

D'Ji

.IFORNIA 93943

NAVAL P0ST8RA

Monterey, California

THESIS
APL TUTOR:

AN ON-LINE INSTRUCTIONAL FACILITY

by

Katherine S . Lanes

December 19 8 3

Thesis Advisor: R. R. Read

Approved for public release; distribution unlimited

T2I5241

SECURITY CLASSIFICATION OF THIS PAGE (Whan Data Entered)

REPORT DOCUMENTATION PAGE READ INSTRUCTIONS
BEFORE COMPLETING FORM

I. REPORT NUMBER 2. GOVT ACCESSION NO 3. RECIPIENT'S CATALOG NUMBER

4. TITLE (and SubtUla)

APL TUTOR: An On-Line Instructional
Facility

5. TYPE OF REPORT & PERIOD COVERED

Master's Thesis
December 19 9 3

6. PERFORMING ORG. REPORT NUMBER

7. AUTHOHf*;

Katherine A. Lanes

8. CONTRACT OR GRANT NUMBER^

9. PERFORMING ORGANIZATION NAME AND AOORESS

Naval Postgraduate School
Monterey, California 93943

10. PROGRAM ELEMENT, PROJECT. TASK
AREA ft WORK UNIT NUMBERS

II. CONTROLLING OFFICE NAME ANO ADDRESS

Naval Postgraduate School
Monterey, California 93943

12. REPORT DATE

December 19 3 3
13. NUMBER OF PAGES

20
14. MONITORING AGENCY NAME » AOORESSf// dlflarant from Controlling Oiflca) 15. SECURITY CLASS, (ot thla report)

15«. DECLASSIFICATION/ DOWNGRADING
SCHEDULE

16. DISTRIBUTION STATEMENT (of thla Raport)

Approved for public release; distribution unlimited

17. DISTRIBUTION STATEMENT (ol tha abatraet entered In Block 20, If dlltarant trom Report)

I*. SUPPLEMENTARY NOTES

It. KEY WOROS (Continue on reverse aida If naeaaamty and] identity by block number,

APL, programming language, tutorial, CAI , CAL

20. ABSTRACT (Continue on ravaraa aida It nacaaaary and identity by block nuoibar)

This thesis describes a set of APL programs which enable a
student to learn A Programming Language (APL) by using it. The
student needs to know only how to log on to the computer and
enter a few simple commands to begin the course.

The basic unit of the TUTOR workspace is the text variable
which describes the use of one of seventy-five built-in APL
functions. This description is accessible by a HELP function

DO i jam 71 1473 EDITION OF I NOV 95 IS OBSOLETE

S/N 0102- LF- 014- 6601
]_ SECURITY CLASSIFICATION OF THIS PAGE (Whan Data Entarac

SECURITY CLASSIFICATION OF THIS PAGE (Whti D*t* Enlmrmd)

Block 20 .

without going through an entire lesson.
interactive question-and-answer drill.

Other functions conduct
A MENU function lists

the units for student selection of a lesson
a symbol. The student can also go through a
in a computer-driven course.

These programs were written on and for the
tion at Naval Postgraduate School, using APL version 4.0 for
VM/CMS with IBM 3278 terminals.

or information on
sequence of lessons

IBM 3033 installa-

S'N 0102- LF- 014-6601

SECURITY CLASSIFICATION OF THIS PAGEfWh»n Dal* Snfrmd)

Approved for public release; distribution unlimited

APL TUTOR:
An On-Line Instructional Facility

by

Katherine S. Lanes
Lieutenant, United States Navy

B.A. , New Mexico State University, 1974

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN OPERATIONS RESEARCH

from the

NAVAL POSTGRADUATE SCHOOL
December 1983

• RY

RNIA 93

ABSTRACT

This thesis describes a set of APL programs which enable

a student to learn A Programming Language (A?L) by using it.

The student nseds to know only how to log on id the computer

and enter a few simple commands to begin the course.

The basic unit of the TUTOR workspace is the text vari-

able which describes the use of one of seventy-five built-in

A?L functions. This description is accessible by a H3L?

function without going through an entire lesson. Other

functions conduct interactive guestion-and-answer drill. A

MENU function lists the units for student selection of a

lesson or information on a symbol. The stulent can also go

through a sequence of lessons in a ^omputsr-driven course.

These programs were written on and for the IBM 3033

installation at Naval Postgraduate School, using API version

i*.0 for VM/CMS with IBM 3278 terminals.

TABLE OF CONTENTS

I. BACKGROUND 7

II. USING APL TUTOR 9

III. EXTENDING APL TUTOR 12

APPENDIX A: USER'S GUIDE TO APL TUTOR 14

APPENDIX B: PROGRAMMER'S GUIDE 20

A. FLOW CHARTS 20

B. FUNCTIONS 42

C. VARIABLES 67

1. Global variables 5"7

2. Taxt variables 73

D. MAKING MODIFICATIONS 166

APPENDIX C: SAMPLE BUN 163

BIBLIOGRAPHY 199

INITIAL DISTRIBUTION LIST 200

LIST OF FIGURES

B. 1 Interrelationship of TUTOR Functions 22

B.2 Procedure of START Function 23

B.3 Procedure of MENU Function 23

B.4 Procedure of HELP Function 24

B.5 Procedure of INFO Function 25

B.6 Procedure of RUN Function 26

B.7 Procedure of TEACH Function 27

B.8 Procedure of LESSON Function 28

B.9 Procedure of SHOW Function--1 29

B.10 Procedure of SHOW Function- -2 39

B. 1

1

Procedure of SHOW Functicn--3 31

B. 12 Procedure of ASK Function 32

B.13 Procedure of SUMASK Function 33

B. 14 Procedure of SCORE Function 34

E.15 Procedure of RUNDRILL Function 35

B.16 Procedure of DRILL Function 36

B.17 Procedure of PULL Function 37

B.13 Procedure of TRY Function— 1 38

B.19 Procedure of TRY Function--2 39

B.20 Procedure of TEST Function 40

B.21 Procedure of SQUEEZE, NEXTLSSSON, and

ORDERMAT Fns 41

I. BACKGROUND

A Programming Language (APL) is an interactive, inter-

pretive computer language designed by Kenneth E. Iverscn at

Harvard in 1962. Its advantages include the ease cf manipu-

lation of multi-dimensional arrays of numbers, the lack of

rigorous input/output formatting, and the us= of unique

symbols to represent a wide variety of built-in functions.

Unlike other high-level languages, there is no requirement

to write and compile a strictly formatted program before

execution. APL may be used in "deslt calculator" mode, where

a single line of input is accepted and evaluated, returning

an immediate response. While it nay take quite seme •'-ime

for the user to master APL fully, the beginner can quickly

jump in and start experimenting.

The APL TUTOR was designed to snable the beginning APL

sxudent to gain some familiarity with the basic concepts of

the language without going througi a formal course. It

consists of a set of APL programs *hich enable the student

to enter simple commands and receive information, questions,

and drill about the symbols and functions used in APL.

Since at present no information or. writing functions is

included, it may be used as a supplement to the normal mode

of teaching at NPS.

Currently the APL student's resources at NPS consist of

the instructor, other students, and texts such as those

listed in the bibliography. There also exists a copyrighted

IBM drill function, TEACH, found in the APLCOURS workspace

in the public library of most APL installations. (At NPS,

it can be accessed by entering) LOAD 1 APLCOURS while in APL

mode.) This function, and a sub-function, EASYDRILL,

provide simple drill questions for calculator functions

selected by the student. This workspace does not, however,

provide any information concerning the correct use or syntax

of any functions.

Ths specific audience targeted is the first to third

quarter NPS students in the Operations Analysis curriculum,

who are currently taught APL in one-hour weekly labs as part

of three probability and statistics courses. Many, if not

most:, of these students arrive at NPS from six weeks to six

months before their first quarter. It would be to their

advantage to get a 'head start* on learning APL, but there

is no separate course in this language as there is in

FORTRAN or PASCAL, for example.

A basic requirement for the TUTOR, then, is that it be

comprehensible to someone who has naver seen APL before. In

fact, the "dBsk calculator" functions should be understand-

able to someone who has never even used a computer before.

This means that some of the beginning lessens may seem too

simplistic to the student who has some programming experi-

ence. However, the more advanced student can easily skim

through this primary material and progress to the more

sophisticated concepts. Intermediate mathematics including

concepts of linear algebra is the only background informa-

tion that is assumed.

II. USING APL TUTOR

The APL TUTOR workspace should be available in one of

the public libraries at NPS

.

Instructions for loading and

copying it are on the first page of Appendix A. If it is

not available in the public libraries, it can be obtained

from Professor R. R. Read upon request..

The APL TUTOR workspace contains sixteen functions which

administer tha course. Their interrelationship is shewn in

Figure B.1. In this diagram, the ovals indicate functions

which are called by the student, while rectangles indicate

functions which are called internally. The procedure of

each function is outlined in Figures B.U through B.21.

Further information can be found in the comment lines of

each program in Appendix 5, part B.

The actual text of the course is contained in APL V2ri-

ables which are displayed by the functions SHOW and RUN.

The text of each variable can be found in Appendix 5, part

C.2. Also in Appendix B (part C.1) are several global vari-

ables which are used in various programs. Most important of

these is MAT, which provides information on each text vari-

able, such as the symbol it pertains to, the function type

(Monadic/Dyadic/Neither) , the type of arguments it takes

(Numeric, character (K) , Either, Boolean), the rank of the

arguments permitted (Scalar, Vector, matrix(X), Any), and a

sequential lesson number. The other major global variable

is CUES, which consists of a number of questions that can be

called upon by the ASK function.

Before commencing the APL TUTDR course, the student

needs to have, as a minimum, the instructions given on the

first page of Appendix A. The other information the student

will need is displayed by the TUTOR, and is also included in

Appendix A, which should be given to all students who will

be using TUTOR. The variable HDrf is displayed each and

every time the workspace TUTOR is loaded by the student, and

can also be called up at any time by entering HOW. The

other variables in Appendix A are displayed by the START

function. Most may be called up by the student at any time,

as noted.

Figure B.1 shows the variety of ways the student can

access and use the information in TUTOR. The beginner

enters START to get the basic background information needed

to complete the course. START instructs the student to

enter LESSON 100 to begin the course. After completing this

lesson, the student merely has to enter LESSON NEXT to

receive the instructional units in the order indicated in

the variable MAT.

The student who is enrolled in a course using APL may

also follow the instructor's guidance concerning lessons tc

taks. The student enters LESSON NNN, where NNN is the

lesson number assigned. A more advanced student can explore

or review earlier lessons by entering TEACH and then the

symbol that he/she is interested in.

The more advanced student may also be interested in the

HELP function which displays information without asking

questions or providing a drill. The student can enter HELP,

followed by the appropriate symbol, or INFO NNN, where NNN

is the same as the pertinent lesson number. These lesson

numbers can be found by entering MENU and browsing the list

displayed. MENU also repeats tha instructions for using

LESSON and INFO.

Effort has been made to ensure that the programs will

not terminate abnormally in response to a student input

error. Every input is checked for validity before it is

processed. For example, see the function DRILL, page 59, at

lines 8 to 17. However, because it is not possible to check

10

for every possible input or combination of inputs, there may

still be some way to cause an error. Instructions to the

student in case of an error are included in the EASICS

displayed by the START function. The student should have a

hard copy of thess instructions, as wall.

Any input by the student at a time when no input is

called for will cause an abnormal termination. This is

inherent in the APL interpreter and cannot be avoided by the

programmer. However, all the student needs to dc in this

case is restart by entering one of the elementary commands

(HELP, TEACH, LESSON, etc.)

A sample run is included at Appendix C.

11

III. EXTENDING APL TUTOR

There are many ways in which the APL TUTOR can be

expanded to improve its usefulness. Lessons could be

included on the many systsm commands and variables which are

used in APL. Auxiliary lessons on groups of functions, e.g.

logical functions, and their basio concepts could provide

useful additional information. Lsssons could be added to

describe programming techniques, and amplifying lessons on

applications could be provided. Probably any of the lessens

could benefit from additional questions to be included in

the ASK function. Also, the ASK function itself could be

modified to permit mere complex questions and answers.

Another type of improvement from the pedagogical point

of view would be the inclusion of facilities for measuring

and recording students 1 progress. The student could bs

tested after every lesson or group of lessons and the scores

recorded for the instructors review. Or, the course could

be designed to automatically review the student's weak areas

and retest before going on. In any case, it might be bene-

ficial to include lessons which raview concepts covered by

the course so far.

A test and evaluation of the TUTOR would be extremely

beneficial in comparing it to the current teaching methods.

Students could be tested for their knowledge of APL and

those who had used the TUTOR compared to those who had not.

Furthermore, different versions of the TUTOR could be tested

against each other. Several different texts could be used,

or versions with and without the drill functions.

This could lead to a still more sophisticated modifica-

tion of the course, in combination with programmed student

testing. After an initial unit, the testing could be

12

designed to reveal what type cf instruction, e.g. drill or

no drill, works bast for that individual student. Or, the

student could simply be asked his or her preferences in

terms of teaching techniques. Than the course would auto-

matically tailor later lessons to the individual.

All of these changes require someone skilled in APL to

modify the current programs. These programs have been

heavily documented by flow charts and comment lines

(Appendix B) in order to make the task of modification

easier. Also, specific instructions for certain types of

modifications are included in the variable HOWMODS, Appendix

B, part D. Any advanced student can personalize a copy of

TUTOR with the help of these tips. For mere substantial

modifications such as those suggested above, the point of

contact for the public version of TUTOR at NFS is Professor

R. R. Pead.

13

APPENDIX A

USEE'S GUIDE TO APL TUTOR

IF YOU HAVE NEVER EVER USED THE COMPUTER BEFORE, START HERE:

1. Go to the Registration and Accounting Office inside
Ingersoll rm. 141. Ask for a user number. You will
ne€d to tell them the password you want to use.

2. While you are there, pick ud a copy of NPS Technical
Note VH-01, "User's Guide to Vm/CMS at NPS."

3. Follow the instructions in VM-0 1 for logging on and
formatting your disk. If your keyboard has little red
symbols on it, you may continue with step 6 below.
Otherwise, log off (see VM-01) and continue with step 4
when you are ready.

IF YOU HAVE FORMATTED YOUR DISK, START HERE:

4. Find a free terminal (in Ingersoll room 141 or room 369)
that has red symbols on the keyboard.

5. Log on and enter your password.
6. When you see a line beginning CMS..., Drees the ENTER

key.
7. When you see a line beginning R: ..., enter the letters

APL.
8. You should see several lines appear ending with the line

CLEAR WS. If you don't, stop nere and gef help!
9. New look at the bottom center of your screen, below the

line. If you see the letters APL, go on to the next
step. If you don't, hold down the ALT key (next to the
ENTER key) and press the large kev at the too right of
the main keyboard which has APL ON-OFF in red letters on
the front. The letters APL should now appear at the
bottom of your screen. This tells the terminal to use
the red symbols when you upshift. To use the red
symbols on the front of the keys, you must hold down the
ALT key instead of the SHIFT key.

10. IE THIS IS THE VERY FIRST TIME YOU ARE USING APL TUTOR,
ENTER) LOAD 5 TUTOR. (Remember to use the red paren-
thesis, third row, far right, not the black parenthesis
in the tOD row.) OR FOLLOW THE DIRECTIONS GIVEN 3Y YOUR
INSTRUCTOR. If you have used TUTOR before, and you
followed the directions in steps 12 and 13 below, just
enter) LOAD TUTOR.

11. Now just follow the directions which appear on the
screen. If no directions appear, and all you see is a
line which says SAVED... and possibly a line which says
WSSIZE.... enter HOW to see the directions. To be sure
that the directions appear every time, enter START, and
follow steps 12 and 13 when you finish your session.

12. If this is the first time you have used TUTOR, enter
) WSID TUTOR.

13. When you are ready to quit for the day. enter)SAVE.
14. When you see the time, date, and TUTOR, enter)OFF.

This will log you off the computer comoletely. (For
more advanced students:) OFF HOLD will* return you to
CMS.)

14

HOW

you may use the afl tutor im three ways*

(1) enter • helf

to select the symbols that you want information about,

(2) enter; teach

to select the symbols that you want information and drill on

(3) enter; menu

to see a list of symbols a n d topics,

if you have never used the afl tutor before, enter j start

to see these instructions again at any time, enter* how

15

INTRO

WELCOME TO THE APL TUTOR.

THE PURPOSE OF THIS WORKSPACE IS TO INTRODUCE YOU TO

•A PROGRAMMING LANGUAGE 1 BY DESCRIBING THE FUNCTIONS OF THE

MANY SPECIAL APL SYMBOLS, AND BY OUTLINING THE PROCEDURES FOR

DESIGNING YOUR OWN FUNCTIONS,

BACKGROUND

THE APL TUTOR ASSUMES YOU HAVE HAD LINEAR ALGEBRA AND TR I G I NOMETR Y

,

CALCULUS IS NOT NECESSARY

,

IF YOU HAVE NEVER HAD ANY COMPUTER PROGRAMMING BEFORE, DON'T WORRY,

YOU CAN START USING APL RIGHT AWAY, AS A SUPER-SOPHISTICATED

CALCULATOR WITH MANY BUILT-IN FUNCTIONS,

IF YOU HAVE STUDIED OTHER COMPUTER PROGRAMMING LANGUAGES, RELAX,

APL IS NOT LIKE ANY OF THE OTHER MAJOR HIGH-LEVEL LANGUAGES,

YOU CAN FORGET ABOUT DATA TYPES, INPUT/OUTPUT FORMATTING, AND

MANY OF THE OTHER TEDIOUS DETAILS OF FORTRAN, PASCAL, ETC,

AFTER YOU ARE SUFFICIENTLY FAMILIAR WITH THE CALCULATOR MODE

OF APL, YOU CAN LEARN TO DEFINE YOUR OWN FUNCTIONS WITH EASE,

16

BASICS

HERE IS SOME BASIC INFORMATION YOU WILL NEED TO KNOW IN ORDER TO

UNDERSTAND THE APL TUTOR LESSONS,

MONADIC AND DYADIC FUNCTIONS

YOU ARE ALREADY FAMILIAR WITH SYMBOLS WHICH REPRESENT ARITHMETIC

FUNCTIONS, SUCH AS + OR r, APt- USES THESE SYMBOLS AND MANY OTHERS

TO REPRESENT A VARIETY OF FUNCTIONS,

MANY FUNCTIONS, SUCH AS + , REQUIRE TWO ARGUMENTS, THAT IS, TWO INPUT

NUMBERS, IN APL, THESE ARE CALLED DYADIC FUNCTIONS, AND THE SYMBOL

IS PLACED BETWEEN THE ARGUMENTS} FOR EXAMPLE, 3+4,

OTHER FUNCTIONS, SUCH AS LN (NATURAL LOG), REQUIRE ONLY ONE ARGUMENT,

THESE MONADIC FUNCTION SYMBOLS ARE PLACED TO THE LEFT OF THE DATA

WHICH THEY ARE TO OPERATE ON, FOR EXAMPLE, LN 3 IN APL IS 93,

DATA TYPES

APL DISTINGUISHES ONLY TWO TYPES OF DATA; NUMERIC AND CHARACTER,

VERY SIMPLY, CHARACTER DATA ARE ENCLOSED IN QUOTES (') WHEN ENTERED,

'2' 15 CHARACTER DATA; 2 IS NUMERIC DATA, SOME FUNCTIONS

WILL OPERATE ON BOTH TYPES OF DATA, SOME ONLY ON NUMERIC,

ARRAYS

THE GREATEST STRENGTH OF APL LIES IN ITS ABILITY TO TAKE AN ENTIRE

ARRAY OF NUMBERS AS A SINGLE ARGUMENT, THUS TWO MATRIXES CAN BE

ADDED BY ENTERING SIMPLY A+B, WITH NO SUBSCRIPTS, LOOPS, ETC,

THIS MAKES IT IMPORTANT TO KNOW THE RANK (THE NUMBER OF DIMENSIONS)

OF DATA IN USE, A SINGLE NUMBER IS NORMALLY A SCALAR (RANK 0),

A SERIES OF NUMBERS IS A VECTOR, A ONE-DIMENSIONAL ARRAY (RANK 1),

NUMBERS CAN ALSO BE ARRANGED IN ROWS AND COLUMNS, TO MAKE A MATRIX

(RANK 2)« MATRIXES CAN BE 'STACKED 1 TO MAKE UP THE PAGES OF A

THREE-DIMENSIONAL ARRAY, OFTEN CALLED A BOOK (RANK 3), IN FACT,

THERE IS HO LIMIT TO THE NUMBER OF DIMENSIONS IN AN APL ARRAY,

THE LENGTH OF THE DIMENSIONS IS ALSO EFFECTIVELY UNLIMITED, LENGTH

17

REFERS TO THE NUMBER OF ELEMENTS IN A DIMENSION, FOR EXAMPLE,

THE NUMBER OF ROWS, LENGTH MAY EVEN BE Q»

IN THIS TUTORIAL. A SCALAR MAY BE REFERRED TO AS S, L, OP R,

A VECTOR MAY BE CALLED V, VJ, f
OR V2j WHILE A MATRIX IS M, «1 ?

OR M2

,

AN ARRAY, WHICH MAY BE A VECTOR, A MATRIX, OR AN ARRAY OF ANY HIGHER

DIMENSION, WILL BE LABELLED A, A^, OR A2,

EXAMFLES

WHEN EXAMPLES ARE GIVEN IN THE TEXT OF A FUNCTION DESCRIPTION , THE

SYMBOL => IS USED BETWEEN THE EXAMPLE INPUT AND THE EXAMPLE OUTPUT,

FOR EXAMPLE
J 2 + 5 => 7

THIS SYMBOL CAN BE READ AS 'PRODUCES' OR 'RETURNS',

ERRORS

YOU SHOULD NOT RECEIVE ANY ERROR MESSAGES WHILE USING APL TUTOR,

HOWEVER, YOU MAY SEE A PHRASE LIKE 'VALUE ERROR' (WITHOUT QUOTE

MARKS) WHEN YOU ARE EXPECTING A NORMAL RESPONSE,

OR IF YOU ACCIDENTALLY HIT THE ENTER KEY WHEN THE COMPUTER IS NOT

EXPECTING AN INPUT, THE FUNCTION MAY END ABRUPTLY, LIKE THIS;

MENU C&3

IF EITHER OF THESE THINGS HAPPEN, BE SURE TO ENTER* -> (UPSHIFT *.

)

THEN RESTART WITH ANY COMMAND,

HALTING A LESSON

YOU MAY STOP ANY LESSON AT ANY POINT WHERE A QUESTION IS ASKED

BY ENTERING: STOP

TO SEE THIS INFORMATION AGAIN AT ANY TIME, ENTER; BASICS

18

howteach

you mat start a lesson iii three wats;

(1) enter; lesson nextlesson

to start the lesson follwing the last one you completed,

(2) enter; lesson nnn (where nnn is a 3-digit number)

to start lesson number nnn,

to see a list of lesson numbers, enter; menu

(3) enter; TEACH

TO SELECT THE SYMBOL THAT YOU WANT A LESSON ON,

TO SEE THIS INFORMATION AGAIN AT ANY TIME, ENTER; HOWTEACH

19

APPENDIX B

PROGRAMMER'S GUIDE

A. FLOW CHARTS

Figure B.1 shows the relationship of the various func-

tions within the TUTOR workspace. The first function called

by the new student should be START. After that, the student

will usually commence a session by calling MENU, TEACH,

HELP, LESSON, or INFO. These functions in turn call the

other functions of TUTOR as indicated by the arrows. The

procedure of these functions is outlined in figures 3.2

through B.21.

In APL, there is no difference in the programming of

main routines, subroutines, and functions; all are referred

to as functions. However, when oie function calls another

function, the calling function is suspended until the called

function is completed. Then the calling function resumes

operation, possibly using the result of the called function.

Therefore, "return to the calling function, if any" is

implied at the end of every program but is not explicit.

END, implying return, is shown in the iiagrams only in those

functions which are normally called by another function.

It should be noted that "room for expansion" has been

provided in the SHOW, RUNDRILL, DRILL, ana TEST functions.

RUNDRILL and DRILL have the capability to display drill

guestions with matrix arguments. This capacity is not

currently being used because the mswer must be input in

vector form. It was felt that this might confuse the

student. However, further development and experimentation

might find uses for this type of question, so the matrix

form has been left available. TEST and SHOW have calling

20

lines for the matrix form comments:! out:. There are also

comment lines in SHOW to indicate *here matrix and higher-

level arrays questions would go if they are added in the

future. See the section on making modifications for more

information.

The four functions at: the bottom of figure B.1 are not

part of the TUTOR function hierarchy. NEXTLESSON is used to

provide a lesson number when the student calls for LESSON

NEXTLESSON. ORDERMAT is provided for the benefit of zhe

programmer to rearrange the sequence of lessons in the

course. TEST is also provided for zhe programmer (or

student) who wishes to run only the drill section of a

lesson. SQUEEZE is a utility called by several functions to

delete blanks in a string of characters.

21

START

LESSON)

ASK

SCORE

SUMASK RUNDRILL

PULL

TRY

DRILL

MEXTLESSON ORDERMAT

Figure B. 1 Interrelationship of TUTOR Functions,

22

START

Ensure
HOW

displays

Baste
Infor-
mation

Figure B. 2 Procedure of START Function

MENU

Format
menu

Menu &
Tnstr

Figure B.3 Procedure of HEHO Function

23

HELP

Request
Input.

Accept
response

SQUEEZE
response

MENU?

MENU

N FTnd row
f ndexes

<Jw rowsK_

Regrets
message

Start
counter

Increment
counter

RUN

aows(i)

Figure B.U Procedure of HELP Function

24

Regrets
message

Regrets
message

Figure B.5 Procedure of IHFO Function

25

RUN

(ROW)

Assign
name

Assign
ful Iname

SQUEEZE
ful Iname

Regrets
message

General
text

i
Scalar
text

Query
more
fnfo? /

Vector
text

Matrix
text

Arrays
text

Figure B.6 Procedure of RON Function,

26

TEACH

Request
fnput.

Accept
response

SQUEEZE
response

Find row
Indexes

Regrets
message

Start
counter

Increment
counter

SHOW

,C ROWS CI)

Figure 3.7 Procedure of TEACH Function.

N

I
/ Regrets
message

J Regrets
message

Figure B. 8 Procedure of LESSON Function,

28

GSHOW
(ROW)

Set
variables

Regrets
message

Start
counter;

General
text

Set ASK
params

(OV)
ASK
IAY-1

(WT)
SUMASK

Scalar
text

sk O's'

JL

Set ASK
params

(OV)
ASK

(1)
RUNDRILL

Figure B.9 Procedure of SHOW Function— 1.

29

r (2)
(RUNDRILL
V JUJ

(2)
RUNDRILL
12X

M-M -.

"X
f (3) \
I RUNDRILL ,'

r
Stop "-

Figure B.10 Procedure of SHOW Functiori--2-

30

Arrays
text

sk O's

Set ASK
params

(WT)
SUHASK
CRT)

Halt
message

Figure B.11 Procedure of SHOW Function--3.

31

CQUES) \
ASK)

Increment
quest f on
count

Start
loop

counter

Regrets
message

Increment
loop

counter

irt

\y
Start

wrongans
count

Figure B.12 Procedure of ASK Function

32

(WT)
SUMASK
JLB1X

Figurs B.13 Procedure of SOMASK Function,

33

Display
quest ton

Accept
input.

SQUEEZE
input

ul

Set flag
'proceed*

[ENO]

Inc wrong
answer

~

counter

Set flag
•stop*

Inc wrong
answer

counters

*f£ND

N

Try
again

message

Set flag
*repeat r

Correct
answer
message

Set flag
proceed*

Figure B. 14 Procedure of SCORE Function.

34

(L)
RUNORILL

(H)

Start
answer

counters

Add sym
for red,

scan

Format
function
display

Set
mul tf pi fer

CD
PULLm

777^
PULL)

-00 S

Format
monadic

4 a

Format
dyadic Q&A

(0)
DRILL

Delete
extra sym

Figure B. 15 Procedure of SUHDRILL Function.

35

Set
default
flag

Drill
question

Accept,
tnput

Set stop
flag

Incorrect
entry
message

Correct
message

Wrong
answer
message

Inc wrong
answer
counter

Inc rtght
answer
counter

Figure B. 16 Procedure of DRILL Function.

36

(P)
PULL

Default
return
null

Set
mul t f pi ter

Format
return

Define
numoer
DOOl

Set
return

for logs

N

Expand
pool

Select
return

ENDv

Figure B. 17 Procedure of POLL Function

37

Start
restart
counter

Inc
restart
counter

Start try
counter

Reouest
Input.

Accept
tnput.

Get help
message

ENDv

Set Truth
flag

Set
Content
flag

N

Inc wrong

Set stop
flag

Correct 1

END

Figure B-18 Procedure of TRY Function—

1

33

Ask ff
rev tew /

desf red J

/Statement
not true

/Try agatn

L

Symbol /
not used /

©

Figurs B-19 Procedure of TRY Function— 2.

39

Set
variables

(1)
3UNDRIL

Halt
message

Figure 3.20 Procedure of TEST Function

40

SQUEEZE

(STRING)

ORDERMAT

Delete
blanks fn
strfnq

Ffnd
fndex of

LASTLESSON

D
Create
vector

lesson #s

Return
next

lesson NNN

Index
vector
order

Reorder
MAT dy
fndex

Figure B-21 Procedure of SQUEEZE, NEXTLESSON, and OHDERMAT Fns,

U1

B. FUNCTIONS

The following section contains the APL functions which

operate the TUTOR course. The comment lines, which begin

with a symbol, indicate the procedure in general, but do

not describe the specific programming techniques us^d.

