

DUDLEY K1T0X LIBRABT
NAVAL P08TG": ?B 8CHOOL
MOF't'wp.-pv n a > 5943-BA08

NAVAL POSTGRADUATE SCHOOL

Monterey, California

THESIS
EMYCIN-PROLOG EXPERT SYSTEM SHELL

by

Fikret Ulug

December 1986

The sis Advisor: N«ail C. Rowe

Approved for public release; distribution is unlimited

T2327 2k

iECumrv Classification Of ThiS pagT

REPORT DOCUMENTATION PAGE

la REPORT SECURITY CLASSIFICATION

Unclassified
'b RESTRICTIVE MARKINGS

2a SECURITY CLASSIFICATION AUTHORITY

2b DECLASSIFICATION /DOWNGRADING SCHEDULE

3 DISTRIBUTION/AVAILABILITY OF REPORT
Approved for public release;

distribution is unlimited

4 PERFORMING ORGANIZATION REPORT NUMBER(S) S MONITORING ORGANIZATION REPORT NUMFJER(S)

6a NAME OF PERFORMING ORGANIZATION

feval Postgraduate School

6b OFFICE SYMBOL
(If applicable)

7a NAME OF MONITORING ORGANIZATION

Naval Postgraduate School

6< ADORESS (Cry. State, and ZlPCode)

Monterey, California 93943-5000

7b ADDRESS (Ofy. Stat*, and ZIP Code)

Monterey, California 93943-5000

la NAME OF FUNDING/ SPONSORING
ORGANIZATION

8b OFFICE SYMBOL
(If applicable)

9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

3c ADDRESS (City. State, and ZIP Code) 10 SOURCE OF FUNDING NUMBERS

PROGRAM
ELEMENT NO

PROJECT
NO

TAS<
NO

WORK JNIT
ACCESSION NO

title (Include Security Claudication)

EMYCIN-PROLOG EXPERT SYSTEM SHELL

2 PERSONAL AUTHOR(S) Fikret rj lug

3a type OF REPORT

Master's Thesis
3b T'ME COVERED
FROM TO

14 DATE OF REPORT (/ear Mom* Day)

1986 December
15 PAGE COoNT

189
6 SUPPLEMENTARY NOTATION

COSATi CODES
F ELD GROUP SUBGROUP

18 SUBJECT TERMS (Continue on reverie if neceisary and identify by block number)

Expert Systems, Expert System Shell, Prolog

3 ABSTRACT (Continue on reverie if neceisary and identify by block number)

Building an expert system from scratch requires a long and tedious
programming process. To make this easier, expert system shells are

devised. We have implemented a shell in the language PROLOG. Our shell
is modelled on a famous one, EMYCIN. We built two small-sized expert
systems using our shell. The first one (CAR diagnosis system) diagnoses
engine problems in a car, and the second one (FINANCE analysis system)
gives financial advice. We also designed some explanation facilities
for out shell. The choice of PROLOG facilitated our study

^

considerably. PROLOG'S built-in pattern-matching and backtracking
facilities were two powerful features for the deduction process and
EMYCIN' s backward-chaining control structure. With our shell we were
able to buiild an expert system quickly. Although they were left as a

) D S"R'3UTiON/ AVAILABILITY OF ABSTRACT

UNCLASSIFIED/UNLIMITED SAME AS RPT D DTiC USERS

21 ABSTRACT SECURITY CLASSIFICATION

Unclassified
a NAME OF RESPONSIBLE INDIVIDUAL

Neil C. Rowe
22b l$llS>HOt>iZ,(iFiclvde-,Arita<ode)

(408) 646 2462
22c OFFICE SYMBOL

5 2Rp
) FORM 1473,84 mar 83 APR edition may be used until exhausted

All other editions are obsolete
SECURITY CLASSIFICATION OF this PAGE

SECURITY CLASSIFICATION OF THIS PACE (Wh«n Data Bnft^)

19. ABSTRACT (continued)

future study, implementation of the user interaction and
explanation system modules can make our shell a usable product

S<N 0102- LF- 014- 6601

SECURITY CLASSIFICATION OF THIS •AGCfTTh.n Dmtm Bnfnd)

Approved for public release; distribution is unlimited

EMYCIN-PROLOG Expert System Shell

by

Fikret Ulug
Lieutenant Junior Grade, Turkish Navy

B.S., Turkish Naval Academy, 1980

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
December 1 986

ABSTRACT

Building an expert system from scratch requires a

long and tedious programming process. To make this

easier, expert system shells are devised. We have

implemented a shell in the language PROLOG. Our shell

is modelled on a famous one, EMYCIN. We built two

small-sized expert systems using our shell. The first

one (CAR diagnosis system) diagnoses engine problems

in a car, and the second one (FINANCE analysis system)

gives financial advice. We also designed some

explanation facilities for our shell. The choice of

PROLOG facilitated our study considerably. PROLOG'S

built-in pattern-matching and backtracking facilities

were two powerful features for the deduction process

and EMYCIN' s backward-chaining control structure. With

our shell we were able to build an expert system

quickly. Although they were left as a future study,

implementation of the user interaction and explanation

system modules can make our shell a usable product.

TABLE OF CONTENTS

I. INTRODUCTION 8

A. EXPERT SYSTEMS 8

B. THE EXPERT SYSTEM SHELL AND EMYCIN . . 10

C. WHY EMYCIN? 12

D. WHY PROLOG? 14

E. THE WORK DONE 14

II. THE EMYCIN-PROLOG CONSULTATION SYSTEM 18

A. INTRODUCTION 18

B. DATA STRUCTURES 18

1 . The Context Tree 19

a. Introduction 19

b. Uses Of The Context Tree ... 20

c. Internal Structure Of Contexts 22

2. Parameters 24

a. Introduction 24

b. Types Of Parameters 25

c. Internal Structure Of Parameters26

3. Rules 28

a. Introduction 28

b. Internal Structure And Definition
Of Rules 30

c. Creation Of Context Instances And
Rule Evaluation 32

C. INFERENCE MECHANISM 34

D. FUNCTIONS 36

E. CONSULTATION CYCLE 38

1

.

Detailed Analysis Of The Control
Structure 38

2. Departures From The Main Control
Structure 44

III. INEXACT REASONING 45

A. CERTAINTY FACTORS 46

B. COMBINING FUNCTIONS 50

IV. KNOWLEDGE ACQUISITION 52

V. EXPLANATION SYSTEM 54

A. INTRODUCTION 54

B. ACQUIRING AND STRUCTURING THE SUPPORT
KNOWLEDGE 58

C. NATURAL EXPLANATION AND EXPLANATION TREE 59

D. SEMANTIC EXPLANATION NETWORK 61

E. INFERENCE NETWORK 62

VI. CONCLUSION 66

A. THE LESSONS LEARNED 66

B. REQUIRED HARDWARE AND SOFTWARE 67

C. EVALUATION OF EMYCIN 68

1 . Generality Of EMYCIN 68

2. Some Particular Problems 69

D. PROLOG AND EMYCIN-PROLOG 70

E. EFFICIENCY OF EMYCIN-PROLOG 71

F. THE BENEFITS OF OUR WORK 72

APPENDIX A: SOURCE CODE 74

APPENDIX B: LIST OF FUNCTIONS 124

APPENDIX C: KNOWLEDGE BASES 127

1

.

CAR DIAGNOSIS SYSTEM KNOWLEDGE BASE . . 1 28

2. FINANCE ANALYSIS SYSTEM KNOWLEDGE BASE . 142

APPENDIX D: SAMPLE CONSULTATIONS 156

1. CAR DIAGNOSIS CONSULTATIONS 157

2. FINANCE ANALYSIS CONSULTATIONS 163

APPENDIX E: FIGURES 169

LIST OF REFERENCES 184

BIBLIOGRAPHY 186

INITIAL DISTRIBUTION LIST 187

I. INTRODUCTION

A. EXPERT SYSTEMS

Our main goal is to translate the inference

engine of EMYCIN into the PROLOG language, and run

this inference engine with two different knowledge

bases. The expert system shell EMYCIN and its

inference engine are explained in Section I.B and I.E

respectively. This section provides background

information about expert systems.

One of the main interests in the area of

artificial intelligence is the development of "expert

systems" (ES) . An ES is a large computer program which

captures professional expertise in a field such as

fault diagnosis, chemical analysis, or equipment

design, and is capable of providing recommendations as

valid as those of human experts. Some well-known

expert systems are: the Heuristic DENDRAL program

which finds the relatively small set of possible

molecular structures of known constituent atoms that

could account for the given spectroscopic analysis of

an unknown molecule [1]; MACYSMA, which assists

mathematicians, scientists, and engineers in solving

mathematical problems; and MYCIN, provides

consultative recommendations for diagnosis and

8

treatment of infectious disease. The MYCIN example is

especially interesting in its ability to reason with

"inexact" data.

Years of experience have yielded a list of

prerequisities for the worth of expert systems [2,3].

Some of these prerequisities merit description. First,

the program should be useful. It should respond to the

actual needs of a domain. Second, the program should

be able to explain its advice. It should provide the

user with enough information about its reasoning to

allow a decision as to whether to follow the

recommendation. Finally, the program should be able to

communicate naturally with the user. It should avoid

confronting the user with computer Jargon. It should

use a language as close as possible to the natural

language to permit understanding of data requests,

explanations and recommendations. This would

facilitate the transfer of knowledge by the knowledge

engineer to the program during the knowledge-base

design phase. The knowledge engineer is one of the

users of EMYCIN (see following section for a

discussion about the different users of an expert

system)

.

B. THE EXPERT SYSTEM SHELL AND EMYCIN

Before the concept of the expert system shell is

introduced, the principle builder of the expert

system, the knowledge engineer, and his/her

relationship to the expert system shell should be

described. The knowledge engineer works together with

the domain expert during building process. The

knowledge engineer is the AI specialist while the

domain expert is the specialized senior professional

with respect to the domain. The relationship of the

knowledge engineer and the expert system shell has

been expressed as follows: "The need for a knowledge

engineer is inversely proportional to the quality of

the tools provided by the expert system environment"

[4].

Over the years, methodologies used to build

expert systems have developed similarities, and they

can be categorized according to the representation of

knowledge (first-order predicate calculus, semantic

networks, production systems, frames [5]), and

inference methods that perform reasoning on the

knowledge base (generate-and-test , backward-chaining,

forward-chaining). While the first generation of

expert system builders used enhanced AI languages like

Interlisp and PROLOG, second generation efforts

concentrated on building and using languages that

10

embody one or more of the above knowledge

representation schemes and inference methods. Such

languages reduce the expert system building time

considerably, and they are called expert system

shells. "Without such an environment, the development

process would focus on programming. This burdens and

lengthens the task of the knowledge engineers and

decreases the quality of communication with the

experts; they do not work on the same thing" [6].

EMYCIN is one such second generation expert system

building language (expert system shell). Some other

expert system shells are presented in detail elsewhere

[7].

An expert system shell should facilitate the

expression, display, organization, and interaction of

thoughts. EMYCIN presents a conceptual model

consisting of triples (attribute, object, value) and a

context tree, designed to satisfy the above

requirements. Here the conceptual model should not be

confused with the language used, since EMYCIN has

already been implemented with different languages such

as Interlisp, and in our work, with PROLOG.

EMYCIN' s task is explained by its author as

follows: "EMYCIN is used to construct and run a

consultation program, a program that offers advice on

problems within its domain of expertise. The

1 1

consultation program elicits information about a

particular problem (a "case") by asking questions of a

user. It then applies its knowledge to the specific

facts of the case and informs the user of its

conclusions. The user is free to ask the program

questions about its reasoning in order to better

understand or validate the advice given" [8] . Once

EMYCIN is built by a shell designer there are two

other users of it. First is the knowledge engineer who

uses EMYCIN to produce a knowledge base for the

domain. The knowledge engineer most of the time works

with the domain expert (see Figure-1). The knowledge-

base is composed of factual knowledge about the domain

and production rules [9] showing how to go through the

consultation. The third user of EMYCIN is what we call

the consultor to whom the advice is given. Thus

EMYCIN, together with the knowledge base, constructs a

new consultation system. Throughout our study we will

refer to the shell designer as "we" or "us".

Figure-1 shows the overall organization of the

EMYCIN and interactions with different users.

C. WHY EMYCIN?

In our search for an expert system shell EMYCIN

has been chosen for several different reasons. First,

as a university research project compared to a

12

commercial one, EMYCIN has increased, credibility.

EMYCIN in fact originated from the expert system MYCIN

which diagnoses infectious diseases. MYCIN'S succesful

diagnostic results encouraged us to look at its

structure. The builders of EMYCIN (Essential MYCIN)

stripped off the domain specific knowledge of MYCIN

and proposed the remaining structure as an expert

system shell and also claimed its applicability for

domains other than medicine.

Our primary need was for a higher-level

conceptual structure which would embrace the domain

knowledge in a structured way. We also needed an

inference engine to operate on that knowledge as well

as the implementation of these conceptual and

structural requirements in reasonable hardware and

software resources.

EMYCIN provides a highly organized conceptual

structure into which the domain knowledge is to be

mapped. It is a tree whose nodes correspond to the

hierarchically organized domain-knowledge chunks.

These nodes are designated contexts. Our attempt is to

have a balance between the complexity of the context

tree requirements and their implementation

difficulties. EMYCIN is expected to provide this

balance

.

13

D. WHY PROLOG?

Programs in PROLOG consist of rules and facts,

where each rule is equivalent to a Horn clause

[10,11]. The entire set of facts and rules comprises

the knowledge base. When this knowledge base is

queried, the information which is a logical

consequence of facts in the knowledge base can be

retrieved. Inference is done in a top down fashion

using the resolution principle [12]. PROLOG has a

built-in-pattern-matching facility which is based on

the unification principle [10]. Since the EMYCIN

inference engine works on production rules [9]

,

PROLOG'S basic statements, which are rules, facilitate

implementation of the rule based structure of EMYCIN.

Emergence of different PROLOG implementations on

different machines encouraged us to work with PROLOG

[13]. Also this increasing availibility and its ease

of use increases the portability of our work.

E. THE WORK DONE

Our work can be seen in four different parts. The

first part involves the writing of a program using

PROLOG which imitates the inference engine of EMYCIN

expert system shell. This phase of our work is called

the shell building process. During the shell building

process EMYCIN' s data structures, inference mechanism,

14

and the way of reasoning were analyzed. The second

part was the building of two different knowledge-

bases. The knowledge-bases are composed of production

rules and all structural information that EMYCIN

requires (i.e., context and parameter definitions).

The third part involved running these knowledge-bases

and obtaining consultations. The final part was the

analyzing of the explanation system of EMYCIN.

EMYCIN is composed of three main parts: the

knowledge-base construction system, the consultation-

driver system (inference engine), and the explanation

system (see Figure-1). The inference engine operates

on the knowledge-base using EMYCIN' s high level

conceptual structure (context tree), the data triples

[attribute, object, value (see Section II. A. 1. for

details)], and production rules [9]. Reasoning is

done by backwards chaining, which is the main reason

for choosing PROLOG as the implementation language,

since it already posseses this built-in control

structure

.

The inference engine builds the context tree

dynamically and, according to the definition of

parameters (one of the elements of data triples),

reasons on the production rules to find the value of

the goal parameter defined by the knowledge engineer

.

15

Two different knowledge-bases were built, namely

the CAR diagnosis system and the FINANCE analysis

system. Their context and parameter definitions and

production rules were defined. The inference engine

was run on these knowledge bases and sample

consultations were recorded (see Appendix D for sample

consultations)

.

The FINANCE analysis system originated elsewhere

[14]. This sample knowledge base was chosen

specifically to test our inference engine.

Following the implementation of the consultation

driver system (inference engine), the EMYCIN

explanation system was analyzed, its deficiencies

identified, and a new system proposed. Even though the

explanation system was not implemented, its basic

structural elements were presented using PROLOG

definitions, and a small sample of an explanation

session was built for the CAR diagnosis system, again

using PROLOG (see Section V).

The knowledge-base construction system provides

for the acquisition of an expert's domain knowledge

and storing of this knowledge, which is then ready to

be processed by the consultation driver system. While

this system was not implemented, requirements for the

knowledge acquisition system are presented in Section

IV.

16

While EMYCIN-PROLOG did not need some of the

elements of the control structure of the EMYCIN,

(e.g., the UPDATE-BY list is not used to keep track of

the list of related rules for every parameter [2]),

some new properties were added into the static

definition of parameters (e.g., the "is_t" (is traced)

property of a parameter is to keep track of whether

the parameter's value is traced or not).

17

II. THE EMYCIN-PROLOG CONSULTATION SYSTEM

A. INTRODUCTION

In this chapter EMYCIN's data structures and

inference mechanism are analyzed. Throughout our

study, the PROLOG implementation of the EMYCIN

inference engine is referred to as EMYCIN-PROLOG.

Section II. D explains the functions used in rules and

Section II. E gives a step-by-step analysis of the

whole consultation cycle.

Throughout this thesis context and parameter

names are printed in smaller fonts for clarity

purposes (i.e., context, parameter).

B. DATA STRUCTURES

The structural aspect of the expert's problem

solving strategy Is reflected in the context types and

their parameters. These two main elements of the

system provide the language to express the expert's

problem-solving methods for the domain. Besides

contexts and parameters, another main component is the

rules which embody domain specific knowledge. The

following three sections describe the internal

structure of contexts, parameters and rules and

introduce the idea of a context tree.

18

1 . The Context Tree

a. Introduction

In this section MYCIN'S context tree

structure is used as an example (see Figure-3/4)

.

The context tree forms the backbone of

the consultation system by organizing the conceptual

structure of the knowledge base and providing a

framework for the flow of the consultation system. The

tree also includes the goal for which the consultation

system will try to determine a value. In our example

the goal is therapy (i.e., determine the best therapy

recommandation) . Therapy is a parameter of the patient

context

.

The context tree is composed of at

least one context type which corresponds to the

conceptual entity in the domain. One conceptual entity

from our example is the patient context. As its name

implies, the context tree is structured in a tree

hierarchy. Each context type in the tree resembles a

record declaration in a traditional programming

language. Since a context type can have more than one

instantiation, the context tree has two distinct

appearances. The first one corresponds to the

declaration phase of a record and is called the static

context tree . The static context tree includes every

context type in it and shows their hierarchical

19

relationship: their root context (patient), all

parent/son connections (patient context is parent of

the current culture context), etc. Once the

consultation starts, depending upon the specific

consultation, not necessarily all context types are

included (e.g., therapy context is not included in the

dynamic tree of the MYCIN). A given context types

might have more than one instances (current culture

context has two instances, culture-1 and cuiture-2).

The resulting tree structure therefore would be quite

different from the static context tree structure. This

structure variation corresponds to the second context

appearance and is called the dynamic context tree

(see Figure-4). The above distinction of static and

dynamic context tree is illustrated in Figure-3 and

Figure-4. These samples were taken from MYCIN [2].

Hereafter, we will call the static and

dynamic context trees the static tree and dynamic tree

respectively.

b. Uses Of The Context Tree

It is very important to understand the

purpose of the context tree. Defining contexts of a

problem is not simply naming isolated physical

entities. The context tree provides a way to represent

multiple instances of these entities. One of the main

mistakes in defining the context tree is to define

20

contexts which have only one instance and no more.

This makes the tree cumbersome and does not bring any

advantage since this type of context can simply be

viewed as an attribute of the root context. For

example, one might want to write rules that use

various attributes of a car's carburator , but since

there is always exactly one carburator for a car there

is no need to have a carburator context; any attribute

of the carburator can be attributed to the car

context

.

There are three main uses of the

context tree. The first use is to structure the data

or evidence which is required to advise the user about

the root context. In our sample system, "subsystem"

contexts describe the different tests performed to

locate the problem in the CAR. Also additional

information about car's prior repairs are also

represented in the tree. The context organization is

shown on Figure-5 and Figure-6.

The second use is to specify components

of some object. An example of this use can be taken

from a system called LITHO, which interprets data from

oil wells. In this system, each well is decomposed

into a number of zones that the petrologist can

distinguish by depth. Context organization of this

system is shown in Figure-7.

