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PREFACE.

Thirty or forty years ago, in the field of physical science, there

was a widespread feeling that the days of adventurous discovery had

passed forever, and the conservative physicist was only too happy to

devote his life to the measurement to the sixth decimal place of

quantities whose significance for physical theory was already an -old

story. The passage of time, however, has completely upset such

bourgeois ideas as to the state of physical science, through the dis

covery of some most extraordinary experimental facts and the develop

ment of very fundamental theories for their explanation.

On the experimental side, the intervening years have seen the

discovery of radioactivity, the exhaustive study of the conduction of

electricity through gases, the accompanying discoveries of cathode,

canal and X-rays, the isolation of the electron, the study of the

distribution of energy in the hohlraum. and the final failure of all

attempts to detect the earth s motion through the supposititious

ether. During this same time, the theoretical physicist has been

working hand in hand with the experimenter endeavoring to correlate

the facts already discovered and to point the way to further research.

The theoretical achievements, which have been found particularly

helpful in performing these functions of explanation and prediction,

have been the development of the modern theory of electrons, the

application of thermodynamic and statistical reasoning to the phe

nomena of radiation, and the development of Einstein s brilliant

theory of the relativity of motion.

It has been the endeavor of the following book to present an

introduction to this theory of relativity, which in the decade since

the publication of Einstein s first paper in 1905 (Annalen der Physik)

has become a necessary part of the theoretical equipment of every

physicist. Even if we regard the Einstein theory of relativity merely

as a convenient tool for the prediction of electromagnetic and optical

phenomena, its importance to the physicist is very great, not only

because its introduction greatly simplifies the deduction of many
2 1



2 Preface.

theorems which were already familiar in the older theories based on a

stationary ether, but also because it leads simply and directly to cor

rect conclusions in the case of such experiments as those of Michelson

and Morley, Trouton and Noble, and Kaufman and Bucherer, which

can be made to agree with the idea of a stationary ether only by the

introduction of complicated and ad hoc assumptions. Regarded from

a more philosophical point of view, an acceptance of the Einstein

theory of relativity shows us the advisability of completely remodelling

some of our most fundamental ideas. In particular we shall now

do well to change our concepts of space and time in such a way as

to give up the old idea of their complete independence, a notion

which we have received as the inheritance of a long ancestral experience

with bodies moving with slow velocities, but which no longer proves

pragmatic when we deal with velocities approaching that of light.

The method of treatment adopted in the following chapters is

to a considerable extent original, partly appearing here for the first

time and partly already published elsewhere.* Chapter III follows

a method which was first developed by Lewis and Tolman,|and the

last chapter a method developed by Wilson and Lewis.J The writer

must also express his special obligations to the works of Einstein,

Planck, Poincare, Laue, Ishiwara and Laub.

It is hoped that the mode of presentation is one that will be found

well adapted not only to introduce the study of relativity theory to

those previously unfamiliar with the subject but also to provide the

necessary methodological equipment for those who wish to pursue

the theory into its more complicated applications.

After presenting, in the first chapter, a brief outline of the historical

development of ideas as to the nature of the space and time of science,

we consider, in Chapter II, the two main postulates upon which the

theory of relativity rests and discuss the direct experimental evidence

for their truth. The third chapter then presents an elementary and

*
Philosophical Magazine, vol. 18, p. 510 (1909); Physical Review, vol. 31, p. 26

(1910); Phil. Mag., vol. 21, p. 296 (1911); ibid., vol. 22, p. 458 (1911); ibid., vol. 23,

p. 375 (1912); Phys. Rev., vol. 35, p. 136 (1912); Phil. Mag., vol. 25, p. 150 (1913);

ibid., vol. 28, p. 572 (1914); ibid., vol. 28, p. 583 (1914).

t Phil. Mag., vol. 18, p. 510 (1909).

J Proceedings of the American Academy of Arts and Sciences, vol. 48, p. 389

(1912).
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non-mathematical deduction of a number of the most important

consequences of the postulates of relativity, and it is hoped that this

chapter will prove especially valuable to readers without unusual

mathematical equipment, since they will there be able to obtain a

real grasp of such important new ideas as the change of mass with

velocity, the non-additivity of velocities, and the relation of mass

and energy, without encountering any mathematics beyond the

elements of analysis and geometry.

In Chapter IV we commence the more analytical treatment of

the theory of relativity by obtaining from the two postulates of

relativity Einstein s transformation equations for space and time as

well as transformation equations for velocities, accelerations, and

for an important function of the velocity. Chapter V presents

various kinematical applications of the theory of relativity following

quite closely Einstein s original method of development. In par

ticular we may call attention to the ease with which we may handle

the optics of moving media by the methods of the theory of relativity

as compared with the difficulty of treatment on the basis of the ether

theory.

In Chapters VI, VII and VIII we develop and apply a theory of

the dynamics of a particle which is based on the Einstein trans

formation equations for space and time, Newton s three laws of motion,

and the principle of the conservation of mass.

We then examine, in Chapter IX, the relation between the theory

of relativity and the principle of least action, and find it possible to

introduce the requirements of relativity theory at the very start into

this basic principle for physical science. We point out that we

might indeed have used this adapted form of the principle of least

action, for developing the dynamics of a particle, and then proceed

in Chapters X, XI and XII to develop the dynamics of an elastic

body, the dynamics of a thermodynamic system, and the dynamics

of an electromagnetic system, all on the basis of our adapted form

of the principle of least action.

Finally, in Chapter XIII, we consider a four-dimensional method

of expressing and treating the results of relativity theory. This

chapter contains, in Part I, an epitome of some of the more important

methods in four-dimensional vector analysis and it is hoped that it
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can also be used in connection with the earlier parts of the book as a

convenient reference for those who are not familiar with ordinary

three-dimensional vector analysis.

In the present book, the writer has confined his considerations to

cases in which there is a uniform relative velocity between systems of

coordinates. In the future it may be possible greatly to extend the

applications of the theory of relativity by considering accelerated

systems of coordinates, and in this connection Einstein s latest work

on the relation between gravity and acceleration is of great interest.

It does not seem wise, however, at the present time to include such

considerations in a book which intends to present a survey of accepted

theory.

The author will feel amply repaid for the work involved in the

preparation of the book if, through his efforts, some of the younger

American physicists can be helped to obtain a real knowledge of the

important work of Einstein. He is also glad to have this opportunity

to add his testimony to the growing conviction that the conceptual

space and time of science are not God-given and unalterable, but are

rather in the nature of human constructs devised for use in the de

scription and correlation of scientific phenomena, and that these

spatial and temporal concepts should be altered whenever the discovery

of new facts makes such a change pragmatic.

The writer wishes to express his indebtedness to Mr. William H.

Williams for assisting in the preparation of Chapter I.



CHAPTER I.

HISTORICAL DEVELOPMENT OF IDEAS AS TO THE NATURE OF
SPACE AND TIME.

1. Since the year 1905, which marked the publication of Einstein s

momentous article on the theory of relativity, the development of

scientific thought has led to a complete revolution in accepted ideas

as to the nature of space and time, and this revolution has in turn

profoundly modified those dependent sciences, in particular mechanics

and electromagnetics, which make use of these two fundamental

concepts in their considerations.

In the following pages it will be our endeavor to present a de

scription of these new notions as to the nature of space and time,*

and to give a partial account of the consequent modifications which

have been introduced into various fields of science. Before pro

ceeding to this task, however, we may well review those older ideas

as to space and time which until now appeared quite sufficient for

the correlation of scientific phenomena. We shall first consider the

space and time of Galileo and Newton which were employed in the

development of the classical mechanics, and then the space and time

of the ether theory of light.

PART I. THE SPACE AND TIME OF GALILEO AND NEWTON.

2. The publication in 1687 of Newton s Principia laid down so

satisfactory a foundation for further dynamical considerations, that

it seemed as though the ideas of Galileo and Newton as to the nature

of space and time, which were there employed, would certainly remain

forever suitable for the interpretation of natural phenomena. And

indeed upon this basis has been built the whole structure of classical

mechanics which, until our recent familiarity with very high velocities,

has been found completely satisfactory for an extremely large number

of very diverse dynamical considerations.

*
Throughout this work by &quot;space&quot;

and &quot;time&quot; we shall mean the conceptual

space and time of science.

5



6 Chapter One.

An examination of the fundamental laws of mechanics will show

how the concepts of space and time entered into the Newtonian

system of mechanics. Newton s laws of motion, from which the

whole of the classical mechanics could be derived, can best be stated

with the help of the equation

P-|(u). (1)

This equation defines the force F acting on a particle as equal to the

rate of change in its momentum (i. e., the product of its mass m and

its velocity u), and the whole of Newton s laws of motion may be

summed up in the statement that in the case of two interacting par

ticles the forces which they mutually exert on each other are equal in

magnitude and opposite in direction.

Since in Newtonian mechanics the mass of a particle is assumed

constant, equation (1) may be more conveniently written

du d (dr\F = - = - -

or

m
,

dt dt\dt J

d dx

-4(1).
and this definition of force, together with the above-stated principle

of the equality of action and reaction, forms the starting-point for

the whole of classical mechanics.

The necessary dependence of this mechanics upon the concepts

of space and time becomes quite evident on an examination of this

fundamental equation (2), in which the expression for the force acting

on a particle is seen to contain both the variables x, y, and z, which

specify the position of the particle in space, and the variable t
t
which

specifies the time.

3. Newtonian Time. To attempt a definite statement as to the
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meaning of so fundamental and underlying a notion as that of time

is a task from which even philosophy may shrink. In a general

way, conceptual time may be thought of as a one-dimensional, uni

directional, one-valued continuum. This continuum is a sort of frame

work in which the instants at which actual occurrences take place

find an ordered position. Distances from point to point in the

continuum, that is intervals of time, are measured by the periods of

certain continually recurring cyclic processes such as the daily rota

tion of the earth. A unidirectional nature is imposed upon the time

continuum among other things by an acceptance of the second law

of thermodynamics, which requires that actual progression in time

shall be accompanied by an increase in the entropy of the material

world, and this same law requires that the continuum shall be one-

valued since it excludes the possibility that time ever returns upon

itself, either to commence a new cycle or to intersect its former path

even at a single point.

In addition to these characteristics of the time continuum, which

have been in no way modified by the theory of relativity, the New
tonian mechanics always assumed a complete independence of time and

the three-dimensional space continuum which exists along with it.

In dynamical equations time entered as an entirely independent vari

able in no way connected with the variables whose specification

determines position in space. In the following pages, however, we

shall find that the theory of relativity requires a very definite inter

relation between time and space, and in the Einstein transformation

equations we shall see the exact way in which measurements of time

depend upon the choice of a set of variables for measuring position

in space.

4. Newtonian Space. An exact description of the concept of

space is perhaps just as difficult as a description of the concept of time.

In a general way we think of space as a three-dimensional, homo

geneous, isotropic continuum, and these ideas are common to the

conceptual spaces of Newton, Einstein, and the ether theory of light.

The space of Newton, however, differs on the one hand from that of

Einstein because of a tacit assumption of the complete independence

of space and time measurements; and differs on the other hand from

that of the ether theory of light by the fact that
&quot;

free
&quot;

space was
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assumed completely empty instead of filled with an all-pervading

quasi-material medium the ether. A more definite idea of the par

ticularly important characteristics of the Newtonian concept of space

may be obtained by considering somewhat in detail the actual methods

of space measurement.

Positions in space are in general measured with respect to some

arbitrarily fixed system of reference which must be threefold in

character corresponding to the three dimensions of space. In par

ticular we may make use of a set of Cartesian axes and determine,

for example, the position of a particle by specifying its three Cartesian

coordinates x, y and z.

In Newtonian mechanics the particular set of axes chosen for

specifying position in space has in general been determined in the

first instance by considerations of convenience. For example, it is

found by experience that, if we take as a reference system lines drawn

upon the surface of the earth, the equations of motion based on New
ton s laws give us a simple description of nearly all dynamical phe

nomena which are merely terrestrial. When, however, we try to

interpret with these same axes the motion of the heavenly bodies, we

meet difficulties, and the problem is simplified, so far as planetary

motions are concerned, by taking a new reference system determined

by the sun and the fixed stars. But this system, in its turn, becomes

somewhat unsatisfactory when we take account of the observed

motions of the stars themselves, and it is finally convenient to take a

reference system relative to which the sun is moving with a velocity

of twelve miles per second in the direction of the constellation Hercules.

This system of axes is so chosen that the great majority of stars have

on the average no motion with respect to it, and the actual motion

of any particular star with respect to these coordinates is called the

peculiar motion of the star.

Suppose, now, we have a number of such systems of axes in uni

form relative motion; we are confronted by the problem of finding

some method of transposing the description of a given kinematical

occurrence from the variables of one of these sets of axes to those of

another. For example, if we have chosen a system of axes S and

have found an equation in x, y, z, and t which accurately describes the

motion of a given point, what substitutions for the quantities involved
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can be made so that the new equation thereby obtained will again

correctly describe the same phenomena when we measure the dis

placements of the point relative to a new system of reference S

which is in uniform motion with respect to ? The assumption of

Galileo and Newton that
&quot;

free
&quot;

space is entirely empty, and the

further tacit assumption of the complete independence of space and

time, led them to propose a very simple solution of the problem, and

the transformation equations which they used are generally called

the Galileo Transformation Equations to distinguish them from the

Einstein Transformation Equations which we shall later consider.

5. The Galileo Transformation Equations. Consider two systems

of right-angled coordinates, S and S
,
which are in relative motion in

the X direction with the velocity V; for convenience let the X axes,

OX and O X
,
of the two systems coincide in direction, and for further

simplification let us take as our zero point for time measurements the

instant when the two origins and coincide. Consider now a

point which at the time t has the coordinates x, y and z measured in

system S. Then, according to the space and time considerations of

Galileo and Newton, the coordinates of the point with reference to

system S are given by the following transformation equations :

x = x - Vt, (3)

y =
y, (4)

(5)

(6)

These equations are fundamental for Newtonian mechanics, and may
appear to the casual observer to be self-evident and bound up with

necessary ideas as to the nature of space and time. Nevertheless,

the truth of the first and the last of these equations is absolutely

dependent on the unsupported assumption of the complete inde

pendence of space and time measurements, and since in the Einstein

theory we shall find a very definite relation between space and time

measurements we shall be led to quite a different set of transformation

equations. Relations (3), (4), (5) and (6) will be found, however, to

be the limiting form which the correct transformation equations as

sume when the velocity between the systems V becomes small com-
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pared with that of light. Since until very recent times the human

race in its entire past history has been familiar only with velocities

that are small compared with that of light, it need not cause surprise

that the above equations, which are true merely at the limit, should

appear so self-evident.

6. Before leaving the discussion of the space and time system of

Newton and Galileo we must call attention to an important charac

teristic which it has in common with the system of Einstein but

which is not a feature of that assumed by the ether theory. If we

have two systems of axes such as those we have just been considering,

we may with equal right consider either one of them at rest and the

other moving past it. All we can say is that the two systems are in

relative motion; it is meaningless to speak of either one as in any
sense

&quot;

absolutely
&quot;

at rest. The equation x = x Vt which we

use in transforming the description of a kinematical event from the

variables of system S to those of system S is perfectly symmetrical

with the equation x = x + Vt which we should use for a trans

formation in the reverse direction. Of all possible systems no par

ticular set of axes holds a unique position among the others. We
shall later find that this important principle of the relativity of motion

is permanently incorporated into our system of physical science as

the first postulate of relativity. This principle, common both to the

space of Newton and to that of Einstein, is not characteristic of the

space assumed by the classical theory of light. The space of this

theory was supposed to be filled with a stationary medium, the

luminiferous ether, and a system of axes stationary with respect to

this ether would hold a unique position among the other systems

and be the one peculiarly adapted for use as the ultimate system of

reference for the measurement of motions.

We may now briefly sketch the rise of the ether theory of light and

point out the permanent contribution which it has made to physical

science, a contribution which is now codified as the second postulate

of relativity.

PART II. THE SPACE AND TIME OF THE ETHER THEORY.

7. Rise of the Ether Theory. Twelve years before the appearance
of the Principia, Homer, a Danish astronomer, observed that an
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eclipse of one of the satellites of Jupiter occurred some ten minutes

later than the time predicted for the event from the known period

of the satellite and the time of the preceding eclipse. He explained

this delay by the hypothesis that it took light twenty-two minutes

to travel across the earth s orbit. Previous to Romer s discovery,

light was generally supposed to travel with infinite velocity. Indeed

Galileo had endeavored to find the speed of light by direct experiments

over distances of a few miles and had failed to detect any lapse of

time between the emission of a light flash from a source and its ob

servation by a distant observer. Romer s hypothesis has been re

peatedly verified and the speed of light measured by different methods

with considerable exactness. The mean of the later determinations

is 2.9986 X 1010 cm. per second.

8. At the time of Romer s discovery there was much discussion

as to the nature of light. Newton s theory that it consisted of par

ticles or corpuscles thrown out by a luminous body was attacked by
Hooke and later by Huygens, who advanced the view that it was

something in the nature of wave motions in a supposed space-filling

medium or ether. By this theory Huygens was able to explain

reflection and refraction and the phenomena of color, but assuming

longitudinal vibrations he was unable to account for polarization.

Diffraction had not yet been observed and Newton contested the

Hooke-Huygens theory chiefly on the grounds that it was contra

dicted by the fact of rectilinear propagation and the formation of

shadows. The scientific prestige of Newton was so great that the

emission or corpuscular theory continued to hold its ground for a

hundred and fifty years. Even the masterly researches of Thomas

Young at the beginning of the nineteenth century were unable to

dislodge the old theory, and it was not until the French physicist,

Fresnel, about 1815, was independently led to an undulatory theory

and added to Young s arguments the weight of his more searching

mathematical analysis, that the balance began to turn. From this

time on the wave theory grew in power and for a period of eighty

years was not seriously questioned. This theory has for its essential

postulate the existence of an all-pervading medium, the ether, in

which wave disturbances can be set up and propagated. And the

physical properties of this medium became an enticing field of inquiry

and speculation.
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9. Idea of a Stationary Ether. Of all the various properties with

which the physicist found it necessary to endow the ether, for us the

most important is the fact that it must apparently remain stationary,

unaffected by the motion of matter through it. This conclusion was

finally reached through several lines of investigation. We may first

consider whether the ether would be dragged along by the motion of

nearby masses of matter, and, second, whether the ether enclosed in a

moving medium such as water or glass would partake in the latter s

motion.

10. Ether in the Neighborhood of Moving Bodies. About the

year 1725 the astronomer Bradley, in his efforts to measure the

parallax of certain fixed stars, discovered that the apparent position

of a star continually changes in such a way as to trace annually a

small ellipse in the sky, the apparent position always lying in the

plane determined by the line from the earth to the center of the

ellipse and by the direction of the earth s motion. On the corpuscular

theory of light this admits of ready explanation as Bradley himself

discovered, since we should expect the earth s motion to produce an

apparent change in the direction of the oncoming light, in just the

same way that the motion of a railway train makes the falling drops

of rain take a slanting path across the window pane. If c be the

velocity of a light particle and v the earth s velocity, the apparent or

relative velocity would be c v and the tangent of the angle of

aberration would be -
.

c

Upon the wave theory, it is obvious that we should also expect a

similar aberration of light, provided only that the ether shall be

quite stationary and unaffected by the motion of the earth through it,

and this is one of the important reasons that most ether theories have

assumed a stationary ether unaffected by the motion of neighboring

matter. *

In more recent years further experimental evidence for assuming
that the ether is not dragged along by the neighboring motion of

large masses of matter was found by Sir Oliver Lodge. His final

experiments were performed with a large rotating spheroid of iron

* The most notable exception is the theory of Stokes, which did assume that

the ether moved along with the earth and then tried to account for aberration with

the help of a velocity potential, but this led to difficulties, as was shown by Lorentz.
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with a narrow groove around its equator, which was made the path

for two rays of light, one travelling in the direction of rotation and

the other in the opposite direction. Since by interference methods

no difference could be detected in the velocities of the two rays, here

also the conclusion was reached that the ether was not appreciably

dragged along by the rotating metal.

11. Ether Entrained in Dielectrics. With regard to the action of

a moving medium on the ether which might be entrained within it,

experimental evidence and theoretical consideration here too finally

led to the supposition that the ether itself must remain perfectly

stationary. The earlier view first expressed by Fresnel, in a letter

written to Arago in 1818, was that the entrained ether did receive a

fraction of the total velocity of the moving medium. Fresnel gave
2 &quot;1

to this fraction the value
,
where AC is the index of refraction of

M
2

the substance forming the medium. On this supposition, Fresnel

was able to account for the fact that Arago s experiments upon the

reflection and refraction of stellar rays show no influence whatever

of the earth s motion, and for the fact that Airy found the same angle

of aberration with a telescope filled with water as with air. More

over, the later work of Fizeau and the accurate determinations of

Michelson and Morley on the velocity of light in a moving stream

of water did show that the speed was changed by an amount corre

sponding to Fresnel s fraction. The fuller theoretical investigations

of Lorentz, however, did not lead scientists to look upon this increased

velocity of light in a moving medium as an evidence that the ether

is pulled along by the stream of water, and we may now briefly sketch

the developments which culminated in the Lorentz theory of a com

pletely stationary ether.

12. The Lorentz Theory of a Stationary Ether. The considera

tions of Lorentz as to the velocity of light in moving media became

possible only after it was evident that optics itself is a branch of the

wider science of electromagnetics, and it became possible to treat

transparent media as a special case of dielectrics in general. In 1873,

in his Treatise on Electricity and Magnetism, Maxwell first advanced

the theory that electromagnetic phenomena also have their seat in

the luminiferous ether and further that light itself is merely an electro-
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magnetic disturbance in that medium, and Maxwell s theory was

confirmed by the actual discovery of electromagnetic waves in 1888

by Hertz.

The attack upon the problem of the relative motion of matter and

ether was now renewed with great vigor both theoretically and experi

mentally from the electromagnetic side. Maxwell in his treatise had

confined himself to phenomena in stationar}^ media. Hertz, however,

extended Maxwell s considerations to moving matter on the assump
tion that the entrained ether is carried bodily along by it. It is evi

dent, however, that in the field of optical theory such an assumption

could not be expected to account for the Fizeau experiment, which

had already been explained on the assumption that the ether receives

only a fraction of the velocity of the moving medium; while in the

field of electromagnetic theory it was found that Hertz s assumptions

would lead us to expect no production of a magnetic field in the

neighborhood of a rotating electric condenser providing the plates of

the condenser and the dielectric move together with the same speed

and this was decisively disproved by the experiment of Eichenwald.

The conclusions of the Hertz theory were also out of agreement with

the important experiments of H. A. Wilson on moving dielectrics.

It remained for Lorentz to develop a general theory for moving
dielectrics which was consistent with the facts.

The theory of Lorentz developed from that of Maxwell by the

addition of the idea of the electron, as the atom of electricity, and his

treatment is often called the
&quot;

electron theory.&quot; This atomistic

conception of electricity was foreshadowed by Faraday s discovery

of the quantitative relations between the amount of electricity asso

ciated with chemical reactions in electrolytes and the weight of

substance involved, a relation which indicates that the atoms act as

carriers of electricity and that the quantity of electricity carried by a

single particle, whatever its nature, is always some small multiple of a

definite quantum of electricity, the electron. Since Faraday s time,

the study of the phenomena accompanying the conduction of elec

tricity through gases, the study of radioactivity, and finally indeed

the isolation and exact measurement of these atoms of electrical

charge, have led us to a very definite knowledge of many of the

properties of the electron.
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While the experimental physicists were at work obtaining this

more or less first-hand acquaintance with the electron, the theoretical

physicists and in particular Lorentz were increasingly successful in

explaining the electrical and optical properties of matter in general

on the basis of the behavior of the electrons which it contains, the

properties of conductors being accounted for by the presence of mov
able electrons, either free as in the case of metals or combined with

atoms to form ions as in electrolytes, while the electrical and optical

properties of dielectrics were ascribed to the presence of electrons

more or less bound by quasi-elastic forces to positions of equilibrium.

This Lorentz electron theory of matter has been developed in great

mathematical detail by Lorentz and has been substantiated by nu

merous quantitative experiments. Perhaps the greatest significance

of the Lorentz theory is that such properties of matter as electrical

conductivity, magnetic permeability and dielectric inductivity, which

occupied the position of rather accidental experimental constants in

Maxwell s original theory, are now explainable as the statistical result

of the behavior of the individual electrons.

With regard now to our original question as to the behavior of

moving optical and dielectric media, the Lorentz theory was found

capable of accounting quantitatively for all known phenomena, in

cluding Airy s experiment on aberration, Arago s experiments on the

reflection and refraction of stellar rays, FresneFs coefficient for the

velocity of light in moving media, and the electromagnetic experi

ments upon moving dielectrics made by Rontgen, Eichenwald, H. A.

Wilson, and others. For us the particular significance of the Lorentz

method of explaining these phenomena is that he does not assume, as

did Fresnel, that the ether is partially dragged along by moving

matter. His investigations show rather that the ether must remain

perfectly stationary, and that such phenomena as the changed velocity

of light in moving media are to be accounted for by the modifying

influence which the electrons in the moving matter have upon the

propagation of electromagnetic disturbances, rather than by a dragging

along of the ether itself.

Although it would not be proper in this place to present the

mathematical details of Lorentz s treatment of moving media, we

may obtain a clearer idea of what is meant in the Lorentz theory by a
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stationary ether if we look for a moment at the five fundamental

equations upon which the theory rests. These familiar equations, of

which the first four are merely Maxwell s four field equations, modified

by the introduction of the idea of the electron, may be written

1 de u

i ah
curle= -caT

div e =
p,

div h =
0,

in which the letters have their usual significance. (See Chapter XII.)

Now the whole of the Lorentz theory, including of course his treat

ment of moving media, is derivable from these five equations, and

the fact that the idea of a stationary ether does lie at the basis of

his theory is most clearly shown by the first and last of these equa

tions, which contain the velocity u with which the charge in question

is moving, and for Lorentz this velocity is to be measured with respect

to the assumed stationary ether.

We have devoted this space to the Lorentz theory, since his work

marks the culmination of the ether theory of light and electromag-

netism, and for us the particularly significant fact is that by this

line of attack science was inevitably led to the idea of an absolutely

immovable and stationary ether.

13. We have thus briefly traced the development of the ether

theory of light and electromagnetism. We have seen that the space

continuum assumed by this theory is not empty as was the space of

Newton and Galileo but is assumed filled with a stationary medium,
the ether, and in conclusion should further point out that the time

continuum assumed by the ether theory was apparently the same as

that of Newton and Galileo, and in particular that the old ideas as to

the absolute independence of space and time were all retained.
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PART III. RISE OF THE EINSTEIN THEORY OF RELATIVITY.

14. The Michelson-Morley Experiment. In spite of all the brilli

ant achievements of the theory of a stationary ether, we must now
call attention to an experiment, performed at the very time when

the success of the ether theory seemed most complete, whose result

was in direct contradiction to its predictions. This is the celebrated

Michelson-Morley experiment, and to the masterful interpretation of

its consequences at the hands of Einstein we owe the whole theory of

relativity, a theory -which will nevermore permit us to assume that

space and time are independent.

If the theory of a stationary ether were true we should find, con

trary to the expectations of Newton, that systems of coordinates in

relative motion are not symmetrical, a system of axes fixed relatively

to the ether would hold a unique position among all other systems

moving relative to it and would be peculiarly adapted for the measure

ment of displacements and velocities. Bodies at rest with respect

to this system of axes fixed in the ether would be spoken of as
&quot; ab

solutely
&quot;

at rest and bodies in motion through the ether would be

said to have &quot;

absolute
&quot;

motion. From the point of view of the

ether theory one of the most important physical problems would be

to determine the velocity of various bodies, for example that of the

earth, through the ether.

Now the Michelson-Morley experiment was devised for the very

purpose of determining the relative motion of the earth and the ether.

The experiment consists essentially in a comparison of the velocities

of light parallel and perpendicular to the earth s motion in its orbit.

A ray of light from the source S falls on the half silvered mirror A,

where it is divided into two rays, one of which travels to the mirror B
and the other to the mirror C, where they are totally reflected. The

rays are recombined and produce a set of interference fringes at 0.

(See figure 1.)

We may now think of the apparatus as set so that one of the

divided paths is parallel to the earth s motion and the other per

pendicular to it. On the basis of the stationary ether theory, the

velocity of the light with reference to the apparatus would evidently

be different over the two paths, and hence on rotating the apparatus

3
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through an angle of ninety degrees we should expect a shift in the

position of the fringes. Knowing the magnitude of the earth s

velocity in its orbit and the dimensions of the apparatus, it is quite

possible to calculate the magnitude of the expected shift, a quantity

o
FIG. 1.

entirely susceptible of experimental determination. Nevertheless the

most careful experiments made at different times of day and at

different seasons of the year entirely failed to show any such shift

at all.

This result is in direct contradiction to the theory of a stationary

ether and could be reconciled with that theory only by very arbitrary

assumptions. Instead of making such assumptions, the Einstein

theory of relativity finds it preferable to return in part to the older

ideas of Newton and Galileo.

15. The Postulates of Einstein. In fact, in accordance with the

results of this work of Michelson-Morley and other confirmatory

experiments, the Einstein theory takes as its first postulate the idea

familiar to Newton of the relativity of all motion. It states that

there is nothing out in space in the nature of an ether or of a fixed

set of coordinates with regard to which motion can be measured,

that there is no such thing as absolute motion, and that all we can

speak of is the relative motion of one body with respect to another.
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Although we thus see that the Einstein theory of relativity has

returned in part to the ideas of Newton and Galileo as to the nature

of space, it is not to be supposed that the ether theory of light and

electromagnetism has made no lasting contribution to physical science.

Quite on the contrary, not only must the ideas as to the periodic and

polarizable nature of the light disturbance, which were first appre

ciated and understood with the help of the ether theory, always

remain incorporated in every optical theory, but in particular the

Einstein theory of relativity takes as the basis for its second postulate

a principle that has long been familiar to the ether theory, namely
that the velocity of light is independent of the velocity of the source.

We shall see in following chapters that it is the combination of this

principle with the first postulate of relativity that leads to the whole

theory of relativity and to our new ideas as to the nature and inter

relation of space and titne.



CHAPTER II.

THE TWO POSTULATES OF THE EINSTEIN THEORY OF
RELATIVITY.

16. There are two general methods of evaluating the theoretical

development of any branch of science. One of these methods is to

test by direct experiment the fundamental postulates upon which

the theory rests. If these postulates are found to agree with the facts,

we may feel justified in assuming that the whole theoretical structure

is a valid one, providing false logic or unsuspected and incorrect

assumptions have not later crept in to vitiate the conclusions. The

other method of testing a theory is to develop its interlacing chain of

propositions and theorems and examine the results both for their

internal coherence and for their objective validity. If we find that

the conclusions drawn from the theory are neither self-contradictory

nor contradictory of each other, and furthermore that they agree

with the facts of the external world, we may again feel that our theory

has achieved a measure of success. In the present chapter we shall

present the two main postulates of the theory of relativity, and indicate

the direct experimental evidence in favor of their truth. In following

chapters we shall develop the consequences of these postulates, show

that the system of consequences stands the test of internal coherence,

and wherever possible compare the predictions of the theory with

experimental facts.

The First Postulate of Relativity.

17. The first postulate of relativity as originally stated by Newton

was that it is impossible to measure or detect absolute translatory

motion through space. No objections have ever been made to this

statement of the postulate in its original form. In the development

of the theory of relativity, the postulate has been modified to include

the impossibility of detecting translatory motion through any medium

or ether which might be assumed to pervade space.

In support of the principle is the general fact that no effects due

to the motion of the earth or other body through the supposed ether

20
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have ever been observed. Of the many unsuccessful attempts to

detect the earth s motion through the ether we may call attention to

the experiments on the refraction of light made by Arago, Respighi,

Hoek, Ketteler and Mascart, the interference experiments of Ketteler

and Mascart, the work of Klinkerfuess and Haga on the position of

the absorption bands of sodium, the experiment of Nordmeyer on the

intensity of radiation, the experiments of Fizeau, Brace and Strasser

on the rotation of the plane of polarized light by transmission through

glass plates, the experiments of Mascart and of Rayleigh on the

rotation of the plane of polarized light in naturally active substances,

the electromagnetic experiments of Rontgen, Des Coudres, J. Koenigs-

berger, Trouton, Trouton and Noble, and Trouton and Rankine, and

finally the Michelson and Morley experiment, with the further work

of Morley and Miller. For details as to the nature of these experi

ments the reader may refer to the original articles or to an excellent

discussion by Laub of the experimental basis of the theory of rela

tivity.
*

In none of the above investigations was it possible to detect any
effect attributable to the earth s motion through the ether. Never

theless a number of these experiments are in accord with the final

form given to the ether theory by Lorentz, especially since his work

satisfactorily accounts for the Fresnel coefficient for the changed

velocity of light in moving media. Others of the experiments men

tioned, however, could be made to accord with the Lorentz theory

only by very arbitrary assumptions, in particular those of Michelson

and Morley, Mascart and Rayleigh, and Trouton and Noble. For

the purposes of our discussion we shall accept the principle of the

relativity of motion as an experimental fact.

The Second Postulate of the Einstein Theory of Relativity.

18. The second postulate of relativity states that the velocity of

light in free space appears the same to all observers regardless of the

relative motion of the source of light and the observer. This postulate

may be obtained by combining the first postulate of relativity with a

principle which has long been familiar to the ether theory of light.

This principle states that the velocity of light is unaffected by a

motion of the emitting source, in other words, that the velocity with

* Jahrbuch der Radioaktivitdt, vol. 7, p. 405 (1910).
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which light travels past any observer is not increased by a motion

of the source of light towards the observer. The first postulate of

relativity adds the idea that a motion of the source of light towards

the observer is identical with a motion of the observer towards the

source. The second postulate of relativity is seen to be merely a

combination of these two principles, since it states that the velocity

of light in free space appears the same to all observers regardless both

of the motion of the source of light and of the observer.

