THE NEVV LETTER OF THE

 BUREAU OF PUBLIC ROADS

 BUREAU OF PUBLIC ROADS}

VOL. 3 , NO. 5
MARCH, 1928
A. C. ROSE, EDITOR

CONTENTS

Bureau Rushes Construction Of Temporary Bride To Releve
Vermont Flood Situation - 1
Clifford Shoemaker Goes To District 5 -7
Status Of Current Feceral Aid Rcao Work, As Of February 29, 1928 - - 8
Answers To Materials-Engineers Exfmination 9
5-Ton Pyrotol Blast Carefully Executed On Colorado
Forest Highway Project 18
Progress Of Federal Highway Legislation 27
Austin Bradstreet Fletcher - - 32

BUREAU RUSHES CONSTRUCTION OF TEMPORARY BRIDGE TO RELIEVE VERMONT FLOOD SITUAT ION

Compiled from report made by W. J. Anderson of district 9.

TO REPAIR the disrupted transportation system of the Winooski River Valley in Vermont, following the recent New England flood, the bureau rushed to completion an ingenious temporary wocden bRIDGE.

The railroad through the valley was damaged beyond hope of immediate repalr, and the entire burden of transportation was thrown upon the highway on which, between burlington and Montpelier, there were two crossings of the Winooski River at which the eridges had been washed away. It was, therefore, imperative that these structures be replaced as quickly as possible so that the work of rehabilitating the devastated area could be expedited in anticipation of the coming winter.

The responsibility for the construction of one of the two bridges - that at Middlesex, Vt. - was delegated to the Bureau. THE RIVER AT THIS POINT IS 225 FEET WIDE; AND ALL THAT WAS LEFT of the former bridge were two dry-ruegle abutments and a rubble river pier, the latter so located as to divide the stream into two channels of which one was 97 feet wide in the clear with a Low-water depth of 6 feet, and the other $1 \| 6$ feet wide with a depth of 8 feet at low water. The velocity of the stream at times approached $i 5$ miles an hour.

In 12 days after the arrival of the materials, and at a cost of about $\$ 9,000$, much of wh!ch is salvable, the bureau compLETED ON THIS LOCATION A bridge which has a Carrying capacity of 8 tons (fig. 1) and which is of more than usual interest beCaUse of the manner in which difficulties aris:ng from the scarcity of material and labor were overcome in the design (fig. 4) and construction.

Since the reconstruction work was governed largely by local Conditions, three methods of bridging the open!ngs were suggested:

> 1.- A pLANK FLOOR LAID ON STRINGERS SUPPORTED BY PILE GENTS.
> 2.- A PLANK FLOOR LAID ON STRINGERS RESTING ON TIMBER CRIBS.
> 3.- A TRUSS CONSTRUCTED EITHER OF TIMBER OR A COMBINATION OF TIMBER AND WIRE CABLE.

$$
A!\quad \because \quad: 1
$$

$$
. \quad-1 .
$$

Figure 1. - The completed temporary combination timber and cable-truss bridge across the Winooski River near Middlesex. Vt.

Figure 2. - Whe temporary foot-bridge and a close-up view of the main timbers and the strut bents.

Figure 3. - The cables were fastened to the ends of the timbers with $5 \frac{1}{2}$-inch-diameter steel shafting resting in a cast-iron pillow block.

(

Because of the heavy flow of ice and drift in the river AND THE POSSIBIL!TY OF ANOTHEP TLOOD, IT WAS DECIDED TH.AT ANY DE SIGN WHUCH WOULD KEEP THE R:UER FREE OF OBSTRUCT:ON NOULD BE FAR SUPERINF TO EITHER OF THE FIRST TWO METHODS. THEREFOFE, A SURVEY OF THE SURROUNUING REGION WAS MADE TO DETERMINE WHETHER THERE WAS material avallabie to construct a truss bridge.

It was found that the flood had carried away pract Iosil.y all OF THE DIMENS:ON LUMEER AND CEMENT IN THE VICINITY, THAÏ THERE WERE NO STEEL BEAMS AVAILAELE, AND THAT LABOR WAS SCARCE: A FURTHER INVESTIGATION, HOWEVER, INDICATED THAT, IN THE BARRE GRANITE QUARf:ES, THERE WERE A NUMEER OF OCTAGONAL DOUGLAS-F!R DERRICK MAS:'S VARYING IN LENGTH FROM 70 TO $1 \mid 2$ FEET, AND, IN CROSS SECTION, FROM 24 TO 30 INCHES ACROSS THE FLATS. IN EACH QUARRY, ALSO, THERE WAS A CREW OF EXFERIENSED RIGGERS. IT WAS DECIDED, THEREFORE, TO CONSTRUCT, FROM THESE DERR!CK MASTS, TWO LONG QUEEN-POST TRUSSES WITH the tensile stresses carried ey steel caeles.

Method of Transporting Materials to the Bridge Site

Four of the Douglas fir timbers were selected. Two were ior FEET LONG, AND THE OTHERS WERE \|\| AND \|! 2 FEET IN LENGTM, RESPECTIVELY. THEEE WERE I.OADED ON FLAT CARS, AT THE QUARR!ES, AND HAULED OVER the on:-\% remal: ivng fa'lroad to Montpelier, where they were unloaded AND TRANSFORTED BY H:GHNAY TO THE ERIDGE SITE - 6 MILES DISTANT.

ONE ENO OF EACH OF THE TIMBERS WAS ROLLED FROM THE RAILROAD FLAT GARS ON:O A MCTOR TRUCK AND THE OTREF: END WAS PLACED UPON THE BOLSTER OF A HEAV: \because WO-WL:EEL YRALLER, AN ARGI NTHENENT SUGGESTED BY THE NECESS!TY OF MIAK:NG RIGHi-MANGILE TUPHS in ? YE C:?Y OF MONTPELIER AS WELLL AS AT TWO HIGHWAY UNDERDASSES AND ONE DVERPASS. ABOUT 10 HOUSS WERE REQU:REO TO TRANGPORT THE TIMEERS FROM THE RAILROAD YARD TO THE ERIDGE SITE.

Method of Construction

While the wooden masts were eeing moved ey one crew, another GROUP OF R!GGERS EU:LT A FOOT ERIDGE (F!G. 2) ACROSS THE RIVER, ADJACENT TO THE PROPOSED ERIDEE. TH:S CROSSIMG CONSISTED OF TWO S/4INOH STEEL CAELES, SPACED 5 FEET APAPT, AND GROSS-PLANKED WITH 2INCH EDAFDS. THEN 4D-FDOT GIN POLES WERE ERECTED ON THE DOWNSTREAM END OF EACH AEUTMENT AND P!ER SO AS NCT TO !NTERFERE WITH THE CONSTRUCTION OF THE MAIN ER!DGE.

The abutments and piers, which had been partially destroved by the flood, were brought to grade with timber cribs upon which WERE PLACED $27-1 \mathrm{NCH}$ SQUARE CAPS OF DOUGLAS-FIR TIMBER CUT. FROM BROKEN MASTS FOUND IN THE QUARRIES. ALL THE CRIBSING WAS DRIFTspIked to prevent movement and the center crib was constructed entifely across the pIer which was 12 feet wide.

The available timbers were then selected to fit the proper openings. For the 97-foot span the two 102 -foot timbers werie used inithout cutting, and for the $116-$ foot span the other two timbers were used - one foot being cut off the longer one to make them both 111 feet in lengith. Because the two longest timbers fell short of the required lengith, it was necessary to erect a timber bent at a distance of 10 feet ffoin one abutment. Fortunately an oUtcropping rock was so situited that the bent could be anchored to it by means of steel cables.

All the timbefs in the cribs and bent wefe of seasoned, hard pine salvaged ffom far ind near. Some were ffoin old bafn ffames and others from the remalns of old bridges. They varied FFOM 8 by 10 to 10 by 10 inches in choss section. The stfut bents, MADE OF 8 by 10-INGH TIMBEFS, WEFE CONSTRUCTED ON THE RIVEF bANK and swung into position inith blocks and tackle. The panel lengths WERE 33 feet 6 inches in the shorter span and 36 fegt 6 inches in the longer one. In each span the depth of the truss from the center of the compression timbers to the teneion cables was 8 feet.

Because of the long spans and the limited height of the STRUT POSTS, IT WAS COMPUTED THAT FOUR $1 \frac{1}{4}-1 N C H$ YELLOW-STRAND PLOWsteel cables would be necessafiy, under each timber, in ofder to provide sufficient tensile strength. These were placed in pairs undef each side of the member. which they were supporting. The cables were fixed to the enos of the timgef (fig. 3) by means of a $5 \frac{1}{2}-1 \mathrm{NCH}$ steel shaft resting in a cast-Igon pillon-block. The shafts and castings were fitted to the tlinbers in the river bank after the ends had been cut to the properi angle.

