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ABSTRACT 

A series of 10 to 20 kHz, frequency-sweeping signals synthesizing whistles of 

vocalizing Odontocetes was transmitted from a J-9 sound projector suspended from the 

Research Vessel Pt Sur while over the U.S. Navy Southern California Offshore Range 

(SCORE) Underwater Acoustic Range from 11 to 13 August 2004.  The transmissions 

were recorded by a group of seven near-bottom hydrophones of the Range.  Using 

statistical analysis on ensembles of the repeated transmissions, the relationship between 

probability of detection p(D), probability of false alarm p(FA), signal-to-noise ratio 

(SNR) of the band-passed hydrophone data and detection range were derived for both a 

correlator and energy detector. To extrapolate the detection range for a different SL, a ray 

propagation model was employed.  Additionally, the feasibility of using the near-bottom 

hydrophones of the Range for three-dimensional localization and for reconstructing the 

source signal waveform was assessed.   While the experimental results show that accurate 

horizontal location estimates can be easily obtained through a minimization of the misfit 

between the observed and predicted differences in the signal arrival times at a cluster of 

hydrophones, a high-quality depth estimate is more difficult to accomplish.    In order to 

choose a satisfactory depth estimator, simulated data were used to systematically quantify 

the sensitivity of the source depth estimates, produced by a set of commonly used 

frequency and time-domain processing methods to additive noise, sound-speed profile 

mismatch and hydrophone position errors.  The simulation results suggest that a time-

domain signal magnitude matching scheme consistently outperforms the other methods. 

The performance of this scheme was further demonstrated with experimental data.  For 

source signal waveform reconstruction, the sensitivity of a frequency-uncorrelated, least-

squares technique to the same errors was investigated.   
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I. INTRODUCTION  

The Navy requires an accurate and robust acoustic detection, localization and 

classification system to prevent inadvertent exposure of anthropogenic noise to marine 

mammals, including Odontocetes or “toothed” whales.  Although visual surveys provide 

a basis for avoidance, this method is not continuously employed during military 

operations and unfeasible at night and in fog and bad weather.  Acoustic detection 

methods appear very promising, but for Odontocetes, specific challenges include high 

transmission losses (surface and bottom roughness scattering and chemical relaxation), 

significant variability inherent with calls, and identification of specific species in the 

cacophony of high density, multiple animal vocalizations.  

Odontocete vocalizations can generally be categorized into two types, clicks and 

whistles.  The focus of this dissertation is on the whistles, which typically have lower 

source levels, smaller bandwidths, longer durations and lower upper frequency bounds.  

Designed originally to track torpedoes and submarines during military exercises, the 

Southern California Offshore Range (SCORE) hydrophone array has exceptional 

potential for tracking and localizing these whistles, specifically those that sweep within 

or through the designed bandwidth (~ 8-40 kHz).  Digital recordings from seven 

hydrophones of this array collected during a playback experiment were used as data for 

this study.   

This dissertation, funded by the Chief of Naval Operations Environmental 

Readiness Division (CNO-N45) and supported by the Naval Postgraduate School Ocean 

Acoustics Laboratory, consists of two papers for submission to the Journal of the 

Acoustical Society of America.  The objective of the first paper (Section II) entitled 

“Assessment of Detection Performance of the near-bottom Hydrophones at the U. S. 

Navy SCORE Underwater Acoustics Range using a playback of Representative 

Odontocete Vocalizations,” is to quantify the performance of the near-bottom 

hydrophones in detecting Odontocete vocalizations.   The objective of the second paper 

(Section III), entitled “Three Dimensional Localization and Source Signal Waveform 

Reconstruction of Representative Odontocete Vocalizations at the U.S. Navy SCORE 
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Underwater Acoustic Range,” is to assess the feasibility of using the hydrophones for 

three-dimensional localization and for reconstructing the source signal waveform. 

The first paper represents an extension of the work by Garcia (2002) and Daziens 

(2004) who investigated the performance statistics and detection ranges of mid-frequency 

(1-8 kHz) Odontocete whistles using hydrophones moored or tethered at mid or upper 

depths of the water column.   Data was collected during a playback experiment.  A 

similar approach was adopted here, although this study will utilize a very different 

receiver system with near-bottom hydrophones monitoring at a different frequency band.  

The approach entailed carrying out a playback experiment at the SCORE Range followed 

by analysis of the statistics of the output of energy and correlator detectors.  The output 

statistics of these two detectors were investigated because they represent the lower and 

upper performance bounds, respectively.  Additionally, in order to extrapolate the 

detection range for a different SL, a ray propagation model was employed.   

The horizontal localization portion of the second paper is similar to a model-based 

approach used by Tiemann et al. (2002), who achieved horizontal localization of 

vocalizing Humpback whales through a minimization of the misfit between the observed 

and predicted differences in the signal arrival times at an U.S. Navy Underwater Acoustic 

Range in Hawaii. The depth estimation and source signal reconstruction portion is similar 

to previous work done by Moore (1999) and Chiu et al. (2003).  Moore achieved a 

localization of a vocalizing blue whale via matched signal processing (MSP) as well as 

retrieval of the source signature via least-squares fitting of modeled waveforms to 

received data.   Moore and Chiu conducted MSP of vocalizations at approximately 50 – 

90 Hz.   This study will focus on a much higher frequency regime (~10-20 kHz).  

  The uniqueness of the second paper involves the extensive computer simulation 

undertaken to quantify the localization performance of commonly used frequency and 

time-domain processing methods when faced with additive noise, environmental 

mismatch and hydrophone positional error.  The results of these sensitivity studies, 

supplemented with experimental playback results, allows for the selection of an estimator 

of choice at the Range. Additionally, for source waveform reconstruction, the sensitivity 

of a frequency-uncorrelated, least-squares technique to these errors will be investigated.   
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II. ASSESSMENT OF DETECTION PERFORMANCE OF THE 
NEAR-BOTTOM HYDROPHONES AT THE U. S. NAVY SCORE 
UNDERWATER ACOUSTIC RANGE USING A PLAYBACK OF 

REPRESENTATIVE ODONTOCETE VOCALIZATIONS1  

 A.   ABSTRACT 

A series of synthesized whistle signals of vocalizing Odontocetes was transmitted 

from a J-9 sound projector suspended from the Research Vessel Pt Sur while over the 

U.S. Navy SCORE Underwater Acoustic Range from 11 to 13 August 2004.  The 

transmissions were recorded by a group of seven near-bottom hydrophones of the Range.  

Using statistical analysis on ensembles of the repeated transmissions, the relationship 

between probability of detection p(D), probability of false alarm p(FA) and signal-to-

noise ratio (SNR) of the band-passed hydrophone data and detection range were derived 

for both a correlation detector (correlator) and energy detector.  Specifically, the 

empirical relations show:  (1) For a source level (SL) of 135 dB re 1 µPa , p(D) of 95% , 

and p(FA) of 0.01%, the corresponding detection ranges for a 1 s long, 20 – 10 kHz 

downsweep chirp are 1600 m for the energy detector and 5100 m for the correlator in the 

presence of clutter, i.e., actual Odontocete calls with roughly similar signal characteristics 

as the synthesized calls. (2) In the absence of clutter, the detection range for the energy 

detector increases to 2400 m, while the performance for the correlator remains 

unchanged.  (3) To achieve the 95% p(D) and 0.01% p(FA), the energy detector requires 

a SNR of -2.2 dB and -5.3 dB in the presence and absence of clutter, respectively.  To 

extrapolate the detection range for a different SL, a ray propagation model was 

employed.  The modeled transmission loss (TL) shows a 600 m increase in the detection 

range for each 3 dB increase in SL.  Maintaining -5.3 dB as the required SNR, an 

application of this model projection over the area surrounded by the seven hydrophones 

shows a 100% detection area coverage when SL reaches 138 dB re 1 µPa. 

                                                 
1This chapter is formatted for submission to the Journal of the Acoustical Society of America. 
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B.  INTRODUCTION 

Anthropogenic noise, including Navy sonar operations, poses a threat to existing 

marine mammal populations. Berggren et al. (2002), Clark (1994/1995), Croll et al. 

(2001), Frankel and Clark (1998/2000), and Moore and Clark (2002), are examples of 

recent and continuing studies of anthropogenic effects on marine mammals.  In the 

interest of quantifying these effects, extensive behavioral response studies following 

exposure to both high and low frequency noise have been conducted by Schlundt et al. 

(1999), Nachtigall et al. (2003), Finneran et al. (2002), and Au et al. (1997).    

The Navy requires an accurate and robust acoustic detection, localization and 

classification system to prevent inadvertent exposure of anthropogenic noise to marine 

mammals, including Odontocetes or “toothed” whales.  Although visual surveys provide 

a basis for avoidance, this method is not continuously employed during military 

operations and is unfeasible at night or in fog or severe weather.  Acoustic detection 

methods appear very promising, but for Odontocetes, specific challenges include high 

transmission losses (surface and bottom roughness scattering and chemical relaxation), 

significant variability inherent with Odontocete calls, and identification of specific 

species in the cacophony of high density, multiple animal vocalizations.   

One of the first concentrated research projects involving the detection and 

localization of marine mammals utilized the Navy’s recently unclassified SOSUS (Sound 

Underwater Surveillance System) hydrophone array. Designed originally to track Cold 

War submarines, this fixed surveillance system immediately emerged as an excellent 

large area, passive sensor to monitor the low frequency vocalizations of Mysticetes or 

“Baleen” whales.  SOSUS monitor, tracking, detection performance, and census studies 

for Mysticetes have been conducted by Chiu et al. (1999/2003), Clark et al. 

