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ABSTRACT 

Within a multilevel secure (MLS) system, flaws in design and implementation can 

result in overt and covert channels, both of which may be exploited by malicious 

software to cause unauthorized information flows.  To address this problem, the use of 

control dependency tracing has been explored to present a precise, formal definition for 

information flow.  This work describes a security Domain Model (DM), designed in the 

Alloy formal specification language, for conducting static analysis of programs to 

identify illicit information flows, such as control dependency flaws and covert channel 

vulnerabilities.  The model includes a formal definition for trusted subjects, which are 

granted extraordinary privileges to perform system operations that require relaxation of 

the mandatory access control (MAC) policy mechanisms imposed on normal subjects, but 

are trusted to behave benignly and not to degrade system security.  The DM defines the 

concepts of program state, information flow and security policy rules, and specifies the 

behavior of a target program.  The DM is compiled from a representation of the target 

program, written in a specialized Implementation Modeling Language (IML), and a 

specification of the security policy written in the Alloy language.  The Alloy Analyzer 

tool is used to perform static analysis of the DM to detect potential security policy 

violations in the target program.  This approach demonstrates that it is possible to 

establish a framework for formally representing a program implementation and for 

formalizing the security rules defined by a security policy, enabling the verification of 

that program representation for adherence to the security policy. 
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I. INTRODUCTION 

Working calmly will let you elaborate and extend things, but the 
breakthroughs generally come only after great frustration and emotional 
involvement.  

       — Richard Hamming 
 

A. HYPOTHESIS 

In the development of secure systems, ensuring that the implementation of a 

system is faithful to its stated security objectives is a process laden with difficulties and 

challenges.  It is possible, however, to establish a framework for formally representing a 

program implementation and for formalizing the security rules defined by a security 

policy.  This enables the verification of that program representation for adherence to the 

security objectives.  Such a framework can be supportive of the Common Criteria 

requirements for secure system development. 

B. INTRODUCTION AND MOTIVATION 

Widely accepted evaluation standards (Common Criteria, 2006; DoD TCSEC, 

1985), and (NSA SKPP, 2007) require that high assurance secure systems be designed, 

developed, verified, and tested using rigorous development processes.  This evaluation 

process must include demonstration of correct correspondence between system 

representations at various levels of abstraction, such as security policy objectives, 

security specifications, and program implementation.  In addition, the National Institute 

of Standards and Technology Source Code Security Analysis Tool Functional 

Specification (NIST, 2007) requires that security analysis tools report weaknesses that 

they identify using semantically meaningful names and identifying location within a 

program, with an “acceptably low false positive rate.”  This dissertation describes an 

approach to analyzing programs for preservation of security properties through state 

transitions, and advances the ability to analyze software for information flow by 

describing automated techniques for information flow static analysis.  Classic work on 

secure information flow, including the use of lattice theory for ordering of security 
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classes based on the dominance relationship and the idea of labeling state variables to 

track such flows as a way to certify a program (Denning, 1976; Denning and Denning, 

1977), and type systems for security analysis (Volpano et al., 1996), provide a foundation 

for this research.   

Formal security models are often based on an expression of properties such as 

program secure state and state transitions (McLean, 1994).  High assurance evaluation 

standards (Common Criteria, 2006; DoD TCSEC, 1985) require a formal verification that 

the state transitions resulting from program execution preserve the security properties 

defined by a policy.  Formal verification must also include advanced vulnerability 

analysis of a system, during which covert channel analysis must be considered in order to 

achieve successful evaluation of such systems at the highest levels of assurance 

(Common Criteria, 2006).  The approach described here analyzes programs for 

preservation of specific security properties across state transitions.  This dissertation 

presents a precise, formal definition for an MLS security policy, and for various types of 

information flow violations with respect to that policy, including examples of control 

dependency flaws and covert channels, extending classic work in this area by Denning 

and Denning (1977), and Volpano et al. (1996).  A security domain-specific model is 

described as a framework for conducting static analysis of abstract representations of 

target program implementations (see Chapter VI).   

Within a multilevel secure (MLS) system, trusted subjects may be granted 

privileges to perform operations, in some cases within prescribed limits (Schell et al., 

1985; Schellhorn et al., 2000) not normally allowed for ordinary subjects controlled by 

mandatory access control (MAC) policy enforcement mechanisms.  Granting of such 

privileges is predicated on the idea that trusted subjects will not conduct malicious 

activity or degrade the system’s overall security.  This dissertation presents a formal 

definition for trusted subject behaviors, which depend upon a representation of 

information flow during execution of a high-level language program, referred to as a 

target program.  It describes a security domain model to formally represent security 

policy with respect to trusted subjects, trusted subject behaviors, information flow tracing 

through program execution, various types of covert channels, and a means for conducting 
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static analysis of target program implementations.  In addition to trusted subjects and 

security kernels, we also include the analysis of programs (see Section VI.2) comprising 

interleaved statements of subjects with different labels.  While this is not necessarily a 

literal representation of an application program, it can be viewed as the sequential actions 

that a trusted subject or security kernel takes in response to the interleaved requests of 

different subjects.   

Static analysis of non-trivial programs has been shown to be undecidable (Rice, 

1953).  Even heuristics for static analysis may be computationally challenging, for 

example the problem of state explosion with model checkers (Clarke et al., 1986).  

Jackson (2006) suggests a pragmatic approach to this dilemma, in the form of the Alloy 

language small scope hypothesis, which conjectures that most flaws in models can be 

revealed on small instances.  In the approach described here, the Alloy Analyzer tool 

(Alloy, 2008) is used to perform static analysis of an abstract representation of a target 

program, referred to as a base program, to identify execution paths that might violate 

security policy rules.  Our work assumes the small scope hypothesis for information flow 

tracing, and in the examples examined (see Section VI.C), a scope within the processing 

power of current technology was sufficient.  The impact of this decision is that our 

approach is somewhat limited to evaluation of classes of programs for which proofs are 

not required.  We feel that, as a proof of concept of the ability of our approach to perform 

automated static analysis, this is acceptable, and the work provides an important first step 

toward future advances that may overcome this. 

This dissertation research is being conducted under the auspices of the Naval 

Postgraduate School’s (NPS) Center for Information Systems Security Studies and 

Research (CISR) Trusted Computing Exemplar (TCX) project.  The overarching goal of 

the TCX project is to present a working example to demonstrate how trusted computing 

systems and components could be constructed (Irvine et al., 2004; Nguyen et al., 2005).  

The goals of the TCX project are directly supported by the Office of Naval Research, the 

National Reconnaissance Office, and the National Science Foundation under grant CNS- 
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0430566.  Any opinions, findings and conclusions or recommendations expressed in this 

material are those of the authors and do not necessarily reflect the views of the ONR or 

the NSF.  

C. CONTRIBUTIONS 

This dissertation advances classic work in information flow tracing and static 

analysis verification of high assurance systems by presenting a new framework for 

automating the verification program representations for their adherence to a set of 

security policy rules.  The framework is based on a domain-specific model (DSM) for 

security properties that supports static analysis of a representation of the target 

implementation.  Our research delivers the following contributions: 

1. The Implementation Modeling Language (IML), a language that supports 

basic information processing via assignment statements, conditional and loop statements, 

read/write statements, file random access, and access to a system clock.  The IML 

facilitates static analysis of source code by providing a formalism that captures the 

essence of imperative programming language paradigms, while ignoring non-essential 

(for these purposes) elements, such as data type, inheritance, polymorphism, etc.  In this 

research, a target program refers to the high-level language program under examination; 

the base program represents an IML abstraction of the target program and provides a 

basis for analysis for adherence to a security policy.  At this time, the verification of 

correspondence of the base program to the target program is outside the scope of this 

dissertation. 

2. The security Domain Model (DM), represented as an Alloy (Jackson, 2006; 

Alloy, 2008) specification, has a two-fold purpose in providing a model of program 

behavior, as well as a model for describing security properties.  The DM is a unified 

representation of a base program and the intended information flow policy, including 

restrictions on both overt and covert information flow.  The DM comprises an Invariant 

Model, which defines the logical structure for program state, information flow, and 

security policy; and an Implementation Model, which specifies the semantics of the base 

program.   
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3. This research has formalized well-established security properties by defining 

specific security rules in the DM framework.  We have defined an information flow 

security rule to verify that information flows within a program abide by a policy and do 

not flow in an illicit manner.  For example, a policy might authorize information to flow 

from a Low source to a High destination, but not the reverse; the information flow 

security rule will identify any program execution path that allows information to flow 

illicitly from Low to High. 

In our framework, we have also defined rules for detecting potential covert 

channels in a program.  In the context of the DM, we do this by formalizing the definition 

of both a covert storage channel, using a shared information storage repository, and a 

covert timing channel, based on access to an abstraction of the system clock.  For each of 

these covert channel classes, we define a security rule that identifies programs with 

execution paths that may be vulnerable to either violation. 

In addition to covert channels, we have formalized the concept of overt control 

dependency flaws within a program.  Using dynamic slicing techniques to track control 

dependencies through execution of a program representation, the security rule identifies 

execution paths with implicit control dependencies that violate the defined security 

policy. 

Finally, our model is expressive enough to support trusted subjects and their 

behaviors.  The DM defines a trusted subject through a special assignment operation that 

abstracts the idea of trusted downgrading.  The model allows trusted subject behaviors, 

while ensuring that regular subjects cannot perform illicit activities during execution of a 

program.  We do this through verification of the described security rules. 

4. We have implemented a prototype for static analysis of programs based on the 

DM framework.  This framework includes a specialized DM-Compiler, developed to 

translate a base program written in IML into an Implementation Model and to integrate it 

with the Invariant Model to form a complete DM specification to represent the original 

target program.  This prototype implementation architecture is depicted in Figure 1, and 

will be explained in detail in Chapter V. 
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5. Early results in this dissertation work were presented at several conferences 

and workshops.  Our paper presented at the ACM International Conference on Object-

Oriented Programming, Systems, Languages, and Applications (OOPSLA’07) workshop 

on Domain-Specific Modeling (Shaffer et al., 2007) demonstrated the ability of the DM 

approach to detect illicit information flow violations.  At the ACM Conference on 

Programming Language Design and Implementation (PLDI) workshop on Programming 

Languages and Analysis for Security (PLAS’08), we presented our work on analysis of 

programs for detection of covert channels, and overt flaws based on control dependency 

analysis (Shaffer et al., 2008).  We presented our implementation of trusted subjects and 

their behaviors at the Modeling Security Workshop in association with the ACM/IEEE 

International Conference on Model Driven Engineering Languages and Systems 

(MODELS’08) (Shaffer et al., 2008).  At the International Conference on Software 

Engineering and Knowledge Engineering (SEKE’08) (Shaffer et al., 2008) we presented 

a survey of our overall approach to static analysis using the DM, and have submitted a 

comprehensive article discussing the final stage of our research for inclusion in the 

Computers and Security Journal special issue on “Software Engineering and Secure 

Systems” (Shaffer et al., 2008).   

 

 
Figure 1.   Domain Model approach to system security verification. 
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In addition to these publications, we have built a Security Domain Model Project 

website (http://cisr.nps.edu/projects/sdm.html) that provides discussion of the research, 

with links to our papers, and example IML base programs with respective DM 

specification code. 

6. Relevance to Department of Defense (DoD).  Highly secure systems are 

significantly more expensive to build than typical IT systems.  because a contributing 

factor to these high costs is the need for formal verification, which requires a large 

amount of effort by highly trained specialists.  The contributions described in this work 

advance the ability to automate a portion of the formal verification process.  This 

automation has two significant effects: it has the potential to reduce errors caused by 

human mistakes in the verification process, making systems more secure; and it can 

reduce the effort required for verification, making secure systems more affordable.  

These techniques are applicable to the verification of a specific class of 

components (target programs) in secure MLS systems, for which the DoD has projected 

both a significant need and future support of extensive research and development (NSA 

GIG, 2005).  These components perform the following abstract function: 

• Given a machine with two input ports (labeled HIGH and LOW) and two 

output ports (also labeled HIGH and LOW), the machine processes inputs 

and sends output only to the appropriate output port, where “appropriate” 

is defined by the security policy. 

The framework developed here supports automated static analysis to determine 

whether the system component in question conforms to, or enforces, its security policy.   

The framework does this by: (1) associating with each incoming datum an internal label 

equal to the label of the input port, (2) modifying the internal label of a datum, if 

necessary, as it is processed, and (3) detecting if a datum leaves the component through 

an output port that is inappropriate with respect to the datum’s internal label and the 

output port label. 

Examples of such components are trusted subject programs, security kernels, and 

separation kernels configured to enforce an MLS policy.  Trusted subjects are often used 
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in MLS systems as downgraders, multilevel switches, and for other critical functions that 

make MLS systems useful and effective.  Security kernels and separation kernels are the 

foundation of most DoD systems that provide multilevel security.  The DoD, working 

with other government agencies, is researching systems for sharing information across 

differing security levels, under the aegis of the Unified Cross Domain Management 

Office (UCDMO) (Thuermer, 2007). 

D. DISSERTATION ORGANIZATION 

An outline for the remainder of this dissertation follows: 

• Chapter II presents an overview of information assurance principles germane 

to this dissertation research.  Specific discussions include high assurance system 

evaluation processes and standards, formal security models and policies, multilevel 

secure (MLS) systems, information flow tracing, covert channels, trusted subjects, and an 

introduction to dynamic security policies. 

• Chapter III provides an analytical review of previous work related to the fields 

of the dissertation, to include background research on security models and policies, 

analysis of systems for illicit control dependencies and covert channels, implementation 

of a trusted subject into secure systems, and development and implementation of systems 

which implement dynamic security policies. 

• Chapter IV presents the Implementation Modeling Language (IML), 

developed as a specialized language for representing target program implementations as 

base programs. 

• Chapter V presents the Security Domain Model (DM) framework and an 

associated approach to performing static analysis of base programs to verify their 

adherence to security policy rules.  

• Chapter VI presents several example base program test cases, each with 

security vulnerabilities discoverable using the DM approach, and provides an analysis of 

results of the testing. 
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• Chapter VII presents conclusions of this research, and suggests areas of future 

work. 

• Appendices are included at the end of this dissertation to provide RIGAL 

compiler construction language code for the DM-Compiler files, and several example 

base programs with complete Alloy specifications for each associated Security DM. 
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II. INFORMATION ASSURANCE PRINCIPLES 

A. INTRODUCTION 

This chapter discusses concepts and principles, within the information assurance 

domain, germane to this research.  It begins with an introduction to high assurance 

system evaluation, and the established standards that govern this process.  A discussion 

of formal security models and policies follows this.  Next, we introduce the concepts of 

information flow through program execution, and control dependencies which can affect 

such flows.  The concepts of covert channel analysis, and trusted subjects and their 

behaviors are then discussed.  Finally, dynamic security policies are introduced, as an 

area for future work in this research. 

B. HIGH ASSURANCE COMPUTER SYSTEM EVALUATION 

1. Introduction 

The Common Criteria (CC) is a recognized International Organization for 

Standardization (ISO) standard for evaluating computer systems against varying levels of 

assurance.  Initially published in January 1996, the CC essentially combined the older 

and independent U.S., European and Canadian standards for system evaluation, 

incorporating the best principles and tenets of each.  While the CC was also intended to 

replace the older Department of Defense (DoD) Trusted Computer Security Evaluation 

Criteria System (TCSEC), the de facto U.S. standard since the mid 1980s, a few 

proponents of the TCSEC continue to promote it as a superior standard.  Thus, while the 

CC is the official evaluation criteria used by the U.S. government and DoD, both 

standards have their advocates within the security community. 

2. Trusted Computer Security Evaluation Criteria System (TCSEC) 

Developed by the DoD as part of the Rainbow Series of computer security 

publications, the TCSEC (commonly referred to as “the Orange Book” because of the 

color of its cover page) was initially drafted in 1983, and accepted in 1985 as the US 

standard for computer systems assurance evaluation and classification (DoD TCSEC, 
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1985).  The TCSEC defined a range of hierarchical assurance levels, based upon the 

effectiveness of security provided by and within a particular system being evaluated, such 

that a given level includes all of the requirements of a lower level, and more.  The 

assurance levels increase from level D through level A, with the higher levels (C, B, A) 

further divided into classes based on the specific protection characteristics provided.  

These levels represent the assurance classification for a system, from one evaluated to 

have minimal or no security capabilities (level D), up through one that has undergone 

formal methods verification that its protection system and model are correct, and whose 

implementation corresponds to the formal top-level specification (level A1). 

The TCSEC required the identification of security properties such as those 

identified by Bell and LaPadula (1973) in their security model of mandatory access 

control, and was based heavily on the reference monitor concept for adjudicating 

accesses of subjects to objects within an operating system (Anderson, 1972).  Also, the 

Orange Book focuses on operating system security, while the need clearly exists to 

account for security of many other types of systems (in fact, other books in the Rainbow 

Series were written specifically to address non-OS computer systems).  These shortfalls, 

coupled with the lack of an international standard, provided the impetus for development 

of an encompassing standard for system security evaluation. 

3. The Common Criteria 

Schell (2001) defined four epochs spanning the history of scientific developments 

in computer security, each one progressing beyond the previous toward better security 

and more assured systems – that is, each epoch but the last.  This final (and current) 

epoch Schell defined as being one of a period of security decline, with the Common 

Criteria as its hallmark.  He pointed to the fact that, while the CC evaluates individual 

products, the science of computer security should instead focus on evaluating entire 

systems, which comprise multiple software and hardware products.  Schell believed that 

by making no distinction between system and subsystem evaluation, the CC limits us to 

examining only isolated components of any system, never evaluating the system and its 

IT environment in their entirety. 
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Schell’s negative assessment notwithstanding, the CC represented a paradigm 

shift in the security evaluation process, and has become the US and international standard 

for the development of computer system security specifications.  The CC allows 

evaluation of a specific system (or product), or more generally, families of systems (or 

products), by establishing security assurance criteria against which they can be measured.  

The CC introduced the concept of a Protection Profile (PP) to describe the security 

requirements of a category of products.  A PP is typically written to define the 

requirements for a class of system by some user community, and it generally defines the 

requirements for both functionality and assurance of the system.  A Security Target (ST), 

on the other hand, is used to evaluate a specific system or product.  An ST is often written 

based on an existing PP for a like class or category of system, in order to define the 

requirements of the target of evaluation (TOE) (Common Criteria, 2006). 

The CC defines a number of assurance classes within which security criteria and 

requirements are defined.  Among the assurance classes are such topical areas as 

development, life-cycle support, and testing, for example.  These broad classes are 

subdivided into families that further describe the unique objectives of the class.  As an 

example, the Development class (identified as “ADV”) contains a family called Security 

Architecture (uniquely identified as “ADV_ARC”) whose objective is to allow “the 

developer to provide a description of the security architecture of the TSF” (Common 

Criteria, 2006).  Finally, each family is defined by some number of hierarchically ordered 

components, each of which describe the scope, depth and rigor required of a security 

criterion, in order for the product to meet a particular assurance level. 

The goal of the CC in defining assurance classes is to allow evaluators to measure 

a system against the objectives described by the families of these classes.  For this, the 

CC defines Evaluation Assurance Levels (EALs) which “provide an increasing scale that 

balances the level of assurance obtained with the cost and feasibility of acquiring that 

degree of assurance” (Common Criteria, 2006).  The CC EALs were written with the 

intent that they correlate roughly to the TCSEC Orange Book grading levels, primarily so  
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that earlier evaluated systems could remain relevant.  Since the two systems evaluate 

assurance in different ways, however, their respective grading levels should not be 

regarded as equivalent. 

For a system to achieve a given EAL, it must meet the security criteria for all of 

the family components of that level.  To be evaluated at the highest CC assurance level – 

EAL7 – a computer system must undergo a more comprehensive analysis than that 

required for lower assurance levels.  This evaluation analysis must include formal 

representation of system requirements, demonstration of formal correspondences, and 

comprehensive testing of system components.  In particular, the formal correspondences 

must be demonstrated as mappings between the security policy model and the functional 

specification of a system.   

Further, a complete correspondence must be demonstrated between the system 

security objectives and functional requirements, and between the functional specification 

and functional requirements.  In general, with respect to the implementation of the 

system, a full mapping must be shown to exist between all levels of design description 

and specification, as depicted in Figure 2.  This formal correspondence must be proven 

between all constructs of the system in order for a high-assurance system to be evaluated 

at EAL7.  
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Figure 2.   Common Criteria development class (ADV) correspondences  
(from Common Criteria, 2006). 

4. The Trusted Computing Exemplar (TCX) Project 

The Trusted Computing Exemplar (TCX) project is being conducted by the 

Center for Information Systems Security Studies and Research’s (CISR) at the U.S. 

Naval Postgraduate School (NPS) in Monterey, California.  The goal of TCX is to 

demonstrate in an openly distributed, worked example, how a trusted computing system 

and its components can be built to meet high assurance evaluation criteria.  Its specific 

approach to meeting this goal is fourfold (Irvine et al., 2004): 
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• Create a prototype framework for high-assurance system development 

• Develop a trusted computing component as a reference 

• Evaluate the component, through a third-party, against CC EAL7 

• Provide a means for open distribution of all deliverables and artifacts 

To date, the TCX project has achieved milestones in defining a high-assurance 

development framework, and the design specification for a web-based dissemination 

system (Levin et al., 2004; Nguyen et al., 2005).  Its least privilege model has been 

articulated, and features to support transitive trust have been described.  The project has 

created a working prototype and is developing design and implementation of the TCX 

Least Privilege Separation Kernel (TCX-LPSK) as a trusted component.  By developing a 

framework of application mechanisms for specifying and verifying the mapping of higher 

level security requirements for a system, this dissertation research directly supports the 

goals of the TCX project.  

C. FORMAL SECURITY MODELS AND POLICIES 

1. Introduction 

McLean (1994) stated that security models are “used to describe any formal 

statement of a system’s confidentiality, availability, or integrity requirements.”  Security 

models provide a detailed and precise means of formally describing security policies, and 

proving their validity.  Since a system must not only be secure, but demonstrably so, 

formal security models provide system designers with evidence that they are constructing 

a self-consistent system, and with a foundation for further demonstration that the system 

as implemented meets its specifications (Landwehr, 1981). 

In a typical formal methods approach to security model development, a security 

policy is initially translated from words into a mathematical model.  From this, a formal 

specification is created and shown to satisfy the mathematical model, deriving from the 

original policy.  To prove conformance to the policy, the specification must be 

implemented and shown to be an accurate representation of the specification.  This “chain 

of correspondence” may not be sufficient, however, to ensure a secure system as various 
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aspects of security may be outside the scope of the formal security policy model (for 

example, physical security and good password hygiene). 

While it would be difficult to provide an exhaustive review of every security 

model that has ever been developed or proposed, we attempt to provide here a 

representative overview of some well-known ones.  This analysis will divide security 

models into two logical categories: discretionary access control (DAC) models and 

mandatory access control (MAC) models.  Generally, DAC systems allow one user to 

extend to other users or subjects his rights to the objects for which he controls access.  In 

DAC systems, the ability to modify access rights is subject to some set of rules which can 

change during the course of system operation.  Conversely, MAC systems attempt to 

provide a global and persistent policy, where access control is fixed in a predetermined 

state by a predefined set of rules and all modifications are relative to that established set 

of allowed access rights.  

2. Discretionary Access Control (DAC) Models 

a. Access Matrix Models / Graham-Denning 

In the context of computer operating systems, Lampson (1971) defined 

protection as “all the mechanisms which control the access of a program to other things 

in the system.”  To describe how this control of access would occur, he developed the 

concept of using matrices as a way to illustrate the access of subjects to objects within a 

computer system. 

An access matrix scheme is comprised of objects and subjects formed into 

a matrix of allowed accesses.  The objects can represent anything in the system that needs 

to be protected, including files and processes.  Subjects represent system entities that can 

have access to objects.  The access matrix scheme also includes a set of rights 

representing the types of accesses which a subject may have to an object, for example 

read, write, execute, or owner. 

In general, an access matrix defines a cross-mapping between the objects 

and subjects in a system.  Cells in the matrix represent monitors that control access of a 

particular subject to a particular object.  A given access matrix reflects a security policy 
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for the system.  A “snapshot” of the current access matrix can be thought of as a specific 

protection state of the system, and defines the access rights in that state; to modify or add 

to the set of allowed accesses would require some transition into a new matrix, or 

protection policy. 

The Graham-Denning Model (1972) formalized the concept of using 

access matrices for access control within operating systems.  Their model defined basic 

access rights of a system in terms of a set of eight allowable operations across subjects 

and objects within that system.  These operations permitted a subject x to create and 

delete objects and subjects, and to read, grant, delete and transfer the access rights of 

another subject s to an object o.  The Graham-Denning model is generally considered to 

be the first formal DAC scheme proposed and the first general access matrix model. 

An access matrix is a static representation of a security system, and 

corresponds to a set of access rights for a given security policy.  Rules might be 

established to define how subject-to-object access rights could be modified over time, 

possibly allowing users the discretion to extend rights to other subjects.  Changes to the 

system from such rules would transition the system into a new state, essentially 

representing a new security policy.   

b. HRU Model 

The Harrison-Ruzzo-Ullman (HRU) Model (Harrison et al., 1976) defined 

authorization systems that allowed the modification of access rights, along with the 

ability for creating and deleting subjects and objects within the system.  It also introduced 

a safety property: that access to an object within the system was impossible without the 

concurrence of the owner of that object. 

In reality, since an owner in a DAC system may extend rights to an object 

that in turn may be given away without his knowledge, no protection system can be safe 

by this definition.  To solve this problem, the HRU model provided a weaker definition 

that simply required a protection system to ensure that objects are kept “under control” by 

their owner, meaning that the owner has some intuition as to whether his granting of a 

right could lead to possible leakage of that right to an unauthorized subject in the system.  
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Even this weaker definition of safety is too strict for all protection systems, since it is 

generally undecidable whether, “given an initial access matrix, there is some sequence of 

commands in which a particular generic right is entered at some place in the matrix 

where it did not exist before.”  They proved that, while an algorithm could be found to 

show whether a given mono-operational system is unsafe for some generic right, it is not 

possible to devise an algorithm to decide the safety of any generic protection system for 

all of its possible configurations. 

3. Mandatory Access Control (MAC) Models 

Mandatory access control models are representative of multilevel systems in 

which subjects and objects are hierarchically or partially ordered according to their 

sensitivity levels, and the system ensures that data from objects higher, or non-

comparable, in the hierarchy is not available to subjects lower in the hierarchy.  One of 

the most common examples of a MAC structure is the military classification system. 

a. Bell and LaPadula Model 

The Bell and LaPadula (BLP) Model (Bell and LaPadula, 1973) can be 

used to formally describe the enforcement of military policies associated with classified 

information.  At the heart of the BLP model is the concept that all objects in the system 

are assigned a classification level based on their relative sensitivity, and all users are 

similarly assigned a clearance level based on their job, rank, experience, etc.  System 

subjects (users) are granted access to objects (files, applications, resources, etc.) based on 

the relationship between the clearance level they possess and the defined classification 

level of the object. 

The BLP Model defines the simple security (ss-) property, which states 

that a subject at a given security level can only access objects assigned an equal or lower 

classification level, commonly referred to as “read down”.  Similarly, they define the 

confinement (*-) property, which prevents sensitive information from being copied into 

less sensitive objects by malicious software, by ensuring that a subject cannot write into 

an object that is of a lower classification level; this rule prevents “write down”.  These 
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rules allow (and restrict) the flow of information across the multiple levels of the security 

structure, thus the BLP model and its derivatives are popular information flow models. 

The BLP model can be described by a set of rules governing the 

relationship between objects and subjects, and the associated access functions over them.  

Stated more formally these rules, or properties, provide the most common way of 

representing the model: 

• The simple security (ss-) property states that every “observe” access triple (subject, 

object, read right) in the current access set b must have the property that the level of 

the subject dominates the level of that object. 

• The *-property states that, if a subject has simultaneous “observe” access to object O1 

and “alter” access to object O2, then the level of O1 is dominated by the level of O2. 

• The discretionary security (ds-) property states that, if (subject i, object j, attribute x) 

is in the current access set b, then x is recorded in ij’th component of the access 

matrix M. 

As an example of the BLP model, suppose a system user has been 

assigned a clearance level of “secret.”  This means that the user possesses the access 

rights to read documents that are classified at the secret level and lower while logged 

onto the system at the secret level, and to write to secret and higher documents (although 

the user would not have read access to higher classified documents in this system, in 

order to write to them in a coherent manner). 

The rigidly defined structure of the BLP model is both its strength for 

protecting military classified information, and its most commonly highlighted weakness.  

In particular, enforcement of the *-property does not allow an object to be downgraded to 

a lower classification level.  While this is a basic requirement of a practical MLS system, 

the *-property prevents it.  To address this shortcoming, Bell and LaPadula introduced 

the idea of a trusted subject, which is one that can be trusted not to violate the intent of 

the *-property.  Critics have also pointed out that the BLP model could allow a malicious 

user to simply request the system administrator to temporarily declassify a file, thus 

allowing a low user to potentially read a high file.  To address this criticism, Bell and 
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LaPadula added the so-called tranquility property (Bell and LaPadula, 1976).  The strong 

tranquility property states that the security labels of objects can never change during 

system operation, while the less stringent weak tranquility property stated that the labels 

can never be changed in such a way that violates any of the other defined security 

properties.   

b. Biba Integrity Model 

The BLP model was concerned only with confidentiality of objects.  

While this was intended by design, a follow-on information flow model was developed 

that specifically classified data according to integrity levels; here, integrity can be 

thought of as the quality of the information, for example, stored in an object.  The Biba 

Integrity Model (Biba, 1977) can be thought of as complementary to the BLP model: 

whereas BLP focuses on the sensitivity of objects, Biba defines its rules based on 

maintaining their integrity.  With the proliferation of digital data storage, there is good 

reason for a policy that ensures that the near- and long-term integrity of data is 

maintained. 

The goal of the Biba model is to ensure that high integrity documents will 

not be contaminated by lower integrity data.  In doing this, Biba ensures that a subject is 

only allowed to view objects of an equal or higher integrity level than itself.  Under the 

Biba model, individual integrity levels are defined for all subjects and objects in the 

system.  The higher the integrity level, the higher the level of confidence, reliability and 

trustworthiness in that entity (this concept has nothing to do with an object’s inherent 

sensitivity).  The rules of the Biba model define a strict integrity policy which prevents 

information flows from lower to higher integrity levels, and can be formalized by the 

following axioms (note that the differences between these and the properties that define 

the BLP model are symmetric): 

• The simple integrity (si-) axiom states that a subject s can read from an object o iff the 

integrity of the subject is dominated by that of the object; in other words, a subject 

cannot read from an object of lesser integrity (“no read down”). 
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• The integrity *-property axiom states that a subject s can have write access to an 

object o iff the integrity of the subject dominates that of the object; in other words, a 

subject cannot write data to a higher integrity level than its own (“no write up”). 

While the concepts underlying the Biba model seem straightforward, 

particularly when understood as the dual of BLP, Biba has been difficult to implement in 

real-world systems.  However, integrity policies have been investigated in some high 

assurance systems, such as GEMSOS (Schell et al., 1985), which implemented Biba 

controls using integrity labels.  The general difficulty in implementing Biba lies in how 

one defines integrity.  Whereas the sensitivity level for subjects and objects can be 

readily defined and assigned – one only need consider the military classification system 

as a practical example of this – the same cannot be said for assigning integrity levels.   

Establishing criteria for assignment of various integrity levels to subjects 

and objects has proven difficult.  What parameters should be taken into account when 

assigning an integrity level to a user?  Integrity for one class of users may be defined very 

differently from that of another, for example the integrity of medical records is quite 

different from that of the source code for a popular video game.  In addition, Irvine and 

Levin (2001; 2002) pointed out the “integrity problem” of a system based on its integrity 

capacity.  They showed that, in order to ensure the integrity of all its objects, a system is 

practically limited to maintaining (modifying) only data whose integrity is as low as its 

lowest integrity component.  For implementation of integrity policies in high-assurance 

systems, Schellhorn et al. (2000) have suggested using Common Criteria EAL levels, for 

example, as integrity labels when storing applications to smart cards, however, this 

requires that evaluation criteria for these applications must always be compatible.   

c. Lattice Model 

The Lattice Model is another in the class of mandatory access control 

models, and is based on the idea of classes of objects being organized into a universally 

bounded lattice.  Developed by D. Denning (1976) as “a structure consisting of a finite 

partially ordered set together with least upper and greatest lower bound operators on the 

set,” her goal was to find a model with suitable restrictions such that its security would be 
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not only decidable, but simply decidable.  This would ensure a system with proven ability 

not to leak information from an object at a high sensitive level to a subject at a lower 

sensitivity level. 

