vascular ring surrounding tlie pliaryngeal region of proboscis ; otherwise the

lettering is the same as in fig. 20. The arrows indicate the direction in which

the blood flows.

Pig. 22.—Diagram to show the circulation of the blood, and also the relative position

of the parts, in one segment of the body ; i, intestine
; p, perivisceral cavit_y ; h,

crypt from which aciculee grow ; 1. muscles of crypt, which are attached to the

base of the foot
; g, g, segmental organs ; k, walls of body ; n, a ganglion of the

abdominal chain; «, large dorsal vessel; b, large ventral vessel; c, peripheral

vessel
; /, branch to ventral side of foot ; d, branch from dorsal side of foot.

Fig. 23.—Circulation of the blood in the last posterior segment ; a, large dorsal ves-

sel ; 6, large ventral vessel ; c, vascular ring, with no branches.

Fig. 24.—Lateral view of the circulation in one segment; d, branch from the dorsal

side of foot: /, branch to the ventral side of foot in the adjacent posterior

segment.

In the last two figures arrows indicate the direction in which the blood flows.

Fig. 25.—Dorsal view of two segments showing the vascular network in the lateral

appendages and beneath the skin of the back; lettering the same as in fig. 22
;

the large dorsal vessel, a, and the peripheral vessels c, c, show through the trans-

lucent walls of the body.

Fig. 26.—Segment showing the vascular network beneath the skin of the ventral side

and in the lateral appendages; lettering as in fig. 22.



VII. Median and Paired Fins, a Contribution to the His-

tory OF Vertebrate Limbs. By James K. Thacher.

Median Fins in Amphioxus.

The quadrate markings seen at the base of the median fin in

Amphioxus extend on the dorsal side from one extremity of the

animal to the other, or nearly so, and on the ventral side from the

porus abdominalis aboi-ad toward the extremity of the tail. They

are largest and most distinct in the middle of the body, and become

smaller and less clearly marked (as seen from the outside), toward

the head and tail until they seem to fade out entirely as they closely

approach these extremities.

As Stieda* has shown these are but the external marks of a series of

cavities, containing what is described as " a transparent, wholly struc-

tureless mass, resembling a coagulation."

Thus the relation of these bodies to the somewhat similarly placed

primordial tin rays, or "interneural spines," of the Craniote fishes is

not so simple and direct as indicated in the mistaken repi-esentations

of Rathkef and of Mtiller.J Still they occupy a position similar to

that of the primordial fin rays of other fishes, and the fact that they di»

not agree with the segmentation of the lateral muscles, seems to have

some pertinency here, and to this alone I wish to call attention.

In the middle of the back there are about five of these bodies to a

single segment, and on the ventral side just aborad of the abdominal

pore there are about four to each. As we shall see hereafter, the

structures of the median line (genuine fin-rays except in Amphioxus)

exhibit quite generally throughout the fishes, a total disregard of

the segmentation of the lateral muscles, and are more numerous than

those segments.

* Studien iiber den Amphioxus lanceolatus von Dr. Ludwig Stieda, Mem. de I'Acad.

Imp. des Sciences de St. Petersbourg, VII^ Serie, Tome xix, No. 7.

f Rathke, Bemerkungen liber den Ban des Amphioxus lanceolatus. Konigsberg,

1841.

X Johannes Miiller, Ueber den Bau and die Lebensersclieinungen des Branchiosioma

lubricum. Abhandl. der Berliner Academic, 1842.

Trans. Conn. Acad., Vol. III. 36 February, 1877.
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Median Fins in Myxina.

In Myxine 'glutinosa the median tin extends but a short distance

forward. In a specimen 24 centimeters long, from the Bay of Fundy,

the fin reaches 4 cm. from the extremity of the tail on the dorsal side,

and 2*5 on the ventral.

The fin-rays, now unquestionable homolognes of the ])rimordial fin-

rays of Gnathostomes, tliough not yet having assumed the histologi-

cal structure of true cartilage, support the thin fold of skin which

forms the fin. They are simple tapering rods, extending distally to

the edge of the fin, and proximally scarcely dipping below the general

body contours.

The only deviation from sim])le rods which I have been able to find

is the dichotomous splitting of some of the rods where the fin rounds

the extremity of the tail.

The numerical relation between these rays and the corres})onding

muscular segments is as three to one on the dorsal side, and as two

and a half to one on the ventral.

I have been iinable to detect any muscular fibers in the composi-

tion of the fin.

Median Fins in Petromyzon.

Here the median fins are much better developed. In a specimen

(^Petromyzon marinus, from the Connecticut River), 77 cm. long, the

caudal fin extends forward along tlie dorsal side 7*5 cm., sloping

downward nearly to the body, then tlie second dorsal rises abruptly and

runs orad 16 cm., where it reaches by a gentle slope the general out-

line of the body. There follows a finless space ;1"5 cm. in length

which is succeeded by the first dorsal, whose extent is 9 cm., being

therefore shorter as it is lower than the second dorsal. The anus is

opposite the orad part of the second dorsal.

The fins, therefore, take up almost the whole of the hinder half of

the mid-dorsal line. In Myxine only one-sixth was thus occupied.

On the ventral side we have only the caudal, extending about as far

here as it does above.

These fins are sup})orted by a series of chondroid rays, lying quite

close to one another in the median plane. They are straight and slope

aborad from the fatty-fibrous ridge-pole of the myelonal canal (PI.

XLIX, fig. 1, a,) to the very edge of the fin. They are found in all the

fins. Their form is represented in PI. XLIX, fig. 1, where only one

ray is drawn complete. As shown, it bifurcates twice and thus ends

distally in four fine branches. This figure is IVom the central p.'irt of
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tlu' lartio second dors.al, and sliows one of the longest rays. Where
they are shorter we may liave only one bifurcation, or one of the two
l)riniary branches, that toward the longer rays, may again divide,

while the other toward the shorter remains uncleft. Farther forward

at the beginning of the second dorsal, where the rays are still shorter,

they do not divide at all, but end somewhat bluntly though com-

pressed from side to side.

Each ray is largest in the middle and here lies quite close to its

adjacent rays ; below they grow more slender, and therefore are some-

what spaced, but expand somewhat to a foot resting on the myelonal

canal.

I have seen no cases of concrescence between adjacent rays. With
the exception of the variation in the branching and length in different

parts of the fin, before alluded to, the rays are all similar and parallel

one to another.

This branching is plainly a true dichotomy and not the product of

concrescence, as is evidenced by the total absence of anything else

resembling concrescence, by the similarity in size between two adja-

cent differently branched rays, and by the regularity of the branching.

On each side of the row of skeletal elements are muscular bundles

of a somewhat blacker color than the two great masses of lateral

muscles. The muscles of the median fin wedge themselves into the

angle between the lateral muscles of the two sides along the

median line. They ai-e sharjdy distinguished from these. The fibers

of the lateral muscles run longitudinally, while those of the fin mus-

cles are parallel to the pi'iniordial median fin-rays. There is abso-

lutely no continuity between the two in any part. Moreover the

bundles of the fin-muscles show no relations to the segments of the

lateral muscles. A cross section, PI. XLIX, fig. 3, shows the relation

between the fin-muscle bundles and fin-rays.

The numerical relation between the fin-rays and the segments of

the lateral muscle is shown in PI. XLIX, fig. 2, where we have a little

less than four of the former to one of the latter.

The relation between the tin-rays and the neural arches is shown

in figure 1, where we have 35 rods and 23 arches. These neural

arches rise from the sheath of the notochord, to stiffen the fibrous

sides of the myelonal canal and to apply themselves to its fatty-

fibrous ridge-pole. The fin-iays abut on the same ridge-pole in the

mid-dorsal line, but they are in no way connected with the neural

arches. 1 have met with no cases even of concrescence between the

two.
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Figure 4, PI. XLIX, shows the relation between the neural arches

and the segments of the lateral muscles. There are two arches to

one seo-ment. In fio-ure 1, then, there must have been lU segments,

which gives us a very little more than three as the ratio between the

fin-rays and the segments. From figure 2 we obtained a little under

four. Both results are necessarily correct. There is considerable

variation in the relation between the fin-rays and the muscular seg-

ments and the neural arches. This is exhibited in the following table

of observations on a single specimen.
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In general the ^<l^u•tul•e of tlie medi.-ui tin resembles wliat we have

seen in Petromyzon, but there are important differences. The rays

are of hyaline cartilage and they do not usually reach down to the

ridge-pole of the myelonal canal. In EKlamla, for example, in tlie

smaller of the specimens %ured, the rays approach within a centime-

ter and a half at the oiad extremity of the first dorsal fin, but are

three and a half centimeters distant at the other extremity. In

Si/ualus {Ae(()ifh)as) they come closer.

This ridge-pole consists of a cord of rather peculiar white lono-i-

tudinal fibers, constituting now a '' liyauieatuin longltitdinale.'''' It

appears to me undoubtedly homologous with the fatty-fibrous body
in Petromyzon. The cartilaginous arches unite under, and do not

extend around over it, though they clasp it somewhat.

The rays are segmented, usually twice. Dichotomy is rare if not

altogether absent. Concrescence of adjacent rays is by no means
uncommon. The reduction of rays in size is exhibited in all deo-rees.

Calcification presents itself in a thin superficial layer on each side

of the somewhat flattened ray, but it fails on the edges, i. e. as we
come close to the median plane.

The muscles of the fin, as in Petromyzon, are in total independ-

ence of the large masses of segmented lateral muscles, but they are

in more definite relation with the skeleton of the fin. This is accu-

rately represented in PI. LIX, fig. 66, though that is a s-;ction of a

pectoral and not of a median fin. We see that each ray has on each

side a special muscle, separated from its fellows by the fibrous sheet

which runs from between the rays to the integument. Each little

muscle developes in its median line a flat tendon, which, parallel to

the surface of the fin, inserts itself in the fascia covering the extremi-

ties of the fin-rays and the proximal ends of the well known horny

fibers, which here supplement the primordial skeleton, as the second-

ary fin-rays of Ganoids and Teleosts do.

The relation between the niimber of fin-rays and that of the

vertebra? opposite to them is similar to what we ha^e seen in the

lower forms. In the Nictitantes, for example, there are on the average

about '2-5 rays to one vertebra. But there is considerable variation,

even in individuals of the same species. The extreme numbers, so far

as I have observed, are 3 '5 in an anal of Sphyrna, and 2 in a first

dorsal of Eulamia.

We turn now to the more minute examination of several species..
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First Dorsal of Mustelus cants, PI. XLIX and L, figs. 5-10.

Id pi. XLIX, fig. 5, we have 24 separate rods, unless ?> be the terminal piece of 2
;

but its conformation seems to testif}' to its independent but reduced character. The

number here then is 24 or 2,3.

In PI. XLIX, fig. 6. we have again the same alternative, witliout quite so strong a

case for 24, but still quite strong.

In PI. L, fig. 7, we have the choice between 24 and 2.5, but in favor of the latter.

In PI. L, fig. 8, we have 23 or 24, but the former has the greater probability.

PI. L, fig. 9 gives us 22, 23 or 24, 23 being more probable.

PL L, fig. 10 exhibits 23 or 24, dependent on the view taken of rays 5, 6, and 7.

The probability seems in favor of 24.

I think we may sum up then with regard to the number of rays constituting the

first dorsal of Mitslelus canis thus : it has usually 24 rays but this may vary to 23 or 25.

Nearly all the rods are segmented twice. The distal line of segmentations fails in

the one or two orad; and the proximal, in the two or three aborad ones. Additional

segmentations are ver}' rare. What might be reckoned as such are seen in fig. 7, ray

4 ; fig. 6, rays 5 and 6. This makes an average of () + .*

The union of adjacent rays is rare. I estimate it at '04 of the total possible con-

crescence.

f

Shortening or reduction in size is likewise rare. We have first those questionable

cases of which fig. 5, rod 3 seems the least questionable ; and then plainer but less

extreme instances in fig. 7, ray 5; fig. 9, ray 18; fig. 10. ray 7, then we have the usual

shortening of the rays at the extremities of the fin. When these aborad rays shorten

up, those next in front of them have a remarkable tendency to grow up under them.

This is well shown in fig. 9.

iforeover when in the aborad rays the proximal joint becomes very short, it is some-

times divided into two lateral halves. This is the case for example in rod 22 of fig. 10.

Occasionally we have a minute piece or pieces of cartilage forming a tip to a ray.

It cannot act as an extra joint, by giving increased flexibility to the ray. And it

seems doubtful whether the origin of the two is to be referred to the same causes.

Yet intermediate forms occur so as to raise the question whether they are to be

referred to one or the other category. Tliese tips seem to ))e exhibited in fig. 7, ray 4

;

fig. 8, rays 2 and 3 ; fig. 9, ray 3. This gives „

—

- — + .

I now find the ratio of the proximal piece of the middle ray of each tin to the

middle piece of the same. The average of these ratios is -6. The method gives -3 as

the ratio between the terminal and middle joints.

We have then for the first dorsal of Mustelus canis

:

Number of rays 24. Extra segmentations '0 +

.

Concrescence '04. Betipping -0 + . Katio of proximal to middle piece of middle

ray -6. Ratio of distal to middle piece -3.

* The decimal is obtained by dividing the number of additional segments by the

number of rays.

\ The amount of concrescence between two adjacent rays is the ratio between the

length of the union and the whole distance through which they are adjacent and

might have united. The sum of these fractions divided by the number of rays less

the number of fins, gives the estimate of the concrescence.
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Second Dorsal of Mvstelus cams, PI. L and LI, figs, ll-lf).

Fig. 11 has 24 rays. fig. 12 has 22. fig. 13 has 2:i, fig. 14 has 24, fig. 15 has 24. Tluis of

the five examined three have 24, one 23 and one 22 rays. It seems probable that a

wider examination would give as forms having 25 or more rarely 2(). Thus we have

for the second dorsal 24 rays with some slight variation.

Extra segmentations appear only in fig. 11, ray 5 ; and fig. 14, ray 2. Tliis gives -0 +

.

I estimate the concrescence at -06. The concrescence is mostly confined to tlie

proximal row, and is more frequent at the two ends than in the middle of the series.

Betipping is seen only in fig. 14, ray 23. This gives ^0 +

.

Ratio of proximal piece of middle ray to middle piece '6.

Ratio of distal piece of middle ray to middle piece -4.

Tlie downward prolongation of the proximal parts of one or two of the orad ra^-s is

noticeable, being quite pronounced in all the cases except that represented in fig. 1 1

.

The reduction of the rays is rare, but shown to an extreme extent in fig. 11, ray 1 ;

and fig. 15, ray 1.

Anal of Mustelus canis, PI. LI and LII, figs. 16-19.

Figs. 16 and 17 have each 18 rays. Fig. 18 has IT or 18 according as the last ray

is double or not. Fig. 19 has 18 or 19 under the same conditions. The great width

of the last ray in the last two cases makes the larger number probable. Thus we
have 18 as the normal number, with probably slight variations.

Extra segmentations are seen in fig. 17, ray 5
;
and fig. 19, ray 3. This gives '0 + .

The concrescence I estimate at -09. Betipping occurs in fig. 16, ray 3. This gives "0 +

.

Ratio of proximal piece of middle ray to middle piece is -I.

Ratio of distal piece of middle ray to middle piece is "6.

First Dorsal of Galeocerdo tigrinus, PI. LII, fig. 20.

In this sole specimen there are 25 rays.

Extra segmentation occurs in 10, 20, 21. 22, 23, which gives -2. It should be

noticed that this extra segmentation is in each case here a doubling of the proximal

line of segmentations.

Concrescence is estimated at -06. Betipping is seen in 18, 19 and 25. This gives '1.

Ratio of proximal piece of middle ray to middle piece 1-1.

Ratio of distal piece of middle ray to middle piece -6.

Shortening is seen in 6 and 22. In the latter the proximal piece is ext luded from

the edge of the fin by a, the proximal piece of 2;!, and by the proximal piece of 21.

The piece a consists of two lateral halves.

Second Dorsal of Galeocerdo tigrinus, PL LII, fig. 21.

Number of rays 13. Extra .segmentation in 3, giving -1.

Concrescence is estimated at -01. Betipping, in 5, 8 and 13, gives -2.

Ratio of proximal piece of middle ray to middle piece 1-3.

Ratio of distal piece of middle ray to middle piece -6.

Anal of Galeocerdo tigrinVjS, PI. LII, fig. 22.

Number of rays 12. Extra segmentation in 6, 7. 8 and 10. gives 3.

Concrescence is estimated at -05. Betipping in 4 gives "l.

Ratio of proximal piece of middle ray to middle piece I'l.

Ratio of distal piece of middle ray to middle piece -7.
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First Dorsal of Eulamia Milherti, PI. LII and LIU, figs. 28 and 24.

Number of rays 28 or 29.
^

As indicated by the numbering of the rays, I take number 21 in each figure to be a

single ray, which has widened at the top, and been segmented in the way figured.

Extra segmentations in fig. 23. rays 20 and 21 (2 extra segmentations in the latter)

in fig. 24, rays 4 and 21. This gives •!.

Concrescence is estimated at -09. Betipping is absent.

Ratio of proximal to middle piece •9.

Ratio of distal to middle piece '9.

Second Dorsal of Ealamia Milherti, PI. LIU. figs. 25 and 26.

The number of rays differs remarkably in the two specimens, being 12 in the one

and 16 in the other. It must, however, be remembered that the second dorsal has

become very small and of very little physiological importance. Organs which have

thus become functionless are peculiarly prone to vary. They thus secure more easily

some other and new function. We will take the average number 14 as the normal one

for the rays of this fin.

Extra segmentation occurs in fig. 25, ray 6 (twice), and in fig. 26, ray 3 This

gives •!.

Concrescence is estimated at -09.

Betipping is absent.

Ratio of proximal to middle piece of middle ray -8.

Ratio of distal to middle piece of middle ray -5.

Anal of Etdamia Milherti, PL LIII, figs. 27 and 28.

Number of rays 17 or 18.

Extra segmentations in fig. 27, rays 7, 10 and 12 (twice in the latter); in fig. 28,

twice in 12, once in 16, give 2.

This implies a certain interpretation of the ambiguous rays 11 and 12 in figure 27.

In fig. 28 we seem to have a plain case. Here the ray 1 2 is broadened at the top, and

its distal piece divided by two intersecting cuts into four pieces. Ray 12 in fig. 27 is

explained in the same way. Ray 11 is a little shortened, and excluded from the edge

by the tips of 10 and of 12. This appears to me the most probable view of the case.

Concrescence is estimated at 12. Betipping absent.

Ratio of proximal to middle piece of middle ray -7.

Ratio of distal to middle piece of middle ray -4.

First Dorsal of Sphyrna zygcena, PI. LIII and LIV. figs. 29 and 30.

Number of rays 33 and 34.

I regard the three pieces at the extremity of 28 as belonging to that ray. It has

been widened and divided like the instances in Eula.mia.

Extra segmentations, fig. 29, rays 2 and 3, twice; rays 4 and 5; ray 28, twice; fig.

30, ray 28, twice, give -2.

Concrescence is estimated at -07. Betipping absent.

Ratio of proximal piece of middle ray to middle piece 7.

Ratio of distal to middle piece of middle ray 2-4.

In fig. 29 the proximal line of segmentation fails in rays 9-17, except in the joined

rays U and 12 where it is present. In fig. 30 it fails in rays 8-16.



J. K. Thacher—Median and Paired Fins. 289

Second Dorsal of Sphyrna zygcena, PL LIV, tig. 31.

Number of rays 14. Extra segmentations amount to 10.

Concrescence is estimated at '07.

Betipping is absent.

Ratio* of proximal to middle piece of middle ray -3.

Ratio of distal to middle piece of middle ray -3.

The last ray, both in the second dorsal and the anal, is large and round.

Anal of Sphynia zygana, PI. LIV, fig. 32.

Number of rays, 27.

Extra segmentations 8 (1), 9 (1), 10 (1), 11 (1), 12 (1), 13 (1), 14 (1), 15 (1), 16 (1),

17 (i), 18 (2), 19 (1), 20 (1). This gives "5.

Concrescence is estimated at -03. Betipping none.

Ratio of proximal to middle piece of middle ray -4.

Ratio of distal to middle piece of middle ray -3.

First Dorsal of Eugoynpliodus litoralis, PI. LIV, and LV, tigs. 33-39.

Specimens figured in tigs. 33, 34 and 36 have plainly 16 rays. Those in figs. 37

and 39 have plainly 17. Those in tigs. 35 and 38 have 16 separate rays, but the last

is quite broad. Where we have plainly 17 rays, figs. 37 and 39, the last two rays

have united with the exception of their distal joints. We may fairly conclude that

figs. 35 and 36 present a more complete concrescence of those rays. We have then

as the number of rays 16 or 17, the former in three cases, the latter in four.

Extra segmentation is estimated at '7. Concrescence is estimated to be "05.

Betipping reaches -4, each separate piece being counted. These small nodules of

cartilage sometimes seem very evidently to be a continuation of a ray upon the fol-

lowing ray. But not infrequently they seem to be scattered rather irregularly along

the edge of the fin. It will be noticed that they are most frequent in the orad part

of the fin, though not on the first two or tliree rays. It is very probable that the

estimate of their frequency should be higher than given, for they are easily lost in

the preparation of the specimen.

Ratio of proximal to middle piece of middle ray -5. Ratio of distal to middle piece

of middle ray -4.

Second Dorsal of Eugomphodus lltoralis, PI. LV and LVI, figs. 40-46.

In fig 42 we have 16; in 45, 17 ; in 40 and 46 we have 18 rays. These are all plain

cases. Fig. 43 exhibits 17 rays, but raises a suspicion of 18 by the breadth of the

last ray. Pig. 41 gives 16 or 17, probably the latter. Fig. 44 leaves us in doubt

between 14, 15 and 16, with, as it seems to me 15, the most probable. We may take

17 as the normal number. As far as the evidence here goes the second dorsal is

more liable to vary than the first. We see that in each the greater the number of rays,

the greater is the amount of concrescence.

Extra segmentation amounts to "6.

Concrescence amounts to -10. Betipping amounts to -4.

Ratio of proximal to middle piece of middle ray is '3.

Ratio of distal to middle piece of middle ray is -3.

* Where a segmentation is double the point half way between the joints is taken as

the limit between the middle and extreme piece. Where it is triple the middle seg-

mentation is taken.

Trans. Coxn. Acad., Vol. III. 37 February, 1877.
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Amil of Eugompliodua Ulorulis, 1*1. L\'l and LVIl, (i<;'s. 17-5(1.

The number of rays is 21 in figs. 47 iiiul -49. In 18 \\v liavo 'I'l, and in 50, 'JO rays.

We may take then 21 as the normal nunilicr.

Extra sogmoiitations amount to 1.

ConcTOSoonco is estimated at ](). Hetippin^- amounts to •:{.

Ratio of proximal to middle piooo of middle ray i.

Ratio of distal to middle pieee of middle ray 5.

Wo may sum up the results of this investigation of the reseiul)lani'es and dillercnces

of the forms so far examined in the following table.

No. of Kxtra ( ion-
rays. seKliU'iitatioiiH. (iH'HC'ciicc. Brli|i|iiii;

Katio of Hatlo ot
|.ro\. to (Uwtal to iiild.

mid. i>ic('(^ pk'co of mill.
)riiii(l.rHV. rav.

First

Dorsal.

Second
Dorsal.

Anal.

i'lugomphodus . . 17

Mnstelus 21

(lalooeerdo 25

K\damia 29
Spliyrna :M

i^yugomphodua _ . 17

Mnstelus 21

(lalooeerdo 1 :i

Eulaiuia II

Sphyrna -II

' Mugomphodus ..21

Muslelus 18

Oaleoeordo 12

Mnlamia 18

Spliyrna 27

•7
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I m1s(. add tiouivs of the dorsal, I'l. LVIIF, fig. 01, and anal, PI.

LIX, lio-. 02, of A(-/j)enNer. Tlu'so arn very similar to the simpler

shark dorsals. It will be iioticed tliat we have the ])redoniinant

division into three pieces, hul llie terminal piece is very shoi't.

(Joiiiiiisioiis rei/arditKj McxVihh Fins.

'i'lie priniortlial median lin-rays in whatever form they oce\ir are

derivatives from a serit's of simple parallel chondroid rods, which

grew up in the me<lian fold in total independencte of the cartilaginous

arches alxni' and Itelow the notochord. These earliest representa-

tives of these parts weri' irom two to four times as numerous as the

vertebra' opposite them. In the (inathostomi true hyaline cartilage

replaced (he lowei- form of tissue seen in Myxlne and Petromyzon.

Segnu'ntation and c(»ncresceiice, as well as redu(!tion in size, were

common changes in the (rnathostomes, and here a division into three

parts is the usual though not invariable rule.

Hence it is seen that (iegenbaui"'s* st:itement that, in their sinijjlest

forni,^the prinioidial tin rays are mere pi-olongations of the neural

spines is incon-ect. It has been demonstrated that this was not the

earliest foi-m. The l)ij)noans, however, seem to oft'er an example

where the priim)rdial meclian fin-rays are mere prolongations of the

neui-al spines. They demand a moment's consideration.

True neural spines are lirst found in the (ianoids. They are absent

in the Klasmobranchs and Agnathostomi. PI. LIX, fig. 0;i represents

the projection of a section of a vertebi-al segment of Acipenser cut

through the middle line of the arch ami neural spine. .\s the latter

slopes backwai'd, it is considerably fon'shortened in the figure.

Now the cartilaginous arches spriiigiiig from the sheath of the

notochord pass upwards to lay themselves on each side of the fibrous

cord />, and here they sprea<l inward to meet oiu' another on the ventral

side of />, and also pi'olong themselves above to almost or quite meet,

and then they are followed by the dorsal spine a, from which they

are se])arated by a segmentation.

Now the cord A, which is the same as the Uyainentum loiKjitadi-

* Griiiidriss der Vergleichenden Anatomie, 1873, p. 488. Gregenbaur's assertion

in the .same place tliat they usually correspond in number to the vertebra? opposite,

is very strange. We have already seen that they do not do this in the earlier and

more significant forms ; and the statement of Gegenbaur would decidedly misrepresent

what we find, for e-xamplc, hi tlie figures of fish skeletons in Agassiz's PoisBons

Fossiles.
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nale in Cerafodus* is also, without the slightest doubt, homologous

with the chord which lies entirely above the neural arch in the Elas-

mobranchs. The peculiar fibrous character is almost exactly the

same in each. We have seen that this cord in the sharks is in all

probability homologous with the fibrous tatty ridge-pole of the

neural canal in Petroniyzon. Thus while in the latter the arches of

one side and the other are entirely separate, in the sharks they have

spread beneath the ligament so as to meet, and in the higher

Gnathostomes they have also joined above it, or nearly joined, for

the origin of a is still to be discussed.

There are two possibilities with regard to the neui-al spine a. Either

it is formed by the union of a median fin-ray with the neural arches,

the ray thus constituting the keystone of the arch, or else by the

union of the neural rods from each side and their prolongation dorsad.

But the junction between <i and h is quite close ; the neural spines

correspond in number and j)osition with the lateral parts of the arch
;

while fig. 61 shows conclusively the absolute independence of neural

spines and primordial median fin-rays.

The second of the two possibilities is then the true one. Thus

neither are median fin-rays derived from neural spines, nor neural

spines, where they occur, from primordialfin-rays.

But the cartilaginous supports of the median told in the Dipnoans

are very long and segmented. They are simply elongated neural

spines and are not primordial fin-rays in any homological sense.

If they were formed by the reduction in number of the primordial

fin-rays and their coalescence with the neural sjjines it is impossible

that we should not have here and there an extra one, and some evi-

dence in the case of others of such a junction. But there is nothing

of the kind, either in the descriptions of Gtinther in the case of Gera-

toduSjj or in those of Owen J and Peters§ in that of Protopterus annec-

tens. or in those of Bischofi"|| in that of Lepidosiren paradoxa. Gtln-

* Griinther's Description of Ceraiodus, Pliil. Trans., vol. elxi, pt. ii, PI. XXXVIII,

Pigs. 3-9, e.

f Phil. Trans., vol. clxi, pt. ii, 1871. G-iinther, Description of Oeratodu.s. In Giinther's

fig. 2, PI. XXX, the proximal joint of the 14tli neural spine seems to bear two
'

' interneurals," one orad of the other. But as no notice is taken in the text of this,

which would be a very noteworthy fact, if it were fact, and as the description of these

parts there given is such as would demand a notice of this exception, it is evident

that it must be an inaccuracy in the figure.

:|: Trans. Linnean Soc, vol. xviii, pt. iii. Owen, Description of Lepidosiren annedens.

§ Miiller's Archiv., 1845. Peters, Ueber einen dem Lepidosiren annectens verwandten,

Fiach von Quellimane.

II

Ann. Sc. Nat., xiv, 1840. Bischoif, Sur le Lepidosiren iiaradoxa.
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tiler's denoraiiiation, tlu'ii, of tlie ultiniato and ])eiiultimate joints of the

neural S])ines of Ceratodas as " interneural first" and " interneural

second," is ill chosen, and rests on a mistake in homology. That

great genetic group, then, consisting of Dipnoi, Amphibia and Am-
niota, seems to have entirely lost those primordial median fin-rays

which appeared so early and are found even in Mxjxine.

Limb-skeleton of Air breathing Vertebrata.

In 1864, Gegenhaur* set forth the splendid results of a widely

extended investigation of the limb-skeleton of the air-breathing

vertebrates. Herein was established the typical form of these parts

for this large gi'oup, consisting of Amphibia and Amniota. Inasmuch

as there is no doubt of the natural, that is the genetic, character of

this group, and inasmuch as it is marked out from all other vejte-

biates by the development of a fenestra ovalis and the modification

of the proximal part of the second post-oral, or hyoid, arch into a

stapes in connection therewith, I ventui'e to use the name Stapedifera

in place of the circumlocutory air-breathing Vertebrates. For the

Stapedifera, then, the typical limb-skeleton was established ; typical

in the sense of the older anatomists, as that ideal form from Avhich

we could in our minds easily derive the various actual forms now

living ; but typical also in the newer sense, as that actual form, the

limb-skeleton of the latest common ancestors of all Stapedifera, from

which have been developed the corresponding parts in all living

Stapedifera.

The same form belongs to both fore and hind limbs. Using the

names applicable to the former, we have, as is well known, humerus,

radius and ulna, radiale, intermedium and ulnare, a centrale, and

then set around these, five cai'palia followed by their metacarpals

and phalanges. Moreover, the strong suspicion of the double nature

of the centrale, as evidenced in the descriptions of Cryptobranchns

JaponiGus.\ by Schmidt, Goddard, and J. Van der Hoeven, is later,

1865, confirmed by the careful observations and clear presentation

of the anatomy of that animal by Hyrtl.J; The Ichthyosaurs§ and

* Gegenbaur, Untersuchungen zur vergleichenden Anatomie der Wirbelthiere,

Hft. 1, Carpus imd Tarsus.

f Gegenbaur, Unters., Hft. 1, p. 57.

\ Hyrtl, Schediasma anatomicum. 1865. Gegenbaur, Unters., Hft. 2, p. 165.

§ Gegenb., Unters., Hft. 2, p. 165, and Jena Zeitschr., Bd. v, Hft. 2, 1870. Gegen-

baur, Ueber das Gliedmaassenskelet der Enaliosaurier. In this last a furtlier modifi-

cation is made in tlie recognition of the pisiform as the remains of a sixtli row, an(]

as being an essential part of the carpus and not merely a sesamoid bone.
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Plesiosaurs give too their unambiguous evidence in the same di-

rection.

This limb of the latest common ancestors of the Stapedifera, this

typical limb of that group, has been named by Huxley, chiropter-

ygium* and the term will be found convenient.

The (Jhiropterygium and the Fins of Fishes.

The homology between the paired fins of fishes and the limbs of

Stapedifera has long been recognized ; but the special homologies

of the skeletal parts of each has been the subject of much controversy.

For a historical sketch of the various divergent opinions endorsed by

the highest authorities I must refer to the second volume of Gegen-

baur's Untersuchungen.

Two pairs of limbs are found throughout the great genetic group of

the Gnathostomi. The chiropterygium having been established, the

determination of that earlier form typical for all the Gnathostomi

became a more pressing question.

To an answer to this question the investigations of Gegenbaur now
begin to lead.

The first part of the second volume of the Untersuchungen dis-

cusses the shoulder girdle, and the result is that we are now able to

trace clearly and surely the primordial shoulder girdle, the scapulo-

coracoid, throughout the Vertebrata. We are no longer in doubt as

to what part of the fish fin and girdle corresponds to limb and what

to girdle of the Stapedifera. The results of Ge'genbaur's work with

which we are hei'e concerned were confirmed by the later but inde-

pendent researches of Parker.f

Development of the Archipterygimn, Tlieory.

This preliminary question having been satisfactorily answered, the

derivation of the chiropterygium is next attempted.

The second half of the second volume of the Untersiichungen (1865)

takes up the pectoral fin of fishes. Quite a number of very excellent

figures of numerous Elasmobranchs, Ganoids and Teleosts are given,

and the limb skeleton of Protopteras is discussed. The conclusions

drawn are as follows

:

We may take as the most generalized form of limb that of the

Elasmobranchs, where its various parts are most plainly presented in

* Proc. Zool. Soc. London, IS?*!, pt. i, p. 56. T. H. Huxley, On Ctratodus

Forsteri.

•j- Parker, Slioulder-girdle and Sternnni. Kay Soc, IMGS.
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the rays. It is divided into three parts, Propterygium, Mesoptery-

gium and Meta])terygium. Each of tliese consists of a basale, vvliich

articulates Avith the shoulder girdle, and a number of rays set on its

edge.

The fin of Protopteriis is derived from this by the destruction of the

pro- and mesopterygium. The metapterygiiim is hei'e represented by
the long articulated rod, Avhich alone remains in Liepidosirenparadoxa

.

The row of cartilages along its sides are the metapterygial rays.

In the Ganoids, Polypterns alone has the three divisions repi'e-

sented. In this, neither metapterygium nor propterygium bears rays.

These are confined to the mesopterygium, which is excluded from the

articulation with the shoulder girdle.

In the other Ganoids the propterygium fails. Between the mesop-

terygium and metapterygium a number of rays are brought into

articulation with the shoulder girdle, resembling what is seen in some

of the Rays.

The Teleosts in the main resemble this second group of Ganoids.

The chiropterygium is derived from the metapterygium alone, and

thus resembles the limb of Protopterus. The fore limb will serve as

an example. The Stammreihe or hasale nietapterygii is presented

by the humerus, radius, radiale, carpale radii, the metacarpal and

phalanges of the thumb. The other bones are the rays belonging to

this, and their arrangement will be best understood by looking at the

Ichthyosaurtis limb, fig. 70. In 1870,* Gegenbaur published his

explanation of the liml) of the Enaliosaurs. The unbroken lines in

fig. 70 of Ichthyosaurus exhibit his view of the relations of the fin

with that of fishes. This may be regarded as closing the first stage

of the development of the theory in Gegenbaur's publications.

The second immediately opens. For in the next numberf of the

Jena Zeitschrift there appears an extended article on the ventral fins

of Elasmobranchs. The pre\'ious view is modified as follows. The

fin-skeleton of the latest common ancestors of all Gnathostomes, is

represented pure and simple in the fore limb oi Protopterus annectens^

and with only slight modification in the ventral fins of Elasmobranchs.

It now has a name given to it. It is called archipterygium. There

is a limb gii-dle, complete ventrad. On each side is articulated to this

* Jenaische Zeitschr., Bd. v, Hft. .S. Gegenbaur, Ueber das Gliedmaassenskelet

der Enaliosaurier, Feb., 1870.

f.Ten. Zeitschr., Bd. v, Hft. 4. Gegenbaur, Ueber der Gliedmaassen der Wirbel-

thiere im AUgemeinen und der Hintergliedraaassen der Selachier insbesondere, May,

1870.
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the stem-row {Stamm-relhe) , a long taperiug many-jointed cartilaginous

rod which bears on the outer side a series of rays. Tliis evidently

calls for no change of view regarding the Enaliosaurs or Stapedifera.

But the fin-skeleton of iishes exhibits everywhere, except in Pro-

topterus and Sct/mnus, a slipping off of the rays from the stem-row"

and their articulation with the girdle, and very commonly their artic-

ulation with one another and considerable fusion (concrescence).

Still another change awaits the primordial limb, even the named

archipterygium. In 1871, Gtinther* published his description of

Ceratodus. Here the stem-row has a series of rays down each side.

The archipterygium is modified to accord with this in the Jena

Zeitschrift published x\pril 22, 1872,f where Gegenbaur adopts the

" Biseriale Archipterygium'''' as the parent form, and attempts to

show that there are some traces of the median row of rays in the

pectoral fins of some Elasmobranchs. With the exception of Cerato-

dus and the questionable exception of these Elasmobranch pectorals,

the biserial has been everywhere reduced to the uniserial form, and

still further reduced as heretofore explained.

In the third volume of the Untersuchungen, dated May, 1872, a

suggestion
J:

is made of the possible origin of the Archipterygium and

the limb-girdles. They are assimilated to tlie branchial arches and

their diverging rays, where rays move up upon, and articulate with,

the longest middle ray. It is but justice to say that the suggestion is

a little vaguely and liesitatingly made.

In confirmation of Gcgenbaur's views, Bunge,§ in 1874, published a

further investigation of the pectoral fin of Elasmobranchs, showing a

number of rays which might be regarded as median, in several species

not examined by Gegenbaur. Finally, in 1876, Huxley
||
took up the

question, and, wliile he accepted the archipterygium, he modified the

interpretation of a large number of the forms.

*Proc. Roy. Soc, 1871, p. 378, and more fully, with a figure of the fin-skeleton, in

Ann. and Mag. of Nat. Hist., March, 1871. To these Gegenbaur refers, Jen. Zeitsclir.,

Bd. vii, Hft. 2, p. 132, note. But a much fuller description is given by Giinther, Phil.

Trans., vol. clxi, pt. ii, pp. 511-572. This vs^as pubhshed early in 1872.

f Jen. Zeitschr.. Bd. vii, Hft. 2, pp. 131-141. Gegenbaur, Ueber das Archip-

terygium.

:};
Gegenbaur, Unters., Hft. III. Kopfskelet der Selachier, p. 181, note. 1872.

§ A. Bunge, Jena. Zeitschr., Bd. 8, Hft. 2, 1874. Ueber die Nachweisbarkeit eines

biserialem Archipterygium bei Selachiern und Dipnoern. Bunge also calls attention

to the fact that the fringing rays in Protoptems a-i,nectens are on the median (i. e., ven-

tral,) side of the axis, and not, as in Elasmobranchs, on the lateral (i. e., dorsal,) side.

II

T. H. Huxley, Proc. Zool. Soc. Lon. for 1876, PI. 1. On Ceratodus Forsteri.
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Most of the inoditications introduced by Huxley, though perhaps

not all, spring from a question which is independent of any theory

with regard to the skeleton, archipterygium or other, but which,

superior to them, must determine the application of them to the

passage fi-om the tisli limb to that of Stapedifera.

If an Elasmobranch pectoral fin, for example, of Mustelus, be re-

moved and laid on the corresponding hand, with the propterygial edge

toward the thumb, and the metapterygial edge toward the little

linger, then the ventral surface of the fin will look in tlie same direc-

tion as the palmar surface of the hand. But if it be turned over so

that the metapterygial edge corresponds to the thumb and the prop-

terygial to the little finger, then the dorsal surface of the fin will

correspond to the palmar surface of the hand.

One or the other of these views must be taken. There is no third

possible. Huxley takes the first, Gegenbaur the second. This, how-

ever is no new question and no new difference of opinion. Cuvier,

following Bakker, named the two ossifications of the scapulo-coracoid

which are so generally found in osseous fishes, radius and ulna.

Owen simply reversed this nomenclature and Mettenheimer followed

him. The question was the same as now respecting the homologies

of faces and edges of fin and limb. On the one side, then, we have

Bakker, Cuvier and Huxley ; on the other, Owen, Mettenheimer and

Gegenbaur. The weight of evidence seems to me to be in favor of

the view entertained by the latter group, namely, that the metaptery-

gial edge of the fish fin corresponds with the radial or thumb side of

the hand, and consequently that the dorsal surface of the fish fin is

the palmar (or plantar) surface. But I have no new facts.

By reviewing Gegenbaur's work it will be seen that this theory of

his rests upon the form of the limbs in the Elasmobranchii and

Dipnoi. In the former grouj) it is the hind limbs which furnish

nearly all the evidence. The fore limbs (pectorals) are brought in

merely to testify to the hiserial character of the archipterygium, of

which no Elasmobranch ventral gives a sign. That is to say, the ven-

trals having testified to the archipterygium, and that having been

accepted, the pectorals find use for themselves in showing thai it

was fringed down tlie median as well as the lateral side. If then the

same form of limb is found in Elasmobranch and Dipnoan, the same

form was undoubtedly possessed by their common ancestors. But as

their common ancestors were also undoubtedly common ancestors of

all Gnathostomes, therefore all Gnathostome limbs must have been

derived from this form.

Trans. Conn. Acad., Vol. III. 38 February, 1877.
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The testimony of the Ganoids and Teleosts seems to me to be

somewhat adverse to the theory. Again it is impossible to think

that that of the Stapedifera can be very clearly in its favor, when

Huxley, while accepting the archipterygium as the parent form,

gives an explanation of the cliiropterygium entirely distinct from and

utterly inconsistent with that of Gegenbaur.

Any opinion adverse to the archipterygium theory will have diffi-

culty in maintaining itself, so long as it does not show that the

resemblance between the fins of sharks, and those of Dipnoi is a

merely superficial one, and is not able to suggest how a certain show

of resemblance might have arisen in two entirely distinct and different

series of developments.

Another View of the Origin of Vertebrate Limbs.

Into competition with this theory, which sees in the fin of Cera-

todus that from which all other limbs have been derived, I bring a

second which sees in the same only a special development peculiar

to the Dipnoi. It is this.

As the dorsal and analfins ^cere specializations of the median folds

ofAmphioxus^ so the pairedfins were specializations of the tioo lateral

folds which are supplementary to the median in completing the cir-

cuit of the body. These lateral folds, then, are the homologues of the

Wolffian ridges, in embryos of higher forms. Here, as in the median

fins, there were formed chondroid and finally cartilaginous rods.

These became at least twice segmented. The orad ones, wuth more or

less concrescence proximally, were prolonged inwards. The cartilages

spreading met in the middle line, and a later extension of the carti-

lages dorsad completed the limb girdle.

If now we seek to determine the form of limb for the Protognathos-

tomi, that is to say, for that time for which the archipterygium in

its entii'ety is proposed, we should propose this.

TTie limbs of the Protognathostomi cimsisted of a series of parallel

articulated cartilaginous rays. They may have coalesced somewhat

proximally and orad. In the ventral pair they had extended them-

selves mesiad until they had nearly or quite met and formed the hip

girdle. They had not here extended themselces dorsad. In the pec-

toral limb the same state of things prevailed, but was carried a step

further, namely, by the dorsal extension of the cartilage constituting

the scapidar portion, thus more nearly forming a ring or girdle.

This theory naturally diA'ides itself into two parts, namely, the

derivation of the Gnathostome limb from a series of sim})le parallel
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cartilages, and the derivation of tlie latter from the lateral folds of

Amphioxns.

Though the last mentioned portion of the theory would derive

considerable strength from the establishment of the first, it is not a

necessary consequence of it, and the first might be true even if the

last were false. If the last be true, of course the first must be true.

The establishment of the derivation from the lateral folds of

Ainphioxus is made difficult from the al)senee of limbs or anything

representing them in the two groups which (in a sense) stand between

Amphioxus and the Elasmobranchs, namely, the Myxinoids and

Lampreys.

As will be seen, it assumes the essential correctness of Huxley's

suggestion with regard to the relation between the folds which grow
down to inclose the atrial cavity of Amphioxus and the body walls

of higher vertebrates. But it is equally consistent with Huxley's*

entire suggestion, as put forth by him, or with Ray Lankester'sf

modification of it.

On the other hand, it is inconsistent with Kowalewsky'sJ view of

the homology between these and opercular folds. This must perhaps

be consideied still an open question, though Rolph's§ arguments on

the other side seem to me of much less weight than they do to

Semper.
II

Yet even if this homology with the lateral folds should have to be

giVen up (the embryology of the Marsipobranchs will throw consid-

erable light on it), the very frequent occurrence of the formation of

external lateral folds parallel to the axis of the body in the bilateral

animals in general and in the Vertebrates in particular, renders it

quite possible that the paired fins may have had a similar origin.

At present, however, I am strongly of the opinion that they are

* Joum. of Linn. Soc, vol. xii, No. 59, May, 1875. Huxley, Classification of the

Animal Kingdom.

f Quarterly Journ. of Micr. Sc, New series, No. 59, July, 1875. Ray Lankester,

New Points in the Structure of Ampliioxus.

X Mem. St. Petersb. Acad., VII Series, tome xi. No. 4, 1867. A. Kowalewsky,

Entwickelungsgeschichte des A mphioxus lanceolatus.

§ Sitzungsberichte der Naturforschenden Gesellschaft zu Leipzig. .Tahrg. II, No. 1,

Jan. 29, 1875. Rolph. Unters. viber den Ban des Amphioxus lanceolatus. See also

for a complete account of his investigations, under .,he same title, Morph. Jahb., Bd.,

ii, Hft. 1, 1876.

II

C. Semper, Die Verwandtschaftsbeziehungen der gegiiederten Thiere, 1875, p.

317. (Sep. Abdr. aus Semper: Arbeiten a. d. Zoolog-zootom Institut zu Wurzburg,

Bd. II).
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derived directly from the lateral folds of Amphioxus. These in their

turn may be referred to a reduplication of the process which has

already formed the atrial space, but which is not carried so far here,

in the lateral folds.

Ventral F'm of Aci2')enser.

The ventral fin of a young specimen of Acijyenser hreiiirostris is

exhibited in PI. LIX, figs. 64 and 05. The fin of one side is separate

from that of the other, no synchondrosis uniting the two halves of

the girdle. But the part J> approaches closely its fellow. The same

separateness of the two sides obtains in the shoulder girdle. The

composition of the fin is peifectly evident. Beginning at the aborad

end of the row, we have first three separate and parallel rays. The

proximal joints increase in length from the first to the last of the

three. In the remaining rays these basal joints, increasing still moi'e

in length, have united with each other to form the large pelvic piece

ab. The composite nature of this is confirmed by the groovings of

the surface, which extend about a centimeter before they finally fade

out.

The iliac process, «, is half a centimeter high.

In fig. 64 the proximal joint of the penultimate ray grows up a little

under the last ray, in the manner familiar in the median fins. It does

not happen to occur in the fin of the other side, fig. 65.

The predominant three-fold division obtains. But the penultimate

ray in fig. 64 has a tip or an extra segmentation, and c is without

the distal segmentation.

The breadth and the outline of c raises the suspicion of its double

character.

I have had >io opportunity of examining other Ganoid fins, and

this one of Aci2^enser seems, on the whole, that which most nearly

approaches the parent form of the Gnathostomes. But while in the

independence of the two sides, in the separateness of the I'ays, and

the simple segmentation, it gives us the early form more complete

than is elsewhere found, in the number of rays and hi the absence of

the iliac process the shark ventrals are less advanced.

Elasmohraiich YentraU.

We now turn to the derivation of the ventral fins of sharks, one of

the two abutments of the Inroad S{)an of the archiptcrygiuru theory.

The series of steps by which I conceive them to have been derived
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from the row of ]>arallel rays is presented in woodcuts A, B, C and D.

The kind of 'cliange invoked is

simply coneresence, with scmie

spreading of the cartilage. The

former of these processes is abun.

dantly shown in the' case of the

median tins, while something of the

latter process is seen in PI. LI, figs.

12, 18, 14, 15; PI. LIII, fig. 27;

PI. LVI, fig. 46 ; PI. LVII, fig. 49.

And it is noteworthy that here the

rays which jn'olong themselves prox-

imally are the orad ones, just as they

are in the ventral fins. As for the

concrescetice, this has been carried

much farther in the dorsal ^n^ oi ^Sq^la-

lusAmericanus,3ryliobatis and Raia
levis than it has in the shark ventrals.

It is barely possible that the definiteness and constancy of the concres-

cence in the latter may be in whole or in part determined by the

copulatory function of the last part of the fin in male Elasmobranchs.

While the derivation of the ventral fins is thus easy from a series of

parallel cartilages, we find much greater difficulty in the ease of some of

the median fins, in Raia levis, for example, which is, unless my own
preconceptions deceive me, a far better case of a biserial archiptery-

gium than any furnished in the paired fins, aside from Ceratodics.

C

Indeed I may state that the origin of this i)aper lay in an observation

of a fin of another species of Haia, not however well enough preserved
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for drawing. The very striking similarity to the uniserial archip-

terygiuni raised the question whether the median fins, at any rate the

dorsal and anal fins, might not have arisen from the same archiptery-

ginm. The result of my investigations was a decided negative.

It has been absolutely proved that they did not so originate, and

the way in which they did originate has been clearly shown.

While then, on the one hand it has been shown that the develop-

ment of a pair of fins, whoso skeleton consists of a series of

parallel rays clothed on each side with a layer of muscle, as a

specialization of the lateral folds (raetapleura of Ray Lankester) of

AniphioxHs, contains no steps which have not been taken in the same

animals in the case of the median fins, so also it has been shown that

the development, of the ventral fins and the pelvic girdle of sharks

from such a series exhibits no processes or kinds of change which are

not also exhibited in the median fins of those same fishes. When we

contrast the changes from a series of parallel rays to the completed

ventral fin of the shark, as it has been given above, with the changes

which Gegenbaur supposes to have made it out of the archiptery-

gium, namely, the stripping ofi" of every one of the median rays, for

no sign of them is ever found in the ventral fins aside from the Dipnoi,

and the slipping off of the orad portion of the rays to immediately

articulate with the shoulder girdle, I hardly think that those changes

of his will appear so well evidenced as these changes which I believe

to have taken place. And when the utter darkness that covers the

development of the arehipterygium itself (for it does not seem fair to

the arehipterygium to make much account of the suggestion of

Gegenbaur respecting the branchial arches, Unters., Hft. iii, p. 181,

note) is contrasted with the familiar changes which would have

brought these Selachian fins out of the lateral folds Ainphioxus, I

hardly think the advantage can lie with the arehipterygium.

Homodynamism of Median, and Paired P'ins.*

Let us compare the ventral with the dorsal fins, say in Mustelus

cams.

* Since this paper was written, I have found a paper of Humphrey's on the Homo-

logical Relations of Mesial and Lateral Fins of Osseous Fishes, Journ. of A_nat. and

Phys., Nov., 1870. Here a comparison between the fins in question is made in the

case of the Pike, and the " Iliac " or " Pubic " bones in osseous fishes are assimilated

to the interneural spines or to the prominal part of them. Goodsir had made some

earlier comparisons without valuable result. See Anatomical Memoirs, vol. ii, p. lOtJ.
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In each there is a hiyer of muscle ou each side of the cai'tilaginous

skeleton ; this flat mass is in each divided into separate muscles by
septa running from between the skeletal rods straight to the integu-

ment, in the way exhibited in PI, LIX, fig. 66 ; in each these muscles

develop a tendon in their middle plane parallel to the sides of the

fin ; this is inserted in the fascia over the terminal cartilages where

the horny fibers begin. These last are the same in nature and

arrangement in each.

The skeletal elements remain (see PI. LIX, iig. 67). We have a

short terminal piece in each, then comes a longer middle piece. There

is left in the median fin a proximal row of cartilages, for the most

part separate, which are again much shorter than the middle pieces.

In the ventral fin the solid basale metapterygii and a half of the girdle

correspond to these in every particular, except in not being of

separate rays. The similarity between the two fins is complete except

in a single particular. And that exception would be removed by a

process which is familiar in both, namely concrescence. Even as they

stand, I think that a ventral tin with one half the girdle resembles the

dorsal more than it does the pectoral.

A certain amount of similarity warrants us in inferring an earlier

state when the similarity was greater. It has been proved that at that

earlier time the median fins were composed of separate rays. The

greater similarity, then, can only be attained by the resolution of the

basale metapterygii into its component parts.

In the Elasmobranchs, as is well known, the primordial fin-skeleton

is supplemented in both median and paired fins by the well kno%vn

horny fibers. In the higher fishes these are replaced by the dermal

rays. The presence of horny fibers in the adipose fin of the salmon,

shows that the horny fibers were the earlier form. Therefore the

same changes have been taking place in the median and j)aired fins

at the same time. The same general result, i. e., of concomitant varia-

tion in median and paired fins is confirmed in the sub-groups of

Elasmobranchs, with regard to minor changes in the primordial

skeleton.

The homodynamism of median and paii'ed fins comes out strikingly

in Centrlna Salvkmi. Here, according to descriptions, a fold of skin

is raised along the median line of the back, recalling the early

continuous fold of skin along the back in ^iniphloxus. But similarly

there appear two folds of skin along the sides, recalling the continuous

lateral folds of Amphioxus. It is at once a proof of the homodynam-

ism of the two, and a confirmation of the views here presented of

their orisjin.
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X llie Dlpnoau Fin.

In the Teleosts and Ganoids, which are in a sense intermediate

between the Dipnoi and Elasrnobranehii, the limb skeleton has been

comparatively little modified from the form in this paper set forth as

the typical limb skeleton of (Tnatliostomi. JSeurcely any other pro-

cesses than reduction of the number of rays and concrescence are con-

cerned.

Now in the fin of Ceratodns the archipterygium form has certainly

been developed, and if tlie previous views be correct, it has been

developed from this series of parallel rays.

Gilnther* has suggested one way, and Gegenbaurf another, in

which a row of parallel rays might transform themselves into an

archipterygium form. But it is possible that these fringing rays are

new developments. They look very much like it in Protopterus.

PetersJ has called attention, in this connection, to the similar struc-

ture of the dorsal finlets of Polyptenis, and these might throw some

light on the subject. For myself, I am strongly inclined to suspect

that the three portions of the second piece of the limb of Ceratodus^

which Gilnther describes, indicate three fin-rays, and that the feather-

ing of one of these is a later development. The fact that Huxley

could find no sign of division in his specimens seems of little weight in

view of the complete fusion which Ave know takes place here and there

in median fins.

The Limh of Stapedifera.

PI. LX, fig. 70 {Ichthyoaauni.s,) exhibits my view of the composi-

tion of the limb of air-breathing vertebrates. The dotted lines indi-

cate the separate rays of which it is composed. But there are other

ways in which it may have been derived from a series of parallel rays,

and I oifer this merely as the most probable interpretation so far as I

can now see. Fig. 71 does the same for the hind limb of Crypto-

branchus Japonicus. The curvature of the rays has been exhibited

in a marked degree quite frequently in Elasmobranch median fins.

The Innervation of the Paired Fins.

I have made complete and definite observations of the innervation

only in a single case, namely in the pectoral fin of Mustelus canis.

This fin is supplied by the first 15 niyeh»nal nerves together with a

very small branch from the vagus. The simplest condition is seen in

the aborad nerves.

* Phil. Trans., vol. clxi, Pt. ii, p. 534. f Uiiters., Hft. iii, p. 181, note.

X MuUer's Archiv, 1845, p. 8.
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The aborad four (12-15) branches, coming directly from the

myelon, advance, each by itself, close to the metai)teryoiuni, where
they each bifurcate, sending one branch to the dorsal and the other

to the ventral side of the tin. The next four (S-11) unite to form a

rather loose plexus, which separates again into four nerves, wiiich

then sub-divide in the same way as the last mentioned four, except

that the orad of these behaves a trifle differently in a manner here-

after to be described.

Now the first seven nerves unite with one another and with the

minute branch of the vagus in the following way. The vagal branch

emerges from the skull with that nerve, but already rolled up as a

separate branch and easily to be separated from it; this joins the

first myelonal nerve and this the second, and their sum the third, and

so on, until we have a cord formed of the vagal and first seven

myelonal branches. This sends ofi' a branch to the muscles and

integument in front of the shoulder girdle, but the main part of it

proceeds on its way to enter the foramen called by Gegenbaur,

liiintriUsoffming^ and then divides within the cartilage of the girdle

in the way which he has described, and similarly to the aborad nerves

which he has left unnoticed, sending one branch to the dorsal and the

other to the ventral muscles of the fin. Now the eighth nerve sends

off its ventral branch like those aborad of it, but the dorsal branch

enters the entrance-opening with the cord of the vagus and 1-7 spinal

nerves; but it does not unite with this cord till after the latter has

divided, and then unites with its dorsal branch and emerges with that

from the cartilage on the dorsal side of the fin. In another specimen,

this dorsal branch of the eighth nerve enters the cartilage by a minute

separate foramen, but unites with the dorsal branch of the anterior

cord, as in this case.

As stated, my observations in the other cases have not been as

thorough, and I cannot give the number of ner\es, but in the ventral

fin the arrangement is as follows. A number of nerves are gathered

together to form the orad cord. This, on coming opposite the fora-

men in the pelvic girdle, divides and sends its branch to the ventr^il

side of the fin through that. Then the other aborad nerves coming

out, each by itself, to the metapterygium divide into two branches for

the two sides of the fin, just as in the case of the pectoral fin. This

is in 3Iustehis canis.

In Eugomphodus Htor(dls, see PI. LX, fig. 00, from the articulation

of two or three rays with the girdle, aborad of those which by their

concrescence mark themselves out as the pro])terygiuni, it appears

Trans. Conn. Acad., Vol. HI. 39 February, 1877.
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that the articulation (or failure of concrescence) of the metapterygium

and girdle has taken place farther aborad, and consequently a greater

number of rays devote their basal parts to the formation of the pelvic

girdle. Expectedly then, we find that the cartilage does in fact

spread around the branches of the next two nerves. Through the

foramina the ventral branches of these nerves pass, while the branches

to the dorsal side pass along to that side above the cartilage.

The difference in respect to the relation between the cartilage and

the nerves in the pectoral and ventral limb is, that in the former the

cartilage thickens so as to include the branching place of the first

nerve or bundle of nerves, while in the pelvic limb, it is thinner and

merely transmits the ventral branch. In his Memoir on the Shoulder

Girdle, Gegenbaur has called attention to the two branching canals

or two pairs of openings in the shoulder girdle of the Batoidei. He
states that he has not observed whether the aborad one is traversed

by a nerve. I have examined this in the case of Raia erinaceus, and

found that both fore and after openings transmit nerves in the same

way. This is evidently what would be anticipated from what has

been herein said. We have here what we had in the ventral fin

(and girdle) of Eugoniphodxis ; a greater number of rays are devoted

to girdle building, and another bundle of nerves is included in the

spreading cartilage.

The observations of Rolph on the innervation of Amphioxus^ are in

complete agreement with what would be required by the view here

advocated. He says " Der ventrale Ast verlauft herab bis in die

Seitenfalten. Beim Eintritt in dieselben theilt er sich in zwei Aeste,

deren einer {}%^ an der Aussenwand der Seitenfalte hinzieht; der

andere durchlaiift die Seitenfalte in querer Richtung, um in die

Bauchmuskulatur tiber zu treten, in der er sich nicht weiter verfolgen

lassen. Zuvor jedoch gibt er noch einen Zweig ab (^ig), welcher, n^

parallel, an der inneren Wand der Seitenfalte verlauft."

The manner of innervation, then, seems to me as totally inconsistent

with the Archipterygium theory as it is in thorough and telling har-

mony with the view which I have here presented.

Addendum.

Since the views expressed in the foregoing pages were complete in

my own mind six or eight months ago, I had looked for confirmation

of them in the brilliant investigations of Balfour on the development

*Morph. Jahrb., Bd. ii, Hft. 1, p. 107, 1876.
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of Elasmobranchs. Tlie preliininary account, however, in the Journal

of Microscopical Science, contained nothiuij; bearing on the point, and
the pa])ers in tlie Journal of Anatomy and Physiology I have been

able to obtain only irregularly. Immediately after the hist proof of

the preceding pages had been received, tlie number of that Journal

for October, 1876, came into my hands. Here Balfour devotes three

or four pages to the limbs. He says :
" If the account just given of the

development of the limb is an accurate record of what really takes

place, it is not possible to deny that some light is thrown by it upon
the first origin of the vertebrate limbs. The fact can only bear one
interpretation, viz: that the limbs are the remnants of continuous

lateral fins.''''

"The development of the limbs is almost identically similar to that

of the dorsal fins." He goes on to state that while none of his

researches throw any light on the nature of the skeletal parts of the

limb, they certainly lend no support to Gegenbaur's view of their

derivation from the branchial skeleton. Thus these results have not

only been reached independently, but from two different classes of

facts. To the belief in the original continuity of the lateral fins and
the homodynamism of median and paired fins I was led by observa-

tions on adult forms, and particularly on the skeleton. Balfour comes

to the same results from embryological investigations, in that group

from which on general grounds an answer was most to be expected

;

nor do these investigations regard the skeleton.

I have also just received the last number of the Morph. Jahrb. It

contains a paper by Wiedersheim* confirming Gegenbaur's view

respecting the double nature of the centrale. This had previously

been shown only in the tarsus of Cryptobranchus Japonicus, (and in

the Enaliosaurs). Wiedersheim shows its double character in three

Siberian species of Urodela, in both carpus and tarsus. This is a very

important confirmation of the chiropterygium, and relieves us of sus-

picions with regard to its correctness Avhen we push our inquiries

into earlier history and more simple forms.

In the same number of the Jahrbuch is a paper by Gegenbaurf on

the archipterygium theory. He modifies his explanation of the

Stapediferal limb to accord with Huxley's view of the homology of

edges and faces of limb and fin. He says that while he does not

* Morph. Jahrb., Bd. ii, Hft. 3. R. "Wiedersheim, Die altesten Formen des Carpus

und Tarsus der heutigen Amphibien.

f C. Gegenbaur, Zur Morphologie der GHedmaassen der Wirbelthiere.
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think the correctness of this view fully demonstrated, still he thinks

there is a decided balance of probability in its favor. Therefore the

ulnar side of the arm now appears as the Stammreihe. In other

particulars Gegenbaur reaffirms his previous views. He proceeds to

devote considerable space to the discussion of the origin of the

archipterygium, and again proposes to assimilate the limb and limb-

girdles to the gill-arches with their rays. He supports this sugges-

tion with considerable argumentation. To this position the archip-

terygium theory leads him.