It inas a simple mattef to place the large timbers in position bY USiNg the gin poles in paifs. Blocks and tackle were attached to THE TOP OF EACH GIN POLE. A 5-TON TRACTOF FURNISHED THE POINER FOR ONE GIN POLE AND A $3 \frac{1}{2}$ TTON TRUCK FOR THE OTHER. IN OROEF TO MOVE A timbef, tackles were fastened to one end and the center of its length.

Both tackles were then hoisted and ey pulling alternately on the END, AND SLACKING OFF ON THE OTHER TACKLE, THE TIMEER WAS GRADUALLY PULLED ACROSS THE CHANNEL. THE GRIP AROUND THE MIDPOINT OF THE TIMEER WAS MOVED bACK SEVERAL TIMES UNTIL AT THE FINAL DULL IT Was attached to the end opposite the hauling tackle. after the FIRST-SPAN TIMEERS WERE IN PLACE AND TRUSSED, THE LONGER MASTS WERE MOVED ACROSS THE TIMEERS ALREADY IN PLACE, AND THE GIN POLES ON THE pIER AND FURTHER ABUTMENT WERE USED TO MOVE THEM OVER INTO THE SECOND SPAN.

As no turneuckles were availaele, it was necessary to use the tackle for tightening the caeles. A grip was taken in the CENTER OF EACH TIMEER AND A STRAIN APPLIED TO IT SO AS TO PRODUCE a IO-INCh camber. The caeles were then pulled taut with chain hoists and the clips attached. When the tackles were slacked off, as may ee seen from figure I, the eridge floor became practically LEVEL.

In order to overcome the tendency of the strut bents to collapse inwards, right-angle bar eraces were clamped to the cable EEHIND THE EENTS. THE EARS WERE MADE OF $\left|\frac{1}{4}\right| N C H$ ROUND STEEL IN PIECES 26 INCHES LONG, BENT INTO THE SHAPE OF A RIGHT ANGLE, WITH the legs 18 and 8 inches long, respectively. The 8-inch leg was placed against the side of the eent and stapled into place so as to PREVENT THE ROD FROM TURNING SIDEWISE.

For the construction of the floor it was found that l2-foot SpRUCE LOGS WERE THE ONLY MATERIAL WHICH COULD EE OETAINED QUICKLY. ACCORDINGLY THESELOGS WERE SAWED INTO I2-FOOT PLANKS 6 INCHES THICK. THIS PROVIDED A ROADWAY WIDTH OF 10 FEET INSIDE THE CURBS. THE TRUSSES, ACCORDINGLY, WERE SPACED 8 FEET APART FROM CENTER TO CENTER.

Extreme care was used to preserve the large timbers from SpIKe holes and other damage because the state highway board believed they had a consideraele salvage value. To reduce the damage TO THE MINIMUM, TRIANGULAR STRIPS WERE TACKED LIGHTLY ON EACH OF THE TOP SLOPES OF THE OCTAGON SO AS TO PROVIDE A SUITABLE SPIKING surface. These strips were made of 6-INCH by 6-INCH spruce sawed on the diagonal.

THE RAILING WAS CONSTRUCTED OF $4-I N C H$ bY $6-I N C H$ Spruce posts, 4 FEET LONG, SPACED. 6 FEET APART, SINCE THE RAILS COULD ONLY bE OBTAINED IN 12-FOOT LENGTHS. AT EVERY OTHER POST ON EACH SIDE, A 16-FOOT PLANK WAS PLACED IN THE FLOOR SO THAT ITS 4-FOOT EXTENSION

PROVIDED ROOM FOR GRACING THE RAIL. IN FRONT OF EACH POST, 4-INCH BY G-INCH ELOCKS, I FOOT LONG, WERE SPIKED TO THE FLOOR. UPON THESE ELOCKS 4-INCH: BY 6-INCH CURBS WERE FIXED IN POSITION WITH DRIFT EOLTS. THE RAILS WERE MADE OF 2-INCH BY 6-INCH PLANKS. ONE RAIL WAS pLACED at hUB HEIGHT AEOVE tHE FLOOR AND THE OTHER TWO WERE FRAMED AT THE TOP OF THE POSTS TO STIFFEN THE RA:LING. IN order to reduce the vibration, plank soles 36 INChes wide by 2 INCHES THICK WERE SPIKED LONGITUDINALLY IN THE WHEEL TRACKS.

After the eridge proper had been completed, the timber bent, FORMING THE NEW ABUTMENT, WAS PLANKED DIAGONALLY ON BOTH SIDES FOR PROTECTION AGAINST THE DESTRUCTIVE ACTION OF DRIFTING ICE AND DEbRIS. IN aDDITION a "guard CrIE" Was bu!lt, a short dIStance upSTREAM, THAT PROJECTED FAR ENGUGH OUT INTO THE WATER TO SHIELD THE BENT FROM FLOAT:NG OEJECTS. THIS CRIB HAD A PLANK BOTTOM AND LINING SO THAT IT COULD EE FILLED WiTH GRAVEL. AS AN ADDITIONAL PRECAUTION, THE CRIB, TRUSSES, AND TIMBER EENT WERE SECURELY ANCHORED TO TREES UPSTREAM ON EITHER SIDE.

CLIFFORD SHOEMAKER GOES TO DISTRICT 5

Effective April I, Clifford Shoemaker, formerly principal ASSISTANT TO MR. BISHOP, CHIEF OF THE DIVIS:ON OF CONSTRUCTION, EECOMES DISTRICT ENGINEER OF DISTRICT 5, WITH HEADQUARTERS AT Omaha, Nebr. Nr. Shoemaker takes over the duties formerly in charge of Mr. Lynch who has been transferfed to district 1 to fill the vacancy caused by Mr. Purcell's resignation.

FOR THE FISCAL YEAR ENDING JUNE 30, 1928

AS OF FEBRUAEY 29,1928

保

Contrieuted ey F. H. Jackson, H. M. Milburn, and L. G. Carmick of the Division of Tests
(Not for release)
The correct answers to the examination given to the DISTRICT MATERIALS ENGINEERS AT THE HEADQUARTERS OFFICE, ON January 27, are given eelow. The 3 ? questions to which the answere are made, and which cover phases of the work with which every materials engineer should ee familiar were given in the feeruary News letter. After each of the answers are given the NAME AND dISTRICT NUMEER OF THE MATERIALS ENGINEER GIVING the best answer to the question. In cases where no one made a corRECT statement, the answer is given without the mention of any names. In the problems where a numerical result represented the correct solution, the number of the examinees giving the CORRECT ANSWER ARE STATED IN EACH CASE, AND IN ADDITION A CORRECT SOLUTION IS SHOWN.

1. - Unsoundness in portland cement is caused, ordinarily, ey the presence of an excess of free or uncomeined lime. It is detected in the laeoratory ey means of the so-called "soundness" test. In this test, a pat of neat cement is placed in an atmosphere of steam, above eoiling water, for five hours, and its condition as REGARDS CHECKING, WARPING, OR DISINTEGRATION IS NOTED. A SOUND PAT WILL REMAIN FIRM AND HARD, AND SHOW NO EVIDENCE OF CHECKING. UNSOUNDNESS IN THE FINISHED PRODUCT MAY FREQUENTLY EE CORRECTED BY allowing the cement to age eefore using - in this way, the uncombined lime is air-slaked and thus rendered inert. (C. Anderson of DISTRICT 1)
2. - The strength of portland cement is largely controlled ey the amount of lime present - the higher the percentage of lime, the greater the strength. High-limed cements, however, will have a tendency to run unsound unless great care is taken in the manufacturing process. The two detalls which are generally responsible FOR SECURING SOUNDNESS, WITHOUT SACRIFICING STRENGTH, ARE HARD BURNING AND THOROUGH GRINDING. THE FIRST OPERATION CONTROLS THE PROPORtion of comeined lime which will ee oetained, and the second operaTION INSURES A PRODUCT SUFFICIENTLY FINE SO THAT ANY UNCOMEINED LIME REMAINING WILL QE READILY AIR-SLAKED UPON EXPOSURE TO AIR. (A. F. Haelig of District 7)
3. - The present specification requirements for portland CEMENT ARE 225 pOUNDS AT SEVEN DAYS AND 325 pOUNDS AT 28 DAYS. (9 CORRECT ANSWERS)
4. - Sand-a. - ThIS Sand is well graded, carries a reason able amount of silt ano has a strength ratio comparable with the GRADING. FOR THIS REASON AN UNFAVORAELE COLOR TEST IS NOT CONSIDERED SIGNIfICANT. NOR IS IT PARTICULARLY SIGNIFICANT IF THE TENSILE-STRENGTH RATIO AT SEVEN DAYS IS 2 PER CENT BELOW THE USUAL SPECIFICATION REQUIREMENTS. THIS VARIATION IS WELL WITHIN THE LIMITS OF ACCURACY OF THE TEST AND THE SAND WOULD, THEREFORE, be acceptable for use in concrete pavements.

