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Climate change is leading to northward shifts in species

distributions that is altering interspecific interactions at low-

and mid-trophic levels. However, little attention has been

focused on the effects of redistributions of species on the

trophic ecology of a high trophic-level predator assemblage.

Here, during a 22-year period (1990–2012) of increasing sea

temperature (1.08C) and decreasing sea ice extent (12%) in

Cumberland Sound, Nunavut, Canada, we examined the

trophic structure of a near-apex predator assemblage before

(1990–2002) and after (2005–2012) an increase in the

availability of capelin—generally an indicator species in

colder marine environments for a warming climate. Stable

isotopes (d13C and d15N) were used in a Bayesian framework

to assess shifts in diet, niche size and community-wide

metrics for beluga whales (Delphinapterus leucas), ringed seals

(Pusa hispida), Greenland halibut (Reinhardtius hippoglossoides)

and anadromous Arctic char (Salvelinus alpinus). After 2005,

consumption of forage fish increased for all predator species,

suggesting diet flexibility with changing abiotic and biotic

conditions. An associated temporal shift from a trophically

diverse to a trophically redundant predator assemblage

occurred where predators now play similar trophic roles by

consuming prey primarily from the pelagic energy pathway.

Overall, these long-term ecological changes signify that

trophic shifts of a high trophic-level predator assemblage

associated with climate change have occurred in the Arctic

food web.
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1. Introduction

Biodiversity within marine ecosystems varies across environmental gradients, of which temperature is one

of the most important and can regulate functioning of marine ecosystems [1]. With lower productivity at

the poles when compared to lower latitudes, polar ecosystems are more consumer- than resource-controlled

[2]. This consumer control leads to lower food web complexity and decreased connectance [3]. However, a

warming climate is currently altering global ecosystem structure and driving species distributions to higher

latitudes, thereby leading to altered interspecific interactions with unspecified consequences [4,5]. Climate-

driven ecosystem shifts are pronounced in the Arctic—the fastest warming region on the planet [6].

Changes to Arctic sea temperature and sea ice phenology have facilitated a punctuated poleward shift

in the distribution of more temperate species including apex predators (e.g. killer whales Orcinus orca
[7]), near-apex predators (e.g. harp seals Pagophilus groenlandicus [8]), forage fish (e.g. capelin Mallotus
villosus [9]) and invertebrates (e.g. blue mussels Mytilus edulis [10]). This has led to observed and

ongoing changes to Arctic ecosystem productivity, species abundances, population mixing and disease/

pathogen transmission for its fauna [11,12].

Forage fish are small pelagic species that provide the most important conduit of energy transfer from

phytoplankton and zooplankton to predators in global marine ecosystems [13]. In the Arctic, endemic

Arctic cod Boreogadus saida facilitate the majority of energy transfer (up to approx. 90%) to seabirds

and marine mammals [14] but are probably undergoing an associated decline in abundance and shifts

in distribution across several regions with a warming climate [3,15–17]. Arctic cod are typically

associated with colder water temperatures (less than 58C) [18], therefore declining sea ice and a

warming ocean, especially at lower latitudes, will continue to alter the timing of Arctic cod

reproduction and larval development and lead to a northward retraction in its range [16]. This

retraction in range is exacerbated by the northward expansion of competitors, such as more temperate

capelin that is also one of the most-used forage fish by marine mammals and sea birds in the Barents

Sea and waters near Newfoundland [19,20]. Capelin are considered a sea ‘canary’ for a warming

climate in colder marine ecosystems as their presence and abundance generally increase with

temperature [9]. Furthermore, capelin can spawn over a large range of latitudes (42–728 N),

temperatures (1—148C) and habitats (e.g. beach and deep-water spawning), signifying their high

plasticity to environmental variability and change [21,22].

Opportunistic upper trophic-level predators act as sentinels to trophodynamic and species

assemblage changes lower in the food web through their diet [23]. For example, thick-billed murres

(Uria lomvia) of Hudson Bay and polar bears (Ursus maritimus) of East Greenland have shifted their

diet from Arctic cod to capelin, and from ringed seals (Pusa hispida) to subarctic seal species (e.g.

hooded seals Cystophora cristata), respectively [24,25]. However, the effects of climate-driven dietary

shifts on the overall community structure of concurrent near-apex predators are generally unknown.

