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ABSTRACT 

 It is well documented that tornadoes are formed from a special breed of rotating 

thunderstorms called supercells, and that tornadogenesis is a result of several factors, one 

of which is the vertical stretching of low-level vorticity. Not as well understood are the 

factors that contribute to vertical acceleration of low-level vorticity in the updraft region 

of a supercell to support tornadogenesis. This paper examined the influence of combining 

both low-level shear and low-level static stability on low-level vertical accelerations 

using idealized simulation from Cloud Model 1 (CM1). A matrix of simulations varied 

the low-level shear and the low-level convective inhibition (CIN) in order to parse out the 

dynamic response of these parameters on the low-level forcing. When shear was added to 

simulations, there was a consistent positive response to the low-level dynamic forcing; 

when low-level CIN was increased, there was a consistent negative response to the 

low-level buoyant forcing. Despite the chaotic nature of a supercell environment, a 

balance can be achieved in the lower atmosphere where the low-level CIN can counteract 

the low-level shear and inhibit the vertical stretching of vorticity. Since this phenomenon 

is associated with tornadogenesis, a correlation can be made between the ratio of 

low-level static stability to low-level shear and its effect on tornado formation. 
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I. INTRODUCTION 

Tornados are the subject of countless scientific papers, books, and even Hollywood 

movies due to their societal and economic impacts. Nearly all damaging tornadoes are 

produced by a special breed of rotating thunderstorms called supercells (Gallus et al. 2008). 

Around 800–1,400 tornados are reported each year in the U.S. (Ashley 2007) and have 

caused around 1,000 deaths over the past decade. In 2011 alone, tornadoes cost $28 billion 

in damages (Simmons et al. 2013). Starting with John Park Finley’s tornado research of 

the 1880s to the most recent research of Nowotarski et al. (2011), Naylor and Gilmore 

(2014) and Coffer and Parker (2015, 2017), scientists have tried to better understand the 

dynamics of tornadic thunderstorms with the end goal of improving their predictability. 

However, despite the multitude of studies conducted to better understand supercells and 

tornadoes, accurately predicting whether a supercell will produce a tornado remains 

challenging (Anderson-Frey et al. 2016, Coffer and Parker 2017). 

The formation of supercell thunderstorms requires that moderate-to-strong vertical 

wind shear be present in an environment with convective available potential energy 

(CAPE) (Weisman and Klemp 1982). Vertical wind shear is the change in wind speed 

and/or wind direction with height. Deep layer shear generally refers to the shear between  

the surface and 6–8 km, whereas low-level shear generally refers to the shear between the 

surface and 1–3km. Generally, stronger deep layer shear gives rise to supercells, whereas 

weaker deep-layer shear yields modes of convection that are less organized on the scale of 

individual storms. Rotation in supercells originates from the vertical tilting of low-to-mid 

level horizontal vorticity associated with low-level shear. Low-level shear can therefore 

increase the vorticity of an updraft, and the associated rotationally-driven dynamic low 

pressure in the lower updraft (Weisman and Rotunno 2000, Davies-Jones 2003). This leads 

to stronger upward accelerations within and above the boundary layer, which increases the 

intensity of the storm’s low-level updraft (Coffer and Parker 2015). Low-level updraft 

intensity is in turn connected to the stretching of low-level vertical vorticity, which 

facilitates tornadogenesis. Environments that have sufficient CAPE and low-level shear 

can lead to supercell development and set up a regime that supports tornadogenesis. 
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Conversely, convective inhibition (CIN) has the opposite effect, in that it suppresses 

upward vertical motion of an air parcel, and subdues tornadogenesis as shown by 

Nowotarski et al. (2011).  

As previously mentioned, low-level shear is critical to supercell development and 

studies have shown that low-level shear velocities exceeding around 10 m s-1 are conducive 

to strong thunderstorms (Thompson 1998, Thompson 2003, Rasmussen and Blanchard 

1998). One of the most prominent sources of low-level shear in the central United States 

is the Low-level Jet (LLJ). The LLJ is a wind maximum in the lower levels (e.g., 500 m to 

1 km) of the atmosphere and has typical velocities around 20 m s-1 (Shapiro and Federovich 

2009). Since the LLJ typically occurs in conjunction with relatively light near-surface flow 

because of the nocturnally stabilized boundary layer, sufficient low-level shear is often 

present below the LLJ for tornadogenesis. The LLJ is diurnally modulated and reaches a 

maximum during the night and a minimum during the day (e.g., Du and Rotunno 2014). 

Because the LLJ is synonymous with increased low-level shear, this feature is of critical 

importance to tornadogenesis as the low-level shear magnitude positively correlates to the 

strength and persistence of tornadic supercells (Coffer and Parker 2015).  

