

```
For :-
    Miss J.B.Mackenzie,
    The Librarian,
    Museum of Comparative Zoology,
    Harvard College,
    CAMBRIDGE 38,
    Massachusetts,
    U.S.A.
From:- The Librarian,
        Sedgwick Museum,
        CAVBRIDGE, England.
```


HARVARD UNIVERSITY

LIBRARY

of the
MUSEUM OF COMPARATIVE ZOÖLOGY

GIFT OF
The Librarian
Seogwick Museum
Cambridee, Englamo

A CATALOGUE

OF THE

COLLECTION OF CAMBRIAN AND SILURIAN FOSSILS

IN THE

GEOLOGICAL MUSEUM OF THE UNIVERSITY OF CAMBRIDGE.

Zlonton:
CAMbRIDGE WAREHOUSE, 17 PATERNOSTER ROW
Cambrituar :
DEIGHTON, BELL AND CO.

A CATALOGUE

OF THE COLLECTION OF

CAMBRIAN AND SILURIAN FOSSILS

CONTAINED IN
THE GEOLOGICAL MUSEUM OF THE UNIVERSITY OF CAMBRIDGE,

BY
J. W. SALTER, F. G. S.

WITH A PREFACE BY
THE REV. ADAM SEDGWICK, LLD. F.R.S.
WOODWARDIAN PROFESSOR OF GEOLOGY IN THE UNIVERSITY OF CAMBRIDGE,

AND
A TABLE OF GENERA AND INDEX

ADDED BY
PROFESSOR MORRIS, F.G.S.

5625
Cambridge:
AT THE UNIVERSITY PRESS.
M. ACC. LXVII.

Cambrioge:
PRINTED BY C. J. CLAY, MA. AT THE UNIVERSITY PRESS.

C O N TENTS.

PAGES
General Section of the Paleozoic Systey in Britain 1
Section of the Lower and Middle Cambrian in North Wales 3
Geological Map of Portmadoc Estuary 9
Table of the British and Foreign Cambrian and Lower Silurian Rocks 25
Lower Cambrian Fossils 1, 2
Middle Cambrian 3-24
Upper Cambrian 25-83
Silurian, May Hill Group 84-90
" Lower Wenlock Grout 91-98
" Wenlock Group $99-160$
„ Lower Ludlow Group 161-174
,, Upper Ludlow Group 175-187
" Ludlow Bone-Bed and Downton Sandstone 188-192
" Ledbury Shales (Passage Beds) 193

PREFACE.

Since the proof-sheets of the following Catalogue issued from the press, I have earnestly desired to write an Introductory Preface to it. Week after week and month after month have I waited in anxious hope of completing my humble task. But I have been greatly interrupted by a chronic malady which makes me incapable of any long-continued mental labour; and, in addition to this hindrance, a painful infirmity of sight almost entirely prevents me from consulting my manuscripts and memoranda, made during the Geological tours of many past years. To spare this continued infirmity of sight I now gratefully dictate the following pages to my young friend and assistant in the Museum-Mr Walter Keeping.

The old Catalogue of the Palæozoic Fossils, by Prof. M ${ }^{\text {c }}$ Coy (now of the University of Melbourne), was a work of enormous labour and of very great scientific skill; especially when we consider the date of its appearance. Its publication was a real benefit to the Academic Student, a distinction to the University Press, and a great honour to its Author. In the clearness and elaborate accuracy of its descriptions of the several species the work is I think unrivalled, in spite of all that has been written since. But I wish to write historically, and profess not here to enter upon critical questions of scientific detail.

In an advancing science like Geology, any catalogne, however good at the time of its publication, must soon become defective from changes of nomenclature, from improved classifications, and above all from the discovery of new specics. Mr Davidson's great works on the Brachiopoda have thrown new light upon the divisions of that class of Mollusca, and very greatly changed the nomenciature of the genera and species.

The great additions made, of late years, to our knowledge of the older Palrozoic Fauna, and especially to the groups of fossils now in our Museum, derived from the lower division of what were formerly called the Lingula Flags; still more the great Fletcher Collection
from the Wenlock series, which has been purchased by the University since Prof. M ${ }^{c}$ Coy's Catalogne was printed-all these additions prove the necessity of corresponding changes in our Palæozoic Catalognes.

After Mr Salter had left the service of the Government Survey he several times visited me at Cambridge, and was desirous to do his best to supply the imperfections of our ('atalogne; and I joyfully accepted his offered services, knowing his great skill as a Natural science Artist, and believing him, after his long-tried labours under the Government Survey, to be umrivalled in his exact scientific knowledge of the fossil Invertebrata of the Pritish Isles. One condition of his engagement was that his work should be constructed as a Supplement to the old Catalogne, and not as an independent work. This condition Mr salter professed to accept, though as his labours advanced he did not by any means perfectly conform to it.

To his persomal applications, seldom communicated to myself, and to the knowledge that he was employed in completing a Cambridge Palæozoic Catalogne, we owe many of the additions to our older Palrozoic Collection, to which I have before alluded. And let me here record in behalf of the University my grateful thanks to the Earl of Ducie, to Darid Homfray, Esq. of Portmadoc, to Dr Hicks of St Davids, to Mr Lightbody of Lucllow, to Mr Ash, and to Mr J. Plant of the Royal Museum, Salford, for their generous donations to our Collection; and I trust that the several donors have fornd a grateful and respectful notice in Mr Salter's pages. If the names of any other bencfactors have been here omitted, I can only plead in my behalf the death of Mr Salter before the Catalogne was quite complete, my present infirmity of sight which prevents me from consulting my Journals and Memoranda, and the strange clonds of oblivion which too often trouble an old man's memory.

Mr Salter's task advanced very slowly; for his bodily health and his nervous system seemed to have been almost broken up by the stress of hard mental labour which had been imposed upon him through many preceding years. On several occasions lie abandoned his task at Cambridge, and went to recruit his health by a residence of a few months at Malvern, where he remained under medical care. But still the work did advance in spite of these interruptions, and the University at length undertook to pay the cost of it under certain conditions, with which he was willing to comply.

After many delays and much anxiety (and I may add after much personal cost to myself) Mr Salter's mamscript took a form which made it fit for the press. I do not however think it would ever have reached that state but for the kind advice and encouragement and judicious help given to its author by the Master of St Peter's College. And after the first press-work was done, it still was evident that the Catalogne required careful revision and correction; not in the naming and description of the species, but in
such marks of reference as should intelligibly connect the Catalogue with the specimens arranged in the Cabinets of the Muscum. Without this kind of labour the best Catalogue in the world would be of comparatively little use to a Cambridge student. Knowing this, I was induced to take a journey to Margate for the express purpose of seeing Mr Salter, and making arrangements for the discharge of all his personal expenses while he was employed in revising the references of his Catalogue, and giving the ultimate finish to his work. The state of his health was perfectly deplorable when I last saw him at Margate, and the hand of death very soon afterwards arrested all our hopes of obtaining the Author's final revision of his work.

Again, we were, in an hour of need, under a great obligation to Dr Cookson, who undertook the laborious task of revising and completing the exact agreement of the cabinctlabels with the details given in the several pages of the Catalogue. This work of Dr Cookson's not only required great labour, but rery nice discrimination in the separation of the species, and demands from us the warmest expressions of our gratitude.

The final seientific revision of the work was undertaken, at the request of the Unirersity, by Prof. Morris, who went through his task with that genuine conscientions and laborious skill which left nothing to be desired: and it was well for the reputation of the University that this final labour was undertaken by so distinguished a Paleontologist; for there were several blemishes in the Catalogue: such, for example, as the appearance of the same species under different names, a few mistaken localities, and other little incongruities arising out of Mr Salter's wretched health and continually interrupted labours.

Since Prof. Morris' last revision and Report there has been again a long delay, for which I alone am responsible; and I trust that the University will accept this acknowledgment as an apology from their very old and infirm, but, in former years, their very hard-working servant.

The following Catalogne of all the Older Palæozoic Fossils in the Woodwardian Museum consists of specimens which have been collected by myself, or presented by my friends, or obtained by purchase during my very long tenure of office as Professor of Geology.

It was meant to be a Supplement to the Synopsis of Palrozoie Fossils by Prof. Mcoy; but this condition, as before stated, was not strictly observed; for it will be seen, among other variations, that the nomenclature of Prof. MCoy has not been always followed, the subsequent examination of some of the specimens by Mr Salter having induced him to class them under other genera than those under which they appeared in Mcoy's "Synopsis."

The Collection is, to a great extent, arranged zoologically, under the several Geological divisions of the Strata adopted in this Catalogne ; and the fossils of each division, commencing with the lowest, are tabulated under four columns-the first column indicating the number of
the Table-Case and column of Drawers (as Gh. 1); the second column giving illustrative figures of varions genera, and also references to Mcoy's Synopsis; the third giving the names adopted by Mr Salter, with references to one or more works in which they have been described or figured, with the addition of useful short notes on the specics; the fourth column giving the localities from which the specimens have been obtained.

I should ill discharge my duty in writing this Preface did I not gratefully notice the elaborate Index which Prof. Morris has added to the Catalogue. It is a graceful finish to the work, and makes the Catalogue fit for ready consultation, which is a matter of the first importance. This Index has been a work of such labour that I should not have ventured to ask the Professor to undertake it; but this thought makes me the more grateful to him for having contributed it so kindly and spontaneously. With like expressions of grateful goodwill I must also mention the Tables, in which is given an account of the whole range of formations within which each genus has been found; so that an eye-glance at these Tables will put a Palæontologist in possession of the leading facts of the distribution of the organic types in the successive groups of Strata, as they are enumerated in the Catalogue: not in any hypothetical order, but in that in which they are recorded in Nature's Book. These Tables are a work of great knowledge and of patient skill; and went far beyond the task of revision intended by the University.

The stratigraphical System of nomenclature adopted in this Catalogue is essentially the same with that of Prof. Mcoys Synopsis. It is based upon an actual survey, first made by myself, whereby I approximately determined in N. Wales the order of the older deposits of the whole region, and the natural groups of strata into which they might be separated.

This might be called a great but rude problem of solid geometry, to be first solved by an elaborate examination of physical evidence, and without reference to the organic remains in the successive groups. But these groups being once established, on the basis of true observation, we may then proceed to obtain the first chapters of a true history of the succession of organic types, as the tale is told in the successive strata whence they have been derived. And when we have once obtained in any extensive section a true succession of organic types, we may then, as Nature is true to her own workmanship, advance a step farther, and use that succession to help us in making out the order of the Physical groups in cases where they hare been imperfectly or obscurely elaborated. Thus we have two great principles of arrangement; first by the actual and laborions observation of the successive physical groups; secondly, by the order of the organic types which have been already established by a reference to the types of some well-known natural section.

In determining a Geological nomenclature these two great prineiples must never be lost sight of - No true nomenclature can be in conflict with the actual succession of the physical deposits; neither can it contradict the true succession of organie types. Nature does not contradict her own workmanship. This was the prineiple on which William Smith, whom we call the Father of English Geology, aeted; and it was the principle on which Murchison acted when he first made known his beautiful succession in the upper part of (what he taught us to call) his Silurian System. That upper part of his System was thoroughly and beautifully worked out, was accepted at once, and continues to maintain its place. But below the Wenlock shale, in what he called the Lower Sihurian groups, his fundamental sections utterly broke down, having no base to rest upon. He never made out the succession of his physical groups: some of them which required separation he confounded, and some he put in an inverted order; and thereby he brought an inevitable incongruity into his lists of the Older Palaozoic fossils. In short, I venture to affirm, that the Lower Silurian nomenclature, however widely adopted on the authority of its Author, was false: because it was built upon sections that were untrue to nature; and if this assertion be true-and it is truc-the discussion requires no further argument.

As a general rule, honest truth and good taste go hand-in-hand; and what can be more incongruous and tasteless than to erase the Classical name of Cambrian as applied to the grand mountain ehains of Caernarvonshire and Merionethshire, and to substitute the word Silurian as their designation. This was done by the Author of the "Silurian System," in the first instance no doubt by mistake, and in the hope of giving a greater extent and firmer basis to his System. But when the great errors of his fundamental groups were discovered, why continue such a monstrous abuse of nomenclature? Siluria supplies us neither with the best types of the older groups, nor with any sections which elearly define their suceession: Cambria supplies both. Omr business here is not to consider what great services the Author may have done in other regions: but to consider whether his work in Lower Siluria be true to nature. The first publication of his grand lists of "Lower Silurian Fossils" was a great boon to Geology; but the assumed stratigraphical arrangement and the grouping of the species has been a great mischief, and a drag upon its progress.

I will pursue this subject no farther, but refer the reader to my Introduction to Prof. M'Coy's Synopsis which I here adopt, because that which is true in a natural arrangement can never be materially changed. Nor should I have introduced even this notice of an old controversy, had it not been revived in an acute, animated, and very elaborate dissertation by Prof. Sterry Hunt (Nature, May 2, 9, and 16, 1872, reprinted from the

Canadian Nuturalist). And it was high time that a shameful ineubus should be shaken off from the breathing organs of the older Palæozoic rocks; and that they should express themselves once again in the language of truth and freedom.

Tottering as I now am under the infirmities of old age, with faded senses and a failing memory, I am ill fitted for the part of a gladiator; but after Professor Sterry Hunt's bold and honest vindication of my work in Cambria, it would be on my part an act of moral cowardice, and a want of proper respect for the sanctity of evidence, not thus to speak out in the cause of historic truth and reason.

Leaving all controversy for awhile, I may mention some other facts respecting the Catalogne, which may find a proper notice in this Preface. I never saw the proof-sheets of the Catalogue or superintended its long progress through the press. There are consequently a ferr notices and expressions in it which do not strictly represent my views. The Sections on page 1, and page 3 , were made and struck off without any communication with myself, and on Mr Salter's authority they entirely rest. Instead of the groups Harlech and Longmyndthe second from the base of the Ideal Section on page 1-I should have preferred to write Llanberis, Bangor, and Longmynd Groups, and I should have placed the Harlech Group at the base of the Menevian. The second Section, page 3, has I think considerable value; not as a natural Section, but as a pictorial illustration of the relative position of certain important gronps of strata. The third plate, page 9 , may be excellent in its way as a small Geological Map; but it is far too complicated for the use of a student unless it had been illustrated by sections.

I may here remark generally, that I do not think the Upper and Lower Llandovery Rocks of the Govermment Sursey ought to appear as one group; and I would place the Lower Llandovery at the top of the Cambrian groups, and the Upper Llandovery at the base of the true Silurian Rocks. This is the arrangement justified by the Sections in Denbighshire: but there is a large extent of country, partly covered by the Upper and Lower Llandovery Rocks, with which I am very imperfectly acquainted, and which is, I think, even now, very inadequately described in the works of the Government Survey.

The separation between Cambrian and Silurian Rocks is sometimes defined by a simple line, which shows at once the discordancy of the two deposits. On the contrary, the passage between the two systems is not unusually marked by a great confusion of deposits, by enormous masses of stratified conglomerate violently contorted or set up on edge, which are certain indications of a vast period of time. Many monuments of powerful eleration, abrasion, and dislocation of the rock-masses also mark the long period of time occupied in the passage from the Cambrian to the Silurian formations.

I do not profess perfectly to understand, or to criticise, the comparative sehemes of clas-
sification and nomenclature given by Mr Salter on page 25 . I have a similar, more simple comparative Table, kindly given me by Prof. Morris, which I will not here copy in extenso, as I wish this prefatory notice to be short; but I will copy the first column of his Table, which he believes to represent my scheme of arrangement as well as his own; and with which I wish to make no change; except that I would add the Llanberis Group to the Longmynd and Bangor Groups, and remove the Harlech Group to the base of the Mencrian, as before stated.

If it be asked how the great succession of our Older Palæozoic Rocks was determined, I can only refer to my own individual labours, carried on during many successive year's among the older rocks of England.

I commenced my task in Wales in 1831, accompanied for a short time by my friend Charles Darwin-a name now well known and honoured in the whole world of science-but other engagements soon drew him away from N. Wales. We laid down the northern boundary of the Carboniferous Limestone together, and I at first purposed to examine the rocks in descending order. But I found in Denbighshire the same interrupted broken masses of Old Red Sandstone which I had so many times noticed between the Carboniferous and the Silurian and Cambrian rocks in the North of England. I therefore despaired of establishing a good base to work upon in that district; and after a short examination of the rocks on both sides of the Menai Straits, I resolved to fix a provisional base-line on the Caermarvon side of the Straits.

I soon found that the prevailing strike of the country was about N.N.E.; therefore by
following nearly East and West sectional lines, the deposits were discorered in their true relations and sectional order: and commencing nearly on the line of the Holyhead road, I marked all the anticlinal and synclinal flexures upon a section copied from nature. The rast modulations of the strata, the constant intrusion and alternation of igneous rocks, at first threw some difficulties in my way; but I had learned to encounter them during my previous three years' labour among the Lake mountains, and I did not find any insurmountable difficulties in reading the suceession given by each section. In this way I made three parallel nearly East and West traverses. The first from the shores of the Menai, by the great Pemrhyn slate-quarries, and so on, by the summits of the high mountains, orer the top of Glyder Fawr to the neighbourhood of Capel Curig: the second, by the mountains South of Llanberis, over the top of Snowdon, and thence into the valley above Beddgelert: the third, by a parallel mountain-traek, passing over Moel Hebog and ending in the ralley below Beddgelert, a little farther to the South-west.

On a careful revision of the several sections presented on these three lines, I found that even in the most complicated eurves the chief antielinal and synclinal lines might be brought into an approximately close comparison, so as greatly to assist in the construction of a general section of the country and the establishment of good physical groups. Thus the great synclinal trough of Crm Idwal, on the first line of seetion; another synclinal in the second line, within which rests the top of Snowdon; and a third synclinal which underlies the top of Moel Hebog: all affect one group of strata, through which pass the most remarkable fossiliferous beds of the whole Cambrian Series.

Taking this as a kind of key-note to guide me in further discoveries I examined the sections in more detail, and made out the relations of their corresponding parts; and before the working season was over (in 1831) I completed an approximate Geological Map from actual survey of nearly the whole of Caernarronshire. No names were of course given to the natural groups of strata; but the part some of them played in the physical development of the country was, I thought, clearly established.

I have given these details to shew the honest and very laborious way in which I set about my work. I had, in truth, little diffieulty in reading the sections, as their language was written in characters almost identical with those I had long studied in the Cumbrian mountains.

The base-line on the shores of the Menai was broken and imperfect; and its association, made in after years by the Government Survey and by myself, with the Longmynd rocks, was, I think, partly hypothetical. But along each line of section, above described, I had found a magnificent, and, on the whole, an ascending series of deposits, of grand features and of enormous thickness.

Early next summer I resumed my task in Wales. Crossing the depression in which my sections had terminated, I pushed them forward towards the East, nearly at right angles to the strike of the strata; and in the progiess of my work, discovered the great Merioneth-Anticlinal, which I have often called the backbone of Wales. It brings out the oldest strata which were first seen near the coast of the Menai; and assuming it as our base, we can count off towards the East an enormous series of ascending strata capped by the whole Bala group; and from the same basc-line we can count off all the groups of the three sections observed in the preceding year, first in ascending, and then in descending order, till we meet the same basic groups as we approach the shores of the Menai.

Having thus obtained a key-note to the harmonious grouping of the strata, and having practically become acquainted with some of the most important physical groups, I undertook what proved to be the severest summer's task of my Geological life; namely, the interpretation and partial delineation of the order and principal flexures of all the olderdeposits of the counties of Merioneth, Montgomery, and Denbigh.

A brief synopsis, illustrated by sections of what I had effected in Caernarvonshire, was laid before the British Association, at one of their evening meetings held at Oxford in the year 1832. I had no doubt about the great groups or about the great flexures and faults by which some of them were repeated again and again in the same county.

I never had a Geological secret in my long life. Nearly all my best work in Wales was done in solitude, and was therefore my own. My first groups continue unchanged and ummodified; with the exception of certain changes introduced by recent discoveries, such as the Menevian group, which now forms a group subordinate to the Lingula Flags; and I hesitate not to affirm that the grand and well-comnected succession of deposits which 1 unfolded between the Menai and the top of the Berwyn chain is umrivalled by any other European Section, of the same age, hitherto described by Geologists. The Cambrian sections hare this crowning honour; and are rivalled in their succession and physical development only by the magnificent series of Palæozoic rocks discovered by the Geologists of North America.

What sense therefore has there been in excluding the Mountains of Wales from their proper physical importance in the Geology of our own Island by sinking them and colouring them as Lower Silurian? The groups of the Lower Silurian System of Sir R. I. Murchison, (even had their place and age not been utterly mistaken by their Author,) would not have deserved the prominent notice they have held in the nomenclature of English groups; for they generally want the essential condition of good typical groups. They de not shew any true relation to the groups above them and below them.

For my own convenience I had made an agreement with the Author of the Silurian System, at the Edinburgh Meeting of the British Association, in 1834, to wait till he had
finished the result of his labours, which I expected to appear in a well-illustrated volume in course of the year following. But having waited, as I thought, too long for the appearance of the "Silurian System," I gave up my sketches, day-books, and field-books (I think in 1837) to my honoured friend Mr Lonsdale, then the Assistant-Secretary of the Geological Society, and out of these documents he made a series of sections upon a grand scale, which shewed the extent, and many of the details, of my work in North Wales. These sections were exhibited and explained by myself to the Geological Society at one of their evening meetings, and remained in their possession for many years. The last time I saw then they were in the hands of Mr Warburton, who had undertaken to reduce to a state fit for publication the papers on North Wales, which described the labours of Mr Salter and myself in the years 1842-3, and he had obtained Mr Lonstale's larger sections for assistance in this work.

In order to give coherence to my scattered remarks on the older rocks of North Wales, I will first mention in chronological order the chief periods during which I investigated the structure of the Principality. My best work, I think, was done in the summers of 1831 and 1832, in the manner above stated. In the spring and summer of 1833 my health broke down so much that I was incapable of taking the field till the autumnal season, when it was far too late for me to attempt the great and difficult task I had proposed to myselfnamely, of commencing with the South flank of Cader Idris, and thence, by numerous long traverses, connecting my work in North Wales with the typical Silurian country on the banks of the Towey ${ }^{*}$.

After studying the Sections which were laid by Murchison before the British Association in 1833, I felt convinced that there was an overlap between the Systems of Cambria and Siluria (as they were afterwards called), and we agreed to settle this question next year by a joint tour through the most typical portions of the Silurian country, which had been, during the preceding years, examined, mapped, and described in considerable detail. By this joint labour we hoped to clear up some points of difficulty, and to establish a good line of demarcation between our Groups of Strata.

We commenced our work (in 1834) by various hasty traverses in the typical Silurian country, which stretches on both banks of the Towey. At first we had no matter of controversy, for I accepted at once my friend's interpretation of his own Sections. I did not go to dispute, but to learn as it were the alphabet of the Silurian tongue. My

[^0]friend had a Govermment Map of the Conntry we first glanced at, well marked and coloured, with references to his previous labours. I had been disappointed in my hope of procuring the map of the Gcographical Survey as I passed through London, and I had no map whatever with me of that part of the country; but I gradually learnt, on the spot, to understand what were the characters of such groups of Strata as were afterwards known to all British Geologists by the names Caradoc and Llandeilo rocks.

As we advanced northwards and passed the limits of the published Ordnance map, I could then turn to good account my old field map; and when I found myself among the rocks I hat hastily examined in the year 1832, I readily accepted my friend's interpretation of the calcareous beds of Meifod, of the calcareous bands among the undulating rocks between Meifod and Llanfyllin, and the still more astonishing groups which are displayed between the Tannat and the Ceiriog. In these districts all the calcareous bands were counted as Caradoc. But my scepticism was alarmed before we reached the Ceiriog; because the calcareons bands, which descend from the northern end of the Berwyn chain into the valley of the Ceiriog-ranging about E.S.E., and nearly at right angles to the strike of the northern Berwyns-appeared to me, on almost certain evidence, to be only branches given off from Bala limestone. Here was a great difficulty. For if the Glyn Ceiriog limestone could not be separated from the calcareous bands we had left behind us, and if they were Caradoc, this limestone must be also Caradoc: and the natural conclusion drawn from my Sections was, that the Caradoc sandstone was exactly on the same parallel with the Bala limestone. But how could this be reconciled with the Silurian Sections of Murchison? For on his scheme, both the Caradoc and the Llandeilo groups were several thousand feet abore the Bala limestone and its associated calcarcous slates. To settle this difficulty we retraced our steps to Llangynog; and from thence we crossed the Berwyn Chain, marking its structure and the synclinal pasition of the Bala limestone by the way: and so we descended to some highly fossiliferous quarries in the limestone, which I had examined two years before.

There we parted, never to meet again in North Wales. I gave my friend all the chief localities of the Bala limestone, in its long range towards the South-Eastern flank of the Cader Idris group.

He did follow the line of the Bala limestone; but he gave me no information respecting his labours or his discoveries; nor did he tell me then, nor did I ever know, before the publication of the "Silurian System," that every species of the Bala Limestone fossils, which we collected together, and all of which he carried away for examination, were well-known Caradoc species.

We met, however, again after the end of the same summer, at Edinburgh, during the meeting of the British Association, and I naturally enquired what had been the success of my
friend's excursion along the strike of the Bala Limestone, and whether he had seen reason to make any change of position among his typical groups. He replied that he had followed the Limestone as far as the South-East flank of Cader Idris; and that he had no change to make in the position and relations of his fundamental groups (the Caradoc and Llandeilo); in short, that after careful re-examination of his Sections and Classifications, he had no mistake to correct.

I had nothing to oppose to this, except my great surprise; and after reconsidering, for a while, my own Sections, I informed him, at the time of our discussion, that I could think of no place for his lower Silurian groups, unless they had disappeared among the rocks at the northern end of Berwyns, along the line of unconformable junction; either by an overlap of the upper or true Silurian rocks of Denbighshire, or, by some mistake of mine, in appreciating the calcareous and fossil-bearing groups, I had seen along that line: and to illustrate my view, I drew a rough outline sketch to shew how it was possible to interpolate, at the Northern end of the Berwyn and Glyn Ceiriog range, some beds, which might be higher than the Bala group, and on the parallel of the Caradoc sandstone. But I did this not with any view that my rough sketch should be published: for it was but an artifice to escape from a very great difficulty. It was in itself improbable, and it was based upon the assumption that the Lower Silurian Sections were true. Assuming this as a fact, I suggested, as a mere hypothesis, that the two groups, Caradoc and Llandeilo, might be concealed, or perhaps obscurely represented along the great line of discordant junction, which separated my Cambrian from his true Silurian rocks, in Denbighshire.

Such is the history of that Section which appears with my name affixed to it, at the North-East end of the great map of the "Sihurian System." The author of that map had no authority from me to publish the hypothetical sketch. It may appear strange that I should think it worth while thus to dwell upon a minute point which is now seldom seen or thought of; but it was, in fact, the very pivot on which my dispute with Sir R. I. Murchison turned.

After we parted at the rich fossil-quarry near Bala, we never had one single syllable of correspondence respecting the older Palrozoic rocks of North Wales; nor did I again explore a single quarry of those rocks till full eight years had passed away. But, as before stated, the great work, the "Silurian System," appeared in the early summer of 1839 ; and when I saw my hypothetical Section entered upon the map, with my name affixed to it, I thought I had some right to be offended at this liberty: for the author had invited me to colour that part of his map which was east of the Berwyn chain; and this I refused to do, on the ground of my incompetency, at that time, to colour the country correctly; and I should hare given unquestionably a like refusal, if he had alluded to the sketch above described. My mistake was in believing, on the authority of their author, that the lower Silurian Sections
were correct. I did not, however, mean to let the matter rest, but to re-examine the whole Palrozoic question as soon after the publication of the Silurian System as I could find a long vacation at my command.

After I had parted with my friend near Bala in 1834, I thought the rest of the summer well employed in making traverses through the true Silurian rocks of Denbighshire, and in partially exploring the Carboniferous rocks of Denbighshire and Flintshire. In 1835 I spent some time in exploring the North of Ireland, after the breaking-up of the British Association at Dublin. It had been confidently asserted during the Meeting, that our Geological theories were put to open shame by the Culm-Measures of North Devon, which (though containing beds of coal and many true Carboniferous fossil plants) were in fact interpolated among the oldest Slate rocks; and that the Geological Society were discredited in not having given a proper prominence to this notorious fact.

In these expressions of vituperation, a challenge seemed directed personally to Murchison and myself, which we accepted with perfect goodwill. Accordingly, we visited the Northern Coast of North Devon next year, and resolved, if possible, to determine what was the true position of the Culm-Measures. We had no difficulty in making out the Natural groups of Strata, which presented themselves in a traverse from the extreme Northern Coast to the dark coloured limestone, which ranges a little South of Barnstaple, and crosses a great part of the County in a direction nearly East and West. Our attempt was at length quite successful. The Culm-Measures were proved to be the highest rocks of North Devon, and though anomalous in many of their mineralogical details, they were by no means anomalous in their position; for the calcareous bands which appeared along their northern and their southern base, were but one of the forms of the Carboniferous limestone.

But what were the groups of Slate rocks, which rose from beneath the Culm-Measures, and were exhibited in various undulations, ranging nearly East and West between the parallel of Barnstaple and the northern shores of Devon? The fossils in these groups exhibited some forms that were then unknown to us. But the highest group of all, which we will call the Barnstaple group, was eminently fossiliferous, and was pronounced by Murchison to belong to the Caradoc sandstone. We collected from this group a good series of organic remains, and sent them to Mr Sowerby; and not long afterwards my fellow-labourer received a dispateh from Mr Sowerby, which informed him that he had made a correct determination of the age of the Barnstaple fossils.

I was little satisfied with this determination, which virtually cost me the work of two Loug Vacations in the years 1837 and 1838. In 1837 I was joined for a short time in South Devon by my friend Mr Godwin-Austen, and we did not quite complete any part of our survey, both being unexpectedly called away. But during a long Summer of 1838 I worked
almost in solitude. I completed my traverses in North Devon and South Devon, and I traced Fossil-bearing Strata on the South-eastern Coast of Cornwall; and then doubling round from Penzance to the Northern Coast of the County, I obtained fossils partly by digging them from the rocks, and partly as gifts from my friends; and continued my way till I found myself once again among the rich Fossil-bearing quarries of Petherwin.

Late in the autumn of 1838 I brought back with me goorl scetional and palæontological evidence, which seemed to prove that nearly all the groups in the two Counties I had examined were of an olker date than the Carboniferous rocks of North Devon, and of a newer date than the newest roeks in the system of Siluria. When I expounded this evidence to Murchison, he opposed it by a succession of ingenious hypotheses, which could not however stand against the simple evidence of my Sections. But to settle this point for ever, I proposed that we should adjourn to the house of Mr Sowerby, and, if possible, re-examine the hamper of fossils we had sent to him in the year 1836. The hamper was found in the exact state in which we had last seen it; nor do I believe that Mr Sowerby had ever opened it. However that might be; on opening the hamper, we saw a very good series of Devon Fossils with well-marked loealities; but we saw nothing resembling a characteristic Caradoe species. Thus the Devonian System gradually became established, and the results from Sectional and Fossil evidence were in perfect harmony; and thus we took the first step, which I followed up in subsequent years; and much good work has been done since among the rocks of that series.

The next year formed an epoch in the history of European Geology; for in the early part of 1839 the "Silurian System" was first published. It was beautifully embellished and contained an accurate delincation and description of the most ancient Palæozoie Fossils of a large portion of Wales and some of the adjoining counties, suth as had nerer before appeared in any Geological work. For it professed to arrange the lists of Fossils and the Groups of Strata in a true order of superposition. It had cost the Author seven years' field labour, and he was assisted by three distinguished naturalists in determining the classification and the nomenclature of his multitudinous fossils. It is no part of my duty to attempt a task far beyond my power-riz. to assign the proportional honours due to each of the scientific workmen who had contributed to the great work. But the chief honour will ever be given to the author of the System, who brought the materials together and arranged them in that manner in whieh they are seen in his splendid work. Under his hands the older Palæozoic Geology had assumed a new and a nobler type, and the highest praise was given to his work in all the seientific Journals of Emrope and the United States; and as year's adranced new honours accumulated on the author's head.

During the summer of the same year (1839), I joined my friend in a visit to the Rhenish Provinces and the North of Germany, for the purpose of following out those
conclusions respecting the Devonian System which we had arrived at the preceding year, chiefly through my personal labours. Our summer work suffered a considerable retardation from a premature attempt (sanctioned by no less a personage than Prof. A. Goldfuss of Bonn) to classify the fossils of the Eifel Limestone with those of the Upper Silurian Groups; but before the expiration of the summer we escaped from this difficulty; and as our joint labour has been published, it would be idle for me to divell upon it any longer in this Prefice.

For nearly three months during the Academic vacation of 1840, I was confined by my duties in the Catherlral of Norwich, and was therefore cut off from any extensive field work: but within the limits of the vacation, guided by the Silurian map, I made some hasty excursions which brought to the Cambridge Museum what I then regarded as a rich harvest of fossils.

The year 1841 was partly employed by me in studying the Devonian rocks of Ireland under the guidance of my friend Sir Richard Griffith; and from Ireland I passed into Scotland, still in quest of facts that might give me the means of constructing a classification which would apply to every portion of the older rocks of Great Britain; but neither during that nor during any other tour did I find anything to compare with, much less to supersede, the magnificent succession of groups which I had seen in Wales and Siluria.

I resolved therefore to re-examine the whole of my work in Wales, and then to perform the same task among the Lake mountains and the districts bordering upon them. In this way I endeavoured to bring the several Palæozoic Groups into good co-ordination, and to name the lower portion of them in conformity with the system of Cambria, and the upper portion in like manner in conformity with the system of Siluria. This task I hoped to complete in two hardworking summers; but I found to my cost that I had greatly underrated the labour that was before me.

In 1842, with Mr Sowerby's permission, I was joined by Mr Salter, as a youthful and then joyous fellow-labourer, and especially as one well prepared, to complete the fossil catalogues of the several groups which we had to examine. This task employed us during two entire hardworking summers.

At the end of the summer of 1843 , we had done our work thoroughly, as I then thought; for my previous labours in North Wales enabled me to conduct my young friend and assistant to all the localities of principal interest, with small loss of time in seeking them out. For a few days in 1842, we were joined by Sir Richard Griffith; and I will here state, in as few words as I can, the results of this joint work of two summers. My youthful and cheerful companion gradually became a good field surveyor, and he dressed up, my Sections so as to make them fit for publication, of course on a reduced scale, and he was of infinite use in fortifying the conclusions I derived from $m y$ comparative

Sections; by his admirable and ready knowledge of the characteristic fossil species we obtained from them. The hypothesis (supra, page xx), either of an overlap somewhere along the unconformable junctions of the Cambrian and Silurian rocks of Denbighshire, or of a mistake committed by myself in naming some of the fossiliferous groups which appear near that junction, was proved at once to be without meaning. I had made no mistakes of the kind, nor did we find any great mistake in any of my old sections among the mountains of Caernarvonshire and Merionethshire. My work of 1831-32 was right in prineiple, and withstood our renewed test. We examined in great detail the two lines of the Bala Limestone, cansed by synclinal flexure, securing our work by tracing both beds along their strike, and in this way we demonstrated, that the more eastern limestone bands in the Llanwddyn valley were identical with the eastern bands that cross the road, between Bala and Llangynog, as before stated. We also carefully mapped a part of the country east and north of the Northern Berwyns; and we completed in great detail sections which connected the Silurian rocks south of the Tannat, and north of the Ceiriog, shewing the emergence of the old Cambrian rocks which pass through the intervening country and form the highest crests of the Berwyns. We also examined the great fault S.E. of Llanwddyn, which produces an entire inversion of the strata through a range of several miles. This fact I had first observed in 1832, and had verified it by following the inverted beds along their strike till they had regained their normal position, and we found that we had no corrections to make in this portion of my old Sections of 1832 . I mention these facts only to shew how conscientiously our work was done. We sought the truth, and would have embraced it, to whatever conclusions it might lead us.

The work done by Mr Salter and myself in 1842-43 seemed to bring to a happy end my labours among the higher mountains of North Wales; for I had re-examined all the essential parts of my old Sections, and all my groups of strata, assisted by Mr Salter in the field, and still more in the closet, by his lists of the fossils we had collected. There was no great or fatal mistake in any of my older details, and we came away rejoicing in the thought that we had done our work effectually and to a good purpose. But a very hard task remained: how were we to join our detailed work to that of the Silurian System? It appeared evident, at a glance, that the two were on some points incompatible. If our work were true, there must be some very great error lurking among the Lower Silurian Groups. How was it to be discovered? I meant to have undertaken the task myself the next year: but a serious illness compelled me to spend the summer of 1844 at one of the German baths, and in no part of that summer, or of the autumnal months, was I capable of taking the field as a Geologist. But my young friend and fellow-labourer, Mr Salter, had, with Mr Sowerby's consent, a commission from myself to examine the Llandeilo Flags

North of Builth, and to ascertain their relation to the chain of Mynedd-Epynt; and especially to ascertain whether the Llandeilo Flags were to be placed above or below the conglomerates of Dol-Fan, which ran into a remarkable chain, now I believe regarded as upper Llandovery rocks. He was then a very youthful observer, and had not learned to trust himself, when the phenomena before him seemed to contradict the opinions of those whom he considered of high authority. He brought back to me, however, at the end of the summer, a very elaborate Report, from which after its perusal I could derive no definite result; and some years afterwards it was returned to its author, who confessed that it was erroneous, and I believe destroyed it.

I spent the whole summer following (1845) in going over a part of my old work in Cumberland, Westmorland, and North Lancashire, endearouring to bring the rocks abore the Coniston Limestone (the equivalent of the Bala) into some accordance with the Groups of the Upper and true Silurian System. There could be no doubt that the Limestones of Bala and Coniston were of the same age. The fossils were numerous and almost identical in species. It was equally certain that the highest groups of the Westmorland Slate rocks, that overhang the Valley of the Lune near Kirkby Lonsdale, were on a parallel with the upper Ludlow rocks, as seen near the banks of the Towey: but how to bring the intervening groups into strict comparison with the successive upper Silurian Groups, was a task which I have never, to this day, performed to my entire satisfaction.

I mention these facts in their order, with no motives I trust of personal vanity; but to prove with what steady perseverance I went on with the task that was before me.

My object, from the first, had been to write a general work upon all the Palæozoic Rocks of England and Wales; and with this object still in view I went on from year to year, accumulating materials, which at length became too much for my sustaining powers. I had been much interrupted for many successive years by attacks of suppressed gout, and by very alarming attacks of congestion of the lead; and at length the infirmities of old age had gathered round me before I had put my work in order. I will, however, leave this digression and come back to my Cambrian task.

So far my present Preface has been associated with many happy and bright remem-brances-social and physical.

What is about to follow will be less satisfactory to the reader; and will be associated in my memory with acts which very painfully affected me with involuntary distrust of some whom I had counted among my best and dearest friends, and threw a moral shade over all the latter years of my Geological life.

It will perhaps be said that after the death of Sir Roderick Impey Murchison and Mr Warburton, it is wrong to revive the controversy I had with them, as I hare already
published my rindication in the Introduction to Mcoy's Synopsis. But very few men indeed ever have an opportunity of reading that Introduction; for it is a portion of a large and expensive volume, which has very seldom been purchased since the wide diffusion of the volumes of the Palæontographical Society. On the contrary the statements of my opponents are to be seen in the Proceedings and Quarterly Journal of the Geological Society, which form part of the Library stock of every country town in which Geology is held in practical honour.

Moreover, the controversy has recently been revived with great spirit and with great talent by Prof. Sterry Hunt, F.R.S. \&c., of the Canadian Survey; and I think that, under such circumstances, it would be a shameful act of moral cowardice not to speak out in my own vindication, when I can do so in the simplest words of truth and reason.

I will then do my best to state the historic truth in all simplicity and without favour or affection. Not to speak plain truth of those who are dead, while engaged in a personal vindication of truth involving questions of fact, would be destructive of the very essence and marrow of all history.

First then regarding Sir R. I. Murchison. He attended several, and I think all, of the Mectings during 18t2-43, when the papers by Mr Salter and myself were read before the Geological Society: but, so far as I remember, he never made a single remark or comment during these long readings, though the subjects discussed in them affected his own works as much as mine. But very soon after the final reading of the Papers (towards the end of the year 1843) a geological map was published in his name, in which he had brushed out of sight, under a deep Silurian colour, erery trace of my previous work in North Wales. This was done so quietly and silently that I never heard one whisper of it till the fact was made known to me by Mr Knipe (I think in 1851), when he called on me with a newly coloured Geological Map of England, which he had on sale. The exact date is not however material to my present pupose. Was this right or was it wrong? and was it for the interests of truth in Science? On this subject I make no further remark, but refer the reader to the Introduction to M'Coy's Synopsis, and to a Paper published by myself in the Quartert? Journal of the Geological Society in 1852.

About the same time that Murchison had thus completed his new colouring of the map of Wales*, Mr Warburton, then President of the Geological Society, most kindly, as I thought, offered to reduce the successive commmications of Mr Salter and myself, embracing the labours of the two preceding summers, into a state fit for publication. Certainly my Papers

[^1]required revision. Each of them had been written by myself in a slovenly and hasty manner; and must at least be united and copied out again before they could be printed. Most willingly therefore all my papers, and all my sections greatly improved by the graceful touch of Salter's pen, and all his own beautiful sections and sketehes, were placed without reserve in the hands of Mr Warburton. But what took place after this surrender of the papers? Mr Warburton commeneed his task of Reduction and very soon beeame involved in difficulties (as I learned from notes of enquiry sent by himself) obviously arising out of his want of knowledge of the physical structure of North Wales; and I entreated him to send me the proof-sheets, that I might be sure he understood the drift and meaning of the papers he held in charge. But he refused me the sight of any single proot-sheet, though I applied to him again and again, with increased energy after his repeated denials.

At length the Reduction was printed in the Proceectings of the Geological Society; and afterwards in the first volume of the Quarterly Journal. The seetions were so mich obscured by a eomplieated notation, which I never well understood, and by the minuteness of the seale of their Reduction, that I was never able completely to comprehend any one of them.

All our new Sections on the east side of the Berwyns were so mutilated as to be quite worthless: and instead of reproducing any of the elaborate and accurate work we had traced upon the map of the Government Survey, he first produced the Reduction of a worthless map, which was drawn upon no seale, but had been sketehed by a provineial artist to illustrate a private lecture. A second map, in illustration of my papers, which appeared soon afterwards in the first volume of the Quarterly Journal of the Geological Society, was praetieally very little better than the former; and it was so overerowded by ill-understood details as to be almost worthless. I did however hope that my original Papers, and the Sections jointly made by Salter and myself would be, in the end, returned, agreeably to the President's promise. But it was a vain hope-The greatest number of our Papers and Sections were never returned at all; and the few pages of mannseript text whieh did come baek to me were all in the same state of mutilation, whieh made them absolutely useless for any purpose of verification.

It is no easy matter to explain an overbearing treatment sueh as I have described: but I believe Mr Warburton undertook his task for the express purpose of bringing my Papers into harmony with Murehison's seheme of eovering all the older recks of North and South Wales with Silurian colours. For in his Reduetions he again and again contrived to change my language, and make me write in a new Silurian tongue. Was this fair and honest dealing with me?

I do not venture to affirm that Sir R. I. Murchison was a party to this unwarrantable dealing of Mr Warburton; but he unquestionably was ready to turn it to his own profit.

They were, at the time, in the closest daily communication; and it is also true that Murchison's expansion of his Silurian colours over all the older rocks of Wales, and Warburton's strange mangling of our Papers and Sections, took place very nearly at the same time; namely, just after our Communications to the Geological Society respecting the work done in 1842-43 had been completed.

With all the faults of the Reductions it was obvious that Mr Warburton had laboured hard at my Papers and Sections; and perhaps done his best to put them into a systematic form; and on that account I was willing, after I got over my first sorrow (and it was a very great sorrow, to endure the loss of perhaps the best two years' labours of my Geological life), to excuse some of his blunders, and to overlook the overbearing manner in which he had treated me. The case seemed without remedy, and I made no further movement in connection with it; and the matter would probably have passed away without any further notice from myself, had I not after the lapse of about 7 years received that information from Mr Knipe to which I have alluded in a former page (supra, p. xxvi). By that information I was at once convinced that I should be wanting in moral courage, and fail in doing what the truth of history required of me, if I did not claim my right position, as the first interpreter of the Cambrian Sections. And with these feelings I recorded in a Paper, read before the Geological Society in the year 1852, the result of a new examination of my original Papers, and a condensed abstract of what I had written connected with a previous controversy with Sir R. I. Murchison; and upon these historical details an argmment was built which appeared to me incontrovertible*.

While writing under such circumstances some little excess of temper might I think have been expected. But in my present judgment, formed after a re-examination made in the calmness and serenity of old age, there was no want of temper in my Paper. It was full of matter, and I think fairly argued. It was, however, very ill received by the Geological Society; and all who took a part in the proceedings of the evening seemed to make it a point of honow to maintain every position which had been clamed in the works of Murchison. A week or two after the reading of this Paper I received a formal notification from the Secretary of the Geological Society, that the Council had passed a decree to extrude my Paper absolutely from their Quarterly Journal. They soon, however, found that this suppression of my Paper was impossible; for the new Volume, containing the offending Paper, had found its way partially before the public, and I had received the usual Author's presentation copies of my Paper.

[^2]The Council, however, repeated their blow in another form ; and they passed a Resolution whereby I was forbidden to bring before them any Paper involving the Classification and Nomenclature of our older Palæozoic rocks. I thought that a Resolution, so unwise and so decply injurious to myself, could never be sternly acted on; and would perhaps soon be forgotten. But experience taught me the contrary. It was acted upon with stern severity; and I was, after the expiration of about two years, compelled to withdraw from the Meetings of the Socicty; which I could not attend with any proper regard to my own honour while such a personal stigma was allowed by its Council to remain on my name.

I ought at the moment to have struck my name from its lists; but I could not bear the thought of taking a final leave of a Society, which for many ycars was almost my home in London, and in which I had spent many of the happiest hours of my life, and formed some of my most cherished friendships*.

The attempt to suppress my Paper, which had been subject to all previous formalities of Reference, and had actually passed through the Press, was a personal stigma unexampled, I believe, in the history of any other Philosophical Society in London.

More than twenty years have, I beliere, passed away since the bitter Resolution of the Council was recorded in the books of the Geological Society, and most of my opponents have been removed by the hand of death from the good and evil of this world. But there is still a Council of the Geological Society, far removed from the feelings of irritation (whether just or unjust) which produced the stern censure of the Paper to which I have alluded; and I venture to challenge them, though now in a feeble voice, to re-peruse my old Paper and to produce from it a single paragraph or sentence which was unfit for me to write, or for the Council to read, and in any way justified the condemnation that had been passed upon it.

It is to me a thought full of melancholy, and of misgiving for the cause of honest truth, when I find that some of our best Geologists are even now vainly contriving, by buttresses and underpinnings, to lend support to the lower sections of the Silurian System; which were untrue to nature from the beginning, both in their whole conception and in the elaboration of their details: and doing this while they turn their faces away from

[^3]another System which had fixed its base in truth and reason, which had perfeet Geographical congruity, and undoubted priority of date; and which appeals to them still in a language they cannot misunderstand, if they will read their lesson in the very order in which the Author of Nature has recorded it.

It may perhaps be objected to me that all or nearly all that has been stated in this Preface has appeared before in the Introduction to Mcoy's Synopsis, or in the varions Papers which have been printed in my name; especially in the Procecdings and Quarterly Journal of the Geolorical Society, or in the Philosophical Mayazine and Amals of Philosophy. But certainly they were never printed before in a form so connected and historical as in the statements of this Preface. With the solemnity becoming my old age and a conviction, forced upon me by my infirmities, that I shall nerer again be able to address the Public upon any subject conneeted with the scientific labours of my former life, I dare to affirm that the Geologieal Society had not a more true-hearted and loyal member than myself. The stigma fixed upon me by the Council of the Geological Society was the greatest sorrow of my old age. I never endearoured to deprive any brother Geologist of what was his due, nor did I claim for myself any serap of knowledge for which I conld not make good my title. My Maps and Sections literally were public property, Prof. Phillips had the use of my field-work in Cumberland, when he was preparing one of his Volumes and Maps for Publication; and Mr Greenough had my Papers and Maps in his possession for weeks together, and on several successive oceasions. Such details may seem but ill fitted for the pages of this Preface; but I write as one who has endured, and is still enduring, the unmerited censure of a scientific body; and who for the last time is writing in defence of his conduct as an author.

At what time the grand mistakes in the fundamental Sections of the Silurian System were first diseovered, and by whom first published, is to me still unknown. I gradually made out the mistakes for myself, after elinging to the first typical Lower Silurian Groups longer than I ought to have done. I never was in the real confidence of my old companion and fellow-labourer after we parted in 1834 at the quarry, in the Bala Limestone, at the Western base of the Northern Berwyns (supra, p. xix).

Conclusion.

Having finished all that ean with propriety be called a Preface to the following Catalogue, I will endeavour to address a few words to the resident members of the University. I can never again hope to address the Public at the length I have done in this Preface; for I feel the infirmities of old age, yearly, I might almost say daily, pressing
more and more upon me, and bringing me nearer, sensibly nearer, to my last resting-place in this world. I write not sorrowfully or despondingly. I wish to address my dear and honoured friends in Cambridge in words of hope and eheerfuhess. But first of all let me thank the Author of my being for having so long upheld my life in heart and hope since I first began my residence in this University. There were three prominent hopes which possessed my heart in the earliest years of my Professorship. First, that I might be enabled to bring together a Collection worthy of the University, and illustrative of all the departments of the Seience it was my duty to study and to teach. Secondly, that a Geological Muscum might be built by the University, amply capable of containing its future Collections; and lastly, that I might bring together a Class of Students who would listen to my teaching, support me by their sympathy, and help me by the labour of their hands. It now makes me happy to say, that all these hopes have for many years been amply realized.

It is to me no small delight to look back on the many past years when the Heads of Colleges were my sole Auditors; when we held our anmual and most cheerful festive mectings on the first of May; and rejoiced over a dinner, very sumptuously provided by the ViceChancellor, in accordance with the express words of Dr Woodward's Will. And we all acknowledged our Founder's judgment in this festive clanse of his Will. For it greatly helped to preserve a Collection, made by him in the seventeenth century, in that integrity in which it is seen to this day in one of the closets of our Museum.

On these occasions it was my duty to expound to my Auditors the annual additions made to our Collection, and the necessity there was for a more ample Museum. I was fed by good hopes, and (like many others who have tasted that food) I had to feed only upon hopes, so far as regarded the new Museum, for more than a quarter of a century. But my labour was its own reward. It gave me health, and led me into scenes of grandeur, which taught me to feel in my heart that I was among the works of the great Creator, the Father of all worlds, material or moral; and the Ordainer of those laws out of which spring all phenomena within the ken of our senses or the apprehension of our minds. I know there are men who deny the sound teaching of this lesson; but I thank God that I had been taught, from my early life, to accept these lessons as a part of God's truth; and it was my delightful task to point out year by year to my Geological Class, the wonderful manner in which the materials of the Unirerse were knit together, by laws which proved to the understanding and heart of man, that a great, living, intellectual, and active Power must be the creative Head of the sublime and beantiful adjustments and harmonies of the Universe.

Still nearer to us, and on that account more impressive, are the adaptations of organ
to organ in every living being, great or small: and in all their complexity still governed by law, and most nicely adapted to material nature, and to all the subtle elements within which God has placed them.

How feeble I always felt myself whenever I touched upon subjects such as these! But my Class always heard me with respectful attention: for I did not introduce these subjects too often, nor did I dwell upon them too long. And I sometimes ventured to conduct my Class to thoughts of a still higher aim, connected with that being-Man-the last in order of creation, and made in the image of the Author of his being. Seeing that Man has the gift of prescience (small it may be, and ranishing from thought at once when we think of the Omniscient Prescience of God)-that he can design and contrive implements for his own use and of the nicest skill, which will give him new powers over material nature, and make him acquainted with things furthest removed from the ken of sensethe greatest and the least things accessible to the sight of man-that he has the capacity of abstract thought, and is capable of forming language, and making others understand itthat, using this as an implement of imagination, he can evolve thoughts which act upon the most powerful emotions of the heart, and fill the soul with images of glory-that he can invent another language of a mighty but far different power, which shats out the imagination, and deals only with the abstractions of pure reason-and that through the might of this new language, and working with it among the elements of pure reason, he can logically grasp results inaccessible to any other implements of human thought-that he can tell the ever-enduring speed at which light (the first-born of heaven) travels through astral space, and count the number of its waves-that working with this logic of pure reason he can tell the astronomer to lift up his telescope to a certain point in the sky and there behold a planet never before seen by the eye of man.

That Man in his animal nature is to be counted but as one in the great kingdom of things endowed with life, we at once admit; but that in the functions and powers of his intellect (here just touched on by my feeble hand) he is absolutely removed from any co-ordination with the lower beings of Nature, is, I firmly beliere, one of the most certain of well apprehended truths. We all admit that Nature is governed by law: but can we believe that a being like man is nothing but the final evolution of organic types worked out by the mere action of material causes? How are such organic evolutions to account for our sense of right and wrong, of justice, of law, of canse and effect, and of a thousand other abstractions which separate man from all the other parts of the animal world; and make him, within the limits of his duty, prescient and responsible.

The facts and sentiments connected with that which marks Humanity,--the works of man's hands, the visions of his eyes, the aspirations of his heart-appear to me utterly
abhorrent from the dogmas of materialistic Pantheism. I never could be content, while thinking of such things, to feel myself dangling in mid-air without a resting-point for the sole of my foot. The true resting-point is a reception both in heart and head of a great First Canse-the one God-the Creator of all worlds, and of all things possessing life. Here we have found a true resting-place and heart's content; and so we are led to feel the sanctity and nobility of Truth, under all the forms in which it shews itself, to rejoice in its possession, and to honour it as the gift of God.

What does the Pantheist give us? A day of uncertain light, of uncertain joy, and a night of eternal darkness. But a better teaching tells us that there is a God who is the Father of the universe, and careth for all His creatures: and if we have listened to a still higher teaching, we can believe that as all the world of Nature has been progressive, so the life of man, and the labours of man, are not to end here, but are to lead him to a brighter and more glorious existence. And there is a higher teaching still, very near to us, even in our own heart and conscience:-an emanation of holy light from the Fountain-head of all light-toward which I am permitted but to take one glance while winding up this concluding address. And may our Maker grant that His holy light may guide the steps and warm the hearts of all who read this Preface!

A. SEDGWICK,

The Precincts, Norwich.
September 17th, 187%.

The first portion of this Preface amounting to about 12 pages was dictated at Cambridge to my young assistant Walter Keeping. The remaining part, excepting the Conclusion, was written at Norwich by my servant from my dictation. The Conclusion I dictated to my Niece. Without such kind help, I could have done nothing. The University will, I hope, pardon the long delay (very painful it has been to myself) in the publication of the following Catalogue.

The Comparative Schemes of Classification so kindly and clearly given by Professor Morris, and alluded to above (page $\mathrm{xv}, \mathrm{l} .2$), ought to have been printed $i n$ extenso from the first; but they will appear among the papers so generously added by him to this Volume.

A TABLE

SHOWING
THE CLASSIFICATION OF THE LOWER PALEOZOIC ROCKS.

CLASSIFICATION OF THE

SEDGWICK. MURCHISON, $1868 . \quad$ JUKES, 1863.
Ledbury Shales.
Passage Beds.

$\left\{\begin{array}{l}\text { Tilestones, and } \\ \text { Upper Ludlow. } \\ \text { Aymestry Limestone. } \\ \text { Lower Ludlow. } \\ \text { Wenloek Limestone and Shale. } \\ \text { Woollope Limestone and Shale. } \\ \text { Upper Llandovery. }\end{array}\right\}$

家
$\frac{\text { Lower, }}{\text { of Cambro-Siluriay. }}$
Prinordial Silurian.

Cambrian.
Cambrian.

Abstract

In a Table of Strata mepared hy Mr II. W. Bristow (18\%2), the Upper and Lower Llandovery bets, eonsidered by Sir 12. I. Murehison as forming an intermediate or Middle Silurian, are kept distinct. The Lower Llandovery, Caradoe, Llandeilo, Tremadoe, Lingula and Menevian beds forming the Lower Silurian. The Graptolite shales being equal to the Arenig or Stiperstones. In the Lake distriet the Kirby Moor flags are eduivalent to the Tilestones and Upper Ladlow, and the Bannisdale beds represent the Aymestry limestone, Lower Ludlow, Wenlock and Woolhope series. The Coniston Grits and Flags are equal to the llenbighshire Flags and Grits. The Stockdale slates (Graptolite modstones) being equal to the Tarannon shales. The Coniston limestone is eqnivalent to the Caradoe or Bala beds. The Green slates and Porphyry are cquivalent to the Upper Llandeilo, and the skiddaw slates to the Arenig beds or Lower Llandeilo.

LOWER PALEOZOIC ROCKS.

LYELL, 1871.

PHILLIPS, 1855.
($\left\{\begin{array}{l}\text { Tilestones. } \\ \text { Upper Ludlow. } \\ \text { Aymestry Limestone. } \\ \text { Lower Ludlow Beds. }\end{array}\right.$
Wenlock Limestone.
Wenlock Shalc with Sandstone.
Woolhope Limestone and Shale.
Denbighshire Grits.
Tarannon, or Pale Shales.
Upper Llandovery Rock, orMay HillSandstone.
Lower Llandovery Rock, \&c.
Caradoc or Bala Sandstone, and Limestone.

In a communication to the Geologists' Association (June 15\%2), on the Classifieation of the Cambrian and Silurian rocks, Dr Irieks nearly followed that adopted by Sir C. Lyell.

The Louer Cambrian, to include tho Longmynd (Harlech grits and Llanberis slates and the rocks at Bray IIead) and the Menevian groups.

The Upper Cambrian, to inelude the Lingula flags (Lower, Middle and Upper, called also the Maentwrog, Ffestiniog and Dolgelly) and the Tremadoe gronps.

The Lover Silurion, to comprise the Lower and Upper Arenig, the former being a connecting link between the Tremadoc and the true Arenig rocks, the Upper and Lower Llandeilo and the Bata or Caradoc gronps.

The Upper Silurian, to consist of the Lower and Cpper Llandovery, the Wenloek and Ludlow gronps.

SUMMARY OF THE CONTENTS OF THE CATALOGUE,

BY PROFESSOR MORRIS.

Cambrian.

The Lowcr Cambrian, including the Longmynd and Harlech groups (Sedgwick), is represented by but few forms in the collection. These are the Oldhamia, only hitherto found in Ireland, some Annelida from the Longmynd, a few Brachiopoda (Lingulella, Obolella), and a few Trilobites, which occur low down in the Longmynd group at St David's Promontory, South Wales, as Conocoryphe, Paradoxides, Microdiscus, and the interesting genus Plutonia, having affinities with Paradoxides and Anopolenus, which appears to be restricted to this zone, and, next to Paradoxides Davidis is the largest Trilobite found in the British Cambrian rocks.

The Middle Cambrian comprises the Menevian, Festiniog, and Tremadoc groups.
The fauna of the Menevian, or Lower Lingula flags, is represented by Trilobites of the genera Conocoryphe, Agnostus, Olenus, Paradoxides, Microdiscus, Erinnys, Anopolenus, Holocephalina, the last three genera being at present characteristic of this zone; Paradoxides and Microdiscus here become extinct, while the first three genera range into the zones above: with these are found a fef Phyllopoda (Primitia, Hymenocaris), some Brachiopoda and Pteropoda, (Theca, Stenotheca, Cyrtotheca). The Pteropoda appear to be tolerably abundant in these primordial rocks, in which occur also a Cystidean (Protocystites), and some sponges.