I take this opportunity for expressing my sense of the great advan-

tages furnished by the U. S. Fish Commission for the study of marine

life on our coasts, and in particiilar by the biological laboratory at

Wood's Hole, established in connection with that Commission, and

also for acknowledging my personal indebtedness to Professor Baird,

through whose courtesy I have enjoyed these facilities for a number

of summers.
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EXPLANATION OF PLATES.

The figures are all drawn with a camera, and photo-lithographed. They are all

three-fourths of the size of the originals, except figs. 1, 2, 3, 4, 20, 21, 22, 60; figs.

20, 21 and 22 are three-eighths, and 60 is a little less than twice natural size.

Plate XLIX.

Figure l.— Petromyzoa mariiitis. a, Ligamentum longitudinale, or ridge-pole of my-

elonal canal ; b, notochord ; c, neural arches.

Figure 2.

—

Petromyzon marinus. a, fin -rays ; &, intermuscular septa.

Figure 3.

—

Petromyzon marinus. a, fin-ray; b, fin-muscles.

Figure 4.—Section of Petromyzon marinus, to show the relation of the neural arches to

the muscular segments ; a, intermuscular septum ; &, neural arch ; c, blood-vessel

;

d, muscular segment ; e, fatty-fibrous ridge-pole of neural canal.

Figures 5, 6.

—

Mustelus canis. First dorsal.

Plate L.

Figures 7-10.

—

Mustelus canis. First dorsal.

Figure 11.

—

Mustelus canis. Second dorsal.

Plate LI.

Figures 12-15.

—

Mustelus canis. Second dorsal.

Figures 16, 17.

—

Mitstelus canis. Anal.

Plate LII.

Figures 18, 19.

—

Mustelus canis. Anal.

Figure 20.— Galeocerdo tigrinus. First dorsal.

Figure 21.— Galeocerdo tigrinus. Second dorsal.

Figure 22.— Galeocerdo tigrinus. Anal.

Figure 23.

—

Eidamia Milberti. First dorsal.

Plate LIII.

Figure 24. — Eidamia Milberti. First dorsal.

Figures 25. 26.— '' " Second dorsal.

Figures 27, 28.— " " Anal.

Figure 29.

—

S-phyraa zijgcena. First dorsal.

Plate LIV.

Figure 30.

—

Sphyrna zygcena. First dorsal.

Figure 31.— ''
" Second dorsal.

Figure 32.— '

'' Anal.

Figures 33-35.

—

Eugomphodus { Odontaspis) litoralis. First dorsal.

Plate LV.

Figures 36-39.

—

Eugomphodus litoralis. First dorsal.

Figures 40, 41.

—

" " Second dorsal.

Plate LVT.

Figures 42-46.

—

Eugomphodus litoralis. Second dorsal.

Figures 47, 48.— " " Anal.
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Plate LVII.

Figures 49, 50 —Eugomphodus litoralis. Anal.

Figures 51-54.

—

Squalus (Acanthias) Americcmus. First dorsal.

Figures 55, 56.— " " " Second dorsal. The spine is re-

moved in figs. 53, 55, 57 ; but not in ligs. 51, 52, 54, 56.

Plate LVIII.

Figure 57.

—

Squalus Americanus. Second dorsal.

Figure 58.

—

Baia levis. First dorsal.

Figure 59.— " " Second dorsal.

Figure 60.

—

Myliohatis Fremenvillei. Sole dorsal.

Figure 61.

—

Acipenser brevirostris. Sole dorsal; a, neural arch; 6, intercalary carti-

lages ; c, neural spine ; d, foramen for ventral branch of spinal nerve ; e, foramen

for dorsal branch of spinal nerve.

Plate LIX.

Figure 62.

—

Acipenser brevirostris. Anal. Opposite 2-| vertebrae.

Figure 63.—Section of vertebrarium of Acipenser brevirostris; a, neural spine; 6,

ligamentum longitudinale ; c, neural arch.

Figure 64.

—

Acipenser brevirostris, left ventral, from above ;
a, iliac process.

Figure 65.

—

Acipenser brevirostris, portion of right ventral, from below.

Figure 66.—Section of pectoral fin of Mustelus canis.

Figure 67.

—

Mustelus canis, ventral.

Figure 68.

—

Mustelus canis, pectoral detached from girdle.

Plate LX.

Figure 69.

—

Eugomphodus litoralis. Ventrals; a, b and c nerve-foramens.

Figure 70.—Pectoral limb of Ichthyosaurus, after Cuvier. Car., carpalia ; Cen.,

centralia ; u, ulnare ; i, intermediiun
;
r, radiale ; U, ulna ; R, radius ; II, humerus.

I take, though with some hesitation, Gegenbaur's indentification of the radial and

ulnar sides in this limb of IcMhyosaurv,s.

Figure 71.

—

Gryptobranchus Japonicu^s. Hind foot, after Hyrtl, Schediasma anatomicum,

1865.
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—

The Early Stages of Hippa talpoida, with a note on
THE Structure of the Mandibles and Maxillj? in Hippa and
Remipes. By Sidney I. Smith.

The biological station, established under the auspices of the United

States Commissioner of P^ish and Fisheries, at Wood's Hole, Massa-

chusetts, during the summer of 1875, afforded several naturalists, and

among them the writer, excellent facilities for studying the marine

animals of Vineyard Sound and the adjacent waters. The locality is

very favorable for obtaining in abundance the free-swimming larvjB

of a great variety of marine animals. Among the young of numerous

species of crustacea, the zoeae o^ Hippa were particularly interesting,

and I svicceeded in obtaining a nearly complete series of the post-

embryonal stages of that peculiar genus.

Since almost nothing has been published in regard to the habits of

any of the species of Hippidaj or Albunidae, a few words in regard to

the habits of the only species, of either Fig. i.-

of these groups, living upon the coast

of New Elngland may" not be out of

place here.

Hippa talpoida inhabits the entire

eastern coast of the United States from

Cape Cod southward to the west coast

of Florida ; Egmont Key being its most

southern and western habitat known

to me. At what point it is met or

replaced by the Brazilian H emerita,

I am unable to determine, never having

seen specimens of either species from,

or the record of their occurrence in,

the West Indies or Central America,

although some species of the genus

probably inhabits both these regions.

On the sandy coasts of the southern United States the H. talpoida is

apparently very abundant, while on the coast of New England it is

much less common, being found only in special localities, although,

* Hippa talpoida, adult female with the antennae extruded, dorsal view, enlarged

about two diameters.

Trans. Conn. Acad., Vol. III. 40 April, 1877.
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from its gregarious habits, it is usually found in al)undauce in such

localities. The northern range of this, as well as of numerous other,

southern species is undoubtedly resti'icted by the extreme cold of the

winters ; and exceptionally cold seasons probably destroy a large

part of the individuals over considerable portions of the coast.

Dui'ing the summer of 1870 not a specimen of the adult or half

grown Hippa could be found at Fire Island Beach, Long Island,

although the extensive sandy beaches of that region offer specially

favorable localities, which were thoroughly searched ; but during the

last of August and early September, the young just changed from the

zoea, and also in a little later stage, appeared abundantly upon the

beaches. During the following summer no fully grown specimens

were found on the shores of Vineyard Sound, though half grown

specimens (perhaps from the young of the previous season) were

common. During the summer of 1875, fully grown specimens of

both sexes were found in great abundance at a single, very restricted

locality near Nobska Point, on the shore of Vineyard Sound,

although at this time none could be foimd at the particular locality

where they were common in 1871.

Upon our shores, as far as I have observed, the Hippa inhabits

sandy beaches which are somewhat exposed to the action of the

waves. It seems to prefer only a narrow zone of the shore, at or very

near low water mark, where it lives gregariously, burrowing in the

loose and changing sands. At the locality near Nobska Point above

referred to, it was obtained in great abundance by digging over the

sand just at the edge of the receding waves. Several individuals

were often thrown out at a single stroke of the spade, but the won-

derful rapidity with which these animals burrow made it extremely

difficult to secure more than one or two of them at a time. The

smooth, oval form of the animal, with the peculiar structure of the

short and stout second, third, and fourth pairs of thoracic legs, enables

them to burrow with far greater rapidity than any other crustacean

1 have observed. Like many other sand-dwelling crustaceans, they

burrow only backwards ; and the wedge-shaped posterior extremity of

tlie animal, formed by the abrupt bend in the abdomen, adapts them

admirably for movement in this direction. When thrown upon the

wet beach, they push themselves backward with the burrowing thoracic

legs and, by digging with the appendages of the sixth segment of the

abdomen slightly into the sui-face, direct the posterior extremity of

the body downward into the sand. Upon the beaches, at least where

there are any waves, they seem usually to be buried completely
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beneath tlio surluce. Occasionally, however, they are found swinnnin^-

about in ])ools left by the tide, and they undoubtedly, when undis-

turbed, sometimes come out and swim in the same way along the

shore, though they probably never venture far from tlie bottom.

When first placed in an aquarium with a few inches of sand at the

bottom, they invariably ])lunged at once entirely beneath the sand,

but, after a few moments of quiet, usually worked themselves gradually

towards the surface, resting in a nearly perpendicular position with

just the tips of the aiitennuhe and eyes at the surface, while the ex-

cui'rent water from the branchiae formed a small opening and a

slightly boiling motion in the sand. Occasionally, when entirely

undisturbed, they would suddenly leave the sand and swdni rapidly

round the top of the aquarium for a moment and then dive suddenly

to the bottom and bury themselves in the sand. In swimming, as

well as in burrowing, the telson was carried appressed to the sternum

and they invariably moved backward, the motion being ap|)arently

produced by the appendages of the sixth abdominal segment and the

anterior thoracic legs, while the latter served also as steering organs.

During all the ordinary motions of swimming and burrowing, I

have never seen the antenna^ extruded, although the peculiar arrange-

ment of the peduncular segments and their complex system of muscles

are apparently specially adapted for extending and withdrawing

these beautiful organs. When the animals are thrown into alcohol

however, the antennre are sometimes thrown out convulsively and

then immediately retracted. In life the antennae are most of the

time held in the position in which they are usually found in alcoholic

specimens, that is, between the second and external maxillipeds, with

the peduncles crossed in front, and the flagella curved down and

entirely round the mouth so that their dense armament of sette all

project inward. When extruded, the distal segments of the peduncle

are revolved half way round on the proximal ones, so as to carry the

whole appendage to its own side of the animal and throw the curve

of the flagellum into a reversed position. Judging from the pecul-

iarly armed setae, of the flagella, one of the principal offices of the

antenna? is the removal of parasitic growths and all other foreign

substances from the appendages of the anterior portion of the animal.

The mouth parts of the adult are not adapted for ordinary prehen-

sion or mastication, but I am unable to make any positive statement

in regard to the food of these animals. In all specimens examined

the alimentary canal was filled with tine sand which seemed to be

nearly free irom animal or vegetable matter. The material from the
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stomaeli, however, shew, under the microscope, u small quantity of

vegetable matter, and it seems probable that the sand is swallowed

for the nutritive matter it may contain.

Upon the beaches of Vineyard Sound the two sexes appeared to

occur in about equal numbers, although in museum collections the

males are often rare. This is probably due to the great inequality in

size between the male and female, the length of the carapax in the

larger females from Vineyard Sound being 20 to 22""", while in the

largest males it does not exceed 14"'"'. The sexes differ also in the

form of the telson (Plate XLVIII, figs. 7, 8) which is narrower and

more triangular in the male than in the female.

Females carrying eggs were found during the entire month of

August, and during that period the embryos within the eggs were

nearly fully developed in many of them. Undoubtedly, however, the

term of carrying eggs extends over a much longer period than this.

The eggs are nearly spherical, "40 to -45"'"' in diameter, and the yolk

mass is orange yellow while the formed tissues of the embryo are

nearly colorless. Numerous attempts to obtain newly hatched young,

by keeping egg-carrying females in aquaria, failed from the parent

invariably casting off the eggs before they were fully matured.

Consequently I failed to secure the earliest stage of the zoea, for the

youngest individuals taken in the towing net were apparently in the

second stage.

Very nearly fully developed embryos, when removed from the egg,

were found to possess all the normal articulated appendages of the

fully formed zoeae, but there was no appearance of lateral spines upon

the carapax and the rostrum was broad and obtuse. In this stage

the embryo agrees almost perfectly with the figure of the zoea of

Ilippa emerita from the coast of Brazil, given by Fritz Mliller in his

work entitled " Ftir Darwin."* The difference between the embryo

in this stage and the second zoea-stage (Plate XLV, fig. 1), in which

* English translation, London, 1869, p. 54, fig. 25. The figure is accompanied by

the following paragraph :
" The Zoea of the Tatuira [Hvppa\ also appears to differ but

little from those of the true Crabs, which it likewise resembles in its mode of locomo-

tion. The carapax possesses only a short, broad frontal process ; the posterior margin

of the tail is edged with numerous short setse." This, as far as I am aware, is the

only published account of the development of any sjDecies of Hippidse, except a note

by myself (in an article on " The Metamorphoses of the Lobster and other Crustacea,"

in the Report of the LT. S. Commissioner of Fish and Fisheries, Part J, 187."5, p. 530)

recording the occurrence, at the surface in Vineyard Sound, of the young in what is

described further on in these pages as the megalops-stage.
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tlio rostrum and lateral spines are enormously developed, suggests

the possibility that MtlUer had observed only imperfectly developed

young zoea^ in which the rostrum and lateral spines were not ex-

pamled. It seems scai'cely probable that such a difterence could

exist between the first stage of the zoea, when the veiling membrane,

in which, on first escaping from the egg, the young are usually

enveloped, has been entirely cast oft' and the lateral spines and the

rostrum are fully expanded, and tlie second zoea-stage about to be

described. The three later, true zoea-stages obtained are evidently

contiguous steps in the development and are here designated the

second, third, and last stages of the zoea. From this last stage the

zoea passes at once into a stage closely resembling the adult in gen-

eral form, but with the eyes still very large and the abdomen furnished,

with powerful swimming legs. This condition of the animal corres-

j)onds perfectly to the Brachyuran megalops and may properly be

designated as the megalops-stage.

Second zoea-stage.

In this stage the young (Plate XLV, fig. 1, ventral view) are a

little over 8""" in length, from tip of rostrum to the posterior margin

of the carapax, and a little over 2"'"' between the tips of the lateral

spines. In general form the carapax is oval, with the smaller end for-

ward, and its surface is very smooth and regularly rounded. The dorsal

surface of the carapax is strongly convex but very regularly rounded

and wholly devoid of any rudiment of a dorsal spine, which is so

generally characteristic of the zoeae of Brachyura. At the bases of

the ocular peduncles the carapax is shai-ply contracted laterally into

an exceedingly long^ very slender, and slightly tapering rostrum

curved regularly downward until, toward the tip, it becomes nearly

parallel M'ith the posterior margin of the carapax. The lateral spines

are nearly as long as the diameter of the carapax, are situated far

back and low down on the sides of the carapax, and are directed

downward and obliquely outward, but are not strongly curved.

Beneath, the carapax ciirves inward on all sides, leaving a compara-

tively small opening which is wholly inferior, with its anterior j)ortion

about as broad as the telson, but posteriorly contracted into a narrow

abdominal sinus, of which the rounded posterior margin is nearly on

a line between the lateral spines. This shortening of the inferior

opening, carrying the abdomen forward and wholly beneath the

carapax, together with the absence of the dorsal spine, gives the

animal an apj^earance unlike ordinary Brachyuran zoese.
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The ocular peduncles are stout, regularly tapering to near the

bases, and are usually carried perpendicular to the mesial plain, though

they admit of considerable motion in all directions. The cornea is

considerably larger than the diameter of the peduncle, its diameter

being nearly a third of the horizontal diameter of the carapax, and,

when the peduncle is held straight out, reaches slightly beyond the

lateral margin of the carapax.

The antennulae (Plate XL VI, tig. 1) are still rudimentary, simple,

sackdike, unarticulated appendages, tapering towai-d the tip, which is

furnished, as usual in this stage of development, with three stout,

filiform, obtuse setne, diftering slightly in length, diameter, and amount

of curvature, and of which the longest is about half the length of

tlie antennula itself.

The antennse (Plate XLVI, tig. 2) are of about the same length as

the antennula-, but of nearly the same diameter throughout, and are

armed distally, at the outer edge, with an acute, dentiform process

(a, fig. 2) directed straight forward and itself armed with a minute,

setiform spine on the inner edge near the tip. Between the base of

this process and a slight, rounded prominence (c, fig. 2), situated at

the extremity of the inner margin, and which represents the rudiment-

ary flagellum, there is a similar, but slightly more slender, process

(b) attached at its base by an oblique articulation and armed, near

the tip, with a minute, setiform spine like that upon the outer process.

The oral appendages differ very little from their condition in the

last zoea-stage, under which they are fully described. The labrum

and labium differ scarcely at all, except in size, in the three zoea-

stages here described. The labrum, as seen from beneath, is a broad,

somewhat triangular prominence between the bases of the antennulae

and the tips of the mandibles. The labium is deeply bilobed, though

far less deeply than in the adult, with the lobes broadly rounded and

the entire margin clothed with microscopic hairs.

The mandibles are nearly as in the last zoea-stage. They are stout

at the bases, but taper to very slender tips, which are only slightly

different on the right and left side. There is no molar area, but the

crown of the mandible is longest in a vertical direction and is armed

inferiorly with four long, but blunt, teeth which decrease rapidly in

size as they approach the middle of the crown, where they are met

by a series of six or seven long, slender, setadike processes which

occupy the superior half of the coronal margin.

The first pair of maxilhie (Plate XLVI, fig. 11) are symmetrical

and composed of the same parts as in the adult. The inner lobe
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{a, fig. 1 1) is small and ti|)])t'(l with tliroc long seta\ Tlie outer lobe

[h, fig. 11) is broader than tlie inner and armed at the extremity

with three nearly equal, long and slender teeth, of which the distal

one appears like a process from the margin, showing no line of artic-

ulation at its base. The palpus ('*, fig. 11) is very small, composed

of a single segment and tipped with a long, plumose seta.

The second pair of maxilla? (Plate XLYII, fig. l) are very imperfect.

The protognath (</, fig. 1) is a small, obtuse lobe tipped with three

short setse. The scaphognath (<% fig. 1) projects beyond it anteriorly

as a slightly larger lol^e, while posteriorly it is broad but short and

truncated, and the anterior lobe and the oi;ter edge are, as yet, alone

furnished with seta?.

The first and second pairs of maxillipeds, or natatory legs, (Plate

XLV, fig. 1, second pair) are similar in structure to those of most

zoea^ and differ only slightly from each other. In both pairs the basal

portion, or protognath, is alike stout, about as long as the exognath,

and unarmed, except by three or four minute setfe on the distal portion

of the inner margin. The exognaths, or natatory branches, alike in

both pairs, are nearly cylindrical, but flattened at the tips, where they

each bear a series of eight slender, plumose setae, which, in the middle,

are as long as the exognath itself but decrease in length to the outer

ones, which are scarcely more than tw^o-thirds as long. The inner

branch, or endognath, in both pairs, is composed of four cylindrical

segments subequal in length. In the first pair, however, the inner

branch is shorter than the exognath, while in the second pair it is

considerably longer. In both pairs the three proximal segments of

the endognath are each ai-med with two or three small setje on the

inner side, and the distal segment, which is much more slender than

the others, is tipped with four setae, of which two are nearly as long

as the segment itself and pectenated with minute, setiform spinules

along one side, and the two others shorter and apparently unarmed.

The third pair of maxillipeds and the four antei-ior pairs of thoi-acic

legs are, even at this early state, represented by a series of clearly

defined, though entirely nnsegmented, processes situated just above

and back of the bases of the second maxillipeds and entirely wnthin

the carapax, but visible through it, in a lateral view of the animal, in

a line nearly parallel with the posterior margin of the carapax. In

the single specimen examined, no lobes representing the slender,

posterior thoracic legs of the adult could be discovered. Above each

of the processes representing the first four pairs of thoracic legs there

is a minute, papilliform process apparently representing one of the

branchial appendages belonging to these legs in the later stages.
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The iilxlouu'i) is smaller aiul has much less freedom of motion in the

mesial phmc than in most Brac^hynran zoea^ The first segment is

not clearly (litt'erentiated from the thorax. The second, third, fourth,

and fiftli segments are entirely without ap))endages; the second and

third are nearly equal in length and sub-cyrnuli-ical ; the fourth is

slightly shoi'ter and is exj)anded considerably at the posterior ex-

tremity ; and the fifth is about as long as the fourth, compressed

vertically, and broadly exj)anded at the posterolateral angles so that

it is about twice as broad as long. The sixth segment is consolidated

with the tclsoii, forming a broad, lamelliform, caudal a])pendage about

as long as tlu' middle breadth of the caraj)ax. The a])pcndages of the

sixth segment (Plate XLVIII, fig. 10) ai-e small, rudimentary,

Oppressed to the under side of the telson so as to be hidden from

above, and are eac^h (composed of a stout basal segment and a single

narrow lamella (the outer) tipped with two slender setse, of which the

outer is about as long as the lamella itself and the inner much longer.

The lateral nuirgins of the telson are slightly curved outward aiul

unarmed, but project )»osteriorly into a stout tooth each side of the

strongly arcuate ]»osterior margin. This postei ior margin has, in all

tile zoea-stages here described, a remarkably complex armament of

ciliated spines and miuute teeth (Plate XLVIII, tigs. 1:5, 14, 15). In

a considerable iiumbei- of specimens in tlu' third and the last stages,

the mnnber of these ciliated sj)ines is usually twenty-six, of whicli

the eighth, counting (Voni either side, is the largest, and the sixth

and tenth usually the next in size. One of the specinu'us in the

second stage (Plate XLVIII, iig. 1:5) conforms stiiiily with this:

there arc two sub-nu'dian spines (r/, </, Iig. i;5) separated by a single

denticle, then each side a slightly larger sj»ine (A, h) separated from

the sub-nu'dian ones by a single denticle, then four alternately

smaller and l:irg(>r spines [c, d, ('.,/') se|»arated from each other by

two denticles at each intors])ace, the outer (/') of these four sjtines

beino" the eighth, c(»unting from either side, ami the largest. Outside

this large sjtine there arc, each side, seven smaller sj)iiu's separated by

interspaces which increase toward the outer margin and are armed

with from two to nine denticles. The space between the outer spine

each side and the tooth of tlu' lateral margin is gri'ivtei- than any of

the interspaces bctwi-en the spines and is armed with twelve or thir-

teen denticles. In the other specimen in this stage there are only

twenty-five spines, a single niediiin spine (Plate XIA'III, tig. 14,^^)

taking the place of the two sub-nu'dian spines and the denticle

between them ; otherwise the Sj)ini'S and denticles are essentially as in
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the first specimen and as in tlio succeeding stages. This is appar-

ently an abnormal variation in the armament of the telson. The
arrangement of these spines, and especially whether they be odd or

even in number, I have usually found a constant character for distin-

guishing the larval forms in different groups of Podophthalmia.

Of this stage only two specimens Avere secured, one taken on the

evening of September 4, the other in the day-time the next day. In

coloration and habits they agreed essentially with the young in the

succeeding zoea-stages.

Third zoea-stage.

In general form and a]»]K'arance the zoeas in this stage very

closely resemble those in the second, although they have increased

considerably in size, and especially in the length of the rostrum,

which is relatively longer and more slender. They are about 4"5"""

in length, from the ti]) of the rostrum to the posterior mai'gin of the

cara})ax, and nearly :V""' between the tips of the lateral spines.

The ocular peduncles and eyes have increased only slightly in abso-

lute size and are relatively smaller than in the second stage.

The antennuhe liave changed very little. There is, as yet, appar-

ently no distinction of peduncle and fiagellum, although the two or

three distal segments of the latter are faintly indicated, and, on the

inner side, there are two or three filiform setae on tlie penultimate

segment in addition to the three on the terminal segment.

The antennae (Plate XLVI, fig. ;3) have increased in size but show

no indication of segmentation. The two dentiform processes (a, ft,

fig. 3) have each two or three minute spir.ules at the tip, but are

otherwise unchanged ; the fiagelluin (c, fig. 3), however, has increased

so as to project beyond the tips of the dentiform processes and show

))laiiily its true character.

The labrum, labium, mandibles, and first maxillse, excej)t in size,

do not differ appreciably from their condition in the second stage.

The second maxillae differ but little, the scaphognath being a little

more elongated posteriorly, so as to approach slightly its form in the

next stage.

The first and second pairs of maxillipeds differ from those of the

first stage only in the exognaths, which are each furnished with ten

instead of eight terminal seta'.

The lobes representing the third pair of maxillipeds and the four

anterior pairs of thoracic legs have increased much in size, are

Trans. Conn. Acad., Vol. III. 41 April, 1877.
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curled up closely beneath the sternum, and, in all the specimens

examined, show the segments of the succeeding stage faintly indi-

cated within. The posterior thoracic legs appear to be represented

by a small process each side, just back of, and nearly hidden by, the

rudimentary fourth pair. Four pairs of gills on each side are repre-

sented by two slender processes, one above the other, at the bases of

each of the four anterior pairs of legs

The proximal segments of the abdomen are almost exactly as in

the previous stage, except there are very slight elevations beneath

the second, third, fourth, and fifth segments, where the rudimentary

legs are to appear in the succeeding stage. The sixth segment is

still consolidated Avith the telson. Its appendages (Plate XLVIII,

fig. 11) have increased much in size and the inner lamella (c, fig. 11)

has appeared as a small, sack-like appendage at the base of the outer

lamella {b, fig. 11), which is twice as long as in the previous stage,

very narrow, only slightly expanded in the middle, and sub-truncate

at the extremity, where it is furnished with four slender and curved

setoe, of which the median ones are longer than the lamella itself,

while the outer are little moj-e than half as long. The telson is of

the same form as in the previous stage and has the same number of

ciliated spines in the armament of the posterior border, while the

number of denticles in the interspaces has considerably increased,

though they are not as numerous as in the succeeding stage. In one

specimen there is the same abnoi-mal arrangement of the spines

described under the second stage, that is, there are only twenty-five

spines in all, one median spine taking the place of the two sub-median

spines and the denticles separating them.

The young in this stage were taken on several occasions, both in

the day-time and evening, from August 28 to September 8. Their

habits and coloration in life were the same as in the last zoea-stage.

Last zoea-stage.

The length from the tip of the rostrum to the posterior margin of

the carapax and the breadth between the tips of the lateral spines

are nearly twice as great as in the second stage, while the rostrum is

relatively considerably longer than in either the second or the third

stage, its entire length being nearly twice that of the carapax proper.

The general form and appearance of the young in this stage are

shown upon Plate XLV, figs. 2, 3, 4.

The eyes and ocular pediincles are very little larger absolutely

than in the last stage. The diameter of the cornea is scarcely a
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fourth the horizontal diameter of the carapax and the ocuhir pedun-

cles are slightly shorter, proportionally, than in the earlier stages.

In the antennulffi (Plate XLVI, fig. 5) the segmentation of the

tlagellum is carried nearly or quite to the peduncle, which, however,

shows no division into segments and no clear separation from the

flagellum. The ilagellum itself is composed of six or seven segments

which are a little broader than long and of which the terminal one is

furnished with three filiform setae, the penultimate and antepenulti-

mate with two or three each which are situated upon the inner side

at the distal articulations, while there are two similarly situated, hut

small and i-udimentary setoe, upon the fourth segment from the tip.

The antenna? (Plate XLVI, fig. 4) have increased very much in

size, and the flagellum is much longer than the peduncle. The

peduncle shows but one distinct articulation, which is near the bases

of the dentiform processes and apparently represents the articulation

between the second and third segments of the fully developed

appendage. The dentiform processes («, &, fig. 4) ar-i much more

slender and propoitionally smaller than in the third stage, but are

armed with the same number of spines at the tips. The flagellum

(c, fig. 4) externally shows no indication of segmentation, but, in all

the specimens examined, the articulations of the flagellum of the

succeeding megalops-stage is distinctly visible beneath the integu-

ment, as shown in the figure.

The labrum (Plate XLVI, fig. 5, J), as seen from beneath, is a

conspicuous, somewhat ti'iangular prominence between the bases of

the antennula? and the mandibles, with the margins and the inferior

surface regularly rounded and without emarginations at any point.

The labium (t?, fig. 5) is deeply bilobed, the regularly rounded lobes

projecting each side of the oral opening nearly to the tips of the

mandibles and having the edges clothed with microscopic hairs

throughout.

The mandibles (Plate XLVI, fig. 5, c ; and fig. 6) are almost exactly

as in the earlier stages. They are wholly without molar areas and

terminate in narrow crowns, which are only slightly different on the

right and left sides. In each mandible the inferior half of the coronal

margin is armed with four stout teeth, tlie two most inferior of which

are stout and obtusely pointed, the inferior being straight and much

longer than the next, which slightly overlaps it at base, as seen from

before or behind, and curves upward at the tip ; while the two suc-

ceeding ones are short, triangular, more acute, and separated from

each other by a considerable sinus. On the right side the inferior
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tooth is a little more anterior than the others, while on the left side it

is more posterior, so that these inferior marginal teeth overlap each

other when the mandibles are brought together. The posterior

side of the crown of the right mandible is slightly convex while the

same side of the left is a little concave. On the superior half of the

crown of each mandible there is a series of six slender processes, or

teeth, of which the live inferior are very slender, setae-like, and twice

as long as the two triangular teeth just mentioned, while the superior,

or marginal, one is stouter, acutely triangular, and divided at tip. In

the specimen figured, there is also a small supplementary tooth on the

right mandible, between the bases of the third and fourth processes of

the superior half of the margin.

The first pair of maxillae (Plate XLVI, fig. 5, e; and fig. 12) have

changed scarcely at all, except in size, from their simple form in the

second stage. The inner lobe has a single rudimentary seta, on the

inner edge near the tip, in addition to the three terminal ones, the

three teeth of the outer lobe are relatively a little shorter and very

slightly stouter, and the palpus is considerably larger.

The second pair of maxillre (Plate XLVII, fig. 2) have advanced

considerably in their develoj^ment and have apparently partially

assumed their adult function. The protognath shows a slight indica-

tion of division into two lobes {ci^ h, fig. 2), of which the outer projects

as far forward as the scaphognath, from which it is much more deeply

separated than in the earlier stages. The scaphognath is twice as

long as the protognath, and its posterior portion is elongated and

narrowed at the extremity as in the later stages, but its inner edge is

not yet margined with the characteristic plumose setse.

The first and second pairs of maxillipeds (Plate XLV, figs. 2 and 4,

and Plate XLVII, fig. 5) have the same form and structure as in the

preceding stages, the only noticeable difiference being the addition of

still another pair of setse at the tip of each exognath, making twelve

in all, of which the outer are scarcely more than half as long as the

middle ones, which are not quite equal in length to the exognath

itself.

The third pair of maxillipeds and all the thoracic limbs (Plate

XLV, fig. 4, and Plate XLVIII, fig. 9) are still curved inward

beneath the sternum and entirely inclosed within the posterior por-

tion of the carapax, although the four anterior pairs of legs have

begun to show clearly the form which they assume in the megalops

and later stages. The third pair of maxillipeds (J, Plate XLVIII,

fig. 9) are still sub-cylindrical and in each the meral segment is only
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a little stouter than the palpus, of which only the elongated dactylus

and the stout propodus are clearly distinguishable. The first four

pairs of thoracic legs (e, d, e,/\ fig. 9) show clearly only the distal

segments, but, of these, the propodus and dactylus have already

assumed the peculiar form which characterizes them in the niegalops-

stage and in the adult, the propodus in the first, second, and third

pairs being elongated into a prominent lobe on the inside at the

distal extremity, while in the fourth pair (/', fig. 9) this segment is

truncated at the distal end. The posterior thoracic legs (g, fig. 9)

are slender, cylindrical, and the three distal segments are nearly equal

in length, but there is no indication of the cheliform character which

they assume in the megalops-stage. The branchial processes (A, fig. 9)

above the bases of the legs have become more conspicuous than in the

earlier stages and represent the full number of branchite in the adult,

there being one above the base of each external maxilliped and two

each upon the four anterior thoracic legs, making nine pairs in all.

The first segment of the abdomen is still in the same condition as

in the second stage, not distinctly differentiated from the thorax, and

the remaining segments themselves retain very nearly the same form

as before. The abdominal legs of the second, third, fourth, and fifth

segments (Plate XLV, fig. 4) are as long as the segments to which

they belong, but are still sack-like, the base separated from the

terminal portion by an obscure articulation, but with no indication

of the separation of the outer from the inner lamella, and the

appendages are evidently of no functional importance. The sixth

segment is still closely Tinited with the telson, although some of

the specimens show a slight indication of the approaching articula-

tion. The appendages of the sixth segment (Plate XLVIII, fig. 12)

have increased very much in size, and the outer lamella (b) has

become narrow-oval in outline, about a third as broad as long, with

the tip rounded and furnished with six strongly curved setie, of

which the third from tlie oiitside is much longer than the lamella,

itself, while all the others are much shorter and decrease in length

each way from the longest. The inner lamella (e, fig. 12) is two-

thirds as long as the outer, nearly as broad, and regularly oval in

outline, without hairs or set».

The telson (Plate XLY, figs. 3 and 4) has the same form as in the

previous stages. Its posterior margin (Plate XLVIII, fig. 15) is

armed Avith twenty-six ciliated spines having the same arrangement

as in the earlier stages. The number of denticles in the interspaces

between the spines is very much increased, there being three between
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sub-median spines, two eacli side between these and the next outside

of them, from three to twelve in each intersjiace between the other

spines, and from thirty to foi'ty between the outer spine each side

and the tooth of the Lateral margin.

The zoese in this stage were frequently taken at the surface, both

in the day-time and evening, from August 7th to September 10th.

In life, the entire animal is translucent with a slight greenish tint,

except a brilliant spot of orange pigment with metallic lustre at the

base of the rostrum and at the base of each of the lateral spines.

These bright spots Avould often catch the eye in looking into the

water when the rest of the animal was nearly or quite invisible.

Their motions in the water are similar to those of zoeae in general,

except that the movements are much less rapid, and they seem com-

paratively sluggish in habit. In aquaria they were usually seen

swimming slowly about the surface, seldom whirling oif with the mad,

gyratory motion so characteristic of many Brachyuran zoete.

Individuals in this last zoea-stage, when kept in confinement, often

changed, at a single molt, to the megalops-stage described beyond,

although many died during the process of molting.

The following table shows the relative measurements of specimens

in each of the zoea-stages described

:

Second Third Last
Stage. Stage. Stage.

Length from tip of rostrum to posterior margin of carapax, .

.

3-2mm. 4-4mm. 6-2™™-

Breadth between tips of lateral spines, . 2-2 2-8 4-3

Length of rostrum from tip to front of ocular peduncles, 1-8 2-8 4-7

•' " lateral spines, about, '8 I'l 1"3

" " carapax from front of ocular peduncles to posterior

margin, -- 1'3 18 2'5 •

Breadth of carapax in the middle, "9 12 r7

'< " telson, - -. -7 1-0 1-4

Megalops-stage.

In specimens recently changed from the last zoea-stage, the length

of the carapax is slightly over 3"'"' and that of the abdomen, when

fully extended, a little less, while the breadth of the carapax is about
2mm j^ general form, the young in this stage resemble the adult,

but diffei- essentially in much the same way that the Brachyuran

megalops diflTers from its adult ; the eyes still being relatively large,

with short and thick peduncles, as in the last stage of the zoea, while

the second, third, fourth, and fifth abdominal segments, as well as the

sixth, are provided with strong swimming appendages.
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The form of the cara}):ix resembles tliat of the adult very closely,

but is broader in proportion, being u half longer than broad ; the

lobes of the frontal margin (Plate XLV, fig. 5) are more obtuse and

much broader; and the lateral lobes form the antero-lateral angles of

the carapax, instead of being separated from the angles by a trans-

verse portion, each side, nearly as long as the thickness of the

peduncles of the antennie, while the lateral margins of the carajsax

are more regular in outline and do not project downward so much
between the fii'St and fourth pairs of legs.

The ocular peduncles are still very short and stout, though the

eyes have increased only a very little in absolute size since the last

zoea-stage. The cornea is a little elongated and occupies the lateral

portion of the tip of the peduncle ; its greater diameter is still about

a fourth of the horizontal diameter of the carapax and more than

half the length of the peduncle.

The antennulae (Plate XLVIII, fig. 1) reach to the extremities of

the peduncles of the antennae and show a marked advance over the

previous stages. The segments of the peduncle are fully difierentiated

and the second segment {h, fig. 1) has already a marked prominence,

tipped with a few plumose hairs, in place of the elongation, so con-

spicuous upon the inferior side of the distal extremity of the same

segment in the adult (Plate XLVIII, fig. 3). The flagellum [d, fig. 1)

is composed of eight or nine short and stout segments, all, except one

or two of the most proximal, armed inferiorly with jjliimose, or pecti-

nate, setse. The secondary fiagellum (e, fig, 1) is represented by a

single, minute segment tipped with a plumose seta.

The antennae (Plate XLV, fig. 5, and Plate XLVI, figs. 7, la) are

slightly longer than the carapax and have assumed all the important

features of the adult. The segments of the peduncle (Plate XLVI,

figs. 7. la) are fully diflTerentiated and essentially the same as in the

adult ; and they have the same peculiar structure adapted to folding

the antennte across in front of the mouth and within the external

maxillipeds. To aid in accomplishing this, there is a supplemental

segment or rod (/, figs. 7, 7«) on the outer side of the third segment

—

and apparently a separately calcified part of it—which articulates

proximally just within the lateral spine of the second segment and

distally with the outer edge of the fourth segment, and is so separated,

by non-calcified, flexible integument, from the third segment itself, as

to move independently of it. When the antenna is extruded, this

supplemental I'od lies parallel with the outer margin of the third

segment, from which it is then separated by a considerable space of
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the non-calciiied integument ; but when the antenna is folded away
within the external maxillipeds, the rod is transverse to its former

position and is almost or quite hidden between the second and fourth

segments, the outer, calcified portion of the latter segment folding

over the previously exposed area of thin integument. The flagellum

is stout, tapers very gradually to an obtuse and rather thick tip, and

is composed of about twenty-five segments, which are very short

proximally, but increase regularly in length distally until, near the

tip, they are longer than broad. Each segment is armed upon One

side with a fascicle of long, pectinated setae. As seen in a transverse

section of the flagellvmi (Plate XLV, fig. 6), the outer one of these

setse, on each side of the fascicle, is strongly curved inward at the

extremity and much longer than the inner ones, which are nearly

straight and armed, for only a part of their length, with much shorter,

strono-er, flattened, and blade-shaped teeth. In this stage there are

usually from five to seven setae to each segment, the median one or

two often being simply aciciilar, or even very small and rudimentary.

This structure of the flagellum of the antenna is essentially the

same as in the adult, where, however, the number and size of the

satae, as well as the extent of their armament, is enormously increased

upon each segment, Avhile the number of segments is several times

greater than in the megalops-stage. In the ordinary adult specimens,

there are one hundred to one hundred and fifty segments in the

flagellum and eight to twelve setae to each segment. There are two

forms of these setie in each fascicle, as in the megalops-stage. The

outer one, each side of every fascicle, is very long and convolutely

curved inward at the extremity ; while all the others are shorter,

thouo-h varying much in lengtli among themselves, and nearly

straio"ht. The long, outer setae are armed, for nearly their whole

length, with very long, almost filiform, secondary setae, which are

arrano-ed in a double series along the inner side of the curve. These

secondary setae are exceedingly slender, very slightly tapering, from

•2 to -25™"' loiig?—the longer ones being on the distal half though not

at the extremity,—and are placed ' so thickly that, in the middle

portion of the seta, there are two hundred in the space of a millimeter.

The extremity of the shaft of the seta itself is unarmed for a very

short distance, curved sharply so as to be nearly parallel, with the last

of the secondary setae, and tapers to a very slender and acute tip.

The remaining setae of each fascicle are nearly straight, or very

slif>'htlv bent, and armed upon the outside of the curve. The teeth,

as in the outer setae, are arranged in two series, which here, however,
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approach so closely that the bases are nearly in the same line, those

of one series alternating with those of the other. The teeth them-

selves are much shorter than the secondary setae of the outer setae,

being -05 to -07'""' long, much stouter and less crowded, so that there

are about an hundred in the space of a millimeter in the middle

portion of the setaj. Near the base of the seta, a few of the teeth are

very slender and haii'-like, but the rest ai-e stout, truncated at the

tips, lamelliform, and placed with their bases transverse to the shaft of

the seta, but with the blades twisted nearly half way round, so that

the surface at the tip is nearly at a right angle to the base. The shaft

of the seta itself extends a little way beyond the teeth in an acutely

cultriform tip.

The oral appendages (Plate XLVI, figs. 8, 9, 13 ; Plate XLVII,

figs. 3, 4, 6, 7) have undergone a transformation even more wonderful

than the usual change from the zoea to the megalops. The mandibles

have lost, almost entirely, the structure and function usual to them in

all the Thoracostraca, and, together with the other oral appendages,

have assumed very nearly the adult form.

The labrum, as seen from beneath (Plate XLYI, fig. 8, «), is much
more elongated than in the zoea-stages, being about as broad as long,

but with the sides still arcuate outward and not at all incurved as in

the adult. The labium (e, fig. 8) is divided very deeply into two long

and obtuse lobes, fringed with microscopic hairs along the oral

marp:ins, and projecting forward, each side of the mouth, to the

coronal portions of the mandibles.

The mandibles (Plate XLVI, fig. 8, J, c, d) have become thin and

foliaceous and completely consolidated with the walls of the oral

opening. They have become differentiated, however, into two

portions, apparently corresponding to protognath and palpus, or

endognath, though these parts are not separated by distinct articula-

tions. The protognathal portion (^, fig. 8), corresponding to the

entire non-palpigerous mandible of the zoea-stages, is coalesced with

the lateral walls of the mouth, except at the broad foliaceous tip,

which scarcely i^rojects into the oral opening. The distal margin of

this is, however, obscurely dentate, the denticulation varying some-

what in different individuals in the same stage (fig. 8, />, and fig. 9),

although the mandibles have apparently ceased to perform any of the

usual mandibular functions. The endognathal portion (c, f7, fig. 8)

evidently represents a palpus with its segments completely coalesced,

although the fold between the terminal {(1) and the outer, spinous

portion (c) apparently marks the union of the two distal segments.

Trans. Conn. Acad., Vol. III. 42 April, 1877.
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Tlie distal extremity of the palpus is foliaceous, the margins obtusely

rounded and armed with long, plumose setae, which extend over the

oral edge of the labrum and the anterior edge of the mouth itself.

The outer margin (c), which is thickly spinous in the adult, projects

considerably laterally, but is, as yet, armed with only three or four

spines.

The first pair of maxilla? (Plate XLVI, fig. 13) have assumed the

general form and arrangement of parts which they present in the adult.

The inner lobe («, fig. 13) is relatively larger than in the zoea-stages,

being considerably broader than the outer lobe ; and is armed at the

tip, and a little way down the inner margin, with long and stout

seta3, most of which are slightly spinulose or plumose distally. The

outer lobe (i) is long, rather narrow, and the terminal margin is

obtusely rounded and armed with setiform spines, which are short

and stout toward the inner margin but increase in length outward,

and, at the outer margin, grade suddenly into very long and slender,

plumose setae, of which the outermost one is nearly three times as

long as the width of the lobe itself. On the inner, lateral margin

there are several plumose hairs and on the outer margin, a single

sliort spinule. The palpus (c) projects laterally from near the base

of the outer lobe as an irregular, sack-like appendage. The articula-

tion at the base of the inner lobe is much less distinct than in the

adult, although the articulation at the base of the outer lobe is

conspicuous.

The peculiar structure of the mandibles and maxillne of the adult

are more fully discussed in a special note at the end of this article.

The second pair of maxillae (Plate XLVII, fig. 3) have assumed

nearly the adult form. The lobes of the protognath («, i, fig. 3) are

deeply separated, and a small, supplementary, papiliform lobe («'),

tipped with a long, plumose seta, has appeared between the inner and

outer lobe, arising near the base of the inner. The terminal margin

of the inner lobe is armed with plumose setae, arranged in three

series of varying lengths, the longest, situated upon the very edge,

being nearly as long as the lobe itself The outer lobe is similarly

armed, but the setie are all much shorter and less plumose, and some

of them are stout and serrate. Between the outer lobe and the

anterior projection of the scaphognath, there is a small, triangular

lobe {d) apparently representing the endognath. The characteristic

fringing of plumose hairs has extended round upon the inner margin

of the broad, posterior portion of the scaphognath (e), which has

changed comparatively little since the last zoea-stage, ))ut still is of
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nearly tlic saiiu' form as in tlio adult, and has ajtparcMitly fully

acquired the adidt funetion.

The tliree pairs of maxillipeds (Plate XLVII, %. 4, 6, 7) have

assumed so nearly the adult form that detailed descriptions of them

are unnecessary.

As in the adult, the anterior lol)e of the protognath of the first

maxillipeds (Plate XLVII, fig. 4, fi) is very much elongated ; thi'

straight inner margin is thickly beset with plumose sette throughout,

and with an additional series of much longer setae on the posterior

half, and also at the extremity. The endognath seeins to be repre-

sented only by the long, slender, and soft appendage (^), apparently

arising from near the base of the inner side of the stout, two jointed

exognath (c). The basal segment of the exognath is nearly as long

as the distal lobe of the protognath, while the terminal segment is

somewhat shorter, but fully as broad, and thickly marginal through-

out with plumose setse, which become very long at its extremity. In

the adult, the terminal segment is more triangidar in outline and the

tip is more acute.

The endognath in the second pair of maxillipeds (Plate XLVII,

fig. 6, (i) differs in form slightly from that of the adult, being propor-

tionally stouter and less flattened ; the terminal segment, in partic-

idar, is proportionally, considerably shorter and consequently more

tapering. The basal segment of the exognath (6, fig. 6) is not so

much narrowed distally, and the oval, terminal segment is a little

narrower than in the adult.

The broad, opercular, external maxilliped (Plate XLVII, fig. 7) is

transversely truncated at the distal extremity where the ]>alpus

articulates, wanting almost wholly the conspicuous, rounded promin-

ence of the anterior angle, just within the articulation, in the adult;

and the posterior angle of the inner margin is less prominent and

more broadly rounded. The palpus is much less slender, less com-

pressed, and the terminal segment is proportionally shorter than in

the adult.

The thoracic legs, like the maxillipeds, are so mucli like those of

the adult, both in form and function, that detailed desci-iptions of

them seem needless here. The anterior pair (Plate XLV, fig. 5) are

a little more slender than in the adult, and the terminal segments, or

dactyli, are not quite as thickly margined Avith plumose setfe. The

second and third pairs are almost exactly alike and, together with

the fourth pair, are specially adapted for burrowing. The fourth

pair differ from the second and third principally in having the two
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terminal segments more simple in form, the propodus being nearly

square, while the dactylns is small and acutely triangular, with the

tip obtuse.

The posterior thoracic legs are exceedingly slender and, as in the

adult, are in life, usually at least, held concealed within the branchial

cavities. They are armed with comparatively few of the very slender

spinulose setae with which they are so abundantly furnished, espe-

cially toward the distal extremity, in the adult; and the series of

spinulose teeth upon the prehensile edges of the short fingers of the

cheliie are very short and composed of only a few individuals upon

each finger. There is no doubt that the peculiar position, structure,

and armament, of these slender posterior thoracic legs, in Hippa and

allied genera, specially adapt them for cleaning the branchiae and

branchial chambers of parasites and other foreign bodies. It is

worthy of note, in connection with this, that none of the maxillipeds

or thoracic legs possess any traces of either exipodal or epipodal

branches, some of the last of which perform the office of branchiae-

cleaners in the majority of the Brachyura and Macrura,

The abdomen (Plate XLVITI, fig. 4), when fully extended, is about

as long as the carapax and resembles that of the adult in the form

and proportions of the segments, but differs essentially in the struc-

ture of the appendages, especially those of the second to the fifth

segment, as is usual in the megalops-stage. The. first segment,* as

seen from above («, fig. 4), is a small plate, with the outline of the

* Latreille and Milne-Bdwards have mistaken this small first segment of the abdo-

men of Remipes and HiiJjM for the last segment of tlie thorax, and I am not aware

that the mistake has been corrected by any subsequent author. Latreille (Genera

Orustaceorum et Insectorum, i, p. 45) simply says of Reviipes iesiudinarius, " Cauda

segmento baseos aliis multo latiore." But Milne-Edwards (llistoire naturelle des

Crustaces, ii, pp. 203, 206, 208), after saying in the description of tlie genus Albunea,

"Le premier anneau de I'abdomen est petit, et regu dans une echancrure de la carapace

;

le second est au contraire tres-grand et presente de chaque cote un grand prolongement

lamelleux," goes on to say, under the genus Remipes, " Le dernier anneau thoracique,

qui porte ces appendices [les pettes posterieures], est complet en dessus, mobile, et pas

reconvert par la carapace, de maniere qu'on pourrait facilement le prendre pour le

premier segment de I'abdomen. Celui-ci est tres-grand, et presente de chaque cote

un prolongement lamelleux ovalaire qui chevancho sur la carapace; son bord posterieur

est echancre pour loger le second anneau abdominal, qui est ovalaire j
* * * * je

cinquieme et la sixieme sont egalement petits, mais sent sondes entre eux. * * * *

Les trois premiers anneaux portent, chez lafemelle, des filits oviferes simples." Under

Hippa, he further says, " Le dernier anneau thoracique u'est pas libre et a decouvert

comme chez les Remipedes ; mais le premier article de I'abdomen est a pen pres de
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segment of a circle, tilling nn arcuate siniis in the posterior margin

of the carapax; witli which, however, it is not yet consolidated, as

in the adult, for it is slightly movable upon the caiapax and usually

separates from it and remains attached to the second segment when
the abdomen is torn away from the cephalo-thorax. As usual in the

megalops-stage, and in the larval forms of Podophthalmia generally,

it is without appendages. The second-segment is about five times as

broad as long, three-fourths as broad as the carapax, and neai-ly twice

as broad as the third segment; its great breadth being a result of a

broad, lamellar expansion each side. The anterior margin is nearly

straight, and the lamellar portion each side slips slightly over the

posterior margin of the carapax, when the abdomen is folded beneath

the sternum. The lateral margins are very oblique and converge

rapidly to the posterior margin, which is no longer than the breadth

of the third segment, for the reception of which it is excavated

throughout nearly its whole extent ; but the lateral expansions do

not project so far posteriorly each side of the third segment as they do

in the adult. The margins each side are armed with a few stitf seta?.

The third segment is about as long as the second, the lateral margins

only slightly projecting and rounded and, together with the anterior

margin, armed with a few setie. The fourth and fifth segments are

nearly as long as the third, and each successively, very slightly nar-

rower than the one in front of it ; they both project very little

laterally and are sparsely armed on the lateral and anterior margins

with stifl" setae. The sixth segment is nearly as wide as the fifth and

only a little wider than long, both the anterior and posterior margins

meme forme, et les anneaux suivans presentent aussi la disposition que nous avoiis

deja remarqnee chez ces Crustaces."

Without any reference to the homology of the parts, so clearly shown by their

structure and appendages in the megalops-stage, there need be no question in regard

to the broad, winged segment in both Hippa and Reniipes being the second, from the

fact that it bears the first pair of large ovigerous appendages in the female, and that,

if it be the first, that somewhere, two of the succeeding segments must have become

completely consolidated into one, although there is no indication, in the segments

themselves, of any such consolidation. Quite as conclusive also is the fact that, in the

allied genus Albunea, while all the segments of the abdomen are perfectly distinct and

movable one upon the other, and the anterior ones have nearly the same form as in

Hippa and RemijMS, the small first segment is entirely free from the carapax, though

fitting closely in a deep sinus in its posterior margin, as described by Milne-Edwards

in the passage just quoted. Although this consolidation dorsally of the first segment

of the abdomen with the mandibular segment is of rare occurrence in the Malacostraca,

it certainly seems no more abnormal than the appearance of the last thoracic segment

in the same position, would be.
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beino- considerably curved outward in the middle. The telson is

proportionally a little broader than in the adult,—the breadth being

rather more than half the length, while in the adult it is usually less,

—

and much less acute posteriorly and at the anterio-lateral angles.

Tlie margin' is sparsely fringed, nearly all round, Avith slender setae or

hairs.

The appendages of the second, third, fourth, and lifth segments are

similar, tliough varying considerably in the length of the terminal

lamellie. The peduncles, or protopods, of the appendages of

the second segment (Plate XLVIII, fig. 5) are stout and nearly as

long as the breadth of the segment itself The outer lamella, or

exopod, («, fig. 5) is nearly as broad as the peduncle, more than half

as long, and margined with about twelve slender, plumose setae (fig.

5«), of which the terminal ones are nearly as long as the peduncle,

wliile the others decrease in length as they recede from the tip of the

lamella. The inner lamella, or endopod, (J, fig. 5) is a small papilli-

form appendage, not as long as the diameter of the peduncle, and

armed at the tip with a numbei* of very minute appendages, which

are apparently only extremely modified spines or setw. These append-

ages, as .shown in the accompanying illustrations (Plate XLVIII, fig.

6ffl, 6ft), are composed of a cap, shaped like a concavo-convex lens,

supported, on the less convex side, by a short peduncle inserted at

the margin and nearly vertical to the under surface of the cap. The

diameter of the cap. is from -007 to -OOO""" and the height from the

surface of the lamella about the same. In alcoholic specimens at

least, these appendages seem to be liard and chitinous, and I am at

a loss to understand what purpose they serve in the economy of the

animal, unless it be as scrapers for the removal of parasites and other

foreign substances from some part of the under surface of the body,

in which case it is difiicult to see jiist how they could be applied.

The appendages of the tliird, fourth, and fifth segments differ from

those of the second in the successive shortening of the peduncle, but,

more particularly, in the successive increase in the size of the inner

lamella, which in the a])pendages of the fifth segment (Plate XLVIII,

tig. 6) have become more than lialf as long as the outer; the inner

laraellse are similarly armed at the tips, and the outer are all alike

margined with long plumose sette, of which there are usually a very

few more on the posterior than on the antei'ior pairs.

The appendages of the sixth segment (Plate XLVIII, fig. 4) are of

nearlv the same form and ]n'0])ortion as in the adult. The peduncle,

or protopod, is stout, broadest distally, and a little longer than the
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segment itself. The termiiuil lamelUe :ire nearly alike, each being

almost as long as the peduncle, less than half as broad, oval, broadly

rounded at the tip, and fringed with slender, plnmose seta", which are

A'ery long at the tips of the lamelhv but shorter along the sides. The

outer lamella, or exopod, is connected with the peduncle by a very

short basal segment.

The young in the megalops-stage were frequently taken at the

surface in the towing-net from the "JSth of August to the 10th of

September. Most of them were taken in the evening, but single

individuals were once or twice taken in the day-time. They were

also several times obtained directly from specimens in the last zoea-

stage kept in aquaria, though the greater part of the zoeae so kept

died during the process of molting. The color of the megalops

(luring life is very much like that of the zoeae, except that the

megalops wants the spots of bright metallic pigment so conspicuous

in the zoea.

While in aquaria, the young in the megalops-stage swam rapidly

about the walls, at the surface of the water, but not quite as actively

as in the zoea-stages. When placed in a shallow dish of sea-water

with a little sand heaped up upon one side, they at once, on approach-

ing it, darted for the edge of the miniature sand-beach and backed

themselves into it, with an evident satisfaction and with an ease and

agility that could not have been excelled by their sand-loving parents

after months or years of practice. One, only a few hours after

changing from the zoea-stage, evinced the same anxiety to be settled

in a home of changing sand. They seemed perfectly content to

remain thus buried just at the edge of the water and were never

noticed to leave their tiny sand-beach, unless disturbed. If pushed

out of the sand and placed on the opposite side of the dish, they

swam uneasily about until they found their former retreat and at

once plunged themselves backward quite out of sight into it.

On the southern side of Fire Island Beach, Long Island, in Septem-

ber, 1870, I noticed the alacrity with which the young hippas buried

themselves in the beach, Avhen they were brought in and left on the

w^et sand by the waves, and then suspected they were just relinquish-

ino- their early pelagic hal)its, but unfortunately I preserved no

specimens at this time. A few days later, the young were found in

considerable numbers Inirrowing in the damp sand in company with

species of Orchestidte, just above the edge of the waves; a situation

in which I have never since observed either the young or adults.
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Three of the specimens, found upon the beach and preserved at tliis

time, prove interesting as they apparently represent a stage next

succeeding the raegah^ps. In these specimens the carapax is a little

over 4'"'" in length and the whole integument is of a much firmer

consistency than in the megalops-stage. The cephalo-thoracic

appendages have all advanced slightly toward the fully mature form.

The ocular peduncles have increased in length hut are more slender,

the diameter at the tips being apparently, absolutely very slightly

less than in the megalops-stage. In the antennula; (Plate XLVIII,

fig. 2), the distal prominence upon the under side of the second

segment of the peduncle, projects as far as tlie distal end of the third

segment and is more densely fringed with setae than before. The

flagellum has increased only slightly in length and has three or four

additional segments, but the secondary flagellum is a third as loug as

the primary and is composed of four segments, of which the ultimate

is as long as the penultiiuate and antepenultimate together. The

oral appendages and thoracic legs have changed comparatively little,

although the slender posterior pair of thoracic; legs are much more

completely armed with sette and spinules than before.

The first segment of the abdomen has become pretty firmly con-

solidated with the cfirapax, tliough the suture marking the union is

still conspicuous and much deeper than in tlie adiilt. The expansions

on the sides of tlie second segment are a little broader longitudinally,

and the tip and the antero-lateral angles of the telson are more acute

than in the megalops. The most marked change, however, has taken

place in the appendages of the anterior segments. In all three of the

specimens examined, there are no appendages whatever upon either

one of the five anterior segments. The sudden and total disappear-

ance of these appendages raises the question, wlicther the ovigerous

appendages of the female are derived directly from the swimming

legs of the megalops, or are developed specially, at a later period.

It is of course very difticult, if not impossible, to distinguish the

sexes, at so early a period, by any of the primary sexual characters
;

so that the three specimens examined may very likely all be

young males ; in which ease the early disappearance of the append-

ages might, naturally enough, be expected, as there are no append-

ages on any of the five anterior segments in the adults of that sex. I

have, however, examined several additional specimens of the young,

in which the carapax was less than 7""" in length, without, in any

case, finding even rudiments of api)endagcs on any of the anterior

segments of the abdomen. The smallest individual in which I have

been able to detect ovigerous appendages is a specimen, with the



S. I. /Smith— Early Stages of Ilippa talpoida. 3;j5

oarapax about 7'""' in length, from Egmont Key, Florida. In tliis

specimen, the appendages ni)on the second segment are very small

and slender, al)out 'S'""' i<>ng, unbranched, and composed of three

segments—as in the adult female (Plate XLYIII, fig. 16)—of which

the terminal one is very short and tipped with a sparsely plumose

seta, similar to a single other seta upon the side of the proximal

segment ; there are no other setaB or hairs discoverable. The append-

ages of the third segment are similar, but still smaller, being scarcely
.-mm long, and composed of two segments only ; although the newly

formed appendages, as seen through the integument, show indication

of division into three segments. No appendages whatever were

discoverable upon the fourth segment. As the specimen was about

to molt, there is a mere possibility that there may have been very

rudimentary appendages upon this segment. In the adult female

there are three pairs of unbranched appendages, composed of three

segments each, and borne upon the second, third, and fourth seg-

ments ; no appendages w^hatever being borne upon the fifth segment.

In matui-e specimens of ordinary size (in which the carapax is about

20""" long), the appendages of the second segment (Plate XLVIII,

fig. 16) are about 10"'"' long; those upon the fourth, about 3-5""",

while those upon the third are intermediate between the two other

pairs. Though these observations are by no means conclusive or

satisi'actory, it seems probable that the egg-bearing appendages of

the adult Jllppa are special developments, and not metamorphosed

from the swimming legs of the megalops-stage.

The following table gives, in millimeters, the results of measure-

ments, of the megalops and later stages, side by side for comparison.

The measurements in the second column are from one of the three

specimens, previously referred to, from Fire Island Beach, Long-

Island ; the others are from specimens from Vineyard Sound.

Megalops. Fire I. M;ile. Male. Female. Female.

Length of carapax, 3-2 4-3 8-3 14-0 13-0 20-6

Breadth of " 2-0 2-8 6-2 10-5 9'0 15-4

Length of abdomen, 3-0 4-5 9-0 16-0 14-5 25-0

" ocular peduncle, 6 -7 2-4 38 36 4-G

Diameter of ocular peduncle at tip, '3 '25 '4 '5 -5 -6

Length of antennula, I'O I'S 3-8 5-6 5-4 7-0

antenna, 3-4 4-8 lO'O 19-0 16-0 25-0

" ultimate segment of anterior legs,' "8 \'i 3'0 4-1 3-8 5-8

" peduncle of appendage of sixth

segment of abdomen, -65 TO 2-0 3-0 2-8 4-6

lamella of the same, '65 1-0 2'0 2-9 2-8 4'5

telsou, 1-7 2-5 5-3 92 8-5 14-()

Breadth of " ' - 9 1-3 2-4 4-0 3-9 7-0

Trans. Conn. Acad., Vol. III. 43 May, 1877.
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A zoea from Zanzibar described briefly by Clans, in his recent

work on the development of C-rnstacea,* and by him doubtingly

regarded as one of the early stages of some species of Albunea, is

certainly the larva of some near ally of Hippa^ though the figures

and description are scarcely sufliciently detailed for a close compar-

ison with the here described zoea-stages of that genus. The zoea

described by Claus is apparently in a stage corresponding to that

which I have called the third zoea-stage of Hippa^ l)ut it is already

much larger than the zoete of the last stage in that genus. As far as

can be judged from Claus' imperfect figures and description, the

most important character, distinguishing his zoea from that of Hippa.,

is the presence of the exognaths of the external maxillipeds, which

form a third pair of SAvimming appendages somewhat smaller than the

two anterior pairs ; all the otiier distinctions seem to be.of minor import-

ance. The exognaths of the external maxillipeds are entirely wanting

in the adiilt TlippidiB but are present in the Albunida% and their

])resence in the supposed Alhunea zoea, coupled with their absence

in the latest zoea-stages of Hippa, tends strongly to confirm Claus'

supposition that his zoea really belongs to the Albunidie, and most

likely to the genus Albunea.

