ENGINEERING NEWS

ENGINEERING NEWS

AMERICAN RAILWAY JOURNAL.
VOL. XLII. No. 8
table of contents.
vgineering news of the week Two Unusual Instances of Rallway Track Displaced by Ocean Waves (ilfustrated) ©..................... Theory and
The Launch of a Batiouship with iuli-page plate. Double Deck Bridge at Welis St., Chicago (with full-page plate) York Central \& Hudson River R. R. illustrated
The Relation between the Structure of Steel and Its The Relation between the Structure of Steel and Its The Duty of the Indianapolis Pumping Engine.. A Revolving
 Soft Mud Excavation at Ply
ham, England (iliustrated)
EDITORIAL NOTES
Wooden Ceilings for Protecting Bridges Over Rail way Tracks from Corrosion-Dangerous Draw
bridges in Chleago-Launching Heavy Vessels
The Best Electrle Lamps for Ligbt-House Use The Best Electrle Lamps Ror Ligbt-Hous
The Work of the Correspondence Schools. EDITORIAL:

The Future Water Supply of
ETTERS TO THE EDITOR
An old Wooden Truss Bridge (illustrated).

A BRIDGE REMOVAL was successfuliy accomplished at Chicago last week to make way for a new bridge and for an improvement of the river. The approach to the Grand Central Station (which is owned by the Chicago Terminal Transfer R. R.) was by a double track draw bridge of the Tayior St. bridge. In improving the river just below the Tayior st. bridge, In improving the river to secure tbe capacity necessary for the fiow to the Dralnage Cana, R. R., and to replace the swing bridges by two rolling R. R., and to replace the swing bridges by two roling
lift bascule bridges of the Scherzer type. The railway bridge has therefore been moved 53 ft . north from its old bridge has therefore been moved 53 ft . north from its old
site, atd estabished on a temporary pier for use during site, atd estabished on a temporary pier for use during the improvement of the river and the erection of the new bridge. Upon the guard pier substantial timbe
were constructed, and when the bridge was swung open parallel with the stream, it was jacked up 26 ins. to allow of a cradie or sliding "ways" being built under it. Th weight of the hridge was then transferred to the eradie and two pile-driver engines then hauled the structure aiong to Its new position, the contact surfaces of the "ways" being wefl lubricated with tallow. The bridge
weighs gon tons, and was loaded witb 10 tons of rails weighs 600 tons, and was loaded witb 10 tons of rails distributed over the floor to prevent vibration and rack-
Ing strains. Tbe bridge crosses the river at such a skew Ing strains. Tbe bridge crosses the river at such a skew
that it was impossible to use scows to move it. The genthat it was impossible to use scows to move it. The gen eral arrangement resembies that employed in the remova of the Newark bridge of the Pennsylvania scribed in our issue of July 27, except that car trucks running on steel ralls were used to carry the Newark bridge. The method of handling the Chicago bridge was planned and executed under the direction of Mr. F. E. Paradis, Chief Engineer of the Chicago Terminal Trans fer R. R.

> THE INVENTION OF SKELETON CONSTRUCTION in office buildings is being discussed among architects. The ociety of Architectural Iron Manufacturers on Nor lately placed a tablet on the Tower Bullding, 50 Broadway ew York, caling it the earliest exampo what is now ermed skefeton construction. Chicago architects ohjec to this statement and ciaim the honor for Mr. W. L. B Jenny, of Jenny \& Mundie, of that city. They say that Bullding, of Chicago, erected in 1883-84 Home Insurance Bulbert, Che architect of The Buiting. Brador L. Gilbert, the architect of the Tower Building, denles thls claim, and says that the Chicago huliding was of the "cag construction" type, witb the ironwork bearing the weight of the foors aione; while in "skeleton construction" the frame carries the weight of the walls and the floors to the oundation. The site of the Tower Building called out the design, says Mr. Gilbert, as it had a frontage of only 21 t. 6 Ins., and the building faws require a certain thickness of wall proportioned to the height of the huilding, that, in This huilding was coft little room inside the structure. This building was completed in 1888 - 89 . Prevlous to 1883 Mr. Geo. B. Post, of New York, had used cast-iron cofumns to support the walls of the inner court of the Equitable Life Building in New York. Mr. Wm. H. Birkmire, architect and engineer, the author of a work on "Skeleton Construction," published in 1893, supports the Chicago architects, and elaims that he worked up the plans for the iron construction of the Tower Building, as engineer of the Jackson Architectural Iron Works, which ob tained the contract for erecting this building. This Mr Gilibert denies
the third mississippi river bridge at st Louis is being considered by a board of US. Engineer offi-
cers, ineluding Majors W. L. Marshall and W. H. Bixby, cers, Including Majors W. L. Marshall and W. H. Bixby,
and Capt. Edward Barr, Engineer Corps, U. S. A. The and Capt. Edward Burr, Engineer Corps, U. S. A. The
polnt at Issue between the War Department and tbe bridge polnt at Issue between the War Department and tbe bridge
company is the lenglh of the river spans. The site, at the company is the lenglh of the river spans. The site, at the
foot of Mullanply St, was fixed some time ago by another foot of Mullanphy St, was fixed some time ago by another
board; but it was then recommended that the west span board, but it was then recommended that the west span
be made $\overline{\mathrm{Top}} \mathrm{ft}$. long instead of sw ft . as shown on the
 plans. The company held that che added $2 k 0$ ft. "would
kill the project," ou account of cost; that $\overline{\mathrm{jo}} \mathrm{ft}$. was the
 $\begin{array}{ll}\text { cantilever structure at an added cost of } \$ 1 t 5,000 . & \text { The } \\ \text { board is now hearing testimony from those interested. } & \text { Mr. }\end{array}$ board is now hearing testimony from those interested. Nr.

1. J. Tullock is the Chitef Engineer of the East St. Louis and st. Lonis Hridge \& Construction Co, which has this bridge project in hand. The Merchants Bridge at si.
Lonis has spans of sulf f t., and the old Eads Iridge spans Lonis has spans of Sill ft ., and the old Eads Lridge spans
are $3 \mathrm{f}, \mathrm{ft}$.新
the old wooden bribge over the Wabash River, t clinton, find., is to be replaced by a modern iron strucNo. years ago. Tbe old bridge was destroyed by burning it on Aug. 1 s .

THE MOST SERIOUS RALLWAY ACCIDENT of the week was a locomotive boiler exploslou ou the Mexican Central Ry., at Cardenas, Mex., on Aug. 11, in which seven men were killed and three fatally lujured. Four
of the former and one of the latter were Americau engine drivers. The engine was of a speeial pattern designed for the heavy grades on this road.

IN AN Explosion at the Llest Colliery, in Glamormany injured.
the collapse of a chicago drawhridge oeurred Aug. 17, but fortunately without causing any loss of life. The Chicago bighway drawbridges have fong been notorious for their dilapidated and disreputable condition. On Aug. 17, the drawbridges over the Calumet River at fith St. broke in two when swung open, and both end fell into the river. The report of the city Bridge Eugineer, Mr. Wilmann, to the City Englineer, Mr. Ericson, describes the condition of the wreck as follows:
The structure is a total wreck, and is beyond repairing.
The west truss is broken th the center, botb top and botThe west truss is broken th the center, botb top and bot tom chord completely severed. The boittom chord is agaln
broken 30 ft. prom the soutb end of the truss. The broken 30 ft. trom the soutb end of the truss, The eas
truss, top chord, is severed some 30 or 40 ft. north oo the center of the span, aum the botom cbord is bady twisted and broken. A A number of tote pieces forming the
lateral bracing for the top chord have gallen on the floor lateral bracing tor the top ehord have pallen on the itoor
of the bridge. The floor is bady broken and displace in in
several places. The cbauel of the river is not obstructed. several places. The cbauuel of the river is not obstructed.
As a resuit of this accident, the City Engineer has closed the Weed St. bridge and the North Halsted St. bridge to traftic, and has dectared seven otber bridges dangerous (Clybourne Place, Northwestern Ave., 22d St., Archer Ave., Southwestern Ave., Randolph St. and Polk St.). The Chicago Ave., Division St. and North Ave. bridges are also in bad condition, but can be used for a time. The Commissloner of Public Works will probably have some of these bridges closed, as he is not wiling to accept the have referred to this accident in our editorial columns.
"GANG-PLANK DISASTER" somewhat similar to the one at Bar Harbor, wblch resulted so seriously, occurred some time ago at Minneapolis, Minn., according to a letter sent us by Mr. E. T. Abbott, C. E., of that city. There people to cross e,ected with stairways the this bridge had span of 30 ft and was 8 or 10 ft . wide. Buts instead of span of 30 ft ., and was 8 or 10 ft . Wide. But, Instead of made that inger wa vlew the view the races, and it was promptiy crowded from end to struture spectators, inding women and children. The structure collapsed and prec.pitated the crowd 12 ft . to the ground below. No one was kifled, but many were in jured, and the hieycle companies who had caused the bridge to be erccted had to pay several thousand dollar damages in personal injury suits. After the accident Mr Abbott was called in to examine the plans, and he found that even with the hest material-which was not usedthe structure would fail with a load of not over 60 lhs per sq. ft . of roadway. The bridge cost $\$ 125$, and could have teen made safe hy the expenditure of about $\$ 30$ more It was a case where the possible crowding should have been foreseen and provided for; and the fallure to have the plans first examined by au engineering expert cost the buifders-in damages-many times the price of the orig inal structure. It is worthy of note that the contractor who erected the stand freed themselves from legal respon sibility by showing that the hridge was only to be use as a bridge to cross the tracks, and not for a "grand stand.

A TEST OF BRAKES for street surface railroad cars as been arranged for by the Board of Rallroad Commis sioners of the state of New York. Twenty-two permit have been issued for that purpose, and each person. or company recelving a permit is allowed to equlp with
brakes one of the cars of the Molropolitan Sireet Railway brakes one of the cars of the Merropolitan Sireet Railway one day, at Lenox Ave. and Ithith St. New York city one day, at Lenox Ave. and Ithith St., New York city
The lirst series of tests wili take place on Tuesday, Ang The lirst series of tests wili take place on Tuesday, Aug and $5 \mathrm{p} . \mathrm{m}$. On these days from five to seven brakes will be tested. Notice of the dates of the tests to follow will be given. The secretary of the board is Mr. dohn S. Kell

THE MADRAS ELECTRIC TRAMWAY, says "The Indian and Eastern Eugheer," now operates three miles of double track and $41 / 3$ miles of single track, with $2 \cdot / 3$ miles The glrder rails weigh th lbs. per yard, and are laid on he level of the rall. The gage is 1 meter and the over head trolley system is adopted. In the power-honse are four Babcock \& Wilcox boilers of hinj IIP. eacb, with two ontal compound non-condensing engines are made by the Burnley Iron Works Co. of England. The plant lit. mployes of all grades; of the fatter -o are eomductors and tis "drivers" The fare is it "ples," or $1 \frac{1}{2} \mathrm{t}$. S cents, for the first mile and 3 pies, or $3 / 4$-ct., for each suc-
ceeding mile. The plant was furnished by the Electri Construction Co., of Woiverhampton, England.

THE RAILWAYS OF ANDIA aggregated 2t,0HO mulles open and anthorized, and $22,49 \mathrm{if}$ miles in operation on the Indian standard gage of 5 ft . 6 ins., 11 (AM) miles wer of meter gage, and the balance had varlous speclal gages, The standard and meter gage lines had 4,35 locomotives, 12,814 passenger cars, so, 70s freight cars, and $97,2.24$ ears were fitted witb the automatic vacuum hrake, while cars cars were plped, but not fitede vacuum hrake, while the gers carried during the year lsis on the two princlpal gages, numbered $150,374,114$, of which about $1+10,1 \mathrm{NO}, 100 \mathrm{om}$ were fourth-class passengers. The freight carried aggre gated $31,121,830$ tons. The number of passenger-mile was $5,801,3 \overline{5}, 0,000$; nnd the ton-miles numbered $5, \bar{i} 2 \overline{7}$,

 stations open. The various accidents resuited in the kill ing of 69 passengers, 19% employees and thil other person (including trespassers and suieides), or sI9 in all; the persons injured in these three classes were 25, 371 and arely, or 799 in ali. The total coal production

THE LA iella mill, water \& POWER Co., In th Cripple Creek region of Colorado, formally opened Its new power plant on Aug. 19. This plant is designed to fur nish electric power for running the Florence \& Cripple Creek, and the Golden Circle raliways, described in Engineering News of Sept. 8, 1sus, and also to operate holsts, pumps, compressors, ete., in mines throughout the distriet The plant includes six Habeock \& Wilcox bollers, with au tomatie stokers, capahle of supplying steam to engines ag gregating $3,0 \% 1 \mathrm{HP}$. under normal cond lorsoll-sargent air-compressor, run by an Allis-Corilss engine, which has a capacity of $5,000 \mathrm{cu}$. enough to ordinarily opernte 50 drilis, or $3 i$ drills at thls altitude of $11,000 \mathrm{ft}$. The engines coupled to the electr generators are of the horizontal condensing type, with normal capacity of $\mathbf{7} \mathbf{5} 0 \mathrm{HP}$, each. The generators ar Generai Electric three-phase aiternators. As water valuable, the water is used over and over agaln by the condensing machinery, and is cooled between each sut cessive use by pumping it to a cooling-tower, 44 ft suc the engine-floor and allowing it to fall by gravity in contact with the air. The La Bella plant is intended to rep resent the most advanced state of power-honse design Th Engineer of the plant was Mr. L Summers wol Equt L. Summers, x 24 Equit able Hullding, Denver, Colo.

THE GREAT FALLS POWER CO., of Wasing C., is asking proposals for huilding a dam across the Potomac, at the Great Falls, and a canal to convey the water to a power house some distance below the dam. This company is controifed by the Washington Traction \& Power Co. The proposed dam would be located below the present government dam at this point, but no estimate is pubitshed of the power to be leveloped, and the Information as to the engineering features of the work are very vague, as pubilsbed in the Washington "Star."

TWO UNUSUAL INSTANCES OP RAILWAY TRACK

dISPLACED BY OCEAN WAVES.

Two rather unusual instances of how the forces of nature sometimes contribute to vary the monotony of the maintenance of way engineer's work are shown in the accompanying cuts. Both of these occurred during the heavy storms, whlch many of our readers will remember swept the New Engiand coasts early this year, and in both cases old ocean was the agent which upset the established order of things as it was lald down by the man of transit and level. The latter, however,
respects, a more curious accident of the same nature as the one just described. In this instance the track was a part of the South Shore Line of the Old Colony R. R., and was located on an embankment crossing a swamp or flat, Fig. 2, only a few feet above low tide. The waves swept the track inland in the direction shown by the arrows, bending over and stripping the cross-arms off the telegraph poles but not breaking the poles themselves. A considerable length of track practically intact was carried some distance away from its original position in this case.
For the information from which this note of the

FIG. 1.-VIEW SHOWING SECTION OF RAILWAY TRACK DISPLACED BY OCEAN WAVES; NEW YORK, NEW HAVEN \& HARTFORD R. R.
has this comfort, that while, as will be seen, his structures gave way to superlor forces, they preserved their Identity, and to a large extent their integrity for future usefuiness, and this is not always the case where man and his works attempt to cope with the powers of the sea.

Turning to the lliustrations, the engraving from the photograph, Fig. 1, shows a section of track on the Nantucket Branch of the New York, New Haven \& Hartford R. R., about one mile south of Pemberton, which is about 20 miles by rall from Boston, Mass. As Pemberton was the meeting place of the American Society of Civil Engineers a few years ago many of our readers will doubtless recall the locallty. It will be observed that one track is in its original position, while the other has been lifted and thrown over against the troltey poles, which it indented about $11 / 2-\mathrm{in}$. Just beyond where the men stand the track was com-

Fig. 2.-Sketch Showing Displacement of Track by Ocean Waves on the Old Colony R. R.
pletely torn to pleces for a short distance. The ralls welgh about 74 lbs. per yard. The comparatively light shelter for passengers near the middle of the view was oniy slightiy damaged, and that by wind. It will be noticed that only one trolley pole in the view is out of piumb, these poles being set in a block of concrete perhaps 3 ft . in diameter. About one-fourth mile north of this point is the location of the new fort being built point is the location of the new fort being built to protect the harbor, and about opposite the fort
a three-masted schooner, carrying a cargo of 20 ,a three-masted schooner, carrying a cargo of 20 , 000 ft . of tlmber, was washed up onto the railway company's right of way. The schooner and lum ber were only slightly damaged, as far as a casual inspection could determine. On the beach at Pemberton two barges and a four-masted schooner, all full of coal, went to pleces during the same storm.
The ine sketch shows a different, and, in some
somewhat curious phenomena illustrated has been prepared, we are indebted to Mr. N. K. Higgins, Assistant Engineer, New York, New Haven \& Hartford R. R., Boston, Mass.

THEORY AND CALCULATION OF THE TWO-HINOLD ARCH.
By Alex. Rice McKim,* M. Am. Soc. C. E.
PART I.-THEORY.
An arch differs from other structures in that vertical loads produce inward horizontal reactions as well as vertical reactions. As there can be no moment at a hinge, the points of application of the reactions are fixed by the two hinges, which are at the supports. With given loads and unknown reactions there are, therefore, four unknown quantities as regards the forces, the two components of the reaction at each hinge. In order to determine these four unknown quantities four equations of condition are necessary. The equilibrium of the arch gives us three equations; namely, the sum of all the horizontal components of the loads and reactions must equal zero, the sum of all the vertical components of the loads and reactions must equal zero, and the sum of the moments of the loads and reactions about any point must equal zero. These three equations are not sufficient to determine the four unknown quantities, and the system is staticaliy undetermined as regards the outer forces. The fourth equation is obtained by considering the elasticlty of the material of the structure.

There are three methods in use by which the elasticity of the structure is employed in the calculations. 1st, Maxwell's, which is a graphical method, and considers the elasticity of each plece successively. This method is used by American engineers, and is briefly treated in Prof. Greene's "Graphical Statics." 2d, Weyrauch's, which makes use of the neutral axis and the moment of inertia of the cross-sections. This method was very fully treated by Prof. Mueller-Bresiau, and recently in

[^0]English by Prof. Howe, by Prof. Lanza and by Prof. Jacoby. 3d, Mohr's, as developed by Dr Winkler, and which method will be followed in this article. The third method is the best for framed structures, and the second for arched for Consider the structure (Fig. 1) as without loads and without welght, free to move without frlction at the right-hand support, and fixed in position ai the left-hand support. If a horizontal outward

unit force be placed at the right support, there will be an equal outward reaction at the left support and certain stresses in the pleces, which stresses we will designate by h for any plece.
Now consider the structure as before, but with out the horizontal force. At any joint, as III, place a vertical load P, and call its distance from the left support a, and from the right support b. Th vertical reactions for the left and right supports. will be, respectively,

$$
\begin{equation*}
P \frac{b}{L} \text { and } P \frac{a}{L} \tag{1}
\end{equation*}
$$

where L is the span or distance between hinges This force will produce certain stresses in the pleces, which we will designate as \mathbf{V} for any plece The length of the span would, however, be in creased somewhat by the action of these stresses The change in span we will designate by $\triangle I$ Now place an inward horizontal force H at th right support, just sufficlent to diminish the span to its length L before \mathbf{P} was applied. The stress in any plece would then be
and

$$
\begin{equation*}
\mathbf{S}=\mathrm{V}-\mathrm{h} \mathbf{H} \tag{2}
\end{equation*}
$$

$$
\begin{equation*}
\frac{d S}{d H}=-h \tag{3}
\end{equation*}
$$

d

From the theory of eiasticity we have for the external work upon a homogeneous bar of constant cross-section A for a gradually appiled load s,

$$
=\frac{\mathrm{s}^{2} 1}{2 \mathrm{EAA}}
$$

and for the system

$$
\begin{equation*}
W=\Sigma \frac{s^{2} 1}{2 E A} . \tag{4}
\end{equation*}
$$

Aiso, if W represents the work due to the change of form of a framed structure in equilibrium under the action of forces applied at its joints and expressed as a function of these forces, and if the point of application of one of these forces \mathbf{P} moves by the action of the forces a distance p relative to the fine of direction of P, then

$$
\begin{equation*}
p=\frac{d W}{d P} \tag{5}
\end{equation*}
$$

From equation (5) we have

$$
-\triangle L=\frac{d W}{d H}
$$

therefore

$$
\frac{d W}{d H}=\Sigma \frac{s 1}{E A} \frac{d s}{d H}
$$

which, with (2) and (3), gives

$$
-\Delta L=-\Sigma \frac{\mathrm{s} 1 \mathrm{~h}}{\mathrm{EA}}
$$

or

$$
\Delta L=\Sigma \frac{V 1 h}{E A}-\Sigma \frac{1 h^{2} H}{E A},
$$

which solving for \mathbf{H} gives

$$
\frac{\Sigma \frac{V 1 H}{K A}-\Sigma \Delta L}{\Sigma \frac{h^{2} 1}{A}}
$$

If the horizontal reaction is resisted by a tle-rod as is often the case with roof trusses, the relative displacement of the hinges $\triangle \mathrm{L}$ is equal to the
strain on the tie－rod．If，however，the supports tred．$\triangle L$ wlll equal zero，and

$$
\begin{equation*}
H=\frac{\Sigma \frac{V 1 h}{E A}}{\Sigma \frac{h^{2} 1}{A}} \tag{6}
\end{equation*}
$$

