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PREFACE

The main thrust of this book is easily described. It is to introduce the reader who
already has some familiarity with the basic notions of sets, groups, rings, and
vector spaces to the study of rings by means of their module theory. This program
is carried out in a systematic way for the classically important semisimple rings,
principal ideal domains, and Dedekind domains. The proofs of the well-known
basic properties of these traditionally important rings have been designed to
emphasize general concepts and techniques. Hopefully this will give the reader a
good introduction to the unifying methods currently being developed in ring
theory.

Part I is a potpourri of background material, much of which is undoubtedly
familiar to the reader, some of which is probably new. In addition to the usual
notions of sets, monoids, and groups, heavy emphasis is put on maps and
morphisms of monoids and groups. This naturally leads to the notion of a cate-
gory, which is briefly discussed in Chapter 3. In Chapter 4, the notions already
developed for sets, monoids, and groups are applied to a preliminary discussion of
the category of rings. Chapter 5 is far less formal. It is devoted to the study of
unique factorization in arbitrary commutative domains. Here the principal novel-
ties are the heavy use of localization in commutative domains and the introduction
of chain conditions for ideals.

Part Two begins with a lengthy discussion of modules over general rings.
Starting from the notion of a basis for vector spaces, we develop free modules as
well as the general notion of sums and products in the category of modules over a
ring. Among other things, it is shown that a ring R is a division ring if and only if
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| PREFACE

every R-module is free. This is the first step of our general program of studying
rings by means of their modules. Although Chapter 6 is too long to describe in
further detail, we caution the reader that familiarity with the contents of this
chapter is essential to the understanding of the rest of the book.

The remainder of Part Two is devoted to the next step of our program of
studying rings by means of their modules. Namely, it is shown that a ring is
semisimple if and only if its modules are semisimple. In this context, projective
modules arise naturally. So, also, does the notion of the radical of a ring. Although
this part of the book is devoted mainly to semisimple rings, some fundamental
facts are developed for general artin rings in the text as well as in the exercises.

The rest of the book is devoted almost exclusively to commutative rings.

Since localization and tensor products play such important roles in this theory,
Part Three starts with a discussion of these techniques. This is then followed by
the study of principal ideal domains. These rings are characterized as
commutative rings R with the property that submodules of free R-modules are
free. Thus, they arise naturally as the next step in our program of studying rings
by means of their modules. In describing the structure of finitely generated
modules over principal ideal domains, injective modules are introduced. Part
Three ends with applications of this structure theory to the study of
endomorphisms of finite-dimensional vector spaces. Included are such standard
items as canonical forms of matrices and determinants.

The final part of the book is devoted to algebraic extensions of fields and the
study of integral extensions of noetherian domains. The major aim of Chapter 12
is to develop finite galois theory of fields. This theory is used to study integral
extensions of noetherian domains which leads to the theory of Dedekind domains.
As part of our general module theoretic point of view, we characterize Dedekind
domains as those integral domains having the property that submodules of
projective modules are projective. The book ends with a description of the ideals
in Dedekind domains and the structure theorem for finitely generated modules
over such domains.

We recommend that the reader have pencil and paper close at hand when
reading the text. Proofs for many assertions have been omitted. The reader will be
able to supply the missing steps or proofs either by himself or after consulting
outlines given in the exercises. In addition to exercises explaining the text, there
are exercises dealing with related but supplementary material.

The partitioning of the book was done on pedagogical as well as logical
grounds. Part One can be used for a leisurely one-semester course on the
fundamental structures of algebra. Parts Two and Three can serve as a
one-semester introduction to general ring theory for more advanced students. For
students familiar with Chapters 1, 2, and 4, the entire text should constitute a full
year course in algebra.

We thank our publishers, Harper & Row, for their patience during the
preparation of the manuscript.

M. A.
D. A.B.
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Chapter1 SETS
AND
MAPS

INTRODUCTION

This chapter and the next are devoted to a review of the basic concepts of set and
group theory. Because we are assuming the reader already has some familiarity
with these topics, our exposition is neither systematic nor complete. Only a brief
description of the basic concepts and results that are needed in the rest of this
book is presented.

This should serve to give the reader some idea of the mathematical back-
ground we are assuming as well as help fix conventions and notations for the rest
of the book. Although few proofs are given, outlines of proofs of the less obvious
results cited in the text are given in the exercises. It is hoped that the reader will
find completing these outlines a useful way of familiarizing himself with any new
concepts or results he may encounter in this or the next chapter.

1. SETS AND SUBSETS

We take a naive, nonaxiomatic view of set theory. We view a set as an actual
collection of things called the elements of the set. We will often denote the fact
that x is an element of the set X by writing x € X. From this point of view it is
obvious that two sets are the same if and only if they have the same elements. Or
stated more precisely, two sets X and Y are the same if and only if both of the
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4 ONE/SETS AND MAPS

following statements are true:

(a) If x€ X, then x€Y.
(b) If yEY, then yE X.

In this connection, we remind the reader that in mathematical usage, a
statement of the form “If A, then B” is true unless A is true and B is false, in
which case it is false. In particular, if A is false, then the statement “If A, then B”
is true independent of whether B is true or false. To illustrate this point we show
that there is only one empty set.

We recall that a set X is said to be empty if X has no elements; or more
precisely, if the statement “x € X is always false. Suppose now that the sets X
and Y are empty. Then both of the statements “x€ X and “y € Y™ are always
false. Hence, by our convention concerning sentences of the form “If A, then B,”
both of the statements

@ IfxeX thenxeY;
(b) If y€Y, then yeE X;

are true. This shows that if the sets X and Y are both empty, then X = Y. Follow-
ing the usual conventions of set theory, we assume that there is an empty set. This
uniquely determined set will usually be denoted by §.

An important set associated with a set X is the power set 2* of X which we
will define once we have recalled the notion of a subset of a set.

A set Y is said to be a subset of a set X if every element of Y is also an
element of X, or equivalently, the set Y is a subset of the set X if and only if the
statement “If y € Y, then y € X" is true. The fact that Y is a subset of X is often
denoted by Y C X, which is sometimes also read as “Y is contained in X.”

One easily verified consequence of this definition is that if X is any set, then
the empty set @ is a subset of X. For the statement “If x €8, then x € X,” is true
for any set X because the statement “‘x €8” is always false. Also associated with
an element x of X is the subset {x} of X consisting precisely of the element x of X.
Further, the reader should have no difficulty verifying the following.

Basic Properties 1.1
Let X, Y, and Z be sets. Then:

(a) XCX.
(b) X=Y if and only if XCY and YCX.
() If XCY and YCZ, then XCZ.

We are now in a position to define the power set 2* of a set X. The set 2* is the
set whose elements are precisely the subsets of X. Stated symbolically, the power
set 2* of a set X is the set with the property that Y €2* if and only if YCX.

It is worth noting that 2* is never empty, even if X is empty. This is because
the empty set @ is always contained in X and is thus an element of 2*. Also, as we
have already observed, there is associated with each element x of X the element
{x} of 2*. Hence, 2* consists of a single element if and only if X is empty.

We now recall the familiar notions of union and intersection of sets. Suppose
X is a set and ¥ a subset of 2. The intersection of the subsets of X in & is the
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Maps 5

subset N X' of X consisting of all x in X such that the statement “If X' € &,

X'ey
then x € X' is true. It should be noted that if the subset & of 2* is empty, then
N X' = X Forif & is empty, then the statement “If X' € &, then x € X'" is true

X'EY
for all x in X since the statement “X' € ¥ is false.
The union of the subsets of X in & is the subset U X' of X consisting of

X'ey
all x in X with the property that the statement “There is an X' € ¥ such that
x € X'” is true. It should be noted that if & is empty, then U X' =@. Forif & is

x'€¥
empty, then the statement “There is an X’ € & such that x € X' is false for all
x € X since there are no X' in 2* satisfying the condition that X' is in .
In practice, a particularly useful way of studying a set is to represent it as a
union of some of its subsets. For this reason it is convenient to make the following
definition.

Definition
Suppose X is a set. A subset € of 2* is called a covering of X if X = XU X'
'EYC
Although coverings of various types play an important role in all of
mathematics, we will be particularly concerned with the type of coverings called

partitions.

Definition
A covering € of a set X is said to be a partition of X provided:

(a) If X' €€, then X'#4.
() If X' and X" are distinct elements of ¢, then X' N X"=4@.

The reader should convince himself that a set € of nonempty subsets of a set
X is a partition of X if and only if each element in X is in one and only one subset
of X in €. For this reason, if € is a partition of a set X, it makes sense to talk about
the element of € containing a particular element x of X. We will usually denote by
[x)¢ the unique element of the partition € of X containing the element x of X.
When there is no danger of ambiguity concerning the particular partition € of a
set X, we will write [x] for [x]e.

Finally, we recall what is meant by the product X X Y of two sets X and Y.
The set XX Y consists of all symbols (x, y) with x an element of X and y an
element of Y. Hence, two elements (x, y) and (x’, y') in X X Y are the same if and
only if x =x' and y = y’. Obviously, X X Y is empty if and only if either X or Y is
empty.

2. MAPS
A map of sets consists of three things: a set X called the domain of the map,aset Y
called the range of the map, and a subset f of X x Y having the property that if x is

in X, then there is a unique y in Y such that the element (x, y) in XxX Y is in f.
These data X, Y, f will be denoted by f: X— Y which is to be read as “f is a map
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6 ONE/SETS AND MAPS

from X to Y.” If x is in X, then the unique element y in Y such that (x, y) is in f is
called the value of the map f at x and is denoted by f(x).

It is important to observe that according to this definition two maps cannot be
the same unless they have the same domain and range. Also, two maps f: XY
and g: X- Y with the same domains and ranges are the same if and only if their
values are the same for each x in X, that is, if and only if f(x) = g(x) for all x in X.
Thus, once having specified the domain and range of a map, it only remains to
describe its values for each x in X in order to completely determine the map. In
the future, when defining particular maps from a set X to a set Y, we shall
generally describe them by prescribing their values for each x in X rather than
by writing down a subset of X % Y. In following this procedure it is of course
necessary to make sure that one and only one value in the range has been assigned
to each element of the domain. As an illustration of this point suppose that <€ is a
partition of a set X. Then we have already seen that for each x in X there is one
and only one element [x]¢ of € containing x. Thus, we obtain a map k¢ : X - € by
setting ke¢(x) =[x)¢. Of course, we could have also defined the map k¢ as the
subset of X x € consisting of all elements (x, [x]¢) in X X € with x in X.

We now describe some important maps of sets.

Example 2.1 Suppose f: X— Y is a map and X’ is a subset of X. We define a
map f|X': X' Y called the restriction of f to X’ by (f|X')(x’)= f(x) for all x’ in
X'.

Example 2.2 Associated with each subset X’ of a set X is the inclusion map
from X’ to X which is denoted by inc : X' —» X and is defined by inc(x) = x if x is an
element of X which is in X'.

Example 2.3 The inclusion map of a set X to itself is called the identity map
and is usually denoted by idx for each set X.

Example 2.4 Since the empty set @ is a subset of any set X, we always have
the inclusion map inc:@— X. Actually, this is the only map from @ to X and this
unique map from @ to a set X is called the empty map. In this connection, the
reader should convince himself that there are no maps from a nonempty set to the
empty set.

Example 2.5 We have already seen that associated with a partition € of a set
X is the map k(: X— % given by kd{x) =[x] for each x in X where [x] is the unique
subset of X in € containing the element x. This map k¢: X— % is called the
canonical or natural map from the set X to the partition €.

Suppose X and Y are sets. Then each map with domain X and range Y is
completely determined by a subset of X X Y and hence by an element of 2***
Thus, the collection of all maps from X to Y which we denote by (X, Y) is a set
which is a subset of 2**Y,

Of fundamental importance in constructing and analyzing maps is the notion
of the composition of maps. Given two maps f: X— Y and g : Y- Z with the range
of f the same as the domain of g, we define their composition gf to be the map
gf: X—Z given by gf(x) = g(f(x)) for each x in X. It follows immediately from
this definition that if we are given three maps f: U—»> X, g: X—>Y,and h: Y>2Z,
then the two maps h(gf): U—>Z and (hg)f: U— Z are the same. This property of
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Isomorphisms of Sets 7

the composition of maps is referred to as the associativity of the composition of
maps.

As an example of the composition of maps we point out thatif f: X > Y isa
map of sets and X' is a subset of X, then f|X': X' Y, the restriction of f to X, is
the composition X’'—2»X —L{>Y where inc: X’ X is the inclusion map.

3. ISOMORPHISMS OF SETS

One of the most important problems in mathematics is deciding when two
mathematical objects have the same or similar mathematical properties and can
therefore be considered essentially the same. Since all the mathematical objects
we will be considering in this book consist of an underlying set together with some
additional structure, it is reasonable to first consider how sets are compared and
the circumstances under which they are considered essentially the same.

Because a map from a set X to a set Y associates with each element x in X an
element y in Y, a map clearly can be viewed as a method for comparing the sets X
and Y. If this is a reasonable idea, then we should be able to state in terms of maps
what is probably the simplest comparison of sets we can make: the fact that a set
is the same as itself. The reader should have no difficulty convincing himself that
the identity map on a set does indeed express this fact. It is interesting to note that
the identity map on a set can be completely described in terms of maps as is done
in the following.

Baslc Property 3.1
For a map f: X— X, the following statements are equivalent:

(ﬂ) f=idx.
(b) Given any map g: X—Y, then gf=g.
(c) Given any map h: Y- X, then fh=h.

Having decided that the identity map expresses the fact that a set is the same
as itself, it is reasonable to ask what kind of maps between two sets X and Y must
exist in order to conclude that X and Y resemble each other as much as possible.
In view of our previous discussion, this amounts to asking when is a map
f: X-Y close to being an identity map? A possible answer might be that there is a
map g : Y- X such that the composition gf: X— X is the identity on X. But there
is no reason to favor the set X over the set Y. Hence, we should also require that
there be a map h: Y— X such that fh =idy. However, the associativity of the
composition of maps implies that under these circumstances the two maps g and h
are the same. Therefore, it seems reasonable to consider two sets X and Y as
being essentially the same if there exists a pair of maps f: X->Y and g: Y- X
such that gf =idx and fg =idy. In fact, this amounts to nothing more than the
familiar notion of two sets being isomorphic, as we see in the following.

Definition _

Let X and Y be sets. A map f: XY is said to be an isomorphism if and only if
there is a map g: Y- X such that gf =idx and fg =idy. If f: X—> Y is an isomor-
phism, then there is only one map g:Y — X with these properties, and this
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8 ONE/SETS AND MAPS

uniquely determined map from Y to X, which we denote by f~', is called the
inverse of f. Finally, the set X is said to be isomorphic to Y if there is a map
f:X-Y which is an isomorphism.

We remind the reader of the following.

Basic Properties 3.2

(a) All identity maps are isomorphisms which are their own inverses. Hence, all
sets are isomorphic to themselves.

M) If f:X—>Y is an isomorphism, then the inverse f™':Y =X is also an
isomorphism whose inverse is f, that is, (f ')"' =f Hence, if X is isomorphic
to Y, then Y is isomorphic to X.

(c) The composition gf of two isomorphisms g and f is also an isomorphism with
inverse f'g”". Thus, if X is isomorphic to Y and Y is isomorphic to Z, then X
is isomorphic to Z.

(d) If gf is an isomorphism, then g is an isomorphism if and only if f is an
isomorphism.

Experience has shown, roughly speaking, that a map f: X— Y is an isomor-
phism if and only if it gives a way of identifying the set X with the set Y. A precise
formulation of this idea is given in the following familiar characterization of
isomorphisms.

Basic Property 3.3
A map f: XY is an isomorphism if and only if it satisfies both of the following
conditions:

(a) If y€ Y, then there is an x in X such that f(x)=y.
() If x, and x, are in X and f(x,) = f(x;), then x, = x..

Although technically equivalent to the notion of an isomorphism, the condi-
tions (a) and (b) of the above basic property are conceptually quite different from
our original definition of an isomorphism since these conditions describe what
the map does to the elements of the sets involved rather than how it is related to
other maps. We will often refer to an isomorphism as a bijective map when we
wish to emphasize this different approach to the concept of an isomorphism
of sets.

4. EPIMORPHISMS AND MONOMORPHISMS

Yet another aspect of the notion of an isomorphism of sets is given in the
following.

Basic Property 4.1
A map f: X—Y which is an isomorphism satisfies the following conditions:

(a) If g,, 2.: Y= Z are two maps such that g,f=g.f, then g, = g.
) If h,, h,: U- X are two maps such that fh, = fh,, then h,= h,.

Google



Epimorphisms and Monomorphisms 9

It turns out that there are many important maps which satisfy one but not
necessarily both of the above conditions. For this reason we make the following
definitions.

Definitions
Let f: XY be a map.

(a) f is called an epimorphism if given two maps g,,2,: Y—>Z, we have g,=g;
whenever g,f= g.f.

(b) f is called a monomorphism if given two maps h,, h,: U— X, we have h,= h,
whenever fh, = fh,.

Thus, if a map is an isomorphism, it is both an epimorphism and a mono-
morphism.

We now list some easily verified properties of epimorphisms and mono-
morphisms.

Basic Properties 4.2
Let f:X->Y and g: Y—Z be two maps.

(a) If f and g are both epimorphisms (monomorphisms), then the composition
gf: X—>Z is an epimorphism (monomorphism).

M) If gf: X—> Z is an epimorphism, then so is g.

(c) If gf: X>Z is a monomorphism, then so is f.

We have already seen how to describe in terms of what a map does to
elements the fact that it is an isomorphism. The same can be done for the notions
of epimorphisms and monomorphisms. In order to state this result, it is conve-
nient to have the following.

Definitions
Let f: X-Y be a map.

(a) fis said to be a surjection, or a surjective map, if for each y in Y there is an x in
X such that f(x)=1y.

(b) fis said to be an injection, or an injective map, if given x, and x. in X with the
property that f(x,) = f(x,), then x, = x.

Basic Properties 4.3

(a) A map is an epimorphism if and only if it is a surjective map.

(d) A map is a monomorphism if and only if it is an injective map.

(c) A map is an isomorphism if and only if it is an epimorphism and a
monomorphism.

As with isomorphisms, we will refer to an epimorphism (monomorphism) as a
surjective map (injective map) whenever we wish to emphasize what the map
does to the elements of the sets involved rather than its relation to other maps.

We conclude this section with the following useful property of surjective and
injective maps.
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10 ONE/SETS AND MAPS

Proposition 4.4
Suppose we are given a diagram of maps of sets

N
X Y
satisfying:
(@) ts=hg.

(b) s is a surjective map and h is an injective map.

Then there is one and only one map j: U-Z such that js=g and hj=1t

5. THE IMAGE ANALYSIS OF A MAP

A map f: X— Y of sets not only serves as a way of comparing the sets X and Y,
but also as a way of comparing subsets of X and subsets of Y. In the following
definitions we point out some of these relationships. Others will be discussed later
on.

Definitions

Suppose f: X— Y is a map of sets. If X’ is a subset of X, then the subset of Y
consisting of all elements f(x) in Y with x in X" is called the image of X’ under f
and is denoted by f(X"). The subset f(X) of Y is called the image of the map f and
is usually denoted by Im f.

Suppose we are given a map f: X— Y. It is clear that f is a surjective map, or
equivalently an epimorphism, if and only if Im f=Y. However, regardless of
whether the map f itself is surjective, the map f,: X = Im f, defined by fo(x) = f(x)
for all x in X is always surjective. Hence, associated witheachmap f: X > Y is
the surjective map f,: X—>Imf

The importance of the map f, lies in the fact that it completely determines the
map f if we assume that we know the range of f. For it is easily checked that the
map f is the composition

X2 Imf=y

where inc:Im f— Y is the inclusion map of the subset Im f of Y. This representa-
tion of a map f: X— Y as the composition inc f; is called the image analysis of the
map f.

Although we have already pointed out that the map f, is always a surjective
map, it is equally important to observe that all inclusion maps are injective maps,
or equivalently monomorphisms. The image analysis of a map therefore shows
that every map can be written as the composition of a surjective map followed by
an injective map. Because the representation of a map as the composition of a
surjective map followed by an injective map plays a critical role in analyzing
maps, we make the following definition.
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Definition
Let f:X—>Y be a map. By an analysis of f we mean a set A together with a
surjective map g: X—+ A and an injective map h: A— Y such that f= hg.

We end this preliminary discussion of the analysis of a map by pointing out
that all analyses of a map are essentially the same. Precisely, we have the
following.

Basic Property 5.1
Suppose

X—4>A—2>Y
and

X25A'-2,Y

are both analyses of the map f:X— Y. Then there is one and only one map
j:A— A’ such that jg = g’ and h'j = h, and this uniquely determined map j: A—> A’
is an isomorphism.

6. THE COIMAGE ANALYSIS OF A MAP

Another important standard analysis of a map is the coimage analysis. Before de-
scribing this analysis, it is convenient to have the following.

Definitions

Suppose f: X— Y isa map. If Y’ is a subset of Y, then the set of all x in X with the
property f(x) is in Y’ is called the preimage of Y’ under f and is denoted by
£7(Y"). If y is an element of Y, we write f'(y) for f'{y)).

Suppose we are given a map f: X— Y. Then it is not difficult to show that the
subset Coim f of 2* consisting of all subsets of X of the form f'(y) with y in Im f
is a partition of X which we call the coimage of f We have already seen that
associated with any partition € of a set X is the canonical map k.: X— € defined
by kdx)=[x]« for all x in X, where [x]. is the unique element of € containing x.
Because each set in € is nonempty, it follows that the canonical map k.: X—> € is
a surjective map. In particular, the map kc.ims: X—=Coim f is surjective.

The map kcums: X—=Coim f has another important property: There is a
unique map j;:Coim f— Y such that f= jkcon;. We first show that such a map
exists. Suppose the subset X' of X is an element of Coim f. Then by definition
there is a y in Im f such that f'(y)=X'. Hence, f(X')={y}. Define the map
jr:Coim f- Y by j{X’) is the unique element y of Y such that f(X')={y}. Then
Jrkcom Ax) = j{[x]) = f(x) for all x in X which shows that the map j;:Coim f—»Y
does indeed have the property f= jkcoms. That there is only one such map from
Coim f—- Y follows from the fact that kc.ms is surjective and hence an epimor-
phism. We leave it to the reader to verify that j: Coim f— Y is also an injective
map with Im j;=Im f and so (j)o: Coim f—Im j is an isomorphism from Coim f to
Im f. The map j;: Coim f— Y is called the map from Coim f to Y induced by the
map f:X-Y.
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12 ONE/SETS AND MAPS

It therefore follows that the composition X Lot Coim f 4,y is an
analysis of the map f. This analysis is called the coimage analysis of the map f.
Further, because

X et Coimf—' Y

fo

X »Imf—2=—Y

are both analyses of f, we know that there is a unique isomorphism g : Coim f—
Im f such that gkcum;=fo and inc g=j,. The map g is easily seen to be the
isomorphism (j)o: Coim f—Im f. This isomorphism is called the canonical isomor-
phism from Coim f to Im f.

7. DESCRIPTION OF SURJECTIVE MAPS

Suppose f: X— Y is a map. Then the coimage analysis X —=(_, Coim f S,y
of f has the property that f is a surjective map if and only if j;:Coimf->Y is a
surjective map and hence an isomorphism. This certainly suggests that when
f:X-Y is a surjective map, the maps kcuns: X—>Coim f and f: X Y are inti-
mately connected. It is precisely this connection that we describe in this section.
We begin with the following.

Definition

Let &, and P, be two partitions on a set X. We say that &, is a refinement of P, if
given a subset X’ of X in @,, there is a subset X" of X in &, such that X"D X'. We
shall denote the fact that %, is a refinement of P, by writing P, = %,.

Now if the partition 2, is a refinement of the partition %,, then given any
subset X’ of X in 2|, not only is there a subset X” of X in P, containing X', but
there is only one such subset of X in %,. Hence, if P, = #,, we can define the map
go.0: P = P, by setting gy, o(X"), for each element X' in P,, to be the unique
element of %, containing the element X' of #,. The map gy, o,: P, > P, is called
the canonical map from P, to %,.

The map gs, »,: P,— P, can be characterized as the unique map h: P - P,
such that the diagram

=

S

P 9
2

commutes, that is, such that hks = ks, This, of course, shows that g, o is a
surjective map. It also shows that g, » is an injective map or, equivalently, is an
isomorphism if and only if #, = P,. Further, if #, = 2, then g, », = id,,. Finally, it
is straightforward to show that if two partitions &, and %, of X have the property
that there is a map h: ®, - P, such that hk,, = ks,, then P, = P, and h =g, 5. In
summary, we have the following.
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Basic Properties 7.1
Let #, and P, be partitions of a set X. Then:

(a) There is a map h: %P —> %P, such that hks = ks, if and only if P, =P,.

(b) If P, =P, there is only one map h:P,— P, such that hk,, = ks,; namely, the
canonical map go, ».-

(c) If P, = P,, then the canonical map g, s : P — P, is always a surjective map
which is an isomorphism if and only if #, =,

(d) g».9 =ids.
We can now state the main results concerning the connections between arbi-

trary surjective maps f: X—Y and their associated surjective maps kcoims: X—

Coim f.

Proposition 7.2
Let f,i: X->Y, and f,: X—> Y, be two surjective maps.

(a) The following statements are equivalent:
(i) There is a map h:Y,— Y, such that hf, = f..
(if) There is a map g:Coim f,—=Coim f, such that gkcms = Kcoimp-
(ilf) Coim f, =Coim f,.
(b) If there is a map h:Y,— Y, such that hf,=f,, then:
(i) There is only one such map.
(ii) There is only one map g:Coim f,—»Coim f, such that

8Kcoimf = Kcoimp, NaMely,  gcoim fi. Coim gy

(c) The following are equivalent:
(i) There is an isomorphism h:Y,— Y, such that hf, =f..
(i) Coim f,=Coim f,.

(d) If Y is a partition of X and f: X— Y is the canonical map, then Coimf=Y
and f= kcoims.

Roughly speaking, this proposition says that all surjective maps f: X—» Y with
a fixed domain X are essentially given by the canonical maps k¢: X— € for all
partitions € of X. Hence, it is of considerable importance to know how to create
partitions of a set X. One of the most widely used devices for accomplishing this is
known as an equivalence relation, a notion we discuss in the next section. Before
doing this we point out the following generalization of some of our results to date
concerning surjective maps.

Proposition 7.3

Let f: X— Y be a surjective map of sets. If g: X— Z is a map of sets, then there
exists a map h: Y —Z such that hf = g if and only if Coim f=Coim g. If Coim f =
Coim g, then there is only one map h: Y—>Z such that hf=g.

8. EQUIVALENCE RELATIONS

By definition, a relation R on a set X is simply any subset of X x X. We usually
denote the fact that an element (x;, x,) in X X X is in the relation R of X by writing
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14  ONE/SETS AND MAPS

x: R x,. If R is arelation on a set X and X' is a subset of X, then we denote by R| X’
the relation on X' given by RN (X’ x X’). That is, if x; and x} are in X', then
(xi, x) ER|X’ if and only if (x], x3) ER. The relation R|X' on X’ is called the
relation on X’ induced by R.

Definition
A relation R on a set X is called an equivalence relation if it satisfies the following
conditions:

(a) xR x holds for all x in X.
(b) If x, R x; holds, then x;R x, also holds.
(¢c) If x,Rx; and xR x, hold for x;, x;, and x; in X, then x, R x, also holds.

We now describe how to associate with each equivalence relation R on a set
X a partition X/R of X. For each element x in X, denote by [x] the subset of X
consisting of all elements x’ in X such that x R x’ holds. Let X/R be the subset of
2* consisting of the subsets [x]z of X as x ranges through all elements of X. Then
it is not difficult to show that X/R is a partition of X with the property [x]xz = [x]r
for each x in X. Hence, one way to create a partition on a set X is to start out with
an equivalence relation R on the set X and construct the partition X/R of X.

On the other hand, with each partition ® on X, there is associated an
equivalence relation R(2). Namely, for x, and x; in X define x, R(%?)x; if and only
if there is a subset X' of X in # such that x, and x; are both in X'. It is easy to
check that the relation R(%) we just defined is actually an equivalence relation.

Moreover, it is equally easy to see that if R is an equivalence relation on a set
X, then R(X/R) =R. Similarly, if ? is a partition on a set X, then X/R(P) = P. This
description of how to go back and forth between equivalence relations and parti-
tions of a set shows that these are really interchangeable notions, a fact that we
shall use freely from now on.

To illustrate this point, the reader should check the validity of the following
proposition.

Proposition 8.1
Let R and R’ be two equivalence relations on a set X. Then X/R = X /R’ if and only
if x; R x, implies x; R’ x, for all x, and x, in X.

This suggests the following definition.

Definition
Let R and R’ be two relations on a set X. Then R <R’ if and only if x, R x, implies
x; R’ x,; or, equivalently, RCR'.

It should be noted that if R and R’ are equivalence relations on a set X, then
R =R’ if and only if X/R=X/R’.

As our final example of the correspondence between the partitions and
equivalence relations on a set, we point out that if f: X— Y is a map, then the
equivalence relation R on X corresponding to the partition Coim f of X is given by
x; R x, if and only if f(x,) = f(x,). This equivalence relation is called the equivalence
relation associated with f and is sometimes denoted by R(f).
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9. CARDINALITY OF SETS

One of the earliest and most important mathematical processes one learns is that
of counting; and one of the basic problems in counting is to determine when two
sets of things have the same number of objects. This is usually done by showing
that the objects in one collection can be matched up with the objects in the other
collection. But the matching up of the objects in a set X with the objectsinaset Y
is nothing more than a bijective map from X to Y. This leads us to say that an
arbitrary set X has the same number of elements as a set Y if and only if there is a
bijective map f: X > Y. Obviously, a set X has the same number of elements as a
set Y if and only if the set Y has the same number of elements as X. The fact that
two sets X and Y have the same number of elements is often denoted by
card(X) = card(Y) where card(X) is read as the cardinality of X. Or stated slightly
differently, two sets X and Y have the same cardinality (that is, the same number
of elements) if and only if they are isomorphic sets.

In addition to knowing when two sets have the same number of elements, it is
also important to know when one set Y has at least as many elements as another
set X. A little thought should convince the reader that in usual practice this simply
means that there is injective map f: X — Y. This observation leads us to define
the cardinality of an arbitrary set X as being less than or equal to the cardinality
of a set Y; symbolically, card(X) < card(Y) if and only if there is an injective map
f:X->Y.

If this definition of card(X)=card(Y) really corresponds to the notion that
the set X has at most as many elements as the set Y, then it should have the
following properties:

(a) card(X)=card(X) for all sets X.
() If card(X)=card(Y) and card(Y)=<card(X), then card(X)=card(Y).
(¢) If card(X)=<card(Y) and card(Y)=<card(Z), then card(X) =< card(Z).

It is trivial to verify that (a) and (c) are true. The fact that (b) is true is less
obvious and is equivalent to the following well-known Bernstein-Schroeder
Theorem.

Theorem 9.1
Suppose X and Y are two sets and f: X—> Y and g: Y— X are injective maps.
Then X and Y are isomorphic sets.

An outline of a proof of this theorem is given in the exercises for the
convenience of those readers not familiar with this resulit.

There are two more properties of the cardinality of sets that one might expect
to be true judging from one’s ordinary experience with counting. Namely, (1)
given a set X there is a set Y such that Y has actually more elements than X, that
is, card(X) <card(Y) but card(X)+#card(Y); or, more simply, card(X) <card(Y)
and (2) if X and Y are sets, then either card(X) < card(Y) or card(Y) < card(X).

The fact that given any set X there is a set Y such that card(X) <card(Y) fol-
lows from the following proposition, a proof of which is outlined in the exercises.
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16  ONE/SETS AND MAPS

Proposition 9.2
Let X be any set. Then there is no surjective map from X to 2*.

Hence, X and 2* are never isomorphic sets, which means card(X)+card(2¥).
On the other hand, the map f: X —»2* given by f(x) ={x} for each x in X is clearly
an injective map. Therefore, card(X)=card(2*) which implies that card(X)<
card(2¥) for each set X. Thus, given any set X there is a set Y such that
card(X) <card(Y), which settles the first question raised.

However, the second question, whether given two sets X and Y, either
card(X)=<card(Y) or card(Y)=card(X), is much more complicated. In fact, it
cannot be settled except by the introduction of a notion of set theory which we
have not discussed at all; namely, the axiom of choice. Therefore, we shall return
to this second question in a later section after we have discussed this axiom of set
theory.

10. ORDERED SETS

There are various equivalent forms of the axiom of choice. We shall be concerned
with only three of them: the existence of choice functions, the well-ordering
axiom, and Zorn’s lemma. Because all but the first of these forms of the axiom of
choice use the notion of an ordered set in their formulation, we shall begin this
discussion with the notion of an ordered set.

Definition
A relation R on a set X is said to be an order relation on X or an ordering of X, if it
satisfies:

(@) x Rx for all x in X.
(b) If x,R x; and x;R x,, then x, = x,.
(c) If x,Rx; and x, R x;, then xR x;.

An ordering R of X is called a total ordering of X if it also satisfies:
(d) If x, and x; are in X, then either x; R x; or xR x,.

Finally, a set X together with an ordering R (total ordering R) is called an
ordered set (totally ordered set).

The reader should observe that if the relation R on a set X is an order relation
and X' is a subset of X, then the relation R|.X’ is an order relation on X’ called the
induced ordering on X'. Unless stated explicitly to the contrary, if X’ is a subset of
an ordered set X, we always consider X' an ordered set under the induced order-
ing. Obviously, if X is a totally ordered set so is X' for each subset X' of X.

When there is no danger of confusion concerning which ordering we mean,
we shall follow the usual practice of writing x, < x, for x, R x, when R is an order
relation on the set X.

We now offer as examples certain ordered sets that will be occurring fre-
quently in the rest of the book.

Example 10.1 Suppose X is a set. It is easy to check that the relation R on 2*
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Axiom of Choice 17

given by X’ R X” if and only if X’ C X" is an order relation. This is the only order
relation we shall ever consider on the set 2*. Hence, when we consider 2* an
ordered set it is always with respect to this ordering. The reader should observe
that 2¥ is a totally ordered set if and only if X has at most one element.

The next example, which is closely related to our first one, is extremely useful
in constructing maps, as we shall see later on.

Example 10.2 Suppose we are given two sets X and Y. Let J(X, Y) consist
of all triples (X”, Y’, f) where X’ and Y” are subsets of X and Y, respectively, and
f is a map from X'’ to Y'. Consider the relation R on J(X, Y) given by
X,Y,.fHYRX"Y" f)if and only if X'CX", Y'CY”, and f"(x) = f'(x) for all x
in X'. It is easily seen that R is an order relation on J(X, Y). Hence, when we
refer to F(X, Y) as an ordered set, it is always with respect to this ordering.

Finally, we have the following familiar ordered sets.

Example 10.3 All of the following sets with their usual ordering are totally
ordered sets:

(a) The set N of all nonnegative integers, that is, all integers n=0.
(b) Z, the set of all integers.

(c) Q, the set of all rational numbers.

(d) R, the set of all real numbers.

Now that we have defined the notion of an ordered set we can start discussing
the axiom of choice.

11. AXIOM OF CHOICE

That every set X has a choice function is perhaps the simplest and most appealing
form of the axiom of choice. What this amounts to saying is that given any
nonempty collection of nonempty subsets of a set X, it is possible to choose an
element out of each one. Although this seems self-evident, it nonetheless cannot
be proven on the basis of the types of manipulations of sets we have permitted
ourselves until now. Formulated somewhat more precisely, this assertion be-
comes the following.

Axiom of Choice 1

Given any set X, there is a map c :2* —{#} > X (where 2* —{§} is the set of all
nonempty subsets of X) such that ¢(X’) € X’ for all nonempty subsets X’ of X.
Such a map c is called a choice function on the set X.

As an illustration of how this form of the axiom of choice is used, we prove
the following proposition.

Proposition 11.1
Let f: XY be a surjective map of sets. Then there is a map g: Y — X such that

fg = idy.
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18  ONE/SETS AND MAPS

PROOF: If Y =6, then X is empty and f is an isomorphism so there is nothing
to prove.

Suppose now that Y+#@ and c:2*—{f#}- X is a choice function on X. Then
define g: Y- X by g(y)=c(f '(y)) for each y in Y. Since c(f'(y)) is in f'(y), it
follows that f(c(f '(y)))=y for all y in Y. Therefore, the map g: Y- X has the
property fg =idy.

In order to state the next form of the axiom of choice that interests us, it is
necessary to recall the definition of a well-ordered set.

Definition
An ordered set X is said to be well ordered if

(a) X is totally ordered. }
(b) If X' is a nonempty subset of X, then there is an element x, in X', called the
first element of X', having the property x, < x for all x in X'.

It is important to note that if X is a well-ordered set, then the first element of
a nonempty subset X’ of X is uniquely determined. For if x, and x; are both first
elements in X', then x,=x} and x}=<x, which means that x, = xa.

Axiom of Choice 2
If X is a set, then there is an ordering on X which makes X a well-ordered set.

As stated earlier, these two forms of the axiom of choice that have been given
are equivalent. Although it is certainly not trivial to show that the assumption that
every set has a choice function implies that every set can be well ordered (see the
exercises for a discussion of this point), the reverse implication is quite simple to
establish as we now show.

Proposition 11.2
Let X be a well-ordered set. Then X has a choice function.

PROOF: Since the first element of any nonempty subset X’ of X is a uniquely
determined element of X', we obtain a choice function ¢ on X by defining the map
c:2*—{#} - X as follows: c(X") is the first element of X’ for each nonempty sub-
set X' of X.

As a check on his understanding of well-ordered sets the reader should con-
vince himself that while the set N of nonnegative integers is a well-ordered set,
neither the integers, rational numbers, nor real numbers is a well-ordered set even
though each of them is totally ordered.

We now turn our attention to the third and final form of the axiom of choice
which is of concern to us, namely, Zorn’s lemma. Although this form of the axiom
of choice is much more technical and therefore has less intuitive appeal than the
others, it has the advantage of being the easiest to apply in most situations of
interest to us.

Before stating Zorn's lemma we review the notion of an inductive set.
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Definition

An ordered set X is said to be an inductive set if every nonempty totally ordered
subset X’ of X has an upper bound in X. That is, for each nonempty totally
ordered X’ of X there is an element x in X such that x = x’ for all elements x’ in
X'

To help clarify this definition we give some important examples of inductive
sets. ‘

Example 11.3 If X is a set, then the ordered set 2* is an inductive set.

PROOF: Suppose ¥ is any subset of 2* and Y = nyX ’. Then it is obvious
'€

that Y is an element of 2* which is an upper bound of & in the sense that Y O X’
for all X’ in &. Thus, certainly every nonempty totally ordered subset & of 2* has
an upper bound in 2*.

Example 114 Let X and Y be sets. Then the ordered set (X, Y) is an
inductive set.

PROOF: Suppose & is a nonempty totally ordered subset of F(X, Y), say
F={(X., Y, [} Let Xo,=UX, and Yo=UYL.

We claim that because & is totally ordered there is a map f,: Xo = Y, such
that (X,, Y, fo) is in . For suppose x, is in X,, then by the definition of X, there is
a triple (X, Y., fJ) in & such that x, is in X.. Hence, it is tempting to define fy(xo)
to be fi(x,). In order for this to be legitimate, we must show that if there is some
other (X3, Yj, fo) in & with x, in X}, then fi(xo) = fi(xo), for otherwise the value
fe(xo) would not be uniquely determined but would depend on the particular ele-
ment of & used in its construction. But the fact that fi(x.)=fa(x,) follows
from the fact that & is totally ordered. For we know that either
XLYLfO=s(Xs Yh fo) or (Xp Yifa)<s(X.L Y.L f). Now we suppose that
(X Yo fo) = (X5, Y f5). Then we know that X, C X} and fi(x) = fa(x) for all x
in X and hence, in particular, fi(x,) = fs(xo). A similar argument works in case
X5 Ys fo)s(Xo, Yo, fo).

Hence, we have shown that there is a map f,: X, = Y,. It is not hard to show
now that (X, Y, fo) is an upper bound for & since (Xo, Ys, fo) = (X', Y', f') for all
X,Y,f)in &

The form of the axiom of choice known as Zorn’s lemma is simply the
following.

Axiom of Choice 3
If X is an inductive set, then there is an element x, in X such that if x is in X and
X = x,, then x =x,. Such an element x of X is called a maximal element of X.

As an illustration of how Zorn’s lemma is used, we finally give the much
delayed proof that if X and Y are two sets, then either card(X) < card(Y) or
card(Y) =< card(X).
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20 ONE/SETS AND MAPS

Proposition 11.5
If X and Y are sets, then there is either an injective map from X to Y or from Y to
X

PROOF: Let Inj(X, Y) be the ordered subset of F(X, Y) consisting of all
triples (X', Y’, f') with the property that f': X’ - Y’ is an injective map. Using
the same type of argument as in Example 11.4, it is not difficult to see that
Inj(X, Y) is an inductive set.

Because Inj(X, Y) is an inductive set we know by Zorn’s lemma that there is
a maximal element (X, Y’, f') in Inj(X, Y). This maximal element (X’, Y’, f’) has
the property that either X' = X or Y’ = Y. For suppose there is an x, in X but not
in X’ and an element y,in Y but notin Y’. Then the map g: X’ U {xo} = Y’ U {yo}
defined by g(x)=f'(x) for x in X' and g(x.) =y, is injective. Therefore,
(X'U{xd}, Y’ U{yo},g) is an element of Inj(X,Y) with the property that
X', Y, f)<(X'U{xe}, Y’ U{ydo}, g)- This contradicts the fact that (X', Y’, f') is
a maximal element of Inj(X, Y). Therefore, our contention that either X' = X or
Y’ =Y has been established.

If X' =X, then the composition X—L>Y'—2Y of injective maps is an
injective map from X to Y.

On the other hand, if Y’ =Y, we can define the map g: Y — X by letting g(y)
be the unique element in X such that f'(g(y)) = y. It is obvious that g is an injective
map, and so in this case we obtain an injective map from Y to X. This completes
the proof of the proposition.

We finish this discussion of the axiom of choice by pointing out that in the
exercises there is an outline of a proof of our repeated assertions that the various
conditions Axiom of Choice 1, 2, and 3 are equivalent. From now on we will make
free use of these forms of the axiom of choice, especially Zorn’s lemma.

12. PRODUCTS AND SUMS OF SETS

In discussing the product of sets, it is convenient to have the notion of an
indexed family of subsets of a fixed set.

Definition

A family of subsets of a set X indexed by a set I is a map ¢: -2 The set I is
called the indexing set and the subset (i) of X is usually denoted by X. In
practice one denotes the map ¢ by {X}e.

In connection with this definition we observe that associated with an indexed
family {X}.e: of subsets of a set X is the subset & of 2* consisting of all subsets X’
of X such that X’ = X, for some i in I. The reader should construct examples of
different indexed families of subsets of a fixed set X which give rise to the same
associated subset & of 2*.

Definition
The product of an indexed family {X}.c: of subsets of a set X is the set of all maps
f:I-X such that f(i)€ X, for all i in I. This product is denoted by ,IEI,X'
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Products and Sums of Sets 21

Usually a different notation is used for the elements of a product ;n: X, of an
€
indexed set {X}c; of subsets of X. If f is in l'I’ X, then the element f(i) in X is
i€

denoted by x; and the element f of I1 X is denoted by {x}.c; where x;= f(i) for all i

i€l
in L
If {X3}ic: is an indexed family of subsets of a fixed set X, then certain things
about the product ‘IEII X are obvious. First of all, if I =@, then 'l'I’X, consists of one
€

element, namely, the empty map. So suppose from now on that I+@. Then it is
clear that if X;=@ for some i in I, then H’X;=¢. What might not be quite so
i€

obvious, since it depends on the existence of choice functions, is that g’)(;#ﬂ if
each X#0. For if c:2*—{#} - X is a choice function, then {c(X)}ie: 'is in gX,
since each ¢(X) is in X; for all i in I. Hence, if I+, then .Ie]. X,=@ if and only if
X,=9 for some i in L

In studying and using products of families of sets, the maps called projection
maps play an important role.

Definition

Let {X}.c: be an indexed family of subsets of a set X indexed by the nonempty set

I Then for each k € I we have the map proj,: H' X;— X, given by proj.({x}ic)) = x..
i€

The map proj.: Ie]l X~ X, is called the kth projection map. Also, proj ({x}c)) = xi is
called the kth coordinate of the element {x}., in the product Il X.

ier

The following facts concerning projection maps are not difficult to establish.

Basic Properties 12.1
Let {X}ic: be an indexed family of nonempty subsets of set X indexed by the
nonempty set I. Then:

(a) For each k in I, the map proj,: l'I’ Xi— X, is surjective.
i€
() For each element {x,}ic; in ‘IEI'X‘, we have {x;}ie; = {proji ({x:}icr)lxer
We end this discussion of products of sets with a description of the set of all
maps (X, I1 Y) from a set X to the product HI Y, of the indexed family of sets
i€l i€
{Y}ie:. To do this, we first observe that if f is a map from X to ,“. Y, then for each k

in I, the composition proj,f is a map from X to Y.. Hence, associated with an
element f in (X, I]’ Y,) is the element {proji f her of 'II,(X, Y,). Thus, we obtain the
ie €

map B:(X, 1 Y))—>I1(X, Y:) given by B(f) ={projsfhe: for each f in (X, 11 Y)).
Proposition 12.2
Let {Y}ie:be an indexed family of subsets of a set Y indexed by the nonempty set

I and X an arbitrary set. Then the map B:(X, Il Y) — II (X, Y) given by B(f)=
{proji f hre: is an isomorphism of sets. iel iel

Google



22 ONE/SETS AND MAPS

Another useful construction associated with an indexed family {X}:c: of
subsets of a set X is the sum of the indexed family.

Definition
Let {X}:<; be an indexed family of subsets of a set X. The sum of this indexed
family is the subset LI X, of X X I consisting of all elements (x, i) in X X I such
that x is in X. el

If {X}:e:is an indexed family of subsets of a set X, the reader should observe
the following facts about the sum g' X. If I=6, then XxI=0 and hence
HIX.-=¢. Also regardless of whether I is empty or not, I.IIX,=¢ if each X;=4.
i€ ie

Finally, H’ X#9 if I+0 and some X+#0.
i€

Analogous to the projection maps for the product of an indexed family of
subsets of a set X is the injection maps for a sum of the indexed family of subsets
of X.

Definition
Let ;Iélr X be the sum of the indexed family {X}; ¢, of subsets of X indexed by the

nonempty set I. For each k in I the map inj;: Xi = ,Il' X defined by inj(x) = (xi, k)
for each x, in X, is called the kth injection map.

We leave it to the reader to verify the following.

Basic Properties 12.3
Let LI X, be the sum of the indexed family { X} of subsets of a set X indexed by

iel
the nonempty set I. The injection maps inj,: X; = LI X, have the following proper-
ties: et
(a) For each k in I the map inj.: Xi = LI X, is injective.
i€l

(b) Letting Im inj, = Y, we have:
@ YiNnY,.=0if k+k'.
@MiIx=uY.

1€l kel

We end this section by establishing the analog of Proposition 12.2 for sums.
To this end, we observe that if f: ‘LI' X = Y is a map from the sum of the indexed
€

family {X}. <, to the set Y, then for each k € I the composition f inj;, is a map from
X, to Y. Hence, associated with an element f in (LI X, Y) is the element {f inj}ic:
i€l

of HI(X,-, Y). Thus, we obtain the map y: (11 X, Y)-II (X, Y) given by y(f) =
i€ i€l i€l
{finji}xe, for each f in (H’ X, Y).
ie

Proposition 12.4

Let {X}ic: be an indexed family of subsets of X indexed by the nonempty set I

and let Y be an arbitrary set. Then the map y:(1l X, Y) > II (X, Y) given by
iel iel

y(f)={finji}xe: for each f in (H' X, Y) is an isomorphism of sets.
i€
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EXERCISES

(1) Throughout this exercise R denotes the set of real numbers.

(a) Let f:R—>RXxR be the map defined by f(x)=(cos x, sin x) for all x in R.
Describe:

@G Imf.
(i) f'(y) for each y in Im f.

(b) Let R’ be the set of nonnegative real numbers. Show that the logarithmic map
log.:R'—R is an isomorphism of sets whose inverse is the exponential map
from R to R".

(c) Show that any two circles, regardless of size, are isomorphic sets.

(d) Show that the subset of R x R consisting of all ordered pairs (x, y) satisfying
0 =<y <7 and x arbitrary is isomorphic to the set RxR. [Hint: Use polar coor-
dinates.]

(e) Let C™(R) denote the set of all maps from R to R which have all derivatives.
Consider the maps d/dx : C*(R)— C“(R) and [;: C"(R) » C"(R). Describe:

(i) the images of these maps;
(if) the preimages of elements in their images;
(iif) the compositions of these two maps.

(2) Let X be a set consisting of a single point which we denote by x. Foreachset Y

we define the map a :(X, Y)—> Y by a(f) = f(x) for each f in (X, Y). Prove that

the map « is an isomorphism for each set Y.

(3) Prove that a map f: X—> Y is a monomorphism if and only if it is an injective

map. [Hint: To prove that the map f being a monomorphism implies that f is an

injective map, use the description of the maps of a single point to the set X given

in Exercise 2.]

(4) Prove that a map f: X— Y is an epimorphism if and only if it is a surjective

map. [Hint: To prove that the map f being an epimorphism implies that it is a

surjective map, consider the maps of Y to a set consisting of two distinct points.]

(5) Suppose X is a set and € C2* is a set of subsets of X. Show that the following

statements are equivalent:

(a) € is a covering of X.

(b) If Y is an arbitrary set, then two maps f: X— Y and g: X— Y are the same if
the restriction maps f| X’ and g| X’ are the same for each subset X’ of X in €.

(6) Suppose that € C2* is a covering for the set X and Y is an arbitrary set. Show

that the following statements are equivalent for a family of maps {fx: X' Y}x e«

(a) There is a map f: X—> Y such that f|X'=fx for each X’ in €.

(b) For each pair of elements X’ and X” of € we have that f.|X'NX" = fi-| X' N X".

(7) Show that a subset € of 2% is a partition of the set X if and only if € satisfies:

(a) Each subset of X in € is not empty.

(b) Given any set Y and family of maps {fx-:X’'—> Y}xe«¢ there is a unique
map f: X - Y such that f|X’ = fy. for all subsets of X in €.

(8) Consider the following diagram of sets and maps:

TN
X z
\U/
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24  ONE/SETS AND MAPS

Suppose that the diagram is commutative, that is, gf =ts.

(a) Prove that if f is surjective and ¢ is injective, then there is one and only one
map h: Y- U such that hf = s and th = g. [Hint: For each y € Y, choose x€ X
such that f(x) = y. Show that the element s(x) € U is independent of the choice
of x and define h(y) to be s(x).]

(b) Prove that if f and s are surjective and g and t are injective, there are unique
isomorphisms h: Y- Uand h': U-> Y suchthat hf =s, h’'s=f,and k' =h™".

(9) Prove that for any set X, there is no surjective map from X to 2*. [Hint: If

f: X-2%is any map and X' ={x € X|x€&¢f(x)}, show that X’ is not in Im f]

(10) The set of subsets of a set X has been denoted by 2*. Show that if Y is a set

consisting precisely of two distinct elements which we denote by 0 and 1, then the

map B:(X,Y)— 2* defined by B(f)=f"'(0) for all fin (X, Y) is an isomorphism of
sets.

(11) Show that if Y is a set with at least two distinct elements, then card((X, Y)) >

card(X) for all sets X.

(12) Let X be the subset of the set of real numbers satisfying the condition x is in

X if and only if 0=x<1.

(a) Show that each real number in X can be written in one and only one way as an
infinite decimal .a;a:a;. .. a.. .. having the property that given any integer n
there is an integer m > n such that a.#9.

(b) Show that given any infinite decimal .a:a.a:. . . a,. . . there is a unique element
x in X such that x=.a,a;a;...a,....

(c) Suppose f:N— X is a map of the set of nonnegative integers N to X. For
each k in N, let .a:,a;. .. Gw... be the unique infinite decimal expansion of
f(k) satisfying the condition specified in part (a). For each k in N let b, be
different from 9 and a.. Show that the number b in X whose decimal expan-
sion is .b,b;...b,... is not in the image of f.

(d) Show that card(X)>card(N) and hence card(R)>card(N).

(13) Let X,, X: be subsets of a set X and Y,, Y. subsets of a set Y. Suppose that

X=X UX;, Y=Y,UY, and that X,NX,=0=Y,NY,. Show that if card(X)=

card(Y) for i=1,2, then card(X)=card(Y).

(14) (a) Let X, X;, X be sets with X, CX,CX and let f: X— X, be a map. Let ¥ be

the set of all subsets V of X such that f(V)U(X.—X,)CV, where X;— X, =

{x € Xi|x & X\}. Prove that if U = va V, then UCX; and f(U)U(X,—- X,)=U.