From his examination of this so-called zoea of AUmrtea, together

with Fritz Midler's note upon the zoea of Hippa emerita, previously

referred to, Claus concludes that the larval stages of the Hippa and

Alhunea grou}) of crustaceans agree much more closely with the zoea-

stages of the Bi-achyui-a than with the larval stages of the Paguroids

or any of the JMacrura. The additional evidence, derived from the

nearly complete post-embryonal history of Hippa, here presented,

al)undantly confirms this view. There is nothing in the zoea- or

megal ops-stages of Hippa to recall particularly any of the known

early stages of the Paguroids, while there is much that forcibly

recalls the Brachyuran zoea and megalops. The only conspicuous

character distinguishing the Hippa and Albunea zoea from the

ordinary zoe^ of Brachyura, is the absence of a dorsal spine upon the

carapax, and this is apparently a distinction of minor importance.

Claus has suggested a resemblance between these Ilippoid zoea; and

the Erichthua larval stage ; the motions and color of the living zoeae

of Hippa do certainly remind one of the early stages of some of the

Stomatopods ; l)ut these distant resemblances do not appear to be

* Untersruchiingen zur Erforschung der fTenealng-ischen Grimdlag-e des Crustaceen-

Systems, Wein, 1876, p. 59, plate ix, figs. 1-10.
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the result of any structural similarity. In fact tlie i'ull series ot the

early stages of Ilip-pa shows couclusively that the young undergo an

essentially Braehyural, zoea and niegalops, post-erabryonal deveU)j»-

nient, and it furnishes an important addition to the evidence tendintr

to confirm the view that the Anomoura are a heterogeneous group,

made up, probably, of outlying Braehyural and Macnn-al families.

Xott on, the Structure of the Mandibles and Maxilla^ in Hvpj^a and
liernipes.

In the description of the megalops-stage, I have already alluded to

the remarkal)le structure of the mandibles and the first pair of nuix-

ilhe in the adult Hippa, but these appendages in ^i'^j/>« and the allied

genera seem worthy of more special attention, since they furnish

important characters for distinguishing the Hippidae and Albunidiie.

Although the oral appendages of Alhrmea, and apparently also of the

allied genera, Blepharopoda Randall and Lepidopa Stim{>son, have

been correctly described l)y all the later authorities, the structure

and homology of the parts of the mandibles and the first pair of max-

illae in Hippa and Remipes, though very important in a taxonomic

point of view, seem to have been misunderstood by all carcinologists

who have written upon these genera.

Milne-Edwards, in his great general work on crustaceans, appears

to have been the first to describe, with care, the oral appendages of

any of the Hippida- or x^lbunidae, and the erroi's, into which he fell

in describing Hippa and Remipes, have been perpetuated by suc-

ceeding writers. To be sure, J. C. Fabricius had before descril)ed

the parts about the mouth, in his original description of the genus

Hippa (Supplementum Entomologiae Systematica^, p. 329), but his

account of the inner a])pendages is so confused that I am quite

unable to understand what parts he had in view as the mandible and

its palpus. He says, " 3Iandihida brevis, cornea, fornicata, obtusa,

dorso palpigera. Palpus setaceus, tenuis, uti videtur multiartic-

ulatus," which could scarcely be made to apply to the parts of the

mandible as they really exist, either in Hippa or RemijMs. Milne-

Edwards, in his description of the genus Remipes (Histoire naturelle

des Crustaces, ii, p. 205), says, " Les machoires de la seconde paire

ne presentent rien de bien remarquable ; celles de la premiere paire

sont tres-petites, et refoulees en avant, entre la mandibule et la lev re

superieure, qui est tres-grande et fort saillante. Enfin la man-

dibule, qui est fortement dentelee, porte un palpe compose de

deux petits articles lamelleux, separes du corps de la mandibule par

un grand sillon membraneux." This strongly dentate "mandible''
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is evidently the terminal portion of the inner lobe of the first maxilla

(Plate XLVII, fig. 10, a) ; but its " palpus composed of two small,

lamellar segments " is not so easily interpreted, though it may
possibly be the real mandible itself. In the figures of Remipes testii-

dinurius given in Milne-Edwards' volume on the Crustacea in the

third edition of Le Kegne animal de Cuvier, figure 1'', plate 42, is

simply the inner lobe of the first maxilla, which is entirely wanting

in the otherwise correct figure of the maxilla itself; but the only

alhision to the mandibular palpus is in the explanation of figure, " 1'',

Mandibules (ces organes sont depourvus d' appendice palpiforme)."

In Milne-Edwards' description of the genns Sippa (Histoire naturelle

des Crustaces, ii, p. 207) no reference is made to the maxilhe or man-

dibles, and no part of either of these appendages is given in the

figures of If. emerita in Le Regne animal de Cuvier.

De Haan's figures of mouth appendages of Remipes (Fauna

Japonica, Plate Q) are like those of Milne Edwards just referred to,

except that he has left the basal portion of the inner lobe of the first

maxilla propei'ly attached in jslace to answer for the inner lobe which

he describes as the " lacina interna brevissima" (op. cit., p. 201).

De Haan however failed to find the mandibular palpus, for he dis-

tinctly says in the description of these maxillary mandibles, " palpis

nullis." In regard to Ilipjxi, De Haan seems to have been more

fortunate, for, in his description of the genus (op. cit., p. 201), after

correctly describing the maxillje, he says, " Mandibukc minutissimae,

cartilaginejB, corona Integra, palpis membranaceis triarticidaris."

His figure of the mandible of Hippa Asiatica (op. cit., plate Q

;

copied as figure 14, Plate XLVI, of the accompanying illustrations),

although evidently drawn from the real mandible, is apparently very

incorrect.

The following descriptions and figures of the mandibles and max-

ilhe in Hippa and Remipes are taken from H. talpoida Say, and R.

Pacificus Dana.

Hippa.—The form and position of the labrum, labium, and mandi-

bles, as seen from beneath, are shown in figure 10 on Plate XLVI.

The mouth is a narrow, longitudinal opening bounded, each side and

posteriorly, by a margin raised above the general surface of the

buccal area, and in front, by the labrum ('^, figure 10), Avhich projects

anteriorly as a triangular, laraelliform plate above the epistome, from

which, however, it is separated by a considerable space. Beneath

the labrum, the margin of the ejnstome is reflected and projects

forward each side into a slender, lamelliform process (h) tiijped with
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very long, plumose seta? extending along each side of the lal)runi.

At the sides of the oral opening are the mandibles (c, d, e), the tips

of their paljti (g) approachhig each other just in front of it. The
mesial side of the basal portion of the mandible is consolidated with

and forms a part of the raised lateral margin of the oral opening,

while the outer side is continuous with and consolidated to the buccal

walls each side. The palpus arises from this basal portion of the

mandible and inwraps the posterior part of the margin of the labrum

by means of an oblique fold, which distinctly separates it into an

outer ((/) and an inner {e) portion. This oblique fold is most marked

at the anterior extremity of the palpus, where it presents a sigmoid

curve, the thickening of the palpus posteriorly rendering it less

distinct though well seen in a transverse section, as in figure 10a.

The free margin {d, figure 10) of this outer portion is thickly armed

with a series of stout spinules, while the inner portion projects above

the posterior part of the labrum, as a broad, oval-pointed, lamelliform

lobe, the edges of which are thickly beset with slender seta?. The

coronal portion (c) of each mandible is a broad, obtusely rounded,

thin lamella, the free terminal part of which lies just above the

palpus. Each lamella of the deeply bifid labium
(
/') lies just above

the mandible each side and closely infolds the margin of the oral

opening.

The protognathal portion of the first maxilla (Plate XLVII, fig. 8)

is divided into two deeply separated lobes and fits closely upon the

labium and mandible. The somewhat oval, terminal portion of the

posterior, or inner, lobe («, fig. 8) lies just over the lobes of the

labium each side, and the whole length of its nearly straight, inner

margin is lient downward into the posterior part of the oral opening,

and is edged with a double series of long, serrate setjie ; while the

outer convex surface is armed with a scattered, double line of minute

spinules. This terminal poition of the lobe is free all round, except

near the outer, posterior angle wdiere it is connected with the buccal

walls, and where a thickened, rod-like portion connects it, by an

imperfect articulation, w^ith the l)ase of the anterior lobe. The anterior

lobe (h) is very long and narrow, and its oblique, terminal margin

lies just over the inner portion of the mandibular ])alpus, and is

thickly armed with short, setiforni spinules, while the lateral margins

are thickly clotlied with slender, ])limiose seta^, of which those at the

anterior extremity of the outer margin are very nuich the longest.

The palpus (c) is soft and sack-like, arises from near the base of the

anterior lobe, and projects laterally into the etterent passages of the

branchial chamber.
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The second i)air of maxillie offer no marked peculiarity and are

essentially of the same form as in the megalops-stage (Plate XLVII,

fig. 3). The two principal lobes of the protognath are very similar

in form and structure to, lie directly over, and doubtless act in direct

conjunction with, the two corresponding lobes of the first maxilla.

Remipes.—The general structure and arrangement of the parts

of the mandibles and both pairs of maxilla? is the same as in Ilippa,

but there are important differences in the details of the foi'ni and

structure of special parts, particularly in the posterior lobe of the

protognath in the first pair of maxilla?.

The mandibles (Plate XLVII, fig. 9) are consolidated with and

closely invest the walls of the oral opening as in Hippa, but the

j)rotognathal portion («) is farther removed from the opening, is even

more rudimentary, its margins are unarmed, and it apparently serves

only as a base for the attachment of the palpus. The free margin

(b) of the outer portion of the palpus projects in an obtuse angle in

front and is armed with a few, very stout, short, and obtuse spines.

The inner portion (<•), lying just above the labrum, is somewhat

orbicular, and its terminal margin is armed witli numerous, exceed-

ingly long setie, of which the longest are plumose.

The terminal portion of the posterior lobe in the first pair of max-

illae (Plate XLVII, fig. 10, «) is a thick, heavily calcified, rectilinear

plate united, by a broad articulation, with the basal, rod-like portion

and at the posterior angle, directly with the buccal walls. Its

terminal margin is armed externally with a series of five, very large,

short, stout, conical, dentiform spines, and at the angles at each end

of the scries with a similar, but very much smaller spine. Upon the

short posterior margin there are several still smaller spines of the

same character. The terminal margin beneath is thickly beset with

stout, plumose setae projecting inward. The anterior lobe [b) is long,

very narrow to near the expanded, spatulate extremity, the convex

terminal margin of which is densely armed with setae which are stout

and spiniform, except anteriorly where they are long and more

slender. The palpus (c) is nearly the same as in Ilipjm, but a little

shorter and thicker.

The different parts of the second pair of maxillae are arranged in

the same way as in the Hippa, but the posterior lobe of the proto-

o-nath is pi-oportionally much smaller and its edge is armed with very

lono", plumose sette, which are of nearly uniform thickness to very

near the tijis ; while the anterior lobe is spatulate in form and thickly

armed with similar, but somewhat shorter, seta-.
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EXPLANATION OF PLATES.

Plate XLV.

Figure L—Zoea in the second stage, ventral view, with the abdomen bent forward
beneath the cephalo-tlaorax so as to show the dorsal side of the terminal portion of
the abdomen, enlarged twenty-four diameters.

Figure 2.—Zoea in the last stage, dorsal view, enlarged twelve diameters.
Figure ?>.—The same, in the same position as in figure 1, ventral view, the natatory
Umbs omitted, enlarged twelve diameters.

Figure 4.—The same, lateral view, enlarged twelve diameters.
Figure 5.—Megalops just changed from the last zoea-stage ; dorsal view of anterior

portion of the animal showing the eyes, antennula;, antennae, and the extremities of
the first pair of thoracic legs, enlarged twenty-four diameters. The antennas are
shown fully extruded and the whole animal under slight compression.

Figure 6.—One of the segments of the flagellum of an antenna, megalops-stage, seen
in transverse section to show the arrangement of the seta3, enlarged forty diameters.

Plate XLVI.

Figure 1.—Anteunula, second zoea-stage, enlarged seventy-five diameters.
Figure 2.—Antenna of the right side seen from beneath, second zoea-stage, enlarged

seventy-five diameters: a, h, dentiform processes ; c, flagellum.

Figure 3.—The same, third zoea-stage, enlarged seventy-five diameters; a, b, denti-
form processes ; c, rudimentary flagellum.

Figure 4.—The same, last zoea-stage, enlarged forty diameters : a, b, dentiform pro-
cesses

;
c, rudimentary flagellum showing the multiarticulate flagellum of the

megalops-stage already formed within.

Figure 5.—Antennuhe and inner mouth appendages seen from beneath, last zoea-stage,
enlarged thirty-six diameters ; a. a, anteunulje

; b, labrum ; r, mandible
; d labium •

e, first maxilla.

Figure 6.—Tips of the mandibles, last zoea-stage, enlarged 150 diameters.
Figure 7.—Peduncle of the antenna seen from beneath, megalops-stage, enlarged

twelve diameters ; a, b, c, d. e, segments of peduncts
; /, supplementary rod or plate.

Figure 8.—Labrum, labium and mandibles seen in place from beneath, megalops-stage,
enlarged seventy-five diameters ; a, labrum ; b, coronal portion of mandible ; c, d,

mandibular palpus ; e, labium.

Figure 9.—Coronal portion of the mandible of another specimen in the same stao-e

enlarged 150 diameters.

Figure 10.—Labrum, labium, and mandibles seen in place from beneath, adult female,
enlarged twenty-four diameters; a, labrum; h. sette-bearing tubercle above tlie

margin of the labrum; c, coronal portion of tlie mandible
; d, lateral spinous maro-iu

of the basal portion of the mandibular palpus ; e, terminal portion of the palpus

:

/, labium; g, h, line of the section shown in figure 10a. The letter /;, is directlv
over the anterior extremit}^ of the elongated mouth opening. 1 Oa, outline of a
transverse section of the mandible through the line gh in figure 10 ; the dotted lines

representing the anterior edges of the appendage projected upon the section; r, tip

of the coronal portion of the niandilile
; ;/, lateral spinous margin of the palpus

;

Ji , inner extremity of the terminal portion of the palpus.

Figure 11.—First maxilla of the left side seen from beneath, second zoea-stage.
enlarged seventy-two diameters

; « , inner lobe ; b, outer lobe ; c, palpus.

Figure 12.—Same, last zoea-stage, enlarged seventy-two diameters.

Figure 13.—Same, megalops-stage, enlarged seventy-five diameters.

Figure 14.—Mandible of Hippa Asiatica, copied from DeHaan, Fauna Japonica,
Crustacea, Plate Q.

Plate XLVTI.

Figure 1.—Second maxilla of the left side seen from beneath, second zoea-stage,

enlarged thirty-six diameters ; aprotognath; ft, scaphognath.

Figure 2.—Same, last zoea-stage, enlarged thirty-six diameters: «, b. protognath :

c, scaphognath.
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Figure 3.—Same, megalops-stage, enlarged forty diameters; a. a', b, lobes of the pro-

tognath ; d, endognath ;
c, scaphognatli.

Figure 4.—First maxiUiped of the left side seen from beneatli, megalops-stage,

enlarged forty diameters ; a, protognath ; b, endognath ; c, exognath.

Figure 5.—Second maxiUiped of the left side seen from behind, last zoea-stage,

enlarged forty diameters ; a, protognatli ; b, endognath, c, natatory exognath.

Figure 6.—Second maxiUiped of the left side seen from beneath, megalops-stage,

enlarged forty diameters ;
o, endognath ; b, exognath.

Figure 7.— Third (external) maxiUiped of the left side seen from beneatli, megalops-

stage, enlarged twenty-four diameters

Figure 8.—First maxilla of the right side seen from beneath, adult female Hippa.

enlarged twelve diameters ; «, inner lobe ; b, outer lobe ; c. palpus.

Figure 9.

—

Remipes Pacificus. Mandible of the right side seen from beneath, adult

female, enlarged twenty-four diameters ; a, basal part of the mandible itself (proto-

gnath); 6. lateral spinous margin of the basal portion of the palpus; c, terminal

portion of the palpus.

Figure 10.—First maxilla of the right side, from the same specimen as the last figure,

enlarged twelve diameters ; n, inner lobe ; 6, outer lobe : c, palpus.

Plate XLVIII.

Figure I.—Antennula, seen from the side, megalops-stage, enlarged twenty-four

diameters ; c, b, c, first, second, and third segments of the peduncle ; d, primary fla-

gellum ; e, rudimentary secondary flagellum.

Fio^ure 2.—Same, from a specimen about 5"'"' in length, enlarged twenty-four diameters.

Figure :'..—Same, adult female, enlarged six diameters.

Figure 4.—Abdomen, megalops-stage, dorsal view, enlarged twelve diameters ; a, first

segment.

Figure 5.—One of the swimming legs of the second segment of the abdomen, megalops-

stage, enlarged twenty-four diameters; a, outer lamella, or exopod; b, inner lamella,

or endopod. 5a, portion of one of the plumose setaj, more enlarged.

Figure 6.—One of the swimming legs of the fifth segment of the abdomen of the same
specimen, enlarged twenty-four diameters; a, outer lamella; b, inner lamella.

Ga, 6&, side and front view of one of the pecuhar appendages with which the tip of

the inner lamella is armed, enlarged .500 diameters.

Figure 7.—Telson of adult male, dorsal view, enlarged two diameters.

Figure 8.—Same, adult female, enlarged two diameters.

Figure 9.—Rudimentary thoracic legs and third maxiliped of the left side, last zoea-

stage, enlarged twelve diameters; a, base of second maxilhpeds; b, third maxiUiped;

c d, e, /, g, thoracic legs ; h, branchife. The appendages are rei^resented as seen from

the inner (mesial) side and under slight compression so as to show the extremities

which are curled in and hidden from the outside ; in consequence, the branchiis are

represented diagramatically.

Figure 10.—Appendage of the right side of the sixth segment of the abdomen, second

zoea-stage, dorsal view, enlarged forty diameters; a, basal portion; 6, outer lamella.

lOrt, tip of lamella with the bases of the terminal seta3, enlarged 175 diameters.

Figure 11.—Corresponding appendage, third zoea-stage, enlarged forty diameters; a,

base; 6, outer lamella ; c, inner lamella.

Figure 12.—Corresponding appendage, last zoea-stage, enlarged forty diameters.

Fio-ure I.''-.—Posterior margin of telson, second zoea-stage, enlarged 100 diameters,

in this and the next two figures the arrow indicates the median line of the telson,

the margin on the left of it being exactly the reverse of that shown upon the right.

Figure 14.—The same, from another individual in the same stage, showing a single

median spine in place of the two median spines and denticle in other specimens.

Figure 15.—Posterior margin of telson, last zoea-stage, enlarged 100 diameters. 15a,

two of the denticles from the margin between the spines, enlarged 300 diameters.

Fio-ure 16.—Ovigerous appendage of the second abdominal segment of an adult

female, enlarged four diameters.



X. On the Equilibrium of Heterogeneous Substances.

By J. WlLLARO GlHBS.

{Continued from page 248).

THE CONDITIONS OP INTERNAL AND EXTERNAL EQUILIBRIUM FOR

SOLIDS IN CONTACT WITH FLUIDS WITH REGARD TO ALL POSSIBLE

STATES OP STRAIN OF THE SOLIDS.

In treating of the physical properties of a solid, it is necessary to

consider its state of strain. A body is said to be strained when the

relative position of its pai'ts is altered, and \)y '^t^ state of strain \^

meant its state in respect to the relative position of its parts. We
have hitherto considered the equilibrinm of solids only in the case in

which their state of strain is determined by pressures having the

same values in all directions about any point. Let us now consider

the subject without this limitation.

If x', y', z' are the rectangular co-ordinates of a point of a solid

body in any completely determined state of strain, which we shall

call the state of reference, and x, y, z, the rectangular co-ordinates of

the same point of the body in the state in which its properties are the

subject of discussion, we may regard x, y, z as functions of x
, y\ z'

,

the form of the functions determining the second state of strain.

For brevity, we may sometimes distinguish the variable state, to

which ic, y, z relate, and the constant state (state of reference), to

which x\ y\ z' relate, as the strained and the unstrained states ; but

it must be remembered that these terms have reference merely to the

change of form or strain determined by the functions which express

the relations of x, y, z and x', y', z', and do not imply any particular

physical properties in either of the two states, nor prevent their

possible coincidence. The axes to which the co-ordinates .>', y, z, and

x', y\ z' relate will be distinguished as the axes of X, Y, Z, and

A"', Y\ Z'. It is not necessary, nor always convenient, to regard

these systems of axes as identical, but they should be similar, i. e.,

capable of superposition.

The state of strain of any element of the body is determined by the

values of tlie differential coefficients of x, y, and z with respect to

ic', ;y', and z'; for changes in the values of x, y, 2, when the differential

coefficients remain the same, only cause motions of translation of the

Trans. Conn. Acad., Vol. III. 44 May, 1877.
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body. When the differential coefficients of the first order do not

vary sensibly except for distances greater than the radius of sensible

molecular action, we niaj^ regard them as completely determining the

state of strain of any element. There are nine of these differential

coefficients, viz.,

dx dx dx

dx'' dy'"' cfe"

dy dy dy

d^" dy" ~dz"

dz dz dz

d^>' dy" W
It will be observed that these quantities determine the orientation of

the element as well as its strain, and both these particulars must be

given in order to determine the nine differential coefficients. There-

fore, since the orientation is capable of three independent variations,

which do not affect the strain, the strain of the element, considered

without regard to directions in space, must be capable of six indepen-

dent variations.

The physical state of any given element of a solid in any unvary-

ing state of strain is capable of one variation, which is produced by

addition or subtraction of heat. If we write fv» •'^•icl Vvi for the

energy and entropy of the element divided by its volume in the

state of reference, we shall have for any constant state of strain

But if the strain varies, we may consider e^, as a function of //v, and

the nine quantities in (354), and may write

dx dy dz

where JY'x,, . . . Zy, denote the differential coefficients of £v» taken

witli respect to -^, . . . ~^,. The physical signification of these

quantities will be apparent, if we apply the formula to an element

which in the state of reference is a right parallelopiped having the

edges dx\ dy', dz\ and suppose that in the strained state the face in

which x' has the smaller constant value remains fixed, while the

opposite face is moved parallel to the axis of A'. If we also suppose
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no beat to be impiivted to tbe element, we sball bave, on multiplying

by (/a;' dy dz\

dsy, dx' d)j' dz' =. Xx, 6-^, dx' dy' dz'.

Now tbe first member of tbis equation evidently represents tbe work

done upon the element by the surrounding elements ; the second

member must therefore have tbe same value. Since we must regard

tbe forces acting on opposite faces of tbe elementary parallelopiped as

equal and opposite, tbe Avbole work done will be zero except for the

foce which moves parallel to A". And since d~j—, dx represents the

distance moved by this face, A'x. dy' dz' must be equal to tbe com-

ponent parallel to A' of the force acting upon this face. In general,

therefore, if by tbe positive side of a surface for which x' is constant

we understand the side on which x has the greater value, we may say

that Ax( denotes the component parallel toX of the force exerted by

tbe matter on the positive side of a surface for which x' is constant

upon the matter on the negative side of that surface per unit of the

surface measured in tbe state of reference. The same may be said,

mutatis mutandis, of tbe other symbols of tbe same type.

It will be convenient to use ^ and 2' to denote summation with

respect to quantities relating to the axes A, IT, Z, and to tbe axes

X', Y', Z', respectively. With tbis understanding we may write

Se„= t d,j„ + ^ 2' (a^x, (J^). (356)

This is the complete value of the variation of e^, for a given element

of tbe solid. If we multiply by dx' dy' dz', and take the integral for

tbe whole body, we sball obtain the value of tbe variation of the total

energy of the body, when this is supposed invariable in substance.

But if we suppose the body to be ino-eased or diminished in substance

at its surface (tbe increment being continuous in nature and state

with tbe part of tbe body to which it is joined), to obtain tbe com-

plete value of the variation of tbe energy of the body, we must add

the integral

fsy, 6jV' Ds'

in which Bs' denotes an element of the surface measured in the state

of reference, and SN' the change in position of this surface (due to

the substance added or taken away) measured normally and out-

ward in tbe state of reference. The complete value of tbe variation

of tbe intrinsic energy of the solid is therefore
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ffftd,j^,,dx'dy'dz'+fff2:2'L\\,S~) dx'dy'dz'+f Sy, SN'Bs'. (35 7

)

This is entirely independent of any supposition in regard to the

homogeneity of the solid.

To obtain the conditions of equilibrium for solid and fluid masses

in contact, we should make the variation of the energy of tlie whole

equal to or greater than zero. But since we have already examined

the conditions of equilibrium for fluids, we need here only seek the

conditions of equilibrium for the interior of a solid mass and for the

surfaces where it comes in contact with fluids. For this it will be

necessary to consider the variations of the energy of the fluids only

so far as they are immediately connected with the changes in the

solid. We may suppose the solid with so much of the fluid as is in

close proximity to it to be enclosed in a fixed envelop, which is

impermeable to matter and to heat, and to which the solid is firmly

attached wherever they meet. We may also suppose that in the

narrow space or sj)aces between the solid and the envelop, which are

filled with fluid, there is no motion of matter or transmission of heat

across any surfaces which can be generated by moving normals to the

surface of the solid, since the terms in the condition of equilibrium

relating to such processes may be cancelled on account of the internal

equilibrium of the fluids. It will be observed that this method is

perfectly applicable to the case in which a fluid mass is entirely

enclosed in a solid. A detached portion of the envelop will then be

necessary to separate the great mass of the fluid from the small

portion adjacent to the solid, which alone we have to consider. Now
the variation of the energy of the fluid mass will be, by equation

(13),

J'H SDrj - /•> 6Bv + ^^
,f pi

, dJJm^, (358)

where /^ denotes an integration extending over all the elements of

the fluid (within the envelop), and 2^ denotes a summation with

regard to those independently variable components of the fluid of

which the solid is composed. Where the solid does not consist of

substances which are. components, actual or possible (see page 117),

of the fluid, this term is of course to be cancelled.

If we wish to take account of gravity, we may suppose that it acts

in the negative direction of the axis of Z. It is evident that the

variation of the energy due to gravity for the whole mass considered

is simply

fj'fff ^' ^^^ d^ dy' dz', (359)

where g denotes the force of gravity, and F' the density of the
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element in the state of reference, and tlie triple inteoratioii, a^< before,

extends throughout the solid.

We have, then, for the general condition of equilibrium,

ffft 6,i„dx' chj dz' ^ff/:^ -2' (Xy,, d'^ dx' dy' dz!

+ fffi) i " ^- f^-«' dij dz! -+-./" fV, SN' Ds'

+fH dl),j ^rp SBv + ^
, f''i.i.^ 6Dm

^ ^ 0. (:3G0)

The equations of condition to which these variations are subjeci are:

(1) that which expresses the constancy of the total entropy,

/// ^Vw, dx' dy' dz' -\-fVy, dW Ds' + /''dD?/= 0; (3H 1

)

(2) that which expresses how the value of 6Dv for any element of

the fluid is determined by changes in the solid,

dBv = — (a dx + fjdy -{- y 6?-) Ds — Vy, 6N' Ds', (362)

where a, /i, y denote the direction cosines of the normal to the

surface of the body in the state to which x, y, z relate, Ds the element

of the surface in this state corresponding to Ds' in the state of

reference, and Vy, the volume of an element of the solid divided by

its volume in the state of reference
;

(3) those which expi-ess how the values of SDni^, SDni-.^, etc. for

any element of the fluid are determined by the changes in the solid,

6Dm^ = - r^'SiV'Ds',
]

dDm2 = - r^'SJV'Ds', y (363)

etc., J

where I\, f\', etc. denote the separate densities of the several com-

ponents in the solid in the state of reference.

Now, since the variations of entropy are independent of all the

other variations, the condition of equilibrium (360), considered with

regard to the equation of condition (361), evidently requires that

throughout the whole system

(5= const. (364)

We may therefore use (361) to eliminate the first and fifth integrals

from (360). If we multiply (362) by />, and take the integrals for

the whole surface of the solid and for the fluid in contact with it, we

obtain the equation

f^p 6Dv = - y> {a Sx+ /3Sy-\-y 6z) Ds - fp Vy, dJV'' Ds', (365)

by means of which we may eliminate the sixth integral from (360).

If we add equations (363) multiplied respectively by /<,, //g, <?tc.,

and take the integrals, we obtain the equation
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2,fy,dDm, = -/^,(A/.r/) 6]>^'Bs', (366)

by means of whicli we may eliminate the last integral from (360).

The condition of eqnilil)rium is thus reduced to the form

/ff2 2' (JTx, S '^,) dx' dy' dz' +///</ F' Sz d^ dy' dz'

+ J'£v, <S-^' Ds' -ft ;/v, dW I)s' -^fp {a6x + fi 6y + y 6z) Ds

J^fpvy,6N' Bs' -f2^ i/tj\') dJ^'Ds'^0, (367)

in which the variations are independent of the equations of condition,

and in which the only quantities relating to the fluids are p and //j,

yWg, etc.

Now by the ordinary method of the calculus of variations, if we

write a', fi', y' for the direction-cosines of the normal to the surface

of the solid in the state of reference, we have

fffX^.d'-^^dx'dy'dz'

=fa' X^, 6x I)s' - ff/^^^ ^x d-^' <^m ilz\ (368)

with similar expressions for the other parts into which the first

integral in (367) may be divided. The condition of equilibrium is

thus reduced to the form

-fff^ 2' (^^ 6x^ dx' dy' dz' +fff!/ r Sz dx! dy' dz'

-\-f:^
^' («' JQ, Sx) Ds -i-fp 2 {a dx) Bs

-i-f[£y, - t //v, +i> Vy, - ^\ (/I, / V)] S^' I^s'^ 0. (369)

It must be observed that if the solid mass is not continuous

throughout in nature and state, the surface-integral in (368), and

therefore the first surface-integral in (369), must be taken to apply

not only to the external surface of the solid, but also to every surface

of discontinuity within it, and that with reference to each of the

two masses separated by the surface. To satisfy the condition of

equilibrium, as thus understood, it is necessary and sufficient that

throughout the solid mass

2 2' (^^^-^V^^) -
ff
r Sz =0- (370)

that throughout the surfaces where the solid meets the fluid

Bs' 2 2' {a' X^, Sx) -f Bsp 2 {a Sx) = 0, (37 1)

and
[ey,^t7fy,+pvy,^2,{/j,l\')]SX'^0; (372)

and that througliout the internal surfaces of discontinuity
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:^ 2' {a'X^, S.r)
,+ :^ ^' (a' X^, 6x) 2 = 0, (373

)

where tlie suffixed immerals distinouish the expressions relating to

the masses on opposite sides of a surface of discontinnity.

Equation (370) exjiresses tlie mechanical conditions of internal

equililirium for a continuous solid under the influence of gravity. If

we expand the first term, and set the coefficients of dx, 6y, and 6z

separately equal to zero, we obtain

dX.y^, «Ay, (f-Az,

~d^ "^
~dif

"^
~~dl' ~ '

dZx, cIZy, dZz, .,,

~W + "di/^ + Ik^ ~ ''

The first member of any one of these equations multiplied by dx! dy'

dz' evidently represents the sum of the components parallel to one of

the axes X, Y, Z of the forces exerted on the six faces of the element

dx' dy' dz' by the neighboring elements.

As the state which we have called the state of reference is arbitrary,

it may be convenient for some purposes to make it coincide with the

state to which x, y, z relate, and the axes X', Y', Z' with the axes

X^ Y.^ Z. The values of Xx,^ . . . Zj, on this particular supposition

may be represented by the symbols X^, . . . Zj. Since

d^v,
, ^^ d£y,

dy dx

and since, when the states .v, y, z and x', y', z' coincide, and the axes

X, I", Z, and X, Y\ Z', d^, and d~-, represent displacements

which differ only by a rotation, we must have

Xy = J'x, (375)

and for similar reasons,

r, = Zv, Zx = X,. (376)

The six quantities X^, Yy, Z?, Xy or Y^, Yy or Zy, and Zx ovX^ are

called the rectang^dar components of stress, the three first being the

longitudinal stresses and the three last the shearing stresses. The

mechanical conditions of internal equilibrium for a solid under the

influence of gravity may therefore be expressed by the equations
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dx dy dz
'

^^+^1^ + -.?-. > *-)

dZy, dZy dZj^ _
dx dy dz ' '

where F denotes the density of the element to which the other sym-

bols relate. Equations (375), (376) are rather to be regarded as

expressing necessary relations (when JQ, . . . Zz are regarded as

internal forces determined by the state of sti^ain of the solid) than as

expressing conditions of equilibrium. They will hold true of a solid

which is not in equilibrium,—of one, for example, through which

vibrations are propagated,—which is not the case with equations (377).

Equation (373) expresses the mechanical conditions of equilibrium

for a surface of discontinuity within the solid. If we set the coeffi-

cients of 6x, 6y, 6z, separately equal to zero we obtain

(a'Xx,+/i'A-„+;/Xz,),+ («'Xx,+/i'A'v,+r'-^.)2=0,
]

{a' Y-^,+fd' rv,-f r' J^z.) !+ («' ^x.+Zi' 3^Y,+r' J'zOs^^N y (3V8)

{a' Z:„+fi' Zy,-\-y' Z,,),-\-{a' Z,„-\-fi' Z„+y' Z„),=0. J

Now when the a', /i', y' represent the direction-cosines of the noi-mal

in the state of reference on the positive side of any surface within the

solid, an expression of the form

a' Ax, + /f X,., -H y' Xy, (379)

represents the component parallel to X of the force ' exerted upon

the surface in the strained state by the matter on the positive

side per unit of area measured in the state of reference. This is

evident from the consideration that in estimating the force upon

any surface we may substitute for the given surface a broken one

consisting of elements for each of which either x' or y' or z' is

constant. Applied to a surface bounding a solid, or any portion of a

solid which may not be continuous with the I'est, when the normal is

drawn outward as usual, the same expression taken negatively repre-

sents the component parallel to A" of the force exerted upon the

surface (per unit of surface measured in the state of reference) by the

interior of the solid, or of the portion considered. Equations (378)

therefore express the condition that the force exerted upon the

surface of discontinuity by the matter on one side and determined by

its state of strain shall be equal and opposite to that exerted by the

matter on the other side. Since
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(«')i = - (>^')2, (/^')i = - (A")2, (r')i = - (/)2,

we may also write

etc.,
j

where tlie signs of a'
,

(3'
,
y' may be determined by tlie normal on

either side of the surface of discontinuity.

Equation (371) expresses the mechanical condition of equilibrium

for a surface where the solid meets a fluid. It involves the separate

equations

Ds
a X^, + ft' Xy, + / A-",,= - ap

^^^,

a' T^, + ff Y„ + r' Vy.. = - Pp ^-,

Ds
a' Zx, -f- fi' Zy, + y' Zy,, - - yp -^,

(381)

Ds
the fraction -^^-, denotino; the ratio of the areas of the same element

Ds ^

of the surface in the strained and unstrained states of the solid.

These equations evidently express that the force exerted by the

interior of the solid upon an element of its surface, and determined

by the strain of the solid, must be normal to the sui-face and equal

(but acting in the opposite direction) to the pressure exerted by the

fluid upon the same element of surface.

If we wish to replace a and Ds by a', ft', y', and the quantities

which express the strain of the element, we may make use of the

following considerations. The product a Ds is the projection of the

Ds
element Ds on the Y-Z plane. Now since the I'atio —r—, is indepen-

Ds
dent of the form of the element, we may suppose that it has any

convenient form. Let it be bounded by the three surfaces x' zz const.,

y' = const., z' =. const., and let the parts of each of these surfaces

included by the two others with the surface of the body be denoted

by i, 31, and X, or by L', M' and X' , according as we have reference

to the strained or unstrained state of the body. The areas of Z', M'

,

and X' are evidently a' Ds'
, ft'

Ds', and y' Ds' ; and the sum of the

projections of X, iHiT and TV" upon any plane is equal to the projection

of Ds upon that plane, since L, M, and X with Ds include a solid

figure. (In propositions of this kind the sides of surfaces must be

distinguished. If the normal to Ds falls outward from the small

solid figure, the normals to L, M, and X must fall inward, and vice

Trans. Conn. Acad., Vol. III. 45 May, 1877.



352 J. W. Gibbs—Equilibrmm of Heterogeneous Substances.

versa). Now i' is a right-angled triangle of which the perpendicular

sides raay be called di/' and dz'. The projection of L on the V-Z

plane will be a triangle, the angular points of which are determined

by the co-ordinates

y, z; y-rf^-,dy\ ^ + 7^-'^^; y+^<^^' ^+ "7/^^^'

the area of such a triangle is

'\dy''dz' dy' dz'J ' '

or, since h dy' dz' represents the area of //',

\dy' dz' dy' dz'J

(That this expression has the proper sign will appear if we suppose

for the moment that the strain vanishes.) The areas of the pro-

jections of TJf and iVupon the same plane will be obtained by chang-

ing y', z' and a' in this expression into z', cc', and /^', and into x', y',

and y'. The sum of the three expressions may be substituted for

aDs'm (381).

We shall hereafter use '2' to denote the sum of the three terms

obtained by rotary substitutions of quantities relating to the axes

X', Y\ Z', (i. e., by changing x\ y', z' into y', z, x', and into z', x', y',

with similar changes in regard to a', p', y', and other quantities

relating to these axes,) and 2 to denote the sum of the three terms

obtained by similar rotary changes of quantities relating to the axes

X, Y, Z. This is only an extension of our previous use of these

symbols.

With this understanding, equations (381) may be reduced to the

form

, ,- s ^., ( , / dy dz dz dy\) ^ ^
2' (a' Ax,) +?) 2'

\ a'{^,-yr ^, -/,- U = 0,
V \o-i-J

I \dy' dz' dy' dz' / \ ). (382)

etc. J

The formula (372) expresses the additional condition of equilibrium

which relates to the dissolving of the solid, or its growth without

discontinuity. If the solid consists entirely of substances which are

actual components of the fluid, and there are no passive resistances

which impede the formation or dissolving of the solid, dN' may have

either positive or negative values, and we must have

Sy, - tfjy,^pv,„=2^{ixj\'). (383)

But if some of the components of the solid are only ])ossible com-
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jKnients (see page 117) of the fluiil, 8N' is incapable of positive

values, as the quantity of the solid cannot be increased, and it is

sufficient for equilil>rium that

To express condition (383) in a form independent of the state of

reference, we may use fy, '/v, ^\, ete-, to denote the densities of

energy, of entropy, and of the several component substances in the

variable state of the solid. We shall obtain, on dividing the equa-

tion by Uv<,

fv-«//v+7>=^,(;^J^i). (-^85)

It will be remembered that tlie summation relates to the several

corajjonents of the solid. If the solid is of uniform composition

throughout, or if we only care to consider the contact of the solid

and the fluid at a single point, we may treat the solid as composed of

a single substance. If we use yWj to denote the potential for this

substance in the fluid, and T to denote the density of the solid in the

variable state, (/"', as before denoting its density in the state of

reference,) we shall have

fv» - «?/v, +i^ yv-= /']
^^', (=^-^«)

and

fv — «//v+^> = /'i^^- (387)

To fix our ideas in discussing this condition, let us apply it to the

case of a solid body which is homogeneous in nature and in state of

strain. If we denote by £, //, y, and /«, its energy, entropy, volume,

and mass, we have

s — t)] -\- })V := u.^ m. (388)

Now the mechanical conditions of equilibrium for the surface where

a solid meets a fluid reqiiire that the traction upon the surface deter-

mined by the state of strain of the solid shall be normal to the sur-

face. This condition is always satisfied with respect to three surfaces

at right angles to one another. In proving this well known proposi-

tion, we shall lose nothing in generality, if we make the state of

reference, which is arbitrary, coincident Avith the state under discus-

sion, the axes to which these states are referred being also coincident.

We shall then have, for the normal component of the traction per unit

of surface across any surface for which the direction-cosines of the

normal are a, p, y, [compare (3 79), and for the notation X,, etc.,

page 349,]
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+ :,/ {a Z^ + /i Zv + ;/ Zz),

or, by (375), (376),

-{-2 a p Xy^2 /3yYz-{- 2 yaZ^. (889)

We may also choose any convenient directions for the co-ordinate

axes. Let us sujjpose that the direction of the axis of ^is so chosen

that the value of S for the surface perpendicular to this axis is as

great as for any other surface, and that the direction of the axis of Y
(supposed at right angles to X) is such that the value of /S" for the

surface perpendicular to it is as great as for any other surface

passing through the axis of X. Then, if we write -:;-
, ^— , -r- for

^ ^ '^ ' da' dp' dy
the differential coefficients derived from the last equation by treating

a-, (i, and y as independent variables,

dS
J ,

dS ,,. ,
dS .

-r- dot 4 d6 -f -^— (/]/ 3= (>,

da ^ .dfi ' dy ^
'

when a da -{- fi dfi -(- ;/ dy = 0,

and «= 1, p =z 0, y =z 0.

m, . d/S -, djS
That IS, -J-, == 0, and ~,~- z=z 0,

dp dy

when a=. I, // = 0, ;/ = 0.

Hence, X^ = 0, and Z^ = 0. (390)

dS -
, ,

diS -,

Moreover, ^-- dp -\—=- dy = 0,
dp dy

when a =.0, da- =z 0,

fJd/J-\- y dy = 0,

and /^=1, y = 0.

Hence Yy, = 0. (391)

Therefore, when the co-ordinate axes have the supposed directions,

which, are called the principal axes of stress, the rectangular com-

ponents of the traction across any surface (a, /i, y) are by (379)

«Xx, /3Yy, yZ^. (392)

Hence, the traction across any surface will be normal to that

surface,

—

(1), when the surface is perj^endicular to a principal axis of stress

;
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(2), if two oi t\\^ principal tractions A'x, ^x, ^i. are equal, when the

surface is perpendicular to the ])lane containiug the two correspond-

ing axes, (in this case the traction across any such surface is equal to

the common vahie of the two principal tractions)

;

(3), if the principal tractions are all equal, the traction is normal and

constant for all surfaces.

It will he observed that in the second and third cases the position of

the ]>rincipal axes of stress are partially or wholly indeterminate, (so

that these cases may be regarded as included in the first,) but the

values of the principal tractions are always determinate, although not

always ditl^erent.

If!, therefore, a solid which is homogeneous in nature and in state of

strain is bounded by six surfaces perpendicular to the principal axes

of strain, the mechanical conditions of equilibrium for these surfaces

may be satisfied by the contact of fluids having the proper pressures,

[see (381),] which will in general be different for the different pairs of

opposite sides, and may be denoted by jk>', p'\ p'". (These pressures

are equal to the principal tractions of the solid taken negatively.)

It will then be necessary for equilibrium with respect to the tendency

of the solid to dissolve that the potential for the substance of the

solid in the fluids shall have values yw/, /i/', yu/" detemiined by the

equations

e — t)f -|-/)' V = //
,

' »i, (393)

€ — t r^ -\-
p" V z:^ fx^" m, (394)

s—tf^ + p"'v = /iii"'m. (395)

These values, it will be observed, are entirely determined by the

nature and state of the solid, and their differences are equal to the

differences of the corresponding pressures divided by the density of

the solid.

It may be interesting to compare one of these potentials, as ///,

with the potential (for the same substance) in a fluid of the same

temperature t and pressure p' which would be in equilibrium with the

same solid subjected on all sides to the uniform pressure p'. If we

write [f];,,
, ['/]/,», [^]/,»5 and [/'i]^,, for the values which e, ?], i\ and

/<, would receive on this supposition, we shall have

V^l' - t bf\r> +P' Vvl.. = [//J,, m. (396)

Subtracting this from (393), we obtain

^ - l^]p' —tV-^t Vfl' +P V - p' [y],,,= /<, m — [/',],, rn. (397)

Now it follows immediately from the definitions of energy and entropy



•356 ./ W. Gibhs—Equilibrium of Heterogeneous Substances.

that the first four terms of this equation represent the work spent

upon the solid in bringing it from the state of hydiostatic stress to the

other state without change of temperature, and j^' ^ ~ p' [w]/.> evi-

dently denotes the work done in displacing a fliiid of pressure p
surrounding the solid during the operation. Therefore, the first

number of the equation represents the total work done in bringing

the solid ichen surrounded by a fluid of pressure p' from the state of

hydrostatic stress jk»' to the state of stress jt>',jw",jo"'. This quantity is

necessarily positive, except of course in the limiting case when
p' =z p" ^p'". If the quantity of matter of the solid body be unity,

the increase of the potential in the fluid on the side of the solid on

which the pressure remains constant, which will be necessary to

maintain equilibrium, is equal to the work done as above described.

Hence, //,' is gi'eater than [//,]^, ,and for similar reasons, yu/'is

greater than the value of the potential which would be necessary for

equilibrium if the solid were subjected to the uniform pressure p", and

Ml'" gi'eater than that which would be necessaiy for equilibrium if

the solid were subjected to the uniform pressure />"'. That is, (if we
adapt our language to what we may regard as the most general case,

viz., that in which the fluids contain the substance of the solid but

are not wholly composed of that substance,) the fluids in equilibrium

with the solid are all supersaturated with respect to the substance

of the solid, except when the solid is in a state of hydrostatic stress; so

that if there were present in any one of these fluids any small frag-

ment of the same kind of solid subject to the hydrostatic pressure of

the fluid, such a fragment would tend to increase. Even when no

such fragment is present, although there must be perfect equilibrium

so far as concerns the tendency of the solid to dissolve or to increase

by the accretion of similarly strained matter, yet the presence of the

solid which is subject to the distorting stresses, will doubtless

facilitate the commencement of the formation of a solid of hydrostatic

stress upon its surface, to the same extent, perhaps, in the case of

an amorphous body, as if it were itself subject only to hydrostatic

stress. This may sometimes, or perhaps generally, make it a necessary

condition of equilibrium in cases of contact between a fluid and an

amorphous solid which can be formed out of it that the solid at the

surface where it meets the flxiid shall be sensibly in a state of hydro-

static stress.

But in the case of a crystalline solid, subjected to distorting stresses

and in contact with sohitions satisfying the conditions deduced above,

although crystals of hydrostatic stress would doubtless commence to
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form iipou its surface (if the distoi'ting stresses and consequent

supersaturation of the fluid should be carried too far), before

they Avould commence to be formed within the fluid or on

the surface of most other bodies, yet within certain limits the

relations expressed by equations (393)-(395) must admit of realiza-

tion, especially when the sohitions are such as can be easily super-

saturated.*

It may be interesting to compare the variations of ^;, the pressure

in the fluid which determines in part the stresses and the state of

strain of the solid, with other variations of the stresses or strains in

the solid, with respect to the relation expressed by equation (388).

To examine this point with complete generality, we may proceed in

the following manner.

Let us consider so much of the solid as has in the state of reference

the form of a cube, the edges of which are equal to unity, and

parallel to the co-ordinate axes. We may suppose this body to be

homogeneous in nature and in state of strain both in its state of

reference and in its variable state. (This involves no loss of

generality, since we may make the unit of length as small as we
choose.) Let the fluid meet the solid on one or both of the surfaces

for which Z' is constant. We may su^^pose these surfaces to remain

perpendiculartotheaxisofZ in the variable state of the solid, and the

edges in which y' and z' are both constant to remain parallel to the

axis of JC. It will be observed that these suppositions only fix the

position of the strained body relatively to the co-ordinate axes, and
do not in any way limit its state of strain.

It follows from the suppositious which we have made that

dz dz d%i-^ = const. Z.0, —:= const. =0, ^ = const. =:
; (398)

and

A'„=:0, Fz,= 0, Zy,,=.—p~^-^-. (399)dx dy ^ '

7 w I
^-^ 7

^^•''
I ^- 7 ^^^ . T^ 7 *^y (^^ (fy -, dz

Hence, by (355),

dey—tdi/v,-\-X^,(

Again, by (388),

* The effect of distorting stresses in a solid on the phenomena of crystallization and

liquefaction, as well as the effect of change of hydrostatic pressure common to the

solid and liquid, was first described by Professor James Thomson. See Tran^. R. S.

Edin., vol. xvi, p. 575; and Proc. Roy. Soc, vol. xi, p. 47.^>, or PJiil. Mag., S. 4, vol.

xxiv, p. 395.
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de = t (/// + }/ dt — p dv — V d}^ + la djA^. (401)

Now the suppositions which have been made require that

dx du dz
" = M 7§W ^^"'^

and
, di/ dz -, dx . dz dx ^ dy dx dy , dz
dv = -y^ —^ f/-— + —^ —- d-f-, + ^^ ^ , . (403

ay dz dx dz dx dy dx dy dz

Combining equations (400), (401), and (403), and observing that

Sy, and 7/v, are equivalent to 6 and ?/, we obtain

7? dt — V dp -|- rn dj.i^

/ -, . dy dz\^dx , _^ -.dx
, / ,^ ,

dz dx\ -.dy
,

={-^^'+'%-^ rn^' +-^
''''w

+(
'
-+''

dz'- d-.rw (^»^'

The reader will observe that when the solid is subjected on all sides

to the uniform normal pressure p, the coefficients of the differentials

in the second member of this equation will vanish. P^or the expres-

dy dz . . . , -r- ^ 1 P • -, r
sion -y-f -j-j represents the projection on the 1 -Z puine or a side oi

the parallelepiped for which x' is constant, and multiplied by p> it

will be equal to the component parallel to the axis of A" of the total

pressure across this side, i. e., it will be equal to JTx/ taken negatively.

The case is similar with respect to the coefficient of d~^, : and ^y/
dy

evidently denotes a force tangential to the surface on which it acts.

It will also be observed, that if we regard the forces acting upon the

sides of the solid parallelopiped as composed of the hydrostatic pres-

sure ^> together with addition forces, the work done in any infinitesimal

variation of the state of strain of the solid by these additional forces

will be represented by the second member of the equation.

We will first consider the case in which the fluid is identical in

substance with the solid. We have then, by equation (97), for a

mass of the fluid equal to that of the solid,

7/f dt *- v^dp •{ in
(?//

J = 0, (405)

7/p and Vy denoting the entropy and volume of the fluid. By subtrac-

tion we obtain

- (7/^. - if) dt + (vp — 11) dp

/ ^ dy dz\ Mx
,
„ ^dx

, / ,, . dz dx\ Ay ^, ,

. . dx dx dy . , ,i ,Kow if the quantities -v-,, -^—n -j-, remain constant, we shall have
ij/Xf ^y ^2/

for the relation between tlie variations of tem[)erature and pressure

which is necessary for the preservation of equilibrium
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dt _Vv-v _ vy~ V

where Q denotes the heat wliich would be absorbed if the solid body

should pass into the fluid state without change of temperature or

pressure. This equation is similar to (131), which applies to bodies

dt
subject to hydrostatic pressiire. But the value of -j will not gener-

ally be the same as if the solid were subject on all sides to the uni-

form normal pressure p', for the quantities v and i] (and therefore

Q) will in general have difterent values. But when the pressures on

all sides are normal and equal, the value of — will be the same,
dp

whether we consider the pressure when \aried as still normal and

(X^QC WtJC iJ/1/

equal on all sides, or consider the quantities -=-,, -^„ -j-, as constant,
ct'tju ^y ^y

But if we wish to know how the temperature is affected if the pres-

sure between the solid and fluid remains constant, but the strain of

the solid is varied in any way consistent with this supposition, the

differential coefficients of t with respect to the quantities which ex-

press the strain are indicated by equation (406). These differential

coefficients all vanish, when the pressui-es on all sides are normal and

, , , T^. . , ,,. . dt dx dx dy
equal, but the differential coefficient -j-, when ^—„ -^-„ -f-. are con-

dp dx dy dy

stant, or when the pressures on all sides are normal and equal, van-

ishes only when the density of the fluid is equal to that of the solid.

The case is nearly the same when the fluid is not identical in sub-

stance with the solid, if we suppose the composition of the fluid to

remain unchanged. We have necessarily with respect to the fluid

d,c, = (^^)2
'^' + f"'^- v^ ^^^'* (^^«)

\ dp ft, m

where the index (f) is used to indicate that the expression to wliich

it is aftixed relates to the fluid. But by equation (92)

(pf =-(p.r , .a,Kl i;^)" =(*r . (4„0)
\ dt /^, m \d)n^/t,2), m \ dp It, m \dm^lt,i), m

Substituting these values in the preceding equation, transposing

terms, and multiplying by m, we obtain

* A sufiBxed m stands here, as elsewhere in this paper, for all the symbols m,, m.^.

etc., except such as may occur in the differential coefiBcient.

Trans. Conn. Acad., Vol. III. 46 May, 1877.
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ml -r^- ) dt — m\ -^—
)

dp -\- m d}x^ =0. (410)
XdAti

J / i, j3, TO \drn
j / 1, |j, m

By subtracting this equation from (404) we may obtain an equation

similar to (406), except that in place of //p and «p we shall have the

expressions

/ di} \<"'^
-,

/ do \(f)

\dm
J / «, j:>, TO \<:w/i ^/t, 'p,m'

The discussion of equation (406) will therefore apply mutatis mutan-

dis to this case.

We may also wish to find the variations in the composition of the

fluid which will be necessary for equilil)rium wlien the pressure p or

. . dx dx dy • i ^i x
the quantities -—„ -y-„ —-, are varied, the temperature remaining

(too ^^]j ^y

constant. If we know the value for the fluid of the quantity repre-

sented by t, on page 142 in terms of t^^p^ and the quantities of the

several components »?,, //ig, wig, etc., the first of which relates to the

substance of Avhich the solid is formed, we can easily find the value

of //j in terms of the same variables. Now in considering variations

in the composition of the solid, it will be sufficient if we make all but

one of the components variable. We may therefore give to m^ a

constant value, and making t also constant, we shall have

^ \dp Jt, m \dm^/t, p, m \dm^/t. p, m

Substituting this value in equation (404), and cancelling the term

containing dt, we obtain

] m -p -v\ dp + m. ( ~r-^ dm^
( \dplt,m ) \dm„/t,p.m

+x.4 + (r. + ,||,).|.. (4u)

This equation shows the variation in the quantity of any one of the

components of the fluid (other than the substance which forms the

. . . „ dx dx dy . ,

solid) which will b:ilan(*e a variation ot p, or of -^„ -=-„ -v-„ with re-

spect to the tendency of the solid to dissolve.

-|- m
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Fundamental Equations for Solids.

The principles developed in the preceding pages show that the

solution of problems relating to the equilibrium of a solid, or at least

their reduction to purely analytical processes, may be made to de-

pend upon our knowledge of the composition and density of the solid

at every point in some particular state, which we have called the

state of reference, and of the relation existing between the quantities

doc dsc dz
which have been represented by f,,, ?;,.», ^" ^" • • • ^ ' ''' y''

and z. When the solid is in contact with fluids, a certain knowledge

of the jiroperties of the fluids is also requisite, but only such as is

necessary for the solution of problems relating to the equililirium of

fluids among themselves.

If in any state of which a solid is capable, it is homogeneous in its

nature and in its state oi strain, we may choose this state as the state

of reference, and the relation between fy,, 7/v, , -y^, , . . -^ , will be

independent of x', y\ z'. But it is not always possible, even in the

case of bodies which are homogeneous in nature, to bring all the

elements simultaneously into the same state of strain. It would not

be possible, for example, in the case of a Prince Rupert's drop.

dii* ffz

If, however, we know the relation between e^,, , //y, ,

-'—
, . . . -7-^,

«.> dz

for any kind of homogeneous solid, with respect to any given state of

reference, we may derive from it a similar relation with respect to

any other state as a state of reference. For if x, y\ z' denote the

co-ordinates of points of the solid in the first state of reference, and

x", y'\ z" the co-ordinates of the same points in the second state of

reference, we shall have necessarily

dx dx dx" dx dy" dx dz" , . • ^ , .

and if we write H for the volume of an element in the state {x", y\ z")

divided by its volume in the state {x\ y', z'), we shall have

B

dx"
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£y, = R fv„, r/v, = ^ V\»- (414)

If, then, we liave ascertained by experiment the value of fy, in terms

of 7/y,, -— , ... y-, , and the quantities which express the composi-

tion of the body, by the substitution of the values given in (412)-

, „ -, . . „ dx dz dx" dz"
(414), we shall obtam £^,„ m terms ol //v„, ^,, . . . ^" ^" • • • ^,
and tlie quantities which express the composition of the body.

We may apply this to the elements of a body which may be varia-

ble from point to point in composition and state of strain in a given

state of reference {x\ y\ z"), and if the body is fully described in

that state of reference, both in respect to its composition and to the

displacement which it would be necessary to give to a homogeneous

solid of the same composition, for which fy, is known in terms of 7/v,,

-J—, , . . . ^-, , and the quantities which express its composition, to
djx dz

bring it from the state of reference (a;', y\ z) into a similar and

similarly situated state of strain with that of the element of the non-

dx" dz"
homogeneous body, we may evidently regard -^, . . . —, as known

for each element of the body, that is, as known in terms of x", y", z".

dx dzWe shall then have Sy,, in terms of ?/y„, y—„ , . • . -tt/ ?
8"", y",^"; and

since the composition of the body is known in terms of x", y" , z" , and

the density, if not given directly, can be determined from the density

of the homogeneous body in its state of reference {x', y\ s'), this is

sufficient for determining the equilibrium of any given state of the

non-homogeneous solid

An equation, therefore, which expresses for any kind of solid, and

with reference to any determined state of i-eference, the relation

dx dz
between the quantities denoted by fvM 'Am -t-, -, • • • -r, , involvino;

"" dx dz

also the quantities which express the composition of the body, when

that is capable of continuous variation, or any other equation from

which the same relations may be deduced, may be called a fmida-

mental eqimtion for that kind of solid. It will be observed that the

sense in Avhich this term is here used, is entirely analogous to that in

which we have already a|)plied the term to fluids and solids vvdiich

are subject only to hydrostatic pressure.

-i^T, 1 P T 1 -1 dx dz .

When the lundamental equation between fy, , ;/v,, — ,
, . . . —, is
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known, we may obtain by differentiation the values of ^, JC^,, . . . Zz,

in terms of the former quantities, wliich will give eleven indepondcnt

relations between the twenty-one quantities

dx dz
^^'' ''^'' dx" ' ' ' dz''

^^ '' ' ' ' ' i'^^^)

which are all that exist, since ten of these quantities are independent.

All these equations may also involve variables which express the

composition of the body, when that is capable of continuous varia-

tion.

If we use the symbol if-y, to denote the value of // (as defined on

pages 144, 145) for any element of a solid divided by the volume of

the element in the state of reference, we shall have

tl\,= ey,~ f r/y,. (416)

The equation (356) may l)e reduced to the form

S,/'y, = - vv, St + ^- ^' (^A\, S~^. (417)

Therefore, if we know the value of i/\-, in terms of the variables t,

-yy, , . . . -yii together with those which express the composition of

the body, we may obtain by differentiation the value« of ?/v», Ax»

,

. . . Zz, in terms of the same variables. This will make eleven inde-

pendent relations between the same quantities as before, except that

we shall have y-y, instead of fv»- Oi" if we eliminate ?/-y, by means

of equation (416), we shall obtain eleven independent equations be-

tween the quantities in (415) and those which express the composi-

tion of the body. An equation, therefore, which determines the

dx dz
value of ?/-y, , as a function of the quantities ^, --—

,
, ...---,, and the

\.tJb (.tZ

quantities which express the composition of the body when it is capa-

ble of continuous variation, is a fundamental equation for the kind of

solid to which it relates.

In the discussion of the conditions of equilibrium of a solid, we

might have started with the principle that it is necessary and sufficient

for equilibrium that the temperature shall lie uniform throughout the

whole mass in question, and that the variation of the force-function

{->!') of the same mass shall be null or negative for any variation in

the state of the mass not affecting its temperature. We might have

assumed that the value of //' for any same element of the solid is a
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function of the temperatnre and the state of strain, so tliat for con-

stant temperature we might write

6Yv,=i-i'(x„,j;|),

the quantities X^,, . . . Z^, being defined by this equation. This

would be only a formal change in the definition of Xy^, , . . . Z^, and

would not affect their values, for this equation holds trixe of JC^,
,

. . . Zjj as defined by ecination (355). With such data, by transfor-

mations similar to those which we have employed, we might obtain

similar results.* It is evident that the only difference in the equa-

tions would be that il\, would take the place of e^, , and that the

terms relating to entropy w^ould be wanting. Such a method is

evidently preferal)le with respect to the directness with which the

results are obtained. The method of this paper shows more distinctly

the role of energy and entropy in the theory of equilibrium, and can

be extended more natfti-ally to those dynamical problems in which

motions take place under the condition of constancy of entropy of

the elements of a solid (as when vibrations are propagated through a

solid), just as the other method can be more naturally extended to

dynamical problems in which the temperature is constant. (See

note on page 145.)

We have already had occasion to remark that the state of strain

of any element considered without refei-ence to directions in space is

capable of only six independent variations. Hence, it must be possi-

ble to express the state of strain of an element by six functions of

dot dz——,
, . . . -^, , which are independent of the position of the element.

ax az

For these quantities we may choose the squares of the ratios of

elongation of lines parallel to the three co-ordinate axes in the state

of reference, and the products of the ratios of elongation for each

pair of these lines multiplied by the cosine of the angle which they

include in the variable state of the solid. If we denote these quanti-

ties by ^, ^, C, a, b, c, we shall have

* For an example of tliis method, see Thomson and Tait's Natural Philosopliy, vol. i,

p. 705. With regard to the general theory of elastic solids, compare also Thomson's

Memoir " On the Thermo-elastic and Thermo-magnetic Properties of Matter" in the

Quarterly Journal of Mathematics, vol. i, p. 57 (1855), and Green's memoirs on the

propagation, reflection, and refraction of light in the Transactions of the Cambridge

Philosophical Society, vol. vii.
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^=^(S)'' ^=^(:^r- -=^(ir. <-)

^./dx dx\ - ^,/dxdx\ ^ fdx dx\

«=^W&'> *=^W&'> ^•=^(&'*7> <*'")

The determination of the fundamental equation for a solid is thus

reduced to the determination of the relation between fy,, ;/v,, A^ 7>,

G, a, 5, c, or of the relation between ^\, , t, A, _S, C, «, b, <:

In the case of isotrojiic solids, the state of strain of an element, so

far as it can affect the relation of s^;, and i}y, , or of //'y, and t, is capa-

ble of only three independent variations. This appears most dis-

tinctly as a consequence of the proposition that for any given strain

of an element there are three lines in the element which are at right

angles to one another both in its unstrained and in its strained

state. If the unstrained element is isotropic, the ratios of elonga-

tion for these three lines must with //y, determine the value fy,, or

with t determine the value of //'y,

.

