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In comparison to the transportation and storage of hydrogen,
methane has advantages in the practical application, while
the emerging product termed as ‘biohythane’ could be an
alternative to pure hydrogen or methane in a new form
of energy recovery from microbial electrolysis cell (MEC).
However, the cathodic catalyst even for biohythane still
bothers the performance and cost of total MEC. Herein, we
fabricated the MEC reactor with surrounding stainless steel
mesh (SSM) to investigate the feasibility of stainless steel mesh
as an alternative to precious metal in biohythane production.
The columbic efficiency (CE) of anode was around at 80%,
representing the SSM would not limit the activity of anodic
biofilm; the SEM image and ATP results accordingly indicated
the anodic biofilm was mature and well constructed. The main
contribution of methanogens that quantified by qPCR belonged
to the hydrogenotrophic group (Methanobacteriales) at cathode.
The energy efficiency reached more than 100%, reached up
to approximately 150%, potentially suggesting the energetic
feasibility of the application to obtain biohythane with SSM in
scale-up MEC. Benefiting from the likely tubular configuration,
the ohmic resistance of cathode was very low, while the main
limitation associated with charge transfer was mainly caused
by biofilm formation. The total performances of SSM used in
the tubular configuration for biohythane production provide an
insight into the implementation of non-precious metal in future
scale-up pilot with energy recovery.

1. Introduction
Energy crisis was a potential threat for human advance as
the depletion of fossil fuel occurred at a high rate and was

2017 The Authors. Published by the Royal Society under the terms of the Creative Commons
Attribution License http://creativecommons.org/licenses/by/4.0/, which permits unrestricted
use, provided the original author and source are credited.

http://crossmark.crossref.org/dialog/?doi=10.1098/rsos.170967&domain=pdf&date_stamp=2017-12-20
mailto:environment2016@foxmail.com
https://dx.doi.org/10.6084/m9.figshare.c.3940339
https://dx.doi.org/10.6084/m9.figshare.c.3940339
http://orcid.org/0000-0002-7882-1429


2

rsos.royalsocietypublishing.org
R.Soc.opensci.4:170967

................................................
unrenewable and unsustainable. Biohydrogen production by dark- and photo-fermentation provided a
new way that was clean and effective to solve this threat [1]. As an innovative way to convert organic
matter to electrons at anode and produce hydrogen at cathode, microbial electrolysis cell have attracted
more and more attention [2]. Microbial electrolysis cell (MEC) was a breakthrough for dark-fermentation
with glucose as it can use volatile fatty acid (VFA) for hydrogen evolution. More and more studies
focused on factors in terms of electrode spacing [3], catholyte [4], anode microbial community [5], ion
transport resistance [6], buffer solution [7], substrate [8] etc. have enhanced the performance of hydrogen
production of microbial electrolysis cell. Under the condition that performance of microbial electrolysis
cell has been enhanced significantly, more modified configurations adapted to the scale-up tests need to
be done to evaluate the performance of MEC in applications.

Among, the material of cathode was a restriction for MEC application, especially for Pt/C that was
a kind of precious metal with expensive price. Hence, many studies have concentrated on searching
for low-cost and high-performance alternative material for MEC application [9,10]. Nickel foam (NF),
stainless steel wool (SSW), platinum coated stainless steel mesh (Pt), and molybdenum disulfide coated
stainless steel mesh (MoS2) electrodes were assessed at different initial pHs using unbuffered catholytes
in microbial electrolysis cells [11]. Recently, stainless steel mesh (SSM) was widely applied for microbial
electrolysis cell as alternative cathode catalyst [12], because of its low cost [13] and high surface area [14].

