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INTRODUCTION

Looking at the past history of instructional material

development it has been found that much initial effort was

spent in generating material and selecting media. A number

of decisions were required. Many problems such as the

selection of format, mode of response, reinforcement etc.

were to be solved during this initial period. If we look at

seme other fields having the same kind of problems, we see

that these problems are being solved with the help of

validated models and there are very few decisions left to be

made. In the field of education, generally, and in

instructional education, specially, we have not been able to

find such models in existence, though much research should

have been done in this area. If we look at the literature,

there are indications that people feel the need of such a

model (Smith S Murry 1975). Murril S Boutwell (1975) have

commented that mathematical evidence and specific component

justification of current instructional development methods

lack in empirical verification. Baker (1973) has even

suggested that much of the literature in instructional

development prescribed procedures was based upon faith

alone. A book edited by Mayer (1975) points out the

importance of clearcut guiderules in the instructional

design rules.

We can see very clearly that there is a fundamental

problem in the field of instructional education. The absence

of robust, active, validated models or set of guiderules to

help the developer determine the best material and

procedures for the student does and will continue to effect

our standard of education.

Presently it would be unfair to say that our

researchers have not paid any attention to this ever

existing problem. Quite a few instructional programs have





been developed over the years, yet in each case the program

developer had to create a unique model to answer the design

questions for each program. Simple basic questions regarding

the operations of the program had no ready answers available

which were empirically based or validated. In the absence of

readily available answers and since there was no method to

conveniently simulate various outcomes to arrive at the

answers, each program became an exercise in rediscovery

through trial and error. As a result the model developed for

a program became suitable only for that particular program

and it was not possible to generalize it for other programs.

This is the situation in which an instructional product

developer usually finds himself.

If a model could be developed for instructional

education, it would give the developer a system and a method

for testing out and selecting various combinations of the

product components in order to achieve desired target

behavior. Components such as accuracy level, length of

lesson, response rate, etc. could be arranged to result in

the fastest learning at the least cost. A model like this

should be specific to the outcomes rather than the content

so that its basic alogrithms could be applied to many

different programs. Each program can have a different

arrangment of components depending upon the required

outcome. If a model like this existed, it would have

resulted in the early development of instructional programs

and their speedy validation. The result would have been a

tremendous saving of time and cost in the field of

education.

In reviewing the general history of instructional

development it can be seen that the absence of such models

is one of the most overriding problems in the area of

instructional education. The obvious problem then is that no

model exists which has been tested and validated and is
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generalizable to a variety of instructional products. The

potential benefits to be derived from even a modest model

are sufficiently great to place this problem in high

priority category. The emphasis is being put upon the need

for validated workable models or guiderules which can assist

the instructional developer in the construction of teaching

material and procedures.

At the Behavioral Sciences Institute, Carmel,

California, considerable work is being done in this area.

They have developed some models and are in the process of

validating them. In an early study Madson (1972) attempted

to form a model for language learning on the basis of a

markov chain process. Oertel (1975) showed the nonexistence

of any etiological factors. The author, in doing this work

for arithmetic programming, is pursuing the same theory and

is attempting to produce the guiderules which are so badly

needed.

11





MODEL DEVELOPMENT
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BACKGROUND

Before we go about developing our model it is necessary

to review the events which started the development of such

model. Since 1885 when some work was done by Ebbinghaus,

experimental studies on learning have been recorded and

reported in quantitative form. The first application of

mathematics was seen for the purpose of describing empirical

functions. A learning curve was the most common method of

reporting results of a learning experiment. A graph

representing the changes in the performance of a subject or

group of subjects over successive practice trials for

particular experimental conditions was the best bet. We have

seen some of the analytic functions which were proposed to

be the learning functions. Many arguments heard regarding

these functions were that none of them was derived from

fundamental considerations about the nature of learning. All

of them were good with closest fit to the data usually

obtained by the function that had more free parameters.

In 1919 Thurstone set up a system of axioms based on

psychological considerations that led to the derivation of

rational learning functions. A very specific set of

psychological identifications was used as the parameters.

Moreover Thurstone was the one to suggest a probabilistic

approach. He took as his aim the derivation of the

probability of a correct response as a function of trial

numbers. The same theory was later extended to the analysis

of discrimination learning and transposition by Gulliksen

and Wolfle (1938) . However, only mean response curves were

considered and no attention was paid to the prediction of

response distributions and sequential statistics. Moreover

no proceedures were devised for parameter estimation and no

experiments were done to find the validity of the parameters

of the model. Another group of experimenters attempted to

derive learning curves from simplified conceptual models of

13





the nervous system but their efforts did not have any

significant impact on experimental investigation of

learning.

