
NAT L INST. OF STAND & TECH R.I.C.

AlllDM b57SS8
PUBLICATIONS

NISTIR 5612

4SIGHT Manual: A Computer Program for

Modelling Degradation of Underground Low Level

Waste Concrete Vaults

Kenneth A. Snyder

James R. Clifton

Building and Fire Research Laboratory

Gaithersburg, Mary land 20899

NIST
Prepared for:

United States Nuclear Regulatory Commission

Office of Nuclear Regulatory Research

Division of Engineering

100

.1156

NO. 5612

19S5

United States Department of Commerce
""

' logy Administration

il Institute of Standards and Technology

NISTIR 5612

4SIGHT Manual: A Computer Program for

Modelling Degradation of Underground Low Level

Waste Concrete Vaults

Kenneth A. Snyder

James R. Clifton

June 1995

Building and Fire Research Laboratory

National Institute of Standards and Technology

Gaithersburg, MD 20899

U.S. Department of Commerce

Ronald H. Brown, Secretary

Technology Administration

Mary L. Good, Under Secretary for Technology

National Institute of Standards and Technology

Arati Prabhakar, Director

Abstract

A computer program has been written to facilitate performance assessment of concrete vaults

used in Low Level Waste (LLW) disposal facilities. The computer program is a numerical

computer model of degradation in concrete. A one-dimensional finite difference equation

is used to propagate ions by precipitation/dissolution of available salts. The precipita-

tion/dissolution of salts, in turn, changes the transport properties, which changes the rate

of ion transport. The result is a model which incorporates the synergism of multiple degra-

dation mechanisms.

This Report is self-contained. It includes the installation instructions, user manual,

technical details, and source code. The program was written using a literate programming

tool and the “pretty-printing” output of the source code is attached at the end of this report.

Keywords: building technology; computer modelling; concrete; corrosion of reinforcement;

degradation; leaching; radioactive waste; service life; sulfate attack

Contents

1 Introduction 1

2 Installation ' 2

2.1 Distributed Files 2

2.2 Hardware Requirements 2

3 Program Execution 2

3.1 Interactive Mode 2

3.2 Batch Mode 3

3.3 Plotting Results 4

4 Input Specifications 4

4.1 Material Properties 5

4.2 Ion/Fluid Initial Conditions 5

4.3 Geometry 6

4.4 Failure/Termination Limits 7

4.5 Sulfate Attack Parameters 7

4.6 Output Parameters 8

5 Example 9

5.1 Internal Parameters 10

5.2 Initial State 11

5.3 Depth vs. Time 11

5.4 Failure Data 12

5.5 Final System State 13

6 System 14

7 Ion Transport 14

7.1 Advection-DifFusion 15

7.2 Darcy Flow 15

7.3 Continuity 16

7.4 Dimensionless Variables 16

7.5 Atkinson-Hearne Model 17

7.6 Effects of Cracks and Joints 18

8 Chemical Equilibrium 19

iv

9 Failure Criteria 20

9.1 Reinforcement Corrosion 20

9.2 Sulfate Attack 20

9.3 Joint Failure 21

10 Calculated Material Properties 21

10.1 Hydration 21

10.2 Leaching 22

11 Program Outline 23

12 Assumptions 25

13 Acknowledgements 25

14 References 26

A Input Parsing 1

A.l LEX Specification 2

A.2 YACC Specification 4

B CWEB - Source Code 1

v

List of Figures

1

2

3

Schematic of underground LLW facility 14

Formation factor, D/

D

*
,
due to hydration (circles) and to leaching (squares)

for w/c=0.35 (after [14]). The solid line represents the approximation used

by 4SIGHT for the leaching formation factor. 23

4SIGHT flow chart 24

vi

1 Introduction

The computer program 4SIGHT has been written to facilitate Low Level Waste (LLW) dis-

posal facility performance assessment. 4SIGHT can be used to predict the service life and

hydraulic conductivity of a buried concrete vault. This estimate is based upon an analysis

of the concrete vault roof given the material properties of the concrete and the external ion

concentrations.

4SIGHT incorporates multiple degradation mechanisms by using a single transport equa-

tion for ions. Individual degradation mechanisms are typically controlled by the concentra-

tion of a single ion species. However, as various ion species diffuse into the concrete, the

transport properties change, which changes the rate of ion diffusion. As the pore solution

pH changes, available salts either precipitate or go into solution. The precipitation and

dissolution processes changes the porosity, which in turn changes the transport properties.

It is the act of maintaining chemical equilibrium that affects the synergism of the different

degradation mechanisms.

Previous efforts [1] [2] have yielded mathematical models for various degradation mech-

anisms. From these equations, the service life could be calculated for any one degradation

mechanism. However, combining the effects of multiple mechanisms was not feasible ana-

lytically. The advantage of the method used by 4SIGHT is the ability to incorporate the

synergism of multiple degradation processes. Rather than calculate rates of attack, 4SIGHT

uses a single transport equation to propagate ions through the concrete. Keeping the system

in chemical equilibrium allows interaction of degradation mechanisms.

4SIGHT is a command-driven program that awaits input parameters from the user, using

default values when necessary. Once all known parameters are entered, 4SIGHT reiterates

the values of all the input parameters used in the calculation with a note as to whether the

value was specified by the user or whether a default value was used. The computations begin

by 4SIGHT propagating ions in discrete time increments. At regular intervals 4SIGHT prints

to the screen the bulk hydraulic conductivity and diffusivity, and the depth of sulfate and

chloride attack. The calculation continues until one of the following occurs: corrosion of the

steel reinforcement, sufficient sulfate attack that the roof fails structurally, failure of a joint,

or a user specified time limit has been exceeded. Upon termination, 4SIGHT prints the state

of the system, composed of the concentration of user selected ions and moles of user selected

salts, as a function of depth into the roof.

What follows in this Report is a complete user’s guide to 4SIGHT, including installation

information and source code. The goal is an all-inclusive document, acting as a single body

of work, that facilitates review of any aspect of the program. To facilitate source code

review, 4SIGHT was written using a literate programming tool which incorporates both the

programming code and typeset comments. The typeset output does not conform to the

structure of a NISTIR. Therefore, the typeset output, as it normally appears, is attached to

the end of this report.

1

'

2 Installation

2.1 Distributed Files

4SIGHT is distributed with the following files:

README

4SIGHT.EXE

ION.DB

MANUAL.PS

MANUAL . HP

MANUAL.TXT

EXAMPLE.DAT

Basic installation instructions

Executable program

Ion database

4SIGHT manual in PostScript format

4SIGHT manual in HP-PCL format

4SIGHT manual in ASCII format

Example input file

To install 4SIGHT, simply copy these files to a directory on the hard drive. This manual has

been included in three different useful formats for printing.

2.2 Hardware Requirements

To execute the program 4SIGHT, the user must be using a personal computer equipped with

either an 80386 or 80486 microprocessor with a math coprocessor. Lacking either of these

requirements, the program will fail to run.

3 Program Execution

4SIGHT was written to be executed in either interactive or batch mode. The interactive

mode simply waits for the user to type in the various input parameters at run-time. When
executed in batch mode, the user first edits an ASCII file containing the input parameters

as if typed during interactive mode. This ASCII file is then included at the command line

when running 4SIGHT.

3.1 Interactive Mode

When run interactively, 4SIGHT simply waits for the user to enter input parameters. The

user specifies the end of the list by entering either quit or exit. For example, assuming the

executable program is in the directory C:\4SIGHT, interactive mode is initiated by simply

typing the program name:

C:\4SIGHT\4SIGHT

The program responds with:

2

Enter commands:

At this point 4SIGHT is simply waiting for the user to input program parameters. The
commands are given one per line:

DIFF = 2.0E-12

WC = 0.45

TIME = 100000

quit

After which, 4SIGHT begins the calculation, printing intermediate results to the screen.

3.2 Batch Mode

When run in batch mode the user specifies an input file at the command line. This input file

simply contains any number of input parameters, as in the interactive mode. For example,

assume the following text is saved into a file called input .dat:

DIFF = 5.0E-12

THICKNESS =1.0
WC = 0.50

EXTERNAL Cl = 0.150

EXTERNAL Na = 0.150

DEPTH =0.25

This file can be created by any ASCII editor such as the DOS edit program or the UNIX
vi program. When using a commercial word processing program to create input files make
sure that the output is in plain ASCII. As a check, give the C:\type input.dat command
at the DOS prompt. The text should appear as typed. Note that neither quit nor exit are

required in the input file. To use input files with 4SIGHT, simply include that file name on

the DOS command line:

C:\4SIGHT\4SIGHT input.dat

The output from 4SIGHT goes to the screen. This is useful for initial calculations and trial

runs. However, if the user desires to save the output to an ASCII file, simply use redirection

of the output:

C:\4SIGHT\4SIGHT input.dat >output.dat

This example uses the commands in the file input . dat as input parameters and saves the

output in the file output .dat.

3

3.3 Plotting Results

The output from 4SIGHT has been formatted with quotes (") and tabs to facilitate incorpo-

rating them into commercial spreadsheet programs. Once incorporated into the spreadsheet

program, the user can plot either the sulfate and chloride depth versus time from the inter-

mediate results, or the ion concentration as a function of depth from the final state of the

system.

4 Input Specifications

The complete list of input parameters is given here to introduce the parameters used in the

example to follow. Although many of the parameters are self-evident, the complete meaning

of all the parameters will not be understood until the user reads the explanatory sections

that follow the example.

The input commands to 4SIGHT are straightforward. With very few exceptions, the

format of the commands is

parameter = value

Even though every possible input parameter is listed below, there are sufficient default

parameters for the user to perform a calculation without entering any parameters.

The syntax of the list of parameters below is as follows: Text to be typed verbatim is

shown in typewriter font
(
e.g ., DIFF =). These words can be typed in any mixture of upper

and lower case characters with any number of spaces or tabs between the parameters and

the ‘=\ Words in italics represent user selected input values (e.g., expr). There are two data

types: numbers and ions, which are represented by expr and ion
,
respectively. Numbers

can be given in integer, fixed point, or scientific notation. Examples of valid values for expr

include:

120 120.0 1.2E+02

The units for each input value appear under expr in the definition. 4SIGHT also recognizes

the following ions (the valence has been omitted):

H Ca Na K OH Cl S04 C03

The ion values MUST appear as shown since ion variables are case sensitive. 4SIGHT can

also recognize salts. A salt is specified by concatenating a cation and an anion, separated

by a space. Stoichiometric ratios are not used. For example, the following specifications

Na Cl Ca OH Na S04

4

are for sodium chloride, NaCl
,
calcium hydroxide, Ca(OH

) 2 ,
and sodium sulfate, Na 2S04 ,

respectively.

Below is a list of all possible input parameters. At the end of each description is an

example of usage. In cases where a default value exists, the default value is used as the

example value. Whether or not the value is a default value is noted next to the example.

4.1 Material Properties

DIFF = expr

m 2
1sec

expr

:

default:

The ultimate Cl~ diffusivity of the concrete. This value represents the

diffusivity of the undamaged concrete. The default value given below is

suitable for a w/c=0.45 ordinary portland concrete.

DIFF = 5.7E-12

PERM = expr
,2m

expr:

default:

The ultimate permeability of the concrete,

permeability of the undamaged concrete.

PERM = 2.5E-18

This value represents the

WC expr

expr: Concrete water:cement weight ratio during mixing.

default: WC = 0.45

4.2 Ion/Fluid Initial Conditions

EXTERNAL ion = expr

mol/L

ion: The ion of interest.

expr: The external concentration of ion above the roof. This command can

be repeated for each ion external to the roof slab.

example: EXTERNAL Cl = 0.15

INTERNAL ion = expr

mol/L

5

ion

:

expr:

Ion of interest.

The concentration of ion in the pore solution of the concrete. This

command was designed to let the user specify the internal Na+ and

K+ concentration to establish the correct pH. This command can be

example:

repeated for each relevant ion.

INTERNAL Na = 0.10

HEAD = expr

m

expr: The equivalent height of ground water (hydraulic head) above the upper

default:
surface of the roof.
HEAD =5.00

4.3 Geometry.

THICKNESS = expr

m
expr : The vertical thickness of the roof.

default : THICKNESS =1.00

CRACK = exprl AT expr2 DEPTH exprSmm m
exprl

:

expr2:

expr3:

default:

The width of the crack.

The spacing between cracks.

The penetration of the crack, relative to the bottom of the slab.

CRACK = 0.000100 AT 1.00 DEPTH 0.30

JOINT PERM = expr
9m

expr: The permeability of the joint filling compound between roof slabs. This

value should not reflect the geometry of joint. Rather, it is a material

example:
property of the joint compound.
JOINT PERM = 3.2E-15

JOINT = exprl AT expr2 UNTIL exprS

m m years

6

exprl

:

The width of the joint.

expr2:

expr3:

example:

The spacing between joints.

The service life of the joint compound.

JOINT = 0.020 AT 1.00 UNTIL 100

4.4 Failure/Termination Limits

REBAR = expr

m
expr: The depth of the reinforcement bars (rebars) from the top of the slab.

example:

When a critical concentration of Cl~ ions has penetrated to a depth

expr the structure fails.

REBAR =0.90

DEPTH = expr

m
expr: The critical penetration depth for sulfate attack. Once the sulfate front

has penetrated down to a depth expr from the top, the roof is unable to

default:
sustain its load and it fails.

DEPTH =0.20

TIME = expr

day

expr: The maximum number of days to continue the calculation. Note that

default:
no comma should be used.
TIME = 100000

4.5 Sulfate Attack Parameters

YOUNGS = expr

GPa

expr: The Youngs modulus of the concrete.

default: YOUNGS =20.0

BETA = expr

expr:

default:

The linear strain due to one mole of Na+ per m3
of concrete.

BETA = 1.8E-06

7

{

‘

CE = expr

mol/m3

expr : The concentration of reacted sulfate as ettringite.

default: CE = 350.0

ROUGHNESS = expr

expr:

default:

The fracture surface roughness factor.

ROUGHNESS =1.0

GAMMA = expr

J/m 2

expr: The fracture surface energy of the concrete.

default: GAMMA =10.0

POISSON = expr

expr: The Poisson ratio of the concrete.

default: POISSON = 0.2

4.6 Output Parameters

OUTPUT = ion

ion: Output the pore solution concentration
(
mol/L

)
of ion in the output

describing the final state of the system. This command lets the user

examine the concentration of specified ions as a function of depth. This

example:
command can be repeated for different ions.

OUTPUT = C03

OUTPUT = ionl ion2

NOTE:

Output the quantity (moles) of salt in the volume Vsample. The salt is

comprised of the cation ionl and the anion ion2.

The two ion specifications are separated by a space and stoichiometric

example:
ratios are omitted.
OUTPUT = Ca OH

8

.

5 Example

To illustrate the use of 4SIGHT, consider the following fictitious example. The concrete was

designed with a 0.40 waterxement ratio (WC=0.40). Experimental diffusivity measurements

using Cl~ ions gave 5.0 x 10
~ 12 m 2

/sec (DIFF=5 . OE-12). No permeability measurements

are available. The roof slab is 1.0 meter thick (THICKNESS=1 . 000). Regularly spaced cracks

have been observed on the bottom of the slab. The cracks are approximately 100 [im wide,

spaced 2 meters apart, and are assumed to extend upwards to the neutral axis which is

25 centimeters from the bottom of the roof slab (CRACK = 0.000100 AT 2.0 DEPTH 0.25).