Again，assume the system to be without forces or weight，and free to move without friction at one support and fixed in position at the other support． $1 f$ all the pieces are subjected to a change in emperature，the length of the span will change． In order to bring the span back to its initial length，a force \mathbf{T} would have to be applied at the movable support，an inward force for a rise of temperature，and an outward force for a fall of temperature．These forces would produce oppo－ site stresses，in the two cases．If all the bars changed t degrees，and if e represent the coeffl－ cient of expansion，then the change in span would be e t ．．Taking the same stens as before we have $-e \mathrm{t} L=\frac{\mathrm{dW}}{\mathrm{dT}}, \quad \mathrm{s}= \pm \mathbf{h T}, \quad \frac{\mathrm{ds}}{\mathrm{dT}}= \pm \mathrm{h}$ ．
$W=\Sigma \frac{s^{2} 1}{2 E A}, \quad d W=\Sigma \frac{s 1}{E A} \cdot \frac{d s}{d T}$ and

$$
\begin{equation*}
T= \pm \frac{E \in t L}{\sum \frac{b^{2} l}{A}} \tag{i}
\end{equation*}
$$

Formulas（6）and（7）can be simplified some－ what．Take the left－hand hinge as the origin of rectangular axes，and let the axis of \mathbf{X} pass through the right hinge．Let x and y be the co－ ordinates of the Moment Polnt of any piece， \mathbf{r} the perpendicular distance of the Moment Point from the line of direction of its piece， \mathbf{M}^{\prime} the moment of the forces about any Moment Point，and m the moment about the same Moment Point，neglecting the horizontal reactions，or considering the forces as acting on a simple beam．The Moment Point for any piece is the point about which，in the Method of Sections，the moment is taken to deter－ mine the stress of the piece，and the section taken is the Moment Section．Then，

$$
\begin{gathered}
s=\frac{M^{\prime}}{r} \quad \text { and } \quad \mathbf{M}^{\prime}=m-H y ; \\
\text { or, } \quad s=\left[\frac{m}{r}-H \frac{y}{r}\right] .
\end{gathered}
$$

Comparing this with（5）we obtain

$$
\mathrm{v}=\frac{\mathrm{m}}{\mathrm{r}} \quad \text { and } \quad \mathrm{h}=\frac{\mathrm{y}}{\mathrm{r}} .
$$

Substituting these values in（6）and（7）we ob－ tain．

$$
\begin{equation*}
H=\frac{\Sigma m \frac{y l}{r^{2} A}}{\sum \frac{y^{2} l}{r^{2} A}}, \tag{8}
\end{equation*}
$$

If we substitute for m in equation（8）the values of equations（1）for the horizontal reaction，with a load \mathbf{P} at distances a from the left support，and b from the right support

$$
H=\frac{P\left\{\frac{b}{L} \sum \frac{y}{r^{2}} \frac{1}{A} x+\frac{a}{L} \sum \frac{y^{1}}{r^{2} A} x^{\prime}\right\}}{\sum \frac{y^{2} 1}{r^{3} A}}(10)
$$

Where the summation of the first term in the brackets of the numerator is for pleces to the lef of the load \mathbf{P}, \mathbf{x} being the distance of each Momen Point from the left support，and where the sum mation of the second term is for pieces to the righ of the load， \mathbf{x}^{\prime} being the distance of each Moment Point from the right support．
Multiplying the quantity

for each plece by the unit force，and considering the products as vertical forces，each acting at its respective Moment Point on a simple beam of
span L ，the moment of these forces about any point，at a distance a from the left support，and at a distance b from the right support，will be equal to

$$
\begin{equation*}
M=\frac{b}{L} \Sigma \frac{y 1}{r^{2} A} x-\frac{a}{L} \sum \frac{y 1}{r^{2} A} x^{\prime} \tag{11}
\end{equation*}
$$

As this is the equivalent of the quantity in the brackets of the numerator of equation（10），we can，therefore，express the latter as

$$
H=P \frac{M}{\Sigma \frac{\mathbf{y}^{2} l}{\mathbf{r}^{2} A}}
$$

If \mathbf{P} is equal to the unit force，we have

$$
\begin{equation*}
H=\frac{M}{\Sigma \frac{\mathbf{y}^{2} 1}{r^{2} A}} . \tag{12}
\end{equation*}
$$

This，however，applies oniy to such pieces as are on the same side of the load as its Moment Point， which is the case only with the chords．The web members can be taken account of in two ways． The force

$\frac{\mathrm{y} 1}{\mathrm{r}^{2} \mathrm{~A}} 1$

can be put in the summation（11）for the opposite side from the piece，and x taken as $\mathrm{L}-\mathrm{x}$ ．Or the force can be replaced by two equivalent vertical forces at the bays of the joints on each side of the intersection of the Moment Section with the lower chord．For instance，wlth the Moment Point on the right of the piece，if c represent the horizontal distance between the joints at which the forces are to be placed，and d the distance from the right－hand joint to the Moment Point，then the force for the left－hand joint would be

$$
\begin{equation*}
+\frac{d}{c} \frac{\mathrm{y}^{2}}{\mathrm{r}^{2} \mathrm{~A}} 1 . \tag{13}
\end{equation*}
$$

and for the right－hand joint

$$
\begin{equation*}
-\frac{d+c}{c} \frac{\mathbf{y ~}^{2}}{r^{2} A} 1 . \tag{14}
\end{equation*}
$$

In order to determine the stress in any plece we take moments about the Moment Point of all the forces acting on one side of the Moment section． And in order to better study the effect on any piece of any loading which we might have，we first take a unit force and place it successively at each joint and determine its effect upon the plece． There are three actions working upon the plece， which have to be determined．The action on the plece of the vertical loads and their vertical reac－ tions，the action of that part of the horizontal re－ action produced by the vertical loads，and the ac－ tion of the horizontal reaction produced by changes of temperature．The first two actlons pro－ duce opposite effects in the piece，whlle the third may produce either a tensile or a compressive stress for the same piece，the one for a rise and the other for a fall in temperature．For the stress in the upper chord and verticals we have

$$
\begin{equation*}
s=\frac{-m+H y \pm T y}{r}=\frac{y}{r}\left\{H-\frac{m}{y} \pm T\right\} \tag{15}
\end{equation*}
$$

and for the lower chord and diagonals

$$
\mathrm{s}=\frac{\mathrm{m}-\mathrm{Hy} \pm \mathrm{Ty}}{\mathrm{r}}=\frac{\mathrm{y}}{\mathrm{r}}\left[\frac{\mathrm{~m}}{\mathrm{y}}-\mathrm{H} \pm \mathrm{T}\right]
$$

PART II．－CALCULATION．
I．Conditions．－Suppose we have a truss similar to Flg．1，of $200-\mathrm{ft}$ ．span，divided into 10 panels of

TABLE II．

II．III．IV．V．VI．VII．VIII．XI．X ． $\begin{array}{lllllllll}1 & -0.549 & 0.488 & 0.427 & 0.366 & 0.305 & 0.244 & 0.183 & 0.122 \\ = & 0.061\end{array}$ $\begin{array}{llllllllllllll} & 0.280 & 0.560 & 0.490 & 0.420 & 0.350 & 0.280 & 0.210 & 0.140 & 0.070\end{array}$	$3-0.186$	0.373	0.560	0.480	0.400	0.320	0.240	0.140	0.070
4	0.130	0.080							$\begin{array}{lllllllll}5-0.111 & 0.222 & 0.333 & 0.444 & 0.555 & 0.444 & 0.333 & 0.222 & 0.111 \\ 6+0.180 & 0.160 & 0.140 \\ 7\end{array}$

 | $10+0.100$ | 0.200 | 0.300 | 0.400 | 0.500 | 0.300 | 0.340 | 0.160 | 0.080 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | $11+0.5550 .4940 .3620 .4000 .500 \quad 0.400 \quad 0.3000 .200 \quad 0.100$

 $\begin{array}{llllllllllll}19-0.095 & 0.190 & 0.735 & 0.630 & 0.525 & 0.420 & 0.315 & 0.210 & 0.105 \\ 20-0.044 & 0.089 & 0.133 & 0.930 & 0.777 & 0.622 & 0.466 & 0.310 & 0.155\end{array}$

20 ft ．each，with the upper chord horlzontal and the joints of the lower chord lying in a parabola． hinged at the two supports，an end height of 100 ft ．，and a center height of 10 ft ．The bents are marked with Roman numerais，and the pleces with Arabic．The truss is to sustain a live load of $6,000 \mathrm{lbs}$ ．per running foot，besides the dead load，which will be assumed at 40 tons per panel． The ailowable stresses in pounds per square Inch are：for compression

$$
\frac{9,000}{1+\frac{1^{2}}{30,000 \mathrm{R}^{2}}}
$$

for live load and 16,000 for dead；and for tension， 10,000 for live load and 20,000 for dead load．The temperature stresses are to be added to the dead load stresses，and 80% of the reverse stresses are to be added to the live ioad stresses in getting the sections．The Modulus of Elasticity will be taken at $2,088,000$ tons per square foot，and the Coeffi－ clent of Expansion as

$$
\frac{1}{150,000}
$$

of the length per degree of temperature Fahren－ heit．
2．Preliminary Calculations．－For each plece cal culate the length 1 ，the vertical distance y of its Moment Point above the supports，and the per－ pendicular distance r of the Moment Point from the line of direction of the plece．For the upper chord pleces the Moment Points would be at the joints of the lower chord；for the lower chord they would be at the joints of the upper chord，and for the diagonals and verticals they would be at the points where the line of direction of the iower

1	2	3	4	5	$\begin{aligned} & \text { TABLE } \\ & 6 \end{aligned}$	III． 7	8	9	10	
				Tem－			$\mathrm{y}^{2} 1$	71	\％ 1	11
Piece．	Dead．	live．	Minlmum live．	pera－ ture，t．	Reverse．	Gr．area， sq．ft．	r^{3} A	r^{2}	$\mathrm{r}^{\mathbf{4}} \mathrm{A}$	$\mathrm{r}^{2} \mathbf{A}$
	－ 6.48	＋ 14.72	－ 24.44	2.71	＋ 11.00	0.075	61.3	1.89 II ．		
2	－ 21.30	＋ 29.71	－ 61.54	7.68	＋ 16.085	0.197	187.4	3.25 III．		
3	－ 48.46	＋ 39.60	－ 112.29	17.51	＋ 8.654	0.304	${ }^{631.6}$	8.35 IV ．		
5	$=$ $=132.16$	36.21 $+\quad 0.00$	$\begin{aligned} & \\ &= 147.51 \\ &-198.18\end{aligned}$	35.89 50.85	．．．	0.510 0.580	$1,582.7$ $2,798.1$	${ }_{31.032} \mathbf{V} \mathbf{V i}$ ．		
6	－114．81	＋ +8.56	－188．80	10.75	．．．	0.578	2，938．7	31.39 I ．		
7	－ 86.42	＋ 9.70	－ 139.34	13.44	．．．．．	0.403	452.0	4.52 II．	…．．	
8	－ 39.08	＋ 4.30	－ 101.63	17.92		0.280	1，041．1	10.41 III．	．．．．．	．．．．
${ }^{9} 10$	1.49 $+\quad 27.49$	＋ 57.29 $+\quad 53.79$	二 ${ }^{59.54}$	${ }_{42.21}$	+82.12 +27.27	${ }_{0} 0.258$	1，911．3	19.11 IV．		
11	$+\quad 24.49$ $+\quad$	+88.19 +87.89	二 50.89	92.51	－ 37.27	0.217	6，5027．4	65．55 V．	28.62 II．	19.36 I ．
12	＋ 30.16	＋ 83.61	－ 38.45	11.64	－20．94	0.182	1，076．2		28.87 III ．	18.11 II ．
13	＋ 39.96	＋ 80.53	-16.35	15.51		0.154	1，543．3		38.35 IV．	20.92 III
14	＋ 57.76	＋ 97.03	－ 10.39	22.23		0.153	2，446．9		55.28 V ．	30.81 IV ．
15	＋ 42.73	＋161．93	－ 97.84	16.72	－ 71.82	0.355	551.6	．．．．．．	20.84 Vi ．	15.82 V ．
16	＝ 43.65	$\begin{array}{r}\text {＋} \\ + \\ +8878 \\ \hline\end{array}$	－ 117.51	${ }_{10} 9.15$	＋ 14.15	0.413				
18	二 64.19	＋ 34.78 +15.92	-131.07 -122.39	11.53	．．．．．．	0.382 0.361	614.8 529.2		18.97 III．	$\begin{array}{r} 12.83 \mathrm{I} . \\ 8.90 \\ \mathrm{II} . \end{array}$
19	－ 72.32	＋ 3.59	－ 112.07	12.50		0.340	351.5		8.28 IV．	4.76 III．
20	－ 58.92	＋ 27.63	－116．02	7.48	．．．	0.328	728.3	．．．．．	16.41 V ．	9.14 IV ．

chord pieces intersect the upper chord. For each piece obtain the quantities

$\frac{y}{r} \cdot \frac{y^{2} 1}{r^{2}}$ and $\frac{y 1}{r^{2}}$

Muitiply each of the last by the unit force and consider them as vertical forees acting at their respective. Moment Points. As there are forces hetween the Moment Point and Moment Sections of the web members, their forces are to he replaced by the two equivalent forees,
$\frac{d}{c} \frac{y_{1}}{r^{2}}$ (18) and $-\frac{d+e}{c} \frac{y_{i}}{r^{2}}$ (14),
acting at the upper chord joints on either side of the Moment Section, the former at the joint furher from the Moment Point, and the latter at the nearer Joint. In above equations e is the panei ength, and d the horizontal distance of the nearer Joint from the Moment Point. These quantities are ail given in Tabie I., and also the foints at which the forces act.
3. Values of $\frac{\mathrm{m}}{\mathrm{m}}$-Obtain for each plece for
every bay from 11. to X. the stress $\stackrel{m}{\square}$, where m
is the moment negiecting the horizontal reaction about the Moment Point of the piece with a unit load at the bay in question, and y is the vertical distance of the Moment Point above the supports, These stresses can best be represented by ordinates of an Influence Curve. In Fig. 2 let A B

represent the span, C the Moment Section, and D the Moment Point of any piece distant a from \mathbf{A} and brom 1B. Draw A E and B G perpendicuiar to A B, and make A E equal to $\frac{a}{y} 1$ and B G equai to $\frac{b}{-}$ 1. Draw A G and $B E$, and they will intersect at \mathbf{F}, on the ordinate from D. For any bay at the left of the Moment Section C, the stress ${ }^{m}$ wili be equal to its ordinate from $\mathbf{A} \mathbf{B}$ to $\mathbf{A} G$ and for any bay at the right of the Moment Section C the stress $\frac{m}{}$ will be equal to its ordinate
from A B to B E. Table 11. contalns these ordinates from each bay for every plece, the sign placed after the number representing the piece indicales the character of the stresses in the line + for tensile and - for compressive
4. First Estimate.-Horizontal Reactions.-In this paragraph we will neglect the web members and consider only the sections of the chord members. We will consider the chords as having the same uniform section throughout, which section we will take as that required for the plece of the upper chord whosestress is nearest the average stress of both chords. This piece will contaln a point which is at a distance from the supports equal to the square of the span divided by the thre-halves power of the difference between the end and middle vertical pieces. For the truss under consideration it would be piece 3 .

In formuin (10) for a uniform section the area A would cancel out, and for a load $P=1$, we would have for the expression of the horizontal reaction for a unit load at a point distant a from the left support and b from the right support,

where the numerator is the moment of the first 10 quantities taken on both sides in coiumn 7 of Table I., each multipited by the unit force, and considered as a vertical load acting at its Moment Point, and the denominator is twice the sum of the first 10 quantities of column 6 of Table I. The forces of the numerator are: for bays $I I$ and X 1.963 each, for 111 and IX 3.348 each, for IV and VIll 7.471 each, for V and V11 20.682 each, and for VI 36. The moments for these forces in foot-tons will be: for II and X 1008.28, for III and IX 2019.30, for 1 V and VIII 2942.36, for V and VII 3716.00 , and for VI 4076.00 . These moand VII 3716.00 , and for VI 4076.00 . These mo-
ments, divided by 9757.148 , or twice the sum of ments, divided by 9757.148 , or twice the sum of
the first ten quantitles of column 6 of Tabie 1 , will give a horizontal reaction for a unit of load at 11 or X of 0.105 , at 111 or 1 X of 0.207 , at IV or VII1 of 0.302 , at V or V11 of 0.381 , and at V1 of 0.418 .
5. Chord Stresses.-These are obtained by means of formula (15),

$$
s=\frac{y}{r}\left[H-\frac{m}{y} \pm T\right]
$$

for the upper chord and formula (16),

$$
\mathrm{s}=\frac{\mathrm{y}}{\mathrm{r}}\left[\frac{\mathrm{~m}}{\mathrm{y}}-\mathrm{H}_{ \pm} \mathrm{T}\right]
$$

for the lower chord
The factor for each piece is found in Table
1., Column 5; the horizontal reactions for a unit foad at any bay is found in the preceding paragraph; the values of $\frac{m}{m}$ for every plece with a unit load at each bay is found in Table II.; and the horizontal reaction T, due to the greatest assumed change in temperature, can be obtained from paragraph 6. As according to the conditions in paragraph 1, we must caiculate the dead, live and temperature stresses separately, we will separate the terms in the above expression. We will then have for the dead stress in any plece in the upper chord,

$$
40 \frac{y}{r}\left[H-\frac{m}{y}\right]
$$

For the maximum live stress,
$60 \frac{y}{r}$ (summation of $\left[H-\frac{m}{y}\right]$ for positive values). For the minimum live stress,
60 $\frac{\mathbf{y}}{r}$ (summation of $\left[H-\frac{m}{y}\right]$ for negative values).
And for the temperature stress

$$
\pm \frac{\mathrm{y}}{\mathrm{r}} \mathrm{~T} .
$$

The terms maximum and minimum are used algebraically. By changing the signs the above apply to the lower chord pieces. Tabie III gives these results in columns $2,3,4,5$, and 6 .
Taking the algebraic sum of the first two quan titles within the brackets for each bay for the piece 1, gives for a unit load at II the value 0.044 , at III 0.085, at IV 0.119, at V 0.137, at V1 0.113 , at VII 0.15 , at V111 - 0.125 , at IX -0.281 , at $X-0.444$. Adding the positive and the negative values gives for piece $1,+0.513$ and -0.850 . In the same way we obtain for piece 2 , +0.363 and - $0.755 ;$ for plece $3,+0.213$ and -0.604 ; for piece $4,+0.095$ and -0.387 ; for piec $5,-0.367$; for piece $6,+0.075$ and -1.583 ; for piece $7,+0.068$ and -0.976 ; for piece $8 .+0.226$ and -0.534 ; for piece $9,+0.205$ and -0.213 ; and for piece $10+0.120$ and -0.028
6. Temperature.-By formula (9) we have $T= \pm \frac{\mathrm{E} \cdot \mathrm{e} \cdot \mathrm{t} \cdot \mathrm{L}}{\mathrm{y} \frac{\mathrm{y}^{2} 1}{}}= \pm \frac{2,088,000 \times 80 \times 200 \times \mathrm{A}}{150,000 \times 9,757.15}= \pm 22.82 \mathrm{~A}$

From paragraph 5 we have for the largest compressive stress in piece $\mathbf{3}$ by formula (15),
$\mathrm{s}=3.1[-30.7-22.82 \mathrm{~A}]$.
This must equal p A where p is the allowable This must equal pill where p , square foot. Solving for A, we obtain

$$
\begin{aligned}
& \qquad \mathrm{A}=\frac{-36.1 \times 3.1}{720-22.82 \times 3.1}=0.247 \mathrm{sq} . \mathrm{ft} \\
& \text { Therefore } \mathrm{T} \text { equals } \pm 5.65 \text { tons. }
\end{aligned}
$$

7. Finai Calculations.-Web Stresses.-Using the same formulas as in paragraph 5 , the str the weh members contained in Table III ar found.
8. Areas.-Having now obtained approximate values for all the stresses, settie upon the scctions for each plece, and determine its area accorling to the allowable stresses in paragraph 1. The wind stresses should in practice aiso be obtainal and the necessary areas here added. Howevir a these do not effect the method, we have amis them. The area of each piece in square feet is given in column 7 of Table III
9. Correction for Assumptions.-In paragraph 4 we assumed that the chords had a uniform se tion which canceiled out in formula (10).
ver, we have approximate areas for all the Dlvide the quantities in columns 6,8 andeces Table I. by their areas in column 7 of Table ill We then obtain the quantities in coiumns $8,9,11$ and 11 of Table III. Take the summations and in sert in formula (10).

obtaining the horizonntal reactions for a unit 10ad at each hay. Also insert in formula (9),

$$
T=\frac{E \text { e } t L}{\sum \frac{y^{2} i}{r^{2} A}}
$$

and obtain the horizontal reaction due to the change in temperature, as was done in paragraph 6. With these values obtain the stresses and areas, as was done in paragraphs 5,7 and 8 .

THE LAUNCH OF A BATTLESHIP.* By H. R. Champness. \uparrow (With full-page plate.)

The launch to he descrihed was that of Devonport's first modern hattleship, H. M. S. "Ocean," the first since the days of wood shiphuliding, the preceding ship having also heen named "Ocean," and launched as long ago as incis, How great the advance was will be understood from the fact that the weight of the present ship as launched was 7,110 tons, the nearest approach to this heing a steel cruiser, whose launching displacement was 2,830 tons, sent off the same sllp in Novemher, 1890
It is true that this is not a record weight even for battleships launched from the Imperial Dockyards, and it has heen far eclipsed hy what was lately done in launching the "Oceanic," when 11,000 tons slld into the water, though the mean pressure per square foot of the eradie was only 2.35 tons as compared with the 2.5 tons of the "Ocean"; but those most closely responsihie for ship launching have little desire to create records of this sort, and certainiy so far as the chief constructors of the naval dockyards are concerned, the builders of the "Oceanic" are wefcome to their pre-eminence.
Building Sups.-An incidental evidence of the growth in dimenslons of modern ships is seen in some of the naval yards, where the huilding slip has been adapted for launching the present ships of great heam and flat floor by cutting away the sides of the siip at the fower end to enabie the full section of the ship to clear it. This was avoided at Devonport by increasing the width of the slip throughout sufficiently to provide for all prohable increases of heam; the slip was also lengthened at the upper end, and two concrete plers 25 ft . wide were built at the lower end in wake of the launching ways, to carry the ship into deep water when the fore end of the cradle left the ground ways.