The picneer of theoretical learning was Clark Hull. In

his major work f Principle of Behavior (1943) , a number of

postulates were stated which dealt with a number of

variables that had not been identified in the earlier

experiments. The postulate in many cases was simply a

generalization of empirical results. It was hoped that the

aggregation of postulates would jointly imply much more than

the specified experimental facts from which they are

individually derived. Hull aimed for comprehensiveness in

his theory partially due to its relative clearity and

generality. The theory stimulated considerable experimental

research. It has gone through a variety of modifications and

still guides the research of many contemporary

experimenters. The most important contribution by Hull was

the statement of a rich collection of qualitative concepts

and propositions, some of which have had a lasting influence

on the thinking of psychologists.

Somewhat later many other researchers started

formulating their stochastic models for learning. At the

same time another group worked in developing what has come

to be known as Linear Models for learning. The basic idea

for linear models is very simple. In a two-choice learning

experiment, the probability that the subject will make

response 1 on trial n is p . On each trial the subject

responds and some reinforcing event is provided. If

reinforcement event j occurs on trial n the new value of

response probability on trial n+ 1 is

P = <X: Tl + Irj

this equation expresses the new value of response

probability as a linear function of its old value. The

parameters a- and b- specify whether event j effects an

14





increase or decrease in p .

At the same time work was being done on markov chain

models with fewer states and they represent an especially

promising line of theoretical development. The basis of

original development was a paper by Estes (1959) . Basic to

this formulation is the idea that a subject s response

probability can take on only a fixed set of values and that

reinforcing events produce transitions from one value of

response probability to another.

It has been proposed that performance in the

experimental situation can be represented by three discrete

performance levels: o, p,and 1. In these terms learning

consists of two all-or-none transitions from lower to higher

levels of response probability. This notion was originated

by Estes who also introduced the technique of representing

learning by markov chain. It was because of Estes prior

theoretical work that we were led to examine our data for

evidence of an intermediate performance level. In truth we

have been astonished by the consistency with which such

evidence has apperared throughout the range of data

examined.

It will be noted that the evidence comes from

experimental situations in which initially the probability

of a correct response is zero and asymtotically it is unity.

Such zero to one situations possess an important advantage

for our method of data analysis. The arrangement enables one

to identify responses between the first success and last

failure as occurring in the intermediate state. The

importance of this identification can be understood if one

imagines trying to test decisively the notion of a single

intermediate state for a learning situation in which the

initial response probability is greater than zero or the

asymtote is less than unity, or both. In such cases the

15





evidence has to be of a more indirect nature like predicting

quantitative details of a variety of statistics. We know

that data showing an intermediate performance level can be

interpreted within the framework of stimulus sampling

theory. Facts about intermediate performance level can also

be interpreted in terms of multistage models of Restle and

Greeno (1970) In constructing and testing the three-stage

model, we have suppressed the stimulus sampling rationale

and have presented simply a descriptive model about

learning.

The learning model exploits the notion of an

intermediate state in an obvious way. Certain general

markovian properties were imposed regarding transition

probabilities among the states, and the resulting model

provided a fairly adequate description of the data on which

it was tested. The specific form of the model is not

arbitrary entirely since we had been able to reject various

plausible alternative three-stage models because one of the

models we have tested permits a direct, one-trial transition

from the starting state to the terminal absorbing state.

This alternative is diagramed in Figure 1 . Here it is

assumed that with probability (1 - d) the subject skips the

intermediate p state going directly to state 1. The

alternative classes of learning models which can be

considered are the continuous or incremental theories such

as the linear operator models. Although extensive

comparisions have not been undertaken, it seems evident that

all contiuous models will be rejected for this kind of data.

In particular, from continuous models one would expect

performance to improve monotonically over trials between the

first success and last error. Such upward trends simply

failed to materialize in any of the studies. Our test for

such trends were the CHI Square and the rank order

correlation between intermediate trials and response

probabilities. In none of many cases considered was this

16
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correlation significantly different from zero, a result in

line with the stationarity assumption. It might be objected

that possible effects on the intermediate responses of

individual differences in learning were not considered. To

answer this objection experiments were conducted by Bush and

Mosteller (1955) . Two points were made from the results

observed. One, that the argument of selection artifacts does

net really rescue the continuous models from the

stationarity data and two, that the statistical tests we

routinely use to assess stationarity of intermediate

responses have considerable power to reject the null

hypothesis when it is false.