(1994/1995/1998), Hager (1997), Kumar et al. (2002), Moore (1999), and Nishimura et 

al. (1994) among others.   

Examples of Odontocete vocalizations include high frequency echolocation 

“clicks” and frequency-modulated “whistles” described in Herman and Tavolga (1980), 

Au (1993), and Richardson et al. (1995).  Clicks are broadband, short duration, and 
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relatively high power spectrum source level (>200 dB re 1 2 /Pa Hzµ ) vocalizations used 

for echolocation and are described in  Rasmussen et al. (2002), Mohl et al. (2000/2003), 

Thode et al. (2002), Madsen et al. (2003), Au and Herzing (2003), Au et al. (2004), 

Philips et al. (2003), and Frantzis et al. (2002).   Whistle source levels are significantly 

lower, varying from approximately 120 to 160 dB re 1  @ 1mPaµ  as described in 

Watkins and Scheivll (1974), Janik et al. (2000), and Thomsen et al. (2001).  Whistles 

have been successfully localized and tracked using a three-element hydrophone towed 

array (Thode, 2000), a sonobuoy array (Howarth, 2003), and through frequency domain 

beamforming using a narrow aperture audio/video array. (Ball and Buck, 2003)   Frietag 

and Tyack conducted passive acoustic localization of whistles as well (Frietag and Tyack, 

1993). 

C.  OBJECTIVES / APPROACH 

The objective of this study is to quantify the performance of the near-bottom 

hydrophones of the SCORE Underwater Acoustic Range in detecting Odontocete 

vocalizations.  These vocalizations can generally be categorized into two types, clicks 

and whistles.  The focus of this performance study is on the whistles, which typically 

have lower source levels, smaller bandwidths, longer durations and lower upper 

frequency bounds.  Designed originally to track torpedoes and submarines during military 

exercises, the SCORE hydrophone array has exceptional potential for tracking and 

localizing those whistles that sweep within or through the designed bandwidth (~ 8-40 

kHz) of the SCORE array. 

This study represents an extension of the work by Garcia (2002) and Daziens 

(2004) who investigated the performance statistics and detection ranges of mid-frequency 

(1-8 kHz) Odontocete whistles using hydrophones moored or tethered at mid or upper 

depths of the water column.   Data was collected during a playback experiment.  A 

similar approach is adopted here.  This study will utilize a very different receiver system 

with near-bottom hydrophones monitoring at a different frequency band.  The approach 

entailed carrying out a playback experiment at the SCORE Range followed by analysis of 
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the statistics of the output of energy and correlation detectors.  The output statistics of 

these two detectors were investigated because they represent the lower and upper 

performance bounds, respectively. 

The playback experiment transmitted a train of representative Odontocete (10-20-

kHz) whistles using a J-9 sound source deployed from a research vessel to a depth of 

approximately 15 m.  The same series of transmissions were repeated at each of seven 

equally spaced stations forming a linear track inside an area spanned by a hexagonal sub-

array consisting of seven near-bottom hydrophones.  The playback experiment, including 

the geometry and the signaling and recording schemes are detailed in Sec. D.  Chi-square 

distributions were then fitted to empirically derived histograms of the detector output 

peaks for the different propagation ranges in the presence and absence of the transmitted 

signal.  This allowed for calculation of the SNR-dependent (or range-dependent) relation 

between p(D) and p(FA).  The choice of p(D) and p(FA) values then provides an estimate 

of the required SNR or detection range for the SL used.  The formula for the detectors 

and the analyzed results of the output statistics are presented in Sec. E.  Given that the 

experimental SL was limited to 135 dB re 1 µPa, it would be useful to extrapolate the 

empirical results to a higher SL.  The extrapolation was accomplished using a ray-theory 

based, multipath transmission loss (TL) model.  This TL model and the predicted 

dependence of detection coverage on SL are discussed in Sec. F.  Major conclusions of 

this study are provided in Sec. G. 

D.   DATA COLLECTION 

1.  SCORE Range Bathymetry and Near-Bottom Hydrophone 
Distribution 
The Research Vessel Point Sur, based out of Moss Landing, California and 

contracted through the Moss Landing Marine Laboratories, provided the research 

platform for this experiment.  The experiment was conducted from 11 to 13 August 2004 

at the SCORE Underwater Acoustic Range.  The Range is located on the western side of 

San Clemente Island.  The carpeted array covers a natural “bathtub” contour.  The 

extremes of the depths at the Range vary from 1700 m in the northwest to 700 m in the 

southeast.  The portion of the array utilized for this experiment, displayed in Figure 1, 
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includes hydrophones numbered 55, 61, 69, 70, 71, 77 and 78 which form a hexagon 

array with Hydrophone 70 in the middle location.  The hydrophones in this subset array 

occupy depths from 1000 to 1300 m.         

 

Figure 1.   Geometry of the playback experiment showing locations of the seven 
transmission stations and nearby hydrophones.   The bathymetry is also shown by 

isobaths using a 200 m contour interval. 

 
2.   Experiment Description 

a.  J-9 Sound Source Transmission  

 Upon entering the range at approximately 2330 (L) on 11 August, the RV 

Pt Sur positioned over Hydrophone 55 and began a succession of  transmission stations 

equally spaced at 1000 m and along a straight line (Stations 1 – 7) utilizing a J-9 sound 

projector at 15 m depth.   Station 1 recordings were not utilized in the detection 

performance study.  Station 2 represented the closest distance (directly overhead) to 

Hydrophone 55 and Station 7 represented the farthest.  Figure 1 details the geographic 

progression of the transmission stations. 

 Ten and twenty kHz was the lower and upper bounds of the transmission 

signal bandwidth.   Several Odontocete species whistle within this bandwidth.  Bazura-
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Duran and Au (2002) detailed six general categories of Spinner Dolphin whistle contours.  

Three of these contour shapes were synthesized for this study.  The transmitted signal 

consisted of a one-second, 10-20 kHz linear sweep, a three-second, “concave” whistle, a 

one-second, 20 to 10 kHz “down-sweep” whistle, and a 10 to 15 kHz “upsweep” whistle.  

With three second gaps between each whistle, the transmission sequence was 

approximately 15 s in duration (Figure 2).  The sequence was transmitted 78 times at 

each station.  

 

 

Figure 2.   The spectrogram of the signal transmitted by the J-9 sound source.   The 
sequence consisted of a 1 s, linear frequency-modulated (FM) “up-sweep” and a 

succession of contoured, FM whistles.  The whistle transmitted at 10 -11 s into the 
sequence was utilized in this study.  The additional contours are designed for 

future work 
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b.   Source Level Calculation 

In order to measure the mean-squared pressure at 1 m distance from the J-

9 sound projector, a monitoring hydrophone and associated cabling was attached to the 

cable for the J-9 so as to hang 1 m below the source.  At 15 m of source depth, the 

monitoring hydrophone was at a depth of 16 m.  The hydrophone 

sensitivity,  -164 dB re 1V/ Paµ , was applied to the voltage time series ( )ov t , was done to 

obtain the pressure oscillation time series, 0( )p t  in Paµ .  Source level (SL) was then 

calculated as: 

                                
2

0
10

1 ( )
20log

1

T

op t dt
TSL dB

Paµ

⎡ ⎤
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

∫
 ,                               (1) 

where T is the duration (1 s) of the downsweep whistle.   SL was estimated to be 

135 dB re 1  @ 1mPaµ . 

c.   Hydrophone Data Collection 

 Two portable shipboard computer rack systems were utilized.  The first 

rack system consisted of a personal computer (PC), a PC sound card, amplifier, and 

cabling to the J-9 projector lowered to a depth of 15 m.  Data for the bottom mounted 

hydrophones was recorded at the San Clemente Island cable termination van at an 80 kHz 

sampling rate.  Data was saved in 5 minute “packets” of approximately 750 megabytes 

onto a single hard drive.     

3.   Experimental Issues 
Two issues were identified during the course of this experiment that merit 

discussion.  They are the effects of background noise (platform noise and actual marine 

mammal vocalizations) on detection performance analysis and the Automatic Gain 

Control (AGC) for the bottom hydrophones. The bottom hydrophones have a hard-wired  

or fixed AGC that decreases amplitude when the received levels are too high.   Because 

of AGC adjustments and lack of “end-of-cable” sensitivity, conversion from volts to 

Paµ  was not accomplished.  
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a.   “Clutter” or False Detections 

 When either the correlator or energy detector found an actual Odontocete 

vocalization rather than an intended playback signal, the output was designated as 

“clutter”.    Although the energy detector experienced more clutter, a closer analysis of 

spectrograms associated with bottom hydrophone digital recordings revealed that 

individual animals engaged in interrogation and response dialogues with the J-9.  This 

also produced correlator clutter.  A mimicking of the signal by nearby animals was 

widespread throughout the recordings.    

b.   Automatic Gain Control (AGC) 

   Figure 3 depicts an AGC adjustment affecting the recorded data of the 

transmitted downsweep on Hydrophone 70.  A step up and a step down are evident.  

Although Hydrophone 70 had a significant AGC control, three additional hydrophones 

that detected this upsweep did not appear to be affected by AGC.   Hydrophone 70 was 

the closest to the source at transmission for this recording. 

 

Figure 3.   Automatic Gain Control (AGC) effects on recorded hydrophone voltage 
amplitude during a “loud” event.   The spike at .8 s represents the start of the FM 

downsweep.   The signal’s duration is 1 s. 
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E.    EXPERIMENTAL DETECTION PERFORMANCE EVALUATION  

1.   Formulation 

a.   Histograms of Peak Detector Output 

 Two detection schemes were utilized in this study.  The “energy detector” 

is an incoherent detector and exploits a signal’s energy content.  It is indiscriminative to 

the characteristics of a waveform, but suffers a lower processing gain (Urick, 1983). 