42

V START

[1] n ENSURES 'HOW 1 APPEARS WHEH WORKSPACE IS LOADED

[23 QLXf'HOW'

[33 fl
DISPLAYS INFORMATION FOR FIRST-TIME USER

[4] Q<-INTRO

[53 Qt-BACKGROUND

[i] nt-BASICS

[73 n<- HowTEftCH

[83 D<-CR 5
'TO START YOUR FIRST LESSON IN APL , ENTER} LESSON 1 Q

1

7

43

7 MENUJZZZ

[1] fl
REQUIRES GLOBAL VARIABLE MAT

C2] Q*-
1 INFORMATION IS AVAILABLE OH THE FOLLOWING SYMBOLS/TOPICS;'

C3] A FORMAT AND DISPLAY MENU

C4] zzzM5fi)»0»(17fi)»G

C5] ((r((f^ AT)Cl])-3) r72)fZZZ*QTZ ;lescol,symcol,fnamecol]

[6] Q*-'To 5EE menu again, enter; menu 1
, eg, 'for informat

ION ABOUT FUNCTION, ENTER
J

INFO NNN (WHERE HHH IS MENU NUMBER)

'j££j' T0 '30 THROUGH TUTORIAL LESSON, ENTER} LESSON NNN 1

V

44

7 HELP } SYMBOL J
ROWS} NNN } R

[I] fi
CALLS OUEUE, MENU, SQUEEZE

[2] n<-' EHTEP: THE SYMBOL(S) YOU WOULD LIKE I ((FORMAT I OH ABOUT, 1

[3] Qf ' OR,, .FOR MENU SELECTION, ENTER
J

MENU'

[4] fi
DELETE BLANKS IN RESPONSE

[5] SYMBOL*-SQUEEZE SYMBOL(-Q

[6] ft
IF RESPONSE IS 'MENU', GO TO 'OTHER' ; ELSE GO ON

[7] -+OTHERX \ (4 = + /+/S YMBOLo ,= ' MENU '

)

C83 ft
FIND INDEXES OF ROWS THAT CONTAIN THE RESPONSE IN SYMBOL COLUMN

[9] ROWS<-(MAT[J5YMC0L jg SYMBOL)/ \ (pMAT) [1]

CIO] ft
IF M0 RCWS CONTAIN RESPONSE, GO TO ' OOPS3

»
) ELSE GO ON

[II] 400PS3xiO = f R '3WS

C12] ft
START LOOP COUNTER AND SET LESSON NR TO

[13] NNH«-R«-0

[14] fl INCREMENT COUNTER

[15] NEWROWJR«-R + l

[16] D«-£B

[17] ft
CALL RUN TO DISPLAY HELP FUNCTION FOR ROW CORRESPONDING TO COUNTE

R

[13] RUN ROWS[R]

[19] ft
IF MORE ROWS REMAIN, RETURN TO NEWROW} ELSE GO ON

[20] -jNEWROWx
1. R<f ROWS

[21] ft
PRINT FUNCTION ENDING MSG AND EXIT

[22] n«- ,FOf:: MOPE HELP, ENTER; HELP'

[23] 40

[24] ft
SYMBOL NOT FOUND} PRINT ERROR MSG AND EXIT

[25] OOPS3JQ*- 1 SORRY, INFORMATION ABOUT THIS SYMBOL IS NOT AVAILABLE AT T

HIS TIME , ' ,CP, ' FOR HELP WITH ANOTHER SYMBOL, ENTER
J

HELP,'

[26] ->0

[27] A RESPONSE IS 'MENU'} EXECUTE RESPONSE AND EXIT

[28] OTHERJjtSYMBOL

7

V IHFO NNN J ROW

[1] R CALLS run; REQUIRES GLOBAL VARIABLE MAT

[2] ft
IF MNH IS HOT A SCALAR, GO TO 'OOPSU ELSE GO OH

[3] 4OOPSlX\(ffMWN)>0

[4] a FIND INDEXES OF ROW

[5] ROW*.
(
(i,MAT[;LESCOL])=HHH)/\

(f MAT)[1]

[6] ft
IF H0 ROWS CONTAIN RESPONSE, GO TO ' OOP53

'
j ELSE GO OH

[7] 4OOPS3x\0=f ft°w

C8] ft
RUN HELP FUNCTION

[9] RUM ROW

[10] ft
DISPLAY ENDING MESSAGE

Ell] QfCR,'FOR MORE INFORMATION, ENTER* INFO NNN

'

C12] +

[13] ft
VECTOR argument; print error msg AND EXIT

[14] OOPS! ;Q*- ' INFO MUST BE FOLLOWED BY A SIHGLE PARAMETER ,', CR ,' TO RESTA

F:T, EHTERJ INFO NNN (WHERE NNN IS A THREE-DIGIT NUMBER) 1

[15] ^0

[163 ft
INFO HOT FOUND} PRINT ERROR MSG AND EXIT

[17] OOPS3{Q*>'SORRY, IHFORMATIOH ABOUT THIS SYMBOL IS HOT AVAILABLE AT T

HIS TIME, < ,CR, ' FOR HELP WITH ANOTHER SYMBOL, ENTER* HELP, 1

V

46

v run row
;
name; rah k ;fname;u

[1] fl
CALLED BY HELP, IHFO, TRY; CALLS SQUEEZE

[2] A REQUIRES GLOBAL VARIABLE MAT

C33 ftASSIGW THE NAME OF THE HELP VARIABLE TO THE VARIABLE 'DAME'

[4] HAMEf ,MAT[ROW JHAMECOL]

[5] fl
GO TO HA IF THE HELR VARIABLE ' HAME ' DOES HOT EXIST

J
ELSE GO OH

C63 4HA X \0 = D'«C HAME

[7] n DISPLAY THE GENERAL DESCRIPTION PORTIOH OF THE HELP VARIABLE

C8] DM0 1)*<(iWAme)CJ13= ,

.
,)/±w«me

[9] ft
DISPLAY SCALAR PORTIOH OF HELP VARIABLE

CIO] DM0 lH<<±WAME)[il3='*')/lNAME

CI 13 ft
IF H0 MORE INFO, EXIT} ELSE GO OH

C12] »0xi*l£(iNftME)CJi3€ , vn*'

C13] ft
A5K IF ^ORE DETAILED INFO DESIRED

C 143 Q«-CR f 'WORE?'

C153 ft
IF RESPONSE IS HULL, EXIT? ELSE GO ON

C163 ->0x\0=fU<-Q

C173 »0xi* , Y's(,u)Cl]

C183 a DISPLAY VECTOR PORTION OF HELP VARIABLE

C193 DM0 l)4'((lHAME)[;i]='v')/ ±HAME

C203 ft
DISPLAY MATRIX PORTIOH OF HELP VARIABLE

C213 DM0 l)4r((iNAME)CJ13='n ,

)jtiMftME

C223 fl
DISPLAY ALL ARRAYS PORTION OF HELP VARIABLE

I

C233 DM0 l)i<(lNAME)i:Ji]='*')/1NAME

C243 40

C253 ft
fiSSIGH FULL HAME OF SYMBOL TO VARIABLE ' FNAME

'
j PRINT ERROR M5G

C263 HA;FNAMEfSGUEEZE,MAT[;ROWJFNAMECOL]

C273 Q«-CR, ' SORRY, INFORMATION ABOUT ', FNAME,' IS HOT AVAILABLE AT THI!

TIME.

'

47

V TEACH ; SYMBOL
J
ROWS }MHH J F:

[I] ft
CALLS SCHEDULE, MEHU, SQUEEZE

C2] Qt-'ENTER THE SYMBOL(S) YOU WOULD LIKE I NFORM AT I OH ABOUT,'

[3] 0+-' OR FOR MEHU SELECTION, ENTER* MEHU'

[4] fl
DELETE BLANKS IN RESPONSE

[5] SYMBOLf-SGUEEZE SYMBOL*-Q

L61 ft
IF RESPONSE IS 'MENU 1

,
00 TO 'OTHER 1

;
ELSE GO ON

[7] ^OTHERx \ (
4 = + / + /STMB0L» , = ' MEHU '

)

[8] ft
FIND INDEXES OF ROWS THAT CONTAIN THE RESPONSE IN SYMBOL COLUMN

[9] ROWS*- (MAT [;SYMCOL] £
SYMBOL)/\ (fMAT)Q]

CIO] ft
IF H0 ROWS CONTAIN RESPONSE, 00 TO ' OOPS3

<
J ELSE 00 ON

[II] -»COPS3x\0 = fKC.WS

C12] ft
INITIALIZE LOOP COUNTER AND SET LESSON NR TO

[1_3] NNN^-Rf-O

[14] a INCREMENT COUNTER

[15] NEWROW JR.4-R+1

C163 d<-£E

C17] ft
CALL SHOW TO DISPLAY TEACH FUNCTION FOR ROW INDEXED BY COUNTER

[13] SHOW ROWS[R]

[19] ft
IF ROWS REMAIN, RETURN TO NEWROWJ ELSE GO ON

[20] -*NEWROWx\R<f ROWS

[21] ft
DISPLAY END OF SCHEDULE M5G AND EXIT

[22] Q<-CR,'THIS IS THE END 0F SCHEDULED LESSONS , ', CR ,' TO SELECT MORE LE

SSONS, enter; TEACH '

[23] 40

[24] ft
SYMBOL NOT FOUND} PRINT ERROR MSG AND EitIT

[25] OOPS3»0<-' SORRY, INFORMATION ABOUT THIS SYMBOL IS HOT AVAILABLE AT T

HIS TIME ,' ,CR, ' FOR LESSONS ON ANOTHER SYMBOL, ENTERJ TEACH'

[26] 40

[27] ft
RESPONSE IS 'MENU'} EXECUTE RESPONSE AND EXIT

[28] OTHER JtSYMBOL

7

48

V LE5S0M NNN $ ROW

CI] ft
CALLS SHOW

[23 ft
IF NNH IS W0T ft SCALAR, GO TO 'OOPS1J ELSE GO ON

[3] 4OOPSlXl(ffHNM)>0

[4] ft
SELECT ROW FOR LESSON NUMBER NNH

[5] ROW<-
((t , MAT[J

LE5C0L]) =NNN) / \ (f MAT) [i]

C6] ft
IF H0 ROWS CONTAIN RESPONSE, GO TO 'OOFS3'j ELSE GO ON

[7] +OOPS3X\0 = f P:CW

[Q] fl
CALL SHOW TO DISPLAY TEACH FUNCTION FOR ROWS SELECTED

[9] SHOW ROW

CIO] ft
DISPLAY ENDING MESSAGE AND EXIT

Cil] Q<-' T START ANOTHER LESSON, ENTER; LESSON NNN '

C12] ->0

C13] ft
VECTOR ARGUMENT^ PRINT ERROR MSG AND EMIT

[14] OOPS1 tQf ' LESSON MUST BE FOLLOWED BY A SINGLE PARAMETER 4 ' , CR ,
» TO RES

TART, ENTER; LESSON NNN (WHERE NNN IS A THREE-DIGIT NUMBER)

C15] ->0

C16] ft
LESSON NOT FOUND; PRINT ERROR MSG AND EXIT

C17] OOPS3JQ*.' SORRY, INFORMATION ABOUT THIS SYMBOL IS NOT AVAILABLE AT T

HIS TIME ,' ,CR, ' FOR HELP WITH ANOTHER SYMBOL, ENTER; HELP,'

7

49

v show row} name jg} rank jfname} y} rtj wtjgv} av j type ; arg} ssjfjsym

[I] fl
called by schedule, lesson} calls ask, rundrill, try. squeeze

c2] ft
requires global variable mat

£33 ft
set variables correspond i no to row

[4] hame<-,mat[row;hamecol]

[5] fnamef squeeze, m at [ro w } fn amecol

]

[£] sym<-mat[row}symcol]

[7] rank«-mat[row fsvxacol]

[9] type<rmat[row j mdcolj

[9] arg<-mat[row}nkcol]

CIO] ft
G0 T0 ' Nfll IF HELP VARIABLE DOES HOT EXIST} ELSE GO ON

[II] 4MAXI(0=QHC NAME)

[12] ft
INITIALIZE TOTAL QUESTION, WRONG ANSWER COUNTERS

[13] P-TfWTt-0

[14] '>\0

[15] ft

[16] ft
DISPLAY GENERAL PORTION OF HELP VARIABLE

[17] DM0 lHUlHAME^illJa 1

.
')/iMAME

[18] ft
GENERAL QUESTIONS

[19] aV(-l,(5xiTYP£='D')f6

[20] AV«-(t l + TYPE= ' D '), SQUEEZE RANK

[21] QV ASK AV

[22] ft
CHECK NUMBER OF RIGHT ANSWERS

[23] WT SUMASK RT

[24] ft
IF FLAG INDICATES 'STOP' RESPONSE, GO TO HALT} ELSE GO ON

[25] 4HALT X Y=2

[26] ft

[27] ft
DISPLAY SCALAR PORTION OF HELP VARIABLE

[28] Q>(0 l)*((lHflME)[}13=»»')/3tNAME

[29] ft
SCALAR QUESTIONS

[30] 4SDx\TYPE='M'

[31] av<-2

[32] AV«.'MY« [1+SYM € '+xrL = ^vvAA' J

50

[33] QV ASK AV

[34] ft
IF FLAG INDICATES 'STOP' RESPONSE, GO TO HALT

J
ELSE GC OH

[35] ->HALTxi=2

[36] ft
SCALAR DRILL

[37] SDj4Vxi*STM ? 55 <-'+-x-rL: I
» \ * < < = > > 5*vA V* , f t

'

[33] + V X \ ((SYM € ' +*f , '

)
aTTPE= '

M
')v(SYM £

' \ '
)
aTYPE= '

D

'

[39] 1 RUHDRILL 1

[40] ft
IF FLAG INDICATES 'STOP 1 RESPONSE, GO TO HALT

J
ELSE GO OH

[41] 4HALTxT=2

[42] ft

[43] ft
DISPLAY VECTOR PORTION OF HELP VARIABLE

[44] VJQf(0 lHUlHAME) [ills' v')/ 1 HAME

[45] ft
ASK VECTOR QUESTIONS

[46] 4VDXITYPE=«M'

[47] av<-3

[48] AVf'FT'Cl+SYM £ SS, ^[rmtliTt 1

]

[49] QV ASK AV

[50] R IF FLAG INDICATES 'STOP' RESPONSE, GO TO HALT} ELSE GO ON

[51] ->HALTXY=2

[52] ft
VECTOR DRILL

[53] VDJ4KX* (*SYM £ SS, ' **£ /\,<\f <KJe ')v((SYM S
' , + *')aTYPE= 'M')y(SYM s

• /\f\ >)a

TYPE= '
D

'

[54] *VSX\(SYM 6 '1 ')

[55] 1 RUHDRILL 2

[56] ft
IF FLAG INDICATES 'STOP' RESPONSE, GO TO HALT} ELSE GO ON

[57] ->HALTXY = 2

[58] VS:->Wx\ (SYMj '(ppf*
1)ATYPE='M'

[59] -»XX\ (SYMj ' ft^e')vTYPE='M'

[60] 2 RUHDRILL 1

[61] ft
IF FLAG INDICATES 'STOP' RESPONSE, GO TO HALT} ELSE GO OH

[62] -»HALTXY=2

[63] vv;->xxiSYM E \
<

[64] 2 RUHDRILL 2

[65] ft
IF FLAG IHDICATE5 'STOP' RESPONSE, GO TO HALT

J
ELSE GO OH

51

[66:

[67:

[68:

[69:

C7o:

C7i:

[72:

[73:

[74:

[75:

[76:

[77:

[78:

[7?:

[3o:

[81

[82:

[83:

[84:

Ldb.

[86:

[37:

[88:

[89:

[9o:

[91

[92'

[93:

[94:

[9b.

[96:

[97:

[98:

[99:

-*HALTxT = 2

R

fl
DISPLAY MATRIX PORTION OF HELP VARIABLE

XJD«-(0 i)*((lNAME)CJ13=» n ')/ ± NAME

fl
ASK MATRIX QUESTIGN5

4AX \TYFE= '
M

QV*-4

SVf FT' [1+5YM £ '+-Xr?.»:rLI=^V*'AA']

QV ASK AV

n IF FLAG INDICATES 'STOP' RESPONSE, GO TO HALT} ELSE GO ON

-jHALTx'l=2

R MATRIX DRILL

MDJ ftTTPE R'JNDRILL 3

fl
IF FLAG INDICATES 'STOP' RESPONSE, GO TO HALT; ELSE GO ON

*HALTx'T = 2

ft

ft
DISPLAY ALL ARRAYS PORTION OF HELP VARIABLE

A:C3M0 l)4r<(±HAME)C;i:='s ')/ tNAME

fi
ASK Ai_L ARRAYS QUESTIONS

OV«.8»9X\XF«. + /(l 2)X,ARG £ 'KE'

AVf(' NY ' [1 + XF]), SQUEEZE ' LRB'd+F]

QV ASK AV

a IF FLAG INDICATES 'STOP' RESPONSE, GO TO HALT; ELSE GO ON

4HALTxY=2

„

ft
SUMMARIZE STUDENT PERFORMANCE

SUMJWT SUMASK RT

ft
IF FLAG INDICATES 'STOP' RESPONSE, GO TO HALT

J
ELSE GO ON

-»HALT X Y = 2

ft

ft
CALL TRY FOR SELECTED SYMBOLS

EXPJ ->ENDx*(SYM s
' +-Xt '

) aTYPE= ' D '

TRY SYM

ft
IF FLAG INDICATES 'STOP' RESPONSE, GO TO HALT; ELSE GO ON

52

[100] -*HALTxT=2

CI 01] fl

[102] A LESSON COMPLETE} IF NHH=0 (TEACH), EXITj ELSE SO OK

[103] EHDJ40XIWNH=0

[104] fl
NNNj*Q (LESSON) J SET LASTLESSON TO THIS LESSON NR

[105] OUT JLASTLESSONf NHN

[106] ft
DISPLAY MSG AND EXIT

[107] 0<-£P; >' THIS IS THE E ' iD 0F YOUR LESSON, 1

[108] Qf-'FOR THE NEXT LESSON IN. SEQUENCE, ENTER
J

LESSON NEKTLESSON '

[109] 40

[110] fl
HELP VAP NOT AVAILABLE} DISPLAY ERROR MSG AND EMIT

[111] NA;CR, ' SORRY, INFORMATION ABOUT ' , FNAME , ' IS NOT AVAILABLE AT THIS

TIME,

[112] 40

[113] HALTJCR, THIS LESSON HAS BEEN HALTED, 1

53

V QUES ASK OHSJRJW}! JAJLJARJRK}Q

[I] n CALLED BY SHOW; CALLS SCORE

C2] fl
REQUIRES NOM-LOCAL VARIABLES RT,WT,Y, GLOBAL CUES

[3] fi
ASSIGN THE NUMBER OF QUESTIONS TO 'R'

[4] R«-f,QUES

[5] fl
ASSIGNS TOTAL NUMBER OF QUESTIONS TO 'RT'

[£] RTfRT+R

[7] R Ifr Hp: 0F QUESTIONS ± NR OF ANSWERS, GO TO 'OOFS') ELSE GO OH

[3] ->OOPSx\Rif ,AM5

[9] fl
INITIALIZE COUNTER, CHARACTER VARS

CIO] K-0

[II] A START LOOP} INCREMENT COUNTER; INITALIZE WRONG ANSWER COUNT

C123 start;i<-i + i

[13] «<-0

[14] R ASSIGN QUESTION AND ANSWER PARAMETERS FOR ASK FUNCTION

[15] A<-(,ANS}[I]

[16] Q(-CR, 1CUES[(,.lUE5)[Ii;]

[17] fl
CALL 'SCORE' TO EVCLUATE THE QUESTION

[18] QUERY; A SCORE Q

[19] fl
IF FLAG INDICATES 'REPEAT', RETURN TO SAME QUESTION;

[20] ft
Ifr FLAG INDICATES 'STOP' RESPONSE, EXIT; ELSE GO ON

[21] ->(QUERY,0)[']

[22] ft
IF QUESTIONS REMAIN, RETURN TO 'START'; ELSE EMIT

[23] ->STARTx\I<R

[24] ->0

[25] b F0P: debugging; arguments not same length; print error msg and ei;i

T

[26] OOPSJQ*. ' p QUES $ fANS'

54

v a score a; input

[1] fl
CALLED BY ASK

[2] fl
REQUIRES NON-LOCAL VARIABLES T,W,WT

[3] fl
DISPLAY TEXT OF QUESTION

C43 Qt-Q

[5] ft
ASSIGN RESPONSE TO 'INPUT' AFTER DELETING BLANKS

[£] INPUTS-SQUEEZE INPUTt-Q

C7] ft
IF RESPONSE IS NULL, ADD 1 WRONG AMS AND GO TO ' LAST

•
j ELSE GO ON

[Q] WT«-WT+0 = f INPUT

[9] ^LASTx\0=f INPUT

CIO] ft
IF RESPONSE IS 'STOP', GO TO ' OUT

'
} ELSE GO OH

[U] -»OUTx \4 = + / + /INPUTo , = ' STOP '

C12] ft
IF RESPONSE ± RIGHT ANSWER, GO TO 'WRONG 1

;
ELSE GO OH

[13] NEXT*-*WRONGx\
(, I NPUT

) [1] ± A

[14] a DISPLAY M5G

[15] Q>'RiGHT'

L16] ft
5£T FLAG TO NULL; EMIT

[17] -rQ»'>lO

[18] ft
INCREMENT WRONG ANSWER COUNTERS

[19] wrong ;w«-w+i

[20] WT(-WT + 1

C21] ft
G0 T0 LAST IF THREE WRONG ANSWERS TO THIS QUESTION} ELSE GO OH

[22] 4LASTx\W13

[23] ft
DISPLAY MSG

[24] •'SORRY, PLEASE TRY AGAIN'

[25] ft
SET FLAG TO INDICATE REPEAT QUESTION} EXIT

C26] ->0»'>1

[27] ft 40

C28] ft
THREE WRONG ANSWERS; DISPLAY MSG

[29] LAST []<-' SORRY, THE CORRECT ANSWER IS ',A

[30] ft
SET FLAG TO INDICATE GO TO NEXT QUESTION} EXIT

[31] ->0>'<-\0

[32] ft
SET PLAG TO INDICATE 'STOP 1 RESPONSE

[33] OUT -if 2

V

55

7 WT SUMASK R

CI] ft
CALLED BY SHOW AFTER ALL 'ASK' CALLS

C2] ft
IF FEWER WRONG RESPONSES THAW QUESTIONS, EXIT

J
ELSE GO OH

[33 40XlWT<R

[4] n WRONG RESPONSES >_ QUESTIONS? DISPLAY MESSAGE AND EMIT

[5] u>' TOU ENTERED '

f (t WT)f' WRONG ANSWERS OUT OF '

, (t P:) , QUESTIONS,'

[6] D>' IF" ,ou WANT TO RETAKE THIS LESSON, ENTER
J

LESSON '

7 t , M A T [~:0 W ',

LE5C0L]

[7] -'>2

7

56

7 L RUNDRILL NJFUNCJR ', K\ J K2 } S J A J W $ C ;

M

[1] ft
CALLED BY 5H0WJ CALLS DR I LL , FULL

[2] R REQUIRES NON-LOCAL VARIABLES SYM, TYPE

C33 ft
INITIALISE ANSWER COUNTERS

[4] c«.w<-o

C5] start;

[63 ft
EXTEND SYM FOR REDUCTION, SCAN

[73 sym«-((SYM € '/\/V)/C+-rL=')C?53)»SYM

C83 ft
FORMAT FUNCTION DISPLAY

C93 R*-(1»1»2)CM]

C103 FUHC«.(R,3)f • ',SYM,'

[113 ft
SET MULTIPLIER

C123 m<-?3

C133 ft
RULL RANDOM NUMBER ARGUMENTS

L143 KIM PULL L

[153 K2<-2 FULI- H

[163 ft
1F K l IS EMPTY VECTOR, EXIT} ELSE GO ON

[173 -»0x\0=f»Kl

[183 ft
IF TYPE IS MONADIC, GO TO MONTY

J
ELSE GO ON

[193 4M0NTTX \TYPE= '

M

'

[203 ft
FORMAT DYADIC Q / A

[213 H|-(tKi),FUNC, t K2

[223 A<-l(tf><l),5YM, t ,K2

[233 *kuh

[243 ft
FORMAT MONADIC Q/fl

[253 monty;

[263 Q4-FUNC, t K2

[273 «t-l5YM, t ,K2

[283 ft
P:UW DRILL

[293 pun; a drill a

[303 ft
DELETE EXTRA SYMBOL (IF ANY)

[313 SYM<--ltSYM

[323 ft
IF STOP FLAG IS SET, EXIT} ELSE GO ON

57

[33] ->0xt' = 2

[34] ft
if wrong answers > 3, go to ' rev

'
j else go oh

[35] 4REVXIW>3

[36] fl
IF RIGHT ANSWERS (1, RETURN TO 'START 1

;
ELSE EKIT

[37] 4STARTXIC<1

[38] ->0

[39] REVj

[40] Qt-CR, 'PLEASE REVIEW THE DESCRIPTION OF THIS FUNCTION OR TALK WITH

YOUR',CR,' INSTRUCTOR BEFORE RETURNING TO THIS UNIT,'

[41] v*-2

V

58

\? Zi-p full njrjcjljhjejpool

[1] a CALLED BY RUNDRILL

[2] fl
REQUIRES NON-LOCAL VARIABLES 5YM, M

[3] ft
SET DEFAULT VALUE

[4] Z*\0

[5] ft
P IS 1 FOft LEFT ARC-, 2 FOf;: RIGHT ARG

[£] a SET MULTIPLIER BASED OH M FROM J TO 3(EI!CEPT MONADIC fL)

[7] MULT*-((10*M-2)»0.1)Cl+(STM L i]j 'fL')A(TYPE='M') A* (~1 *SYM) £ ' /\/V 3

[3] n M IS RANK OF DESIRED RANDOM ARRAY} ASSIGN ROWS AND COLUMNS TO R A

N D C

[?] RMIf 1»2>C»]

CIO] C^(l,(l+M) f 2)C"]

Cll] ft
DETERMINE LIMITS BASED ON TYRE OF SYMBOL

[12] POHDJPOOL^O

[133 fool<-rool, (sym[1] £
' +-x r L * <i=i>*sn')/MULT X H,0j-H(-\?

[14] POOLt-POOL, ((5YMC13€ 'fif [*J}e')AP=2)/MULTXH,0»-H

[15] POOLf-POOL, (
(SYM[1] £

' H^e')aP = 1)/E,-E<- \lfM

[16] POOL <-ROOL,((SYM[l] f. >
| i I *f ') > /2f 3f

4

[17] POOL<-FOOL,(SYM[l] £
>i'

)
/MULT x D , -D t-2 > 4 f 5 , 3

[13] POOLt-POOL, (SYM[1] £
« vAv** 1)/ 1

[19] POOLs-POOL, ((SYM[13=:*t«) aTYPE='M<)/l, *\3

[20] -»P2X\ (TYPES' M«)vSYMC13?f t '

[21] ft
KLUGE FOR LOGARITHM— K2 ALWAYS A POWER OF i<1 (POOL IS EMPTY)

[22] POOL<-POOL, ((SYM[!]='&')a(TYPE='D') AP = 1) /2 f 3 > 1

[23] 4PZx\R=l

[24] Zf(R,C)f ((SYMC13=«t')ATYPE='D«)/(,Kl)*?(f ,Kl)f3

[25] ft
IP" MO NUMBERS IN FOOL, EXIT; ELSE GO ON

[26] Pz:->0x\0=fPOOL

[27] POOLt-lQOfFOOL

[28] ft
PROVIDE ARRAY OF RANDOM MRS

[29] Z<-(R,C)fPOOL[(RxC)?1003

V

59

7 q drill ojbjsbjsgjl

[I] fl
called by ruhdrill} calls squeeze

[2] ft
requires non-lccal variables c,wj global cr

[3] start:

[4] "'MO

[5] n DISPLAY DRILL QUESTION

[£] ASK JQf-CR, ' WHAT IS THE RESULT OFJ'

C71 <-<*

C8] ft
IF REFOHSE IS 'STOP', GO TO 'HALT'} ELSE GO OH

[9] -fHfiLTK (4 = +/ + / ' STOP ' « , :SBfSQUEEZE BfQ

CIO] ft
IF ANSWER TS NULL, GO TO WR} ELSE GO ON

[II] 4WRxiO=f5B

[12] ft
CHECK FOR NUMERIC RESPONSE

[13] ck:-»iaxi(0j5&j '1234567390."')v*0£5B £
-,«

[14] ft
IF LENGTH CP RESPONSE ji LENGTH OF GIVEN ANSWER, GO TO ' WR '

} ELSE

GO ON

[15] 4WRxt(F»A)*ff±*

[16] A IF RESPONSE = GIVEN ANSWER, GO TO ' RT
>

j ELSE GO ON

[17] ->RTxi ((,A)A, = , t B)

[18] ft
ANSWER IS WRONG} DISPLAY ANSWER

[19] WRJQf SORRY, CORRECT ANSWER ISJ 1

[20] Qf«

[21] ft
INCREMENT WRONG ANSWER COUNTER AND RETURN TO RUNDRILL

[22] w^-w + i

[23] -»G

[24] ft
ANSWER IS RIGHT; DISPLAY MESSAGE

[25] RTiOt-'CORRECTJ '

[26] ft
INCREMENT RIGHT ANSWER COUNTER AND RETURN

[27] c«-c + i

[28] ->0

[29] NAJ[]<- 'SORRY, THIS ANSWER NOT ACCEPTABLE, PLEASE ENTER A NUMERIC ANS

WER, '

[30] 4ASK

60

£313 fl
STOP AT STUDENT REQUEST; SET FLAG AMD EMIT

[32] HALTJ40»'»>2

7

61

7 TRY 5YMJWJBJT}C JTW

H2 fi
CALLED BY SHOW ; CALLS RUN

[2] ft
REQUIRES NON-LQCAL VARIABLES ROW, SYM, FNAME

C3] T w<-0

[4] restart;tw<-tw+i

C5] ft
°o T0 ouch if restart counter equals 3

[£] 40UCHX\TW=3

[7] ft
initialise flags amd wrong answer counter

[8] t«-c<-w<-o

[9] fl
request student input a logical expression using the symbol

CIO] START*

[11] D<"£B» ' WRITE A TRUE STATEMENT USING ' , S YM ,
'

,
'

, CR , 'F OR EXAMPLE* 4 = 2 +

[12] ft
IF RESPONSE IS -STOP', GO TO 'HALT 'J ELSE GO ON

C13] -»HALTxM = + / + /'STOP' *,=&*-Q

[14] ft
IF RESPONSE IS A NULL OR A NAME, GO TO ' WRONG

'
J ELSE GO OH

[15] +WRONGx\(4/nNC B)vO=fB

[16] ft
SET T =l IF STATEMENT IS TRUE

[17] NEXTJTf.l=iB

[19] ft
5ET c =l IF STATEMENT CONTAINS THE SYMBOL

[19] C«-SYMjB

[20] ft
G0 T0 RIGHT IF T AND C BOTH EQUAL ij ELSE GO ON

[21] 4RIGHTx\TaC

[22] ft
ANSWER IS WRONG} INCREMENT COUNTER

[23] WRONG JWfW+1

[24] ft
g0 t0 rev if wrong answer counter equals 3

[25] -*revx\w=3

[26] ft
g0 t0 nosym if the statement is true} else go on

[27] ->N0STMX\T

[28] ft
PRINT ERROR MSG

[29] NT JQ(- ' SORRY, THIS STATEMENT IS NOT TRUE,'

[30] ft
00 TO NOSYM IF THE STATEMENT DOES NOT CONTAIN THE SYMBOL; ELSE GO

ON

62

[31] 4H0SYMx\.vC

[32] R PRINT WSG ftND RETURN TO START

[333 Qt-'TRY AGAIN, '

[34] ->5TART

C35] ft
PRINT ERROR MSG AND RETURN TO START

[36] NOSYMJQ*- • YOUR ANSWER DOES NOT USE ',SYW
?
>, TRY AGAIN,'

[37] -tSTART

[38] ft
PRINT M5G AND EMIT

[39] RIGHT ««.' CORRECT {
'

[40] +0

[41] ft
PRINT MSG AND RESTART

[42] REVJQ(-CR, ' DO YOU WISH TO REVIEW THE DESCRIPTION OF ' jFMAME ,
' ? • ,CR, '

ENTER Y OR N, '

[43] ft
IF RESPONSE IS NULL OR NOT Y, GO TO RESTART, ELSE GO ON

[44] 4RESTARTxiO=PB«-0

[45] -»RESTART X \
' Y'+B

[46] ft
DISPLAY HELP VAR I ABLE , THEN RESTART

[47] RUN ROW

[48] ^RESTART

[49] ft
THREE RESTARTS? DISPLAY MESSAGE AND EXIT

[50] OUCH JQ<- ' PLEASE SEE YOUR INSTRUCTOR FOP ASSISTANCE, 1

[51] ^0

[52] ft
STOP AT STUDENT REQUEST

J
SET FLAG AND EXIT

[53] HflLTt40f"»>2

7

63

7 TEST NHNJHAMEJGJRANK } FHAMEJ Y } B:T } WT J OV J AV } TYPE} AF:G J 5S

[1] fl
USED TO TEST DRILL

J CALLS RUNDRILL, TRY, SQUEEZE

[23 fl
SET VARIABLES C0RRE5R0HDI MG TO ROW

[33 ROW<-(
(1 ,MAT[}LE5COL3)=NNH)/UfMAT)C13

[4] HAME(-
r
MAT[ROW;HflMECOL]

[5] FNAME<-SaUEEZE,MAT[ROW;FNAMECOL]

[63 SYM«-MAT[ROW JSl'MCOL]

[7] RflMKf mat[ROw;sv;;acol]

[3] TTFE<-MAT[ROW JMDCOL]

[y] ARG«-MAT[ROW JNKCOL]

[10] v±\Q

[113 ft
SCALAR DRILL

[123 SD{^Vxi*SYM € SSt.'+-X-rrLi I "\ * < i= > > /vA v*, f •
'

C133 +V JU (
(S'IM £ ' + *j ,

')ATYPE='M'
) v (SYM{ '

\
•)ATYPE='D'

[14] 1 RUHDRILL 1

[153 fl
IF FLAG INDICATES 'STOP' RESPONSE, GO TO HALT; ELSE GO OH

[163 ->HALTxi=2

[173 VJ^VDx\(0=nMC NAME)

C133 ft
VECTOR DRILL

[193 vd:->>; X \ (*sym £ ss, ' tiiAAf+ta 1)v((sym s
'

, + *
'
)atype='M"

) v (sym £ ' /\/V)
A

TYPEs '

D

'

[203 -»VSX\(SYM € >\ '

)

[213 1 RUHDRILL 2

[223 ft
IF FLAG INDICATES 'STOP' RESPONSE, GO TO HALT; ELSE GO OH

[233 4HALTXY=2

[24 3 VSJ+VVXI (SYMg ' d>f tA ')ATYPE= ' M '

[253 -»*x\ (sym £ 'f t^<je')vTYPE='M«

[263 2 RUHDRILL 1

[273 ft
* F FLAG INDICATES 'STOP 1 RESPONSE, GO TO HALT; ELSE GO OH

[283 4HALTXY=2

[293 vv;-»xxisym s
•

\
>

[303 2 ruhdrill 2

[313 ft
* f flag indicates 'stop' response, go to halt; else go oh

64

C321 ->Hfli_Txr=2

C333 X{4MD X \(0=QHC NAME)

[34] MD{4ftX*(5YMj
'

f
'

)ATYPE='X'

C353 1 RUMDRILL 3

[36] ft
IF FLAG INDICATES 'STOP' RESPONSE, GO TO HALT? ELSE GO OH

[37] 4HALTXI=2

[333 AiDt-'TEST OK'

[39] ->0

[40] HALT *CR, ' THIS TEST HAS BEEN HALTED,'

7

65

V Z«-MEXTLES50N}I$V

CI] fiFIND INDEX OF LAST LESSON IN VECTOR OF LESSON NUMBERS

C2] I(-(V^. lT MATQJLE5CCL]) \LASTLESSON

C3] rRETURM next lesson number in SEQUENCE

[43 Zt-vci + 13

V

<7 ORDEftMAT JOM JICOM

CI] ft
SORTS THE VARIABLE 'MAT' IN ACSENDING ORDER OF LESSON NUMBER

[2] ft
CREATE VECTOR OF LESSON MRS

C3] OM^a»MAT[;u3

[4] n FIND INDEXES OF LESSONS IN ORDER

[53 ICOM«-,£OM

f_£] R REORDER MAT ACCORDING TO INDEXES

[7] MAT^MAT[ICOMJ

]

<7

V Zt-SQUEEZE STRING

[1] ft
CALLED BY HELP, RUN, TEACH, SHOW, SCORE, DRILL

[2] ft
DELETES BLANKS IN CHARACTER STRING ARGUMENT

C3] Z<-(' '^fSTRING)/, STRING

V

66

C. VARIABLES

1 . Global y aria bigs

The following section contains all of the global

variables in the TUTOR workspace except, the text variables

(part C) and the user's guide variables called by the START

function (appendix A) . MAT is tha most important variable

in TUTOR, as it is called on to cross-index symbols, lesson

numbers, function names, and selected function characteris-

tics. The variables with names ending in COL index the

columns of MAT for use ia the functions, so that these

columns can be rearranged if necessary. CUES provides ques-

tions for use in the ASK function, and ail of the two-

letter, underlined variables (except CR) contain sets of

multiple-choice answers for use with CUES. The other impor-

tant global variable is LASTLESSON which is given a value by

the SHOW function to indicate the last lesson completed.