18





MODEL DEVELOPEMENT

A brief review of mathematical learning theory by

Atkinson, Bower, and Crothers (1965) indicates that learning

as probability models started in 1919. From 1919 to 1950

there were quite a few models proposed and tested. All of

them were specific to certain learning situations. From

1950 onward there has been much work done in the area of

stochastic learning. This resulted in two theories, the

linear model and the markov model. The linear model

basically depends upon the theory that the probability of

success for a subject is given by the equation

p = 1 - (l-'RXi-ef
1

(i)

where p is initial probability of success and 9 is his

learning rate.

The markov model depends upon a different theory which

states that if a subject is in an unlearned state (u) then

the probability of a correct response is g (guess). If the

subject is in the learned state (L) , then the probability of

correct response is 1. the probability of going from the

unlearned state to the learned state on any presolution

trial is c. The probability of a correct response on any

trial n is given by

ft = 1- (1-9)0 -C)" ™
a comparision of equations (1) and (2) indicates that their

forms are exactly the same. The difference in these

eguations lies in their theoretical background and the

meaning of the parameters. Equation (1) states that a

subject starts with a probability PjOf making a correct

response on the first trial. The probability of success on

the second trial is greater due to incremental learning

achieved on the first trial. The linear process continues

19





indefinitely and the subject s probability of success

approaches 1 asymptotically. Equation (2) states that on

each presolution trial a subject has a probability c of

going into solution. Once in solution the subject stays in

solution and always responds correctly and this probability

remains constant. The form of these two equations are

compared by Restle and Greeno (1970). Based on their

analysis it is stated "...the all-or-none theory is most

interesting and we think it is the one most deserving of

future work ".

Pilot research involving a computer simulation of the

linear model suggested that it is inappropriate for

mathmatical learning. The study of data from students showed

that the markov principles of stationarity and independence

are applicable to this program. Based on these results this

work was done considering Markovian (all-or-none) principle.

20





ASSUMPTIONS

For the developement of the model, the following

assumptions are necessary

1. The learning process is Markovian in nature

2. The subject can be correct on the first trial of any

step by either (a) being in solution prior to the trial, (b)

going into solution because of the information presented in

the first stimulus or (c) guessing correctly in presolution.

This assumption modifies equation (2) in that equation (2)

contains the restriction that for the subject to be correct

on the first response, he must guess correctly, therefore it

does not allow the possibility of being in solution (the

learned state) on the first trial. Allowing for the

possibility that the subject is in solution on the trial

(Atkinson, 1965) appears to be a more realistic approach and

was used in this work.

3. The g factor in presolution is a function of step

and the subject.

4. The c factor is a function of step and the subject.

5. g and c are constant over any step for a given

subject.

6. The set of outcomes form a homogenous markov chain

L
H

u

*<

v\
c

o

i-c 9 61, CO
i

3
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MODEL

The equations developed in this work are based on the

work done by Atkinson, Bower, and Crothers (1965) , Coombs

(1970), Restle (1970), Gray (1972), and dadson (1972).

Since it is difficult to give credit to one source, only the

equations are given with explanations. The first important

thing is the probability of a correct response given that

the subject is in an unlearned state (u) . This state is

assumed on the first trial and known to exist if an error

occurs before reaching the advancement criterion. If no

error occurs then there is no way to find out whether the

subject was in learned state (L) or was in unlearned state

and performed as follows

P(CofcRtCT) ^ C + 30-OC *$VOC* (3)

shall call it rho, the probability of errorless response

given that the subject is in the unlearned state. The above

equation says that either the subject goes into the learned

state on the first trial, stays in the unlearned state and

guesses correctly and then goes into learned state, or stays

in the unlearned state twice, guesses correctly twice and

then goes into the learned state, etc. The development

indicates that the subject goes into the learned state

eventually if errorless response is achieved after an error.

The reader familiar with markov theory will note that the

term relating to remaining in the unlearned state and having

errorless responses was omitted in developing equation (4)

.

The omission was committed since the term

d•c-o-

goes to zero in the limit as n approaches infinity.

The next development will be the expected number of

22





errors given g and c. The probability that the total number

of errors is k is CO

This would represent every feasible combination of

events in which exactly k errors can occur. By using

standard mathematical tables we can reduce the equation to

the following -^C 1 / C A (5)

= (i-ere
In words equation (5) gives the total number of

response strings required untill the last error and after

that the subject is in the learned state.

Since the probability of an errorless response string

is rho, given that the subject is in an unlearned state, it

follows that the error response is ( 1 - rho ) . This takes

into account all possible numbers of correct responses

before the error response which breaks the string. The

occurence of an error demonstrates the unlearned state and

also allows for another possible string of errorless

responses which is independent of the length of previous

strings and depends only on being in the unlearned state.