How well these old slips were piled is clear, since, in spite of the enormous increase of weight borne beyond what could have heen dreamed of when they were first pre pared, no sign of suhsidence of any kind was discernible though periodical tests for it were made, and the structure was carefully watched.
Bullding Declivity.-The declivity of the keel in build ing was $5 / 8-\mathrm{in}$. to the ft ., ahout as usual for a ship of this size, and that of the groundways, or foundation on wbich the cradie carrying the ship slides, was $51-64-\mathrm{in}$. to the ft . The longitudinal section of this surface was a circuia arc, and had a "eamber," or round up, of 9 ins. in a length of 300 ft . This prevented the groundways hecoming hol low under compression due to the weight of the ship and eradle, and so inereasing the difficuity of launehing, though there is perhaps no ahsolute necessity for this in nava yards where the floor of the slip is of granite or other hard stone upon a thick bed of concrete. It is, however, de
*A paper read at the Plymouth meeting of the Institution
of Mechanlcal Engineers.
\dagger Chlef Constructor, H. M. Dockyard, Devonport.
sirable thst the form of the groundwsys should have some effect in holding the ship just before launching. and this varies with the position decided on for the top of the camber. Dockyard practice in this respect differs, snd this point is sometimes at mld-tength, and in other csses at two thirds lie leagth of ship from the bow, or even st the sfter perpendiculsr. The dectivity of $/ / s^{-i n}$. to the rt., referred io above, is the gradient of the tangent to this curved surface at the top of the camber, and the holding tendency is grestest the fsrther sft the tangent point is.
in in the "Ocesa," thls poin
or after perpendieular.
in launchlng, the fore end of the straight part of the keel spproaches the bottom of the ship In each foot of movement approximately by the difference between the launching and building deelivities, viz., $5 /$ /s - $5 / 8$, or $11 / \omega-\mathrm{in}$, , and as the distance from the fore end of the keel
to the after end of the stralght fioor of the slip was 348
 This consideration, and the clearance between the kiel and the bottom of the slip st this point, genersily from 1 to 2 ft . determines the height at whieh the foremost block shail it laid for bullding, and taken in connection with the bulidins declivity, enables the blocks to be laid correctly in view of the launching conditions. It is further necessary that this heigbt of blocks should be sufficient to attow room oa top of the groundways for the section of crad shown in Fig. 15, Including the bigeway, the wedges or "slices," snd the solid timber between them and the ship which is known as "stopping up." and had a minimum
depth of about 6 Ins. depth of about 6 Ins .
The length of the groundways must he such as to secure that the ship and eradie ahall not tip about thetr after end, and to determine this, eertatn cateulations
the results of Ship's Launching Weight.-The approximate date of the proposed tsunch det lom the time ship wouid be upon the sllp, and the local etreumstances
to the base. The curve of buoyancy intersects thls at a polnt A sfter the ship has travelied 337 ft ., when she is ty water-borne.
The center of gravity of this shlp was over the after end of the ways when she had moved $2 \pi 7 \mathrm{ft}$., when of course the moment of weightabout this point was zero, while there
was then s large positive moment of buoyancy, which was was then s large positive moment of buoyancy, which was welght until the ship was fully afloat. There could therefore be no tipping motion while on the whys. Although when the weight of the shtp was taken on the cradle, the when the weight of the ship was coundways was not untform, it only vsried with the relatively small variation in the wetght of the ship per foot of tength as buiit at time the wetght of the ship per foot of length as buiit at time tration of welght due to sueh fittings as armor, machinery, etc. As buoyancy is gsined in launching, a potnt is reached when the fore end of the cradie is aione in connection with the groundways, and it is there the loca stress in taunching is greatest. This is shown in Fig. 2,
where the moment of weight ahout the fore puppet being constant is represented by a strnight tine parstlel to the bnse, and the curve of moment of buoyancy about the same point intersects it a point a corresponding to a travel of 302 ft ., when the stern of the shtp commences to lift of 302 ft ., when the stern of the ship commences to lift.
The compressive force on the fore poppets at this moment is shown by the difference of ordinates, C D, between the euryes of weight and buoyancy, and was equal to 1,320 tons, or cito tons on each poppet, which had an srea of 2 sq. ft., and therefore bore momentarity a stress of 29.4 tons per sq. ft. The mean pressure per square foot of tons per sq. f . poppets when in position on the slip differs considerabty with different ships, ranging from about 1 to 3 tons, which is very seldom exceeded. In this instance it was 2.5 tons, White it is not generaliy necessary with warshipa to de Wimine whethey they will have stability in the launching condition, beesuse they are designed to be stable however

FIG. 1.-VIEW OF BRITISH BATTLESHIP "OCEAN," LAUNCHED AT DEVONPORT DOCKYARD, PLYMOUTH, 1898.
as to avaiiable labor, conpted with hullding experlence, enabled in approximation of the launching weight to be made. The proper progress of the ship fixed the parts which made up this weight, and thus it was possible to caiculate in detall the welght of the several parts, and the positions of their eenters of gravity. The weight ealeulation is much simplified when, as is usual, a record is kept of all weights put on board. The total weight, and the position of center of gravity both verticatly and horszontaliy, were thus obtatned, and were easily e, rrected as the actuat date of launch spproached, and a closer
imation to the launching weight became poasible.
Imation to the launching weight became posible.
The probable helght of tide was given by the tide table, and was drawn upon the profle of the ship as she tay on the biocks, Fig. 2. The displacement was calculated to liaes parallel to this at any convenient distance, say 2 ft., which, as the shlp was launched as a deelivity of $51-14-\mathrm{in}$. to the ft ., correaponded to a travel down the
ways of 51
calculated orcinates giving the eurve of buoyaney, Fig. 2. The position of the center of buoyaney was aiso estimated for the displacement to each waterilne These caleulations assumed that the ship did not hift off the groundways as the after part hecame 1 mmersed, and it aiso elear that the trim differed widely from the water-borne condition, beeause the keel was at a declivity of $58-\mathrm{in}$. to the ft ., and In a length of 390 ft . this gave 3 difference of draft at the fore and after perpendiculars of $58 x^{230} / 12 \mathrm{ft}$. $=$ say 20 ft . 4 ins.; whlle the trim by the stern when the vessel was afloat was only 3 ft ., and her fuliy isdened eondition is designed for an even keel.
The results of these calculations, and the moments weight and huoyaney about the after end of the ways and the fore poppet are plotted In Fig. 2, where the ahsclsse represent the travel of the shlp down the ways. The weight helng constant is shown by a straight line parallel

Hight, yet such a calcutation is made, and both the vertical position of the center of gravity and the metacentric height The trim of the ship when in this caso was 12 ft
The trim of the ship when afoat was also estimated, and showed that she would not be fully water-horne when the cradle left the end of the groundways, hut would drop about 4 ft ., for which there was ample depth of water.
The details of the structure of groundwas and
The details of the structure of groundways and eradie, and the internal shoring of the ship to enable the strains deveioped in launching to be effectively distrlbuted and satety borne, aro worth deseription.
Groundways.-The groundways were 427 ft . long and a ft . 6 ins. wide, and were lald on transverse blocks of oak in wake of each "fand tie," or wood foundation of the sitp spaeed about 5 ft .9 ins. apart. Between the oak blocks were two of fir equaliy spaced for ahout two-thirds the length of the stip, untll near the position of the fore poppet already referred to, where the stern of the ship commences to lift. Below this, the blocks were of oak or teak, laid side by slde. The upper surface of the blocks was trimmed throughout to the eamber, and eovered with $5-\mathrm{in}$. teak plank, seeured with $\pi / 4 \mathrm{ln}$. bolts 9 ins . tong, ragpointed and punched down helow the surface at least $3 / 4-\ln$. to obviate all danger of their protruding under the com pression of the ways and ohstructing the launch. The butts of these planks were well distributed, and were beveled, as shown in Fig. 8, to faellitate the travel of the cradte over them. The foremost planks in each strake were made as tong as possible, dowelled into the bloeks, and extended well abaft the fore end of the eradie. Through these planks was holted the large eleat, A (Fig. 4), whlch formed a base for the pressure of the hydraulic pumps, provided for pushing the ship off, if necessary. On the outer end of these groundways, a "ribhand," A (Figs. 7 and 9), $12 \times 10 \mathrm{ins}$., extending the whole length of the ways, was fitted. It was of fir except the upper 30 ft . which were of best English oak. The general security
as $31 / 2-\mathrm{in}$. wood dowels, nhout 5 ft . npart for about 300 t. down, with Intermediste bolts $1-\ln$. In diameter, except at the fore end where they were 1% ins. The piank dowelled to the transverse biocks in wake of the was aiso below it, as welt as bolted like the other plank. The oak ribband, whose fore end took the thrist of the dog-shore was doweiled to the plank, and bolted aiternately through t to ench transverse hiock of the groundways, nod had a steel shoe at the fore end whose faying surface against the dog-shore wns planed, B, Fig. - This ribband was laid so that when the cradie was in position there shouid be a clearance hetween the two varying from $1 / 6$-in. at the upper to $21 / 4$ ins. at the lower end of the ways. This provided against the cradie jamming between the ribbands as the ship went off, and the increased clearance at the lower end gave play for some smail smount of swerving on the ways if the tide caught the ship before she was fulfy afloat To resist the tendency of any such movenent to cary away the ribband, each piece was shored not oniy at the butt, but aiso in mid-length, the shore belng about 10 ft apart in wake of the cradle and 30 ft , betow. To preveut the shores which are fitted below high water from ilfing under the sction of the haek wash as the ship went off they were boited to the groundways, and inshed to the lan ties of the stip at thelr outer ends. Tise three ribband shores at the fore end of the cradic were oniy si ft npart The outer ends of ail these shores butted against the soild masonry at the sides of the slip.
Cradie.-The general construction and componeat parts of the cradte wiit be understood from the accompanying cuts. The fore end of It was about 6 is ft . abaft the stem, and tho after end at extremtty of inner shaft tube, both being in wake of one of the main transverse buikheads. itesting on the groundways are the bilgeways, sothd timber struc tures of Dantzic fir, 310 ft . long, 5 ft . wide, and 2 ft . thick "sliding purface betng faced with $4-\mathrm{In}$. teak, caiied the up of 4 bsulk." The fir section of 20 sq . ft . Was mad overlapping and beling bolted and dowelled together. The teak stiding plank was fastened with $3 / /$-in rag. pointed bolts, 8 ins. long, the heads belng punched beiow tin surface at least $3 / 4-\mathrm{in}$., as described for the fastenings of the groundways, and for a stmitar reason. The ends of the bilgeways were buitt up by cleats, B C, Figs. 4 and 5 , and thus formed stops for the heeis of the end poppets As the fore end of these bilgeways had to bear consideribie stress, the cleat was of English oak the futi width of the ways and strongly bolted to them, and on its outer she was fitted the dog-eieat of Engiish oak, 1 ft . square in sec tion, fastened not only with doweis, but with the in sec vanized boits, pasing right through the cieat, the heads bearing on a ateel face-piate to the dog-cient E-in. head and the points hove up on a similar plate, as shown plan and section through CD, Figs. 10 and 11 . The nfter end of this dog-cieat was fitted with a steel shoe st similar to that at the fore end of the ribhand. The space etween these two points was fliied by the Tor-shore space African oak, 10 ft . long and 1 ft . square in section, having steel shoe at each end, F G, simiiar to those having agalnst.
It was this shore on each slde which, with the few biocks remaining under the keel just hefore launching, and the friction of the grease on the ways, prevented the ahip from being taunched. Fig. 7 shows that the shore was cut at he fore end to such an angle that it cleared itself as it fell. A trial of this is always made when the ahore is first fitted, and before any stratn come upon it, by ietting a dummy welght fall upon tt . The wedge-shaped steel face H on top of the dog-shore, immedtateiy under the weight, had its upper surface square to the direction of the blow he fulf effect of which was thus transmitted to the shore While the exact resistance to bo overeome in knocking away the dog-shore cannot be determined, a rough estimate on the safe aide may be made by resolving the welght of the sbip parallei to the thrust of the shore, and assuming that the blocks remaining under the ship and the grease upon the ways hear no part in resisting this thus get a erushing force on each shoro of about 240 tons, and taking the coefficlent of steel on steel as 0.3 , and al lowing that the shore ciears itself after about $1 / 2-\ln$. of travel, which is realty the case, we get

Work to be done $=240 \times 0.3 \times 1 / 24=3 \mathrm{ft}$.-tons.
The work due to the fall of half a ton through 17 ft . whtch was provided for, is $81 / 2 \mathrm{ft}$.-tona, which, with the other assumptions in favor of the pressure to he overcome. gave sufficlent margin for safety.
The remalnder of the cradie shove the hilgeways conslsted of three parts, the stopping up (amidships) and the fore and after poppets. The atoppting up, whleh, like the poppets, was of the full wldth of the bilgeways, namely : ft ., consisted of solid Dantzic fir timber earefully fitted to the hottom of the ship and 192 ft . long. The poppets varied from 15 to 25 sq . ft . in sectional area, and were nearly verttcal, exeept the firat and last two or three wbich stood rather more aquare to the surface of the bot tom in a fore and aft direction. The heels of these poppets were steadled by tenons 9 Ins. wide by $11 / 2$ Ins. deep, whleh fitted a fore and aft groove, KKK, in the $6-\mathrm{in}$. poppet hoard of English elm helow them; the spread of these poppets at the heel just above this board, and also at the head, was preserved by ehoeks, LL, Figs. 7 and 12,
but the end poppets, especially those forward, were close ntting from the head well down their length. The varloue pleces compoeing them were not only bolted together like the others, but were also dowelled. Each set of poppets was connected together outside the cradie hy steel 'dagger' pistes, TT, Figs. 7, 12 and 18, three aft and two forward, 14 ins . wide and $z_{i}-\mathrm{ln}$. thick, secured to the poppets by Blake'e screws, and extending far enough from each end to overlap and be fastened to the stopping up.
Between the upper surface of the bilgewaye, and tbe underside of the stopping up and poppet board, was a space of $41 / 4$ ins., in which the "slices" or beech wedges, 6 ft . Ins. long, were inserted when it was desired to "set up" the hlocks suffiently to enable the latter to be rammed out.
To prevent the cradle falling outward at the head, steel angle, M, Figs. 7 and 12, was riveted to the bottom of the ship, extending from nesr the fore end to the extreme after end, where it was turned down over the aftermos poppet. The position of the after poppet, and the shape of the bottom there, gave their heade a much better bear ing against the ehip than was the caee forward, and as the after end of the ship was sooneet water-borne, and the forward, it was not necessary to do more than euppori the angle referred to by the bracket plates ehown at NN, Fig. 12, which in each case were continued ae far as the profecting edge, $\mathbf{0 0 0}$, of the bottom plate above. At the fore end special strengthening wes necessary for reaeon already stated, and is ehown by Fig. 7, where the plate PPP was of $1 / 2-\ln$. steel, with a similar plate QQQ riveted at the back of lt , and fittling clooely between the projecting edges of the bottom plates ahove and below it, tbus greatly etiffening the structure to reelet shearing of the fasteninge. Over the heade of the poppets, a $\% /-1 \mathrm{n}$. stee plate RRR riveted to a $7 \times 31 / 2 \times 5 / 8-\mathrm{ln}$. angle-bar, wae fitted and turned down over the fore end of the foremost poppet the connectlon being stiffened by 10 brackets, SSS, formed of $1 / 2-\mathrm{in}$. plates and double steel angle bars. Ail the pario of thls plate and angle structure were moet carefully fitted to each other and the bottom, the only connection to tbe latter being by $1-\ln$. steel rivets through the plating hetween the brackets. The slngle ehearing strees of each rivet is assumed as 20 tons.
This structure might yleld in two ways (a) by the ehear ing of all the rivets in the brackete and angle-hare over the heads of the poppete, or, (b) by sbearing all thoee and douhling plate. The preesure on the fore poppet whe the stern began to lift hae been given as 660 tons, an this may be resolved into a tangential stress of 585 tons, and one of 320 tons normel to the bottom. Assuming this tangentisl stress distrihuted by means of the etructure over the area eurrounding the heads of the foremost thre oppets, we should have to shear ahout 120 rivets in case a), giving a total shearing stress of $120 \times 20=2,400$ tone, and a factor of safety $={ }^{3600} /$ wss $=4.1$, which is ample Fracture In case (b) would need a shearing stress of 157 $\times 30=3.340$ tons, or a factor of safety $=3340 / \mathrm{ses}=5.7$. In order tbat the two parts of the cradle sbould preserv their relative positions đuring launching, spread shores, about 12 ins. square and 10 in number, were fitted hetween them under the keel, and resting in English elm cleats secured to the bllgewaye, Flgs. 16 and 17. One of these hores was at each end of the waya, one opposite the fore end of the dog-shores, and the remainder divided the in tervening lengtb about equally. These acted as strute Between them at the butta of the etopplng up, epread chalns were fitted as ties, setting up to 1%-in. steel eye bolts through the stopplng up, the bolte being hove up on pleten covering the butts on the outside of the cradle, Flg 15 . These spread chains were not fitted in wake of the poppets.
No part of the cradle wae attached to the bottom of the blp, and as it was fitted below the blige-keel, and had a certaln amount of buoyancy, it might leave the ahip as oon as she was afloat and he held under the hilge-keel unlees this were provided against. To keep it clear, T hars or double angles were fitted as ebown by B, Fig. 15, at Intervals of about the angle formed by the hilge-keel and hottom of the ehip. he angle oring the cradle, and the pressure developed the crase-fing adhere eo firmly in lauchin, ge pulled out hy tugs, as it is necessary to re move it for the safety of the ship in docking. For this move it for the safety of the ship in docking. For this fore and after ends of the cradle, and to each plece of the stopping up, the ends of the hawsers heing carried inboard on the upper deck till wanted.
Internal Sboring.- While the fullest use wae made of the structure of the sbip to prevent any alteration of form under the stralns horne in launcbing, hy having all possible plllaring complete, and all bulkheads and flats riveted off, it was uecessary to provide some Internal wood shoring, as shown In Figs. 15 to 18 . The spread of the cradie frou out to out wae 35 ft . 6 ius., Fig. 16, which caused it to bear directly under one of the fongitudinals for a great part of Its length, Fig. 15. Sbort shores were also fitted, as shown, between the inner and outer hottoms, ahove the edges of the cradle, and a covering haulk was
laid on top of the inner bottom, from whlch stout shores reached to the protective deck. The great strength o: the framing between the inner and outer bottoms for the angine bearers, and that of the bearers themselvee, which complete, made special shoring at that part unneces sary, but for the remalning length of the cradle, and particularly abreast of the foremaet poppete, it was provided, side of the ship to of these ebores was about 90 tons.
Luhrication of Sllding Surfaces.-The whole of the work already descrihed was completed a fortnigbt before the launch, when prepsratione were made for applying the lubricants to the sllding surfacee. For this purpose the whole of the cradle ebove the bilgeways wae temporarily suspended to the hottom, on the outside of the cradle by strips of $1 / 2-\mathrm{in}$. plate, Flgs. 15 and 16, tapped through the bottom of the ehip and screwed to the cradie. On the inside, wood struts, D, Fige. 15 and 18, 6×6 ins., resting on the bottom of the ellp, and screwed below to the groundwaye and above to the cradle, kept the latter in poeition agalnet the bottom of the shlp. The poppet board wae secured to tbe poppets, hotb inside and outelde the cradle, by plates, VVV, Figs. 7 and 12, screwed to both and left in position until the sblp was affoat, which pre vented the hoard from leaving the poppets and sinking, a being of Englieh elm it might do. The ribband on the outer edge of the groundways was then removed, and $5-\mathrm{ln}$. plank, E, Fig. 18, fixed at Intervals from 20 to 30 ft . with ite inner end at top level witb the top of the ground waye, and eioplng up and outward. The bilgewaye wer next hauled hy steam winches on to these supports, and the remainder of the cradle wae temporarily shored up from the groundways, F, Fig. 18. After a careful Inspec tion of these surfaces, the fuhricante were applled first to a short length of the ways, which was coated to the re quired thickneee, and then loaded over a portion of its surface to the mean pressure of 2.5 tone per sq , ft . hy bal last, this load belng launched, and testing the adhesivenese of the lubricant to the groundways and its adaptabillty generally for lts work. The exact position of the blige ways have heen razed in on the groundways for fitting purposes, wood battene $1 / 2-\mathrm{in}$. thlck were nalled to theee linee, and the space hetween them coated with Ruselan tallow applled hot untll a eolld coating $\% / 8-i n$. tblek wa ohtalned. It is sometimee an advantage to mlx heeswa with the tallow, in order to aseiet the cohesivenese of the luhricant and prevent it from cracking and caking. On thie a coating of "elum" was placed, made up of Russlan tallow and traln ofl bolled together and well mixed in the proportion of 4 gallons of oll to 1 cwt . of tallow, helng on part oil to two of tallow. This was not applied hot. Tbe proportions of oll varies with the temperature of the at mosphere, beling lese in bot than in cold weather. The surface of the slum wae irregulariy grooved, after whic train oil was poured upon it, and finally soft soap sca tered in patches throughout the length of the cradie. The under surface of the bllgewaye wae coated with Russlan tallow slmilarly applied, but only to a thickness of ahou K_{4}-in., on which the slum was placed. Tbe side of tbe ribhand next to the bilgewaye was also thickly coated witb slum, and the narrow space between them sprinkled wit oil. Across the surface of the groundways, 40 greas rons, GG. Flg. 18, to keep the bllgeways clear of the groundways whlle helng hauled hack, were then placed i pairs and steadied on the inslde of tbe cradle by workmen until the bilgeways were hauled again into their proper position, and fayed againet the struts prevlously describe as supporting the cradle agalnet the bottom of the ship. The grease irone were withdrawn, the battene removed and tbe long heech alices, of which ahout 1,300 were ueed, were Ineerted hetween the bligeways and upper part of the cradle, except those helow hlgh water, which were not pu In until it was necessary to drive them, and so were kept dry. The temporary struta and angle eupports to the radle were next removed, the ribband on the outer edge of the groundwaye was replaced, fastened and shored, the holes through the bottom of the ship were plugged, and the leats on the bilgewaye replaced and holted. A large cleat, D, Fig. 5, wae also bolted to the groundwaya at the lower end of the cradle, to prevent any premature sliding movement. Ten eteel keys, E, Fig. 15, on each side, varying regularly from $1 / 2$ to $1 \% / 4$ ine. In thickness from fore to after end of hilgeways, were then inserted at equal dletances between them and the ribhand, and malntained them in poeltion. Battens F were nalled over this groove to prevent any eubstance gettling in whleh might obstruct the launch. The remalning allicee were inserted, the dogshoree were placed, and two "triggers," WW, Fig. 7, put heneath each, that with a plain bevelled end preventing the shore from talling, and the other with rounded end serviug the same purpose when juet before launcbing tbe former wae removed. Between the sllices at intervals were 12 eteel angles, YY, Figs. 7 and 12, on each slde of the cradle, connected by bolts hove up witb nuts, and these heiped to keep the sides of the cradle lu position and flusb with tbose of the bilgeways.
Setting up the Sblp.-Preparations were then made for 'setting up" tbe ehlp. Tble operation is generally hegun the day before the launch, the after portlon only helng lealt with at that time, say ahout one-fourth the length of the cradle. For thie purpose the elices were manned
both inside and outside the cradle by ehlpwrights heavy maule. The shoree at thle part were also and kept effective ae the eetting up proceeded ening the wedgee under them. At a given vhole of the men struck together. The str bullding blocke was tested at intervale hy wood wedge blocks, HH, Flg. 18, of each tier wae clear that they had been relleved sufficient able them to be readily removed. Thle removal immediately upon the conclusion of the setting the bullding ehores under the bottom inside were also taken awey, the remaining shores cradle belng roped at the head, and the ropes board in readineee for lowering them on day after completing the eetting up. As the biecks moved, "skeg" shoree, EE, Fig. 3, rounded at eact placed under the keel at Intervale, to assist in the overhanging part of the eblp beyond the the blocks left standing. These shoree are crsdle an in position until the ship is launched, the form ends making it easy for her to trip them ae athe The drying and lubrication of the woys helow was carried out on the morning of the day of the tide ebbed, and finlshed ae it roee. The complach a tbe eetting up commenced at about the eame somewhat abaft where it was left the day before continued until near the fore end of the cradle usual to eet up the extreme forward end, hut tighten up the sllcee there as necessary to give oniy proper bearing. Three or even four elicee were allotted to each man in settling up. When thle work was finlshed some buoyancy and the shlp wae launched. The remaining shores hetween the cradle were removed, and the dog-shores were tightly set by driving a thin eteel wedge between them and the fore end of the ribband on the groundways. Additional security wae glven to foremost and aftermost poppets by driving two long bolts throngh each into bligeways F, Fig. 4, and G Fig. 5, and to comewhat leesen the resistance, a cut water Plate 5 , wae fitted against the aftermost poppet. The re
maing huilding ahoree were then knocked mencing from forward and working regularly aft, com foremost shores tend to push the ehip down the slip, whit the after onee act as struts agalnet this.
The completion of the eetting up was effected in time to enable all theee shores to he got away hefore the rising tide reached the aftermoet. It frequently happens that as the remaining keel blocke are removed, and the ship settles down on the cradle, she moves ellghtly or "draws," and before knocking away these hlocke, means are adopted to hut noting this movement hy fixing two battens parail of the sliding waye, and the other to the side of the fixed cleat at the fore end of the groundwaye, and with thelr up per edges in the same place. Acrose the edge a line if transversely drawn, and whatever elight sllding motion takes place is shown hy thedistance betweenthls line on the fixed and the moving batten, Fig. 6. A corresponding "tell-tale" was aleo fitted to the stem of the ship upon the launcbing platform. The difficulty of getting the keel blocks away varies greatly with different tiere, depending partly upon unequal crushing of the blocka during the huilding, and the extent to which the ship is set up and afterwards settles upon the cradle and blocks. Generaliy the exceesive pressure ie only upon a few tiera of blocks, and, as the hour of launching draws near, may be only upon one tier. As a rule, upon the day of launching, the blocks are only removed eufficiently In advance of the tide to permit the work to he done. Thls remark applies also to the removal of the hllge-cleat at the after end of th bilgewaye, and to that of the ateel keys and hattene on top of the rlbband. Should the ship he lively and draw to any extent, aome tlers of blocks would be replaced and the ship would he allowed to trip them in launching. If, however, the tell-talee show no sign of movement in the ship, the removal of the hlocke would proceed right up to the time of launching, and it might even happen that no blockis would remaln under the keel when the dog-ehore fell, but thia extreme is not usual. Experience must guide in this matter in connectlon with the clrcumstancee of each case and ehips of the size now described have heen launche witb as many aa 29 tiers of hlocks standing, and with as few as one. The removal of the hlocks is facllitated by the method of building them; the wedge blocks, H, Fig 18, generally soon yleld to the blowe of a ram but in ad dition to this, the thin top or "cap" hlock le usually of some etraight-gralned but falrly hard wood, euch ally which hae to be split out by eteel wedges when the ran fails. The use of gunpowder for this purpose hae been known in a private shiphuilding yard.