19. It should be pointed out that the two principles whose com

bination thus leads to the second postulate of Einstein have come

from very different sources. The first postulate of relativity prac

tically denies the existence of any stationary ether through which

the earth, for instance, might be moving. On the other hand, the

principle that the velocity of light is unaffected by a motion of the

source was originally derived from the idea that light is transmitted

by a stationary medium which does not partake in the motion of the

source. This combination of two principles, which from a historical

point of view seem somewhat contradictory in nature, has given to

the second postulate of relativity a very extraordinary content.

Indeed it should be particularly emphasized that the remarkable

conclusions as to the nature of space and time forced upon science

by the theory of relativity are the special product of the second

postulate of relativity.

A simple example of the conclusions which can be drawn from

this postulate will make its extraordinary nature evident.

a

b B V
FIG. 2.

S is a source of light and A and B two moving systems. A is

moving towards the source S, and B away from it. Observers on the

systems mark off equal distances aa f and W along the path of the light

and determine the time taken for light to pass from a to a and b to b

respectively. Contrary to what seem the simple conclusions of

common sense, the second postulate requires that the time taken
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for the light to pass from a to a shall measure the same as the time

for the light to go from 6 to & . Hence if the second postulate of

relativity is correct it is not surprising that science is forced in general

to new ideas as to the nature of space and time, ideas which are in

direct opposition to the requirements of so-called common sense.

Suggested Alternative to the Postulate of the Independence of the

Velocity of Light and the Velocity of the Source.

20. Because of the extraordinary conclusions derived by com

bining the principle of the relativity of motion with the postulate

that the velocity of light is independent of the velocity of its source,

a number of attempts have been made to develop so-called emission

theories of relativity based on the principle of the relativity of motion

and the further postulate that the velocity of light and the velocity

of its source are additive.

Before examining the available evidence for deciding between the

rival principles as to the velocity of light, we may point out that

this proposed postulate, of the additivity of the velocity of source

and light, would as a matter of fact lead to a very simple kind of

relativity theory without requiring any changes in our notions of

space and time. For if light or other electromagnetic disturbance

which is being emitted from a source did partake in the motion of

that source in such a way that the velocity of the source is added to

the velocity of emission, it is evident that a system consisting of the

source and its surrounding disturbances would act as a whole and

suffer no permanent change in configuration if the velocity of the

source were changed. This result would of course be in direct agree

ment with the idea of the relativity of motion which merely requires

that the physical properties of a system shall be independent of its

velocity through space.

As a particular example of the simplicity of emission theories we

may show, for instance, how easily they would account for the nega

tive result of the Michelson-Morley experiment. If 0, figure 3, is a

source of light and A and B are mirrors placed a meter away from 0, the

Michelson-Morley experiment shows that the time taken for light to

travel to A and back is the same as for the light to travel to B and

back, in spite of the fact that the whole apparatus is moving through

space in the direction B, due to the earth s motion around the sun.



24 Chapter Two.

The basic assumption of emission theories, however, would require

exactly this result, since it says that light travels out from with a

constant velocity in all directions with

respect to 0. and not with respect to

some ether through which is supposed

to be moving.

Direction of Earth s Mot ion The problem now before us is to

decide between the two rival principles

as to the velocity of light, and we shall

\B find that the bulk of the evidence is all

FlG 3
in favor of the principle which has led

to the Einstein theory of relativity with

its complete revolution in our ideas as to space and time, and against

the principle which has led to the superficially simple emission theo

ries of relativity.

21. Evidence Against Emission Theories of Light. All emission

theories agree in assuming that light from a moving source has a

velocity equal to the vector sum of the velocity of light from a sta

tionary source and the velocity of the source itself at the instant of

emission. And without first considering the special assumptions
which distinguish one emission theory from another we may first

present certain astronomical evidence which apparently stands in

contradiction to this basic assumption of all forms of emission

theory. This evidence was pointed out by Comstock* and later by
de Sitter, f

Consider the rotation of a binary star as it would appear to an

observer situated at a considerable distance from the star and in its

plane of rotation. (See figure 4.) If an emission theory of light

be true, the velocity of light from the star in position A will be c + u,

where u is the velocity of the star in its orbit, while in the position B
the velocity will be c u. Hence the star will be observed to arrive

in position A,
- - seconds after the event has actually occurred, and
c

&quot;T~
u

in position J5, _ seconds after the event has occurred. This will

*
Phys. Rev., vol. 30, p. 291 (1910).

t Phys. Zeitschr., vol. 14, pp. 429, 1267 (1913).
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make the period of half rotation from A to B appear to be

where A2 is the actual time of a half rotation in the orbit, which for

.

/ Observer

Observer

FIG. 4.

simplicity may be taken as circular. On the other hand, the period

of the next half rotation from B back to A would appear to be

2ul
Now in the case of most spectroscopic binaries the quantity ^

C&quot;

is not only of the same order of magnitude as At but oftentimes prob

ably even larger. Hence, if an emission theory of light were true,

we could hardly expect without correcting for the variable velocity

of light to find that these orbits obey Kepler s laws, as is actually

the case. This is certainly very strong evidence against any form

of emission theory. It may not be out of place, however, to state

briefly the different forms of emission theory which have been tried.

22. Different Forms of Emission Theory. As we have seen, emis

sion theories all agree in assuming that light from a moving source
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has a velocity equal to the vector sum of the velocity of light from a

stationary source and the velocity of the source itself at the instant

of emission. Emission theories differ, however, in their assumptions
as to the velocity of light after its reflection from a mirror. The three

assumptions which up to this time have been particularly considered

are (1) that the excited portion of the reflecting mirror acts as a new
source of light and that the reflected light has the same velocity c

with respect to the mirror as has original light with respect to its source
;

(2) that light reflected from a mirror acquires a component of velocity

equal to the velocity of the mirror image of the original source, and

hence has the velocity c with respect to this mirror image; and (3) that

light retains throughout its whole path the component of velocity

which it obtained from its original moving source, and hence after

reflection spreads out with velocity c in a spherical form around a

center which moves with the same speed as the original source.

Of these possible assumptions as to the velocity of reflected light,

the first seems to be the most natural and was early considered by the

author but shown to be incompatible, not only with an experiment

which he performed on the velocity of light from the two limbs of

the sun,* but also with measurements of the Stark effect in canal

rays.f The second assumption as to the velocity of light was made

by Stewart,t but has also been shown f to be incompatible with

measurements of the Stark effect in canal rays. Making use of the

third assumption as to the velocity of reflected light, a somewhat

complete emission theory has been developed by Ritz, and un

fortunately optical experiments for deciding between the Einstein

and Ritz relativity theories have never been performed, although

such experiments are entirely possible of performance.! Against the

Ritz theory, however, we have of course the general astronomical

evidence of Comstock and de Sitter which we have already described

above.

For the present, the observations described above, comprise the

whole of the direct experimental evidence against emission theories

*
Phys. Rev., vol. 31, p. 26 (1910).

f Phys. Rev., vol. 35, p. 136 (1912).

J Phys. Rev., vol. 32, p. 418 (1911).

Ann. de chim. et phys., vol. 13, p. 145 (1908); Arch, de Geneve, vol. 26, p. 232

(1908); Sdentia, vol. 5 (1909).
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of light and in favor of the principle which has led to the second

postulate of the Einstein theory. One of the consequences of the

Einstein theory, however, has been the deduction of an expression

for the mass of a moving body which has been closely verified by the

Kaufmann-Bucherer experiment. Now it is very interesting to note,

that starting with what has thus become an experimental expression

for the mass of a moving body, it is possible to work backwards to a

derivation of the second postulate of relativity. For the details of

the proof we must refer the reader to the original article.*

Further Postulates of the Theory of Relativity.

23. In the development of the theory of relativity to which we

shall now proceed we shall of course make use of many postulates.

The two which we have just considered, however, are the only ones,

so far as we are aware, which are essentially different from those

common to the usual theoretical developments of physical science.

In particular in our further work we shall assume without examination

all such general principles as the homogeneity and isotropism of the

space continuum, and the unidirectional, one-valued, one-dimensional

character of the time continuum. In our treatment of the dynamics

of a particle we shall also assume Newton s laws of motion, and the

principle of the conservation of mass, although we shall find, of course,

that the Einstein ideas as to the connection between space and time

will lead us to a non-Newtonian mechanics. We shall also make

extensive use of the principle of least action, which we shall find a

powerful principle in all the fields of dynamics.
*
Phys. Rev., vol. 31, p. 26 (1910).
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SOME ELEMENTARY DEDUCTIONS.

24. In order gradually to familiarize the reader with the conse

quences of the theory of relativity we shall now develop by very

elementary methods a few of the more important relations. In this

preliminary consideration we shall lay no stress on mathematical

elegance or logical exactness. It is believed, however, that the

chapter will present a substantially correct account of some of the

more important conclusions of the theory of relativity, in a form

which can be understood even by readers without mathematical

equipment.

Measurements of Time in a Moving System.

25. We may first derive from the postulates of relativity a relation

connecting measurements of time intervals as made by observers in

systems moving with different velocities. Consider a system S

(Fig. 5) provided with a plane mirror a a, and an observer A, who

FIG. 5.

has a clock so that he can determine the time taken for a beam of

light to travel up to the mirror and back along the path Am A.

Consider also another similar system S
, provided with a mirror b 6,

and an observer B, who also has a clock for measuring the time it

takes for light to go up to his mirror and back. System S is moving

past S with the velocity V, the direction of motion being parallel

to the mirrors a a and b b, the two systems being arranged, more-

28
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over, so that when they pass one another the two mirrors a a and

b b will coincide, and the two observers A and B will also come into

coincidence.

A, considering his system at rest and the other in motion, measures

the time taken for a beam of light to pass to his mirror and return,

over the path A m A, and compares the time interval thus obtained

with that necessary for the performance of a similar experiment

by B, in which the light has to pass over a longer path such as B n B
,

shown in figure 6, where B B is the distance through which the

a v i

1
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and hence A will find, either by calculation or by direct measurement

if he has arranged clocks at B and B
,
that it takes a longer time for

the performance of B s experiment than for the performance of his

/

: -\/ 1own in the ratio 1

It is evident from the first postulate of relativity, however, that

B himself must find exactly the same length of time for the light to

pass up to his mirror and come back as did A in his experiment,

because the two systems are, as a matter of fact, entirely symmetrical

and we could with equal right consider B s system to be the one at

rest and A s the one in motion.

We thus find that two observers, A and B, who are in relative motion

will not in general agree in their measurements of the time interval neces

sary for a given event to take place, the event in this particular case,

for example, having been the performance of B s experiment; indeed,

making use of the ratio obtained in a preceding paragraph, we may
go further and make the quantitative statement that measurements of

time intervals made with a moving clock must be multiplied by the quantity

in order to agree with measurements made with a stationary

system of clocks.

It is sometimes more convenient to state this principle in the

form: A stationary observer using a set of stationary clocks will

/ y2

obtain a greater measurement in the ratio 1 : -v/1 for a given

time interval than an observer who uses a clock moving with the

velocity V.

Measurements of Length in a Moving System.

26. We may now extend our considerations, to obtain a relation

between measurements of length made in stationary and moving

systems.

As to measurements of length perpendicular to the line of motion

of the two systems S and S f

,
a little consideration will make it at once

evident that both A and B must obtain identical results. This is

true because the possibility is always present of making a direct com-
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parison of the meter sticks which A and B use for such measurements

by holding them perpendicular to the line of motion. When the

relative motion of the two systems brings such meter sticks into

juxtaposition, it is evident from the first postulate of relativity that

A s meter and B s meter must coincide in length. Any difference in

length could be due only to the different velocity of the two systems

through space, and such an occurrence is ruled out by our first postulate.

Hence measurements made with a moving meter stick held perpendicular

to its line of motion will agree with those made with stationary meter

sticks.

27. With regard to measurements of length parallel to the line of

motion of the systems, the affair is much more complicated. Any
direct comparison of the lengths of meter sticks in the two systems

would be very difficult to carry out; the consideration, however, of a

simple experiment on the velocity of light parallel to the motion of

the systems will lead to the desired relation.

Let us again consider two systems S and S (fig. 7), S moving

past S with the velocity V.

m

B

FIG. 7.

A and B are observers on these systems provided with clocks and

meter sticks. The two observers lay off, each on his own system,

paths for measuring the velocity of light. A lays off a distance of

one meter, A m, so that he can measure the time for light to travel

to the mirror m and return, and B, using a meter stick which has

the same length as A s when they are both at rest, lays off the dis

tance B n.

Each observer measures the length of time it takes for light to

travel to his mirror and return, and will evidently have to find the

same length of time, since the postulates of relativity require that the

velocity of light shall be the same for all observers.
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Now the observer A, taking himself as at rest, finds that B s

light travels over a path B n f B (fig. 8), where n n is the distance

B B n n

FIG. 8.

through which the mirror n moves while the light is travelling up to

it, and B B is the distance through which the source travels before

the light gets back. It is easy to calculate the length of this path.

We have

nn
_
V

B n
&quot;

c

and

BB V
Bn e B

= ~~

c

Also, from the figure,

B n = B n + n n
,

Bri B = BnB + 2nri - BB .

Combining, we obtain

Bri B
_ _l_

BnB V^
c2

Thus A finds that the path traversed by B s light, instead of being

exactly two meters as was his own, will be longer in the ratio of

/ F2 \
1 : ( 1 ) . For this reason A is rather surprised that B does

not report a longer time interval for the passage of the light than he

himself found. He remembers, however, that he has already found

that measurements of time made with a moving clock must be multi

plied by the quantity . in order to agree with his own, and

C

sees that this will account for part of the discrepancy between the

expected and observed results. To account for the remaining dis

crepancy the further conclusion is now obtained that measurements of
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length made with a moving meter sticky parallel to its motion, must be

I V2

multiplied by the quantity -y
1 in order to agree with those made

in a stationary system.

In accordance with this principle, a stationary observer will

obtain a smaller measurement for the length of a moving body than

will an observer moving along with the object. This has been called

the Lorentz shortening, the shortening occurring in the ratio

in the line of motion.

The Setting of Clocks in a Moving System.

28. It will be noticed that in our considerations up to this point

we have considered cases where only a single moving clock was needed

in performing the desired experiment, and this was done purposely,

since we shall find, not only that a given time interval measures

shorter on a moving clock than on a system of stationary clocks,

but that a system of moving clocks which have been set in synchronism

by an observer moving along with them will not be set in synchronism

for a stationary observer.

Consider again two systems S and S in relative motion with the

velocity V. An observer A on system S places two carefully com

pared clocks, unit distance apart, in the line of motion, and has the

time on each clock read when a given point on the other system

passes it. An observer B on system S performs a similar experiment.

The time interval obtained in the two sets of readings must be the

same, since the first postulate of relativity obviously requires that the

relative velocity of the two systems V shall have the same value for

both observers.

The observer A, however, taking himself as at rest, and familiar

with the change in the measurements of length and time in the moving

system which have already been deduced, expects that the velocity

as measured by B will be greater than the value that he himself

obtains in the ratio ^ ,
since any particular one of B s clocks
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gives a shorter value for a given time interval than his own, while

B s measurements of the length of a moving object are greater than

his own, each by the factor
*\jl

-
. In order to explain the actual

result of B s experiment he now has to conclude that the clocks which

for B are set synchronously are not set in synchronism for himself.

From what has preceded it is easy to see that in the moving system,

from the point of view of the stationary observer, clocks must be set

further and further ahead as we proceed towards the rear of the

system, since otherwise B would not obtain a great enough difference

in the readings of the clocks as they come opposite the given point

on the other system. Indeed, if two clocks are situated in the moving

system, S
,
one in front of the other by the distance l

t
as measured

by B, then for A it will appear as though B had set his rear clock ahead

I V
by the amount .

c

29. We have now obtained all the information which we shall

need in this chapter as to measurements of time and length in systems

moving with different velocities. We may point out, however, before

proceeding to the application of these considerations, that our choice

of A s system as the one which we should call stationary was of course

entirely arbitrary and immaterial. We can at any time equally well

take B s system as the one to which we shall ultimately refer all our

measurements, and indeed all that we shall mean when we call one of

our systems stationary is that for reasons of convenience we have

picked out that particular system as the one with reference to which

we particularly wish to make our measurements. We may also

point out that of course B has to subject A 8 measurements of time

and length to just the same multiplications by the factor p=

as did A in order to make them agree with his own.

These conclusions as to measurements of space and time are of course

very startling when first encountered. The mere fact, however, that

they appear strange to so-called
&quot; common sense

&quot; need cause us

no difficulty, since the older ideas of space and time were obtained

from an ancestral experience which never included experiments with
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72
high relative velocities, and it is only when the ratio becomes

c

appreciable that we obtain unexpected results. To those scientists

who do not wish to give up their
&quot; common sense

&quot;

ideas of space

and time we can merely say that if they accept the two postulates

of relativity then they will also have to accept the consequences

which can be deduced therefrom. The remarkable nature of these

consequences merely indicates the very imperfect nature of our older

conceptions of space and time.

The Composition of Velocities.

30. Our conclusions as to the setting of clocks make it possible

to obtain an important expression for the composition of velocities.

Suppose we have a system S, which we shall take as stationary, and

on the system an observer A. Moving past S with the velocity V
is another system S with an observer B, and finally moving past S

in the same direction is a body whose velocity is u as measured by
observer B. What will be the velocity u of this body as measured

by A?
Our older ideas led us to believe in the simple additivity of veloci

ties and we should have calculated u in accordance with the simple

expression
u = V + u .

We must now allow, however, for the fact that u is measured with

clocks which to A appear to be set in a peculiar fashion and running

at a different rate from his own, and with meter sticks which give

longer measurements than those used in the stationary system.

The determination of u by observer B would be obtained by

measuring the time interval necessary for the body in question to

move a given distance I along the system S . If t is the difference

in the respective clock readings when the body reaches the ends of

the line I
,
we have

I V
We have already seen, however, that the two clocks are for A set

units apart and hence for clocks set together the time interval would
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I V
have measured t H 5-

. Furthermore these moving clocks give

V2

time measurements which are shorter in the ratio \/ 1 : 1 than
\ c2

those obtained by A, so that for A the time interval for the body to

move from one end of V to the other would measure

V*

furthermore, owing to the difference in measurements of length, this

I yj
line I has for A the length I

\|
1 .

* * C

body is moving past S with the velocity,

V2

line I has for A the length I \j 1 . Hence A finds that the
c

I V I V u V

This makes the total velocity of the body past S equal to the sum

u = V +

or

u F

u V

This new expression for the composition of velocities is extremely

important. When the velocities u and V are small compared with

the velocity of light c, we observe that the formula reduces to the simple

additivity principle which we know by common experience to be true
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for all ordinary velocities. Until very recently the human race has

had practically no experience with high velocities and we now see

that for velocities in the neighborhood of that of light, the simple

additivity principle is nowhere near true.

In particular it should be noticed that by the composition of

velocities which are themselves less than that of light we can never

obtain any velocity greater than that of light. As an extreme case,

suppose for example that the system S were moving past S itself

with the velocity of light (i. e., V =
c) and that in the system S a

particle should itself be given the velocity of light in the same direc

tion (i. e., u =
c); we find on substitution that the particle still has

only the velocity of light with respect to S. We have

c + c 2c

By the consideration of such conclusions as these the reader will

appreciate more and more the necessity of abandoning his older

naive ideas of space and time which are the inheritance of a long

human experience with physical systems in which only slow velocities

were encountered.

The Mass of a Moving Body.

31. We may now obtain an important relation for the mass of a

moving body. Consider again two similar systems, S at rest and S

moving past with the velocity V. The observer A on system S has a

sphere made from some rigid elastic material, having a mass of m
grams, and the observer B on system S

f

is also provided with a similar

sphere. The two spheres are made so that they are exactly alike

when both are at rest; thus B s sphere, since it is at rest with respect

to him, looks to him just the same as the other sphere does to A-

As the two systems pass each other (fig. 9) each of these clever experi

menters rolls his sphere towards the other system with a velocity of

u cm. per second, so that they will just collide and rebound in a line

perpendicular to the direction of motion. Now, from the first postu

late of relativity, system S appears to B just the same as system S

appears to A, and jETs ball appears to him to go through the same

evolutions that A finds for his ball. A finds that his ball on collision
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undergoes the algebraic change of velocity 2u, B finds the same change

in velocity 2u for his ball. B reports this fact to
&quot;A,

and A knowing

that B s measurements of length agree with his own in this transverse

FIG. 9.

direction, but that his clock gives time intervals that are shorter than

/ 72
his own in the ratio \fl : 1, calculates that the change in veloc

ity of B s ball must be 2u

From the principle of the conservation of momentum, however,

A knows that the change in momentum of B s ball must be the same

as that of his own and hence can write the equation

mau =

where ma is the mass of A s ball and ra& is the mass of B s ball. . Solv

ing we have
ma

nib =

In other words, B s ball, which had the same mass ma as A s when
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both were at rest, is found to have the larger mass - --- when

placed in a system that is moving with the velocity V.*

The theory of relativity thus leads to the general expression

m

for the mass of a body moving with the velocity u and having the

mass ?tto when at rest.

Since we have very few velocities comparable with that of light

I ^2
it is obvious that the quantity \/l seldom differs much from

unity, which makes the experimental verification of this expression

difficult. In the case of electrons, however, which are shot off from

radioactive substances, or indeed in the case of cathode rays produced
with high potentials, we do have particles moving with velocities

comparable to that of light, and the experimental work of Kaufmann,

Bucherer, Hupka and others in this field provides one of the most

striking triumphs of the theory of relativity.

The Relation Between Mass and Energy.

32. The theory of relativity has led to very important conclusions

as to the nature of mass and energy. In fact, we shall see that matter

and energy are apparently different names for the same fundamental

entity.

When we set a body in motion it is evident from the previous

section that we increase both its mass as well as its energy. Now
we can show that there is a definite ratio between the amount of

energy that we give to the body and the amount of mass that we

give to it.

If the force / acts on a particle which is free to move, its increase in

kinetic energy is evidently

A# =
ffdl.

But the force acting, is by definition, equal to the rate of increase in

* In carrying out this experiment the transverse velocities of the balls should

be made negligibly small in comparison with the relative velocity of the systems V.
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the momentum of the particle

/=|(m).
Substituting we have

We have, however, from the previous section,

m =

which, solved for u, gives us

Substituting this value of u in our equation for AE we obtain, after

simplification,

AE =
fc*dm

= c2Aw.

This says that the increase of the kinetic energy of the particle,

in ergs, is equal to the increase in mass, in grams, multiplied by the

square of the velocity of light. If now we bring the particle to rest

it will give up both its kinetic energy and its excess mass. Accepting

the principles of the conservation of mass and energy, we know, how

ever, that neither this energy nor the mass has been destroyed; they

have merely been passed on to other bodies. There is, moreover,

every reason to believe that this mass and energy, which were asso

ciated together when the body was in motion and left the body when

it was brought to rest, still remain always associated together. For

example, if the body should be brought to rest by setting another

body into motion, it is of course a necessary consequence of our con

siderations that the kinetic energy and the excess mass both pass

on together to the new body which is set in motion. A similar con

clusion would be true if the body is brought to rest by frictional forces,

since the heat produced by the friction means an increase in the kinetic

energies of ultimate particles.
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In general we shall find it pragmatic to consider that matter and

energy are merely different names for the same fundamental entity.

One gram of matter is equal to 1021
ergs of energy.

c2 = (2.9986 X 10 10
)
2 = approx. 1021

.

This apparently extraordinary conclusion is in reality one which

produces the greatest simplification in science. Not to mention

numerous special applications where this principle is useful, we may
call attention to the fact that the great laws of the conservation of

mass and of energy have now become identical. We may also point

out that those opposing camps of philosophic materialists who defend

matter on the one hand or energy on the other as the fundamental

entity of the universe may now forever cease their unimportant bicker

ings.



CHAPTER IV.

THE EINSTEIN TRANSFORMATION EQUATIONS FOR SPACE
AND TIME.

The Lorentz Transformation.

33. We may now proceed to a systematic study of the consequences

of the theory of relativity.

The fundamental problem that first arises in considering

spatial and temporal measurements is that of transforming the

description of a given kinematical occurrence from the variables of

one system of coordinates to those of another system which is in

motion relative to the first.

Consider two systems of right-angled Cartesian coordinates S
and S f

(fig. 10) in relative motion in the X direction with the velocity V.

-x v) x

Z
FIG. 10.

The position of any given point in space can be determined by speci

fying its coordinates x, y, and z with respect to system S or its coordi

nates x
, y and z with respect to system S . Furthermore, for the

purpose of determining the time at which any event takes place, we

may think of each system of coordinates as provided with a whole

series of clocks placed at convenient intervals throughout the system,

the clocks of each series being set and regulated* by observers in the
* We may think of the clocks as being set in any of the ways that are usual

in practice. Perhaps the simplest is to consider the clocks as mechanisms which

have been found to &quot;keep time&quot; when they are all together where they can be

examined by one individual observer. The assumption can then be made, in ac-

42
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corresponding system. The time at which the event in question

takes place may be denoted by t if determined by the clocks belonging

to system S and by t
r

if determined by the clocks of system S r
.

For convenience the two systems S and S are chosen so that the

axes OX and O X lie in the same line, and for further simplification

we choose, as our starting-point for time measurements, t and t both

equal to zero when the two origins come into coincidence.

The specific problem now before us is as follows: If a given kine-

matical occurrence has been observed and described in terms of the

variables x
, y ,

z and t
,
what substitutions must we make for the

values of these variables in order to obtain a correct description of the

same kinematical event in terms of the variables x, y, z and J? In

other words, we want to obtain a set of transformation equations

from the variables of system S f

to those of system S. The equations

which we shall present were first obtained by Lorentz, and the process

of changing from one set of variables to the other has generally been

called the Lorentz transformation. The significance of these equa

tions from the point of view of the theory of relativity was first appre

ciated by Einstein.

Deduction of the Fundamental Transformation Equations.

34. It is evident that these transformation equations are going

to depend on the relative velocity V of the two systems, so that we

may write for them the expressions

x = F^V, x, y, z, 0,

y = F*(V, x, y, z, t),

z = Fi(V, x, y, z, t),

t = Ft(V, x, y, z
} t),

where Fi, F2 , etc., are the unknown functions whose form we wish

to determine.

It is possible at the outset, however, greatly to simplify these

relations. If we accept the idea of the homogeneity of space it is

evident that any other line parallel to OXX might just as well have

been chosen as our line of X-axes, and hence our two equations for

x and t must be independent of y and z. Moreover, as to the equa-

cordance with our ideas of the homogeneity of space, that they will continue to

&quot;keep time&quot; after they have been distributed throughout the system.
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tions for y and z it is at once evident that the only possible solutions

are y = y and z = z. This is obvious because a meter stick held

in the system S perpendicular to the line of relative motion, OX
,

of the system can be directly compared with meter sticks held similarly

in system S, and in accordance with the first postulate of relativity

they must agree in length in order that the systems may be entirely

symmetrical. We may now rewrite our transformation equations

in the simplified form

t = F2(V, t, a),

and have only two functions, Fi and F2 ,
whose form has to be de

termined.

To complete the solution of the problem we may make use of three

further conditions which must govern the transformation equations.

35. Three Conditions to be Fulfilled. In the first place, when the

velocity V between the systems is small, it is evident that the trans

formation equations must reduce to the form that they had in New
tonian mechanics, since we know both from measurements and from

everyday experience that the Newtonian concepts of space and time

are correct as long as we deal with slow velocities. Hence the limiting

form of the equations as V approaches zero will be (cf. Chapter I,

equations 3-4-5-6)

x = x - Vt,

y =
y,

Z
f =

2,

t = t.

36. A second condition is imposed upon the form of the functions

Fi and Fz by the first postulate of relativity, which requires that the

two systems S and Sf
shall be entirely symmetrical. Hence the

transformation equations for changing from the variables of system S
to those of system S must be of exactly the same form as those used

in the reverse transformation, containing, however, V wherever

H- V occurs in the latter equations. Expressing this requirement in
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mathematical form, we may write as true equations

where FI and Fz must have the same form as above.

37. A final condition is imposed upon the form of FI and F* by
the second postulate of relativity, which states that the velocity of a

beam of light appears the same to all observers regardless of the

motion of the source of light or of the observer. Hence our trans

formation equations must be of such a form that a given beam of

light has the same velocity, c, when measured in the variables of either

system. Let us suppose, for example, that at the instant t = t =
0,

when the two origins come into coincidence, a light impulse is started

from the common point occupied by and . Then, measured in

the coordinates of either system, the optical disturbance which is

generated must spread out from the origin in a spherical form with

the velocity c. Hence, using the variables of system S, the coordinates

of any point on the surface of the disturbance will be given by the

expression

x2 + 2/
2 + z2 = c

2
/
2

, (7)

while using the variables of system S f we should have the similar

expression

x
2 + 2/

2 + z
2 =

cH&amp;gt;\ (8)

Thus we have a particular kinematical occurrence, the spreading out

of a light disturbance, whose description is known in the variables

of either system, and our transformation equations must be of such

a form that their substitution will change equation (8) to equation (7).

In other words, the expression x2 + y
2 + z2 - c2*

2
is to be an invariant

for the Lorentz transformation.

38. The Transformation Equations. The three sets of conditions

which, as we have seen in the last three paragraphs, are imposed upon

the form of FI and F2 are sufficient to determine the solution of the

problem. The natural method of solution is obviously that of trial,
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and we may suggest the solution :

x = -j=^= (x
-

Vt) = K(X
-

Vt), (9)

y =
y, (io)

z = z, (11)

(12)

1 / V \ ( V \

&quot;lr^V~H-( ~H
where we have placed K to represent the important and continually

1

recurring quantity

It will be found as a matter of fact by examination that these

solutions do fit all three requirements which we have stated. Thus,

when V becomes small compared with the velocity of light, c, the

equations do reduce to those of Galileo and Newton. Secondly, if

the equations are solved for the unprimed quantities in terms of the

primed, the resulting expressions have an unchanged form except for

the introduction of V in place of + V, thus fulfilling the require

ments of symmetry imposed by the first postulate of relativity. And

finally, if we substitute the expressions for x
, y ,

z and t in the poly

nomial a/
2 + y

2 + z
2 = c2t

2

}
we shall obtain the expression x2 + 2/

2

+ z2 c
2
t
2 and have thus secured the invariance of x2 + y

2 + z2 cH2

which is required by the second postulate of relativity.

We may further point out that the whole series of possible Lorentz

transformations form a group such that the result of two successive

transformations could itself be represented by a single transformation

provided we picked out suitable magnitudes and directions for the

velocities between the various systems.

It is also to be noted that the transformation becomes imaginary

for cases where V &amp;gt; c, and we shall find that this agrees with ideas

obtained in other ways as to the speed of light being an upper limit

for the magnitude of all velocities.
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Further Transformation Equations.

39. Before making any applications of our equations we shall find

it desirable to obtain by simple substitutions and differentiations a

series of further transformation equations which will be of great value

in our future work.

By the simple differentiation of equation (12) we can obtain

dx
where we have put x for -r.&quot;

40. Transformation Equations for Velocity. By differentiation of

the equations for x
, y

r and z
,
nos. (9), (10) and (11), and substitution

of the value just found for -j- we may obtain the following transfor

mation equations for velocity:

x-V , u x -V
X ~ r Ux ~~

~

c* c2

v-^
-

xV
--?

where the placing of a dot has the familiar significance of differentiation

with respect to time, -r- being represented by x and
^7 by x .

The significance of these equations for the transformation of

velocities is as follows: If for an observer in system S a point appears

to be moving with the uniform velocity (x, y, z) its velocity (x , ?/ ,
z ) t

as measured by an observer in system S
}
is given by these expressions

(14), (15) and (16).

41. Transformation Equations for the Function j=
=. These
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three transformation equations for the velocity components of a point,

permit us to obtain a further transformation equation for an important

function of the velocity which we shall find continually recurring in

our later work. This is the function
j

--
,
where we have indi-

cated the total velocity of the point by u, according to the expression

ui = 2 + y
2 + 22

- By the substitution of equations (14), (15) and

(16) we obtain the transformation equation

(17)

42. Transformation Equations for Acceleration. By further dif

ferentiating equations (14), (15) and (16) and simplifying, we easily

obtain three new equations for transforming measurements of accel

eration from system S to S, viz. :

x
=(i-~y*-*x, as)

$&amp;gt;

= Ci _^y~
2^ +

2/^(1 -^)~3/c
~2

*&amp;gt; ( 19)

z = (l -^}
*

K-*z + z^2 (l -~^J

3

K~*X, (20)

or
/ i/ T7\-3

K-*ii x , (18)

V f 11 VV U V
(20)



CHAPTER V.

KINEMATICAL APPLICATIONS.

43. The various transformation equations for spatial and temporal
measurements which were derived in the previous chapter may now be

used for the treatment of a number of kinematical problems. In

particular it will be shown in the latter part of the chapter that a

number of optical problems can be handled with extraordinary facility

by the methods now at our disposal.

The Kinematical Shape of a Rigid Body.

44. We may first point out that the conclusions of relativity theory

lead us to quite new ideas as to what is meant by the shape of a rigid

body. We shall find that the shape of a rigid body will depend entirely

upon the relative motion of the body and the observer who is making
measurements on it.

Consider a rigid body which is at rest with respect to system Sf
.

Let Xi t 2//&amp;gt; z/ and x 2 , 2/2 , 2 be the coordinates in system S of two

points in the body. The coordinates of the same points as measured

in system S can be found from transformation equations (9), (10)

and (11), and by subtraction we can obtain the following expressions

V2

(2/2
-

2/0
=

(2/2
-

2/i ), (22)

(*2
-

2/2)
= (zj

-
*/), (23)

connecting the distances between the pair of points as viewed in the

two systems. In making this subtraction terms containing t have

been cancelled out since we are interested in the simultaneous positions

of the points. In accordance with these equations we may distinguish

then between the geometrical shape of a body, which is the shape that

it has when measured on a system of axes which are at rest relative

to it, and its kinematical shape, which is given by the coordinates which

5 49
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express the simultaneous positions of its various points when it is in

motion with respect to the axes of reference. We see that the kine-

matical shape of a rigid body differs from its geometrical shape by a

shortening of all its dimensions in the line of motion in the ratio

/ V2

A/1 : 1; thus a sphere, for example, becomes a Heaviside ellipsoid.