For her lattice model, Denning defines the flow operator “→” acting on a 

pair of object classes X and Y, such that X→Y indicates that information is permitted to 

flow from an object in X to one in Y.  In this sense, “information flow” means that 

information associated with one class affects the value of information associated with the 

other.  Figure 3 shows an example of a three-dimensional universally bounded lattice.  

The lattice represents a set of properties {x, y, z} in a system, and establishes a 

hierarchical dominance relationship among the set and its subsets.  Information in one 

object can only flow into another object if the second possesses at least the properties of 

the first; that is if the second dominates the first.  For example, an item of information 

contained in class x could flow into {x, y} or into {x, z}, but could not flow into class {y, 

z}.  Similarly, information contained in class {y, z} could not flow into class {x, z}, since 

y is not contained in the class {x, z}. 

 

 

Figure 3.   Lattice of Subsets for {x, y, z} (from Denning, 1976). 

Objects within the lattice can be defined by any ordering, and the lattice 

may be defined with categories non-comparable to one another in ordering objects.  This 

does not preclude, however, a lattice from being ordered by a combination of sensitivity 
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or integrity, provided information flows were properly defined to ensure that the ss/si-

properties and the *-property were adhered to (Lunt et al., 1990).   

d. Clark/Wilson Model 

As with the previous examples of MAC models, the Clark/Wilson Model 

(Clark and Wilson, 1987) is an information flow security model which, like the Biba 

Model, ensures the integrity of objects.  Clark and Wilson stated that prevention of 

unauthorized disclosure of sensitive information, which is vitally important in military 

security, is less important in commercial applications where integrity of information and 

prevention of unauthorized data modification is paramount.  Loss or corruption of a 

company’s records and stored data through fraud or errors is often the gravest danger.   

 

 

 

Figure 4.   Clark/Wilson Model of Integrity (from Neumann, 1998). 
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The C/W model addresses the flow of information by relying on software 

application well-formed transactions (WFT), and separation of duties among users to 

ensure that no single user can contaminate a data object through unauthorized changes.  

WFTs ensure that no user can arbitrarily modify data, either maliciously or 

unintentionally, and can only act in constrained ways that ensure data integrity.  In 

addition, strict logging of all user actions facilitates auditing the system for erroneous or 

malicious transactions.   

In addition, the C/W model further defines constrained data items (CDI) 

as those objects requiring integrity; integrity verification procedures (IVP) as 

applications procedures which provide confirmation that all data adheres to security 

specifications on the system; and unconstrained data items (UDI) as those objects outside 

the system that have yet to be verified for integrity. 

Figure 4 provides a simple example of data object flow through a C/W 

system.  In this snapshot of the system, all CDIs have previously been verified for 

integrity by an IVP, thus placing them in a valid state.  Any proposed manipulation on a 

CDI must be performed via a WFT, which will ensure the CDI’s return to a valid state.  

Introduction of a new UDI into the system will require verification of its integrity through 

an IVP before it can be reclassified a CDI and placed into a valid state. 

Shockley (1988) showed how the C/W model could be partially 

implemented as an MLS system, using BLP mechanisms, and Ge et al. (2004) showed 

the implementation of the C/W model using a DBMS server.  Since the C/W model relies 

heavily on application procedures for its WFTs, these procedures must be proven valid 

for all possible states.  Otherwise, there is no assurance that a WFT returns a CDI to a 

new valid state after the transaction.   

e. Noninterference 

Some approaches to secure information flow do not distinguish between 

classes of covert channels, or between covert and overt flows for that matter.  These 

approaches rely on the concept of noninterference, which states that the actions of one 

subject can have no effect on the output of a lower subject in a system.  Goguen and 
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Meseguer (1982) described a model wherein security policies are defined in terms of only 

noninterference assertions, rather than by the combination of access control and covert 

channel restrictions.  In their research on security policies and models, they described 

noninterference within a system in terms of information flows permitted between high 

and low subjects.  They explained that “one group of users, using a certain set of 

commands, is noninterfering with another group of users if what the first group does with 

those commands has no effect on what the second group can see.”  Haigh and Young 

(1987) further expanded the noninterference ideas of Goguen and Meseguer in follow-on 

work.   

The noninterference concept, when initially proposed, appeared to be a 

logical description of confidentiality in the context of an MLS system, however, 

problems were soon realized in implementing noninterference.  In practice, high-level 

data often has an effect on low-level data, such as the case where a highly classified file 

is encrypted or declassified, and then transmitted over a low channel.  An activity such as 

this would represent a low user receiving information (declassified data) based on the 

actions of a high user (the downgrader), and would not be allowed under the strict 

definition of noninterference.  In addition, noninterference had a significant shortcoming, 

with respect to BLP, in that it did not prevent “read up” of high sensitivity objects by a 

low sensitivity subject.  While noninterference ensures that the actions of a high level 

subject will not affect low level outputs in a system, it does nothing to prevent a low level 

subject from somehow observing high level information, and then acting on that 

information.   

The access control models described above (the BLP Model, etc.) are used 

in formal verification to prevent Low subjects from accessing High information, using a 

two-part strategy: (1) by enforcing rules regarding how subjects may access objects; and 

(2) by performing covert channel analysis to close remaining illicit flows.  While 

noninterference was ostensibly proposed as a way to define information flows, in practice 

it was also seen as a better way to explain covert channels, since access control did not 

adequately do this, and in fact, noninterference sought to unify the concepts of access 

control and covert channel analysis. 



 27

Noninterference with respect to security properties is often considered 

limited by the refinement paradox, which states that a system’s abstract security 

properties for information flow cannot be guaranteed to be preserved through refinement 

to concrete implementation (McLean, 1990; 1996; Roscoe, 1995).  Also, in their report 

from the 2001 Computer Security Foundations Workshop, Ryan et al., (2001) stated that 

noninterference, as a way to ascertain covert channels (due to algorithm or design flaws), 

does not pass the necessary and sufficient test.  A covert channel does not necessarily 

imply the presence of interference on a practical level.  That is, while interference is 

sufficient to imply a covert channel, it may be so small as to be of no practical exploitable 

use.  The report stated, “in most noninterference models, a single bit of compromised 

information is flagged as a security violation, even if one bit is all that is lost.  To be 

taken seriously, a noninterference violation should imply a more significant loss.”  The 

ability of noninterference to adequately contain information flows and covert channels, as 

well as its overall validity as a security model, has been hotly debated in the computer 

security field.   

4. Role Based Access Control (RBAC) Model 

RBAC security models represent a hybrid class of non-discretionary access 

control security policies that were designed to provide for the security requirements of 

non-military organizations.  RBAC was developed at the National Institute of Standards 

and Technology (NIST) to meet the needs of industry and civilian government 

organizations, where the strict requirements of a military MAC policy do not address the 

security needs for handling sensitive unclassified information (Ferraiolo and Kuhn, 1992; 

Sandhu et al., 1996).  This type of environment can be exemplified by a medical facility, 

where personal patient information can often be extremely sensitive, although not 

classified in a strict sense.  In this type of environment, specific information should be 

handled by only qualified classes of users, based on the sensitivity level of the 

information.  As an example, while medical charts and patient history are vital 

information that doctors and nurses must access to effectively do their jobs, such data 

need not (and should not) be made available to hospital administrative staff, who have no 

such valid access requirement.  The opposite would be true of financial information 
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concerning a patient’s ability to pay for medical care services.  In each case, the role of 

the user represents the key factor in determining whether or not information should be 

made available. 

To address this type of security environment, an RBAC model grants access 

rights to groups of users based on their role requirements, rather than providing rights to 

users individually.  Essentially, RBAC is a variation of an access matrix model, where 

groups of subjects represent roles, and rights are assigned uniformly to the group, as 

opposed to individual users (subjects).  Each role defines a specific set of operations that 

the individual acting in that role may perform, or in terms of access rights, the set of 

objects a user has access to, based on his role.   

The military classification system’s compartmentalization labels for classified 

messages may be viewed as another application of RBAC.  In addition to hierarchical 

classification labels representing secrecy level, messages may also be tagged with a 

compartment label, e.g., NUCLEAR, which can be viewed as analogous to a role.  In this 

scheme, users are granted access to messages with a particular compartment label 

(assuming they also possess adequate clearance level), based on their job requirements.  

At a later time based on changing job requirements, a user may be debriefed out of a 

particular compartment, essentially losing this role, at which time that user would no 

longer have access to messages with this compartment label. 
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Figure 5.   RBAC Role Relationships (after Ferraiolo and Kuhn, 1992). 

Figure 5 shows a simple relationship between users, roles, and objects.  In the 

example, User4 is identified as possessing Role1, presumably by virtue of his job 

description.  Because he possesses this role, he implicitly has been granted access to 

Object1.  If at some time in the future User4 were to lose possession of Role1, he would 

no longer have access to Object1 (note that this change would require no modification 

whatsoever to Object1, nor to User5’s or User6’s access to it). 

The RBAC model provides the means to readily support the principle of least 

privilege at the granularity of the role or group.  This principle states that a subject will 

have access to only the objects needed to perform his or her job, and nothing more.  In an 

RBAC model, specific rights and privileges can be granted to an entire group based on 

the required functionality of their role.  The administrative strength of RBAC is that 

privileges can be granted (or retracted) to the group as a whole, without the need for 

manipulation of individual user rights.   

5. Summary 

This section has described well-known mandatory and discretionary access 

control security models, intended to protect both confidentiality and integrity of 

information.  Because our research focuses on MLS systems, particularly systems 
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managing military classification information, we have designed our approach using a Bell 

and LaPadula type of security policy.  As will be described later in this dissertation, the 

BLP simple security and *-properties are formalized as security rules against which 

programs are verified for security.  However, our model can facilitate expanding the 

security policy to capture integrity policies, for example by defining rules associated with 

the Biba model, or by defining information “compartments” using RBAC-style roles to 

adjudicate access. 

D. COVERT CHANNELS  

As defined in early research by Lampson (1973) and Kemmerer (1983), covert 

channels use system properties not intended as communication channels as a way to 

transfer information between system subjects.  Such channels allow processes to take 

advantage of communication channels to transfer information in a manner that violates a 

security policy. 

An operating system may virtualize a shared physical resource so that each 

subject, or equivalence class of subjects, perceives that it has exclusive access to the 

resource.  A covert channel can result from the incomplete virtualization of a resource 

such that some attribute of the resource remains shared, indirectly.   

Schaefer et al., (1977) defined covert channels as being either storage or timing 

channels.  For both storage and timing channels, the sender and receiver (typically 

subjects) must have the following capabilities (Kemmerer, 1983): 

1. Indirect access to an attribute of a shared resource, which the sender can modify, 

and the receiver can view.  For example, the shared resource is the CPU, and the 

attribute is its “busy” state; or the shared resource is the disk, and the attribute is 

the location of the disk arm, or the attribute is the “full” state (Karger and Wray, 

1991).  

2. A means to initiate and synchronize their actions.  The sender and receiver need 

to know when to modify and observe the attribute, the importance of which 

increases when they wish to transmit a stream of data.  
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This dissertation research essentially distinguishes between a covert storage 

channel and a covert timing channel by the means in which the receiver observes the 

change in the attribute: 

1. Storage – the receiver views an error message, or other information placed in its 

address space by the system, for example if a storage disk is filled the receiver is 

provided an error message to that effect. 

2. Timing – the receiver views changes to the relative timing of “legal” events.  For 

example, if the sender’s activity makes the CPU busy, the receiver’s request to 

execute an operation on the CPU will complete (event 1) after the expected time 

of day occurs (event 2).  Or, in the case of the disk arm attribute, depending on 

where the sender has left the arm (by reading a sector near the inner or outer edge 

of the disk), two disk sectors read by the receiver will occur in a different order 

(events 1 and 2). 

Goguen and Meseguer (1982) defined a point of interference between two 

subjects as the point where the high subject interferes with the context of the low subject.  

An exploitable covert channel can result in information flow in violation of the intended 

security policy.  The point of interference of a covert channel is considered an internal 

resource of the system, as it is not directly accessible to subjects, as are exported 

resources (NSA SKPP, 2007).  Note that if a low subject can directly view the value of 

an exported resource (such as a variable) that has been modified by a high subject, then 

an overt flaw rather than a covert channel results. 

In the case of a mandatory access control (MAC) policy, the covert channel 

sender’s sensitivity level will be higher than the covert channel receiver’s sensitivity 

level, with respect to confidentiality (Kemmerer, 1983).  Thus, the determination of the 

potential covert channels in a system depends not only on the policy in place, but also on 

the implementation of that policy on a specific system (Gligor, 1993). Our approach here 

considers both the security policy and its implementation.  The criteria for a covert 

channel described above enable one or more bits of information to be passed for each 

interference event (log2(n) bits, where n is the number of possible states that the observer 
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can differentiate in the shared resource, such as different amounts of delay).  When the 

interference event can be repeated in a cycle, or loop, a stream of data can be transmitted 

through the channel, although additional synchronization between sender and receiver 

may be required. 

E. DYNAMIC SLICING 

Integral to certain covert channels is the notion of data or control dependency.  

Slicing algorithms are used as a means of tracing such dependencies between variables 

and statements processed during program execution, traditionally for program debugging 

purposes (Korel and Rilling, 1997).  Slicing algorithms generate an executable subset of a 

program, creating a subprogram whose behavior is the same as the original with respect 

to some variable.  They allow one to isolate the behavior of, and dependencies acting 

upon, that variable.   

Slicing algorithms are categorized as either dynamic or static, depending on 

whether they take into account dependencies derived during one particular program 

execution path (dynamic), or for all possible execution paths (static).  Dynamic slicing 

techniques generally analyze only the narrow portion of the code representing a single 

execution path. 

Since slicing techniques have been shown to be useful in tracking data and control 

dependencies, they can also provide a means of detecting potential overt flaws based on 

dependencies.  As an example, consider the following code snippet: 

(s1) Read_dev (SysHigh, v3); 

(s2) Read_dev (SysHigh, v4); 

(s3) if v3 >5 then  

(s4)    v1 := 0; 

(s5) else if v4 = 5 then 

(s6)         v1 := 1; 

(s7)   else v1 := -1; 

(s8) v2 := v1; 

In the example above, it is clear that v2 depends on v1, based on the assignment 

in (s8).  Static slicing shows that v2can depend on both v3 (s3) and v4 (s5), since there 
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is a dependency from each of these to v1.  With dynamic slicing, however, not all 

execution paths will result in the same control dependencies.  When the conditional 

expression in (s3) evaluates to true, the final value of v2 depends on v3 but not on v4, 

since the else-block statements in (s5 – s7) are never executed. 

 

Figure 6.   Program Dependency Graph for Code Snippet  
(after Agrawal and Horgan, 1990). 

Figure 6 depicts the program dependency graph created by the execution of the 

code snippet above.  In the graph, the solid edges reflect direct data dependencies, and the 

dashed edges reflect control dependencies.  The bold nodes depict a dynamic slice with 

respect to the assignment to variable v2 (s8) when the conditional in (s3) has evaluated to 

true, in which case the assignment depends on statements (s4), (s3), and (s1).  Access 

labels of variables can be used to determine potential security violations, based on the 

dependencies between these variables.  For a finite number of paths within a given scope 

of analysis, our framework performs static analysis of the DM by using dynamic slicing 

to discard previous states that could not have contributed to an overt flaw, thus a 

complete result is obtained without having to maintain a history of all preceding states. 
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F. INFORMATION FLOW AND CONTROL DEPENDENCIES 

With respect to information flows between objects in an MLS system, one 

category of information flow error occurs when high sensitivity objects indirectly affect 

information flow between objects at the same (lower) sensitivity level.  Such errors are 

based on unintended control flow dependencies (Denning, 1976).  For example, during a 

program execution, information being written from one variable to another, both of the 

same classification level, might take place within a control structure that depends on a 

higher classified variable, such as an if-else block.  In this case, the higher classified if-

else control variable will create a implicit dependency over the information flow taking 

place within the control structure, even though this flow is between two lower classified 

variables.  Our approach is capable of detecting this type of overt flaw caused by control 

flow dependencies.  We consider this to be overt, as the program must be processing on 

behalf of a High or Low subject, and in either case, reading the High control variable and 

writing to the Low variable should not ever be done on behalf of a single-level subject. 

The approach used here for discovering flaws based on control dependencies 

employs dynamic slicing analysis.  Dependencies within a program are identified by 

examining the chain of statements preceding a value assignment with respect to the  

sensitivity labels of the variables in these statements.  If the context of a previous 

statement includes variables that are higher than the destination, then there is an overt 

flaw. 

The code snippet below provides an illustration of a control flow dependency that 

constitutes an overt flaw.  In the example, constant value1 is written out to a SysLow 

external device (s3), depending on the SysHigh value read into variable v1 (s1). 

(s1) Read_dev (SysHigh, v1); 

(s2) if v1 > 0 then  

(s3)    Write_dev (SysLow, 1); 

The Write_dev operation in (s3) depends on a SysHigh source (v1) in the if-block 

(s2), therefore an information flow implicitly exists from v1 (at SysHigh) to the SysLow 

device.  Sabelfeld and Myers (2003) described information flows such as these, based on 

control dependencies, as implicit flows. 
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G. TRUSTED SUBJECTS 

Users in a multilevel secure (MLS) environment are assigned a clearance level 

based on the relative level of trust placed in them by security administrators.  A user is 

allowed to log into a system at any level that is at or below (dominated by) his assigned 

clearance and a session at that level is created.  Subjects that act on behalf of a given user 

are labeled with an access class that is at the same level as the user’s session.  A subject is 

allowed to read information (objects) whose sensitivity level is up to the subject’s 

sensitivity level (access class), and write to objects at or above its sensitivity level. 

In contrast to this, a trusted subject is one that is allowed to read and write within 

a range of access classes (Lunt et al., 1990), which limits the authority of the trusted 

subject to “read-up” and “write-down” (Bell and LaPadula, 1973).  Lunt et al. described 

that MLS systems with trusted subjects defined this way do not require a separate access 

control lattice or special rules specifically for their actions.  As a result, a trusted subject 

does not need to be given a privilege to bypass or violate the security rules. 

Since trusted subjects are allowed to interact with (read and write) information 

across access classes, they must be trusted not to abuse these special privileges.  The 

existence of trusted subjects is generally required for certain services provided in MLS 

systems, such as login, information downgrading, and data backup utilities across 

multiple access levels.  MLS system administration may also require a trusted subject to 

interact with and manage regular user accounts and information across multiple access 

levels (Thomas and Sandhu, 1996).  Such actions represent a good target for trusted 

subject implementation, however the design principle (Levin et al., 2007) that trusted 

subjects should be small and minimized within an MLS system is not always observed. 

According to Steffan and Clow (1996), with respect to security policies, a trusted 

subject should not move data between sensitivity levels, other than in constrained, 

explicitly defined ways.  The specification of a trusted subject must explicitly define how 

it can do this.  Levin et al., pointed out that trusted subjects do not violate the general 

policy in place, but their behavior must be a defined part of a policy.  Such a policy for 

trusted subjects, referred to as a “relaxed MLS policy,” must be integrated with the 
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general MLS policy, such that the resultant union of the two can allow trusted subjects to 

effectively operate, while ensuring that non-trusted subjects cannot conduct malicious 

activity.  In a “downgrader” role, for example, a trusted subject may essentially change 

the label of information from high to low by reading information from a SysHigh object 

and moving it into another SysLow object. 

Trusted subjects can be defined by their behaviors in an MLS system.  Steffan and 

Clow (1996) described examples of trusted subject actions, including the ability to 

process information across multiple access control levels to view (read) a highly sensitive 

document in order to comment (write) on its contents at a lower level, and the ability to 

change the sensitivity label contents of a document file.  In the latter case, they describe 

that a trusted subject may regrade a classified document, temporarily overriding the 

tranquility principle that a subject’s or object’s label will not change while being 

referenced (Bell and LaPadula, 1973).  Although some (Steffan and Clow, 1996) would 

allow trusted subjects to relabel objects, this dissertation research maintains the 

tranquility of object labels, abstracting the idea of downgrading information by changing  

variable labels from the viewpoint of, that is, internal to the trusted subject.  Allowing 

movement of information within a range of access classes represents the trusted subject 

actions we model in our DM approach. 

H. SUMMARY 

In this chapter, we have introduced several information assurance concepts 

germane to the research presented here.  The next chapter will expand these discussions 

by presenting work in several areas related to this dissertation.  Some of the work 

presented is classic in nature and provides a foundation for this dissertation research; in 

other cases, we present more recent work and contrast it to our research. 
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III. REVIEW OF RELATED WORK 

A. INTRODUCTION 

Previous work related to this dissertation research is described below.  

Discussions include information flow tracing, covert channels and their analysis, control 

dependencies which may cause overt flaw in a program, system trusted subject 

implementations, and dynamic security policies. 

B. INFO FLOW TRACING AND COVERT CHANNEL ANALYSIS 

Related work in modeling secure information flow and in covert channel analysis 

is described below.  We have extended previous work by integrating a language for 

formally specifying an implementation with a framework for expressing security policies, 

particularly with respect to covert channel rules and control dependency flaws. 

Graham-Cumming and Sanders (1991) described system refinement from abstract 

to concrete representation, with respect to security, where they defined security solely in 

terms of noninterference.  They used the unwinding theorem (Goguen and Meseguer, 

1984; Haigh and Young, 1987) to describe refinement such that noninterference between 

users in an abstract specification of the system could be preserved through more concrete 

representations of the system, however the results of this work were limited to 

noninterference.  In contrast, our work describes implementation of a proof-of-concept 

prototype system, where enforcement of a range of security properties is possible through 

the use of security assertions that are explicitly checked during Alloy program analysis.  

These abstract security properties are formalized through refinement as security rules 

(Alloy assertions) in the base program representation of a target program.  The semantics 

of information flow are represented in the DM by the definition of access label ordering, 

and through the compiler-generated transition predicate, unique to a particular target 

program. 

Volpano et al. (1996) furthered the language-based flow analysis work by 

defining a linguistic type system for secure flow, and rigorously proving the soundness of 

the core language with respect to noninterference.  Well-typed programs are then  
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guaranteed to be noninterfering, and thus secure by this definition.  Sabelfeld and Myers 

(2003) summarized subsequent work in their survey on language-based information flow 

systems.   

Other work in using sound type systems for secure information flow has focused 

on areas such as: encryption and decryption of information, where flows from plaintext 

(high secrecy) information to ciphertext (low secrecy) information must be addressed in 

light of noninterference rules that would seem to prevent such interaction (Laud, 2003; 

Smith and Alpizar, 2006); probabilistic noninterference, where probability distributions 

are used to determine a likelihood of noninterference from high to low variables, 

primarily for multi-threaded processes where scheduling is nondeterministic (Volpano 

and Smith, 1999; Sabelfeld and Sands, 2000; Smith, 2006); and type inference, in which 

the flow of information is automatically determined based on semantic analysis (Volpano 

and Smith, 1997; Simonet, 2003; Deng and Smith, 2006).  Eventually, Smith and Thober 

(2007) enhanced the linguistic type system model of secure information flow such that 

sensitivity labels need to be assigned only at I/O boundaries, while the labels of variables 

and constants, as well as data information flow through a program’s execution, are 

automatically derived relative to the I/O (device) labels.   

In contrast, our work implements the DM-Compiler, which similarly tracks the 

flow of data based on the input device label, but with no requirement to annotate the code 

in any other way.  Our work differs from the linguistic type system approach in that, 

rather than constructing a type-safe language with which to write secure programs, we 

apply abstract interpretation to the analysis of programs in order to detect potential 

problems and otherwise demonstrate their security with respect to select security 

properties.  Our approach is based on exhaustive information flow tracing of all execution 

paths in a program, to a certain length (determined by the model scope of Alloy).  This 

tracing is applied to both overt and covert channel static analysis using dynamic slicing 

techniques, where appropriate, such that read-up as well as violations of noninterference 

(von Oheimb, 2004) are detected.  Additionally, we provide a compiler to generate a  
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formal specification of a program.  Although it yet lacks a formal soundness proof, the 

DM-Compiler enables generation of formal logic that can be automatically analyzed 

(using the DM) for secure information flows. 

Other covert channel research has also focused on information flow analysis, 

using the principles of Kemmerer’s SRM (1983).  For example, the concept of network 

covert channel analysis introduced detection methods based on in-depth IP packet 

analysis as a way to differentiate covert channels from legitimate network traffic 

(Padlipsky et al., 1978).  Approaches such as these could potentially be incorporated into 

the DM security rule assertions, as methods for detecting covert channels in base 

programs within this domain. 

C. TRUSTED SUBJECT IMPLEMENTATION 

In his early work in trusted subject implementation, Wilson (1989) developed a 

framework for running a trusted multi-level database management system (DBMS), 

referred to as a “trusted subject,” to be hosted on any trusted operating system.  This 

work established a layered policy, with a general policy for the trusted computing base 

(TCB) layer of the operating system, and a separate policy for the DBMS TCB layer.  

The goal of this approach was to ensure no illicit disclosure of sensitive DB information 

(secrecy), and to prevent illicit alteration of DB stored data (integrity).  Their premise 

was that, for a DBMS hosted on a known secure operating system, only the DBMS TCB 

layer must be subjected to security analysis to ensure that it meets all access control 

requirements.  This concept provided “portability” of the DBMS trusted subject, and 

negated the time and expense of testing every system on which the DBMS may be 

targeted.  Further, only the DBMS TCB layer need be checked for security when it is 

operated on a new secure operating system.  This work did not appear to outline a 

traditional concrete security policy for trusted subjects, and only used them in the context 

of a trusted DBMS.  While the Wilson paper allowed modification of object tranquility as 

a valid action for trusted subjects, we preserve object tranquility by allowing trusted 

subjects to only modify variable labels during program execution. 
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Landauer et al. (1989) introduced a formal model for managing trusted processes 

by defining a state machine whose state space can be locked, or isolated, in order to allow 

privileged actions to overlap, modeling the interleaving of trusted processes.  The authors 

described a trusted process as possessing special privileges to alter operating system 

kernel access control decisions, or other security critical operations.  They divided these 

privileges into four basic types of trusted process actions which could be taken by trusted 

users: 

1. Change level of data; 

2. Perform some integrity-critical functions; 

3. Perform service on behalf of non-trusted client (kernel access); or, 

4. Export processor information to some non-trusted process. 

Additionally, they categorized three general security properties for trusted processes, as 

components of a trusted security policy (Landauer et al., 1989): 

1. Downgrade only at discretion of some privileged subject 

2. Execute integrity-critical commands correctly 

3. Execute all commands such that resultant state does not violate 

noninterference (covert channel prevention) 

This paper provided an in-depth mathematical analysis of the security policy derived 

from trusted process principles, and is valuable as a source of background discussion on 

security policy issues for trusted subjects. 

Steffan and Clow (1996) defined a set of trusted process classes, to identify their 

relative privileged status.  These classes correspond to combinations of override 

privileges in the areas of Tranquility (labels), MAC (content) and DAC (privileges).  As 

the class numbers increase, so do the privileges granted, and the risk associated with 

using a trusted process in that class.  In contrast to this paper, our work characterizes 

trusted subjects without violating tranquility of object labels.  

Thomas and Sandhu (1996) presented three architectures for trusted object-

oriented databases, based on: a kernel, a replicated DBMS, and a trusted subject 

architecture.   The last of these was the focus of their paper.  Their architecture was 
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composed of a session manager, which was trusted and running across multiple access 

control layers; several message managers, which were untrusted and operated within a 

single access control layer; and read/write service requests to the DB from a client.  The 

trusted session manager can always maintain a global snapshot of the system for a given 

session, across all access control layers, to allow it to coordinate message requests and 

scheduling.  Clearly, the session manager must be a trusted subject for this architecture to 

maintain security of messages across layers.  As Wilson did in his paper (1989), this 

work describes the implementation of a trusted subject architecture to support a DBMS.  

They provided a thorough analysis of how the session manager (trusted subject) could 

manage messages within the system with respect to security, as well as proofs of both 

noninterference and confidentiality of the session manager.  However, the paper did not 

appear to focus on security policies for trusted subjects, or how separate policies could 

effectively coexist. 

Levin et al. (2006) discussed trusted subject actions within a security kernel 

architecture.  With respect to the principle of least privilege (Saltzer and Schroeder, 

1975), they described how a trusted subject in a downgrader role must be able to perform 

only the minimum required operations, namely, downgrading of labels in this case.  Other 

operations such as “dirty word search” (DWS) of a document for specific words or 

phrases prior to downgrade, must be handled by other untrusted system processes to 

prevent unintended or malicious consequences.  They defined a framework for 

performing filtering and downgrade of information, separating tasks between users and 

processes, both untrusted and trusted.  We believe our model is aligned with this 

thinking, when one considers that if our trusted subject acts as a downgrader, the DM can 

reflect a separate untrusted process in the target program that performs DWS.  We 

generalize this concept by allowing the trusted subject to modify variable labels based on 

content or label information.  In our model, the DWS might represent examination of a 

highly classified document for specific references to some classified topic, with 

subsequent removal of these references prior to downgrading the document.  Alternately,  
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the DWS could represent filtering of a document by its creation date, where downgrading 

of the document will occur only if this information is older than some predetermined 

date. 

D. DYNAMIC SLICING FOR SECURITY TRACING 

Previous work in implementing dynamic slicing algorithms for security property 

tracing has included development of a tool for finding privacy violations in networked 

environments, targeting spyware in networked applications (Kruger et al., 2004).  The 

approach uses dynamic slicing techniques to trace program execution, to search for data 

dependencies that might illuminate privacy violations.  When such dependencies are 

found, they are specified using an event description language to capture event parameters, 

values, etc.  Their goal is to use these parameterized events as abstract inputs for an event 

sequence language, as a means of generating a security policy.  Based on the observed 

privacy violations, a policy is written that will prevent the specific events that caused the 

violations.  Our suggested approach differs in its goal of analyzing a target program for 

adherence to a specific policy, as opposed to some generated policy.  

E. DOMAIN-SPECIFIC MODELING IN SECURITY 

Research has been ongoing in applying domain-specific modeling (DSM) to 

computer security applications, for example in modeling particular domains such as 

sensor networks, using DSM principles.  Our investigation has not found, however, 

research in specifically using a security DSM framework for security analysis and 

verification of programs, such as is the case in this dissertation research.  Examples of 

recent work in this area are discussed below. 

Hanna et al. (2008) developed Slede, a framework for modeling and verifying 

sensor network protocols.  Their approach uses the nesC language for specifying network 

embedded systems, and the Spin model checker for verifying network security protocols 

modeled using nesC.  While their work has parallels to ours, it differs significantly in that 

its focus is on verification of security protocols, as opposed to verifying programs for 

adherence to a security policy.  It also differs in that it is targeted specifically to sensor 

networks and not program implementations in general.  
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Basin et al. (2006), in their model driven security approach to system 

development, point out that software system design models are often disjoint from 

security models, and their integration is not well understood or supported.  Just as 

automated synthesis of systems from a specification are thought of as a “holy grail” in the 

software engineering world, the goal of model driven security is automated synthesis of 

secure systems from functional and security specifications.  Their approach uses UML to 

express a security policy, called secureUML in their research.  While secureUML 

formalizes access control, with the concepts of subjects, objects, roles (their paper 

illustrates an RBAC style security policy) and permissions, it does not perform 

information flow tracing or analysis, as our approach does, and cannot perform covert 

channel analysis, which we consider a vital aspect of our Security DM approach. 

The Security Assertion Markup Language (SAML) was developed by the World 

Wide Web Consortium (W3C, 2008) as a variant of the more general Extensible Markup 

Language (XML) to specify security attributes of subjects (users) in a system, such as 

identity, entitlements, etc.  Using established standards for XML Signature and XML 

Encryption (W3C, 2008), SAML was intended to provide a domain model for security, 

primarily for business related applications.  While SAML can be used to model, for 

example, digital signatures, message encryption and integrity, and assertions for user 

authentication, it currently cannot be used to model an access control policy, with 

assertions for covert channel identification, and could not be applied to our research 

approach.  