Here, we examine the diet and isotopic niche of beluga whales (Delphinapterus leucas), ringed seals,

Greenland halibut (Reinhardtius hippoglossoides) and anadromous Arctic char (Salvelinus alpinus) across

a temporal scale that captures a rapid warming period and where capelin have become increasingly

abundant since the mid-2000s [19] (A Fisk 2006, personal observation and R Kilabuk from

Pangnirtung, Nunavut, 2011, personal communication).

Beluga whales, ringed seals, Greenland halibut and Arctic char all inhabit Cumberland Sound

(Nunavut, Canada) a large inlet where summer sea temperatures have increased by 1.08C since 1990

(see Results). Beluga whales consume forage fish (Arctic cod [26] and increasingly capelin [27,28]),

Greenland halibut [29], squid and benthic invertebrates (decapods and amphipods [26,30]). Ringed

seal and Greenland halibut diet consists of a wide variety of pelagic invertebrates including Gonatid
squid [31,32] and forage fish (e.g. Arctic cod, capelin and sand lance [33–35]), while Arctic char

consume invertebrates (e.g. amphipods and shrimp) and forage fish (e.g. herring and capelin [36]).

Stable isotope analysis of animal tissues provides time-integrated information on habitat use and diet

and has become one of the principal tools to elucidate prey contributions to predator diet and spatio-

temporal variation of trophic interactions among species [37]. Specifically, combined d13C and d15N

data have been used to quantify inter-annual variation and long-term changes in trophic structure of

aquatic systems [38–40]. Stable isotopes consequently provide a proven tool to assess the impact of

human-driven climate shifts on the structure and dynamics of predator communities in polar aquatic

environments [37,41].

Here, we determine prey contributions to the diet of beluga whales, ringed seals, Greenland halibut

and Arctic char, quantify predator niche sizes and apply six community-wide metrics to characterize the

trophic structure of this near apex predator assemblage in Cumberland Sound, Nunavut, Canada



Table 1. Summary of d13C and d15N (mean+ s.d.), d13C and d15N ranges and median Bayesian standard ellipse area (SEAB)
by time period for predator species from Cumberland Sound, Nunavut, Canada.

common name n d13C (‰) d15N (‰)
d13C range
(‰)

d15N range
(‰)

SEAB

(‰2)

1990 – 2002

beluga 47 218.1+ 0.3 17.2+ 1.1 1.5 5.2 1.0

ringed seal 175 218.7+ 0.6 15.2+ 0.9 3.3 4.8 1.7

Greenland halibut 14 219.6+ 0.7 16.6+ 0.4 2.3 1.4 0.8

Arctic char 72 220.0+ 0.5 15.0+ 0.7 2.2 2.7 0.9

2005 – 2012

beluga 25 218.3+ 0.4 15.9+ 0.8 1.3 3.0 1.0

ringed seal 53 219.1+ 0.5 15.0+ 0.8 2.2 3.2 1.3

Greenland halibut 21 219.4+ 0.4 16.4+ 0.7 1.7 2.5 0.7

Arctic char 122 219.1+ 0.6 15.0+ 0.7 3.3 3.6 1.3
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(658130000 N, 658450000 W). We provide the first empirical evidence of long-term (1990–2012) alteration to

the trophic structure of a near-apex predator assemblage associated with changes in the composition of

forage fish species availability coincident with a rapidly warming climate.
2. Material and methods
2.1. Environmental data
Mean summer sea surface temperatures in Cumberland Sound for the study period 1990–2012

(June–October) were obtained from National Oceanographic and Atmospheric Administration, Earth

System Research Laboratory (http://www.esrl.noaa.gov/psd/data/gridded/data.noaa.oisst.v2.html,

accessed September 2016) at 18 latitude � 18 longitude spatial resolution. Sea ice concentration for the

Davis Strait was also estimated for the same period for the month of June—a month which mainly

encompasses sea ice breakup in the area—using Canadian Ice Service’s IceGraph 2.0 Tool (http://

iceweb1.cis.ec.gc.ca/IceGraph, accessed September 2016).