Also, the roof is buried, giving an effective pressure head of 2 meters (HEAD = 2.0).

Soil analysis indicates the presence of SO\~ at a concentration of 1.0 moles per liter

(EXTERNAL S04 = 1.0). Engineering analysis indicates that if the sulfate degradation pen-

etrates down 20 centimeters from the top surface of the roof then the vault will collapse

(DEPTH = 0.20). Additionally, chloride ions are present in the soil at a concentration of 0.40

moles per liter (EXTERNAL Cl = 0 . 40) and engineering drawings indicate that the reinforce-

ment bars are located 60 centimeters from the top of the roof (REBAR = 0.60). Thorough

soil analysis indicates that sodium ions are also present at a concentration of 2.40 moles per

liter (EXTERNAL Na = 2.40), giving a nearly neutral soil pH.

Internal to the concrete the pH is approximately 13. Therefore, internal potassium and

sodium concentrations are approximately 0.1 (INTERNAL K = 0.1) and 0.05 (INTERNAL Na

= 0.05) moles per liter, respectively.

To monitor the ingress of the external ions, calcium (OUTPUT Ca) and chloride (OUTPUT

Cl) ions will be included in the output of the final state of the system. Also, to monitor

leaching, the solid calcium hydroxide content will also be included in the output (OUTPUT Ca

OH).

The input file for this example, example.dat is included in the distribution diskette and

reiterated here:

DIFF = 5. OE-12

WC = .40

THICKNESS = 1.000

EXTERNAL Na = 2.40

EXTERNAL Cl = 0.400

EXTERNAL S04 =1.00
INTERNAL K = 0.1000

INTERNAL Na= 0.0500

OUTPUT Ca

OUTPUT Cl

OUTPUT Ca OH

REBAR = .8000

9

HEAD =2.0
CRACK = 0.000100 AT 2.0 DEPTH 0.25

DEPTH = .2000

TIME = 100000

To use this input file, simply include example.dat at the DOS command line. To save the

results, redirect the output to a file:

C:\4SIGHT\4SIGHT EXAMPLE.DAT >EXAMPLE.0UT

In this example, the output is stored in EXAMPLE. OUT, an ASCII file which can be imported

into any spreadsheet program.

NOTE: This calculation required 90 seconds to complete on a personal computer equipped

with a 80486 microprocessor operating at 66MHz.

5.1 Internal Parameters.

4SIGHT outputs all of the parameters the user has specified ("USER"), along with default and

calculated values ("DEFAULT").

" This is 4SIGHT (Version 1.0)"

"THICKNESS II 1.00000 "(m) " "USER"

"DIFF II 5 . Oe-12 " (m~2/ sec) " "USER"

"PERM II 9 . 8e-13 " (m/ sec) " "DEFAULT"

"WC II 0.40000 II " "USER"

"HEAD II 2.00000 "(m) " "USER"

Sulfate Attack Parameters

:

"YOUNGS II 2 . 0e+10 " (N/nT2) " "DEFAULT"

"BETA II
1 . 8e-06 II " "DEFAULT"

"CE II 350.0000C "(Mol/m‘3)" "DEFAULT

"ROUGHNESS II 1.00000 II " "DEFAULT"

"GAMMA II 10.00000 " (J/m~2) " "DEFAULT"

"POISSON II 0.20000 II " "DEFAULT"

"DEPTH II 0.20000 " (m) " "USER"

"REBAR II 0.80000 " (m) " "USER"

"TIME II 100000 " (day) " "USER"

"CRACK = 0.00010 AT 2.00000 DEPTH 0.25000"

"Chloride failure (yr)" 1743

"Sulfate failure (yr)" 447

10

.

5.2 Initial State

The report of the initial state lets the user verify the EXTERNAL and INTERNAL conditions of

the system.

Initial state of system

:

II ION II "EXTERNAL " "INTER
II H II 0.00000 0.00000
II Ca II 0.00000 0.00035
II Na II 2.40000 0.05000
II K II 0.00000 0.10000
II OH II 0.00000 0.15070
II Cl II 0.40000 0.00000
II S04 II 1.00000 0.00000
II pH II 7.00000 13.17810

These results indicate that the pH of the environment is 7, while the pH of the pore

solution is initially 13. To change the pH of the environment the user can simply change the

concentration of EXTERNAL anions or cations.

5.3 Depth vs. Time

As 4SIGHT is calculating ion transport it regularly prints the current status of the degra-

dation. The sulfate and chloride penetration depths as a function of time are given in the

columns labelled S04 and Cl, respectively. L is the remaining thickness of the slab, K is the

hydraulic conductivity, D is the diffusivity, Flux is the flux of pore solution out the bottom

of the slab, and pH is the pH of the flux.

11

"Day" "L" "K " "D " "S04" "Cl" "Flux" "pH"
II II "m" "m/s" "m~2/s " "m " "m " "ml/dy/m2"

0 1.00Ci 1 . 3e-12 5 . Oe-12 0.000 0.000 0.027 13.2

10036 0.988 1 .3e-12 5. Oe-12 0.012 0.101 0.027 13.2 -

15055 0.982 1.3e-12 5. Oe-12 0.018 0.129 0.027 13.2

20023 0.976 1 .3e-12 5. Oe-12 0.025 0.150 0.028 13.2

25031 0.969 1 . 3e-12 5. Oe-12 0.031 0.173 0.028 13.2

30018 0.963 1 . 3e-12 5. Oe-12 0.037 0.192 0.028 13.2

35011 0.957 1.3e-12 5. Oe-12 0.043 0.211 0.028 13.2

40048 0.951 1 . 3e-12 5. Oe-12 0.049 0.229 0.029 13.2

45104 0.945 1 . 3e-12 5. Oe-12 0.055 0.246 0.029 13.2

50017 0.939 1 ,3e-12 5. Oe-12 0.061 0.263 0.029 13.2

55045 0.933 1 . 3e-12 5. Oe-12 0.067 0.280 0.029 13.2

60015 0.927 1 . 3e-12 5. Oe-12 0.074 0.295 0.030 13.2

65003 0.920 1 . 3e-12 5. Oe-12 0.080 0.311 0.030 13.2

70002 0.914 1 . 3e-12 5. Oe-12 0.086 0.327 0.030 13.2

75013 0.908 1 . 3e-12 5. Oe-12 0.092 0.342 0.031 13.2

80069 0.902 1.4e-12 5. Oe-12 0.098 0.357 0.031 13.2

85037 0.896 1.4e-12 5. Oe-12 0.104 0.372 0.031 13.2

90050 0.890 1 . 4e-12 5. Oe-12 0.110 0.387 0.031 13.2

95069 0.884 1 . 4e-12 5. Oe-12 0.116 0.401 0.031 13.2

100017 0.878l 1.4e-12 5. Oe-12 0.122 0.416 0.032 13.2

As per the linear model for sulfate attack, the sulfate front increases linearly with time.

The chloride depth has a t
1 ^ 2 because of the low Peclet number (the ratio of Darcy to

‘diffusive’ flow [2]). At sufficiently high Peclet numbers (greater permeability or hydraulic

head) the chloride depth approaches a linear relationship to time.

5.4 Failure Data

After reporting the time dependent behavior, 4SIGHT reports the reason for termination and

the status of the sulfate and chloride penetration:

Exceeded TIME limit.

"T" 17.283

"Day" 100017

"S04 (m)" 0.122

"Cl (m)" 0.416

12

These failure data indicate that the calculation terminated because it exceeded the time

limit. The termination occurred after 100044 days (586 years), at which point the sulfate

and chloride penetration were 0.13 and 0.60 meters, respectively.

5.5 Final System State

Upon termination of the calculation, the final state of the system for the slab is printed. The
L(m) is measured from the top of the slab. Psi is the hydraulic pressure, vD is the Darcy

velocity, xi is the inverse of the formation factor, phi is the porosity, f c is the estimated

compressive strength using ACI 211.

Final System

"Psi""L(m)

"

0.0000

0.0500

0.1000

0.1500

0.2000

0.2500

0.3000

0.3500

0.4000

0.4500

0.5000

0.5500

0.6000

0.6500

0.7000

0.7500

0.8000

0.8500

0.9000

0.9500

1.0000

0.392

0.392

0.392

0.374

0.342

0.311

0.279

0.248

0.217

0.186

0.155

0.124

0.093

0.062

0.031

0.000

0.000

0.000

0.000

0.000

0.000

state

"vD"

0.000

0.000

0.031

0.031

0.031

0.031

0.031

0.031

0.031

0.031

0.031

0.031

0.031

0.031

0.031

0.031

0.031

0.031

0.031

0.031

0.031

"xi"

0.0024

0.0024

0.0024

0.0024

0.0025

0.0025

0.0025

0.0025

0.0025

0.0025

0.0025

0.0025

0.0025

0.0025

0.0025

0.0025

0.0025

0.0025

0.0025

0.0025

0.0025

"phi"

0.1634

0.1631

0.1658

0.1663

0.1671

0.1672

0.1672

0.1673

0.1673

0.1673

0.1673

0.1673

0.1673

0.1673

0.1673

0.1673

0.1673

0.1673

0.1673

0.1673

0.1673

"pH" "fc" "Ca"

7.000 5052 0.0000

7.000 5057 0.0000

7.000 5011 0.0000

13.277 5003 0.0001

13.351 4989 0.0001

13.392 4988 0.0001

13.405 4987 0.0001

13.394 4986 0.0001

13.365 4986 0.0001

13.326 4986 0.0002

13.286 4986 0.0002

13.250 4986 0.0002

13.220 4986 0.0003

13.199 4986 0.0003

13.185 4986 0.0003

13.176 4986 0.0004

13.173 4986 0.0004

13.172 4986 0.0004

13.172 4986 0.0004

13.172 4986 0.0004

13.172 4986 0.0004

"Cl" "CaOH"

0.4000 0.000

0.4000 0.000

0.4000 0.000

0.3740 31.599

0.3253 31.860

0.2773 31.886

0.2314 31.899

0.1889 31.912

0.1509 31.918

0.1178 31.919

0.0899 31.919

0.0671 31.919

0.0488 31.919

0.0348 31.919

0.0242 31.919

0.0164 31.919

0.0110 31.919

0.0073 31.919

0.0050 31.919

0.0039 31.919

0.0039 31.919

Note that the external quantities are duplicated to a depth of 0.1 meters. As the sulfate

penetrates the concrete, the concrete fails and the external boundary conditions move into

the concrete. Also note that the pressure (P) is zero from 0.75 to 1.00 meters. Since the

concrete was cracked, the permeability of the cracked portion of the concrete overwhelmed

13

the uncracked portion, resulting in virtually no pressure drop across the crack. This increases

the pressure gradient across the remaining uncracked concrete.

6 System

Although each LLW facility may be unique, most underground facilities can be represented

schematically as in Figure 1. Below the ground surface there will be an engineered barrier

to deflect surface water away from the concrete vault below. The entire facility is sited on a

geologically suitable location.

Figure 1: Schematic of underground LLW facility

From the schematic in Figure 1 it appears as though the roof is the most critical element

because it is most likely to have a moist environment, especially upon the failure of the

engineered barrier. Because of this, the analysis of the entire concrete vault can concentrate

on the roof. If the roof is treated as a simple slab, the analysis simplifies further. Since the

flow through the roof slab will be approximately uniform over the surface of the slab, a one-

dimensional analysis of transport vertically through the slab should serve as a sufficiently

accurate model for transport through the roof of the vault.

7 Ion Transport

A single transport equation is developed to propagate ions through the slab. This equation

can be converted into a finite difference equation so that it can be implemented in a computer

program. A result of this approach is that time will advance in discrete intervals. After every

time interval each computational element is put in chemical equilibrium using solubility

products and a charge balance. This step is achieved through dissolution/precipitation of

available salts. Any change in the quantity of solid salts in the pore space will change the

14

porosity of the concrete, hence changing the transport coefficients. This is how the synergism

of degradation mechanisms is achieved.

7.1 Advection-Diffusion

At the core of 4SIGHT is the advection-diffusion equation which establishes the transport

of ions through the slab. The advection-diffusion equation is simply the diffusion equation

with an extra term to account for Darcy flow. The development of the equation starts most

simply from the relation between flux, j, and concentration, c:

j
= —D'Ve + cu (1)

The parameter D is the effective diffusion coefficient, and the quantity u is the average pore

fluid velocity. The rate of change in concentration is the negative divergence of eqn. 1:

dc— =V-DVc-u-Vc (2)
dt

v ’

after neglecting the divergence of the volume averaged velocity, since the fluid is virtually

incompressible and the rate change in porosity is small.

7.2 Darcy Flow

The average pore fluid velocity can be calculated from the Darcy velocity, which is the

volume-averaged pore fluid velocity. Given a porous media with permeability k and pore

fluid viscosity p, the Darcy velocity, Vd, is proportional to the pressure gradient, Vp and

the density of the fluid [3]:

Vd = -- {Vp - pg) (3)

The Darcy velocity vp can be related to the average pore velocity, u, from a geometrical

argument. Let v(x) represent the velocity of the pore fluid at some point x in the slab. As-

sume that the pore fluid completely fills the available pore space. Representing the porosity

by 0, u is defined as:

u=
ivl

v{x)dV (4)

The Darcy velocity is the average over the entire volume V :

vD = i ^ v(x) dR (
5

)

Since v(x) = 0 outside of the porosity, eqn. 5 can be limited to the pore space:

vd = -7 /
v(x) dV (6)

V J<t>

15

(
7

)

From comparison to eqn. 4, the relation between v# and u is:

\D = </>u

7.3 Continuity

Once the Darcy equation is incorporated into eqn. 2, the continuity equation is needed

in order to update the pressures. Upon execution of the computer program, the follow-

ing sequence is continuously reiterated: transport ions, attain chemical equilibrium, adjust

transport properties, update boundary conditions. As the porosity of the concrete changes,

the transport properties also change. The change in the transport properties will effect

the hydraulic pressure distribution in the concrete since the transport properties will not

by uniform throughout the concrete. The pressure distribution will be updated using the

continuity equation for porous media.

The continuity equation for a fluid is

% + V • pv = 0 (8)

To develop a continuity equation for porous media, find the average integral value of eqn. 8

over a representative volume, V

:

vIv Tt
dV + vIv v ^vdV = 0 (9 >

Rearranging the order of integration gives

Ulv pdV + ^-vIv PVdV = 0 (10)

Finally, assuming p is constant and using the definition of Darcy velocity gives

^ + V-vD = 0 (11)

This is the result obtained by Slattery [4] for porous media. Substituting for vd from eqn. 3

gives

^7 = V • — (Vp — pg) (12)
Ot p

7.4 Dimensionless Variables

Eqn. 2, 3, and 11 can be combined to form a system of equations to propagate ions through

a porous media. However, the system of equations can be condensed by a transformation

into dimensionless variables. Consider the following definitions:

P = V

pDo / k0

(13)

16

where the capital letters A', T, and P refer, respectively, to the dimensionless distance,

time, and pressure. The quantity D0 is the chloride diffusivity of the concrete, and kQ is the

permeability. L is simply any characteristic length. Using these definitions, the advection-

diffusion equation (2) becomes

Svp+rc ' Vc (14)

This equation will be simplified further later using material properties related to porosity.