All other variables used in TUTOR functions are local vari-

ables at some level of the calling hierarchy.

67

MAT

101
-

M H S NEGA MEGATIVE_NUMBER

102 + M N A COHJ CONJUGATE

103 + D N H A A PLUS PLUS

104 - M H A CHAN CHANGE_SIGN

105 - D N N A A M I N U MIWUS

106 X M N A SIGN SIGMUM

107 X D M N A A TIME TIMES

108 ^ M N A RECI RECIPROCAL

10? r D H H A A r>i VI DIVIDE

121 () M E A PARE PARENS

122 i i M K V QUOT QUOTE

123 <- d K E V A SPEC SPECIFICATION

124 f M E A SHAP SHAPE

125 P D H E V A R.ESH RESHAPE

126 C3 D E N A A BRAC BRACKETS

127 » M E A RAVE RAVEL

128 i
D E E A A GATE CATENATE

129 \ M N V INDE INDEX_GENERATOR

131 / M E A RED 2 REDUCTION

132 / M E A REI'l REDUCTION

141 it M N A EXPO EXPONENTIAL

142 A D N N A A FOWE POWER

143 • M H A HATU NATURAL_LOG

144 a D N H A A LOGA LOGARITHM

145 a H H A PIT I PI_TIMES

146 D H H A A GEOM GEOMETRIC

147 i

* M H A FACT FACTORIAL

143 l

1
D H H A A BINO BINOMIAL

149 1
M H A MAGN MAGNITUDE

151 \ H E A 5CA2 SCAN

152 \ M E A 5CA1 SCAN

161 r M H A CEIL CEILING

162 L M H A FLOO FLOOR

68

163 r D M N A A MAX I MAXIMUM

164 L D H H A A MINI MINIMUM

165 1
D N N A A RES I RESIDUE

166 4 M N V GRUP GRADEJJP

167 t M H V GRAB GRADE_DOWN

168 ? M H A ROLL ROLL

169 ? D 1! N S 5 DEAL DEAL

180 = D r E A A EQUA EQUAL

181 t D E E A A NOTE NOT_EQUAL

182 < D H M A A LESS LESS_THAN

183 <_ D N N A A LTEQ LESS_OR_EGUAL

184 I r> H ;•! A A GTEG GREATEP._OR_EO.UAL

185 > D II H A A GREA GREATER_THAN

191 H M B A HOT NOT

192 A D ji B A A A N D AND

193 A D B s A A HAND NAND

194 V D B B A A OR OR

195 V D B B A A NOR NOR

196 £ D E E A A MEMB MEMBER OF

201 $ M E A REV2 REVERSE

202 8 M E s REV'i REVERSE

203 D H E A A ROT2 ROTATE

204 a D N E A A ROT1 ROTATE

205 5) M E A TRAM TRANSPOSE -MONADIC

206 * D H E V A TRAD TRANSPOSE-DYADIC

211 D N E V A TAKE TAKE

212 1 D H E V A DROP DROP

213 / D B £ V A COM2 COMPRESS

214 / D B E V A COM1 COMPRESS

215 \ D B E V A e;<R2 EXPAND

216 \ B B E V A expi EXPAND

219 » D E E A A LAMI LAMINATE

231 a M H •< MATI MATR I X_ INVERSE

232 e D H N yt X MATD MATRIX_DIVIDE

69

241 •

»

r> E E A A OUTE OUTER_FROD'JCT

242 »
D E E A A IN ME INNER^PRQDUCT

301 \ r> E E V A INDO INDEX_OF

304 T D H N A A EHCO ENCODE

305 X D H H A A DECO DECODE

306 i M K V EXEC EXECUTE

307 t D N N V A DYFO FORMAT-DYADIC

308 t M E A FORM FORMAT-MONADIC

70

LESCOL

12 3 4

S't'MCOL

MOCOL

12

MKCOL

16 13

SVXACOL

24

HAMECOL

23 29 30 31

FHAMECOL

35 36 37 33 39 40 41 42 43 44 45 46 47 43 49 50 51

71

CUES

'HOW MANY ARGUMENTS DOES THE ', FNAME,' FUNCTION TAKE?'

DOES S3. ' ,S YM, ' 52 EQUAL 52 '
f STM , « SJ? '

•IF ONE ARGUMENT IS A VECTOR, THE OTHER ARGUMENT MAY BE SCALAR OR VECTOR

(T/F)'

•IF ONE ARGUMENT IS A MATRIX, THE OTHER ARGUMENT MUST BE A SCALAR', CR ,
•

OR A MATRIX OF THE SAME SHARE, (T/F) 1

•WHAT RANK CAN THE LEFT ARGUMENT OF ',FNAME,' BE?',RK

•WHAT RANK CAN THE RIGHT ARGUMENT OF ',FNAME,' BE?',RK

•DO THE ARGUMENTS ALWAYS HAVE TO HAVE THE SAME RANK?'

'CAN , FNAME, ' TAKE CHARACTER ARGUMENTS?'

'IF SO, WHICH ARGUMENT(S) CAN BE CHARACTER?

'

?
AR

•DOES ', FNAME,' TAKE BOOLEAN (J. OR 0) ARGUMENTS?'

IF SO, WHICH ARGUMENT(S) MUST BE BOOLEAN?
'

, AR

ENTER R FOR RIGHT,

L FOR LEFT, OR

& FOR BOTH

ENTER 5 FOR SCALAR

V FOR VECTOR

V, FOR MATRIX

A FOR ANY RANK

2 • Text variabl as

The following global variables contain the basic

text of the TUTOR course. They are printed in the same

order as the lessons. The header above each variable is not

part of the text; it lists the lesson number, the short

title of the variables, and the fall name of the function.

The firs- column control characters are omitted here.

73

101 NEGATIVE N U M B E R: NEGi

»»•••«»•« *********.»>*»»*•**«**>**»•
THE SYMBOL " (UPSHIFT 2) IS USED ONLY TO ENTER NEGATIVE NUMBERS,

IT CAN BE USED ONLY IN FRONT OF SCALARS (SINGLE NUMBERS),

NOT VARIABLE NAMES, ARITHMETIC EXPRESSIONS, OR ARRAYS,

TO CHANGE ARITHMETIC SIGN USE THE SYMBOL - (UPSHIFT +),

74

102 CONJUGATE C N J

»»»»»»»»•+»» •>..t*»l*t>>»««»»l»itt»t»»T<tt»t

the symbol + is used fop: the monadic conjugate function,

this is an identity function which returns its argument, after

evaluation if necessary, it takes numeric arguments of any rank,

example; +2 => 2 +"3+2 = > "1.

75

103 PLUS PLUS

******************************* "•" *********************************

THE SYMBOL + IS USED FOR THE DYADIC PLUS FUNCTION,

THIS PERFORMS SIMPLE ADDITION ON NUMERIC ARGUMENTS OF ANT RANK,

FOR EXAMPLE
J 2 + 2 = SPACING IS NOT IMPORTANT,

TO ADD A SCALAR TO EACH ELEMENT OF A VECTOR, ENTER EITHER S+V OR V + S,

V1+V2 WILL ADD TWO VECTORS ELEMENT BY ELEMENT, FOR EXAMPLE
J

2+(3 4 5) => 5 6 7 (3 4 5)+2 => 5 6 7

(3 4 5)+(5 6 7) => 8 10 12

IF THE TWO VECTORS BEING ADDED ARE NOT THE SAME LENGTH,

YOU WILL GET A 'LENGTH ERROR 1

,

MATRIX ADDITION IS DONE AS FOLLOWS
J

S+M OR M+5 WILL ADD THE SCALAR S TO EACH ELEMENT OF THE MATRIX M,

FOR EXAMPLE; IF M => 12 THEN 3+M = > 45 AND M+3 => 4 5

3 4 6 7 6 7

M1+M2 WILL ADD THE MATRIX Mi TO THE MATRIX M2, ELEMENT B t ELEMENT,

for example; if mi => 1 2 ftHD M 2 => 3 4 then mi+M2 => 4 6

3 4 b 6 10

Ml AND M2 MUST BE THE SAME SHAPE OR A 'LENGTH ERROR' WILL RESULT,

TRYING TO ADD A VECTOR TO A MATRIX WILL RESULT IN A 'RANK ERROR',

THESE PRINCIPLES CAM BE EXTENDED TO HIGHER LEVEL ARRAYS,

76

104 CHANGE SIGN C H A N

******************************* ***********************************

the symbol - (upshift +) is used for the monadic change sign function,

this changes the arithmetic sign of its numeric argument of any rank,

for example; -(1-2 3) => "12 "3.

note the difference between - and - (upshift 2) 1 which indicates

negative numbers.

77

io: M I N U S m i ;•(u

»»»»»»«« :»«4ttlt)»*«»«l«>t««f«««»tt, '»»,-*•

THE SYMBOL - (UPSHIFT +) IS USED FOR THE DYADIC MINUS FUNCTION,

IT PERFORMS SIMPLE SUBTRACTION ON NUMERIC ARGUMENTS OF ANY RANK,

FOR example; 5-2 => 10-~2

to subtract a scalar from each element of a vector, enter v-s,

to subtract each element of a vector from the same scalar, enter s-v

,

vj.-v2 will subtract each element of v'2 from the correspond i ng

element of vi,

vi and v2 must be the same length or you will get a 'length error',

for example: (3 4 5) -2 = > 12 3 2- (3 4 5) => "1 ~2 "3

(4 7 B)-(l 2 3) = > 55 5

ENTER M-S TO SUBTRACT THE SCALAR S FROM EACH ELEM-ENT OF THE MATRIX M,

ENTER S-M TO DO THE OPPOSITE,

for example; if m =;• i 2 then 4-m => 32 A '<& m-2 = > "10

3 4 10 12
MJ-M2 SUBTRACTS MATRIX M2 FROM MATRIX Mi, ELEMENT BY ELEMENT,

for example; if mj_ => 12 AHD M 2 => 3 4 then m2-mi => 2 2

3 4 5 6 2 2

IF Ml AND M2 ARE HOT THE SAME SHAPE, A 'LENGTH ERROR' WILL RESULT,

TRYING TO SUBTRACT A VECTOR FROM A MATRIX OR VICE-VERSA WILL

PRODUCE A 'RANK ERROR',

THESE PRINCIPLES CAN BE EXTENDED TO HIGHER LEVEL ARRAYS.

78

106 SIGNUM SIGi

»»»»»••»»»« i «»•»• * »••» •»••»•»•»»•••• I t » t . ,,!••• ,

THE SYMBOL x IS USED FOR THE MONADIC SIGNUM FUNCTION,

IT RETURNS THE ARITHMETIC SIGN OF THE ARGUMENT; J FOR POSITIVE NUMBERS,

~l FOR NEGATIVE NUMBERS, AND Q FOR ZERO VALUES,

IT TAKES NUMERIC ARGUMENTS OF ANT RANK,

for example; x(3 "2) => 1 ~1 (3+2-5) =>

7?

107 TIMES TIME

«»»»»(i»»t»»»»»«»*t*»»tt«»«»«»f X ******************** * * * * » i * - * i » i -

THE SYMBOL x IS USED FOR THE DYADIC TIMES FUNCTION,

THIS PERFORMS SIMPLE MULTIPLICATION ON NUMERIC ARGUMENTS OF ANT RANK,

for example; 2x4 => 3 ORDER AND SPACING ARE NOT IMPORTANT

TO MULTIPT EACH ELEMENT OF A VECTOR BY A SCALAR, ENTER SxV OR VxS,

V1XV2 RESULTS IN THE PRODUCT OF CORRESPONDING ELEMENTS OF VI AND V2,

for example: 3x(l 2 3) = > 3 6 9 (123)x3 => 36?
(1 2 3) x (2 4 6) => 2 8 18

IF VI AND V2 ARE NOT THE SAME LENGTH, YOU WILL GET A 'LENGTH ERROR',

EITHER MxS OR SxM WILL MULTIPLY A MATRIX BY A SCALAR,

THE RESULT WILL BE A MATRIX THE SAME SHAPE AS M,

FOR EXAMPLE; IF M => 12 THEN 3xM => 3 £ AND Mx3 =} 3 £

3 4 9 12 9 12

Mlx«2 WILL RETURN THE PRODUCT OF CORRESPONDING ELEMENTS IN Ml AND M2,

Ml AND M2 MUST BE THE SAME SHAPE OR YOU WILL GET A 'LENGTH ERROR',

for example; if mi => 1 2 AHr' M 2 => 3 4 then mixM2 => 3 3

3 4 5 6 15 24

IT IS IMPORTANT TO NOTE THAT MULTIPLYING MATRIXES WILL NOT RESULT IN

•MATRIX MULTIPLICATION' (INNER PRODUCT OR DOT PRODUCT),

FOR INFORMATION ON INNER PRODUCT, REQUEST HELP ON ',' (DOT OR PERIOD),

MULTIPLYING A VECTOR WITH A MATRIX WILL RESULT IN A 'RANK ERROR',

THESE PRINCIPLES CAN BE EXTENDED TO HIGHER LEVEL ARRAYS.

80

103 RECIPROCAL REC J

******************************* **************************** * * * . •

the symbol -i- (upshift +) is usee for the monadic reciprocal function,

this returns the result of 1 divided by the argument,

its argument must be numeric and can be of any rank,

however, if the argument has value 0? a 'domain error' will result,

for example; t(1 2 3) => 1 0.5 0.333333333

31

109 DIVIDE D I V I

.».»»»»»»»«»..»«»»».»»»* ~ »»*»»•»•«*»»***
THE SYMBOL i (UPSHIFT x) IS USED FOR THE DYADIC DIVISION FUNCTION,

IT PERFORMS SIMPLE DIVISION ON NUMERIC ARGUMENTS OF ANY RANK

,

for example* s±2 => 3 ~10-~4 => 2.5

DIVIDING BY RESULTS IN A 'DOMAIN ERROR 1

,
EXCEPT THAT 0^0 = > It

TO DIVIDE A SCALAR BY EACH ELEMENT OF A VECTOR, ENTER S-V,

TO DIVIDE EACH ELEMENT OF A VECTOR BY THE SAME SCALAR, ENTER V-rS,

VlrV2 DIVIDES EACH ELEMENT OF VJ BY THE CORRESPONDING ELEMENT OF V2«

VI AND V2 MUST BE THE SAME LENGTH OR YOU WILL GET c, 'LENGTH ERROR 1

,

for example: (3 4 5)^2 => 1,5 2 2.5 3-M3 4 5) => 1 .75 .6

(3 6 9)t(1 2 3) => 333

enter srm to divide the scalar 3 by each element of the matrix m,

mrs will divide each element of m by 5, both operations result in

a matrix the same shape as m,

for example: IF M => 1 2 THEM 2^ M = > 2 1 aHD M ^2 => 0.5 1

4 5 0.5 0.4 2 2.!

M1-HM2 DIVIDES MATRIX Ml BY MATRIX M2, ELEMENT BY ELEMENT,

FOR. EXAMPLE: I|r M l => 2 4 AND M2 => 12 THEN MJ.4-M2 => 2 2

6 8 3 4 2 2

IF Ml AND M2 ARE NOT THE SAME SHAPE, A 'LENGTH ERROR' WILL RESULT,

TRYING TO DIVIDE A MATRIX BY A VECTOR OR VICE-VERSA WILL FRODUCE A

' RANK ERROR .

THESE PRINCIPLES CAN BE EXTENDED TO HIGHER LEVEL ARRAYS,

121 PARENS FARE

******************************* vJ **********************************

PARENTHESES ARE USED TO GROUP SYMBOLS FOR CORRECT PROCESSING BY

THE APL INTERPRETER,

APL DIFFERS FROM EVERY OTHER COMPUTER LANGUAGE IN THE WAY IT

DETERMINES WHICH OPERATION IS PERFORMED FIRST,

IT SIMPLY READS FROM RIGHT TO L EFT --' B AC K WARDS ' --AND PERFORMS EACH

OPERATION AS IT GOES ALONG,

for example; 3x2+1 => ? because 2+1 => 3 &"* 3x3 => 9

1+2x3 => 7 because 2x3 => 6 »**» 1 + 6 => 7

PARENTHESES ARE USED TO OVERRIDE THIS RIGHT-TO-LEFT RULE,

for example; (3x2) + 1 => 7 and (1 +2U3 => ?

EXPRESSIONS WITHIN PARENTHESES ARE EVALUATED FIRST—
ALSO FROM RIGHT TO LEFT,

USING THE RIGHT-TO-LEFT RULE CAN ELIMINATE PARENTHESES,

BUT USING PARENTHESES GENEROUSLY CAN ELIMINATE CONFUSION,

33

i nn QUOTE QUO"

»»»»»»«•»»#» »!>»*-*§». »*»»*. + •**
THE QUOTE MARK ' (UPSHIFT K) IS USED TO ENCLOSE CHARACTER DATA,

AF!_ ASSUMES THAT LETTERS (OR COMBINATIONS OF LETTERS AND NUMBERS)

ARE VARIABLE OR FUNCTION NAMES UNLESS THEY ARE ENCLOSED IN QUOTE!

FOR EXAMPLE; IN THIS TUTORIAL,

HOW => (THE VARIABLE NAMED HOW)

1 HOW => HOW

YOU CAN ALSO USE SYMBOLS AND NUMBERS AS CHARACTER DATA.

34

123 SPECIFICATION S P E C

******** *********************** **********************************

THE SYMBOL 4- IS USED FOR SPECIFICATION,

IT ASSIGNS THE VALUE OF THE RIGHT ARGUMENT TO THE VARIABLE NAME

WHICH IS THE LEFT ARGUMENT,

THE VARIABLE NAME CAN BE ANY COMBINATION OF LETTERS AND NUMBERS (NO

SYMBOLS AND NO SPACES) WHICH BEGINS WITH A LETTER, LENGTH IS

EFFECTIVELY UNLIMITED,

THE RIGHT ARGUMENT CAN BE EITHER CHARACTER OR NUMERIC, OF ANY RANK,

TO SPECIFY A CHARACTER VARIABLE, ENCLOSE THE RIGHT ARGUMENT IN

SINGLE QUOTES (') UNLESS IT IS ANOTHER CHARACTER VARIABLE,

NOTE THAT THE VARIABLE CAN BE USED T (.; THE SAME LINE AS THE VALUE IS

SPECIFIED, FOR EXAMPLE;

K«-3 + Y«.2 RESULTS IN X HAVING VALUE 2 AN*1 "'' HAVING VALUE 5

XfYf^fl RESULTS IN >; , Y, AND 2 ALL HAVING VALUE 1

Vfi 2 3 RESULTS IN V HAVING VECTOR VALUE (12 3)

Vlt-'APL' RESULTS IN V} BEING A CHARACTER VECTOR', APL

V2<-V1 RESULTS IN V2 BEING A CHARACTER VECTOR 4
, APL

SEE HELP ON f (UPSHIFT R) FOR INFORMATION OH SPECIFYING MATRi:

VARIABLES,

124 i H A P E SNAP

******************************* i »»»•••*»*••**« *************

THE SYMBOL f 15 USED FOR THE MONADIC 5HAPE FUNCTION,

THIS RETURNS A DESCRIPTION OF THE SIZE OF ITS ARGUMENT, WHICH CAN

BE NUMERIC OR CHARACTER, OF ANY RANK,

THE SYMBOL CAN BE USED TWICE (PfA) TO RETURN THE RANK OF ITS ARGUMENT

IF THE ARGUMENT IS A SCALAR, fS RETURNS NO NUMBER (AN EMPTY VECTOR),

BECAUSE A SCALAR HA5 NO DIMENSION, ffS = > Q

ENTERING fV RETURNS ONE NUMBER WHICH REPRESENTS THE LENGTH OF

THE VECTOR'S ONE DIMENSION, ff-W => 1

THE SHAPE OF MATRIXES IS EXPRESSED AS A TWO-ELEMENT VECTOR,

THE FIRST ELEMENT EQUALS THE NUMBER OF ROWS (THE LENGTH OF THE

FIRST DIMENSION), AND THE SECOND ELEMENT EOUAL5 THE NUMBER OF

COLUMNS (THE LENGTH OF THE SECOND DIMENSION),

for example; if m => i 2 3 then ?m = > 2 3 & HZ' ff M => 2

FOR HIGHER-LEVEL ARRAYS, f A WILL BE A VECTOR WITH AS MANY ELEMENTS AS

A HAS DIMENSIONS, THE NUMBER OF COLUMNS WILL ALWAYS BE THE LAST

ELEMENT OF fA, THE NUMBER OF ROWS WILL ALWAYS BE THE NEXT-TO-LAST

ELEMENT, PRECEDED BY THE NUMBER OF 'PAGES'

THE NUMBER OF 'BOOKS' OR SPACES, AND SO ON,

FOR EXAMPLE; IF D IS A 4-D I MENS I ONAL ARRAY, ffD => 4,

IF pD r) 5 3 4 2 THEN D HAS 5 BOOKS, EACH WITH 3 PAGES, EACH OF

WHICH HAS 4 ROWS AND 2 COLUMNS, (THIS WOULD BE DISPLAYED AS

FIFTEEN SUCCESSIVE 4x2 MATRIXES—THE FIRST THREE BEING THE FIRST

BOOK, THE SECOND THREE BEING THE SECOND BOOK, ETC,)

36

12! RESHAPE R E S H

»*»»»•»•» f »»»»»>»»»»»»•»*»
THE SYMBOL f IS USED EOF: THE DYADIC RESHAPE FUHCTIOH,

THIS TAKES THE ELEMENTS OF THE RIGHT ARGUMENT AND REARRANGES THEM

ACCORDING TO THE SHAPE SPECIFIED BY THE LEFT ARGUMENT,

THE LEFT ARGUMENT MUST BE AN INTEGER SCALAR OR A VECTOR OF INTEGER

ELEMENTS

,

THE RIGHT ARGUMENT CAN BE NUMERIC OR CHARACTER, OF ANY RANK,

IF THE LEFT ARGUMENT IS A SCALAR, THE RESULT WILL BE A VECTOR WITH

LENGTH EQUAL TO THE SCALAR, CONSISTING OF THE ELEMENTS OF THE RIGHT

ARGUMENT, TAKEN IN ORDER TOP LEFT TO BOTTOM RIGHT,

WHEf THERE ARE NOT EMOUGH ELEMENTS IN THE RIGHT ARGUMENT,

THE FUNCTION WILL START OVER- AND TAHE THE ELEMENTS IN ORDER AGAIN,

AS MANY TIMES AS NECESSARY TO PILL THE VECTOR,

FOR EXAMPLE; 4f 1 =, 1 1 1 1

4 f (
' AB '

)
-) A B 6 B

IF THERE ARE TOO MANY ELEMENTS ON THE RIGHT, THE EXTRAS ARE OMITTED,

pop example; 2f(l 2 3 4) => 1 2

IF THE LEFT ARGUMENT IS A VECTOR, THE ELEMENTS INDICATE, IN ORDER,

LENGTH OF EACH DIMENSION IN THE RESULT,

for example; 2 2fl 2 3 4 => 12

3 A

THIS IS ONE WAY TO ENTER MATRIXES OR ARRAYS OF HIGHER DIMENSION,

USING A MATRIX OR HIGHER-LEVEL ARRAY' AS THE LEFT ARGUMENT OF RESHAPE

WILL RESULT IN A 'RANK ERROR'

87

12, BRACKETS B R A c»»» LJ **********************************

dyadic square brackets are used to index the elements of ah array,

they can be thought of as enclosing subscripts,

the left argument (left of the brackets) can be a numeric or character

array of any rank, but not a scalar, indexing a scalar will result

in a ' rank error
,

the right argument (between the brackets) must be one or more

integer 5calars oft vectors, separated by semicolons (j), there

must be as many 5calars/ vectors as there are dimensions in the

left argument, or a 'rank error' will result,

any numeric expressions within the brackets will be evaluated as if

the brackets and semicolons are parentheses,

brackets can also ee used following these symbols* ,/\/v(j)e

for more information, see help on the appropriate symbol,

for example; if v is a vector with value (3 4 5 6)»

VC13 => 3 >'C1 2] => 3 4 VC1+23 => 5 v[i]+v[2] r=> 7

'A PROGRAMMING LANGUAGE' £ j. 3 J.5] = > APL

THERE IS ONLY ONE SCALAR OR VECTOR WITHIN THE BRACKETS BECAUSE

VECTORS HAVE ONLY ONE DIMENSION,

B'l A SEMICOLON(J) , WITHIN THE BRACKETS,

THE FIRST SUBSCRIPT REFERS TO THE ROW, THE SECOND TO THE COLUMN,

for example; if m =} 12 3 then Mr.Ui] => l and mci 3J23 => 2 3

4 5 6

7 3?
to select an entire row (or rows), enter the row subscript followed

by a semicolon, with no column subscript,

for example; m[ij] => 12 3

for entire column(s), leave the row subcript blank and enter a semi-

colon followed by the column sub 5cr i pt (s) ,

33

FOP: EXAMPLE* IF Ml => FOR THE;-! M1CJ1] => F '»' J

YOUR

I H F

NOTICE THAT ONE ROW OR ONE COLUMN OF A MATRIX IS SIMPLY A VECTOR,

NOT A 1 x C OR R x 1 MATRIX, A SINGLE ELEMENT OF A MATRIX IS A

SCALAR, NOT A
J_ X 1 MATRIX OR A VECTOR OF LENGTH \,

THE USE OF BRACKETS CAN BE EXTENDED TO HIGHER DIMENSIONS BY ADDING

A SEMICOLON AND A SCALAR OR VECTOR FOR EACH DIMENSION,

FOR EXAMPLE, IF pM =; 2 3 4 5* THE SECOND BOOK, THIRD PAGE, FIRST ROW

(ALL COLUMNS) CAN BE SELECTED BY ENTERING M[2$3»l>].