The next developement is the expected trial number of

last error. The probability that the last error occurred on

trial t equals

p (T=0) = rho

-p[-r*t] . (i-cfti-s) e «)

t=1, 2, 3,

In words equation (6) says that there were t trials in the

unlearned state indicated by an error on trial t and then

errorless response. The probability statement allows for any

23





sequence cr number of correct and incorrect responses up to

trial t. The only required knowledge is that an error

occurred on trial t and then no more errors.

To find the expected value of t ee ..

so c - e M ^
£LT3 *

solving by using previous relations

1

so this equation says that c is approximately the inverse of

the trial number of the last error. This is intuitively

appealing as it states that the larger the factor c

(probability of going into solution) the fewer the expected

number of trials.

24





VERIFICATION OF MODEL

Subjects

All subjects from whom data were obtained for this

analysis were public school students. They attended classes

for the educationally handicapped in the state of

Pennsylvania. All were going through the Monterey Arithmetic

Program which was developed by Behavioral Sciences Institute

in Carmel, California. The number of subjects used in this

analysis was 48. There were 20 girls and 28 boys. The age

range was between 5 and 11 years. Their IQ ranged from 60 to

80. The subjects were randomly selected for analysis by the

supervisor in Pennsulvania. There was no effort to constrain

subject selection by age, sex, etiology or any other

parameter.

25





Data Source

The subjects were given problems to solve. Depending

upon what subprogram they were in , they performed addition,

subtraction, multiplication or division. When a subject

completed a problem it was checked by a teacher for

accuracy. Depending upon the outcome it was marked as a

correct or incorrect response. Thus, for the purposes of

this study, each problem which was worked was counted as one

response and each lesson was comprised of a sequential

string of responses.

The total number of responses was 3000. For any subject

the sequence of responses generated in a single lesson

consisted of two parts. First, a string consisting of

correct and incorrect responses and second, a string of 10

continously correct responses. Some of the response strings

were not used in the analysis. The string of continous

correct responses indicates a solution state and since we

were considering only the presolution state, the string of

continous correct responses was not utilized. There were

480 responses in this category. The situations where the

subject started with correct responses and did not make any

error indicated that the subject was already in the solution

state. The responses in situations like this were not used.

The number of responses of this kind was 320. In situations

where the subject did not complete the lesson, he gave us no

indication of the number of responses necessary to go into

solution state. We were also unable to use those responses.

The number of responses of this type was 1196. After

disregarding all those responses mentioned above we were

left with a total of 1004 responses which comprised 48

strings of correct and incorrect responses ( lessons) . Thus

each subject contributed one response string to the data

pool.
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Program

The arithmetic program consists of material and

procedures which are specially designed for the purpose of

achieving a high degree of skill and accuracy in the

computation of arithmetic problems. It is divided into four

subprograms of addition, subtraction, multiplication, and

division. Each subprogram consists of 42 steps. These steps

are in increasing order of difficulty. The first step is

very basic and the last step is most difficult. A subject

completing the last step is considered capable of performing

all the calculations of that subprogram. This program is

designed to be used in a classroom but it can be

administered on an individual basis. It is useful for both

kinds of students, those who did not have any arithmetic

before and those who had had it but could not achieve the

required accuracy level. This program is applicable to all

students of all ages and takes into consideration all kinds

of differences which occur among them. It uses a locator

test which helps the teacher to place each student at the

appropriate location in the program. It also uses an

automatic branching proceedure which takes care of slow

learners. This program is built in such a way that the

teacher can respond equally to both remedial and

developmental students.
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ANALYSIS and RESULT

The raw data consisted of 48 strings of correct and

incorrect responses. For this analysis values of and 1

were assigned to correct and incorrect responses,

respectively. The data are shown in appendix A. As the

basic characterstics in Markov chain process are

independence and stationarity and since other aspects of

performance are closely related to these properties, it was

decided to test the data for these two characterstics. The

proceedure for the tests was the same as proposed by Oertel

(1975) for pooled data. Independence was tested by

calculating for each subject the observed frequency of the

four possible combinations (1-1, 1-0, 0-0, 0-1) and then

computing the value of Chi Square by appropriate formula for

a 2x2 contingency table (incorporating the correction for

continuity) . Whenever the subjects had cell entry less then

5, the data were combined with as many adjacent subjects as

necessary to get a frequency of at least 5. The Chi Square

values were then summed . The results are shown in Table 1

and the observed values in appendix 3. The table shows that

the data has the property of independence.