7.5 Atkinson-Hearne Model

As yet, a dependable mechanistic model does not exist for sulfate attack. Therefore, to

incorporate sulfate attack, the depth of sulfate degradation is calculated using the Atkinson

and Hearne [5] model:

E(3C0CeD
<27(1 — u

)

(15)

E Youngs modulus

C0 External sulfate concentration

CE Concentration of sulfate as ettringite

D Sulfate diffusion coefficient

ot Roughness factor

7 Fracture surface energy

v Poisson ratio

Since the Atkinson-Hearne model gives the location of the sulfate front, 4SIGHT presumes

that all of the concrete behind the sulfate front has been completely disintegrated, giving it

the properties of the surrounding soil. Since the transport coefficients of soil are much larger

than concrete, the external boundary conditions are advanced to the sulfate front, creating

a moving boundary condition.

The Youngs modulus, roughness factor, fracture surface energy, and Poisson ratio must be

determined from experimental measurements. The quantity CE can be either calculated from

the cement composition, or more accurately from experiment. To experimentally determine

CE ,
the sulfate reacted per unit mass hydrated cement is plotted against the logarithm of

time. This data is fit to the equation [5]

m = (16)

where m is the moles of sulfate reacted in the cement, m0 is the free parameter of the

regression, t is time, c is the concentration of sulfate in liquid, t r is the characteristic time

for reaction, and is the concentration in kinetic experiments. The maximum value of m

17

can be calculated from the initial quantity of C3A in the cement. If this maximum value

is labelled m c ,
the value of t for m = m c is the time at which all of the C3A is consumed,

t too

•

The model proposed by Atkinson and Hearne assumes that reaction is the controlling

rate process. Therefore, the time to spalling should be greater than the time required for

complete consumption of the C3A. The time to spalling is [5]

where

tspall —

Y2 —
on/i / /

K^iCe
2Dc0

(17)

207(1 — u)

E(PCe)
2 (18)

In the event that t spaii < ^ocn Ce must be calculated in a self consistent manner using eqns.

16,17, and 18. More complete details can be found in [5]. For ordinary portland cements, it

is likely that t 3pau > t^. Therefore, since it is assumed that the quantity of external sulfate

is sufficiently great to act as an infinite reservoir (external concentration is constant), Ce
can be calculated from the C3A content of the cement. Since each mole of ettringite requires

one mole of A/203
[
6], the molar concentration of AI2O3 will be the molar concentration of

ettringite. Given a concrete mix design having xcem kilograms of cement per cubic meter of

concrete, and the cement having a weight fraction <f>Aho3
of aluminum oxide, the moles of

ettringite formed per cubic meter of concrete is

Ce
%cem &AI2O3

0.10196

with the AI2O3 molar weight of 0.10196 kg per mole.

(19)

7.6 Effects of Cracks and Joints

Although not a degradation mechanism per se, effects due to the presence of cracks and

joints can be incorporated into the models for transport of the ions. Since the roof slab will

likely be a supported member such that the bottom of the roof slab will be in tension, it

is assumed that cracks will appear on the bottom of the slab and extend upwards to the

neutral axis of the slab. In the case of joints, 4SIGHT assumes that the joint extends through

the entire depth of the roof slab. The joint is filled with a joint compound with a known

permeability and service life.

The permeability of a cracked slab is calculated assuming the crack walls are smooth

and parallel. Given a square slab with width L and depth D having cracks with width w
penetrating the full depth D of the slab, the permeability of the slab is a weighted sum of

18

(
20

)

the permeability of the crack, kc ,
and the permeability of the uncracked concrete, kQ :

k c

w
j

L
kc + ~—:

—

k0
L + w

"
' L + w

• 2 Lw w
+

L -f w 12 L T w
k0 (

21
)

Since w3
/ 12 is typically far greater than Lka ,

the permeability of the slab can be approxi-

mated by the permeability due to the crack. Further, if each of the cracks of width w are

spaced a distance a apart, the permeability of the slab, ks ,
is

ks (
22

)

Joints can be handled in a similar manner as cracks. However, joints will typically be

very much wider than cracks Since joints will presumably extend the entire thickness of the

slab, once the joint fails, the flow through the joint would overwhelm the transport of ions

through the central portion of the slab. In fact, the transport coefficients could be as great

as, or greater than, those of the soil. Therefore, upon failure of the joint, 4SIGHT assumes

that the roof fails to impede the flow of water into the vault, the transport properties of

the concrete should be approximated by the transport properties of soil, and the calculation

ceases.

8 Chemical Equilibrium

After each time step, each computational element is brought to chemical equilibrium by

satisfying two conditions:

1. If a salt exists as solid, the constituent ion concentration product equals the solubility

product.

2. The sum of the free charges from all available ions equals zero, insuring local charge

neutrality.

Given the salt ApCa ,
composed of anion Aa ~ and cation C/3+

,
condition 1 above implies

that if ApCa exists as a solid then

= K>P (23)

where K3p is the ion solubility product. Condition 2 implies that with m anions and n

cations present in the pore solution:

ra n

= £/?cf' (24)

«=i j=i

19

4SIGHT satisfies eqns. 23 and 24 using an iterative process. Each iteration is composed

of two steps:

1. Determine how many moles of salt should be precipitated or dissolved to satisfy eqn. 23.

2. Given K3p for water, what concentration of hydroxyl ions
(
0H ~

)
is needed to satisfy

eqn. 24

These two steps are repeated, as necessary, until both equations are satisfied.

9 Failure Criteria

Once the rules for propagating ions through the slab have been defined, criteria for terminat-

ing the calculations are needed for each degradation mechanism. Termination occurs when
suitable failure criteria have been met.

9.1 Reinforcement Corrosion

Corrosion of the rebar is due to the presence of chloride ions and proceeds in two stages:

initiation and corrosion. The initiation stage is the time during which chloride ions are

diffusing through the concrete. During this time there is an insufficient concentration of

chloride ions at the rebar for corrosion to occur. As the concentration of chloride ions at the

rebar increases, the pH decreases to insure charge neutrality. When a sufficient concentration

of chloride ions reaches the rebar, corrosion begins. The corrosion stage begins at the onset

of corrosion and lasts until failure of the steel reinforcement, which is typically only a few

years hence. Since the initiation stage may last for hundreds of years, the duration of the

corrosion stage is insignificant to the total lifetime of the reinforcement. Therefore, an

accurate estimate of the service life of the concrete can be approximated from the duration

of the initiation period.

9.2 Sulfate Attack

As the sulfate front proceeds into the concrete, the effective thickness of the concrete de-

creases. At some point in time the roof has an insufficient thickness to support its load. At

this time, structural failure of the roof will occur. This critical depth of sulfate penetra-

tion can only be determined through detailed structural analysis. Therefore, it is the user’s

responsibility to provide this information.

20

9.3 Joint Failure

The failure criteria for joints is based upon the service life of the joint compound. Since joint

widths will be centimeters wide, as previously stated, upon joint failure the permeability of

the roof slab will be overwhelmed by the flow through the joints. Therefore, the calculations

terminate upon when the internal time variable has reached the limit of the joint service life.

10 Calculated Material Properties

All of the concrete physical parameters
(
e.g ., diffusivity, permeability, etc.) are user specified

inputs to 4SIGHT. However, in cases where not all properties are available, missing quantities

must be approximated using existing correlations. The physical properties must be estab-

lished due to both hydration and leaching. The physical properties due to hydration are the

initial conditions. However, as the porosity changes due to leaching, corrected values of the

physical parameters are needed.

10.1 Hydration

The hydration of cement can be approximated by a reaction between tri-calcium silicate

(C3S) and water, forming a calcium silicate hydrate (CSH). A more elaborate model incor-

porating multiple mineral phases would require chemical analysis of the cement and yield

relatively little additional information concerning degree of hydration. The weight ratio of

water to cement, —
,

is the oft reported quantity to characterize the concrete mix. After

some period of hydration, the fraction of the initial C3S which has hydrated is the degree

of hydration, a. The relation between these two properties and porosity can be determined

stoichiometrically [7],

1 + 1.31a

1 + 3.2-
C

(25)

and is valid for ^ values used in practice.

The diffusivity can be related to either j or <j>. After the first 100 days of hydration the

transport properties of most cement pastes are near their asymptotic values. Although the

values are still changing after 100 days, these changes are small compared to the accuracy

with which these transport measurements can be made. Due to this apparent steady state,

an empirical relation between Do, the chloride diffusivity in m 2
/s, and f was developed for

cement paste by Atkinson, Nickerson, and Valentine[8] and Walton, Plansky, and Smith[9]

w
log 10 D0 = 6.0 9.84

c
(26)

for values of j in the range (0.2-0. 6).

21

D0 for cement paste can also be related to
(f>
using the universal relation for the formation

factor due to hydration, d, [10]:

d = = 0.001 + .07(f)
2 + 1.8 {(f)

- A8) 2
H{(f) - .18) (27)

Dci-

where D0 is the concrete chloride diffusivity, Dj is the free ion diffusivity of chloride ions,

and H(x) is the Heaviside function. The quantity 7) is a constant for all ions.

The above equations relate the diffusivity of cement paste to water:cement ratio or poros-

ity. A relationship is now needed between cement paste diffusivity and concrete diffusivity.

Experimental results of Luping and Nilssonfll] for cement paste and mortar suggest that

their diffusivities are approximately equal. Additionally, results from numerical experiments

by Garboczi, Schwartz, and Bentz[12] investigating the effects of aggregate-paste interfacial

zone diffusivity upon bulk diffusivity suggest that concrete diffusivity is approximately equal

to the paste diffusivity.

Given the permeability can be approximated from the data in Hearn, et al. [13]

:

k = lO
5 '0^ x lO

-21 m 2
(28)

for j in the range (0.35,0.80).

10.2 Leaching

Once D and k have been established, changes due to leaching can be calculated from d((f)0),

where
(f)Q is the initial porosity due to hydration. As the Ca(OH) 2 is leached, the porosity

increases. Let the value of porosity after leaching be
(f>'

,

and the diffusivity be D'

.

Unfor-

tunately, the ratio D' /D? is not simply d{<f)') because as calcium hydroxide is leached from

the paste the ratio D' /D* does not retrace eqn. 27. Rather, the ratio D' /D* is greater than

d((f)'), as demonstrated by the NIST microstructural model.

The NIST cement microstructural model[14] was used to determine the relation for D' /D0

upon leaching. Results for a -^=0.35 paste are shown in Figure 2. The formation factor

decreases with decreasing porosity due to hydration, denoted by circles. Upon leaching of

the calcium hydroxide, the formation factor follows the curve denoted by squares. Given the

following definitions:

do = d(<f>0)
d' = d{<ff) (29)

An empirical relation was developed to relate the leached pore structure to the undamaged

pore structure.

£ = tfo + 2.0(0' - do) (30)

and is shown by the solid curve in Figure 2. Therefore, the ratio of the leached value of

diffusivity, D '
,
to the initial value D0 is

K = 1
D0 'do

22

0.04

0 - HYDRATION
- LEACHING

0.03 -

P 0.02 -

0.01 -

0.05 0.1 0.15 0.2 0.25 0.3

Figure 2: Formation factor, D/D *
,
due to hydration (circles) and to leaching (squares) for

w/c=0.35 (after [14]). The solid line represents the approximation used by 4SIGHT for the

leaching formation factor.

The relative change in permeability can be calculated using £. The Katz-Thompson

equation relates permeability to d [15]:

d2

k = -±d
226

(32)

where dc is the diameter of the largest sphere which can pass through the pore space of the

sample. Also, given that dc oc d [16], the relative change in permeability becomes

kQ l
(33)

The final dimensionless advection-diffusion equation is a combination of eqns. 14, 31, and

33:

S= v
-l

vp+
(!)

vd ' Vc
- (34)

There is one such equation for chemical species i.

11 Program Outline

The flow of the program is summarized by the pseudo-code program shown in Figure 3. The

program naturally divides itself into three parts: initialization, ion propagation, and final

state output.

23

Figure 3: 4SIGHT flow chart.

24

12 Assumptions

The calculations of 4SIGHT are based upon a set of assumptions. For completeness, these

are assumptions are enumerated here:

*v

1. The vault system is, and remains, water saturated. This should be valid for all but the

most arid locations.

2. Darcy flow is valid, even at the bottom of the slab which might not be in direct contact

with liquid.

3. There is sufficient oxygen present for corrosion. This a conservative approach to cor-

rosion.

4. The concrete vault begins service approximately 100 days after casting. Therefore, the

transport properties have reached about 90% of their assymptotic values.

5. The external ion concentration and hydraulic head are constant over the life of the

vault.

6. As the sulfate front advances, the concrete in its wake can be treated like soil and the

external conditions can be advanced to this point.

13 Acknowledgements

The authors wish to acknowledge the financial support of the U.S. Nuclear Regulatory Com-

mission (NRC). Mr. Jacob Philip was the NRC Program Manager and his advice was greatly

appreciated. The authors would also like to express their thanks to Dr. James Pommersheim

of Bucknell University and Mr. Dale Bentz of NIST for their discussion and comments.

25

References

[1] J.R. Clifton, and L.I. Knab, “Service Life of Concrete,” NISTIR 89-4086, U.S. Depart-

ment of Commerce, (1989).

[2] J.M. Pommersheim, and J.R. Clifton, “Models of Transport Processes in Concrete,”

NISTIR 4405 ,
U.S. Department of Commerce, (1990).

[3] R.B. Bird, W.E. Stewart, and E.N. Lightfoot, Transport Phenomenon
,
John Wiley Sz

Sons, New York, (1960).

[4] J.C. Slattery, Mass Transport, McGraw-Hill Book Company, New York, (1972).

[5] A. Atkinson, and J.A. Hearne, “Mechanistic Models For The Durability Of Concrete

Barriers Exposed To Sulfate-Bearing Groundwaters,” MRS Proc ., 176 ,
149-156, (1990).

[6] H.F.W. Taylor, Cement Chemistry
,
Academic Press, New York, (1990).

[7] Young and Hansen, “Volume Relationships for C-S-H Formation Based on Hydration

Stoichiometries,” Proc. MRS, Eds. Struble and Brown, 85, 313-322, (1987).

[8] A. Atkinson, A.K. Nickerson, and T.M. Valentine, “The Mechanism of Leaching From

Some Cement-Based Nuclear Wasteforms,” Radioactive Waste Management and the

Nuclear Fuel Cycle, 4 (4), 357-378, (1984).

[9] J. Walton, L. Plansky, and R. Smith, “Models for Estimation of Service Life of Con-

crete Barriers in Low-Level Radioactive Waste Disposal,” NUREG/CR-5542, EGG-
2597, (1990).

[10] E.J. Garboczi and D.P. Bentz, “Computer simulation of the diffusivity of cement-based

materials,” J. Materials Science, 27
,
2083-2092, (1992).

[11] T. Luping, and L. Nilsson, “Rapid Determination of the Chloride Diffusivity in Concrete

by Applying an Electric Field,” ACI Materials Journal

,

89 (1), 49-53, (1992).

[12] E.J. Garboczi, L.M. Schwartz, and D.P. Bentz, “Modelling the influence of the interfacial

zone on the D.C. electrical conductivity of mortar,” (Submitted to) Journal of the

ACBM.