The“correlator” is a coherent detector and requires prior knowledge of a transmitted 

waveform’s characteristics. The correlator’s success is based upon the prior construction 

of a “replica” signal.   

 Data, r(t), was  digitized at a sampling rate of 80 kHz and band-pass 

filtered for noise reduction.   The “replica” source signal waveform, s(t), was correlated 

with r(t) as                                                

                             
1

( ) ( ) ( )
N

COR n n
n

c s t r t tτ τ
=

= − ∆∑ ,                                     (2)    

while a “boxcar,” u(t), waveform was correlated with r2(t) for the energy detector as  

                              2

1

( ) ( ) ( )
N

ED n n
n

c u t r t tτ τ
=

= − ∆∑ .                                     (3)  

In (2) and (3), t∆   = 1/80 kHz and N t∆ =1 s, the duration of the replica or the boxcar.   

Both s(t) and u(t) were normalized to unit energy.  

 Peak correlator output represents a quantitative measure of the “likeness” 

of the signal to the replica signal.  The peak energy detector output represents a 

quantitative measure of an event’s energy.   Correlator and energy detector output 

hereafter refer to the peak value attained with each method.  

 Using the entire ensemble of 78 total transmissions of the 1 s down-sweep 

per station, histograms were constructed of correlator and energy detector output. The 

station “signal-plus-noise” histograms were constructed of correlator and detector output 

when the signal was present while the “noise-only” histograms were constructed when 
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the signal was not present.  Energy detector output signal-plus-noise histograms are 

displayed in blue color and noise-only histograms are displayed in yellow color in Figure 

4.  Correlator output histograms are not shown.    

 

Figure 4.   Station signal-plus-noise (blue) and noise-only (yellow) energy detector 
output histograms for Hydrophone 55.  The red circles in this diagram show 

clutter. 

b.   Probability Density Function (PDF) Representations of Detector 
Output   

                         The theoretical consideration for best fitting the empirical histograms to a 

statistical distribution is based upon a study (Dyer, 1970) of transmission fluctuations in a 

phase random multipath environment.    Dyer found that the density of mean squared 

pressure adhered to a chi-square (χ2) distribution with the number of degrees of freedom 

dependent upon the number of independent events or arrivals.    Because the energy  

detector is subject to a multipath, random phase and amplitude environment, the χ2 
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distribution was chosen to “best-fit” the signal-plus-noise and noise-only empirically 

derived histograms.    

Figure 5 reveals the relationship between station signal-plus-noise PDFs 

and representative noise-only PDFs.  Two noise-only PDFs were utilized in this study.  

The noise-only “clutter present” PDF (lower left in Figure 5) has a larger variance and 

mean value than the noise-only “clutter absent” PDF (upper right in Figure 5).   This 

figure also reveals that the signal-plus-noise PDFs transition from high to low degrees of 

freedom as SNR (dB) decreases.  Complete overlap of the signal-plus-noise PDF and 

noise-only PDF represents a SNR (dB) of −∞  .    

  

Figure 5.   Successive χ2  signal-plus-noise (blue) and noise-only (red) PDFs that best fit 
corresponding detector output histograms in the presence of clutter.  For 

comparison, the relationship between signal-plus-noise PDFs and the noise-only 
PDF without clutter is shown in the upper right. 

 

Functions ( )f q  and ( )g q  represent unity area signal-plus-noise and noise-

only PDFs respectively.  A relationship between p(D) (4) and p(FA) (5) can be 

established by varying a correlator or energy detector output threshold value, designated 

“thr” , from zero to infinity as  
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                                         ( ) ( )
thr

p FA f q dq
∞

= ∫  and  ( ) ( )
thr

p D g q dq
∞

= ∫                    (4,5) 

(Urick, 1983).    

Each threshold value in turn yields an independent value for both p(D) and p(FA) .   The 

results are then plotted as a Receiver Operating Characteristics (ROC) Curve for each 

transmission station. 

c.   Receiver Operating Characteristics (ROC) Curves and  Input 
SNR  

The resultant ROC curves for Hydrophone 55 in the presence of clutter are 

shown in Figure 6.    It is important to note that each ROC curve represents both an input 

SNR and distance from hydrophone to transmitter.  For each station, the input SNR was 

established as  

                            SNR 1010log 1s n

n

dBµ
µ

+⎡ ⎤
= −⎢ ⎥

⎣ ⎦
,                          (6) 

where “µs+n”  and  “µn”  represent the ensemble mean of signal-plus-noise and noise-only 

energy detector output respectively.  For the remainder of this study, SNR will refer to 

the input SNR calculated by (6). 
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Figure 6.   Experimental energy detector output ROC curves calculated from signal-plus-
noise and noise-only (clutter present) PDFs for each station. The distance to each 
station and SNR are given for each curve.  The Station 2 curve is not shown due 

to AGC gain.   

 
2.   Experimental Results - p(D) vs. SNR or Detection Range  

 Figure 7 displays transition curves obtained by applying a fixed false alarm rate to 

the ROC curves in Figure 6.  Constructed from energy detector (in the presence and 

absence of clutter) and correlator ROC curves, the transition curves reveal the detection 

range or SNR required given selected values of p(D) and p(FA).     Detection ranges, 

obtained from the curves for a p(D) of 95% and p(FA) of .01%, were calculated as 1600 

m (energy detector) and 5100 m (correlator) in the presence of clutter.   In the absence of 

clutter, the energy detector detection range increased to 2400 m.   Required SNRs for the 

energy detector under the same constraints were -2.2 dB (clutter) and -5.3 dB (no clutter) 
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respectively.  These detection ranges are associated with a one second, downsweep, FM 

signal transmitted from 20-10 kHz, with 135  re 1  @ 1mSL dB Paµ≅ . 

 

 

Figure 7.   P(D) vs. SNR or detection range transition curves in the presence of clutter 
(top) and without clutter (bottom) for a fixed p(FA) of .01%. The circles in this 

figure denote the range where p(D) = 95%.   
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F.  DETECTION RANGE VS SL PREDICTION 

 It must be noted that the detection range and required SNR obtained in the previous 

section are for fixed values of p(D) at 95%, p(FA) at .01%, and 

SL of 135 dB re 1  @ 1mPaµ .  Because the transmitted SL is 5 - 25 dB less than most of 

the published Odontocete frequency-modulated vocalizations (Watkins and Schevill, 1974, 

and others), it would be valuable to estimate changes in the detection range in response to 

elevated source levels.  This can be accomplished using modeled transmission loss (TL).  A 

range increase can then be applied to a plan view of all hydrophones in the hexagonal array 

to visually indicate the increased detection area coverage.    

1.   Four Ray Path Broadband TL Model  
 Because the J-9 sound source transmitted at a distance from the hydrophone, the 

sound arrived at the receiver via an ensemble of possible ray paths.  The Hamilton Acoustic 

Ray-Tracing Program for the Ocean (HARPO) was used to calculate these ray paths.  By 

numerical integration of the Hamilton’s Equations, this program traces the paths of acoustic 

rays were traced as they traveled through an analytic model ocean.  The original version of 

this program (Jones et al., 1986) was upgraded in 1994 (Chiu et al. 1994) to allow for the 

input of gridded bathymetry and sound speed data.  The upgraded program was used in this 

study.    

 Output from the program allowed for identification of the four dominate paths or 

“eigenrays” shown in Figure 8; the direct path ray, the surface reflected ray, the bottom 

reflected ray, and the bottom and surface reflected ray.   Given this output, the eigenray’s 

signal amplitude na  , phase shift  nφ  , and travel  time nt , can be computed in order to 

construct a predicted (superscripted “m” for modeled and subscripted “p” for the specific 

hydrophone) transfer function.  The transfer function ( )m
pH f  is  

4
(2 )

1
( ) ( ) n ni ftm

p n
n

H f a f e π ϕ− ±

=

= ∑   ,                (7) 

where the ±  values in the exponential correspond to frequencies greater than and less 

than zero respectively. 
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Figure 8.   The four rays, consisting of a direct path (DP), surface reflected (SR), bottom 
reflected (BR), and surface and bottom reflected (SRBR), coherently summed to 

create the predicted arrival voltage time series ( )m
pr t  for a single hydrophone. 

 

 In (7), both phase, nφ , and travel  time, nt , are independent of frequency.  

Modeled phase corrections have a negative value and result from surface and bottom 

reflections.  The eigenray amplitude, na , accounted for bottom, surface and absorption 

losses.  Bottom and surface reflection losses were calculated as a function of sediment 

sound speed, density and wave height.  Absorption loss was calculated as a function of 

temperature, salinity, pH, frequency and depth of water column (Urick, 1983).   The 

predicted real signal, ( )m
pr t ,  is then calculated as     

       2( ) ( ) ( )m m i ft
p pr t S f H f e dfπ= ∫ ,                          (8) 

which is the inverse transform of the source signal spectra multiplied by the spectra of the 

predicted transfer function.   The TL versus range is then calculated as  

             
2

10 2

( )
( ) 10log

( ; )m
p

s t dt
TL r

r t r dt

⎡ ⎤
⎢ ⎥= +
⎢ ⎥⎣ ⎦

∫
∫

.                   (9) 
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 Because TL varies with frequency, i.e. a higher attenuation occurred at 20 kHz 

than at 10 kHz, the broadband TL calculated in (9) represents a mean value of TL over 

the band.  Results are displayed in Figure 9. 