Hogging and Sagging.-After yard

Hogging and Sagging.-After the sbip wae set up, mean structure allowed her to alter form, hoth longltudinall and thwartships, from the land-horne to the water-born condlition. As great a length as possible on the upper deck was chosen, and three vertically-adjuetable sight hat dens wase fixed, one toward eacb end and one about amid tens were fixed, one toward eacb end and one about amld hipe. The edges of the battens were carefully eighted upon the fixed framework carrying the sights.
Slmilar adjuetmenta were made after launching, and the
differences afforded a measure of the droop of the ends of differences relatively to the middle, or vice versa, known as the ship rend sagging respectively. Athwartship ohserva hogging and skind are only made in the ships of greates thons of this keldom show an appreciahle movement. In the besm, and seldom "Ocean," the "hreakage" hy hogging in a length of 312 ft ., was only $5 / 10^{-\mathrm{In}}$. and in the hreadth of 61 ft ., nil.
Freeing Dog-Shores.-Each weight of 10 cwt . for freelng the dog-shore was placed in position on the day of the saunch at the top of a shoot which allowed a drop of 17 ft The welghts hsi heen suspended for ten lays pre vlously by the white manila rope to he severed at the mo ment of launch, so that the rope had heen fully stretched mefore the welght was finally put in position. Thls rope was led over a sheave at the top of the shoot to the fron of the shlp's ram, and lashed across a wood-chock there The framework of the shoot, consisting of steel angles a the corners and so having open sides, admitted readily of the insertion of a shore to take the strain of the welght of the rope until the last moment.
A tide gage was fixed at the after end of the ground ways snd the height of water over the groundways was recorded in sight of the launching platform every quartes of an hour during the last hour and a half hefore launch ing. The number of the hlocks remalning under the kee was similarly recorded as each tler was removed. It is not often that the hlow of the weight falls to free the dog-shore and release the ship, hut in case of fallure, men sre ready to cut away this shore with axes untll its weakened section causes it to yleld. This operation is dangerous not only to the men, hut may he so to the safety of the shlp if one shore yields hefore the other.
To sssist the shlp to start on the fall of the dog-shore a hydrsulle pump of 150 tons pressure was piaced on each side et the fore end of the hilgeways, and one of 80 tons in reserve. There was also one of 500 tons directly heneath the stem, to ease her off the groundways. Spectal care wss taken to test the efflclency of these pumps, hoth hefore snd on the day of the launch, and also to see that they were not exerting any pressure untll the dog-shores had setually tallen.
Watertight Compartments.-As the work of huilding progressed, all compartments below the calculated launching draft of the ship, and as many more as possinle, had heen completed and tested for watertightness, and the permanent doors or other means of access were also in place and closed before launching. Ali Kingston valves, sea-suctions to pumps, inlets and discharges through the hottom were tested and certified to be tightiy closed. Two $9-\mathrm{In}$. Downton's pumps were completely fitted on hoard to give some power of ridding the ship of water if necessary, and the slutce-valves on hulkheads, and water-courses to the pump suctions were all seen to he clear. Men were launched in the ship to make an inspection of all compartments helow water as soon as she was afloat, and r port the result.
The Launch.-All being thus in readiness, the tide gage showing sufficient water, and the harbor reported clear, the men removing the hlocks were withdrawn, the shores supporting the weights were taken out, the triggers heneath the dog-shores were removed, and the rope holding the weights was severed, knocking away the dog-shore, which together with the weight, was pulled clear of the ways, and the ship was free.
No ohservation of the launching velocity was made, hut as a series of such records for varlous ships launched on the same groundways with different huilding decilvities and iaunching weights, would furnish useful information, it enay be possible at some future time to supplement the present paper hy a discussion of such partlculars.
The speed in launching is checked in many private yards hy heavy anchors hedded in the ground, and with lengths of cshle ranged alongside the groundways, the ultimate tautening of the cahle checking the ship. This is sultahie and necessary where the shlp is launched into a channel of comparatively small extent relatively to her length, and the distance she would travel if free; hut the ordinary mesns of dropping anchor are adopted in the government yards where the channel is ample enough for the shlp to go well out and swing up into the tide when the cahle is slipped.
If possible the wood cradle is pulled out hefore herthing the shlp, hut generally this is done more at leisure on uays subsequent to the launch, and before docking.

DOUBLE DECK BRIDGE AT WELLS ST., CHICAGO.

((With full-page plate.)

Work is now in progress in Chicago upon a double-deck bridge carrying Wells St. and the Northwestern Elevated Ry. over the tracks of the Chicago \& Northwestern Ry., in front of the Wells St. terminal station of the latter road, just north of the Chicago River. The remodellng of the $220-\mathrm{ft}$. drawbridge over the river, to transform it into a double-deck structure, was done in 1896, but the new fixed bridge has been postponed
untli the present time in consequence of the stoppage of work on the construction of the elevated rallway. The street was formerly carried over the tracks by a light through-truss pin-connected bridge, of $83-\mathrm{ft}$. span, built by the Keystone Bridge Co. in 1872, but the new structure will have deep rectangular trusses of much heavier design. The length of span wlll be $88 \mathrm{ft} .101 / 4 \mathrm{ins}$. c. to c of end pins, and the depth of truss will be 13 ft . $21 / 2 \mathrm{ins}$. c. to c . of chords. Fig. 1 shows the general arrangement and design of the work. The cost will be paid by the two rallway companies in equal proportions.

The new abutments will be of Jollet limestone, backed with heavy rubble, the face courses decreasing gradually from 28 to 16 ins. In helght. Under the stone masonry will be a $24-\mathrm{in}$. bed of Portland cement concrete 13 ft . wlde, increased to 48 ins. in depth and 15 ft . in width at the center and ends. The coping course is of Bedford granite 18 lns . deep. The length of the wall under the
floor beams are $15-\mathrm{in}$., $42-\mathrm{lb}$. I-beams, set close to the face of the back wall. The one at the north or sliding end of the bridge has stlrrups and guldes for the stringers, while at the other ends the webs of the beam and stringers are connected by brackets or knees.
The clear headway on the roadways will be 13 $\mathrm{ft} .111 / 2 \mathrm{ins}$. The paving of the roadways between the trusses will be of $71 / 2-\mathrm{in}$. oak blocks on a floorIng of southern pine planks, 33×12 ins. On each roadway will be an electrlc raliway track laid with the North Chicago Ry. Co.'s standard 73-16in. side-bearing girder ralls, laid directly upon the planking, the edges of the paving blocks belng beveled to form a flangeway. The center of the track will be 6 ft .3 ins. from the center of the truss. Outside of each outer truss willi be a solid floor of steel channels, $12 \times 31 / 4$ ins., forming a serles of longitudinal troughs, alternately open and inverted. These are connected by a single line of rivets through the adjacent flanges. Over this

FIG. 1.-DIAGRAM ELEVATION OF DOUBLE-DECK BRIDGE AT WELLS ST., CHICAGO

coping is 54 ft .6 ins ., with sides and face batter ings 1 in 12. The thickness of the wall itself is ft . at the base and 6 ft . 1 in . under the coping.
The superstructure consists of three trusses, 88 $\mathrm{ft} .101 / 4 \mathrm{ins} . c$. to c. of end pins, set 24 ft .3 ins . apart, with floor beams projecting 15 ft .9 Ins. beyond the outer trusses. The total width is thus 80 ft . There are eleven floor beams, $8 \mathrm{ft} .10 \mathrm{H} / \mathrm{ins}$ apart c. to c., except that the end floor beams ar $10 \mathrm{ft} .8 \% \mathrm{ins}$. from the next beams. The diagonal bracing below the floor ls between alternate pane points, forming flve bays or panels between each pair of trusses. The floor beams support roadway stringers, $2 \mathrm{ft} .1011-16 \mathrm{ins}$. apart, c. to c.
Fig. 2 shows the construction of the center truss The end posts are built-up members, having four angle irons and two side web plates, the front and back having lacing bars. The other main posts are double channels, connected by lacing bars an plates. There are also short intermediate posts o similar construction, extending from the top chord to the intersections of the diagonals, whence eye bar hangers are suspended to carry the inter mediate fioor beams. The top chord is of box sec tion, with web and cover plates and four-flange angles, the lower flange angles being connected by lacing bars and batten plates. The diagonals and bottom chords are built up of eyebars, and the end panel has a horizontal strut at mid-helght. It. the two end panels, the chord eyebars are connected by horizontal diagonal bracing, secured by bolts passed through gas-pipe spacing sleeves The outer trusses are of similar design, but some what lighter in some of the members. The north or sliding end of the bridge will have a nest of six $31 / 2-\mathrm{in}$, rollers, 30 ins . long, under each end post.
The top floor consists of a series of rectangular troughs formed by pairs of vertical $12-\mathrm{in}$.. $35-\mathrm{lb}$. channels, with the flanges inward, these pairs being connected by horizontal $12-\mathrm{in}$., $25-1 \mathrm{~b}$. channels. This floor rests upon the top chords, and angle ron knee braces connect the floor and the truss posts. The lower floor has lines of $10-\mathrm{in}$., $35-\mathrm{lb}$. I-beam stringers, whose webs are riveted to angle brackets or knees on the webs of the $151 / 4-\mathrm{in}$. plate girder floor beams. These beams have web plates $1 / 2 \times 15 \mathrm{ins}$., and four angle irons $3 / 4 \times 4 \times 4 \mathrm{ins}$.. but beyond the outer trusses the lower chords of the beams are inclined upwards, giving an end depth of 11 ins. The floor beams are susp nded from the pins of the lower chord, and from the hangers of the intermediate posts by means of stirrups supporting cast-steel blocks which take a bearing under the top flange angles of the beams. The end
floor will be a filling of natural cement concrete 6 ins. deep above the floor beams, and covered with a granolithic pavement, 2 ins. thick, forming the sidewaik. An ornamental raillng will protect the sldewalks. It was originaily intended to use inverted segmental troughs with horlzontal flanges, but the channels have been adopted in stead.
To protect the lron-work from the corrosive effects of gas and smoke from the engines passing under the brldge, there will be a close flooring of $3 / 4$-in. plank, nalled to pine stringers 2×6 ins. As the clearance between this planking and the tops of the smokestacks of the locomotives is very smail, the planking is protected against fire by nailing to it a strip of No. 16 galvanized iron, 34 or 36 lns . wide, over the middle of each track, this lron being heavily painted.
On the upper floor will be the two tracks of the elevated railway, with centers 8 ft . from the cener of the middie truss. The rails are spiked to ies 6×8 ins., 8 ft . long, which are set in the shallow $12-\mathrm{in}$. troughs and embedded in a bitu minous concrete, which is sloped down to drain into a gutter with downspouts, outside the outer trusses. There are double-guard timbers to each rail, and the third-raii conductor wlli be on the outer side of each track. The material is mild steel, and all shop rivets are of steel, while field rivets are of wrought fron. The rivets are malnly T/8-in. diameter, and cavity nuts are used on ali the pins.
The assumed loading was as follows: trusses, 100 lbs. live load per sq. ft . of roadway; and 75 lbs. per sq. ft. of sidewalk. Roadway floor beams, 17 tons on 6 ft . of width. Roadway stringers, 5 tons concentrated on the center. Standard trains of the elevated railway were used in the caiculafons for the upper (rallway) floor. The estimated weight of the steel-work is about 390 tons, and the concrete sldewalks, roadway paving, etc, will bring the total weight of the span to about 500 tons.
The plans were prepared in 1896 by Mr. A. G. Riter, City Bridge Engineer, and Mr. J. G. 'Pihlfeld. under the direction of Mr. L. B. Jackson, who was at that time City Engineer. The work is now being done under the supervision of Mr. John Ericson, City Engineer. The contractors for the substructure and superstructure are Messrs. Shailer \& Schniglau, Western Union Building, Chicago. The material for the superstiucture will be furnished by the New Jersey Steel \& Iron Co., of Trenton, N. J.

ENGINEERING NEWS

AIIERICAN RAILWAY JOURNAL

Bhered at the Neto York Post-Oficice as Seomd-Class Mattor Pubtished every Thursda
at St. Pand Building, 220 Broadway, New York, by the engineering news publishing courany

GEO. R. FROST,
Presidint
ace-President.
Charies whiting baker, secriktary and Masaoing editor.
WM. KENT, E. E. R. TRATMAN,
WM. KENT, E. R. R. TRATMA
M. N. BAKER, CHAS. S. HILL,
A. B. GILBERT

Chas. W. REINHARDT,
$\} \begin{aligned} & \text { assochate } \\ & \text { EDtors. }\end{aligned}$

ALFRED E. KORNFELD,
M. C. ROBBINS, Chicago,
M. C. ROBBINS, Chi
c. \boldsymbol{v}. WALKER Cleveland
\square
publacation ofrick, 220 broadwar, New Y
Boston Opfice, 299 Devanonshire St.
Bompor Office, 299 Devonshire St.
London Office, Eftimoham Housk, 1 Arundel St., Strand

Abstract

SUBSCRIDTION RATES: United States, Canada and Hexieo, One Year, $\$ 5.00 ; 6$ months, $\$ 2.50 ; 2$ months, \$1.00. To all other countries in the Fostal Union: Regutar Edition, One Year, $\$ 7.60$ (31 shillings) : Thin Paper Edi ion, One Jear, $\$ 6.31$ (26 shillings). SINGLE COPIE of any number in current year, 15 cents. In ordering changes of mailing addresses, state BOTH old and nen addresses; notice of change should reach us by Tuesday to be effective for the issue of the eurren week. The number on the address label of eaeh paper ndicales when suracipton expires, the last jigu* indicating the year and the one or two preceding figures the week of that year; for instance, the number 329 is the issue of Aug. 10) of the year 1899. the eek that is the issue of $A \mathrm{ug}$. 10) of the year 1899; The change of these nigures is the onty receipt sent, untess by special request.

ADVERTISING RATES: 20 cents a line. Want uotices pecial rales, see page XXII. Changes in slanding adver lisements must be received by Monday morning; new advertise nents, Tuesday morning; Iransient advertise ments by Wednesday morning.

In view of the recent discussion upon the pro tection of metai structures crossing rallway track from corrosion by the locomotive gases, In our issue of Aug. 3, it is of interest to notice the con struction of the Weils st. viadnct In Chicago, which is shown upon our inset sheet this week. It will be seen that a $2 / 4-\ln$. pine ceiling covers the entire under side of the structure. As we pointed out editorialiy in our issue of July 20. this protection has been used before, but we are glad to see evldence that increasing attention is being pald to the necessity of some provision of this sort if any reasonable length of life is to be insured for an overhead bridge. We should be glad to recelve more information from those who have applied wooden celiings of this sort as to the method by which they are finished, whether painted or left bare. It would appear that paintlng might be objectionable on account of the increased readiness with which the wood might take flre, whlle if the boards were left bare warping might oceur. A coating of llme whitewash, made adheslve by the addition of glue, suggests itself to us as perhaps the best covering that could be applied to the wood, and it could be spread from a compressed air nozzle at a trifiling cost for labor. We should be giad to learn, however, what experlence has shown in this matter, which promises to be of very considerable importance since wooden cellings are likely to be applied to hundreds of existing bridges which are now rapldy dissolving into rust.

Although the good people of Chicago are much given to boasting of their superiority over other citles in such matters as population and commerce, the disreputable condition of the streets and drawbridges of that city has long been notorlous, Last week public attention was forcibly attracted to the condition of the bridges by the collapse of one of these venerable structures when it was swung from its end bearings.