2.2. Sample collections
To allow examination of a potential shift in predator diet, we separated all predator and prey sample

collections into two time periods (1990–2002 and 2005–2012) to coincide with increased availability of

capelin in Cumberland Sound (mid-2000s [19]). Inuit hunters inhabiting Southeast Baffin Island have

not reported the occurrence of capelin in beluga whale stomachs in the 1990s despite their

opportunistic feeding strategy [29], thereby supporting a recent shift in capelin availability. Division of

the sampling period into these two time periods was further defined by a significant decrease in

beluga whale d15N and sympagic carbon source use for both beluga whales and ringed seals after the

early 2000s in Cumberland Sound [42,43]. Beluga whale and ringed seal muscle samples were

collected during May–October by Inuit hunters in Cumberland Sound as part of their subsistence

harvests during 1992–2009 and 1990–2011, respectively (table 1; see electronic supplementary

material, table S1 for sample size by year per species). The beluga whale population inhabits

Cumberland Sound year-round [44] and Cumberland Sound ringed seal movements are generally

restricted during the summer (D Yurkowski 2011, unpublished data). Greenland halibut were

captured from bottom longlines in western Davis Strait near the entrance to Cumberland Sound in

September 1996 and again during August 2012 in the central region of Cumberland Sound. Arctic

char were collected from gill nets set from shore at tidal flats in 2002, 2008 and 2011 in northern

Cumberland Sound near Lake Kipisa and Isuituq, and stable isotope values were obtained from [45].

Year-round movements of Greenland halibut occur in Cumberland Sound [46] and at-sea movements

of anadromous Arctic char are generally restricted [47]. Muscle samples from all predator species

http://www.esrl.noaa.gov/psd/data/gridded/data.noaa.oisst.v2.html
http://www.esrl.noaa.gov/psd/data/gridded/data.noaa.oisst.v2.html
http://iceweb1.cis.ec.gc.ca/IceGraph
http://iceweb1.cis.ec.gc.ca/IceGraph
http://iceweb1.cis.ec.gc.ca/IceGraph
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represent long-term dietary integration of prey due to its slower turnover rate compared to more

metabolically active tissues [48]. Stable isotope values of shrimp (Pandalus borealis) and Arctic cod

were obtained from [49] which were caught from fishing vessel trawls in western Davis Strait near the

entrance to Cumberland Sound in October 2000, 2001 and 2004. Arctic cod collected in 2004 were

categorized in the 2005 – 2012 time period. Shrimp (Lebbeus polaris) and capelin samples were

collected from Cumberland Sound in August 2007 –2009. Owing to the unavailability of Themisto
sp., a pelagic omnivorous invertebrate and common prey item for Arctic marine predators,

Gonatid squid stable isotope values (caught September – October in 2001 and 2011) were used

instead to represent this functional group (e.g. omnivorous invertebrate [50]). All predator and

prey sample tissues were stored at 2208C prior to analysis.

2.3. Stable isotope analysis
Owing to the presence of lipids affecting fish and mammal tissue d13C values [51,52], frozen predator and

prey samples were lyophilized for 48 h, homogenized using a mortar and pestle and lipid-extracted using

2 : 1 chloroform : methanol following the methods of [53]. Subsequently, 400–600 mg of predator and

prey tissue were weighed into tin capsules and d13C and d15N values measured by a Thermo Finnigan

DeltaPlus mass spectrometer (Thermo Finnigan, San Jose, CA, USA) coupled with an elemental

analyser (Costech, Valencia, CA, USA) at the Chemical Tracers Laboratory, Great Lakes Institute for

Environmental Research, University of Windsor. Stable isotope ratios are expressed in per mil (‰) in

delta (d) notation using the following equation: dX ¼ [(Rsample/Rstandard) 2 1] � 103, where X is 13C

or 15N and R equals 13C/12C or 15N/14N. The standard reference material was Pee Dee Belemnite

carbonate for CO2 and atmospheric nitrogen N2. A triplicate was run for every 10th sample, and a

measurement precision for d13C and d15N was 0.1‰ and 0.1‰, respectively. The instrumentation

accuracy was determined based on NIST standards 8573, 8547 and 8548 for d15N values and 8542,

8573, 8574 for d13C values (n ¼ 75 for all). The mean differences from the certified values were �0.1‰
for d15N values and �0.1‰ for d13C values.