 

 

Figure 9.   Averaged TL as a function of range from the hydrophone.  A relatively 
constant gradient of 3 dB per 600 m range increase / decrease is shown in the red 

box.  

 

2.  Detection Range and Detection Area Coverage vs. SL 
  The experimentally obtained SNR required to achieve a 95% p(D) and  .01%  

p(FA) is related to the SL, noise level (NL), and TL as                     

                          ( )required oSNR SL TL r NL= − −  ,                              (10) 

where ro represents the detection range.  In order to maintain the same required SNR, a 

change in SL would require a change in ro .  This change in SL with respect to r0,  

                                ( ) ( ( ))o

o o

d SL d TL r
dr dr

=  ,                                       (11) 

is relatively constant and equal to 600 m per 3 dB change.  In other words,  
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                                                    600 
3

or m
SL dB

∆ ⎡ ⎤= ⎢ ⎥∆ ⎣ ⎦
 .                                         (12) 

  A 2400 m radius circle (displayed as dashed blue in Figure 10) surrounding a 

single hydrophone defines a detection area that ensures at least a p(D) of 95% and p(FA) 

of .01% for a source transmitted at a SL 135 dB re 1  @   1mPaµ≅ .  A 3 dB increase in 

SL expands each hydrophone detection range by 600 m and expands the area of high 

probability coverage.   Figure 10 shows that the seven hydrophone array would achieve a 

95% p(D) and .01% p(FA) on at least one hydrophone of the array if a signal was 

transmitted with similar characteristics at a SL of 138 dB re 1  @ 1 mPaµ  anywhere 

within the field. 

 

Figure 10.   Subset array detection area coverage comparison (assuring a 95% p(D) and  
.01% p(FA)) for source levels of  135 dB (blue) and 138 dB (red) re 1 µPa. 
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G. SIGNIFICANT RESULTS / CONCLUSIONS 

The objective of this study was to quantify the performance of the near-bottom 

hydrophones of the SCORE Underwater Acoustic Range in detecting Odontocete 

vocalizations.  The study utilized data (bottom hydrophone recordings of a transmitted 

synthetic series of Odontocete vocalizations) collected during a “playback” experiment 

while over the U.S. Navy SCORE underwater acoustic range 11-13 August 2004.   

Specifically, the signal recorded was a 1 s duration, contoured, FM down-sweep from 20 

to 10 kHz transmitted at a SL of 135 dB re 1  @ 1 mPaµ .   A statistical analysis of 

ensemble (78 transmissions at each station) recordings of this data resulted in high p(D) 

(95%) and low p(FA) (.01%) detection range estimates for a correlator and energy 

detector.  It is important to provide a lower and upper bound of expected detection ranges 

for this type of vocalization.   The energy detector provided the lower bound while the 

correlator provided the upper bound.        

Experimentally obtained detection ranges were 1600 m (energy detector) and 

5100 m (correlator) in the presence of clutter.   In the absence of clutter, the energy 

detector range increased to 2400 m.  Required SNRs for the energy detector ranges were  

-2.2 and -5.3 dB respectively.   This detection range variation reveals the challenge of 

conducting a playback experiment in the presence of animals engaging in an interrogation 

/ response dialogue with a sound source.  The detector output clutter is an unavoidable 

by-product of the experiment because marine mammal vocalizations were recorded 

simultaneously with synthetic transmissions.  A strong vocalization can trigger a false 

detection and mask the playback transmission.     

Finally, experimentally obtained SNR and detection ranges combined with a four 

path, broadband TL loss model resulted in detection range predictions for a SL increase. 

A 600 m range increase per 3 dB SL increase was extracted from a modeled TL curve.  

Most notably, a 3 dB increase in SL from that transmitted in this study resulted in 

complete area coverage that assures a p(D) of 95% and  p(FA) of .01% for the seven 

bottom hydrophones that recorded data. 
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III. THREE DIMENSIONAL LOCALIZATION AND SOURCE 
SIGNAL WAVEFORM RECONSTRUCTION OF 

REPRESENTATIVE ODONTOCETE VOCALIZATIONS AT THE 
U.S. NAVY SCORE UNDERWATER ACOUSTIC RANGE2  

A.   ABSTRACT 

The feasibility of using the near-bottom hydrophones of the U.S. Navy Southern 

California Offshore Range (SCORE) for three-dimensional localization of frequency-

sweeping Odontocete vocalizations in the 10-20 kHz band and for reconstructing the 

source signal waveform was assessed.  For localization, the assessment employed both 

computer simulated data and actual measurements collected from a “playback” 

experiment conducted at SCORE in August 2004.  While the experimental results show 

that accurate horizontal location estimates can be easily obtained through a minimization 

of the misfit between the observed and predicted differences in the signal arrival times at 

a cluster of hydrophones, a high quality depth estimate is more difficult to accomplish.  

In order to choose a satisfactory estimator for the source depth, simulated data were used 

to systematically quantify the sensitivity of the source depth estimates, produced by a set 

of commonly used frequency and time-domain processing methods, to additive noise, 

sound speed profile (ssp) mismatch and hydrophone position errors.  While all estimators 

proved tolerant to additive noise, a time domain “magnitude matching” estimator proved 

the most robust of the four investigated.  This estimator was tolerant to a ssp mismatch up 

to 2 m/s (for a 100 m vertical extent feature located at 250 m depth) when combined with 

a hydrophone position error of 1 and 2 meters for two of the four hydrophones.   The 

performance of this scheme was further demonstrated with experimental data.  For source 

waveform estimation, the performance of a frequency-uncorrelated, least-squares 

technique was investigated.  Computer simulation results show that the technique 

 

 

 

                                                 
2 This chapter is formatted for submission to the Journal of the Acoustical Society of America 
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requires a SNR > 5 dB and a sound-speed mismatch of < .1 m/s to work accurately.  The 

insufficient SNR of the experimental data (~ -6 dB) prevented testing the technique with 

the actual data. 

B.   INTRODUCTION 

The Navy requires a robust acoustic detection, localization and classification 

system to prevent inadvertent exposure of anthropogenic noise to marine mammals, 

including Odontocetes or “toothed” whales.  Although visual surveys can be used for 

avoidance, this method is not continuously employed during military operations and is 

unfeasible at night or when visibility is restricted by fog or bad weather.  Acoustic 

detection methods appear very promising, but for Odontocetes, specific challenges 

include high transmission losses (surface and bottom roughness scattering and chemical 

relaxation), significant variability inherent with Odontocete calls, and identification of 

specific species in the cacophony of high density, multiple animal vocalizations. An 

accurate and unambiguous three-dimensional localization algorithm would provide an 

excellent mitigation tool, most notably, at Navy acoustic ranges.    

Matched field processing (MFP), matched signal processing (MSP) and time-

difference-of-arrival localization of marine mammals has been conducted in several 

studies.  Abawi et al. (2004) utilized MFP of acoustic data collected on an eight element 

vertical array (deployed from the Floating Instrument Platform (FLIP)) to localize and 

track singing Baleen whales during a seven day experiment at SCORE.  Stafford et al. 

(1998) utilized MSP for long range and acoustic detection and localization of blue whale 

calls in the northeast Pacific Ocean.  Specifically, a time domain matched filter was 

applied to recordings from three U.S. Navy SOund SUrveillance System (SOSUS) arrays 

to localize individual animals.   

Time difference-of-arrival studies done by Clark et al. (1986/2000), Janik et al. 

(2000), and Mitchell et al. (1995) utilized time delay characteristics of multiple phone 

reception for baleen whale localization.  Odontocete whistles have been successfully 

localized and tracked using a three-element hydrophone towed array (Thode, 2000), a 

sonobuoy array (Howarth, 2003), and through frequency domain beamforming using a 
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narrow aperture audio/video array (Ball and Buck 2003).   Additional localization studies 

include Chiu and Miller (2004), Mellinger et al. (2000), Moore (1999), Thode et al. 

(2000), Tiemann (2001/2002/2003/2004), and Wiggins et al. (2004).  Tiemann and Porter 

(2003) provided a concise comparison of time difference-of-arrival localization 

techniques as applied to marine mammal calls and found that model-based methods were 

favored when refractive effects were significant. 

Previous work in source signal waveform reconstruction, specifically of blue 

whale calls, is outlined in research conducted by Thode et al. (2000) and Moore (1999).  

Thode utilized MFP and deconvolution techniques outlined in Finette et al. (1993) and 

Mignerey and Finette (1992) to localize and remove propagation effects from 

vocalizations received on a 48 element tilted vertical array.  Source time signatures and 

source levels were then estimated.  Moore conducted recordings on an eight hydrophone 

towed array and achieved retrieval of the source signature via least-squares fitting of 

modeled waveforms to received data.    

C.   OBJECTIVES / APPROACH 

The objective of this study is to investigate the feasibility of using the near-

bottom hydrophones of the U.S. Navy Southern California Offshore Range (SCORE) for 

three-dimensional localization of frequency-sweeping Odontocete vocalizations in the 

10-20 kHz band and for reconstructing the source signal waveforms.  Designed originally 

to track torpedoes and submarines during military exercises, the SCORE hydrophone 

array has exceptional potential for localizing those whistles that sweep within or through 

the designed bandwidth (~ 8-40 kHz) of the SCORE array.     