In order to avoid incorrectness of speech we must be very care

ful not to give the idea that the kinematical shape of a body is in

any sense either more or less real than its geometrical shape. We
must merely learn to realize that the shape of a body is entirely de

pendent on the particular set of coordinates chosen for the making
of space measurements.

The Kinematical Rate of a Clock.

45. Just as we have seen that the shape of a body depends upon
our choice of a system of coordinates, so we shall find that the rate of

a given clock depends upon the relative motion of the clock and its

observer. Consider a clock or any mechanism which is performing
a periodic action. Let the clock be at rest with respect to system

S and let a given period commence at t\ and end at 2 ,
the length of

the interval thus being At = t-2 t\.

From transformation equation (12) we may obtain

and by subtraction, since x% Xi is obviously equal to Vt, we have

r
Vi-

At

Yl
c2

i
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Thus an observer who is moving past a clock finds a longer period for

/ T2

the clock in the ratio 1 :

\J
1 than an observer who is stationary

with respect to it. Suppose, for example, we have a particle which

is turning alternately red and blue. For an observer who is moving

past the particle the periods for which it remains a given color measure

/ 7*
longer in the ratio 1 : A/ 1 than they do to an observer who is

stationary with respect to the particle.

46. A possible opportunity for testing this interesting conclusion

of the theory of relativity is presented by the phenomena of canal

rays. We may regard the atoms which are moving in these rays as

little clocks, the frequency of the light which they emit corresponding

to the period of the clock. If now we should make spectroscopic

observations on canal rays of high velocity, the frequency of the

emitted light ought to be less than that of light from stationary atoms

of the same kind if our considerations are correct. It would of course

be necessary to view the canal rays at right angles to their direction

of motion, to prevent a confusion of the expected shift in the spectrum

with that produced by the ordinary Doppler effect (see Section 54).

The Idea of Simultaneity.

47. We may now also point out that the idea of the absolute simul

taneity of two events must henceforth be given up. Suppose, for

example, an observer in the system S is interested in two events

which take place simultaneously at the time t. Suppose one of these

events occurs at a point having the X coordinate x\ and the other

at a point having the coordinate z 2 ;
then by transformation equation

(12) it is evident that to an observer in system S
,
which is moving

relative to S with the velocity 7, the two events would take place

respectively at the times

and
1 / V \

T V&amp;gt;?*J

v1 -?
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or the difference in time between the occurrence of the events would

appear to this other observer to be

-,) (25)

The Composition of Velocities.

48. The Case of Parallel Velocities. We may now present one of

the most important characteristics of Einstein s space and time,

which can be best appreciated by considering transformation equation

(14). or more simply its analogue for the transformation in the reverse

direction

c*

Consider now the significance of the above equation. If we

have a particle which is moving in the X direction with the velocity

Ux as measured in system S ,
its velocity ux with respect to system S

is to be obtained by adding the relative velocity of the two systems V
u x V

and dividing the sum of the two velocities by 1 H--^ . Thus we see
c

that we must completely throw overboard our old naive ideas of the

direct additivity of velocities. Of course, in the case of very slow

velocities, when ux and V are both small compared with the velocity

u x V
of light, the quantity ^-- is very nearly zero and the direct addition

of velocities is a close approximation to the truth. In the case of

velocities, however, which are in the neighborhood of the speed of

light, the direct addition of velocities would lead to extremely er

roneous results.

49. In particular it should be noticed that by the composition of

velocities which are themselves less than that of light we can never

obtain any velocity greater than that of light. Suppose, for example,

that the system S were moving past S with the velocity of light

(i. e., V =
c), and that in the system S a particle should itself be

given the velocity of light in the X direction (i. e., u x c); we find

on substitution that the particle still has only the velocity of light



Kinematical Applications. 53

with respect to S. We have

c_+_c 2c

1 +
u x = = - = c.

c

If the relative velocity between the systems should be one half

r

the velocity of light,
-

,
and an experimenter on S f

should shoot off a

particle in the X direction with half the velocity of light, the total

velocity with respect to S would be

ic + \c 4
u * = ---

TT2 = *c.

50. Composition of Velocities in General. In the case of particles

which have components of velocity in other than the X direction it

is obvious that our transformation equations will here also provide

methods of calculation to supersede the simple addition of velocities.

If we place
U? = U X

2 + Uy
2 + U S

Z
,

U&quot;
=

,&quot; + ,&quot;
+ tt.&quot;,

we may obtain by the substitution of equations (14), (15) and (16)

where a is the angle in the system S between the X axis and the

velocity of the particle u f
. For the particular case that V and u

are in the same direction, the equation obviously reduces to the

simpler form
u + V

u=
i +

ĉ2

which we have already considered.

51. We may also call attention at this point to an interesting char

acteristic of the equations for the transformation of velocities. It will
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be noted from an examination of these equations that if to any ob

server a particle appears to have a constant velocity, i. e., to be

unacted on by any force, it will also appear to have a uniform although

of course different velocity to any observer who is himself in uniform

motion with respect to the first. An examination, however, of the

transformation equations for acceleration (18), (19), (20) will show

that here a different state of affairs is true, since it will be seen that a

point which has uniform acceleration (x, y, z) with respect to an ob

server in system S will not in general have a uniform acceleration in

another system S f

,
since the acceleration in system S depends not

only on the constant acceleration but also on the velocit3
r in system S,

which is necessarily varying.

Velocities Greater than that of Light.

52. In the preceding section we have called attention to the fact

that the mere composition of velocities which are not themselves

greater than that of light will never lead to a speed that is greater

than that of light. The question naturally arises whether velocities

which are greater than that of light could ever possibly be obtained

in any way.

This problem can be attacked in an extremely interesting manner.

Consider two points A and B on the X axis of the system S, and

suppose that some impulse originates at A, travels to B with the

velocity u and at B produces some observable phenomenon, the start

ing of the impulse at A and the resulting phenomenon at B thus

being connected by the relation of cause and effect.

The time elapsing between the cause and its effect as measured

in the units of system S will evidently be

At = ts -tA = Xj
, (28)

where XA and XB are the coordinates of the two points A and B.

Now in another system ,
which has the velocity V with respect

to S, the time elapsing between cause and effect would evidently be

^pv* &quot;&amp;gt;**)&quot;
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where we have substituted for tB and tA in accordance with equation

(12). Simplifying and introducing equation (28) we obtain

uV
1 ~~

c2

(29)

Let us suppose now that there are no limits to the possible magni

tude of the velocities u and V, and in particular that the causal im

pulse can travel from A to B with a velocity u greater than that of

light. It is evident that we could then take a velocity u great enough

uV
so that - - would be greater than unity and At would become nega-

c-

tive. In other words, for an observer in system S the effect which

occurs at B would precede in time its cause which originates at A.

Such a condition of affairs might not be a logical impossibility; never

theless its extraordinary nature might incline us to believe that no

causal impulse can travel with a velocity greater than that of light.

We may point out in passing, however, that in the case of kine

matic occurrences in which there is no causal connection there is no

reason for supposing that the velocity must be less than that of light.

Consider, for example, a set of blocks arranged side by side in a long

row. For each block there could be an independent time mechanism

like an alarm clock which would go off at just the right instant so

that the blocks would fall down one after another along the line.

The velocity with which the phenomenon would travel along the

line of blocks could be arranged to have any value. In fact, the

blocks could evidently all be fixed to fall just at the same instant,

which would correspond to an infinite velocity. It is to be noticed

here, however, that there is no causal connection between the falling

of one block and that of the next, and no transfer of energy.

Application of the Principles of Kinematics to Certain Optical Prob

lems.

53. Let us now apply our kinematical considerations to some

problems in the field of optics. We may consider a beam of light

as a periodic electromagnetic disturbance which is propagated through

a vacuum with the velocity c. At any point in the path of a beam of
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light the intensity of the electric and magnetic fields will be undergoing

periodic changes in magnitude. Since the intensities of both the

electric and the magnetic fields vary together, the statement of a

single vector is sufficient to determine the instantaneous condition

at any point in the path of a beam of light. It is customary to call

this vector (which might be either the strength of the electric or of

the magnetic field) the light vector.

For the case of a simple plane wave (i. e., a beam of monochromatic

light from a distant source) the light vector at any point in the path

of the light may be put proportional to

Ix + my + nz,

where x, y and z are the coordinates of the point under observation,

t is the time, Z, m and n are the cosines of the angles a, /5 and 7 which

determine the direction of the beam of light with reference to our

system, and w is a constant which determines the period of the light.

If now this same beam of light were examined by an observer in

system S which is moving past the original system in the X direction

with the velocity V, we could write the light vector proportional to

,/, ZV + mV + nV\
CO I t

-
I .

V c J
sin a/ 1* --

^f- -1. (31)

It is not difficult to show that the transformation equations which

we have already developed must lead to the following relations between

the measurements in the two systems*
* Methods for deriving the relation between the accented and unaccented

quantities will be obvious to the reader. For example, consider the relation between

co and to . At the origin of coordinates x = y = z = Qin system S, we shall have

in accordance with expression (30) the light vector proportional to sin cot, and hence

similarly at the point ,
which is the origin of coordinates in system S f

,
we shall

have the light vector proportional to sin coY. But the point as observed from

system S moves with the velocity V along the X-axis and at any instant has the

position x = Vt; hence substituting in expression (30) we have the light vector at

the point as measured in system S proportional to

sin wt ( 1 Z
-

J
, (36)

while as measured in system S the intensity is proportional to

sin coT. (37)
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(32)

(33)

(34)

F

1 - z-
c

(35)

(-1)
With the help of these equations we may now treat some important

optical problems.

54. The Doppler Effect. At the origin of coordinates, x = y = z

=
0, in system S we shall evidently have from expression (30) the

light vector proportional to sin wt. That means that the vector

becomes zero whenever ut = 2N TT, where N is any integer; in other

2?r

words, the period of the light is p = or the frequency

Similarly the frequency of the light as measured by an observer in

system S would be

We have already obtained, however, a transformation equation for t
, namely,

and further may place x = Vt. Making these substitutions and comparing ex

pressions (36) and (37) we see that we must have the relation

to =
ic(l

-
lj)

Methods of obtaining the relation between the cosines I, m and n and the corre

sponding cosines V, m ,
and n as measured in system S may be 1&amp;lt;
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Combining these two equations and substituting the equation con

necting co and co we have

v

This is the relation between the frequencies of a given beam of light

as it appears to observers who are in relative motion.

If we consider a source of light at rest with respect to system S

and at a considerable distance from the observer in system S, we

may substitute for v the frequency of the source itself, VQ, and for I

we may write cos 0, where is the angle between the line connecting

source and observer and the direction of motion of the source, leading

to the expression
Vn

(38)

(l-cos*^)

This is the most general equation for the Doppler effect. When
the source of light is moving directly in the line connecting source

and observer, we have cos =
1, and the equation reduces to

(39)

K I 1

which except for second order terms is identical with the older ex

pressions for the Doppler effect, and hence agrees with experimental

determinations.

We must also observe, however, that even when the source of

light moves at right angles to the line connecting source and observer

there still remains a second-order effect on the observed frequency,

in contradiction to the predictions of older theories. We have in this

case cos =
0,

I yz~
~j

- (40)

This is the change in frequency which we have already considered

when we discussed the rate of a moving clock. The possibilities of
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direct experimental verification should not be overlooked (see sec

tion 46).

55. The Aberration of Light. Returning now to our transforma

tion equations, we see that equation (33) provides an expression for

calculating the aberration of light. Let us consider that the source

of light is stationary with respect to system S, and let there be an

observer situated at the origin of coordinates of system S and thus

moving past the source with the velocity V in the X direction. Let &amp;lt;

be the angle between the X-axis and the line connecting source of

light and observer and let &amp;lt; be the same angle as it appears to the

moving observer; then we can obviously substitute in equation (33),

cos &amp;lt;

=
/, cos = l

f

, giving us

V
cos - -

cos
&amp;lt;f&amp;gt;

f = -

y
. (41)

1 COS
cj&amp;gt;

c

This is a general equation for the aberration of light.

For the particular case that the direction of the beam of light is

perpendicular to the motion of the observer we have cos &amp;lt;

=

cos * ---, (42)
C

which, except for second-order differences, is identical with the familiar

expression which makes the tangent of the angle of aberration nu

merically equal to V/c. The experimental verification of the formula

by astronomical measurements is familiar.

56. Velocity of Light in Moving Media. It is also possible to treat

very simply by kinematic methods the problem of the velocity of

light in moving media. We shall confine ourselves to the particular

case of a beam of light in a medium which is itself moving parallel

to the light.

Let the medium be moving with the velocity V in the X direction,

and let us consider the system of coordinates S as stationary with

respect to the medium. Now since the medium appears to be sta

tionary with respect to observers in S it is evident that the velocity

of the light with respect to S will be c/V, where M is index of refraction
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for the medium. If now we use our equation (26) for the addition of

velocities we shall obtain for the velocity of light, as measured by
observers in S,

c-+v

Carrying out the division and neglecting terms of higher order we

obtain

. (44)

The equation thus obtained is identical with that of Fresnel, the

/V - 1\
quantity ( 1 being the well-known Fresnel coefficient. The

empirical verification of this equation by the experiments of Fizeau

and of Michelson and Morley is too well known to need further

mention.

For the case of a dispersive medium we should obviously have to

substitute in equation (44) the value of /z corresponding to the par

ticular frequency, *&amp;gt;

,
which the light has in system S . It should be

noticed in this connection that the frequencies / and v which the

light has respectively in system S and system S
, although nearly

enough the same for the practical use of equation (44), are in reality

connected by an expression which can easily be shown (see section 54)

to have the form

K
\
1
-7)

-

57. Group Velocity. In an entirely similar way we may treat the

problem of group velocity and obtain the equation

(46)

where G r

is the group velocity as it appears to an observer who is
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stationary with respect to the medium. G is, of course, an experi

mental quantity, connected with frequency and the properties of the

medium, in a way to be determined by experiments on the stationary

medium.

In conclusion we wish to call particular attention to the extra

ordinary simplicity of this method of handling the optics of moving

media as compared with those that had to be employed before the

introduction of the principle of relativity.



CHAPTER VI.

THE DYNAMICS OF A PARTICLE.

58. In this chapter and the two following, we shall present a

system of
&quot;

relativity mechanics &quot; based on Newton s three laws of

motion, the* Einstein transformation equations for space and time,

and the principle of the conservation of mass.

The Laws of Motion.

Newton s laws of motion may be stated in the following form:

I. Every particle continues in its state of rest or of uniform motion

in a straight line, unless it is acted upon by an external force.

II. The rate of change of the momentum of the particle is equal

to the force acting and is in the same direction.

III. For the action of every force there is an equal force acting

in the opposite direction.

Of these laws the first two merely serve to define the concept of

force, and their content may be expressed in mathematical form by
the following equation of definition

d , du dm
F =

dt
(mu) = m

dt
+

-dt
tt (47)

where F is the force acting on a particle of mass m which has the

velocity u, and hence the momentum mu.

Quite different in its nature from the first two laws, which merely

give us a definition of force, the third law states a very definite physical

postulate, since it requires for every change in the momentum of a

body an equal and opposite change in the momentum of some other

body. The truth of this postulate will of course be tested by com

paring with experiment the results of the theory of mechanics which

we base upon its assumption.

Difference between Newtonian and Relativity Mechanics.

59. Before proceeding we may point out the particular difference

between the older Newtonian mechanics, which were based on the

laws of motion and the Galilean transformation equations for space
62
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and time, and our new system of relativity mechanics based on

those same laws of motion and the Einstein transformation equations.

In the older mechanics there was no reason for supposing that the

mass of a body varied in any way with its velocity, and hence force

could be defined interchangeably as the rate of change of momentum
or as mass times acceleration, since the two were identical. In rela

tivity mechanics, however, we shall be forced to conclude that the

mass of a body increases in a perfectly definite way with its velocity,

and hence in our new mechanics we must define force as equal to the

total rate of change of momentum

d(mu) du dm

instead of merely as mass times acceleration m -7- . If we should try

to define force in
&quot;

relativity mechanics &quot;

as merely equal to mass

times acceleration, we should find that the application of Newton s

third law of motion would then lead to very peculiar results, which

would make the mass of a body different in different directions and

force us to give up the idea of the conservation of mass.

The Mass of a Moving Particle.

60. In Section 31 we have already obtained in an elementary way
an expression for the mass of a moving particle, by considering a

collision between elastic particles and calculating how the resulting

changes in velocity would appear to different observers who are

themselves in relative motion. Since we now have at our command

general formula? for the transformation of velocities, we are now in

a position to handle this problem much more generally, and in particu

lar to show that the expression obtained for the mass of a moving particle

is entirely independent of the consideration of any particular type of

collision.

61. Transverse Collision. Let us first treat the case of a so-called

&quot;

transverse
&quot;

collision. Consider a system of coordinates and two

exactly similar elastic particles, each having the mass m Q when at

rest, one moving in the X direction with the velocity -f u and the

other with the velocity
- u. (See figure 11.) Besides the large

components of velocity + u and - u which they have in the X direc-
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tion let them also have small components of velocity in the Y direc

tion, + v and v. The experiment is so arranged that the particles

will just undergo a glancing collision as they pass each other and

rebound with components
&amp;gt; O

_v of velocity in the Y direc-

y +v tion of the same magnitude,
9 ** ~ u

v, which they originally had,

but in the reverse direction.

(It is evident from the symmetry of the arrangement that the experi

ment would actually occur as we have stated.)

We shall now be interested in the way this experiment would appear

to an observer who is in motion in the X direction with the velocity V
relative to our original system of coordinates.

From equation (14) for the transformation of velocities, it can

be seen that this new observer would find for the X component velocities

of the two particles the values

u- V -u - V
*P and u,= --- (48)

and from equation (15) for the Y component velocities would find the

values

(49)

the signs depending on whether the velocities are measured before or

after the collision.

Now from Newton s third law of motion (i. e., the principle of

the equality of action and reaction) it is evident that on collision

the two particles must undergo the same numerical change in momen
tum.

For the experiment that we have chosen the only change in mo
mentum is in the Y direction, and the observer whose measurements

we are considering finds that one particle undergoes the total change
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in velocity

V~2

and that the other particle undergoes the change in velocity

V2

Since these changes in the velocities of the particles are not equal,

it is evident that their masses must also be unequal if the principle

of the equality of action and reaction is true for all observers, as we

have assumed. This difference in the mass of the particles, each of

which has the mass ra when at rest, arises from the fact that the mass

of a particle is a function of its velocity and for the observer in question

the two particles are not moving with the same velocity.

Using the symbols mi and m* for the masses of the particles, we

may now write as a mathematical expression of the requirements of

the third law of motion

V2 V2

c2 c2

Simplifying, we obtain by direct algebraic transformation

mi
l
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which on the substitution of equations (48) gives us

(50)
ra 2

This equation thus shows that the mass of a particle moving with

/ v?
the velocity u* is inversely proportional to -\/l --

, and, denoting

the mass of the particle at rest by ra , we may write as a general ex

pression for the mass of a moving particle

m = -== (51)

62. Mass the Same in All Directions. The method of derivation

that we have just used to obtain this expression for the mass of a

moving particle is based on the consideration of a so-called
&quot;

trans

verse collision,&quot; and in fact the expression obtained has often been

spoken of as that for the transverse mass of a moving particle, while

a different expression, 7 _2 X3/2 ,
has been used for the so-called

longitudinal mass of the particle. These expressions . and

m-,

I are, as a matter of fact, the values of the electric force

necessary to give a charged particle unit acceleration respectively

at right angles and in the same direction as its original velocity, and

hence such expressions would be proper for the mass of a moving par
ticle if we should define force as mass times acceleration. As already

* For simplicity of calculation we consider the case where the components of

velocity in the Y direction are small enough to be negligible in their effect on the

mass of the particles compared with the large components of velocity u\ and u 2 in

the X direction. ., / f
,
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stated, however, it has seemed preferable to retain, for force, Newton s

original definition which makes it equal to the rate of change of

momentum, and we shall presently see that this more suitable defini

tion is in perfect accord with the idea that the mass of a particle is

the same in all directions.

Aside from the unnecessary complexity which would be intro

duced, the particular reason making it unfortunate to have different

expressions for mass in different directions is that under such con

ditions it would be impossible to retain or interpret the principle of

the conservation of mass. And we shall now proceed to show that

by introducing the principle of the conservation of mass, the con

sideration of a &quot;

longitudinal collision
&quot;

will also lead to exactly the

?fto .

same expression, .

,
for the mass of a moving particle as we

c2

have already obtained from the consideration of a transverse collision.

63. Longitudinal Collision. Consider a system of coordinates and

two elastic particles moving in the X direction with the velocities

4- u and u so that a
&quot;

longitudinal
&quot;

(i. e., head-on) collision will

occur. Let the particles be exactly alike, each of them having the

mass m Q when at rest. On collision the particles will evidently come

to rest, and then under the action of the elastic forces developed start

up and move back over their original paths with the respective veloci

ties u and -f- u of the same magnitude as before.

Let us now consider how this collision would appear to an observer

who is moving past the original system of coordinates with the velocity

V in the X direction. Let Ui and w 2 be the velocities of the particles

as they appear to this new observer before the collision has taken

place. Then, from our formula for the transformation of velocities

(14), it is evident that we shall have

+ -*= and V-^f &amp;lt;&amp;lt;&amp;gt;

1 -~$ 1+
~?

Since these velocities u\ and u-2 are not of the same magnitude,

the two particles which have the same mass when at rest do not have

the same mass for this observer. Let us call the masses before col

lision mi and w2 .
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Now during the collision the velocities of the particles will all the

time be changing, but from the principle of the conservation of mass

the sum of the two masses must all the time be equal to m\ + m 2 .

When in the course of the collision the particles have come to relative

rest, they will be moving past our observer with the velocity V,

and their momentum will be (mi + m 2)F. But, from the principle

of the equality of action and reaction, it is evident that this momen
tum must be equal to the original momentum before collision occurred.

This gives us the equation (mi + m^V = m\u\ + m 2w 2 . Substi

tuting our values (52) for u\ and u z we have

(-7)
and by direct algebraic transformation, as in the previous proof,

this can be shown to be identical with

Wl

m-2
/i

u^
V 1

--?-

leading to the same expression that we obtained before for the mass

of a moving particle, viz.:

m

64. Collision of Any Type. We have derived this formula for the

mass of a moving particle first from the consideration of a transverse

and then of a longitudinal collision between particles which are elastic

and have the same mass when at rest. It seems to be desirable to

show, however, that the consideration of any type of collision between

particles of any mass leads to the same formula for the mass of a

moving particle.

For the mass m of a particle moving with the velocity u let us

write the equation m = m /r(w
2
), where F( ) is the function whose

form we wish to determine. The mass is written as a function of
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the square of the velocity, since from the homogeneity of space the

mass will be independent of the direction of the velocity, and the

mass is made proportional to the mass at rest, since a moving body

may evidently be thought of as divided into parts without change in

mass. It may be further remarked that the form of the function

F( ) must be such that its value approaches unity as the variable

approaches zero.

Let us now consider two particles having respectively the masses

mo and HQ when at rest, moving with the velocities u and w before

collision, and with the velocities U and W after a collision has taken

place.

From the principle of the conservation of mass we have

m F(ux
2 + u y

2 + u?} + n&amp;lt;&amp;gt;F(w x
* + w v

2 + w z
2
)

= m QF(U x
* + U* + U*) + n QF(Wx

* + W* + W*), (53)

and from the principle of the equality of action and reaction (i. e.,

Newton s third law of motion)

mQF(u x
1 + u* + uf)u f + noF(w &

2 + w y
* + wflw*

= m QF(U x
2 + U* + Uf)U, + n,F(WI

2 + Wf + W *)W *, (54)

m QF(u x
2 + uf + u^u, + n QF(w x

2 + w y
2 + w*)w u

These velocities, u xj u y ,
u z ,

w x ,
w y ,

w z ,
U x , etc., are measured, of

course, with respect to some definite system of
&quot;

space-time
&quot;

coordi

nates. An observer moving past this system of coordinates with the

velocity V in the X direction would find for the corresponding com

ponent velocities the values

/ y2
/ v^

u x -V V 1
&quot;&quot;?

\
&quot;

c2 wx
- VX -. /,! pfp

~^V&amp;gt; u,V
U

u,V
U

&quot; W.T
-jT ~*~ c2 *

as given by our transformation equations for velocity (14, 15, 16).
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Since the law of the conservation of mass and Newton s third

law of motion must also hold for the measurements of the new ob

server; we may write the following new relations corresponding to

equations 53 to 56:

u x -V
72

u xV
*-:?

(53a)

m&amp;lt;)F{u x

c2

UX -V
1 - u,v

c2

W X -V (54a)

m QF{ux

yi

1 -
u xV
c2

n QF{w :

I V2

V 1 -
72-

1 -
w xV

V2

c2

1 -
uxv

/- p
V 1 --?

(55a)

i
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(56a)

It is evident that these equations (53a-56a) must be true no

matter what the velocity between the new observer and the original

system of coordinates, that is, true for all values of V. The velocities

ux ,
u y ,

u gf w x , etc., are, however, perfectly definite quantities, measured

with reference to a definite system of coordinates and entirely inde

pendent of V. If these equations are to be true for perfectly definite

values of ux ,
u y ,

u z ,
w x , etc., and for all values of V, it is evident that

the function F( ) must be of such a form that the equations are

identities in V. As a matter of fact, it is found by trial that V can

be cancelled from all the equations if we make F( ) of the form

jp= ;
and we see that the expected relation is a solution of the

/ &quot;I

equations, although perhaps not necessarily a unique solution.

Before proceeding to use our formula for the mass of a moving

particle for the further development of our system of mechanics,

we may call attention in passing to the fact that the experiments of

Kaufmann, Bucherer, and Hupka have in reality shown that the mass

of the electron increases with its velocity according to the formula

which we have just obtained. We shall consider the dynamics of the

electron more in detail in the chapter devoted to electromagnetic

theory. We wish to point out now, however, that in this derivation

we have made no reference to any electrical charge which might be

carried by the particle whose mass is to be determined. Hence we

may reject the possibility of explaining the Kaufmann experiment

by assuming that the charge of the electron decreases with its velocity,

since the increase in mass is alone sufficient to account for the results

of the measurement.
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Transformation Equations for Mass.

65. Since the velocity of a particle depends on the particular

system of coordinates chosen for the measurement, it is evident that

the mass of the particle will also depend on our reference system of

coordinates. For the further development of our system of dynamics,

we shall find it desirable to obtain transformation equations for mass

similar to those already obtained for velocity, acceleration, etc.

We have

ra
m =

where the velocity u is measured with respect to some definite system

of coordinates, S. Similarly with respect to a system of coordinates

S which is moving relatively to S with the velocity V in the X direc

tion we shall have

We have already obtained, however, a transformation equation (17)

for the function of the velocity occurring in these equations and on

substitution we obtain the desired transformation equation

ra = f 1 -
/U~-

} Km, (57)

where K has the customary significance

K =
Z!

&quot;

c2

By differentiation of (57) with respect to the time and simpli

fication, we obtain the following transformation equation for the

rate at which the mass of a particle is changing owing to change in

velocity

mV
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Equation for the Force Acting on a Moving Particle.

06. We are now in a position to return to our development of the

dynamics of a particle. In the first place, the equation which we

have now obtained for the mass of a moving particle will permit

us to rewrite the original equation by which we defined force, in a

number of ways which will be useful for future reference.

We have our equation of definition (47)

d . du dm
F =-() _ +_,

which, on substitution of the expression for m, gives us

mo m du d

^~dt +
Jt I u*

V 1 -7J

u (59)

or, carrying out the indicated differentiation,

F =
u du

T -?
(60)

Transformation Equations for Force.

67. We are also in position to obtain transformation equations for

force. We have

d
F = (mu) = mu + mu

or

Fx = mu x

Fv
= mu y

F 2
= mu z

mu x ,

mu-.

We have transformation equations, however, for all the quantities

on the right-hand side of these equations. For the velocities we

have equations (14), (15) and (16), for the accelerations (18), (19)

and (20), for mass, equation (57) and for rate of change of mass,

equation (58). Substituting above we obtain as our transformation
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equations for force

Fx -mV

1 -
u xV
c
2

= FX
-

c2 -uxV c*-uxV
F

&quot; (61)

1 -
uxV Fy, (62)

1 -
uxV F.. (63)

We may now consider a few applications of the principles governing
the dynamics of a particle.

The Relation between Force and Acceleration.

68. If we examine our equation (59) for the force acting on a

particle

du d
(59)

we see that the force is equal to the sum of two vectors, one of which

is in the direction of the acceleration and the other in the direction

of the existing velocity u, so that in general force and the acceleration

it produces are not in the same di

rection. We shall find it interesting

to see, however, that if the force

which does produce acceleration in

a given direction be resolved per

pendicular and parallel to the accel

eration, the two components will

be connected by a definite relation.

Consider a particle (fig. 12) in

plane space moving with the ve

locity

FIG. 12. u = uxi + u y].

m &amp;lt;$
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Let it be accelerated in the X direction by the action of the com

ponent forces Fx and F y .

From our general equation (59) for the force acting on a particle

we have for these component forces

Ff =
I u*

V 1 -^

dui d

~dt
^~

di

mo
Fv ~~ -

^2 dt
+

dt
Uy.

(64)

(65)

Introducing the condition that all the acceleration is to be in the Y

direction, which makes -~ =
0, and further noting that u? = u x

2 + u v
2

,

by the division of equation (64) by (65), we obtain

F,
F v

F x =

u xu

C
2 _ u^1

U Uy
r

U.
(66)

Hence, in order to accelerate a particle in a given direction, we may

apply any force F y in the desired direction, but must at the same time

apply at right angles another force Fx whose magnitude is given by

equation (66).

Although at first sight this state of affairs might seem rather

unexpected, a simple qualitative consideration will show the necessity

of a component of force perpendicular to the desired acceleration.

Refer again to figure 12; since the particle is being accelerated in the Y

direction, its total velocity and hence its mass are increasing. This

increasing mass is accompanied by increasing momentum in the X
direction even when the velocity in that direction remains constant.

The component force Fx is necessary for the production of this increase

in X-momentum.

In a later paragraph we shall show an application of equation (66)

in electrical theory.
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Transverse and Longitudinal Acceleration.

69. An examination of equation (66) shows that there are two

special cases in which the component force Fx disappears and the

force and acceleration are in the same direction. Fx will disappear

when either u x or u y is equal to zero, so that force and acceleration

will be in the same direction when the force acts exactly at right

angles to the line of motion of the particle, or in the direction of the

motion (or of course also when u x and uy are both equal to zero and

the particle is at rest). It is instructive to obtain simplified ex

pressions for force for these two cases of transverse and longitudinal

acceleration.

Let us again examine our equation (60) for the force acting on a

particle

niQ du mo u du

(-!)
For the case of a transverse acceleration there is no component of

force in the direction of the velocity u and the second term of the

equation is equal to zero, giving us

F -

For the case of longitudinal acceleration, the velocity u and the

acceleration -r are in the same direction, so that we may rewrite the

second term of (60), giving us

ra du mo u2 du~ == ~

u*

V
~

c*

and on simplification this becomes

m
*

V&quot; &amp;lt;?)
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An examination of this expression shows the reason why
-j 3/2

is sometimes spoken of as the expression for the longitudinal mass of a

particle.

The Force Exerted by a Moving Charge.

70. In a later chapter we shall present a consistent development

of the fundamentals of electromagnetic theory based on the Einstein

transformation equations for space and time and the four field equa

tions. At this point, however, it may not be amiss to point out that

the principles of mechanics themselves may sometimes be employed
to obtain a simple and direct solution of electrical problems.

Suppose, for example, we wish to calculate the force with which a

point charge in uniform motion acts on any other point charge. We
can solve this problem by considering a system of coordinates which

move with the same velocity as the charge itself. An observer

making use of the new system of coordinates could evidently calcu

late the force exerted by the charge in question by Coulomb s familiar

inverse square law for static charges, and the magnitude of the force

as measured in the original system of coordinates can then be deter

mined from our transformation equations for force. Let us proceed

to the specific solution of the problem.

Consider a system of coordinates S, and a charge e in uniform

motion along the X axis with the velocity V. We desire to know

the force acting at the time t on any other charge ei which has any

desired coordinates x, y, and z and any desired velocity u x ,
u y and u x .

Assume a system of coordinates, S , moving with the same velocity

as the charge e which is taken coincident with the origin. To an

observer moving with the system S
,
the charge e appears to be

always at rest and surrounded by a pure electrostatic field. Hence

in system S the force with which e acts on e\ will be, in accordance

with Coulomb s law*

ee\r
F =

r
3

*
It should be noted that in its original form Coulomb s law merely stated

that the force between two stationary charges was proportional to the product of

the charges and inversely to the distance between them. In the present derivation



78 Chapter Six.

or

)&quot;

(69)

2

where x
, y ,

and z are the coordinates of the charge e\ at the time t
f

*

For simplicity let us consider the force at the time t =
0; then from

transformation equations (9), (10), (11), (12) we shall have

x =
K-^-X, y =

y, z
f = z.

Substituting in (69), (70), (71) and also using our transformation

equations for force (61), (62), (63), we obtain the following equations

for the force acting on ei, as it appears to an observer in system S:

-
-

(rt??+*) *(
X+

**&amp;lt;*&quot;* t&amp;gt;*)
(?2)

_utV
c2

:z2 + ?/
2 + z2)

3/2

_^F
c2

These equations give the force acting on e\ at the time t. From

V
transformation equation (12) we have t = x, since t = 0. At this

C

time the charge e, which is moving with the uniform velocity V along

we have extended this law to apply to the instantaneous force exerted by a stationary

charge upon any other charge.

The fact that a charge of electricity appears the same to observers in all systems
is obviously also necessary for the setting up of equations (69), (70), (71). That
such is the case, however, is an evident consequence of the atomic nature of elec

tricity. The charge e would appear of the same magnitude to observers both in

system S and system S t
since they would both count the same number of electrons

on the charge. (See Section 157.)
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the X axis, will evidently have the position

72
x

&amp;lt;

=
~#

x
&amp;gt; y* =

&amp;gt;

z =
-

For convenience we may now refer our results to a system of

coordinates whose origin coincides with the position of the charge e

at the instant under consideration. If X, Y and Z are the coordi

nates of ei with respect to this new system, we shall evidently have

the relations

72X = x - ~x = /c-% Y =
y, Z =

z,

UX = U X , Uy =
Uy, Ug = U t .