Another inevitable obstacle that was methane having been evolved in single microbial electrolysis cell
(SMEC) as end product limited further application of MEC for biohydrogen. Methane was detected only
in the glucose-fed microbial fuel cell (MFC) rather than acetate type, which means that anode respiring
bacteria (ARB) could out-compete acetoclastic methanogens [15]. Wang et al. [16] deemed that methane
production was related to applied voltage, while there is no significant relevance with methanogen.
Cheng et al. [17] supported the theory that electromethanogenesis enhanced methane production at
cathode. Methane also may be synthesised via converting CO2 with proton and electron at cathode,
according to the electrosynthesis equation:

CO2 + 8H+ + 8e− = CH4 + 2H2O.

This testified that methane can be produced from electrosynthesis as CO2 was trapped in SMEC at
cathode [18,19]. Considering the multiple pathways for methane generation, as well as the methane,
which takes advantages in the safety of transportation and storage, could be an alternative sustainable
energy to hydrogen. Moreover, the biohythane was becoming a better choice to be produced in
MEC. However, although the recent focuses have been transferred from hydrogen recovery to achieve
biohythane generation, the proper cathode material that potentially adapted to practical implication is
scarcely insufficient.

Considering MEC is a promising assisted strategy to enhance energy recovery from wastes; however,
the insufficient investigations related to cathodic catalysts that predominantly determines the cost for
practical application restricted the development of it. Herein, a new reactor was constructed with circled
stainless steel mesh as cathode, we aimed to evaluate the performances of MEC shelled with stainless
steel mesh, in terms of biohythane production, anodic bio-activity and cathodic resistance.

2. Method and material
2.1. Single microbial electrolysis cell construction
Biohydrogen process was conducted using a SMEC that was made of polycarbonate as previously
described [20]. A single cube within a cylinder chamber 7 cm long by 5 cm in diameter (empty bed
volume of 137 ml). The heated graphite brush (25 mm diameter, 25 mm length; 0.22 m2 surface area; fibre
type: PANEX 33 160 K, ZOLTEK) which was soaked in acetone for 24 h and heated in a muffle furnace at
450°C for 30 min was placed in SMEC as anode [21]. The stainless mesh surrounded graphite brush used
as cathode in reactor. Its length is 16 cm and width is 5 cm. The gas flowed via a cylinder syringe (volume
of 10 ml) and collected into a gas bag (0.5 l capacity; cali-5-bond, Calibrated Instruments).

2.2. Microbial electrolysis cell start-up
Three SMECs were constructed and inoculated with waste activated sludge (WAS) from wastewater
treatment plant (WWTP) in Harbin. All reactors were supplied a fixed voltage of 0.6 V (Switching Power
Supply, FDPS-150, Fudantianxin Inc., China). The SMECs were fed a 120 ml 50 : 50 mixture of the sodium
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acetate mixed with 50 mM PBS. Once a reactor produced voltage greater than 0.100 V during a fed-
batch cycle, the inoculum was omitted. To obtain the similar performance (current, gas production),
re-inoculation was conducted in some reactors. All SMECs were operated under 48 h-batch model in
room temperature at 22 ± 2°C.

2.3. Biological measurements
The scanning electron microscope (SEM) was observed by the field-emission SEM (FE-SEM), which
was made by Hitachi, Japan (model: SU8020). Adenosine triphosphate (ATP) was determined by the
BacTiter-GloTM Microbial Cell Viability Assay (G8231, Promega Corporation, Dübendorf, CH) and a
GloMax 20/20 Luminometer (Turner BioSystems, Sunnyvale, CA, USA). We followed the description
of the manufacturer’s protocol for this product. We collected 2 ml of the supernatant from each reactor,
and 50 µl ATP reagent to prepare to heat at 38°C for 1 min. We mixed final 500 µl sample with 50 µl ATP
reagent to settle in the heating block for 20 s at 38°C. The luminescence was subsequently measured,
which was expressed in relative light units (RLU). We used conversion factor of 1.75 × 10−10 nmol ATP
per cell to transfer the RLU to the number of cell. Quantitative PCR (qPCR) was employed to analyse
the abundances of total archaea, total bacteria, Methanobacteriales, Methanomicrobiales, Methanosarcinaceae,
and Methanosaetaceae for four samples collected from cathode at low and high current respectively [22].
All primers and the process description were shown in the electronic supplementary material, table S1.