The horizontal localization technique of this study is similar to a model-based 

approach used by Tiemann et al (2002), who achieved horizontal localization of 

vocalizing Humpback whales through a minimization of the misfit between the observed 

and predicted differences in the signal arrival times at an U.S. Navy Underwater Acoustic 

Range in Hawaii. The depth estimation and source signal reconstruction portion draws 

upon previous work done by Moore (1999) and Chiu et. al (2003).  Moore localized a 

vocalizing blue whale using matched signal processing (MSP) as well as retrieval of the 
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source signature via least-squares fitting of modeled waveforms to received data.   The 

Moore and Chiu studies focused on vocalizations at approximately 50 – 90 Hz and 

utilized a towed array.   This study will focus on a much higher frequency regime (~10-

20 kHz) and will utilize data collected from a carpeted array.   

The approach entailed carrying out a playback experiment at the SCORE Range 

in August of 2004.  It was followed by a computer simulated evaluation of commonly 

used frequency and time-domain processing methods for depth estimation. In order to 

choose a satisfactory estimator for the source depth, simulated data were used to 

systematically quantify the sensitivity of the source depth estimates to additive noise, 

environmental mismatch (sound speed error) and hydrophone positional error. 

Briefly, the playback experiment transmitted a train of representative Odontocete 

(10-20-kHz) whistles using a J-9 sound source deployed from a research vessel to a depth 

of approximately 15 m.  The transmissions were recorded at each hydrophone of a 

hexagonal sub-array consisting of seven near-bottom hydrophones.  The playback 

experiment, including the geometry and the signaling and recording schemes, is detailed 

in Sec. D.   Section D also outlines the synthesis of synthetic data using a four ray-path 

model, clarifies the formulation for the complex envelope of both data and predicted 

waveforms, and derives the narrowband approximation used for depth estimation.   

Section E outlines the derivation and experimental validation of a time-difference-of-

arrival, model-based, horizontal localization scheme.  Section F details the formulation 

and computer simulated sensitivity study of four time and frequency-domain depth 

estimators.   The performance of the most robust scheme was further demonstrated with 

experimental data.  For source waveform estimation, outlined in Sec. G., the formulation 

and computer simulated performance of a frequency-uncorrelated, least-squares estimator 

was investigated.   Major conclusions of this study are given in Sec. H. 
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D.  OBSERVED AND SYNTHETIC DATA 

1.   Data Collection - August 2004 Playback Experiment 

a.   Representative Odontocete Vocalization  

  The Research Vessel Point Sur, based out of Moss Landing, California, 

provided the research platform for this experiment.  The goal of this experiment was to 

acoustically project a cycle of representative Odontocete whistles, as shown in Figure 1, 

for digital recording by the Range’s bottom mounted hydrophones. The experiment was 

conducted from 11 to 13 August 2004 at the SCORE Underwater Acoustic Range.   

Hager (2008) describes the transmission sequence and data collection.  

 

Figure 11.   The spectrogram of the signal transmitted by the J9 sound source.   The 
sequence consists of a 1 s, linear frequency-modulated (FM) “upsweep” and a 
succession of contoured, FM whistles.  The linear upsweep was utilized in this 
study.   
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b.   SCORE Underwater Acoustic Range Description 

 The SCORE Range is located on the western side of San Clemente Island.  

The water depths covered by the array vary from 1700 m in the northwest to 700 m in the 

southeast.  The portion of the array utilized for this experiment includes hydrophones 

numbered 55, 61, 69, 70, 71, 77, and 78.  They form a hexagon array with Hydrophone 

70 in the middle location.   

 

Figure 12.   Geometry of the playback experiment showing locations of the seven 
transmission stations and nearby hydrophones.   The isobaths are  shown with a 

contour interval of 200 m. 

 

The hydrophones in this subset array occupy depths varying from 1000 m 

to 1300 m.    Based upon NOAA nautical charts, the bottom is composed of grey sand.  

According to table 1B of Hamilton (1980) (utilizing “very fine sand” and 50% porosity), 

the density of this sediment is 1.856 g/cm3, with a sound speed of 1.702 km/s and 

attenuation of  .68 dB/m/kHz.   
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2.  Synthesis of Synthetic Data 

a.  Environmental Factors  

  Sippican expendable bathythermographs (XBTs) were deployed at each 

station during the experiment.  XBT data collected from Station 6 and the synthetic or 

modeled sound speed profile is displayed in Figure 3.  A strong downward refracting 

profile is evident.    Historical data was utilized for the water column from the bottom of 

the XBT (~750 m). 

 

Figure 13.   The sound speed profile used in the model (dashed) compared to data from the 
Station 6 Sippican expendable bathythermograph (XBT).  

 b.   Use of the Complex Envelope and Notation 

   All subsequent formations of the various depth estimation schemes 

(Section F) being assessed presume that the input is either the complex envelope of the 

observed waveform or the frequency spectra of the complex envelope.  Schemes 

attempting to match either the observed complex envelopes or their complex spectra with 

model predictions are commonly referred to as coherent methods, whereas those 
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attempting to match only the magnitudes of either the waveforms or spectra are referred 

to as incoherent methods.  Through out the reminder of this paper, the superscript “o” is 

used to denote observed quantities, superscript “m” model predictions, subscript “p” 

hydrophone number, and the accent “~” complex envelopes or spectra of complex 

envelopes.   

Using the aforementioned notation, the relation between the measured and 

modeled time series ( )o
pr t  and ( )m

pr t and their complex envelopes ( )o
pr t and ( )m

pr t can be 

expressed as 

             2( ) ( ) ci f to o
p pr t real r t e π⎡ ⎤= ⎣ ⎦   and    

2( ) ( ) ci f tm m
p pr t real r t e π⎡ ⎤= ⎣ ⎦           (1,2) 

where cf  is the center frequency of the bandwidth of the signal.  The complex envelope is 

a baseband signal, i.e., centered at zero Hz.   All of the envelopes of the predicted 

waveforms are normalized by their root-mean-squared (RMS) value in the depth 

estimation portion of this study. 

c.   Use of the Narrowband Approximation  

 The Hamiltonian Acoustic Ray-Tracing Program for the Ocean (HARPO) 

was used to trace theoretical ray paths from the bottom mounted hydrophones.  By 

numerical integration of the Hamilton’s Equations, this program traces the paths of 

acoustic rays as they travel through an analytic model ocean.  The original version of this 

program (Jones et al., 1986) was upgraded in 1994 (Chiu et al., 1994) to allow for the 

input of gridded bathymetry and sound speed data. 

 To simulate the acoustic arrival structure and invoking acoustic 

reciprocity, a vertical fan of rays was launched from each hydrophone along an azimuth 

to a distance of approximately 7 km.  Identification of four specific eigenrays at 

incremental depth and range increments then allows for construction of arrival structure 

as a function of range and depth. The four ray paths utilized in the study were the direct 

path, a single surface reflection, a single bottom reflection, and the ray that experiences 

one surface and bottom reflection.    
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  A MATLAB program developed by Chiu et al., in 1994 was used to 

perform eigenray searches and compute signal amplitudes.  This program calculates wave 

front travel times nt  and negative phase shifts nφ  along the ray paths and generates multi-

path arrival structure.  It requires RMS wave height, sediment density and sediment 

sound speed as inputs and conducts a coherent sum of the multi-path contributions to 

produce the predicted “receive” signal.   

 The “real” predicted received signal ( )m
pr t is the inverse transform of the 

product between the source signal spectrum ( ')S f  and the modeled source to 

hydrophone transfer function ( ')m
pH f , 

                                               2 '( ) ( ') ( ') 'm m i f t
p pr t S f H f e dfπ

∞

−∞

= ∫  ,         (3) 

where 

                                                  
4

(2 ' )

1
( ') ( ') n ni f tm

p n
n

H f a f e π ϕ− ±

=

= ∑  .          (4) 

In (4), N=4 is the number of eigenrays and 'f  is the actual frequency.  Additionally, the 

amplitude na , in general, is a function of frequency accounting for ray tube spreading, 

surface scattering loss, bottom reflection loss and volume attenuation due to chemical 

relaxation.    The ±  values in the exponential correspond to frequencies greater than and 

less than zero respectively.   

 Following (1), (2), (3) and (4), the complex envelope of the modeled 

received signal ( )m
pr t   is then  

                                    
4

(2 ' ) 22 '

1

( ) ( ') ( ') 'n n ci f t i f tm i f t
p n

n

r t S f a f e e e dfπ ϕ ππ
∞

− + −

= −∞

= ∑ ∫          (5) 

where the spectrum is moved to baseband.    Denoting f as the baseband frequency with 

                                                                    ' cf f f= − ,                                       (6) 
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( )m
pr t  can be recast as  

                             
4

(2 ) 2

1

( ) ( ) ( ) c n ni f tm i ft
p n c

n

r t S f a f f e e dfπ ϕ π
∞

− +

= −∞

= +∑ ∫ ,        (7) 

where  

                      ( ) ( )cS f S f f= +  .                                    (8) 

 Applying a narrowband approximation, where na  is assumed constant around fc , (7) 

becomes  

                                    
4

2 (2 )2

1

( ) ( ) n c n nft i f tm i ft
p n

n

r t S f e e df a eπ π ϕπ− − +

=

⎡ ⎤≅ ⋅⎣ ⎦∑ ∫ .         (9) 

Invoking the time-delay property in Fourier transform and writing out the dependency on 

source location ( , , )s s sx y z , the narrowband approximation (8) can be recast as   

                                      
4

(2 )

1

( ; , , ) ( ) c n ni f tm
p s s s n n

n

r t x y z s t t a e π ϕ− +

=

= −∑ .       (10) 

This approximation is applicable to the source-depth estimation portion of this study 

because only a portion (.1 s) of the one second linear sweep was utilized for both 

predicted and observed waveforms.      