Substituting into (72), (73), (74) we obtain

.

where for simplicity we have placed

5 =

These are the same equations which would be obtained by sub

stituting the well-known formula, for the strength of the electric and

magnetic field around a moving point charge into the fifth funda

mental equation of the Maxwell-Lorentz theory, f=p(e +-[uXh]*J.

They are really obtained in this way more easily, however, and are

seen to come directly from Coulomb s law.

The Field around a Moving Charge. Evidently we may also use

these considerations to obtain an expression for the electric field

produced by a moving charge e, if we consider the particular case

that the charge e\ is stationary (i. e., U x
= Uv

= U t
= 0) and equal
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to unity. Making these substitutions in (75), (76), (77) we obtain

the well-known expression for the electrical field in the neighborhood

of a moving point charge

where
r = Xi + Fj + Zk.

71. Application to a Specific Problem. Equations (75), (76), (77)

can also be applied in the solution of a

rather interesting specific problem.

Consider a charge e constrained to

move in the X direction with the ve

locity V and at the instant under con-

y sideration let it coincide with the origin

of a system of stationary coordinates

=v
&amp;gt; YeX (fig. 13). Suppose now a second

charge e\, situated at the point X =
0,

Y = Y and moving in the X direction

with the same velocity V as the charge e,

and also having a component velocity

in the F direction Uy . Let us predict

the nature of its motion under the influ-^ X
p 13

ence of the charge e, it being otherwise

unconstrained.

From the simple qualitative considerations placed at our disposal

by the theory of relativity, it seems evident that the charge ei ought

merely to increase its component of velocity in the Y direction and

retain unchanged its component in the X direction, since from the

point of view of an observer moving along with e the phenomenon is

merely one of ordinary electrostatic repulsion.

Let us see whether our equations for the force exerted by a moving

charge actually lead to this result. By making the obvious sub

stitutions in equations (75) and (76) we obtain for the component

forces on e\

(79)

(80)
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Now under the action of the component force Fx we might at

first sight expect the charge e\ to obtain an acceleration in the X
direction, in contradiction to the simple qualitative prediction that

we have just made on the basis of the theory of relativity. We
remember, however, that equation (66) prescribes a definite ratio

between the component forces Fx and F y if the acceleration is to be

in the Y direction, and dividing (79) by (80) we actually &quot;obtain the

necessary relation

F,_ VUV

F y

~
c2 -V2

Other applications of the new principles of dynamics to electrical,

magnetic and gravitational problems will be evident to the reader.

Work.

72. Before proceeding with the further development of our theory

of dynamics we shall find it desirable to define the quantities work,

kinetic, and potential energy.

We have already obtained an expression for the force acting on a

particle and shall define the work done on the particle as the integral

of the force times the distance through which the particle is dis

placed. Thus

(81)

where r is the radius vector determining the position of the particle.

Kinetic Energy.

73. When a particle is brought from a state of rest to the velocity

u by the action of an unbalanced force F, we shall define its kinetic

energy as numerically equal to the work done in producing the velocity.

Thus
K = W =

Since, however, the kinetic energy of a particle turns out to be

entirely independent of the particular choice of forces used in pro

ducing the final velocity, it is much more useful to have an expression

for kinetic energy in terms of the mass and velocity of the particle.

We have
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Substituting the value of F given by the equation of definition (47)

we obtain

du
f
J dt

U

= I mu-du -f- I u-udra

= I mudu -f- I u2dm.

Introducing the expression (51) for the mass of a moving particle

m,r*

,
we obtain

-du + I ^-7
^

0x3/2^

and on integrating and evaluating the constant of integration by

placing the kinetic energy equal to zero when the velocity is zero,

we easily obtain the desired expression for the kinetic energy of a

particle :

K = m c
2

1 - 1 (82)

= c
2
(m - w ). (83)

It should be noticed, as was stated above, that the kinetic energy

of a particle does depend merely on its mass and final velocity and is

entirely independent of the particular choice of forces which happened
to be used in producing the state of motion.

It will also be noticed, on expansion into a series, that our ex

pression (82) for the kinetic energy of a particle approaches at low

velocities the form familiar in the older Newtonian mechanics,

K =

Potential Energy.

74. When a moving particle is brought to rest by the action of a
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conservative* force we say that its kinetic energy has been trans

formed into potential energy. The increase in the potential energy

of the particle is equal to the kinetic energy which has been destroyed

and hence equal to the work done by the particle against the force,

giving us the equation

= - W = --F-dr. (84)

The Relation between Mass and Energy.

75. We may now consider a very important relation between the

mass and energy of a particle, which was first pointed out in our

chapter on &quot; Some Elementary Deductions.&quot;

When an isolated particle is set in motion, both its mass and

energy are increased. For the increase in mass we may write

Am = m WQ,

and for the increase in energy we have the expression for kinetic energy

given in equation (83), giving us

A# = c
z
(m - W ),

or, combining with the previous equation,

AE = c2Aw. (85)

Thus the increase in the kinetic energy of a particle always bears

the same definite ratio (the square of the velocity of light) to its

increase in mass. Furthermore, when a moving particle is brought

to rest and thus loses both its kinetic energy and its extra
(&quot;

kinetic
&quot;)

mass, there seems to be every reason for believing that this mass

and energy which are associated together when the particle is in

motion and leave the particle when it is brought to rest will still

remain always associated together. For example, if the particle is

brought to rest by collision with another particle, it is an evident

* A conservative force is one such that any work done by displacing a system

against it would be completely regained if the motion of the system should be re

versed.

Since we believe that the forces which act on the ultimate particles and con

stituents of matter are in reality all of them conservative, we shall accept the general

principle of the conservation of energy just as in Newtonian mechanics. (For a

logical deduction of the principle of the conservation of energy in a system of par

ticles, see the next chapter, section 89.)
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consequence of our considerations that the energy and the mass

corresponding to it do remain associated together since they are both

passed on to the new particle. On the other hand, if the particle

is brought to rest by the action of a conservative force, say for example

that exerted by an elastic spring, the kinetic energy which leaves the

particle will be transformed into the potential energy of the stretched

spring, and since the mass which has undoubtedly left the particle

must still be in existence, we shall believe that this mass is now asso

ciated with the potential energy of the stretched spring.

76. Such considerations have led us to believe that matter and

energy may be best regarded as different names for the same funda

mental entity: matter, the name which has been applied when we

have been interested in the property of mass or inertia possessed

by the entity, and energy, the name applied when we have been

interested in the part taken by the entity in the production of motion

and other changes in the physical universe. We shall find these

ideas as to the relations between matter, energy and mass very fruit

ful in the simplification of physical reasoning, not only because it

identifies the two laws of the conservation of mass and the conser

vation of energy, but also for its frequent application in the solution

of specific problems.

77. We must call attention to the great difference in size between

the two units, the gram and the erg, both of which are used for the

measurement of the one fundamental entity, call it matter or energy

as we please. Equation (85) gives us the relation

E = c
z
m, (86)

where E is expressed in ergs and m in grams; hence, taking the velocity

of light as 3 X 1010 centimeters per second, we shall have

1 gram = 9 X 1020
ergs. (87)

The enormous number of ergs necessary for increasing the mass of

a system to the amount of a single gram makes it evident that experi

mental proofs of the relation between mass and energy will be hard to

find, and outside of the experimental work on electrons at high veloci

ties, already mentioned in Section 64 and the well-known relations
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between the energy and momentum of a beam of light, such evidence

has not yet been forthcoming.

As to the possibility of obtaining further direct experimental

evidence of the relation between mass and energy, we certainly can

not look towards thermal experiments with any degree of confidence,

since even on cooling a body down to the absolute zero of temperature

it loses but an inappreciable fraction of its mass at ordinary tempera

tures.* In the case of some radioactive processes, however, we may
find a transfer of energy large enough to bring about measurable

differences in mass. And making use of this point of view we might

account for the lack of exact relations between the atomic weights of

the successive products of radioactive decomposition.!

78. Application to a Specific Problem. We may show an inter

esting application of our ideas as to the relation between mass and

energy, in the treatment of a specific problem. Consider, just as in

Section 63, two elastic particles both of which have the mass m at

rest, one moving in the X direction with the velocity -f u and the

other with the velocity u
y
in such a way that a head-on collision

between the particles will occur and they will rebound over their

original paths with the respective velocities u and + u of the

same magnitude as before.

Let us now consider how this collision would appear to an observer

who is moving past the original system of coordinates with the velocity

V in the X direction. To this new observer the particles will be

moving before the collision with the respective velocities

u-V -u -V
Ul = ~ and u 2

= r,

as given by equation (14) for the transformation of velocities. Fur

thermore; when in the course of the collision the particles have come

to relative rest they will obviously be moving past our observer with

the velocity V.

*It should be noticed that our theory points to the presence of enormous-.

stores of interatomic energy which are still left in substances cooled to the absolute

zero.

t See, for example, Comstock, Philosophical Magazine, vol. 15, p. 1 (1908).
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Let us see what the masses of the particles will be both before and

during the collision. Before the collision, the mass of the first particle

will be

u- V
uV
c2

c2

and the mass of the second particle will be

ra

F

Adding these two expressions, we obtain for the sum of the masses of

the two particles before collision,

Now during the collision, when the two particles have come to

relative rest, they will evidently both be moving past our observer

with the velocity V and hence the sum of their masses at the

instant of relative rest would appear to be

2m

a quantity which is smaller than that which we have just found for

the sum of the two masses before the collision occurred. This apparent

discrepancy between the total mass of the system before and during

the collision, is removed, however, if we realize that when the par-
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tides have come to relative rest an amount of potential energy of

elastic deformation has been produced, which is just sufficient to re

store them to their original velocities, and the mass corresponding to

this potential energy will evidently be just sufficient to make the

total mass of the system the same as before collisipn.

In the following chapter on the dynamics of a system of particles

we shall make further use of our ideas as to the mass corresponding

to potential energy.



CHAPTER VII.

THE DYNAMICS OF A SYSTEM OF PARTICLES.

79. In the preceding chapter we discussed the laws of motion

of a particle. With the help of those laws we shall now derive some

useful general dynamical principles which describe the motions of a

system of particles, and in the following chapter shall consider an

application of some of these principles to the kinetic theory of gases.

The general dynamical principles which we shall present in this

chapter will be similar in form to principles which are already familiar

in the classical Newtonian mechanics. Thus we shall deduce princi

ples corresponding to the principles of the conservation of momentum,
of the conservation of moment of momentum, of least action and of

vis viva, as well as the equations of motion in the Lagrangian and

Hamiltonian (canonical) forms. For cases where the velocities of all

the particles involved are slow compared with that of light, we shall

find, moreover, that our principles become identical in content, as

well as in form, with the corresponding principles of the classical

mechanics. Where high velocities are involved, however, our new

principles will differ from those of Newtonian mechanics. In par

ticular we shall find among other differences that in the case of high

velocities it will no longer be possible to define the Lagrangian function

as the difference between the kinetic and potential energies of the

system, nor to define the generalized momenta used in the Hamil

tonian equations as the partial differential of the kinetic energy with

respect to the generalized velocity.

On the Nature of a System of Particles.

80. Our purpose in this chapter is to treat dynamical systems

consisting of a finite number of particles, each obeying the equation

of motion which we have already written in the forms,

-I
d_

dt

du dm
= m

~di
+

~dt^

m du d

(47)

u. (59)

88
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It is not to be supposed, however, that the total mass of such a

system can be taken as located solely in these particles. It is evident

rather, since potential energy has mass, that there will in general be

mass distributed more or less continuously throughout the space in

the neighborhood of the particles. Indeed we have shown at the

end of the preceding chapter (Section 78) that unless we take account

of the mass corresponding to potential energy we can not maintain

the principle of the conservation of mass, and we should also find it

impossible to retain the principle of the conservation of momentum
unless we included the momentum corresponding to potential energy.

For a continuous distribution of mass we may write for the force

acting at any point on the material in a small volume, 5V,

*.=

~dt

where f is the force per unit volume and g is the density of momentum.

This equation is of course merely an equation of definition for the

intensity of force at a point. We shall assume, however, that New
ton s third law, that is, the principle of the equality of action and

reaction, holds for forces of this type as well as for those acting on

particles. In later chapters we shall investigate the way in which g

depends on velocity, state of strain, etc., but for the purposes of this

chapter we shall not need any further information as to the nature

of the distributed momentum.

Let us proceed to the solution of our specific problems.

The Conservation of Momentum.

81. We may first show from Newton s third law of motion that

the momentum of an isolated system of particles remains constant.

Considering a system of particles of masses mi, m z ,
ms , etc., we

may write in accordance with equation 47,

f[

Fi+1,-1
etc.,
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where FI, F2 , etc., are the external forces impressed on the individual

particles from outside the system and Ii, I 2; etc., are the internal

forces arising from mutual reactions within the interior of the system.

Considering the distributed mass in the system, we may also write,

in accordance with (47A) the further equation

(f 4- i)5V =
jt

(g8V), (90)

where f and i are respectively the external and internal forces acting

per unit volume of the distributed mass. Integrating throughout the

whole volume of the system V we have

=

^f (91)

where G is the total distributed momentum in the system. Adding
this to our previous equations (89) for the forces acting on the indi

vidual particles, we have

VT7 L VT _L f^T7 I f 5x717 ^V I_
^

2/Jc i -p 2^1i &quot;J~ I 1$ r &quot;p I Id V Z/miUi &quot;j~
.

J J at at

But from Newton s third law of motion (i. e., the principle of the

equality of action and reaction) it is evident that the sum of the

internal forces, Sli -f J idV, which arise from mutual reactions within

the system must be equal to zero, which leads to the desired equation

of momentum

/jfdv =- 37 (SwiUi -j- G). (92)
at

In words this equation states that at any given instant the vector

sum of the external forces acting on the system is equal to the rate

at which the total momentum of the system is changing.

For the particular case of an isolated system there are no external

forces and our equation becomes a statement of the principle of the

conservation of momentum.

The Equation of Angular Momentum.
82. We may next obtain an equation for the moment of momentum

of a system about a point.
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Consider a particle of mass mi and velocity Ui. Let TI be the

radius vector from any given point of reference to the particle. Then

for the moment of momentum of the particle about the point we may
write

M! = TI X ?HiUi,

and summing up for all the particles of the system we may write

2Mi = Zfo X WiUi). (93)

Similarly, for the moment of momentum of the distributed mass we

may write

Mdis,
= / (r X g)dF, (94)

where r is the radius vector from our chosen point of reference to a

point in space where the density of momentum is g and the inte

gration is to be taken throughout the whole volume, F, of the system.

Adding these two equations (93) and (94), we obtain for the total

amount of momentum of the system about our chosen point

M = ZOTiXrKiuO + / (r X g)dV;

and differentiating with respect to the time we have, for the rate of

change of the moment of momentum,

dM
dt

or, making the substitutions given by equations (89) and (90), and

dTi
writing = Ui, etc. we have

~ = Z(r L X FO + Z(f! X Ii) + z(Ui X miUi)
at

+ / (r X f)dV + f (r X i)dV + / (u X g)dV.

To simplify this equation we may note that the third term is equal to

zero because it contains the outer product of a vector by itself. Fur

thermore, if we accept the principle of the equality of action and
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reaction, together with the further requirement that forces are not

only equal and opposite but that their points of application be in the

same straight line, we may put the moment of all the internal forces

equal to zero and thus eliminate the second and fifth terms. We
obtain as the equation of angular momentum

-

l X FO + J (r X f)dV 4- J (u X g)dV. (95)

We may call attention to the inclusion in this equation of the

interesting term J (u X g)dV. If density of momentum and velocity

should always be in the same direction this term would vanish, since

the outer product of a vector by itself is equal to zero. In our con

sideration of the
&quot;

Dynamics of Elastic Bodies/ however, we shall

find bodies with a component of momentum at right angles to their

direction of motion and hence must include this term in a general

treatment. For a completely isolated system it can be shown, how

ever, that this term vanishes along with the external forces and we

then have the principle of the conservation of moment of momentum.

The Function T.

83. We may now proceed to the definition of a function which

will be needed in our treatment of the principle of least action.

One of the most valuable properties of the Newtonian expression,

%m Qu2
,
for kinetic energy was the fact that its derivative with respect

to velocity is evidently the Newtonian expression for momentum, m Qu.

It is not true, however, that the derivative of our new expression

for kinetic energy (see Section 73), m c
1 - 1

,
with respect

to velocity is equal to momentum, and for that reason in our non-

Newtonian mechanics we shall find it desirable to define a new func

tion, !F, by the equation,

/ / 1^2 \

(96)

For slow velocities (i. e., small values of u) this reduces to the

Newtonian expression for kinetic energy and at all velocities we have
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the relation,

dT = = mu, (97)du du \ c2 / 1/2

c

/,
^

V 1 -?

showing that the differential of T with respect to velocity is momentum.
For a system of particles we shall define T as the summation of

the values for the individual particles:

(98)

The Modified Lagrangian Function.

84. In the older mechanics the Lagrangian function for a system

of particles was defined as the difference between the kinetic and

potential energies of the system. The value of the definition rested,

however, on the fact that the differential of the kinetic energy with

respect to velocity was equal to momentum, so that we shall now

find it advisable to define the Lagrangian function with the help of

our new function T in accordance with the equation

L = T - U. (99)

The Principle of Least Action.

85. We are now in a position to derive a principle corresponding

to that of least action in the older mechanics. Consider the path

by which our dynamical system actually moves from state (1) to

state (2). The motion of any particle in the system of mass m will

be governed by the equation

F=|(mu). (100)

Let us now compare the actual path by which the system moves

from state (1) to state (2) with a slightly displaced path in which the

laws of motion are not obeyed, and let the displacement of the particle

at the instant in question be 5r.

Let us take the inner product of both sides of equation (100) with
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5r; we have

F-6r = -r(mu) 5r

d . d8r= _ (mu .

5r)
._ mu.__

d= (rau 5r) rau 5u

(rau-5u + J?-dr)dt = d(wu-5r).

Summing up for all the particles of the system and integrating

between the limits ti and t2) we have

(Srau-Su + SF-5r)&amp;lt;i
= [Srau-5r] j.

Since ti and t 2 are the times when the actual and displaced motions

coincide, we have at these times 5r = 0; furthermore we also have

u 5u = udu, so that we may write

(2mu5u + f 8r)dt = 0.

With the help of equation (97), however, we see that 2mudu = dT,

giving us

fJ ti

= 0. (101)

If the forces F are conservative, we may write F 5r = dU, where

dU is the difference between the potential energies of the displaced

and the actual configurations. This gives us

5 f
2

(T - U)dt =
J,

or

r/, Ldt =
0, (102)

which is the modified principle of least action. The principle evi

dently requires that for the actual path by which the system goes
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/H
from state (1) to state (2), the quantity I Ldt shall be a minimum (or

Jt l

maximum).

Lagrange s Equations.

86. We may now derive the Lagrangian equations of motion from

the above principle of least action. Let us suppose that the position

of each particle of the system under consideration is completely deter

mined by n independent generalized coordinates 91, &amp;lt; 2 , fa &amp;lt;/&amp;gt;
n and

hence that L is some function of 91, 92, 9s 9n, &amp;lt;i, &amp;lt;fo, 4&amp;gt;z

-

9n,

where for simplicity we have put &amp;lt;i

= rr , fa = rr ,
etc.

From equation (102) we have

/&amp;lt;j
/Vo / n *\T n r\T \

(5L)dt= (Evr-501 + ZvT-^i )dt
= 0. (103)

/&amp;lt;! J&amp;lt;! \ 1 &quot;91 1 &quot;91 /

But

591 =
^

which gives us

tn- ta- dL d

a

or, since at times 1 and ^2, ^91 is zero, the first term in this expression

disappears and on substituting in equation (103) we obtain

Since, however, the limits Zi and tz are entirely at our disposal we must

have at every instant

Finally, moreover, since the
4&amp;gt;

s are independent parameters, we can

assign perfectly arbitrary values to $91, 692, etc., and hence must have
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the series of equations

&amp;lt;L(
&amp;lt;**L\ _ dL

dt \ a&amp;lt;i / d^i
&quot;

0&amp;gt;

dt\d&amp;lt;j&amp;gt;

etc.

These correspond to Lagrange s equations in the older mechanics,

differing only in the definition of L.

Equations of Motion in the Hamiltonian Form.

87. We shall also find it desirable to obtain equations of motion

in the Hamiltonian or canonical form.

Let us define the generalized momentum \f/i corresponding to the

coordinate
&amp;lt;/&amp;gt;i by the equation,

It should be noted that the generalized momentum is not as in

ordinary mechanics the derivative of the kinetic energy with respect

to the generalized velocity but approaches that value at low velocities.

Consider now a function T r

defined by the equation

T - Vi0i + iW 2 + - T. (106)

Differentiating we have

dT =
i&amp;lt;i

dT _ dT .

^**~5*i
&quot;

dT dT

-aT!^
1

&quot;^^
2

&quot;

and this, by the introduction of (105), becomes

dTf =
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Examining this equation we have

-- (108)
O(p\ C/&amp;lt;pi

r = 4i. (109)

In Lagrange s equations we have

But since U is independent of ^i we may write

d(T - U) dT
a ;

~ = VT =
rlj

091 001

and furthermore by (108),

Substituting these two expressions in Lagrange s equations we obtain

d l̂= _ d(T + U)

dt

or, writing T + U = E, we have

--
, (110)

dt d(f&amp;gt;i

and since U is independent of fa we may rewrite equation (109) in

the form

^ = 4^. an)

The set of equations corresponding to (110) and (111) for all the

coordinates
&amp;lt;/&amp;gt;i, &amp;lt;/&amp;gt;

2 , fa, &amp;lt;t&amp;gt;n

and the momenta ti, fa, fa,
- fa are

the desired equations of motion in the canonical form.

88. Value of the Function T . We have given the symbol E to

the quantity T + U, since T actually turns out to be identical with

8
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the expression by which we defined kinetic energy, thus making
E = T + U the sum of the kinetic and potential energies of the

system.

To show that T is equal to K, the kinetic energy, we have by the

equation of definition (106)

r =
&amp;lt;Wi + M* + . - . -

T,

. dT . dT

But T by definition, equation (98), is

T =

which gives us

( _ ul\~
i 2

^L
d(j&amp;gt;i \ c

2
/ d(j&amp;gt;i

du

and substituting we obtain

du . . .
du
-

j_
. . .

j

(112)

We can show, however, that the term in parenthesis is equal to u.

If the coordinates x, y, z determine the position of the particle in

question, we have,

and differentiating with respect to the &amp;lt; s, we obtain,

d &( dx dx dx dx dx
etc.,
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Similarly

^L - ^M. dy_ _ dy^

dz dz dz dz

Let us write now

u = Az2 + y
2 + z2

,

du^__1 /
.
dx

. dy .
dz \

dfa&quot; Vx2 + if- + &\dfa ^i
2
d*i/

&amp;gt;

5x dy
or making the substitutions for r

,
-r-r-

, etc., given above, we have,

= -., -.j -

a^i ^V^^i ^i
2

Substituting now in (112) we shall obtain,

or, introducing the value of T given by equation (98), we have

m ),

which is the expression (83) for kinetic energy.

Hence we see that the Hamiltonian function E = T -f U is the

sum of the kinetic and potential energies of the system as in Newtonian

mechanics.

The Principle of the Conservation of Energy.

89. We may now make use of our equations of motion in the

canonical form to show that the total energy of a system of interacting
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particles remains constant. If such were not the case it is obvious

that our definitions of potential and kinetic energy would not be

very useful.

Since E = T r + U is a function of
&amp;lt;i, $ 2 , fo,

-

ti, ^2, ^3, ,
we

may write

dE d# . dE

dE . dE .

+ T-r &amp;lt;l+TT
-

/ 2 +
d\l/\ d\l/z

r)JF f)W

Substituting the values of -
p ,

-
p , etc., given by the canonical

0&amp;lt;pi 0^1

equations of motion (110) and (111), we have

dE =
1//10! 1//202

-

+ Wz +

which gives us the desired proof that just as in the older Newtonian

mechanics the total energy of an isolated system of particles is a

conservative quantity.

On the Location of Energy in Space.

90. This proof of the conservation of energy in a system of inter

acting particles justifies us in the belief that the concept of energy

will not fail to retain in the newer mechanics the position of great

importance which it gradually acquired in the older systems of physical

theory. Indeed, our newer considerations have augmented the

important role of energy by adding, to its properties the attribute of

mass or inertia, and thus leading to the further belief that matter

and energy are in reality different names for the same fundamental

entity.

The importance of this entity, energy, makes it very interesting

to consider the possibility of ascribing a definite location in space to

any given quantity of energy. In the older mechanics we had a

hazy notion that the kinetic energy of a moving body was probably

located in some way in the moving body itself, and possibly a vague
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idea that the potential energy of a raised weight might be located in

the space between the weight and the earth. Our discovery of the

relation between mass and energy has made it possible, however, to

give a much more definite, although not a complete, answer to inquiries

of this kind.

In our discussions of the dynamics of a particle (Chapter VI,

Section 61) we saw that an acceptance of Newton s principle of the

equality of action and reaction forced us to ascribe an increased mass

to a moving particle over that which it has at rest. This increase in

the mass of the moving particle is necessarily located either in the

particle itself or distributed in the surrounding space in such a way
that its center of mass always coincides with the position of the

particle, and since the kinetic energy of the particle is the energy

corresponding to this increased mass we may say that the kinetic energy

of a moving particle is so distributed in space that its center of mass

always coincides with the position of the particle.

If now we consider the transformation of kinetic energy into

potential energy we can also draw somewhat definite conclusions as to

the location of potential energy. By the principle of the conserva

tion of mass we shall be able to say that the mass of any potential

energy formed is just equal to the
&quot;

kinetic
&quot; mass which has dis

appeared, and by the principle of the conservation of momentum we

can say that the velocity of this potential energy is just that necessary

to keep the total momentum of the system constant. Such con

siderations will often permit us to reach a good idea as to the location

of potential energy.

Consider, for example, a pair of similar attracting particles which

are moving apart from each other with the velocities + u and - u

and are gradually coming to rest under the action of their mutual

attraction, their kinetic energy thus being gradually changed into

potential energy. Since the total momentum of the system must

always remain zero, wre may think of the potential energy which is

formed as left stationary in the space between the two particles.



CHAPTER VIII.

THE CHAOTIC MOTION OF A SYSTEM OF PARTICLES.

The discussions of the previous chapter have placed at our disposal

generalized equations of motion for a system of particles similar in

form to those familiar in the classical mechanics, and differing only

in the definition of the Lagrangian function. With the help of these

equations it is possible to carry out investigations parallel to those

already developed in the classical mechanics, and in the present

chapter we shall discuss the chaotic motion of a system of particles.

This problem has received much attention in the classical mechanics

because of the close relations between the theoretical behavior of

such an ideal system of particles and the actual behavior of a mona-

tomic gas. We shall find no more difficulty in handling the problem
than was experienced in the older mechanics, and our results will of

course reduce to those of Newtonian mechanics in the case of slow

velocities. Thus we shall find a distribution law for momenta which

reduces to that of Maxwell for slow velocities, and an equipartition

law for the average value of a function which at low velocities becomes

identical with the kinetic energy of the particles.

91. The Equations of Motion. It has been shown that the Hamil-

tonian equations of motion

dE_ _~
dt

dE _ dfr (113 )

dS&quot; dt
:=01

etc.,

will hold in relativity mechanics provided we define the generalized

momenta \j/i, fa, etc., not as the differential of the kinetic energy

with respect to the generalized velocities
&amp;lt;i, $2, etc., but as the dif

ferential with respect to 0i ;
&amp;lt; 2 , etc., of a function

T =

102
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where 7n is the mass of a particle having the velocity u and the sum
mation 2 extends over all the particles of the system.

92. Representation in Generalized Space. Consider now a system

defined by the n generalized coordinates
&amp;lt;i,

&amp;lt; 2
&amp;gt; &amp;lt;fo, , &amp;lt;t&amp;gt;

n ,
and the

corresponding momenta \j/i, i/% fa, &amp;gt;
tn- Employing the methods

so successfully used by Jeans,* we may think of the state of the

system at any instant as determined by the position of a point plotted

in a 2n-dimensional space. Suppose now we had a large number of

systems of the same structure but differing in state, then for each

system we should have at any instant a corresponding point in our

2n-dimensional space, and as the systems changed their state, in the

manner required by the laws of motion, the points would describe

stream lines in this space.

93. Liouville s Theorem. Suppose now that the points were

originally distributed in the generalized space with the uniform

density p. Then it can be shown by familiar methods that, just as

in the classical mechanics, the density of distribution remains uniform.

Take, for example, some particular cubical element of our gener

alized space dcfridfadfa - -

d\f/id\f/zdfa
- -

. The density of dis

tribution will evidently remain uniform if the number of points

entering any such cube per second is equal to the number leaving.

Consider now the two parallel bounding surfaces of the cube which

are perpendicular to the $1 axis, one cutting the axis at the point 0i

and the other at the point 4&amp;gt;i + dfa. The area of each of these

surfaces is d^^dfa - d^id^zdfa -

,
and hence, if

&amp;lt;j&amp;gt;i

is the component

of velocity which the points have parallel to the
4&amp;gt;i axis, and T is

001

the rate at which this component is changing as we move along the

axis, we may obviously write the following expression for the differ

ence between the number of points leaving and entering per second

through these two parallel surfaces

Finally, considering all the pairs of parallel bounding surfaces, we

*
Jeans, The Dynamical Theory of Gases, Cambridge, 1916.
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find for the total decrease per second in the contents of the element

I I I

_|_
,

d0i 302 30s

But the motions of the points are necessarily governed by the Hamil-

tonian equations (113) given above, and these obviously lead to the

relations

etc.

So that our expression for the change per second in the number of

points in the cube becomes equal to zero, the necessary requirement
for preserving uniform density.

This maintenance of a uniform distribution means that there is

no tendency for the points to crowd into any particular region of the

generalized space, and hence if we start some one system going and

plot its state in our generalized space, we may assume that, after an

indefinite lapse of time, the point is equally likely to be in any one of

the little elements dV. In other words, the different states of a system,

which we can specify by stating the region d&amp;lt;f&amp;gt;id4&amp;gt; z d(j&amp;gt;3

-

d\l/idfadfa
- - -

in which the values of the coordinates and momenta of the system fall,

are all equally likely to occur.*

94. A System of Particles. Consider now a system containing N a

particles which have the mass m a when at rest, Nb particles which

have the mass m^ Nc particles which have the mass mcj etc. If at

any given instant we specify the particular differential element

dx dy dz d\l/ x d\j/ y d\j/ z which contains the coordinates x, y, z, and the

corresponding momenta
\f/ X) \f/ v , \}/ z for each particle, we shall thereby

completely determine what Planckf has well called the microscopic

state of the system, and by the previous paragraph any microscopic
* The criterion here used for determining whether or not the states are equally

liable to occur is obviously a necessary requirement, although it is not so evident

that it is a sufficient requirement for equal probability.

t Planck, Warmestrahlung, Leipzig, 1913.
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state of the system in which we thus specify the six-dimensional

position of each particle is just as likely to occur as any other micro

scopic state.

It must be noticed, however, that many of the possible micro

scopic states which are determined by specifying the six-dimensional

position of each individual particle are in reality completely identical,

since if all the particles having a given mass ma are alike among them

selves, it makes no difference which particular one of the various

available identical particles we pick out to put into a specified range

dx dy dz d^ x d^y d\I/ z .

For this reason we shall usually be interested in specifying the

statistical state* of the system, for which purpose we shall merely

state the number of particles of a given kind which have coordinates

falling in a given range dx dy dz d\l/x d\j/ v d\f/z . We see that corre

sponding to any given statistical state there will be in general a

large number of microscopic states.

95. Probability of a Given Statistical State. We shall now be

particularly interested in the probability that the system of particles

will actually be in some specified statistical state, and since Liou-

ville s theorem has justified our belief that all microscopic states are

equally likely to occur, we see that the probability of a given statis

tical state will be proportional to the number of microscopic states

which correspond to it.

For the system under consideration let a particular statistical

state be specified by stating that Na ,
Na &quot;,

Na
r

&quot;, , AY, AY , AY&quot;,

, etc., are the number of particles of the corresponding masses

m a ,
m b , etc., which fall in the specified elementary regions dx dy dz

d$ x dt v d^ z ,
Nos. la, 2a, 3a, , 16, 26, 36, ,

etc. By familiar

methods of calculation it is evident that the number of arrangements

by which the particular distribution of particles can be effected,

that is, in other words, the number of microscopic states, W, which

correspond to the given statistical state, is given by the expression

Na \Nb \Nc
...

W
Na Na&quot;N

* What we have here defined as the statistical state is what Planck calls the

macroscopic state of the system. The word macroscopic is unfortunate, however, in

implying a less minute observation as to the size of the elements dx dy dz d\f/x d\f/y d^
in which the representative points are found.
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and this number W is proportional to the probability that the system
will be found in the particular statistical state considered.

If now we assume that each of the regions

dx dy dz d\f/ x d^ y d$ z ,
Nos. la, 2a, 3a, , 16, 26, 36, ,

etc.

is great enough to contain a large number of particles,* we may
apply the Stirling formula

\N= J

for evaluating \Naj [N, etc., and omitting negligible terms, shall

obtain for log W the result

&quot;

(N
N N &quot; N &quot; N-iV a , Jt&quot; a . *&quot; a ,

-iV a
,

-tV a , a

.v:
log

]v7
+
-Nl

log If:
+
-N7 log Iv7

N b Nb
&quot; N b

&quot; N b
&quot; N b

&quot;

etc.

jy a j\ra
r/

For simplicity let us denote the ratios -rp- , -r^- , etc., by the
J\l a -i* a

symbols w a
f

,
w a &quot;,

etc. These quantities w a ,
w a &quot;, etc., are evidently

the probabilities, in the case of this particular statistical state,

that any given particle m a will be found in the respective regions

Nos. la, 2a, etc.

We may now write

lOg W = Na2Wa log W a Nb2W b log W b
~

, etc.,

where the summation extends over all the regions Nos. la, 2a, ,

16, 26, etc.