Sand-B. - THIS Sand is satisfactory in every respect except gRading. CONCRETE IN WHICH IT IS USED WILL EE HARSH AND DIFFICULT TO FINISH, ALTHOUGH PROEAELY OF HIGH STRENGTH IF RIGID CONTROL IS EXERCISED OVER THE WATER CONTENT. THIS SAND WOULD BE CONSIDERABLY IMPROVED EY MIXING WITH A SOMEWHAT FINER SAND, SUCH AS SAND-D, SO as to ering the per cent of material retained on the no. 10 sieve DOWN TO AEOUT 15, AND RAISE THE PERCENTAGE PASSING THE NO. 50 TO aeout 20. Freedom from silt is a very desiraele quality.

SAND-C. - THIS SAND IS GRADED EXACTLY LIKE SAND-A EXCEPT FOR SILT CONTENT. THE LOW STRENGTH-RATIO, HOWEVER, COUPLED WITH THE FACT THAT THE COLOR TEST iS O.K. WOULD INDICATE THAT THE GRAINS are structurally weak. This sand should ee rejected.

Sand-D. - This sand is fine and has the maximum permissiele PERCENTAGE OF SILT. THE STRENGTH RATIO IS COMPARABLE WITH THE GRADING, INDICATING THAT THE SAND GRAINS ARE STRUCTURALLY SOUND, EVEN THOUGH THE STRENGTH RAJIO IS CONSIDERAELY EELOW THE CONVENTIONAL 100 per cent. Sand-D COULD eE uSEd SatISfactorily IF mixed IN THE PROPER PROPORTIONS WITH A SAND SIMILAR TO B, OR IF USED IN a specially designed concrete mix.

SAND-E. - THIS SAND 15 NORMALLY GRADED. THE StRENGTH RATIO, however, is low and the color test is questionaele. The low STRENGTH-RATIO IN THIS CASE MAY EE DUE EITHER TO THE PRESENCE OF ORGANIC MATTER OR STRUCTURALLY UNSOUND GRAINS, OR A COMEINATION OF BOTH. THEREFORE, THIS SAND SHOULD NOT BE USED FOR CONCRETE PAVEMENTS. (H. C. Headley of District 8)
5. - THE FOUR D:STINCT CHARACTERISTICS OF CONCRETE SAND WHICH AFFECT THE STRENGTH-RATIO TEST ARE: (A) GRADING; (E) ORGANIC IMPURITIES; (C) AMOUNT OF SILT; (D) CHARACTER OF THE GRAINS, INCLUDING SHAPE, STRUCTURE, MINERAL COMPOSITION, ETC. (H. J. HEMSTREET OF DISTRICT 9)
6. - THE COLOR TEST FOR ORGANIC IMPURITIES IS MADE EY Filling a 12 -ounce clear-glass eottle up to the 4-1/2-OUNCE MARK WITH THE SAND TO BE TESTED, ADDING A 3-PER-CENT SOLUTION OF SODIUM HYDROXIDE IN WATER UNTIL THE COMEINED VOLUME OF THE SAND AND LIQUID IS 7 LIQUID OUNCES, SHAKING VIGOROUSLY, AND THEN ALLOWING IT TO STAND FOR 24 HOURS. THE COLOR OF THE CLEAR LIQUID ABOVE THE SAND, AT THE EXPIRATION OF 24 HOURS, COMPARED WITH THE COLOR OF A STANDARD 2-PER-CENT TANNIC-ACID SOLUTION, IN A 3-PER-CENT SODIUM-HYDROXIDE SOLUTION, IS AN INDICATION OF THE AMOUNT OF ORGANIC MATTER PRESENT. (H. C. HEADLEY OF CISTRICT 8)
7. - THE PREDOMINATING PHYEICAL CHARACTERISTICS OF THE SO-CaLLED "TRAP" ROCKS are: Hardness, toughnese, HIGH Specific GRAVITY, AND COMPACTNESS OF GRAIN. TOUGHNESS OR RESISTANCE TO IMPACT, MAY BE CONSIDERED THEIR OUTSTANDING CHAĨACTERISTIC. THEY ARE PARTICULARLY WELL ADAPTED FOR USE IN THE VARIOUS TYPES OF MACADAM ROADS, PARTICULARLY EITUMINOUS MACADAM AND ALSO VARIOUS TYPES OF MIXED EITUMINOUS CONCRETES, AND AS EINDER STONE FOR sheet asphalt, etc. The "traps" are as a class also extremely durable and afe, therefore, well adapted for use as concrete aggregates. (W. D. ROSS of DIStRICT 3)
8. - THE THREE PRINCIPAL GROUPS INTO WHICH ROAD-BUILDING ROCKS ARE DIVIDED ARE: (A) IGNEOUS; (B) SEDIMENTARY; AND (C) METAMORPHIC. BASALT EELONGS TO THE IGNEOUS GROUP, SANDSTONE TO THE SEDIMENTARY GROUP, AND SCHIST, MARELE, AND GNEISS TO THE METAMORPHIC. THE FOLIATED OR LAMINATED STRUCTURE OF THE GNEISSES MAKES THEM FREQUENTLY UNDESIRAELE FOR USE AS CONCRETE AGGREGATES, due to the fact that they crush into flat, elongated pieces. (r. L. Devereaux of District lo)
9. - Limestones containing clay, usually termed "argillaCEOUS" LIMESTONES, SHOULD EE VIEWED WITH SUSPICION WHEN INTENDED FOR USE AS A CONCRETE AGGREGATE. SUCH MATERIAL SHOULD ONLY BE USED WHERE PREVIOUS EXPERIENCE HAS DEMONSTRATED BEYOND QUESTIION that the rock 13 durable. Valuable information along this line MAY BE OBTAINED EITHER BY STUDYING EXISTING STRUCTURES OR BY CAREFULLY EXAMINING EXPOSED LEDGES OF THE STONE FOR EVIDENCES of Weathering. (H. S. Gillette of District 6)
10. - (A) THE ABRASION TEST ON A LIMESTONE, INTENDED FOR USE AS AN AGGREGATE IN CONCRETE PAVEMENTS, MIGHT EE WAIVED IN CASES WHERE IT WAS POSEIELE TO OETAIN CONCRETE OF SATISFACTORY flexural strength with the aggregate involved, and in those LOCATIONS WHERE A NEGLIGIELE amoUnt of SURFACE WEAR WOULD BE EXPECTED.
(e) The sodium sulphate soundness test should be waived only when either the service behavior of the stone in concrete or the appearance of expo sed ledgee or faces indicate that it is DURAELE.
11. - The three general principles, as regirds size and gradation of aggregates, which govern the proper ratio in which the fine and coarse aggregates should be combined are:

1. - The finer the sand, the smalleri the amount of sand.
2. - The finer the grading of the coarse aggregate for a given maximum size, the smallefi the amount of SAND.
3. - the smallefi the maximum size of coarse aggregate, the larger the amount of sand.
(A. SEIFERT OF DISTRICT 4)
4. - (a) percentage of fine aggregate:

$$
\begin{aligned}
& \frac{8.0-6.5}{8.0-3.4}=\frac{1.5}{4.6}=33 \text { PER CENT OF FINE AGGREGATE } \\
& \text { S7 DO DO DO COARSE DO } \\
& \text { (E) PERCENTAGE OF FINE AGGREGATE: } \\
& \frac{6.5-5.8}{6.5-2.5}=\frac{0.7}{4.0}=\begin{array}{l}
17 \text { PER CENT OF FINE AGGREGATE } \\
83 \text { DO DO DO COARSE DO }
\end{array} \\
& \text { (9 CORRECT ANSWERS) }
\end{aligned}
$$

13. - For a plastic mixture, containing no alr voids, the volume of concrete, produced for each bag of cement, will be equal to the sum of the absolute volumes of the cement and aggregates, plus the volume of water.