To demonstrate the existence of such lines, which are called the

principal axes of strain, and to find the relations of the elongations

of such lines to the quantities —
,

, . . . -^ , we may proceed as fol-

lows. The ratio of elongation ;• of any line of which a', /^', y' are

the direction-cosines in the state of reference is evidently given by
the equation

,
/dz , ,

dz .-., clz \"
, ^

Now the proposition to be established is evidently equivalent to this

—that it is always possible to give such directions to the two sys-

tems of rectangular axes JC', Y', Z', and JT, y, Z, that

dx dx dy ^
^'^^' ^=^' dz'^"^' I

dy dz dz
\

£'="' &="' *7'="-j

We may choose a line in the element for which the value of r is at

least as great as for any other, and make the axes of JC and X' par-

allel to this line in the strained and unstrained states respectively.
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1'=°' £=«• '^'^

^(^•'^) (K^~) ^{^^) .• .1 !•«• .-1 ^Moreover, it we write -\-r^ -\rr •, -\-r lor the ditterential coetti-
da dp dy

cients obtained from (420) by treating a', p\ y' as independent

variables,

d{r^) , , ,

f?(r2) ^ .
,

(/(r2) ^ ,

wnen
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ILiving thus proved the existence of lines, with reference lo :iny

particular strain, which have the properties mentioned, let us pro-

ceed to find the relations between the ratios of elongation for these

. . dx dz
lines (the principal axes of strain) and the quantities ^, , . • • -rj

under the most general supposition with respect to the position of

the co-ordinate axes.

For any principal axis of strain we have

when a da' + ft' dfi' + ;/' dy' z= 0,

the dilFerential coefficients in the first of these equations being deter-

mined from (420) as before. Therefore,

a' da' ~ ff d/3'
~ y' dy'

'

^ ' ^

From (420) we obtain directly

2 da' ^ 2 d/3' ^ 2 dy'
'

^ ^ '

From the two last equations, in virtue of the necessary relation

«'2 -j- ft'^
-|- )/'2 :zz 1, we obtain

4?="'-' 4?=^^'-' ^V-''^^
'''''

or, if we substitute the values of the difterential coefficients taken

from (420),

,-, /ffe\~ ,j,^./dxdx\ . , /dx dx\ , „

«:£

If we eliminate a', ji'
^ y from these equations, we may write the

result in the form,

[dx\^
g >Y——

\

^[dx_d^\

W/ "'' \d^dy) [dx'dz'J

(dx dx\ /dxy _ 2 V /^ ^

\

\%'^7 W/ *" \dy'dz')

,
/dx dx \ y /dx ^\ ^ /^V _
[d^'d^'J \ch'dy') \dz'

)

Trans. Conn. Acad., Vol. III.

= 0. (430)

May, 1877.
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We may write

Then

E=z 2' 2 ('^"^

(431)

(432)

Also

- r6 + A'r* — Fr^ + (? = 0.

, V\dx'/ '

\ Ulx \^ ^ [dx \

2

/dx dx \ /dx dx \ )^=^
] ^\d^) WV ~ \d^W \d^dy') S

~
( [dx'J \d^') ~ dx' d^' \d^' dy'J S

~

, ^\ (dx\^ /dy \^ i^(<^^
\" /dz \^ dx dx dy dy dx dx dz dz

\

l\f?a;'/ \dy'] \dx'/ \dy'J dx dy' dx' dy' dx'dy'd^dy'l

~
\ W/ \dy')

"*" W/ W/ ~
d^'dy'da&'di/'S

^, ^ (<^^ ^y ^^y dx\^
\dx' dy' dx' dy'J

' ^

This may also be Avritteu

F= 2' 2

dx
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In expanding the product of the three sums, we may cancel on
account of the sign ^'' tlie terms which do not contain all the three

3-3
expressions dx^ dy, and dz. Hence we may write

^, y., y. /dx dx dy dy dz dz \

3-3 3+3 \dx' dx' dj' dy' dz' dz'/

y { dx dy dz , /dx dy dz\)

3+3 i dx' dy' dz' 3-3\dx' dy' dz'J )

„ /dx dy dz\ , /dx dy dz \

A-sXdx' dy' dz'/ 3-3\dx' dy' dz'
J'

^

Or, if we set

H=

dx

d^'
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single-valued functioji of ?/v, , E, E, and M. The determination of

the fundamental equation for iaotropic bodies is therefore reduced to

the determination of this function, or (as appears from similar con-

siderations) the determination of il\-, as a function of t, JE, F, and H.

It appears from equations (4;:i9) that E represents the sum of the

squares of the ratios of elongation for the principal axes of strain,

that ^rejjresents the sum of the squares of the ratios of enlargement

for the three surfaces determined by these axes, and that G repre-

sents the square of the ratio of enlargement of volume. Again, equa-

tion (432) shows that E represents the sum of the squares of the

ratios of elongation for lines parallel to -ST', Y', and Z'; equation

(434) shows that ^represents the sum of the squares of the ratios of

enlargement for surfaces parallel to the planes X'- Y\ Y'-Z', Z'-X'
;

and equation (438), like (439), shows that G represents the square

of the ratio of enlargement of volume. Since the position of the

co-ordinate axes is arbitrary, it follows that the sum of the squares of

the ratios of elongation or enlargement of three lines or surfaces

which in the unstrained state are at right angles to one another, is

otherwise independent of the direction of the lines or surfaces.

Hence, ^E and ^F are the mean sqiiares of the ratios of linear elon-

gation and of superficial enlargement, for all possible directions in

the unstrained solid.

There is not only a practical advantage in regarding the strain as

detei-mined by E, F, and H, instead of -£', F, and G, because H is

more simply expressed in terms of -^, ,...-=-,, but there is also a

certain theoretical advantage on the side of E, F^ H. If the sys-

tems of co-ordinate axes X., I^, Z, and A"', I"', Z\ are either iden-

tical or such as are capable of superposition, which it will always be

convenient to suppose, the determinant H will always have a posi-

tive value for any strain of which a body can be capable. But it is

possible to give to a*, y, z such values as functions of x'
., y\ z' that H

shall have a negative value. For example, we may make

a; = a;', y =: y', z=i -^ z'. (440)

This will give 11:= — 1, while

x-=ix\ y^=y\ z=^z (441)

will give II=z 1. Both (440) and (441) give 6^ = 1. Now although

such a change in the position of the particles of a body as is repre-

sented by (440) cannot take place while the body remains solid, yet
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a metliod of representing strains may be considered incomplete,

which confuses the cases represented by (440) and (441).

We may avoid all such confusion by using E, I^] and II to repre-

sent a strain. Let us consider an element of the body strained which in

the state (ar', y', z') is a cube with its edges parallel to the axes of

X', Y', Z\ and call the edges dx\ dy' , dz according to the axes to

which they are parallel, and consider the ends of the edges as posi-

tive for which the values of x, y\ or z' are the greater. Whatever
may be the nature of the parallelopiped in the state (^, y, z) which

corresponds to the cube ffe', dy\ dz' and is determined by the quanti-

ties -=—,
, . . . -^ , it may always be brought by continuous changes

to the form of a cube and to a position in which the edges dx\ dy'

shall be parallel to the axes of JC and Y, the positive ends of the

edges toward the positive directions of the axes, and this may be done

without giving the volume of the parallelopiped the value zero,

and therefore without changing the sign of H. Now two cases are

possible ;—the positive end of the edge dz' may be turned toward the

positive or toward the negative direction of the axis of Z. In the

first case, H is evidently positive ; in the second, negative. The
determinant H y^Wl therefore be positive or negative,—we may say,

if we choose, that the volume will be positive or negative,—according

as the element can or cannot be brought from the state (a-, y, z) to the

state («', y', z') by continuous changes without giving its volume the

value zero.

If we now recur to the consideration of the principal axes of strain

and the principal ratios of elongation rj,r2, ^3, and denote by f/^,

f/2, C^3 and TT^', f/g', U^' the principal axes of strain in the strained

and unstrained element respectively, it is evident that the sign of r^,

for example, depends upon the direction in U^ which we regard as

corresponding to a given direction in U^'. If we choose to associate

directions in these axes so that r,, rg, r^ shall all be positive, the

positive or negative value of i? will determine whether the system of

axes ?7,, U^, U^ is or is not capable of superposition upon the sys-

tem C/"/, U2, U^' so that corresponding directions in the axes shall

coincide. Or, if we prefer to associate directions in the two systems

of axes, so that they shall be capable of superposition, cori-esponding

directions coinciding, the positive or negative value of II will deter-

mine whether an even or an odd number of the quantities /-j, r,, r,

ai-e negative. In this case we maj^ write
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H—

dx

dx'
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values to '/'v,, etc., when the stresses in the solid vanish. If we
denote by r„ the common value of r,, rg, ^3 which will make the

stresses vanish at any given temperature, and imagine the true value

of il\r, , and also the value given by equation (444) to be expressed in

terms of the ascending poM^ers of

^'i-^o, r^—r^, r^-r^, (446)

it is evident that the expressions Avill coincide as far as the terms of

the second degree Inclusive. That is, the errors of the values of if\,

given by equation (444) are of the same order of magnitude as the

cubes of the above differences. The errors of the values of

<7?/v, dtf\, dil\,

will be of the same order of magnitude as the squares of the same

differences. Therefore, since

di/\,_ dff\, d)\ di/^y, dr^ d4\, dr^

dx dr^ dx dr.^ _,dx dr^ dx ^ *'

dx' dx' dx' dx'

whether we regard the true value of ij^, or the value given by equa-

tion (444), and since the error in (444) does not affect the values of

dr^ d)\ dr^

dx ' dx ' dx '

dx' dx' " dx'

Avhich we may regard as determined by equations (431), (432), (434),

(43V) and (438), the errors in the values of X^, derived from (444)

will be of the same order of magnitude as the squares of the differ-

ences in (446). The same will be true with respect to X^,^ ^z>, Y\,

etc., etc.

It will be interesting to see how the quantities e, /', and h are

related to those which most simply represent the elastic properties of

isotropic solids. If we denote by V and M the elasticity of volume

and the rigidity* (both determined under the condition of constant

temperature and for states of vanishing stress), we shall have as

definitions

:

^~~^'\§v)t'
^^^" v = r^^v', (448)

* See Thomson and Tait's Natural Philosophy, vol. i, p. 111.
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where p denotes a uniform pressure to which the solid is subjected,

w its volume, and v' its volume in the state of reference ; and

li =
dx / dx V'

dx _dy _dz \ (449)
"^^^^

dx'-dy'-d^'-''''

dx dx dy dy dz dz
]

dy' dz' ffe' dx' dx' dy' ' j

Now when the solid is subject to uniform pressure on all sides, if

we consider so much of it as has the volume unity in the state of

reference, we shall have
JL

r, =r^— r.^ = v^, (450)

and by (444) and (439),

7py,= i -\--3ev^ -\-3fv'^ -\- hv. (451)

Hence, by equation (88), since if\, is equivalent to ?/•,

and by (448),

V=-i~ + ifr,. (454)
'0

To obtain the value of Ji in accordance with the definition (449),

we may suppose the values of E, F^ and ^ given by equations (432),

(434), and (437) to be substituted in equation (444). This will give

for the value of R
i2=2e + 4/V/. (455)

Moreover, since /> must vanish in (452) when v =. r^^^, we have

2 e -f- 4/V(, 2
-I- A r^ — 0. (456)

From the three last equations may be obtained the values of e, /',

A, in terms of r^, F", and R\ viz.,

4
''

8 r 2 r•± ° ' '0

The quantity r^,, like B, and F", is a function of the temperature, the

differential coefficient ^
—^ representing the rate of linear expan-

sion of the solid when without stress.
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It will not be necessary to discuss equation (443) at length, as the

case is entirely analogous to that which has just been treated. [It

must be remembered that ;/v,, in the discussion of (443) will take the

place everywhere of the temperature in the discussion of (444).] If

we denote by V and R' the elasticity of volume and t\\e rigidity^

botli determined under the condition of constant entropy., (i. e., of no

trans))iission of heat^) and for states of vanishing sti-ess, we sliall

have the equations

:

F'=-|^ + f/>o, (458)

i^' = 2 e' + 4/'r„2^ (459)

2 e' + 4/' ?„ 2 + h' r^ — 0. (460)

Whence
R' - .3 r„ F' ^, _ R' +_3 r^JT'

^^ _ _ ^'e'=^-^-'^^ / = ---t_?4._!:^, A'=-i-'. (461)

In these equations r„, it', and V are to be regarded as functions of

the quantity ijx,.

If we wish to change from one state of reference to another (also

isotropic), the changes required in the fundamental equation are

easily made. If a denotes the length of any line of the solid in the

second state of reference divided by its length in the first, it is evi-

dent that Avhen we change from the first state of refei'ence to the

second the values of the symbols fy, , 7/v, , //v*, H are divided by a^,

that of E by a^, and that of E by «*. In making the change of the

state of reference, we must therefore substitute in the fundamental

equation of the form (444) a^tl\,, a^E, a^F, a^H for y-,,, E, F,

and H., respectively. In the fundamental equation of the form (443),

we must make the analogous substitutions, and also substitute a'^7/v,

for l]^,,. [It will be remembered that i\ e\f\ and h' represent func-

tions of 7/v», and that it is only when their values in terms of i]^, are

substituted, that equation (443) becomes a fundamental equation.]

(Joncernhig Solids which absorb Fluids.

Tliere are certain bodies which are solid with respect to some of

their components, while they have other components which are fluid.

In the following discussion, we shall suppose both the solidity and

the fluidity to be perfect, so far as any properties are concerned

which can affect the conditions of equilibrium,—i. e., we shall sup-

pose that the solid matter of the body is entirely free from plasticity,

and that there are no passive resistances to the motion of the fluid

Trans. Conn. Acad., Vol. III. 48 June, 1877,
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components except such as vanish with the velocity of the motion,

—

leaving it to be determined by experiment how far and in what cases

these suppositions are realized.

It is evident that equation (356) must hold true with regard to

such a body, when the quantities of the fluid components contained

in a given element of the solid remain constant. Let /V, ^i', etc.,

denote the quantities of the several fluid components contained in an

element of the body divided by the volume of the element in the

state of reference, or, in other words, let these symbols denote the

densities which the several fluid components would have, if the body

should be brought to the state of reference while the matter con-

tained in each element remained unchanged. We may then say that

equation (356) will hold true, when /^„', F/, etc., are constant. The

complete value of the differential of fv» will therefoi-e be given by an

equation of th^ form

(462)t?fv. = t f?vv, -[-^2' IXy,, ct^\ + Z„ cir: + L,, iU\; -f etc.

Now when the body is in a state of hydrostatic stress, the term in

this equation containing the signs of summation will reduce to

~2^dvy, (wv, denoting, as elsewhere, the volume of the element

divided by its volume in the state of reference). For in this case

dx

dy_

dx

dz

dx'

= —pdVy,. (464)

We have, therefore, for a state of hydrostatic stress,

dey, = t dj^y, - p dvy, + Z„ dFJ + Z,, dr,' -f etc., (465)

and multiplying by the volume of the element in the state of refer-

ence, which we may regard as constant,

de = t d)] —p dv + L„ dm,, + L,, dm,, + etc., (466)

z=i — p d

dx
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where f, ?/, v, «*„, wij, etc., denote tlie energy, entropy, and volume of

the element, and the quantities of its several fluid components. It is

evident that the equation will also hold true, if these symbols are

understood as relating to a homogeneous body of finite size. The

only limitation with respect to the variations is that the element or

body to which the symbols relate shall always contain the same solid

matter. The varied state may be one of hydrostatic stress or

otherwise.

But when the body is in a state of hydrostatic stress, and the solid

matter is considered invariable, we have by equation (12)

(U = t (h/ —p dv + yu„ dm^, + //,, dm;, -\- etc. (^67)

It should be remembered that the equation cited occurs in a discus-

sion which relates only to bodies of hydrostatic stress, so that the

varied state as well as the initial is there regarded as one of hydro-

static stress. But a comparison of the two last equations shows that

the last will hold true without any such limitation, and moreover,

tliat the quantities i„, ij, etc., when determined for a state of hydro-

static stress, are equal to the potentials //„, /Yj, etc.

Since we have hitherto used the term potential solely with refer-

ence to bodies of hydrostatic stress, we may apply this term as we

choose with regard to other bodies. We may therefore call the quanti-

ties X<„ Zj, etc., the potentials for the several fluid components in the

body considered, whether the state of the body is one of hydrostatic

stress or not, since this use of the term involves only an extension of

its former definition. It will also be convenient to use our ordinary

symbol for a potential to represent these quantities. Equation (462)

may then be written

day, = t dJh, + ^ 2' (X^, d'^\ + fA, dr: -f /Y, f?/V 4- etc. (468)

This equation holds true of solids having fluid components without

any limitation with respect to the initial state or to the variations,

except that the solid matter to which the symbols relate shall remain

the same.

In regard to the conditions of equilibrium for a body of this kind,

it is evident in the first place that if we make i^,/, /V, <?tc., constant,

we shall obtain from the general criterion of equilibrium all the con-

ditions which we have obtained for ordinary solids, and which are

expressed by the formula; (364), (374), (380), (382)-(384). The

quantities /'/, F^^ etc., in the last two formulae include of com-se
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those which have just been represented by F^^ /^j', etc., and which

relate to the fluid components of the body, as well as the correspond-

ing quantities relating to its solid components. Again, if we sup-

pose the solid matter of the body to remain without variation in

quantity or position, it will easily aj^pear that the potentials for the

substances which form the fluid components of the solid body must

satisfy the same conditions in the solid body and in the fluids in con-

tact with it, as in the case of entirely fluid masses. See eqs. (22).

The above conditions must however be slightly modified in order

to make them sufiicient for equilibrium. It is evident that if the

solid is dissolved at its surface, the fluid components which are set

free may be absorbed by the solid as well as by the fluid mass, and

in like manner if the quantity of the solid is increased, the fluid com-

ponents of the new portion may be taken from the previously exist-

ing solid mass. Hence, whenever the solid components of the solid

body are actual components of the fluid mass, (whether the case is

the same with the fluid components of the solid body or not,) an

equation of the form (383) must be satisfied, in which the potentials

A'a, j^b-, etc., contained implicitlj^ in the second member of the equa-

tion are determined from the solid body. Also if the solid compon-

ents of the solid body are all possible but not all actual components

of the fluid mass, a condition of the form (384) must be satisfied, the

values of the potentials in the second member being determined as in

the preceding case.

The quantities

t, A^x,, . . . -^z., ;^«, /'i, etc., (469)

being difierential coeflicients of fy* with respect to the variables

"- £'•••!' ^•' ^*'' ^'«- f""'

will of course satisfy the necessary relations

dt _dX^
^^^

This result may be generalized as follows. Not only is the second

member of equation (468) a complete differential in its present form,

but it will remain such if we transfer the sign of differentiation {d)

from one factor to the other of any term (the sum indicated by the

symbol ^ 2' is here supposed to be expanded into nine terms), and

at the same time change the sign of the term from + to — . For to
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substitute — t]y,dt for tdt/y,, for exampk', is equivalent to subtract-

ing the complete clitterential d{ti/y,). Therefore, if we consider the

quantities in (469) and (470) which occur in any same term in equa-

tion (468) as forming a pair, Ave may choose as independent variables

either quantity of each pair, and the differential coefficient of the

remaining quantity of any pair with respect to the independent

variable of another pair will be equal to the differential coefficient of

the remaining quantity of the second pair with respect to the inde-

pendent variable of the first, taken positively, if the independent

variables of these pairs are both affected by the sign d in equation

(468), or are neither thus affected, but otherwise taken negatively.

Thus

\drj/,U> \d'l^/^-' \<'f-'aJl7, \t^Ua
^ '

dx' dx'

jdx jdx

where in addition to the quantities indicated by the suffixes, the

following are to be considered as constant : either t or //y, , either

flic (J/X

JTy, or -;—, , . . . either Zy, or -^-^ , either //,, or /
',/, etc.

dy dz

It will be observed that when the tempei-ature is constant the con-

ditions yw,, = const., //,,
=. const, represent the physical condition of a

body in contact with a fluid of which the phase does not vary, and

which contains the components to which the potentials relate. Also

that when i^^', /",/, etc., are constant, the heat absorbed by the body

in any infinitesimal change of condition per unit of volume measured

in the state of reference is represented by t dy]y, . If we denote this

quantity by dQy,, and use the suffix q to denote the condition of no

transmission of heat, we may write

dx

/dlog t\ _ /^^YxA {'j}o^t\ _ _ /^^\ avi^

"dx'

\dx:Jt - VHog tjx^: \ /± Jt
- \d\og t)'~ ' ^

'^'

'hx'

where FJ, Ff,', etc., must be regarded as constant in all the equations,

, . , ,^ d.r .
, ^ dz . .

and either Ay, or -j-, , . . . eitlier Z^, or —
,

, in each equation.
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Influence of surfaces of discontinuity upon the equilibrium

OF heterogeneous masses.—Theory of capillarity.

We have hitherto supposed, in treating of heterogeneous masses in

contact, tliat they might be considered as separated by mathematical

surfaces, each mass l>eing unaifectod by the vicinity of the others, so

that it might be homogeneous quite up to the separating surfaces

both with respect to the density of each of its various components

and also with respect to the densities of energy and entropy. That

such is not rigorously the case is evident from the consideration that

if it were so with respect to the densities of the components it could

not be so in general with respect to the density of energy, as the

sphere of molecular action is not infinitely small. But we know from

observation that it is only within A^ery small distances of such a sur-

face that any mass is sensibly aifected by its vicinity,—a natural

consequence of the exceedingly small sphere of sensible molecular

action,—and this fact renders possible a simple method of taking-

account of the variations in the densities of the component substances

and of energy and entropy, which occur in the vicinity of surfaces of

discontinuity. We may use this term, for the sake of brevity, with-

out implying that the discontinuity is absolute, or that the term

distinguishes any surface with mathematical precision. It may be

taken to denote the non-homogeneous film which separates homo-

geneous or nearly homogeneous masses.

Let us consider such a surface of discontinuity in a fluid mass

which is in equilibrium and uninfluenced by gravity. For the pre-

(nse measurement of the quantities with which we have to do, it will

be convenient to be able to refer to a geometrical surface, which

shall be sensibly coincident with the physical surface of discontinuity,

but shall have a precisely determined position. For this end, let us

take some point in or very near to the physical surface of discon-

tinuity, and imagine a geometrical surface to pass through this point

and all other points which are similarly situated with respect to the

condition of the adjacent matter. Let this geometrical surface be

called the dividing surface, and designated by the symbol S. It

will be observed that the position of this surface is as yet to a certain

extent arbitrary, but that the directions of its normals are already

everywhere determined, since all the surfaces which can be formed in

the manner described are evidently parallel to one another. Let us

also imagine a closed surface cutting the surface S and including a

part of the homogeneous mass on each side. We will so far limit the
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form of this closed surface as to suppose that on each side of S, as far

as there is any want of perfect homogeneity in the fluid masses, the

closed surface is such as may be generated by a moving normal to S.

Let the portion of S which is included by the closed surface he

denoted by s, and the area of this portion by s. Moreover, let the

nu\ss contained within the closed surface be divided into three parts

by two surfaces, one on each side of S, and very near to that surface,

although at such distance as to lie entirely beyond the influence of

tlie discontinuity in its vicinity. Let us call the part which contains

the surface s (with the physical surface of discontinuity) M, and the

homogeneous parts M' and M*, and distinguish by f, f', «", //, if, ?/',

»?,, »?/, m,', m„, nij, rn^" , etc., the energies and entropies of these

masses, and the quantities which they contain of their various com-

ponents.

It is necessary, however, to define more precisely what is to be

understood in cases like the present by the energy of masses which

are only separated from other masses by imaginary surfaces. A part

of the total energy which belongs to the matter in the vicinity of the

separating surface, relates to pairs of 2:)articles which are on diflerent

sides of the surface, and such energy is not in the nature of tilings

referable to either mass by itself Yet, to avoid the necessity of

taking separate account of such energy, it will often be convenient to

include it in the energies which we refer to the sejjarate masses.

When there is no break in the homogeneity at the surface, it is

natural to treat the energy as distributed with a uniform density.

This is essentially the case with the initial state of the system which

we are considering, for it has been divided by surfaces passing in

general through homogeneous masses. The only exception—that of

the surface which cuts at right angles the non-homogeneous film

—

(apart from the consideration that without any imj^ortant loss of

generality we may regard the part of this surface within the film as

very small compared with the other surfaces) is rather apparent than

real, as there is no change in the state of the matter in the direction

perpendicular to this surface. But in the variations to be considered

in the state of the system, it will not be convenient to limit ourselves

to such as do not ci'eate any discontinuity at the surfaces bounding

the masses M, M', ]\I" : we must therefore determine how we will

estimate the energies of the masses in case of such infinitesimal

discontinuities as may be supposed to arise. Now the energy of

each mass will l)e most easily estimated by neglecting the discon-

tiniiity, i. e., if we estimate the energy on the supposition that
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beyond the bounding surface the phase is identical with that within

the surface. This will evidently be allowable, if it does not affect

tlie total amount of energy. To show that it does not affect this

quantity, Ave have only to observe that, if the energy of the mass on

one side of a surface where there is an infinitesimal discontinuity of

phase is greater as determined l)y this rule than if determined by

any other (suitable) rule, the energy of the mass on the other side

must be less by the same amount when determined by the first rule

than when determined by the second, since the discontinuity I'elative

to the second mass is equal but opposite in character to the discon-

tinuity relative to the first.

If the entropy of the mass which occupies any one of the spaces

considered is not in the nature of things determined without refer-

ence to the surrounding masses, we may suppose a similar method to

be applied to the estimation of entropy.

With this understanding, let us return to the consideration of the

equilibrium of the three masses M, M', and W. We shall suppose

that there are no limitations to the possible variations of the system

due to any want of perfect mobility of the components by means of

which we express the composition of the masses, and that these com-

ponents are independent, i. e,, that no one of them can be formed out

of the others.

With regard to the mass M, which includes the surface of discon-

tinuity, it is necessary for its internal equilibrium tliat when its

boundaries are considered constant, and when we consider only

reversible variations (i. e., those of which the opposite are also

possible), the variation of its energy should vanish with the varia-

tions of its entropy and of the quantities of its various components.

For changes within this mass will not affect the energy or the entropy

of the surrounding masses (when these quantities are estimated on

the principle whicli we have adopted), and it may therefore be

treated as an isolated system. For fixed boundaries of the mass M,

and for reversible variations, we may therefoi'e write

de = A^^di] -\- A^ Sm^ + A^ 6m ^ + etc, (476)

where yl„, A^, A2, etc., are quantities determined l)y the initial

(ixnvaried) condition of the system. It is evident that A^ is the

teni])eratiire of the lamelliform mass to which tlie equation relates,

or tlie temperature at the surface of discontinuity. By comparison

of this equation with (12) it will be seen that the definition of yj ,,

^^2, etc, is entirely analogous to that of the potentials in homo-
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geneous masses, although the mass to which the former quantities

rehite is not homogeneous, while in our previous definition of poten-

tials, only homogeneous masses were considered. By a natural ex-

tension of the term potential, we may call the quantities A ^, A^t

etc., \\\Q potentials at the surface of discontimdty. This designation

will be fartlier justified by the fact, which will appear hereafter, that

the value of these quantities is independent of the thickness of the

lamina (M) to which they relate. If we employ our ordinary sym-

bols for temperature and potentials, we may write

6e = t6i]^ fA^ 6)11^ -f /<3 dm^ + etc. (477)

If we substitue ^ for rr in this equation, the formula will hold

true of all variations whether reversible or not ;* for if the variation of

energy could have a value less than that of the second member of

the equation, there must be variation in the condition of M in which

its energy is diminished without change of its entropy or of the

quantities of its various components.

It is important, however, to observe that for any given values of

d'v, dm^, Srii^, etc., while there may be possible variations of the

nature and state of M for which the value of Se is greater than that

of the second member of (477), there must always be possible varia-

tions for which the value of 6e is equal to that of the second member.

* To illustrate the difEerence between variations which are reversible, and those

which are not, we may conceive of two entirely different substances meeting in equilib-

rium at a mathematical surface without being at all mixed. We may also conceive of

them as mixed in a thin film about the surface where they meet, and then the amount

of mixture is capable of variation both by increase and by diminution. But when they

are a):isolutely unmixed, the amount of mixture can be increased, but is incapable of

diminution, and it is then consistent with equilibrium that the value of <)f: (for a varia-

tion of the system in which the substances commence to mix) should be greater than

the second member of (477). It is not necessary to determine whether precisely such

cases actually occur ; but it would not be legitimate to overlook the possible occur-

rence of cases in which variations may be possible while the opposite variations are

not.

It will be observed that the sense in whirh the term reversible is here used is en-

tirely different from that in which it is frequently used in treatises on thermody-

namics, where a process by which a system is brought from a state A to a state B is

called reversible, to signify that the system may also be brought from the state B to

the state A through the same series of intermediate states taken in the reverse order

by means of external agencies of the opposite character. The variation of a system

from a state A to a state B (supposed to differ infinitely little from the first) is here

called reversible when the system is capable of another state B' which bears the same

relation to the state A that A bears to B.

Trans. Conn. Acad., Vol. III. 49 June, 1877.
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It will be convenient to have a notation which will enable us to ex-

press this by an equation. Let be denote the smallest value (i. e., the

value nearest to — oo) of Se consistent with given values of the

other variations, then

"bs = t drf -^ pij^ d))ii -f" A's ^>^h + ^tc. (478)

For the internal equilibrium of the whole mass which consists of

the parts M, M', M", it is necessary that

Se + 6a' + de" ^ (479)

for all variations which do not affect the enclosing surface or the

total entropy or the total quantity of any of the various components.

If we also regard the surfaces separating M, M', and M" as invaria-

ble, we may derive from this condition, by equations (478) and (12),

the following as a necessary condition of equilibrium

:

t Sr^ -{- /.i^ Sni^ -\- /<2 ^ni^ + etc.

+ t' Sif -|- /^/ Sm^' -\- i^i^' 6^2 + etc.

4- t" dtf + j.i/ dm/ + /,i/ dm/ + etc. ^ 0, (480)

the variations being subject to the equations of conditions

6jf-\-6>/' + 6>/' = 0, 1

6m^ -^ Sin^' -\-6m/ = 0, I

dni^ + 6m/ -\- 61)12" ^^ ^)
I

etc. J

It may also be the case that some of the quantities 6nt / 6tn/,

6m/ ^ 6m/\ etc., are incapable of negative values or can only have

the value zero. This will be the case when the substances to which

these quantities relate are not actual or possible components of M'

or M". (Seepage 117.) To satisfy the above condition it is neces-

sary and sufficient that

t = t' - t", (482)

fx^' 6ni^^ lA^ 6m/ j^i/ 6m/ ^ i^i^ 6m/^ etc., (483)

ix/ 6ni/^l-i^6m/, /.t/ 6m/^ /.(2 6m/, etc. (484)

It will be observed that, if the substance to which /^,, for instance,

relates is an actual component of each of the homogeneous masses,

we shall have /u^ =z ju^' = /.(/. If it is an actual component of the

first only of these masses, we shall have //j z= ///. If it is also a

possible component of the second homogeneous mass, we shall also

have jx^ = /x/. If this substance occurs only at the surface of dis-
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continuity, the vahie of the i)()tenti:U /<, will not be determined by

any e([uation, but cannot be greater tliau the potential for the same

substance in either of the homogeneous masses in which it may be a

possible component.

It appears, therefore, that the particular conditions of equilibrium

relating to temperature and the potentials which we have before

obtained by neglecting the influence of the surfaces of discontinuity

(])p. 119, 120, 12y) are not invalidated by the influence of such dis-

continuity in their application to homogeneous parts of the system

bounded like M' and M" by imaginary surfaces lying within the

limits of homogeneity,— a condition which may be fulfilled by sur-

faces very near to the surfaces of discontinuity. It appears also that

similar conditions will apply to the non-homogeneous films like M',

which separate such homogeneous masses. The properties of such

films, which are of course difterent from those of homogeneous

masses, require our farther attention.

The volume occujned by the mass M is divided by the surface s

into two parts, which w^e wnll call v'" and v"", v'" lying next to M',

and v"" to M", Let us imagine these volumes filled by masses hav-

ing throi;ghout the same temperature, pressure and potentials, and

the same densities of energy and entropy, and of the various com-

ponents, as the masses M' and M" respectively. We shall then have,

by equation (12), if we regard the volumes as constant,

6e"' = t' chf" + /// S>n,"' + M2' ^^^^2'" + etc, (485)

6e"" = t" dif" + ///' 67n^"" + ).i^" dm.J'" + etc.
; (486)

whence, by (482)-(484), we have for reversible variations

6t"' = t 611" + //j 6m /" -f yuo SmJ" + etc., (48V)

6t"" = t6jf"'-\-f.i^ 6m,"" + //g 6m.^"" + etc. (488)

From these equations and (4V7), we have for reversible variations

S{e-t"'-t"")-t6{if- v'" -n"")

+ ^i, 6{m ,
- m,"' - m,'"') + //a ^("^2 " ^^^2'" " »"."")+ etc. (489)

Or, if we set*

««= e - £'" - £"", if = 7/ - if - ii"\ (490)

m\ =.mi —m, '" — ?«,"", m| = m^ —m^" — m.^'"^ etc., (491)

* It will be understood that the '^ here used is not an algebraic exponent, but is

onl3Mntended as a distinguishing mark. The Roman letter 8 has not been used to

denote an_v quantity.
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we may write

This is true of reversible variations in Avhich the surfaces wliich have

been considered are fixed. It will be observed that i'' denotes the

excess of the energy of the actual mass which occupies the total

volume which we have considered over that energy which it would

have, if on each side of the surface S the density of energy had the

same uniform value quite up to that surface which it has at a sensi-

ble distance from it; and that ?/*, n4, m|, etc., have analogous signi-

fications. It will be convenient, and need not be a source of any

misconception, to call 6^ and if the energy and entropy of the surface

t^ if
(or the superficial energy and entropy), — and — the siqmficial den-

lit TTt

sities of energy and entropy, —i,
—

?, etc., the superficial densities of

the several components.

Now these quantities (f'', 7/^, m\^ etc.) are determined partly by

the state of the physical system which we are considering, and partly

by the various imaginary surfaces by means of which these quanti-

ties have been defined. The position of these surfaces, it will be

remembered, has been regarded as fixed in the variation of the sys-

tem. It is evident, however, that tlie form of that portion of these

surfaces, which lies in the region of homogeneity on either side of the

surface of discontinuity cannot aftect the values of these quantities.

To obtain the complete value of dt^ for reversible variations, we have

therefore only to regard variations in the position and form of the

limited surface s, as this determines all of the surfaces in question

lying within the region of non-homogeneity. Let us first suppose

the form of s to remain unvaried and only its position in space to

vary, either by translation or rotation. No change in (492) will be

necessary to make it valid in this case. For the equation is valid if

!$ remains fixed and the material system is varied in position ; also, if

the material system and § are both varied in position, while their

relative position remains unchanged. Therefore, it will be valid if

the surface alone varies its position.

But if the form of s be varied, we must add to the second member

(492) terms which shall I'epresent the value of

6t^ — t 6}f — // , f5;/v^ — //„ dm\ — etc.

due to such variation in the form of <*. If we suppose s to be suffi-
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cicntly small to be considered uniform throughout in its curvatures

and in respect to the state of the surrounding matter, the value of the

above expression will be determined bj' the variation of its area 6s

and the variations of its principal curvatures 6c ^ and (Jc^, and we

may write

tff* =3 t 6}f -{- yu, 6)/i\ -\- /-/g 6m\ -\- etc.

+ (?<5.^^+ C\ 6c, + C^6c^, (493)

or

6£^ = t 6if + /<i 6w^^ -\- /Yg 6in\ + etc.

^a6s^\{G,-^C^) 6{c., + e^) + i(6', - C^) 6{c^ - c^\{\%\)

o", C,, and Cg denoting quantities which are determined by the

initial state of the system and position and form of s. The above is

the complete value of the variation of t^ for reversible variations of

the system. But it is always possible to give such a position to the

surface s that C^ + (J.^ shall vanish.

To show this, it will be convenient to write the equation in the

longer form [see (490), (491)]

6^ ^ t 6}f
— /<j 6m , — /<2 6)n„ — etc.

~ 6f:"' + t 6)/" + /<, 6m,'" + /<2 6m,'" + etc.

_ Se"" + t 6if"' + /Yj 6m,"" + //a 6'm.^ "" + etc.

= o-6s + h{C, + 0,) 6{c, + cs) + HC'i - <^',) %. -e,), (495)

i. e., by (482)-(484) and (12),

6e — t 6?/ — /u, 6m, — ^2 ^^^2 — ^^^' ^ P' ^""' ^ P" ^^""

= 0- (Js + i (C, + Co) 6{c, + C2) + h {C\ - C,) 6{c, - c,). (496)

From this equation it appears in the first place that the pressure is

the same in the two homogeneous masses separated by a plane sur-

face of discontinuity. For let us imagine the material system to

remain unchanged, while the plane surface s without change of area

or of form moves in the direction of its normal. As this does not

affect the boundaries of the mass M,

6s — t 6y — fA, 6m, — yWg 6m2 — etc. = 0.

Also 6s = 0, 6{c, + C2) = 0, 6{c, — C2) = 0, and 6?^' = - 6v"".

Hence ^:>' =2^'\ when the surface of discontinuity is plane.

Let us now examine the effect of different positions of the surface *^

in the same material system upon the value of C\ -\- t'g, supposing at

first that in the initial state of the system the surface of discontinuity

is ]»]nne. Let ns give tlie surface s some particular position. Li the
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initial state of the system tliis surface will of course be plane like the

physical surface of discontinuity, to which it is parallel. In the

varied state of the system, let it become a portion of a spherical

surface having positive curvature ; and at sensible distances from

this surface let the matter be homogeneous and with the same phases

as in the initial state of the system ; also at and aboiit the surface let

the state of the matter so far as possible be the same as at and about

the plane surface in the initial state of the system. (Such a variation

in the system may evidently take place negatively as well as posi-

tively, as the surface may be curved toward either side. But

whether such a variation is consistent with the maintenance of equi-

librium is of no consequence, since in the preceding equations only

the initial state is supposed to be one of equilibrium.) Let the

surface s, placed as supposed, whether in the initial or the varied

state of the surface, be distinguished by the symbol s'. Without

changing either the initial or the varied state of the material system,

let us make another supposition with respect to the imaginary sur-

face s. In the unvaried system let it be parallel to its former posi-

tion but removed from it a distance A on the side on which lie the

centers of positive curvature. In the varied state of the system, let

it be spherical and concentric with s', and separated from it by the

same distance A, It will of course lie on the same side of s' as in the

unvaried system. Let the surface s, placed in accordance with this

second supposition, be distinguished by the symbol §". Both in the

initial and the varied state, let the perimeters of s' and s" be traced

by a common normal. Now the value of

6s — t 6?] — /-ii Sm^ — yUg ^^^2 ~ ^**^-

in equation (496) is not aifected by the position of §, being deter-

mined simply by the body M : the same is true p' dv'" + p" Sv"" or

p'd{v"' -f w""), v"'-\- v"" being the volume of M. Therefore the second

member of (496) will have the same value whether the expressions

relate to s' or s". Moreover, 6{c^ — c„)-=iQ both for s' and s". If

we distinguish the quantities determined for s' and for s" by the

marks ' and ", we may therefore write

o-'(ys'+i(C/+ C^') d{c,'+c.J)=.a"6s"-\-^{C,"+ Co") S{c," +c/).

Now if we make 6s" =. 0,

we shall have by geometrical necessity

6s' = sX6{c^"+c/).
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Hence

o-'sX6{c,''+c,'')+ \{C,'+ t\J)S{c,'-\.e^')=\{C\''-V C./)6{c,"+c/).

But 6{c,'+c^') = d{c,'+c/).

Therefore, (7, '+ C'g '+ 2 o' s\=t\'+ C^ ".

This equation shows that we may give a positive or negative vnhie

to C/4- C2" by placing s" a sufficient distance on one or on the

other side of s'. Since this is true when the (unvaried) surface is

plane, it must also be true when the surface is nearly plane. And for

this purpose a surface may be regarded as nearly plane, when the

radii of curvature are very large in proportion to the thickness of the

non-homogeneous film. This is the case when the radii of curvature

have any sensible size. In general, therefoi-e, whether the surface of

discontinuity is plane or curved it is possible to place the surface s

so that Cj + 6'g in equation (494) shall vanish.

NoAV we may easily convince ourselves by equation (493) that if g

is placed within the non-homogeneous film, and s= 1, the quantity

is of the same order of magnitude as the values of £^, ?/^, m^j, v>4, etc.,

while the values of C ^ and C^ are of the same order of magnitude

as the changes in the values of the former quantities caused by
increasing the curvature of s by unity. Hence, on account of the

thinness of the non-homogeneous film, since it can be very little

affected by such a change of curvature in s, the values of C, and C^

must m general be very small relatively to o'. And hence, if s' be

placed within the non-homogeneous film, the value of A which will

make C^"-\-C./ vanish must he very small (of the same order of

magnitude as the thickness of the non-homogeneous film). The posi-

tion of s, therefore, which will make (7, -\- (J.^ in (494) vanish, will

in general be sensibly coincident with the physical surface of

discontinuity.

We shall hereafter suppose, when the contrai-y is not distinctly

indicated that the surface s, in the unvaried state of the system, has

such a position as to make C, -f Cg := 0. It will be remembered tliat

the surface s is a part of a larger surface S, which we have called the

dividing surface, and which is coextensive with the physical surface

of discontinuity. We may suppose that the position of the dividing

surface is everywhere determined by similar considerations. This

is evidently consistent with the suppositions made on page 380 with

regard to this surface.
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We may therefore cancel the term

in (494). In regard to the following term, it will be ohserved that

(7j must necessarily be equal to Cg, when c, = f'2, which is the case

when the surface of discontinuity is plane. Now on account of the

thinness of the non-homogeneous film, we may always regard it as

composed of parts which are ajiproximately plane. Therefore, with-

out danger of sensible error, we may also cancel the term

Equation (494) is thus reduced to the form

6t^ = t Sif + 6s+ 1.1^ 6m\ + yWg ^'^'1 + ^^c. (497)

We may regard this as the complete value of dt^, for all reversible

variations in the state of the system supposed initially in equilibrium,

Avhen the dividing surface has its initial position determined in the

manner described.

The above equation is of fundamental importance in the theory

of capillarity. It expresses a relation with regard to surfaces of dis-

continuity analogous to that expressed by equation (12) with regard

to homogeneous masses. From the two equations may be directly

deduced the conditions of eqiiilibrium of heterogeneous masses in con-

tact, subject or not to the action of gravity, without disregard of the

influence of the surfaces of discontinuity. The general problem, in-

cluding the action of gravity, we shall take up hereafter: at present

we shall only consider, as hitherto, a small part of a surface of dis-

continuity with a part of the homogeneous mass on either side, in

order to deduce the additional condition which may be found when
we take account of the motion of the dividing surface.

We suppose as before that the mass especially considered is

bounded by a surface of which all that lies in the region of non-

homogeneity is such as may be traced by a moving normal to the

dividing surface. But instead of dividing the mass as before into

four parts, it will be sufficient to regard it as divided into two parts

by the dividing surface. The energy, entro])y, etc., of these parts,

estimated on the supposition that its nature (including density of

energy, etc.) is uniform quite up to the dividing surface, will be

denoted by e', ?/, etc., e", y/", etc. Then the total energy will be

f^-f-f'-f f", and the general condition of internal equilibrium will be

that
d6Htff'+(56"^0, (498)
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when tlie bounding surface is fixed, and the total entropy and total

(juaiitities of the various components are constant. We may suppose

'A '/') '/'? "'n "*!? "'i'? '"29 "''2? '"'2''5 ^t'C, to be all constant. Then
by (497) and (12) the condition reduces to

a ds — p' 6v' - p" dv" = 0, (499)

(We may set = for ^, since changes in the position of the dividing-

surface can evidently take place in either of two opposite directions.)

This equation has evidently the same form as if a membrane without

rigidity and having a tension ff, uniform in all directions, existed

at the dividing surface. Hence, the particular position which we
liave chosen for this surface may be called the surface of tension, and

(T the superficial tension. If all parts of the dividing surface move
a uniform normal distance SJV, we shall have

fJs = (c
J -H c^) s 6JV, Sv' = s SJ^, Sv' =^s dN;

whence C (c, + Cg) ^^i' — ^/, (500)

the curvatures being positive when their centers lie on the side to

which j[>' relates. This is the condition which takes the place of that

of equality of pressure (see pp. 119, 128) for heterogeneous fluid

masses in contact, when we take account of the influence of the sur-

faces of discontinuity. We have already seen that the conditions

relating to temperature and the potentials are not affected by these

surfaces.

Fundainental Equations for Surfaces of Discontinuity.

In equation (497) the initial state of the system is supposed to be

one of equilibrium. The only limitation with respect to the varied

state is that the variation shall be reversible, i. e., that an opposite

vai'iation shall be possible. Let us now confine oiir attention to

variations in which the system remains in equilibrium. To distin-

o-uish this case, we may use the character d instead 6, and write

dt^ = t dif -f <j ds-\- f-i^ dm\ + yWg ^^^"1 + ^^^- (^01)

Both the states considered being states of equilibrium, the limitation

with respect to the reversil)ility of the variations may be neglected,

since the variations will always be reversible in at least one of the

states considered.

If we integrate this equation, supposing the area s to increase

from zero to any finite value ^s-, while the material system to a jiart

of which the equation relates remains without change, we obtain

t^ = t rf -\- G s + // , m^, -^ fi^ ni\ -f etc., (502)

Trans. Conn. Ac.\i)., Vol. IT I. .30 July, 187 7,
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which may be applied to any portion of any surface of discontinuity

(in equilibrium) which is of the same nature throughout, or through-

out which the values of ^, o", /^,, /^g? ©tc. are constant.

If we differentiate this equation, regarding all the quantities as

variable, and compare the result with (501), we obtain

rf (It + s da + m^ dpiy + ni\ dpi^ -f etc. r= 0. (503)

If we denote the superficial densities of energy, of entropy, and

of the several component substances (see page 38G) by f^, '/si l\i I\i

etc., we have

fs = -, Vs = y, (504)

^,=-7^, ^2 =
-f,

etc., (505)

and the preceding equations may be reduced to the form :

—

d€f^=it d};s, 4- Mj dr^ + /ig dr^ + etc., (50G)

€^=t7]f,+ G -\- /.I
I
7", + M2 ^2 + etc., (.tOV)

d(T = — j/s dt — r^ djA^— 7^2 ^1-^2 ~ etc. (508)

Now the contact of the two homogeneous masses does not impose

any restriction upon the variations of phase of either, except that

the temperature and the potentials for actual components shall have

the same value in both. [See (482)-(484) and (500).] For however

the values of the pressures in the homogeneoiis masses may vary (on

account of arbitrary variations of the temperature and potentials),

and however the superficial tension may vary, equation (500) may
always be satisfied by giving the proper curvature to the surface of

tension, so long, at least, as the difference of pressures is not great.

Moreover, if any of the potentials /^,, yU^? etc. relate to substances

which are found only at the surfixce of discontinuity, their values

may be varied by varying the superficial densities of those sub-

stances. The values of t, yu^, yUg, etc. are therefore independently

variable, and it appears from equation (508) that o" is a function of

these quantities. If the form of this function is known, we may

derive from it by differentiation w-f 1 equations {n denoting the total

number of component substances) giving the values of ?/s? 1\, 7^2?

etc. in terms of the variables just mentioned. This will give us,

with (507), « + 3 independent equations between the 2n-\-A quantities

which occur in that e(iuation. These arc all that exist, since «+

1
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of these quantities are imlependently variable. Or, we may consider

that we liave n+'i independent equations between the 2 /i-f 5 quan-

tities occurring in equation (5i '2), of which n-{-2 are independently

variable.

An equation, therefore, between

^, t, Ml, M2, ^'tc, (5()i))

may be called a fundamental equation for the surface of discontinuity-

An equation between

f^, t/^, s, Ni\ iul^ etc., (5i0)

or between fs? '/s? ^\, ^2? ^^.c, (51i)

may also be called a fundamental equation in the same sense. For

it is evident from (501) that an equation may be regarded as subsist-

ing between the variables (510), and if this equation be known, since

n + 2 of the variables may be regarded as independent (viz., n -(- 1

for the ii -\- 1 vai"iations in the nature of the surface of discontinuity,

and one for the area of the surface considered), we may obtain by

diffei'entiation and comparison with (501), ?/ + 2 additional equations

between the 2/i -j- 5 quantities occurring in (502). Equation (506)

shows that equivalent relations can be deduced from an equation

between the vaiiables (511). It is moreover quite evident that an

equation between the variables (510) must be reducible to the form

of an equation between the ratios of these variables, and therefore to

an equation between the variables (511).

The same designation may be applied to any equation from which,

by difterentiation and the aid only of general principles and relations,

n -\- S independent relations between the same 27i -f- 5 quantities

may be obtained.

If we set tp"" = f', -t7f, (512)

we obtain by differentiation and comparison with (501)

dip^ =z — t/^ dt + a ds-{- ^^ d)n\ + yUg ^^^'4 + ^tc. (513)

An equation, therefore, between iff, t, s, m\, ni\, etc., is a fundamental

equation, and is to be regarded as entirely equivalent to either of the

other fundamental equations which have been mentioned.

The reader will not fail to notice the analogy between these funda-

mental equations, which relate to surfaces of discontinuity, and those

relating to homogeneous masses, which have been described on pages

140-144.
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0)1 the Exper'miental Determination of Fundamental Equations for

Surfaces of Discontinuity.

When all the substances which are found at a surface of discon-

tinuity are components of one or the other of the homogeneous

masses, the potentials u^, //g^ *^tc., as well as the temperature, may
be determined from these homogeneous masses.* The tension o' may

be determined by means of the relation (500). But our measure-

ments are practically confined to cases in which the difference of the

pressures in the homogeneous masses is small ; for with increasing

differences of pressure the radii of curvature soon become too small

for measurement. Therefore, although the equation p' -zzp" (which

is equivalent to an equation between ^, yUj, yWg, etc., since p' and p"

are both functions of these variables) may not be exactly satisfied in

cases in which it is convenient to measure the tension, yet this equa-

tion is so nearly satisfied in all the measurements of tension which

we can make, that we must regard such measurements as simply

establishing the values of a for values of t., /<j, //2, etc., which satisfy

the equation />'=/>", but not as sufiicient to establish the rate of

change in the value of a for variations of ^, /<j, //g, etc., which are

inconsistent with the equation p' =z p!'

.

To show this more distinctly, let <, //„, ?»3, etc. remain constant,

then by (508) and (98)

da = — I\ dpi
,

,

dp' = y^' djj^,

dp" = ri" (^Mi,

771/ 77}/

;// and y i" denoting the densities —p and —^. Hence,

dp' - dp" = (ri' - r/') (^Mi,

and r, d{p' ^p") = {y," - y,') dff.

But by (500)

(c
1 + C2) dff -f (T c?(Ci + C2) = (l{p'— p")-

Therefore,

I\ (c, + c^) dff + r, ffd{c, + Cs) = {y," - r/) dff,

or JKi" — r,' - ^\ (c, + C2) \dff = r^ ff d{c, + Cg).

* It is here supposed that the thermodynamic properties of the homogeneous

masses have already been investigated, and that the fundamental equations of these

masses may be regarded as know^n.
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Now I\ (Cj + C2) will generally be very small compared with

y i" —
Xi'. Neglecting the former term, we have

dff r. ^, ^

To integrate this equation, we may regard /'j, ;/,', y ^" as constant.

This will give, as an approximate value,

a' denoting the value of ff when the surface is plane. From this it

appears that when the radii of curvature have any sensible magni-

tude, the value of o' will l)e sensil)ly the same as when the surface is

plane and the temperature and all the potentials except one have

the same values, unless the component for which the potential has

not the same value has very nearly the same density in the two

homogeneous masses, in which case, the condition under which the

variations take place is nearly equivalent to the condition that the

|»ressures shall remain equal.

Accordingly, we cannot in general expect to determine the sixperfi-

/ d(}\ *
cial density I\ from its value — (

-:—
) by measurements of super-

ticial tensions. The case will be the same with F.^, F^, etc., and also

with ;/s, the superficial density of entropy.

The quantities fgj Vs» ^u ^21 ^^^- ^''® evidently too small in general

to admit of direct measurement. When one of the components,

however, is found only at the surface of discontinuity, it may be

more easy to measure its superficial density than its potential. But

except in this case, which is of secondary interest, it will generally

be easy to determine G in terms of ^, /^j, //g, etc., with considerable

accuracy for plane surfaces, and extremely difiicult or impossible to

determine the fundamental equation more completely.

Fundainental Equations for Plane Surfaces of Discontinuity.

An equation giving G in terms of t, //j, //g? ^tc, which will hold

true only so long as the surface of discontinuity is plane, may be

called a fundamental equation for a plane surface of discontinuity.

It will be interesting to see precisely what results can be obtained from

such an equation, especially with respect to the energy and entropy

* The suffixed fi is used to denote that all the potentials except that occurring in

the denominator of the differential coefficient are to be regarded as constant.
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and the quantities of the component substances in the vicinity of the

surface of discontinuity.

These results can be exhibited in a more simple form, if we deviate

to a certain extent from the method which we have been following.

The particular position ado])ted for the dividing surface (which

determines the superficial densities) was chosen in order to make the

term i ( 6\-f" ^2) ^ (^'1 + ^2) i" (494) vanish. But when the curvature

of the surface is not supposed to vary, such a position of the divid-

ing surface is not necessary for the simplification of the formula. It

is evident that equation (501) will hold true for plane surfaces (siip-

posed to remain such) without reference to the position of the divid-

ing surfaces, except that it shall be parallel to the surface of discon-

tinuity. We are therefore at liberty to choose such a position for

the dividing surface as may for any purpose be convenient.

None of the equations (5 02) -(5 13), which are either derived from

(501), or serve to define new symbols, will be affected by such a

change in the position of the dividing surface. But the expressions

f^, if, )n\, m%, etc., as also fg, //g, F^, 7^2? etc. and i/:^, will of course

have different values when the position of that surface is changed.

The qiTantity ff, however, which we may regard as defined by equa-

tions (501), or, if we choose, by (502) or (507), will not be affected in

value by such a change. For if the dividing surface be moved a

distance A measured normally and toward the side to which v" relates,

the qiiantities

^sj '^S) ^15 ^25 etc.,

will evidently receive the respective increments

X{e/-e,'), A (7/v" - //v'), ^(rx"-ri'), A(K2"-r2'), etc.,

^v', fv", f/\', 'h" denoting the der.sities of energy and entropy in the

two homogeneous masses. Hence, by equation (507), ff will receive

the increment

A(£/-6/)-a(//v"-//v')-/'i^(ri"-ri')-/^2^(r3"-r2')-etc.

But by (93)

- p" = €y" - 1 7/v" -- /<! Ki" - /'2 rs" - etc.,

- p' = fv' - t fh' - Ml Vi - M-z y% - etc.

Therefore, since jo'=y, the increment in the value of o' is zero.

The value of o' is therefore independent of the position of the divid-

ino- surface, when this surface is plane. But when we call this quan-

tity the superficial tension, we must remember that it will not have
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its characteristic properties as a tension witli reference to any ai'bi-

trary snrfiice. Considered as a tension, its position is in the snrface

wliicli we liave called the surface of tension, and, strictly speaking,

nowhere else. The positions of the dividing surface, however, which

we shall consider, will not vary from the surface of tension sufficiently

to make tliis distinction of any practical importance.

It is generally possible to place the dividing siirface so that the

total quantity of any desired component in the vicinity of the surface

of discontinuity shall be the same as if the density of th.at component

were uniform on each side quite up to the dividing surface. In other

words, we may place the dividing surface so as to make any one of

the quantities 7\, F^, etc., vanish. The only exception is with

regard to a component which has the same density in the two homo-

geneous masses. With regard to a component which has very nearly

the same density in the two masses such a location of the dividing

sui'face might be objectionable, as the dividing surface might fail to

coincide sensibly with the physical surface of discontinuity. Let us

suppose that /i' is not equal (nor very nearly equal) to y^", and that

the dividing surface is so placed as to make F-^ =z 0. Then equation

(508) reduces to

da = — ?/s(i) <^« — Ad) (^M2 — Ad) (^Ms — etc., (514)

where the symbols //scd- Ad)? ^tc, are used for greater distinctness

to denote the values of t/s, A? etc., as detei-mined by a dividing sur-

face placed so that 7"^ = 0. Now we may consider all the differen-

tials in the second member of this equation as independent, without

violating the condition that the surface shall remain jjlane, i. e., that

dp' = dp" . This appears at once from the values of dp' and dp"

given by equation (98). Moreover, as has already been observed,

when the fundamental equations of the two homogeneous masses are

known, the equation p' :=jij>" affords a relation between the quantities

^> /^i5 ^2-) etc. Hence, when the value of a is also known for plane

surfaces in terms of ^, /<i, yWg, etc., we can eliminate yWj from this ex-

pression by means of the rehation derived from the equality of pres-

sures, and obtain the value of a for plane surfaces in terms of

«, //o, /^3, etc. From this, by differentiation, we may obtain directly

the values of 7^s(i), A(i)» Ad)? etc., in terms of ?, /z^, /<3, etc. This

would be a convenient form of the fundamental equation. But, if the

elimination of p', ^>", and //^ from the finite equations presents alge-

braic difficulties, we can in all cases easily eliminate dp\ dp", dpi^

from the corresponding differential equations and thus ol)tain a
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differential equation from which the vahaes of //sd), ^2(1)5 ^'scd?

etc. in terms of ^, yUj, ja^^ etc., may be at once obtained by comparison

with (514).*

* If liquid mercury meets the mixed vapors of water and mercury in a plane sur-

face, and we use /z, and fi.i to denote the potentials of mercury' and water respec-

tively, and place the dividing surface so that T, =0, i. e., so that the total quantity of

mercury is the same as if the liquid mercury reached this surface on one side and the

mercury vapor on the other without change of density on either side, then r2(i) will

represent the amount of water in the vicinity of this surface, per unit of surface,

above that which there would be, if the water-vapor just reached the surface without

change of density, and this quantity (which we may call the quantity of water con-

densed upon the surface of the mercury) will be determined by the equation

da
^2(1)= -^•

(In this differential coefficient as well as the following, the temperature is supposed

to remain constant and the surface of discontinuity plane. Practically, the latter con-

dition may be regarded as fulfilled in the case of any ordinary curvatures.)

If the pressure in the mixed vapors conforms to the law of Dalton (see pp. 215, 218),

we shall have for constant temperature

dp-2 = 7i '^¥2,

where j).i
denotes the part of the pressure in the vapor due to the water-vapor, and

y.2 the density of the water-vapor. Hence we obtain

da
^2(1)= ~>'2^-

For temperatures below 100° centigrade, this will certainly be accurate, since the pres-

sure due to the vapor of mercury may be neglected,

The value of a for^2=0 and the temperature of 20° centigrade must be nearly the

same as the superficial tension of mercury in contact with air, or 55.03 grammes per

linear metre according to Quincke (Pogg. Ann., Bd. 139, p. 27). The value of a at the

same temperatiwe, when the condensed water begins to have the properties of water

in mass, will be equal to the sum of the superficial tensions of mercury in contact

with water and of water in contact with its own vapor. This will be, according to

the same authority, 42.58 + 8.25, or 50.83 grammes per metre, if we neglect the differ-

ence of the tensions of water with its vapor and water with air. As p.^, therefore,

increases from zero to 236400 grammes per square metre (when water begins to be

condensed in mass), a diminishes from about 55.03 to about 50.83 grammes per linear

metre. If the general course of the values of a for intermediate values of j^i vvere

determined by experiment, we could easily form an approximate estimate of the

values of the superficial density T^n) for different pressures less than that of satu-

rated vapor. It will be observed that the determination of the superficial density

does not by any means depend upon inappreciable differences of superficial tension.

The greatest difficulty in the determination would doubtless be that of distinguishing

between the diminution of superficial tension due to the water and that due to other

substances which might accidentally be present. Such determinations are of con-

sideraV)le practical importance on account of the use of mercury in measurements of

the specific gravity of vapors.
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The same physical relations may of course be deduced without

giving up the use of the surface of tension as a dividing surface, but

the formulae which express them will be less simple. If we make

^ ;<3, /'4, etc. constant, Av^e have by (98) and (508)

dp" =y," d/.i^ -f y/ dMs,

da = — I\ d/.{^ — 1\ djji^,

where we may suppose F^ and /"g to be determined with reference

to the surface of tension. Then, if dp' =.dp)"
.,

and

That is,

dff = /', — -; ~„ du^ — r^ diu.
Yx -r, .

The reader will observe that —r— '

—

-r. represents the distance be-
Yx -Yx

tween the surface of tension and that dividing surface which would

make 7^^ = ; the second number of the last equation is therefore

equivalent to — T^g-d)-

If any component substance has the same density in the two homo-

geneous masses separated by a plane surfixce of discontinuity, the

value of the superficial density for that component is independent

of the position of the dividing surface. In this case alone we may
derive the value of the superficial density of a component with

reference to the surface of tension from the fundamental equation for

plane surfaces alone. Thus in tlie last equation, when y^ = y ^ •,
tbe

second member will reduce to — T^. It will be observed that to

make jt)'—-^^", ^, /Y3, /i^, etc. constant is in this case equivalent to

making ^, /^,, //g, z^^, etc. constant.