96. Equilibrium Relations. Let us now suppose that the system
of particles is contained in an enclosed space and has the definite

energy content E. Let us find the most probable distribution of the

particles. For this the necessary condition will be

d lOg W = - Na(log W a + l)BW a

- N6Z(log w b + l)dw b =0. (114)

In carrying out our variation, however, the number of particles of

* The idea of successive orders of infinitesimals which permit the differential

region dx dy dz d^x d\f/y d\J/ t to contain a large number of particles is a familiar one in

mathematics.
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each kind must remain constant so that we have the added relations

2dw a
=

0, 25w b
=

0, etc. (115)

Finally, since the energy is to have a definite value E, it must also

remain constant in the variation, which will provide still a further

relation. Since the energy of a particle will be a definite function of

its position and momentum,* let us write the energy of the system

in the form

E = NaZWaEa + N^w^Eb +,
where E a is the energy of a particle in the region la, etc.

Since in carrying out our variation the energy is to remain con

stant, we have the relation

E = Na2E adWa + Nb?E bdWb + &quot; = 0. (116)

Solving the simultaneous equations (114), (115), (116) by familiar

methods we obtain

log W a + 1+ \Ea + M 6
=

0,

log w b + 1 + \E b + M 6
=

0,

etc.,

where X, n a , M&, etc., are undetermined constants. (It should be

specially noticed that X is the same constant in each of the series of

equations.)

Transforming we have

w a = a ae~
hEa

,

Wb = abe-
hEb

, (117)

etc.,

as the expressions which determine the chance that a given particle

of mass m a ,
m b , etc., will fall in a given region dx dy dz d\f/ x d\[/ v d\l/ f ,

when we have the distribution of maximum probability. It should

be noticed that h, which corresponds to the X of the preceding equa

tions, is the same constant in all of the equations, while a a ,
a b , etc.,

are different constants, depending on the mass of the particles ma ,

mb ,
etc.

* We thus exclude from our considerations systems in which the potential energy

depends appreciably on the relative positions of the independent particles.
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97. The Energy as a Function of the Momentum. E a ,
E b , etc.,

are of course functions of x, y, z, \[/x , \l/ y , \f/ e . Let us now obtain an

expression for E a in terms of these quantities. If there is no external

field of force acting, the energy of a particle E a will be independent

of x, y }
and z, and will be determined entirely by its velocity and

mass. In accordance with the theory of relativity we shall have*

where m a is the mass of the particle at rest.

Let us now express E a as a function of \p x) \f/ y , \j/ t .

We have from our equations (105) and (98), which were used for

defining momentum

m ax

Constructing the similar expressions for
\j/ y and \f/z we may write the

relation

2 + f + Z
2
) mltf

1---* o

which also defines

* This expression is that for the total energy of the particle, including that

internal energy m c2 which, according to relativity theory, the particle has when
it is at rest. (See Section 75.) It would be just as correct to substitute for E a in

equation (117) the value of the kinetic energy m ac
2 / 1 \ instead of the

total energy
a

,
since the two differ merely by a constant m ac

i which would

11 -?
be taken care of by assigning a suitable value to a a .
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By simple transformations and the introduction of equation (118)

we obtain the desired relation

E a = cV^2 + m a
2
c
2

. (120)

98. The Distribution Law. We may now rewrite equations (117)

in the form

W a = a a &amp;lt;

,. AC^^/Z+OTftSc* flO]}Wb = &b6 i \*-L)

etc.

These expressions determine the probability that a given particle

of mass ma ,
mb ,

etc. will fall in a given region dxdydzd\f/xd\t/yd\j/ z ,
and

correspond to Maxwell s distribution law in ordinary mechanics. We
see that these probabilities are independent of the position x, y, z*

but dependent on the momentum.

aae~
Ac^*2+ma2c2

is the probability that a given particle will fall in a

particular six-dimensional cube of volume dxdydzd\f/xd\f/yd\f/ z . Let us

now introduce, for convenience, a new quantity aae~
hc *1+m 2c2 which

will be the probability per unit volume that a given particle will have

the six dimensional location in question, the constants aa and aa

standing in the same ratio as the volumes dxdydzd\f/xd\[/yd\f/ z and unity.

We may then write

wa
=

Wb =

etc.

Since every particle must have components of momentum lying

between minus and plus infinity, and lie somewhere in the whole

volume V occupied by the mixture, we have the relation

00 /~+oo /+
I I

_j /_ 00 / oo

(122)

It is further evident that the average value of any quantity A

which depends on the momentum of the particles is given by the

* This is true only when, as assumed, no external field of force is acting.
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expression

[A]av .

= V
+

r ra ae-
hc^+^Adt x dt v dt z , (123)

oo *

where A is some function of \l/x , \j/ y ,
and

\J/ Z .

99. Polar Coordinates. We may express relations corresponding

to (122) and (123) more simply if we make use of polar coordinates.

Consider instead of the elementary volume d\l/xd^ yd\^ z the volume

\f/

z
$meddd&amp;lt;j&amp;gt;d$ expressed in polar coordinates, where

The probability that a particle ra a will fall in the region

dxdydz\l/
z
sm0d6d(j)d\f/ will be

dxdydz\f/
2 sin

and since each particle must fall somewhere in the space x y z
\l/x \f/ v \p z

we shall have corresponding to (122) the relation

XTT

/2n- /

Jo Jo

(124)

Corresponding to equation (123), we also see that the average value

of any quantity A, which is dependent on the momentum of the

molecules of mass m a ,
will be given by the expression

[A]av .

= 47rF {* aae-****&quot;** Apd*. (125)
Jo

100. The Law of Equipartition. We may now obtain a law which

corresponds to that of the equipartition of vis viva in the classical

mechanics. Considering equation (124) let us integrate by parts, we

obtain

f*^a
Jo 3

-
he)
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Substituting the limits into the first term we find that it becomes

zero and may write

r
Jo + m 2c2

But by equation (125) the left-hand side of this relation is the

\f/

zc

average value of .
= for the particles of mass m a . We have

m a
2c2

Introducing equation (119) which defines t
2

,
we may transform this

expression into

=
I (126)

Since we have shown that h is independent of the mass of the

particles, we see that the average value of . is the same for particles

of all different masses. This is the principle in relativity mechanics

that corresponds to the law of the equipartition of vis viva in the

classical mechanics. Indeed, for low velocities the above expression

reduces to m Qu2
, the vis viva of Newtonian mechanics, a fact which

affords an illustration of the general principle that the laws of New
tonian mechanics are always the limiting form assumed at low veloci

ties by the more exact formulations of relativity mechanics.

We may now call attention in passing to the fact that this quantity

,
whose value is the same for particles of different masses, is

2 A.

not the relativity expression for kinetic energy, which is given rather

by the formula c
5

77*0
. So that in relativity mechanics
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the principle of the equipartition of energy is merely an approximation.

We shall later return to this subject.

101. Criterion for Equality of Temperature. For a system of par

ticles of masses m a , w&, etc., enclosed in the volume V, and having the

definite energy content E, we have shown that

and

are the respective probabilities that given particles of mass m a or

mass w& will have momenta between \f/ and \t/ + d\j/. Suppose now

we consider a differently arranged system in which we have N a par

ticles of mass ma by themselves in a space of volume V a and N b

particles of mass ra& in a contiguous space of volume Vb, separated

from Va by a partition which permits a transfer of energy, and let

the total energy of the double system be, as before, a definite quantity

E (the energy content of the partition being taken as negligible).

Then, by reasoning entirely similar to that just employed, we can

obviously show that

and

are now the respective probabilities that given particles of mass m a

or mass mb will have momenta between \J/ and
\J/ + d\j/, the only

changes in the expressions being the substitution of the volumes

V a and Vb in the place of the one volume V. Furthermore, this

distribution law will evidently lead as before to the equality of the

average values of

m,t*J

and

Since, however, the spaces containing the two kinds of particles are in

thermal contact, their temperature is the same. Hence we find that

the equality of the average values of . w the necessary condition for
u2

v 1 -*
equality of temperature.
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The above distribution law also leads to the important corollary that

for any given system of particles at a definite temperature the momenta

and hence the total energy content is independent of the volume.

We may now . proceed to the derivation of relations which will

permit us to show that the important quantity . is directly

proportional to the temperature as measured on the absolute ther-

modynamic temperature scale.

102. Pressure Exerted by a System of Particles. We first need

to obtain an expression for the pressure exerted by a system of N
particles enclosed in the volume V. Consider an element of surface

dS perpendicular to the X axis, and let the pressure acting on it be p.

The total force which the element dS exerts on the particles that

impinge will be pdS, and this will be equal to the rate of change of

the momenta in the X direction of these particles.*

Now by equation (122) the total number of particles having

momenta between \f/x and \l/ x + d^x in the positive direction is

/*\l/x+d\!ix /+ /

NV I

J\l/x
J oo J

But xdS gives us the volume which contains the number of particles

having momenta between \I/X and \p x + d\f/ x which will reach dS in a

second. Hence the number of such particles which impinge per

second will be

xds r****** r+o r+c
-

V J^ J-ao J-ao

and their change in momentum, allowing for the effect of the rebound,

will be

2NdS
^x+d^ z /+ /

J J-ao J-

Finally, the total change in momentum per second for all particles

can be found by integrating for all possible positive values of
\f/x .

* The system is considered dilute enough for the mutual attractions of the

particles to be negligible in their effect on the external pressure.

9
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Equating this to the total force pdS we have

Xoo

/*+oo /*+oo

I I ae-hc^^^
JfO J 00

Cancelling dS, multiplying both sides of the equation by the volume V,

changing the limits of integration and substituting m x for
\l/ x ,

we have
/*+o /*-}- oo /-fc

t/ oo *Jao *Jao

But this by equation (123) reduces to

p7 = N

1 -1
~c2

or, since

Wnli2 m X2
...^=== + ~.

we have from symmetry
N f -m^/2 1

(127)

Since at a given temperature we have seen that the term in parenthesis

is independent of the volume and the nature of the particles, we see

that the laws of Boyle and Avogadro hold also in relativity mechanics

for a system of particles.

For slow velocities equation (127) reduces to the familiar expression

N
pV = (m w2

)av..

103. The Relativity Expression for Temperature. We are now in

a position to derive the relativity expression for temperature. The

thermodynamic scale of temperature may be defined in terms of the

efficiency of a heat engine. Consider a four-step cycle performed

with a working substance contained in a cylinder provided with a

piston. In the first step let the substance expand isothermally and
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reversibly, absorbing the heat Q 2 from a reservoir at temperature T2 ;

in the second step cool the cylinder down at constant volume to TI ,

in the third step compress to the original volume, giving out the

heat Qi at temperature TI, and in the fourth step heat to the original

temperature. Now if the working substance is of such a nature that

the heat given out in the second step could be used for the reversible

heating of the cylinder in the fourth step, we may define the absolute

Tz Q 2

temperatures T 2 and T\ by the relation =
77- .*

1 1 Ui

Consider now such a cycle performed on a cylinder which con

tains one of our systems of particles. Since we have shown (Section

101) that at a definite temperature the energy content of such a

system is independent of the volume, it is evident that our working

substance fulfils the requirement that the heat given out in the second

step shall be sufficient for the reversible heating in the last step.

Hence, in accordance with the thermodynamic scale, we may measure

T
the temperatures of the two heat reservoirs by the relation =

77-
1 1 vi

and may proceed to obtain expressions for Q 2 and Qi.

In order to obtain these expressions we may again make use of the

principle that the energy content at a definite temperature is inde

pendent of the volume. This being true, we see that Q 2 and Qi

must be equal to the work done in the changes of volume that take

place respectively at T2 and T
7

!, and we may write the relations

= f
Jv

Q! = pdV(zt rO-
/F

But equation (127) provides an expression for p in terms of F, leading

on integration to the relations

N

* We have used this cycle for defining the thermodynamic temperature scale

instead of the familiar Carnot cycle, since it avoids the necessity of obtaining an

expression for the relation between pressure and volume in an adiabatic expansion.
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N
&amp;lt;*-

which gives us on division

^2

Qi

We see that the absolute temperature measured on the thermodynamic

scale is proportional to the average value of

We may finally express our temperature in the same units custom

arily employed by comparing equation (127)

PF= ?

with the ordinary form of the gas law

pV = nRT,

where n is the number of mols of gas present.

We evidently obtain

(128)

T =

N
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Remembering the relation
| p^ = -

,
we have

C&quot;
J av.

fcr = r. (129)

104. The Partition of Energy. We have seen that our new equi-

partition law precludes the possibility of an exact equipartition of

energy. It becomes very important to see what the average energy

of a particle of a given mass does become at any temperature.

Equation (125) provides a general expression for the average value

of any property of the particles. For the average value of the energy

4- m Q
2c2 of particles of mass m Q (see equation 120) we shall have

foe
ae -hcV**+mW c ^^ 4-

_

The unknown constant a may be eliminated with the help of the

relation (124)

X
00

and for h we may substitute the value given by (129), which gives us

the desired equation

f
&quot;

J~5 ~z

[E] &v .

= *
^ (130)

Jo

105. Partition of Energy for Zero Mass. Unfortunately, no gen

eral method for the evaluation of this expression seems to be available.

For the particular case that the mass m of the particles approaches

zero compared to the momentum, the expression reduces to

fV
Jo
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in terms of integrals whose values are known. Evaluating, we obtain

[]. = 3fcT.

For the total energy of N such particles we obtain

E =-- ZNkT,

nR
and introducing the relation k = by which we defined k we have

E = ZnRT (131)

as the expression for the energy of n mols of particles if their value of

m is small compared with their momentum.

It is instructive to compare this with the ordinary expression of

Newtonian mechanics

E = ~nRT
t

2t

which undoubtedly holds when the masses are so large and the veloci

ties so small that no appreciable deviations from the laws of New
tonian mechanics are to be expected. We see that for particles of

very small mass the average kinetic energy at any temperature is

twice as large as that for large particles at the same temperature.

It is also interesting to note that in accordance with equation (131)

a mol of particles which approach zero mass at the absolute zero,

would have a mass of

3 X 8.31 X 300

grams at room temperature (300 absolute). This suggests a field

of fascinating if profitless speculation.

106. Approximate Partition of Energy for Particles of any Desired

Mass. For particles of any desired mass we may obtain an approxi

mate idea of the relation between energy and temperature by ex

panding the expression for kinetic energy into a series. For the aver

age kinetic energy of a particle we have

- mo
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Expanding into a series we obtain for the total kinetic energy of N
particles

3 u4 15 u6 105 u8 \
+ -- +~- + ~-+...), (132)

where u2
,
u4

, etc., are the average values of u2
,
u4

, etc., for the indi

vidual particles.

To determine approximately how the value of K varies with the

temperature we may also expand our expression (128) for temperature,

into a series; we obtain

Combining expressions (132) and (133) by subtraction and trans

position, we obtain

For the case of velocities low enough so that u4 and higher powers

can be neglected, this reduces to the familiar expression of Newtonian

3
mechanics, K = -nRT.

In case we neglect in expression (134) powers higher than u4 we
have the approximate relation

8c2
&quot;

2Nm c2 V 2

the left-hand term really being the larger, since the average square of a

quantity is greater than the square of its average. Since ( ^ J

(3

V- nRT ]
,
we may write the approxima-
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tion

or, noting that Nm = M, the total mass of the system at the abso

lute zero, we have

K
2 8

If we use the erg as our unit of energy, R will be 8.31 X 107
; expressing

velocities in centimeters per second, c
2 will be 1021

,
and M will be the

mass of the system in grams.

For one mol of a monatomic gas we should have in ergs

K = 12.4 X 107r +^ 10-6 ?72
.M

In the case of the electron M may be taken as approximately

1/1800. At room temperature the second term of our equation would

be entirely negligible, being only 3.5 X 10~6
per cent of the first, and

still be only 3.5 X 10~4
per cent in a fixed star having a temperature of

30,000. Hence at all ordinary temperatures we may expect the

law of the equipartition of energy to be substantially exact for par

ticles of mass as small as the electron.

Our purpose in carrying through the calculations of this chapter

has been to show that a very important and interesting problem in

the classical mechanics can be handled just as easily in the newer

mechanics, and also to point out the nature of the modifications in

existing theory which will have to be introduced if the later develop

ments of physics should force us to consider equilibrium relations for

particles of mass much smaller than that of the electron.

We may also call attention to the fact that we have here con

sidered a system whose equations of motion agree with the principles

of dynamics and yet do not lead to the equipartition of energy. This

is of particular interest at a time when many scientists have thought

that the failure of equipartition in the hohlraum stood in necessary

conflict with the principles of dynamics.



CHAPTER IX.

THE PRINCIPLE OF RELATIVITY AND THE PRINCIPLE OF
LEAST ACTION.

It has been shown by the work of Helmholtz, J. J. Thomson,

Planck and others that the principle of least action is applicable in

the most diverse fields of physical science, and is perhaps the most

general dynamical principle at our disposal. Indeed, for any system

whose future behavior is determined by the instantaneous values of a

number of coordinates and their time rate of change, it seems possible

to throw the equations describing the behavior of the system into

the form prescribed by the principle of least action. This generality

of the principle of least action makes it very desirable to develop the

relation between it and the principle of relativity, and we shall obtain

in this way the most important and most general method for deriving

the consequences of the theory of relativity. We have already

developed in Chapter VII the particular application of the principle

of least action in the case of a system of particles, and with the help

of the more general development which we are about to present, we

shall be able to apply the principle of relativity to the theories of

elasticity, of thermodynamics and of electricity and magnetism.

107. The Principle of Least Action. For our purposes the prin

ciple of least action may be most simply stated by the equation

&quot;

(BH + W)dt = 0. (135)

This equation applies to any system whose behavior is determined

by the values of a number of independent coordinates
&amp;lt;Ai4&amp;gt;203

and their rate of change with the time
&amp;lt;#&amp;gt;i02&amp;lt;^3 ,

and the equation

describes the path by which the system travels from its configuration

at any time ti to its configuration at any subsequent time f 2 .

H is the so-called kinetic potential of the system and is a func

tion of the coordinates and their generalized velocities :

H = F(0i020s Mifa ) (136)

121
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dH is the variation of H at any instant corresponding to a slightly

displaced path by which the system might travel from the same
initial to the same final state in the same time interval, and W is the

external work corresponding to the variation 5 which would be done

on the system by the external forces if at the instant in question the

system should be displaced from its actual configuration to its con

figuration on the displaced path. Thus

W = $i0i + $ 2 5&amp;lt; 2 + &amp;lt;M&amp;lt;/&amp;gt;3 + , (137)

where $1,
&amp;lt;

2 , etc., are the so-called generalized external forces which

act in such a direction as to increase the values of the corresponding
coordinates.

The form of the function which determines the kinetic potential

H depends on the particular nature of the system to which the principle

of least action is being applied, and it is one of the chief tasks of

general physics to discover the form of the function in the various

fields of mechanical, electrical and thermodynamic investigation.

As soon as we have found out experimentally what the form of H is

for any particular field of investigation, the principle of least action,

as expressed by equation (135), becomes the basic equation for the

mathematical development of the field in question, a development
which can then be carried out by well-known methods.

The special task for the theory of relativity will be to find a general

relation applicable to any kind of a system, which shall connect the

value of the kinetic potential H as measured with respect to a set of

coordinates S with its value H f

as measured with reference to another

set of coordinates S f which is in motion relative to S. This relation

will of course be of such a nature as to agree with the principle of the

relativity of motion, and in this way we shall introduce the principle

of relativity at the very start into the fundamental equation for all

fields of dynamics.

Before proceeding to the solution of that problem we may put
the principle of least action into another form which is sometimes

more convenient, by obtaining the equations for the motion of a

system in the so-called Lagrangian form.

108. The Equations of Motion in the Lagrangian Form. To ob

tain the equations of motion in the Lagrangian form we may evidently
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rewrite our fundamental equation (135) in the form

^(dH dH dH dH
( TT 5 *i + ^T 5^ 2 + + TT d* 1 + ^T 5^ 2 +

Ji! \ofa 0^2 0^1 d0 2

+ $i5&amp;lt;/&amp;gt;i + ^502 +
)
dt = 0.

We have now, however,

d d
60i =

jt
(60!), 6&amp;lt; 2

=
^ (60 2), etc.,

which gives us

or, since 60i, 60 2 , etc., are by hypothesis zero at times 1 and Z2 ,
we

obtain

etc.

On substituting these expressions in (138) we obtain

and since the variations of 0i, fa, etc., are entirely independent and

the limits of integration ti and t z are entirely at our disposal, this

equation will be true only when each of the following equations is

true. And these are the equations of motion in the desired Lagrangian
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form,

^d# _d#
at d(f)i d(f)\

d_m_BH_ = ^
(139 &amp;gt;

dt d(f)2 C/02

etc.

In these equations H is the kinetic potential of a system whose

state is determined by the generalized coordinates
&amp;lt;/&amp;gt;i, $ 2 , etc., and

their time derivatives
&amp;lt;i, 2 , etc., where

3&amp;gt;i,

&amp;lt;

2 , etc., are the gener

alized external forces acting on the system in such a sense as to tend

to increase the values of the corresponding generalized coordinates.

109. Introduction of the Principle of Relativity. Let us now in

vestigate the relation between our dynamical principle and the prin

ciple of the relativity of motion. To do this we must derive an equa
tion for transforming the kinetic potential H for a given system
from one set of coordinates to another. In other words, if S and S
are two sets of reference axes, S f

moving past S in the X-direction

with the velocity Y, what will be the relation between H and H
,

the values for the kinetic potential of a given system as measured

with reference to S and S f

It is evident from the theory of relativity that our fundamental

equation (135) must hold for the behavior of a given system using

either set of coordinates S or
,
so that both of the equations

f
2

(dH + W)dt = and f (BH
f + W )dt

= (140)
J

t-i Jtif

or

f
2

(dH + W)dt = f
2

(dH + W )dt =
J

t-i vti*

must hold for a given process, where it will be necessary, of course,

to choose the limits of integration ti and t z , t\ and t 2 wide enough

apart so that for both sets of coordinates the varied motion will be

completed within the time interval. Since we shall find it possible

now to show that in general f Wdt = f Wdt
,
we shall be able to

obtain from the above equations a simple relation between H and H .

110. Relation between f W dt and / Wdt. To obtain the desired
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proof we must call attention in the first place to the fact that all

kinds of force which can act at a given point must be governed by

the same transformation equations when changing from system S to

system S . This arises because when two forces of a different nature

are of such a magnitude as to exactly balance each other and produce

no acceleration for measurements made with one set of coordinates

they must evidently do so for any set of coordinates (see Chapter IV,

Section 42). Since we have already found transformation equations

for the force acting at a point, in our consideration of the dynamics

of a particle, we may now use these expressions in general for the

evaluation / W dt .

W is the work which would be done by the external forces if at

any instant t we should displace our system from its actual con

figuration to the simultaneous configuration on the displaced path.

Hence it is evident that / W dt will be equal to a sum of terms of the

type

(F x Sx
f + Fy 6 y + Fz 8, )dt ,

where F x ,
F y ,

F z ,
is the force acting at a given point of the system

and 8x
f

, by ,
bz are the displacements necessary to reach the corre

sponding point on the displaced path, all these quantities being

measured with respect to S .

Into this expression we may substitute, however, in accordance

with equations (61), (62), (63) and (13), the values

c2

F K~I

=
V
C
~

(141)

dt =
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We may also make substitutions for dx
, dy and dz in terms of

dx, dy and dz, but to obtain transformation equations for these quanti

ties is somewhat complicated owing to the fact that positions on the

actual and displaced path, which are simultaneous when measured

with respect to S
,
will not be simultaneous with respect to S. We

have denoted by t the time in system S when the point on the actual

path has the position x
, y

f

,
z and simultaneously the point on the

displaced path has the position (x
r + dx ), (y

f + 5y
r

), (z + dz ) 9

when measured in system S
,
or by our fundamental transformation

equations (9), (10) and (11) the positions K(X + Vt ), y ,
z and

K([X + dx ] + Vt ), (y + dy ), (z + dz ) when measured in system S.

If now we denote by tA and tD the corresponding times in system S

we shall have, by our fundamental transformation equation (12),

and we see that in system S the point has reached the displaced

position at a time later than that of the actual position by the amount

KV
b -tA=--f 8x

&amp;gt;

and, since during this time-interval the displaced point would have

moved, neglecting higher-order terms, the distances

jr*. v
KV . . .*V

these quantities must be subtracted from the coordinates of the

displaced point in order to obtain a position on the displaced path

which will be simultaneous with tA as measured in system S. We
obtain for the simultaneous position on the displaced path

xV vV
K([X + dx

f

] + Vt )
- K -5- 8x

9 y + dy
f - K

y
x f

t

c c

Z + dZ
f - K dX

f

,
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and for the corresponding position on the actual path

K(x + vf), y ,
*

,

and obtain by subtraction

8x =

By = 5y
- K 5x

} (142)

zV
5z = dz - K &c .

c2

Substituting now these equations, together with the other trans

formation equations (1.41), in our expression we obtain

i&quot; &quot; 1 &quot;

(143)

- F - te &quot;

We thus see that we must always have the general equality

/ W dt = f Wdt. (144)

111. Relation between H and H. Introducing this equation into

our earlier expression (140) we obtain as a general relation between

H and H

f dH dt = f dHdt. (145)

Restricting ourselves to systems of such a nature that we can
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assign them a definite velocity u = xi + yj + ^k, we can rewrite

this expression in the following form, where by H& and HA we denote

the values of the kinetic potential respectively on the displaced and

actual paths

J SH dt - J HJdt - f HA dt = J HA (
1 - (* +

dt
c

-* = HDdt- HAdt,

and hence obtain for such systems the simple expression

zj/ _
H

( xV\K
(

1 -^)
I y/

2
I ~tf

Noting the relation between \l 1 and \/ 1 given in equation
c * cV

(17), this can be rewritten

TTf TT
1 1

(146)

and this is the expression which we shall find most useful for our

future development of the consequences of the theory of relativity.

Expressing the requirement of the equation in words we may say
TT

that the theory of relativity requires an invariance of .
--- in the

Lorentz transformation.

112. As indicated above, the use of this equation is obviously

restricted to systems moving with some perfectly definite velocity u.

Systems satisfying this condition would include particles, infinitesimal

portions of continuous systems, and larger systems in a steady state.

113. Our general method of procedure in different fields of investi

gation will now be to examine the expression for- kinetic potential

which is known to hold for the field in question, provided the velocities

involved are low and by making slight alterations when necessary,
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see if this expression can be made to agree with the requirements of

equation (146) without changing its value for low velocities. Thus

it is well known, for example, that, in the case of low velocities, for a

single particle acted on by external forces the kinetic potential may
be taken as the kinetic energy im w2

. For relativity mechanics, as

will be seen from the developments of Chapter VII, we may take for

the kinetic potential, m^~ ^ 1
2 ,

an expression which, except for

an additive constant, becomes identical with %m y? at low velocities,

and which at all velocities agrees with equation (146).

10



CHAPTER X.

THE DYNAMICS OF ELASTIC BODIES.

We shall now treat with the help of the principle of least action

the rather complicated problem of the dynamics of continuous elastic

media. Our considerations will extend the appreciation of the inti

mate relation between mass and energy which we found in our treat

ment of the dynamics of a particle. We shall also be able to show

that the dynamics of a particle may be regarded as a special case

of the dynamics of a continuous elastic medium, and to apply our

considerations to a number of other important problems.

114. On the Impossibility of Absolutely Rigid Bodies. In the

older treatises on mechanics, after considering the dynamics of a

particle it was customary to proceed to a discussion of the dynamics

of rigid bodies. These rigid bodies were endowed with definite and

nuchangeable size and shape and hence were assigned five degrees

of freedom, since it was necessary to state the values of five variables

completely to specify their position in space. As pointed out by

Laue, however, our newer ideas as to the velocity of light as a limiting

value will no longer permit us to conceive of a continuous body as

having only a finite number of degrees of freedom. This is evident

since it is obvious that we could start disturbances simultaneously

at an indefinite number of points in a continuous body, and as these

disturbances cannot spread with infinite velocity it will be necessary

to give the values of an infinite number of variables in order com

pletely to specify the succeeding states of the system. For our newer

mechanics the nearest approach to an absolutely rigid body would

of course be one in which disturbances are transmitted with the

velocity of light. Since, then, the theory of relativity does not

permit rigid bo-dies we may proceed at once to the general theory of

deformable bodies.

PART I. STRESS AND STRAIN.

115. Definition of Strain. In the more familiar developments of

the theory of elasticity it is customary to limit the considerations to

130
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the case of strains small enough so that higher powers of the dis

placements can be neglected, and this introduces considerable simpli

fication into a science which under any circumstances is necessarily

one of great complication. Unfortunately for our purposes, we

cannot in general introduce such a simplification if we wish to apply

the theory of relativity, since in consequence of the Lorentz shortening

a body which appears unstrained to one observer may appear tre

mendously compressed or elongated to an observer moving with a

different velocity. The best that we can do will be arbitrarily to

choose our state of zero deformation such that the strains will be

small when measured in the particular system of coordinates S in

which we are specially interested.

A theory of strains of any magnitude was first attempted by

Saint-Venant and has been amplified and excellently presented by

Love in his Treatise on the Theory of Elasticity, Appendix to Chapter I.

In accordance with this theory, the strain at any point in a body is

completely determined by six component strains which can be defined

by the following equations, wherein (u, v, w) is the displacement of a

point having the unstrained position (z, y, z} :

_ du

yy
=

d-V + * &amp;lt;^V ( d
&quot;V ( ~

dw

(148)
dw dv du du dv dv dw dw

~dy
+

dz
+

dy to* dy d* 9y dz*

dw du du du
dv_ dv_

dw dw

fo
+

fc
+ tote

+ te~d~zdx dz

du du du du dv dv dw dw

It will be seen that these expressions for strain reduce to those

familiar in the theory of small strains if such second-order quantities as.

.or can be neglected.
dx J dy dz
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116. A physical significance for these strain components will be

obtained if we note that it can be shown from geometrical considera

tions that lines which are originally parallel to the axes have, when

strained, the elongations

e x = VI + 2e xx - 1,

(149)

and that the angles between lines originally parallel to the axes are

given in the strained condition by the expressions

cos 0u =

cos 9 XZ = **-=, (150)

COS VX y
=

Geometrical considerations are also sufficient to show that in

case the strain is a simple elongation of amount e the following equa

tion will be true:

yz xz xy
P i I,,* n ci \~ ~

2
I
2
~
m*

~
n*

~
2mn 2ln

~
2lm

where I, m, n are the cosines which determine the direction of the

elongation.

117. Definition of Stress. We have just considered the expres

sions for the strain at a given point in an elastic medium; we may
now define stress in terms of the work done in changing from one

.state of strain to another. Considering the material contained in

unit volume when the body is unstrained, we may write, for the work

done by this material on its surroundings when a change in strain

takes place,
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dW = 8E = txx 8e xx + t vy d yy + zz5e* 2

(152)

and this equation serves to define the stresses t rx ,
t yv ,

etc. In case

the strain varies from point to point we must consider of course the

work done per unit volume of the unstrained material. In case the

strains are small it will be noticed that the stresses thus defined are

identical with those used in the familiar theories of elasticity.

118. Transformation Equations for Strain. We must now prepare

for the introduction of the theory of relativity into our considerations,

by determining the way the strain at a given point P appears to ob

servers moving with different velocities. Let the point P in question

be moving with the velocity u = xi + 2/j + zk as measured in sys

tem S.
,
Since the state of zero deformation from which to measure

strains can be chosen perfectly arbitrarily, let us for convenience

take the strain as zero as measured in system S, giving us

xi = fyy
= *zz = tyz

= *xz =
*xy

= 0. (153)

What now will be the strains as measured by an observer moving

along with the point P in question? Let us call the system of coordi

nates used by this observer S. It is evident now from our considera

tions as to the shape of moving systems presented in Chapter V that

in system S the material in the neighborhood of the point in question

will appear to have been elongated in the direction of motion in the

/ ~u*

ratio of 1 : -x/l
. Hence in system S the strain will be an elonga-

c

tion

= - 4= - 1 (154)

in the line determined by the direction cosines

m =
,u

(155)

We may now calculate from this elongation the components of

strain by using equation (151). We obtain
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vz

2c2

c2

(156)

xy

1 -

and these are the desired equations for the strains at the point P,

the accent indicating that they are measured with reference to a

system of coordinates S moving along with the point itself.

119. Variation in the Strain. We shall be particularly interested

in the variation in the strain as measured in S when the velocity

experiences a small variation Su, the strains remaining zero as mea

sured in S. For the sake of simplicity let us choose our coordinates

in such a way that the X-axis is parallel to the original velocity, so

that our change in velocity will be from u = xi to

u + &amp;lt;5u
=

(x + dx)i + dyj

Taking Su small enough so that higher orders can be neglected, and

noting that y = z =
0, we shall then have, from equations (156),
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6e xx = 7 o\, ~5 &c, 6e vu
=

0,

5e% 2
=

0, 5e%, =
0, (157)

5e &quot;

= 7~ ~7^\7z d^ 8e *v
=

7 ^\~2 8V-

We shall also be interested in the variation in the strain as measured

in S produced by a variation in the strain as measured in S. Con

sidering again for simplicity that the X-axis is parallel to the motion

of the point, we must calculate the variation produced in e xx ,
e vv ,

etc., by changing the values of exx ,
e yy , etc., from zero to 5exx ,

8eyy ,
etc.

The variation dexx will produce a variation in e xx whose amount

can be calculated as follows: By equations (149) a line which has unit

length and is parallel to the X-axis in the unstrained condition will

have when strained the length A/1 + 2exx when measured in system S

and Vl + 2e xx when measured in system S. Since the strain in

system S is small, the line remains sensibly parallel to the X-axis,

which is also the direction of motion, and these quantities will be

connected in accordance with the Lorentz shortening by the equation

Vl + 2exx = A/1
-

-J VT+ 2c xx . (158)
* c

Carrying out now our variation 5exx , neglecting e xx in comparison

with larger quantities and noting that except for second order quanti

ties,
1

tif V A ^^;

^ c^&quot;

we obtain

s o
gc

(160)

Since the variations de yv ,
5e zz ,

8e y , affect only lines which are at

right angles to the direction of motion, we may evidently write

8e yy
= 8 VV) de zz

= 5e zz , 5e% 2
= &,. (161)
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To calculate 8e xz we may note that in accordance with equations

(150) we must have

cos 6 XZ =
Vl + 2 M Vl + 2e,~,

C S9 &quot;

=
Vl + 2eCvi + 2e,-

where X2 is the angle between lines which in the unstrained condition

are parallel to the X and Z axes respectively. In accordance with

the Lorentz shortening, however, we shall have

cos exz = - - cos X2 .