Near surface thermal effects are also critical to supercell development because they 

have an important impact on the CAPE and CIN of boundary layer air parcels. Throughout 

the day, the sun is consistently heating the earth with shortwave radiation. The radiation 

heats up the boundary layer and can initiate convective storms as parcels become warmer, 

and more buoyant than their surroundings. After the sun sets, the ground cools due to a 

reduction in incoming shortwave radiation, and both static stability and CIN increase in the 

boundary layer. Storms are often able to sustain themselves overnight despite this increase 

in CIN because a layer of air with high CAPE and low CIN from above the surface feeds 

the storms (these types of storms are called “elevated,” Corfidi et al. 2008). Since it is 

generally understood that the upward acceleration of near-surface air below an updraft is 

necessary for tornadogenesis, and this near-surface upward acceleration is inhibited when 

storms become elevated, elevated supercells should have lower probabilities of producing 

tornadoes. Despite this, although commonly observed, the prevalence of nocturnal 

tornadoes is poorly understood. One of the findings from Nowotarski et al. (2011) is that 
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the presence of a stable boundary layer inhibits the development of near-surface vorticity 

in supercells. The magnitude and location of the cold pool relative to the updraft of the 

supercell are important factors to consider when predicting the strength of a supercell 

thunderstorm and the magnitude (if present) of low-level rotation (Nowotarski et al. 2011). 

A more difficult question to answer is how a supercell thunderstorm responds to a 

combination of the LLJ and low-level CIN, which increase in magnitude with time after 

dark. Strong low-level accelerations are critical for the vertical stretching of vorticity and 

the subsequent spin-up of tornadoes (Markowski and Richardson 2014, Coffer and Parker 

2017). Coffer and Parker (2015) demonstrated that an increase in the LLJ corresponded to 

stronger dynamic accelerations in the lowest levels of the storm, and the enhanced LLJ 

consequently increased the likelihood of tornadogenesis. However, Coffer and Parker 

(2015) kept the low-level stability thermodynamic parameters constant in their 

experiments. Nowartarski et al. (2011) studied how varying the magnitude of low-level 

static stability would affect the ability for a supercell to produce rotation at the lowest levels 

and found that increasing low-level static stability generally decreased the intensity of 

buoyant accelerations in the lower updraft. However, Nowartarski et al. (2011) used a 

constant wind profile in their experiments. To date, there are not any studies that vary both 

low-level static stability and low-level shear, and assess the combined influence of these 

factors on low-level vertical accelerations. Due to the transitional characteristic of the 

lower atmosphere after sunset (i.e., low-level static stability and LLJ magnitude increases), 

an effort of this study is to determine what characteristics of the nocturnal environment are 

still capable of producing tornadic supercells. 

The goal of this study is to understand how the combined effect of increasing low-

level shear and low-level CIN with time influence a supercell’s low-level accelerations and 

potential for tornadogenesis. This is accomplished by running a series of numerical 

simulations of supercells, wherein the temperature at the surface and the strength of the 

wind shear below 1km are varied among runs. The hypothesis is that increasing the near-

surface stability and CIN among simulations reduces storms’ low-level buoyant 

accelerations, and increasing the low-level shear in addition to the CIN increases storms’ 

low-level dynamic accelerations. As a consequence, there are a range of environments 
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where the positive influence of increasing low-level shear on tornadogenesis offsets the 

deleterious effects of increasing CIN on tornadogenesis. The organization of this thesis is 

as follows:  Chapter II discusses the methods to address the objectives of this thesis. 

Chapter III presents the results of the model simulations. Discussion and conclusions are 

given in Chapter IV. 
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II. METHODS 

Cloud Model 1 version 18 (CM1v18) (CM1, Bryan and Fritsch 2002) was used for 

the numerical simulations in this study. CM1 is a non-hydrostatic model with an acoustic 

time stepping scheme. The simulations were configured with free-slip top and bottom 

boundary conditions and open-radiative lateral boundary conditions (LBCs) (e.g., Klemp 

and Durran 1983). Microphysics were represented by the Morrison et al. (2005) double 

moment scheme with graupel and snow as the prognostic ice hydrometeor species. The 

simulations did not contain any radiation physics or surface fluxes. Convection was 

initiated by including a 5 km wide and 1 km deep warm bubble in the initial conditions, 

which was located at the center of the domain and centered at 1500 m above ground level. 