89

127 R A V E L RAVE

******************************* > ***********************************

THE SYMBOL , IS USED FOP: THE MONADIC RAVEL FUNCTION,

THIS FUNCTION CHANGES ITS ARGUMENT TO THE FORM OF A VECTOR, IT TAKES

EITHER NUMERIC OR CHARACTER ARGUMENTS OF ANY RANK,

TO CHANGE A SCAi.AR TO A VECTOR OF LENGTH I, ENTER ,3,

for example; ffZ => o * UT Pf>3 => 1

THIS CAN BE USEFUL TO ENSURE THAT A VARIABLE IS A VECTOR WHEN

USING A SCALAR WOULD LEAD TO AN ERROR (E,G,, INDEXING),

VECTORS REMAIN UNCHANGED BY RAVELLING,

MATRIXES ARE CHANGED INTO A SINGLE LONG VECTOR, STARTING WITH THE

TOP n:OW AND READING ACROSS EACH ROW FROM LEFT TO RIGHT,

FOR EXAMPLE; IF Ml = ; 1 2 THEN
t
VL\ = > 12 3 4

3 4

THESE PRINCIPLES CAN BE EXTENDED TO HIGHER LEVEL ARRAYS,

90

CATENATE DATE

************ ******************* J ***********************************

THE SYMBOL , IS USED FOP: THE DYADIC CATENATE FUNCTION,

THIS FUNCTION WILL COMBINE TWO SCALARS OR ARRAYS INTO A SINGLE ARRAY,

IT TAKES EITHER NUMERIC OR CHARACTER ARGUMENTS,

ENTERING S1,S2 WILL RESULT IN A VECTOR (SI 52), FOR EXAMPLE}

Vt-1,2 WILL ASSIGN THE VECTOR VALUE (1 2) T0 THE VARIABLE V,

VECTORS CAM EASILY BE EXTENDED BY CATENATING S,V OR V,S OR V,V,

F R E X A M R L E
J

I F V = > 12 THEM

v f 3 => 123 0»v => 012 v,v => 1212

CATENATING A SCALAR TO A MATRIX WILL RESULT IN A MATRIX WITH

ONE MORE COLUMN THAN THE MATRIX ARGUMENT, ALL ENTRIES IN THIS

COLUMN WILL HAVE THE VALUE OF THE SCALAR. FOR EXAMPLE J

IF M => 1 "> THEN. 5> M = > 5 12 AND

5 3 4

M
J j = > 1 2 5

3 4 5

CATENATING TWO MATRIXES WILL RESULT IN A MATRIX CONTAINING THE TWO

ORIGINAL MATRIXES 'SIDE BY SIDE',

BOTH MATRIXES MUST HAVE THE SAME NUMBER OF ROWS OR A 'LENGTH ERROR'

WILL RESULT,

FOR EXAMPLE* IF Ml = > 1 2 AND M2 = > 5 6

3 4 7 3

THEN M1,M2 => 12 5 6 AND M2,M1 = > 5 6 12
3473 7834

TRYING TO CATENATE A VECTOR TO A MATRIX WILL RESULT IN A 'RANK ERROR',

THESE PRINCIPLES CAN BE EXTENDED TO HIGHER LEVEL ARRAYS,

FOR MORE INFORMATION ON DIFFERENT WAYS TO JOIN ARRAYS, SEE

MENU FOR LAMINATE,

91

12? T N D E X G EHE RA T R i n d e

»»«•«««•»»•»»»•« I *****»«*«« * * * * t » t t » * » i

THE SYMBOL
\

(UPSHIFT I) IS USED FOR THE MONADIC INDEX GENERATING

FUNCTION

,

IT IS USED WITH A SINGLE NON-NEGATIVE INTEGER ARGUMENT (SCALAR, OR

VECTOR OF LENGTH 1_) ,

IT RETURNS A VECTOR OF INTEGERS, IN ORDER, BEGINNING WITH THE INDEX

ORIGIN, AND ENDING WITH THE ARGUMENT,

FOR EXAMPLE}
\ 3 => 12 3 \ => (fl N EMPTY VECTOR)

THE INDEX ORIGIN IS NORMALLY (BY DEFAULT) \ t

USING \ WITH A NON-INTEGER, NEGATIVE OR ARRAY ARGUMENT WILL PRODUCE A

1 DOMAIN ERROR '

.

92

131 REDUCTION RED?•ft* / »•»#»»*»**»»*»#
THE SYMBOL / 15 USED FOLLOWING ANOTHER FUNCTION SYMBOL AND

PRECEDING A SINGLE ARGUMENT TO PRODUCE THE MIKED FUNCTION

CALLED REDUCTION,

REDUCTION MAY BE USED WITH NUMERIC ARGUMENTS OF ANY RANK,

REDUCTION MAY ALSO BE USED WITH CHARACTER ARGUMENTS IF THE FUNCTION

IT IS BEING COMBINED WITH ACCEPTS CHARACTER ARGUMENTS,

USING / WITH A SCALAR SIMPLY RETURNS THE SCALAR,

WHEN USED WITH A VECTOR, REDUCTION GIVES THE SAME EFFECT AS INSERTING

THE OTHER FUNCTION SYMBOL BETWEEN EACH VALUE OF THE VECTOR,

FOR example;

+/C1 2 3) => 6 because 1+2+3 => 6

x/(2 3 4) => 24 because' 2x3x4 => 24

WHEN USING REDUCTION, ALWAYS REMEMBER APL READS RIGHT TO LEFT;

-/(l 2 3) = > 2 because l-(2-3) => 2

(NOTICE THIS PRODUCES THE EFFECT OF SUMMATION WITH ALTERNATING SIGNS,)

WHEN USED WITH A MATRIX, / WILL PERFORM AS IF EACH COLUMN IS

A UNIT, IT WILL ADD THE CORRESPONDING ELEMENTS OF EACH COLUMN,

50 THAT THE ANSWER WILL BE A VECTOR WITH AS MANY ELEMENTS AS

THERE WERE ROWS IN THE ARGUMENT,

for example; if pM => 2 4 then f + /M => 2

APL USERS REFER TO THIS AS WORKING 'ACROSS' OR 'OVER' THE COLUMNS,

SINCE COLUMNS ARE THE SECOND OF TWO DIMENSIONS OF A MATRIX,

THIS MEANS THAT THE SYMBOL / WORKS 'OVER' THE LAST DIMENSION,

TO REDUCE OVER THE FIRST DIMENSION (E,G, ROWS OF A MATRIX), USE THE

SYMBOL f (ALT /), IN PLACE OF /,

THIS IS IMPORTANT WHEN WORKING WITH HIGHER-DIMENSIONAL ARRAYS,

FOR EXAMPLE, IN A THREE-DIMENSIONAL ARRAY OF PAGES, ROWS, AND

93

COLUMNS, / WILL REDUCE OVER THE COLUMNS, / OVER THE PAGES,

n REDUCE OVER AMY DIMENSION, YOU MAY SPECIFY THE DIMENSION IN

BRACKETS FOLLOWING THE f (OR THE /) SYMBOL,

i EXAMPLE, TO PLUS REDUCE OVER THE ROWS OF A

ARRAY CALLED AA, ENTER a/[2]AA OR +/l2] aa . TO PLUS REDUCE

OVER THE PAGES, ENTER +/AA OR +/[1] AA . T0 PLUS REDUCE OVER

THE COLUMNS, ENTER +/AA OR +/C33 AA «

THE SHAPE OF THE ANSWER WILL ALWAYS BE THE SAME AS THE SHAPE OF THE

ARGUMENT OMITTING THE DIMENSION REDUCED OVER,

for example; if fA => 3 4 5

THEN f+/A = > 3 4 f+/L2]ft = > 3 5 f+/ A = > 4 5

94

I T •"> REDUCTION ft e r. i

»*t.tt»f»»tt»»t»»»t>* »»••»»• / »»*»»»»
THE SYMBOL / (ALT /) IS USED FOLLOWING ANOTHER FUNCTION SYMBOL AND

PRECEDING A SINGLE ARGUMENT TO PRODUCE THE MIXED FUNCTION

CALLED REDUCTION,

REDUCTION MAY BE USED WITH NUMERIC ARGUMENTS OF ANY RANK,

REDUCTION MAY ALSO BE USED WITH CHARACTER ARGUMENTS IF THE FUNCTION

IT IS BEING COMBINED WITH ACCEPTS CHARACTER ARGUMENTS,

USING f WITH A SCALAR SIMPLY RETURNS THE SCALAR,

WHEN USED WITH A VECTOR, REDUCTION GIVES THE SAME EFFECT AS INSERTING

THE OTHER FUNCTION SYMBOL BETWEEN EACH VALUE OF THE VECTOR,

FOR EXAMPLE;

+ /(1 2 3) => 6 BECAUSE 1+2+3 => 6

x/(2 3 4) => 24 because 2*3*4 => 24

WHEN USING REDUCTION, ALWAYS REMEMBER APL READS RIGHT TO LEFT
J

-/CI 2 3) => 2 because i-(2-3) => 2

(NOTICE THIS PRODUCES THE EFFECT OF SUMMATION WITH ALTERNATING SIGNS,)

WHEN USED WITH A MATRIX, / WILL PERFORM AS IF EACH ROW IS

A UNIT, IT WILL ADD THE CORRESPONDING ELEMENTS OF EACH ROW,

SO THAT THE ANSWER WILL BE A VECTOR WITH AS MANY ELEMENTS AS

THERE WERE COLUMNS IN THE ARGUMENT,

FOR EXAMPLE; IF pM => 2 4 THEN f+/M => 4

APL USERS REFER TO THIS AS WORKING 'ACROSS' OR 'OVER' THE ROWS,

SINCE ROWS ARE THE FIftST OF TWO DIMENSIONS OF A MATRIX,

THIS MEANS THAT THE SYMBOL / WORKS 'OVER' THE FIRST DIMENSION,

TO REDUCE OVER THE LAST DIMENSION (E,G, COLUMNS OF A MATRIX), USE THE

SYMBOL / IN PLACE OF /,

THIS IS IMPORTANT WHEN WORKING WITH HIGHER-DIMENSIONAL ARRAYS,

FOR EXAMPLE, IN A THREE-DIMENSIONAL ARRAY OF PAGES, ROWS, AND

95

COLUMNS, / WILL REDUCE OVER THE COLUMNS, / OVER THE PAGES,

TO REDUCE OVER ANY DIMENSION, lOU MAY SPECIFY THE DIMENSION IN

BRACKETS FOLLOWING THE / (OR THE /) SYMBOL,

FOR EXAMPLE, TO PLUS REDUCE OVER THE ROWS OF A THREE-DIMENSIONAL

ftRP.AT CALLED AA, ENTER +/C23 AA OR +/[23 ftA. T0 PLUS REDUCE

OVER THE PAGES, ENTER + /AA OR -f-/[l]AA, TO PLUS REDUCE OVER

THE COLUMNS, ENTER +/AA OR +7i[3]AA,

THE SHAPE OF THE ANSWER WILL ALWAYS PE THE SAME AS THE SHAPE OF THE

ARGUMENT OMITTING THE DIMENSION REDUCED OVER,

for example; if ;A => 3 4 5

then f+ /A => 4 5 P+/C23A = > 3 5 f+/a => 3 4

96

141 EXPONENTIAL EXPO

•• +•**» * »•***#***•••••
the symbol * (upshift p) is used for the monadic exponential function,

it returns the value of the constant e to the power of the argument,

it takes numeric arguments of ant rank,

for example; *o => 1 *1 => 2.713281823

*.5 => 1,648721271

*(3 "2) => 20.08553692 .1353352332

97

142 POWER POWE

»»*»•»»»»« * «»«»»«tt«t*»t»»»»»»»tt»»»ttltt»»»»t

THE SYMBOL * (UPSHIFT P) IS USED FOR THE DYADIC POWER FUNCTION,

THIS RETURNS THE VALUE(S) OF THE LEFT ARGUMENT RAISED TO THE POWER OF

RIGHT ARGUMENT, ARGUMENTS ARE NUMERIC OF ANY RANK,

A NON-INTEGER RIGHT ARGUMENT CAN BE USED TO OBTAIN ROOTS,

for example; 2*3 3*0 4*»!

TO RAISE EACH ELEMENT OF A VECTOR TO THE SAME POWER, ENTER V * P

,

TO RAISE 3 SCALAR TO A SERIES OF POWERS REPRESENTED BY A VECTOR,

E N T E R S % V ,

v1*v2 result5 in the elements of vi being raised to the power of

the corresponding element in v2

,

vi and v2 must have the same number of elements or a 'length error

will result,

for example; 3* '.123) =>3?27 (123)*3 => 18 27

(2 3 4)* (5 4 3) => 32 81 64

TO RAISE EACH ELEMENT OF THE MATRIX M TO THE SAME POWER S,

ENTER MxS, TO RAISE THE SCALAR 5 TO THE POWER OF EACH ELEMENT

IN THE MATRIX M , ENTER S % M ,

THE RESULT WILL BE A MATRIX THE SAME SHAPE AS M,

for example; if m => 1 2 th en 3* M = > 3 9 and M *3 => 1 3

3 4 27 81 27 64

M1*M2 RESULTS IN THE ELEMENTS OF Mi RAISED TO THE POWER

OF THE CORRESPONDING ELEMENT IN M2,

for example; if mi => % 2 ftMD M 2 => 4 3 then mi*m2 = > 1 3

3 4 2 1 9 4

IF Ml AND M2 ARE NOT THE SAME SHAPE, A 'LENGTH ERROR' WILL OCCUR,

IF ONE ARGUMENT IS A VECTOR WHILE THE OTHER ARGUMENT IS A MATRIX,

THE RESULT WILL BE A 'RANK ERROR',

THESE PRINCIPLES CAN BE EXTENDED TO HIGHER LEVEL ARRAYS.

93

143 NATURAL LOG NATU

».».*• * ***********************************

THE SYMBOL « (ALT 3) IS USED FOP: THE MONADIC NATURAL LOG FUNCTION,

IT RETURNS THE VALUE OF THE POWER TO WHICH THE CONSTANT E MUST

BE RAISED TO EQUAL THE ARGUMENT, IN OTHER WORDS, ENTERING

»S WILL SOLVE THE ARL EQUATION *N = S FOR N,

IT TAKES ONLY POSITIVE NUMERIC ARGUMENTS OF ANY RANK, USING a WITH

ZERO OR WITH NEGATIVE ARGUMENTS WILL RESULT IN A 'DOMAIN ERROR',

for example: 21 => o §2. 718281828 = > 1

91,643721271 => 0.5

for example: 1(3 2) => 1*098612289 0.6931471806

99

144 LOGARITHM LOG A

THE SYMBOL « (ALT g) IS USED FOR THE DYADIC LOGARITHM FUNCTION,

THIS RETURNS THE LOGARITHM OF THE RIGHT ARGUMENT IN THE BASE OF THE

LEFT ARGUMENT, THAT IS, IT RETURNS THE VALUE OF THE POWER TO

WHICH THE LEFT ARGUMENT MUST BE RAISED TO EQUAL THE RIGHT ARGUMENT,

ENTER LfR TO SOLVE THE EQUATION L*N = R FOR N,

ARGUMENTS ARE POSITIVE NUMERIC OF ANY RANK, USING 3 WITH ZERO OR WITH

NEGATIVE NUMBERS WILL RESULT IN A 'DOMAIN ERROR', ENTERING 1«S

WHERE S IS ANY NUMBER EXCEPT J WILL ALSO PRODUCE A 'DOMAIN ERROR',

for example; lOaiOO => 2*1024 => 10 9*1 =>

TO OBTAIN THE LOG OF EACH ELEMENT OF A VECTOR IN THE SAME BASE

ENTER B«V,

TO DETERMINE THE LOG OF A SCALAR IN A VECTOR OF DIFFERENT BASES,

ENTER VaS,

V1-SV2 RESULTS IN THE LOG OF EACH ELEMENT IN V'2 IN THE BASE OF

THE CORRESPONDING ELEMENT It! V
J_ ,

VJ. AND V2 MUST HAVE THE SAME NUMBER OF ELEMENTS Oft A 'LENGTH ERROR'

WILL RESULT,

for example; 3a(3 9 27) => 1 2 3 (2 4)«16 => 4 2

(2 3 5)»(4 9 25) => 2 2 2

ANALOGOUS RESULTS ARE OBTAINED FOR MATRIXES AND HIGHER LEVEL ARRAYS,

UNLE555 ONE ARGUMENT IS A SCALAR, BOTH ARGUMENTS MUST BE THE SAME

SHAPE, OTHERWISE, A 'RANK ERROR' OR 'LENGTH ERROR' WILL RESULT,

100

14! PI TIMES PI II

»»«*.»»...»»»»»».»»»*»I...............

THE SYMBOL (UPSHIFT 0) IS USED FOR THE MONADIC PI TIMES FUNCTION,

IT RETURNS THE VALUE OF THE CONSTANT PI TIMES THE ARGUMENT,

IT TAKES NUMERIC ARGUMENTS OF ANY RANK,

for example; aO => ol => 3.141592654

o.5 => 1*570796327

o(2 "2) =) 9.424777961 "6.283135307

101

146 GEOMETRIC GEOM

..............................I «t<>t«>i»<«>««i<t«t<«»>«t><<<ttttii

THE SYMBOL a (UPSHIFT 0) IS USED FOR THE DYADIC GEOMETRIC FUNCTIONS,

THESE INCLUDE THE MAIM TR I G I HOMETR I C FUNCTIONS, THE LEFT ARGUMENT,

WHICH MUST BE AM INTEGER FRCM ~J TO 7, DETERMINES WHICH FUNCTION

IS CALLED, THE RIGHT ARGUMENT, WHICH CAN BE A NUMERIC ARRAY OF

ANY RANK, REPRESENTS THE VALUE OF AN ANGLE IN RADIANS,

THE FOLLOWING FUNCTIONS ARE REPRESENTED
J

QOY => COS (ARCSIN Y) OR SIN (ARCCOS Y) WHERE |Y | <

1

IQY => SIN Y

20Y => COS Y

3QY => TAN Y

4Qf => COSH (ARCSIHH Y)

S I N H Y

COSH I

TANH Y

1 QY = > A R C S I H Y W H E R E | Y | < 1

5oy =>

60'' =>

70

'2SY

•30Y

40Y

"50 Y

"6SY

70Y

ARCCOS t WHERE | Y | <

1

A R C T A N Y

SINH (ARCCOSH Y) WHERE
J
T

J > 1

ARCSINH Y

ARCCOSH Y WHERE Y> 1

ARCTANH Y WHERE |Y|<^

OTHER FUNCTIONS, SUCH AS SECANT, MUST BE COMPUTED BY FORMULA,

FOR EXAMPLE
J

(REMEMBER Qj EQUALS PI TIMES 1)

ioO => 1QG1 => 100.5 => 1

2o0 => 1 2ool => "l 2QQ.5 => l.743934249E"16

NOTICE THAT SOMETIMES A VERY SMALL NUMBER WILL ARREAR INSTEAD OF ZERO

OR A VERY LARGE NUMBER WILL APPEAR INSTEAD OF A DOMAIN ERROR,

TECHNICALLY, THE TANGENT OF ONE-HALF PI DOES NOT EXIST, BUT;

30Q.5 => 5.734161139E15 match cut for this;

102

147 FACTORIAL FACT

******************************* ***********************************

THE SYMBOL
J

(ALT +) IS USED FOP: THE MONADIC FACTORIAL FUNCTION,

IT RETURNS THE FACTORIAL OF NON-NEGATIVE NUMERIC ARGUMENTS OF ANY RftMK

for example; !i 3 =) 16 1

using non-integer arguments produces the gamma function gf the

argument+1

,

for example: ;,5 => ,3862269255 <
gamma of 1,5)

103

143 BINOMIAL B I N

-.»»lt«»«t>l»ltt»t.*.it.f«t>t»» > »»»§• »»t*«t*»«»>tttf»ll-4«»

THE SYMBOL
{

(ALT +) IS USED FOR THE DYADIC BINOMIAL FUNCTION,

IT TAKES NUMERIC ARGUMENTS OF ANY RANK,

FOR POSITIVE INTEGER ARGUMENTS, LJR WILL RETURN THE NUMBER OF WAYS OF

TAKING R OBJECTS L AT A TIME,

THIS IS THE BINOMIAL COEFFICIENT OF P. OVER L, COMPUTED
(J

R) - J
L x J (R-L) ,

WITH NEGATIVE OR NON-INTEGER ARGUMENTS, THE BINOMIAL FUNCTION RETURNS

A VALUE BASED ON THE BETA FUNCTION,

FOR EXAMPLE* 3:4 => 4 BUT 4; 3 s>

BECAUSE THERE ARE FOUR WAYS OF TAKING FOUR OBJECTS THREE AT A TIME,

BUT THERE IS NO WAY TO TAKE THREE OBJECTS FOUR AT A TIME,

THESE ANSWERS ARE BA5ED ON CONVENTION;

0:0 => 1 0142 => 1 42 142 => i

WHEN A SCALAR ARGUMENT IS RAISED WITH A VECTOR ARGUMENT, THE FUNCTION

COMBINES THE SCALAR WITH EACH ELEMENT OF THE VECTOR IN TURN,

2: (3 4 5) => 3 6 10 (3 4 5)15 => 10 5 1

CORRESPONDING ELEMENTS OF TWO VECTOR ARGUMENTS ARE COMBINED,

(3 4 5>J<5 6 7) => 10 15 21

VJ AND V2 MUST HAVE THE SAME NUMBER OF ELEMENTS OR A 'LENGTH ERROR 1

WILL RESULT,

WHEN A SCALAR ARGUMENT IS PAIRED WITH A MATRIX ARGUMENT, THE FUNCTION

COMBINES THE SCALAR WITH EACH ELEMENT OF THE MATRIX IN TURN,

FOR example; IF M => 12 THEN 3JM => ftHD M 13 => 3 3

3 4 14 10
CORRESPONDING ELEMENTS OF TWO MATRIX ARGUMENTS ARE COMBINED,

for example; if mi => 1 2 AHD M 2 => 3 4 then mi;m2 => 3 6

3 4 5 6 10 15

IF Ml AND M2 ARE NOT THE SAME SHAPE, A 'LENGTH ERROR' WILL OCCUR,

IF ONE ARGUMENT IS A VECTOR WHILE THE OTHER ARGUMENT IS A MATRIX,

104

THE RESULT WILL BE A 'RANK ERROR

THESE PRINCIPLES CAN BE EXTENDED TO HIGHER LEVEL ARRAYS

101

149 MAGNITUDE MAGN

»»»»«*»»»»»» i t*»»(t»tii».tt»tt»tt«»«»»t«»>*tt»«t

THE SYMBOL
|

(UPSHIFT H) IS USED FOR THE MONADIC MAGNITUDE FUNCTION,

IT RETURNS THE ABSOLUTE VALUE OF NUMERIC ARGUMENTS OF AMY RANK,

FOR EXAMPLE' [Q =>
I
("3 "2 10) => 3 2 10

106

151 5 C A H 5CA?

»»»»»«»«»» \ »§§*#*%*»§**#**#**»
THE SYMBOL \ (UPSHIFT /) IS USED FOLLOWING A DYADIC FUNCTION SYMBOL,

PRECEDING A SINGLE ARGUMENT PRODUCING A MIXED FUNCTION CALLED SCAN,

SCAN MAY BE USED WITH NUMERIC ARGUMENTS OF ANY RANK,

SCAN MAY ALSO BE USED WITH CHARACTER ARGUMENTS IF THE FUNCTION IT IS

COMBINED WITH ACCEPTS CHARACTER ARGUMENTS,

USING \ WITH A SCALAR SIMPLY RETURNS THE SCALAR,

WHEN USED WITH A VECTOR, SCAN GIVES THE SAME EFFECT AS INSERTING

THE OTHER FUNCTION SYMBOL BETWEEN EACH VALUE OF THE VECTOR,

THEN OPERATING PROGRESSIVELY AS FOLLOWS;

THE FIRST ELEMENT OF THE ANSWER WILL BE THE FIRST ELEMENT OF THE

ARGUMENT, THE SECOND ELEMENT WILL BE THE RESULT OF THE MAIN

FUNCTION OPERATING ON THE FIRST TWO ELEMENTS OF THE ARGUMENT,

THE THIRD ELEMENT OF THE ANSWER WILL BE THE RESULT OF THE MAIN

FUNCTION OPERATING AS IN REDUCTION ON THE FIRST THREE ELEMENTS

OF THE ARGUMENT, AND SO ON,

THE RESULT WILL ALWAYS BE THE SAME LENGTH AS THE ARGUMENT,

FOR EXAMPLE;

+\(1 2 3) => 13 6 because i => i, i+2 => 3» 1+2+3 => 6

x\(2 3 4) => 2 6 24

WHEN USING SCAN, ALWAYS REMEMBER APL READS RIGHT TO LEFT WHEN IT IS

USING REDUCTION ON MORE THAN TWO ELEMENTS OF THE ARGUMENT,

-\<1 2 3) => 1 "1 2 because i => i, 1-2 => "l, l-(2-3) => 2

WHEN USED WITH A MATRIX, SCAN WILL PERFORM AS IF EACH COLUMN IS

A UNIT, THE FIRST COLUMN OF THE ANSWER IS THE FIRST COLUMN OF

THE ARGUMENT, THE SECOND COLUMN OF THE ANSWER. IS THE RESULT OF

OPERATING ON THE FIRST TWO COLUMNS OF THE ARGUMENT, AND 50 ON,

APL USERS REFER TO THIS AS WORKING 'ACROSS' OR 'OVER' THE COLUMNS

.

10;

SINCE COLUMNS ARE THE SECOND OF TWO DIMENSIONS OF A MATRIX,

THIS MEANS THAT THE SYMBOL \ WORKS 'OVER' THE LAST DIMENSION,

TO SCAN OVER THE FIRST DIMENSION (E,G, ROWS OF A MATRIX), USE THE

SYMBOL \ (ALT
, } , IN PLACE OF \

,

THIS IS IMPORTANT WHEN WORKING WITH HIGHER-DIMENSIONAL ARRAYS,

FOR EXAMPLE, IN A THREE-DIMENSIONAL ARRAY OF RAGES, ROWS, AMD

COLUMNS, \ WILL SCAN OVER THE COLUMNS, \ OVER THE RAGES,

TO SCAN OVER ANY DIMENSION, YOU MAY SPECIFY THE DIMENSION IN

BRACKETS FOLLOWING ^HE \ (OR THE \) SYMBOL,

FOR EXAMPLE, TO PLUS SCAN OVER THE ROWS OF A THREE-DIMENSIONAL

ARRAY CALLED AA, ENTER -5-\[23 AA 0F; +\C21 AA
.

T0 PLUS SCAN OVER

THE PAGES, ENTER + ^AA OR +\[1JAA, TO PLUS SCAN OVER THE COLUMNS,

ENTER f\AA OR + V[3]AA,

THE RESULT WILL ALWAYS BE THE SAME SHAPE AS THE ARGUMENT,

108

152 SCAN 5CA1

•»»»»»•»»»»••»»»«»»•»»» ^ »»**»••§§§•*»»•*»»#•#*»
THE SYMBOL V (ALT

,) IS USED FOLLOWING A DYADIC FUNCTION SYMBOL AMD

PRECEDING A SINGLE ARGUMENT PRODUCING A MIXED FUNCTION CALLED SCAM,

SCAN MAY BE USED WITH NUMERIC ARGUMENTS OF ANY RANK,

SCAN MAY ALSO BE USED WITH CHARACTER ARGUMENTS IF THE FUNCTION IT IS

COMBINED WITH ACCEPTS CHARACTER ARGUMENTS,

USING \ WITH A SCALAR SIMPLY RETURNS THE SCALAR,

WHEN USED WITH A VECTOR, SCAN GIVES THE SAME EFFECT AS INSERTING

THE OTHER FUNCTION SYMBOL BETWEEN EACH VALUE OF THE VECTOR,

THEN OPERATING PROGRESSIVELY AS FOLLOWS
J

THE FIRST ELEMENT OF THE ANSWER WILL BE THE FIRST ELEMENT OF THE

ARGUMENT, THE SECOND ELEMENT WILL BE THE RESULT OF THE MAIN

FUNCTION OPERATING ON THE FIRST TWO ELEMENTS OF THE ARGUMENT,

THE THIRD ELEMENT OF THE ANSWER WILL BE THE RESULT OF THE MAIN

FUNCTION OPERATING AS IN REDUCTION ON THE FIRST THREE ELEMENTS

OF THE ARGUMENT, AND SO ON,

THE RESULT WILL ALWAYS BE THE SAME LENGTH AS THE ARGUMENT,

FOR EXAMPLE*

+ \<1 2 3) => 13 6 because i => i, i+2 => 3» 1+2+3 = > 6

x\(2 3 4) => 2 6 24

WHEN USING SCAN, ALWAYS REMEMBER APL READS RIGHT TO LEFT WHEN IT IS

USING REDUCTION ON MORE THAN TWO ELEMENTS OF THE ARGUMENT,

-\(1 2 3) = > 1 "1 2 because i = > i, 1-2 => "If l-(2-3) => 2

WHEN USED WITH A MATRIX, SCAN WILL PERFORM AS IF EACH ROW IS

A UNIT, THE FIRST ROW OF THE ANSWER IS THE FIRST ROW OF

THE ARGUMENT, THE SECOND ROW OF THE ANSWER IS THE RESULT OF

OPERATING ON THE FIRST TWO ROWS OF THE ARGUMENT, AND SO ON,

APL USERS REFER TO THIS AS WORKING 'ACROSS' OR 'OVER' THE ROWS,

109

SINCE ROWS ARE THE FIRST OF TWO DIMENSIONS OF A MATRIX,

THIS MEANS THAT THE SYMBOL \ WORKS 'OVER' THE FIRST DIMENSION,

TO SCAN OVER THE LAST DIMENSION (E,G, COLUMNS OF A MATRIX), USE

THE SYMBOL \ (UPSHIFT /), IN RLACE OF \,

THIS IS IMPORTANT WHEN WORKING WITH HIGHER-DIMENSIONAL ARRAYS,

FOR EXAMPLE, IN A THREE-DIMENSIONAL ARRAY OF PAGES, ROWS, AND

COLUMNS, \ WILL SCAN OVER THE COLUMNS, \ OVER THE PAGES,

TO SCAN OVER ANY DIMENSION, YOU MAY SPECIFY THE DIMENSION IN

BRACKETS FOLLOWING THE \ (OR THE \) SYMBOL,

FOR EXAMPLE, TO PLUS SCAN OVER the ROWS OF A THREE-DIMENSIONAL

ARRAY CALLED AA, ENTER +\[2]AA OR + \C2] A,:| . T0 PLUS SCAN OVER

THE PAGES, ENTER + \AA OR +\[1]AA, TO PLUS SCAN OVER THE COLUMNS,

ENTER +\AA OR +\[3]AA,

THE RESULT WILL ALWAYS BE THE SAME SHAPE AS THE ARGUMENT.

110

161 CEILING CEIL

******************************* ***********************************

THE SYMBOL |" (UPSHIFT 5) IS USED FOP. THE MONADIC CEILING FUNCTION,

IT RETURNS THE VALUE OF NUMERIC ARGUMENTS OF ANY RANK, 'ROUNDED UP 1

TO THE NEAREST INTEGER,

for example; r<~3.4 1.3 2) => "3022

111

16: FLOOR FLOO

#»»»•» L •»»»«»»»«»•»
THE SYMBOL

|_
(UPSHIFT D) IS USED FOR THE MONADIC FLOOR FUNCTION,

IT RETURH3 THE VALUE OF NUMERIC ARGUMENTS OF ANY RANK, ' ROUNDED I'OWH'

TO THE NEAREST INTEGER.

FOR EXAMPLE: LC3.4 1,3 2) 12

112

163 MAXIMUM MAX I

•»»«•»»•»«»»«•» »»»•»•#*•»»•»»»»•
THE SYMBOL f (UPSHIFT S) IS USED FOP: THE DYADIC MAXIMUM FUNCTION,

THIS RETURNS THE MAXIMUM OF ITS TWO ARGUMENTS, WHICH ARE NUMERIC

OF ANT RANK

,

FOR: EXAMRLEt 2T3 => 3

TO CHECK A SCALAR AGAINST EACH ELEMENT OF A VECTOR, ENTER STV OR V{S
t

Vif v 2 WILL COMPARE TWO VECTORS ELEMENT BY ELEMENT, FOR EXAMPLE
J

4FC3 4 5) => 445 (3 4 5)T5 => 555
(3 4 5)T(1 5 9) => 35?