[Hint: First prove that U € ¥. Then show that f(U)U(X;—- X,)E ¥.]

() From (a), prove that X,=(X,—f(U))UU. Then prove that card(X,) =
card(X,) if f is an injective map. [Hint: Use the fact that X, = (X, - F(U))U
f(U) and Exercise 13 above. Note that (X, —f(U)NU =9.]

(c) Show, finally, that if f is bijective, then card(X:) = card(X).

(15) Let X and Y be sets such that card(X)<card(Y) and card(Y)=<card(X).

Prove that card(X) = card(Y). [Hint: let g: X > Y and h:Y - X be injective

maps. Let X; =Im h and X, =Im hg and let f: X — X, be the bijective map (hg ).

Then use the preceding exercise. This is the Bernstein-Schroeder theorem.]

(16) Let X be the subset of the real numbers consisting of all reals of the form

-1 0
n+ izl (Y where t >0 and n is an integer. [We use the convention that X () =0.]
- j=t

Is X a well-ordered set?
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(17) Let X be a well-ordered set. Show that if x € X and x is not an upper bound
for X (that is, there exist y € X such that y > x), then there is one and only one
element s(x) € X having the following two properties:

@ x<s(x);

@) if x <y =s(x), then either y=x or y = s(x).

(18) Let X be a nonempty set.

(a) Prove that there are subsets X’ of X which have a well ordering, that is, there
exists an ordering on X' which makes X’ a well-ordered set. [Hint: Consider
subsets of X which consist of only one point.]

(b) If X;CX;CX and R is an order relation on X3, prove that RN(X'x X}) is an
order relation on X|. As usual denote this relation on X; by R|X.

(c) Let W be the set of all pairs (X', R) where X" is a subset of X and R is a well
ordering of X'. Define an order relation on ¥ by setting (X1, R,) <(X3, R,) if:

) X cXx:.
(i) R;)Xi=R.,.
@) If x,€ X! and x,€ X;— Xi, then x,<Xx,. Prove that % is an induc-
tive set.

(d) Using Zorn's lemma, prove that % has a maximal element (X,, R). Show that

Xo=X. This proves that Zorn’s lemma implies well ordering.

The next two exercises constitute a proof that the axiom of choice implies
Zorn’s lemma. .
(19) Let X be an inductive set having the additional property that every totally
ordered subset X' of X has a least upper bound in X, that is, among the upper
bounds of X' there is a first element. Let f: X—> X be a map satisfying the
following two conditions:

@) x=f(x) for all xe X.

@#) xsy=f(x) implies y=x or y = f(x).

We now outline a proof that these hypotheses imply the existence of an
element x in X such that f(x,;) = x,. If a is an element of X, define a subset C of X
to be an a-chain if C satisfies the following conditions:

@i a€C.

(i) If aE€C, then f(a)eC.

(iif) Every totally ordered subset of C has a least upper bound in C.

(a) Prove that if C = {x € X|a < x}, then C is an a-chain.

() If K, is the intersection of all a-chains, prove that K, is an a-chain.

(c) Prove that if x € K, and x is comparable with every element of K,, that is, for
all y € K, either x <y or y < x, then f(x) is comparable with every element of
K.. [Hint: Let C ={y € K.|f(x) is comparable with y} and prove that C is an
a-chain.)

(d) Prove that if x € K,, then x is comparable with every element of K., so that K,
is totally ordered. [Hint: Let C be the set of those elements x in K, which are
comparable with every element of K.. Show that C is an a-chain.]

(e) Prove that K, is well ordered.

(f) Because K. is totally ordered and is an a-chain, we may conclude that K, has
a least upper bound x, in K,.. Prove that f(xo) = xo.

(20) Let X be an ordered set and let J be the set of all totally ordered subsets T of

X. J is an ordered set under the usual order relation of inclusion.
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26 ONE/SETS AND MAPS

(a) Prove that J is an inductive set satisfying the additional condition that every
totally ordered subset of  has a least upper bound in 7.

(b) For each TE€ J, let Br={x € X|x =t for all t € T}. Assume that ¢ is a choice
function for X, and define f: 9> J by

_[TUe(Br), ifBr¥90
f(T)‘{T if Br=9

Prove that forall TE J, T < f(T) and that if T < T' < f(T), then T=T" or
T = f(T).

(¢) Using Exercise 19 and still assuming the existence of @, prove that J has a
maximal element. This establishes the fact that if the axiom of choice holds,
then every ordered set contains a maximal totally ordered subset.

(d) From (c) conclude that the axiom of choice implies Zorn’s lemma.

(21) Let C, Y, and Z be sets. Define a map ¢:(Xx Y, Z)-(X, (Y, Z)) by setting,

for f: XX Y->Z, o(f)x)(y)=f((x, y)).

(a) Prove that ¢ is always an isomorphism.

(b) If g:Z—>2Z' is a map, then for all sets W there is a map gw:(W, Z)—>(W, Z')
defined by gw(f) = gf. Prove that the following square is commutative:

(XX Y, Z)——(X, (Y, 2))

llx-v lﬂv)x

(XX Y, Z)V——(X,(Y,Z")

where ¢':(Xx Y, Z")->(X, (Y, Z") is defined as in (a).

(22) Show that if X and Y are arbitrary sets, then the sets 2**¥ and (Y, 2%) are
isomorphic.

(23) Suppose that R is an order relation on a set X which is not a total ordering.
Suppose, in particular, that x and y are elements of X such that neither x R y nor
y R x holds. Show that there is an order relation R’ on X such that xR’ y and
xR’ x; holds if x, R x, holds. [Hint: Show that the relation R’ on X given by
x, R’ x, if either x, R x, or both x, R x and y R x, hold is an order relation on X with
the desired properties.]

(24) Let R be an order relation on a set X. Show that there is a total ordering R’ of
X such that x; R x, implies x; R’ x..
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Chapter2 MONOIDS
AND
GROUPS

For the convenience of handy reference as well as to fix notation and definitions,
we presented in the previous chapter a rapid survey of those aspects of set theory
that we shall need in this book. In a similar spirit, some fundamental facts and
notions concerning monoids and groups are presented in this chapter. Because, as
in the case of set theory, we are assuming the reader is familiar with most of this
material, few proofs are given in the text. Illustrative material as well as outlines
of the more difficult proofs are included in the exercises to aid the reader in
gaining familiarity with the few notions or results he encounters here.

1. MONOIDS

Certainly everyone will agree that adding, multiplying, or somehow combining
two quantities to obtain a third is central to all of our experiences with algebra.
These are all instances of what is called a binary law of composition, a notion we
now define.

Definition
A binary law of composition on a set X is simply a map m: X xX->X. Two
properties of a law of composition m : X x X— X of particular interest are

(1) associativity, which means that m(x,, m(x,, x;)) = m(m(x,, x2), x;) for all x,, x,,
and x; in X;
(2) commutativity, which means that m(x,, x;) = m(x;, x,) for all x, and x, in X.

27

Google



28 TWO/MONOIDS AND GROUPS

It is not difficult to create laws of composition which are neither associative
nor commutative. Although noncommutative laws of composition are of interest
to us in this book, nonassociative ones are not. Therefore, from now on when we
speak of laws of composition we shall always mean associative, but not necessar-
ily commutative, ones.

We shall say that a law of composition m: XX X—>X on a set X has an
identity if there is an element e in X, such that m(e, x) = m(x, ¢) = x for all x in X.
It is important to note that if the law of composition m has an identity, then it has
only one. For if e, e; in X are both identity elements for m, then e, = m(e,, &;) = e..
This uniquely determined element e in X is called the identity of the law of
composition m.

We can now define the most general type of algebraic object of interest to us.

Definition

By a monoid structure on a set X we mean an associative law of composition
m : X X X - X with identity. A monoid is a pair (X, m) where X isasetandm isa
monoid structure on X. If (X, m) is a monoid, then X is called the underlying set of
the monoid (X, m). Finally, a monoid (X, m) is called a commutative or abelian
monoid if m is a commutative law of composition on X.

We have already seen that the subsets of a set play an important role in set
theory. The analogous notion for monoids is that of a submonoid which we now
define.

Definition
A monoid (X', m') is said to be a submonoid of a monoid (X, m) if:

(a) X' is a subset of X containing the identity e of m.
(b) m(x,, x;)=m'(x,, x;) for all x, and x, in X’. We shall denote the fact that
(X', m’) is a submonoid of the monoid (X, m) by writing (X', m') C(X, m).

It is worth noting that if (X', m’) is a submonoid of a monoid (X, m), then X'
is a subset of X containing the identity e of m such that m(x,, x,) is in X’ if x, and
x; are in X'. On the other hand, if X" is a subset of X containing the identity e of m
such that m(x,, x;) is in X' whenever x, and x, are in X', then (X', m’) is a
submonoid of (X, m) where m’: X’ x X' - X' is defined by m’(x,, x;) = m(x,, x,) for
all x, and x; in X'. In other words, the submonoids of a monoid (X, m) are
completely determined by the subsets X' of X containing e which have the
property that m(x,, x,) is in X’ whenever x, and x, are in X’. For this reason, it is
legitimate to refer to a submonoid (X', m’) of a monoid (X, m) simply as the
submonoid X’ of (X, m). .

If m:XxX- X is a law of composition, then it is common practice to use
either the multiplicative notation x;x, or additive notation x,+x, to denote
m(x,, x,). When there is no danger of ambiguity concerning which particular law
of composition we mean, we shall tend to use the multiplicative notation for laws
of composition. The additive notation shall be used only for commutative laws of
composition. Of course, this does not preclude using the multiplicative notation
for a commutative composition. Whenever we use the multiplicative (or additive)
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notation for the law of composition of a monoid, we shall denote the identity of
the monoid by 1 (or 0). Finally, we shall refer to a monoid (X, m) as simply the
monoid X whenever there is no possible doubt as to which law of composition m
on X we have in mind.

Before giving some important examples of monoids and submonoids, we
state the following easily verified properties.

Basic Properties 1.1
Let & be a set of submonoids of the monoid X. Then:

(a) xnyX ’ is a submonoid of X.
‘€
(b) If & is a totally ordered subset of 2*, then nyX ’ is a submonoid of X.
'€

Example 1.2 Let X be a set. Then the set of all maps (X, X) together with the
law of composition m : (X, X) X (X, X)— (X, X) given by m(fi, f.) = f.f., where
ff. is the composition X —2» X 11, X of maps, is a monoid with identity element
idx. Since the maps from a set X to itself are called endomorphisms of X, this
monoid is called the monoid of endomorphisms of X and is denoted by End(X). It
is easily seen that the following are submonoids of End(X).

(a) Inj(X), the set of all injective endomorphisms of X.

(b) Sur(X), the set of all surjective endomorphisms of X.

(c) Aut(X), the set of all automorphisms of X, that is, isomorphisms from X to X.
The reader should also observe that Aut(X) = Inj(X) N Sur(X).

Example 1.3 A little thought should suffice to convince the reader that the set
N of nonnegative integers is a commutative monoid under the usual addition of
integers whose identity is 0 and satisfying:

(a) If x+y=2z+y, then x =z for all integers x, y, z in N.

(b) There is an element ¢ different from 0 in N with the property that a subset N’
of Nis all of Nif 0 isin N’ and x+t¢ is in N’ whenever x is in N'.

(c) Further, the element t has the property that x +t+0 for all x in N.

Condition (a) is obvious and (b) is the familiar induction principle which we
see by letting t = 1. What is perhaps not so obvious is that conditions (a), (b), and
(c) completely determine the monoid of positive integers under addition, a fact we
shall establish in the next section. In the meantime we will accept conditions (a),
(b), and (c) as axioms for the monoid N of nonnegative integers under addition.

We now describe the ordinary order relation on N in terms of these axioms. If
x and y are in N, then define x < y if there is a z in N such that x + z = y. It is not
difficult to show just using axioms (a), (b), and (c) that this defines an ordering on
N satisfying:

MHEs<standu=<vo then s+tust+o.
@ If0<x=<t then x=0or t.
(iif) N is a totally ordered set under this ordering.
(iv) N is a well-ordered set with O the first element of N.

Since property (ii) implies there is only one element ¢ in N satisfying axiom
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(b), we follow the usual practice of denoting this element by 1 which we call the
element one of N.

Example 1.4 Since the ordinary product of nonnegative integers is as-
sociative and the product of nonnegative integers is again a nonnegative integer,
the ordinary multiplication of nonnegative integers is also a law of composition on
N. In fact, it is well known that N together with this law of composition is a
commutative monoid with identity 1 having the property (x + y)z = xz + yz for all
x, y, and 2 in N. In this connection, the reader should not have too much difficulty
showing that if N is a commutative monoid satisfying axioms (a), (b), and (c)
above, then there is one and only one law of composition, which we write multi-
plicatively, satisfying:

(¢) Ix=x=x1 for all x in N,
d (x+y)z=xz+yz,

and that this uniquely determined law of composition is commutative. Thus, the
axioms we gave for the additive monoid N of nonnegative integers also enables us
to construct the law of composition on N corresponding to the ordinary multipli-
cation of positive integers. Finally, one should observe that Ox =0 for all x in N.
For we have 0 =0+0 and hence 0x = (0+0)x =0x +0x. Therefore, 0x +0=0x +0x,
which by axiom (a), implies 0x =0.

2. MORPHISMS OF MONOIDS

In the previous chapter, we saw that maps between sets give a useful way of
comparing sets. Since monoids are sets together with additional structure, namely,
laws of composition, it seems reasonable that maps between the underlying sets of
two monoids which are somehow compatible with their laws of composition
should give useful ways of comparing the monoids. This approach leads to the
notion of a morphism from one monoid to another which we now define precisely.

Definition
Suppose (X', m’) and (X, m) are two monoids with identity elements e’ and e,
respectively. A morphism from (X', m')to (X, m) is a map f: X' —» X satisfying:

(@) f(e')=e.
(b) f(m’'(x,, x;))= m(f(x)), f(x,)) for all x, and x. in X".

The set of all morphisms from (X', m’) to (X, m) will be denoted by (X', m’),
(X, m)).

The reader should note that if we are given two monoids X' and X whose
laws of composition are written multiplicatively, then a morphism from X’ to X is
a map of sets f: X' - X satisfying:

(@ f()=1.
(b) f(xix;))=f(x)f(x:) for all x, and x; in X".
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Similarly, if we write the laws of composition additively, then a morphism
from X' to X is a map of sets f: X’ - X satisfying:

(a) f(0)=0.
() f(x,+ x2) = f(x))+ f(x,) for all x, and x, in X".

When we denote the two monoids (X’, m’) and (X, m) by their underlying
sets X’ and X, then we denote the set of morphisms from X' to X by
Morph(X’, X) instead of ((X', m’), (X, m)).

We now illustrate this notion with some important examples.

Example 2.1 Let (X', m’) be a submonoid of (X, m). Then the inclusion map
inc: X’'— X is a morphism from (X’, m’) to (X, m) called the inclusion morphism
and is denoted by inc: (X', m')—»(X, m). In particular, the identity map idx: X—
X is a morphism from (X, m) to (X, m) which is called the identity morphism and
is denoted by idx ., or more simply, idx.

Example 2.2 Suppose X is a multiplicative monoid, that is, its law of compo-
sition is written multiplicatively. Associated with each element x in X are the
maps I, : X - X, called left multiplication by x and defined by L (y)=xy forall y
in X, and., : X - X, called right multiplication by x and defined by, (y) = yx for
all y in X. Thus, associated with a monoid X are the two maps L : X - End(X) de-
fined by L(x) =1, for all x in X and R : X - End(X) defined by R(x) =+, for all
x in X where End(X) is the monoid consisting of all endomorphisms of the set X,
It is easily checked that L : X - End(X) is a morphism from the monoid X to the
monoid End(X). The map R :X —End(X) is not a morphism but satisfies the
condition R(x,x;) = R(x;)R(x;). Obviously, though, L =R if and only if X is a
commutative monoid.

Example 2.3 Let N be the monoid of nonnegative integers under addition and
X an arbitrary monoid. Then it is not very hard to show that two morphisms
fi, f:: N> X are the same if and only if f,(1) = £,(1). What is more difficult to show
(see the exercises) is that given any element x in X, there is a morphism f:N—-> X
such that f(1) = x. Suppose for each x in X we denote the unique morphism f: N—»
X such that f(1)=x by f.. Then it is fairly obvious that the two maps of sets
X ->Morph(N, X) and Morph(N, X)—- X given respectively by x>, and f—
f(1) are isomorphisms of sets which are inverses of each other.

An interesting aspect of Example 2.3 is that it is really a reformulation of the
familiar notion of raising a number to an integral exponent. For suppose x is an
element of a multiplicatively written monoid X and f,: N— X is the unique mor-
phism such that f(1) = x. If we denote f.(n) by x", then we obtain the usual proper-
ties of exponentiation: x°=1, x'=x, and x™*™ = x"x™. For this reason we will
usually use the notation x" to denote f(n) for all n in N and x in X.

Of course, in order to completely justify this definition of exponentiation we
should show that (x™)™ = x™" for all n,, n, in N and x in X. To do this it suffices to
show that for a fixed x in X and n, in N we have (x")"= x™" for all n in N. This can
be easily carried out by induction on n. If n =0, we have (x™)’=1 while x"” =
x°=1. Suppose for n=0 we have that (x™)"=x"", Then (x")™*"=(x")"- x" =
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x"" e xh=x"mn = xq**Y Hence, we have shown that (xV)"=x"™" for all n in N,
which is our desired result.

Suppose X is a commutative multiplicative monoid. If x, and x; are elements
of X, then it is not difficult to check that the map g:N—- X given by g(n)=
f.(n)f,(n) is a morphism of monoids. Because g(1) = f,(1)f.(1) = x.x,, it follows
that f..(n)=f.(n)f,(n) for all n in N. Thus, we obtain in this case the usual
formula (x,x;)"=x{x; for all n in N.

Suppose now that X is a commutative, additive monoid. For each element x
in X, let f,: N— X be the unique morphism of monoids such that f(1) = x. Then we
will usually denote f(n) by nx for all n in N. We have the usual rules 0x =0,
1x = x, (n,+ n2)x = n,x + nyx, and (n,n;)x = n,(n.x) for all n, and n; in N. Further, as
above for x, and x, in X, we obtain n(x,+ x;) = nx,+ nx, for all n in N.

As an application of these ideas we cite the following.

Example 2.4 Let X be a set and End(X) the monoid of endomorphisms of X.
Then for each f in End(X) and each nonnegative integer n, the endomorphism f"
is called the nth iterate of f. The nth iterate of f is the formal way of expressing
the endomorphism of X which is the composition of f with itself n times. Notice
that f°=idy.

We now list some easily verified properties.

Basic Properties 2.5
Let f: X - Y be a morphism of monoids.

(a) If X' is a submonoid of X, then f(X’) is a submonoid of Y. If X' is
commutative monoid, then so is f(X’).

(b) If Y’ is a submonoid of Y, then f'(Y’) is a submonoid of X.

(c) Suppose that g: Y—Z is a morphism of monoids, then the composition of
maps of sets gf: X—>Z is a morphism of monoids.

This last basic property suggests the following.

Definition

Let f:X->Y and g:Y—>Z be morphisms of monoids. The composition of f
followed by g is defined to be the morphism gf : X = Z given by the composition of
the maps of sets f followed by g.

It is obvious that the associativity of the composition of maps of sets implies
the associativity of the composition of morphisms of monoids.

3. SPECIAL TYPES OF MORPHISMS

In this section we develop for monoids the analog of the notions of isomorphic,
surjective, and injective maps already given for maps of sets.

We begin by pointing out the following characterization of the identity
morphisms of monoids which is the exact analog of the characterization given for
identity maps of sets.
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Basic Property 3.1
For a morphism f: X— X of monoids, the following are equivalent:

(a) f is the identity morphism on X.
() If g: X->Y is an arbitrary morphism of monoids, then gf=f.
(¢) If h:U—>X is an arbitrary morphism of monoids, then fh=h.

Again in analogy with the situation for sets, we define an isomorphism of
monoids as follows.

Definition

A morphism f: X—-Y of monoids is an isomorphism if there is a morphism of
monoids g:Y— X such that gf =idx and fg =idy. The monoid X is said to be
isomorphic to the monoid Y if there is an isomorphism f: X-Y.

Basic Properties 3.2

(a) For each monoid X the identity morphism is an isomorphism.

(b) If f: XY is an isomorphism of monoids, then there is only one morphism
g:Y - X such that gf =idx and fg =idy. This uniquely determined morphism
g: Y- X is also an isomorphism which is called the inverse of f and is denoted
by f~'. Clearly, (f)"'=f.

(©) ff:X->Y and g: Y- Z are isomorphisms of monoids, then gf: X+ Z is also
an isomorphism of monoids with (gf)™"' =f"'g"".

d If f:X->Y and g: Y- Z are morphisms such that gf: X—Z is an isomor-
phism, then f is an isomorphism if and only if g is an isomorphism.

(e) Suppose X, Y, and Z are monoids. Then:
(i) X is isomorphic to Y if and only if Y is isomorphic to X.
@) If X is isomorphic to Y and Y is isomorphic to Z, then X is isomorphic to

Z.

An obvious question to ask at this point is how the fact that a morphism of
monoids f: X - Y, which is an isomorphism of monoids, is related to its being an
isomorphism when viewed solely as a map of the underlying sets of X and Y. This
question is answered in the following easily verified proposition.

Proposition 3.3
Let X and Y be monoids.

(a) Suppose f: XY is a bijective map of the underlying sets of X and Y. Then f
is a morphism of monoids if and only if the inverse map f™': Y- X of the
underlying sets of Y and X is a morphism of monoids. Consequently:

(b) A morphism of monoids f: X— Y is an isomorphism of monoids if and only if
it is an isomorphism when viewed solely as a map of the underlying sets of X
and Y. Hence:

(¢) A morphism f: X— Y of monoids is an isomorphism of monoids if and only if:

(D Given y in Y, there is an x in X such that f(x)=1y.
() If x, and x; are in X and f(x;) = f(x,), then x, = x..
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Finally:
(d) If the morphism of monoids f: X— Y is an isomorphism, its inverse as a
morphism of monoids coincides with its inverse as a map of sets.

To illustrate some of the material developed until now, we substantiate our
earlier claim that the monoid (N, +) of nonnegative integers under ordinary addi-
tion is completely described by the axioms we gave for (N, +).

Theorem 3.4

Suppose N and N’ are commutative monoids (which we write additively) which
satisfy the axioms for the nonnegative integers under addition. Then there is one
and only one isomorphism N to N'.

PROOF: We first show that N and N’ are isomorphic monoids. We have
already stated in Section 2 that if M is any commutative monoid satisfying the
axioms for the additive monoid of nonnegative integers and X is an arbitrary
monoid, then given x in X there is precisely one morphism f,: M— X such that
f(1)=x where 1 is the one in M. Hence, in particular, there are unique morphisms
f:N—>N'and g: N'— N such that f(1)=1' and g(1') =1 where 1 is the one in N
and 1’ is the one in N'. Therefore, the compositions gf and fg have the properties
that they are endomorphisms respectively of N and N’ such that gf(1)=1 and
fg(1’)=1'. Since the endomorphisms of N and N’ are completely determined by
their values on 1 and 1’, respectively, the fact that the endomorphisms gf and fg
have the property gf(1) = 1=id(1) and fg(1') =1’ =idn.(1'), it follows that gf =idy
and fg =idy. Hence, f: N N' is an isomorphism with inverse g.

We now show that if h: N— N’ is an isomorphism of monoids, then h(1)=1".
Because f: N— N’ also has the property f(1)=1', it follows that h = f, which es-
tablishes that there is only one isomorphism from N to N’, namely, the isomor-
phism f.

Suppose h:N—> N’ is an isomorphism. In order to show that h(1)=1' it
suffices to prove that the element k(1) of N’ satisfies axiom (b) for the monoid of
nonnegative integers. Namely, we must show that if X is a subset of N’ which
contains 0 and which contains x + h(1) whenever it contains x, then X = N’, for we
have already seen that the axioms for the monoid of nonnegative integers under
addition implies that 1’, the one of N, is the only element of N’ with this property.
Thus, if h(1) does indeed have this property our claim that h(1)=1' will be
verified.

Suppose X is a subset of N’ containing 0 and such that x+h(1) is in X
whenever x is in X. Because h(0)=0, we have that 0€ h'(X). We also claim that
if n is in h™'(X), then n+1 is in h™'(X). For if n is in h™'(X), then h(n+1)=
h(n)+ h(1)is also in X since h(n) is in X and X has the property that x + k(1) is in
X whenever x is in X. Thus, h~'(X) = N since h~'(X) is a subset of N containing
0 which also contains n + 1 whenever it contains n. Because h(h~'(X))CX, it
follows that h(N)C X. But h(N) = N’ because all isomorphisms are surjective
maps. Therefore, we have our desired result that X = N. This completes the proof
of the theorem.

Of course, the whole proof of this theorem depends on establishing the fact
that if M is a monoid satisfying the axioms for the nonnegative integers and x is an
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element of a monoid X, then there is a unique morphism of monoids f,: M—»> X
such that f(1) = X. The reader is reminded that a detailed outline of the proof of
this fact is given in the exercises.

Returning to the general discussion of morphisms of monoids, we now define
surjective and injective morphisms of monoids which are the exact analogs of the
corresponding notions for maps of sets.

Definitions
Let f: X— Y be a morphism of monoids.

(a) fis said to be a surjective morphism if as a map of the underlying sets of X and
Y it is surjective. In other words, f is a surjective morphism if and only if
given any y in Y, there is an x in X such that f(x)=y.

(b) fis said to be an injective morphism if as a map of the underlying sets of X and
Y it is injective. In other words, f is an injective morphism if and only if
f(x) = f(x,) implies x, = x; for all x, and x; in X.

We also have the following analogs of the formal properties of surjective and
injective maps of sets.

Basic Properties 3.5
Suppose f: X—-»Y and g: Y—>Z are morphisms of monoids. Then:

(a) If f and g are surjective (injective) morphisms, then the morphism gf: X > Z is
also a surjective (injective) morphism.

(b) If the composition gf : X— Z is a surjective morphism, then g: Y+ Z is also a
surjective morphism.

(¢) If gf: X—>2Z is an injective morphism, then f: X—Y is also an injective
morphism.

In dealing with sets, we have already seen that the notions of monomorphism
and injective map coincide as do also the notions of epimorphism and surjective
map. This is not quite the case for monoids. The reader will see in Section 9 that
epimorphisms of monoids need not be surjective. However, the following connec-
tions between these concepts are valid.

Proposition 3.6
Let f: XY be a morphism of monoids.

(a) f is a monomorphism if and only if f is an injective morphism.
(b) If f is a surjective morphism, then f is an epimorphism.

PROOF: We only prove that if f is a monomorphism, then f is injective. The
rest of the proposition is left as an exercise.

Suppose f: X— Y is a monomorphism and x; and x, are elements in X such
that f(x,) = f(x,). Let h,,h,:N—> X be the morphisms given by h,(n)=x! and
hx(n) = x3 for all n in N. Then the compositions fh,, fh.: N— Y have the property
that fh.(1) = fhX(1). Hence, fh, = fh, since a morphism from N to an arbitrary
monoid is completely determined by its value on 1. Since f: X->Y is a
monomorphism, this implies that h, = h,. Therefore, x, = h,(1) = hx(1) = x.. Con-
sequently, f is injective.
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We now point out some easily demonstrable properties of surjective and
injective morphisms of monoids that are analogs of properties of maps of sets.
These are important because they are often useful in showing that analogs of
results already obtained for maps of sets also hold for morphisms of monoids.

Proposition 3.7

Suppose X, Y, and Z are monoids and f: X— Y and g:Y—>Z are maps of the
underlying sets of the monoids involved such that the map gf: X—Z is a
morphism of monoids.

(@) If f: X>Y is a surjective morphism of monoids, then the map g: Y- Z is
also a morphism of monoids.

(b) If g: Y—>Z is an injective morphism of monoids, then the map f: X— Y is also
a morphism of monoids.

As an example of how these observations can be used, we establish for
monoids the analog of the following result we have already obtained for sets.

Corollary 3.8
Suppose we are given a diagram of morphisms of monoids
/ * \
U w
o \ . /
satisfying:
(a) gf = st.

(b) f is a surjective morphism and s is an injective morphism.

Then there is one and only one morphism of monoids h : X Y which makes the
diagram commutative, that is, such that hf=t and sh=g.

PROOF: Viewing the diagram
! X
/ \
U w
\ v ’/7

simply as a diagram of maps of sets, the hypothesis that f is a surjective map and s
is an injective map such that gf = st implies that there is a unique map of sets
h:X-Y such that sh=g and hf=t. Since shf=st, it follows that shf is a
morphism. Because s is an injective morphism and the composition s(hf) is also a
morphism, it follows from our previous proposition that the map hf is a morphism
of monoids. Hence, by the same proposition, the fact that f is a surjective mor-
phism and hf is a morphism of monoids implies that the map h is actually a
morphism of monoids. Now it is not difficult to check that the morphism h: X> Y
has our desired properties and is the only morphism from X to Y having these
properties.
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4. ANALYSES OF MORPHISMS

We recall that a map of sets always has an analysis, that is, a factorization into a
surjective map followed by an injective map, and that any two analyses are
uniquely “isomorphic.” Our purpose in this section is to establish analogous re-
sults for morphisms of monoids.

Suppose f: X— Y is a morphism of monoids. We have already seen that the
subset f(X) of Y is a submonoid of Y. This submonoid of Y is called the image of
f and is often denoted by Im f. Further, the map f,: X = Im f defined by fu(x) = f(x)
for all x in X is obviously a surjective morphism. Because the inclusion morphism
inc:Im f-> Y is an injective map, the fact that f=inc f, shows that every mor-
phism of monoids can be written as the composition of a surjective morphism
followed by an injective morphism. We summarize this discussion in the
following.

Definitions

Let f: X— Y be a morphism of monoids. Then Im f is a submonoid of Y called the
image of f Further, the map fi: X—Im f is a surjective morphism while the
inclusion morphism inc:Im f —» Y is an injective morphism. Finally, the represen-
tation of f as the composition of morphisms

X Imf=y

is called the image analysis of f. More generally, any representation of f as the
composition of morphisms of monoids hg with g a surjective morphism and h an
injective morphism is called an analysis of f.

Using Corollary 3.8 it is easy to show that analyses of morphisms of monoids
are unique in exactly the same sense that analyses of maps are unique. Specifically
we have the following.

Basic Property 4.1
Let . a
X—-—U—7—0Y
XU 25y

be two analyses of the same morphism of monoids f: X— Y. Then there exists one
and only one morphism of monoids j: U— U’ such that jg = g’ and h’j = h and this
uniquely determined morphism j is an isomorphism.

Having developed the notion of the image analysis of a morphism of
monoids, we now discuss the coimage analysis of a morphism of monoids.

Suppose f:X—Y is a morphism of monoids. Viewing f as a map of the
underlying sets of X and Y, we know that there is associated with the map f the
partition Coim f of X whose elements are the subsets of X of the form f'(y) for
all y in Im f. Suppose f ~'(y,) and f '(y,) are two elements of Coim f. The fact that f
is a morphism of monoids implies that if x, is in f '(y;) and x; is in f ~'(y,), then x.x;
is in f'(y:y2). This is equivalent to saying that if we denote by f~'(y,)f ~'(y.) the set
of all elements in X of the form x,x, with x, and x; in f'(y2), then f '(y))f '(y2) C

Google



38 TWO/MONOIDS AND GROUPS

f7'(y1y2). This condition can be restated as follows: If the subsets X, and X; of X
are elements of Coim f, then there is one and only one element X; in Coim f con-
taining X, X; where X, X, is the set of all elements of X of the form x,x, with x, in
X, and X2 in Xz.

This property of the partition Coim f of X suggests considering the map
m :Coim f X Coim f—Coim f where m(X,, X;) is the unique element of Coim f
containing the subset X;X: of X. Now it is not difficult to check that the map
m :Coim f x Coimf— Coim f has the following interesting property. Suppose
k:X—-Coim f is the canonical map from X to the partition Coim f of X. Then
k(x,x:) = m(k(x)), k(x)) for all x, and x, in X. But this implies, as we shall see
presently, that the map m :Coim f X Coim f - Coim f is not only associative and
hence a law of composition but also that k(1) = [1] is the identity element for this
law of composition. In other words, (Coim f, m) is a monoid with [1] as identity
and the canonical map k : X - Coim f is a surjective morphism. The validity of
these observations is an easy consequence of the following general proposition.

Proposition 4.2
Let X be a monoid, Y a set, and f: X - Y a surjective map.

(a) There is at most one monoid structure m on Y such thatthemap f: X —» Yisa
morphism from the monoid X to the monoid (Y, m).

(b) This unique monoid structure exists on Y if and only if there is a map
m:Y xY - Y such that f(x,x;) = m(f(x)), f(x.)) for all x, and x; in X. Such a
map m, when it exists, is the unique monoid structure on Y making f: X -» Y
a morphism of monoids.

Thus, we see that the map m : Coim f X Coim f —» Coim f defined above is the
unique monoid structure on Coim f such that the canonical surjective map
kcoims: X = Coim f is a morphism of monoids. It is not difficult to check directly
that the injective map j;: Coim f - Y is a morphism of monoids. However, it is
worthwhile noting that this also follows from the fact that f = jkc.m;. For we have
already seen that the composition of maps f= jkc.ms; being a morphism of
monoids together with the fact that kc.m(is a surjective morphism, implies that the
map j; is a morphism of monoids (see Proposition 3.7). Finally, from this it follows
that the bijective map (j)o: Coim f = Im f is an isomorphism of monoids.

We now summarize this discussion in the following.

Definitions
Let f: X - Y be a morphism of monoids. Then the set Coim f together with the
unique monoid structure on Coim f which makes the canonical map kcums: X—>
Coim f a morphism, is called the coimage of the morphism f and is denoted by
Coim f.

The monoid Coim f has the further property that the unique map j;: Coim f—
Y which gives the coimage analysis of the map f is also a morphism. The
morphism j;: Coim f — Y is called the morphism from Coim f to Y induced by the
morphism f: X - Y. Thus, the composition

X —<='_, Coimf—2L Y

is an analysis of f called the coimage analysis of f.
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Finally, the unique isomorphism g:Coim f —» Im f such that gkc.n,;= fo and
inc g =j; is simply the isomorphism (j;)o:Coim f - Im f which is called the
canonical isomorphism from Coim f to Im f.

5. DESCRIPTION OF SURJECTIVE MORPHISMS

As in the case of maps of sets, a morphism f: X - Y of monoids is surjective if
and only if the injective morphism j;: Coim f - Y in the coimage analysis of f is
surjective or what is the same thing, an isomorphism. This suggests that connec-
tions analogous to those already obtained for surjective maps of sets should exist
between arbitrary surjective morphisms of monoids f:X — Y and their as-
sociated surjective morphisms of monoids kcums: X = Coim f. In fact, as we show
in this section, the results along these lines for monoids are identical with those
obtained for sets once one decides which partitions of the underlying set of a
monoid are sufficiently compatible with the monoid structure to be properly
considered partitions of the monoid itself and not just of its underlying set.

We have already seen that if f: X — Y is a morphism, then the partition
Coim f is not arbitrary but satisfies the condition that if X, and X are subsets of X
in Coim f, then there is one and consequently only one subset X; of X in Coim f
such that X, X, C X,. This suggests that in dealing with a monoid X, one should
consider only those partitions # of X which satisfy the condition that if X, and X;
are subsets of X in %, then there is one (and consequently only one) subset X; of
X in 2 such that X, X, C X;. The appropriateness of this remark is reinforced by
the following.

Proposition 5.1
The following conditions are equivalent for a partition ® of the underlying set of a
monoid X:

(a) If X, and X, are elements of P, then there is one (and consequently only one)
element X; in # containing X, X,.

(b) There exists one (and consequently only one) map m: P X ® - P such that
the canonical surjective map k»: X — % has the property ko(x:x;)=
m(ks(x,), kao(x2)) for all x, and x, in X.

(c) There exists one (and consequently only one) monoid structure on % such that
the canonical surjective map kz: X = ® is a morphism of monoids.

In the light of this discussion it is reasonable to make the following.

Definitions

A partition of a monoid X is a partition # of the underlying set of X which has the
following property: If X, and X, are elements of &, there is one (and consequently
only one) element X; in # containing X, X..

If  is a partition of a monoid X, define the map m: P x - P by letting
m(X,, X:) be the unique element of ® containing the product X,X,. This map is
called the canonical monoid structure on 2 since it is the unique monoid structure
on P which makes the canonical surjective map ks:X—% a morphism of
monoids.
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If @ is a partition of a monoid X, then we shall denote the monoid (P, m)
consisting of the set @ together with the canonical monoid structure m simply
by 2.

It should be noted that if 2 is a partition of the monoid X, then the canonical
monoid structure on @ is completely described by the appealing formula [x,][x.] =
[x:x.] for all x, and x. in X. In fact, this formulation has so much appeal that it is
the way we will describe the canonical monoid structure on # from now on.

In view of the correspondence between partitions and equivalence relations
on a set, it is reasonable to ask which equivalence relations on the underlying set
of a monoid correspond to the partitions of the monoid. This is answered in the
following.

Proposition 5.2
Let R be an equivalence relation on the underlying set of a monoid X. Then the
following are equivalent:

(a) The partition X/R of the underlying set of X is a partition of the monoid X.

(b) If xR x; holds, then xx, R xx; and x,x R x,x both hold for x,, x;, and x in X.

(c¢) If xR x; and x| R x} are true, then x,x{ R x,x: is true for all x,, x;, and x{, x5 in
X.

This leads to the following.

Definition
Let X be a monoid. An equivalence relation R on the underlying set of X is an
equivalence relation on the monoid X if it satisfies the following condition:

If x, R x; and x| R x} hold, then x,x{ R x.x3 also holds for x,, x, x/, x}in X.

If R is an equivalence relation on a monoid X, we shall denote simply by X/R
the monoid (X/R, m) consisting of the partition X/R of the monoid X together
with the canonical monoid structure m.

Having established what we mean by partitions and equivalence relations on
monoids, our earlier results describing the surjective maps for sets can now be
transcribed verbatim for monoids. In order to give a little variety we shall state the
results for monoids in terms of equivalence relations rather than partitions.

Suppose X is a monoid. If R, and R; are equivalence relations on the monoid
X with R, <R,, then X/R, = X/R; and the canonical map gxx, xx,: X/Ri= X/R;is a
surjective morphism of monoids. This surjective morphism gxsx, xx, is called the
canonical morphism from X/R, to X/R,. We now list some of the basic properties
of the canonical morphisms gxsg, xmr,.

Basic Properties 5.3
Suppose R, and R. are equivalence relations on the monoid X.

(a) There is a morphism h : X/R,— X/R. of monoids such that hkxz, = kxx, if and
only if R,<R..

() If R, <R;, there is only one morphism of monoids h: X/R,— X/R, such that
hkxm, = kxm,, namely, the canonical morphism gxm,. x,-
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(c) If R, <R,, then gxx, xr,: X/Ri=> X/R; is always a surjective morphism which is
an isomorphism if and only if R,=R..
(d) 8xm,. xR, = idXIRI'

We now state the main results concerning the connections between arbitrary
surjective morphisms of monoids f: X— Y and their associated surjective mor-
phisms Kcoims : X = Coim f.

Proposition 5.4
Let fi: X->Y, and f,: X— Y, be two surjective morphisms of monoids.

(a) The following statements are equivalent:
(i) There is a morphism h:Y,— Y; of monoids such that hf, = f..
(if) There is a morphism g :Coim f,—Coim f; of monoids such that gkcein/, =
kCoim he
@iif) Coim f,=Coim f;.
(b) If there is a morphism h:Y,— Y, such that hf, = f,, then:
() There is only one such morphism.
(if) There is only one morphism g : Coim f,— Coim £, such that gkc.in;, = kcoim gy
namely, gcoim . Coim f-
(c) The following are equivalent:
(i) There is an isomorphism of monoids h:Y,— Y, such that hf, = f..
@) Coim f, =Coim f.
(d) If Y is a partition of the monoid X and f: X— Y is the canonical morphism,
then Coim f=Y and f= kcoim;.

As in the case of sets, the main content of this proposition is that all
surjective morphisms of monoids f: X— Y with a fixed domain X are essentially
given by the canonical morphisms k,: X — @ for all partitions % of the monoid X.

We end this section with the following generalization of some of the proper-
ties of surjective morphisms of monoids we have discussed so far. The reader
should have no difficulty recognizing this as the exact analog of a result already
established for surjective maps of sets (Chapter 1, Proposition 7.3).

Proposition 5.5

Let f: X—> Y be a surjective morphism of monoids. If g: X— Z is an arbitrary
morphism of monoids, then there is a morphism of monoids h: Y—>Z such that
hf =g if and only if R(f) < R(g). If R(f) < R(g), then there is only one morphism
h: Y- Z of monoids satisfying hf = g.

6. GROUPS AND MORPHISMS OF GROUPS

Although the general notion of a monoid is important in a good deal of mathemat-
ics, we shall be concerned in this book primarily with the special type of monoids
called groups. Because groups are monoids, everything we have shown about
monoids generally also holds for groups. However, there are special features of
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the theory of groups which do not hold for arbitrary monoids. This section is
devoted to outlining some of these special features.

Before defining groups, we discuss the notion of invertible elements of a
monoid. An element x in a monoid (X, m) with identity element e is said to be
invertible if there is an element y in X such that m(x, y) = m(y, x) =e. It is not
difficult to show that if x in the monoid (X, m) is invertible there is only one
element y in X with the property m(x, y)=m(y,x)=e.

Definitions

Let (X, m) be a monoid with identity e. An element x in X is said to be invertible if
and only if there is an element y in X such that m(x, y)=m(y,x)=e. If x in X is
invertible, then the unique element y in X such that m(x, y) = m(y, x) = e is called
the inverse of x. If we write the law of composition in the monoid (X, m) multi-
plicatively or additively, then the inverse of an invertible element x will be de-
noted by x' or —x, respectively.

As an immediate consequence of these definitions we have the following.

Basic Properties 6.1
Let X be a multiplicative monoid.

(a) The identity 1 of X is invertible with 17'=1.

() If x in X is invertible, then its inverse x~' is also invertible and (x™')' = x.

(c) If x and y are elements of X and xy is invertible, then x and y are both
invertible in X.

(d) The set of invertible elements of X is a submonoid of X which we denote by
Inv (X).

(e) If f: X— Y is a morphism of monoids and x is an invertible element of X, then
f(x) is invertible in Y and f(x')= f(x)"'. Hence:

M) f(Inv(X))CInv (Y).

By way of illustrating some of these points, we give the following examples.

Example 6.2 Let X be a set and End(X) the monoid of endomorphisms of X.
Then an element f in End(X) is invertible if and only if f is an automorphism of X.
Hence, Inv(End(X)) = Aut(X).

Example 6.3 Let X be a monoid and L : X— End(X), the injective morphism
given by L(x)=1, left multiplication by x, for all x in X. Then L(Inv(X)) C
Aut(X).

Example 6.4 Let N be the nonnegative integers. Then Inv((N, +)) = {0} while
Inv((N, x)) = {1}.

We now give some definitions concerning groups.

Definitions

(a) A group is a monoid X with the property that every element of X is invertible,
or, what is the same thing, Inv(X)=X.
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(b) A subgroup X’ of a group X is a submonoid X' of X which is also a group.

(c) Suppose X and Y are groups. A morphism g: X— Y of groups is simply the
same thing as a morphism from X to Y when X and Y are viewed as monoids.

(d) By a partition (equivalence relation) of a group X we mean a partition
(equivalence relation) of X when viewed as a monoid.

The reader should have no difficulty checking the following.

Basic Properties 6.5
Let X be a group.

(a) A subset X’ of X is a subgroup of X if and only if:
@Mhl1eXx.

@) If x is in X', then x~' is also in X".
(iif) If x and y are in X', then xy is in X'.

(b) Suppose X and Y are groups. A map f: X— Y of the underlying sets of X and
Y is a morphism of groups if and only if f satisfies f(x,x.) = f(x:)f(x;) for all
X1, X2 in X. Further, if f: X— Y is a morphism of groups, then f(x ') = f(x)™' for
all x in X.

(c) Suppose f: X— Y is a surjective morphism of monoids with X a group. Then
Y is a group.

Combining what has been shown about monoids with our discussion of
groups, we obtain the following important facts concerning groups.

Proposition 6.6
Suppose X is a group.

(a) If @ is a partition of the group X, then 2 with its canonical monoid structure is

a group.

(b) Suppose Y is a monoid and f: X— Y a morphism of monoids.

(i) If X—~—>Z—2->Y is an analysis of f, then Z is a group, g is a surjective
morphism of groups, and h is an injective morphism of monoids.

(if) In particular, Im f and Coim f are groups, the morphisms f,: X > Im f and
Kcoims : X > Coim f are surjective morphisms of groups. The inclusion
morphism Im f = Y and the canonical morphism Coim flaY are injec-
tive morphisms of monoids.

(¢c) If X—2>Z-25Y and X—£2Z'—25Y are analyses of the morphism f, then
there is a unique morphism of groups t : Z—Z' such that tg=g’and h=h't.

7. KERNELS OF MORPHISMS OF GROUPS

One of the basic differences between the theory of groups and the theory of
arbitrary monoids is that it is much easier to describe the partitions of a group than
it is to describe the partitions of an arbitrary monoid. In general, in order to
describe a partition & on a set or monoid X it is necessary to describe each of the
subsets of X individually. However, if X is a group, a partition & of the group X
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can be completely described in terms of the subset [1], of X containing the
identity 1 of X. Exactly how this is accomplished is made clear in the following.

Proposition 7.1
Let f: X— Y be a morphism of groups and let K = f'(1). Then K has the follow-
ing properties:

(a) K is a subgroup of X satisfying xK = Kx for all x in X.

() If x, and x; are in X, then f(x,) = f(x;) if and only if there is a k € K such that
x.k = x,. Hence, if x is in X, then f'(f(x))=xK.

(c) Thus, the elements of the partition Coim f of X are precisely the subsets of X
of the form xK for all x in X. Hence, the partition Coim f of X is completely
determined by K = [1]coims.

This result clearly indicates that subgroups K of a group X with the property
xK = Kx for all x in X play a fundamental role in studying groups. For this reason
they are given a special name.

Definitions

A subgroup K of a group X is called a normal or invariant subgroup of X if
xK = Kx for all x in X. If f: X— Y is a morphism of groups, the normal subgroup
£7'(1) of X is called the kernel of f and is denoted by Ker f.

Suppose now we are given a partition # of a group X. As we have already
seen (Proposition 6.6), ? is a group and the canonical map ks: X—>P is a
surjective morphism of groups. Hence, our previous proposition shows:

(a) K =[1]p is a normal subgroup of X.

() If x is in X, then [x]o=xK.

(c) Denoting [x], by xK, the law of composition in # takes on the form
(x| K)(x:K) = x,x:K.

(d) For each x in X, we have (xK)'=x"'K.

Hence, associated with each partition & of a group is the normal subgroup
[1]s of X which completely determines the partition ®. It is natural to ask in this
connection if for each normal subgroup K of a group X is there a partition # of
the group X such that [1],= K? This question is answered in the affirmative in
the following.

Proposition 7.2
Let K be a normal subgroup of the group X. Then:

(a) The set X/K of all subsets of X of the form xK with x in X is a partition of the
group X.

() The canonical law of composition for the partition X/K of X is given by
(x: K)(x:K) = x,x.K.

(c) The monoid X/K is a group with (xK)'=x"'K for all x in X.

(d) The canonical morphism of groups kxx: X = X/K given by kxx(x) = xK for
all x in X has the property Ker kx,x= K.

(e) If P is a partition of the group X with [1],= K, then # = X/K.
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To emphasize the point that partitions of a group X are completely deter-
mined by the normal subgroups of X, we introduce a new name and notation for
the partitions of a group.

Deflinition

Suppose K is a normal subgroup of a group X. The partition of the group consist-
ing of the subsets of X of the form xK for all x in X together with the law of
composition (x;K)(x,K)=x,x,K is a group which we denote by X/K. The group
X/K is called either the factor group of X by K or the residue class group of X by
K. The canonical surjective morphism of groups kxx:X — X/K is called the
canonical morphism from the group X to the factor group X/K.

We now state in terms of this new terminology some of our previous results.

Proposition 7.3
Let X be a group.

(a) The: partitions of the group X are precisely the factor groups X/K for all
normal subgroups K of X.

(b) Suppose f: X—Y is a morphism of groups. Then Coim f= X/Ker f and the
coimage analysis of f

X 2=t X [Ker f—r—Y

can be described by kxx.Ax)=xK; and j(xK)= f(x) for all x in X.

(c) Since j;: X/Ker f>Y is injective and Im j,=Im f, we have that the induced
morphism (j)o: X/Ker f—Im f is an isomorphism of groups. The isomorphism
(jo can also be characterized as the unique morphism h : X/Ker f—Im f such
that the diagram

XXt X [Ker f

o h

Im f

commutes, that is, hkxx. ;= fo. Hence:

(d) The morphism of groups f: X Y is a surjective morphism if and only if the
morphism j;: X/Ker f- Y is surjective and therefore an isomorphism.

(e) The morphism of groups f: X— Y is injective if and only if Ker f={1}.

(f) If K is a normal subgroup of X and kx;x: X— X/K the canonical morphism of
groups, then Ker (kxx) = K.

Now it is not difficult to see that if K, and K, are normal subgroups of a group
X, then K, C K, if and only if X/K, is a refinement of X/K.. Moreover, if
K, CK,, then the canonical morphism gxx, xix,: X/K,—= X /K, can be described
by gk, xix(xK) = xK; for all x in X. Clearly, if K,=K;, then gxk, xix, = idxx,.

Further, we have the following analogs of results already obtained earlier for
sets and monoids.
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Proposition 7.4
Suppose f,: X—> Y, and f,: XY, are surjective morphisms of groups. Then:

(a) The following statements are equivalent:
(i) There is a morphism of groups h:Y,— Y, such that hf, = f..
(ii) Ker f,CKer f..
(iif) There is a morphism h’':X/K,—» X/K, such that h’kxx,= kxx,, The
morphism h’' is nothing more than the canonical morphism gx,. x/x,
(b) If there is a morphism h:Y,— Y, such that hf, = f, then:
(i) h is the unique morphism of groups with this property.
(if) h is a surjective morphism.
(iif) h is an isomorphism if and only if Ker f, =Ker f..

What this proposition says in essence is that the surjective morphisms f: X —»
Y of groups with a fixed domain X are, roughly speaking, completely determined
by the normal subgroups of X.

We devote the rest of this section to pointing out various important applica-
tions of the notion of the kernel of a morphism of groups.

We begin with the following generalization of our previous proposition.

Proposition 7.5

(a) If X—L>Y —2>Z are morphisms of groups, then Ker(gf) =f '(Ker g) DKer f.
Hence, if g is injective, then Ker(gf)=Ker f.
(b) If we are given a diagram of morphisms of groups

X|—I“’Y

|

X:—>Z

with f a surjective morphism, then there exists a morphism i: Y—Z which
makes the above diagram commute, that is, hg=if, if and only if
g(Ker f)CKer h. Moreover, there is at most one such morphism from Y to Z.

In the next proposition we investigate the connection a morphism of groups
f: XY establishes between the subgroups of Y and those of X.

Proposition 7.6
Suppose f: X—Y is a morphism of groups and K =Ker f. Then:

(@ If Y’ is a subgroup of Y, then f'(Y’) is a subgroup of X containing K.
Moreover, f'(Y) is a normal subgroup of X if Y’ is a normal subgroup of Y.
(b) Suppose X'’ is a a subgroup of X.
@ f7'(f(X") is a subgroup KX’ of X.
(if) Moreover, the morphism of groups g: KX'— f(X') given by g(y) = f(y)
for all y in KX’ is a surjective morphism with kernel K. Thus, there is a
unique isomorphism of groups t:KX'/K—f(X') which makes the
diagram
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KX'|K
kkx1x t
KX'—f(X')

commute.

(iif) The morphism of groups h : X’ - f(X') given by h(y)=f(y) forall y in X’
is a surjective morphism with kernel X’ N K. Hence, there is a unique
isomorphism of groups s:X'/X'NK - f(X') which makes the diagram

X/XNK

kx/xn/ l:

X' — f(X)
commute.
(iv) Because s: X'/ X' N K—=f(X')and t: X' K/K - f(X') are isomorphisms of
groups, we have that t 's: X’'/X’ N K- X'K/K is also an isomorphism of
groups.

It is worth noting that although the morphism f: X— Y was used to obtain the
isomorphism t's: X'/ X'NK - X' K/K, this isomorphism in fact depends only on
the subgroups X’ and K of X and not on the morphism f: X - Y. More precisely,
it is nothing more than the canonical isomorphism we describe below which
clearly has nothing to do with the morphism f: X- Y.