This warm bubble has a temperature that is 1.5 K higher than its surroundings. Table (1) 

highlights all of the CM1 parameters used in our simulations. Model simulations used two 

setups of grid/time step resolutions in a 50 km × 50 km box: a coarser resolution of 1 km 

horizontal and 250 m vertical grid spacing, and 3.75 s time step, and a finer resolution of 

250 m horizontal and 100 m vertical grid spacing, and 1.25 s time step. The coarser 

resolution runs were used as initial benchmarks for our modeling setup, and only the results 

from the 250 m resolution runs are included hereafter. The higher resolution simulations 

were run with the Naval Postgraduate School Hamming supercomputing cluster. The 

modeled storms’ horizontal velocity was subtracted in order to keep the frame of reference 

centered and storm-relative. The domain translated North at 8.5 m s-1 and East at 4.5 m s-

1, which is synonymous in this instance to subtracting the mean wind due to the free slip 

boundary layer.  

In most simulations, the initial supercell split into a right-mover and left-mover, 

and the domain followed the characteristically stronger right-mover. Different domain 

sizes and resolutions were tested throughout the experiment and the results were unaffected 

by these changes. Hence, the focus in the results and discussion will remain with the higher 

resolution simulations. To initialize the model run for the control run, CM1 ingested a 

sounding and hodograph as indicated in Figures 1 and 2. The details of this initial model 

profile are discussed later in this section. 
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Table 1. Overview of the CM1 model configuration 

 

The strategy for this experiment was to vary the low-level stability and low-level 

wind shear among simulations, and to assess both the separate and the combined impact of 

these parameters on low-level vertical accelerations (Table 2). For the simulations, a 

modified Weisman and Klemp (1982, hereafter WK82) analytic sounding was used to 

initialize the model. The WK82 sounding has been used in previous studies (e.g., 

Nowotarski 2011) and is similar to the warm season environments in the central United 
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States that typically foster supercell thunderstorms. The boundary-layer mixing ratio in this 

sounding was set to 16 g kg-1, which yielded a 0–1 km mean CAPE of ~ 2700 J kg-1. The 

control group featured a quarter-circle shaped hodograph (Rotunno and Klemp 1982, 

hereafter RK82; this profile is referred to as “S1”), which is also consistent with tornadic 

supercell environments (e.g., Parker 2014). This profile featured clockwise turning shear 

in the lowest 1 km, and shear with no directional change above 1 km. This configuration 

is slightly different than that of RK82, wherein clockwise turning shear extended from the 

surface to 2 km. However, the wind profile configuration here is more consistent with 

observed tornado environments where shear curvature is typically confined to the lowest 1 

km. The deep-layer shear magnitude of 31 m s-1 in this sounding is consistent with past 

observational studies of the environments of tornadic supercells (e.g., Markowski et al. 

2003, Parker 2014). The 0–1 km shear in the S1 profile was 10.4 m s-1, and the 0–1 km and 

0–3 km storm-relative helicity (SRH) magnitudes were 174 and 255 J kg-1, respectively. In 

the experiments where the shear magnitude was increased (henceforth, this profile is 

referred to as “S2”), the length of the hodograph in the v direction was doubled below 1 

km, and the hodograph also followed a sinusoidal shape in the 1–2 km layer. Both 

hodographs are plotted for reference in Figure (2). S2 yielded a new 0–1 km shear 

magnitude of 19.5 m s-1 and 0–1 km and 0–3 km storm-relative helicity (SRH) magnitudes 

were 341 and 390 J kg-1, respectively. 

Consistent with the experimental methodology of Nowotarski et al. (2011), low-

level stability was modulated in each run by progressively reducing the surface temperature 

(θ0), and prescribing a linear increase in θ0 between the value at the surface and that in the 

control profile at 500 m. Starting with a θ0 of 300K, static stability was increased by 

decreasing θ0 to discriminate values of 297K, 295K, and 293K as indicated in Figure (3). 

Surface-based CAPE (CIN) values for these static stability variations were 2620 J kg-1 (-

20 J kg-1), 1925 J kg-1 (-70 J kg-1), 1502 J kg-1 (-97 J kg-1), and 1136 J kg-1 (-123 J kg-1), 

respectively. CAPE and CIN above 500 m were held constant among the profiles. The 

surface cooling was given ranges that could realistically simulate the potential surface 

cooling that occurs during the nighttime transition of the boundary layer from latent heat 

release and radiative cooling. 
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Table 2. CM1 model design and configurations 

 
This table is an overview of the simulations that were run where 300KS1 indicates a shear value of 10 m s-

1 and a surface temperature of 300K, 295KS2 indicates a shear value of 20 m s-1 and a surface temperature 
of 295K, etc. 