Introducing this relation, remembering that e xx = e 22
= t zz

=
0, and

noting equation (159), we obtain

(162)

(&amp;gt;-*)

and similarly

( -! )

We may now combine these equations (160), (161), (162) and

(163) with those for the variation in strain with velocity and obtain

the final set which we desire:

1 x 1
5x

de yy de yy ,

8e zz
= 5e zz ,

dty Z
=

5ty Z ,

&quot;o-?r (-
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These equations give the variation in the strain measured in

system S at a point P moving in the X direction with velocity u,

provided the strains are negligibly small as measured in S.

PART II. INTRODUCTION OF THE PRINCIPLE OF LEAST ACTION.

120. The Kinetic Potential for an Elastic Body. We are now in

a position to develop the mechanics of an elastic body with the help

of the principle of least action. In Newtonian mechanics, as is well

known, the kinetic potential for unit volume of material at a given

point P in an elastic body may be put equal to the density of kinetic

energy minus the density of potential energy, and it is obvious that

our choice for kinetic potential must reduce to that value at low

velocities. Our choice of an expression for kinetic potential is further

more limited by the fundamental transformation equation for kinetic

potential which we found in the last chapter

(146)

Taking these requirements into consideration, we may write for

the kinetic potential per unit volume of the material at a point P

moving with the velocity u the expression

H = -

where E is the energy as measured in system S of the amount of

material which in the unstrained condition (i. e., as measured in

system S) is contained in unit volume.

The above expression obviously satisfies our fundamental trans

formation equation (146) and at low velocities reduces in accordance

with the requirements of Newtonian mechanics to

H = JroV - E,

provided we introduce the substitution made familiar by our previous
ElO

work, m =
.
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121. Lagrange s Equations. Making use of this expression for the

kinetic potential in an elastic body, we may now obtain the equations

of motion and stress for an elastic body by substituting into Lagrange s

equations (139) Chapter IX.

Considering the material at the point P contained in unit volume

in the unstrained condition, we may choose as our generalized co

ordinates the six component strains e xx ,
e yy , etc., with the corre

sponding stresses t xxj tyy , etc., as generalized forces, and the

three coordinates x, y, z which give the position of the point with the

corresponding forces Fx ,
Fy and F z .

It is evident that the kinetic potential will be independent of

the time derivatives of the strains, and if we consider cases in which

E is independent of position, the kinetic potential will also be inde

pendent of the absolute magnitudes of the coordinates x, y and 2.

Substituting in Lagrange s equations (139), we then obtain

-(-
(165)

dtdx\

dtd$\

d d

dt dl

1 - - =

1 - = (166)
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We may simplify these equations, however; by performing the

indicated differentiations and making suitable substitutions, we have

dE xx dE xx de

de xx de x de xx

But in accordance with equation (152) we may write

dE_ _ _ /

-j
O l XX
xx

and from equations (164) we may put

de xx

de xx
2

Making the substitutions in the first of the Lagrangian equations we
obtain

-

V 1 -
*

122. Transformation Equations for Stress. Similar substitutions

can be made in all the equations of stress, and we obtain as our set

of transformation equations

(167)

123. Value of E. With the help of these transformation equations

for stress we may calculate the value of E ,
the energy content, as

measured in system S, of material which in the unstrained condition

is contained in unit volume.

Consider unit volume of the material in the unstrained condition

and call its energy content w. Give it now the velocity u =
x,

keeping its state of strain unchanged in system S. Since the strain
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is not changing in system S, the stresses t xx , etc., will also be constant

in system S. In system S, however, the component strain will

change in accordance with equations (156) from zero to

x* 1

xx
2c2 / _w_

2V
V

1
~c2

;

and the corresponding stress will be given at any instant by the

expression just derived,

txx being, as we have just seen, a constant. We may then write for

E the expression

1 xz

~2c 2
E --^d

Noting that it = x we obtain on integration,

po _
(168)

as the desired expression for the energy as measured in system S

contained in the material which in system S is unstrained and has

unit volume.

124. The Equations of Motion in the Lagrangian Form. We are

now in a position to simplify the three Lagrangian equations (166)

for F XJ Fy and F z . Carrying out the indicated differentiation we have

u* dE

c
2 dx

and introducing the value of E given by equation (168) we obtain

w + t,

(169)
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Simple calculations will also give us values for Fv and F g . We have

from (166)

_y_ I _^
2 aE~

2 c2 \ c2
a?&amp;gt;

But since we have adapted our considerations to cases in which the

direction of motion is along the X-axis, we have y = 0; furthermore

we may substitute, in accordance with equations (152), (157) and (167),

dE

dy

1 -
t:

dy

We thus obtain as our three equations of motion

w-t-txx x

Fy=
dt(

txy
^)&amp;gt;

(170)

In these equations the quantities F x ,
Fy and F 2 are the components

of force acting on a particular system, namely that quantity of material

which at the instant in question has unit volume. Since the volume

of this material will in general be changing, F x ,
Fv and F, do not give

us the force per unit volume as usually defined. If we represent,

however, by fx , fv and fg the components of force per unit volume,

we may rewrite these equations in the form

V - -
^ x

~
dt

(171)
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where by 67 we mean a small element of volume at the point in

question.

125. Density of Momentum. Since we customarily define force as

equal to the time rate of change of momentum, we may now write for

the density of momentum g at a point in an elastic body which is

moving in the X direction with the velocity u = x

t xx X
(172)

It is interesting to point out that there are components of momen

tum in the Y and Z directions in spite of the fact that the material

at the point in question is moving in the X direction. We shall

later see the important significance of this discovery.

126. Density of Energy. It will be remembered that the forces

whose equations we have just obtained are those acting on unit

volume of the material as measured in system S, and hence we are

now in a position to calculate the energy density of our material.

Let us start out with unit volume of our material at rest, with the

energy content w and determine the work necessary to give it the

velocity u = x without change in stress or strain. Since the only

component of force which suffers displacement is F x ,
we have

+ (w +

W + t xx X
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At a given point in an elastic medium which is moving in the X
direction with the velocity u =

x, we have for the components of

stress

t\* i *
u- ,---

2
, *-

V 1 -^
(167)

i t
&amp;lt;&amp;gt; XZ I XV

I I/

V 1 - ĉ* \ c 2

For the density of energy at the point in question we have

w = W
r-^-^f

-
tx*. (173)

For the density of momentum we have

g* = 7== ~2 Sv = **v-2 , g* = ^V (172 &amp;gt;

y
1
--?

PART III. SOME MATHEMATICAL RELATIONS.

Before proceeding to the applications of these results which we

have obtained from the principle of least action, we shall find it de

sirable to present a number of mathematical relations which will

later prove useful.

128. The Unsymmetrical Stress Tensor t. We have defined the

components of stress acting at a point by equation (152)

where 5W is the work which accompanies a change in strain and is

performed on the surroundings by the amount of material which was

contained in unit volume in the unstrained state. Since for con

venience we have taken as our state of zero strain the condition of

the body as measured in system S, it is evident that the components

^*x, t vv , etc., may be taken as the forces acting on the faces of a unit

cube of material at the point in question, the first letter of the sub-
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script indicating the direction of the force and the second subscript

the direction of the normal to the face in question.

Interpreting the components of stress in this fashion, we may
now add three further components and obtain a complete tensor

i.

t = -\t yx tyy t yg , (174)

The three new components tyx ,
t zx ,

t zy are forces acting on the

unit cube, in the directions and on the faces indicated by the sub

scripts. A knowledge of their value was not necessary for our develop

ments of the consequences of the principle of least action, since it was

possible to obtain an expression for the work accompanying a change

in strain without their introduction. We shall find them quite im

portant for our later considerations, however, and may proceed to

determine their value.

t yx is the force acting in the Y direction tangentially to a face of

the cube perpendicular to the X-axis, and measured with a system
of coordinates S. Using a system of coordinates S which is stationary

with respect to the point in question, we should obtain, for the measure

ment of this force,

.o
t yx

-

in accordance with our transformation equation for force (62), Chapter
VI. Similarly we shall have the relation

t X y
= txy .

In accordance with the elementary theory of elasticity, however, the

forces t yx and t xy which are measured by an observer moving with

the body will be connected by the relation

/

^ vx
* xy

t xy being larger than t yx in the ratio of the areas of face upon which

they act. Combining these three equations, and using similar methods
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for the other quantities, we can obtain the desired relations

^*- I 1
-?)*&quot;

^ =
(l-^r)u U-&amp;lt;f (175)

We see that t is an unsymmetrical tensor.

129. The Symmetrical Tensor p. Besides this unsymmetrical ten

sor t we shall find it desirable to define a further tensor p by the

equation
p = t + gu. (176)

We shall call gu the tensor product of g and u and may indicate

tensor products in general by a simple juxtaposition of vectors, gu is

itself a tensor with components as indicated below:

f g xu x g xu y g xu z ,

gu = J g vu x g yu y g yu z , (177)

I g zu x g zu y g zu z .

Unlike t, p will be a symmetrical tensor, since we may show, by

substitution of the values for g and u already obtained, that

Pyx =
Pxy, Pzx

=
Pxz, Pzy

=
Pvz- (178)

Consider for example the value of p yx ;
we have from our definition

Pyx =
tyx + QyUx,

and by equations (175) and (172) we have

Ux
Q y

~
xy

and hence by substitution obtain

Pyx = *

We also have, however, by definition

and since for the case we are considering u y
=

0, we arrive at the

equality

Pxy = Pyx-

The other equalities may be shown in a similar way.
11
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130. Relation between div t and tn . At a given point P in our

elastic body we shall define the divergence of the tensor t by the equa

tion

dt zx dt zy dt zz

^&quot;~*T&quot;~dF/

where i, j and k are unit vectors parallel to the axes, div t thus being

an ordinary vector. It will be seen that div t is the elastic force

acting per unit volume of material at the point P.

Considering an element of surface dS, we shall define a further

vector tn by the equation

tn =
(txx COS a + txy COS ]8 + t xz COS 7)!

+ (t yx cos a + tyy cos )8 + t yg cos 7)j (180)

+ (tzx cos a + t zy cos j8 + t zz cos 7)k,

where cos a, cos /3 and cos 7 are the direction cosines of the inward-

pointing normal to the element of surface dS.

Considering now a definite volume V enclosed by the surface S,

it is evident that div t and tn will be connected by the relation

JdivW
=
ftndS, (181)

where the symbol indicates that the integration is to be taken over

the whole surface which encloses the volume V. This equation is

of course merely a direct application of Gauss s formula, which states

in general the equality

=
I (P cos a + Q cos |8 + R cos y)dS,

J%

where P, Q and R may be any functions of x, y and z.
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We shall also find use for a further relation between div t and tn .

Consider a given point of reference 0, and let r be the radius vector

to any point P in the elastic body; we can then show with the help
of Gauss s Formula (182) that

-

J (rX div t)dV =
J&quot;

(r X tJdS

f[(t
y .
- UJk + (**.

- Uik + (txv
-

t yjc)ij]dV,

where X signifies as usual the outer product. Taking account of

equations (172) and (175) this can be rewritten

(183)

131. The Equations of Motion in the Eulerian Form. We saw in

sections (124) and (125) that the equations of motion in the Lagran-

gian form might be written

where f is the density of force acting at any point and g is the density

of momentum.

Provided that there are no external forces acting and f is pro

duced solely by the elastic forces, our definition of the divergence of a

tensor will now permit us to put

f = - div t,

and write for our equation of motion

dg
Expressing in terms of partial differentials, and putting

d(5V)
,

= 57 div u
dt

we obtain
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Our symmetrical tensor p, however, was defined by the equation (176)

p = t + gu,

and hence we may now write our equations of motion in the very

beautiful Eulerian form

- div p -
|5

. (184)

We shall find this simple form for the equations of motion very

interesting in connection with our considerations in the last chapter.

PART IV. APPLICATIONS OF THE RESULTS.

We may now use the results which we have obtained from the

principle of least action to elucidate various problems concerning

the behavior of elastic bodies.

132. Relation between Energy and Momentum. In our work on

the dynamics of a particle we found that the mass of a particle was

equal to its energy divided by the square of the velocity of light, and

hence have come to expect in general a necessary relation between

the existence of momentum in any particular direction and the trans

fer of energy in that same direction. We find, however, in the case

of elastically stressed bodies a somewhat more complicated state of

affairs than in the case of particles, since besides the energy which is

transported bodily by the motion of the medium an additional quan

tity of energy may be transferred through the medium by the action

of the forces which hold it in its state of strain. Thus, for example,

in the case of a longitudinally compressed rod moving parallel to its

length, the forces holding it in its state of longitudinal compression

will be doing work at the rear end of the rod and delivering an equal

quantity of energy at the front end, and this additional transfer of

energy must be included in the calculation of the momentum of the

bar.

As a matter of fact, an examination of the expressions for momen
tum which we obtained from the principle of least action will show

the justice of these considerations. For the density of momentum
in the X direction we obtained the expression

/v

Qx = (w + t xx) ,

c
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and we see that in order to calculate the momentum in the X direc

tion we must consider not merely the energy w which is being bodily

carried along in that direction with the velocity z, but also must take

into account the additional flow of energy which arises from the

stress txx . .As we have already seen in Section 128, this stress t xx can

be thought of as resulting from forces which act on the front and

rear faces of a centimeter cube of our material. Since the cube is

moving with the velocity x, the force on the rear face will do the

work txxx per second and this will be given up at the forward face.

We thus have an additional density of energy-flow in the X direction

of the magnitude t xxx and hence a corresponding density of momen-

txxx
turn .

c2

Similar considerations explain the interesting occurrence of com

ponents of momentum in the Y and Z directions,

in spite of the fact that the material involved is moving in the X
direction. The stress txy ,

for example, can be thought of as resulting

from forces which act tangentially in the X direction on the pair of

faces of our unit cube which are perpendicular to the Y axis. Since

the cube is moving in the X direction with the velocity x, we shall

have the work txyx done at one surface per second and transferred to

the other, and the resulting flow of energy in the X direction is ac-

txvx
companied by the corresponding momentum .

133. The Conservation of Momentum. It is evident from our

previous discussions that we may write the equation of motion for

an elastic medium in the form

fBV =

where g is the density of momentum at any given point and f is the

force acting per unit volume of material. We have already obtained ,

from the principle of least action, expressions (172) which permit

the calculation of g in terms of the energy density, stress and velocity

at the point in question, and our present problem is to discuss some

what further the nature of the force f .
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We shall find it convenient to analyze the total force per unit

volume of material f into those external forces iexl . like gravity, which

are produced by agencies outside of the elastic body and the internal

force tint- which arises from the elastic interaction of the parts of the

strained body itself. It is evident from the way in which we have

defined the divergence of a tensor (179) that for this latter we may
write

fin*.
= - div t. (185)

Our equation of motion then becomes

(iext . -divt)67 = ~^, (186)
(MI

or, integrating over the total volume of the elastic body,

ft~..dV- fdivtdV
=
~fgdV

=
^j-,

(187)

where G is the total momentum of the body. With the help of the

purely analytical relation (181) we may transform the above equation

into

s-f, (188)

where tn is defined in accordance with (180) so that the integral

XtndS becomes the force exerted by the surroundings on the sur

face of the elastic body.

In the case of an isolated system both fext . and t n would evidently

be equal to zero and we have the principle of the conservation of

momentum.

134. The Conservation of Angular Momentum. Consider the

radius vector r from a point of reference O to any point P in an elastic

body; then the angular momentum of the body about O will be

M = / (r X g)dV,

and its rate of change will be
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Substituting equation (186), this may be written

X ft.W --
(r X div t)dV + (u X

or, introducing the purely mathematical relation (183) we have,

C
X fea)dV + (r X t.)dS. (190)

r/TVT C

-#
=
J

We see from this equation that the rate of change of the angular

momentum of an elastic body is equal to the moment of the external

forces acting on the body plus the moment of the surface forces.

In the case of an isolated system this reduces to the important

principle of the conservation of angular momentum.

135. Relation between Angular Momentum and the Unsymmetrical

Stress Tensor. The fact that at a point in a strained elastic medium

there may be components of momentum at right angles to the motion

of the point itself, leads to the interesting conclusion that even in a

state of steady motion the angular momentum of a strained body
will in general be changing.

This is evident from equation (189), in the preceding section,

which may be written

In the older mechanics velocity u and momentum g were always in

the same direction so that the last term of this equation became zero.

In our newer mechanics, however, we have found (172) components

of momentum at right angles to the velocity and hence even for a body

moving in a straight line with unchanging stresses and velocity we find

that the angular momentum is increasing at the rate

(192)

and in order to maintain the body in its state of uniform motion we

must apply external forces with a turning moment of this same amount.

The presence of this increasing angular momentum in a strained

body arises from the unsymmetrical nature of the stress tensor, the inte

gral j (u X g)dV being as a matter of fact exactly equal to the integral
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over the same volume of the turning moments of the unsymmetrical

components of the stress. Thus, for example, if we have a body mov

ing in the X direction with the velocity u = xi we can easily see from

equations (172) and (175) the truth of the equality

(u X g) = [(t v ,
-

(t xg
-

(txy
-

t yt)ij].

136. The Right-Angled Lever. An interesting example of the

principle that in general a turning
_^ 7 *^

1 moment is needed for the uniform

translatory motion of a strained body
is seen in the apparently paradoxical

case of the right-angled lever.

Consider the right-angled lever

shown in figure 14. This lever is sta

tionary with respect to a system of

coordinates S. Referred to S the

two lever arms are equal in length :

FIG. 14.

and the lever is in equilibrium under the action of the equal forces

Let us now consider the equilibrium as it appears, using a system

of coordinates S with reference to which the lever is moving in X
direction with the velocity V. Referred to this new system of co

ordinates the length li of the arm which lies in the Y direction will be

the same as in system S, giving us

Zi
= Zi.

But for the other arm which lies in the direction of motion we shall

have, in accordance with the Lorentz shortening,

For the forces F t and F 2 we shall have, in accordance with our equa-
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tions for the transformation of force (61) and (62),

771 771

r 2
= r

We thus obtain for the moment of the forces around the pivot B

V*\ P o,ol
/2
_ F ,^

&amp;lt;? )
~ Fltl

c&amp;gt;

Flh
~*&amp;gt;

and are led to the remarkable conclusion that such a moving lever

will be in equilibrium only if the external forces have a definite turning

moment of the magnitude given above.

The explanation of this apparent paradox is obvious, however,

in the light of our previous discussion. In spite of the fact that the

lever is in uniform motion in a straight line, its angular momentum
is continually increasing owing to the fact that it is elastically strained,

and it can be shown by carrying out the integration indicated in

equation (192) that the rate of change of angular momentum is as a

V2

matter of fact just equal to the turning moment FA~
v2

This necessity for a turning moment FA can also be showi:

directly from a consideration of the energy flow in the lever. Since

the force FI is doing the work F\V per second at the point A, a stream

of energy of this amount is continually flowing through the lever

from A to the pivot B. In accordance with our ideas as to the rela

tion between energy and mass, this new energy which enters at A each

second has the mass ^- ,
and hence each second the angular mo

mentum of the system around the point B is increased by the amount

FiV V2

~& l
~ rl

c2

We have already found, however, exactly this same expression for

the moment of the forces around the pivot B and hence see that they

are of just the magnitude necessary to keep the lever from turning,

thus solving completely our apparent paradox.
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137. Isolated Systems in a Steady State. Our considerations have

shown that the density of momentum is equal to the density of energy

flow divided by the square of the velocity of light. If we have a

system which is in a steady internal state, and is. either isolated or

merely subjected to an external pressure with no components of force

tangential to the bounding surface, it is evident that the resultant

flow of energy for the whole body must be in the direction of motion,

and hence for these systems momentum and velocity will be in the

same direction without the complications introduced by a trans

verse energy flow.

Thus for an isolated system in a steady internal state we may
write,

(193)

-5

138. The Dynamics of a Particle. It is important to note that

particles are interesting examples of systems in which there will

obviously be no transverse component of energy flow since their

infinitesimal size precludes the action of tangential surface forces.

We thus see that the dynamics of a particle may be regarded as a

special case of the more general dynamics which we have developed

in this chapter, the equation of motion for a particle being

m
dt

in agreement with the work of Chapter VI.

139. Conclusion. We may now point out in conclusion the chief

results of this chapter. With the help of Einstein s equations for

spatial and temporal considerations, we have developed a set of

transformation equations for the strain in an elastic body. Using the

components of strain and velocity as generalized coordinates, we then

introduced the principle of least action, choosing a form of function
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for kinetic potential which agrees at low velocities with the choice

made in the older theories of elasticity and at all velocities agrees

with the requirements of the principle of relativity. Using the

Lagrangian equations, we were then able to develop all that is neces

sary for a complete theory of elasticity.

The most important consequence of these considerations is an

extension in our ideas as to the relation between momentum and

energy. We find that the density of momentum in any direction

must be placed equal to the total density of energy flow in that same

direction divided by the square of the velocity of light; and we find

that we must include in our density of energy flow that transferred

through the elastic body by the forces which hold it in its state of

strain and suffer displacement as the body moves. This involves in

general a flow of energy and hence momentum at right angles to the

motion of the body itself.

At present we have no experiments of sufficient accuracy so that

we can investigate the differences between this new theory of elasticity

and the older ones, and hence of course have found no experimental

contradiction to the new theory. It will be seen, however, from the

expressions for momentum that even at low velocities the conse

quences of this new theory will become important as soon as we

run across elastic systems in which very large stresses are involved.

It is also important to show that a theory of elasticity can be de

veloped which agrees with the requirements of the theory of relativity.

In fairness, it must, however, be pointed out in conclusion that since

our expression for kinetic potential was not absolutely uniquely deter

mined there may also be other theories of elasticity which will agree

with the principle of relativity and with all the facts as now known.
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THE DYNAMICS OF A THERMODYNAMIC SYSTEM.

We may now use our conclusions as to the relation between the

principle of least action and the theory of relativity to obtain informa

tion as to the behavior of thermodynamic systems in motion.

140. The Generalized Coordinates and Forces. Let us consider a

thermodynamic system whose state is defined by the generalized

coordinates volume v, entropy S and the values of x, y and z which

determine its position. Corresponding to these coordinates we shall

have the generalized external forces, the negative of the pressure,

p, temperature, T, and the components of force, F x ,
F y and F z .

These generalized coordinates and forces are related to the energy

change 8E accompanying a small displacement 6, in accordance with

the equation

5E = - 5W = -
pdv + TSS + F xdx + F ySy + F,5z. (194)

141. Transformation Equation for Volume. Before we can apply

the principle of least action we shall need to have transformation

equations for the generalized coordinates, volume and entropy.

In accordance with the Lorentz shortening, we may write the

following expression for the volume v of the system in terms of v as

measured with a set of axes $ with respect to which the system is

stationary :

x2 + y
2 + z2

c2

where u is the velocity of the system.

By differentiation we may obtain expressions which we shall find

useful,

5 = -^=, (195)

dV V

~Q^
== 7 I7r\l To

= 7 r9~\ ~^&amp;gt;

156
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142. Transformation Equation for Entropy. As for the entropy

of a thermodynamic system, this is a quantity which must appear

the same to all observers regardless of their motion. This invariance

of entropy is a direct consequence of the close relation between the

entropy of a system in a given state and the probability of that state.

Let us write, in accordance with the Boltzmann-Planck ideas as to

the interdependence of these quantities,

S = k log W,

where S is the entropy of the system in the state in question, fc is a

universal constant, and W the probability of having a microscopic

arrangement of molecules or other elementary constituent parts which

corresponds to the desired thermodynamic state. Since this prob

ability is evidently independent of the relative motion of the observer

and the system we see that the entropy of a system S must be an

invariant and may write

S = S. (197)

143. Introduction of the Principle of Least Action. The Kinetic

Potential. We are now in a position to introduce the principle of

least action into our considerations by choosing a form of function

for the kinetic potential which will agree at low velocities with the

familiar principles of thermodynamics and will agree at all velocities

with the requirements of the theory of relativity.

If we use volume and entropy as our generalized coordinates, these

conditions are met by taking for kinetic potential the expression

H = - E\l --. (198)

This expression agrees with the requirements of the theory of

IT

relativity that . shall be an invariant (see Section 111) and

at low velocities reduces to H = E, which with our choice of

coordinates is the familiar form for the kinetic potential of a thermo

dynamic system.
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It should be noted that this expression for the kinetic potential

of a thermodynamic system applies of course only provided we pick

out volume v and entropy S as generalized coordinates.&quot; If, following

Helmholtz, we should think it more rational to take v as one coordinate

and a quantity whose time derivative is equal to temperature,
= T

7

,
as the other coordinate, we should obtain of course a different

expression for the kinetic potential; in fact should have under those

circumstances

H = (E - TS

Using this value of kinetic potential, however, with the corresponding

coordinates we should obtain results exactly the same as those which

we are now going to work out with the help of the other set of coordi

nates.

144. The Lagrangian Equations. Having chosen a form for the

kinetic potential we may now substitute into the Lagrangian equa
tions (139) and obtain the desired information with regard to the

behavior of thermodynamic systems.

Since we shall consider cases in which the energy of the system is

independent of the position in space, the kinetic potential will be

independent of the coordinates x, y and 2, depending only on their

time derivatives. Noting also that the kinetic potential is inde

pendent of the time derivatives of volume and entropy, we shall

obtain the Lagrangian equations in the simple form
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145. Transformation Equation for Pressure. We may use the first

of these equations to show that the pressure is a quantity which

appears the same to all observers regardless of their relative motion.

We have

U
*\ Ji

U23E
Ji u*

--?
= - V 1

-7&quot;ST
:= &quot; V 1

-7* dv dv

dE
But, in accordance with equation (194), p =

5-
. and in ac-

ov

cordance with equation (195),

dv 1

dv

which gives us the desired relation

p = P . (200)

Defining pressure as force per unit area, this result will be seen

to be identical with that which is obtained from the transformation

equations for force and area which result from our earliest considera

tions.

146. Transformation Equation for Temperature. The second of

the Lagrangian equations (199) will provide us information as to

measurements of temperature made by observers moving with different

velocities. We have
~
dE dS

dS dS

But, in accordance with equation (194), ^
= T and in accordance

r) Si

with (197) -r^r
= 1. We obtain as our transformation equation,

oo

~7&amp;gt;
(201)

T
and see that the quantity . is an invariant for the Lorentz

transformation
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147. The Equations of Motion for Quasistationary Adiabatic

Acceleration. Let us now turn our attention to the last three of the

Lagrangian equations. These are the equations for the motion of a

thermodynamic system under the action of external force. It is

evident, however, that these equations will necessarily apply only
to cases of quasistationary acceleration, since our development of

the principle of least action gave us an equation for kinetic potential

which was true only for systems of infinitesimal extent or large systems
in a steady internal state. It is also evident that we must confine our

considerations to cases of adiabatic acceleration, since otherwise the

value of E which occurs in the expression for kinetic potential might
be varying in a perfectly unknown manner.

The Lagrangian equations for force may be advantageously trans

formed. We have

= - (-1 ~
dtdx\~

E x__
I

_
it? 3E C

c2 V 1
~c2 dx

But by equations (194), (196) and (197) we have

8E

We obtain

dx
and

dx
= 0.

E

(202)

Similar equations may be obtained for the components of force in

the Y and Z directions and these combined to give the vector equation

(203)
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This is the fundamental equation of motion for the dynamics of a

thermodynamic system.

148. The Energy of a Moving Thermodynamic System. We may
use this equation to obtain an expression for the energy of a moving

thermodynamic system. If we adiabatically accelerate a thermo

dynamic system in the direction of its motion, its energy will increase

both because of the work done by the force

which produces the acceleration and because of the work done by the

pressure p = p which acts on a volume which is continually dimin

ishing as the velocity u increases, in accordance with the expression

/ u2

v A/I . Hence we may write for the total energy

E = E + -IT

E

V 1

pvE = -== - Pv I - - = -
P1 - (204)

149. The Momentum of a Moving Thermodynamic System. We
may compare this expression for the energy of a thermodynamic

system with the following expression for momentum which is evident

from the equation (203) for force:

c

We find again, as in our treatment of elastic bodies presented

in the last chapter, that the momentum of a moving system may be

calculated by taking the total flow of energy in the desired direction

12
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and dividing by c
2

. Thus, comparing equations (204) and (205),

we have

E pv
(206)

E
where the term -^

u takes care of the energy transported bodily along
c

pv
by the system and the term u takes care of the energy transferred

c

in the u direction by the action of the external pressure on the rear

and front end of the moving system.

150. The Dynamics of a Hohlraum. As an application of our con

siderations we may consider the dynamics of a hohlraum, since a

hohlraum in thermodynamic equilibrium is of course merely a special

example of the general dynamics which we have just developed. The

simplicity of the hohlraum and its importance from a theoretical

point of view make it interesting to obtain by the present method the

same expression for momentum that can be obtained directly but

with less ease of calculation from electromagnetic considerations.

As is well known from the work of Stefan and Boltzmann, the

energy content E and pressure p of a hohlraum at rest and in thermo

dynamic equilibrium are completely determined by the temperature

T and volume v in accordance with the equations

where a is the so-called Stefan s constant.

Substituting these values of E and p in the equation for the

motion of a thermodynamic system (203), we obtain

dt

4 avT* u
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hohlraum. In view of this equation we may write for the momentum
of a hohlraum the expression

It is a fact of significance that our dynamics leads to a result for

the momentum of a hohlraum which had been adopted on the ground
of electromagnetic considerations even without the express intro

duction of relativity theory.
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ELECTROMAGNETIC THEORY.

The Einstein theory of relativity proves to be of the greatest

significance for electromagnetics. On the one hand, the new electro

magnetic theory based on the first postulate of relativity obviously

accounts in a direct and straightforward manner for the results of the

Michelson-Morley experiment and other unsuccessful attempts to

detect an ether drift, and on the other hand also accounts just as

simply for the phenomena of moving dielectrics as did the older

theory of a stationary ether. Furthermore, the theory of relativity

provides considerably simplified methods for deriving a great many
theorems which were already known on the basis of the ether theory,

and gives us in general a clarified insight into the nature of electro

magnetic action.

151. The Form of the Kinetic Potential. In Chapter IX we in

vestigated the general relation between the principle of least action

and the theory of the relativity of motion. We saw that the develop

ment of any branch of dynamics would agree with the requirements

of relativity provided only that the kinetic potential H has such a form
TT

that the quantity ,

is an invariant for the Lorentz transfor

mation. Making use of this discovery we have seen the possibility

of developing the dynamics of a particle, the dynamics of an elastic

body, and the dynamics of a thermodynamic system, all of them in

forms which agree with the theory of relativity by merely introducing

slight modifications into the older expressions for kinetic potential in
TT

such a way as to obtain the necessary invariance for

In the case of electrodynamics, however, on account of the closely

interwoven historical development of the theories of electricity and

relativity, we shall not find it necessary to introduce any modification

164
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in the form of the kinetic potential, but may take for H the following

expression, which is known to lead to the familiar equations of the

Lorentz electron theory

(curl &amp;lt;t&amp;gt;)

2 /e u\ 1

^_? _&amp;lt;)&amp;gt;

. (?_|_ P
HU

f (209)

where the integration is to extend over the whole volume of the

system 7, e is the intensity of the electric field at the point in question,

&amp;lt;(&amp;gt;

is the value of the vector potential, p the density of charge and u its

velocity.*

Let us now show that the expression which we have chosen for

kinetic potential does lead to the familiar equations of the electron

theory.

152. The Principle of Least Action. If now we denote by f the

force per unit volume of material exerted by the electromagnetic

action it is evident that we may write in accordance with the principle

of least action (135)

= 0, (210)

where 5r is the variation in the radius vector to the particle under

consideration, and where the integration is to be taken over the

whole volume occupied by the system and between two instants of

time ti and tz at which the actual and displaced configurations of the

system coincide.

153. The Partial Integrations. In order to simplify this equation,

we shall need to make use of two results which can be obtained by

partial integrations with respect to time and space respectively.

Thus we may write

*

dt(abb} = f ad(bb) =
[a56]g

-
J dt\-^

*
Strictly speaking this expression for kinetic potential is not quite correct,

since kinetic potential must have the dimensions of energy. To complete the equa

tion and give all the terms their correct dimensions, we could multiply the first term

by the dielectric inductivity of free space e, and the last two terms by the magnetic

permeability i*. Since, however, e and n have the numerical value unity with the

usual choice of units, we shall not be led into error in our particular considerations

if we omit these factors.
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or, since the displaced and actual motions coincide at ti and 2 ,

fdt(adb)
= ~

We may also write

f dV
(
a
^)

= f dydz(adb) =

or, since we are to carry out our integrations over the whole volume

occupied by the system, we shall take our functions as zero at the

limits of integration and may write

/&quot;( )--/&quot;(=)

Since similar considerations apply to derivatives with respect to the

other variables y and z, we can also obtain

/ dV a div b = - / dV b - grad a, (213)

fdVa.- curl b = / dV b - curl a. (214)

154. Derivation of the Fundamental Equations of Electromagnetic

Theory. Making use of these purely mathematical relationships we

are now in a position to develop our fundamental equation (210).

Carrying out the indicated variation, noting that Su =
, and

making use of (211) and (214) we easily obtain

+f 1
5r = 0.