It good-naturediy waited untll it was swung fuil open, and then its chords parted and both ends dropped Into the pellucid waters of the Chicago Rlver. The brldge tenders were unhurt and were rescued by a boat. This accident has startled the city officlals into action, and oertain other bridges have been closed to traffic to prevent further aceldents which might have far more disastrous results. In consequence of this the communlcation between the West side and the other sections of the city will be cut off in many places, and the insurance companies have re uested that additional fire engines be stationed In the isolated district, which is considered as a dangerous fire risk. The clty has 61 bridges and 37 viaducts, exclusive of railway drawbridges The estimated cost of necessary repairs and for new bridges to repiace those which are heyond repair is $\$ 2,000,000$; but in consequence of the failure of the Clty Council to make appropriatlons there is sald to be no money now avaliabl? for even the most urgent repalrs. The Councll has been warned again and again by the engineers and other officlals of the state of affairs, but has chosen to disregard all warnings and to reject ail plans for improvement and for raising the necessary funds. Last year the appropriation for maintenance of hridges and vladucts was only : 5 5,000, with an additional emergeney appropriation of $\$ 13,500$ for urgently needed repalrs on eight bridges, which might otherwise have collapsed as the 95 th St. bridge did last week. The ommissloner of Public Works, Mr. L. E. McGann n his report for 18018 made the following remarks on this subject:

There is no portion of the city's service that is in such eed of immediate attention as the bridges and vladucts need of timmediate attention as the bridges and rladucts of sumfient amount cannot be secured to make proper and ditapidated, and have reached that stage of decay where wise expenditure of money cannot be made to repatr

The description of the launching of a modern battleship which is published in this issue is not only a remarkably weil written plece of technical literature, but, so far as we are able to flnd, it is the only paper in which ail the details in conneclion with the launching of a modern ocean golng vessel of the largest size have ever been fully set forth and illustrated. The task of sliding the great steel hull of an ocean steamer of large size from the ground where it is bulit into the water which is to hereafter support 1t, and doing it without mishap or bringing excessive pressure upon the hull at any point is a most delicate one. Mr. Champness' paper shows how extensively the ngineers in charge of this work make use of comutations and measurements to insure the safety and correct action of thelr apparatus. The old time rule-of-thumb methods worked well enough in their day, but those who used them had no means of aitering them to correspond with the growth in size and welght of the vesseis to be handled.

In a recent issue the editor of "The Eiectrician," f London, discusses the unsuitability of the are light for light-house servlce, and advocates in its place some form of lamp similar to the Nernst. We think this suggestion could be improved upon. The trouble with the are light is that the waves emitted are mostiy of short-wave lengths, belonging to the vlolet end of the spectrum, and are soon absorbed in a foggy atmosphere. The Nernst famp would be open to precisely the same objection, as in it the incandescent material is carrled to a very high temperature and the light is nearly pure white. The kind of light that most readlly penetrates a foggy atmosphere will be evldent to anyone who observes the sun on a foggy morning. The only rays that then reach the eye are the orange and red. As is well known, the light from the ordinary incandescent lamp is rich in these same rays. Therefore we would expect that the incandescent lamp would be particularly well adapted for light-house service in foggy weather, and we are informed that an American company is conducting experiments looking towards the production of incandescent lamps of high candle power for ifght-house use.

The paper by Prof. Edgar Marburg growth of correspondence schools and th in technical education, which will be foin where in this issue, deserves the ser tention of all who are interested in the ment of educational work. He discusses terms the faults which the corres schools have developed as well as the features of their work, and he gives on th we have reason to belleve, a very fair There is one polnt, however, on which P burg only touches, which has impressed strongly, and that is the demand for in a hitherto unknown field which the the correspondence schools has uncovere is one school alone with over 80,000 pupil rolls, who are paying money which the themselves earned, by hard labor in nearly case, and which they have saved by righ denial. For what are they spending pleasure or recreation? No, for a llttle ass in the laborlous work of study and self-im ment, carried on in many cases after a har work and under the most dlscouraging con No doubt the correspondence schools greatly increased the numbers of their pupil their vigorous advertising and soliciting. douht many have heen induced to enter courses with no reai interest back of it to their perseverance; but after making ali ances it must be conceded that there is an mous demand for help of the sort which th respondence schools can give, and the foun of these schools are deserving of no small for discovering and demonstrating it.
The point whleh especially appeals to us desire which these students evince for edu Let us draw a little contrast. There are in th United States, according to the last report of the Commissioner of Education, about fifty "schonls of technology" with about 13,000 students. Must of these schools have been liherally endowed by generous benefactors, and hy large gifts from States or citles or the Federal Government. Th. opportunitles afforded to those who attend thes institutions are the wonder of the present gener tion. Capable Instructors, elaborate apparatus everything is done that money can do to make the road to learning a royal one. These schools ar loing magnificent work; there is no doubt of it a all; and yet it must be frankly confessed that very few of the students who attend these instiutions are really appreciative of the benefaclions of which they are the reciplents: and a nol small proportion in every institution derive very doubtful benefit, if any, from their collegiate training. They are at college because they ar ent there-to enjoy athletics and soclety an other good things of llfe-and not for grinding over studies.
Now, if we read human nature aright, it was not this sort of people at all that the men and women of wealth and generosity had in mind when they gave their thousands and hundreds of thousands to these colleges to further the caus of education. They had in mind, we are fain to belleve, just such sorts of young men as the young mechanics and artisans who patronize the correspondence schools-men who are thirstins for knowledge and who need a heiping hand t. gain it. In fact in many weli-known cases it wa because the benefactor had once been a young man himself with his own way to make in th world that he bethought him in his old age o helping other young men to get the educatlon which had been denied him or which he ha found it hard to obtain.

As we have said, the technical schools are doing admirable work. The correspondence schools cannot posslbly take their place; but we doubt not we speak the mind of every instructor in these school when we say that it is a great pity that the desire for knowledge and the wlllingness to undergo self-denial to obtain it cannot be imparted to a considerable percentage of the students who at tend our institutions of higher learning-for any reason other than the desire to be taught. So far as raising the standards of admission and Increasing the difficuities of the course of study tends to bar out the non-studious element from
SUPPLEMENT TO ENGINEERING NEWS, AUGUST 24, 1899.

THE LAUNCHING OF THE BATTLESHIP "OCEAN," AT DEVONPORT DOCKYARD, ENGLAND.

technical schoois, its effect is wholly good. far as it tends to exciude the youths whose ans are limited and to confine the attendance rich men's sons and students who are mer okworms and nothing else, its effect is wholly bad.
But it is not our intention now to discuss the hnical schools. Our theme is the correspond schools. They have demonstrated the need he need is being poorly supplied in many cases Prof. Marburg avers, then better means should provided. In other words, why is not the in ruction of men just as deserving of philan opic aid as the instruction of youths? Why ght not a correspondence school-with the right vanization of course-be as legitimate a subject endowment as a University or a School o hnology? There are not wanting keen hnology? There are not wanting keen tics at the present day who aver that ducational system is far too topheavy. A ing the patronage of the boys who can raise the funds to go to college; but what is being done for the million boys who will oceupy places of more if less responsibiity in the worid, and who cannot spend four to eight years at institutions of higher ducation? If a hundred thousand of them desire to pursue further studies, and the correpondence schools can give efficient aid, are not they doing a work worthy of high praise?

THE FUTURE WATER SUPPLY OF NEW YORK CITY.

 Never in the history of New York have its citizens been more aroused and win the private corporation than they have since Aug. 16 . On that date oniy a tle vote prevented the Board f Public Improvements from entering into S5,000,000-a-year water contract, extending a period of 40 years. With scarceiy a breath of warning, and without the shadow of an engineer ing report on behalf of either the city or the company, there was suddeniy sprung upon the peopie, and almost railroaded through a brief session of the board, the most audacious contract ever submitted to an American municipality. The total sum involved runs into the hundreds of millions, especially if the accompanying estimates of future water consumption are correct. The yearly charg of $\$ 0,000,000$ would pay 3 per cent. interest on works costing \$166,000,000 or the same interest and a yearly sinking fund charge of 2 per cent. on $\$ 100,000,000$. The size of the annual tribute demanded from the city by the Ramapo Water Co and its allied interests can be better appreciated when it is remembered that oniy four years ago an investigation made for the city of Brookiyn by the iate Wm. E. Worthen showed that 100,000 , (00) galions of water a day fron the Ramapo could be delivered to the Ridgewood reservoir in Brooklyn at a cost of oniy $\$ 16$ per $1,000,000$ gallons, whereas the price under the proposed con tract is $\$ 70$ per $1,000,000$ gallons for $200,000,000$ gallons a day, or more, delivered in buik at some indefinite point on the northerly ilne of the city, leaving New York to stand the expense of carryins the conduit to and beneath the East River, and thence to the Ridgewood reservoir. While the two popositions may not admit of close comparison there is an enormous difference between them which ran by no means be expiained to the satisfaction of the taxpayers of Greater New York.Another audacious feature of the scheme is the jack of engineering investigation. One would expeet a proposition of this magnitude to be accompanied with exhaustive reports from the best hydrauile engineers of the country, both on the part of the company and the city. Nothing of the sort was forthcoming. The oniy indication that the matter had been given consideration by the engineering staff of the city is a statement that the Commissioner of Water Supply, accompanied the Commissioner of Water Supply, accompanied
by four expert engineers, including the chief englneer of the department, has visited the proposed drainage area. Contrast this with the years of preliminary study, by some of the most eminent engineers of the country, put upon the new Croton Aqueduct, the new Cornell Dam, and the additional water supplies now being developed for Bos ton and Cincinnati.

A work of this magnitude, entered upon so bilndly, absofutely without competition, is simply unprecedented in the history of engine ring and munleipai public works; and it is made all the more notorious because it is proposed at a time when the most marked feature of municipal administration is the insistence on getting and keeping public water supplies under municipai con troi. Whatever may be thought of the claims for municipal ownership of lighting, street rallway and telephone systems, it is now almost universaliy admitted, except by those directly interested in private plants, that water-works should be un der public ownership. As is shown by "The Man ual of American Water-Works" for 1897, not cony is it true that only 9 of the $\mathbf{5 0}$ largest eitles of the United states are dependent uson private com panies for their water supply, but in addition four of these nine have recently taken steps t, change to pubilc ownership, New Orieans having actually voted to do so, while San Francisco, Denver and Omaha have the matter under consideration. of he remaining 41 cities, about half were form riy uder private ownership. We started the cea ury with 16 private to 1 publie works, and early In 1897 had 1,500 private to 1,700 public works Besides the changes among the 50 largest cities there had been enough others to bring the total changes from private to public ownership up to some 200 by 1897 , while since then many have been added to the list, and Oakland, Los Ange.es, Buriington, Dubuque and Ottumwa, Ia., together with a host of smaller piaces, are actively stŗiv ng to reach the same goal. At present many of our abiest engineers, instead of being engaged in new construction, are spending iarge portions of their time as expert witnesses in arbitration and condemnation proceedings where works are being taken over by cities, or in legal controversies over the interpretation and enforcement of water in tracts.
Returning to the Ramapo scheme, iet us first consider some of the other possibilities of increasing the water supply of Greater New York. In our issue of Feb. 13, 1896, we discussed this question at some length, including in a generai way Jersey City, Newark and other New Jersey suburbs. We showed that the New Jersey cities and towns must be considered in any adequate study of the subject, and that in the course of half a century it is quite possible that there may be a conllict of interests between New York and Phliadelphia. The water supply of Brookiyn was then, as now, the most pressing question in the territory making up the present city of New York. Basing our opinion on the information then in hand, we said then, and we stlli believe, that as a purely engineering probiem the needs of Brookiyn couid be met most advantageously for some years to come by a further development of the avaliable suppiles on Long 1stand. At that time Mr. I. M. de Varona, M. Am. Soc. C. E., then Engineer of Water Supply for Brooklyn, estimated that an additionai $100,000,060$ gations of water could be secured to the eastward of the existing works at a total cost, including interest, sinking fund, pumping and ail other expenses, of s3a per $1,000,000$ gaifons. There was no question about his estimates being sufficiently liberat, both as regards cost and quantity. Mr. Alfred T. White, then Commissioner of Pubiic Works, thought the estimates too high, and that those made at the same time for the Housatonic and Ramapo, $\$ 20$ and $\$ 16$ respectively, were probahis too low in view of certain contingencies that might arise. The Housatonic supply as will be shown later, shouid be developed in connection with the Croton suppiy, and not independentiy. One weighty consideration in favor of the Long Island extension is that it can be done plecemeal. Mr. de Varona said that the whole work could be done in about four years, or in three sections six or seven years apart. Vigorously pushed, the immediate needs of Brooklyn could be supplied from the first section of this extension before water couid he brought from the Ramapo or any other source by either city or company.
The work that shouid be given precedence, so far as Brookiyn is concerned, is the 66-in. steel pipe iine needed to parallei a portion of the oid hrick aqueduct to make avaiiabie the suppiy aiready
developed. A contract for this work was fet as long ago as 1 sif, but though its necessity has been urged repeatedly it has been contimuously hung up; first on account of the fathre of th. Comptroller of the old city of Brookiyn to certify that funds were avallable for the work, and sinee consolidation because the uresent authorties have failed to take the requisite action.*

The failure to provide means to bring to Brooklyn the supply already available may be partly due to the financial straits of that city in recent years and the chaos preceding (and unfortumately following consolidation but any one whe has followed Brooklyn water-supply matters for the past few years can suggest other and perhap; more potent reasons. For years there has seemed to be a systematic and never-ceasing effort in Brooklyn to belittle the quantity and quality of its water supply, and to render it impracticabie, if not impossible, to go further alleld on lang Island. Contemporaneous wlth. or perhaps preceding th reekless legislation designed to give the Ramap. Water Co. precedence over the city ltself in condemnation jowers in the drainage areas nort he eity, was other legislation prohibiting the de eiopment of further public water supplies in suffoik Connty. L. 1. Without lirst securing th. bermission of the Supervisors of that count was an easy matter to work up a popular sentiment against taking water for Brooklyn from Suffolk County. There have also been lawsuits to revent Brooklyn from using the driven well system, brought, it is true, in the name of land whers who claimed that the wolls had deprived hem of their individual supplies but explotited in such a way as to arouse the susuleion that the suits were only a part of the great scheme of promotion in progress for so many years. Aftior the disclosures that may be expected before the Ramapo scheme fades from public view, and in connection with tife establishment of the city's right in the Ramapo or any other drainage area of the State, thls special legisiation, pretending to be for Suffolk Co. but actually drawn in the interest of the Ramapo Water Co., should b repealed. If the legislature does not do it, per haps the courts may annul it as contrary to public polley. Meanwhile the pipe iine mentioned above
may be built, giving considerabie retiof to limik lyn, and perhaps it shouid be entarged, or dupll cated, for use in connection with further water developments on Lang lsland.

Coming now to the needs of the area comprising the old city, known as the boroughs of Manhattan and the Bronx, it is obvious first of all that there should be developed as much additional water above the capacity of the Croton drainage area as is needed to utilize the full carrying capacity of both the old and new Croton aqueducts, which with the works now taking water from the Bronx and Bryam rivers, would give Manhattan and the Bronx $400,000,000$ gallons a day. This can easily be done by turning the yield of the Housatoni River "into the upper affluents of Croton River." and "at a comparatively small expense." \dagger The importance of this factor in the water-suppiy prob lem can be appreclated when it is stated that th average daily consumption of water in New Y in $18: 5$ from the Croton, Bronx and Bryam drainage areas was $243,000,600$ gailons, leaving a margin of $15 \% .000, t 00$ daily between this and the total capacity of the conduits leading to the city. If more water can be diverted to the Croton diamage area than the aqueducts can bring we ventur. as an ofthand suggestion well worth investigating that they might be supplemented by a steet nit line, laid down the Croton and Hudzon valleys Numerous such plpe lines, of great size an length, have been constructed since the new aqu. duct was built, and they are now accepted as one of the possibie great economies of modern hy drauile engineering. Besides cheapness, they havi the merit of remarkable facility of construction. scarcely limited except by the output capacit; of
*It is only fair to the Commissioner of Water Supply to say that he has requested anthority to award a new con-
tract and has asked for a new bond issue to carry ont this work. See p. 16, First Annual Report Department of 0 See p .82 , Report Croton. Aqueduct Commission, 1 Nst 95 , which refers, for detalls, to the Report of the Depart-
ment of Public Works for the city of New York for the
quarter ending June 30,1879 .
the nammotls steel mills of the country. With two large masonry aqueducts, the larger of which is for most of its length far below the surface, no apprehension for the safety of the supply need be felt if additional conduits are placed at or near the surface.
Another important means of safe-guarding the capacity of the water supply of the whole clty Is the immediate Installation of the most improved modern methods of reducing the enormous wast of water known hy all engineers to be going on throughout the city. The report of the Commls sloner of Water Supply for 1898 gives the consumption of water in Manhattan and the Bronx as 121 gallons per capita, and in Brooklyn as 88 gallons, estimating the respective populations sup plied at $2,000,000$ and $1,180,000$ gallons, respective ly. He belleves, or is informed, that the $\mathbf{3 5 , 4 4 2}$ meters in Manhattan and the Bronx cover "every place where water is used to any considerahle extent for,other than domestlc purposes," and that "the bulk of the waste must, therefore, be in the dwellings, which are exempt from the use of meters and meter charges," since meter bils are such forcible monitors that it is not reasonable to assume "that any considerable portion of the people" who pay them "persist in wanton or careless waste of water." Brooklyn, with more than half the population of Manhattan and the Bronx. the report states, has only 2.705 meters, agalnst the $\mathbf{3 5}$. 442 in New York. The Commissioner assumes that the consumption in Brooklyn will mount rapIdly when more water and higher pressures are avallahle, and coneludes that:
The necessity for further extension of the meter system
scems nnavo!dable, In whatever llght the sltuation may be consldered.

If Brooklyn, without meters, can be kept down to a per capita consumption of 88 gallons, what might be expected with them, and what might be hoped for in New York if the waste prevention were extended as far as possible? We are not speaking of legitimate use, but of useless waste. The consumption is as low as it is in Brooklyn because waste, rather than use, is already partlally curtailed. With an extension of meters to cover all large consumers, leaving domestic services alone, the consumption would fall in a sur prising manner. Meters can be applied so quickly that the avallable supply might, by that means, be as good as increased hy many millions Insid ${ }^{\circ}$ of three months. if half as much determination were shown in that line as has been exhlbited in the proposed contract which will tend. if not deliberately deslgned, to encourage and inerease waste at every possible point
Thus far we have been discussing volume n water. In terms of average dally consumption for yearly perlods. As a matter of fire protection, however, the chief claim for the proposed new supply is the increased pressure it would give th actual quantity used for extingulshing fires heing a mere hagatelle compared with the total consumption. By far the quickest and cheapest means of supplementing or improving the fire protec tion In the portions of the city most needing it is to put in special fire pipe lines, taking water from the East and North Rivers, on a plan simllar to that recently installed in Boston, and in service for a number of years at Cleveland and other elties on the great lakes. A year's time would work marvels in improving the fire service of the city in this way, and the plan has been urged repeatedly. With the Ramapo scheme out of the way, something of the sort may be done. Again. the consumption of the polable water supply might he reduced somewhat hy using salt water for street sprinkling and sewer flushing. as is done extensively in some English and other foreign clties, and also, we believe, on the Pacific coast. This subject deserves more extended consideration than can be given it in the space remaining at our disposal.
One phase of the water question needing special mention is the quallty of the present supply. The Brooklyn supply, as has been hinted already, has heen shamefully abused in the interests of water syndicates. Suspicion has also been cast, at times, on the Croton supply, although that has diminished with the expenditure of millions for its sanitary protection. It is recognized by sani-
tarlans that the typhold mortality of a clty is one of the most rellable indices of the character of its water supply. Brooklyn has long been noted for Its enviable record in the matter of low typhold rates, and New York has stood close beside it. In the "Medical Record" for Aug. 12, 1899, Mr. F. S. Crum, Ph. D., of Newark, N. J.. presented the "Typhold Mortality in 24 American Cities, 1889 1898." The cltles chosen were among the 50 largest in the country. For the ten-year period Brooklyn made the best showing of the 24 cities, and New York stood third, the mortalities per $\mathbf{1 0 0 , 0 0 0}$ heing 19 and 21, respectively, against 82 for Pittsburg and $\mathbf{7 7}$ for Denver, the cities making the worst showing. 33 for Boston, one of the best, and 46 for Philadelphia
The mention of Phlladelphla suggests that New York take warning from the unfortunate experlences which the Quaker City has had with private water schemes, "water snakes" they are now called. For more than a dozen years the citv has been drinking a grossly polluted water supply, and seeking for a better one, hut it has made no progress hecause the officlals have insisted on dealing with private companles having something to unload on the city, but they have never quite dared to put through any of these sehemes con celved for the good of corporations and clty of clals instead of the public. The nearest approach to a contract of this sort was headed off and killed hy charges of wholesale bribery, which, while not proven, were unlversally credited.
In conclusion, the moral of the whole tale is tha when a clty finds itself in need of an additiona
fast as the real need for additional water suppiy makes them necessary. These measures, in the order of their timeliness and importance would seem to be: (1) Extend waste prevention mes ures, especially in Brooklyn, where both the name slty and the opportunity most invites them Build the pipe line needed to bring to the pu the full measure of supply already developed Long Island. (3) Prepare to develop the Lonc and supply as indicated in the de Verona repor of 1895, unless further investigation proves som other course more practicable. (4) Supplamen the Croton by the Housatonic or some other dral age area at least to the extent necessary to utllif the full capacity of the two existing aqueduct (5) And perhaps this ought to come earlier di velop a supplementary river supply for fire prtection in the districts where the fire risks ar greatest. Simultaneous with all this work inve. tigations should be made for a greatly enlarge future supply, including a consideration of variety of sources, opportunity being afforde meanwhile to watch the effect of the applicatio of every possible and reasonable measure to pro vent waste.

LETTERS TO THE EDITOR

An OId Wooden Truss Bridge.