Proposition 7.7
Suppose X’ and K are subgroups of a group X with K a normal subgroup of X.

(a) KX'=X'K is a subgroup of X. Clearly, K and X’ are subgroups of KX’ with
K a normal subgroup.

(b) The morphism of groups g: X'—> X'K/K given by g(x)=xK for each x in X’
is a surjective morphism with kernel X'NK. Hence:

(c¢) The morphism j,: X'/ X'NK—-> X'K/K induced by the surjective morphism
g:X'->X'K/K is an isomorphism.

Because the isomorphism j, we just described is used a great deal it is
convenient to make the following definition.

Definition

Suppose X’ and K are subgroups of a group X with K a normal subgroup of X.
Then the isomorphism j;: X’/ X’'NK - X’'K/K induced by the surjective morphism
g2:X'»X'K/K given by g(x)=xK for all x in X" is called the canonical isomor-
phism from X'/X'NK to X'K/K. Unless stated otherwise, this is the only
isomorphism we consider between X'/X'NK and X'K/K.

As might be expected, if we assume that we are given a surjective morphism
f:X-Y, then much more can be said about the relationships between the sub-
groups of X and Y than we were able to say when f: X— Y was an arbitrary
morphism of groups.
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Proposition 7.8
Let f: X— Y be a surjective morphism of groups with kernel K.

(a) Suppose X’ is a normal subgroup of X. Then:

(i) f(X’) is a normal subgroup of Y.

(ii) The morphism g:X— Y/f(X') of groups given by g(x)=f(x)f(X’) is a
surjection with kernel f'(f(X')) = X'K. Hence:

(i) The morphism j,: X/X'K- Y/f(X') induced by g:X-Y/f(X') is an
isomorphism.

(iv) The isomorphism j,: X/X'K— Y/f(X’) is the unique morphism from
X/X'K—- Y/f(X') which makes the diagram

kxix'x J l kyifoe)

X/IX'K——Y/f(X")

commute.

(b) Let & be the set of subgroups of X containing K and J the set of all
subgroups of Y. Then the maps a:¥—J and B8: 9+ & defined by a(X')=
f(X')and B(Y")=f"'(Y") forall X' in ¥ and Y' in J have the following prop-
erties:

(i) « and B are bijective maps which are inverses of each other.

(il) X' in & is a normal subgroup of X if and only if a(X') = f(X"') is a normal
subgroup of Y. Similarly, Y’ is a normal subgroup of Y if and only if
B(Y")=f"'(Y') is a normal subgroup of X.

(i) If X’ in & is normal in X, then the morphism of groups g: X- Y/f(X")
given by g(x)=f(x)f(X’) for all x in X is surjective with kernel X'.
Hence, the induced morphism j;: X/ X' - Y/f(X') is an isomorphism.

For ease of reference we make the following definition.
Definition
Let f: X > Y be a surjective morphism of groups with kernel K and suppose X' is

a normal subgroup of X. Then the isomorphism X/X'K - Y/f(X"), which is the
unique morphism from X/X’'K - Y/f(X') which makes the diagram

X—L oy

kx/xwl lkwhxw

XIX'K——Y/f(X")

commute, is called the isomorphism from X/X'K- Y/f(X') induced by f.

A particularly important special case of the above are the surjective mor-
phisms of the form kx;x : X—= X/K where K is a normal subgroup of X. Suppose K
is a normal subgroup of X and X’ is a subgroup of X. Then it is easily seen that
X'K is a subgroup of X which is a normal subgroup of X if X' is a normal
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subgroup of X. Also the group X’K/K is a subgroup of X/K which is a normal
subgroup of X/K if and only if X’, and hence X'K, is a normal subgroup of X.
Thus, if X’ is a normal subgroup of X, we obtain that X/X'K and
(X/K)/(X'K|K) are isomorphic groups by means of the isomorphism X/X'K —»
(X/K)/(X'K/K) induced by the canonical surjective morphism kx;x : X - X/K.
This isomorphism X/X’'K - (X/K)/(X'K/K) is called the canonical isomorphism
and is the only isomorphism between X/X’'K and (X/K)/(X'K/K) we will con-
sider. It should be noted that if X’ D K, then X’'K = X'’ and we have the notation-
ally appealing result that X/X"’ is isomorphic to (X/K)/(X'/K) under the canoni-
cal isomorphism.

One last word concerning the canonical isomorphisms X'/ X'NK—->X'K/K
and X/X'K—-(X/K)/(X'K/K). We usually consider these isomorphisms as iden-
tifications. Therefore, we shall write X'/ X'NK =X'K/K and X/X'K =
(X/K)/(X’'K)/|K meaning that they are being identified by means of the canonical
isomorphism or their inverses.

8. GROUPS OF FRACTIONS

We have already seen that associated with each monoid X is the group Inv (X) of
invertible elements of X. It is not difficult to show that the inclusion morphism
inc:Inv (X)—» X has the property that given any group G and morphism of
monoids f: G- X, there is one and only one morphism of groups g: G—Inv (X)
such that f =inc g. Moreover, this observation completely characterizes the group
Inv (X) as we see in the following.

Proposition 8.1

Let h: U—- X be a morphism of monoids with U a group. Suppose h: U— X has
the property that given any group G and any morphism of monoids f: G- X there
is one and only one morphism of groups g:G —» U such that f = hg. Then h: U >
X is an injective morphism with Im h = Inv(X). Hence, ho: U = Inv(X) is an
isomorphism of groups.

PROOF: Since U is a group, there is a unique morphism g: U—Inv (X) such
that inc g = h where inc:Inv (X)— X is the inclusion morphism. On the other
hand, the hypothesis in h: U—> X implies that there exists a unique morphism
g’ :Inv (X)— U such that hg’ = inc. From these relationships it follows that hg'g =
h and inc gg’ =inc. But the morphism h : U — X has the property that there is only
one morphism ¢: U— U such that ht = h. Since g’'g and idy both have this prop-
erty, it follows that g’g =idy. One can also show that gg’:Inv (X)—~Inv (X) is the
idix) in a similar fashion or by using the fact that inc:Inv(X)—> X is a
monomorphism. Therefore, the morphism g : U—-Inv (X) is an isomorphism such
that inc g = h. From this it follows that h is a monomorphism and Im h = Inv (X).

This characterization of the morphism inc:Inv(X)— X shows that the mor-
phisms of a group G to X are uniquely determined by the morphisms of G to the
group Inv(X). It is natural to ask if something similar can be done for the
morphisms of monoids from X to a group G. Specifically, is there a group H
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associated with the monoid X such that for each group G the morphisms of
monoids from X to G are uniquely determined by the morphisms of groups from
H to G? We now describe in what sense such a group H can be found.

Definition
Suppose X is a monoid. A group H together with a morphism h:X—->H of
monoids is called a group of fractions for X if for each group G and morphism of
monoids f: X— G there is one and only one morphism of groups g: H— G such
that f=gh.

The reader should have no difficulty in convincing himself that if a monoid X
has a group of fractions h:X— H, then the group H has the property that the
morphisms from X to a group G are completely determined by the morphisms
from the group H to G. For it follows from the definition of a group of fractions
that the morphisms from X to G can be written uniquely as the compositions
X—->H—%5G as g runs through group morphism from H to G. Hence, our
original problem will be solved for a monoid X if we can show it has a group of
fractions. The main result in this connection is the following.

Theorem 8.2
Let X be a monoid. Then:

(a) X has a group of fractions.

() If h,: X > H, and h,: X - H, are two groups of fractions for X, then there are
unique morphisms of groups t,: H,—» H; and t,: H,— H, such that t,h, = h;
and t;h, = h,. Further, these uniquely determined morphisms ¢, and ¢, are
isomorphisms which are inverses of each other.

In other words, each monoid has an essentially unique group of fractions. Al-
though this theorem is of interest for arbitrary monoids, we will prove it just for
commutative monoids because this is the only case we will have need of in this
book. Also, the proof in the commutative case is somewhat simpler. However, be-
fore proving the existence part of the theorem for commutative monoids, we
prove part (b), the uniqueness statement, for arbitrary, not just commutative,
monoids.

PROOF: (b) Suppose h,: X - H, and h,: X - H, are two groups of fractions
for the monoid X. Because t,: X - H, is a morphism from X to a group we know
by the definition of a group of fractions that there is a unique morphism t,: H,—»
H, of groups such that h, = t,h,. Similarly, there is a unique morphism ¢,: H,—» H,
of groups such that h, = t;h,.

We show that these unique morphisms are isomorphisms by showing that
t:t,: H, - H, is the identity on H, and t,t,: H,— H, is the identity on H,. First we
observe that (t,t\)h, = h,, because (t.t.)h, = t(t,h\) = t;h. = h,. But this implies that
t.t, = idy, because, by the definition of a group of fractions, there is only one
morphism f: H,—> H, such that f,h, = h, and obviously idy,h, = h,. By symmetry it
follows that t,t,: H,— H, is the identity on H,. Hence, ¢, and t, are isomorphisms
which are inverses of each other.
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In showing that commutative monoids have groups of fractions, the notion of
the product of two monoids comes up.

Definitions

Let X and Y be two monoids. The product X X Y is the monoid whose underlying
set is the Cartesian product X x Y and whose law of composition is given by
(x1, Y1)(x2, ¥2) = (x,X3, y,¥2) for all x,, x,in X and y,, y; in Y. Clearly, (1, 1) is the
identity of X X Y.

The maps ix: X>X XY and iv: Y>> XX Y given by ix(x)=(x, 1) forall x in X
and iv(y)=(1,y) for all y in Y are injective morphisms of monoids called the
injections of X and Y into XX Y.

The projection maps px: X X Y—=>X given by pdx, y)=x and py: XX Y->Y
given by py(x, y) =y are surjective morphisms called the projections of X x Y
onto X and Y, respectively.

Basic Properties 8.3
Let X and Y be monoids.

(a) The injection morphisms ix: XXX Y and iy: Y= XX Y have the following
properties:
() ix(x)iv(y)=iv(y)ix(x) for all x in X and y€Y.
(if) If z is in X X Y, then there are unique elements x in X and y in Y such that
ix(x)iv(y)=z.
(b) XxY is commutative if and only if both X and Y are commutative.

In order to show that commutative monoids have groups of fractions, we
need the following description of the morphisms from the monoid Xx Y to an
arbitrary monoid Z in terms of the morphisms from X and Y to Z.

Proposition 8.4
Let X, Y, and Z be monoids. Associated with each morphism f: X x Y — Z are the
morphisms fix: X—Z and fiy: Y Z.

(a) For each morphism f: X X Y — Z the morphisms fix and fiy have the property
that z,z, = 2,z, for each z, in Im(fix) and z; in Im(fiy).

(b) Two morphisms f, ,: X X Y - Z are the same if and only if fiix = f.ix and
f iy = fziv-

(¢) If g:X—>Z and h: Y - Z are two morphisms of monoids such that z,z, = 2,z,
for all z,in Im g and z, in Im h, then there is one and only one morphism f : X X
Y —» Z such that fix =g and fiy = h.

(d) If Z is a commutative monoid, then the map (XX Y, Z)—> (X, Z)x(Y, Z) given
by f-(fix, fiy) is an isomorphism from the set (X X Y, Z) of all morphisms
from XxY to Z to the product (X, Z)x (Y, Z) of the sets of all morphisms
(X,2) and (Y, Z) from X and Y to Z, respectively.

With these preliminary results concerning products of monoids out of the
way, we return to our problem of constructing a group of fractions for a
commutative monoid X. In order to motivate the actual construction of this group

Google



52 TWO/MONOIDS AND GROUPS

of fractions, we first show that with each morphism from a commutative monoid
X to a group G, there is associated a morphism from X x X to G. The definition of
this associated morphism is based on the following.

Lemma 8.5
Let Y be a commutative submonoid of the group G and let Y ' be the subset of G
consisting of all y' ' with y in Y. Then:

(@) Y ' is a commutative submonoid of G.

(b) The map Y- Y ' given by y—y' is an isomorphism of monoids.

(c) The elements of Y and Y ™' commute, that is, if g,isin Y and g,isin Y ', then
8182 = £281.

(d) The subset YY ' consisting of all elements in G of the form g,g, with g,in Y
and g, in Y' is a commutative subgroup of G.

Suppose X is a commutative monoid and f: X - G is a morphism of monoids
with G a group. Then Y =Im f is a commutative submonoid of G because X is a
commutative monoid. From Lemma 8.5 it follows that Y ' is a commutative sub-
monoid of G and the morphism t: Y—> Y ' given by t(y)=y ' forall y in Y is an
isomorphism of monoids. Hence, associated with the morphism f: X+ G is the

composite morphism . ,
x Y ' Y~l nc G

which can be described more directly as the morphism g : X— G given by g(x)=
f(x)"' for all x in X. Because Img=Y ' and Im f =Y, it follows from Lemma 8.5
that the elements of Im g and Im f commute. Hence, we know that there is one
and only one morphism f: X x X— G such that f(x, 1) = f(x) and f(1, x) = g(x) for
all x in X. Tracing through the various definitions we see that f: X X X G can be
described more simply by f(x,, x2) = f(x,)f(x2)™" for all x, and x; in X. Hence, by
Lemma 8.5(d), Im f is the commutative subgroup (Im f)(Im f)' of G.

Now it is easily seen that if (x,, x,) and (x{, x3) are in X X X, and if there is an
x € X such that xx,x} = xx|x,, then f(x,, x2) = f(x!, x3). For if xx,x}= xxx,, then
FOf(x)f(x5) = f(x)f(x1)f(x;) which, after multiplying both sides by f(x)™', gives
f(x)f(xd) = f(x)f(x)). But this implies f(x)f(x2)"' = f(x)f(x})™"' since
(Im f)(Im f)™' is a commutative subgroup of G. Hence, we have our desired result.

This observation suggests considering the relation R on X XX given by
(x1, x2) R (x1, x3) if and only if there is an x in X such that xx,x}= xx|x.. It is not
difficult to check that R is an equivalence relation on the commutative monoid X x
X because X is a commutative monoid. Obviously, the equivalence relation R on
the monoid X X X depends only on the commutative monoid X and is independent
of the morphism f: X— G we started with. On the other hand, we also know as a
consequence of our previous discussion that given any morphism f: X— G with G
a group, the partition (X x X)/R of the monoid X x X is a refinement of the
partition Coim f of the monoid X x X. Hence, given any morphism f: X— G with
G a group, we know that there is a unique morphism of monoids g,: (X X X)/R—»G
such that f = gk x.x,x. It is also not difficult to show that if we define the morphism
of monoids h: X—(Xx X)/R by h(x)=[(x, 1)], where [(x, 1)] is the equivalence
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class of (x, 1) under R, then the diagram
X —2>(X x X)/R

)

commutes. Hence, if we can show that the monoid (X %X X)/R is a group, then the
morphism h : X—(X % X)/R stands a reasonably good chance of being a group of
fractions for the commutative monoid X since h : X— (X x X)/R has the property
that given any morphism of monoids f: X—» G with G a group, there is the
morphism g;: (X x X)/R—>G such that f=g/h.

We first observe that (X X X)/R is a commutative monoid with identity [(1,1)]
since X x X is a commutative monoid with identity (1, 1). Hence, to show that
(X x X)/R is a group, and thus a commutative group, it suffices to show that every
element [(x,, x;)]in (X %X X)/R has an inverse. But [(xz, x))[(x:, x2)] = [(x:x1, X1x2)] =
[(x2x1, x2x:)]1=[(1, 1)]. Since (X %X X)/R is commutative, [(x,, x;)] is the inverse of
[(x:, x2)] for all elements [(x,, x2)] in (X x X)/R which shows that (X X X)/R is a
commutative group.

Summarizing our results, we know that the commutative group (X % X)/R has
the property that given any morphism of monoids f: X— G, with G a group, there
is the morphism g :(XxXX)/R-+>G of groups such that gh=f where
h: X->(XxX)/R is the morphism given by h(x) = [(x, 1)] for all x in X. Therefore,
we will have shown that the morphism of monoids h : X—» (X x X)/R is a group of
fractions for X if we show that h: X—(Xx X)/R has the property that two
morphisms of groups g, ::(Xx X)/R— G are the same if g,h =gh.

To this end we observe that each element [(x,, x,)] in (X X X)/R can be written
as [(xi, DI(1, x2)1=[(x1, DI(x2, D)' = h(x))h(x;)”". Suppose gi, g::(X*x X)/[R->G
are morphisms of groups such that g,h = g;h. By our previous remark, g, = g, if
and only if g(h(x)h(x2)")=g:(h(x)h(x;)"") for all x, and x, in X But
gi(h(x)h(x)") = gi(h(x))gi(h(x)") = gh(x)(g(h(x2)"' = gh(x)(g:h(x))" =
g(h(x))g:(h(x:)"") = gx(h(x:)h(x2)™"). Thus, g, = g, if g/h = g:h, which finishes the
proof that h: X— X x X/R is a group of fractions for X.

Before showing how this notion of the group of fractions of a commutative
monoid can be applied to defining and constructing the additive group Z of all
integers from the monoid of nonnegative integers N under addition, we introduce
certain notational conventions and point out certain basic properties of groups of
fractions.

If we are writing our commutative monoid X multiplicatively, as we have
been doing until now, then we will write the commutative law of composition in
the group of fractions (X x X)/R also multiplicatively. Further, we shall denote
the element [(x;, x;)] in (X X X)/R by the fraction x,/x,. In this notation the law of
composition in (XX X)/R takes on the familiar form (x,/x2)(x!/x5) = x,x/x,x5.
Also, we have the familiar formula (x,/x;)™" = x2/x;.

However, the question of when two fractions x,/x; and x}/x} are equal has a
slightly different answer than the usual one; namely, x,/x, = xi/x} if and only if
there is an x in X such that xx;x}=xx,x!. Why we need this rather than the
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familiar criterion x,x} = x,x| for determining when two fractions x,/x; and x{/x} are
equal is made clear in the exercises. However, for the moment the reader should
observe that in the cases he is used to, each element x in X has the property that
Xy, = xy, implies y, =y, for all y, and y,. Thus, under these circumstances it is
easily seen that our criterion for when two fractions x;/x, and x}/x} are equal
coincides with the usual one that x,x;= x{x..

One reason for introducing this notation is that it has the advantage of
familiarity which makes calculation easier. Another is that many of the previously
introduced morphisms have a more appealing description in this notation. For
example, the morphism h : X—(X X X)/R has the form h(x)=x/1 for all x in X,
Also, given a morphism of monoids f: X— G with G a group, then the unique
morphism g;:(X X X)/R— G such that f =gh has the appealing description
g(xi/x2) = f(x,)(f(x2))™ for all x, and x; in X.

Because this construction of a group of fractions for a commutative monoid
will occur often in this book we make the following definition.

Deflinition

Let X be a commutative monoid. We denote by G(X) the commutative group
(X xX)/R where R is the equivalence relation on the monoid X x X given by
(x1, x2) R (x!, x5) if and only if there is an x in X such that xx;x; = xx;xi. Then the
morphism h : X - G(X) given by h(x)=x/1 for all x in X is a group of fractions
for X which is called the standard group of fractions for X.

If we are writing the law of composition in X additively, then we will write
the law of composition in G(X) additively also. In this case we will denote the
element [(x,, x2)] in (X X X)/R by x, — x,. Then the law of composition in G(X)
becomes (x; — x2)+ (x| — x}) = x, + x| — (x, + x5) while the inverse —(x,— x2) of x,—x,
is (x,— x,). Also, we have that x, — x, = x| — x} if and only if there is an x in X such
that x + x, + x5 = x + x| + x,. The morphism h : X - G(X) is given in this notation
by h(x) = x — 0 for all x in X. Finally, if f: X = G is a morphism of monoids with
G a group, then the unique morphism of groups g/ : G(X)— G such that f = gh
can be described by g(x, — x:) = f(x))f(x,)”"" for all x, and x, in X.

Basic Properties 8.6
Let h:X— H be a group of fractions for the commutative monoid X. Then:

(a) h is an epimorphism of monoids.

(b) h is an isomorphism if and only if X is a group.

(c) h is an injective morphism if and only if xy = xz implies y=z forall x, y, z in
X.

When the morphism h : X - G(X) is an injective morphism we view X as a
submonoid of G(X) by identifying the element x/1 in G(X) with the element x in
X for each x in X. In this case the morphism h : X - G (X) then is the inclusion of
the submonoid X of G(X).

Using these ideas, we now construct the group of integers from the monoid of
nonnegative integers.
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9. THE INTEGERS

Definition

We define the group of integers, which we denote by Z, to be G(N) where N is the
additive monoid of nonnegative integers. The law of composition in Z is of course
written additively.

Basic Properties 9.1
Let h:N—2Z be the standard group of fractions for N.

(a) h is an injective morphism and so, according to our convention, N is a
submonoid of Z (that is, we denote the element n —0 in Zby n for each n in N).

(b) If g is an element of a group G, then there is one and only one morphism f:Z—
G such that f(1)=g.

(c) The inclusion morphism N—Z of monoids is an epimorphism of monoids
which is not a surjective morphism.

(d) We obtain an order relation on Z by defining z, < 2, for z, and z, in Z if and
only if there is an element n in N such that z,+ n = z,. This order relation has
the following standard properties:

(i) Z is totally ordered.
@) If zi=2,and 21 <2z}, then z,+zi < z,+ 25.
(ili) z in Z is in N if and only if 0 < z.
(iv) For each element z €Z, let S, be the set of all x in Z satisfying x = z.
Then each set S, is well ordered even though Z is not well ordered.
(v) If x>z then x=2+1 for each z in Z.
(e) If 2z is in Z but not in N, then —z is in N.

We recall that this last property is the basis of the notion of absolute value |z|
of an integer z. The absolute value is the map ||:Z—> N given by {z] =z if zisin N
and |z| = -z, if z is not in N.

We now introduce the monoid structure on Z given by multiplication of
integers.

We have already seen that there is a unique multiplicative monoid structure
on N with the properties:

(@) In=nforallnin N
®) (ni+n))n=nn+nn

for all n, n,, and n, in N. We also know that this monoid structure makes N a
commutative monoid. Using this multiplicative monoid structure on N we obtain a
commutative multiplicative monoid structure on Nx N given by (n,, n:)(n!, n}) =
(nint+ nmansy, nini+ niny) for all ny, ni, nz, n5in N. Thus, the set N x N has commuta-
tive additive and multiplicative monoid structures. Now we obtained the group Z
of integers from the additive monoid N X N by introducing the relation R on N x N
given by (n,, n;) R (n}, nY) if and only if n, + n} = n{ + n,. (Why don’t we need that
there exists an n in N such that n+n,+ni=n+n\+n,?) Not only is this
equivalence relation on the set N N, an equivalence relation on the additive
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monoid N X N, it is also an equivalence relation on the multiplicative monoid N x
N. Thus, Z=(NxN)/R is a commutative multiplicative as well as additive
monoid. We now list some of the familiar properties of this multiplication, all of
which can be derived from this description of the multiplication of integers with-
out much difficulty.

Basic Properties 9.2
The addition and multiplication defined on Z have the following properties:

(a) For all 2, z,, and z; in Z we have:
@ z122=2z.
) z(z\+2))=zz)+ z2..
(i) z1 =2z
(iv) 0z =0.
W) (—2z)z:=—(2:122).
(vi) If 2,z,=0, then either z,=0 or z,=0.

(b) The injective map h: N—Z is a morphism of monoids when both N and Z are
considered as multiplicative monoids. Thus, N can be considered a submonoid
of Z by means of the injective map h:N—Z, both as additive and multiplica-
tive monoids.

(c) If z,=2, and n is in N, then nz, =nz..

(d) The absolute value ||:Z— N is a morphism of the multiplicative monoids of Z
and N (that is, |z,2:| =|z)||z:| for all z,, 2: in Z).

(e) 1and —1 are the only invertible elements in the multiplicative monoid of Z.

The reader should observe that the first few properties cited above are noth-
ing more than the assertion that Z is a commutative ring under addition and
multiplication. For the convenience of the reader we recall the following.

Definition
A set X together with two monoid structures + and X is called a ring if:

(a) Under addition X is an abelian group whose identity we denote by 0.
() x(x,+x2) =xx,+ xx3, (X, + X2)x = x,X + x=x, for all x, x), and x> in X.

A ring X is said to be a commutative ring if it is a commutative monoid under
multiplication.

The reader should show that for any ring X we have 0x = x0=0and (— x,)x.=
—(x:x>) for all x, x;, and x; in X.

We will return to the general subject of rings later on. In the meantime we
point out certain interesting interpretations of some of our results to date concern-
ing the ring Z.

We have already seen that if x is an element of a monoid X, the unique
morphism f:N— X from the additive monoid N to X such that f(1) = x, if written
in the notation f(n)=x", gives us the notion of raising x to nonnegative integral
powers. An analogous interpretation exists for the morphism from the additive
group of Z to a group G. For we know that given any element g in the multiplica-
tive group G, there is one and only one morphism f,: Z— G such that f(1) = g. If we
denote f(z) by g for all z in Z, then we have the familiar rules of exponentiation:
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g'=1,g'=g g'g =g""?forall z, and 2, in Z. Also, we have g' is the inverse of
g and for each n in N we have (g”')"=g™". Hence, the unique morphism f,:Z—G
such that f(1) = g gives us the familiar notion of raising an element of a group to
positive as well as negative powers. For this reason we will usually use the
notation g’ to denote f(z) for all z in Z. That (g")2= g"™ for all z,, z; in Z can be
deduced from the fact that (g™)==g™™ for all n, and n, in N.

Suppose G is a commutative multiplicative group. If g, and g, are two ele-
ments of G, then it is easy to check that the map b:Z—G given by b(z)=
fe(2)f(2) is a morphism of monoids. Since b(1) = £, (1)f,(1) = g.g,, it follows that
Jan(2) = fo(2)f(2) for all z in Z. Thus, we obtain in this case the usual formula
(8:8))" = gigiforall z in Z.

Suppose now that G is a commutative, additive group. For each g in G, let
f::Z— G be the unique morphism such that f(1) = g. Then we will usually denote
fAz) by zg for z in Z. What we have already established shows that we have the
usual rules: 0g =0, 1g =g, (2;+2,)g = 2,8 + 2.8, (2:122)g = 2/(2.g) for all g in G, and
z1, and 2; in Z. Further, if g, and g. are in G, then z(g, + g,) = 28, + zg, forall z in Z.

Summarizing, we see that associated with each abelian group G is the map
Zx G - G given by (z, g)—zg which has the following properties:

@) (zi+2)g =28+ 28
(b) 2(g:+g) =28+ zg..
(c) 1Ig=g.

d) (z:12:)g = z:(2:8)-

It should be observed that this operation of Z on abelian groups G also has
the property that if f: G— G; is a morphism of abelian groups, then f(zg) = zf(g)
for all zin Z and g in G..

We end this section by giving a generalization to arbitrary rings R of this
operation of the ring Z on abelian groups.

Definition
Let R be aring. By an R -module structure on an abelian group M we mean a map
R x M - M which we denote by (r, m)— rm satisfying:

@ (ntrm=rm+nrm.
®) r(m,+my)=rm,+rm..
(©) (rirX(m)=r(r.m).

d Im=m.

An abelian group together with an R-module structure is called an R-module.

We shall return later on to this general notion of a module. In fact, most of
this book will be devoted to a detailed study of rings and modules.

10. FINITE AND INFINITE SETS

In this section we point out some fundamental facts concerning finite and infinite
sets and give some applications to monoids and groups.
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Our development of the theory of finite sets is founded on certain basic facts
concerning the cardinality of subsets of N, the set of nonnegative integers. In
order to carry out this program it is convenient to have the familiar definitions.

Definitions
Let X be an ordered set.

(a) A subset X' of X is said to be an interval of X if whenever we have x, <
x < x, with x, and x, in X’, then x is also in X'.
(b) Associated with any two elements x, and x, in X are the intervals:
@) [xi, x2] consisting of all x in X satisfying x, < x < x,.
(i) [x,, x;) consisting of all x in X satisfying x, = x <x,.
(iif) (x,, x,] consisting of all x in X satisfying x, <x < x,.
@v) (x,, x,) consisting of all x in X satisfying x, < x < x,.

We now list most of the facts concerning the cardinality of subsets of N
which are of immediate concern to us. An outline of the proofs of the following
assertions is given in the exercises.

Proposition 10.1
Let N be the set of nonnegative integers.

(a) card([0, m)) < card([0, n)) if and only if m < n. Hence:

(b) card([0, m))=card([0, n)) if and only if m=n.

(¢) If n+x =n; and n{+ x' = nj, then card([n,, n;) U [n}, n})) = card([0, x + x")).
Further, card((n,, n;) U[n}, n3))=card([0, x + x')) if and only if [n,, n.)N
[n, n})=0.

(d) card([0, m) %[0, n)) = card([0, mn)).

(e) If N' C[n,, n,) for some n, and n, in N, then there is a unique n in N such that
card(N') = card([0, n)).

(f) A subset N’ of N has card(N') =card(N) if and only if N’ has no upper bound
in N, that is, N’ is not contained in [0, n) for any n in N.

The reader should have no difficulty convincing himself that the following
definition of finite and infinite sets agrees with his intuitive understanding of
these notions.

Definitions
A set X is said to be a finite set if there is an injective map f: X —[0, n) for some n
in N. The set X is said to be infinite if no such injective map exists.

As a consequence of these definitions we have the following.
Basic Properties 10.2
Let X and Y be sets, with X a finite set.

(a) If f: Y- X is injective, then Y is a finite set.

() If g: X—>Y is a surjective map, then Y is finite.

(c) The set Y is infinite if and only if there is an injective map N—- Y, or
equivalently card(Y) =card(N).
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We now turn our attention to studying finite sets. However, in order to do this
efficiently we must develop some new notions for products and sums in a monoid.
Until now we have only had to multiply or add at most three or four elements in a
monoid at a time. This required no special notation. However, to talk about multi-
plying or adding an unspecified finite number of things together, as we will often
have to do from now on, does require some special notational devices. Therefore,
we interrupt our discussion of finite sets to develop these devices.

Let X be a multiplicative monoid. Then given a finite sequence
Xi,...,%,...,% of elements of X with i in the interval [1, k] in N, we want to

k

define the product of the sequence which we denote by ‘l'l x. We do this by
=1
induction on k. If kK =0, or what is the same thing, the sequence is empty, we

k k k+1
define II x;, = 1. Assuming we know what II x; is for k =0, we define II x; to be
i=] =] . i=1

k
(IT x;)x:.1. Hence the product of any finite sequence x,, .. ., x, of elements in X is
i=]

defined. Although it is not trivial to do so, it can be shown that the associativity of
the product of a sequence of three elements [that is, (x,x2)x; = x.(x,x;) for all x,,
X3, X3 in X] implies the associativity of the product of any finite sequence of
elements in X. Even to explain precisely what this means is a bit complicated. We
shall merely give some examples to illustrate the point.

Example 10.3 Suppose x,, ..., X is a sequence of elements in the monoid X.
Then 'leI Xi = X [(((x2x3)x4)x5)x6) = [[(x1X2)X3)(X4X5)] X6 = ‘I:Il yi1 where y, = (xix3), y: =
(x3), ¥3=(XeXs), Yo = X¢.

Example 10.4 Let x,, ..., x; be a sequence of elements in the monoid X.

3 Suppose yi=X;=X;=X3, ¥2= X4= X5, y3=X¢=X5. Then ‘lfll xi = yi(yiyd) =
Il z where z,= Y 22=¥3 3= Yi.

Suppose now that x,, ..., x; is a sequence in a monoid X and f:[1,...,k]—~>
[1,...,k] is an isomorphism of sets. Then x,u), ..., X/« is another sequence of

k k
elements in X and in general 'l] x; # I1 x;,. However, it is not difficult to show that
-] i=1

k k
II x; = 11 x, if any pair of elements in the sequence x,, ..., x. commute. Thus, in
iwl =1

k
particular, if X is commutative, then ‘H x; depends only on the elements which
=1

appear in the sequence and not on the order in which they appear. Therefore, if X

is a commutative monoid and {x;},c; is any finite family of elements in X (that is, I

is a finite set), it makes sense to speak of the product Il x; of the elements in the
i€l

finite family {Xi }iel-

Similarly, if X is a commutative monoid which is written additively and {x},
is any finite family of elements in X, we can speak of their sum X/ x. If I =9,
then Z,E,x, =0.

We now return to our discussion of finite sets.
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Suppose X is a finite set. Then we know that for some integer m in N there is
an injective map f: X —[0, m). Hence, card(X) = card(Im f). Since Im f C[0, m),
we know from our discussion of the cardinality of subsets of N that there is a
unique integer n in N such that card(Im f) = card([0, n)). Thus, if X is a finite set,
there is a unique integer n in N such that card(X) = card([0, n)). This observation
leads to the following.

Definition

Let X be a finite set. Then the unique integer n in N such that card(X)=
card([0, n)) is called the number of elements in X. We will often denote the fact
that n is the number of elements in X by writing card(X) = n.

As an immediate consequence of this definition we have the following.

Basic Properties 10.5
Let X and Y be finite sets. Then the following are equivalent:

(a) Card(X) = card(Y).

(b) There is an injective morphism f: Y- X. If Y #8, then (a) and (b) are equiva-
lent to the following.

(¢) There is a surjective map f: X->Y.

The following results concerning finite sets can be deduced from our earlier
proposition dealing with the cardinality of subsets of N.

Proposition 10.6
Let X be a set, I a finite set, and {X}c, a family of finite subsets of X with
card(X) = n, for each i €I Then:

(a) ‘leJ’X, is finite set with card(U X)) < 2.c;n. Further, card(‘UIX,) =2X,erm if and
el €

only if X\NX;=@ whenever i#j in L
) lI'llX; is a finite set with card(P X)= H’ n.
€ €l i€

(c) If X, and X; are finite sets, with card(X}) = n, for i = 1, 2, then the set (X, X)
of all maps from X, to X; is a finite set with card((X;, X)) = n3.

(d) In particular, since the set 2* of all subsets of a set X is isomorphic to (X, Y)
where Y = [0, 2), it follows that if X is a finite set with n elements, then 2*is a
finite set with card(2*)=2"

We end our discussion of finite sets with this useful characterization of such
sets.

Proposition 10.7
Let X be a set. Then the following statements are equivalent:

(a) X is finite.
() If f: X—> X is injective, then f is an isomorphism.
(c) If g: X—> X is surjective, then g is an isomorphism.

Before discussing infinite sets, we give some illustrations of how some of
these facts concerning finite sets come up in the theory of monoids and groups.
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Proposition 10.8
Let X be a finite monoid (that is, X is finite as a set). If xy, = xy, implies y, = y, for
all x, y,, y. in X, then X is a group.

PROOF: For each x in X, let [, : X - X be the map of sets given by L (y) = xy
for all y in X. Since the fact that xy, = xy, implies y, = y,, we see that each map
. : X - X is injective. Because X is a finite set, we know that each I, must be an
isomorphism of sets since it is injective. Thus, for each x in X, there is an x’ in X
such that [(x')=1=xx'.

Therefore, in order to show that X is a group, we have to show that x'x also is
1. We know there is an x” in X such that x'x" = 1. Hence, we have x" = (xx')x" =
x(x'x")=x. Thus, 1 = x'x"=x'x, and we see that X is a group.

The reader should give an example of a monoid X which is not a group but
which nonetheless satisfies the condition that xy, = xy, implies y, = y, for all x, y,,
y: in X.

Our next illustration of how the notion of finite sets comes up in dealing with
monoids and groups is based on the notion of a product of monoids which we now
define.

Definition

Let {X.},e: be a nonempty family of monoids. The law of composition on the

product of sets IT X, given by (x:)ic;(x)ier = (M1)ier Where y, = xxi for all i € I,
[}

makes ‘H’X, a monoid which is called the product of the family {X },c; and is
€
denoted by ll'I, X.. Each of the projection maps projx :'IeI’X. - X, given by
€

proj.((xi)ier) = x: is a surjective morphism of monoids called the k-projection
morphism.

We now list some easily verified properties of the product of monoids.

Basic Properties 10.9
Let {X}:c: be a nonempty family of monoids.

(a) The identity of ‘IEI’ X, is {1};c; where 1, is the identity of X.
M®) (x)ier In ‘HIX, is invertible if and only if x; is invertible in X, for eachi € I If
€

(x)ie: is invertible, then (x)ie:= (xi")ie:. Thus:
(c) 'II’ X is a group if and only if each monoid X, is a group.
€

(d l'l' X, is commutative if and only if each X is commutative.

ie
(e) If Y is a monoid, then amap f: Y—»lﬂlX, is a morphism of monoids if and only

€

if each of the maps proj;f: Y= X, is a morphism of monoids. This implies:

() If Y is a monoid, then the map of sets
Morph (Y, [[’ X.) —»H Morph(Y, X;)  givenby  f—(proji f)ie:
€ €

is an isomorphism of sets.
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In addition to the product, there is another monoid associated with a family of
monoids {X}: <  which plays an extremely important role throughout this book and
mathematics generally.

In order to describe this we need the following.

Definition
Let {X};c: be a nonempty family of monoids. The support of an element {x},c, in
H’ X, is the subset of J of I consisting of all i in I such that x;#1,. An element {x}in
i€
IT X, is said to have finite support if its support is a finite set.
i€l

It is not difficult to check that the subset of H’ X, consisting of those elements

i€

with finite support is a submonoid of H' X: which we denote by 3¢, X.. For each k

in I we shall denote the composition E'X; =511 X, kil » X, by proj, :E,X‘ - X,

iel
which we call the kth projection morphism. Also for each k in I, the map inj,: X,—
‘2, X, given by inj. (x) = {x;},e; where x.= x and x;= 1, for all i #k, is a morphism of
€

monoids which we call the kth injection morphism. Since for each k in I we have

that the composition X, T L3 X—1 5 X, is idx, it follows that each inj; is an
tel

injective morphism and each proj, is a surjective morphism. We now list some
easily verified properties.

Basic Properties 10.10
Let {X,};c; be a nonempty family of monoids.

(@) {x.}ie:X; is invertible if and only if each x, is invertible in X If {x;}ic: is
invertible in Zic; X, then {x.}id;= {xi'}ier
() ;X is a group if and only if each X, is a group.
(¢) 2ier X is commutative if and only if each X; is commutative.
(d) If I is finite, then =, X, = 'IIIX,.
€

(e) If k and k' are distinct elements of I, then inj.(x)inj. (y) = inj. (y)inj.(x) for all
x in X, and y € X,.

We now wish to describe for each monoid Y the morphisms from Zic; Xito Y.
Associated with a morphism of monoids f:Z,e; X, =Y are the morphisms
finj.: Xi—= Y for each k in I. Now it is not hard to check that two morphisms
fi, f1:2ie1 Xi > Y are the same if and only if f, inj, = f:inj, for all k in I Thus, the
map Morph(Zic, X;, Y)— _161’ Morph(X,, Y) of sets given by f—(finj).c; is injec-

tive. This naturally raises the question: Is the map Morph(Z, X, Y)-
I]' Morph(X,, Y) surjective and thus an isomorphism?
i€

In general, it is not surjective. For if f:Z.c; Xi— Y is a morphism of monoids
and k and k' are distinct elements of I, the fact that inj.(x)inj.(x.)=
inj,(x.-)inj, (x,.) tells us that the morphism f inj, : X, > Y and f inj.: X, = Y have
the property f inji(x:) f inj-(x) = f inju-(x) f inji (x:) for all x, in X, and x;- in X,
Thus, if fi: X, > Y is a family of morphisms, then in order for there to be a
morphism f:2X, - Y such that f, = f inj, for all k in I, the family of morphisms
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fi : Xi = Y must have the property fi (x.)fi(xx) = fi-(x)fi (x:) for all x; in X, and x,.
in X.- whenever k and k' are distinct elements of L

On the other hand, suppose we are given a family f; : X; > Y of morphisms
such that fi(x)fi-(xv) = fu-(x)fi(x) for all x, in X, and x. in X, whenever k and k’
are distinct elements of I. Let {x}.c; be an element of 2., X.. Because only a finite
number of the x;#1,, it follows that only a finite number of the elements in f.(x,) in
Y are different from 1. Also, since the elements f,(x,) commute with each other we
can talk about the product of the elements fi(x)#1 which we can denote by
Ey fi (xx) without any confusion. Hence, we obtain a map f:2,¢; X; = Y by setting

f@xikier) = tl'ellfk(xk ). It is not difficult to check that f:Z.c; X; = Y is a morphism

which also has the property that f, = f inj, for all k in I. Thus, we have shown the
following.

Proposition 10.11 ,

Let {X}:c: be a nonempty family of monoids. For each monoid Y, the map of sets

Morph(Cie: X, Y)->,II’ Morph(X,, Y) given by f-(finj)er for all morphisms
€

f:Zie1 Xi > Y is an injective map. Further, an element {fi }ie in III' Morph(X,, Y)is
€
in the image of Morph(Cic: X, Y) > l'I'Morph(X‘, Y) if and only if f,(x)fi(x) =
ie

fi(xe)fe (xi) for all x, in X and x:- in X,- whenever k and k' are distinct elements of
I. Consequently, the map Morph(Cie: X, Y) > ’H’ Morph(X,, Y) is an isomorph-
€

ism if Y is a commutative monoid.
Because the monoid 2: X plays a particularly important role when all the X,
i€

are commutative, we give it a special name in that situation.

Definition
Let {X},c; be a nonempty family of commutative monoids. Then the commutative
monoid ;2.' X is called the sum of the family of monoids {X} < and is often denoted
by LI X.

i€l

Returning to our discussion of finite and infinite sets, we devote the rest of
this section to developing a few useful facts concerning infinite sets.

As we have already seen, a set X is infinite if and only if card(X) = card(N).
Because N is itself infinite, N is the smallest infinite set and therefore in some
respects the simplest infinite set. For this reason, we begin our discussion of
infinite sets by pointing out certain facts about the cardinality of the set N.

Proposition 10.12
Let X be a set. Then card(X) = card(N) under the following circumstances:

(a) X = X, U X, where card(X,) = card(N) and card(X3) < card(N).

(b) There exists a partition {X}; c » of X where each set X, is finite and not empty.
(c) X = NxN.

(d) There is a partition {X}:c~ of X with card(X) = card(N) for all i in N.
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64 TWO/MONOIDS AND GROUPS

(e) X = ;H; Y, where J is a finite nonempty set and card(Y) = card(N) for all j in J.
€

As a consequence of these criteria of when a set X is isomorphic to N we
obtain the following facts concerning arbitrary infinite sets.

Proposition 10.13
Let X be an arbitrary infinite set. Then:

(a) There exists a partition {X};c; of X with card(X)) =card(N) for all i in L
(b) Card(N % X) = card(X).

EXERCISES

(1) Suppose H is a subgroup of a group G. A subset X of G is called a left coset of
H in G if there is an element x in G such that X = xH. A subset Y of G is called a
right coset of H in G if there is an x in G such that Y = Hx. The subset of 2°
consisting of the left cosets of H in G is denoted by G/H and is called the left
coset space of H in G. The subset of 2° consisting of the right cosets of H in G is
denoted by H\G and is called the right coset space of H in G. Show that the
following statements are true.
(a) Let x and y be two elements of G. Then the following statements are
equivalent:
@) x and y belong to the same left coset of H in G.
@ii) xH = yH.
@) y'x is in H.
Similarly, the following statements are equivalent:
(iv) x and y are in the same right coset of H in G.
(v) Hx = Hy.
(vi) yx'is in H.
(b) The subsets G/H and H\G of 2° are both partitions of G having the following
properties:
() For each x in G, the left coset xH is the unique element of G/H contain-
ing x. Similarly, the right coset Hx is the unique element of H\G contain-
ing x.
(ii) For each x in G, we have card(xH) = card(H) = card(Hx).
(i) card(G/H) = card(H\G).
(iv) card(H X (G/H)) = card(G) = card(H x (H\G)).
(©) If G is a finite group, then card(H) X card(G/H) = card(G) = card(H) X
card(H\G).
(d) G/H=H\G if and only if H is a normal subgroup of G.
(e) If card(G/H) =2, then H is a normal subgroup of G.
(2) Let X be a set and Aut(X) the group of bijective maps f: X— X. For each x, in
X define Aut,(X) to be the subset of Aut(X) consisting of all bijective maps
f: X—> X with the property f(x;) = xo.. Show that:
(a) Auty(X) is a subgroup of Aut(X) which is isomorphic to the group Aut(X —
{xa})-
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() Card(Aut(X)/Aut,(X)) = card(X).

(c) If X is a finite set with n elements, then card(Aut(X))=n!, where n!=1 if
n=0,and n!=1x2x---xn for n>0.

(3) Let {G};cI be a family of submonoids (subgroups) of the monoid G. Show

that:

(@ G= 'n' G, is a submonoid (subgroup) of G.

(b) If {G}ie: is totally ordered under inclusion, then G" = ’U'G, is a submonoid
€

(subgroup) of G.

(¢) Give an example of a group G which contains subgroups G, and G, such that
G,UG: is not a submonoid and hence not a subgroup of G.

(4) Let X be a subset of a monoid G. Then:

(a) The subset G’ of G consisting of all finite products of elements in X is a
submonoid of G called the submonoid of G generated by X

(b) Show that G’ is the intersection of all submonoids of G containing X.

(c) The subset X of G is said to generate G if G’ = G. Show that if X generates G
and f,, f,: G- H are two morphisms of monoids, then f,=£, if and only if
fiIX=£fX. [Hint: Use the fact that if f,, f;: G—H are two morphisms of
monoids, then the subset of G consisting of all x in G such that f(x) = f(x)isa
submonoid of G.]

(5) Let X be a subset of a group G and let X' be the subset of G consisting of all

x~' where x is in X.

(a) Show that the submonoid G’ of G generated by XU X' is a subgroup of G.
The subgroup G’ is called the subgroup of G generated by X.

(b) Show that the subgroup G' of G generated by X is the intersection of all
subgroups of G containing X.

(c) The set X is said to generate G if G is the subgroup of G generated by X.
Show that if X generates G and f,, f;: G- H are two morphisms of groups,
then f, = f; if and only if f,|X = f|X. (Hint: use the fact that if f,, f.: G- H are
two morphisms of groups, then the subset of G consisting of all x in G such
that fi(x)=fi(x) is a subgroup of G.]

(d) Suppose f: G H is a surjective morphism of groups. If the subset X of G
generates G, then f(X) generates H.

(6) Suppose x is an element of a group G. Show that:

(a) The subgroup of G generated by x is the subset {x}.cz of G. Hence:

(b) The image of the unique morphism f:Z— G of groups with the property f(1) =
x is the subgroup of G generated by the element x in G.

A group generated by a single element is called a cyclic group.

(7) (a) A group G is a cyclic group if and only if there is a surjective morphism

f:Z- G of groups. Hence:

(b) All cyclic groups are abelian.

(¢c) If Z’ is a subgroup of Z, then there is a unique n in N which generates Z'.
[Hint: Use the Euclidean algorithm which states that if a and b are in N and
b#0, then there are q and r in N such that a=bg+r with 0 < r < b.]

(d) Every subgroup of a cyclic group is cyclic.

(e) Let Zn be the subgroup of Z generated by the element n in N.

) If n +0, then card@/Zn) = n.
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(i) n =0 if and only if Z/Zn is an infinite set.

@) If n, and n, are in N, then the cyclic groups Z/Zn, and Z/Zn, are isomor-
phic groups if and only if n,=n,.

@v) If G is a cyclic group, then there is a unique element n in N such that G is
isomorphic to Z/Zn. Hence:

(v) Two cyclic groups are isomorphic if and only if their cardinalities are the
same.

(f) Suppose G is a finite cyclic group with card(G) = g. For each positive integer n
dividing g, there is one and only one subgroup H of G with card(H)=n.

If a group G is finite, then the number of elements in G is called the order
of G. If G is not finite, it is said to be of infinite order. The order of an element x
in a group G is defined to be the order of the subgroup of G generated by x.

(8) Let x be an element in a group G.

(a) x is of infinite order if and only if x*= 1 implies z =0 where z is an integer in Z.

(b) The following statements are equivalent:

@) x is of finite order.
(if) There is a nonzero z in Z such that x*=1.
(iii) There is a nonzero n in N such that x"=1.

(c) If x is of finite order, then the order of x is the smallest n in N such that x"= 1.

(9) (a) Show that if z, and z, are in Z, then:

() z]z: (2, divides z;) if and only if the subgroup Zz, of Z contains the
subgroup Z2, of Z. Hence:
(i) Z2z,=2z, if and only if |z/|=|z)).

(b) Suppose n, and n, are positive integers, that is, n, and n, are in N—{0}. Then
there is a unique positive integer n such that the subgroup of Z generated by n,
and n, is Zn. Show that n is the largest integer in N — {0} which divides both n,
and n,. This positive integer n is called the greatest common divisor of n, and n,
and is denoted by gcd[n,, n;]. Two numbers are said to be relatively prime if
gedn, n]=1.

(c) Show that the positive integer n is the greatest common divisor of the positive
integers n, and n, if and only if n satisfies:

- (i) n|n, and n|n,.
(i) n=z,n,+ z;n, where z, and 2, are in Z. Hence:

(d) The positive integers n, and n, are relatively prime if and only if there are 2z,
and z, in Z such that z;n,+ z;n, = 1.

(e) If n, and n, are positive integers, then there is a unique positive n such that Zn
is the subgroup Zn, N Zn, of Z. This uniquely determined positive integer n is
called the least common multiple of n, and n, and is denoted by lcm([n,, n.].
Show that lcm[n,, n,] is the smallest positive integer divisible by both n, and
na.

(f) Show that for a pair of positive integers n, and n, we have gcd[n,, n.] X
lem[n,, n;] = n,n,. Hence, lcm[n,, n,] = n,n; if and only if n, and n, are rela-
tively prime positive integers.

(10) Let n,, n, be positive integers and let gcd[n,, n;] = n.

(a) Show that if n#1, then Z/Zn, xZ/Zn,= G is not a cyclic group by showing that
the set of all g in G with ng =0 is a subgroup of G which is not cyclic.
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(b) Show that Z(cm([n,, n.]) is the kernel of the group morphism f:Z—>Z/Zn, X
Z/Zn, given by f(2)=(ki(z2), k(z)), where ki:Z - Z/Zn, are the canonical
morphisms of groups. Hence, if ged[n,, n;] = n = 1, then the induced morphism
Z/Z(lcm[n,, n.]) > 2Z/Zn, X Z/Zn, is an isomorphism of groups. Hence:

(c) The group Z/Zn, %< Z[Zn, is a cyclic group if and only if gcd(n,, n,]=1.

(d) Suppose G, and G, are finite cyclic groups of orders n, and n,, respectively.

(@) G, x G, is a finite cyclic group if and only if gcd[n,, n,]=1.

(if) If gcd[ni, n;)=1, then G, X G, is a cyclic group of order n,n,.

(itf) If G, % G, is a cyclic group, then an element (g,, g;) in G, X G, generates
G X G, if and only if g, generates G, and g, generates G..

(11) Let n be a positive integer, and let k:Z—>Z/Zn be the canonical surjective

morphism of groups.

(a) Show that an element x in N — {0} has the property that k(x) generates Z/Zn if
and only if gcd[x, n]=1.

(b) For each positive integer d the number of distinct generators of the cyclic
group Z/2d is denoted by ¢(d). Show:

(@) If p is a prime number (that is, p#1 and p and 1 are the only positive
integers that divide p), then ¢(p)=p—1. More generally, ¢(p")=
p"—p"' for all positive integers n.

(i) Show that if m and n are relatively prime positive integers, then ¢(mn) =
d(m)d(n).

(lif) Hence, if a positive number n=p7 - - - pi where the p; are distinct posi-
tive prime numbers and the n; = 1, then

d(m)=(ph—-pr - (pr—p¥")

(iv) For each positive integer n we have n = 2,, ¢(d), where the sum is
taken over all positive integers d that divide n. [Hint: For each positive
integer d dividing n, let X, be the subset of Z/Zn consisting of all ele-
ments of order d. Show that the collection {X;}4. is a partition of Z/Zn
and that card(X,) = ¢(d) for all d|n.]

(12) Throughout this exercise N denotes the additive monoid of nonnegative inte-

gers. The purpose of this exercise is to describe the cyclic monoids, that is, the

monoids generated by a single element.

Let J be the complement in N X N of the set {(n, 0)jn > 0}. For each element

(x, t) in J denote by N, , the subset of 2" defined as follows.

(i) If t =0, and hence x =0, define N, , to be the collection {X.,}.c~ where for
each n in N the subset X, of N consists of the single element n.

(ii) If t+0, define N,.,, to be the collection {X}o<i<.., Where

X = {{i}, if i<x
it tnhen, if x=si<x+t
(a) Show that each N, , is a partition of the monoid N.
(b) Show that N, ,=N,. ., if and only if x=x" and t=1¢'.
(c) Show that if ® is a partition of the monoid N, then there is a unique ele-

ment (x, t) in J such that # =N,
Suppose C is a cyclic monoid.
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(d) Show that there is a unique element (x, t) in J such that C = N, ,,. This
uniquely determined element (x, t) of J is called the invariant of C.