[13] N. Hearn, R.D. Hooton, and R.H. Mills, “Pore Structure and Permeability,” Significance

of Tests and Properties of Concrete and Concrete-Making Materials, Eds. Klieger and

Lamond, ASTM, 240-262, (1994).

26

[14] D.P. Bentz and E.J. Garboczi, “Guide to Using HYDRA3D: A Three-Dimensional

Digital-Image-Based Cement Microstructural Model,” NIST-IR 4746, U.S. Department

of Commerce, (1992).

[15] A.J. Katz, and A.H. Thompson, “Quantitative Prediction of Permeability in Porous

Rock,” Phys. Rev. B, 34 (11), 8179-8181, (1986).

[16] S. Li, and D.M. Roy, “Investigation Of Relations Between Porosity, Pore Structure,

and Cl" Diffusivity Of Fly Ash and Blended Cement Pastes,” Cement and Concrete

Research, 16 (5), 749, (1986).

[17] T. Mason and D. Brown, Lex & Yacc, O’Reilly Sz Associates, Inc., Sebastopol, CA,

(1991).

27

Appendix A

A Input Parsing

The input parsing was accomplished using public domain versions of LEX and YACC written

for the PC. These tools simplify parsing user input, facilitating modification and extensions

in program capabilities. The user unfamiliar with LEX and YACC should read the book by

Mason and Brown listed in the references. To obtain a copy of the public domain version,

access the following directory through anonymous ftp:

machine: omnigate.clarkson.edu

directory: pub/msdos/djgpp

LEX and YACC are programs that take as input user specifications for a particular syntax

and create a C file which performs the functions specified in the user LEX and YACC files.

The resulting C file is then simply #include-ed into the main C program. Of course, the

user can code the parsing directly in C, but LEX and YACC make the coding less errorsome

and more extensible.

A.l

A.l LEX Specification

•/.{

#include "4sight_t .h"

•/.>

integer [0-9] +

dreal ([0-9]+"." [0-9]*) |
([0-9]*" [0-9]+)

ereal ({dreal} I {integer}) [eE] [+-] ? [0-9]

+

real {dreal} I
{ereal}

diff [Dd] [Ii] [Ff] [Ff]

perm [Pp] [Ee] [Rr] [Mm]

wc [Ww] [Cc]

thick [Tt] [Hh] [Ii] [Cc] [Kk] [Nn] [Ee] [Ss] [Ss]

neuax [Nn] [Aa] [Xx] [Ii] [Ss]

youngs [Yy] [Oo] [Uu] [Nn] [Gg] [Ss]

beta [Bb] [Ee] [Tt] [Aa]

ce [Cc] [Ee]

rough [Rr] [Oo] [Uu] [Gg] [Hh] [Nn] [Ee] [Ss] [Ss]

gamma [Gg] [Aa] [Mm] [Mm] [Aa]

poisson [Pp] [0o] [Ii] [Ss] [Ss] [Oo] [Nn]

extrn [Ee] [Xx] [Tt] [Ee] [Rr] [Nn] [Aa] [LI]

intrn [Ii] [Nn] [Tt] [Ee] [Rr] [Nn] [Aa] [LI]

time [Tt] [Ii] [Mm] [Ee]

depth [Dd] [Ee] [Pp] [Tt] [Hh]

rebar [Rr] [Ee] [Bb] [Aa] [Rr]

output [Oo] [Uu] [Tt] [Pp] [Uu] [Tt]

head [Hh] [Ee] [Aa] [Dd]

crack [Cc] [Rr] [Aa] [Cc] [Kk]

j oint [Jj] [0o] [Ii] [Nn] [Tt]

at [Aa] [Tt]

until [Uu] [Nn] [Tt] [Ii] [LI]

assign ii _ ii

|

ii . ii

wspace [\t] +

kill (([Qq] ([Uu] [Ii] [Tt]) ?) | ([Ee] ([Xx] [Ii] [Tt]) ?))

nl \n

•///.

{wspace}

OH { return HYDROXIDE;}

Cl { return CHLORINE;}

S04 { return SULFATE;}

A.

2

C03 { return CARBONATE;}

H { return HYDROGEN;}

Ca { return CALCIUM;}

Na { return SODIUM;}

K { return POTASSIUM;}

{diff} { return DIFF;}

{perm} { return PERM;}

{wc} { return WC;}

{thick} { return THICKNESS;}

{neuax} { return NEUAX;}

{youngs} { return YOUNGS;}

{beta} { return BETA;}

{ce} { return Ce;}

{rough} { return ROUGHNESS;}

{gamma} { return GAMMA;}

{poisson} { return POISSON;}

{extrn} { return EXTRN ;

}

{intrn} { return INTRN;}

{time} { return TIME;}

{depth} { return DEPTH;}

{rebar} { return REBAR;}

{output} { return OUTPUT;}

{head} { return HEAD;}

{crack} { return CRACK;}

{joint} { return JOINT;}

{at} { return AT;}

{until} { return UNTIL;}

{integer} { sscanf (yytext , '"/.Id" , &yylval . int32) ;

return INT32;}

{real} { sscanf (yytext , "'/.If" ,
&yylval . real) ;

return REAL;}

{assign} { return EQUALS;}

{nl} { return NEWLINE;}

{kill} { return KILL;}

• { return yytext[0];}

XX

A.

3

& 1 %

A.2 YACC Specification

U
int yylex(void)

;

void yyerror(char *) ;

void yyerror(s)

char *s;

{

/* fprintf (stderr , "'/,s \t see line '/.d\n"
,
s , input_f ile.line) ;

*/

>

void syntax_error (char *)

;

void syntax_error (char *s)

fprintf (stderr
, "'/,s \t see line '/.d\n" ,

s
, input _file_line) ;

>

’/.}

'/.union {

double

long

int

>

'/.token <real> REAL

'/.token <int32> INT32

'/.token KILL

'/.token EQUALS

'/.token NEWLINE

'/.token DIFF

'/.token PERM

'/.token WC

'/.token THICKNESS

'/.token NEUAX

'/.token YOUNGS

'/.token BETA

'/.token Ce

'/.token ROUGHNESS

‘/.token GAMMA

real; /* real value */

int32; /* DoubleWord Integer */

int 16; /* SingleWord Integer */

A.

4

’/.token POISSON

•/.token EXTRN

•/.token INTRN

•/.token HYDROGEN

•/.token CALCIUM

•/.token SODIUM

‘/.token POTASSIUM

•/.token HYDROXIDE

‘/.token CHLORINE

•/.token SULFATE

‘/.token CARBONATE

•/.token TIME

‘/.token DEPTH

'/.token REBAR

‘/.token OUTPUT

'/.token HEAD

'/.token CRACK

‘/.token JOINT

'/.token AT

‘/.token UNTIL

'/.type <real> expr

V.type <intl6> anion

'/.type <int!6> cation

•/.left • + >

'/.left '*» >/>

/./.

lines

:

/* NOTHING */

lines line

line: NEWLINE {input_f ile_line++ ;

}

I terminate { printf("'/,d lines parsed . \n" , input _file_line)

return 0;}

I assign

I recvr NEWLINE

A.

5

terminate

recvr

:

expr

:

assign

:

KILL {printf ("Received KILL.\n");}

error { syntax.error ("Syntax error");}

recvr error

recvr EQUALS expr { syntax_error ("Unknown Command");}

INT32 {$$ = (real) $1 ;

}

REAL {$$ = $1;}

DIFF EQUALS expr {

PERM EQUALS expr {

WC EQUALS expr {

THICKNESS EQUALS expr {

NEUAX EQUALS expr {

YOUNGS EQUALS expr {

BETA EQUALS expr {

Ce EQUALS expr {

ROUGHNESS EQUALS expr {

GAMMA EQUALS expr {

POISSON EQUALS expr {

EXTRN cation EQUALS expr

EXTRN anion EQUALS expr

INTRN cation EQUALS expr

Dinfty. value = $3;

Dinfty . is.default = FALSE;}

kinfty. value = $3;

kinfty . is_default = FALSE;}

wc. value = $3;

wc . is.def ault = FALSE;}

thickness .value = $3;

thickness . is_default = FALSE;

sample.length = thickness . value ;

}

neutral_axis_depth . value = $3;

neutral_axis_depth . is_def ault=FALSE;

}

Youngs. value = $3*1.0E+09;

Youngs . is_default = FALSE;}

beta. value = $3;

beta. is_def ault = FALSE;}

CE. value = $3;

CE . is_def ault = FALSE;}

roughness .value = $3;

roughness . is_default = FALSE;}

gamma. value = $3;

gamma. is .default = FALSE;}

nu. value = $3;

nu . is.def ault = FALSE;}

{ cation [$2] . c [0] = $4;}

{ anion [$2] .c[0] = $4;}

{ cation [$2] . c [1] = $4;}

A.

6

DEPTH EQUALS expr

REBAR EQUALS expr

OUTPUT cation anion

OUTPUT cation

OUTPUT anion

HEAD EQUALS expr

I INTRN anion EQUALS expr { anion[$2] .c[l] = $4;}

I TIME EQUALS expr { terminat ion.type = TIME.LIMIT;

if (MaxDay . is_default==TRUE)

MaxDay. value = $3;

else

MaxDay. value = MIN (MaxDay .value ,$3)

;

MaxDay . is_default = FALSE;}

{ termination_type = STRUCT_LIMIT;

MaxDepth = $3;}

{ rebar_depth=$3

;

terminat ion_type = STRUCT_LIMIT;

}

{ sol_array [$2] [$3] .output_flag=TRUE;}

{ cat ion [$2] . output _flag = TRUE;}

{ anion [$2] .output_flag = TRUE;}

{ head. value = $3;

head . is_def ault = FALSE;}

CRACK EQUALS expr AT expr DEPTH expr

{ crack.width. value = $3;

crack.width. is_default = FALSE;

crack_spacing = $5;

crack_depth = $7;}

JOINT EQUALS expr AT expr UNTIL expr

{ joint.width = $3;

j oint_spacing = $5;

joint_lifetime = $7*365;

if (MaxDay . is_default == TRUE)

MaxDay. value = j oint_lifetime

;

else

MaxDay. value = MIN(MaxDay. value, j oint_lifetime)

;

MaxDay . is_def ault = FALSE;

joint_is_specif ied = TRUE;}

JOINT PERM EQUALS expr { j oint.permeability = $4;}

cation: HYDROGEN

I CALCIUM

I SODIUM

I POTASSIUM

{ $$

{ $$

{ $$

{ $$

H;}

Ca;}

Na;}

K;}

A.

7

anion: HYDROXIDE { $$ = OH;}

1 CHLORINE { $$ = Cl;}

I SULFATE { $$ = S04 ;

}

I CARBONATE { $$ = C03 ;

}

A.

8

B CWEB - Source Code

The source code (except for the parsing described above) was written using the literate

programming tool CWEB written by Donald Knuth and Silvio Levy. The CWEB tool is composed

of two programs: cweave and ctangle. The user writes a CWEB file using.any ASCII editor.

This file contains both the C code and the documentation, ctangle takes this input file

and extracts the C code. Similarly, cweave takes the input file and creates a T^Xfile which

can be Tj^X-ed, creating a formatted version of the complete documentation, including the

source code. Therefore, to use these tools, the user must have both CWEB and T^Xfor the

PC. Fortunately, both of these tools are public domain, and can be accessed by anonymous

ftp:

TeX machine: ftp . nj it . edu

directory: pub/msdos/emtex

CWEB machine: labrea. Stanford. edu

directory: pub/cweb

The only modification made to CWEB for the development of 4SIGHT was the extension

to LTgX. To use the extensions of LTgXwith CWEB, one only needs a LTgXstyle sheet. This

too is available by anonymous ftp:

machine: ftp.th-darmstadt.de

directory: pub/programming/literate-programming/c . C++

The pages that follow are verbatim output from cweave, via LTgX:

B.l

B.2

LLW 4SIGHT Analysis

(Version 1.0)

5 JUN 1995

Contents

1. INTRODUCTION 3

2. MAIN 4

14. User defined data structures 7

18. Global variables 9

22. Interrupt handlers 10

27. INITIALIZATION 12

31. Initialize solubility array 13

39. Initialize parameters 15

53. ADVECTION-DIFFUSION 23

54. Ion transport 24

56. Chemical equilibrium 25

61. Advance sulfate front 28

63. Chloride penetration 29

65. Update Pressures 30

68. Adjust physical parameters 32

69. Proper time 33

73. OUTPUT 34

1. INTRODUCTION B.3

1. INTRODUCTION.

The 4SIGHT computer program has been developed by the Inorganic Group of the Building Mate-

rials Division at NIST. This program facilitates estimating the service life of low level nuclear waste

storage sites by determining the hydraulic conductivity of the vault roof as a function of time. This

objective is acheived by considering prominent deterioration mechanisms to predict the intrinsic

permeability, effluent, and working thickness of the vault slab.

The condition of the vault slab is assesssed by modelling the ingress of deleterious ion species

by both diffusion and convective flow due to hydraulic pressure gradients. Additionally, changes in

physical properties due to the leaching/deposition of salts are incorporated into the program. The
propagation of ions are calculated using an advection-diffusion equation. After each discrete time

step, each computational cell is brought to chemical equilibrium through precipitation/dissolution

of ionic salts.

The program incorporates a one-dimensional model of the vault since the critical deterioration

will most likely occur at the ceiling of the vault. The ceiling is the most likely element to experience

moisture, stress, and external ions such as Cl~ and SO4 . Addtionally, the majority of the transport

will occur at the center of the roof slab since the edges of the slab will be supported. Therefore, a

simple one-dimension model of the flow at the center of the slab will give a conservative estimate of

the transport for the entire slab.

The program proceeds in a strainghtforward manner; The program gets input parameters from

the user; initializes the ion information and scaling parameters; iterates diffusion and convection

calculations, bringing each computational element to chemical equilibrium between iterations; de-

termines whether failure has occured; and prints pertenent information about the performance of

the vault.

The output of the program can be printed to either the screen or to an ASCII file. The ASCII

file can then be used as input to a spreadsheet program for further analysis.

'

2. MAIN BA

2. MAIN.

The body of 4SIGHT is fairly straightforward and the logical flow can be inferred from the outline

below.

#define banner "\"\tThisu isu4SIGHTu (Versionu l . 0)\"\n\n"
#define NUM.CELLS 20

define NUM.SURFACES (NUM.CELLS + 1)

#define DLIMIT 0.0005

(Include files 3);

(Preprocessor definitions li);

(User defined data types 14);

(Global variables 4);

(Function declarations 23);

(Interrupt handlers 24);

(Input parsing routine 13);

int main(int argc, char **argv)

{

int i, j, k;

(System setup 5);

(
Parse input 6);

(Parameter initialization 7);

(
Print header 75);

(Print intermediate results 76);

do {

if
(
kbhit

()) {

i = getch
();

control-break
();

}

(Ion transport 8);

(Adjust parameters 9);

(Print intermediate results 76);

(Assess termination 10);

} while (->termination)-,

(Print termination information 77);

(Print desired output 78);

return 1;

}

3. The following are #include files needed for some of the intrinsic functions such as pnntf and

scanf

.

The math functions pow and log and the math error routine matherr require math.h.

Additional include files are declared when needed. The routine kbhit() requires the header file

conio.h.