THEREFORE, FOR A $1: 2: 4$ proportion:
(A) - Aesolute volume of cement $=1 \times \frac{94}{3.10 \times 62.4}=0.49$ cubic foot

$$
\begin{aligned}
& \text { Do DO DO SAND }=2 \times \frac{85}{2.65 \times 52.4}=1.03 \text { DO FEET } \\
& \text { DO DO DO COARSE }=4 \times \frac{105}{2.70 \times 62.4}=2.50 \text { DO DO }
\end{aligned}
$$

VOLUME OF WATER $=\frac{5.5 \text { CUBIC FEET PER BAG OF CEMENT }}{7.5 \text { GALLONS PER CUBIC FOOT }}=0.73$ DO FQOT
VOLUME OF CONCRETE $=\overline{4.75}$ CUEIC FEET
THIS COMPUTATION GIVEs the VOlume of Concrete produced for each bag of cement used. Therefore, the quantity of cement required for one cueic yard of concrete will equal

$$
\frac{27}{4.75}=5.7 \text { bags, OR } 1.42 \text { EARNELS. }
$$

(e) - Absolute volume of cement $=1 \times \frac{94}{3.10 \times 62.4}=0.49$ cubic foot

Therefore, the quantity of cement required for one cubic Yard of concrete will equal

$$
\frac{27}{4.79}=5.64 \text { EAGS, OR } 1.41 \text { EARRELS }
$$

(6 CORRECT ANSWERS)
14. - Fineness modulus is an expreseion used to indicate the grading of an aggregate. It is determined ey adding the total pergentages of the matefial retalned on certaln size sieves, with square openings, and dividing the result ey loo. Aesolute volume as applied to concrete aggregates is the actual volume of solid material in a given apparent volume of the aggregate. In other words, it is the difference between the apparent volume and the VOLUME OF VOIOS. DENSITY AS APPLIED TO CONCRETE IS USUALLY taken to mean the sum of the assolute volumes of the cement and aggregates (total solids) expressed as a percentage of the total volume of the concrete. Watef cement ratio is the value obtained ey dividing the volume of water ey the voluime of cement used in a given eatch of concrete. Bulking as applied to concrete sand is the swelling or increase in volume which takes place when a small. amount of water is added to dry sand. (W. D. Ross of DISTRICT 3)
15. - Water may be said to exist in both the comeined and free form in concrete which has hardened without drying out. the final density of the concrete is almost entirely contiolled ey THE GMOUNT OF AIR VOIDS PRESENT, WHICH IN TURN IS A FUNCTION OF the amount of free water existing in the concrete when it stiris to dry out. When viewed from this standpoint the function of CURING is to delay the final drying out of the concrete until the greatest possisle pericentage of the total water has comeined with the cement thus reducing the percentage of free water and consequently the final voids to a minimum. (A. F. HaElig of district 7)
16. - THE INUNDATION METHOD OF MEASUREMENT DEPENDS UPON the principle that whrin a sand has eecome inundated or saturated ?ITH WATER SO THAT ALL OF THE VOIDS ARE FILLED, A GIVEN VOLIJME WILL CONTAIN APPROXIMATELY THE SAME AMOUNT OF SAND AS IF THE SAND WERE DRY. (A. SEIFERT OF DISTRICT 4)
17. - The principal advantages of Specifying aggregates FOR CONCRETE EY WEIGHT ARE:

1. - It automaticaliy corrects for the bulking action Of MO!STJRE IN SAND.
2. - It makes possiele an accurate preliminary estimate of the quantities of materials required for a GIVEN AMOUNT OF CONCRETE.
3. - It furn!shes a record of the actual weights of materials used on a given job.
(K. S. Chameerlain of district 12)
4. - Because agsolute volumes of aggregates will vary WITH THEIR SPECIFIC GRAVITY AND WEIGHTS ARE ONLY PROPORTIONAL to aesolute volumes so long as the specific gravity is constant. FOR THIS REASON VARIATIONS IN THE SPECIFIC GRAVITY WILL PRODUCE VARIATIONS IN THE ABSOLUTE VOLUME AND CONSEQUENTLY VARIATIONS in the yield of the concrete produced. (K. S. Chamberlain of District 12)
5. - the determination of the weight per cueic foot of CRUSHED ELIST-FURNACE SLAG. (3 CORRECT ANSWERS)

> 20. - W $=$ EREAK ING LOAD IN POUNDS PER LINEAL FOOT OF PIPE I?DO IS THE CONSTANT D $=$ INTERNAL DI AMETER OF THE PIPE IN FEET. (7 CORRECT ANSWERS)
21. - Galvanized metal culverts may well ee used in locations where the soil waters are not unduly corrosive. Experience has shown that near the geacoast where tidal water affects the CULVERT OR IN THE SO-CaLLED aLKALI DISTRICTS, SUCH CULVERTS corrode very rap:dly. Before installing such culverts due consideration should be given to the life of galvanized culverts in that locality. (R. L. Devereaux of district lo)
22. - Exposure tests have shown that coppered steel, coppered iron, and pure iron, are the most lasting types of ease metal. As yet we are not in a position to state that any one of the base metals epecified under the so-called "5-way" specification Is SUPERIOR to any of the others. (K. S. Chameerlain of District 12)

Abstract

23. - RED LEAD AND THE CHROMATES OF LEAD AND ZINC IN CONTACT WITH STEEL HAVE PROVEN TO EE THE EEST INHIEITORS OF CORROSION. SINCE RED LEAD IS THE ONLY ONE OF THESE THAT IS GENERALLY AVAILABLE, AND BECAUSE IT IS NEARLY AS GOOD AS THE BEST, IT IS RECOMMENDED AS A SHOP COAT AND IN GENERAL SHOULD be USED aLSO as a fIrst field coat. It be ing assumed that the FIRST TWO COATS THOROUGHLY COVER THE METAL WE MAY USE FOR THE SECOND FIELD COAT A PAINT OF MORE DURAELE CHARAOFER WHEN EXPOSED TO THE WEATHER EVEN THOUGH IT MAY NOT EE AS GOOD AN INHIBITOR OF CORROSION. FOR THE SECOND FIELD COAT A PIGMENT CONSISTING WHOLLY OR LARGELY OF EASIC LEAD SULPHATE OR BASIC lead carbonate will prove satisfactory. (S. E. Sime of DISTRICT 5)

24. - (A) SPECIFIC GRAVITY, FLASH POINT, SOFTENING POINT, PENETRATION, LOSS AT $163^{\circ} \mathrm{C} .5$ HOURS, TOTAL EITUMEN SOLUELE IN CAREON DISULPHIDE, DUCTILITY, PROPORTION OF TOTAL EITUMEN SOLUBLE IN CARBON TETRA-CHLORIDE.
(B) SPECIFIC GRAVITY, FLOAT TEST, DISTILLATION TEST, SOFTENING POINT OF RESIDUE OBTAINED IN DISTILLATION TEST, TOTAL BITUMEN SOLUBLE IN CARBON DISULPHIDE..
(c) SPECIFIC GRAVITY, FLASH POINT, SPECIFIC VISCOSITY, FLOAT TEST, LOSS AT $163^{\circ} \mathrm{C}$. 5 HOURS, TOTAL EITUMEN SOLUELE IN CARBON DISULPHIDE, PER CENT OF TOTAL BITUMEN INsoluble in 86° baumé naptha.
(D) SPECIFIC GRAVITY, SPECIFIC VISCOSITY, FLOAT TEST, DISTILLATION TEST, SOFTENING POINT OF RESIDUE OBTAINED FROM DISTILLATION TEST, TOTAI. BITUMEN SOLUBLE IN CAREON DISULPHIDE. (A. SEIFERT OF DISTRICT 4)
25. - (a) PENETRATION TEST; (E) FLOAT TEST; (C) SPECIFIC VISCOSITY AND FLOAT TEST; (D) SPECIFIC VISCOSITY AND FLOAT TEST, (A. F. HaElig of District 7)
26. - THIS tESt IS made on asphalts for the purpose of ascertaining if the material will sat isfactorily withstand the HEATING TO WHICH IT IS SUBJECTED AT THE ASPHALT PAVING PLANT. RESUETS OETAINED IN THIS DETERMINATION ARE ALSO TAKEN AS INDICATING WHETHER OR NOT THE PAVEMENTS CONSTRUCTED WILL AGE TOO RAPIDLY, I.E., WHETHER THE PAVEMENTS WILL CRACK EXCESSIVELY IN a COMPARATIVELY SHORT TIME. (K. S. CHAMBERLAIN OF DISTRICT | 2)
27. - SpECIFICATION OC-2 Is INTENDED TO PROVIDE FOR ROAD OILS WHICH ARE TO BE APPLIED COLD, IN THE SURFACE APPLICATION TREATMENT OF ROADS. SINCE IT IS DESIRED THAT THESE OILS SHILL ee capable of forming a mat or wearing surface on the road, it IS adVisable that they contain some comparatively volatile oils

WhICh, OF COURSE, WILL EE INDICATED WHEN THEY HAVE LOW FLASH POINTS. CONSEQUENTLY, A MAXIMUM PERMISSIELE FLASH POINT IS SPECIFIED IN SPECIFICATION OC-2. (H. J. HEMSTREET OF DISTRICT 9)

$$
\text { 28. - LET } \begin{aligned}
D & =\text { THEORETICAL SPECIFIC GRAVITY } \\
W & =\text { WEIGHT PERCENTAGE OF MINERAL AGGREGATE } \\
M & =\text { WEIGHT PERCENTAGE OF ASPHALT CEMENT } \\
S & =\text { SPECIFIC GRAMITY OF MINERAL AGGREGA.TE } \\
S_{1} & =\text { SPECIFIC GRAVITY OF ASPHALT CEMENT }
\end{aligned}
$$