E.  HORIZONTAL LOCALIZATION 

1.   Previous Work / Background 
 Horizontal localization of marine mammal vocalizations with widely separated 

hydrophones can easily be accomplished utilizing time difference-of-arrival (time-lag) 

techniques. Tiemann et al. (2003) developed / utilized an algorithm of this type to track 

Humpback whales using a deep water array near Hawaii.  A range-dependent acoustic 

model was used to predict time-lags expected at each sensor within the array, while 

observed time-lags were measured through a phase-only correlation process.  An 

ambiguity surface (in the horizontal plane) was then used to compare observed and 

predicted time-lags and display the most probable whale location.  
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 A similar technique is utilized in this study.  A cross correlation of the observed 

signal to the synchronous recordings of the three remaining hydrophones resulted in 

observed time-lags.  These time-lags, when compared to a search grid of predicted time-

lags can reveal a horizontal position.   

2.   Formulation and Results 
 Given the known hydrophone positions ( , )p px y and the position of the nearest 

hydrophone ( , )ref refx y  to possible source locations on the search grid ( ),s sx y ,                                                

the predicted time-lags or “lags,” ( , )p s sx yτ , are calculated as  

 
2 2 2 2

( , ) / /m
p s s s p s p s ref s refx y x x y y c x x y y cτ = − + − − − + − .             (11) 

A least-squares solution can minimize the error between the three observed (data) lags o
pτ   

and the predicted lags ( , )m
p s sx yτ  .   The least squares misfit function is 

                               
23

1

1( , ) ( , )
3

o m
s s p p s s

p

a x y x yτ τ
=

⎡ ⎤= −⎣ ⎦∑ .                                      (12) 

The best positional estimate is where ( , )s sa x y is a minimum.    

 This misfit function can also be referred to as an ambiguity surface.  As an 

example, Figure 4 displays the ambiguity surface for one of the playback signals 

transmitted at Station 5.   This localization compares favorably with the truth.   This 

method consistently worked well in localizing other playback transmissions. 

  
 



 34

 

Figure 14.   Ambiguity surface for a playback signal transmitted at Station 5.   The color 
bar shows the error between observed and predicted lags.  The best estimate, 

shown as an ‘X’ on the grid, was accurately localized in this example.  The search 
grid encompassed an area of approximately 49 km2. 

 

F.  DEPTH ESTIMATION 

1. Estimator Formulation 

a.   Frequency Uncorrelated Matched Field Processing (FUMFP) 

  The Bartlett (linear) processor is utilized here to establish the equations for 

a coherent and an incoherent scheme in the frequency domain.  The Bartlett processor 

correlates the observed spectra ( )o
pR f , where f is the baseband frequency, with a set of 
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predicted spectra, ( ; )m
p sR f z , that are often called “replicas” in MFP literature.   For 

depth estimation, the replicas are calculated using a propagation model for a set of 

possible source depths, sz , on a vertical search grid.  The property of reciprocity of the 

sound field can be used to save computational time in the generation of the replicas.   

For coherent processing and adopting Tolstoy (1993) notation, the 

processor output can be expressed as 

       ( ; )linear sP z f w Cw+= ,                         (13) 

where the superscript “+” denotes transpose and complex conjugate, and 

       

69

70

77

78

( ; )
( ; )
( ; )
( ; )

m
s

m
s

m
s

m
s

R f z
R f z

w
R f z
R f z

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

                                (14) 

is a  vector containing the predicted spectral values at the four hydrophones for a 

frequency of f and a trial source depth.  In (13), the cross-spectral data matrix, C , of size 

4 by 4, can be calculated as   

               C FF += ,                                    (15) 

where 

      

69

70

77

78

( )
( )
( )
( )

o

o

o

o

R f
R f

F
R f
R f

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

                                     (16) 

is a data vector containing the observed spectral values at the same frequency. 

By replacing the complex values ( ; )m
p sR f z and ( )o

pR f in (14) and (16) 

with their respective magnitudes, i.e., ( ; )m
p sR f z  and ( )o

pR f , the processor expressed in 

(13) becomes an incoherent estimator.  Whether processing coherently or incoherently, 

( ; )linear sP z f at each frequency “bin” represents a similarity measure as a function of trial 

source depth.  A larger value in linearP corresponds to a better match between model 

prediction and observation and vice versus.   The best source depth estimate is where the 
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frequency-averaged (over all bins) linearP attains maximum.  Following convention, the 

averaged linearP is referred to as the ambiguity curve in this study because multiple 

maxima of approximately equal amplitude, if they exist, would give an ambiguous source 

depth estimate. 

b.  Time Domain Matched Signal Processing (TDMSP) 

  TDMSP processing was accomplished utilizing two schemes – “waveform 

correlation” (coherent) and “magnitude matching” (incoherent).  Waveform correlation is 

accomplished as  

1( ; ) ( ; ) ( ; )o m
o m

s s sr r
c z r t z r t z dt

N
τ τ+= +∫ ,             (17) 

utilizing the complex envelope vectors 
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        (18,19) 

with + representing the complex conjugate and transpose.  The predicted waveforms 

( ; )m
sr t z  in (19) were calculated from (10).    Magnitude matching was accomplished as  

1( ; ) ( ; ) ( ; )o m

To m
s s sr r

c z r t z r t z dt
N

τ τ= +∫          (20) 

with T representing the transpose. The maximum value of correlation output (17,20) over 

τ  and at each depth is displayed as an ambiguity curve in subsequent figures.  The peak 

value of the ambiguity curve provides the best depth estimate.   Each scheme assumed the 

source amplitude was approximately constant over a very small fraction (.1 s) of the 

entire signal duration (1 s).  This is consistent with the narrowband approximation. 
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2.   FUMFP Computer Simulated Sensitivity Study  

a. Additive Noise  

This section introduces the first of three sensitivity studies, specifically to 

quantify the simulated effects of adding stationary white noise on the performance of the 

FUMFP estimators.  The remaining studies will focus on sound speed mismatch and the 

combined effects of hydrophone position error and sound speed error.  The ultimate goal 

of this chapter is to provide threshold (maximum tolerable) values in order to achieve an 

unambiguous and accurate depth estimate for each of the three sensitivity studies.   

Stationary white noise implies that it is frequency uncorrelated.  Because 

of this, a “gain” is experienced by frequency averaging the processor output for display 

as an ambiguity curve.  This gain can be as high as  

              Gain freg avg   = 10 log10(M),                                           (21) 

where M is the number of frequencies.  Given the number of frequencies utilized in this 

processor, a 23 dB (M=200) increase in SNR can be experienced.   Theoretically, this 

would imply that the required SNR would increase without bound as the number of 

frequencies increased.  It is important to note, however, that real-world noise is not 

perfectly uncorrelated in frequency. 

Figure 5 displays the “unlimited” SNR and additive noise ambiguity 

curves for a four hydrophone, FUMFP coherent estimator.  The difference between the 

estimate and the controlled true location is a measure of accuracy.   The difference 

between the magnitudes of peak processor output compared to adjoining side lobes is a 

measure of ambiguity.   

In simulation, both estimators proved robust in response to additive noise.  

Frequency averaging significantly enhanced the SNR threshold of both estimators by 

reducing side lobes.   This simulation indicates that the FUMFP processors will produce 

 

 

an unambiguous and accurate estimate as long as SNR is greater than -25 dB for the 
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coherent estimator and -20 dB for the incoherent estimator (not shown) when the 

processor output is frequency averaged.   

 

 
 

Figure 15.   Four hydrophone FUMFP coherent estimator ambiguity curves in an 
unlimited SNR environment (top panel) and in response to additive noise (lower 
panel).   The peak value represents the depth estimate.  Frequency averaging gain 

is included in the lower panel.  
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b.  Sound Speed and Hydrophone Position Error  

  Given a known horizontal position ( , )s sx y , the modeled received signal  

( ; )m
p sr t z , can be calculated from (10).  The center frequency, travel time product c nf t   in 

the phase, however, is sensitive to travel time error caused by mismatch between the 

modeled and actual sound speed profile (sound speed error).  This sound speed error 

( )c zδ , is 

                                            ( ) ( ) ( )o mc z c z c zδ = −  .                                         (22)  

In order to simulate the travel time error resulting from this type of 

mismatch, a synthetic (vertical extent or h∆ = 100 m) sound speed profile anomaly or 

“feature” (Figure 6) that produced sound speed errors of .1, .2 and 1 m/s was introduced 

into the model.    The corresponding “jth ” eigenray time travel error jtδ , is then 

calculated as  

                          
( )2

( )
j m

c zt ds
c

δδ = −∫ .                                           (23) 

Collectively, these travel time errors lead to error in the predicted received signal.   

  

 

Figure 16.   Synthetic sound speed profile “feature” located at 250 m depth ( h∆  refers to 
the vertical extent of the feature). 
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 The simulated results are displayed in Figure 7.   It is clearly evident that 

the coherent estimator can’t tolerate sound speed errors caused by this feature greater 

than .1 m/s.   The performance is even poorer for the incoherent estimator.  

 

Figure 17.   Four hydrophone, FUMFP coherent processor ambiguity curves are displayed 
for a 1 kHz portion of the upsweep.   Sound speed error values of .1, .2 and 1 m/s 
experienced over a 100 m feature located at a depth of approximately 250 m were 

investigated.  The true source depth used for simulation was 13 m. 