2.4. Data analysis
To examine shifts in environmental parameters over the study period, linear regression of sea surface

temperatures and logit-transformed sea ice concentration versus year (1990–2012) were performed.

Alpha was set to 0.05. To quantify prey contributions to focal predators (beluga whale, ringed seal,

Greenland halibut and Arctic char) over the two defined study periods, we used Bayesian mixing

model analysis in SIAR v. 4.2.2 [54] in R v. 3.3.2 [55] with uninformative priors. These mixing models

were run at 500 000 iterations, a burn-in of 300 000 and thinned by 100 (see table 2 for d13C and d15N

values of each prey and electronic supplementary material, figures S1 and S2 for stable isotope

bi-plots). Prior to analysis, we assessed normality of d13C and d15N using a x2 quantile–quantile plot

for each predator species. As capelin and Arctic cod are a part of the same functional group (i.e.

forage fish) and d13C and d15N values for the two species were similar (capelin: mean+ s.d.;

219.5‰+ 0.3 and 13.8‰+ 0.5; Arctic cod: 220.4‰+ 0.5 and 13.7‰+ 1.1, respectively), these prey

items were combined to reduce the total number of prey sources to four and allow a more

constrained, diffuse solution [56]. For ringed seals and beluga whales, we used known diet tissue

discrimination factors (DTDF) for phocid muscle (D13C: 1.3‰, D15N: 2.4‰ [57]) and cetacean muscle

(D13C: 1.3‰, D15N: 1.2 ‰ [58]), respectively. We estimated DTDFs for Greenland halibut and Arctic

char muscle using linear models from meta-analysis of fish muscle d13C and d15N values relative to

diet isotope values; 1.2‰ for D13C and 2.1‰ for D15N [59,60]. Following the recommendation of [54],

we incorporated variability in DTDFs (standard deviation ¼ 0.2‰ for d13C and d15N) for each species

(see the electronic supplementary material for other practical assumptions). As well, few individuals

who did not fall within simulated mixing polygons (i.e. statistical outliers) were removed prior to

mixing model analysis (see [61]; electronic supplementary material, figures S3 and S4). We estimated

the probability that contributions of forage fish to each predator diet were higher in 2005–2012 than

1990–2002 by calculating the percentage of estimates from the posterior probability distribution that

were higher in 2005–2012 than 1990–2002 relative to the total number of estimates from the posterior

probability distribution (2000).

To examine variation in isotopic niche sizes and relative niche position for each predator species over

the two study time periods, standard ellipses were estimated using the SIBER package v. 2.0.3 [62] in R

which also uses Bayesian inference. Each ellipse represents the variance and covariance of x and y
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thereby containing approximately 40% of the total data [62]. The niche ranges measured by the highest

and lowest individual d13C and d15N values were calculated for each species separately. This allowed the

ability to discern which predator species contributed more to the temporal changes in isotope values of

the predator assemblage. We estimated the Bayesian standard ellipse area (SEAB: iterations ¼ 2 000 000,

burn-in ¼ 100 000, thin by ¼ 10) for statistical comparisons among predators. To examine differences in

SEAB between both time periods, we calculated percentage of estimates from the posterior probability

distribution for SEAB that were lower in 2005–2012 versus 1990–2002 relative to the total number of

estimates from the posterior probability distribution (10 000).

Six community-wide metrics representative of the interactions among the realized niches of the four-

predator species assemblage were also estimated using SIBER with Bayesian inference. These metrics

include total extent of spacing within d13C–d15N bi-plot space and the relative trophic position of the

predator assemblage to provide a measure of trophic diversity and redundancy. The d13C and d15N

ranges measure the distance between the two individuals with highest and lowest values, and thus

represent the variability in basal carbon source and relative trophic position of the predator

assemblage. Mean distance to centroid is the mean Euclidean distance of each species’ niche to the

d13C–d15N centroid of the predator assemblage and represents the overall degree of trophic diversity.