In developing the consequences of this equation, it should be

noted, however, that the variations are not all of them independent;

thus, since we shall define the density of charge by the equation

p = div e, (216)

it is evident that it will be necessary to preserve the truth of this

equation in any variation that we carry out. This can evidently be
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done if we add to our equation (215) the expression

/ dtdVifr[&p
- div 5e]

=
0,

where ^ is an undetermined scalar multiplier. We then obtain with

the help of (213)

I dtdV
[
e + - ~ + grad ^

|
5e +

|
curl curl

&amp;lt;|&amp;gt;

(217)

=
0,

and may now treat the variations 5e and
6&amp;lt;(&amp;gt;

as entirely independent

of the others; we must then have the following equations true

e= -i|-grad*, (218)

curl curl
&amp;lt;(&amp;gt;=- + , (219)

c c

and have thus derived from the principle of least action the funda

mental equations of modern electron theory. We may put these in

their familiar form by denning the magnetic field strength h by the

equation
h = curl

&amp;lt;|&amp;gt; (220)

We then obtain from (219)

and, noting the mathematical identity curl grad ^ =
0, we obtain

from (218)

curle= --. (222)
C dt

We have furthermore by definition (216)

div e =
p, (223)

and noting equation (220) may write the mathematical identity

div h = 0. (224)
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These four equations (2214) are the familiar expressions which

have been made the foundation of modern electron theory. They
differ from Maxwell s original four field equations only by the intro

duction in (221) and (223) of terms which arise from the density of

charge p of the electrons, and reduce to Maxwell s set in free space.

155. We have not yet made use of the last three terms in the

fundamental equation (217) which results from the principle of least

action. As a matter of fact, it can be shown that these terms can be

transformed into the expression

fdtdV [f
* -

f [uX curl
&amp;lt;H* + p grad * + f

J
-Sr

; (225)

and hence lead to the familiar fifth fundamental equation of modern

electron theory,

(226)f = p{e+ [&quot;xh]*J.

The transformation of the last three terms of (217) into the form

given above (225) is a complicated one and it has not seemed neces

sary to present it here since in a later paragraph we shall show the

possibility of deriving the fifth fundamental equation of the electron

theory (226) by combining the four field equations (221-4) with the

transformation equations for force already obtained from the principle

of relativity. The reader may carry out the transformation himself,

however, if he makes use of the partial integrations which we have

already obtained, notes that in accordance with the principle of the

conservation of electricity we must have dp = divp 6r and notes

that Su =
,
where the differentiation indicates that we are

at at

following some particular particle in its motion, while the differentia-

d
d&amp;lt;|&amp;gt;

tion occurring in indicates that we intend the rate of change

at some particular stationary point.

156. The Transformation Equations for e, h and p. We have thus

shown the possibility of deriving the fundamental equations of modern
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electron theory from the principle of least action. We now wish to

introduce the theory of relativity into our discussions by presenting

a set of equations for transforming measurements of e, h and p from

one set of space-time coordinates S to another set S moving past S

in the X-direction with the velocity V. This set of equations is as

follows :

ex = e x ,

(227)

z
= K ( e z + h y

J
,e z

=

h x = h

h y
=

&/ i

.

-

(229)

where K has its customary significance

As a matter of fact, this set of transformation equations fulfills

all the requirements imposed by the theory of relativity. Thus, in

the first place, it will be seen, on development, that these equations

are themselves perfectly symmetrical with respect to the primed and

unprimed quantities except for the necessary change from + V to

V. In the second place, it will be found that the substitution of

these equations into our five fundamental equations for electro

magnetic theory (221-2-3-4-6) will successfully transform them

into an entirely similar set with primed quantities replacing the

unprimed ones. And finally it can be shown that these equations

agree with the general requirement derived in Chapter IX that the
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TT

quantity . shall be an invariant for the Lorentz trans-

1 -

formation.
rr

To demonstrate this important invariance of . we may

point out that by introducing equations (220), (221) and (214), our

original expression for kinetic potential

2
(curl t)

2

+--Y- -&amp;gt;

can easily be shown equal to

and, noting that our fundamental equations for space and time pro

vide us with the relation

we can easily show that our transformation equations for e and h do

lead to the equality
H H r

tf I u &amp;gt;*

1 -^ \l3
We thus know that our development of the fundamental equations

for electromagnetic theory from the principle of least action is indeed

in complete accordance with the theory of relativity, since it conforms

with the general requirement which was found in Chapter IX to be

imposed by the theory of relativity on all dynamical considerations.

157. The Invariance of Electric Charge. As to the significance of

the transformation equations which we have presented for e, h and p,

we may first show, in accordance with the last of these equations,

that a given electric charge will appear the same to all observers no

matter what their relative motion.
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To demonstrate this we merely have to point out that, by intro

ducing equation (17), we may write our transformation equation

for p (229) in the form

which shows at once that the two measurements of density of charge

made by and are in exactly the same ratio as the corresponding

measurements for the Lorentz shortening of the charged body, so

that the total charge will evidently measure the same for the two

observers.

We might express this invariance of electric charge by writing the

equation

Q = Q. (231)

It should be noted in passing that this result is in entire accord

with the whole modern development of electrical theory, which lays

increasing stress on the fundamentally and indivisibility of. the

electron as the natural unit quantity of electricity. On this basis

the most direct method of determining the charge on an electrified

body would be to count the number of electrons present and this

number must obviously appear the same both to observer and

observer .*

158. The Relativity of Magnetic and Electric Fields. As to the

significance of equations (227) and (228) for transforming the values

of the electric and magnetic field strengths from one system to another,

we see that at a given point in space we may distinguish between the

electric vector e = e x\ + e vj + e zk as measured by our original

observer and the vector e = e x i -f- e v
f

j -f e z k as measured in

units of his own system by an observer who is moving past with

the velocity V in the .XT-direction. Thus if finds in an unvarying

electromagnetic field that Qe is the force on a small test charge Q
which is stationary with respect to his system, will find experi-

* A similar invariance of electric charge has been made fundamental in the

author s development of the theory of similitude (i. e., the theory of the relativity

of size). See for example Phys. Rev., vol. 3, p. 244 (1914).
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mentally for a similar test charge that moves along with him a value

for the force Qe
f

,
where e can be calculated from with the help of

these equations (227). Similar remarks would apply to the forces

which would act on magnetic poles.

These considerations show us that we should now use caution in

speaking of a pure electrostatic or pure magnetic field, since the

description of an electromagnetic field is determined by the particular

choice of coordinates with reference to which the field is measured.

159. Nature of Electromotive Force. We also see that the
&quot;

elec

tromotive
&quot;

force which acts on a charge moving through a magnetic
field finds its interpretation as an &quot;

electric
&quot;

force provided we make
use of a system of coordinates which are themselves stationary with

respect to the charge. Such considerations throw light on such ques

tions, for example, as to the seat of the
&quot;

electromotive
&quot;

forces in
&quot;

homopolar
&quot;

electric dynamos where there is relative motion of a

conductor and a magnetic field.

Derivation of the Fifth Fundamental Equation.

160. We may now make use of this fact that the forces acting on

a moving charge of electricity may be treated as purely electrostatic,

by using a set of coordinates which are themselves moving along with

the charge, to derive the fifth fundamental equation of electromagnetic

theory.

Consider an electromagnetic field having the values e and h for

the electric and magnetic field strengths at some particular point.

What will be the value of the electromagnetic force f acting per
unit volume on a charge of density p which is passing through the

point in question with the velocity u?

To solve the problem take a system of coordinates S f which itself

moves with the same velocity as the charge, for convenience letting

the X-axis coincide with the direction of the motion of the charge.

Since the charge of electricity is stationary with respect to this system,

the force acting on it as measured in units of this system will be by
definition equal to the product of the charge by the strength of the

electric field as it appears to an observer in this system, so that we may
write

F = Q e
,
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or

F x
= Q e f ,

F y
f = Q e v

f

,
F z

f = Q e, .

For the components of the electrical field e x ,
e y ,

e z ,
we have just

obtained the transformation equations (227), while in our earlier

dynamical considerations in Chapter VI we obtained transformation

equations (61), (62), and (63) for the components of force. Sub

stituting above and bearing in mind that u x = V, u y
= u z

=
0, and

that Q = Q, we obtain on simplification

F x
= Qe x ,

F y
= Q

(
e y
-
y h z

J
;

r. -( + 7 *i)i

which in vectorial form gives us the equation

F =

or for the force per unit volume

f = pe + [uxh]*. (226)

This is the well-known fifth fundamental equation of the Maxwell-

Lorentz theory of electromagnetism. We have already indicated the

method by which it could be derived from the principle of least action.

This derivation, however, from the transformation equations, provided

by the theory of relativity, is particularly simple and attractive.

Difference between the Ether and the Relativity Theories of Electro-

magnetism.

161. In spite of the fact that we have now found five equations

which can be used as a basis for electromagnetic theory which agree

with the requirements of relativity and also have exactly the same

form as the five fundamental equations used by Lorentz in building

up the stationary ether theory, it must not be supposed that the

relativity and ether theories of electromagnetism are identical. Al

though the older equations have exactly the same form as the ones

which we shall henceforth use, they have a different interpretation,

since our equations are true for measurements made with the help

of any non-accelerated set of coordinates, while the equations of
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Lorentz were, in the first instance, supposed to be true only for mea
surements which were referred to a set of coordinates which were

stationary with respect to the assumed luminiferous ether. Suppose,

for example, we desire to calculate with the help of equation (226),

the force acting on a charged body which is moving with the velocity u;

we must note that for the stationary ether theory, u must be the

velocity of the charged body through the ether, while for us u may be

taken as the velocity past any set of unaccelerated coordinates, pro

vided e and h are measured with reference to the same set of co

ordinates. It will be readily seen that such an extension in the mean

ing of the fundamental equations is an important simplification.

162. A word about the development from the theory of a stationary

ether to our present theory will not be out of place. When it was

found that the theory of a stationary ether led to incorrect con

clusions in the case of the Michelson-Morley experiment, the hypo
thesis was advanced by Lorentz and Fitzgerald that the failure of that

experiment to show any motion through the ether was due to a con

traction of the apparatus in the direction of its motion through the

/ 172

ether in the ratio 1 : A/I . Lorentz then showed that if all sys-
\ c2

terns should be thus contracted in the line of their motion through the

ether, and observers moving with such system make use of suitably

contracted meter sticks and clocks adjusted to give what Lorentz

called the
&quot;

local time,&quot; their measurements of electromagnetic

phenomena could be described by a set of equations which have

nearly the same form as the original four field equations which would

be used by a stationary observer. It will be seen that Lorentz was

thus making important progress towards our present idea of the com

plete relativity of motion. The final step could not be taken, however,

without abandoning our older ideas of space and time and giving up
the Galilean transformation equations as the basis of kinematics.

It was Einstein who, with clearness and boldness of vision, pointed

out that the failure of the Michelson-Morley experiment, and all

other attempts to detect motion through the ether, is not due to a
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fortuitous compensation of effects but is the expression of an important

general principle, and the new transformation equations for kinematics

to which he was led have not only provided the basis for an exact

transformation of the field equations but have so completely revo

lutionized our ideas of space and time that hardly a branch of science

remains unaffected.

163. With regard to the present status of the ether in scientific

theory, it must be definitely stated that this concept has certainly

lost both its fundamentality and the greater part of its usefulness,

and this has been brought about by a gradual process which has only

found its culmination in the work of Einstein. Since the earliest

days of the luminiferous ether, the attempts of science to increase the

substantiality of this medium have met with little success. Thus

we have had solid elastic ethers of most extreme tenuity, and ethers

with a density of a thousand tons per cubic millimeter; we have had

quasi-material tubes of force and lines of force
;
we have had vibratory

gyrostatic others and perfect gases of zero atomic weight; but after

every debauch of model-making, science has recognized anew that a

correct mathematical description of the actual phenomena of light

propagation is superior to any of these sublimated material media.

Already for Lorentz the ether had been reduced to the bare function

of providing a stationary system of reference for the measurement of

positions and velocities, and now even this function has been taken

from it by the work of Einstein, which has shown that any unaccel-

erated system of reference is just as good as any other.

To give up the notion of an ether will be very hard for many
physicists, in particular since the phenomena of the interference and

polarization of light are so easily correlated with familiar experience

with wave motions in material elastic media. Consideration will

show us, however, that by giving up the ether we have done nothing

to destroy the periodic or polarizable nature of a light disturbance.

When a plane polarized beam of light is passing through a given

point in space we merely find that the electric and magnetic fields at

that point lie on perpendiculars to the direction of propagation and

undergo regular periodic changes in magnitude. There is no need of

going beyond these actual experimental facts and introducing any

hypothetical medium. It is just as simple, indeed simpler, to say
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that the electric or magnetic field has a certain intensity at a given

point in space as to speak of a complicated sort of strain at a given

point in an assumed ether.

Applications to Electromagnetic Theory.

164. The significant fact that the fundamental equations of the

new electromagnetic theory have the same form as those of Lorentz

makes it of course possible to retain in the structure of modern elec

trical theory nearly all the results of his important researches, care

being taken to give his mathematical equations an interpretation in

accordance with the fundamental ideas of the theory of relativity. It

is, however, entirely beyond our present scope to make any presenta

tion of electromagnetic theory as a whole, and in the following para

graphs we shall confine ourselves to the proof of a few theorems which

can be handled with special ease and directness by the methods intro

duced by the theory of relativity.

165. The Electric and Magnetic Fields around a Moving Charge.

Our transformation equations for the electromagnetic field make it

very easy to derive expressions for the field around a point charge in

uniform motion. Consider a point charge Q moving with the velocity

V. For convenience consider a system of reference S such that Q is

moving along the X-axis and at the instant in question, t = 0, let the

charge coincide with the origin of coordinates 0. We desire now to

calculate the values of electric field e and the magnetic field h at any

point in space x
t y, z.

Consider another system of reference, S
,
which moves along with

the same velocity as the charge Q, the origin of coordinates
,
and

the charge always coinciding in position. Since the charge is sta

tionary with respect to their new system of reference, we shall have

the electric field at any point x
, y ,

z in this system given by the

equations

Qx
e x =

e =

(V
2 + y

2 + z
1

)
31*

Qy

(x* + y
2 + z

2

)&quot;*

Qz

**?*
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while the magnetic field will obviously be zero for measurements made

in system , giving us

h x
=

0,

A/ =
0,

A, = 0.

Introducing our transformation equations (9), (10) and (11) for x
f

,

y and z and our transformation equations (227) and (228) for the

electric and magnetic fields and substituting i = 0, we obtain for the

values of e and h in system S at the instant when the charge passes

through the point 0,

Or/

h x
=

0,

V
v

c

h z
= - e y ,

or, putting s for the important quantity ^x2 + ( 1 -

-^ j
(?/

2 + s2
)

and writing the equations in the vectorial form where we put

r =
(x\ + yj + zk),

we obtain the familiar equations for the field around a point charge

13



178 Chapter Twelve.

in uniform motion with the velocity u = V in the X-direction

(232)

h = -
[u X e].* (233)

c

166. The Energy of a Moving Electromagnetic System. Our

transformation equations will permit us to obtain a very important

expression for the energy of an isolated electromagnetic system in

terms of the velocity of the system and the energy of the same system

as it appears to an observer who is moving along with it.

Consider a physical system surrounded by a shell which is im

permeable to electromagnetic radiation. This system is to be thought

of as consisting of the various mechanical parts, electric charges and

electromagnetic fields which are inside of the impermeable shell.

The system is free in space, except that it may be acted on by external

electromagnetic fields, and its energy content thus be changed.

Let us now equate the increase in the energy of the system to the

work done by the action of the external field on the electric charges

in the system. Since the force which a magnetic field exerts on a

charge is at right angles to the motion of the charge it does no work

and we need to consider only the work done by the external electric

field and may write for the increase in the energy of the system

A# = //// p(e xu x + e yu y + e zu z)dx dy dz dt, (234)

where the integration is to be taken over the total volume of the

system and over any time interval in which we may be interested.

Let us now transform this expression with the help of our trans

formation equations for the electric field (227) for electric charge

(229), and for velocities (14-15-16). Noting that our fundamental

equations for kinematic quantities give us dx dy dz dt = dx f

dy
f
dz dt

,

we obtain

A# = K ffff P (e x u x
f + e v u v + e z u s )dx dy dz

f

dt

+ V ffff P
(

+^ h, -
^f

h y
)
dx dy dz dt .
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Consider now a system which both at the beginning and end of our

time interval is free from the action of external forces; we may then

rewrite the above equation for this special case in the form

A# = K&E + KV f 2Fx dt
,

where, in accordance with our earlier equation (234), kE is the increase

in the energy of the system as it appears to observer and ZFZ

is the total force acting on the system in X-direction as measured

byO .

The restriction that the system shall be unacted on by external

forces both at the beginning and end of our time interval is necessary

because it is only under those circumstances that an integration

between two values of t can be considered as an integration between

two definite values of t
, simultaneity in different parts of the system

not being the same for observers and .

We may now apply this equation to a specially interesting case.

Let the system be of such a nature that we can speak of it as being

at rest with respect to S
, meaning thereby that all the mechanical

parts have low velocities with respect to S and that their center of

gravity moves permanently along with S . Under these circum

stances we may evidently put j *LFt dt = and may write the

above equation in the form

/*
V 1 -?

or

dE

where u is the velocity of the system, and E is its energy as measured

by an observer moving along with it. The energy of a system which

is unacted on by external forces is thus a function of two variables, its

energy E as measured by an observer moving along with the system

and its velocity u.
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We may now write

E = EQ + (f&amp;gt;(u) + const.,

where
&amp;lt;j&amp;gt;(u) represents the energy of the system which depends solely

on the velocity of the system and not on the changes in its E Q values.

&amp;lt;j&amp;gt;(u)
will thus evidently be the kinetic energy of the mechanical masses

in the system which we have already found (82) to have the value

m c2 where ra is to be taken as the total mass of the

c2

mechanical part of our system when at rest. We may now write

E = (m c2 + EQ) m Qc
2 + const.

u2

Or, assuming as before that the constant is equal to ra c2
,
which will

be equivalent to making a system which has zero energy also have

zero mass, we obtain

=- (.* + *).
(235)

which is the desired expression for the energy of an isolated system

which may contain both electrical and mechanical parts.

167. Relation between Mass and Energy. This expression for the

energy of a system that contains electrical parts permits us to show

that the same relation which we found between mass and energy for

mechanical systems also holds in the case of electromagnetic energy.

Consider a system containing electromagnetic energy and enclosed

by a shell which is impermeable to radiation. Let us apply a force F

to the system in such a way as to change the velocity of the system

without changing its EQ value. We can then equate the work done

per second by the force to the rate of increase of the energy of the

system. We have

dE
F-u -

,. .

dt
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But from equation (235) we can obtain a value for the rate of increase

dE . .

of energy
-

, giving us

F-u = F xu x + Fyiiy + F zUg =
( m +-7 )

and solving this equation for F we obtain

E

du

dt

IT
(236)

which for low velocities assumes the form

(237)

Examination of these expressions shows that our system which

contains electromagnetic energy behaves like an ordinary mechanical
Tjl

^ ) at low velocities or ra + ^

=5*
system with the mass

any desired velocity u. To the energy of the system E , part of which

is electromagnetic, we must ascribe the mass just as we found in

the case of mechanical energy. We realize again that&quot; matter and

energy are but different names for the same fundamental entity,

1021
ergs of energy having the mass 1 gram.

The Theory of Moving Dielectrics.

168. The principle of relativity proves to be very useful for the

development of the theory of moving dielectrics.

It was first shown by Maxwell that a theory of electromagnetic

phenomena in material media can be based on a set of field equations,

similar in form to those for free space, provided we introduce besides

the electric and magnetic field strengths, E and F, two new field vectors.
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the dielectric displacement D and the magnetic induction B, and

also the density of electric current in the medium i. These quantities

are found to be connected by the four following equations similar in

form to the four field equations for free space:

(238)

curl E= -if, (239)

div D =
p, (240)

div B = 0. (241)

For stationary homogeneous media, the dielectric displacement,

magnetic induction and electric current are connected with the

electric and magnetic field strengths by the following equations:

D = eE, (242)

B - MH, (243)

i = o-E, (244)

where e is the dielectric constant, fj,
the magnetic permeability and a

the electrical conductivity of the medium in question.

169. Relation between Field Equations for Material Media and

Electron Theory. It must not be supposed that the four field equa
tions (238-241) for electromagnetic phenomena in material media are

in any sense contradictory to the four equations (221-224) for free

space which we took as the fundamental basis for our development of

electromagnetic theory. As a matter of fact, one of the main achieve

ments of modern electron theory has been to show that the electro

magnetic behavior of material media can be explained in terms of

the behavior of the individual electrons and ions which they contain,

these electrons and ions acting in accordance with the four fundamental

field equations for free space. Thus our new equations for material

media merely express from a macroscopic point of view the statistical

result of the behavior of the individual electrons in the material in

question. E and H in these new equations are to be looked upon as

the average values of e and h which arise from the action of the

individual electrons in the material, the process of averaging being so
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carried out that the results give the values which a macroscopic ob

server would actually find for the electric and magnetic forces acting

respectively on a unit charge and a unit pole at the point in question.

These average values, E and H, will thus pay no attention to the

rapid fluctuations of e and h which arise from the action and motion

of the individual electrons, the macroscopic observer using in fact

differentials for time, dt, and space, dx, which would be large from a

microscopic or molecular viewpoint.

Since from a microscopic point of view E and H are not really

the instantaneous values of the field strength at an actual point in

space, it has been found necessary to introduce two new vectors,

electric displacement, D, and magnetic induction, B, whose time

rate of change will determine the curl of E and H respectively. It will

evidently be possible, however, to relate D and B to the actual electric

and magnetic fields e and h produced by the individual electrons,

and this relation has been one of the problems solved by modern

electron theory, and the field equations (238-241) for material media

have thus been shown to stand in complete agreement with the most

modern views as to the structure of matter and electricity. For

the purposes of the rest of our discussion we shall merely take these

equations as expressing the experimental facts in stationary or in

moving media.

170. Transformation Equations for Moving Media. Since equa

tions (238 to 241) are assumed to give a correct description of electro

magnetic phenomena in media whether stationary or moving with

respect to our reference system S, it is evident that the equations

must be unchanged in form if we refer our measurements to a new

system of coordinates S f

moving past S, say, with the velocity V in the

X-direction.

As a matter of fact, equations (238 to 241) can be transformed

into an entirely similar set

curl E = TT7 ;

div D = P ,

div B =
0,
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provided we substitute for x, y, z and t the values of x
, y ,

z and t
f

given by the fundamental transformation equations for space and
time (9 to 12), and substitute for the other quantities in question the

relations

E v
=

E z
f =

Dx = D x ,

D z
=

H x
= H x ,

B, = B (246)

ix =
K(I X

-
Vp), (247)

t, = l z .

It will be noted that for free space these equations will reduce to

the same form as our earlier transformation equations (227 to 229)
since we shall have the simplifications D = E, B = H and i = pu.

We may also call attention at this point to the fact that our funda-



Electromagnetic Theory. 185

mental equations for electromagnetic phenomena (238-241) in di

electric media might have been derived from the principle of least

action, making use of an expression for kinetic potential which could

//E-D
H-B\

dV( ----
1, and it will be noticed

that our transformation equations for these quantities are such as to
IT

preserve that necessary invariance for 7= = which we found in

Chapter IX to be the general requirement for any dynamical develop

ment which agrees with the theory of relativity.

171. We are now in a position to handle the theory of moving
media. Consider a homogeneous medium moving past a system of

coordinates S in the Jf-direction with the velocity F; our problem is

to discover relations between the various electric and magnetic

vectors in this medium. To do this, consider a new system of co

ordinates S f

also moving past our original system with the velocity V.

Since the medium is stationary with respect to this new system S we

may write for measurements referred to S in accordance with equa

tions (242 to 244) the relations

D = eE
,

B - jeH ,

i =
&amp;lt;rE

,

which, as we have already pointed out, are known experimentally to

be true in the case of stationary, homogeneous media.
, ^ and a- are

evidently the values of dielectric constant, permeability and con

ductivity of the material in question, which would be found by an

experimenter with respect to whom the medium is stationary.

Making use of our transformation equations (245 to 247) we can

obtain by obvious substitutions the following set of relations for

measurements made with respect to the original system of coordi

nates S:

D, = eEx ,

(248)
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&amp;gt;

z +Hy =
e( E 2 + By }

c \ c V
B x =

V
B V +-E S

=
v,

V
B z --Ev

-

(249)

(250)

172. Theory of the Wilson Experiment. The equations which we

have just developed for moving media are, as a matter of fact, in

complete accord with the celebrated experiment of H. A. Wilson on

moving dielectrics and indeed all other experiments that have been

performed on moving media.

Wilson s experiment consisted in the rotation of a hollow cylinder

of dielectric, in a magnetic field which was parallel to the axis of the

cylinder. The inner and outer surfaces of the cylinder were covered

with a thin metal coating, and arrangements made with the help of

wire brushes so that electrical contact could be made from these

coatings to the pairs of quadrants of an electrometer. By reversing

the magnetic field while the apparatus was in rotation it was possible

to measure with the electrometer the charge produced by the electrical

displacement in the dielectric. We may make use of our equations

to compute the quantitative size of the effect.

FIG. 15.
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Let figure 15 represent a cross-section of the rotating cylinder.

Consider a section of the dielectric AA which is moving perpendicularly

to the plane of the paper in the X-direction with the velocity V. Let

the magnetic field be in the F-direction parallel to the axis of rotation.

The problem is to calculate dielectric displacement D z in the Z-

direction.

Referring to equations (248) we have

and, substituting the value of B v given by equations (249),

V

we obtain

V

V
or, neglecting terms of orders higher than

,
we have

c

D z
= eE,+- (efjL

- l)H v . (251)

For a substance whose permeability is practically unity such as

Wilson actually used the equation reduces to

D, = eE z +
-j

(e
- !)#,

and this was found to fit the experimental facts, since measurements

with the electrometer show the surface charge actually to have the

magnitude D z per square centimeter in accordance with our equation

div D =
p.

It would be a matter of great interest to repeat the Wilson experi

ment with a dielectric of high permeability so that we could test the

complete equation (251). This is of some importance since the

original Lorentz theory led to a different equation,

D z
= eE 2 + (e

-



CHAPTER XIII.

FOUR-DIMENSIONAL ANALYSIS.

173. In the present chapter we shall present a four-dimensional

method of expressing the results of the Einstein theory of relativity,

a method which was first introduced by Minkowski, and in the form

which we shall use, principally developed by Wilson and Lewis. The

point of view adopted, consists essentially in considering the properties

of an assumed four-dimensional space in which intervals of time are

thought of as plotted along an axis perpendicular to the three Car

tesian axes of ordinary space, the science of kinematics thus becoming

the geometry of this new four-dimensional space.

The method often has very great advantages not only because it

sometimes leads to considerable simplification of the mathematical

form in which the results of the theory of relativity are expressed,

but also because the analogies between ordinary geometry and the

geometry of this imaginary space often suggest valuable modes of

attack. On the other hand, in order to carry out actual numerical

calculations and often in order to appreciate the physical significance

of the conclusions arrived at, it is necessary to retranslate the results

obtained by this four-dimensional method into the language of ordinary

kinematics. It must further
t&amp;gt;e noted, moreover, that many im

portant results of the theory of relativity can be more easily obtained

if we do not try to employ this four-dimensional geometry. The

reader should also be on his guard against the fallacy of thinking that

extension in time is of the same nature as extension in space merely

because intervals of space and time can both be represented by

plotting along axes drawn on the same piece of paper.

174. Idea of a Time Axis. In order to grasp the method let us

consider a particle constrained to move along a single axis, say OX,
and let us consider a time axis OT perpendicular to OX. Then the

position of the particle at any instant of time can be represented by a

point in the XT plane, and its motion as time progresses by a line in

the plane. If, for example, the particle were stationary, its behavior

188
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in time and space could be represented by a line parallel to the time

axis OT as shown for example by the line ab in figure 16. A particle

A

\

Ax

FIG. 16.

dx
moving with the uniform velocity u = -r- could be represented by a

straight line etc making an angle with the time axes, and the kine-

matical behavior of an accelerated particle could be represented by a

curved line.

By conceiving of a /tmr-dimensional space we can extend this

method which we have just outlined to include motion parallel to

all three space axes, and in accordance with the nomenclature of

Minkowski might call such a geometrical representation of the space-

time manifold &quot;

the world,&quot; and speak of the points and lines which

represent the instantaneous positions and the motions of particles as
&quot;

world-points
&quot; and &quot;

world-lines.&quot;

175. Non-Euclidean Character of the Space. It will be at once

evident that the graphical method of representing kinematical events

which is shown by Figure 16 still leaves something to be desired. One

of the most important conclusions drawn from the theory of relativity

was the fact that it is impossible for a particle to move with a velocity

greater than that of light, and it is evident that there is nothing in

our plot to indicate that fact, since we could draw a line making any
desired angle with the time axis, up to perpendicularity, and thus
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represent particles moving with any velocity up to infinity,

Ax
u = co.

It is also evident that there is nothing in our plot to correspond to

that invariance in the velocity of light which is a cornerstone of the

theory of relativity. Suppose, for example, the line OC, in figure 17,

/Q

T l

/

/

/
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clidean space with an imaginary time axis, such that instead of plotting

real instants in time along this axis we should plot the quantity

I = ict where i = V 1. In this way we should obtain invariance

for the quantity x2 + y
2 + z2 -+- I

2 = x2 + y
2 + z2 c2t2

,
since it may

be regarded as the square of the magnitude of an imaginary four-

dimensional radius vector. This method of treatment has been

especially developed by Minkowski, Laue, and Sommerfeld. Another

method of attack, which has been developed by Wilson and Lewis

and is the one which we shall adopt in this chapter, is to use a real

time axis, for plotting the real quantity ct, but to make use of a non-

Euclidean four-dimensional space in which the quantity (x
2 + y

2 + z2

c
2
t
2
) is itself taken as the square of the magnitude of a radius vector.

This latter method has of course the disadvantages that come from

using a non-Euclidean space; we shall find, however, that these reduce

largely to the introduction of certain rules as to signs. The method

has the considerable advantage of retaining a real time axis which is

of some importance, if we wish to visualize the methods of attack and

to represent them graphically.

We may now proceed to develop an analysis for this non-Euclidean

space. We shall find this to be quite a lengthy process but at its

completion we shall have a very valuable instrument for expressing

in condensed language the results of the theory of relativity. Our

method of treatment will be almost wholly analytical, and the geo

metrical analogies may be regarded merely as furnishing convenient

names for useful analytical expressions. A more geometrical method

of attack will be found in the original work of Wilson and Lewis.

PART I. VECTOR ANALYSIS OF THE NON-EUCLIDEAN FOUR-

DIMENSIONAL MANIFOLD.

176. Consider a four-dimensional manifold in which the position

of a point is determined by a radius vector

r =

where ki, k2 ,
k3 and k4 may be regarded as unit vectors along four

mutually perpendicular axes and Xi, xz, xs ,
and x^. as the magnitudes

of the four components of r along these four axes. We may identify

Xi, Xz, and #3 with the three spatial coordinates of a point x, y and z
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with reference to an ordinary set of space axes and consider x as a

coordinate which specifies the time (multiplied by the velocity of

light) when the occurrence in question takes place at the point xyz.

We have

Xi =
x, x2

=
y, x3

=
z, 4

=
ct, (252)

and from time to time we shall make these substitutions when we
wish to interpret our results in the language of ordinary kinematics.

We shall retain the symbols Xi, x 2 ,
x3 ,

and x.i throughout our develop

ment, however, for the sake of symmetry.
177. Space, Time and Singular Vectors. Our space will differ in

an important way from Euclidean space since we shall consider three

classes of one-vector, space, time and singular vectors. Considering

the coordinates Xi, x z ,
#3 and x which determine the end of a radius

vector,

Space or y-vectors will have components such that

and we shall put for their magnitude

Time or d-vectors will have components such that

Z4
2

&amp;gt; (X? + X? + Z3
2
),

and we shall put for their magnitude

s = z4
2 - x? - x 2

2 - x3
2

. . (254)

Singular or a-vectors will have components such that

and their magnitude will be zero.

178. Invariance of x2 + y
2 + z2 cH2

. Since we shall naturally

consider the magnitude of a vector to be independent of any particular

choice of axes we have obtained at once by our definition of magnitude
for any rotation of axes that invariance for the expression
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which is characteristic of the Lorentz transformation, and have thus

evidently set up an imaginary space which will be suitable for plotting

kinematical events in accordance with the requirements of the theory

of the relativity of motion.

179. Inner Product of One-Vectors. We shall define the inner

product of two one-vectors with the help of the following rules for the

multiplication of unit vectors along the axes

ki-kj = k 2 -k 2
- k3 -k3

=
1, k4 -k4

= --
1, k n -km = 0. (255)

It should be noted, of course, that there is no particular sig

nificance in picking out the product k4 -ki as the one which is nega

tive; it would be equally possible to develop a system in which the

products k L ki, k2 k 2 ,
and k3 k3 should be negative and k4 k4 positive.

The above rules for unit vectors are sufficient to define completely

the inner product provided we include the further requirements that

this product shall obey the associative law for a scalar factor and the

distributive and commutative laws, namely

= n(a-b) = (a-b)(n),

a-(b + c)
= a-b + a-c, (256)

a-b = b-a.

For the inner product of a one-vector by itself we shall have, in

accordance with these rules,

r-r = (ziki + 2k 2 + z3k3 + z4k4) (ziki + z 2k 2 + z3k3 -f z4k4)

=
(Zl

2 + Z 2
* + X.

2 - Z4
2
)

and hence may use the following expressions for the magnitudes of

vectors in terms of inner product

s = A/r-r for ^-vectors, s = V r-r for 5-vectors. (258)

For curved lines we shall define interval along the curve by the

equations

f ds = f Vdr dr for ^-curves,J _ (259)

J&quot;

ds = f V dr - dr for 6-curves.

14
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Our rules further show us that we may obtain the space components

of any one vector by taking its inner product with a unit vector

along the desired axis and may obtain the time component by taking

the negative of the corresponding product. Thus

r-k 2
= (ziki + z 2k2 + 3k3 + Z4k4)-k 2

= x 2 ,

(260)
r-k3

r-k4
= (ziki + z2k2 + z3k3 + 4k4) -k4

= z 4 .

We see finally moreover in general that the inner product of any

pair of vectors will be numerically equal to the product of the mag
nitude of either by the projection of the other upon it, the sign de

pending on the nature of the vectors involved.