For testing stationarity the proportion of correct

responses in the first and second halves were compared. The

difference in proportions for each subject was tested by a

direct difference t test. The results are in Table 2 and it

establishes the property of stationarity.

Once the properties of independence and stationarity

were confirmed, the next step was to find the distribution

of L (number of responses) . To find the distribution a

histogram was plotted (appendix C) . The distribution

appeared to be exponential. A Chi square goodness-of-f it

test was used to test the null hypothesis that the

distribution was exponential. The test did not reject the
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null hypothesis. Calculations are shown in appendix D.

Since the data was discrete, it was decided to test the data

for having a negative binomial or a geometric distribution.

A Kolmogorov-Smirnof f goodness-of-f it test was done to find

the distribution. The result of the test are shown in Table

3, and the linear relationship between the observed and

generated data is shown in appendix E. From the table we

can see that the data best fits the Geometric distribution

with q = 0.96. This gives c the maximum absolute difference

in comulative distribution function = 0.12 and the

probability of occurance is 0.7167. The value of alpha for

the test was 0.1. Once the distribution was confirmed we

were able to predict the percentage of students in the

solution state for any given number of responses using the

cumulative distribution function table shown in appendix F.

The values of L (number of responses) for different

percentages are given in table 4.

The next step was to find the estimated value of the

parameter c. From our theoretical background we know that c

is approximately the inverse of the expected number of

incorrect responses T. To find the expected value of T for

any given number of responses a regression analysis was

carried out between T and L. The result was a linear

equation with a value of r = 0.8673

L = 4.8T + 3.3

The expected values of L for any given T are shown in table

5. Similarly, expected values of T for different L are

shown in the same table. Hence for any L we were able to

find the value of T and so the value of C. The values of L,

T and C fcr different accuracy levels (Q) are given in table

6.

The next step was to find some kind of representation
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or trend from the number of incorrect responses within the

first 10, 15 or 20 responses. This was attempted to enable

us to predict the expected number of responses from a

subject to reach the solution state and to find a branching

criterion. The relationship of the density, sequence, and

patterning of incorrect responses to the total number of

responses was examined. Unfortunately we were unable to

find any significant trends or relationships.
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Table 1

Chi-square values for independence of transition

probabilities

subject A B Chi square

value

1-9 5 25 33 30 .0027

10 10 8 9 30 .0010

11-24 12 45 57 165 .000044

25-40 8 43 53 176 .00011

41-48 5 23 29 116

total

.000034

.00388
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Table 2

Tabulated values of the proportion of correct responses

in first and second half and the values of a direct

difference t test

subject 1st half 2nd half diff

1 3/3 3/3

2 5/6 5/6

1

1

3 6/7 6/7

4 14/18 15/18

5 16/23 15/23

6 5/5 4/5

7 3/4 3/4

8 3/3 2/3

9 4/5 4/5

10 3/5 4/5

11 10/11 9/11

12 24/27 24/27

13 3/8 3/8

1

1
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14 6/10 9/10 3

15 5/5 5/5

16 12/13 11/13 1

17 20/20 20/20

18 2/2 2/2

19 2/3 2/3

20 3/7 5/7 2

21 7/8 7/8

22 2/2 1/2 1

23 13/16 14/16 1

24 2/2 1/2 1

25 4/5 4/5

26 6/7 5/7 1

27 19/22 13/22 6

28 2/4 3/4 1

29 2/2 1/2 1

30 7/7 5/7 2

31 15/18 15/18
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32 5/8 4/8 1

33 21/29 18/29 3

34 7/10 8/10 1

35 14/20 14/20

36 13/17 12/17 1

37 16/19 13/19 3

38 5/5 3/5 2

39 12/15 10/15 2

40 5/7 5/7

41 5/5 4/5 1

42 5/6 5/6

43 5/6 5/6

44 4/4 3/4 1

45 30/34 30/34

46 1/1 1/1

47 16/24 17/24 1

48 6/7 6/7

total 392/488 372/488 20
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t (observed) = 1.45

t (critical) = 2.01

Result: The data had the property of stationarity
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Table 3

Kolmogorov-Smirnof f goodness-of-f it test for the number of

responses (L) to the Negative binomial and Geometric

distributions

distribution parameter

negative aipha=27.36 0.98 0.00000

binomial K = 0.91

geometric g = 0.35 0.54 0.00000

g = 0.95 0.14 0.5487

g = 0.96 0.12 0.7167 *

g = 0.97 0.20 0.1786

g = 0.99 0.52 0.0000

c = absolute difference in c.d.f. p = prob. of occur.
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Table 4