Substantially the same is true of the superficial density of entropy

or of energy, when either of these has the same density in the two

homogeneous masses.*

* "With respect to questions which concern only the form of surfaces of discontinuity,

such precision as we have employed in regard to the position of the dividing surface

is evidently quite unnecessary. This precision has not been used for the sake of the

mechanical part of the problem, which does not require the surface to be defined

with greater nicety than we can employ in our observations, but in order to give

Trans. Conn. Acad., Vol. III. 51 July, 1877.
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Concerning the Stahility of Surfaces of Discontinuity.

We slicall first consider the stability of a film separating homoge-

neous masses with respect to changes in its nature, while its position

and the nature of the homogeneous masses are not altered. For this

purpose, it will be convenient to suppose that the homogeneous

masses are very large, and thoroughly stable with respect to the

possible formation of any different homogeneous masses out of their

components, and that the surface of discontinuity is plane and

uniform.

Let us distinguish the quantities which relate to the actual com-

ponents of one or both of the homogeneous masses by the sufiixes

„, J, etc., and those which relate to components which are found only

at the surface of discontinuity by the suffixes
„ , ^ , etc., and consider

the variation of the energy of the whole system in consequence of a

given change in the nature of a small part of the surface of discon-

tinuity, while the entropy of the whole system and the total quan-

tities of the several components remain constant, as well as the

volume of each of the homogeneous masses, as determined by the

surface of tension. This small part of the surface of discontinuity in

its changed state is suj^posed to be still uniform in nature, and such

as may subsist in equilibrium between the given homogeneous

masses, which will evidently not be sensibly altered in nature or ther-

modynamic state. The remainder of the surface of discontinuity is

also supposed to remain uniform, and on account of its infinitely greater

size to be infinitely less altered in its nature than the first part. Let

jde^ denote the increment of the superficial energy of this first part,

Aif, Am^, Ami, ^^c-, ^"'^, ^nil, etc., the increments of its superficial

determinate values to the superficial densities of energy, entropy, and the component

substances, which quantities, as has been seen, play an important part in the relations

between the tension of a surface of discontinuity, and the composition of the masses

which it separates.

The pioduct ct s of the superficial tension and the area of the surface, may be

regarded as the available energy due to the surface in a system in which the tempera-

ture and the potentials (U,, // 2) 6tc.—or the differences of these potentials and the

gravitational potential (see page 208) when the system is subject to gravity— are

maintained sensibly constant. The value of a, as well as that of s, is sensibly inde-

pendent of the precise position which we may assign to the dividing surface (so long

as this is sensibly coincident with the surface of discontinuity), but es > the suiierjicial

density of energy, as the term is used in this paper, like the superficial densities of

entropy and of the component substances, requires a more precise localization of the

dividing surface.
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entropy and of the quantities ol" tlio components which we regard

as belonging- to the surface. Tlie increments of entropy and of the

various components wliich the rest of the system receive will be

expressed by

— Z/?;^, —^i)i^,, -^Aml, etc., — Jm^ , — /Im^ , etc.,

and the consequent increment of energy will be by (12) and (501)

— t J/f — //„ J;;?^ — //,, A7nl — etc. — jj^ Arn^^ — jA,, Am^, — etc.

Hence the total increment of energy in the Avhole system will be

At^ -^ t Aif" — //„ A)iil — //,, A-m^i, — etc. ,

; (-516)— //„ J>/?^, — i.t,,AvvJ,— etc. )

If the value of this expression is necessarily positive, for finite

changes as well as infinitesimal in the nature of the part of the film

to which J6*, etc. relate,* the increment of energy of the whole
system will be positive for any possible changes in the nature of the

film, and the film will be stable, at least with respect to changes in

its nature, as distinguished from its position. For, if we write

Bt\ l))i^, Dml, Dml, etc., Z>m«, Bit^ , etc.

for the energy, etc. of any element of the surface of discontinuity, we
have from the supposition just made

AD6^ - t ADif -//„ ADinl - //, ADml— etc.

- //, ADm% — //, AI)m\ - etc. > ; (517)

and integrating for the w^hole surface, since

AfDm^y=0, A/Djj>t=0, etc.,

we have

A/Be^ - t AfDif- //„ AJ'Bml - }h AfDml ~ etc. > 0. (518)

Now AfDif is the increment of the entropy of the whole surface,

and — AJ'Drf is therefore the increment of the entropy of the two
homogeneous masses. In like manner, —AfDni^^, —AfDm\^ etc.

are the increments of the quantities of the components in these masses.

The expression

- t A/Dif - iJ, AfDml -
l-h AfDml ~ etc.

* In the case of infinitesimal changes in the nature of the film, the sign A must be

interpreted, as elsewhere in this paper, without neglect of infinitesimals of the higher

orders. Otherwise, by equation (501), the above expression would have the value

zero.
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denotes therefore, according to equation (12), the increment of energy

of the two homogeneous masses, and since /i/De'^ denotes the

increment of energy of the surface, the above condition expresses

that the increment of the total energy of the system is positive.

That we have only considered the possible formation of such iilms as

are capable of existing in equilibrium between the given homogeneous

masses can not invalidate the conclusion in regard to the stability of

the film, for in considering whether any state of tlie system will have

less energy than the given state, we need only consider the state of

least energy, which is necessarily one of equilibrium.

If the expression (516) is capable of a negative value for an infini-

tesimal change in the nature of the part of the film to which the

syml)ols relate, the film is obviously unstable.

If the expression is capable of a negative value, but only for finite

and not for infinitesimal changes in the nature of tliis part of the

film, the film is practically unstable* i. e., if such a change were

made in a small part of the film, the disturbance would tend to

increase. But it might be necessary that the initial disturbance

should also have a finite magnitude in respect to the extent of

surface in which it occurs ; for we cannot suppose that the thermo-

dynamic relations of an infinitesimal part of a surface of discontinuity

are independent of the adjacent parts. On the other hand, the

changes which we have been considering are such tliat every pait

of the film remains in equilibrium with the homogeneous masses

on each side ; and if the energy of the system can be diminished by

a finite cliange satisfying this condition, it may perhaps be capable

of diminution by an infinitesimal change which does not satisfy the

same condition. We must therefore leave it undetermined whether

the film, which in this case is practically unstable, is or is not

unstable in the strict mathematical sense of the term.

Let us consider more particularly the condition of practical stabil-

ity, in which we need not distinguish between finite and infinitesimal

changes. To determine whether the expression (516) is capable of a

negative value, we need only consider the least value of which it is

capable. Let us write it in the fuller form

fS" -e^' -t {if - jf) - /<„ {niT-ml') - lA,, {ml"— mf) - etc. )

_
;<; {nif — »if ) - //; {mf — mf) - etc.,

)

^^^^^

where the single and double accents distinguish the quantitie's which

* With respect to tlie sense in which this term is used, compare page 13.S.
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relate to the first and second states oi' the film, the letters without

accents denoting those quantities which have the sanu; value in both

states. The difl:erential of this expression when the quantities distin

guished by double accents are alone considered variable, and the area

of the surface is constant, will reduce by (501) to the form

(//;- ;/;) dn^' + (/.;; - ^x',) drnf + etc.

To make this incapable of a negative value, we must have

/.(" = //;' , unless r/if = 0.

In virtue of these relations and by equation (502), the expression

(519), i. e., (516), will reduce to

ff" s — ff' s,

which will be positive or negative according as

ff" — ff' (520)

is positive or negative.

That is, if the tension of the film is less than that of any other film

which can exist between the same homogeneous masses (which has

therefore the same values of t, /<„ ,
/u,, , etc.), and which moreover has

the same values of the potentials //^ , //;, , etc., so far as it contains the

substances to which these relate, then the first film will be stable.

But the film will be practically unstable, if any other such film has a

less tension. [Compare the expression (141), by which the practical

stability of homogeneous masses is tested.]

It is, however, evidently necessary for the stability of the surface

of discontinuity with respect to deformation, that the value of the

superficial tension should be positive. Moreover, since we have by
(502) for the surface of discontinuity

and by (93) for the two homogeneoiis masses

e' — t J/' + p v' ~ /Ja w*„' — /./,, m/ — etc. =: 0,

e" - t if + p v" -//„ mj' — yi/j m,," — etc. = 0,

if we denote by

f, 7/, V, m„, wij, etc., tiig, ???;,, etc.,

the total energy, etc. of a composite mass consisting of two such

homogeneous masses divided by such a surface of discontinuity, we
shall have by addition of these equations
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e — t?) -\- pv — //„ m„ — /.I,, tn,, — etc. — /u^ m„ — /j,, m,^— etc. =: ff s.

Now if the value of G is negative, the value of the first member of

this equation will decrease as s increases, and may therefore be

decreased by making the mass to consist of thin alternate strata of

the two kinds of homogeneous masses which we are considering.

There will be no limit to the decrease which is thus possible with a

given value of v, so long as the equation is applicable, i. e., so long

as the strata have the properties of similar bodies in mass. But it

may easily be shown (as in a similar case on pages 131, 132) that

when the values of

t, />, Ma, Ml., etc., M,, Mi, etc.

are regarded as fixed, being determined by the surface of discon-

tinuity in question, and the values of

f, //, m^, m,,, etc., m,j, m,,, etc.

are variable and may be determined by any body having the given

volume V, the first member of this equation cannot have an infinite

negative value, and must therefore have a least possible value, which

will be negative, if any value is negative, that is, if (f is negative.

The body determining f, ?/, etc. which will give this least value

to this expression will evidently be sensibly homogeneous. With

respect to the formation of such a body, the system consisting of the

two homogeneous masses and the surface of discontinuity with the

negative tension is by (53) (see also page 133) at least practically

unstable, if the surface of discontinuity is very large, so that it can

afibrd the requisite material without sensible alteration of the values

of the potentials. (This limitation disap]>ears, if all the component

substances are found in the homogeneous masses.) Therefore, in a

system satisfying the conditions of practical stability with respect to

the possible formation of all kinds of homogeneous masses, negative

tensions of the surfaces of discontinuity are necessarily excluded.

Let us noAV consider the condition which we obtain by applying

(516) to infinitesimal changes. The expression may be expanded as

before to the form (519), and then rediiced by equation (502) to the

form

s{g" -G')+ «.f (///- //;) + mf iiA,:' - n,!) + etc.

That the value of this expression shall be positive when the quanti-

ties are determined by two films which differ infinitely little is a

necessary condition of the stability of the film to which the single
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accents relate. But if one film is stable, the other will in general be

so too, and the distinction between the films with res])ect to stability

is of importance only at the limits of stability. If all films for all

values of yu,^, ///,, etc. are stable, or all within certain limits, it is evident

that the value of the expression must be positive when the quantities

are determined by any two infinitesimaliy different films within the

same limits. For such collective determinations of stability the

condition may be written

—SzjIo'— >>i^ JyWj, — rn\Af.i,^ — etc. ^ 0,

or

J(r< — r], /}/.<„ — r,, Ai.t^ - etc. (521)

On comparison of this formula with (508), it appears that within the

limits of stability the second and higher differential coefficients of the

tension considered as a function of the potentials for the substances

which are found only at the sui-face of discontinuity (the potentials

for the substances fomid in the homogeneous masses and the tempera-

ture being regarded as constant) satisfy the conditions which would

make the tension a maximum if the necessary conditions relative to

the fii'st differential coefficients were fulfilled.

In the foregoing discussion of stability, the surface of discontinuity

is supposed plane. In this case, as the tension is supposed {)ositive,

there can be no tendency to a change of form of the surface. We
now pass to the consideration of changes consisting in or connected

with motion and change of form of the surface of tension, which we
shall at first suppose to be and to remain spherical and uniform

throughout.

In order that the equilibrium of a spherical mass entirely sur-

rounded by an indefinitely large mass of different nature shall be

neutral Avith respect to changes in the value of r, the radius of the

sphere, it is evidently necessary that equation (500), which in this

may be written

2o- = r{p' -^p")^ (522)

as well as the other conditions of equilibrium, shall continue to hold

true for varying values of r. Hence, for a state of equilibrium which
is on the limit between stability and instability, it is necessary that

the equation

2do-={p' -p")dr -\- rdp'

shall be satisfied, when the relations between dff, dp', and dr are

determined from the fundamental equations on the supposition that
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the conditions of equilibrium relating to tempei'ature and the poten-

tials remain satisfied. (The differential coefficients in the equations

which follow are to be determined on this supposition.) Moreover, if

i. e., if the pressure of the interior mass increases less rapidly (or

decreases more rapidly) with increasing radius than is necessary to

preserve neutral equilibrium, the equilibrium is stable. But if

the equilibrium is unstable. In the remaining ease, when

farther conditions are of course necessary to determine absolutely

whether the equilibrium is stable or unstable, but in general the

equilibrium will be stable in respect to change in one direction and

unstable in respect to change in the opposite direction, and is there-

fore to be considered unstable. In general, therefore, we may call

(523) the condition of stability.

When the interior mass and the surface of discontinuity are formed

entirely of substances which are components of the external mass, p'

and (3 cainiot vary and condition (524) being satisfied the equili-

biium is unstable.

But if either the intei'ior homogeneous mass or the surface of dis-

continuity contains substances which are not components of the

enveloping mass, the equilibrium may be stable. If there is but one

such siibstance, and we denote its densities and potential by y\, 1\,

and /<!, the condition of stability (523) will reduce to the form

\ dj-i, chtj dr ^^ ^
'

or, by (98) and (508),

(rr/+2r,)'^J</'-y. (526)

In these equations and in all which follow in the discussion of this

case, the temperature and the potentials yWg?
l-^zi ^tc. are to be

regarded as constant. But
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which roprcsoiits the total quantity of the component specified hy the

suffix, must be constant. It is evidently equal to

Dividing by 4;r and differentiating, we obtain

(,.2 y^' j^2rl\)dr-^i^ r3 dy^' + r^ dT ^ = 0,

or, since y^' and r^ are functions of /<j,

(,-,./ + 2 r.) * + (^^
'h'^ + r ;i£') a, , = 0. (527)

By means of this equation, the condition of stability is brought to

the form
{ry,' + 2r,r-

If we eliminate r by equation (522), we have

3
(jo' -p") dfu^

"'"
2 o- diJ.

1

If p' and o' are known in temis of t, /ij
, //g, etc., we may express the first

member of this condition in terms of the same variables and ^j)". This

will enable us to determine, for any given state of the external mass,

the values of /<j which will make the equilibrium stable or unstable.

If the component to which ;/,' and F^ relate is found only at the

surface of discontinuity, the condition of stability reduces to

r^^ du. . 1

IT IT, > 2- (^8°)

bmce ^ I
^

n—

i

we may also write

r. da ^ 1 d\o^G ^ 1

Again, if Fi = and -j-^ = 0, the condition of stability reduces to

--^>f -J—, > 1- (532)

Smce ^^=^,'
we may also write

y' dp' . 1 Jlog (»'-»") ^ 1

p'-p"dy^'^^' d\ogy^' ^3* ^^'^'^>

Trans. Conn. Aoad., Vol. III. 52 Nov., 1877,
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When r is large, this will be a close approximation for any values of

/',, unless ;k,' is very small. The two special conditions (531) and

(533) might be derived from very elementary considerations.

Similar conditions of stability may be found when there are more

substances than one in the inner mass or the surface of discontin-

uity, which are not components of the enveloping mass. In this case,

we have instead of (526) a condition of the form

{r y,' -f 2 rj |i-^ + (r y,' + 2 i
'J f_-

+ etc. <p"--p\ (534)

from which -j--, -=—^, etc. may be eliminated by means of equations

derived from the conditions that

y^' v' + l\s, y.^ v' + r^ '% etc.

must be constant.

Nearly the same method may be applied to the following problem.

Two diiferent homogeneous fluids are separated by a diaphragm hav-

ing a circular orifice, their volumes being invariable except by the

motion of the surface of discontinuity, which adheres to the edge of

the orifice:—to determine the stability or instability of this surface

when in equilibrium.

The condition of stability derived from (522) may in this case be

written
dip'—p") ^ da , , ... dr

, ^^\

where the quantities relating to the concave side of the surface of ten-

sion are distinguished by a single accent.

If both the masses are infinitely large, or if one which contains all

the components of the system is infinitely large, p'-^p" find a will

be constant, and the condition reduces to

<^^ ^ ^

The equilibi-ium will therefore be stable or unstable according as the

surface of tension is less or greater than a hemisphere.

To return to the general problem :—if we denote by x the part of

the axis of the circular orifice intercepted between the center of the

orifice and the surface of tension, by R the radius of the orifice, and

by V the value of v' when the surface of tension is plane, we shall

have the geometrical relations

R^ z=. 'l r X — x^
.,

and V :=V' -\-%TtT^x^\n R^ (r - x)

= V' + TT r ,i'2 —Irrx^.
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By diliereutiation we obtain

(r — a;) dx + x dr =i 0,

and dv' =. n x^ dr -\- {2 tt r x — tt x^) dx
;

whence {r — x) dv' = — tc r x^ dr. (536)

By means of this rehxtion, the condition of stability may be reduced

to the form

dp' dp" 2d(J . , „ r — X

'ch'~Wr dv' ^ ^^' ~^^
' 1FV^~^^'

^'^ ^

liet us noAV suppose that the temperature and all the potentials ex-

cept one, //,, are to be regarded as constant. This will be the case

when one of the homogeneous masses is very large and contains all

the components of the system except one, or when both these

masses are very large and there is a single substance at the surface

of discontinuity^ Avhich is not a component of either ; also when
the whole system contains but a single component, and is exposed

to a constant temperature at its surface. Condition (537) will re-

duce by (98) and (508) to the form

But y^' v' ^ y^' v"
-\- I\s

(the total quantity of the component specified by the suffix) must be

constant ; therefore, since

2
dv" = — f?y', and ds =: - dv',

By this equation, the condition of stability is brought to the form

(-'--'+^^y
X — r

When the substance specified by the suffix is a component of either

of the homogeneous masses, the terms and s -=
—

* may generally

be neglected. When it is not a component of either, the terms ;Ki',

yi", v' -j—^, ""^~ ™^y ^^ course be cancelled, but we must not

apply the formula to cases in which the substance spreads over the

diaphragm separating the homogeneous masses.
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In the cases just discussed, the problem of the stability of certain

sui-faces of tension has been solved by considering the case of neutral

e(j[uilibrium,—a condition of neutral equilibrium affording the equa-

tion of the limit of stability. This method probably leads as directly

as any to the result, when that consists in the determination of the

value of a certain quantity at the limit of stability, or of the relation

which exists at that limit between certain quantities specifying the

state of the system. But problems of a more general character may
requii'e a more general treatment.

Let it be required to ascertain the stability or instability of a fluid

system in a given state of equilibrium with respect to motion of the

surfaces of tension and accompanying changes. It is supposed that

the conditions of internal stability for the separate homogeneous

masses are satisfied, as well as those conditions of stability for the

surfaces of discontinuity which relate to small portions of these

surfaces with the adjacent masses. (The conditions of stability

which are here supposed to be satisfied have been already discussed

in part and will be farther discussed hereafter.) The fundamental

equations for all the masses and surfaces occun-ing in the system are

supposed to be known. In applying the general criteria of stal)ility

which are given on page 110, we encounter the following difticulty.

The question of the stability of the system is to be determined by

the consideration of states of the system which are slightly varied

from that of which the stability is in question. These varied states

of the system are not in general states of equilibrium, and the rela-

tions expressed by the fundamental equations may not hold true of

them. More than this,—if we attempt to describe a varied state of

the system by varied values of the quantities which describe the

initial state, if these varied values are such as are inconsistent with

equilibrium, they may fiiil to determine with precision any state of

the system. Thus, when the phases of two contiguous homogeneous

masses are specified, if these phases are such as satisfy all the condi-

tions of equilibrium, the nature of the surface of discontinuity (if with-

out additional components) is entirely determined ; but if the phases

do not satisfy all the conditions of equilibrium, the nature of the sur-

face of discontinuity is not only undetermined, but incapable of deter-

mination by specified values of such quantities as we have employed

to express the nature of surfaces of discontinuity in equilibrium. For

example, if the temj)eratures in contiguous homogeneous masses are

different, we cannot specify the thermal state of the surface of discon-

tinuity by assigning to it any particular temperature. It would be
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necessary to give the law by which tlie temperature passes over from

one value to the other. And if this were given, we could make no

use of it in the determination of other quantities, unless the rate of

change of the temperature were so gradual, that at every point we

could regard the thermodynamic state as unaflTected by the change

of temperature in its vicinity. It is true that we are also ignorant in

respect to surfaces of discontinuity iti equiUbriimi of the law of

change of those quantities which are different in the two phases in

contact, such as the densities of the components, but this, although

unknown to us, is entirely determined by the nature of the phases in

contact, so that no vagueness is occasioned in the definition of any of

the quantities which we have occasion to use with reference to such

surfaces ol discontinuity.

It may be observed that we have established certain ditterential

equations, especially (497), in which only the initial state is neces-

sarily one of equilibrium. Such equations may be regarded as estab-

lishing certain properties of states bordering upon those of equilib-

rium, J5ut these are properties which hold true only when we dis-

regard quantities proportional to the square of those which express

the degree of variation of the system from equilibrium. Such equa-

tions are therefore sufficient for the determination of the conditions of

equilibrium, but not sufficient for the determination of the conditions

of stability

We may, howevei", use the following method to decide the question

of stability in such a case as has been described.

Beside the real system of which the stability is in question, it will

be convenient to conceive of another system, to which we shall attri-

bute in its initial state the same homogeneous masses and surfaces of

discontinuity which belong to the real system. We shall also sup-

pose that the homogeneous masses and surfaces of discontinuity of

this system, which we may call the imaginary system, have the same

fundamental equations as those of the real system. But the imagin-

ary system is to differ from the real in that the variations of its state

are limited to such as do not violate the conditions of equilibrium

relating to temperature and the potentials, and that the fundamental

equations of the surfaces of discontinuity hold true for these varied

states, although the condition of equilibrium expressed by equation

(500) may not be satisfied.

Before proceeding farther, we must decide whethei- we are to

examine the question of stability under the condition of a constant

external temperature, or under the condition of no transmission of
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heat to or from external bodies, and in general, to what external

influences we are to regard the system as subject. It will be con-

venient to suppose that the exterior of the system is fixed, and that

neither matter nor heat can be transmitted through it. Other cases

may easily be rediic^d to this, or treated in a manner entirely

analogous.

Now if the real system in the given state is unstable, there must be

some slightly varied state in which the energy is less, but the entropy

and the quantities of the components the same as in the given state,

and the exterior of the system unvaried. But it may easily be shown

that the given state of the system may be made stable by constrain-

ing the surfaces of discontinuity to pass through certain fixed lines

situated in the unvaried surfaces. Hence, if the suifaces of discon-

tinuity are constrained to jDass through corresponding fixed lines in

the surfaces of discontinuity belonging to the varied state just men-

tioned, there must be a state of stable equilibrium for the system

thus constrained which will differ infinitely little from the given state

of the system, the stability of which is in question, and will have the

same entropy, quantities of components and exterior, but less energy.

The imaginary system will have a similar state, since the real and

imaginary systems do not differ in respect to those states which

satisfy all the conditions of equilibrium for each surface of discontin-

uity. That is, the imaginary system has a state, differing infinitely

little from the given state, and with the same entropy, quantities of

components, and exterior, but Avith less energy.

Conversely, if the imaginary system has such a state as that just

described, the real system will also have such a state. This may be

shown by fixing certain lines in the surfaces of discontinuity of the

imaginary system in its state of less energy and then making the

energy a minimum under the conditions. The state thus determined

will satisfy all the conditions of equilibrium for each surface of dis-

continuity, and the real system will therefore have a corresponding

state, in which the entropy, quantities of components, and exterior

will be the same as in the given state, but the energy less.

We may therefore determine whether the given system is or is not

unstable, by applying the general criterion of instability (V) to the

imaginary system.

If the system is not unstable, the equilibrium is either neutral or

stable. Of course we can determine which of these is the case by

i-eference to the imaginary system, since tliis determination depends

upon states of equilibrium, in regard to Avhich the real and imaginary
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systems do not differ. We niny therefore determine whether the

equilibrium of the given system is stable, neutral, or unstable, by

applying the criteria (3)-(V) to the imaginary system.

The result which we have obtained maybe expressed as follows:^

In applying to a fluid system which is in equilibrium, and of which

all the small parts taken separately are stable, the criteria of stable,

neutral, and unstable equilibrium, we may regard the system as

under constraint to satisfy the conditions of equilibrium relating to

temperature and the potentials, and as satisfying the relations ex-

pressed by the fundamental equations for masses and siirfaces, even

when the condition of equilibrium relating to pressure [equation

(500)] is not satisfied.

It follows immediately from this principle, in connection with equa-

tions (501) and (86), that in a stable system each surface of tension

must be a surface of minimum area for constant values of the volumes

which it divides, when the other surfaces bounding these volumes

and the perimeter of the surface of tension are regarded as fixed

;

that in a system in neutral equilibrium each surface of tension will

have as small an area as it can receive by any slight variations under

the same limitations ; and that in seeking the remaining conditions of

stable or neutral equilibrium, when these are satisfied, it is only

necessaiy to consider such varied surfaces of tension as have similar

properties with reference to the varied volumes and perimeters.

We may illustrate the method which has been desci-ibed by apply-

ing it to a problem but slightly different from one already (pp. 408,

409) discussed by a different method. It is required to determine the

conditions of stability for a system in equilibrium, consisting of two
different homogeneous masses meeting at a surface of discontinuity,

the perimeter of which is invariable, as well as the exterior of the

whole system, which is also impermeable to heat.

To determine what is necessary for stability in addition to the

condition of minimum area for the surface of tension, we need only

consider those varied surfaces of tension w^hich satisfy the same con-

dition. We may therefore regard the surface of tension as deter-

mined by w', the volume of one of the homogeneous masses. But the

state of tlie system would evidently be completely determined by the

position of the surface of tension and the temperature and potentials,

if the entropy and the quantities of the components were variable;

and therefore, since the entropy and the quantities of the components

are constant, the state of the system must be completely determined

by the position of the surface of tension. We may therefore regard
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all the quantities relating to the system as functions of jv', and the

condition of stability may be written

de ^ , 1 cPe ^ ,^ .

where € denotes the total energy of the system. Now the conditions

of equilibrium require that

ds

Hence, the general condition of stability is that

d^£ ^ / V

,for. > »• (^")

Now if we write s', e", e^ for the energies of the two masses and of

the surface, we have by (86) and (501), since the total entropy and

the total quantities of the several components are constant,

de = de' + dt" + de^ — ~p' dv' —p" dv" + <? ds,

or, since dv" = — dv',

*=-/+^" + .*. (542)

Hence,
d'^s _ dp' dp" da ds d^s

(tiA'i\

and the condition of stability may be written

d^s dp' dp" do' ds

^ d^^ ^d^'~d^^d^' d^'-
^^ ^

If we now simplify the problem by supposing, as in the similar case

on page 409, that we may disregard the variations of the tempera-

ture and of all the potentials except one, the condition will reduce to

The total quantity of the substance indicated by the suffix j is

Making this constant, we have

{r: - r.' + r. *)<.„+(.'g + „.|i: +
.
|:.).,.=o, (mo)

The condition of equilibrium is thus reduced to the form

djUi djUj^ d/i^
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where -^—, and ~, are to be determined from tlie form of tlie surtace
dv dv

of tension by piirely geometrical considerations, and the other dift'er-

ential coefficients are to be determined from the fundamental equa-

tions of the homogeneous masses and the surface of discontinuity.

Condition (540) may be easily deduced from this as a particular case.

The condition of stability with reference to motion of surfaces of

discontinuity admits of a very simple expression when we can ti'eat

the temperature and potentials as constant. This will be the case

when one or more of the homogeneous masses, containing together

all the component substances, may be considered as indefinitely large,

the surfaces of discontinuity being finite. For if we write 2/i8 for

the sum of the variations of the energies of the several homogeneous

masses, and 2Ae^ for the sum of the variations of the energies of the

several surfaces of discontinuity, the condition of stability may be

WTitten

2Je + :S^z/6S>o, (548)

the total entropy and the total quantities of the several components

l>eing constant. The variations to be considered are infinitesimal,

but the character J signifies, as elsewhere in this paper, that the ex-

pression is to be interpreted without neglect of infinitesimals of the

higher orders. Since the temperature and potentials are sensibly con-

stant, the same will be true of the pressures and surface-tensions, and

by integration of (86) and (501) we may obtain for any homogeneous

mass
Ae ^zt J?/ ^ p Jv -[- /-<, Arn^ -\- jn^ ^m^ -\- etc.,

and for any surface of discontinuity

At^ = t Ajf J^ (J As-\- fi^ Am.\ + //| Am^ + etc.

These equations will hold true of finite differences, when t, /?, c, ja

/<2? etc. ave constant, and will therefore hold true of infinitesimal dif-

ferences, under the same limitations, without neglect of the infinitesi-

mals of the higher orders. By substitution of these values, the condi-

tion of stability will reduce to the form

- 2{2)Av) + 2{()As) > 0,

or 2{2)Av) — 2{(jAs) < 0. (549)

That is, the sum of the products of the volumes of the masses bv
their pi-essures diminished by the sum of the products of the areas of

the surfaces of discontinuity by their tensions must be a maximum.
This is a purely geometrical condition, since the pressures and ten-

Trans. Conn. Acad., Vol. III. 53 Nov., ISTT.
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sions are constant. This condition is of interest, because it is always

sufficient for stability with reference to motion of surfaces of discon-

tinuity. For any system may be reduced to the kind described by

putting certain parts of the system in communication (by means of

tine tubes if necessary) with large masses of the proper temperatures

and potentials. This may be done without introducing any new

movable surfaces of discontiniiity. The condition (549) when

applied to the altered system is therefore the same as when applied

to the original system. But it is sufficient for the stability of the

altered system, and therefore sufficient for its stability if we diminish

its freedom by breaking the connection between the original system

and the additional parts, and therefore sufficient for the stability of

the original system.

On the Possibility of the Formation of a Fluid of different Phase

within any Homogetieous Fluid.

The study of surfaces of discontinuity throws considerable light

upon the subject of the stability of s\;ch homogeneous fluid masses

as have a less pressure than others formed of the same components

(or some of them) and having the same temperature and the same

potentials for their actual components.*

In considering this subject, we must first of all inquire how far our

method of treating surfaces of discontinuity is applicable to cases in

which the radii of curvature of the surfaces are of insensible magni-

tude. That it should not be applied to such cases without limitation

is evident from the consideration that we have neglected the term

\(C^ — G^6{c.^ — C2) ill equation (494) on account of the magnitude

of the radii of curvature compared with the thickness of the non-

homogeneous film. (See page 390). Vv'hen, however, only spherical

masses are considered, this term will always disappear, since (7, and

C2 will necessarily be equal.

Ao-ain, the surfaces of discontinuity have been regarded as separat-

ino- homogeneous masses. But we may easily conceive that a globu-

lar mass (surrounded by a large homogeneous mass of different

nature) may be so small that no part of it will be homogeneous, and

that even at its center the matter cannot be regarded as having any

phase of matter in mass. This, however, will cause no difficulty, if

we regard the phase of the interior mass as determined by the same

* See page 161, where the term stable is used (as indicated on page 159) in a less

strict sense than in the discussion which here follows.
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relations to the exterior mass as in other cases. Beside the phase of

the exterior mass, there will always be another phase having the

same temperature and potentials, but of the general nature of the

small globule which is suri'ounded by that mass and in equilibrium

with it. This phase is completely determined by the system con-

sidered, and in general entirely stable and perfectly capable of realiza-

tion in mass, although not such that the exterior mass could exist in

contact with it at a plane surface. This is the phase which we are to

attribute to the mass which we conceive as existing within the divid-

ing surface.*

With this understanding with regard to the phase of the fictitious

interior mass, there will be no ambiguity in the meaning of any of

the symbols which we have employed, when applied to cases in

which tlie surface of discontinuity is spherical, however small the

radius may be. Nor will the demonstration of the general theorems

require any material modification. The dividing surface, which

determines the value of t^, if, ni], m%, etc., is as in other cases to be

placed so as to make the term ^(C^ -f 6\)^(Ci +(•„) in equation (494)

vanish, i. e., so as to make equation (497) valid. It has been shown

on pages 387-389 that when thus placed it will sensibly coincide

with the physical surface of discontiiuiity, when this consists of a

non-homogeneous film separating homogeneous masses, and having

radii of curvature which are large compared with its thickness. But

in retrard to ulobular masses too small for this theorem to have any

application, it will be worth while to examine how far we may be

certain that the radius of the dividing surface will have a real and

positive value, since it is only then that our method wall have any

natural a})plication.

The value of the radius of the dividing surface, supposed spherical,

of any globule in equilibrium with a surrounding homogeneous

fluid may be most easily obtained by eliminating o" from equations

(500) and (502), which have been derived from (497), and contain

the radius implicitly. If we write r for this radius, equation (500)

may be written
2 ff = (y - p")r, (550)

the single and double accents referring respectively to the interior

and exterior masses. If we w^ite [e], [//], [m^], [/Wg], etc. for the

* For example, in applying our formulae to a microscopic globule of water in

steam, by the density or pressure of tlie interior mass we should understand, not the

actual density or pressure at the center of the globule, but the density of liquid water

(in large quantities) which lias the temperature and potential of the steam.
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excess of the total energy, entropy, etc. in and about the globular

mass above what would be in the same space if it were uniformly

filled with matter of the phase of the exterior mass, we shall have

necessai-ily with reference to the whole dividing surface

m\ = [m^] - v' (;/,' — ;/,"), m| = [m^] - v' {y^ — y^\ etc.,

where fy', ^v", 'a', 'a", k/, y y •,
etc. denote, in accordance with our

usage elsewhere, the volume-densities of energy, of entropy, and of

the various components, in the two homogeneous masses. We may
thus obtain from equation (502)

0- 5 = [f] - v' (fv' - fv") - t L'/] + i ^' ('/v' - Vv")

-l.i^[_m^'\+fi^v'{y^'-y^")-H2\:m2\+f-i2v'{y^'-y./)-iilc. (551)

But by (93),

p' — — fv'

+

1 ?h'+ y" 1 r I '+ /^2 r 2
'
+ et^"-5

2)" = - e/+t v/+Mt ri"+M2 r2"+ etc.

Let us also write for brevity

W= [f] — t [7/] — JJ^ [mj — pi2 [m^] — etc. (552)

(It will be observed that the value of W is entirely determined by

the nature of the physical system considered, and that the notion of

the dividing surface does not in any way enter into its definition.)

We shall then have

0s = W+ v' ip' —p>"), (553)

or, substituting for s and v' their values in terms of r,

4 TT r2 0- = W + %7i r3 (;y - p"), (554)

and eliminating by (550),

%7tr^ {])' - p") = W, (555)

/ 3W Y ^ ^

If we eliminate r instead 0, we have

—r -, iFZT, = ^C (c'-5^)

3(/-i/)- '
^

'

/3TF(;y-;/)3\*
, ,

Now, if we first suppose the difference of the pressures in the homo-

geneo\is masses to be very small, so that the surface of discontin-

uity is nearly plane, since without any important loss of generality
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we may regard G as positive (for if G is not positive when p'^=Lp\ the

surface when plane would not be stable in regard to position, as

it certainly is, in every actual case, when the proper conditions are

fulfilled Avith respect to its perimeter), we see by (550) that the pres-

sure in the interior mass must be the greater; i. e., we may regard

o", p' —p>\ ^iitl *' as all positive. By (555), the value of W will

also be positive. But it is evident from equation (552), which defines

W. that the value of this quantity is necessarily real, in any possible

case of equilibrium, and can only become infinite when r becomes

infinite and p'^p". Hence, by (556) and (558), as p' —p" increases

from very small values, TP^ r, and a have single, real, and positive

values xmtil they simultaneously reach the value zero. Within this

limit, our method is evidently applicable ; beyond this limit, if

such exist, it will hardly be profitable to seek to interpret the

equations. But it must be remembered that the vanishing of the

radius of the somewhat arbitrarily determined dividing surface may
not necessarily involve the vanishing of the physical heterogeneity.

It is evident, however, (see pp. 387-389,) that the globule must be-

come insensible in magnitude before /• can vanish.

It may easily be shown that the quantity denoted by W is the

work which would be requii-ed to form (by a reversible process) the

heterogeneous globule in the interior of a very large mass having

initially the uniform phase of the exterior mass. For this work is

equal to the increment of energy of the system when the globule is

formed without change of the entropy or volume of the whole system

or of the quantities of the several components. Now [//], [«<,], [''^o],

etc. denote the increments of entropy and of the components in the

space where the globule is formed. Hence these quantities with the

negative sign will be equal to the increments of entropy and of the

components in the rest of the system. And hence, by equation (86),

will denote the increment of energy in all the system except where

the globule is formed. But [f] denotes the increment of energy in

that part of the system. Therefore, by (552), W denotes the total

increment of energy in the circumstances supposed, or the work re-

quired for the formation of the globule.

The conclusions which may be drawn from these considerations

with respect to the stability of the homogeneous mass of the pres-

sure p" (supposed less than ^>', the pressure belonging to a different

phase of the same temperature and potentials) are very obvious.
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Within those limits within whicli the method used has been justified,

the mass in question must be regarded as in strictness stable with

respect to the growth of a globule of the kind considered, since TF,

the work required for the formation of such a globule of a certain

size (viz., that which would be in equilibrium with the sm-rounding

mass), will always be positive. Nor can smaller globules be formed,

for they can neither be in equilibrium with the surrounding mass,

being too small, nor grow to the size of that to which W relates.

If, however, by any external agency such a globular mass (of the size

necessary for equilibrium) were formed, the equilibrium has already

(page 40(3) been shown to be unstable, and with the least excess in

size, the interior mass would tend to increase without limit except

that depending on the magnitude of the exterior mass. We may
therefore regard the quantity TF as affording a kind of measure of

the stability of the phase to which p" relates. In equation (55*7) the

value of TF is given in terms of <T and jw' —2^"- If the three funda-

mental equations which give C, ^j', and p" in terms of the tempera-

ture and the potentials were known, we might regard the stability

( W) as known in terms of the same variables. It will be observed

that when p'=zj)" the value of TF is infinite. If p' —p" increases

without greater changes of the phases than are necessary for snch

increase, TF will vai-y at first very nearly inversely as the square of

p'—p". \S. p'—p" continues to increase, it may perhaps occur that

TFreaches the value zero; but until this occurs the phase is certainly

stable with respect to the kind of change considered. Another kind

of change is conceivable, which initially is small in degree but may

be great in its extent in space. Stability in this respect or stability

in respect to conthitious changes of phase has already been discussed

(see page 162), and its limits determined. These limits depend

entirely upon the fundamental equation of the homogeneous mass of

which the stability is in question. But with respect to tlie kind of

changes here considered, which are initially small in extent but great

in degree, it does not appear how we can fix the limits of stability

with the same precision. But it is safe to say that if there is such a

limit it must be at or beyond the limit at whicli vanishes. This

latter limit is determined entirely by the fundamental equation of the

surface of discontinuity between the phase of which the stability is

in question and that of which the possible formation is in question.

We have already seen that when o' vanislies, the radius of the divid-

ing surface and the Avork W vanish with it. If the fault in the

homogeneity of the mass vanishes at the same time, (it evidently
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cannot vanish sooner,) tlie ])liase becomes unstable at this limit.

But if the fault in the homogeneity of the physical mass does not

vanish with r, and W,—and no sufficient reason appears why this

should not be considered as the general case,—although the amount

of Avork necessary to upset the equilibrium of the phase is infinitesi-

mal, this is not enough to make the phase unstable. It appears

therefoi-e that W is a somewhat one-sided measure of stability.

It must be remembered in this connection that the fundamental

equation of a surface of discontinuity can hardly be regarded as

capable of experimental determination, except for plane surfaces, (see

j)p. 394, 395,) although the relation for spherical surfaces is in the

nature of things entirely determined, at least so far as the phases are

separately capable of existence. Yet the foregoing discussion yields

the following practical results. It has been shown that the real

stability of a phase extends in general beyond that limit (discussed

on pages 160, 161), which may be called the limit of practical stabil-

ity, at which the phase can exist in contact with another at a plane

surface, and a formula has been deduced to express the degree of

stability in such cases as measured by the amount of work necessary

to upset the equilibrium of the phase when supposed to extend indefi-

nitely in space. It has also been shown to be entirely consistent

with the principles established tliat this stability should have limits,

and the manner in which the general equations would accommodate
themselves to this case has been pointed out.

By equation (553), wdnch may be written

W= as - {})' - p") v', (559)

we see that the work TF consists of two parts, of which one is always

positive, and is expressed by the product of the superficial tension

and the area of the surface of tension, and the other is always nega-

tive, and is numerically equal to the product of the difierence of pres-

sure by the volume of the interior mass. We may regard the first

part as expressing the work spent in forming the surface of tension,

and the second part the work gained in forming the interior mass.*

* To make the physical significance of the above more clear, we may suppose the

two processes to be performed separately in the following manner. We may sup-

pose a large mass of the same phase as that which has the volume v' to exist

initially in the interior of the other. Of course, it must be surrounded by a resisting

envelop, on account of the difference of the pressures. We may, however, suppose

this envelop permeable to all the component substances, although not of such proper-

ties that a mass can form on the exterior like that within. We may allow the
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Moreover, the second of these quantities, if we neglect its sign, is

always equal to two-tliirds of the first, as appears from equation (550)

and the geometrical relation v'rr^^s. We may therefore write

W= ias=z^{p' - p") v'. (560)

On the .Possible Formation at the Surface where two different Homo-
geneous Fluids meet of a Fluid of different Phase from either.

Let A, B, and C be three different fluid phases of matter, which

satisfy all the conditions necessary for equilibrium Avhen they meet

at plane surfaces. The components of A and B may be the same or

diflerent, but C must have no components except such as belong to A
or B. Let us suppose masses of the phases A and B to be separated

by a very thin sheet of the phase C. This sheet will not necessarily

be plane, but the sum of its principal curvatures must be zero. We
may treat such a system as consisting simply of masses of the phases

A and B with a certain surface of discontinuity, for in our previous

discussion there has been nothing to limit the thickness or the nature

of the film separating homogeneous masses, except that its thickness

has generally been supj^osed to be small in comparison with its radii

of curvature. The value of the superficial tension for such a film

will be <3'ac+'5'bc5 if we denote by these symbols the tensions of the

surfaces of contact of the phases A and C, and B and C, respectively.

This not only appears from evident mechanical considerations, but

may also be easily verified by equations (502) and (93), the first of

which may be regarded as defining the quantity a. This value will

not be affected by diminishing the thickness of the film, until the

envelop to yield to the internal pressure until its contents are increased by v' without

materially afEecting its superficial area. If this be done sufficiently slowly, the phase

of the mass within will remain constant. (See page 139.) A homogeneous mass of

the volume v' and of the desired phase has thus been produced, and tlie work gained

is evidently {p'—p")v'.

Let us suppose that a small aperture is now opened and closed in the envelop so as

to let out exactly the volume v' of the mass within, the envelop being pressed inwards

in another place so as to diminish its contents by this amount. During the extrusion

of the drop and until the orifice is entirely closed, the surface of the drop must adhere

to the edge of the orifice, but not elsewhere to the outside surface of the envelop.

The work done in forming the surface of the drop will evidently be as or 2{p'—p"}v'.

Of this work, the amount {p'—p")v' will be expended in pressing the envelop inward,

and the rest in opening and closing the orifice. Both the opening and the closing

will be resisted by the capillary tension. If the orifice is circular, it must have, when

widest open, the radius determined liy equation (550).
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limit is reached at which the interior of the film ceases to have the

properties of matter in mass. Now if Cac+^bc is greater than (Tab,

the tension of the ordinary surface between A and B, such a film will

be at least practically unstable. (See page 403.) We cannot sup-

pose that o'ab^o'ac+ ^bc, foi' this would make the ordinary surface

between A and B unstable and difficult to realize. If (Tab=<5'ac+ o'bc,

we may assume, in general, that this relation is not accidental, and

that the ordinary surface of contact for A and B is of the kind which

we have described.

Let us now suppose the phases A and B to vary, so as still to

satisfy the conditions of equilibrium at plane contact, but so that the

pressure of the phase C determined by the temperature and poten-

tials ofA and B shall become less than the pressure of A and B. A
system consisting of the phases A and B will be entirely stable with

respect to the formation of any phase like C. (The case is not quite

identical with that considered on page 161, since the system in ques-

tion contains two dififerent phases, but the principles involved are

entirely the same.)

With resjject to variations of the phases A and B in the opposite

direction we must consider two cases separately. It will be conven-

ient to denote the pressures of the three phases by p^^^ /)b, p^^ and to

regard these quantities as functions of the temperature and potentials.

If o'ab=o'ac+<5'bc for values of the temperature and potentials which

make pi^z=2H'=^pc, it will not be possible to alter the temperature and

potentials at the surface of contact of the phases A and B so that

Pa=2H, aiit^ Pc^Pa, foi" the relation of the temperature and potentials

necessary for the equality of the three pressures will be preserved by

the increase of the mass of the phase C. Such variations of the phases

A and B might be brought about in separate masses, but if these

were brought into contact, there would be an immediate formation

of a mass of the phase C, with reduction of the phases of the adjacent

masses to such as satisfy the conditions of equilibrium with that

phase.

But if o"ab<^0'ac+ Cbc, we can vary the temperature and potentials

so that 2^A=2'ii, and Pc^Pa, and it will not be possible for a sheet of

the phase of C to form immediately^ i. e., while the pressure of C is

sensibly equal to that of A and B ; for mechanical work equal to

<5'acH-<5'bc— o'ab pel' unit of surface might be obtained by bringing the

system into its original condition, and therefore produced without

any external expenditure, unless it be that of heat at the temperature

of the system, which is evidently incapable of producing the work.

Trans. Conn. Acad., Yol. III. 54 Nov., 1877.
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The stability of the system in respect to such a change must therefore

extend beyond the point where the pressure of C commences to be

less than that of A and B. We arrive at the same result if we use

the expression (520) as a test of stability. Since this expression has

a finite positive value when the pressures of the phases are all equal,

the ordinary surface of discontinuity must be stable, and it must

require a finite change in the circumstances of the case to make it

become unstable.*

In the pi'eceding paragraph it is shown that the surface of contact

of phases A and B is stable under cei'tain circumstances, with respect

to the formation of a thin sheet of the phase C. To complete the

demonstration of the stability of the surface with respect to the for-

mation of the phase C, it is necessary to show that this phase cannot

be formed at the surface in lentiform masses. This is the more neces-

sary, since it is in this manner, if at all, that the phase is likely to be

formed, for an incipient sheet of phase C Avould evidently be unstable

when o'ab<Co'ac+ Crc, and would immediately break up into lentiform

masses.

It will be convenient to consider first a lentiform mass of phase C
in equilibrium between masses of phases A and B which

meet in a plane surface. Let figure 10 represent a section

of such a system through the centers of the spherical sur-

faces, the mass of phase A lying on the left ofD E H' F G,

and that of phase B on the right of DEH"FG. Let

the line joining the centers cut the spherical surfaces in

H' and H", and the plane of the surface of contact of A
and B in L Let the radii of EH'F and E H" F be

denoted by r', r\ and the segments I H', I H" by x', x".

Also let I E, the radius of the circle in which the spher-

ical surfaces intersect, be denoted by B,. By a suitable

application of the general condition of equilibrium we

may easily obtain the equation

r'-x'
,

r"-x" ^^^^,
Cac— -, h o'bc

—
-r-^ = o-AB, (561)

* It is true that such a case as we are now considering is formally excluded in the

discussion referred to, which relates to a plane surface, and in which the system is

supposed thoroughly stable with respect to the possible formation of any different

homogeneous masses. Yet the reader will easily convince himself that the criterion

(520) is perfectly valid in this case with respect to the possible formation of a thin

sheet of the phase C, which, as we have seen, may be treated simply as a different

kind of surface of discontinuity.
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which signifies that the components parallel to EF of the tension

cTac and Cbc are together equal to Cab- If we denote by W the

amount of work which must be expended in order to form such a

lentiform mass as we are considering between masses of indefinite

extent having the phases A and B, we may write

W= M - jV, (562)

where M denotes the work expended in replacing the surface be-

tween A and B by the surfaces between A and C and B and C, and

iV denotes the work gained in replacing the masses of phases A and

B by the mass of phase C. Then

31= (Tac Sac + O'bc Sbc - (5'ab «ab, (563)

where Sac, He ^ab denote the areas of the three surfaces concerned
;

and
N= V {pc. - pd + V" (pc -Pb), (564)

where F' and V denote the volumes of the masses of the phases

A and B which are replaced. Now by (500),

Pc—Pa=——, and pc-p^^——' (565)

(566)

We have also the geometrical relations

F' = I ;r r'2 x' - ^ n K'' (r' - x'), \

V" = ^7t r" ^x" - iTtR^ (r" - x"). \

By substitution we obtain

/*' — x'N= f 7t o\c r' x' — ^7t R~ o\c ,-^
r

r" x"
+ f TT o'bc r" x" ^In R^ o'bc

r,
—

,

(567)

and by (561),

N= \7t Gt^^r' x' ^%n (Tbc r" x" - ^ tt R^ (Tab-
^

(568)

Since

2 n r' x •=. Sac) '^ ^ ^" ^" = He-, ^ ^^ = ^ab,

we may write

N'= f ((Tac .''ac + O'bc «bc - ^-ab «ab)- (569)

(The reader will observe that the ratio of M and iV is the same as

that of the corresponding quantities in the case of the spherical mass

treated on pages 416-422,) We have therefore

"R^= i (^Ac Sac + O'bc ^bc - ^-ab Sab)- (570)

This value is positive so long as
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since Sac > «ab, and Sbc > «ab.

But at the limit, when

Cac + tfBc = Cab,

we see by (561) that

Sac ^^^ ^ABj anci Sbc ^^ ^ab,

and therefore W =:. 0.

It should however be observed that in the immediate vicinity of the

circle in which the three surfaces of discontinuity intersect, the

physical state of each of these surfaces must be affected by the

vicinity of the others. We cannot, therefore, rely upon the formula

(570) except when the dimensions of the lentiform mass are of sensi-

ble magnitude.

We may conclude that after we pass the limit at which p^ becomes

greater thanjo^ and jt?B (supposed equal) lentiform masses of phase C
will not be formed until either o'ab^o'ac+c'bc? or p^,—-jo^ becomes so

great that the lentiform mass which would be in equilibrium is one

of insensible magnitude. [The diminution of the radii with increas-

ing values of Pc—l^A is indicated by equation (565).] Hence, no

mass of phase C will be formed until one of these limits is reached.

Although the demonstration relates to a plane surface between A
and B, the result must be applicable whenever the radii of curvature

have a sensible magnitude, since the effect of such curvature may be

disregarded when the lentiform mass is of sufficiently small.

The equilibrium of the lentiform mass of phase C is easily proved

to be unstable, so that the quantity W affords a kind of measure of

the stability of plane surfaces of contact of the phases A and B.*

* If we represent phases by the position of points in such a manner that coexistent

phases (in the sense in which the term is used on page 152) are represented by the

same point, and allow ourselves, for brevity, to speak of the phases as having the

positions of the points by which they are represented, we may say that three coex-

istent phases are situated where three series of pairs of coexistent phases meet or

intersect. If the three phases are all fluid, or wlien the effects of solidity may be

disreo'arded. two cases are to be distinguished. Either the three series of coexistent

phases all intersect,—this is when each of the three surface-tensions is less than the

sum of the two others,—or one of the series terminates where the two others inter-

sect this is where one surface tension is equal to the sum of the others. The series

of coexistent phases will be represented by lines or surfaces, according as the phases

have one or two independently variable components. SimUar relations exist when

the number of components is greater, except that they are not capable of geometrical

representation without some limitation, as that of constant temperature or pressure or

certain constant potentials.
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Essentially the same principles applj' to the more general problem

in which the phases A anrl B have modeiately diflferent pressures, so

that their surfaces of contact must be curved, but the radii of curva-

ture have a sensible magnitude.

In order that a thin film of the phase C may be in equilibrium

between masses of the phases A and B, the following equations must

be satisfied

—

<?Ac(Cl + C2)=Pk- Pc,

(>Bc(Ci + ^2) = Pc ~ Pb,

where c, and c^ denote the principal curvatures of the film, the

centers of positive curvature lying in the mass having the phase A.

Eliminating Ci-[-C2, we have

O'bc (Pa ~ Pc) = O'ac (Pc - Pb),

/'c=^i^±^'A (5?,)

It is evident that if pc has a value greater than that determined by
this equation, such a film will develop into a larger mass; if jOc has a

less value, such a film will tend to diminish. Hence, when

Pc< ff~^ff
' ^^^^^

l^BC T^ "AC

the phases A and B have a stable surface of contact.

Again, if more than one kind of surface of discontinuity is possible

between A and B, for any given values of the temperature and poten-

tials, it will be impossible for that having the greater tension to dis-

place the other, at the temperature and with the potentials con-

sidered. Hence, when p^ has the value determined by equation

(571), and consequently G'ac-\-<^bc is one value of the tension for the

surface between A and B, it is impossible that the ordinary tension

of the surface o'ab should be greater than this. If a'AB=<5'AcH-(''Bc?

when equation (571) is satisfied, we may presume that a thin film of

the phase C actually exists at the surface between A and B, and that

a variation of the phases such as woidd make p^ greater than the

second number of (571) cannot be brought about at that surface, as

it would be prevented by the formation of a larger mass of the phase

C. But if o'ab<0'ac+o'8c when equation (571) is satisfied, this equa-

tion does not mark the limit of the stability of the surface between

A and B, for the temperature or potentials must receive a finite
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change before the film of phase C, or (as we shall see in the following

paragraph) a lentiforni mass of that phase, can be formed.

The work which must be expended in order to form on the surface

between indefinitely large masses of phases A and B a lentiform mass

of phase C in equilibrium, may evidently be represented by the

formula

- Pc Vc +7>A Fa + Pb Fb, (573)

where *Sac, -^bc denote the areas of the surfaces formed between A and

C, and B and C, S^b tlie diminution of the area of the surface between

A and B, Fc the volume formed of the phase C, and Va, Vb the

diminution of the volumes of the phases A and B. Let us now sup-

pose (Tacj o'bc, o'ab, Pa, Pb to remain constant and the external bound-

ary of the surface between A and B to remain fixed, while pc

increases and the surfaces of tension receive such alterations as are

necessary for equilibrium. It is not necessary that this should be

physically possible in the actual system ; we may suppose the changes

to take place, for the sake of argument, although involving changes

in the fundamental equations of the masses and surfaces considered.

Then, regarding TF simply as an abbreviation for the second member

of the preceding equation, we have

- Pc d T^c + Pa d Fa + Pb d Vb - Vc dpc. (574)

But the conditions of equilibrium require that

O'ac d/Sj^c -\- Cbc <^^'bc — O'ab ^^'^'ab

—pcdVc-\-pAdVj,-^PBdVB=0. (575)

Hence,

dW= - Vcdpc. (576)

Now it is evident that T'^ will diminish as pc increases. Let us

integrate the last equation supposing p^ to increase from its original

value until Vc vanishes. This will give

W" — W r= a negative quantity, (577)

where W and W" denote the initial and final values of IF. But

TF"=0. Hence W is positive. But this is the value of W in the

original system containing the lentiform mass, and expresses the

work necessary to form the mass between the phases A and B. It is

therefore impossible that such a mass should form on a surface be-



J. TK Gihbs—Kquilihrium of Heterogeneous Siihstances. 429

tween these phases. We must however observe the same limitation

as in the less general case already discussed,—tliat Pc — pK, Pc—Pv.
must not be so great that the dimensions of the lentiform mass are of

insensible magnitude. It may also be observed that the value of

these differences may be so small that there will not be room on the

surface between the masses of phases A and B for a mass of phase C
sufficiently large for equilibrium. In this case we may consider a

mass of phase C which is in equilibrium upon the surface between A
and B in virtue of a eonstraint applied to the line in which the three

surfaces of discontinuity intersect, which will not allow this line to

become longer, although not preventing it from becoming shorter.

We may prove that the value of TT^ is positive by such an integra-

tion as we have used before.

Siibstitritiori of Pressures for Potentials in Fundamental Eqvations

for Surf ires.

The fundamental equation of a surface which gives the value of

the tension in terms of the temperature and potentials seems best

adapted to the purposes of theoretical discussion, especially when the

number of components is large or undetermined. But the experi-

mental determination of the fundamental equations, or the application

of any result indicated by theory to actual cases, will be facilitated

by the use of other quantities in place of the potentials, which shall

be capable of more direct measurement, and of which the numerical

expression (when the necessary measurements have been made) shall

depend upon less complex considerations. The numerical value of a

potential depends not only upon the system of units employed, but

also upon the arbitrary constants involved in the definition of the

energy and entropy of the substance to which the potential relates,

or, it may be, of the elementary substances of which that substance

is formed. (See page 152.) This fact and the want of means of

direct measurement may give a certain vagueness to the idea of the

potentials, and render the equations which involve them less fitted to

give a clear idea of physical relations.

Now the fundamental equation of each of the homogeneous masses

which are separated by any surface of discontinuity aflbrds a relation

between the pressure in that mass and the temperature and potentials.

We are thei'efore able to eliminate one or two potentials from the

fundamental equation of a sui-face by introducing the pressures in

the adjacent masses. Again, when one of these masses is a gas-
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mixture which satisfies Dalton's law as given on page 215, the

potential for each simple gas may be expressed in terms of the tem-

perature and the partial pressure belonging to that gas. By the

introduction of these partial pressures we may eliminate as many
potentials from the fundamental equation of the surface as there are

simple gases in the gas-mixture.

An equation obtained by such substitutions may be regarded as a

fundamental equation for the surface of discontinuity to which it

relates, for when the fundamental equations of the adjacent masses

are known, the equation in question is evidently equivalent to an

equation between the tension, temperature, and potentials, and we
must regard the knowledge of the properties of the adjacent masses

as an indispensable preliminary, or an essential part, of a complete

knowledge of any surface of discontinuity. It is evident, however,

that from these fundamental equations involving pressures instead

of potentials we cannot obtain by differentiation (without the use of

the fundamental equations of the homogeneous masses) precisely the

same relations as by the differentiation of the equations between the

tensions, temperatures, and potentials. It wdll be interesting to

inquire, at least in the more important cases, what relations may be

obtained by differentiation from the fundamental equations just

described alone.

If there is but one component, the fundamental equations of tlie

two homogeneous masses afford one relation more than is necessary

for the elimination of the potential. It may be convenient to regard

the tension as a function of the temperature and the difference of the

pressures. Now we have by (508) and (98)

(Iff =. — 7/s dt — rdf.{
,

,

d{p'-p") = (Vv'-O dt + (/-;/') dju,.

Hence we derive the equation

dff = - (^Th - -,^^7/ iVv' - '/v")) dt ^ ^r^—r, d {p -p"), (578)

which indicates the differential coefficients of ff with respect to t and

p' — p". For surfaces w^hich may be regarded as nearly plane, it is

evident that —.
j. represents the distance from the surface of ten-

y -y
sion to a dividing surface located so as to make the superficial

density of the single component vanish, (being positive, when the
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latter surface is on the side specified by the double accents,) and that

the coefficient oi dt (without the negative sign) represents the super-

ficial density of entropy as determined by the latter dividing surface,

i. e., the quantity denoted by //g, ,^ on page 397.

When there are two components, neither of which is confined to

the surface of discontinuity, we may regard the tension as a function

of the temperature and the pressures in the two homogeneous masses.

The values of the diflerential coefiicients of the tension with respect

to these variables may be represented in a simple form if w^e choose

such substances for the components that in the particular state con-

sidered each mass shall consist of a single component. This will

always be possible when the composition of the two masses is not

identical, and will evidently not affect the values of the differential

coefficients. We then have

da= — //s dt — / ; d)-i^ — I ; djA^,
,

<r^>' =r ?/v' dt -j- y' d}x^
,

dp"=i^,"dt^y"df.i,,,

where the marks
^
and.

^^
are used instead of the usual , and g to indi-

cate the identity of the component specified with the substance of

the homogeneous masses specified by ' and ". Eliminating dfx^ and

d}.i^^ we obtain

da= ~ (ih- -; Vy^-^ vA dt -^ dp' -^ dp". (579)
\ Y y I y r

We may generally neglect the difference of/)' and p'\ and write

da = - ^/s - -^ 7v' '^ W) di - (-, + -i\ dp. (580)

The equation thus modified is strictly to be regarded as the equation

for a plane surfiice. It is evident that —7 and —' represent the dis-

y y
tances from the surface of tension of the two surfaces of which one

would make 1\ vanish, and the other /"^^, that —
^, + —, represents

the distance between these two surfaces, or the diminution of vol-

ume due to a unit of the surface of discontinuity, and that the coeffi-

cient of dt (without the negative sign) represents the excess of

entropy in a system consisting of a unit of the surface of discon-

tinuity with a part of each of the adjacent masses above that

which the same matter would have if it existed in two homogeneous

masses of the same phases but without any sui-face of discontinuity.

Trans. Conn. Acad., Vol. III. 55 Nov., \%V,.
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(A mass thus existing without any surface of discontinuity must of

course be entirely surrounded by matter of the same phase.)*

The form in which the values of (-^) and (-^— ) are ffiven in
\dt)i) \dp)t ^

equation (580) is adapted to give a clear idea of the relations of

these qiiantities to the particular state of the system for which they

are to be determined, but not to show how they vary with the state

of the system. For this purpose it will be convenient to have the

values of these diiferential coefficients expressed with reference to

ordinary components. Let these be specified as usual by j and ^.