The Ffestiniog group, or Middle and Upper Lingula flags, is chiefly represented by some Annelids and Trilobites. The genus Olenus here attains its maximum numerical development, and a species of the allied genus Dikellocephalus also occurs, together with a few Brachiopoda belonging to the genera Lingulella, Obolella and Orthis.

The fossil forms of the Lower and Upper Tremadoc groups chiefly comprise Phyllopoda and Trilobites: among the latter are the genera, now first noticed, Niobe (intermediate to the genera Asaphus and Ogygia), Psilocephalus, a very abundant form, allied to Illænus, Angelina (allied to Olenus), the most abundant of the Tremadoc Trilobites, and species of Asaphus, Ogygia, and Cheirurus. There are also some Pteropoda and Heteropoda, as Theca,

Conularia, and Bellerophon, and a species of Orthoceras, which at present is the oldest known form of the Cephalopodous group of Mollusea.

The Arenig or Skiddaw group, which is classed as the upper part of the Middle Cambrian, or as forming the base of the Upper Cambrian, contains many species of Graptolitidæ, belonging to the genera Graptolites, Diplograpsus, Phyllograptus, Didymograpsus, Dichograpsus, Tetragrapsus, and Dendrograpsus, a few worms, some genera of Trilobites of which, species of Calymene, Eglina, and Ogygia, are the most abundant, together with a few Brachiopoda, Lamellibranchiata and Pteropoda.

The Upper Cambrian comprising the Lower, Middle and Upper Bala groups, is represented in the collection by a numerous fauna. There are many species of Graptolites, Corals (both Tabulate and Rugose), Brachiopoda, and Trilobites, which latter here attain their maximum developement; together with a less number of species of Lamellibranchiata, Gasteropoda, Pteropoda and Cephalopoda, and some Crinoids and Starfishes (Protaster, Palæaster).

Silurian.

The May Hill Sandstone or upper Llandorery is represented by some species of Corals: belonging to the genera Favosites, Heliolites, and Petraia; a few Annelids and Trilobites: the Brachiopoda, however, are the most abundant, whilst the species of Gasteropoda, Lamellibranchiata and Cephalopoda are but few in number.

The Lower Wenlock group. In this, as in the preceding group, the Graptolites have diminished in number, and the Corals, Echinoderms and Trilobites have but few representatives; but, as in the preceding period, the Brachiopoda are most abundant, the Cephalopoda also comprising a large number of species.

The Wenlock group contains a rich fauna: the Bryozoa and Actinozoa, both Tabulate and Rugose, are here numerically abundant. The Crinoids and Cystideans contain many species, as also do the Trilobites (40), Brachiopoda (82), Lamellibranchiata (31), Gasteropoda (42), Cephalopoda (32), together with some few Heteropoda and Pteropoda.

Lower Ludlow and Aymestry Limestone. This group contains two or three species of Graptolites, a few Corals, Crinoids, Phyllopoda, and Trilobites, some species of Starfish (Asteroidea) belonging to five genera, and some Crustacea, belonging to the order Merostomata (Slimonia, Pterygotus), whieh, although represented in the preceding Llandovery and Wenlock groups, increases in numbers in the lower and upper Ludlow rocks. The specics of Brachiopoda and Lamellibranchiata are far less in number than in the preceding Wenlock
group, and are associated with some forms of Gasteropoda, Heteropoda, and Cephalopoda, belonging chiefly to the genera Orthoceras, Phragmoceras and Trochoceras.

The Upper Ludlow mudstones contain representatives of most of the classes previously mentioned, the Merostomata affording species of Eurypterus and Pterygotus, as well as the interesting genus Hemiaspis; the Lamellibranchiata, among the Mollusea, comprise the largest number of specific forms, while the Cephalopoda contain about the same number of species (16), as in the preceding group.

The Ludlow bone-bed and Downton sandstone are represented by few forms, and these chiefly belong to the Mollusean classes, for Trilobites have become rare, and Corals and Echinoderms are absent, there are however, a few Merostomata (Pterygotus, Hemiaspis), and Phyllopoda (Beyrichia, Leperditia). The bone-bed is the marked feature of this group, with its numerous fragmentary remains of fish. The Ledbury shales contain but few species, which chiefly belong to the Merostomata and Phyllopoda.

The Catalogne enumerates about 910 named species, but many other forms are noticed, together with their localities, to which speeific names are not assigned.

TABLE

SHEWING THE RANGE OF THE GENERA AS INDICATED BY THIS CATALOGUE.

			Cambrian.								Siluriay.						
										品 M 岂 a							
Plantæ																	
Oldhamia	*														
Chondrites ...	\ldots	\cdots	\ldots	*											
Spongarium	\ldots	\ldots	\ldots	...	\ldots	*				
Pachytheea	\ldots	\ldots	\ldots		*	
Actinophyllum	...	-.	\ldots	\ldots	\ldots	*	*
Amorphozoa																	
Protospongia ...	\ldots	...	\ldots	*													
Astylospongia	\ldots	\ldots	\ldots	\cdots	\ldots	*								
Stromatopora	\ldots	\ldots	\cdots	*	\cdots	*	\ldots	*				
Sphærospongia	\cdots	*	\ldots	*		*				
Ischadites	\ldots	\ldots	...	\ldots	\ldots	*	\ldots	...	\ldots	*				
Vioa	\ldots	...	\ldots	\ldots	*	\ldots	*	\ldots	*				
? Nidulites	\ldots	...	\ldots	\ldots	*							
Cnemidium	\ldots	..	\ldots	...	\ldots	\cdots	...	\ldots	\ldots					
Verticillopora	\ldots	...	\cdots	..	\cdots	\cdots	\ldots	\ldots	\ldots	*				
Pasceolus	\ldots	\cdots	\ldots	\ldots	\ldots	*		
Tetragonis	\ldots	*		
Hydrozoa																	
Graptolithus ...	\ldots	...	\ldots	\ldots	\ldots	\cdots	*	*	*	\cdots	*	*	*	*	*		
Rastrites	\ldots	\ldots	*									
Diplograpsus ...	\ldots	\ldots	...	\ldots	\cdots	\ldots	*	*	*								
Didymograpsus	...	\ldots	...	\ldots	\ldots	\cdots	*										
Tetragrapsus	\ldots	\ldots	\ldots	\ldots	*	*									
Dichograpsus	\cdots	...	\cdots	*										
Dendograpsus	\ldots	*	\ldots	...	\ldots	...	\ldots	\cdots	*			
Climacograpsus	\ldots	*									
Protovirgularia	*									
Retiolites	*	\cdots	\ldots	\cdots	...	*					

			Cambrian.								Silurian.						
Actinozoa																	
Stenopora	...	\ldots	\ldots	\ldots	\ldots	...	\ldots	*	*	*	\ldots	*	*	*	*		
Nebulipora	\ldots	\cdots	*	*	*	...	\ldots	*	*	*		
Heliolites	\ldots	*	*	*	*	\ldots	*				
Favosites	\ldots	*	*	*	*	*				
Halysites	\ldots	\ldots	\ldots	\ldots	...	*	*	*	\ldots	*				
Omphyma	\ldots	\ldots	\ldots	\ldots	\ldots	*	*	*	...	*				
Cyathophyllum	...	\ldots	\ldots	\cdots	\ldots	\ldots	\ldots	\ldots	*	*	*				
Sarcinula	\ldots	\cdots	\ldots	\ldots	\cdots	\ldots	*	\cdots	*				
Petraia	\ldots	...	*	*	*	*					
Palæocyclus	\ldots	\ldots	\ldots	\ldots	\ldots	*	...	*				
Fistulipora	\ldots	...	\ldots	\ldots	\ldots	\ldots	\ldots	\ldots	...	\ldots	*				
Coenites	\ldots	*											
Alveolites	\ldots	\ldots	*				
Chætetes	\ldots	...	\ldots	\ldots	\ldots	\cdots	\ldots	\cdots	\ldots	\cdots	\cdots	*				
Labechia	\ldots	...	\ldots	*											
Thecia	\ldots	\ldots	...	\ldots	...	\ldots	*				
Syringopora	\ldots	\ldots	...	\ldots	*				
Anlacuphyllum	\ldots	\cdots	\ldots	\ldots	...	\ldots	*										
Ptychophyllum	\ldots	.	\ldots	\ldots	*				
Goniophyllum	\ldots	\ldots	\ldots	...	\ldots	\ldots	...	\ldots	*				
Arachnophyllum	...	\ldots	\ldots	..	\ldots	\ldots	*				
Cystiphyllum	\ldots	\ldots	.	\ldots	\ldots	\ldots	\ldots	...	\ldots	...	\ldots	*				
Clisiophyllum	\ldots	..	\ldots	...	\ldots	*										
Cyathaxonia ...		\cdots	\ldots	\ldots	\ldots	...	\ldots	\ldots	*				
Echinodermata																	
Protocystites	\ldots	\ldots	*													
Echinosphrerites	...	\cdots	\ldots	...	\ldots	\ldots	\ldots	\cdots	*								
Sphæronites ...	\ldots	\ldots	\ldots	*								
Apiocystites	\ldots	\ldots	\ldots					
Prunocystites	\ldots	...	\ldots	\ldots	\ldots	...	\ldots	*				
Pseudocrinites...	\ldots	...	\ldots	\ldots	...	\ldots	...	\ldots	*				
Echino-encrinites	...	\ldots	\ldots	\ldots	\ldots	\ldots	...	\ldots	*				
Ateleocystites ...	\ldots	\ldots	...	\ldots	...	\ldots	*				
Pisocrinus	\ldots	\ldots	...	\ldots	...	\ldots	...	\ldots	*				
Glyptocrinus ...	\ldots	*	*	*				
Periechocrinus...		*	\ldots	*				
Actinocrinus	\ldots	\ldots	\ldots	\ldots	...	\ldots	\ldots	\ldots	...	*	\ldots	*			
Hypanthocrinus	\ldots	*	*				
Herpetocrinus...	...	\ldots	*				
Cheirocrinus	\ldots	\ldots	*				
Marsupiocrinus	...	\ldots	\ldots	\ldots	\ldots	\ldots	\ldots	...	\ldots	*				
Dimerocrinus	\ldots	\ldots	...	\ldots	*				
Mariacrinus			\ldots	...	\ldots	\ldots	\ldots		*				
Platycrinus	\ldots	\ldots	\ldots	*	*			
Crotalocrinus	\ldots	...	\ldots	...	\ldots	\ldots	...	\ldots	...	\ldots	...	*	*			
Cyathocrinus		\ldots	\ldots	*	*			
Taxocrinus	\ldots	...	\ldots	\ldots	\ldots	\ldots	\ldots	\ldots	\cdots	...	\ldots	*	*			
Tehthyocrinus	\ldots	...	\ldots	\ldots	...	\ldots	*	*			

			Самввıм.								Sulumis.						
								$\begin{aligned} & \text { aj } \\ & \text { ü } \\ & \text { 飠 } \end{aligned}$			$\begin{aligned} & \text { 言 } \\ & \text { B } \\ & \text { B } \\ & \text { E } \\ & \hline \end{aligned}$						
Erachiopoda (continued)																	
Atrypa ...	\ldots	...	\ldots	\ldots	\ldots	...	\cdots	\ldots	*	*	*	*	*	*			
Triplesia ...	\ldots	\cdots	\cdots	\cdots	\ldots	\ldots	\ldots	\ldots	*								
${ }_{\text {Rentamerus }}^{\text {Rhyncbonella ... }}$.	\ldots	..	\ldots	\cdots	\cdots	...	\ldots	\ldots	*	*	*	*	*	*	*		
Pentamerus	\cdots	\ldots	\ldots	\cdots	\cdots	*	*	*	*	*	*			
$\begin{array}{lll}\text { Porambonites } & \text {... } & \text { Meristella } \\ \text { N }\end{array}$	\cdots	\ldots	\ldots	\ldots	\cdots	\ldots	$\stackrel{*}{*}$					*			
$\begin{array}{ll}\text { Meristella } \\ \text { Obolus } & \ldots \\ \text {... }\end{array}$	\ldots	$\stackrel{*}{*}$	*	*	${ }^{*}$	*											
Spirifer ...		\ldots	\ldots	\cdots	*	*	*	\ldots	*		
Chonetes	\ldots	*	*	*	*	*	*	
Athyris ...	\ldots	...	\cdots	\ldots	...	\ldots	\ldots	\ldots	\ldots	*	*	*			
Retzia	\cdots	\ldots	...	*	*				
Eichwaldia	\ldots	\ldots	...	\ldots	...	\cdots	*				
Nucleospira ...	\ldots	\ldots	\ldots	*				
Lamellibranchiata																	
Palmarca	\ldots	\ldots	\ldots	...	*	\ldots	\ldots	\ldots	\ldots	*	\cdots	\cdots	\cdots	*	
$\begin{array}{ll}\text { Ctenodonta } \\ \text { Pterinea } & \ldots \\ \end{array}$...	\cdots	\cdots	...	\ldots	...	*	\ldots	*	*	*	*	*	*	*	*	
Modiolopsis ...	\ldots	\cdots	\cdots	\ldots	\ldots	\ldots	*	\ldots	...	$\stackrel{*}{*}$	*	*	*	*	
Lyrodesma ...	\ldots	\cdots	${ }^{*}$...	*						
Cleidophorus	*	\ldots	...	*	*				
Orthonotus ...	\ldots	*	*	*	*	*	*	*	*	
Cuculella ...	\ldots	...	\ldots	\ldots	...	\ldots	*	*	*	*	*	
Mytilus ...	\ldots	\ldots	\ldots	...	\ldots	...	\ldots	*	*	...	\cdots	*		
Nuculites	\ldots	\ldots	*					
Cardiola ...	\ldots	\cdots	\cdots	\ldots	*	*	$\stackrel{*}{*}$			
$\begin{array}{ll}\text { Avicula } \\ \text { Ambonychia } & \cdots \\ \end{array}$	\cdots	\ldots	...	\cdots	...	\cdots	\cdots	\cdots	\cdots	\ldots	\ldots	\ldots	*	*			
Pseudaxinus	\ldots	\ldots	.	*	*	*		
Pleurorhynchus	\ldots	..	\ldots	*				
Goni,phora	\ldots	*	\ldots	*	*	
Granmysia ...	\ldots	\ldots	...	\cdots	*	\ldots	*	*	
Lunulacardium	\ldots	\ldots	...	\ldots	\ldots	\ldots	\ldots	\ldots	*				
Anodontopsis ...	\ldots	\ldots	\cdots	\ldots	\ldots	*	*		
Gasteropoda .																	
Murchisonia	\ldots	\ldots	*	*	*	*	*	*	*	*	*	
Pleurutomaria	\cdots	\ldots	\ldots	\ldots	\ldots	*	\ldots	*	...	*	*	*	*		
Raphistoma ...	\ldots	\ldots	*	\ldots	*							
Euomphalus ...	\ldots	\ldots	*	...	*	*	\ldots	*				
$\begin{array}{ll}\text { Cyclunema } \\ \text { Holopea } & \ldots \\ \end{array}$...	\ldots	\ldots	\ldots	*	\cdots	*	...	*	*	*		
Helopella \ldots	\ldots	\ldots	\ldots	\ldots	...	\ldots	\ldots	\ldots	*	\ldots	*	*	*	*	*	*	
Loxonema ...	\ldots	\ldots	...	*	*	...	\ldots	*	*			
Truchus	\ldots	*	..	*					
Acroculia	\ldots	\ldots	*	..	*	*			
Trochonema	\ldots	\ldots	\ldots	\ldots	\ldots	*				
Nacrucheilus	\ldots	...	\ldots	\ldots	\ldots	\ldots	\ldots				
Naticopsis Platyschisma \ldots		\ldots	\ldots	*			
Platyschisma			-	\cdots	...		\ldots	...	\ldots	*	*	

			Cambran.								Silurian.						
Heteropoda																	
Bellerophon Maclurea \ldots	\ldots	\ldots	\ldots	\ldots	\ldots	*	\ldots	$\stackrel{*}{*}$	*	*	\pm	*	*	\ldots	...	*	
Pteropoda																	
Theca			\ldots	*	*	\ldots	*	\ldots	*	...	*		
Stenotheca	$\stackrel{*}{*}$	*		*	*	\cdots	*	*		*		
Cyrtotheca ...	\ldots	\ldots	\ldots	*													
Conularia	\ldots	\cdots	...	\cdots	*	\ldots	*	...	\ldots	\cdots	*	*	*		
Eccyliomphalus Graptotheca	\ldots	\ldots	\ldots	\ldots	\cdots	\ldots	$\stackrel{*}{*}$	\ldots	$\stackrel{*}{*}$	*	...	\cdots	\ldots	*		
Cephalopoda																	
Orthoceras ${ }_{\text {Cly }}$.	\ldots	\cdots	\cdots	\cdots	*	*	-	-	*	*	*	*	*	*	*	
Cyrtoceras ${ }^{\text {Ormoceras }}$...	\ldots	\ldots	\ldots	\cdots	\ldots	\cdots	\cdots	$\stackrel{*}{*}$	\cdots	*	*	*			
Lituites	\ldots	${ }_{*}^{*}$	\ldots							
Phragmoceras	\ldots	$\stackrel{*}{*}$...	*	\ldots	*	*			
Trochoceras ...	\ldots	...	\cdots	\ldots	\ldots	\ldots	\ldots	*	*	*			
Tretoceras	\cdots	\ldots	\cdots	\cdots	\ldots	\cdots	\cdots	\cdots	...	\cdots	*	
Pisces																	
Onchus.	\ldots	\ldots	\ldots	\cdots	...	\ldots	\cdots	\ldots	...	\cdots	...	\ldots	\ldots	*	*
Pteraspis	*	

A D D E N D A.

Page 3. Protospongia diffusa, Rep. Brit. Assoc., 1865, p. 285. Protocystites, Rep. Brit. Assoc., 1865, p. 285.
4. Agnostus Davidis, ib. p. 285.
4. Agnostus scutalis, ib.
p. 285.
6. Anopolenus Heurici and Salteri, p. 481 not 478.
7. Olenus cataractes, Dec. xi., Pl. 8, fig. 14.
10. Hymenocaris vermicauda, Pl. 1, Pl. 2, figs. 1-4.
10. Agnostus princeps, line 3 from bottom (dele 6) add Pl. 4, f. 2, 11.
23. Asaphus Solvensis and A. Meuapix belong to Niobe, according to Dr Hicks.
128. Ateleocystites Fletcleri.

In the Geological Magazine, 1871, Vol. VIII., p. 71, Mr Woodward calls attention to the genus Ateleocystites of Billings figured and described by him in Decade III, of the publications of the Geological Survey of Canada, Montreal 1858. In a letter which accompanies this notice, Mr Billings considers Ateleocystites, as suggested by Mr Woodward, to be generically identical with Placocystites, of De Koninck, Geol. Mug., 1870 ${ }^{1}$, Vol. VII., p. 260. Pl. vil., figs. 2, 3, 4, and with Anomulocystites, of Hall, Pal., New York, 18.59, Vol. III., p. 132, pl. 7a. and 88.

The Ateleocystites Fletcheri appears to be the same species as the A. (Placocystites) Forbesianus of De Koninck; both were obtained from the Wenlock limestone of Dudley. Figures of more perfect specimens

> Ateleocystites Fletcheri, Salter = Placocystites Furbesianus, De Koninck.

Fig. I. Convex side, showing the so-called "anal plate" (a), and the ovariau pore (b), the base of the tentacles (t, t, and the point of attachment for the stem (s).
n 2. Concave side, showing the tentacles (t, t).
" 3. View of the lower extremity of the body, shewing the attachment of the stem (s).
" 4. View of the top of the bods, slowing the points of attachment for the arms or tentacles (t, t).
" 5. Portion of stem near the body: drawn from a specimen having a portion of the stem still remaining attached.
" 6. a, b, c. Three views of a small tapering stem, found detached, but having the same eharacteristic sculpture visible noun its joints observed in Atcleocystites. l'robably the lower extremity of the stem.
" 7. One of the arms, or tentacles, drawn from a specimen, having the arm still attached to the body.
(All tho above specimens are in the British Mnscum, and were obtained from the Wenlock Limestone, Wren's Nest, Dulley.
${ }^{1}$ Translated from the Bulletins de l'Acad. Roy. Belg., $2 m 0$ Série, tome xxyin., pp. 547-551. Planche, figs. 2 and 3. 1569.

xlviii

ADDENDA.

are here reproduced by the kindness of the Editor of the Geological Magazine. The Ateleocystites Huxleyi, Billing (Canadian Fossils, Dee. III. p. 73), with which the above species has been compared, is smaller and less broad, and was obtained from the Trenton limestone. The A. cormutus, Hall, 1. c., p. 133, Plate 7 a, figs. $\bar{j}-7$ is from the Pentamerus limestone of the Lower Helderberg group, and the A. disparilis, Hall, l.c. 1. 145, Pl. 88, figs. $1-4$ is from the Oriskany sandstone. Another form referred to this genus from the Upper Caradoe of Shole's Hook, Pembrokeshire, is in the collection of the Geologieal Survey.
2 Tremadoc Group, p. 15:-In a paper read before the British Association (Aug., 1872), Dr Hicks fully confirmed the oceurrence of the Tremadoc rocks previously recognised in 1866, by Mr Salter and himself at Ramsey Island, St David's, where they overlie the Lingula flags, and are from 800 to 1000 feet in thickness, with numerous fossils, nearly all the species as well as many of the genera being new. They comprise Brachiopoda of the genera Lingula, Orthis, Obolella, and the Lamellibranchiate genus Ctenodonta, also species of Orthoceras, Theca, Bellerophon, an Enerinite and a Starfish, besides nine species of Trilobites belonging to Niobe, Conocoryphe, Cheirurus, and a genus allied to Dikellocephalus. These are followed by the Arenig group having a thickness of a 1000 feet, and contain the genera Asaphus, Ogygia, Eglina, Trinucleus, Ampyx, Calymene and Agnostus; also Conularia, Theca, Orthoceras, Bellerophon, Lingula, Orthis. In this group Mr J. Hopkinson has recognised more than 20 species of Graptolites, belonging to the genera,Didymograpsus, Tetragrapsus, Phyllograptus, Ptilograpsus, Dendrograpsus, Callograptus, Retiolites and Loganograptus, and also Dictyonenu, from which association Mr Hopkinson considers the beds to be the equivalent of the Quebee group of Canala, the Skiddaw slates of Cumberland, and the Arenig rocks of Shelve.

PALAOZOIC SYSTEM.

1. Lower Cambrian. (Sedgwick, Phillips, Lyell, ©c. Cambrian of Geol. Survey).
a. Longmynd Group (Sedgwick), certainly in great part lower than the
b. Harlech or Bangor Group (Sedgwick).

Case and Column of Drawers.	Heference to McCor's Synopsis: and Figures of Genera.	Names and References; Observations, \&c.	Numbers and Localities.
G h. 1	Marine Plants.	CRYPTOGAMIA ALGE (sea-weeds). Oldhamia antiqua, Forbes (Kinahan, 'Trans. Roy. Irish Acad. Vol. xxiir. p. 557, fig. 5). This fossil is believed by Dr. Busk and Rev. J. M. Berkeley to be a plant of the nullipore family-allied to Acetabularia, a Mediterranean type. Prof. Forbes thought it a Sertularian polype: but the cells are not uniform or even distinct. The radiating branchlets are connected by membrane. (See Mem. Geol. Surv. Vol. III. p. 281.)	Only known yet in twe localities in Wicklow, viz. Carrickreilly Mountains, and Bray Head. a. 632*, Bray Head (presented by the Irish Survey). Longmynd Group.

[^4]
Case nud Column of

 Drawers.
G h

Worm-burrows.

Trilobites.

Reference to McCoy's
Synopsis : and Figures of Genera.

(filass
ease).

Arenicolites.
(Low Entomostraca. The parts of the mouth are not yet known. Name derived from the trilobed form.)

Plutonia.

Oldhamia radiata, Forbes (Kinahan, l. c. p. 557, figs. 3-5, S-10). This has no stem, and is probably a distinct genus from the last, which has been termed Murchisonites antiquus by Göppert in his "Flora der Silurische und Devonische Schichten."

ANNELIDA (Worm tracks and burrows).
Arenicolites sparsus, Salter (Quart. Geol. Journ. Vol. xini. pl. 5, fig. 2). The minute exit- and entrance-holes of the burrows of marine worms on rippled sand surfaces.
Arenicolites didymus, Salter, ib. Vol. xıl. Mouths of burrows close and parallel.
Scolecites. Burrows, filled up with excreta of the worm, are common in Cambrian rocks (Mem. Geol. Surv. Vol. iII. 243, fig. 2).
Rain-imprints, on a peculiar muldy layer, suncracked and largely rippled, have been found in more than one locality in the Longmynd (Quart. Geol. Journ. Vol. xini. pl. 5, fig. 1).

CRUSTACEA Trilobita.

Lately discovered by Dr. Hicks, of St. David's.
Conocoryphe Lyelli, Hicks (Quart. Geol. Journ. 1869). For remarks on genus, see p. $\overline{5}$.

Plutonia, n.g. Sedgwickii, Hicks. Very like Paradoxides, but as yet undescribed. It has a narrow glabella, broad ribs (pleure, which are the first leg-joints), and a tubercular surface. Hicks (1868), Brit. Assoc. Reports.
Leperditia (or Primitia?) prima, Hicks.
Paradoxides Harknessi, Hicks MS. See p. 6.
Microdiscus sculptus, Hicks MS. See p. 4.
Agnostus cambrensis, Hicks. (Page 4 for genns.)

MOLLUSCA.

Discina, sp. See p.
Obolella, sp. See p. 6 for the genus.
Lingulella ferruginea, Salter. This and its var. ovalis run down at least 1200 feet into the red rocks of the Harlech Group. Quart. Geol. Journ. 1867, Vol. xxili. p. 340, fig. 1-3.
Theca, sp. See p. 6.
a. 630, a. 631, Longmynd group of Bray Head, Wick-low.-(Also from Irish Survey.)
a. 9, Longmynd, Shropshire. Under surface of beds. (Presented by Mr. R Lightbody, and Mr. Salter.) b. 257, Yearling Hill, Longmynd. (Pres. by Mr.Salter.)
a. 1, Yearling Hill, Longmynd. (Preseuted by Mr. 400 ft . down in the Har-

$$
=
$$

$$
\mid
$$ Lightbody.)

a. 471 , a. 475 , St. David's, lech Group. (Dr. Hicks.)
a. 472, a. 473, a. 474 , same locality. (Presented by Dr. Hicks.)
a. 2s3, St. David's. (Dr. Hicks.)
a. 286 do. do.
a. 28.5 , do. do.

$$
\text { a. } 28.5,
$$

do. do.

These species are in Dr. Hicks' Cabinet.
a. 284 , St. David's. (Dr. Hicks.)

Numbers and Localities.

2. Middle Cambrian (Sedgwick). Lingula Flags (Auct.). Upper Cambrian (Lyell and Salter)
c. Menevian Group (Salter and Hicks). Lower Lingula flag (Sedgwick).
d. Ffestiniog Group (Sedgwick). Middle Lingula flag and Upper Lingula flag (Salter).
e. Tremadoc Group (Sedgwick, Salter, Phillips).
c. Menevian* Group. N. and S. Wales; Sweden ; Bohemia (Etage C of M. Barrande) ; N. America and Canada; St. John's Group in Newfoundland.

Case and Column of Drawers.	Reference to McCor's Synopsis: and Figures of Genera.	Names and References ; Observations, de.	Numbers and Localities.
G h	Sponges.	AMORPHOZOA (Sponges and Foraminifera). Protospongia fenestrata, Salter (Quart. Gcol. Journ. Vol. xx. pl. 13, fig. 12). A very simply formed sponge, with the fibres often rudimentary, and crossing at right angles on the plane surface, as minute stars. [P. flabella, Hicks, is in Dr. Hicks' cabinet.]	
G h		Protospongia diffusa, Salter (Reports Brit. Assoc.). A less regular species, with closer and more matted fibres. There are probably several forms of the genus.	a. 289, St. Davil's. (Dr. Hickst.)
	Cystidew (globe-crinoids).	ECHINODERMATA (Crinoids, Starfish, Seaurchins), more particularly noted in the Bala group.	
G h		Protocystites + (Salter MSS.) sp. Rather an obscure fossil, with long stem and arms. Fragments only are known, and are chiefly in Dr. Hicks' rich cabinet.	a. 281, Same locality (same donor).

[^5]
[Rudimentary trilobites, with few segments to the thorax. The characteristic "facial suture" is absent in these early forms.]

Gh

Gh

G 1
Microdiscus.
G h
Glı

Gh

Names and References; Observations, \&c.

CRUSTACEA Trilobita.

Agnostus princeps, Salter (Quart. Geol. Journ. Vol. xx. pl. 13, fig. 8). A species of long range in the Lingula flag. The genus is the simplest and most rudimentary of all Trilobite forms. Only 2 segments to the body.
Agnostus, sp. Convex, lobeless, like A. bibullatus, Barr.

Agnostus Davidis, id. (Reports Brit. Assoc. 1865. Trans. Sect.) One of the largest specics. Equal in size to A. aculeatus, Angelin, but romarkably even and slightly lobed.

Agnostus scarabæoides, Hicks. Surface wholly granular.
Agnostus cambrensis, Hicks. Allied to A. integer of Bohemia.
Agnostus acumensis, Hicks, and A. lagena are new forms.
Agnostus scutalis, Salter. Resembles A. pisiformis, Linn. from Sweden.
Agnostus Barrandii, Thicks. Smooth, convex, head-lobes incomplete. Resembles A. leevigatus of Siveden.
Agnostus Eskriggi, Hicks.
Agnostus reticulatus, Ang. Pal. Succ. The limb is deeply and largely reticulated. (In some collections this appears as A. nodosus, Belt.)
Microdiscus punctatus, Salter (Quart. Geol. Jomn. Vol. xx. pl. 13, fig. 11). A minute form, sliewing 4 body segmonts. Otherwise it has the characters of Agnostus, and like it is blind, and has no facial suture.
Holocephalina primordialis, Salter (ib. fig. 9). A very simple type of many-ringed trilobites allied to Arionellus, which is a Bohemian and Spanish form. It has minute external eyes, and the facial suture only cuts off the extreme spinous angle.

Numbers and Localities.
a. 4, Maentwrog waterfall. (Mr. Ash.) b. 273, do. (D. Homfray). a. 255, Cwm heisian, Gold mines, Dolgelly. (Mr. Plant, 1869.)
b. 266, Gwynfynydd, Dolgelly Gold mines. (Mr. D. Homfray.)
St. David's. (Dr. Hicks.) a. 9.54 , Cwm heisian; Mr. Plant. b. 271 , Rhaidr ddn valley, Maentwrog. (Mr. D. Homfray.)
[St. David's.] Dr. Hicks' cabinct.
[St. David's.] do.
[St. David's.] do.
St. David's. do.
b. 265, b. 274 , Lower beds, St. David's. (D.Homfray.)
[St. Davil's.] Dr. Hicks' cabinet.
b. 267, b. 27.2, Tyn-y-groes. on the Mawdlach River: (Mr. Homfray.)
St. David's. (Dr. Hicks.) a.2.53, Tydelyngwladis. (Mr. Plant.) b. 275, Tafarn Helig, S. of Ffestiniog, N. Wales. (Mr. D. Homfray.) a. 28S, St. David's. (Pres. Dr. Hicks; and cast of figured specimen, by J. W. Salter.) b. 304, Maentwrog waterfall valley, or Tafarn Helig, Ffestiniog. (Pres. by D. Homfray.)

Case and Columin of Drawers.	Refcrence to McCor's Synopsis: and Figures of (ienera.
G h	
G h	Fry of Conocoryphe, greatly magnified.
G h	
G h	The fry of all Trilobites possesses fewer segments, often but one or two, and is blind, and withont suture.
G h	
C. h	
G h	
G h	

Conocoryphe variolaris, Salter (ib. figs. 6, 7). Conocoryphe (or Conoceplutus, as it is often written) belongs to a group of trikobites intermediate between Calymene and Olemus (see Bala Group), and is extremely common in the Lingula flags, and the older Cambrian rocks in all countries. (Ptychoparia, Corda.)

Conocoryphe applanata, Salter (Quart. Geol. Journ. Vol. xxv. pl. 2, figs. 1, 2, 4; 1869). A small species, with flattencd body.

Conocoryphe humerosa, Salter. Convex, and with spines to the pleura. (Vol. xxy. ib. pl. 2, fig. 7.)

Conocoryphe bufo, Hicks (Quart. Geol. Journ. 1869 , pl. -, fig. S). A massive species, gramulate all over; with a great produced front.

Conocoryphe? Homfrayi, n. sp. A fine species $3 \frac{1}{2}$ inches long, with slightly deflected pointed pleure.

Conocoryphe? 2 sp . Both these species are much like Olenus, but the pleure are facetted and deflected as in Conocoryphe.

Conocoryphe coronata, Barr. Boh. Syst. Silur. pl. 13, fig. 20. Prof. Corda separated this from the wther species of Conocephalus, on account of the absence of eyes. But it seems that Zenker intended this group for the true Conocephalus: hence we must separate the others, rather than this.

Erinnys venulosa, Salter (Quart. Geol. Journ. ined.). A trilobite with minute eyes, no facial suture, and the most numerous bodysegments, twenty-three. It is possibly not distinct from Marpides, Beyrich. Two species are figured from Sweden ly Angelin.

Numbers and Localities.

St. David's. (Dr. Hicks.)

St. David's. (Presentel ly Dr. Hicks.)

Cast only. Do. Do.
a. 476 , cast, (pres. by Dr. Hicks,) lowest beds of Menevian Group, St. David's.
b. 3.50, Maentwrog Valley, base of Menevian Group. (D. Homfray.)
1). 270, Tafarn Helig. neal Trawsfynydd. (D. Homfray.) b. 3.55, Waterfall valley, base of Menevian. (D. II.)
b. 307 , Head of the Rhaiadr ddu valley, base of the formation. This locality is very rich in Trilubites. Nearly all the St. David's species are found there. (Pres. by D. Honfray.)
a. 484, St. David's. (Presented by Dr. Hicks.) h. 301 , 302 , Waterfall valley, S. of Mantwrog. b. 303, per-fect-samelocality. (Mr. I'. Homfray.)

Case and	Reference to McCoy's
Column of	Synopsis: and Figures of Genera.
Drawers.	Sy

G
 case and Gh

Gh

Gh

Gh

Gh

Anop. Salteri.

Names and References; Observations, sc.

Paradoxides Davidis, Salter (Quart. Geol. Journ. Vol. xx. pl. 13, figs. 1-3). The largest trilobite known in Britain: often 18 to 20 inches long. This fine species, discovered in 1863, belongs to a genus everywhere characteristic of the Menevian group only, and found in Bohemia, Spain, Sweden and Norway, Newfoundland, and the United States; in most cases it is associated with the preceding and following genera.
[P. Harlani, Green. A cast is placed in the drawer for comparison. It is the only species known to attain greater size than P. Duvidis. The species comes from Boston, Massachusetts].

Paradoxides Hicksii, Salter (Quart. Geol. Journ. Vol. xxv. pl. 3). The form and sculpture is quite intermediate between Paradoxides proper and the next genus. And it is worthy remark, that in geological position it is antecedent to Anopolenus next described, as that precedes Olenus.
[P. Aurora, Salter. From still lower beds; in Dr. Hicks' cabinet.]

Anopolenus Henrici, Salter (Quart. Geol. Journ. Vol.xx. pl. 13, figs. 4, 5, and Vol.xxi. p. 478). One of the most curious trilobites known, with immensely long eyes, contracted cheeks, - great head-spines, and the hinder pleure dilated. Parad. Loveni, Angelin, is of this genus.

Anopolenus Salteri, Hicks (Quart. Geol. Journ. ref. Vol. xxi. p. 478, f. 1). A much longer and narrower species than the last, with equally large eyes. The development in excess of the hinder pleure (or leg-bases) is in accordance with the affinity with Paradoxides (see last page).
a. 2, a. 8, St. David's. (a. 2. Cast, presented by J. W. Salter, of the largest specimen known, iu the Brit. Museum). a. 3, specimen shortencd by the cleavage. b. 276-278. (Pres. D. Homfray). St. David's. a. 261 , a. 262 , The Gold mines, Dolgeily, N. Wales. Presented by Mr. Plant, 1869. a. 296 (Dr. Hicks).
a. 10 .
a. 479, a. 480, St. David's, bottom beds. (Presented by Dr. Hicks. a. 480 is a specimen figured in the Quart. Geol. Journ.) a. 251, Camlan River, N. of Dolgelly. (Mr. Plant.)
a. 481, St. David's, Cast of the figured specimen (Q.G. Journ.). b. 295, 996, Head of the Rhaiadr ddu valley. (Mr. D. Homfray. 296 is figured Q. G. Jour.) a. 249, Tyddyngwladis, Dolgelly. (MIr. Plant.)

St. David's. Base of the Menevian beds, alternating with top of Harlech grits. a. 477 , young, and a. 478 adult. (Pres. by Dr. Hicks.) a. 250, Camlan River. (Mr. Plant.) b. 305, Rhaidr ddu valley. (Mr. D. Homfray.)
Case and
Column of
Drawers.

The small bivalve species have their affinity with the Limnadia, but look like waterHeas (Cymris).
G h

Gh
Gh

Reference to McCor's
Synopsis: and Figures of Genera.

Names and References; Observations, \&c.
[Arionellus longicephalus, Hicks MSS. A genus new to Britain. In Dr. Hicks' calinet.] The less convex amel less distinct glabella, and the narrower axis of the body, distinguish this, as a species, from A. ceticeplatus, Barr.
[It is possible the two species of Olenus and the Itymenocaris major should be included in the Ffestiniog Group. They lie close under it.]
Olenus, Dalman. With many of the characters of Paradoxides, lut with a glabella narrowed in front, and but 14 body rings at most.

Olenus - , sp. (Olenus gibbosus, Belt. Geol. Mag. 1867, not of Swedish authors (?). The Swedish species are not sufficiently figured yet: and ours appears to have too many spines to the tail, and a wider front.
Olenus cataractes, Salter (Decades Geol. Survey, No. xi. pl. 10, fig. ref.). Differs from the common species in the next formation, by the gradually tapering, not abruptly narrowed, body. Mem. Geol. Surv. III. p. 300. The specimens b. 294, pres. by Mr. D. Homfray, shew the effects of cleavage in shortening or lengthening the body, the spines, icc. In this state it might be taken for many different species.

Primitia Solvensis, R. Jones, Aun. N. H. s. 4. 2. $55 . ~ S p e c i m e n s$ in Mus. Pract. Geology.

Primitia buprestis, Salter (punctatissima, Jones). A large species like a small bean.

Primitia vexata, Hicks. Brit. Assoc. Report.
Hymenocaris (Saccocaris, Halifax Traus. 1867) major, Salter, n.s. A large ovate carapace, strongly emarginate behind, and larger than II. vermicauda, see p. 10. Body segments broad and short, at least in scven of the antcrior ones. Appendages not known.

Numbers and Localities.

St. David's. Cast, presented by Dr. Hicks.
b. 268, b. 269, River Mawddach, at Tyn-y-groes, N. Wales. (Mr. D. Homfray.)
a. 7, Maentwrog falls, Ffestiniog. b. 294,Caen-y-coed, near the falls. (MIr. D. Homfray.) a.11, Ynys cynhauarn, Treflys, near Portmadoc. (Pros. by Mr. Ash.) a. 246, a. 248, Cae Gwernog, Upp. Mawduach: and a. 247̄, Cefn Deiddwr. a. 261, Moel Ispray. (All pres. by Mr. Plant.)

St. David's. (Dr. Hicks.)
a. 287, do. do.
a. 282, do. do.
b. 297, Cach-y-coed, near Maentwrog. (Mr. D. Homfray.)
b. 297 , body segments of the same. Same locality and donor.

Brachiopods.

Bivalves protected by upper and lower shells, not by side-plates as in ordinary bivalves.

Names and References; Observations, \&c.

MOLLUSCA Brachiopoda.

Discina? pileolus sp. Salter. Minute eap-shaper horny Brachiopods are fornd in all the Paleozoie deposits. (For genus see Bala group).

Obolella? sagittalis, Salter (Davidson, earliest Brach. Geol. Mag. 1868, Vol. v. pl. 15, figs. 17-24). The genus not quite certain, but Obolella is common in old rocks.

Obolella nucleata, MSS. A very small apiculate species.
Obolella maculata, Hicks, ib. pl. 16, figs. 1-3.
Lingulella ferruginea, Salter (ib. pl. xv. figs. 1-4). The earliest Lingule differed from modern ones in having a groove under the beak for the passage of the pedicle, and thus being more like Obolus. Quart. Geol. Journ. 1867, Vol. xxill. p. 340, fig. 1. (See p. 2.)
Orthis Hicksii, 11. sp., Davidson (ib. pl. 16, fig. 17). Very like O. Carausii, Salter, but with a short hinge. (Fur genus, see Arenig Group.)

MOLLUSCA Pteropoda.

Theca obtusa, Salter (Mem. Geol. Surv. Vol. III. p. 352, fig. 17). A large species of a genns like the much smaller living Creseis.
Theca corrugata, Salter (Quart. Geol. Journ. Vol. xx. pl. 13, fig. 10). A moderately broad species, with rugose lines of growth.

Theca Homfrayi, Salter, n. s. Much longer than T. corruguta.
Theca penultima, Salter. [Dr. Hicks' calbinet.]
Theca stiletto, Hicks. Brit. Assoc. Repts.
Stenotheca cornucopiæ, Salter, new genus.
Cyrtotheca hamula, Hicks. Like Theca, but strougly curved.

Numbers and Localities.

St. David's. (Presented by Dr. Hicks, 1869.)

St. David's. (Preseuted by Dr. Hicks, 1869.)
a. 9.57 , Gwynfynydd, Gold mines. a. $258, \mathrm{Cwm}$ heisian. (Mr. Plant, 1869.) St. Darid's. (Dr. Hicks.)

St David's. (Dr. Hicks.)
a. 483, in sandstones at Porth Rhaw, St. David's. (Dr. Hicks.)
a. 4, Maentwrog falls, N. Wales. Mr. Ash. (Upper beds of the formation.)
St. David's. (Pres. Dr. Hicks.) b. 264, Rhaidr ddu valley, Maentwrog. (Mr. D. Homfray.) a. 259, а. 260, near Gold mines, Mawddach River. (Mr. Plant.)
b. 263, Tyddyngwladis, gold mines. (D. Homfray.)

St. David's. (Dr. Hicks.)
a. 279, do.
do.
a. 280 , do.
do.

Portmanoc Estcary: shewing the relations of the Menevian (c), Ffestiniog (d), Tremadoc (e), and Arenig Groups (f) in the district around Portmadoc, N. Wales. By the Rer. A. Selgwick, LL.D. I 8 ± 7, and J. W. Salter, 1853-7. The faults are all by J. W. S. The strata, in descending order, are :-
f. Arenig (or Skiddaw) Gronp. Dark earthy slates on a base of sandstone (=Stiper Stones, Shropshire).
e. Tremadoc Group. Dark slates, iron stained, and with felspathic beds- 1500 feet thick.
d. Ffestiniog Group. Thick flaky sandstones, 2000 feet, and a bed of black slate 300 feet.
c. Menerian Group. Dark slate and sandstone-only the top beds (with Olenus cataractes).
d. Ffestiniog Group $\left\{\begin{array}{l}\text { Middle } \\ \text { Upper }\end{array}\right.$ Lingula flag. $\left\{\begin{array}{l}\text { Sandstones, hard, laminated, flinty, } 2000 \text { feet thick. } \\ \text { Black Slates, often stained with iron, } 200 \text { to } 1000 \text { feet. }\end{array}\right.$

Case and Column of Drawers.	Reference to McCoy's Synopsis: and Figures of Genera.
	Graptolites. Horny sheaths, with a slender solid axis, and with numerous close-set cells opening into the common sheath. The mouths often armed with spines.
Gh	

AMORPHOZOA. None yet known.
POLYZOA or HYDROZOA? (Graptolitides).
Considered by Prof. McCoy and some other authors as Sertularian Zoophytes. I therefore place them here in the order given to them in the Synopsis. (See for their affinities, Mem. Geol. Surv. Vol. uIr. p. 328, and Carruthers, Geol. Mag. Vol. v. pl. v.)

Dictyonema (Graptopora) sociale, Salter (Mem. Geol. Surv. Vol. III. pl. 4, fig. 1). Variously known as Gorgonia, Dictyonema, and Graptopora. A net-like fossil, allied to the Fenestella and Polypora of the Bala and Wenlock rocks: but of horny texture and with cells in double row, like Graptolites. (Salter, Mem. Geol. Surv. Vol. III. p. 331.)

Numbers and Localities.
a. 12, black slates of Tremadoc and Wern, and other places, Cefn Cyfarnedd \&c. on the Carnarvon Road. (Presented by Mr. Ash, 1862.) a. 13, olive shales of White-leaved oak, Malvern. (Rev. W. Symonds.)

Case and Column of Drawers.	Reference to McCor's Synopsis: and Figures of Genera.	Names and References; Observations, \&c.	Localities and Numbers.
G h		Agnostus, sp. with narrow glabella.	Carreg wen. (Mr. Homfray:)
G h		Agnostus, sp. uncletermined.	a. 269, do. (Mr. Plaut.)
G h		Olenus micrurus, Salter (Mem. Geol. Surv. Vol. 1II. 1866, pl. 2, figs. 5, 6. p. 300). Distinct by the body being attenuated behind, and by the small entire tail of two segments.	a. 263, Penmaen Pool, Mawddach valley, near Dolgelly, middle Ling. flag. (Mr. Plant.)
G h		Olenus Plantii, Salter, n. sp. An oval species much flattened and expanded. Mr. J. Plant, who discovered it, has distributed casts and photographs of this fine and well marked fossil.	Casts from Craig-y-Dinas ; and a. 272, Moel Gron, Upper Mawddach. (In Upper Ling. flag. Mr. Plant, 1869.)
G h	Typical Olenus.	Olenus, small sp. like O. cataractes. See page 6.	a. 276. Penmaen Pool, Mawddach R. (In Upper L. flag.) Mr. Plant.
G h		Olenus (Parabolina) spinulosus, Wahl. (Angelin. Pal. Suec. t. xxv. fig. 9). Only lately noticed in Britain. It is common, and known by the fringe of long spines, directed back wards, to all the body segments. O. serratus, Salter (Mem. Geol. Surv. 1II. pl. 5, figs. 6,7) is the same species. (O. comatus, Plant MSS.)	a. 261, Penmaen Pool, near Dolgelly (Mr. Plant). a. 260 , 271, 277, Rhiw felyn, ou the Upper Mawddach R. (Mr. Plant). b. 349, fine series, same locality. (Mr. D. Homfray.)
G h		Olenus (Peltura) scarabæoides, Wahl. Peltura is a natural subgenus, the opposite of Sphcerophthalmus, in having the axis very broad, the cheeks small, and the head spines reduced to zero. Decade 11, Geol. Surv. pl. 8.	b. 285, Rhiw felyn, Upper Mawddach. (Mr. D. Homfray.) a. 270, Moel Gron, Upper Mawddach. (Mr. Plant.) Malvern Black Shales. (Rev. W. Symonds.) All in Upper Lingula flag.
G h		Olenus (Sphærophthalmus, Ang.) flagellifer, Angelin (Salter in Decade 11, Geol. Surv. pl. 8, figs. 7, 8) O. flagellifer and O. alatus, pecten, humilis, bisulcatus, are members of the subgenus Sphcerophthalmus, in which the head is wide and short, and the globular eyes remote. Sphœrophthalmus is probably	Carreg wen, Borth, Portmadoc. (Presented by Mr. Ash.) Black slates of U^{1} per Lingula flag. b. 283, same loc. Mr. D. Homfray (fig. in Decarle 11).

Names and References; Observations, $\mathbb{C c}$.
Olenus (Sphær.) sp.
Olenus (Sphær.) alatus, Bock (ib. pl. \&, fig. 6).
Head spines remarkably curved in this
species.
Olenus (Sphær.) expansus, n. sp. A very nar-
row axis and enormously wide flanks dis- tinguish this.

Olenus (Sphær.) humilis, Phillips (ib. pl. S, figs. $9,10,11$). Only 7 body rings. The most minute species known. Extremely common at Malvern.

Olenus (Sphær.) sp.
Olenus (Sphær.) bisulcatus, Plillips (ib. pl. 8, fig. 6). The body and tail of this species, are known, but are not in this collection.

Olenus (Sphær.) sp. like O. bisulcatus.

Olenus (Sphær.) pecten, Salter (ib. pl. 8, fig. 12). The most spinose and abnormal of all the British species. The cheeks are singularly contracted : the tail 13-spined (Quart. Geol. Journ. XxI. p. 478).

Olenus (Sphær.) sp.

Conocoryphe? ecorne, Angelin? (Acerocare ec. Pal. Suec. xxy. fig. 10). If this be Angelin's species, which seems likely, Acerocare is a needless name.

Conocoryphe Williamsoni, n. sp. A tumid front, spinose cheeks, and pointed bent pleuræ, distinguish this.

Localities and Numbers.

Carreg wen, Borth. (Mr. D. Homfray.)

Carreg wen, Borth. (Mr. Ash.) Malvern, Mr. Symonds.
a. 275, Moel Gron. (U. Ling. flag.) Mr. Plant.
a. 273, Moel Gron, Upper Mawddach. (Mr. Plant.) a. 23, Malvern Black Shales. (Mr. Symonds.)

Malvern. (Mr. Symonds.)

Malvern. Rev. W. Symonds.
b. 281, Rhiw felyn, Upper Mawddach. (Mr. D. Homfray.)
b. 30s, Malvern. (Rev. W. Symonds.)

Carreg wen, Borth. (Mr. Homfray.)
b. 2ธ9. Penmaen Pool, Dolgelly (Middle Lingula flags. Mr. Plant).
b. 292, Rhiw felyn. Upper Mawddach. (Mr. D. Homfray.) b. 258 , Penmaen Pool, Dolgelly. (Cast) Mr. Plant.

$\begin{gathered} \text { Case and } \\ \text { Columu of } \\ \text { Drawers. } \end{gathered}$	Reference to McCor's Synopsis: and Figures of Genera.	Namos and References; Observations, \&cc.
G h		Conocoryphe (Conocephalus) invita, Salter (Decade XI. pl. 7, fig. 6). This genus is one of those which unite the Oleni of the Middle Cambrian with the Calymenide of the Upper Cambrian and Silurian beds. 14 body rings.
G h		Conocoryphe abdita, Salter, Mem. Geol. Surv. Vol. III. pl. 5 , figs. 13 and 15.
Gh	$\begin{aligned} & 5 \Omega 2 \\ & =3 \end{aligned}$	Dikellocephalus celticus, (Salter, Mem. Geol. Surv. Vol. iII. pl. 5, fig. 22). A genus related to Olenus, and yet differing from it by the expanded form and large tail. Probably this form and D. furce of the Tremadoc Group belong to the genus Centropleara of Angelin. Several British and Swedish species are known.
G h		Dikellocephalus, sp.
	Brachiopods, or Lamp-shells.	MOLLUSCA BRACHIOPODA. Almost all the species known of this order in the primordial group are the horny species, such as Discina, Lingula, Lingulella, Obolella, \&c. One or two species of Orthis are all the calcareous hinge-bearing forms known.
Gh		Lingulella lepis, Salter (Mem. Geol. Surv. Vol. iII. p. 334, fig. 11. Davids. Sil. Brach. pl. 3, figs. 53-59). Lingulella differs from the modern Lingula by having a groove for the passage of the pedicle, else it is quite like it.
	As Lingula Davisii, Pl. 1 l, fig. 7; as L. ovata, Pl. 1 L, fig. 6, pp. 252, 254. (Note. Not the original L. ovatathat name is retained for the Bala species, p. 254). And when distorted, as Tellinomya lingulacomes, PI. 1 к, fig. 18.	Lingulella Davisii, McCoy (Davids. Sil. Brach. t. 4, figs. 1-16). The common Brachiopod of the Lingula flag: of all shapes according to the pressure of the rock. Its true shape is satchel-shaped (McCoy). It occurs both in the sandy middle portion of the Lingula flag, and in similar strata in the Tremadoc rocks. It occurs of smaller size in more slaty deposits, but its place in these is nsually taken by the L. lepis.

Localities and Numbers.

Penmorfa church, Tremadoc. Upper Lingula flags. b. 290, 291, Carreg wen, Borth. [Mr. D. Homfray.]
b. 28t, Ogof ddu, as below. (Mr. D. Homfray.)

Craig Ogof ddu, near Criccieth; in upper Lingula flag. (Mr. Aslı.) b. 282, specimens figured in Mem. Geol. Soc. Same locality. [Mr. D. Homfray.]

Carreg wen, Portmadoc. (Mr. Ash.)

Ogof ddu, Criccieth. (Mr. Ash.) b. 312, Dolgelly.

Borth, Portmadoc. (Mr. Ash and Mr Homfray.) a. 19, Said to be from E. of Nant-y-groes? a. 17, Penmorfa, Portmadoc (as Tellinomya). a. 20 (As L. ovata), Penmorfa.
a. 264, Hafod Owen, Upper Mawddach R. (Mr. Plant.)

Case and Column of Drawers.	Reference to McCoy's Synopsis : and Figures of Genera.	Names and References; Observations, \&c.	Localities and Numbers.
G h		Lingulella __- sp.	Dolgelly. (Mr. D. Homfray.)
G li	(2)	Kutorgina cingulata, Billings (Davids. Sil. Brach. pl. 4, figs. 17-19). Obolella Phillipsi, Holl. (Quart. Geol. Journ. Vol. xxi. p. 10, fig. $10 \mathrm{a}, \mathrm{b})$. A very unusual shape for the genus, one valve nearly flat, and with a straight hinge-line: the smaller valve convex.	b. 308,310 , Ogof ddu, Criccieth. (D. H.) a. 18, Grits on Hollybush Hill Malvern.
G h		Obolella Salteri, Holl. (l. c. fig. 9). A small and rounded species, like those of Canada (Davids. Sil. Brach. t. 4, figs. 28, 29).	a. 21, Black Sliale, Malvern. (Rev. W. Symonds.)
G h		Obolella \longrightarrow, sp.	b. 309 , Dolgelly, Penmorfa church. Upper Lingula Beds. (D. H.)
$\begin{gathered} \mathrm{G} \\ \text { case } \\ \mathrm{G} \mathrm{~h} \end{gathered}$		Orthis lenticularis, Dalman (Salter, Mem. Geol. Surv. Vol. irr. pl. 4, figs. 8-10). A small shell seldom half an inch wide, and rather wider than long. The valves are both gently convex. The number of principal ribs 10 or 12 , interlined by smaller ones, and all crossed by interrupted and rather wavy ridges of growth, so that the surface is somewhat reticulated (Atrypa lenticularis, Dalman, Spirifer lentic. Von Buch. Mr. Davidson has very fully figured this common Upper Lingula flag species in his Monograph of the Cambrian and Silurian Brachiopods. Palæont. Transactions, Pl . xxxifl. fig. 22, \&c.).	a 265, Craig-y-dinas, Upper Mawddach. a. 266, Rhiw felyn; do. (Mr. Plant.) A common shell in all our Upper Lingula flag localities: in N. Wales, viz. Tremadoc, Criccieth, Dolgelly gold mines, \&c. Ogof ddu, Criccieth. (Mr. Homfray.)

Middle Cambrian. e. Tremadoc Group. N. Wales. S. Wales. (Selgwick, 1847).
e 1. Lower. Chiefly Black Slate.
e 2. Upper. Sandstones, grey and bluish : iron beds: ferruginous slate, \&c.
e 1. Lower Tremadoc Slate (Salter, 1857). A natural continuation of the Upper Lingula Flags. Cliefly black slate, but very ochreous in part. The fama is essentially Middle Cambrian, but shews a tendency to inelude some few Lower Bala types, such as Niobe, Psilocephalus, \&c. The species however are all distinct, even from those of the Arenig Group, and those of the Upper are distinct from those of the Lower Tremadoc. We distinguish the upper, $e 2$, from the lower group, $e 1$.

Case and Columu of Drawers.	Reference to MicCor's Synopsis : and Figures of ('enera.
G	
Gise and	
Gi	

Niobe Homfrayi, Salter (Pal. Soc. Trans. Vol. I. pl. 20, fig. 3). A genus intermediate in some sort between Asaphus and Ogygia. The labrum is round-pointed as in Ogygia, and the glabella lobed as in that genus, but broad as in Asaphus. The pleure bent, the axis of the body broad, the tail ample.

Psilocephalus innotatus, Salter (id. pl. 20, figs. 13, 14). A small Trilobite, allied to Illosnus, very abundant.

Psilocephalus inflatus, Salter (Mem.Geol. Surv. Vol. iII. p. 316, woodeut 8).

Conocoryphe depressa, Salter (Mem. Geol. Surv. Vol. III. pl. 6, figs. 1-3). The species of this genus which occur in rocks above the Lingula flag, differ in not laving the glabella lobes pronounced.

Conocoryphe verisimilis, Salter (Mem. Geol. Surv. Vol. hiI. pl. 6, fig. 13).

Dikellocephalus (Centropleura) furca, Salter (Mem. Geol. Surv. Vol. iII. pl. 6, fig. 4, and pl. 8, fig. 10). The two blunt prongs to the linder part of the tail distinguish this from D. celticus. It has also fewer ribs.

Localities and Numbers.

Tyn-y-llan, Tyn-y-dre, aul other places near Tremadoc and Portmadoc. (Mr. Ash.) b. 329, 330, 362, (Mr. D. Homfray's fine specimens figured in the Pal. Tr.) from Penmorfa clurch.

Tyn-y-llan, Tyu-y-dre, aud other places near Borth, Portmadoc. (MIr. Ash.) b. 352,353 , figured specimens. (Mr. D. Homfray.)
b. 357, Pemmorfa. (Mr. Homfray). Figured sp.

Do. (Mr. Homfray).
b. 354, Penmorfa village. (Mr. Homfray.)

Llanerch, Moel-y-gest. Garth, Portmadoc. (Mr. D. Homfray.)

$\begin{gathered} \text { Case and } \\ \text { Column of } \\ \text { Drawers. } \end{gathered}$	Reference to McCor's Synopsis: and Figures of Genera.	Names and References; Observations, \&c.	Localities and Numbers.
G i	Pteropods.	PTEROPODA (Sea-Butterflies). Theca operculata, Salter (Mem. Geol. Surv. Vol. III. pl. 10, figs. 22-24). Most of the species of fossil Theca are operculated. The living Pteropods nearest them in shape are not so, but several of the spiral kinds have an operculum. (ib. p. 351 and note).	Tyn-y-llan, \&c., near Borth, Portmadoc. (Mr. Ash.) b. 335. (Pres. Mr. Homfray.)
G i		Theca bijugosa, Salter (ib. pl. 10, figs. 19, 20). The species differ in proportionate length and breadth, and in the longitudinal ridges; most are smooth.	Borthwood, Portmadoc. (Mr. Ash.) b. 334, Tyn-ydre, do. figured specimen. (Mr. Homfray.)
	Brachiopods.	Theca arata, Salter (ib. pl. 10, figs. 15 and 21). May easily be obtained.	[Portmadoc.]
		BRACHIOPODA.	
		Lingulella lepis, Salter (Davids. Sil. Brach. in	Tremadoc. (Mr. Homfray.)