Tabled values of the number of responses (L) required for

a given percentage of students to be in the solution state

at a specific level of confidence

confidence level (percent)

in 80 90 95 99

solution

(percent)

50

60 10 11 12 14

75 23 24 26 29

80 28 29 31 36

5 6 7

10 11 12

23 24 26

28 29 31

35 37 40

47 50 55

63 69 82

69 76 96

85 35 37 40 47

90 47 50 55 70

95 63 69 82 >200

96 69 76 96 >200
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Table 5

Tabled values of the expected number of errors (T) and

the total number of responses (L) given T or L

T to L L to T

1 8

2 13

3 18

4 22

5 27

6 32

7 37

8 42

9 46

10 51

10 1

20 3

30 5

40 7

50 9

60 11

70 13

80 15

90 18

100 20
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Table 6

Tabled values of T, C, and L for a given percentage of

students in solution and a given accuracy level

50

percentage in solution

75 80 85 90 95

gtc tc tc tc tc tc
.5 3 333 12 083 14 071 18 055 25 040 34 029

.4 2 416 10 104 12 086 15 067 20 050 28 036

.3 2 555 7 139 9 115 11 090 15 067 21 048

25 1 999 6 167 7 138 9 067 12 080 17 058

.2 1 999 5 208 6 172 7 135 10 100 14 072

15 999 4 277 4 230 6 180 7 133 10 097

. 1 2 416 3 345 4 270 5 200 7 145

05 1 999 1 690 2 540 2 400 3 290

22 27 34 45 60

Q = (1-p) , probability cf incorrect response
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DISCUSSION and SUMMARY

The basic idea behind this work was to develop some

guidelines to help the designer of the learning program in

deciding, before the program is run, the required amount of

work to be performed by the students and the teacher. The

ability to make this decision validly would be helpful in

speeding learning and cutting down the costs. For these

reasons model verification was required. First of all the

data was observed to see the kind of process that would be

useful. As we know there are two kinds of models in

existence, the linear model and the stochastic model. It was

especially necessary to see whether the data agreed with the

stochastic model, since there are certain parameters— namely

L, T, C—which, if determined correctly, would enable us to

predict values which are very close to observed values. The

work done fcy Oertel had shown that this was possible. So

our main emphasis was to establish first that the data is a

product of Markov process and then to find these parameters.

As shown in the analysis, we were able to describe the

learning process to be a Markov process by testing for

stationarity and independence. Once these properties were

established, we were able to use all the assumptions

mentioned earlier. The distribution, once found, enabled us

to predict the expected number of responses required for any

given percentage of students to be in the learned state.

This would help the designer of the program to determine his

requirement for the number of problems, depending upon his

target of achievement.

The next step was to determine the values of the

parameters t and c. The linear regression equation helped

us in predicting the expected number of incorrect responses

when the total number of responses was known. If the

designer of the program can determine the number of
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responses required to be in the solution state, he could

determine a branching criterion easily. The rule could be

made that if a subject made more than a specified number of

incorrect responses, he should be branched. Once the value

of T was found, it was an easy step to find the value of C.

These values can be used to calculate different

probabilities as shown in the theory.

In the next step we tried to find some kind of

representation of incorrect responses. This was done in

order to be able to predict the students to be branched by

observing the first 10 or 15 responses. This was done by

different methods such as density, pattern, and frequency.

Unfortunately we were unable to find any significant trends.

The reason for not finding the trend could be that there is

none, but it could also be that we did not have a sufficient

number of response strings.

It is suggested that if further work is done in the

future then the data to be collected should beat least four-

or fivefold of the present data. If with that data trends

are still not visible, it will suggest that they donot

exist, however if a trend is observed, it would be a great

help to the designer of program for determining the

branching rule right after the few initial responses. As

stated this would save much effort and time of both students

and teachers and would be a major factor in reducing the

cost of running the program.
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Appendix —

A

Raw Data
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1

10000001001
00100000100001
00000000010001000000101000000 1

011101010100101
110 1

1

00000000010001
00001000010100000010010000000
10 1

0000111001001101
00000010000000100100000011111 1

111001 1000011000000010000101
101100000000101000001
00001000000000111111000011000

10 10 10 1

00000000100010000001011101010
10 10 1

000 00010011000000001000000010
1 10 1

0000000101
010000000010100001010010010001
001100000010101
000000001
001000000001
0000100000001
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1

000001 0001001
00010000000001
00001100010000001000000001000

10 1

10000000010101000100110001100
00011101000101001
0000000001

10 1

1

1000000001
10 10 1

0000000001000000001001
00000001000000000100000100000
0010000000001000000000101
10 1