 

 FUMFP sensitivity to hydrophone positional error and additive sound 

speed error is displayed in Figure 8.  The induced positional error was accomplished by 

holding two hydrophone depths constant and adjusting the depths of the remaining two 

hydrophones by 1 m and 2 m respectively.  The computer simulation was then re-run 

with 0 and .1 m/s sound speed error.  The accuracy of the estimate suffered with greater 

than a .1 m/s error. For example, even though the 1 m/s ambiguity curve provided an 

unambiguous estimate, it was approximately 3 meters in error.   
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Figure 18.   The combined effects of  1 m and 2 m hydrophone vertical positional error 
(for two of four total hydrophones) and sound speed error values of 0 and .1 m/s 

experienced over a 100 m feature located at a depth of approximately 250 m for a 
four hydrophone, FUMFP coherent estimator.  The true source depth used for 

simulation was 13 m. 

 
 While the positional errors alone (given ( )hcδ ∆  = 0 m/s) significantly 

degraded depth estimation in the coherent estimator (Figure 8), an unambiguous depth 

estimate could not be made with the incoherent scheme. The combined effects of 

hydrophone position (1 m and 2 m vertical position error over 1400 m depth for two of 

four hydrophones) and sound speed error clearly affect the performance of these 

estimators.   Based upon the limited tolerance of both processors, they are both 

inadequate for depth estimation. 

3.  TDMSP Computer Simulated Sensitivity Study  
 Although both four hydrophone, TDMSP schemes were found to be robust in 

response to additive noise (-22 dB for waveform correlation and -10 dB for magnitude 

matching), waveform correlation proved especially sensitive to sound speed error alone 

and accurate results were not obtained - even for the starting value of .1 m/s.  The  
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magnitude matching estimator, however, provided an accurate and relatively 

unambiguous depth estimate for up to 3 m/s of sound speed error (Figure 9).   

 When the hydrophone positional errors induced in the previous section were 

combined with sound speed error, the estimator performed nearly as well and provided an 

accurate and unambiguous depth estimate up to 2 m/s of sound speed error (Figure 10).  

Although additional increments of sound speed error revealed an unambiguous depth 

estimate (specifically 5 m/s in Figure 9 and 4 m/s in Figure 10), they were inconsistent.  

Based upon the sensitivity study results from this and previous sections, the four 

hydrophone TDMSP magnitude matching estimator was found to be the most tolerant 

and accurate of the four analyzed.   

 

Figure 19.   Four hydrophone (N=4) TDMSP magnitude matching estimator results in 
response to sound speed error values of 3, 5 and 6 m/s experienced over a 100 m 

feature located at a depth of approximately 250 m.  The true source depth used for 
simulation was 13 m. 
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Figure 20.   Four hydrophone (N=4) TDMSP magnitude matching estimator results in 
response  to  1 m and 2 m hydrophone vertical positional errors (for two of four 
total hydrophones) and sound speed error values of 2, 4, & 5 m/s experienced 

over a 100 m feature located at a depth of approximately 250 m.  The true source 
depth used for simulation was 13 m. 

  

4.   Experimental Results  
 When the magnitude matching estimator was applied to data, a peak at the known 

approximate depth resulted (Figure 11).  An additional peak, however, is apparent at 38 

m.  The bimodal nature of these results indicates that at least one of the tolerances was 

exceeded.  
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Figure 21.   Four hydrophone (N=4) TDMSP magnitude matching estimator results.   The 
red circle indicates the peak closest to known depth. 

 
 

In an attempt to achieve an unambiguous result, N was reduced from four to one.  

In doing so, individual hydrophone ambiguity curves did provide unambiguous estimates, 

but the depths were inconsistent.  Figure 12 displays single hydrophone (N=1) magnitude 

matching, ambiguity curves for Hydrophones 69, 77 and 78.  The peak value for 

Hydrophone 69 is 11.8 m, 10.6 m for Hydrophone 78 and 20.8 m for Hydrophone 77.   
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Figure 22.   Single hydrophone (N=1) TDMSP magnitude matching estimator results for 
Hydrophones 69, 77 and 78.  The inconsistent peaks, or depth estimates, reveal the 

potential hydrophone positional and/or sound speed error.  

   

 Further analysis as to the cause for the inconsistent depth estimates was 

accomplished by varying the two suspected parameters (hydrophone position and sound 

speed error) independently in computer simulation.  The single hydrophone estimator 

proved robust to sound speed error (Figure 13), but was very sensitive to hydrophone 

position error (Figure 14).    Introduction of a 6 m vertical position error resulted in 

nearly a 5 m difference from the zero position error result.   This positional error, 

suspected in earlier computer simulation sections as potentially degrading performance, 

is suspected as the cause for the inconsistent peaks found in the experimental single 

hydrophone TDMSP magnitude matching results. 
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Figure 23.   Hydrophone 69 TDMSP magnitude matching estimator results with sound 
speed error values of 0, 3 and 6 m/s experienced over a 100 m feature located at a 
depth of approximately 250 m. The true source depth used for simulation was 13 

m.  

 

Figure 24.   Hydrophone 69 TDMSP magnitude matching estimator results with zero and a 
6 m position error.  The true source depth used for simulation was 13 m.   
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G. SOURCE SIGNAL WAVEFORM RECONSTRUCTION  

1. Least Squares Estimation Formulation 
 Given the three dimensional estimated position corresponding to longitude, 

latitude, and depth, the next sequential step in this study was to attempt a source signal 

waveform reconstruction.   Although fixed bottom hydrophones do not often afford the 

opportunity for unaltered, near field digital recording, a modeled field of expected source 

to hydrophone transfer functions, combined with received data from multiple 

hydrophones, can be utilized for a least-squares estimate of the source signal waveform.   

Reconstruction of the source signal amplitude modulation, specifically the magnitude of 

the complex envelope, is the goal.   

 Following the technique outlined in Moore (1999) and Chiu et al. (1999), the 

frequency spectrum ( )pR f  of the signals received at the “pth” hydrophone is related to 

the frequency spectrum of the source signal ( )S f , weighted by the source-to-receiver 

transfer functions ( )pH f  combined with the additive effects of noise ( )pN f .  This is 

stated mathematically as  

                                ( ) ( ) ( ) ( )p p p pR f S f H f N f= + .                   (24) 

The best estimate of the source signal’s frequency spectrum ˆ( )S f , assuming no known 

signal characteristics, is then calculated through least-squares estimation.   

In this technique, the sum of squared errors or cost function, C, is calculated as  

           ( ) ( ) ( ) ( ) ( ) ( )o m o m
p p p pC R f H f S f R f H f S f

+
⎡ ⎤ ⎡ ⎤= − −⎣ ⎦ ⎣ ⎦   ,           (25) 

where + represents the conjugate transpose.  The cost function is minimized to obtain the 

best estimate of the source signal spectrum in  

             
1ˆ ( ) ( ) ( ) ( ) ( )m m m oS f H f H f H f R f

−+ +⎡ ⎤= ⎣ ⎦           (26) 

The best estimate of the source signal ˆ( )s t  is then calculated via the inverse transform of 

ˆ( )S f  as 
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2ˆˆ( ) ( ) i fts t S f e dfπ−= ∫ .                                 (27) 

It is important to note that this deverberation method is frequency-uncorrelated, 

specifically, the least squares estimate is conducted bin-by-bin, with no relationship to 

adjoining bins.   

2.  Source Signal Reconstruction Sensitivity Study  
  Figure 15 displays the least-squares estimator’s response to additive noise while 

Figure 16 shows the estimator’s response to sound speed error. The ramp-up and ramp-

down slopes and constant amplitude modulation are evident in all reconstructed 

waveforms for the noise study as long as the SNR remains above 5 dB.   The magnitude 

of the complex envelope is clearly evident in the 10 dB panel.   

 

Figure 25.    Four hydrophone, frequency-uncorrelated least-squares, source signal 
waveform estimator results in response to additive noise.  SNR decreases from 

top to bottom.   The source signal waveform is 1 s in duration. 

 

 Figure 16 displays the computer simulation of added sound speed error effects on 

the least squares estimator.   The magnitude of the complex envelope with zero error is 

displayed for comparison in the top panel.  The ramp-up and ramp-down slopes remain 
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evident in response to elevated sound speed error values, but there is a significant 

deviation from the constant amplitude between the slopes.   This estimator appears 

sensitive to sound speed errors greater than .1 m/s.    

 

 
  

Figure 26.   Four hydrophone, frequency-uncorrelated least-squares, source signal 
waveform estimator results in response to sound speed error.   Error values of .1, 

.5 and 1 m/s experienced over a 100 m feature located at a depth of approximately 
250 m are presented.  The source signal waveform is 1 s in duration. 

 

There is a potential to achieve a better tolerance or lower SNR with this estimator 

by incorporating “a priori” parameters.  Frequency bandwidth, phase modulation and 

signal duration can be revealed with spectrograms. A priori constraints could be included 

in future work.    

 Experimental results obtained with a three hydrophone least-squares estimator 

were inconclusive.   Hydrophone 70 observed data was not utilized in the estimator due 

to an AGC change.  This limitation, detailed in Hager (2008) poses a significant 

challenge not only to waveform reconstruction, but SL calculations as well.  
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Unfortunately, neither the ramp-up / ramp-down slopes nor the constant amplitude were 

reconstructed.  A number of reasons are suspected.  The most probable reasons are the 

combined affects of additive noise, sound speed error and hydrophone positional 

inaccuracies.    

H.   SIGNIFICANT RESULTS / CONCLUSIONS 

1.  Depth Estimation 

a.   Simulated Results - FUMFP 

  While both FUMFP estimators proved equally robust in response to 

additive noise, the coherent estimator produced unambiguous and accurate results, with 

significant side-lobe suppression due to frequency averaging, to -25 dB SNR.  The 

incoherent estimator performance degraded below -20 dB.  Both processors degraded 

when a sound speed error, ( )hcδ ∆  (introduced by a feature (∆h = 100) at 250 m depth in a 

water column of approximately 1000 m in depth), greater than .1 m/s was introduced.  