Sir: Enclosed are two vlews, which Itook on Aug. 7 th place is 122 milles from New York on the Erie R. R. Th

BRIDGE OVER THE DELAWARE RIVER AT NARROWSBURG, N. Y., SPAN, 262 FT.
water supply, it should engage competent and honest expert advice to determine, (1) what its needs really are; (2) what, if anything, can be done to Increase or improve the present supply: and (3) the best of the varlous additional sources avallahle. In no event should contracts for a supply from private sources be consldered which do not provide for early acquisition of the works by the city; and the cases will be few and far be tween where the clty cannot carry out the work itself with greater economy and more advantageously than it can turn it over to a private company.
As regards the Ramapo scheme, we are glad to be able to state that as we close this article news comes that an infunction against the execution o the contract has heen issued. This, we trust. wil enable Comptroller Coler and his colleagues, who so resolutely Insisted on postponement of action at the meeting on August 16, to let in such a flood of light upon this outrageous scheme as to cause it to disappear permanently from public vlew.
The broad question of a water supply commen surate with the needs of Greater New York, may then be taken up by the city with the thoroughness that the importance of the question involves. Meanwhile, some of the relfef measures sug gested above might be carried out as far and as

Delaware River at this polnt flows through a narrow. rocky channel, the hrldge span helng 262 ft . over all, and the flooring about 40 ft . above present water level.
Both ahove and below this point the river widens out to a quarter mille width, and the lower pool is sald to he over 50 ft . depth, while under the fridge there is now ten or twelve ft . depth, though for forty milies above or helow this spot one can hardly find a place deep enough to swim in
Evidently thls bridge cannot last much longer. A wind storm some two months ago tore away nearly half of the roof, and while the rest of the bridge seems to he in fairly good condition, it has stood over forty years, a well-bult specimen of a type of truss well known to your older readers, hut which is seldom seen now, and will soon dis appear.

Yours respectfuliy
J. K. Noyes.

13 Ferry St., Binghamton, N. Y., Aug. 16, 1899.
(We reproduce herewith one of the photographs of this interesting old structure, which is notable as among the longest spans that were ever at tempted with this type of bridge. We may add that when this type of bridge is well protected from the weather, its life should be much longer than 40 years. Well seasoned timber trusses, protected from molsture, will remain safe, we are inclined to think, quite as long as some of the iron structures which are taking their place, when the corrosion of the latter is taken into account.-Ed.)

A LOCOMOTIVE BOILER WITH CORRUUATED FUR-
 nace.

There is now running in freight service on the There Division of the New York Central \& Central Division River R. R. a locomotive with a currugruted furnace which constitutes an important departure from the ordinary type of construction. We glve herewith sectional views which will make the construction clear. Previous experiments in corusated furnaces for locomotives in this country have been made with a double-furnace arangement, connected in front to a common combustion chamber. In the present case a cingle corrugated furnace is used with the very large dianeter of 5 ft . 3% ins. The furnace has the Morlson stiffening rings, and was made at the Continental Iron Works of Brooklyn, N. Y. It is the largest corrugated furnace which these works have ever made, and we do not know of any larger one having been rolled anywhere, elther here or abroad. The furnace is rolled from $3 / 4-\ln$. steel, and was tested under an external pressure of 500 ins. per sq. in. before being put in place in the biller. The steam pressure it is to withstand is 180 ibs.

Into a deep ashpan not shown in the drawing. The air supply for the grates passes up this hole, being taken into the ashpan through adjustable dampers, as in ordinary practice. The 8 -in. opening into the combustion chamber is for the purpose of cleaning out ashes, and is closed when the engine is running. Rocking grate bars with interiocking fingers are used, and we are \ln formed that the firing arrangements as a whole have been very satisfactory.
The tube heating surface is $1,920 \mathrm{sq}$. ft ., and the furnace heating surface is approximately $90 \mathrm{sq} . \mathrm{ft}$. above the grates. We are informed that the locomotive has proved a very free steamer and is pulling as heavy trains as other engines of its class without difficulty.

The englne is a ten-wheeler with 20×28-in. cylinders and 61-in. drivers. The total weight on the driving wheeis is 113.300 ibs . Notwlthstanding the very heavy metal in the furnace, the total weight of the bolier is considerably less than that of the regular bollers on other engines of this class.
The engine was designed in the office of Mr. A. M. Waitt, Superintendent of Motive Power of the New York Central \& Hudson River R. R. by Mr.
duties of the line by passing an examination; unless they so qualify, on obtaining the rank of Commander they will perform englneer duty osly om shore. Certain former engineer officers will perform line duty only, but must qualify for such duty after March 3, 1901. The former engineer officers who do not quallfy do not succead to command or the duties of a line officer, either afloat of ashore. It is the Intention of the Navy Department. as far as practicable, to detall offcers for the duties of the class to whict they befong, and commanding officers wil not alter these detalls except in case of emergency. I is also the intention to relleve commissloned offcers, as mucb as possible, from further duty in charge of engineroom watches, and to have this duty performed by war rant machinists, who will act as assistants to the acting engineer officers of the stip in all that relates to the care of the machinery, bolters and appurtenances, and to per form such duty as may be assigned them. The sentor en gineer officer on board will designate to the warrant ma chintsts thelr routine duties, and the latter will stand regular engineroom watches, in not more than fou watches of four hours each, when the maln engines are running, and not more than six hours at any time. These warrant officers may, with the approval of the Captatn be excused from watch, from "plpe-down" to "all hands. when the fires are not lighted under the main bollers for steaming purposes: and when the number of warrant machinists on duty is reduced below four, chief machinaists or competent machinists of lower grade may be assigned

CORRUGATED FURNACE BOILER FOR TEN-WHEEL LOCOMOTIVE, NEW YORK CENTRAL \& HU DSON RIVER R. R. A. M. Waitt, Superintendent of Motive Power; Cornelius Vanderbilt, Jr., Jun. M. Am. Soc. M. E., Designer.

Abstract

As seen by the drawings, the furnace is carried at its front end by a row of slingstays, and the pressure tending to force it to the rear is resisted both by the tubes and by stays attached to an annular re-enforcing plate and at their front end to the waist of the boiler. The very large diameter of the outer shell of the bolier at the firebox ($\mathbf{7 t}$. inside) made it necessary to raise the boller at the rear end and pitch it toward the front to clear the flanges of the rear driving wheels. The plates for this ring are 13-16 in. thick. The grate is inclined toward the front with a drop of 8 ins . in its length. Its area is 34 sq . ft . and it is shorter and wider and has a little more area than the standard grates used with engines of this type on the New York Central. The grate is carried by bearers which rest in front on the bridge wall and at the rear on the frame by which the mouth of the furnace is closed. This frame is lined on the inner side with firebrick, has in its upper haif two firing doors and in its lower part openings through which the fireman can reach the ashes and haul them to the dump hole. Thls latter, as seen in the cut, is 18 ins . In diameter and opens

Cornelius Vanderbilt, Jr., Jun. M. Am. Soc. M. E., who has been an assistant in that department slnce his graduation from the Sheffeld Scientific School of Yale University
We need hardly say that the principal advantage aimed at in the design is dispensing with the manifold troubles due to the staybolts and side sheets in the locomotive firebox of ordinary construction. If it is found that the corrugated furnace can replace the present standard construction without creating other difficulties of a serious nature, it will appeal strongly to those rallway officials who are responsible for the maintenance of locomotives.

THE NAVY PERSONNEL BILL, approved Marcb 2. 1899, terminated the existence of the Steam Engineer Corps of the U. S. Navy, by transferring the former engineers to the line and making all IIne officers subject to engineering duty. To carry tbis law into effect, the Navy Department bas issued an important general order indicating the duties and responsibilities of the offcers concerned. The order gives a list of officers who are qualified to perform engineer duty alone and only on shore; the next list is to perform engineer duty alone, at sea or on shore, untll they have qualifed for the general
to engineroom watch duty. These warrant offcers, of all grades, will bave an espectal mess, and steps are being taken to provide suitable additional quarters for. warrant officers.

SHIP BUILDING ON THE DELAWARE is reported upon by the Philadelphia "Press," which paper eatimates that 100,000 tons is under contract at the yards of Cramp. Neaffe, Roach and Harian \& Hollingsworth. Tbla list covers 40 separate vessels, of which eigbt are United States ships of war and two are Russian warships, a hattleship and a cruiser. The Cramps alone are sald to bave $\$ 20,000,000$ in work on hand, Including three battleships and one cruiser.
the latest north river tunnel project is being engineered by the Manhattan \& Jersey City Rallroad Co., Incorporated at Albany, on June 16, with $\$ 10,000$ capital. Tbls company is now asking the Board of Aldermen for a franchise to use several streets in the city. The directors are not well-known men, hut Tracy. Boardman \& Platt figure as counsel for the company. One of the directors is Mr. Ernest C. Moore, Jun. Am. Boc. C. E., and he is credited with stating that it is the purpose of the company to build two circular tunnels under the North River, each 10 ft . diameter inside, and made of steel with concrete lining. The entimated cost of the tunneis is
only $\$ 1,000,000$, with $\$ 4,000,000$ more for terminals, etc. The route lald down for one tunnel commences st Liferty and Washington Sts., to Dey St., and under the latter to the North Itiver and Jersey City; the second tunnel would branch from the first to Cortlandt St, and under this street to West St. snd to snd across the river. The New Jersey charter and Federal consent are yet to be secured.

THE DEVELOPMENT OF SHIPBUILDING, in the last haif century, from the "Great Eastern" to the "Ocesnle," the new White Star IIner expected in this port in September, is Illustrated by "Bradstreets" In the following table:

Name of Shlp.	Date.	Length, ft . In.	Besm, ft . In.	Depth, ft In.	$\begin{aligned} & \text { Dis- } \\ & \text { place- } \\ & \text { ment. } \end{aligned}$
Great Eastern	1858	$6{ }^{6} 0$	83	57.3	27,000
Britannle	1874	45.5	4.5	36	8.500
Arizona	1879	450	$4 . .2$	37.6	
Servia..	1881	515	5	40.6	9,800
Alaska	1881	500	50	39.8	
City of rome	. 1881	542.6	52	38.3	11,230
Oregon	1883	500	5	40	
Parls	1888	527.6	53	41.10	13.000
Teutonle	1890	585	57.6	42.2	12,000
Cumpanla	1893	60	6	42.6	
Kalser Wilhelm	1897	62.5	68	43	20,060
Oceanle. .	. 1890	704	68	49	28,500

${ }^{\bullet}$ Tons
The "Oceanlc" cost about $\$ 5,000,000$, and she will have accommodations for 410 first-class, 300 second-class, 1,000 third-class passengers, and $3: 01$ in the crew, or 2,100 persons in all. The above list, unfortunately, omits the engine power, in whicb the greatest advance has been made slnce 1Nis; for example, the "Great Eastern" engines de-
veloped only $2, G 0 \mathrm{HP}$., as contrasted with the $30,000 \mathrm{HP}$. veloped onty 2, GN HP., a
of the "Kalser Wilhelm."

A S-IN BHOWN SEGMENTAL TUBE WIRE-WOUND gan, the first completed out of 25 contracted for with the U. S. government, was tested on Aug. 9 at Birdshoro, Pa. The contract calls for a muzzle velocity of not less than $2,600 \mathrm{ft}$. per second; with 300 rounds fired in the test with $550-\mathrm{lb}$. prajectiles, and smokeless powder that will develop a chamber pressure not exceeding $40,000 \mathrm{lbs}$. per sq . In.: but the last five shots must have a sufficlent charge to develop a pressure of from 45,000 to 50,000 Ibs. The 300 rounds were successfully fired and the five high-pressure shots developed pressures of 46,000 to $49,000 \mathrm{lbs}$. The
same company is under contract to make $256-\mathrm{in}$. guns of same company
the same type.

L,AND VALDES in THE CITY OF LONBON are high. A plece of ground at Nos. 90,91 and 92 Flect St. covering an area of 2.200 sq . ft., was lately let on a building lease for a ground rent of $\$ 8,500$ per year, or about $\$ 3.85$ per sq. ft . This represents an annual rental value of
$\$ \mathrm{~s}$. $\mathrm{s}, 5 \mathrm{5} 7.20$ per acre; but large as it is New York land $\$$ fiss,5 57.20 per acre; but large as it is New York land
values are still greater. In 1893 , a $\operatorname{lot} 221 / 2 \times 641 / 2 \mathrm{ft}$., at the values are still greater. In 1893 , a lot $921 / 2 \times 64 \frac{1}{2} \mathrm{ft}$, at the
cormer of Broadway and Pine St.,New York, was sold outcormer of Broadway and Pine St., New York, was sold out-
right for $\$ 000,0 \mathrm{~m}$, or $\$ 2 \mathrm{si} ;$ per $\mathrm{sq} . \mathrm{ft}$. An acre of this land would cost $\$ 12,4 i s, 100$. Within the same week another fot at Nassaua and Plue Sts., $37 \times 50 \mathrm{ft}$, sold for nearly $\$ 700,010$, or at the rate of abont $\$ 251$ per $\mathrm{sq} . \mathrm{ft}$. In 1504 the Amerleaz Surety Co., of New York, paid nearly $\$ 1,500,060$ for a plece of land sit ft . square, or at the rate of about $\$ 8,000,001$ per acre. The Fleet St. lot in London, at $84,256,0400$ per acre.

SPRUCE PULP FOIt NEWS PAPEt, and the extent to which it is consumed, is set forth in tabular form in the Boston "Transcript." From this table it appears that one cord of sprace wood, or 615 ft B. M., will make one-hal ton of sulghite pulp, or one ton of ground wood pulp. Newspaper stock is made up of 20% sulphite pulp and 80% of grouad wood pulp. The best spruce lands, virgin growth, possess a "stand" of about $7,000 \mathrm{ft}$. B. M. to the acre; and 22 acres will therefore contain $154,000 \mathrm{ft}$. B. M. of timber. An average gang of loggers will cut this in eight days, and any large puip-mill w.II convert this amount of timber in one day into about $2: 50$ tons of the class of paper pulp used in trewspaper stock. Thls pulp will make about an equal weight of paper ready for the press, and this paper will be used up by a single large city newspaper it abent two days.

THE ROYAL iNstitution of great britain elebrated its centenary in June last. The institution was founded by Count fumford in 1599, the purpose of the founder beling the diffusion of knowledge and the facilitation of the general introduction of useful mechanica Inventions and improvements of all kinds; courses of phillosophleal lectures were to be also held, treating of "the appllcation of sclence to the common purposes of Iffe." The first resident lecturer-in-chief was Dr. Thomas Garnett, who was succeeded In 1802 by Humpbrey Davy Under Davy the lnstItution took on new life and became the home of sclentific research; and his successors, M1 chael Faraday, Tyudall and the present lucumbent, Pro-
fessor Dewar, stIIl furtber earried out thls ldea. But its founder was an Americsn by blrth. Benjamin Thompson, born in Woburn, Mass., In 1733. Thompson adhered to the King during the American Revolution; went to Engand, and in 1784 he entered the service of Bavaria an ecame Minster of War and a Count. He was devoted to clence throughout his life, and made many experiments relating to the orlgin of heat, heat eurrents, fuel economy relatin
etc.

PUBLIC FOADS IN IRELAND are under the superision of County Surveyors, wbo are selected after a rigid ivil servle examinas was 180 , 004 miles, he cost of maintenance per mile was f12 9 s . (860). Labor ge cow, 1 . 0 , per day. The total cost of supervision by the surveyors per day. The thats oly $41 \% \%$ the no the and for the ond aboul $1 \mathrm{~s} \%$ ols by ure. The fund for the road repairs is raised by taxation and amounce mainterance cost the main wer higher, being set at $\mathbf{f 4 2}$ ($\$ 204$) per mile. We take tbe
above figures from a recent Institution of Civil Engineers' above fi
paper.

THE RELATION BETWEEN THE STRUCTURE OF STEEL

 AND ITS THERMAL AND MECHANICAL TREATMENT.*By Albert Sauveur, \dagger M. Am. Inst. M. E.
. Changes of Structure Brought About by Heat Treatment.
Tbe changes of structure, with their resulting changes of physicsl properties, brought about in carbon stecl by heat treatment, may, I belleve, be summarized in the following proposittons:
I. Wben a piece of steel, hardened or unhardened, is heated to the temperature $W . t$ all previous crystalization, however coarse or however distorted by cold work, is obIIterated and replaced by the finest structure which the metal is capable of assuming. $\$$ the structure of burnt steel, which cannot be effaced by sucb treatment, being the only exception.
II. When a plece of steel, hardened or unhardened, after beling heated to the temperature \mathbf{W}, is allowed to cool it had acquired at that temnerature. It possesses then the It had acquired at that temperature. It possesses then the
finest structure which unhardened steel is capable of assuming.
III. When a plece of steel, bardened or unhardened, after heing heated to the temperature \mathbf{w}, is suddenly cooled from that temperature, by quenching it in cold water for isstance, it is fully hardened.* and retains the fine amorphous-like structure acquired st that temperature. The metal possesses then the finest structure which hardened steel is capable of assuming.
IV. When a piece of steel, hardened or unhardened, is heated to a temperature above W and aliowed to cool
slowly and undisturbediy, the metal, whose crystallization *A paper read before the Iron \& Steel Institute of Great ${ }^{+} 446$ Tremont St.. Boston, Mass.
tha these nromositions the leter. V indicates the iemper-
atare at which hardening esrhon is changed to cement carbor durlng the slow coollng of steel, a change whicht carcompanied by a retariation in the rate of coollng, indicating an evolution of heat, sometimes so considerable as to pro-
duce an actual rise of the senslble teniperature duce an actual rise of the sensible temperature, a recal-
escence, of the coollng metal. In other words v represents escence, of the coollng metal. In other words V represents the point of recalescence. The temperature V varies somewhat with the carbon content, belng lowest in the most highly carburetted compounds. In medium hard and in
hard steel it is genersily situated between $625{ }^{\circ}$ and $700^{\circ} \mathrm{C}$. and covers a range of some 20° to 30°. In very soft stee the transformatlon occurs at a higher temperature. In steel containing very little carbon it is, of course, hardiy detectable, and is not found in carbonless fron.
The letter W indicates the temperature at wbich takes place the opposite phase of the same phenomenon, i. e the passage of cement carbon into hardening carbon during the heating of steel. Which transformation is accompanie
by a retardation in the rate of beating. Indicative of an ab sorption of heat. Tbe temperature W is generally som 30° higber than V, and often covers a range of some 2.5°
The symhols V and W. first proposed by Brinell been selected here in preference to Arr and Ac, now more
generally used, merely on account of their greater simgenerall
pilcity.
sit
atect teel (contalning 0.20% carbon) a single heating of toft
oteaks up only partlally a pre-existing coarse erystallizabreaks up only partlally a pre-existing coarse erystalliza-
ton, a second reheating to that temperature helng neces sary to ohliterate
ther investigated
Some steel castings also are sald to require more tban one heating to W to assume the finest possible structure. it is evidently meant here. and in all similiar refer ences, thit after heating to the above temperature, the
steel under eonsideration will acquire all, or practically
all. the hardening power whlch that partlcular all. the hardenlng power wblch that particular steel is eapable of assuming, no further increase of hardness resultlute degree of bardness will, of course, depend upon its
carton content, rate of coling earbon content, rate of cooling, and the peresence of other
Impuritles: in the case of the softest steels, the increate Impurites: In the case of the softest steels, the Increase of Very low earbon steels. moreover, do not seem to acquire. Yery low earbon steels, moreover, do not seem to acquire,
In Its entirety, during \mathbf{W}, whatever hardening power they
possess, it being nenessary for possess, it being necessary for that purpose to heat the
metal to a bigber temperature, 1 . e. pass tbe upper retard-
ations.
bad been obliterated by its passage tbrougb \mathbf{W}, cryath lizes again, the crystals or gralns incressing in slze the temperature \mathbf{V} is reached, below whicb there further growtb. (See Appendix I.)
Corollary to III. and IV.-When a plece of steel, after being heated to a temperature above \mathbf{W}, is allowed to to W and then quenched, it will be fully hardened, b from W who from W without having been previousi temperature. (See Appendix I.)
V. The higher the temperature above W from which
teel is allowed to cool undisturbedly, steel is allowed to cool undisturbedly, the larger rrains.
VI. The slower the cooling from a temperature above W he larger the gralns.
Corollary to V. and VI.-Pleces of steel finlshed st a tem perature above W will have a coarser grain in those part which have been finished hottest, and where subsequel ooling has been more gradua, 1. e. toe central porton or portions further away from the cooling surfaces. VII. Wben a plece of steel, hardened or unhardened, heated to a temperature above W and suddenly cooled, is fully bardened, but its structure will be coarser that when quenched after having been heated to W. (See Ap. pendix I.)
VIII. When a plece of unhardened steel is heated to emperature below \mathbf{W} and quenched or slowly cooled from that temperature, no cbange takes place in its structure. See Appendix II.)
IX. When a plece of bardened steel is heated to a tem perature below W, some of its hardening carbon is
changed spontaneously into cement carbon, and the metal changed spontaneously into cement carbon, and the metal is thereby softened. Tbe tendency of the bardening car bon to pass into the cement condition increases with the temperature, and is the greatest at the temperature V. change in the dimensions of the grains. (See Appendix III.)

Tbese propositions are for the most part illustrated graphically in Fig. 1,
mode of representation.
II. Changes of Structure Brought About by Work We must at the outset consider two kinds of work: hot work and cold work. By hot work I mean work per ormed above the critical range, 1 . e. above W ; by cold work is meant work performed below the critical range . e. below \mathbf{V}. The work done between \mathbf{V} and W will bo cold work if the temperature of the metsl has fust been raised from below V, and it will be hot work if its tem perature has just been lowered from above W.
The effect of work upon the structure of steel may be summarized in the following propositions:
I. While steel is being worked it does not crystallize (provided, of course, the working of the metal is sufficiently vigorous to affect all parts of the mass).
II. Hot work as such has no influence upon the struc ture of the metal. Indirectly, however, hy retarding crystallization until a lower temperature is reached, it may influence its structure most decidediy; but the same r sults could be accomplished by heat treatment alone, by reheating the unworked metal to the temperature from which the worked piece was allowed to cool undisturbedly. Remark.-A certain amount of work is, of course, necessary to expel the slag, close blow-holes and other similar irregularities, and otherwise render the plece sound: but once this accomplished, further work wifi not improve the structure, except indirectly as stated above.
III. Cold work distorts the grains or crystals of steci, flattening them and elongating them in the direction of forging or rolling.
IV. The lower the te
effect of cold working.