The Alloy language has been used to model security requirements for secure 

communications (Chen et al., 2006) where predicates were specified for secure message 

confidentiality, integrity, authenticity and non-repudiation, as well as numerous 

“obstacles to security”, such as eavesdropping or spoofing.  The work was successful in 

designing a general, reusable model for communication security properties, and differs 

significantly from the research presented here, which analyzes models of program 

representations for adherence to a specified security policy.  
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F. DYNAMIC SECURITY POLICY DEVELOPMENT 

Because programs typically interact with an external environment, all aspects of 

that environment cannot be predicted at compile time.  A dynamically secure system 

must provide mechanisms for observing the environment during runtime, and allow for 

security updates of the system in order to adapt to that environment (Zheng and Myers, 

2004).  A static policy cannot provide mechanisms for real-time updates in applications 

where a change in environment might necessitate immediate enforcement of an updated 

policy; such a situation requires a specifically dynamic security policy that can adapt to 

changes in the environment surrounding the system. 

A dynamic security policy can be defined as a program consisting of a set of 

guards and actions that provide the logic to modify a system’s implementation in order to 

change its operational parameters, and includes the necessary guards to enforce good 

behavior and prevent misuse of the system (Naldurg et al., 2002).  Dynamic policies 

provide adaptive access control measures that can be responsive to time (temporal aspects 

of the system), events (emergent situations or unanticipated actions in the environment), 

perceived security risk, and operational needs. 

The goal of Quality of Service (QoS), the ability of a distributed system to provide 

sufficient and timely service to meet the desires of each of its users, is expanded to 

Quality of Security Service (QoSS), with the vision of making security a constructive tool 

for network management, rather than a performance inhibitor (Irvine and Levin, 2000; 

Levin et al., 2006).  A QoSS framework becomes a directing factor in the implementation 

of a dynamic policy, employing variant mechanisms that make security decisions based 

on changing network operating conditions, always working to maximize benefit to its 

users (Irvine and Levin, 2000).  Research in this area has included study in the 

development of adaptive policies for management of databases (Ray, 2005), tools for 

design and verification of dynamic policies (Janicke et al., 2005), and the manner in 

which an adaptive policy should be implemented.   

The DoD and National Security Agency (NSA) are currently developing the 

Global Information Grid (GIG) (NSA GIG, 2004), which will provide the military with 
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greater net-centric communications capability and flexibility by leveraging “information 

technology and innovative network-centric concepts of operations to develop 

increasingly capable joint forces.”  The GIG will address limitations and inefficiencies 

inherent in the military’s traditional specialized “stove-pipe” communications systems by 

providing the ability to share information across networks of differing classification 

levels, and across coalition networks. 

Among the GIG’s information assurance goals are high assurance authentication, 

multi-level security, and development of flexible, dynamic security policies.  To that end, 

the GIG program has introduced a new type of security policy known as Risk-Adaptive 

Access Control (RAdAC).  The RAdAC policy represents a confluence of MAC and 

DAC, enforcing a need-to-know policy, with SAC (Situational Access Control), which 

enforces a more adaptive need-to-share policy.  RAdAC is described by a general rule 

that “users may access information they are cleared and permitted to access, or when the 

situational need is severe enough, as long as the risk of doing so is within tolerable 

limits,” (NSA GIG, 2004).  The RAdAC model would provide the flexibility to meet 

need-to-share requirements, weighing potential risk against operational need, making 

decisions to grant access based on: 

• security risk in granting access (primarily a function of the user, the object 

being accessed, the environment in which they exist, and historical allowed accesses) 

• operational necessity for access 

• any policy for a balance between the two in conflicting situations 

G. SUMMARY 

In this chapter, we have presented classic and recent related work in secure 

information flow tracing, and specially the relationship of this to covert channel analysis 

and noninterference properties.  We have described research in the trusted subject 

concept, and how others have chosen to implement trusted subject behaviors in a secure 

system.  Finally, we have described the DoD’s goal of finding solutions to implementing 

dynamic security policies, particularly for military secure systems. 
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The next chapters will introduce the approach presented in our work, beginning 

with the Implementation Modeling Language (IML). 
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IV. IMPLEMENTATION MODELING LANGUAGE 

A. INTRODUCTION 

The Implementation Modeling Language (IML) defines a specialized language 

that presents some of the basic capabilities and constructs, with respect to security, of 

high-level programming languages.  The current IML enables the specification of 

relatively simple programs written in some common programming language, such as Java 

or C++.  While future iterations of IML might handle more advanced language features 

such as concurrency, inheritance, etc., this initial language description was motivated by 

a requirement to represent essential security information flow properties in target 

program implementations, balanced by the desire to limit complexity during 

experimentation. 

B. IML SYNTAX 

The following describes syntax and statement constructs of the IML. 

1. Lexical Concepts 

A variable name is an identifier distinct from IML keywords and Alloy keywords.  

No variable declarations are required. 

The only assumption about values stored in variables is that they can be compared 

for equality and inequality (<, =, >, <=, >= operators) with other variables, or with 

constants.  Variables can hold integer constants, but the value of a variable can be 

interpreted also as a time value (see GetClock below).  Constants are represented by 

integers: -1, 0, 1, etc. 

Statement constructs provided in IML include capabilities for assignment to a 

variable, reading to and writing from a variable, accessing an I/O device’s flags and a 

system clock, and basic control structures.  Semicolons separate statements in IML. 
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2. Assignment 

Assignment statements propagate access labels from the right-hand side to the 

left-hand side of the statement.  For the current model, constants have a Low secrecy 

access label by default. 

variable := variable; 

variable := constant; 

The IML enables trusted subject behavior by providing a special trusted 

assignment statement.  This statement allows trusted subjects to modify the labels of 

internal variables (“regarding”), while respecting the tranquility of external object labels.  

The trusted assignment allows filtering of variable values based on existing content 

and/or label.  This filtering is analogous to a “dirty word search” of a document prior to 

downgrading its classification level, to ensure that certain sensitive words are first filtered 

from the document. 

The trusted assignment statement allows a trusted subject to assign a value to a 

destination variable, with an explicitly defined security label.  When an IML base 

program is translated, it is under the context that only a trusted subject may perform 

trusted assignment.  The trusted assignment syntax follows: 

Assign destination from source as alt_source; 
In this operation, the destination variable takes on a new data value 

(destination_value’) from the source variable, however it does not automatically take the 

source label as would normally be the case for an assignment statement in IML.  Instead, 

destination is explicitly assigned a new label (destination_label’) based on the source and 

alt_source labels, as determined by a filter function that is automatically invoked with 

each trusted assignment.  In trusted assignment, source can be either a variable or 

constant, and alt_source can be either a variable (in which case the access label currently 

assigned to the value stored in this variable is used) or an explicitly defined access label. 

The new content and access label of the destination variable (destination_value’ 

and destination_label’, respectively) are defined by the Alloy function tsFilter in the 

DM Invariant Model (further discussed in section 4.1.1), as follows: 
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(destination_value’, destination_label’) =  

 tsFilter ( (destination_value, destination_label),  

         (source_value, source_label), 

         (alt_source_value, alt_source_label) ) 

This function specifies the behavior of trusted subjects in our model, and 

examples are described in detail in Chapter VI. 

3. Device Input/Output Statements 

The IML statements Read_dev and Write_dev abstract the input from and 

output to an external device at a specific access level. We make the simplifying 

assumption that there are three external devices, each at high, medium and low secrecy 

levels, respectively; the operation label (SysHigh, SysMid or SysLow) indicates which of 

these devices is being read to or written from.  For a Read_dev statement, the variable 

is assigned the label of the device that is read from; for a Write_dev statement, source 

may be either a variable or a constant. 

Read_dev (label, variable); 

Write_dev (label, source); 

4. File Random Access 

The IML abstracts the concept of random access to an indexed file, where (key, 

value) pairs are used to store and retrieve information in a finite-sized repository.  This 

conceptual repository, referred to as a direct file, can be thought of as a database or 

memory file and (for this model) is represented as a single-level store (there is no 

distinction between persistent and volatile memory).  

All subjects in the base program can access a single instance of the direct file, 

according to their access label.  Initially, all direct file slots have a SysLow access label, 

and can be written to by any subject.  Once a subject has stored a value into a keyed slot 

using the PutDirectFile statement, that slot retains the label of the subject.  

Subsequently, another (or the same) subject may read from this direct file slot using the 

GetDirectFile statement, only if the subject’s label dominates that of the key slot.  
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A given key slot can be overwritten an unlimited number of times by a subject with a 

higher- or lower-labeled value, so the label of a given slot may change over time. 

The direct file has a limited number of keyed slots, all of which have empty keys 

and values at the start of program execution, and a given slot’s key value is determined 

when it is first assigned a key/value pair.  The direct file tracks the number of slots that 

have been assigned a key, zero at the start of execution and incremented by one whenever 

a key slot in the direct file is written to for the first time.  The direct file capacity equates 

to the number of key slots that can be allocated in the direct file.  

When a PutDirectFile is executed for a given key for the first time, an 

available key slot is allocated, the data is stored in the direct file, and a global Success 

flag is set to 1; otherwise, if no key slot is available, the Success flag is set to 0, and no 

data is stored.  When all available slots have been allocated, the direct file is considered 

filled, and a global Full flag is set to 1.  The Success and Full flags are global state 

variables maintained by the execution environment, and are internal resources that would 

not be directly accessible in a high-level language.  Their values could be inferred, 

however, based on system errors seen by the user, and we abstract such system errors in 

the IML by allowing direct examination of the flags in a base program. 

The following statements are provided in the IML for storing and retrieving 

values to/from the direct file.  The label indicates the level of the subject performing the 

operation; the key and source may be either variables or constants: 

GetDirectFile (label, key, variable); 

PutDirectFile (label, key, source); 

5. System Clock 
This statement stores the current clock value to a variable: 

GetClock (variable); 
We model only the time taken by file and external device accesses during 

Read_dev/Write_dev and Get/PutDirectFile operations.  These statements 

may cause the CPU, or some other resource, to be busy such that some action visible to 

another subject is delayed with respect to a reference clock (for simplicity, we model one 

time source – the system clock). 
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The clock value can be compared with other constants and variables, using the 

Before operator: 

(var1 Before var2) 

6. Program Control Statements 

A conditional expression is constructed from variables, constants, flags, and 

operators =, >, <, >=, <=, Before, not, and, or.  A statement may be any single 

statement or block of statements (a sequence of statements is enclosed by braces).  Two 

forms of control statements are provided: 

if condition then statement [else statement]; 

while condition do statement; 

In the if-then-else statement, the else block is optional.  The while-do 

control statement repeats its body as long as the condition holds true. 

The following statement signifies termination of a base program: 

Stop; 

C. SUMMARY 

This chapter introduced the Implementation Modeling Language (IML).  This 

specialized language, developed as an integral part of the Domain Model (DM) concept, 

provides a way to represent high-level language programs in a common modeling format, 

to enable automated static analysis of a representation the program’s execution.  The IML 

provides all of the functionality necessary for program analysis of security properties, 

particularly with regard to information flow analysis. 

We next present the Security DM approach, which enables automated static 

analysis of programs to verify them for adherence to a specifically defined security 

policy. 
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V. THE SECURITY DM APPROACH 

A. INTRODUCTION 

This chapter presents the Domain Model (DM) approach to security verification.  

It provides discussions of the overall structure of the DM framework, including the 

Invariant and Implementation Models, and the compilation process during which the 

DM-Compiler is used to generate a complete DM, in Alloy notation, from a base program 

written in the IML. 

B. DM STRUCTURE 

An overview of the Security Domain Model (DM) approach to program security 

verification is depicted in Figure 7.  The DM includes the definition of program state and 

transitions between states, as well as security rules, specified as Alloy assertions, 

representing the generic policy a program must conform to.  The DM is composed of an 

invariant and a variable section, derived from the security rules and a target 

implementation, respectively.   

Figure 7.   Domain Model approach to system security verification. 

While there are numerous model checker tools currently available, we chose to 

use the Alloy specification language primarily because of its ability to represent program 
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language abstractions simply and explore their semantics with a well-integrated analysis 

tool.  As Jackson (2006) points out, referring to his approach as “lightweight formal 

methods,” Alloy models can be easily created and initially tested early in the 

development process, and then incrementally expanded.  He states that the goal of Alloy 

was to “obtain the benefits of traditional formal methods at lower cost, without requiring 

a big initial investment,” presumably in time and effort.  

As do traditional model checkers, Alloy deals with finite models though it handles 

them very differently.  Model checkers typically build Kripke structures to represent the 

states and transitions of a program execution.  Such finite model structures have limits 

not easily adjusted by the user during analysis.  The Alloy Analyzer tool, however, 

affords the ability to easily increase the depth of analysis for models as they are 

developed and expanded.  For our approach, Alloy and its Analyzer provide an ideally 

suited tool for creating and analyzing target program abstractions. 

As previously explained, a base program is an abstraction of a target program 

implementation, and is written in IML notation.  By analyzing a model of the program 

rather than actual program code, security verification can focus on elements of 

information flow such as I/O, access labels, direct file access, and timing (clock), while 

ignoring other program details not pertinent to such analysis.   

In the current prototype, translation of the base program from an implementation 

is a manual step.  Developing a separate compiler to translate a high-level language 

program to IML is a difficult task, beyond the scope of this work. The possibility must be 

considered that covert channels existing in the original program implementation may be 

lost in the IML representation, and for now we depend on the knowledge of the manual 

translator to avoid this problem. 

Security rules, written as Alloy assertions, are derived from the security policy.  

Such policies are typically written in natural language, and extraction of security rules is 

a manual step in our approach.  As currently implemented, the DM defines security rules, 

which have as their basis the Bell and LaPadula (1973) security model, meaning that 

information flows from High to Low secrecy levels are not allowed. 
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After the base program and Invariant Model with security rules are defined, the 

DM-Compiler compiles the base program from IML into state transition predicates, 

written in Alloy notation, creating the DM Implementation Model.  The DM-Compiler 

combines this with the Invariant Model to complete the DM.  The approach uses the 

Alloy Analyzer tool (Alloy, 2008) for automated verification of the security rules, 

defined in the DM as Alloy assertions, to find execution paths within the DM that might 

violate the security policy or create covert channels.  In essence, it creates an interpreter 

for the specific base program, modeled by the DM. 

1. Invariant Model 

The Invariant Model specifies the conceptual framework of the DM with the 

Alloy specification language.  This section describes statement types and structure, 

program execution state, direct file structure, and clock signature. 

In the Alloy language, all atomic structures are modeled as sets and relations.  

Sets are represented as unary relations; scalars are simply singleton sets.  A set or relation 

declaration can be constrained using several keywords indicating multiplicity: one 

restricts sets to exactly one instance of a type; while lone restricts them to either zero or 

one instance; and none refers to the empty set.  The all quantifier must hold for all 

instances of a type, and the disj quantifier specifies variables that are necessarily 

disjoint from one another.   

Alloy provides standard logical operators, for example negation (!), conjunction 

(&&), disjunction (||), implication (=>), and bi-implication (<=>).  Pairs (type-

>type) represent binary relations, and ‘+’ is the set union operator.  The override 

operator ‘++’ examines two sets of pairs and overwrites the pair in the first set with the 

second whenever the first elements of the pairs match.  The ‘^’ operator represents 

transitive closure for binary relations.  

The signature (sig) construct in Alloy, roughly synonymous with the class 

declaration in object-oriented programming languages, defines a set of atoms (elements), 

and any relations between them.  Signatures with the abstract qualifier cannot have 



 56

their own instances, and are used only to derive other signatures.  For further details on 

the Alloy language, see the website at (Alloy, 2008). 

The signatures below describe program state, the initial state, and structures for 

variables and values, which are extended in the DM-Compiler generated Implementation 

Model (discussed in next Section).  The Policy signature defines a partial ordering 

between security access labels, representing a dominance relationship between the labels 

(see Figure 8).  For illustration purposes, the model defines an Alloy enumerated type, 

AccessLabel with access labels SysLow, SysMid and SysHigh.  The Policy 

signature defines an ordering ord as the transitive closure between the three labels, as 

well as the identity, or reflexive, relationship for each of the labels. 

enum AccessLabel { SysHigh, SysMid, SysLow } 

 

one sig Policy { 

  ord: AccessLabel -> AccessLabel 

} 

{ord = ^( (SysLow -> SysMid)  

        + (SysMid -> SysHigh) ) 

        + (iden & (AccessLabel -> AccessLabel) ) 

} 

 

Figure 8.   Alloy enumerated type for AccessLabel,  
and signature for the DM Policy element 

The Statement abstract signature (see Figure 9) captures a single instance of a 

given statement.  For I/O (Read_dev/Write_dev) and direct file access statements, the 

signature defines statement type, destination, source, key (for direct file only) 

and subject_label attributes.  The subject_label specifies the security label of 

the calling subject for a particular statement; this label represents the access label of the 

device, in the case of I/O statements.  For assignment statements, only source and 

destination attributes are defined.  For conditional statements, the source attribute  
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defines the set of control variables used in an if-then-else or while-do statement.  

For GetClock statements, only the destination attribute is defined, while the Stop 

statement defines no attributes. 

 

sig Statement { 

  type:       Stmt_type, 

  destination:   lone Variable, 

  source:       set Variable + Value, 

  source_label:  lone (AccessLabel + Variable), 

  key:           lone (Variable + Value), 

  subject_label: lone AccessLabel 

} 

 

Figure 9.   Alloy signature for the DM Statement element 

The Stmt_type enumerated type (see Figure 10) defines the different statement 

types that can be used in a base program representation of a target program. 

enum Stmt_type { 

  Assign, 

  Condition, 

  Read_dev, 

  Write_dev,  

  GetDirectFile, 

  PutDirectFile, 

  GetClock, 

  Stop  

} 

 

Figure 10.   Alloy enumerated type for the DM Stmt_type element 

The DirectFile signature (see Figure 11) defines key/value pairs 

(keyContent) for each of its storage slots, and the current access label (keyLabel) 

for each key slot value.  The latter is used to track the label of the current value to ensure 

that flows are valid during subsequent accesses of the value using GetDirectFile 
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statements.  The element last_written stores the label of the last subject that wrote 

to the direct file, and is used when checking for potential covert storage channels 

(discussed in detail later).  The signature also defines the direct file max_slots size (set 

to 2 for modeling purposes); note that Alloy provides the predefined type Int to 

represent sets of integer atoms.  Also, full and success are used as internal resource 

system flags (essentially Booleans), as previously described in Chapter IV. 

 

sig DirectFile { 

  keyContent:   Value -> lone Value, 

  keyLabel:     Value -> lone AccessLabel, 

  last_written: lone AccessLabel, 

  full:         (const0 + const1), 

  success:      (const0 + const1), 

  max_slots:    Int 

} 

{ max_slots = 2 

} 

 

Figure 11.   Alloy signature for the DM DirectFile element 

 
sig Time {} 

 

one sig Clock { 

  before:      Time -> Time, 

  long_before: Time -> Time 

} 

{ long_before in before &&all t1: Time, t2: Time - t1 | 

  ((t1->t2) in before <=> t2 in TO/nexts[t1]) && 

  ((t1->t2) in long_before <=> some t3: Time | 

    (t3 in before[t1] && t3 in before.t2))  

} 

 

Figure 12.   Alloy signatures for the DM Time and Clock elements 
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The Clock signature (see Figure 12) provides an abstraction for program 

execution time.  The signature defines the concept of some event occurring at some time 

before another event (before relation), which enables testing for the relative timing of 

events during base program analysis.  In this implementation, ‘TO’ is defined as a Time 

ordering instance, using the Alloy library utility for ordering.  The nexts function 

returns a set of all next values in an ordering – in this case the next Time values after the 

one in question.  For example, the code below checks whether t2 is contained within the 

set of time values that occur after t1.  

sig State { 

  stmt:              Statement,  

  vars:              Variable -> one (Value + Time), 

  access_label:      Variable -> one AccessLabel, 

  direct_file:       DirectFile, 

  current_clock:     Time, 

  prev_state:        lone State, 

  err_msg:           lone Error, 

  influenced_by:     Variable -> State, 

  last_cond_checked: set State, 

} 

{ 

  ( err_msg = InfoFlow_error <=> 

    not consistent_with_FlowPolicy [this] ) && 

  ( err_msg = Overt_flaw_detected <=> 

    dependency_flaw_found[this] ) && 

  ( err_msg = Storage_channel_detected <=> 

    storage_channel_found[this] ) && 

  ( err_msg = Timing_channel_detected <=> 

    timing_channel_found[this] )   

} 

 

Figure 13.   Alloy signature for the DM State element 

The State signature (see Figure 13) captures the current state of the system, and 

the next base program statement (stmt) to be executed during static analysis.  Its 

elements include the type of statement to be executed, the current table of variable values, 
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the access label for each value stored in vars (for information flow tracing), and a 

snapshot of the current direct file; the flags full and success are contained within the 

direct_file attribute.  This signature also includes the current_clock value, the 

previous state leading to the current state, and last_cond_checked, which identifies 

a set of conditionals within which the current statement may be nested, enabling 

dependencies from those conditionals to be propagated.   

The influenced_by attribute is used for tracking control flow dependencies, 

and is at the heart of the dynamic slicing algorithm used in this approach.  It stores, for 

each source variable in the current state, all of the previous states that have influenced 

that variable.  This attribute enables the Alloy Analyzer to narrow its focus in examining 

previous states, thus reducing the search space necessary in determining control 

dependencies. By storing variable/state pairs, we can enable the Analyzer to examine all 

variable access labels from previous influencing states.  

The State signature also defines specific error conditions, referred to as 

err_msg in the signature.  These errors represent security violations which might occur 

during static analysis, and provide positive feedback that the Alloy Analyzer has 

discovered an assertion counterexample and a potential violation.  For modeling purposes 

the State signature currently defines errors for illicit information flows (flows which 

violate the Policy signature partial orderings), overt control dependency flaws, and 

covert channels, to include both storage and timing channels, as defined in the Alloy 

enumerated type Error (see Figure 14). 

enum Error { 

  InfoFlow_error, 

  Overt_flaw_detected, 

  Storage_channel_detected, 

  Timing_channel_detected  

} 

 

Figure 14.   Alloy enumerated type for the DM Error element 
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In order to provide a starting state for static analysis of a base program, the DM 

Invariant Model defines an initialization signature, called InitialState, which sets 

appropriate values for the various elements of the State signature (see Figure 15).    

 

one sig InitialState extends State {} 

{  

  vars                = (Variable -> const0)  

  access_label        = (Variable -> SysLow)  

  stmt                = S1  

  direct_file.full    = const0 

  direct_file.success = const1 

  current_clock       = TO/first[] 

  prev_state          = none 

  err_msg             = none 

  last_cond_checked   = none 

  no influenced_by  

  no direct_file.keyContent 

  no direct_file.keyLabel 

} 

 

Figure 15.   Alloy signature for the DM InitialState element 

When analyzing a base program, the Alloy Analyzer performs an exhaustive 

search of all execution paths up to a defined length, referred to as the scope, specifying 

the upper limit of the size of the models considered.  In fact, it performs symbolic 

execution of all base program paths with length up to the defined scope.  In the DM-

Compiler, the scope is generated heuristically based on the total number of statements in 

a base program.  For example, the resultant scope for a given base program will 

encompass all of its control statements and I/O statements, and will be one more than the 

number of statements in the program to ensure that the initial state is included in the 

analysis.  The heuristic addresses while-loop statements in a base program to a limited 

extent, by increasing the scope to allow for a single iteration.   
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The DM-Compiler scope heuristic ensures that all execution paths for 

deterministic programs will be scrutinized, however, it cannot be assured of generating 

execution paths for non-deterministic programs.  For example, the Analyzer cannot 

generate all possible execution paths for a program with a while-loop structure of 

indeterminate length, thus a scope cannot be determined that will ensure all possible 

paths are scrutinized. 

The Invariant Model also includes the definition of security rules that must be 

enforced by the DM security policy.  These rules are specified as Alloy assertions, and 

will be described further in Chapter VI. 

2. Implementation Model 

The DM Implementation Model is generated by the DM-Compiler from a base 

program, and specifies the base program’s semantics in terms of statement signatures and 

state transitions.  Example base programs, and their resultant compiled Alloy models, are 

presented in Section 5. 

From the base program, the DM-Compiler generates Variable and Value 

signatures, representing variable names and constant values used in the base program, 

respectively.  The Variable signatures reflect the variables defined in the base 

program; similarly, the number and value of constants defined in the Value signature 

depend on the number and value of unique constants explicitly present in the base 

program (the constant 0 will always be added by default for initial variable values).  To 

represent the state space, additional constants may be needed to fill the intervals between 

explicitly defined constants.  The DM-Compiler defines an Alloy signature which 

establishes a simple less-than relationship between the constant values, thus enabling the 

comparison of values for equality and inequality from within the base program.  Figure 

16 shows example Variable and Value signatures generated by the DM-Compiler. 
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one sig x1, x2, t1 

  extends Variable {}  

one sig const_minus_1, const0, const1, const2, const3 

  extends Value {}  

one sig LT {  

  lt:  Value -> Value }  

{ lt = ^(  

      ( const_minus_1 -> const0)  

    + (  const0  -> const1)  

    + (  const1  -> const2)  

    + (  const2  -> const3) )  

} 

 

Figure 16.   Example Alloy signatures for Variable and Value elements 

C. DM-COMPILER 

The DM-Compiler compiles each base program statement into a separate Alloy 

signature, based on the type of statement and associated variables and constants used.  

Elements of the Statement signature not needed for a particular statement type are not 

initialized.  The base program in Figure 17 shows a simple signature sequence, translated 

into IML, for an assignment statement (s2) nested within a conditional statement (s1).   

(s1) if ( x1 < 0 ) then  

(s2)   x2 := x1;  

(s3) Stop; 

Figure 17.   Sample Base Program Statements, in IML Syntax 

From the sample base program above, the DM-Compiler would generate the 

sequence of Alloy Statement signatures shown in Figure 18. 
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one sig s1 extends Statement {}  

{ type = Condition  

  source = x1  

  destination = none 

  key = none 

}  

one sig s2 extends Statement {}  

{ type = Assign  

  source = x1  

  destination = x2  

  key = none 

}  

one sig s3 extends Statement {}  

{ type = Stop  

  source = none 

  destination = none 

  key = none 

}  

 

Figure 18.   DM-Compiler Generated Alloy Signatures for Sample Base Program 

From these statement signatures, the DM-Compiler generates a transition 

predicate representing the state transition trace for the base program execution.  The 

approach used to derive the transition predicate is based on compilation of the base 

program statements, using the RIGAL compiler construction language (Auguston, 1990; 

Auguston, 1991).  During the compilation process, each base program statement is 

translated into a set of Alloy statements that represent the transition from the present 

execution state to the next state, following execution of the statement in question.  The 

transition predicate defines a frame condition (Borgida et al., 1995) for each statement, 

capturing the semantics of the base program by specifying all possible sequences of 

statement executions for the base program.  The transition predicate also implements 

dependency tracking within the execution path.  Although we refer generally to the  
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transition “predicate,” we represent this structure using an Alloy fact rather than a 

pred (predicate), because a pred only holds when invoked, while a fact is assumed 

to always hold. 

The remainder of this section shows a representation of the state transition 

predicate derived by the DM-Compiler for the base program in Figure 17.  Note that for 

each statement, pre represents a state before the statement (stmt) has been executed, 

and post represents the state after statement execution.    

fact trans {  

  all post: State - InitialState |some pre: State |  

For the conditional statement (s1), since no variable value assignments are made, 

the variable table, access labels, direct file (including system flags), clock time value, and 

influence_by table remain the same after execution: 

(pre.stmt = s1 && 

  (post.vars = pre.vars && 

   post.access_label = pre.access_label && 

   post.direct_file = pre.direct_file && 

   post.current_clock = pre.current_clock && 

   post.influenced_by = pre.influenced_by && 

The last_cond_checked attribute is calculated to include all previous states 

currently in last_cond_checked (excluding the current state, s1), plus the pre 

state itself, in order to set the context of statements within the conditional: 

post.last_cond_checked = 

     {cond: pre.last_cond_checked |cond.stmt != s1 } + pre && 

Based on the outcome of the conditional check, the next statement to execute is 

set to either the “then” branch (s2), or the “else” branch (s3) statement: 

   (((pre.vars[x1]-> const0) in LT.lt) => post.stmt = s2 

      else post.stmt = s3) 

   ) 

&& post.prev_state = pre  

) ||  

In the assignment statement (s2), the access label and value for the target variable 

(x2) are set to those of the source variable (x1): 
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(pre.stmt = s2 && 

  (post.vars = pre.vars 

     ++ (x2 -> pre.vars[x1]) && 

   post.access_label = pre.access_label 

     ++ (x2-> pre.access_label[x1]) && 

   post.stmt = s3 && 

The direct file (including system flags), clock value, and 

last_cond_checked attribute all remain the same after execution of an assignment: 

   post.direct_file = pre.direct_file && 

   post.current_clock = pre.current_clock && 

   post.last_cond_checked = pre.last_cond_checked && 

The influenced_by attribute is calculated based on the source variable 

dependencies.  Recall that influenced_by is declared within the State sig as the 

relation (Variable->State), which is a set of pairings from variables to states. Alloy 

treats sets and subsets the same when defining relations, thus the pairing of a variable to a 

set of states (Variable->{State}), shown below, denotes a set of pairings from that 

variable to each of the states ({Variable->State}).  Jackson (2006, pp. 36-37) provides a 

discussion of Alloy’s treatment of sets as relations. 

In calculating influenced_by, first all previously recorded dependencies 

(other than those for x2, the destination variable) are included:  

post.influenced_by =  

   {v: Variable, s: State | (v -> s) in pre.influenced_by && v != x2}  

Second, dependencies for x1, the current assignment statement source variable, 

are added as dependencies for x2: 

   + (x2 -> pre.influenced_by [x1])  

Next, from the current set of states defined in last_cond_checked, those 

whose scope this assignment falls within are included.  This captures dependencies from 

any conditional within which the current statement may be nested; in this case base 

program statement (s1): 

   + (x2-> {cond: pre.last_cond_checked | cond.stmt = s1} 

)  
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Finally, when an assignment statement is nested within a conditional statement, 

dependencies from the source variables participating in the conditional must be 

included: 

   + (x2 -> State.{cond: pre.last_cond_checked, 

       infl: cond.influenced_by [cond.stmt.source] | cond.stmt = s1}) 

   ) && post.prev_state = pre  

) || 

The transition predicate concludes with the Stop statement (s3). Since execution 

terminates when this point is reached there is no need to assign values for the resultant 

(post) state, other than setting the previous state for tracing continuity: 

(pre.stmt = s3 && 

 post.prev_state = pre  

)} 

 

D. SUMMARY 

This chapter has described the Security DM approach to static analysis and 

verification of a program representation for adherence to a security policy – 

specifically,rules associated with a security policy.  Specifically, we described the 

structure of the Security DM, and how it is generated based on a base program 

representation of a target program, and a specific security policy. 

In the next chapter, we present several base program examples for which the 

Security DM approach is used to conduct static analysis for the presence of specific 

security violations and adherence of the base program to a security policy. 
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VI. EXAMPLE DM IMPLEMENTATIONS 

A. INTRODUCTION 

This chapter presents examples of program security vulnerabilities, discoverable 

using the DM approach.  The examples illustrate security rules – defined using Alloy 

notation – for discovering direct information flow errors, indirect control dependency 

flaws, and covert channels, based on regular and trusted subject actions.  For each 

example, a base program written in IML is presented to demonstrate a particular security 

violation, and how the domain model approach can be used to find it. 

The success of these examples shows the possibility of conducting automatic 

analysis and verification of target programs.  For specific program instantiations, we have 

demonstrated the characterization of several classes of security flaws and successfully 

analyzed example programs automatically for presence of these flaws.  These results 

indicate a direction for future research, to represent broader abstractions for automatically 

detecting entire classes of security flaws in a target program. 

Regarding the covert channel examples presented, each describes the transmission 

of one bit of information, for conceptual purposes.  More complex real-world examples 

would involve such concepts as looping, synchronization, etc., to provide exploitable 

covert channels with a stream of bits. 

The complete Alloy models for these and other examples can be found on the 

dissertation research website at http://cisr.nps.edu/projects/sdm.html. 

B. EXAMPLE PROGRAMS 

1. Overt Control Dependency Flaw 

The first example illustrates an overt flaw based on a control flow dependency.  