Trilobites and Phyllopods.

Gi

Gi

Pal. Trans. t. 3, figs. 53-59).
e 2. Upper Tremadoc Slate (Salter, 1857).

CRUSTACEA (Phyllopods and Trilobites).

Lingulocaris lingulæcomes, Salter (Mem. Geol. Surv. Vol. III. pl. 10, figs. 1. 2). A bivalve crustacean, allied to the Ceratiocaris of the Silurian rocks, and also to the living Limnadia.

Ceratiocaris? latus, Salter; front segments of body very broad. Badly figured in p. 294, Mem. Geol. Surv. Vol. 1II. as Hymenocaris. For genus, see Ludlow Rocks.

Ceratiocaris ? insperatus, Salter (Mem. Geol. Surv. Vol. 111. p. 295, fig. 6). It is quite probably the tail portion of the preceding.

Tremadoc. (Mr. Homfray.)
a. 28, Garth, Portmadoc. (Mr. Ash.) b. 327, figured specimen. (Pres. Mr. Homfriay.)
b. 299, Garth (figured specimen, Mr. D. Homfray).
b. 343 , Above Penmorfa Railway cutting, figured specimen. (Mr. Homfray.)

Case and Column of Drawers.	Reference to McCor's Synopsis: and Figures of Genera.
\mathbf{G}	
\mathbf{G}	
G i	
case	

Labrum of Ogygia.

Univalve Shells. Pteropods.

Names and References; Observations, \&c.

TRILOBITA.

Angelina Sedgwickii, Salter (Dccade Gcol. Surv. 11. pl. 7). The most abundant of the Tremadoc trilobites: allied to Olenus, but with 15 body rings (Olenus has 14), and greatly larger than any known species of that genus. Even size is a character of some importance in classification. Occurs in all sorts of compressed shapes in the slate and sandstone.
Dicellocephalus furca, Salter (Mem. Geol. Surv. Vol. 1II. pl. S, fig. 9, 10). Belongs to the section Centropleura (ib. p. 303).

Asaphus (Isotelus?) affinis, McCoy. Perhaps distinct from the following species. The facial suture is marginal in front.

Asaphus (Isot.?) Homfrayi, Salter (Mem. Geol. Surv. Vol. III. p. 311, pl. 8, fig. 11-14). The earliest known form of this genus in Britain, if indeed the entire form of the labrum do not prove it a distinct genus nearer Ogygia. (Sec Lower Bala.) b. 344 is the labrum. The subgenus Isotelus is uncertain here, for the labrum is not notched as in that form.
0 gygia scutatrix, Salter (Meml Geol. Surv. Vol. III. p. 312, pl. 8, f. 8, pl. 9, fig. 1). S or 9 inches in diameter, and nearly round. More like the French species from Brittany, O.Desmaresti.
Cheirurus Frederici, Salter (Mem. Geol. Surv. Vol. 1II. p. 322, pl. 8, figs. 1-3). A species with a general resemblance to the C. ($E c$ coptochile) Sedgwickiii, McCoy (see Lower Bala), but with spines to the hinder rings of the borly.

PTEROPODA AND HETEROPODA.

Theca simplex, Salter? (Mem. Geol. Surv. Vol. 111. p. 352, pl. 11 в, fig. 20-26). This, if the same as the Arenig group species, is the only fossil common to both formations. In Canada there may be a transition from the Primordial Group to the Upper Cambrian, or at least to the Arenig Group: but not in Britain.
Theca sulcata, n.s. Broad and short; with longitudinal folds.

Numbers and Loealities.
a. 32, Garth and Penclogwyn, at Portmadoc ; Carnarvon. (Mr. Ash.) a. 24, Reduced in length by clcavage. b. $337-340$, Various ages of this fine species. (Mr. Homfray.)
a. 30 (Mr. Ash.) Moel-ygest; in the bottom beds of the Upper Tremadoc. a. 30*, Garth. (Mr. Homfray.) a. ${ }^{2} 6$, Tremadoc, over Iron Works (Sedgwick). N.W. of Portmadoc.
a. 25 , Garth and Peuclogwyn, Portmadoc. (Mr. Ash.) b. 342, 344, 358, figured specimens in Salter's Mon. Brit. Tril. pl. 24. (Mr. Homfray.)

Penclogwyn, Portmadoc. (Mr. Ash.)

Garth, Portmadoc. (Mr. Ash.) b. $345,346,347$. Mr. Homfray's specimen is figured in Mem. Geol. Surv. Vol. 111. p. 323, fig. 10.

Garth, Tremadoc. (Mr. Ash.)
b. 322, Llancrch, W. of Portmadoc, base of Upper Tremadoc. (Mr. Homfray.)

Case and Column of Drawers.	Reference to McCor's Synopsis: and Figures of Genera.	Names and References; Observations, \&c.
$\underset{\text { case }}{\mathbf{G}}$		Theca (Centrotheca) cuspidata, Salter (Mem. Geol. Surv. Vol. In1. pl. 10, fig. 25). A long horn projects on each side from the mouth.
$\underset{\text { case }}{G}$		Theca trilineata, MSS. A small species with longitudinal lines.
$\begin{aligned} & G \\ & \text { case } \\ & G i \end{aligned}$		Conularia Homfrayi, Salter (Mem. Geol. Surv. Vol. iII. pl. 10, figs. 11-13). A very large species, so slightly calcareous as to appear mere membrane on the slate. The puckering of the surface is probably due to unequal contraction. See Lower Ludlow Rocks.
$\underset{\text { case }}{G}$		Bellerophon arfonensis, Salter (l. c. p. 349, pl. 10, figs. 6-8). Squamose lines of growth, remote and rather regular.
Gi	览	Bellerophon multistriatus, Salter (l. c. p. 350 , pl. 10, figs. 9, 10). With close decussating striæ.
$\begin{gathered} \text { Gase } \\ \text { and } \\ \text { Gi } \end{gathered}$		CEPHALOPODA. Orthoceras sericeum, Salter (1. c. Vol. III. p. 356, pl. 10, figs. 4, 5). This, and the Cyrtoceras pracos of the same work, are the oldest known forms of the Nautiloid, or shelly Cephalopod group. Cephalopoda became abundant in the succeeding period-the Baia group, even in its lower portion: and a few are known in the Arenig Group. b. 321 shews the septa.

Numbers and Localities.
b. 336, Portmadoc. (Mr. Homfray.)
b. 333, Mocl-y-gest, base of Upper Tremadoc. (Mr. Homfray.)
Garth, Portmadoc. (Mr. Ash.) b. 323, 324, 325 figured specimens in above work. (Mr. Homfray.)

Garth, Portmadoc. b. 328: 341 (Mr. Homfray, figured specimens).

Garth, Portmadoc. (Mr. Homfray.)

Garth, Portmadoc. (Presented by Mr. Salter.) b. 321,322 , figured specimens in the work quoted. (Mr. Homfray.)

The great break, in organic life, between the 'Tremadoc Slate' and the 'Arenig or Skiddaw Group,' has disposed me, ever since I worked out their respective faunæ in the Tremadoc district in 1853, to regard the next overlying, or 'Arenig Group,' as the base of the great Upper Cambrian Group of Prof. Sedgwick.

Sir R. I. Murchison, in endeavouring to bring it first within the Ffestiniog or Lingula Flag Group, and later, among the Llandeilo or Lower Bala Group, has involved greatly the fossil evidence. But the Arenig or Skiddaw Group (Lower Llandeilo of Murchison) is peculiar, with the facies of the Lower Bala or Llandeilo Group, yet with wholly distinct species. To keep this Catalogue in harmony with the Synopsis, published in 1851-3, it is placed here as Prof. Phillips also regards it, as the terminal member of the Middle Cambrian.

The fossil evidence would permit us, with Lyell, to commence the Upper Cambrian (or Lower Silurian of Murchison) with this Group, which is well represented in the Stiper Stones district; though the fossils of that district were not described till 1859 by Murchison and myself, long after the Arenig Group, with its few fossils, found by Prof. Sedgwick in 1843, was established. The group was further illustrated by the fossils found in Skiddaw by Prof. Sedgwick, and described by McCoy, previous to 1851 (though the relative age of the rock was not then fully known). The right of nomenclature rests therefore with the Woodwardian Professor.

As the majority of the fossils, in both these transitional groups (Tremadoc and Arenig), have been first described by me, I may say that the Tromadoc Group seems to be the natural termination of the Ffestiniog or Middle Cambrian series; and the Arenig Group the true base of the Upper Cambrian (or Lower-Silurian of Sir R. I. Murchison). It is here treated as an iutermediate Group. (J. W. S.)

Middle Cambrian. f. Arenig or Skiddaw Group (Sedgwick). 4000-5000 feet thick.
Base of Arenig and Arran Fowddy. The Stiper Stones Rocks. N.B. Some few of the Graptolites must be identified with those of true Lower Bala rocks, which overlie the Skiddaw Group proper in the Skiddaw district; but all the rest are distinct. The graptolitic or upper portion of the Quebec Group of Canada is identical with this: so are the graptolite gold-bearing shalcs of Victoria; and Prof. McCoy thinks several of the forms the same in each. I think the Victorian species are representatives only, but the genera are the same; while those of Canada are exactly ours in species and genera. The Angers slate is of this age. The whole group is unconformable upon the Tremadoc slate, and only one fossil is common to that formation.

$\begin{gathered} \text { Case and } \\ \text { Colum of } \\ \text { Drawers. } \end{gathered}$	Reference to McCoy's Synopsis: and Figures of Genera.	Names and References ; Observations, \&c.	Numbers and Localities.
	Graptolites, Simple, double-celled, and twin-graptolites; dichotomons, and bushy forms.	HYDROZOA or POLYZOA. Some naturalists, as above said, have referred the Graptolites to Bryozoa or Polyzoa. More believe them Hydroid Zoophytes of the Sertularian type.	
Gi	G. sagittarius, p. 6 . Nen De	Graptolithus Hisingeri, Carruthers (Geol. Mag. 1868, Vol. v.). G. sagittarius, Hisinger (Salter, Quart. Journ. Geol. Soc. Vol. viii. pl. 21, fig. 8). The Skiddaw specimens are only doubtfully referred to this very common Lower Bala species.	a. 33, Haykin Gill. a. 35, Knockmurton in Skiddaw slate. a. 34, Scaw Gill. a. 36, Craig ddu Allt, over Tremadoc Iron Works.
Gi		Diplograpsus mucronatus, Hall (Pal. N. York, Vol. I. pl. 73, fig. 1). These spinose species of Graptolites are now undergoing much revision, and it is probable great changes will be made in their names. D. barbatulus, Salter, is one of them, found at Ty Obry.	a. 37, Ty Obry, east side of Tremadoc Estuary. (A. Sedgwick.)
Gi	Synopsis, p. 8.	Diplograpsus pristis, His. (Leth. Suec. pl. 35, fig. 5). A most common species, with only slightly prominent square-ended cells.	Tyddyn Dicwm, Tremadoc Estuary. (A. Sedgwick, 1847.)
Gi		Phyllograptus angustifolius, Hall (Grapt. Quebec Group pl. xvi. figs. 17-21). A remarkable leaf-like form, four rows of cells being placed crosswisc on the stem or axis, instead of two, as in Diplograpsus. (Quart. Journ. Geol. Soc. Vol. xix. p. 137, fig. 7). P. typus, Hall (1. c. pl. 15), is a larger spocies, but very like this.	a. 45, Skiddaw Slate. (From Bryce Wright.)

Case and Column of Drawers.	Reference to McCor's Synopsis: and Figures of Genera.
$\mathbf{G i}$	Under Grapt. latus, p. 4. (Not the figure or description, which belongs to G. priodon, Pl. 1 b, fig. 7.)
$\mathbf{G i}$	

Didymograpsus latus, Salter. The specimens to which I restrict the name are from Skiddaw slate localities, and are broken portions of a twin graptolite. The specific name may stand, as unoccupied.

Didymograpsus, sp. very like D. latus, and possibly identical.

Didymograpsus geminus, Hisinger (Leth. Suec. Supp. 2, pl. 38, fig. 3). It is a Stiper Stones species, also found at Whitesand Bay. Mem. Geol. Surv. Vol. III. pl. 11 в, fig. 8.

Didymograpsus V-fractus, Salter (Quart. Journ. Geol. Soc. XIX. p. 137, fig. 13 e). A species closely related to D. Pantoni, McCoy, from Australia.

Didymograpsus Hirundo, Salter (Quart. Journ. Geol. Soc. xIx. p. 137, fig. 13 f). D. constrictus, Hall (Grapt. Quebec, pl. 1, fig. 23-97).

Tetragrapsus bryonoides, Hall (Graptolithus, ib. pl. III. IV. Vi.). A Graptolite with 4 thick branches recurved. Quart. Journ. Geol. Soc. ib. fig. 8 a. The genus is like Didymograpsus, but twice branched.

Tetragrapsus quadribrachiatus, sp. Hall (l. c. pl. 5). Tetr. crucialis, Salter (Quart. Journ. Geol. Soc. ib. fig. 8 b). Quite a distinct species, with much longer and patent branches.

Dichograpsus, Salter. A large branching Graptolite, first discovered in Canada by Sir W. E. Logan. It is the most compound of Graptolites, excepting Dendrograpsus and Dictyonema. This is a more compound form of Graptolite than Tetragrapsus, the branches bifurcating again and again, but only in one plane. Moreover a horny disk connects the base of the branches in some specimens.

Scaw Gill, Whiteless, a. 39,
Knockmurton.
Omit the Builth Bridge locality, which contains ouly the Graptolites priodon, and is Wenlock shale. Upper Arenig, Whitesand Bay. (Dr. Hicks.)
a. 38, Skiddaw Slate. (From Bryce Wright.)

Skiddaw Slate.

Skiddaw, Stiper Stones, Whitesand Bay, St. David's.

Skiddaw Slate. (From Bryce Wright.)
a. 43, Skiddaw Slate. (From Bryce Wright.)

Case and Column of Drawers.	Reference to MeCoy's Synopsis: and Figures of Genera.	Names and References; Observations, \&c.	Numbers and Localitios.
		Dichograpsus octobrachiatus, Hall (Grapt. Quebec Group, pl. 7, 8). D. aranea, Salter.	Skiddaw.
Gi		Dichograpsus, sp. A fine large branching species, with long nodes to the branches.	a. 46, Skiddaw Slatc. (From Bryce Wright.)
Gi		Dichograpsus Sedgwickii, Salter (Geol. Mag. Vol. iv. p. 74. Quart. Journ. Geol. Soc. Vol. xix. p. 137, fig. 11.)	[Skiddaw Slate. The sp. is casily obtained, and is characteristic.]
Gi		Dendrograpsus furcatula, sp. Salter (Mcm. Geol. Surv. Vol. III. p. 331, pl. 11 a, fig. 5). For genus see again Lower Ludlow Rock. The branches are tufted irregularly and branch repeatedly.	a. 44, Ty Obry, Portmadoc.
Gi		Dendrograpsus arbuscula, Salter MSS. A small species.	a. 295 , Whitesand Bay, St. David's. (Dr. Hicks.)
Gi	Worm-burrows. Pl. 1 A, fig. 1-3.	ANNELIDA. Palæochorda, McCoy. Supposed by some to be marine plants; but evidently the filledup burrows of marine worms.	Blakefell, Cumberland.
Gi		Helminthites and Scolites, Salter. The filledup burrows and surface-trails of marine worms, without impressions of any lateral appendages.	Scaw Gill, Cumberland.
G i	$(A$	Scolecoderma (a worm-tubc). See Mem. Geol. Surv. Vol. iil. p. 292.	Blakefell.
G i	Phyllopods.	CRUSTACEA, PHYLLOPODA AND TRILOBITA. Caryocaris Wrightii, Salter (Quart. Journ. Geol. Soc. Vol. x1x. p. 139, fig. 15). A small shrimp-like creature, an iuch in length; the carapace 2 -valved.	a. 47, Skiddaw Slate. occurs at Causey Pike and Grassmoor, Cumberland.
	06	Primitia? sp. A bivalve entomostracan. (See Middle Bala for genus.)	a. 48, Ty Obry, Portmadoc. (Mr. Ash.)

Case and Column o Drawers．	Reference to McCor＇s Synopsis：and Figures of Genera．	Names and References；Observations，\＆e．	Numbers and Localities．
$\underset{\text { case }}{\mathbf{G}}$		Æglina caliginosa，ib．（Mem．Geol．Surv．Vol．III． p．318，pl． 11 A，fig．10）．The genus is known by its large eyes covering the cheeks．	Ty Obry，Portmadoc（abun－ dant），Mr．Ash．b．350， 351．（Mr．Homfray．）
Gi		历glina Boia，Hicks．A small smooth species， the head and tail like Agnostus．	a．297，Whitesand Bay，St． David＇s．（Dr．Hicks．）
G case	Eglina．	历glina binodosa，Salter（Mem．Geol．Surv． Vol．III．p．317，pl． 11 b，fig．3．Decade xi． Pl．4，fig．1－6）．Two tubercles on the third body segment．	W．of Stiper Stones， Shelve．（Mr．Lightbody．）
Gi		巴̈glina grandis，id．（Mem．Geol．Surv．Vol．III． p．317，pl．12，fig．11）．Two inches long； with rounded tail and granulated surface to head．	a．53，Whitesand Bay，St． David＇s．（Dr．Hicks．）
Gi		Ogygia Selwynii，id．（Mem．Geol．Surv．Vol．III． p．313，pl． 11 B，fig．5）．The most character－ istic trilobite of the Arenig group；and the first one found by Prof．Sedgwick in 1843.	a． 54, W．of the Stiper Stones．（Mr Lightbody．） a． 55 ，Tai－hirion，W．of Arenig．（A．Sedgwick and J．W．Salter．）
Gi	Ogygia．	Ogygia peltata，id．（Mon．Brit．Tril．1865， pl．25＊，fig．2）．A large fine species，resem－ bling much the great trilobites of this genus in the slates of Angers．（O．Desmaresti，\＆c．）	a．50，Whitesand Bay，St． David＇s．（Specimen figured in Mon．Brit．Tril．）
Gi		Ogygia - ，sp．long narrow axis to tail．	a． 356 ，Whitesand Bay． （Mr．Homfray．）
$\underset{\text { case }}{\mathbf{G i}}$		Ogygia bullina，id．（Mon．Brit．Tril．ib．fig．1）． The glabella is much swelled in front and narrowed behind．	a．49，Whitesand Bay． （Specimen figured in Mon． Brit．Tril．）
Gi		Asaphus solvensis，Hicks MSS．A small spe－ cies with smooth tail－piece．	a．293，Tremenheere，near Solva；Lower Arenig rocks．
Gi		Asaphus Menapiæ，Hicks（undescribed）．A large species，with smooth tail－piece．A saphus be－ comes abundant in the Areuig group．	a．469， 470 ，Ramsey I．，St． David＇s，N．End．Base of group．（Dr．Hicks．）
Gi	Asaphus．	Asaphus，sp．with ribbed tail．	Upper Areuig rocks，White－ sand Bay．（Dr．Hicks．）
Gi		MOLLUSCA． Strophomena，sp．fine striæ．	Carn Goran，Cornwall．
Gi		Lingula petalon，Hicks MSS．	a．294，Arenig rocks of Whitesand Bay．

Case and Column of Drawers.	Reference to McCor's Synopsis: and Figures of Genera.	Names and References; Observations, \&c.	Nambers and Liocalities.
G i	Brachiopod Shells.	Orthis Carausii, Salter (Davidson, Earliest Brach. Geol. Magazine, Vol. v. pl. 16, fig. 23). Short, squarish, with 16 simple ribs.	a. 485̃, Ramsey I., N. End. Base of the whole group. (Dr. Hicks.)
Gi		Orthis \qquad sp. (O. calligramma of some works, but a distinct species).	Carn Goran, Cornwall, in hard quartzite.
Gi		Orthis Menapiæ, Hicks (Davidson, l. c. pl. 16, figs. 24-28). The fine ribs distinguish this from the species above described.	a. 291, Lower Arenig rocks, St. David's. (Dr. Hicks, 1869.)
$\underset{\text { case }}{\mathbf{G}}$		Obolella? plumbea, Salter (Lingula, Mem. Geol. Surv. Vol. III. pl. 11 b, fig. 10 : Davidson, Sil. Brach. pl. 4, figs. 20-27). Obolella is a genus only ranging from the lower part of the Middle Cambrian to the base of the Upper Cambrian.	a. 57, White Grit Mine, Shelve. (Mr. R. Lightbody.)
Gi		Obolella plicata, Hicks (Davidson, l. c. pl. 4, f. 6).	David's. (Dr. Hicks.)
G i		Obolella, sp. small and round. The species of all the horny Brachiopods are very difficult to separate one from the other.	b. 359, Ty Obry, near Garth, Purtmadoc. (Mr. Homfray.)
Gi	Lamellibranchs.	Palæarca socialis, Salter (Mem. Geol. Surv. pl. 11 A , fig. 13, p. 344). The genus is better represented in the Bala rocks (see Middle Bala).	b. 359, Ty Obry, Portmadoc. (Mr. Homfray.)
$\begin{gathered} \text { Gi } \\ \text { case } \end{gathered}$		Ctenodonta elongata, Hicks (undescribed). The genus like Nucula, but the ligament external.	a. 469, Ramsey I., North End. (Dr. Hicks.)
G		Ctenodonta rotunda, Hicks (undescribed)	a. 469, Ramsey I., N. End. (Same slab as last.)
Gi		Theca Harknessi, Hicks (undescribed). The surface finely reticulated by striæ in two directions.	a. 299, Upper Arenig rocks, Whitesand Bay. (Dr. Hicks.)
Gi	Pteropods.	Conularia Corium, Salter (Mem. Geol. Surv. Vol. 111. p. 355 , pl. 11 A , fig. 11). A very large and thin species, with perfectly smooth sides, and a squarish section. Like C. pyramidata, Desl. from Normandy, and possibly the same.	b. 363, Ty Obry, Garth. (Mr. Homfray.)
G i		Orthoceras, small sp. The genus is rare in this formation.	b. 349, Ty Obry, do. (Mr. Homfray.)

Upper Cambrian (Cambro-Silurian of some authors; Lower Silurian of Murchison; \&c.).

As there has been much controversy respecting the name to be borne by the rocks overlying the primordial or "Ffestiniog" group, and underlying the "May Hill Sandstone;" a table of equivalents is here added, which may serve to guide students to the cases, and harmonize the modern text-books with the 'Synopsis' published in 1851-2 by Prof. Sedgwick and McCoy, which is the basis of this Catalogue.

Upper Cambrian (Lower Bala Group: Middle Bala: Upper Bala).

The 'Lower Bala' of the Synopsis (Introd. p. xx.) was made to iuclude the dark earthy slates, with occasional bands of limestone, such as are exhibited on the east flank of the Arenig range; the Mynydd Tarw and Craig-y-glyn above Llanarmon, in the Berwyn Mountains, and the black slates about Bangor and the flanks of Snowdon. It also compreliended the arenaceous deposits on the W. side of Bala lake, below the Bala limestone, and that limestone itself.

Further research, however, by the Geological Survey has shewn that these dark earthy slates, with occasional limestone, are the equivalent of the black slates and limestones of S. Wales, collectively known as the Llandeilo flag in its modern signification*. Prof. Sedgwick therefore permits me to restrict the term to the

[^6]earthy slates and limestones which contain, in favourable localities, a distinct fauna. They are directly comparable with the Orthoceratite limestones of Sweden, the Bird's Eye and Black River limestones of N. America. The Moffat group of S. Scotland and the upper Skiddaw slate are part of the series.

The new term, 'Middle Bala' group, is adopted here for the Bala limestone and its associated sandstones and slates, several thousand feet thick in N. Wales, but reduced to a minimum in S. Wales, where it appears as dark incoherent schist. In Shropshire this series is known as the Caradoc sandstone, with its Horderly limestone. The 'Oskarskal' group of Swedeu (Regio VI. Trinucleorum of Prof. Angelin, the 'Stratum quartum' of Linnæus) represents this group. It is the Trenton and Hudson River group of N. America, and the major part of Barrande's great fossil-bearing formation Etage D. belongs to it. (The Coniston limestone: the limestone of Kildare: the Craig Head limestone of Ayrshire: the Peebles limestone: all are of this age.)
'Upper Bala' comprehends the Aber Hirnant beds above the Bala limestone, with a peculiar set of fossils: the lower portion of the Coniston flag, viz., that conformable to the limestone; and indeed all beds above the Bala limestone and beneath the May Hill sandstone. In the Bala and Coniston soctions, we do not indeed quite reach the horizon of the Llandovery rocks, with their peculiar fauna-Petraia, Atrypa, Pentamerus, \&c. But the group 'Upper Bala' was made to include all the beds, whether near Meifod, or Welchpool, or near Llanwddyn, Montgomeryshire, which lie above the Bala limestone, and under the 'unconformable' cover of the Deubighshire grit and flag.

There is therefore both propriety and symmetry in retaining the name 'Upper Bala' for those beds (having on the whole a distinct fauna) which lie above the Bala limestone. The group includes, in ascending order-

3c. UPPER Bala (Sedgwick).

Lower Bala Group (carthy dark slates and limestones). N. and S. Wales. S. Scotland. S. Ireland.

Case and Column of Drawers.	Refenee to McCor's Synopsis: and Figures of Genera.	Names and References; Observations, \&c.	Numbers and Localities.

Caso and Column of Drawers.	Reference to McCor's Synopsis: and Figures of Genera.	Names and Referenees; Observations, 8 co	Numbers and Loealities.
G k		Climacograpsus bicornis, Hall (Grapt. Quebec, p. 111). Didymograpsus sextans. A common American species. The twin branches ($\delta i \delta v \mu o s$) in this genus of Prof. McCoy's diverge at once from a minute radicle: and have the cells on the inner edges of each branch: but in this species and many others the stems diverge so widely as to be bent backwards (Pal. N. Y. Vol. 1. p. 273, t. 74, fig. 3).	[Extremely common in the Lower Bala.] a. 65 (Diplograpsus? McCoy), Cairn Ryan, Wigtonshire.
$\begin{gathered} \mathbf{G} \\ \text { and } \\ \mathbf{G} \mathbf{k} \end{gathered}$	Not of p. 5 , nor in the Synopsis.	Didymograpsus Murchisoni, Bock. Siluria, -ud ed. pl. 1, fig. 1. An extremely common Lower Bala (Llandeilo flag) species in N. and S. Wales-especially at Abereiddy Bay. The branches are strictly parallel and are broad.	a. 64, Abereiddy Bay, Pembrokeshire. (J. W. Salter.)
$\begin{gathered} \mathbf{G} \\ \text { and } \\ \mathbf{G} \end{gathered}$	Pl. 1 b, f. 11, 12, p. 10. Corals.	Protovirgularia dichotoma, McCoy. A very interesting form, branched like Dichograpsus, but with large cells or groups of cells in double rows; and according to Prof. MeCoy, very like the living Virgularia. ZOOPHYTA proper. (Actinozoa, Actinaria, Zoantharia, Coelenterata of various authors).	a. 71, Near Moffat, Dumfriesshire. (Prof. Sedgwick.)
$\begin{gathered} \mathbf{G} \\ \text { and } \\ \mathbf{G} \mathbf{k} \end{gathered}$	p. 24.	Stenopora fibrosa, Goldf. sp. (Pet. Germ. pl. 乞S, figs. 3, 4). The commouest of all Millepore corals in the older Palæozoic rocks.	Golden Grove, Llaudeilo.
G k		Stenopora ramulosa, Phill. sp. (Mem. Geol. Surv. Vol. Ir. pt.1, p. 385 as var. 1 of S. fibrosa.)	Tregib, Llandeilo.
G k		Nebulipora favulosa, Phill. (Mem. Geol. Surv. Vol. III. p. 282, pl. 19, fig. 10). A more irregular species than the N. lens, so common in Middle Bala rocks. The coral consists of minute tubes, of which the fertile ones are in enlarged clusters (Monticulipora, Edw. \& Haime, is a nearly contemporary name).	Llandeilo.
G k	Palcopora interstincta, p. 15.	Heliolites interstincta Linn. sp. (Edw. \& Haime, Pal. Monogr. pl. 57, fig. 9). It is doubtful if this be the species, but so named by McCoy.	a. 69, Llandeilo.

Case and Column of Drawers.	Reference to McCor's Synopsis: and Figures of Genera.	Names and References; Observations, \&c.
$\begin{gathered} \text { G } \\ \text { case and } \\ \text { G k } \end{gathered}$		ECHINODERMATA. Crinoid, and probably Cystidean fragments, but of unknown species and genera, are common in the limestone of Craig-y-Glyn and Craig-y-Beri, Llanrhaiadr.
$\begin{gathered} \mathbf{G} \\ \text { case } \\ \mathbf{G k} \end{gathered}$	Worm tubes and tracks. Pl. 1 в, f. 13, p. 10.	ANNELIDA. Pyritonema fasciculus, McCoy. The analogy between this bundle of tubes and the skeleton of the glass plant polype is very close. But the real affinity is most probably with the straight-tubed gregarious Serpula, such as are found in the carboniferous rocks, Serpula parallela for instance. In proof of this there occurs another species, which has the tubes separate.
G K	Serpulites dispar, p. 132 in part only.	Pyritonema \qquad sp. Loose tubes in greenish volcanic grit.
		N.B. The following 4 species are in all lists included in the Lower Bala or Llandeilo flag, but it is quite probable they are of Middle Bala age.
G K	p. 128.	Nemertites Olivantii, McLeay (Sil. Syst. pl. 27, fig. 4). Superficial trails of long worms (Helminthites?).
$\underset{\text { case }}{\mathbf{G}}$	p. 129.	Myrianites McLeayii, Murchison (Sil. Syst. pl. 27, fig. 3). Impression of the trail of a rather long worm, in zigzag folds. At one end we seem to have the impression of the animal itself, with its lateral feet or bundles of setæ.
$\begin{aligned} & \mathbf{G} \\ & \text { case } \\ & \mathbf{G k} \end{aligned}$	p. 129.	Nereites Sedgwickii, McLeay. Sil. Syst. pl. 27, fig. 2. The large foliaceous gill-plates and cirrli are strongly shewn in this imprint. It is the original figured specimen.

Numbers and Localities.
a. 70, Craig-y-Glyn, Llanrhaiadr.
a. 73, Tregib, Llandeilo. [This is the specimen on which was founded the supposed fish-defence from the Llandeilo flag. The resemblance is very great at first, but I had no excuse for the blunder, which misled others. J. W. S.]

Tan-y-craig, N. of Builth. a. 76. Also in Shale, at Tre-coed, 3 m . N. of Builth.
a. 72, Llampeter, S. Wales.
a. 75, Llampeter.
a. 74, Llampeter. [N.B. This species also occurs at Aberystwith, in Middle Bala rocks.]

Case and Column of Drawers.	Reference to McCor's Synopsis: and Figures of Gcuera.
G	Worms continued.
p. 129.	

Nereites Cambrensis, McLeay, (Sil. Syst. t. 27, fig. 1). It is a mistake to represent this as a very long worm. Its trails are visible for some length: four or five individuals on the slab having traversed some space (marked by a simple line) and been imbedded at the end of their trail. In one case the worm has again retreated, before death, along the line made by his track.

Crustacea. Phyllopods and Trilobites:-
No higher orders than bivalved and Apus-like Entomostraca, with Trilobites, have been detected in any beds beneath the May Hill Sandstone.

Cythere (Cytheropsis) Aldensis, McCoy. A minute smooth bivalve shell, slightly curved. Such species are abundant everywhere; and have been mostly left for description to Prof. R. Jones.

Primitia, one or two species (Prof. R. Jones).
Beyrichia complicata, Salter, Mem. Geol. Surv. Vol. II. pt. 1, pl. 8. fig. 16, p. 295, Vol. III. pl. 19, fig. 9. Beyrichice are bivalved Crustacea, with lobed and furrowed carapaces.

Trilobita.

Agnostus MacCoyii, Salter. Decades Geol.Surv. xi. pl. 1, figs. 6, 7. Mem. Geol. Surv. Vol. in. p. 297, pl. 13, fig. 8. Very common in Llandeilo flag. Only generally, not minutely like the Bohemian species figured by Barrande and Corda. Agnostus is the simplest of all trilobites.
Agnostus ——, sp. not quite perfect enough to determine.

Trinucleus favus, Salter (Mem. Geol. Surv. Vol. III. p. 320, pl. 13, fig. 9). This is distinguished by the square form and honeycombstructure of the fringe, the outer cells being largest;-like those of drone-cells in a comb.

Numbers and Localities.
a. 72* , Llampeter, S. Wales, the figured specimen. ProJably Middle Bala. The rolling system of S. Wales consists, as we now know, of Upper and Middle Bala rocks.
a. 77, Aldeans Limestone. Stinchar River. a. 77\%, Lower Caradoc Shales, Shineton, Buildwas.

Lower Shales, Shineton, near Buildwas, Shropshire.
Pont-y-meibion,Llanarmon, N. Wales (coll. by Prof. Sedgwick and J. W. Salter, 1842).
a. 86 , Pen Cerrig, N. of Builth. It occurs everywhere, but sparingly in S. Wales, in these rocks.

Shineton, Buildwas.
a. 980, Llandeilo. Pres. by Mr. T. McK. Hughes. From Tregib, and Golden Grove, Llandeilo. (McCoy has labelled some of these T. gibbifrons). Craig-y-beri, Llanarmon fach.

Case and Column of Drawers.	Reference to McCoy's Synopsis: and Figures of Genera.
G	Ogygia, p. 149. Pl. 1 F, f. 2.
G	Synopsis, Pl. 1 F, f. 1, p. 149.
G k	
G	Pl. 1F, f. 14, p. 155.
G	C. brevicapitata, Pl. 1 F, f. 4. C. Baylei, PI. 1 F, f. 8, p. 165. Pl. 1 g, f. 25, 28.
G k	

$$
5-1+2+2+0
$$

Gk
Pl. 1 e, f. 18 a, p. 170.

Asaphus (Isotelus) laticostatus, McCoy, not of Green. The Asaphus laticostatus of Green is a Phacops. (See Salter, Mon. Brit. Tril. 1866, p. 158, pl. 18, fig. 6.)

Asaphus tyrannus, Murch. (Salter, Mon. Brit. Tril. pl. 21, 22.) One of the largest of all known trilobites: sometimes a foot or more in length. Mr. Hughes' specimen (981) must have been rather more. It is as characteristic of the Lower Bala as the A. Powisii is of Middle Bala rocks.

Numbers and Localities.
a. 80, Pon Corrig, Builth. (A most prolific locality, full of the fry of 'Trilobites.)
a. 79, Pen Cerrig, Builth.

Shineton, Buildwas.
Pont Ladies Quarry, Llandcilo.

a. 78 , N. of Builth.

a. 97, Llandeilo.

Porth Trcuddyn, C'aernarvonshire (in beds supposed to be = the dark earthy, slates of the Ffestiniog slate quarries).
a. 208, Maen Goran, Builth.
a. 83, Llandeilo. a. S5, Tregib. a. 82, Craig-y-Glyn, Llanarmon, N. Wales.
a. 981, Llandeilo. A fine large specimen. (Mr. T. McK. Hughes.)

Case and Column a Drawers.	Reference to McCox's Synopsis: and Figures of Genera.	Names and References; Obserrations, \&c.	Numbers and Localities.
G	A. tyrannus, labrum.	Asaphus peltastes, Salter (Mon. Brit. Tril. pl. 22, figs. 1-4). A smaller and more convex species, with larger eyes, a narrower head, and fewer tail segments.	a. 81, Ilandeilo. Abundant with the more common large species just mentioned.
G	Also I. latus (part), p. 172 (not the figure).	Illænus crassicauda, Wahl.? (Ill. latus McCoy in part). A caudal shield only: and probably the only specimen known-of this common Swedish species-in British rocks. (See Salter, Mon. Brit. Tril. 1866, p. 181, woodcut, fig. 44.)	a. 90, Bugon, Knockdollian, Ayrshire. (As I. latus), same locality.
G E	Lamp shells.	Mollusca Brachiopoda. Discina? sp. Species of this genns occur everywhere in all rocks, ancient and modern.	Pen Cerrig, Builth.
G k	Pseudo-Crania, p. 187. Pl. 1 н, f. 1.	Crania divaricata, McCoy. More common in Middle Bala rocks: the free unattached species of Crania may deserve separation.	Tan-y-craig, Builth.
		Lingula Ramsayi, Salter (Dav. Sil. Brach. p. 55 , pl. 3, figs. 49-52). A large pentagonal species.	Abereiddy Bay (Dr. Hicks).
G	p. 252.	Lingula granulata, Phillips, Mem. Geol. Surv. Vol. 11. pt. 1, p. 370 , pl. 25. A fine square species, with granular lines of growth, crossed by regular fine rays.	Llandeilo, rare. Meadowtown, Shelve.
G	- p. 253.	Lingula obtusa, Conrad? (Hall, Pal. N. York, t. 30, fig. 7, Davidson, Monog. Sil. Brach. 1866, p. 52, pl. 3, figs. 31, 32.) Doubtful if it be the American species-or a form of the following-	a. 104, Llandeilo.
G		Lingula attenuata, Sowerby. (Siluria, 2nd ed. pl. 5, fig. 16. Dav. Sil. Br. pl. 3, figs. 18-27.)	a. 2, Llandeilo.
G	p. 251.	Lingula curta, Conrad? Pal. N. York, t. 30, fig. 6. Considered to be a doubtful species.	a 103, Wellfield, Builth.
		[Spondylobolus? craniolaris, McCoy. Sce Wenlock rocks; it is clearly not a Lower Bala fossil,-but from the Wenlock shales.]	

Case and Column of Drawers.	Referenco to McCor's Synepsis : and Figures of Genera.	Names and References; Obsorvatiens, \&c.	Numbers and Localities.
G k	$\text { Pl. } 1 \text { f, f. 3, p. } 188 .$	Siphonotreta micula, McCoy (Davidson, Mon. Sil. Brach. pl. 8, figs. 2-6). A pretty small Brachiopod, covered with spiues, and very nearly allied to the Discince. Larger species, with thicker shells, occur in the Lower Bala rocks of Russia and Siveden. Also in the Upper Silurian of Britain.	a. 102, Pen Cerrig, and Wellfield, near Builth, Radnorshire.
G k	Spirifera, p. 192.	Orthis biforata, Schlotleeim: a variety with fine ribs. This common species occurs over all the northern hemisphere.	a. 100, Tregib, Llandeilo. Rare in Lower Bala.
G k	O. parva, p. 221.	Orthis elegantula, var. parva, Pander. A variety only of the commonest of all British species of Orthis. It is comparatively rare in Lower Bala.	Nant-yr-Arian, Llandeilo.
	p. 214.	[Orthis striatula, Emmons (Mem. Geol. Surv. Vol. ini. pl. 13, figs. $10-14$)].	Commou in Lower Bala.
G k		Orthis calligramma, Dalm. (Mem. Geol. Surv. Vol. III. pl. 22, fig. 1). This common shell ranges from Russia to Britain; and from the Arenig to the Wenlock rocks.	Tan-y-graig, Builtlı (in volcanic grit). a. 98 , Cerrig Cregyn, Anglesea (quoted p. 215, as Upper Bala).
G k	Pl. 1 н, f. 20-24, p. 229.	Orthis turgida, McCoy. A species with a remarkably tumid upper valve.	Golden Grove, Llandeilo, in grit (also quoted as
$\begin{gathered} \mathbf{G} \\ \text { case } \\ \mathbf{G} \mathbf{k} \end{gathered}$		Orthis confinis, Salter (Quart. Jour. Geol. Soc. v. t. 1, fig. 4, Davidson, l. c. pl. 36, figs. 1-4). A large transverse species, with fine ribs. Is O. sugittifera the same species?	Upper Bala). Llandeilo. a. 99, Craig-y-beri, Llanarmon, N. Wales. a. 96, Bugon, Knockdollian, Ayrshire. Llandeilo.
		Strophomena. Rafinesque, Davidson, Salter. Differs from Orthis by having a widely expanded thin shell, and the cardinal process double.	
G k		Strophomena concentrica, Portlock, Geol. Rep. p. 452. A shell extremely common in the Caradoc or Middle Bala rocks.	Craig-y-beri, and Y Foel fawr, N. of Llanrhaidr.
G k		Strophomena, sp. (S. expansa, McCoy in part). A very flat species, with a much thinner shell than Sowerby's Stroph. (Orthis) expansa. The latter is a Middle Bala sp.this is a common Lower Bala one.	a. 105, Nant-yr-Arian, Llandcilo.

Euomphalus, sp.

Eccyliomphalus? scoticus, McCoy. The true Eccyliomphalus of Portlock is a Pteropod; this may be Phanerotinus of Sowerby.

Heteropoda. Blaizville (Nucleobranchiatu, Rang). All or most living forms of this group are thin light shells; but there scems much reason for Dr. Woodward's opinion, that the heavy Bellerophon and Maclurea were solid representatives of this low order of Molluscs.

Maclurea Logani, Salter (Geol. Survey, Canada Decade I. pl. 1). The proportions of the mouth and whorls of this massive shell agree better with M. Logani than the great M. magna of the Chazy limestone.

Cephalopoda, Cuvier. The tetrabrancliate families (only) are known in Palæozoic rocksand Nautiloid and Orthoceras-like forms are among the very earliest known Molluscs, except Pteropoda and Brachiopoda. They are particularly abundant in the representatives of the Llandeilo flag or Lower Bala groups.

Cyrtoceras multicameratum, Hall. Hall's sp. is from Trenton limestone, which represents Middle Bala. Many forms migrated in Cambrian times eastward from America, and are consequently of older date there than in Britain. But few follow a reverse order of progression.

Orthoceras (centrale, Hisinger?), Leth. Suec. t. 9, fig. 4. Not likely to be Hisinger's Swedish species.

Orthoceras fluctuatum, Salter, n.sp.-Coarser strixe than O. subundulatum, Portl. and apparently more bent still than in that species.

Numbers and Localitics.
S. W. of Pwllheli (Mid.

Bala ?)
a. 91, Knockdollian, Ayrshire.
a. 89, Colmonel, Stinchar River, Ayrshire. It also occurs at Bugon, and other Ayrshire localities.
a. S8, Knockdollian Mt., 3 miles from Ballintrae, Ayrshire.
a. 87, Llandeilo.
a. 611, Wellfield, Builth, in the hard volcanic flag.

Lower Bala. Irish Collection.
Dark earthy slates (with Graptolites) of Wexford, and parts of Waterford and Clare. The lower Bala is not greatly fossiliferous in Ireland, and the Lingula flags and Tremadoc are absent, so far as yet known; the Lower Bala resting on the Harlech Group in Wicklow.

Case and Column of Drawers.	Reference to McCor's Synopsis: and Figures of Genera.	Names and References; Observations, \&c.	Numbers and Localities.
	Graptolites. p. 7.	Diplograpsus mucronatus, Hall (Pal. N. Y. Vol. I. p. 268). Whether this species be truly named seems matter of doubt. The cells are closer than in the specimens from Wigtonshire.	Belvoir, Clare. Gibbet Hill, Tinnaglough, Wexford. (Geol. Surv. Ireland.)
	$\text { p. } 8 .$	Diplograpsus ramosus, and perhaps D. pristis.	Waterford (Ballintray). (Geol. Surv. Ireland.)
	Trilobites.	Barrandia Portlocki, Salter. Ogygia Portlocki in Decades Geol. Surv. No. 2, pl. 7. Asaphus dilatatus, Portlock, Geol. Rep. t. 24, figs. 1, 2, 7 (not the rest); Barrandia in Salter's Monograph, Brit. Tril. pl. 19, figs. $6-10$. The short tail axis and broad glabella distinguish Barrandia.	Newtown Head, Waterford. Both Lower and Middle Bala appear to occur in this important locality. (Sir R. Griffiths.)
		Orthis striatula, Emmons (Mem. Geol. Surv. Vol. III. pl. 13, figs. $10-14$). The flat form, and fine striæ curved up to the hinge line, mark this as distiuct from O. testudinaria, its companion, and the teeth are different from those of O. elegantula.	Newtown Head, Waterford.

Middle Bala Group. Arenaccous rocks and slates (volcanic grits and schaalsteins, with beds of felstone porphyry (Snowdon, Moel Hebog, \&c.).

Extent of the group. Prof. Sedgwick only includes in this group the 9000 fect of beds, chiefly arenaceous, slaty, and with some calcareous bands, which lie over the dark earthy slates of the Arenig section (Lower Bala). The group extends a short distance, probably a couple of hundred feet, above the Bala limestone. But it does not include the Hirnant limestone, which is the base of the Upper Bala group next described. It appears to represent in mass the whole of the Caradoc Sandstone proper, in Shropshire.

Organisms. The Hudson River group of New York-the Utica Slate and Trenton limestones-are parallel to this large British group. In Sweden, Region D. of Angelin. In Bohemia, Etage D. 3, 4, 5. This group is the richest in organic life of all the groups beneath the Old Red Sandstone, not excepting the Wenlock. Most of the orders of invertebrata have been found in it; but the supposed remains of fish have proved mythical. No Eurypteride among the Crustacea, have yet been found. But Trilobites reach their maximum here, both as to genera and species (see Mon. Brit. Tril. 1864, Introduction, p. S). Brachiopods are various and innumerable. Corals, Cystideæ, and Crinoids are also plentiful, though not of many species, except as regards the Cystidere. These attain their maximum here in Britain. Sponges; cup and millepore corals; starfish of several species; tubicolar and naked Annelida; Entomostraca-are all common. Mollusca of all orders (except naked Cephalopods)-the Heteropods and Pteropods being of giant size. The bivalve shells (Lamellibranchs) are allied to Modiola, Area, and Avicula: (see Phillips, Mem. Geol. Surv. Vol. 11. Pt. 1, p. 264).

Case and Column of Dramers.	Reference to McCor's Synopsis: and Figures of Genera.	Names and References; Observations, \&c.	Numbers and Localities.
Gk7	G. Ludensis. p. 4.	Zoophyta? or Bryozoa. GRAPTOLITIDE. I think these are Bryozoa (Mem. Geol. Surv. Vol. 111. Appendix, p. 328), but arrange them in the order of the Synopsis, as their systematic position is somewhat doubtful. Graptolites priodon, Bronn (G. ludensis, Murch. Siluria, 2nd ed. p. 64, t. 12, fig. 1). The finest specimens of this long-lived fossil are from rocks of this group in Scotland.	Grieston, Peebleshire. Penarth uchaf, N.W. of Pen-y-glog.
Gk7	p. 5.	Graptolites sagittarius, Hisinger, (not Linn.) Leth. Suec. t. 35, fig. 6. Salter, Siluria, 2nd ed. p. 542 , Quart. Journ. Geol. Soc. viII. p. 390. (G. Hisingeri, Carr. Geol. Mag. v. p. 126.)	Horton, Ribblesdale; Rother Bridge, Studgill.
Gk7	p. 6, Pl. 1 B, f. 2. $^{\text {. }}$	Graptolites Sedgwicki, Portl. (Siluria, 2nd ed. Foss. 11, fig. 2). A common species in the Tyrone and Fermanagh schists of Irelaud, which are most probably of this age.	Grieston, on the Tweed.
Gk 7		Graptolites, sp. with very narrow cells.	Bala. (J. Peters, Esq.)
Gk 7	p. 6, Pl. 1 B, f. $4,5$.	Graptolites tenuis, Portl. Geol. Rep. p. 319, t. 22, f. 6. (Siluria, 2nd ed. p. 5 5, Foss. 10, fig. 12.)	Grieston, on the Tweed.

Case and Column of Drawers.	Ricference to McCor's Synopsis: and Figures of Genera.	Names and References; Observations, \&c.	Localities and Numbers.
	Pl. 1 c, fig. 2. p. 16.	Heliolites subtubulata, MeCoy. Tubes more distant and the crenulations or septa nearly obsolete.	Sunny Brow. Coniston. Llansantfraid, Glyn Ceiriog.
G k bottom drawer.	p. 18.	Heliolites tubulata, Lonsd. sp. (Siluria 2nd ed. pl. 39, fig. 3). The prominent edges of the small close cups easily distinguish this.	Coniston.
		Heliolites, sp.	a. 120, Barking, Dent.
G k	Pl. 1 c , fig. 4. p. 16.	Heliolites megastoma, McCoy (Siluria, 2nd ed. Foss. 27, fig. 7. M. Edw. and Haime, Mon. Brit. Fos. Cor. t. 58, fig. 2. Very large cells evenly seattered, mark this fine speciesequally abundant in the Dudley limestone.	a. 122, Coniston. High Haume. Maes Meillion, Bala. Blaen-y-cwm, Nantyr, in Glyn Ceiriog.
k	Pl. 1 c, fig. 9, p. 20.	Favosites crassa, McCoy. Subcylindrical curved branches like F. cristata of the Wenlock.	Coniston.
G k	p. 19.	Favosites alveolaris, Goldf. Pet. Germ. t. 26, fig. 1. Much like the common F. Gothlandica, and with variations like that species. Prof. McCoy and myself seem to be the only Euglish palæontologists who recognize this excellent species by its ragged crenulated edges to the tubes.	Dry Ridge, Horton (as F. crassa) Llansantfraid, Glyn Ceiriog, Alt goch, Llanfyllyn. Mynydd Fron Frys, W. of Chirk. Cefn-y-coed, Glyn Ceiriog.
G k	Synopsis, p. 20.	Favosites Gothlandica, Linn. sp. Siluria 2nd ed. Foss. 17, figs. 2, 3. A species of coral which has the widest range-from America to Eastern Europe: and from the Lower Bala to the Carboniferous.	Common enough in Bala localities, and easily obtained.
		(Nebulipora) Monticulipora. See Wenlock limestone.	
G k	Pl. 1 c, fig. 6, p. 23.	Nebulipora (Monticulipora) explanata, McCoy.	Coniston.
G k		Nebulipora favulosa, Phillips (Mem, Geol. Surv. 11I. pl. 19, fig. 10).	Applethwaite Common. Coniston.
G \mathbf{k}	Pl. 1 c, fig. 5, p. 24.	Nebulipora papillata, McCoy. (See Wenlock Limestone).	a. 120, Coniston.
G k	Pl. 1 c, fig. 7, p. 23.	Nebulipora lens, McCoy. A hemispheric coral often rising into a subpyramidal form, and covered with unequal clusters of poresthe fertile ones largest-like the dronecells in the hive.	a. 217, Horderley, Glyn Diffwys. Bala, Cwm of the Cymmerig, Bala; Moel Uchlas, Llanfyllin.

$\begin{gathered} \text { Case and } \\ \text { Column of } \\ \text { Drawers. } \end{gathered}$	Reference to McCox's Synopsis : and Figures of Genera.	Names and References; Observations, st.	Localities and Numbers.
G k	p. 24.	Stenopora fibrosa, Goldfuss, sp. One of the commonest of all corals in the Cambrian rocks. The broad brauches present radiating tubes in the fractured sections.	a. 218, a. 121, Coniston. Dry ridge near Horton, St. Heleu's. Blaen-y-cwm, Nantyr; Cyrn-y-Brain, Corwen; Alt yr anker, and Penllys, near Meifod; Glyn Diffiwy, Bala; Girvan, Ayrshire.
Gk	p. 24.	Stenopora var. Lycoperdon (Hall, Pal. N. Y. Vol. 1. pl. 23, fig. 1). A hemispherical variety of the above; most common in the Bala rocks; and easily distinguishable from the Nebulipora lens above quoted, by the tubes being all of one diameter.	Coniston Water. Moel Uchlas, Llanwyddon; all round Bala; Glyn Ceiriog; Conway; Bwlch-ygroes; Sclattyn Road; Meifod.
G k	p. 25.	Stenopora var. β regularis, McCoy. Lons.sp. Sil. Syst. t. 15, fig. 1.	Blaeu-y-cwm, Nantyr. a. 107, Acton Scott, Cader Dinmael.
Gk		Stenopora var. ramulosa, Phillips, sp. (Mem. Geol. Surv. Vol. 11. Pt. 1, p. 385). Halysites, Fischer. Common chain coral (see Wenlock).	Bryn Eithin, Pemmachno; Bwlch-y-Groes. Llansantfraid, Glyn Ceiriog; Tyn-yCabled, Llanfyllin.
Gk	p. 26.	Halysites catenulatus, Linn. Catenipora escharoides (Goldf. Pet. p. 74, pl. 25, fig. 4). The common chain coral.	a. 124, Coniston; Ingleton and Thoruton: Applethwaite. Near Chirk; and Llansantfraid, Glyn Ceiriog in N.
Gk	p. 26.	Halysites var. labyrinthica (Goldf. Pet. pl. 25, fig. 5). Apparently not a distinct species, but a luxuriant variety of the last mentioned.	Wales. High Haume; Dalton-inFurness.
		Zoantharia rugosa, Milne Edwards and Haime. This is the first appearance in Britain of the remarkable tribe of corals, a distinct order, with the form of ordinary Turbinoliæ, but the structure of parts characteristic of the Alcyonide, all the septa are in fours, and the tube divided by transverse tabulæ.	
Gk	Caninia, p. 28.	Omphyma turbinata, Linn. sp. (M. Edwards and Haime, Mon. Brit. Foss. Cor. p. 287, t. 69, fig. 1). A common coral in the Wenlock rocks, and the longest usually found.	Craig Head, Ayrshire.

$\begin{gathered} \text { Case and } \\ \text { Column of } \\ \text { Drawers. } \end{gathered}$	Reference to McCox's Synopsis: and Figures of Gencra.	Names and References ; Observations, \&c.	Localities and Numbers.
G k	Caninia, p. 28.	Omphyma turbinata var.	Coniston.
G k		Omphyma turbinata, (or perhaps Cyathophyllum).	Coniston.
G k	(Strephodes, p. 30). Pl. 1 c, fig. 10. Sarcinula, p. 37.	Cyathophyllum Craigense, McCoy. ('The twisting of the lamellæ at the base of the cup is not uncommon in Cyathophyllum, and Strephodes.)	a. 100, Craig Head, Girvan.
G k		Sarcinula (Syringophyllum) organum, Linn. sp. (Mon. Brit. Fos. Cor. pl. 71, fig. 3). One of the most frequent fossils in Sweden, and Norway, in the slate rocks.	Coniston Water. LongSleddale. High Haume.
G k	$\text { p. } 39 .$ Pl. 1 B, fig. 23, 24. Petraia.	Petraia æquisulcata, McCoy. The genus Petraia is eminently Silurian and Devonian: and is but rare in Cambrian rocks-except their upper members. Its metropolis is the May Hill Sandstone. Like Cyathophyllum in all respects except habit, for the cup is always very deep, and the tabulce so twisted and matted, as to form a solid base. Hence, in casts the solid base disappear-ing-a cavity is left in the stone: in the cup portion, the matrix assumes the shape of a grooved and striated pyramid, truncated abruptly. The species are numerous, and not yet thoroughly made out. N.B. P. wquisulcata has the septa more regular than usual in the genus.	Coniston; Bala.
G k	p. 40.	Petraia elongata, Phill. (Pal. foss. Cornwall and Devon. t. 2, fig. 6 B), Bala.	Bala.
$\underset{\substack{\text { case } \\ \text { at end. }}}{\mathbf{G}}$	p. 40.	Petraia rugosa, Phill. (id. t. 2, fig. 7).	a. 204, Penarth, Meifod, on the same tablet with P. subduplicata in the Llandovery collection (end case).
G k	Pl. 1 B, fig. 26, p. 40.	Petraia subduplicata, McCoy. An extremely frequent fossil in the Upper Bala (Llandovery) rocks and easily distinguished by its regular form and crenulated septa. (P. ziczac McCoy, Sil. foss. Ireland, p. 60, appears to be the same.)	Llansantfraid, Glyn Ceiriog.
			6-2

Case and Column of Drawers.	Reference to McCoy's Synopsis: and Figures of Genera.	Names and References; Observations, \&c.	Numbers and Localities.
$\underset{\text { case }}{\mathbf{G}}$	Pl. 1 b, fig. 25, p. 41.	Petraia uniserialis, McCoy, a small short species.	a. 203, Llansantfraid (on tablet with P. subduplicata, as above, case G).
	(Lace-corals, \&ic.). Phyllopora.	Polyzoa (Bryozoa, Ehrenberg). Placed here, as a high type of the Radiata (Cœlenterata, Huxley) by Prof. McCoy. Naturalists usually, and with good reason, allot them a place with the molluscoids-near the Tunicate group. The Lace coral and most of the deep sea minute corals, as they are called, are really Bryozoa. But they assume so much of the aspect of branching corals, that it is convenient to arrange them with them in the cabinet-especially as in fossil forms it is not always possible to separate these two widely remote groups. A Polyzoon is nearer to a Terebratula than to the coral it imitates.	
G 1	Berenicea. Pl. 1 c, fig. 17, p. 45.	Berenicea heterogyra, McCoy, a flat patch of cells, growing on shells.	Coniston.
Gl		Berenicea heterogyra, var.	Cader Dinmael, W. of Corwen.
G 1	$\text { p. } 46 \text {. }$ Pl. 1 c , fig. 15.	Ptilodictya costellata, McCoy (Genus Stictopora of Hall). The genus consists of branched fronds, flat or rather slightly convex on each side with regular cells on either face. The quincunx arrangement of these gives an elegant pattern in the cast. There are very many species-and the genus ranged over the world in Palæozoic time.	a. 219, Llansantfraid, Glyn Ceiriog. Girvan, Ayrshire.
G1	Pl. 1 c, fig. 14, p. 47.	Ptilodictya fucoides, McCoy. A narrow-leaved form.	Llansantfraid, Glyn Ceiriog, Corwen, Bala, several localities.
G 1	Pl. 1 c, fig. 16, p. 46.	Ptilodictya explanata, McCoy. A broadleaved, crisped and undulated frond, with large cells.	Llansantfraid, Mynydd Fron Frys, near Chirk. Cyrn-y-Brain.
G 1	(P. acuta, p. 45 also).	Ptilodictya dichotoma, Portlock, Geol. Rep. Londonderry and Tyrone, pl. 21, fig. 3), St. acuta of Hall is not the same as ours-but yet occurs in Britain.	a. 117, Coniston. Llansantfraid, GlynCeiriog.

Case and Column of Drawers.	Reference to McCor's Synopsis: and Figures of Genera.	Names and References; Observations, \&c.	Localities and Nnmbers.
G 1	Lace-corals.	Ptilodictya acuta, var. minor, Hall. (See Pal. N. York, Vol. I. pl. 26, fig. 3.) Phyllopora (King), Retepora of most authors. To this genus (which consists of lace-corals with the pores in many rows covering the outer surface of the cup-like frond) all the Reteporas of the Palæozoic rocks are referred. They all differ from the living Retepores by having a calcareous layer on which the cells are set.	Llechwedd Llwydd, Llansantfraid, Glyn Ceiriog.
G	Retepora, p. 48. Pl. 1 c, fig. 18.	Phyllopora Hisingeri, McCoy. A very common species.	a. 118, Cefn Coedog, S. of Corwen: Cyrn-y - Brain, Wrexham: Mynydd Fron Frys, Chirk, Coniston.
G 1		Phyllopora, sp.	Meifod.
Gi		Phyllopora, sp.	a. 220, Coniston (High Haume).
G 1	p. 49. Crinoids.	Fenestella Milleri, Lonsdale. The genus has much the appearance of Retepora, but is calcarcous, and has cells only on the main rods; not on the cross-bars (fig. see Wenlock).	Llansantfraid, Glyn Ceiriog. Cefn Credog, Corwen.
G 1	$\text { p. } 50 .$	Fenestella subantiqua (D'Orbigny, McCoy). F. antiqua Lonsd. Sil. Syst. pl. 15, fig. 16.	Llansantfraid, Glyn Ceiriog.
	$\mathrm{c}_{\mathrm{x}}^{3} \mathrm{y}$	Echinodermata. Starfish, Crinoids or Sea-lilies, and Cystidece (Grape-lilies, Globe-crinoids).	
G 1	Pl. 1 D, fig. 4. Globe-Crinoids, Cystidece.	Glyptocrinus? basalis, McCoy. (Colocrinus, Salter, Mem. Geol. Surv. Vol. iII. pl. 23, fig. 4.) The characteristic crinoid in Britain of the slate rocks-easily distinguished by its hollow stem.	a. 127, Alt-yr-Anker, Meifod.
		Echinosphærites (Caryocystites) granatum, Wahl.	Rhiwlas.
G 1		Echinosphærites (Caryocystites) Davisii, McCoy.	a. 125, 6. Coniston.
G 1	Pl. 1 d, fig. 5, p. 61.	Sphæronites stelluliferus, Salter (Mcm. Geol. Surv. Vol. inI. pl. 20, fig. 6 (S. aurantium, Forbes, in part only).	Sholes Hook, Pembrokeshire.