IF THE TWO VECTORS BEING CCMRARED ARE NOT THE SAME LENGTH,

A 'LENGTH ERROR' WILL RESULT,

MATRIX COMPARISON IS DONE AS FOLLOWS
J

STM OR MfS WILL CHECK THE SCALAR 5 AGAINST EACH ELEMENT OF

THE MATRIX M,

FOR EXAMPLE
J IF M => 12 "HEN 3fM => 33 AND MT3 => 3 3

3 4 3 4 3 4

MirK2 WILL COMPARE THE MATRIXES H\ AND M2, ELEMENT BY ELEMENT,

for example; if mj_ => 1 2 flNri M 2 => 3 4 then MifM2 => 3 4

3 4 5 6 5 6

Ml AND M2 MUST BE THE SAME SHAPE OR A 'LENGTH ERROR' WILL RESULT,

TRYING TO COMPARE A VECTOR TO A MATRIX WILL RESULT IN A 'RANK ERROR 1

,

THESE PRINCIPLES CAN BE EXTENDED TO HIGHER LEVEL ARRAYS.

113

164 MINIMUM MINI

»»••• L »•»»»»»»»»«•*•»»»«»»•»
THE SYMBOL L (UPSHIFT D) IS USE!' FOR THE DYADIC MINIMUM FUNCTION,

THIS RETURNS THE MINIMUM OF ITS TWO ARGUMENTS, WHICH ARE NUMERIC

OF ANY RANK,

FOR EXAMPLE* 2L3 => 2

TO CHECK A SCALAR AGAINST EACH ELEMENT OF A VECTOR, ENTER 5|_V OR V[S.

VJI.V2 WILL COMFARE TWO VECTORS ELEMENT BY ELEMENT, FOR EXAMPLE;

41(345) = > 344 (345)L5 => 345
(3 4 5)LU 5 9) => 145

IF THE TWO VECTORS BEING COMPARED ARE NOT THE SAME LENGTH,

A 'LENGTH ERROR'' WILL RESULT,

MATRIX COMPARISON IS DONE AS FOLLOWS
J

S|_M OR M|_S WILL CHECK THE SCALAR S AGAINST EACH ELEMENT OF

THE MATRIX M,

FOR example; IF M => 12 "HEN 3|_M => 12 ftHr' M L3 => 1 2

3 4 3 3 3 3

M1LM2 WILL COMFARE THE MATRIXES Ml AND M2? ELEMENT BY ELEMENT,

for example; if mi => i 2 A, ,1C, M 2 => 3 4 then mh_M2 => 12

3 4 5 6 3 4

Ml AND M2 MUST BE THE SAME SHAPE OR A 'LENGTH ERROR' WILL RESULT,

TRYING TO COMPARE A VECTOR TO A MATRIX WILL RESULT IN A 'RANK ERROR',

THESE PRINCIPLES CAN BE EXTENDED TO HIGHER LEVEL ARRAYS,

114

161 RESIDUE ft E 3 I

».»«».« »»»»»»»»»»»«»»»».»»»»*»«»
the symbol

|
(upshift m) is used for the dyadic residue function,

it takes numeric arguments of any rank,

the result of l|ft is the remainder when r is divided by l, this is

similar to the 'modulo' function in other computer languages,

for example;

111.24 => .24 10l"4 => 2 "4110 => ~2

THE SIGN OF THE RESULT IS ALWAYS THE SAME AS THE SIGN OF THE LEFT

ARGUMENT, IF THE SIGNS OF THE ARGUMENTS DO NOT AGREE, THE RESULT

IS OBTAINED BY ADDING THE SMALLER ARGUMENT TO THE LARGER ONE

REPEATEDLY UNTIL THE ABSOLUTE VALUE OF THE RESULT IS LESS THAN

THE ABSOLUTE VALUE OF THE SMALLER ARGUMENT,

WHEN A SCALAR ARGUMENT IS FAIRED WITH A VECTOR ARGUMENT, THE FUNCTION

COMBINES THE SCALAR WITH EACH ELEMENT OF THE VECTOR IN TURN,

21(12345) => 10 101 (12345)13 * > 01033
CORRESPONDING ELEMENTS OF TWO VECTOR ARGUMENTS ARE COMBINED,

(11.52)1(123) => 00.5 1

V} AND V2 MUST HAVE THE SAME NUMBER OF ELEMENTS OR A 'LENGTH ERROR'

WILL RESULT,

WHEN A SCALAR ARGUMENT IS PAIRED WITH A MATRIX ARGUMENT, THE FUNCTION

COMBINES THE SCALAR WITH EACH ELEMENT OF THE MATRIX IN TURN,

for example; if m --, i 2 then 3| m => 12 ftHD M \Z => 1

3 4 1 3

CORRESPONDING ELEMENTS OF TWO MATRIX ARGUMENTS ARE COMBINED,

for example; if Mi => 1 2 ANr' M 2 => 3 4 then mj_|M2 => 2 2

3 4 5 6 2 2

IF Mj_ AND M2 ARE NOT THE SAME SHAPE, A 'LENGTH ERROR' WILL OCCUR,

IF ONE ARGUMENT IS A VECTOR WHILE THE OTHER ARGUMENT IS A MATRIX,

115

THE RESULT WILL BE A < RAh'K ERROR

THESE RRIMCIRLES CAM BE EXTENDED TO HIGHER LEVEL ARRAYS

116

166 GRADE UP G R U P

»»•»•»•» »*»»****«»•#**«
the symbol | (alt 4) is used for the monadic grade up function,

it takes a numeric vector argument amd returns a vector of the

indexes of the elements in order from smallest to largest,

in other words, the first element in the response is the index

of the smallest element in the input, the last element in the

response is the index of the largest element in the input,

equal values will be graded in order from left to right,

for example; £4363 => 4132
because the fourth element of the input (3) is the smallest, etc,

this can be used to sort a vector by combining with index brackets 4

,

if v => 4 3 o 3 then V[±V] = > 3 4 6 3

ON THE OTHER HAND, ££V WILL PRODUCE A VECTOR OF THE POSITION NUMBERS

(RANK ORDER) CORRESPONDING tq THE INPUT VECTOR,

for example: i* 4 3 6 3 => 2431
SINCE 4 IS THE SECOND SMALLEST ELEMENT, 3 IS THE FOURTH SMALLEST, ETC,

117

167 GRAPE DOWN GRAD

******************************* T ***********************************

THE SYMBOL f (ALT 3) IS USED FOR THE MONADIC GRAPE DOWN FUNCTION,

IT TAKES A NUMERIC VECTOR ARGUMENT AMP RETURNS A VECTOR OF THE

INDEXES OF THE ELEMENTS IN ORPER FROM LARGEST TO SMALLEST,

IN OTHER WORDS, THE FIRST ELEMENT IN THE RESPONSE IS THE INDEX

OF THE LARGEST ELEMENT IN THE INPUT, THE LAST ELEMENT IN THE

RESPONSE IS THE INDEX OF THE SMALLEST ELEMENT IN THE INPUT,

EQUAL VALUES WILL BE GRADED IN ORPER FROM LEFT TO SIGHT,

FOR EXAMPLE
J 4 8 6 3 => 2314

BECAUSE THE SECOND ELEMENT OF THE INPUT (Q) IS THE LARGEST, ETC,

THIS CAN BE USED TO SORT A VECTOR BY COMBINING WITH INDEX BRACKETS;

if v => 4 3 6 3 THEN vrfv] => 3643

on the other hand, ft v will produce a vector of the position numbers

(in reverse orper) corresponding to the input vector,

for example; ??4363 => 3124
since 4 is the thirp largest element, 3 is the largest, etc,

113

163 ROLL SOLL

*********>***********>*>******* r ***********************************

THE SYMBOL ? (UPSHIFT 0) IS USED FOR THE MONADIC ROLL FUNCTION,

THIS IS ft RANDOM NUMBER GENERATOR WHICH TAKES POSITIVE INTEGER

ARGUMENTS AMD RETURNS A RANDOMLY SELECTED INTEGER UP TO THE

VALUE OF THE ARGUMENT,

THE LOWEST POSSIBLE VALUE WHICH CAN BE RETURNED IS NORMALLY (BY

DEFAULT) 1,

USING ? WITH NEGATIVE ARGUMENTS OR 2ER0 PRODUCES A 'DOMAIN ERROR',

FOR EXAMPLE* ?3 = > EITHER 1, 2} op; 3f WITH EQUAL PROBABILITY

WHEN USED WITH VECTORS, ROLL RETURNS A VECTOR WITH EACH NUMBER

SELECTED RANDOMLY FROM THE RANGE DETERMININED BY THE CORRESPONDING

VALUE IN THE ARGUMENT,

FOR example;

?3 3 3 = > 112 or 132 ok 332 or 213 etc,

?£ ^ SIMULATES THE ROLLING OF A PAIR OF DICE,

ROLL CAN PE USED WITH MATRIXES OR HIGHER LEVEL ARRAYS IN A SIMILAR

FASHION.

119

16? DEAL DEAL

* . I • * » * * * * » » * * * * J * - 1 ' * * • t * * • t I , t > I I t t » • , » • t t t . . t t I t * t » » » > . t . . ! •

THE SYMBOL ? (UPSHIFT CI) IS USED FDR THE DYADIC DEAL FUNCTION,

THE RESULT OF THIS FUHCTIOM IS AH ARRAY OF RANDOM NUMBERS,

THE SHAPE OF THE ARRAY IS DETERMINED BY THE LEFT ARGUMENT,

THE NUMBERS ARE RANDOMLY SELECTED FROM THE POSITIVE INTEGERS

UP TO THE VALUE OF THE RIGHT ARGUMENT, WITH NO REPLACEMENT,

THAT IS, A NUMBER CANNOT APPEAR TWICE IN THE RESULT,

BOTH ARGUMENTS MUST BE A POSITIVE SINGLE NUMBER (SCALAR OR VECTOR

OF LENGTH 1), AND THE RIGHT MUST EQUAL OR EXCEED THE LEFT,

USING HIGHER-ORDER ARGUMENTS PRODUCES A 'RANK ERROR',

USING NEGATIVE ARGUMENTS OR ZERO PRODUCES A 'DOMAIN ERROR',

FOR EXAMPLE* 2T2 => 12 0R 2 1 BUT H0T 2 2 0R 1 1

5?52 SIMULATES THE DEAL OF A HAND OF CARDS,

120

180 :rual EQUA

THE SYMBOL = (UPSHIFT 5) IS USED FOP: THE DYADIC EQUALS FUNCTION,

THIS COMPARES NUMERIC OP: CHARACTER ARGUMENTS OF ANY RANK,

IT RETURNS j,
FOP: EACH ELEMENT OF THE LEFT ARGUMENT THAT IS IDENTICAL

TO THE CORRESPONDING ELEMENT OF THE RIGHT ARGUMENT, AND F0P;

EACH ELEMENT THAT IS NOT.

for example; 2=2 2=4 = >
1 A ' = ' B = >

TO COMPARE A SCALAR TO EACH ELEMENT OF A VECTOR,

ENTER EITHER S = V OR V = S,

2= (2 3 4) => 10 (3 4 5) =5 => 1

v'l = V2 WILL COMPARE TWO VECTORS ELEMENT BY ELEMENT, FOR EXAMPLE;

1 THINK ' = ' THANK ' => 110 11
IF THE TWO VECTORS BEING COMPARED ARE NOT THE SAME LENGTH,

YOU WILL GET A 'LENGTH ERROR '

,

MATRIX COMPARISON IS DONE AS FOLLOWS;

5 = M OP: M = S WILL COMPARE THE SCALAR 5 TO EACH ELEMENT OF THE MATRIX M,

FOR EXAMPLE; IF M => 12 THEN 3=M r > Q AND M=3 =>

3 4 10 10
M1=M2 WILL COMPARE THE MATRIX M^ TO THE MATRIX M2l ELEMENT BY ELEMENT,

FOP: EXAMPLE; IF Ml => HOW AND M2 => OOH THEN MJ=M2 =/ 10
NOW WOW 11

HI AND M2 MUST BE THE SAME SHAPE OR A 'LENGTH ERROR' WILL RESULT,

COMPARING A VECTOR TO A MATRIX WILL RESULT IN A 'RANK ERROR',

THESE PRINCIPLES CAN BE EXTENDED TO HIGHER LEVEL ARRAYS.

121

HOT EQUAL MOTE

THE SYMBOL jf (UPSHIFT 3) IS USED FOR THE DYADIC HOT EQUAL FUNCTION,

THIS COMPARES NUMERIC OP CHARACTER ARGUMENTS OF ANY RANK,

IT RETURNS
J.

FOP EACH ELEMENT OF THE LEFT ARGUMENT THAT IS HOT EQUAL

TO THE CORRESPONDING ELEMENT OF THE RIGHT ARGUMENT, AND fop

EACH ELEMENT THAT IS,

2/4 1 A =! B '

TO COMPARE A SCALAR TO EACH ELEMENT OF A VECTOR,

ENTER EITHER 5;i!V OP VjfS
,

2/(2 3 4) => 1 1 (3 4 5)9*5 => 110
Vl i

dV2 WILL COMPARE TWO VECTORS ELEMEHT BY ELEMENT, FOR EXAMPLE
J

» THINK >jf THANK' => 10
IF THE TWO VECTORS BEING COMPARED ARE MOT THE SAME LENGTH,

YOU WILL GET A 'LENGTH ERROR 1

,

MATRIX COMPARISON IS DOME AS FOLLOWS;

S^M OP M^S WILL COMPARE THE SCALAR 5 TO EACH ELEMEHT OF THE MATRIX M,

FOR EXAMPLE* IF M => 1 2 THEN 3^M => \ \ AMD M?^ => 1 1

3 4 1 1

MJ^M2 WILL COMPARE THE MATRIX M]_ TO THE MATRIX M2, ELEMEHT BY ELEMENT,

FOR EXAMPLE; IF Mi => HOW AND M2 => OOH THEN M1/M2 => 10 1

HOW WOW 100
Ml AND M2 MUST BE THE SAME SHAPE OR A 'LENGTH ERROR' WILL RESULT,

COMPARING A VECTOR TO A MATRIX WILL RESULT IH A 'RANK ERROR',

THESE PRINCIPLES CAN BE EXTENDED TO HIGHER LEVEL ARRAYS,

122

1B2 LESS THAN LESS

******************************* » • **********************************

THE SYMBOL < (UPSHIFT 3) IS USED FOR THE DYADIC LESS THAN FUNCTION,

THIS COMPARES NUMERIC ARGUMENTS OF ANY RANK,

IT RETURNS 1 FOR EACH ELEMENT OF THE LEFT ARGUMENT THAT IS LESS

THAN THE CORRESPONDING ELEMENT OF THE RIGHT ARGUMENT, AND Q FOR

EACH ELEMENT THAT IS NOT.

) R EXAMPLE' 2 < 2 = > 2<4

TO COMPARE A SCALAR TO EACH ELEMENT OF A VECTOR,

ENTER EITHER S(V OR V<S, ORDER IS IMPORTANT

,

2<(123) => 00i (345X5 => 110
V^<V2 WILL COMPARE TWO VECTORS ELEMENT BY ELEMENT, FOR EXAMPLE}

(1 2 3)<(1 3 5) => Oil
IF THE TWO VECTORS BEING COMPARED ARE NOT THE SAME LENGTH,

YOU WILL GET A 'LENGTH ERROR',

MATRIX COMPARISON IS DONE AS FOLLOWS;

3<M OR M;S WILL COMPARE THE SCALAR 5 TO EACH ELEMENT OF THE MATRIX M,

FOR EXAMPLE* IF M => 12 THEN 3<M => ftH& M <3 => 1 1

3 4 1

M1<M2 WILL COMPARE THE MATRIX M]_
TO THE MATRIX M2, ELEMENT BY ELEMENT,

FOR EXAMPLE; IF Ml => I 4 AND M2 => 2 6 THEN M1<M2 => 11

4 7 5 3 10
Ml AND M2 MUST BE THE SAME SHAPE OR A 'LENGTH ERROR 1 WILL RESULT,

COMPARING A VECTOR TO A MATRIX WILL RESULT IN A 'RANK ERROR'

THESE PRINCIPLES CAN BE EXTENDED TO HIGHER LEVEL ARRAYS,

133 LESS OP: EQUAL LTEO

»»»»»»»»»»«#*« i »»*t»t»ll»»«t«l»»»t»t>»tt«tt»*»»*<»

THE SYMBOL < (UPSHIFT 4) IS USED FOR THE DYADIC LESS THAN OF: EQUAL TO

FUNCTION, THIS COMPARES NUMERIC ARGUMENTS OF ANT RANK,

IT RETURNS 1 FOR EACH ELEMEN T OF THE LEFT ARGUMENT THAT IS LESS THAN

OR EQUAL TO THE CORRESPONDING ELEMENT OF THE RIGHT ARGUMENT, AND

FOR EACH ELEMENT THAT IS HOT,

FOR EXAMPLE* 212 = > 1 214 = > o <
~?

TO COMPARE A SCALAR TO EACH ELEMENT OF A VECTOR,

ENTER EITHER 5<.V OR V<_S, ORDER IS IMPORTANT,

21(1 2 3) => Oil (3 4 5)15 = > 111
V1J.V2 WILL COMPARE TWO VECTORS ELEMENT BY ELEMENT, FOR EXAMPLE;

(1 2 3)1(1 3 5) => 111
IF THE TWO VECTORS BEING COMPARED ARE NOT THE SAME LENGTH,

YOU WILL GET A 'LENGTH ERROR 1

,

MATRIX COMPARISON IS DONE AS FOLLOWS*

5J.M OR Mj_S WILL COMPARE THE SCALAR S TO EACH ELEMENT OF THE MATRIX M,

FOR example; IF M => 12 THEN Zi M => AHD M 13 => 1 1

3 4 11 10
M]_j_M2 WILL COMPARE THE MATRIX MJ TO THE MATRIX M2, ELEMENT BY ELEMENT,

FOR EXAMPLEJ IF Ml => I 4 AND M2 = > 2 6 THEN M^M2 => 11

4 7 5 3 10
Ml AND M2 MUST BE THE SAME SHAPE OF: A 'LENGTH ERROR' WILL RESULT,

COMPARING A VECTOR TO A MATRIX WILL RESULT IN A 'RANK ERROR',

THESE PRINCIPLES CAN BE EXTENDED TO HIGHER LEVEL ARRAYS,

124

134 GREATER OR EQUAL GTEQ

»»»»*« — »»»«»•»»»»##»»»•»
THE SYMBOL > (UPSHIFT £) * -' USE!' FOR THE DYADIC GREATER THAN OR EQUAL

TO FUNCTION, THIS COMPARES NUMERIC ARGUMENTS OF ANY RANK,

IT RETURNS I FOR EACH ELEMENT OF THE LEFT ARGUMENT THAT IS GREATER

THAN OR EQUAL TO THE CORRESPONDING ELEMENT OF THE RIGHT ARGUMENT,

AND F0P: EACH ELEMENT THAT IS NOT,

214

TO COMPARE A SCALAR TO EACH ELEMENT OF A VECTOR,

ENTER EITHER S>V OR V>S, ORDER IS IMPORTANT,

21(1 2 3) => 110 (3 4 5)2.5 => 1

V12.V2 WILL COMPARE TWO VECTORS ELEMENT BY ELEMENT, FOR EXAMPLE;

(1 2 3)1(1) 10
IF THE TWO VECTORS BEING COMPARED ARE NOT THE SAME LENGTH,

YOU WILL GET A 'LENGTH ERROR',

MATRIX COMPARISON IS DONE AS FOLLOWS;

3,>M OR M>S WILL COMPARE THE SCALAR S TO EACH ELEMENT OF THE MATRIX M,

FOR EXAMPLE* IF M => 12 THEN 3>.M => \ \ AND M/.3 =>

3 4 10 11
M 11 M 2 WILL COMPARE THE MATRIX M]_ TO THE MATRIX M2, ELEMENT BY ELEMENT,

FOR EXAMPLE; IF Ml => 1 4 AND M2 => 2 6 THEN MJ.2.M2 =>

4 7 5 3 1

Ml AND M2 MUST BE THE SAME SHAPE OR A 'LENGTH ERROR 1 WILL RESULT,

COMPARING A VECTOR TO A MATRIX WILL RESULT IN A 'RANK ERROR'

THESE PRINCIPLES CAN BE EXTENDED TO HIGHER LEVEL ARRAYS,

is: GREATER THAN GRZA

******************************* ' ***********************************

THE SYMBOL > (UPSHIFT 7) IS USED "OF: THE DYADIC GREATER THAN

FUNCTION, THIS COMFARE5 NUMERIC ARGUMENTS OF ANY RANK,

IT RETURNS 1 FOR EACH ELEMENT OF THE LEFT ARGUMENT THAT IS GREATER

THAN THE CORRESPONDING ELEMENT OF THE RIGHT ARGUMENT, AND Q FOR

EACH ELEMENT THAT IS HOT,

FOP EXAMPLE
J 2>2 4>2

TO COMPARE A SCALAR TO EACH ELEMENT OF A VECTOR,

ENTER EITHER S>V OR V>5, ORDER IS IMPORTANT,

2X123) =: 100 (345)>5 => 000
y^>V2 WILL COMPARE TWO VECTORS ELEMENT BY ELEMENT, FOR EXAMPLE

J

(12 3JX13 5) =>

IF T HE TWO VECTORS BEING COMPARED ARE NOT THE SAME LENGTH,

YOU WILL GET A 'LENGTH ERROR 1

,

MATRIX COMPARISON IS DONE AS FOLLOWS;

5>M OR M>5 WILL COMPARE THE SCALAR S TO EACH ELEMENT OF THE MATRIX M,

FOR EXAMPLE; IF M => 12 THEN 3>M => 1 J AND M>3 =>

3 4 1

M1>M2 WILL COMPARE THE MATRIX Ml TO THE MATRIX M2» ELEMENT BY ELEMENT,

FOR EXAMPLE; IF Ml => 1 4 AND «2 =) 2 6 THEN M1>M2 =>

4 7 13 11

Ml AND M2 MUST BE THE SAME SHAPE OR A 'LENGTH ERROR 1 WILL RESULT,

COMPARING A VECTOR TO A MATRIX WILL RESULT IN A 'RANK ERROR',

THESE PRINCIPLES CAN BE EXTENDED TO HIGHER LEVEL ARRAYS.

126

191 HOT MOT

» i > i > i
i t .»•»»»»»»*•*» «»«««««»«»»»»«»»i»««»»»

THE SYMBOL v (UPSHIFT T) IS USED FOR THE MONADIC HOT FUNCTION,

IT TAKES AH ARGUMENT OF AMY RANK WHICH CONSISTS ONLY OF \'S AND Q'S,

AND RETURNS THE LOGICAL INVERSE, THAT IS, i'S ARE CHANGED TO Q'S

AND Q'S A F:

E

CHANGED TO l'S,

for example; .vi o 1 => 1

127

192 AND A N D

******************************* ***********************************

THE SYMBOL A (UPSHIFT Q) IS USED FOR THE DYADIC AND FUNCTION,

IT TAKES ARGUMENTS OF ANT RANK WHICH CONSIST ONLY OF 1'S AND Q'S,

THIS FUNCTION RETURNS
J_

WHERE BOTH ARGUMENTS ARE J, AND OTHERWISE,

THE ORDER OF THE ARGUMENTS IS NOT IMPORTANT, BUT ENTERING AN ARGUMENT

WHICH IS NOT I OR WILL PRODUCE A 'DOMAIN ERROR 1

,

FOR EXAMPLEJ 1*1 1*0 QaO = >

TO COMPARE A SCALAR TO EACH ELEMENT OF AN ARRAY,

ENTER EITHER SaA OR A.aS, FOR EXAMPLE, IF V => 2 "3

1MXV) => 10 (V=2) a v[i]=2 = > 10
A1aA2 WILL COMPARE TWO ARRAYS ELEMENT BY ELEMENT, FOR EXAMPLE

{

(V>~3) a (V<2) = > 1

IF M l => 1 *J A,!E' M 2 => 1 1 THEN M1AM2 => 10

10

Al AND A2 MUST BE THE SAME SHAPE OR A 'LENGTH ERROR 1 WILL RESULT,

COMPARING TWO ARRAYS OF DIFFERENT RANK, FOR EXAMPLE A VECTOR AND A

MATRIX, WILL RESULT IN A 'RANK ERROR',

128

193 NAND HAMS

«»»»»»»»*»•« tf»**»*»
THE SYMBOL A (ALT 0) I5 USED FOR THE DYADIC HOT AMD FUNCTION,

IT TAKES ARGUMENTS OF ANY RANK WHICH CONSIST ONLY OF 1'S AMD 0' 5
*

THIS FUNCTION RETURNS 1 WHERE ONE OR NEITHER OF THE ARGUMENTS ARE 1,

AND OTHERWISE (WHERE BOTH ARE 1),

THE ORDER OF THE ARGUMENTS IS HOT IMPORTANT, BUT ENTERING AN ARGUMENT

WHICH IS NOT 1 OR WILL PRODUCE A ' D M A I H ERROR',

FOR EXAMPLE! 1*1 1*0 =) 0*0

TO COMPARE A SCALAR TO EACH ELEMENT OF AM ARRAY,

ENTER EITHER SaA OR A*5 , FOR EXAMPLE, IF V => 2 ~3

1*<XV) => Oil <
v =2> * V[l]=2 => Oil

AJ.AA2 WILL COMPARE TWO ARRAYS ELEMENT BY ELEMENT, FOR EXAMPLE
J

(V>"3) A (V<2) => 110
IF M 1 = > i flHD M 2 = > 1 1 THENM1*M2 => 01

10 11

Al AMD A2 MUST BE THE SAME SHAPE OR A 'LENGTH ERROR' WILL RESULT,

COMPARING TWO ARRAYS OF DIFFERENT RAMK, FOR EXAMPLE A VECTOR AMD A

MATRIX, WILL RESULT IN A 'RAMK ERROR',

129

194 OR OR

!<»»•>. t.»l»»t»t(t.»«t».ttt*tl>«[.»»**»»•»»»»
THE SYMBOL v (UF5HIFT 9) 15 USED FOR THE DYADIC OR FUNCTION,

IT TAKES ARGUMENTS OF AMY RANK WHICH CONSIST ONLY OF i'S AND Q'S,

THIS FUNCTION RETURNS 1 WHERE ONE OR BOTH ARGUMENTS ARE 1,

AND OTHERWISE (WHERE BOTH ARE Q) t

THE ORDER OF THE ARGUMENTS IS NOT IMPORTANT, BUT ENTERING AN ARGUMENT

WHICH IS MOT 1 OR Q WILL PRODUCE A 'DOMAIN ERROR',

FOR EXAMPLE} Ivl lvO OvO

TO COMPARE A SCALAR TO EACH ELEMENT DF AN ARRAY,

ENTER EITHER 5 V A OR A V S, FOR EXAMPLE, IF V => 2 "3

lv(xV) => ill (v=2) v v[ii=3 => 100
aiv*2 WIL-L COMPARE TWO ARRAYS ELEMENT BY ELEMENT, FOR EXAMPLE

J

(V>"3) v (V<2) =:• 111
IF Ml => 1 ftM& M 2 => 1 1 THEN MivM2 => 1 1

10 10

Al AND A2 MUST BE THE SAME SHAPE OR A 'LENGTH ERROR' WILL RESULT,

COMPARING TWO ARRAYS OF DIFFERENT RANK, FOR EXAMPLE A VECTOR AND A

MATRIX, WILL RESULT IN A 'RANK ERROR 1

,

130

195 WOP: NOR

»•»»•»••»»»*» *" »«»•••»»•»
THE SYMBOL v (ALT 9) IS USED FOR THE DYADIC WOP: FUNCTION,

IT TAKES ARGUMENTS OF ANY P:AWK WHICH C0W5IST ONLY OF 1'5 AWD 0' s
.

THIS FUNCTION F:ETUP:WS
J,

WHERE NEITHER OF THE ARGUMEWT5 ARE \,

AWD OTHERWISE,

THE ORDER OF THE ARGUMENTS IS WOT IMPORTANT, BUT ENTERING AW ARGUMENT

WHICH IS WOT I OR Q WILL PRODUCE A 'DOMAIN ERROR',

FOR EXAMPLE} i*i 1*0 = > 0*0

TO COMPARE A SCALAR TO EACH ELEMEWT OF AW ARRAY,

EWTER EITHER S ¥ A OR Ayr , FOR EXAMPLE, IF V => 2 "3

lv(X V) => (V=2) v V[l]=3 => oil
AlvA2 WILL COMPARE TWO ARRAYS ELEMEWT BY ELEMEWT, FOR EXAMPLE;

(V>~3) * <v<2) =>

IF Ml => 1 ft,
'(E' M 2 => 1 1 THEN MlvM2 =>

10 1

Ai AWD A2 MUST BE THE SAME SHARE OR A 'LENGTH ERROR' WILL RESULT,

COMRARIWG TWO ARRAYS OF DIFFEREWT RAWK, FOP: EXAMPLE A VECTOR AWD A

MATRIX, WILL RESULT IW A 'RAWK ERROR 1

,

131

j_96 MEMBER OF MEMB

******************************* £ *********************************

THE SYMBOL
E

(UPSHIFT E) IS USED FOR THE DYADIC MEMBEP: OF FUNCTION,

THIS COMPARES NUMERIC OR CHARACTER ARGUMENTS OF ANY RANK,

IT RETURM5 1 FOR EACH ELEMENT OF THE LEFT ARGUMENT THAT IS FOUND

ANYWHERE IN THE RIGHT ARGUMENT, AND F0P: EVERY ELEMENT

THAT IS NOT,

WITH TWO SCALAR ARGUMENTS, ? IS EQUIVALENT TO =
,

for example; 2*2 => 1 2s4 => 'A' € 'B' =>

2s (2 3 4) => 1 «A'
>:
'abc => i

ENTERING A £ S WILL PRODUCE THE SAME RESULT AS flzS,

A l£ A 2 WILL TAKE EACH ELEMENT OF THE LEFT ARRAY AND DETERMINE IF

IT IS CONTAINED IN THE RIGHT ARRAY,

for example; -which 1 's' 0123456789 ' => 0000001
if q => 122 14 an& A2 => 12 3

38 5 2

THEN A1 £ A2 => 10 AMD A2jA1 => 110
1

THE RESULT OF A1jA2 HAS THE SAME SHAPE AS AJ,,

is:

201 REVERSE REVO

******************************* 9 ***************************

THE SYMBOL $ (ALT 5) IS USED FOR THE MONADIC REVERSE FUNCTION,

IT TAKES NUMERIC OR CHARACTER ARGUMENTS OF ANT RANK,

IT RETURNS ALL THE ELEMENTS OF THE ARGUMENT IN THE SAME SHAPE,

BUT IN A DIFFERENT ORDER, AS FOLLOWS,

** + »» >

using $ with a scalar simply returns the scalar,

using <j) with a vector returns the vector in reverse order,

for example: }2 3 5 => 5 3 2

fll'STOF' =) POTS

WHEN USED WITH A MATRIX, $ TAKES THE COLUMNS AS UNITS AND REVERSES

THEM, THE FIRST COLUMN BECOMES THE LAST COLUMN, AND SO ON,

FOR EXAMPLE, I F M = > 12 3 THEN <)/M => 3 2 1

4 5 6 6 5 4

7 3 9 9 8 7

APL USERS REFER TO THIS AS WORKING 'ACROSS' OR 'OVER' THE COLUMNS,

SINCE COLUMNS ARE THE SECOND OF TWO DIMENSIONS OF A MATRIX,

THIS MEANS THAT THE SYMBOL $ WORKS 'OVER' THE LAST DIMENSION,

TO REVERSE OVER THE FIRST DIMENSION (E,G, ROWS OF A MATRIX), USE THE

SYMBOL e (ALT 7), IN PLACE OF $

,

THIS IS IMPORTANT WHEN WORKING WITH HIGHER-DIMENSIONAL ARRAYS,

FOR EXAMPLE, IN A THREE-DIMENSIONAL ARRAY OF PAGES, ROWS, AND

COLUMNS,
(J)

WILL REVERSE OVER THE COLUMNS, a OVER THE PAGES,

TO REVERSE OVER ANY DIMENSION, YOU MAY SPECIFY THE DIMENSION IN

BRACKETS FOLLOWING THE $ (OR THE a) SYMBOL,

FOR EXAMPLE, TO REVERSE OVER THE ROWS OF A THREE-DIMENSIONAL ARRAY

CALLED AA, ENTER QC23 AA OR e[23 AA . T0 REVERSE OVER THE PAGES,

ENTER eAA OR $[1]AA, TO REVERSE OVER THE COLUMNS, ENTER (J)AA

or eC33 ftA
.