This example shows an exploitation scenario that culminates with an IML Write_dev 

operation, where the variables written to the external device have been influenced by 

values at a higher level than that of the device itself. 
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The Alloy predicate in Figure 19 examines each execution state, and evaluates as 

true whenever the state (current) is the result of a Write_dev statement, and the 

value to be written out was influenced_by some previous state (pre) that had access 

to a variable with a higher access_label than that of current state, that is, the flow 

from the previous State to the current State is from SysHigh to SysLow. 

pred dependency_flaw_found [current: State] { 

let stm = current.stmt, pre = current.influenced_by[stm.source]| { 

  stm.type = Write_dev  && 

  stm.source in Variable && 

  not ((pre.access_label[pre.stmt.source] -> stm.subject_label)  

     in Policy.ord) 

  } 

} 

 

Figure 19.   Alloy Predicate to Discover Overt Control Dependency Flaw 

The following base program illustrates an example of this flaw.  Initially, a 

SysHigh value is read into variable x1 (s1).  Based on the value of x1 (s2), new variable 

x2 is assigned either ‘0’ (s3) or ‘1’ (s4).  Variable x2 is then written to a SysLow device 

(s5). 

The violation occurs when x2 is written to a SysLow device, because its value has 

been potentially influenced by a SysHigh value, specifically x1 when it was accessed in 

(s2).   

(s1) Read_dev (SysHigh, x1); 

(s2) if x1 = 0 then  

(s3)    x2:= 0; 

(s4) else x2:= 1; 

(s5) Write_dev (SysLow, x2); 

(s6) Stop; 

The Alloy Analyzer detects this situation, and correctly reports an overt flaw by 

tracing the control flow through statements (s1)(s2)(s3)(s5). 
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2. Timing Covert Channel Resulting from Exploitation of System Clock 

The second scenario describes a covert timing channel that occurs when a SysLow 

subject executes two GetClock statements, and between them a SysHigh subject 

prevents the SysLow subject from executing, through execution of a Read_dev/Write_dev 

or direct file operation (rw state in the text).  Thus, when the SysLow subject next runs, it 

can examine the clock to detect this interference with its access to the CPU; these 

channels are thus often called CPU channels.  The Alloy assertion in Figure 20 detects 

this potential covert timing channel, utilizing the system Clock element. 

pred timing_channel_found [gc2: State] { 

some disj rw, gc1: State | { 

  (gc2 -> rw) in State_order.st_after && 

  (rw -> gc1) in State_order.st_after && 

  gc1.stmt.type = GetClock && 

  gc2.stmt.type = GetClock && 

  rw.stmt.type in (Read_dev + Write_dev + 

                   PutDirectFile + GetDirectFile) && 

  gc1.stmt.subject_label = gc2.stmt.subject_label && 

  not ((rw.stmt.subject_label -> gc2.stmt.subject_label)  

     in Policy.ord)  

  }  

} 

 

Figure 20.   Alloy Predicate to Discover Timing Covert Channel 

The base program below illustrates this timing channel.  A SysHigh value is 

initially read into variable x1 (s1).  A SysLow subject then stores the current clock value 

in t1 (s2).  Based on a check of x1 (s3), its value is stored into the direct file at key slot 

1 (s4).  The SysLow subject again examines the clock, and stores its value into t2 (s5).   

(s1) Read_dev (SysHigh, x1); 

(s2) GetClock (SysLow, t1); 

(s3) if x1 < 0 then 

(s4)   PutDirectFile (SysHigh, 1, x1); 

(s5) GetClock (SysLow, t2); 
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At this point (subsequent to execution of statement s5) an interference event has 

occurred, which can be exploited as a timing covert channel by the SysLow subject, and 

the Alloy Analyzer detects the violation, tracing execution flow through statements 

(s1)(s2)(s3)(s4)(s5).  The crux of this covert channel is that a SysLow subject, the covert 

channel receiver, has been allowed to observe (by examining the clock) a change in some 

internal resource (the CPU busy state), which was indirectly affected by the actions of a 

SysHigh subject, the covert channel sender.  The remaining statements illustrate how the 

SysLow subject compares the two clock values (s6) to see whether the SysHigh subject 

has interfered with it through performance of some operation, and writes either a ‘1’ or 

‘0’ accordingly (s7 and s8). 

(s6) if t1 Before t2 then 

(s7)   Write_dev (SysLow, 1); 

(s8) else Write_dev (SysLow, 0); 

(s9) Stop; 

3. Flow Violation Caused by a Trusted Subject Operation 

The third example illustrates a trusted subject regrade operation that, based on 

allowed trusted subject behavior, leads to an information flow violation.  In the example, 

an attempt is made by a trusted subject to downgrade a destination variable label from 

SysHigh to SysLow.  Here, trusted subjects are allowed to perform downgrading of 

information from SysHigh to SysMid.  To support the policy, a tsFilter Alloy 

function is defined in Figure 21 to ensure that any “downward” information flows are 

allowed only from SysHigh to SysMid.  The function takes as input parameters three 

Values and three AccessLabels, specifically, the values and labels of the destination, 

source and alt_source variables in the Trusted Assignment (see Chapter IV for IML 

syntax of the trusted assignment statement), and returns as its result an instance of 

Alloy signature FTuple, which the DM uses as the new (filtered) Value and 

AccessLabel of destination (see Figure 21).  In essence, the policy for trusted subject 

behaviors is captured in the semantics of the tsFilter function, which may override 

the normal value and label of the assignment destination parameters. 
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For example purposes, the tsFilter function here returns the greater of 

constant 0 and the source Value (source_val), and the higher of SysMid and the 

alt_source AccessLabel (alt_src_label) when a downgrade is performed; 

otherwise it returns alt_src_label for an upgrade or when the label is not changed.  

As shown in the example tsFilter, it is not necessary to use all of the parameters 

passed into the function to generate a resulting FTuple.  Note that a different DM 

Invariant Model might define a tsFilter function that would return different results 

based on the specific input parameters, and thus define a different security policy for 

trusted subject behaviors. 

sig FTuple { 

  val:   Value, 

  label: AccessLabel 

}  

 

fun tsFilter[ dest_val, source_val, alt_src_val      : Value,  

              dest_label, source_label, alt_src_label: AccessLabel ]: 

  FTuple { { result: FTuple |  

  { 

 

//assign result.val to be the greater of source_val and 0 

  result.val =  

       (((source_val -> const0) in LT.lt)  

           => const0  

       else source_val) 

 

//assign result.label to be the higher of SysMid and alt_src_label,  

//  when downgrade is executed; otherwise assign alt_src_label 

  result.label =  

       (((dest_label -> alt_src_label) in Policy.ord)  

           => alt_src_label 

       else SysMid) 

  }  

} } 

 

Figure 21.   Alloy Function for Trusted Subject Filter 
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The base program example below demonstrates a security violation based on the 

trusted subject filter and security policy.  Initially, values are read into two variables with 

security labels SysHigh and SysMid, respectively (s1 and s2).  A trusted assignment 

operation is then performed (s3), in which the data value stored in x2 is copied into 

variable x1, and x1 is assigned a SysLow label.  The trusted assignment statement 

invokes the tsFilter function, which overrides the label assignment, from SysLow to 

SysMid (as described above), resulting in destination variable x1 being assigned a higher 

label (SysMid) than was intended (SysLow).  

(s1) Read_dev (SysHigh, x1); 

(s2) Read_dev (SysMid, x2); 

(s3) Assign x1 from x2 as SysLow; //now x1 has the label SysMid 

(s4) Write_dev (SysLow, x1); 

(s5) Stop; 

When the next statement (s4) attempts to write the value held in x1 to a SysLow 

external device, an illicit flow results since x1 is labeled as SysMid.  The Alloy Analyzer 

detects this situation as a violation of the information flow security predicate in Figure 

22, and correctly reports an illicit information flow, tracing execution through statements 

(s1)(s2)(s3)(s4).  The same base program, under a DM Invariant Model with a different 

policy and filter function, would not necessarily result in this flow violation. 

pred consistent_with_FlowPolicy [current: State] { 

  let stm = current.stmt | { 

    (stm.type in (Write_dev + PutDirectFile) && 

     stm.source in Variable ) 

    => (current.access_label[stm.source] -> stm.subject_label) 

       in Policy.ord 

  } 

} 

 

Figure 22.   Alloy Predicate to Discover Illicit Information Flow 
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4. Trusted Subject Dual Violation – Information Flow Violation and 
Overt Flaw 

The fourth example base program illustrates two different security violations that 

may result from a trusted subject operation.  In the program, a successful trusted subject 

regrade creates an overt control dependency flaw, however when the trusted subject 

regrade fails to occur, illegal information flow results.  For purposes of this example, the 

security policy and tsFilter function described above apply. 

In the base program, values are initially read into three variables, with assigned 

security labels SysHigh, SysMid and SysLow, respectively (s1 through s3).  Depending on 

the value stored in x1 (s4), a trusted assignment statement is performed (s5) in which the 

value of x1 is modified to the greater of x2 and 0, and the label of x1 is downgraded to 

that of x3, SysMid in this case.  Since a regrade from SysHigh to SysMid is allowed by 

the security policy (as reflected in the tsFilter function), x1 is assigned the SysMid label.   

(s1) Read_dev (SysHigh, x1); 

(s2) Read_dev (SysLow, x2); 

(s3) Read_dev (SysMid, x3); 

(s4) if x1 < 0 then { 

(s5)   Assign x1 from x2 as x3; //now x1 has the label SysMid 

(s6)   Write_dev (SysMid, x1); } 

(s7) else Write_dev (SysMid, x1); 

(s8) Stop; 

The next statement (s6) attempts to write the value of x1, which is now labeled 

SysMid, to a SysMid external device.  However, since this operation occurs within the if-

block, it creates a control dependency from SysHigh (x1 label when it was examined in 

s4) to SysMid, representing an overt access control flaw (in the SysHigh context, a write 

to SysMid violates the security policy).  Based on the Alloy security rule predicate (see 

example in section 5.1), the Alloy Analyzer properly detects this violation, tracing 

execution through statements (s1)(s2)(s3)(s4)(s5)(s6). 

An additional violation occurs when the conditional check (s4) evaluates to false, 

and the else-branch is executed.  In this case, an attempt is made to write the value stored 

in x1 (still assigned its original SysHigh label) to a SysMid external device (s7).  Since 
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this represents an overt illegal flow from SysHigh to SysMid, the Alloy Analyzer properly 

identifies and reports the error, tracing execution through statements (s1)(s2)(s3)(s4)(s7). 

5. Storage Covert Channel Resulting from a Trusted Subject Operation 

The final example combines the concepts described in the previous ones by 

showing how the execution of a trusted assignment could produce a covert storage 

channel (Levin et al., 2006).  This example demonstrates that, even with a consistent 

security policy for trusted subjects, common data flow violations that are outside the 

trusted subject’s allotted permissions may occur in a base program.  Security violations, 

such as covert channels or information flows in violation of the policy, may be 

perpetrated by the illicit actions of regular subjects, regardless of the actions of a trusted 

subject.   

The DM formalizes the notion of covert channels with an Alloy security predicate 

(see Figure 23) to identify a class of covert storage channel vulnerability in a base 

program execution. 

pred storage_channel_found [current: State] { 

  let stm = current.stmt | { 

    stm.type = PutDirectFile && 

    current.direct_file.full = const1 && 

    not (current.direct_file.last_written -> stm.subject_label) 

       in Policy.ord 

  } 

} 

 

Figure 23.   Alloy Predicate to Discover Storage Covert Channel 

In the example base program below, we assume a direct file with a maximum 

capacity of two records, initially empty.  To begin, SysLow values are read into variables 

x1 and x2 (s1-s2).  A trusted assignment is then performed (s3) in which x1 is assigned 

the value of the greater of x2 and 0 (based on the tsFilter function described above), 

and upgraded to a SysHigh label.  At this point in execution, the value stored in x1 will 

be 0 or greater.  Next, the value of x1 is examined (s4).  When this check evaluates to 
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true, the values of x1 and x2 are stored into the direct file by the SysHigh sender, 

resulting in the internal full direct file flag being set.   

(s1)  Read_dev (SysLow, x1);  

(s2)  Read_dev (SysLow, x2);  

(s3)  Assign x1 from x2 as SysHigh; //now x1 has the label SysHigh 

(s4)  if x1 > 1  then {  

(s5)    PutDirectFile (SysHigh, 1, x1);  

(s6)    PutDirectFile (SysHigh, 2, x2); }  

Figure 24 graphically depicts the sequence of events that take place during 

execution of the code sequence above.  This execution results in the Direct File being 

filled by the storage channel sender at SysHigh when the values stored in variables x1 

and x2 are written as SysHigh labeled values to direct file key locations 1 and 2, 

respectively.  At this point, the direct file is full. 

 
Figure 24.   Direct File filled by storage channel SysHigh sender 

The next sequence of program statements represents execution by a SysLow 

covert channel receiver.  When the SysLow subject attempts to store a value into the 

direct file using a new key 3 (s7), the system issues a failure indication since the direct 

file is full (note that in the translation to a base program, the internal system flag returned 

as an error message to the program, translates to the explicit full flag, accessible in 
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IML as in statement (s8)).  Depending on the success or failure of the direct file store 

(s8), whether or not the covert channel receiver found the direct file to be full, the SysLow 

subject writes a constant ‘1’ or a ‘0’ to an external device (s9 & s10) to complete the 

storage channel. 

(s7)  PutDirectFile (SysLow, 3, 1);  

(s8)  if full = True then  

(s9)    Write_dev (SysLow, 1);  

(s10) else Write_dev (SysLow, 0);  

(s11) Stop;  

Because a higher-labeled subject caused the direct file to become full, the Alloy 

Analyzer detects and reports this violation of the Alloy security predicate, tracing the 

flow of execution through statements (s1)(s2)(s3)(s4)(s5)(s6)(s7).  Although this 

violation occurred subsequent to a trusted subject action (s3), the storage channel was not 

precipitated by the trusted assignment, and the illicit actions of two regular subjects at 

SysHigh and SysLow, acting in collusion to exploit the direct file, brought about the 

security violation (a storage channel). 

C. TESTING RESULTS 

The base program examples presented above were evaluated using Alloy 

Analyzer version 4.1.8, running under Mac OS X™ 10.5.4 on a 2.5 GHz Intel Core 2 

Duo processor, with 2 GB of memory.  In test runs, the Alloy Analyzer successfully 

found valid counterexamples for violations of each security rule assertion described 

above.   

Test results are summarized in Table 1 below.  The Analysis Size defines the size 

of Alloy model instances considered (scope) during static analysis; Analysis Time 

represents total time (ms), broken down into (time to build model, time to analyze and 

find a counterexample): 
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Security Violation Description Analysis Size, 
scope 

Analysis Time, ms 
(build, analyze) 

Overt control dependency flaw 7 688  
(640, 48) 

Timing covert channel 10 5891 
(2771, 3120) 

Information flow violation, resulting from 
trusted subject operation 7 1516  

(1277, 239) 
Overt control dependency flaw, resulting 
from trusted subject operation 9 3335  

(2290, 1045) 
Information flow violation, resulting from 
trusted subject operation 9 2692  

(2236, 456) 
Storage covert channel, resulting from 
trusted subject operation 12 48631  

(9852, 38779) 

Table 1.   Results of Alloy Analysis Testing 

With regard to the state explosion dilemma associated with most model checkers, 

testing was conducted to study the effect of DM base program size on Alloy Analyzer 

static analysis time.  As discussed earlier, the Alloy Analyzer tool relies on the small 

scope hypothesis to assert that any flaws in a model are found in relatively small 

instances of that model.  With this in mind, static analysis was performed on simple base 

programs of steadily increasing size, with associated increasing analysis scope.  Note that 

in each example base program, a security flaw was intentionally implemented in order to 

ensure that a counter-example could be discovered by the Alloy Analyzer. 

Figure 25 shows the results of these test runs.  The chart graphically depicts how, 

with increasing base program size (measured as lines of IML code), the time taken for the 

Alloy Analyzer tool to find a valid counter-example to one of the security assertions 

increased with exponential growth.  This result was not unexpected, given that the Alloy 

model size for increasing DMs tends to grow exponentially during Alloy Analysis, and 

even a relatively small scope can equate to a very large search space (Jackson, 2006).  

With increasing architecture speeds, and efficiencies gained with new Alloy 

improvements, perhaps the ability to test larger and larger base programs will become 

possible. 
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Figure 25.   Alloy Analyzer Static Analysis Times for Increasing Base Program Sizes 

D. SUMMARY 

This chapter has demonstrated the feasibility of the Security DM approach to 

program verification.  We have demonstrated that this approach can be used successfully 

to perform static analysis of a representation of a target program, and verify its adherence 

to a security policy abstraction, represented by a set of formalized security rules. 

We will next present conclusions from this work, and propose areas for future 

advances in this research. 
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VII. CONCLUSIONS AND FUTURE WORK 

A. CONCLUSIONS 

This dissertation has described the development of a security domain model for 

representing high-level language programs and security policies, for both regular and 

trusted subjects.  The approach defines a formal Security Domain Model (DM) that 

facilitates specification of a security policy (security rule assertions) and security 

vulnerabilities (such as covert channels), and is independent of a particular program 

implementation.  Although encoding and checking static program semantics and 

properties is not in itself revolutionary, this work is evolutionary in extending previous 

work in the area of information flow tracking based on a precise, formal definition for 

overt information flaws and covert channels.   

The Security DM framework provides a means of conducting automated static 

analysis of a program implementation within a finite scope of execution paths.  Flow 

control dependencies and related overt flaws are analyzed using dynamic slicing 

techniques.  Our model has the ability to identify security flaws such as covert channels, 

as well as overt flaws in a program, which may allow illicit information flow control 

dependencies.  In addition, we provide special trusted behavior in our DM by 

representing a trusted subject.  Our implementation of a relatively small trusted subject is 

in line with the Reference Monitor Concept principle that a reference validation 

mechanism “must be small enough to be subject to analysis and tests” to ensure its 

correctness (Anderson, 1972).  

Using the Alloy Analyzer to perform static analysis of a base program, as 

represented by an Alloy language DM, provides assurance that a counterexample to a 

security rule will be found when one exists.  This is true for analysis of deterministic 

programs of a finite length, which are assured of terminating.  For such programs, a scope 

of analysis is calculated based on the number of statements in the program.  This ensures 

that all program statements, and by extension all execution states, are included in a 

generated model of the program, thus Alloy Analyzer static analysis results in neither 
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false negatives nor false positives within the defined scope of analysis.  In the case of 

false negatives, assuming a proper scope of analysis is chosen, every execution path is 

examined thus if a security violation (as defined by an Alloy assertion) exists, it will be 

reported.  In the case of false positives, a violation will only be reported when the specific 

conditions defined by a security assertion exist in some base program execution path.  

Because a reported violation can be investigated in the wake of static analysis, false 

positives would seem to be less egregious than false negatives. 

We have shown through examples that the Security DM approach is able to 

generate a unique specification for a target program representation (base program) and 

security policy (security assertions), and automatically identify counterexamples for the 

security assertions where they exist, to identify security violations in base program 

representations of target programs.  We base our conclusion in part on the small scope 

hypothesis, and while it is just that – a hypothesis – previous work (Andoni et al., 2002) 

has demonstrated its validity, and the effectiveness of systematic testing within a small 

scope (as the Alloy Analyzer performs) as compared to larger scale testing of fewer 

inputs, for refuting specification assertions.   

This dissertation research has introduced several contributions that are integral to 

the Security DM approach, reiterated below: 

1. Implementation Modeling Language (IML) 

The IML is a specialized language that supports basic information processing to 

facilitate static analysis of a representation of high-level language source code, by 

providing a formalism that captures the essence of imperative programming language 

paradigms, while ignoring non-essential (for these purposes) elements. 

2. Security Domain Model (DM) 

The security Domain Model (DM), represented as an Alloy specification, 

provides a model of a target program behavior, as well as a model for describing security  
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properties.  The DM is a unified representation of a base program representation of the 

target program, and the intended information flow security policy, including restrictions 

on both overt and covert information flow.  

3. DM-Compiler 

A specialized compiler was developed to translate a base program, written in 

IML, into an Implementation Model, and then integrated with the Invariant Model to 

form a complete DM specification to represent the original target program. 

B. RECOMMENDATIONS FOR FUTURE WORK 

In the wake of this dissertation work, a number of areas for further research have 

been identified.  These areas fall generally into two broad categories: formal analysis of 

the DM and its artifacts, and expansion of the DM to facilitate more complex 

programming constructs and to allow formalization of more advanced security policies. 

1. Correctness of the DM 

Currently, we define information flow not in theoretical terms, but in terms of 

Security DM constructs.  For example, we formalize an illicit flow in terms of the access 

labels defined in a base program statement, and their relationship to labels associated 

with variables currently in existence at some execution point.  Through static analysis the 

DM discovers violating flows, but how can we be assured that this static analysis is 

correct?  An important area for future research would be to address the correctness of the 

DM with respect to a formal information flow property, such as noninterference.   

In order to demonstrate correctness of the DM, we must identify an information 

flow security property independent of the Security DM, and demonstrate that whenever 

static analysis concludes that a program is secure, it is indeed secure in the sense that it 

exhibits this property.  For example, can it be shown that programs identified by the DM 

as secure indeed satisfy the noninterference (or some other) property for deterministic 

programs?  
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2. Formal Analysis of DM Artifacts 

Currently, extractions of base programs from target programs, and iteration of 

security rules from a natural language security policy, are manual steps in our approach.  

Future work can focus on formally analyzing the semantics of the IML and DM-

Compiler to ensure that the artifacts of each (the base program and implementation 

model, respectively) are accurate abstractions of the original target implementation.   

As Sabelfeld and Myers (2003) pointed out, information flow analysis should take 

place “as close to the execution code as possible.”  Formal analysis of this process of 

extracting the base program from a target program to ensure an absolute correspondence 

between the two will help achieve the goal of being “as close…as possible” to the target 

program source code. 

3. IML Expansion 

The IML currently supports basic information processing using assignment 

statements, conditional and loop statements, read/write statements, file random access, 

and access to a system clock.  In order to focus specifically on programming constructs 

that support static analysis for information flow tracing, we essentially ignored more 

advanced constructs, such as data type, inheritance, polymorphism, etc.  To enable 

modeling of a larger domain of high-level language constructs, and target program 

examples, the IML can be extended greatly to capture these and other programming 

language constructs. 

4. Dynamic Security Policies  

Future work could expand the DM to enable dynamic security policies (Levin et 

al., 2006).  This concept would allow the DM to support, for example, a sequence of 

polices during program execution, and support the ability of a system to adapt to a 

dynamically changing security environment (NSA GIG, 2004).  This could be extended 

by adding functionality for multiple trusted subjects, each potentially operating under 

different trusted policy rules.  By defining multiple filter functions within a DM Invariant 
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Model, and modifying the IML syntax to support this, the model could represent separate 

trusted subjects, each governed by a different policy as defined by its own filter function. 

Traditional security models are aimed at ensuring a computer system is statically 

secure by showing that, given a proven secure state of the system (typically the initial 

state) and a secure transition from that state to another, the resultant state must be secure.  

By extension, if all state transitions are secure, the entire system must be secure.  Under a 

dynamic security policy, however, a transition could take place which might not be 

considered secure.  For example, consider an uncleared user in the field who requires 

immediate emergency access to a highly sensitive piece of information in order to 

accomplish his mission.  Once that sensitive object has been exposed to the uncleared 

user, an unsecure transition has taken place leaving the system in an unsecure state, thus 

the system is no longer secure.   

However, in a dynamic policy sense, perhaps the system is still perfectly secure 

despite the transition; the question is - how can this be modeled?  Beyond that, can the 

system be returned to a secure state without unjustifiably modifying the sensitivity level 

of the user or information, that is, without raising the clearance level of the user or 

declassifying the information, when neither might be appropriate?  Alternatively, could 

the policy be defined to automatically declassify the information after such an access, or 

after a specified time period?  If our example was modified to one where a malicious 

uncleared user had accessed the same piece of sensitive data, clearly this should represent 

an unsecure situation, but how does the system recognize this difference?  These are 

some of the questions that must be addressed in the definition of a dynamic security 

policy. 

5. Networked Analysis 

Padlipsky et al. (1978) introduced the concept of network covert channel analysis 

and introduced detection methods based on in-depth IP packet analysis as a way to 

differentiate covert channels from legitimate network traffic.  Approaches such as these 

could potentially be incorporated into the DM security rule assertions, as methods for 

detecting covert channels in base programs within this domain. 
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6. Model-Driven Software Development 

Future work in this research can focus on tailoring our approach toward the 

model-driven software design process.  It is understood that automation of the software 

development cycle, such that resulting software systems fully conform to the Common 

Criteria evaluation requirements, is not a trivial effort.  We have focused specifically on 

the Implementation Representation and Security Objectives stages of development 

(Common Criteria, 2003), the base program and security policy assertions respectively, 

devising an automated way to verify that the former adheres to the latter.  A framework 

to automate the actual production of these artifacts would be an ideal goal for future 

development in this work. 
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APPENDIX A – DM-COMPILER RIGAL FILE 

This appendix is provided to show the RIGAL compiler files used in defining the 

DM-Compiler.  Because of RIGAL file length limitations, the DM-Compiler is defined 

using two files: parser.rig and generate.rig.  Generally, the first file (parser.rig) parses a 

source base program (filename.b file) and generates appropriate Alloy signatures for its 

program statements.  The first file then calls the second RIGAL file (generate.rig), which 

generates the transition predicate for the source base program, defining the semantics of 

its execution. 

RIGAL FILE – PARSER.RIG 

------------------------------------------------------------- 
#main 
 
-- Globals: 
 
--  $variable_table: <* $Id: T *> 
--  $constant_list: (. (* Number *) .) 
--  $constant_ctr: Number 
--  $stmt_num: Number 
--  $while_ctr: Number 
--  $program: (. (* stmt *) .) 
--  $stmt_table: <* SNNN: atomic_stmt *> 
------------------------------------------------------------- 
 
  $Parm:= #PARM(T); 
  $input_file  := #IMPLODE( $Parm [1] '.b'); 
 
  OPEN MSG ' '; -- for error messages 
 
  $output_file := #IMPLODE( $Parm [1] '.txt'); 
  OPEN GEN $output_file; -- generated Alloy part 
 
  --call the C lexer  
  $Lex:= #CALL_PAS( 35 $input_file 'L+A-U-P-C+p-m+'); 
 
  MSG<< 'Base Model Generator v.1.0 input from'  $input_file;  
  MSG<< '   '  Total #LEN($Lex) tokens; 
  
  $stmt_num := 0; 
  $while_ctr := 0; 
  $constant_list := (. 0 .); -- 0 always included 
  
  -- do the parsing 
  $program:= #ast( $Lex); 
 
  IF $program ->  
 MSG<< 'Parsing completed'; 
 
 -- add next stmt references 
 #add_next_stmt_ref($program); 
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 #add_enclosing_cond_ref($program); 
 
 -- start generation 
 MSG<< 'Start generation'; 
 
 GEN<< '/********************************/'; 
 GEN<< '/** DM Implementation Model **/'; 
 GEN<< '/********************************/'; 
  
 -- generate the source code comment 
 #show_program($program); 
 
 -- generate statement signatures 
 #gen_stmt_sigs($stmt_table); 
 
 -- generate variable sigs 
 #gen_variable_sigs($variable_table); 
 
 -- generate constant sigs 
 #gen_constant_sigs($constant_list); 
 
 -- generate state transition predicate 
 #gen_state_transition($stmt_table); 
 
 -- generate run commands 
 GEN<< '--------------------------'; 
 GEN<< 'run show for' #LEN($stmt_table) + $while_ctr + 1 'but' 
#LEN($variable_table)*($constant_ctr) 'FTuple'; 
 GEN<< 'check verify_security for' #LEN($stmt_table) + $while_ctr + 
1 'but' #LEN($variable_table)*($constant_ctr) 'FTuple'; 
 GEN<< 'check verify_flow_policy for' #LEN($stmt_table) + 
$while_ctr + 1 'but' #LEN($variable_table)*($constant_ctr) 'FTuple'; 
 GEN<< 'check verify_no_dependency_flaw for' #LEN($stmt_table) + 
$while_ctr + 1 'but' #LEN($variable_table)*($constant_ctr) 'FTuple'; 
 GEN<< 'check verify_no_storage_channel for' #LEN($stmt_table) + 
$while_ctr + 1 'but' #LEN($variable_table)*($constant_ctr) 'FTuple'; 
 GEN<< 'check verify_no_timing_channel for' #LEN($stmt_table) + 
$while_ctr + 1 'but' #LEN($variable_table)*($constant_ctr) 'FTuple'; 
  
 MSG<< '   ' Total #LEN($stmt_table) statements; 
 
  ELSIF T -> MSG<< 'Errors detected...' 
  FI; 
 
## 
----------------------------- 
#ast 
 (. (* $stmt_list !.:= #stmt [';'] *) .) 
 /RETURN $stmt_list / 
## 
 
#stmt 
 Read_dev '(' $al ',' $Id ')' 
 /LAST #main $stmt_num +:= 1; 
  LAST #main $variable_table ++:= <. $Id: T .>; 
  RETURN <.  type:  Read_dev, 
   stmt_num: COPY(LAST #main $stmt_num), 
   destination: <. var: $Id .>, 
   subject_label: $al 
    .>/;; 
 
 Write_dev '(' $al ',' $e:= #expr5 ')' 
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 /LAST #main $stmt_num +:= 1; 
  RETURN <.  type: Write_dev, 
   stmt_num: COPY(LAST #main $stmt_num), 
   source: $e, 
   subject_label: $al 
    .>/;; 
 
 GetDirectFile '(' $al ',' $e:= #expr5 ',' $Id2 ')' 
 /LAST #main $stmt_num +:= 1; 
  LAST #main $variable_table ++:= <. $Id2: T .>; 
  RETURN <.  type: GetDirectFile, 
   stmt_num: COPY(LAST #main $stmt_num), 
   key:   $e, 
   destination: <. var: $Id2 .>, 
   subject_label: $al 
    .>/;; 
 
 PutDirectFile '(' $al ',' $e1:= #expr5 ',' $e2:= #expr5 ')' 
 /LAST #main $stmt_num +:= 1; 
  RETURN <.  type: PutDirectFile, 
   stmt_num: COPY(LAST #main $stmt_num), 
   key:   $e1, 
   source:  $e2, 
   subject_label: $al 
    .>/;; 
 
 '{' (* $stmt_list !.:= #stmt * ';' ) [';'] '}' 
 /RETURN <.  type:  block, 
   stmt_list: $stmt_list, 
   stmt_num:  $stmt_list[1].stmt_num 
    .>/;; 
 
 'if' /LAST #main $stmt_num +:= 1; 
       $stmt_num:= COPY(LAST #main $stmt_num)/ 
       $expr:= #expression 'then' $b1:= #stmt [';'] 
   [ 'else' $b2:= #stmt [';'] ] 
 /RETURN <.  type: if, 
   cond: $expr, 
   then_branch: $b1, 
   else_branch: $b2, 
   stmt_num: $stmt_num, 
   var_set: $expr.var_set 
     .>/;; 
 
 'while' /LAST #main $stmt_num +:= 1; 
   LAST #main $while_ctr +:= 1; 
       $stmt_num:= COPY(LAST #main $stmt_num)/ 
   $expr:= #expression 'do' $b1:= #stmt  
 /RETURN <.  type: while, 
   cond: $expr, 
   body: $b1, 
   stmt_num: $stmt_num, 
   var_set: $expr.var_set 
     .>/;; 
 
 $Id1 ':' '=' $rhp:= #expr5 
 /LAST #main $stmt_num +:= 1; 
  LAST #main $variable_table ++:= <. $Id1: T .>; 
  RETURN <.  type:  Assign, 
      destination:  <. var: $Id1 .>, 
      source:  $rhp, 
      stmt_num:  COPY(LAST #main $stmt_num) .>/;; 
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 Assign $Id 'from' $e1:= #expr5 'as' $e2:= #expr5 
 /LAST #main $stmt_num +:= 1; 
  LAST #main $variable_table ++:= <. $Id: T .>; 
  RETURN <.  type: Assign, 
   stmt_num: COPY(LAST #main $stmt_num), 
   destination: <. var: $Id .>, 
   source:   $e1, 
   source_label:  $e2 
    .>/;; 
 
 Stop  
 /LAST #main $stmt_num +:= 1; 
  RETURN <.  type: Stop, 
   stmt_num: COPY(LAST #main $stmt_num) 
    .>/;; 
 