(Include files 3
)
=

^include <stdio.h>

#include <math.h>

^include <conio.h>

^include <bios.h>

^include <time.h>

See also sections 22, 28, and 32.

This code is used in section 2.

2. MAIN B.5

4. (
Global variables 4)

=
long elapsed-time

;

See also sections 12, 19, 20, 21, 29, 31, 40, 63, and 69.

This code is used in section 2.

5.

System Setup.

#define CTRL_BRK_0N 1

#define GET.TIME 0

(System setup 5)
=

print/ (banner)]

elapsedJime = &iositme(GET_TIME,

0

l); /* get BIOS timer value */

(Determine STDIN 30);

i = se/c6r£(CTRL_BRK_0N); /* check ctrl-brk every system call */

ctrlbrk (control-break);

signal(SIGFPE, div.O);

initialize-ion.data
();

This code is used in section 2.

6.

Parse Input.

(
Parse input 6)

=
i = yyparse

();

This code is used in section 2.

7.

Parameter Initialization.

(Parameter initialization 7
)
=

initialize-parameters
();

update-pressures
();

aci-guidlines
();

chemicaLequilibrium(FALSE);

cheTnical-equilibrium(EALSE);

chemical-equilibrium (FALSE);

(
Print initial system state 74);

This code is used in section 2.

8.

Ion Transport.

(Ion transport 8)
=

ion-diffusion ();

chemicaLequihbnum(TRUE);

advancesulfaie-front
();

This code is used in section 2.

9.

Adjust Parameters.

(Adjust parameters 9
)
=

(Advance global clock 70);

(Adjust physical parameters 68);

update-pressures
();

(Update the porosities 67);

This code is used in section 2.

2. MAIN B.610.

Assess Termination.

(Assess termination 10
)
=

(Assess chloride penetration 64);

(Assess simulation termination 72);

(Check time dependencies 7i);

This code is used in section 2.

11.

The following are useful macro definitions which save a lot of typing.

(Preprocessor definitions ll
)
=

#define SQR(a) ((a) * (a))

#define CUB(a) ((a) * (a) * (a))

#define MAX(a,6) ((a > 6) ? a : b)

#define HIN(a,6) ((a < b) ? a : b)

See also section 46.

This code is used in section 2.

12.

Declare yyparse which is written in YACC and LEX. The function yyparse takes no arguments

and simply parses the input, assigning values to global variables. The routine does not “return”

until the entire input stream has been parsed.

(Global variables 4
) -f=

int input.fileJine = 1; /* line number of input file (lex/yacc) */

13.

(Input parsing routine 13
)
=

int yj/parse(void);

^include "yyparse. c"

This code is used in section 2.

14.

USER DEFINED DATA STRUCTURES B.7

14. User defined data structures.

These are constructed datatypes used by 4SIGHT. Two fundamental types are real and boolean.

Using real lets the programmer easily change between float and double data types for real numbers.

The boolean types are defined {FALSE, TRUE} because Borland assigns the first entry the number
0. Variables defined as boolean can be used in a conditional statement as i{(myboolvar

)
without

direct comparison to FALSE or TRUE.

(User defined data types 14
)
=

typedef double real;

typedef enum {

FALSE, TRUE

} boolean;

See also sections 15, 16, and 17.

This code is used in section 2.

15. The ION data type contains all important information about a single ion. This information

includes:

c[j: concentration at each computational cell surface.

tj: the ratio Dji/

D

0 for each ion.

Dj: free ion diffusivity.

valence : the valence of the ion.

output-flag

:

a flag to denote whether the final ion concentration, as a function of distance, is printed

in system. out.

name []: the ASCII name of the ion.

(User defined data types 14) +=
typedef struct {

real c[NUM_SURFACES]; /* concentration at each surface */

real moles [NUM_SURFACES]; /* moles ion in solution */

real 77 ; /* Dfi/Do */

real Dj\ /* ion free diffusivity */

real valence
;

/* ion valence */

boolean output-flag
; /* print to system. out? */

char name [5]; /* ASCII name of ion */

} ION;

16. The SOLARRAY data type contains the solubility products and stiochiometric ratios for each

anion-cation combination. The salt is CmAn ,
where C represents the cation, and A the anion. The

quantity of solid is defined on the cell surfaces.

(User defined data types 14) +=
typedef struct {

real s[NUM_SURFACESj; /* moles solid salt in element */

real ksp; /* salt solubility constant */

real m; /* stiochiometric cation factor */

real n; /* stiochiometric anion factor */

real molar-density
;

/* cm2/mole */

boolean output.flaq: /* print salt to system. out? */

} SOLARRAY;

14. USER DEFINED DATA STRUCTURES B.8

17. The MATERIAL datatype is used for any material property that can be specified by the user.

It carries a flag to denote whether the value is the default one, or the one specified by the user.

(User defined data types 14
)
+=

typedef struct {

real value
;

boolean is.default
;

} MATERIAL;

18.

GLOBAL VARIABLES B.9

18. Global variables.

Most of these are variables that will be changed by the input file. The listing is broken into major

groups: material parameters, scaling parameters, etc.
19.

Transport parameters. These are the parameters defined at each element that determine the

rate of transport. These include the inverse formation factor £, pressure 't, and the porosity </>.

(Global variables 4
)
+=

real £[NUM_CELLS]; /* changing formation factor */

real £'[NUM_SURFACES]; /* changing formation factor at the surface */

real ^[NUH.SURFACES]; /* Pressure */

real </>
n (NUM_CELLS]; /* current porosity */

real </>

,n [NUM_SURFACES]; /* porosity at the surface */

real (/>
/n-1 [NUM_SURFACES]; /* previous porosity at concentration */

real /ilre[NUM_SURFACES]; /* litres of solution (surface area)*/

real strength [NUM_SURFACES]; /* strength in psi */

int FIRST_CELL = 0; /* first active cell number */

20.

User specified parameters. These parameters determine the ultimate properties of the sample.

Although default values are given, user specified values will override these values.

(Global variables 4)
+=

MATERIAL thickness = {1.0, TRUE}; /* roof thickness */

MATERIAL neutral-axis.depth = {0.75, TRUE}; /* depth of neutral axis */

MATERIAL k^ = {2.5- 10
- 18 ,TRUE}; /* ultimate permeability */

MATERIAL Doo = {5.7 10
- 12 ,TRUE}; /* ultimate diffusivity */

MATERIAL head = {5.0, TRUE}; /* external pressure head */

MATERIAL wc = {0.45, TRUE}; /* water:cement */

MATERIAL Youngs = {20.0 • 10+ 09
, TRUE}; /* Young’s modulus */

MATERIAL /3 = {1.8- 10 -O 6 ,TRUE}; /* linear strain coefficient */

MATERIAL CE = {350., TRUE}; /* cone, sulfate as ettringite */

MATERIAL roughness = {1.0, TRUE}; /* roughness factor */

MATERIAL 7 = {10.0, TRUE}; /* fracture surface energy */

MATERIAL u = {0.2, TRUE}; /* Poisson ration */

21.

Scaling parameters.

(Global variables 4
)
+=

real L = 0.010; /* length of ELEMENTS so that AX = 1 */

real D0 = 1.0 • 10
— 1

1

;
/* scaling diffusivity */

real k0 = 1.0 • 10
-18

;
/* scaling permeability */

real AT =1.0; /* dimensionless time increment */

real AA[NUM_SURFACES]; /* dimensionless length between each cell */

22. INTERRUPT HANDLERS B.10

22. Interrupt handlers.

The following routines handle ctrl-brk and math exceptions. The routine ctrlbrk requires dos.h.

The routine signal requires signal. h.

(Include files 3) +=
^include <dos.h>

^include <signal.h>

23. (Function declarations 23) =
int control-break (\oid);

int matherr(struct exception *);

void div-0(\oid);

See also sections 33, 39, 43, 51, 54, 56, 59, 60, 61, and 65.

This code is used in section 2.

24.

control-break handles interruptions due to the use striking CTRL-BRK during execution.

(Interrupt handlers 24)
=

int control-break (void) {

int i, j, k
;

pnntf("\n\n\tUSERuCTRL-BRK! .\n\n M
); (Print desired output 78)

return 0; }

See also sections 25 and 26.

This code is used in section 2.

25.

The routine matherr handles exceptions from the math coprocessor.

(Interrupt handlers 24)
+=

int matherr (struct exception *e)

{

pnnf/("\n\n");

print/("\tmatherr : u ");

switch (e-type) {

case DOMAIN: print/("DOMAIN");

break;

case SING: print/("SINGULARITY");

break;

case OVERFLOW: print/("0VERFL0W");

break;

case UNDERFLOW: print/("UNDERFLOW");

break;

case TLOSS: print/("TL0SS");

break;

default: print/ ("UNKN0WNuERR0RuTYPE ! ");

break;

}

pnntf("\n");

pnntf(‘'\n\n\t");

print/("function: \t'/,s ('/,If ,*/,If)\n", e-name
,
e-aryf

,
e-ary2);

pnntf("\n");

erit(O);

}

22. INTERRUPT HANDLERS B.ll

26. The routine div.O handles possible divide by zero errors.

(Interrupt handlers 24
)
+=

void </iv_0(void)

{

int i, j, k]

pnn//("\n\n\tPossibleudivide ubyuO ! \n\n");

(Print desired output 78)

exii(1);

}

27.

INITIALIZATION B.12

27. INITIALIZATION.

28. Redirection of sidin. Allow the user to either use redirection at the command line or to specify

the input file directly. If an input file is given at the command line without redirection (<), re-define

sidin to come from the input file. The ^include files (fcntl .h and sys/stat .h) are for the routine

dup2(), and errno.h is required for the global variable errno.

define STDIN 0

(Include files 3
) +=

#include <fcntl.h>

^include <sys/stat.h>

#include <errno.h>

29.

If redirection is not used, set input-file-handle to the file specified at the command line.

(Global variables 4
)
+=

int input-file-handle
;

/* file containing input parameters */

30.

If an input file was given without redirection, use dup2
()

to copy the input file handle number

to the existing sidin file handle.

(Determine STDIN 30
)
=

if (
argc > 1) { /* redirect from input file */

fprintf(stderr
,
"Calculating. . .");

if ((input-file-handle = open (argv [1], 0_RD0NLY)) = —1) {

switch (errno) {

case ENOENT: fprintf (stderr ,
"Nousuchuf ile: uy,s\n", ar<7r[l]);

break;

case EMFILE: fprintf (stderr ,
"Tooumanyuopenuf iles . \n");

break

;

case EACCES: fprintf (stderr ,
"Permissionudenied.\n");

break;

case EINVACC: fprintf (stderr ,
"Invaliduaccessucode. \n");

break

;

default: fprintf (stderr ,
"Error

: uUnknownuerrorijCode . \n");

break

;

}

exit(0);

}

dup2 (input-file-handle
,
STDIN);

}

else /* interactive mode */

pn7d/("Enterucommands : \n");

This code is used in section 5.

31

.

INITIALIZE SOLUBILITY ARRAY B.13

31. Initialize solubility array.

soLarray is vital to determining the chemical equilibrium of each element. This procedure also

initializes the two ION arrays: anion and cation

(Global variables 4
)
+=

int num.cations;

int num.anions
\

SOLARRAY **sol.array,

ION *cation
;

ION *anion
;

32.

The routine malloc() requires stdlib.h.

(Include files 3
) -f=

#include <stdlib.h>

33.

(Function declarations 23) +=
void initiahze.ion.data (void);

34.

Initializing ion and salt array. The data for the ions and salts is in the file ion.db. Must first

determine the number of anions and cations, including OH~ and H+
,
and then allocate memory

for anion, cation, and soLarray.

void initializeJon-data(
)

{

int i, j, k\

FILE *ion.database; /* ion and salt data base */

if ((ion-database = fopen(" ion.db", "rt")) = A) {

print/("\n\tERROR
: uuUnableutouopenuion . db ! \n\n");

eri/(0);

}

/scan/ (ion.database

,

"’/.du'/.d", Sznum.cations ,
hnum.anions)-,

(Allocate ion and salt arrays 35

)

(Input ion data 36)

(Input salt data 37)

fclose(ion.database);

(Zero-out ion and salt data 38)

}

35.

Allocate memory for all of the arrays. The total number of cations/anions includes OH and

H+.

(Allocate ion and salt arrays 35)
=

anion = (ION *) maUoc(num.anions * sizeof(ION));

cation = (ION *) malloc(num.cations * sizeof(ION)); /* allocate 2-D array */

soLarray = (SOLARRAY **) malloc(num-cations * sizeof(SOLARRAY *));

for (i = 0; i < num.cations', i++) {

sol array[i] = (SOLARRAY *) malloc(num.amons * sizeof(SOLARRAY));

}

This code is used in section 34.

31 . INITIALIZE SOL UBILITY ARRAY B.1436.

Read in the ion data from ion-database
,
cations first, anions second.

(Input ion data 36) =
for (i = 0; i < num.cahons; i++) {

fscanf (ion-database
,

cation[i].name);

fscanf (ion.database
,
"'/,lf ", &ication[i\. valence);

fscanf (ion-database
,
"'/,le", &ccation[i].Dj);

cation[i]. output-flag = FALSE;

}

for
(j = 0; j < num.anions

; j++) {

fscanf (ion-database ,
anion[j].name);

fscanf (ion-database
,

If anion [j]. valence);

fscanf (ion-database ,
"*/,le", k.anion \j].Dj);

anion\j], output-flag = FALSE;

}

This code is used in section 34.

37.

Read salt data in cation major order.

(Input salt data 37) =
for (i = 0; i < num-cations; i++)

for
(j = 0 ; j < num.anions; j++) {

fscanf (ion.database ,
"'/.le", &soLarray[i][j].ksp);

fscanf(ion.database ,
", &tsol.array [i][j].m);

fscanf (ion.database ,
"'/.If ", &csol.array[i][j].n);

fscanf(ion.database ,
"'/.If", &soLarray[i]\j].molar-density);

sol-array [i](j]. output-flag = FALSE;

}

This code is used in section 34.

38.

Initialize the ion and salt data to zeros.

(Zero-out ion and salt data 38)
=

for (Ar = 0; k < NUM.SURFACES; k++) {

for (i = 0; i < num.cations; i++) {

cation[i\.c[k\ = 0.0;

cation[i].moles[k\ = 0.0;

for (j = 0; j < num.anions; j++) {

anion[j].c[k] = 0.0;

anion[j].moles[k] = 0.0;

S0/_array[t][j].s[fc] = 0.0;

}

}

}

This code is used in section 34.

39. INITIALIZE PARAMETERS B.15

39. Initialize parameters.

The scale and physical parameters must be set

ion initialization routines.