Figure 1. Analytic initial conditions for the control 

 
Skew-T log-P diagram of the analytic sounding used to initialize CM1. Thick red line: 
temperature, thin red line: virtual temperature, green line: dew point temperature, and 
dashed black line: the temperature for a lifted air parcel with the average properties of the 
lowest 1 km. 
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Figure 2.  Hodographs showing wind shear setup for S1 and S2 simulations  

 
Hodograph showing the clockwise turning of wind vectors in the lowest 1km of the 
atmosphere. U-wind velocity (m s-1) is on the x-axis and V-wind velocity (m s-1) is on the 
y-axis. Also indicated are the 0–1km Storm relative helicity (SRH) (m2  s-2). The blue line 
represents the S1 wind profile and the red line represents the S2 wind profile. Storm motion 
vectors for S1 and S2 are blue and red dots, respectively, and are estimated using the 
method of Bunkers et al. (2000). 

Figure 3. Low level stability profiles of the simulated environment 
for control and all θ0 simulations 

 
Graph indicating potential temperature (K) as a function of height (m) used in all 
simulations. The legend gives the surface potential temperature for each profile. 
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A total of eight simulations were run covering the two wind profiles and the four 

thermodynamic profiles. Tornadoes typically have spatial scales of 50–500m, which 

requires grid spacing <50m for the proper resolution of a tornadic circulation (there were 

insufficient computational resources to run the model at this resolution). The 250m grid 

spacing of the simulations was therefore insufficient to properly resolve tornadoes. Despite 

this, Nowatarski et al. (2011) showed that surface vorticity associated with tornado-like 

circulations can be used to evaluate the tornado production potential of simulated storms. 

Temporal variations of the surface and 1 km vorticity were therefore created to compare 

the results from different model simulations and assess the potential for tornadogenesis. 

Real world tornadoes can have low level vorticity on the scale of 0.1–1 s-1, so by producing 

the time series plots one could assess when or if vorticity magnitudes that were sufficiently 

high to correspond to tornadic circulations were produced. 

Further data analysis of the results was made in order to assess influences of the 

low-level stability and low-level vertical wind shear on the supercells’ low-level 

accelerations. The low-level accelerations and forcing can be assessed by first starting with 

the Lagrangean Boussinesq vertical vorticity equation which can be written as 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝜁𝜁 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕�

𝑆𝑆𝑑𝑑𝑆𝑆𝑆𝑆𝑑𝑑𝑆𝑆ℎ𝑖𝑖𝑖𝑖𝑖𝑖

− 𝛻𝛻𝛻𝛻 ∙ 𝛻𝛻 × 𝑽𝑽𝒉𝒉���������
𝑇𝑇𝑖𝑖𝑇𝑇𝑑𝑑𝑖𝑖𝑖𝑖𝑖𝑖

 , 

where 𝜁𝜁 is the vertical vorticity and 𝑽𝑽𝒉𝒉 is the horizontal wind vector. Since 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

 in the 

stretching term is well correlated with 𝑑𝑑𝜕𝜕
𝑑𝑑𝑑𝑑

 for upward moving air parcels, regions of upward 

accelerations in the presence of background vertical vorticity will cause the magnitude of 

vertical vorticity to increase with time. This is because air columns horizontally contract 

as they are vertically stretched, and because conservation of angular momentum dictates 

that a spinning air column that horizontally contracts with time must spin faster (much like 

an ice skater who brings their arms in while spinning). Environmental properties such as 

stability and shear consequently directly influence tornadogenesis via the influence of these 

attributes on vertical accelerations. 

To understand how stability and shear influence accelerations, we write the total 

acceleration of an upward moving air parcel for an anelastic atmosphere as 
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𝑑𝑑𝜕𝜕
𝑑𝑑𝑑𝑑

= 𝐵𝐵 − 1
𝜌𝜌0

𝜕𝜕𝑝𝑝′𝑏𝑏
𝜕𝜕𝜕𝜕�������

𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝑖𝑖𝑑𝑑 
𝐴𝐴𝑆𝑆𝑆𝑆𝑆𝑆𝑇𝑇𝑆𝑆𝑆𝑆𝐵𝐵𝑑𝑑𝑖𝑖𝐵𝐵𝑖𝑖𝐴𝐴

− 1
𝜌𝜌0

𝜕𝜕𝑝𝑝′𝑑𝑑
𝜕𝜕𝜕𝜕�����

𝐷𝐷𝐵𝐵𝑖𝑖𝐵𝐵𝐷𝐷𝑖𝑖𝑆𝑆 
𝐴𝐴𝑆𝑆𝑆𝑆𝑆𝑆𝑇𝑇𝑆𝑆𝑆𝑆𝐵𝐵𝑑𝑑𝑖𝑖𝐵𝐵𝑖𝑖𝐴𝐴

, (1) 

where the model’s initial state variables are denoted by subscript 0 and deviations from 

this initial state are denoted by primes, 𝐵𝐵 ≡ −𝑔𝑔 𝜌𝜌′

𝜌𝜌0
− 𝑟𝑟𝑖𝑖 is the buoyancy defined relative to 

the model’s initial state (where 𝑟𝑟𝑖𝑖 is the mixing ratio of the ith hydrometeor species; e.g., 