001 101010000000010001
00010000001
00000001000000010000000001

1

10 1

10101100100001
10100001000000001

1

00010001000100000000010000000
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1

1

00000000100000000010000010000
10000000010000000100000000010

1

1

01000010011010000100110000011
011000000001000011
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Appendix —

B

Frequencies of (1-1, 1-0, 0-1, 0-0) sequences
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frequencies of sequences

1 1 2

2 2 2 6

3 2 3 8

4 2 10 11 21

5 1 1 2 3

6 1 2

7 1 2 10

8 6 7 23

9 2 3 4 5

10 10 8 9 30

11 1 4 4 11

12 6 6 7 21

13 1 8 9 16

14 2 5 6 23

15 1 2 6

16 8 8 12

17 1 3 4 6

18 1 7

19 1 2 8

20 1 2 9

21 1 5

22 2 3 7

23 1 2 10

24 5 6 24

25 4 11 11 20

26 1 8

27 1 2 4

28 1 4

29 1 1 7

30 2 2 5

31 2 3 16

32 6 7 41

33 1 1 5
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34 1 4 5 10

35 1 2 7

36 2 3 20

37 2 12 12 30

38 1 3

39 1 2 2

40 1 4 4 4

41 3 3 10

42 1 2

43 4 5 22

44 1 6

45 7 8 52

46

47 1 1

48 5 9 10 23
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Appendix —*C

Histogram of the data

51





FREQUENCIES SAMPLE SIZE = 50

18 12 4 6 4

***p . m
=**F.F. M
***, M
*** M
***. ', F M
*F* M
***, M
***, M
*** M
*#* '. If M
F**, M
***. M
***, M
#**,

!
'. F

***
, M

***

,

M
*#*,!*" * M
**=»,.*. * M
***

,

,*. * F M
***,.*. * M
***

<. *• * M
***,,*. * M
***. *• * M
***, *. * FM
***, *. * M
***

,.*. * M
***,

. *. * M
***,,*.* F
***,.*.* M
***, *. * MF
***..*. * M
***

, . *. * M F
***,.*. * M Fi
*** .*. * M ** ,F
***

,

1*. * M ** . FF
***,,*. * M ** F
##* .*. * M **
** * .*. * M **
***

,

»*. * **M ** , ***
***,,*.* **M S* , #**
*** »*. * **M ** , ***
*** ,*.* **M ** , #**
***

,.* . * **M ** , ***
***,.*.* **M ** , ***
*** 1*. * **M ** , **#
***,.*.* **M ** , ***
*** »*. * **M ** , **=*
***,,*.* **M ** ***
*** .*.* **M ** , ***
»#», , * # * + **(^4.*« ,+***

1. k 1

40.

1

.35

.30

.25

.20

.15

.10

.05

*** «* pp *FFF **F
*** *** pppppp** pFFpp FFFFF*
+#**+*** «. **** + +_pppppppp +#**

59. 78. 98. 117. 136.





Appendix —

D

Chi square goodness-of-fit test
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Chi. Sqr. goodness of fit test

H©= the distribution is exponential

E^= the ditribution is not exponential

alpha =0.1

interval

10

20

30

40

50

60

70

1-exp (-alpha x)

0.33

0.55

0.70

0.80

0.865

0.91

0.94

theo obs dif

f reg freg

16 18 2

10 9 1

8 7 1

4 5 1

4 4

2 1 1

1 1

Chi. Sqr. = 1. 1125

Chi. Sgr. (.05) = 1.64

df=6

Result: accept M
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Appendix —

E

Graphical representation of the linear relationship between

observed and generated data
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Appendix —

F

Cumulative distribution function and probability

distribution function values

61





Number Pdf Cdf

1 0.040C 0.0400
2 0.0384 0.0784
3 0.0369 0.1153
4 0.0354 0.1507
5 0.0340 0.1846
6 0.0326 0.2172
7 0.0313 0.2486
8 0.0301 0.2786
9 0.0289 0.3075

10 C.0277 0.3352
11 0.0266 0.3618
12 0.0255 0.3873
13 0.0245 0.4118
14 0.0235 0.4353
15 0.0226 0.4579
16 0.0217 0.4796
17 0.0208 0.5004
18 0.0200 0.5204
19 0.0192 0.5396
20 0.0184 0.5580
21 0.0177 0.5757
22 0.0170 0.5926
23 0.0163 0.6089
24 0.0156 . 0.6246
25 0.0150 0.6396
26 0.0144 0.6540
27 0.0138 0.6679
28 0.0133 0.6811
29 0.0128 0.6939
30 C.0122 0.7361
31 C.0118 0.7179
32 0.0113 0.7292
33 0.0103 0.7400
34 0.0104 0.7504
35 C.0100 0.7604
36 0.0096 0.7700
37 0.0092 0.7792
38 C.0088 0.7880
39 0.0085 0.7965
40 0.0031 0.8046
41 0.0078 0.8124
42 0.0075 0.8199
43 0.0072 0.3272
44 C.0069 0.8341
45 C.0066 0.3407
46 0.0064 0.6471
47 0.0061 0.8532
48 0.0059 0.8591
49 0.0056 0.8647
50 0.0054 0.8701
51 0.0052 0.8753
52 C.0050 0.8803
53 0.0048 0.8351
54. n.nn&A n.««Q7