(e) Show that two cyclic monoids are isomorphic if and only if they have the same
invariant.

(f) Show that C is infinite if and only if its invariant is (0, 0).

(@) If C is a finite monoid with invariant (x, t), then card(C)=x +t.

(h) Show that two cyclic monoids with the same number of elements need not be
isomorphic monoids.

() Let (x, t) be the invariant of C. Show that C is a group (and hence a cyclic
group) if and only if x =0 and t+0.

(13) Throughout this exercise N denotes the additive monoid of nonnegative inte-

gers. The purpose of this exercise is to study the submonoids of N.

(a) Describe the submonoid of N generated by 2 and 3 and show that it is not

cyclic.
(b) More generally, show that for each integer n > 1, the submonoid generated
by n,n+1,...,2n—1 cannot be generated by any fewer than n elements.

(c) Show that every submonoid of N is finitely generated. [Hint: Show that every
nonzero submonoid of N is isomorphic to a submonoid of N having two
relatively prime elements. Then show that if N’ is a submonoid of N having
two relatively prime elements, then there is an integer n in N’ such that all
integers m = n are also in N'.]

(d) Show that every submonoid of a cyclic monoid is finitely generated.

(e) Is every submonoid of a finite cyclic monoid necessarily cyclic?

(14) Let M be a multiplicative monoid. The subset C(M) consisting of all x in M

such that xm = mx for all m in M is called the center of M. Show:

(a) C(M) is a submonoid of M which is a commutative monoid. Moreover,
C(M)=M if and only if M is a commutative monoid.

(b) An invertible element x in M is in C(M) if and only if the inverse x™' of x is in
C(M). Hence;

(¢) If M is a group, then C(M) is a subgroup of M which is a commutative group.
Moreover, every subgroup of C(M) is a normal subgroup of M.

(d) If M is a group and there is a subgroup M’ of C(M) such that M/M'’ is a cyclic
group, then M is a commutative group. [Hint: Suppose x is in M such that
k(x) generates M/M' where k: M - M/M' is the canonical morphism. Show
that each element m in M can be written as x’c for some z in Z and ¢ in M'.]

(e) Suppose f:M —» M’ is a surjective morphism of monoids. Show that
f(C(M)) C C(M").

(#) If M’ is a submonoid of M, then C(M) N M’ is a submonoid of C(M").

(15) Let M(R) be the monoid whose elements are the 2 X2 matrices

¢ 2]

over the real numbers R and whose law of composition is given by the usual
matrix multiplication

[a b][u v]=[au+bx av+by]

c dilx vy cu+dx cv+dy
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(a) Show that C(M-(R)) is the set of all matrices

[ 2]
0 a
for all a in R.
(b) Show that the map det: M,(R) — R given by
a b]_ ,
det[c d]—ad bc

(the ordinary determinant of a matrix) is a morphism from M,(R) to the

multiplicative monoid of R.

(¢) Show that a matrix [g 3] in M>(R) is an invertible element of M,(R) if and
only if

det [: 3]*0

Hence, Inv(Mx(R)) is the set of all matrices with nonzero determinants.
Inv(Mx(R)) is usually denoted by GL,(R) and is called the 2 x 2 general linear
group of R. If we denote by R* the multiplicative group of nonzero real
numbers, then det: GL,(R) - R* is a morphism of groups whose kernel is
usually denoted by SL.(R) and is called the 2x2 special linear group.

(d) Show that det: GL,(R)—>R* is surjective by showing that the map f:R*-—>
GL.(R) given by
a 0
fla)= [0 1]

is a morphism of groups such that det f=ids.. Also show that SL,(R)#{1}.
(e) Let H be the subgroup { [8 ?]} of GL,(R). Show that HNSL(R)={1}

a€R*
and that every element x in GL,(R) can be written in one and only one way as
x=hs with h in H and s in SL,(R). Is H a normal subgroup of GL,(R)?
() Show that C(GL,(R)) = GLA(R)NC(M,(R)), that is,

ceLm={[2 O]}

Thus, C(GL,(R))=R*. .

(g) Show that SL,(R)YNC(GL(R))= C(SL.(R)) and is thus a cyclic group of order
2.

(h) Show that SL,(R) and C(GLx(R)) together do not generate GL,(R). [Hint:
Consider the images of SL,(R) and C(GL:(R)) under the group morphism
det: GL,(R)—»>R*.]

() Show that GL.(R) has elements of all possible orders.

(16) Let Q be the additive group of rational numbers and Z, the subgroup of Q, of

all integers. Show that the abelian group Q/Z has the following properties:

(a) Every element of Q/Z is of finite order.

(b) For each nonzero z in Z, the map f:Q/Z—Q/Z given by f(x)=2zx is a
surjective morphism of groups with Ker f=~2/|z|Z.
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(¢) For each positive integer n in N, there is exactly one subgroup of Q/Z of order
n and this uniquely determined subgroup is cyclic.
(17) Suppose G is agroup and S a set. Anoperationof Gon Sisamap f:GXS—>S
which, if we denote f(g, s) by gs for all g in G and s in S, satisfies:
(i) 1s=s forall sin S.
(i) 8i(8:5)=(8182)s.
Suppose we are given an operation of the group G on the set S. Then:
(a) For each g in G, the map f,:S—S given by f(s)=gs for all s in S is an
isomorphism of sets. Hence, we obtain:
(b) The map a: G- Aut(S) given by a(g)=/, for all g in G, is a morphism of
groups with kernel consisting of all g in G such that gs=s for all s in S.
(c) On the other hand, given a group morphism « : G- Aut(S), we can define the
map f: G X S— S by f(g, s) = a(g)s). Show that this is an operation of G on S.
Hence:
(d) There is a natural isomorphism between the set of group morphisms
(G, Aut(S)) and the set of operations of G on S.
(18) Suppose we are given an operation of the group G on the set S. Then with
each element s in S, there is associated the map f,: G— S given by f(g) = g(s). The
image of £, is called the orbit of s under the operation of G on S. For each s in S,
we have:
(a) The subset G; consisting of all g in G such that g(s) = s is a subgroup of G.
(b) The partition of the map f,: G— S is the same as the left coset space G/G; of
G, in G. Hence, the coimage analysis of f, gives the isomorphism of sets
in: GIG,»1Im §,. Thus, card(G/G,) = card(Im f,).
(c) The subset S/G of 2° consisting of the elements Im f, of 25 for all s in S is a
partition of S called the orbit space of the operation of G on S.
(d) Suppose card(G) and card(S) are both finite. From each element i in S/G
choose one element s; in i. Then card(S) =3, s,c card(G/G,).
(e) If two elements s and s’ in S are in the same orbit, then there is a g in G such
that gG.g '=G,.
(19) Let G be a group. Show that the map f: G X G- G given by (g, x) = gxg~' for
all g and x in G is an operation of the group G on the underlying set of G. For each
x in G, the orbit of x under this operation is called the conjugacy class of x and is
usually denoted by C.. The subgroup G, of G consisting of all g in G such that
gxg ' =x is called the normalizer of x and is usually denoted by N..
(a) Show that C,={x} if and only if x is in the center of G.
(b) Suppose G is a finite group. Then there is a finite family {x}.c; of elements in G
which satisfy:
(i) No x; is in C(G).
(i) C.,=C, implies i=j.
(iif) If C. is a conjugacy class of G with more than one element, then C,= C,
for some i in L
If {x}:c:is a finite family of elements of G satisfying (i), (if), and (lif), then

card(G) = card(C(G) + X, card( 13 )

where each card(N,) < card(G). This equation is known as the class equation of
the group G.
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(20) A finite group G is called a p-group where p is a positive prime number if

card(G) =p" for some n in N. Show that if G is a p-group, then:

(a) Every subgroup and every factor group of G is a p-group.

(b) If G is not trivial, then C(G) is not trivial. [Hint: If card(C(G)) = 1, then the
class equation gives

card(G)=p"= 1+g1 card(gx)

But this is impossible since p|card(G/N,) for all i in L]

(¢) If p is a positive prime number, then every group of order p’ is abelian.

(d) If p is a positive prime number, show that Z/pZx2/pZ and 2Z/p’Z are
nonisomorphic groups of order p>. Prove that any group G with card(G) = p?
is isomorphic to either Z/pZx2/pZ or Z/p’Z.

(e) Let X be a square in the plane. Show that the set of distance-preserving maps
f:X - X is a subgroup of Aut(X) of order 8 which is not commutative. Be-
cause 8 =2’, this shows that not all groups of order p* are abelian.

(f) Show that all groups of order less than 6 are abelian.

(21) In this exercise we outline a proof of the well-known Sylow theorem: Sup-

pose G is a finite group with n =card(G). If n=p5 - - - pitis a prime decomposi-

tion of n, that is, the p; are distinct positive primes and the a; are all positive
integers, then there exists a subgroup of G of order pi for each i=1,...,¢

(a) First prove the following. Suppose A is a finite abelian group of order n. If p is
a positive prime integer which divides n, then there is an element of order p in
A. [Hint: Proceed by induction on n = 1. If n = 1, there is nothing to prove.
Suppose it is true if 1 =n < k. Show that it suffices to consider only the case
that there is a nonzero a in A such that (a), the subgroup of A generated by a,
is a proper subgroup whose order is not divisible by p. In this case there must
be an element of order p in A/(a) and hence a subgroup A’ of A containing
(a) such that A’/(a) is a cyclic group of order p. Show that if an element b in
A’ is not in (a), then the order of b is p.]

(b) With this preliminary result out of the way, one can proceed to prove the
Sylow theorem as follows. Suppose card(G) =n. We want to show that if
n = p°q where p is a prime, a >0, and gcd[ p°, q] =1, then there is a subgroup
of G of order p°. Proceed by induction on n. If n = 1, there is nothing to
prove. Suppose now that it is true for 1 = n <k, and show that it is true for
n = k. Consider two separate cases: (1) p|card((C(G)) and (2) pfcard(C(G)).
In the first case use the preliminary result (a). In the second case use
the class equation.

(22) Describe all groups of order at most 11.

(23) An endomorphism s : X+ X of a set X is said to be a peano successor function

if it satisfies:

(a) s is injective.

(b) X—Im s consists of a single element which we denote by x,.

(c) A subset Y of X is all of X if x, is in Y and s(Y)CY.

The aim of this exercise is to show how, starting with a set X together with a

peano successor function s: X— X, one can construct a monoid satisfying the

axioms given for the additive monoid of nonnegative integers.
Suppose s: X— X is a peano successor function on the set X. Then s is an

Google



-

72 TWO/MONOIDS AND GROUPS

element of the monoid End(X). Show that the subset N of End(X) consisting of
all f in End(X) such that fs = sf is a submonoid of End(X). We now outline some
of the steps needed to show that the monoid N satisfies the axioms for the
additive monoid of nonnegative integers.
(a) Show that the map ¢ : N— X given by ¢(f) = f(x,) is an isomorphism of sets.
(b) Show that a submonoid of N is all of N if it contains the element s.
(c) Show that N is a commutative monoid by showing that s is in C(N).
(d) We shall say that an element f in N is regular if fg = fh implies g=h for all g

and h in N. Show that all elements of N are regular by showing that the set of

all regular elements in N is a submonoid of N containing s.
(24) Let G be an abelian group which we write additively. Suppose g, and g. are
elements of finite orders m, and m,, respectively.
(a) Show that the group morphism 2Z/mZxZ/mZ—-G given by

(x+mZ, y+mZ)—>xg, + yg is an injective map if gcd[m,, m;] = 1. Hence:
(b) If the gcd[m,, m;] = 1, then the order of g, + g, is m,m..
(c) Show that there is an element in G of order lcm[m,, m,]. [Hint: Let a=

gcd[m,, m;]. Then what are the orders of ag, and ag, + ag.?]
(25) Suppose G is a finite additive abelian group with m elements. Hence, the
order of each element of G is at most m which means that there is a largest integer
n which is the order of some element of G. Show that ng =0 for each element g in
G.
(26) Suppose G is a finite abelian group which contains a cyclic subgroup H such
that G/H is cyclic and card(H) and card(G/H) are relatively prime. Show that G
is a cyclic group.
(27) The group of automorphisms of the set [1, n] is called the symmetric group on
n elements and is denoted by S,. The elements of S, are called permutations of
[1,n]). For each pair of elements i<j in [l,n] define the permutation
i, j):[1, n]1->[1, n] by

j ifx=i
G, j)x)=13i, ifx=j
x, if x is neither i nor j

The permutations (i, j) in S, are called the transpositions. Show:

@ @ )"'=03 ).

M) If i<j<k in [1, n), then (i, j)(j, k)i, j) = (i, k).

©) (jk)=ok—1,k)oc”" where o=(j,j+1)(j+1,j+2) --(k=2,k—1). [Hint:
Use (a) and induction on k —j.]

(d) Every element of S, is a finite product of transpositions. [Hint: For each o in
S. define # o to be the number of x in [1, n] such that o(x) = x. Proceed by
induction on n— #o.]

(e) The set of transpositions {(i, i + 1)}ic;1..) generates S..

(f) For each o in S, define

[T tet)-an

Isi<jsn

T d-o

Isi<j<n

sgno =
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Show that sgn o =+1. Hence, we have the map sgn:S, = Inv(Z) where
Inv(2) is the group of invertible elements in the multiplicative monoid of Z
consisting of {1, — 1}. We now want to show that sgn: S,— Inv(Z) is a morphism
of groups.

(g) Show that if 7 is a transposition in S,, then sgn r=—1.

(h) Suppose 7=(k, k+1). Show that if o is in S., then sgn(or)=—sgno=
sgn(o)sgn(7). [Hint: First show that if i <j and ik or j+k+1, then 7(i)<
7(j). Using this, show that

[T tor(d-or@=lor(k+ 1)—o"r(k)]( I1 [a'r(i)-—o'r(i)])

I=i<j=n Isi<jsn
i#kor
jEk+1

=to®-ok+D)( TI loti)-oti)

Isi<fjsn
i#kor
jtk+1

=- 11 [a(i)-«r(i)]]
I1si<j=n

(i) Combining (h) with the fact that S, is generated by the transpositions of
the form (k, k + 1), show that the map sgn: S,— Inv(Z) is a morphism of groups.

(j) Suppose o= - - 7 where the 7, are transpositions. Show that sgn o =1 if
and only if I is an even number. The permutations o with sgn o =1 are called
the even permutations.

(k) The set of even permutations which is denoted by A, is a normal subgroup of
S. of index 2 since it is precisely Ker sgn. The subgroup A, is called the
alternating subgroup of S..

(28) If G is a finite group and H is a proper subgroup of G, then G # léla xHx"'.

[Hint: Use the fact that if x and y are in the same left coset of H, then xHx™'=
yHy™]
(29) Let G be a finite group of order n. Prove that G is a cyclic group if G has the
property that for each d|n, the number of elements x in G such that x‘=1 is less
than or equal to d. [Hint: For each d|n, show that there are at most ¢(d) elements
of G of order d. Using the fact that Z,, ¢(d)=n, show that there must be an
element in G of order n and hence that G is cyclic.]
(30) The purpose of this exercise is to outline a proof of the fact that if N is an
additive monoid satisfying the axioms for the additive monoid of nonnegative in-
tegers, then, given any element x in a monoid X, there is one and only one
morphism f:N- X such that f(1)=x.
Suppose N is an additive monoid satisfying the axioms for the nonnegative in-
tegers.
(a) Show that if X is a monoid, then a map f:N— X is a morphism of monoids if
and only if f(0)=1 and f(n+1)=f(n)f(1) for all n in N.
(b) Show that if f, g: X— Y are morphisms of monoids, then the subset X' of X
consisting of all x in X such that f(x) = g(x) is a submonoid of X. Use this to
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show that two morphisms of monoids f, g: N— X are the same if and only if
(M) =g().
(c) Let X be a monoid and x an element in X. Show that for each n in N, there is
one and only one map g,.:[0, n]— X satisfying:
@ g0)=1.
@) g()=x.
(iii) For each m in [0, n), we have that g.(m +1)=g.(m)g.(1).

(d) Let x be an element in a monoid X. Define the map f.: N— X by f(n) =g«(n)
where g, is the unique map g,: [0, n]—» X satisfying the conditions in (c). Show
that f, is the unique morphism with the property f(1)=x.

(31) The purpose of this exercise is to outline proofs of some of the claims con-

cerning the cardinalities of subsets of the set of nonnegative integers N.

(a) Suppose f:[0, m)—[0, n) is an injective map. Show that if m=1 and n=1,
then there is an injective g:[0, m)—[0, n) such that g([0, m —1))C[0, n —1).
Use this to prove by induction on n that if card({0, m))=card([0, n)), then
m=<n.

(b) Suppose that n,+ x = n,. Show that n,+y is in [n,, n,) for each g in [0, x) and
that the map f:[0, x)—=>[n,, n;) given by f(y)=n,+y for all y in [0,x) is a
bijective map. Use this to show that if ni+x’ =n} and [n,, n;)N[n}, n2)= ¢,
then card([n,, n;) U[n', n})) =card([0, x + x')). From this deduce that if
ni+x’' = ni, then card((n,, n;)U[n!, n}))=<card([0, x+x')) and that equality
holds if and only if [n,, n.))N[n}, n})=@.

(c) Observe that if n =1, then [0, m)x [0, n) = ([0, m)x[0, n — 1)) U([0, m) x{n})
and also that ([0, m) %[0, n — 1))N([0, m) x{n}) =@. Use this fact to show by
induction on n, that card([0, m) X [0, n)) = card([0, mn)).

(d) Suppose N’ is a subset of N which has no upper bound. Show this means that
for each x in N’ we have that S,={y € N’|y > x} is not empty. Using the fact
that N and hence N’ is well ordered, define the map s : N'— N’ by letting s(x)
be the first element of S, for each x in N'. Show that s is an injective map with
the property that if y in N’ is not the first element y, of N’, then y = s(x) for
some x in N'. Denoting the nth iterate of s by s"for each n in N, show that the
map f:N— N’ defined by f(n) =s"(y.) is a bijective map.

(32) Let X be a set. Show that the maps N:2* x2¥ -2 and U:2* x2* -2 are

monoid structures on 2* where N:2* x2* »2* isdefinedby (X', XN =X"'N X"

and U:2* x2¥ 52% is defined by U(X’, X") = X' U X" for all subsets X’ and X"

of X.

(a) Show that (2%, N) and (2%, U) are commutative monoids.

(b) Show that the map C:2*—2* given by C(X')=X - X' for all X’ in 2* is an
isomorphism of monoids which is its own inverse.

(c) Show that each element x in (2%, N) and (2%, U) is idempotent, that is, x> = x.

(33) Let X be a monoid, G a group and f: X— G a morphism of monoids. Show

that if x in X is idempotent, that is, x’=x, then f(x)=1. Show that if every

element in X is idempotent, then the group of fractions of X is the trivial group.

Use this observation to give an example of a commutative nontrivial monoid, X,

that is, a monoid with more than one element whose group of fractions G(X) is

the trivial group. This also gives an example in which the natural morphism h : X -

G(X) is not injective.
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Chapter3 CATEGORIES

The mathematical object known as a category makes precise many of the
similarities the reader has no doubt observed in our summary of set theory,
monoid theory, and group theory. Because categories are a useful ambience in
which to view mathematical systems generally, we devote this chapter to a brief
discussion of categories.

1. CATEGORIES

We have already seen, in discussing monomorphisms, epimorphisms, and
isomorphisms for sets, monoids, and groups, that the definitions as well as many
of the basic properties of these notions depended only on relations between the
maps and morphisms rather than on the actual structure of the sets, monoids, or
groups involved. In fact, experience has shown that a great many of the properties
of a wide variety of mathematical systems depend only on the way one chooses to
compare the objects in the system, rather than on the explicit structure of the
objects themselves. Of course, in order to take full advantage of this observation,
it is necessary to have a setting which makes this point explicit. This is accom-
plished by the notion of a category. We start our discussion of categories by
pointing out certain common features of set and monoid theory which when ab-
stracted lead to the definition of a category.

In dealing with set theory, the things of primary concern to us have been the
sets themselves, the maps between sets, and the composition of maps of sets.

75

Google



76 THREE/CATEGORIES

Because the sets themselves are the objects of study in set theory, it is reasonable
to call them the objects of set theory. Usually the collection of all objects of set
theory, that is, the collection of all sets, is denoted by Ob(Sets).

In addition to the objects of set theory, we have for each pair of objects X
and Y in Ob(Sets) the set (X, Y) of all maps from the set X to the set Y. Because
maps can only be the same if they have the same domain and range we see that
(X, Y)N (X', Y)=0@unless X=X'and Y = Y'. Thus, set theory consists not only
of the collection of objects Ob(Sets) but also of the collection of sets of maps
(X, Y), one for each ordered pair of objects X and Y in Ob(Sets), which has the
property (X, Y)N (X', Y')=@ unless X=X"and Y=Y".

Next we observe that the composition of maps of sets gives rise to the maps
(U, X)x (X, Y) > (U, X) given by (£, g) = gf, where gf is the composition of the
map f followed by the map g. Further, this composition is associative, that is,
given fin (U, X), gin(X, Y), and h in (Y, Z), then the elements h(gf) and (hg)f in
(U, Z) are the same. In addition to being associative, the composition maps
(X, Y)x(Y,Z)> (X, 2Z) also have the property that given any object X in
Ob(Sets) there is an element f in (X, X) such that for each object Y in Ob(Sets) we
have gf = g forall g in (X, Y)and fb = b for all b in (Y, X). Obviously, f =idx.

Summarizing this discussion, we see that associated with set theory there are
the following data:

(a) The collection of all sets called the objects and denoted by Ob(Sets).
(b) A collection of sets (X, Y), one for each ordered pair of objects X and Y in
Ob(Sets), satisfying the condition (X, Y)N(X’, Y')=0 unless X = X' and
Y = Y'. Namely, for each ordered pair of objects X and Y in Ob(Sets),
the set (X, Y) is the set of all maps from the set X to the set Y.
(c) For all triples of objects U, X, Y in Ob(Sets), we have maps (U, X)X (X, Y) »
(U, Y), given by the composition of maps, satisfying:
() If U, X, Y, Z are objects in Ob(Sets) and fisin (U, X), gisin(X, Y),and h
is in (Y, Z), then the elements h(gf) and (hg)f in (U, Z) are the same.
(ii) For each object X in Ob(Sets) there is an element f in (X, X), namely,
f =idx, which has the property that for each object Y in Ob(Sets) we
have gf =g for all g in (X, Y) while fh = h for all h in (Y, X).

In view of the parallels between set theory and monoid theory we developed
in the first two chapters, it should not come as a surprise that associated with
monoid theory is a structure very similar to the one we just pointed out for set
theory.

The collection of monoids, which we denote by Ob(Monoid), constitutes the
objects of monoid theory. For each ordered pair X and Y of Ob(Monoid) we
denote the set of all morphisms from the monoid X to the monoid Y by (X, Y).
Clearly, this collection of sets (X, Y) has the property (X, Y) N (X", Y') =0 unless
X=X"and Y=Y".

Next, the composition of morphisms of monoids gives maps (X, Y)x(Y, Z)-»
(X, Z) for all triples of objects X, Y, and Z in Ob(Monoid), namely, (f, g)— &,
where gf is the composition of the morphism f: X - Y followedby g: Y > Z. As
in the case of sets we know these maps (X, Y) % (Y, Z)— (X, Z) satisfy:
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(a) If U, X, Y, Z are objects in Ob(Monoid) and fis in (U, X), gisin(X, Y),and h
is in (Y, Z), then the elements h(gf) and (hg)f in (U, Z) are the same.

(b) For each object X in Ob(Monoid) there is an f in (X, X), namely, f =idy,
such that for each object Y in Ob(Monoid) we have gf = g for each g in
(X, Y) while fh =h for all h in (Y, X).

On the basis of these two models the reader should be just about ready to
make his own definition of a category.

Definition
A category € consists of the following:

(a) A collection Ob(€) whose elements are called the objects of €.

(b) A collection of sets (X, Y), one for each ordered pair of objects X and Y of ¢,
satisfying (X, Y)N(X’, Y')=0 unless X=X' and Y =Y". Each element of
(X, Y) is called a morphism from X to Y and (X, Y) is called the set of
morphisms from X to’'Y. We will often denote the fact that f is in (X, Y) by
writing f: X-> Y.

(c) For each triple X, Y, Z of objects in %, there is a map of sets (X, Y)x(Y, Z2)—»
(X, Z) denoted by (f,g)—>gf where gf is called the composition of the
morphisms f: X—>Y and g: Y—>Z. These maps (X, Y)X(Y, Z)—»(X, Z) must
satisfy:

@ If U, X, Y, Z are objects in € and fisin (U, X), gisin (X, Y),and h is in
(Y, Z), then the elements (hg)f and h(gf) in (U, Z) are the same.

(if) For each object X in ¥, there is an f in (X, X) such that for each object Y
in 6, we have gf = g for all g in (X, Y) while fh = h for all h in (Y, X).

In view of our previous discussion it is obvious that set theory and monoid
theory are examples of categories, which we denote by Sets and Monoid, respec-
tively. For these examples we have already seen that for each object X there is
only one morphism f in (X, X) with the property that for each object Y we have
gf =g for all g in (X, Y) while fh = h for all h in (Y, X), namely, f=idy. It is not
difficult to see that this holds generally in categories. For suppose X is an object in
an arbitrary category € and f and f' are two morphisms in (X, X) such that for
each object Y in € we have gf =g and gf' =g for all g in (X, Y) while fh =h
and f'h = h for all h in (Y, X). Then letting Y = X, it follows that f=ff' = f'
which is our desired result. This leads to the following.

Definition

Let € be a category. For each object X in € the identity morphism of X, which we
denote by. idy, is defined to be the unique morphism f in (X, X) such that for each
object Y in € we have gf =g forall gin (X, Y)and fh = h forall h in (Y, X).

We have already seen that for each object X in Sets or Monoid the set (X, X)
together with the law of composition (X, X)x (X, X) - (X, X) given by (f, g) =
gf, where gf is the usual composition of morphisms, is a monoid with identity idx
which we denoted by End(X) and is called the monoid of endomorphisms of X.
This, too, generalizes to arbitrary categories. For it is not difficult to show that if X
is an object in a category %, then the set (X, X) together with the law of
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composition (X, X)x(X, X) = (X, X) given by (f, g) = gf, where gf is the com-
position in € of the morphism f and the morphism g, is also a monoid with idx as
identity element. This suggests the following.

Definition

Let € be an arbitrary category. Then for each object X in € the monoid consisting
of the set (X, X) together with the law of composition (X, X)x (X, X) = (X, X)
given by (f, g) = gf is a monoid with idy as identity which we denote by End(X)
and call the monoid of endomorphisms of X.

We devote the rest of this section to pointing out how other concepts we have
discussed earlier such as groups, finite sets, etc., give rise to categories. Other
interesting examples of categories are discussed later on in this chapter as well as
in the exercises at the end of the chapter. Before giving these examples it is useful
to have the following notation.

Let € be a category. We shall often denote the set of morphisms from the
object X to the object Y by 4€(X, Y) or Hom( X, Y) instead of simply by (X, Y).

Since all of the examples of categories we now consider are also examples of
subcategories of the categories of Sets or Monoid, we first introduce the general
notion of a subcategory of a category and then give our concrete examples.

Definition
A category €' is said to be a subcategory of the category € if:

(a) Each object of €’ is also an object of €.

(b) For all objects X and Y in €', we have that €'(X, Y) is a subset of €(X, Y).

(¢) For each object X in €’ the subset €(X, X) of €(X, X) contains the element
idx of €(X, X).

(d) Given any objects X, Y, and Z in €’ and morphisms f in €'(X, Y) and g in
€'(Y, Z), their composition gf in €'(X, Z) is the same as their composition gf
in €(X, Y) when f is viewed as an element of €(X, Y) D 4'(X, Y) and g is
viewed as an element of €(Y, Z)D €'(Y, 2Z).

Finally, a category €’ is called a full subcategory of € if it is a subcategory of
%€ which also satisfies:

(e) €'(X,Y)=%(X,Y) for all objects X and Y in €.

The reader should have no difficulty verifying the following:

Basic Properties 1.1
Let € be a category.

(a) € is a full subcategory of €.

(b) Two categories € and €’ are the same if and only if € is a subcategory of ¢’
and €’ is a subcategory of 4.

(c) If €’ is a subcategory of € and €” is a subcategory of €', then €" is a
subcategory of €.

(d) If €' is a full subcategory of € and € is a full subcategory of €', then €" is a
full subcategory of €.
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(e) If €’ and €¢" are full subcategories of ¢, then ¢’ = €" if and only if Ob(¥€’) =
Ob(€¢").

As a consequence of this last basic property we see that in order to specify a
full subcategory €’ of a category ¥ it suffices to describe which objects of € are
in €’'. We now use this fact to describe the categories of finite sets, groups, com-
mutative monoid, commutative groups, etc.

Example 1.2 The category of finite sets is the full subcategory of Sets whose
objects are the finite sets in Sets. Therefore, the category of finite sets has all finite
sets as objects, the set (X, Y) of all morphisms from the finite set X to the finite
set Y is just the set of all maps from X to Y, while the composition (X, Y)x
(Y, Z2) - (X, Z)for all triples of finite sets X, Y, Z is given by (f, g) = gf, where gf
is the usual composition of the map f: X—>Y and g: Y > Z.

Example 1.3 The category Group is defined to be the full subcategory of
Monoid whose objects are the monoids which are groups. Therefore, the objects
of Group are all groups, (X, Y) is the set of all morphisms of groups from the
group X to the group Y for all objects X and Y in Groups, and the composition
(X, Y)x(Y, Z) > (X, Z) for all triples of groups X, Y, Z is given by (f, 2) = &f
where gf is the usual composition of the morphisms of groups f: X - Y and
g: Yo Z

Example 1.4 The category Abelian Monoid is the full subcategory of Monoid
whose objects are the commutative monoids. Therefore, the objects of Abelian
Monoid are all commutative monoids; for each ordered pair of objects X and Y in
Abelian Monoid we have (X, Y) is the set of all morphisms from the commutative
monoid X to the commutative monoid Y, while the composition (X, Y)x(Y, Z) »
(X, Z) for all triples X, Y, Z of commutative monoids is given by the usual
composition of morphisms of monoids.

Example 1.5 The category Abelian Group is the full subcategory of Group
whose objects are the commutative groups. The category Abelian Group is
usually denoted by &£/ . The reader is urged to give a detailed description of the
morphisms and composition of morphisms in &f# as has been done in the previous
examples.

2. MORPHISMS

In this section we generalize to arbitrary categories some of the notions we have
already discussed for the categories of sets, monoids, groups, etc. We begin with
isomorphism, epimorphism, and monomorphism.

We recall that a map f: X— Y of sets is said to be an isomorphism if and only
if there is a map g: Y— X such that gf =idx and fg =idy. Similarly, a morphism
f:X—->Y of monoids is said to be an isomorphism if and only if there is a
morphism g: Y- X such that gf =idx and fg =idy. In both cases, the only notions
used in the definition of an isomorphism are morphisms, composition of mor-
phisms, and identity morphisms. Because all of these concepts exist in any
category it is natural to make the following definition.
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Definition

Let € be a category. A morphism f: X — Y in € is said to be an isomorphism if and
only if there is a morphism g: Y— X in € such that gf =idx and fg =idy. The fact
that a morphism f: X—>Y is an isomorphism will often be denoted by writing
f: X=Y.

Just about all the familiar properties of isomorphisms in the categories of sets
and monoids also hold for arbitrary categories, as we point out in the following.

Basic Properties 2.1
Let € be a category.

(a) If f: X> Y is an isomorphism in %, then there is one and only one morphism
g: Y= X such that gf = idx and fg =idy. This uniquely determined morphism g
is also an isomorphism which is called the inverse of f and is often denoted by
.

(b) For each object X in ¢, the morphism idy is an isomorphism which is equal to
its own inverse.

(© If f: X—>Y and g: Y- Z are isomorphisms in €, then the composition gf: X —»
Z is an isomorphism with (gf)'=f""g"".

d If f: X>Y and g: Y- Z are morphisms in € such that gf is an isomorphism,
then g is an isomorphism if and only if f is an isomorphism.

We omit the proofs of these basic properties since they are the same as the
corresponding properties of isomorphisms in the categories Sets and Monoid.
Again in analogy with Sets and Monoid we have the following.

Definition
If X and Y are objects in a category %, then X is said to be isomorphic to Y if
there is an isomorphism f: X—Y. As we have already seen, because X is
isomorphic to Y if and only if Y is isomorphic to X, we will often use the
symmetric expression X and Y are isomorphic instead of the asymmetric expres-
sions X is isomorphic to Y or Y is isomorphic to X

As an immediate consequence of this definition and the basic properties of
isomorphisms, we have the following.

Basic Properties 2.2
Let X, Y, and Z be objects in a category €. Then:

(a) X is isomorphic to X.
(b) If X is isomorphic to Y, then Y is isomorphic to X.
(¢) If X is isomorphic to Y and Y is isomorphic to Z, then X is isomorphic to Z.

Having seen how the notion of isomorphism can be generalized from the
categories of Sets and Monoid to arbitrary categories, the reader should have no
difficulty seeing how the notions of epimorphism and monomorphism can be
likewise generalized to arbitrary categories. Consequently, we just give the defini-
tions and basic properties of these notions for categories in general. It is left to the
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reader to make the appropriate connections with our discussion of these notions
for the categories of Sets and Monoid.

Definitions
Let f: X—- Y be a morphism in a category 4.

(@) f: XY is said to be an epimorphism if given two morphisms g,, g:: Y= Z in
%, we have g, =g, whenever g,f=g.f

() f: XY is said to be a monomorphism if given any two morphisms h,, h,: U—>
X in € we have h,= h, whenever fh, = fh..

Bislc Properties 2.3
Let f: X—Y and g:Y—>Z be two morphisms in €.

(a) If f and g are both epimorphisms (monomorphisms), then the composition
gf: X—Z is an epimorphism (monomorphism).

() If gf: X—>Z is an epimorphism, then so is g.

(0) If gf: X—>Z is a monomorphism, then so is f.

d If f: X->Y is an isomorphism, then f is both a monomorphism and an
epimorphism.

In connection with the last of these basic properties, it is worth observing that
a morphism in a category which is both a monomorphism and epimorphism need
not be an isomorphism. For we have already seen that the inclusion from the
monoid N of nonnegative integers under addition to the group Z of integers under
addition is a monomorphism as well as an epimorphism in the category Monoid
but is not an isomorphism in Monoid since it is not a surjective morphism.

Because the category Group is a full subcategory of Monoid, it is reasonable
to ask whether morphisms of Groups can be both monomorphisms and epimor-
phisms without being isomorphisms. We have already seen that a morphism of
groups is an isomorphism if and only if it is bijective. Hence, it is natural to
wonder how monomorphisms and injective morphisms of groups as well as
epimorphisms and surjective morphisms of groups are connected. Using tech-
niques similar to those used in Chapter 2, Proposition 3.6, it can be shown that a
we leave it to the reader to show that surjective morphisms of groups are also
epimorphisms. This leaves the question of whether epimorphisms of groups are
necessarily surjective morphisms. In fact, it can be shown that this is indeed the
case. However, we will not prove this.

The reader has undoubtedly observed that we have made no attempt to
generalize the notions of surjective and injective morphisms from the categories
Sets and Monoid to arbitrary categories. Once having these notions for Sets it was
not difficult to transfer them to Monoid using the fact that every object in Monoid
has an underlying set. However, there is nothing in the definition of a category
which guarantees that each object has in any sense an underlying set. For this
reason, it is more difficult to define in an arbitrary category what is meant by
surjective and injective morphisms. In fact, no generally accepted way of doing
this exists at the present time.
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3. PRODUCTS AND SUMS

We begin by recalling some of the properties of the product ‘II’X, of a family of
€
sets {X}ic:. Associated with the product _II'X, are the projection maps
proj,:‘H,X, — X,, one for each k in I, which we showed to have the following
€

property: If Y is any set and f;: Y - X, one for each i in I, is any family of maps
from Y to the sets X, then there is a unique map f: Y = ,H’X. such that f;: Y - X,
is the composition Y —— 1 X, ™ , X, for each k in I Or stated more suc-

el

cinctly, if for each set Y we define the map of sets By:(Y, ‘H’ X) - ‘H' (Y, X) by
€ €
BHf) ={projif he: for all fin (Y, I1 X)), then By is an isomorphism of sets for each
i€l

set Y. Also we showed that the product of a family of monoids has similar proper-
ties. We now show that these properties of the product of a family of sets or
monoids can be used as the basis for the definition of a product of a family of
objects in an arbitrary category.

Suppose {X},<:is a family of objects in a category €. Let X be an object in €
and proj.: X = X, a family of morphisms in €, one for each k in I. These data
associate with each object Y in € the map of sets By: (Y, X) » 'IEI'(Y, X)) given by

By (f) ={projif he: for all f in (Y, X). In view of our preliminary remarks con-
cerning the product of a famnly of sets or monoids it is tempting to make the
following definition.

Definition

Let {X}.c: be a family of objects in a category €. We say that an object in €
together with a family {proj.: X = X, }ie; of morphisms in € is a product in € of the
family {X}.c, if for each object Y in € the map of sets

ﬁy:(Y,X)eg(Y, X)

given by By(f) ={proj.f}e: for all f in (Y, X) is an isomorphism of sets.

If X together with the family of morphisms {proj.: X Xi}.e: is a product for
the family {X}.c;, then each morphism proj.: X— X, is called the kth projection
morphism.

Although our previous discussion shows that if {X}.:is a family of objects in
Sets, then the set I1 X together with the usual projection maps proj.: H' X—X,isa
i€l i€

product of {X}.; in Sets, we have not answered the following obvious question
raised by this general definition of products in categories. Namely, if X is a set and
proji: X=X, is a family of maps of sets such that X together with {proji: X—
Xi}ier is also a product for {X}c;, then how are the sets E‘ X, and X as well as the

families of maps {proj,: I1 X;—= Xi}«e; and {proji: X = Xi}«e: related? This question
i€l

is completely answered by the following.
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Basic Property 3.1

Let {X}.c; be a family of objects in the category €. If the object X together with
the family of morphisms {proji: X = Xi}e: as well as the object X' together with
the family of morphisms {proji: X' - Xy}«e: are both products for the family {X}ics,
then there is one and only one morphism f: X — X’ such that the diagram

X ! > X'
Xﬁn / proju’
Xi

commutes for each k in I. Moreover, this uniquely determined morphism f: X
X' is an isomorphism.

PROOF: Because X' together with the family {proj;: X’ —= Xi}ie: of morphisms
is a product for the family {X}.c;,, we know that given any object Y in € and any
family {g:: Y- X}.e; of morphisms, there is a unique morphism g:Y— X' such
that By(g) = {g}ic: Wwhere By is the map of sets By:(Y, X’)»‘I;II(Y, X)) given by
Byr(h) ={proji h}.e; for all h in (Y, X'). Or, stated in other words, there is a unique
morphism g: Y- X’ which makes the diagrams

Y—HX
\\a / proj-
X,
commute for all k in L

Thus, letting Y = X and g,: Y - X, be the morphisms proj.: X— X, for each k
in I, there is a unique morphism f: X— X’ such that proj, = proji f for all k in I, or,
equivalently, such that each of the diagrams

X—l-x

-

commutes. This establishes the first part of the basic property. We now show that
this uniquely determined morphism f: X— X’ is an isomorphism.

Because X together with the family {proj,: X = Xi}.c; of morphisms is also by
assumption a product for {X}.c;, we know by what we have just shown that there
exists a unique morphism f’:X’—> X such that

xXx—Lrosx

vwit\ / proja
Xi

commutes for all k in I. Since f: X— X’ has the property that proj; f = proji for all
k in I and f': X’'— X has the property proji = proj, f' for all k in I, it follows that
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the compositions X—>X'—L>X and X'—{+>X—>X" have the property that
proj«(f'f) = proj. for all k in I and proj; ff’ = proji for all k in I. But the fact that X
together with {proj.: X— X.}.c: is a product for {X}.c,; implies that there is pre-
cisely one morphism h : X— X such that proj. h = proj. for all k in I Since idx and
f'f both have this property, it follows that f'f =idx. A similar argument shows that
ff' =idx. Therefore, we have shown that the morphism f:X->X' is an
isomorphism.

In essence, this basic property explains in what sense products of families of
objects in a category are unique, assuming they exist. The problem of existence is
not trivial. Although we know that the categories Sets, Monoids, Groups, Abelian
Monoids, and Abelian Groups all have products for arbitrary families of objects
(the usual products together with the usual projection morphisms), there are
nonetheless categories that do not have this property. For example, if € is the
category of finite sets and {X}.c, is an infinite family of sets with each X, having at
least two elements, then the family {X}.c; has no product in <, even though it has
one in the larger category Sets.

Next we show how the notion of the sum ,E, X, of a family of sets or abelian

monoids or groups can be generalized to arbitrary categories.
Recall that if {X},c,is a family of commutative monoids, then associated with

the sum ‘I.II)G of this family of monoids are the injection morphisms inj, : X, =
€

‘LEI' X, one for each k in I, which have the property that if Y is any commutative

monoid and {f; : X; =& Y},e, is any family of morphisms, then there is one and only
one morphism f :’LI'X, - Y with the property that f inj. = f; for each k in I. Or
€

stated more succinctly, for each commutative monoid Y, the map of sets
ay:(‘u’ X, Y)allll(x, Y), given by av(f)=(finji)rer, is an isomorphism. We
€ €

now show how this property of sums of commutative monoids can be used as the
basis for defining sums of a family of objects in an arbitrary category.
Suppose {X}.c:is a family of objects in a category €. Let X be an object in €
and inj,: Xi,— X a family of morphisms, one for each k in I. These data associate
with each object Y in € a map of sets ay:(X, Y)—»‘IEI' (X, Y) given by ar(f)=

(f inj)e; for each f in (X, Y). In view of our preliminary remarks concerning the
sum of a family of abelian monoids, it is tempting to make the following definition.

Definition

Let {X}.c: be a family of objects in a category €. We say that an object X together
with a family {inj.: X,— X}.c; of morphisms in %€ is a sum in € of the family {X}e,
if for each object Y in €, the map

av:(X, Y)-»g (X, Y)
given by ay(f) =(finj)ie: is an isomorphism of sets.

If X together with the family of morphisms {inji: Xi— X}ie:is a sum of {X}ie,,
then each morphism inj,: X,— X is called the kth injection morphism.
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As was the case with products, one might ask how two sums for a particular
family of objects in %€ are related. This is answered by the following basic prop-
erty which we present without proof since the manner of proof is very similar to
that used in establishing the uniqueness of products of families of objects in a
category.

Basic Property 3.2

Let {X}.c: be a family of objects in the category €. If the object X together with
family of morphisms {inj.: X,— X}.c:and the object X'’ together with the family of
morphisms {inj}: Xi = X'he: are both sums of {X}:e;, then there is one and only
one morphism f: X — X' such that the diagrams

-/\¢

X—L X

commute for each k in I. Moreover, this uniquely determined morphism f: X—» X’
is an isomorphism.

Having explained in what sense sums for families of objects in a category are
unique, it remains to discuss when sums of objects in a category actually exist. As
in the case of products, this depends on the category. From our discussion con-
cerning the sum of commutative monoids, it is obvious that the usual sum ,EI’ Xiof

a family {X}ic; of commutative monoids together with the usual injection mor-
phisms inj; : X, - I_I' X, is a sum of {X },c; in the category Abelian Monoid. Hence,
i€
each family of objects in Abelian Monoid has a sum. Similarly, the usual sum 'lI’ X
€
of a family of abelian groups {X }.c; together with the usual injection morphisms
injy : X = 11' X; is a sum of {X;},e; in the category Abelian Group. The reader
le

should also check that what we defined as the sum of an indexed family of sets is
the sum of that indexed family in the category Sets.

On the other hand, the full subcategory € of Abelian Groups consisting of all
finite abelian groups does not have the property that every family of objects in €
has a sum in ¢, even though it does have one in Abelian Group. For example, if
{X}:c: is an infinite family of nontrivial finite abelian groups, then {X}c; does not
have a sum in 4.

EXERCISES

(1) A map f: X,—> X, between two ordered sets X, and X; is said to be order

preserving if f(x,)= f(x,) whenever x,= x,. Show:

(a) The identity map on an ordered set is order preserving.

(b) The ordinary composition of two order-preserving maps is order preserving.

(c¢) Show that the following data define a category ¥ called the category of
ordered sets.
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u) The objects of € are the ordered sets.

(ii) For each pair of objects X, and X; in €, €(X,, X:) is the set of order-
preserving maps from X, to X..

(iif) For all triples X, X;, and X, in Ob(%) the composition map €(X,, X:) X
€(X:, X5)—=» €(X,, X5) is given by (f, g)—gf, the ordinary composition of
maps.

(d) Show that a morphism f: X,— X; of ordered sets is an isomorphism of ordered
sets, that is, f is an isomorphism in the category of ordered sets if and only if
(i) f as a map of sets is bijective and (ii) the map of sets f': X,— X is order
preserving.

(e) Give an example to show that a morphism f: X,— X, of ordered sets which is a
bijective map of sets need not be an isomorphism of ordered sets.

(f) Show that every nonempty indexed family of ordered sets has a sum and
product in the category of ordered sets. Suppose each set X, in the nonempty
indexed family {X}., is totally ordered. Is the sum or the product of the family
necessarily totally ordered?

(g) Show that a morphism f:X,—»X, of ordered sets is a monomorphism
(epimorphism) in the category of ordered sets if and only if f is injective
(surjective) as a map of sets. [Hint: In order to show that if f is an epi-
morphism, then it is a surjective map, it is useful to have the following con-
struction. Suppose Z is a nonempty ordered set and 2z, an element of Z.
Consider the ordered set Z’ which as a set is Z U {t}, where t is an element not
in Z with the ordering given by:

@) If 2z, and 2; are in Z, then z,=2,in Z' if and only if z,=2, in Z.

@) If x is in Z’, then x <t if either x=t or x is in Z and x < z,.

(i) If x is in Z’, then x =1t if either x=t or x is in Z and x> z,.

After showing that Z’ is an ordered set show that the following maps f, g: Z—

Z' are distinct morphisms of ordered sets:

f(z)=2z, forall zin Z

_fz if z#2
g(z)—{t’ if 7=z

(2) Let G be a group. A set S together with an operation of G on S is called a
G-set. If S, and S: are G-sets, then a G-morphism from S, to S; is a map of sets
f:8,— 8, satisfying f(gs)=gf(s) for all g in G and s in S,. Show:
(a) For each G-set S, ids is a G-morphism.
) IfS, S, S;are G-sets and f: S,— S; and g : S;— S; are G-morphisms, then the
ordinary composition of maps gf:S,— S, is a G-morphism.
(c) Show that the following data define a category which is called the category of
G-sets, and is denoted by G-Sets.
(i) The objects of G-Sets are the G-sets.
@if) For each pair of objects S, and S, of G-Sets, G-Sets(S,, S) is the set of
all G-morphisms from S, to S..
(iii) For each triple S, S,, and S; of objects of G-Sets, the composition map
G-Sets(S,, S,) X G-Sets(S,, S;)— G-Sets(S:, S;) is given by (f, g) — gf, the
ordinary composition of maps.
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Show that a morphism f: S,— S, of G-sets is an isomorphism of G-sets, that
is, f is an isomorphism in the category G-Sets if and only if f:S,—» S, is a
bijective map of sets.

Show that every indexed family {X}.c; of objects of G-Sets has a sum and

product in the category G-Sets.

A G-set S’ is said to be a G-subset of a G-set S if S’ is a subset of S and the

inclusion map inc:S'—> S is a G-morphism.

(i) Suppose S' is a subset of the G-set S such that g(s) isin S’ for all s’ in
S’. Show that S’ is a G-set by means of the operation G X S' = S’ given
by (g, s')=g(s')forall g in G and s’ in S'. Also, show that the G-set S’
is a G-subset of S. Thus, the G-subsets of a G-set S are nothing more nor
less than the subsets S’ of S satisfying g(s’)isin S’ foreach s'in S’.

(li) Suppose S is a G-set. Show that each orbit of S is a G-subset of S and
that S is isomorphic to the sum of the family of G-sets consisting of the
orbits of S.

Suppose G’ is a subgroup of G.

(i) Show that if X = yG’' is a left coset of G’ in G, then for each g in G, the
set g(X)={gx}.ex is the left coset (gy)G’ of G’ in G.

(if) Show that the map G X G/G’' - G/G’ given by (g, X)—»>g(X)forallgin G
and X in G/G’ is an operation of G on the set G/G’. This is the only way
we consider G/G' a G-set.

(iif) Show that a G-set S is isomorphic to a G-set G/G' for some subgroup G’
if and only if S is a nonempty set which has no G-subsets other than @
and S. Such a G-set S is called a simple G-set.

(iv) Show that a G-set S is simple if and only if S$#6 and any G-morphism
f:S'—S is surjective if S'#8.

(v) Show that if G, and G, are two subgroups of G, then the G-sets G/G, and
G/G, are isomorphic if and only if there is a g in G such that G, = gG.g"'.

Suppose S is a G-set. Show that there is a family {X}.c; of simple G-sets such

that S is a sum of the family {X}ic;. Also, show that if {Y}};c; is another

family of simple G-sets such that S is a sum of the family {Y;},c,, then there is
an isomorphism of sets @: I = J such that the G-sets X; and Yy, are isomor-

phic for all i in L

Let S be a G-set. Show that if f: G— S is a morphism of G-sets, then for each

g in G the map (gf): G— S defined by (gfXx) = f(xg) is also a G-morphism.

Further, if we denote the set of G-morphisms from G to S by (G, S), then the

map G x(G, S)-(G, S) given by (g, f)—=>gf is an operation of G on (G, S).

This is the only way we consider (G, S) as a G-set.

Let S be a G-set. Show that the map #: (G, S)— S given by &(f) = f(1) for all f

in (G, S) is an isomorphism in the category of G-sets.

Show that if s is an element of the G-set S and f: G— S is the unique G-

morphism such that f(1)=s, then Im f is the orbit of s.

Show that a G-set is simple if and only if there is a G-morphism f:G—>S

which is surjective as a map of sets.

(m) Show that a G-morphism f:S,—S; of G-sets is a monomorphism in the

(m)

category of G-sets if and only if f, as a map of sets, is injective.
Show that a G-morphism f: S,— S, of G-sets is an epimorphism in the cate-
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gory of G-sets, if and only if, as a map of sets, it is surjective. [Hint: Show

(a) Im f is a G-subset of S, and (b) if X is any G-subset of a G-set S, then

the subset S — X consisting of all elements in S but not in X is also a G-

subset of S.]

(3) Suppose X is an ordered set. Show that the following data define a category

which we denote by €(X) and call the category of the ordered set X.

(a) The objects of €(X) are the elements of X.

(b) For each pair of objects x, and x, in €(X), define €(X)(x,, x,) to be the
ordered pair (x,, x,) if x, = x; in X and to be empty otherwise.

(c) Show that for each triple of objects x|, x,, x; there is one and only one map
B(X)(x1, X3) X B(X)(x2, X3)—> €(X)x), x3) and define that unique map to be the
composition of morphisms in €(X).

(4) Suppose € is a category having the following properties: (a) the collection of

objects of € is a set; (b) if C, and C; are objects of €, then the set €(C,, C,) is

empty or consists of a single element; and (c) if €(C,, C;) and €(C;, C)) are both

not empty, then C, = C..

Let X be the set of objects of €. Show that the relation = in X given by
C,=C;if and only if €(C,, C,) is not empty, is an order relation on X. The ordered
set consisting of X together with this order relation, is called the ordered set of €
and is denoted by X(%).

(5) Show that if X is an ordered set, then X(€(X))= X. The reader should also

convince himself that if € is a category satisfying the hypothesis of Exercise 4,

then, although €(X (%)) is not identical to ¥, it is essentially the same thing as €.

(6) Let M be a monoid. Show that the following data define a category which we

denote by €(M) and call the category of the monoid M.

(a) Ob €(M) is the set consisting of the single element M.

(b) The set of morphisms €(M)(M, M) is the set M.

(c) The composition map €(M, M) X €(M, M)—> 4(M, M) is given by (m,, m;)—>
m, - my= m,m, where mm; is the product in the monoid M of the elements
m;, m, in M.

(7) Suppose ¥ is a category with one object C. Show that the set €(C, C) together

with the law of composition given by the composition map €(C, C)x %(C, C)—~

€(C, C)is a monoid, which we denote by M(%) and call the monoid of the category
€.

(8) Show:

(a) If M is a monoid, then M(€(M))=M.

(b) If € is a category with one object, then although €(M(%€)) need not be %, it is
essentially the same thing as 4.

(9) Suppose € is a category. Show that the following data give a category €~

which is called the opposite category of €.