Case and Column of Drawers.
G1

Names and References; Observations, \&c. \mid Localities and Numbers.

The group of the Cystidec is amazingly characteristic of Cambrian rocks-i.e. of Upper Cambrian or Bala strata. All the genera with pores scattered over the whole surface belong to this horizon. Those with a weblike ornament, viz. Echinosphcerites, and those with linked scattered double pores (Sphæronites) are of this age (Lower Silurian of most authors). Those with few large rhombs to contain the pores and limit them belong, on the other hand, to Upper Silurian rocks. None rise higher, and very few traces indleed occur in the Middle Cambrian.

Asteriadæ. All the starfishes of the Cambrian and Silurian rocks belong to a peculiar division, which differs from ordinary starfish by having the plates which border the avenues of suckers of larger size than the rest. In the Bala species this character is very conspicuous.

Protaster Salteri, Forbes. (Mem. Geol. Surv. Vol. iII. pl. 23, fig. 3.) A species of Protaster (or Taniaster, Billings. which is a kindred genus) so very like the Brittle stars (Ophiura) of the present day that it was so described by Forbes in Vol. I. Quart. Journ. Geol. Soc. 1845, p. 20. See Mem. Geol. Surv. above quoted, note to p. 290. See also Annals Nat. History, 2ud ser. Vol. 20, pl. 9.

Palæaster, Hall (Urasterella, McCoy, MSS. = Steuaster, Billings.)

Palæaster obtusus, Forbes (Mem. Geol. Surv. III. pl. 23, fig. 1). A species with very thick blunt arms, and a small mouth.

Sholes Hook.
a. 221, Pen-y-gair, Cerrig-y-Druidion. (This unique specimen, collected by Prof. Sedgwick and Mr. Salter in 1844 , was lost for 18 years, and then recovered.)
The Protasters were so named and described by Forbes in Decade I. of the Geol. Survey.

Bala Lake (foot of). One specimen first described by Forbes, found by Prof. Sedgwick-and then others by the Geol. Survey.

Case and Column of Draw	Reference to McCox's Synopsis: and Figures of Genera.	Names and References; Observations, \&c.
G 1		Palæaster asperrimus, Salter (Mem. Geol. Surv. III. pl. 23, fig. 2), with long blunt arms, and a very rough upper surface.
G 1		Palæaster? same species crushed (Ast. primceva of Salter (not of Forbes) Decade I. Mem. Geol. Surv.), see list in Quart. Journ. Geol. Soc. Vol. I. p. 20 , as before.
G 1		Palæaster squamatus (Salter MSS.), upper side only.
Gl		Protaster Petri (Salter MSS.), a new form, very like P. Sedgwickii, Forbes.
Gl	Worm-trails.	Annelida-Traces, \&c.
Gl	p. 129.	Nereites Sedgwickii. This is the impression of the worm itself, and shews the broad lateral processes (elytra). The feet of marine worms are simple processes, witl bunches of setce or bristles, and sometimes fleshy cirrhi.
$\begin{gathered} \text { case } \\ \mathbf{G} \end{gathered}$	p. 129.	Nereites cambrensis, McLeay var. a. (Silur. Syst. pl. 27, fig. 1).
G	$\begin{aligned} & \text { p. } 130 . \\ & \text { Pl. } 1 \text { D, fig. } 13 . \end{aligned}$	Myrianites tenuis, McCoy. Here we have only the numerous coiling trails made by a narrow worm-like body in the fine mud.
	Worm-tubes, horny and shelly. T. annulatus, p. 63.	
G		Tentaculites anglicus, Salter (Siluria, 2nd ed. pl. 1, fig. 3). Straight unattached worm tubes, resembling some horny Mediterranean species: and none still like the Cornulites serpularius of the Wenlock and Dudley rocks.
G	Pl. 1 D, fig. 10, p. 133. See Upper Ludlow rock.	Trachyderma? lævis, McCoy. (I strongly suspect this to be a fragment of Serpulites longissinus; and to have come from Upper Ludlow rock.)

Case and Column of Drawers.	Reference to McCor's Synopsis: and Figures of Genera.	Names and References ; Observations, \&c.	Numbers and Localities.
G	Serp. dispar, p. 132. Pl. 1 D, figs. 11, 12.	Serpulites, sp. (not the S. dispar, Salter) from Upper Silurian.	Caradoc grit,Hollies, Shropshire?
G1	Pl. 1 D, fig. 15, p. 130.	Crossopodia scotica, McCoy.	a. 225, Thornielee Quarry, on Tweed.
	Small bivalve Crustacea (waterfleas).	CRUSTACEA-Phyllopoda and Trilobita.	
G1	Phyllopoda. Pl. 1 E, fig. 6, p. 138.	Ceratiocaris? umbonatus, Salter. Oval convex valves of a bivalve Crustacean, very common.	Bala; Corwen; Conway Falls; Llanfwrog, near Rutlin, under the Old Red Strata (stream section). a. 113, Dermydd Fawr, Denbighshire.
G 1		Primitia McCoyii (Salter MSS. - Cythere phaseolus, McCoy, Synopsis Sil. Foss. Ireland, p. 58, pl. 1, fig. 1).	Keisley, Dufton, Westmorland.
G1		Primitia McCoyii, var.	Pusgill, Dufton, ib.
G 1	Pl. 1 E, fig. 3, p. 136.	Beyrichia complicata, Salter (Mem. Geol. Surv. Vol. III. pl. 19, fig. 9), a most curiously ornamented and deeply grooved species, extremely common.	Coniston. Pwllheli. Llanfwrog, Ruthin; Dermydd Fawr. Pont-y-Meibion, S. of Llangollen, Mynydd Mawr, Llanfyllin, \&c. \&c.
G 1		Beyrichia complicata, var.	Dermydd Fawr, Denbighshire.
	Pl. 1 e, fig. 1, p. 136. $\Leftrightarrow 0$	Primitia strangulata, Salter. (One of the simpler forms of the genus-with only one furrow.	Coniston.
G 1	Trilobites.	Trilobita auctorum. The majority of large forms of this order (always excepting the giant Paradoxides of the Lingula flags) occur in the Bala group: great species of Asaphus, Homalonotus, Lichas, \&c. In fact the Bala group may be taken to be the metropolis both of the Trilobites, the Orthides, and the Orthoceratites.	
G 1	Trinodus agnostiformis, Pl. 1 E, fig. 10, p. 141. T. tardus, Pl. 1 F, fig. 9, p. 142.	Agnostus trinodus, Salter (Decade Geol. Surv. No. 11, pl. 1, figs. 8-10). The simplest form of trilobite known-and the smallest. It represents well the embryonic forms of larger trilobites.	Rhiwlas, Bala.

T. Caractaci, p. 144, var. elongatus, p. 145,
T. radiatus, p. 146,
T. gibbifrons, p. 145, Pl. 1 e, fig. 14 .
T. latus, p. 145, Pl. 1 e, fig. 15.
Tretaspis fimbriatus, p. 146,

Pl. 1 e, fig. 16.

Trinucleus concentricus, Eaton (Salter, Mem. Geol. Surv. Decade 7, Pl. 7, p. 5). The commonest of all the species from Ohio to Russia, it is liable to much variation, and has received many names. Some of the varieties are really worth notice, such as T. elongatus, Portlock. Iu attempting to separate these forms, the author of the Synopsis has entangled himself in the difficulties attending the study of fossils in cleaved and distorted strata. All those here noticed are mere states of preservation. T. giblifrons represents the ordinary form in Wales, and the uncompressed Caradoc of Shropshire. Some of the specimens have fewer pores than others, \&c. \&c. But the species is neatly distinguished by the form of the fringe, viz. flat and horizontal above,

Nunbers and Localities.
a. 133, as T. Caractaci, Cheney Longville shales, and Horderley, Shropshire. Llansantfraid; Llechwedd, Llwydd; Bwlch-y-groes; Llanwddyn; Pwllheli, Bala; Llanfechan.
As T. radiatus, N. of Tremadoc (in beds of Bala age, supposed to be in upper Tremadoc slate !). p. 337. As T. elongatus (not of Portlock), Pwllheli.
As T. giblifrons, Dolydd Ceiriog waterfall in the Berwyns; Rhiwargor; Garnedd Fawr; W. of Bala; a. 134, Dinas Mowddwy;

Case and Column of Drawers.	Reference to McCor's Synopsis: and Figures of Genera.	Names and References; Observations, \&c.	Numbers and Localities.
		of the species, well developed large eyes, 11 body segments, and a lobed glabella, broadest in front. It ranges through all countries, and its vertical distribution is very great. Beginning in Lower Bala, it reaches to the upper Devonian-the latest known species being in the Barnstaple or uppermost group.	
G k	Phacops (Acaste).	Phacops, Acaste, Chasmops, Odontochile, Cryphæus, are subgenera.	
G k	Pl. 1 g, figs. 17-19, p. 162.	Phacops (Acaste) apiculatus, Salter (Siluria, 4th ed. 1867, p. 69, fig. 14, woorlcut, f. 3). A small form, much like the P. Downingice of the Wenlock rocks.	b. 196, Pwllheli; Bala; Glyn Ceiriog ; Conway River; Llanwyldyn; Rhiwargor; Rother Bridge?
G k	Pl. 1 G, figs. 12-14, p. 159.	Phacops (Acaste) alifrons, Salter (Mon. Brit. Trilob. 1864, pl. 1, figs. 31-34). A peculiar convex form, very like P. sclerops of Sweden. The glabella runs out above laterally into the cheeks-hence the name.	b.198, Capel Garmon; Glyn Diffwys; Bala; Wilfa, Penmachno; Meifod.
G k	Odontochile truncato-caudate. Pl. 1 g, figs. 20,21, p. 162.	Phacops (Chasmops) macroura, Sjögren (Mon. Brit. Tril. 1864, pl. 4, figs. 18-23). A large trilobite (called Cat's Head trilobite) very common in all the Middle Bala rocks. The peculiar visage of the head is given by the swelling of the upper glabella lobes, and contraction of the lower. [Two or three of these species nsed to be confounded under the name P. Odini, Eichwald].	a. 131, Grug, Llandeilo; Blaen-y-cwm, Nantyr; Coniston; Applethwaite Common.
G k	Chasmops Odini? Pl. 1 g, figs. 22, 23, p. 164.	Phacops (Chasmops) conophthalmus, Boeck.? (Mon. Brit. Tril. 1864, pl. 4, figs. 24, 25). This has a wider glabella and a much shorter tail than the other species.	Alt-yr-Auker, Meifod; a. 128, Llansantfraid, Glyn Ceiriog.
		Calymene, Brongniart. Scarce less widely spread, but not quite so long-lived as Phacops. It has a very compact form-but 13 body segments, and a lobed glabella which is smallest in front. The eye was soft, and is seldom preserved. The species are many, and not easy of distinction.	

Case and Column of Drawers.	Reference to McCox's Synopsis: and Figures of Gencra.	Names and References; Observations, \&c.	Numbers and Localities.
G k	C. brevicapitata, Pl. 1 F, fig. 6 (not 4, 5), some specimens labelled and catalogued as C. subdiademata.	Calymene Senaria, Conrad (Salter, Mon. Brit. Trilob. 1865, pl. 9, figs. 5-11, p. 97). One of the very common Bala or Caradoc fossils -appearing to inhabit every kind of seabottom. It is often confounded with the C. Blumenbachii, var. brevicapitata, Portlock.	Bryn Mclyn, Bala; Cefu Cocdog ; Llanwddyn; Alt-yr-Anker, Mcifod; Coniston; Horton (very large). a. 135, Pwllheli; High Haume. a. 136, Applethwaite Common.
G k		Calymene Blumenbachii, Brongniart (Sil. Syst. pl. 7, figs. 6, 7. Salter, Mon. Brit. Trilob. p. 93 , pl. S, figs. 7-16). The common Dudley trilobite, in its typical form, with a large broad glabella, is not found in the Bala rocks, but a varicty, with narrower glabella, viz.-	
G k	C. brevicapitata, p. 165.	Calymene, var. Caractaci, Salter (Mon. Brit. Tril. p. 96, pl. 9, figs. 3-5. C. brevicapitata, Portlock, Geol. Rep. on Tyrone, \&c.), is one of the frequent fossils in the Bala beds.	a. 136^{*}, Horderley; above Rother Bridge.
G k	Pl. 1 G, figs. $24-31$, p. 16 S .	Homalonotus bisulcatus, Salter (Mon. Brit. Tril. 1S65, pl. 10, figs. 3-10). Homalonotus, so named from the uniform scarcely lobed condition of the dorsal surface, is very like Calymene else, and always accompanies it in the old rocks. It however ascends in force into the Devonian, while Calymene does not.	b. 1S4, Maes Meillion, Bala; Bryn Eithin, Penmachno ; Garefawr, Welchpool ; a. 111, Pwllheli; Acton Scott, Shropshire (where it is large and abundant).
G k		Homalonotus Sedgwickii, Salter (Mon. Brit. Tril. p. 107, woodcut, fig. 25).	a. 228, Llanwddyn, Montgomeryshire ; a. 227, Ravenstoncdale.
G k	Pl. 1 E, fig. 20, p. 168.	Homalonotus rudis, Salter (Mon. Brit. Tril. pl. 10, figs. 12-14).	a. 2 29, Capel Garmon.
G k	Isotelus, p. 169.	Asaphus Powisii, Murchison (Salter, Mon. Brit. Tril. pl. 23, figs. 2-5, p. 154). As characteristic of the Middle Bala rocks as the A. tyrannus of the Lower Bala, easily distinguished by the faint ribs of the tail.	a. 190, Pen Cerrig Scrtll, N. of Bala; Bryn Eithin, Penmachno;Bwlch-y-groes; Meifod; Llanwddyn.

$\begin{gathered} \text { Case and } \\ \text { Column of } \\ \text { Drawers. } \end{gathered}$	Reference to McCor's Synopsis: and Figures of Genera.	Names and References; Observations, \&o.	Numbers and Localities.
G k	A. laticostatus, Pl. 1 E, fig. 18 (not fig. 18 a), which is Lower Bala, p. 170.	Asaphus radiatus, Salter (Mon. Brit. Tril. pl. 18, figs. 1-5). Not quite a common fossil in certain parts of the Bala beds-but yet not rare. It seems only to have lived in calcareous mud.	b. 187, Rhiwlas Bala. [The Girvan locality is of May Hill Sandstone.]
G k	Dysplanus centrotus? 173. Pl. 1 E, fig. 19. Ill. latus, p. 17… Pl. 1 e, fig. 17.	Illænus Bowmanni, Salter (Mon. Brit. Tril. 1867 , pl. 28, figs. 6-13). A very common fossil. Unlike most of the Illoni it has only 9 body rings like I. centrotus, Dalm. It has been often confounded with that spine-headed species.	a. 129, Llanwddyn; Keisley, near Dufton, Westmorland. b. 188, Wrae Quarry,'Tweed (I. latus).
G k	Pl. 1 G, fig. 36, p. 171.	Illænus Davisii, Salter (Mon. Brit. Tril. p. 194, pl. 29, figs. $10-16$). 10 rings to the body, very small eyes.	a. 130, Rhiwlas, Bala; Glyn Diffwys; Llauwddyn.
G k	Pl. 1 G, figs. $33-35$, p. 172.	Illænus Rosenbergii, Eichwald (Salter, Mon. Brit. Tril. pl. 29, figs. 2-6, 1867). Sce discussion in Appendix to Synopsis, p. 4, as I. Murchisoni.	a. 141, Coniston; Sunny Brow; Horton in Rilbblesdale.
G k		Illænus, small sp. like I. Barriensis (probatly of the section Bumastus), Mon. Brit. Trilob. 1807, p. 215, fig. 57.	b. 189, Mynydd Fron Frys, Chirk.
	Pl. 1 L, fig. 3, p. 336, note.	Harpes parvulus, McCoy, Synopsis, p. 336, note.	b. 228, Wrae Quarry, Upper Tweed.
		Mollusca Brachiopoda.	
		The Brachiopods, few in the existing ocean fauna, were of all shells the most prolific in numbers and kinds in the seas of the Cambrian and Silurian æras. Some of the carliest formed genera-Discina, Lingula or their allies-have been already quoted from Lower or Middle Cambrian rocks. But the great abundance of Orthides, Leptence, and such like shelly forms in the Bala rocks give quite a character to the deposit.	

Case and Column of Drawers.	Reference to McCor's Synopsis: and Figures of Genera.	Names and Refercnces; Observations, \&e.	Numbers and Localities.
		Lingula, Bruguière. The true Lingulce appear to have commenced existence in the Bala rocks; as the Lingulellee are characteristic of the Middle Cambrian or Lingula Beds. Lingula is the most equivalve, and least complex of all the genera of Brachiopods, the muscles widely separated, the shell is horny and flexible, without calcareons matter or any hinge. The spiral arms are fleshy only. No calcareous spires occur in palæozoic rocks till we reach the Devonian and Carboniferous periods.?	.
G 1	Ling. Davisii, in part. Pl. 1 L, fig. 6.	Lingula ovata *, McCoy (Davidson, Mon. Sil. Brach. p. 38, pl. 2, figs. 19-23). [The specimen figured is a squeezed specimen of L. Davisii from the true Lingula flags, p. 39.]	b. 20, Coniston (as L. Davisii) ; Bryn Melyn, Bala, true species; b. 204, Gelli Grin, Bala.
	Pl. 1 L, fig. 8, p. ${ }^{\text {a }}$ ¢ 4.	Lingula tenuigranulata, McCoy (Davidson, Sil. Brach. p. 37, pl. 2, figs. 9-14). One of the largest species known in any rock.	a. 151, Alt-yr-Anker, Meifod. (Prof. Sedgwick and Mr Salter).
	p. 253.	Lingula longissima, Pander, Beitrage, pl. 3, fig. 21. Dav. Sil. Brach. pl. 3, figs. 2S-30.	a. 159, Mynydd Fron Frys, Chirk.
G 1	Pseulocraniu, p. 187. Pl. 1 н, figs. 1, 2.	Crania divaricata, McCoy (Davidson, Mon. Sil. Brach. pl. 8, figs. 7-12). The genus Crania is world-wide from the Bala beds to the present day.	a. 152, Bryn Melyn, Bala; Pont-y-glyn, Diffwys.
G 1	do.	Trematis (Discina) corona, MSS. A giant species. The genus differs from Discina by its marginal foramen for the byssus. T. punctatu Sow. (Dav. Sil. Brach. pl.6, fig. 9).	b. 201, Pusgill, Dufton, Westmorland (Prof. Harkness). Horderley.
G 1	Spirigerina, p. 197.	Atrypa marginalis, Dalm. (Siluria, 2nd ed. pl. 22 , fig. 19). A common fossil in beds above the Bala limestone; more rare in N. Wales and Treland. No hinge line-but calcareous spires placed so that the spire lies flat in the valve-mark this genus.	Pont-y-glyn, Difiwys; Blaen-y-cwm, Nantyr.

[^7]| Case and Column of Drawers. | Reference to McCor's
 Synopsis: and Figures of Genera. | Names and References; Observations, \&c. | Numbers and Localities. |
| :---: | :---: | :---: | :---: |
| G 1 | | Atrypa [? Headi, Billings. var. anglica, Davidson, Sil. Brach. t. 22, figs. 1-8]. | Common at Bird's Hill, Llandeilo, \&c. |
| G 1 | Hemithyris depressa, p. 201. | Triplesia? Maccoyana, Davidson, Sil. Brach. p. 199, pl. 24, f. 29 (R. depressa, McCoy, not of Sowerby in Silurian System). In Davidson's Monog. p. 123, R. depressa, Sow. is au Athyris. | a. 157, Brynbedwog, near Bala. |
| G 1 | | Rhynchonella (or Atrypa) sp. | b. 206*, Ravenstonedale. |
| G 1 | Hemithyris, p. 199, Pl. 1 н, figs. 6-8. | Meristella angustifrons, McCoy (Siluria, 3rd ed. woodcut 49, fig. 2). A common fossil in Llandovery rocks, and very rare in Middle Bala. | b. 206, Craig Head, Girvan. |
| Gl Gl | Meristella.
 Hemithyris.
 Pl. 1 L, fig. 5, p. 203. | Rhynchonella, sp. (Headi, Billings?)
 Rhynchonella nasuta, McCoy sp. (Davidson, Mon. Sil. Brach. p. 173, pl. 23, f. 19). | Coniston (same at Grug, Llandeilo).
 a. 156, Craig Head, Girvan. |
| G 1 | | Rhynchonella, sp.
 Several other specimens undescribed are common in Wales, Ireland, Scotland. | Yspytty Evan. |
| Gl | Pentamerus lens, p. 209. p. 208. p. 212. | Pentamerus lens, Sow. sp. Sil. Syst. 21, f. 3.
 New genus of Rhynchonellidæ, long mesial septum in the dorsal valve (looks very like a Pentamerus at first sight).
 [P.globosus, supposed to be found at Beaver's Grove, near Conway, is really a Bellerophon, and must not figure here. No species of Pentamerus has ever occurred in Lower or Middle Bala !] | b. 207, Coniston. |
| Gl | | Porambonites intercedens, Pander (Spirifer porambonites, Geol. Russ. Vol. II. p. 131, pl. 2, | a. 205, Wrae Quarry, Upper Tweed. |

Case and	Reference to McCor's
Column of	Synopsis: and Figures of Genera.

Names and Referenees; Observations, \&e.

Orthis, Dalman. A genus of all others characteristic of the great Bala and Silurian groups. Less abundant in Devonian, and not quite extinct in Carboniferous times. It is easily distinguished by its convex form, and single cardinal process, from Leptana or Strophomena, which genera occur with it, and of large sizc.

Orthis Actoniæ, Sowerby (Siluria, 2nd ed. pl. 5, fig. 11), and Salter, Mem. Gcol. Surv. ini. p. 339, pl. 21, figs. 1-8. A shell easily distinguished from its associate O. Alabellulum, by having the opposite valve convex; the concave one being the dorsal one.

Orthis, var. (as O. callactis, but not of Dalman). It is only a large varicty of O. Actonice.

Orthis biloba, Linn. (Siluria, 2nd cd. pl. 20, fig. 14). Not uncommon in Bala rocks. Swarms in Wenlock.

Orthis calligramma, Dalman (Salter, in Mcm. Geol. Surv. 1uI. p. 335, pl. 22, fig. 1). Both valves are equally convex in all the varictics.

Orthis, id. var. plicata, Salter (O. plicata, Silurian System, pl. 21, fig. 6). O. calligramma, var. plicata, Salter, Mem. Geol. Surv. Inl. p. 336, pl. 22, fig. 5).

Numbers and Localities.

Bryn Eithin, Penmachno. Gelligrin; Bryn Melyn, \&c., near Bala; Cader Dinmael; Pont-y - glyn, Diffwys; Blaen-y-cwm, Nantyr; Llansantfraid, Glyn Ceiriog; Alt - yr - Anker, Meifod; Tyn-y-Cabled, Llanfyllin. a. 149, Acton Scott, Shropshire; Ingleton; Thornton; Horton ; High Haume.

Gaerfawr, Welchpool; Bala. One very large varicty at Wrac Quarry, Up. Tweed.

Cefin Goch, Glyn Ceiriog.

Llansantfraid, Glyn Ceiriog. [The typical form of the species is of Lower Balar age in Britain.]

Gelligrin; b. 210, Bryn Mclyn, Bala; Cwm of the Cymmerig, Bala; Llansantfraid, Glyn Ceiriog; Bryn Evan, Penmachno; Pwllheli; Carler Dinmael, near Meifod, abundant. Gaerfawr, Welchpool; Das Eithin; Horton in Ribblesdale.

Case and Column of Drawers.	Reference to McCoy's Synopsis : and Figures of Genera.

G 1
O. flubellulum, p. 219.
O. var. a. calliptycha, p. 215.
p. 216.
p. 214 .
O. rigida, p. 2 อ 6 .
p. 219.
O. sarmentosa.

Pl. 1 II, figs. $25-28$, p. 227.

Pl. 1 н, figs. 41, 42, p. 223.

Orthis, id. var. virgata, Salter, Mem. Geol. Surv. III. p. 336, pl. 22, fig. 3 (O. virgata, Sil. Syst. pl. 20, fig. 15), Siluria, 2nd ed. pl. 5, fig. 9.

Orthis, id. var. calliptycha, McCoy. A pretty variety with coarse ribs; the interspaces strongly ribbed with wire-like striæ.

Orthis, id. var. Wallsalliensis, Salter (O. Wallsalliensis, Davidson. See Mem. Geol. Surv. Vol. III. p. 337, pl. 22, figs. 6, 7.

Orthis, id. var. crispa, McCoy (Sil. Foss. Irel p. 29, t. 3, fig. 10. A remarkable small species, with strong waves and ridges of growth decussating the ribs.

Orthis flabellulum, Sow. (Salter, Mem. Geol. Surv. III. p. 338, pl. 21, figs. 9—16). A handsome Bala shell, with fan-like ribs 20 to 30 .

Orthis flabellulum, var. finest ribs (Salter, Mem. Geol. Surv. 1II. pl. 21, fig. 17), looks like a distinct speeies, but is easily traceable into O. Aabellulum.
N.B.O. sarmentosu, McCoy, Sil. Foss. Ireland, is the O. testudinariu, distorted by cleavage.

Orthis porcata, McCoy (O. occidentalis, O. $\sin u-$ ata, \&e. of Hall. Salter, Mem. Geol. Surv. Vol. iII. p. 338, pl. 19, fig. 4). Very like extreme varieties of O. flabellulum, from which, when fine-ribbed varieties of both are comspared, it is extremely difficult to separate it. The interior characters are alike in both.

Numbers and Localities.
b. 215, Coniston; b. 216, Applethwaite ; Gelligrin, Bala; Alt-yr-Anker, Meiforl, Montgomeryshire (as O. rigida).
b. 214, Llansantfraid, Glyn Ceiriog.
b. 212, Rhiwargor (more common in Llandovery rocks). Gelligrin; Trawscoed; b. 211, Gaerfawr (as O. confinis). b. 213, Gaerfawr, Welehpool.
a. 158*, Bala; Blaen-y-cwm, Nantyr ; a. 158, Helmsgill, Dent.
a. 150, Bodean, Pwllheli, Bettws; Moel-y-garnedd, W. of Bala; Gelligrin; Cader Dinmael; Blaen-y-cwm, Nantyr; Snowdon top; Llangedwyn; Llanwddyn; Meifod; Moel Uchlas.
b. 219, Llyn Ogwen, abundant.
b. 221, Coniston; High Haume; Dalton; a. 155, Horderley; Corwen; Bala; Llansantfraid, Glyn Ceiriog; Meifod; a. 154, Alt-y-gader; Alt-yr-Anker; Llanfyllin (Pen-y - Park), Corwen. Common in all varieties, N. Ireland.

$\begin{gathered} \text { Case and } \\ \text { Column of } \\ \text { Drawers. } \end{gathered}$	Reference to McCoy's Synopsis : and Figures of Genera.	Names and References; Observations, ©c.	Numbers and Localities.
G 1	Pl. 1 H, figs. 41, 42, p. 223.	Orthis, sp. near to O. porcutu.	Mynydd-y-gaer, Llanefydd.
G1	p. 216.	Orthis elegantula, Dalm. (Siluria, 2nd ed. pl. 5, fig. 5). The weed of the Silurian and Upper Cambrian rocks; appearing under many varieties in Britain and Sweden; apparently unknown in S. Europe.	Everywhere in the Bala rocks; in Caernarvonshire at Pwllheli; Snowdon; Moel Hebog, \&c. All round Bala Lake in Merionethshire. The Berwyus, east side (MilltirCerrig), Welchpool; Meifod; Moel Uchlas near Llanfyllin; Horderley; Acton Scott; and all the Caradoe district.
G1	p. 221.	Orthis parva, Pander. Considered a distinct species by De Vernenil and McCoy, and others. I think it only a sharply ribbed variety of O. elegantula, with which it is generally intermixed.	Dinas Mowddwy; Llansantfraid, Glyn Ceiriog; Bryı Melyn, Bala; Yspytty Evan. Moel Uchlas, \&c. Ardwell, Girvan, Ayrshire.
G 1	p. 221.	Orthis parva, var. avellana, De Verneuil. Geol. Russ. t. 13, figs. 3, 4.	b. 217, N. of Tremadoc; Tan-y-Bwleli-y-groes.
G	Spirifera, p. 192.	Orthis biforata, Schloth. (Davidson, Mon. Brach. Pal. Soc. Introd. pl. 8, fig. 146). One of the commonest of the Bala types, ranging from Lower Bala to Wenlock rocks. It looks like a Spirifer, and was so named by Prof. McCoy, as it had leen by other authors. There are no internal shelly spires. It is easily divisible into -	
G	p. 192.	Orthis biforata, proper, with 6 to 9 ribs on the raised front.	b. 239*, Troutbeck; b. 239. Bryn Melyn, Bala.
G	Spirifera, p. 192.	Orthis biforata, var. a Lynx (Spirifer, Eichwald \&c.), 4 ribs on the fold.	a. 145, Meifod; Llanfyllin; Bala; Glyn Diffwys, Corwen; High Haume, Dalton; \&c.
G	p. 192.	Orthis biforata, var. β dentatus.	Coniston; Rliiwargor; Llaıwddyn ; Cyrn-y - Brain, Wrexham ; Coniston; Ravenstonedale.
G 1	Spirifera, p. 198.	Orthis fissicostata, seems quite distinct. Orthis (O. biforata, var. fissicostatus), McCoy.	b. 235, Tyn-y-Cabled;1.236, Alt-yr-Anker; b. 237, Penarth, Meifod; Ravenstonedale.

Case and Column of Dramers.	Reference to McCor's Synopsis : and Figures of Genera.	Names and References; Observations, \&c.	Numbers and Localities.
G	p. 193.	Orthis, new sp. closely allied to O. biforatu.	b. 233 , Bala; b. 234 , Nantyr; a. 241, Tyu-y-Cabled.
G 1	O. retrorsistria. Pl. 1 H, fig. 12, p. 224, and note, p. 217.	Orthis alternata, Sow. (Siluria, 2nd ed. pl. 6, fig. 5). There can be no doubt the Welch fossil is the dwarf form of this common Horlerley species. It is so easily distinguished by the interior cast, and so hardly distinguishable by the exterior, that it has been confoumded constantly with Strophomena alternata in British Works (the Synopsis included).	a. 144, Cerrig-y-Druidion, in millions. Penmachno; Cernioge; Corwen; Bwleh Llandrillo; Cefn-y-Coedog; Llangedwyn ; Das Eithin, Hirnant, and Llanwidyn, Montgomeryshire; PenCerrig Serth, N. of Bala; Glyn Diffwys; Meifod; Llangfyllin (the Carn Goran species is distinct and a sp. of Strophomena; see Mem. Geol. Surv. 1II. p. 340).
G	Spirifera, p. 194.	Orthis insularis, Eichwald (De Vern. Geol. Russia, t. 8, fig. 7). One of the rare group of smooth Ortliides which occur in Bala or Caradoc rocks, orer the N. Hemisphere at least. A very similar species is found in India. The dorsal valve is highly convexthe ventral, concave.	b. 241*, Gelligrin, Bala; b. 241, Coniston.
G m	Leptena spiriferoides, $\text { p. } 246 .$	Orthis Spiriferoides, McCoy (Siluria, 3rd ed. woodent 37, p. 194). Of the same group with O. insularis, from which its strong strie or ribs easily distinguish it.	a. 146, Alt - yr - Anker; b. 251, Gaerfawr, Welchpool; Llanfyllin; Bala; Horderley (and a hundred other Caradoc localities).
G 1	.	Orthis simplex, McCoy (Sil. Foss. Ireland, pl. 3, fig. 18). Very like O. calligramma, and possibly a variety.	Gelligrin ; Llausantfraid.
G1	p. 2.24 .	Orthis protensa, Sow. (Siluria, 2nd cd. pl. 9, fig. 22) includes O. lutu. Sow. Sil. System, t. 22, figs. 8, 9. This common Llandovery species is very doubtfully recognized in the above locality.	Cader Dinmael, Holyhead road, Denbyshire.
G 1	Pl. 1 H , figs. $25-28,1.227$.	Orthis sarmentosa, McCoy, which is Orthis testudinaria in a crushed statc.	

Case and Column of Drawers.	Reference to McCor's Synopsis : and Figures of Cienera.	Names and References; Obscrvations, \&e.
G 1	p. 228.	Orthis testudinaria, Dalman (Siluria, 2ud ed. pl. 5, figs. 1-2). A much coarser striated shell than the O. elegentule, and with different hinge-characters, else not unlike that species. O. testudinaria is however wholly a Bala rock fossil.
G 1	Pl. 1 1f, figs. $20-24$, p. 229.	Orthis turgida, McCoy. One of the most convex of species. It is a very rare one. The space between the great muscles of the dorsal valve usually occupied by a low ridge is here a sharp one.
G1	p. 230.	Orthis Vespertilio, Sow. (Siluria, 2nd ed. pl. 6, figs. 1-3). A local British speeies-so strongly divided into two convex lobes, that it was originally called bilobata by Sowerby. The dorsal valve has a sharp keel all down it.
G m		Orthisina. Distinguished from Orthis no less by the very large area and covered deltidium, than by the peculiar shape of the teetl in the smaller valve.
Gm $G m m$	$\text { p. } 231 .$	Orthisina adscendens, Pander (Geol. Puss. Vol. 11. p. 203, pl. 12, fig. 3). Striated roughly and with deeussating striæ of growth.
G m	Leptcena (MeCoy does not admit Strophomena).	Orthisina scotica, MeCoy. Ribbed strongly in a radiate faslion.
		Strophomena, Rafinesque. Flattened shells expanded, not eouvex as Orthis; one valve frequently concave-the other convex. And the large central tooth or cardinal process double.
		Strophomena antiquata, Sow. (Siluria, Ind ed. pl. 20, fig. 18). A very unusual form of this genus, for it is covered with thiek blunt ribs and ridges. The species ranges up into the Ludlow rocks.
G m	Leptena, p. 241.	

Numbers and Localities.

All through the sandy part of the Bala series abundant; Alt-yr-Anker, Meiforl; Pwllheli ; the Hollies; b. 225, Blaen-y-cwm; Llansantfraid; Glyn Ceiriog; a. 148, Horderley.
a. 181, N. of Conway.
b. 252, Blaen - y-cwn, Nantyr; Bala; Llangollen; Meifod; Welchpool; Bwleh-y-ciban, Montgomeryshire; Horderley; Coniston; Rother Bridge.
b. 258, Cyrn - y - Brain, Wrexham. Llansantfraid, Glyn Ceiriog; a. 142, Cefn Coedog.
a. 143, Craig Head, Girvan; one specimen, b. 260 , said to be from Colmonel, i.e. Lower Bala.

Rauge, Upper Cambrian, i.e. Lower Bala, and Arenig rocks. Devonian.
b. 254 , Coniston, Bala: Llangollen; b. 253, Blacu-y-cwm Nantyr; Llansantfraid.

Case and Column of Drawers	Reference to McCor's Syuopsis: and Figures of Genera.	Names and References; Observations, \&c.	Numbers and Localities.
G m	Leptıena, p. 233.	Strophomena alternata, Conrad (Hall, Pal. N. York, I. pl. 31 a, fig. 1). Common. A difficult species to recognize as distinct from flatter varieties of L. deltoidea.	Girvan, Ayrshire.
G m	do.	Strophomena. Like S. alternata.	Coniston limestone (limestone nodules in Old Red), Holbeck Gill.
G m	Leptana compressa, p. 242.	Strophomena concentrica, Orthis expansa, Portl. (Geol. Rep. pl. 37, fig. 1). Distinguished from S. expanse by the strong interior conceutric ridges, and the teeth also	b. 254 *, Tynant, Horderley.
G m	Leptiena, p. $2^{3} 3$.	Strophomena corrugata, Portl. (Geol. Rep. pl. 32, fig. 17). This pretty group of sharply waved and striated species is European, not American. It probably contains many similar species.	Keisley, Dufton (in green slates).
G m	Leptagonia, MeCoy, p. -48.	Strophomena depressa, Dalman (L. rhomboidtelis, Wahl.), Min. Conch. t. 459. The commonest Brachioporl next to Orthis elegantula, in all the slate rocks-ranging from Lower Bala to Lower Carboniferous!	Selattyn Road, Oswestry; Corwen; Cefn Coedog; Llansantfraid, Glyn Ceiriog; and all through N . and S. Wales. Coniston limestone, cverywhere.
G m	p. 249.	Strophomena, var: γ ptychotis, McCoy. Sil. Syst. Ireland.	b. 242, Wilfa Penmachno; CefnCoedog,Corwen; Llanbedrog; Pwllheli; Cader Dinmael, Corwen.
G m	Lept. p. 234.	Strophomena deltoidea, Conrad. Hall, Pal. N. York, t. 13 a, fig. 3. Under this name Prof. McCoy scems to include some varieties of the L. tenuistriute, Sow. and also other species. L. cleltoidea is well figured by Hall.	Coniston (two species here); Alt-yr-Auker, Meifod.
G m	Pl. 1 н, figs. 38, 39, p. 234. As a var. of deltoidea.	Strophomena, var. β undata (see deltoideu). A marked form, resembling S. depressa, but with no recurved portion.	Grug; b. 248, Llandeilo; a. 153, Bala; a. 153^{*}, Cyrn- y-Brain, Wrexham; b. 247, Bryn Melyn, Bala; Glyn Difiwys; Alt - yr - Anker, Meifod.
G m	Pl. 1 h, figs. 36, 37. Leptena, p. 249.	Strophomena ungula, McCoy.	Llansantfraid, Glyn Ceiriog; Selattyn Road.

$\begin{gathered} \text { Case and } \\ \text { Column of } \\ \text { Drawers. } \end{gathered}$	Reference to McCor's Synopsis: and Figures of Genera.	Names and Refercnees; Observations, \&c.	Numbers and Localities.
G m	Stroph. compressa, p. 242.	Strophomena expansa, Sow. (Siluria, 2nd ed. pl. 6, fig. 4). The remarkable striated fanshaped muscle scars easily distinguish this finely striated species. Strophomena tenuistriata, Sow. (Siluria, and ed. pl. 5, fig. 15).	Llanfyllin; Meifor; Welchpool; Bala; Penmachno; Pwllheli, and all through the Snowdon district and Shropshire. Alt-yr-Anker, Meiford.
G m	Lept. deltoidea, McCoy.	Strophomena bipartita, Salter (Quart. Journ. Geol. Soc. Vol. 10, p. 74). Must be distinguished by its strong central rib and flatter form from S. deltoidea.	b. 246, Acton Scott.
	Pl. 1 H. figs. $33-35$, p. 246.	Strophomena simulans, McCoy. Rather adoubtful fossil.	b. 250, Blaen - y-cwn, Nantyr; b. 249, Cefn Goch, Glyn Ceiriog. b. 251, Golden Grove? wholly doubtful, both species and locality.
	p. 244.	Strophomena grandis, Sow. (Siluria, 2nd ed. pl. 6, figs. 6, 7). Our largest Cambrian Strophomena, with minute teeth, a very thin striated shell.	b. 256 , Horderley; Bodeaı, Pwllheli.
	S. grandis, p. 245. p. 240.	Strophomena, sp. (coarser strix than S. grandis). Strophomena pecten, Linn. (Davidson, Introd. Brach. Pal. Mon. pl. 8, figs. 163, 164).	b. 255*, Cefn Goch, Glyı Ceiriog; b. 256^{*}, Ravenstonedale; Cefn Coedog, near Corwen. Coniston; Applethwaite Common; Ravenstonedale; Horton; Blaen - y-Cwm, Nantyr, Glyn Ceiriog.
	Leptana, p. ${ }^{4} 4$.	Strophomena funiculata, Orthis, McCoy (Sil. Foss. Ireland, p. 30, t. 3, fig. 11).	Cyrn-y-Brain? Llandovery rock.
		Leptæna, Dalman. Composed of those thin (usually transverse) Brachiopods which have the one value involute on the other.	Range - Upper Cambrian -Silurian.
	p. 240.	Leptæna transversalis, Dalm. (Siluria, 2nd ed. pl. 9, fig. 17). Differs from L. sericea in the strong internal muscles which are longer, and also in the very spinose inside, the spines leaving decp pits on the cast.	b. 255, Coniston; above Rother Bridge; Llansantfraid, Glyn Ceiriog.

Case and Column of Drawers.	Reference to McCoy's Synopsis : and Figures of Genera.	Names and References: Observations, \&c.	Numbers and Localities.
G m	Pl. 1 1, figs. 1, 2, p. 261.	Pterinea pleuroptera, Comrad? Ambonychia costata, Conrad.	a. 1666^{*}, Cym-y-Brain, Wrexham. Not in the collection.
G m		Modiolopsis, McCoy. Confessedly a genus of convenience, it being extremely unlikely that Modiola-like shells, so different in external characters from the living forms, should have possessed no internal characters whereby to separate them. (The front muscular scars are deep and strongly defined, however.) Common in Bala rocks.	a. 160, Cader Dinmael.
G m	Pl. 1 I, figs. 17, 18, p. 267.	Modiolopsis modiolaris, Conrad sp.	a. 160, Cader Dinmael. a. 160^{*}, Horderley.
G m	A vicula ? p. 258.	Modiolopsis orbicularis, Sow. (Avicula, Sil. System, t. 20, fig. 3, Siluria, 2nd ed. pl. 7, fig. 1). A very round and rather long than wide form.	a. 160, Acton Scott, Shropshire; and abuudant in all sandy Bala rocks (rises into May Hill sandstone). J. W. S.
G m	Pl. 1 1, fig. 16, p. 266.	Modiolopsis inflata, McCoy. (M. antiquata of McCoy is a mistake. The species is Wenlock, and does not occur in Bala rocks.)	a. 208, Pen-Cerrig, Sertlı. N. of Bala.
G m	Pl. 1 к, fig. 17, p. 272.	Lyrodesma plana, McCoy. A genus with the characteristic numerous teeth of the Arcacides, but disposed fan fashion under the beak.	a. 209, Yspytty Evan.
G m	Pl. 1 k, figs. 7, 8, p. 273.	Cleidophorus? ovalis, McCoy. Doubtfully referable to this genus, which was proposed by Hall for toothless shells like flattened Cu cullellce.	a. 210, Dolydd Ceiriog waterfall, in the Berwyn Mountains.
		Orthonotus, Conrad. A convenient group, intender to enclose a number of Mytiloid shells, thin, without teeth; with a form like Myacites (but certainly with no relation to it), no pallial sinus, no wrinkled or granulated epidermis; and with dorsal and anterior lunettes.	.
G m	Pl. 1 1, fig. 23, p. 275.	Orthonotus nasutus, Conrad sp.	a. 211, Horderley. 9

Case and Column of Drawers.	Reference to McCoy's Synopsis: and Figures of Genera.	Names and References: Observations, \&c.	Numbers aud Localities.
G m	Arcu,	Ctenodonta Edmondiiformis, McCoy.	a. 212, Alt-y-Gader.
G m	Tucula levata, Pl. 1 k , figs. 4, 5, p. 285. $\text { p. } 284$	Ctenodonta varicosa, Salter, Siluria, 3rd ed. woodcut 39, fig. 4. Mem. Geol. Surv. III. p. 345 , woodent 13 , fig. 1, p. 343.	a. 164, Milltir Cerrig (milestone), on the Llanwddyn road. The species is a common one at Conway falls.
G m		Cucullella antiqua? Sow. (Siluria, 2nd ed. pl. 34, fig. 16).	a. 213 , Conway falls.
		Palæarca, Hall (Cyrtodonta, Billings. Cypricardites, Hall). With the general structure of Cucullæa these ancient bivalves want the posterior internal plate, and are closely related to Ctenodonta, and have affinity with Pterinea. Several species are known at Bala, and should be added to the collection.	
	Sea Butterflies generally of large size.	PTEROPODA AND HETEROPODA (or Nucleobranchiata).	
		The Pteropods are among the Mollusca the most simple in structure of the cephalate orders. They are also the most ancient. The Heteropoda or Nucleobranchs are low down in the scale, being nearest like the embryos of Gasteropods. Both Pteropoda and Heteropoda grew to an enormons size in the older Palæozoic times.	
		Theca, Morris, 1844. A triangular Pteropod shell, with an operculum (Barrande). The genus is related to the much smaller living genus Creseis, Rang. These were floaters, and as such the genus had a very wide range in olden time. Such fossils too, not being subjected to the full force of local elevation, have been usually long lived. Theca is found all through the Lower and Upper Cambrian to the Devonian epoch.	
G m	-	Theca reversa, Salter (T. Forbesii, Hall, not of Sharpe, figured in Siluria, 3rd ed. p. 199, Foss. 41, fig. 1). Mem. Geol. Surv. Vol. 111. p. 353 (woodcut 14, fig. 6, p. 347).	Common in Wales and Shropshire.

Case and Column of Drawers.	Reference to McCor's Synopsis: and Figures of Genera.
G m	
	C. cancelluta, p. 287. Heteropods-such as Atlanta.

Conularia, Niller, 1818. A large horny, probably transparent shell, highly ornamented, like certain species of Cleadora. The genus has a long range from the Tremadoc rocks to the Coal measures! Some of the species had long lobes between the four angles converging in age so as to close in the aperture.

Conularia Sowerbyi, Defr. (Siluria, 2nd ed. pl. 25, fig. 10). Ranges from Bala rocks to Ludlow,-compressed.

Bellerophon, Montfort, 1808 (Bucania, Hall, and Euphemus, McCoy).

Most authors have agreed to regard Bellerophon as a Heteropod or Nucleobranch; of larger size and stronger shell than the living forms. In support of this view we have the facts, that many species have extremely thin and ornamented forms of shells; that they bave a deep notch in the mouth like the living Atlanta; and globose forms in others, like the majority of the small living (Heteropods) Nucleobranchs. Against the idea that they could be single chambered Cephalopods, we have 1st, their thin and small shells (few attain the size of the smallest shelled Cephalopods); 2nd, if the analogy be drawn with Argonauta (instead of Carinaria as usual), it will be necessary to suppose that Decapod cuttlefishes abounded in Cambrian times, an idea wholly at variance with the observed facts, which limit Decapods to the secondary and tertiary epochs. I cannot follow Prof. McCoy here.

Bellerophon bilobatus, Sow. (Siluria, 2nd ed. pl. 7, fig. 9). The surface is covered with an extremely fine reticulation, not yet figured in ally work. This kind of ornament is conspicuous and common in the genus.

Numbers and Localities.
a. 214, Bryn Melyn, Bala. The species is easily distinguished by its compressed form, and not square section, from the coal measure fossil, Con. quadrisulcata.
a. 161*, Dolydd Ceiriog Waterfall, in the Berwyns. a. 161, Teirw River, N. Wales, S. of Llangollen; Horderley and Cheney Longville (in Shropshire), most abundant; Dinas Mowddwy; Llanwddyn.
$9-2$

Case and Column of Drawers.	Reference to McCor's Synopsis: and Figures of Genera.	Names and References ; Observations, dc.	Numbers and Localities.
Gm	Pl. 1 L, fig. 25, p. 311.	Bellerophon subdecussatus, McCoy. A form belonging to the subgenus Bucania, which has the whorls exposed in the umbilicus.	a. 163*, Alt-yr-Anker, Meifod.
G	As B. ormatus, $\text { p. } 310 .$	Bellerophon nodosus, Salter (B. ornatus, McCoy, not of Conrad. Mem. Geol. Surv. III. p. 349, woodcut 15).	a. 163, Teirw River, S. of Llangollen.
	B. expanst, p. 309.	(Bellerophon globatus? McCoy is not worth inserting. The original species was named from an obscure broken B. expansus, Sow.) N.B. Maclurea macromphala, McCoy, should be placed here, for Maclurea is a Heteropod. It is probable however that this shell is not a Maclurea.	A Ludlow species.
		Gasteropoda.	
case G	Univalve shells, spiral shells.	Only the herbivorous genera, or such as by their round mouths appear to have been sueh, are found in the old slate rocks, Pleurotomaria, Murchisonia, and Holopea, \&c. are probably all related to the Ianthinide and Litorinide, vegetable feeders.	
$G \mathrm{~m}$	Pleurotomaria, p. 991.	Murchisonia turrita, Portl. sp. (Geol. Report, p. 413, pl. 30, fig. 7?). Rather doubtfully identified.	a. 167*, Cyrn-y-Brain, Wrexham; Llyn Ogwen. Bala.
		N.B. Pleurotomaria, Afurchisonia, and Hormotoma, \&c. include a host of species very like one another in habit, and living in crowds together, probably much in the way of the violet snail (Ianthina). It is difficult to distinguish the species, unless close attention be paid to bands, ridges, \&e. \&c. The beaded-whorled species are distinguished as Hormotoma (see fig.), and these, which are just as common as the others, form perhaps a more natural group than either Murchisonia proper or Pleurotomaria. Of the latter genera, only the shorter forms are called Pleurotomaria, but these are not so Trochusshaped as the Oolitic species.	-

Case and Column of Drawers.	Reference to McCor's Synopsis: and Figures of Genera.	Names and References; Obscrvations, \&c.	Numbers and Localities.
G m	Pl. 1 L, fig. 20, p. 292. Pl. 1 k, fig. 4, p. 294. (not 1 L, fig. 21).	Murchisonia cancellatula, McCoy. Murchisonia simplex, McCoy. Distinguished from the next by a blunt median keel, and one above and below it.	a. 174*, Alt - yr - Anker, Mcifod. Glenquhaple; a. 167, Alt yr-Anker.
G m	Pl. 1 k, fig. 43, p. 293.	Murchisonia gyrogonia, McCoy (M. scalaris, Salter, but this was named from very imperfect specimens).	a. 174, Yspytty Evan. Lianfechan.
G m	Pl. 1 k , fig. 42, p. 294.	Murchisonia pulchra, McCoy (Sil. Foss. Irel. pl. 1, fig. 19). Perhaps a distinct species from the Irish one, which is from Llandovery rocks.	Alt-yr-Auker; a. 215*, N of Tremadoc.
G m	Pl. 1 L, fig. 23, p. 298. Euomphalus.	Cyclonema lyrata, McCoy. Cyclonema is a genus of Prof. Hall's, intended for thin shells of the Litorina group. These and all such shells were formerly referred to Turbo.	a. 179*, Llansantfraid, Glyn Ceiriog.
G m	Pl. 1 K , fig. 36, p. 296. Turbo crebristria.	Cyclonema crebristria, McCoy. (Turbo and Holopea, McCoy). Mcm. Gcol. Surv. III. p. 347 , woodcut 14 , fig. 5). A thin shell, spirally striate, ranges to May Hill Saudstone.	a. 173, Bala (Gelli Grin) Alt - yr - Anker, Meifod Mynydd Fron Frys, Chirk.
G m	Pl. 1 k, figs. 37, 38, p. 299. Euomphalus.	Cyclonema triporcata, McCoy (possibly referable to the genus Trochonema).	a. 173^{*}, Cyrn - y - Brain, Wrexham.
G m		Holopea, Hall. A genus of smooth or nearly smooth shells, like Litorina: Jut evidently not operculate as Turbo. It includes a great many of the ordinary univalves in Cambrian and Silurian rocks.	
G m	Pl. 1 к, fig. 41, p. 296. Trochus constrictus.	Holopea Striatella, Sow. (Siluria, nd ed. pl. 7, fig. 4).	a. 169*, Bryn Melyn, Bala; a.169, Cymmerig Brook, do.
G m		Holopea conica, exserta, lymnæoides, \&c. occur at Rhiwlas near Bala. (Mem. Geol. Surv. 1II. woodcut 14, p. 347.) These shells were referred by Forbes to such living types as the floating Litiopa. (Sce Mem. Geol. Surv. Vol. 1II. p. :346.)	
G m		Raphistoma, Hall.	

Case and Column of Drawers.	Reference to McCor's Synopsis: and Figures of Genera.	Names and References; Obserrations, \&c.	Numbers and Localities.
G m	p. 291. (Pleurotomaria lenticularis.)	Raphistoma æqualis, Salter (Siluria, 3rd ed. Foss. 40, fig. 2). It is found that the proportions of the whorls in this species differ from those of the May Hill Sandstone form.	Alt-yr-Anker, Meifod.
G m	Maclurea, p. 300. Pl. 1 L, fig. 12.	Raphistoma? (or Helicotoma) macromphala, McCoy sp.	a. 168, Craig Head, Girvan.
G m	p. 302.	Loxonema ——, sp. A large species, much like those from rocks of the same age in Sweden.	a. 177, Cefn-y-coed Lime quarry ; Mynydd Fron Frys, Chirk.
G m	p. 303.	Holopella ——, sp. These elongate Turritella-like shells are probably members of the Pyramidellilæ, not Litorinida.	Troutbeck.
G m	Pl. 1 K, fig. 32, p. 304.	Holopella monilis, MeCoy.	a. 181, Selattyn Road, near Chirk.
		Cephalopoda (Tetrabranchicta). The shells allied to Nautilus are of the greatest variety and abundance in the slate rocks. Straight, curved, coiled, or involute, they exhibit every change of form which is exhibited in later formations by the Ammonite group. Orthoceras and its subgenera are the common forms in the Bala rocks, while Lituites, Trochoceras, and Phragmoceras, abound in Silurian strata.	
G m	Pl. 1 l., figs. 28, 29, p. 318.	Orthoceras vagans, Salter (Mem. Geol. Surv. III. p. 356, pl. 24, figs. 1-5). A common fossil with distant septa. It ranges to Portugal and Sweden.	a. 175, Coniston; Troutbeck; a. 175*, Dufton, in green slates; (Prof. Harkness) Rhiwlas, Bala.
G m		Orthoceras, smooth species.	Holbeck gill (in nodules).
G m	Pl. 1 L, fig. 30, p. 316.	Orthoceras politum, McCoy (Quart. Journ. Geol. Soc., Vol. 7, pl. 10, figs. 5, 6).	a. 172, Glenquhaple.
G m	do.	Orthoceras, smooth species, with closer septa than O. vugans above quoted.	Pusgill, Dufton (green slate).
G m	p. 319.	Orthoceras bilineatum, Hall, Pal. N. York, t. 43, f. 2, 3 (Siluria, 3rd ed. p. 200).	Coniston (? Upper Bala) a. 172^{*}, Ardwell, Girvan.

$\begin{gathered} \text { Case and } \\ \text { Collumn of } \\ \text { Drawers. } \end{gathered}$	Reference to McCoy's Synopsis: and Figures of Genera.	Names and Refercnces: Observations, \&c.	Numbers and Localitic:
G m		Orthoceras, sp. allied to O. dutce, Barrande. The ribs apparently visible on the cast. (Ringedor Annulate species-Cycloceras, McCoy.)	a. 176^{*}, Holbeck gill (nodules in slate rock).
G m	p. 319.	Orthoceras annulatum, Sow. A cosmopolite species, at least in N. Hemisphere.	a. 176, Coniston.
G m	- do.	Orthoceras Ibex, Sow. (Siluria, 2nd ed. pl. 29, figs. 3, 4).	Coniston.
G m	do.	Orthoceras arcuoliratum, Hall (Pal. N.Y. i. pl. 42, fig. 7).	a. 171, Wrae Quarry, ${ }^{\top}$ 1pper Tweed.
		Ormoceras, Stokes. Differs from ordinary Orthoceras in having the siphuncle thicker and formed of bead-like pieces.	
G m		Ormoceras ——, new sp.	a. 170, Cymmerig Brook. Bala.
G m	p. $3 \underline{2} 3$.	Lituites cornu-arietis, Sow. (Siluria, 2nd ed. pl. 7 , fig. 10).	a. 230, Coniston.
G m	Pl. 1 L, fig. 26, p. 323. Appendix A. p. viur.	Lituites anguiformis (Trocholites, Hall). The Trocholites have usually whorls, wider than they are deep; i.e. the transverse diameter is greater than that from back to front.	a. 165, Mynydd Fron Frys. near Chirk.
	Trocholites, p. 324.	Lituites (Trocholites) planorbiformis, Conrad (Salter, Mem. Geol. Surv. III. pl. 25, fig. 5).	a. 162, Cymmerig Brook, Bala.

Upper Bala Group, Sedgw. (restricted in 1866. The Upper Bala of the Synopsis includes the Bala limestone, now Middle Cambrian).

1. Hirnont Limestone and Llanfyllin beds-viz., pale coloured slates above the Bala limestone. Ash Gill slates, \&c., above the Coniston Limestone.
2. Llandovery Rocks (Phillips, Salter, Lyell-Lower Llandovery of the Survey).

The fossils of these two divisions are arranged together in the cases and drawers, as it is clearly impossible always to draw a line between them; and they form indeed one series. But the list is kept in two separate columns here, as each group contains a few peculiar species. And it may eventually be proved that No. 2 is unconformable on No. 1. The conglomerates and grits of the Llandovery rock do not appear everywhere under the covering of the Silurian rocks, because these are unconformable on them. But wherever we rise to beds far above the level of the Bala limestone, a profusion of corals, Bryozoa and Brachiopoda of the smaller kinds, take the places of the characteristic Bala limestone shells. I arrange Ash Gill beds (above the Coniston limestone) with this division; but not that upper portion of the Coniston flags known as the Brathay flagstone, for that is the base (or nearly) of the Silurian series.