21

The third use is to distinguish events

or situations that an object can have. An example of

this use can be shown in CAR example, where different

repairs in the past represent different situations

that a repair process can have.

c. Internal Structure Of Contexts

One of the important properties

associated with a context type is the definition of

parameter group. A given parameter group defines a

list of parameters which belongs to a context type.

While every context generally has its own parameter

group, one parameter group can be shared by more than

one context

.

Another property that a context must

have is an ASSOCWITH which shows the ancestor context.

Also a context typically has MAINPROPS and GOAL

properties. The goal property must be defined for the

root context. They are explained later in this

section. The consultation is started and driven by

tracing the parameters defined in the goal or

mainprops list.

The example below shows the properties

of the context type CAR from the car diagnosis system.

CONTEXT : Car

OFFSPRING : [subsytem, repairs]

ASSOCWITH : nil

22

PARMGROUP : car_parms

PROMPT3 : 'This is a car diagnosis program'

MAINPROPS : [year , model .problems]

Below is the list of all possible

properties of a context type with brief definitions.

offspring

A list of descendant context types. It

shows which context types are direct descendants of

this context type in the tree.

assocwith

The parent context of this context type

in the tree, e.g., CAR context is ASSOCWITH property

of the REPAIRS context

.

parmgroup

A name which represents group of

parameters for this type of context.

prompt

1

The prompt asking whether this type of

context exists. If the user answer is yes, then an

instance of this context type is created and its

MAINPROPS parameters will be traced. If there is no

PR0MPT1 property then it is assumed that there is

always at least one instance of the context type and

PR0MPT3 is displayed.

23

prompt2

The prompt asking of the user whether

additional instances of this context type exists.

prompt3

The prompt that will be displayed when

the first instance of this context type is created.

This prompt is simply an announcement of the creation

of the context instance. Existance of PR0MPT3 implies

that at least one instance of this context type

exists. For example, a PR0MPT3 property of the CAR

context is: This is a car diagnosis program.

mainprops

List of parameters to be traced once a

context of this type has been created. The trace

process follows PR0MPT3 or PR0MPT1 and PR0MPT2 if the

user's answer to these prompts is 'yes'.

2 . Parameters

a. Introduction

Parameters comprise an important class

of second level knowledge other than rules; they

represent properties of the context or describe facts

about the problem space in general. In the structures

context, the main use of parameters is to represent

the data or evidence. Taking examples from the CAR

diagnosis system, parameters are used to describe the

status of every subsystem via observations and

24

measurements taken from different parts of the

subsystem. BATTERY_VOLT , HYDROMETER, AMMETER and

DIMMING_LIGHT are examples of such parameters leading

to the description of the status of the subsystem

context. A car's status would be completely specified

by a context tree if values of all parameters

characterizing each node in the tree were known.

Another use of parameters is to

represent the goals or advice to be determined. For

the CAR problem, the major goal is to determine the

defective parts of the car which caused the trouble.

One of the goal parameters is STALLED_ENGINE whose

value is the information about the defective part of

the car causing the engine to be stalled.

Inferences and data are stored using

(attribute, object, value) triples. While the object

is always some context in the tree, the attribute is a

parameter appropriate for that context within the

PARMGROUP property of context.

b. Types Of Parameters

Parameters are in three different

classes according to the possible values they can

take. The simplest are the single-valued parameters.

These are the parameters such as model of the car or

battery voltage of the electrical system. They can

25

have only one value at a time. Possible values are

mutually exclusive for these parameters.

Multivalued parameters can have more

than one value at a time. Possible values are not

necessarily mutually exclusive. For example the

stalled_engine parameter may have more than one value

which implies that multiple defects in different parts

of the car may cause the engine to stall.

Third parameter type is the yes_no

parameter which is a special kind of single valued

parameter. It has only two possible values, namely

'yes • and 'no '

.

c. Internal Structure Of Parameters

Parameters are categorized according to

the context to which they apply. While the PARMGROUP

(parameter group) property of a context type defines

list of parameters which can be applied to this

context, the MEMBEROF property of the parameter

defines which one of the above parameter groups the

parameter belongs to. Following is a list of

properties which define a parameter's internal

structure

.

memberof

The name of the corresponding category

of parameters; any parameter group name.

26

valutype

The type of parameter (singlevalued,

multivalued or yes_no).

expect

Permissible values of a parameter whose

value can be asked of the user. Yes_no indicates that

a 'yes' or 'no' answer is expected. Number indicates

that the expected value is a number. Any indicates

that any value can be the answer

.

prompt

The question to be asked when the

system needs to know the value of any askable

parameter

.

can ask

Whether the parameter's value can be

asked or not.

An example of a parameter and its

properties follows:

parameter (hydrometer)

.

hydrometer (memberof ,elec_parms)

.

hydrometer (valutype , singlevalued)

.

hydrometer (expect , any)

.

hydrometer (prompt ,hydrometer_prompt)

.

hydrometer (can ask,1).

27

hydrometer_prompt

pr int(' What is the specific gravity measured by

hydrometer ?').

The properties of a parameter and

context are defined as PROLOG facts. The prompt

property of a parameter calls a PROLOG routine which

simply prints out the question to be asked of the

user. An associated property "is_t" (is traced) of a

parameter for a particular context instance is defined

dynamically, showing that parameter's value was traced

(i.e., an attempt was made to infer its value).

3. Rules

a. Introduction

The largest component of the knowledge

base of The EMYCIN-PROLOG consultant is the rule base.

The rule base is a collection of production rules

which instruct the system how to reason and arrive at

conclusions [9]

.

While the contexts and parameters

record the structural information about the domain,

the rules describe the action or problem solving

component of the expert's knowledge. The content of

the rules and their ordering in the database determine

the search path taken to conclude a value for goal

parameter. The search is depth-first because PROLOG'S

28

inherent backtracking mechanism was used. Thus

ordering of rules has an important effect on the

consultation path. In the EMYCIN-PROLOG consultation

system rules which conclude a value with higher

certainty were put before the rules with lesser

certainty. The heuristic used by EMYCIN named "unity-

path" consists of ordering the rules with certainty

(CF = 1 or -1) first and executing in that order. Thus

if any rule with CFrule = 1 or -1 succeeds, any other

rule will not be tried and the search path will be

shortened.

Rule execution indirectly causes the

context instance to be created, thus providing the

mechanism for propagation of the context tree.

Creation of a new context occurs when a rule that

tried to evaluate a value for a parameter and context

tree proves to have no context to which this parameter

is applicable. A context is applicable to a parameter

if the parameter is a member of the parameter group of

this context (MEMBEROF = PARMGROUP) . In this case an

applicable context is found and its new instance is

created (see Section II. E).

29

b. Internal Structure And Definition Of

Rules

Rules have two main parts: action and

premise. Below is the general form of a rule in PROLOG

form (rule template).

PARAM(CNTXT , N , VALUE , CFrule

)

•

eval_premise(FUNC1 , PARANN , CNTXT, N, [VAL1] ,CF1)

,

eval_premise(FUNCn,PARAMn, CNTXT, N, [VALN] , CFn)

,

min([CF1 ,CFn] ,CF)

,

cone lude (CNTXT , N , PARAM , VALUE , CF , CFrule)

.

An example rule and its English

translation is:

RULE (PROLOG form)

battery(CNTXT,N, 'weak* ,0.5)

• _

eval_p r emi se (great eq, hydrometer , CNTXT ,N,[1250],true),

eval_premise(lessp ,battery_volt , CNTXT ,N, [12], true),

cone lude (CNTXT, N, battery, 'weak' ,0.5,1 .0)

.

RULE (English Translation)

IF hydrometer value of electrical_system

is greater or equal to [1250] with CF > 0.2.

AND
30

battery_volt value of electr ical_system

is less than [12] with CF > 0.2.

THEN

battery value of electr ical_system is

weak with certainity value 0.5.

(Note that the function min or max is

not used, since functions greateq and. lessp do not

return a certainty value).

The PROLOG routines with the

eval_premise predicate construct the PREMISE of a

rule. After all individual eval_premise routines are

executed succesfully, a certainty calculation is made

via either the 'max' or 'min' routine, which calculate

the maximum or minimum of all certainty numbers that

every individual eval_premise routine returns.

The structure of the clause

eval_premise is "eval_premise(FUNC , PAR, CNTXT, N,

[VAL] , CF)" where FUNC is one of the functions defined

in Section II. D. par is the parameter (attribute) to

be evaluated, cntxt.n is tree pointer showing current

context instance at any particular time of the

consultation. Its value is left as a variable. The

particular context instance to be applied is

determined during the consultation by referring to the

existing dynamic tree. The determination of the

context instance is explained in detail in following

31

section. The [VAL] is one or more parameter values

which bind to a given parameter's value. This value or

values in the list are of interest. If the parameter

has a value in this list with CF value limits defined

by the FUNC used, then the eval_premise clause

succeeds

.

The ACTION part of a rule is simply the

last routine in the body of a PROLOG rule. While there

may be other action predicates, the only predicate

used in EMYCIN-PROLOG is the conclude routine which

inserts the (attribute, object, value) triple into the

dynamic database with a certainty value. Note that

insertion implies updating any other database triple

if it is already in the database with a different

certainty value. This updating process is explained in

Section III. A.

c. Creation Of Context Instances And Rule

Evaluation

Creation of new contexts during the

consultation process builds the dynamic tree. PREMISE

clauses in a rule do not refer to a specific instance

of a context, rather context type and instance are

determined indirectly depending upon the current

dynamic tree.

A consultation begins with the

automatic creation of a root context and tracing its
32

A consultation begins with the

automatic creation of a root context and tracing its

MAINPROPS parameters with respect to this instance of

the root context. The evaluation process executes

rules unless the parameter to be evaluated is askable

(can_ask = 1) . In the ACTION and PREMISE parts of a

rule variable pair cntxt.n is used which is bound to

the appropriate value during execution. First the

current context is tried; if current context is not

applicable then the required context is found on the

current branch of the dynamic tree (i.e., the path

from the root node to the current context to which the

parameter in question can be applied). If no context

is found on the current branch, then the applicable

context should be a descendant of the current context.

All such contexts are found and instantiated and the

current rule is applied to each of these contexts.

When each context instance is created

its MAINPROPS parameters are traced. After all such

contexts have been instantiated and their MAINPROPS

parameters traced, the original parameter that

triggered this mechanism is traced with respect to all

of the newly created instances.

33

C. INFERENCE MECHANISM

Inference is done in a goal-oriented, fashion. The

system goal is defined, in the MAINPROPS property of

the root context. While the system tries to achieve

that goal, subgoals are set up and tried in turn. This

process is recursive and continues until one of the

subgoals is achieved and in turn the top level goal is

achieved.

For example, in the CAR diagnosis program one of

the top level goals is "stalled_engine M
. The system

calls the rule:

stalled_engine(CNTXT,N, VALUE, 1

)

eval_premise(same, electrical ,CNTXT,N, VAL,CF)

,

hypothesis(electrical , Cx , Nx , VALUE , CFc)

,

conclude (CNTXT ,N, stalled_engine , VALUE, 1 , CFc)

.

The premise of this rule is the subgoal to be

pursued which in turn causes other subgoals to be

tried until, finally, one of the subgoals succeeds

without need to try another subgoal.

At each subgoal -pursuing process in the above

reasoning chain, EMYCIN-PROLOG proceeds in two stages.

It first attempts to update the dynamic database with

the obtained value of the parameter for the related

34

condition.

During the update stage, there are two cases to

consider

.

In the first case the parameter value can be

known by the user (can_ask = 1). In this case the user

is directly asked for the value of the parameter. An

example from the car diagnosis problem of such a

question is: "What is the specific gravity measured by

the hydrometer?" EMYCIN-PROLOG uses the prompt

property of a parameter to produce this question. The

user's response is checked by referring to the expect

property of the parameter. If the answer is not an

expected value then the user is warned and the same

question is repeated until a value in the limits of

expected value is obtained. If the answer is "unk"

(unknown) then rule base is consulted to evaluate the

parameter's value for the context of a particular

instance

.

In the second case the parameter value cannot be

asked of the user, but there are rules which mention

the parameter in their action parts. In this case

EMYCIN-PROLOG invokes all these rules in order to

infer a value for the parameter

.

In the second stage (hypothesis retrieving) the

dynamic database is consulted for the list of

35

In the second stage (hypothesis retrieving) the

dynamic database is consulted for the list of

hypotheses regarding the value of the parameter. The

function in the subgoal is applied to this list in an

attempt to satisfy the condition, and in turn to

achieve the subgoal.

After all rules mentioning the parameter in their

action part have been tried, the parameter for the

given context is marked as 'traced' i.e., the "is_t"

property of the parameter for the given context is set

to "1". Further requests for this parameter's value

for the given context are met directly from the

dynamic database. This process prevents redundant

invocation of the rules.

D. FUNCTIONS

There are different types of premise functions

that can appear in rules. During the consultation

process, the system wants to know for a given

parameter one or more of the following:

whether or not its value is known;

whether or not its value satisfies the specific

value(s) with a specific certainty value limit;

whether or not its value is known to be true with

a certainty value; or

36

Whether or not its value satisfies a numerical

value with CF > 0.2.

The function names used for each category above

are

:

(1

)

KNOWN , NOTKNOWN , DEFINITE , NOTDEFINITE

;

(2) SAME , THOUGHNOT

;

(3) NOTSAME, MIGHTBE, VNOTKNOWN, DEFIS, NOTDEFIS,
DEFNOT, NOTDEFNOT;

(4) GREATERP , LESSP , GREATEQ , LESSEQ

.

Functions in the first three groups have

certainty factor limits which change according to

whether they are applied to a multivalued,

singlevalued or yes_no parameter. The first three

groups of functions are called nonnumeric predicate

functions and the last groups of functions are numeric

predicate functions. Another group consists of

conclusion functions. Only the conclusion function

conclude is used in EMYCIN-PROLOG.

Functions are applied to data triples stored in

the dynamic database. All return a truth value except

SAME and THOUGHNOT. Functions in the first group are

concerned not with the actual value of a parameter but

with whether or not it is known. For example,

known(condition, electrical_system, 1, true) succeeds

if and only if the condition of the electrical system

is known with a certainty factor greater than 0.2.

A list of all functions with their formal

definitions are given in Appendix B.

37

E. CONSULTATION CYCLE

1 . Detailed Analysis Of The Control Structure

A consultation starts with the creation of

the root node in the context tree, a context of type

CAR in our example. Creation of any context involves

two basic processes to be done at the outset.

First the root node is added to the context

tree

.

Second the parameters in its MAINPROPS list

are traced.

The MAINPROPS property for context type CAR

is the list [year , model .problems] . EMYCIN-PROLOG

traces the value of each of these three parameters in

turn. Once all of these three parameters have been

traced the consultation terminates since finding a

value for PROBLEMS parameter is the final goal of the

CAR diagnosis system.

While YEAR and MODEL are askable parameters,

PROBLEMS is not an askable parameter. Therefore,

following the evaluation of the first two parameters,

the system proceeds to infer the third parameter's

value by consulting the rule base. The rule that

mentions this parameter presents a menu to the user

asking the kind of the problem occurring in the car.

Representing this menu and asking for information are

not considered part of the goal-oriented reasoning

38

which the system follows. However, this initial

information serves to focus the search and eliminate

unnecessary search paths. The user's answers cause

another parameter value to be sought. This value is

staiied_engine in our example consultation. Again

stall ed_engine is not an askable parameter. Thus the

rule base is consulted and the rules mentioning this

parameter are tried in order. Our current context and

its instance is car.1 (the value of the tree pointer).

Rules mentioning the stalled_engine

parameter are:

stalled_engine(CNTXT,N, VALUE, 1 .0)

eval_premise(same, electrical ,CNTXT,N, VAL,CF)

,

hypothesis(electrical ,C,Nx, VALUE, CFc)

,

conclude (CNTXT , N , stal led_engine , VALUE ,1.0, CFc)

.

stal led_engine (CNTXT , N , VALUE ,1.0)

m

eval_premise (same, fuel , CNTXT ,N, VAL,CF)

,

hypothesis (fuel,C,Nx, VALUE, CFc),

conclude (CNTXT, N, stal led_engine, VALUE, 1 .0,CFc)

.

The premise of the first rule refers to the

parameter electrical which is the parameter of the

39

electrical_system context. Since this parameter is not

applicable to the current context type car, the

applicable context electrical_system has to be found

in the tree. It is not in the tree so it will be

created. Here the main consultation has to stop

temporarily to create this new context.

The electrical_systera context is a direct

descendant of the car context. The system makes use of

the PR0MPT1 , PR0MPT2 and PR0MPT3 properties of that

context type during the creation process. If there is

a PROMPT 1 property, the context may not have any

instance at all. If there is a PR0MPT3 property then

there must be at least one instance of the context.

The electricalsystem context has a PR0MPT3 property;

hence it is printed out and context instance is

created.

When the second context is to be created,

the PR0MPT2 property is printed out and the user is

asked whether another instance of this context type is

to be created. The creation process continues until

the user replies "no". Then this context is marked as

nonaskable by inserting into the database the fact

showing that the askable property of this context is

zero.

The next step is to trace the parameter (s)

in the MAINPROPS list of the context. Since it is an

40

empty list for electrical_system (there is no

parameter to be traced immediately), control of the

consultation goes back to the evaluation of the

parameter electrical. The tree pointer's value is now

ELECTRICAL_SYSTEM,1

.

The following sequence of events describes

the rest of the consultation process.

Electrical is not an askable parameter so

the rule base is consulted. The first rule has two

parameters in its premise, DIMMING_LIGHT and BATTERY.

DIMMING_LIGHT and BATTERY are applicable to

the current context and also DIMMING_LIGHT is an

askable parameter (can_ask = 1). The prompt property

of this parameter is invoked and the question: 'Turn

on your lights and operate the starter; Do the lights

go out or become dim ? (yes/no)' is asked. If the

answer is "yes" then the condition is satisfied since

the specified value [yes] is defined in the [VAL] part

of the eval_premise clause (first premise clause). The

returned certainty value is "1" unless a number is

specifically given with the answered value (e.g.,

'yes_9' means that answer is yes with certainty value

0.9).

The second condition is the evaluation of

the BATTERY parameter. It is not askable so again the

rule base is consulted and the first related rule has

41

two parameters to be evaluated in order to succeed:

HYDROMETER and BATTERY_VOLT

.

The eval_premise conditions which mention

these parameters have the numerical predicate function

LESSP. It is evaluated the same way as DIMMING_LIGHT

.

The question is asked and the answer is compared with

the specified value, which is [1250] for HYDROMETER

and [12] for BATTERY_VOLT . If in our case the answers

are less than these two values, the conditions

succeed. The next condition is the conclusion function

which inserts the hypothesis about the BATTERY

parameter into the database:

hypothesis(battery , electrical_system, 1 ,weak, 1

)

Following this first BATTERY rule all other

rules about BATTERY are also tried and, if applicable,

other hypotheses about this parameter are inserted

into database and the is_t property of this parameter

is set to "1" for this current context, indicating

that parameter's value was traced. If its value is

needed in any subsequent rule, the value is retrieved

from database directly. At this point control goes

back to the first electrical rule. Since the first two

conditions have succeeded, the next premise clause

returns a minimum of concluded certainty values as a

certainty value for the premise of the rule. The next

clause before the rule succeeds is the conclusion

42

function; another hypothesis now is entered into

database:

hypothesis(electrical , electrical_system, 1 , battery , .8)

assuming CF1 and CF2 are both 1, min([CF1 ,CF2] ,CF)

returns CF = 1, and the concluded hypothesis' CF value

is the multiplication of the rule's certainty value

(here 0.8) and the premise's certainty value 1.

Following this first electrical rule all

other rules about electrical also are tried. At the

end the is_t flag is set to "1" and control is sent

back to the first stalled_engine rule. The next clause

retrieves the concluded value of electrical by calling

the clause hypothesis(electrical ,C,N, VAL,CF) , whose

variables in the argument list binds the previously

concluded value. The last condition is the conclusion

function, which concludes a value (i.e., inserts a

hypothesis into the database). The inserted hypothesis

is:

hypothesis(stalled_engine,car , 1 , battery ,0 .8)

.

Following this rule's execution, other rules

about stailed_engine are also tried, and the ist

property is set to "1" again. An exhaustive execution

of all stalled_engine rules concludes the

consultation. Before the consultation ends all

concluded values of stalled_engine parameter are

printed out. The rest of the concluded hypotheses

43

obtained during the consultation are also printed out

for debugging purposes.