rain, snow, graupel), − 1
𝜌𝜌0

𝜕𝜕𝑝𝑝′𝑏𝑏
𝜕𝜕𝜕𝜕

is the vertical pressure gradient force from buoyancy 

pressure, − 1
𝜌𝜌0

𝜕𝜕𝑝𝑝′𝑑𝑑
𝜕𝜕𝜕𝜕

 is the vertical pressure gradient force from dynamic pressure (hereafter 

“dynamic forcing”), and net buoyant accelerations are described by 𝐵𝐵 − 1
𝜌𝜌0

𝜕𝜕𝑝𝑝′𝑏𝑏
𝜕𝜕𝜕𝜕

 (hereafter 

“buoyant forcing”; e.g., Parker and Johnson 2004). The definitions for 𝑝𝑝𝑑𝑑′  and 𝑝𝑝𝑏𝑏′  are 

∇2𝑝𝑝′𝑏𝑏 = 𝜕𝜕(𝜌𝜌0𝐵𝐵)
𝜕𝜕𝜕𝜕

(2) 

∇2𝑝𝑝′𝑑𝑑 = −∇ ∙ [𝜌𝜌0(𝑽𝑽 ∙ ∇)𝑽𝑽] . (3) 
Since buoyant forcing is strictly a function of density variations, it is exclusively 

determined by an updraft’s thermodynamic properties. Regions that are locally warmer 

(cooler) than their surroundings typically experience upward (downward) buoyant forcing. 

Boundary-layer air with low (high) CIN that is ingested into an updraft should become 

locally warmer (cooler) than its surroundings and therefore experience enhanced 

(dampened) upward accelerations from buoyant forcing. Thus, the relative magnitudes of 

buoyant forcing in the lower updraft can be compared among simulations to assess the 

influence of modifications to the low-level stability on the updraft’s vertical accelerations, 

since storms in the less (more) stable low-level environments should have larger (smaller) 

low-level buoyant forcing. 

On the other hand, dynamic forcing is primarily a function of spatial gradients in 

air velocity, and the spatial distribution of dynamic forcing is often dominated by upward 

accelerations beneath a supercell’s rotationally-driven low-pressure maxima (Rotunno and 

Klemp 1982). We may therefore compare the distributions of dynamic forcing in the low-

level updraft among simulations to assess the influence of the low-level shear on updraft 

accelerations. Storms in the environments with the strongest (weakest) low-level shear 
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should rotate the fastest (slowest), have the most (least) intense rotationally-driven low-

pressure maxima, and have the largest (smallest) low-level dynamic forcing. Particular 

emphasis was given to the lowest 1 km of the atmosphere, because this is the layer where 

the influence of low-level accelerations on tornadogenesis is most critical (e.g., Markowski 

and Richardson 2014, Coffer and Parker 2015, 2017). 
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III. RESULTS 

An initial examination of simulated radar reflectivity plots from the control 

(300KS1) run shows a supercell thunderstorm with a clear hook echo and updraft regions 

(Figure 4A). All simulations within the experiment produced a supercell and were verified 

by the radar reflectivity for the key supercell features mentioned above. All further analysis 

concentrates on the right-moving, dominant supercell in the model domains. Composite 

simulated reflectivity plots are shown here (Figure 4), rather than snapshots from individual 

times, because they are most representative of the supercell’s structure through a longer 

period in the simulation. To create the composite figures, the right-moving domain 

supercell was first objectively tracked by averaging the vertical velocity in the 0–4 km 

layer, averaging the vertical vorticity in the 0–4 km layer, ignoring regions with negative 

0–4 km average vertical vorticity, and selecting the largest remaining continuous area of 

0–4 km averaged vertical velocity with w > 3 m s-1. The center point of this region was 

defined by a vertical velocity weighted average location. The Figures 4A-H were then 

created by averaging the, updraft centered, CM1 reflectivity output from 1km from minute 

75 to minute 150 of the simulations. The results from the tracking procedure were then 

visually analyzed to ensure that the procedure produced a track that corresponded to the 

dominant right-moving supercell. The black outline on Figures 4A-H indicates the average 

updraft region and was created by averaging the 1–4km vertical velocities from that were 

> 6 m s-1. 

An examination of the composites revealed a few expected results. In the cooler θ0 

runs (295K and 293K) (Figures 4E-4H), the cold pools were much weaker and less 

expansive compared to the 300K (Figures 4A and 4B) runs. This result is most dramatic 

when comparing the 300K runs to the 293K runs and can be identified by the spatial extent 

of the surface temperature perturbation (θ‘), the light blue lines on Figure 4. This was 

expected because as the cool air falls through the downdraft and reaches the surface, θ‘ is 

not as apparent due to the lack of contrast between the initial surface theta and the rain-

cooled downdraft air. The cold pool was slightly weaker in the vicinity of the updraft in 
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the S2 runs than in the S1 runs, which is potentially a result of an increase in the northward 

advection of hydrometeors away from the updraft due to the increased shear. 