^define OH 0

#define Cl 1

^define S04 2

#define C03 3

define H 0

define Ca 1

define Na 2

#define K 3

#define TIHE.LIMIT 0

define STRUCT.LIMIT 1

#define PRINTOUTS 20.0

(Function declarations 23) +=
void initialize-parameters

();

based upon the information from the parsing and

40. (Global variables 4
)
+=

real sample-length = 1.0; /* length of sample in meters */

real sulfate-failure.year\

real chlonde-failure-year\

real /c[NUM_CELLS]; /* perm, coefficient due to cracking */

real sulfate-rate
;

/* dimensionless rate */

real sulfate-raie-ms\ /* m/sec */

real sulfate-depth = 0.0; /* depth of sulfate penetration */

real chloride-depth = 0.0; /* depth of chloride penetration */

real rebar-depth = 1.0;

boolean termination = FALSE; /* simulation termination */

int termination-type = TIME.LIMIT; /* limiting condition for termination */

MATERIAL MaxDay = {10000.0, TRUE}; /* time limit (day) */

real MaxDepth = 100.0; /* penetration depth limit (m) */

MATERIAL crack.width = {0.000100, TRUE};

real crackspacing = 100.0;

real crack-depth = 0.0;

real crack-permeability;

real joint-width = 0.0;

real joint-spacing = 100.0;

real joint-lifetime = 20000.0;

boolean joint-change-flag = FALSE;

boolean joint-isspecified = FALSE;

real joint-permeability = 0.0;

real Pout\ /* dimensionless ext. pressure */

real dP\ /* dimensionless rho g h pressure */

real u[NUM_CELLS]; /* Darcy velocity */

real /i = 0.001; /* pore fluid viscosity */

real g — 9.8; /* gravitational constant(m/sec/sec) */

real p = 1000; /* density of pore fluid (kg/m3
) */

real ks\ /* bulk permeability */

real Db\ /* bulk diffusivity */

39. INITIALIZE PARAMETERS B.16

real
<f>
= 0.16; /* porosity */

real F; /* formation factor */

real a; /* degree of hydration */

real /; /* initial solids fraction */

real Vsample; /* volume of element */
real pch = 33.1; /* density of CH */

real molesCH = 13.0; /* moles CH/ltr soln. */

real i?o = 0.00281; /* initial 1/F */

real r9; /* current 1/F */

real prini.day; /* next day to print interm, results */

real prini.day-interval] /* days between interm, results */

real earliesi.failure.day
;

/* earliest structural failure */

41. initialize.parameters(). This routine initializes the scaling parameters and physical parame-

ters.

void initialize.parameters
(

)

{
.

int i, j, k m

,

int n, m;

int iter
;

real moles.cation
,
moles.anion

,
charge

,
x, dx

,
z, critical.Cl.concentration

,
T.cnt,

concen.raiio
,
darcy.velocity

,
perm.time, chloride.time, perm.}actor

,

/* modify DT to account for high permeability */

perm-depth
, ^4, crack-factor

;
/* modify DT to account for cracks */

for (fc = FIRST_CELL; k < NUH.SURFACES; jb++)

AX[k] = 1.0;

(
Establish material parameters of concrete 42

)

aci.211
();

(Propagate ion concentration in concrete 45

)

(Print parameters to stdout 47)

(Initialize ion ‘eta’ parameter 48)

L = sample-length

/

NUM_CELLS; /* the universal length scale */

MaxDepth = MaxDepih /L; /* dimensionless */

(Calculate crack and joint adjustment to permeability 49)

critical.Cl.concentration = 0.000400* Vsample * (1.0 — </>)* 2.5/35.4;

if (anion [C/].c[FIRST_CELL] > critical.Cl.concentration) {

/* calculate T for [Cl_crit]/[Cl(x=0)] = erfc(X/2 sqrt(DT)) */

concen.raiio = inv.erfc(critical.Cl.concentration / anion [C/].c[0]);

T.crit = SQR((rebar.depth / L)/(2.0 * concen.raiio))-,

chlonde.failure.year = 3.171 • 10~ 08
* T.crit * SQR(L)/D0 \

if (head .value > 0.0) { /* correct diffusion estimate to include darcy penetration */

darcy.velociiy = (k0/p) * (p * g * head .value)/sample-length;

A = 1.0/ (4.0 * D0 * SQR(concen.raiio));

perm.depih = rebar.depth + 1.0/ (2.0 * A * darcy.velociiy) — sqrt(rebar.depth /(A *

darcy.velociiy) + 1.0/ (4.0 * SQR(T * darcy.velociiy)));

perm.time = perm.depih / darcy.velociiy;

chloride.failure.year = 3.171 • 10
-08

* perm.time;

}

}

else chlonde.failure.year = 1.0- 10+1 °;

39. INITIALIZE PARAMETERS B.17

print/("\"Chlorideulailure LJ (yr)\"\t\t u
,

/,8 . 011\n", chloride-failure-year)-,

perm-factor = MAX(£ o /3.0 • 10~ 18
, 1.0) * MAX(Aearf .value / 10., 1.0);

if (crack.widih .value = 0.0) {

crack-factor = 1.0;

}

else {

if (
sample-length — crack-depth > 0.05 * sample-length)

crack-factor = sample-length /{sample-length — crack-depth);

else crack-factor = 10.0;

}

AT = 1.0/(64.0* perm.factor * crack-factor * amon[Cl].r] * i?o)i

sulfate-rate-ms = Youngs .value * SQB.(P. value) * anion [S04].c[FIRST_CELL] * CE. value *

D0 /(roughness .value * 7. value * (1 — v. value))', /* m/sec */

sulfate-rate = sulfate-rate.ms * (
L/

D

a)\ /* AX/AT */

if
(
sulfate-rate > 0.0) sulfate-failure-year = 3.171 • 10

-08
* (MaxDepth * L)/sulfate-rate-ms

;

else sulfate.failure-year = 1.0- 10+1 °;

print/ Sul

f

ate uf ailureu (yr)\"\t\t u'/,8 . Olf \n", sulfate.failure-year)-,

/* calculate number of days until termination */

earliest-failure-day = 365. * MIH (sulfate-failure-year
,
chloride-failure-year)-,

/* determine intervals between print outs */

print-day-interval = Yll}l(earliest-failure-day
,
MaxDay .value)/PRINT_OUTS;

print-day = print-day-interval
;

Pout =
(
k0/(p * D0)) * p * g * head .value-,

dP = (k0/(p * D0)) * p * g * (sample-length /YIUH-CELLS)-, /* change per cell */

for (it = 0; k < NUM.SURFACES; it++) {m = do;

<p'
n
[k] = <j>-,

<t>

,n ~ l
[k\ = <J)\

= Pout * (real) (NUM.SURFACES - k - 1)/(NUM_SURFACES - 1);

}

(Initial estimate of pH 50

)

}

42. The material parameters of the concrete must be determined based upon the information given

by the user. Missing pieces of information must be calculated from established relationships. The .

is-default portion of the material data determines whether the user specified the value.

(
Establish material parameters of concrete 42)

=

if (Doo.is-default / TRUE) { /* calculate porosity */

if (wc .is-default = TRUE) wc. value = (logl0(\0000. * Doo.value) + 9.84)/6.0;

if (iboo .is-default = TRUE)

/* kinfty.value = 1.0E-18*(0.8904+.002525*exp(15.07*wc. value)); */

koo. value = pow(10.0, (5.0 * wc. value — 21.0));

}

if (koo-is-default / TRUE) {

if (Doo. is-default = TRUE) {

Doo.value = 1.0 • IO
-04

* pou>(10.0, 6.0 * wc. value — 9.84);

if (wc.is-default = TRUE) wc. value = (logl0(10000. * Doo.value) -f 9.84)/6.0;

}

}

if (wc.is-default / TRUE) { /* calculate diffusivity and porosity */

39. INITIALIZE PARAMETERS B.18

if {Doo.is.default — TRUE) .value = 1.0 • 10
04

* pou;(10.0, 6.0 * wc. value — 9.84);

if (k^-is-defaull = TRUE)

/* kinfty. value = 1.0E-18*(0.8904+.002525*exp(15.07*wc. value)); */

koo- value = pou;(10.0, (5.0 * wc. value — 21.0));

}

i?o = Doq. value / amon[Cl].Dj\

if (d 0 < DLIMIT) d 0 = DLIMIT + 0.0001;

if (d 0 < DLIMIT + 0.07 * SQR(.18))
<t>
= sqrl((d0 - DLIMIT)/. 07);

else <p = .17326 + sqrt(.03002 - (.05832 + DLIMIT - i? 0)/1.87);

a = (3.2 * wc. value)/ 1.36 — <f> * (1 + 3.2 * wc. value)/ 1.36;

/ = 1 .0/ (1 + 3.2 * wc. value)]

Vsample = 1000.0/</>;

molesCH = a * (0.61) * f * Vsample /pen',

F = 1.0/do;

D0 — Doq. value;

ko = koo. value;

/dre[0] = 0.001 * Vsample * <p;

for (k = 1; k < NUM.SURFACES; jfc++) {

soLarray [Ca] [OH], s[£] = molesCH;
litre[k\ = 0.001 * Vsample * <p;

}

for (k = 0; k < NUM_CELLS; k++) {

£[*] = ^o;

<P
n
[k) = <P\

}

This code is used in section 41.

43 . The routine aci.211 estimates the strength, in psi, of the concrete in the individual com-

putational elements. The estimate is based upon Table 5.3.4(a) of ACI 211.1-81 for air-entrained

concrete. The strength can be adjusted to account for changes in porosity using:

pst'ft] = psi0

ln(<T[*1)

In(phi0)

{
Function declarations 23)

+=
void aci.211 (void);

44 . void aci-211{)

{
m

int i;

real xp;

xp = pow (exp (wc. value — 3.575), —2.6817);

for (t = 0; i < NUM.SURFACES; *++) sirength[i) = tp;

)

45 . The function yyparse sets the concentration in the concrete by putting the user-specified value

into the . c[l] cell. The internal concentration is established by copying this value into the remaining

cells. However, this procedure is not performed for OH and H.

39. INITIALIZE PARAMETERS B.19

(Propagate ion concentration in concrete 45
)
=

for (* = 1; i < num.cations] i++)
{

cation [i].mo/es[0] = cation [*].c[0] * /itre[0];

cation [i].mo/es[l] = cation\i\.c[1] * litre[\]\

for (k = 2; k < NUM.SURFACES; k++) {

cation[i].c[k\ = cation [i].c[l];

cation[i\.moles[k
]
= cation [z].c[fc] * litre[k]\

}

}

for (j = 1; j < num.anions
; j++) {

anion[j].moles[0] = anion [j].c[0] * /itre[0];

anion[j].moles[1] = anion [;].c[l] * /*"<re [1];

for (k = 2; k < NUH.SURFACES; k++) {

anion [j].c[fc] = anion [/].c[l];

anion[j].moles[k

]

= anion[j].c[k] * litre[k\]

}

}

This code is used in section 41.

46. Report material parameters to stdoui

.

(Preprocessor definitions 11
)
+=

#define GET_STAT(a) ((a.is.default = TRUE) ? "DEFAULT" : "USER")

47. (Print parameters to stdoui 47) =
prini/("\"THICKNESSu\"\tu '/.8 . 51f\t\" (m) uuuuuu\"\t\"'/,s\"\n", sampleJcngth

,

GET_STAT(thickness))]

print/(»\"DIFFUUUUUu\"\tu7.8.11e\t\"(in-2/sec)\"\t\"
,/.s\"\n",D CJ ,GET_STAT(Doo));

pnntf {"\"PERMuuuuuu\"\tu
,/.8.11e\t\"(m/sec) uu\"\t\"

,

/,s\"\n",9.8 • 10+o6 * k0 ,

GET_STAT(&oo));

print/("\"WCUUUuuUUu\"\tu
,

/*8 . 51f\t\"uuuuuuuuu\"\t\"
,

/,s\"\n", wc. value
,
GET_STAT(u>c));

print/("\"HEADLJUUUUL|\"\tu
,

/,8 . 51f\t\" (m) uuuuuu\"\t\"y,s\"\n", head .value
,
GET_STAT(/iead));

print/("SnliateuAttackuParameters : \n");

print/ ("V'Y0UNGSuuuu\"\tu
,/.8.11e\t\"(N/m‘2) uu\"\t\"

,

/.s\"\n"
)
Youngs .value

,

GET_STAT(Youngs))]

prin//("\"BETA UULJLj LjU\"\tu '/,8. lle\t\"uuuuuuuuu\"\t\"*/,s\"\n", /?.va/ue
,
GET_STAT(/?));

print/("\"CEuuuuuuuu\"\tu '/.8 . 51f\t\" (Mol/m*3)\"\t\"*/,s\"\n", CE. value
,
GET_STAT(CE));

print/("\"R0UGHNESSu\"\tu '/,8 . 51f\t\"uuuuuuuuu\"\t\"'/,s\"\n", roughness .value
,

GET_STkT(roughness));

pnnt/("\"GAMMAuuuuu\"\tu '/,8 . 511\t\" (J/m~2) uu\"\tV7.s\"\n", y. value ,
GET_STAT(t));

prin</("\ "P0ISS0Nuuu\"\tu '/,8. 51f\t\"uuuuuuuuu\"\t\"'/,s\"\n", v. value, GET_STAT(i/));

pnnt/l"\n");

if (MaxDepth < sample-length
)

pnnt/("\"DEPTHULILJUU\"\tu
,

/.8 . 51f\t\" (m) uuuuuu\"\t\"
,

/.s\"\n"
,
MaxDepth

,
"USER");

if
(
rebar.depth < sample-length)

print/("\"REBARUUUUu\"\tu'/.8 . 51f\t\" (m) UUUUuuV7tV7.s\"\n" ,
rebar.depth

,
"USER");

print/ ("\"TIMEuuuuljLj\"\tu
,

/,8 . Olf\t\" (day) uuuu\"\t\"'/,s\"\n", MaxDay .value
,

GET_STkT(MaxDay));

if (crack-width .is.de/ault = TRUE A neutraLaxis.depth .is.de/ault = TRUE) {

crack-depth = 0.25 * sample-length]

39. INITIALIZE PARAMETERS B.20

crackspacing = 2.0;

}

if
(
neutraLaxis.depih.is.de/ault = FALSE)

crack-depth = sample-length — neuiraLaxis-depih .value
;

if (crack-width. value >0.0) prz7i//(,, \"CRACKu=u
,
/.8.511uATu

,/.8.511uDEPTHu
,

/.8.51f\ M\nH
,

crack-width .value
,
crack-spacing

,
crack-depth);

if
(
joint-permeability > 0) {

pnntf("\" J0INTuPERMu=u'/,8 . lle\"\n"
,
joint-permeability)-,

pnntf("\" J0INT='/,8 . 51fuATu*/,8 . 51e uUNTILu ’/.8 . 511\"\n M
,
joint-width, joint-spacing

,

joint-lifetime /365);

}

This code is used in section 41.

48. Once the parameter D0 has been established, the value of ij for each ion must be initialized.

(Initialize ion ‘eta’ parameter 48) =
for (i = 0; i < num.cations; z++) cation[i].rj = cation[i\.Dj /

D

0 \

for (j = 0; j < num.anions\ j++) anion [j]. tj = anion [j].Dj /

D

0 \

This code is used in section 41.

49. The presence of cracks is reflected in k which a multiplicative adjustment for permeability.

In the absence of cracks «[i]=l. The quantities crack.width and crackspacing are specified by the

user.