If we eliminate r///, and d^^ from the equations

— da =.
7/s dt -\- I \ (?//, -+- /'o dfi^,

dp = //v' dt + r^' diA^ + y.^' dfi^,

dp = jjy" dt + ri" c?/<i + r/, d/.i2,

* If we set

and in like manner

E. = e, - -^ e/ - ~ e". (c)
7' 7 " ^

'

we may easily obtain, by means of equations (93) and (507),

K = tB, + G~pV. (d)

Now equation (580) may be written

da= -H.,dt + Vdp. (e)

Differentiating (d), and comparing the result with (e), we obtain

dE,= tdRs~pdV. (/)

The quantities Es and Hj might be called the superficial densities of energy and

entropy quite as properly as those which we denote by e^ and r/^. In fact, wheu the

composition of both of the homogeneous masses is invariable, the quantities Es and

H are much more simple in their definition than e^ and ??s, and would probably be

more naturally suggested by the terms superficial density of energy and of entropy. It

would also be natural in this case to regard the quajitities of the homogeneous masses

as determined by the total quantities of matter, and not by the surface of tension or

any other dividing surface. But such a nomenclature and method could not readily

be extended so as to treat cases of more than two components witli entire generality.

In the treatment of surfaces of discontinuity in this paper, the definitions and

nomenclature whicli have been adopted will be strictly adhered to. The object of

this note is to suggest to the reader how a different method might be used in some

cases with advantage, and to show the precise relations between the quantities which

are used in this paper and otliers wliich might be confounded with them, and which

may be made more prominent wlien tlie subject is treated differently.
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we obtain

do- = -. dt ^ -^ dp, (581)

where
A = r,"r,'-r,'r,% (582)

B= ;/v' ri' Vz ,
(583)

c=i\ ir," - r,') + n (r/- r.")- (584)

It will be observed that A vanishes when the composition of the two

homogeneous masses is identical, while B and C do not, in general,

and that the value of A is negative or positive according as the mass

specified by ' contains the component specified by ^ in a greater or

less }»roportion than the other mass. Hence, the values both of

(-^r I and of ( -r- \ become infinite when the diiference in the com-
dtjp \d2)/t

position of the masses vanishes, and change sign when the greater

proportion of a component passes from one mass to the other. This

might be inferred from the statements on page 155 respecting coex-

istent phases which are identical in composition, from which it appears

that when two coexistent phases have nearly the same composition,

a small variation of the temperature or pressure of the coexistent

phases will cause a relatively very great variation in the composition

of the phases. The same relations are indicated by the graphical

method represented in figure 6 on page 184.

With regard to gas-mixtui-es which conform to Dalton's law, we
shall only consider the fuiidamental equation for plane surfaces, and

shall suppose that there is not more than one component in the liquid

which does not appear in the gas-mixture. We have already seen

that in limiting the fundamental equation to plane surfaces we can

get rid of one potential by choosing such a dividing surface that the

superficial density of one of the components vanishes. Let this be

done with respect to the component peculiar to the liquid, if such there

is ; if there is no such component, let it be done with respect to one

of the gaseous components. Let the remaining potentials be elim-

inated by means of the fundamental equations of the simple gases.

We may thus obtain an equation between the superficial tension, the

temperature, and the several pressures of the simple gases in the

gas-mixture or all but one of these pressures. Now, if we eliminate

djU2, d/x^, etc. from the equations
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clG = -
7/s(i^ dt - Tg, ,^ d)j^ + 7^3(1) c?//3 + etc.,

<7^3 = 7/v3 rft -f ;(/3 (^Afg,

etc.,

where the suffix ^ relates to the component of which the surface-

density has been made to vanish, and y^, y n, etc. denote the densities

of the gases specified in the gas mixture, and PziPzt ^^^'•t Vv2? ^/v3?

etc. the pressures and the densities of entropy due to these several

gases, we obtain

da= — ^//s(j^ ^^^^ /;v2 ;- 7v3 — etc. j dt

_ La{1} dp^ - ^^' dp^ - etc. (585)
K2 Yz

This equation aftbrds values of the diiFerential coefficients of a with

respect to ^, ji9„, jOg, etc., which may be set equal to those obtained

by differentiating the equation between these variables.

Thermal and Mechanical lielations ^yertaining to the Extension of a

Surface of Discontinuity.

The fundamental equation of a surface of discontinuity with one

or two component substances, beside its statical applications, is of

use to determine the heat absorbed when the surface is extended

under certain conditions.

Let us first consider the case in which thei-e is only a single com-

ponent substance. We may treat the surface as plane, and place

the dividing surface so that the surface density of the single com-

ponent vanishes. (See page 397.) If we suppose the area of the

surface to be increased by unity without change of temperature or

of the quantities of liquid and vapor, the entropy of the whole will

be increased by ?/s(j). Therefore, if we denote by Q the quantity of

heat which must be added to satisfy the conditions, we shall have

^ = «%(,„ (586)

and by (514),

^ d<3 da ,~r,H\
^

dt dlogt ^ '

It will be observed that the condition of constant quantities of

liquid and vapor as determined by the dividing surface which we

have adopted is equivalent to the condition that the total volume

shall remain constant.
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Again, if the surface is extended without application of heat, while

the pressure in the liquid and vapor remains constant, the tempera-

ture will evidently be maintained constant by condensation of the

vapor. If we denote by J/ the mass of vapor condensed per imit of

surface formed, and by rj^^ and i]^' the entropies of the liquid and

vapor per unit of mass, the condition of no addition of heat will

require that

^('/m"-'/m') = %(,). (588)

The increase of the volume of liquid will be

r'(W-W)'
and the diminution of the volume of vapor

(589)

/'(W-'/mT
(590)

Hence, for the work done (per unit of surface formed) by the exter-

nal bodies which maintain the pressure, we shall have

Tf=-4'^"^,(i,-i). (591)

and, by (514) and (131),

da dt da da
dt dp dp d log p' \ ' )

The work expended directly in extending the film will of course be

equal to g.

Let us now consider the case in which there are two component

substances, neither of which is confined to the surface. Since we can-

not make the superficial density of both these substances vanish by
any dividing surface, it will be best to regard the surface of tension

as the dividing surface. We may, however, simplify the formula by
choosing such substances for components that each homogeneous
mass shall consist of a single component. Quantities relating to

these components will be distinguished as on page 431. If the sur-

face is extended until its area is increased by unity, while heat is

added at the surface so as to keep the temperature constant, and the

pressure of the homogeneous masses is also kept constant, the phase

of these masses will necessarily remain unchanged, but the quantity

of one will be diminished by l\^ and that of the other by F^^. Their

r r
entropies will therefore be diminished by —; ?/v' and -^ //y", respect-

y y
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ively. Hence, since the snrface receives the increment of entropy //g,

the total quantity of entropy will be increased by

r r

which by equation (580) is equal to

\~di)p'

Therefore, for the quantity of heat Q imparted to the surface, we

shall have

Q=^t(^\=-(-p-\. (593)^
\dtJ2) \d\ogt/p ^ ^

We must notice the diiFerence between this formula and (58V). In

(593) the quantity of heat Q is determined by the condition that the

temperature and pressures shall remain constant. In (587) these

conditions are equivalent and insufficient to determine the quantity

of heat. The additional condition by which Q is determined may be

most simply expressed by saying that the total volume must I'emain

constant. Again, the differential coefficient in (593) is defined by

considering p as constant ; in the differential coefficient in (587) p
cannot be considered as constant, and no condition is necessary to

give the expression a definite value. Yet, notwithstanding the differ-

ence of the two cases, it is qviite possible to give a single demonstra-

tion which shall be applicable to both. This may be done by con-

sidering a cycle of operations after the method employed by Sir

William Thomson, who first pointed out these relations.*

The diminution of volume (per unit of surface formed) will be

and the work done (per unit of surface formed) by the external

bodies which maintain the pressure constant will be

-=-(|) = -(^|.),- <->

Compare equation (592).

The values of Q and W may also be expressed in terms of quanti-

ties relating to the ordinary components. By substitution in (593)

and (595) of the values of the differential coefficients which are given

by (581), we obtain

* See Proc. Roy. Soc, vol. ix, p. 255, (June, 1858) ; or Phil. Mag., Ser. 4, vol. xvii,

p. 61.
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Q=-t?^. W=-p^. (596)

where A, i?, and C represent the expressions mdicated by (582)-

(584). It will be observed that the values of Q and TFare in general

infinite for the surface of discontinuity between coexistent phases

which differ infinitesimally in composition, and change sign with

the quantity A. When the phases are absolutely identical in

composition, it is not in general possible to counteract the effect of

extension of the surface of discontinuity by any supply of heat. For

the matter at the surface will not in general have the same composi-

tion as the homogeneous masses, and the matter required for the

increased surface cannot be obtained from these masses without

altering their phase. The infinite values of Q and W are explained

by the fact that when the phases are nearly identical in composition,

the extension of the surface of discontinuity is accompanied by the

vaporization or condensation of a very large mass, according as the

liquid or the vapor is the richer in that component which is necessary

for the formation of the surface of discontinuity.

If, instead of considering the amount of heat necessary to keep the

phases from altering while the surface of discontinuity is extended,

we consider the variation of temperature caused by the extension of

the surface while the pressures remain constant, it appears that this

variation of temperature changes sign with y i"y2' ~yi'y2'\ ^^^

vanishes with this quantity, i. e., vanishes when the composition of

the phases becomes the same. This may be inferred from the state-

ments on page 155, or from a consideration of the figure on page 184,

When the composition of the homogeneous masses is initially abso-

lutely identical, the effect on the temperature of a finite extension or

contraction of the surface of discontinuity will be the same,—either

of the two will lower or raise the temperature according as the tem-

pei-ature is a maximum or minimum for constant pressure.

The effect of the extension of a surface of discontinuity which is

most easily verified by experiment is the effect upon the tension

before complete equilibrium has been reestablished throughout the

adjacent masses. A fresh surface between coexistent phases may be

regarded in this connection as an extreme case of a recently extended

surface. When sufficient time has elapsed after the extension of a

surface originally in equilibrium between coexistent phases, the

superficial tension will evidently have sensibly its original value,

unless there are substances at the surface which are either not found
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at all in the adjacent masses, or are found only in quantities com-

parable to those in which they exist at the surface. But a surface

newly formed or extended may have a very different tension.

This will not be the case, however, when there is only a single

component substance, since all the processes necessary for equilibrium

are confined to a film of insensible thickness, and will require no

appreciable time for their completion.

When there are two components, neither of which is confined to the

surface of discontinuity, the reestablishment of equilibrium after the

extension of the surface does not necessitate any processes reaching

into the interior of the masses except the transmission of heat be-

tween the surface of discontinuity and the interior of the masses.

It appears from equation (593) that if the tension of the surface

diminishes with a rise of temperature, heat must be supplied to the

surface to maintain the temperature uniform when the surface is ex-

tended, i. e., the effect of extending the surface is to cool it; but if

the tension of any surface increases witli the temperature, the effect

of extending the surface will be to raise its temperature. In either

case, it will be observed, the immediate effect of extending the sur-

face is to increase its tension. A contraction of the surface will of

course have the opposite effect. But the time necessary for the re-

establishment of sensible thermal equilibrium after extension or con-

traction of the surface must in most cases be very short.

In regard to the formation or extension of a surface between two

coexistent phases of more than two components, there are two ex-

treme cases which it is desirable to notice. When the superficial

density of each of the components is exceeding small compared with

its density in either of the homogeneous masses, the matter (as well

as the heat) necessary for the formation or extension of the normal

surface can be taken from the immediate vicinity of the surface with-

out sensibly changing the properties of the masses from which it is

taken. But if any one of these superficial densities has a considerable

value, while the density of the same component is very small in each

of the homogeneous masses, both absolutely and relatively to the

densities of the other components, the matter necessary for the for-

mation or extension of the normal surface must come from a consider-

able distance. Especially if we consider that a small difierence of

density of such a component in one of the homogeneous masses will

probably make a considerable difference in the value of the corres-

ponding potential [see eq. (217)], and that a small difference in the

value of the potential will make a considerable difference in the ten-
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sion [see eq. (508)], it will be evident that in this case a consider-

able time will be necessary after the formation of a fresh surface or

the extension of an old one for the reestablishraent of the normal

value of the superficial tension. In intermediate cases, the reestab-

lishment of the normal tension will take place with different degrees

of rapidity.

But whatever the number of component substances, provided that

it is greater than one, and whether the reestablishment of equilibrium

is slow or rapid, extension of the surface will generally produce

increase and contraction decrease of the tension. It would evidently

be inconsistent with stability that the opposite effects should be pro-

duced. In general, therefore, a fresh surface between coexistent

phases has a greater tension than an old one.* By the use of fresh

surfaces, in experiments in caj^illarity, we may sometimes avoid the

effect of minute quantities of foreign substances, which may be

present without our knowledge or desire, in the fluids which meet at

the surface investigated.

AVhen the establishment of equilibrium is rapid, the variation of

the tension from its normal value will be manifested especially during

the. extension or contraction of the surface, the phenomenon resem-

bling that of viscosity, except that the variations of tension arising

from variations in the densities at and about the surface Avill be the

same in all directions, while the variations of tension due to any

property of the surface really analogous to viscosity would be great-

est in the direction of the most rapid extension.

We may here notice the diflerent action of traces in the homogene-

ous masses of those substances which increase the tension and of

those which diminish it. When the volume-densities of a component

are very small, its surface-density may have a considerable positive

value, but can only have a very minute negative one.f For the

vq-j^e when negative cannot exceed (niimerically) the product of the

greater volume-density by the thickness of the non-homogeneous

* When, however, homogeneous masses which have not coexistent phases are

brought into contact, the superficial tension may increase with the course of time.

The superficial tension of a drop of alcohol and water placed in a large room will

increase as the potential for alcohol is equalized throughout the room, and is dimin-

ished in the vicinity of the surface of discontinuity.

f It is here supposed that we have chosen for components such substances as are

incapable of resolution into other comjionents which are independently variable in the

homogeneous masses. In a mixture of alcohol and water, for example, the compo-

nents must be pure alcohol and pure water.

Trans. Conn. Acad., Vol. III. 56 Jan., 1878.
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film. Each of these quantities is exceedingly small. The surface-

density when positive is of the same order of magnitude as the thick-

ness of the non-homogeneous film, but is not necessarily small com-

pared with other surface-densities because the volume-densities of

the same substance in the adjacent masses are small. Now the

potential of a substance which forms a very small part of a homo-

geneous mass certainly increases, and jjrobably very rapidly, as the

proportion of that component is increased. [See (171) and (217).]

The pressure, temperature, and the other potentials, will not be

sensibly affected. [See (98).] But the effect on the tension of this

increase of the potential will be proportional to the surface-density,

and will be to diminish the tension when the surface-density is

positive. [See (508).] It is therefore quite possible that a very

small trace of a substance in the homogeneous masses should greatly

diminish the tension, but not possible that such a trace should greatly

increase it.*

Impermeable Eibns.

We have so far supposed, in treating of surfaces of discontinuity,

that they afford no obstacle to the passage of any of the comi)onent

substances from either of the homogeneous masses to the other. The

case, however, must be considered, in which there is a film of matter

at the surface of discontinuity which is impermeable to some or all of

* From the experiments of M. E. Duclaux, (Annales de Chimie et de Physique, Ser. 4,

vol. xxi, p. 383,) it appears that one per cent, of alcohol in water will diminish the

superficial tension to .933, the value for pure water being- unity. The experiments do

not extend to pure alcohol, but the difEerence of the tensions for mixtures of alcohol

and water containing 1 and 20 per cent, water is comparatively small, the tensions

being .322 and .33G respectively.

According to the same authority (page 427 of the volume cited), one 3200th part of

Castile soap will reduce the superficial tension of water by one-fourth ; one 800th part

of soap by one-half. These determinations, as well as those relating to alcohol and

water, are made by the method of drops, the weight of the drops of different liquids

(from the same pipette) being regarded as proportional to their superficial tensions.

M. Athanase Dupre has determined the superficial tensions of solutions of soap by

different methods. A statical method gives for one part of common soap in 5000 of

water a superficial tension about one-half as great as for pure water, but if the tension

be measured on a jet close to the orifice, the value (for the same solution) is sensibly

identical with that of pure water. He explains these different values of the super-

ficial tension of the same solution as well as the great effect on the superficial tension

which a very small quantity of soap or other trifling impurity may produce, by the

tendency of the soap or other substance to form a film on the surface of the liquid.

(See Annales de Chimie et de Physiqw, Ser. 4, vol. vii, p. 409, and vol. ix, p. 379.)
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the components of the contiguous masses. Such may be the case,

for example, when a film of oil is spread on a surface of water, even

when tlie film is too thin to exhibit the properties of the oil in mass.

In such cases, if there is communication between the contiguous

masses through other parts of the system to which they belong, such

that the components in question can pass freely from one mass to the

other, the impossibility of a direct passage through the film may be

regarded as an immaterial circumstance, so far as states of equilib-

rium are concerned, and our formula? will require no change. But

when there is no si;ch indirect communication, the potential for any

component for which the film is impermeable may have entirely

different values on opposite sides of the film, and the case evidently

requires a modification of our usual method.

A single consideration will suggest the proper treatment of such

cases. If a certain component which is found on both sides of a film

cannot pass from either side to the other, the fact that the part of the

component which is on one side is the same kind of matter with the

part on the other side may be disregarded. All the general relations

must hold true, which would hold if they were really different sub-

stances. We may therefore write j.i^ for the potential of the com-

ponent on one side of the film, and ja^ for the potential of the same

substance (to be treated as if it were a different substance) on the

other side ; ^^'^j for the excess of the quantity of the substance on the

first side of the film above the quantity which would be on that side

of the dividing surface (whether this is determined by the surface of

tension or otherwise) if the density of the substance were the same

near the dividing surface as at a distance, and m| for a similar quan-

tity relating to the other side of the film and dividing surface. On
the same principle, we may use I\ and /^g to denote the values of

»i^j and rn% P^i' ^"^i^ of surface, and m^\ '^2"-> Vil Y2 ^^ denote the

quantities of the substance and its densities in the two homogeneous

masses.

With such a notation, which may be extended to cases in which

the film is impermeable to any number of components, the equations

relating to the surface and the contiguous masses will evidently have

the same form as if the substances specified by the different suffixes

wei'e all really different. The superficial tension will l)e a function

of fx^ and /Vg, Avith the temperature and the potentials for the other

components, and — i"i, —^2 ^^'^^ ^^^ equal to its differential coeffi-

cients with respect to /<, and //,. In a word, all the general rela-

tions which have been demonstrated may be applied to this case, if
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we remember always to treat the component as a different substance

according as it is found oii one side or the other of the impermeable

film.

When there is free passage for the component specified by the suf-

fixes
J
and g through other [)arts of the system, (or through any flaws

in the film,) we shall have in case of equilibrium //^rz/Yg- If we wish

to obtain the fundamental equation for the surface when satisfying

this condition, without reference to other possible states of the sur-

face, we may set a single symbol for /<j and //g in the raoi'e general

form of the fundamental equation. Cases may occur of an impermea-

bility which is not absolute, but which renders the transmission of

some of the components exceedingly slow. In such cases, it may be

necessary to distinguish at least two different fundamental equations,

one relating to a state of approximate equilibrium wdiich may be

quickly established, and another relating to the ultimate state of

complete equilibrium. The former may be derived from the latter by

such substitutions as that just indicated.

Tfte Conditions of Internal Equilihrixmi for a System of Hetero-

geneous Fluid Masses without neglect of the Influence of the

Surfaces of Discontinuity or of (Travity.

Let us now seek the complete value of the variation of the energy

of a system of heterogeneous fluid masses, in which the influence of

gravity and of the surfaces of discontinuity shall be included, and

deduce from it the conditions of internal equilibrium for such a sys-

tem. In accordance with the method which has been developed, the

intrinsic energy, {i. e., the part of the energy which is independent of

of gravity,) the entropy, and the quantities of the several compon-

ents must each be divided into two parts, one of which we regard as

belonging to the surfaces which divide approximately homogeneous

masses, and the other as belonging to these masses. The elements

of intrinsic energy, entropy, etc., relating to an element of surface

Ds will be denoted by De^^ Dif'-, Dni\^ Dm^, etc., and those relating

to an element of volume I>v, by Dt""', Dif ^
Dm\^ D^^^2i ^^^- ^®

shall also use Ihix^ or VI)s and DnC' or y Di^ to denote the total

quantities of matter relating to the elements Ds and Dv respectively.

That is,

Dru^ — r Ds — D)n\ + Dm\ -f etc., (597)

Dm^ = y Dv = Dm\ + iJml + etc. (598)

The part of the energy which is due to gravity must also be divided
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into two parts, one of whicli relates to the elements Dm^, and^the

other to the elements l)ni^. The complete valne of the variation of

the energy of the system will be represented by the expression

d/De" + dJ'Dt^ + 6fg z Dni" + 8fg z Drn^, (599)

in which g denotes the force of gravity, and z the height of the ele-

ment above a fixed horizontal plane.

It will be convenient to limit ourselves at first to the consideration

of reversible variations. This will exclude the formation of new

masses or surfaces. We may therefore regard any infinitesimal

variation in the state of the system as consisting of infinitesimal

variations of the quantities relating to its several elements, and

bring the sign of variation in the preceding formula after the sign

of integration. If we then substitute for SDe"', SDt^, 6Dmy, 6IJnt^,

the values given by equations (13), (497), (597), (598), we shall have

for the condition of equilibrium with respect to reversible variations

of the internal state of the system

ft 6I))f' -fp 6Dv +//<! 6Dm\ +///2 SJ^ml + etc.

-\-ft6Z>f/^ -^fffSUs+fji^ dlJm\ +.///0 dDml + etc.

-f- fg Sz Dm^ -\- fg z 6TJni\ -f fg z SDm^ + etc.

+ /// 6z Dm^-\-fg z 8Dtn\ ^fgz dDinl -f etc. = 0, (600)

Since equation (497) relates to surfaces of discontinuity which are

initially in equilibrium, it might seem that this condition, although

always necessary for equilibrium, may not always be suflicient. It is

evident, however, from the form of the condition, that it includes the

particular conditions of equilibrium relating to every possible deforma-

tion of the system, or reversible variation in the distribution of

entropy or of the several components. It therefore includes all the

relations between the different parts of the system which are neces-

sary for equilibrium, so far as reversible variations are concerned.

(The necessary relations between the various quantities relating to

each element of the masses and sui-faces are expressed by the funda-

mental equation of the mass or surface concerned, or may be imme-

diately derived from it. See pp. 140-144 and 391-393.)

The variations in (600) are subject to the conditions which arise

from the nature of the system and from the supposition that the

changes in the system are not such as to aiFect external bodies. This

supposition is necessary, unless we are to consider the variations in

the state of the external bodies, and is evidently allowable in seeking

the conditions of equilibrium whicli relate to the interior of the sys-
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tern.* But before we consider the equations of condition in detail,

we may divide the condition of equilibrium (600) into the three condi-

tions

ft dBif +ft dBff = 0, (601)

- fjy SJ)v +/ o- SBs + fg 6z Bm^^fg dz Dm''= 0, (602)

y>, 6D7n\ +f/t, 6Dm\ -^fgzdDni^, +fgz6Dm\

+ ///. 6Dm\+fiJ^ SDml+fgz6Dml+/gzSJ)m%

+ etc. = 0. (603)

For the variations which occur in any one of the three are evidently

independent of those which occur in the other two, and the equations

of condition will relate to one or another of these conditions sepa-

rately.

The variations in condition (601) are subject to the condition that

the entropy of the whole system shall remain constant. This may be

expressed by the equation

fdJJif+fSBrf — 0. (604)

To satisfy the condition thus limited it is necessary and sufficient that

t =. const. (605)

throughout the whole system, which is the condition of tliermal

equilibrium.

The conditions of mechanical equilibrium, or those that relate to

the possible deformation of the system, are contained in (602), which

may also be written

—fp 6Dv +yo- dDs+fgy 6zl)v -\-fg rdzDs=0. (606)

It will be observed that this condition has the same form as if the

difterent fluids were separated by heavy and elastic membranes with-

out rigidity and having at every point a tension uniform in all direc-

tions in the plane of the surface. The variations in this formula.

* We have sometimes given a physical expression to a supposition of this kind, in

problems in which the peculiar condition of matter in the vicinity of surfaces of dis-

continuity was to be neglected, by regarding the sj^tem as surrounded by a rigid and

impermeable envelop. But the more exact treatment which we are now to give the

problem of equilibrium would require us to take account of the influence of the

envelop on the immediately adjacent matter. Since this involves the consideration of

surfaces of discontinuitj' between solids and fluids, and we wish to limit ourselves at

present to the consideration of the equilibrium of fluid masses, we sliall give up the

conception of an impermeable envelop, and regard the system as bounded simply by a

imaginary surface, which is not a surface of discontinuity. The variations of the

system must be such as do not deform the surface, nor affect the matter external to it.
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l)esicle their necessary geomelrical relations, are subject to the condi-

tions that the external surface of tlie system, and the lines in which

the surfaces of discontinuity meet it, are fixed. The formula may be

reduced by any of the usual methods, so as to give the particular

conditions of mechanical equilibrium. Perhaps the following method

will lead as directly as any to the desired result.

It will be observetl the quantities affected by d in (606) relate

exclusively to the position and size of the elements of volume and

surface into which the system is divided, and that the variations 6p
and 6a do not enter into the formula either explicitly or implicitly.

The equations of condition which concern this formula also relate

exclusively to the variations of the system of geometrical elements,

and do not contain either 6p or 6<j. Hence, in determining whether
the first member of the formula has the value zero for every possible

variation of the system of geometrical elements, we may assign to

8p and da any values whatever, which may simplify the solution of

the problem, without inquiring whether such values are physically

possible.

Now when the system is in its initial state, the pressure jo, in each
of the parts into which the system is divided by the surfaces of ten-

sion, is a function of the co-ordinates which determine the position of

the element Z>w, to which the pressure relates. In the varied state

of the system, the element Dv will in general have a different position.

Let the variation 6p be determined solely by the change in position

of the element Dv. This may be expressed by the equation

in wliich ^ ,
i?

, ^ are determined by the function mentioned
dx ay dz '

and dec, 6y^ 6z by the variation of the position of the element Dv.
Again, in the initial state of the system the tension a, in each of

the different sui-faces of discontinuity, is a function of two co-ordinates

&?j, Gjg, which determijie the position of the element Ds. In the

varied state of the system, this element will in general have a differ-

ent position. The change of position may be resolved into a com-
ponent lying in the surface and another normal to it. Let the varia-

tion da be determined solely by the first of these components of the
motion of Ds. This may be expressed by the equation

f^ da ^ . da ^

''''=.to;
'"" + .to/'"- (8«8)
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in which , are deteriiiined by the function mentioned, and
dco

, doi)^

^ooi, (^Ce?2, by the component of the motion of JJs which lies in the

plane of the surface.

With this understanding, which is also to apply to dp and dff

when contained implicitly in any expi-ession, we shall proceed to the

reduction of the condition (606).

With respect to any one of the volumes into which the system is

divided by the surfaces of discontinuity, we may write

/p SDv =z Sj'p Dv — f Sp Dv.

But it is evident that

dfpDv=fpdNDs,
where the second integral relates to the surfaces of discontinuity

bounding the volume considered, and 8N denotes the normal com-

ponent of the motion of an element of the surface, measured outward.

Hence,

fp SDv =fp SNDs^fS'pDv.
Since this equation is true of each separate volume into which the

system is divided, we may Avrite for the whole system

fp 6Dv =f{p'—p") 8NDs - fdp Dv, (609)

where jo' and p" denote the pressiires on opposite sides of the element

Ds, and (JiV^is measured toward the side specified by double accents.

Again, for each of the surfaces of discontinuity, taken separately,

/ 6Ds — dfoBs —fda Ds,

and
SfaDs —fa (c, + cg) 8NI)s-^fa dTDl,

where Cj and c^ denote the principal curvatures of the surface,

(]iositive, when the centers are on the side opposite to that toward

which (JiVis measured,) Dl^n element of the perimeter of the surface,

and (JZ'the component of the motion of this element which lies in the

plane of the surface and is perpendicular to the perimeter, (positive,

when it extends the surface). Hence we have for the whole system

fff6J)sz=fff{c^ 4-C2) 6NDs-\-f2{ffST)Dl-fS0l)s, (610)

wdiere the integration of the elements Dl extends to all the lines in

which the surfaces of discontiiuiity meet, and the symbol 2 denotes

a summation with respect to the several surfaces which meet in such

a line.

By equations (609) and (610), the general condition of mechanical

equilibrium is reduced to the form
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-J\P' -P") ^^'"^s -j-fSpDv +/0- (c, +C2) dJSTBs

+/2{(rST)Dl —/dffI>s+fgydzI)v+fc/r6zJJsz= 0.

Arranging and combining terms, we have

fig y6z-\- dp) Dv
-\-f[{p"-p')S]^+ff{c,-{-c^)dJV+gr6z-S<r]IJs

+ f^{adT)Dl=0. (611)

To satisfy this condition, it is evidently necessary that the coefficients

of Dv, Ds, and Dl shall vanish throughout the system.

In order that the coefficient of Dv shall vanish, it is necessary and

sufficient that, in each of the masses into which the system is divided

by the surfaces of tension, 2^ shall be a function of z alone, such that

^=-gr- (612)
az

In order that the coefficient of Ds shall vanish in all cases, it is

necessary and sufficient that it shall vanish for normal and for tan-

gential movements of the surface. For normal movements we may
write

da =z 0, and 6z= cos B 6JV,

where 5 denotes the angle which the normal makes with a vertical

line. The first condition therefore gives the equation

p'—j)" = (T{e,-{-e,)-\-grcos^, (613)

which must hold true at every point in every surface of discontinuity.

The condition with respect to tangentiakmovements shows that in

each surface of tension o" is a function of z alone, such that

^=ffr. (6,4)
dz

In order that the coefficient of Dl in (611) shall vanish, we
must have, for eveiy point in every line in which surfaces of discon-

tinuity meet, and for any infinitesimal displacement of the line,

2(ff6T)=:0. (615)

This condition evidently expresses the same relations between the ten-

sions of the surfaces meeting in the line and the directions of per-

pendiculars to the line drawn in the planes of the various surfaces,

which hold for the magnitudes and directions of forces in equilibrium

in a plane.

In condition (603), the variations which relate to any component are

to be regarded as having the value zero in any part of the system in

Trans. Conn. Acad., Vol. III. 57 Jan., 1878.
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Avhich that siihstance is not an actual component.* The same is true

with respect to the equations of condition, which are of the form

fSDml -^fdBml = 0, t (616)

etc. )

(It is here supposed that the various components are independent, L e.,

that none can be formed out of others, and that the parts of the sys-

tem in which any component actually occurs are not entirely sepa-

rated by parts in which it does not occur.) To satisfy the condition

(603), subject to these equations of condition, it is necessary and

sufficient that the conditions

IA,+ gz= M^, \ (617)

etc, )

(Tl/j, J/2, etc. denoting constants,) shall each hold true in those parts

of the system in which the substance specified is an actual component.

We may here add the condition of equilibrium relative to the possible

absorption of any substance (to be specified by the siiffix „) by parts

of the system of which it is not an actual component, viz., that the

expression //„-|-r/z must not have a less value in such parts of the

system than in a contiguous part in which the substance is an actual

component.

From equation (613) with (605) and (61*7) we may easily obtain

the difierential equation of a surface of tension (in the geometrical

sense of the term), when ^^', p\ and G are known in terras of the

temperature and potentials. For Cj + ^3 and S may be expressed in

terms of the first and second differential coefficients of z with respect

to the horizontal co-ordinates, and ^>', p" , ff, and F in terms of the

temperature and potentials. But the temperature is constant, and for

each of the potentials we may substitute—gz increased by a constant.

We thus obtain an equation in which the only variables are z and its

first and second differential coefficients with respect to the hoi'izontal

co-ordinates. But it will rarely be necessary to use so exact a method.

Within moderate differences of level, we niiay regard y', y\ and g as

constant. We may then integrate the equation [derived from (612)]

d{p'-p") = g{y"^y')(lz,

* The term actual component has been defined for homogeneous masses on page 117,

and the definition may be extended to surfaces of discontinuity. It will be observed

that if a substance is an actual component of either of the masses separated by a sur-

face of discontinuity, it must lie regarded as an actual component for that surface, as

well as when it occurs at the surface but not in either of the contiguous masses.
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wliicli will give

p'^p" = g{y"-/)z, (618)

where z is to be lueasuretl from the horizontal plane for which p'-=.p"

.

Snbstituting this valne in (<)13), and neglecting the term containing
/

', we have

c, + e,=.^ir'---Z:)., (619)

where the coefficient of 2 is to be regarded as constant. Now the value

of z cannot be very large, in any surface of sensible dimensions, unless

/"—;/' is very small. We may therefore consider this equation as

practically exact, unless the densities of the contiguous masses are

very nearly equal. If we substitute for the sum of the curvatures

its value in terms of the differential coefficients of z with respect to

the horizontal rectangular co-ordinates, x and y, we have

/ dz^\ d'Z _ ^dz dz d^z
, (-, ,

dz^\ d'^z

V, dy'^) dx'^ dxdydxdy \ dx'^/dy'^ g{7"-y')

\ dx^ dy^l

With regard to the sign of the root in the denominator of the

fraction, it is to be observed that, if we always take the positive

value of the root, the value of the whole fraction will be positive or

negative according as the greater concavity is turned upward or

downward. But we wish the value of the fraction to be positive

when the greater concavity is turned toward the mass specified by a

single accent. We should therefore take the positive or negative

value of the root according as this mass is above or below the surface.

The particular conditions of equilibrium which ai-e given in the

last paragraph but one may be regarded in general as the conditions

of chemical equilibrium between the difterent parts of the system,

since they relate to the separate components.* But such a desio-na-

tion is not entirely appropriate unless the number of components is

greater than one. In no case are the conditions of mechanical equi-

librium entirely independent of those which relate to temperature

and the potentials. For the conditions (612) and (614) may be re-

garded as consequences of (605) and (617) in virtue of the necessary

relations (98) and (508).

f

* Concerning another kind of conditions of chemical equilibrium, which relate to

the molecular arrangement of the components, and not to their sensible distribution in

space, seepages 197-203.

f Compare page 206, where a similar problem is treated without regard to the influ-

ence of the surfaces of discontinuity.
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The mechanical conditions of equilibrium, however, have an espe-

cial importance, since we may always regard them as satisfied in any

liquid (and not decidedly viscous) mass in which no sensible motions

are observable. In such a mass, when isolated, the attainment of

mechanical equilibrium will take place very soon; thermal and chem-

ical equilibrium will follow more slowly. The thermal equ^ilibrium

will generally require less time for its approximate attainment than

the chemical ; but the processes by which the latter is produced will

generally cause certain inequalities of temperature until a state of

complete equilibrium is reached.

When a surface of discontinuity has more components than one

which do not occur in the contiguous masses, the adjustment of the

potentials for these components in accordance with equations (617)

may take place very slowly, or not at all, for want of sufficient

mobility in the components of the surface. But when this surface

has only one component which does not occur in the contiguous

masses, and the temperature and potentials in these masses satisfy

the conditions of equilibrium, the potential for the component pecu-

liar to the surface will very quickly conform to the law expressed in

(617), since this is a necessary consequence of the condition of

mechanical equilibrium (614) in connection with the conditions

relating to temperature and the potentials which we have supposed

to be satisfied. The necessary distribution of the substance peculiar

to the surface will be brought about by expansions and contractions

of the surface. If the surface meets a third mass containing this

component and no other which is foreign to the masses divided by

the surface, the potential for this component in the surface will of

coiirse be determined by that in the mass which it meets.

The particular conditions of mechanical equilibrium (612)-(615),

which may be regarded as expressing the relations which must sub-

sist between contiguous portions of a fluid system in a state of

mechanical equilibrium, are serviceable in determining whether a

given system is or is not in such a state. But the mechanical theo-

rems which relate to finite parts of the system, although they may
be deduced from these conditions by integration, may generally be

more easily obtained by a suitable application of the general condi-

tion of mechanical equilibrium (606), or by the application of ordi-

nary mechanical principles to the system regarded as subject to the

forces indicated by this equation.

It will be observed that the conditions of equilibrium relating to

teiMjierature and the potentials are not affected by the surfaces of
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discontinuity. [Compare (228) and (234).] * Since a phase cannot

vary continuously without vai'iations of the temperature or the

potentials, it follows from these conditions that the phase at any

point in a fluid system which has the same independently variable

components throughout, and is in equilibrium under the influence of

gravity, must be one of a certain number of phases which are com-

pletely determined by the phase at any given point and the difference

of level of the two points considered. If the phases throughout the

fluid system satisfy the general condition of practical stability for

phases existing in large masses (viz., that the ])ressure shall be the least

consistent with the temperature and potentials), they will be entirely

determined by the phase at any given point and the differences of

level. (Compare page 210, where the subject is treated without

regard to the influence of the surfaces of discontinuity.)

Cofiditions of eqiiilihriuiu relating to irreversible changes.—The
conditions of equilibrium relating to the absorption by any part of

the system of substances which are not actual components of that part

have been given on page 448. Those relating to the formation of new
masses and surfaces are included in the conditions of stability relat-

ing to such changes, and are not always distinguishable from them.

They are evidently independent of the action of gravity. We have

already discussed the conditions of stability with respect to the for-

mation of new fluid masses within a homogeneous fluid and at the

surface when two such masses meet (see j)ages 416-429), as well as

the condition relating to the possibility of a change in the nature of

a surface of discontinuity. (See pages 400-403, where the surface

considered is plane, but the result may easily be extended to curved

surfaces.) We shall hereafter consider, in some of the more import-

ant cases, the conditions of stability with respect to the formation of

new masses and surfaces which are peculiar to lines in which several

surfaces of discontinuity meet, and points in which several such lines

meet.

Conditions of stability relating to the v>hole system.—Beside the

conditions of stability relating to very small parts of a system, which
are substantially independent of the action of gravity, and are dis-

cussed elsewhere, there are other conditions, which relate to the

* If the fluid system is divided iuto separate masses by solid diaphragms which are

permeable to all the components of the fluids independently, the conditions of equi-

librium of the fluids relating to temperature and the potentials will not be affected.

(Compare page 139.) The propositions which follow in the above paragraph may be

extended to this case.
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whole system or to considerable parts of it. To determine the ques-

tion of the stability of a given fluid system under the influence of

gravity, when all the (!onditions of equilibrium are satisfied as well

as those conditions of stability which relate to small parts of the sys-

tem taken separately, we may use the method described on page

413, the demonstration of which (pages 411, 412) will not require

any essential modification on account of gravity.

When the variations of temperature and of the quantities J/j, J/o,

etc. [see (617)] involved in the changes considered are so small that

they may be neglected, the condition of stability takes a very simple

form, as we have already seen to be the case with respect to a sys-

tem uninfluenced by gravity. (See page 415.)

We have to consider a varied state of the system in which the

total entropy and the total quantities of the various components are

unchanged, and all variations vanish at the exterior of the system,

—

in which, moreover, the conditions of equilibrium relating to tem-

perature and the potentials are satisfied, and the relations expressed

by the fundamental equations of the masses and surfaces are to be

regarded as satisfied, although the state of the system is not one of

complete equilibrium. Let us imagine the state of the system to vary

continuously in the course of time in accordance with these condi-

tions and use the symbol d to denote the simultaneous changes which

take place at any instant. If we denote the total energy of the

system by E^ the value of dE may be expanded like that of SE in

(599) and (600), and then reduced (since the values of t, /.i^+gz,

l^2~\'9 "^1 ^^^- '"^^'^ uniform throughout the system, and the total entropy

and total quantities of the several components are constant) to the

form

dE——j'p dBv -\-J'g dz Ihn'''+fo- dDs -\-fg dz Dm^

= —fP <ll^'^ + yV/ ydzDv+fa dDs -\-fg V dz Ds, (621)

where the integrations relate to the elements expressed by the symbol

D. The value of ^; at any point in any of the various masses, and

that of o' at any point in any of the various surfaces of discontinuity

are entirely determined by the temperature and potentials at the

point considered. If the variations of t and M ^, il/g, etc. are to be

neglected, the variations of p and G will be determined solely by the

change in position of the point considered. Therefore, by (612) and

(614),
dp-=. — g y/ dz, da =: g I dz

;

and
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dE= -^fp dDv -fclp IJv +/(r cWs ^fda Ds
= - d/p Bv + dfff Ds. (622)

If we now integrate with respect to d, commencing at the given

state of the system, we obtain

AE= - Jfp Ihi -f AfG Bs, (623)

where J denotes the vahie of a (jnantity in a varied state of the sys-

tem diminished by its vahie in the given state. Tliis is trne for finite

variations, and is therefore true for infinitesimal variations without

neglect of the infinitesimals of the higher orders. The condition of

stability is therefore that

///^^7>y-///o-7>.s<0, (624)

or that the quantity

fpDv—J'GDs (625)

has a maximum value, the values of /> and o', for each diiferent mass

or surface, being regarded as determined functions of z. (In ordin-

ary cases (7 may be regarded as constant in each sui-face of discon-

tinuity, and jo as a linear function of z in each diflerent mass.) It

may easily be shown (compare page 416) that this condition is always

sufficient for stability with reference to motion of surfaces of discon-

tinuity, even when the variations of t, J/j, if/g? 6tc. cannot be neg-

lected in the determination of the 7iecessary condition of stability

with respect to such changes.

On the Possibility of the Forniatio7i of a New Surface of Discon-

tinuity where several Surfaces of Discontinuity tneet.

When more than three surfaces of discontinuity between homo-

geneous masses meet along a line, we may conceive of a new surface

being formed between any two of the masses which do not meet in a

surface in the original state of the system. The condition of stability

with respect to the formation of such a surface may be easily obtained

by the consideration of the limit between stability and instability, as

exemplified by a system which is in equilibrium when a very small

surface of the kind is formed.

To fix our ideas, let us suppose that there are four homogeneous
masses A, B, C, and D, which meet one another in four surfaces,

which we may call A-B, B-C, C-D, and D-A, these surfaces all meeting

along a line L. This is indicated in figure 11 by a section of the sur-
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faces cutting the line L at right angles at a point O, In an infini-

tesimal variation of the state of the system, we may conceive of a

small surface being formed between A and C (to be called A-C),

so that the section of the surfaces of discontinuity by the same
plane takes the form indicated in figure 12. Let us suppose that

Fig. 11. Fig. 12.

the condition of equilibrium (615) is satisfied both for the line L in

which the surfaces of discontinuity meet in the original state of the

system, and for the two such lines (which we may call L' and L") in the

varied state of the system, at least at the points O' and O" where they

are. cut by the plane of section. We may therefore form a quadri-

lateral of which the sides aft, fty, yd, da ai-e equal in numerical

value to the tensions of the several surfaces A-B, B-C, CD, D-A,

and are parallel to the normals to these surfaces at the point O
in the original state of the system. In like manner, for the varied

state of the system we can construct two triangles having similar

relations to the surfaces of discontinuity meeting at O' and O".

But the directions of the normals to the surfaces A-B and B-C

at O' and to C-D and D-A at O" in the varied state of the system

differ infinitely little from the directions of the corresponding nor-

mals at O in the initial state. We may therefore regard afi, fiy

as two sides of the triangle representing the surfaces meeting at O',

and yd, 6a as two sides of the triangle representing the surfaces

meetino- at ()". Therefore, if we join ay, this line will represent the

direction of the normal to the surface A-C, and the value of its ten-

sion. If the tension of a surface between such masses as A and C had

been greater than that represented by ay, it is evident that the initial

state of the system of surfaces (represented in figure 1 1 ) would have

been stable with respect to the possible formation of any such sur-

face. If the tension had been less, the state of the system would

have been at least practically unstable. To determine whether it is

unstal)le in the strict sense of the term, or whether or not it is prop-
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erly to be regarded as in equilibrium, would require a more refined

analysis than we have used.*

The result which we have obtained may be generalized as follows.

When more than three surfaces of discontinuity in a fluid system meet

in equilibrium along a line, with respect to the surfaces and masses

immediately adjacent to any point of this line we may form a polygon

of which the angular points shall correspond in order to the different

masses separated by the surfaces of discontinuity, and the sides to

these surfaces, each side being perpendicular to the corresponding

surface, and equal to its tension. With respect to the formation of

new surfaces of discontinuity in the vicinity of the point especially

considered, the system is stable, if every diagonal of the polygon is

less, and practically unstable, if an}^ diagonal is greater, than the

tension which woidd belong to the surface of discontinuity between

the corresponding masses. In the limiting case, when the diagonal

is exactly equal to the tension of the corresponding surface, the sys-

tem may often be determined to be unstable by the application of

the principle enunciated to an adjacent point of the line in which the

surfaces of discontinuity meet. But when, in the polygons con-

structed for all points of the line, no diagonal is in any case greater

* We may here remark that a nearer approximation in the theory of equilibrium and

stability might be attained, by taking special account, in our general equations, of the

lines in which surfaces of discontinuity meet. These lines might be treated in a

manner entirely analogous to that in which we have treated surfaces of discontinuity.

"We might recognize linear densities of energy, of entropy, and of the several sub-

stances which occur about the line, also a certain linear tension. With respect to

these quantities and the temperature and potentials, relations would hold analogous to

those which have been demonstrated for surfaces of discontinuity. (See pp. 391-393.)

If the sum of the tensions of the lines L' and L", mentioned above, is greater than the

tension of the line L, this line will be in strictness stable (although practically unstable)

with respect to the formation of a surface between A and C, when the tension of such

a surface is a little less than that represented by the diagonal ay.

The difEerent use of the term practically unstable in different parts of this paper need

not create confusion, since the general meaning of the term is in all cases the same.

A system is called practically unstable when a very small (not necessarily indefinitely

small) disturbance or variation in its condition will produce a considerable change.

In the former part of this paper, in which the influence of surfaces of discontinuity

was neglected, a system was regarded as practically unstable when such a result

would be produced by a disturbance of the same order of magnitude as the quantities

relating to surfaces of discontinuity which were neglected. But where surfaces of

discontinuity are considered, a system is not regarded as practically unstable, unless

the disturbance which will produce such a result is very small compared with the

quantities relating to surfaces of discontinuity of any appreciable magnitude.

Trans. Conn. Acad., Vol. III. 58 March, 1878.
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than the tension of the corresponding surface, but a certain diagonal

is equal to the tension in the polygons constructed for a finite portion

of the line, farther investigations are necessary to determine the

stability of the system. For this purpose, the method described on

page 413 is evidently applicable,

A similar proposition may be enunciated in many cases with re-

spect to a point about which the angular space is divided into solid

angles by surfaces of discontinuity. If these surfaces are in equilib-

rium, we can always form a closed solid figure without re-enti-ant

angles of which the angular points shall correspond to the several

masses, the edges to the surfaces of discontinuity, and the sides to

the lines in which these edges meet, the edges being perpendicular

to the corresponding surfaces, and equal to their tensions, and the

sides being perpendicnlar to the corresponding lines. Now if the

solid angles in the physical system are such as may be subtended by

the sides and bases of a triangular prism enclosing the vei'tical point,

or can be derived from such by deformation, the figure representing

the tensions will have the form of two triangular pyramids on oppo-

site sides of the same base, and the system will be stable or pi-actic-

ally unstable with respect to the formation of a surface between the

masses which only meet in a point, according as the tension of a sur-

face between such masses is greater or less than the diagonal joining

the corresponding angular points of the solid representing the ten-

sions. This will easily appear on consideration of the case in which

a very small surface between the masses would be in equilibrium.

The Conditions of Stability for Fluids relating to the Formation

of a Neic Phase at a Line in which Three Surfaces of

Discontinuity meet.

With regard to the fonuation of new phases there are particular

conditions of stability which relate to lines in which several surfaces

of discontinuity meet. We may limit ourselves to the case in which

there are three such surfaces, this being the only one of frequent occur-

rence, and may treat them as meeting in a straight line. It will be

convenient to commence by considering the equilibrium of a system

in which such a line is replaced by a filament of a different phase.

Let us suppose that tliree homogeneous fluid masses. A, B, and C,

are separated by cylindrical {or plane) surfaces, A-B, B-C, C-A, which

at first meet in a straight line, each of the surface-tensions (Tab^ o'bc, Gck

being less than the sum of the other two. Let us suppose that the
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system is then modified by the introduction of a fourth fluid mass D,

which is placed between A, B, and C, and is separated from them by

cylindrical surfaces D-A, D-B, D-C meeting A-B, B-C, and C-A in

straight lines. The general form of the surfaces is shown by figure

14, in which the full lines represent a section perpendicular to all the

surfaces. The system thus modified is to be in equilibrium, as well

as tlie original system, the position of the surfaces A-B, B-C, C-A

being unchanged. That the last condition is consistent with equili-

brium will appear from the following mechanical considerations.

Fig. 14. Fig. 15. Fig. 16.

Let v-o denote the volume of the mass D per unit of length or the area

of the curvilinear triangle a b c. Equilibrium is evidently possible for

any values of the surface-tensions (if only o'ab, (^bc? '5'ca satisfy the con-

dition mentioned above, and the tensions of the three surfaces meet-

ing at each of the edges of D satisfy a similar condition) with any

value (not too large) of t^p, if the edges of D ai'e constrained to remain

in the original surfaces A-B, B-C, and C-A, or these surfaces extended,

if necessary, without change of curvature. (In certain cases one of

the surfaces D-A, D-B, D-C may disappear and D will be bounded

by only two cylindrical surfaces.) We may therefore regard the

system as maintained in equilibrium by forces applied to the edges

of D and acting at right angles to A-B, B-C, C-A. The same forces

would keep the system in equilibrium if D were rigid. They must

therefore have a zero resultant, since the nature of the mass D is im-

material Avhen it is rigid, and no forces external to the system would

be required to keep a corresponding part of the original system in

equilibrium. But it is evident from the points of application and

directions of these forces that they cannot have a zero resultant unless

each force is zero. We may therefore introduce a fourth mass D
without disturbing the parts which remain of the surfaces A-B, B-C,

C-D.

It will be observed that all the angles at a, b, c, and d in figure 14

are entirely determined by the six surface-tensions Cab? <>bc5 c^caj o'da,

^DB5 ^Dc- [^e^ (615).] The angles maybe derived from the tensions
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by the following construction, which will also indicate some important

pi'operties. If we form a triangle a (3 y (figure 15 or 16) having sides

equal to Cab, ^bc, ^ca, the angles of the triangle will be supplements

of the angles at d. To fix our ideas, Ave may suppose the sides of the

triangle to be perpendicular to the surfaces at d. Upon /i y we may
then construct (as in figure 16) a triangle p y S' having sides equal

to (Tbc, ^dc? <5'db5 upon ;/ a a triangle ;/ a 6" having sides equal to

O'cA, o'da, (^dc, and upon a /3 a triangle afid'" having sides equal to

<3'ab, <5'db, o'da. These triangles are to be on the same sides of the lines

fd y., y <:i', a /5, respectively, as the triangle (x />' y. The angles of

these triangles will be supplements of the angles of the surfaces of

disco'ntinuity at a, b, and c. Thus fi y d'=.d a b, and a y 6"=.d b a.

Now if 6' and 6" fall together in a single point 6 within the triangle

afty, 6'" will fall in the same point, as in figure 15. In this

case we shall have fi y S + a y S=a y (3, and the three angles of the

curvilinear triangle a d b will be together equal to two right angles.

The same will be true of the three angles of each of the triangles

b d c, cda, and hence of the three angles of the triangle abc. But

if 6\ 6", 6'" do not fall together in the same point within the triangle

a p y, it is either possible to bring these points to coincide within

the triangle by increasing some or all of the tensions Cda, Cdb, <^t>c,

or to efiect the same result by diminishing some or all of these ten-

sions. (This will easily appear when one of the points S\ 6", cV" falls

within the triangle, if we let the two tensions which determine this

point remain constant, and the third tension vary. When all the

points d\ 6", d'" fall without the triangle oc ft y^ we may suppose the

greatest of the tensions Cda, o'db? ^\ic—the two greatest, when these

are equal, and all three when they all are equal—to diminish until

one of the points 6\ 6", 6'" is brought within the triangle a ft y.)

In the first case we may say that the tensions of the new surfaces are

too small to be represented by the distances of an internal point from

the vertices of the triangle representing the tensions of the original

surfaces (or, for brevity, that they are too small to be repi-esented as

in figure 15) ; in the second case we may say that they are too great

to be thus represented. In the first case, the sum of the angles in

each of the triangles adb, bde, cda is less than two right angles

(compare figures 14 and 16): in the second case, each pair of the

triangles a fid'", fJyd", y a 6" will overlap, at least when the ten-

sions CTpA, ^DB, Cdc are only a little too great to be represented as in

figure 1 5, and the sum of the angles of each of the triangles adb,

bdc, cda will be greater than two right angles.



J. W. Gibbs—Equilihrium of Heterogeneous Substances. 459

Let us denote by y^, ^b? ^c the portions of v-o which were originally

occupied by the masses A, B, C, respectively, by s^a, s^b, Sdc? the

areas of the surfaces specified per unit of length of the mass D, and

hy ^s^B, Hci ^cKi the areas of the surfaces specified which were replaced

by the mass D per unit of its length. In numerical value, t^^, v^, Vq

will be equal to the areas of the curvilinear triangles bed, cad,

ab d; and Sp^, s^b? ^dc? ^ab? *bci -^ca to the lengths of the lines he, c a,

ab, c d, ad, b d. Also let

f' S —^ ^DA ^VA "T ^DB ^DB T" '^'dC ^DC — (^AB ^AB ^]iC ^BC — ^CA *'cA5 (626)

and T^ .r=^D Vd — i»A ^a - 2^b Vb — Pc Vc- (627)

The general condition of mechanical equilibrium for a system of

homogeneous masses not influenced by gravity, when the exterior of

the whole system is fixed, may be written

2 {a Ss) - 2{p dv) =: 0. (628)

[See (606).] If we apjjly this both to the original system consisting

of the masses A, B, and C, and to the system modified by the intro-

duction of the mass D, and take the difference of the results, suppos-

ing the deformation of the system to be the same in each case, we

shall have

O'da OSda ~I~ CTdb O^db "1" ^DC OSpc— (Tab OS^b ~~ <5'bc ^5bc

~ O-ca ^Sca - Pt> ^Vjy + pi, (Jva + Pb ^V^ -f- Pc 6vc= 0. (629)

In view of this relation, if we differentiate (626) and (627) regarding

all quantities except the pressures as variable, we obtain

dWs— dWy = SdA C^O'dA + «DB dffoB + «DC cK^DC

- Sab dffj^s — Sbc ^Cbc — «ca ^(?ca- (630)

Let us now suppose the system to vary in size, remaining always

similar to itself in form, and that the tensions diminish in the same

ratio as lines, while the pressures remain constant. Such changes

will evidently not impair the equilibrium. Since all the quantities

Sda, ^da, Sdb, Cdb, etc. vary in the same ratio,

SDAf?0-uA=it?((>'DAW^ SDB(^ffT,B=id{(}j)TiSTjB), CtC. (631)

We have therefore by integration of (630)

TFs- Trv= i((rDA«DA+^DBSDB + 0'DC«DC
— 0'aB«AB-0'bC«BC-0'ca«Ca), (632)

whence, by (626),

TFs = 2 Wy, (633)

The condition of stability for the system when the pressures and

tensions are regarded as constant, and the position of the surfaces
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A-B, B-C, C-A as fixed, is that T^ — Wv shall be a minimum under

the same conditions. [See (549).] Now for any constant values of

the tensions and of jo^, p^^ Pc, we may make v^ so small that when it

varies, the system remaining in eqiiilibrium, (which will in general

require a variation of jOd,) we may neglect the curvatures of the lines

da, db, d c, and regard the figure abed as remaining similar to

itself. For the total curvature (^. e., the curvature measured in

degrees) of each of the lines a b, be, ca may be regarded as con-

stant, being equal to the constant difierence of the sum of the angles

of one of the curvilinear triangles a db, b d c, c da and two right

angles. Thei-efore, when v^ is very small, and the system is so

deformed that equilibrium would be preserved if pj, had the proper

variation, but this pressure as well as the others and all the tensions

remain constant, W^ will vary as the lines in the figure abed, and

Wv as the square of these lines. Therefore, for such deformations,

This shows that the system cannot be stable for constant pressures

and tensions when v^ is small and Wy is positive, since Ws — Wy
will not be a minimixm. It also shows that the system is stable

when Wy is negative. For, to determine whether Wl— Wy is a

minimum for constant values of the pressures and tensions, it will

evidently be suflicient to consider such varied forms of the system as

give the least value to Wl— fVy for any value of Vd in connection

with the constant pressures and tensions. And it may easily be

shown that such forms of the system are those which would pre-

serve equilibrium if p^ had the proper value.

These i-esults will enable us to determine the most important ques-

tions relating to the stability of a line along which three homogene-

ous fluids A, B, C meet, with respect to the formation of a difierent

fluid D. The components of D must of course be such as are found

in the surrounding bodies. We shall regard p^) and o'da, Cdb, o'pc as

determined by that phase of D which satisfies the conditions of equi-

librium with the other bodies relating to temperature and the

potentials. These quantities are therefore determinable, by means

of the fundamental equations of the mass D and of the surfaces D-A,

D-B, D-0, from the temperature and potentials of the given system.

Let us first consider the case in which the tensions, thus deter-

mined, can be represented as in figure 15, and jOj, has a value con-

sistent with the equilibrium of a small mass such as we have been

considering. It appears from the preceding discussion that when v^ is
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sufficiently small the figure ah e d may be regarded as rectilinear, and

that its angles are entirely determined by its tensions. Hence the

ratios of u^, Wb, Vc, v-^, for sufficiently small values of ^Jd, are deter-

mined by the tensions alone, and for convenience in calculating these

ratios, we may suppose jo^j Pb-> Pc to be equal, which will make the

figure abed absolutely rectilinear, and make 2^d equal to the other

pressures, since it is supposed that this quantity has the value neces-

sary for equilibrium. We may obtain a simple expression for the

ratios of u^, ^b, ^c, ^d in terms of the tensions in the following

manner. We shall write [D B C], [D C A], etc., to denote the areas

of triangles having sides equal to the tensions of the surfaces between

the masses specified.

%\ : Vb — triangle b dc: triangle a dc

: : be sin bed ; ac sin acd

: : sin bac sin bed : sin abc sin aed

: : sin y6f:i sin Safd : sin yda sin 6(ia

: : sin ySft dp : sin ySa 6a

: : triangle y S f:l: triangle yda
: : [D B C] : [D C A].

Hence,

Vj,: v^: Vc-.Vu: :[T>B C] :[D C A]: [I) AB]:[AB C], (634)

where

iV[(C''AB+0'Bc4-^CA)(0-AB+0'BC— 0-ca)(0'bC+0'ca— O-ab) (O'ca+O'aB- O'bc)]

may be written for [A B C], and analogous expressions for the other

symbols, the sign \/ denoting the positive root of the necessarily posi-

tive expression which follows. This proportion will hold true in any

case of equilibrium, when the tensions satisfy the condition mentioned

and Vd is sufficiently small. Now if Pf,=.2)B=-Pc, Pd will have the

same value, and w^e shall have by (627) Wy =. 0, and by (633) Ws = 0.

But when Vp is very small, the value of W^ is entirely determined by
the tensions and Vq. Therefore, whenever the tensions satisfy the

condition supposed, and v^, is very small (whether pj,, jOg, j^c are

equal or unequal,)

0= Ws= Wv=pjiVu —PaVa—PbVb-PcVc, (635)

which with (634) gives

_ [D B C] p,+ [D C A]^B + [D A B]p,
2Jn- -[DBC] + [DCA] + [DAB] ' ^ '

Since this is the only value oipx, for which equilibrium is possible when
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the tensions satisfy the condition supposed and Vq is small, it follows

that when p^ has a less value, the line where the fluids A, B, C meet

is stable with respect to the formation of the fluid D, Whenp^ has

a greater value, if such a line can exist at all, it must be at least

practically unstable, i. e., if only a very small mass of the fluid D
should be formed it would tend to increase.

Let us next consider the case in which the tensions of the

new surfaces are too small to be represented as in figure 15. If

the pressures and tensions are consistent with equilibrium for any

very small value of Vj), the angles of each of the curvilinear tri-

angles adb, bdc, cc?awill be together less than two right angles,

and the lines ab, be, ca, will be convex toward the mass D. For

given values of the pressures and tensions, it will be easy to deter-

mine the magnitude of Vj). For the tensions will give the total

curvatures (in degrees) of the lines a b, be, ca; and the pressures

will give the radii of curvature. These lines are thus completely

determined. In order that ?Jd shall be very small it is evidently

necessary that p^ shall be less than the other pressures. Yet if the

tensions of the new surfaces are only a very little too small to be

represented as in figure 15, Vi-, may be quite small when the value

of pu is only a little less than that given by equation (636). In any

case, when the tensions of the new surfaces are too small to be repre-

sented as in figure 15, and Vj) is small, TFy is negative, and the equi-

librium of the mass D is stable. Moreover, W^— Wy, which repre-

sents the woT'k necessary to form the mass D with its surfaces in

place of the other masses and surfaces, is negative.

With respect to the stability of a line in which the surfaces A-B,

B-C, C-A meet, when the tensions of the new surfaces are too small to

be represented as in figure 15, we first observe that when the pressures

and tensions are such as to make v^ moderately small but not so

small as to be neglected, [this will be when p^ is somewhat smaller

than the second member of (636),—more or less smaller according as

the tensions diflfer more or less from such as are represented in

figure 15,] the equilibrium of such a line as that supposed (if it is

capable of existing at all) is at least practically unstable. P^'or greater

values of po (with the same values of the other pressures and the

tensions) the same will be ti'ue. For somewhat smaller values of pn,

the mass of the phase D which will be formed will be so small, that

we may neglect this mass and regard the surfaces A-B, B-C, C-A as

meeting in a line in stable equilibrium. For still smaller values of

Pp, we may likewise regard the surfaces A-B, B-C, C-A as capable
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of meeting in stable e<juilibrium. It may be observed that when

Vq, as determined by our equations, becomes quite insensible,

the conception of a small mass D having the properties deducible

from our equations ceases to be accurate, since the matter in the

vicinity of a line where these surfaces of discontinuity meet must

be in a peculiar state of equilibrium not recognized by our equations.*

But this cannot affect the validity of our conclusion with respect to

the stability of the line in question.

The case remains to be considered in which the tensions of the new

surfaces are too great to be represented as in figure 15, Let us sup-

pose that they are not very much too great to be thus represented.