2.4. Analysis and calculation
Voltage was recorded using a multimeter (model 2700; Keithley Instruments). Gases (hydrogen,
carbon dioxide, methane) were measured by a gas chromatograph (Fuli GC9790II, Zhejiang analytical
instrument Inc., China). The VFAs in the effluent were analysed using a gas chromatograph (Agilent,
4890D; J&W Scientific, USA) with a flame ionization detector (FID) and an appropriate column (19095N-
123 HP-INNOWAX, 30 m × 0.530 mm × 1.00 mm, J&W Scientific, USA) using a nitrogen carrier gas
[23,24]. Total chemical oxygen demand (COD) was measured following standard methods (method
5220). The pH was measured using a pH meter (PHS-3C, Yangguang Lab. App. Co., Ltd). Reducing
sugars were quantified by 3,5-dinitrosalicylic acid (DNS) colorimetric using a spectrophotometer
(DU800, Beckman). Electrochemical impedance spectroscopy (EIS) was employed to investigate the
resistance of cathode, which was tested by electrochemical station (CHI660, EX, US) [25]. We used ZSimp
software to analyse the results and simulate the spectra. The coulombic efficiency was the coulombic ratio
of current to the substrate, the cathode electron recovery represents the coulombs of hydrogen compared
to the total coulombs of current. The energy efficiency was the ratio of heat energy in the final products
(biohythane) to the input electric energy.

3. Results and discussion
3.1. Start-up and operation period of single microbial electrolysis cell
Three single microbial electrolysis cell reactors were constructed and operated in 48 h-batch model to
obtain similar performance with acetate as solely carbon source. In order to achieve similar coulombic
efficiency (CE), some reactors were duplicately inoculated here. During the start-up period, the value
of CE was up to nearly 160% and that was similar between different reactors. 1# reactor achieved
highest value of 156%. The rest of reactors, 2#, 3#, reached 149% and 152%, respectively. The higher
coulombic efficiency in single microbial electrolysis cell could be attributed to hydrogen recycle, in which
consumption of hydrogen at anode by anode respiration bacteria have been testified, and this will be a
restriction of SMEC advance. Thus methane has been considered as end-product in SMEC for it can
prevent extra energy consumption from hydrogen recycled [26].

After the start-up period, as shown in figure 1, hydrogen was the main product for initial few days.
Then, methane generated and increased gradually until remaining constant in subsequent 48 h-batch.
The proportion of methane in the content of gases that were produced from SMEC went up from 13% to
55%, which represented the content of methane increased as longer operation period and the depletion
of hydrogen. The portion of hydrogen that is depleted during the operation period is not corresponding
to the content of additional of methane. Hydrogen is not the sole source, however, to transform into
methane by hydrogenotrophic methanogens or anode bacteria that can convert H2 and CO2 to acetate
firstly; electrosynthesis of methane also may play an important role in that part. The initial percentage of
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Figure 1. Proportion of biogas.
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Figure 2. Performance of MEC reactors.

methane was 13%, representing methane synthesized when hydrogen just evolved; this also supported
that hydrogen was not the sole substrate for methane because the time was too short for methanogens
growth.