2 . Departures From The Main Control Structure

At any particular time, evaluation of a

parameter is exploited via rules in the evaluation of

goal parameter values. So the backwards chaining

mechanism is not strictly followed throughout the

consultation.

Evaluation of any parameter's value may

require creation of a context instance as explained in

a previous section. Each time a context is created its

MAINPROPS parameters are traced whether they are

needed or not. Following this, the trace process

brings control back to the point from which it

departed. A typical example of this departure is seen

when an attempt is made to evaluate the THROTTLEJTEST

parameter of a fuelsyatem context following the

creation of this context. The MAINPROP parameter will

be traced whether this parameter is needed at once or

not

.

44

III. INEXACT REASONING

Since the knowledge base of an expert system is

basically a collection of facts and rules obtained

from the user and domain expert and since most of the

data/knowledge obtained are imprecise in nature, it is

common that both the fact and inference rules are not

completely certain.

Uncertainty is introduced into the EMYCIN-PROLOG

expert system In two ways. First, factual knowledge

provided by the user represents observable evidence or

symptoms. This evidence might be difficult to observe

or might have to be measured with inaccurate or

unreliable equipment. A number as a measurement of

this type of uncertainty can be associated with the

observed value.

The second type of uncertainty exists in the

inference rules. The inference rules are intended to

capture the expert's experience, heuristics,

Judgement, and intuition, which is inherently vague

and nondeterministic. While the rules are being

written, the expert's reluctance to give a strong

relationship between the premise and conclusion of a

rule would force the rule author to introduce a number

accounting for such uncertainty (CFrule).

45

Since the decisions are made by human experts

without perfect information - this is what makes

experts experts - our concern in this section is to

explain the calculus used in EMYCIN-PROLOG to combine

different kinds of uncertainty into a final

uncertainty measure associated with the final

conclusion.

A. CERTAINTY FACTORS

Factual information is stored in the database as

(object, attribute, value) triples as mentioned

before. A number in the range of -1 to 1 is

associated with these triples assigning a measure of

belief or disbelief to the statement:

The <attribute> of <object> is <value>

where object (CNTXT,N) is a context instance as

previously defined. An object may have several

attributes (PAR). For example, electrical_system-1 in

the context tree in Figure-2 has attributes of

HYDROMETER and BATTERY_VOLT (See knowledge-base of CAR

diagnosis system in Appendix C.1.). Each attribute is

called a parameter. The third field is simply the

value of that attribute of the object.

A hypothesis is a (object, attribute, value)

triple and a certainty value associated with it. The

object is represented as a tuple: context name and

46

instance number (e.g., electrical_system,l) . For

example, hypothesis (battery, electrical_system, N,

weak, 0.8) denotes that the condition of the battery

is believed to be weak with the belief value 0.8.

Whenever a hypothesis is constructed, either with

the help of the rule or with information from the

user, the associated certainty value is also

calculated. If a rule with rule certainty value

"CFrule" is used, then the calculation proceeds as

follows

.

The certainty of premise is calculated by taking

the minimum or maximum of the certainty values (CF) of

the premise. For example, in the rule from CAR

diagnose system:

electrical (CNTXT,N, ' starter_circuit ' , 0.6)

eval_premise (same,dimming_light ,CNTXT,N, [no] ,CF1)

,

eval_premise (same,fuel_sys,CNTXT,N, [ok] ,CF2)

,

min([CF1 ,CF2] ,CF),

conclude(CNTXT, N, electrical ,
• starter_circuit ' ,0.6,CF).

There are two CF values, namely, CF1 and CF2

.

The certainty of the premise calculated by taking the

minimum of these two values since the premises are

ANDed. We would be taking the maximum of those values

47

if they had been ORed. Following this calculation,

CFnew=CF*CFrule is formed (CFrule is . 6 in above

example rule). The final result taken from the

multiplication process becomes the certainty value for

the concluded hypothesis. If there is another

hypothesis in the database with the same triple, then

its certainty (CFold) is combined with the new

certainty value (CFnew).

Combining uncertainty values into a final value

proceeds by updating existing hypotheses until all

applicable rules have been executed. The following

small sample sessions show the use of combining

functions and obtaining a final conclusion based on

the criteria of certainty values. In the EMYCIN-

PROLOG, we preferred to list all concluded values of

the goal parameters so that user will have a chance to

see all possible conclusions with their certainty

values

.

Assume the goal parameter of the consultation is

battery and the database has the following hypotheses:

hyp #1

hypothesis(battery ,electrical_system, 1 , bad_connectio-

ns , 0.5).

hyp #2

hypothesis(hydrometer ,electrical_system, 1 ,1200,1 .0).

48

hyp #3

hypothesis(battery_volt ,electrical_system, 1 ,10,1 .0).

hyp #4

hypothesis (battery ,electrical_system, 1 , weak, 0.7)

.

The following rule concludes a hypothesis for the

attribute battery:

battery(CNTXT,N, 'weak' ,0.8)

eval_premise(lessp , hydrometer ,CNTXT ,N, [1 250] , true)

,

eval_premise(lessp ,battery_volt ,CNTXT,N, [12], true),

conclude (CNTXT,N, 'weak' ,1 .0,0.8).

If the first two clauses in the premise succeed

then the following hypothesis is concluded:

hyp #5

hypothesis (battery , electrical_system, 1 , weak, 0.8)

.

[Note that the tree pointer points to

(electrical_system, 1 .)] . Now hypothesis #4 and #5

should be combined into a new hypothesis since they

conclude for the same (attribute, obj ect , value) triple.

Using the first combination function (see next

section for the explanation of combination functions)

leads to the calculation:

49

CFcomb = CFold + CFnew * (1 - CFold)

= 0.7 + 0.8 * (1 - 0.7)

CFcomb = 0.94

Following the update process hyp #4 becomes:

hypothesis(battery , electrical_system, 1 ,weak, 0.94).

Comparing the final certainty values and taking

the maximum one, the final conclusion of the

consultation is:

concluded(battery , electrical_system, 1 ,weak, . 94)

.

which translates as:

The concluded (value) of battery (attribute) of

electrical_system, 1 (object) is "weak" with certainty

value 0.94.

As we mentioned earlier in our implementation a

list of all hypotheses which conclude a value of the

goal parameter are presented.

B. COMBINING FUNCTIONS

There are two possible cases during the

combination process which are determined by the sign

of the old and new certainty values (CFold, CFnew)

.

These different cases and corresponding combining

functions are:

50

(1) CFold > and CFnew >

CFcomb = CFold + CFnew * (1- CFold)

(2) (CFold * CFnew) <

CFcomb = (CFold + CFnew)/(1- min(CFold, CFnew)

)

(3) CFold < and CFnew <

CFcomb = -(-CFold - CFnew * (1 + CFold))

The update process or combining certainty values

is used when the same value for the same object of an

attribute (PAR) is evaluated with different certainty

values

.

51

IV. KNOWLEDGE ACQUISITION

The knowledge engineer's main task is to enter

and debug the production rules and the facts about

static knowledge other than rules. Acquisition of this

static knowledge requires two levels of control,

namely catching common syntax input errors such as

misspellings and catching inconsistencies which are

likely to occur between rules. In the EMYCIN-PROLOG

consultation system, rules are typed from the terminal

by the knowledge engineer and no automatic consistency

or error checking are performed. In this section

possible mechanisms for such controls are discussed.

Rules are in PROLOG rule format as explained in

Section II. A. 3.

Acceptance of a rule into the rule base requires

the following consistency checks:

All parameters used in the rule should be

defined.

The sum of certainty values of rules whose

PREMISES can be true at the same time but conclude

different values should not exceed 1 . For example the

following two rules cannot exist in the same rule

base

:

52

battery (CNTXT,N, "bad_connections ' ,0.7)

eval_premise(great eq, battery_volt ,CNTXT ,N, [12] , true)

,

conclude! CNTXT,N, battery , 'bad_connections ' ,0.7,1)

.

battery(CNTXT,N, 'weak' ,0.5)

eval_premise(greateq,battery_volt ,CNTXT,N, [12], true),

conclude(CNTXT,N, battery , 'weak' ,0.5,1)

.

since 0.5 + 0.7 =1.2 and 1.2 > 1.

At least one rule should exist in the rule base

for every non-askable (can_ask =0) parameter.

53

V. EXPLANATION SYSTEM

A. INTRODUCTION

One of the main design considerations in building

an expert system is the ability to explain its advice

(i.e., provide the user with enough information about

its reasoning so that the user can decide whether to

follow the recommendation).

In this section we will introduce the

requirements for a complete explanation module. One of

the main issues involves answering the question 'WHY*

asked by the user when the system requests data to

continue the consultation. (It is numbered as WHY1 to

distinguish it from other WHY questions.) In this case

the WHY1 question can be interpreted as: "How is the

request for this data related to a goal?" Other WHY

questions can be defined; one of them would be: Why

did you request this data to reach this goal? - WHY2-

(i.e., give the strategy behind the inferencing

process)

.

Besides these two main WHY questions, some other

questions about the system's reasoning process

include

:

How does one goal lead to another?

How is a goal achieved?

54

Why is one hypothesis considered before another?

Why is one question asked before another?

In the current explanation scheme of EMYCIN, the

question WHY is handled by giving to the user the rule

which evaluates the parameter under consideration.

Successive WHY questions invoke antecedent rules [8]

.

This explanation scheme uses Just the rules.

Since rules do not have all the necessary knowledge

elements, as discussed below, this scheme has some

deficiencies

.

First the ordering of hypotheses in a rule's

premise will affect the order in which goals are

pursued. There is no explicit knowledge showing

reasons for this ordering.

Second the ordering of rules affects the order in

which hypotheses and hence subgoals are pursued. There

is no explicit knowledge about why a particular

ordering is preferred (i.e., why is one hypothesis

considered before another).

Third the inference steps taken by the author

which connect the premise of a rule to the action part

are omitted. The intermediate reasoning steps provide

justification for a particular rule used. The argument

could arise as to whether there is intermediate

reasoning connecting a premise to an action. Our

empirical study in some existing rule-based systems

55

showed us that most of the rules used in those systems

have the knowledge in compiled form (i.e., parts of

the expert's reasoning is left out of a rule).

Specifically in our CAR diagnosis system design we did

not need intermediate reasoning steps to be defined

explicitly for a working consultation program with

respect to the running of the consultation session.

The above three types of knowledge, implicit in

rule design, should be defined explicitly to satisfy

one of the main design considerations of an expert

system, namely the explanation of its reasoning. Our

special interest has been focused on the type of the

knowledge explained in the third item above.

An example rule from the CAR diagnose system is:

electrical(CNTXT,N, • low_starter_resistance • ,0.7)

eval_premise(same , ammeter ,CNTXT ,N, [yes] ,CF1)

,

eval_premise(same , starter_motor ,CNTXT,N, [ok] ,CF2)

,

min([CF1 ,CF2] ,CF),

conclude(CNTXT ,N, electrical ,
' low_starter_resistance •

,

0.7,CF).

The above rule concludes a value about the

parameter electrical. Two premise clauses require

values of the parameters ammeter and startermotor in

56

order. In either of these premise clauses, any

information which connects them to the parameter

electrical is not known. The answer to the question:

"WHY do we need to know about ammeter and

starter_motor to be able to obtain a value for the

electrical parameter?" is implicit in the rule. We

need additional knowledge (support knowledge) to

answer the above question, which corresponds to the

answer of WHY1 . This question is asked of the system

by the user when the system requests a value of

ammeter or starter_motor . One of the possible

explanations for such a WHY question is as follows:

The reason for looking for a value of ammeter is that

ammeter measures electric current and electric current

is produced by the electrical system, so any change of

the ammeter value gives a clue about the condition of

the electrical system. Similarly, an explanation for

the search a value for the starter_motor parameter

would be that the starter motor requires battery

voltage to operate. If the starter motor resistance is

short circuited, the battery voltage is used up and

very little voltage is left to crank the engine. The

battery voltage measures the battery performance and

battery performance is the quality of the battery.

Since the battery is part of the electrical system,

any problem in the starting system is likely to have

57

an affect on the condition of the electrical system.

So we need to know about the startermotor parameter.

The above two paragraphs provide the support

knowledge required to bring a sound explanation to the

user's queries about system's reasoning. The rest of

this chapter illustrates ways of structuring and

representing this support knowledge and giving

explanations by using this knowledge when it is

requested.

Once the representation scheme for the support

knowledge is defined, this knowledge is acquired from

the expert, we then proceed with structuring and

representing this knowledge. In the following three

sections these issues will be presented using CAR

diagnosis system.

B. ACQUIRING AND STRUCTURING THE SUPPORT KNOWLEDGE

In the explanation phase, we focus on a

particular WHY question, namely: How is a request for

this data related to a goal? This question focuses on

a rule. Each individual premise and action part of a

rule requires the support knowledge. After all this

knowledge is obtained, it is first converted into an

explanation tree from the expert's natural language

form and then into a semantic network, and finally all

of such semantic networks for individual rules are

58

combined into one semantic explanation network which

corresponds to the support knowledge for the whole

rule base. Support knowledge is represented in a

semantic network. To explain the above process we use

the CAR diagnosis rule-base. Some of the system's

requests for data from the user can be seen in

Appendix D. The explanation system is invoked if the

user answers WHY to any of these questions.

C. NATURAL EXPLANATION AND EXPLANATION TREE

The explanation process involves three main

activities: giving examples, eliminating alternatives

and giving reasons [15]. The expert tries to reach

commonly known concepts using the above three building

blocks of natural explanation. Given an explanation

from the expert, our first goal is to structure and

represent this discoursive form of explanation in the

tree form.

The explanation tree is composed of nodes and

statements connected to them. A statement may be

another node, thereby providing an embedded structure.

Nodes are nonterminals of the grammar and statements

are terminals [15]. In our case study only one main

building block, "giving a reason" is used. The

corresponding grammar is :

start ==> 1CLUE/RSN e e

59

e ==> STMT/RSN e e(en)

e ==> RSN/STMT e(en) e

e ==> AND - OR e e(en)

e ==> IF/THEN e e

e ==> statement

where n>=1

.

1CLUE/RSN, STMT/RSN, RSN/STMT, AND, OR and

IF/THEN are possible statement connectors. Their brief

descriptions are:

1CLUE/RSN e1 e2 : one of the clues to get a

value of e2 is e1

.

STMT/RSN e1 e2 : the reason for e2 is e1

.

RSN/STMT e1 e2 : the reason for e1 is e2.

AND e1 e2 : e1 and e2.

OR e1 e2 : e1 or e2

.

IF/THEN e1 e2 : if e1 then e2.

The explanation tree provides a more powerful

method of acquiring an explanation from the expert.

Once the expert's explanation is structured into the

tree, it is easier to proceed since the explanation is

divided into smaller parts and each part corresponds

to one element of the grammar. For this reason

construction of a individual explanation tree

(acquisition of explanation knowledge) becomes the

crucial step. An example of an explanation tree is

given in Figure-8.

60

D. SEMANTIC EXPLANATION NETWORK

After the explanation tree is formed, the next

step is to construct a corresponding semantic network.

First the terminal nodes in the tree are structured

into their semantic network equivalents. Each node

in the semantic network has a STATUS and PATH link.

The path link provides information about relationship

between nodes. The status link provides information

about possible conditions of the node (parameter).

Rules in the inference network connect these

conditions to each other (see following section for

inference network).

The following example explains the construction

of the semantic network, starting from the natural

language form of explanation. An explanation (answer)

to the question, "How is the data about starterjnotor

related to the electrical parameter?" would be: "The

starter motor works with battery voltage; the battery

voltage is the quality of the battery; and the battery

is part of the electrical system. If there is any

problem in the starter motor, then the electrical

system is likely to exhibit of this problem. For

example: if a starter motor has a low resistance, then

the battery voltage is consumed which in turn causes

the battery to be in bad condition."

61

The explanation tree corresponding to the above

explanation is depicted in Figure-8 and the semantic

network in Figure-9. The IF/THEN conditions of the

tree represented in the status links and other

terminal nodes provide the relationship links between

nodes (parameters).

E. INFERENCE NETWORK

The inference network is the representation of

the semantic network in PROLOG rules and facts. It is

composed of three main parts: inference rules,

relationship facts and path facts.

Inference rules provide all hypothetical

conditions of parameters and their connections to each

other . They correspond to the IF/THEN nodes of the

explanation tree.

Relationship facts simply represent relationships

between parameters. For example the fact

starter_motor (works_with,battery_voltage) shows that

the relationship between the parameters starter_motor

and battery_voltage is one in which the starter motor

requires the battery voltage to operate properly.

A path fact is used to facilitate the

implementation of our explanation system. It directs

the inference process in the inference rules. There

may be more than one path between two parameters in

62

the semantic network. Only one path is traced at a

time and. the inference to be considered, next is

determined by the path list obtained from path facts.

The inference network is depicted in Figure-1

1

which corresponds to the semantic network in Figure-9

and also corresponds to the natural explanation given

in Section V.D. Two parameters are the key values of

the tracing process: startermotor (one premise

condition parameter of the rule) and electrical

(action parameter of the rule). The tracing of the

inference network and the providing of an explanation

can be summarized in following sequence of events.

The path list(s) are obtained from path facts

using key parameters:

path(starter_motor , electrical , [battery_voltage

,

battery]). Complete path list for this example is:

[starter_motor ,battery_voltage , battery, electrical]

Every consecutive parameter in the list should

have a corresponding relationship fact in the

inference network. After tracing, the following list

of facts are obtained:

starter_motor (works_with ,battery_voltage)

.

battery_voltage(quality_of, battery)

.

battery(part of , electrical)

.

63

Inference rules mentioning every parameter in the

list are extracted. Starting from the last element of

the list (electrical in this case):

electrical! status ,bad) :- battery(status , bad)

.

battery(status , bad) :-

battery_voltage(status ,used_up)

.

battery_voltage(status ,used_up) :

-

starter_motor (status , low_resi stance

)

The rule extracting process ends when the first

element of the list is encountered (startermotor

here)

.

Finally obtained facts and rules are put in

explanation form as follows:

Starter motor gives a clue about electrical

SINCE

Starter motor requires battery voltage and

Battery voltage is quality of battery and

Battery is part of electrical

AND

if starter motor has low resistance

then battery voltage is used up

AND

if battery voltage is used up

then battery condition is bad

64

AND

IF battery condition is bad

then electrical system condition is bad.

The first statement mentions the two key

parameters. The subsequent list of ANDed sentences are

facts obtained from the inference network and

connected to the first sentence with "since". The rest

of the explanation is ANDed rules, again obtained

from the inference network. Figure-10 through Figure-

16 shows all elements of the explanation system

(explanation trees, semantic networks, inference

network) for a CAR diagnosis system. An explanation

may not have the second part of above example; in this

case only first part of ANDed sentences are given as

explanation.

65

VI. CONCLUSION

A. THE LESSONS LEARNED

First we studied EMYCIN in detail. EMYCIN has

some weaknesses and problems. Some of them are

explained in Section VI. C. We also discovered that the

existing explanation system was insufficient and

proposed a new explanation system in Section V. In

building the EMYCIN-PROLOG inference engine, and the

knowledge-base (CAR diagnosis system), and running the

consultation system, we experienced the building

process of a complete expert consultation system. We

can divide this building process into two main parts.

The first part is building the shell (e.g., EMYCIN-

PROLOG) and second part is constructing a knowledge-

base (e.g., CAR diagnosis knowledge base). During the

first part a high-level conceptual structure should be

defined. This structure should be independent of the

knowledge domain and should be able to work with

different domains. In our study the two different

domains are the CAR diagnosis system and the FINANCE

analysis system. The high-level conceptual structure

of EMYCIN is the context tree and the parameter

definitions. The construction of the knowledge-base

consists of the definition of contexts, parameters,

66

and rules. We worked by starting from a small model of

the domain and expanded the model gradually. After the

complete knowledge base was built we ran a

consultation and, according to the results obtained,

we made changes to the knowledge-base (i.e., adding

the new parameters, the new contexts, changing

or adding new rules, etc). This process continued

iteratively until satisfactory recommendations were

obtained from the consultation system.

Implementing the above two parts showed us the

complete cycle of the expert system building process.