Temark. -The structural distortion caused hy cold work ing, with its accompanying alterations of the physical properties of the metal, may be removed by heating the metal to W (see Proposition I.)

III. Conclusions.

From the above considerations, we may draw the follow ing conclusions of industrial interest:
Finished Pleces of Unhardened Steel.-Since it seems to have been conclusively shown that the smaller the grains of the metal, the more ductile and tough it will be, it is evident that we should endeavor to impart such a structure to all finished pleces, and as the finest possible structure results from heating to W , we naturally infer tha every finished piece of unhardened steel, in order to be in the best possible condition, should, as a last treatment, be heated to W.
While, for numerous reasons, sucb treatment cannot sl ways be applied, being, indeed, in many instances, altogether impracticable, nevertheless manufscturers should endeavor to approach this desideratum as much as is consistent with otber conditions and requirements of produc tion. Forged or rolled pieces should be finisbed as near the temperature \mathbf{V} as possible, since finisbing them at a temperature much above \mathbf{V} leads to the development of coarse structure during subsequent undisturbed cooling. while if they be finished below V they will suffer from the effects of cold work.
The problem, however, is furtber greatly, complicated
by the fact that thick pleces cannot be finished at a temby the fare uniform throughout, the differences of temperaperature uniform eentral portions and the outside increasing rapidly with the eross section of the piece. If it be fuished at a temperature above V , the whole mass will begin to erystallize during subsequent cooling, but the interlor, being hotter and cooling more slowly, will have a larger grain than the outside portion; the resulting structure wili be far from uniform, and the physical propcries of the finished pleee in its various parts will also necessarily lack uniformity, as may be ascertained by tusting specimens cut from different regions. If the outside or thinnest parts have reached V when the piece leaves the forge or the finishing rolis, the central portions may be conslderabiy above that temperature, and may assume a coarse crystalitine structure; while if the working he continued until the interior of the piece has reached the temperature \mathbf{V}, the thinnest portions may be much below that temperature and suffer from the effects
of coid working.
Eniformity of structure (and therefore of physical properties) in all parts of a worked plece of steel, together with freedom and distortion eaused by cold work, can only be secured by reheating throughout to the temperature W; and while such treatment, as aiready stated, is impracticable in many eases, besides neeessitating the use of pyrometers, standing of the effect of heat treatment and of work upon the structure of the metal, each manufacturer has it in his
power to $1 m p r o v e ~ t h e ~ q u a l i t y ~ o f ~ i t s ~ p r o d u c t . ~$ power to improve the quality of its product.
In the manufacture of costly pieces of steel, when large
sume the name of "annealing," can only be decided ar bitrarily. Tempering should be considered as a speefes of annealing.
It is not the writer's desire to formulate any dogmatic rules which should be followed in earrying out this most important operation, hut merely to inquire into the changes of physical properties which we desire to bring about in the annealing of steel, belfeving that such inquiry, together with our knowledge of the effect of heat
treatment upon the structure of steel, should naturally lead us to the adoption of of steel, should naturally The changes in the physical most desirable treatment. we desire to in the physical condition of the metal which We desire to bring about by annealing are several in numthe , and the metal 1 believe tha they may be summed up as foliows:
hardness), by obliterating the increase of mineralogical hardness), by obliterating the increase of hardness conferred by previous hardening or by cold working.
11. Increase of ductility, by obliterating the hrittleness caused by previous hardening or cold working, and also by cooling stresses (which always occur during the cool-
lng of farge castings or forgings from a high temperature Ing of large castings or forgings from a high tem perature). 11i. Obliteration of coarse crystallization caused by a previous undisturbed cooling from a temperature higher
than \mathbf{W}, and of structurai distortion than W, and of structurai distortion produced by cold working, imparting to the metai the finest possible struc ure whieh it is capable of assuming.
In short, in annealing steel our purpose is to render the metai as soft, tough, and ductife as possible, and to do so
hy deereasing the elastic fimit and tensile strength only of

Hardening and Tempering.-it is almost superfluous to state here, that in order to harden steel, and at the same time prescrve the best structural arrangement, the metal should be heated to W and then quenched, without allowIng the temperature to rise above W. This rule is quite untversaliy followed, and aithough smiths seldom use pyrometers, some of them become such experts in fudging the temperature of the metal hy the color. that it is probable that the majority of their pieces are, at the in-
stant of quenching, very near W indeed, or at the refinstant of quenching, very near W indeed, or
ing temperature, as they properly call it. The temperature of tempering is also very universally regulated by the color of the metal, and generally with great skill and accuracy.
The use of pyrometers in connection with the hardeniog and tempering of steel shonid nevertheless be commended, as it removes all uncertainty, secures uniformity of treatment, and may be the means of avolding the destruction In the quenching bath of many costly picces.
It is customary, the writer believes, to quencin the metal (merely for convenience?) after it has been heated to the proper temperature for tempering, instead of allowing it to cool slowly from that temperature. It is, however. probable that, if it be left to cool slowiy. Its softness will Increase, since the change of hardening carbon into cement carbon, which is arrested by the sudden cooning, will continue a whlle longer, at any rate, it the steel be siowly cooled.

Appendix.
The fact that alf erystalization previously existing in
the metal is obliterated during the ehange occurring at

FIG. 1.-CHANGES OF MICROSTRUCTURE BROUGHT ABOUT IN STEEL BY HEAT TREATMENT.
outputs, necessitating the highest possible speed of production, is not the all-important and ali-ahsorbing factor - In the production of armor-plates, for instance, and of expensive forgings-the metal may be treated on these scientific lines, and the highest efficiency secured. Annealing.- There seems to be considerable difference of opinion with regard to the meaning of the term "annealing," and still more concerning the proper temperature to which the metal should be heated, and the conditions whieh should prevall during the operation. To the mind of some steel-workers, annealing conveys the idea of a mere heating to a temperature sometimes eonsiderably below, and sometimes considerably above, W. For others it implies a proionged heating at a temperature varying from harely red to a very hright red or even yellow heat. Some workers cool their steel very siowiy in the annealing furnace; some more rapidly in the air; others still quench the metal after reheating to a dull red heat. Finally, the metal is heated in boxes or pipes with or without packing material, or it is heated in the open furnace without any protection.
In short, it is seen that any reheating, followed or not by siow cooling, whose aim is to soften the metal and increase lts ductility, might quite properiy he called annealing, for I see no sharp line of demareation hetween tempering and annealing. Just where the softening and toughening operation should cease to be called tempering to asA famliliar instance of such heterogeneousness of seveals the fact that the weh and extremities of the flange have suffered from cold work, whlie the center of the cative of undisturbed coolling from a temperature above W.
such, so to speak, ahnormal increments, as were acquired through hardening and cold working.
From our previous conslderations it is evident that to aecomplish this in the most effective manner the metal should be reheated throughout to W , and slowly cooled from that temperature, maintaining it a sufficient length of time at the temperature \mathbf{V} to assure a complete change of the hardening carhon into cement carbon. By heating the metal to W all previous coarse crystalization or distortion is obliterated and replaced hy the finest possibie structure, In cooling slowly through the V range, its hardening earhon passes back into cement carbon, but as the complete transformation requires time, it is desirable to keep the metal for some time at that temperature. After such treatment the steel will undouhtedly be in its softest and most ductile condition.
The writer is well aware that the above conclusions are somewhat at variance with those of Brinell, who advises heating to V in annealing steel. As already stated, the writer finds that reheating to \mathbf{V} for a sufficient length of time will cause all the hardening carbon that may be present in the steel to be changed into cement earbon; it may possibly also remove all cooling stresses, so that such treatment undoubtediy greatiy Increases the softness and duetility of the metal. It does not, however, impart to it as fine a micro-grain as it is capahie of assuming, and consequently the metal, after being reheated to \mathbf{V}, does not possess all the ductility that could be its own.*

[^1]W has heen repeatediy demonstrated, and, so far as 1 know, is not contested by any metallurgist. It is also ad mitted by all, I thlnk, that steel crystalilzes while cooling idespremature above W. There is, however, a whespread belief that the metal does not retain, until the coning hegins, the fine amorphous-like structure acquired at W, hut on the contrary begins to crystallize iminues to do so while temperature W is passed, and conis held by sueh while its temperature is rising. This view held by sueh eminent metaifurgists as J. A. Brinefl and he M. Howe; while D. Tschernoff, on the other hand, took its temperature is rising
The statement that steel does erystalize whlie its temperature is rising is certainly opposed to the very nature of erystallization, and on that account we should naturally feel reluctant to aceept it without more conclusive evidence. Steel above the critical range has often heen likened, and on very good grounds, to a solution-a solid solution, of course. The crystallization of a solld solution, as well as of a liquld solution, eonisists in the erystallization or segregation of its structural components taking place at certain temperatures and in a certain order. Can the constituents of a liquid solution crystallize- in other words, ean a solution solidify when its temperature is rising? The supposition is evldently absurd. Can the structural components of a solld solution segregate, then, on a rising temperature? Does not the same laws apply in both cases? Is not a falling temperature a necessary condition to the formation of crystais? During undisturbed cooling cohesive attraction, the foree to whilh crystals owe their formation, acts powerfuliy, eausing them to grow,
while during heating cohesive attraction is opposed more and more by the rising temperature. Is there a single lnstance of a sofution, or for that matter of any substance, crystallizing while its temperature is rising?
The contention that steel does crystallize above W, while its temperature is rising, is based upon the fact that when a plece of steel is quenched at a temperature above W its structure will be the coarser the higher the quenching temperature-from which it is inferred that its grains nust have grown during the heating previous to quenching. It should be remembered, however, that it takes an appreciahle time for a plece of steel, especially for its ceurral portions, to cool to V . If the plece he large, the length of time required wiil be very conslderable indeed, and may he such that its centre will uot be hardened at all. Has not the growth of the resuitiug grains taken place during the coolling of the mass, however rapid, rather than during its beating, seeing that the cooling is far from being sudden and increases in length very rapilly with the cross-section of the quenched piece? I fand that the larger the cross-section of the plece, the larger will be its gralus (because the slower the cooling?), while it the latter had formed during beating there should be, it would seem, little difference in structure between a large and a smail sample, uniess indeed it be argued, as it reasonably might, that the larger grain of the larger plece is due to the slower heating of that plece.
It has not, however, by any means heen shown that if the cooling from a high temperature could be sufficientiy sudden the structure would not he as free from coarse crystallization as if it had been quenched upon reaching W.
Although I am incllned to share Professor Tschernoti's view, I frankly admit that no conclusive evidences bave been presented on either side, and it is to be hoped that this question will soon be definitely elucidated.
If it should be shown beyoud doubt that steel does indeed crystaliize on a rising temperature, the phenomeuou could not, 1 think, properly be called crystallizationgranulation would prohably be a more correct term. 1 hope to be able shortly to present some further e perimental evidence heariug upon this poiut.

Appendix 11 .

In Proposition VIII. It is stated that when a plece of unhardened steel is heated to a temperature below W its structure remalus uuchanged. Mr. Stead, however, has shown, in a recent and very importaut paper,* that when a plece of Iron or of very soft steel is subjected to a prolonged beatlug at a temperature between 600° and $750^{\circ} \mathrm{C}$. (therefore helow W) its structure hecomes coarsely crystalliue. Here we appareutiy meet, therefore, with an exeeption to our proposition. It should be noted, however, that it is only the softest brands of steel whose structure is thus altered at a temperature helow W. Mr. Stead has repeatediy falied to produce a change of structure under such coudition in steel containing over 0.20 per cent. of carbon. Indeed, in the experimeuts which he describes, I find no instance of a coarse crystalization having beeu produced below W in steel contaiuiug over 0.11 per cent. of carbon. The exception is therefore apparentiy confined to a very narrow range of the carbon steel series. It should also he remembered that a prolouged heating is required in order to produce this growth of the gralns; a mere heating to a temperature heiow W leave
ture of this nearly carbouless iron unaltered.
The metal which Mr. Stead fiuds to crystaliize below W is practically a mass of ferrite, and ho has thus demonstrated that when ferrite is heated for a long time at a temperature between 600° and $750^{\circ} \mathrm{C}$., it develops a coarse crystallization, or perhaps more properiy, granulation. There is no apparent reason to suppose that ferrite will not always crystallize in this way, when subjected to such treatment, whatever the carhon coutent of the steei. The amount of ferrito present in steel, however, rapidiy diuinishes with increase of carbou. Steel containing over 0.80 per cent. of carbon does not contain any ferrite, and should therefore remain, as it does, unaffected wheu submitted to the above treatment. Steel containing less than 0.80 per cent. of carbon is made up of grains of peariyte surrouuded by membranes of ferrite. The coarse crystallization of these membranes of ferrite, supposing that it does occur below W, does not alter the dimensions of the grains of the metal, and has probably little, if any, Influence upon its physical properties. Iron and very low carbon steel, on the contrary, are made up of grains of ferrite, and a coarse crystallization, or a change of structure of this constituent, means corresponding changes in the structure of the metal itself. This appears to be the explauation of the notable difference, shown hy Mr. Stead, between the behavior of carbouless or slightiy carburetted iron and more highly carburetted steel, when subjected to the thermal treatment described above.
slly, it should also be noted that the alteration of the sture of ferrite requires time, while the obliteration of ent only upon the proper degree of heat (W), and takes place simultaneously with the passage of its carbon from the cement to the hardening state.
II.; "Journal of the Iron and Steel Institute," 1898, I. and

Appendix III

In his most valuable chart showing the changes of frac cures hrought about by heat treatment in steel contaln ing 0.75 per cent. of carhon, Mr. Brinell states that if a piece of steel which has been hardened ahove W, and which has, therefore, a coarse structüre, be reheated to V, and maintained at that temperature for a sufficient length of time, all its hardening carbon will be changed into cement carbon, and its structure will be as fine as if the plece had been reheated to W.
The microscopical examination of a limited number of samples of steel subjected to the above treatment appear to oppose the second portion of Mr. Brinell's proposition, for while the writer finds that a prolonged rebeating at V causes practically the whole of the carbon to pass back luto the cemeut state, the size of the grains of the metal seems to remain unaitered. The carbou change appears to take place in situ, within each individual grain, without affecting its dimensions. It is the writer's intention to ex amine a larger number of specimens containing various amounts of carbon and reheated to V, for different lengths of time, and he hopes that his remarks will induce other to investigate the question.
Mr. Brinell, the writer thluks, based his propositions upon the appearance of the fracture, not of the microstructure, aud, judged by its fracture, the annealed metal may appear to have a smailer grain, because the fracture of the grains of pearlyte, as produced by thls temperiug process, may be finer and more silky than that of the martensite grains resulting from quenching at a temperature above W, although the mlero-grains would in both cas have the same dimensions.

Correspondence.

Professor Henry M. Howe, of New York city, who had read Mr. A. Sauveur's paper in manuscript, seut the fol owing coutribution to the discussion:
The question, "Can the coarsening of the grain, strac ture, or crystalization of iron occur during rise of temperature (i. e. during heatiug), or can it occur only dur ing fall of temperature (i. e. duriug cooling) ?" can he ap proached either by reasouing from analogy or by direct ohservation.
From the analogy of certain aqueous solutions it has been reasoned that this coarsening cannot occur duriug heating, but ouly duriug coollng. Without saying that this reasoning is untenable, I will merely say that it has not so far heen presented in a way which seems to me cogent
From aqueous solutions iu general crystalization occurs only during cooilng, because crystalization from them implies solidification, and solidification can occur only during cooling. Reasoning by analogy from this to the case of iron must be very cautious for two very evident reasons.
First, bot iron is not an aqueous, not even a liquid solu tion, but a solld solution. That which prevents crystalif zation in aqueous solutions during heating, viz., that they are not solid and bence cannot crystallize, does not appiy bere at all, for the hot iron is already solid.
Second, the coarsening of the structure of hot lron is not the setting iu or veglumag of crystalization, not the passage from a non-crystaline to a crystaline state, dut merely the passage from one state of crystalization to auother. We refiue the structure by heatiug to E; t is then fine crystalline. If on further heatiug, say to $V, 1,400^{\circ}$ C., Its structure coarseus, that does not imply that cryscallization sets in during rise of temperature, or that irou has passed from a non-crystalline to a crystalliue state, hut that its crystallization has simply changed. Now the premise that crystalization cannot (as in an aqueous soluion) begin, set in, orignate, during rise of temperature, cannot change duriug rise of temperature.
I frame this objection to the reasoning from analogy, with the wish to show wherein this reasoning seems to lack cogency, so as to offer an opportunity to supply this lack.
Turning now to direct observation, I beated a var. cf steel very rapidly to a bright white beat. I am confident that during this heating the temperature was at all times rising. I quenched it in cold water very quickly; I found the graln excessively coarse. You tell me that this coarsening of grain did not occur during my rise of temcoarsening of grain ad aot occur during my rise or temperaped betw the fastant when my left the furach elapsed between farther. My answer to this is twofold.
First, if your contention is true, certainly the inside of the har, which must have cooled much more :lowly than the outside, ought to be correspondingly coarser than the outside. In the experiments which I have made, I did not with the eye find thls difference. But further trials not with the eye
Second, assuming that my ohservations were suffisient, the only escape from the inference that the coarsening occurred during rise or temporature would be, that it occurs so extremely last diag tall of tempernture as to omplete itself even in the very rapla coolls or the outside of the har. To say this, however, deprives your contention
of industrial Importance. For if the coarsening during fall
of temperature is so extremely rapld that it can complete itself and reach the great coarseness corresponding to a bright whiteness in the very hrief time occupled by th cooling of the outside of a har $1 / 6$-inch thick, the effeet 18 the same for all industrial purposes as if the coarsening had occurred during the rise of temperature
The following experiment further Indicated that coarsening occurs during rise of temperature. A bar was
nlcked across its middie, was heated to bright whiteness nicked across its middile, was heated to bright whiteness, was struck violently on one-half of the nlck, and w immediately quenched. When now broken at the nlek part not struck was very coarsely crystalline, part struck was finely crystaline. This at least strongly suggests that the coarsening had occurred during heating: that the hlow had broken up the coarse graln on one s of the har, and that thls coarse grain had not had ti to re-form during the cooling. This certainly goes show that the growth during cooling is not so extraction narily rapid, and hence to show that the coarsening of m. first bar, simply beated white hot and immediatel quenched, could not have had time to occur during t brief cooling, and hence must bave occurred during hea: ing. The experiment, bowever, is not conclusive, but have started others which I hope will he. I should hav delayed writing on this subject had not Mr. Sauveur's re marks offered an opportunity which it seemed best to

THE DUTY OF THE INDIANAPOLIS PUMPING ENGINE In our issue of Sept. 29, 1898, we published a report of a test by Prof. W. F. M. Goss, M. Am.
Soc. M. E., of Purdue University, upon a $20,000,1(k)$ gallon triple-expansion pumping engine, built fol the Indianapolis Water Co., by the Snow Steam Pump Works, of Buffalo, N. Y. This test showei the remarkably high duty of $167,800,000 \mathrm{ft}$.-lbs. per $1,000 \mathrm{lbs}$. of dry steam used in the engine, of $50,100,000 \mathrm{ft} .-\mathrm{lbs}$. per mllition heat units. The steam consumption was 11.26 lbs . per I. HP. per hour.
A pamphlet has just been issued in which the report of this test is given in detali, and also the report of a second test made on Dec. 3, 1898, for the purpose of checking the results obtained in the first test. Thls second test gave results close ly agreeing with the first. A comparison is givet as follows:

The difference in friction is thought to be due o a slight difference in the adjustment of some of the stuffing-box giands.
The pamphlet claims this engine to rank as the highest duty engine ever bullt; but whlle it un doubtedly broke the record, it is now eclipsed, apparently, by the record of the Nordberg pumping engine, at Wilkinsburg, Pa., a test of which, by Prof. R. C. Carpenter, was reported in our issue of May 4, 1899. This engine developed a duty of $162,948,824 \mathrm{ft}$.-lbs. per milition B. T. U. in the steam dellvered to it. It is a quadruple-expanslon engine, working with 50 lbs . higher steam pressure than the Indianapolls machine and pumping against a head over three times as great, all of which circumstances are favorable to a higher economy.
Coples of the pamphlet can be obtalned from the Snow Steam Pump Co., of Buffalo, N. Y., on request.

A REVOLVING CAMERA FOR SURVEYING PURPOSES.

In using photographs for extended or panoramic views, as required for surveying purposes, considerable trouble and liability to error arises from the necessity of joining prints from different plates, made by different exposures, and there is considerable inconvenience attending the use of the tangent scale. To overcome these difficultes, as well as that due to the movement of the film, a revolving camera has been devised by Mr. G. W. Pearsons, M. Am. Soc. C. E., of Kansas City, Mo. The instrument, which is shown diagrammatically in the accompanying cut, is mounted upon a tripod and revolves like a transit. The exposure is made during its revolution, which is controlled by clockwork, and occupies from $11 / 2$ to 2 minutes for a complete revolution. It will be seen that the lens and film both move, and as their movement is uniform, all horizontal angles are given without tangential measurement. The degrees are also
photographed on the sky ilne of the film, so that any shrlnkage of the film in developing does not affect the accuracy of the measurements. The sky inne also makes a place of reference for the vertl!ine also makes measurements.
The roll of film is placed in a compartment at The roll of film is placed in a compartment at
the back of the camera box, and the strip passes the back of the camera box, and the strip passes
across the narrow opening, through which light is admitted from the lens, to a winding rolier on the opposite slde of the compartment. By means of the gearing, the film is given a motion parallel to that of the lens, but in the opposite direction. The winding roller is held to its spindle by friction, and the movement of the film is governed by a pair of friction roliers, which make its motion unl-

Revolving Camera for Survey Work.
form. A small wheel marked with notches corresponding to the degrees passed over, photographs the degrees on the film, as aiready noted, and as the exposure lasts only about 1° no effect of parallax is shown on the print.
The instrument is about $12 \mathrm{lns}, \mathrm{hlgh}, 12 \mathrm{ins}$. long and 8 lns . Inside, welghing about 12 lbs ., and is intended to be used on the tripod of a transit. It uses any width of film up to $61 / 2 \mathrm{ins}$., and any length of plcture can be taken, from an arc of 1° to a full clrcle. The gearing is driven by means of a small welght attached to the cord, which passes round a drum on the roller spindle and down through the plvot of the instrument.