THEN SUESTITUTING IN THE
WE HAVE D $=\frac{100}{\frac{90}{2.65}+\frac{10}{1.03}}$
AND D $=2.29$

THEN LET $V=$ THE PERCENTAGE OF V.JIDS AND $D \because=$ THE SPECIFIC GRAVITY OF THE SAMPLE, THEN $V=\frac{100(D-D)}{D}$

SUESTITUTING in this formula, the percentage of voids

$$
V=\frac{100(2.29-2.20)}{2.29}=3.93 \text { PER CENT }
$$

(4 CORRECT ANSWERS)

$$
\begin{aligned}
& \text { 29.- (A) LET } x=\text { NUMEER OF POUNDS OF ASPHALT CEMENT } \\
& \text { THEN } \frac{.998 x}{900+x}=.10 \\
& \text { AND. } 998 x=90+.1 x \\
& \text { AND. } 898 x=90 \\
& \text { THEREFORE } x=100.2 \\
& \text { (E) LET } x=\text { NUMEER OF POUNDS OF ASPHALT CEMENT } \\
& \text { THEN } \frac{.80 x}{900+x}=.10 \\
& \text { AND. } 80 x=90+.1 x \\
& \text { AND. } 7 x=90 \\
& \text { THEREFORE } x=128.6
\end{aligned}
$$

30. - THIS TEST IS ordinaraly made at a temperature of $25^{\circ} \mathrm{C}$. AND AS THERE IS NO STANDAFIDIZED TEST FOR DETERMINING the adhesiveness of asphalts, it may ee taken as indidating this property it normal temperatures. It also indicates in a measure the susceptiellity of asphalts to temperature changes, SINCE ASPHALTS HAVING EXTREMELY LOW DUCTILITIES AT $25^{\circ} \mathrm{C}$. SUCH as the elown asphalts used as fillers, are only slightly susceptigle to temperature changes. (H. S. Gilleite of District 6)
31. - The test for total situmen soluele in caíbon diSULPHIDE IS MADE FOR THE PURPOSE OF DETERMINING THE EITUMEN CONTENT, WhEREAS the CaREON tETRA-CHLORIdE tESt is USED FOR determining the careenes in petroleum and asphalt products, the presence of which is considered to be indicative that the petroLEUM PRODUCTS HAVE EEEN SUEJECTED TO SOME iNJURIOUS MANUFACTURing procedure, such as overheating. (A. Selfert of district 4)
32. - AN ash correction should ee made, and if this correction is not made the correct percentage of eitumen will not ge determined ey the analysis, since the eitumen reported will also include finely divided mineral matter which may have gone through the filter. The result for the material passing the 200-mesh sieve will also ee affected since some of the material which should ee reported as passing the 200-mesh sieve will be included with the eitumen. (H. C. Headley of District 8)

5-TON PYRQTOL BLAST CAREFULLY EXECUTED ON COLORADO FOREST HIGHWAY PROJECT

Compiled from report submitted ey Clyde E. Learned of district 3.

The advantages of a carefully executed plan for oetaining SATISFACTORY RESULTS IN ELASTING OPERATIONS IS DEMONSTRATED BY the success of the 5 -ton pyrytol elast on the Chicago Creek Section of the Mount Evans forest highway in Colorado. The ELaSt Which was fired on the afternoon of Novemeer 26, 1927, WAS SPECTACULAR AS WELL AS SUCCESSFUL - AT LEAST THREE-QUARTERS OF THE TOTAL YARDAGE MOVED EE ING THROWN CLEAR OF THE ROADWAY and pIled UP ON the mountain side and canyon gelow to a depth OF 15 TO 30 FEET. THE PRISM OF THE ROAD AS COMPUTED TOTALLED 9, 100 CUEIC YARDS WHICH, IN ADDITION TO AN ALLOWANCE OF 10 PER CENT OF THE PRISM YARDAGE, CAUSED EY AN OVEREREAK OF 3,500 CUEIC Yards, made a grand total of IO,OOO cuelc yards allowed to the contractor. The total amount of pyrotol used was 10,200 POUNDS. THIS AVERAGED PRACT ICALLY A POUND OF EXPLOSIVE PER CUBIC YARD OF PAY YARDAGE OR EIGHT-TENTHS OF A POUND OF PYR FOR EACH YARD OF THE TOTAL EURDEN MOVED.

The fragmentation of the material in front of and over the charge was excellent. The only large pieces of rock remaining after the "shot" were in the overbreak material along the eack slope (fig. 2-B). These large fragments, unfortunately FOR THE CONTRACTOR, SLID DOWN THE SLOPE AND PILED UP IN THE ROADWAY, THUS NECESSITATING CONSIDERASLE DRILLING AND EREAKING EEFORE THEY COULO EE MOVED WITH THE STEAM SHOVEL. AEOUT I,OOO CUEIC YARDS OF THE ELASTED ROCK WAS USED IN THE CONSTRUCTION OF A 40-FOOT HAND-?LACED EMEANKMENT EELOW AND CONTIGUOUS TO THE CUT. THE GREATER PORTION OF THE ELASTED MATERIAL, HOWEVER, WAS WASTED.

The elast made veqy little noise, each individual seam IN THE CLIFF OPENING UP AS THOUGH A HERCULEAN GIANT WERE SLOWLY FORCING HIS WAY UPWARD FROM EELOW (FIG. I-B). AS THE SEAMS WIDENED, JETS OF SMOKE SHOT OUT INTO THE AIR, FORMING A MANTLE OVER THE ENTIRE MASS OF MOVING ROCK, WHICH SOON EECAME ENVELOPED Ey the rmoke. Then as the mass eegan to fall, the rocks piled UP IN THE CANYON EELOW, WHILE THE CLOUD OF SMOKE CONT INUED TO ROLL FIRST ACROSS THE CANYON AND THEN UP THE のتصSITE SLOPE OF THE MOUNTAIN (FIG。2-A). THE ENTIRE PROCEEDING WAS A MOST EXCITING, SEAUTIFUL, AND AWE-INSPIRING SIGHT.

Figure 1-A. - The portal of the upper
保

Figure 2-A. - Immediately after the blast - the rock settling into the canyon below and the dense smoke cloud rolling up the opposite side of the mountain

Figure 2-B. - After the smoke cleared away - cliff removed to a height of 135 feet and the old road blocked with rock fragments

DIRECTLY OVER THE ELAST THE ESCAPING PYROTOL GASES REIGNITED SPONTANEOUSLY AS THEY CAME IN CONTACT WITH THE AIR the sheet of flame setting fire to the erush and trees on the CLIFF AEOVE. THIS PHENOMENON WAS ATTRIEUTED TO THE LACK OF OXYGEN IN THE EXPLOSIVE TO PROVIDE FOR COMPLETE COMEUSTION OF THE PYROTOL MIXTURE.

Location of Blast

The elast was the result of a cho ice eetween driving a TUNNEL THROUGH A ROCKY PROMONTDRY WHICH JUTTED OUT INTO THE CANYON OF THE CHICAGO CREEKS, OR OF NOTCHING OUT A 40 to 50-FOJT shelf in the face of the cliff. The latter course was adopted. The elast was located getween stat:IONS $325+15$ and $325+40$ of Chicago Creek section No. 2 of the forest highway eetween Echo Lake and ldaho Springs - 40 miles west of Denver, Colorado. (See attached sketch). The construct ion of this road has been CarRIEC on Ey the bureau during the past three seasons. Thres SECTIONS, TOTALLING SEVEN MILES, HAVE BEEN PUT UNDER CONTRACT. ON ALL OF THIS MILEAGE, LOCATED THROUGH A VERY MOUNTAINOUS REGION, A TOTAL OF 160,000 CUBIC YARDS OF MATERIAL HAS EEEN MOVED - APPROXIMATELY 40 PER CENT OF THIS BEING CLASSED AS SOLID ROCK. THE THIRD SECTION, ON WHICH THE S-TON PYROTOL elast is located, is known as Chicago Creek sect ion no.? IT IS $\left\lvert\, \frac{1}{4}\right.$ MILES LONG AND CONTAINS OVER 45,000 CUBIC YAROS OF EXCAVATION, OF WHICH APPROXIMATELY 70 PER CENT IS ROCK. A CONSIderaele length of this section is located through granite FORMATIONS, HIGH UP ON THE MOUNTAIN SLOPES.

Method of Preparing Blast

The method followed ey the contractor in remov ing the CLIFF - A CLOSE-GRAINED, GRAY-GRANITE FORMATION, WAS TO DRIVE a SMALL TUNNEL OR COYOTE HOLE IN FROM EACH END OF THE CUT (FIG. 1-A), EXCAVATE POCKETS AT A NUMEER OF STRATEGIC POINTS AND LOAD THEM WITH PYROTOL, AND FINALLY TO SHOOT THE ENTIRE CHARGE IN ONE ELAST.