We experienced the role of the shell designer and the

knowledge engineer. Finally we had a clear

understanding of the expert system design process.

B. REQUIRED HARDWARE AND SOFTWARE

During our study we translated the EMYCIN

inference engine into the PROLOG system (EMYCIN-

PROLOG) and succesfully combined two different

knowledge-bases with this PROLOG system. The EMYCIN-

PROLOG was first implemented on the PR0L0G-86

interpreter [16] with 16-bit IBM-PC machine working

under MS-DOS or PC-DOS. Later the program was

transferred, with minor syntactical changes, onto C-

PROLOG on the 32-bit VAX machine under the UNIX

operating system In fact, PR0L0G-86 allowed us to use

67

variable predicate names which facilitated our

implementation. On C-PROLOG we wrote additional

routines (see "var iable_predicate" routine in the

UTILITIES file in Appendix A).

The total space requirement for the EMYCIN-

PROLOG codes was 40288 bytes, and the knowledge-base

of the CAR diagnosis and the FINANCE analysis systems

required 16244 bytes. During the consultation the

FINANCE analysis system space requirements in bytes

were: atom space (38584), aux stack (612), trail

(1200), heap (87728), global stack (8808), and local

stack (10240). Runtime was 22.33 sec. The above space

and time requirements of the EMYCIN-PROLOG

consultation system provide a highly portable system

since it is possible to run the system on

microcomputers with minor syntactical changes and 288

Kbytes of memory.

C. EVALUATION OF EMYCIN

1 . Generality Of EMYCIN

EMYCIN imposes a data structure of

(attribute, object, value) triples and these triples

must be used in a backward-chaining control structure

applied to production rules [9] . Even though EMYCIN

can be applied to different domains of diagnosis

68

problems, another domain of design problem may not

work properly because of above constraints.

2. Some Particular Problems

The context tree structure imposes the main

restriction. Every node in the context tree leads to

the root node by a single pathway. In real

applications contexts in any domain are not

partitioned so artificially. Any improper building of

the static tree causes big troubles later in

consultations, and it is a very costly process to go

back to the start and rearrange the static tree.

Contexts are instantiated only when needed.

This brings considerable complexity of implementation.

This property helps avoid acquiring information which

is not needed for a particular consultation, but there

may be domains where a set of contexts will always be

needed at the beginning of a consultation, which makes

the whole propagation method for the tree obsolete.

Another restriction imposed is the

requirement to include the parameter as the goal of

consultation in the MAINPROPS list of the root node,

since instantiating the root node initiates the

reasoning chain for the consultation.

Multivalued parameters cannot be used

successfully in the function KNOWN since the function

would succeed immediately after any one value were

69

known. On the contrary, multivalued parameters have

more than one value, and the function KNOWN does not

have a control to check all those other possible

values of parameters before success.

MAINPROPS parameters should be either

singlevalued or yes_no parameter, since there is no

specific value of maltivalued parameter defining

whether parameter's evaluation process is done or not,

as in the case of known function explained in previous

paragraph.

D. PROLOG AND EMYCIN-PROLOG

EMYCIN-PROLOG possesses most of the properties of

EMYCIN since the main conceptual and control structure

is preserved, as explained in previous section.

Contrary to above problems of EMYCIN in EMYCIN-PROLOG,

PROLOG'S unification pattern-matching made deduction

possible without any additional programming. This in

turn increased the expressive power in the

representation of factual knowledge and its

manipulation. For example the hypothesis-retrieving

process was easily performed using the unification

property.

PROLOG also succesfully facilitated

implementation of EMYCIN, especially in the data

structures, rules (even though rules are not part of

70

EMYCIN, they are required for a working consultation

system and thus was mentioned here), and hypothesis

inference

.

Compared to Inter lisp (the language in which

EMYCIN was first implemented) PROLOG seems to be a

better language for implementing EMYCIN. Especially

during the rule execution phase, we did not need any

aditional programming because of PROLOG'S built-in

pattern-matching facility (see

"try_all_rules_for_PAR(. . .
) " routine in the source

codes in the Appendix A).

E. EFFICIENCY OF EMYCIN-PROLOG

The user interaction module of an expert system

shell typically covers 30% of the whole programming

effort. EMYCIN-PROLOG didn't have a user interaction

module, and in a usable product it should be

implemented. Suggestions for this module are given in

chapter IV. In addition to the user interaction

module, the suggested explanation system (see chapter

V) also should be implemented. Rather than having

usable end product we were mostly concerned about

making the inside of a shell visible. The benefits of

this work are explained in the following section.

Another alternative approach to the EMYCIN-

PROLOG shell would be the decision-lattice shell [18].

71

A decision-lattice shell is highly domain-dependent

and it does not bring the advantages of EMYCIN-PROLOG

as explained in the following section (i.e., EMYCIN-

PROLOG prevents the same codes from being repeated and

shortens the programming work considerably when

building several expert systems).

F. THE BENEFITS OF OUR WORK

Once a shell is provided, building a complete

expert consultation system is much easier than

starting from scratch and programming the whole expert

system. During the building of the CAR diagnosis and

FINANCE analysis systems the work mostly focused on

the mapping of the domain knowledge into the rules

rather than programming.

EMYCIN-PROLOG performs better on diagnostic

problems than nondiagnostic problems. Different

domains can use EMYCIN-PROLOG for building a complete

expert consultation system as long as they are

diagnostic-type domains. The CAR diagnosis and FINANCE

analysis systems were two such domains. Two different

consultation systems were built for them using EMYCIN-

PROLOG during our work. Without EMYCIN-PROLOG we

wouldn't have been able to build them within our time

constraints

.

72

Besides the above advantage of using EMYCIN-

PROLOG, we have demonstrated the phases of expert

system programming. Once the structural requirements

of EMYCIN are understood, the different phases of the

building process can be seen easily (e.g., defining

structural requirements, building a shell, building

the knowledge-base, etc).

Another advantage is that a reader can experiment

with the code, since a complete list of the program

code with the sample consultations is provided.

73

APPENDIX A

SOURCE CODE

This appendix contains a listing of the main

program (held in the files ENGINE, FUNC , and

UTILITIES).

EMYCIN-PROLOG is written in the version of the

PROLOG language known as C-PROLOG and runs under the

UNIX operating system on VAX Machine. This version of

PROLOG is closely based on standards as described in

Clocksin and Mellish [10].

The knowledge engineer and consultor has no

responsibility or relation to the writing of the codes

which presented in this appendix.

Having entered the PROLOG, program prints a

short message about EMYCIN-PROLOG and then user starts

the consultation with the query of "begin".

The lines that limited with "*" are comment

lines. They should not be confused with actual PROLOG

codes

.

74

% FOLLOWING LIST OF CODES ARE CONTENTS OF ENGINE

FILE.

/*#******************* MAIN PROGRAM ***************/

All asserted facts are cleaned from database

(cleandatabase)

,

nextnum and pasked properties of

contexts are Initialized (initialize nextnum pasked),

and user is asked of name of the root context. Since

root context is askable at start its askable property

is set to "1"
(initialize askable). Then root context

is created and its MAINPROPS parameters are traced

(create root and start consultation), once this

routine succeeds then consultation ends. Following the

consultation results are printed (print result) and

also all concluded hypotheses in the dynamic database

are printed (print dbase).

/ft***/

• ^
•

nl ,nl ,nl

,

write(' WELCOME TO EMYCIN-PROLOG CONSULTATION

PROGRAM'),nl,

write(' Please enter "begin" to start the

consultation '),

nl ,nl ,nl

.

75

begin

cleandatabase

,

assert(fact(not_first_run))

,

not(initialize_nextnum_pasked)

,

nl ,nl ,nl

,

write('Enter the name of the root context

(CAR, LEASE) '), write(' == >
') ,read(DOMAIN)

,

not(initialize_askable(nnil , 1))

,

create_root_and_start_consultation(DOMAIN , N)

,

print_result

,

print_dbase, !

.

create_root_and_start_consultation(C ,N

)

•

v_func_2(C,assocwith,Cp)

,

v_func_2(Cp,nextnum,N2) , Np is N2+1

,

create_and_trace_mainprops(Cp,Np ,C,N)

.

/******#**** EVALUATE PARAMETER VALUE ************/

This routine evaluates the value of a parameter.

As explained in section II. B. there are two possible

cases ; parameter's value can be known by the user

(can_ask = 1) or parameter's value cannot be asked of

user, in first case user is directly asked of the

value of parameter, in latter case all rules about the

76

parameter are tried (try all rules for PAR). User can

answer as "unk" if the data is not available at all.

User's answer is checked against the expected value of

the parameter and if the value is unexpected one, user

is warned and question is repeated. Evaluation of a

parameter is done for a all instances of a context.

Evaluation ends when all instances of the context is

tried (nextnum = 0).

/***X*************************************tt*******M*/

eval2(C,0,PAR,VAL,CF) :- !.

eval 2 (C , N , PAR , VAL , CF

)

•

v_func_2 (PAR , can_ask , 1)

,

message_askable(C,N,PAR)

,

get_the_answer (VAL , CF) , nl

,

v_func_2 (PAR , expect , EXPECT)

,

check_the_answer (C , N , PAR , CF , VAL , EXPECT)

,

VAL \== 'unk'

,

assert (hypothesis(PAR, C,N, VAL, CF))

,

assert(is_t(PAR,C,N,1)),

Nn is N-1

,

eval 2 (C , Nn , PAR , VALn , CFn)

.

eval 2 (C , N , PAR , VAL , CF

)

v_func_2 (PAR , can_ask , 1)

,

77

write('Unexpected answer !!! Please try

again. ') ,nl ,nl

,

eval 2 (C , N , PAR , VAL , CF)

.

message_askable(C,N,PAR)

v_func_2(PAR, prompt .PROMPT)

,

write(C),write(»-) ,write(N) ,nl

,

PROMPT, ! .

eval 2 (C , N , PAR , VAL , CF

)

not(try_all_rules_for_PAR(PAR,C,N,VAL,CFrule)),

assert(is_t(PAR,C,N, 1)),

Nn is N-1

,

eval 2 (C , Nn , PAR , VALn , CFn)

.

/************ TRY ALL RULES FOR PAR ****#*#********/

All rules which mentions particular parameter in

their head part are tried. The parameter is passed in

last eval2 routine. If the parameter is singlevalued

or yes_no parameter and there is a hypothesis with

certainity (CF = 1) then execution of rules is

stopped. (! .fail) combination stops the execution.

/*****tt***#******************tt*w*******************/

78

try_all_rules_for_PAR(PAR , C , N , VAL , CFrule

)

(v_func_2(PAR , valutype , singlevalued)

;

v_func_2 (PAR , valutype , yes_no))

,

hypothesis(PAR,C,N,VAL,1), ! ,fail.

try_all_rules_for_PAR(PAR , C , N , VAL , CFrule

)

v_func_4 (PAR , C , N , VAL , CFrul e) , fai 1

.

/************ FIND APPLICABLE CONTEXT *************/

At any time of the consultation if the current

context is not applicable then this routine finds the

applicable one. First parent context is checked then

descendant contexts and finally brother contexts are

tried. If there is not any applicable context in the

dynamic tree then it is created

(create by traversing) . Last argument in

"create_by_traversing" routine is used to keep track

of the context which traversing has been started.

After creation process is done then

"descendant_or_brother" routine finds this applicable

context

.

/a***/

79

find_applicable_context(C,N,PAR,Cap,Nap)

parent_test(C,N,PAR,Cap ,Nap)

.

find_applicable_context (C , N , PAR , Cap , Nap

)

descendant_test (C , N , PAR , Cap , Nap)

.

find_applicable_context(C,N,PAR,Cap , Nap

)

brother_test(C,N,PAR,Cap,Nap)

.

find_applicable_context (C,N,PAR,Cap ,Nap

)

create_by_tr aver sing(C,N, PAR , C)

,

descendant_or_brother(C,N,PAR,Cap ,Nap)

.

/**»**#*##**#***#***** PARENT TEST ******»********/

par ent_test (C , N , PAR , Cp , Np

)

v_func_5(C,Cp,Np,C,N,tree)

,

cntxt_applicable(Cp , PAR)

.

parent_test(C,N,PAR,Cp,Np)

v_func_5(C,Cp,Np,C,N,tree)

,

Cp == nnil , ! .fail

.

80

parent_test (C , N , PAR , Cp , Np

)

v_func_5(C,Cp,Np,C,N,tree)

,

not(cntxt_applicable(Cp ,PAR))

,

parent_test(Cp , Np , PAR,Cpp ,Npp)

.

/******************* DESCENDANT TEST ****************/

descendant_test (C , N , PAR , Cd , Nd

)

v_func_2 (C , offspr ing , Cd)

,

v_func_5(Cd,C,Ng,Cd,Nd,tree)

,

cntxt_applicable(Cd,PAR)

.

descendant_test (C , N , PAR , Cd , Nd

)

•

v_func_2 (C , offspr ing , Cd)

,

v_func_5(Cd,C,Ng,Cd,Nd,tree)

,

not(cntxt_appllcable(Cd,PAR))

,

descendant_test (Cd , Nd , PAR , Cdd , Ndd)

.

descendant_test (C , N , PAR , Cd , Nd

)

v_func_2 (C , offspr ing , Cd)

,

not(v func 5(Cd,C,N,Cd,Nd, tree)),! ,fail

.

81

/a******************** BROTHER TEST **##**********/

brother_test (C , N , PAR , Cb , Nb

)

v_func_5(C,Cp,Np,C,N,tree)

,

v_func_2 (Cp , offspr ing , Cb)

,

Cb \== C,

cntxt_applicable(Cb ,PAR)

,

v_func_5(Cb,Cp,Na,Cb,Nb,tree)

.

/*#******************* DESCENDANT OR BROTHER ******/

descendant_or_brother (C , N , PAR , Cdb , Ndb

)

descendant_test (C , N , PAR , Cdb , Ndb)

;

brother_test(C,N,PAR,Cdb,Ndb)

.

/**********#** CONTEXT CREATION ROUTINES **********/

In following routines, first applicable context

is found then it is created and its MAINPROPS

parameters are traced (create and trace) . "Cx" in the

"create_by_traversing" routine is needed to keep track

of the context which traverse began. Traversing will

stop when Cx is reached on the way back. If

create_applicable_cntxt did not create any context

(PR0MPT2=N0) at any point then trace_back continues

back from the current context (C,N) which doesn't have

any other instance i.e., prompt2 for "C" is no.

/******#************tt*W******«***tt***«*************/

82

create_by_tr aver sing(C , N , PAR , Cx

)

create_applicable_cntxt (C , N , Cc , Nc , PAR)

,

trace_back(Cc ,Nc,Cx,PAR)

.

create_applicable_cntxt(C,N,C,N,PAR)

fact(context_is_not_created)

,

retractall(fact(context_is_not_created))

.

create_applicable_cntxt(C,N,Cb ,Nb,PAR)

v_func_2(C,assocwith,Cp)

,

v_func_2 (Cp , offspr ing , Cb)

,

Cb \== C,

cntxt_app lieable (Cb, PAR)

,

not (v_func_5(Cb,Ca,Na,Cb,Nb, tree))

,

v_func_2 (Cp , nextnum , Np)

,

create_and_trace__malnprops(Cp ,Np , Cb , Nb) .

/ft**/

Go down by creating intermediate contexes until

the applicable context is hit then create all other

occurrences of applicable context with

"create_and_trace_mainprops" routine. If context is

not applicable to PAR, another context "Cc" is tried

83

by backtracking to C(offspring, Cc)

.

create_applicable_cntxt (C ,N , Cc ,Nc , PAR)

v_func_2 (C , offspr ing , Cc)

,

not(v_func_5(Cc ,C,N,Cc ,Nc , tree))

,

cntxt_app 1 i cab 1 e (Cc , PAR)

,

create_and_trace_mainprops(C,N,Cc ,Nc)

.

Context is not applicable then create it as an

intermediate context and continue recursively.

create_applicable_cntxt(C,N,Cc ,Nc ,PAR)

v_func_2 (C , offspr ing , Cs)

,

not(v_func_5(Cs ,C,N,Cs ,Ns .tree))

,

not(cntxt_applicable(Cs ,PAR))

,

create_cntxt(C,N,Cs ,Ns)

,

create_applicable_cntxt(Cs,Ns ,Cc,Nc ,PAR)

.

create_applicable_cntxt(C,N,Cc ,Nc ,PAR)

v_func_2 (C , offspr ing , Cs)

,

v_func_5(Cs ,C,N,Cs ,Ns , tree)

,

create_applicable_cntxt(Cs , Ns ,Cc ,Nc,PAR)

.

84

create_and_trace_mainprops(C,N,Cc ,Nc

)

v_func_2 (Cc,pasked,0),

create_cntxt (C , N , Cc , Nc)

,

create_cntxt2(C,N, Cc ,Nc)

.

IMPORTANT NOTE ! ! ! create_and_trace_mainproprops

is called when applicable context is found. If

applicable context was not created yet and if answer

to the prompt to create context is NO then PAR cannot

be evaluated without creating the applicable

context. In this case either user asked for PAR value

or ERROR message is sent. "Cc" which is applicable

context has its instance in context tree, which

Cc(pasked, 1) . "Create_cntxt2" routine asks for another

instances with PR0MPT2.

/a***/

create_and_trace_mainprops(C, N,Cc ,Nc

)

create_cntxt2(C,N,Cc,Nc)

.

create_cntxt (C , N , Cc , Nc

)

v_func_2 (Cc , pasked ,)

,

create_prompt3(C,N,Cc,Nc)

.

85

create__cntxt(C, N,Cc ,Nc)

*

v_func_2(Cc ,pasked,)

,

create_prompt1 (C,N,Cc ,Nc)

.

Answer to PR0MPT1 is "no". "Askable" property is

used in "trace_back" routine.

/tttt****tttt**tt**tt*tttttt*tt*tt****tt*M*tt*WK************tt*W**/

create_cntxt(C,N,Cc,Nc

)

v_func_2 (Cc ,
pasked ,) ,

assert (fact(context_is_not_created))

,

up date_askab 1 e (Cc , C , N , askab 1 e ,)

.

create_cntxt(C,N,Cc ,Nc

)

v_func_2 (Cc ,
pasked , 1)

,

v_func_2 (Cc , C , N , askable , 1)

,

prompt_2(Cc,Nc)

.

/a**/

Answer to PR0MPT2 is "no",

/a**/

86

create_cntxt (C , N , Cc , Nc

)

assert(fact(context_is_not_created))

,

update_askab 1 e (Cc , C , N , askab 1 e ,)

.

create_prompt3(C , N, Cc ,Nc

)

v_func_2(Cc, prompt 3, PR0MPT3)

,

write(PR0MPT3),

create_and_trace(C,N,Cc , Nc)

,

update_num(Cc , pasked , 1)

.

create_prompt1 (C,N,Cc ,Nc

)

v_func_2(Cc,prompt1 , PROMPT 1),

write(PR0MPT1),write(' ==>'), read(Ans), !,

affirmative(Ans)

,

create_and_trace(C,N,Cc,Nc)

,

update_num(Cc , pasked , 1)

.

prompt_2(C,N)

v_func_2(C, prompt 2, PR0MPT2)

,

write(PR0MPT2),write(' ==>'), read(Ans), !

affirmative (Ans) ,nl

,

v_func_2(C,assocwith,Cp)

,

87

v_func_2 (Cp , nextnum , Np)

,

create_and_trace(Cp , Np ,C,N)

.

create_prompt2(C ,N)

v_func_5(C,Cp,Np,C,N,tree) ,N1 is N+1

,

v_func_2(C,prompt2,PR0MPT2)

,

write(PR0MPT2),write(' ==>»),

read(Ans) , ! , affirmative(Ans) ,nl

,

create_and_trace(Cp , Np ,C,N1) , !

,

create_prompt2(C,N1).

/a**/

"Cc,Nc M is the context to be created.

/***W********tt*W*#M*****tt****tt****M******tt**********/

create_cntxt2(C,N,Cc ,Nc) :- create_prompt2(Cc ,Nc)

.

/a**/

Answer to PR0MPT2=N0.