(a) The objects of € are the same as the objects of €.

b) €°°(C,, C;)=%€(C,, C)) for all objects C, and C; in €.

(¢) For all triples of objects C,, C,, and C; in €, the composition maps
€*™(Ci, C) X €™(C;, Cy)—>€™(Cy, C5) are given by (f, g)—>gef where gof in
€*(C,, Cy) = €(C;, C)) is the composition fg in € of the morphisms C;—»
G—.Cin €

(10) Suppose X is an ordered set and 4(X) is the category of the ordered set X.
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Show that there is a unique ordered set Y such that €(Y) = € (X)™. This uniquely
determined ordered set is called the opposite of X and is often denoted by X .
What does it mean about an ordered set X that X = X*?

(11) Suppose M is a monoid. Show that there is a unique monoid N such that
€(N)=€(M)™. This uniquely determined monoid is called the opposite of M and
is written M.

(a) Show that M is a group if and only if M™ is a group.

(b) Show that M = M if and only if M is a commutative monoid.

So far in our discussion of categories, we have not dealt at all with the
problem of comparing two categories. We now describe how two categories are
compared.

Suppose €, and €; are two categories. A functor F from %, to €; consists of
the following data:

() A map from Ob €, to Ob €, which we denote by F:0b €,»0b %..
(b) Maps F:%,(C,, C,)—»€F(C;), F(C,)) for each pair of objects C, and C; in €,
satisfying

() F(idc)=idrcy and .

(if) given f: C,—» C;and g: C,— C; morphisms in €, then F(gf) = F(g)F(f).

We will usually denote the fact that F is a functor from €, to %, by writing
F:%,—>%,. It is the functors from one category to another that are the gadgets
used to compare categories. We now give some examples of functors.

(12) For a category %, show that the following data define a functor F: €— <.

(a) The map F:0b €—->0b € is the identity map.

(b) For each pair of objects C, and C; in €, the map F: 6(C,, C;)->€(C,, C,) is the
identity map.

This functor F: € — € is called the identity functor and is usually denoted
by ide.

(13) Show that the following data give a functor F from the category of all

monoids, Monoid, to the category of all sets, Sets.

(a) F:0b Monoid-»Ob Sets is given by F(M) is the underlying set of the monoid
M.

(b) For each pair of monoids M, M;, the map F:Monoid(M;, M,)—>
Sets(F(M,), F(M)) is given by F(f): F(M\)- F(M,) is the map of sets given
by viewing the morphism of monoids f: M,—» M, simply as a map of sets.

This functor F:Monoid—Sets is called the forgetful functor.

(14) Show that for the categories, Group, ordered sets, and G-sets, there are

functors from each of them to sets which are analogs of the forgetful functor we

just defined from Monoid to Sets.

(15) Let C bean object in the category €. For each morphism f: X— Y in ¢, define

the map (C, f):(C, X)=>(C, Y) by (C, fXg) = fg for all g in (C, X). Show that the

following data define a functor (C,.): € - Sets:

(@) (C,.):0b C—>O0b Setsis given by (C, .} X) = 6(C, X) for each object X in €.

(b) For each pair of objects X and Y in ¥, define (C, .):(X, Y)-=>((C, X),(C, Y))
by (G, .Xf)=(C, f) for each f in (X, Y). The functor (C,.): € Sets is called
the functor from % to Sets represented by C.
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(16) Let € and @ be categories. Show that each functor F: €*—>% can be
described in terms of the categories € and 9 as follows:
(a) F is a map from Ob € to Ob @ together with
(b) maps F:%€(C,, C)—B(F(C,), F(C)) for each pair of objects C, and C; in €
satisfying:
@) F@dc)=idgc for all C in € and
(i) For each triple C,, C;, C; of objects in € and morphisms C,—>C: and
g:C.—C;, we have F(gf)=F(f)F(g).

Definition

Let € and @ be categories. A contravariant functor F: €39 is

(a) a map F:0b €->0b @ together with

(b) maps F:(C,, C)=(F(C,), F(C))) for each pair of objects C, and C, in €
satisfying condition (b) above.

(17) Show that the contravariant functors from a category € to a category @ are
the same thing as the functors from the category €® to the category 9.

We now give some examples of contravariant functors from a category €toa
category 9. Of course, in view of Exercise 17 these are nothing more than exam-
ples of functors from €™ to 9.

(18) Show that the following data describe a contravariant functor F: € —» €™.
(a) F:0b €->0b € is the identity map.

(b) F:€(C,, C,)—>€*(F(Cy), F(C)) is the identity map.

Show that viewed as a functor from € to €*, the contravariant functor F is
nothing more or less than the identity functor on €.

(19) Let C be an object in a category €. For each morphism f: X— Y in %, define
the map (f, C):(Y, C)—(X, C) by (f, CXg) = gf. Show that the following data
define a contravariant functor (., C): € — Sets:

(@) (., C):0b €—-0b Sets is given by (., CYX) = €(X, C) for each object X in €.
(b) For each pair of objects X and Y in € the map (.,C):€(X, V)~

(Y, 0), (X, C)) is given by (., CXf)=(f, C) for all f in €(X, Y).

For each object C in %, the contravariant function (, C): € - Sets is called the
contravariant functor represented by C.

(20) Suppose G is a group. The commutator subgroup of G, which is usually de-
noted by [G, G], is defined to be the subgroup of G generated by all elements of
the form xyx 'y~ with x and y elements of G. Show:
(8) [G, G] is a normal subgroup of G having the following properties:
@) [G, G)={1} if and only if G is abelian.
(i) G/[G, G] is an abelian group.
(iif) A normal subgroup H of G has the property G/H is abelian if and only if
HDOI[G, G).
(iv) The canonical epimorphism k:G— G/[G, G] has the property that for
each abelian group X, the map ¢x:(G/[G, G), X)—=(G, X), given by
&x(g) = gk for all group morphisms g : G/[G, G]- X, is an isomorphism
of sets.
(v) If f: G- G’ is a morphism of groups, then f([G, G])C[G', G'].
Hence, there is a unique morphism of groups f.:G/[G, G1»G'/[G', G']
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which makes the diagram

G—L—G'

/N
GI[G, G1—=- G'[[G’, G")

commute.
(b) Show that the following data define a functor F:Groups— 4.
@) F:0b Groups—»0b 4/ is given by F(G)=G/[G, G].
(i) For each pair of groups G, and G, the map F:(G,, G;)—=(F(G)), F(G)) is
given by F(f) = f., for all group morphisms f: G,— G,.
(21) Suppose F: €D and G: 9D — € are functors of categories. Show that the
following data define a functor GF:€— €.
(a) GF: Ob € >0b € is given by (GF)C) = G(F(C)) for all C in Ob %.
(b) GF :4(C,, C))— €(GF(C)),GF((C,)) is the composition of the following maps
%(C\, C))—> D(F(C)), F(C)))— €(GF(C)), GF((Cy)).
The functor GF is called the composition of the functor F followed by G.
Show that if F: €—+%, G: 9 ¥, and H: €— % are functors of categories,
then (HG)F = H(GF).
(22) A category ¢ is said to be a small category if the collection Ob € of objects of
€ is a set.
(a) Show that if € and 9 are two small categories, then the collection (€, 2) of all
functors from € to 9 is a set.
(b) Show that the following data define a category Cat called the category of all
small categories:
(i) Ob Cat is the collection of all small categories.
(i) For each pair of small categories €, and €, in Cat we define Cat(€,, €;) to
be the set of all functors from %, to %.,.
(iif) The composition maps Cat(¥€,, €.) x Cat(%,, €;)—>Cat(¢,, 6;) are given by
(F, G)- GF, the composition of the functor F followed by G.

Definition
Suppose F and G are two functors from the category € to the category @. A
morphism ¢ from F to G, which we denote by ¢ : F> G, consists of a family
{$}seon« Of morphisms Yx: F(X)=»G(X) in 9, one for each object X in Ob ¢,
satisfying the condition that for each morphism f: X—Y in ¥, the diagram

F(X)—2>G(X)

A an

F(Y)—25G(Y)

commutes.

(23) Suppose € and 9 are categories and F, G, H, I: €9 are functors.
(a) If y: F> G and ¢ : G— H are morphisms of functors, show that one obtains a
morphism of functors ¢y : F- H by defining (¢¢)x: F(X)—» H(X) to be the
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composition F(X)—le(X)l&I(X) for each X in Ob . The morphism
¢y :F-H is called the composition of the morphism  followed by ¢.

(b) Show that if a: F-G, B:G—H, and y: H—>I are morphisms of functors,
then (yB)a = y(Ba).

(24) Suppose that € is a small category and @ is an arbitrary category.

(a) Show that if F, G:€—>% are two functors, then (F, G) the collection of all
morphisms from F to G is a set.

(b) The following data define a category (6, &) called the category of functors
from € to 9.

() Ob(€, D) is the collection of all functors from € to 9.

(i) Given two functors F, G in Ob(€, D) define (€, @)(F, G) = (F, G), the set
of all morphisms from F to G.

(iff) Given a triple F,G, H in Ob(%, 2), the composition map (F, G)x
(G, H)-(F, H) is given by (a, B)— Ba where Ba is the composition of the
morphisms of functors a followed by B.

The category (%, @) is called the category of functors from € to 9.

(25) Let F, G: €~ 9 be functors. A morphism a : F— G is an isomorphism if and

only if there is a morphism g:G— F such that Ba =idr and af =ids.

(a) Show that if «: F— G is an isomorphism of functors, then there is only one
morphism B : G- F such that Ba =idrand ap =ide. This uniquely determined
morphism g : G- F is also an isomorphism of functors called the inverse of a
and often denoted by a™'.

(b) Show that a morphism a : F- G of functors is an isomorphism if and only if
for each X in € we have that ax : F(X)— G(X) is an isomorphism in 9.

(c) Suppose F, G, H: €—> % are functors from€éto P anda: F»Gand 8:G—-H
are morphisms of functors.

@) If a is an isomorphism, then (a™)'=a.

@) If a and B are isomorphisms, then Ba is an isomorphism.

(iif) If Ba is an isomorphism, then B8 is an isomorphism if and only if « is an
isomorphism.

(26) Let C,, C; be objects in a category €. Suppose f: C,— C, is a morphism in .

Then for each X in € we have the map of sets (f, X):(C\, X)—=(C, X) given by

(f, XXg)=gf for all g in (C,, X).

(a) Show that the family {(f, X)}xco»« is a morphism from the functor (C,,.): €
Sets to the functor (C,,.):€—>Sets. This morphism is denoted by
(f, ):(Cy, )>(Cy, ).

(b) Show that for each C in ¥, the morphism (idc, .):(C, .)=(C, .) of functors is
idic. .

(¢) Let f: C,> C; be a morphism in €. Then the morphism (f, .):(C;, .)=>(C,,.) of
functors has the property that (f, C;Xidc)=/f Hence, if f,f':C,>C; are
morphisms in %, then (f,.)=(f',.) if and only if f=f".

(d) Show that if f:C,>C, and g:C,—»C, are morphisms in %, then (gf,.)=
(f, )8, ).

(e) Show that if f: C,— C; is an isomorphism in <, then (f,.):(C;, .)=>(C,,.) is an
isomorphism of functors with (f,.)"'=(f"',.).

(f) Show that a morphism f: C,>C, in € is an isomorphism if and only if the
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morphism of functors (f,.):(C,,.)=>(C,,.) is an isomorphism of functors.
[Hint: If (£, .):(C,, .)=>(C,, .) is an isomorphism, then (f, C)): (C, C))—=(C,, C))
is an isomorphism of sets. Hence, there is a g: C;— C, such that (f, C\)(g)=
idc,. Show that f:C,—>C; is an isomorphism by showing that gf =idc, and
fg = idCx-]

(g) Show that a morphism f:C,—»C; in € is an epimorphism if and only if
(f, X):(C;, X)—=(C,, X) is an injective map of sets for each X in Ob €.
(27) Suppose F:¥€—Sets is an arbitrary functor and C is an object in 4. Let
((C, .), F) denote the collection of all morphisms from (C, .) to F. We want to show

that the map ((C,.), F)— F(C) given by a = ac(idc) is bijective.
(a) Suppose a:(C,.)~F is a morphism of functors. Show that for each object X
in € and each morphism f: C— X the diagram

(C,C)—= F(C)

(C, X)—=> F(X)

commutes. From this deduce that ax(f) = F(f)ac(idc) for all f in (C, X). This
result implies:

®) If «, B:(C,.)>F are two morphisms of functors, then a =8 if and only if
ac(idc) = Be(idc). Hence, the map ((C, .), F)—= F(C) given by a = ac(id¢) is
an injective map.

(c) Suppose x is an element of F(C). For each object X in %, define a map
ax:(C, X)-> F(X) by setting ax(f)= F(f)x) for each f in (C, X). Show that
the collection {ax}xeor« is a morphism a«:(C,.)— F with the property
ac(idc) = x. Hence:

(d) The map ((C, .), F)- F(C) given by a—» ac(idc) is bijective. The isomorphism
of sets ((C, .), F)— F(C) given by a = ac(id() is called the Yoneda isomorphism
and is generally considered an identification. It is a basic tool in almost all
work involving functors.

(28) Let C,, C, be objects in a category €. Show that for each morphism

a:(Cy, .)->(C,,.) there is a unique morphism f: C,— C; such that a =(f,.).

(29) Let € be a category, F, G:¥€ - Sets functors, and « : F-» G a morphism of

functors. If C is an object of € show that the diagram

((C, ), F)——F(O)

l(((‘..).a) lﬂc

(G ), G)>—G(O)

commutes where ((C,.), a)(B) = aB for all morphisms B8 :(C, .)— F and where the
horizontal maps are the Yoneda isomorphisms.
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Suppose f: C—C’ is a morphism in €. Show that the diagram

((C’ -)a F)"_—",F(C)

J(«I.J. F) l Fify

«c’, ), h——F(C)

commutes where ((f, .), F)g = B(f, .) for all morphisms 8 :(C, .)- F and where the

horizontal morphisms are the Yoneda isomorphisms.

(30) Let € be a category. A functor F: € - Sets is said to be a representable func-

tor if there is a C in € such that F is isomorphic to the functor (C,.).
Suppose a functor F:%€—Sets is representable and we are given two

isomorphisms a:F—(C,.) and «': F—>(C’,.). Show that there is a unique mor-

phism f: C’'— C in € such that ({, .)a = a’ and this uniquely determined morphism

f:C'—>C is an isomorphism.

(31) Let € be a category and {F,};c; an indexed family of functors from € — Sets.

(a) Show that the following data define a functor E;E : € > Sets:

@ (Il;IJF,)(X) = ‘IIJF,(X) for each X in Ob €.
€.
@) If f: X—>Y is a morphism in ¢, define

(ME)n:IReo-IIRmN o (I] F)H =] F(h)

(b) Suppose k is in J. For each X in Ob <€ define the map (pJ)x: (l'IJF})(X )= F(X)
j€E.
to be the kth projective map from iHJF,(X)—»F.,(X). Show that the family
€
{(p:)x}xeon« is a morphism of functors p: :,IIJF, - F,.
€

(c) Show that if G : € — Sets is an arbitrary functor and {a; : G = F};c, is an arbi-
trary family of morphisms, then there is a unique morphism o : G—»’IIJF, such

that p.a = a; for each k in J. We denote this uniquely determined morphism a
by I'la,.

jeJ
(d) Show that given any morphism S8: G—>‘IIJF,, B= ‘HJ p;B. In view of these re-
€ [
sults, it is reasonable to call the functor IIJF} the product of the indexed family
i€
{F}ic; and the morphisms p; :IIJP} — F,, the kth projection morphisms.
i€

(32) Let € be a category and {C}.c; an indexed family of objects in €.
(a) Show that a family of morphisms {f; : C;— C}ic: is a sum for the family {Ci}c, if
and only if the morphism II(f): (C, .)- I1(C, .) is an isomorphism of functors.
i€l

(b) Show that if C is an object of ¢, then a morphism a:(C, .)—»lrI’(C., ) is an
€

isomorphism if and only if the uniquely determined family of morphisms
{fi: C-> C}ic: such that p,a =(f,,.) is a sum for the indexed family {Cj}ic..

(c¢) The indexed family {Ci}ic; has a sum in € if and only if the functor
II(C, .): € — Sets is representable.
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Definition

We say that an object C in € is isomorphic to a sum of the family {C }.e, if and
only if there is a family of morphisms {f: C— C}ie; which is a sum for the family
{Clier

(d) An object C in € is isomorphic to a sum of {C}, if and only if the functor
(G, .) is isomorphic to the functor II(C, .).

(33) Let {C},c; be an indexed family of objects in a category €. Show that a family
of morphisms {f.: C = C;};c:is a product in € if and only if the corresponding fam-
ily of morphisms {f;: Ci— C}.c;in € is a sum in €* for the indexed family {C };e:
of objects in €. Restate the results of Exercise 32 for products of indexed
families of objects in a category € using contravariant functors. More generally,
restate for contravariant functors the results obtained for functors in Exercises 15
through 32.

Definitions

Suppose F:€—-9 is a functor.

(a) F is said to be a faithful functor if F:(C,, C,)—(F(C)), F(C,)) is an injective
map for each pair of objects C, and C; in €.

(b) F is said to be a full functor if F:(C,, C;)-=(F(C)), F(C,)) is surjective for all
pairs of objects C, and C; in 4.

(c) F is said to be a fully faithful functor if F is both full and faithful.

(@) F is said to be dense if for each object D in @ there is an object C in € such
that D= F(C).

(34) Let € be the category of ordered sets and F: %€ — Sets the forgetful functor
which assigns to each ordered set X its underlying set. Show that F is faithful and
dense but not full. Show that the forgetful functors from Monoid, Group, G-Sets
to Sets are all faithful and dense but not in general full.

(35) Let € be a small category. Let € —>(€™, Sets) be the functor given by
C —(., C) where (., C) is the functor represented by C in €. Show that this
functor € —=>(€*, Sets) is a fully faithful functor which need not be dense.

(36) Show that the functor Group—Ab given by G- G/[G, G] is not full or
faithful but is dense.

Definitions

Let F:€—>9 be a functor of categories.

(a) F is said to be an isomorphism of categories if there is a functor G : @ - %€ such
that GF =id, and FG =id,.

(b) F is said to be an equivalence of categories if there is a functor G : 9 - € such
that GF=id¢ and FG =ids.

(37) Let F: €—>9 be a functor of categories. Show:

(a) If F is an isomorphism of categories, then there is one and only one functor
G:9->%€ such that GF=id¢ and FG=ids. If F is an isomorphism of
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categories, then the uniquely determined functor G : @ » € such that GF =id¢

and GF =id, is also an isomorphism of categories which is called the inverse

of F and is denoted by F'.

(b) Let Cat be the category of all small categories, that is, categories whose col-
lection of objects is a set. Show that the following data define a functor

a :Cat—>Cat which is an isomorphism of categories with a™' = a.

() a:0bCat—>Ob Cat is given by a(¥€) = €™ for each category ¥ in Cat.

@) a:(€,%)> (€7’ €¥) is defined as follows: For each functor
F:%,- %,, the functor a(F): €*— €% is given by the data a(F):0b €*—>
Ob €7 is the map F:0b €,—»0b ¢, (remember Ob € =0b €*) while
a(F):€7°(C,, C)=>€7(F(C), F(Cy)) is the map F:%4(C,C)->
€F(C,), F(C\))lremember €*(C,, C) = €(C,, C))}.

(c) Show that the following data define a functor 8 : Monoid— Monoid which is an

isomorphism of categories with 8™' = 8.

@) B(M)= M for each monoid M in Ob Monoid.

@) If f:M,>M, is a morphism of monoids, define B(f): M"—>M> by
B(f)Y(m)=f(m) for all m in M. (Remember as sets M\" = M,.)

(d) Define analog isomorphisms for the categories of Groups and Ordered Sets.
(38) Show that a functor F: €— 9 of categories is an equivalence of categories if
and only if it is a fully faithful dense functor.

(39) Let @ be the full subcategory of Cat consisting of those small categories with
one object.

(a) Show that the following data define a functor F:Monoid—>%:

(i) F:0bMonoid—>0b %, given by F(M), is the category €(M) of M for
each monoid M.

(i) If f: M,—» M. is a morphism of monoids, then F(f): €(M,)— €(M.) is the
functor F(f): €(M\}M,, M\)—> €M) M., M) given by F(f)(m,)=f(m,)
for all m, in €(M,}(M,, M,) [remember €(M)(M, M) = M for all monoids
M].

(b) Show that the following data define a functor G : 2 —Monoid:

@) G:0b2->0b Monoid is given by G(€)=M(€), where M(¥€) is the
monoid of the category €.

(ii) If H:€,— 4. is a morphism in 9, then define G(H): M(€,)—=> M(€,) by
G(H)f)=H(f) for all f in M(%€,) [remember that M(€)= €(X, X)
where X is the unique object of € for each € in 9].

(c) Show that GF =idu.i While FG =ids. Hence, F and G are equivalences of
categories.

(40) Let ¥ be the full category of Cat whose objects are those small categories €

satisfying €(C,, C;) is either empty or consists of a single element for all pairs of

objects C, and C; in € and C, = C, if both €(C,, C,) and €(C:, C)) are not empty.

Let € be the category of ordered sets. Show that @ and & are equivalent

categories.

(41) Let G be a group. Let €(G) be the category of G and (6(G), Sets) the

category of all functors from €(G) to Sets.

(a) Let F:%€(G)->Sets be a functor. Show that associated with F is the G-set
which we denote by a(F) which consists of:
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(i) The set F(G).

(if) For each g in G and s in F(G) gs is defined to be F(g)(s) where F(g) is
the image of g in End(F(G)) under the map f:€(G)G, G)—>
Sets(F(G), F(G)) [remember that G = €(G )G, G) as a set].

(b) Suppose F,, F;:€(G)—>Sets are functors and f:F,—» F; is a morphism of
functors. Show that the map f: Fi(G)— Fx(G) is a morphism of G-sets where
F,(G) and Fx(G) are considered the G-sets a(F,) and a(F;) described in (a).

(c) Show that the following data define a functor a : (€(G), Sets)— G-Sets which
is an equivalence of categories.

#) a:0b(4(G), Sets)—»Ob(G-sets) is given by a(F) is the G-set described in
(a).

() a:(F\, F;)-(a(F), a(F)) is given by a(f) = f for all morphisms of func-
tors f:Fi—>F,.

(42) Prove that if € is a category and X is in Ob(%€), then (X, X) is a monoid.

(43) Let € and 9 be categories, let F: €—> 9 be a functor, and let X be an object

of 9. Show that the following set of data defines a category, which we denote by

(F, X). The objects of (F, X) are all pairs (y, f) where y is an object of € and f is

in @(F(y), X), that is, f: F(y)— X is a morphism from F(y) to X in the category

@. If (yi, f1) and (y,, f2) are objects of (F, X), a morphism g :(yi, fi)=>(y2, f2) is

defined to be a morphism g:y,—»y, in € such that f,F(g)=f. If

&g:(yi, )= (¥2, f2) and g.:(ys, f2) = (¥3, f5) are morphisms in (F, X), the composi-

tion is defined to be the composition g.g, in the category €. When € =@ and F is

the identity, we denote (F, X) by (%, X).

(44) Let € and 9 be categories, let F: € - 9 be a functor, and let X be an object

of 9. Proceeding as in the foregoing exercise, construct a category (X, F) whose

objects are all pairs (y, f) where y is in Ob(€) and f: X - F(Y) is a morphism in

9. When € =9 and F is the identity, we denote (X, F) by (X, €).

(45) Let € be a category. Show that the following set of data defines a category

which we shall call T,(%€). The objects of T>(€) are the morphisms f: X—-Y of €.

If fi: X,—» Y, and f,: X;— Y are objects of T>(€), a morphism g: fi—f, in Tx(%) is

defined to be a pair of morphisms (g,, g;) in € where g,: X,» X;, g:: Y,» Y>, and

8:fi = f,8). Composition of morphisms in Tx€) are defined in the obvious way
using the composition of morphisms in €.

(46) Let € be a category. Show that the following data describe a category which

we shall denote by €[X]. The objects of €[X] are the endomorphisms of €, that

is, morphisms f: Y- Y for all objects Yin €. If f,:Y,—» Y, and f,: Y,> Y, are
objects of 4[X], a morphism g: fi—f, in €[X] is a morphism g: Y,— Y; in %€ such
that gf, = f,g. Composition of morphisms in 4[X] is defined in the obvious way.

Identify the category €[X] with a suitable subcategory of T(%).

(47) Prove Basic Properties 2.1.

(48) Prove Basic Properties 2.3.

(49) Prove that products and sums do not generally exist in the category of finite

sets.

(50) Prove Basic Property 3.2.

(51) Prove that the sum of an infinite family of nontrivial abelian groups does not

exist in the category of finite abelian groups.
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98 THREE/CATEGORIES

(52) Show that the following data define a functor F:Sets[X]-»Sets:

(@) If (S,f) is an object of Sets[X], that is, S is a set and f:S—S is an
endomorphism of S, then F((S, f))=S.

(b) Given a morphism g:(S,, f)=(S:, f.), that is, g is a map S,— S, satisfying
f-g = gf,, then F(g): F(S\)— F(S.) is simply the map g:S,— S.. Show that the
functor F is representable.
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Chapter4d RINGS

In Chapter 2 we defined rings. In this chapter, we subject the category of rings
to the same type of analysis that we applied to the categories of sets, monoids, and
groups. In the course of this analysis we introduce polynomial rings over com-
mutative rings and show in particular that the ring of polynomials over the ring of
integers plays an analogous role in the category of rings to that played by Z in the
category of groups and by N in the category of monoids.

1. CATEGORY OF RINGS
We now recall the definition of a ring.

Definition
Aring is a set R together with two laws of composition, addition written r, + r, and
multiplication written r,r;, which satisfy:

(a) R is a commutative group under addition with identity denoted by O.

() R is a monoid under multiplication, not necessarily commutative, with iden-
tity element 1.

(c) For all elements r,, r;, and r; in R we have:
@ r(n+rn)=nr+rn.
@ (n+r)n=nr+nn.
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100 FOUR/RINGS

Finally, a ring R is said to be commutative if R is a commutative monoid
under multiplication.
We assume the reader is familiar with the following easily verified properties.

Basic Properties 1.1
Let R be a ring. Then:

(@) r0=0=0r for all r in R.
M) r(—r)=—(riry)=(—r)r;, for all elements r, and r, in R.

The reader should note that the definition of a ring does not preclude the
possibility that 0 = 1. A consequence of the above basic properties is that if 0 =1 in
aring R, then R consists solely of the element 0. Clearly, there is a ring with only
one element, namely, the zero element. Such a ring is called the trivial or zero ring.

Before giving examples of rings we introduce the notion of a subring of a ring.

Definition

Let R be aring. A subring R’ of R is a ring which under addition is a subgroup of
R and under multiplication is a submonoid of R. In particular, the identity 1 of R is
contained in R’.

As an immediate consequence of this definition we have the following.

Basic Properties 1.2
Let R be a ring.

(a) If R’ and R” are two subrings of R, then R’ = R" if and only if their underlying
sets are the same.
(b) A subset X CR is the underlying set of a subring of R if and only if:
() X is closed under addition and multiplication, that is, if x, and x, are in X,
then x,+ x; and x,x, are in X.
() 0and 1 are in X.
@iff) If x is in X, then —x is also in X.

In other words, to completely describe a subring R’ of a ring R, it suffices to
describe the underlying set of R’.

Example 1.3 The following are familiar examples of commutative rings:

(a) The set of integers Z under ordinary addition and multiplication.

(b) The set of all rational numbers Q under ordinary addition and multiplication.

(c) The set R of all real numbers under ordinary addition and multiplication.

(d) The set of all complex numbers ¢ under ordinary addition and multiplication.

Also, it is not difficult to see that Z is a subring of @ which in turn is a subring
of R which finally is a subring of ¢.

Example 1.4 Let R be an arbitrary ring. Then it is not difficult to see that the
Tu :") with the r, in R) with
n

21

2 X 2 matrices over R (that is, the set of all arrays (
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Category of Rings 101

the usual addition and multiplication of matrices given by
("u "lz)+(f1| "'u)=(rn+"1| '|z+r§z)
ray raz ruy ra ra+ry ratras

("n '12)("'11 "'12)___ (Tuf;l*"'u";l ruf;z'*'rlzriz)
ry ra/\ru ra rury+ rary rarntrara
is a ring. This ring is called the ring of two-by-two matrices over R and is usually

denoted by My(R). The reader should not have great difficulty in showing that as
long as 140 in R, My(R) is not a commutative ring.

and

Example 1.5 Let R be a ring. The subset T:(R) of Mx(R) consisting of all
elements (r,. r”) with r,=0 is a subring of M,(R) called the ring of 2x 2 lower

rn rno
triangular matrices over R. As in Example 1.4, T:(R) is not commutative if 1+ 0
in R.

Example 1.6 Let A be an abelian group and let End(A) be the set of all group
morphisms f: A— A. It is not hard to check that if f and g are in End(A), then the
map f+g:A—>A given by (f+g)(a)=f(a)+g(a) for each a in A is again a
morphism of groups called the sum of f and g. Further, the law of composition of
End(A) given by (f, g)— f+ g makes End(A) into an abelian group since (a) it is
associative, (b) the zero morphism 0: A - A defined 0(a) =0 for all a in A is an
identity, and (c) given a morphism f: A— A, the map (—f): A—> A given by (- f) X
(a)=—(f(a))for all a in A is a morphism of groups with the property f+(—f)=0.

We already know that End(A) is a multiplicative monoid with id, as identity
under the law of composition given by the composition of morphisms.

Finally, it is not difficult to check that End(A) together with the addition and
multiplication described above is a ring which is called the ring of endomorphisms
of the abelian group A.

Having described rings, we must describe how to compare two rings. Because
a ring is completely determined by its underlying set as well as its structure as an
additive group and multiplicative monoid, it is clear that a morphism f:R—-R’
from the ring R to the ring R’ should be a map from the underlying set of R to that
of R’ which is compatible with both the additive and multiplicative structures of R
and R’. In other words, a morphism f: R— R’ is a map of the underlying sets of R
and R’ which is at the same time a morphism of the additive group structures as
well as the multiplicative monoid structures of R and R’. Stated symbolically we
have the following.

Definition
A morphism f: R— R’ from the ring R to the ring R’ is a map f from the underlying
set of R to the underlying set of R’ satisfying, for all r, and r; in R:

@) f(n+r)=f(r)+f(r).
M®) f(rir)=f(r)f(r).
) f()=1.
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102 FOUR/RINGS

We now list some easily verified properties of morphisms of rings.

Basic Properties 1.7
Let R, R’, R", and R” be rings.

(a) The identity map on the underlying set of the ring R is a morphism of rings
which we denote by idx.

(b) If f:R>R’' and g:R’'—» R" are morphisms of rings, then the composition
gf: R->R" of the maps f and g is a morphism of rings which we denote by gf
and call the composition of the morphisms f and g.

(¢ If f:R>R', g:R'"->R", and h:R"->R" are morphisms of rings, then the
morphisms (hg)f: R - R" and h(gf): R - R™ are the same, that is, the com-
position of morphisms of rings is associative.

Our discussion shows that we can define a category called the category of
rings by the following data:

(a) The objects of this category are all rings.

(b) For any two rings R and R’, the set (R, R’') is the set of all ring morphisms
from R to R'.

(c¢) For each triple of rings R, R’, and R”, the composition of morphisms is given
by the map of sets

(R,R")X(R’, R")>(R,R")
defined by (f, g)— gf, the composition of ring morphisms.

The category given by these data is denoted by Rings.

Because we have defined isomorphisms, epimorphisms, and monomorphisms
in arbitrary categories, we have these notions for the category Rings. Also, the
fact that the objects of the category Rings have underlying sets makes it fairly
clear what we mean by a morphism of rings being surjective, injective, or
bijective. Either as immediate consequences of results already developed for
morphisms of monoids and groups or as consequences of easy direct calculations
we have the following relations between the various types of morphisms between
rings.

Basic Properties 1.8
Let f: R—» R’ be a morphism of rings.

(a) If f is a surjective (injective) morphism, then f is an epimorphism (monomor-
phism).
(b) f is an isomorphism if and only if f is a bijective morphism.

These results naturally raise the question of whether a ring morphism f: R »
R’ which is a monomorphism (epimorphism) is necessarily an injective morphism
(surjective morphism). We have already seen that monomorphisms in the
categories Monoid or Groups are injective morphisms. Also, although epimor-
phisms in the category Group are surjective morphisms, the same is not true in the
category Monoid. The situation for the category Rings is the same as that for the
category Monoid. Namely, all monomorphisms in the category of Rings are injec-
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Polynomial Rings 103

tive morphisms, whereas not all epimorphisms are surjective morphisms. The
next section is devoted to showing that monomorphisms of rings are injective
morphisms. The fact that not all epimorphisms of rings are surjective morphisms
will be shown later on in this chapter. In the meantime we end this section by
pointing out the following easily verified analogs of results already established for
monoids and groups.

Basic Properties 1.9
Let R and S be rings.

(a) If R is a subring of S, then the inclusion map of sets R— S is an injective
morphism of rings called the inclusion morphism and written inc: R—>S.

Now suppose f:R—S is an arbitrary morphism of rings. Then:

(b) Im f is a subring of S called the image of f.
(c) The map fo: R—=>Imf is a surjective morphism of rings.
(d) The morphism f: R—S is the composition of the morphisms of rings

R—5Imf-=s
Finally, for ease of reference we make the following definition.

Definition
Suppose f: S— T is a morphism of rings. For each subring R of S, the composition
R-=>S—{ 5T is called the restriction of f to R and is denoted by f|R.

2. POLYNOMIAL RINGS .
We recall that the proof that monomorphisms in the category Monoid are injective
morphisms was based on the fact that the monoid N of nonnegative integers under
addition has the following property: If M is an arbitrary monoid, then the map of
sets (N, M)— M, given by f - f(1) for each morphism of monoids f:N—> M, is an
isomorphism of sets. Similarly, the proof that monomorphisms in the category
Groups are injective morphisms was based on the fact that the group Z of all
integers under addition has the property that for each group G, the map of sets
Z, G)-G, given by f-f(1) for each morphism of groups f:Z— G, is an isomor-
phism of sets. Our proof that monomorphisms in the category Rings are injective
morphisms follows this pattern. That is, it is based on the fact that there is aring §
containing an element x having the following property: For each ring R’, the map
of sets (S, R’)>R’, given by f— f(x) for each morphism of rings f: S—»R’, is an
isomorphism of sets. After discussing polynomial rings over commutative rings,
we will see that the ring of polynomials over the integers has the property just
described for the ring S.

In order to discuss rings of polynomials, it is convenient to have the following
notational device.

Let (r)ic; be a family of elements in a commutative monoid R which we write
additively. The subset J of I consisting of all i in I such that r,#0 is called the
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104 FOUR/RINGS

support of the family (r).c;. The family (r).c; of elements of R is said to be almost
zero if its support is a finite set. If (r)ic; is an almost zero family of elements in R
with support J, we denote the finite sum X, r, by Zc 1. Clearly, if (r)ic; and (7)ier
are two almost zero families of elements in R, then (r,+ r)).c; is an almost zero
family of elements in R and 2.c; (ri+ r)) =Zic; i+ Zic; . Finally, if R is a ring and
(r)ic; and (x)c; are two families of elements with (r),c; an almost zero family, then
(rx)ic is also an almost zero family of elements in R.

Suppose R is a commutative ring. We denote by R[N] the set of all almost
zero families (r.).en Of elements in R. It is left to the reader to check that the
following maps from R[N]x R[N] to R[N] are laws of composition on R[N] which
make R[N] a commutative ring. The addition law, add: R[N]x R[N]— R[N}, is
defined by add((r)scw, (FJeew) =(ra+rd.en and the multiplication law,
mult: R[N] X R[N]— R[N}, is defined by mult((7.)sen, (rnen) = (Zi-0 rira_daen. The
zero element of the ring R[N] is the element (r,).cn With r,=0 for all n in N. The 1
of the ring R[N] is the element (r).en With 7,=0 for n#0 and ro=1.

We observe that the map h : R— R[N] given by h(r) is the element (r,).en With
ro=r and r,=0 for n#0, is an injective morphism of rings whose image consists
precisely of the elements (r.).en in R[N] with the property r,=0 if n#0. Therefore,
identifying the subring of R[N] consisting of all (r,).enx With r,=0if n+#0 with R by
means of the injective morphism h:R— R[N}, we have that R is a subring of
R[N]. The reader should check that as a result of this identification of R with a
subring of R[N] we have the following rules of calculation: For r in R and (7. ).en
in R[N] we have (@) r(r.).en = (1 )uen; (b) (72 )aenr = (rur)aen; and (¢) 7 + (7 )aen =
(rJnen, where ro=r+r, and r,=r, for n >0.

Before we can go further in our analysis of the ring R[N], we need some
notation. For each pair (m, n) in N x N we introduce the symbol 8, . which stands
for the 0 of R if m+#n and for the 1 of R if m = n. If we let X =(8,..).en, then it is
not difficult to establish:

(@) X'=(8 Jnen, for all i in N.
() rX'=(rd, Juen, for all i in N.

From these observations it follows that for each element (7,).en in R[N] we have
(rn )nEN = EnEN rnX.-

In practice the ring R[N] is generally denoted by R[X], and the representa-
tion X,en 1. X" is used for the elements of R[N] rather than the representation
(r.).en. Because of this, we recapitulate what we have already established about
the ring R[X] using the notation Z,cy r.X" for the elements of R[X].

Definition

Let R be a commutative ring. The ring R[X] is called the ring of polynomials over
R. The elements 2,y 7.X" in R[X] for each almost zero family (r,).cx of elements
in R are called the polynomials over R.

Basic Properties 2.1
Let R be a commutative ring and R[X] the ring of polynomials over R.

(a) Two elements 3,y r. X" and Z,en 7. X" in R[X] are the same if and only if
r.=r, for all n in N.

Google



Polynomial Rings 105

®) Zeen X"+ 2w X =2 (o +r) X"

(c) (Eneﬂ rnx")(znell rLX") = EnEN(E}LO "lr:r-j)xu-

(d) R[X] is a commutative ring.

(e) The elements =,y r,.X" with r,=0 if n#0 constitute a subring of R[X] which
is isomorphic to R by means of the ring morphism r—>X,cy r,X" for all r in R
where r,=r if n=0 and r,=0 if n>0. This isomorphism is usually viewed as
an identification which means that we often write simply r for the element
Z.en 1. X" where ro=r and r,=0 if n>0.

In order to state a fundamental property of polynomial rings which will be
used in showing that ring monomorphisms are injective, we make the following
observation. If S is a ring, the set of all elements x in S such that xs = sx for all s
in S is a commutative subring of S.

Definition
Let S be a ring. The subring of S consisting of all x in S such that xs = sx for all s
in S is called the center of S. We will denote the center of S by C(S).

It is clear that a ring S is commutative if and only if C(S)=S.

Proposlition 2.2

Let R be a commutative ring, S an arbitrary ring, and f: R— S a ring morphism
such that Im fCC(S). Then for each x in S, there is a unique ring morphism
f.:R[X]- S such that £f.|R = f and f, (X) = x. This ring morphism f, : R[X] > S is
given by fC.ennnX") = Zoenf(ra)x".

PROOF: Since each element of R[X] can be written uniquely as = r.X", we
obtain a map f,:R[X]1-> S by setting f.(Z.enrX") = Z,en f(r.)x". Obviously,
IR = f and f,(X) = x. That f, : R[X]— S is a ring morphism follows from the fact
that the element x in S commutes with each element of Im f since Im f is in the
center of S. The verification of this, as well as the uniqueness of the ring morph-
ism f,, is left to the reader.

We now wish to apply this general result to find the ring morphisms from
Z[X] to an arbitrary ring S where Z is the ring of integers. To do this we first must
determine the ring morphisms from Z to S.

Let S be an arbitrary ring. Now viewing Z and S as abelian groups, we know
by the results of Chapter 2 that given any s in S there is one and only one
morphism f:Z— S of abelian groups such that f(1) = s, namely, the morphism
given by f(z) = zs for all z in Z. Since any morphism of rings f:Z— S is also a
morphism of the additive groups of Z to S which must have the property f(1) =1,
it follows there is at most one morphism of rings from Z to S. That there is a
morphism of rings from Z to S follows from the fact that the morphism of additive
groups f:Z— S given by f(z)=1z1 is also a ring morphism. To see this, we
observe that since f:Z— S already has the properties f(z, + 2;) = f(z,) + f(z2) and
f(1)=1, we only have to show that f(z,z;) = f(z)f(z.). But f(z,2;) = (z:2;)1 and
f(z)f(z2) = (2:1)(21). Hence, we must show that (z,2,)(1) = (z,1)(z.1) for all z, and
2, in Z. We have already seen in Chapter 2 that (z,2:)(1) = z,(z.1). Hence, in order
to show that the map f:Z— S is a morphism of rings we have to show that
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z,(z21) = (2,1X2,1) for all 2, and z, in Z. This follows from the fact that for each 2,
in Z, the maps g:Z— S and h:Z— S given by g(z) = z(z;1) and h(z) = (z21)Xz.1)
are the same because they are both easily seen to be group morphisms from the
additive group of Z to that of S satisfying g(1) = z,1 = 1(z,1) = h(1). This shows
that the map f:Z— S given by f(z) = 21 for all z in Z is the unique morphism of
rings from Z to S. This proves the following.

Proposition 2.3
Given an arbitrary ring S, the map us:Z— S given by us(z) = z 1 is the unique ring
morphism from Z to S.

We now show that for each ring S, the image of the unique ring morphism
us:Z— S is a subring of the center of S. Suppose s is an element of S. We want to
show that s(z1)=(z1l)s for all z in Z. Consider the map g:Z—S given by
g(2)=@ls for all z in Z. Then g(z;+z)=(z,+2)1)s=(z11)s+(21)s=
g(z)) + g(z,). Hence, g :Z— S is a morphism of abelian groups with g(1) = s. Simi-
larly, the map h:Z— S given by h(z) = s(z1) for all z in Z is also a morphism of
abelian groups with h(1)=s. Since g(1)= h(1), we conclude that g = h. Hence,
(z1)s =s(z1) for all s in S and z in Z. Therefore, Im usC C(S).

Because for each ring S the image of us:Z— S is an important subring of S,
we make the following definition.

Definition
Let S be a ring and us:Z—> S the unique morphism of rings. The subring Im us of
C(S) is called the primitive subring of S.

As a consequence of the foregoing results, we now have the following.

Proposition 2.4
For each ring S, the map of sets (Z[X],S)— S given by f— f(X) for all ring
morphisms f:Z[X]— S, is an isomorphism of sets.

PROOF: We first show that the map (Z[X], S)— S is surjective. Suppose ¢ is
an element of S. Let f:Z—+S be the ring morphism us:Z—S. Since Imf is
contained in C(S), we know by Proposition 2.2 that there is a unique morphism
f:Z[X]— S such that £|Z = f and f(X) =t. Hence, the map (Z[X], S)— S is surjec-
tive.

Suppose now f, g :Z[X]— S are ring morphisms such that f(X) = g(X). Since
there is only one ring morphism us:Z— S we know that f|Z = g|Z. Hence, again by
Proposition 2.2, the fact that f(X) = g(X) and f|Z = g|Z implies that f = g. There-
fore, the map (Z[X], S)— S is injective as well as surjective and hence is an
isomorphism of sets.

Finally, we use this proposition to establish the following result which sup-
plied the motivation for this entire section.

Proposition 2.5
In the category Rings every monomorphism of rings f:S— T is an injective
morphism.
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PROOF: Suppose f: S—> T is a monomorphism. We want to show that if s, and
s; are elements of S such that f(s,) = f(s.), then s, = s5,. By our previous result we
know that there are morphisms of rings fi, f.:Z[X]— S such that f,(X) = s, and
f(X) = s,. Since f(s)) = f(s2), the compositions Z[ X ]——'4"—-> T and Z[X ]—”—’» T have
the property ffi(X) = ff(X) because ffi(X) = f(si) = f(s2) = ff(X). This implies
that ff, = ff., because our previous result showed that morphisms from Z[X] to T
are completely determined by their values on X. Because f:S—T is a
monomorphism, the fact that ff, = ff. implies that f, = f,. This in turn implies s, =
(X)) =f(X)=s, Thus, we have our desired result that if f:S—>T is a
monomorphism, then f is an injective morphism.

3. ANALYSES OF RING MORPHISMS

In this section we continue our discussion of some of the general properties of
rings that are direct analogs of results already considered for monoids and groups.
For instance, analyses of morphisms of rings, partitions of rings, and various
isomorphism theorems will be discussed. Because most of the proofs for these
results can be obtained by direct application of results already obtained for
monoids and groups, few proofs will actually be given. Those that are given will
be mainly for the purpose of illustrating how the appropriate results for monoids
and groups can be applied to rings. It is hoped that the reader will find it a useful
exercise to supply the missing proofs.

We have already seen that if f:R—>S is a morphism of rings, then
Imf is a subring of S and f:R—> S is the composition of the morphisms

R-251Im f-=>S where f,: R »Im f is a surjective morphism and inc:Imf—> S
is an injective morphism. In analogy with the situation for monoids we make the
following definition.

Definition
Let f: R—>S be a morphism. Then the factorization

R—SImf-=->S
of f is called the image analysis of f.
More generally, any factorization
R—»>R'—25S
of f with g a surjective morphism of rings and h an injective morphism of rings is
called an analysis of f.

On the basis of our experience with monoids and groups one should expect
that any two analyses of a morphism of rings are essentially the same. That this is
indeed the case will follow from the following general considerations.

Proposition 3.1

Suppose R, S, and T are rings and f: R—> S and g:S— T are maps of the under-
lying sets of the rings involved such that the map gf: R— T is a morphism of rings.
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(a) If f: R— S is a surjective morphism of rings, then g:S— T is also a morphism
of rings.

(b) If g:S—> T is an injective morphism of rings, then f: R— S is also a morphism
of rings.

PROOF: (a) This can be proved directly from first principles or else derived
from the analogous result for monoids. We will take the second path. Because the
composition gf: R— T is a morphism of rings, it is certainly a morphism of the
additive group of R to the additive group of T. Similarly, f: R— S is a surjective
morphism of the additive group of R to that of S. Hence, by our previous results
concerning monoids, we know that the map g:S— T is also a morphism of the
additive group of S to the additive group of T. A similar argument also shows that
2:S- T is a morphism of the multiplicative monoid of S to that of T. Therefore,
the map g:S—T is a morphism of rings because it is both a morphism of the
additive groups of S and T and a morphism of the multiplicative monoids of S
and T.

(b) This can be established in a manner similar to part (a) and is left as an
exercise.

As for monoids and groups, we have, as a direct consequence of this result,
the following.

Proposition 3.2
Suppose we are given a commutative diagram of morphisms of rings

S 8
S \T
R_
\,‘S: /
satisfying:

(a) f is a surjective morphism.
(b) g’ is an injective morphism.

Then there is one and only one morphism of rings h : S — S’ such that the diagram
!/7 \
f
Sl
commutes.

By way of application of this result we show in what sense any two analyses
of a morphism of rings are the same.

Proposition 3.3
If

RS-, T

R—5S'25T
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are analyses of the same morphism of rings f: R— T, then there is a unique mor-
phism of rings j: S— S’ such that the diagram

g 1,\}
v~

s
commutes. This uniquely determined morphism j:S— S’ is an isomorphism of
rings.

PROOF: Because R —>S—->T and R——S'—>T are analyses of the same
ring morphism f:R- T, it follows that

PN
R T
\S,y

is a commutative diagram satisfying (a) g and g’ are surjective morphisms and (b)
h and h’ are injective morphisms. Hence, by our previous result there are unique
ring morphisms j:S— S’ and j': S§’— S such that the diagrams

and

commute. If we show that this uniquely determined morphism j:3— S’ is an
isomorphism, we will have established our desired result.
It follows easily from the commutativity of the diagrams

& 1,\7

SI
and
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that the diagram

R/ Iﬁ\h‘r
S

commutes. But by our previous proposition we know that there is only one
morphism S— S which makes the diagram

commute because g is a surjective morphism and h is an injective morphism.
Therefore, the fact that the identity morphism ids: S— S in addition to j'j: S—> S
has this property implies that j'j =ids. A similar argument shows that jj' =ids.
Therefore, we have established that j: S— S’ is an isomorphism of rings, which
completes the proof of the proposition.

Having introduced the general notion of an analysis of a morphism of rings,
we now discuss the analog for ring morphisms of the coimage analyses of a
morphism of monoids or groups.

Suppose we are given a morphism of rings f: R— S. Then viewed as a map of
sets, f has the coimage analysis R Renl _,Coim f —,S. Since f:R->Sisalsoa
morphism from the additive group of R to the additive group of S, we know that
Coim f has a unique structure as a commutative group such that the maps
kcoims: R+ Coim f and j;: Coim f— S are morphisms of groups.

Because f:R— S is also a morphism from the multiplicative monoid of R to
that of S, Coim f has a unique monoid structure such that the maps kcoms: R—
Coim f and ji:Coim f— S are also morphisms of monoids. Thus, there are
uniquely determined laws of composition + and x on Coim f such that Coim f
under + is a commutative group and under X is a monoid such that the maps
Kcoims : R = Coim f and j; : Coim f -» S are simultaneously morphisms for both the
additive and multiplicative structures on R, Coim f, and S. Hence, if we show that
Coim f with these laws of composition is a ring, then we will have that the maps
Kcoms : R > Coim f and j, : Coim f - S are morphisms of rings with the properties
(a) Kcoims: R > Colim f is a surjective morphism of rings; (b) j;:Coimf— S is an
injective morphism of rings; and (¢) f = jkcoms. The fact that Coim f with + and x
as defined above is actually a ring follows from the following general property.

Basic Properties 3.4
Suppose f:R—> X is a surjective map of sets with R a ring.

(a) If + and X are two maps from X X X— X such that

flrn+r)=f(rn)+f(r)
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and

f(nr) = f(r)x f(r)

for all pairs of elements r, and r; in R, then X together with + and X is a ring
such that f: R— X is a surjective morphism of rings.

(b) X has at most one ring structure such that the surjective map of sets f: R—» X
is a morphism of rings.

PROOF: Left as an exercise.

Summarizing, we have the following.

Proposition 3.5

Let f: R— S be a morphism of rings. Then the set Coim f has a unique structure as
a ring such that the maps kcoims: R—Coim f and j;: Coim f— S are ring morphisms.
This uniquely determined ring structure on Coim f is given by

(a) [n]+[rn]=[n+r]
() [nlird=Inr]

for all elements r, and r; in R where [r] stands for the unique element of Coim f
containing the element r in R. This naturally suggests the following.

Definitions
Let f: R— S be a morphism of rings. The ring consisting of the set Coim f with the
laws of composition given by

[rl+[r]l=[rn+r]
and

(rlir)=[rr]

for all r, and r, in R, is called the coimage of f and is denoted by Coim f. Moreover,
the factorization

R—==1_,Coim f—r s
of f into the surjective morphism of rings kc.m;: R->Coim f and the injective
morphism of rings j;: Coim f- S is called the coimage analysis of f.

As with monoids and groups, one of the most important consequences of the
existence of the coimage analysis of a morphism is that it enables us to describe all
surjective ring morphisms f: R— S for a fixed ring R essentially in terms of the
ring R itself. This observation is based on the easily verified fact that a morphism
of rings f: R— S is a surjective morphism if and only if the injective morphism
jr:Coim f— S is surjective and hence an isomorphism. Thus, we see that a
surjective morphism of rings f:R— S is essentially the same as the surjective
morphism kcom f: R—>Coim f, because there is a unique isomorphism Coim f— S
(why unique?), namely, the morphism j, : Coim f - S, such that f = jkcoms. There-
fore, if we can determine which partitions of the ring R come from morphisms of
rings f: R - S, we will have essentially described all surjective morphisms with
domain R.
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4. IDEALS

Suppose f:R—+S is a morphism of rings. Then the coimage analysis

R —<={ Coim f —'5 S of this morphism of rings is also the coimage analysis
of f:R— S viewed just as a morphism from the additive group of R to that of S.
Hence, if we let I be the subgroup f '(0) of the additive group of R, we see that, as
an additive group, Coim f = R/I and the map kcoms: R—+Coim f is the map kr;: R~
R/I given by the canonical morphisms of the group R to its factor group R/IL
Now the fact that f: R— S is also a morphism of rings shows that if x is in I,
then rx and xr are also in I for all r in R since f(rx) = f(r)f(x) =0= f(x)f(r) = f(xr).
Hence, the subgroup I = f'(0) also satisfies the condition rICI and IrCI for all r
in R. Finally, we point out that the multiplication in Coim f=R/I is given by
(rn+ I)(r»+ )= r,r.+ I forall r, and r: in R. Summarizing, we have the following.