ON the lo wer or northern end, the face was falrly accesSiele (SEE SKETCH map and fig. 1), as ihe steam shovel had just COMPLETED A PILOT CUT TO WITHIN A HUNDRED FEET OF THE PROPOSED PORTAL, AND IT WAS NOT VERY D'FFICULT TO EL.AST OUT A NARROW PATH FOR THE REMAINDER OF THE DISTANCE, T:H!S TUNISEL, DESIGNATED AS No. I ON THE SH:ETCH MAP, WAS GTARTED ON AEOU: THE CENTER LINE OF THE ROAD, AND WAS DRiVEN AT AN ANGLE OF AEOUY 30 DEGREES TO THE

DITCH - A DISTANCE OF 35 FEET. FROM THIS POINT, TWO HEADINGS WERE EORED IN OPPOSITE DIRECTIONS ALONG THE DITCH LINE, EACH EEING 15 FEET IN LENGTH, AND THE LAYOUT OF THE TWO COMPLETING: the shape of a eent tee.

On the up-grade side of the cliff, the operations were RATHER DIFFICULT AND OF A MORE HAZARDOUS NATURE. IT WAS NECESSARY TO LOWER THE MEN, EQUIPMENT, AND EXPLOSIVES FROM THE CLIFFS AEOVE. THE DRILLING CREWS WERE HELD WITH ROPES OR SLINGS WHILE THEY CUT OUT A EENCH FROM WHICH THEY WERE AELE TO EEGIN DRIVING the tunnel. This No. 2 tunnel was driven at grade for 60 feet along the ditch line to. within 15 feet of the enc of tunnel No. i.

At 20-foot intefvals, Right-angle offeet chameers were SUNK SO AS TO OETAIN MORE COMPLETE CONFINEMENT OF THE CHARGES FOR THE ELAST. THESE OFFSET CHAMEERS MERE FROM 6 TO 15 FEET IN LENGTH AND FROM 2 TO 4 FEET EELOW THE TUNNEL FLOOR.

Jack hammer drills, mounted on columns, with water-feed CONNECTIONS, WERE USED IN DRIVING THE TUNNELS, THE AVERAGE DAILY PROGRESS IN EACH EEING THREE FEET. THE DRILLING AND MUCKING OPERATIONS WERE MANDICAOPED CONS IDERAELY EY THE CONFINED SPACE IN WHICH THE CREW WERE FORCED TO WORK.

Explosives Carefully proportioned

THE AMOUNT OF EXPLOSIVE IN EACH POCKET WAS PROPORTIONED IN ACCORDANCE WITH ITS POSITION AND THE AMOUNT OF EURDEN TO EE MOVED. THE TUNNELS WERE LOADED AS FOLLOWS:

THE EXPLOSIVE USED WAS the pyrotol furnished ey the Government and manufactured by the du pont Company from surplus har department supplies. The contractor had used pyrotol previously in carrying on regular blasting operations in this section, but since there was no record of its use on large blasts, the local du pont representatives oetained for the contractor, Ey wire from theig main office, information concerning its use. The pyrotol was the customary mixture of ground smokeless and hand grenade powder. To this had been added about 10 PER CENT OF NITROGLYCERIN DYNAMITE TO ACT AS A SENSITIZER. THE PRODUCT OETAINED EY THIS MIXTURE WAS A LOW-FREEZING COMPOUND equivalent to about 40-per-cent dynamite. In loading the pockets, THE PRECAUTION WAS TAKEN OF ADDING 100 pOUNDS OF AMMONIA DYNAMITE to insure complete detonation of each charge of pyrotol.

Dual Detonating System Used as a Precaution

A dUal detonating system, CONSISting of both electric blasting caps and Cordeau fuse, was used to insure the complete EXPLOSION OF THE CHARGES. AN ELECTRIC CAP AND A PRIMER OF OYNAmite vere connected with the cordeau fuse, at the infer ends of the tunnels, as an extra precaution. In each of the pocket charges, 2 or 3 electric elasting caps to act as primers, were inserted in sticks of 40-der-cent dynamite, and the Cordeau fuse WAS COILED THROUGH THE CHARGE OF PYROTOL.

All electric elasting caps were connected in a single series with double No. 20 wires which led to the tunnel entrances. The wires, after eeing first wrapped, were laid along one of the lower corners of the tunnel, and then covered with heavy paraffined gox paper over which was spread a layer of loose soll. Each electric cap was tested before being placed in position and frequent galvanometer tests were made on the wiring as the tunnels were backfilled.

With the purpose of oetaining a clean-cut and uniform back slope to the cut, a series of holes were drilled along the line of the top of the proposed eack slope, and these holes were loaded with gelatine dynamite. The result of this blast was unsatisfactory, in this respect, because of a number of inclined cleavage planes which caused the cliff to overereak at the top for a distance of 10 to 25 feet.

Details of the Electrical Connections

A DETAILED DESCRIPTION OF THE ELECTRICAL CONNECTIONS FOLLOWS: A SINGLE ELECTRICAL CIRCUIT WAS FIRST PASSED THROUGH THE ELECTRIC ELASTING CAPS IN THE POCKETS; THE INNERMOST OF the caps had a Cordeau fuse connected to it. the electrical CIRCUIT WAS then continued eack to the entrance of the tunnel where the outside Cordeau connection was made. the Cordeau fuse ran the entire length of the tunnels with loops in each OF THE PYROTOL CHARGES.

From the tunnel entrance the circuit passed over the CLIFF THROUGH THE EACK-SLOPE LINE OF DRILL HOLES, THENCE DOWN THE OTHER SIDE OF THE CLIFF TO THE SECOND TUNNEL, THROUGH THE pOCKETS TO THE INSIDE END OF THE CORDEAU aND EACK to the ENTRANCE, hHERE THE OUTSIDE ELECTRICAL CONNECTION WAS MADE. DOUBLE LINES of No. 14 LEADING WIRES WERE RUN FROM THE TWO TUNNEL ENTRANCES to the top of the mountain where a 50-hole elasting machine was USED TO FIRE THE ELAST.

The circuit was carefully tested with a galvanometer. The results of the tests, on the du pont type 3-a elasting MACHINES, MADE WITH a RHEOSTAT, SHOWED THAT SUFFICIENT CURRENT was generated to fire 100 holes. This indicated an ample factor of safety since there were only 40 electric blasting caps in the ENTIRE SERIES.

For the eenefit of those not familiar with Cordeau, it MAY EE STATED THAT THIS IS THE TRADE NAME FOR A POWERFUL DETONATING FUSE. IT CONSISTS OF A SMALL LEAD TUEE - APPROXIMATELY $3 / 16$ OF AN INCH IN DIAMETER - COMPACTLY FILLED WITH THE HIGHLY EXPLOSIVE T. N..T.". THIS FUSE HAS A VELOC!TY OF DETONATION OF ABOUT 3 MILES PER SECOND. IT IS EXPLODED EY REGULAR ELASTING OF ELECTRIC CAPS WHICH MUST EE placed in actual contact with the T.N.T. in the tuee. Special caps and connections are manufactured FOR THIS PURPOSE.

The use of Cordeau is usually recommended for elasts SIMILAR to the one herein descrieed. IN this particular case it WAS USED AS AN ADD:T IONAL PRECAUTION AGAINST FAILURE, FOR HAD THE ELECTRIC WIRING WITHIN THE TUNNEL EECOME EROKEN, OR HAD THE ELECTRIC CAPS FAILED TO EXPLODE, THE EXTREME;VIOLENCE OF THE CORDEAU EXPLOS:ON VOULD HAVE EEEN SUFFICIENT TO DETONATE ALL OF THE PYROTOL. CORDEAU IS A REGULAR COMMERCIAL PRODUCT, SOLD IN 500-FOOT SPOOLS, THE COST EEING AEOUT 5 CENTS PER LINEAL FOOT.

Following the placing of the charges in the sink holes OR OFFSET CHAMEERS, THE TUNNELS WERE CAREFULLY EACKFILLED TO WITHIN 5 OR 10 FEET OF THE ENTRANCES, WITH MUCK OETAINED FROM the tunnel excavation. When the elast was fired, no projectile OR ELOWOUT EFFECT WAS OESERVED AT EITHER ENTRANCE; A!L THE GENERATED ENERGY WAS UTILIZED APPARENTLY IN DOING EFFECTIVE WORK. THE ROCK, WITHIN THE PRISM SFETION OF THE ROAD, EROKE FROM 2 TO 6 FEET EELOW GRADE, EXCEPT ALONG THE DITCH LINE WHERE IT BROKE TO THE ELEVATION OF THE TUNNEL FLOOR.

Cost of the blast

THE TUNNELS WERE DRIVEN EY THE CONTRACTOR, FIRST ON A DAY-LAEOR EASIS. THEN, IN ORDER TO SPEED UP THE WORK, HE LET THEM OUT EY STATION CONTRACT, FURN!SHING ALL THE NECESSARY MATERIALS AND EQUIDMENT AS WELL AS THE AIR. A TOTAL OF 155 LINEAL FEET OF TUNNEL AND OFFSET CHAMEERS WERE DRIVEN.