/WM**WWtt***tt*tt***tt******ttW*tt*tt**ttM*tt*tt******W*Mtttt*W*/

create_cntxt2(C,N,Cc,Nc) :-

update_askable(Cc , C,N, askable ,0)

.

create_and_trace(C,N,Cc ,Nc

)

v_func_2 (Cc , nextnum , Nn) , Nc is Nn + 1,

88

update_num(Cc , nextnum , Nc)

,

add_5(Cc,C,N,Cc,Nc,tree) ,nl ,nl

,

write('
'

) ,

write(Cc),write('-') ,write(Nc) ,write('),nl,nl,

not (initialize_askable(Cc ,Nc))

,

lookmainprops(Cc ,Nc)

.

lookmainprops(C , N

)

v_func_2 (C , mainpr ops , MAINPROPS)

,

eval_par (C , MAINPROPS , N)

.

eval_par (C , [] , N)

.

eval_par(C, [PARI REST] ,N)

cntxt_applicable(C,PAR)

,

eval2(C,N,PAR,VAL,CF),

eval_par (C , REST , N)

.

eval_par (C , [PAR ! REST] , N

)

•

not(cntxt_applicable(C,PAR))

,

find_appl icable_context (C , N , PAR , Cap , Nap)

,

eval 2 (Cap , Nap , PAR , VAL , CF)

,

eval_par (C , REST , N)

.

89

/»**********#****** TRACE BACK a*******************/

Once the applicable context is found then all

intermediate contexts between this context and the

context which traversing started ("Cx") are tried

whether any of them has any other descendant context

to be created.

"C" and "Cx" are brother contexts .There is no

need for trace back.

tr ace_back(C , N , Cx , PAR

)

v_func_2(C,assocwith,Cp)

,

v_func_2 (Cp , offspr ing , Cx)

.

/**Mtt**ttttttW****tt*******tt*****W*****W*tt**W***********/

"Cp" is parent context of "C" and "Cpp" of "Cp".

"Cpp" is needed to find askable property of "Cp". If

"create_cntxt routine did not creat context

(PR0MPT2=N0) , then "create_applicable_cntxt " returns

(Ck ,Nk=Cp ,Nc) and trace_back continues back from

Cp,Nc.

trace_back(C , N , Cx , PAR

)

v_func_5(C,Cp,Np,C,N,tree)

,

Cp \== Cx,

90

v_func_5 (Cp , Cpp , Npp , Cp , Np , t ree)

,

v_func_4 (Cp , Cpp , Npp , askab 1 e , 1)

,

create_cntxt(Cpp,Npp,Cp,Nc)

,

create_applicable_cntxt (Cp , Nc , Ck , Nk , PAR)

,

trace_back(Ck,Nk,Cx,PAR)

.

trace_back(C , N , Cx , PAR

)

v_func_5(C,Cp,Np,C,N,tree)

,

Cp \== Cx,

v_func_5 (Cp , Cpp , Npp , Cp , Np , tree)

,

v_func_4 (Cp , Cpp , Npp , askab 1 e ,)

,

trace_back(Cp,Np,Cx,PAR)

.

trace_back(C , N , Cx , PAR

)

v_func_2(C,assocwith,Cp)

,

Cp == Cx.

/******* COMBINE CERTAINTY AND CONCLUDE ***********/

A hypothesis is asserted into dynamic database.

During the assertion process database is checked if

there is any aother hypothesis which concludes the

same value for "PAR", if there is then two

hypothesis' s certainty values are conbined using

"combine_func" routine and new hypothesis with new CF

91

value is asserted into database,

/a**/

conclude (C , N , PAR , VALUE , CFrule , CFmm

)

• _

CF is CFrule * CFmm,

certainity_combine(C,N, PAR, VALUE, CF) , !

.

cer tainity_combine(C , N , PAR , VALUE , CFnew

)

hypothe s i s (PAR , C , N , VALUE , CFoId),

combine_func(CFold, CFnew, CF)

,

retract(hypothesis(PAR,C,N,VALUE,CFold)),

assert(hypothesis(PAR, C,N, VALUE, CF))

.

/a**/

If PAR value is concluded for the first time

then there would not be any concluded value in the

database

.

/a**/

cer tainity_combine(C , N , PAR , VALUE , CFnew

)

not(hypothesis(PAR,C,N,VALUE,CFold)),

assert(hypothesis(PAR,C,N, VALUE, CFnew))

.

92

/a**/

There are three functions to combine certainty

values

:

CFcomb - CFold + CFnew * (1 - CFold)

CFcomb = (CFold + CFnew)/(1 - min(CFold, CFnew)

)

CFcomb = -(- CFold - CFnew * (1 + CFold))

/a**/

combine_func (CFol d , CFnew , CF

)

m

CFold > 0,

CFnew > ,

CF is CFold + CFnew*(1 - CFold).

combine_func (CFo 1 d , CFnew , CF

)

• —m
•

CFmult is CFold*CFnew,

CFmult < 0,

min([CFold, CFnew] ,CFmin)

,

CF is (CFold + CFnew)/(1 - CFmin).

combine_func (CFol d , CFnew , CF

)

CFold < 0,

CFnew < 0,

CF is -1*(-CFold - CFnew*(1 + CFold)).

93

/****************** CLEANDATABASE ******»******#**/

The following facts are asserted into the

database during the consultation

hypothesi s (PAR , C , N , VAL , CF

)

The evaluated value of parameter "PAR".

fact (context is not created)

The Warning flag showing that after a call to

the "create_cntxt" routine no context is

created. Answer to PROMPT 1 /PR0MPT2 is NO.

fact(not first run)

A flag to cleandatabase routine. If this fact is

in the database then database is cleaned.

Cc(C,N,Cc,Nc,tree)

A new context is added into context tree.

Cc(C,N, askable , Num)

An askable property ; context "C,N" has no other

context Cc descendant to it.

C(nextnum,N

)

The context "C" has "N" instances created so far.

C(pasked,Num)

The number (Num) for the context "C" is "1", if

context is created via PR0MPT1 or PR0MPT3, otherwise

"0". Before PR0MPT2 is asked this flag is checked

first.

94

Above facts are retracted from database before

consultation starts by using "cleandatabase" routine.

/****tt*W***tt*********tttttt****tt***********************/

cleandatabase

•

fact(not_first_run)

,

abolish(hypothesis , 5)

,

abolish(concluded_PAR_for_C_N,5)

,

abolish(applicable_descendant , 5)

,

abolish(fact , 1)

,

abolish(descendant , 1),

abolish(is_t,4),

not(clean1)

,

not(clean2)

,

not(clean3)

,

not(clean4)

.

cleandatabase

.

cleanl

context (Cc)

,

de 1 ete_5 (Cc , C , N , Cc , Nc , t r ee) , fai 1

.

95

clean2

context (C)

,

delete 2(C ,nextnum,N) ,fail

.

clean3

context (Cc)

,

delete_4(Cc,C,N,askable,K) , fail

.

clean 4-

context(C)

,

delete_2(C,pasked,N) ,fail

.

/******#*******##* OUTPUT ROUTINES * *****#***#*#** /

Goal parameter is found and all hypotheses which

concludes about this parameter are printed. After the

goal parameter, all other hypotheses in the database

are printed.

/****M*»M**tt*****tttt****tt*tt*M***tttt*tt*****tt*****M*W***/

print_result

goal (PROBLEM),

v_func_2(PROBLEM, trans, TRANS) ,nl ,nl ,nl,

wr ite(TRANS),nl,

not (print_conclusion(PROBLEM))

.

96

print_conclusion(PROBLEM)

•

hypothes i s (PROBLEM , C , N , VALUE , CF)

,

vr ite(VALUE),nl,

write('with the certainity : '),

write(CF),nl,nl,fail.

print_dbase

•

nl ,nl ,nl

,

writeC CONCLUSIONS MADE DURING '),

write('THE CONSULTATION '),nl,

nl ,nl ,not(write_all_concluded_values)

.

write_all_concluded_values

•

write('parameter / value / '),

write(' certainity / context instance ') ,nl

,

write(' '),

write(' '),nl,

wr ite_all_concluded_values2

.

write_all_concluded_values2

hypothesis(PAR, C,N, VALUE, CF)

,

97

write(PAR), write(»
'), write(VALUE)

,

write(

'

'), write (CF),

write('
») ,write(C),write(»— ») ,write(N) ,nl,fail.

/*****«»****** PROCESSING THE USER INPUT *********/

User's answer for any data request by the system

is checked against expected value of the parameter. If

the answer is unexpected then user is warned and the

question is repeated.

/a**/

get_the_answer (VAL , CF

)

read(STRING),

name (STRING , LIST)

,

parse (LIST , VALUE , CERTAINITY .LIST)

,

name (VAL , VALUE)

,

name(CF , CERTAINITY)

.

95 is ascii code for underscore "_"

/it**/

parse([XI REST] , VALUE, CERTAINITY, LIST

)

X \== 95,

parse (REST , VALUE , CERTAINITY , LIST)

.

98

parse ([XIREST] , VALUE, REST , LIST

)

X == 95,

seperate_val (LIST , VALUE)

.

/a**/

49 is ascii code for "1" which corresponds to the

default value for CF. Default value 1 is used when

user did not specified any certainty of his/her answer

explicitly.

parse([] ,LIST, [49] ,LIST).

seperate_val([XIL1] , []

)

X == 95.

seperate_val([XIL1] , [X!L3]

)

X \== 95,

seperate_val (L1 , L3)

.

99

% FOLLOWING LIST OF CODES ARE CONTENTS OF FUNC FILE

/************ PREMISE EVALUATION ROUTINES ************** * *

/

First all asserted facts during the execution of previous
M eval_premise" routine are retracted. Evaluation process is

done in two stages ; first database is updated i.e.,

parameters value is evaluated using M eval2" routine then

related hypothesis is retrieved using "retrieve_hypothesis"

routine. The variables used in the argument lists of

routines and their explanations are :

L=[VAL1 ,VAL2, ,VALn] list of values determined by the

rule writer

Lcommon= [[VAL1 , CF1] , [VAL2 , CF2] , , [VALn , CFn]] :

intersection of evaluated values and values specified

in the rule. Lcommon = intersection[V,LST]

V : set of all hypothesis about PAR.

LST : the possible values of PAR given by rule

author. "L" usually contains only a single element, if

L=[] then Lcommon also equal to []

.

When "eval_premise" fails, then the rule also

fails and control goes back to "try_all_rules_for_PAR"

routine. Note that "PAR,C,N" is the key, same PAR

might have different "concluded_PAR_for_C_N" values

for different (C,N) pairs.

100

eval_premi se (FUNC , PAR , C , N , L , CF

)

retractall(concluded_PAR_for_C_N(PAR,C,N,VAL,CFm)) ,
!

,

retractall (applicable_descendant (C , N , PAR , Ca , Na))

.

eval_pr emi se2(FUNC, PAR, C, N, L, CF) , !

.

/a**/

IMPORTANT !

THE CUT (!
) OPERATOR PREVENTS BACKTRACKING AND GIVES

THE CONTROL TO THE RULES. IF EVAL_PREMISE3 FAILS WE

WANT EVAL_PREMISE TO BE FAILED AND GIVE CONTROL BACK

TO THE RULES SO THAT SOME OTHER RULE WILL BE TRIED

/a**/

eval_premise2 (FUNC , PAR , C , N , L , CF

)

cntxt_applicable(C,PAR) , !

,

eval_premi se3 (FUNC , PAR , C , N , L , CF)

.

The tree pointer is bound to its correct value

before "eval_premise3" ROUTINE is called,

/a**/

eval_pr emi se2 (FUNC , PAR , C , N , L , CF

)

not(cntxt_applicable(C,PAR))

,

find_applicable_context(C,N,PAR,Cap,Nap) , !

,

101

eval_premise3(FUNC , PAR , Cap , Nap , L , CF)

.

/***#*Wtt**tf*«**W****tttt**W*********tt*tt*******W****tt**/

CFe is different than CF since commonlist chooses

desired ones from all evaluated values of PAR. PAR

value is evaluated first by M eval2" routine if either

"is traced" flag is "0" or PAR is multivalued, "is

traced" flag is ignored if PAR is multivalued, "cut"

(!) operator is used to prevent backtracking inside

the eval2. If eval2 could not conclude a value

("unknown" answer from user), then eval2 will return

reasonable value, in this case we want eval_premise3,

eval_premise2 and eventually eval_premise to be

failed.

/*tt**tt**********Mtt***tf****tt*****tt*tt*****************/

eval_premise3 (FUNC , PAR , C , N , L , CForTRUE

)

(not(is_t(PAR,C,N,1));

v_func_2 (PAR , valutype .multivalued))

,

eval2(C,N,PAR,VAL,CFe), !

,

retr ieve_hypothesis (PAR , C , N , L , FUNC , CForTRUE)

.

eval_premise3 (FUNC , PAR , C , N , L , CForTRUE

)

is_t(PAR,C,N,1), ! ,

r etr ieve_hypothesis(PAR, C,N,L, FUNC, CForTRUE).

102

retrieve_hypothesis(PAR, C,N,L,FUNC, true)

member (FUNC, [greaterp .greateq, lessp , lesseq])

,

v_func_5 (FUNC , PAR , C , N , L , true)

.

r etr ieve_hypothesis (PAR , C , N , L , FUNC , CF

)

not (member (FUNC, [greaterp ,
greateq, lessp , lesseq]))

,

commonlist(PAR,C,N,L,Lcommon) , !

,

v_func_5 (FUNC , PAR , C , N , Lcommon , CF)

.

/************* FUNCTIONS IN RULE PREMISE **********/

Two main types of functions can be named as "fund

"

and "func2" where :

<func1 > : Does not form conditionals on specific

values of a parameter.

<func2> : Controls conditional statements regarding

specific values of the parameter in question.

As defined above unlike the <func1>

predicates, <func2> predicates control conditional

statements regarding specific values of the parameter

in the question. These specific values are passed by

the argument "L" in eval_premise routine. "L" is the

list of values to be compared with to evaluate the

function "FUNC". Evaluation of premise includes some

simple functions.

103

Functions KNOWN, NOTKNOWN, DEFINITE and NOTDEFINITE

are concerned not with the actual value of a

parameter , but with whether or not it is known.

Functions SAME , THOUGHNOT both either fail or

return a numerical value signifying "true".

Functions NOTSAME, MIGHTBE, VNOTKNOWN, DEFIS,

NOTDEFIS, DEFNOT and NOTDEFNOT are all concerned with

the certainity factor with which the value of a

parameter is known to be true and all return truth

values. The empty list "[]" passed by commonlist

routine in the first clause "FUNC(PAR, C,N, [], FALSE)"

implies that PAR does not have any value which

included in the value(s) list, defined by the rule

author in the rule premise, then the premise clause

which mentions this FUNC fails by returning value

"false".

Functions GREATERP , LESSP , GREATEQ and LESSEQ are

applied to those parameters which have a numerical

value and which return a truth value. These are called

numerical functions. Functions $AND and $0R of EMYCIN

are changed to MIN and MAX functions. Either of them

is added after premises in each rule if the premises

are to be ANDed or ORed.

/*********W**tt*********Wtt***tt*#***#*tt*tt****tttt***M*tt*/

104

same (PAR , C , N , L , CF

)

get_most_strongly_confirmed_hyp(L , VAL, CF)

,

CF > 0.2.

notsame (PAR, C,N, [] , false)

.

notsame (PAR, C,N,L, true

)

get_most_strongly_confirmed_hyp (L , VAL , CF)

,

CF =< 0.2.

notsame (PAR, C,N,L, false)

.

mightbe(PAR,C,N, [] , false)

.

mightbe (PAR , C , N , L , true

)

get_most_strongly__confirmed_hyp(L , VAL , CF) ,

CF > - 0.2.

mightbe(PAR, C,N,L, false)

.

thoughnot (PAR , C , N , L , CF

)

CF < - 0.2.

vnotknown(PAR,C,N, [] , false)

.

105

vnotknown(PAR , C , N , L , true

)

get_most_strongly_confirmed_hyp(L , VALs , CFs)

,

absolute_value(CF,CFabs)

,

CFabs =< 0.2.

vnotknown(PAR,C,N,L , false)

.

defis(PAR,C,N, [] , false),

def i s (PAR , C , N , L , true

)

get_most_strongly_confirmed_hyp(L , VAL , CF)

,

CF = 1 .

defis (PAR, C,N,L, false).

not defis(PAR,C,N, [] , false)

.

not defis(PAR,C,N,L,true)

• —

get_most_strongly_confirmed_hyp(L, VAL1 , CF)

,

CF > 0.2, CF < 1

.

not defIs (PAR, C,N,L, false)

.

defnot(PAR,C,N, [] , false).

106

defnot (PAR , C , N , L , true

)

get_most_strongly_confirmed_hyp(L , VAL , CF)

,

CF = -1 .

defnot (PAR, C,N,L, false)

.

not defnot (PAR, C,N, [] , false)

.

notdefnot (PAR , C , N , L , true

)

get_most_strongly_confirmed_hyp (L , VALs , CF)

,

CF < - 0.2, CF > -1

.

not defnot (PAR , C , N , L , fal se)

.

known(PAR , C , N , L , true

)

•

v_func_2 (PAR , valutype , yes_no)

,

get_most_strongly_confirmed_hyp (L , VAL , CF)

,

absolute_value(CF,CFabs)

,

CFabs > 0.2.

known (PAR , C , N , L , true

)

get_most_strongly_confirmed_hyp (L , VAL , CF)

,

CF > 0.2.

107

known(PAR, C,N,L, false)

.

notknown(PAR, C,N,L, true

)

v_func_2 (PAR , valutype
, yes_no)

,

get_most_strongly_confirmed_hyp(L , VAL, CF)

,

absolute_value(CF, CFabs)

,

CFabs =< 0.2.

notknown(PAR, C,N,L , true

)

get_most_strongly_confirmed_hyp(L , VAL , CF)

,

CF =< 0.2.

notknown(PAR, C,N,L, false)

.

defini te(PAR, C,N,L, true)

•

v_func_2(PAR, valutype ,yes_no)

,

get_most_strongly_confirmed_hyp(L , VAL , CF)

,

absolute_value(CF, CFabs)

,

CFabs = 1

.

definl te(PAR, C,N,L, true)

get_most_strongly_conf i rmed_hyp (L , VAL , CF)

,

CF = 1 .

108

defini te (PAR, C,N,L, false).

notdefinite(PAR, C,N,L, true)

get_most_strongly_confirmed_hyp(L , VAL1 ,CF)

,

CF < 1 , CF > -1

.

not defini te(PAR, C,N,L, true)

get_most_strongly_confirmed_hyp(L, VAL1 ,CF1)

,

CF1 < 1

.

notdefini te(PAR, C,N,L, false)

.

/**#***»***** NUMERICAL FUNCTIONS ****************/

Numerical functions return "true" if the value of

"VALx" is known with a CF >= 0.2 and is greater/

greater or equal/ less/ less or equal than the [Value]

specified.

greaterp(PAR,C,N, [Value] ,true) :-

eval_num_val (PAR, C,N, Value, greaterp)

.

greateq(PAR, C,N, [Value] , true) :-

eval_num_val(PAR, C,N, Value ,greateq)

.

lessp(PAR,C,N, [Value] , true) :-

eval_num_val (PAR , C , N , Value , lessp)

.

109

lesseq(PAR,C,N, [Value] , true) :-

eval_num_val(PAR, C,N, Value, lesseq)

.

eval_num_val (PAR , C , N , Value , FUNC

)

find_appl_cntxt_for_C_N(C , N , PAR) ,

bagof (CF , concluded_PAR_for_C_N(PAR , Cx , Nx , VAL , CF) , L)

,

min(L,X),X > 0.2,

concluded_PAR_for_C_N(PAR , C , N , VALx , X)

,

satisfied(FUNC, Value, VALx)

.

satisfied(greaterp , Value , VALx) :- VALx > Value,

satisfied(greateq, Value , VALx) :- VALx >= Value,

satisfied(lessp , Value , VALx) :- VALx < Value,

satisfied(lesseq, Value , VALx) :- VALx =< Value.

/****«***** GET_MOST_STRONGLY_CONFIRMED_HYP ******/

L is list of VAL,CF pairs. "get_most_strongly_

confirmed_hyp" routine returns to VAL,CF pair which CF

is largest value of list L.

/a**/

get_most_strongly_confirmed_hyp([[VAL,CF]] ,VAL,CF)

.