Figure 4.  Composite reflectivity plots 

 
In this figure, the simulated reflectivity in dBZ (the shaded region) of the supercells is 
plotted with θ‘ (K) with the thicker cyan lines indicating the 0K θ‘ and the lighter cyan 
lines are the subsequent single degree θ‘. The composite plots are the averaged 5 minute 
reflectivity output at 1km from minutes 75–150 of the simulations. The updraft region of 
the supercells is highlighted by the black outline on the plots. 
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The time series of surface vorticity (Figure 5) and 1 km vorticity (Figure 6) 

indicated there were several instances within all the simulations where the vorticity 

fluctuated substantially over time, with distinct temporal peaks and troughs. This temporal 

variability is a result of the chaotic nature of supercells. The periodic strengthening and 

weakening during the lifetime of a supercell has been shown in previous research 

(Adlerman and Droegemeier 2005) and supercells’ behavior are often extremely sensitive 

to subtle variations in internal and background environmental characteristics (Coffer et al. 

2017). Henceforth, the control (300KS1) and the shear modulated control (300KS2) runs 

are plotted on all figures for easier comparison between the simulations.  300KS1 is always 

a solid blue line and 300KS2 is always a solid red line. 

Consistent with Parker et al. (2015), by increasing the low-level shear in the 300K 

profile, there was a dramatic response in the maximum 1 km vertical vorticity in the 

300KS2 run, as shown by the doubling of the vorticity towards the end of the simulation 

(Figure 5). This result is less obvious in the θ0 simulations, indicating a connection between 

the magnitude of vorticity and low-level stability. Time series plots of maximum surface 

vorticity showed similar trends (Figure 6). The peaks in the vorticity time series indicate 

phases in the supercells’ lives when tornadogenesis was most likely.  
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Figure 5. Time evolution of maximum 1-km vorticity from 
simulations with surface potential temperature 

of 297K (A), 295K (B), and 293K (C). 

 
 

This figure shows the time series of maximum 1-km vorticity (s -1) from 297K, 295K, and 
293K simulations. The red lines correspond to the S2 runs and the blue dashed lines 
correspond to the θ0 runs. The red dashed lines are the S2θ0 runs. The black dashed lines 
indicate the highest 20 surface vorticity values in each run. In accordance with the legend, 
CNTL is the 300KS1 run, CNTL and shear is the 300KS2 run. Both runs are included on 
each plot for easier comparison. 
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Figure 6. Time evolution of maximum surface vorticity 
for simulations 297K (A), 295K (B), 

and 293K (B). 

 
 

This figure shows the time series of maximum surface vorticity (s -1) for 297K, 295K, and 
293K simulations. The red lines correspond to the S2 runs and the blue dashed lines 
correspond to the θ0 runs. The red dashed lines are the S2θ0 runs. The black dashed lines 
indicate the highest 20 surface vorticity values in each run. In accordance with the legend, 
CNTL is the 300KS1 run, CNTL and SHEAR is the 300KS2 run. Both runs are included 
on each plot for easier comparison. 

Because of the considerable variability in the vorticity, the 20 largest instantaneous 

surface and 1 km vertical vorticity values were selected from each simulation for further 

analysis. The black lines on Figures 5 and 6 indicate the highest 20 values that were 

selected. These 20 highest values were compared between runs, and were considered to 

reflect an increased likelihood of tornadogenesis in a given storm. To determine whether 
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differences in these 20 highest values were statistically significant between simulations, 

the “bootstrap” statistical method was used (Efron 1978). This technique relies on random 

sampling with replacement which was done by randomly selecting 20 values within the 

original 20, with the potential for repeating values, in order to create new samples. The 

average of each new sample was then taken. This process was repeated 1000 times, and 

the 95th and 5th percentile averages were used to generate the blue and red boxes in Figures 

7A-C. The right (left) side of the box gives the statistical average of the highest (lowest) 

maximum 1km vorticity of the 1000 resampled data sets and the top (bottom) of the box 

gives the statistical average of the highest (lowest) maximum surface vorticity of the 1000 

resampled data sets. If the edges of two boxes do not overlap (overlap) in the x or y 

direction, the differences in the averages of the 20 maximum vorticity values between two 

runs are (are not) statistically significant.  