THE CORRESPONDENCE SCHOOL IN TECHNICAL EDUCATION.*

By Edgar Marburg, \dagger M. Am. Soc. C. E.

At the last annual meeting of this Society, the retiring President, iu a thoughtful, far-seeligg address \ddagger, brought us face to face with certain serious gaps in our educational system. It was shown that, except ior insignificant heginnings, here and there, no provision had been made for the specific training of our youth for industrial and commercial pursults. Our own shortcomings were revealed the more strikingly on the background of Germany's achievements. That nation's phenomenal strides, during the past quarter century, towards a commanding position in manufactures and in commerce was attrihuted primar ily to its elaborate system of monotechnic and commer clal schools, of which, as has heen said, no counterpart is to be found in this country.
With us the opinion is yet too widely prevalent that such elementary liheral education as may he had in the gram mar, or at most the high school, is all-sufficient for young men destined for the trades and Industries or for commercial life-that the special tralning peculiar to each particu lar vocation can be best acquired in actual service. The soundness of this proposition, within limits, is of course *A paper read at the annual meeting of the Soclety for the Promotion of Englneering Education. vanla, Phlladelphla, Pa. Pa. "A Higher Industrial and Com-
\ddagger Prof. J. Bohnson on
mercial Education," Eng. News. Aug. 18, 1899.
conceded. School processes, however, carefully perfected, will uever cease to have their fimitations. Thelr highest unction, after all, is to endow the individual, as well as may be, with the potentialities of after-development. To look for an output of accomplished financiers, business men, artisans or industrial foremen, straight from the schools, were as preposterous in its way as to expect sim-
ilar results from our professional departments. On the Har results from our professional departments. On the other hand, barring the great fleld of common, unskilled labor, there is scarcely a human caliing so lowly but that
its horizon mlght he hroadened, its inherent dignity deve!its horizon might he hroadened, its inherent dignity developed, its usefuiness to soelety augmented, and the indl-
vidual Interests of its foliowers immeasurably promoted, vidual Interests of lits followers immeasurably promoted, if our present loose and narrow courses of apprenticeship were to yield to a well-ordered system of specialized In-
struction, In which the sclentific and practical elements struction, in which the scientific and practical elements are sultahly blended.
That such a change must come about in the United States, as it has in Germany, probably few thoughtfui men, at all famlllar with the situation, whil seriousiy question. It would betoken small falth iu the progressive spirit of our nation to hoid otherwise. But while Germany's achievements serve as inspiring object-lessons, the social conditious in this country are so essentially differ-
ent, that the prohiem preseuts itseaf to us in an entirely ent, that the prohlem preseuts itseaf to us in an entirely
uew phase. Its final solution must he of a kind not only uew phase. Its final solution must he of a kind not only
best adapted to our own peculiar needs, but in best coubest adapted to our own peculiar needs, but in best cou-
sonance with our school-systems, our political and indussonance with our school-systems, our political and industrial institutions, and the general traditions of our people. Acremeudous amount of agitation will he needed for the
suceessful inauguration of so great a movement. It is to suceessful inauguration of so great a movement. It is to
be hoped that the suggestion made last year that this Sobe hoped that the suggestion made fast year that this So-
clety should assume the fuitiative iu this matter will uot clety should assume the luitiative iu this matter will uot
prove to have fallen ou harreu ground. In the educaprove to have fallen ou harreu ground. In che educatrade and commercial orgauizations, aud our legisiative bodies, the first concern will be to impress upon them the reality of the need we set ourselves to advocate. To most men of average informatiou the statement that we are
failing far short of Germany in preparedness for assumfalling far short of Germany in preparedness for assum-
iug a leading hand in the world's fudustrial affairs whli iug a leading hand in the world's iudustrial affairs whll
come as a revelation and much scepticism will have to he come as a revelation and much scepticism will have to
sileuced by argument. sileuced by argument. Overweeniug faith
sourcefulness of this country and in the genius of its people is characteristic of Amerlcanism. But self-confidence, however admirable a trait In uations as in individuais, carries with it the constant danger of merging into selfsuficiency, than which there can be no greater bar to sustained advancement.
While Amerlca has time aud again triumphed against signal odds, through expedieuts improvised to suit the means and the occasion, it were a fatal delusion to assume that forces can be created over night to cope successfully with the gigautic ludustrial movemeut to which Germany has feut lts hest thought aud energies for the past three or four decades. Patient, painstaking effort lu the fur therauce of a carefully couceived, broad and enlightened pollcy can alone accomplish for our nation what has been attalued by like measures for another.
In the meantime there has ariseu among us, lu the correspondence schoois, an educational movement whose remarkable headway must be attributed in no small meas ure to the existence of those very gaps in our regular system to which reference has heen made. Sprung from seemingly iusignificant heginuings, some ten years since, its growth, uotably duriug the past two or three years, has been iittle less than phenomenal. It is a significant fact that the correspondence schools have found their largest following among our technical workers, especially those of our shops and factories. Thus a single institution devoted principally to englneering and the mechanic arts ciaims a cotal eurolment of upwards of eighty thousand students, a number four times greater than that of only two years ago. Whatever the merit of the system, these figures hear striking evidence that our craftsmen are keenly alive to the defects in their education and are grasping eagerly at such opportunities as present themselves. In most cases there exists only the single other alternative of self-Instruction. Night-schools in which technical courses are offered, are to be found only in a few of our most populous cities. Besldes, their disad vantages are such that they have not come lnto much favor.
An lnquiry as to the probable efficiency of the correspondence system becomes thus a matter of considerahle interest. Is the scheme to he regarded simply as a passing lad, or does it contain the elements of real merit and per manency? Are these schools attracting their immense patronage under false pretenses, or are they engaged in a worthy and successful effort to give their students generous returns on their investment? And, finally, does the general plan give promise of such possihilities that, in its higher development, it may be expected to yield even a calr approach to what has been reallzed ahroad by Ger man methods?
Before attemptling to suggest an answer to these and simllar questions, more especial'y with reference to the echnical correspondence schools, certain conslderations relating to such Institutions in general deserve to be briefiy noticed.
Ameng our regular seats of learnlng, but two, namely
the Unlversity of Chicago and the liliuois Wesleyan Unl versity, have entered the fields of correspondence teach ing. The other institutions engaged in this work were or gaulzed and are couducted primarily, if not solely, as money-making enterprises. Their general pollcy is determiued largely by this circumstance. It aiso serves to render an accurate and searching investigation difficult if not impossible. The competitiou for studeuts is al ready very keen. Statistics of the kiud freely published by our regular schools are elther withheid ou grounds of business expediency, or, where furnished, cannot aiway accepted with confideuce. From their own circulars, it appears that the varlous schools view each other with th tmest distrust, and open charges of a serious character are not infrequentiy passed. Their advertising methods in general are not caiculated to inspire confideuce, or to com mand respect. Ingenuity is fairly exhausted iu the at tractive wording of their circulars. Clap-trap schemes of the most transparent nature are resorted to with a view of attracting students. Thus one school quotes its own ad vertisements as opinions of the press. A postal card ad aressed to another with the simple request for a catalogu elicited the usual pseudo-personal, typewritteu circula containing the lines: "We judge, from an intimation dis cernable in your letter, that you have a will as well as gift for success." The schools vie with each other In theif offers of speclal Inducements for immediate enrolmen Their disinterested anxicty to enllst patrons before th date of an impending advance in tultiou fees is quite te markable. Testimonials and photographs of graduates ar prominently paraded. On the other hand a complete Ilst of students or graduates is not permitted to appear.
In an endeavor at an impartial inquiry, one has coustantly to remind himself that these matters have no di rest bearing on the subject proper, namely the intriusic value of the instruction ltself. However, tactics of the kind described tend inevitahly to give rise to prejudice and distrust. Nor does it serve to lessen one's scepticism to be informed, that even such subjects as music and art can he successfully taught by correspondence. There remains, in fact, scarcely an important fleld of learning that these schools have not confidentily invaded.
That the correspondence scheme throws the doors wide open to chariatanism cannot be denied, nor can it be questioned that the opportunitles it offers for illegitimate practices have been freely explolted. Some of these irresponsihle concerns have already closed their doors, to the possible gain of their patrons. Others have sprung up in thelr place whose existence will doubtiess prove no less ephemeral. That the general interests of the cause suffer in proportion goes without saying. As with commercial enterprises in general, prohahiy only a few of the fittest are destined to survive. It would seem, however, that the time has come when the financial responsibility of these schools should he made the subject of official inquiry, as in the case of other lustitutlons organized for the recelpt of moneys upon the promise of future returns. Without some reasonahle guarantee of good faith in the discharge of prospective obligations, the use of the malls should he interdicted.
Referring now to the technical schools in particular, the writer has, hy visits and otherwise, made as critlcal an investigation of their methods as circumstances permitted. Generally speaking, their scheme of operation ls essentially the same. Instruction papers, especially prepared for the purpose, take the place of the usual text-books. These are issued of a size convenient for the pocket. The student 18 pledged not to allow others to share in their use. The papers on any given suhject are furnished collectively in book-form at the beginning or end of the course. Each instruction paper is accompanied by an examination paper contalning the questions which the student is required to answer. These answers are promptiy and carefully corrected. The writer has seen ample evidence that at the better schools thls important feature receives close, painstaking attention. A final examination is usually prescribed at the end of the course. The award is commonly in the form of a certificate of study or of proficiency. A single institution confers the regular de grees. To the latter practice reference will be made here after.

The tuition fees are moderate, in fact, lower than the average cost of text-books in the regular technical schools. The charges on the instaliment plan are relatively much higher. The other expenses are for a drawing outfit, paper and postage in one direction. A pald-up scholarship is non-forfeitable. its holder may consume as much or as little time as he elects for the completion of his course The unused portiou of the scholarship is transterable at the option of the owner. In short, the financial pollcy in general is quite liberal to the student.
The only educational requlsites are a knowledge of reading and writing. The courses in pure mathematics hegin with arithmetic and end with trigonometry. The in struction papers on technical subjects are usually pre pared by graduate engineers, sometimes men of consider ahle ahility and prsctical experlence, hut not always connected with the schools. Such men also exercise a general supervision of the correspondence ln thelr respective speclaltles. The ordinary routine of correcting paper and of letter-writing is entrusted to lower-salaried assist-
ants, often young women especlally tralned for these du ies. Such carrespondence is revlewed hy some one in bigher authority, and, if necessary, revised before for warding. Communicationa ure written, as a rule, hy warding. Communications ure written, as a rute, while entalifing a considerably greater outlay, seems breai to a certain student-element, as more distinctly fersonat and serves to allay suspicion that the methods fersonint and serves to allay susplicion that the methods
pe in any way stercotyped. in the better schools, the usministrative details in general are thoroughly systematized und all uperations conducted with business-like rega barity und dispatich
That the net influence of these schools is for good doss not serm to ndmit of a rensonable doubt. They are exnot serm to ndmit of a rensonable doubt. They are ex-
tending a hilphul hand to large numbers of aspiring peophe who have not the remotest prospect of gaining better advantuges through the regular channels. They ho:d cut uporiunilies of greuter promise than can be fooked for from nverage efforls at self-instruction.
from average eflarts at self-instruction.
Such adverse criticisms us suggest themselves are applicable in pari to certain practices of the schoois and in The dispinction is interent in the correspondence system The dishinction is, however, not always easily drawn Since the schools are operated primarily for revenue, it 8 directly to their interest to appeal to the largest num bers. The eurriculum is, therefore, designed to inciude lbe most elementary subjects. These may be omitted by mudents who pass the preliminary examinations. Howver. the statistics of one of the leading schcols indicate that less than teo per cent. of the appificants can meet the cquirements in arithmetic. Thas there is the necessity n the one band of beginning with the most elementary studies and on the other of not wearying the student with In excessive amount of preparatory work before entering upon the techncenl courses proper. The compromise ap-
pears in narrow, short-eut courses. It carrics with it also pears in narrow, short-cut courses. It carries with it also he omission of analytic geometry and the caicuius. The ffect of all this on the more advanced courses is easily onjectured. The more difficutt fentures of a subject are suppressed or treated In a superfictal manner. Important formulas that cannot be passed unnoticed are sometimes presented without a
in the District of Columbia. It has the arrogant assur ance to proclaim that the bolder of its degree "will he quipped with all the theoretical knowiedge that is re guired for the same degree in any college in the country." The courses prescrihed for the degree of C. E., arz Surveying. Mapping. Railway and Structural Engineering. and so-called Higher Mathematics. What is meant by the fatter term can only be vaguely liferred from the published statement that "in this course the more eompliated and diffeult questions of the suhject are taken up" and again "the insiruction of the regular courses prefares the student to understand these more abstruse maters." Inconsistently enough, the prescribed courses in enigonometry. Further comment appears superfluous. Another practice of certain schoois which seems deservng of strong censure is that of furnishing complete keys to those who profess to find the work too diffieult. At ieast one school issues these keys indiscriminately to all, and clalms that "if employed judiclously they can be made to save both time and labor, without injury to the student." Beyond some words of caution agalnst their use, in other than cases of assumed necessity, the matter is ieft purciy to the discretion of the student. One schooi which supplies such aids makes the nalve ciaim, quoted verbatim, that "every student who has enrofied with us has successfully graduated from our schools." Let it be presumed that the term "student" is here meant in the somewhat exclusive sense of "one devoted to study.
It should, in fairness, he observed that as a rule these institutions do not ciaim to sland on an equal plane with the regular schools. On the contrary, in some Instanees they go so far as to advise persons who have is followed, the is followed, howerer, by the most unqualfed and extrav agant assertions in proof of the superiority of the correspondence system and particular stress is iald on the claim that in their courses nothing of any real practical eliminated The eliminated. The effect of this is especially harmfui in so tion that the day is passed for making great efforts and sacrifices with a view to gaining a thorough and well-

SOFT MUD EXCAVATING AT KEYHAM DOCKYARD PLYMOUTH, ENGLAND
In a late paper submitted to the Instituston Mechanleai Engineers of Engiand, Mr. Ellot describes the mechanical applian pioyed In the construction of the Keyham etm yard extension works at Piymouth. These wurk cover 113 acres, of which is acres are below high tlde mark, with a tidai rise of $151 / 2 \mathrm{ft}$. The ma terial to be excavated was made ground mui and rock; but it is in the removal of th. sof mud atone that apparatus of especial novelt was employed, and an abstract is made of this portion of the paper
This mud was of two quallties; the hard mud upon which rubble had been tipped in formec years, was consequentiy compressed until it had assumed the nature of stiff clay; it was under the made ground referred $t o$, and it was excavated by hand labor or by steam excavators. The suf mud was that which had remained uncovercl and exposed to the tidal action. There was a larg quantity of this latter class of materiai; it was at first removed by the mud-scoops here illusrated.
The scoops were hauled over the slte of the dock by engines placed on each side of the site The outside engines were 40 HP . each, and wer fixed at the end of an elevated stage from which the mud was discharged into harges and carrie out to sea. The inside engines were 20 HP ., and they were fixed upon travellers which could bo moved back and forth so as to direct the traves of the scoop as desired. The scoop was hauled directly over the mud and filled itself, the depth of the entrance of the cutting edge into the mud being reguiated by the arrangement of the hauling chains. These chains were attached to the
front and back of the scoop; those at A couid be

Fig. 1.-Position When Cutting

Fig. 2.-Position When Full.

Fig. 3.-Returning Empty EXCAVATING BUCKET FOR SOFT MUD, USED AT KEYHAM DOCKYARD WORKS.

Through the courtesy of certaln schoois the writer has had the opportunity of examining completefiles of their instruc thon papers. In polut of general make-up, that is paper, ty Hography, illustrating and indexing they are superior to many modern text-books. The exceilence of the filustraions is an especially praiseworthy feature. In fact, it may be sald that they are of a profusion and elaborateness not n'ways in kceping with the context. Upon closer scrutiny one's impressions are apt to be less favorable
than after the first cursory exnminatioa. However, on than after the first cursory exnminatioa. However, on the whole, the texts are written with much care and dis crimination. It is readily seen that the author's task is by no menns an casy one. The texts must be concise and at the same time veritable models of clearness. The mathematical work must be reduced to the simpiest form Inadequate, thongh it may be, for the purpose in view Gicneral forms of treatment must yield to the presenta tion of simple, special cases. As a partial offset to these deficiencies, and presumably with an eye to the demands of their pectiliar const:ruency. there is an evident effort to give the studies as practical a trend as possible. In certain subjects a good deal of valuabie information is given of a kind not ordinarily found in text-books. In point of thoroughness and generai excellence, the courses on the whole are, however, in no wise eomparable with those offered in the regular technical schoois. It is, of course, only reasonable to nssume that since the fleld is comparatively new, the methods are as yet somewhat tutative. Nevertheless, for reasons previously suggested thiere appears to be little prospect of any substantial gain In thoroughness without raising the matriculation require ments to a standard that would usually prove prohibitive Perhaps the solution will eventualiy be found in graded courses. In fact some beghnings in that direction are al ready discernable,
in the meantime. it may be fairly charged that the seliools are far too pretentious in their ciaims. Without sitempting to particularize, the evidence in this respoct is anmistakable. Engineering instructlon of a truly professionni standard is not carried on by any of these insti- Be it said, however, to the credit of the tech tutions. Be it said, however, to the credit of the tech presumes to confer the regular degrees. This schoo calms to have received its authority by :aw. Its home is
dueation by the older methods. This tendenc of diverting students from the regular technieal sehools, is perhaps more than neutralized by the stimulus given to technical education generaily among the many would not have been reached by other mand In general the sehools plaee mueh dependence ou th ofttimes glowing testimonals of those who have come under their listruction. Without disereaiting the authentie iny of such evidence it may be properiy Insisted that it i entitled to littie weight. It comes as the testimony of in dividuais just emerging from darkness into half-light. Their horizon is too narrow for accurate orlentation.
In an attempt at gaging the probabie influence of these schoois, the eriterion of numbers is no less misiea ling. Where thousands enroil, but few graduate. To eomplete the more extensive courses, elementary though they are. requires a degree of perseverance and self-denial in the uthization of spare moments that few can muster. It is to be remembered that the students, as a rule, are em ployed at regular vocations. Through seduetive adver tising literature and the personal solicitation of agent many are persuaded to enilist without any adequate con ception of the saerifices afterwards involved. Aceording to statistles kindly furnished by one of the leading sehools, of a thousand persons who entered upon a certain cours four years ago, on the average, thirty per cent. have not yet finished arithmetic, another forty, that is a sotal of seventy per cent., have eompleted no subjeet heyond arithmetie, and only one-half of one per eent., or five persons have graduated.
To sum the matter up, it is believed that any attempt at giving by the correspondence methods, a really thorough dueation to persons who at the same time follow their daily occupations must end in failure. Narrow and shatlow courses, of the kind described, may be regarded as the Inevitahle issue. It should, however, again be emphasized that in the absence of hetter means, and in so far as these schools are honestly conducted, they hoid out opportunlties to the many, and rewards to the few, well highest destiny will hammen. Al it by their eoming by hey shall hat qulin the birth or a system of popular educat:on-industriai and commercial-worthy, in every
hortened by winding about the bar B , to which they were attached, and this shortening of the back chains tilted the scoop forward and caused the cutting-edge, C, to assume the position shown in Flg. 1
When the scoop was fiiled a catch, D, holding the rod, B, was knocked out; the back-chain at once lengthened, and the cutting-edge, C, was lifted by the hauling chain, E, as shown in Fig. 2 In the latter position the scoop was hauied ove the mud surface, up an incline and along the high-levei stage to the shoot leading to the barge The hauiing chain, F, was so arranged that as soon as it commenced to haul the scoop back again it turned it completely over and discharge its contents through a hole in the staging into the barge shoot, in the position shown in Fig. 3. The empty scoop was now drawn back in the same position, down the incline and over the mud to the point of attack again. The action of the for ward chain. E, then set the cutting-edge at the proper angle, and the scoop again filled.
The average distance travelled by the mud scoops is not stated, but from the plan shown the distance would seem to be about $1,200 \mathrm{ft}$. One complete trip was made in from 5 to 10 minutes, the load varying from 2 to $3 \mathrm{cu} . \mathbf{y d s}$. in very we mud and $5 \mathrm{cu}, \mathrm{yds}$. when the mud was dry. The wear on the hauling ropes was very great, and i was found difficult to controi the work of th scoops. They answered their purpose, however in preparing the way for wagons, which latte could not be used on the soft mud during the wet winter months. Wagons, later, almost entirely replaced the scoops: and these wagons wer filled partly by hand and partiy by steam exca vators. The latter were only employed after th site was sufficientiy open to permit the estab ishment of the necessary roads to take away the excavated material.

[^0]: *106 East 23 d St., New York ctty.

[^1]: -If the steel has just previousiy heen heated to W, then, of course, reheating to V (for the purpose of removing soft and duetile as possithle.