Case and Columu of Drawers.	Referenco to McCor's Synopsis: and Figures of Genera.	Names and Referenees; Observations, \&e.	Numbers and Loealities.	
	p. 22.	Nebulipora (Monticulipora of Milne Edwards and Haime is earlier).	Upper Bala proper.	Llandovery Group.
G 0		Nebulipora		Mathyrafal ffrid.
G 0	p. 24.	Stenopora fibrosa, Goldfuss (See ante, p. 29). The genus Stenoporr is not admitted by all writers; but seems to be founded on sufficient characters. According to Lonsdale and McCoy, the tubes have no connecting pores. [N.B. As a rule, individual corals are extremely abundant, but the species few, in the Llandovery rocks.]		b. 183 , very common at Mathyrafal ffrid, near Meifod. [As this locality is ofton quoted, we shall abbreviate it to the first word.] Allt Goch, and othor places near Llanfyllin.
G 0		S. fibrosa, var. ramulosa, Phill. (Mem. Geol. Surv. II. pt. 1, p. 307). A narrow-brancleed coral which is quite common, and may be a distinct species, or even a Chuetetes.		do. do. b. 171, Llanfyllin.
G 0	p. 19.	Favosites alveolaris, Goldf. (F. aspera, D'Orb. Siluria, 2nd ed. pl. 40, fig. 2).		b. 184, Allt Goch, Llanfyllin ; Golengoed, near Llandovery; Mathyrafal, S. Wales; Mullock, Girvan.
G 0	F. alveolaris, var. p. 19.	Favosites multipora, Lonsdale (Siluria, 2nd ed. pl. 40, fig. 5). A very doubtful fossil, since it is all but impossible, save for the expanded form, to distinguish it from the F. aspera which accompanies it. Numerous rows of pores are figured on the tubes by Lonsclale.		b. 186, Mathyrafal, as before; b. 185, Allt Goch, Llanfyllin ; Goleugoed.
G 0	Palcopora, p. 18.	Heliolites tubulata, Lonsdale, Sil. 4th ed. pl. 39, fig. 3.		b. 187, Allt Goch, Goleugoed; Mullock. 10

Case and Column of Drawers.	Reference to McCor's Synopsis: and Figures of Genera.	Names and References; Observations, \&e.	Numbers and Localities.	
G 0	Palcoopora, p. 16. Pl. 1 c, fig. 4.	Heliolites megastoma, McCoy (Siluria, 1867, p. 188, Foss. 30, fig. 7).	Upper Bala proper.	Llandovery Group. b. 188, Mathyrafal.
G 0	Paloopara, p. 17.	Heliolites subtilis, MeCoy. Narrow branches, very small cells.		a. 200*, Dalquorrhan, Mullock, Girvan.
G 0	p. 26.	Halysites catenulatus, Linn. (chaincoral). This long-lived and widely spread coral ranges throughout all the Upper Cambrian and the Silurian formations. It is most abundant in limestone, but has no sort of antipathy to slate, shale, sand, or fine grit. It must have inhabited various depths of water.		b. 189, Mathyrafal; b. 190, Goleugoed.
G 0	Cup-Corals.	PETRAIA.-Munster and Phillips. (Tuibinolopsis of Lonsdale.)		
	See figure, 1. 75.	One of the commonest and simplest of all the Cambrian or Silurian cup-corals. The calyx is so deep, and so strongly ribbed by the toothed lamellæ, that the conical matrix left in this part (frequently all we have preserved), shews all the characters necessary for distinguishing the many varieties, or species, as they are supposed to be. The changes from the young to the adult state are not yet sufficiently known, to prevent us from multiplying species on the characters drawn from the lamelle. The base of the cup, a solid mass of twisted lamellæ, or tabulx, is short or long, large or minute, in proportion to the cup, in the various species. To Prof. Phillips and Prof. McCoy we are chiefly indebted for descriptions of the species.		

$\begin{gathered} \text { Case and } \\ \text { Column of } \\ \text { Drawers. } \end{gathered}$	Reference to $\mathrm{HcCor}{ }^{\prime} \mathrm{s}$ Synopsis: and Figures of Genera.	Names and References; Observations, \&c.	Numbers and Localities,	
G	(Caninia, p. 28.)	Omphyma turbinata, Linn. (Edw. Monogr. Brit. Fos. Corals, pl. 69, fig. 1). The largest and most common of all the cup-corals, ranging from this formation to the Wenlock, where it is abundant. Siluria, 3rd ed. pl. 39, fig. 11.	Upper Bala proper. b. 194, Llanfyllin. b. 195, Llanfyllin.	Llandovery Group. b. 193, Mathyrafal, Mcifod.
G 0 G 0	Bryozoa.	Ptilodictya, -_ sp. Glauconome disticha, Goldf. (See Pet. Germ. t. 65, fig. 15).		
G 0	Glauconome, p. 49. Pl. 1 c, fig. 16, p. 46.	Ptilodictya explanata, McCoy (See p. 44).		Mathyrafal, Meifod; Pen-y-Craig, do.
G 0	Pl. 1 c, fig. 15, p. 46.	Ptilodictya costellata, McCoy (See p. 44).		b. 197, Dalquorrhan, Mullock, Girvan, Ayr
G 0	do.	ECHINODERMATA. Cyathocrinus, cup of some species.		
G 0	Worm-tubes. $\text { p. } 63 .$	ANNELIDA. Tentaculites ornatus, Sow. (Siluria, 3 rl ed. pl. 16, fig. 11). Арparently the commonDudley species.		b. 199, Mullock, Gir van.
G 0	T. annulatus, p. 63.	Tentaculites anglicus, Salter(Siluria, 3rd ed. pl. 1, fig. 3). T. amulatus, Sil. Syst. The T. annulatus is a Devonian form without the fine longitudinal striæ.		b. 200, Pwllheli (? Llandovery, which formation must exist there). J. W. S.
		CRUSTACEA - Phyllopoda and		
G 0	Pl. 1 E, fig. 3, p. 136. Trilobites.	Beyrichia complicata, Salter (Mem. Geol. Surv. III. pl. 19, fig. 9). The Trilobites are few in number, and of species chiefly commou to Cambrian and Silurian rocks.		b. 201, Mathyrafal.
G 0	Portlockia, p. 163.	Phacops Stokesii, Milne Edw. (Salter Mou. Brit. Tril. pl. 2, figs. 1-6). A common species at Dudley.		b. 202, Mullock, Girvan.

Case and Column of Drawers.	Heference to BeCor's Synopsis : and Figures of Genera.	Names and Refereuces; Observations, \& ${ }^{\text {ce. }}$	Numbers	Localities.
G 0	Harpidella, p. 143.	Cyphaspis megalops, McCoy (Decade Geol. Surv. No. 7, pl. 5). For genus see Wenlock rocks.	Upper Bata proper.	Llandovery Group. b. 203, Mullock, Girvan.
G	Ceraurus Williamsi, p. 155. Pl. 1 f, fig. 13.	Cheirurus bimucronatus, Murch. (Decade 7, pl. 2. Mon. Brit. Tril. pl. 5, figs. 1-5). The genus Ce raurus cannot stand-so ill described.		a. 199*, Goleugoed (Mr Williams).
G 0		Ilænus Thomsoni, Salter (Pal. Mon. Brit. Tril. pl. 28, figs. 2-4). A species quite characteristic of Llandovery beds. The Illuni differ by good but obscnre characters.		a. 183, MLullock.
G 0		Lichas bulbiceps? Salter and Phillips (Mem. Geol. Surv. 11. Pt. 1, pl. 8, fig. 8). I am not sure of this being the Dudley one.		b. 204 , Mullock, Girvan.
G 0	Dysplanus centrotus, Pl. 1 E, fig. 19, p. 173.	Illænus Bowmanni, Salter (Mon. Brit. Tril. pl. 28, figs. (-13). One of the characteristic Cambrian forms which range here also.		b. 205, Drummock, Girvan.
G		Encrinuruspunctatus, Brünn (Quart. Journ. Geol. Soc. Vol. 6, p. 158, pl. 32, figs. 1-5). Another fossil which links the Llaudovery to the Silurian.		b. 206, Mathyrafal.
G 0	do.	Encrinurus punctatus, var. arenaceus, Salter (Decade 7, Geol. Surv. pl. 4, p. 6). In some beds this varicty prevails.		
G	C. Blumenbachii, p. 165. C. subdiademuta, Pl. 1 F, fig. 9, p. 166.	Calymene Blumenbachii, Brongn. (Mon. Brit. Tril. pl. S, figs.7-16). The common Dudley form of the species, which varies much. In the Caradoc the glabella (stomach) is reduced, but attains its full size in the Dudley Limestone.		a. 183*, Drummock, near to Girvan; Mullock (C. subdiademata).

Case and Column of Drawers.	Reference to MeCoy's Syuopsis: and Figures of Gencra.	Names and Referencos; Observations, \& $^{\text {co. }}$	Numbers aud Loealities.	
G	IIemithyris, p. 199. Pl. 1 H , figs. 6-S.	Meristella angustifrons, McCoy (Rhynchonella of some). Meristella has internal spires, otherwise it has much the look of Terebratula. Davidson, Sil. Brach. t. 10, figs. 21-27.	Upper Bala proper.	Llandovery Grout. a. 193, Dalquorrhan, Mullock, Girvan (very common). It also occurs in S. Wales.
G	Spirifer percrassa, p. 194.	Meristella? crassa, Sow. (Atrypa, Sil. Syst. t. 21, f. 1). In the Sil. System are figures only of the interior, which near the beak is much ribbed. Sil. 2nd ed. pl. 9, fig. 6 .		a. 194, Cefn Rhyddan; Cyrn - y-Brain; Mathyrafal; b. 24, Cwar Mawr, Cilgroyn (Mr Hughes).
G	Hemithyris, p. 207. Pl. 1 H, fig. 9.	Meristella? subundata, McCoy. (The genus of this broad form is a little uncertain, says Davidson Sil. Brach. t. 13, fig. 4.)	Altffair ffynuou.	a. 195, Mathyrafal.
G 0 G 0	do. do.	Meristella, sp. allied to M. crassa. Meristella, sp. (Looks like part of Pentamerus lens.)		Mandinam, near Llandovery. Mandinam, Llando very.
	Pl. 1 H, fig. 3, p. 188.	[Siphonotreta micula has been quoted from Upper Bala-it is a Lower Bala fossil only.]		
G	Hemithyris, p. 203.	Rhynchonella? Lewisii, Davidson (Siluria 3rd ed. p. 226, foss. 58. Davidson, Mon. Sil. Brach. pl. 23, figs. 25-28). Rhynch. Lewisii is one of the commonest Dudley shells.		b. 210, Mathyrafal.
G 0	Hemithyris, p. 205.	Pentamerus rotundus? (Siluria, 3rd ed. pl. 22, fig. 18). (Pentamerus? Davidson, Sil. Brach. t. 15, figs. 9-11.)		1. 210^{*}, Allt Goch
G		Pentamerus lens, Sow. (Siluria, 3rd ed. pl. 8, figs. 9, 10). The flattened form, and short lamellæ distinguish it.		a. 982, Llettyrhyddod, Llandovery (Mr Hughes) ; a 192, Mandinam ; Noetly Grug, Mathyrafal, rare.

Case and Column of Drawers.	Reference to McCor 's Synopsis : and Figures of Genera	Names and References; Observations, de.	Numbers and Localities.	
	p. 211. P. labvis, p. 209.	Pentamerus oblongus, Sow. (Siluria, 3rd ed. pl. 8, figs. 1-3). P.lcevis is the young only. The lamella is very long.	Upper Bala proper.	Llandovery Group. Cyrn-y-Brain, near Wrexham; a. 192* ${ }^{*}$ Noeth Grug
G		Pentamerus undatus, Sow. (Siluria, 3rd ed. pl. 8, figs. 5-7). Davidson, Sil. Br. t. 19, figs. 4-9.		b. 209*, Mathyrafal Goleugoed ; Mandi nam.
G	P. microcamerus, McCoy.	Pentamerus liratus, Sow. Stricklandinia lirata. Davidson, Mon. Sil. Brach. pl. 20.		a. 190, Mandinam.
		Pentamerus globosus, Sow. (Davids. Sil. Brach. t. 19, figs. 10-12, is rare). N.B. The species of Pentamerus with short hinge-plates and a wide instead of elongate habit have been long distinguished by Billings as a new genus, Stricklandinia. They are only found in the Llandovery and May Hill rocks.		
G 0	p. 213.	Orthis Actoniæ, Sow. (Siluria, 2nd ed. pl. 5, fig. 11. Mem. Geol Surv. III. p. 339, pl. 21, figs. 1-8).		b. 208*, Mathyrafal.
G 0		Orthis biforata, Schlot. var. lynx, Eichwald (Geol. Russ. t. 3, fig. 3).	b. 206*, Maes-yfallen.	b. 207*, Mathyrafal.
G 0	Spirifera biforata, var. fissicostata, McCoy, p. 193.	Orthis fissicostata, McCoy. A new species, having a very wide form, and the ribs divided.	Ash Gill, Westmorland; b. 205*, Maes Hir ; and b. 204*, Aber Hirnant, Bala.	Mathyrafal.
G 0	p. 213.	Orthis biloba, Linn. (Siluria, 2nd ed. pl. 9, fig. 20).	b. 203*, Cefn Goch, Glyn Ceiriog.	
Go	p. 214.	Orthis calligramma, Dalm. (Geol. Russ. t. 13, fig. 7.)		
Go		Orthis, var. Walsallensis, Davidson (Salter, Mem. Geol. Surv. III. p. 337, pl. 22, figs. 6, 7).	b. 201*, Llanfyllin, N. Wales.	
G 0	O. plicata, p. 222.	Orthis, var. plicata, Sow. (Siluria, 2nd ed. pl. 5, fig. 9).	Rhosfawr, Llanfyllin.	b. 202*, Noeth Grug Penlan? Llandovery

UPPER BALA GROUP.

Case and Column of Drawers.	Reference to McCor's Synopsis: and Figures of Genera.	Names and References; Observations, \&c.	Numbers a	Localities.
G 0	p. 216.	Orthis elegantula, Dalm. (Siluria, 2nd ed. pl. 5, fig. 5).	Upper Bala proper. b. 371, Maes-y fallen, Bala; b. 372, Rhosfawr, Glog, near	Llandovery Group. b. 373, Mullock Quarry; b. 374, Mathyrafal.
G 0	p. 221.	Orthis parva (Pander. Geol. Russ. t. 26, fig. 10).	Llanfyllin. b. 376 , Llanfyllin.	b. 377, Penlan, Llandovery.
G 0	p. 221.	Orthis parva, var. avellana (De Vern. Geol. Russ. t. 13, figs. 3, 4).		b. 378 , Mullock.
Go G 0	Spirifera, p. 194. p. 220.	Orthis insularis, Eichw. (De Vern. Gcol. Russ. Vol. II. pl. S, fig. 7). Orthis hybrida, Sow. (Siluria, 2nd ed. pl. 20, fig. 13).		Mathyrafal; a. 978 Llettyrhyddod, Llan dovery (Mr Hughes) b. 379 , Mathyrafal.
$\begin{aligned} & \text { G } 0 \\ & \text { G } \end{aligned}$	Pl. 1 H, fig. 11, p. 219.	Orthis Hirnantensis, McCoy (Amm. Nat. Hist. 2nd Ser. Vol. vıII. p. 395). Very characteristic of the Upper Bala limestone.	b. 381, Cwm - yr Aethren ; b. 380, Maes-y-fallen ; a. 184, Maes-Hir ; b. 382, Aber Hirnant; b. 383, Cerrig - y Druidion.	
Go	O. confuris, p. 215.	Orthis, sp.-Like Strophomena Pecten.		b. 384, Mullock.
G 0	p. 224.	Orthis protensa, Sow. (Siluria, 2nd ed. pl. 9, fig. 22). A squarish shell, flattenerl, and with the hinge-teeth parallel and short.	b. 385, Ash Gill, Westmorland; Helms Knot, Dent.	a. 191, Goleugoed Llangynyw; Mathyrafal, \&c.
G 0	p. 225.	Orthis reversa, Salter (Sil. Foss. Ireland, pl. 5, fig. 2).		b. 386, Mullock, Girvan.
G 0	$\begin{gathered} \text { Pl. } 1 \text { н, figs. } 15-19 \text {, } \\ \text { p. } 227 . \end{gathered}$	Orthis sagittifera, McCoy (Ann. Nat. Hist. 2nd Ser. Vol. viri. p. 398). Very near to O. turgida.	a. 180, Aber Hirnant; Cwm-yrAethren, Bala.	
Go	p. 228.	Orthis testudinaria, Dalm. (Siluria, 2nd cd. pl. 5, figs. 1, 2).	b. 388, Maes-y-fallen, Bala.	b. 389, Mullock, Girvan; b. 390, Mathyrafal.
G 0	p. 230.	Orthis vespertilio, Sow. (Siluria, and ed. pl. 6, figs. 1-3).		b. 391, Mathyrafal.
G 0	O. turgida, p. 299 PL. 1 H, figs. $20-24$.	Orthis, sp. O. turgida is a very peculiar species, with good characters in the teeth. This is distinct.		b. 392, Craig Wen; Mathyrafal.

Case and Column of Drawers.	Reference to McCor^{\prime} s Synopsis: and Figures of Genera.	Names and References; Observations, \&c.	Numbers and Localities.	
G 0	Leptagonia, p. 248.	Strophomena depressa, Sow. (S. rhomboidalis of Wahlenberg. Davidson, Introd. to Class. Brach. pl. 8, figs. 167-173). This weed of the Silurian and Cambrian rocks assumes fifty different shapes.	Upper Bala proper. b. 400 , Rhosfawr, N. of Glog, Llanfyllin.	Llandovery Group. b. 401, Allt Goch, Llanfyllin; b. 402 , Mathyrafal; Penlan.
G 0 G 0	Leptcena, p. 241. L. alternata, p. 233.	Strophomena antiquata. Sow. (Siluria, 2nd ed. pl. 20, fig. 18). Strophomena, sp. Fine lines. So many are the species of this group in all parts of the world, that good internal characters are wanted to discriminate them.		Mathyrafal; a. 977, Lettyrhyddod, Llandovery (Mr Hughes). b. 404, Dalquorrhan, Girvan.
G 0 G 0	$\begin{aligned} & \text { p. } 237 . \\ & \text { p. } 239 . \end{aligned}$	Leptæna sericea, Sow. (Siluria, 2nd ed, pl. 5, fig. 14). Leptæna sericea, var. rhombica, Phill.	b. 405 , S. of Llanfyllin.	b. 406 , Mathyrafal b. 407 , Goleugroed b. 408 , Allt Goch. b. 409, Mathyrafal.
G 0	L. quinquecostata, Pl. 1 н, f. 30, 31, p. 236 (not fig. 32).	Leptæna transversalis, var. undulata, Salter (not the true quinquecostata, for which see p. 64).		b. 410 , Craig Wen; b. 411 , Cefn Rhyddan. a. 198, Mathyrafal, near Meifod. a. 196, Pen-y-Craig.
G 0		Leptæna scissa, Salter, MS. A small and highly convex form, with the muscles deeply indented. (Siluria, 3rd ed. p. 210.)		a. 197, Pen-y-Craig.
G 0	Bivalves, Orthonotus semisulcatus,	LAMELLIBRANCHIATA. Orthonotus —— sp.		a. 189, Mullock.
Go		Ctenodonta (Nucula formerly), see p. 66. C. Mughesii, n. sp. Salter. Squarer and less ovate than the kindred Caradoc forms.		a. 979, Lettyrhyddod, Llandovery (Mr Hughes).

Silurian (Rocks) System, Sedgwick; Upper Silurian, Murchison

Above all the Cambrian Rocks-and this throughout the Northern Hemisphere, so far as known-the Silurian rocks, consisting of the May Hill (or Clinton) Group, Lower Wenlock or Woolhope Group (Sedgwick and Salter), Wenlock Group (Murchison), Ludlow Group (Murchison) including Downton sandstone, lie unconformably on the Cambrian rocks. The percentage of common fossils between the two systems is very small-not more than 6 or 7 per cent.
May Hill Sandstone (Sedgw.). Upper Llandovery (Murch.) Upper Caradoc, olim. Clinton group of North America. Upper Anticosti group, Canada.

Case and Column of Drawers.	Reference to McCor's Synopsis: and Figures of Genera.	Names and References; Observations, \&c.	Numbers and Localities.
G a	G. ludensis, p. 4. पक्ष p. 12.	GRAPTOLITIDE. Graptolithus priodon (Siluria, 2nd ed. pl. 12, figs. 1, 2). AMORPHOZOA.	May Hill and Tortworth.
		Stromatopora striatella, D'Orb. (Siluria, Ind ed. pl. 41, fig. 31). (Vioa prisca is an annelide, see next page.)	May Hill, Gloucestershirc.
G a	Corals. Palooopora, p. 15. Pl. 1 c, fig. 4, p. 16.	ZOOPHYTA. Heliolites interstinctus, Linn. (Siluria, 2nd ed. pl. 39, fig. 2).	b. 422, May Hill.
		Heliolites megastoma (Siluria, 3rd ed. p. 188, Foss. 30, fig. 7).	Malverns.
G a 1	p. 19.	Favosites alveolaris, Goldf. (Pet. Germ. t. 26, fig. 1).	b. 424, May Hill ; b. 425, Norbury.
G a	F. alveolaris, p. 19, var. a.	Favosites multipora, Lonsd. (Siluria, 2nd ed. pl. 40, fig. 5).	May Hill.
		Favosites cristata, Blum. (Siluria, 3rd ed. Foss. 18, fig. 1).	Malverns.
G a 1	p. 20.	Favosites aspera, D'Orb. (Siluria, 2nd ed. pl. 40, fig. 1).	Malverns.
	p. 26.	Halysites catenulatus (Siluria, 2nd ed. pl. 40, fig. 14).	b. 429, May Hill; Llandovery.
		Palæocyclus, Milne Edw. [See Wenlock limestone.]	
G a 1		Palæocyclus præacutus, Lonsd. (Siluria, 乌nd ed. pl. 41, figs. 4, 5).	b. 432, May Hill; Worcester Beacon, W. side.

Case and Column of Drawers.	Reference to McCoy's Synopsis: and Figures of Genera.	Names and References; Observations, \&c:	Numbers and Loealities.
		Petraia, Münster.	
G	$\text { p. } 40 .$	Petraia rugosa, Phill. Palæozoic Foss. Devon. p. 7, t. 2, fig. 7 c.	b. 435, Castell Craig, Gwyddon.
G a 1	do.	Petraia elongata, Phill. (Siluria, 2nd ed. pl. 38, fig. 6).	b. 436, Norbury; Castell Craig, Gwyddon; b. 438 , May Hill; Presteign?
Gal	Pl. 1 в, fig. 26, p. 40.	Petraia subduplicata, Siluria, 3rd ed. Foss. 15, fig. 11.	b. 439, Presteign ; b. 440, May Hill.
Gal	Pl. 1 в, fig. 25, p. 41.	Petraia uniserialis, McCoy. A young form of some species. Petraia bina, Lonsd. Siluria, 3rd ed. p. 219.	b. 441, Castell Craig, Gwyddon; b. 442, Penlan, Llandovery. a. 239, Malverns or Norbury (quoted from Horderley); b. 443, Pentamerus Shales, Onny River, Shropshire; b. 444, Malverns.
	Caninia, p. 28.	Omphyma turbinata, Linn. sp. (Siluria 3rd ed. pl. 39, fig. 11, M. Edw. Brit. Foss. Cor. pl. 69, fig. 1).	
	Lace Corals, de. $\text { p. } 45 .$	POLYZOA (Bryozoa, Ehrenberg). Ptilodictya, Lonsdale. See Wenlock for genus. Ptilodictya scalpellum, Lonsd. (Sil. 3rd ed. pl. 41, fig. 25, Foss. 51, p. 217).	
G a 1	Genus, p. 56.	ECHINODERMATA. Glyptocrinus, sp. Periechocrinus, sp. Very common in various localities.	b. 451 , Norbury.
		ANNELIDA. For the following, see remarks on genera in Wenlock list.	
G a 1	p. 63.	Cornulites serpularius, Sehl. (Sil. 2nd ed. pl. 10, fig. 2, pl. 16, figs. 3-10).	b. 453, Presteig11.
G a 1	T. annulatus, p. 63.	Tentaculites anglicus, Salt. (Sil. 2nd ed. pl. 1, fig. $3, \&$ pl. 10, fig. 3).	b. 454 , Presteign.
G a 1	 Pl. 1 в, fig. 1, p. 260, with Pterinea demissa.	Vioa prisca is a boring Annelide. The cavities made by Vioa in Oyster-shells are generally filled with sponge.	a. 345, Malverns.

Case and Column of Drawers.	Referenco to McCor's Synopsis: and Fignres of Genera.	Names and Referenees; Observations, \&c.	Numbers and Localities.
G a 2	Hemithyris lacunosa, p. 202.	Rhynchonella decemplicata, Sow. (Siluria, 2nd ed. pl. 9, fig. 15). Rhynchonella borealis, Schl. (Siluria, 2nd ed. pl. 22, fig. 4, var. diodonta, fig. 5).	a. 347^{*}, Eastnor Park a. 347, Pwllheli; b. 476 , Presteign. Common in May Hill Sandstone.
	do.	Rhynchonella, sp.	b. 477, Eastnor, Malvern.
G a 2	Hemithyris, p. 204.	Rhynchonella nucula, Sow.? (Siluria, 2nd ed. pl. 9, figs. $9 \& 11$).	b. 478 , Braes, N. of Girvan.
	p. 209.	Pentamerus, Sow. See Wenlock limestone. Pentamerus lens, Sow. (Stricklandinia lens, Davids. Sil. Brach. 19, figs. 13-21).	May Hill and everywhere; Norbury, \&c.
G a 3		Pentamerus linguifer, Sow. (Silur. 2nded.pl. 22, fig.21. Davids.Sil. Brach. pl. 17, figs.11-14).	b. 481, Worcester Beacon.
$\text { G a } 3$ and case	P. microcamerus, p. 210.	Pentamerus (Stricklandinia) liratus, Sow. (Dav. Sil. Brach. t. 20).	b. 482, Worcester Beacoln; b. 483, Norbury; a. 234, May Hill; a. 350 , as P. microcamerus.
$\begin{aligned} & \text { Ga3 } 3 \\ & \text { Ga } 10 \end{aligned}$	P. lovis, p. 209.	Pentamerus oblongus, Sow. (Siluria, 2nd ed. pl. S, figs. 1-4. Davids. l.c. t. 18). (P. lovis is the young only.)	b. 23, Castell Craig, Gwyddon (Mr Hughes); b. 48t, Norbury; b.485, Presteign; b. 486, Acton Scott; b. 487 , The Hollies; a. 232, Pwllheli.
	$\text { p. } 208 .$	Pentamerus globosus, Sow. (Siluria, 2nd ed. pl. 8 , fig. 8).	The Hollies farm; Pwllheli. [N.B. Pwllheli is unnoticed in any map as May Hill Sandstone.]
G a 2	p. 211.	Pentamerus undatus, Sow. sp. (Siluria, 3rd ed. pl. 8, figs. 5-7).	b. 488 , Penlan.
G a	Hemithyris upsilon, p. 207	Meristella didyma, Dalm. (Siluria, Ind ed. pl. 22, fig. 15).	Norbury ; a. 453, Pwllheli.
G a 2		Meristella, sp. Very imperfect	b. 490, May Hill.
G a 2	Athyris, p. 196.	Meristella tumida, Dalm. (Siluria, 2nd ed. pl. 22, fig. 20).	b. 491, May Hill.

Case and Column of Drawers.	Reference to McCox's Synopsis: and Figures of Genera.	Names and References; Observations, \&c.	Numbers and Localities.
Ga 2	p. 216.	Orthis elegantula, Dalm. (Silur. 2nd ed. pl. 5, fig. 5, pl. 9, fig. 19).	b. 514, May Hill.
	Pl. 1 H, figs. 41, 42, p. 223.	Orthis porcata, McCoy (Silur. 3rd ed. Foss. 36, fig. 5, p. 193).	Rare.
G a 2	p. 240.	Leptæna transversalis, Dalm. (Silur. 2nd ed. pl. 9, fig. 17).	b. 516, Pentamerus Shales, Onny River.
	p. 237.	Leptæna sericea, Sow. (Siluria, 2nd ed. pl. 5, fig. 14, pl. 9, fig. 18).	Two or three varieties at Malvern.
		Leptæna scissa, Salter MSS. (Siluria, 3rd ed. p. 210).	Not rare.
	p. 249.	Chonetes lata, Von Buch. (Siluria, 2nd ed, pl. 20, fig. 8).	do.
	4	LAMELLIBRANCHIATA.	
G a 4	P. demissa, Pl. 1 I, fig. 7, p. 260.	Pterinea retroflexa, Wahl. sp. var. demissa, Conrad.	a. 236*, Eastnor Park.
G a	p. 262.	Pterinea retroflexa proper is also common (Siluria, 2nd ed. pl. 9, fig. 26).	a. 236, Malvern.
Ga4		Ctenodonta lingualis, Phill. sp. (Mem. Geol. Surv. Vol. II. pt. 1, p. 367, pl. 22, fig. 6).	b. 521, Eastnor Park, Malvern.
	Arca, Pl. 1 к, fig. 1, p. 283.	Ctenodonta subæqualis, McCoy, sp. C. Eastnori, Sow. sp. C. deltoidea, Phill. sp.	Malvern.
		Mytilus mytilimeris, Conrad (Mem. Geol. Surv. II. pt. 1, p. 364, pl. 20, figs. 7-9. Silur. 3rd ed. p. 229. Foss. 61, fig. 6).	May Hill.
		Lyrodesma cuneata, Phill. sp. (Mem. Geol. Surv. II. pt. 1, p. 366, pl. 21, figs. 1-4).	Marloes Bay.
	Leptodomus, p. 278.	Orthonota amygdalina, Sow. sp. (Siluria, 2nd ed. pl. 23, fig. 6).	May Hill.
	Capulus, p. 290.	GASTEROPODA.	
		Acroculia haliotis, Sow. sp. (Siluria, 2nd ed. pl. 24, fig. 9).	

Case and Column of Drawers.	Reference to McCor's Synopsis: and Figures of Genera.	Names and References; Observations, \&c.	Numbers and Localities.
G a	$\text { p. } 298 .$ p. 299. Turbo, Pl. 1 K, fig. 36, p. 295. Pl. 1 L, fig. 22. Naticopsis, p. 302.	Euomphalus funatus, Sow. (Silur. 2nd ed. pl. 25, fig. 3).	b. 526, May Hill.
		Euomphalus sculptus, Sow. (Silur. 2nd ed. pl. 9, fig. 27, pl. 25, fig. 2).	May Hill.
Gat		Cyclonema crebristria, McCoy (Mem. Geol. Surv. III. p. 347, woodeut 14, fig. 5).	b. 528, Norbury.
Ga4		Cyclonema, sp.	b. 529 , Norbury.
Ga 4		Natica or Acroculia.	b. 530, May Hill.
Ga 4		Holopea _ sp. (For genus see Mem. Geol. Surv. III. p. 347, woodcut 14).	b. 531, Castell Craig Gwyddon.
		Holopea tritorquata, McCoy sp. (Sil. Foss. Irel. p. 12, pl. 1, fig. S).	Not unfrequent.
Ga 4	p. 303.	Holopella gregaria, Sow. sp. (Siluria, 2nd ed. pl. 34, fig. 10 A).	b. 533, Eastnor Park.
Ga 4	do.	Holopella cancellata, Sow. sp. (Siluria, Iud ed. pl. 10, fig. 14).	b. 534 , Presteign.
Ga 4		Murchisonia -_ sp.	b. 535, Eastnor Park.
	pp. 308, 309, 311.	PTEROPODA and HETEROPODA. Bellerophon bilobatus, trilobatus, dilatatus, expansus, Sow. Eccyliomphalus? lævis, Sow. (Silur. 2nd ed. pl. 25, fig. 9).	
G a 4	$\sqrt{3}$ p. 329.	CEPHALOPODA. Phragmoceras ventricosum, Sow. (Siluria, 3rd ed. pl. 32).	a. -35, May Hill.
Ga 4		Orthoceras __ sp.	May Hill ; b. 538, Eastnor Park.
Ga 4	p. 319.	Orthoceras annulatum, Sow. Siluria, 3rd ed. pl. 26 , fig. 1.	b. 539, May Hill.

Lower Wenlock Rocks (Woolhope Limestone and Shale; Denligh Grit and Flagstones; Coniston Flags (upper) and Coniston Grits).

The base of the Wenlock series is in Shropshire and the border countics represented by a limestone (the Woolhope), which differs a good deal in its organic contents from the Wenlock limestone.

In N. Wales the Denbighshire grits occupy this place, and contain Wenlock fossils. They pass eastward into the lower portions of the Denbigh flagstones.

In Westmorland the Coniston or Brathay flag (upper part) has several of the fossils of the Denbigh flagstone. Both in it, and especially over it, lie thiek beds of grit, the chief mass of which (Coniston grits) has fossils like those of the Denbigh flagstone and Coniston flagstone. We therefore class all these together as Lower Wenlock. But as it is not quite certain how far the two formations (Denbigh grit and Denbigh flagstone, and Coniston grit and flagstone) are to be considered identical, I give the lists side by side, not mixed together.

Lastly, there is good reason to believe the flagstones of Balmae, Kircudbright, are of this age. They contain Weulock fossils, with some Graptolites and others, which render this the more likely position for them.

Denbighshire grit D. G.; Denbighshire flagstone D. F.
Coniston grit C. G. ; Coniston flagstone C. F.
Woolhope limestone and slale W. L.
Kircudbright flagstones (Balmae shore) are certainly the equivalent of the Denbigh flags (J. W. Salter).

Case and Column of Drawers.	Reference to McCor's Synopsis: and Figures of Genera.	Names and References; Observations, \&c.	Numbers an	Localities.
Ga 5	(Diplograpsus ramosus, p. 8.)	Graptolites sp. Very imperfect, but certainly Graptolithus.	Hales and Shropshire. \qquad	Wrestmorland and S. of Scotland. b. 558 , D.F. Old Slate Quarry, Ulverston to Ireleth.
G a		Retiolites Geinitzianus, Barr. (Siluria, 3rd ed. p. 541. Foss. 90, fig. 2).	a. 454, D. G. Pentre cwm dda.	
G a 9	Corals. Strephodes pseudoceratites. Pl. 1 b, fig. 20, p. 30.	ZOOPHYTA-ANTHOZOA. Cyathophyllum pseudoceratites? McCoy's figured specimen.	a. 459, W. L. Old Radnor road, Presteign.	:
G a 8	p. 24.	Stenopora fibrosa, Goldf. (Siluria, 3rd ed. pl. 40, figs. 6, 7).	b. 560 , W. L. Old Radnor.	b. 561, C. F. Helms Knot; Howgill Fell.
G a 6		Petraia, \qquad small sp. (See May Hill Sandstone).	b. 562, D. F. Llangynyw Rectory, Montgomeryshire.	
G a 9	p. 20.	Favosites Gothlandica, Linn. (Siluria, 2nd ed. foss. 17, figs. 2, 3).	b. 563 , W. L. Old Raduor to Presteign.	
G a 6		Favosites, sp. (aspera ?) just passibly a Dictyocaris (MS.).		a. 463, D. F. Balmae shore, Kircudbright.
G a 7	Echinodermata, Pl. 1 D, fig. 3, p. 55.	ECHINODERMATA. Actinocrinus pulcher, Salter. The common flagstone species. The stems are tubercular, the pelvis small. The arms sinnous and much branched. It appears to be often attached to Orthoceras, as if it had floated.	b. 565 , D. F. NantGwrhwyd Uchaf, Llangollen.	b. 566 (cast). C. F. Osmotherly Common, Ulverston.
G a	Eucalyptocrinus, Pl. 1 D, fig. 2, p. 58 ?	Hypanthocrinus? (H. polydactylus, See Wenlock).	b. 567 , W. L. Old Radnor.	
G a		Glyptocrinus, sp. For genus see Wenlock Limestone.	b. 569, D. G. Plas Madoc.	,

Case and Coluzan of Drawers.	Reference to McCor's Synopsis: and Figures of Genera.	Names and References; Observations, \&c.	Numbers an	Localities.
Ga9	Worm tubes.	ANNELIDA. Hard shelly tubes of sea-worms. Cornulites serpularius, Schl. (Siluria, 2nd ed. pl. 10, fig. 2, pl. 16, figs. $3-10$).	Wales and Shropshire. \qquad b. 570 , W.L. Littlehope, Woolhope.	Westmorland and S. of Scotland.
Ga 6		Spirorbis Lewisii, Sow. (Siluria, 2nd ed. pl. 16, fig. 2), like the little sessile Serpule on seaweeds.		b. 571, C. F. Casterton Fell; Helmside.
G a	Trilobites. Odontochile caudata, var. minor, p. 161.	CRUSTACEA Trilobita. Homalonotus cylindricus, Salter, Mon. Brit. Tril. p. 116, fig. 27, pl. 11, fig. 12. Phacops Downingiæ (Silnria, 2nd ed. pl. 18, fig. 5).	a. 237 (figured speeimen). Littlehope, Woolhope.	
G a		Phacops ib. var. cuneatus, Salter (Mon. Brit. 'Tril. 1864, p. 28, fig. 8).	a. 45̌8, D. G. Moel Seisiog, Llanrwst.	
Ga 9	Odontochile, p. 160.	Phacops caudatus var. corrugatus, Salter, ined.	a. 461, W. L. Littlehope.	
Ga 8	Portlockia, p. 163.	Phacops Stokesii, Milne Edwards (Siluria, 2nd ed. pl. 10, fig. 6).		b. 572, C.F. Half a mile N . of Ulverston.
Ga 6		Acidaspis Hughesii, n.s., Salter. A new species.		b. 573, C. G. Casterton Low Fell, Kirkby Lonsdale.
Ga 6		PHYLLOPODA. Peltocaris anatina, n. s., Salter. A bivalve phyllopod, more eharacteristic of Cambrian roeks. The semioval rostrum is seldom found.		b. 574 , C.F. Rebecca Hill, Ulverston.
Ga 8	Brachiopods.	MOLLUSCA BRACHIOPODA. Discina Forbesii, Davids. (Siluria, 2nd ed. foss. 57, fig. 11. Orbiculoidea, ibid. 3rd ed. p. 226.)		b. 576, C. G. Middleton Fell, Kirkby Lonsdale.

- Probably Devil's Bridge is but a doubtful locality for Denbigh Grits.

Case and Column of Drawers.	Reference to McCor's Synopsis : and Figures of Genera.	Names and References; Observations, \&c.	Numbers and Localities.	
G a	p. ${ }^{2} 65$.	LAMELLIBRANCHIATA. Mytilus? unguiculatus (Salter, (Mem. Geol. Surv. il. p. 365, pl. 20, fig. 6). A doubtful Mytilus, but near that genus.	Wales and Shropshire. \qquad a. 456, D. G. Plas Madoc.	Westmorland and S. of Scotland.
Ga 6 Ga 6	Pl. 1 к, fig. 6, p. 286. Sanguinolites, Pl. 1 I, fig. 24, p. 277.	Nuculites post-striatus, Emmons, Pal. New York, t. 34, fig. 10. Orthonotus decipiens, McCoy, sp.	b. 607, D.F. Gwyddelwern, Derwen (as Caradoc).	a. 916, D.F. Balmae.
$\begin{gathered} \text { Ga } \\ \text { Gat } \end{gathered}$	Pl. 1 k, figs. 2, 3, p. 283.	(Arca) Palæarca? Edmondiiformis, McCoy. A small obtusely subquadrate shell (not Arca).	a. 455, D. G. Moel Seisiog; b. 608,D.F. near Llangynyw.	
Ga Ga 6	Nucula levata, Pl. 1 к, figs. 4, 5, p. 285.	Ctenodonta anglica, D'Orb. (Siluria, 2nd ed. pl. 23, fig. 10). Ctenodonta, sp.	Near Llangynyw; a. 457, D. G. Plas Madoc. b. 609, Llangynyw Rectory.	C. F. Helms Knot, Dent.
$\begin{gathered} \text { Ga } \\ \mathbf{G} a 6 \end{gathered}$	p. 282.	Cardiola interrupta, Broderip (Sil. 2 nd ed. pl. 23, fig. 12).	b.611,D.F. Cefnddu.	b. 612, C. F. Helms Side; b. G13, Troutbeck, Windermere; b. 614, C.G. Middleton Fell, near Kirkby Lonsdale, N. end.
G a 8	Sanguinolites inornatus, p. 277.	Orthonota, sp.		b. 615, D. F. Balmae shore.
$\mathrm{G} a$	Pl. 1 к, figs. 7, 8, p. 273.	Clidophorus ovalis, McCoy. Pterinea, Goldfuss, comprehends most of the Avicule of Silurian rocks.	a. 241, D. G. Plas Madoc.	
Ga 6	Pl 1 I, fig. 3, p. 263.	Pterinea subfalcata, McCoy.		b. 616, C. G. Howgill Fell, near Sedbergh.
$\begin{gathered} \text { Ga } \\ \text { Ga } 8 \end{gathered}$	Pl. 1 1, fig. 4, p. 263.	Pterinea tenuistriata, McCoy. A very common and characteristic species of the Coniston grits.		b. 617, C. G. Above Ravenstonedale ; b. 618, Middleton Fell, Kirkby Lonsdale; b. 619,C.F.HelmsSide.

Case and Column of	Reference to McCor's	Names and References; Observations, \&c.	Numbers and Localities.	
Ga 5		GASTEROPODA. Pleurotomaria (or Trochonema ?) Two species large, turbinate.	Wales and Shropshire. \qquad a. 610, W. L. Littlehope.	Westmorland and S. of Seotland. a. 610, D. F. Balmae shore.
G a 10		Hormotoma (Murchisonia), sp. Very slender whorls.		
G a	p. 303.	Holopella gregaria, Sow. (Siluria, 2nd ed. pl. 34, fig. 10 a).	b. 620, D. G. Plas Madoc.	
Ga 9	Pl. 1 K, fig. 40, p. 296.	Trochus? cælatulus, McCoy, probably a Cyclonema. There are no species of true Trochus in Palæozoic rocks.	a. 460 , W. L. Old Radnor road.	
	p. 311.	HETEROPODA. Bellerophon trilobatus, Sow. (Siluria, 2nd ed. pl. 34, fig. 9). The common Bellerophon of sandy deposits in Silurian rocks: but chiefly common in Upper Ludlow rock.	D. G. Plas Madoc, and other localities near Llanrwst.	
G a 10	Pl. 1 L, fig. 25, p. 311.	Bellerophon subdecussatus, McCoy. A pretty subglobate species, reminding us of Carboniferous forms.	a. 612, D.F. Llanrwst, Denbighshire.	
G a Galo Ga. 8	p. 317.	CEPHALOPODA. Orthoceras subundulatum, Portl. (Siluria, 3rd ed. Foss. 62, fig. 3).	b. 540, D. G. Mool Seisiog ; D. F. Craig ddu allt.	b. 541, C. G. Helms Knot; b. 541^{*}, Howgill Fell near Sedbergh. b. 542, C. F. Road from Coniston to Hawkshead;b.542*, Cold Well, near the Castle; b. 543, Horton Dry Ridge.
G a	p. 316.	Orthoceras primævum, Forbes sp. (Siluria, 3rd ed. Foss. 62, fig. 4).	b. 544, D. F. Cefn ddu.	J. 544^{*}, C. F. Horton Dry Ridge.

Wenlock Limestone and Shale.

It is not advisable to keep these separate, for in the Eastern Counties the limestone often dies away to a mere trace, and in S. Wales it is rarely to be seen at all. In North Wales and Westmorland the Wenlock formation is chiefly mud, slate, or shale. In S . Wales shale and sandstone, more frequently a clayey sandstone. The fossils consequently vary much in different localities, the more sandy strata often containing species which in Shropshire are confined to sandy beds in the Ludlow rock.
F. C. Fletcher Collection, part of which is a separate cabinet F. C.

Case and Columu of Drawers.	Reference to McCor's Synopsis: and Figures of Genera.	Names and References ; Observations, \&c.	Numbers and Localities.
F C	Sponges.	Plantæ veræ. Most of the species known as Fucoids (i.e. seaweeds, fossil) are nothing more than the filled-up burrows of worms, \&c. Chondrites, Brongn. A genus intended to include many different forms.	
		Chondrites verisimilis, Salter (Expl. Edinb. Memoir, Geol. Surv. p. 134, pl. 11, fig. 1). A true sea-weed, like Fucus cartilagineus.	a 317, Dudley, F. C.
		AMORPHOZOA (Sponges). Stromatopora, Coscinopora, Cnemidium, Verticillopora, Stellispongia, \&c. are examples of very solid calcareous sponges. Ischadites, Sphcerospongia, Amphispongia, and other Silurian forms are supposed to be distantly allied to the living Grantia.	
$\begin{gathered} \text { G b } 10 \\ \text { F C } \end{gathered}$	p. 12.	Stromatopora striatella, D'Orb. (Siluria, 2nd ed. Foss. 51, pl. 41, fig. 31). S. Concentrica, Lonsdale, Sil. Sys. t. 15, fig. 31 (not of Goldfuss).	a. 683, a. 684, Wenlock; b. 655, Dudley, F. C.; a. 684, good polished section.
G		Cnemidium tenue, Lonsd. (Siluria, 2ud ed. pl. 38, fig. 11). An obscure genus of calcareons sponges with minute oscula. Such sponges, and such as the following species:-	a. 318, Dudley, F. C.
		Verticillopora abnormis, Lonsd. (Siluria, 2nd ed. Pl. 38, fig. 10), are common in the Wenlock Limestone here and there. (Fistulipora, McCoy. See Corals. I doubt if this be more than a sponge. J. W. S.)	Dudley, F. C.
			13-2

$\begin{gathered} \text { Case and } \\ \text { Column of } \\ \text { Drawers. } \end{gathered}$	Reforence to MoCoy's Synopsis: and Figures of Genera.	Names and References; Obserrations, \&e.	Numbers and Loeailities.
$\begin{aligned} & \text { FC } \\ & \text { G b } \end{aligned}$	p. 49.	Fenestella Minlleri, Lonsdale (Siluria, 3rd ed. Foss. 50, fig. 4, pl. 41, fig. 17). The old state is very rare indeed.	a. 327^{*}, Dudley, F. C. old state.
FC	$1 \mathrm{c}, \mathrm{fig} .19, \mathrm{p} .50$.	Fenestella rigidula, McCoy. F. elegans, Hall. Pal. N. York, Vol. ir. pl. 40 d, fig. 1. The branches are ridged sharply: very parallel pores thrce between each bar.	a. 326^{*}, Dudley, F. C. int large quantity.
FC	1 c, fig. $20, \mathrm{p} .50$.	Fenestella patula, McCoy. More open meshes and more sinuous branches than last.	a. 325^{*}, Dudley, F. C.
	p. ${ }^{0} 0$.	Fenestella subantiqua, D'Orb. (Siluria, 3rd ed. pl. 41, fig. 16; Foss. 30, fig. 1).	Dudley, F. C.
F C		Fenestella, sp. 1. Coarse and very irregular branches.	a. 325, Dudley, F. C.
G b 2		Fenestella, sp. 2. Somewhat more funnelshaped, and with prominent pores, two between each interstice.	a. 320, Dudley, F.C.
FC		Fenestella, sp. 3. Allied to F. infundibulum.	Dudley, F.C.
F C		Fenestella assimilis, Lonsd. Siluria, 2nd ed. pl. 41, fig. 27; Foss. 49, fig. 2.	b. 657, Dudley, F. C.
F C		Dictyonema retiformis, Hall (Pal. N. York, 2, t. 40 . A horny form of the Retepora Group (not the same as Cambrian Fossil. J. W. S.).	a. 327, Dudley, F. C.
$\begin{gathered} \mathrm{FC} \\ \mathrm{~Gb} 2 \end{gathered}$		Glauconome disticha, Goldf. (Siluria, 2nd ed. pl. 41, fig. 12; Foss. 49, fig. 5). This seems to be everywhere characteristic of the Wenlock Limestone. A central stem and short lateral branches to each frond, aud the fronds grow in elusters from one root like a herring-bone.	a. $393{ }^{*}$, Dudley.
FC		Glauconome, sp.? With obliquely set branches, otherwise the same as the last.	a. 393, Dudley, F. C.

Case and Column of Drawers.	Reference to McCox's Synopsis: and Figures of Genera.	Names and References; Observations, \&c.	Numbers and Localities
		Ptilodictya, Goldf. Petref. Germanica. Flat plates, with the cells very regularly arranged on both sides of them. The species are often branched, once or twice, but always in one plane. The genus is world-wide in Cambrian and Silurian, and very numerous in species.	
$\begin{gathered} \text { FC } \\ \text { Gb } 9 \end{gathered}$	p. 47.	Ptilodictya lanceolata, Goldf. (Pet. Ger. t. 37, fig. 2) Siluria, 2nd ed. Foss. 49, fig. 6, pl.41, fig. 11. Often attains great size, ten inches; easily breaks along the centre plate.	Aymestry (Haven), b. 658, Dudley, F. C.; b. 661, Ledbury.
F C		Ptilodictya scalpellum, Lonsd. (Siluria, 2nd ed. Foss. 50, pl. 41, fig. 25). Slightly branched only: but leading away from the compound branched and explanate species of the Cambrian to the simple P. lanceolata. Such species as the present would be included in Prof. Hall's unnecessary genus Stictopora.	b. 659, Dudley, F. C.
$\begin{gathered} \text { FC } \\ \text { Gb } 9 \end{gathered}$		Polypora or Hornera crassa, Lonsd. (Siluria, 2nd ed. Foss. 49, fig. 1, pl.41, fig. 13). Hornera only differs from Polypora (Devonian and Carboniferous) by wanting the connecting bars.	b. 660, Dudley, F. C.
		HYDROZOA? or POLYZOA. The Graptolites are (I think not rightly) generally now referred to the Hydroid Polypes. I prefer the analogy with such Bryozoa as Defrancia.	
G b 1	G. ludensis, p. 4.	Graptolites priodon, Bronn (G. ludensis) (Siluria, 2nd ed. pl. 12, fig. 1, Foss. 11, fig. 3). See remarks on this common Northern fossil in the Cambrian lists. It is extremely common at the base of the Wenlock in France and Bohemia.	a. 468, S. of the Dee, Llangollen; b. 662, Smithfield; b. 663, Cwmbach, Builth; also b. 664, bed of Wye, Builth; b. 665, Cwm, W. of Cefn Grugos, Llanfyllin; b. 666, Llanfair ; b. 667 , Ffyrnwy, Montgomeryshire.

$\begin{gathered} \text { Case and } \\ \text { Column of } \\ \text { Drawers. } \end{gathered}$	Refcrence to McCor's Synopsis: and Figures of Genera.	Names and References; Observations, \&\%.	Numbers and Localities.
Gb 2 G b 10	Star corals, Millepores, \&c. (True Corals) with stony bases to cells. $\text { p. } 11 .$	Graptolites, sp. With simple not recurvel cellmouths. Very common. It is possibly G. colonus, Barrande, in Lower Ludlow, but more likely distinct.	Wenlock shale? b. 668, Dudley, F. C. It is possible this comes from the Lower Ludlow shale, above the workable limestones. The species abounds near Ludlow.
G b 10		Z00PHYTA (CELENTERATA, Huxley). Tubulata, or Millepore Corals. Fistulipora decipiens, McCoy (Ann. Mag. N. Hist. 2nd Ser. Vol. vi. p. 285). The cell tubes are so minute, and the interstitial substauce too like a sponge.	
	Palcoopora, McCoy. p. 14.	Heliolites, Dana. A common Wenlock fossil. Millepore corals allied closely to the Heliopora corrulea of V. D. Land. Cell tubes set in a mass of coenenchyma, i. e. pointed small tubes of much less diameter than the cells. Species numerous.	
$\begin{gathered} \text { Gb3 } \\ \text { FC } \\ \text { Gb } \end{gathered}$	Palwopora, p. 15.	Heliolites interstincta, Wahl. (Siluria, 2nd ed. Foss. 18, figs. 3-5, pl. 39, fig. 2. Milne Edw. t. 57, fig. 9). Incrusting on shells ($O r$ thoceras, or spiral shells chiefly) or amorphous or pyriform when grown in rapidly accumulating mud. In faet, it assumes all shapes, like a Proteus, according to circumstances, and ranges from Middle Cambrian to Ludlow rock.	b. 671, Wenlock Ridge, Woolhope ; b. 673, Malvern; b. 674, Aymestry; b. 675, Dudley, F. C. b. 675^{*}, Dudley, var. F.C. b. 672 , Walsall, var. F. C.
F C	P. subtubulata, p. 16?	Heliolites, var. Murchisoni, Milne Edw. Brit. Foss. Cor. tab. 57 , fig. 6.	b. 676, Dudley, F. C.
$\underset{\text { GC C }}{\mathrm{GC}}$	Pl. 1 c, fig. 4. Paleopora, p. 16.	Heliolites megastoma, McCoy (Sil. Foss. Irel. pl. 4, fig. 14). Siluria, 2nd ed. 1859, woodcut 27 , fig. 7 . Easily known from the last (not so common) by the very large close set cups. (Milne Edw. t. 58, fig. 2).	b. 677, Wenlock Ridge, Woolhope; b. 678, Dudley, F.C.
FC	Palcopora, p. 17.	Heliolites petalliformis, Lonsd. (Plasmopora, Milne Edw. Brit. Foss. Cor. p. 253, pl. 59 , fig. 1. Siluria, 2nd ed. Foss. 18, fig. 2, pl. 39, fig. 4). Regarded as a distinct genus (Plasmopora) by Milne Edw. The distinctions seem too minute to be more thau specific.	b. 680, Dudley, F.C.

$\begin{gathered} \text { Case and } \\ \text { Columu of } \\ \text { Drawers. } \end{gathered}$	Reference to McCor's Synopsis: and Figures of Genera.	Names and References; Observations, \&c.	Numbers and Localities.
F C		Heliolites, var. With depressed areas at the cell mouths.	b. 681, Dudley, F. C.
$\begin{gathered} \text { FC } \\ \text { G b } 3 \end{gathered}$	Palcopora, p. 18.	Heliolites tubulata, Lonsd. (Siluria. 2nd ed. pl. 39, fig. 3), and Foss. 18, fig. 1.	b. 682, Dudley, F. C.; b. 683, Wenlock; b. 684, Aymestry; b. 685, Woolhope.
F C		Heliolites Grayi, Milne Edw. (Brit. Foss. Cor. p. 252, t. 58, fig. 1, Archiv. Mus. v. p. 217). Flat branches; crateriform cells, raised edges. Heliolites, var.? With sunk pores.	a. 342, Dudley, F. C.
F C		Heliolites cæspitosa, n. s. Salter. Something like H. Grayi, but cells approximate ; shallow pits, not raised.	a. 343, Dudley, F. C.
F C		Heliolites, sp.	a. 376, Dudley, F. C.
	p. 19.	Favosites (Calamopora, Goldfuss). A genus of Silurian and Devonian corals-more abundant here than any other. The cells are thickly pierced with little round holes (foramina) often in two rows, but sometimes more, by which a communication is kept up between neighbour corallites. Closeset tabulæ fill up the hexagonal tubes, and there are scarcely visible septa.	
G b 4		Favosites, sp. Shewing the upper crowded tabulx.	a. 369, Dudley.
G b 2	p. 19.	Favosites alveolaris, Goldf. (Petref. G. t. 26, fig. 1; Siluria, 2nd ed. Foss. 17, fig. 4). [I do not know how externally to distinguish this species from F. gothlandica, and I believe the F. alveolaris, with large serrated augles to the tubes, to be very common in our Wenlock Rocks.]	b. 685, Wenlock Ridge, Woolhope; b. 686, Dudley.
Fc Gb 4 G b	p. 20.	Favosites Gothlandica, Linn. (Goldf. Pet. Germ. t. 26, fig. 3 ; Siluria, Ind ed. Foss. 17, figs. 2, 3 , pl. 40, figs. 3, 4, Foss. 29, fig. 6). One of the most beautiful of fossils. The honeycomb cells when perfect are radiated by six obtuse folds which represent scpta. The sides of the tubes are pierced by a regular double row of holes, except in the next var.	b. 687, Ledbury; Woolhope ; a. 675, a. 676, Wenlock, tubes well-shewn; b. 688, Dudley.

Case and Drawers.	Reference to McCoy's Synopsis: and Figures of Genera.	Names and References; Observations, \&\%.	Numbers and Loealitios.
Gb 4	p. 21.	Favosites, id. var. basaltica, Goldf. (ib. pl. 26, fig. 4), which has only a single row of foramina. In all the varieties (and I suspect the following species is only the young state) the angles of the tubes are smootll.	b. 689, Dudley, labelled by Count Münster as Culamopora basaltica.
$\begin{aligned} & \text { FC } \\ & \text { G b } \end{aligned}$		Favosites Forbesii, Milnc Edw. (Brit. Foss. Cor. t. 60, fig. 2, p. 258). Distinguished from Fav. Gothlandica, of which probably it is the young.	a. 681, Dudley, F. C., a. 400 , F. C., a. 682, F. C., shews tubes inside full of granules: these are not the foramina, though often mistaken for them.
G b		Favosites favosa, Goldf. sp.? (Petref. Germ. t. 26, fig. 2). Only one specimen. The walls very thick and cells very large.	a. 464, Whitfield, Tortworth (Earl Ducie).
$\begin{aligned} & \mathrm{FC} \\ & \mathrm{~Gb} 4 \end{aligned}$	p. 20.	Favosites aspera, D'Orb. (Milne Edw, and Haime, Brit. Foss. Cor. t. 60, fig. 3, Siluria, 2nd ed. pl. 40, figs. 1, 2).	a. 680, Dudley, F. C., young growths on good upper surface; a. 679, good, Dudley, F. C.; Wenlock; Aymestry; Malvern; a. 368, Whitfield, Tortworth (Earl Ducie).
G b 4		Favosites Hisingeri, Milne Edw. (Brit. Foss. Cor. t. 61, fig. 1, p. 259). I am not sure of this species : nor is any one else. It is probably a state of F. aspera, and both are probably varieties of F. multipora, Lonsdale, a species supposed to have many rows of pores: but certainly it has not-the pores are few. [J.W.S.]	b. 690 , Woolhope hills.
$\begin{gathered} \text { FC } \\ \text { Gb4 } \end{gathered}$		Favosites cristata, Blumenbach (Milne Edw. and Haime, t. 61, fig. 3; Siluria, 2nd ed. Foss. 17, fig. 1, pl. 41, fig. 2). It is very variable in shape and size of cells, and is much like F. polymorpha, the Devonian species. But it has greatly thicker walls to the cells: one species was referred to F. polymorpha formerly.	a. 398, Dudley. a. 398* Wenlock; a. 399, Dudley, F. C., both varieties, branches narrow and large, and small and large-celled forms.
	p. 21.	Cœnites, Eichwald (Limaric, Londs.). Branchcd, or lobed, like Favosites, but witl thick ywalls not perforated-or not known to be so -and with oblique mouths, which are much thickened so as to leave but a slit or triangular opening.	

Case and Column of Drawers.	Reference to McCor's Synopsis: and Figures of Genera.	Names and References; Observations, \&c.	Numbers and Localities.
$\begin{gathered} \text { G b } 5 \\ \text { F C } \end{gathered}$	p. 22.	Cœnites intertextus, Eichwald (Milne Edw. t. 65, fig. 5. Limaria firuticosa, Sil. Syst. Conites, Siluria, 2nd ed. pl. 38, fig. 8).	b. 691, Sedgley? Aymestry; a. 300^{*}, Dudley, F. C.
G b 5	Pl. 1 c, fig. 8, p. 22.	Cœnites strigatus, McCoy. Distinguished by Prof. McCoy by the scratch-like channels of the worn cell-mouths, but probably C. intertextus.	b. 692, Dudley.
$\begin{gathered} \text { Gb5 } \\ \text { FC } \end{gathered}$		Cœnites juniperinus, Eichw. (Milne Edw. t. 65, fig. 4. Siluria, 2nd ed. Foss. 19, fig. 3. Limaria clathrata, pl. 38, fig. 7).	b. 693, Dudley, F.C.; a. 299, Dudley, F. C.
F C		Cœnites labrosus, Milne Edw. t. 65, fig. 6, p. 277. A wide flat-lobed species with short mouths to the cells, with projecting lips or edges. The mouths rather open. Occasionally the projection is small.	Dudley, F. C.
F C		Cœnites linearis, Nilne Edw. (t. 65, fig. 3, p. 277). Like the last, but with linear mouths on the projecting bosses.	Dudley, F.C.
F C		Cœnites, sp. 1. Like linearis, but with no depth of mouth. Cell-openings curved, shallow, but very low set.	a. 301, Dudley, F. C.
F C		Cœnites juniperinus, var. Closer mouths, aud somewhat longer.	Dudley, F. C.
F C		Cœnites, sp. 2. Allied var. to linearis, but with crested-edged mouths. This character in extreme, as iu sp. 1. The extreme of smoothness is gained.	a. 300, Dudley, F.C.
F C		Cœnites, sp. (a var. of C. labrosus). With no projections to support the mouth.	Dudley, F. C.
	p. 68.	Alveolites, Lonsd. The mouths of the cells are oblique or rhomboidal, but not thickened, and there is generally a thickened ridge or tooth on one side; tabule imperfect; septa none, unless the rilge above named be one. Rauge-Silurian to Carboniferous.	