Mean nearest neighbour distance is the mean Euclidean distance to each species’ nearest neighbour in

isotopic space, thereby representing density of species packing where species with similar trophic

ecologies (i.e. trophic redundancy) exhibit smaller mean nearest neighbour distances. Standard

deviation of the nearest neighbour distance is the standard deviation of Euclidean distance of each

species to its nearest neighbour and thus represents packing of species in isotopic space and trophic

redundancy. Total community area was modified by calculating the total isotopic area among the

means of each species’ niche and thus is less biased to convex hull extremities [63]. Total community

area is used as a proxy for the total extent of trophic diversity within the predator assemblage. All six

metrics were derived from 2 000 000 iterations, a burn-in of 100 000 and thinned by 10 leaving 10 000

posterior estimates from the posterior probability distribution. To determine differences in

community-wide metrics between both time periods, we quantified the percentage of estimates from

the posterior probability distribution that were lower in 2005–2012 versus 1990–2002 relative to

the total number of estimates from the posterior probability distribution (10 000). The ranges of

d13C and d15N of selected prey sources between both time periods were similar allowing a

comparison of the community-wide metrics between both time periods (table 2). To eliminate bias

associated with DTDF variability by taxa, body size and diet [59], all focal predator isotope

values were corrected with designated DTDFs prior to trophic structure analysis. In regard to the

division of sampling periods (1990–2002 and 2005–2012) and increased capelin availability in

the mid-2000s, similar results of analyses described above from 2007–2012 are provided in the

electronic supplementary material.
3. Results
Over the entire study period (1990–2012), there were marked shifts in sea ice concentrations in the Davis

Strait and summer sea surface temperatures within Cumberland Sound; a 12% decline in sea ice extent

(slope ¼ 20.025, intercept ¼ 49.30, r2 ¼ 0.23, p ¼ 0.02) occurred and an increase in temperature of 18C
was found (slope ¼ 0.043, intercept ¼ 285.50, r2 ¼ 0.24, p , 0.001).

A comparison of the posterior distributions of prey items from stable isotope mixing models revealed

that Cumberland Sound beluga whale diet consisted predominantly of Greenland halibut during both

focal time periods, but there was a 94% probability that its contribution to diet decreased between

1990–2002 and 2005–2012 (table 2 and figure 1). Concomitantly, the probability of increased forage

fish in the diet of beluga whales between 1990–2002 and 2005–2012 was 81% (table 2 and figure 1).

Ringed seal diet consisted of both squid and forage fish, but similar to beluga whales, a probability of

increased consumption of forage fish was greater than 99% from 1990–2002 to 2005–2012. In turn, the

probability of a decreased squid contribution to ringed seal diet between the two time periods was

greater than 99% (table 2 and figure 1). The probability of an increased forage fish contribution to

Greenland halibut diet between 1990–2002 and 2005–2012 was 97% where their diet principally

consisted of forage fish (95%; Bayesian credible intervals: 87–100; table 2 and figure 1). For Arctic

char, the probability of increased consumption of forage fish in their diet from 1990–2002 to 2005–

2012 was greater than 99% (table 2 and figure 1).
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Figure 1. Stable isotope mixing model results depicting the median contributions (95% Bayesian credible intervals) of prey � 10%
to beluga, ringed seal, Greenland halibut and Arctic char diet from 1990 – 2002 to 2005 – 2012 from Cumberland Sound, Nunavut,
Canada. Species symbols represent beluga (grey), ringed seals (pink), Greenland halibut (green), Arctic char (blue) squid (purple),
shrimp (blue) and forage fish (Arctic cod during 1990 – 2002 and Arctic cod/capelin during 2005 – 2012; yellow).

rsos.royalsocietypublishing.org
R.Soc.open

sci.5:180259
7

The probability that SEAB size for ringed seals became smaller between the two time periods was