133

2o; REVERSE R E V 1

******************************* S *********************************

the symbol 9 (alt 7) is used for the monadic reverse function,

it takes numeric or character arguments of ant rank,

it returns all the elements of the argument in the same share,

but in a different order, as follows,

using 9 with a scalar simply returns the scalar,

using 9 with a vector returns the vector in reverse order,

for example; 92 3 5 => 5 3 2

b'stop' => rots

when used with a matrix, 9 takes the rows as units and reverses

them, the first row becomes the last row, and so on,

for example, if m => 12 3 then em => 7 8 9

4 5 6 4 5 6

7 8 9 12 3

APL USERS REFER TO THIS AS WORKING 'ACROSS' OR 'OVER' THE ROWS,

SINCE ROWS ARE THE FIRST OF TWO DIMENSIONS OF A MATRIX,

THIS MEANS THAT THE SYMBOL 9 WORKS 'OVER' THE FIRST DIMENSION,

TO REVERSE OVER THE LAST DIMENSION (E,G, COLUMNS OF A MATRIX),

USE THE SYMBOL
(J)

(ALT 5), IN PLACE OF 9,

THIS IS IMPORTANT WHEN WORKING WITH HIGHER-DIMENSIONAL ARRAYS,

FOR EXAMPLE, IN A THREE-DIMENSIONAL ARRAY OF RAGES, ROWS, AND

COLUMNS, $ WILL REVERSE OVER THE COLUMNS, 3 OVER THE RAGES,

TO REVERSE OVER ANY DIMENSION, YOU MAY SPECIFY THE DIMENSION IN

BRACKETS FOLLOWING THE 9 (OR THE <j)) SYMBOL,

FOR EXAMPLE, TO REVERSE OVER THE ROWS OF A THREE-DIMENSIONAL ARRAY

CALLED AA, ENTER 9C2j AA 0P: <DC23 fiA . T0 REVERSE OVER THE PAGES,

ENTER 9AA OR <ftC13 Afl . T0 REVERSE OVER THE COLUMNS, ENTER <J)AA

OR 9C33 AA .

134

203 ROTATE ROTO

••»f»»»»««»»«» »»•»»•»»»
the symbol $ (alt 5) is used for the dyadic rotate function,

the right argument can be character or numeric, of amy rank,

the left argument must be an integer scalar or array,

it returns all the elements of the right argument in the same share,

but in a different order, as follows,

using $ with two scalar arguments simply returns the right argument,

a vector right argument requires a scalar left argument,

each element of the right argument is moved to the left by the number

of places indicated in the left argument,

for example; 2$2 3 5 => 5 2 3 3$ 'rotate 1 => aterot

when used with a matrix, $ takes either a scalar left argument or a

vector with as many elements as there are rows in the matrix,

sjj)m takes the columns as units and moves each column to the left by

the number of spaces indicated by the scalar,

for example; if m => 12 3 then 2<t> M => 3 12

4 5 6 6 4 5

7 8 9 9 7 3

V$M TAKES EACH ROW INDIVIDUALLY AND MOVES THE ELEMENTS TO THE LEFT BY

THE NUMBER OF SPACES INDICATED BY THE CORRESPONDING ELEMENT OF THE

LEFT ARGUMENT, FOR EXAMPLE}

2 3 i't> M => 3 12 THE FIRST ROW IS MOVED 2 SPACES LEFT

4 5 6 THE SECOND ROW IS ROTATED 3 SPACES

3 9 7 THE THIRD ROW IS ROTATED ONCE

EACH ELEMENT IS IN THE SAME ROW BUT A DIFFERENT COLUMN, 50 APL

USERS REFER TO THIS AS WORKING 'ACROSS' OR 'OVER' THE COLUMNS,

SINCE COLUMNS ARE THE SECOND OF TWO DIMENSIONS OF A MATRIX,

THIS MEANS THAT THE SYMBOL
<J>

WORKS 'OVER' THE LAST DIMENSION,

TO ROTATE OVER THE FIRST DIMENSION (E,G, ROWS OF A MATRIX), USE THE

135

SYMBOL e (ALT 7), IN PLACE OF
<J> ,

THIS IS IMPORTANT WHEN WORKING WITH H I GHER-D I MENS I ONAL ARRAYS,

FOR EXAMPLE, IN A THREE-DIMENSIONAL ARRAY OF PAGES, ROWS, AND

COLUMNS, j) WILL ROTATE OVER THE COLUMNS, 8 OVER THE PAGES,

TO ROTATE OVER ANY DIMENSION, YOU MAY SPECIFY THE DIMENSION IN

BRACKETS FOLLOWING THE
(J)

(OR THE g) SYMBOL,

THE LEFT ARGUMENT MUST HAVE THE SAME SHAPE AS THE RIGHT ARGUMENT

OMITTING THE DIMENSION BEING ROTATED OVER, OR IT MAY BE A SCALAR,

FOR EXAMPLE, TO ROTATE OVER THE ROWS OF A THREE-DIMENSIONAL ARRAY

CALLED AA WHERE fAA => 2 3 4» ENTER EITHER 5$[2]AA OR M$[2] AA

WHERE fM =) 2 4. T0 POTATE OVER THE FAGES, ENTER SeAA OR MeAA

OR S(D[1]AA OR MiJCljAA WHERE fM => 3 4, TO ROTATE OVER THE

COLUMNS, ENTER S.JAA OR M$AA OR Se[3]AA OR MeC3]AA WHERE fM => 2 3.

136

204 ROTATE F:OTl

»»•»»•«»»»•••• 3 f » » » » » » » * » i » * * * * * * » * * i * * • -

THE SYMBOL 8 (ALT 7) IS USED FOR THE DYADIC ROTATE FUMCTIOH,

THE RIGHT ARGUMENT CAM BE CHARACTER OR NUMERIC, OF AMY RANK,

THE LEFT ARGUMENT MUST BE AN INTEGER SCALAR OR ARRAY,

IT RETURNS ALL THE ELEMENTS OF THE RIGHT ARGUMENT IN THE SAME SHAPE,

BUT IN A DIFFERENT ORDER, AS FOLLOWS,

USING 9 WITH TWO SCALAR ARGUMENTS SIMPLY RETURNS THE RIGHT ARGUMENT,

A VECTOR RIGHT ARGUMENT REQUIRES A SCALAR LEFT ARGUMENT,

EACH ELEMENT OF THE RIGHT ARGUMENT IS MOVED TO THE LEFT BY THE NUMBER

OF PLACES INDICATED IN THE LEFT ARGUMENT.

FOR EXAMPLE
J 2^2 3 = > 2 3 39' ROTATE => ATEROT

WHEN USED WITH A MATRIX, a TAKES EITHER A SCALAR LEFT ARGUMENT OR A

VECTOR WITH AS MANY ELEMENTS AS THERE ARE COLUMNS IN THE MATRIX,

SgM TAKES THE ROWS AS UNITS AND MOVES EACH ROW UP BY THE NUMBER

SPACES INDICATED BY THE SCALAR,

FOR EXAMPLE
J

IF M => 12 3 THEN 29 w => 7 3 9

4 5 6 12 3

7 3 9 4 5 6

V$M TAKES EACH COLUMN INDIVIDUALLY AND MOVES THE ELEMENTS UP BY

THE NUMBER OF SPACES INDICATED BY THE CORRESPONDING ELEMENT OF THE

LEFT ARGUMENT, FOR EXAMPLE
J

2 3 laM => 7 2 6 THE first column is moved 2 spaces up

15 9 THE SECOND COLUMN IS ROTATED 3 SPACES

4 8 3 THE THIRD COLUMN IS ROTATED ONCE

EACH ELEMENT IS IN THE SAME COLUMN BUT A DIFFERENT ROW, SO APL

USERS REFER TO THIS AS WORKING 'ACROSS' OR 'OVER' THE ROWS,

SINCE ROWS ARE THE FIRST OF TWO DIMENSIONS OF A MATRIX,

THIS MEANS THAT THE SYMBOL 9 WORKS 'OVER' THE FIRST DIMENSION,

TO ROTATE OVER THE LAST DIMENSION (E,G, COLUMNS OF A MATRIX), USE THE

137

SYMBOL $ (ALT g), IN PLACE OF 9,

THIS IS IMPORTANT WHEN WORKING WITH H I GHER-D I MENS I ON AL ARRAYS,

FOR EXAMPLE, IN A THREE-DIMENSIONAL ARRAY OF PAGES, ROWS, AND

COLUMNS, $ WILL ROTATE OVER THE COLUMNS, e OVER THE PAGES,

TO ROTATE OVER ANY DIMENSION, YOU MAY SPECIFY THE DIMENSION IN

BRACKETS FOLLOWING THE 6 (OR THE
(J)) SYMBOL,

THE LEFT ARGUMENT MUST HAVE THE SAME SHAPE AS THE RIGHT ARGUMENT

OMITTING THE DIMENSION BEING ROTATED OVER, Oft IT MAY BE A SCALAR,

FOR EXAMPLE, TO ROTATE OVER THE ROWS OF A THREE-DIMENSIONAL ARRAY

CALLED AA WHERE pAA s) 2 3 4» ENTER EITHER 5$£23 AA 0F: M <DC2] AA

WHERE pM = > 2 4. T0 ROTATE OVER THE PAGES, ENTER SfiAA OR MaAA

OR S.p[l]AA OR M(fc[l]AA WHERE pM => 3 4, TO ROTATE OVER THE

COLUMNS, ENTER 5<J)AA OR M(J)AA OR Se[3]AA OR Me[33AA WHERE pM => 2 3

133

2o: TRANSPOSE-MONADIC TRAM

tlHHHtMHttHHHHHHtMt 'V *»»»*»»•»»**»
THE SYMBOL (5 (ALT £) IS USED FOR THE MONADIC TRANSPOSE FUNCTION,

IT TAKES NUMERIC OR CHARACTER ARGUMENTS OF ANY RANK,

IT RETURNS ALL THE ELEMENTS OF THE ARGUMENT IN A DIFFERENT SHAPE

AND ORDER, AS FOLLOWS,

U5IHG q WITH A SCALAR OR VECTOR SIMPLY RETURNS THE ARGUMENT,

WHEN USED WITH A MATRIX, S) PERFORMS MATRIX TRANSPOSITION;

THE ROWS BECOME COLUMNS AND 'HE COLUMNS BECOME ROWS,

FOR EXAMPLE, IF M => 12 3 THEN §M => 14 7

4 5 6 2 5 8

7 3 9 3 6 9

WHEN USED WITH H I GH ER -D I MENS I ONAL ARRAYS, TRANSPOSE REVERSES THE

ORDER OF THE DIMENSIONS,

FOR EXAMPLE, IN A THREE-DIMENSIONAL ARRAY OF PAGES, ROWS, AND

COLUMNS, THE PAGES WILL BECOME ROWS AND THE ROWS PAGES,

THAT IS, THE ELEMENT IN THE FIRST PAGE, SECOND ROW, THIRD COLUMN

WILL BE TRANSPOSED TO THE THIRD PAGE, SECOND ROW, FIRST COLUMN,

IF ARRAY[iJ2»3f4] => 7 THEN ($ARR A Y) [4 } 3 } 2 } 1] => 7

THE SHAPE OF THE RESULT WILL ALWAYS BE THE REVERSE OF THE SHAPE OF

THE ARGUMENT, IF f ARRAY = > 3 2 7 THEN pfijARRAY =; 7 2 3

139

206 TRANSPOSE-DYADIC T R A D

»»»•»»» Q t»»«»»tt»*«t»»»t»»»*t»»«tt»«t»»)«»t

THE SYMBOL $ (ALT £) IS USED FOR THE DYADIC TRANSPOSE FUNCTION,

THE RIGHT ARGUMENT CAN BE CHARACTER OR NUMERIC, OF ANY RANK,

THE LEFT ARGUMENT MUST BE A POSITIVE INTEGER SCALAR OR VECTOR,

IT RETURNS ALL THE ELEMENTS OF THE RIGHT ARGUMENT IN A DIFFERENT

SHAPE AND ORDER, AS FOLLOWS,

USING $ WITH A SCALAR RIGHT ARGUMENT RETURNS A 'LENGTH ERROR' UNLESS

THE LEFT ARGUMENT IS AN EMPTY VECTOR, THEN IT RETURNS THE SCALAR,

1§V RETURNS THE VECTOR V, ANY OTHER SCALAR LEFT ARGUMENT USED WITH

A VECTOR RIGHT ARGUMENT PRODUCES A 'DOMAIN ERROR", ANY OTHER

RANK LEFT ARGUMENT RESULTS IN A 'LENGTH ERROR',

WITH A MATRIX RIGHT ARGUMENT. THE LEFT ARGUMENT MUST BE A VECTOR.
J

EITHER (J. 2) 0F: (2 1). (2 1)S< M PRODUCES THE TRANSPOSE OF MJ

THE COLUMNS (THE SECOND DIMENSION) BECOME THE ROW (THE FIRST

DIMENSION),
(J 2) § M = > w

WITH A RIGHT ARGUMENT OF RANK R, THE LEFT ARGUMENT MUST CONTAIN ALL

THE INTEGERS FROM]_ TO R, IN ANY ORDER,

TRANSPOSE WILL TAKE THE DIMENSIONS OF THE RIGHT ARGUMENT AND PUT THEM

IN THE ORDER SPECIFIED BY THE LEFT ARGUMENT,

FOR EXAMPLE, IF ffl => 2 3 4 THEN (3 1 2)$ A WILL PUT THE THIRD

DIMENSION FIRST (COLUMNS BECOME PAGES), THE FIRST DIMENSION SECOND

(PAGES BECOME ROWS), AND THE SECOND DIMENSION THIRD (ROWS BECOME

COLUMNS), SO f(3 1 2)*A => 4 2 3.

IN OTHER WORDS, THE ELEMENT IN THE SECOND COLUMN, THIRD ROW, FIRST

PAGE WILL BE TRANSPOSED TO THE SECOND PAGE, THIRD COLUMN, FIRST

ROW, AND 50 ON, IF A [1 3 23 => 3 THEN ((3 1 2>*A)E2 133 => 8.

140

211 TAKE TAKE

THE SYMBOL f (UPSHIFT 1) IS USED FOP: THE DYADIC TAKE FUNCTION,

THE LEFT ARGUMENT MUST BE AH INTEGER SCALAR OR VECTOR,

THE RIGHT ARGUMENT CAN BE CHARACTER OR NUMERIC, OF AMY RANK,

TAKE RETURNS SELECTED ELEMENTS OF THE RIGHT ARGUMENT AS FOLLOWS
J

WHEN THE RIGHT ARGUMENT IS A SCALAR, THE LEFT ARGUMENT CAN BE A SCALAR

OR A VECTOR OF AHY LENGTH,

THE RESULT OF L f-R HAS A SHARE EXACTLY EQUAL TO L, R WILL BE THE FIRST

ELEMENT IF L IS POSITIVE, AND THE LAST ELEMENT IF L IS NEGATIVE, THE

OTHER ELEMENTS WILL BE Q IF R IS NUMERIC, BLANK IF R IS CHARACTER,

FOR EXAMPLE
J 114=) 4 fii4 => 1 2f

'

A ' => A

P2+'A' => 2 ~4f2 => 0002 f(3 4)tl => 34

IF THE RIGHT ARGUMENT IS A VECTOR, THE LEFT ARGUMENT MUST BE A SCALAR

OR A 'RANK ERROR' WILL RESULT,

SfV WILL RETURN THE FIRST S ELEMENTS OF V, IF S IS POSITIVE, OR THE

LAST 5 ELEMEHTS OF V, IF S IS NEGATIVE,

IF S EXCEEDS THE LEHGTH OF V, THE RESULT WILL BE PADDED WITH Q'S, OR

BLAMK5, OH THE RIGHT IF S IS POSITIVE, OH THE LEFT IF S IS HEGATIVE,

FOR EXAMPLE
J Zf'tlO => 12 3 ~3t ' ALPHABET ' => BET

5t'ABC< => abc fSf'ABC => 5 -4+ 2 3 => 2 3

WHEN THE RIGHT ARGUMENT IS A MATRIX OR HIGHER LEVEL ARRAY, THE LEFT

ARGUMENT MUST BE A VECTOR WITH AS MANY ELEMENTS AS THERE ARE

DIMEHSIONS IN THE RIGHT ARGUMENT, OR A 'LENGTH ERROR 1 RESULTS,

for example* if m => ? 3 7 ~i 2fM => 6 5 2 4t"< => 9 8 7

6 5 4 6 5 4

THE FIRST ELEMENT OF THE VECTOR DETERMINES WHICH ROWS ARE TAKEN,

AND THE SECOND ELEMENT DETERMINES WHICH COLUMNS ARE TAKEN,

THE RESULT WILL BE PADDED WITH Q

'

s oft BLANKS AS ABOVE,

141

FOR HIGHER LEVEL ARRAYS, EACH ELEMENT OF THE LEFT ARGUMENT WILL

TAKE ELEMENTS FROM THE CORRESPONDING DIMENSION,

FOR EXAMPLE, IF fA - > 6 5 4? (2 ~3 1)

t

M WILL RETURN THE FIRST

COLUMN OF THE LAST THREE ROWS OF THE FIRST TWO RAGES,

THE RESULT OF TAKE WILL ALWAYS HAVE A SHARE EXACTLY EQUAL TO THE

ABSOLUTE VALUE OF THE LEFT ARGUMENT,

IF THERE IS a ZERO (0) ANYWHERE IN THE LEFT ARGUMENT, THE ANSWER WILL

BE AN EMFTY ARRAY WITH THE APPROPRIATE SHARE.

F R E)\ A M P L E P2 "3 lffi 1 ?1 7fA => 7 7

142

!12 DROP DROP

******************************* 4 ***********************************

THE SYMBOL 4, (UPSHIFT U) IS USED FOP: THE DYADIC DROP FUNCTION,

THE LEFT ARGUMENT MUST BE AM INTEGER SCALAR OR VECTOR,

THE RIGHT ARGUMENT CAN BE CHARACTER OR NUMERIC, OF ANY RANK,

DROP RETURNS SELECTED ELEMENTS OF THE RIGHT ARGUMENT AS FOLLOWS
J

WHEN THE RIGHT ARGUMENT IS A SCALAR, THE LEFT ARGUMENT CAN BE A SCALAR

OR A VECTOR OF ANY LENGTH,

IF ALL ELEMENTS OF THE LEFT ARGUMENT EGUAL Q, THE RESULT OF L 4, S WILL

BE AN ARRAY CONTAINING THE RIGHT ARGUMENT} OTHERWISE IT WILL BE AN

EMPTY ARRAY, THIS ARRAY HAS AS MANY DIMENSIONS AS THE LEFT ARGUMENT

HAS ELEMENTS AND EACH DIMENSION IS OF LENGTH J.,

FOR EXAMPLE* H4 s > (EMPTY) fl + 4 => 1 (H ' A ' => A

2 4 64-2 => (empty} f (2 4 6) +2 => ill 013 => 3

IF THE RIGHT ARGUMENT IS A VECTOR, THE LEFT ARGUMENT MUST BE A SCALAR

OR A "RANK ERROR' WILL RESULT,

SJ,V WILL RETURN V OMITTING THE FIRST S ELEMENTS, IF S IS POSITIVE,

OR THE LAST S ELEMENTS, IF S IS NEGATIVE,

IF S EXCEEDS THE LENGTH OF V, THE RESULT WILL BE AN EMPTY VECTOR,

FOR EXAMPLE* 6I\10 => 7 3 ? 10 -34. ' ALPHABET ' => ALPHA

54,'ABC =} (EMPTY) f54-'ABC => Oil 3 => 1 3

WHEN THE RIGHT ARGUMENT IS A MATRIX OR HIGHER LEVEL ARRAY, THE LEFT

ARGUMENT MUST BE A VECTOR WITH AS MANY ELEMENTS AS THERE ARE

DIMENSIONS IN THE RIGHT ARGUMENT, OR A 'LENGTH ERROR' RESULTS,

FOR EXAMPLE; IF M => 9 3 7 1 ~1|M => 6 5 24-* => 7

6 5 4 4

THE FIRST ELEMENT OF THE VECTOR DETERMINES WHICH ROWS ARE DROPPED,

AND THE SECOND ELEMENT DETERMINES WHICH COLUMNS ARE DROPPED,

FOR HIGHER LEVEL ARRAYS, EACH ELEMENT OF THE LEFT ARGUMENT WILL

143

DROP ELEMENTS FROM THE CORRESPONDING DIMENSION,

FOR EXAMPLi IF f i 4f (2 ~3 1H A WILL RETURN THE LAST

THREE COLUMNS OF THE FIRST TWO ROWS OF THE LAST FOUR RAGES,

THE RESULT OF DROP WILL ALWAYS HAVE A SHAPE EXACTLY EQUAL TO THE

SHAPE OF THE RIGHT ARGUMENT MINUS THE ABSOLUTE VALUE OF THE

LEFT ARGUMENT, EXCEFT AS FOLLOWS;

IF ANY ELEMENT OF the LEFT ARGUMENT EXCEEDS THE LENGTH OF THE

CORRESPONDING DIMENSION IN THE RISHT ARGUMENT, THE RESULT WILL

BE AN EMPTY ARRAY OF THE APPROPRIATE SHAPE,

IN THE ABO^E EXAMPLE; f(2 ~3 1H A => 4 2 3

P(3 4 5>*a = > 3 10 3 4 51* => (
empty)

144

213 COMPRESS COM?

»»»»»«»»»»»»«««••»• ' »»•»»»»»
THE SYMBOL / IS USED FOR THE DYADIC COMPRESS FUNCTION,

THE RIGHT ARGUMENT CAN BE CHARACTER OR NUMERIC, OF ANY RANK,

THE LEFT ARGUMENT MUST BE 1,0 J
0R a VECTOR OF J'S AND 0' s

.

COMPRESS RETURNS SELECTED ELEMENTS OF THE RIGHT ARGUMENT, AS FOLLOWS;

1/A WILL RETURN THE RIGHT ARGUMENT, WHILE Q/ A RETURNS AN EMPTY ARRAY,

V1/V2 WILL RETURN THE ELEMENTS OF V'2 THAT CORRESPOND TO 1'S IN VJ ,

FOR EXAMPLE* 101/123 => 13 110 l/'HALT' =} HAT

TWO VECTOR ARGUMENTS MUST HAVE THE SAME NUMBER OF ELEMENTS OR A

'LENGTH ERROR' WILL RESULT,

V/M TAKES THE COLUMNS AS UNITS AND RETURNS THE COLUMNS IN M WHICH

CORRESPOND TO THE i'S IN V, FOR EXAMPLE;

IF M => 12 3 TH EM 1 1/M => 13

4 5 6 4 6

7 3 9 7 9

fiPL USERS REFER TO THIS AS WORKING 'ACROSS' OR 'OVER' THE COLUMNS,

SINCE COLUMNS ARE THE SECOND OF TWO DIMENSIONS OF A MATRIX,

THIS MEANS THAT the SYMBOL / WORKS 'OVER' THE LAST DIMENSION,

TO COMPRESS OVER THE FIRST DIMENSION (E.G. ROWS OF A MATRIX), USE THE

SYMBOL 4 (ALT /), IN PLACE OF /,

THIS IS IMPORTANT WHEN WORKING WITH H I GHER -D I MENS I ON AL ARRAYS,

FOR EXAMPLE, IN A THREE-DIMENSIONAL ARRAY OF PAGES, ROWS, AND

COLUMNS, / WILL COMPRESS OVER THE COLUMNS, / OVER THE PAGES,

COMPRESS OVER ANY DIMENSION, YOU MAY SPECIF

BRACKETS FOLLOWING THE / (OR THE /) SYMBOL,

THE LEFT ARGUMENT MUST BE A SCALAR, OR A VECTOR WITH THE SAME

NUMBER OF ELEMENTS AS THE DIMENSION BEING COMPRESSED OVER,

FOR EXAMPLE, TO COMPRESS OVER THE ROWS OF A THREE-DIMENSIONAL ARRAY

14!

CALLED AA WHERE fAA => 2 3 4j ENTER S/[2]AA OR V/£23 AA 0P; 5 /C2] ftA

OR V/[2]AA WHERE fV =; 3, TO CQMRRESS OVER THE RAGES, EHTER

S/AO OR V/AA OR S/QJAA OR V/[1]AA WHERE fV => 2. T0 COMPRESS

OVER THE COLUMNS, EKTER S/AA OR V/AA OR S/£3]AA OR V/[3] AA

WHERE fV => 4,

146

214 COMPRESS COMj_

»«t»t««»ttt«»»t»«*»»»« + tt»»t«»< / »«»•»»»»••*»»»»
the symbol / (alt /) is used for the dyadic compress function,

the right argument cam be character or numeric, of amy rank,

the left argument must be \,q, or a vector of 1's amd 0' s
.

compress returns selected elements of the right argument, as follows;

1/a will return the right argument, while q/a returns an empty array,

yi_/v2 will return the elements of v2 that correspond to \'5 in vj,

for example; 10 1/12 3 => 13 110 I/'halt' => hat

two vector arguments must have the same number of elements cr a

'length error 1 will result,

v/m takes the rows as units and returns the rows in m which

correspond to the 1's in v, for example;

if m => 12 3 THEN 1 1/ M = > 12 3

4 5 6 7 8?

7 3 9

APL USERS REFER TO THIS AS WORKING 'ACROSS' OR 'OVER' THE ROWS,

SINCE ROWS ARE THE FIRST OF TWO DIMENSIONS OF A MATRIX,

THIS MEANS THAT THE SYMBOL / WORKS 'OVER' THE FIRST DIMENSION,

TO COMPRESS OVER THE LAST DIMENSION (E,G, COLUMNS OF A MATRIX),

USE THE SYMBOL / IN PLACE OF /,

THIS IS IMPORTANT WHEN WORKING WITH HIGHER-DIMENSIONAL ARRAYS,

FOR EXAMPLE, IN A THREE-DIMENSIONAL ARRAY OF PAGES, ROWS, AND

COLUMNS, / WILL COMPRESS OVER THE COLUMNS, / OVER THE PAGES,

COMPRESS OVER ANY DIMENSION, YOU MAY SPECIF

BRACKETS FOLLOWING THE / (OR THE /) SYMBOL,

THE LEFT ARGUMENT MUST BE A SCALAR, OR A VECTOR WITH THE SAME

NUMBER OF ELEMENTS AS THE DIMENSION BEING COMPRESSED OVER,

FOR EXAMPLE, TO COMPRESS OVER THE ROWS OF A THREE-DIMENSIONAL ARRAY

147

CALLED AA WHERE fAA =

OR V/[2]AA WHERE fV => 3, TO COMPRESS OVER THE PAGES, ENTER

S/Afi OR 7/AA OR S/[i]AA OR V/[1]AA WHERE fV TO COMPRESS

OVER THE COLUMNS, ENTER S/AA OR V/AA OR S/[3]AA OR V/[3] AA

WHERE fV => 4,

148

EXPAND EXP 9

»****»»#*«*#»»» \ •«•••»»»•»»
THE SYMBOL \ (UPSHIFT /) IS USED FOR THE DYADIC EXPAND FUNCTION,

THE RIGHT ARGUMENT CAN BE CHARACTER OR NUMERIC, OF AMY RANK,

THE LEFT ARGUMENT MUST BE A VECTOR OF i'S AND 0'=.