Case and Column of Drawers.	Reference to McCor's Synopsis : and Figures of Genera.	Names and Refercnces; Observations, \&c.
G b 2 FC Gb4	Favosites oculata, p. 21.	A. Branched Species (Cladopora, Hall). Alveolites repens, Linn. (Milne Edw. t. 62, fig. 1, p. 263. Siluria, 2nd ed. Foss. 17, fig. 6). Favosites oculata, Goldfuss (Petref. Germ. t. 65, fig. 14), according to McCoy.
F C		Alveolites Fletcheri (Seeley MSS.), allied to A. repens. The branches frequently connate and lobed. Narrow branches: small cellmouths.
$\begin{gathered} \text { Gb } 4 \\ \text { FC } \end{gathered}$		Alveolites seriatoporoides, Milne Edw. (Brit. Foss. Cor. t. 62, fig. 2, p. 263).
$\begin{gathered} \text { Gb4 } \\ \text { F C } \end{gathered}$		B. Amorphous or round forms. Alveolites Labechii, Lonsd. (Siluria, 2nd ed. pl. 40, fig. S. Foss. 17, fig. 5). The sp. occurs in various forms, flattened, round, or irregularly expanded.
Gb7		Alveolites Seeleyi, Salter, n. sp. Branches coalesced, cells small. Distinguished by the acumen of Mr Seeley.
Gb 5 FC Gb3	p. 24.	Stenopora, Lonsd. The genus is a little doubtful: it depends upon the contraction of the mouth of the cells, and on the irregular tabulæ. The species are not easily distinguished from Chatetes or Monticulipora.
		Stenopora fibrosa, Goldf. (Pet. Germ. t. 28, fig. 3). Siluria, 2nd ed. Foss. 17, fig. 7, Foss. 30, figs. 1, 2, pl. 40, figs. 6, 7. Easily distinguished from Monticulipora by the structure of tubes.
	p. 26.	Stenopora granulosa, Goldf. (Ceriopora). Is a Chcetetes. See that genus.

Numbers and Localities.
b. 694, Wenlock; a. 397 , Dudley, F.C.; a. 367, Dudley, F.C., a choice specimen shewing various states of the surface.
a. 394, Dudley, F. C.
b. 695, Dormington; b. 696, Wenlock Edge; a. 398, Dudley, F. C.
b. 697, Woolhope quarries; one specimen is figured by M. Edwards, a. 396, as Monticulipora Bowerbankii.
a. 365, Dudley, F.C.

Falfield or Whitfield, Tortworth (EarI Ducie); b. 698, Tottlebank, near Ulverston; a. 377, Dudley, F. C.; a. 891, Dudley, Miunster Coll.

Case and Columu of Drawers.	Reference to McCor's Syuopsis : and Figures of Genera.	Names and References ; Observations, \&c.	Numbers and Localities.
		Chætetes Fischer. A genus of Tabulata which is very like Stenopora, and Monticulipora especially, but has not the clustered fertile pores of the last. Tubes increase not by lateral gemmation, but by fission of tubes, which are inseparably united; hence in splitting, the iuteriors (not the walls) shew. No foramina on the walls.	
F C		Chætetes, sp. With long, narrow, linear branches, very variable in diameter and length.	a. 401, Dudley, F. C.
$\begin{aligned} & \text { FC } \\ & \text { Gb5 } \end{aligned}$		Chætetes, sp. Several other species remain to be described. Some may be Monticulipora (most probably are so).	Dudley, F. C.
		Nebulipora, McCoy. Monticulipora, Milne Edwards. Amorphous or branched corals, or even eucrusting, with clustered cells (fertile) of larger size than the ordinary barren ones-and these fertile cells frequently on prominences.	Dudley, F. C.
FC		1. Branched species. Monticulipora Fletcheri, Siluria, 2ud ed. pl. 40, fig. 9. M. Edwards (t. 62, fig. 3). Walls thick, cells prominent, pores (interstitial) minute, evidently the young state of $P u l$ chellus.	a. 366*, Dudley, F. C.
F C		Monticulipora pulchella, M. Edwards (t. 62, fig. 5), p. 267, rather coarse pores (prominent edges), but not angular pores.	a. 402, Dudley, F. C. (fig. specimen).
$\begin{gathered} \text { FC } \\ \text { Gb5 } \end{gathered}$		Monticulipora, sp. 1. Thick branches, rather small. Angular cells, very distinct clusters.	a. 305, Dudley, F. C., common.

$\begin{gathered} \text { Case and } \\ \text { Column of } \\ \text { Drawers. } \end{gathered}$	Refercnce to McCor's Synopsis : and Figures of Genera.	Names and References; Observations, \&8.	Numbers and Localities.
F C	Pl. 1 c, fig. 5, p. 24.	Monticulipora Bowerbankii, Milne Edwards (t. 63, fig. 1), p. 268. Coarse angular pores, and not very distinct or separate clusters, often much branched. Nebulipora Bowerbunkii, Siluria, Appendix, 534.	a. 306, Dudley, F. C. is the figured (1 b.) species of Edwards.
$\begin{aligned} & \text { Gb6 } \\ & \text { Gb5 } \end{aligned}$		Monticulipora, sp. Smaller cells, and of more globular form than M. Bowerbankii. 2. Pupillate species. Incrusting or expanded.	Wenlock Edge, Woolhope. a. 308, Whitfield (Earl Ducie).
F C		Monticulipora papillata, McCoy (M. Edw. t. 62, fig. 4). True sp. of McCoy. Small angular cells, sharp prominent bosses. (Incrusting.)	a. 311, Dudley, F.C.
FC		Monticulipora, sp. 2. Like papillata, but larger cells, and solid, scarcely raised papillæ. (Tucrusting.)	a. 312, Dudley, F. C.
F C		Monticulipora, sp. 3. Cells minutc, but prominent, (thick walls), papille solid. [Expanded 2 or 3 incles.]	a. 313, Dudley, F. C.
		3. Lenticular masses.	
FC		Monticulipora poculum, Salter, MISS.	a. 314, Dudley, F. C.
F C		Monticulipora, sp. 4. Cup-shaped base, upper surface therefore hollow, and sometimes nearly flat, with angular cells. But this is an unusual form in the genus. Sometimes the species is flatter.	a. 315, Dudley, F. C.
FC		Monticulipora, sp. 5. Gibbous, cells large, angular; the fertile cells scarcely larger than the rest, in small few-celled clusters.	a. 316, Dudley, F. C.
F C		Monticulipora, sp. 6. Like last, but much thicker walls and smaller cells, which are round not angular.	a. 317, Dudley, F. C.
	For figures of the genera of Corals see Milne Edwards ${ }^{3}$ excellent work, British Fossil Corals (Palrontographical Society).	Labechia, Milne Edwards and Haime. Flat expanded corals, very unlike the usual tabulated forms, except Thecia. The surface is covered with elevated papille.	

Case and Column of Drawers.	Reference to MoCor's Synopsis: and Figures of Genera.	Names and References; Observations, \&e.	Numbers and Localities.
$\begin{gathered} \text { FC } \\ \text { Gb6 } \end{gathered}$	p. 26.	Halysites catenularius, Linn. (Catenipora escharoides, Siluria, 2nd ed. pl. 40, fig. 14, Goldfuss, Pet. Germ. t. 25, fig. 4). The commonest of common fossils, in every region where Upper Silurian is known. Aretic circle, \&c.	a. 370, Dudley, F. C.; b. 705, Woolhope.
F C	do.	Halysites, var. labyrinthicus, Goldfuss, is only a variety with very large tubes.	a. 351, Dudley, F. C.
	- p. 27.	Syringopora, Goldfuss. This is perhaps the extreme form which could be taken by Millepores, the tubes or corallites being absolutely separate except at the creeping base. They throw out lateral appendicles which unite and help to support the reticular mass. The base is known as Aulopora, Goldfuss.	
F C		Syringopora fascicnlaris, Linn. (S. filiformis, Lonsd.? Goldfuss, Pet. t. 38, fig. 6, Milne Edwards, t. 65, fig. 1), the most slender tubed of British Silurian species. Aulopora tubeformis, Lonsd. Sil. Syst. (Siluria, 2nd ed. pl. 40, fig. 12, pl. 41, fig. 8).	a. 352, Dudley, F. C.
FC Gb 6 G c	p. 27.	Syringopora bifurcata, Lonsdale, S. reticulata, Sil. Syst. t. 15 bis, f. 11 (Siluria, 2nd ed. pl. 40 , figs. 10, 11). A very large-tubed species, the largest indeed, and with branches most remote. Siluria, 2nd ed. Foss. 19, figs. $2,4,5$.	b. 708, Wenlock Edge, Woollope; b. 707, Dudley; a. 353, Dudley, F. C.
F C		Syringopora serpens, Linn. (M. Edw. t. 65, fig. 2). Aulopora serpens, and conglomerata. Lonsd. Siluria, ${ }^{2}$ nd ed. pl. 41, figs. 6-9.	a. 354, Dudley, F. C.
	Cup-corals.	ZOANTHARIA RUGOSA, M. Edwards and Haime.	
		The cup and star-corals of the Silurian rocks are found to have more of the claracter of the Tabulata than any recent reef-building or cup-corals; and as a very remarkable character, the number of the septa is either four or a multiple of four, a character only found in the Alcyonarian Zoophytes of the present seas (Edwards and Haime).	

$\begin{aligned} & \text { Case and } \\ & \text { Coluanu of } \\ & \text { Drawers. } \end{aligned}$	Reference to McCor's Synopsis: and Figures of Genera.	Names and References; Observations, \&e.	Numbers and Localities.
FC	p. 69.	Aulacophyllum mitratum, Hisinger (Leth. Suce. p. 100, Milne Edwards, t. 66, fig. 1). A compressed and very obliquc cup. There is some doubt if the large form be not quite distinct from the small one. Cyathophyllum, Goldfuss. The common Palæozoic genus of cup-corals.	a. 328 , a. 329 , Dudley, F. C.; a. 329 is fig. 1, a. 328 is fig. la in M. Edwards' Monograph; fig. 1 a . is the large form.
Gb 7		Cyathophyllum Loveni, Milne Edwards (Brit. Foss. Cor. t. 66, fig. 2, p. 280).	a. 364, Dudley, F. C.
F C		Cyathophyllum. Large variety, possibly new species.	Dudley, F. C.
$\underset{\text { Gb8 }}{\mathrm{FC}}$	Strephodes, Pl. I Be fig. 20, p. 30.	Cyathophyllum pseudoceratites, McCoy sp. M. Edw. (Brit. Foss. Cor. t. 66, fig. 3). Cyathophyllum angustum, Lonsl. See C.articulatum, Siluria, 2nd ed. pl. 39, fig. 9.	a. 333 , Dudley, F.C., figured specimen of M. Edwards; a. 372, Sedgley, McCoy's figure.
Gb7		Cyathophyllum. Tufted narrow species like C. flexuosum.	a. 362, Dudley, F.C.
$\begin{gathered} \text { Gb } 8 \\ \text { FC } \end{gathered}$	Strephodes vermiculoides, p. 31.	Cyathophyllum truncatum, Linn. (Milne Edw. t. 66, fig. 5. Siluria, 2nd ed. pl. 39, fig. 12, $b, c, c l$, Cyathophyll. diunthus, Siluria, pl. 39, fig. 12). Easily known by the open flat limb of the cup and the calycular gemmation, 7 or 8 young buds often spring from one cup.	Lindell's Quarry, Wool hope. a. 330, Dudley, F.C. a. 373 , Wenlock.
$\begin{gathered} \text { Gb } 8 \\ \text { FC } \end{gathered}$	Strephodes vermiculoides. Pl. 1 в, fig. 22, p. 31.	Cyathophyllum articulatum, Wahl. (M. Edw. Brit. Foss. Cor. t. 67, fig. 1, Siluria, 2nd ed. pl. 39, fig. 10, C. cespitosum, Sil. Syst. pl. 16, fig. 10). Like the last, but much more slender stems.	b. 706, near Aymestry McCoy's figure; a. 331, Dudley, F.C. (large figured specimen, Milne Edwards).
FC		Cyathophyllum flexuosum, Lonsd. (Milne Edw. t. 67, fig. 2. Siluria, 2ud ed. pl. 39, fig. 7). Usually a straight slender tube: it is an exception to find it curved as in Lonsdale's figure.	a. 332, Dudley, F. C.

Case and Column of Drawers.	Reference to McCor's Synopsis: and Figures of Genera.	Names and References ; Observations, \&c.	Numbers and Localities.
		Britain. An Arctic form from the northern expeditions is in the cabinet of the Geol. Survey. In this the successive growths of the calyx are so regular, and the limb turned so much back, that the whole resembles a Chinese pagoda, whence the name Ptychophyllum pagoda, Salter. Ptychophyllum patellatum, Schloth. (Strombodes plicatum, Lonsl., Siluria, 2nd ed. Foss. 52, fig. 5, pl. 38, fig. 4).	In every Wenlock collection.
		Goniophyllum, Milne Edwards and Haime. Square or semi-cylindrical coral-cups, of small size, not above an inch or two in height; with olscure septa, arranged in crucial fashion. The great peculiarity of this fossil (probably the remnant of a large class of extinct forms) seems to be that all its species, of which several have been described by Lindström from Sweden, are furnished with an operculum (a) or lidand it is difficult to see how the tentacles performed their duty. Calccola, the Devonian fossil, hitherto thought a Brachiopod, is of this group.	
$\begin{aligned} & \text { F C } \\ & \text { G } \end{aligned}$		Goniophyllum pyramidale, Hisinger, (Leth. Suec. p. 101. G. Fletcheri, Milne Edwards, t. 68, fig. 3, p. 290; G. Fletcheri, Salter in Siluria, 2nd ed. p. 244). It varies much in shape; the operculum has not been found yet in England, but should be looked for.	a. 335, Dudley, F. C.; Malvern, Wentock Shale; b. 713, Dudley (J.Gray, Esq.).
		Compound cup-corals. Only differ from single cups by the aggregate growth of the buds, or young corallites, which do not fall off the parent, but are attached and grow hexagonal by compression amongst one another.	

Case and Column of Drawers.	Reference to McCor's Synopsis: and Figures of Genera	Names and References; Obsorvations, \&e.	Numbers and Localities.
$\begin{aligned} & \text { F C } \\ & \text { G } \mathrm{c} \end{aligned}$	Acervuluria ananas, p. 35.	Arachnophyllum luxurians, Edw. and Haime, (Brit. Fos. Cor. t. 69, fig. 2, p. 292. Siluria, 2nd ed. pl. 39, fig. 6. A. ananas, Linn. (in part). Lonsdale, Sil. Syst. pl. 16, fig. 6 . Siluria, 2nd ed. Foss. 53, fig. 6). There is no doubt this is the chief coral intended by Linnous, but as he included more than one, the A. ananas was described by Lamarek from the other species. Arachnophyllum, McCoy (Strombodes, Milne Edwards). McCoy's genus was certainly described shortly before or immediately after Milne Edwards' first description of the genus; and it seems hardly worth while to revive the doubtful genus of Schweigger, and displace a most excellent and graphic name for it.	a. 336, Dudley, F. C. is fig. ${ }^{2} \alpha$ in M. Edwards' Monograph; a. 678 shews the buds well.
$\begin{gathered} \text { FC } \\ \text { G c } \\ \text { G b } 7 \\ \text { Gb } 8 \end{gathered}$	Pl. 1 в, fig. 27, p. 38.	Arachnophyllum typus, McCoy (Milne Edwards, t. 71, fig. 1, as Stromborles, Siluria, 2nd ed. Foss. 52, fig. 6). S. typus, diffuens, Murchisoni, Phillipsi, and Labechii, all are varieties of one common species.	b. 716, Dormington, Woolhope; a. 361, near Aymestry, McCoy's figure; a. 363, Dudley, F. C. as Murchisoni.
	Pl. 1 b, fig. 28, p. 34.	[Strombodes Wenlockensis, McCoy, is a Lonsdaleia, Edwards, and is a common mountain limestone coral introduced by mistake; it never came from the Wenlock localities. J. W.S. 1867.]	From Shropshire or N. Wales.
	Sarcinula, p. 36.	Syringophyllum, Edwards and Haime (Sarcimula, Linn. in part). The projecting edges of the cups are the inner wall (endotheea), the interstices being filled by the coronate septa, and there are no bounding walls to the separate corallites-they are fused together as in modern reef-corals.	
	p. 37.	Syringophyllum organum, Linn. (Sarcinula, Lonsd. and Goldfuss, Pet. Germ. t. 24, fig. 10). Nore common in the Lower Silurian rocks. (See Milne Edwards, t. 71, fig. 3, and Siluria, 2nd ed. Foss. 29, fig. 4.)	No specimen; but should be obtained from Dudley. $15-2$

Case and Column of Drawers.	Reference to McCor's Synopsis: and Figures of Geucra.	Names and References; Observations, \&c.	Numbers and Localities.
F C		[Palæocyclus præacutus, Lonsdale, is the May Hill Sandstone species, see p. 84. I do not remember that it is found in Wenlock strata except in S. Wales.] Palæocyclus Fletcheri, Milne Edwards (Brit. Fos. Cor. t. 57, fig. 3). A conical cupshaped species, more like Petraia than any other. The buds take their rise from the surface of the cup.	a. 340, Dudley, F. C.
F C		Palæocyclus rugosus, Milue Edwards (Brit. Fos. Cor. p. 248, t. 57, fig. 4).	a. 341, Dudley, F. C.
G b 8	Pl. 1 b, fig. 18, p. 33.	Clisiophyllum vortex, McCoy, said to be from the Wenlock limestone-is without doubt the mountain limestone sp. C. coniseptum, Keyserling. Milne Edwards (Brit. Fos. Cor. t. 37, fig. 5). A common fossil in collections.	No doubt from the Carb. Limestone of Oswestry, figured specimens are a. 374.
F C	Star-fishes.Crinoids or Sea-lit	ECHINODERMATA. Lepidaster, Forbes. Mem. Geol. Surv. Deeade 3 (distinct from Puleaster).	.
		Lepidaster Grayii, Forbes. Deearle 3, pl. 1. Two fine large specimens. Roots, and stems (often swelled by disease) are extremely common, so common as to characterize the whole formation. Separate plates of various genera are less common, but are found in the more shaly strata.	a. 717, Dudley, F. C:; a. 716, Dudley, F. C., figured specimen.
		I adopt the order in which the genera are given in the Synopsis for convenience of reference. But it is not a natural order. Some genera have been since added; and many more remain to be described from the magnificent Fletcher Collection, and that of Mr John Gray of Hagley, now deposited in the British Museum. Mr C. Ketley of Smethwick has added largely to both collections, both cystideæ and crinoids.	

Case and Colamn of Drawers.	Reference to McCor's Synopsis: and Figures of Genera.
F C	
$\begin{aligned} & \text { FC } \\ & \text { Gd } \end{aligned}$	p. 54.

p. 57.

Names and References; Observations, \&c.

Cheirocrinus Fletcheri, n. s. (C. sp. branched arm) Fletcher Coll. Siluria, 2nd ed. App. p. 535. The finest and most curious of all the species. It has repeatedly branched nodose arms, and is the largest of all, and will shew us the affinitios with other genera at present obscure.
b. Crinoids with double rows of plates in the arms.

Marsupiocrinus, Phillips. The arrangement of the plates in the broad cup is that of Eucalyptocrinus, Goldfuss, and of Iypanthocrinus. But the proboscis is not gigantic and solid as in the latter genus: and we do not know enough of Goldfuss' figured genus.

Marsupiocrinus cælatus, Phill. (Siluria, 2nd ed. pl. 14, fig. 1, and p. 247, woodcut 55, figs. 1-3). A fine series, shewing young and old cups, arms, interior of arms, stomach surface retracted in rest, or produced into proboscis for feeding on the Gasteropoda. Mr John Gray found that Acroculica Huliotis was the favonrite food. See woodcut in Siluria, Foss. 55, as above.

Syriocrinus, Hall. Very much resembles Marsupiocrinus, if it be not the same genus.

Hypanthocrinus, Phillips (Sil. Syst.), Eucalyptocrinus, Salter, \&c. in Siluria, 2nd od. There is no ground for so altering the generic name: though I myself was the first to propose it. The Devonian genus has a much shorter calyx, and several genera are now found to have the conspicuons star-like arrangement of plates round the interradials b.

Numbers and Localities.
a. 388, Dudley, F. C.
a. 667, with Pseudocrimus; a. 389, Dudley, F. C.; a. 390, feeding on Acroculia, Dudley, F. C.; a. 391, Dudley, interior of amns, Ketley Coll.; casts of Gray's specimens (Brit. Mus.).

Case and Column of Drawers.	Reference to McCor's Synopsis: and Figures of Genera.	Names and References; Obserrations, \&c.	Numbers and Localities.
F C	Eucalyptocrinus, p. 5 S.	Hypanthocrinus decorus, Phill. (Eucalyptocrinus, Siluria, 2nd ed. pl. 14, fig. 2). The remarkable large interbrachial plates (a) placed between the arms readily distinguish this from any other genus. The convex plates of the cup interradial (b) plates, placed between the radial (c) plates which go directly to the arms from the cup or calyx (basal plates, d), distinguish it from II. laciniatus, and II. granulosus, both Dudley and Walsall species. The nomenclature of the plates of the cup of a crinoid is best given by De Koninck, in his monograph of the Belgian Crinoidea from the Carboniferous Limestone. Hypanthocrinus granulatus, Lewis. London Geological Journal, 1847, p. 99, pl. 21. Geol. Mus. Jermyn St. has good Walsall ones.	a. 392 Dudley, F. C.
FC	Eucalyptocrinus, Pl. 1 D, fig. 2, p. 58. For figures of several of these genera, see Siluria, 3rd ed. pl. 13, figs. 4, 5.	Hypanthocrinus polydactylus, McCoy. An excellent species, easily distinguished from both the last by the many-branched arms. This species shews the affinity of $I_{y p a n-}$ thocrinus to Marsupiocrinus very easily. Dimerocrinus, Phill. Sil. Syst. 1839. Still further removed than Marsupiocrinus from the last; there is yet much affinity. The interradial plates (u) are very conspicuous. The species very common at Dudley.	a. 393, Dudley, F. C.; cast also from Gray's specimens, Brit. Mus.
$\begin{aligned} & \text { FC } C^{\top} \\ & \text { GC } \end{aligned}$		Dimerocrinus icosidactylus, Phill. (Siluria, 2nd ed. pl. 13, fig. 4). The twenty arms and three or four interradials distinguish this common form from the next species.	a. 670, Dudley, F. C. good, with Glyptocrinus. a. 669, ditto.
F C		Dimerocrinus multiplex, n. sp. Five or six or more interradials, none of which are conspicuously larger than the rest.	a. 404, Dudley, F. C.
F C		Dimerocrinus uniformis, n. sp. Cup all even, the sutures barely marking the smooth plates. Ten arms, which are parallel.	a. 405, Dudley, F. C.

Case and Column of Drawers.	Reference to McCor's Synopsis: and Figures of Genera.	Names and References; Observations, \&c.	Numbers and Localities.
FC		Dimerocrinus decadactylus, Phill. (Siluria, 2nd ed. pl. 13, fig. 5). Cup with convex highly ornamented plates. Ten arms which diverge. A common species. This grows large. A very finc specimen shews the arms and plates of the cup tuberculate.	a. 406, Dudley, F. C. a. 407, Dudley, F. C.
	p. 56.	Periechocrinus, Austin. The largest and most common of Dudley crinoids, with a long conical cup-plated all the way up to the end of the bifurcation of the arms, which then, fifteen to thirty-four in number, are long, straight and unbranched; but of course not simple, being composed of a double row of bones. Proboscis massive, central. Stomach plates small. Stems moniliform, of thick joints. Range-May Hill Sandstone to Ludlow rock.	
FC	p. 56.	Periechocrinus moniliformis, Miller, spec. (Siluria, 2nd ed. pl. 13, figs. 1, 2). There are thirty-two or thirty-four arms. Pelvis conical, ridged by the radial plates. The arms branch and dichotomise.	a. 408 , stem, a. 409 , cup dissected, a. 410, arms all displayed, Dudley, F.C.; a. 411, proboscis (Ketley Coll.); a. 412, proboscis (Ketley Coll.) ; a. 417, Dudley, F. C.; a. 418, shews large pair of arms five - branched (Kietley Coll.).
F C		Periechocrinus simplex, n. s. Arms fifteen only. Cup smaller and broader, radials strongly ridged, plates radiated. A very distinct good species.	a. 413, Dudley, F. C.
FC		Periechocrinus limonium, n.s. Arms twentyseven or twenty-eight, as in moniliformis, but cup ovatc. Scarcely ridged by the radial lines. Plates thin, looks like Hypanthocrinus granulosus.	a. 414, Dudley, F. C.; a. 415, shows the stomachplates; a. 416, young, Dudley, F. C.

Case and Column of Drawers.	Reference to McCor's Synopsis: and Figures of Genera.	Names and References; Observations, \&c.	Numbers and Localities.
	C. rugosus, p. 55.	Crotalocrinus, Anst. A most remarkable genus. In all other crinoids yet known the arms are free and the fingers frec; in this they are all united by transverse processes into a flexible basket, just like wicker-work. To make the apparent anomaly greater, the arms appear; and appear only to start in great numbers from the edge of the globular calyx; whereas they really start from a point far inward on the stomach platesthe upper edge of the calyx being strongly and sharply inflected. Only one species is known in Britain. In Sweden another has been described by Müller, which really has the five fans of fingers distinct at the base, and overlapping each other. The atfinity is with our next genus, Cyathocrinus, to many species of which there is a remote resemblance in the numerous fingers, and the structure of the cup is the same, viz. one set of subradial plates.	
$\begin{aligned} & \text { FC } \\ & \text { G } \mathrm{C} \end{aligned}$	p. 55.	Crotalocrinus rugosus, Miller, (Siluria, 2nd ed. Woodcut 55, fig. 4-7, p. 247, pl. 13, fig. 3).	a. 424 , a. 425, a. 426 , var., a. 427 , a. 428 , shew sto-mach-surface; a. 430, base of all the arms; a. 429, a. 432, a. 433, roots, Dudley, F. C. ; a. 431*, Gray's cast; a. 671, the most perfect stomach - plates, balloonshaped stomach (Ketley Coll.).
F C		Cyathocrinus, Miller. Cup of five basal pieces, with five intermediate (subradial) pieces, between which the arms originate. Cyathocrinus quinquangularis, Phill. (not Mill.), Rhodocrinus, Sil. Syst. t. 18, fig. 5.	a. 435, Dudley, F. C.
F C		Cyathocrinus (sp. 1). Like C. goniodactylus, with similar cup, and general structure, but greatly thicker arms.	a. 499, Dudley, F. C.
FC		Cyathocrinus (sp. 2) decadactylus, Salter. Ten single arms, unbranched, and with very large thick tentacles.	a. 494, Dudley, F. C.

Case and Column of Drawers.	Reference to McCor's Synopsis: and Figares of Genera.	Names and References; Observations, \&c.	Numbers and Localities.
F C		Cyathocrinus (sp. 3) quindecimalis, Salter, MSS. Fifteen arms, like those of the last species, but with even thicker tentacles. N.B. These last two species form a very peculiar group-unlike other Wenlock species.	a. 495 , Dudley, F. C.
Gc 2		Cyathocrinus (sp. 4) squamiferus, MSS. With very broad scale-like joints to the arms, which seem also thin and flat.	a. 452, Dudley, F. C.
Gc 2		Cyathocrinus (sp. 5). Small species, like C. arthriticus, but with arm-plates much longer in proportion and of course narrower.	a. 486, Dudley, F. C.
F C		Cyathocrinus arthriticus, Phill. (Siluria, pl.14, fig. 7). A species with greatly extended upper angles to the joints.	a. 447, young; a. 448 , a. 449, Dudley, F. C.
Gd		Cyathocrinus goniodactylus, Phill. (Siluria, Ind ed. pl. 14, fig. 3). The commonest speciesof all ages; the specimens often appear to form different species.	a. 663 , a. 664 , good, Dudley, F.C.
G c 2		Cyathocrinus, 2 new sp. A good deal like the young C.goniodactylus, but with thinner and more dichotomous arms.	a. 444 , a. 445, Dudley, F. C.
Gc 2		Cyathocrinus, sp. Cup of an allied species (roughly reticulate).	a. 446, Dudley, F. C.
F C		Cyathocrinus, sp. A similar cup.	a. 450 , Dudley, F. C.
F C		Cyathocrinus, sp. With subangular arms like the two next, but distinct.	a. 496, Dudley, F. C.
Gc 2		Cyathocrinus (sp. 6) monile, MSS. Rounded and much-brauched arms.	a. 487 , Dudley, F. C.
F C		Cyathocrinus nodulosus, MSS. Much like last, but only half the number of arms.	a. 487^{*}, Dudley, (Ketley Coll.).
$\begin{aligned} & \text { F C } \\ & \text { G d } \end{aligned}$		Cyathocrinus capillaris, Phill. (Siluria, 2nd ed. pl. 15, fig. 3). A pretty species, with slender, long and much-branched arms, and a very much ornamented calyx.	a. 488 , a. 489 , a. 490 , Dudley, F. C.; a. 491, (Ketley Coll.) ; a. 668, grood, Dudley, F. C.

Case and Columu of Drawers. Drawer	Reference to McCor's Synopsis: and Figures of Genera.	Names and References; Observations, \&c.	Numbers and Localities.
G c 2		Cyathocrinus (sp. 7) scoparius, MSS. s. Much like the last, but the arms more subdivided, and even apparently tufted; and the terminal stomach plates appear to have also ended in brush-like tufts.	a. 491, Dudley, F. C.
F C		Cyathocrinus punctatus (Apiocrinus penctatus, Hisinger, Leth. Suec. p. 89, t. 25, fig. 2).	a. 436, a. 437, Dudley, F. C.
Gc 2		Cyathocrinus (sp. 8) Ichthyocrinoides. Like young punctatus, but with very short close arm-joints, and (smooth? pelvis).	a. 492, Dudley, F. C.
Gc 2		Cyathocrinus (sp. 9) arboreus, MSS. Much branched, with round arms and fingers, and minute pelvis.	a. 493, Dudley, F.C.
F C		Cyathocrinus (sp. 11). Like arborens, but greatly branched above.	a. 497, Dudley, F. C.
		Taxocrinus, D’Orbigny. Distinguished from Cyathocrinus, which it much resembles, by the want of any subradial plates; the arms are simple, not double; and there are in general only a few interradial plates (a) in the cup. On the anal side only are those interradials brought down to the cup.	
FC	p. 53.	Taxocrinus tuberculatus, Miller (Siluria, 2nd ed. pl. 14, figs. 5, 6). The commonest species of the genus, easily discriminated by the strong tubercles all along the plates and arm-joints. Specimens of all ages shew that young crinoids have much fewer arms, or rather fingers, than old ones.	a. 500, a. 501, Dudley, F.C.
Gc 3		Taxocrinus tesseracontadactylus, Hisinger, sp. (Leth. Suecica, t. 25., fig. 4). It is very doubtful if the Taxocrinus simplex of Phillips be not this Swedish species.	a. 500*, Dudley, F. C.
FC		Taxocrinus simplex, Phill. (Sil. Syst. pl. 18, fig. 8).	a. 502 , a. 503 , a. 504 , Dudley, F.C.; a. 506, interior (Ketley Coll.).
F C		Taxocrinus marmoratus, Salter, n.s. The plates of the cup and the basal portions of the arms roughly tubercular.	a. $505, \mathrm{a} .507$, Dudley, F.C.

Cose and Column of Drawers.	Reference to McCor's Synopsis: and Figures of Genera.	Names and References; Observations, \&c.	Nombers and Localities.

Case and Column of Drawers.	Reference to MrCor's Synopsis and Figures of Genera.	Names and References; Observations, \&c.
F C		
Gc 4		

$\begin{gathered} \text { Case and } \\ \text { Column of } \\ \text { Drawers. } \end{gathered}$	Reference to McCor's Synopsis : and Figures of Genera.	Names and References : Observatious, \&c.	Numbers and Localities.
$\begin{gathered} \text { FC } \\ \text { Gc4 } \\ \text { Gd } \end{gathered}$	Odontocrite, p. 160.	Phacops caudatus, Brongn. (Mon. Brit. Tril. pl. 8, figs. 4-18, pl. 4, figs. 1-5. Siluria, 2nd ed. pl. 17, fig. 2, pl. 18, fig. 1).	a. 557 , a. 557^{*}, large, a. 558 a. 559 , interior, two specimens; a. 560 , large eyes; a. 561 , tail; a. 562 , young; a. 563, Iabrum; a. 564, labrum, Dudley, F.C.; a. 654 , interior, Dudley; a. 691, cast of Mr Lightbody's specimen from Ledbury; a. 699, the specimen from near Llandeilo, wrongly said by the collector to be from Lower Bala.
$\begin{gathered} \text { FC } \\ \mathrm{GCC} \end{gathered}$	Odontochile, p. 161.	Phacops longicaudatus, Murch. (Mon. Brit. Tril. pl. 3, figs. 19-28, Siluria, 2nd ed. pl. 17 , figs. 3-6).	b. 785, W. Shale, Myddleton Park; a. 567 , Malvern, F. C.
FC		Phacops longicaudatus, var. β Grindrodianus (ib. pl. 3, figs. 2-28).	a. 56ã, a. 566, Wenlock Shale, Malvern, F. C.
Gc 4		Phacops longicaudatus, var. armiger, Salter (ib. pl. 2, figs. 19-21).	b. 736, b. 737, Burrington, Cheney Longville.
Gc 5		Phacops tuberculato-caudatus, Salter (ib. pl. 4, fig. 1), probably var. of P. caudatus. Calymene, Brongniart. The most compact and elegant form of the whole Trilobite group; moderate head and glabella; thirteen body rings and tail of six or seven joints; labrum notched.	a. 696, Lower Ludlow, Dudley, F. C.
$\begin{gathered} \mathrm{FC} \\ \text { Gc4 } \\ \text { Gd } \end{gathered}$	p. 165. As C. subdiademata, Pl. 1 f, figs. 9, 10, p. 166	Calymene Blumenbachii, Brongn. (Salter, Mon. Brit. Tril. pl. 8, figs. 7-16, Siluria, 2nd cd. pl. 17, fig. 1, pl. 18, fig. 10). The young state is known in Sweden as C. pulchella. The older form is figured under all sizes, shapes and names in geological works. It is the Dudley locust of collectors.	a. 547 , young; a. 54 S, older; a. 549, young; a. 550, young; a. 551, a. 559, good interiors; a. 55.3 , largest known, except Mr Mathew's specimen (of which b. 733 is a cast); a. 554 , expanded specimen; a. 655, fine large specimen; a. 656 , a. 657 , good specimens, Dudley, F.C.; a. 690, Coed Sion, Llangadoc.

Case and Cunu of lrawers.	Reference to McCor's Synopsis: and Figures of Genera.
G d	Names and References; Observations, \&e.

Case and Column of Drawers.	Reference to McCoy's Synopsis: and Figures of Genera.	Names and References; Observations, \&c.	Numbers and Localities.
		BRACHIOPODA (Palliobranchiata). Are easily divisible into (1) horny and hingcless shells (Lingula, Discina, Obolus), and (2) hinged calcareous shells, Orthis, Spirifer, \&c. The passage from the young Lamellibranch to the Brachiopod is easily seen by laying open a young Anodon (Rathke's Memoir). The heart is double, the iutestine duplicate; the form of the opened valves, like that of Orthis biloba, and the median plate in so many Brachiopods, is the sure indication of the real nature of these otherwise anomalous Bi valves.	
F C	Orbiculoidea, p. 189.	Crania, Retzius. A well-known recent genus, which, with slight modifications, and very slight ones, has persisted from the Lowest Bala group to the present day. It inhabits deep water usually. Crania implicata, Sow. sp. (Patella? in the Silurian System. Orbiculoidea of D'Orbigny. Crania, Salter, Siluria, 2 nd ed. pl. 20, fig. 4, Davidson, Sil. Brach. p. 80, pl. 8, figs. 13-17). The shell is a minute oval, imbricate outside, and with strong muscular scars.	a. 395, Dudley, F. C.
$\begin{gathered} \text { Gc }{ }^{\prime} \\ \text { FC } \end{gathered}$		Crania Grayii, Davidson. (Sil. Brach. pl. 8, figs. 22-24.)	a. 713, Dudley, F. ('. three specimens.
FC		Trematis (Discina) Siluriana, Davidson. (Sil. Brach. pl. S, figs. 19-20.)	a. 809, a. 810, Dudley; F. C.
\cdots	Pl. 1 H, figs. 4, 5, p. 255. See Athyris.	Spondylobolus, McCoy. A genus unfortunately founded in mistake; a species of Meristella (prabably M. obovata) being so pressed in shalc, as to thrust the teeth through the opposite valve, and give risc to deceptive appearances. The formation also (this was not the Professor's error) is erroneous. The shell comes not from the black Lower Bala rocks of Builth, but from the equally black Wenlock shale. See No. 382.	

Case and Colame of Drawers.	Reference to McCor's Synopsis: and Figures of Genera.	Names and References; Obserrations, \&c.	Numbers and Localities.
		Siphonotreta anglica, Morris (Ann. Nat. Hist. 2 ser. Vol. 4, tab. 7, fig. 1. Davidson, Sil. Brach. p. 75, t. 8, fig. 1. Siluria, 3rd ed. Foss. 58, fig. 10). [The genus Siphonotreta was established in 1845 by M. de Verneuil, for certain Brachiopod shells having well-defined characters which separate it from Crania and Terebratula. There are two British species. Editor:]	Dudley.
		Discina (Orbicula of old writers). Also a very old gemus indeed. Under slight modifications it persists from Cambrian, even Lower Cambrian times, to the present day. And like Crania is a deep water form. The valves slide one on the other by the action of the muscles, and the byssus comes out of a subeentral foramem in the lower (ventral) valve.	
Gcy		Discina Verneailii, Davidson (Sil. Brach. pl. 6, fig. 5).	a. 712, Dudley, F. C.; an inch long. Good specimen in Sharpe's cabinet, Geol. Society.
Gc 7		Discina striata, Dav. (Sil. Brach. p. 191, pl. 6, figs. 1-4, Siluria, pl. 20, fig. 3).	a. 711, Dudley, F.C., Lower Ludlow?
Gc 7	p. 190.	Discina Morrisii, Davidson (Sil. Brach. pl. 7, figs. 10-12). It differs in its smooth shining surface from the D. Forbesii.	a. 718*, Dudley, F. C.
$\begin{aligned} & \mathrm{FC} \\ & \mathrm{Gcy} \end{aligned}$		Discina Forbesii, Davidson (Siluria, Foss. 57, fig. 11, p. 250, Mem. Geol. Surv. Vol.11. pt.1, p. 371, pl. 26, fig. 2. Davidson, Sil. Brach. pl. 7, figs. 14-18). Both valves equally or nearly equally convex, forming the genus Orbiculoidea, of D'Orbigny. Discina, sp.	a. 718, a. 719, Dudley, F.C.; a. 383, Keeper's Lodge, Golden Grove, W. Shale.
		Lingula, Bruguière. The earliest known, and most common of all the Brachiopod group. Its structure has been described well by Dr Woodward in his Manual, and very wrongly referred by Prof. McCoy to the	

| Case and
 Column of
 Drawers. | Reference to McCox's
 Synopsis: and Figures of Genera. | Names and References; Obserrations, sc. |
| :---: | :---: | :---: | :---: |

Case and Column of Drawers.	Reference to McCox's Synopsis: and Figures of Genera.	Names and References ; Observations, \&c.	Numbers and Localities.
$\begin{gathered} \text { G d } 3 \\ \text { F C } \end{gathered}$	Spirifera subspuria, p. 195.	Spirifer elevatus, Dalm. (Davidson, Sil. Brach. p. 95 , t. 10 , figs. $7-11$, S. octoplicatus, Sil. Syst. pl. 12, fig. 7 , but S. elevatus, Salter in Mem. Geol. Surv. Vol. III. p. 278). Spirifer plicatellus, Linn. sp. (Anomia, Linn. See Davidson's learned discussion, Sil. Brach. p. 84, t. 9, figs. 9—12).	a. 789, interior dorsal v.; a. 790 , interior ventral v.; a. 721, Dudley, F. C.
$\begin{gathered} \text { FC } \\ \text { Gd } 2 \end{gathered}$	p. 195.	Spirifer plicatellus, var. radiatus, Sow. (Davidson, Sil. Brach. p. 87, pl. 9, figs. 1-6). Spirifer radiatus, Sow. Sil. Syst. pl. 12, fig. 6. Spirifer plicatellus, var. vadiatus, Salter, Mem. Geol. Surv. Vol. II. pt. 1, p. 382 , Siluria, 2nd ed. pl. 21, fig. 2.	b. 739, Keeper's Lodge, Golden Grove; a. 725, young; a. 726, full grown; Dudley, F. C.
G d 3		Spirifer plicatellus, var. globosus, Salter (Mem. Geol. Surv. Vol. II. pt. 1, p. 382. Davidson, l. c. pl. 9, figs. 7, 8).	a. 791 to a. 794, Dudley, F. C.
Gd 3 Gd 2	Spirifera cyrtona, p. 193.	Spirifer plicatellus, var. interlineatus, Sow. (Davidson, l. c. p. 84, pl. 9, figs. 9—12, Siluria, 2nd ed. pl. 21, fig. 1).	a. 787, Dudley, F. C. ; b. 740, Ledbury; b. 741, near Woolhope.
Gd2	p. 193.	Spirifer crispus, His. not Linn. (Davidson, 1. c. pl. 10, figs. 13-15). Differs from S. elevatus chiefly in the fewer ribs and these being more deeply striate concentrically. The original figure of Linnæus evidently represents S. sulcatus, His. Leth. Suec. p. 73.	b. 742, Whitfield, Tortwortl (Earl Ducie) ; b. 743 Clungunford, W. Shale.
G d 3		Spirifer, var. with faint ribs.	a. 795, Dudley, F. C.
FC Gd 2 Gd 3	Spirifera trapezoidalis, p. 196 (Cyrtia).	Spirifer exporrectus, Wah1. sp. (S. trapezoidalis, Dalman, Siluria, 2nd ed. pl. 21, fig. 3. Cyrtia exporrecta, Davidson, 1. c. t. 9, figs. 13-24). Remarkable, even among Spirifers, for the extreme elevation of the beak.	a. 722, a. 723 , covered by Monticulipora; a. 724, extreme variety with great ly elevated hinge; a. 788 interior parts, Dudley F. C.; b. 744, Golden Grove Llandeilo.

$\begin{gathered} \text { Case and } \\ \text { Columu of } \\ \text { Drawers. } \end{gathered}$	Reference to McCor's Synopsis: and Figures of Genera.	Names and References; Observations, \&c.	Numbers and Localities.
$\begin{aligned} & \text { G d } 1 \\ & \text { G d } 3 \end{aligned}$	Spondylobolus craniolaris, p. 255. Pl. I н, figs. $4,5$.	Athyris obovata, Sow. sp. (Siluria, 2nd ed. pl. 22, fig. 16, Dav. Sil. Brach. p. 121, t. 12, fig. 19, t. 13, fig. 5).	a. 382, Builth Bridge (W. Shale, not Bala, J.W.S.); a. 796, interior dorsal valve; a. 797, ventral valve; a. 798, good, Dudley, F. C.
G d 3		Meristella Circe, Barr. (Davidson, Sil. Brach. p. 116, t. 10, figs. 33-35). Differs chiefly from Merista, its ally in Bohemia, by the attachment of the muscles to the ventral valve. In this they are attached directly to the shell. In the Bohemian form they are first attached to an arched shelly process, and this to the rest of the shell.	a. 660, Dudley, Wenlock Limestone, F. C.
$\begin{gathered} \text { Gd } 3 \\ \text { F C } \end{gathered}$	Athyris, p. 196.	Meristella tumida, Dalman, sp. (Davidson, Sil. Brach. p. 109, t. 11, figs. 1-13, A thyris, Siluria, 2nd ed. pl. 22, fig. 20). Equally common in Sweden.	a. 799, good interiors; a. 661, young; a. 727 (Davidson's figure, L. Gcol. Journ. fig. 12) shews spires; a. 728, a. 729, a. 730, Dudley, F. C.
Gd 1 G d 3	Hemithyris, p. 201.	Meristella didyma, Dalm. (Davids. 1. c. t. 12, figs. 1-10, Siluria, 2nd ed. pl. 22, fig. 15). More common in the Aymestry Limestone.	a. S00, a. 801 , Dudley, F.C.; a. 781*, Ledbury ; a. 781, Tortworth (Earl Ducie).
G d 3		Meristella læviuscula, Sow. (Terebratula, Sil. Syst. pl. 13, fig. 14, Siluria, 2nd ed. pl. 22, fig. 14, M. nitida, Davidson, Sil. Brach. t. 10, figs. 28-32). A small edition of the last.	a. 649, a. 650, Dudley, F. C.
G d 3		Eichwaldia Capewellii, Davidson (Sil. Brach. p. 193, t. 25 , figs. 12-15, Rhynchonella, Salter, Siluria, 2nd ed. Foss. 57, fig. 4. Porambonites, Siluria, 3rd ed. p. 226). A curiously netted surface on the shell.	a. 648, Dudley, F.C.
		Retzia. A shell like Rhynchonella, but laving the internal arm-supports wholly calcified. The shell is largely punctate.	
Gc 8		Retzia Barrandii, Davidson (Sil. Brach. p. 128, t. 13, figs. 10-13, Siluria, 2nd ed. Foss. 57, fig. 5).	b. 745 Dudley, F. C.
F C		Retzia Salteri, Davidson (1. c. t. 12, figs. 21, 22, Siluria, 2nd ed. Foss. 57, fig. 7, p. 250). Easily distinguished by the centre ribs being much smaller.	a. 771, ordinary form; a. 772, fewer ribs; a. 77: approaches R. Baylei, Dudley, F. C. $18-2$

Case and Column of Drawers.	Reference to McCor's Synopsis: and Figures of Genera.	Names and References; Observations, \&c.
Gc 8		Retzia Salteri, var. Baylei, Davidson (1.c. t. 12, figs. 23-25). Only a longer variety than the other.
Gc 8		Retzia Bouchardi, Davidson (1. c. p. 127, t. 12, figs. $26-30$, is a common species at Dudley).
		Rhynchonella, Fischer. One recent species, the Rhynchonella psittacea, alone remains of this abundant fossil genus. It is common in all chalk, oolite, carboniferous and Silurian deposits; and occurred in the Upper Cambrian more rarely. Below this it is never found.
Gre 8	Spirigerina, p. 197.	Rhynchonella cuneata, Dalm. (Siluria, 2nd ed. pl. 22, fig. 8. Dav. Sil. Brach. p. 164, t. 21, figs. 7-12). A common Dudley fossil.
G d 4		Rhynchonella, n.s. Sharp plaits, like young Rhync. nucula.
F C		Rhynchonella deflexa, Sow. (Davidson, l.c. t. 22, figs. 24-27, Siluria, 2nd ed. pl. 22, fig. 10). The shell is not really reversed; the ventral valve is so much flatter and more hollowed, and the upper valve so very convex, that it quite overhangs the other, as in several Orthides.
F C	Hemithyris, p. 203.	Rhynchonella Lewisii, Davidson (l.c. t. 23 , figs. 25-28, Siluria, 2nd ed. Foss. 57, fig. 2, p. ${ }^{5} 50$). One of the commonest species; and yet one of the last described. The pretty fringe-like arrangement of the lines of growth, crossing the radiating ribs, renders this a very elegant shell.
	Hemithyris lacunosa, p. 202.	Rhynchonella borealis, Schloth. (R. lacunosa, Dalm.), but not of Linnæus. (Salter, Mem. Geol. Surv. Vol. II. pt. 1, pl. 28, figs. 9-14.) The four plaits in the sinus, and the pointed beak, distinguish it. Davidson, Sil. Brach. p. 174, t. 21, figs. 14-20, var. figs. 24-27.

Case and Column of Drawers.	Reference to McCor's Synopsis: and Figures of Genera.	Names and References; Observations, \&c.	Numbers and Localities.
G d 1	Hemithyris, p. 201.	Rhynchonella borealis, var. diodonta, Dalm. (Salter, id. p. 383. Davidson, l. c. t. 21, figs. $21-23$, Siluria, 2 nd ed. pl. 22, fig. 5).	a. 647, Dudley, F. C.
G d 1	Hemithyris nucula, p. 204.	Rhynchonella nucula, Sow. (Silnria, 2nd ed. pl. 22, figs. 1, 2, Foss. 57, fig. 1, p. 250).	a. 381, Coed Sion, Llangadoc ; b. 753, Golden Grove, Llandeilo, large (W. Sliale).
F C	Hemithyris, p. 206. Hemithyris crispata, p. 200.	Rhynchonella Stricklandii, Sow. (Siluria, 2nd ed. pl. 22, fig. 11, Davidson, 1. c. t. 21, figs. 1-6). One of the largest species, and ranges throughout the central Silurian districts, and South Wales (var. crispata, Dav. Sil. Brach. t. 21, fig. 28).	a. 757, Dudley, F.C.; a. 758, Malvern, Sedgley?
$\begin{gathered} \text { Gd } \\ \text { Gd1} \end{gathered}$	Hemithyris, p. 207. Hemithyris pentagona, p. 205. H. spheeroidalis, p. 206. II. Davidsoni, p. 200.	Rhynchonella Wilsoni, Sow. (Siluria, 2 nd ed. pl. 22, fig. 13, Davidson, l. c. p. 167, pl. 23, figs. 1-9). This very common and variable shell commenced life in the Woolhope period, and then was largest; dwindled away to a very poor and small size in the Wenlock limestone, and again became of magnificent proportions in Aymestry rocks,	b. 753 , Dudley, F.C.; a. 380, as H. pentagona, Clungunford, W. Shale? a. 672, var. Falfield, Tortworth (Earl Dncie) ; a. 677, var., Ledbury (as II. spheroidalis) ; a. 673 , figured specimen, Dudley.
F C	R. Davidsoni, p. 200, in part.	Rhynchonella Wilsoni, var. Davidsoni, McCoy. This was evidently intended by the Professor to include his specific term. But it is probably only a variety. (Mr Davidson has figured it extremely well in the fifth volume of the Bull. Soc. Géol. de France, 2nd ser. pl. 3, fig. 36, as R. spherica, a name previously adopted.)	a. 762 is fig. 43 of the work cited; a. 763, also figured; a. 764 is a var. with very few ribs, and a. 765 an elongated form; a. 766 , interior, Dudley, F.C.
Gd 1	Hemithyris, p. 204.	Rhynchonella navicula, Sow. (Siluria, 2nd ed. pl. 22, fig. 12, Davidson, Sil. Br. t. 22, figs. 20-23), is not rare in the Wenlock Shale, Dinas Bran, Llangollen, but never found at Dudley or Wenlock in the limestone.	b. 752, Wenlock Shale, Dinas Bran, Llangollen, S. Wales,
		Pentamerus, J. Sowerby, Son. An excellent name for a shell which is literally divided into five chambers by vertical plates; so much so that the two halves of the shell come readily apart under the hammer. No Brachiopod so thoroughly shews the true	

$\begin{aligned} & \text { Case and } \\ & \text { Column of } \\ & \text { Drawers. } \end{aligned}$	Reference to McCox's Synopsis: and Figures of Genera.	Names and References; Observations, \&c.	Numbers and Localities.
	p. 209.	nature of the order, composed of bivalves which are opened along the hinge line and soldered there. Each dorsal valve therefore represents an entire bivalved shell; and the ventral valve represents the calcified foot of ordinary bivalves. (Salter, in Camb. Phil. Trans. 1869.) Pentamerus Knightii, Sow. (Min. Conch. 1813, Vol. I. pl. 28, Silnria, 2nd ed. pl. 21, fig. 10, Davidson, l. c. pl. 16, 17, 19). The largest Brachiopod in the Silurian rocks. And the same species, or one very nearly allied (P. conchidium), ranges up to the Arctic regions, and was brought thence by the discoverers in the Arctic expedition.	Rare in Dudley limestone or shale.
$\begin{gathered} \mathrm{FC} \\ \mathrm{Gd} 1 \end{gathered}$	p. 208, as P. globosus.	Pentamerus galeatus, Dalm. (Siluria, 2nd ed. pl. 21, figs. 8, 9, Davidson, l. c. pl. 15, figs. 13-22). Certainly the most common species, and as common in Sweden and North America.	b. 754, Walsall; a. 731a. 733, Dudley, F. C.; b. 755, Woolhope.
FC		Pentamerus galeatus. Strongly plaited variety. (Davidson, l. c. t. 15, fig. 19.)	a. 734, Dudley, F. C.
FC		Pentamerus linguifer, Sow. (Siluria, 2nd ed. pl. 22, fig. 21, Davidson, l. c. t. 17, figs. 11-14). A short broad species.	a. 735, Dudley, F.C.
		Atrypa, Dalman. Now confined to the few species (the individuals are countless) which have the calcareous spires coiled vertically, i.e. the apex pointing to the centre of the ventral valve, not horizontally as in Spirifer, \&c. A. reticularis, Linn., is the type, and is world-wide, from Arctic America to Australia; and ranging from Llandovery or Upper Bala to the Upper Devoniau rocks.	

Case and Column of Drawers.	Reference to McCor's Synopsis : and Figures of Genera.	Names and References; Obscrvations, \&c.	Numbers and Localities.
$\begin{gathered} \text { FC } \\ \text { Gd } 1 \end{gathered}$	Spirigerina, p. 198.	Atrypa reticularis, Linn. (Anomic reticularis, Syst. Nature, 12th ed. Siluria, 2nd cd. pl. 21, figs. 12, 13, Davidson, l. c. t. 14). Strong lamellar fringes roughen the whole shell and double its bulk, but these are rarely preserved, except in shale, being of course entangled in the matrix.	a. 777, ventral valve interior; a. 778 , dorsal valve intcrior; a. 780, Dudley, F. C.; b. 756, Wenlock; b. 757, Sedgley ; Myddleton Park (Wenlock Shale), Caermarthen; b. 760, Coed Sion, Llangadoc (W. Shale); b. 761, Keeper's Lodge, Golden Grove (W. Shale).
$\begin{aligned} & \text { G d } 1 \\ & \text { G d } \end{aligned}$	Spirigerina, p. 197.	Atrypa marginalis, Dalm. (Siluria, 2nd ed. pl. 22, fig. 19, in pt., Davidson, l. c. t. 15, figs. 1, 2). Almost as common as the last in Silurian rocks, and ranging down to Middle Bala, but never rising above Silurian. The defined sinus in the front, and the moderately narrow striæ, distinguish it from the next form.	b. 762, Dudley, F. C. ; b. 760, Wenlock.
FC	var. of S. marginalis, p. 197.	Atrypa imbricata, Sow. (Sil. Syst.) Siluria, 2nd ed. pl. 22, fig. 19, in pt. Davidson, Sil. Brach. t. 15, figs. 3-8. Coarse and few ribs, and the want of a defined medial sinus, and the rough imbrication, are characters.	a. 774, large and fine; 775, young variety; a. 776, very few ribs, Dudley, F. C.
G d 4		Atrypa? Grayii, Davidson (Sil. Brach. p. 141, t. 13, figs. 14—22, Rhynchonella, Siluria, 2nd ed. Foss. 57, fig. 3).	a. 651, a.652, Walsall, Dudley, F. C.
	Hemithyris, p. 201.	Athyris? depressa, Sow. (Davidson, Sil. Brach. t. 13, fig. 6).	Dudley.
		Athyris? compressa, Sow. (Siluria, 2nd ed. pl. 22, fig. 22).	Dudley.
		Nucleospira, Hall. Spiral calcified arms, and a minute area in either valve, and a smooth surface, mark this obscure genus.	
$\begin{aligned} & \text { Gd } \\ & \text { Gd } 1 \end{aligned}$	Hemithyris, p. 205.	Nucleospira pisum, Sow. (Spirifer? Sil. Syst. and Siluria, 2nd ed. pl. 21, fig. 7, Davidson, Sil. Brach. t. 10, figs. 16-20).	b. 764, Dudley, F.C.; b. 765, Wenlock.

Case and Column of Drawers.	Reference to McCoy's Synopsis: and Figures of Genera.	Names and References; Observations, \&c.	Numbers and Localities.
G c 8	p. 214.	Orthis, Dalm. Of all Brachiopod genera the most characteristic of Lower Palæozoic rocks. Only a few forms, and those of a particular group (O. filiaria, O. Michelini) range into Carboniferous rocks. A wide hinge line, tolerably flat shells (sometimes bilobed), triangular foramen (open), and absolute want of spines on the surface, easily distinguish it from Producta and its allies, and the single (not double) cardinal process (i.e. pedal muscle support) from Strophomena. It is hardly ever bent as in the last-named genus, and the valves are almost equally convex in many cases; in others the dorsal, rarely the ventral, is the flat one. Only one, O. calligramma, of the coarse-ribbed forms, comes up from Cambrian or Cambro-Silurian rocks to mix with the striated and faintlyribbed forms characteristic of the Silurian. Orthis calligramma, Dalman. (De Vern. Geol. Russia, t. 13, fig. 7; Salter, iu Mem. Geol. Surv. Vol. 1I. Pt. 1, p. 374, for description. Also Vol. III. pl. 22, and p. 335 to p. 337 , Davidson, Sil. Brach. p. $240, \mathrm{pl} .35$, figs.1-17).	b. 766, Dudley, F. C.
G c 8		Orthis, var. Davidsoni, De Vern. (Bull. Soc. Géol. de France, Vol. v. 2nd ser. pl. 4, fig. 9).	b. 767, Dudley, F. C.
FC	p. 226.	Orthis rustica, Sow. (Sil. 2nd ed. pl. 20, fig. 10. Davidson, Lond. Geol. Journ. p. 64, pl. 13, figs. 1-4).	a. 741, dorsal valve; a.742, ventral valve, Dudley, F.C.
Gd2	do.	Orthis rustica, var. rigida, Davidson (Lond. Geol. Journ. p. 63, pl. 13, figs. 16, 17), evidentlyan irregularly grown variety of the last. Orthis, var. Walsalliensis, Davidson (Bull. Soc. Géol. de France, 2nd ser. Vol. v. pl. 4, fig. 7). I think only a many-ribbed variety of O. rustica.	b. 768, Dudley. Dudley.
FC	p. 213.	Orthis biloba, Linn. (Ter. sinuata, J. Sowerby. Delthyris cardiospermiformis, von Buch). One of the prettiest fossils of the limestone, and most instructive as shewing (with Terebratula diphya and others) the double-valved nature of the dorsal valve in Brachiopods. (Siluria, 2nd ed. pl. 20, fig. 14. Davidson, Brit. Fos. Brach. Introd. pl. 8, fig. 141.)	a. 755 , dorsal valve; a. 756 ventral, Dudley, F. C.