THE COST OF DRILLING, SHOOT ING, AND MUCKING OUT THE TUNNELS AND OFFSET CHAMEERS WAS APPROXIMATELY 中 11.00 PER LINEAL FOOT. THIS COST IN TERMS OF THE PAY YARDAGE MOVED EY THE BLAST IS EQUIVALENT TO A UNIT PRICE OF 17 CENTS PER CLEIC YARD. THE COST OF LOADING, EACKFILLING, AND FiR:NG $\because H E$ ELAST TOTALLED 16 CENTS PER CUEIC YARD. THE PRECEDING FigURES INClUDE ALL LABOR, MATERIAL, EXPLOSIVES, RENTAL CHARGES, ANIC A LIEERAL ALLOWANCE FOR OVERHEAD EXPENSE AND SUPERVISION. THE PYRCTOL WAS FURNISHED to the contracto a ey the Government at a cost of 12 cents a POUND.

AS THE WORK WAS CLOSED DOWN FOR THE WINTER REFORE THE COMPLETION OF THE EXCAVATION, NO EXACT FINAL COST FIGURES CAN EE GIVEN, BUT FROM THE DATA ON HAND IT SEEMS REASONAELE TO ESTImate that the final cost will ee about 50 cents per cueic yard of pay yardage.

The contractor on the work was e. Honnen of Colorado Springs. He was assisted ey a. E. ANDERSON: techinical representat ive of the du pont Company, in the ióadng, testing, and firing of the blast. The bureau resident engineer on the project WAS C. R. LUGTON.

PROGRESS OF FEDERAL HIGHWAY LEGISLATION

(Not for release)

New eills introduced in Congress since the last issue of the News letter and further action on eills previously introduced are summarized below. In adoition to this action, mearings are in progress on the following elills: H.R. 358, H.?. 383, H.R. 5518, H.R. 7019, H.R. 7343, AND H.R. 8832.
H.r. 8269. - Signed ey the President on Fegruary 15, after maving eeen passed ey eoth Houses of Congress. Makes appropriations for the Departments of State and Justice and for the Judiciary, and for the departments of Commerce, and Labor, for the fiscal year ending June 30, 1929, and for other purooses. Makes an appropriation of $\$ 3,000$ to pay the quota of the United Etates in the Permanent association of International Road Congresses, as authorized ey the puelic resolution approved June 18, 1926.
H.r. 9136. - Introduced in the house on feeruafy 5. This is the appropriation eill for the Department of Interior for the fiscal year ending June 30, 1929. Fo:z the construction of roads and trails in the nat ional parks, as authorized ey the act approved June 5, 1924, there is appropr:ateo \$2,500,000, which includes \&1,500,000, the remalnder of the contractual authorIzation for the fiscal year 1928. In addition to the amo unt appropriated as aeove, the Secretafy of interior may aporove PROJECTS, INCUR OELIGATIONS, AND ENTER INTO CONTRACTS FOR ADDITIONAL WORK NOT EXCEEDING A TOTAL OF $\$ 4,000,000$!
H.R. 11209. - Introduced in the house on feeruazy 20, ey 0. B. Burtness of North Dakota, ane referred to the Committee on roads: provides for the amendment of Section 2 of the federal Highway Act, عo that the term "highway", as therein contalned, shall hereafter read as follows: "The term 'highway' includes rights of Way, eqidges, Disainase structures, signs, guard ralls, and PFIOTECTIVE STFUCTURES IN CONNECTION WITH HIGHWAYS, QUT SHALL NOT INCiUCE ANY HIGHW'AY OR STREET in a MUNICIPALITY HAVGNG A population of two thousand five hundred or more as shown by the LAST AVAILAELE CENSUS, EXCEPT THAT DORTION OF ANY SUCH HIGHWAY or stieet along which the houses average more than two hundred FEET APART."
h.r. Ilzio. - Introduced in the house on fegruary 20, ey c. B. Burtness of North Dakota, and referred to the Committee on Roads: provides that exist ing federal-aid legislation ee amended so that "the secretary of Agriculture may extend federal a id under such acts, in the construction of any free highway bridge and approaches thereto, ey a State, States, county or counties, or any other political suedivision of any such State or States, where any Part or all of such eridge is located within a municipality having a population of two thousand five hundred or more, as shoun ey the last availaele ceneus, providing such eridge is an interstate eridge crossing a stream separating two States (Regardless of whether or not within a distance of one mile from such eridge the houses average more than two hundred feet apart)."
H.R. Il280. - Introduced in the House on fegruary 21 , ey L. C. Warren of North Carolina, and referred to the Committee on Roads: AUTHORIZES AN APPROPRIATION OF $\$ 10,000,000$ as an EMERGENCY RELIEF fund to ee expended ey the Segretary of Agriculture in the repair OF HIGHWAYS OR ERIDGES DAMAGED OR DESTROYED EY FLOODS. PROVIDES that the money shall ee expended in accordance with the provisione of the federal Highway Act, except that the $\$ 15,000$-per-mile Limitation shall not prevail, and that the restriction upon the EXPENDITURE OF FEDERAL FUNDS IN TOWNS WITH A POPULATION OF 2,500 or more shall not apply.
H.R. 11464. - Introduced in the house on feerudry 27, ey tom Connally of texas, anc referred to the Committee on Roads. This bill is identical with S. 3O8। descrieed in the last issue of the nens letter.
H.R. 1|485. - Introduced in the house on Feeruary 27, by E. E. denison of Illinois, and referred to the Committee on interstate and Foreign Commerce: Provides for the amendment df the act reguLating the construction of gridges over navigaele waters as approved MARCH 23, 1906, to provide among other things as follows: That hereafter it shall not ee lawful to construct a eridge over any of the navigaele waters of the United States without the authority or consent of Congress; nor until the plans and specificationg have been approved ey the Chief of Engineers of the army and the Secretary of har. that any eridge built under the provisions of the act Shall ee recognized as a post route upon which certain provisions With respect to charges for use ay the United states, and telegraph, telephone, electric light, gas, and water companies, shall•apply. that all railroad companies shall ee entitled to equal privileges