Positional errors of 1 m and 2 m for two of four hydrophones significantly degraded 

depth estimation in the coherent processor and no estimate was made with the incoherent 

scheme. The combined effects of small hydrophone positional errors combined with 

sound speed error clearly affected depth estimation.   Neither of the two FUMFP 

estimators analyzed proved applicable for depth estimation for this experiment. 

  

0 m/s0 m/s-20 dBincoherent

0 m/s.1 m/s-25 dBcoherent

hydrophone position** 
and SSP errorSSP error**additive noise*

* Includes potential frequency averaging gain (M=200)
** SSP error introduced by a 100 m feature at 250 m depth
***  Adjust 2 of 4 vertical hydrophone positions by 1 and 2 m respectively

 
  

Table 1.   Tolerance results for four hydrophone FUMFP depth estimators. 
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b.  Simulated Results - TDMSP 

   Although both TDMSP estimators appeared robust in response to additive 

noise and achieved accurate and unambiguous depth estimates in simulation, waveform 

correlation, did not provide accurate results when faced with sound speed errors.   The 

magnitude matching estimator, however, provided an accurate depth estimate up to a 

sound speed error threshold of 3 m/s independently and to 2 m/s when combined with 

hydrophone position errors of 1 and 2 m for 2 of the 4 hydrophones.  Clearly magnitude 

matching is the best choice of the four estimators. 

2 m/s3 m/s-10 dBMagnitude 
Matching

0 m/s.1 m/s-22 dBWaveform 
Correlation

hydrophone position** 
and SSP errorSSP error*additive noise

* SSP error introduced by a 100 m feature at 250 m depth
** Adjust 2 of 4 vertical hydrophone positions by 1 and 2 m respectively

 
 

Table 2.   Tolerance results for four hydrophone TDMSP depth estimators. 

Unambiguous, yet inconsistent single hydrophone depth estimates were 

obtained utilizing magnitude matching of predicted to observed data recorded on 

Hydrophones 69, 77 and 78.   The most probable cause for the difference between single 

hydrophone depth estimates (10.6 m, 11.8 m and 20.8 m) was analyzed by computer 

simulation.  Hydrophone positional error is suspected as the cause.   

2.  Source Signal Waveform Reconstruction 

a.  Simulated Results 

 In the presence of simulated noise, the four hydrophone, frequency 

uncorrelated, least-squares estimator degraded noticeably at less than 5 dB of SNR.  In 

light of introduced sound speed error, the ramp-up and ramp-down of the original signal 
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were successfully reconstructed but there was a significant deviation from the constant 

amplitude expected in simulations of ( )hcδ ∆  greater than .1 m/s.   

b.   Experimental Results and Recommended Direction 

 Unfortunately, neither the ramp-up / ramp-down slopes nor the constant 

amplitude of the assumed source signal waveform were reconstructed experimentally.  

The most probable reasons for this are the cumulative effects of background noise, sound 

speed error and hydrophone position inaccuracies.  Evidence that the SNR threshold was 

exceeded is found in the experimentally obtained SNRs (approximately -5.3 dB for a 

detection range of 2326 m and -7.3 dB for a detection range of 3226 m) for the playback 

experiment.   These values accurately reflect the SNRs experienced by the 3 hydrophones 

used in reconstruction.  In order to properly validate this technique, a playback 

experiment would require a higher SL transmission.   

 There is a potential to achieve a better tolerance or lower SNR for source 

signal waveform reconstruction with this estimator by incorporating a priori or known 

parameters.  Because frequency bandwidth, phase modulation and signal duration can be 

revealed with spectrograms, these a priori constraints could be included in future work.   

Source level estimates will remain a challenge, however, due to the lack of hydrophone 

sensitivity described in Hager (2008).  Without an accurate conversion to µ Pa, source 

level (SL) cannot be estimated.   
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IV. CONCLUSIONS  

Four primary goals were established for this dissertation; 1.  Project a controlled 

and “representative” series of Odontocete vocalizations for digital recording and analysis 

while over the U.S. Navy SCORE Underwater Acoustic Range, 2.  Obtain statistical 

measures of detection performance for extrapolation of detection range estimates with SL 

variability, 3.  Test and refine collective three dimensional localization schemes through 

simulation and data-model comparisons of candidate methods and 4.  Utilize inverse 

acoustic techniques for source signal waveform reconstruction.  This closing section of 

the dissertation will address observations, challenges realized, and results from each of 

the 4 goals. 

The playback experiment encountered two limitations, AGC adjustments on 

recorded hydrophone data and background clutter.  The fixed AGC decreases amplitude 

when the received levels are too high and seriously hinders many aspects of this study, 

specifically SL calculations and source signal waveform reconstruction.  The discussion 

of background clutter is two-fold.  The first is inherent with the playback experiment 

itself while the second involves the presence of background anthropogenic noise.  

Playback clutter occurred as a result of “actual” vocalizations correlating with detector 

kernels rather than the transmitted signal while anthropogenic noise, that is, a fathometer, 

ship’s sonar, etc., present a challenge if the signal was similar.   It is the authors’ opinion 

that the bulk of “in band” energy is of marine mammal origin.   

As stated, the playback clutter induces a masking of the correlator or energy 

detector output intentionally reserved for the transmitted signal.  To put it bluntly - the 

animals refused to remain quiet during transmission and often engaged in an interrogation 

/ response dialogue with the J-9 sound source.  A striking observation in the data revealed 

that an animal would mimic the transmitted signal almost perfectly in frequency versus 

time slope, often at a higher SL. 

Statistical analysis of playback signals revealed valuable relationships for 

detection algorithms.  Detection ranges to assure at least a 95% probability of detection 

and .01% false alarm rate were found to be 1600 m (energy detector) and 5100 m 
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(correlator) in the presence of background clutter.  These experimental detection ranges 

were associated with a one second, downsweep, FM signal transmitted from 20 -10 kHz  

( SL= 135 dB re 1  @ 1mPaµ   ).  The signal was transmitted at a depth of approximately 

15 meters.   

Extrapolation of detection range estimates in a variable SL environment was 

accomplished using empirically derived SNR / detection ranges and a TL model that 

incorporated bottom, surface, and absorption losses.  A 600 m detection range increase 

per 3 dB SL increase ratio was extracted.  Most notably, a 3 dB increase in SL from that 

transmitted in this experiment resulted in nearly a 100% detection area coverage that 

assured a p(D) of  95% and p(FA) of .01% for the seven bottom hydrophones hexagonal 

pattern prevalent throughout the range. 

Although not a limitation of this study, the band-pass nature of the bottom 

hydrophones will prove a challenge for future work at the Range.  This prevented full 

exploitation of the previously documented and broadband nature of Odontocete 

vocalizations.  Although the available band (8- 40 kHz consists of the low and high end 

frequency “roll offs” for bottom hydrophone detection) does contain portions of clicks 

and is well populated with whistles, the full frequency regime of vocalizations cannot be 

investigated.    Additionally, the array is unable to record Mysticeti vocalizations, which 

are well known to occur below 8 kHz.  Given the migration through and population of 

Gray whales and Blue whales in the immediate vicinity, the filtering represents a 

significant limitation. 

 The remaining two goals for this study, outlined in Section II, met with challenges 

as well.   Horizontal localization was easily accomplished using time-difference-of-

arrival processing of raw hydrophone data.  Proven successful in previous studies, this 

method was extremely accurate and appears functional for use in automated localization 

systems.    

 TDMSP magnitude matching proved to be the best estimator of the four 

investigated, specifically in response to sound speed error, ( )hcδ ∆  (introduced by a 100 m 

feature at 250 m of water column depth) and hydrophone positional errors of 1 and 2 m 

for two of four hydrophones.   Unambiguous, yet inconsistent, single hydrophone depth 
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estimates were obtained experimentally utilizing magnitude matching of predicted to 

observed data recorded on Hydrophones 69, 77 and 78.  The difference between single 

hydrophone depth estimates (10.6 m, 11.8 m and 20.8 m) revealed a potential 

hydrophone positional error.   

In the presence of simulated noise, the four hydrophone, frequency uncorrelated, 

least-squares estimator degraded noticeably with SNRs less than 5 dB.  In light of 

introduced sound speed error, the ramp-up and ramp-down of the complex envelope of 

the assumed source signal were successfully reconstructed but there was a significant 

deviation from the constant amplitude, specifically when a sound speed error greater than 

.1 m/s was introduced.   

Unfortunately, neither the ramp-up / ramp-down slopes nor the constant 

amplitude, characteristic of the assumed source signal waveform were reconstructed 

experimentally.  The most probable reasons for this are the cumulative effects of additive 

noise, sound speed error and hydrophone position inaccuracies.  Additionally, the 

playback transmission SL was too low.  Experimentally obtained SNRs (approximately   

-5.3 dB for a detection range of 2326 m and -7.3 dB for a detection range of 3226 m) 

accurately reflect the SNRs experienced by the 3 hydrophones used in reconstruction.  In 

order to properly validate this technique, a playback experiment would require a higher 

SL transmission.   

A shortcoming of this study is the lack of hydrophone sensitivity.  Without an 

accurate conversion to µ Pa, SL can not be estimated.   There is a potential, however, to 

successfully reconstruct amplitude modulation. Given the parameters of frequency 

bandwidth, signal duration, and phase modulation (revealed in spectrograms) as a priori 

information, constraints could be applied to the least-squares estimator to achieve a 

successful reconstruction of the complex envelope magnitude in future studies.  
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