3.2. Evaluation on reactor performance
During the stable operation period, as shown in figure 2, in addition to the hydrogen or methane
production, the coulombic efficiency could reveal the microbial activity of anode. The coulombic
fluctuated around 80%, where the average value was 79.9 ± 2%; this could be ascribed to the methane
evolution which avoided the hydrogen recycle compared to higher value in start-up period. Although
previous studies showed yield coefficients of fs

0 was 0.05 for Geobacter sulfurreducens [27], which
was considered as predominant bacteria responsible for extracellular electron transfer, considering the
multiple trophic level in anodic biofilm in the presence of syntrophic fermenters which possess higher
coefficient [28], moreover, the potential loss should be one of contributors, the coulombic efficiency
around 80% was reasonable and satisfactory. Comparing with more than 100% values during start-up
period, the phenomenon of hydrogen recycle would be gradually evitable as the growth of methane
generation, which was favourable to decrease the ohmic loss that could be ascribed to hydrogen recycle.
Another important indication behind the higher coulombic efficiency suggested the modified cathode
could be useful to expand the ability of anode without the impediment of the cathodic reaction rate.
The cathode electron recovery was of importance to evaluate the performance of catalytic efficiency.
As the intrinsic electrochemical property of stainless steel mesh, the electron recovery was low around
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Figure 3. (a) SEM images of anodic biofilm. (b) Cell number of anodic biofilm.

at 50%; however, the growth of methanogens that had been proved in previous publications could
consume electrons for biomass synthesis; moreover, other autotrophic bacteria that could be cooperator
with methane generation also led to the loss of electrons. Obviously, it was inevitable for microbial
growth in multi-scale application; however, the bio-affinity of cathode also could be enhanced in view
of the main contributed methane by microbes. Although the electrochemical methane generation was
commonly reported, the strong binding energy of CO was essential, which limited the range of transient
metals; copper would be a better choice rather than iron [29,30]. Therefore, the methanogens commonly
functioned the duty for methane production from MEC. The modification in the surface of non-precious
with carbon materials would be proper to enhance methane generation [31]. However, the lower cathode
electron transfer was reasonable if considering the effect of biofilm. Importantly, it seemed that the
surrounding structure has boosted the anodic ability in transferring electrons to the electrode without
limitation of cathodic reaction rate. This configuration tried to solve the distance between anode and
cathode in stimulation of scale-up applications, where the long-range transportation of ionic migration
would be the main loss of energy. The positive achievement in energy efficiency would be appreciated
for economic feasibility. The energy efficiency stayed beyond the bottom line of 100%, which showed
the economic feasibility of this configuration. Although the heat value of methane was lower than
hydrogen, while the energy efficiency exceeding 100% represented methane recovery also achieved
positive evaluation in energy input and output. Additionally, the finally collected biogas was composed
of hydrogen and methane; the biohythane (hydrogen accounted for 12.3 in mixture of hydrogen and
methane) was thermodynamically favourable during combustion process that greatly enhanced the
methane powered vehicles [32]. Apparently, the biohythane would be a better choice to pure hydrogen
or methane in MEC in future application.

3.3. Anodic biofilm
The biofilm at anode, which drives the electron transfer from organics to electrode, was observed with
FE-SEM, as shown in the SEM image (figure 3a). The microbes attached on the carbon brush closely, the
rod bacteria seemed like physical morphology of Geobacter. Although the electron transfer pathway for
anode biofilm has been clearly elucidated, consisting of pili-mediated, electron shuttles, and cytochrome.
The electron shuttles were soluble and diffused in the substrate. The cytochrome generally attached on
the membrane, which took responsibility for electron transfer through physical contact. Both of them
were hard to observe directly. The pili, which owned the filament structure, was potentially easier to
see. Although some literature reported the observed pili through SEM, it was the far distant view of it,
because the real diameter of single nanowire was 4.0 × 10−9 m [33], which was invisible with the SEM. In
sum, the SEM image not only provided the physical morphology of bacteria attached on the electrode,
but also revealed the robust connecting information of bacteria and electrode. Herein, the SEM image
showed the anodic biofilm was successfully formed on the electrode.

Besides, the SEM only provided the morphology of biofilm, which failed to give the quantitative
details. The ATP detection successfully quantified the cell numbers of bacteria (as shown in figure 3b).
The variation of ATP in the suspension was accordingly similar to the change of current. The initial high
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Figure 4. EIS results at low current (a) and high current (b).