95%, whereas the probability that SEAB size for Arctic char increased over time was 99%. By species,

isotopic niche shifts occurred along the d13C-axis for Greenland halibut and Arctic char and along the

d15N-axis for beluga whales (figure 2). Furthermore, the d13C range of Greenland halibut and ringed

seals decreased by 0.6 and 1.1‰, respectively, between 1990–2002 and 2005–2012, while the d15N

range increased by 1.1‰ for Greenland halibut, and decreased by 1.6 and 1.1‰ for ringed seals and

beluga whales, respectively (table 1). For Arctic char, the d13C and d15N ranges increased by 1.1 and

0.9‰, respectively, between 1990–2002 and 2005–2012 (table 1).

3.1. Temporal changes in community structure of an Arctic predator assemblage
All six community-wide metrics of trophic structure were lower in the most recent sampling period

(2005–2012) than the 1990–2002 time period (figure 3). By analysing the posterior distribution, the

probability of lower d13C (i.e. variability in basal carbon source use) and d15N (i.e. relative trophic

position) ranges for the predator assemblage in 2005–2012 was greater than 98% (figures 2 and 3).

The probability of mean distance to centroid, mean nearest neighbour distance and total area being

lower in 2005–2012 compared to 1990–2002 were all greater than 99%, identifying a decrease in

trophic diversity and higher trophic redundancy among the predator assemblage over time (figures 2

and 3). The probability of a decrease in the standard deviation of nearest neighbour distance in 2005–

2012 was 50% (figures 2 and 3).
4. Discussion
With a warming ocean and continuing reduction in sea ice extent, Arctic marine ecosystems continue to

face multiple abiotic and biotic stressors that are impacting species interactions and overall ecosystem

structure and function [11,64]. While temporal shifts in diet related to climate have been documented

for several endemic upper trophic-level predators in the Arctic [24,25], our study provides evidence

for a simultaneous isotopic niche shift of several sympatric higher trophic position predators over the

past two decades. The observed predator assemblage shifts are associated with interactions among

abiotic and biotic variables including decreased sea ice concentration, increased summer sea surface

temperature and changes to forage fish species composition in Cumberland Sound over the 22-year

period. Our stable isotope mixing model estimates, which represent the proportional contributions of

prey to predator diets, demonstrate that the predator assemblage now consumes more pelagic forage

fish during 2005–2012 than 1990–2002 probably through increased capelin availability, an expanding

species from the south. These temporal shifts in diet of the predator assemblage indicate flexibility in

foraging tactics of Arctic marine predators in response to abiotic and biotic change. Moreover, these

data provide strong support of a temporal shift from a trophically diverse to a more trophically

redundant predator assemblage associated with climate change.
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Beluga whales, ringed seals, Greenland halibut and Arctic char exhibited flexible foraging behaviour

over the study period with consumption of higher proportions of forage fish in the 2005–2012 time

period. Flexible foraging behaviour is pervasive in nature and allows opportunistic predators to

exploit shifting prey diversity and abundance in response to seasonal and inter-annual variations in

environment [65]. For example, a substantial increase in the consumption of capelin associated with a

decline in sea ice and decreased consumption of sympagic Arctic cod in diets of thick-billed murres

over time was, at least in part, due to increased availability of capelin modulating a switch to this

prey species [24].

The most probable explanation for the increase of forage fish consumption among the four near-apex

predator species is the increased availability of capelin since the mid-2000s. Cumberland Sound beluga

whales have been previously documented to consume both Arctic cod and capelin, though with an

increasing reliance on capelin over time [27,30]. In addition, Cumberland Sound beluga whales dive

to shallower depths (0–100 m) in the summer compared to the late-autumn and winter where dives

are greater than 400 m, suggesting a seasonal switch from foraging on forage fish in shallower waters

to deep-water fishes such as Greenland halibut [27,66]. Ringed seals have been shown to respond to

varying prey availability and distribution by exhibiting high flexibility in their movement ecology and

diet with increasing latitude [35,67]. With decreasing sea ice extent, Cumberland Sound ringed seals

have also been shown to be less dependent on sympagic carbon and more dependent on pelagic