1 10

get_most_strongly_confirmed_hyp(L , VAL , CF

)

member ([X , CF1] , L)

,

member2([X,CF1] ,L, [Y,CF2]),

((CF1 =< CF2,delete([X,CF1] ,L,L1));

(CF2 =< CF1 ,delete([Y,CF2] ,L,L1))),

get_most_strongly_confirmed_hyp(L1 , VAL , CF)

1 1 1

% FOLLOWING LIST OF CODES ARE CONTENTS OF UTILITIES

FILE

/****»**#******* INITIALIZATION ROUTINES ***********/

Three properties of a context are dynamically

stored in database. These properties are : askable

,

nextnum, and pasked . They are initialized to "0" at

the beginning of a consultation.

Context might have more than one spring.

/**ttttWtt*Mtttt***W**tt*****tt*Wtt**M*tt*****M**tt****tt***W**/

initialize_askable(C,N)

v_func_2 (C , offspr ing , Cc) ,

add_4 (Cc,C,N, askable, 1),fail.

initial ize_nextnum_pasked

context (C)

,

add_2 (C , nextnum ,)

,

add_2(C, pasked, 0) ,fail.

update_askable(C,Cp ,Np , askable ,Num)

delete_4(C,Cp,Np, askable, N)

,

add_4 (C , Cp , Np , askab 1 e , Num)

.

1 12

update_num(C , XX , N

)

delete_2(C,XX,N1),

add_2(C,XX,N).

cntxt_applicable(CNTXT , PAR

)

v_func_2(CNTXT, parmgroup , PT)

,

v_func_2(PAR, memberof ,P_categ)

,

PT == P_categ.

/********** VARIABLE PREDICATE ROUTINES **********/

Some of the predicate names are bound to their

values dynamically during the cansultation, following

routines make their use possible with PROLOG'S built-

in "=.." and "call" functions.

add_2(A,B,C)

Z= . . [A,B,C]

,

assert(Z) .

add_4(A,B,C,D,E)

Z=. . [A,B,C,D,E]

,

assert(Z)

.

113

add_5 (A , B , C , D , E , F

)

Z= . . [A,B,C,D,E,F]

,

assert(Z)

.

delete_2(A,B,C)

Z=. . [A,B,C] ,call(Z),

retract(Z) .

delete_4 (A , B , C , D , E

)

Z=. . [A,B,C,D,E] ,call(Z),

retract (Z)

.

delete_5(A,B,C,D,E,F)

Z=. . [A,B,C,D,E,F] ,call(Z),

retract(Z)

.

v_func_1 (PRED,VAR1

)

Z=. . [PRED,VAR1] ,call(Z).

v_func_2 (PRED , VAR 1 , VAR2

)

114

Z=. . [PRED,VAR1 ,VAR2] ,call(Z).

v_func_4 (PRED , VAR 1 , VAR2 , VAR3 , VAR4

)

Z=. . [PRED,VAR1 ,VAR2,VAR3,VAR4] ,call(Z).

v_func_5 (PRED , VAR 1 , VAR2 , VAR3 , VAR4 , VAR5

)

Z=. . [PRED,VAR1 ,VAR2,VAR3,VAR4,VAR5] ,call(Z).

retractall (CLAUSE

)

(CLAUSE =.. [PRED,A,B,C,D,E] ; CLAUSE =..

[PRED.A]),

not(retractall2(PRED))

.

retractall2(PRED)

(Z =.. [PRED,A,B,C,D,E] ; Z =.. [PRED,A]),

retract(Z) ,fail

.

ancestor_descendant (C , N , C , N)

.

ancestor_descendant (C , N , Cx , Nx

)

v_func_5(Cx,C,N,Cx,Nx,tree)

.

115

ancestor_descendant (C , N , Cx , Nx

)

v_func_5(Cs , Cs ,Ns ,C,N, tree)

,

ancestor descendant (Cs ,Ns , Cx,Nx)

/************** CHECKING USER'S RESPONSE *#*******/

User's response for a data request is checked

against expected value of a parameter. There are three

possible expected values : a number, yes or no and any

value

.

/a**/

check_the_answer (C , N , PAR , CF , VAL , EXPECT

)

EXPECT == 'number'

,

number (VAL)

.

check_the_answer (C , N , PAR , CF , VAL , EXPECT

)

EXPECT == 'yes_no'

,

member (VAL , [yes , no])

.

check_the_answer (C , N , PAR , CF , VAL , EXPECT

)

• —

EXPECT == 'any'

.

1 16

/********* LOCATING HYPOTHESES IN THE DATABASE ***/

"Commonlist" routine returns list of "VAL.CF"

pairs where they satisfy specified values in the

"eval_premise" routine. "find_appl_cntxt_for_C_N"

routine finds all hypotheses in the database which

concludes a value for "PAR" and stores them as facts

in the form; "conclude_PAR_for_C_N (PAR,C ,N, VAL , CF) "

.

"Commonlist" routine has two choices, either a value

list is specified or not. If the value list is not

specified then "List" in the argument list is

variable. All "conclude_PAR_for_C_N(. . .
)" facts are

retrieved and then "VAL,CF" pairs are returned as

commonlist "Lcommon" in the argument list of the

routine. Second choice is the case where a list of

values are specified. In this

case "Hypothesislist" variable corresponds to all

"VAL,CF" pairs of "conclude_PAR_for_C_N" facts. This

list is intersected with specified list and resulting

list is returned as "commonlist".

/a**/

commonlist(PAR,C,N, [List !L] , Lcommon)

var(List)

,

find_appl_cntxt_for_C_N(C , N , PAR)

,

bagof([VAL,CF]

,

concluded_PAR_for_C_N(PAR , Cx , Nx , VAL , CF) , Lcommon)

.

1 17

commonlist(PAR,C,N, [List] ,Lcommon)

find_appl_cntxt_for_C_N(C,N,PAR) , !

,

bagof([VAL,CF]

,

concluded_PAR_for_C_N(PAR , Cx , Nx , VAL , CF) , Hypo

thesislist)

,

((v_func_2(List,list,L),

int er sect ion(L, Hypothesisl 1st ,Lcommon))

;

inter sect i on ([List] ,Hypothesislist .Lcommon))

.

intersection(L ,[],[]).

intersection(L, [[X , Y] I L1] , [[X , Y] !L2]

)

• _

_

member (X ,L)

,

intersection(L ,L1 ,L2).

intersection(L, [[X , Y] ! L1] ,L2

)

intersection(L,L1 ,L2).

/***ttw**w************«*w**********tt*****************/

Find applicable contexts for current context

instance (C,N) and parameter (PAR),

/a**/

1 18

find_appl_cntxt_for_C_N(C , N , PAR

)

check_applicable_context(PAR,Ca)

,

not(find_all_appl_descendants(C,N,Ca,PAR))

,

not(do_assertion(C,N,PAR))

.

check_applicable_context (PAR , C

)

v_func_2(PAR, memberof , P_categ)

,

context(C)

,

v_func_2(C,parmgroup , P_categ)

.

/a**/

Current context is already the one which is

applicable to PAR, so there is no need to look for any

descendant

.

/ft***/

find_al l_appl_descendant s (C , N , Ca , PAR

)

C == Ca,

not(applicable_descendant(C,N,PAR,C,N))

,

assert(applicable_descendant(C,N,PAR,C,N)) ,fail

.

find_all_appl_descendants (C , N , Ca , PAR

)

find_brother (C,Ca,Na)

,

119

not(applicable_descendant(C,N,PAR,Ca,Na))

,

asser t(appli cable_descendant(C,N, PAR, Ca,Na)) ,fail

.

If C,N is immediate parent for applicable context

then the fact "applicable_descendant(C,N,PAR, Cx,Nx)

"

is asserted into dbase for all immediate descendant

contexts of C,N. Note that "C,N,PAR" triple is our

key.

/tt*****«**W**tt****W**W*M*W*«***tt**tt*M****tt*tt*M****W*/

find_al l_appl_descendants (C , N , Ca , PAR

)

v_func_5(Ca,C,N,Ca,Na, tree)

,

not(appli cable_descendant(C,N, PAR, Ca,Na))

,

assert (applicable_descendant(C,N,PAR,Ca,Na)) , fail

.

find_al l_appl_descendants (C , N , Ca , PAR

)

•

v_func_5(C,Ca,Na,C,N,tree)

,

not(applicable_descendant(C,N,PAR,Ca,Na))

,

assert (applicable_descendant(C,N, PAR,Ca,Na)) , fail

.

/a**/

Applicable context is not reached yet, go down

one more level.

/***K*********ttttM******M*#tt*************************/

120

find_all_applicable_descendants(C,N,Ca,PAR)

• —

not(applicable_descendant(C,N,PAR,Cx,Nx))

,

v_func_2 (C , offspr ing , Cs)

,

v_func_5(Cs,C,N,Cs,Ns,tree)

,

find_all_applicable_descendants(Cs ,Ns ,Ca,PAR)

.

HERE by using "fail" we use all applicable

descendant contexts one by one and assert

"concluded_PAR_for_C_N" for each of them,

/it**/

do_assert ion(C , N , PAR

)

appl icable_descendant (C , N , PAR , Ca , Na)

,

not(do_assertion2(C,N,PAR,Ca,Na)) ,fail.

do_assertion2(C,N,PAR,Ca,Na)

hypothesis(PAR, Ca,Na,VAL,CF)

,

not (coneluded_PAR_for_C_N (PAR , Ca , Na , VAL , CF))

,

assert (concluded_PAR_for_C_N(PAR , Ca , Na , VAL , CF)) , fai 1

.

/***tt*tt*****************tt****************«**********/

DON'T assert if it is already asserted.

/tt***#****WK**«*M*tt*****#***tt*tt**W***«Mtttttt*tt*tt***tttttt/

121

do_asser t ion2 (C , N , PAR , Ca , Na

)

hypothesi s (PAR , Ca , Na , VAL , CF) , fai 1

.

find_br other (C , Cb , Nb

)

•

v_func_5(C,Cp,Np,C,N, tree)

,

v_func_5(Cb,Cp,Np,Cb,Nb,tree)

,

Cb \== C.

absolute_value(CF,CFabs

)

CF < 0,

CFabs is CF * -1

.

absolute_value(CF,CF)

.

min(A,B) :- min2(A,B) , !

.

min2([X] ,X).

min2([X!L] ,X) :- min2(L,Y),X =< Y.

min2([X!L] ,Y) : - min2(L, Y)

.

max(A,B) :- max2(A,B),!.

max2([X] ,X).

122

max2([X!L] ,X) :- max2(L,Y),X >= Y.

max2([X!L] ,Y) : - max2(L, Y)

.

insert(A, [B] , [A!B]).

delete(X, [X!L] ,L).

delete(X, [YIL1] , [YIL2]) :- delete(X ,L1 ,L2

)

member (X, []) :- !,fail.

member(X, [XIL]).

member (X , [Y i L]) :- member (X,L).

af f*irmative(y)

.

affirmative(yes)

.

negat ive (no)

.

negative(n)

.

member2([X,CF1] , [[X.CF1] !L1] , [Y,CF2]) :-

member ([Y,CF2] ,L1).

123

APPENDIX B

LIST OF FUNCTIONS

This appendix contains the list of functions

used in EMYCIN-PROLOG. Their original descriptions are

given in [2]

.

NONNUMERIC PREDICATE FUNCTIONS

KNOWN

Returns true if the value of the parameter is

known with a CF > 0.2.

NOTKNOWN

Returns true if the CF of the parameter is less

than or equal to 0.2.

DEFINITE

Returns true if the value of the parameter is

known with certainty (CF = 1.0).

SAME

Returns the CF associated with the value of

interest if it is greater than 0.2, otherwise returns

false

.

NOTSAME

Returns true if the CF associated with the value

of interest is less than or equal to 0.2.

MIGHTBE

Returns true if the CF associated with the value

of interest is greater than or equal to 0.2.

124

THOUGHTNOT

Returns -CF associated with the value of interest

if it is less than -0.2, otherwise returns false.

VNOTKNOWN

Returns true if the CF associated with the value

of interest lies between -0.2 and 1.

DEFIS

Returns true if the CF associated with the value

of interest is equal to 1

.

DEFNOT

Returns true if the CF associated with the value

of interest is equal to -1

.

NOTDEFIS

Returns true if the CF associated with the value

of interest lies between 0.2 and 1

.

NOTDEFNOT

Returns true if the CF associated with the value

of interest lies between -1 and -0.2.

NUMERIC PREDICATE FUNCTIONS

GREATERP

Returns true if the value of interest is known

with a CF> 0.2 and is greater than or equal to the

number specified.

125

GREATEQ

Returns true if the value of interest is known

with a CF> 0.2 and is greater than or equal to the

number specified.

LESSP

Returns true if the value of interest is known

with a CF> 0.2 and is less than the number specified.

LESSEQ

Returns true if the value of interest is known

with a CF> 0.2 and is less than or equal to the number

specified.

CONCLUSION FUNCTIONS

CONCLUDE

Updates the value of a parameter in the dynamic

database. Update process includes combining certainty

values and explained in Section III. A.

126

APPENDIX C

KNOWLEDGE BASES

This appendix contains listing of the static

knowledge and rulebase of the CAR diagnosis system and

FINANCE analysis system, which are held in the files

CARRULES, and FINANCERULES. Each file contains all

static knowledge/ information about contexts and

parameters too.

Prolog rules and facts which presented in this

appendix are written by knowledge engineer. This

process corresponds to the knowledge base construction

phase of the expert system development process.

Following are some of the the cautions about

writing rules for EMYCIN-PROLOG. The knowledge

engineer should be careful in these details.

Since all rules are tried, every rule should

include all required premises explicitly.

Premises which has VAR as a value list has to be

treated differently. After execution of a premise

clause PAR value is asserted into data base as

Mhypothesis(PAR,CNTXT,N,VAL,CF)" , this fact should be

called explicitly to be able to use VAL in other

premises of a rule.

In the "conclude" clause of each rule CF value

should be passed by "rain" or "max" function. Otherwise

127

CF value should be defined explicitly.

In "concluded" routine tree pointer should be a

variable different than current tree pointer.

The value to be searched for, should be enclosed

in brackets in "eval_premise" routine.

All rules are tried unless PAR is singlevalued

and its value is concluded with CF=1(-1) in any of

previous rules. The point that all rules are tried

should be remembered during the rule writing process

otherwise surprising answers can be obtained ! !

!

1 . CAR DIAGNOSIS SYSTEM KNOWLEDGE BASE

/#**#»********** CONTEXT DEFINITIONS ***#***********/

context(nnil) .

/a**/

This fact is required for "initialize_askable"

routine

/a**/

nnil (offspring, car)

.

context (car)

.

car (offspring, electrical_system)

.

car (offspring, fuel_system)

.

car (assocwith,nnil)

.

car (parmgr oup , car_parms)

.

car(prompt3 ,
' This is a car diagnoses program').

128

car (mainprops, [year , model , problems])

.

context (electr ical_system)

.

electrical_system(offspring, nnil)

.

electrical_system(assocwith,car)

.

electrical_system(parmgroup , elec_parms)

.

electrical_system(prompt3 , 'Electrical system needs to

be checked ! ! ?')

.

electr ical_system(mainprops , [])

.

context (fuel_system)

.

fuel_system(offspring, nnil)

.

fuel_system(assocwith , car)

.

fuel_system(parmgroup ,fuel_parms)

.

fuel_system(prompt3, 'Fuel system needs to be checked

! ! ?').

fuel_system(mainprops , [throttle_test])

.

/a****************** PARAMETER DEFINITIONS ********

/

parameter (year)

.

year (memberof ,car_parms)

.

year (valutype , singlevalued)

.

year (expect , number)

.

year (prompt ,year_prompt)

.

year (can_ask , 1)

.

129

year_prompt

write(' What is the year of the car ?')t

write(' ==> »).

parameter (model)

.

model (meraberof , car_parms)

.

model (valutype , singlevalued)

.

model (expect , any)

.

model (prompt ,model_prompt)

.

model (can_ask, 1)

.

model_prompt

write('What is the model of the car ?'),write(' ==>

').

parameter (problems)

.

problems(memberof ,car_parms)

.

problems! valutype , singlevalued)

.

problems! expect ,any)

.

problems(can_ask,)

.

parameter (stalled_engine)

.

stalled_engine(memberof , elec_parms)

.

stalled_engine(valutype , multivalued)

.

130

stalled_engine(expect , any)

.

stalled_engine(can_ask,)

.

stalled_engine(trans ,' The cause of the stalled engine

problem is : ')

.

parameter (electrical)

.

electr ical(memberof ,elec_parms)

.

electrical(valutype , multivalued)

.

electrical (expect , any)

.

electr ical(can_ask,)

.

parameter (battery)

.

battery(memberof , elec_parms)

.

battery(valutype .multivalued)

.

battery (expect , number)

.

battery(can_ask,0)

.

parameter (dimming_light)

.

dimming_light(member of ,elec_parms)

.

dimming_light(valutype, yes_no)

.

dimming_l ight (expect , yes_no)

.

dimming_light(prompt , dimming_light_prompt)

.

dimming_l ight (can ask , 1)

.

131

dimming_light_prompt

•

print('Turn on your lights and. operate the starter

'), nl,

print ('Do the lights go out or become dim ?

(yes/no))

,

write(» ==> •).

parameter (hydrometer)

.

hydrometer (memberof , elec_parms)

.

hydrometer (valutype , singlevalued)

.

hydrometer(expect .number)

.

hydrometer (prompt , hydrometer_pr ompt)

.

hydrometer (can_ask, 1).

hydrometer_prompt

print('What is the specific gravity measured by

hydrometer ?'),

write(' ==> ').

parameter (battery_volt)

.

battery_volt (memberof , elec_parms)

.

battery_volt(valutype , singlevalued)

.

battery_volt(expect , number)

.

battery_volt (prompt , battery_volt_prompt)

.

132

battery_volt(can_ask, 1).

battery_volt_prompt

•

print('Disconnect the battery connections and

measure the voltage ') ,nl

,

print('What is the voltage measured on battery ?'),

write(' ==> ').

parameter(ammeter)

.

ammeter (member of , elec_parms)

.

ammeter (valutype ,yes_no)

.

ammeter (expect ,yes_no)

.

ammeter (prompt , ammeter_pr ompt)

.

ammeter (can_ask , 1)

.

ammeter_prompt

• _

print ('Does the ammeter shows a slight discharge

(or does the '),nl,

print('telltale lamp light) when the ignition is

turned on.? (yes/no)'),

write(' = = > ').

parameter (starting_motor)

.

starting_motor (memberof ,elec_parms)

.

133

starting_motor(valutype, yes_no)

.

starting_motor(expect ,yes_no)

.

starting_motor (prompt , start ing_motor_prompt)

.

starting_motor(can_ask, 1).

starting_motor_prompt

print('Does the electrical system go dead, when the

starter switch '),nl,

print('is turned on? (yes/no)'),

write(' ==>).

parameter (fuel_sys)

.

fuel (memberof , fuel_parms)

.

fuel(valutype .multivalued)

.

fuel (expect , any)

.

fuel (can_ask ,)

.

parameter (fuel_to_carb)

.

fuel_to_carb(memberof , fueljparms)

.

fuel_to_carb(valutype , single)

.

fuel_to_carb(expect , any)

.

fuel_to_carb(can_ask,)

.

parameter (throttle_test)

.

thr ottle_test (member of ,fuel_parms)

.

134

throttle_test(valutype,yes_no)

.

throttle_test(expect ,yes_no)

.

throttle_test(prompt , throttle_test_prompt)

.

throttle_test(can_ask, 1).

throttle_test_prompt

•

print('Move the throttle manually, do you see a

spray of fuel'),nl,

print('mixture in the carburator throat. ?