55 0,0044 0.8941
56 C.0042 0.8983
57 0.0041 0.9024
58 0.0039 0.9063
59 0.0037 0.9100
60 0.0036 0.9136
61 0.0035 0.9171
62 0.0033 0.9204
63 0.0032 0.9236
64 0.0031 0.9267
65 0.0029 0.9296
66 C.0023 0.9324
67 0.0027 0.9351
68 0.0026 0.9377
69 0.0025 0.9402
70 0.0024 0.9426
71 0.0023 0.9449
72 0.0022 0.9471
73 0.0021 0.9492
74 0.0020 0.9512
75 0.0020 0.9532
76 0.0019 0.9551
77 0.0018 0.9569
78 0.0017 0.9586
79 C.0017 0.9602
80 0.0016 0.9618
81 0.0015 0.9634
82 0.0015 0.9648
83 0.0014 • 0.9662
84 0.0014 0.9676
85 0.0013 0.9689
86 0.0012 0.9701
87 0.0012 0.9713
88 0.0011 0.9725
89 C.0011 0.9736
90 0.0311 0.9746
91 0.0010 0.9756
92 0.0010 0.9766
93 C.0009 0.9775
94 0.0009 0.9784
95 0.0009 0.9793
96 C.0003 0.9301
97 C.0008 0.9309
98 0.0008 0.9817
99 C.0007 0.9824

100 0.0007 0.9831





101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
\U7

0.000

f

C.0006
0.0006
0.0006
C.0006
0.0006
C.0005
0.0005
0.0005
0.0005
C.0004
0.0004
C.0004
0.0004
0.0004
C.0004
0.0004
0.0003
0.0003
0.0003
0.C003
0.0003
0.0003
0.0003
0.0003
0.0002
0.0002
C.000 2
C.0002
0.0002
0.0002
0.0002
0.0002
C.0002
0.0002
0.0002
0.0002
0.C001
0.0001
0.0001
0.0001
n.nnni

0.Vtt38
0.9844
0.9851
0.9857
0.9862
0.9868
0.9873
0.9878
0.9883
0.9888
0.9892
0.9897
0.9901
0.9905
0.9908
0.9912
0.9916
0.9919
0.9922
0.9925
0.9928
0.9931
0.9934
0.9937
0.9939
0.9942
0.9944
0.9946
0.9943
0.9950
0.9952
0.9954
0.9956
0.9953
0.9960
0.9961
0.9963
0.9964
0.9966
0.9967
0.9968
n.QQ7n





143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
158
189
190
191
192
193
194
195
196
197
198
199
200

0,0001
0.0001
C.0001
0.0001
0.0001
0.0001
0.0001
0.0001
0.0001
0.0001
C.0001
0.0001
C.0001
0.0001
0.0001
0.0001
O.COOl
C.0001
0.0001
C.0001
0.0001
0.0001
0.000
0.0000
C.0000
0.0000
0.0000
0.0000
0.0000
0.0000
C.0000
C.0000
C.0000
0.0000
C.0000
coooo
0.0000
0.0000
0.0000
0.0000
C.0000
0.0000
0.0000
0.0000
0.0000
0.0000
C.0000
C.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
C.OOJO
0.0000

0.9971
0.9972
0.9973
0.9974
0.9975
0.9976
0.9977
0.9978
0.9979
0.9980
0.9981
0.9931
0.9982
0.9983
0.9983
0.9984
0.9985
0.9985
0.9986
0.9987
0.9987
0.9988
0.9983
0.9989
0.9989
0.9989
0.9990
0.9990
0.9991
0.9991
0.9991
0.9992
0.9992
0.9992
0.9993
0.9993
0.9993
0.9993
0.9994
0.9994
0.9994
0.9994
0.9995
0.9995
0.9995
0.9995
0.9995
0.9996
0.9996
0.9996
0.9996
0.9996
0.9996
0.9997
0.9997
0.9997
0.9997
0.9997
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