 GetClock '(' $al ',' $Id ')' 
 /LAST #main $stmt_num +:= 1; 
  LAST #main $variable_table ++:= <. $Id: T .>; 
  RETURN <.  type:  GetClock, 
   stmt_num: COPY(LAST #main $stmt_num), 
   destination: <. var: $Id .>, 
   subject_label: $al 
    .>/;; 
 
 V'($$<>'}') (* $x!.:= S'($$<>';') *) 
 /MSG<< Syntax error in statement $x; FAIL/ 
## 
 
#expression 
-- an expression contains a set of variables 
 $a1:= #expr2 
 (* 'or'  $a2:= #expr2 
  /$a1:= <.  arg1: $a1, 
   arg2: $a2, 
   op: 'or', 
     var_set: $a1.var_set ++ $a2.var_set 
     .>/ *) 
 /RETURN $a1/ 
## 
 
#expr2 
 $a1:= #expr3 
 (* 'and'  $a2:= #expr3 
  /$a1:= <.  arg1: $a1, 
   arg2: $a2, 
   op: 'and', 
     var_set: $a1.var_set ++ $a2.var_set 
     .>/ *) 
 /RETURN $a1/ 
## 
 
#expr3 
 'not' $a1:= #expr3 
 /RETURN <.  arg: $a1, 
   op: 'not', 
     var_set: $a1.var_set 
    .>/;; 
 
 '(' $a1:= #expression ')'  
 /RETURN $a1/;; 
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 $e:= #expr4 
 /RETURN $e/ 
 
## 
 
#expr4 
 $a1:= #expr5  
  ( ( '>' '=' /$op:= '>='/ ) ! 
    ( '<' '=' /$op:= '<='/ ) ! 
    $op:= ( '>' ! '<' ! '=') ) 
 $a2:= #expr5 
 /RETURN <.  arg1: $a1, 
   arg2: $a2, 
   op:   $op, 
     var_set: $a1.var_set ++ $a2.var_set 
     .>/;; 
 
 $Id1 $op:= (Before ! LongBefore) $Id2 
 /RETURN <. arg1: <. var: $Id1 .>, 
     arg2: <. var: $Id2 .>, 
     op: $op, 
     var_set: <. $Id1: T, $Id2: T .> 
     .>/ 
## 
 
#expr5 
 
 $a1 := ('full' ! 'success') 
 /RETURN <. flag: $a1 .>/;; 
 
 $a1 := ('True' ! 'False') 
 /RETURN <. bool: $a1 .>/;; 
 
 $a1 := ('SysHigh' ! 'SysMid' ! 'SysLow') 
 /RETURN <. src_label: $a1 .>/;; 
 
 $Id  
 /LAST #main $variable_table ++:= <. $Id: T .>; 
  RETURN  <. var: $Id, 
   var_set: <. $Id: T .> .>/;; 
 
 '0' 
 /RETURN <. constant: (1-1) .>/;; 
 
 $Num 
 /IF NOT #member($Num LAST #main $constant_list) -> 
  LAST #main $constant_list !.:= $Num 
  FI; 
  RETURN <. constant: $Num .>/ 
## 
 
#member 
 $x 
 (. (* $y /IF $x = $y -> RETURN T FI/ *) .) 
## 
------------------------------------------------- 
#show_program 
 
 /$indent:= 0; 
  GEN<< '-- The base program is below. Total of'  
  LAST #main $stmt_num statements/ 
 (. (* #show_stmt *) .) 
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## 
 
#show_stmt 
 
 <. type:  block /GEN<] '{'/, 
    stmt_list: (. (* #show_stmt *) .) /GEN<] '}'/ 
 .>;; 
 
 
 <. stmt_num: $stmt_num .> 
 /GEN<< @ '-- (s' $stmt_num ')  ' #CHR(9); 
  #tabs_indent(LAST #show_program $indent);  
  FAIL/;; 
 
 
 <. type: $t:= ( Read_dev ! Write_dev ! GetClock ), 
    [ destination: <. var: $Id .> ], 
    [ source:      ( <. var: $Id .> ! <. constant: $Num .>) ], 
  subject_label: $al 
 .> 
 /IF $Id -> 
  GEN<] $t '(' $al ', ' $Id ');' 
  ELSIF T -> 
  GEN<] $t '(' $al ', ' $Num ');' 
  FI/;; 
 
 
 <. type: $t:= ( GetDirectFile ! PutDirectFile ), 
    key:           ( <. var: $Id .> ! <. constant: $Num .>), 
    [ destination: <. var: $Id2 .> ], 
    [ source:      ( <. var: $Id2 .> ! <. constant: $Num2 .>) ], 
    subject_label: $al 
 .> 
 /IF $Id -> 
  GEN<] $t '(' $al ', ' $Id ',' 
  ELSIF T -> 
  GEN<] $t '(' $al ', ' $Num ',' 
  FI; 
  IF $Id2 -> 
  GEN<] $Id2 ');' 
  ELSIF T -> 
  GEN<] $Num2 ');' 
  FI/;; 
 
 
 <. type: if /GEN<] 'if'; 
       LAST #show_program $indent +:= 1/, 
    cond: #show_expr /GEN<] ' then'/, 
    then_branch: #show_stmt, 
    [ else_branch:  
  / GEN<< @ '-- ' #CHR(9) #CHR(9) ; 
    #tabs_indent(LAST #show_program $indent); 
    GEN<]'else'/  
  #show_stmt ] 
 .> 
 /LAST #show_program $indent +:= -1/;; 
 
 
 <. type: while  /GEN<] 'while'; 
    LAST #show_program $indent +:= 1/, 
    cond: #show_expr /GEN<] 'do'/, 
    body: #show_stmt 
  .> 
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 /LAST #show_program $indent +:= -1/;; 
 
 
 <. type: $t := Assign, 
  destination: <. var: $Id .>, 
  source: (<. var: $Id2 .> ! <. constant: $Num .>), 
  [ source_label: (<. var: $Id3 .> ! <. src_label: $sl .>)] 
 .> 
 /IF ($Id3 OR $sl) -> 
  GEN<] $t $Id 'from'; 
  IF $Id2 -> 
   GEN<] $Id2 'as' 
  ELSIF T -> 
   GEN<] $Num 'as' 
  FI; 
  IF $Id3 -> 
   GEN<] $Id3 ';' 
  ELSIF T -> 
   GEN<] $sl ';' 
  FI; 
 ELSIF T -> 
  GEN<] $Id ':='; 
   IF $Id2 -> 
    GEN<] $Id2 ';' 
   ELSIF T -> 
    GEN<] $Num ';' 
   FI; 
 FI/;; 
    
 
 <. type: Stop  .> 
 /GEN<] 'Stop;'/;; 
 
  
 $x /GEN<< '****  cannot show stmt' $x/  
 
## 
 
#show_expr 
 
 <. flag: $f .>/GEN<] $f/;; 
 
 <. bool: $b .>/GEN<] $b/;; 
 
 <. src_label: $sl .>/GEN<] $sl/;; 
 
 <. var: $Id .> /GEN<] $Id; RETURN T/;; 
 
 <. constant: $Num .> /GEN<] $Num; RETURN T/;; 
 
 <. arg1: /GEN<] '('/ #show_expr, 
    op:   $op /GEN<] $op/, 
    arg2: #show_expr /GEN<] ')'/ 
 .>;; 
 
 <. op: 'not' /GEN<] 'not ('/, 
    arg: #show_expr  /GEN<] ')'/  
 .>;; 
 
 $a /GEN<< cannot show expression $a/ 
 
## 
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#tabs_indent 
 $n 
 /$x:= COPY($n); 
  LOOP 
  IF $x = 0 -> BREAK FI; 
  GEN<] @ #CHR(9);  
  $x +:= -1 
  END/ 
## 
------------------------------------------------- 
-- add next stmt reference and create stmt Table 
------------------------------------------------- 
#add_next_stmt_ref 
 $program 
 /$n:= 1; 
  FORALL $s IN $program DO 
  $n +:=1; 
  IF $n <= #LEN($program) -> 
   $next_stmt:= $program[$n].stmt_num 
  FI; 
  #add_nextref_to_stmt( $next_stmt $s) 
 OD/ 
## 
 
#add_nextref_to_stmt 
 
 $next 
 
 ( $stmt:= <. type: ( Read_dev ! Write_dev ! GetDirectFile ! 
PutDirectFile ! 
        Assign ! GetClock ) .> 
    /$stmt ++:= <. next: COPY($next) .>; 
     LAST #main $stmt_table ++:= <. #IMPLODE( S $stmt.stmt_num): 
$stmt .>/ 
   ! 
 
   $stmt:= <. type: Stop, 
       stmt_num: $stmt_num .> 
    /$stmt ++:= <. next: $stmt_num .>; 
     LAST #main $stmt_table ++:= <. #IMPLODE( S $stmt.stmt_num): 
$stmt .>/ 
   !  
 
   $stmt:= <. type: if, 
       then_branch: $then_branch, 
       [ else_branch: $else_branch ] 
   .> 
   / 
    #add_nextref_to_stmt( COPY($next) $then_branch); 
    IF $else_branch -> 
  #add_nextref_to_stmt( COPY($next) $else_branch); 
  $stmt ++:= <. next_if_false: $else_branch.stmt_num .> 
    ELSIF T -> 
  $stmt ++:= <. next_if_false: COPY($next) .> 
    FI; 
    $stmt ++:= <. next_if_true: $then_branch.stmt_num .>; 
    LAST #main $stmt_table ++:= <. #IMPLODE( S $stmt.stmt_num): 
$stmt .>/ 
 
   ! 
 
   $stmt:= <. type: while, 
       body: $body 
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    .> 
   /$stmt ++:= <. next_if_false: COPY($next), 
    next_if_true:  $body.stmt_num   .>; 
    #add_nextref_to_stmt( COPY($next) $body); 
    LAST #main $stmt_table ++:= <. #IMPLODE( S $stmt.stmt_num): 
$stmt .>/ 
 
   ! 
    $stmt:= <.  type:  block, 
   stmt_list: $list 
     .> 
    /$stmt ++:= <. next: COPY($next) .>; 
     $n:= 1; 
     FORALL $s IN $list DO 
  $n +:=1; 
  IF $n <= #LEN($list) -> 
   $next_stmt:= ($list[$n]).stmt_num 
  FI; 
  #add_nextref_to_stmt( $next_stmt $s) 
     OD; 
     #add_nextref_to_stmt( $next $list[-1])/ 
 ) 
 
## 
------------------------------------------- 
 
------------------------------------------------- 
-- add reference to the enclosing if and while stmt 
-- to each statement 
------------------------------------------------- 
#add_enclosing_cond_ref 
 $program 
 /FORALL $s IN $program DO 
  #add_enclosing_refs_to_stmt( NULL $s ) 
  OD/ 
## 
 
#add_enclosing_refs_to_stmt 
 
 $enclosing_cond_list 
 
 ( $stmt:= <. type:  if, 
    stmt_num:  $stmt_num, 
    then_branch:   $then_branch, 
    [ else_branch: $else_branch ] 
      .> 
   /#add_enclosing_refs_to_stmt( (. $stmt_num 
.)!!$enclosing_cond_list  $then_branch); 
    IF $else_branch -> 
  #add_enclosing_refs_to_stmt( (. $stmt_num 
.)!!$enclosing_cond_list  $else_branch); 
    FI; 
    $stmt ++:= <. within_scope_of_cond: $enclosing_cond_list .>/  
 
   ! 
 
   $stmt:= <. type: while, 
                 body: $body, 
                 stmt_num: $while_stmt_num 
            .> 
  /$stmt ++:= <. next_if_false: COPY($next), 
                 next_if_true:  $body.stmt_num   .>; 
   #add_nextref_to_stmt( COPY($while_stmt_num) $body); 
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   LAST #main $stmt_table ++:= <. #IMPLODE( S $stmt.stmt_num): 
$stmt .>/ 
 
   ! 
 
    $stmt:= <.  type:  block, 
   stmt_list:  $list 
       .> 
    /FORALL $s IN $list DO 
  #add_enclosing_refs_to_stmt( $enclosing_cond_list  $s ) 
     OD / 
 
   ! 
 
    $stmt 
    /$stmt ++:= <. within_scope_of_cond: $enclosing_cond_list .> / 
 ) 
## 
------------------------------------------- 
 
#gen_stmt_sigs 
 /GEN<<; 
  GEN<< '-------------------------'; 
  GEN<< '/*** Statement sigs ***/'; 
  GEN<< '-------------------------';/ 
 <* $s: /GEN<< one sig $s extends Statement '{}'; 
  GEN<< '{'/ 
  #gen_stmt_sig  
  /GEN<<'}'; 
  GEN<<;/ 
 *> 
## 
 
#gen_stmt_sig 
 <. type: ( (if ! while) /GEN<< #CHR(9) 'type = Condition'/ ! 
      $t          /GEN<< #CHR(9) 'type =' $t/ ), 
    [ source:  
  /GEN<< #CHR(9) 'source ='/ $source:= #atomic_expr], 
    [ destination:  
  /GEN<< #CHR(9) 'destination ='/ $destination:= #atomic_expr], 
    [ source_label:  
  /GEN<< #CHR(9) 'source_label ='/ $source_label:= #atomic_expr], 
    [ key:  
  /GEN<< #CHR(9) 'key ='/ $key:= #atomic_expr], 
    [ var_set: /GEN<< #CHR(9) 'source ='; $plus:= ' '/ 
    <* $var: T /GEN<] $plus $var; $plus:= '+'/ *> ],  
    [ subject_label: $al ] 
 .> 
 /IF NOT ($source OR $var) -> GEN<< #CHR(9) 'source = none' FI; 
  IF NOT $destination -> GEN<< #CHR(9) 'destination = none' FI; 
  IF NOT $source_label -> GEN<< #CHR(9) 'source_label = none' FI; 
  IF NOT $key -> GEN<< #CHR(9) 'key = none' FI; 
  IF $t = Read_dev OR $t = Write_dev OR $t = GetDirectFile OR $t = 
PutDirectFile  
    OR $t = GetClock -> GEN<< #CHR(9) 'subject_label = ' $al 
FI; 
 / 
## 
 
#atomic_expr 
 <. var: $Id .>/GEN<] $Id; RETURN T/;; 
 <. constant: $Num .> /GEN<] @ const $Num; RETURN T/;; 
 <. src_label: $sl .>/GEN<] $sl; RETURN T/;; 
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## 
------------------------------------------------------ 
#gen_variable_sigs 
  /GEN<< '--------------------------------'; 
  GEN<< '/*** Variables & Constants ***/'; 
  GEN<< '--------------------------------'; 
  GEN<< enum Variable { ; 
  GEN<< #CHR(9); 
  $comma:= NULL/ 
 
 <* $Id: $a /GEN<] $comma @ $Id; $comma:= ','/ *> 
  
 /GEN<< ' }'/ 
## 
------------------------------------------------------ 
#gen_constant_sigs 
 $const_list 
 /$sorted:= #sort($const_list); 
  $extended:= #extend($sorted); 
  LAST #main $constant_ctr:= #LEN($extended); 
  #gen_const($extended); 
  #gen_LT_sig($extended)/ 
## 
 
#sort 
 $x 
 /$i:= 1; 
  LOOP  --just Bubble Sort 
    IF $i > (#LEN($x) - 1)  -> BREAK FI; 
    $j:= 1; 
    LOOP 
      IF $j > (#LEN($x) -  $i)  -> BREAK FI; 
      IF $x[$j +1] < $x[$j] -> 
  -- swap 
  $t:= $x[$j +1]; $x[$j +1]:= $x[$j]; $x[$j]:= $t; 
      FI; 
      $j +:= 1 
    END; 
    $i +:=1 
  END; 
  RETURN $x/  
## 
 
#extend 
-- extends list $x with number_of_vars constants 
 $x 
 /$var_count:= #LEN(LAST #main $variable_table); 
  $res:= #const_interval($x[1]-$var_count-1  $var_count-1); 
  $i:=1; 
  LOOP 
    IF $i >= #LEN($x) -> BREAK FI; 
    IF ($x[$i+1] - $x[$i] - 1) > $var_count -> 
     $res !!:= #const_interval($x[$i] $var_count) 
    ELSIF  T  -> 
     $res !!:= #const_interval($x[$i] ($x[$i+1] - $x[$i] - 1)) 
    FI; 
    $i +:=1 
  END; 
  $res !!:= #const_interval($x[-1]  $var_count); 
  RETURN $res/ 
## 
 
#const_interval 
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-- returns list of $len+1  integers starting with $from  
 $from   $len 
 /$i:= $from; 
  LOOP  
    IF $i >= ($from + $len +1) -> BREAK FI; 
    $res !.:= COPY($i);  
    $i := $i + 1 
  END; 
  RETURN $res/ 
## 
 
#gen_const 
 /GEN<<; 
  GEN<< enum Value { ; 
  GEN<< #CHR(9); 
  $comma:= NULL; 
  $c:=0/ 
 (. (*  $e 
  /IF $e >= 0 -> 
   GEN<] @ $comma ' const' $e 
   ELSIF  T  -> 
   GEN<] @ $comma ' const_minus_' (-$e) 
   FI; 
   $c +:=1; IF $c MOD 4 = 0 -> GEN<< #CHR(9) FI; 
   $comma:= ','/ 
     *) .) 
 /GEN<< ' }'/ 
## 
 
#gen_LT_sig 
 $x 
 /GEN<<; 
  GEN<< one sig LT '{'; 
  GEN<] #CHR(9) 'lt:  Value -> Value }'; 
  GEN<< '{  lt = ^('; 
  $plus:= ' '; 
  $i:=1; 
  LOOP 
    IF $i > #LEN($x) -1  -> BREAK FI; 
    GEN<< #CHR(9) $plus '('; 
    $e:= $x[$i]; 
    IF $e >= 0 -> 
   GEN<] @ ' const' $e 
    ELSIF  T  -> 
   GEN<] @ ' const_minus_' (-$e) 
    FI; 
    GEN<] #CHR(9) ' -> ';  
    $e:= $x[$i+1]; 
    IF $e >= 0 -> 
   GEN<] @ ' const' $e 
    ELSIF  T  -> 
   GEN<] @ ' const_minus_' (-$e) 
    FI; 
    GEN<] ')'; 
    $plus := '+'; $i +:=1 
  END; 
  GEN<< ') }'/ 
## 
-------------------------------------------------------- 
%INCLUDE <path>/generate.rig 
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RIGAL FILE – GENERATE.RIG 

------------------------------------------------------------- 
-- Generate state transition predicate 
------------------------------------------------------------- 
#gen_state_transition 
  
 /GEN<<; 
  GEN<< '------------------------------------'; 
  GEN<< '/*** State Transition Predicate ***/'; 
  GEN<< '------------------------------------'; 
  GEN<< fact trans '{'; 
  GEN<< #CHR(9) 'all st1: State - InitialState | some st: State |'; 
  $else:= NULL; 
  / 
 <* $stmt: /GEN<< #CHR(9) $separator; 
     $separator:= ') or'; 
     GEN<<; 
     GEN<< #CHR(9) '( st.stmt =' $stmt '&&'; 
     GEN<< #CHR(9) '  st1.prev_state = st &&'/ 
     #gen_stmt_clause 
 *> 
 /GEN<< #CHR(9) ')'; 
 GEN<< '}'/ 
## 
 
#gen_stmt_clause 
 
 <. type:  $t:= Read_dev, 
    destination: <. var: $Id .>, 
    subject_label: $al, 
    next:  $next, 
   [ within_scope_of_cond: $enclosing_cond_list]  
 .> 
 /GEN<< #CHR(9)#CHR(9) '-- ' $t; 
  GEN<< #CHR(9)#CHR(9) '( st1.access_label = st.access_label ++ (' 
$Id '-> ' $al ' ) &&'; 
  GEN<< #CHR(9)#CHR(9) 'some n: Value | st1.vars = st.vars ++ (' 
  $Id '-> n) &&'; 
  GEN<< #CHR(9)#CHR(9) @ 'st1.stmt = s' $next ' &&'; 
  GEN<< #CHR(9)#CHR(9) 'st1.direct_file = st.direct_file &&'; 
  GEN<< #CHR(9)#CHR(9) 'st1.current_clock = 
TO/next[st.current_clock] &&'; 
  GEN<< #CHR(9)#CHR(9) 'st1.last_cond_checked = 
st.last_cond_checked &&'; 
  GEN<< #CHR(9)#CHR(9) 'st1.influenced_by ='; 
  GEN<<; 
  GEN<< #CHR(9)#CHR(9)#CHR(9) '-- Part A, copy all dependencies for 
vars different from' $Id; 
  GEN<< #CHR(9)#CHR(9)#CHR(9) '{v: Variable, s: State | (v -> s) in 
st.influenced_by && v!=' $Id '}'; 
 
  IF $enclosing_cond_list -> 
  GEN<<; 
  GEN<< #CHR(9)#CHR(9)#CHR(9) '-- Part B, all states from 
last_cond_checked'; 
  GEN<< #CHR(9)#CHR(9)#CHR(9) '-- within which scope this 
assignment belongs'; 
  GEN<< #CHR(9)#CHR(9)#CHR(9) '+ (' $Id '-> {x: 
st.last_cond_checked | x.stmt in'; 
  #print_enclosing_conditions($enclosing_cond_list);  
  GEN<] '} )';  
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  GEN<<; 
  GEN<< #CHR(9)#CHR(9)#CHR(9) '-- Part C, copy dependencies for 
all variables participating in'; 
  GEN<< #CHR(9)#CHR(9)#CHR(9) '-- conditions within which scope 
this assignment belongs'; 
  GEN<< #CHR(9)#CHR(9)#CHR(9) '+ (' $Id '-> State.{ x: 
st.last_cond_checked,'; 
  GEN<< #CHR(9)#CHR(9)#CHR(9)#CHR(9) 'y: 
x.influenced_by[x.stmt.source] | x.stmt in'; 
 #print_enclosing_conditions($enclosing_cond_list);  
  GEN<] #CHR(9)#CHR(9)#CHR(9) '} )'; 
  FI; 
  GEN<< #CHR(9)#CHR(9) ')'/;; 
 
 
 <.type: $t:= Write_dev, 
   source: ( <.constant: $c .> ! <. var: $Id .> ), 
   subject_label: $al, 
   next: $next 
 .> 
 /GEN<< #CHR(9)#CHR(9) '-- ' $t; 
  GEN<< #CHR(9)#CHR(9) '( st1.access_label = st.access_label &&'; 
  GEN<< #CHR(9)#CHR(9) @ 'st1.stmt = s' $next ' &&'; 
  GEN<< #CHR(9)#CHR(9) 'st1.direct_file = st.direct_file &&'; 
  GEN<< #CHR(9)#CHR(9) 'st1.current_clock = 
TO/next[st.current_clock] &&'; 
  GEN<< #CHR(9)#CHR(9) 'st1.influenced_by = st.influenced_by &&'; 
  GEN<< #CHR(9)#CHR(9) 'st1.last_cond_checked = 
st.last_cond_checked'; 
  GEN<< #CHR(9)#CHR(9) ')'/;; 
 
 
 <.type:   $t:= Assign, 
   destination:  <. var: $Id  .>, 
   source:  ( <.var: $Id2 .> ! <.constant: $c .> ), 
   [ source_label:  ( <.var: $Id3 .> ! <.src_label: $sl .> ) 
], 
   next:  $next, 
   [ within_scope_of_cond: $enclosing_cond_list]  
 .> 
 /GEN<< #CHR(9)#CHR(9) '-- '; 
  IF ($Id3 OR $sl) -> GEN<] 'Trusted'; 
  ELSIF T -> GEN<] 'Regular'; FI; 
  GEN<] $t; 
  IF ($Id3 OR $sl) -> 
   GEN<< #CHR(9)#CHR(9) '( let xx = tsFilter[ st.vars[' $Id '], 
'; 
   IF $Id2 -> 
   GEN<] @ 'st.vars[' $Id2 '], '; 
   ELSIF  T  -> 
   GEN<] @ 'const' $c ', '; 
   FI; 
   IF $Id3 -> 
   GEN<] @ 'st.vars[' $Id3 '], '; 
   ELSIF  T  -> 
   GEN<] @ 'const0, '; 
   FI; 
   GEN<< #CHR(9)#CHR(9)#CHR(9) 'st.access_label[' $Id '], '; 
   IF $Id2 -> 
   GEN<] 'st.access_label[' $Id2 '], '; 
   ELSIF  T  -> 
   GEN<] 'SysLow, '; 
   FI; 
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   IF $Id3 -> 
   GEN<] 'st.access_label[' $Id3 ']] | ('; 
   ELSIF  T  -> 
   GEN<] $sl' ] | ('; 
   FI; 
  FI; 
  IF ($Id3 OR $sl) -> 
   GEN<< #CHR(9)#CHR(9)#CHR(9) 'st1.vars = st.vars ++ (' $Id '-> 
xx.val ) &&'; 
   GEN<< #CHR(9)#CHR(9)#CHR(9) 'st1.access_label = 
st.access_label ++ (' $Id '-> xx.label )'; 
   GEN<< #CHR(9)#CHR(9)#CHR(9) ') &&'; 
  ELSIF $Id2 -> 
   GEN<< #CHR(9)#CHR(9) '( st1.vars = st.vars ++ (' $Id '-> 
st.vars[' $Id2 '] ) &&'; 
   GEN<< #CHR(9)#CHR(9) 'st1.access_label = st.access_label ++ (' 
$Id '-> st.access_label[' $Id2 '] ) &&'; 
  ELSIF T -> 
   GEN<< #CHR(9)#CHR(9) '( st1.vars = st.vars ++ (' $Id @ '-> 
const' $c ' ) &&'; 
   GEN<< #CHR(9)#CHR(9) 'st1.access_label = st.access_label ++ (' 
$Id '-> SysLow ) &&'; 
  FI; 
  GEN<< #CHR(9)#CHR(9) @ 'st1.stmt = s' $next ' &&'; 
  GEN<< #CHR(9)#CHR(9) 'st1.direct_file = st.direct_file &&'; 
  GEN<< #CHR(9)#CHR(9) 'st1.current_clock = st.current_clock &&'; 
  GEN<< #CHR(9)#CHR(9) 'st1.last_cond_checked = 
st.last_cond_checked &&'; 
  GEN<< #CHR(9)#CHR(9) 'st1.influenced_by ='; 
  GEN<<; 
  GEN<< #CHR(9)#CHR(9)#CHR(9) '-- Part A, copy all dependencies for 
vars different from' $Id; 
  GEN<< #CHR(9)#CHR(9)#CHR(9) '{v: Variable, s: State | (v -> s) in 
st.influenced_by && v!=' $Id '}'; 
  GEN<<; 
  IF $Id3 -> 
   GEN<< #CHR(9)#CHR(9)#CHR(9) '-- and inherit all dependencies 
of the source_label' $Id3;  
   GEN<< #CHR(9)#CHR(9)#CHR(9) '+ (' $Id '-> st.influenced_by[' 
$Id3 '])'; 
  ELSIF $Id2 -> 
   GEN<< #CHR(9)#CHR(9)#CHR(9) '-- and inherit all dependencies 
of the right-hand part' $Id2;  
   GEN<< #CHR(9)#CHR(9)#CHR(9) '+ (' $Id '-> st.influenced_by[' 
$Id2 '])'; 
  FI; 
  
  IF $enclosing_cond_list -> 
  GEN<<; 
  GEN<< #CHR(9)#CHR(9)#CHR(9) '-- Part B, all states from 
last_cond_checked'; 
  GEN<< #CHR(9)#CHR(9)#CHR(9) '-- within which scope this 
assignment belongs'; 
  GEN<< #CHR(9)#CHR(9)#CHR(9) '+ (' $Id '-> {x: 
st.last_cond_checked | x.stmt in'; 
  #print_enclosing_conditions($enclosing_cond_list);  
  GEN<] '} )';  
  GEN<<; 
  GEN<< #CHR(9)#CHR(9)#CHR(9) '-- Part C, copy dependencies for 
all variables participating in'; 
  GEN<< #CHR(9)#CHR(9)#CHR(9) '-- conditions within which scope 
this assignment belongs'; 
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  GEN<< #CHR(9)#CHR(9)#CHR(9) '+ (' $Id '-> State.{ x: 
st.last_cond_checked,'; 
  GEN<< #CHR(9)#CHR(9)#CHR(9)#CHR(9) 'y: 
x.influenced_by[x.stmt.source] | x.stmt in'; 
  #print_enclosing_conditions($enclosing_cond_list);  
  GEN<] ' } )'; 
  FI; 
  GEN<< #CHR(9)#CHR(9) ')'/;; 
 
 
 <. type:  $t:= ( if ! while ), 
    cond:  $expr, 
    next_if_false: $next_if_false, 
    next_if_true:  $next_if_true, 
    stmt_num:  $stmt_num 
 .> 
 /GEN<< #CHR(9)#CHR(9) '-- ' $t; 
  GEN<< #CHR(9)#CHR(9) '( st1.access_label = st.access_label &&'; 
  GEN<< #CHR(9)#CHR(9) 'st1.vars = st.vars  &&'; 
  GEN<< #CHR(9)#CHR(9) 'st1.current_clock = st.current_clock  &&'; 
  GEN<< #CHR(9)#CHR(9) 'st1.direct_file = st.direct_file  &&'; 
  GEN<< #CHR(9)#CHR(9) 'st1.influenced_by = st.influenced_by &&'; 
  GEN<< #CHR(9)#CHR(9) @ 'st1.last_cond_checked = {x: 
st.last_cond_checked | x.stmt != s' $stmt_num '} + st &&'; 
  GEN<< #CHR(9)#CHR(9) '('; 
  #gen_expr($expr); 
  GEN<< #CHR(9)#CHR(9)#CHR(9) @ ' => st1.stmt = s' $next_if_true; 
  GEN<< #CHR(9)#CHR(9)#CHR(9) @ ' else st1.stmt = s' $next_if_false 
')'; 
  GEN<< #CHR(9)#CHR(9) ')'/;; 
 
 
 
 <.type:   $t:= GetDirectFile, 
     key:  ( <.var: $Id .> ! <.constant: $c .> ), 
     destination: <.var: $Id2 .>, 
   subject_label: $al, 
     next:  $next 
 .> 
 /GEN<< #CHR(9)#CHR(9) '-- ' $t; 
  GEN<< #CHR(9)#CHR(9) @ '( st1.stmt = s' $next ' &&'; 
  GEN<< #CHR(9)#CHR(9) '  st1.current_clock = 
TO/next[st.current_clock] &&'; 
  GEN<< #CHR(9)#CHR(9) '  st1.direct_file.keyContent = 
st.direct_file.keyContent  &&'; 
  GEN<< #CHR(9)#CHR(9) '  st1.direct_file.keyLabel = 
st.direct_file.keyLabel  &&'; 
  GEN<< #CHR(9)#CHR(9) '  st1.last_cond_checked = 
st.last_cond_checked &&'; 
  GEN<< #CHR(9)#CHR(9) '  st1.direct_file.full = 
st.direct_file.full &&'; 
 
  IF $Id -> 
    GEN<< #CHR(9)#CHR(9) '  ( (st.vars[' $Id '] in 
st.direct_file.keyContent.Value) =>' 
  ELSIF  T  -> 
    GEN<< #CHR(9)#CHR(9) @ '  ( (const' $c ' in 
st.direct_file.keyContent.Value) =>' 
  FI; 
 
  GEN<< #CHR(9)#CHR(9) '     -- the key is found'; 
  GEN<< #CHR(9)#CHR(9) '     ( st1.access_label = st.access_label 
++ (' $Id2 '-> ' $al ' ) &&'; 
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  GEN<< #CHR(9)#CHR(9) '       st1.vars = st.vars ++ '; 
  IF $Id -> 
    GEN<< #CHR(9)#CHR(9) '        (' $Id2 '-> 
st.direct_file.keyContent[st.vars[' $Id ']] ) &&'; 
  ELSIF  T  -> 
    GEN<< #CHR(9)#CHR(9) @ '        ( ' $Id2 ' -> 
st.direct_file.keyContent[const' $c '] ) &&'; 
  FI; 
 
  GEN<< #CHR(9)#CHR(9) '       st1.direct_file.success = const1 )'; 
  GEN<< #CHR(9)#CHR(9) '    else  -- the key is not found'; 
  GEN<< #CHR(9)#CHR(9) '     ( st1.vars = st.vars &&';  
  GEN<< #CHR(9)#CHR(9) '       st1.access_label = st.access_label 
&&'; 
  GEN<< #CHR(9)#CHR(9) '       st1.direct_file.success = const0 )'; 
  GEN<< #CHR(9)#CHR(9)   '  )'; 
  GEN<< #CHR(9)#CHR(9)   ')'/;; 
 