In the 295K (Figure 7B) and 293K (Figure 7C) runs, a few trends are evident. As 

expected, the 300KS2 run, with larger low-level shear than that 300KS1, produced larger 

maximum surface and 1 km vorticity magnitudes than the 300KS1. Also, the 297KS1, 

295KS1, and 293KS1 runs, with progressively larger near-surface CIN, produced 

progressively smaller surface and 1 km vorticity magnitudes. Both the 293KS2 (Figure 7B) 

and 295KS2 (Figure 7C) runs, with both larger stability and shear than the control, showed 

larger surface vorticity and 1km vorticity than the 293KS1 and 295KS1 runs. In fact, the 

surface vorticity, and to a lesser extent the 1 km vorticity, of both the 293KS1 and 295KS1 

runs shifted in line with the control. All of the findings indicated above were statistically 

significant as identified by the confidence boxes.  

Compared to the 295K and 293K runs, trends for the 297K run (Figure 7A) were 

not as pronounced. The modest near-surface stability increase in the 297K runs had a 

similar effect as the 295K (Figure 7B) and 293K (Figure 7C) runs in that it decreased both 

surface vorticity and 1km vorticity, however, when shear was added to the 297KS1 run, 

only the max 1km vorticity showed significant response. The lack of response in the surface 

vorticity is probably because of the small difference in the thermodynamic profile 

compared to the controls. 
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Figure 7. 297K (A), 295K (B), and 293K (C) vorticity scatterplots  

 
 

Illustrated here is a scatterplot of the highest 20 values of1km vorticity vs surface vorticity 
(s-1). The top and right sides of the boxes indicate the 95th percentile of the surface vorticity 
and 1km vorticity, respectively, and the bottom. and left sides of box indicate the 5th 
percentile of the surface vorticity and 1-km vorticity, respectively.   
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To connect the low-level stability and shear differences among runs to the vorticity 

differences described above, the vertical profiles of buoyant and dynamic accelerations in 

the lower updraft were examined and time averaged from 100 min to 180 min in each 

simulation. Figures 8A-C show the profiles of updraft forcing for the all three θ0 

simulations, 297K, 295K, and 295K, respectively. The forcing plots were broken up into 

the buoyant and dynamic forcing components and then added together to get the net 

forcing. The 300K runs are also shown on the same plots for comparison. In the 300KS1 

control run, the low-level forcing is driven by a combination of strong upward buoyant and 

dynamic forcing below 1 km. When shear was added to the control run to get 300KS2, 

there was a dramatic increase in the low-level dynamic forcing, and little change in buoyant 

forcing. The net forcing in this case was exclusively due to the addition of shear and 

therefore, the increase in low-level dynamic forcing. In contrast, the buoyant forcing below 

1 km progressively declined relative to the 300K runs as shown by the dashed lines in 

Figure 8A (297K), Figure 8B (295K), and Figure 8C (293K) runs, indicating that the effect 

of the low-level stability in these runs on updraft forcing was reflected in the buoyant 

forcing distribution. 

The net forcing plots also indicate that by adding low-level shear to the 297KS1, 

295KS1, and 293KS1 runs, that as the dynamic forcing increased and the buoyant forcing 

decreased, the net low-level forcing resembled that of the control near the surface. This is 

illustrated by the red dashed lines in net forcing column of Figures 8A-C shifting to the 

right of solid blue line. This is due in part because of the offsetting effects of the stability 

and shear. In fact, by adding shear, the 295KS2 and 297KS2 runs had higher net forcing 

than that in the 300KS1 control run throughout the atmosphere. The 293KS2 run is the 

only run where the net forcing was not as strong as the control. To reiterate, low-level 

buoyant forcing and dynamic forcing are essential to the spin-up and stretching of low-

level vorticity and low-level vorticity is an ingredient of tornadogenesis. The stability and 

shear induced changes to updraft forcing discussed in this section therefore have a direct 

impact on the probability of tornadogenesis.  
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Figure 8. 297K (A), 295K (B), and 293K (C) forcing plots 

 
 

This shows the accelerations (m s-2) on an air parcel at different heights above ground for 
both the buoyant (left column) dynamic (middle column) and net (right column) forcing 
mechanisms. The dashed lines are the θ0 runs. The red lines are the S2 runs. The solid blue 
line is the 300KS1 run. 
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IV. DISCUSSION AND CONCLUSIONS  

A. HYPOTHESIS SUPPORT 

The following are results from this numerical experiment that helped support my 

hypothesis. First, it is evident that the dynamic forcing is directly linked to changes in the 

low-level shear and the buoyant forcing is directly linked to changes in the low-level 

stability, since increasing the low-level shear while keeping the thermodynamic profile 

fixed enhanced the low-level dynamic pressure forcing, and increasing the low-level 

stability while keeping the wind profile constant decreased the low-level buoyant forcing. 