Case and Column of Drawers.	Reference to McCoy's Synopsis: and Figures of Gencra.	Names and References ; Observations, \&c.	Numbers and Localitics.
$\begin{gathered} \text { FC } \\ \text { G }{ }^{2} 2 \end{gathered}$	p. 216.	Orthis elegantula, Dalm. (Siluria, 2ud ed. pl. 20, fig. 12. Davidson, Sil. Brach. t. 27, figs. 1-9). Not so common in the Dudley limestone as in the Bala rocks, but still very frequent. I think O. parva a mere variety, and feel inclined to keep 0 . orbicularis distinct.	a. 753, interior ventral valve; a. 752, interior dorsal valve; a. 754 , mere trigonal variety, Dudley, F.C.; b. 769, Erw Gilfach, Builth; a. 785 (as O. turgidu), Coed Sion, Llangadoc, W. Shale.
	O. parva, p. 221.	Orthis, var. small and triangular.	
G d		Orthis orbicularis, Sow. (Siluria, 2nd ed. pl. 20, fig. 9). A much rounder and less triangular shell than O. elegantula, but still very closely allied. It is far more common in Ludlow rocks (as at Sedgley), but here and there occurs in true Wenlock; as at Benthall Edge.	a. 892 , a. 893 , a. 894 , Falfield, Tortworth (Earl Ducie).
$\begin{gathered} \text { Gd } \\ \text { Gd2 } \end{gathered}$	p. 220.	Orthis hybrida, Sow. (Siluria, 2nd ed. pl. 20, fig. 13. Davidson, Sil. Brach. p. 214).	b. 770, Dudley, F. C.; b. 771, Whitfield, Tortworth (Earl Ducie).
$\begin{aligned} & \text { Gd } 4 \\ & \text { Gc } 8 \end{aligned}$		Orthis Lewisii, Davidson (Bull. Soc. Géol. Fr. 2 ud. ser. Vol. v. t. 3, fig. 19, Sil. Brach. t. 26 , fig. 4).	a. 659, Dudley, F. C.
	p. 223.	[Orthis porcata, McCoy (see p. 89), is found, though rarely, in the Dudley limestone.]	
$\begin{gathered} \text { Ge } 8 \\ \text { Gd } \end{gathered}$		Orthis Bouchardi, Davidson (London Geol. Journ. pl. 13, figs. 5-8; Bull. Soc. Géol. Fr. Vol. v. pl. 3, fig. 19).	b. 748, b. 772 , Dudley, F.C.
G d	Spirifera, p. 192.	Orthis biforata, Schloth (De Vern. Geol. Russ. t. 3, Davids., l.c. Introduction, pl. 8, fig. 146). Rare in Wenlock rocks: common in Cambrian rocks:-this species lingers on, to shew among many others low much closer the relations are between the Upper Cambrian and the true Silurian strata, than between the former and the lower Cambrian.	b. 773, Dudley, F. C.
Gc 8		Orthis æquivalvis, Davidson (Sil. Brach. t. 30, figs. 9, 10; Siluria, 2nd ed. p. 251).	b. 774, Walsall, W. Shale.

Case and Column of Drawers.	Reference to McCor's Synopsis: and Figures of Genera.	Names and References; Observations, \&e.	Numbers and Localities.
		Strophomena, Rafinesque. Easily distinguished from Orthis by the broad expanded form -one valve being often bent on the other, and so flat as to leave very little room for the animal. The general characters are much the same as in Orthis. But the cardinal process is invariably double, not single. Leptagonia, McCoy, is only a Strophomena. And the Professor has placed all this genus, natural as it is, under the general term Leptrena, Dalman, which is best restricted, as Davidson and myself have done, to the involute species with long, instead of square dorsal muscles.	
$\begin{aligned} & \mathrm{FC} \\ & \mathrm{GC} \end{aligned}$	Leptana, p. 243.	Strophomena euglypha, Dalman (Siluria, Ind ed. pl. 20, fig. 19). Davidson, Lond. Geol. Journ. Vol. i. pl. 12, figs. 1-4 ?). Wost common. The dorsal valve bends down over the ventral, which is bent backwards.	b. 781 , a. 743 , interior of dorsal valve; a. 744 , a. 745 , outside of ventral valve; a. 746, outside of dorsal valve, Dudley, F. C.
Gc 8	Leptona, p. 244.	Strophomena funiculata, MeCoy (Orthis, Sil. Foss. Ireland, pl. 3, fig. 11. Davidson, Lond. Geol. Journ. t. 1², fig. 6, Siluria, 2nd ed. p. 251). Bent in the reverse way to S. eugly$p h a$, and a miniature copy of that species.	b. 775, Dudley, F. C.
G d	Leptena, p. 236.	Strophomena Ouralensis, De Vern. (Geol. Russ. t. 14, fig. 1, S. imbrex, Davidson, and Salter, Siluria, Foss. 58, fig. 6, not of Pander). Gently curved, the ventral valve the convex one. This differs from Pander's O. imbrex, which is narrower, and abruptly bent down. The interior is beautifully shewn in Davidson's figures.	b. 776, Duclley, F. C.
$\begin{aligned} & G d 2 \\ & G c 9 \end{aligned}$	Leptant, p. 249.	Strophomena filosa, Sow. sp. (Orthis, Sil. Syst. t. 13, fig. 12, Siluria, 2nd ed. pl. 20, fig. 21, Davidson, Lond. Geol. Journ. Vol. I. p. 62). A common flat species, beautifully striate.	b.778, Dudley,F.C.; b.779, Keeper's Lodge, Golden Grove, Llandeilo.
$\begin{gathered} G c \\ G d 2 \end{gathered}$	Leptrenc, p. 245.	Strophomena Pecten, Linn. sp. (Anomia, Syst. Naturæ, Orthis Pecten, Siluria, Ind ed. Foss. 58, fig. 3. Davidson, Introd. Foss. Brach. t. 8 , fig. 163 , \&c.). Very common in Silurian and Upper Cambrian rocks.	b. 780, Dudley, F. C.; b. 783, Myddleton Park, Caermarthen.

Case and Columa of Drawers.	Reference to McCor's Synopsis : and Figures of Genera.	Names and References; Observations, \&c.
FC Gc Gd 2	Leptagonia, p. 248. (as L. deltoidea $\beta, \mathrm{p} .234$.)	Strophomena depressa, Dalm. (Anom. rhomboidalis, Wahl. Leptena, Sil. Syst. pl. 12, figs. 12-16. Mein. Geol. Surv. Vol. II. Part 1, p. 283. Strophomena, Silnria, 2nd ed. pl. 20 , fig. 20).
G d 2	Leptcena, p. 233.	Strophomena corrugata, Portl. sp. (Geol. Rep. Lond. p. 450, t. 32, figs. 17, 18, non Conrad, Jour, Ac. Nat. Sc. Phil. Vol. viri. p. 256, t. 14, f. 8. S. corrugatella, Dav. Sil. Brach. p. 301, t. 41, fig. 8).
$\begin{aligned} & \text { Gd } 2 \\ & \text { Gc } 9 \end{aligned}$		Strophomena quadrata, Lindström. Much smaller in all its parts; and with the abrupt front turned down only a short way. It is oblong, compared with its larger congener, and more delicately striated.
$\begin{aligned} & \text { Gc } 8 \\ & \text { Gd } 2 \\ & \text { Gc } 9 \end{aligned}$	Leptcena, p. 241.	Strophomena antiquata, Sow. (Siluria, 2nd ed. pl. 20, fig. 18, Foss. 58, fig. 8, Davidson, Sil. Brach. p. 297 , t. 44, fig. 2). A rough, but elegant shell, coarser in its imbricated striation than any other Strophomena.
G b	Leptiena, 1 н, figs. $33-35$, p. 246.	Strophomena simulans, McCoy. A species I fear founded on several specimens of several species. I cannot define it.
Gc9		Strophomena, sp.
		Leptæna, Dalman, proper. Shells involute. The ventral enveloping the dorsal one. The cardinal processes connate with the widely set hinge-teeth (in Strophomena they are distinct), and the muscular scars very long - not squarish. The habit of the three genera Orthis, Strophomena, Leptoena, is so distinct, that little difficulty can be found by the student in separating them.
$\begin{gathered} \text { Gd } 2 \\ \text { FC } \end{gathered}$	p. 240. as L. sericea, var. rhombica, p. 239. as L. quinquecostata, p. $\underset{36}{ }$.	Leptæna transversalis, Dalman (Siluria, 2nd ed. pl. 20, fig. 17, Davidson, l. e. t. 48, fig. 1). One of the shells that range through a good many formations (Bala rocks to

Numbers and Localities.
784 as L. deltoideu
β unduta), Coed Sion, Llangadoc; a. 736, a. 737, interior dorsal valve; a. 738 a. 740 , interior ventral valve, Dudley, F. C.
a. 783, Golden Grove, Llandeilo, W. Shale; Myddleton Park?
b. 777, a. 715, Dudley, F. C.
a. 882, Walsall ; b. 78:3, b. 784, Dudley, F. C.
a. 465 , Myddleton Park, Caermarthen, W. Shale.

Dudley, F. C.
a. 782, as L. sericea, var. rhombica, Llyn Alwen; a. 747 , outside dorsal valve: a. 748 , interior ditto; a. 19-2

Case and Drawers Drawer	Reference to McCor's Synopsis: and Figures of Genera.	Names and References; Observations, \&c.	Numbers and Localities.
FC		Ludlow rocks) and yet preserve their characters unimpaired. Leptcena Duvalii is one of its extreme Dudley forms. It is equally common in sandy, muddy and limestone deposits; but appears to prefer the calcareous mud. Chonetes, Fischer. All the Productide, to which this shell belongs, have spines in some part of the surface. Chonetes has them confined to the linge-line of the ventral valve. Carboniferous species are large and finely striated. Devonian ones coarsely ribbed, often. The Silurian forms are small, and often striate roughly or are smooth, sometimes they are minute shells.	749, outside ventral valve; a. 750, interior (cast) ditto; a. 751, young; Dudley, F.C.
Gd2		Chonetes lata, Von Buch sp. (Siluria, 2nd ed. pl. 20, fig. 8, C. striatella, Dalm. sp. Davidson, Sil. Brach. t. 49, figs. 23-26). Of all the common Ludlow shells this is the commonest; but it is rarely found in Wenlock limestone, and occasionally reaches May Hill sandstone. It has coarse strix and spines along the hinge, and thus is easily distinguished from the species of Leptena proper.	b. 789, Myddleton Park, Caermarthen.
Gd 2	Leptcena, p. 235.	Chonetes lævigata, Sow. (Leptena levigata, Sow. Sil. Syst. Siluria, 2nd ed. pl. 20, fig. 15). Smooth, with extended ears, and extremely common in muddy Wenlock Shales. McCoy has occasionally mistaken this for other species (Orthis parva for instance).	b. 790 , Clungunford, Shropshire; b. 791, near Puol; b. 792, Keeper's Lodge, Golden Grove.
Gd2	Leptena, p. 235.	Chonetes minima, Sow. (Lept. minima, Siluria, 2nd ed. pl. 20, fig. 16).	b. 794, W. Shale, Llanfair, Welchpool ; b. 795, Bed of Dee, Llantysilio.
Gc 8		Chonetes minima, Sow. var. Grayii, Davidson (Sil. Brach. p. 334, t. 49, figs. 15-19), Leptena Grayii, Davidson (Bull. Soc. Géol. Fr. Ind ser. Vol. v.).	b. 78S, Dudley, F. C.

Wenlock Continued.

Lamellibranchiata (Conchifera of Authors).
Bivalve shells proper: differ from Brachiopods not only in the want of the spirally coiled and ciliated arms-the tentacles, four in number, being simple and flaceid-but in wanting the ventral shelly cover to the foot, which in the Brachiopod becomes the ventral valve. The foot on the contrary, though often giving birtlı to a byssus, is a free organ, useful for locomotion, and capable of great and varied evolutions. The valves in the infant state are open (as Rathke has shown in Anodon), and the heart and intestine double (the heart is permanently double in the Brachiopod), and these coalesce as the animal grows and closes the valves. The muscles instead of all being directed to the foot and its appendages as in the Terebratula, are chicfly used for transverse action to close the valves, a portion only being directed to the important foot. The higher genera, not requiring to be anchorcd (Cardium, Venus, \&c.), do not spin a byssus. This, which arises from a large gland in the back of the foot, is represented by the anchor or plug of the Terebratula; and, as I have lately shewn (Camb. Philos. Trans.), the operculum of the Gasteropod is an analogous organ. The Bivalves then stand half way between the snails and whelks, with free motion, and the permanently fixed and helpless Terebratula.

It is important to observe, and Professor Phillips was the first to point it out (Mem. Geol. Surv. Vol. II. Pt. 1, p. 264), that the lower gencra only of Lamellibranchs-Arca and its allies, Avicula, Pterinea, Modiolu, Mytilus, to which may be added Nucula, the freest of this group-are present in the earliest rocks in which fossils are found. To these may be added Conocardium, which, like Teredo and Ploladidea in our seas, have the valves soldered.

Case and Column of Drawers.	Reference to McCor's Synopsis: and Figures of Genera.	Names and References; Observations, \&c.	Numbers and Localities.
F C	Pl. 1 I, figs. 11-15, p. 258.	Avicula Danbyi, McCoy (Siluria, 2nd ed. Foss. 59, figs. 2, 3). A common shell in the Ludlow Sandstones of Kendal.	a. 803, Dudley, F. C. ${ }^{1}$
F C		Avicula mira, Barr. MS. (Siluria, 2nd ed. p. 253).	a. 820 , a. 821 , a. 822 , left valve; a. 823 , right valve; a. S24, both valves united, rare, Dudley, F.C.
F C	p. 263.	Pterinea Sowerbyi, McCoy (Siluria, 2nd ed. pl. 23, fig. 15. Avicula reticuluta, Sil. Syst. t. 6, fig. 3). A long direct shell, not transverse as in many species.	a. 818, right valve, Dudley, F. C.
G d 7	Pl. 1 I, fig. 5, p. 259.	Pterinea asperula, McCoy (Siluria, 2nd ed. p. 253, Foss. 59, fig. 4).	b. 720 , Builth, W. Shale.
$\begin{aligned} & \text { Gdy } \\ & \text { Ge } 5 \end{aligned}$		Pterinea lineatula, D'Orb. (Siluria, 2nd ed. pl. 23, fig. 16 Avicula lineata, Sow., is not the Avicula lineata of Goldfuss).	b. 727, Myddleton Park, Caermarthenshire (Wenlock Shale); b. 728, Dudley, F.C.

[^8]

Case and Column of Drawers.	Refereuce to McCor's Synopsis: and Figures of Genera.
FC	
	(Anodontopsis securiformis), p. 272.

Pl. 1 L , fig. 9.

Leptodomus, p. 278.

FC
Names and References; Observations, \&c.

Ambonychia striata, Sow. (Cardiola, Siluria,
2nd ed. pl. 23, fig. 13).

Numbers and Loealities.
a. 840 , Dudley, F. C.
b. 725, Builth Bridge, Wenlock Shale.
a. 829, Dudley, F. C.

Dudley.
a. 828, Dudley, F. C.
a. 827, Dudley, F. C.
a. 836 , left valve; a. S37, right valve; a. 838 , young, Dudley, F.C.

Case and Column of Drawers.	Reference to McCor's Synopsis: and Figures of Genera.	Names and References; Observations, \&c.	Numbers and Localities.
Gd7		Cardiola interrupta, Brod. (Siluria, 2nd ed. pl. 23, fig. 12). A shell universal in Wenlock rocks throughout Europe.	b. 797, Erw Gilfach, Builth; b. 798, Maen Goran, Builth.
F C	Genus, p. 273.	Clidophorus, sp. McCoy (oval shells). The genus is one of the Arcacere, the teeth of which lie parallel to the hinge border. The shells are thin.	a. 826, Dudley, F. C.
$\begin{aligned} & \text { G d } 5 \\ & \text { G d } 7 \end{aligned}$	Pl. 1 K, fig. 9, p. 273.	Clidophorus planulatus, Conrad, sp. (Hall, Pal. New York, t. 82, fig. 9).	a. 845 , Shale, Dudley, F.C.; a. 915, Keeper's Lodge, Golden Grove.
F C		[Actinodonta, (Phill.) sp. Related closely to Clidophorus, and possibly included in it. Oval shells, not thick as most Arcaceer, and with teeth on both sides lying parallel to the hinge-plate; and a few central radiating ones, A species very common in the May Hill sandstones of Marloes Bay.]	a. 830, Dudley, F. C.
Gd5		Cuculella, oval sp. like C. antiqua of the Ludlow rocks. The shells of this genus are endless in minute variation in all Silurian rocks, rare in Cambrian.	b. 799, Dudley, F. C.
Gd7	(Nucula, of many authors.)	Ctenodonta, Salter. Intended to replace Nu cula for those abundant species iu old rocks, all of which have external ligaments.	b. 800 , Dinas Bran, Llangolleu.
FC	Nucula, p. 285.	Ctenodonta anglica, Sow. (Siluria, 2nd ed. pl. 23 , fig. 10). The hinge-lines are very much bent interiorly in this broad triangular species.	a. 835 , Dudley, F. C.
Gd5		Ctenodonta, sp. 1.	a. 832, Dudley, F. C.
G d 5		Ctenodonta, sp. 2.	a. 833, Dudley, F. C.
G d 5		Ctenodonta, sp. 3.	a. 834, Dudley, F. C.
G d 5		Ctenodonta, sp. 4. A wide triangular form, like many Bala species in foreign lands, but not usual for Britain.	a. 834^{*}, Dudley, F. C.

Case and Column of Dravers.	Reference to McCoy's Synopsis: and Figures of Genera.	Names and References; Observations, \&c.	Numbers and Localities.
$\begin{aligned} & \text { GC } \\ & \text { FC } \end{aligned}$	Capulus, p. 290.	Acroculia, Phillips. More spiral than Capulus, and often spinose or tubercular. Acroculia haliotis, Sow. (Siluria, 2nd ed. pl. 24, fig. 9). A most characteristic Wenlock shell -the food of Crinoids, especially of Marsupiocrinus.	b. 804, Ledbury ; a. 854 , regular natica-like growth, a. S51, a. 855, mouth, a. 852, narrow var., i.e. slowgrowing spire, a. S553, quicker growth, a. 850, Dudley, F. C.
G d 6		Acroculia, sp. 2.	b. 803, Dudley, F. C.
$\begin{aligned} & \text { G d } 6 \\ & \text { G d } 7 \end{aligned}$		Acroculia, sp. 3. Very much angulated whorls, a small species.	a.625, Tortworth (Earl Ducie); a. 626, Dudley, F.C.
G d 6		Acroculia, sp. 4.	b. 801, Dudley, F. C.
Gd 6		Acroculia prototypa, Phil. (Siluria, Ind ed. pl. 24, fig. 8). Very much like a Nerita in look.	b. 802, Dudley, F. C.
		Pleurotomaria, Sow. A genus allied to Scissurella, and has the mouth deeply notched. It is chiefly palæozoic, i.e. the species with a convex base.	
F C		Pleurotomaria undata? Sow. (Siluria, 2nd ed. pl. 24, fig. 6).	a. 846, Dudley, F. C.
FC		Pleurotomaria, minute sp.	a. 847, Dudley, F. C.
F C		Pleurotomaria Fletcheri, Salter, n. sp.	a. S51, Dudley, F. C.
FC	p. 292 ?	Pleurotomaria undata, Sow.? (Pl. undata, Sow. Siluria, 2nd ed. pl. 24, fig. 6.)	a. 856 , Dudley, F.C. (?Lower Ludlow) ; it is common there.
F C		Pleurotomaria balteata, Phill. (Mem. Geol. Surv. Vol. it. pt. 1, p. 355, pl. 15, figs. 1, 2). The spire of this large shell is much depressed : the band rough and prominent.	a. 857 , good figured specimen, Dudley, F. C.

Case and Column of Drawers.	Reference to McCor's Synopsis : and Figures of Genera.	Names and References; Observations, \&c.	Numbers and Localities.
G d 6	Litorina, p. 30\%.	Cyclonema octavia, D'Orb. (Siluria, 2nd ed. pl. 24, fig. 4. Turbo carinatus, Sil. Syst. t. 5, fig. 28). Eunema, Salter. Of frequent occurrence in Silurian and Cambrian rocks. Species are sure to be found. The shells are thin, and probably had no operculum. They resemble Cyclonema (Geol. Surv. Can. Decad. 1, p. 29).	a. S74, Dudley, F. C.
Gd 6		Trochonema, Salter (Canadian Decades, No. 1). Shells like Eunema and Cyclonema, but with a wide open umbilicus, Cyclonema has none. Trochonema bijugosa, Salter (n. sp.). A species much resembling the T. (Turbo) trochleatus of McCoy and Hall.	a. 875 , Dudley, F. C.
		Macrocheilus? (Polyphemopsis, Portlock). Ovate shells, with closely pressed narrow whorls, looking more like a Bulimus than anything else. They are found in Cambrian as well as Silurian rocks.	
FC	,	Machrocheilus pupa, n. sp., Salter. Euomphalus, Sow.	a. 869, Dudley, F. C.
$\begin{aligned} & \text { FC } \\ & \text { G C } \end{aligned}$	p. 297.	Euomphalus centrifugus, Wahl. sp. (Hisinger, Leth. Suec. t. 12, fig. 1).	b. 821, Wenlock ; a. S41, Dudley, F. C.
$\begin{aligned} & \text { FC } \\ & \text { G C } \end{aligned}$	p. 298.	Euomphalus discors, Sow. (Siluria, 2ud ed. pl. 24, fig. 12).	a. 864 , large upper side; a. 865 , under side, Dudley, F.C.; b. 812, Wenlock.
Gd 5		Euomphalus, varieties of ditto.	Dudley, F. C.
F C		Euomphalus pacificatus, Salter.	a. S61, Dudley, F.C.
F C		Euomphalus Mariæ, Salter, n.sp. Related to E. discors, but with most regular ridges of growth. A beautiful shell, dedicated to a most worthy lady-the patient preparer of this Collection. Two or three hours daily were given by Mrs Fletcher to this task, and the result is an unique cabinet of species new to science.	a. 859 , upper side; a. 860 , under side, Dudley, F. C.

SILURIAN.

Case and Column of Drawers.	Referenee to McCor's Synopsis: and Figures of Genera.	Names and References; Observations, \&e.	Numbers and Localities.
G d 8	O. filosum, p. 314.	Orthoceras dulce, Barrande (Sil. Syst. Boh. Vol. r1. pl. 294, 295 ; pl. 357 , figs. 8,9).	a. 628 , Builth Bridge, large specimen.
G d 8	p. 315.	Orthoceras laqueatum, Hall? (Pal. New York, t. 56, fig. 1). I doubt this reference. MeCoy refers to O. subcostatum, Portlock, as a near ally.	a. 629, Dinas Bran, Llangollen.
Gd8	Cycloceras, p. 320.	Orthoceras subannulare, Münst. (Beiträge, Heft III. p. 99, pl. 19, fig. 3). See above in Lower Wenlock, p. 98.	b. 829 , Builth Bridge, Wenlock Shale.
G d 8	O. bullatum, p. 313.	Orthoceras, sp. Much finer strix than O. bullatum, and more like O. tenuistriatum, perhaps identical.	a. 635, Llyn Alwen, Denbighshire.
G d 8	p. 316.	Orthoceras primævum, Forbes (Creseis, Forbes, Quart. Journ. Geol. Soc. Vol. II. pl. 18, fig. 2). Long thin shells with very convex septa, easily crushed.	b. 833, Cwmbach Builth a. 636, Builth Bridge.
G d 8	p. 318.	Orthoceras ventricosum, Sharpe (Creseis, Quart. Journ. Geol. Soc. Vol. iI. pl. 13, fig. 3). A shorter shape than O. primcevum.	b. 830 , Builth Bridge (W. Shale).
G d 10		Orthoceras, sp. New, large like O. filosum, but with impressed lines instead of raised thread-like striæ. It is probably related to O. dulce, Barr.	a. 638, Dudley, F. C.
F C		Orthoceras distans, Sow.? (Siluria, 2nd ed. pl. 26, fig. 4), has in this specimen fine longitudinal striæ, not before olsserved. (It is imperfect, and may not be certainly Sowerby's species. I think it is.)	a. 619, Dudley, F. C.
Gd 10	p. 313.	Orthoceras angulatum, Wahl.? (Siluria, 2nd ed. pl. 28, fig. 4). These specimens (if the same as the well-known casts in Ludlow rocks) shew the ribs much more raised and thread-like-we had ouly casts before.	a. 643, a. 645, a. 644 may be quite distinct, I think it is so. Dudley, F.C.
		Phragmoceras, Brod. A laterally compressed and curved shell, aperture contracted in the middle, siphuncle ventral, radiated.	

Ludlow Rocks.-Lower Division.

Not easily distinguishable, except by their superposition and fossils, from the Wenlock rocks. The mineral character, shale and limestone, is much, of course, like that of the underlying Wenlock limestone and shale. And of course, also, many of the organic remains are alike. A great many of them are corals, bryozoa, and brachiopod and cephalopod shells, which have considerable range. But there is no practical difficulty at all in recognizing Ludlow from Wenlock by the fossils. It is very easy; and it is the business of the scientific geologist to noglect the common terms, and study the real and abiding differences which constitute the claim of one set of rocks to be called distinct from another. Moreover, the Ludlow is distinct from the Wenlock in Sweden; and the Lower Helderberg series of America (N.) are the exact equivalents of our Lower and Upper Ludlow rocks, as the Niagara group is of the Wenlock formation.

I include the Aymestry with the Lower Ludlow, as one is only a calcareous condition of the other. And Mr Lightbody of Ludlow has already laid stress on the fact (Quart. Geol. Journ. Vol. 19, p. 368) that the calcireous nature of the beds above the Aymestry rock influences the fossils to a marked degree; so that, were it possible, it would be better to draw the line "Upper Ludlow" only at some distanee above the Aymestry rock. Even iu districts where the Aymestry is absent, the Lower and Upper Ludlow rocks are recognizable; though not easily separable by a hard line. (J. W. Salter, from personal survey.)

Lower Ludlow Rock and Aymestry Linestone.

Case and Column of Drawers.	Reference to McCor's Synopsis : and Figures of Gener.	Names and References; Observations, \&c.	Numbers and Localities.
G el	Sponges.	PLANTE. Spongarium Edwardsii, Murch. (Siluria, 2nd ed. pl. 12, fig. 3). AMORPHOZOA. ? New flat sponge with radiating fibres. Shape cylindro-conical, two inches long. HYDROZOA (BRYOZOA or POLYZOA.)	b. 2, Dinas Bran, Llangollen. See Bryozoa.
Ge1	G. ludensis, p. 4.	Graptolithus priodon, Bronn. (Letl. Geogn. t. 1, fig. 13).	b. 850, Garden Quarry, Aymestry.
G e 1	(niz bindes	Graptolithus priodon, G. ludensis, var. minor, McCoy, p. 5.	b. 851 , Leintwardiue, Shropshire.
Ge1 Ge 1		Graptolithus, sp. Dendrograpsus, Hall.	b. S5:2, Underbarrow, Kendal.
Ge 1		Dendrograpsus, sp. Nicholson, Quart. Journ. Geol. Sac.	b. 8.53, Leintwardine.

SILURIAN.

Case and Column of Drawers.	Reference to McCor's Synopsis: and Figures of Genera.	Names and References; Observations, \&c.	Numbers and Localities.
Ge1		New Bryozoon? or Sponge.	a. 520, Leintwardine.
		ZOOPHYTA, or Corals. (Celenterata.)	
G e	p. 24.	Stenopora fibrosa, Goldf. sp. (Favosites, Siluria, 2nd ed. pl. 40, fig. 6).	b. 853%, Sedgley.
Ge 1		Syringopora.	b. 854, High Thorns, Kendal.
Ge1	Pl. 1 c, fig. 11, p. 36.	Cyathaxonia Siluriensis, McCoy.	a. 903 , Underbarrow.
		ECHINODERMATA. Actinocrinus, Miller? It is not certain, nor very likely, that the following species belongs to the Carboniferous genus, to which it is assigned. It is quite as likely to be a Cyathocrinus, and the ornament is similar.	
Ge 1	Appendix A, p. 1, Pl. 1 D, fig. 3.	Actinocrinus pulcher? Salter.	a. 904, Shepherd's Quarry, Kendal.
Gel		Platycrinus, Miller.	b. 856 , Benson Knott, Kendal.
Ge 2		Platycrinus, sp.	b. 857, Shepherd's Quarry, Kendal.
Ge 2		Platycrinus, sp.	a. 519, Shepherd's Quarry, Kendal.
Ge2		Cyathocrinus, sp.	b. 855, Shepherd's Quarry, Patton, Kendal.

Case and Column of	Reference to McCor's Syuopsis : aud Figures of Genera.	Names and References; Observations, sce.	Numbers and Localities.
		CRUSTACEA, Merostomata, Sub-Order Eurypterida. Pterygotus, (Agassiz), Huxley, Salter and Woodward. The giant of the Crustacea, attaining a size of seven to eight feet in length, and abundant in species. At first regarded as parts of a fish, it was soon restored to its true position by the renowned Agassiz, and it has since received attention from the above authors. (See Upper Ludlow.)	
Ge 3		Pterygotus? A thick anterior joint of some large species. (It can scarcely be the cup of a large crinoid, much obliterated.)	a. 521, Underbarrow, Kendal.
Ge		Pterygotus arcuatus, Salter (Mem. Geol. Surv. Moni. 1, on Pterygotus, p. 95, t. 13). The difference in sculpture and shape of the antenue marks this species from P. anglicus and its allies.	b. 864, Leintwardine.
		Slimonia (Page, H. Woodwarl). [Slimonia differs from Pterygotus in slape and in the absence of the great chelate antennæ. The thoracic plate covering the sexual organs differs in male and female.]	
Ge		Slimonia punctata (Pterygotus, Salter, Mem. Geol. Surv. Mon. 1, pl. 10, 11). A body-ring only.	b. 865 , Leintwardine.
Ge 3	Forbesia, p. 174.	CRUSTACEA, Trilobita, Burm. Proetus latifrons, McCoy, sp. (Silur. Foss. Ireland, t. 4, fig. 11, Mem. Geol. Surv. Vol. 2, pt. 1, t. 6, fig. 1).	a. 905, Underbarrow.

Case and Column of Drawers.	Referenco to McCox's Synopsis: and Figures of Genora.	Names and References; Observations, \&c.	Numbers and Localities.
Ge 4		New genus, or Athyris?	a. 525, Llangammarch, Sugar Loaf, Llandovery.
Ge 4		Meristella? sp. A lobed shell with only lines of growth.	b. 873, Llyn Alwen, Dcnbighshire.
$\begin{aligned} & \text { Ge } 5 \\ & \text { Ge } 4 \end{aligned}$	Hemithyris, p. 201.	Meristella didyma, Dalm., sp. (Siluria, 3rd ed. pl. 22, fig. 15).	a. 937 , b. 875 , Sedgley, ventral valve interior, F. C.
Ge 4	Siphonotreta anglica! p. 188.	Athyris? obovata, Sow. (Siluria, 3rd ed. pl. 22, fig. 16, Davidson, Sil. Brach. p. 121, t. 12, fig. 19).	a. 524, Sunny Banks, Grayrigg, Westmorland ; b. 874, Dudley, F. C.
$\begin{aligned} & \text { Ge } 4 \\ & \text { Ge } 5 \end{aligned}$	Hemithyris, p. 204.	Rhynchonella nucula, Sow. (Siluria, 3rd ed. pl. 9, figs. 9, 11; pl. 22, figs. 1, 2).	b. 876 , Leintwardine; b. 877, Cwm Craig ddu; a. 938, Sedgley, F. C.
$\begin{gathered} \text { Ge } 5 \\ \text { Ge } \\ \text { Ge } 4 \end{gathered}$	Hemithyris, p. 204.	Rhynchonella navicula, Sow. sp. (Siluria, 3rd ed. pl. 22, fig. 12, Davidson, Sil. Brach. p. 190).	b. 87 S , Erw Gilfach, Builth; a. 939, a. 940 , Sedgley, F.C.; b. $879, \mathrm{~N}$. end of Potter Fell, Kendal ; b. s80, Cowan Head, Kendal; Cwm Craig ddu, Builth; Myn-ydd-y-gaer, S. side; Leintwardine.
$\begin{gathered} \text { Ge } 4 \\ \text { Ge } \\ \text { Ge } 5 \end{gathered}$	Hemithyris sphoeroidalis, pl. 1 L, fig. 4, p. 206.	Rhynchonella Wilsoni, Sow. sp. var. (Davidson, Sil. Brach. p. 173, t. 23, fig. 10).	a. 941 , a. 942 , Sedglcy, var. vera, F.C.; a. 523, Botville, Church Stretton; b. 881, Sedgley.
Ge 4	Hemithyris, p. 200.	Rhynchonella crispata, Sow. var.	b. 882 , Leintwardine.
Ge 4		Pentamerus Knightii, Sow. var. elongatus, McCoy.	b. 884, Woolhope.

Case and Column of Drawers.	Reference to McCox's Synopsis : and Figures of Genera.	Names and References; Observations, \&c.	Numbers and Localities.
Ge 5 Ge 4 Ge	p. 209.	Pentamerus Knightii, Sowerby (Min. Conch. t. 28, Davidson, Sil. Brach. t. 16,17).	b. 883 , Woolhope ridges; b. 885, Walsall, F. C.; a. 933, Aymestry, interior; b. 886, Sedgley.
G e		Pentamerus Knightii, var. Aylesfordii, Sow. (Min. Conch. t. 29).	a. 934 , Aymestry.
G e 4		Pentamerus galeatus, var. The interior of the ventral valve has been sometimes taken for the very different species P. globosus.	b. 887, Leintwardine; b. 888, above Park Lane, Llandeilo.
$\begin{gathered} \text { Ge } 4 \\ \text { Ge } \end{gathered}$	Spirigerina, p. 198.	Atrypa reticularis, Linn. sp. (Siluria, 3rd ed. pl. 9, fig. 1 ; pl. 21, figs. 12, 13 ; Davidson, Sil. Brach. p. 129, pl. 14, figs. 1-2y).	b. 889 , Brockton and Burton; b. 890, Leintwardine; b. 891, Park Lane, Llandeilo; b. 892, Collinfield, Kendal.
Ge 4	p. 216.	Orthis elegantula, Dalm. (Siluria, '3rd ed. pl. 5, fig. 5).	b. 893, Mynydd - y-gaer, Llanefydd.
Ge 5	O. lunata, p. 220.	Orthis orbicularis, Sow. (Siluria, pl. 20, fig. 9).	a. 935, a. 936 , Sedgley, F.C.
Ge 4	Leptana, p. 244.	Strophomena funiculata, McCoy, sp. (Sil. Foss. Ireland, t. 3, fig. 11).	b. 894, Park Lane, Llandeilo.
Ge 4	Leptona, p. 243.	Strophomena filosa, Sow. sp. (Orthis, Siluria, 3rd ed. pl. 20, fig. 21).	b. 89.5, Tullithwaite Hall, Underbarrow. b. 896, Sedgley.

Case and Column of Drawers.	Refcrence to McCor's Synopsis: and Figures of Genera.	Names and References; Observations, \&c.	Numbers and Localities.
Ge 4	Leptcena, p. 243.	Strophomena euglypha, Dalm. sp. (Siluria, 3rd ed. pl. 20, fig. 19).	b. 897, Leintwardine.
Ge 4	Leptona, p. 235.	Chonetes minima, Sow. (Siluria, 3rd ed. pl. 20, fig. 16).	b. 898 , above RotherBridge.
Ge 5	Chonetes, p. 249.	Chonetes lata, Von Buch. (C. striatella, Dalm. sp. Davidson, Sil. Brach. p. 331, t. 49, figs. $23-26$).	b. 900, Sedgley, F. C.
Ge 5	Anodontopsis, p. 272. Pl. 1 l, fig. 9.	LAMELLIBRANCHIATA. Pseudaxinus, Saiter. Pseudaxinus securiformis, McCoy. Anodontopsis, McCoy. A genus of thin shells, allied to Modiolopsis, but with very much enlarged posterior area. (The following may not belong to the genus.)	b. 899, Dudley, F. C.
Ge 5	Pl. 1 k , fig. 10, p. 272.	Anodontopsis quadratus, Salter, sp. (Mem. Geol. Surv. Vol. II. Pt. 1, p. 363, pl. 20, fig. 1).	a. 944 , a. 945 , Dudley, F.C.
$\begin{gathered} \text { Ge } \\ \text { Ge } 5 \end{gathered}$	$\text { p. } 263 .$	Pterinea Sowerbyi, McCoy (Siluria, 2 nd ed. pl. 23, fig. 15).	a. S08, Dudley, F. C.; a. 929, Leintwardine.
Ge 6	Pl. 1 I, figs. 1, 2, p. 261.	Pterinea pleuroptera, Conrad. sp.	a. 952, Park Lane, Llan-
Ge 5		Pterinea Condor, n. sp. Very wide linge-line three inches broad.	a. S09, a. S10, Dudley, F. C.
Ge 5	$\text { p. } 262 .$	Pterinea lineatula, D'Orb. (Avicula lineata, Sow. Sil. Syst. ; Siluria, 2nd ed. pl. 23, fig. 16).	b. 728, Dudley, F. C.
Ge 6		Pterinea retroflexa, Wahl. sp. (Leth. Suec. t. 17, fig. 12 ; Siluria, pl. 9, fig. 26).	b. 910, High Thorns, Underbarrow ; b. 911, Leintwardine.
Ge 6	Pterinea hians, p. 260.	Pterinea retroflexa, var. hians.	a. 950 , Mortimer's Cross.
Ge 6			

Case and Column of Drawers.	Reference to McCor's Synopsis: and Figures of Genera.	Names and References; Observations, \&c.	Numbers and Localities,
Ge 6	Pl. 1 t, fig. 4, p. 263.	Pterinea tenuistriata, McCoy.	a. 951, Cwm Craig ddu; b. 912, Park Lane, Llandeilo.
Ge 5	PI. 1 L, fig. 21. 11. Nillsoni, p. 267.	Modiolopsis gradatus? Salter (Mem. Geol. Surv. Vol. it. pt. 1, p. 363, pl. 20, figs. 3-5.)	a. 943, Dudley, F. C.
Ge 5		Modiolopsis, sp. Small transverse sp.	b. 901, Dudley, F. C.
		Ambonychia, Hall, Pal. N. York, Vol. i. [Differs from Pterinea and Avicula by the short hinge-line and no anterior wing, and from Inoceramus by the absence of transverse pits in the hinge.]	
$\begin{gathered} \text { Ge } 6 \\ \text { Ge } \end{gathered}$	p. 264.	Ambonychia striata, Sow. sp. allied to Lunulucardium (Cardium, Sil. Syst. t. 6, fig. 2).	b. 902 , above Park Lane, Llandeilo ; b. 903, Garden Quarry, Aymestry.
Ge 6	Pl. 1 к, fig. 16, p. 264.	Ambonychia acuticostata, McCoy.	a. 949, Dinas Bran, Llangollen, or Wenlock Shale.
$\begin{gathered} \text { Ge } 6 \\ \text { Ge } \end{gathered}$	p. 282.	Cardiola interrupta, Brod. (Siluria, 2nd ed. pl. 23, fig. 12).	b. 904, Leintwardine ; b. 905 , Dudley; b. 906 , YrAllt, Welchpool; b. 907, Cwm Craig ddu, Builth; b. 908 , Mynydd-y-gaer ; b. 909, Sugar Loaf, Llandovery.
Ge 5	[Not of McCoy, p. 275.]	Orthonotus semisulcatus, Sow. sp. (1/odiola, Sil. Syst. p. 617, t. S, fig. (G).	a. 946 , Dudley, F. C.
Ge 5		Orthonotus undatus? Sor. (Siluria, pl. 23 , fig. 4).	a. 947, Dudley, F.C.
Ge 6		Cuculella coarctata, Phill. (Mem. Geol. Surv. Vol. iI. pt. 1, p. 366).	b. 913 , Dinas Bran.
Ge 6	Nucula, p. 285.	Ctenodonta anglica, D'Orb. (Siluria, 3 rd ed. pl. 23, fig. 10).	b. 914, High Thorns, Underbarrow.

$\begin{aligned} & \text { Case and } \\ & \text { Column of } \\ & \text { Drawers. } \end{aligned}$	Reference to McCor's Synopsis: and Figures of Genera.	Names and References; Obserrations, \&c.	Numbers and Localities.
		Section Hormotoma.	
G e	Murchisonia, p. 293.	Murchisonia cingulata, Hisinger (Leth. Suec. t. 12, fig. 6).	b. 919, Leintwardine.
Ge 7		Murchisonia articulata, Sow. (Siluria, 2nd ed. pl. 24, fig. 2).	b. 920, Dudley, F. C.
Ge 8	Litorina, p. 305.	Cyclonema octavia, D'Orb. (Siluria, 3rd ed. pl. 24, fig. 4).	b. 921, High Thorns, Underbarrow, Kendal ; b. 922, Mortimer's Cross.
Ge 8	Litorina, p. 305.	Cyclonema corallii, Sow. (Siluria, 3rd ed. pl. 24, fig. 1).	b. 923 , Sedgley.
Ge 8	Pl. 1 к, fig. 4G, p. 306.	Cyclonema undifera, McCoy.	a. 918, Mortimer's Cross.
Ge 8	p. 297.	Euomphalus centrifugus, Wahl. sp. (His. Leth. Suec. t. 12, fig. 1).	b. 925, Leintwardine.
Ge 8	Pl. 1 к, fig. 35, p. 302.	Naticopsis glaucinoides, Sow. (Sil. Syst. t. 3, fig. 14).	b. 924, Benson Knott, Kendal.
Ge 8	Pl. 1 K , fig. 33, p. 303.	Holopella gracilior, McCoy.	a. 988, Dinas Bran.
Ge 8	Pl. 1 L, fig. 16, p. 304.	Holopella intermedia, McCoy.	a. 990, High Thorns, Underbarrow.
Ge7		Loxonema sinuosa, Sow. (Siluria, 3rd ed. pl. 24, fig. 3).	b. 926, Dudley, F. C.
Ge 8	Pl. 1 к, fig. 34, p. 302.	Loxonema elegans, McCoy.	a. 989, Green Quarry, Leintwardinc.

$\begin{aligned} & \text { Case and } \\ & \text { Column of } \\ & \text { Drawers. } \end{aligned}$	Reference to McCor's Synopsis: and Figures of Gencra.		Numbers and Loealities.
Ge 7	$(\sqrt{6}$	HETEROPODA. Bellerophon, n. sp. More prominent keel thau B. dilatatus.	b. 927, Dudley, F. C.
Ge7		Cyrtolites lævis, Sow. sp. (Silur. Syst. t. 8, fig. 21).	b. 936, Dudley, F. C.
Ge 8	p. 314.	CEPHALOPODA. Orthoceras filosum, Sow. (Siluria, 2nd ed. Foss. 61, pl. 27, fig.1). Large and small threads or thin ridges.	b. 928, Garden Quarry, Aymestry.
G e	do.	Orthoceras dimidiatum, Sow., var. with distant ribs or plications, which occur only half across the shellventral or dorsal aspect, but we know not which.	a. 928, Leintwardine.
Ge 7	Cycloceras, p. 319.	Orthoceras Ibex, Sow. (Siluria, 3rd ed. pl. 29, figs. 3, 4).	b. 929, Dudley, F. C.
Ge 8	Pl. 1 L, fig. 31, p. 320. Cycloceras.	Orthoceras tenui-annulatum, MeCoy. Surely a variety of O. Ibex. It has only fine strix.	a. 992, Green Quarry, Leintwardine; a. 995, near Aymestry.
Ge 7		Orthoceras, sp. like Ibex, but much larger. See Sabella in the annelid drawer.	a. 983, Dudley, F. C.
Ge7	p. 313.	Orthoceras angulatum, Wahl. (Siluria, 2nd ed. pl. 28, fig. 4). Has a set of parallel lines between the ribs.	a. 984, Dudley (strix good), F. C.
Ge 8	p. 317.	Orthoceras subundulatum, Portl. (Geol. Report, t. 28, fig. 2).	b. 930 , Garden Quarry, Aymestry.
Ge 8		Orthoceras subundulatum? Portl.	b. 931, Clungunford.
$\begin{gathered} \mathrm{Ge} \\ \mathrm{Ge} 8 \end{gathered}$	Hortolus Ibex, p. 324. Lituites articulatus, p. 323.	Orthoceras perelegans, Salt. (Mem. Geol. Surv. Vol. II. pt. 1, pl. 13, figs. 2-4, p. 354).	b. 932, Garden Quarry, Aymestry; b. 933, High Thorns, Uuderbarrow.

Case and Column of Drawers.	Reference to McCor's Synopsis: and Figures of Genera.	Names and References; Observations, \&e.	Numbers and Localities.
		Phragmoceras, Broderip.	
	p. 322.	Phragmoceras ventricosum, Sow. (Siluria, 2nd ed. pl. 32), is so common in the Lower Ludlow, that we insert it.	
Ge	do.	Phragmoceras? intermedium, McCoy (Siluria, 2nd ed. pl. 30, fig. 4).	a. 930 , Leintwardine.
Ge	do.	Phragmoceras (Gomphoceras) pyriforme, Sow. (Sil. 2nd ed. pl. 30, figs. 1—3).	b. 934, near Aymestry. Leintwardine, Dudley, F.C.
Ge 8		Phragmoceras (Gomphoceras) liratum, n. s. Salter. An open wide-mouthed species-(if of this genus)-it has not attained to the contracted portion of the mouth.	a. 993, Garden Quarry, Aymestry.
Ge 8	纪	Cyrtoceras, sp.	a. 994, Llangammarch, Sugar Loaf, Abergavenny.
		Trochoceras, Barrande, Syst. Silur. de la Bohêm. Vol. II. p. 74.	
Ge 8		Trochoceras, sp. Distorted fragment.	b. 935 , Dudley.
G e	Hortolus, p. 324.	Trochoceras giganteum, Sow. sp. (Lituites, Siluria, 2nd ed. pl. 33, figs. $1-3)$.	a. 931, a. 932, Leintwardine, straight portion.
Ger	p. 323.	Lituites articulatus, Sow. (Sil. 2nd ed. pl. 31, fig. 6). Three species formerly went under this name. But the flat discoid and keeled shell like a small Lias ammonite is the one to which the name must be restricted.	a. 985, Dudley, F. C.

Upper Ludlow Rocks.

1. Mudstones-with calcareous bands, especially near the top.
2. Bone-bed-an inch to a foot in thickness.
3. Downton Sandstone. Of the Silurian district; represented by a red rock at Usk, and by "tilestones" in the S. Welch district.
(The Bone-bed and Downton Sandstonc are separately catalogued : but it is not always easy, in the absence of the very persistent Bone-bed, to draw the line between them.)

Case and Column of Drawers.	Reference to $\mathrm{Mc} \mathrm{Cox}^{\prime}$ s Synopsis: and Figures of Genera.	Names and References; Observations, \&c.	Numbers and Localities.
G g 2		Lingula, sp. like minima, Salter (Explan. Sheet 32, Mcm. Geol. Surv.).	b. 138, Lesmahagow.
$\begin{aligned} & \text { Gf } \\ & \text { Gf } \end{aligned}$	p. 251.	Lingula cornea, Sow. (Siluria, 2nd ed. pl. 34, fig. 2). (Sec L. minima, p. 179.)	b. 956 , near Ludlow; b. 48 , Benson Knott, Kendal.
G f1	p. 253.	Lingula Lewisii? Sow. (These specimens are fine, and possibly a large variety of L. cornea, Davilds. Sil. Brach. t. 3, figs. 1-6.)	b. 14, Benson Knott, Kendal.
G f	Discina, p. 191.	Trematis (Discina) striata (Davidson, Sil. Brach. t. 6, figs. 1-4).	b. 958 , Benson Knott.
$\begin{gathered} \text { G f } 1 \\ \text { G f } \end{gathered}$	p. 190.	Discina rugata, Sow. (Siluria, „nd ed. pl. 20, figs. 1, 2, Davidson, Sil. Brach.).	b. 959 , Woolbope ; b. 960 , near Ludlow; b. 961, Potter Fell, Kendal ; b. 962, Benson Knott, Kendal; b. 963, Burton and Brockton.
G f 1		Discina, sp. like Forbesii (perhaps same).	b. 964, Park Lane, Llandeilo.
		Crania (see p. 135).	
	Orbiculoidea, p. 189.	Crania implicata, Sow. (Siluria, „nd ed. pl. 20, fig. 4. Davids. 1. c. pl. 8, fig. 13). A very small species well described by Davidson.	Park Lane, Llandeilo.
Gf1	S. subspuria, p. 19 Ј.	Spirifer elevatus, Dalm. (see p. 138), equally common in Gothland, and varying much. S. bijugosa, McCoy, from rocks of this age in W. Ireland, is a kindred species.	b. $965, \mathrm{~N}$. end of Potter Fell; b. 967, Benson Knott.
$\begin{gathered} \mathrm{G} \mathrm{f} 1 \\ \mathrm{Gf} \end{gathered}$	Hemithyris, p. 204.	Rhynchonella nucula, Sow. (see p. 167). The commonest of all Ludlow shells, except its coustant companion Chonetes lata. Both begau in the May Hill sandstone and multiplied when sandy strata and shallow water prevailed.	b. 968, Lambrigg Fell, Kendal; b.969, Burton and Brockton (and as Davidsoni) ; b. 970 , Bensun Knott, Kendal; b. 971 , Collinfield, Keudal; b. 97 을, Mortimer's Cross, Aymestry; b. 973, Woolhope; b. 974 , near Ludlow.
G f1	Hemithyris, p. 207.	Rhynchonella Wilsoni, Sow. (see p. 167).	b. 975 , Burtonand Brockton.
Gf1	H. Davidsoni, p. 200.	Rhynchonella Wilsoni, var. Davidsoni, McCoy (see p. 141).	b.977,Burtonand Brockton.

Case and Column of Drawers.	Referenco to McCor's Synopsis: and Figures of Genera.	Names and Refercnees; Observations, $\&$ c.
$\begin{gathered} \text { G f } 2 \\ \text { G f } \end{gathered}$		Orthis Iunata, Sow. (Siluria, Ind ed. pl. 20, fig. 11). This very fine-ribbed shell is often mistaken; but if the interior characters of the hinge be studied with the outside, no difficulty ought to be felt in separating it from its companion O. orbicularis, a coarser shell with fascicnlate striz. The tecth of the dorsal valve are nearly parallel and the central cardinal process linear.
G f 2	Leptcena, p. 243.	Strophomena filosa, Sow. (see p. 146). More common in Ludlow rocks than elsewhere; at Ludlow it varies exceedingly in the sculpture.
G f 2	Leptagonia, p. 248.	Strophomena depressa, Sow. (see p. 147).
$\begin{gathered} \mathrm{Gf} \\ \mathrm{Gf} 2 \end{gathered}$	Leptena, p. 249.	Chonetes lata, Von Buch, (regarded by some as the true C. striatella of Dalman) but the references in the 3 rd ed. of Siluria are so confused and sterile that no use can be male of them. The best fig. is that in Siluria, Ind ed. pl. 20, fig. 8. LAMELLIBRANCHIATA.
$\begin{gathered} \text { Gf } \\ \text { Gf5 } \end{gathered}$	Pl. 1 I, figs. 11-15, p. 258.	Avicula Danbyi, McCoy. Generally wide oval, a large fine shell. It varies much.
G f 4	p. 261.	Pterinea lineata, Goldf.? (Pet. Germ., t. 119,fig. 6). A beautiful shell, close to P. retroflexa, but with long wing, and very fine regular radiating ridges of striæ. (See P. lineatula.)
$\begin{gathered} G f \\ G f 4 \end{gathered}$	P. var. naviformis, p. $\varrho^{6} 63$.	Pterinea retroflexa, Wahl. sp. (His. Leth. Suec. t. 17, fig. 12). Has convex right valve, var. naviformis of Conrad.
G f	p. 26. .	Pterinea retroflexa, var. erecta, McCoy.
	Pterinea lineata, p. 261.	Pterinea lineatula, U'Orb. (Siluria, pl. 23 , fig. 16). Extremcly common in Ludlow rock.

Case and Column of Drawers.	Reference to McCor's Synopsis: and Figures of Genera.	Names and References; Observations, \&c.	Numbers and Localities.
G f 4	Pl. 1 I, fig. 7, p. 260.	Pterinea demissa, Conrad. A variety of P. retroflexa, squarer and less falcate at the wing.	b. 18, Benson Knott.
G f 4		Pterinea demissa, var. with more point to wing.	b. 17, Benson Knott.
G f 4	Pl. 1 I, fig. 3, fig. 263.	Pterinea subfalcata, Conrad. Regular squamæ of growth, and irregular radiating strix.	b. 992, Benson Knott; b. 22, Punt-ar-y-llechan, Llangadock.
G f 4	P. Boydi, p. 259.	Pterinea Sowerbyi, McCoy, p. 263. Beautiful variety of $i t$.	b. 87, Brigsteer, Kendal.
G f 4	Pl. 1 i, fig. 4, p. 263.	Pterinea tenuistriata, McCoy. Like a small P. retroflexa, but with radiating striæ.	b. 21, near Ludlow; b. 20, b. 86, Benson Knott, Kendal.
G f 4	Pl. 1 I, figs. 1, 2, p. 261.	Pterinea pleuroptera, Comrad. Has shorter wing than P. retroflexa, and some ridges on the posterior line.	b. 993 , Benson Knott, Kendal.
G f 5	M. complanata, p. 266 ?	Modiolopsis planata, Salter. Flat area, and valves slightly keeled.	b. 7 -2, b. 73 , var. Kirkby Moor,Kendal; b.71,Kendal.
G f 5	M. solenoides, p. 269.	Modiolopsis planata, var. longer, and pressed in stone (not of Sowerby, which is Orthonotus).	b. 92, Benson Knott.
G g		Mod	b.994, Lesmahagow, Lanark.
G f 5	Anodontopsis, p. 271.	Modiolopsis lævis, Sow. (Siluria, 2nd ed. pl. 34, fig. 7).	b. 995 , Llechclawdd, Myddfai, Llandovery.
G f 5	Pl. 1 k, figs. 14, 15, p. 271.	Anodontopsis angustifrons, McCoy. Two varieties, a very broad and a narrower one. Some of them are almost circular.	b. 68, Beuson Knott; b. 79, Kirkby Moor, Kendal.
G f 5	Pl. 1 к, figs. 11, 12, 13, p. 271.	Anodontopsis bulla, McCoy. These rounded shells are but doubtfully of the genus. They resemble the recent Kelliu.	b. 997 , Kirkby Moor, Kendal.
G f	Orthonotus, p. 274.	Goniophora cymbæformis, Sow. (Siluria, 2nd ed. pl. 34, fig. 15).	b. 996 , Burton and Brockton.
G g 2		Mytilus mimus, sp. Very like the living mussel.	b. 141, Lesmahagow.

Case and Columir of Drowers.	Reference to McCor's Synopsis: and Figures of Genera.	Names and References; Obserrations, \&c.	Numbers and Localities.
G f 5	Anodontopsis, p. 272. Pl. 1 l , fig. 9.	Pseudaxinus securiformis, McCoy. The genus was founded to include thin shells with no teeth, and the aspect of Trigonia. They are related to the Modiole.	b. 74, b. 75, vars. Benson Knott, Kendal.
G f 5	Sanguinolites, p. 277.	Orthonotus decipiens, MeCoy.	b. 69, Benson Knott.
G f	Sanguinolites, p. 276. Pl. 1 к, figs. 19, 20.	Orthonotas anguliferus, McCoy. A new square species related to O. solenoides, Sow. but with epidermal marks like Mya v.-scripta.	b. 42, Benson Knott.
$\begin{aligned} & \text { Gf } \\ & \text { Gf5 } \end{aligned}$	Leptodomus, p. 978.	Orthonotus amygdalinus, Sow. (Siluria, 2nd ed. pl. 23, fig. 6). A rather rougher variety of this usually smooth shell.	b. 998, near Ludlow; b. 999, Benson Knott; c. 1, Brigsteer, Kendal ; c. 2, Cwm Craig ddu, Builth.
G f 5		Orthonotus amygdalinus, var. retusus, Sow. (Siluria, 2nd ed. pl. 23, fig. 7).	c. 3, near Ludlow.
$\begin{gathered} \text { Gf } \\ \text { Gf5 } \end{gathered}$	Leptodomus, p. 978. Pl. 1 L, fig. 11.	Orthonotus amygdalinus, Sow. var. globulosus, McCoy. A variety of O. amygdalinus evidently.	c. 4, Kirkby Moor, Kendal; b. 43, Bensou Knott; c. 5, Tenter Fell, Kendal.
Gf5	Leptodomus, p. 279. Pl. 1 K , figs. $21-24$.	Orthonotus truncatus, MeCoy. A well-marked shell.	b. 88, b. 89, b. 90 , Benson Knott; b. 91, Mortimer's Cross.
G f 5	Leptodomus, p. ${ }^{779 .}$	Orthonotus undatus, Sow. (Siluria, 2nd ed. pl. 23, fig. 4), ridges regular.	b. 70, Benson Knott.
G f	Orth. semisulcatus, p. 275. Pl. 1 к, fig. 25.	Orthonotus prora, Salter (Siluria, 3rd ed. Foss. 61, fig. 4). Easily known by the narrow front.	b. 63, Kirkby Moor, Kendal.
G f 5	Tellinites? p. 286. Pl. 1 к, fig. 31.	Orthonotus affinis, McCoy. Certainly an Orthonotus of the usual shape and ormanent.	b. 93 , Benson Knott.
		Cuculella, MeCoy. An useful genus, to inelude those Nucula-like shells, with a strong internal septum on the short posterior side.	
$\begin{gathered} G f \\ G f 4 \end{gathered}$	p. 284.	Cuculella ovata, Sow. (Siluria, Ind ed. pl. 34, fig. 17).	c. 6, Brigsteer, Kendal ; b. 64, Benson Knott; c. 7, Derby Arms, Underbarrow.
G f 4	p. 284.	Cuculella coarctata, Phill. sp. (Mem. Geol. Surv. Vol. 11. Pt. 1, pl. 22, figs. 1-4).	c. S, Benson Knott, Kendal.