Basic Properties 4.1
Let f: R—> S be a morphism of rings.

(a) I=f"'(0)is a subgroup of the additive group of R satisfying the conditions rl C
I and IrCI for all r in R.
(b) As an additive group, Coim f = R/I, while the multiplication in the ring Coim
f is given by
(n+D(n+D=(rn+I)

for all r, and r; in R.

(c) The morphism of rings Kc.ims: R—=>Coim f is the same as the map kr;: R—>R/I
where kg, is the canonical morphism from the additive group of R to its factor
group R/L

Moreover, it is not difficult to check the following additional property.

Basic Properties 4.2
Let R be a ring and I a subgroup of R satisfying the conditions rI CI and IrCI for
all r in R. Then:

(a) The partition R/I of the additive group of R is also a partition of the multi-
plicative monoid of R, or, what is the same thing, (r,+ I)(r.+I)C r,r.+ I for all
r.and r. in R.

(b) The abelian group R/I together with the multiplication given by (r;+I)x
(rn.+I)=rr.+1I is a ring since the canonical surjective morphism of
groups kg, : R —» R/I has the properties
(@) keriu(ri+ 1) = kgy(r) + kpu(r:) and
@) kei(rir:) = kru(ri)kgi(r2)
for all r, and . in R.

(¢) This ring structure on R/I is the unique ring structure which makes the
canonical surjective map

kml:R—’RII

given by kg.(r)=r+1 for all r in R a morphism of rings.
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(d) Finally, the morphism of rings kg : R = R/I has the property: kz)(0) =L

These results suggest the following.

Definitions
Let R be a ring.

(a) A subgroup I of the additive group of R is said to be an ideal of R if rICI and
IrcI for all rin R.

() If I is an ideal in R, then we denote by R/I the ring which, as an additive
group, is the group R/I and whose multiplication is given by

(n+IXr+)=(rnr+1I)

for all r, and r, in R. The ring R/I is called the factor ring of R by the ideal I.
(¢c) The map kri:R—R/I given by kpi(r)=r+1I for all r in R is a surjective
morphism of rings which we call the canonical morphism from R to R/L
(d) i f: R— S is a morphism of rings, then the ideal f '(0) of R is called the kernel
of f and is often denoted by Ker f.

The reader should have no difficulty in establishing the following properties
of ideals and factor rings which are exact analogs of what has already been
established for normal subgroups and factor groups of groups.

Proposition 4.3
Suppose f:R—S is a morphism of rings with I =Ker f.

(a) For each subset r + I of R in R/I, the subset f(r + I) of S consists of the
single element f(r). Thus, we obtain a map j;: R/I - S given by ji(r + I) = f(r)
for all r in R, which is an injective morphism of rings.

(b) The composition

R—,R/I—2>§
is nothing more than the coimage analysis of the morphism f. Thus:

(¢) f:R->S is:

(i) injective if and only if Ker f=0;
(i) surjective if and only if j;: R/I- S is an isomorphism;
(iif) an isomorphism if and only if Ker f =0 and f is surjective.

(@) If f: R— S is a surjective morphism and g: R— T is an arbitrary morphism of
rings, then there exists a morphism h : S — T of rings which makes the diagram

R—I>S§

J‘d. l‘l

R——T
commute if and only if Ker f CKer g. Moreover, if Ker f CKer g, then there
is only one morphism h:S —» T of rings such that hf = g.

(e) If f:R—>S and g:R— T are two surjective morphisms of rings, then Ker f=
Ker g if and only if there is an isomorphism of rings h : S— T such that hf = g.
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() If J is an ideal of S, then f7'(J) is an ideal of R containing I. Further, f'(J) is
the kernel of the composition of morphisms

R—L>S—58/J

As is the case with groups, we obtain much more detailed information when
dealing with surjective morphisms instead of arbitrary morphisms of rings. This
point is made explicit in the following.

Proposition 4.4
Suppose f:R— S is a surjective morphism of rings with kernel I

(a) If I, is an ideal of R, then f(I,) is an ideal of S.

() If I, is an ideal of R, then f'(f(I))=1,+1

(¢) If I, and I, are two ideals of R, then f(I,)=f(I,) if and only if the ideals
£7'(f(I)) and f7'(f(I)), both of which contain I, are the same.

(d) Hence, if we denote the set of all ideals of R containing I by ¥ and the set of
all ideals of S by _#, then the maps % - ¢ and § - ¥ given by I,-f(l))
and J - f "'(J), respectively, are isomorphisms of sets which are inverses of
each other.

(e) For each ideal J of S, there is a unique morphism of rings h:R/f'(J)—>
S/J which makes the diagram

ka— o Iksu

R/f'()——S/J

commute, and this unique morphism h:R/f '(J)— S/J is an isomorphism.

Specializing these results to the case when R is a ring, I an ideal in R, and the
morphism of rings is the canonical surjective morphism kg;: R—= R/I, we obtain
the following.

Corollary 4.5
Let I be an ideal in the ring R and kz;;: R — R/I the canonical surjective morphism.
Suppose I, is an ideal of R.

(@) kei(I) is the ideal, (I + I)/I of R/I. Moreover:
(b) The ideal I'+ I, of R is the kernel of the composition R—» R/I->R/I/(I+I,)/L
Hence:
(¢) There is a unique ring morphism h:R/I+I,-» R/I/(I+ I,)/I which makes the
diagram .
R—>R/I

lhmu,) lknmuollw

R/UI+1)—R/I/(I+I)/I
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commute. This uniquely determined morphism h is an isomorphism which we
consider an identification.

@) If DI then I+1,=1I; and so the above isomorphism h takes the form
h:R/I,-»R/I/I/L

5. PRODUCTS OF RINGS

The object of this section is to show that every nonempty indexed family of rings
has a product in the category Rings.

Let {R}.c: be a nonempty family of rings. Because each R, is an abelian group
under addition and a monoid under multiplication, the set E’& has a structure of

an additive abelian group and a multiplicative monoid, namely, that given by the
product of the indexed family {R }ic; of abelian groups and the product of the
indexed family {R.}.e; of multiplicative monoids (see Chapter 2, Section 10). Ex-
plicitly, the addition in ‘IEI’ R: is given by {r.}ier +{ri}e: ={n + ri}ie; and the multi-

plication in E:R‘ is given by {r}ici{ri}ic: = {riri}ic; for all {r.}ic; and {r{}ic:. The
reader can easily check that the set ‘H’R, with this addition and multiplication is a
€

ring. This suggests the following.

Definition
Let (R}.c; be a nonempty indexed family of rings. The ring whose underlying set is
I1 R, and whose laws of composition are given by

ier
{ri}ier +{riher ={n +rihea
{rhedrihe: ={nritie
is called the product of the family {R}.c; of rings. This ring is denoted by ‘l;!‘ R.
One defense for this terminology is that 'IEII R is a product for the nonempty

family of rings {R}.: in the category Rings. To see this we must define ring
morphisms proj,: 'l'I’ R~ R, for each k in I and show that the family {proj.: II’ R~
€ i€

R.} of ring morphisms is a product in the category Rings for the nonempty family
{R}ie: of rings. Obvious candidates for the ring morphisms proj,: III‘ R~ R, are the
€

maps ‘IeIIR.—bR. given by {r}e— n for each {r}.c. It is easily checked that these
maps are surjective ring morphisms. This suggests the following.

Definition
Let {R}:c; be a nonempty family of rings. The ring morphism proj,: I R— R, given
i€l

by projd{r}ic) = n for each k in I is called the kth projection morphism.
The fact that the family of ring morphisms {proj,: H' Ri= R}ie; is a product
i€

for the nonempty indexed family {R}.e; of rings is the substance of the following.
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Basic Property 5.1
Let {R}:c: be a nonempty indexed family of rings and S an arbitrary ring. Then the
map

g:(STIR)-T] S Ry
iel i€l
defined by Bs(f)={proj«f}ie: for each ring morphism f:S— III R: is an isomor-

phism of sets.

Thus, we see that every nonempty indexed family of rings has a product in
the category Rings. This naturally raises the question whether every nonempty in-
dexed family of rings has a sum in the category Rings. Although the answer to the
question is always affirmative, we shall only show, in the exercises for this chap-
ter, that every nonempty indexed family of commutative rings has a sum in the
category of commutative rings.

EXERCISES

(1) Suppose R is a commutative ring and M is a monoid. Let R[M] be the set of all
maps f: M— R with the property that the set of all m in M such that f(m)#0 is a
finite subset of M.

(a) Show that if f and g are in R[M], then the map f+g:M—R defined by
(f+g)(m) = f(m)+ g(m) for all m in M is in R[M]. Prove that the map R[M] x
R[M]—R{M] given by (f,g)—f+g is a law of composition which makes
R[M] an abelian group whose identity is the map 0: M— R given by &(m)=0
for all m in M.

(b) Show that if f and g are in R[M], then the map fg:M—R defined by
fg(m) = Zpm - mf(m)g(m) [Where 2, m - mf(m)g(m;) stands for the sum of the
finite number of nonzero terms f(m;)g(m;) obtained by letting (m;, m;) range
over all the distinct ordered pairs of elements of M such that mm; = m].
Prove that the map R[M]x R[M]— R[M] given by (f,g)—>fg is a law of
composition which makes R[M] a monoid whose unit is the map 1: M - R
given by 1(1)=1and I(m)=0if m#1in M.

(¢) Prove that R[M] together with the addition and multiplication just defined is a
ring. This ring is called the monoid ring of M over R.

(d) If we denote by Znenr-m the map f: M > R in R[M] such that f(m) = r. for
all m in M, then we see that the ring R[M] can be described as follows:

(1) R{M] consists of all sums =, exr.m with the elements r,. in R having the

property r. =0 except for a finite set of m in M.

@) Smeplmm =Zpcnram if and only if r. =r. for all m in M.

(i) Zmep?fmm +Zpenrim =Zen(rn +ri)m.

(Av) CrentmM ) ZmeuTaM) = Zpem (Zmm=mlmTm M.

(v) The zero element of R[M] is the element Z,.cy r.m with r,=0 for all m in
M.

(vi) The identity of R[M] is the element 3,cyr.m with =1 ard r.=0 for
m+1.
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(e) Show that the map ¢:R—> R[M] given by ¢(x)=2,cur-m with r,=x and
r.=0, for all m#1, is an injective morphism of rings whose image consists
precisely of the elements X,.cy r.m of R[M] satisfying r,=0 for m+1. If we
identify, as we usually shall, the element x in R with the element ¢(x) in
R[M], we see that R can be viewed as a subring of R[M] and ¢ : R - R{M] be-
comes the inclusion map.

(f) Show that the map ¢ : M - R[M] given by ¢(y) =Z,enr-m where r,, =0 if
m#y and r. =1if m =y is an injective morphism from the monoid M to the
multiplicative monoid of the ring R[M]. Thus, if we identify, as we usually
shall, the element y in M with $(y) in R[M], then M can be viewed as a
submonoid of the multiplicative monoid of R[M] and ¢ : M - R[M] becomes
the inclusion map.

(g) Show that the ring R[M] is commutative if and only if M is commutative.

(h) Show that the subring R of R[M] is contained in the center of R[M].

(i) Show that if N is the monoid of nonnegative integers under multiplication,
then R[N] is the ring of polynomials R[X] over R.

(2) Suppose R is a commutative ring. An R-algebra A is a morphism of rings

f:R— A such that the image of f is contained in the center of A. If f;: R— A, and

f2: R—A; are two R-algebras, then an R-algebra morphism from f, to f; is a ring

morphism g:A,— A, such that gfi=f,.

(a) Show that if f:R—>A is an R-algebra, then id,:A—A is an R-algebra
morphism.

(b) Show thatif fi:R—>A,, f,:R—>A,,and f;: R—> A; are R-algebras and g,: A= A,
and g,: A, A, are R-algebra morphisms, then the usual composition g.g:: A\~
A; of ring morphisms is an R-algebra morphism.

(c) Show that the following data define a category which we denote by R-Alg and
call the category of R-algebras.

(i) The objects of R-Alg are the R-algebras.

(i) If fi:R—> A, and £,: R—> A; are two R-algebras, then R-Alg(f,, f2) is the set

of R-algebra morphisms from f, to f.

(i) If f:R—>A, i=1, 2, 3 are R-algebras, then the composition map
R-Alg(fi, ) X R-Alg(fy, f3) - R-Alg(f,, f5) is defined by (g, g2)~> 8.8, the
ordinary composition of ring morphisms.

(3) Show that the category of Rings is isomorphic to the category of Z-algebras

where Z is the ring of integers.

(4) Suppose R is a commutative ring, M a monoid, and f: R = A an R-algebra. We

want to determine the R-algebra morphisms from the R-algebra inc: R - R[M] to

the R-algebra f:R—A.

Associated with each R-algebra morphism g: R[M]— A is the morphism of
monoids g|M: M— A where A is considered a multiplicative monoid. Hence, we
have a map R-Alg(R[M], A)->Monoid(M, A) given by g—»g|M for each R-algebra
morphism g : RIM]— A. We now outline a proof that this map R-Alg(R[M], A)—»
Monoid(M, A) is an isomorphism of sets.

(a) Show that if g,, g,: REIM]— A are two R-algebra morphisms, then g, = g if and
only if g|M=g|M.

(b) Suppose that we are given a morphism of monoids h : M— A (remember that A
is being considered a multiplicative monoid). Show that the map g: R[M]—A
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given by g menrmm) = Zmen f(rn)h(m) is an R-algebra morphism such that
giIM=h.

In the next set of exercises we use the notion of a monoid ring to discuss
polynomial rings in several variables, not just one variable.

Let N be the additive monoid of nonnegative integers. We have already seen
that if R is a commutative ring, then the R-algebra R[N] is isomorphic to the
R-algebra R[X], the ring of polynomials over R. The isomorphism R[N]— R[X] is
given by Z,en 1 = Z.en X" We now discuss polynomial rings in two variables.

(5) Let N, and N: denote two copies of the additive monoid of nonnegative inte-

gers N. Suppose R is a commutative ring. Then R[N] is a commutative ring so we

can form the ring R[N,][N.], which is called the ring of polynomials over R in two
variables.

(a) Show that the subset M of R[N,)[N.] consisting of all products nn, with n, in
N, and n, in N; is a submonoid of the multiplicative monoid of R[N,]J[N-].

(b) By the previous exercise, we know that there is a unique R-algebra morphism
h: R{M]- R[N/][N,] such that h|M : M— R[N,][N,] is the inclusion morphism
of monoids. Prove that h : R{M]-> R[N,][N:] is an isomorphism of R-algebras.

(c) Let N, X N; be the sum of the monoids N, and N.. Show that the map N, X N,
M given by (n,, n;)—> n;n, is an isomorphism of monoids.

(d) Show that there is a unique morphism of R-algebras f: R[N, x N.]-> R[M]
such that f((n,, n,)) =n,n; in M for all (n,, n;) in N, XN, and that f is an
isomorphism of R-algebras. This isomorphism is usually considered an iden-
tification of R-algebras.

(e) The composition R[N, x N;]—»>R[M]—»R[N,])[N.] is an isomorphism of R-
algebras which is also usually considered an identification of R-algebras.
In dealing with the polynomial ring in two variables R[N,][N.] over R, the

elements n of N, are often denoted by X7 and the elements n of N, are often

denoted by X3. Obviously, X1 X} = X1** while X;X3; = X3*". Also one usually de-
notes the R-algebra R[N,]J[N:] by R[X\](X:]. Clearly, in this notation the sub-
monoid M of R[X,][X:] consists of all possible products X' X7 and is called the
submonoid of monomials of R. Finally, the R-algebra R[N, X N.] is denoted by

R[X,, X;]. Using the identification of R[N;xN,] with R[M] the elements of

R[X|, X;] are usually written as X, ajennfueXi'X72. The identification

R[X,, X;] - R[X,][X:] then takes the form

Xt B (S, X)X

(m,m)ENXN mE

We have already seen that the polynomial ring R[X] has the property that
given any commutative R-algebra h: R— A (that is, an R-algebra f: R>A with A a
commutative ring), the map R-Alg(R[X], A)— A given by gl g(X) is an isomor-
phism of sets. In fact, given any A in A, the unique R-algebra morphism g : R[X]—>
A such that g(X) = A is given by g:3,enrn X" > 2, cnruA ™. If we follow the usual
convention of denoting an element 2 r,X" of R{X] by f(X), then 2 r,A" is denoted
by f(A). Hence, in this notation the unique R-algebra morphism g: R[X]— A such
that g(X)= A is given by f(X)~ f(A) for all f(X) in R[X].

We now want to describe the R-algebra morphisms from R[X,, X:] to an
arbitrary commutative R-algebra h: R—>A.

(6) Let h:R—>A be a commutative R-algebra. Show that the map of sets
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R-Alg(R[X,, Xz], A)= A X A given by g—(g(X)), g(X>)) is an isomorphism of sets

by showing:

(@) If g, g.: R[X,, X;]— A are two R-algebra morphisms, then g, = g if and only if
8(X)) = g:(X)) and g:(X:) = gAX>).

(b) If (A, A;) is in A X A, then we know that the map g : R[X|, X;]— A given by
8 i npensh TamX 1 X3) = Zn, apenxn T A 1'A 72 is @ morphism of R-algebras
with the property that g(X\) = A, and g(X;) = A..

As in the case of one variable, if we denote an element 2, vyenxn FaeX1' X3
by (X, X;) and I, mienxn TnmAl'AZ BY f(As, A7) for each (A4, X)) in AXA, then
given any pair of elements A, A; in A, the unique R-algebra morphism
g:R[X,, X;]>A such that g(X)=A, and g(X;)=A, is given by
f(X,, X)) f(Ay, A7) for all f(X,, X7) in R[X,, X).

We now want to define a polynomial ring over a commutative ring R in any
number of variables.

Let I be a nonempty set and let N, be a copy of the additive monoid of
nonnegative integers for each i in I. We recall the definition of the standard sum

'U’ N: of the indexed family {N,}.c; in the category of commutative monoids. As a
€

set, U N, is the subset of IT N, consisting of all {n;},c; with the property that the set

i€l

of all i in I such that n,#0 is a finite subset of I Addition in 'lI’ N; is given by
€

{n}ict +{n'}ier = {m + n'}ici. Also for each k € I, we have the morphism of monoids
injy : Ny -1 N, given by inji(n) = {n}.c; satisfying n, = 0 if i # k and n, = n. Finally,
€

we recall that the family {inj, : N, - LI N,}.c; of morphisms is a sum in the category
i€l

of commutative monoids. That is, given any commutative monoid M,
the map (II N;, M) - I1 (N,, M) given by g — {g inj, }.c, is an isomorphism of sets.
i€l i€l

We have also seen that the additive monoid N has the property that the map
(N, M)—> M given by g—g(1) is an isomorphism of sets. Hence, if for each i in I
we denote by M, a copy of M, we have that the map (I.I N, M )—»I'l M, given by
g—{g inj,(1he; is an isomorphism of sets.
(7) Let I be a nonempty set and {X.},c; an indexed family of distinct symbols X,
Let M be the set of all symbols I1 X} with the n, € N having the property that the

i€l
set of all i in I with n;#0 is a finite subset of I
(a) Show that M together with the multiplication given by l'l Xr-M X =

i€l

IT X*" is a commutative monoid. This monoid M is called monold of monomi-

iel
als of the family of symbols {X }c..

(b) Show that the mapII N, > M given by {n},c; > II X! is an isomorphism of
monoids.

(c) For each k in I denote by x} the element IIEII X in M with the property that

n=0if i# k and n, = n if i = k. Show that for each commutative monoid A,
the map (M, A)—~ H’A,, where each A, = A, given by g = (g(X))ies is an
ie

isomorphism of sets. Let {a;}.c; be an element of H A, and g:M - A the
umque morphism such that g(X;) = a. Then g(ﬂ X "') is usually written as
Iai

ier
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Definition

Let {X.}.c: be a nonempty family of distinct symbols and R a commutative ring.
The ring of polynomials in the variables {X},c; over R is the commutative R-
algebra R[M] where M is the monoid of monomials of the indexed set {X,}ic;. This
ring is usually denoted by R[X].c;. The elements of R[X].c; are often denoted by

f(X).

(8) Suppose f: R — A is an arbitrary commutative R-algebra. Show that the map
R-Alg(R[Xi)ies A)—»ﬂl A, where each A=A, given by g—{g(X))e is an
i€

isomorphism of sets by showing:

(@) If g, g,: R[X)ic:— A are two R-algebra morphisms, then g, = g, if and only if
g(X))=g«(X) for all i in L

(®) If {A}ic: is an element of 161' A, then the map R[X,]‘e,—>il;11m given by

> rI X0 X fra) [T Ar

{m}ELIN; i€l {mi}EUIN; i€l

is a morphism of R-algebras with the property that X;—>A; for all i€ I

Definitions

Let S be a subset of a ring A. The subring of A generated by S is the intersection of
all the subrings of A containing S. If the subring of A generated by S is all of A,
then S is said to generate A.

Suppose h: R— A is an R-algebra. If S is a subset of A, then the R-subalgebra
of A generated by S is the R-algebra given by h':R— A’ where A’ is the subring of
A generated by S and Im h,and h': R - A’ is given by h'(r) = h(r) for all r in R.
The subset S is said to generate the R-algebra A if A’ = A.

(9) Let h: R—> A be a commutative R-algebra. Let {A}.c; be a family of elements of
A and R[X));c, the polynomial ring in the variables X.. Prove that the morphism of
R-algebras g:R[X]ie1— A given by g(f(X)) = f(A) for all f(X) in R[X]ic; has the
property that Im g is the R-subalgebra of A generated by the family {A}.e; of
elements of A. This subalgebra generated by {A}.c; is sometimes also denoted by
R[Alier
(10) Show that if h: R— A is a commutative R-algebra, then there is a family of
variables {X}.c; such that there is a surjective morphism of R-algebras R[X]ic;~
A.
(11) Let {X}.c, be a family of variables over the commutative ring R. Let {J,, J;} be
a partition of I.
(a) Let M, be the monoid of monomials in {X}.c,, for k =1, 2 and M the monoid of
monomials for {X }ic.. Define for each k=1, 2 the map M,—»M by
I1 X} - I1X} where n;= n;for all i in J, and n,=0if i is not in J,.. Show that the

1€L i€l
map M,— M is an injective morphism of monoids for k=1, 2. Usually one
identifies M, with its image in M by means of the injective morphism M,—»M
just described.

(b) Let g: R[X])ic;,— R[X]ic: be the unique morphism of R-algebras which has the
property that g|M,: M,—» R[M] is the composition M,»M—=>R[M]. Show
that g is an injective morphism of R-algebras. Usually one identifies R[X]];e),
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with its image in R[X]ic; by means of the injective morphism g just de-
scribed.

(c) Since R[X];es, is a subring of the commutative ring R[X]ic;, we can view
R{Xlier as an R[X];c;-algebra. Show that the unique R[X]c; morphism
R[Xies([XJier)— R[ X]ic: which extends the composition M= M — R[X]ic!
is an isomorphism of R[X}],,-algebras and hence of R-algebras. This
isomorphism is usually considered an identification.

(12) Let € be the full subcategory of R-Alg consisting of the commutative R-

algebras. Let {X},c; and { Y},e, be disjoint indexed families of variables over R. Let

K =1I11J, the sum of the sets I and J, and let {Z,},c« be the family of variables

given by Z,=X, if k€I and Z,= Y, if k is in J.

(a) Show that the natural injective morphisms g:R[XJiei~R[ZJiex and
h:R[Ylie;= R[Z]iex given by g(X) =X in R[ZJiex and h(Y) =Y, for jin J
are a sum in the category € for the pair of R-algebras R[X,]ic;and R[Y)je.

(b) Suppose A is an ideal in R[X] and B is an ideal in R[Y]). Let A’ and B’ be the
images respectively of A and B in R[Z).cx. Show that the subset C of R[Z.],
consisting of all finite sums of elements of the form f(X)a’ + g(X\)b’ with a’ in
A’, b’ in B’, and f(Z), g(Z.) arbitrary elements of R[Zick is an ideal in
R[Z\])icx.

(c) Show that the morphisms of R-algebras R[X]ie/=R[Z)iex and R[Y]je,~
R[ZJiex induce morphisms of R-algebras R[X]ic/A—R[ZJiex/C and
R[Y))ie;/B > R[Z.1iex/C and that these morphisms are a sum of the R-
algebras R{X lic;//A and R{[Y,])e;/B in the category %.

(d) Show that any two R-algebras in € have a sum in 4.

(e) Show that every finite family of R-algebras in € has a sum in €.

(f) Show that every family of R-algebras in € has a sum in €.

(13) Let € be the category of commutative monoids. Show that the following data

define a functor G: Sets—>¥.

(a) G:0b Sets—>Ob ¢ is given by G(X) = xLeIxN’ where each N, = N, the addi-

tive monoid of nonnegative integers.
(b) Given amap f: XY of sets, G(f): II N.— 1I N, is the unique morphism of
x€X yeEY

monoids such that for each u in X the composition G(f) inj,:N,—» IlyN, is the
y€
morphism g.:N— HyN, given by g.n)={m)},ey where m,=0 if y+f(u) and
yE

m,=n if y=f(u).

Let F: € — Sets be the forgetful functor. Then for each commutative monoid
- M and each set X define the map of sets yux: €(G(X), M)- Sets (X, F(M)) by
Yu x(@)(x) = a({n,},ex) where n,=0 if y¥x and n,=1. Show that:

(c) Each of the maps ¢m.x is an isomorphism of sets.

@) If f:X->Y is a map of sets, then the diagram

G(G(Y), M)—22,Sets(Y, F(M))
(Gf). M) f. FIM)

€(G(X), M) —~X5Sets(X, F(M))
commutes.
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(e) If g: L—>M is a morphism of monoids, then the diagram

€(G(X), L)—2- Sets(X, F(L))

1 (G(X). 8) l(X. [0}

€(G(X), M) —2% Sets(X, F(M))
commutes.
Exercise 13 is an example of a very general and important concept.

Definltion

Let F: € - 2 be a functor of categories. A functor G : @ — € is said to be a left
adjoint of F if there is for each pair of objects C in € and D in 2 a map of sets
Yo.c : €(G(D), C)—-» (D, F(C)) satisfying:

(a) Each ¢cp is an isomorphism of sets.
() If f: D> D' is a morphism in 9, then for each C in € the diagram

€(G(D"), C)—=2<> 9 (D', F(C))

l @G(f).C) l (f. F(CH

€(G(D), C)—=2 9(D, F(C))
commutes.
(c) If g:C - C’ is a morphism in %, then for each D in 9, the diagram

€(G(D), C)—2» 9 (D, F(C))

(D) ») (D, Fg)

€(G(D), C')—2 9 (D, F(C"))
commutes.

Given a pair of functors F: € -9 and G : 2 — € we say that G is a right
adjoint of F if F is a left adjoint of G.
(14) Suppose F: € > 2 is a functor of categories.
(a) Show thatif G, G': 9 — € are both right (left) adjoint of F, then G and G’ are
isomorphic functors.
(b) Suppose G:9 — € is a left adjoint of F. Show: .
M) If f:C—>C’ is a monomorphism in €, then F(f): F(C)- F(C') is a
monomorphism 9. [Hint: Use the fact that the isomorphisms
¥o.c : €(G(D), C)— 2 (D, F(C)) have the property that for all D in 9, the

diagrams
€(G(D, C)—>9(D, F(C))
1 (G(D). N l(D.F(ﬂ)
€(G(D), C')—9(D, F(C"))
commute.
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(i) In a similar way show that if {f; : C = C}.c; is a product for the indexed
family {C}.c: of objects in %, then {F(f): F(C)— F(C)}ie: is a product in
@ for the family {F(C)}ie; of objects in 9.
(ili) Show that if g:D — D’ is an epimorphism- in 2, then G(g): G(D)—~
G(D') is an epimorphism in 4.
(iv) Show that if {g; : D, > D}, is a sum for the family {D,},c: of objects in D,
then {G(g): G(D;)- G(D)} is a sum for the family {G(D,)}e; in €.
(15) Let R be a commutative ring and € the category of commutative R -algebras.
Show that the following data define a functor G : Sets— %.
(a) G:0b Sets—>Ob € is given by G(I) = R[X)ier.
() If f:I->J is a map of sets, then G(f): R[Xilie: = R[X]je, is the unique R-
algebra morphism having the property G(f)}X) = Xj, for all i in L
Show that the forgetful functor F: %€ — Sets is a right adjoint of G.
(16) Let A be an arbitrary ring and n a nonzero positive integer.
(a) Show that the following data define a ring which we denote by M, (A) and call
the ring of n X n matrices over A.
() As a set M,(A) consists of all square arrays (A;)wjeinixiny, that is

Alh ceey Alﬂ
)= -
Aul: sy Am|

(i) Addition in M, (A) is given by (Ay)+(A;) = (Ay +Ay).
(itf) Multiplication in M,(A) is given by

) - 0n) = (3 oke)

(b) Show that if f:A— A’ is a morphism of rings, then the map M.(f): M{(A)—
M. (A’) defined by M,(f)(Ay) = (f(Ay)) is a morphism of rings having the follow-
ing properties:

@) f is injective if and only if M,(f) is injective.
(ii) f is surjective if the only if M,(f) is surjective.
(iif) f is an isomorphism of rings if and only if M,(f) is an isomorphism of
rings.
(iv) Show that if Ker f= I, then Ker (M.(f)) consists of precisely all (A;) with
Ay in I for all (i, j) in [1, n]1X[1, n].

(¢) Show that the map A— M,(A) given by A =>(x;) where x;= A foralli=1,...,n
and x;=0 if i#j is an injective morphism of rings.

(17) Suppose IC M(A) is an ideal of M,(A). Show that:

Aun Anl. . Au 0) (0 )«.z) (0 0)
(a) If (/\n )‘n) is in I, then each of the terms ( o o o)\, o and

0 0) ()u\., 0) (A..A 0) (0 M.:)
(0 An as well as the terms 0o o) o o Lo o)

OA.zA)(O 0)(0 0)(0 0)(0 0) . .
(0 0 ), 0/\Wua 0/ 0 /o Ana arein I forall A in A.

(Lk)E[1.n)x[1.8]
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(b) Show that the set of all A in A with the property that there is a (A;) in I such
that A = A; for some i, j in [1, 2] X [1, 2] is an ideal in A which we denote
by I'.

(c) Show that I is the set of all (A;) in Mx(A) such that each A;is in I'.

(d) Show that the map of sets Ideals(M.(A))—Ideals (A) given by I-»I' is a
bijective map.

(e) Show that if g : M,(A)—T is a surjective ring morphism with Ker g = I, then I’
is isomorphic to the ring M,(A/I').

() Show that the center of M(A) is the subset of M,(A) consisting of all elements
(3 2) with A in the center of A.

(g) Aring A is said to be a simple ring if it is not the zero ring and (0) and A are the
only ideals of A. Show that M,(A) is a simple ring if and only if A is a simple
ring.

(18) Generalize the results of Exercise 17 to arbitrary M.(A).

(19) Show that if A is a nonzero commutative ring, then A and M,(A) are isomor-

phic rings if and only if n = 1. Does the same thing hold if A is not commutative?

(20) Suppose R is a nonzero commutative ring.

(a) Show that the following conditions are equivalent:

(i) R is a simple ring.

@) If x is in R and x+0, then there is a y in R such that xy=1.

A nonzero commutative ring satisfying either of these conditions is called a
field.

(b) Let Z be the ring of integers.

(i) Show that ideals of Z are precisely the subgroups of Z.
(ii) Show that Z/nZ is a field if and only if n is a prime integer.

(¢) Show that a commutative ring R is a field if and only if M,(R) is a simple ring
for all n.

(21) Let A be a ring. Denote by T.(A) the subset of M,(A) consisting of all (A;) in

M,.(A) with :\.’)=0 if l<].

(a) Show that T,(A) is a subring of M(A).

(b) Show that the subset I of T,(A) consisting of all (A;) such that A; =0 for all i
is a proper ideal of Ty(A).

(c) Describe the ring T.(A)/L

(d) Show that T,(A) is not simple even if A is simple provided n>1.

(22) Show that a ring A which has the property A’=A for all A in A is a

commutative ring.

(23) Let G be a finite group and R a commutative ring. Show that the center of

R[G] is not R. [Hint: Consider the element Z,c; g in R[G].]

(24) Prove Basic Properties 1.1.

(25) Prove that M(R) is not a commutative ring if R is not the zero ring.

(26) Write out a detailed proof of Proposition 2.2.

(27) Write out a detailed proof of Basic Properties 3.4.

(28) Write out a detailed proof of Proposition 4.3.

(29) Write out a detailed proof of Proposition 4.4.

Let € be a category. Suppose that for every pair of objects X and Y of €, the
set of morphisms €(X, Y) is an abelian group. If f:X—>Y and g: X-> Y are in
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€(X, Y), denote by f+g: XY their sum in €(X, Y). Suppose, in addition, that

for every triple of objects X, Y, Z of %, and every pair of morphisms f: X > Y

and g: X-> Y, we have (f+g)h =fh +gh for all h in €(Z, X) and h'(f+g) =

h'f+ h'g forall h' in €(Y, Z). In this case, € is called a preadditive category.

(30) Prove that if € is a preadditive category and 0: X— Y is the zero element of

the group €(X, Y), then 0f =0 and g0 =0 for all fin €(Z, X) and all g in €(Y, Z).

(31) It was remarked at the end of Chapter 3 that if X and Y were abelian groups

and if f: X—> Y and g : X— Y were group morphisms, then f+ g: X — Y defined by

setting (f+ g)Xx) = f(x) + g(x) is again a group morphism from X to Y. Prove that
the category of abelian groups, which we denote by 44 , is a preadditive category,
where the group operation in &/ (X, Y) is that described above.

(32) Let R be a ring. Show that the following data define a preadditive category

which we denote by €(R) and call the category of the ring R.

(1) Ob 4¢(R) is the set consisting of the single element R.
(if) The set of morphisms €(R)R, R) is the set R.
(iii) The composition map (R, R) X (R, R)—> (R, R) isgiven by (r(, r;) > r;or, =
r.r, where r.r, is the product in R of the elements r, and r, in R.
(iv) The addition map (R,R)X(R,R)—>(R,R) is given by (r,r)>r,+r
where r, + r; is the sum in R of the elements r, and r; in R.

(33) Let € and 9 be preadditive categories. A functor F: ¢ — 9 is said to be

additive if for every pair of objects X and Y of €, F(f +g)= F(f)+ F(g) for

every pair of morphisms f: X—->Y and g: X > Y.

(a) Show that if F: 4—>% and G:€—>9 are additive functors and ¢ : F-» G and
Y : F— G are two morphisms from F to G, then ¢ + ¢ : F— G is a morphism of
functors where (¢ + ) X): F(X)—>G(X) is defined to be ¢(X)+¢(X) for
every object X of €.

(b) Let € be a small preadditive category and @ any preadditive category. We
denote (4, )" the full subcategory of (%, @) whose objects are the additive
functors from € to 9. For each pair of objects F, G in (6, 2)°, define addition
in (F, G) as in part (a). Prove that with this addition, (¢, 2)" is a preaddi-
tive category.

(34) Let € be a preadditive category and let f,: X=X, f:Y—>Y be objects of

€[X]). If gi:fi=f: and g;: fi—f, are morphisms of €[X], then g, and g, are mor-

phisms from X to Y such that g,f,=f,g, and g.f = f.g.. Prove that the mor-
phism g,+ g, from X to Y in € also has the property that (g, + g:)f, = f:(g: + &) so
that g, + g, is a morphism from f, to f; in €[ X]. With this addition of morphisms in

%[ X], prove that €[X] is a preadditive category.

(35) Let R be a commutative ring, let €(R) be the category of the ring R, and let

¢ be the category of abelian groups. Denote the preadditive category

(G(R), #4)" by Mod(R). Similarly, denote the preadditive category

(€(R[X])), #¢)" by Mod(R[X]), where R[X] is the polynomial ring over R.

(a) Prove that the following data define a functor T from (Mod(R))X] to
Mod(R[X)]).

() If ¢:F—>F is an object of (Mod(R))[X], let T(¢) be the functor from
Y(R[X]) to o4# defined by:
(@) T($)R[X])=F(R).
®) T($)ErX"):F(R)>F(R) is the morphism defined by a-—
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SF(r)é(R)'(a) for all a in F(R), where ¢(R)" means the composition of
the endomorphism ¢(R):F(R)->F(R) with itselff n times, and
F(r.): F(R)- F(R) is the morphism defined by the functor F.

(if) If g : ¢, > ¢, is a morphism in (Mod(R))[ X, define T(g): T(¢,) > T(¢,) by
letting T(@XR[X]):T(:)R[X]) > T(¢d:XR[X]) be the morphism
g(R) : F|(R)-’ Fz(R) where ¢| : F] - Fl and ¢z : Fz—'Fz.

(b) Prove that the functor T defined above is additive.

(¢) Prove that the functor T is an isomorphism of categories.

(36) Let Group be the category of all groups and s£¢ the full subcategory of Group

consisting of the abelian groups. Show that the inclusion functor i: ¢4 -Group

has a left adjoint.

(37) Let € be the category of commutative monoids and s#¢ the full subcategory

of € consisting of the abelian groups. Show that the inclusion functor i: 44 - %

has a left adjoint.

(38) Show that the following data define a functor F:Rings— Monoid:

(a) The map F:0Ob Rings—Ob Monoid is given by F(R) is the multiplicative
monoid of the ring R for each ring R.

(b) For each ring morphism f: R,— R, we define F(f): F(R,)— F(R,) to be the
map f viewed as a morphism of the multiplicative monoid of R, to that of R..
Prove that the functor F :Rings— Monoid has a left adjoint.

(39) Generalize Exercise 38 to the category of R-algebras for any commutative

ring R.
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ChapterS UNIQUE
FACTORIZATION
DOMAINS

In this chapter we will be mainly concerned with examples and properties of
commutative rings with which the reader is for the most part familiar. For exam-
ple, the basic properties of Z, the ring of integers, and K[X], the ring of
polynomials over a field K, are discussed, including the fact that they are unique
factorization domains. We will also show that the ring R[X] of polynomials over a
ring R is a unique factorization domain if and only if the ring R is a unique
factorization domain. From these sample results it is obvious that one of our
major preoccupations in this chapter is the question of when commutative rings
are unique factorization domains.

The reader who is at all familiar with the notion of a ring being a unique
factorization domain should have no difficulty seeing that this idea is intimately
connected with the general one of divisibility in a ring. For instance, we usually
say that a nonzero integer n+#1 in the ring Z of all integers is a prime if and only if
+1 and =n are the only integers which divide n. Further, the fact that every
integer can be written (in an essentially unique way) as a finite product of primes is
also a statement concerning how integers divide each other. Because for rings
generally, and not just for integers, questions of divisibility are related to unique
factorization, we begin this chapter by studying divisibility in commutative rings.
Related matters such as unique factorization and rings of quotients will be taken
up later on.

Because we are only interested in commutative rings in this chapter, we make
the blanket assumption that unless stated to the contrary all rings are commuta-
tive. We remind the reader that since we are assuming that our rings are commuta-
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tive, an ideal in a ring R is simply a subgroup I of R satisfying the condition that
rICI for all r in R

1. DIVISIBILITY
We begin by recalling what it means for one element in a ring to divide another.

Definition i
Let x and y be elements in a ring R. We say that x divides y if there is an element z
in R such that xz = y. We often denote the fact that x divides y by writing x|y.

We leave it to the reader to verify the following.

Basic Properties 1.1
Let R be a ring.

(a) For each element x in R we have that x|x.

() If x, y, and z are elements in R such that x|y and y|z, then x|z.

(c¢) For a fixed element x in R, the set of all elements in R divisible by x is the set
Rx consisting of all elements of the form rx with r in R.

(d) For each x in R, the set Rx of all elements of R divisible by x is the unique
ideal J of R satisfying:
@) xisin J.
(if) If I is an ideal of R containing x, then JCL

For each element x in R, because the set Rx of all elements in R divisible by x
is an ideal in R, it is reasonable to expect that ideals of this type play an important
role in studying divisibility. For this reason we give such ideals a special name.

Definitions

For each x in R, the ideal Rx is called the ideal or the principal ideal generated by

the element x. We will often use the notation (x) for the ideal Rx generated by x.
Anideal I in R is called a principal ideal if there is an element x € I such that

Rx=1

The reader should have no difficulty verifying the following.

Basic Properties 1.2
Let x and y be elements in a ring R.

(a) x|y if and only if (x)D(y).
() (x)=(y) if and only if x|y and y|x.
(c) For an element x in R, the following statements are equivalent:
) x|1.
@) (x)=R=(1).
(iif) x is an invertible element in the multiplicative monoid of R.
(iv) x|y for all y in R.
(v) (xy)=(y) for all y in R.
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In a ring R because we have x|y if and only if (x) D (y), we see that the study
of the way the elements of R divide each other is the same thing as studying the
order relation given by inclusion on the set of principal ideals of R. Stated more
symbolically, if we denote the set of all principal ideals of R by PI(R), then the
map f: R— PI(R) given by f(x)=Rx for all x in R is a surjective map with the
property that x|y if and only if f(x)D f(y).

But this is not the only relationship between R and PI(R). For it is not
difficult to show that PI(R) has a (unique) commutative monoid structure such
that with this monoid structure the map f:R— PI(R) is a morphism from the
multiplicative monoid of R to PI(R). The existence of this monoid structure in
PI(R) is based on the following general definition.

Definition
Let I and J be ideals in the ring R. The set of all finite sums X x;y; with x;in I and y;
in J is an ideal in R which we denote by IJ and call the product of I and J.

It is easily checked that the product of ideals in a ring has the following set of
properties.

Basic Properties 1.3
Let I,, I, and I; be ideals in a ring R. Then:

(I) I:Iz = IzI|.

(b) RI[ = IlR = Il.

(¢) I(LL) = (L)L,

(d) If Il D Iz, then I)I. o) I;Iz.

(e) The product of two principal ideals is again a principal ideal because (x)(y) =
(xy) for all x and y in R.

Thus, we see that the product of ideals defined above makes the set of all
ideals in R a commutative, multiplicative monoid with the principal ideal R = (1)
as identity element. Because the product of principal ideals is again a principal
ideal, we see that the set PI(R) of all principal ideals in R is a submonoid of the
monoid of all ideals in R. It is obvious that this is the unique monoid structure on
PI(R) which makes the surjective map f: R— PI(R) a monoid morphism from the
multiplicative monoid of R to PI(R).

Definition
If R is a ring, we denote by PI(R) the commutative monoid whose elements are

the principal ideals of R and whose multiplication is given by (x)(y) = (xy) for all x
and y in R,

Because the morphism f: R - PI(R) from the multiplicative monoid of R to
PI(R) is surjective, we know that the canonical morphism j; :Coim f - PI(R)
given by j,([x]) = f(x) for all x in R is an isomorphism of monoids. Hence, any
description of the monoid Coim f gives an alternate description of PI(R). So we
now turn our attention to studying Coim f.

We have aiready shown that if x|1, then f(xy) = Rxy = Ry = f(y) forall y in R.
Hence, it is obvious that the set of all elements x in R such that x|1 plays an
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important role in describing Coim f. Because this type of element plays a signifi-
cant role in all of ring theory, not just commutative ring theory, we make the
general statement.

Definition

Let R be an arbitrary, not necessarily commutative, ring. An element x in R is
called a unit in R if x is an invertible element of the multiplicative monoid of R,
that is, there is a y such that xy = 1= yx. The group Inv(R), which is the sub-
monoid of the multiplicative monoid of R consisting of all units or invertible ele-
ments in R, is called the group of units of R and is denoted by U(R).

Returning to the morphism of monoids f: R— PI(R) in the case when R is
commutative, we see that since f(uy) = f(y) for all u in U(R) we have xU(R) C [x]
for each x in R where {x] is the unique element of Coim f containing x. Although it
is not true for arbitrary rings R that xU(R) =[x] for all x in R (see the exercises
for an example), it is true for rings R which are integral domains. We recall the
following.

Definition

An element x in a ring R is said to be regular if xy =0 implies y =0. A ring R is

said to be an integral domain if R #(0) and every nonzero element in R is regular.
Clearly, every subring of an integral domain is also an integral domain.

As an easy consequence of this definition we have the following.

Basic Properties 1.4
Let R be a ring.

(a) An element x in R is regular if and only if xy, = xy, implies y, = y..

(b) The set of all regular elements in R is a submonoid of the multiplicative
monoid of R.

(c) Because each unit in R is regular, we have that U(R), the group of units in R,
is a submonoid of the monoid of regular elements of R. :

(d) If x and y are elements of R such that x is regular and (x)=(y), then y is
regular and there is a unit 4 in R such that ux=y.

" (e) If x and y are elements in an integral domain, then (x) = (y) if and only if there

is a unit u in R such that ux=y.

PROOF:(a)-(¢) Left as exercises.

(d) Because we are assuming that (x) = (y), we know there are elements u,
and u; in R such that u,x =y and w,y = x. Hence, u,u;x = x or equivalently
x(u2u, — 1) = 0. The fact that x is regular implies u,u,— 1 =0. Thus, u, and u, are
units in R. Therefore, y = u,x where u, is a unit in R. This also implies y is regular,
since both u, and x are regular and the product of regular elements is regular [see
parts (b) and (c)].

(e) Follows trivially from (d).

As a consequence of this discussion we have the following description of the
coimage of the morphism from the multiplicative monoid of an integral domain R
to PI(R).
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Proposition 1.5
Let R be an integral domain and f: R— PI(R) the surjective morphism from the
multiplicative monoid of R to PI(R) given by f(x)= Rx.

(a) The elements of Coim f consist of the subsets of R of the form xU(R) for all x
in R.

(b) The multiplication in Coim f is given by (x, U(R))- (x,U(R)) = x:x,U(R) for all
x; and x, in R.

2. INTEGRAL DOMAINS

Before giving examples to illustrate some of the material of the preceding section,
we recall some of the basic facts concerning fields.

Definition
Aring R is called a field if R #(0) and every nonzero element of R is a unit in R, or
what amounts to the same thing, U(R)= R —{0}.

Basic Properties 2.1
Suppose R is a ring and R+(0).

(a) If R is a field, then R is an integral domain.

(b) R is a field if and only if (0) and R are the only ideals of R.

(c) If S is a nontrivial ring and R is a field, then every morphism of rings f:R—> S
is an injective morphism.

PROOF: (a) Already proven.

(b) Suppose R is a ring such that (0) and R are the only ideals in R. Let x be a
nonzero element in R. Then the ideal (x) is not the zero ideal and so must be the
whole ring R. This means that there is a y in R such that yx = 1 or equivalently, x
is a unit in R. Hence, every nonzero element in R is a unit in R which means that R
is a field. The fact that if R is a field, then (0) and R are the only ideals of R is
obvious.

(¢) Follows trivially from (b).

Example 2.2 We have already shown that the ring Z of all integers is an
integral domain (see Chapter 2, Basic Properties 9.2). Also, U(Z) consists of 1 and
—1 and is thus isomorphic to the group Z/2Z.

Example 2.3 Let m, and m, be any two nonzero elements of Z which are not
units. Then the ring Z/(m,m,) is not an integral domain because m, + (m,m.) and
mz+(m,;m.) are nonzero elements whose product is zero.

Proposition 2.4
Let R be aring. Then the ring R[X] of polynomials over R is an integral domain if
and only if R is an integral domain. In particular, if R is a field, then R[X] is an
integral domain.

PROOF: Because R is a subring of R[X], it is an integral domain if R[X] is an
integral domain.
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Suppose R is an integral domain. Let Z,cy r.X' and =,cx 7/ X' be two nonzero
elements in R[X]. Then there are nonzero integers n, and n, such that r,,#0 while
ri=0 for all i>n, and r,,#0 while =0 for all i>n,. From these remarks it
follows that the product

(Znx) (3, %) = 3, (2 i) x

is not zero. For the coefficient of X™*™ in Zien (Cheo ier{-e) X' i8S ZiLe? RFlsmes
which under our hypothesis, equals r.,r,,. But r,r, is not zero because r,, and r,,
are nonzero elements in the integral domain R.

In the proof of the last proposition we made implicit use of the notion of the
degree of a polynomial. Before going on with our next example, we give an
explicit formulation of this useful notion.

Definltion

Let R[X] be the ring of polynomials over a ring R. The degree of a nonzero
polynomial Z.cy . X' is defined to be the largest nonnegative integer i such that
r; #0. We shall usually denote the degree of a nonzero polynomial = rn.X' by
deg Cien rX'"). If the degree of a polynomial =,y X' is n, then r, is called the
leading coefficient of the polynomial.

The argument we just used to show that if R is an integral domain then so is
R[X] can also be used to establish the following.

Basic Property 2.5
Let f(X) =Zen X' and g(X) = Ziex 5. X' be two nonzero polynomials in R[X] of
degrees m and n, respectively. Then:

(@) f(X) is in the subring R of R[X] if and only if deg (f(X))=0.
) If f(X)g(X)#0, then

deg (f(X)g(X)) < deg (f(X)) + deg (g(X))

(©) deg (f(X)g(X)) =deg (f(X))+ deg (g(X)) if and only if r, - s, # 0 where r, is
the leading coefficient of f(X) and s, is the leading coefficient of g(X). Hence:

(d) If deg (f(X)g(X)) = deg (f(X))+deg (g(X)), then the leading coeflicient of
f(X)g(X) is the product of the leading coefficients of f(X) and g(X).

(e) If R is an integral domain, then deg (f(X)g(X)) = deg (f(X)) + deg (g(X)).

Proposition 2.6

Let R[X] be the ring of polynomials over the integral domain R. Then U(R[X]) =
U(R). In particular, if R is a field, then U(R[X]) is precisely the set of nonzero
elements of R.

PROOF: Because R is a subring of R[X], it follows trivially that U(R)C
U(R([X]). Suppose now that f(X)=Zex X' is a unit in R[X]. Then there is
a g(X) in R{X] such that f(X)g(X)= 1. Because R is an integral domain, we
know that deg (f(X)g(X))=deg (f(X))+deg(g(X)). Because deg(1)=0=
deg (f(X)) + deg (g(X)), it follows that deg (f(X)) = 0 and deg (g(X)) = 0. Hence,
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f(X) and g(X) are in R, which means that f(X) is in U(R). Therefore, U(R[X]) C
U(R) which completes the proof of the fact that U(R) = U(R[X]).

Because a field is an integral domain, we know that every subring of a field is
an integral domain. We now show that if R is an integral domain, then R is a
subring of a field. We do this by constructing a particular field containing R called
the field of quotients of R for each integral domain R. Not only does the field of
quotients of an integral domain show that every integral domain is a subring of a
field, but it is also a very useful tool for studying the integral domain itself. In
particular, as we shall see later on, the field of quotients of an integral domain R is
useful in studying unique factorization domains. The reader should observe that
the following construction of the field of quotients of an arbitrary integral domain
is modeled on the construction of ordinary rational numbers from the ring of
integers as well as our construction of the ring of all integers Z from the nonnega-
tive integers N.

We recall that the field of rational numbers Q consists of fractions n,/n,
where n, and n; are integers with n, # 0, subject to the condition that two fractions
n,/n, and ni/n; are equal if and only if n,n;= n,n|. Moreover, the addition and
multiplication in Q are given by the formulas

ﬂ+_rt_i_ nn;+ n;n;
n; n; n.n:

n, n: nnj}

We now generalize this construction to an arbitrary integral domain.

Suppose R is an integral domain. Then the subset S=R—{0} of R is a
submonoid of the multiplicative monoid of R.

Consider the addition and multiplication on R X S given by

(r,s)+(',s)Y=(rs'"+r's, ss')
(r,s)(r',s")=(rr', ss')

It is easy to see that RX S is a commutative monoid under addition with
identity (0, 1) and a commutative monoid under multiplication with identity (1, 1).
The multiplication also distributes over addition so that R X S is almost a com-
mutative ring. The only way it fails to be a ring is that elements do not, in general,
have additive inverses.

From our experience with the integers and rational numbers, it seems reason-
able to consider the following relation I on R X S. Namely, (r,, s))I(r, s2) if
ris: = r:$,. It is a routine matter to check that I is an equivalence relation not only
on R X S considered as a set, but also on the additive and multiplicative monoid
structures of R x S. Therefore, R x S/I has induced additive and multiplicative
monoid structures having the following properties:

() Under addition, R X S/I is an abelian group whose zero element is k(0, 1)
where k:R xS— R x S/I is the canonical surjective map.

(b) Multiplication distributes over addition in R %X S/I; hence:

() RxS/I is a commutative ring.
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We denote the element k(r, s) in R X S/I by r/s. It is easily checked that the
elements r/s of R x S/I have the following familiar properties:

(a) r/s =0 if and only if r=0.

() r/s=r/s' if and only if rs'=1r's.
(©) ris+r'ls' =(rs'+r's)ss'.

@ ris-r'f/s'=rr'lss'.

(e) 1/1 is the identity.