 
 <.type:   $t:= PutDirectFile, 
   key:  ( <.var: $Id  .> ! <.constant: $c  .> ), 
     source: ( <.var: $Id2 .> ! <.constant: $c2 .> ), 
   subject_label: $al, 
     next:  $next 
 .> 
 /GEN<< #CHR(9)#CHR(9) '-- ' $t; 
  GEN<< #CHR(9)#CHR(9) @ '( st1.stmt = s' $next ' &&'; 
  GEN<< #CHR(9)#CHR(9) '  st1.current_clock = 
TO/next[st.current_clock] &&'; 
  GEN<< #CHR(9)#CHR(9) '  st1.last_cond_checked = 
st.last_cond_checked &&'; 
  GEN<< #CHR(9)#CHR(9) '  st1.vars = st.vars &&';  
  GEN<< #CHR(9)#CHR(9) '  st1.access_label = st.access_label &&'; 
 
  IF $Id -> 
    GEN<< #CHR(9)#CHR(9) '  ( (st.vars[' $Id '] in 
st.direct_file.keyContent.Value) =>' 
  ELSIF  T  -> 
    GEN<< #CHR(9)#CHR(9) @ '  ( (const' $c ' in 
st.direct_file.keyContent.Value) =>' 
  FI; 
 
  GEN<< #CHR(9)#CHR(9) '     -- the key is found'; 
  GEN<< #CHR(9)#CHR(9) '       (st1.direct_file.success = const1 
&&'; 
 
  GEN<< #CHR(9)#CHR(9) '        st1.direct_file.keyContent = 
st.direct_file.keyContent ++'; 
  IF $Id -> 
    GEN<<  #CHR(9)#CHR(9)#CHR(9) '        (st.vars[' $Id '] -> 
'; 
  ELSIF  T  -> 
    GEN<<  #CHR(9)#CHR(9)#CHR(9) @ '        ( const' $c ' -> '; 
  FI; 
  IF $Id2 -> 
    GEN<]  'st.vars[' $Id2 ']) &&'; 
  ELSIF  T  -> 
    GEN<]  @ const $c2 ') &&'; 
  FI; 
 
  GEN<< #CHR(9)#CHR(9) '        st1.direct_file.keyLabel = 
st.direct_file.keyLabel ++';  
  IF $Id -> 
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    GEN<<  #CHR(9)#CHR(9)#CHR(9) '        (st.vars[' $Id '] -> 
'; 
  ELSIF  T  -> 
    GEN<<  #CHR(9)#CHR(9)#CHR(9) @ '        ( const' $c ' -> '; 
  FI; 
  GEN<] $al ' ) &&'; 
  GEN<< #CHR(9)#CHR(9) '        -- since key already existed, full 
remains the same'; 
  GEN<< #CHR(9)#CHR(9) '        st1.direct_file.full = 
st.direct_file.full'; 
  GEN<< #CHR(9)#CHR(9) '       )'; 
  GEN<< #CHR(9)#CHR(9) '      else -- the key is not found'; 
  GEN<< #CHR(9)#CHR(9) '       ( st.direct_file.full = const0 =>   
-- Direct File not Full'; 
 
  GEN<< #CHR(9)#CHR(9) '        ( st1.direct_file.keyContent = 
st.direct_file.keyContent ++'; 
  IF $Id -> 
    GEN<<  #CHR(9)#CHR(9)#CHR(9) '        (st.vars[' $Id '] -> 
'; 
  ELSIF  T  -> 
    GEN<<  #CHR(9)#CHR(9)#CHR(9) @ '        ( const' $c ' -> '; 
  FI; 
  IF $Id2 -> 
    GEN<]  'st.vars[' $Id2 ']) &&'; 
  ELSIF  T  -> 
    GEN<]  @ const $c2 ') &&'; 
  FI; 
 
  GEN<< #CHR(9)#CHR(9) '          st1.direct_file.keyLabel = 
st.direct_file.keyLabel ++';  
  IF $Id -> 
    GEN<<  #CHR(9)#CHR(9)#CHR(9) '        (st.vars[' $Id '] -> 
'; 
  ELSIF  T  -> 
    GEN<<  #CHR(9)#CHR(9)#CHR(9) @ '        ( const' $c ' -> '; 
  FI; 
  GEN<] $al ' ) &&'; 
  GEN<< #CHR(9)#CHR(9) '          st1.direct_file.success = const1 
&&'; 
  GEN<< #CHR(9)#CHR(9) '          -- if content limit reached, set 
full to const1 (true)'; 
  GEN<< #CHR(9)#CHR(9) '          (#st1.direct_file.keyContent = 
st1.direct_file.max_slots => '; 
  GEN<< #CHR(9)#CHR(9) '             st1.direct_file.full = const1 
else st1.direct_file.full = const0)'; 
  GEN<< #CHR(9)#CHR(9) '         )'; 
  GEN<< #CHR(9)#CHR(9) '         else  -- Direct File is Full'; 
  GEN<< #CHR(9)#CHR(9) '          (st1.direct_file = st.direct_file 
&&'; 
  GEN<< #CHR(9)#CHR(9) '           st1.direct_file.success = const0 
&&'; 
  GEN<< #CHR(9)#CHR(9) '           -- assign full to const1 
(true)'; 
  GEN<< #CHR(9)#CHR(9) '           st1.direct_file.full = const1)'; 
  GEN<< #CHR(9)#CHR(9) '       )'; 
  GEN<< #CHR(9)#CHR(9) '   )'; 
  GEN<< #CHR(9)#CHR(9) ' )'/;; 
 
 
 <.type:  $t:= GetClock, 
   destination: <.var: $Id .>, 
   subject_label: $al, 
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   next:  $next .> 
 /GEN<< #CHR(9)#CHR(9) '-- ' $t; 
  GEN<< #CHR(9)#CHR(9) '( st1.access_label = st.access_label ++ (' 
$Id '-> ' $al ' ) &&'; 
  GEN<< #CHR(9)#CHR(9) 'st1.vars = st.vars ++ (' $Id @ '-> 
st.current_clock ) &&'; 
  GEN<< #CHR(9)#CHR(9) @ 'st1.stmt = s' $next ' &&'; 
  GEN<< #CHR(9)#CHR(9) 'st1.direct_file = st.direct_file &&'; 
  GEN<< #CHR(9)#CHR(9) 'st1.current_clock = st.current_clock &&'; 
  GEN<< #CHR(9)#CHR(9) 'st1.last_cond_checked = 
st.last_cond_checked'; 
  GEN<< #CHR(9)#CHR(9) ')'/;; 
 
 
 <. type: $t:= Stop .> 
 /GEN<< #CHR(9)#CHR(9) '-- ' $t; 
  GEN<< #CHR(9)#CHR(9) '( st1.stmt = st.stmt )'/;; 
 
 <. type: $t .> /GEN<< #CHR(9)#CHR(9) '******' stmt type $t not yet 
implemented '******'/ 
 
## 
 
#print_enclosing_conditions 
 /$plus:= ' '/ 
 (. (* $c /GEN<] @ $plus 'S' $c; $plus:= '+'/ *) .) 
## 
---------------------------------------------------------  
#gen_expr 
 
 <. flag: $f .>/GEN<] @ 'st.direct_file.'$f' '/;; 
 
 <. bool: $b .> 
 /IF $b = True -> 
    GEN<] 'const1'; 
  ELSIF $b = False -> 
    GEN<] 'const0'; 
  FI/;; 
 
 <. var: $Id .>/GEN<] 'st.vars[' $Id ']'/;; 
 
 <. constant: $Num .> /GEN<] @ const $Num/;; 
 
 <. op:    $op:= ( or ! and ! '=' ), 
    arg1:  /GEN<] '('/ #gen_expr /GEN<] $op/, 
    arg2:  #gen_expr /GEN<] ')'/ 
 .> ;; 
 
 <. op:    '<', 
    arg1: /GEN<< #CHR(9) #CHR(9) #CHR(9) '(('/ #gen_expr, 
    arg2: /GEN<] '->'/ #gen_expr 
 .> 
 /GEN<] ') in LT.lt)'/;; 
 
 <. op:    '>', 
    arg2: /GEN<< #CHR(9) #CHR(9) #CHR(9)  '(('/ #gen_expr, 
    arg1: /GEN<] '->'/ #gen_expr 
 .> 
 /GEN<] ') in LT.lt)'/;; 
 
 <. op:    '<=', 
    arg1: /GEN<< #CHR(9) #CHR(9) #CHR(9) '(('/ #gen_expr, 
    arg2: /GEN<] '->'/ #gen_expr /GEN<] ') in LT.lt or'/, 
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    arg1:  #gen_expr, 
    arg2: /GEN<] '='/ #gen_expr /GEN<] ')'/ 
 .>;; 
 
 <. op:    '>=', 
    arg2: /GEN<< #CHR(9) #CHR(9) #CHR(9) '(('/ #gen_expr, 
    arg1: /GEN<] '->'/ #gen_expr /GEN<] ') in LT.lt or'/, 
    arg1:  #gen_expr, 
    arg2: /GEN<] '='/ #gen_expr /GEN<] ')'/ 
 .>;; 
 
 <. op:    Before, 
    arg1: /GEN<< #CHR(9) #CHR(9) #CHR(9) '(('/ #gen_expr, 
    arg2: /GEN<] '->'/ #gen_expr 
 .> 
 /GEN<] ') in Clock.before)'/;; 
 
 <. op:    LongBefore, 
    arg1: /GEN<< #CHR(9) #CHR(9) #CHR(9) '(('/ #gen_expr, 
    arg2: /GEN<] '->'/ #gen_expr 
 .> 
 /GEN<] ') in Clock.long_before)'/;; 
 
 <. op: 'not' /GEN<< #CHR(9)  #CHR(9)  #CHR(9)  'not ('/, 
    arg: #gen_expr  /GEN<] ')'/  
 .>;; 
 
 $e /GEN<< #CHR(9) '***' expression #show_expr($e) not implemented 
'***'/ 
 
## 
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APPENDIX B.1 – GENERATED DM FOR BASE PROGRAM 
EXAMPLE 1 

This appendix provides complete code for the overt control dependency flaw 

example base program and resultant DM described in Chapter VI - “Example DM 

Implementations.”  The DM below is generated by the DM-Compiler from the following 

base program: 
(s1) Read_dev (SysHigh, x1); 
(s2) if x1 = 0 then  
(s3)    x2:= 0; 
(s4) else x2:= 1; 
(s5) Write_dev (SysLow, x2); 
(s6) Stop; 

 

The Alloy specification for the DM follows: 
/********************************************************************/ 
module static_model 
open util/ordering[Time] as TO 
/********************************************************************/ 
 
/**************************/  
/** DM Invariant Model **/  
/**************************/  
 
sig Statement { 
 type:   Stmt_type, 
 destination: lone Variable, 
 source:  set Variable + Value, 
 source_label: lone (AccessLabel + Variable), 
 key:   lone (Variable + Value), 
 subject_label: lone AccessLabel 
} 
 
enum Stmt_type { 
 Assign, Condition, 
 Read_dev, Write_dev,  
 GetDirectFile, PutDirectFile, 
 GetClock, Stop  
} 
 
-- define access labels based on security policy lattice 
enum AccessLabel { SysHigh, SysMid, SysLow } 
 
-- define a Policy signature to allow BLP-style info flows 
one sig Policy { 
 ord: AccessLabel -> AccessLabel 
} 
{ ord = ^( (SysLow -> SysMid)  
   + (SysMid -> SysHigh) ) 
   + (iden & (AccessLabel -> AccessLabel) ) 
} 
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sig State { 
 stmt:  Statement, -- next stmt to execute 
 vars:  Variable -> one (Value + Time), -- variable table 
 access_label:  Variable -> one AccessLabel, 
 direct_file:  DirectFile, -- current snapshot 
 current_clock:  Time, 
 prev_state:  lone State, 
 err_msg:  lone Error, 
 influenced_by:  Variable -> State, 
 last_cond_checked: set State, 
} 
{ -- define error conditions 
 ( err_msg = InfoFlow_error <=> 
  not consistent_with_FlowPolicy [this] ) && 
 ( err_msg = Overt_flaw_detected <=> 
  dependency_flaw_found[this] ) && 
 ( err_msg = Storage_channel_detected <=> 
  storage_channel_found[this] ) && 
 ( err_msg = Timing_channel_detected <=> 
  timing_channel_found[this] )   
} 
 
-- Signature for error types 
enum Error { 
 InfoFlow_error, 
 Overt_flaw_detected, 
 Storage_channel_detected, 
 Timing_channel_detected  
} 
 
------------------------------------------------------------------- 
-- Initialization of State signature: all variables initially have 0 
--  value and SysLow label, and DirectFile is empty 
one sig InitialState extends State {} 
{  
 vars = (Variable -> const0)  
 access_label = (Variable -> SysLow)  
 stmt = S1  
 direct_file.full = const0 
 direct_file.success =const1 
 current_clock = TO/first[] 
 prev_state =  none 
 err_msg =  none 
 last_cond_checked = none 
 no influenced_by  
 no direct_file.keyContent 
 no direct_file.keyLabel 
} 
 
-- Sig establishes ordering of States in a program execution 
one sig State_order { 
 st_after: State -> State 
} 
{ st_after = ^ prev_state 
} 
 
-- a "Stop" State cannot precede another State 
fact { all s: State | s.prev_state.stmt.type != Stop } 
 
-- no two States can be identical 
fact { no disj st1, st2: State |  
 (st1.stmt = st2.stmt  && 
  st1.prev_state = st2.prev_state && 
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  st1.vars = st2.vars && 
  st1.direct_file = st2.direct_file) 
} 
 
------------------------------------------------------------------- 
sig DirectFile { 
 -- each key Value is assigned a content Value and AccessLabel 
 keyContent: Value -> lone Value, 
 keyLabel: Value -> lone AccessLabel, 
 last_written: lone AccessLabel, 
 full:   (const0 + const1), 
 success:  (const0 + const1), 
 max_slots: Int 
} 
{  max_slots = 2     -- capacity limited to 2 key locations 
} 
 
------------------------------------------------------------------- 
sig Time {} 
 
one sig Clock { 
 before:   Time -> Time, 
 long_before: Time -> Time 
} 
{ long_before in before && 
 all t1: Time, t2: Time - t1 | 
 ((t1->t2) in before <=> t2 in TO/nexts[t1]) && 
 ((t1->t2) in long_before <=> some t3: Time | 
  (t3 in before[t1] && t3 in before.t2))  
} 
 
------------------------------------------------------------------- 
-- Alloy signature used for passing results of tsFilter function  
sig FTuple { 
 val: Value, 
 label: AccessLabel 
} 
 
fact { all v: Value, a: AccessLabel | one f: FTuple |  
 f.val=v && f.label=a } 
 
------------------------------------------------------------------- 
-- Functions, Facts, Assertions and Predicates for info flow security 
--  policy and security rules 
------------------------------------------------------------------- 
-- The tsFilter function defines the semantics of the Trusted Subj 
--  Assignment statement, by enabling a TS to act as a Content  
--  or Label Filter. 
-- Different invariant models may define different filter functions, 
--  depending on the TS semantics that must be demonstrated. 
fun tsFilter[dv, s1v, s2v: Value,  
              da, s1a, s2a: AccessLabel]: FTuple { 
{ result: FTuple | { 
    result.val = (((s1v->const0) in LT.lt)  
        => const0 else s1v) 
    result.label = (((da->s2a) in Policy.ord) 
        => s2a else 
      (((s2a->SysMid) in Policy.ord) 
        => SysMid else s2a)) }  
} } 
 
------------------------------------------------------------------- 
-- Security assertion to verify program abides by all security rules 



 118

--  assert verify_security { 
 all s: State |  
  consistent_with_FlowPolicy [s] &&  
  not dependency_flaw_found [s] && 
  not storage_channel_found [s] && 
  not timing_channel_found [s] 
} 
 
------------------------------------------------------------------- 
-- Define how statements abide by info flow policy 
assert verify_flow_policy { 
 all s: State | consistent_with_FlowPolicy[s] } 
 
pred consistent_with_FlowPolicy [s: State] { 
 let stm = s.stmt | { 
  -- for Write_dev or PutDirectFile statement 
  (stm.type in (Write_dev + PutDirectFile) && 
   stm.source in Variable) 
  => ((s.access_label[stm.source] -> stm.subject_label) 
    in Policy.ord)  
 } 
} 
 
------------------------------------------------------------------- 
-- Verify no overt control dependency flaw found in current State 
 
assert verify_no_dependency_flaw { 
 all s: State | not dependency_flaw_found[s] } 
 
-- Define conditions under which a control dependency flaw could 
--  exist; checks for a Write, where source in the current state is 
--  influenced_by State with higher label in required access. 
--  Assertion uses dynamic slicing techniques. 
pred dependency_flaw_found [s: State] { 
 let stm = s.stmt, s1 = s.influenced_by[stm.source] | { 
  stm.type = Write_dev  && 
  stm.source in Variable &&  
  -- check if Write_dev source was influenced_by a var  
  --  higher than subject 
  not ((s1.access_label[s1.stmt.source] -> stm.subject_label) 
     in Policy.ord) 
 } 
} 
 
------------------------------------------------------------------- 
-- Verify no storage covert channels found in current State 
 
assert verify_no_storage_channel { 
 all s: State | 
  not storage_channel_found[s] } 
 
-- Define conditions under which a storage channel could exist icw 
--  a PutDirectFile 
pred storage_channel_found [s: State] { 
 let stm = s.stmt | { 
  stm.type = PutDirectFile && 
  s.direct_file.full = const1 && 
  -- check if direct file was last written by a higher subject 
  not ((s.direct_file.last_written -> stm.subject_label) 
   in Policy.ord) 
 } 
} 
 



 119

------------------------------------------------------------------- 
-- Verify no timing covert channels found in current State 
 
assert verify_no_timing_channel { 
 all s: State | not timing_channel_found[s] } 
 
-- Define conditions under which a timing channel could exist 
pred timing_channel_found [gc2: State] { 
 some disj rw, gc1: State | { 
  (gc2 -> rw) in State_order.st_after && 
  (rw -> gc1) in State_order.st_after && 
  gc1.stmt.type = GetClock && 
  gc2.stmt.type = GetClock && 
  rw.stmt.type in (Read_dev + Write_dev  
   + PutDirectFile + GetDirectFile) && 
  -- check if GetClocks are at same level 
  gc1.stmt.subject_label = gc2.stmt.subject_label && 
  -- check if Read/Write/DirectFile operation at  
  --  higher level than GetClock 
  not ((rw.stmt.subject_label -> gc2.stmt.subject_label)  
   in Policy.ord) 
 } 
} 
 
------------------------------------------------------------------- 
-- Find a consistent instance of this model 
pred show () {} 
------------------------------------------------------------------- 
/********************************/  
/** DM Implementation Model **/  
/********************************/  
-- The base program is below. Total of 6 statements  
-- (S1)   Read_dev ( SysHigh ,  x1 );  
-- (S2)   if ( x1 = 0 )  then  
-- (S3)    x2 := 0 ;  
--    else  
-- (S4)    x2 := 1 ;  
-- (S5)   Write_dev ( SysLow ,  x2 );  
-- (S6)   Stop;  
 
-------------------------  
/*** Statement sigs ***/  
-------------------------  
one sig S1 extends Statement {}  
{  
  type = Read_dev  
  destination = x1  
  source = none  
  source_label = none  
  key = none  
  subject_label =  SysHigh  
}  
 
one sig S3 extends Statement {}  
{  
  type = Assign  
  source = const0 
  destination = x2  
  source_label = none  
  key = none  
}  
 
one sig S4 extends Statement {}  



 120

{  
  type = Assign  
  source = const1 
  destination = x2  
  source_label = none  
  key = none  
}  
 
one sig S2 extends Statement {}  
{  
  type = Condition  
  source =   x1  
  destination = none  
  source_label = none  
  key = none  
}  
 
one sig S5 extends Statement {}  
{  
  type = Write_dev  
  source = x2  
  destination = none  
  source_label = none  
  key = none  
  subject_label =  SysLow  
}  
 
one sig S6 extends Statement {}  
{  
  type = Stop  
  source = none  
  destination = none  
  source_label = none  
  key = none  
}  
 
--------------------------------  
/*** Variables & Constants ***/  
--------------------------------  
enum Variable {  
  x1, x2 
 }  
 
enum Value {  
   const_minus_3, const_minus_2, const0, const1 
  , const2, const3 
 }  
 
one sig LT {   lt:  Value -> Value }  
{  lt = ^(  
    (  const_minus_3   ->   const_minus_2)  
  + (  const_minus_2   ->   const0)  
  + (  const0   ->   const1)  
  + (  const1   ->   const2)  
  + (  const2   ->   const3)  
) }  
 
------------------------------------  
/*** State Transition Predicate ***/  
------------------------------------  
fact trans {  
  all st1: State - InitialState | some st: State |  
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  ( st.stmt = S1 &&  
    st1.prev_state = st &&  
    --  Read_dev  
    ( st1.access_label = st.access_label ++ ( x1 ->  SysHigh  ) &&  
    some n: Value | st1.vars = st.vars ++ ( x1 -> n) &&  
    st1.stmt = S2 && 
    st1.direct_file = st.direct_file &&  
    st1.current_clock = TO/next[st.current_clock] &&  
    st1.last_cond_checked = st.last_cond_checked &&  
    st1.influenced_by =  
 
      -- Part A, copy all dependencies for vars different from x1  
      {v: Variable, s: State | (v -> s) in st.influenced_by && 
v!= x1 }  
    )  
  ) or  
 
  ( st.stmt = S3 &&  
    st1.prev_state = st &&  
    --  Regular Assign  
    ( st1.vars = st.vars ++ ( x2 -> const0 ) && 
    st1.access_label = st.access_label ++ ( x2 -> SysLow ) &&  
    st1.stmt = S5 && 
    st1.direct_file = st.direct_file &&  
    st1.current_clock = st.current_clock &&  
    st1.last_cond_checked = st.last_cond_checked &&  
    st1.influenced_by =  
 
      -- Part A, copy all dependencies for vars different from x2  
      {v: Variable, s: State | (v -> s) in st.influenced_by && 
v!= x2 }  
 
 
      -- Part B, all states from last_cond_checked  
      -- within which scope this assignment belongs  
      + ( x2 -> {x: st.last_cond_checked | x.stmt in  S2} )  
 
      -- Part C, copy dependencies for all variables 
participating in  
      -- conditions within which scope this assignment belongs  
      + ( x2 -> State.{ x: st.last_cond_checked,  
        y: x.influenced_by[x.stmt.source] | x.stmt in  S2 } )  
    )  
  ) or  
 
  ( st.stmt = S4 &&  
    st1.prev_state = st &&  
    --  Regular Assign  
    ( st1.vars = st.vars ++ ( x2 -> const1 ) && 
    st1.access_label = st.access_label ++ ( x2 -> SysLow ) &&  
    st1.stmt = S5 && 
    st1.direct_file = st.direct_file &&  
    st1.current_clock = st.current_clock &&  
    st1.last_cond_checked = st.last_cond_checked &&  
    st1.influenced_by =  
 
      -- Part A, copy all dependencies for vars different from x2  
      {v: Variable, s: State | (v -> s) in st.influenced_by && 
v!= x2 }  
 
 
      -- Part B, all states from last_cond_checked  
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      -- within which scope this assignment belongs  
      + ( x2 -> {x: st.last_cond_checked | x.stmt in  S2} )  
 
      -- Part C, copy dependencies for all variables 
participating in  
      -- conditions within which scope this assignment belongs  
      + ( x2 -> State.{ x: st.last_cond_checked,  
        y: x.influenced_by[x.stmt.source] | x.stmt in  S2 } )  
    )  
  ) or  
 
  ( st.stmt = S2 &&  
    st1.prev_state = st &&  
    --  if  
    ( st1.access_label = st.access_label &&  
    st1.vars = st.vars  &&  
    st1.current_clock = st.current_clock  &&  
    st1.direct_file = st.direct_file  &&  
    st1.influenced_by = st.influenced_by &&  
    st1.last_cond_checked = {x: st.last_cond_checked | x.stmt != 
S2} + st && 
    ( ( st.vars[ x1 ] = const0)  
       => st1.stmt = S3 
       else st1.stmt = S4) 
    )  
  ) or  
 
  ( st.stmt = S5 &&  
    st1.prev_state = st &&  
    --  Write_dev  
    ( st1.access_label = st.access_label &&  
    st1.stmt = S6 && 
    st1.direct_file = st.direct_file &&  
    st1.current_clock = TO/next[st.current_clock] &&  
    st1.influenced_by = st.influenced_by &&  
    st1.last_cond_checked = st.last_cond_checked  
    )  
  ) or  
 
  ( st.stmt = S6 &&  
    st1.prev_state = st &&  
    --  Stop  
    ( st1.stmt = st.stmt )  
  )  
}  
--------------------------  
run show for 7 but 18 FTuple  
check verify_security for 7 but 18 FTuple  
check verify_flow_policy for 7 but 18 FTuple  
check verify_no_dependency_flaw for 7 but 18 FTuple  
check verify_no_storage_channel for 7 but 18 FTuple  
check verify_no_timing_channel for 7 but 18 FTuple  
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APPENDIX B.2 – GENERATED DM FOR BASE PROGRAM 
EXAMPLE 2 

This appendix provides complete code for the timing covert channel example base 

program and resultant DM described in Chapter VI - “Example DM Implementations.”  

The DM below is generated by the DM-Compiler from the following base program: 
(s1) Read_dev (SysHigh, x1); 
(s2) GetClock (SysLow, t1); 
(s3) if x1 < 0 then 
(s4)    PutDirectFile (SysHigh, 1, x1); 
(s5) GetClock(SysLow, t2); 
(s6) if t1 Before t2 then 
(s7)    Write_dev (SysLow, 1); 
(s8) else Write_dev (SysLow, 0); 
(s9) Stop; 

 

The Alloy specification for the DM follows: 
/********************************************************************/ 
module static_model 
open util/ordering[Time] as TO 
/********************************************************************/ 
 
/**************************/  
/** DM Invariant Model **/  
/**************************/  
 
sig Statement { 
 type:   Stmt_type, 
 destination: lone Variable, 
 source:  set Variable + Value, 
 source_label: lone (AccessLabel + Variable), 
 key:   lone (Variable + Value), 
 subject_label: lone AccessLabel 
} 
 
enum Stmt_type { 
 Assign, Condition, 
 Read_dev, Write_dev,  
 GetDirectFile, PutDirectFile, 
 GetClock, Stop  
} 
 
-- define access labels based on security policy lattice 
enum AccessLabel { SysHigh, SysMid, SysLow } 
 
-- define a Policy signature to allow BLP-style info flows 
one sig Policy { 
 ord: AccessLabel -> AccessLabel 
} 
{ ord = ^( (SysLow -> SysMid)  
   + (SysMid -> SysHigh) ) 
   + (iden & (AccessLabel -> AccessLabel) ) 
} 
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sig State { 
 stmt:  Statement, -- next stmt to execute 
 vars:  Variable -> one (Value + Time), -- variable table 
 access_label:  Variable -> one AccessLabel, 
 direct_file:  DirectFile, -- current snapshot 
 current_clock:  Time, 
 prev_state:  lone State, 
 err_msg:  lone Error, 
 influenced_by:  Variable -> State, 
 last_cond_checked: set State, 
} 
{ -- define error conditions 
 ( err_msg = InfoFlow_error <=> 
  not consistent_with_FlowPolicy [this] ) && 
 ( err_msg = Overt_flaw_detected <=> 
  dependency_flaw_found[this] ) && 
 ( err_msg = Storage_channel_detected <=> 
  storage_channel_found[this] ) && 
 ( err_msg = Timing_channel_detected <=> 
  timing_channel_found[this] )   
} 
 
-- Signature for error types 
enum Error { 
 InfoFlow_error, 
 Overt_flaw_detected, 
 Storage_channel_detected, 
 Timing_channel_detected  
} 
 
------------------------------------------------------------------- 
-- Initialization of State signature: all variables initially have 0 
--  value and SysLow label, and DirectFile is empty 
one sig InitialState extends State {} 
{  
 vars = (Variable -> const0)  
 access_label = (Variable -> SysLow)  
 stmt = S1  
 direct_file.full = const0 
 direct_file.success =const1 
 current_clock = TO/first[] 
 prev_state =  none 
 err_msg =  none 
 last_cond_checked = none 
 no influenced_by  
 no direct_file.keyContent 
 no direct_file.keyLabel 
} 
 
-- Sig establishes ordering of States in a program execution 
one sig State_order { 
 st_after: State -> State 
} 
{ st_after = ^ prev_state 
} 
 
-- a "Stop" State cannot precede another State 
fact { all s: State | s.prev_state.stmt.type != Stop } 
 
-- no two States can be identical 
fact { no disj st1, st2: State |  
 (st1.stmt = st2.stmt  && 
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  st1.prev_state = st2.prev_state && 
  st1.vars = st2.vars && 
  st1.direct_file = st2.direct_file) 
} 
 
------------------------------------------------------------------- 
sig DirectFile { 
 -- each key Value is assigned a content Value and AccessLabel 
 keyContent: Value -> lone Value, 
 keyLabel: Value -> lone AccessLabel, 
 last_written: lone AccessLabel, 
 full:   (const0 + const1), 
 success:  (const0 + const1), 
 max_slots: Int 
} 
{  max_slots = 2     -- capacity limited to 2 key locations 
} 
 
------------------------------------------------------------------- 
sig Time {} 
 
one sig Clock { 
 before:   Time -> Time, 
 long_before: Time -> Time 
} 
{ long_before in before && 
 all t1: Time, t2: Time - t1 | 
 ((t1->t2) in before <=> t2 in TO/nexts[t1]) && 
 ((t1->t2) in long_before <=> some t3: Time | 
  (t3 in before[t1] && t3 in before.t2))  
} 
 
------------------------------------------------------------------- 
-- Alloy signature used for passing results of tsFilter function  
sig FTuple { 
 val: Value, 
 label: AccessLabel 
} 
 
fact { all v: Value, a: AccessLabel | one f: FTuple |  
 f.val=v && f.label=a } 
 
------------------------------------------------------------------- 
-- Functions, Facts, Assertions and Predicates for info flow security 
--  policy and security rules 
------------------------------------------------------------------- 
-- The tsFilter function defines the semantics of the Trusted Subj 
--  Assignment statement, by enabling a TS to act as a Content  
--  or Label Filter. 
-- Different invariant models may define different filter functions, 
--  depending on the TS semantics that must be demonstrated. 
fun tsFilter[dv, s1v, s2v: Value,  
              da, s1a, s2a: AccessLabel]: FTuple { 
{ result: FTuple | { 
    result.val = (((s1v->const0) in LT.lt)  
        => const0 else s1v) 
    result.label = (((da->s2a) in Policy.ord) 
        => s2a else 
      (((s2a->SysMid) in Policy.ord) 
        => SysMid else s2a)) }  
} } 
 
------------------------------------------------------------------- 
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-- Security assertion to verify program abides by all security rules 
--  assert verify_security { 
 all s: State |  
  consistent_with_FlowPolicy [s] &&  
  not dependency_flaw_found [s] && 
  not storage_channel_found [s] && 
  not timing_channel_found [s] 
} 
 
------------------------------------------------------------------- 
-- Define how statements abide by info flow policy 
assert verify_flow_policy { 
 all s: State | consistent_with_FlowPolicy[s] } 
 
pred consistent_with_FlowPolicy [s: State] { 
 let stm = s.stmt | { 
  -- for Write_dev or PutDirectFile statement 
  (stm.type in (Write_dev + PutDirectFile) && 
   stm.source in Variable) 
  => ((s.access_label[stm.source] -> stm.subject_label) 
    in Policy.ord)  
 } 
} 
 
------------------------------------------------------------------- 
-- Verify no overt control dependency flaw found in current State 
 
assert verify_no_dependency_flaw { 
 all s: State | not dependency_flaw_found[s] } 
 
-- Define conditions under which a control dependency flaw could 
--  exist; checks for a Write, where source in the current state is 
--  influenced_by State with higher label in required access. 
--  Assertion uses dynamic slicing techniques. 
pred dependency_flaw_found [s: State] { 
 let stm = s.stmt, s1 = s.influenced_by[stm.source] | { 
  stm.type = Write_dev  && 
  stm.source in Variable &&  
  -- check if Write_dev source was influenced_by a var  
  --  higher than subject 
  not ((s1.access_label[s1.stmt.source] -> stm.subject_label) 
     in Policy.ord) 
 } 
} 
 