carbon [42], further supporting our results of a substantial increase in consumption of forage fish over

time. Greenland halibut have been reported to consume Arctic cod during the open water period at

higher latitudes [68] and capelin in Cumberland Sound [69] which is also consistent with our mixing

model results. For Arctic char, stomach content analysis of individuals in Cumberland Sound found a

diet switch from invertebrates to a capelin-dominated diet in the late 2000s [45], comparable to our
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mixing model results. Arctic char adopts an opportunistic foraging strategy where their diet typically

reflects prey availability, especially when exploiting high density prey patches [70], such as large

aggregations of beach-spawning capelin. Therefore, increased capelin availability allows greater

accessibility for Arctic char to consume a high-lipid prey item which, in turn, positively affects growth

rates [45] and body condition [71].

Given that capelin are highly adapted to survive across a broad range of temperatures (28C to 128C),

and their northward expansion in distribution is linked with increasing sea temperatures [9],

Cumberland Sound provides ideal colonizing potential for this highly plastic species. Beach spawning

of capelin is now prevalent in Cumberland Sound during the summer and there are indications of

capelin overwintering (see electronic supplementary material, figure S5), thereby increasing its overall

availability to predators throughout the year. Scant details are known about capelin’s overall

occurrence and distribution across the Arctic, as most current information comes from either Inuit

observation or studies on temporal changes in seabird diet [19,24]. However, distributional shifts of

the northwest and northeast-central Atlantic capelin related to temperature have occurred recently in

waters around Newfoundland, Labrador and Iceland, and a northeastward shift has been reported in

the Barents Sea [19]. With high capacity to track suitable climatic conditions, these northward

distributional shifts of more-temperate fish species such as capelin to warming Arctic waters are

predicted to accelerate [72].

Comparison of the metrics measuring the trophic structure of the predator assemblage between

1990–2002 and 2005–2012 in Cumberland Sound revealed the latter having less variability in basal
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carbon source use and trophic position, such that the community exhibited less trophic diversity and

more trophic redundancy. Warming waters and phenological changes to sea ice over time strongly

influence the seasonal pulse of algal productivity during the summer allowing more prolonged

availability of this energy pathway to consumers [64]. In turn, the sympagic and detrital energy

pathways probably become dampened leading to predators and prey capitalizing on resources from

the pelagic energy pathway, thereby decreasing overall variability in basal carbon source use among

the predator assemblage. Furthermore, lower variability in the relative trophic position of the predator

community in 2005–2012 was predominantly driven by a niche shift in beluga whale diet from

consuming less Greenland halibut to a higher proportion of forage fish. Cumberland Sound trophic

diversity (i.e. mean distance to centroid and total area) decreased, while trophic redundancy

(i.e. mean nearest neighbour distance) increased over time. This suggests that the individual species of

the predator assemblage now play similar trophic roles within the food web by primarily consuming

resources from the pelagic energy pathway and occupying a more-similar trophic position.

Climate-driven community shifts in the Arctic will probably accelerate with warming temperatures

and decreasing sea ice leading to more subarctic and temperate species, from phytoplankton to

predators, invading Arctic waters [8]. This northward shift will probably have detrimental

consequences on Arctic community composition by causing a decline in the abundance of endemic

Arctic species with associated consequences on the functional biogeography and spatial coupling

between pelagic and benthic energy compartments of the ecosystem [19,73]. For example, functional

traits typical of boreal marine fish communities (e.g. larger body sizes, increased piscivory and

utilization of pelagic resources and high generalism) are becoming more prevalent in the Barents Sea

and impacting its trophic structure and dynamics [3,73]. Over a 22-year period, our study in

Cumberland Sound found dietary shifts among a sympatric predator assemblage resulting in

decreased trophic diversity and increased trophic redundancy with potential implications on spatial

coupling between benthic and pelagic energy compartments. Given the scale of defaunation in the

current Anthropocene [74] and marine taxa tracking climate velocities by expanding or retracting their

ranges [75], the reconfiguration of ecological interactions in the Arctic will persist and probably

intensify in the future leading to continued change in the structure, function and resilience of Arctic

food webs.
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