The equation for the permeability of cracks of width w spaced a distance a apart is

(Calculate crack and joint adjustment to permeability 49) =
crack-permeability = (SQR(crack-width .value

) / 12);

x = 0; /* x starts from inside surface */

dx = sample-length /NUM_CELLS;

for (k = NUH.CELLS - 1; k > 0; k—
) {

x += dx\

if (x < crack-depth) {

k[&] = k0 * (1. — (joint-width /joint-spacing) — (crack.width .value / crackspacing))]

/* weighted length */

k[&] += joint-permeability * (joint-width /joint-spacing)-,

-f= crack-permeability * (crack.width .value / crackspacing)]

}

else {

if (x — dx < crack-depth) { /* crack ends in this cell*/

n[k] = k0 * (1. — (joint-width /joint-spacing) — (crack.width. value / crackspacing))]

/* weighted length */

/c[Ar] += joint-permeability * (joint-width /joint-spacing)]

k[&] = (x — crack-depth) / n[k]\

k[&] += (dx — (x — crack-depth)) /(crack-permeability * (crack.width. value / crackspacing))

k[&] /= dx\

k[&] = 1.0/#c[Ar]

;

}

else {

'

'

39. INITIALIZE PARAMETERS B.21

K,[k] = k0 * (
1 . — (joint-width /joint-spacing));

k [£] +— joint-permeability * (joint-width /joint-spacing);

}

}

K[k] = K[k]/k0 ;

}

This code is used in section 41.

50. Need to make an initial estimate of the equilibrium concentrations and the pH of each cell.

(Initial estimate of pH 50)
=

/* make a rough guess for concentrations in cases of solids present */

for (k = 0; k < NUM.SURFACES; k++) {

for (i = 0; i < num-cations; i++) {

for (j = 0 ; j < num-anions; j++) {

if (so/_arraj/[i][j]..s[&] > 0.0) {

m = sol-array[i][j].m;

n = soLarray [i)[j).n;

if (m = 0 V n = 0) {

if (m = 0) pnntf("m=Ou\rx");

if (n = 0) pnntf("n=Ou\n");

pnnt/("\n\tProblemuwithu*/,s*/,s\n" ,
cation[i\.name

,
anion [j].name);

exit(0);

}

moles-cahon = pow (soLarray [i]\j]. ksp

,

1 ./(m 4- n)) * pow (anion [j], valence / caiion[i\. valence
,
n/(n + m));

moles.anion = moles-cation * (cation[i\. valence / anion[j). valence);

cation[i\.c[k\ = moles.cation;

anion[j].c[k] = moles.anion;

cation[i].moles[k] = cation[i].c[k] * htre[k\;

anion[j].moles[k] = anion [i].c[fc] * litre[k];

}

}

}

} /* calculated [OH] and [H] concentrations */

for (k = 0; k < NUM_SURFACES; k++) {

charge = 0.0;

for (j = 1; j < num.amons; ji++) charge += anion[j]. valence * anion\j\.c[k\;

for (i =1; i < num.cations; i++) charge —= cation[i\. valence * cation[i\.c[k\;

anion [OH] . c[fc] = 0.5 * (
— charge + sqri(SQK(charge) + 4.0 * soLarray [//][0H].£sp));

cation[H].c[k] = soLarray [//][OH].A:sp/am 0n [OH] .c[Ar]

;

anion [OH]. moles[k] = anion [OH] .c[Ar] * htre[k\;

cation[H].moles[k] = caiion[H].c[k] * litre[k\;

}

This code is used in section 41.

51. Inverse complementary error function. Find x given C such that C = erfc(x).

(Function declarations 23) +=
real inv.erfc(real);

39. INITIALIZE PARAMETERS B.22

52. Use lookup table from data in Table 7.1 from Abramowitz and Stegun, Handbook of Math-

ematical Functions. Get bounds on y data and linear interpolate x data. The variable frac is the

fraction of the gap between neighboring y values. Note: additions to the table require changes to

the main routine to reflect the new dimension of the arrays,

real tnv.erfc{real C)

{

real x, frac
,
x.iable[

)
= {0.00,0.10,0.20,0.30,0.40,0.50,0.60,0.70,0.80,0.90, 1.00, 1.20, 1.40,

1.60, 1.80, 2.00}, y.lable[] - {1.00, .888, .777, .671, .572, .480, .396, .322, .258, .203, .157,

.090, .048, .024, .011, .005};

int t;

i = 16;

while (t > 0 A y.iable [

—

i] < C)
;

/* find bounds */

if (x < 15) {

frac = (
y.iable[i

]
— C)/(y.table[i\ — y.iable[i + 1]);

x = x.iable[i] + frac *
(
x.table[i + 1]

— x.table[i})\

}

else x = x_fa6/e[15]; /* if C > 2.0 simply use last x value */

return x;

}

53. ADVECTION-DIFFUSION B.23

53. ADVECTION-DIFFUSION.

Ion Transport
At the core of 4SIGHT is the advection-diffusion equation to account for both diffusion of ions

and Darcy flow of the pore solution due to hydrostatic head. The flux of ions due to both gradients

in the ion concentration and to a volume average flow of pore solution is

j = —DVc -f- cu

where j is the ion flux, D is the diffusivity, c is the ion concentration, and u is the volume-averaged

velocity of the pore solution. The time dependent change in concentration is the negative divergence

of the flux:
dc— = V DVc — u • Vc — cV • u
dt

Given a hydrostatic pressure head on a vertical column of porous media, the pore volume-averaged

flow V£> is

vD = (Vp - pg)

For the hydrostatic heads considered here, the body force term, pg is non-negligible. This equation

can be cast into the more familiar form, assuming a constant density pore fluid, using a modified

pressure potential:

^ = p - pgz

This gives the more familiar Darcy equation

\D =
F

The volume-averaged velocity u can be related to the Darcy flow velocity:

VD =

where <p is the porosity.

Finally, the above equations can be combined to give

c)c h Ic— = V DVc + — Vip • Vc + cV — Vip
dt <pp <pp

This equation gives the spatial and temporal behavior of the concentrations. To complete the

calculations a means is needed to update the hydrostatic pressure potential, ip.

Continuity Equation
The temporal behavior of ip is calculated using the continuity equation:

dp

dt
= —V p\

where v is the intrinsic velocity of the pore solution. After averaging over the microstructure, the

continuity equation becomes
d<P _
a

= -Vvo

This can be related back to pressure using the Darcy equation once again:

-Vip

54. ION TRANSPORT B.24

54. Ion transport.

(Function declarations 23
)
+=

void ion-diffusion (void);

55. ion-diffusion.

void ion-diffusion ()

{

int *, j, k\

real cation-flux [10][mm_S\JRFkCES], anion.flux [10][NUM_SURFACES], upper-limit = 5.0 • 10+o\
lower-limit = 5.0 • 10+o3

,
max-flux-ratio\

real tmp.cation [10][NUM_SURFACES], tmp.amon [10][NUM_SURFACES];

AX[FIRST_CELL] = (real) (FIRST.CELL + 1) - sulfate-depth
;

max-flux.ratio = 0.0;

for (i = 0; i < num-cations\ i++) {

for (

k

= FIRST.CELL + 1; k < NUM.SURFACES - 1; k++) {

cation-flux [z][fc] = cation[i].r] * (£[&] * (cation [i].c[fc + 1]
— cation [i].c[£])/AX[fc] — f[k — 1] *

(
cation [i].c[^] — cation[i].c[k — 1])/AX[/: — 1])/ (0.5 * (AX[£] + AX[fc — 1]));

cation-flux [i\[k] —= (1 ./<f>
,n

[k]) * * ((cation[i].c[k + 1]
— cation[i].c[k — l])/(A>Y[fc] +

AX[t-l]));
if (

cation [i].c[Ar] > 0.0)

max-flux-ratio — MkX(max-flux-ratio
,
AT * cation-flux [i][k\/ cation[i\.c[k])\

}

}

for
(

j

= 0; j < num.amons
; j++) {

for (k = FIRST.CELL + 1; k < NUM.SURFACES - 1; k++) {

anion.flux [j][k] = anion
[
j\.i) * (£[&] * (

anion[j\.c[k + 1]
— anion[j].c[k])/AX[k] — £[k — 1] *

(anion [j].c[fc] — anion[j].c[k — l])/A.Y[fc — 1])/ (0.5 * (AX[fc] + AX[1: — 1]));

anion-flux [_/]
[A:] —= (1 ,/(f)'

n
[k]) * t>[&] * ((anion [ji].c[fc + 1]

— anion [?‘].c[fc — 1])/(A.Y[&] +
AX[i-l]))i

if (anion [i].c[fc] > 0.0)

max-flux-raiio = Vlhl(max-flux-ratio
,
AT * anion-flux [j][k\/ anion[j].c[k])\

}

}

if (max-flux-raiio > upper-limit) AT *= upper-limit / max-flux.ratio;

if
(
max-flux-raiio < lower-limit

)
AT *= upper-limit / max-flux-raiio

\

for (k = FIRST.CELL + 1; k < NUM_SURFACES - 1; k++) {

for (i = 0; i < num-cations
;
i++) cation[i].c[k\ += AT * cation-flux [i][k]\

for (j = 0; j < num.anions\ j++) anion[j].c[k] -f= AT * anion-flux [j][k]\

}

k = NUM.SURFACES - 1;

for (i = 0; i < num-caiions\ i++) cation[i].c[k) = cation[i].c[k — 1];

for (j = 0; j < num-anions\ j++) anion[j].c[k] = anion[j].c[k — 1];

for (i = 0; i < num.caiions\ i++)

for (k = FIRST.CELL; k < NUM.SURFACES; k++)

cation[i].moles[k] = cation[i\.c[k\ * htre[k] * AY[ij;

for (j
~

0 ; j < num-anions
; j++)

for (k = FIRST.CELL + 1; k < NUM.SURFACES; k++)

anion[j].moles[k] = anion[j].c[k\ * litre[k] * AY[fc];

56.

CHEMICAL EQUILIBRIUM B.25

56. Chemical equilibrium.

Given the number density of ions in a computational element, determine if any of the ions should

go in to/out of solution. Determine the pH and adjust H and OH, accordingly.

(Function declarations 23
)
+=

void chemical-equilibrium (boolean);

57.

Minimizing function. This is the function to minimize for the chemical-equilibrium routine.

The objective of chemical-equilibrium is to determine how many moles of salt should be leached/precipitated.

Therefore, minfunc must adjust for the pore volume.

The equation minfunc is minimizing the square of

[c+™]"V + ^]
n —

*., = <>

where x is moles salt, m and n are stoichiometric ratios, and V is the pore solution volume,

real min/u7ic(real, int, int, int);

real minfunc(real x,int i,int j,int k)

{

real C, A;

int m, n;

m = soLarray[i][j].m\

n = soLarray[i][j].n\

C = cation[i].c[k]-,

A = anion [j].c[k]-,

return SQR(potr(C + m* x/(litre[k\ * AA'[fc]),m) * pow(A + n * x/(litre[k\ * AA'ffc]),

n) — sol-array [i][j].ksp)\

}

58.

chemicaLequilibnum(). Cycle through sol.array and determine if any ions should go in to/out

of solution based upon the concentration, the solubility constant, and the presence of solid salt.

#defineTOL 1.0 • 10~ O6

void chemical-equilibrium (boolean Change-Porosity)

{
>

int i, j, k, n, m, iterations
;

real w.max
, <5;

real xa, xb, xc, fa, fb, fc, moles, tmp\

real dsolid
;

real A litre; /* change in pore volume */

real old-cOH\

real charge
,
temp-,

boolean NEG_FLAG;

for (k = FIRST_CELL + 1; k < NUH.SURFACES; k++) {

iterations = 0;

do {

W-max = 0.0;

for (j = 0; j < num-amons
; j++) {

for (i = 0; i < num-cations-, i++) {

if (~i(i = 0 A j = 0)) {

56. CHEMICAL EQUILIBRIUM B.26

n = so/_arraj/[z][j].n;

m = soLarray[i][j].m
;

temp = pow(cation [i].c[fc], (double) m) * pow(anion [jr] .c[Ar]
,

(double) n);

if ((so/_arrap[z][/].s[&] > 0.0) V (temp > soLarray[i][j].ksp)) {

xa = — MIN(c<rfton[t].c[fc], anion[j].c[fc])/10.0;

xb = —xa

;

xc = 0.0;

mnbrak(Lxa
,
k.xb

,
kxc

,
&:/a

, k.fb , hfc ,
mnifunc, i,j

,
fc);

/mp = brent (xa,xb,xc,minfunc,TQL,&.moles,i,j,k);

if (fabs(moles) > 0.05)

mo/es *= 0.10; /* no drastic changes */

if (so/_array[z][/].s[fc] — moles < 0.0)

moles = so/_array [*][;] .s[fc]; /* insufficient salt */

if
(
cation[i\.moles[k

]

+ m * moles < 0.0)

moles = — cation[i].moles[k]/m + 0.000001;

if (anion [j].mo/es[fc] + n* moles < 0.0)

moles = — anion [j].moles[k]/n + 0.000001;

A litre = 0.001 * moles * sol.array[i][j].molar.density /AX[k];

if (litre[k] + A litre < 0.0) {

A litre = — litre[k]; /* insufficient pore space */

moles = Alitre * AX[&] * 1000.0/ sol.array[i\[j].molar.density;

}

cation[i\.moles[k

}

-f= m* moles

;

anion\j].moles[k

]

+= n* moles;

if (Change.Porosity = TRUE) {

htre[k] +— Alitre
;

sol.array [z] [/] ,s[k] —= moles
;

}

6 = fabs(moles);

w.max = MAX(<5, w.max);

)

}

}

} /* readjust the concentrations */

4>'
n
[k] = 1000.0 * hire [A:] * AX [k\/ Vsample;

litre[k] = MAX(/zire[fc], 0.0001); /* avoid zero volume problems */

for (i = 0; i < num.caiions
;
i++)

cation[i].c[k] = caiion[i\.moles[k\/(litre[k] * AAr

[£]);

for
(

j

= 0; j < num.amons
; j++)

amon\j].c[k\ = amon[j].moles[k]/(litre[k\ * AX[£j);

/* Determine [OH] and [/^concentration */ /* store old value */

old.cOH = anion [OH]. c[Ar]

;

charge = 0.0;

for (j = 1; j < num.amons; j++) charge += anion [j], valence * anion[j].c[k\;

for (

i

= 1; i < num.caiions; i++) charge —= cation[i\. valence * cation[i].c[k\;

anzon[0H].c[/:] = 0.5 * (
— charge + sqri(SQR(charge) + 4.0 * sol.array[H][OR].ksp));

anion[OH].mo/es[fc] = anion [OH]. c[fc] * litre[k] * AX[&];

if (fabs((anion [OH] .c[Ar] — old.cOH)/old.cOH) > 1.00) {

w.max = 1.0;

anion [OH] . c[fc] = 0.5 * (anion [OH], c[fc] + old.cOH);

anion [OH]. moles[k] = anion [OHj.cffc] * litre[k] * AX[fc];

56. CHEMICAL EQUILIBRIUM B.27

}

cahon[H].c[k] = soLarray[H][QH].ksp / anion [OH].c[fc];

cation[H].moles[k
]
= cahon[H].c[k] * htre[k] * AX [A;];

} while ((w.max > 0.0001 V anion [OH].c[A:] < 0.0) A iterations ++ < 50);

} /* extrapolate <?!>

,n [FIRST_CELL] value */

<j)'
n [FIRST_CELL] = ^'"[FIRST.CELL + 1] - AX[FIRST_CELL] * (<£'

n [FIRST_CELL + 2]
-

</>
m [FIRST_CELL + 1]);

<£'
n [FIRST_CELL] = MAX(i'n [FIRST_CELL], 0.0); /* extrapolate <i>'

n [NUM.CELL] value */

<j>'
n [NUM_CELLS] = 2.0 * <?i

,n [NUM_CELLS - 1]
- <?i

/n [NUM_CELLS - 2];

/* extrapolate /dre[FIRST_CELL] value */

litre [FIRST_CELL] = 0.001 * Vsample * <£'
n [FIRST_CELL];

}

59. Minimization. The routine mnbrak brackets a minimum.

(Function declarations 23
)
+=

void mnbrak (real *,real *,real *,real *,real *,real *, real(*/unc)(real, int, int, int), int,

int, int);

^include "mnbrak. c"

60. Parabolic approximation. The routine brent uses parabolic approximation to determine the

minimum given three points bracketing the minimum.