------------------------------------------------------------------- 
-- Verify no storage covert channels found in current State 
 
assert verify_no_storage_channel { 
 all s: State | 
  not storage_channel_found[s] } 
 
-- Define conditions under which a storage channel could exist icw 
--  a PutDirectFile 
pred storage_channel_found [s: State] { 
 let stm = s.stmt | { 
  stm.type = PutDirectFile && 
  s.direct_file.full = const1 && 
  -- check if direct file was last written by a higher subject 
  not ((s.direct_file.last_written -> stm.subject_label) 
   in Policy.ord) 
 } 
} 
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------------------------------------------------------------------- 
-- Verify no timing covert channels found in current State 
 
assert verify_no_timing_channel { 
 all s: State | not timing_channel_found[s] } 
 
-- Define conditions under which a timing channel could exist 
pred timing_channel_found [gc2: State] { 
 some disj rw, gc1: State | { 
  (gc2 -> rw) in State_order.st_after && 
  (rw -> gc1) in State_order.st_after && 
  gc1.stmt.type = GetClock && 
  gc2.stmt.type = GetClock && 
  rw.stmt.type in (Read_dev + Write_dev  
   + PutDirectFile + GetDirectFile) && 
  -- check if GetClocks are at same level 
  gc1.stmt.subject_label = gc2.stmt.subject_label && 
  -- check if Read/Write/DirectFile operation at  
  --  higher level than GetClock 
  not ((rw.stmt.subject_label -> gc2.stmt.subject_label)  
   in Policy.ord) 
 } 
} 
 
------------------------------------------------------------------- 
-- Find a consistent instance of this model 
pred show () {} 
------------------------------------------------------------------- 
/********************************/  
/** DM Implementation Model **/  
/********************************/  
-- The base program is below. Total of 9 statements  
-- (S1)   Read_dev ( SysHigh ,  x1 );  
-- (S2)   GetClock ( SysLow ,  t1 );  
-- (S3)   if ( x1 < 0 )  then  
-- (S4)    PutDirectFile ( SysHigh ,  1 , x1 );  
-- (S5)   GetClock ( SysLow ,  t2 );  
-- (S6)   if ( t1 Before t2 )  then  
-- (S7)    Write_dev ( SysLow ,  1 );  
--    else  
-- (S8)    Write_dev ( SysLow ,  0 );  
-- (S9)   Stop;  
 
-------------------------  
/*** Statement sigs ***/  
-------------------------  
one sig S1 extends Statement {}  
{  
  type = Read_dev  
  destination = x1  
  source = none  
  source_label = none  
  key = none  
  subject_label =  SysHigh  
}  
 
one sig S2 extends Statement {}  
{  
  type = GetClock  
  destination = t1  
  source = none  
  source_label = none  



 128

  key = none  
  subject_label =  SysLow  
}  
 
one sig S4 extends Statement {}  
{  
  type = PutDirectFile  
  source = x1  
  key = const1 
  destination = none  
  source_label = none  
  subject_label =  SysHigh  
}  
 
one sig S3 extends Statement {}  
{  
  type = Condition  
  source =   x1  
  destination = none  
  source_label = none  
  key = none  
}  
 
one sig S5 extends Statement {}  
{  
  type = GetClock  
  destination = t2  
  source = none  
  source_label = none  
  key = none  
  subject_label =  SysLow  
}  
 
one sig S7 extends Statement {}  
{  
  type = Write_dev  
  source = const1 
  destination = none  
  source_label = none  
  key = none  
  subject_label =  SysLow  
}  
 
one sig S8 extends Statement {}  
{  
  type = Write_dev  
  source = const0 
  destination = none  
  source_label = none  
  key = none  
  subject_label =  SysLow  
}  
 
one sig S6 extends Statement {}  
{  
  type = Condition  
  source =   t1 + t2  
  destination = none  
  source_label = none  
  key = none  
}  
 
one sig S9 extends Statement {}  
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{  
  type = Stop  
  source = none  
  destination = none  
  source_label = none  
  key = none  
}  
 
--------------------------------  
/*** Variables & Constants ***/  
--------------------------------  
enum Variable {  
  x1, t1, t2 
 }  
 
enum Value {  
   const_minus_4, const_minus_3, const_minus_2, const0 
  , const1, const2, const3, const4 
   
 }  
 
one sig LT {   lt:  Value -> Value }  
{  lt = ^(  
    (  const_minus_4   ->   const_minus_3)  
  + (  const_minus_3   ->   const_minus_2)  
  + (  const_minus_2   ->   const0)  
  + (  const0   ->   const1)  
  + (  const1   ->   const2)  
  + (  const2   ->   const3)  
  + (  const3   ->   const4)  
) }  
 
------------------------------------  
/*** State Transition Predicate ***/  
------------------------------------  
fact trans {  
  all st1: State - InitialState | some st: State |  
   
 
  ( st.stmt = S1 &&  
    st1.prev_state = st &&  
    --  Read_dev  
    ( st1.access_label = st.access_label ++ ( x1 ->  SysHigh  ) &&  
    some n: Value | st1.vars = st.vars ++ ( x1 -> n) &&  
    st1.stmt = S2 && 
    st1.direct_file = st.direct_file &&  
    st1.current_clock = TO/next[st.current_clock] &&  
    st1.last_cond_checked = st.last_cond_checked &&  
    st1.influenced_by =  
 
      -- Part A, copy all dependencies for vars different from x1  
      {v: Variable, s: State | (v -> s) in st.influenced_by && 
v!= x1 }  
    )  
  ) or  
 
  ( st.stmt = S2 &&  
    st1.prev_state = st &&  
    --  GetClock  
    ( st1.access_label = st.access_label ++ ( t1 ->  SysLow  ) &&  
    st1.vars = st.vars ++ ( t1 -> st.current_clock ) && 
    st1.stmt = S3 && 
    st1.direct_file = st.direct_file &&  
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    st1.current_clock = st.current_clock &&  
    st1.last_cond_checked = st.last_cond_checked  
    )  
  ) or  
 
  ( st.stmt = S4 &&  
    st1.prev_state = st &&  
    --  PutDirectFile  
    ( st1.stmt = S5 && 
      st1.current_clock = TO/next[st.current_clock] &&  
      st1.last_cond_checked = st.last_cond_checked &&  
      st1.vars = st.vars &&  
      st1.access_label = st.access_label &&  
      ( (const1 in st.direct_file.keyContent.Value) => 
         -- the key is found  
           (st1.direct_file.success = const1 &&  
            st1.direct_file.keyContent = st.direct_file.keyContent 
++  
              ( const1 -> st.vars[ x1 ]) &&  
            st1.direct_file.keyLabel = st.direct_file.keyLabel ++  
              ( const1 -> SysHigh  ) &&  
            -- since key already existed, full remains the same  
            st1.direct_file.full = st.direct_file.full  
           )  
          else -- the key is not found  
           ( st.direct_file.full = const0 =>   -- Direct File not 
Full  
            ( st1.direct_file.keyContent = 
st.direct_file.keyContent ++  
              ( const1 -> st.vars[ x1 ]) &&  
              st1.direct_file.keyLabel = st.direct_file.keyLabel 
++  
              ( const1 -> SysHigh  ) &&  
              st1.direct_file.success = const1 &&  
              -- if content limit reached, set full to const1 
(true)  
              (#st1.direct_file.keyContent = 
st1.direct_file.max_slots =>   
     
             st1.direct_file.full = const1 else st1.direct_file.full = 
const0)  
             )  
             else  -- Direct File is Full  
              (st1.direct_file = st.direct_file &&  
               st1.direct_file.success = const0 &&  
               -- assign full to const1 (true)  
               st1.direct_file.full = const1)  
           )  
       )  
     )  
  ) or  
 
  ( st.stmt = S3 &&  
    st1.prev_state = st &&  
    --  if  
    ( st1.access_label = st.access_label &&  
    st1.vars = st.vars  &&  
    st1.current_clock = st.current_clock  &&  
    st1.direct_file = st.direct_file  &&  
    st1.influenced_by = st.influenced_by &&  
    st1.last_cond_checked = {x: st.last_cond_checked | x.stmt != 
S3} + st && 
    (  
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      (( st.vars[ x1 ] -> const0) in LT.lt)  
       => st1.stmt = S4 
       else st1.stmt = S5) 
    )  
  ) or  
 
  ( st.stmt = S5 &&  
    st1.prev_state = st &&  
    --  GetClock  
    ( st1.access_label = st.access_label ++ ( t2 ->  SysLow  ) &&  
    st1.vars = st.vars ++ ( t2 -> st.current_clock ) && 
    st1.stmt = S6 && 
    st1.direct_file = st.direct_file &&  
    st1.current_clock = st.current_clock &&  
    st1.last_cond_checked = st.last_cond_checked  
    )  
  ) or  
 
  ( st.stmt = S7 &&  
    st1.prev_state = st &&  
    --  Write_dev  
    ( st1.access_label = st.access_label &&  
    st1.stmt = S9 && 
    st1.direct_file = st.direct_file &&  
    st1.current_clock = TO/next[st.current_clock] &&  
    st1.influenced_by = st.influenced_by &&  
    st1.last_cond_checked = st.last_cond_checked  
    )  
  ) or  
 
  ( st.stmt = S8 &&  
    st1.prev_state = st &&  
    --  Write_dev  
    ( st1.access_label = st.access_label &&  
    st1.stmt = S9 && 
    st1.direct_file = st.direct_file &&  
    st1.current_clock = TO/next[st.current_clock] &&  
    st1.influenced_by = st.influenced_by &&  
    st1.last_cond_checked = st.last_cond_checked  
    )  
  ) or  
 
  ( st.stmt = S6 &&  
    st1.prev_state = st &&  
    --  if  
    ( st1.access_label = st.access_label &&  
    st1.vars = st.vars  &&  
    st1.current_clock = st.current_clock  &&  
    st1.direct_file = st.direct_file  &&  
    st1.influenced_by = st.influenced_by &&  
    st1.last_cond_checked = {x: st.last_cond_checked | x.stmt != 
S6} + st && 
    (  
      (( st.vars[ t1 ] -> st.vars[ t2 ] ) in Clock.before)  
       => st1.stmt = S7 
       else st1.stmt = S8) 
    )  
  ) or  
 
  ( st.stmt = S9 &&  
    st1.prev_state = st &&  
    --  Stop  
    ( st1.stmt = st.stmt )  
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  )  
}  
--------------------------  
run show for 10 but 32 FTuple  
check verify_security for 10 but 32 FTuple  
check verify_flow_policy for 10 but 32 FTuple  
check verify_no_dependency_flaw for 10 but 32 FTuple  
check verify_no_storage_channel for 10 but 32 FTuple  
check verify_no_timing_channel for 10 but 32 FTuple  
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APPENDIX B.3 – GENERATED DM FOR BASE PROGRAM 
EXAMPLE 3 

This appendix provides complete code for the trusted subject information flow 

violation example base program and resultant DM described in Chapter VI - “Example 

DM Implementations.”  The DM below is generated by the DM-Compiler from the 

following base program: 
(s1) Read_dev (SysHigh, x1); 
(s2) Read_dev (SysMid, x2); 
(s3) Assign x1 from x2 as SysLow; 
(s4) Write_dev (SysLow, x1); 
(s5) Stop; 

 

The Alloy specification for the DM follows: 
/********************************************************************/ 
module static_model 
open util/ordering[Time] as TO 
/********************************************************************/ 
 
/**************************/  
/** DM Invariant Model **/  
/**************************/  
 
sig Statement { 
 type:   Stmt_type, 
 destination: lone Variable, 
 source:  set Variable + Value, 
 source_label: lone (AccessLabel + Variable), 
 key:   lone (Variable + Value), 
 subject_label: lone AccessLabel 
} 
 
enum Stmt_type { 
 Assign, Condition, 
 Read_dev, Write_dev,  
 GetDirectFile, PutDirectFile, 
 GetClock, Stop  
} 
 
-- define access labels based on security policy lattice 
enum AccessLabel { SysHigh, SysMid, SysLow } 
 
-- define a Policy signature to allow BLP-style info flows 
one sig Policy { 
 ord: AccessLabel -> AccessLabel 
} 
{ ord = ^( (SysLow -> SysMid)  
   + (SysMid -> SysHigh) ) 
   + (iden & (AccessLabel -> AccessLabel) ) 
} 
 
sig State { 
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 stmt:  Statement, -- next stmt to execute 
 vars:  Variable -> one (Value + Time), -- variable table 
 access_label:  Variable -> one AccessLabel, 
 direct_file:  DirectFile, -- current snapshot 
 current_clock:  Time, 
 prev_state:  lone State, 
 err_msg:  lone Error, 
 influenced_by:  Variable -> State, 
 last_cond_checked: set State, 
} 
{ -- define error conditions 
 ( err_msg = InfoFlow_error <=> 
  not consistent_with_FlowPolicy [this] ) && 
 ( err_msg = Overt_flaw_detected <=> 
  dependency_flaw_found[this] ) && 
 ( err_msg = Storage_channel_detected <=> 
  storage_channel_found[this] ) && 
 ( err_msg = Timing_channel_detected <=> 
  timing_channel_found[this] )   
} 
 
-- Signature for error types 
enum Error { 
 InfoFlow_error, 
 Overt_flaw_detected, 
 Storage_channel_detected, 
 Timing_channel_detected  
} 
 
------------------------------------------------------------------- 
-- Initialization of State signature: all variables initially have 0 
--  value and SysLow label, and DirectFile is empty 
one sig InitialState extends State {} 
{  
 vars = (Variable -> const0)  
 access_label = (Variable -> SysLow)  
 stmt = S1  
 direct_file.full = const0 
 direct_file.success =const1 
 current_clock = TO/first[] 
 prev_state =  none 
 err_msg =  none 
 last_cond_checked = none 
 no influenced_by  
 no direct_file.keyContent 
 no direct_file.keyLabel 
} 
 
-- Sig establishes ordering of States in a program execution 
one sig State_order { 
 st_after: State -> State 
} 
{ st_after = ^ prev_state 
} 
 
-- a "Stop" State cannot precede another State 
fact { all s: State | s.prev_state.stmt.type != Stop } 
 
-- no two States can be identical 
fact { no disj st1, st2: State |  
 (st1.stmt = st2.stmt  && 
  st1.prev_state = st2.prev_state && 
  st1.vars = st2.vars && 
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  st1.direct_file = st2.direct_file) 
} 
 
------------------------------------------------------------------- 
sig DirectFile { 
 -- each key Value is assigned a content Value and AccessLabel 
 keyContent: Value -> lone Value, 
 keyLabel: Value -> lone AccessLabel, 
 last_written: lone AccessLabel, 
 full:   (const0 + const1), 
 success:  (const0 + const1), 
 max_slots: Int 
} 
{  max_slots = 2     -- capacity limited to 2 key locations 
} 
 
------------------------------------------------------------------- 
sig Time {} 
 
one sig Clock { 
 before:   Time -> Time, 
 long_before: Time -> Time 
} 
{ long_before in before && 
 all t1: Time, t2: Time - t1 | 
 ((t1->t2) in before <=> t2 in TO/nexts[t1]) && 
 ((t1->t2) in long_before <=> some t3: Time | 
  (t3 in before[t1] && t3 in before.t2))  
} 
 
------------------------------------------------------------------- 
-- Alloy signature used for passing results of tsFilter function  
sig FTuple { 
 val: Value, 
 label: AccessLabel 
} 
 
fact { all v: Value, a: AccessLabel | one f: FTuple |  
 f.val=v && f.label=a } 
 
------------------------------------------------------------------- 
-- Functions, Facts, Assertions and Predicates for info flow security 
--  policy and security rules 
------------------------------------------------------------------- 
-- The tsFilter function defines the semantics of the Trusted Subj 
--  Assignment statement, by enabling a TS to act as a Content  
--  or Label Filter. 
-- Different invariant models may define different filter functions, 
--  depending on the TS semantics that must be demonstrated. 
fun tsFilter[dv, s1v, s2v: Value,  
              da, s1a, s2a: AccessLabel]: FTuple { 
{ result: FTuple | { 
    result.val = (((s1v->const0) in LT.lt)  
        => const0 else s1v) 
    result.label = (((da->s2a) in Policy.ord) 
        => s2a else 
      (((s2a->SysMid) in Policy.ord) 
        => SysMid else s2a)) }  
} } 
 
------------------------------------------------------------------- 
-- Security assertion to verify program abides by all security rules 
--  assert verify_security { 
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 all s: State |  
  consistent_with_FlowPolicy [s] &&  
  not dependency_flaw_found [s] && 
  not storage_channel_found [s] && 
  not timing_channel_found [s] 
} 
 
------------------------------------------------------------------- 
-- Define how statements abide by info flow policy 
assert verify_flow_policy { 
 all s: State | consistent_with_FlowPolicy[s] } 
 
pred consistent_with_FlowPolicy [s: State] { 
 let stm = s.stmt | { 
  -- for Write_dev or PutDirectFile statement 
  (stm.type in (Write_dev + PutDirectFile) && 
   stm.source in Variable) 
  => ((s.access_label[stm.source] -> stm.subject_label) 
    in Policy.ord)  
 } 
} 
 
------------------------------------------------------------------- 
-- Verify no overt control dependency flaw found in current State 
 
assert verify_no_dependency_flaw { 
 all s: State | not dependency_flaw_found[s] } 
 
-- Define conditions under which a control dependency flaw could 
--  exist; checks for a Write, where source in the current state is 
--  influenced_by State with higher label in required access. 
--  Assertion uses dynamic slicing techniques. 
pred dependency_flaw_found [s: State] { 
 let stm = s.stmt, s1 = s.influenced_by[stm.source] | { 
  stm.type = Write_dev  && 
  stm.source in Variable &&  
  -- check if Write_dev source was influenced_by a var  
  --  higher than subject 
  not ((s1.access_label[s1.stmt.source] -> stm.subject_label) 
     in Policy.ord) 
 } 
} 
 
------------------------------------------------------------------- 
-- Verify no storage covert channels found in current State 
 
assert verify_no_storage_channel { 
 all s: State | 
  not storage_channel_found[s] } 
 
-- Define conditions under which a storage channel could exist icw 
--  a PutDirectFile 
pred storage_channel_found [s: State] { 
 let stm = s.stmt | { 
  stm.type = PutDirectFile && 
  s.direct_file.full = const1 && 
  -- check if direct file was last written by a higher subject 
  not ((s.direct_file.last_written -> stm.subject_label) 
   in Policy.ord) 
 } 
} 
 
------------------------------------------------------------------- 
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-- Verify no timing covert channels found in current State 
 
assert verify_no_timing_channel { 
 all s: State | not timing_channel_found[s] } 
 
-- Define conditions under which a timing channel could exist 
pred timing_channel_found [gc2: State] { 
 some disj rw, gc1: State | { 
  (gc2 -> rw) in State_order.st_after && 
  (rw -> gc1) in State_order.st_after && 
  gc1.stmt.type = GetClock && 
  gc2.stmt.type = GetClock && 
  rw.stmt.type in (Read_dev + Write_dev  
   + PutDirectFile + GetDirectFile) && 
  -- check if GetClocks are at same level 
  gc1.stmt.subject_label = gc2.stmt.subject_label && 
  -- check if Read/Write/DirectFile operation at  
  --  higher level than GetClock 
  not ((rw.stmt.subject_label -> gc2.stmt.subject_label)  
   in Policy.ord) 
 } 
} 
 
------------------------------------------------------------------- 
-- Find a consistent instance of this model 
pred show () {} 
------------------------------------------------------------------- 
/********************************/  
/** DM Implementation Model **/  
/********************************/  
-- The base program is below. Total of 5 statements  
-- (S1)   Read_dev ( SysHigh ,  x1 );  
-- (S2)   Read_dev ( SysMid ,  x2 );  
-- (S3)   Assign x1 from x2 as SysLow ;  
-- (S4)   Write_dev ( SysLow ,  x1 );  
-- (S5)   Stop;  
 
-------------------------  
/*** Statement sigs ***/  
-------------------------  
one sig S1 extends Statement {}  
{  
  type = Read_dev  
  destination = x1  
  source = none  
  source_label = none  
  key = none  
  subject_label =  SysHigh  
}  
 
one sig S2 extends Statement {}  
{  
  type = Read_dev  
  destination = x2  
  source = none  
  source_label = none  
  key = none  
  subject_label =  SysMid  
}  
 
one sig S3 extends Statement {}  
{  
  type = Assign  
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  source = x2  
  destination = x1  
  source_label = SysLow  
  key = none  
}  
 
one sig S4 extends Statement {}  
{  
  type = Write_dev  
  source = x1  
  destination = none  
  source_label = none  
  key = none  
  subject_label =  SysLow  
}  
 
one sig S5 extends Statement {}  
{  
  type = Stop  
  source = none  
  destination = none  
  source_label = none  
  key = none  
}  
 
--------------------------------  
/*** Variables & Constants ***/  
--------------------------------  
enum Variable {  
  x1, x2 
 }  
 
enum Value {  
   const_minus_3, const_minus_2, const0, const1 
  , const2 
 }  
 
one sig LT {   lt:  Value -> Value }  
{  lt = ^(  
    (  const_minus_3   ->   const_minus_2)  
  + (  const_minus_2   ->   const0)  
  + (  const0   ->   const1)  
  + (  const1   ->   const2)  
) }  
 
------------------------------------  
/*** State Transition Predicate ***/  
------------------------------------  
fact trans {  
  all st1: State - InitialState | some st: State |  
   
 
  ( st.stmt = S1 &&  
    st1.prev_state = st &&  
    --  Read_dev  
    ( st1.access_label = st.access_label ++ ( x1 ->  SysHigh  ) &&  
    some n: Value | st1.vars = st.vars ++ ( x1 -> n) &&  
    st1.stmt = S2 && 
    st1.direct_file = st.direct_file &&  
    st1.current_clock = TO/next[st.current_clock] &&  
    st1.last_cond_checked = st.last_cond_checked &&  
    st1.influenced_by =  
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      -- Part A, copy all dependencies for vars different from x1  
      {v: Variable, s: State | (v -> s) in st.influenced_by && 
v!= x1 }  
    )  
  ) or  
 
  ( st.stmt = S2 &&  
    st1.prev_state = st &&  
    --  Read_dev  
    ( st1.access_label = st.access_label ++ ( x2 ->  SysMid  ) &&  
    some n: Value | st1.vars = st.vars ++ ( x2 -> n) &&  
    st1.stmt = S3 && 
    st1.direct_file = st.direct_file &&  
    st1.current_clock = TO/next[st.current_clock] &&  
    st1.last_cond_checked = st.last_cond_checked &&  
    st1.influenced_by =  
 
      -- Part A, copy all dependencies for vars different from x2  
      {v: Variable, s: State | (v -> s) in st.influenced_by && 
v!= x2 }  
    )  
  ) or  
 
  ( st.stmt = S3 &&  
    st1.prev_state = st &&  
    --  Trusted Assign  
    ( let xx = tsFilter[ st.vars[ x1 ],  st.vars[x2], const0,  
      st.access_label[ x1 ],  st.access_label[ x2 ],  SysLow  ] | 
(  
      st1.vars = st.vars ++ ( x1 -> xx.val ) &&  
      st1.access_label = st.access_label ++ ( x1 -> xx.label )  
      ) &&  
    st1.stmt = S4 && 
    st1.direct_file = st.direct_file &&  
    st1.current_clock = st.current_clock &&  
    st1.last_cond_checked = st.last_cond_checked &&  
    st1.influenced_by =  
 
      -- Part A, copy all dependencies for vars different from x1  
      {v: Variable, s: State | (v -> s) in st.influenced_by && 
v!= x1 }  
 
      -- and inherit all dependencies of the right-hand part x2  
      + ( x1 -> st.influenced_by[ x2 ])  
    )  
  ) or  
 
  ( st.stmt = S4 &&  
    st1.prev_state = st &&  
    --  Write_dev  
    ( st1.access_label = st.access_label &&  
    st1.stmt = S5 && 
    st1.direct_file = st.direct_file &&  
    st1.current_clock = TO/next[st.current_clock] &&  
    st1.influenced_by = st.influenced_by &&  
    st1.last_cond_checked = st.last_cond_checked  
    )  
  ) or  
 
  ( st.stmt = S5 &&  
    st1.prev_state = st &&  
    --  Stop  
    ( st1.stmt = st.stmt )  
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  )  
}  
--------------------------  
run show for 6 but 15 FTuple  
check verify_security for 6 but 15 FTuple  
check verify_flow_policy for 6 but 15 FTuple  
check verify_no_dependency_flaw for 6 but 15 FTuple  
check verify_no_storage_channel for 6 but 15 FTuple  
check verify_no_timing_channel for 6 but 15 FTuple  
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APPENDIX B.4 – GENERATED DM FOR BASE PROGRAM 
EXAMPLE 4 

This appendix provides complete code for the trusted subject information flow 

with overt dependency flaw violation example base program and resultant DM described 

in Chapter VI - “Example DM Implementations.”  The DM below is generated by the 

DM-Compiler from the following base program: 
(s1) Read_dev (SysHigh, x1); 
(s2) Read_dev (SysLow, x2); 
(s3) Read_dev (SysMid, x3); 
(s4) if x1 < 0 then { 
(s5)  Assign x1 from x2 as x3; 
(s6)  Write_dev (SysMid, x1); }  
(s7) else  Write_dev (SysMid, x1); 
(s8) Stop; 

 

The Alloy specification for the DM follows: 
/********************************************************************/ 
module static_model 
open util/ordering[Time] as TO 
/********************************************************************/ 
 
/**************************/  
/** DM Invariant Model **/  
/**************************/  
 
sig Statement { 
 type:   Stmt_type, 
 destination: lone Variable, 
 source:  set Variable + Value, 
 source_label: lone (AccessLabel + Variable), 
 key:   lone (Variable + Value), 
 subject_label: lone AccessLabel 
} 
 
enum Stmt_type { 
 Assign, Condition, 
 Read_dev, Write_dev,  
 GetDirectFile, PutDirectFile, 
 GetClock, Stop  
} 
 
-- define access labels based on security policy lattice 
enum AccessLabel { SysHigh, SysMid, SysLow } 
 
-- define a Policy signature to allow BLP-style info flows 
one sig Policy { 
 ord: AccessLabel -> AccessLabel 
} 
{ ord = ^( (SysLow -> SysMid)  
   + (SysMid -> SysHigh) ) 
   + (iden & (AccessLabel -> AccessLabel) ) 
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} 
 
sig State { 
 stmt:  Statement, -- next stmt to execute 
 vars:  Variable -> one (Value + Time), -- variable table 
 access_label:  Variable -> one AccessLabel, 
 direct_file:  DirectFile, -- current snapshot 
 current_clock:  Time, 
 prev_state:  lone State, 
 err_msg:  lone Error, 
 influenced_by:  Variable -> State, 
 last_cond_checked: set State, 
} 
{ -- define error conditions 
 ( err_msg = InfoFlow_error <=> 
  not consistent_with_FlowPolicy [this] ) && 
 ( err_msg = Overt_flaw_detected <=> 
  dependency_flaw_found[this] ) && 
 ( err_msg = Storage_channel_detected <=> 
  storage_channel_found[this] ) && 
 ( err_msg = Timing_channel_detected <=> 
  timing_channel_found[this] )   
} 
 
-- Signature for error types 
enum Error { 
 InfoFlow_error, 
 Overt_flaw_detected, 
 Storage_channel_detected, 
 Timing_channel_detected  
} 
 
------------------------------------------------------------------- 
-- Initialization of State signature: all variables initially have 0 
--  value and SysLow label, and DirectFile is empty 
one sig InitialState extends State {} 
{  
 vars = (Variable -> const0)  
 access_label = (Variable -> SysLow)  
 stmt = S1  
 direct_file.full = const0 
 direct_file.success =const1 
 current_clock = TO/first[] 
 prev_state =  none 
 err_msg =  none 
 last_cond_checked = none 
 no influenced_by  
 no direct_file.keyContent 
 no direct_file.keyLabel 
} 
 
-- Sig establishes ordering of States in a program execution 
one sig State_order { 
 st_after: State -> State 
} 
{ st_after = ^ prev_state 
} 
 
-- a "Stop" State cannot precede another State 
fact { all s: State | s.prev_state.stmt.type != Stop } 
 
-- no two States can be identical 
fact { no disj st1, st2: State |  
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 (st1.stmt = st2.stmt  && 
  st1.prev_state = st2.prev_state && 
  st1.vars = st2.vars && 
  st1.direct_file = st2.direct_file) 
} 
 
------------------------------------------------------------------- 
sig DirectFile { 
 -- each key Value is assigned a content Value and AccessLabel 
 keyContent: Value -> lone Value, 
 keyLabel: Value -> lone AccessLabel, 
 last_written: lone AccessLabel, 
 full:   (const0 + const1), 
 success:  (const0 + const1), 
 max_slots: Int 
} 
{  max_slots = 2     -- capacity limited to 2 key locations 
} 
 
------------------------------------------------------------------- 
sig Time {} 
 
one sig Clock { 
 before:   Time -> Time, 
 long_before: Time -> Time 
} 
{ long_before in before && 
 all t1: Time, t2: Time - t1 | 
 ((t1->t2) in before <=> t2 in TO/nexts[t1]) && 
 ((t1->t2) in long_before <=> some t3: Time | 
  (t3 in before[t1] && t3 in before.t2))  
} 
 
------------------------------------------------------------------- 
-- Alloy signature used for passing results of tsFilter function  
sig FTuple { 
 val: Value, 
 label: AccessLabel 
} 
 
fact { all v: Value, a: AccessLabel | one f: FTuple |  
 f.val=v && f.label=a } 
 
------------------------------------------------------------------- 
-- Functions, Facts, Assertions and Predicates for info flow security 
--  policy and security rules 
------------------------------------------------------------------- 
-- The tsFilter function defines the semantics of the Trusted Subj 
--  Assignment statement, by enabling a TS to act as a Content  
--  or Label Filter. 
-- Different invariant models may define different filter functions, 
--  depending on the TS semantics that must be demonstrated. 
fun tsFilter[dv, s1v, s2v: Value,  
              da, s1a, s2a: AccessLabel]: FTuple { 
{ result: FTuple | { 
    result.val = (((s1v->const0) in LT.lt)  
        => const0 else s1v) 
    result.label = (((da->s2a) in Policy.ord) 
        => s2a else 
      (((s2a->SysMid) in Policy.ord) 
        => SysMid else s2a)) }  
} } 
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------------------------------------------------------------------- 
-- Security assertion to verify program abides by all security rules 
--  assert verify_security { 
 all s: State |  
  consistent_with_FlowPolicy [s] &&  
  not dependency_flaw_found [s] && 
  not storage_channel_found [s] && 
  not timing_channel_found [s] 
} 
 
------------------------------------------------------------------- 
-- Define how statements abide by info flow policy 
assert verify_flow_policy { 
 all s: State | consistent_with_FlowPolicy[s] } 
 
pred consistent_with_FlowPolicy [s: State] { 
 let stm = s.stmt | { 
  -- for Write_dev or PutDirectFile statement 
  (stm.type in (Write_dev + PutDirectFile) && 
   stm.source in Variable) 
  => ((s.access_label[stm.source] -> stm.subject_label) 
    in Policy.ord)  
 } 
} 
 
------------------------------------------------------------------- 
-- Verify no overt control dependency flaw found in current State 
 
assert verify_no_dependency_flaw { 
 all s: State | not dependency_flaw_found[s] } 
 
-- Define conditions under which a control dependency flaw could 
--  exist; checks for a Write, where source in the current state is 
--  influenced_by State with higher label in required access. 
--  Assertion uses dynamic slicing techniques. 
pred dependency_flaw_found [s: State] { 
 let stm = s.stmt, s1 = s.influenced_by[stm.source] | { 
  stm.type = Write_dev  && 
  stm.source in Variable &&  
  -- check if Write_dev source was influenced_by a var  
  --  higher than subject 
  not ((s1.access_label[s1.stmt.source] -> stm.subject_label) 
     in Policy.ord) 
 } 
} 
 
------------------------------------------------------------------- 
-- Verify no storage covert channels found in current State 
 
assert verify_no_storage_channel { 
 all s: State | 
  not storage_channel_found[s] } 
 