IS NUMERIC, OR BLANKS IF IT IS CHARACTER, AS FOLLOWS
J

EXPAND RETURNS THE RIGHT ARGUMENT, ADDING Q'S IF THE RIGHT ARGUMENT

IS NUMERIC, OR BLANKS IF IT IS CHARACTER, AS FOLLOWS;

+

v\5 will return a vector consisting of the scalar repeated as many

times as there are i's in v,

for example; 1 1\3 = > 3 3

if there are no i's in v, v\s returns an empty vector,

Vl/V'2 WILL RETURN THE ELEMENTS OF V2j WITH Q' 5 op: BLANKS INSERTED

TO CORRESPOND TO THE Q'S IN VI, FOR EXAMPLE;

I 1 1\1 23 => 1203 1010 IX'apl' => a p l

THE LEFT ARGUMENT MUST CONTAIN AS MANY i'S AS THERE ARE ELEMENTS

IN THE RIGHT ARGUMENT OR A 'LENGTH ERROR' WILL RESULT,

V\M TAKES THE COLUMNS AS UNITS AND RETURNS THE A MATRIX WITH COLUMNS

OF O'S OR BLANKS INSERTED TO CORRESPOND TO THE fS IN V,

IF M => 12 3 TH EN 10 10 i\M => 10 2 3

456 40506
789 70309

APL USERS REFER TO THIS AS WORKING 'ACROSS' OR 'OVER' THE COLUMNS,

SINCE COLUMNS ARE THE SECOND OF TWO DIMENSIONS OF A MATRIX,

THIS MEANS THAT THE SYMBOL \ WORKS 'OVER' THE LAST DIMENSION,

TO EXPAND OVER THE FIRST DIMENSION (E,G, ROWS OF A MATRIX), USE THE

SYMBOL \ (ALT ,), IN PLACE OF \,

THIS IS IMPORTANT WHEN WORKING WITH H I GHER -D I MENS I ONAL ARRAYS,

FOR EXAMPLE, IN A THREE-DIMENSIONAL ARRAY OF PAGES, ROWS, AND

149

COLUMNS, \ WILL EXPAND OVER THE COLUMNS, \ OVER THE PAGES,

TO EXPAND OVER ANY DIMENSION, YOU MAY SPECIFY THE DIMENSION IN

BRACKETS FOLLOWING THE \ (OR THE V) SYMBOL,

FOR EXAMPLE, TO EXPAND OVER THE ROWS OF A THREE-DIMENSIONAL ARRAY

CALLED AA WHERE fAA =) 2 3 A J
ENTER V\[2]AA OR V\[2]AA

WHERE +/V =) 3, TO EXPAND OVER THE PAGES, ENTER V\AA OR. V\[1]AA

WHERE +/V =; 2* T0 EXPAND OVER THE COLUMNS, ENTER V\AA OR

V\C3] AA WHERE + /V => 4

150

216 'XPAMD EXP1

»»»»•»• > «•»»•»«»»•»»»«»«»
THE SYMBOL \ (ALT ,) 13 USED FOR THE DYADIC EXPAND FUNCTION,

THE RIGHT ARGUMENT CAM BE CHARACTER OR NUMERIC, OF AMY RANK,

THE LEFT ARGUMENT MUST BE A VECTOR OF 1 ' S AND Q '

3

f

EXPAND RETURNS THE RIGHT ARGUMENT, ADDING 0' 5 IF THE RIGHT ARGUMENT

IS NUMERIC, OR BLANKS IF IT IS CHARACTER, AS FOLLOWS*

V\S WILL RETURN A VECTOR CONSISTING OF THE SCALAR REREATED AS MANY

TIMES AS THERE ARE
J,

' 5 IN V,

FOR EXAMPLE* 1 1\3 = > 3 3

IF THERE ARE NO \'S IN V, V\5 RETURNS AN EMPTY VECTOR,

V1\V2 WILL RETURN THE ELEMENTS OF V2» WITH 0' 5 0P: BLANKS INSERTED

TO CORRESPOND TO THE A' 3 J '< v l» F0R EXAMPLE*

1 1 l\i 2 3 = > 12 3 10 10 1VAPL' = > a p l

THE LEFT ARGUMENT MUST CONTAIN AS MANY 1 ' S AS THERE ARE ELEMENTS

IN THE RIGHT ARGUMENT OR A 'LENGTH ERROR' WILL RESULT,

VVM TAKES THE ROWS AS UNITS AND RETURNS THE MATRIX WITH ROWS

OF O'S OR BLANKS INSERTED TO CORRESPOND TO THE 1'S IN V,

IF M => 12 3 THEN 1 1 \ M => 12 3

4 5 6

4 5 6

APL USERS REFER TO THIS AS WORKING 'ACROSS' OR 'OVER' THE ROWS,

SINCE ROWS ARE THE FIRST OF TWO DIMENSIONS OF A MATRIX,

THIS MEANS THAT THE SYMBOL \ WORKS 'OVER' THE FIRST DIMENSION,

TO EXPAND OVER THE LAST DIMENSION (E,6, COLUMNS OF A MATRIX), USE

THE SYMBOL \ (UPSHIFT /), IN PLACE OF \,

THIS IS IMPORTANT WHEN WORKING WITH HIGHER-DIMENSIONAL ARRAYS,

FOR EXAMPLE, IN A THREE-DIMENSIONAL ARRAY OF PAGES, ROWS, AND

COLUMNS, \ WILL EXPAND OVER THE COLUMNS, \ OVER THE PAGES,

151

TO EXPAND OVER ANY DIMENSION, YOU MAY SPECIFY THE DIMENSION IN

BRACKETS FOLLOWING THE \ (OR THE \) SYMBOL,

THE LEFT ARGUMENT MUST BE A VECTOR WITH THE SAME NUMBER OF 1'5 AS

THERE ARE ELEMENTS IN THE DIMENSION BEING EXPANDED OVER,

FOR EXAMPLE, TO EXPAND OVER THE ROWS OF A THREE-DIMENSIONAL ARRAY

CALLED AA WHERE fAA => 2 3 4f ENTER V\[23 AA 0P: V \C23 AA

WHERE +/V => 3, TO EXPAND OVER THE PAGES, ENTER VVAA OR V\[j.]AA

WHERE +/V => 2t T0 EXPAND OVER THE COLUMNS, ENTER V\AA OR

v \ C 3 1 A

A

WHERE + / V = > 4

152

219 L A M I N A T E LflMI

******************************* ' ***********************************

THE SYMBOL , FOLLOWED BY AN NUMBER IN BRACKETS IS USED FOR THE

DYADIC LAMINATE FUNCTION, AN EXTENSION OF THE CATENATE FUNCTION,

THIS FUNCTION WILL COMBINE TWO CHARACTER OR NUMERIC ARGUMENTS

Or ANY RANK (EXCEPT TWO 5CALARS) INTO A SINGLE ARRAY,

VECTORS CAM BE EXTENDED BY LAMINATING 5
, [1] V OR V,QJS OR V

, [1] V ,

THE NUMBER IN THE BRACKETS MUST BE 1 BECAUSE VECTOR HAVE ONLY

ONE DIMENSION, THIS WORKS EXACTLY LIKE CATENATE,

HOW FOR SOMETHING REALLY TRICKY*

TO MAKE A TWO-ROW MATRIX OUT OF TWO VECTORS OF THE SAME LENGTH,

ENTER V1,L\53V2, AMY INDEX BETWEEN Q aH *> 1 WILL DO,

THIS CREATES A NEW DIMENSION PRECEDING THE FIRST DIMENSION OF

THE ARGUMENTS, THE OTHER DIMENSION STAYS THE SAME LENGTH,

TO MAKE A TWO-COLUMN MATRIX, ENTER VlfCi»53 V2 (ANY" INDEX FROM 1 TO 2).

NOW THE NEW DIMENSION COMES AFTER THE FIRST, WHICH IS THE SAME AS

THE LENGTH OF THE ARGUMENTS,

LAMINATING A SCALAR TO A MATRIX WILL RESULT IN A MATRIX WITH ONE

MORE ROW (IF THE INDEX NUMBER IN BRACKETS IS 1) OR ONE MORE

COLUMN (IF THE INDEX NUMBER IS 2) THAN THE ORIGINAL MATRIX,

ALL ENTRIES IN THIS ROW OR COLUMN WILL HAVE THE VALUE OF THE SCALAR,

3 4 1 2

3 4

3 4

LAMINATING TWO MATRIXES WILL RESULT IN A MATRIX CONTAINING THE TWO

ORIGINAL MATRIXES SIDE BY SIDE (INDEX 2) 0P: VERTICALLY (INDEX 1),

FOR EXAMPLE* I F M 1 = >]_ 2 AND «2 => 5 6

3 4 7 8

THEN mi,C2]M2 => 12 5 6 and K2»CI3»*1 => 12

153

3 4 7 3 4

5 6

TO STACK THE MATRIXES BY CREATING A THIRD DIMENSION, ENTER

m 1jC.5] m 2 (ANY INDEX BETWEEN Q AND i), YOU CAN ALSO CREATE

A THIRD DIMENSION BY Ml » CI 53M2 op: M lfC2.5] M 2. TF:T' IT
.

VARIATIONS ON THIS THEME ARE ALMOST ENDLESS—EXPERIMENT J

IN EVERf CASE, THE NUMBER IN THE BRACKETS REFERS TO THE DIMENSION

WHERE THE 'SEAM' IS--THE DIMENSION THAT INCREASES IN LENGTH,

IF THIS IS A HEW DIMENSION, IT WILL ALWAYS BE LENGTH 2 IH THE RESULT

THE OTHER DIMENSIONS MUST BE THE SAME LENGTH IN BOTH ARGUMENTS

(UNLESS ONE IS A SCALAR) OR A 'LENGTH ERROR' WILL RESULT,

154

231 MATRIX INVERSE MATI

..............I................ ***********************************

THE SYMBOL Q (ALT v) 15 USED FOR THE MONADIC MATRIX INVERSE FUNCTION,

IT TAKES A NUMERIC SCALAR, VECTOR, OR MATRIX ARGUMENT, AND RETURNS

THE LEFT INVERSE, IN TERMS OF MATRIX ALGEBRA, THIS IS THE MATRIX

WHICH FRODUCES THE IDENTITY WHEN LEFT -MULT I RL I ED WITH THE ORIGINAL

WHEN USED WITH SCALARS
, Q IS EQUIVALENT TO i

(

g WILL TREAT VECTORS AS ixL MATRIXES, gv WILL RETURN THE VECTOR VI

SO THAT VI +, X V => I

SQUARE MATRIXES WILL BE INVERTED NORMALLY,

FOR EXAMPLE
J

IF M =} 12 3 M => "2 1

3 4 1.5 "0,3

SOME HOW-SQUARE MATRIXES MAY ALSO BE INVERTED,

FOR EXAMPLE* IF M2 => 14 "HEN gM2 => "Q.9444 "0.1111 0.7222

2 5 0.4444 0.1111 "0.2222

3 6

IF M IS NOT INVERTIBLE, A 'DOMAIN ERROR' WILL RESULT,

15!

MATRIX DIVIDE MATD

»«»*»•»•»•»•## »»#»»»»«
THE SYMBOL Q (ALT x) IS USED FOP: THE DYADIC MATRIX DIVIDE FUNCTION,

IT TAKES ARITHMETIC ARGUMENTS WITH RANK < 3, THE TWO ARGUMENTS

MUST HAVE THE SAME NUMBER OF ROWS,

IN TERMS OF MATRIX ALGEBRA, IT LEFT MULTIPLIES THE LEFT ARGUMENT Bt

THE LEFT INVERSE OF THE RIGHT ARGUMENT,

8J3A PRODUCES THE SOLUTION TO THE SET OF LINEAR EQUATIONS AX = B,

WHEN USED WITH TWO SCALARS, g IS EQUIVALENT TO -^
,

WHEN USED WITH VECTORS, Q OPERATES AS IF THE VECTORS ARE 1 X C OR ftxl

MATRIXES, WHICHEVER IS APPROPRIATE,

156

241 OUTER PRODUCT OUTE

****************************** • *********************************

THE SYMBOLS o, (UPSHIFT J FOLLOWED BY A PERIOD) ARE PLACED PRECEDING

ANT DYADIC FUNCTION SYMBOL TO PRODUCE THE OUTER PRODUCT FUNCTION,

THE ARGUMENTS MAY BE NUMERIC OR CHARACTER, IF THE DYADIC SYMBOL

ACCEPTS CHARACTER ARGUMENTS, THEY MAY BE OF ANY RANK AND DO NOT

HAVE TO AGREE IN SHAPE,

THE OUTER PRODUCT RESULTS IN THE DYADIC SYMBOL OPERATING ON EACH

ELEMENT OF THE LEFT ARGUMENT COMBINED WITH EVERY ELEMENT OF

THE RIGHT ARGUMENT,

FOR EXAMPLE 1 o * "3 A =; = >

1 STOP ' o - POST

i

3 4 J

6 8 10

1

1

1

1

OUTER PRODUCT (ALSO CALLED 'JOT DOT 1 BECAUSE OF THE S'tMBOLS)

CAN BE EXTENDED TO ARRAYS OF ANY DIMENSION CR. SIZE,

THE SHAPE OF THE RESULT WILL ALWAYS BE EQUAL TO THE SHAPE OF THE

LEFT ARGUMENT CATENATED TO THE SHAPE OF THE RIGHT ARGUMENT,

FOR EXAMPLE
J

IF fAJ. = > 34 AND f(*2 => 6 5

THEN fAlo,+A2 => 3 4 6 5

157

242 I H N E R F R D U C T INWE

»••» •*?» +»* + •• + *

THE SYMBOL
,

(PERIOD OR 'DOT') MAY &E PLACED BETWEEN ANY TWO DYADIC

FUNCTION SYMBOLS TO CREATE THE INNER PRODUCT FUNCTION,

THE ARGUMENTS MAY BE NUMERIC OR CHARACTER, IF APPROPRIATE, OF ANY

RANK, THE LENGTH OF THE LAST DIMENSION OF THE LEFT ARGUMENT

MUST BE THE SAME AS THE LENGTH OF THE FIRST DIMENSION OF THE

RIGHT ARGUMENT,

INNER PRODUCT IS MOST COMMONLY USED WITH + AND X TO FORM THE

CONVENTIONAL DOT PRODUCT OR MATRIX PRODUCT OF MATRIX ALGEBRA,

for example; if vj rj 123 ftHD v 2 => 4 5 6

THEN V'l + ,x V2 => 32

INNER PRODUCT MAY BE EXTENDED TO HIGHER LEVEL ARRAYS AS WELL AS

MATRIXES, THE SHAPE OF THE RESULT WILL BE THE SAME AS THE SHAPE

OF THE LEFT ARGUMENT CATENATED TO THE SHAPE OF THE RIGHT ARGUMENT,

OMITTING THE MATCHING DIMENSIONS (LAST ON THE LEFT, FIRST ON

THE RIGHT,

for example; if f a i = > 3 6 4 and f&2 = > 4 5

THEN f Ai +,x A2 => 3 6 5

153

301 INDEX OF IN DO

»*»«»»»«»»»»»»»»»»•»•»»»••» \ »«»»•»»••••«
THE SYMBOL

\
(UPSHIFT I) IS USED FOR THE DYADIC INDEX OF FUNCTION,

THE LEFT ARGUMENT MUST BE A VECTOR AND THE RIGHT ARGUMENT CAN BE

ANY RANK, INDEX OF CAM BE USED WITH CHARACTER OR NUMERIC DATA,

IT RETURNS THE POSITION IN THE LEFT ARGUMENT OF THE ELEMENTS OF THE

RIGHT ARGUMENT, THE SHAPE OF THE RESULT IS THE SAME AS THE

SHAPE OF THE RIGHT ARGUMENT,

IF THE RIGHT ARGUMENT DOES NOT OCCUR IN THE LEFT ARGUMENT, THE RESULT

WILL BE ONE PLUS THE LENGTH OF THE LEFT ARGUMENT,

for example; 4 3 2 1\3 =>

1 HELLO ' \ ' P ' =>

BECAUSE 3 IS IN THE SECOND POSITION

BECAUSE P IS NOT FOUND

V\A CHECKS EACH ELEMENT OF THE RIGHT ARGUMENT INDIVIDUALLY,

IF YOU ASSIGN ALPHABET f ' ABCI'EFGH I J K LMNOPQRSTU VWX YZ

THEN ALPHABET^ ' APL ' s } 1 1 £ 12

304 ENCODE E N C

#»»»»»••»»»*»»» T t»t«»»t«»»«»»»t»»«»»»««tt»««»»»>»««

THE SYMBOL T (UPSHIFT N) IS USED FOR THE DYADIC ENCODE FUNCTION,

IT TAKES NUMERIC ARGUMENTS OF AMY RANK AND RETURNS THE REPRESENTATION

OF THE RIGHT ARGUMENT IN THE NUMBER SYSTEM SPECIFIED BY THE LEFT

ARGUMENT
,

THE ENTRIES IN THE LEFT ARGUMENT DEFINE THE NUMBER OF VALUES THAT

CAN BE PLACED IN THAT POSITION,

FOR EXAMPLE, IN THE BINARY SYSTEM, EACH POSITION CAN TAKE ONE OF TWO

VALUES, 0F: 1. THEREFORE, TO TRANSLATE 133 INTO BINARY, ENTER;

nooooooo. 133 10 10 1

the result will always be the same shape as the left argument, so be

sure that the left argument is large enough to be correct,

for example; 2 2 2t133 => 10 1

encode can also be used to translate times, given time in seconds,

enter (2000 365 24 60 60) t time to receive a vector of years

(0 T '- 199?) r
DATS (0 to 364) , hours (o to 23) f minutes <o to &q } ,

and seconds (0 to £0) .

for example; 2000 365 24 60 60t456701 => 5 6 51 41

160

DECODE

«»»»»•••»»• J. »»»»»«#««•»»»»»»»»»•»«•»
THE SYMBOL x (UPSHIFT B) 15 USED FOP: THE DYADIC DECODE FUNCTION,

IT TAKES NUMERIC ARGUMENTS OF ANY RANK AND RETURNS THE DECIMAL VALUE

OF THE RIGHT ARGUMENT WHICH IS WRITTEN IN THE NUMBER SYSTEM

SPECIFIED BY THE LEFT ARGUMENT,

THE ENTRIES IN THE LEFT ARGUMENT DEFINE THE VALUES OF EACH POSITION

IN THE NUMBER SYSTEM,

FOR EXAMPLE, IN THE BINARY SYSTEM, EACH POSITION CAN TAKE ONE OF TWO

VALUES, 0R 1. THEREFORE, TO TRANSLATE 10000101 FROM BINARY*

2^10000101 => 133

UNLESS ONE ARGUMENT IS A SCALAR, THE ARGUMENTS MUST BE THE SAME SHAPE

OR A 'LENGTH ERROR' WILL BE PRODUCED,

DECODE CAN ALSO BE USED TO TRANSLATE TIMES, GIVEN TIME IN YEARS,

(0 T0 1999) i days (0 to 364) » hours (o to 23) i
minutes (O to 60) i

AND SECONDS (Q TO 60) f snter 2000 365 24 60 60 1 time to

FIND THE TIME IN SECONDS,

for example; 2000 365 24 60 60 x 5 6 51 41 => 456701

161

306 EXECUTE EXEC

, t » * i » t T •>.**•'..».. r . * V * . > 1 »tt«t»»«»t»»»t»»»f»»t»»««»»»ttt»t»

THE SYMBOL i (ALT [) IS USED FOR THE MONADIC EXECUTE FUNCTION,

IT TAKES A VECTOR CHARACTER ARGUMENT ONLY, AND TREATS IT AS

AN AFL EXPRESSION,

for example; i'l + 2' => 3

IF V => 'HELP 1

, S V WILL RUN THE HELP FUNCTION

HOWEVER, t WILL NOT EXECUTE EXPRESSIONS BEGINNING WITH) OR 7,

162

307 FORMAT-DYADIC D Y F O

******************************* t »«»«..<*.»..».».«....»»«««««*««<».»

THE SYMBOL t (ALT]) IS USED FOP: THE DYADIC FORMAT FUNCTION,

THE RIGHT ARGUMENT MUST BE NUMERIC, OF AMY RANK, AND THE LEFT

ARGUMENT MUST BE A VECTOR OF INTEGERS,

THI5 FUNCTION CONVERTS THE RIGHT ARGUMENT TO CHARACTER DATA IN

A TABULAR FORMAT SPECIFIED BY THE LEFT ARGUMENT, AS FOLLOWS*

IF THE LEFT ARGUMENT IS A SCALAR, THE RIGHT ARGUMENT WILL BE WRITTEN

WITH THAT NUMBER OF DECIMAL PLACES,

for example; 2tl4 => 14.00 (REMEMBER THIS IS HOW CHARACTER DATA)

3t15 2S.35 0*1475 => 15.000 23.350 .148

NOTICE THAT THE COLUMNS ARE OF EQUAL WIDTH, SEPARATED BY ONE SPACE,

IF THE LEFT ARGUMENT IS A VECTOR OF LENGTH TWO, EACH COLUMN IN THE

RIGHT ARGUMENT WILL TAKE UP THE NUMBER OF SPACES SPECIFIED BY THE

FIRST ELEMENT OF THE LEFT ARGUMENT, AND EACH ENTRY WILL HAVE THE

NUMBER OF DECIMAL PLACES SPECIFIED BY THE SECOND ENTRY IN THE

LEFT ARGUMENT, FOR EXAMPLE;

*F" M => 1.2 3 THEN 5 l t M => 1,2 3.1

4 j jzs 4.0 5.5

the column element must be large enough to write the longest entry,

including one space each for a negative sign or decimal point,

if it is not, a 'length error 1 will result,

remember to allow for a blank between columns; 3 } t l 2 => 1.02.0

the left argument may also be a vector of length equal to exactly

twice the number of columns in the right argument,

in this case, the entries in the left argument are paired and each

pair governs the format of the corresponding column, as above,

6 2 4 1 10 t 113.524 1 300.24 => 113.52 1.0 300

ONE FINAL TWIST; IF THE LEFT ARGUMENT IS A NEGATIVE SCALAR, THE

163

RESULT WILL BE WRITTEN IN EXPONENTIAL NOTATION, WITH THE NUMBER

OF DECIMAL PLACES IH THE MANTISSA EQUAL TO ONE LESS THAN THE

ABSOLUTE VALUE OF THE LEFT ARGUMENT,

•or example; -i r 3 200 => 3^00 2 E 02

~3t4*6167 10.56 400 => 4.62 E 00 1. 06^01 4.00^02

164

7 DP03 FORMAT-MONADIC F P. M

THE SYMBOL f (ALT]) IS USED FOP: THE MONADIC FORMAT FUNCTION,

IT TAKES A NUMERIC OP: CHARACTER ARGUMENT OF ANY RANK AND CONVERTS

IT TO CHARACTER DATA,

THIS IS USEFUL IN CATENATING NUMERIC VARIABLES TO CHARACTER DATA,

FOR EXAMPLE
J

IF 5 => 3 AND V => 'GO TO LINE '

V,S WILL PRODUCE A 'DOMAIN ERROR' BUT V yl S => GO TO LINE 3

16!

D. MAKING MODIFICATIONS

The variable HOWMODS is included in the TUTOR workspace

to guide the advanced studant, programmer, or instructor who

wishes to expand, modify, or customize the TUTOR functions

and variables. Seme suggestions for improvement are

discussed in ohapter 3. Any ideas for modification of TUTOR

are welcomed— please pass them along to Professor R. R. Read

or the author of this thesis, in care of the Operations

Analysis curricular office.

166

,HOWMODS

THE FOLLOWING ARE SOME TIPS OH MODIFYING THE TUTOR WORKSPACE;

TO MODIFY TEXT OF DESCRIPTIVE VARIABLES
J

XEDIT THE VARIABLE (CHECK MAT FOR SHORT NAME)

BE SURE TO INCLUDE THE APPROPRIATE FIRST COLUMN CONTROL CHARACTERS;

, FOR GENERAL DESCRIPTION

o FOR SCALAR DESCRIPTION AND EXAMPLES

v FOR VECTOR DESCRIPTION AND EXAMPLES

n FOR. MATRIX DESCRIPTION AND EXAMPLES

A FOR HIGHER-LEVEL ARRAYS DESCRIPTION AND EXAMPLES

TO CHANGE THE ORDER OF LESSONS;

XEDIT MAT TO ASSIGN NEW LESSON NUMBERS,

THEN, TO REORDER MAT ACCORDING TO LESSON NUMBERS, ENTER; ORDERMAT

TO WRITE NEW LESSCN5J

WRITE A NEW TEXT VARIABLE, USING CONTROL CHARACTERS AS ABOVE,

XEDIT MAT TO ADD A NEW ROW, BE SURE TO INCLUDE;

COL l-3« LESSON NUMBER

COL 23-3K NAME OF THE TEXT VARIABLE (LIMIT 4 CHARACTERS)

COL 35-511 FULL NAME OF THE LESSON (LIMIT 23 CHARACTERS)

THE OTHER COLUMNS MAY BE LEFT BLANK AS THEY PERTAIN TO FUNCTION

SYMBOLS ONLY,

TO CHANGE OR WRITE NEW QUESTIONS (NOT DRILL);

XEDIT CUES TO CHANGE OR ADD A QUESTION, BE SURE TO ENCLOSE THE

TEXT OF THE QUESTION, BUT NOT VARIABLES, IN QUOTE MARKS,

A CARRIAGE RETURN MAY BE INCLUDED BY USING THE VARIABLE CR
,

ANSWER GROUPS MAY BE SEPARATE VARIABLES SUCH AS AR, RK,

XEDIT SHOW TO INCLUDE NEW QUESTIONS IN ANY QUESTION VECTOR QV,

BE SURE TO INCLUDE THE CORRESPONDING ANSWER IN THE VECTOR AV
t

167

APPENDIX £

SAMPLE RUM

This appendix contains a printoit of a session with ths

APL tutor. Student response to questions is preceded by a

dot or period. (This is a functioi of the terminal and not

pa r + :f the input.) Other student input is generally

indented eight spaces and preceded by several blank lines.

At least one example of each of the various ways to use the

TUTOR is included. Also the various types of student

response to questions and drills ar = demons-crated.

168

)LOAD TUTOR

saved n:ii:i5 12/14/33

you mat use the apl tutor in three ways}

(1) enter; help

to select the symbols that you want information about,

(2) enter; teach

to select the symbols that you want information and drill on

(3) enter; MENU

TO SEE A LIST OF SYMBOLS AND TORICS,

IF YOU HAVE NEVER USED THE ARL TUTOR BEFORE, ENTER; START

TO SEE THESE INSTRUCTIONS AGAIN AT ANY TIME, ENTER; HOW

STAR-

WELCOME TO THE ARL TUTOR,

THE PURPOSE OF THIS WORKSPACE IS TO INTRODUCE YOU TO

'A PROGRAMMING LANGUAGE- BY DESCRIBING THE FUNCTIONS OF THE

MANY SPECIAL AFL SYMBOLS, AND BY OUTLINING THE PROCEDURES FOR

DESIGNING YOUR OWN FUNCTIONS,

THE APL TUTOR ASSUMES YOU HAVE HAD LINEAR ALGEBRA AND TR I G I NOMETR Y

,

CALCULUS IS NOT NECESSARY.

YOU HAVE NEVER HAD ANY 00?.

YOU CAN START USING APL RIGHT AWAY, AS A SUPER-SOPHISTICATED

CALCULATOR WITH MANY BUILT-IN FUNCTIONS,

IF YOU HAVE STUDIED OTHER COMPUTER PROGRAMMING LANGUAGES, RELAX,

169

APL 15 MOT LIKE AMY OF THE OTHER MAJOR HIGH-LEVEL LANGUAGES,

YOU CAN FORGET ABOUT DATA TYRES, I MPUT /OUTPUT FORMATTING, AMD

MANY OF THE OTHER TEDIOUS DETAILS OF FORTRAN, PASCAL, ETC,

AFTER YOU ARE SUFFICIENTLY FAMILIAR WITH THE CALCULATOR MODE

OF APL, YOU CAN LEARN TO DEFINE YOUR OWN FUNCTIONS WITH EASE,

HERE IS SOME BASIC INFORMATION YOU WILL MEED TO KNOW IN ORDER TO

UNDERSTAND THE APL TUTOR LESSONS,

MOMADIC AND DYADIC FUNCTIONS

YOU ARE ALREADY FAMILIAR WITH SYMBOLS WHICH REPRESENT ARITHMETIC

FUNCTIONS, SUCH AS + OR + , APL USES THESE SYMBOLS AND MANY OTHERS

TO REPRESENT A VARIETY OF FUNCTIONS,

MANY FUNCTIONS, SUCH AS +, REQUIRE TWO ARGUMENTS, THAT IS, TWO INPUT

NUMBERS, IN APL, THESE ARE CALLED DYADIC FUNCTIONS, AND THE SYMBOL

IS PLACED BETWEEN THE ARGUMENTS
J

FOR EXAMPLE, 3 + 4,

OTHER FUNCTIONS, SUCH AS LN (NATURAL LOG), REQUIRE ONLY ONE ARGUMENT,

THESE MONADIC FUNCTION SYMBOLS ARE PLACED TO THE LEFT OF THE DATA

WHICH THEY ARE TO OPERATE OH, FOR EXAMPLE, LN 3 IN APL IS a3,

DATA TYPES

APL DISTINGUISHES ONLY TWO TYPES OF DATA
J
NUMERIC AND CHARACTER,

VERY SIMFLY, CHARACTER DATA ARE ENCLOSED IN QUOTES (') WHEN ENTERED,

'2' IS CHARACTER DATA} 2 IS NUMERIC DATA, SOME FUNCTIONS

WILL OPERATE ON BOTH TYPES OF DATA, SOME ONLY ON NUMERIC,

ARRAYS

THE GREATEST STRENGTH OF APL LIES IN ITS ABILITY TO TAKE AN ENTIRE

ARRAY OF NUMBERS AS A SINGLE ARGUMENT, THUS TWO MATRIXES CAN BE

ADDED BY ENTERING SIMPLY A+B, WITH NO SUBSCRIPTS, LOOPS, ETC,

THIS MAKES IT IMPORTANT TO KNOW THE RANK (THE NUMBER OF DIMENSIONS)

OF DATA IN USE, A SINGLE NUMBER IS NORMALLY A SCALAR (RANK 0),

A SERIES OF NUMBERS IS A VECTOR, A ONE-DIMENSIONAL ARRAY (RANK 1),

170

NUMBERS CAM ALSO BE ARRANGED IN ROWS AND COLUMNS, TO MAKE A MATRIX

(RANK 2). MATRIXES CAN BE 'STACKED' TO MAKE UP THE RAGES OF A

THREE-DIMENSIONAL ARRAY, OFTEN CALLED A BOOK (RANK 3), IN FACT,

THERE IS NO LIMIT TO THE NUMBER OF DIMENSIONS IN AN APL ARRAY,

THE LENGTH OF THE DIMENSIONS IS ALSO EFFECTIVELY UNLIMITED, LENGTH

REFERS TO THE NUMBER OF ELEMENTS IN A DIMENSION, FOR EXAMPLE,

THE NUMBER OF ROWS, LENGTH MAY EVEN BE Q,

IH "THIS TUTORIAL, A SCALAR MAY BE REFERRED TO AS S, L, OR R,

A VECTOR MAY BE CALLED V, VJ_, OR V2, WHILE A MATRIX IS M, M^, OR «2»

AM ARRAY, WHICH MAY BE A VECTOR, A MATRIX, OR AN ARRAY OF ANY HIGHER

DIMENSION, WILL BE LABELLED A, AJ , OR A2

,

EXAMPLES

WHEN EXAMPLES ARE GIVEN IN THE TEXT OF A FUNCTION DESCRIPTION, THE

SYMBOL => IS USED BETWEEN THE EXAMPLE INPUT AND THE EXAMPLE OUTPUT,

for example: 2+5 => 7

THIS SYMBOL CAN BE READ AS 'PRODUCES' OR 'RETURNS',

ERRORS

YOU SHOULD NOT RECEIVE ANY ERROR MESSAGES WHILE USING APL TUTOR,

HOWEVER, YOU MAY SEE A PHRASE LIKE 'VALUE ERROR' (WITHOUT QUOTE

MARKS) WHEN YOU ARE EXPECTING A NORMAL RESPONSE,

OR IF YOU ACCIDENTALLY HIT THE ENTER KEY WHEN THE COMPUTER IS NOT

EXPECTIN6 AM INPUT, THE FUNCTION MAY END ABRUPTLY, LIKE THIS;

MENU C6D

IF EITHER OF THESE THINGS HAPPEN, BE SURE TO ENTER* -> (UPSHIFT <-
)

THEN RESTART WITH ANY COMMAND,

HALTING A LESSON

YOU MAY STOP AMY LESSON AT ANY POINT WHERE A QUESTION IS ASKED

BY entering; STOP

TO SEE THIS INFORMATION AGAIN AT ANY TIME, ENTER; BASICS

171

you mat start a lesson in three ways
j

(1) enter; lesson nextlessom

to start the lesson follwing the last one i'ou completed,

(2) enter; lesson nnn (where nnn is a 3-oigit number)

to start lesson number nnn,

to see a list of lesson numbers, enter; menu

(3) enter; teach

to select the symbol that you want a lesson on,

to see this information again at any time, enter* howteach

TO START YOUR FIRST LESSON IN ARL, ENTER; LESSON i_ Q

1

LESSON 101

»»»•>»•»»»»»»•*•»
THE 5YMB0L _ (UPSHIFT 2) ** USED ONLY TO ENTER NEGATIVE NUMBERS,

IT CAN BE USED ONLY IN FRONT OF SCALARS (SINGLE NUMBERS),

NOT VARIABLE NAMES, ARITHMETIC EXPRESSIONS, OR ARRAYS,

TO CHANGE ARITHMETIC SIGN USE THE SYMBOL - (UPSHIFT +),

HOW MANY ARGUMENTS DOES THE NEG AT I VE_NUMBER FUNCTION TAKE'-5

.1

RIGHT

WHAT RANK CAN THE RIGHT ARGUMENT OF NEG ATI VE_NUMBER BE?

ENTER S FOR. SCALAR

V FOR VECTOR

172

X FOP: MATRIX

A FOP: ANY £:AHK

RIGHT

CAM NE6ATIVE_NUMBER TAKE CHARACTER ARGUMENTS?

RIGHT

THIS IS THE END OF TOUR LE550H,

FOR THE NEXT LESSON IN SEQUENCE, ENTER LESSON NEXTLESSON

TO START ANOTHER LESSON, ENTER; LESSON MUM

LESSON NEXTLESSON

THE SYMBOL + IS USED FOP: THE MONADIC CONJUGATE FUNCTION,

THIS IS AN IDENTITY FUNCTION WHICH RETURNS ITS ARGUMENT, AFTER

EVALUATION IF NECESSARY, IT TAKES NUMERIC ARGUMENTS OF ANY RANK

HOW MANY ARGUMENTS DOES THE CONJUGATE FUNCTION TAKE?