We now show that these properties imply that R x S/I is a field. First of all
the identity element 1/1 is not 0. Second, if r/s # 0, then r # 0 which means that r
isin S and hence s/risin R X S/I. But (r/s)(s/r)=rs/rs = 1/1. Hence, if r/s #0,
then r/s is a unit with s/r as the inverse. Thus, R X S/I is a field which we shall
denote by Q(R).

We now show that Q(R) is a field which contains R. To do this we consider
the map f: R— Q(R) given by f(r)=r/1 for all r in R which is easily seen to be an
injective morphism of rings, since Ker f =0. Thus, we can view R as a subring of
Q(R) by identifying the element r/1 in Q(R) with the element r in R for each r in
R. From now on we will consider R a subring of Q(R) by means of this identifica-
tion.

Definition

For each integral domain R, the field Q(R) containing the ring R as a subring is
called the field of quotients of R. If R =Z, then Q(Z) is denoted more simply by Q
and is called the field of rational numbers.

Proposition 2.7
Let R be an integral domain.

(a) Let T be an arbitrary ring (not necessarily commutative) with 1+0. If f:R>T
is a morphism of rings such that f(r) is invertible in T for all nonzero elements
r in R [that is, f(r) is in U(T) for all r#0], then f is injective and there is a
unique morphism of rings g:Q(R)—T such that g|R=f The morphism
g:Q(R)-T is given by g(r/s)=f(r)f(s)"' where f(s)' is the inverse of f(s)
in T. Finally, g: Q(R)—T is an injective morphism.

(b) The inclusion morphism R— Q(R) is an epimorphism in the category of all
rings as well as in the category of commutative rings.

(¢) R=Q(R) if and only if R is a field.

PROOF: (a) Let f: R — T be a morphism of rings such that for each r # 0 we
have that f(r) is invertible in T. Since 1 # 0 in T, it follows that f(r) # 0if r # 0.

Because R is an integral domain, we know that S = R —{0} is a submonoid of
the multiplicative monoid of R. Because f(r) is invertible in T for each nonzero r
in R, we have that f(S) is contained in U(T). From the fact that f:R—>T is a
morphism of the multiplicative monoid of R to that of T, it follows that f(S) is a
commutative submonoid of the group U(T). We have already seen in Chapter 2,
Lemma 8.5 that under these circumstances the subset f(S)f(S)™' of U(T) consist-
ing of all products f(s)f(s:) ' is a commutative subgroup of U(T).

The fact that this subgroup of U(T) is commutative enables us to show that
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the elements in the image of the map h:Rx S—T given by h(r, s)=f(r)f(s)'
commute with each other. From this fact it follows that if (r,, 5,) and (r,, s:) are in
R X S, then (r,, s))I(r, s,) if and only if h((r,, 5.)) = h((rs, 52)). Therefore, there is a
unique morphism of rings g : R X S/I > T such that the diagram

RXxS \
\T

RxS/I

commutes where R X S— R x S/I is the canonical surjective morphism. This es-
tablishes the first part of (a). For we have (1) R X S/I = Q(R), (2) g(r/s)=
f(r)f(s)' because g(r/s) = h((r, s)) = f(r)f(s)', and (3) g(r) = g(r/1) = f(r) for
all r in R, which shows that g|R = f. Because it is obvious that g is an injective
morphism, in order to finish the proof of (a) it only remains to show that
2:Q(R)—-T is the only morphism from Q(R) to T whose restriction to R is f.
This is implied by the fact that the inclusion morphism R — Q(R) is an epimor-
phism in the category of rings, a result we now prove.

(b) Suppose f: Q(R)— T is a morphism of rings. Then f(r/s)=f(r/1-1/s)=
f(r/1) - f(1/s). Because 1=1s-(1/s)=(1/s)-s, it follows that 1= f(1)= f(s) X
f(1/s) = f(1/s)f(s). Hence, f(1/s) is the inverse of f(s) in T. This shows that f is
completely determined by its restriction to R or, what is the same thing, R -
Q(R) is an epimorphism.

(c) Left as an exercise.

We end this section by pointing out certain consequences of this proposition.

Suppose R is a subring of the integral domain R’. Because Q(R’) is a field, the
inclusion morphism R - Q(R’) is the composition of the inclusion morphisms R—
R’ and R’'-> Q(R’') and has the property that if r is a nonzero element of R, then r
is invertible in Q(R’). Thus, by our proposition, there is a unique morphism
g:Q(R)- Q(R’) such that g|R is the inclusion morphism R— Q(R’). It is easily
checked that the injective morphism g : Q(R)— Q(R’) is given by g(r/s)=r/s for
all r and s in R with s+#0. This enables us to consider Q(R) as a subring of Q(R’)
by identifying the quotient r/s in Q(R) with the same quotient r/s in Q(R’).
Hence, from now on we shall use this identification to consider Q(R) a subring of
Q(R’) whenever R is a subring of R’.

This convention has the following consequence. Suppose R is an integral do-
main and R’ is a subring of Q(R) containing R, that is, R CR’ CQ(R). Then by
what we have just agreed upon, we have Q(R) CQ(R’)CQ(Q(R)). But Q(R)=
Q(Q(R)), because Q(R) is a field. Therefore, we have the following.

Proposition 2.8
Suppose R is an integral domain and R’ is a subring of Q(R’) containing R. Then
Q(R)=Q(R’).

Finally, the fact that for each integral domain the inclusion morphism R —»
Q(R) is an epimorphism in the category of rings shows that in the categories of
rings and commutative rings, epimorphisms need not be surjective. To see this,

Google



138 FIVE/UNIQUE FACTORIZATION DOMAINS

consider the injective epimorphism Z— Q. If this morphism were also surjective, it
would be an isomorphism which would mean that Z is a field. But this is certainly
‘not the case since U(Z) = =1 which is very different from Z - {0}.

3. UNIQUE FACTORIZATION DOMAINS

In this section we discuss the general notion of a ring being a unique factorization
domain. Because we will be dealing only with rings that are integral domains, we
assume once and for all that unless stated to the contrary all the rings in this
section are commutative and integral domains.

Probably the best-known example of a unique factorization domain is the ring
Z of integers. We usually say that a nonzero, nonunit number p in Z is a prime if
+1 and *+p are the only integers dividing p. The prime numbers in Z have the
following well-known properties which are usually summarized by saying that Z is
a unique factorization domain: (a) Given any nonzero n in Z different from %1,
there is a nonempty finite family of prime elements (p)ic; such that n = 'IEI, ps, the

product of the p, and (b) if (p)ic; and (p);e; are two nonempty finite families of
prime elements in Z such that “,”",“,”” then card (I) =card (I) and there is an
i€ €

isomorphism of sets f:I—J such that p,= upy, where w is a unit in Z, that is,
w==x1,foralliinL

Using this description of the fact that the ring Z is a unique factorization do-
main as a starting point, it is natural to consider the following conditions on an
arbitrary integral domain R as a description of when such a ring should generally
be considered a unique factorization domain:

There is a set P of nonzero elements of R which are not units satisfying:

@ If p is in P, then up is in P for all units u in R.
@it) If n is a nonzero element of R which is not a unit, then there is a finite
nonempty family (p)ie; of elements in # such that n= II, p.
ie

@aif) If (p:)ies and (p));e; are two nonempty finite families of elements in P such
that [1 p, = ’Hl p» then card (I) = card (J) and there is an isomorphism of sets

i€l

f:I-J such that p; = up,,, where u; is a unit in R for all i in I

It is interesting to note that the above conditions on the subset # of R
completely determines the subset # as we see from the following.

Proposition 3.1

Let & be a subset of a ring R consisting of nonzero, noninvertible elements of R
which satisfies conditions (i), (ii), and (iii) just given. Then the following state-
ments are equivalent for a nonzero, noninvertible element r in R:

(®) risin 2.
(b) If x|r, then x is either a unit or ux =r with u a unit in R.
(¢) If r|rir; and rfr, then rir.

PROOF: (a) implies (b). Suppose r is in # and x|r, that is, xy = r for some y in
R. We want to show that either x or y is a unit. We prove this by contradiction.
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Assume that neither x nor y is a unit in R. Then we know that there are nonempty
finite families (p;)ie; and (p;);e; of elements in @ such that x = .H: piandy =1l p.
€ i€l

Because xy = r and xy = (II p,)(II p;), we have r = II p; Il p;. From condition (iii)
iel el i€l i€l

(as well as from the fact that r € #), we see that 1=card (I)+card (J). This
means that either card (I) or card (J) must be zero, and this is a contradiction.

Because (b) obviously implies (a), the equivalence of (a) and (b) is estab-
lished.

(a) implies (c). Assume r is in ? and suppose r|r.r, that is, rr’ = r,r, for some
r in R. We want to show that r then divides r, or r.. If either r, or r is zero or a
unit, the result is trivial, so we can assume that neither r, nor r, is zero or a unit.
Let (p)ie: and (p)ies; be nonempty finite families of elements in # such that

r.=11I p;and r,=11 p;. Because rr' =11 p, Il p;and ris in @, it follows that 7’ is not
i€l jel i€l j€J

aunit (why?),andso r’' = kIIx px where (px)iex is a nonempty family of elements in
€

®. Hence, r kl'lx D = l'l, Pi !IIJ p; which by condition (iii) for ? means that ur = p,
€ i€ €

for some ! in I or J and u a unit in R. Thus, r|p; and, because pi|r, or pi|r,
depending on whether [ is in I or J, it follows that r|r, or r|r.. Therefore, if r is in
@ and r|r,r,, then r|r, or r|r.

(c) implies (a). Suppose a nonzero, noninvertible element r in R has the
property that if r|r.r,, then r|r, or r|r. It is not difficult to show by induction that
this condition implies that if r|r.r, - - - r., then r|r for some 1=<i=<n. Because r+0
and is not a unit, we know that there is a nonempty finite family (p)ic; of elements
in @ such that r= .I.;I: p. Thus, r|p; for some i in I. Because p; is in #, we know by

the equivalence of (a) and (b) that r = up;, with u a unit in R, because r|p; and r is
not a unit. From this it follows that r is in #, because p, is in # and thus up, is in #
for any unit u in R.

Because elements in a ring R satisfying either (b) or (c) in the above proposj-
tion play an important role in studying unique factorization domains, we make the
following definition.

Definitions
Let R be a commutative ring (not necessarily an integral domain), and let r be a
nonzero, noninvertible element of R. Then:

(a) r is said to be irreducible if whenever r=r,r,, either r, or r, is a unit.
(b) r is said to be a prime element if whenever r|r,r; and rfr, then r|r..

We now list some easily verified properties.

Basic Properties 3.2
Let R be an integral domain.

(a) A nonzero, noninvertible element r in R is irreducible if and only if R is the
only principal ideal of R containing (r) properly [that is, R is the only principal
ideal different from (r) which contains (r)]. Hence, r is irreducible if and only
if ur is irreducible for all units u in R.
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(b) A nonzero element rin R is a prime element in R if the ring R/Rr is an integral
domain. Hence, r is a prime element if and only if ur is prime for all units « in
R.

(c) Suppose r is a prime element in R. Then:
@i) r is an irreducible element of R. .
(ii) Suppose r, ..., r. is a finite set of prime elements in R and r|II r. Then

r=ur; for some i=1,...,n and some unit u in R. -
(d) Let (r.)ie; and (r;),e; be two nonempty finite families of prime elements in R. If

H’ = IIJ r, then card (I) = card (J) and there is an isomorphism of sets f: I —»

J such that r, = wry, with u; a unit in R for all i in L

The reader should observe that although we have shown that every prime
element in an integral domain is irreducible, we have not claimed that every ir-
reducible element is prime. An example is given in the exercises which shows that
irreducible elements need not be prime. Later on we explain what additional prop-
erty an irreducible element must have in order to be a prime element.

Summarizing our discussion so far, we have the following.

Proposition 3.3

Let R be an integral domain. Then every nonzero element which is not a unit in R
can be written as a finite product of prime elements if and only if there exists a
subset # of R satisfying:

(@) If r is in @, then:
(i) r#0 and r is not a unit.
(ii) ur is in ? for each unit u in R.

(b) Every nonzero, noninvertible element in R can be written as a finite product
of elements in #.

(©) If (n)ier and (r;),e; are nonempty finite families of elements in # such that
‘l;l’ r= 'l;ll r,, then card (I) = card (J) and there is an isomorphism of sets f: I —

J such that r, = wry;, with & a unit in R for all i in L

Further, if it is true that every nonzero, nonunit element of R can be written
as a finite product of prime elements, then the set # is precisely the set of prime
elements in R. This result suggests the following.

Definition

An integral domain R is a unique factorization domain if every nonzero, noninver-
tible element in R can be written as a finite product of prime elements. We denote
the fact that R is a unique factorization domain by writing R is a UFD.

4. DIVISIBILITY IN UFD’S
Having generalized the notion of unique factorization domain from the ring Z of

integers to arbitrary integral domains, we now show that some other familiar no-
tions concerning the divisibility of integers can also be generalized to arbitrary in-
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tegral domains. We start with the notions of the greatest common divisor and least
common multiple of a finite nonempty family of integers. The reader should have
no difficulty in convincing himself that the following definitions for arbitrary in-
tegral domains give the familiar concepts when specialized to Z.

Definltion
Let r,...,r. be a finite, nonempty set of elements in an integral domain R.

(a) Anelement r in R is said to be a greatest common divisor for the set r,,.. ., r,
if and only if:
@ rjroforalli=1,...,n
(i) If x|r for all i =1,...,n, then x|r. We shall denote the fact that r is a
greatest common divisor of r,...,r, by writing r =gcd[r,,..., ]
(b) An element r in R is said to be a least common multiple of r,, ..., r. if and
only if:
@ rjrforalli=1,...,n
(i) If r.|x foralli =1, ..., n, then r|x. We shall denote the fact that r is a least
common multiple of r,,...,r. by writing r =lcm{r,,..., r.].

Before discussing these ideas further, it is convenient to introduce the notion
of the ideal generated by a family {x;},c; of elements in an arbitrary commutative
ring R (that is, R need not be an integral domain). It is easily seen that if {x;}ic;is a
family of elements in R, then the set of all elements of the form 2, rix;, where
{r}ic: is an almost zero family of elements in R, is an ideal in R containing the
element x; for each i € I.

Definition
Suppose {x;}ic; is a family of elements in an arbitrary commutative ring R. Then
the ideal consisting of all elements of the form 2., r.x;,, where {r.};c; is an almost
zero family of elements in R, is called the ideal generated by the family {x;}.c; and is
denoted by (xi)ies or Zie1Rx;.

It is left to the reader to establish the following characterization of the ideal
generated by a family of elements in a ring.

Basic Property 4.1
Suppose {x,}ic! is a family of elements in the arbitrary commutative ring R. Then
an ideal J in R is the ideal generated by {x;}ic; if and only if:

(@) x; isin J for each i in L
(b) If J' is another ideal containing x; for all i in I, then J' D J.

Returning to our discussion of greatest common divisors and least common
multiples, the reader should have no difficulty establishing the following.

Basic Properties 4.2
Let r,,...,r. be a finite number of elements in a ring R.

(a) An element r is a gcd [ry, ..., r.] if and only if Rr is the smallest principal
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ideal containing the ideal generated by r,,..., r.. More specifically:
@i RrD ?:‘l Rr.

@) I Rx O ‘il Rr, then Rx D Rr.

() Ifrisaged(r,...,r.],thenr'isagcd(r,..., r.}ifand only if Rr = Rr'.
(c) The set r,,...,r. has a greatest common divisor if and only if there is a
principal ideal I such that:

0 IDIE.: Rr.
-1

(if) If J is another principal ideal such that J D ;é, Rr, then JDO I

Moreover, if I, and I, are two principal ideals satisfying conditions (i) and
(ii), then I, = I.. Hence, two elements x, and x, are both gcd[r,, ..., r.] if and
only if x, is a ged[r,,...,r.] and x, = ux, where u is a unit of R.
(d) An element r =lcm(r,,...,r] if and only if (r)=(r)N(r)N:--N(r).
(e) If x,=Ilcm[r,,..., ], then x,=lcm(r,,...,r.] if and only if Rx,= Rx,.

Hence, x; and x; are both Icm([r,, ..., r.] if and only if x, is a lcm[r,, ..., r.]
and x, = ux, where u is a unit of R.
(f) Thesetr,...,r. has aleast common multiple if and only if (r,) N - - -N(r.) is

a principal ideal.

(g) Every nonempty finite family of elements in R has a least common multiple
(greatest common divisor) if and only if every pair of elements in R has a
least common multiple (greatest common divisor).

In arbitrary integral domains, although not every pair of nonzero elements
need have a least common multiple or greatest common divisor (see the exercises
for examples), all unique factorization domains do have this property as we now
proceed to show.

Suppose R is a UFD and that @ is the set of prime elements of R. We define a
relation A on P by setting p,Ap; if and only if there is a unit & in R such that
P = up:. The reader can easily check that A is an equivalence relation on . Let I
be the set of equivalent classes of A. Because each element i in I is a nonempty
subset of 2, we may choose, for each i in I, an element p; of ® such that p; isin i.

Definttion

Let R be a UFD, 2 the set of prime elements of R, and I the set of equivalence
classes of the equivalence relation A on P defined by setting p,Ap- if and only if
there is a unit a in R such that p, = up.. A family of prime elements {p;}c; of R is
a representative family of primes if for each i in I, the element p; is in i.

Basic Properties 4.3
Let R be a UFD and {p.}.c: a representative family of primes.

(a) If p is any prime element of R, then there is a unique i in I such that p = up;
where u is a unit of R.

(b) If p; and p, are elements of the representative family {p;}.c;, then p; = up; for
some unit u in R ifandonly if i=j and u = 1.
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(c) If r is a nonzero element of R, then there exists a unique almost zero family
{n(r)}lic: of elements of N such that r = u I1 p/* where u is a unit in R.
i€l

Moreover, if {gi}ic; is another representative family of prime elements in R,
then r = u' Il q/'" where u’ is a unit in R. Hence, the almost zero family
i€l

{ni(r)}ie; of N depends only on the element r because it is independent of the
particular choice of representative family of primes used to obtain it.

This last property suggests the following.

Definition

Let R be a UFD and r a nonzero element of R. An almost zero family {n(r)}.c; of

elements of N is called the prime exponents for r if for some, and hence any,
n(r)

representative family of primes {p;};c; for R we have r = u Il p?*”’ where u is a
unit in R. et

Basic Properties 4.4
Let R be a UFD and let r, and r. be nonzero elements of R.

(a) r, is a unit in R if and only if n;(r) =0 for all i in I where {n;(r)}c, is the
prime exponents of R.

() {"l(rlrz)}lel={ni(rl)+nl(r2)}iel-

(¢) nlr. if and only if m(r)=mn(r,) for all i in L

(d) Given any almost zero family {n,}.c, of elements in N, there is a nonzero ele-
ment r in R such that n;(r)=n; forall i in L

(e) ri=ur, where u is a unit in R or equivalently (n)=(r:;) if and only if
n(r) = n(r;) for all i in L

Using prime exponents for nonzero elements of a UFD, we can prove the
following.

Proposition 4.5
Let r,,..., r. be nonzero elements of a ring R which is a UFD.

(a) For each i in I, let M,=max (n(r),...,n(r)). An element r in R is a
lcm([r,...,rn] if and only if n(r)=M, for all i in I. Hence, the set of
elements r,,..., r, has a least common multiple in R.

(b) For each i in I, let m; = min (n;(r,),...,n(r)). An element r in R is a
ged[r, ..., r]if and only if n,(r) = m, for all i in I. Hence, the set of elements
r,...,r has a greatest common divisor in R.

PROOF: Obviously {M;}ic; and {m; }ic, are almost zero families of elements in
N. Thus, by Properties 4.4 we know that there are elements r and r’ in R such that
n(r)=M, forall iin I and n,=(r')=m; for all i in I

(a) Suppose r is an element of R such that n,(r)= M, for all i in I. Because
n(ry=n(r) foreachk =1,...,t and all i in I, it follows from Properties 4.4 that
each n|r for k = 1,...,t. Moreover, if x is a nonzero element of R such that r|x
for each k=1,...,t, then again by 4.4, we know that n;(r) < n;(x) for each
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k=1,...,t and all i in I Therefore, n,(x) =M, = n,(r) for all i in I. Thus, r|x,
which shows that r is a lcm[r,,..., ).
(b) Left as an exercise because it is entirely analogous to that for part (a).

Because in all unique factorization domains every pair of nonzero elements
has a least common multiple, it is natural to ask how close an integral domain is to
being a UFD if every pair of nonzero elements in it has a least common multiple.
Although this condition does not quite guarantee that an integral domain is a UFD,
it does imply that every irreducible element in the ring is a prime element. After
establishing this fact, we will discuss what further conditions the ring must satisfy
in order to guarantee that it is indeed a unique factorization domain.

We recall the following.

Definition

Two nonzero elements r, r, in a ring R are said to be relatively prime if
ged(r, r)=1, that is, R is the only principal ideal containing r, and r.. The
following are the properties of relatively prime elements that we shall need.

Basic Properties 4.6
Let x and y be nonzero elements in R.

(a) Assume x is not a unit. Then x is irreducible if and only if y is relatively prime
to x whenever x does not divide y.

(b) Suppose x and y are relatively prime and x and y have a lcm, that is, (x) N (y)
is principal. Then xy =lcm [x, y] or equivalently (x)N(y)=(xy).

PROOF: (a) See Basic Properties 3.2.

(b) Suppose x and y are relatively prime. Because xy is obviously in (x) N(y),
to show that (xy) = (x) N(y) it suffices to show that x|z and y|z implies xy|z.

By assumption, x and y have a lcm which we will denote by s. Because x|xy
and y|xy, we have that s|xy, that is, ts = xy. On the other hand, s = t,x and s = t,y.
Therefore, xy = ts = tt,x = tt,y, which implies that t|x and t|y. But this means that ¢
is a unit in R because gcd [x, y] = 1. Therefore, s =t 'xy which shows that xy =
lcm[x, y] if x and y are relatively prime elements in R which have a lcm.

As a consequence of these observations we have the following characteriza-
tion of prime elements.

Proposition 4.7

Let x be an element of the ring R which is neither zero nor a unit. Then x is a
prime element if and only if x is irreducible and the ideal (x) N(y) is principal for
all y in R, that is, the pair x, y have a Icm for all y in R.

PROOF: Suppose x is a prime element in R. We want to show that x is
irreducible and (x) N(y) is principal for all y in R. Because we have already shown
that every prime element is irreducible, it only remains to establish the second
condition.

Let y bein R. If y is in (x), then (y)C(x) and so (x)N(y)=(y) which is
principal.
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Suppose now that y is not in (x). Let z be in (x) N (y), that is, x|z and y|z.
Then z = yv and thus x|yv. Because x is a prime and x[y, the fact that x|yv
implies that x|v, that is, xw = v. Therefore, z = yv = yxw which means that xy|z.
Hence, we have shown that if y is not in (x), then (x) N (y) C(xy). Since (xy) C
(x) N (y) we have that (x) N(y) = (xy) if y is not in (x). Therefore, if x is a prime,
we have shown that (x) N (y) is a principal ideal for all y in R, which completes
the proof of the proposition in one direction.

Suppose now that x is irreducible and (x) N (y) is principal for all y in R. We
want to show this implies that x is a prime. Assume that x|yz and x[y. Since x is
irreducible, the fact that y is not in (x) implies that x and y are relatively prime
(see Basic Properties 4.6). But we have also seen (Basic Properties 4.6) that if x
and y are relatively prime and (x) N (y) is principal, then (xy) = (x) N (y). This
implies that xy|yz since yz is in (x) by assumption and in (y) by definition. The
fact that xy|yz implies that x|z. Hence, if x|yz and x }y, then x|z, which means that
x is a prime element in R. This completes the proof of the proposition.

As an immediate consequence of this characterization of prime elements we
have the following.

Corollary 4.8
If the ring R has the property that the intersection of any two principal ideals is
principal, then every irreducible element in R is prime.

Summarizing our discussion so far we have the following.

Proposition 4.9

A ring R is a unique factorization domain if and only if every nonzero, nonunit
element can be written as a finite product of irreducible elements and the intersec-
tion of any two principal ideals is principal.

We shall present another version of this description of unique factorization
domains which is given solely in terms of the structure of the principal ideals in
the ring. This new description will be used in the next section to prove that
principal ideal domains are unique factorizatien domains. To do this, we develop
the general notion of the ascending chain condition for a set of subsets of a set
because our new description of unique factorization domains utilizes this ex-
tremely important general concept.

Proposition 4.10
Let & be a nonempty set of subsets of a set X. Then the following statements
about & are equivalent:

(a) If
X,cx,.cX;c---CcX,C---

is any ascending chain of subsets of X in &, then there is an integer n such that
Xi=X.forall i=n.

(b) Every nonempty subset J of & contains a maximal element; that is, there is
an element X, in 9 with the property that if X, is in J and X; D X, then
X.- = Xo.
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PROOF: (a) implies (b). Suppose J is a nonempty subset of ¥ which has no
maximal element. Then given any element X, in J there is an X, in J such that
XiCX, but X;#X. Hence we can construct by induction an ascending chain of
distinct elements in F as follows. Let X, be an arbitrary element of J. Suppose we
have defined X.. Since 9 has no maximal element, there are elements in J distinct
from X, but which contain X,. Define X... to be one of these elements in J. In
this way we obtain an ascending chain of distinct elements of

X, cx,c---cX,c---

which contradicts the hypothesis of (a). Hence, if & satisfies condition (a), then
each nonempty subset 9 of ¥ must have a maximal element, which shows that (a)
implies (b).

(b) implies (a). Suppose every nonempty subset § of ¥ has a maximal ele-
ment. Let X, CX.C:--CX, C:-- be an ascending chain of elements in & and let
9 be the subset of & consisting of the elements X, X;,..., X,,...of &¥. Then &
has a maximal element, say X,. Obviously, X; = X, for all i = n. This shows that
(b) implies (a).

Because subsets & of 2* satisfying either of the above equivalent conditions
play an important role throughout all of algebra we make the following definition.

Definition

Let X be a set. A nonempty subset & of 2% is said to be noetherian, or to satisfy
the ascending chain condition, if every nonempty subset of & contains a maximal
element or, equivalently, given any ascending chain

X, CX;C---CX,C---

of elements in & there is an n such that X;= X, for all i=n.

We now state and prove our final result of this section.

Theorem 4.11
A ring R is a unique factorization domain if and only if the set of principal ideals
PI(R) of R satisfies:

(a) PI(R) is noetherian.
() If I, and I, are in PI(R), then I, N I, is also in PI(R).

PROOF: Suppose R is a unique factorization domain. Since we have already
seen that for UFD’s the intersection of two principal ideals is again a principal
ideal, we only have to show that PI(R) is noetherian. Suppose

(r)C(rR)C--- C(r)C---

is an ascending chain of principal ideals. We can assume without loss of generality
that none of the r. are zero. The fact that (r,)C(r;))C - - - C(r)C - - - is equivalent to

n{r)=n{r)=-:--=zn(n)=---

for all i where {n{r.)}ic; are the prime exponents for nand k=1, 2,.... Hence, for
each i in I, there are integers m; such that n;(r.) = n;(r»,) for all k = m/ [remember
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all the n;(rn.) =0]. For each i let m; be the smallest integer satisfying this condi-
tion. Because n;(r.) = 0 for all but a finite number of i in I, only a finite number of
the m; are different from 1 and thus the set of m; has a maximum which we denote
by m. Hence, ni(r.) = ni(r.,) for all i in I and all k = m, which means that (r.) =
(r.) for all k =m (see Basic Properties 4.4). This shows that if R is a unique
factorization domain, then PI(R) is noetherian which finishes the proof that R
satisfies (a) and (b). )

Suppose R is a ring which has the property that the intersection of any two
principal ideals is principal and PI(R) is noetherian. We want to show this implies
R is a unique factorization domain. Because we have already shown that a ring R
in which the intersection of two principal ideals in principal is a unique factoriza-
tion domain provided every nonzero, nonunit element in R can be written as a
finite product of irreducible elements, it suffices to show that if PI(R) is noether-
ian, then every nonzero, nonunit in R can be written as a finite product of
irreducible elements.

Let T be the subset of PI(R) consisting of all principal ideals (x) # R such
that x is not a finite product of irreducible elements. Suppose J is not empty.
Because PI(R) is noetherian, we know that J has a maximal element (x). Now x
is not irreducible because an irreducible element is obviously the finite product of
irreducible elements, namely, of one element. Hence, x = yz where neither y nor
Z is zero or a unit. Therefore, (y) D (x) and (z) D (x) and both are different from
(x). This implies that neither (y) nor (z) is in J since (x) is a maximal element of
g. Therefore, y and z can both be written as a finite product of irreducible ele-
ments which implies that x = yz can also be written as a finite product of
irreducible elements. But this contradicts the fact that x could not be so written.
Therefore, the set J is empty, which means that every nonzero element in R
which is not a unit is a finite product of irreducible elements. This finishes the
proof of the theorem.

5. PRINCIPAL IDEAL DOMAINS

In this section we give an introduction to the important type of unique factoriza-
tion domains known as principal ideal domains. Here we shall be mainly con-
cerned with the ideal theory of such rings. Much later on we shall examine the
module theory for principal ideal domains.

Definition

A principal ideal domain is an integral domain R which has the property that every
ideal in R is principal. We shall often use PID as an abbreviation for principal
ideal domain.

Our first concern is to show that every PID is a unique factorization domain.
In the last section we showed that an integral domain is a unique factorization do-
main if the intersection of two principal ideals is a principal ideal and the set of
principal ideals is noetherian. Because in a PID all ideals are principal, PID’s cer-
tainly have the property that the intersection of two principal ideals is a principal
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ideal. Therefore, to show that PID’s are unique factorization domains, it suffices
to show that the set of principal ideals in a PID, namely, the set of all ideals in a
PID, is noetherian. This will follow trivially from the following more general con-
siderations which will play a large role in the rest of this book.

Proposition 5.1

Let R be an arbitrary, commutative ring. Then the set of ideals in R is noetherian
if and only if every ideal I in R is finitely generated; that is, if I is an ideal in R,
then there are a finite number of elements in I which generate I.

PROOF: Suppose every ideal in R is finitely generated. We want to show that
this implies that the set of ideals in R is noetherian. Suppose

ILcLc---CcIL,C---
is an ascending chain of ideals in R. Then it is easily seen that J = léJN I is an ideal

in R. Because every ideal in R is finitely generated, we know that J is finitely

generated. Suppose x,,..., X, generate J. Because J = U I,, it follows that each x;
nEN

is in I, for some n(x;) in N. Hence, the finite set of integers n(x)), ..., n(x) has a

maximum m which has the property that each x,, . . ., x,is in I,.. Because I,,CJ and

I, contains a set of generators for J, it follows that I, = J. This clearly implies that
I.= I, for all n = m. Therefore, if every ideal in R is finitely generated, then the set
of all ideals in R is noetherian because we have shown that given any ascending
chain of ideals in R

I|CI:C' * 'CI;C‘ b

there is an integer m such that I, = I, for all n = m.

Suppose now that the set of ideals in R is noetherian. We want to show that
each ideal in R is finitely generated. Suppose that this is not the case. Then there is
an ideal J in R which is not finitely generated. We define the sequence x,,
X1, ..., X» of elements in R by induction as follows. Let x, be an arbitrary element
in J. Suppose we have defined the sequence x,,..., x,. Because J is not finitely
generated, we know that the ideal (x,, ..., x.,) which is contained in J and gener-
ated by x, ..., x, is not all of J. Define x,., to be an arbitrary element of J not in
(x1, ..., xs). In this way we obtain a sequence x,, X, ..., X, . . . of elements in R
with the property that all the ideals in the ascending chain

(x)C(x1, x)C + v  Cxpyeeepy X)C o - -

are distinct. Because this contradicts the fact that the set of ideals in the ring R is
noetherian, we see that there are no ideals J in R which are not finitely generated.
Hence, we have shown that if the set of ideals in R is noetherian, then every ideal
in R is finitely generated.

For ease of reference we make the following definition.

Definltion
A commutative ring R is said to be a noetherian ring if the set of ideals in R is
noetherian.
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Hence, our previous result can be rephrased as follows: A commutative ring
R is noetherian if and only if every ideal in R is finitely generated. As an
immediate consequence we have the following.

Corollary 5.2
Every PID is a noetherian ring.

Because this was precisely the missing step in proving that a PID is a unique
factorization domain, we also have the following.

Theorem 5.3
Every PID is a unique factorization domain.

We pause now in our general development of PID’s in order to give some
examples of PID’s. The first example we consider is that of the ring Z of all
integers. The fact that Z is a PID is based on the following well-known proposi-
tion.

Proposition 5.4
Let a and b be integers with b+#0.
Then there exist integers q and r such that:

(@) a=qgb+r.
() 0=<|r|<|b].

PROOF: We prove this result under the additional hypothesis that a >0 and
b>0. The fact that this implies the general result is left as an exercise to the
reader.

Since a >0 and b >0, it follows that (a + 1)b > a. Therefore, the subset N’ of
N consisting of those n in N such that nb > a is not empty. Hence, the fact that N
is well ordered implies that N’ has a first element g’. Because g’'b >a >0, it
follows that @’ =1 or, equivalently, g=qg’'—1 is in N. Because q'=q+1 is the
smallest integer n in N such that nb > g, it follows that (g+1)b>a>qgb>0 or,
equivalently, b > a — gb =0. Therefore, the pair q and r = a — gb satisfy our de-
sired conditions: a =gb +r and 0=<|r|<|b|.

We now use this to prove the following.

Proposition 5.5
The ring Z of all integers is a PID.

PROOF: Let I be an ideal of Z, If I =0, then I is certainly principal, so we may
assume that I+0. Let N’ be the subset of N consisting of all |x| as x runs through
all the nonzero elements in I. Because I+0, we know that N’ is a nonempty subset
of N and hence has a first element of the form |b|#0 with b in I. Suppose a is an
arbitrary element of I. Then by our previous result we know that there are q and r
in Z such that a = gb + r with 0=<<|r|<|b|. Because a and b are in I, it follows that
r=a— bq is also in I. Hence, if r+#0, then |r| <|b| is also in N’ which contradicts
the fact that |b| is the first element of N'. Thus, r =0 or a = bq. Therefore, every
element of I is divisible by b which implies that I is the principal ideal Zb. Hence,
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every ideal I of Z is a principal ideal which means that Z is a principal ideal
domain.

A few minutes’ thought should suffice to convince the reader that the proof
that Z is a PID which we just gave depends in an essential way on the existence of
the absolute value map ||:Z— N. But the only property of the absolute value
actually used in the proof is that if a and b are in Z with b # 0, then there are q
and r. in Z satisfying a = gb + r where 0 <|r| <|b|. These observations suggest
the following question: Is an integral domain R a PID if there isamap f: R — {0}~
N satisfying the following condition: Given any a and b in R with b # 0, there
exist g and r in R such that a = gb + r where either r =0 or f(r)<f(b)? The
proof that this is indeed the case is essentially identical to the proof that Z is a
PID. All one has to do is show that if I is a nonzero ideal of R, then (1) there is an
element b in I different from zero such that f(b) < f(x) for all nonzero x in I, and
(2) the defining property of f implies that any such b in I is a generator for I. The
details are left to the reader to carry out. We summarize this discussion in the
following definition and proposition.

Definition

Let R be an integral domain. A map f: R —{0}—> N is called a Euclidean function on
R if given a and b in R with b+0, there are q and r in R such that a = gb + r and
either r =0 or f(r) < f(b). An integral domain for which there exists a Euclidean
function is called a Euclidean domain.

* Proposition 5.6
R is a PID if R is a Euclidean domain.

It is obvious from our discussion that the absolute value is a Euclidean func-
tion on Z and so Z is a Euclidean domain. We now show that if R is a field, then the
degree of a polynomial is a Euclidean function on R[X], the ring of polynomials
over R, and so R[X] is a Euclidean domain and therefore a PID. This fact is an
easy consequence of the following general lemma.

Lemma 5.7

Let R be an arbitrary ring and b(X) a nonzero polynomial in R[X] whose leading
coefficient is a unit in R. Then given any polynomial a(X) in R[X], there exist
polynomials q(X) and r(X) in R[X] such that a(X)=q(X)b(X)+ r(X) where
either r(X) =0 or deg (r(X)) <deg (b(X)).

PROOF: The result is obvious if a(X)=0. So we may suppose a(X)#0. If
deg (a(X)) <deg (b(X)), then q(X) =0 and r(X) = a(X) have our required proper-
ties. Suppose now that m =deg (a(X))=deg (b(X))=t. Let a(X) =i a. X' and
b(X)=Zicx bX'. Then a.#0 and a,=0 for all i > m while b, is a unitin R and b;=0
for all i>t. Then it is easily checked that the degree of a,(X), where a,(X)=
a(X)—b;'a.b(X)X""', is less than the degree of a(X) if a,(X)#0. Thus, if
deg (a(X))=deg b(X), then there are q,(X) and a,(X) in R[X] such that a(X)=
a:(X)b(X) + a\(X) where either a,(X) =0 or deg (a,(X)) <deg (a(X)). We leave it
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to the reader to show how this result may be used to prove the lemma by induction
on n =deg (a(X))—deg (b(X)).

This lemma immediately implies the following.

Proposition 5.8
Let R be a field. Then the map deg: R[X]—{0}— N is a Euclidean function on the
integral domain R[X] and so R[X] is a Euclidean domain and consequently a PID.

With these examples of PID’s in mind, we return to our general discussion of
PID’s. In this connection the following notion is useful.

Definition

An ideal I in an arbitrary commutative ring R is said to be a maximal ideal if R is
the only ideal of R containing I properly, that is, R is the only ideal different from
I containing R.

The following characterization of maximal ideals is very useful.

Basic Property 5.9
Let I be a proper ideal of R (that is, I+ R). Then I is a maximal ideal of R if and
only if the ring R/I is a field.

PROOF: We have already seen that a ring is a field if and only if the zero ideal
is the only proper ideal in the ring. Hence, the ring R/I is a field if and only if (0) is
the only proper ideal in R/I. The fact that I+ R is equivalent to the fact that (0) is a
proper ideal of R. The bijective correspondence between the ideals of R/I and the
ideals of R containing I (see Chapter 4, Proposition 4.4), shows that (0) is the only
proper ideal of R/I if and only if R is the only ideal of R containing I properly.
Therefore, R/I is a field if and only if I is a maximal ideal of R.

A maximal ideal is a special case of a prime ideal which we now define.

Definition
Let R be an arbitrary commutative ring. An ideal I of R is a prime ideal of R if R/I
is an integral domain.

Basic Properties 5.10
Let R be an arbitrary commutative ring.

(a) Anideal I+R is a prime ideal if and only if xy in I implies either x or y isin I

(b) R is an integral domain if and only if (0) is a prime ideal in R.

(c) Anideal I# R is a prime ideal in R if and only if I, I, C I implies either I, CI or
L, CI for all ideals I, and I, in I

(d) If R is an integral domain, then x is a prime element if and only if Rx is a
nonzero prime ideal in R.

We now point out the following important characterization of prime elements
in a PID.
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Proposition 5.11
For an element x in a ring R which is a PID, the following statements are
equivalent:

(a) x is irreducible.

(b) x is a prime element.

(¢) (x) is a prime ideal.

(d) (x) is a maximal ideal in R.
(e) R/(x) is a field.

PROOF: The equivalence of (a), (b), and (c) as well as the equivalence of (d)
and (e) have already been established. We finish the proof by showing that (a) and
(d) are equivalent.

By definition, an element x in R is irreducible if and only if R is the only
principal ideal of R which contains (x) properly. But all the ideals of R are
principal ideals because R is a PID. Hence, x is irreducible if and only if R is the
only ideal of R containing (x) properly. Therefore, x is irreducible if and only if
(x) is maximal, which is our desired result.

This proposition is very useful in constructing fields of various types. For
instance, for each prime p in Z, we have that Z/pZ is a field. Because p =
card(Z/p2Z), this shows that there are a great many fields with only a finite number
of elements. Other examples of how this proposition can be used to construct
fields are given in the exercises.

6. FACTOR RINGS OF PID’S

This section is devoted to studying the rings of the form R/I where I is a proper
nonzero ideal in a ring R which is a PID.

Proposition 6.1
Let (x) be a proper nonzero ideal in the PID, R. Then:

(a) A maximal ideal (p)in R contains (x) if and only if p is a prime which divides
x. Hence;

(b) (x) is contained in only a finite number of maximal ideals of R. A set
(p1) - . ., (p) of distinct maximal ideals of R is precisely the set of all maximal

ideals of R containing (x) if and only if x = u ‘IlI p! where u is a unit in R and
=]

all the n,>0.
(c) Suppose
(r)D(r)D---D(r)D- -

is a descending chain of ideals in R each of which contains the ideal (x).
Then there is an integer m such that (n)=(r.) for all k=m.

PROOF: (a) and (b) are left as exercises to the reader.
(c) Suppose (r)D(r;)D---D(r)D- -+ is a descending chain of ideals in R all
of which contain (x). Letting {n;(r)};c; be the family of prime exponents of an
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element r in R with respect to a representative family of primes {p;}ic;, we have
n(x)=---=n(na)=n(n)z- - =n(r)

for all { in I. Hence, for each i in I there is a nonnegative integer, and hence a
smallest integer m,, such that n;(r.) = n;(r.,) for all k = m,. Because n,(x) =0 for
all but a finite number of i in I, all but a finite number of m, = 0. Hence, the family
{m;},c; has a maximum, m, which has the property that n,(r.) = n;(r..) forallk =m
and all i in I. This obviously implies our desired result that (r.) = (r.) for all
k=m.

Because of the importance in all of algebra of the type of phenomenon de-
scribed in the last part of this proposition, we make the following definition.

Definition
A set & of subsets of a set X is said to be artinian or to satisfy the descending chain
condition if given any descending chain

XD>X;D---DX,D---

of subsets of X in & there is an integer m such that X=X, for all i=m.
A commutative ring R is said to be artinian or satisfy the descending chain
condition if the set of all ideals in R is artinian.

We leave it to the reader to verify the following.

Basic Properties 6.2

(a) Let & be a set of subsets of a set X. Then ¥ is artinian if and only if every
nonempty subset J of & has a minimal element, that is, there is an X, in J
such that if X is in § and X C X,, then X = X,.

(b) Aring R is artinian if every nonempty set of ideals has a minimal element.

Using the relationship between the ideals in a ring R containing a fixed ideal I
of R and the ideals of R/I, we obtain the following restatement of Proposition 6.1.

Proposition 6.3
Let R be a PID and I a nonzero proper ideal of R. Then the ring R/I has the
following properties:

(@) Every ideal in R/I is principal.
() R/I has a finite number of maximal ideals.
(c) R/I is an artinian ring,

We now develop two results concerning arbitrary commutative rings which,
when applied to factor rings of a PID, will give us the final result of this section.

Lemma 6.4

LetI,..., I, be ideals in an arbitrary commutative ring such that for all j> 1 the
ideal generated by I, and ], is all of R. Then R is also generated by I, and the
product I, - I, of the set of ideals {I,,...,I}.
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PROOF: Because R is generated by I, and I, for all j > 1 we know that for each
j>1 there are elements r, in I, and s, in I, such that r,+5s = 1. Hence, 1=

Il (r, + 5,). After carrying out the indicated multiplication, we see that all the
=2

terms except one in the resulting sum are in I, while the remaining one is in
I.- - - I.. Therefore, 1 is in the ideal generated by I, and I.--- I. from which it
follows that I, and I.-- - I. generate R.

As our first application of this lemma, we prove the following.
Proposition 6.5
LetI,..., I, be a finite set of ideals in a ring R such that the ideal generated by I,
and I is R whenever i #j. Then r“w I=L---1I.
i=1

PROOF: Because it is obvious that N I,DP I, we only have to show that
i=] =]
nmIo ﬂ, I, which we do by induction on n. Suppose n =2. Then 1 = r,+ r, with r, in
i€

I, and r; in L. Suppose r is in I,NL. Then r = rr,+ rr, where both rr, and rr, are in
the product I.L.. Hence, INLCI L or, equivalently, INL=LL if I, and I
generate R,

Suppose I,. .., I, have the property that I, and I; generate R whenever i#j.
By the inductive hypothesis we have L,LN ... NI, =L... I,andso ,NLN ...
NL =IN(....I). Because I, and I, generate R forj =2,..., n, we have by
our lemma that I, and I,... I, generate R. Hence, it follows from our inductive hy-
pothesis that I, N (I,...1,)=I(I,...I,). Therefore, IIN...NI, =1I,...1, which
finishes our inductive proof.

Suppose {L}.cx is a family of ideals in R and fi: R R/l is the canonical sur-
jective morphism of rings for each k. Then define the morphism f: R —>kHK R/I by

f(x) = (f(x))ex Where kl'lx R/ is the product of the family of rings {R/L}:cx. Then
€

it is obvious that Ker f= kﬂx I.. Although it is not so clear how to describe Im f in

general, there is a special case in which this can easily be done.

Proposition 6.6

Let I,, ..., I, be afinite set of ideals in the ring R such that R is generated by I, and
I, whenever i+#j. If for every k in [1, ..., n] we denote by f,: R—> R/I, the canoni-

cal surjéctive morphism, then the morphism f: R—»kﬁ R/I. given by f(r)=
=] n
(f(Nhen... for all r in R is a surjective morphism with Ker f= kﬂl L=I---1I.

Hence, f induces an isomorphism

PROOF: We leave it to the reader to show that the proposition in question is
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equivalent to the statement that given any set of elements a,, ..., a.in R thereis a
single element r in R satisfying r—a, is in I for each k in [1,..., n]. We now
prove this second assertion by induction on n.

Suppose n =2. We want to show that given any pair of elements a, and a,in R
there is an r in R such that r—a, is in I, and r— a, is in I.. Because R is generated
by I, and I, we know there are elements r,in I, and . in I, such that 1 =r,+ r,.
Thus, a,= a,r,+ a,r, while a,= a,r,+ a,r,. Then it is easily seen that r =
a,r;+ a,r; has the desired properties: r —a, is in I, and r — a, is in L.

Assume now that n >2. We want to show that given any sequence a,,..., a,
of elements in R, we can find an rin R such that r—a,isin Lforallk=1,...,n.
By our inductive hypothesis, we know there is an element r’ in R such that r' —a;
isin I for i=1,...,n—1. But by Lemma 6.4, we know that I,---I,., and I,
generate R so that thereisan rin R withr—r' in I,---I,., and r—a, is in I..
However,r—a,=r—r'+r' —a and,sincer—r'isinl,---I,.,.CL and r' — a is
in I, it follows that r—a, isin I, fori=1,...,n—1.

Therefore, we see that the morphism f: R— H R/Lisa surjectlve morphism.
Since we have already observed that the kemel of fis ﬂ I, we see that the
morphism f induces an isomorphism R/ ﬂ L H R/L.

k=1

This proposition is known as the Chinese Remainder Theorem.

If R is a PID and I is a nonzero proper ideal of R, we have I =(a) for some a
in R. Letting a=p7 - - - p? be a factorization of a into powers of distinct primes,
weseethat I =1,,...,I, wheretheideal I, = (p/) forj =1,...,t Because I, and I,
together generate R when j#k, our last result tells us that R/I ~R/I;x---xR/[I.
Thus, we have the following.

Proposition 6.7

Let R be a PID and I a nonzero proper ideal of R. Then R/I is isomorphic to the
product of rings R/I, % - - - X R/I, where each ideal I, is generated by a power of a
prime element in R.

7. DIVISORS

In the preceding sections, the formulation of concepts and proofs have been
primarily in terms of elements in a commutative ring. In this section, we indicate
how these ideas may be presented in ideal-theoretic terms. Because the proofs of
the propositions stated in this section can be obtained from those already given in
preceding sections, no proofs are included here. The reader is urged, however, to
familiarize himself with the contents of this section because this language will be
extensively used from now on.

Definition
A principal divisor of an integral domain R is any nonzero principal ideal of R.

The reader should have no difficulty in establishing the following.
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Basic Properties 7.1
Let R be an integral domain.

(a) If I, and I, are principal divisors of R, then I,I, is a principal divisor. Hence,
the set of all principal divisors of R is submonoid of PI(R), the monoid of all
principal ideals of R (see Section 1).

() If I, I,, and I, are principal divisors of R such that II, = IL,, then I, = L.

(¢) For two principal divisors I,=(r,) and I,=(r)) of R, the following are
equivalent:

@ LD L.
@) rijr..
(iif) There is a principal divisor I such that II, = I,.

We summarize some of these observations in the following.

Definitions
Let R be an integral domain. We denote by PD(R) the submonoid of PI(R) con-
sisting of all principal divisors.

If I, and I, are two principal divisors of R, we say that I, divides I,, which we
denote by I,|L, if there is a principal divisor I such that II, = L.

We now point out, for principal divisors, the following obvious analogs of the
notions of irreducible and prime elements.

Definition
Let R be an integral domain and I a principal divisor of R different from R.

(a) I is said to be an irreducible divisor of R if R and I are the only principal
divisors containing I
(b) I is said to be a principal prime divisor of R if I is a prime ideal of R.

Basic, Properties 7.2
Let r be a nonzero element of R. Then:

(a) r is irreducible if and only if (r) is an irreducible divisor.
(b) r is a prime element if and only if (r) is a principal prime divisor.

For convenience of reference we make the following.
Definition

The set of all principal prime divisors for an integral domain R is denoted by
PPD(R).

We now list some properties of principal divisors of R which can either be
easily derived from or proven in essentially the \Qme way as their analogs for
nonzero elements of R.

Basic Properties 7.3
Let R be an integral domain.

(a) A principal divisor I is a principal prime divisor if and only if given two
principal divisors I, and I, such that I,I,C I, then either I, or I, is contained in I.
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(b) Every principal prime divisor is irreducible.

(c) If I, and I, are principal prime divisors and I, CI,, then I, = L.

(d) Suppose {ng}scrror) and {ng}uecrror, are two almost zero families of elements
in N. Then

[T ®~= ][] %" ifandonlyif ng=ni

BePPD(R) B8EPPD(R)

for all B € PPD(R).

The reader should have no difficulty establishing the following characteriza-
tion of UFD’s in terms of the monoid PPD(R).

Proposition 7.4
An integral domain R is a unique factorization domain if and only if for each
principal divisor I of R there is an almost zero family {ng}scrror, Of elements in N
suchthat I= II "
BEPPD(R)
Combining this last proposition with the previous basic properties we have
the following.

Proposition 7.5

Suppose R is a unique factorization domain. Then, given any principal divisor I of
R, there is one and only one almost zero family {ng}ucrenr) Of elements in N such
that I= TI B,

BEPPD(R)

This result serves as the basis for the following.

Definition
Suppose R is a unique factorization domain. If I is a principal divisor of R, then

the unique representation I = . IT B, with {ne}ecrror, an almost zero family
€ PPD(R)

of elements in N, is called the primary decomposition of I
The uniquely determined integers ng for each 8 in PPD(R) which appear in
the primary decomposition of I is denoted by ng(I) for each B in PPD(R).
Finally, if x is a nonzero element of R, then for each 8 in PPD(R), we denote
by neg(x) the integer ng((x)).

It is important, at this point, to compare the almost zero family {ne(x)}secrrowr
with the family of prime exponents {n(x)}.c; associated with a representative fam-
ily of prime elements, introduced in Section 4.

The following basic facts concerning primary decompositions of principal
divisors of unique factorization domains should be verified.

Basic Properties 7.6
Let R be a unique factorization domain. Then we have:

(a) A principal divisor I is R if and only if ne(I) =0 for all B in PPD(R).
(b) If I, and I, are principal divisors of R, then ng(I,) = ne(I) + ng(ly) for all B in
PPD(R).
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(¢) For two principal divisors I, and I, the following are equivalent:
@ I,DL.
(i) L)L, that is, I,I = I, for some principal divisor I of R.
(iif) For each B in PPD(R) we have

ng(L) = ny(I).

We underscore, at the risk of being redundant, the following analogs for the
nonzero elements of a unique factorization domain.

Basic Properties 7.7
Let R be a unique factorization domain.

(a) Anelement rin R is a unit in R if and only if ng(7) =0 for all  in PPD(R).

(b) Suppose that r, and r; are two nonzero elements of R. Then ny(r,) = ng(r;) for
all ® in PPD(R) if and only if there is a unit u# such that ur,=r..

(¢) If r, and r; are nonzero elements of R, then ny(rir;) = ny(r) + ny(r,) for all B in
PPD(R).

(d) For two nonzero elements r, and r; in R, the following are equivalent:
(i) rllrz.
(i) ns(r)=nu(n) for all ® in PPD(R).

As for greatest common divisors and least common multiples, the basic prop-
erties already cited for these notions for elements fully justify the following
analogs for principal divisors.

Definition
Let I,,..., I, be a finite family of principal divisors of an integral domain R.