-- Define conditions under which a storage channel could exist icw 
--  a PutDirectFile 
pred storage_channel_found [s: State] { 
 let stm = s.stmt | { 
  stm.type = PutDirectFile && 
  s.direct_file.full = const1 && 
  -- check if direct file was last written by a higher subject 
  not ((s.direct_file.last_written -> stm.subject_label) 
   in Policy.ord) 
 } 
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} 
 
------------------------------------------------------------------- 
-- Verify no timing covert channels found in current State 
 
assert verify_no_timing_channel { 
 all s: State | not timing_channel_found[s] } 
 
-- Define conditions under which a timing channel could exist 
pred timing_channel_found [gc2: State] { 
 some disj rw, gc1: State | { 
  (gc2 -> rw) in State_order.st_after && 
  (rw -> gc1) in State_order.st_after && 
  gc1.stmt.type = GetClock && 
  gc2.stmt.type = GetClock && 
  rw.stmt.type in (Read_dev + Write_dev  
   + PutDirectFile + GetDirectFile) && 
  -- check if GetClocks are at same level 
  gc1.stmt.subject_label = gc2.stmt.subject_label && 
  -- check if Read/Write/DirectFile operation at  
  --  higher level than GetClock 
  not ((rw.stmt.subject_label -> gc2.stmt.subject_label)  
   in Policy.ord) 
 } 
} 
 
------------------------------------------------------------------- 
-- Find a consistent instance of this model 
pred show () {} 
------------------------------------------------------------------- 
/********************************/  
/** DM Implementation Model **/  
/********************************/  
-- The base program is below. Total of 8 statements  
-- (S1)   Read_dev ( SysHigh ,  x1 );  
-- (S2)   Read_dev ( SysLow ,  x2 );  
-- (S3)   Read_dev ( SysMid ,  x3 );  
-- (S4)   if ( x1 < 0 )  then {  
-- (S5)    Assign x1 from x2 as x3 ;  
-- (S6)    Write_dev ( SysMid ,  x1 ); }  
--    else  
-- (S7)    Write_dev ( SysMid ,  x1 );  
-- (S8)   Stop;  
 
-------------------------  
/*** Statement sigs ***/  
-------------------------  
one sig S1 extends Statement {}  
{  
  type = Read_dev  
  destination = x1  
  source = none  
  source_label = none  
  key = none  
  subject_label =  SysHigh  
}  
 
one sig S2 extends Statement {}  
{  
  type = Read_dev  
  destination = x2  
  source = none  
  source_label = none  
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  key = none  
  subject_label =  SysLow  
}  
 
one sig S3 extends Statement {}  
{  
  type = Read_dev  
  destination = x3  
  source = none  
  source_label = none  
  key = none  
  subject_label =  SysMid  
}  
 
one sig S5 extends Statement {}  
{  
  type = Assign  
  source = x2  
  destination = x1  
  source_label = x3  
  key = none  
}  
 
one sig S6 extends Statement {}  
{  
  type = Write_dev  
  source = x1  
  destination = none  
  source_label = none  
  key = none  
  subject_label =  SysMid  
}  
 
one sig S7 extends Statement {}  
{  
  type = Write_dev  
  source = x1  
  destination = none  
  source_label = none  
  key = none  
  subject_label =  SysMid  
}  
 
one sig S4 extends Statement {}  
{  
  type = Condition  
  source =   x1  
  destination = none  
  source_label = none  
  key = none  
}  
 
one sig S8 extends Statement {}  
{  
  type = Stop  
  source = none  
  destination = none  
  source_label = none  
  key = none  
}  
 
--------------------------------  
/*** Variables & Constants ***/  
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--------------------------------  
enum Variable {  
  x1, x2, x3 
 }  
 
enum Value {  
   const_minus_4, const_minus_3, const_minus_2, const0 
  , const1, const2, const3 
 }  
 
one sig LT {   lt:  Value -> Value }  
{  lt = ^(  
    (  const_minus_4   ->   const_minus_3)  
  + (  const_minus_3   ->   const_minus_2)  
  + (  const_minus_2   ->   const0)  
  + (  const0   ->   const1)  
  + (  const1   ->   const2)  
  + (  const2   ->   const3)  
) }  
 
------------------------------------  
/*** State Transition Predicate ***/  
------------------------------------  
fact trans {  
  all st1: State - InitialState | some st: State |  
   
 
  ( st.stmt = S1 &&  
    st1.prev_state = st &&  
    --  Read_dev  
    ( st1.access_label = st.access_label ++ ( x1 ->  SysHigh  ) &&  
    some n: Value | st1.vars = st.vars ++ ( x1 -> n) &&  
    st1.stmt = S2 && 
    st1.direct_file = st.direct_file &&  
    st1.current_clock = TO/next[st.current_clock] &&  
    st1.last_cond_checked = st.last_cond_checked &&  
    st1.influenced_by =  
 
      -- Part A, copy all dependencies for vars different from x1  
      {v: Variable, s: State | (v -> s) in st.influenced_by && 
v!= x1 }  
    )  
  ) or  
 
  ( st.stmt = S2 &&  
    st1.prev_state = st &&  
    --  Read_dev  
    ( st1.access_label = st.access_label ++ ( x2 ->  SysLow  ) &&  
    some n: Value | st1.vars = st.vars ++ ( x2 -> n) &&  
    st1.stmt = S3 && 
    st1.direct_file = st.direct_file &&  
    st1.current_clock = TO/next[st.current_clock] &&  
    st1.last_cond_checked = st.last_cond_checked &&  
    st1.influenced_by =  
 
      -- Part A, copy all dependencies for vars different from x2  
      {v: Variable, s: State | (v -> s) in st.influenced_by && 
v!= x2 }  
    )  
  ) or  
 
  ( st.stmt = S3 &&  
    st1.prev_state = st &&  
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    --  Read_dev  
    ( st1.access_label = st.access_label ++ ( x3 ->  SysMid  ) &&  
    some n: Value | st1.vars = st.vars ++ ( x3 -> n) &&  
    st1.stmt = S4 && 
    st1.direct_file = st.direct_file &&  
    st1.current_clock = TO/next[st.current_clock] &&  
    st1.last_cond_checked = st.last_cond_checked &&  
    st1.influenced_by =  
 
      -- Part A, copy all dependencies for vars different from x3  
      {v: Variable, s: State | (v -> s) in st.influenced_by && 
v!= x3 }  
    )  
  ) or  
 
  ( st.stmt = S5 &&  
    st1.prev_state = st &&  
    --  Trusted Assign  
    ( let xx = tsFilter[ st.vars[ x1 ],  st.vars[x2], st.vars[x3],  
      st.access_label[ x1 ],  st.access_label[ x2 ],  
st.access_label[ x3 ]] | ( 
  
      st1.vars = st.vars ++ ( x1 -> xx.val ) &&  
      st1.access_label = st.access_label ++ ( x1 -> xx.label )  
      ) &&  
    st1.stmt = S6 && 
    st1.direct_file = st.direct_file &&  
    st1.current_clock = st.current_clock &&  
    st1.last_cond_checked = st.last_cond_checked &&  
    st1.influenced_by =  
 
      -- Part A, copy all dependencies for vars different from x1  
      {v: Variable, s: State | (v -> s) in st.influenced_by && 
v!= x1 }  
 
      -- and inherit all dependencies of the source_label x3  
      + ( x1 -> st.influenced_by[ x3 ])  
 
      -- Part B, all states from last_cond_checked  
      -- within which scope this assignment belongs  
      + ( x1 -> {x: st.last_cond_checked | x.stmt in  S4} )  
 
      -- Part C, copy dependencies for all variables 
participating in  
      -- conditions within which scope this assignment belongs  
      + ( x1 -> State.{ x: st.last_cond_checked,  
        y: x.influenced_by[x.stmt.source] | x.stmt in  S4 } )  
    )  
  ) or  
 
  ( st.stmt = S6 &&  
    st1.prev_state = st &&  
    --  Write_dev  
    ( st1.access_label = st.access_label &&  
    st1.stmt = S8 && 
    st1.direct_file = st.direct_file &&  
    st1.current_clock = TO/next[st.current_clock] &&  
    st1.influenced_by = st.influenced_by &&  
    st1.last_cond_checked = st.last_cond_checked  
    )  
  ) or  
 
  ( st.stmt = S7 &&  
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    st1.prev_state = st &&  
    --  Write_dev  
    ( st1.access_label = st.access_label &&  
    st1.stmt = S8 && 
    st1.direct_file = st.direct_file &&  
    st1.current_clock = TO/next[st.current_clock] &&  
    st1.influenced_by = st.influenced_by &&  
    st1.last_cond_checked = st.last_cond_checked  
    )  
  ) or  
 
  ( st.stmt = S4 &&  
    st1.prev_state = st &&  
    --  if  
    ( st1.access_label = st.access_label &&  
    st1.vars = st.vars  &&  
    st1.current_clock = st.current_clock  &&  
    st1.direct_file = st.direct_file  &&  
    st1.influenced_by = st.influenced_by &&  
    st1.last_cond_checked = {x: st.last_cond_checked | x.stmt != 
S4} + st && 
    (  
      (( st.vars[ x1 ] -> const0) in LT.lt)  
       => st1.stmt = S5 
       else st1.stmt = S7) 
    )  
  ) or  
 
  ( st.stmt = S8 &&  
    st1.prev_state = st &&  
    --  Stop  
    ( st1.stmt = st.stmt )  
  )  
}  
--------------------------  
run show for 9 but 28 FTuple  
check verify_security for 9 but 28 FTuple  
check verify_flow_policy for 9 but 28 FTuple  
check verify_no_dependency_flaw for 9 but 28 FTuple  
check verify_no_storage_channel for 9 but 28 FTuple  
check verify_no_timing_channel for 9 but 28 FTuple  
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APPENDIX B.5 – GENERATED DM FOR BASE PROGRAM 
EXAMPLE 5 

This appendix provides complete code for the trusted subject storage covert 

channel violation example base program and resultant DM described in Chapter VI - 

“Example DM Implementations.”  The DM below is generated by the DM-Compiler 

from the following base program: 
(s1) Read_dev (SysLow, x1);  
(s2) Read_dev (SysLow, x2); 
(s3) Assign x1 from x2 as SysHigh;  
(s4) if x1 > const_minus_1 then { 
(s5)    PutDirectFile (SysHigh, 1, x1); 
(s6)    PutDirectFile (SysHigh, 2, x2); } 
(s7) PutDirectFile (SysLow, 3, 1);  
(s8) if (full = True) then 
(s9)    Write_dev (SysLow, 1); 
(s10) else Write_dev (SysLow, 0); 
(s11) Stop; 

 

The Alloy specification for the DM follows: 
/********************************************************************/ 
module static_model 
open util/ordering[Time] as TO 
/********************************************************************/ 
 
/**************************/  
/** DM Invariant Model **/  
/**************************/  
 
sig Statement { 
 type:   Stmt_type, 
 destination: lone Variable, 
 source:  set Variable + Value, 
 source_label: lone (AccessLabel + Variable), 
 key:   lone (Variable + Value), 
 subject_label: lone AccessLabel 
} 
 
enum Stmt_type { 
 Assign, Condition, 
 Read_dev, Write_dev,  
 GetDirectFile, PutDirectFile, 
 GetClock, Stop  
} 
 
-- define access labels based on security policy lattice 
enum AccessLabel { SysHigh, SysMid, SysLow } 
 
-- define a Policy signature to allow BLP-style info flows 
one sig Policy { 
 ord: AccessLabel -> AccessLabel 
} 
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{ ord = ^( (SysLow -> SysMid)  
   + (SysMid -> SysHigh) ) 
   + (iden & (AccessLabel -> AccessLabel) ) 
} 
 
sig State { 
 stmt:  Statement, -- next stmt to execute 
 vars:  Variable -> one (Value + Time), -- variable table 
 access_label:  Variable -> one AccessLabel, 
 direct_file:  DirectFile, -- current snapshot 
 current_clock:  Time, 
 prev_state:  lone State, 
 err_msg:  lone Error, 
 influenced_by:  Variable -> State, 
 last_cond_checked: set State, 
} 
{ -- define error conditions 
 ( err_msg = InfoFlow_error <=> 
  not consistent_with_FlowPolicy [this] ) && 
 ( err_msg = Overt_flaw_detected <=> 
  dependency_flaw_found[this] ) && 
 ( err_msg = Storage_channel_detected <=> 
  storage_channel_found[this] ) && 
 ( err_msg = Timing_channel_detected <=> 
  timing_channel_found[this] )   
} 
 
-- Signature for error types 
enum Error { 
 InfoFlow_error, 
 Overt_flaw_detected, 
 Storage_channel_detected, 
 Timing_channel_detected  
} 
 
------------------------------------------------------------------- 
-- Initialization of State signature: all variables initially have 0 
--  value and SysLow label, and DirectFile is empty 
one sig InitialState extends State {} 
{  
 vars = (Variable -> const0)  
 access_label = (Variable -> SysLow)  
 stmt = S1  
 direct_file.full = const0 
 direct_file.success =const1 
 current_clock = TO/first[] 
 prev_state =  none 
 err_msg =  none 
 last_cond_checked = none 
 no influenced_by  
 no direct_file.keyContent 
 no direct_file.keyLabel 
} 
 
-- Sig establishes ordering of States in a program execution 
one sig State_order { 
 st_after: State -> State 
} 
{ st_after = ^ prev_state 
} 
 
-- a "Stop" State cannot precede another State 
fact { all s: State | s.prev_state.stmt.type != Stop } 
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-- no two States can be identical 
fact { no disj st1, st2: State |  
 (st1.stmt = st2.stmt  && 
  st1.prev_state = st2.prev_state && 
  st1.vars = st2.vars && 
  st1.direct_file = st2.direct_file) 
} 
 
------------------------------------------------------------------- 
sig DirectFile { 
 -- each key Value is assigned a content Value and AccessLabel 
 keyContent: Value -> lone Value, 
 keyLabel: Value -> lone AccessLabel, 
 last_written: lone AccessLabel, 
 full:   (const0 + const1), 
 success:  (const0 + const1), 
 max_slots: Int 
} 
{  max_slots = 2     -- capacity limited to 2 key locations 
} 
 
------------------------------------------------------------------- 
sig Time {} 
 
one sig Clock { 
 before:   Time -> Time, 
 long_before: Time -> Time 
} 
{ long_before in before && 
 all t1: Time, t2: Time - t1 | 
 ((t1->t2) in before <=> t2 in TO/nexts[t1]) && 
 ((t1->t2) in long_before <=> some t3: Time | 
  (t3 in before[t1] && t3 in before.t2))  
} 
 
------------------------------------------------------------------- 
-- Alloy signature used for passing results of tsFilter function  
sig FTuple { 
 val: Value, 
 label: AccessLabel 
} 
 
fact { all v: Value, a: AccessLabel | one f: FTuple |  
 f.val=v && f.label=a } 
 
------------------------------------------------------------------- 
-- Functions, Facts, Assertions and Predicates for info flow security 
--  policy and security rules 
------------------------------------------------------------------- 
-- The tsFilter function defines the semantics of the Trusted Subj 
--  Assignment statement, by enabling a TS to act as a Content  
--  or Label Filter. 
-- Different invariant models may define different filter functions, 
--  depending on the TS semantics that must be demonstrated. 
fun tsFilter[dv, s1v, s2v: Value,  
              da, s1a, s2a: AccessLabel]: FTuple { 
{ result: FTuple | { 
    result.val = (((s1v->const0) in LT.lt)  
        => const0 else s1v) 
    result.label = (((da->s2a) in Policy.ord) 
        => s2a else 
      (((s2a->SysMid) in Policy.ord) 
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        => SysMid else s2a)) }  
} } 
 
------------------------------------------------------------------- 
-- Security assertion to verify program abides by all security rules 
--  assert verify_security { 
 all s: State |  
  consistent_with_FlowPolicy [s] &&  
  not dependency_flaw_found [s] && 
  not storage_channel_found [s] && 
  not timing_channel_found [s] 
} 
 
------------------------------------------------------------------- 
-- Define how statements abide by info flow policy 
assert verify_flow_policy { 
 all s: State | consistent_with_FlowPolicy[s] } 
 
pred consistent_with_FlowPolicy [s: State] { 
 let stm = s.stmt | { 
  -- for Write_dev or PutDirectFile statement 
  (stm.type in (Write_dev + PutDirectFile) && 
   stm.source in Variable) 
  => ((s.access_label[stm.source] -> stm.subject_label) 
    in Policy.ord)  
 } 
} 
 
------------------------------------------------------------------- 
-- Verify no overt control dependency flaw found in current State 
 
assert verify_no_dependency_flaw { 
 all s: State | not dependency_flaw_found[s] } 
 
-- Define conditions under which a control dependency flaw could 
--  exist; checks for a Write, where source in the current state is 
--  influenced_by State with higher label in required access. 
--  Assertion uses dynamic slicing techniques. 
pred dependency_flaw_found [s: State] { 
 let stm = s.stmt, s1 = s.influenced_by[stm.source] | { 
  stm.type = Write_dev  && 
  stm.source in Variable &&  
  -- check if Write_dev source was influenced_by a var  
  --  higher than subject 
  not ((s1.access_label[s1.stmt.source] -> stm.subject_label) 
     in Policy.ord) 
 } 
} 
 
------------------------------------------------------------------- 
-- Verify no storage covert channels found in current State 
 
assert verify_no_storage_channel { 
 all s: State | 
  not storage_channel_found[s] } 
 
-- Define conditions under which a storage channel could exist icw 
--  a PutDirectFile 
pred storage_channel_found [s: State] { 
 let stm = s.stmt | { 
  stm.type = PutDirectFile && 
  s.direct_file.full = const1 && 
  -- check if direct file was last written by a higher subject 
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  not ((s.direct_file.last_written -> stm.subject_label) 
   in Policy.ord) 
 } 
} 
 
------------------------------------------------------------------- 
-- Verify no timing covert channels found in current State 
 
assert verify_no_timing_channel { 
 all s: State | not timing_channel_found[s] } 
 
-- Define conditions under which a timing channel could exist 
pred timing_channel_found [gc2: State] { 
 some disj rw, gc1: State | { 
  (gc2 -> rw) in State_order.st_after && 
  (rw -> gc1) in State_order.st_after && 
  gc1.stmt.type = GetClock && 
  gc2.stmt.type = GetClock && 
  rw.stmt.type in (Read_dev + Write_dev  
   + PutDirectFile + GetDirectFile) && 
  -- check if GetClocks are at same level 
  gc1.stmt.subject_label = gc2.stmt.subject_label && 
  -- check if Read/Write/DirectFile operation at  
  --  higher level than GetClock 
  not ((rw.stmt.subject_label -> gc2.stmt.subject_label)  
   in Policy.ord) 
 } 
} 
 
------------------------------------------------------------------- 
-- Find a consistent instance of this model 
pred show () {} 
------------------------------------------------------------------- 
/********************************/  
/** DM Implementation Model **/  
/********************************/  
-- The base program is below. Total of 11 statements  
-- (S1)   Read_dev ( SysLow ,  x1 );  
-- (S2)   Read_dev ( SysLow ,  x2 );  
-- (S3)   Assign x1 from x2 as SysHigh ;  
-- (S4)   if ( x1 > const_minus_1 )  then {  
-- (S5)    PutDirectFile ( SysHigh ,  1 , x1 );  
-- (S6)    PutDirectFile ( SysHigh ,  2 , x2 ); }  
-- (S7)   PutDirectFile ( SysLow ,  3 , 1 );  
-- (S8)   if ( full = True )  then  
-- (S9)    Write_dev ( SysLow ,  1 );  
--    else  
-- (S10)    Write_dev ( SysLow ,  0 );  
-- (S11)   Stop;  
 
-------------------------  
/*** Statement sigs ***/  
-------------------------  
one sig S1 extends Statement {}  
{  
  type = Read_dev  
  destination = x1  
  source = none  
  source_label = none  
  key = none  
  subject_label =  SysLow  
}  
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one sig S2 extends Statement {}  
{  
  type = Read_dev  
  destination = x2  
  source = none  
  source_label = none  
  key = none  
  subject_label =  SysLow  
}  
 
one sig S3 extends Statement {}  
{  
  type = Assign  
  source = x2  
  destination = x1  
  source_label = SysHigh  
  key = none  
}  
 
one sig S5 extends Statement {}  
{  
  type = PutDirectFile  
  source = x1  
  key = const1 
  destination = none  
  source_label = none  
  subject_label =  SysHigh  
}  
 
one sig S6 extends Statement {}  
{  
  type = PutDirectFile  
  source = x2  
  key = const2 
  destination = none  
  source_label = none  
  subject_label =  SysHigh  
}  
 
one sig S4 extends Statement {}  
{  
  type = Condition  
  source =   x1 + const_minus_1  
  destination = none  
  source_label = none  
  key = none  
}  
 
one sig S7 extends Statement {}  
{  
  type = PutDirectFile  
  source = const1 
  key = const3 
  destination = none  
  source_label = none  
  subject_label =  SysLow  
}  
 
one sig S9 extends Statement {}  
{  
  type = Write_dev  
  source = const1 
  destination = none  
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  source_label = none  
  key = none  
  subject_label =  SysLow  
}  
 
one sig S10 extends Statement {}  
{  
  type = Write_dev  
  source = const0 
  destination = none  
  source_label = none  
  key = none  
  subject_label =  SysLow  
}  
 
one sig S8 extends Statement {}  
{  
  type = Condition  
  source = none  
  destination = none  
  source_label = none  
  key = none  
}  
 
one sig S11 extends Statement {}  
{  
  type = Stop  
  source = none  
  destination = none  
  source_label = none  
  key = none  
}  
 
--------------------------------  
/*** Variables & Constants ***/  
--------------------------------  
enum Variable {  
  x1, x2, const_minus_1 
 }  
 
enum Value {  
   const_minus_4, const_minus_3, const_minus_2, const0 
  , const1, const2, const3, const4 
  , const5, const6 
 }  
 
one sig LT {   lt:  Value -> Value }  
{  lt = ^(  
    (  const_minus_4   ->   const_minus_3)  
  + (  const_minus_3   ->   const_minus_2)  
  + (  const_minus_2   ->   const0)  
  + (  const0   ->   const1)  
  + (  const1   ->   const2)  
  + (  const2   ->   const3)  
  + (  const3   ->   const4)  
  + (  const4   ->   const5)  
  + (  const5   ->   const6)  
) }  
 
------------------------------------  
/*** State Transition Predicate ***/  
------------------------------------  
fact trans {  
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  all st1: State - InitialState | some st: State |  
   
 
  ( st.stmt = S1 &&  
    st1.prev_state = st &&  
    --  Read_dev  
    ( st1.access_label = st.access_label ++ ( x1 ->  SysLow  ) &&  
    some n: Value | st1.vars = st.vars ++ ( x1 -> n) &&  
    st1.stmt = S2 && 
    st1.direct_file = st.direct_file &&  
    st1.current_clock = TO/next[st.current_clock] &&  
    st1.last_cond_checked = st.last_cond_checked &&  
    st1.influenced_by =  
 
      -- Part A, copy all dependencies for vars different from x1  
      {v: Variable, s: State | (v -> s) in st.influenced_by && 
v!= x1 }  
    )  
  ) or  
 
  ( st.stmt = S2 &&  
    st1.prev_state = st &&  
    --  Read_dev  
    ( st1.access_label = st.access_label ++ ( x2 ->  SysLow  ) &&  
    some n: Value | st1.vars = st.vars ++ ( x2 -> n) &&  
    st1.stmt = S3 && 
    st1.direct_file = st.direct_file &&  
    st1.current_clock = TO/next[st.current_clock] &&  
    st1.last_cond_checked = st.last_cond_checked &&  
    st1.influenced_by =  
 
      -- Part A, copy all dependencies for vars different from x2  
      {v: Variable, s: State | (v -> s) in st.influenced_by && 
v!= x2 }  
    )  
  ) or  
 
  ( st.stmt = S3 &&  
    st1.prev_state = st &&  
    --  Trusted Assign  
    ( let xx = tsFilter[ st.vars[ x1 ],  st.vars[x2], const0,  
      st.access_label[ x1 ],  st.access_label[ x2 ],  SysHigh  ] 
| (  
      st1.vars = st.vars ++ ( x1 -> xx.val ) &&  
      st1.access_label = st.access_label ++ ( x1 -> xx.label )  
      ) &&  
    st1.stmt = S4 && 
    st1.direct_file = st.direct_file &&  
    st1.current_clock = st.current_clock &&  
    st1.last_cond_checked = st.last_cond_checked &&  
    st1.influenced_by =  
 
      -- Part A, copy all dependencies for vars different from x1  
      {v: Variable, s: State | (v -> s) in st.influenced_by && 
v!= x1 }  
 
      -- and inherit all dependencies of the right-hand part x2  
      + ( x1 -> st.influenced_by[ x2 ])  
    )  
  ) or  
 
  ( st.stmt = S5 &&  
    st1.prev_state = st &&  
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    --  PutDirectFile  
    ( st1.stmt = S6 && 
      st1.current_clock = TO/next[st.current_clock] &&  
      st1.last_cond_checked = st.last_cond_checked &&  
      st1.vars = st.vars &&  
      st1.access_label = st.access_label &&  
      ( (const1 in st.direct_file.keyContent.Value) => 
         -- the key is found  
           (st1.direct_file.success = const1 &&  
            st1.direct_file.keyContent = st.direct_file.keyContent 
++  
              ( const1 -> st.vars[ x1 ]) &&  
            st1.direct_file.keyLabel = st.direct_file.keyLabel ++  
              ( const1 -> SysHigh  ) &&  
            -- since key already existed, full remains the same  
            st1.direct_file.full = st.direct_file.full  
           )  
          else -- the key is not found  
           ( st.direct_file.full = const0 =>   -- Direct File not 
Full  
            ( st1.direct_file.keyContent = 
st.direct_file.keyContent ++  
              ( const1 -> st.vars[ x1 ]) &&  
              st1.direct_file.keyLabel = st.direct_file.keyLabel 
++  
              ( const1 -> SysHigh  ) &&  
              st1.direct_file.success = const1 &&  
              -- if content limit reached, set full to const1 
(true)  
              (#st1.direct_file.keyContent = 
st1.direct_file.max_slots =>   
     
             st1.direct_file.full = const1 else st1.direct_file.full = 
const0)  
             )  
             else  -- Direct File is Full  
              (st1.direct_file = st.direct_file &&  
               st1.direct_file.success = const0 &&  
               -- assign full to const1 (true)  
               st1.direct_file.full = const1)  
           )  
       )  
     )  
  ) or  
 
  ( st.stmt = S6 &&  
    st1.prev_state = st &&  
    --  PutDirectFile  
    ( st1.stmt = S7 && 
      st1.current_clock = TO/next[st.current_clock] &&  
      st1.last_cond_checked = st.last_cond_checked &&  
      st1.vars = st.vars &&  
      st1.access_label = st.access_label &&  
      ( (const2 in st.direct_file.keyContent.Value) => 
         -- the key is found  
           (st1.direct_file.success = const1 &&  
            st1.direct_file.keyContent = st.direct_file.keyContent 
++  
              ( const2 -> st.vars[ x2 ]) &&  
            st1.direct_file.keyLabel = st.direct_file.keyLabel ++  
              ( const2 -> SysHigh  ) &&  
            -- since key already existed, full remains the same  
            st1.direct_file.full = st.direct_file.full  
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           )  
          else -- the key is not found  
           ( st.direct_file.full = const0 =>   -- Direct File not 
Full  
            ( st1.direct_file.keyContent = 
st.direct_file.keyContent ++  
              ( const2 -> st.vars[ x2 ]) &&  
              st1.direct_file.keyLabel = st.direct_file.keyLabel 
++  
              ( const2 -> SysHigh  ) &&  
              st1.direct_file.success = const1 &&  
              -- if content limit reached, set full to const1 
(true)  
              (#st1.direct_file.keyContent = 
st1.direct_file.max_slots =>   
     
             st1.direct_file.full = const1 else st1.direct_file.full = 
const0)  
             )  
             else  -- Direct File is Full  
              (st1.direct_file = st.direct_file &&  
               st1.direct_file.success = const0 &&  
               -- assign full to const1 (true)  
               st1.direct_file.full = const1)  
           )  
       )  
     )  
  ) or  
 
  ( st.stmt = S4 &&  
    st1.prev_state = st &&  
    --  if  
    ( st1.access_label = st.access_label &&  
    st1.vars = st.vars  &&  
    st1.current_clock = st.current_clock  &&  
    st1.direct_file = st.direct_file  &&  
    st1.influenced_by = st.influenced_by &&  
    st1.last_cond_checked = {x: st.last_cond_checked | x.stmt != 
S4} + st && 
    (  
      (( st.vars[ const_minus_1 ] -> st.vars[ x1 ] ) in LT.lt)  
       => st1.stmt = S5 
       else st1.stmt = S7) 
    )  
  ) or  
 
  ( st.stmt = S7 &&  
    st1.prev_state = st &&  
    --  PutDirectFile  
    ( st1.stmt = S8 && 
      st1.current_clock = TO/next[st.current_clock] &&  
      st1.last_cond_checked = st.last_cond_checked &&  
      st1.vars = st.vars &&  
      st1.access_label = st.access_label &&  
      ( (const3 in st.direct_file.keyContent.Value) => 
         -- the key is found  
           (st1.direct_file.success = const1 &&  
            st1.direct_file.keyContent = st.direct_file.keyContent 
++  
              ( const3 -> const1) && 
            st1.direct_file.keyLabel = st.direct_file.keyLabel ++  
              ( const3 -> SysLow  ) &&  
            -- since key already existed, full remains the same  
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            st1.direct_file.full = st.direct_file.full  
           )  
          else -- the key is not found  
           ( st.direct_file.full = const0 =>   -- Direct File not 
Full  
            ( st1.direct_file.keyContent = 
st.direct_file.keyContent ++  
              ( const3 -> const1) && 
              st1.direct_file.keyLabel = st.direct_file.keyLabel 
++  
              ( const3 -> SysLow  ) &&  
              st1.direct_file.success = const1 &&  
              -- if content limit reached, set full to const1 
(true)  
              (#st1.direct_file.keyContent = 
st1.direct_file.max_slots =>   
     
             st1.direct_file.full = const1 else st1.direct_file.full = 
const0)  
             )  
             else  -- Direct File is Full  
              (st1.direct_file = st.direct_file &&  
               st1.direct_file.success = const0 &&  
               -- assign full to const1 (true)  
               st1.direct_file.full = const1)  
           )  
       )  
     )  
  ) or  
 
  ( st.stmt = S9 &&  
    st1.prev_state = st &&  
    --  Write_dev  
    ( st1.access_label = st.access_label &&  
    st1.stmt = S11 && 
    st1.direct_file = st.direct_file &&  
    st1.current_clock = TO/next[st.current_clock] &&  
    st1.influenced_by = st.influenced_by &&  
    st1.last_cond_checked = st.last_cond_checked  
    )  
  ) or  
 
  ( st.stmt = S10 &&  
    st1.prev_state = st &&  
    --  Write_dev  
    ( st1.access_label = st.access_label &&  
    st1.stmt = S11 && 
    st1.direct_file = st.direct_file &&  
    st1.current_clock = TO/next[st.current_clock] &&  
    st1.influenced_by = st.influenced_by &&  
    st1.last_cond_checked = st.last_cond_checked  
    )  
  ) or  
 
  ( st.stmt = S8 &&  
    st1.prev_state = st &&  
    --  if  
    ( st1.access_label = st.access_label &&  
    st1.vars = st.vars  &&  
    st1.current_clock = st.current_clock  &&  
    st1.direct_file = st.direct_file  &&  
    st1.influenced_by = st.influenced_by &&  
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    st1.last_cond_checked = {x: st.last_cond_checked | x.stmt != 
S8} + st && 
    ( ( st.direct_file.full = const1 )  
       => st1.stmt = S9 
       else st1.stmt = S10) 
    )  
  ) or  
 
  ( st.stmt = S11 &&  
    st1.prev_state = st &&  
    --  Stop  
    ( st1.stmt = st.stmt )  
  )  
}  
--------------------------  
run show for 12 but 40 FTuple  
check verify_security for 12 but 40 FTuple  
check verify_flow_policy for 12 but 40 FTuple  
check verify_no_dependency_flaw for 12 but 40 FTuple  
check verify_no_storage_channel for 12 but 40 FTuple  
check verify_no_timing_channel for 12 but 40 FTuple  
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