the remainder of the animal and the shell. The shoe-upper, as it were, presents two rounded lateral lobes which lie over the anterior part of the shell, like the mentum of *Natica*. The little animal creeps on its foot with great rapidity, appearing rather to slide along than progress by a vermicular movement, and by spreading out and hollowing this organ at the surface of the water, as a freshwater Lymnæad forms a boat of its foot, it buoys up its tiny body and is cast abroad on the face of the ocean. The paper was illustrated with coloured figures of most of the objects described. II. On the Anatomy of Nautilus umbilicatus, compared with that of Nautilus Pompilius." By John Denis Macdonald, Esq., R.N. Communicated by Sir W. Burnett, K.C.B. Received February 22, 1855. During a visit of H.M.S.V. 'Torch' to the Isle of Pines in July 1854, a recent specimen of *Nautilus umbilicatus* was picked up on the outer reef off Observatory Island. It was alive when brought on board, but was too much exhausted to exhibit active movements. Part of the hood appeared to have been eaten away behind by some predaceous enemy, but in other respects the animal was perfect. The body when retracted lay more deeply in the shell than that of N. Pompilius, so that no part was visible in a lateral view, and on account of the great depth of the chamber of occupation the orifice of the siphuncle in the last septum could not be seen when the soft parts were removed. As to this difference, however, the author observes that it may depend on the time elapsed since the formation of the last partition. Apart from the shells, the author finds a close resemblance between the corresponding parts of the two species. The specimen of *N. umbilicatus* examined proved to be a female; a fact which may serve to modify the views of those who, adopting the speculations of D'Orbigny on the sexes of the Ammonites as indicated by the characters of their shells, apply them also to the several kinds of *Nautili* known. The body of N. umbilicatus is larger and more elongated than that of N. Pompilius as it occurs in the South Seas, although the specimens of the latter species brought from the Chinese Seas much exceed both in size. In the N. umbilicatus, the longitudinal lamellæ on the median lobe of the external labial processes are divided by a wide groove into two lateral sets, and the corresponding lamellæ between the internal labial processes are about seventeen in number and of considerable thickness. In N. Pompilius, the latter lamellæ are much thinner and more numerous, and the lateral sets of the former are united together in the median line, commencing anteriorly with an azygos transverse lamina. In both kinds, however, the corresponding tentacula may be distinctly traced out, with only such minor differences as might be expected to occur in different specimens of either separately; the digital, labial and ocular groups agreeing sufficiently both as to number and character in the two cases, considering the liability of these parts to slight modifications, from arrest of development or redundance, in the same species. Referring to former observations of his own on the eye of N. Pompilius, the author observes that they closely apply to N. umbilicatus, which affords confirmation of his opinion that the pigmentary coating is subjacent to the retina. He finds no vestige of a lens, and in place of vitreous humour, a mere viscous matter protecting the retina from the sea-water. The organ of hearing, which had escaped detection in the specimen of N. Pompilius dissected by Professor Owen, altered as it doubtless had been by long immersion in spirit, was discovered in the example of N. umbilicatus examined by the author. It consists of two spheroidal acoustic capsules placed, one on each side, at the union of the supra and subcesophageal ganglia, and measuring about one-twelfth of an inch in diameter. Each capsule rests internally against the nervous mass, and is received on its outer side into a little depression in the cephalic cartilage. It is enveloped in a kind of fibrous tissue and filled with a cretaceous pulp consisting of minute, elliptical, otoconial particles, presenting under a high power a bright point near each end, varying much in size, and sometimes combined into stellate, cruciform or other figures. Cilia were not observed within the capsules. The inside of the mouth is furnished with three groups of papillæ, one of which occupies the median line between the orifice of the tongue-sac and commencement of the esophagus. These lingual papillæ, as well as the rest, are clothed with long and slender columnar epithelium-particles. The author agrees with Mayer in regarding the well-known follicular appendages of the afferent branchial vessels of the Cephalopoda, as performing the function of kidneys, but admits that they may also serve, by altering their capacity, to regulate the amount of blood passing through the branchiæ under changes of pressure to which the animal may be subjected at different depths. These follicles are subcylindrical in form, and somewhat dilated at the free extremity, to which is appended a folded and funnel-shaped process of membrane which expands rather suddenly and presents a jagged They open by an oval or slit-like orifice into the afferent branchial vessels, on each of which, as Professor Owen has observed. they are disposed in three clusters. The outer membrane is smooth and glossy, homogeneous in structure, and sprinkled over with minute, rounded, transparent bodies, resembling the nuclei of cells. Beneath this layer, flat bundles of fibres, apparently muscular, are traceable here and there, principally disposed in a longitudinal direction, and sometimes branched. The lining membrane consists of a loose epithelial pavement, similar in many respects to that of the uriniferous tubules of the higher animals, the cells containing, besides the nuclei, numerous minute oil-globules, or a substance much resembling concrete fatty matter. This membrane is thrown up into very numerous papillæ and corrugations, so as greatly to increase the extent of surface. The papillæ are more numerous towards the attached end, and a circlet of longitudinal folds, with transverse zigzag corrugations, radiate from the bottom of the follicle, in which a number of small pits or fenestrations are sometimes visible. The funnel-shaped membranous process above noticed is continuous with the lining membrane. The cavity of each follicle, therefore, communicates with the exterior through the centre of this process, and the aperture is thus guarded by a kind of circular valve permitting the escape of secreted matters, but effectually preventing the entrance of fluid from without. Some considerations are next offered in support of the view adopted as to the functions of these vascular appendages. Lastly, on the question whether the peculiarities of structure recognized respectively in N. Pompilius and N. umbilicatus are sufficient to establish a difference of species, or are attributable merely to variety, the author observes, that any tendency in a being to revert to an original type, when such has been determined, betrays variety; but this tendency is never manifested in the Nautili under consideration by the occasional occurrence of specimens presenting characters which place them intermediately between N. Pompilius and N. umbilicatus. Having visited the Fijii Islands since he formerly wrote on N. Pompilius, he finds that the umbilicated Nautili are not known to the natives, although N. Pompilius is very plentiful; but at Fatuna or Wallis's Island, where both are found, the people recognize the difference between them depending on the presence or absence of umbilical pits. On this the author remarks, that although particular localities, with all attending circumstances, may favour the production of varieties, yet the permanence of the distinctive characters of these Nautili without symptom of amalgamation, and the discovery of a female specimen of N. umbilicatus, are strong arguments in support of the view that they are distinct species, though very closely allied. Further descriptive details are given in the explanation of the figures which accompany the memoir. III. "On a Class of Differential Equations, including those which occur in Dynamical Problems."—Part II. By W. F. Donkin, M.A., F.R.S., F.R.A.S., Savilian Professor of Astronomy in the University of Oxford. Received February 17, 1855. This is the second and concluding part of a paper of which the first part was printed in the Philosophical Transactions for 1854. In the fourth section (the first of this part) some of the most important results of the former part are recapitulated. In the fifth section the theory of the Variation of Elements is considered under that aspect which belongs to it in connexion with the general methods of this paper; and the facility of its application is shown in two instances: (1) the expressions for the variations of