Second, there is a point in the simulations, and one could assume in the real atmosphere, 

that dynamic forcing associated with the low-level shear is capable of directly 

counteracting the decreased buoyant forcing associated with the stability. In this 

experiment, that tipping point occurred between a θ0 of 295K and 293K, when the 

magnitude of 0–1 km vorticity increased by 50 %. Lastly, the low-level buoyant forcing 

was minimally affected when θ0 was set to 297K, indicating that marginal low-level 

stability may have little impact on low-level buoyant forcing. 

My hypothesis is supported primarily by the findings in the buoyant and dynamic 

forcing. The results in Figures 8A-C are consistent with the assumptions that increasing 

shear can overcome static stability in the lower atmosphere. From the lowest 1km dynamic 

forcing, it can be seen that by adding shear in the simulations, the dynamic forcing 

increased (i.e., the red dashed line shifted to the right of the blue dashed line). The decrease 

in dynamic forcing through the 500 m–1000 m layer was potentially due to the center of 

the enhancement in the dynamic low pressure having resided near 500 m, which caused an 

increase in upward forcing below 500 m, but a decrease in upward forcing above 500 m. 

Along the same lines, the buoyant forcing also performed as expected given the theory 

behind the accelerating air parcel. When comparing the buoyancy forcing in Figures 8A-

C, the two dashed lines “shift” closer to the control as low-level static stability decreases. 

This corresponds to the inverse relationship between static stability and buoyant forcing. 
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Furthermore, the scatterplots shed light on the statistical significance and unique 

difference of each run when comparing the surface and 1km maximum vorticity. Surface 

vorticity is a key ingredient to tornadogenesis and this experiment illustrated the response 

of vorticity to low-level stability and low-level shear. Throughout all simulations, brief 

periods of increased surface vorticity, linked to increased dynamic and buoyant forcing, 

can increase the probability of tornadogenesis. Likewise, all simulations exhibited lulls or 

troughs of surface vorticity and correspond to timeframes when tornado formation is less 

likely. 

B. INCONSISTENCIES 

Previous research has shown (Coffer et al. 2017) that modeling a supercell 

thunderstorm can produce a wide variety of results, so it was not surprising that there would 

be unexpected findings, despite the fact this is was a “controlled” environment and not the 

real-world. Given that understanding, the following inconsistencies were found with 

possible explanations ascribed: 

1) The time evolution of the max 1km vorticity and surface vorticity do not have 

an identified trend. There were periods within the θ0 simulations where the vorticities were 

higher than the S2 runs, and even higher than the 300KS2 run. This could be in part because 

of the cyclical nature of supercells. As shown in the Figures 4 and 5, the four different 

simulations were each going through periodic strengthening and weakening. It is then 

possible that the “strengthening” part of the 292KS1 for instance, is stronger than the 

“weakening” part of the 300KS2 run. 

2) In the 297KS2 run, the addition of shear changed the max 1km vorticity 

significantly (red dashed box in Figure 7A ) but had little effect on the surface vorticity 

when compared to the 297KS1 run (blue dashed box in Figure 7A). This trend was different 

from the 295K run, indicating there is most likely a thermodynamic shift between 297K 

and 295K.   

3) The differences in dynamic forcing between all three θ0s when compared to the 

control were not expected. One would think that the 300KS2 run would have the most 

dynamic forcing compared to all other simulations, however, this is not what the results 
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show. The addition of shear to the 297K, 295K, and 293K runs produces dynamic forcing 

in the low-level atmosphere exceeding that of the 300KS2 run (i.e., the dashed red line is 

to the right of the solid red line in Figures 8A-C). This again, could be attributed to the 

complex and chaotic nature of supercells. 

C. RECOMMENDATIONS FOR FUTURE WORK 

This experiment covered a very limited selection of atmospheric initial conditions 

that attempted to capture environments that could sensibly be observed in the real world. 

As such, the specific set of conditions of low-level shear and low-level stability that create 

a balance between the two forcing mechanisms was elusive. Future studies that incorporate 

a wider range of wind and thermodynamic profiles could help discover this unique 

equilibrium.  

Although this experiment used an analytic sounding and wind profile that previous 

studies have used and proven their applicability to simulate real-world environments, 

nothing beats the real thing when it comes to actual soundings taken from areas that 

produced tornadic supercells. An analysis of observations from environments near 

nocturnal tornadoes, and a comparison of these environments with those where supercells 

failed to produce tornadoes, would complement the numerical modeling experiments in 

this thesis. 

Finally, because this experiment attempted to solve the larger question of why 

tornadoes still occur after dark despite an increase in low-level stability, further research 

could be done to determine whether nocturnal tornadoes associated with the LLJ are 

stronger than tornadoes that occur before the sun sets. 
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