(yes/no) '),

write(' ==> ').

parameter (fuel_pump)

.

fuel_pump (memberof ,fuel_parms)

.

fuel_pump(valutype,yes_no)

.

fuel_pump(expect ,yes_no)

.

fuel_pump(prompt ,fuel_pump_prompt)

.

fuel_pump(can_ask, 1).

fuel_pump_prompt

print(' Disconnect the fuel line at the

carburator .') ,nl , print(' Crank the engine '),

print ('Do you see fuel pulsating out '),nl,

print('of the line. ? (yes/no) '),write(' ==> ')

135

parameter (fuel_line)

.

fuel_line(memberof ,fuel_parms)

.

fuel_line(valutype ,yes_no)

.

fuel_line(expect ,yes_no)

.

fuel_line(prompt , fuel_line_prompt) .

fuel_line(can_ask, 1).

fuel_line_prompt

•

print(' Disconnect the fuel line at the ')»

print ('inlet side of the pump.'),nl,

print(' Blow into the line, '),

print('Does your friend hear gurgling sound'),nl,

print('from the fuel tank inlet.? (yes/no) '),

write('= = > ')

.

parameter (fuel_fliter)

.

fuel_fliter (memberof, fuel_parms)

.

fuel_fliter (valutype ,yes_no)

.

fuel_fliter (expect ,yes_no)

.

fuel_fliter (prompt , fuel_filter_prompt)

.

fuel_fliter (can_ask, 1).

fuel_filter_prompt

136

print(' Disconnect the inlet side of the line

filter (usually ') ,nl

,

print('a small, clear plastic canister spliced into

the fuel) ,nl,

print('line) Crank the engine. Do you see a good

shot of fuel. ?') ,

print(' (yes/no) ') ,write(' ==> ').

/*****#*******#******* RULES a********************/

The "cut" operator (!) is used to prevent

backtracking. "try_all_rules_for_PAR" routine tries

other parameters if it cannot find then backtracks

so, "!" stops it and ends consultation,

/ft**/

problems (CNTXT , N , PROBLEMS , CFrule

)

print('What is/are the problem(s) ?'),nl,

print(' 1 .Stalled engine'),nl,

print ('2. Diesel ing') ,nl,

print(' 3. Engine noise'),nl,

print(' 4. Slow cranking') ,nl

,

print(' 5. Hard starting') ,nl

,

print(' 6. Rough idle ') ,nl ,nl ,nl

,

print('Enter the number which corresponds to the

problem ')

,

write(' ==> '),

137

read(NUMBER),nl,

problem_fact(NUMBER, PROBLEM)

,

assert (goal (PROBLEM)),

eval_par (CNTXT , [PROBLEM] , N) , nl , nl , !

.

If any one of the rules can be satisfied more

than once, then all such choices are tried since

' try_all_rules_for_PAR ' routine uses "fail" predicate

and any individual rule will be tried until all

possible choices are satisfied in the rule premise.

For example in first stalled_engine rule VALc.CFc can

bind more than one values, if there are more than one

hypotheses in database which concludes a value about

"electrical"

.

/#******************#****#************#*************/

stal led_engine(CNTXT, N, VALc, 1

)

eval_premise(same, electrical , CNTXT, N,VAL,CF)

,

hypothesis (electrical , Cx,Nx, VALc ,CFc)

,

conclude (CNTXT, N, stal led_engine , VALc , 1 , CFc)

.

stal led_engine(CNTXT, N, VALc, 1

)

eval_premise(same, fuel , CNTXT ,N, VAL,CF)

,

hypothesis(fuel ,Cx,Nx, VALc , CFc)

,

138

conclude (CNTXT ,N, stalled_engine , VALc , 1 , CFc)

.

electrical(CNTXT,N, 'battery' ,0.8)

eval_premise(same,dimming_light ,CNTXT,N, [yes] ,CF1)

,

eval_pr emise(same, battery ,CNTXT ,N, [weak] , CF2)

,

min([CF1 ,CF2] ,CF),

conclude (CNTXT,N, electrical, 'battery' ,0.8,CF)

.

electrical(CNTXT,N, 'neutral_safety_switch' ,0.7)

eval_premise(same , ammeter ,CNTXT,N, [yes] ,CF1)

,

eval_premise(same,starting_motor ,CNTXT,N, [yes] , CF2)

,

min([CF1 ,CF2] ,CF),

conclude(CNTXT,N, electrical

,

' neutral_safety_switch ' , . 7 , CF)

.

electrical(CNTXT,N, ' starter_circuit ' ,0.6)

eval_premise(same,dimming_light ,CNTXT,N, [no] ,CF1)

,

eval_premise(same, fuel ,CNTXT,N, [ok] , CF2)

,

min([CF1 ,CF2] ,CF),

conclude(CNTXT,N, electrical, ' starter_circuit ' ,0.6,CF).

battery(CNTXT,N, 'weak' ,1

)

139

eval_premise(lessp .hydrometer ,CNTXT,N, [1250] , true)

,

eval_premise(lessp , battery_volt ,CNTXT,N, [12] , true)

,

conclude(CNTXT,N, battery , 'weak' ,1,1).

battery (CNTXT,N, ' bad_connections ,0.8)

eval_premise(gr eateq, hydrometer ,CNTXT ,N,[1250],true),

eval_premise(greateq,battery_volt ,CNTXT ,N, [12] , true)

,

conelude(CNTXT,N, battery, ' bad_connections » ,1 ,0.8)

.

battery(CNTXT,N, 'weak' ,0.5)

eval_premise(gr eat eq, hydrometer ,CNTXT,N, [1250], true),

eval_premise(lessp ,battery_volt ,CNTXT,N, [12], true),

conclude(CNTXT, N, battery , 'weak' ,0.5,1).

battery(CNTXT,N, 'weak' ,0.5)

• —

eval_premise(lessp .hydrometer ,CNTXT ,N, [1250] ,true),

eval_premise(greateq,battery_volt ,CNTXT,N, [12] , true)

,

conclude (CNTXT,N, battery, 'weak' ,0.5,1)

.

fuel(CNTXT,N, 'fuel_pump' ,1

)

eval__premise(defis , throttle_test ,CNTXT ,N, [no] , true)

,

eval_premise(same,fuel_pump,CNTXT,N, [no] ,CF1)

,

140

eval_pr emise(same, fuel_fliter, CNTXT, N, [no] , CF2) ,

eval_premise(same,fuel_line,CNTXT,N, [yes] ,CF3),

min([CF1 ,CF2,CF3] ,CF),

conclude (CNTXT,N, fuel, 'fuel_pump' , 1 ,CF)

.

fuel(CNTXT,N, 'fuel_line' , 1)

•

eval_premise(defis , throttle_test ,CNTXT ,N, [no] , true)

,

eval_premise(same , fuel_pump , CNTXT ,N , [no] , CF1)

,

eval_premise(same, fuel_fliter, CNTXT,N, [no] ,CF2)

,

eval_premise(same, fuel_line, CNTXT, N, [no] , CF3)

,

min([CF1 , CF2 , CF3] , CF)

,

conclude(CNTXT, N, fuel, 'fuel_line' ,1 ,CF).

fuel(CNTXT, N, 'carburator ' ,1

)

eval_premise(defis, throttle_test , CNTXT, N, [no] , true)

,

eval_premise(same, fuel_pump, CNTXT, N, [yes] , CF)

,

conclude (CNTXT, N, fuel, 'carburator • , 1 ,CF)

.

fuel(CNTXT, N, 'carburator' ,1

)

• _

eval_premise(defis, throttle_test, CNTXT, N, [yes] ,true)

,

eval_preraise(same , starting_motor , CNTXT, N, [yes] , CF)

,

conclude(CNTXT, N, fuel , 'carburator ' , 1 ,CF)

.

141

fuel(CNTXT,N, ' fuel_fliter » ,1)

•

eval_premise(def is , throttle_test , CNTXT ,N, [no] , true)

,

eval_premise(same , fuel_pump , CNTXT ,N, [no] , CF1)

,

eval_premise(same, fuel_fliter , CNTXT, N, [yes] , CF2)

,

min([CF1 ,CF2] ,CF)

,

conclude (CNTXT, N, fuel , 'fuel_filter * , 1 , CF)

.

/***#****##***** FACTS ABOUT MAIN MENU **#********/

problem_fact(1 , stalled_engine)

.

problem_fact (2 , dieseling)

.

problem_fact (3 , engine_noise)

.

problem_fact (4 , slow_cranking)

.

problem_fact (5 ,hard_starting)

.

problem fact(6,rough idle).

2. FINANCE ANALYSIS SYSTEM KNOWLEDGE BASE

/*#****#****** CONTEXT DEFINITIONS #****#******#***/

context(nnil)

.

nnil(offspring, lease)

.

goal (payment)

.

142

context(lease)

.

lease(offspring, finance)

.

lease (assocwith.nnil)

.

lease(parmgroup , lease_parms)

.

lease(prompt3 ,
' The following is a part of a

lease/acquire_by/finance DSS').

lease(mainprops , [payment])

.

lease(prompt2 ,
' Is there any other lease problem you

want to solve ?').

context(finance)

.

finance(offspring, nnil)

.

finance (assocwith , lease)

.

finance (parmgroup,finance_parms)

.

finance (prompt 1
, 'Do you want to analyze the financing

for asset ?')

.

finance(mainprops , [])

.

finance (prompt2, 'Do you have any other finance to

analyze ?
')

.

/a************* PARAMETER DEFINITIONS *************/

parameter (asset_cost)

.

asset_cost (member of ,finance_parms)

.

asset_cost(valutype,singlevalued)

.

asset_cost (expect , number)

.

143

asset_cost (prompt , asset_cost_prompt)

.

asset_cost (can_ask , 1)

.

asset_cost(trans ,' the cost of the asset ').

asset_cost_prompt

write('What is the asset cost'),

write(» = = > »).

parameter (down_payment)

.

down_payment (member of , finance_parms)

.

down_payment (valutype , singlevalued)

.

down_payment (expect , number)

.

down_payment (prompt , down_payment_pr ompt)

.

down_payment (can_ask , 1)

.

down_payment(trans ,' amount of down payment for the

asset ')

.

down_payment_prompt

write('What is the amount of down payment ?'),

write(' ==>').

parameter (finance_it)

.

finance_it (memberof , finance_parms)

.

finance_i t (valutype , singlevalued)

.

144

finance_it(expect , number)

.

finance_it (can_ask ,) .

finance_it(trans , 'The yearly payment on the asset').

parameter (finance_inter est)

.

finance_inter est (member of ,finance_parms)

.

finanee_inter est (valutype , singlevalued)

.

finance_interest(expect , number)

.

finance_interest(prompt , finance_interest_prompt)

.

finance_interest(can_ask, 1).

finance_interest(trans ,' The percentage yield to the

firm for the loan').

finance_interest_prompt

write(' Percent charged by the leasing firm ?'),

write(' ==> ').

parameter (finance_period)

.

finance_period(memberof ,finance_parms)

.

finance_period(valutype .singlevalued)

.

finance_period(expect , number)

.

finance_period(prompt , finance_period_prompt)

.

finance_period(can_ask, 1).

finance_period(trans, 'The length in years of the

leasing period line for the asset').

145

finance_period_prompt

write('Lease period ?'),

write(» = = > ')

.

parameter (opt ion_l ease)

.

option_lease(raemberof , finance_parms)

.

opt ion_l ease (valutype ,yes_no)

.

option_lease(expect ,yes_no)

.

option_lease(prompt , option_lease_prompt)

.

opt ion_lease (can_ask, 1)

.

option_lease(trans , 'Lease is to be modified lease')

option_lease_prompt

write('Do you want a lease with the option to

terminate ?
')

,

write(' ==> ') .

parameter (straight_lease)

.

straight_lease(memberof , finance_parms)

.

straight_lease(valutype, yes_no)

.

straight_lease(expect ,yes_no)

.

straight_lease(prompt , straight_lease_prompt)

.

straight_lease(can_ask, 1)

.

146

straight_lease(trans , 'Lease is to be a straight

lease '
)

.

straight_lease_prompt

• —m

write('Do you want a straight lease ?'),

write(' = = >
').

parameter (asset_name)

.

asset_name (member of , lease_parms)

.

asset_name(valutype , singlevalued)

.

asset_name(expect , any)

.

asset_name(prompt ,asset_name_prompt)

.

asset_name(can_ask, 1).

asset_name(trans , 'The asset that tou are considering

for ') .

asset_name_prompt

write('Asset name ?'),

write(' = = >').

parameter (acquire_by)

.

acquire_by(memberof , lease_parms)

.

acquire_by(valutype, singlevalued)

.

acquire_by(expect , any)

.

147

acquire_by(can_ask,)

.

acquire_by(trans , 'Determination to straight lease or

acquire_by the asset').

parameter (cannot_borrow)

.

cannot_borrow(member of , lease_parms)

.

cannot_borrow(valutype ,yes_no)

.

cannot_borrow(expect ,yes_no)

.

cannot_bor r ow(can_ask ,)

.

cannot_borrow(trans , 'Your credit is too low to get a

loan')

.

parameter (cash_reserve_needed)

.

cash_reserve_needed(memberof , lease_parms)

.

cash_reserve_needed(valutype ,yes_no)

.

cash_reserve_needed(expect ,yes_no)

.

cash_reserve_needed(prompt

,

cash_reserve_needed_prompt)

.

cash_reserve_needed(can_ask, 1).

cash_reserve_needed(trans , 'You do need to maintain

large cash reserves').

cash_reserve_needed_prompt

write('Do you need to maintain larger cash reserves ?

(yes/no) '),

write(' = = > ').

148

parameter (how_to_acqui re)

.

how_to_acquire (memberof , lease_parms)

.

how_to_acquire(valutype, multivalued)

.

how_to_acqui re (expect , any)

.

how_to_acquire(can_ask,)

.

how_to_acquire(trans , 'My recommendation').

parameter (lender_checks)

.

lender_checks(memberof , lease_parms)

.

lender_checks(valutype ,yes_no)

.

lender__checks(expect ,yes_no) .

lender_checks(prompt , lender_checks_prompt)

.

lender_checks(can_ask, 1).

lender_checks(trans , 'Lender does check on outstanding

leases when making a loan').

lender_checks_prompt

•

write('When you go to borrow money , Does the

lender check'),nl,

write('on any outstanding leases you have ?

(yes/no) ')

,

write(' ==>').

parameter (lessee_cash)

.

lessee_cash(memberof , lease_parms)

.

149

lessee_cash(valutype , singlevalued)

.

lessee_cash(expect , any)

.

lessee_cash(prompt , lessee_cash_prompt)

.

lessee_cash(can_ask , 1)

.

lessee_cash(trans ,' The cash reserves').

lessee_cash_prompt

write('how would you describe your cash reserves ?

(good/fair/poor)
')

,

write(' ==>').

parameter(lessee_credit)

.

lessee_credit(memberof , lease_parms)

.

lessee_credit(valutype , singlevalued)

.

lessee_credit (expect , any)

.

lessee_credit(prompt , lessee_credit_prompt)

.

lessee_credit(can_ask, 1).

lessee_credit(trans , 'Your credit rating').

lessee_credit_prompt

write('How would you describe your current credit

rating ? (good/fair/poor)'),

write(' = = > ').

parameter (payment)

.

150

payment (member of , lease_parms)

.

payment (valutype , singlevalued)

.

payment (expect , any)

.

payment (can_ask ,)

.

payment (trans ,' Payment on the asset for the asset is

($) :')•

parameter (preserves_cash)

.

preserves_cash(memberof , lease_parms)

.

preserves_cash(valutype ,yes_no)

.

preserves_cash(expect ,yes_no)

.

preserves_cash(can_ask ,)

.

preserves_cash(trans , ' This lease does preserve your

cash reserves').

parameter (preserves_credit)

.

preserves_credit(memberof , lease_parms)

.

preserves_credit (valutype ,yes_no)

.

preserves_credit(expect ,yes_no)

.

preserves_credit (can_ask ,)

.

preserves_credit(trans, • This lease does preserve your

credit rating').

151

/a******************* RULES **********************#/

cannot_borrow(CNTXT,N, 'yes' ,1.0)

eval_premise(same , lessee_cred.it ,CNTXT ,N, [poor] , CF) ,

conelude(CNTXT,N,cannot_bor row, 'yes' ,1 . 0,CF) ,nl

,

write('Your credit is not adequate. You cannot

borrow money to acquire_by the asset '),nl,

write('Therefore LEASE the asset '),nl.

acquire_by(CNTXT,N, • lease' ,1.0)

(eval_premise(same , cannot_borrow, CNTXT ,N, [yes] ,CF1)

;

eval_premise(same ,preserves_credit , CNTXT ,N, [yes] , CF2)

;

eval_premise(same ,preserves_cash, CNTXT ,N, [yes] ,CF3))

,

conclude(CNTXT, N,how_to_acquire, ' lease' , 1 .0,CF1)

,

conclude (CNTXT, N,acquire_by, ' lease' ,1 .0,CF1) ,nl

,

write('My recommendation is lease the asset'),nl.

ac qui re_by(CNTXT, N, 'purchase' ,1.0)

not(hypothesis(acquire_by ,Cx,Nx, VAL,CFx))

,

conclude (CNTXT ,N, acquire_by , 'purchase' ,1 .0,1 .0) ,nl

,

write('My recommendation is buy the asset'),nl.

152

preserves_credit(CNTXT,N, 'yes' ,1 .0)

• _m
•

eval_premise(same , lessee_cred.it ,CNTXT,N, [fair] , CF1)

,

eval_premise(same , lender_checks ,CNTXT ,N, [no] , CF2)

,

min([CF1 ,CF2] ,CF),

conclude (CNTXT ,N,preserves_cr edit, 'yes' ,1 . 0,CF) ,nl

,

write('Your credit rating will not be affected by

leasing the asset'),nl.

preserves_cash(CNTXT, N, 'yes' , .9)

eval_pr emise(same, lessee_cr edit, CNTXT, N, [fair] ,CF1)

,

eval_premise(same , lender_checks , CNTXT ,N , [yes] , CF2)

,

eval_premise(same, lessee_cash, CNTXT, N, [fair] , CF3)

,

eval_premise(same ,cash_reserve_needed, CNTXT ,N, [yes]

,

CF4),

min([CF1 , CF2 , CF3 , CF4] , CF)

,

cone lude(CNTXT, N,preserves_cash, 'yes ' , . 9,CF)

.

finance_it (CNTXT , N , VAL ,1.0)

eval_pr emise(same, acquire_by, CNTXT, N, [lease] ,CF1)

,

eval_premise(same, straight_lease, CNTXT, N, [yes] ,CF2)

,

eval_premise(known, asset_cost , CNTXT ,N, [VAL1] , true)

,

eval_premise(known, finance_interest , CNTXT, N, [VAL2]

,

true)

,

153

eval_premise(known, finance_period,CNTXT,N, [VAL3]

,

true)

,

hypothesis(asset_cost , Cx,Nx,VAL4 ,CFx)

,

hypothesis(finance_interest , Cy ,Ny , VAL5 , CFy)

,

hypothesis(finance_period,Cz ,Nz , VAL6 , CFz)

,

min([CF1 ,CF2] ,CF),

VAL is (VAL4*(VAL5/100)+(VAL4/VAL6)+((VAL4*2)/100)),

conclude (CNTXT,N,finance_it ,VAL, 1 .0,CF)

.

finance_it(CNTXT,N,VAL,1 .0)

•

eval_premise(same , acquire_by ,CNTXT ,N, [lease] , CF1)

,

eval_premise(same , opt ion_l ease ,CNTXT , N, [yes] , CF2)

,

eval_premise(known, asset_cost ,CNTXT,N, [VAL1] , true)

,

eval_premise(known,finance_interest ,CNTXT,N, [VAL2]

,

true)

,

eval_premi se(known, finance_period,CNTXT ,N, [VAL3]

,

true)

,

hypothesis(asset_cost ,Cx,Nx,VAL4 ,CFx)

,

hypothesis(finance_interest , Cy ,Ny , VAL5 , CFy)

,

hypothesis(finance_period,Cz ,Nz , VAL6 ,CFz)

,

min([CF1 ,CF2] ,CF),

VAL is eeVAL4*eVAL5/100))+(VAL4/VAL6)),

conclude(CNTXT,N, finance it , VAL, 1 .0,CF)

.