When the pressures are such as to make Vq moderately small (in case

of equilibrium) but not so small that the mass D to which it relates

ceases to have the properties of matter in mass, [this will be when

p-Q is somewhat greater than the second member of (636),—more or

less o-reater according as the tensions differ more or less from such as

ai*e represented in figure 15,] the line where the surfaces A-B, B-C,

C-A meet will be in stable equilibrium with respect to the formation

of such a mass as we have considered, since TP^— TFy will be posi-

tive. The same will be true for less values of jOd. For greater values

of jOu, the value of TFg - TFy, which measures the stability with respect

to the kind of change considered, diminishes. It does not vanish,

according to our equations, for finite values of jt>D- But these equa-

tions are not to be trusted beyond the limit at which the mass D
ceases to be of sensible magnitude. *

But when the tensions are such as we now suppose, we must also

consider the possible formation of a mass D within a closed figure in

which the surfaces D-A, D-B, D-C meet together (with the surfaces

A-B, B-C, C-A) in two opposite points. If such a figure is to be in

equilibrium, the six tensions must be such as can be represented by

* See note on page 455. "We may here add that the linear tension there mentioned

may have a negative value. This would be the case with respect to a line in which

three surfaces of discontinuity are regarded as meeting, but where nevertheless there

really exists in stable equilibrium a filament of different phase from the three sur-

rounding masses. The value of the linear tension for the supposed line, would be

nearly equal to the value of W^ — W^ for the actually existing filament. (For the

exact value of the linear tension it would be necessary to add the sum of the linear

tensions of the three edges of the filament.) "We may regard two soap-bubbles

adhering together as an example of this case. The reader will easily convince himself

that in an exact treatment of the equihbrium of such a double bubble we must recog-

nize a certain negative tension in the line of intersection of the three surfaces of

discontinuity.

Trans. Conn. Acad., Vol. III. 59 March, 1878.
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the six distances of four points in space (see page 455),—a condition

which evidently agrees with the supposition which we have made. If

we denote by v\- the work gained in forming the mass D (of such size

and form as to be in equilibrium) in place of the other masses, and by

10^ the work expended in forming the new surfaces in place of the old,

it may easily be shown by a method similar to that ixsed on page 459

that ««s=f*^v- From this we obtain Ws — w)v:=^^^v- This is evidently

positive when jOj, is greater than the other pressures. But it diminishes

with increase of />d, as easily appears from the equivalent expression

^s- Hence the line of intersection of the surfaces of discontinuity A-B,

B-C, C-A is stable for values of p-o greater than the other pressures

(and therefore for all values of />o) so long as our method is to be re-

garded as accurate, which will be so long as the mass D which would

be in equilibrium has a sensible size.

In certain cases in which the tensions of the new surfaces are much

too large to be represented as in figure 15, the reasoning of the two

last paragraphs will cease to be applicable. These are cases in which

the six tensions cannot be represented by the sides of a tetrahedron.

It is not necessary to discuss these cases, which are distinguished by

the different shape which the mass D would take if it should be

formed, since it is evident that they can constitute no exception to

the results which we have obtained. For an increase of the values of

<5'daj ^dbj (^dc cannot favor the formation of D, and hence cannot im-

pair the stability of the line considered, as deduced from our equa-

'tions. Nor can an increase of these tensions essentially affect the

fact that the stability thus demonstrated may fail to be realized when

p-Q is considerably greater than the other pressures, since the a priori

demonstration of the stability of any one of the surfaces A-B, B-C,

C-A, taken singly, is subject to the limitation mentioned. (See page

426.)

The Condition of IStability for Fluids relating to the Formation

of a Neio Phase at a Point where the Vertices of
Four Different Masses meet.

Let four different fluid masses A, B, C, D meet about a point, so as

to form the six surfaces of discontinuity A-B, B-C, C-A, D-A, D-B,

D-C, which meet in the four lines A-B-C, B-C-D, C-D-A, D-x\-B, these

lines meeting in the vertical point. Let us suppose the system stable

in other respects, and consider the conditions of stability for the ver-

tical point with respect to the possible formation of a different fluid

mass E.



J. W. Gibhs—Equilihriam of Heterogeneous Substances. 405

If the system can be in equilibrium when the vertical point has

been replaced by a mass E against which the four masses A, B, C, D
abut, being truncated at their vertices, it is evident that E will have

four vertices, at each of which six surfaces of discontinuity meet.

(Thus at one vertex there will be the surfaces formed by A, B, C,

and E.) The tensions of each set of six surfaces (like those of the

six surfaces formed by A, B, C, and D) must therefore be such that

they can be represented by the six edges of a tetrahedron. When
the tensions do not satisfy these relations, there will be no particular

condition of stability for the point about which A, B, C, and D meet,

since if a mass E should be formed, it would distribute itself along

some of the lines or surfaces which meet at the vertical point, and it

is therefore sufficient to consider the stability of these lines and sur-

faces. We shall suppose that the relations mentioned are satisfied.

If we denote by TF^ the work gained in forming the mass E (of

such size and form as to be in equilibrium) in place of the portions

of the other masses which are suppressed, and by TFs the work ex-

pended in forming the new surfaces in place of the old, it may easily

be shown by a method similar to that used on page 459 that

TFs=|Trv, (63V)

whence TT, - TTyz^^ TFy

;

(638)

also, that when the volume E is small, the equilibrium of E will be

stable or unstable according as TFg and Wy are negative or positive.

A critical relation for the tensions is that which makes equilibrium

possible for the system of the live masses A, B, C, D, E, when all

the surfaces are plane. The ten tensions may then be represented in

magnitude and direction by the ten distances of five points in space

a, /i, ;/, d', e, viz., the tension of A-B and the direction of its normal

by the line a (i, etc. The point e will lie within the tetrahedron

formed by the other points. If we write i\ for the volume of E, and

'^A? ^B) ^C5 ^'d for the volumes of the parts of the other masses which

are suppressed to make room for E, we have evidently

Ww =Pe v^—Pk "a— P^ Vs-pc Vc~2:>D «D- (639)

Hence, when all the surfaces are plane, Tf^z^O, and TT^r=0. Now
equilibrium is always possible for a given small value of v^ with any

given values of the tensions and of />a, ^^b, 2^c, />d- When the tensions

satisfy the critical relation, Ws= 0, if p^ =2)b =i»c =/>d- But when

?Je is small and constant, the value of Wg must be independent of p^,

Pb, Pc-, P-D-> si"ce the angles of the sui-faces are determined by the

tensions and their curvatures may be neglected. Hence, Tl^nrO and
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TFv^==0, when the critical relation is satisfied and v^ small. This

gives

Pk= • (640)

In calculating the ratios of i'a, "^b, ^c-, "d, ^e, we may suppose all the

surfaces to be plane. Then E will have the form of a tetrahedron,

the vertices of which may be called a, b, c, d, (each vertex being

named after the mass which is not found there,) and u^^ ^b? ^c^ ^d will

be the volumes of the tetrahedra into which it may be divided

by planes passing through its edges and an interior point e. The

volumes of these tetrahedra are proportional to those of the five

tetrahedra of the figure a fi y d e, as will easily appear if we recollect

that the line a b is common to the surfaces C-D, D-E, E-C, and there-

fore perpendicular to the surface common to the lines y d, 6 e., e y^

i. e., to the surface y S a, and so in other cases, (it will be observed

that y, 6, and e are the letters which do not correspond to a or b)

;

also that the surface a b c is the surface D-E and therefore perpendic-

ular to S E, etc. Let tetr abed, trian abc, etc. denote the volume of

the tetrahedron or the area of the triangle specified, sin (ab, be),

Bin (abc, dbc), sin (abc, ad), etc. the sines of the angles made by the

lines and surfaces specified, and [B CD E], [C D E A], etc., the vol-

umes of tetrahedra having edges equal to the tensions of the surfaces

between the masses specified. Then, since we may express the

volume of a tetrahedron either by ^ of the product of one side, an edge

leading to the opposite vertex, and the sine of the angle which these

make, or by f of the product of two sides divided by the common

edge and mixltiplied by the sine of the included angle,

Vf^-.v^:: tetr bcde : tetr acde

: : be sin (be, cde) : ac sin (ac, cde)

: : sin (ba, ac) sin (be, cde) : sin (ab, be) sin (ac, cde)

: : sin {yd£, /3d e) sin {ade, ap) : sin (yds, ade) sin {pSs, afi)

tetr yfidE tetr (dade tetr yade tetr afide

trian (ids trian ade ' trian ade trian fids

: : tetr y(3de : tetr yade

::[BCDE]:[CDEA].
Hence,

?JA:«'B:'yc:^D::[BCDE]:[CDEA]:[DEAB]:EABC],(64l)

and (640) may be written

_ [B C D E1pa+ [CDE A]79b -t- [D E a B] />c+ [E Aj^Cj^p .g^g)
^^ [BCDE]-h[CDEAJ+ [DEAB]-f [EABC]
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If the value o^p^ is less than this, when the tensions satisfy the critical

relation, the point where vertices of the masses A, B, C, D meet is

stable with respect to the formation of any mass of the nature of E.

But if the value of p-^ is greater, either the masses A, B, C, D cannot

meet at a point in equilibrium, or the equilibrium will be at least

practically unstable.

When the tensions of the new surfaces are too small to satisfy the

critical relation with the other tensions, these surfaces will be con-

vex toward E ; when their tensions are too great for that relation,

the surfaces will be concave toward E. In the first case, Wy is

negative, and the equilibrium of the five masses A, B, C, D, E
is stable, but the equilibrium of the four masses A, B, C, D meeting

at a point is impossible or at least practically unstable. This is sub-

ject to the limitation that when p^ is sufficiently small the mass E
which will form will be so small that it may be neglected. This will

only be the case when p^ is smaller—in general considerably smaller

—

than the second number of (642). In the second case, the equilibrium

of the five masses A, B, C, D, E will be unstable, but the equilibrium

of the four masses A, B, C, D will be stable unless v-e (calculated for

the case of the five masses) is of insensible magnitude. This will

only be the case when p)^ is greater—in general considerably greater

—

than the second member of (642).

Liquid Films.

Wlien a fluid exists in the form of a thin film between other fluids,

the great inequality of its extension in different directions will give

rise to certain peculiar properties, even when its thickness is sufficient

for its interior to have the properties of matter in mass. The fre-

quent occurrence of such films, and the remarkable properties which

they exhibit, entitle them to particular consideration. To fix our

ideas, we shall suppose that the film is liquid and that the contiguous

fluids are gaseous. The reader will observe our results are not

dependent, so far as their general character is concerned, upon this

supposition.

Let us imagine the film to be divided by surfaces perpendicular to

its sides into small portions of which all the dimensions are of the

same order of magnitude as the thickness of the film,—such portions

to be called elements of the film,,—it is evident that far less time will

in general be required for the attainment of approximate equilibrium

between the different parts of any such element and the other fluids

which are immediately contiguous, than for the attainment of equi-
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libriiim between all the diflFerent elements of the film. There will

accordingly be a time, commencing shortly after the formation of the

film, in which its separate elements may be regarded as satisfying the

conditions of internal equilibrium, and of equilibrium with the con-

tiguous gases, while they may not satisfy all the conditions of equi-

librium with each other. It is when the changes due to this want ol

complete equilibrium take place so slowly that the film appears to be

at rest, except so far as it accommodates itself to any change in the

external conditions to which it is subjected, that the characteristic

properties of the film are most striking and most sharply defined.

Let us therefore consider the properties which will belong to a film

sufficiently thick for its interior to have the properties of matter in

mass, in virtue of the approximate equilibrium of all its elements

taken separately, when the matter contained in each element is

regarded as invariable, with the exception of certain substances

which are components of the contiguous gas-masses and have their

potentials thereby determined. The occurrence of a film which pre-

cisely satisfies these conditions may be exceptional, but the discus-

sion of this somewhat ideal case will enable us to understand the

principal laws which determine the behavior of liquid films in

general.

Let us first consider the 2:)roperties which will belong to each ele-

ment of the film under the conditions mentioned. Let us suppose

the element extended, while the temperature and the potentials

which are determined by the contiguous gas-masses are unchanged.

If the film has no components except those of which the potentials

are maintained constant, there will be no variation of tension in its

surfaces. The same will be true when the film has only one com-

ponent of which the potential is not maintained constant, provided

that this is a component of the interior of the film and not of its sur-

face alone. If we regard the thickness of the film as determined by

dividing surfaces which make the surface-density of this compo-

nent vanish, the thickness will vary inversely as the area of the ele-

ment of the film, but no change will be produced in the nature or

the tension of its surfaces. If, however, the single component of

which the potential is not maintained constant is confined to the sur-

faces of the film, an extension of the element will generally produce

a decrease in the potential of this component, and an increase of ten-

sion. This will certainly be true in those cases in which the compo-

nent shows a tendency to distribute itself with a uniform superficial

density.
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When the film has two or more components of Avhich the potentials

are not maintained constant by the contiguons gas masses, they will

not in general exist in the same proportion in the interior of the film as

on its surfaces, but those components which diminish the tensions will

be found in greater proportion on the surfaces. When the film is ex-

tended, there will therefore not be enough of these substances to keep

up the same volume- and surface-densities as before, and the deficiency

will cause a certain increase of tension. The Aalue of the elasticity of

the film
^
(i. e., the infinitesimal increase of the united tensions of its

surfaces divided by the infinitesimal increase of area in a unit of sur-

face), may be calculated from the quantities which specify the nature

of the film, when the fundamental equations of the interior mass, of

the contiguous gas-masses,\and of the two surfaces of discontinuity

are knoAvn. We may illustrate this by a simple example.

Let us suppose that the two surfaces of a plane film are entirely

alike, that the contiguous gas-masses are identical in phase, and that

they determine the potentials of all the components of the film

except two. Let us call these components S^ and S2, the latter

denoting that which occurs in greater proportion on the surface than

in the interior of the film. Let us denote by y ^ and y2 the densities

of these components in the interior of the film, by A the thickness of

the film determined by such dividing surfaces as make the surface-

density of S^ vanish (see page 397), by r^d) ^^® surface-density of

the other component as determined by the same surfaces, by and s

the tension and area of one of these surfaces, and by ^the elasticity

of the film when extended under the supposition that the total quan-

tities of /iSj and S^ in the part of the film extended are invariable, as

also the temperature and the potentials of the other components.

From the definition of JE we have

2dG=E-, (643)
s

and from the conditions of the extension of the film

ds ^(^Yx) ^{^ y2 -\-
'^ ^2ii))

Hence we obtain

^Vi '^rs +2^^2(1)

\ y^^ = - y ^dX^ \ dy ^,

(644)

ds
{Xy2 + 2 F,!^, ))-;-=— ^2^^^ — Xdy^ — 2dT\^^.

and eliminating c?A,
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2r,r,,^,'^=-Xy,dy, + Xr,dy, - 2;/, dF,,,, (645)
s

If we set r= ll, (646)
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dG^\
E \

the last clifFereiitial coefficient being determined by the same condi-

tions as that in the preceding equation. It will be observed that the

value of ^ will be positive in any oi'dinary case.

These equations give the elasticity of any element of the iilm when

the temperature and the potentials for the substances which are found

in the contiguous gas-masses are regarded as constant, and the poten-

tials for the other components, /<, and yu^, have had time to equalize

themselves throughout the element considered. The increase of

tension immediately after a rapid extension will be greater than that

given by these equations.

The existence of this elasticity, which has thus been established

from a priori considerations, is clearly indicated by the phenomena

which liquid films present. Yet it is not to be demonstrated simply

by comparing the tensions of films of different thickness, even when

they are made from the same liquid, for difference of thickness does

not necessarily involve any difference of tension. When the phases

within the films as well as without are the same, and the surfaces of

the films are also the same, there will be no difference of tension.

Nor will the tension of the same film be altered, if a part of the inte-

rior drains away in the course of time, without affecting the surfaces.

In case the thickness of the film is reduced by evaporation, the tension

may be either increased or diminished. (The evaporation of the sub-

stance /S'j, in the case we have just considered, would diminish the

tension.) Yet it may easily be shown that extension increases the

tension of a film and contraction diminishes it. When a plane film

is held vertically, the tension of the upper portions must evidently

be greater than that of the lower. The tensions in every part of the

film may be reduced to equality by turning it into a horizontal posi-

tion. By restoring the original position we may restore the original

tensions, or nearly so. It is evident that the same element of the

film is capable of supporting very unequal tensions. Nor can this be

always attributed to viscosity of the film. For in many cases, if we

hold the film nearly horizontal, and elevate first one side and then an

other, the lighter portions of the film will dart from one side to the

other, so as to show a veiy striking mobility in the film. The differ-

ences of tension which cause these rapid movements are only a vei-y

Trans. Conn. Acad., Vol. III. 60 March, 1878.
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small fraction of the difference of tension in the upper and lower

portions of the film when held vertically.

If we account for the power of an element of the film to support an

increase of tension by viscosity, it will be necessary to suppose that

the viscosity ofiers a resistance to a deformation of the film in which

its surface is enlarged and its thickness diminished, which is enor-

mously great in comparison with the resistance to a deformation in

which the film is extended in the direction of one tangent and con-

tracted in the direction of another, while its thickness and the areas

of its surfaces remain constant. This is not to be readily admitted

as a physical explanation, although to a certain extent the phenomena

resemble those which would be caused by such a singular viscosity.

(See page 439.) The only natural explanation of the phenomena is

that the extension of an element of the film, which is the immediate

result of an increase of external force applied to its perimeter, causes

an increase of its tension, by which it is brought into ti'ue equilibrium

Avith the external forces.

The phenomena to which we have referred are such as are apparent

to a very cursory observation. In the following experiment, which

is described by M. Plateau,* an increased tension is manifested in a

film while contracting after a previous extension. The warmth of a

finger brought near to a bubble of soap-water with glycerine, which

is thin enough to show colors, causes a spot to appear indicating

a diminution of thickness. When the finger is removed, the spot

returns to its original color. This indicates a contraction, which

would be resisted by any viscosity of the film, and can only be due

to an excess of tension in the portion stretched on the return of its

original temperature.

We have so far supposed that the film is thick enough for its inte-

rior to have the properties of matter in mass. Its properties are then

entirely determined by those of the three phases and the two surfaces

of discontinuity. From these we can also determine, in part at least,

the properties of a film at the limit at which the interior ceases to

have the properties of matter in mass. The elasticity of the film,

which increases with its thinness, cannot of course vanish at that

limit, so that the film cannot become unstable with resj^ect to exten-

sion and contraction of its elements immediately after passing that

limit.

Yet a certain kind of instability will probably arise, which we may

* " Statique experimentale et theorique des liquides soumis aux seules forces mol6-

culaires," vol. i, p. 294.
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here notice, although it rehates to changes in which the condition of

the invariability of the quantities of certain components in an element

of the film is not satisfied. With respect to variations in the distri-

bution of its components, a film will in general be stable, when its

interior has the properties of matter in mass, with the single exception

of variations aifecting its thickness without any change of phase or of

the nature of the surfaces. With respect to this kind of change, which

may be brought about by a current in the interior of the film, the

equilibrium is neutral. But when the interior ceases to have the pro-

perties of matter in mass, it is to be supposed that the equilibrium

will generally become unstable in this respect. For it is not likely

that the neutral equilibrium will be unaffected by such a change of

circumstances, and since the film certainly becomes unstable when it

is sufficiently reduced in thickness, it is most natural to suppose that

the first effect of diminishing the thickness will be in the direction of

instability rather than in that of stability. (We are here considering

liquid films between gaseous masses. In certain other cases, the

opposite supposition might be more natural, as in respect to a film of

water between mercury and air, which would certainly become stable

when sufficiently reduced in thickness.)

Let us now return to our former suppositions—that the film is thick

enough for the interior to have the properties of matter in mass, and

that the matter in each element is invariable, except with respect to

those substances which have their potentials determined by the con-

tiguous gas-masses—and consider what conditions are necessary for

equilibrium in sxach a case.

In consequence of the supposed equilibrium of its several elements,

such a film may be treated as a simple surface of discontinuity

between the contiguous gas-masses (which may be similar or different),

whenever its radius of curvature is very large in comparison with its

thickness,—a condition which we shall always suppose to be fulfilled.

Witli respect to the film considered in this light, the mechanical

conditions of equilibrium will always be satisfied, or very nearly so,

as soon as a state of approximate rest is attained, except in those

cases in which the film exhibits a decided viscosity. That is, the

relations (613), (<il4), (615) will hold true, when by a we understand

the tension of the film regarded as a simple surface of discontinuity

(this is equivalent to the sum of the tensions of the two surfaces of

the film), and by /^its mass per unit of area diminished by the mass

of gas which would occupy the same space if the film should be sup-

pressed and the gases should meet at its surface of tension. This
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surface of tension of the film will evidently divide the distance

betvv^een the surfaces of tension for the two surfaces of the film taken

separately, in the inverse ratio of their tensions. For practical pur-

poses, we may regard T simply as the mass of the film per unit of

area. It will be observed that the terms containing /'in (613) and

(614) are not to be neglected in our present application of these

equations.

But the mechanical conditions of equilibrium for the film regarded

as an approximately homogeneous mass in the form of a thin sheet

bounded by two surfaces of discontinuity are not necessarily satisfied

when the film is in a state of apparent rest. In fact, these conditions

cannot be satisfied (in any place where the force of gravity has an

appreciable intensity) unless the film is horizontal. For the pressure

in the interior of the film cannot satisfy simultaneously condition

(612), which requires it to vary rapidly with the height z, and condi-

tion (613) applied separately to the different surfaces, which makes it

a certain mean between the pressui'es in the adjacent gas-masses.

Nor can these conditions be deduced from the general condition

of mechanical equilibrium (606) or (611), without supposing that the

interior of the film is free to move independently of the surfaces,

which is contrary to what we have supposed.

Moreover, the potentials of the various components of the film will

not in general satisfy conditions (617), and cannot (when the tem-

perature is uniform) unless the film is hoi'izontal. For if these condi-

tions were satisfied, equation (612) would follow as a consequence.

(See page 449.)

We may here remark that such a film as we are considering cannot

form any exception to the principle indicated on page 450,—that

when a surface of discontinuity which satisfies the conditions of

mechanical equilibrium has only one component which is not found

in the contigiious masses, and these masses satisfy all the conditions

of equilibrium, the potential for the component mentioned must satisfy

the law expressed in (617), as a consequence of the condition of

mechanical equilibrium (614). Therefore, as we have just seen that

it is impossible that all the potentials in a liquid film which is not hori-

zontal should conform to (617) when the temperature is uniform, it

follows that if a liquid film exhibits any persistence which is not due

to viscosity, or to a horizontal position, or to differences of tempera-

ture, it must have more than one component of which the potential

is not determined by the contiguous gas-masses in accordance with

(617).
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The difficulties of the quantitative experimental verification of the

properties which have been described would be very great, even in

cases in which the conditions we have imagined were entirely ful-

filled. Yet the general effect of any divergence from these condi-

tions will be easily perceived, and when allowance is made for such

divergence, the general behavior of liquid films will be seen to agree

with the requirements of theory.

The formation of a liquid film takes place most symmetrically

when a bubble of air rises to the top of a mass of the liquid. The

motion of the liquid, as it is displaced by the bubble, is evidently

such as to stretch the two sm-faces in which the liquid meets the air,

where these surfaces approach one another. This will cause an

increase of tension, which will tend to restrain the extension of the

surfaces. The extent to which this effect is produced will vary with

the nature of the liquid. Let us suppose that the case is one in

which the liquid contains one or more components which, although

constituting but a very small part of its mass, greatly reduce its ten-

sion. Such components will exist in excess on the surfaces of the

liquid. In this case the resti'aint upon the extension of the surfaces

will be considerable, and as the bubble of air rises above the general

level of the liquid, the motion of the latter will consist largely of a

running out from between the two surfaces. But this running out of

the liquid will be greatly retarded by its viscosity as soon as it is

reduced to the thickness of a film, and the effect of the extension of

the surfaces in increasing their tension will become greater and

more permanent as the quantity of liquid diminishes which is avail-

able for supplying the substances which go to form the increased sur-

faces.

We may form a rough estimate of the amount of motion which is

possible for the interior of a liquid film, relatively to its exterior, by
calculating the descent of water between parallel vertical planes at

which the motion of the water is reduced to zero. If we use the

coefficient of viscosity as determined by Helmholtz and Piotrowski,*

we obtain

V— 581 Z>2, (656)

where V denotes the mean velocity of the water [i. e., that velocity

* Sitzungsberichte der Wiener Akademie, (mathemat.-natnrwiss. Classe), B. xl, S.

607. The calculation of formula (656) and that of the factor (|) applied to the formula

of Poiseuille, to adapt it to a current between plane surfaces, have been made by

means of the general equations of the motion of a viscous liquid as given in the

memoir referred to.
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which, if it were uniform throughout the whole space between the

fixed planes, woi;ld give the same discharge of water as the actual

variable velocity) expressed in millimetres per second, and D denotes

the distance in millimetres between the fixed planes, which is sup-

posed to be very small in proportion to their other dimensions. This

is for the temperature of 24.5° C. For the same temperature, the

experiments of Poiseuille * give

F= 337 Z>2

for the descent of water in long capillary tubes, which is equivalent to

V= 899 i>2 (657)

for descent between parallel planes. The numerical coefficient in this

equation differs considerably from that in (656), which is derived from

experiments of an entirely different nature, Init we may at least con-

clude that in a film of a liquid which has a viscosity and specific

gravity not very different from those of water at the temperature

mentioned the mean velocity of the interior relatively to the surfaces

will not probably exceed 1000 D^^. This is a velocity of .1'"'" per

second for a thickness of .01'"'", .06'"'" per minute, for a thickness of

.001 (which corresponds to the red of the fifth order in a film of

water), and .036'""' per hour for a thickness of .0001""" (which corre-

sponds to the M^hite of the first order). Such an internal current is

evidently consistent with great persistence of the film, especially in

those cases in which the film can exist in a state of the greatest

tenuity. On the other hand, the above equations give so large a

value of T^for thicknesses of 1"''" or .l'""", that the film can evidently

be formed without carrying up any great weight of liquid, and any

such thicknesses as these can have only a momentary existence.

A little consideration will show that the phenomenon is essentially

of the same nature when films are formed in any other way, as by

dipping a ring or the mouth of a cup in the liquid and then with-

drawing it. When the film is formed in the mouth of a pij^e, it may

sometimes be extended so as to form a large bubble. Since the elas-

ticity {i. e., the increase of the tension with extension) is greater in

the thinner parts, the thicker parts will be most extended, and the

effect of this process (so far as it is not modified by gravity) will be

to diminish the ratio of the greatest to the least thickness of the film.

Durino- this extension, as well as at other times, the increased elas-

ticity due to imperfect communication of heat, etc., will serve to pro-

tect the bubble from fracture by shocks received from the air or the

* Ibid., p. 1)5:5 ; or Memoires des Savants fitrangers, vol. ix. p. a^l.
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pipe. If the bubble is now laid upon a suitable support, the condi-

tion (CI 3) will be realized almost instantly. The bubble will then

tend toward conformity with condition (614), the lighter portions ris-

ing to the top, more or less slowly, according to the viscosity of the

tilm. The resulting ditterence of thickness between the upper and

the lower parts of the bubble is due partly to the greater tension to

which the upper parts are subject, and partly to a diifereuce in the

matter of which they are composed. When the film has only two
components of which the potentials are not determined by the con-

tiguous atmosphere, the laws which govern the arrangement of the

elements of the film may be very simply expressed. If we call these

components S^ and /S^, the latter denoting (as on page 469) that

which exists in excess at the surface, one element of the film will

tend toward the same level with another, or a higher, or a lower

level, according as the quantity of S2 bears the same ratio to the

quantity of S^ in the first element as in the second, or a greater, or a

less ratio.

When a film, however formed, satisfies both the conditions (618)

and (614), its thickness being sufiicient for its interior to have the

properties of matter in mass, the interior will still be subject to the

slow current which we have already described, if it is truly fluid, how-

ever great its viscosity may be. It seems probable, however, that

this process is often totally arrested by a certain gelatinous consist-

ency of the mass in question, in virtue of which, although pi'actically

fluid in its behavior with reference to ordinary stresses, it may have

the properties of a solid with respect to such very small stresses as

those which are caused by gravity in the interior of a very thin film

which satisfies the conditions (613) and (614).

However this may be, there is another cause which is often more
potent in producing changes in a film, when the conditions just men-
tioned are approximately satisfied, than the action of gravity on its

interior. This will be seen if we turn our attention to the edge
where the film is terminated. At such an edge we generally find a

liquid mass, continuous in phase with the interior of the film, which

is bounded by concave surfaces, and in which the pressure is therefore

less than in the interior of the film. This liquid mass therefore

exerts a strong suction upon the interior of the film, by which its

thickness is rapidly reduced. This eftect is best seen when a film

which has been formed in a ring is held in a vertical position. Unless

the film is very viscous, its diminished thickness near the edge causes

a rapid upward cui-rent on each side, Avhile the central portion slowly
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descends. Also at the bottom of the film, where the edge is nearly

horizontal, portions which have become thinned escape from their

position of unstable equilibrium beneath heavier portions, and pass

upwards, traversing the central portion of the film until they find a

position of stable equilibrium. By these processes, the whole film is

rapidly reduced in thickness.

The energy of the suction which produces these efiects may be

inferred from the following considerations. The pressure in the

slender liquid mass which encircles the film is of course variable,

being greater in the lower portions than in the upper, but it is every-

where less than the pressure of the atmosphere. Let us take a point

where the pressure is less than that of the atmosphere by an amount

represented by a column of the liquid one centimetre in height. (It

is probable that much greater diflferences of pressure occur.) At a

point near by in the interior of the film the pressure is that of the

atmosphere. Now if the difierence of pressure of these two points

were distributed uniformly through the space of one centimetre, the

intensity of its action would be exactly equal to that of gravity.

But since the change of pressure must take place very suddenly (in

a small fraction of a millimetre), its effect in producing a current in a

limited space must be enormously great compared with that of

gravity.

Since the process just described is connected with the descent of

the liquid in the mass encircling the film, we may regard it as

another example of the downward tendency of the interior of the

film. There is a third way in which this descent may take place,

when the principal component of the interior is volatile, viz.,

through the air. Thus, in the case of a film of soap-water, if we

suppose the atmosphere to be of such humidity that the potential for

water at a level mid-way between the top and bottom of the film has

the same value in the atmosphere as in the film, it may easily be

shown that evaporation will take place in the upjjer portions and

condensation in the lower. These processes, if the atmosphere were

otherwise undisturbed, would occasion currents of diffusion and other

currents, the general efiect of which would be to carry the moisture

downwai'd. Such a precise adjustment would be hardly attainable,

and the processes described would not be so rapid as to have a prac-

tical importance.

But when the potential for water in the atmosphere differs con-

siderably from that in the film, as in the case of a film of soap-water

in a dry atmosphere, or a film of soap-water with glycerine in a moist
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atmospliere, the effect of evaporation or condensation is not to be

neglected. In the first ease, the diniinntion of the thickness of the

film will be accelerated, in the second, retarded. In the case of the

film containing glycerine, it should be observed that the water con-

densed cannot in all respects replace the flaid carried down by the

internal current but that the two processes together will tend to

wash out the glycerine from the film.

But Avhen a component which greatly diminishes the tension of the

film, although forming but a small fraction of its mass, (therefore

existing in excess at the surface,) is volatile, the effect of evaporation

and condensation may be considerable, even when the mean value of

the potential for that component is the same in the film as in the sur-

rounding atmosphere. To illustrate this, let us take the simple case

of two components *Sj and N^, as before. (See page 469.) It appears

from equation (508) that the potentials must vary in the film ^\\t\\

the height z, since the tension does, and from (98) that these varia-

tions must (very nearly) satisfy the relation

y^ and y2 denoting the densities of 8^ and iS.^ in the interior of the

film. The variation of the potential of 82 as we pass from one level

to another is therefore as much more rapid than that of aS'j, as its

density in the interior of the film is less. If then the resistances

restraining the e^'aporat^on, transmission thi'ough the atmosphere,

and condensation of the two substances are the same, these processes

will go on much more rapidly Avitli respect to 82- It will be

observed that the values of —-^ and -~^ will have opposite signs,

the tendency of *Sj being to pass down through the atmosphere, and

that of aS'o to pass up. Moreover, it may easily be shown that the

evaporation or condensation of /S'2 will produce a very much greater

effect than the evaporation or condensation of the same quantity of

Sy. These efi'ects are really of the same kind. For if condensation

of S„ takes place at the top of the film, it will cause a diminution of

tension, and thus occasion an extension of this part of the film, by

which its thickness y\W\ be reduced, as it would be by evaporation of

<S^j. We may infer that it is a general condition of the persistence of

liquid films, that the substance which causes the diminution of tension

in the upper parts of the film must not be volatile.

But apart from any action of the atmosphere, we have seen that a

Trans. Conn. Acad., Vol. III. 61 April, 1878.
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film which is truly fluid in its interior is in getieral subject to a con-

tinual diminution of tliickness by the internal currents due to gravity

and the suction at its edge. Sooner or later, the interior will some-

where cease to have the properties of matter in mass. The film will

then probably become unstable with respect to a flux of the interior

(see page 478), the thinnest parts tending to become still more thin

(ajjart from any external cause) very mucli as if there were an

attraction between the surfaces of the film, insensible at greater dis-

tances, but becoming sensible when the thickness of the film is suffi-

ciently reduced. We should expect this to determine the rupture of

the film, and such is doubtless the case with most liquids. In a film

of soap-water, however, the rupture does not take place, and the

processes which go on can be watched. It is apparent even to a very

superficial observation that a film of which the tint is approaching

the black exhibits a remarkable instability. The continuous change

of tint is interrupted by the breaking out and rapid extension of

l)lack spots. That in the formation of these bright spots a separa-

tion of diflerent substances takes place, and not simply an extension

of a part of the film, is shown by the fact that the film is made

thicker at the edge of these spots.

This is very distinctly seen in a plane vertical film, when a single

black spot breaks out and spreads rapidly over a considerable area

which was before of a neai'ly uniform tint approaching the black.

The edge of the black spot as it spreads is marked as it were by a

string of bright beads, which unite together on touching, and thus

becoming larger, glide down across the bands of color below. Under

favorable circumstances, there is often quite a shower of these bright

spots. They are evidently small spots very much thicker—appar-

ently many times thicker—than the part of the film out of which

they are formed. Now if the formation of the black spots were due

to a simple extension of the film, it is evident that no such appear-

ance would be presented. The thickening of the edge of the film

cannot be accovmted for by contraction. For an extension of the

upper portion of the film and contraction of the lower and thicker

portion, with descent of the intervening portions, would be far less

resisted by viscosity, and far more favored by gravity than such

extensions and contractions as would produce the appearances

described. But the rapid formation of a thin spot by an internal

current would cause an accumulation at the edge of the spot of the

material forming the interior of the film, and necessitate a thickening

of the film in that place.
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Tliat whicli is most difficult to account for in the formation of the

black spots is the arrest of the process by which the film grows thin-

ner. It seems most natural to account for this, ifpossible, by passive

resistance to motion due to a very viscous or gelatinous condition of

the film. For it does not seem likely that the film, after becoming

unstable by the flux of matter from its interior, would become stable

(without the support of such resistance) by a continuance of the

same process. On the other hand, gelatinous properties are very

marked in soap-water which contains somewhat more soap than is

best for the formation of films, and it is entirely natural that, even

Avhen such properties are wanting in the interior of a mass or thick

film of a liquid, they may still exist in the immediate vicinity of the

surface (where we know that the soap or some of its components

exists in excess), or throughout a film which is so thin that the

interior has ceased to have the properties of matter in mass.* But

these considerations do not amount to any a priori probability of an

arrest of the tendency toward an internal current between adjacent

elements of a black spot which may differ slightly in thickness, in

time to prevent rupture of the film. For, in a thick film, the increase

of the tension "with the extension, which is necessary for its stability

with respect to extension, is connected with an excess of the

soap (or of some of its components) at the surface as compared with

the interior of the film. With respect to the black spots, although

the interior has ceased to have the properties of matter in mass, and

any quantitative determinations derived from the surfaces of a mass

of the liquid will not be applicable, it is natural to account for the

stability with reference to extension by supposing that the same

general difierence of composition still exists. If thei'efore we account

for the arrest of internal currents by the increasing density of

soap or some of its components in the interior of the film, we must

still suppose that the characteristic difference of composition in the

interior and surface of the film has not been obliterated.

The preceding discussion relates to liquid films between masses of

gas. Similar considerations will apply to liquid films between other

liquids or between a liquid and a gas, and to films of gas between

* The experiments of M. Plateau (chapter VII of the work already cited) show that

this is the case to a very remarkable degree with respect to a solution of saponine.

With respect to soap-water, however, they do not indicate any greater superficial

viscosity than belongs to pure water. But the resistance to an internal current, such as

we are considering, is not necessarily measured by the resistance to such motions

as those of the experiments referred to.
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masses of liquid. Tlie latter may be foi-med by gently depositing a

liquid drop upon the surface of a mass of the same or a different

liquid. This may be done (with suitable liquids) so that the con-

tiimity of the air separating the liquid di-op and mass is not broken,

but a film of air is formed, which, if the liquids are similar, is a

counterpart of the liquid film which is formed by a bubble of air ris-

ing to the top of a mass of the liquid. (If the bubble has the same

volume as the drop, the films will have precisely the same form, as

well as the rest of the surfaces which bound the bubble and the

drop.) Sometimes, when the weight and momentum of the drop

carry it through the surface of the mass on which it falls, it appears

surrounded by a com])lete spherical film of air, which is the counter-

part on a small scale of a soap-bubble hovering in air.* Since, how-

ever, the substance to which the necessary differences of tension in

the film are mainly due is a component of the liquid masses on each

side of the air film, the necessary differences of the potential of this

sixbstance cannot be permanently maintained, and these films have

little persistence compared with films of soap-water in air. In this

respect, the case of these air-films is analogous to that of liquid films

in an atmosphere containing substances by which their tension is

greatly reduced. Compare page 479.

Surfaces of Discontinuity bettceen Solids a'lid Fluids.

We have hitherto treated of surfaces of discontinuity on the sup-

position that the contiguous masses are fluid. This is by far the

most simple case for any rigorous treatment, since the masses are

necessarily isotropic both in nature and in their state of strain. In

this case, moreover, the mobility of the masses allows a satisfiictory

experimental verification of the mechanical conditions of equilibrium.

On the other hand, the rigidity of solids is in general so great, that

any tendency of the surfaces of discontinuity to vaiiation in area or

form may be neglected in comparison with the forces which are pro-

duced in the interior of the solids by any sensible strains, so that it

is not generally necessary to take account of the surfaces of discon-

tinuity in determining the state of strain of solid masses. But we

must take account of the nature of the surfaces of discontinuity

* These spherical air-fihns are easily formed in soajj-water. They are distinguish-

able from ordinary air-bubbles by their general behavior and by their appearance.

The two concentric spherical surfaces are distinctly seen, the diameter of one appear-

ing to lie about three-quarters as large as that of the other. This is of course an

optical illusion, dejiendiug upon the index of refraction of the liquid.
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between solids and ilnids with reference to the tendency toward

solidification or dissolution at such surfaces, and also with reference to

the tendencies of different fluids to spread over the surfaces of solids.

Let us therefore consider a surface of discontinuity between a fluid

and a solid, the latter being either isotropic or of a continuous crystal-

line structure, and subject to any kind of stress compatible with a

state of mechanical equilibrium with the fluid. We shall not exclude

the case in which substances foreign to the contiguous masses are

present in small quantities at the surface of discontinuity, but we
shall suppose that the nature of this siirface {^. e., of the non-homo-

geneous film between the approximately homogeneous masses), is

entirely determined by the nature and state of the masses which it

separates, and the quantities of the foreign substances which may be

present. The notions of the dividing surface, and of the superficial

densities of energy, entropy, and the several components, which we
have used wnth respect to surfaces of discontinuity betAveen fluids

(see pages 380 and 386), will evidently apjdy without modification to

the present case. We shall use the suflix
j with reference to the

substance of the solid, and shall siippose the dividing surface to be

determined so as to make the superficial density of this substance

vanish. The superficial densities of energy, of entropy, and of the

other component substances may then be denoted l)y our usual sym-

bols (see page 397),

%l)i %(l)5 -f 2(1)) ^ 3())) 6tC-

Let the quantity (J be defined by the equation

^=^S(i)-^Vs(i)-/'2 ^'2U)-/^3^'3(l)-etC., (659)

in which t denotes the temperature, and /<2, /^3, etc. the potentials

for the substances specified at the surface of discontinuity.

As in the case of two fluid masses, (see page 421,) we may regard

as expressing the work spent in forming a unit of the surface

of discontinuity—under certain conditions, which we need not here

specify—but it cannot properly be regarded as expressing the tension

of the surface. The latter quantity depends uj^on the work spent in

stretching the surface, while the quantity depends upon the work

spent m forming the surface. With respect to perfectly fluid masses,

these processes are not distinguishable, unless the surface of discon-

tinuity has components which are not found in the contiguous masses,

and even in this case, (since the surface must be supposed to be formed

out of matter supplied at the same potentials which belong to the mat-

ter in the surfiice,) the work spent in increasing the surfiice infinitesi-
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mally by stretching is identical with that which must be spent in

fornung an equal infinitesimal amount of new surface. But when one

of the masses is solid, and its states of strain are to be distinguished,

there is no such equivalence between the stretching of the surface

and the forming of new surface.*

With these preliminary notions, we now proceed to discuss the

condition of equilibrium which relates to the dissolving of a solid at

tlie surface where it meets a fluid, when the thermal and mechanical

conditions of equilibrium are satisfied. It will be necessary for us to

consider the case of isotropic and of crystallized bodies separately,

since in the former the value of c is independent of the directiori of

tlie surface, except so far as it may be influenced by the state of strain

of the solid, while in the latter the value of <7 varies greatly with the

direction of tlie surface with respect to tlie axes of crystallization, and

in such a manner as to have a large number of sharply defined

minima.f This may be inferred from the phenomena which crystal-

line bodies present, as will appear more distinctly in the following

discussion. Accordingly, while a variation in the direction of an

* This will appear more distinctly if we consider a particular case. Let us consider

a thin plane sheet of a crystal in a vacuum (which may be regarded as a limiting case

of a very attenuated fluid), and let us suppose that the two surfaces of the sheet are

alike. By applying the proper forces to the edges of the sheet, we can make all stress

vanish in its interior. The tensions of the two surfaces, are in equilibrium with these

forces, and are measured by them. But the tensions of the surfaces, thus determined,

may evidently have different values in different directions, and are entirelj^ different

from the quantity which we denote by o, which represents the work required to form

a unit of the surface by any reversible process, and is not connected with any idea of

direction.

In certain cases, however, it appears probable that the values of o- and of the

superficial tension will not greatly differ. This is especially true of the numerous

bodies which, although generally (and for many purposes properly) regarded as solids,

are really very viscous fluids. Even when a body exhibits no fluid properties at its

actual temperature, if its surface has been formed at a higher temperature, at which

the body was fluid, and the change from the fluid to the solid state has been by

insensible gradations, we may suppose that the value of (t coincided with the super-

ficial tension until the body was decidedly solid, and that they will only differ so far

as they may be differently affected by subsequent variations of temperature and of the

stresses applied to the solid. Moreover, when an amorphous solid is in a state of

equilibrium with a solvent, although it may have no fluid properties in its interior, it

seems not improbable that the particles at its surface, which liave a greater degree of

mobility, may so arrange themselves that the value of a will coincide with the super-

ficial tension, as in the case of fluids.

•j- The differential coefficients of cr with respect to the direction-cosines of the surface

appear to be discontinuous functions of tlie latter quantities.
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element of the surface may be neglected (with respect to its effect on

the value of a) in the case of isotropic solids, it is quite otherwise

with crystals. Also, while the surfaces of equilibrium between fluids

and soluble isotropic solids are without discontinuities of direction,

being in general curved, a crystal in a state of equili'/rium with a

fluid in which it can dissolve is bounded in general by a broken sur-

face consisting of sensibly plane portions.

For isotropic solids, the conditions of equilibrium may be deduced

as follows. If we suppose that the solid is unchanged, except that an

infinitesimal portion is dissolved at the surface where it meets the

fluid, and that the fluid is considerable in quantity and remains

homogeneous, the increment of energy in the vicinity of the surface

Avill be represented by the expression

/[6v'- fv" 4-(c^ + c^) 6s^,,] SNDs
where Ds denotes an element of the surface, dN^ the variation in its

position (measiired normally, and regarded as negative when the solid

is dissolved), Cj and C2 its principal curvatures (positive when

their centers lie on the same side as the solid), fgci) ^he surface-

density of energy, fy' a.nd fy" tbe volume-densities of energy in the

solid and fluid respectively, and the sign of integration relates to the

elements Ds. In like manner, the increments of entropy and of the

quantities of the several components in the vicinity of the surface

will be

fbh'-V^'" + (c,4-'-o) %(!,] SNBs,

etc.

The entropy and the matter of different kinds i-epresented by these

expressions we may suppose to be derived from the fluid mass.

These expressions, therefore, with a change of sign, will represent

the increments of entropy and of the quantities of the components

in the whole space occupied by the fluid except that which

is immediately contiguous to the solid. Since this space may be

regarded as constant, the increment of energy in this space may be

obtained [according to equation (12)] by multiplying the above

expression relating to entropy by —t, and those relating to the

components by — /.</', - /./g, etc.,* and taking the sum. If to this

* The potential jj^
, " is marked by double accents in order to indicate that its value

is to be determined in the fluid mass, and to distinguish it from the potential/^,'
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we add the above expression for the increment of energy near the

surface, we obtain the increment of energy for the whole system.

Now by (93) we have

p"= - 6/ + tW + /./' r/ + f,, y/ + etc.

By this equation and (659), our expression for the total increment of

energy in the system may be reduced to the form

/\£y' — t ;/v'— /</' r,'+p" 4- (Ci+Cg) 0-] dJVDs. (660)

In oi-der that this shall vanish for any values of SN^ it is necessary

that the coefficient of dJVDs shall vanish. This gives for the condi-

tion of equilibrium

y I

This equation is identical with (387), wdth the exception of the term

containing o", which vanishes when the surface is plane.*

We may also observe that when the solid has no stresses except an

isotropic pressure, if the quantity represented by is equal to the true

tension of the surface, p" + [c^ -f- c.^) o' will represent the pressure in

the interior of the solid, and the second member of the equation Avill

represent [see equation (93)] the Aalue of the potential in the solid

for the substance of which it consists. In this case, therefore, the

equation reduces to

that is, it expresses the equality of the potentials for the substance of

the solid in the two masses—the same condition which Avould subsist

if both masses were fluid.

Moreover, the compressibility of all solids is so small that, althoixgh

o' may not represent the true tension of the surface, wov p"-{- (cj +^2)0"

the true pressure in the solid when its stresses are isotropic, the quan-

tities fy' and 7a' if calculated for tlie pressure p" -j- (cj -j-^'g) ^ with

the actual temperature will have sensibly the same values as if calcu-

lated for the true pressure of the solid. Hence, the second member

relating to the solid mass (when this is in a state of isotropic stress), which, as we

shall see, may not always have the same value. The other potentials n^, etc., have

the same values as in (659), and consist of two classes, one of which relates to sub-

stances which are components of the fluid mass, (these might be marked by the double

accents.) and the other relates to substances found only at the surface of discontinuity.

The expressions to be multiplied l)y the potentials of this latter class all have the

value zero.

* In equation (38V), the density of the solid is denoted by F, which is therefore

equivalent to y/ in (661).
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of ('([nation ((j()l), when the stresses of the solid are sensibly iso-

tropic, is sensibly equal to the potential of the same body at the

same temperature but with the pressure p" -\- {(^^ -{• Co) ff, and the

condition of equilibrium with respect to dissolving for a solid of

isotropic stresses may be expressed with sutlicient accuracy by saying

that the potential for the substance of the solid in the fluid must

have this value. In like manner, when the solid is not in a state of

isotropic stress, the difference of the two pressures in question will

not sensibly affect the values of fy' ai^d ?;v', and the value of the

second member of the equation may be calculated as \ip"-\- (c, + Co) o'

represented the true pressure in the solid in the direction of the nor-

mal to the surface. Therefore, if we had taken for granted that the

(piantity G represents the tension of a surface between a solid and a

fluid, as it does when both masses are fluid, this assumption would

not have led us into any practical error in determining the value of

the potential ///' which is necessary for equilibrium. On the other

hand, if in the case of any amorphous body the value of o" differs

notably from the true surface-tension, the latter quantity substituted

for o' in (661) will make the second member of the equation equal to

the true value of ///, when tlie stresses are isotropic, but this will not

be equal to the value of yu /' in case of equilibrium, unless Cj -\- c^ = 0.

When the stresses in the solid are not isotropic, equation (661)

may be regarded as expressing the condition of equilibrium with

respect to the dissolving of the solid, and is to be distinguished from

the condition of equilibrium with respect to an increase of solid

matter, since the new matter would doubtless be deposited in a state

of isotropic stress. (The case woidd of course be different with

crystalline bodies, which are not considered here.) The value of

//j" necessary for equilibrium with respect to the formation of new

matter is a little less than that necessary for equilibrium with respect

to the dissolving of the solid. In regard to the actual behavior of

the solid and fluid, all that the theory enables us to predict with

certainty is tliat the solid will not dissolve if the value of the poten-

tial ///' is greater than that given by the equation for the solid with

its distorting stresses, and that new matter will not be formed if the

value of /<i" is less than the same equation would give for the case of

the solid w4th isotropic stresses.* It seems probable, however, that

* The possibility that the new solid matter might differ in composition from the

original solid is here left out of account. This point has been discussed on pages

134-137, but without reference to the state of strain of the solid or the influence of

the curvature of the surface of discontinuity. The statement made above may be

Trans. Conn. Acad., Vol. III. 63 - April, 1878.



488 J. W. Gibbs—Equilibrium of Heterogeneous Substances.

if the fluid in contact with the solid is not renewed, the system will

generally find a state of equilibrium in which the outermost portion

of the solid will be in a state of isotropic stress. If at first the solid

should dissolve, this would supersaturate the fluid, perhaps until a state

is reached satisfying the condition of equilibrium with the stressed

solid, and then, if not before, a deposition of solid matter in a state of

isotropic stress would be likely to commence and go on until the fluid

is reduced to a state of equilibrium with this new solid matter.

The action of gravity will not aflfect the nature of the condition of

equilibrium for any single point at which the fluid meets the solid,

but it will cause the values oi p" and /^," in (661) to vary according

to the laws expressed by (612) and (617). If we suppose that the

outer part of the solid is in a state of isotropic stress, which is the

most important case, since it is the only one in which the equilibrium

is in every sense stable, we have seen that the condition (661) is at

least sensibly equivalent to this :—that the potential for the sub-

stance of the solid Avhicli would belong to the solid mass at the

temperature t and the pressure ^/+ {<^
i-\-

"^s)
(^ must be equal to ///'.

Or, if we denote by (^^') the pressure belonging to solid with the

temperature t and the potential equal to /<i", the condition may be

expressed in the form

{2)')=p"+{c,^c^)0. (662)

Now if we write ;/" for the total density of the fluid, we have by (612)

dp"=-gy"dz.

By (98) d{p')^y,'<ni,\

and by (617) c?//," = — (/ dz ;

whence d {p'j =. —
(/ Yi dz.

Accordingly we have

d{p')^dp" = g{y"-y^')dz,
and

{p')-p" = g{r"-y,')z,

z being measured from the horizontal plane for which {p')=^2^"-

Substituting this value in (662), we obtain

c,+c^ = ''^^'"j^'''h
, (663)

generalized so as to hold true of the formation of new solid matter of any kind on

the surface as follows :—that new solid matter of any Ivind will not be formed upon

the surface (with more than insensible thickness), if the second member of ((361) cal-

culated for such new matter is greater than the potential in the fluid for such matter.
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precisely as if both masses were fluid, and (J denoted the tension of

their common surface, and (/>') the true pressure in the mass specified.

[Compare (01 9).

J

The obstacles to an exact experimental realization of these rela-

tions are very great, principally from the want of absolute uniformity

in the internal structure of amorphous solids, and on account of the

l^assive resistances to the jjrocesses which are necessary to bring-

about a state satisfying the conditions of theoretical equilibrium,

but it may be easy to verify the general tendency toward diminution

of surface, which is implied in the foregoing equations.*

Let us apply the same method to the case in which the solid is

a crystal. The surface between the solid and fluid will now consist

of plane portions, the directions of which may be regarded as invari-

* It seems probable that a tendency of this kind plays an important part in some

of the phenomena which have been observed witli respect to the freezing together

of pieces of ice. (See especially Professor Faraday's " Note on Regelation" in the

Proceedings of the Royal Society, vol. x, p. 440 ; or in the Philosophical Magazine, 4th ser.,

vol. xxi, p. 146.) Although this is a body of crystalline structure, and the action

which takes place is doubtless influenced to a certain extent by the directions of

the axes of crystallization, yet, since the phenomena have not been observed to

depend upon the orientation of the pieces of ice, we may conclude that the efEect, so

far as its general character is concerned, is such as might take place with an isotropic

body. In other words, for the purposes of a general explanation of the phenomena

we may neglect the diiierences in the values of c7iw (the suffixes are used to indicate

that the symbol relates to the surface between ice and water) for different orientations

of the axes of crystallization, and also neglect the influence of the surface of discon-

tinuity with respect to crystalline structure, which must be formed by the freezing

together of the two masses of ice when the axes of crystallization in the two masses

are not similarly directed. In reality, this surface—or the necessity of the formation

of such a surface if the pieces of ice freeze together—must exert an influence adverse

to their union, measured by a quantity an, which is determined for this surface by

the same princii^les as when one of two contiguous masses is fluid, and varies with

the orientations of the two systems of crystallographic axes relatively to each other

and to the surface. But under the circumstances of the experiment, since we may
neglect the possibility of the two systems of axes having precisely the same directions,

tills influence is probably of a tolerably constant character, and is evidently not suffi-

cient to alter the general nature of the result. In order wholly to prevent the

tendency of pieces of ice to freeze together, when meeting in water with curved sur-

faces and without pressure, it would be necessary that ffn— 2(Tiw, except so far as the

case is modified by passive resistances to change, and by the inequality in the values

of (Tn and (Tiw for different directions of the axes of crystallization.

It will be observed that this view of the phenomena is in harmony with the

opinion of Professor Faraday, With respect to the union of pieces of ice as an

indirect consequence of pressure, see page 198 of volume xi of the Proceedings of the

Royal Society ; or the Philosophical Magazine, 4th ser., vol. xxiii, p. 407.
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able. If the crystal grows on one side a distance SJV, withoiU other

change, the increment of energy in the vicinity of the surface will be

(fy'- fy") s 6J\^+ ^^'(^8(1)' i' cosec ca'— fs(i) Z' cot co') dJST,

where fy' and fy" denote the volume-densities of energy in the crystal

and fluid respectively, s the area of the side on which the crystal

grows, %,) the surface-density of energy on that side, fg^j)' the surface-

density of energy on an adjacent side, oj' the external angle of these

two sides, l' their common edge, and the symbol 2' a summation

with respect to the difl'erent sides adjacent to the first. The incre-

ments of entropy and of the quantities of the several components will

be represented by analogous formulae, and if we deduce as on pages 485,

486 the expression for the increase of energy in the whole system due

to the growth of the crystal without change of the total entropy or

volume, and set this expression equal to zero, we shall obtain for the

condition of equilibrium

{e,'—t,/y'-pi,"r^'+p")sdN'

+ 2'
( ff' I' cosec Go'—o- r cot co') SJSr= 0, (664)

where C and a' relate respectively to the same sides as fs(i) ^^^^ ^sd; "i

the preceding formula. This gives

fy'-— t ??v+p" 2'i c' I' cosec d — aV cot &?')

^1 -
y^ sy,

It will be observed that unless the side especially considered is

small or narrow, we may neglect the second fraction in this equation,

which will then give the same value of ///' as equation (387), or as

equation (661) applied to a j)lane surface.

Since a similar equation must hold true with respect to every other

side of the crystal of which the equilibrium is not affected by meet-

ing some other body, the condition of eqixilibrium for the crystalline

form (when unaffected by gravity) is that the expression

^'((t'/' cosec (i^'—c/' cot oj')
^r6r^

s

shall have the same value for each side of the crystal. (By the value

of this expression for any side of the crystal is meant its value when

a and s are determined by that side and the other quantities by the

surrounding sides in succession in connection with the first side.)

This condition will not be affected by a change in the size of a crys-

tal while its proportions remain the same. But the tendencies of

similar crystals toward the form required by this condition, as mea-

sured by the inequalities in the composition or the temperature of
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the surrounding fluid wliich would counterbalance them, will be

inversely as the linear dimensions of the crystals, as appears from the

preceding equation.

If Ave write v for the volume of a crystal, and 2{(y s) for the sum

of the areas of all its sides multiplied each by the corresponding

value of (T, the numerator and denominator of the fraction (666),

multiplied each by SJV, may be rei)resented by S^yffs) and 6v

respectively. The value of the fraction is therefore equal to that of

the diiferential coefficient

d2{as)

dv

as determined by the displacement of a particular side while the other

sides are fixed. The condition of equilibrium for the form of a crys-

tal (when the influence of gravity may be neglected) is that the

value of this differential coefficient must be independent of tlie partic-

iilar side which is supposed to be displaced. For a constant volume

of the crystal, 2{(J s) has therefore a minimum value when the

condition of equilibrium is satisfied, as may easily be proved more

directly.

When there are no foreign substances at the surfaces of the crystal,

and the suiToimding fluid is indefinitely extended, the quantity

2(ffs) represents the work required to form the surfaces of the

crystal, and the coefficient of s 6JV\n (664) with its sign reversed rep-

resents the work gained in forming a mass of volume unity like the

crystal but regarded as without surfaces. We may denote tlie work
required to form the crystal by

TFs denoting the work required to form the surfaces [/.<?., ^'(cs)],

and TFy the work gained in forming the mass as distinguished from

the surfaces. Equation (664) may then be written

-SWy+ 2{aids) = 0. (667)

Now (664) would evidently continue to hold true if the crystal were

diminished in size, remaining similar to itself in form and in nature,

if the values of ff in all the sides were supposed to diminish in the

same ratio as the linear dimensions of the crystal. The variation of

Ws would then be determined by the relation

d TFs= d:S(() s) = I 2{a ds),

and that of Wy by (667). Hence,

dWs=§dWy,
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and, since TFs and Wy vanish together,

W,-Wy = iW,= iWy, (668)

—the same relation which we have before seen to subsist with respect

to a spherical mass of fluid as well as in other cases, (See pages 421,

425, 465.)

The equilibrium of the crystal is unstable with respect to variations

in size when the siirrounding fluid is indefinitely oxteuded, but it

may be made stable by limiting the quantity of the fluid.

To take account of the influence of gravity, we must give to ///'

and p" in (665) their average values in the side considered. These

coincide (when the fluid is in a state of internal equilibrium) with

their values nt the center of gravity of the side. The values of

Yij *v'» '/v' iiii^y ^^^ regarded as constant, so far as the influence of

gravity is concerned. Now since l)y (612) and (617)

dp" =. — g y" dz,

and
d^i;' = ~gdz,

we have
diy^'f,^"-p")=g(y"-y^')dz.

Comparing (664), we see that the upper or the lower faces of the

crystal will have the greater tendency to grow, (other things being

equal,) according as the crystal is lighter or heavier than the fluid.

When the densities of the two masses are equal, the effect of gravity

on the form of the crystal may be neglected.

In the preceding paragraph tlie fluid is regarded as in a state of

internal equilibrium. If we sujipose the composition and tempera-

ture of the fluid to be uniform, the condition which will make the

effect of gravity vanish will be that

dz

when the value of the diffln-ential coefticient is determined in accord-

ance with this supi)Osition. This condition reduces to

\ dp /(,m ;//

which, by equation (92), is equivalent to

1/ dv \"

\dm.Jt,p,'
(669)

* A suffixed m is used to represent all the symbols 7n,, m.^, etc., except such as

may occur in the differential coefficient.
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The teiuleney of a crystal to grow will be greater in the upper or

lower ))arts of the fluid, aceordiiig as the growth of a crystal at con-

stant temperature aud pressure Avill produce expansion or contraction.

Again, we may suppose the comjiosition of tlie fluid and its

entropy per unit of mass to be uniform. The temperature will then

vary Avith the pressure, that is, with z. AVe may also suppose the

temperature of diflerent crystals or ditterent parts of the same crystal

to be dctermhied by the fluid in contact with them. These condi-

tions express a state which may perhaps be realized when the fluid is

gently stirred. Owing to the ditterences of temperature we cannot

regard i\' an<l V\' ^^^ (664) as constant, but we may regai-d their

variations as subject to the relation diy' =. t d/,\'. Thei-efore, if we
make ;/v' = for the mean temperature of the fluid, (which involves

no real loss of generality,) we may treat ey' — t r/y' as constant. We
shall then have for the condition that the effect of gravity shall

vanish

—

dz

which signifies in the present case that

dj) /7/,m ri"
or, by (90),

i-f-^
)" = ^,. (»'0)

\dmjTi,p,m ;/,

Since the entropy of the crystal is zero, this equation expresses that

the dissolving of a small crystal in a considerable quantity of the

flxiid will jjroduce neither expansion nor contraction, when the pres-

sure is maintained constant and no heat is supplied or taken away.

The manner in which crystals actually grow or dissolve is often

principally determined by other difterences of phase in the surround-

ing fluid than those which have been considered in the preceding

paragraph. This is especially the case when the crystal is growing

or dissolving rapidly. When the great mass of the fluid is consider-

ably supersaturated, the action of the crystal keeps the part immedi-

ately contiguous to it nearer the state of exact saturation. The

farthest projecting parts of the crystal will therefore be most exposed

to the action of the supersaturated fluid, and will grow most rapidly.