$\begin{gathered} \text { Case and } \\ \text { Column of } \\ \text { Driwers. } \end{gathered}$	Reference to McCer's Synopsis: and Figures of Genera.	Names and References; Observations, \&c.	Numbers and Localities.
Gf6	C. cancellata, p. 287.	Conularia Sowerbyi, Defr. (Siluria, 2nd ed. pl. 25, fig. 10. C. quadrisulcata, Sow. Sil. Syst. t. 12, fig. 22).	c. 13, Underbarrow, Kcudal ; c. 14, Benson Knott, Kendal.
$\begin{array}{r} G f \\ G \mathrm{ff} \end{array}$	Pl. 1 L, fig. 24 , p. 288.	Conularia subtilis, Salter. Appendix, p. vi. Very fine close ridges. [Cyrtolites lævis, Sow. Siluria, pl. 2.), fig. 9, is very common in these rocks.]	c. 15, Brigsteer, b. 59, Benson Knott.
	Univalves.	GASTEROPODA.	
Gf6		Pleurotomaria, sp.	c. 16, Kendal.
G f	Pl. 1 K , fig. 45 , p. 291.	Pleurotomaria crenulata, McCoy.	b. 66, Brigsteer.
G f 6	Pl. 1 L, fig. 19, p. 204.	Murchisonia torquata, McCoy.	c. 17, Benson Ǩnott ; c. 18, Spital, Kendal.
$\begin{array}{r} \mathrm{Gf} \\ \mathrm{Gf} 6 \end{array}$	Also p. 303, Holopella cancellate?	Murchisonia articulata, Sow. (Siluria, Ind ed. pl. 24, fig. 2).	c. 19, Benson Knott; c. 19 ${ }^{*}$, Lambrigg Fell, Kiendal.
G f	Litorina, p. 305.	Cyclonema corallii, Sow. (Siluria, 2nd ed. pl. 24, fig. 1).	b. 60 , Benson Kinott.
G f 6	Litorina, p. 305.	Cyclonema octavia, D'Orb. Sow. (Siluria, -nd ed. pl. 24, fig. 4. Turbo carinutus, Sow. Sil. Syst. t. 5 , fig. 28).	c. ${ }^{2} 0$, Burton and Brockton, Woolhope.
Gf6	N. glaucinoides, p. 302.	Naticopsis parva, Sow. (Siluria, ${ }^{2} \mathrm{nd}$ ed. pl. 25, fig. 1).	c. 21, Beckfoot, Kirkby Lonsdale ; e. 2., Benson Knott.
G f 6	p. 303.	Holopella gregaria, Sow. (Siluria, Ind ed. pl. 34 , fig. 10 a).	c. 23 , Underbarrow; c. 24 , Beckfoot, Kirkby Lonsdale.

Case and Column of Drawers.	Referonce to McCoy's Synopsis: and Figures of Gencra.	Names and Feferences; Observations, \&.c.	Numbers and Localities.
Gf7	Appendix, p. vii.	Orthoceras torquatum, Miinst. Salter in Appendix, p. vii. McCoy considers this a doubtful species. I do not.	c. 38, Benson Knott.
G f 7	Cyclocerus, p. 320 . Pl. 1 L, fig. 31.	Orthoceras tenuiannulatum, McCoy. Rings slender, and strix equal.	c. 39, Brigsteer, Kendal.
G f 7	O. laqueatum, p. 315.	Orthoceras, sp. with fine thread-like ridges. (O. filosum, young?)	c. 40 , Kirkby Moor, Kendal.
$\begin{gathered} \text { Gf } \\ \text { G f }{ }^{\prime 7} \end{gathered}$	(Cycloceras), p. 321.	Orthoceras tracheale, Sow. (Siluria, 2nd ed. pl. 34, fig. 6).	c. 41 , Kirkby Moor ; c. 42, near Ludlow.
Gf	p. 315.	Orthoceras imbricatum, Wahl. (Sihuria, 2nd ed. pl. 29, fig. 7).	c. 43, Kirkby Moor, near Kendal.
G f 7	O. subundulatum, p. 317.	Orthoceras, new, large; ton times the size of Portlock's shell.	c. 44, High Thorns, Underbarrow.
Gf7	$\text { p. } 314 .$ Appendix, p. vii.	Orthoceras dimidiatum, Sow. (Siluria, 2nd ed. pl. 28, fig. 5). Easily known by the squamate ridges reaching half across only.	c. 45, Brigsteer.
G f 7	Pl. 1 L, fig. 27, p. 313. Appendix, p. vi.	Orthoceras baculiforme, Salter, Appendix to Synopsis. The smooth species are difficult, but not unrecognizable. This is oval in section and very long and tapering indeed.	c. 46 , Brigsteer (the smaller specimen is coated with tubercular sponge, c. 47).
	Hortolus Ibex, p. 324.	Orthoceras perelegans, Salter (Mem. Geol. Surv. Vol. iI. Pt. 1, t. 13, figs. 2, 3). McCoy in his attempt to combine the disjointed figures of this species, Orthocerus Ibex and Orthoceras tracheale, has again confused the irregular curving Orthoceras? perelegans with the straight shell O. tracheale.	

Ludlow Bone-bed and Downton Sandstone.

The Bone-bed, indicating a long period of rest, covers the sandy Upper Ludlow rocks over a large area. At Ludlow it is divided into two thin bands not an inch thick. At Norton, near Onibury, it is a foot thick, one mass of fish defences (Onchus), shagreen of some shark-like or Acanthodian species, and shells of Brachio-porda-Discina and Lingula-with a few Pteraspid fish. The whole appearance is that of a drift in shallow but quiet water, and the fact that the Bone-bed is everywhere covered by the Downton Sandstone rock shows that the deep-sea condition liad passed, and the coast-line raised. West of the central Silurian region the Bone-hed is not known; but within that region it ranges from Ludlow to Malvern, thence to Woolhope and Hagley; but fails at Usk, though the fish defences and bones of the same species are found in Red Downton rock of coarse texture.

The Downtou Sandstone is the true top of the Silurian system, and contains several Ludlow shells. Over this, the red sediments, evidently accumulated in land-locked seas and estuaries, contain abundance of Pteraspid and Cephalaspid fish; and only a single shell, Lingula cornea, and a few crustacea, Pterygotus Bunksii and Beyrichia, rise into the base of the Ohl Red Sandstone (Ledbury Shales).
(Note. The term Tilestones is technically applied to the flaggy beds at the top of the Ludlow series of rocks.)

Case and Column of Drawers.	Reference to McCor's Synopsis: and Figures of Genera.	Names and References; Observations, \&c.	Numbers and Localities.
$G \mathrm{~g} 5$		A good slab of the Micaceous Tilestones.	b. 121, Storm Hill, Llaudeilo.
		[Plant fragments, probably of low $L y$ copodiacer, are very common in the Silurian district. There are but few in the collection.]	Hagley, Ludlow, \&c.
		Pachytheca sphærica, Hooker (Siluria, 3rd ed. pl. 35, fig. 30. Hooker, Quart. Journ. Geol. Soc. Vol, Xvir. p. 162). This very common seedcase or spore of (probably) a waterplant abounds in Downton Sandstone.	Woolhope.
		Actinophyllum or Spongarium? or some allied plant half an inch in diameter, is frequent near Ludlow.	Ludlow.
		CRUSTACEA (Merostomata, Dana). Pterygotus problematicus, Ag., 6 ft . long.	Ludlow.

Case and Column of Drawers.	Reference to McCor's Synopsis : and Figures of Genera.	Names and References; Observations, \&c.	Numbers and Localities.
		Lingula cornea, Sowerby (Siluria, 3rd ed. pl. 34, fig. 2).	
		Lingula minima, Sow. (Sil. Syst. t. 5, fig. 23).	Downton Sandstone.
		Discina rugata, Sow. (Siluria, 3rd ed. pl. 20, figs. 1, 2).	Bone-bed.
		Chonetes lata, and Orthis lunata.	Pont-ar-y-llechau, Llangadock.
G g 6	M. solenoides, p. 269.	LAMELLIBRANCHIATA. Modiolopsis planata, Salter, n. sp.	b. 104, Storm Hill, Llandeilo.
G g		Modiolopsis, sp. More convex than M. complanata.	b. 160, Downton, with Platyschisma helicites.
G g 6	13. complanata, p. 266?	Modiolopsis lævis, Sow. (Siluria, 2nd ed. pl. 34, fig. 7).	b. 108, Storm Hill, Llandeilo.
G g	p. 26 S .	Modiolopsis platyphyllus, Salter (Mem. Geol. Surv. Vol. II. Pt. 1, pl. 20, figs. 13, 14).	b. 159, Storm Hill, Llandeilo, figured.
G g 6	p. 262.	Pterinea retroflexa, Hisinger (Siluria, 2nd ed. pl. 9, fig. 26; pl. 23, fig. 17).	c. 48, Horeb Chapel.
G g 6	Pl. 1 I, fig. 4, p. 263.	Pterinea tenuistriata, McCoy. (See p. 182.)	b. 117, Pont-ar-y-llechau, Llangadock.
G g 6	Pl. 1 I, figs. 19, 20, p. 201.	Pterinea megaloba, McCoy. A very convex species, more like an inflated Modiola.	b. 105, b. 106, b. 107 , Storm Hill, Llandeilo.
Gg 6	Pl. 1 I, fig. 7, p. 260.	Pterinea demissa, Conrad. (See p. 182.)	b. 114, Pont-ar-y-llechau.
G g 6	Pl. 1 к, fig. 1, p. ${ }^{\text {a }}$ S3,	Ctenodonta subæqualis, McCoy, sp. (Siluria, 2nd ed. pl. 10, figs. 7, 8).	c. 49, Storm Hill, Llandeilo; b. 115, Llechclawdd, Myddfai.
G g 6	Anodontopsis quadratus, Pl. 1 к, fig. 10, p. 272.	Palæarca diagona, Salter, 1. sp. Almost a rhomb in shape.	b. 110, b. 111, Storm Hill, Llandeilo.

Case and Column of Drawers.	Reference to MeCor's Synopsis: and Figures of Genera.	Names and Referenees; Observations, \&e.	Numbers and Localities.
G g Gg 6	Dolabra. Pl. 1 k , fig. 30, p. 270. Pl. 1 L, fig. $10, \mathrm{p} .269$.	Palæarca (Dolabra) obtusa, McCoy. Palæarca? elliptica, McCoy.	b. 15S, figured, Storm Hill, Llandeilo. b. 116, Storm Hill.
Gg 6		Cuculella ovata, Sow. sp. (Siluria, 2nd ed. pl. 34, fig. 17).	c. 50, Llechclawdd, Myddfai, Llandeilo; c. 51, Storm Hill, Llandeilo; c. 52, Horeb Chapel.
G g 6	p. 284.	Cuculella antiqua, Sow. sp. (Siluria, 2nd ed. pl. 34, fig. 16).	c. 53, Storm Hill, Llandeilo.
G g 6	Sanguinolites, Pl. 1 L, fig. 24, p. 277.	Orthonotus decipiens, McCoy.	b. 112, Llechclawdd, Myddfai.
G g 6	Pl. 1 к, fig. 28, p. 280.	Grammysia triangulata, Salter (Siluria, 2nd ed. Foss. 60, fig. 2).	c. 54, Storm Hill.
G g	Orthonotus, p. 274.	Goniophora cymbæformis, Sow. (Siluria, 2nd ed. pl. 23, fig. 2; pl. 34, fig. 15).	c. 55 , Horeb Chapel.
Gg 6	Pl. 1 L, fig. 19, p. 294.	GASTEROPODA. Murchisonia (Hormotoma) torquata, McCoy. A small species, a good deal like M. articulata, Sow., and allied to it.	b. 118, Storm Hill; c. 50, Pont-ar-y-llechau, near Llangadock.
Gg 6	p. 303.	Holopella gregaria, Sow. (Siluria, 2nd ed. pl. 34, fig. 10 a).	c. 57, Horeb Chapel, Llandovery.
Gg 6	p. 304.	Holopella obsoleta, Sow. (Siluria, 2nd ed. pl. 34, fig. 11).	c. 58 , Pont-ar-y-Hlechau, Llangadoc; c. 59, Llechclawdd, Myddfai ; c. 60, Horeb Chapel.
Gg 6	p. 303.	Holopella conica, Sow. (Siluria, 2nd ed. pl. 3t, fig. 10 ; pl. 35, fig. 26).	b. 109, Storm Hill, Llandeilo.
$\begin{gathered} G g \\ G \operatorname{G} 6 \end{gathered}$	Turbo? p. 296.	Platyschisma Williamsi, Sow. (Siluria, 2nd ed. pl. 34, fig. 14). A large and more Puludinc-like shell than the next and rarer.	b. 113, Llandeilo; c. 61, Horeb Cliapel, Llandovery.

Ledbury Shales.
Ledbury Shales (Salter); part of "Tilestone" of Sir R. Murchison. These contain Cephalaspid fish. Plants and oue or two Ludlow shells pass up into them, but the fish and crustacca are distinct from those of the Ludlow rocks.

Having been generally included in the Silurian rocks, they are placed here as beds of passage between Silurian and Devonian.

$\begin{gathered} \text { Case and } \\ \text { Column of } \\ \text { Drawers. } \end{gathered}$	Reference to McCor's Synopsis: and Figures of Genera.	Names and References; Obscrrations, \&c.	Numbers and Locnlities.
$\begin{gathered} \text { G } 9 \\ \text { G } 97 \\ \text { G } 97 \end{gathered}$	Spongarium? p. 42.	PLANTE ${ }^{2}$. Fragments of Plants-Lycopodiaceæ? Plant Remains. Actinophyllum plicatum? Phill. (Mem. Geol. Surv. Vol. II. pt. 1, p. 386, pl. 30, fig. 4).	c. 84, Ludlow Tunnel. c. 85 , Ludlow. c. 86, Ludlow Tunnel.
G 9	Pl. 1 e, fig. 2, p. 135.	CRUSTACEA'. Phyllopoda. Leperditia marginata, Keyserling?	c. 87, Ludlow Tunnel.
G 97		Leperditia marginata.	c. 88, Ludlow Tunnel.
G 97		Leperditia, sp.	c. 89, Ludlow Tunnel.
G 97		Beyrichia Klödeni, McCoy.	c. 90 , Ludlow Tunnel.
G 97		Fragments of Crustacea.	c. 91, Ludlow Tunnel.
G 9		CRUSTACEA. Merostomata. Eurypterus pygmæus, Salter (Siluria, 3rd ed. Foss. 67, fig. 1, p. 239).	c. 92, Ledbury.
$\begin{gathered} \text { G } 9 \\ \text { G } 97 \end{gathered}$		Pterygotus Ludensis, Salter (Mem. Geol. Surv. Mon. 1, pl. 14, figs. 1-13; Siluria, 3rd ed. Foss. 22, fig. 1, p. 140).	c. 93, c. 98 , Ludlow Tunnel.
$\begin{gathered} \text { G } 9 \\ \text { G } 97 \end{gathered}$	p. 251.	BRACHIOPODA'. Lingula cornea, Sow. (Siluria, 3rd ed. pl. 34, fig. 2).	c. 94, Ludlow Tunnel.
		PISCES ${ }^{\text {' }}$	
$\begin{gathered} \text { G } 9 \\ \text { G } 97 \end{gathered}$		Cephalaspid Fish.	c. 95, c. 96, Ludlow Tunnel.
$\begin{gathered} \text { G } 9 \\ \text { G } 97 \end{gathered}$		Fish spines, Onchus.	c. 97 , c. 99 , Ludlow Tuunel.

[^9]
I N D E X.

Acanthonyge, 130
Acaste, 52
Acervularia
--ananas, 115
Acetabuhuria, 1
Acid.spis
" Barraudii, 134
" Brightii, 50, 134, 166
" eoronatus, 134,166
", erenatus, 134
," dama, 134
, dumetosus, 134
" Hughesii, 93
" quinquespinosus, 134
Acroculia, $89,90,154$
," euomphaloides, 171
" haliotis, 89, 154
" prototypa, 154
", species, 154
Actinockinus, 92,122
" pulcher, 92, 162
Actinodonta, 152
Actinopitllum, 188

" plieatum, 193

Eglina
" Boia, 23
" binodosa, 23
" caliginosa, 23
" grandis, 23
," speeies, 32
Agnostus
,, aculcatus, 4
" acumensis, 4
" Barrandii, 4
" bibullatus, 4
" Cambrensis, 2, 4
" Davielis, 4
, Eskriggi, 4
, Hirundo, 22
" integer, 4
" lovigatus, 4
, McCoyii, 31

Agnostus Morei, 22
" noclosus, 4
, pisiformis, 4
, prinecps, 4,10
2reticulatus, 4
" scarabreoides, 4
" scutalis, 4
" trinodus, 48
, trisectus, 10
" species, 11, 31
Alveolites, 106
, Fletcheri, 107
" Labechii, 107
" repens, 107
", Seelcyi, 107
„ seriatoporoides, 107
Ambontcilia, 65, 170
" acuticosta, 170
" costata, 65

$$
" \quad \text { striata, } 151,170
$$

AMORPHOZOA, 3, 9, 40, 84, 99, 161, 175
Amphispongia, 99
Ampix
" latus, 32
" nudus, 32
, Salteri, 22
Angelina
" Sedgrickii, 17
ANNELLIDA, $1,10,21,30,47,76,85$, $93,128,164,176,189$
Anodontopsis
angustifrons, 182
bulla, 152
quadratus, 169
quadratus, 190
secueriformis, 151, 169
Anopoliemus
" Hemrici, 6
" Salteri, 6
Apiocrinus
punctatus, 125
Apiocystites, 120

Apiocystites pentremitoides, 127

Arachnormyllem

$\#$	lusurians, 115
$"$	typus, 115

Arca
, Edmondiiformis, 96
Archimeda, 100
Arenicolites

$$
\begin{array}{ll}
\text { " } \quad \begin{array}{l}
\text { didymus, 2 } \\
" \\
\text { sparsus, 2 }
\end{array}
\end{array}
$$

Arionellus
" longicephalus, 7
Asapius
, affinis, 17
" Homfrayi, 17
" laticostatus, 33
" Menapix, 23
" peltastes, 34
, Powisii, 53
" racliatus, 54
" Solvensis, 23
" tyranmus, 33
ASTERIADE, 46
ASTEROIDEA, 163
Astylospongia

$$
" \quad \text { grata, } 40
$$

Ateleocistites
Fletcheri, 128

Athyris

" compressa, 143
" depressa, 94, 143
" obovati, 139,167

Atripa

anglica, 56
" Grayi, 143
" hemisphreriea, 75, 86
" imbricata, 143
" marginalis, $55,78,86,94,143$
" reticularis, $78,86,94,143,168$
," Scotica, 78
AULACOPHYLLUM mitratim, 112

Aulopora

" conglomerata, 111
" serpens, 111
" tubegformis, 111

Avicula

" Danbyi, 149, 181
" lineata, 149, 169
" mira, 149
, reticulata, 149

Barrandia

$"$	Cordai, 33
$"$	Portlocki, 38
$"$	radians, 33

Bdellacoma
„ vermiformis, 163
Bellerophon
" Arfonensis, 18
$" \quad$ bilobatus, 67,90
," carinatus, 192
," dilatatus, $83,90,157$
,, expansus, 68, 90, 157, 186, 192
globatus, 68
" multistriatus, 19
" Murchisoni, 192
" nodosus, 68
., ornatus, 68
„ Ruthveni, 186
" subulecussatus, $68,83,97$
" trilobatus, $90,97,157,192$
" Wenlockensis, 158
Berenicea
" heterogyra, 44
Beyrichia
" complicata 31, 48, 76
", " var. 48
" Kloe"deni, 129, 177, 189, 193
BRYOZOA, 27, 39, 44, 76, 85, 91, 100,161,
176
Bucania, 157
Calamopora, 104
Calymene

"	Blumeubachii, $53,77,132,166$
"	brevicapitata, 53
"	Cambrensis, 33
"	Caractaci, 53
"	parvifrons, 22
"	melchella, 132
"	Ramseire, 22
"	Senaria, 53
"	subdiademata, 53, 132, 166
"	Tristani, 22
	tuberculosa, 133, 166
	ultima, 22
3,	vexata, 22
mmia	
	lata, 113

Caninia turbinata, 113
Capulus, 89, 154
Cardiola
" interrupta, 96, 152, 170
" striata (Ambonychia), 151
Caryocaris
" Wrightii, 21
Carfoctstites, 45
Catenipora
escharoides, 42, 111
Centropleura, 13, 15, 17
Cephalopoda: see Mollcsca
Ceratiocaris

$"$	ellipticus, 178
inornatus, 177,178	
$"$	insperatus, 16
$"$	latus, 16
$"$	leptodactylus, 164
$"$	papilio, 178
$"$	robustus, 164
$"$	solenoides, 178
$"$	stygius, 178
$"$?umbonatus, 48
$"$	species, 129

Ceriopora, 100, 107
Ceraurus
" clavifrons, 50, 51
" Williamsi, 130
Chetetes, 108
Chatetes, 107
Chasmops
" Odini (?), 52
Caeirocrinus, 118

$"$	abdominalis, 118
$"$	Fletcheri, 119
$"$	gradatus, 118
$"$	serialis, 118

Cheirurus
„ bimucronatus, 77, 86, 130
" Frederici, 17
" jurenis, 51
" octolobatus, 51
" Sedgwickii, 33
Chondrites
verisimilis, 99
Chonetes
" lærigata, 95, 148
" lata, $89,148,169,181,190$
" minina, $95,148,169$
" " var. Grayi, 14
striatella, 169
Cleidophorus
" ovalis, 65,96
" ${ }^{\prime}$ ", 67
Climacograpses, 28

$$
" \quad \text { bicornis, } 29
$$

$$
" \text { scalaris, } 28
$$

Cliona, 40, 128

Clisiopiyllum

,	coniseptum, 117
	vortex, 117

Cnemidium
" tenue, 99
Colocrinus, 45
Cenites, 100, 105

$$
\begin{aligned}
& \text { intertextus, } 106 \\
& \text { juniperinus, } 106 \\
& \text { labrosus, } 106 \\
& \text { linearis, } 106 \\
& \text { strigatus, } 106
\end{aligned}
$$

Conocephalus, 5, 13
Conocoryphe

"	abdita, 13
"	applanata, 5
"	bufo, 5
"	coronata, 5
"	depressa, 15
"	ecorne, 12
"	Homfrayi, 5
"	lumerosá, 5
"	invita, 13
"	Lyelli, 2
"	monile, 32
"	variolitris, 5
"	verisimilis, 15
"	Williamsoni, 12
"	species, 5

Conularia

" bifasciata, 171
" cancelluta, 67, 153, 185
" clavus, 153
" corium, 24
" Homfrayi, 18
" Sowerbyi, 67, 153, 171, 185
" subtilis, 185
Cornulites
$" \quad$ serpularius, $55,93,128,177$
Coscinopora, 99
Crania
" divaricata, 34, 55
„ Grayii, 135
" implicata, 135, 180
Creseis, 66, 159
" Sedgwickii, 158
Crossopodia lata, 189

$$
\text { " Scotica, } 48
$$

Crotalocrinus rugosus, 123
CRUSTACEA, Merostomata, 165, 178, 185, 193
Phillopoda, 7, 10, 16, 21, $31,48,76,93,129,164$, 177, 189, 193
Trilobita, 2, 4, 10, 15 , $17,21,31,48,76,86$, $93,130,165,177,189$

Cruziana

" semiplicata

CRYPTOGAMIA (Algx), I Ctenodonta

$"$	anglica, $96,152,170,184$
$"$	Edmundiiformis, 66,184
$"$	elongata, 24
$"$	IIughesii, 82
$"$	lingualis, 89
$"$	primitiva, 184
$"$	rotunda, 24
$"$	subrequalis, 89,190
$"$	varicosa, 66
$"$	species, 152

Cuculella

$"$	antiqua, 66, 191
$"$	coarctata, 170, 183
$"$	ovata, 183, 191
$"$	specics, 152, 183

Cyathocrinus
" arborcus, 125
" arthriticus, 124
" capillaris, 124
" decadactylus, 123
" goniodactylus, 124
" Ichthyocrinoides, 125
" monile, 124
" nodulosus, 124
" punctatus, 125
, quindecimalis, 124
", quinquangularis, 123
" scoparius, 125
" spccies, 76, 124, 162

Cyathaxonia

" Siluriensis, 162
Crathophylldm

$"$	angnstum, 112
$"$	articulatum, 112
$"$	caspitosum, 112
$"$	Craigense, 43
$"$	dianthus, 112
$"$	flexuosum, 112
$"$	Loveni, 112
$"$	pscudoccratites, 92, 112
$"$	trochiforme, 113
$"$	truncatum, 112
$"$	spccies, 112

Cybele

" rugosa, 51
, verrucosa, 51
Cycloceras, 71, 158, 159, 186, 187
Cyclonema
cirrhosa, 155
" Corallii, 172, 185
" crebristria, 69, 90
", lyrata, 69
" octavia, 156, 172, 185
", triporcata, 69
" uudifera, 172
". species, 155

Crpiaspis

" megalops, 77, 133
Cypricardites, 66
Cyrtoceras
" Biddulphii, 160
" compressum, 160
" corniculum, 160
," multicameratum, 37
" species, S3, 174
Cyrtodonta, 66
Cyrtolites
, lavis, 173, 185
Cyrtothec.a
hamula, 8
CYSTIDE E, 3, 45, 126, 127
Cystiphyllom

$"$	brevilamcllatum, 116
$"$	cylindricum, 116
$"$	Grayii, 116
$"$	Siluriense, 116

Cythere
" Aldensis, 31
Cytheropsis, 31
Delthyris cardiospermiformis, 144 Dendograpses

"	arbuscula, 21
$"$	furcatula, 21
$"$	species, 20, 161

Drcilograpets, 20

$"$	aranea, 21
$"$	octobrachiatus, 21
$"$	Sedgwickii, 21
$"$	specics, 21

Dictyocaris
Slimoni, 177
Dictronema
" retiformis, 101
" sociale, 9
Didymograpsus

$"$	constrictres, 20
$"$	genuinus, 20
$"$	Hirundo, 20
$"$	latus, 20
$"$	Murchisoni, 29
$"$	Pantoni, 20
$"$	sextans, 29
$"$	V-fractus, 20

Dikellocepmalus
celticus, 13 furca, 15,17 species, 13
Dimerocrinus
decadactylus, 121
icosidactylus, 120
multiplex, 120
uniformis, 120
Dionide
" atra, 22

Diplograpsus

$$
\begin{aligned}
& \text { " angustifolius, } 28 \\
& \text { " barbatulus, } 19 \\
& \text { Folium, 2S } \\
& \text { mucronatus, } 19,28,35 \\
& \text { persculptus, } 28 \\
& \text { pristis, } 19,28,40 \\
& \text { pristis, } 91 \\
& \text { ramosus, 39, } 92 \\
& \text { rectangularis, } 28 \\
& \text { " } \quad \text { eretiusculus, } 28 \\
& \text { Diplorrhina } \\
& \text { " triplicata, } 31 \\
& \text { " Forbesii, 93, } 136 \\
& \text { " Morrisii, 136, } 166 \\
& \text { " pileolus, } 8 \\
& \text { " rugata, 150, } 190 \\
& \text { " striata, 136, } 180 \\
& \text { " Vernenilii, } 136 \\
& \text { " species, 2, } 34
\end{aligned}
$$

Disoopora, 100
Dolabra 191
Dysplanus controtus, 54
Eccoptochile, 17
Eccyliompilalus

$$
\begin{array}{ll}
" & \text { lrevis, } 90 \\
" & \text { Scoticus, } 37,83
\end{array}
$$

Fichinodermata, $3,30,45,76,85,92,117$, 162,176
Echino-encrinttes, 127 armatus, 128 baccatus, 128
Echinospilerites

$$
\begin{array}{ll}
" & \text { Davisii, } 45 \\
" & \text { grauatum, } 45
\end{array}
$$

Eicitwaldia

$$
\text { Capewellii, } 139
$$

Excrinurus, 130

$"$	arcnaccus, 77
"	multiplicatus, 51
"	pnnctatus, 77, 86, 131
"	sexcostatus, 51
"	variolaris, 131

Erinvis
venulosa, 5
Eucalyptocrinus, 92, 119, 120
Eunema, 156
Euompilalus

```
" alatus, 157
" Calyptrea, 157
" carinatus, }15
" centrifugus, 156, 172
" discors, 156
;. funatus, 90, 157
" Mariæ, 156
" pacificatus, 156
" rugosus, 157
```

Evompialus sculptus, 90,157
" tricinctus, 83
" triporcatus, 157
" triporcatus, 69
Euphemus, 67
Euifpterus
" Cep Malaspis, 178
" lanccolatus, 178
" pygmeus, 193
Favosites
„ aspera, 84, 105
" alveolaris, 41, 73, 84, 104
" basaltica, 105
" crassa, 41
", eristata, 84, 105
" favosa, 105
" Forbesii, 105
" Gothlandica, 41, 92, 104
" IIisingeri, 105
" multipora, 73, 84
" aculuta, 107
", polymorpha, 105

Fenestella

" assimilis, 101
" elcgans, 101
" infundibuhm, 100
" Milleri, 45, 101
" patula, 101
" rigidula, 101
" subantiqua, 45, 101
" species, 101
Fistulipora, 99
$\#$ decipiens, 103
Forbesia, 133, 134, 165
Fucoids, 99
Fucus
" cartilagineus, 99
Glauconome
" disticha, 76, 101
Glauconome, 76
Gliptocrinus

$"$	basalis, 45
$"$	expansus, 122
$"$	species, 85,92

Gomphoceras, 160, 174
Goxiopiora
$" \quad$ cymbæformis, 182, 191
$" \quad$ grandis, 151

Goniophillum

$$
\text { " Fletcheri, } 114
$$

" pyramidale, 114
Grammisia
" cingulata, 151,184
" rear. obliqua, 184
, cxtrasulcata, 184
" rotundata, 184
" triangulata, 184, 191

Grantia, 99

Graptolites

"	colonus, 103
"	conrolutus, 27
"	Flemingii, 91
"	foliaceus, 2 s
"	Hisingeri, 19, 27
"	lobifcrus, 27
"	Ludensis, 39, 91, 102, 161, 176
"	Milliperda, 27
"	Nilssoni, 27
"	$\begin{aligned} & \text { priodon, } 39,84,91,102,161 \text {, } \\ & 176 \end{aligned}$
"	sagittarius, 39
"	sayittarins, 27, 91
"	Sedgwickii, 27,39
"	scalaris, $\overbrace{}^{8}$
"	tenuis, 27, 39
",	tcretiuscelus, 28

Graptolithus, 19, 27
Graptolitides, 39, 85
Giaptopora
„ sociale, 9
Graptotheca
" catenulata, 171
Halysites, 110
" catemularins, 111
" catenulatus, 42, 74, 84
" labyrinthicus, 42, 111
Ilarpes
" parvulus, 54
Harpiles, 5
Harpidella
" megalops, 77, 133
Heliolites
" ceespitosa, 104
\# favosa, 40
$"$ Grayi, 104
" interstincta, 29, 40, 84, 103
" megastoma, 41, 74, 84, 103
" Murchisoni, 103
" petalliformis, 103
" car. 104
" subtilis, 74
" subtubulata, 41
" tubulata, 41, 73, 104
, species, 104
IIelminthites, 21
Hemiaspis
" aculeatus, 178
" splecies, 189
Hemithyris
" angustifrons, 56
" crispatu, 94, 141, 167
" Daridsoni, 141, 1 s 0
" depressa, 56, 143
" didyma, 94, 167
" diodonta, 94

Hemithyris lacunosa, 87, 140

" Lewisii, 94, 140
" nasuta, 56
" navicula, 141, 167
" nucula, 87, 94, 141, 167, 180
" pentagona, 141
, pisum, 143
" spharoidalis, 141, 167
"upsilon, 87
„ Wilsoni, 180
Herpetacrinus
Fletchcri, 118
Heteropoda : see Moludsca
Ilolocephalina

$"$
 primordialis, 4

Holopea

$$
\text { cancellata, } 90
$$

" conica, 69
" exserta, 69
" gregaria, 90
" lymnæoides, 69
" striatella, 69
" tritorquata, 90
Holopea, 68, 69
Hulopella
". cancellata, 185
" conica, 191
" gracilior, 172
" gregaria, 97, 185, 191
" intermedia, 172
$"$ munilis, 70
" obsoleta, 186, 191
" tenuicincta, 183
Homalonotes
" bisulcatus, 33, 53
" cylindricas, 93
" delphinocephalus, 133
" Johamis, 133
" Knightii, 133, 177
" monstrator, 22
" rudis, 53
" Sedgwickii, 53
Homocrinus, 118
IHormotomu, 36, 68, 97, 157
Hornera

$$
\text { , crassa, } 102
$$

Hortolus, 160, 174, 187

$$
" \quad I b e x, 1>7
$$

IIYDROZOA, $9,19,91,102,161,176$
IIfmenocaris

$$
\begin{array}{ll}
" & \text { major, } 7 \\
\text { vermicauda, } 10
\end{array}
$$

Hypanthocrinus, 119

$$
\begin{array}{ll}
" & \text { decorus, } 120 \\
" & \text { granulatus, } 120 \\
" & \text { polydactylus, } 92,120
\end{array}
$$

Ichthyocrines

Ichthyocrinus McCoyanus, 163
," pyriformis, 126
YLLENUS
" Barriensis, 54, 133
" Bowmanni, 54, 77
" crassicauda, 34
" Davisii, 54
" insignis, 133
" Rosenbergi, 54
" Thomsoni, 77, 56
Iscradites
" Koenigii, 100
" micropora, 40
Isoteluts, 17, 33

Kutorgina
" eingulata, 14

Labechia, 109
" conferta, 110
Lamellimranciliata : see MOLLUSCA
Leperditia
" marginata, 189, 193
" prima, 2

Lepidaster

" Grayii, 117
Leptagonia
,, depressa, 62, SS, 95, 181
" ungula, 62
Leptodomes
, amygdalinus, 89, 183
" truncatus, 183
"undutus, 183
Leptena
" alternata, 62, 95
" antiquata, 61, $88,14 \%$
" compressa, 62, 63, Ss
". deltoidea, 63, 88
" euglypha, 146
" filosa, 146
" funiculata, 63, 88
" grandis, 63
" Ouralensis, 146
pecten, SS, 146
quinquecostata, 64
quinquecostata, 64
rhombica, 64
scissa, S2, 89
sericea, $36,64, \$ 2,89$
" " var. 82
" spiviferoides, 60
" tenuicincta, 64
" tenuissimestriata, 64
" tenuissimestriata, 95
:, transversalis, 63, S2, S9, 95, $1 \pm$
" var. undulutu, 64
" specics, 64
Lepterna, 61, 62, 63, 64, 58, 146

Lichas

" Anglicus, 130
" Barrandii, 130
" bulbiceps? 77
, Grayii, 130
" hirsutus, 130
" laciniatus, 50
" laxatus, 50
" Dodulosus, 50
" patriarchus, 33
" Salteri, 130
", seutalis, 130
", verrucosus, 130
Lichas, 134
Limuria, 105
" clathrate, 106
" fruticosa, 106
Lingula, 136
" attenuata, 34
" coruca, 180, 190, 193
„, corneu, 166, 179
, curta, 34
" grauulata, 34
" lata, 166
" Lewisii, 137, 166, 180
" longissima, 55
" minima, 166, 179, 190
" obtusa, 34
" ovata, 55
" parallela, S6
" petalon, 23
" Ramsayi, 34
" Symondsii, 137
" tenuigranulata, 55
" species, 78,137
Lingulelila
" Davisii, 13
" ferruginea, 2,5
" lepis, 13
", species, 14,16
Lingulocaris
lingulæcomes, 16
Litiopa, 69
Litorina, 156, 172, 185
Lituites, 160
" anguiformis, 71
" articulatus, 174
" cornu-arietis, 71
" planorbiformis, 71
Lituites, 70, 160
Loxonema
" elcgans, 172
" sinuosa, 172
" species, 70,157
Lunulatardium, 151
Lycopotiacea, 18S, 193
Lyrodesma
" cuneata, 59
" plana, 65

Maclurea

$$
\begin{aligned}
& \text { " Logani, } 37 \\
& " \quad \text { macromphaht, } 68 \\
& " \quad \text { macromphala, } 70
\end{aligned}
$$

Macrocheilus
1upa, 156
Mariacrinus
flabellatus, 122
Minsupiocrinus
cexlatus, 119
Meristell.
angustifrons, 56, 79
Ciree, 139
crassa, 79, 94
didyma, 87, 94, 139, 167
furcata, 88
" leviuscula, 139
" subundata, 79
" tumida, S7, 189
Microdiscus

$$
\begin{array}{ll}
" & \text { punctatus, } 4 \\
\text { seulptus, } 2
\end{array}
$$

Modiola, 65, 190
Modiolopsis

$"$	antiqua, 150
$"$	complanatus, 190
$"$	gradatus, 150,170
$"$	inflata, 65
$"$	lævis, 182,190
$"$	modiolaris, 65
$"$	mytilimeris, 150
$"$	orbicularis, 65
$"$	planata, 182, 190
$"$	platyphyllus, 190
$"$	solenoides, 182, 190

MOLLUSCA
" Brachiopodi, 2, 8, 13, 16, 23,
$34,54,78,56,93,135,166$, $179,190,193$
" Cephalopodi, $18,70,53,90$, $97,158,173,186,192$
n Gasteropod. $, 36,68,53,89$, $97,153,171,185$
," Heteropoda, 17, 37, 66, 53, $90,97,157,173,186,192$
" Lamellibrayoinata, 36, 64, $82,89,96,149,169,151$
" Pteroioda, $\mathrm{S}, 16,17,66,90$. $153,171,184$
Monticulipora
" Buwerlankii, 109
" Fletehcri, 108
" papillata, 109
" pulehella, 108
" poculum, 109
" species, 109
Morchisonla
" angustata, 30
" articulata, 172, 185

Murchisonia cancellatula, 69,83
" cingulata, 172
" gyrogonia, 69
" Lloydii, 155, 171
" pulchra, 69, 83
" scalaris, 69
" simplex, 69
" simplex, 83
," torquata, 185, 191
, tricincta, 83
" turrita, 68
" species, 90,155
Murchisonites
" antiquus, 2
Myelodactylus, 118
Mrrianites

$$
\begin{array}{ll}
", & \text { McLeayii, } 30 \\
" & \text { tenuis, } 47
\end{array}
$$

Mytiles

" mimus, 182
" mytilimeris, 89
" unguiculatus, 96
Natica, 90
Naticopsis
" glaucinoides, 172
" parva, 185
Naticopsis, 90
" glaucinoides, 185
Nebulipora
" explanata, 41
" favulosa, 29, 41
" lens, 41
" papillata, 41, 176
" sce Monticulipora

Nereites

" Cambrensis, 31, 47
" Scdgwickii, 30, 47

Nemertites

, Olivantii, 30
Ninulites

$$
\text { , farus, } 72
$$

Niobe
„ Homfrayi, 15
Nucleabranchiata, 37
Nucleospira

$$
\text { " } \quad \text { pisum, } 143
$$

Nucula
, levata, 66, 96
Nuculites
" poststriatus, 96

Obolella

" maculata, 8
" nucleata, 8
" Phillipsii, 14
" plicata, 24
" plumbea, 24

Obolella sagittalis, 8
" Salteri, 14
" species, 2, 14, 24
Obolus
" Davidsoni, 137
" transversus, 86,137
Odontochcile

$$
\begin{array}{ll}
\because & \text { caudata, } 93,131,166,17 \% \\
\# & \text { minor, } 93
\end{array}
$$

Odontopleura, 134
Ogyora angustissima, 32
" Buchii, 32
", bullina, 23
" Corndensis, 32
" peltata, 23
," scutatrix, 17
" Selwymi, 23

Oldifama

$$
\begin{array}{rr}
" & \text { antiqua, } 1 \\
" & \text { radiata, } 2
\end{array}
$$

Olenus
" alatus, 12
" bisulcatus, 12
" cataractes, 7
," caturactes, 11
., comatue, 11
," cxpansus, 12
" flagellifer, 11
", gibbosus, 7
" humilis, 12
" micrurus, 11
," pecten, 12
," Plantii, 11
" scarabæoides, 11
,, servalus, 11
" spinulosus, 11
,, species, $7,11,12$
OMPHYMA, 75
" Murchisoni, 113
$"$ subturbinata, 112
" turbinata, 42, 43, 76, 85, 113
Oncius, 193
, tcnuistriatus, 192
Oploscole. 1,129
Orbicula, 136
Orbiculoidea, 93, 135, 180
Orthis
" Actoniæ, 57, so
" requivalvis, 145
" alteruata, 60
" avellana, 59
", biforata, 35, 59, 80, 88, 145
". var. a lyn $x, 59$
", var. β dentatus, 59
, biforata, 59, 60
,, biloba, 57, 50, 95, 144
" Bouchardii, 145
„ callactis, 57
, calligramma, 35, 57, 80, 88, 144

Orturs calligramma, 57
" var. Davidsoni, 144
" calliptycha, 58
" calliptycha, 58
" Carausii, 24
" confinis, 35
" crispa, 58
," clegantula, 30, 59, 89, 95, 145, 168
" elegantula, 59, 61
, fissicostata, 59, 80
" flabellulnm, 58
., Alabellulum, 58
, Hicksii, 8
" Llirnantensis, 81
, hybrida, 81, 145
, insularis, 60, 81
„ lata, 60
, lenticularis, 14
, Lewisii, 145
" lunata, 181
" Mcnapie, 24
, occidentalis, 58
,. orbicularis, 145,168
, parva, 59, 81
, parva, 35, 145
, plicata, 57, 80
, plicala, 57, 80
, porcata, 58, 59, 89, 145
protensa, $60,81,95$
retrorsistriu, 60
reversa, 81, 88
rigida, 58

- rustica, 144
, car. rigida, 144
" var. Walsalliensis, 144
", sagittifera, 81
sarmentosa, 60
". sarmentosa,58
, simplex, 60
, sinuata, 58
" spirifcroides, 60
" striatula, 35,38
, testudinaria, 61, 81
". testudinaria, 58,60,61
, turgida, 35, 61
" turgida, 81
" vespertilio, 61, 81
," virgata, 58
", Walsallieusis, 58, 80, 144
Orthisina
" adsecndens, 61
, Scotica, 61
Ormoceras
specics, 71
Ormocevas, 15 S
Orthoceras
" angulatum, $98,158,159,173$,
$\quad 186$
annulatum, $71,90,98,159$

Ortnoceras arcuoliratiom, 71
" haculiforme, 187
" bilincatum, 70
,, Brightii, 158
.. bullatum, 159, 186, 192
" canaliculatum, 15 S
, centrale, 37
" dimidiatum, $98,15 \mathrm{~S}, 173,187$
" distans, 159
" dulec, 159
" filosum, 159, 173
" finbriatum, 15 S
, fluctuatum, 37
" Ihex, 71, 158, 173, 186
" imbrieatum, 187
" laqueatum, 95, 159
" Ludeuse, 158
" Maclareni, Is6
" Mocktreense, 158
" perclegans, 158, 173, 157
" politun, 70
" primevum, 97, 159
, sericeum, 18
" subannulare, 159
" subamulatum, 98,186
" subcostatum, 159
" subiudulatum, 97, 158, 173
" subundulatum, 37, 187
" tenui-annulatum, 173,187
" tenui-cinctum, $9 \mathrm{~S}, 15 \mathrm{~S}, 186$
" tenui-striatum, 83
" torquatum, 187
" tracheale, $98,187,192$
" Vagans, 70
" rentricosum, 98, 159
" spceics, $24,83,70,71,159$
Orthonotus, 65
," affinis, 183
" anygdaliuns, 89, 151, 183
" var. globulosus, 183
" var. retusus, 183
" anguliferus, 183
" cymbeformis, 182
" decipiens, $96,183,191$
" impressus, 151
" nasutus, 65
" prora, 183
" semisulcatus, 170
" semisulcatues, 82, 183
," truncatus, 183
" uudatus, 170, 183
Pachytheca

	spliaerica, 188
Palearca, 66	
$"$	diagona, 190
$"$	elliptica, 191
$"$	obtusa, 191
$"$	socialis, $2 t$

Paleaster

" asperrimus, 47
" lirundo, 163
" obtusus, 46
," Ruthveni, 163
" squamatus, 47
Palaochorda, 21
Paleocoma
" Marstoni, 163
Paleoctclus
" Fletcheri, 117
," porpita, 116
", preacutus, 84, 11 \%
" rugosus, 117
Palcopora, 72, 73, 74, 103, 104
" furosa, 72
" interstincta, 29
" subtubulata, 102
Palasterina
" primæeva, 163
Parabolina
" spinulosus, 11
Paradoxides

$"$	Aurora, 6
$"$	Davidis, 6
$"$	Marknessi, 2
$"$	Harlani, 6
$"$	Hicksii, 6

Pasceolus
" Goughii, 175
Peltocaris
, anatina, 93
Peltura
" scarabroides, 11
Pendulocrimus, 118

Pentamerus

". galcatus, 142, 168
" globosus, So, 87, 142
" Knightii, 142, 167, 168
" rur. Aylesfordii, 168
" lens, $56,79,57$
" linguifer, 87,142
" liratus, $80,87,95$
", micracamerus, $80,87,95$
" oblongus, 80,87
", rotuudus, 79,95
". undatus, 80,87
Periechocrinus

$"$	limonium, 121
$"$	moniliformis, 121
$"$	simples, 121
$"$	species, 85

Petrali
" requisulcata, 43, 75
" bina, 85
" crenulata, 75
", elongata, 43, 75, 85
" rugosa, 43, 75, 85
" subduplicata, $43,75,55$

Petrala miscrialis, 44, 75, 85
ziczae, 43
specics, 92,113
l'inacors, 51
" alifrons, 52
" apiculatus, 52
" caudatus, $86,93,13 \dot{2}$
" conophthalmus, 52
" corrugatus, 98
" ouncatus, 93
, Downingix, $93,131,166,177$
, var. constrictus, 131
", longi-caudatus, 132
val: armiger, 132
var. Grindrodianus, 132
macroura, 52
, Musheni, 131
" Nichulsoni, 22
" obtusi-caudatus, 78
", Stokesii, 76, 86, 93, 131, 166
", tuberculato-caudatus, 132
", Weavcri, 86
Piragmoceras, 159

$"$	requalc, 160
$"$	arcuatum, 160
$"$	intermedium, 174
$"$	liratum, 174
$"$	pyriforme, 160,174
$"$	ventricosum, $90,160,174$

Ploragmoceras, 70

Phyllograptus
angustifolius, 19
Phyllopora
Hisingeri, 45
PISCES, 192, 193
Pisoominus
$" \quad$ ornatus, 128
$", \quad$ pilula, 128

PLANTE, 1, 99, 161, 175, 188, 193
Plasmopora, 103
Platycrines

$"$	pecten, 122
$"$	retiarins, 122
$"$	specics, 162

Platrschisma

$$
\begin{array}{ll}
" & \text { lelicoides, 186, } 192 \\
" & \text { Williamsi, 191 }
\end{array}
$$

Pleurorhynchus
" æquicostatus, 1:1

Pleurotomaria, 154

"	baiteata, 154
"	crenulata, 185
"	Fleteheri, 154
"	lenticularis, 70
"	striatissima, 155, 171
"	turrita, 68
"	undata, 154, 171
"	uniformis, 155
"	species, $33,53,96,154.155$
	๑6

" crenulata, 185
" Fleteheri, 154
" lenticularis, 70
" striatissima, 155, 171
" turrita, 68
" undata, 154, 171
" uniformis, 155
" species, $33,53,96,154.155$

Pleurotomaria, 68, 70

Plutonia

" \quad Sedgwiekii, 2
Polyzos, 9, 19, 44, 100, 102, 161, 176
Polyphemopsis, 156
Porambonites

$$
\text { " intercedens, } 56
$$

Porambonites, 139
Portloclia, 93, 131, 166
Poterioceras

$$
" \quad \text { ellipticum, } 160
$$

Primitia
" buprestis, 7
, MeCoyii, 45
„ var. 48
" prima, 2
" Solvensis, 7
" strangulatia, 4 S
" vexata, 7
". speeics, 21, 31
Proftus, 133
, Fleteheri, 134
„ latifrons, 134, 165
" Rhyckholti, 134
" Stokesii, 86, 134
", speeies, 78, 86, 133
Protaster
" Miltoni, 164
" Petri, 47
" Salteri, 46
" Sedgwiekii, 164
Protacystites, 3,46
Protospongia

$"$	diffusa, 2
$"$	fenestrata, 3
$"$	flabella, 3

Protovirgularia

$$
" \quad \text { diehotoma, } 29
$$

Prunocrstites
" \quad Flase 151
„ securiformis, 169, 183
Psoudo-Crania, 34, 55
P'seudacrinites

$"$	bifaseiatus, 127
$"$	magnificus, 127
oblongus, 127	
$"$	quadrifaseiatus, 127

Pslocephalus

" inflatus, 15
" innotatus, 15
Preraspis
" Banksii, 192
Pterinea
" asperula, 149
" Boydii, 182
" Condor, 169
" demissa, $89,150,182,190$
" exasperata, 150

Pterinea hiuns, 169
" lineata, 181
" lineata, 181
" lineatula, $149,169,181$
" megaloba, 190
" planulata, 150
" pleuroptera, 65, 169, 182
" retroflexa, $89,150,169,181,190$
" Sowerbyi, 149, 169, 182
" subfaleata, 96,182
", tenuistriata, $96,150,170,182,190$
" species, 150
Pterygotus
" areuatus, 165
" Banksii, 189
", bilobus, 179
" gigas, 189
" leptoductylus, 164
", Ludensis, 193
" perornatus, 179
" problematieus, 188
" species, 179
Ptilodictia, 102
, acuta, 45
" eostellata, 44, 76
" dichotoma, 44
" explamata, 44, 76
" fueoides, 44
" lanceolata, 102
" sealpellum, 85,102
Ptychoparia, 5
Ptychophillem, 113
., patellatum, 114
Pvitionema
» faseieulus, 30
" species, 30
Rain-imprints, 2
Raphistoma
" æqualis, $36,70,53$
" maeromphala, 70
Rastrites
" convolutus, 27
" maximus, 28
", peregrimus, 27
Retepora, 45, 100
Retiolites
,, Geinitzianus, 92
Retzia
, Barrandi, 94, 139
" Bouchardii, 140
" Salteri, 139
" rar. Baslei, 140
Rhotocrinus, 123
Rhinchonella
" borealis, 87,140
" rar. diodonta, 141
" crispata, 167
" cuneata, 140

Rhynchonella decemplicata, 87,94
deflexa, 140
diodonta, 94
lacunosa, 140
Lewisii, 79, 94, 140
nasuta, 56
navicula, 141, 167
nucula, $87,94,141,167,180$
spherica, 141
Stricklandii, 94, 141
Wilsoni, 141, 167, 180
rar. Davidsoni, 141, 180
species, 56, 94, 95
Sabella
„ Murehisoniana, 164
Saccocaris, 7
Sanguinolites
" anguliferus, 183
„ decipiens, 183, 191
" inornatus, 96
Sareinula
" organmm, 43
Sareimela, 115
Scolecites, 2, 10
Scolecoderma

$"$	antiquissimum, 10
$"$	speeies, 21,129

Scolites, 21
Serpulites
" dispar, 129, 164, 176
,, longissimus, 176
Siphonotreta
" anglica, 136
" anglica, 167
" micula, 35, 73
Slimonia
" aeuminata, 179
" punctata, 165
" species, 179
Spherexochus
" boops, 50
", mirus, 131
Spheronites
" stelluliferus, 45
Spheropthalmus, 11, 12
Spherospongla

$$
\text { hospitalis, } 40
$$

Spharospongia, 99,100
Spirifer
$\Rightarrow \quad$ crispus, 88,138
, elevatus, $58,138,180$
" exporrectus, $\mathrm{SS}, 13 \mathrm{~S}$
" octoplicatus, 13 S
" plicatellus, S8, 138
" rar. globosus, 138
" rar. interlineatus, 13 S
" rar. radiatus, 138
", radiatus, 138

Spirifer subspuria, 130
, sulcatus, 137
", trapezoidalis, 166

Spirifera

" biforata, 80, 88, 145
" cyrtame, 88,94
" percrassa, 79, 84
" subspurik, 188
" trapezoillalis, 88
Spirigerina
" marginalis, 94
Spirorbis
" Lewisii, 93
" Lcwisii, 164
" tenuis, 164
Spondylobolus, 34,135
eraniolaris, 34
" cruniolaris, 139
Sponoaridas
„ æquicostatum, 175
$"$ Edwardsii, 161, 175
" interlineatum, 175
" interruptum, 175
Sponge, 100
Sponges, 99
Staurocephalus
" Murchisoni, 50, 131
Stellispongia, 99
Stenopora
" fibrosa, 29, 42, 73, 92, 107, 162, 176
" rar. lycoperdon, 42
" rar. lyeopodites, 176
" rar. regularis, 42, 176
" granulosa, 107
" ramulosa, 29, 42, 73
Stenotheca
Strep"hodes
" Craigensis, 43
" pscudncerutites, 92, 112
" trochiforme, 113
, vermiculoides, 112
Stricklendinia, 80, 87, 95
Stromatorora
Strombodes \quad striatella, 40, 84, 99
" diffuens, 115
" Labechii, 115
" Murchisoni, 115
" Phillipsii, 115
" plicatum, 114
" typus, 115
" Wenlockensis, 115
Strophomena
alternata, 62
", alternuta, 62
" applanata, 88
" antiquata, $61,82,88,147$

Stropiomena arenacea, 88

"	bipartita, 63
:	compressa, 88
"	compressa, 95
"	concentrica, 35, 62
"	corrugata, 62, 147
"	deltoidea, 62, 88
,	deltoidea, 63
"	$\begin{aligned} & \text { depressa, } 62,82,88,95,147 \text {, } \\ & \quad 181 \end{aligned}$
"	expansa, 63
"	expansu, 35, 62
"	euglypha, 146, 169
"	filosa, 146, 16S, 181
"	funiculata, 63, 88, 146, 168
"	grandis, 63
"	Ouralensis, 95, 146
"	peeten, 63, 88, 146
"	ptychotis, 62
"	quadrata, 147
"	sericea, 82
"	simulans, 63, 147
"	tenuistriata, 63
"	undata, 62
"	ungula, 62
	species, 23, 35, 82

Stringophyllum

$$
\text { organum, } 115
$$

Syringopora

$"$	lifurcata, 111
$"$	fascicularis, 111
$"$	filifurmis, 111
$"$	reticuluta, 111
$"$	serpeus, 111

Syringopora, 100
Striocrinus, 119

Taxocrinus

" granulatus, 126
" marmoratus, 125
" nanus, 126
" Orbigni, 163
" simplex, 125
" tesseracontadaetylus, 125
" tubereulatus, 125
Tellinomya
" lingulæcomes, 13
Tentaculites
anglieus, $47,76,55$
ammelatus, 76
ornatus, 76, 128
striato-costates, 128
tenuis, 177
Tetragonis
Danbyi, 176
Tetragrapsus

$"$	bryonoides, 20
$"$	crucialis, 20
$"$	quadribraehiatus, 20

Tifeca

" arata, 16
" Lijugosa, 16
" corrugata, 8
, euspidata, 18
" Forbesii, 66, 153, 184
" Harknessi, 24
" Homfrayi, s
" obtusa, 8
" operculata, 16
" penultima, 8
" reversa, 66
" simplex, 17
," stiletto, 8
" suleata, 17
" trilineata, 18
" spccies, 2, 153
Titecia
" expatiata, 110
" Grayana, 110
" Swinderniana, 110
Toniaster, 46
Trachyderma, 10

$$
\text { " lauis, } 176
$$

Trachyderma
", lævis, 47
Trapelocera, 134
Trematis

$$
\begin{array}{ll}
" & \text { corona, } 55 \\
" & \text { punctata, } 55 \\
" & \text { Siluriana, } 135 \\
" & \text { striata, } 180
\end{array}
$$

Trematopora, 100
Tretaspis, 50
Tretoceras
". semipartitum, 192
Tictaspis, 50
Triarthrus, 32
Trinodus
" agnostiformis, 48
" tardus, 48, 49
Trinucleves
" concentricis, 49,78
" favis, 31
" fimbriatus, 32
" Gilbsii, $2 \cdot 2$
" seticornis, 50
Triplesia
, McCoyana, 56
Trochoceras
" giganteum, 160, 174
" spurium, 160
" species, $98,160,174$
Trochoceras, 70
Trocholites, 71
Trochonema
$" \quad$ bijugosa, 156
Trochurus, 50

204

Trochus

ceelatulus, 97
Moorei, 83

Trochus

constrictus, 69
Turbo
" crebristria, 69
Turrilepas
" Ketleganus, 129
., Wrightianus, 129

INDEX.

Uraster, 163
Urasterella, 46

Verticlliopora

, abnormis, 99

Vios
, prisca, 84, 85
," species, 40, 128

Zethus

," atractonyge, 51
" rugosus, 51
sexcostatus, 51

Zoantharia

" rugosa, 42, 111
" tabulata, 40, 103
ZOOPHYTA, 27, 29, 39, 40, 73, 84, 92, 162, 176

Royal Quarto, One Volume, with Plates, Cloth, Price One Guinea.

A SYNOPSIS OF THE CLASSIFICATION OF THE
BRITISH PALEOZOIC ROCKS,

BY

THE REV. ADAM SEDGWICK, LL.D. F.R.S.

WOODWARDIAN PROFESSOR, AND FELLOW OF TRINITY COLLEGE, CAMBridge.

WITH A SYSTEMATIC DESCRIPTION OF THE

BRITISH PALÆOZOIC FOSSILS

IN THE GEOLOGICAL MUSEUM OF TIIE UNIVERSITY OF CAMBRIDGE,

BY
FREDERICK $H^{c} \mathrm{COY}$, F.G.S.
professor of the natural sciences in the university of melbourne.

WITH FIGURES OF THE NEW AND IMPERFECTLY KNOWN SPECIES.

Cambrioge:

AT THE UNIVERSITY PRESS.

Date Due

[^0]: * The antumn of that year was however not without its fruit: for accompanied and assisted by the present Astronomer Royal and Dr. Whewell, afterwards Master of Trinity College, I made out in considerable detail the structure of Charnwood Forest, and retermined the range of its single anticlinal axis; in following which towards the Nortl we found that it brought up at a high angle of elevation two singular masses of dolomitized Carboniferous Limestone; but out of the line of disturbance tho Limestone regained its ordinary type.

[^1]: * This map was not, I believe, published in any work connected with the Geological Society; but in the Atlas of the Society for the Diffusion of Useful Knowledge, where it lurked 1 believe out of my sight for more than seven years.

[^2]: * Murchison had previously claimed the Bala Group as Silurian, against which I entered my protest; and after some discussion I offered a compromise: viz. that of calling the Bala Group-Cambro-Silurian. This compromise was rejected by Murchison, and was afterwards withdrawn by myself.

[^3]: * After the attacks alluded to above, I continued occasionally to attend the Meetings of the Geological Society, and read one or two papers before them on different subjects. I did however twice trespass on the forbidden ground of Palrozoic Nomenclature. My first offending paper was arrested by the President (Professor Forbes was, I think, that evening in the Chair) as touching on forbidden matter. Lastly in October, 1854, a paper, of which I was the author, was partially read before the Society; but an essential part of it was not read that evening. When this came to my knowledge I withdrew the paper; and it was afterwards published (I think in extenso) in the Philosophical Magazine and Annals of Phitosophy. This led the President, Mr Hamilton, into a severe comment, to which I replied in the above-named Journal; and so ended for ever a personal connection with the Gcological Society, which ought to have ended two years sooner.

[^4]: * The numbers refer to tickets on the specimens. The localities and the donor's name follow the numbers.

[^5]: * Menevia is the classic name for St. David's. The bishop is styled Episcopus Menevensis.
 + The names of donors are in parentheses. Brackets [] include such species as are not yet obtained, but are likely to be so.
 \ddagger This MS. name, like many others in the Catalogue, is given for present convenience, and can have no authority till the forms are truly tigured and described.

[^6]: - The original 'Llandeilo flag' comprehended much more, and many higher beds, of different ages; and could not, at the time of the puhlication of the 'Synopsis,' be at all accurately identified. It is much better understood now.

[^7]: * The true L. ovata, figured by MeCoy from the Bala rocks of S. Ireland, is a common and characteristic fossil of this age.

[^8]: ${ }^{1}$ F. C. Fletcher Collection.

[^9]: ${ }^{1}$ These specimens were presented by Mr. R. Lightbody