(Function declarations 23
)
+=

real brent (real, real, real, real(*/unc)(real, int, int, int), real, real *, int, int, int);

^include "brent. c"

61. ADVANCE SULFATE FRONT B.28

61. Advance sulfate front.

(Function declarations 23
)
+=

void advance.sulfaie-front()\

62. void advancesulfate.front
(

)

{
.

int i, j, k, new.first.cell
;

sulfate-depth += sulfate.rate * AT;
if

(
sulfate-depth > (real) (FIRST.CELL + 1) V AX[FIRST_CELL] < 0.10) {

new-first-cel l = (int)
(
sulfate-depth +0.4); /* penetration beyond next cell */

/* copy info from old first cell into new first cell */

for
(
k = FIRST_CELL + 1; k < new.first.cel l

;
k++) {

for (i = 0; i < num.cations
;
i++) cation[i\.c[k] — cafion[f].c[FIRST_CELL];

for (j = 0; j < num. unions', j++) anion[j].c[k] = anion [j].c[FIRST_CELL];

for (i = 0; i < nuni-cations
;
i++)

for (j = 0; j < num.amons', j++) so/_arTa2/[i][ji].s[fc] = soLarray[i\ [j].s[FIRST_CELL];

}

^[new.first.cell] = ^[FIRST.CELL];

FIRST.CELL = new.first.cell
;

AA[FIRST_CELL] = (real) (FIRST.CELL+ 1) - sulfate.depth
;

}

}

63. CHLORIDE PENETRATION B.29

63. Chloride penetration.

The ratio of the mass of chloride ions to the mass of concrete equal to 0.0004 is the depth of chloride

penetration. The ration equals 10
_3

[C7~]Ac/<?V((l — </>)2.5). Aci{gm/mole) is the gram atomic

mass of chlorine,
<t> is porosity, and 2.5 is the density of concrete.

(
Global variables 4

)
+=

real CLralio [NUM.SURFACES];

64. (Assess chloride penetration 64) =
for (k = FIRST_CELL; k < NUM.SURFACES; k++)

CLratio[k] = 35.5 * anion[Cl].moles[k]/(2.b * (1.0 — </>

/n
[£]) * Vsample);

k - NUM.SURFACES - 1;

while (k > 0 A Cl.ratio[k] < 0.0004) k—

;

if
(
k < 0) chloride.depth = 0.0; /* k at lower limit */

else {

if
(
k = FIRST_CELL) { /* account for distance equals AX */

chlonde.depih = AX[FIRST_CELL] * (CLratio[k] — 0.0004)/(C7_raho[fc] — CLratio[k + 1]);

chlonde.depih += (real) FIRST_CELL;

}

else chlonde.depih = (real) k + (
Cl.ratio[k\ — 0.0004)/(C/_raho[A'] — Cl.raiio[k + 1])

;

}

This code is used in section 10.

65. UPDATE PRESSURES B.30

65. Update Pressures.

The pressures are updated using the continuity equation:

dp- = -V.„v

where v is the intrinisic pore fluid velocity and p is the pore fluid density. An equation for the bulk

material can be obtained from a volume average over a represetative volume V :

_
1
_

V L dt V Jv
V • p\ d3x

For these equations, assume p is a constant since water is virtually incompressible. Rearranging and

simplifying the above equation gives:

d_ l
dt V

-V U px d
3
x

Since p is zero outside the pore volume, if Vp represents only the pore volume then the above equation

simplifies to

d<i> <t> [,3

dt Vp Jv

which finally gives

d<b— = -V • 4>u = -V • xD
dt

where xp is the Darcy velocity. Substituting for the Darcy velocity gives

d(f) — k— zz V • -Vp
dt p

(
Function declarations 23)

+=
void updaie.pressures (void);

66. update.pressures

.

void update.pressures{)

{
_

int k, iteration
;

real perm [NUM_CELLS], imp [NUM.SURFACES], tol = 0.0005, e;

for (k = FIRST.CELL; k < NUM.CELLS; k++) perm[k] = «[Jfe] * CUB(£[Jfe]/tf 0);

[FIRST.CELL] = Pout + (NUM.CELLS - 1 + AA [FIRST.CELL]) * dP\

[NUM.SURFACES - 1] = 0;

iteration = 0;

do {

for {k = FIRST.CELL + 1; k < NUM.SURFACES - 1; Jb++) {

imp [A:] = perm [fc] * ^[k -f 1]/AA[&] 4- perm [fc — 1] * \t[A — 1]/AX[& — 1];

/* **** tmp[k] -= 0.5*(DX[k-l]+DX[k])*(PHIn[k]-PHIn[k-l])/DT; *** */

tmp[k
]
*= 1.0/(perm[A]/AX[A] 4- perm[k — l]/AX[fc — 1]);

}

e = 0.0;

for (k = FIRST.CELL + 1; k < NUM.SURFACES - 1; k-H-) {

if [A:] > 0.0) e = MAX(e,/a6s(^[/:] - tmp [A]) /$[/:]);

65. UPDATE PRESSURES B.31

'!'[/:] = tmp[k]\

}

} while (e > iol A iteration ++ < 1000);

for (k = 0; k < NUM_CELLS; k++)

f [fc] = - K [k] * CUB(^[jb]/i9o) * (VI>[k + 1]
- *[*])/AX[*];

67. Copy the new porosities into the n — 1 values.

(Update the porosities 67) =
for (Jfc = FIRST.CELL; k < NUM.SURFACES; k++) <£

m_1
[fc] = 4'n [k

]

;

This code is used in section 9.

68. ADJUST PHYSICA L PARAMETERS B.32

68. Adjust physical parameters.

Due to dissolution/precipitation.

(Adjust physical parameters 68) =
for

(
k = FIRST.CELL; k < NUM_CELLS; k++) {

</>"[£] = 0.5 * (<^
,n

[fc] + <t>'

n
[k + 1]); /* interpolate phi’ values */

i? = DLIMIT + 0.07 * SQR(d>
n

[/;]);

if (<j>
n
[k] > 0.180) d += 1.8 * SQR (<j>

n
[k) - .180);

if (<£"[&] > <f>) /* leaching */

£[*] = + 5.0 * (tf - tf 0);

else /* precipitation */

£[*] =

}

£'[FIRST_CELL] = £[FIRST_CELL] - (AX[FIRST_CELL]/(1.0 + AA[FIRST_CELL])) * (£[FIRST_CELL+
1] - £[FIRST_CELL]);

for (k = FIRST.CELL +1; k < NUM_SURFACES - 1; k++) = 0.5 * (£[k] + £[Jfe - 1]);

£'[NUM_SURFACES - 1] = 1.5 * £[NUM_CELLS - 1]
- 0.5 * £[NUM_CELLS - 2];

This code is used in section 9.

'

69.

PROPER TIME B.33

69. Proper time.

The clock time must be advanced

(Global variables 4
)
+=

real Time = 0; /* dimensionless cumulative time */

real Day = 0; /* cumulative time (day) */

70.

(Advance global clock 7o) =
Time += AT;
Day = Time * SQR(L)/(D0 * 86400);

This code is used in section 9.

71.

Check time dependent variables.

(Check time dependencies 71)
=

if (Day > joint-lifetime A joint.is.specified = TRUE) {

joint.change.flag = TRUE;

}

This code is used in section 10.

72.
(
Assess simulation termination 72

)

=
if (Day > MaxDay .value) termination = TRUE;

if (sulfate.depth > MaxDepth
)
termination — TRUE;

if ((chloride-depth * L) > rebar.depth) termination = TRUE;

This code is used in section 10.

73. OUTPUT B.34

73. OUTPUT.

The following are output routines.74.

Print the state of the system for the first 4 concentraction surfaces.

(Print initial system state 74
)
=

prmf/("\n\nInitialustateuof lJsystem: \n\n");

pn 7if/("\" uI0Nu\"\t\"EXTERNAL\"\t\" INTERNAL\" \n");

for (i = 0; i < num.caiions\ i++) {

if
(
cation [i].c[FIRST_CELL] ^ 0 V cation [i].c[FIRST_CELL + 1] ^ 0) {

pnntf ("\"'/,4s cation[i].name)\

for (k = FIRST.CELL; k < FIRST_CELL + 2; Jfc++) print/ ("7.8

.

51f\t", cation[i\.c[k])\

print/ ("\n");

}

}

for (j = 0; j < num.amons
; j++) {

if (anion [/].c[FIRST_CELL] ^ 0 V anion [j].c[FIRST_CELL + 1] ^ 0) {

prjnt/("\"'/,4s

:

anion[j].name)\

for (k = FIRST_CELL; k < FIRST_CELL -f 2; k++) print/ ("7.8

,

anion[j].c[k]);

print/ ("\n");

}

}

pnnf/("\"uupH:\"\t M
);

for (k = FIRST_CELL; k < FIRST_CELL 4- 2; k++) print/ ("7.8 .51i\t" , -loglO (cation[H].c[k}))\

pnnt/("\n");

print/ ("\n");

This code is used in section 7.

75.

Print header for permeability, sulfate penetration, and chloride penetration depths.

(
Print header 75)

=
pr2nf/("\"Day\"\t\"L\"\t\"Kuu\"\t\"DUUUu\"\t\"S04\"\t\"Cl\"\t\"Flux\"\tuu\"pH\"\n");

print/("\"uuu\"\t\"m\"\t\"m/s\"\t\"m
-
2/s\"\t\"muu\"\t\"mu\"\t\"ml/dy/m2\"\n");

print/ ("\n");

This code is used in section 2.

76.

Print intermediate results for permeability, sulfate and chloride penetration depths. The bulk

values of permeability and diffusivity must be calculated here.

(Print intermediate results 76) =
if (Day = 0.0 V Day > print-day

) {

print-day += pnnt-day-interval\

print/ ("7.ldu\t'/.6 . 31f ", (long) Day
,
(AX[FIRST_CELL] + NUM_CELLS - FIRST.CELL - 1) * L)\

kB = AX[FIRST_CELL] * CUB (i?o/£ [FIRST_CELL])

/

ac[FIRST_CELL]

;

Db = AX [FIRST.CELL] * (t? 0 /£[FIRST_CELL]);

for (k = FIRST.CELL + 1; k < NUM.CELLS; k++)
{

kB += cub(iV£[*])M*];
db += 0o/£[*];

}

kB = (AX[FIRST_CELL] + NUM.CELLS - FIRST.CELL - 1) * k0/kB \

73. OUTPUT B.35

Db = (AX[FIRST_CELL] + NUM.CELLS - FIRST.CELL - 1) * Dd/Db ;

print/ ("\t7,6

.

lie", 9.8 10
+O6

* kB);

pnntf ("\t7,6

.

lie"
,
DB);

print/ ("\t7,6

.

31f \t'/,6 . 31f ", sulfate.depth * L, chloride-depth * L);

print/ ("\t'/,6 . 31f "
,
1000.* 86.4 * t>[NUM_CELLS - 1] * D0 * Vsample /SQR(L));

print/("\t7,6. llf\n", -loglO (cation[H].c[lim SURFACES - 1]));

}

This code is used in section 2.

77. Print termination information to include the day of termination and the depth of chloride and

sulfate penetration.

(Print termination information 77) =
pnntf ("\n\n");

if (
Day > MaxDay .value A joint-change.flag = FALSE) prin//("ExceededuTIHEulimit . \n\n");

if (Day > MaxDay .value A joint.change.flag = TRUE)

pnn*/("ExceededuJOINTuLIFETIME . \n\nM
);

if (sulfate.depth > MaxDepth) print/("SuitateuFailure . \n\n");

if (chloride-depth *L> rebar.depth) prinf/("Chloride uFailure.\n\n");

pnn//("\"T\"\t'/,8 . 31f \n", Time);

pnntf ("\"Day\"\t'/,8 . Olf \n", Day);

pnn^/("\"S04u (m)\"\t'/,8 . 31f\n", sulfate.depth * L);

pnn</("\"Clu (m)\"\t
,

/,8 . 311\n"
,
chlonde.depth * L);

pnntf ("\n\n");

This code is used in section 2.

78. Print final system state for any desired ion or salt.

(Print desired output 78) =

pnntf (''FinaluSystemustate : \n\n");

pnntf ("\"L(m)\" u\t");

print/("\"PsiV'uYt");

prjnf/("\"vD\"u\t");

print/("\"xi\" u\t");

print/

(

"\"phi\"\t");

pri7if/("\"pH\"u\t");

print/ ("V'fc\"u\t");

for (i = 0; i < num.cations; i++)

if (cation[i\. output-flag = TRUE) pnntf ("\"'/,s\"u\t'\ cation[i\.name);

for (j = 0 ; j < num.anions; j++)

if (anion [j]. output-flag = TRUE) print/("\"7,s\"u\t" ,
anion[j].name);

for (i = 0; i < num.cations; i++)

for (j = 0; j < num.anions; j++)

if (sol-array [i][j]. output-flag = TRUE)

pnnf/("\"'/.s
,

/.s\" u\t", cation[i].name
,
anion\j].name);

pnntf ("\n");

for (k = 0; k < NUM.SURFACES; k++) {

print/ ("7,7 . 41i\t"
,
L * k);

print/("7,7 . 31f\t", ’fffc]);

if (k < NUM.CELLS) {

print/ ("7,6. 31iu\t",v[k]);

73. OUTPUT B.36

}

else {

pnn//(,7.6.31f Lj\t", v[NUM_CELLS - 1]);

}

print/ {"7,6

.

41fu\t", £'[£]);

print/ {"7,6 AliuW'

,

</>'"[£]);

print/ ("7,6.31fu\t", 14.0 + logl 0 {anion[0].c[k]))\

print/ {''7,6

.

01fu\t", strength[k] * {log {<j)'
n
[k])/ log {<j>)))\

for (z = 0; i < num.cations
;
z++)

if {cation[i\. output-flag = TRUE) pmz//("'/,6.41fu\t", ca/zozz [z'].c[fc]);

for {j = 0 ; j < num-anions
; j++)

if {anion [j], output-flag = TRUE) print/ {''7,6

.

41fu\t", anion\j].c[k]);

for (z = 0; z < num.cations
;
z++)

for (j = 0 ; j < num.amons
; j++)

if (so/_arrap[z][/].ou/pzzL/?a <7 = TRUE) pnnt/{"7,6 . 31fu\t", so/_arraj/[z][/].s[A:]);

print/{"\n");

}

elapsed-time = biostime {GET_TIKE, 0 l) — elapsed.time
;

pnzi</(M\"Elapsedutimeu (sec) : \"\t'/,6 . If \n", elapsed.time /CLK_TCK);

This code is used in sections 2, 24, and 26.