154

finance_it(CNTXT,N,VAL,1 .0)

•

eval_premise(same, acquire_by, CNTXT, N, [purchase] , CF) ,

eval_premise (known, asset_cost ,CNTXT ,N, [VAL1] , true)

,

eval_premise(known, finance_interest ,CNTXT,N, [VAL2]

,

true)

,

eval_premise(known, finance_period,CNTXT ,N, [VAL3]

,

true)

,

eval_premise(known, down_payment ,CNTXT ,N, [VAL4] , true)

,

hypothesis(asset_cost , Cx,Nx, VAL5 ,CFx)

,

hypothesis(finance_interest , Cy ,Ny , VAL6 , CFy)

,

hypothesis(finance_period,Cz ,Nz , VAL7,CFz)

,

hypothesis(down_payment , Cw,Nw, VAL8, CFw)

,

VAL is (((VAL5-VAL8)/VAL7)*((100+VAL6)/100)),

conclude (CNTXT , N , finance_it , VAL , 1 . , CF)

.

payment (CNTXT , N , VALx ,1.0)

•

eval_premise (same , finance_it , CNTXT , N , VAL , CF)

,

hypothesis(finance_it ,Cx,Nx, VALx,CFx)

,

conclude (CNTXT, N, payment , VALx, 1 .0,1 .0)

.

155

APPENDIX D

SAMPLE CONSULTATIONS

The sample consultations presented in this

appendix occur between expert system and consultor

.

The consultor is in charge of finding required data.

The consultor can answer any data request as "unk"

which implies that there is no data available.

156

1 . CAR DIAGNOSIS CONSULTATIONS

Depending upon the data provided by the consultor

three different consultations are obtained for the CAR

diagnosis system.

C-Prolog version 1.5

!
?- [engine , func .utilities ,carrules]

.

engine consulted 12380 bytes 3.08333 sec.

func consulted 6572 bytes 1.98333 sec.

utilities consulted 7020 bytes 1.71667 sec.

carrules consulted 10000 bytes 2.9 sec.

WELCOME TO EMYCIN-PROLOG CONSULTATION PROGRAM

Please enter "begin" to start the consultation

yes

!
?- begin.

Enter the name of the root context (CAR, LEASE)

= = >car

.

This is a car diagnoses program

car-1

car-1

What is the year of the car ? ==> 86.

car-1

What is the model of the car ? ==> new.

What is/are the problem(s) ?

1. Stalled engine

2.Dieseling

157

3. Engine noise

4. Slow cranking

5. Hard starting

6. Rough idle

Enter the number which corresponds to the problem ==>

1 .

Electrical system needs to be checked ! ! ?

electrical_system-1

electrical_system-1

Turn on your lights and operate the starter

Do the lights go out or become dim ? (yes/no)

==> si

.

Unexpected answer ! ! ! Please try again.

electrical_system-1

Turn on your lights and operate the starter

Do the lights go out or become dim ? (yes/no)

==> yes.

electrical_system-

1

What is the specific gravity measured by hydrometer ?

==> 1200.

electrical_system-1

Disconnect the battery connections and measure the

voltage

What is the voltage measured on battery ? ==> 10.

electrical_system-1

Does the ammeter shows a slight discharge (or does the

158

telltale lamp light) when the ignition is turned on.?

(yes/no) ==> yes.

electrical_system-1

Does the electrical system go dead when the starter

switch is turned on.? (yes/no) ==> no.

Fuel system needs to be checked ! ! ?

fuel_system-1

fuel_system-1

Move the throttle manually, do you see a spray of fuel

mixture in the carburator throat. ? (yes/no) ==>

yes.

The cause of the stalled engine problem is :

battery

with the certainity : 0.8

CONCLUSIONS MADE DURING THE CONSULTATION

parameter / value / certainity / context instance

year 86 1 car— 1

model new 1 car--1

dimming_light yes 1 electrical_system—

1

hydrometer 1200 1 electrical_system—

1

battery_volt 10 1 electrical_system—

1

battery weak 1 electrical_system--1

159

electrical battery 0.8 electrical_system—

1

ammeter yes 1 electrical_system—

1

starting_motor no 1 electrical_system--1

stalled_engine -—battery .8 electrical_system--1

throttle_test yes 1 fuel_system—

1

yes

! ?- begin.

Enter the name of the root context (CAR, LEASE)

==>car

.

This is a car diagnoses program

car-1

car-1

What is the year of the car ? ==> 65.

car-1

What is the model of the car ? ==> old.

What is/are the problem(s) ?

1. Stalled engine

2.Dieseling

3. Engine noise

4-. Slow cranking

5. Hard starting

6. Rough idle

Enter the number which corresponds to the problem ==>

1 .

160

Electrical system needs to be checked. ! ! ?

electrical_system-1

electrical_system-

1

Turn on your lights and operate the starter

Do the lights go out or become dim ? (yes/no)

==> yes.

electrical_system-1

What is the specific gravity measured by hydrometer ?

==> 1300.

electrical_system-

1

Disconnect the battery connections and measure the

voltage

What is the voltage measured on battery ? ==> 12.

electrical_system-1

Does the ammeter shows a slight discharge (or does the

telltale lamp light) when the ignition is turned on.?

(yes/no) ==> yes.

electrical_system-1
Does the electrical system go dead when the starter

switch is turned on.? (yes/no) ==> no.

Fuel system needs to be checked ! ! ?

fuel_system-1

fuel_system-1

Move the throttle manually, do you see a spray of fuel

mixture in the carburator throat. ? (yes/no) ==>

no

.

161

fuel_system-1

Disconnect the fuel line at the carburator.

Crank the engine. Do you see fuel pulsating out

of the line. ? (yes/no) ==> yes.

The cause of the stalled, engine problem is :

carburator

with the certainity : 1

CONCLUSIONS MADE DURING THE CONSULTATION —

parameter / value / certainity / context instance

year 65 1 car—

1

model old 1 car— 1

dimming_light yes 1 electrical_system--1

hydrometer 1300 1 electrical_system—

1

battery_volt 12 1 electrical_system--1

battery bad_connections 0.8-

electrical_system--1

ammeter yes 1 electr ical_system--1

starting_motor no 1 electr ical_system—

1

throttle_test no 1 fuel_system—

1

fuel_pump yes 1 fuel_system--1

162

fuel carburator 1 fuel_system--1

stalled engine carburator 1 electr ical_system--1

I
?- halt.

[Prolog execution halted.]

2. FINANCE ANALYSIS CONSULTATIONS

The consultation results obtained for the FINANCE

analysis system are the same with the original FINANCE

analysis system which is built elsewhere [13].

Following the second consultation original

consultation results are also given for the comparison

purpose

.

% prolog

C-Prolog version 1.5

!
?- [engine , func , utilities , financerules]

.

engine consulted 12344- bytes 3.06667 sec.

func consulted 6572 bytes 1.9 sec.

utilities consulted 7020 bytes 1.63333 sec.

163

financerules consulted 9788 bytes 2.65 sec.

WELCOME TO EMYCIN-PROLOG CONSULTATION PROGRAM

Please enter "begin" to start the consultation

yes

! ?- begin.

Enter the name of the root context (CAR, LEASE)

= = >lease

.

The following is a part of a lease/acquire_by/finance

DSS

lease-1

Do you want to analyze the financing for asset ?

= = >y.

finance-1

Do you have any other finance to analyze ? ==>n.

lease-1

How would you describe your current credit rating ?

(good/fair /poor) ==>good.

My recommendation is buy the asset

finance-1

What is the asset cost ==>3000.

finance-1

Percent charged by the leasing firm ? ==>12.

finance-1

Lease period ? ==>2.

finance-1

What is the amount of down payment ? ==>500.

164

Is there any other lease problem you want to solve ?

= =>n.

Payment on the asset for the asset is ($) :

1400

with the certainity : 1

CONCLUSIONS MADE DURING THE CONSULTATION

parameter / value / certainity / context instance

lessee_cred.it good 1 lease—

1

acquire_by purchase 1 lease—

1

asset_cost 3000 1 finance—

1

finance_interest 12 1 finance—

1

finance_period 2 1 finance—

1

down_payment 500 1 finance—

1

finance_it 1400 1 finance

—

1

payment 1400 1 lease—

1

yes

! ?- begin.

Enter the name of the root context (CAR, LEASE)

==>lease.

The following is a part of a lease/acquire_by/finance

DSS
165

lease-1

Do you want to analyze the financing for asset ?

= =>y.

finance-1

Do you have any other finance to analyze ? ==>y.

finance-2

Do you have any other finance to analyze ? ==>n.

lease-1

How would you describe your current credit rating ?

(good/fair /poor) ==>poor.

Your credit is not adequate. You cannot borrow money to

acquire_by the asset

Therefore LEASE the asset

My recommendation is lease the asset

finance-1

Do you want a straight lease ? ==>yes.

finance-1

What is the asset cost ==>4000.

finance-1

Percent charged by the leasing firm ? ==>13.

finance-1

Lease period ? ==>3.

finance-1

Do you want a lease with the option to terminate ?

==>no.

Is there any other lease problem you want to solve ?

166

= = >n.

Payment on the asset for the asset is ($) :

1853.3

with the certainity : 1

CONCLUSIONS MADE DURING THE CONSULTATION

parameter / value / certainity / context instance

lessee_cred.it poor 1 lease—

1

cannot_borrow yes 1 lease--1

how_to_acquire lease 1 lease—

1

acquire_by lease 1 lease—

1

straight_lease yes 1 finance—

1

asset_cost 4000 1 finance— 1

finance_interest 13 1 finance— 1

finance_per iod 3 1 finance—

1

finance_it 1853.3 1 finance—

1

option_lease no 1 finance— 1

payment 1853.3 1 lease—

1

yes

!
?- halt.

[Prolog execution halted]

167

Consultation results of the Personal Consultant

Plus expert system shell for the FINANCE analysis

system [14].

The knowledge-base for these results are the same

with the one in appendix. C . 2 . In parantheses are the

corresponding terms of our FINANCE analysis system.

Consultation record for

DECISION SYSTEM

DEMO LEASE OR BUY

your credit rating

lease is to be a modifiable option 1...

(straight lease ?)

ASSET-COST

FINANCE-INTEREST

FINANCE-PERIOD

analyzing the financing

(any other lease problem ?)

\POOR\

\YES\

\4000\

\13\

\3\

\N0\

ASSET- 1 CONCLUSIONS

My recommandation is as follows: LEASE the asset

Payment for the (ASSET-1) is as follows: $ 1853.3 per

year

168

APPENDIX E

FIGURES

Knowledge
rinnrain ovnort

Engineer

i f

Knowledge Base

Construction Aids

Domain

Knowledge

Base

Explanation

System

Consutabon

Driver

i i * i

i t _JLV

Consutor

Figure 1 EMYCIN's Overall Organization

169

Electrical

System-

Figure 2 A Context Tree

CURRENT
CULTURE

CURRENT
ORGANISM

CURRENT
DRUGS

PATIENT

PRIOR

CULTURE

PRIOR

ORGANISM

PRIOR

DRUGS

OPERATIONS

OPERATION
DRUGS

THERAPY

Figure 3 MYCIN'S Static Tree Of Context Types

170

patient-

1

culture-

1

({current culture!)

culture-

2

[current cuHum)

organism-

1

(current org.)

culture-

3

prior culture)

operation-

1

organism -2

(current org.)

organism -3

(prior org.)

organism -4

(prior org.)

drug- 1

(current drug)

drug-

2

(current drug)

drug-

3

(current druo)

Figure 4 A Context Instance Tree From MYCIN

17

Figure. 5 Static Tree of Context Types of CAR Diagnose System

CAR-1

REPAIR-1 SUBSYSTBrf-1 SUBSYSTBvl-2

(Prior Repair) (Electrical System) (Fuel System)

Figure 6 Dynamic Tree of CAR Diagnose System.

(Instance names are in parentheses.)

172

Figure. 7 a. Static Context Tree of LITHO.

WELL-10

ZONE-1 ZONE-2 ZONE-3

Figure lb. Dynamic Context Tree of LITHO.

173

O

U
<D

0>\
O
o
E
J
<D
•f
l_
O
—>

V)

<D

I-

o
c
©
Q.
X
UJ

CD

<D

3

74

Figure 9 Semantic Network Of Starter_motor/electrical

75

ammeter /electrical

Electric current is produced by electrical system

and ammeter measures the electric current.

dimming light/electrical

Electric current is produced by the electrical

system and dimming_light-test measures the electric

current

.

hydrometer /battery

Hydrometer measures the specific gravity value of

electrolyte. Electrolyte is part of the battery and if

the specific gravity value is less than 1250 then

battery will not function properly.

battery voltage/battery

Battery voltage is the measure of the battery

performance and if its value is less than 12V. then

battery will not perform properly.

Figure 10 Natural Explanations

176

starter_motor (works_with,battery_voltage)

.

battery_voltage(quality_of, battery)

.

battery (par t_of, electrical)

.

hydrometer (measures , specific_gravity)

.

specific_gravity(quality_of , electrolyte)

.

electrolyte(part_of, battery)

.

ammeter (measures , electric_current)

.

dimming_light (measure , electr ic_current)

.

electr ic_current(produced_by .electrical).

Figure 11. a. Relationship Facts Of The Inference
Network

path(starter_motor , electrical , [battery_voltage

,

battery])

.

path(ammeter , electrical, [electric_cur rent])

.

path(dimming_light .electrical, [electric_cur rent]

)

path(hydrometer , battery , [specific_gravity

,

electrolyte])

.

path(battery_voltage , battery , [])

.

Figure 11.b. Path Facts Of The Inference Network

177

- battery_volt(value , < 12)

- hydrometer (value , < 1250)

battery(status ,bad)

battery(status ,bad)

battery (status ,bad)

battery_voltage(status ,used_up)

.

battery_voltage(status ,used_up) :

-

starter_motor(status , low_resistance)

.

electrical(status , bad) :- battery(status , bad)

.

Figure 11.c. Rules Of The Inference Network

178

ammeter electrical electric current ammeter measures

is produced by electric current

electrical system

Figure 12.a. Explanation Tree Of "ammeter/electrical"

(^ammeter J
measures prnriunpri hy^ftleriricaTN^^svstercu^

Figure 1 2b. Semantic Network Of "ammeter/electrical

179

dimming—light electrical electric current

is produced by

electrical system

dimming light

measures the

condition of the

electric current

Figure 13. a. Explanation Tree Of 'dlmm1ng_11gnt/electNcar

Figure 1 3b. Semantic Network Of "dimming_light/electrical'

180

Hydrometer

measures

specific gravity

value of

Hydrometer Battery electrolyte.

Electrolyte

is part of

battery.

Hydrometer

value < 1 250

Battery will not

perform properly.

Figure 14a. Explanation Tree Of "hydrometer/battery'

part-ol

Figure 14b. Semantic Network Of "hydrometer/battery"

18

STNT/RSN

battery

voltage

Battery

Hydrometer

measures

specific gravity

value of

electrolyte.

Electrolyte

is part of

battery.

battery voltage
Battery will not

value is less
perform properly,

than 1 2 v.

Figure 15.a. Explanation Tree Of "battery_voltage/battery
M

battery

voltage

quality.jjf

Figure 15.b. Semantic Network Of
M
battery_voltage/battery'

182

Figure 16. Semantic Network

183

LIST OF REFERENCES

1. Barr, A., Feigenbaum, E.A. The Handbook Of
Artificial Intelligence . Vol.11. William
Kaufmann, Inc. 1981.

2. Buchanan, B.G., Shortliffe, E.H. Rule-Based
Expert Systems, The MYCIN Experiment Of The
Stanford Heuristic Programming Project .

Addison-Wesley . 1984.

3. Narain, S. MYCIN: The Expert System And Its
Implementation In LOGLISP . Tech. Report,
C.I.S., Syracuse University, Syracuse, N.Y.
August 1 981

.

4. Reggia, J. Knowledge Based Decision Support
Systems . Ph.D. Dissertation, University Of
Maryland. 1 981

.

5. Barr, A., Feigenbaum, E.A. The Handbook Of
Artificial Intelligence . Vol.1. William
Kaufmann, Inc. 1981.

6. Mulsant, B. , Servan-Schreiber , D.
Knowledge Engineering: A Daily Activity On
A Hospital Ward . Computers And Biomedical
Research, (1984) 17, 71- 91.

7. Harmon, P., King, D. Artificial Intelligence
In Business EXPERT SYSTEMS . John Wiley And
Sons, Inc. 1985.

8. Van Melle, W. EMYCIN: A Domain Independent
Production Rule System For Consultation
Programs . Ph.D. Thesis, Computer Science
Department, Stanford University. 1980.

9. Davis, R. , Buchanan, B.G. Shortliffe, E.H.
Production Rules As A Representation For A
Knowledge-based Consultation Program .

Artificial Intelligence, (February 1977) 8, No. 1

10. Sterling, L., Shapiro, E. The Art Of
Prolog . The MIT Press. 1986.

11. Clocksin, W.F. Mellish, C.S. Programming
In Prolog . Springer-Verlag. 1984.

184

12. Robinson, J. A. A Machine-Oriented Logic
Based On The Resolution Principle . Journal
Of The Association For Computing Machinery,
(1965) 12, 23-41

.

13. Wong, W.G. PROLOG A Language For Artificial
Intelligence . PC Magazine, (October 1986) 14.

14. Texas Instruments. Personal Consultant Plus
User * s Guide .

15. Goguen, J. A., Weiner , J.L., Linde, C.
Reasoning And Natural Explanation .

Int. J.Man-Machine Studies, (1983) 19, 521-
559.

16. Micro-AI. Prolog-86 User's Guide And
Reference Manual.

17. Hirsch, J.D. The Complete Book Of Car
Maintenance And Repair . Charles Scribner's
Sons. 1973.

18. Rowe, C.N. Introduction To Artificial
Intelligence Through PROLOG . Prentice Hall
Englewood Cliffs N.J. 1987.

185

BIBLIOGRAPHY

Cendrowska, J., Bramer, M.A. A Rational Reconstraction
Of The MYCIN Consultation System . Int. J. Man-Machine
Studies, (1984) 20, 229-317.

Chandrasekaran, C. Generic Tasks In Knowledge-
Based Reasoning ;High-Level Building Blocks For
Expert System Design . IEEE Expert, (Fall 1986).

Chandrasekaran, C. Towards A Taxonomy Of Problem
Solving Types . The AI Magazine, (Winter /Spring
1983).

Hayes-Roth, F., Waterman, A.D. , Lenat , D.B. Building
Expert Systems . Addison Wesley. 1983.

Keonrad, L., Parker, D.S. Control Over Inexact
Reasoning . AI Expert Premier, (1986) 32-43.

Raul, E.V. Inside An Expert Systems Shell . AI Expert,
(October 1986) 30-42.

Waterman, D.A. A Guide To Expert Systems . Addison
Wesley. 1986.

William, J.C. The Epistemology Of A Rule - Based
Expert System - A Framework For Explanation .

Artificial Intelligence, (1983) 20, 215-251.

186

INITIAL DISTRIBUTION LIST

No. Copies

Defense Technical Information Center 2
Cameron Station
Alexandria, Virginia 22304-6145

Library, Code 0142 2
Naval Postgraduate School
Monterey, California 93943-5002

Department Chairman, Code 52 1

Department Of Computer Science
Naval Postgraduate School
Monterey, California 93943-5000

Associate Professor N.C. Rowe 1

Code 52Rp
Department Of Computer Science
Naval Postgraduate School
Monterey, California 93943-5000

Associate Professor B.J. MacLennan 1

Code 52M1
Department Of Computer Science
Naval Postgraduate School
Monterey, California 93943-5000

Associate Professor T.R Sivasankaran 1

Code 54SJ
Department Of Administrative Sciences
Naval Postgraduate School
Monterey, California 93943-5000

7. Yucel Ozin
K.K.K'ligi
Muh. Elk. ve Bilgi Sis. D. Bsk'ligi
Bilgi Sistem Destek Subesi
Bakanliklar-ANKARA
TURKEY

8. LTJG Fikret Ulug, Turkish NAVY
Define Sok. 4/2
Aydinlikevler-ANKARA
TURKEY

• t
187

9. Deniz Harp Okulu Kitapligi
Deniz Harp Okulu Komutanligi
Tuz la- ISTANBUL
TURKEY

188 180 70

ETTDLEY KNOX LIBRARY ^
NAVAL POSTGRADUATE SCHOOL
MONTEREY, CALIFORNIA 93943-5002

T
, .Thesis

urU275 Ulug

c/ c.l EMYCIN-PROLOG expert
system shell.

19 AUG 89 5 5573

Thesis

U275 ulug
„ i T?,MVCXN-PROLOG expert

system shell.