,STOP

THIS LESSON HAS BEEN HALTED,

TO START ANOTHER LESSON, ENTER; LESSON NMN

173

LESSOH 109

******************************* ~ ***********************************

THE SYMBOL i (UPSHIFT x) IS USED FOR THE DYADIC DIVISION FUNCTION,

IT PERFORMS SIMPLE DIVISION ON NUMERIC ARGUMENTS OF ANY RANK.

HOW MANY ARGUMENTS DOES THE DIVIDE FUNCTION TAKE?

,TWO

SORRY, PLEASE TRY AGAIN

HOW MANY ARGUMENTS DOES THE DIVIDE FUNCTION TAKE?

2

RIGHT

WHAT RANK CAN THE LEFT ARGUMENT OF DIVIDE BE?

ENTER S FOR SCALAR

V FOR VECTOR

X FOR MATRIX

A FOR. ANY RANK

.S

SORRY, PLEASE TRY AGAIN

WHAT RANK CAN THE LEFT ARGUMENT OF DIVIDE BE?

ENTER S FOR SCALAR

V FOR VECTOR

X FOR MATRIX

A FOR ANY RANK

,A

RIGHT

WHAT RANK CAN THE RIGHT ARGUMENT OF DIVIDE BE?

ENTER S FOR SCALAR

V FOR VECTOR

X FOR MATRIX

A FOR ANY RANK

174

SORRY, PLEASE TRY AGAIN

WHAT RANK CAM THE RIGHT ARGUMENT OF DIVIDE BE?

ENTER S FOR SCALAR

V FOR VECTOR

X FOR MATRIX

A FOR ANY RANK

,V

SORRY, PLEASE TRY AGAIN

WHAT RANK CAN THE RIGHT ARGUMENT OF DIVIDE BE?

ENTER S FOR SCALAR

V FOR VECTOR

X FOR MATRIX

A FOR ANY RANK

V
»
"

SORRY, THE CORRECT ANSWER IS A

YOU ENTERED 5 WRONG ANSWERS OUT OF 3 QUESTIONS,

IF YOU WANT TO RETAKE THI5 LESSON, ENTER; LESSON 109

THIS LESSON HAS BEEN HALTED,

TO START ANOTHER LESSON, ENTER
J

LESSON NNM

175

HELP

ENTER THE SYMBOL(S) YOU WOULD LIKE INFORMATION ABOUT,

OR,,, FOR MENU SELECTION, ENTER', MENU

.MENU

INFORMATION IS AVAILABLE ON THE FOLLOWING SYMBOLS/TOPICS
J

101
~ NEGATIVE_NUMBER

104 - CHANGE_5IGN

107 X TIMES

121 (
PARENS

124 P SHAPE

127 t
RAVEL

131 / REDUCTION

142 * POWER

145 Q PI_TIMES

143 {
BINOMIAL

152 \ SCAN

1^3 r MAXIMUM

166 4 GRADE_UP

169 ? DEAL

182 < LES5_THAN

135 > GREATER_THAN

193 a HAND

196 £ MEMBER OF

203 <D
ROTATE

102 + CONJUGATE

105 - MINUS

108 t RECIPROCAL

122 ' QUOTE

125 f RESHAPE

128 1 CATENATE

132 t REDUCTION

143 t NATURAL_LOG

146 O GEOMETRIC

149 |
MAGNITUDE

161 r CEILING

164 L MINIMUM

167 t GRADE_DOWN

130 = EQUAL

183 i LES5_0R_EGUAL

191 » NOT

194 v OR

201 * REVERSE

204 8 ROTATE

206 $ TRANSPOSE-DYADIC 211 f TAKE

213 / COMPRESS

216 \ EXPAND

232 9 MATRIX_DIVIDE

301 \ INDEX_OF

306 i EXECUTE

214 / COMPRESS

219 , LAMINATE

241 o OUTER_PRODUCT

304 T ENCODE

307 t FORMAT-DYADIC

TO SEE MENU AGAIN, ENTER} MENU

FOR INFORMATION ABOUT FUNCTION, ENTER} INFO NNN (WHERE NNN IS MENU N

UMBER)

TO GO THROUGH TUTORIAL LESSON, ENTER} LESSON NNN

103 + plus

106 X SIGNUM

109 r DIVIDE

123 h SPECIFICATION

126 [BRACKETS

129 \ INDEX_GENERATOR

141 * EXPONENTIAL

144 « LOGARITHM

147 {
FACTORIAL

151 \ SCAN

162 L FLOOR

165 i
RESIDUE

168 ? K3LL

131 ji NOT_EGUAL

134 > GREATER_OR_EGUAL

192 a AND

195 v NOR

202 B REVERSE

205 $ TRANSPOSE-MONADIC

212 I DROP

215 \ EXPAND

231 Q MATRIX_INVERSE

242 INNER_PRODUCT

305 x DECODE

308 t FORMAT-MONADIC

176

LESSON 107****> X m M M M (*¥i*t**t*Tt***t***V*

THE SYMBOL X IS USED FOR THE DYADIC TIMES FUNCTION,

THIS PERFORMS SIMPLE MULTIPLICATION OH NUMERIC ARGUMEHTS OF AHY RANK

HOW MANY ARGUMEHTS DOES THE TIMES FUNCTION TAKE?

.2

RIGHT

WHAT RANK CAH THE LEFT ARGUMEMT OF TIMES BE?

ENTER S FOR SCALAR

V FOR VECTOR

X FOR MATRIX

A FOR AHY RANK

SORRY, THE CORRECT ANSWER IS A

WHAT RANK CAH THE RIGHT ARGUMEMT OF TIMES BE?

ENTER S FOR SCALAR

V FOR VECTOR

X FOR MATRIX

A FOR AHY F.ANK

, ANY

RIGHT

FOR EXAMPLE* 2^4 => 3 ORDER AND SPACING ARE HOT IMPORTANT,

DOES S1XS2 E3UAL S2XSJ.?

RIGHT

WHAT IS THE RESULT OF
J

"20 X 80

."160

177

INSTRUCTOR BEFORE RETURNING TO THIS UNIT,

THIS LESSON HAS BEEN HALTED,

TO START ANOTHER LESSON, ENTER
J

LESSON MNN

LESSON 124

1 1 t M U H U M H H t t M M M 4 H M t t *»»«*»***•
THE SYMBOL f IS USED FOR THE MONADIC SHARE FUNCTION,

THIS RETURNS A DESCRIPTION OF THE SIZE OF ITS ARGUMENT, WHICH CAN

BE NUMERIC OR CHARACTER, OF ANY RANK,

THE SYMBOL CAN BE USED TWICE (ffA) TO RETURN THE RANK OF ITS ARGUMENT,

HOW MANY ARGUMENTS DOES THE SHARE FUNCTION TAKE?

.1

RIGHT

WHAT RANK CAN THE RIGHT ARGUMENT OF SHARE BE?

ENTER S FOR SCALAR

V FOR VECTOR

X FOR MATRIX

A FOR ANY RANK

.A

RIGHT

IF THE ARGUMENT IS A SCALAR, fS RETURNS NO NUMBER (AN EMPTY VECTOR),

BECAUSE A SCALAR HAS NO DIMENSION, ffS => Q

179

ENTERING fV RETURNS OWE NUMBER WHICH REPRESENTS THE LENGTH OF

THE VECTOR'S ONE DIMENSION, ffV => 1

WHAT IS THE RESULT OF
J

f 10 20 90 "40

SORRY, THIS ANSWER NOT ACCEPTABLE, RLEASE ENTER A NUMERIC ANSWER,

WHAT IS THE RESULT OF
J

f 10 20 90 "40

.4

correct;

what is the result of
j

f 2 3

.3

correct;

the share of matrixes is expressed as a two-element vector,

the first element equals the number of rows (the length of the

first dimension), and the second element equals the number of

columns (the length of the second dimension),

for example; if m => i 2 3 then fH => 2 3 A ' ,r' Ff* => 2

4 5 6

FOR HIGHER-LEVEL ARRAYS, fA WILL BE A VECTOR WITH AS MANY ELEMENTS AS

A HAS DIMENSIONS, THE NUMBER OF COLUMNS WILL ALWAYS BE THE LAST

ELEMENT OF fA, THE NUMBER OF ROWS WILL ALWAYS BE THE NEXT-TO-LAST

ELEMENT, PRECEDED BY THE NUMBER OF 'PAGES' OR PLANES, PRECEDED BY

THE NUMBER OF 'BOOKS' OR SPACES, AND SO ON,

FOR EXAMPLE; IF D IS A 4-DIMENSIONAL ARRAY, ffD => 4,

IF fD => 5 3 4 2 THEN D HAS 5 BOOKS, EACH WITH 3 PAGES, EACH OF

WHICH HAS 4 ROWS AND 2 COLUMNS, (THIS WOULD BE DISPLAYED AS

FIFTEEN SUCCESSIVE 4x2 MATRIXES— THE FIRST THREE BEING THE FIRST

180

BOOK, THE SECOND THREE BEING THE SECOND BOOK, ETC,)

CAN SHAPE TAKE CHARACTER ARGUMENTS?

RIGHT

IF SO, WHICH ARGUMENT (S) CAN BE CHARACTER?

ENTER R FOR RIGHT,

L FOR LEFT, OR

B FOR BOTH

RIGHT

THIS IS THE END OF fOUR LESSON,

FOR THE NEXT LESSON IN SEQUENCE, ENTER
J

LESSON NEXTLESSON

TO START ANOTHER LESSON, ENTER', LESSON NNN

LESSON NEXTLESSON

******************************* F ***********************************

THE SYMBOL f IS USED FOR THE DYADIC RESHAPE FUNCTION,

THIS TAKES THE ELEMENTS OF THE RIGHT ARGUMENT AND REARRANGES THEM

ACCORDING TO THE SHAPE SPECIFIED BY THE LEFT ARGUMENT,

THE LEFT ARGUMENT MUST BE AN INTEGER SCALAR OR A VECTOR OF INTEGER

ELEMENTS,

THE RIGHT ARGUMENT CAN BE NUMERIC OR CHARACTER, OF ANY RANK,

HOW MANY ARGUMENTS DOES THE RESHAPE FUNCTION TAKE?

.2

RIGHT

181

WHAT RANK CAM THE LEFT ARGUMENT OF RESHAPE BE?

ENTER S FOR SCALAR

V FOR VECTOR

X FOR M A T R I

X

A FOR ANY RANK

.V

RIGHT

WHAT RANK CAN THE RIGHT ARGUMENT OF RESHAPE BE?

ENTER S FOR SCALAR

V FOR VECTOR

X FOR MATRIX

A FOR ANY RANK

RIGHT

IF THE LEFT ARGUMENT IS A SCALAR, THE RESULT WILL BE A VECTOR WITH

LENGTH EQUAL TO THE SCALAR, CONSISTING OF THE ELEMENTS OF THE RIGHT

ARGUMENT, TAKEN IN ORDER TOP LEFT TO BOTTOM RIGHT,

WHEN THERE ARE NOT ENOUGH ELEMENTS IN THE RIGHT ARGUMENT,

THE FUNCTION WILL START OVER AND TAKE THE ELEMENTS IN ORDER AGAIN,

AS MANY TIMES AS NECESSARY TO FILL THE VECTOR,

for example; 4fl => 1 1 1 1

4f (
' AB

'
) => ABAB

IF THERE ARE TOO MANY ELEMENTS ON THE RIGHT, THE EXTRAS ARE OMITTED,

for example: 2f(l 2 3 4) => 1 2

DOES SlfS2 EQUAL 52fSl?

RIGHT

WHAT IS THE RESULT OFJ

2 f 0,6

132

..6

SORRY, CORRECT ANSWER IS
J

0.6 0.6

WHAT 15 THE RESULT OF
J

2f 0,1

..1 .1 .1

SORRY, CORRECT ANSWER IS{

0.1 0,1

WHAT IS THE RESULT OF J

3 P 0.6

» 6 .6 .6

correct;

if the left argument is a vector, the elements indicate, in order,

length of each dimension in the result,

for example; 2 2M 2 3 4 => 12

3 4

THIS IS ONE WAY TO ENTER MATRIXES OR ARRAYS OF HIGHER DIMENSION,

IF ONE ARGUMENT IS A VECTOR, THE OTHER ARGUMENT MAY BE SCALAR OR VECTOR

(T/F)

.T

RIGHT

WHAT IS THE RESULT OFJ

3 f 0.1 4

..1 4 .1

correct;

using a matrix or higher-level array as the left argument of reshape

will result in a 'rank error'

OR A MATRIX OF THE SAME SHAPE, (T/F)

183

RIGHT

CAN RESHAPE TAKE CHARACTER ARGUMENTS?

.''

RIGHT

IF SO, WHICH ARGUMENT(S) CAM BE CHARACTER?

ENTER R FOR RIGHT,

L FOR LEFT, OR

B FOR BOTH

RIGHT

THIS IS THE END OF TOUR LESSON,

FOR THE NEXT LESSON IN SEQUENCE, ENTER; LESSON NEXTLESSON

TO START ANOTHER LESSON, ENTER
J

LESSON NNM

184

. TEACH

ENTER THE SYMBOL(S) YOU WOULD LIKE INFORMATION ABOUT,

Oft FOR MENU SELECTION, ENTER; MENU

#»*"«•***
THE SYMBOL + IS USED FOR THE MONADIC CONJUGATE FUNCTION,

THIS IS AN IDENTITY FUNCTION WHICH RETURNS ITS ARGUMENT, AFTER

EVALUATION IF NECESSARY, IT TAKES NUMERIC ARGUMENTS OF ANY RANK,

HOW MANY ARGUMENTS DOES THE CONJUGATE FUNCTION TAKE?

.1

RIGHT

WHAT RANK CAN THE RIGHT ARGUMENT OF CONJUGATE BE?

ENTER 3 FOR SCALAR.

V FOR VECTOR

X FOR MATRIX

A FOR ANY RANK

.A

RIGHT

ekamplej +2 => 2 +~3+2 => "1.

CAN CONJUGATE TAKE CHARACTER ARGUMENTS?

RIGHT

' • » I V t . • . . > t , (I . t » , . . t , > . , » t , . . +

THE SYMBOL + IS USED FOR THE DYADIC PLUS FUNCTION,

185

THIS PERFORMS SIMPLE ADDITION OH NUMERIC ARGUMENTS OF AN T RANK,

HOW MANY ARGUMENTS DOES THE PLUS FUNCTION TAKE?

RIGHT

WHAT RANK CAN THE LEFT ARGUMENT OF PLUS BE?

ENTER S FOR SCALAR

V FOR VECTOR

x FOR MATRIX

A FOR ANY RANK

, A

RIGHT

WHAT RANK CAN THE RIGHT ARGUMENT OF PLUS BE?

ENTER S FOR SCALAR

V FOR VECTOR

X FOR MATRIX

A FOR ANY RANK

RIGHT

FOR EXAMPLEJ 2+2 = > 4 SPACING IS NOT IMPORTANT,

DOES S1+S2 EQUAL S2+51?

RIGHT

WHAT IS THE RESULT OFJ

10 + 10

.+

SORRY, THIS ANSWER NOT ACCEPTABLE, PLEASE ENTER A NUMERIC ANSWER,

WHAT IS THE RESULT OF
J

186

10 + 10

.20

correct;

to add a scalar to each element of a vector, enter either s+v or v + s,

v1+v2 will add two vectors element by element, for example*

2+(3 4 5) => 5 6 7 (3 4 5)+2 => 5 6 7

(3 4 5)+(5 6 7) => 8 10 12

IF THE TWO VECTORS BEING ADDED ARE NOT THE SAME LENGTH,

YOU WILL GET A 'LENGTH ERROR',

IF ONE ARGUMENT IS A VECTOR, THE OTHER ARGUMENT MAY 3E SCALAR OR VECTOR,

(T/F)

RIGHT

WHAT IS THE RESULT OF;

0.2 + 0.9 0.3

SORRY, THIS ANSWER NOT ACCEPTABLE, RLEASE ENTER A NUMERIC ANSWER,

WHAT IS THE RESULT OF;

0.2 + 0.9 0.3

.1.1 .5

correct;

what is the result of
j

"5 4 3 + ~5

,STOP

THIS LESSON HAS BEEN HALTED,

THIS IS THE END OF SCHEDULED LESSONS,

TO SELECT MORE LESSONS, ENTER; TEACH

187

.TEACH

ENTER THE SYMBOL (S) YOU WOULD LIKE INFORMATION ABOUT,

OR FOR MENU SELECTION, ENTER
J

MENU

.MENU

INFORMATION IS AVAILABLE ON THE FOLLOWING SYMBOLS/ TOP I CS

J

101 " NEGATIVE_NUMBER

104 - CHANGE_£IGM

107 X TIMES

121 (PARENS

124 f SHAPE

127 r
RAVEL

131 / REDUCTION

142 * POWER

145 O PI_TIMES

148

152 \ SCAN

163 T MAXIMUM

166 * GRADE_UP

169 ? seal

182 < less_than

185 > greater_tham

193 A NAND

196 £ MEMBER OF

203 * ROTATE

102 + CONJUGATE

105 - MINUS

108 t RECIPROCAL

122 ' QUOTE

125 f RESHAPE

12S t
CATENATE

132 / REDUCTION

143 « NATURAL_LOG

146 O GEOMETRIC

149 |
MAGNITUDE

161 r CEILING

164 L MINIMUM

167 f GRADE_DOWN

130 = EQUAL

183 < LES5_OR_EC5UAL

191 m NOT

194 v or

201 REVERSE

204 a rotate

206 § TRANSPOSE-DYADIC 211 t TAKE

213 / COMPRESS

216 \ EXPAND

232 9 MATRIX_DIVIDE

301 \ INDEX_OF

306 1 EXECUTE

214 / COMPRESS

219 , LAMINATE

241 * OUTER_PRODUCT

304 t encode 301

307 * FORMAT-DYADIC

MENU

INFO NNN

103 + plus

106 X SIGNUM

109 i DIVIDE

123 t SPECIFICATION

126 C BRACKETS

129 \ INDEX_GENERATOR

141 * EXPONENTIAL

144 « LOGARITHM

147 J
FACTORIAL

151 \ SCAN

162 L FLOOR

165 I
RESIDUE

16S ? ROLL

181 ? NOT_EGUAL

184 I GREATER_OR_EOUAL

192 A AMD

195 v "or

202 9 REVERSE

205 <S
TRANSPOSE-MONADIC

212 V DROP

215 \ EXPAND

231 a MATRIX_INVERSE

242 INNER_PRODUCT

TO SEE MENU AGAIN, ENTER
J

FOR INFORMATION ABOUT FUNCTION, ENTER
J

UMBER)

TO GO THROUGH TUTORIAL LESSON, ENTER;

DECODE

308 t FORMAT-MONADIC

(WHERE NNN IS MENU N

LESSON NNN

188

LESSON 105

»..»*.*.....«..»..... t*.....».« »*-*»**»»**«*»-**«***».+ .»

THE SYMBOL - (UPSHIFT +) IS USED FOR THE DYADIC MINUS FUNCTION,

IT PERFORMS SIMPLE SUBTRACTION ON NUMERIC ARGUMENTS OF ANY RANK

HOW MANY ARGUMENTS DOES THE MINUS FUNCTION TAKE?

n

RIGHT

WHAT RANK CAN THE LEFT ARGUMENT OF MINUS BE?

ENTER S FOR SCALAR

V FOR VECTOR

X FOR MATRIX

A FOR ANY RANK

.A

RIGHT

WHAT RANK CAN THE RIGHT ARGUMENT OF MINUS BE?

ENTER S FOR SCALAR

V FOR VECTOR

;: FOR MATRIX

A FOR ANY RANK

.A

RIGHT

FOR EXAMPLE
J 5-2 = > 3 10-~2 =>

DOES S1-S2 EQUAL S2-51?

RIGHT

WHAT IS THE RESULT OF
J

0.1 - "0.3

..4

189

correct;

to subtract a scalar from each element of a vector, enter v-5,

to subtract each element of a vector from the same scalar, enter 5-v

v1-v2 will subtract each element of ','2 from the correspond i iig

element of vi,

vi and v2 must be the same length or you will get a 'length error',

for example: (3 4 5)-2 => 12 3 2- (3 4 5) => "1 "2 "3

IF ONE ARGUMENT IS A VECTOR, THE OTHER ARGUMENT MAY BE SCALAR CR VECTOR,

(T/F)

»T

RIGHT

WHAT IS THE RESULT OF;

0.9 - 0.6 0.3

..3 .4

correct;

what is the result of
j

1 2 3 - "5

."4 "3 "2

SORRY, CORRECT ANSWER IS
J

6 7 3

WHAT IS THE RESULT OF
J

"0.9 0.4 " "0.4

. J u

CORRECT;

WHAT IS THE RESULT OF
J

"0.7 0.8 - "0.8 0.7

. 1 1.5

SORRY, CORRECT ANSWER ISJ

190

0.1 0,1

WHAT IS THE RESULT OF*

80 "60 or, _ 90 30 "10 "50

."10 "90 60 "30

CORRECT
J

ENTER M-3 TO SUBTRACT THE SCALAR S FROM EACH ELEMENT OF THE MATRIX M,

ENTER S-M TO DO THE OPPOSITE,

for example; IF M => I 2 THEM 4-H = > 32 AHt ' M ~2 => ~1

3 4 10 12
MJ-M2 SUBTRACTS MATRIX M2 FROM MATRIX Ml ?

ELEMENT BY ELEMENT,

for example; if «i s> i 2 ft|| & M 2 => 3 4 then M2- m 1 => 2 2

3 4 5 6 2 2

IF Ml AND M2 ARE NOT THE SAME SHAPE, A 'LENGTH ERROR' WILL RESULT,

TRYING TO SUBTRACT A VECTOR FROM A MATRIX OR VICE-VERSA WILL

PRODUCE A 'RANK ERROR',

IF ONE ARGUMENT IS A MATRIX, THE OTHER ARGUMENT MUST BE A SCALAR

OR A MATRIX OF THE SAME SHAPE, (T/F)

,T

RIGHT

THESE PRINCIPLES CAN BE EXTENDED TO HIGHER LEVEL ARRAYS,

CAM MINUS TAKE CHARACTER ARGUMENTS?

><

RIGHT

write a true statement using -,

for example; 4=2+2

» £ i. — V

SORRY, THIS STATEMENT IS NOT TRUE,

TRY AGAIN.

191

write a true statement using -,

for example; 4=2+2

4=2+2

YOUR ANSWER DOES NOT USE -, TRY AGAIN,

WRITE A TRUE STATEMENT USING -,

FOR EXAMPLE
J 4 = 2 + 2

.(2-2) =4

DO YOU WISH TO REVIEW THE DESCRIPTION OF MINUS?

ENTER Y OR N,

.N

WRITE A TRUE STATEMENT USING -,

FOR EXAMPLE' 4=2+2

.0=2-2

correct;

this is the end of your lesson,

for the next lesson in sequence, enter; lesson nextlesson

to start another lesson, enter; lesson nnn

192

HELP

ENTER THE SYMBOL(S) YOU WOULD LIKE INFORMATION ABOUT,

Oft,., FOR MENU SELECT I OH, ENTER; MENU

, \

ItttttltHHMMHIMMtHMtll 1 f»»t»t»«»«l»»»»t»». >•«»««. «l»it*

THE SYMBOL
\

(UPSHIFT I) IS USED FOR THE MONADIC INDEX GENERATING

FUNCTION,

IT IS USED WITH A SINGLE NON-NEGATIVE INTEGER ARGUMENT (SCALAR, Oft

VECTOR OF LENGTH 1),

IT ftETUftNS A VECTOR OF INTEGERS, IN ORDER, BEGINNING WITH THE INDEX

ORIGIN, AND ENDING WITH THE ARGUMENT,

for example; \3 => 12 3 10 => (fl,) empty vector)

THE INDEX OftlGIN IS NORMALLY (BY DEFAULT) 1,

USING \ WITH A NON-INTEGER, NEGATIVE OR ARRAY ARGUMENT WILL PRODUCE A

DOMAIN ERftOft '
.

THE SYMBOL
\

(UPSHIFT I) IS USED FOR THE DYADIC INDEX OF FUNCTION,

THE LEFT ARGUMENT MUST BE A VECTOR AND THE RIGHT ARGUMENT CAN BE

ANY RANK, INDEX OF CAN BE USED WITH CHARACTER OR NUMERIC DATA,

IT RETURNS THE POSITION IN THE LEFT ARGUMENT OF THE ELEMENTS OF THE

RIGHT ARGUMENT, THE SHAPE OF THE RESULT IS THE SAME A5 THE

SHAPE OF THE RIGHT ARGUMENT,

IF THE RIGHT ARGUMENT DOES NOT OCCUR IN THE LEFT ARGUMENT, THE RESULT

WILL BE ONE PLUS THE LENGTH OF THE LEFT ARGUMENT,

for example; 4 3 2 113 =>

' HELLO \ P
' =>

BECAUSE 3 IS IN THE SECOND POSITION

BECAUSE P IS NOT FOUND

MORE?

193

V\A CHECKS EACH ELEMENT OF THE RIGHT ARGUMENT INDIVIDUALLY,

for example: 35 7 9U 234 5 => 55152
IF YOU ASSIGN ALPHABET «- • ABCDEFGHI J K LMHOPQRSTUVWXYZ '

THEN ALPHABET \
' APL ' =>]_ 1 £ 12

FOR MORE HELP, ENTER; HELP

194

MENU

INFORMATION IS AVAILABLE ON THE FOLLOWING SYMBOLS/TOP I CS

J

101 ~ NEGATIVE_NUHBER

104 - CHANGE_5IGN

107 X TIMES

121 (PARENS

124 f SHAPE

127 t
RAVEL

131 / REDUCTION

142 * POWER

145 G PI_TIME5

143 j binomial

152 \ scan

163 r MAXIMUM

166 4 GRADE_UP

169 ? DEAL

182 < LESS_THAN

185) GREATER_THAN

193 A HAND

196 £ MEMBER OF

203 $ ROTATE

102 + CONJUGATE

io: MINUS

108 t RECIPROCAL

122 ' QUOTE

125 f RESHAPE

123 t
CATENATE

132 i REDUCTION

143 O NATURAL_LOG

146 O GEOMETRIC

149 | MAGNITUDE

161 r CEILING

164 L MINIMUM

167 ? GRADE_DOWN

180 = EQUAL

183 1 LES5_0R_EQUAL

191 * NOT

194 v OR

201 <D
REVERSE

204 e ROTATE

206 * TRANSPOSE-DYADIC 211 t TAKE

214 / COMPRESS

219 , LAMINATE

241 o OUTER_PRODUCT

304 ENCODE 301

213 / COMPRESS

216 \ EXPAND

232 S MATRIX_DIVIDE

301 \ INDEX_OF

306 1 EXECUTE 307 t FORMAT-DYADIC

TO SEE MENU AGAIN. ENTER
J

MENU

FOR INFORMATION ABOUT FUNCTION, ENTER* INFO NNN

UMBER)

TO GO THROUGH TUTORIAL LESSON, ENTER; LESSON NNN

103 + FL-US

106 X 5IGHUM

109 -r DIVIDE

123 (- SPECIFICATION

126 C BRACKETS

129 \ INDEX_GENERATOR

141 * EXPONENTIAL

144 • LOGARITHM

147 ; FACTORIAL

151 \ SCAN

162 L FLOOR

165 I

RESIDUE

163 ? ROLL

181 t NOT_EGUAL

134 } GREATER_OR_EOUAL

192 a AND

195 v NOR

202 9 REVERSE

205 $ TRANSPOSE-MONADIC

212 * DROP

215 \ EXPAND

231 B MATRIX_INVERSE

242 INNER_PRODUCT

DECODE

303 f FORMAT-MONADIC

(WHERE NNN IS MENU N

195

i ufo 180

»<»«t<«»*<»«ttt»<*<«««t(»l<«<tt I t » t » t * t I I 1 » • I , »*t»ttt»»»tt>»»

THE SYMBOL = (UPSHIFT 5) IS USED FOP: THE DYADIC EQUALS FUNCTION,

THIS COMPARES NUMERIC OR CHARACTER ARGUMENTS OF ANY RflHK,

IT RETURNS 1 FOR EACH ELEMENT OF THE LEFT ARGUMENT THAT IS IDENTICAL

TO THE CORRESPONDING ELEMENT OF THE RIGHT ARGUMENT, AND F0R

EACH ELEMENT THAT IS NOT.

1 9=4 =

\

2 = 4 A'='&< =)

MORE?

FOR MORE INFORMATION, ENTER
J

INFO NNN

196

TEST 211

WHAT IS THE RESULT OF;

"3 + "30 40 60 "90

,40 60 "90

correct;

TEST OK

TEST 203

WHAT IS THE RESULT OF;

"1 « 60 70 "20 "40

SORRY, CORRECT ANSWER IS 4

,

"40 60 70 "20

WHAT IS THE RESULT OF;

2 * "60 "40 "10

."40 "10 "60

CORRECT
J

TEST OK

WHAT IS THE RESULT OFJ

T\ 7 "6 "1

7 7 7

correct;

TEST OK

197

TEST 166

WHAT IS THE RESULT OF*

* "0.3 "0.4

.2 1

CORRECT
J

WHAT IS THE RESULT OF
J

* 3 5 "6

,STOP

THIS TEST HAS BEEN HALTEI',

STOP

IF YOU WANT TO END THIS SESSION, ENTER;)SAVE

WHEN YOU SEE THE TIME, DATE, AND 'TUTOR' MESSAGE, ENTER;)OFF

,)SAVE

li:42:i9 12/14/83 TUTOR

.)OFF

C0NNECT= 01:10:27 VIRTCPU= 000:02.38 T0TCPU= 000:11.11

C0NNECT= $5.87 TQTCPU= $1.85 310= $0.41 T0TAL= $3.13

MULT BY SHIFT FACTOR: =1<DAY>» =0,6(EVE)> =0.3(NIGHTS)

LOGOFF AT 11142:42 PST WEDNESDAY 12/14/83

VM/370 ONLINE

198

BIBLIOGRAPHY

Gilman, Leonard, and Rose. Allen J. APL--An Interact ive
Abroach. 2nd ea. New York: John Wiley 5"~S"obs7""Tiic. , ""797317

Ramsey, James B. f and ?lusgrave f Ssrald L. APL-STAT: A
Do~itzZ2iir§^l-_S]iiii_'- Com putational Stat istics"*trslnq &PE7
Belmont, California: TTfiTIme Cearning FuBXXcaTTo n s

,
~"7yBT

.

199

INITIAL DISTRIBUTION LIST

No. Cooies

1. Defense Technical Information Center 2
Cameron Station
Alexandria, Virginia 22314

2. Library, Code 0142 2
Naval poster aduate School
Monterey, California 9 3943

3. Dennis R. Mar. Code 014 1 1

Naval Pcstaralua te School
Monterey, California 93 943

4. LT Katherine S. Lanes 1
c/o Deputy Commander
Operational Test and Evaluation Force, Paoific
Naval Air Station North Island
San Diego, California 92135

5. Professor R. R. Read, Code 55Re 1
Naval Postgraduate School
Monterey, California 93 943

200

207129
Thesis

T L2592 Lanes
cl APL TUTOR: an on-

line instructional fa-
cility.

!

; 13 ,

I

;

4 AUG 8 7
3 I 77
3 2 638

20712S
Thesis
L2592 Lanes
cl APL TUTOR: an on-

line instructional fa-
cility.