ATP value indicated the rapid response of bacteria to the change of substrate, while the error bar could
be influenced by the residue oxygen in the influent. After several hours, the ATP value implied the stable
microbial activity. As the decrease in current, the ATP value dropped slightly, which could be caused by
the consumption of acetate.

3.4. Cathodic electrochemical property
The resistance of electrode determined the energy loss, the EIS detection generally revealed the ohmic
resistance, charge transfer and diffusion [34]. Herein, a sine sigmoidal wave was applied to the cell
ranging from 100 000 to 0.1 Hz to evaluate the performance of cathode. In order to timely investigate the
variation of resistance, the measurement was completed in different current value, which represented
the working status of MEC. The measurement was completed at 6.9 mA (figure 4b) prior to the current
decrease to 1.7 mA (figure 4a), where was the second point. According to the results of EIS, two
semicircles were obtained during the test, where the first could be ascribed to the electron transport
on conductive skeleton, and the second could be caused by the charge transfer. There was no obvious
difference in ohmic resistance for lower or higher current value. The inner resistance for low current was
3.667 Ω, and that for high current was 2.994 Ω (as shown in electronic supplementary material, figures
S1 and S2 and table S2). However, the charge transfer resistance of higher current was significantly lower
than that of lower current (93.48 Ω versus 120.6 Ω).

The ohmic resistance and electron transport resistance should be mainly related with the property
of cathode, where the stainless steel mesh, as a kind of transient metal, owns good performance in
conductivity, thereby the ohmic resistance was low. The charge transfer was controlled by the chemical
reaction rate in the inter-surface of liquid and electrode, a sharp decrease could be regulated by the
activity of microbes. The formation of biofilm, which covered the active sites for catalyst in the cathode,
dominated the reaction that occurred at the cathode, thus, controlled the charge transfer directly.
The decrease could be caused by the variation of microbial activity. Obviously, at initial hours, the
high current could be supported by the hydrogen evolution as the microbial community for methane
production is unmatured. Once the methane proportion increased, that implied mature community
would improve the methane generation to increase the charge transfer resistance with low current.

3.5. Cathodic methanogens
Figure 5 reveals the significant difference of 16S rRNA gene copies of two hydrogenotrophic
methanogens orders and two acetoclastic methanogens families in cathodic samples. The numbers of
the Methanobacteriales and Methanomicrobiales 16S rRNA gene which presented by hydrogenotrophic
methanogens significantly dominated. The number of Methanobacteriales in the cathode biofilm was
highest compared with other methanogens (4.6 × 108 copies µl−1), which was accordant to the result
of Illumina sequencing analysis. Methanomicrobiales which represented hydrogenotrophic methanogens
was also enriched at the cathode based on the abundant 16S rRNA gene copies (9.2 × 107 copies µl−1).
However, there was a clear low number of the acetoclastic methanogens contains Methanosarcinaceae and
Methanosaetaceae. At initial hours of operation, the number of methanogens stays low, there is a significant
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increase as the current decreases in the end of operation period. Not only the hydrogenotrophic
methanogens increased significantly, the acetotrophic methanogens also enriched, which is similar to
previous studies that proved the two pathways for methane generation by co-effort of hydrogenotrophic
and acetoclastic methanogens [35,36]. Obviously, the hydrogenotrophic pathway should be the main
contribution to the methane production. The variation of methanogens accordingly verified the charge
transfer could be regulated by microbial biofilm at cathode.

4. Conclusion
The performance of MEC with cycling cathode proved the non-precious metal could be an alternative to
precious one. Besides, the CE and activity of anodic biofilm implied that there were no obvious negative
influences caused by the utilization of SSM. Hence, the conclusion from the evaluation of SSM was that
it is feasible for MEC to produce biohythane at low cost benefiting from SSM application.
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