IN THE USE OF SUCH ERIDGEE AND THAT DISPUTES SHALL EE SETTLED ey the Interstate Commerce Commission. That failure to comply WIT. A LAWFUL D?DE? OF THE SECRETARY OF WAR OR THE INTERSTATE COMMERCE COMMISSION RELATIVE TO SUCH A ERIDGE SHALL SE A MISDEMEANOF PUNISHAELE EY A FINE OF NOT TO EXCEED \$5, ODO. THAT, IF TOLLE A E CHARGED FOR TFANSIT OVER ANY ERIDGE HERETOFORE OR HEFEAFTES CONGTQUCTEE OVFR $\triangle N Y$ NAVIGAELE WATER OF THE UNITED STATEG AND FORMING A PART OF OR A CONNECTING LINK WITH A FEDERAL-AIC HIGHWIAY OR A HIGHWAY UPON WHICH INTERSTATE COMMERCE OR THE U.S. MAILS IG OR MAY EE CONVEYED, SUCH TOLLS SHALL BE UNIFOFM, JUST, AND REASONAELE, AND SUEJECT TO REGULATION EY the Interstate Commerce Commission. That the Interstate COMMEFCE COMMISSION IS AUTHOQI ZED TO INVESTIGATE AND DETERMINE THE FAIF REASONAELE VALUE, ACTUAL COST, AND REASONAELE COST OF ERIDGEG OVE? ANY NAVIGAELE WATERS WHENEVE? IT SHALL EE NECESSARY OR DEEIRAELE TO DO SO, UNLER THE FOLLOWING CONDITIONS: (I) IF THE ERIDGE IS A PRIVATELYOOWNED TOLL QRIDGE AND IS PART OF OR A CONNECTING LINK OF THE FEDERAL-AID HIGHWAY SYSTEM, OR OF HIGHWAYS ON WHICH INTERETATE COMMERCE IS CONVEYED, THE COMMISSION MAY DETERMINE THE FAIR REASONAELE VALUE. (2) IF THE ERIDGE IS A PRIVATELY-OWNED TOLL QRIDGE CONETGUCTED WITHIN THREE YEARS巴ЕFORE THE APPROVAL OF THE ACT OR AFTER ITS APPROVAL THE COMMIEEION MAY, WITHIN THREE YEARS OF THE APPROVAL OF THE ACT OF OF THE COMPLETION OF THE ERIDGE, DETETRMINE THE ACTUAL COST AND VHAT WOULD EE A REASONAELE COST OF CONSTRUCTION. THAT THE COMMISSION IS AUTHORIZED TO DETERMINE THE VALUE OR ACTUAL AND REASONAELE COGTS UPON ITS OWN MOT ION, OF UPON COMPLAINT OF INTEFESTED PERSONS, OR UPON REQUEST OF THE HIGHWAY DEPARTMENT OF THE STATE IN V'HICH THE BRIDGE IS WHOLLY OR pAFTLY LOCATED. THAT pFEVIO IS LEGISLATION GRANTING THE SECRETAZY OF WaR or OHIEF OF ENGINEERE $\triangle U T H O R I T Y$ TO PRESCRIEE RATES OF TOLL IS REPEALED AND EUCH AUTHORITY IE TRANSFERRED TO THE INTERSTATE COMMERCE COMMIEEION. THAT UHEN AUTHORITY HAS EEEN GRANTED TO CONSTRUCT A HIGHVAY ERIDGE DVER A NAVIGAELE WATERWAY WHERE IT FORMS A EOUNDARY SETWEEN STATES, THE OWNERS OR OPERATORG ARE AUTHORIZED TO FIX AND C'HARGE TOLLE WHICH SHALL EF LEGAL UNTIL CHANGED EY the Interstate Commerce Commission; and upon such owners the ACT CONFERE THE SAME DOWE ZE OF CONCEMNATION AND EXPROPRIATION AS ARE POSSESSED EY RAILROAD CORPORATIONS OR ERIDGE CORPORATIONS IN THE State IN WHICH The affected property is located. That WITHIN 90 DAYE AFTER THE COMPLETION OF A TOLL ERIDGE AN :TEMIZED STATEMENT OF COST SHALL EE FILED WITH THE INTERSTATE COMME-RCE COMMIEEION AND THE STATE HIGHWAY DEPAFTMENT. THAT TOLLE ON PFIVATE ERIDGES GHALL EE SUFFICIENT TO COVE: MAINTENANCE, OPERATING, AND AMORTIZATION CHERGES, AND THAT THE BRIDGES MAY EE
taken overi ey the State of any political suedivision ey durchase or condemnation in accordance with State laws, and if taken over aftef the tolls collected have eeen sufficient to amortize the reasonaele cost of the eridge, the compensation to ee allowed shall not include good w!ll, going values, or prospective revenues of profits. That tolls on suelic eridges shall ee sufficient to COVER MAINTENANCE, OPERATING, AND AMORTIZATION CHARGES, AND THAT the structures shall eecome free after the cost has eeen amortized. That authority granted ey Congress to construot eridges over navigaele waters may ee sold, assigned or transferred.
H.R. 1|577. - Intzoduced in the Senate ov March 5, and referred to the Committee on appropriations. This is the agricultural appropfiation eill for the fiscal year ending June 30; 1923. APPIZODRIATES FOR FDREST RDADS AND tiaille, under Section 23 of the Federal Highway act, " $\$ 6,500,000 \mathrm{Which}$ is composed of $\$ 3,945,000$, PART OF THE SUM OF $\$ 7,500,000$ aUthorized to ee apzrozziated for the fiscal year 1928 ey the act approved June 22, 1926, and \$2,55E, 000 part of the amount authorized to ee afpropriated for the fiecal year 1929 ey the act approved June 22, 1926. also provides that upon the approval of this act the \$7,500, D00 availaele for forest roads for the fiscal year 1923 shall ee appontioned and prorated. For euildoing federal-ald roads there is appropriated $\$ 71,000,000$. This sum is c.JMPOSED of \$27,800,000, the remainder of the $\$ 75,000,000$ authorized for the fiscal year ending June 30, 1927; and $\$ 43,200,000$, part of the $\$ 75,000,000$ authorized fid the fiscal year ending June 30, 1928.
h.r. I2040. - Introduced in the house on March 13, by C. 3. Edwards of Georgia, and referred to the Committee on Roads: Provides that the federal-ald highways shall be named as well as numeered on maps and direct innal sions in order to derpetuate the purposes uf SUCH MEMORIALS.
h.res. 117. - Introduced in the house on feeruary 20, ey W. J. Sears of flofida, and referred to the Gommittee on poads: Authorizes the bu:eau to make a slirvey to determine the cost of certain eridges on United Statec foute 1 and its extension from the Florida mainland to key west.
H. Res. 119. - Int ioduced in the house on Feeruary 21, ey E. Cellef of New York, and refetred to the Commit:ee on Laeor: proVIDES THAT THE FEESIDENT SHALL AUTHOFIZE THE HEADS OF ALL DEPARTMENTE AND EUREAUS TJ SDEED UP GLL GOVERNMENT EUILOING AND CONstruction, in order to eeuuce the amount of uivemployment,
S. 1341. - Introduced in the Senate on Decemeer 6, by T. L. Oddie of Nevada: fassed the Senate on March 2, and referred to the Committee on poads of the House on March 6.
S. 1369. - Introduced in the Senate on Decemeer 6, ey C. A. Swanson of Virginia. Passed the Senate on March 6, and referred to the Committee on Roads of the House on March 8.
S. 3184. - Introduced in the Senate on Feeruary 13, by B. Cutting of New Mexico, and referred to the Committee on post Offices and post Roads: provides for the amennment of ex:sting FEderal-aid road legislation, ey authorizing an apfropriation of $\$ 3,500,000$ for each of the fiscal years 1929: 1930, and 1931, for the construction and maintenance ey the Bureau, of the main roads in the puelic-land States, through unappropriated or unreservec puelic lands, non-taxaele indian lands, or other federal reservations. A similar bill (H.R. 7343) was reported in the Decemeer 1 327 New Letter.
S.3559. - Introduced in the Senate on March 8, by J. E. Watson of Indiana, and referred to the Committee on post Offices and post Roads: Provides that the proceeds from the sale of surpllus war material and supplies to the government of France, amounting to \$407,341, 145 ee used for the construction of federal-ald and forest roads, and park roads in the district of Columeia. a similar bill (H.R. IO|42) was descrieed in the last News letter.
S.J. Res. 30. - Introduced in the Senate on Decemeer 12, by L. C. Phiprs of Colorado: Passed ey the Senate and referred to the House and reported out without amendment ey the house Committee on Foreign Affalrs on March 2, 1928.
S.J. Res. 31. - Introduced in the Senate on Decemeer 12, ey L. C. Phiprs of Colorado: passed ey the Senate and refeqred to the house and reported out without amendment ey the house Comm!ttee on Foreign affalrs on March 2, 1928.

AUSTIN BRADSTREET FLETCHER

(Not for release)

Austin Bradstreet Fletcher, consult ing engineer for the Bureau, died of pneumonia at 3 p.m., March 8, at his home, 24 Hesketh Street, Chevy Chase, Maryland. He had been ill only a week. While making a highway accident study for the bureau, he contracted a cold at Cleveland, OHIO, WHICh upon his return to Washington grew steadily worse and finally developed into acute pneumonia.

Mr. Fletcher was widely known and respected as a leader in the field of highway engineering. As State highway engineer of California, from 1909 to 1919 , he rendered conspicuous serVICE IN THE FORMULATION AND DIRECTION OF THE PROGRAM OF MODERN road improvement in that State.

With the creat ion of the California Department of puelic WORKS IN 1919 , Mr. Fletcher eecame the director of puelic works, A POSITION WHICH HE HELD UNTIL 1923 AND IN WHICH HE WAS IN CHARGE of all engineering works of the State.

In the summer of 1923 he served as consulting engineer for the New england Rail Committee, a body made up of represent at ives of the six New England States, and charged with the duty OF STUDYING THE ENTIRE TRANSPORTATION SITUATION IN NEW ENGLAND. Mr. Fletcher was called upon to make a special study and report OF HIGHWAY TRANSPORTATION CONDITIONS.

Since July, 1924, he has served as consulting highway engiNEER fof the Bureau, Cont inu ing in this connection his valuarle services to the cause of road improvement in the United States.

Mr. Fletcher was eorn at Cameridge, Mass., January 19, 1872. He was a graduate of the Lawrence Scientific School of Harvard University, from which he received an S. B. degree in 1893. For several years after his graduation he was the secretafy and executive officer of the Massachusetts highway Comimission, one of the earliest of the state highway departments. in the summer of 1916 he was selected ey the Secretary of agriculTURE TO ASSIST IN DRAFTING RULES AND REGULATIONS FOR CARRYING into effect the Federal-aid road act, passed ey Congress in that year. He was a member of the americin Society of Civil engineers, the american Society for testing Materials, the

Boston Society of Civil Engineers, the american Association of State Highway Officials, the association Internationale permanente des Congres de la Route, and various other engiNEERING societies, a fellow df the american geographical : Society, a memeer of the Massachueetts Society of Sons of the amefican Revolution and of the Society of Colonial Wars of California. He was also a member of the íosmos Clue, Washington, D. C., the Harvard Clue of San francisco, and the Harvard Engineers Clue of New York City.

He is survived ey his wife Ethel and one faughter, mrs, Laurence H. Chapman of Sacramento, California.
, $1: 6$