The same parts of a crystal will dissolve most rapidly in a fluid con-

siderably below saturation.*

* See 0. Lehmann "Ueber das Wachsthum der Krystalle," Zeiischrift filr Krystai-

lographie unci Mineralogie, Bd. i, S. 453
;
or the review of the paper in Wiedemann's

Beibldtter, Bd. ii, S. 1.
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But even when tlie fluid is supersaturated only so much as is

necessary in order that the crystal shall grow at all, it is not to be

expected that the form in which 2{o's) has a niiniraum value (or

such a modification of that form as may be due to gravity or to the

influence of the body supporting the crystal) will always be the

ultimate result. For we cannot imagine a body of the internal

structure and external form of a crystal to grow or dissolve by an

entirely continuous process, or by a process in the same sense continu-

ous as condensation or evaporation between a liquid and gas, or the

corresponding processes between an amorphous solid and a fluid.

The process is rather to be regarded as periodic, and the formula

(664) cannot properly represent the true value of the quantities

intended unless SJV^ is equal to the distance between two successive

layers of molecules in the crystal, or a multiple of that distance.

Since this can hardly be treated as an infinitesimal, we can only con-

clude with certainty that sensible changes cannot take place for

which the exjjression (664) would have a positive value.*

* That it is necessary that certain relations shall be precisely satisfied in order that

equilibrium may subsist between a liquid and gas with respect to evaporation, is

explained (see Clausius " Ueber die Art der Bewegung, welche wir "Warme nennen,"

Poyy. Ann., Bd. c, S. 353 ; or Abhand. iiber die viech. Wdrmethemie, XIV,) by suppos-

ing that a passage of individual molecules from the one mass to the other is continually

taking place, so that the slightest circumstance may give the preponderance to the

passage of matter in either direction. The same supposition may be applied, at least

in many cases, to the equilibrium between amorphous solids and fluids. Also in the

case of crystals in equilibrium with fluids, there may be a passage of indiAddual mole-

cules from one mass to the other, so as to cause insensible fluctuations in the mass of

the solid. If these fluctuations are such as to cause the occasional deposit or removal

of a whole layer of particles, the least cause would be sufficient to make the probability

of one kind of change prevail over that of the other, and it would be necessary for

equilibrium that the theoretical conditions deduced above should be precisely satisfied.

But this supposition seems quite improbable, except with respect to a very small side.

The following view of tlie molecular state of a crystal when in equilibrium with

respect to growth or dissolution appears as probable as any. Since the molecules at

the corners and edges of a perfect crj-stal would be less firmly held in their places

than those in the middle of a side, we may suppose that when the condition of

theoretical equilibrium (065) is satisfied several of the outermost layers of molecules

on eacli side of the crystal are incomplete toward the edges. The boundaries of these

imperfect layers probably fluctuate, as individual molecules attach themselves to the

crystal or detach themselves, but not so that a layer is entirely removed (on any side

of considerable size), to be restored again simply by the irregularities of the motions

of the individual molecules. Single molecules or small groups of molecules may

indeed attach themselves to the side of the crystal but they will speedily be dislodged,

and if any molecules are thrown out from the middle of a surface, these deficiencies
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Let us now examine the special condition of equilibrium which

relates to a line at which three different masses meet, when one or

more of these masses is solid. If Ave apply the method of page 685

to a systeni containing such a line, it is evident that we shall olitain

in the expression corresponding to (660), beside the integral relating

to the surfaces, a term of the form

f:£{G6T)Dl

to be interpreted as the similar term in (611), except so far as the

definition of a has 1)een modified in its extension to solid masses. In

order that this term shall be incapable of a negative value it is neces-

will also soon be made good ; nor will the frequency of these occurrences be such as

greatly to affect the general smoothness of the surfaces, except near the edges where

the surfaces fall off somewliat, as before described. Now a continued growth on any

side of a crystal is impossible unless new layers can be formed. This will require a

value of //," which may exceed that given by equation (665) by a finite quantity.

Since the difBculty in the formation of a new layer is at or near the commencement

of the formation, the necessary value of //

,

" may be independent of the area of the

side, except when the side is very small. The value of //

,

" which is necessary for the

growth of the crystal will however be different for different kinds of surfaces, and

probably will generally be greatest for the surfaces for whicli a is least.

On the whole, it seems not improbable that the form of very minute crystals in

equilibrium with solvents is principally determined by equation (665), [i. e., by the

condition that 2(<t s) shall be a minimum for the volume of the crystal except so far as

the case is modified by gravity or the contact of other bodies,) but as they grow

larger (in a solvent no more supersaturated than is necessary to make them grow at

all), the deposition of new matter on the different surfaces will be determined more by

the nature (orientation) of the surfaces and less by their size and relations to the

surrounding surfaces. As a final result, a large crystal, thus formed, will generally

be bounded by those surfaces alone on which the deposit of new matter takes place

least readily, with small, perhaps insensible truncations. If one kind of surfaces

satisfying this condition cannot form a closed figure, the crystal will be bounded by

two or three kinds of surfaces determined by the same condition. The kinds of

surface thus determined will probably generally be those for which a has the least

values. But the relative development of the different kinds of sides, even if unmodi-

fied by gravity or the contact of other bodies, will not be such as to make 2((ts) a

minimum. The growth of the crystal will finally be confined to sides of a single kind.

It does not appear that any part of the operation of removing a layer of molecules

presents any especial difficulty so marked as that of commencing a new layer
;
yet

the values of //
,

" which will just allow the different stages of the process to go on

must be slightly different, and therefore, for the continued dissolving of the crystal

the value of //
,

" must be less (by a finite quantity) than that given by equation (665).

It seems probable that this would be especially true of those sides for which a has

the least values. The effect of dissolving a crystal (even when it is done as slowly

as possible) is therefore to produce a form which probably differs from that of

theoretical equilibrium in a direction opposite to that of a growing crystal.

Trans. Conn. Acad., Vol. III. 6H June, 1878.
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sary that at every point of the line

^{aST)^0 (671)

for any j^ossible displacement of the line. Those displacements are to

be regarded as possible which are not prevented by the solidity of

the masses, when the interior of every solid mass is regarded as

incapable of motion. At the surfaces between solid and fluid masses,

the processes of solidification and dissolution will be possible in some

cases, and impossible in others.

The simplest case is when two masses are fluid and the third is

solid and insoluble. Let us denote the solid by S, the fluids by

A and B, and the angles filled by these fluids by a and (3 respec-

tively. If the surface of the solid is continuous at the line where it

meets the two fluids, the condition of equilibrium reduces to

Cab cos ol= 0-Bs- (^AS- (^'72)

If the line where these masses meet is at an edge of the solid, the

condition of equilibrium is that

Cab cos « ^ O-Rs — O'as, \ (573)
and Cab cos /i ^ Cas— o-rs ; '

which reduces to the preceding when a-\-(3=:7t. Since the dis-

placement of the line can take place by a purely mechanical process,

this condition is capable of a more satisfactory experimental verifica-

tion than those conditions which relate to processes of solidification

and dissolution. Yet the frictional resistance to a displacement of

the line is enormously greater than in the case of three fluids,

since the relative displacements of contiguous portions of matter are

enormously greater. Moreover, foreign substances adhering to the

solid are not easily displaced, and cannot be distributed by extensions

and contractions of the surface of discontinuity, as in the case of

fluid masses. Hence, the distribution of such substances is arbitrary

to a greater extent than in the case of fluid masses, (in which a single

foreign substance in any surface of discontinuity is uniformly distri-

buted, and a greater number are at least so distributed as to make the

tension of the surface uniform,) and the presence of these substances

will modify the conditions of equilibrium in a more irregular manner.

If one or inore of three surfaces of discontinuity which meet in a

line divides an amorphous solid from a fluid in which it is soluble,

such a surface is to be regarded as movable, and the particular condi-

tions involved in (671) will be accordingly modified. If the soluble

solid is a crystal, the case Avill properly be treated by the method

used on page 490. The condition of equilibrium relating to the line
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will not in this case be entirely separable from those relating to the

adjacent surfaces, since a displacement of the line will involve a dis-

placement of the whole side of the crystal which is terminated at this

line. But the expression for the total increment of energy in the

system due to any internal changes not involving any variation in

the total entropy or volume will consist of two parts, of which one

relates to the jn-operties of the masses of the system, and the other

may be expressed in the form

62{0s),

the summation relating to all the surfaces of discontinuity. This

indicates the same tendency toward changes diminishing the value of

'2{ff s), which appears in other cases.*

General Relations.—For any constant state of strain of the surface

of the solid, we may winte

f/fs(i) — «^'/s(,)+/'2f^^^2(i)+/^3^^^'3(])+ etc., (674)

since this relation is implied in the definition of the quantities

involved. From this and (659) we obtain

da= -
?/s(i ) dt - /^2( I) ^A< 2 ~ ^ 3( 1) "^^/^s

— ^t c, (675)

which is subject, in sti'ictness, to the same limitation—that the state

of strain of the surface of the solid remains the same. But this

limitation may in most cases be neglected. (If the quantity a repre-

sented the true tension of the surface, as in the case of a surface

between fluids, the limitation would be wholly unnecessary.)

Another method and notation.—We have so far supposed that we
have to do with a non-homogeneous film of matter between two
homogeneous (or very nearly homogeneous) masses, and that the

nature and state of this film is in all respects determined by the

* The freezing together of wool and ice may be mentioned here. The fact that

a fiber of wool which remains in contact with a block of ice under water will become

attached to it seems to be strictly analogous to the fact that if a solid body be brought

into such a position that it just touches the free surface of water, the water will

generally rise up about the point of contact so as to touch the solid over a surface of

some extent. The condition of the latter phenomenon is

fSA +o'wA>- (J^sw,

where the suffixes s, a, and w refer to the solid, to air, and to water, respectively. In

like manner, the condition for the freezing of the ice to the wool, if we neglect

the seolotropic properties of the ice, is

<^sw + ^\\\ > f^si

,

whe'aa the suffixes s, W; and i relate to wool, to water, and to ice, respectively. See

Proc. Roy. Soc, vol. x, p. 447 ; or Phil. Mag., 4th ser., vol. xxi, p. 151.
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nature and state of these masses together with the quantities of the

foreign substances which may be present in the iihn. (See page 483.)

Problems relating to processes of solidification and dissolution seem

hardly capable of a satisfactory solution, except on this supposition,

which appears in general allowable with respect to the surfaces pro-

duced by these processes. But in considering the equilibrium of

fluids at the surface of an unchangeable solid, such a limitation is

neither necessary nor convenient. The following method of treating

the subject will be found more simple and at the same time more

general.

Let us suppose the superficial density of energy to be determined

by the excess of energy in the vicinity of the surface over that which

would belong to the solid, if (with the same temperature and state

of strain) it were bounded by a vacuum in place of the fluid, and to

the fluid, if it extended with a uniform volume-density of energy just

up to the surface of the solid, or, if in any case this does not suffi-

ciently define a surface, to a surface determined in some definite way

by the exterior particles of the solid. Let us use the symbol (fg) to

denote the superficial energy thus defined. Let us suppose a superficial

density of entropj^ to be determined in a manner entirely analogous,

and be denoted by (;/§). In like manner also, for all the components

of the fluid, and for all foreign fluid substances which may be present

at the surface, let the superficial densities be determined, and denoted

by (/"a), (^ a)? •-'^c. These superficial densities of thefluid components

relate solely to the matter which is fluid or movable. All matter

which is immovably attached to the solid mass is to be regarded as a

part of the same. Moreover, let ? be defined by the equation

i={f.^)-t{iH)~ ^,_{r.,)- f.i^{T\)- iitc. (676)

These quantities will satisfy the following general relations

—

c?(fs) = t (^Vs) +M2 ^{^2) + /^3 ^(^3) + 6tc., (677)

cU=z-{f]^)dt-{r.^)dfA^—{r^)d].i^-^lc. (678)

In strictness, these relations are subject to the same limitation as

(674) and (675). But this limitation may generally be neglected.

In fact, the values of ?, (fg), etc. must in general be much less

affected by variations in the state of strain of the surface of the solid

than those of O", fs(i)? etc.

The quantity 5 evidently represents the tendency to contraction in

that portion of the surface of the fluid which is in contact with the

solid. It may be called the sitperficifd tension of the fluid in co)itact

with the solid. Its value may be either positive or negative.
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It will be observed that for the same solid surface and for the same

temperature but for different fluids the values of 6 (in all cases to

which the definition of this quantity is applicable) will ditier from

those of ? by a constant, viz., the value of a for the solid surface in

a vacuum.

For the condition of equilibrium of two difierent fluids at a line on

the surface of the solid, we may easily obtain

o-AB COS a — ?Bs - ?As, (6V9)

the suffixes, etc., being used as in (672), and the condition being

subject to the same modification when the fluids meet at an edge of

the solid.

It must also be regarded as a condition of theoretical equilibrium

at the line considered, [subject, like (679), to limitation on account

of passive resistances to motion,] that if there are any foreign sub-

stances in the surfaces A-S and B-S, the potentials for these sub-

stances shall have the same value on both sides of the line ; or, if

any such substance is found only on one side of the line, that the

potential for that substance must not have a less value on the other

side; and that the potentials for the components of the mass A, for

example, must have the same values in the surface B-C as in the

mass A, or, if they are not actual components of the surface B-C, a

value not less than in A. Hence, we cannot determine the difference

of the surface-tensions of two fluids in contact with the same solid, l)y

bringing them together upon the surface of the solid, unless these

conditions are satisfied, as well as those which are necessary to pre-

vent the mixing of the fluid masses.

The investigation on pages 442-448 of the conditions of equilibrium

for a fluid system under the influence of gravity may easily be

extended to the case in which the system is bounded by or includes

solid masses, when these can be treated as rigid and incapable of

dissolution. The general condition of mechanical equilibrium would

be of the form

—fp 6Dv -f fg y6zBv+f0 SDs +fg F 6z Bs

+ /gdz'Dm + fi6I>s +/g{r) dzl)s=0, (680)

where the first four integrals relate to the fluid masses and the sur-

faces which divide them, and have the same signification as in

equation (606), the fifth integral relates to the movable solid masses,

and the sixth and seventh to the surfaces between the solids and

fluids, (F) denoting the sum of the quantities (/^g), (^3), etc. It

should be observed that at the surface where a fluid meets a solid
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Sz and Sz, which indicate respectively the displacements of the solid

and the fluid, may have different values, but the components of

these displacements which are normal to the surfiice must be equal.

F'rom this equation, among other particular conditions of equilib-

rium, we may derive the following

—

d5= g{r)d.z, (681)

[compare (614),] which expresses the law governing the distribu-

tion of a thin fluid film on the surface of a solid, when there are no

passive resistances to its motion.

By applying equation (680) to the case of a vertical cylindrical tube

containing two different fluids, we may easily obtain the well-known

theorem that the product of the perimeter of the internal surface by

the difference ?'— ?" of the superficial tensions of the upper and lower

fluids in contact with the tube is equal to the excess of weight of the

matter in the tube above that which would be there, if the boundary

between the fluids were in the horizontal plane at which their pres-

sures woidd be equal. In this tlieoi'em, we may either include or

exclude the weight of a film of fluid matter adhering to the tube.

The proposition is usually applied to the column of fluid in mass

between the horizontal plane for which p'=zp" and the actual

boimdary between the two fluids. The superficial tensions s' and 5"

are then to be measured in the vicinity of this column. But we may

also include the weight of a film adhering to the internal surface of

the tube. For example, in the case of water in equilibrium with its

own vapor in a tube, tlie weight of all the water-substance in the

tube above the plane p'=p", diminished by that of the water-vapor

which would fill the same space, is equal to the perimeter multiplied

by the difterence in the values of 5 at the top of the tube and at the

plane p'z=p". If the height of the tube is infinite, the value of ? at

the top vanishes, and the weight of the film of water adhering to the

tube and of the mass of liquid water above the plane p'=^p" dimin-

ished by the weight of vapor which would fill the same space is

equal in numerical value but of opposite sign to the product of the

perimeter of the internal surface of the tube multiplied by ?", the

superficial tension of liquid water in contact with the tube at the

pressure at which the water and its vapor would be in equilibrium at

a plane surface. In this sense, the total weight of water which can

be supported l)y the tube per unit of the perimeter of its surface is

directly measured by the value of — ? for water in contact with the

tube.
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Modification of the conditions of equilibrium by ei,ectro-

MOTivE force.—Theory of a perfect electro-chemical

APPARATUS.

We know by experience that in certain fluids (electrolytic con-

ductors) there is a connection between the fluxes of the component

substances and that of electricity. The qnantitative relation between

these fluxes may be expressed by an equation of the form

Be = H ^+ etc. _ ^ _ etc., (682)

where Be, Bm^, etc. denote the infinitesimal quantities of electricity

and of the components of the fluid which pass simultaneously through

any same surface, w'hich may be either at rest or in motion, and

a^, o'h, etc., ag, a^,, etc. denote positive constants. We may evidently

regard Dm^, Bn\, etc., Bm^, Brn^, etc., as independent of one

another. For, if they were not so, one or more could be expressed

in terms of the others, and we could reduce the equation to a shorter

form in which all the terms of this kind would be independent.

Since the motion of' the fluid as a whole will not involve any elec-

trical current, the densities of the components specified by the suf-

fixes must satisfy the relation

i^+ZL + etc. =^+^ + etc. (683)

These densities, therefore, are not independently variable, like the

densities of the components which we have employed in other cases.

We may account for the relation (682) by supposing that electric-

ity (positive or negative) is inseparably attached to the diflferent

kinds of molecules, so long as thev remain in the interior of the fluid,

in such a way that the quantities a^, a'5, etc. of the substances speci-

fied are each charged with a unit of positive electricity, and the quan-

tities o'g, ft'h, etc. of the substances specified by these suflixes are each

charged with a unit of negative electricity. The relation (683) is

accounted for by the fact that the constants a^, o'g, etc. are so small

that the electrical charge of any sensible portion of the fluid varying

sensibly from the law expressed in (683) would be enormously great,

so that the formation of such a mass would be resisted by a very

great force.

It will be observed that the choice of the substances which we
regard as the components of the fluid is to some extent arbitrary, and

that the same physical relations may be expressed by different equa-
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tions of the form (682), in Avhich tlie fluxes are expressed with refer-

ence to diff'erent sets of components. If the components chosen are

such as represent what we believe to be the actual molecular consti-

tution of the fluid, those of which the fluxes appear in the equation of

the form (682) are called the ions^ and the constants of the equation

are called their electro-cheynical equivalents. For our present pur-

pose, which has nothing to do Avith any theories of molecular consti-

tution, we may choose such a set of components as may be conven-

ient, and call those ions, of which the fluxes appear in the equation of

the form (682), without farther limitation.

Now^, since the fluxes of the independently variable components of

an electrolytic fluid do not necessitate any electrical currents, all the

conditions of equilibrium Avhich relate to the movements of these

components will be the same as if the fluid were incapable of the

electrolytic process. Therefore all the conditions of equilibrium wdiich

we have found without reference to electrical considerations, will

apply to an electrolytic fluid and its independently vai'iable compo-

nents. But we have still to seek the remaining conditions of equili-

brium, which relate to the possibility of electrolytic conduction.

For simplicity, we shall suppose that the fluid is without internal

surfaces of discontinviity (and therefore homogeneous except so far as

it may be slightly affected by gravity), and that it meets metallic

conductors {electrodes) in different parts of its surface, being other-

wise bounded by non-conductors. The only electrical currents which

it is necessary to consider are those which enter the electrolyte at

one electrode and leave it at another.

If all the conditions of equilibrium are fulfilled in a given state of

the system, except those which relate to changes involving a flux of

electricity, and we imagine the state of the system to be varied by

the passage from one electrode to another of the quantity of electric-

ity 6e accompanied by the quantity 6m^ of the component specified,

without any flux of the other components or any variation in the

total entropy, the total variation of energy in the system will be rep-

resented by the expression

( Y" _ V') de + (///' - yw/) dm^ + {T'^ T") 6w,,

in which V, V" denote the electrical potentials in pieces of the same

kind of metal connected with the two electrodes, T', T", the gravita-

tional potentials at the two electrodes, and ///, ///', the intrinsic

potentials for the substance specified. The first term represents the

incremen*) of the potential energy of electricity, the second the incre-
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ment of tlie intrinsic energy of tlie ponderable matter, and the third

the increment of the euerg}' due to gravitation.* But by (682)

8tn^ =z a^ Se

It is therefoi'e necessary for equilibrium that

V" - F' + a^ (/.//' - //.' - T" + F') = 0. (684)

To extend this relation to all the electrodes we may write

V' + «'a (/'.' - r') = V" + a, (//." - T")

= F'" + a, (//,'" — F'") — etc. (685)

For each of the other cations (specified by ^ etc.) there will be a sim-

ilar condition, and for each of tlie anions a condition of the form

V - a^ (/.; - F') = V" - «', iM," - r")

— V'" — o'g (/V" - i^'") = etc. (686)

When the effect of gravity may be neglected, and there are but

two electrodes, as in a galvanic or electrolytic cell, we have for any

cation

V" - V =:a^ {mJ - /^a"), (687)

and for any anion

V" -V' = a^ (/.," - /V), (688)

where T"" — V denotes the electromotive force of the combination.

That is:—
Whe7i all the conditions of equilibrium are fulfilled in a galvanic

or electrolytic cell, the electromotive force is equal to the difference in

the values of the potenticdfor any ion or apparent ion at the su,rfaces

of the electrodes multiplied by the electro-chemical equivalent of that

ion, the greater potential of an anion being at the same electrode as

the greater electrical potential, and the reverse being true of a cation.

IjCt us apply this principle to different cases.

(I.) If the ion is an independently variable component of an elec-

trode, or by itself constitutes an electrode, the potential for the ion

(in any case of equilibrium which does not depend upon passive resist-

ances to change) will have the same value within the electrode as on

its surface, and will be determined by the composition of the elec-

trode with its temperature and pressure. This might be illustrated

by a cell with electrodes of mercury containing certain quantities of

zinc in solution (or with one such electrode and the other of pure

* It is here supposed that the gravitational potential may be regarded as constant

for each electrode. When this is not the case, the expression maj" be applied to small

parts of the electrodes taken separately.

Trans. Conn. Acad., Yol. III. 64 June, 18t8.
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zinc) and an electrolytic fluid containing a salt of zinc, but not capa-

ble of dissolving the mercury.* We may regard a cell in which

hydrogen acts as an ion between electrodes of palladium charged with

hydrogen as another illustration of the same principle, but the solid-

ity of the electrodes and the consequent resistance to the diflfusion

of the hydrogen within them (a process which cannot be assisted by

convective currents as in a liquid mass) present considerable obstacles

to the experimental verification of the relation.

(II.) Sometimes the ion is soluble (as an independently variable

component) in the electrolytic fluid. Of course its condition in the

fluid when thus dissolved must be entirely dififerent from its condi-

tion when acting on an ion, in which case its quantity is not inde-

pendently variable, as we have already seen. Its diffusion in the

fluid in this state of solution is not necessarily connected with any

electrical current, and in other relations its properties may be entirely

changed. In any discussion of the internal properties of the fluid

(with respect to its fundamental equation, for example,) it would be

necessary to treat it as a different substance. (See page llY.) But

if the process by which the charge of electricity passes into the

electrode, and the ion is dissolved in the electrolyte is reversible, we

may evidently regard the potentials for the substance of the ion in

(687) or (688) as relating to the substance thus dissolved in the

electrolyte. In case of absolute equilibrium, the density of the sub-

stance thus dissolved would of course be uniform throxighout the

fluid, (since it can move independently of any electrical current,) so

that by the strict application of our principle we only obtain the

somewhat barren result, that if any of the ions are soluble in the fluid

without their electrical charges, the electromotive force must vanish

in any case of absolute equilibrium not dependent upon passive resist-

ances. Nevertheless, cases in which the ion is thus dissolved in the

electrolytic fluid only to a very small extent, and its passage from

one electrode to the other by ordinary diffusion is extremely slow,

may be regarded as approximating to the case in which it is incapable

of diffusion. In such cases, we may regard the relations (687),

(688) as approximately valid, although the condition of equilibrium

* If the electrolytic fluid dissolved the mercury as well as the zinc, equilibrium

could only subsist when the electromotive force is zero, and the composition of the

electrodes identical. For when the electrodes are formed of the two metals in differ-

ent proportions, that which has the greater potential for zinc will have the less poten-

tial for mercury. [See equation (98).] This is inconsistent with equilibrium, accord-

ing to the principle mentioned above, if both metals can act as cations.
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relating to the diffusion of the dissolved ion is not satisfied. This

may be the case with hydrogen and oxygen as ions (oi' apparent ions)

between electrodes of platinum in some of its forms.

(III.) The ion may ai)pear in mass at the electrode. If it be a

conductor of electricity, it may be regarded as forming an electrode,

as soon as tlie deposit has l»ecome thick enough to have the proper-

ties of matter in mass. The case therefore will not be diiferent from

that first considered. When tlie ion is a non-conductor, a continuous

thick deposit on the electrode would of course prevent the possibility

of an electrical cnrrent. But the case in which the ion being a non-

conductoi' is disengaged in masses contiguous to the electrode but

not entirely covering it, is an important one. It may be illustrated

by hydrogen appearing in bubbles at a cathode. In case of perfect

equilibrium, independent of passive resistances, the potential of the

ion in (687) or (688) may be determined in such a mass. Yet the

circumstances are quite unfavorable for the establishment of perfect

equilibrium, unless the ion is to some extent absorbed by the electrode

or electrolytic fluid, or the electrode is fluid. For if the ion must pass

immediately into the non-conducting mass, while the electricity passes

into the electrode, it is evident that the only possible terminus of an

electrolytic current is at the line where the electrode, the non-conduct-

ing mass, and the electrolytic fluif\ meet, so that the electrolytic pro-

cess is necessarily greatly retarded, and an approximate ceasing of the

current cannot be regarded as evidence that a state of approximate

equilibrium has been reached. But even a slight degree of solubility

of the ion in the electrolytic fluid or in the electrode may greatly

diminish the resistance to the electrolytic process, and help toward

producing that state of complete equilibrium which is supposed in the

theorem we are discussing. And the mobility of the surface of a

liquid electrode may act in the same way. When the ion is absorbed

by the electrode, or by the electrolytic fluid, the case of course comes

under the heads which we have already considered, yet the fact that

the ion is set free in mass is important, since it is in such a mass that

the determination of the value of the potential will generally be

most easily made.

(IV.) When the ion is not absorbed either by the electrode or by
the electrolytic fluid, and is not set free in mass, it may still be

deposited on the surface of the electrode. Although this can take

place only to a limited extent (without forming a body having the

properties of matter in mass), yet the electro-chemical equivalents of

all substances are so small that a very considerable flux of electricity
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may take place before the deposit will have the properties of matter

in mass. Even when the ion appears in mass, or is absorbed by the

electrode or electrolytic fluid, the non-homogeneous film between the

electrolytic fluid and the electrode may contain an additional portion

of it. Whether the ion is confined to the surface of the electrode

or not, we may regard this as one of the cases in which we have to

recognize a certain superficial density of substances at surfaces of

discontinuity, the general theory of which we have already considered.

The deposit of the ion will affect the superficial tension of the

electrode if it is liquid, or the closely related quantity which we have

denoted by the same symbol o' (see pages 482-500) if the electrode

is solid. The effect can of course be best observed in the case of a

liquid electrode. But whether the electrodes are liquid or solid, if

the external electromotive force V— V" applied to an electrolytic

combination is varied, when it is too weak to produce a lasting current,

and the electrodes are thereby brought into a new state of polariza-

tion, in which they make equilibrium with the altered value of the

electromotive force, without change in the nature of the electrodes or

of the electrolytic fluid, then by (508) or (675)

dff'= - r; djjj,

da" = - rj' dpi:'
;

and by (687),
'

d{ V - V")= - a', {df.i: - dpi:').

Hence

d{ V— V") = ^dff'- ^, dff". (689)

If we suppose that the state of polarization of only one of the elec-

trodes is affected (as will be the case when its surface is very small

compared with that of the other), we have

dff'=^d(V'—V"). (690)
«'a

The superficial tension of one of the electrodes is then a function of

the electromotive force.

This principle has been applied by M. Lijipmann to the construc-

tion of the electrometer which bears his name.* In applying equa-

tions (689) and (690) to dilute sulphuric acid between electrodes of

mercury, as in a Lippmann's electrometer, we may suppose that the

* See his memoir : " Relations entre les phunomenes electriques et capillaires,"

Annales de Chimieetde Physique, 5e serle, t. v, p. 494.
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suffix refers to hydrogen. It will be most convenient to suppose the

dividing surface to be so placed as to make the surface-density of

mercury zero. (See page 397.) The matter which exists in excess or

deficiency at the surface may then be expressed by the surface-densi-

ties of sulphuric acid, of water, and of hydrogen. The value of the

last may be determined from equation (690). According to M. Lipp-

mann's determinations, it is negative when the surface is in its natural

state (i. e., the state to which it tends when no external electromo-

tive force is applied), since & increases with V" — V. When
V" — V is equal to nine-tenths of the electromotive force of a Dan-

iell's cell, the electrode to which V" relates remaining in its, natural

state, the tension a' of the surface of the other electrode has a maxi-

mum value, and there is no excess or deficiency of hydrogen at that

surface. This is the condition toward which a surface tends when it

is extended while no flux of electricity takes place. The flux of elec-

tricity per unit of new surface formed, which wnll maintain a surface

in a constant condition while it is extended, is represented by —
in numerical value, and its direction, when F^' is negative, is from

the mercury into the acid.

We have so far supposed, in the main, that there are no passive

resistances to change, except such as vanish with the rapidity of the

processes which they resist. The actual condition of things with

respect to passive resistances appears to be nearly as follows. There

does not appear to be any passive resistance to the electix)lytic pro-

cess by Avhich an ion is transferred from one electrode to another,

except such as vanishes with the rapidity of the process. For, in any

case of equilibrium, the smallest variation of the externally applied

electromotive force appears to be suflicient to cause a (temporaiy)

electrolytic current. But the case is not the same with respect to

the molecular changes by which the ion passes into new combinations

or relations, as when it enters into the mass of the electrodes, or sep-

arates itself in mass, or is dissolved (no longer with the properties of

an ion) in the electrolytic fluid. In virtue of the passive resistance to

these processes, the external electromotive force may often vary

within wide limits, without creating any current by which the ion is

transferred from one of the masses considered to the other. In other

words, the value of V — V" may often difier greatly from that

obtained from (08*7) or (688) when we determine the values of the

potentials for the ion as in cases I, II, and III. We may, however,

regard these equations as entirely valid, when the potentials for the
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ions are determined at the surface of the electrodes with reference to

the ion in the condition in which it is brought thei'e or taken away

by an electrolytic current, without any attendant irreversible pro-

cesses. But in a complete discussion of the properties of the surface

of an electrode it may be necessary to distinguish (both in respect to

surface-densities and to potentials) between the substance of the ion

in this condition and the same substance in other conditions into

which it cannot pass (directly) without irreversible processes. No
such distinction, however, is necessary when the substance of the ion

can pass at the surface of the electrode by reversible processes from

any one of the conditions in which it appears to any other.

The formulae (687), (688) afford as many equations as there are

ions. These, however, amount to only one independent equation

additional to those which relate to the independently variable com-

ponents of the electi'olytic fluid. This appears from the considera-

tion that a flux of any cation may be combined with a flux of any

anion in the same direction so as to involve no electrical current, and

that this may be regarded as the flux of an independently variable

component of the electrolytic fluid.

General Properties of a Perfect Electro-chemical Apparatus.

When an electrical current passes through a galvanic or electro-

lytic cell, the state of the cell is altered. If no changes take place in

the cell except during the passage of the current, and all changes

which accompany the current can be reversed by reversing the cur-

rent, the cell may be called a perfect electro-chemical apparatus.

The electromotive force of the cell may be determined by the equa-

tions which have just been given. But some of the general relations

to Avhich such an apparatus is subject may be conveniently stated in

a form in which the ions are not explicitly mentioned.

In the most general case, we may regard the cell as subject to

external action of four different kinds. (1) The supply of electricity

at one electrode and the withdrawal of the same quantity at the

other. (2) The supply or withdrawal of a certain quantity of heat.

(3) The action of gravity. (4) The motion of the surfaces enclosing

the apparatus, as wdien its volume is increased by the liberation of

gases.

The increase of the energy in the cell is necessarily equal to that

which it receives from external sources. We may express this by the

equation

d8 = ( F' - V") de + dQ + dW^ + d TTp, (691)
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ill which de denotes the iucrement of tlie intrinsic energy of the cell,

de the quantity of electricity which passes through it, V and V"
the electrical potentials in masses of the same kind of metal con-

nected with the anode and cathode respectively, dQ the heat received

from external bodies, d Wq the work done by gravity, and d Tf^ the

work done by the pressures which act on the external surface of the

apparatus.

The conditions under which we suppose the processes to take place

are such that the increase of the entropy of the apparatus is equal to

the entropy which it receives from external sources. The only exter-

nal source of entropy is the heat which is communicated to the cell

by the surrounding bodies. If we write drf for the increment of

entropy in the cell, and t for the temperature, we have

d}j = -^. (692)

Eliminating dQ, we obtain

de={V'- V")de + tdif-^dW,,-\-dWj>, (693)

or

It is worth while to notice that if we give up the condition of the

reversibility of the processes, so that the cell is no longer supposed

to be a perfect electro-chemical aiDparatus, the relation (691) will still

subsist. But, if we still suppose, for simplicity, that all parts of the

cell have the same temperature, which is necessarily the case with a

perfect electi'o-chemical apparatus, we shall have, instead of (692),

, ^ dO
f?V^y^, (695)

and instead of (693), (694)

( Y" _ V') de -S^ds + t di] + d TFe + d TFp. (696)

The values of the several terms of the second member of (694), for

a given cell, will vary with the external influences to which the cell

is subjected. If the'cell is enclosed (with the j^roducts of electrolysis)

in a rigid envelop, the last term will vanish. The term relating to

gravity is generally to be neglected. If no heat is supplied or with-

drawn, the term containing di] will vanish. But in the calculation of

the electromotive force, which is the most important application of

the equation, it is generally more convenient to supjiose that the tem-

perature remains constant.
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The quantities expressed by the terms containing dQ tin({ dij m
(691), (693), (694), and (696) are frequently neglected in the consid-

eration of cells of which the temperature is supposed to remain con-

stant. In other words, it is frequently assumed that neither heat nor

cold is produced by the passage of an electrical current through a

perfect electro-chemical combination (except that heat which may be

indefinitely diminished by increasing the time in which a given quan-

tity of electricity passes), and that only heat can be produced in any

cell, unless it be by processes of a secondary nature, which are not

immediately or necessarily connected with the process of electrolysis.

It does not appear that this assumption is justified by any sufficient

reason. In fact, it is easy to find a case in which the electromotive

force is determined entirely by the term i^-^ in (694), all the other

terms in the second member of the equation vanishing. This is true

of a Grove's gas battery charged with hydrogen and nitrogen. In

this case, the hydrogen passes over to the nitrogen,—a process which

does not alter the energy of the cell, when maintained at a constant

temperature. The work done by external pressures is evidently

nothing, and that done by gravity is (or may be) nothing. Yet an

electrical current is produced. The work done (or which may be

done) by the cui'rent outside of the cell is the equivalent of the work

(or of a part of the work) whicli might be gained by allowing the

gases to mix in other ways. This is equal, as has been shown by

Lord Rayleigh,* to the work which may be gained by allowing each

gas separately to expand at constant temperature from its initial

volume to the volume occupied by the two gases together. The same

work is equal, as appears from equations (278), (279) on page 217,

(see also page 220,) to the increase of the entropy of the system

multiplied by the temperature.

It is possible to vary the construction of the cell in such a way

that nitrogen or other neutral gas will not be necessary. Let the cell

consist of a U-shaped tube of sufficient height, and have pure hydro-

gen at each pole under very unequal [)ressures (as of one and two

atmospheres respectively) which are maintained constant by properly

weighted pistons, sliding in the arms of the tube. The difference of

the pressures in the gas-masses at the two electrodes must of course

be balanced by the difference in the height of the two columns of

acidulated water. It will hardly be doubted that such an apparatus

* Philosophical Magazine, vol. xlix, p. 311.
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woiild have an electromotive force acting in the direction of a current

wliich would carry the hydrogen from the denser to the rarer mass.

Certainly the gas could not be carried in the opposite direction by

an external electromotive force without the expenditure of as much

(electromotive) work as is equal to the mechanical work necessary to

pump the gas from the one arm of the tube to the other. And if by any

modification of the metallic electrodes (which remain unchanged by

the passage of electricity) we could reduce the passive resistances to

zero, so that the hydrogen could be carried reversibly from one mass

to the other without finite variation of the electromotive force, the only

possible value of the electromotive force would be represented by the

expression t-y-^ as a very close approximation. It will be observed

that, although gravity plays an essential part in a cell of this kind

by maintaining the difference of pressure in the masses of hydrogen,

the electromotive force cannot possibly be ascribed to gravity, since

the work done by gravity, when hydrogen passes from the denser to

the rarer mass, is negative.

Again, it is entirely improbable that the electrical currents caused

by differences in the concentration of solutions of salts, (as in a cell

containing sulphate of zinc between zinc electrodes, or sulphate of

copper between copper electrodes, the solution of the salt being of

unequal strength at the two electrodes,) which have recently been

invesugated theoretically and experimentally by MM. Helmholtz and

Moser,* are confined to cases in which the mixture of solutions of

diflerent degrees of concentration will produce heat. Yet in cases in

which the mixture of more and less concentrated solutions is not

attended with evolution or absorption of heat, the electromotive force

must vanish in a cell of the kind considered, if it is determined

simply by the diminution of energy in the cell. And when the mix-

ture produces cold, the same rule would make any electromotive force

impossible except in the direction which would tend to increase the

difference of concentration. Such conclusions as would be quite

irreconcilable with the theory of the phenomena given by Professor

Helmholtz.

A more striking example of the necessity of taking account of the

variations of entropy in the cell in a priori determinations of electro-

motive force is afforded by electrodes of zinc and mercury in a solu-

tion of sulphate of zinc. Since heat is absorbed when zinc is dissolved

* Annalen der Physik und Chemie. Neue Folge, Band iii, February, 18"? 8.

Trans. Conn. Acad.. Vol. III. 65 Junk, 1878,



512 J. ~W. Qibhs—Equilibrium of Heterogeneoits Substances.

iu mercury,* the energy of the cell is increased by a transfer of zinc

to the mercury, when the temperature is maintained constant. Yet

in this combination, the electromotive force acts in the direction of

the current producing such a transfer. f The couple presents certain

anomalies when a considerable quantity of zinc is united with the

mercury. The electromotive force changes its direction, so that this

case is usually cited as an illustration of the principle that the electro-

motive force is in the direction of the current which diminishes the

energy of the cell, i. e., which produces or allows those changes which

are accompanied by evolution of heat when tliey take place directly.

But w^hatever may be the cause of the electromotive force which has

been observed acting in the direction from the amalgam through the

electrolyte to the zinc (a force which according to the determinations

of M. Gaugain is only one twenty-fifth part of that which acts in the

reverse direction when pure mercury takes the place of the amalgam),

these anomalies can hardly affect the general conclusions with which

alone we are here concerned. If the electrodes of a cell are pure

zinc and an amalgam containing zinc not in excess of the amount

which the mercury will dissolve at the temperature of the ex2:)eriment

without losing its fluidity, and if the only change (other than thermal)

accompanying a ciirrent is a transfer of zinc from one electrode to

the other,—conditions which may not have been satisfied in all the

experiments recorded, but which it is allowable to suppose in a

theoretical discussion, and which certainly will not be regarded as

inconsistent with the fact that heat is absorbed when zinc is dissolved

in mercury,—it is impossible that the electromotive force should be

in the direction of a current transferring zinc from the amalgam to

the electrode of pure zinc. For, since the zinc eliminated from the

amalgam by the electrolytic process might be re-dissolved directly,

such a direction of the electromotive force would involve the pos-

sibility of obtaining an indefinite amount of electromotive work, and

therefore of mechanical work, without other expenditure than that of

heat at the constant temperature of the cell.

None of the cases which we have been considering involve com-

binations by definite proportions, and, except in the case of the cell

with electrodes of mercury and zinc, the electromotive forces are

quite small. It may perhaps be thought that with respect to those

cells in which combinations take place by definite proportions the

electromotive force may be calculated with substantial accui-acy from

* J. Regnauld, Com]ytes Rendus, t. li, p. 778.

•]- Gaugain, Comptes Rendus, t. xlii, p. 430.
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the diminution of the energy, without regarding the variation of

entropy. But the phenomena of chemical combination do not in

general seomi to indic^ate any possibility of obtaining from the com-

bination of substances by any process whatever an amount of mechani-

cal Avork which is equivalent to the heat produced by the direct union

of the substances.

A kilogramme of hydrogen, for example, combining by combustion

under the pressure of the atmosphere with eight kilogrammes of oxygen

to form liquid water, yields an amount of heat which may be repre-

sented in roimd number's by 34000 calories.* We may suppose that

the gases are taken at the temperature of 0° C, and that the water is

reduced to the same temperature. But this heat cannot be obtained

at any temperature desired. A very high temperature has the eifect

of preventing to a greater or less extent, the combination of the

elements. Thus, according to M. Sainte-Claire Deville,f the tempera-

ture obtained by the combustion of hydrogen and oxygen cannot

much if at all exceed 2500° C, which implies that less than one-half

of the hydrogen and oxygen present combine at that temperature.

This relates to combustion itnder the pressure of the atmosphere.

According to the determinations of Professor BunsenJ in regard

to combustion in a confined space, only one-third of a mixture of

hydrogen and oxygen will form a chemical compound at the tem-

perature of 2850° C. and a pressure of ten atmospheres, and only a

little more than one-half when the temperature is reduced by the

addition of nitrogen to 2024° C, and the pressiire to about three

atmospheres exclusive of the part due to the nitrogen.

Now 10 calories at 2500° C. are to be regarded as reversibly con-

vertible into one calorie at 4° C. together with the mechanical work
representing the energy of 9 calories. If, therefore, all the 34000 cal-

ories obtainable from the miion of hydrogen and oxygen under atmos-

pheric pressure could be obtained at the temperature of 2500° C, and

no higher, we should estimate the electromotive work performed in a

perfect electro-chemical apparatus in which these elements are com-

bined or separated at ordinary temperatures and under atmospheric

pressure as representing nine-tenths of the 34000 calories, and the

heat evolved or absorbed in the apparatus as representing one-tenth

of the 34000 calories.§ This, of course, would give an electi'omotive

*See RuMmann's Handhuch der mechanischen Warmeiheorie, Bd. ii. p. 290.

•j- Comptes Reiidus, t. Ivi, p. 199; and t. Ixiv, 67.

X Pogg. Ann., Bd. cxxxi (1867), p. 161.

§ These numbers are not subject to correction for the pressure of the atmosphere,

since the 34000 calories relate to combustion under the same pressure.
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force exactly nine-tenths as great as is obtained on the supposition

that all the 34000 calories are convertible into electromotive or

mechanical work. But, according to all indications, the estimate

2500° C. (for the temperature at which we may regard all the heat of

combustion as obtainable) is far too high,* and we nnist regard the

theoretical value of the electromotive force necessary to electrolyze

water as considerably less than nine-tenths of the value obtained on

the supposition that it is necessary for the electromotive agent to

supply all the energy necessary for the process.

The case is essentially the same with respect to the electrolysis of

hydrochloric acid, which is probably a more tyi:)ical example of the

process than the electrolysis of water. The phenomenon of dissocia-

tion is equally marked, and occurs at a much lower temperature, more

than half of the gas being dissociated at 1400° C.f And the heat

which is obtained by the combination of hydrochloric acid gas with

water, especially with water which already contains a considerable

quantity of the acid, is probably only to be obtained at temperatures

comparatively low. This indicates that the theoretical value of the

electromotive force necessary to electrolyze this acid (/. e., the elec-

tromotive force which would be necessary in a reversible electro-

chemical apparatus), must be very much less than that which could

perform in electromotive work the equivalent of all the heat evolved

in the combination of hydrogen, chlorine and water to form the liquid

submitted to electrolysis. This presumption, based upon the phenom-

ena exhibited in the direct combination of the substances, is corrobo-

rated by the experiments of M. Favre, who has observed an absorp-

tion of heat in the cell in which this acid was electrolyzed.J The

* Unless the received ideas concerning the behavior of gases at high temperatures

are quite erroneous, it is possible to indicate the general character of a process

(involving at most only such difficulties as are neglected in theoretical discussions) by

which water may be converted into separate masses of hydrogen and oxygen without

other expenditure than that of an amount of heat equal to the difference of energy of

the matter in the two states and supplied at a temperature far below 2500° C. The

essential parts of the process would be (1) vaporizing the water and heating it to a

temperature at which a considerable part will be dissociated, (2) the partial separation

of the hydrogen and oxygen by filtration, and (3) the cooling of both gaseous masses

until the vapor they contain is condensed. A little calculation will show that in a

continuous process all the heat obtained in the operation of cooling the products of

filtration could be utilized in heating fresh water.

\ Sainte-Claire Deville, Oomptes Rendus, t. Ixiv, p. ()7.

\ See Meinoires (Ivs Sarants Etrangers, Ser. 2, t. xxv, No. 1, p. 142; or Comj)tes Rendus,

t. Ixxiii, p. 973. The figures obtained by M. Favre will be given hereafter, in connec-

tion with others of the same nature.
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electromotive work expended must thei'efore have been less than the

increase of energy in the cell.

In both cases of composition in definite proportions which we have

considered, the compound has more entropy than its elements, and
the diflerence is by no means inconsiderable. This appears to be the

rule rather than the exception with respect to compounds which have

less energy than their elements. Yet it would be rash to assert that

it is an invariable rule. And when one substance is substituted for

another in a compound, we may expect great diversity in the rela-

tions of energy and entropy.

In some cases, there is a striking correspondence between the elec-

tromotive force of a cell and the rate of diminution of its energy per

unit of electricity transmitted, the temperature remaining constant.

A Daniel I's cell is a notable example of this correspondence. It may
perhaps be regarded as a very significant case, since of all cells in

common use, it has the most constant electromotive force, and most

nearly approaches the condition of reversibility. If we apply our

previous notation [compare (691)] with the substitution of finite for

infinitesimal dififerences to the determinations of M. Favre,* estimat-

ing energy in calories, we have for each equivalent (32,6 kilogrammes)

of zinc dissolved

( F" - F') ^6=24327™'-, Jf = - 25394 '^^^'•, Zl <2 :rr - 1067 *="'•.

It will be observed that the electromotive work performed by the cell

is about four per cent, less than the diminution of energy in the cell.f

The A'alue of J Q^ which, when negative, represents the heat evolved

in the cell when the external resistance of the circuit is very great,

was determined by direct measurement, and does not appear to have

been corrected for the resistance of the cell. This correction would

diminish the vahie of—J Q, and increase that of ( V" — V) Ae^ which

was obtained by subtracting —AQ from —As.

It appears that under certain conditions neither heat nor cold is

produced in a Grove's cell. For M. Favre has found that Avith dif-

ferent degrees of concentration of the nitric acid sometimes heat and

sometimes cold is produced. J When neither is produced, of course

* See Mtm. Savants Strang., loc. cit., p. 90; or Comj^tes Rendus, vol. Ixix, p. 35, where

the numbers are slightly different.

I A comparison of the experiments of different physicists has in some cases given

a much closer correspondence. See Wiedemann's Galvanismus, etc., 2'<' Auflage, Bd.

ii, §§ 1117, 1118.

\ Mem Sarants Strang., loc. cit., p. 9H ; or Comptes Rendus, t. Ixix, p. 3*7, and t.

Ixxiii, p. 893.
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the electromotive force of the cell is exactly equal to its diminution

of energy per unit of electricity transmitted. But such a coincidence

is far less significant than the fact that an absorption of heat has been

observed. With acid containing about seven equivalents of water

(HNOg+ VHO), M. Favre has found

(F"_ F') zJe=z 46781 '•*'•, J6= -41824'^^'-, J ^= 4957™'-;

and with acid containing about one equivalent of water (HNOg+HO),

(17"— F')//e= 49847""'-, Z/f = — 52714^'="-, J ^= -2867'^"'-.

In the first example, it will be observed that the quantity of heat

absorbed in the cell is not small, and that the electromotive force is

nearly one-eighth greater than can be accounted for by the diminu-

tion of energy in the cell.

This absorption of heat in the cell he has observed in other cases,

in which the chemical processes ai-e much more simple.

For electrodes of cadmium and platinum in hydrochloric acid his

experiments give*

( Y"— V') Ae— 9256"="-, Jf = — 8258"^'-,

J TTp^ — 290'^"'-, Z/^=:1288'"'-.

In this case the electromotive force is nearly one-sixth greater than

can be accounted for by the diminution of energy in the cell with the

work done against the pressure of the atmosphere.

For electrodes of zinc and platinum in the same acid one series of

experiments givesf

(|7"_ V) Ae— 16950^'"-, Ae= — 16189'=*'-,

JTrp^-290'^^'''-, J^^iosr""-;

and a later series,J

(F"- F')^e==16738'^'''-, Z/«= — 17702'='''-,

z/TFp= -290^-^'-, z/(2=-674'^="-.

In the electrolysis of hydrochloric acid in a cell with a porous par-

tition, he has found§

* Comptes Rendris, t. Ixviii, p. 1.S05. The total heat obtained in the whole circuit

(indudiug the cell) when all the electromotive worlt is turned into heat, was ascer-

tained by direct experiment. This quantity, 7968 calories, is evidently represented by

( V"- V) Ae - AQ, also by - Ap + A Wv- [See (691).] The value of
{
V" — V')Ae

is obtained by adding A^, and that of — Ae by adding — A Wp, which is easily esti-

mated, being determined by the evolution of one kilogramme of hydrogen,

\ Ibid.

J Me7n. Savants fyrang., loc. cit., p. 145,

§ Ihid, p. 142.
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( V' — T^") Ae= 34825 '»'• AQ-2\\^ ™'-,

whence

Z?«-^Trp=: 36938.

We cannot assign a precise value to z/ TT>, since the quantity of chlo-

rine which was evolved in tlie form of gas is not stated. But the

value of —z/ TFp must lie between 290'''''- and 580™'-, probably nearer

to the former.

The great diiFerence in the results of the two series of experiments

relating to electrodes of zinc and platinum in hydrochloric acid is

most naturally explained by supposing some difference in the condi-

tions of the experiment, as in the concentration of the acid, or in the

extent to which the substitution of zinc for hydrogen took place.*

That which it is important for us to observe in all these cases is that

there ai'e conditions under which heat is absorbed in a galvanic or

electrolytic cell, so that the galvanic cell has a greater electromotive

force than can be accovmted for by the diminution of its energy, and

the operation of electrolysis requires a less electromotive force than

would be calculated from the increase of energy in the cell,—espe-

cially when the work done against the pressure of the atmosphere is

taken into account.

It should be noticed that in all these experiments the quantity rep-

resented by Z/ ^ (which is the critical quantity with respect to the

point at issue) was determined by direct measurement of the heat

absorbed or evolved by the cell when placed alone in a calorimeter.

The resistance of the circuit was made so great by a rheostat placed

outside of the calorimeter that the resistance of the cell was regarded

as insignificant in comparison, and no correction appears to have been

made in any case for this resistance. With exception of the error

due to this circimistance, which would in all cases diminish the heat

absorbed in the cell (or increase the heat evolved), the probable error

oi A Q must be very small in comparison with that of ( V -^ V") Ae,

or with that of zJf, which were in general determined by the compar-

* It should perhaps be stated that in his extended memoir published in 1877 in the

Memoires des Savants Etrangers, in which he has presumably collected those results

of his experiments which he regards as most important and most accurate, M. Favre

does not mention the absorption of heat in a cell of this kind, or in the similar cell in

which cadmium takes the place of zinc. This may be taken to indicate a decided

preference for the later experiments which showed an evolution of heat. Whatever

the ground of this preference may have been, it can hardly destroy the significance

of the absorption of heat, which was a matter of direct observation in repeated experi-

ments. See Com.ptes Bendus, t. Ixviii, p. 1305.
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ison of different calorimetrical measurements, involving very mnch
greater quantities of heat.

In considering the numbers which have been cited, we should

remember that when hydrogen is evolved as gas the process is in

general very far from reversible. In a perfect electrochemical appara-

tus, the same changes in the cell would yield a much greater amount

of electromotive work, or absorb a much less amount. In either case,

the value oi /\ Q would be much greater than in the imperfect appara-

tus, the difference being measured perhaps by thousands of calories.*

It often occurs in a galvanic or electrolytic cell that an ion which

is set free at one of the electrodes appears in part as gas, and is in

part absorbed by the electrolytic fluid, and in part absorbed by the

electrode. In such cases, a slight variation in the circumstances,

which would not sensibly affect the electromotive force, would cause

all of the ion to be disposed of in one of the three ways mentioned, if

the current were siiflficiently weak. This would make a considerable

* Except in the case of the Grrove's cell, in which the reactions are quite complicated,

the absorption of heat is most marked in the electrolysis of hydrochloric acid. The

latter case is interesting, since the experiments confirm the presumption afforded by

the behavior of the substances in other circumstances. (See page 514.) In addition

to the circumstances mentioned above tending to diminish the observed absorption of

heat, the following, which are peculiar to this case, should be noticed.

The electrolysis was performed in a cell with a porous partition, in order to prevent

the chlorine and hydrogen dissolved in the liquid from coming in contact with each

other. It had appeared in a previous series of experiments {Mem. Sarants Etrang..

loc. cit., p. 131 ; or Oomptes Bendus, t. Ixvi, p. 1231,) that a very considerable amount of

heat might be produced by the chemical union of the gases in solution. In a cell

without partition, instead of an absorption, an evolution of heat took place, which

sometimes exceeded 5000 calories. If, therefore, the partition did not perfectly per-

form its office, this could only cause a diminution in the value of A Q.

A. large part at least of the chlorine appears to have been absorbed by the electro-

lytic fluid. It is probable that a slight difference in the circumstances of the experi-

ment—a diminution of pressure, for example,—might have caused the greater part of

the chlorine to be evolved as gas, without essentially affecting the electromotive force.

The solution of chlorine in w^ater presents some anomalies, and m,ay be attended with

complex reactions, but it appears to be always attended with a very considerable evolu-

tion of heat. (See Berthelot, Comptes Bendus, t. Ixxvi, p. 1514.) If we regard the evolu-

tion of the chlorine in the form of gas as tlie normal process, we may suppose that the

absorption of heat in the cell was greatly diminished by the retention of the chlorine

in solution.

Under certain circumstances, oxygen is evolved in the electrolysis of dilute hydro-

chloric acid. It does not appear that this took place to any considerable extent in the

experiments which we are considering. But so far as it may have occurred, we may

regard it as a case of the electrolysis of water. The significance of the fact of the

absorption of heat is not thereby affected.
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ditFerence in llie variation of energy in tlie cell, and the electromotive

force cannot certainly be calculated from the variation of energy

alone in all these cases. The correction due to the work performed

against the pressure of the atmosphere when the ion is set free as gas

will not help us in reconciling these differences. It will appear on

consideration that this correction will in general increase the discord-

ance in the values of the electromotive force. Nor does it distinctly

appear which of these cases is to be regarded as normal and which

are to be rejected as involving secondary processes.*

If in any case secondary processes are excluded, we should expect

it to be when the ion is identical in substance with the electrode upon

which it is deposited, or from which it passes into the electrolyte.

But even in this case we do not escape the difficulty of the difterent

forms in which the substance may appear. If the temperature of the

experiment is at the melting point of a metal which forms the ion

and the electrode, a slight variation of temperature will cause the

ion to be deposited in the solid or in the liquid state, or, if the current

is in the opposite direction, to be taken up from a solid or from a

liquid body. Since this will make a considerable difference in the

variation of energy, we obtain different values for the electromotive

force above and below the melting point of the metal, unless we

also take account of the variations of entropy. Experiment does

not indicate the existence of any such difference,! and when we take

account of variations of entropy, as in equation (694), it is apparent

that there ought not to be any, the terms -^ and t— being both

* It will be observed that in using the formulae (694) and (696) we do not have to

make any distinction between •primary and secondary processes. The only limitation

to the generality of these formulae depends upon the reversibility of the processes,

and this limitation does not apply to (696).

f M. Raoult has experimented with a galvanic element having an electrode of bis-

muth in contact with phosphoric acid containing phosphate of bismuth in solution.

(See Comptes Rendus, t. Ixviii, p. 643.) Since this metal absorbs in melting 12.64

calories per kilogramme or 885 calories per equivalent (70''''), while a Daniell's cell

yields about 24000 calories of electromotive work per equivalent of metal, the solid or

liquid state of the bismuth ought to make a difference of electromotive force repre-

sented by .0.37 of a Daniell's cell, if tlie electromotive force depended simply upon the

energy of the cell. But in ^I. Raoult's experiments no sudden change of electromotive

force was manifested at the moment when the bismuth changed its state of aggrega-

tion. In fact, a change of temperature in the electrode from about fifteen degrees

above to about fifteen degrees below the temperature of fusion only occasioned a

variation of electromotive force equal to .002 of a Daniell's cell.

Experiments upon lead and tin gave similar results.

Trans. Conn. Acad., Vol. III. 66 July, 1878.
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attect(^(l by the saiiu' dirteroiuH', viz., the liciit ol" fusion of an electro-

clicmical ('(juivalont oftlic metal. In fact, if such a diiferenee existed,

it would he easy to devise arranti;einents by which the heat yielded

by a iru'tal in |)assint>; from the licinid 1o the solid state could l)e

transfbiiiKMl into electromotive work (and therefore into mecrhanical

work) without otiier expendituic.

The foretijoinn' examples will be snihcient, it is believed, to show

the lu'cessity of regardinjf other considerations in (h'termining- the

electronu)tive forct^ of a galvanic or electrolytic cell than the variation

of its energy aloiu' (when its temperature is supposed to remain con-

stant), or corrected only for the work which may be done by external

pressures or by gravity. Hut the relations expressed by (693), (694),

and (090) nniy be put in a briefer form.

If we set, as on page 144,

i/^=e — f //,

we have, for any constant temperature,

(///' =i de — t d
}f ;

and for any |>erfect electrochemical apparatus, the temperature of

which is maintained constant,

V" - v =-'^ + -> + -^ ;
(097)

de de de

and for any cell whatever, when the temperature is nniintained uni-

form and constant,

( Y" — I
") dv ^ — df -f d Wa + dWy.. (098)

In a cell of any ordinary dimensions, the work done by gravity, as

well as the inecpialities of pressure in diHerent parts of the cell may
be neglected. If the pressmc as wi'll as the temperature is main-

tained uniform and constant, and we set, as on [>age 147,

K= f - f '/ + /> '\

wliere )i> denotes the pressure in the (rell, and a its total voltinu' (in-

cbuling the products of electrolysis), we have

dt. =z dh — t dii -\- p dv,

and for a. perfect electro-chemical apparatus,

r"_ r'=-
f^,

(099)

or lor any cell,

( V^" — V')de'^ - <ft. (700)
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Dendronotus arborescens, 8, 1 3.

Diastylis quadrispinosa, 28, 15.
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Eschara papposa, 1 3.

Escharoides rosacea, 13.

Eteone depressa, 16.

Eucranta villosa, 37, 22.
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Eunice vivida, 11, 41.

Eunoa nodosa, 12, 14.
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Leodice vivida, 41, 11, 16, 20.

Library, additions to the, v.
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Myxine, median fins in, 282.

Naticaclausa, 6. 8, 10, 11, 12, 14, 17, 19,

21, 23.

Nautilograpsus mmutus, 26.

Neajra arctica, 17, 23.
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ST July, 1878.
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Spirorbis valida, 44. 12, 14.
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Stenothoe peltata, 29, 3.

Sternaspis fossor, 16, 18.

Stromolophus meleagris, 26.
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Torellia vestita. 49, 23.

Trachydermon album, 13, 14, 17, 23.

Trachynema digitale, 26.

Transcendental curves, by H. A. Newton
and A. W. Phillips, 97.

Trichotropis borealis, 12.

Tritia trivittata, 3, 5.

Tritropis aculeata, 12, 14.

Trophon Gunneri, 12, 14.

Trophonia aspera, 16, 18.

Tubularia elegans, 253, 250.

indivisa, 7, 9, 10, 11, 13.

Turnbull, F. M., anatomy and habits of

Nereis virens, 265.

Turritella acicula, 20.

erosa, 13, 20, 44.

reticulata, 14, 15.

Unciola irrorata, 3, 5. 10, 16, 19, 25.

Urticina crassicornis, 7, 9. 10, 11, 13, 24,

25.

digitata, 54.

nodosa, 54, 11.

Velutina laevigata, 17, 49.

zonata. 23.

Vescicularia armata, 11.

Vetumnus serratus, 31, 5, 19.

Virgularia lyungmanii, 54, 24.

Xenoclea Batei, 34.
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Yoldia limatula, 4.

obesa, 18, 19, 23.

thraciformis. 19.



ERRATA TO VOL. I ri.

Page 1, line 13, for Hagerman, read Hageuman.

Page 5, line 30, for Vetumnus, read Vertumnus.

Page 9, last line, for 1873, read 1874.

Page 11, line 31, for virticillata, read verticillata

Page 13, line 34, for cappilare, read capillare.

Page 23, line 4, for Smythella, read Samythelln,.

Page 28, line 19, for Caridon, read Caridion.

Page 35, line 3, for Scapellum, read Scalpellum.
Page 58, line 14, for branches, read branchlets.

Page 60, line 12, for Plate X, read IX.

Page 167, formula (168), for m,, read /^,.

Page 167, formula (169), for m^, . . . m„_i, read ^,, . . . fin-\.

Page 239, formula (333), for — read —.
t a.it

Page 295, note
f, 1st line, for Ueber de Gliedmassen, read Ueber das Skelett der Glied-

massen.

Page 304, note, for prominal, read proximal.

Pa^e 356, last line but two, for crystalline solid, read solid of continuous crystalline

structure.

Page 385, line 13, for M', read M.

Pages 391, 394, 395, 400, in headings, after Discontinuity, add between Fluid Masses.

Page 403, line 10, after any other film, add of the same components.

Page 405, line 29, after this, add case.

Page 432, line 15 of foot-note, for II, read II,.

In figure 40, plate XVI, there is a series of ovals around one-half of the real double

points. There should be added to the curve, as represented, a like series of

ovals aroimd each of the remaining real double points.
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