180. Non-Euclidean Angle. We shall define the non-Euclidean

angle 6 between two vectors r x and r2 in terms of their magnitudes

Si and s 2 by the expressions

db TI-TZ = (si X projection s 2)
= SiS 2 cosh 0, (261)

the sign depending on the nature of the vectors in the way indicated

in the preceding section. We note the analogy between this equation

and those familiar in Euclidean vector-analysis, the hyperbolic

trigonometeric functions taking the place of the circular functions

used in the more familiar analysis.

For the angle between unit vectors k and k we shall have

coshfl = k-k
, (262)

where the sign must be chosen so as to make cosh 6 positive, the

plus sign holding if both are 7-vectors and the minus sign if both are

5-vectors.

181. Kinematical Interpretation of Angle in Terms of Velocity.

At this point we may temporarily interrupt the development of our

four-dimensional analysis to consider a kinematical interpretation of

non-Euclidean angles in terms of velocity. It will be evident from

our introduction that the behavior of a moving particle can be repre

sented in our four-dimensional space by a 5-curve,* each point on

* It is to be noted that the actual trajectories of particles are all of them repre

sented by 5-curves since as we shall see 7-curves would correspond to velocities

greater than that of light.
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this curve denoting the position of the particle at a given instant of

time, and it is evident that the velocity of the particle will be deter

mined by the angle which this curve makes with the axes.

Let r be the radius vector to a given point on the curve and con

sider the derivative of r with respect to the interval s along the curve;

we have

dr dxi dx 2 dx3 dx4

and this may be regarded as a unit vector tangent to the curve at the

point in question.

If is the angle between the k4 axis and the tangent to the curve

at the point in question, we have by equation (262)

cosh
4&amp;gt;

= w k4
= ~

;

as

making the substitutions for x lf x 2 ,
x3) and x4 ,

in terms of x, y, z and t

we may write, however,

ds = Vdz4
2 - dx? - dxf - dxf ~ 1 ~~ cdt

&amp;gt;

which gives us

cosh =
.
-= (265)

2

and by the principles of hyperbolic trigonometry we may write the

further relations

u

sinh = -7=^== , (266)

(267)

VECTORS OF HIGHER DIMENSIONS

182. Outer Products. We shall define the outer product of two

one-vectors so that it obeys the associative law for a scalar factor, the
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distributive law and the anti-commutative law, namely,

(na) X b = w(a X b) = a X (wb),

aX(b + c)=aXb+aXc (a + b)Xc = aXc + bXc ; (268)

a X b = -bXa.

From a geometrical point of view, we shall consider the outer

product of two one-vectors to be itself a two-vector, namely the paral

lelogram, or more generally, the area which they determine. The

sign of the two-vector may be taken to indicate the direction of pro

gression clockwise or anti-clockwise around the periphery. In order

to accord with the requirement that the area of a parallelogram deter

mined by two lines becomes zero when they are rotated into the same

direction, we may complete our definition of outer product by adding

the requirement that the outer product of a vector by itself shall be

zero.

a X a = 0. (269)

We may represent the outer products of unit vectors along the

chosen axes as follows:

ki X ki = k 2 X k 2
= k3 X k3

- k4 X k4
=

0,

ki X k 2
= - k 2 X ki = kia = - k21 , (270)

ki X k3
= k3 X ki = k^ = k3 i, etc.,

where we may regard ki 2 ,
for example, as a unit parallelogram in the

plane XfiX*.

We shall continue to use small letters in Clarendon type for one-

vectors and shall use capital letters in Clarendon type for two-vectors.

The components of a two-vector along the six mutually perpendicular

planes XiOX2 , XiOX3 , etc., may be obtained by expressing the one-

vectors involved in terms of their components along the axes and

carrying out the indicated multiplication, thus:

A = a X b = (aiki + a 2k2 -f a3k3 +
X (6iki + 6 2k 2 + 63k3 + 64k4)

=
(a i6 2

-
a2&i)ki2 + (ai&3

-
as&i)ki3 + (0164

- a46i)ki4

-f (a 264 a46 2)k 24 + (a364 a463)k34 ,
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or, calling the quantities (ai& 2 a 2fri), etc., the component magni

tudes of A, A 12, etc., we may write

A = A 12k 12 + A 13k 13 + 4i4k,4 + A 23k 23 + A 24k 24 + A 34k,4 . (272)

The concept of outer product may be extended to include the

idea of vectors of higher number of dimensions than two. Thus the

outer product of three one-vectors, or of a one-vector and a two-vector

will be a three-vector which may be regarded as a directed parallelo-

piped in our four-dimensional space. The outer product of four one-

vectors will lead to a four-dimensional solid which would have direction

only in a space of more than four dimensions and hence in our case

will be called a pseudo-scalar. The outer product of vectors the

sum of whose dimensions is greater than that of the space considered

will vanish.

The results which may be obtained from different types of outer

multiplication are tabulated below, where one-vectors are denoted

by small Clarendon type, two-vectors by capital Clarendon type,

three-vectors by Tudor black capitals, and pseudo-scalars by bold face

Greek letters.

A = a X b = -bXa= (a lb 2
-

2&i)k 12 + (a^ - a3&i)k 13

+ (a 164 a46i) ku + (a 263 a36 2)k23 + (a 264 a 46 2)k 2i

+ (a 364 a 463)k34 ,

H = c X A = (ciA 23
- c2Ai3 4- c3Ai 2)k 123

(273)
c4A 23)k234 ,

a = A X B =

The signs in these expressions are determined by the general rule

that the sign of any unit vector knmo will be reversed by each transposition

of the order of a pair of adjacent subscripts, thus:

kabcd = kbacd = kbcad, etc., . (274)
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183. Inner Product of Vectors in General. We have previously

defined the inner product for the special case of a pair of one-vectors,

in order to bring out some of the important characteristics of our

non-Euclidean space. We may now give a general rule for the inner

product of vectors of any number of dimensions.

The inner product of any pair of vectors follows the associative

law for scalar factors, and follows the distributive and commutative

laws.

Since we can express any vector in terms of its components, the

above rules will completely determine the inner product of any pair

of vectors provided that we also have a rule for obtaining the inner

products of the unit vectors determined by the mutually perpendicular

axes. This rule is as follows: Transpose the subscripts of the unit

vectors involved so that the common subscripts occur at the end and

in the same order and cancel these common subscripts. If both the

unit vectors still have subscripts the product is zero; if neither vector

has subscripts the product is unity, and if one of the vectors still has

subscripts that itself will be the product. The sign is to be taken

as that resulting from the transposition of the subscripts (see equa
tion (274)), unless the subscript 4 has been cancelled, when the sign

will be changed.

For example:
ki24-k34

= ki2-k3
=

0,

k 132 -ki23 = - ki 23 -k 123
= -

1, (275)

ki24 -k4 2
= - ki24-k 24

= ki.

It is evident from these rules that we may obtain the magnitude
of any desired component of a vector by taking the inner product of

the vector by the corresponding unit vector, it being noticed, of course,

that when the unit vector involved contains the subscript 4 we obtain

the negative of the desired component. For example, we may obtain

the ki2 component of a two-vector as follows:

A ]2
= A-ki2

= (Ai 2ki2 + A 13k13 + A ]4ki4

(276)
+ A 23k23 + Asiksi + A 34k34) -ki2 .

184. The Complement of a Vector. In an n-dimensional space

any m-dimensional vector will uniquely determine a ~new vector of
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dimensions (n m) which may be called the complement of the

original vector. The complement of a vector may be exactly defined

as the inner product of the original vector with the unit pseudo-scalar

ki23 ... n . In general, we may denote the complement of a vector

by placing an asterisk * after the symbol. As an example we may
write as the complement of a two-vector A in our non-Euclidean four-

dimensional space:

A* = A-ki234 = (Ai 2k 12 + Ai3ki3 + A uku

+ A 23k 23 + A 24k24 + Awkrf) k 1234 (277)

185. The Vector Operator, &amp;lt;0

or Quad. Analogous to the familiar

three-dimensional vector-operator del,

v - k i + *, + *; (278)

we may define the four-dimensional vector-operator quad,

o **+*+*5-*5;- (279)

If we have a scalar or a vector field we may apply these operators

by regarding them formally as one-vectors and applying the rules

for inner and outer multiplication which we have already given.

Thus if we have a scalar function F which varies continuously

from point to point we can obtain a one-vector which we may call

the four-dimensional gradient of F at the point in question by simple

multiplication; we have

GradF=OF = k 1g + k2 g+k,g-k,g;. (280)

If we have a one-vector field, with a vector f whose value varies

from point to point we may obtain by inner multiplication a scalar

quantity which we may call the four-dimensional divergence of f

we have

^-f + + + -. (281)
OX\ OXz 0X3 0X4

Taking the outer product with quad we may obtain a two-vector, the
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four-dimensional curl of f,

k24 +

By similar methods we could apply quad to a two-vector function F
and obtain the one-vector function F and the three-vector func

tion X F.

186. Still regarding as a one-vector we may obtain a number of

important expressions containing more than once; we have:

X (OF) =
0, (283) X (0 X f)

=
0, (286)

0-(0-F)=0, (284) OX(OXF)=0, (287)

O (0-lf)=0, (285)

:(0 xf) = O(O-f) - (O-O)f, (288)

0-(0 X F) = X (0-F) + (O O)F, (289)

0-(0 xf)= x(O-JT)- (0-0)3f- (290)

The operator or O 2 nas l ng been known under the name
of the D Alembertian,

a2 d2 a2 d 2 a2

(291)

From the definition of the complement of a vector given in the

previous section it may be shown by carrying out the proper expansions

that

(0 X0)* = 0-0*, (292)

where is a vector of any number of dimensions.

187. Tensors. In analogy to three-dimensional tensors we may
define a four-dimensional tensor as a quantity with sixteen components
as given in the following table:

rn /TT /TT rn
JL 11 J- 12 1 13 * 14,

rji rri rn /TT
-i 21 J 22 Ji 23 J 24j

r r r r (293)
J- 31 * 32 -L 33 *

34&amp;gt;
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with the additional requirement that the divergence of the tensor,

defined as follows, shall itself be a one-vector.

}
(294)

MS*--
188. The Rotation of Axes. Before proceeding to the application

of our four-dimensional analysis to the actual problems of relativity

theory we may finally consider the changes in the components of a

vector which would be produced by a rotation of the axes. We have

already pointed out that the quantity (xi
2
-f x 2

2 + s
2

#4
2
) is an

invariant in our space for any set of rectangular coordinates having

the same origin since it is the square of the magnitude of a radius

vector, and have noted that in this way we have obtained for the

quantity (x
2 + y

2 + z2 c
2
t
2
) the desired invariance which is charac

teristic of the Lorentz transformation. In fact we may look upon
the Lorentz transformation as a rotation from a given set of axes to a

new set, with a corresponding re-expression of quantities in terms of

the new components. The particular form of Lorentz transformation,

familiar in preceding chapters, in which the new set of spatial axes

has a velocity component relative to the original set, in the X-direction

alone, will be found to correspond to a rotation of the axes in which

only the directions of the Xi and X4 axes are changed, the X% and X3

axes remaining unchanged in direction.

Let us consider a one-vector

a =
(a-iki + a 2k 2 + a3k3 + a4ki)

= (a/k/ + a 2 k 2 + a/k3 + a/k/),

where ab a 2 ,
a3 and a4 are the component magnitudes, using a set of

axes which have k x ,
k2 ,

k3 and k4 as unit vectors and a/, a 2
&amp;gt;

as and a/

the corresponding magnitudes using another set of mutually per

pendicular axes with the unit vectors k/, k/, k/ and k/. Our problem,
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now, is to find relations between the magnitudes i, a 2 ,
a3 and a4 and

a/, a 2 , as and a/.

We have already seen sections, (179) and (183), that we may obtain

any desired component magnitude of a vector by taking its inner

product with a unit vector in the desired direction, reversing the

sign if the subscript 4 is involved. We may obtain in this way an

expression for a\ in terms of a/, a/, a/ and a/. We have

Ol = a-ka = (a/k/ + a 2 k2 + a 3 k3 + a/k^-kx

= ai ki ki + a 2 k2 ki + a/k/ ki + a/k/ ki. (295)

By similar multiplications with k2 ,
k3 and k4 we may obtain expres

sions for a 2 ,
a3 ,

and a4 . The results can be tabulated in the con

venient form
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conditions of orthogonality in Euclidean space, can easily be shown

to be

and

+ (k/.k,)
2 + (k/.k,)

2 - (k/-k4)
2 =

1,

+ (k 2 -k 2)
2 + (k 2 -k3 )

2 - (k/-k4)
2 =

1,

+ (k3 -k 2 )
2 + (k/-k3 )

2 - (k/-k4)
2 -

1,

+ (k^-ko)
2 + (k/-k3)

2 - (k/-k 4)
2 = -

H (k/.k 2)(k2 .k2) + (k/-k3)(k/-k3)

(297)

=0,

etc., for each of the six pairs of vertical columns in table (296).

Since we shall often be interested in a simple rotation in which

the directions of the X2 and Xs axes are not changed, we shall be able

to simplify this table for that particular case by writing

k2
= k2 ,

k3
= k3 ,

and noting the simplifications thus introduced in the products of the

unit vectors, we shall obtain
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If now we call the angle of rotation between the two time axes

and OX4} we may write, in accordance with equation (262),

- k/-k4
= cosh

&amp;lt;/&amp;gt;.

Since we must preserve the orthogonal relations (297) and may
also make use of the well-known expression of hyperbolic trigonometry

cosh2
&amp;lt;f&amp;gt;

sinh2
1,

we may now rewrite our transformation table in the form
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A 12 ki 2 -ki2

k 12 -k 13

A 14

ki3 -k 12 ki4 -k 12

k 13 -k 13 k 14 -k 13

A 24

k 24 -k 12

k 24 -k 13

-k 12 -ki4 ;-ki/-k 14 -ki4 -ki4 -k22
/ -k 14 -k 24

/

-ki4

k 13 k 23 k 1413 -K 23 KM K 23

-k 12 -ko4

w

-k 13 -k24 -k 14 .k24 ! -k 2/-k 24 -k 2/

k3/-k 12

k3/-k 13

-k3/-k 14
; (300)

/ k34 ki4 k34 k 23 k34 k 24 k34 k?4
r k24

For the particular case of a rotation in which the direction of the

X2 and X3 axes are not changed we shall have

k 2
= k2 ,

k3
= k3 ,

and very considerable simplification will be introduced. We shall

have, for example,

k 12 -k 12
= (k/ X k^-Ckx X k 2 )

= (k/ X k 2)-(k! X k 2 )
= k/.k^

kw -kn = (k/ X kaO-Cki X k 2)
= (k/ X ks)-(ki X k 2 )

=
0,

etc.

Making these and similar substitutions and introducing, as before,
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the relation k 4 -k4
= cosh where is the non-Euclidean angle

between the two time axes, we may write our transformation table

in the form
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components of a one-vector in the forms

Vic

a, a, a

F/c

72

_
oV

_Z!

V/c

72

(302)

Consider now any point P(XI, x 2 ,
x3 ,

ar4). The radius vector from

the origin to this point will be r = (ziki + a: 2k2 + x3k3 + x4k4 ), or,

making use of the relations between xi, x 2 ,
a:3 ,

x4 and x, y, z, t given

by equations (252), we may write

r =

Applying our transformation table to the components of this one-

vector, we obtain the familiar equations for the Lorentz transformation

x - VI
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y =
y,

z =
z,

V2

We thus see that the Lorentz transformation is to be interpreted

in our four-dimensional analysis as a rotation of axes.

190. Graphical Representation. Although we have purposely re

stricted ourselves in the foregoing treatment to methods of attack

which are almost purely analytical rather than geometrical in nature,

the importance of a graphical representation of our four-dimensional

manifold should not be neglected. The difficulty of representing all

four axes on a single piece of two-dimensional paper is not essentially

different from that encountered in the graphical representation of the

facts of ordinary three-dimensional solid geometry, and these diffi

culties can often be solved by considering only one pair of axes at a

time, say OXi and OX4) and plotting the occurrences in the XiOX^

plane. The fact that the geometry of this plane is a non-Euclidean

one presents a more serious complication since the figures that we

draw on our sheet of paper will obviously be Euclidean in nature,

but this difficulty also can be met if we make certain conventions as

to the significance of the lines we draw, conventions which are funda

mentally not so very unlike the conventions by which we interpret as

solid, a figure drawn in ordinary perspective.

Consider for example the diagram shown in figure 18, where we

have drawn a pair of perpendicular axes, OXi, and OX4 ,
and the

two unit hyperbolae given by the equations

x? - x? =
1,

(303)
xf -x? = -

1,

together with their asymptotes, OA and OB, given by the equation

xf - x? = 0. (304)

This purely Euclidean figure permits, as a matter of fact, a fairly

satisfactory representation of the non-Euclidean properties of the

manifold with which we have been dealing.
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OX i and OX&amp;gt; may be considered as perpendicular axes in the

non-Euclidean XiOX^ plane. Radius vectors lying in the quadrant

AOB, will have a greater component along the X4 than along the Xi
axis and hence will be S-vectors with the magnitude s = Vx4

2
i
2

,

where x\ and x\ are the coordinates of the terminal of the vector.

D

FIG. 18.

7-radius-vectors will lie in the quadrant BOC and will have the mag
nitude s = V#i

2
4
2

. Radius vectors lying along the asymptotes
OA and OB will have zero magnitudes (s

= Vzr x4
2 =

0) and

hence will be singular vectors.

Since the two hyperbola? have the equations x-f x,f = 1 and

Xi~ #4
2 =

1, rays such as Oa, Oa f

, Ob, etc., starting from the

origin and terminating on the hyperbola?, will all have unit magnitude.

Hence we may consider the hyperbolae as representing unit pseudo-

circles in our non-Euclidean plane and consider the rays as repre

senting the radii of these pseudo-circles.

A non-Euclidean rotation of axes will then be represented by

changing from the axes OXi and OX to OAY and 0AY, and taking

Oa f and Ob as unit distances along the axes instead of Oa and Ob.

15
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It is easy to show, as a matter of fact, that such a change of axes

and units does correspond to the Lorentz transformation. Let Xi

and Xi be the coordinates of any point with respect to the original

axes OXi and OX4 ,
and Xi&quot; and x*&quot; the coordinates of the same point

referred to the oblique axes OXi and OX/, no change having yet
been made in the actual lengths of the units of measurement. Then,

by familiar equations of analytical geometry, we shall have

Xi =
Xi&quot; cos 6 + #4

&quot;

sin 6, (

(305)
4
=

Xi&quot; sin -f x&quot; cos 0,

where is the angle XiOX\.
We have, moreover, from the properties of the hyperbola,

Oa Ob
&quot;

Vcos2 e - sin2

and hence if we represent by x\ and
x&amp;lt;{ the coordinates of the point

with respect to the oblique axes and use Oa and Ob as unit distances

instead of Oa and Ob, we shall obtain

cos sin B

Vcos2 sin2 Vcos2 sin2

,
sin ,

;
cos

Vcos2 - sin2
!

Vcos2 - sin2

It is evident, however, that we may write

sin dxi V
i = tan = - =

,

cos cte 4 c

where V may be regarded as the relative velocity of our two sets of

space axes. Introducing this into the above equations and also

writing Xi =
x, x4

=
ct, x^ = x

,
x4

= ct
f

,
we may obtain the familiar

equations

V 1
-.-?
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We thus see that our diagrammatic representation of non-Euclidean

rotation in the XiOX^ plane does as a matter of fact correspond to

the Lorentz transformation.

Diagrams of this kind can now be used to study various kine-

matical events. 5-curves can be drawn in the quadrant AOB to repre

sent the space-time trajectories of particles, their form can be in

vestigated using different sets of rotated axes, and the equations for

the transformation of velocities and accelerations thus studied.

7-lines perpendicular to the particular time axis used can be drawn to

correspond to the instantaneous positions of actual lines in ordinary

space and studies made of the Lorentz shortening. Singular vectors

along the asymptote OB can be used to represent the trajectory of a

ray of light and it can be shown that our rotation of axes is so devised

as to leave unaltered, the angle between such singular vectors and the

OX4 axis, corresponding to the fact that the velocity of light must

appear the same to all observers. Further development of the possi

bilities of graphical representation of the properties of our non-

Euclidean space may be left to the reader.

PART II. APPLICATIONS OF THE FOUR-DIMENSIONAL ANALYSIS.

191. We may now apply our four-dimensional methods to a

number of problems in the fields of kinematics, mechanics and electro

magnetics. Our general plan will be to express the laws of the par

ticular field in question in four-dimensional language, making use of

four-dimensional vector quantities of a kinematical, mechanical, or

electromagnetic nature. Since the components of these vectors

along the three spatial axes and the temporal axis will be closely

related to the ordinary quantities familiar in kinematical, mechanical,

and electrical discussions, there will always be an easy transition from

our four-dimensional language to that ordinarily used in such dis

cussions, and necessarily used when actual numerical computations

are to be made. We shall find, however, that our four-dimensional

language introduces an extraordinary brevity into the statement of a

number of important laws of physics.

KINEMATICS.

192. Extended Position. The position of a particle and the par

ticular instant at which it occupies that position can both be indi-
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cated by a point in our four-dimensional space. We can call this

the extended position of the particle and determine it by stating the

value of a four-dimensional radius vector

r = (xiki + z 2k2 + z3k3 + x4k4). (306)

193. Extended Velocity. Since the velocity of a real particle can

never exceed that of light, its changing position in space and time

will be represented by a 6-curve.

The equation for a unit vector tangent to this 5-curve will be

dr dxi dxz dx3 dx*
(307)

where ds indicates interval along the 5-curve; and this important

vector w may be called the extended velocity of the particle.

Remembering that for a 5-curve

ds = Vcfo4
2 - dx? - dx z

2 - dx3
2 =

cdt-yl
-

, (308)

we may rewrite our expression for extended velocity in the form

w- ,- l-.+ kJ. (309)

where u is evidently the ordinary three-dimensional velocity of the

particle.

Since w is a four-dimensional vector in our imaginary space, we

may use our tables for transforming the components of w from one

set of axes to another. We shall find that we may thus obtain trans

formation equations for velocity identical with those already familiar

in Chapter IV.

The four components of w are

u,

k

V -S
and with the help of table (302) we may easily obtain, by making

simple algebraic substitutions, the following familiar transformation
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equations :

1 -
c2

yj

c
2

L/

This is a good example of the ease with which we can derive our

familiar transformation equations with the help of the four-dimensional

method.

194. Extended Acceleration. We may define the extended accel

eration of a particle as the rate of curvature of the 6-line which deter

mines its four-dimensional position. We have

c =
d2! dw _ d

~
ds

~
ds

Or, introducing as before the relation ds =
cdl-\J

1
,
we may write

1 du 1 u du

(310)

u du
(311)
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where u is evidently the ordinary three-dimensional velocity, and -j-
CtL

the three-dimensional acceleration; and we might now use our trans

formation table to determine the transformation equations for accel

eration which we originally obtained in Chapter IV.

195. The Velocity of Light. As an interesting illustration of the

application to kinematics of our four-dimensional methods, we may
point out that the trajectory of a ray of light will be represented by a

singular line. Since the magnitude of all singular vectors is zero by

definition, we have for any singular line

or, since the magnitude will be independent of any particular choice

of axes, we may also write

Transforming the first of these equations we may write

dxj + dx2
2 + dx^ _ dx* + dy

2 + dz2

_
dxt

2 cW
or

dl

dt
= C

Similarly we could obtain from the second equation

dl

dt
= C

We thus see that a singular line does as a matter of fact correspond

to the four-dimensional trajectory of a ray of light having the velocity c,

and that our four-dimensional analysis corresponds to the require

ments of the second postulate of relativity that a ray of light shall

have the same velocity for all reference systems.

THE DYNAMICS OF A PARTICLE.

196. Extended Momentum. We may define the extended momen
tum of a material particle as equal to the product ra w of its mass m Q ,

measured when at rest, and its extended velocity w. In accordance
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with equation (309) for extended velocity, we may write then, for

the extended momentum,

(312)

Or, if in accordance with our considerations of Chapter VI we put

for the mass of the particle at the velocity u

we may write

m =

u
m w = m- + mk4 . (313)

c

We note that the space component of this vector is ordinary momen
tum and the time component has the magnitude of mass, and by

applying our transformation table (302) we can derive very simply

the transformation equations for mass and momentum already

obtained in Chapter VI.

197. The Conservation Laws. We may now express the laws for

the dynamics of a system of particles in a very simple form by stating

the principle that the extended momentum of a system of particles is a

quantity which remains constant in all interactions of the particles,

we have then

/ wu \
;m w = 2 I + wk4 )

= a constant, (314)

where the summation 2 extends over all the particles of the system.

It is evident that this one principle really includes the three

principles of the conservation of momentum, mass, and energy.

This is true because in order for the vector 2m Ow to be a constant

quantity, its components along each of the four axes must be con

stant, and as will be seen from the above equation this necessitates

the constancy of the momentum 2rau, of the total mass 2m, and of

m
the total energy 2 .



216 Chapter Thirteen.

THE DYNAMICS OF AN ELASTIC BODY.

Our four-dimensional methods may also be used to present the

results of our theory of elasticity in a very compact form.

198. The Tensor of Extended Stress. In order to do this we shall

first need to define an expression which may be called the four-dimen

sional stress in the elastic medium. For this purpose we may take the

symmetrical tensor Tm defined by the following table:

xx Pxy Pxz CQ X)

v^ Pvy Pyz
rp

&quot;*

Pzx Pzy Pzz CQ Z , (315)

So o
X o y o z

w,1C C C

where the spatial components of Tm are equal to the components of

the symmetrical tensor p which we have already defined in Chapter
X and the time components are related to the density of momentum g,

density of energy flow s and energy density w, as shown in the tabu

lation.

From the symmetry of this tensor we may infer at once the simple

relation between density of momentum and density of energy flow:

g =
^ i (316)

with which we have already become familiar in Section 132.

199. The Equation of Motion. We may, moreover, express the

equation of motion for an elastic medium unacted on by external

forces in the very simple form

div Tm = 0. (317)

It will be seen from our definition of the divergence of a four-

dimensional tensor, Section 187, that this one equation is in reality

equivalent to the two equations

div p + ~ =
(318)

and
div

div s + = 0.
ot
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The first of these equations is identical with (184) of Chapter X,
which we found to be the equation for the motion of an elastic medium
in the absence of external forces, and the second of these equations

expresses the principle of the conservation of energy.

The elegance and simplicity of this four-dimensional method of

expressing the results of our laborious calculations in Chapter X can

not fail to be appreciated.

ELECTROMAGNETICS.

We also find it possible to express the laws of the electromagnetic

field very simply in our four-dimensional language.

200. Extended Current. We may first define the extended current,

a simple but important one-vector, whose value at any point will de

pend on the density and velocity of charge at that point. We shall

take as the equation of definition

q =
Pow =

p + k4 , (319)

where

Po

is the density of charge at the point in question.

201. The Electromagnetic Vector M. We may further define a

two-vector M which will be directly related to the familiar vectors

strength of electric field e and strength of magnetic field h by the

equation of definition

M = (fcikw + /? 2k3 i + h 3kn - e&u - e 2k 24
- e3k34)

or (320)

M* = (eik23 + e 2k3 i -f eski 2 + /hkH + /i 2k24 + /? 3k34),

where e\, e-&amp;gt;,
e3 ,

and hi, h Zj h3 are the components of e and h.

202. The Field Equations. We may now state the laws of the

electromagnetic field in the extremely simple form

0-M =
q, (321)

X M = 0. (322)
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These two simple equations are, as a matter of fact, completely

equivalent to the four field equations which we made fundamental

for our treatment of electromagnetic theory in Chapter XII. Indeed

if we treat
{&amp;gt; formally as a one-vector

/ d

(
k!

\ dx L

d d d
o
- + k3

- k4
--

dx2 dx3 dx4

and apply it to the electromagnetic vector M expressed in the extended

form given in the equation of definition (320) we shall obtain from

(321) the two equations

1 de u

div e =
p,

and from (322)

div h =
0,

1 dh

where we have made the substitution #4
= ct. These are of course

the familiar field equations for the Maxwell-Lorentz theory of electro-

magnetism.

203. The Conservation of Electricity. We may also obtain very

easily an equation for the conservation of electric charge. In accord

ance with equation (284) we may write as a necessary mathematical

identity

0-(0 M)=0. (323)

Noting that M =
q, this may be expanded to give us the equation

of continuity.

div Pu + ^ = 0. (324)
ot

204. The Product M q. We have thus shown the form taken by
the four field equations when they are expressed in four dimensional

language. Let us now consider with the help of our four-dimensional

methods what can be said about the forces which determine the

motion of electricity under the action of the electromagnetic field.

Consider the inner product of the electromagnetic vector and
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the extended current:

+ k4

(325)
f [uXh]*\ e-u= P (e+- -j + P k,

We see that the space component of this vector is equal to the ex

pression which we have already found in Chapter XII as the force

acting on the charge contained in unit volume, and the time com

ponent is proportional to the work done by this force on the moving

charge; hence we may write the equation

(326)

an expression which contains the same information as that given by
the so-called fifth fundamental equation of electromagnetic theory,

f being the force exerted by the electromagnetic field per unit volume

of charged material.

205. The Extended Tensor of Electromagnetic Stress. We may
now show the possibility of defining a four-dimensional tensor Te such

that the important quantity M-q shall be equal to div Te . This

will be valuable since we shall then be able to express the equation

of motion for a combined mechanical and electrical system in a very

simple and beautiful form.

Consider the symmetrical tensor

Tfji rri

12 ^13 1 14,

31 -t 32 * 33 -t 34,

T rn rn rri

41 1 42 1 43 1 44,

defined by the expression

(328)

where j, k =
1, 2, 3, 4.
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It can then readily be shown by expansion that

- div Te
= M-(O-M) + M*-(0-M*).

But, in accordance with equations (321), (326), (292) and (322), this

is equivalent to

Since in free space the value of the force f is zero, we may write
for free space the equation

div Te
= 0. (330)

This one equation is equivalent, as a matter of fact, to two im
portant and well-known equations of electromagnetic theory. If we
develop the components Tu ,

T 12 , etc., of our tensor in accordance
with equations (328) and (320) we find that we can write

Yxx Yxy *//xz ,

C

T, = 1

vv tyz
~

,

C

(331)

So o
x oy e&amp;gt; 2

7 7
~
c

w

where we shall have

* = &quot;

\(e?

tx v
= -

(e xe v

etc.

sx = c(eji z e zh v),

etc.

- ej - e? + h* - hj - h*

(332)

^ thus being equivalent to the well-known Maxwell three-dimensional
stress tensor, s xj s v , etc., being the components of the Poynting vector

c[e X h]*, and w being the familiar expression for density of electro-
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magnetic energy |
. We thus see that equation (330) is equiva

lent to the two equations
1 as

div* + -
2

~ =
0,

dw
div s + = 0.

ot

The first of these is the so-called equation of electromagnetic momen

tum, and the second, Poynting s equation for the flow of electromag

netic energy.

206. Combined Electrical and Mechanical Systems. For a point

not in free space where mechanical and electrical systems are both

involved, taking into account our previous considerations, we may

now write the equation of motion for a combined electrical and

mechanical system in the very simple form

div Tm + div Te
= 0.

And we may point out in closing that we may reasonably expect all

forces to be of such a nature that our most general equation of motion

for any continuous system can be written in the form

div T
7

! + div T2 + = 0.



APPENDIX I. SYMBOLS FOR QUANTITIES.

Scalar Quantities. (Indicated by Italic type.)

c speed of light.

e electric charge.

E energy.

H kinetic potential.

K kinetic energy.

I, m, n direction cosines.

L Lagrangian function.

p pressure.

Q quantity of electricity.

S entropy.

t time.

/ ;
2 \

T temperature, function 2m c
2

1 1 -\! 1 ---
1

U potential energy.

v volume.

V relative speed of coordinate systems, volume.

w energy density.

W work.

e dielectric constant.

V

ju index of refraction, magnetic permeability.

v frequency.

p density of charge.

a electrical conductivity.

&amp;lt;/&amp;gt;

non-Euclidean angle between time axes.

generalized coordinates.

\l/ scalar potential.

\J/i\f/z\l/3-
-

generalized momenta.

222
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Vector Quantities. (Indicated by Clarendon type.)

B magnetic induction.

c extended acceleration.

D dielectric displacement,

e electric field strength in free space.

E electric field strength in a medium.

f force per unit volume.

F force acting on a particle.

g density of momentum.

h magnetic field strength in free space.

H magnetic field strength in a medium.

i density of electric current.

M angular momentum, electromagnetic vector.

p symmetrical elastic stress tensor.

q extended current.

r radius vector

s density of energy flow.

t unsymmetrical elastic stress tensor.

u velocity.

w extended velocity.

&amp;lt;(&amp;gt;

vector potential.



APPENDIX II. VECTOR NOTATION.

Three Dimensional Space.

Unit Vectors, i j k

Radius Vector, r = x\ + yj -f zk

Velocity,

dr
U = ~ = Xi + yj + Zk

= uxi + uvj + u zk

Acceleration,

= uxi + iyj + w zk
Inner Product,

a-b = axbx + a
tf
6

tf + a eb z

Outer Product,

a X b =
(axbv

-
aj&amp;gt;x)ij + (ay6,

- a,6v)jk + (aA - az6 2)ki

Complement of Outer Product,

[a X b]* =
(ayb z

-
a,6y)i + (aJ&amp;gt;,

- axb z)j + (axby
- aybx)k

The Vector Operator Del or V,

d d d

dy dz

curia = [V X a]* = _
dy dz dz dx

224
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Non-Euclidean Four Dimensional Space.

Unit Vectors, ki k2 k3 k4

Radius Vector,

r = ziki + z2k2 + z3k3 4-

= xi + yj + 2k + dk4

One Vector,

a = Qiki + a 2k2 + a 3k3 +
Two Vector,

A = ^i2k12 + Ai3k13 + Auku + A 23k23 + A 24k24 + A 34k34

Three Vector,

H = 5Ii23ki23 + 5li24ki24 + Hi34ki 34 + 5I234k234

Pseudo Scalar,

a = aki234

Transposition of Subscripts,

Inner Product of One Vectors,

(See Section 183).

Outer Product of One Vectors,

ka&... X knm ... =

Complement of a Vector,

0* = &amp;lt;-k

The Vector Operator Quad or
0&amp;gt;
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