(a) A principal divisor I is said to be the greatest common divisor of I,,..., I,
which we denote by I'=gcd[],,..., L] if:

® ID(,..., 1), the ideal generated by U I

(i) If J is a principal divisor of R containing (I,,..., 1), then JDOL
(b) A principal divisor I is said to be the least common multiple of I,, . . ., I,, which
we denote by I=lem(l,,..., L) if I=L,N---NI,.

We now state the analog, for divisors, of Proposition 4.5.

Proposition 7.8

Let I, ..., I, be a finite family of principal divisors of a unique factorization do-

main R.

(a) For each 8 in PPD(R), let ng = min (ng(l), . . ., ne(L)). Then {ng}sereow) is an
almost zero family of elements in N with the property that = II B is
ged(l, ..., L] BEPPD(R)

(b) For each R in PPD(R), let ng = max (ng(L)), . . ., ne(I,)). Then {ng}ecrrom is
an almost zero family of elements in N with the property that I = II B™is
the lem(I,, ..., L]. BePPDER)

(c) If I, and I are two principal divisors of R, then
LL=(cm(l,, L)) - (gcd(l,, I.])
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Note that this last statement asserts that if x and y are nonzero elements of a
UFD, R, then if c is a Icm[x, y] we have xy = cd where d is a gcd[x, y].

Corollary 7.9

Suppose R is a unique factorization domain. Let {py}serror, be a family of prime
elements of R with the property (pg)= for all B in PPD(R) (that is, a
representative family of prime elements of R).

(a) If x is a nonzero element of R, then there is a uniquely determined unit u in R

suchthat x=u I pg*.
SB€EPPD(R)

() If xi,...,x, is a finite family of nonzero elements in R and ng=
min(ng(x,), ..., ne(x,)) for each L in PPD(R), then x= Il p* is a
gcd[x., e, x.]. BEPPD(R)

) If x,...,x, is a finite family of nonzero elements in R and ng=
max(ng(x,), ..., ng(x,)), then x =IIpge is a lemlx,,..., x.].

(d) If x, and x, are nonzero elements of R and x =lcm{x,, x;] and y = gcd[x;, x.],
then xy = ux,x, with 4 a unit in R.

8. LOCALIZATION IN INTEGRAL DOMAINS

In this section we apply the notion of localization for integral domains to obtain
some new examples of unique factorization domains as well as principal ideal
domains. We begin by saying what we mean by localization for integral domains.

Let R be an integral domain with field of quotients Q(R). Suppose S is a
submonoid of the multiplicative monoid of nonzero elements in R. Let R be the
subset of Q(R) consisting of all quotients r/s with s in S. Then it is easily checked
that R is a subring of Q(R) containing R as a subring. Clearly, if S = R —{0}, then
Rs= Q(R). Because the rings of the form R play an important role in studying in-
tegral domains, they are given a special name.

Definitions

Let R be an integral domain. A subset S of R is called a multiplicative subset of R
if it is a submonoid of the multiplicative monoid of nonzero elements of R. If S is
a multiplicative subset of R, the subring of Q(R) consisting of all quotients r/s
with s in S is called the localization of R with respect to S and is denoted by Rs.

In order to underscore the connection between localization and unique fac-
torization domains, we show how to express, in terms of localization, that an
integral domain is a unique factorization domain.

Proposition 8.1
For an integral domain R the following are equivalent:

(a) R is a unique factorization domain.

(b) Rs= Q(R), where S is the multiplicative set consisting of all elements of R
which can be written as a unit in R times a finite product of prime elements
in R.
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(c) There is a multiplicative set S consisting of elements which can be written as a
unit in R times a finite product of prime elements in R such that Rs= Q(R).

PROOF: (a) implies (b) and (b) implies (¢) are trivial.

(c) implies (a). In order to show that R is a UFD, we must show that every
nonzero element r in R is a unit times a finite product of prime elements. Since we
are assuming that Rs= Q(R), we know that if r is a nonzero element in R, then
1/r =r'[/s where r' isin R and s is in S. From this it follows that rr' = s = u Il p,

i=\
where u is a unit in R and the p; are prime elements in R. The fact that this implies
that both r and r’ are of the form a unit in R times a finite product of prime
elements in R follows easily by induction on n, the number of prime elements in

n
the expression rr’ = u Il p.. This proof is left as an exercise for the reader.
i=1

The following general properties of localization play an important role in our
applications of this technique to the study of unique factorization domains.

Proposition 8.2
Let S and T be multiplicative subsets of the integral domain R.

(a) Because R CRsC Q(R), we have Q(R)= Q(Ry).

(b) If SCT, then RCRsCRrCQ(R). Hence, if Rs=Q(R)=Q(Rs), then Rr=
Q(R7) = Q(R).

(c) T is a multiplicative subset of Rs and S is a multiplicative subset of Ry which
are related by:
() (Rs)r= Rsr=(R7)s where ST is the multiplicative subset of R consisting of

all products st where s isin S and t is in T. Clearly, ST contains SU T.

(i) Rsr contains Rs and Ry

(d) If x is a nonzero element in R, then x is a unit in Rsif and only if rx is in S for
some r in R or, what is the same thing, RxNS+#8.

(e) If x is a prime element in R, then x is either a prime or a unit in Rs according to
whether RxNS is empty or not empty.

PROOF: Left as an exercise for the reader.

As an easy consequence of this proposition we have the following.

Corollary 8.3
Suppose S is a multiplicative subset of the unique factorization domain R. Then
Rs is also a unique factorization domain.

PROOF: Let T be the multiplicative subset R — {0} of R. Because R is a UFD,
we know that all the elements of T can be written as a unit in R times a finite
product of prime elements in R. Because units in R remain units in Rs and prime
elements in R are either units or primes in Rs, we know that T, viewed as a
multiplicative subset of Rs, consists of elements which are units times a finite
product of primes in Rs. Therefore, by our characterizations of unique factoriza-
tion domains by means of localization (see Proposition 8.1), it will follow that R;is
a unique factorization domain if we show that (Rs)r= Q(Rs). But the fact that
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Q(Rs) = Q(R)D (Rs)rD Rr= Q(R) = Q(Rs) implies (Rs)r= Q(Rs), which gives us
our desired result, namely, that Rs is a UFD.

The remaining results ‘concerning unique factorization domains which we
develop in this section depend on the relationship between PPD(R) and PPD(R;s)
where S is a multiplicative subset of the integral domain R. Because the elements
of PPD(R) and PPD(R;) are principal prime ideals of R and R, respectively, it is
appropriate to begin this discussion by pointing out some of the general connec-
tions between the ideals of R and those of Rs. We first make the useful definition.

Definition
Suppose S is a multiplicative subset of the integral domain R. If I is an ideal of R
we denote by IRs or Is the ideal of Rs generated by the subset I of Rs.

Basic Properties 8.4
Let S be a multiplicative subset of the integral domain R. If I is an ideal of R,
then:

(a) The ideal Is of Rs consists of all elements of Rs which can be written in the
form x/s with x in I and s in S.

(b) If {x:}«cx generates I as an ideal in R, then {x.}icx generates Is as an ideal in Rs.

(¢) Hence, if I is a finitely generated ideal of R, then I is a finitely generated ideal
of Rs.

(d) In particular, if I is a principal ideal of R, then Is is a principal ideal of Rs.

(e) Is =R;s if and only if INS+0.

PROOF: (a) Because I is the ideal of Rs generated by the subset I of Rs, we
know that the elements of I are the finite sums (r./s))x; + - - * +(r./5.)x. with the x;
in I and r, and s; in R and S, respectively. But

(ﬁ)x.+. et (ﬁ)xn =Eﬂ

St

where t;=1I s,. Because X[., rtx; is in I and Il s, is in S, it follows that the
k#j j=1

elements of Is can all be written in the form x/s with x in I and s in S. Because
each element x/s with x in I and s in S can be written as (1/s) - x and each 1/s is in
Rs, it follows that each such x/s is in Is. Thus, Is consists precisely of the elements
x/s with x in I and s in S.

(b) Suppose {x:}.cx generates the ideal I of R. We want to show that {x.}icx
also generates the ideal Is of Rs. Suppose x/s is in Is. Then there is a finite subset
K’ of K and a family {r.}.cx of elements of R such that x = kEEr r.x.. Therefore,

x/s = Crex NS =Ziex (1/s) - x.. Because each n/s is in Rs, we see that the
family {x.}:ex does indeed generate the ideal Is of Rs.
(c), (d), and (e) are left as exercises.

If J is an ideal of Ry, then it is not difficult to check that JN R is an ideal of R.
Thus, associated with the ideal J of Rs is the ideal JN R of R. On the other hand,
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associated with each ideal I of R is the ideal Is of Rs. We now investigate the
connections between these two operations.

Proposition 8.5
Suppose S is a multiplicative subset of the integral domain R. Then for each ideal
J of Rs, the ideal JNR of R has the following properties:

(a) For an element x in R the following statements are equivalent:
@ xisin JNR.
@ii) There is an s in S such that sx is in J.
(iii) sx is in J for all s in S.
(iv) x/s is in J for all s in S.
(v) x/s is in J for some s in S.
®) JNR)s=J.
() If J#Rs, then (JNR)NS =9.
(d) If J is a prime ideal of Rs, then JNR is a prime ideal of R.
(e) If J, and J. are ideals of Rs such that JJNR =J,NR, then J,=1..

PROOF: We leave everything except part (d) as an exercise. Part (d) is an
obvious special case of the following.

Lemma 8.6
Suppose f: R— T is a morphism of arbitrary commutative rings. If I is a prime
ideal of T, then f'(I) is a prime ideal of R.

PROOF: The morphism f:R—T induces an injective morphism of rings
R/f'(I)> T/I. Because I is a prime ideal of T, we know that T/I is an integral
domain. Hence, R/f '(I) is an integral domain because it is isomorphic to a
subring of the integral domain T/I. Therefore, f'(I) is a prime ideal of R.

As an immediate consequence of Prdposition 8.5 and Basic Properties 8.4 we
have the following.

Corollary 8.7
Suppose S is a multiplicative subset of the integral domain R.

(a) Rs is noetherian if R is noetherian.
(b) Rs is a PID if R is a PID.

PROOF: (a) We show that R;s is noetherian by showing that each ideal J of Rs
is finitely generated. Because R is noetherian every ideal of R is finitely gener-
ated. In particular, JNR is a finitely generated ideal of R for each ideal J of Rs.
Hence, by our previous basic properties, (J N R)s is a finitely generated Rs ideal.
But we have just shown that J = (J N R)s, which means that J is a finitely gener-
ated ideal of Rs because a finite set of generators for the ideal JNR of R is also a
set of generators for the Rs ideal (JNR)s =J. Hence, Rs is noetherian, if R is
noetherian.

(b) Proven similarly.

. We now want to investigate the connections between an ideal I of R and the
ideal Is N R of R. It is obvious that Is N R O I. In the exercises, an example is given
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to show that Is N R need not be I. The reason for this is that the ideal Is N R must,
as we have already seen, have the property that if x is in R and sx is in I; N R for
some s in S, then x is in I, N R [see Proposition 8.5(a)]. However, the ideal I need
not have this property. In fact, this observation completely accounts for the
difference between I and Is N R as we shall presently see.

To this end, we notice that if I is any ideal in an integral domain R and S is a
multiplicative set in R, then the set of all x in R such that sx is in I for some s in S
is an ideal of R containing I. The importance of this ideal is that it is precisely
IsN R, a fact which we shall verify soon. For convenience of reference we make
the following definition.

Definition
Let I be an ideal in an integral domain R and let S be a multiplicative subset of R.
We call the ideal consisting of all x in R such that sx is in I for some s in S, the
S-closure of I. We denote the S-closure of I by Cis(I). We say that I is S-closed if
I= Cls (I )

Basic Properties 8.8
Suppose S is a multiplicative set in the integral domain R. If I is an ideal of R,
then:

(@ Cls(D=IsNR. ,

(b) Cls(I) is S-closed because if J is any ideal of Rs, then J N R is S-closed.
(c) Hence, sNR =1 if and only if I is S-closed.

(d) If I is a prime ideal of R, then I is S-closed if and only if INS =§.

(e) If I' is another ideal in R, then Is =(I')s if and only if Cls(I)= CIs(I').

(f) If I+ R is an S-closed ideal, then INS = 0.

PROOF: (a) We have already seen that since Is is an ideal in Rs, an
element x in R is in Is N R if and only if there is an s in S such that sx is in I, that
is, such that sx =r/s’ with r in I and s’ in S. Therefore, if x is in Is N R, then
ss’'x = r in L From this it follows that Is N R C Cls(I). On the other hand, if x is in
Cls(I), then sx = r for some r in I and some s in S which implies that x = r/s or,
equivalently, x is in Iy N R. This shows that Cls(I)CIsNR and thus Cls(I)=
IsNR.

(b) and (c) are left as exercises.

(d) Suppose I is a prime ideal in R. Then I #+ R. Now if SNI #9, then Is =
Rs and so Is "R = R # I. Thus, under these circumstances, I is not S-closed.
Hence, if I is S-closed, then SNI=40.

Assume SNI=@. Let x be an element in R having the property that there is
an s in S such that sx is in I. This implies x is in I because I is a prime ideal and sx
is in I although s is not in I

(e) Clearly, in order to show that Is = I if Cls(I) = Cls(I'), it suffices to show
that Is = (Cls(I))s. Because Cls(I)D I, we have that (Cls(I))s O I. We now show
Is D (Cls(I))s. Each element of (Cls(I))s can be written in the form y/s with y in
Cls(I) and s in S. The fact that y is in Cls(I) means that s’y = x for some x in I
and some s’ in S. Therefore, y = x/s’ which implies y/s = x/ss’. But x/ss’ is in Is.
This shows that (Cls(I))s CIs which finishes the proof that Is = (Cls(I))s. The rest
of part (e) is left as an exercise, as is the proof of (f).
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As a partial summary of these results concerning the relationship between the
ideals of R and those of Rs we have the following.

Proposition 8.9
Let S be a multiplicative subset of an integral domain R. Then the map

f:{S-closed ideals of R} {ideals of Rs}
given by f(I)=1Is for all S-closed ideals I of R has the following properties:

(@) fis a bijective map whose inverse is given by f'(J) =JNR for all ideals J of
Rs.

(b) If the S-closed ideal I can be generated by n elements, then f(I) = Is can also
be generated by n elements.

(¢) An S-closed ideal I of R is a prime ideal of R if and only if f(I)=Is is a prime
ideal of Rs.

(d) Hence, f induces a bijective map between the prime ideals of R which do not
meet S and all the prime ideals of Rs.

9. A CRITERION FOR UNIQUE FACTORIZATION

We now apply these results to unique factorization domains. We begin with the
following.

Definltion

Suppose S is a multiplicative subset of the integral domain R. Then we denote by
PPDs(R) the subset of PPD(R) consisting of all principal prime divisors I such
that INS =0.

By our previous results we know that if B is in PPDs(R), then $Bs is a
principal prime divisor of Rs. This suggests considering the map PPDs(R)—
PPD(R;s) given by B - LB for all B in PPDs(R). Because the elements of PPDs(R)
are S-closed, we know that the map PPDs(R)— PPD(R;) is always injective.
Hence, it is natural to ask when the map PPDs(R)— PPD(Rs) is surjective or,
what is the same thing, bijective. In the exercises we will give an example of an
integral domain R which has a multiplicative set S such that the map PPDs(R)—
PPD(Rs) is not bijective. In the meantime, we point out some cases where this
map is an isomorphism and give some applications of this fact. We begin with the
simplest case.

Proposition 9.1
Suppose R is a PID. If S is any multiplicative subset of R, then the map

PPDs(R)—> PPD(Rs)
is bijective.
PROOF: We have already shown that Rs is a PID because R is a PID. Hence,

PPD(Rs) is nothing more than the set of nonzero prime ideals of Rs. Suppose B is
a nonzero prime ideal of Rs. Then we known that 8 N R'is a prime ideal of R with
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the property (BN R)s =B. Therefore, L N R is a nonzero prime ideal of R and
hence an element of PPD(R) since R is a PID. Because BN R is also S-closed, it
follows that BN R is an element of PPDs(R) which goes to 8 under the map
PPDs(R)— PPD(R;). This shows that if R is a PID, then the map PPDs(R)—>
PPD(Rs) is surjective and hence bijective.

In connection with this result, it is interesting to observe the following easily
verified proposition.

Proposition 9.2

Suppose R is a PID and X is an arbitrary subset of PPD(R). If S consists of all s
in R not divisible by any prime element p in R such that (p) is in X, then:

(a) S is a multiplicative subset of R.
(b) X = PPDs(R).
(¢) The map X— PPD(Rs) given by -5 for all B in X is bijective.

This last observation can be used to show that given any integer n =0 there is
a PID R with Card (PPD(R)) = n. To accomplish this, all one has to do is show that
there is a PID R with PPD(R) an infinite set. For suppose R is a PID with PPD(R)
an infinite set. Then given any integer n =0, there is a subset X of PPD(R) with
n-elements. But by our previous result, there is a multiplicative subset S of R
such that X = PPDs(R). Therefore, Rs is a PID such that PPD(Rs) has n-elements
because the map X— PPD(R;s) given by B— R for all B in X is an isomorphism
of sets.

We now show that there are PID’s R with PPD(R) an infinite set. In
particular, we show that Z and R[X], the ring of polynomials over a field, all have
an infinite number of principal prime divisors.

We first observe that the rings Z and R[X], with R a field, all have the
property that if a is any nonzero noninvertible element in any such ring, then
either 1+ a or 1 — a is not a unit. That this is true for Z is left as an exercise. If R is
a field, then we know that a nonzero polynomial in R[X] is a unit if and only if its
degree is zero. Because deg (1 + a) = deg (a) for any nonzero element a of degree
greater than zero, then 1+ a is not a unit. The fact that Z and R[X], with R a field,
have infinitely many principal prime divisors, now follows from the more general
proposition.

Proposition

Let R be a unique factorization domain with the property that either 1 +ror1—r
is not a unit for all elements r in R which are neither zero nor a unit. Then PPD(R)
is an infinite set.

PROOF: Suppose PPD(R) is finite with B,, . . . , B, its distinct elements. Let p,
be a generator of B, foreachi=1,..., n. Then 'I:II p: is not a unit in R and hence
1+ ‘ﬁlp, orl- llullp. is not a unit in R. Therefore, p;|(1+ ‘I.llp;) or p;|(1- 'I.Ilp.) for

some j=1,...,n. In either event p,|1, which is impossible. This contradiction
shows that the set PPD(R) is infinite.
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We now return to our general question as to when the injective map
PPDy«(R)- PPD(Ry) is bijective for a multiplicative subset S of an integral domain
R. We have already seen that PPDs(R)— PPD(R;) is an isomorphism of sets for
any multiplicative set S in a PID, R. As a result of some slightly more general
considerations which are of considerable interest in their own right, we will ex-
tend this result to arbitrary multiplicative sets of arbitrary UFD’s.

We begin with the following useful lemma.

Lemma 9.4

Let S be a multiplicative subset of the integral domain R. Suppose the set of
principal ideals in R is noetherian. If x is a nonzero element of R, then x = st
where s is in S and t is not divisible by any nonunit in S.

PROOF: Let J be the set of all principal ideals (y) with the property that there
is an s in S such that sy = x. J is not empty because (x) is in J. Therefore, the set
J has a maximal element (), because the set of principal ideals in R is noetherian.
We claim that only the units in S divide t. For suppose ¢t = t,s, with s, a nonunit in
S. Because x = ts with s in S, then x =t,5,5. So (¢)) is in J and contains (¢) but is
not equal to ¢t because t = t,s, with s, not a unit. This contradicts the fact that () is
a maximal element of J, Therefore x = ts where s is in S and ¢ is not divisible by
any nonunit in S, completing the proof of the lemma.

Definition

Let S be a multiplicative subset of the integral domain R. We say S is generated by
primes if for each x in S there are elements u, p,,...,p, in S such that x =
up,,...,p. where u is a unit of R and p,,..., p, are prime elements of R.

Lemma 9.5
Let R be an integral domain such that the set of principal ideals in R is noetherian.
Suppose S is a multiplicative subset of R generated by primes.

(a) Let x be an element in R with the property that s in S is a unit in R if s|x in R.
Suppose r is an element in R such that x|r in Rs. Then x|r in R.

(b) Each principal divisor of Rs can be generated by an element x in R satisfying
the hypothesis of (a).

(¢) If B is a principal prime divisor of Rs, then there is a principal prime divisor R’
of R such that Rs=B.

PROOF: () Suppose x has the property that if s in S divides x in R, then s is
a unit in R. Further, suppose r in R is divisible by x in Rs, that is, r = (t/s)x with t

in R and s in S. By hypothesis, s = u IT p, where u isaunitin S and p,,..., p. are
i=1
prime elements of R contained in S. Because none of the p; divide x, the fact that
tx = rs = ru I1 p, implies (by induction on n) that s|t in R. Hence, x|r in R, which
=1

completes the proof of (a).
(b) Suppose (r/s) is a principal divisor of Rs. Because the set of principal
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ideals of R is noetherian, we know by Lemma 9.4 that r = s'x with s’ in S and x
an element of R satisfying the hypothesis of (a). Hence, x = (r/s)(s/s’), which
means that xRs = (r/s)Rs because s/s’ is a unit in Rs. This completes the proof of
(b).

(c) Suppose R is a principal prime divisor of Rs. Then by (a) and (b) we know
that R = xRs where x is an element of R having the property that if r is in R and
x|r in Rs, then x|r in R. We now show that this property, combined with the fact
that x is a prime element in Rs (remember xR; is a principal prime divisor in Rs),
implies that x is a prime element in R.

For suppose r, and r: are in R and x|r,r. in R. Then x|r,r: in Rs and hence x|r,
or x|r, in Rs. Therefore, it follows that x|r, or x|r, in R which finishes the proof
that x is a prime element in R. Because the principal prime divisor (x) of R
obviously has the property (x)s = xRs =%, the proof of (c) is complete.

As an immediate consequence of this lemma we have the following.

Proposition 9.6

Suppose R is an integral domain with the property that its set of principal ideals is
noetherian. Further, suppose S is a multiplicative subset of R generated by
primes. Then the map

PPDs(R)- PPD(R;)
given by P— Ps is an isomorphism of sets.

We now give several applications of this result. The first is to show that if S is
a multiplicative set in a unique factorization domain R, then the map PPDs(R)—
PPD(Ry) is an isomorphism. This will follow from our previous proposition and
the following general observation.

Proposition 9.7
Suppose S is a multiplicative subset of an integral domain R. Let T be the subset
of R consisting of all r in R such that r divides s for some s in S. Then:

(a) T is a multiplicative subset of R containing S.

() Rr=Rs.

(¢) Ir=I; for all ideals I of R. ,

(d) Cis(I)= CI(I) for all ideals I or R.

(e) PPDs(R)= PPDHR).

(f) The maps PPDs(R)— PPD(R;s) and PPD(R)— PPD(Ry) are the same.

PROOF: (a) Left as an exercise.

(b) Because T O S we know that Ry D Rs. Therefore, we must show that
R:C Rs. To do this, it suffices to show that 1/t isin Rsforall t in T. Butif tisin T,
then rt is in S for some r in R. Because 1/t =r/rt and r/rt is in Rs, it follows that
1/t is in Rs, which is our desired result.

(c), (d), and (f) are left as exercises.

We are now in position to prove the following.
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Proposition 9.8
If S is a multiplicative subset of the unique factorization domain R, then the map

PPDs(R ) - PPD(RS)
is an isomorphism.

PROOF: Suppose S is a multiplicative subset of R and T is the multiplicative
set of R consisting of all ¢ in R such that t|s for some s in S. By Proposition 9.7,
because we know that PPD:(R)= PPD:(R), that Rs = Ry, and the maps
PPDs(R)- PPD(R;s) and PPD.(R)— PPD(R;) are the same, it suffices to show
that PPD-(R)—- PPD(R;) is an isomorphism. Clearly, T has the property that if r
in R divides something in T, then r is in T. Hence, the fact that R is a UFD implies
that T is generated by primes. Also, the set of principal ideals of R is noetherian
because R is a UFD. Hence, by Proposition 9.6, the map PPD;(R)—» PPD(Ry) is
an isomorphism.

Earlier we showed that if R is a unique factorization domain and S is a
multiplicative set in R, then Rs is a unique factorization domain. Under these
circumstances it is tempting to ask if R is a unique factorization domain just
because there is a multiplicative set S such that Rs is a unique factorization do-
main. Although the answer for arbitrary S is no (see the exercises for examples),
there are special rings and special sorts of multiplicative sets for which the answer
is yes, as we now show in the following.

Theorem 9.9

Suppose R is an integral domain whose set of principal ideals is noetherian. Also,
suppose S is a multiplicative subset of R generated by primes. If Rs is a unique
factorization domain, then R is a unique factorization domain.

PROOF: Let T be the multiplicative set of R consisting of all r in R which
divide elements in S. Since every element of S is a finite product of units and
prime elements in R, it is obvious that T has the property that T is generated by
primes. Therefore, because the set of principal ideals in R is noetherian, we know
that PPD.(R)— PPD(R;) is an isomorphism. Because R = R, we also know
that R, is a unique factorization domain. We now show that these facts together
imply that R is a unique factorization domain.

Let V be the elements in R which can be written as a finite product of units
and primes in R. Then clearly V is a multiplicative set of R containing T. By
Proposition 8.1, we know that in order to show that R is a unique factorization do-
main, it suffices to show that Q(R)=Ry.

To do this, we first observe that since a prime element in R is either a unit ora
prime element in Ry, the multiplicative subset V of R has the property that every
element of V is a finite product of units and prime elements in Ry. Further, the
fact that PPD{(R)— PPD(R;) is surjective implies that given any prime element y
in Ry, there is a prime element r in R (and hence in V) such that yR;= rR; or,
equivalently, there is a unit z in Rrsuch that y = zr. Hence, every nonzero element
of Rr can be written as zv with z a unit in Rr and v in V. This implies that
(R)v=Q(Rr) = Q(R). Because VO T, we know that VT =V. Hence, Q(R) =
(RD)v= R+ = Ry, which gives us our desired conclusion that R, = Q(R) or, equiv-
alently, R is a unique factorization domain.
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10. WHEN R[X] IS A UFD

In this section we show how the criterion established in Theorem 9.9 for when an
integral domain is a unique factorization domain can be used to show that if R is a
UFD, then R[X] is a UFD. The proof will proceed in several steps. First of all we
show that because R is a unique factorization domain, the set of principal ideals in
R[X]is noetherian, something which must be true if R[X] is to be a unique factor-
ization domain. What we actually show is a little more general, namely, the
following.

Lemma 10.1
Suppose R is an integral domain whose set of principal ideals is noetherian. Then
the set of principal ideals of R[X] is also noetherian.

PROOF: Suppose
(a(X)) C(a(XNC: - Cla(X)C:---

is an ascending chain of principal ideals in R[X]. We want to show that for some
integer m =0 we have (a,(X)) = (a.(X)) for all n = m. Clearly, we can assume
without loss of generality that all the a.(X) #0.

Because

ax(X)|a(X), ax(X)|ax(X), ..., etc.

we have that deg (a,(X))=deg (ax(X))=- - -=deg (a.(X))=" - . Hence, there is an
integer h =1 such that deg(a.(X)) = deg(a.(X)) for all i = h. So again without
loss of generality we can assume that the degrees of the a,(X) are all the same.
The fact that deg (a...(X)) = deg(a.(X)) and a..,(X)|a.(X) implies that there is a
nonzero r.., in R such that r,.,a...(X) = a.(X). In particular, if we let b, be the
leading coefficient of a.(X) for each n, we have the ascending chain of principal
ideals in R
b, RCb,RC---Cb,RC---

because r..,b,., = b, for all n. Because the set of principal ideals of R is noeth-
erian, we know there is an integer m =1 such that b,R = b,R for all n = m. Hence,
Fmsibm R = b....R, which implies r..., is a unit in R. A similar argument shows that
r..; isaunitin R for all j = 1. Therefore, the ideals (a...,(X)) are all the same for
integers j = 0, which shows that (a.(X)) = (a..(X)) for all n = m. Hence, the set of
principal ideals in R[X] is noetherian if the set of principal ideals in R is
noetherian.

Next we want to show that if p is a prime element in R, then p is also a prime
element in R[X]. This follows from the following general lemma.

Lemma 10.2

Let I be a prime ideal in the arbitrary commutative ring R. Then the ideal IR[X] of
R[X] generated by the set I is a prime ideal of R[X]. Actually R[X])/IR[X] is
isomorphic to the integral domain (R/I[X].

PROOF: Let g: R— R/I be the canonical surjective morphism. Then (R/DN[X]
is an integral domain and we know that the morphism of rings g': R—(R/D[X]
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which is the composition R——R/I-*=>(R/I)[X] can be extended to a unique
morphism f:R[X]—=>(R/I)[X] with the property that f(X)= X (see Chapter 4,
Proposition 2.2). More precisely, the map f:R[X]-=>(R/I)[X] given by
fCienaX')=2Z.cng(a)X' is a morphism of rings. Clearly, f is a surjective mor-
phism of rings. Because f(Z a.X') =0 if and only if each a, is in I, it follows that
Ker f = IR[X]. Therefore, f induces an isomorphism R[X)/IR[X]}- (R/D[X],
which shows that R[X]/IR[X] is an integral domain because (R/I)[X] is an
integral domain. Thus, IR[X] is a prime ideal in R[X].

Before proving our main theorem, we need one more preliminary result. Sup-
pose R is an integral domain. Then so is R[X]. Because R CQ(R), we know that
R[X]CQ(R)[X]. Clearly, Q(R)IX]CQ(R[X]), because R—{0}CR[X]-{0}, and
so0 Q(R[X]) = Q(Q(R)[X]). Now let S be a multiplicative set in R. Because RsC
Q(R), we have that R{X]CQ(R)[X]CQ(R[X]). On the other hand, S is also a
multiplicative set in R[X] because R CR[X]. Thus, the ring R[X]s is also con-
tained in Q(R[X]). We claim that R{X] and R[X]s are the same subring of
Q(R[X]) as we now show.

An element of R[X]s can be written as (Z,cw a.X')/s for some 2,y aX' in
R[X] and s in S. But this is clearly the same thing: Z,.s a:/sX' in Q(R[X]). Be-
cause X.en a /sX' is in Rs[X], it follows that R[X]s CRs[X].

An element of Rs[X] can be written as Z.sa/sX'. Suppose

deg Ciena/s.X')=n.Thena, =0foralli >n.Lets = fl s, andlet t, = s/s, for all

j=0,...,n. If we set b,=at, for i =0,...,n and b, =0 for all i >n, then
Tienbi/sX' =Zen(a/s)X' in Q(R[X]). Because Z.ub/sX' also equals
(Ziew b.X')/s which is in R[X]s, we have that R:[X]CR{[X]s. This finishes the
proof of the lemma.

Lemma 10.3
Let S be a multiplicative subset of the integral domain R. Then the subrings R{X]
and R[X]s of Q(R[X]) are the same.

Putting together these preliminary results with our previous results about
unique factorization domains, we obtain the following.

Theorem 10.4
If R is a unique factorization domain, then so is R[X].

PROOF: Because R is a UFD, we know that its set of principal ideals is
noetherian. Therefore, we know by Lemma 10.1 that the set of principal ideals in
R[X] is noetherian. Hence, if we can find a multiplicative subset S of R[X] such
that (a) S is generated by primes and (b) R[X]; is a unique factorization domain,
then it follows from Theorem 9.9 that R[X] is a unique factorization domain.

Let S be the multiplicative set of R consisting of all nonzero elements in R.
Because R is a unique factorization domain, S is generated by primes. Because R
is a subring of R[X], we know that the units in R are also units in R[X]. But we
have also shown that prime elements in R are also prime elements in R{X]. There-
fore, viewing S as a multiplicative set in R[X], it follows that the multiplicative
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subset S of R[X]is generated by primes. Hence, if we show that R[X]sis a UFD,
then we will have finished the proof that R[X] is a UFD.

But we have already seen that R[X]s= RJ{X]. Because S is the set of all
nonzero elements of R, we have that Rs= Q(R) and so R[X]s= Q(R)[X]. But
Q(R)[X] is a principal ideal domain, and hence a unique factorization domain,
since Q(R) is a field. Therefore, R[X]s is a unique factorization domain, which
finishes the proof that R[X] is a unique factorization domain.

EXERCISES

(1) Let R be an integral domain.

(a) Show by induction on n that R[X,,..., X,] is an integral domain for all
positive integers n.

(b) Show that if I is any set, then R[X )., is an integral domain. [Hint: Show
that if f,,..., f. is any finite set of elements of R[X ].c,, then there is a finite
subset J of I such that the image of R[X],c; in R[X.]ic; under the usual
injection morphism R([X,],c; = R[X)ic; contains f,,..., fu.

(¢) Show that if J is a subset of I and f(X) is a prime element in R[X,],e,, then
the image of f(X) in R{X )., is also a prime element in R[X ],

(d) Prove by induction on n that if R is a unique factorization domain, then so is
R[X,,...,X,] for all positive integers n.

(e) Prove that if R is a unique factorization domain, then so is R[X.]., for any
set L

(f) Prove that if R[X ]:e: is a unique factorization domain for some nonempty set
I, then R is a unique factorization domain.

(2) Let R be an arbitrary nonzero commutative ring.

(a) Show that R[X] is not an artinian ring.

(b) Show that R[X.c: is not a noetherian ring if I is an infinite set.

(3) Let K be a field and f(X) an element of K[X]. An element « in K is said to be a

root of the polynomial f(X) if f(a)=0.

(a) Show that « in K is a root of the polynomial f(X) if and only if (X — a)|f(X)
in K[X]. [Hint: Using the Euclidean algorithm write f(X) = q(X)}(X —a)+
r(X) where either r(X) =0 or deg r(X) <deg (X — a).]

(b) Show that if deg f(X) = n, then f(X) has no more than n roots in K.

(4) Suppose K is a field and G is a finite subgroup of the multiplicative group of

nonzero elements of K. Prove that G is a cyclic group. [Hint: Use the preceding

exercise together with Exercise 29 of Chapter 2.]

(5) Show that if K is a finite field, then the group of units in K is a cyclic group. In

particular, if p is a prime integer, then U@/pZ) is a cyclic group of order p — 1.

If R is a commutative ring and I is an ideal of R, we shall write x = y(I) to
meanr x —y is in L If I is a principal ideal generated by an element m, we shall
write x = y'(m) instead of x = y((m)).

(6) Let p be a positive prime element in the ring of integers, Z.

(a) Prove that (": ) =0(p) for 1 <k <p where (Z) is the binomial coefficient.

Google
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[Hint: Recall that

k/ kp-k)
and that Z is a UFD.

() If x and y are integers, prove that (x+y)*"=x""+ y*(p) for any n in N.

(c¢) Prove thatif x and y are integers such that x = y(p"), then x"= y*(p"*') for any
n in N.

(d) Prove that if p is an odd prime, then (1+p)”" '=1+p"'(p" for all n=2.
[Hint: Use induction on n.]

The purpose of the next exercise is to outline a proof of the fact that the
group of units in the ring Z/p"Z is a cyclic group of order (p —1)p"~' for all odd
prime numbers p in Z and all positive integers n.

(7) Let p be a prime number in Z and n a positive integer.

(a) Show that every integer z in [0, p") can be written in one and only one way as
the sum a,+a,p+---+a, p""' where the g; are in [0, p).

(b) Let k:Z—2Z/p"Z be the canonical surjective morphism of rings. Show that
k|(0, p"):[0,p")—>2Z/p"Z is a bijective morphism of sets.

(¢) Show that k(a.+a,p +:--+a...p""") is a unit in Z/p"Z if and only if a. ¥
0. Hence, card (U@/p"Z))=(p — IXp" 7).

(d) Let k':Z/p"Z—+2/pZ be the canonical surjective map of rings. Show that if x
is in U@Z/p"Z), then k'(x) is in U(2/pZ). Also show that the induced map
f:U@Ip"Z)-> UZ/pZ) given by f(x)=k'(x) is a surjective morphism of
groups.

(e) Show that Ker f consists precisely of all the elements k(a+ap+---+
a,.,p""") with a,=1. Thus, card (Ker f)=p""".

(f) Assume, now, that p is an odd prime. Show that Ker f is a cyclic group by
showing that the order of k(1+ p) in UZ/p"2Z) is p™~'. [Hint: Use the fact
that (1+p)” "=1+p"'(p").]

(g) Prove that U@Z/p"2) is cyclic of order (p — 1)p". [Hint: Use the fact that Ker f
is a cyclic group of order p"' and U@/p"Z)/Ker f=U(Z/pZ) is a cyclic group
of order p—1.]

(h) Is UZ/82Z) cyclic? More generally, is U@/2"Z) cyclic if n=3?

(8) Let R be a commutative ring,  a prime ideal of R, and f(X)=

X"+a,X"'+---+a, a polynomial in R[X] such that all the a; are in B but a, is

not in . Show that f(X) is an irreducible element of R[X]. [Hint: Suppose f(X)

is not irreducible. Then f(X)=g(X)h(X) with neither g(X) nor h(X) units in

R[X]. Then show that either g(0) or h(0) is in B. Finally, show that if g(0) is in B,

then every coefficient of g(X) is in B, which is impossible. This result is known as

Eisenstein’s irreducibility criterion.

(9) Let K be afield and f: K— R a K-algebra with R not the zero ring. Show:

(@) f: K—R is an injective morphism of rings.

(b) The additive group of R can be viewed as a K-vector space by defining kr =
f(k)r for all k in K and r in R. This is the only way we consider R as a
K-vector space.

(c) Show that for each r in R, the map /,: R—R given by L(x)=rx is a linear
transformation of the K -vector space R. Further, show that [, = L, if and only
if r.=r,.

Google



Exercises 173

(d) Let V be a vector space over K. Show that the following data define a

K-algebra called the K-endomorphism ring of V and is denoted by Endx(V).

(i) As a set Endx(V) consists of all the linear transformations f: V- V.

(if) The addition in Endx(V) is given by (f+ g)(v) = f(v)+g(v) for all f, g in
Endg(V).

(iti) The multiplication in Endx(V) which is written as f - g is the composition
of the linear transformations g followed by f.

(iv) The ring morphism K- Endx(V) which makes Endx(V) a K-algebra is
given by k—f. where f,: V=V is the linear transformation fi(v)=kv
for all vin V.

(e¢) Show that the map g: R—>Endx(A) given by g(r)=1[ for each r in R is an
injective K-algebra morphism.

() Show that if V is a finite-dimensional vector space over K of dimension n,
then the K-algebras Endx(V) and M,(K) are isomorphic K-algebras which as
vector spaces over K are of dimension n’. [Hint: Choose a basis v,,. .., va
Define the map a : Endx (V) — M,(K) by a(f) as the matrix corresponding to f
with respect to the basis v,,..., v, Show that « is an isomorphism of
K -algebras.]

() Show that if R is a K-algebra whose dimension as a vector space over K is
finite, say n, then R is isomorphic as a K-algebra to a K-subalgebra of M,(K).

(h) Give an example of a K-algebra R whose dimension as a vector space over K
is n and which is isomorphic as a K-algebra to a K-subalgebra of M. (K)
with m <n.

(10) Let K be a field and consider K[X] a K-algebra in the usual way, that is, by

means of the ring morphism K- K[X] defined by a »Za.X' where a,=a and

a =0 for i >0. If f(X) is a polynomial in K[X], we consider K[X]/f(X) x

K[X] a K-algebra by means of the composite ring morphism K —

K[X]—> F[X)/f(X)K[X] where k is the usual canonical surjective ring

morphism.

(a) Show that K » K[X]/f(X)K[X] is an injective morphism unless f(X) is
a nonzero constant, that is, f(X)=2aX' with a,#0 and a, =0 for i >0.

(b) Suppose deg f(X)=n. Show that the K-algebra K[X])/f(X)K[X] is an n-
dimensional vector space over K. [Hint: Show that k(X°), ..., k(X"") are a
basis for K[X1/f(X)K(X) as a vector space over K.)

(¢) Let f(X) be an irreducible polynomial over K[X]. Recall that the K -algebra
L=K[X])/f(X)K[X] is a field. If we identify K with its image in L, the
polynomial f(X) can then be considered as an element of L[X]. Show that the
polynomial f(X) has a root in L. [Hint: Show that the element k(X)in L is a
root of f(X).]

(d) Show that if f(X) is an arbitrary polynomial, then there is a field L containing
K as a subfield such that L is a finite-dimensional vector space over K and
f(X) has a root in L.

(11) Let K be a finite field; for instance, K =2Z/pZ where p is a prime in Z.

(a) For each integer n =0, show that there is an irreducible polynomial f(X) in
K[X] with deg f(X)>n.

(b) Show that if n is any positive integer, there is a finite field L O K with
card(L)>n.
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(¢) Let K be a finite field. Show that the unique ring morphism f:Z— K given by
f(z)=2z - 1 for each z in Z has Ker f = pZ for some positive prime element p.
This prime number p is called the characteristic of the field K. Hence, the field
K is a Z/pZ-algebra where p is the characteristic of the field K.

(d) Show that card(K)=p" for some positive integer n.

(ey Show that pk =0 for all k in K.

(f) Show that if x and y are arbitrary elements of K, then (x + y)*= x"+ y°. More
generally, (x + y)*" = x""+ y* for all integers n.

(g) Show that if K is of characteristic p, then there is an irreducible element f(X)
in Z/pZ[X] such that K is isomorphic to Z/pZIX)/f(X)YZ/pZ[X]). [Hint:
Use the fact that U(K) is a cyclic group.]

(h) Show that if K is a finite field of characteristic p, then for each integer n and
each k in K, the polynomial X°"— k has at least one root in K. [Hint: Use the
fact that for each integer n, the map f: K — K given by f(k)=k"" is a
morphism of rings.]

(12) Let K be a field and consider the unique ring morphism f:Z— K given by

f(z)=z-1.

(a) Show that Ker f=(n) where n is either 0 or a positive prime number. The
number n is called the characteristic of the field K.

(b) Suppose the characteristic of the field K is zero. Show that there is a unique
morphism of rings @Q— K where Q is the field of rational numbers. This unique
morphism of rings is injective and one usually identifies Q with its image in K
by means of this unique morphism.

(c) If the characteristic of K is p, then show that there is a unique morphism of
rings Z/pZ— K. Show that this unique morphism is an injective morphism.
One usually identifies Z/pZ with its image in K by means of this unique
morphism.

(d) Show that if the characteristic of K is p, then (x +y)"" =x"" + y°" for all
integers n.

(13) Let K be a field. Then the field of quotients of K[X] is called the field of

rational functions in one variable over K, or more simply, the rational function field

over K, and is usually denoted by K(X). K(X) is considered a K-algebra by
means of the composition of ring morphisms K - K[X]— K(X) where K[X]—>

K (X) is the usual inclusion of an integral domain into its field of quotients. K is

usually identified with its image in K (X) by means of this injective ring morphism.

(a) Show that the characteristic of K (X) is the same as the characteristic of K.

(b) Show that K(X) is always an infinite-dimensional vector space over K.

(c) Show that there is always an injective morphism f: K(X)—K(X) of K-
algebras which is not surjective. [Hint: Let f: K[X]— K(X) be the uniquely
determined K-algebra morphism with the property f(X)= X*. Show that there
is a unique morphism g : K(X)— K(X) of K -algebras such that g|K[X]=f.
Prove that the morphism g is injective but not surjective.]

(d) Suppose K is a field of characteristic p # 0. Show that the polynomial ¢*" — X
in K(X)[t] has no solution for any n =1. Hence, the ring morphisms
K(X)— K(X) given by x »x”" for all x in K(X) are injective but not surjec-
tive ring mophisms for all n=1.

(14) Prove Basic Properties 1.1 and 1.2.
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(15) Prove that the product of two ideals I and J in a commutative ring R, as

defined in Section 1, is an ideal in R.

(16) Let K be afield, let S=K[X, Y, U, V], and let I be the ideal in S generated

by the elements X — UY and Y — VX. Define R to be S/L

(a) Prove that the principal ideals (k(X)) and (k(Y)) are equal in R where k:S—
R is the canonical ring surjection.

(b) Let f: R— PI(R) be the monoid morphism described in Section 1. Use (a) to
show that xU(R)#[x] where x = k(X), U(R) is the group of units of R, and [x]
is the unique element of Coim f containing x.

(17) Give a detailed proof of Basic Properties 3.2.

(18) Let R be an integral domain, x an irreducible element of R, and y an element

of R not divisible by x. Prove that if x and y have a least common multiple, then it

must be (up to a unit factor) the element xy.

(19) Let K be a field and let R=KI[X, Y, Z)/I where I is the principal ideal

generated by the polynomial X*— YZ.

(a) Prove that X*— YZ is a prime element in K[X, Y, Z] and hence, I is a prime
ideal.

(b) Let k: K[X, Y, Z]— R be the canonical surjective morphism. Prove that k(X)
is irreducible in R, but show that k(X) is not a prime element in R. [Hint:
Observe that k(X?) = k(Z2)k(Y).]

(c) Prove that k(X) and k(Y) do not have a least common multiple in R.

(d) Let S=R—{0}. Show that Rs is a UFD even though R is not a UFD.

(20) Prove Basic Properties 4.3.

(21) Prove Basic Properties 4.4.

(22) Prove Basic Properties 5.10.

(23) Let Z be the ring of integers and let S be the set of all odd integers. If I is the

ideal in Z consisting of all multiples of 6, that is, I = (6), show that IsNZ+I. In fact,

prove that IsNZ = (2).

(249) Let R=KI[X,Y,Z)/(X’-YZ) be the ring of Exercise 19, with

k:K[X, Y, Z]->R the canonical surjective ring morphism.

(a) Prove that (X, Y) is a prime ideal in K[X, Y, Z] containing (X’ YZ).

(b) Prove that R = (k(X), k(Y)) is a prime ideal in R.

(¢) Can B be generated by a single element?

(d) Let S=R-B. Prove that S is a multiplicative subset of R.

(e) Show that the ideal BRs s principal in Rs. [Hint: Show that B Rs= k(X)Rs.]

() Show that the natural map PPD«(R)— PPD(Ry) is not surjective. [Hint: Con-
sider the principal prime divisor k(X)Rs in PPD(Rs).]

Google



Chapter6 GENERAL
MODULE
THEORY

Earlier, in discussing the group Z of integers under addition, we showed that for
each element a in the abelian group A, there is one and only one group morphism
f.:Z-> A such that f(1)=a. Also, for each a in A and n in Z we defined na by
na = f.(n). We then showed that viewing Z as the ring of integers, the mapZx A —
A given by (n,a)~na for all n in Z and a in A has the following properties:

1) (mi+n)a=na+ma.
(2) n(a,+ ay) = na,+ na..
(3) (nin))a = ny(nqa).
@) la=a.

The reader should have no difficulty in seeing that properties (1) and (4) alone
guarantee that the map Zx A - A we just described is the only map fromZx A to
A satisfying properties (1) through (4).

Vector spaces over a field K give another example of a similar structure. We
recall that a vector space V over a field K consists of an abelian group V together
with a map K x V-V, usually described by (k, v) — kv, satisfying the following
conditions:

(l) (k| + kz)v = k|U + sz,
(2) k(vl + vz) = kv, + kvz,
A (klkz)v = kl(kzv),

@) lv =y,
for all k, ky, k; in K and v, v,, v, in V.
176
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The striking similarity of these structures suggests that they are simply exam-
ples of a single general notion. The following definitions show that this is indeed
the case.

Definitions
Let R be a ring.

(a) By an R-module structure on an abelian group M we mean a map RxM—- M,
which we denote by (r, m)—»rm for all r in R and m in M, satisfying:
@ (n+rdm=rim+rm,
@ r(m;+my)=rm,+ rm,,
@) (rir)m = r(r.m),
v) Im=m,
foral m, m,, m,,in M and r, r,, r. in R.
(b) An R-module consists of an abelian group M together with an R-module
structure RxM—->M on M.

Our previous remarks show that each abelian group has a unique Z-module
structure over the ring Z of integers. Because each Z-module is also an abelian
group, we see that Z-modules and abelian groups are essentially the same thing.

Our previous remarks also show that vector spaces are nothing more than
R-modules where R is a field. However, unlike the situation for Z, it is perfectly
possible for a given abelian group M to have more than one R-module structure if
R is not the integers. For example, suppose R = C, the field of complex numbers.
Then it is easily checked that the two maps f:C X C—C and g : C X C— C defined
by f(z\, z;) = z:12, and g(z), z;) = Z,z,, where Z is the complex conjugate of z, are
different C-module structures on the abelian group consisting of the additive
group C of the field C.

Before pointing out other types of modules with which the reader has some
familiarity, we make the following notational convention. If M stands for an
R-module, then we will use the same letter M to denote the underlying abelian
group of the R-module M.

Example 1 Let R be a ring. Denoting the additive group of R by R, it is easily
checked that the map R X R—>R given by (r,, )~ rr; for all r, and r,in R, is an
R-module structure on R. Hence, associated with a ring R is the R-module struc-
ture R X R - R given by (r,, r;)— r,r.. This R-module is usually denoted simply by
R.

Example 2 Let R be a ring. We recall that an ideal I of R is a subgroup of R
with the property that ri and ir are in I forall rin R and i in I If I is an ideal in R,
it is easily checked that the map R x I—»I givenby (r, i) —riforall rin Randiin I
is an R-module structure on the additive group of I. Hence, associated with each
ideal I of R is the R-module consisting of the additive group of I together with the
R-module structure R x I I given by (r, i) =»ri. This R-module will usually be
denoted also by I

Example 3 Suppose f:R—R’ is a morphism of rings. Then it is easily
checked that the map R X R’ given by (r, r') = f(r)r' forall rin R and r in R’ is an
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R-module structure on the additive group R’ of the ring R'. Hence, associated
with each ring morphism f:R—R’ is the R-module consisting of the additive
group R’ of the ring R’ together with the R-module structure R X R’ = R’ given by
(r, r') = f(r)r'. In particular, if I is an ideal of R, the canonical morphism of rings
kzi: R->R/I gives an R-module structure on the additive group R/I. This R-
module will be denoted simply by R/L

Thus, we see that a great many of the mathematical objects familiar to the
reader are either modules or have modules associated with them in a fairly obvi-
ous and simple-minded way. This list by no means exhausts the types of
mathematical objects that can be viewed as modules.

Because of this wide prevalence of modules in much of algebra, the theory of
modules occupies a large place in this book. This chapter is devoted for the most
part to generalities concerning arbitrary modules over arbitrary rings together
with illustrative examples and applications. In succeeding chapters specific situa-
tions will be studied, such as modules over semisimple rings, principal ideal do-
mains, and Dedekind domains.

1. CATEGORY OF MODULES OVER A RING

Our main concern in this section is to study the elementary properties of the
collection of R-modules for a fixed ring R. After discussing the morphisms of
R-modules, we show that the collection of R-modules together with these mor-
phisms form a category. The rest of the section is then devoted to studying the
basic properties of the category of R-modules.

As with the other mathematical objects we have considered, we begin our
study of modules by deciding how to compare them. Because an R-module M is
an abelian group M together with an R-module structure on M, it is clear that a
morphism f: M,— M, from the R-module M, to the R-module M, should be a
morphism of the underlying groups of M, and M, which is compatible with the
R-module structures on M, and M,. Stated more precisely, we have the following.

Definition

Let M, and M, be R-modules. By an R-module morphism from M, to M. we mean
a morphism of groups f: M, —» M, which satisfies f(rm) = rf(m) for all r in R and
all m in M,. An R-module morphism will often be called simply an R-morphism.

The reader should have no difficulty seeing that if R =Z, then a morphism
f: M,—> M, of Z-modules is nothing more than a morphism of groups. Also, it is
obvious that if R is a field, then a morphism f: M, > M, of R-modules is the same
thing as a linear map of vector spaces.

We have the following easily verified analogs of results already obtained for
sets, groups, and rings.

Basic Properties 1.1
Let R be a ring.
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(a) For each R-module M, the identity map idy: M= M is a morphism of R-
modules.

() If f: M, - M, are g : M,— M, are R-morphisms, then the composition of maps
gf : M,—> M, is a morphism of R-modules.

These results suggest the following.

Definitions
Let R be a ring.

(a) For each R-module M, the morphism of R-modules idy: M— M is called the
identity morphism of M.

(M) If f:M,» M; and g:M,—> M, are morphisms of R-modules, then the com-
position gf : M, - M; of f and g is the morphism from M, to M; given by the
ordinary composition of f and g viewed as maps from M, to M, and M, to M,
respectively.

As an immediate consequence of these definitions we have the following.

Basic Properties 1.2
Let R be a ring.

(a) The composition of morphisms of R-modules is associative, that is, if f: M,
M, g : M, - M;, and h : M; > M, are R-module morphisms, then h(gf) = (hg)f.
(b) For each R-module M the identity morphism idy: M— M has the following
properties:
@) If f: M—> M’ is an arbitrary morphism of R-modules, then fidy=f.
(if) If g: M’'—> M is an arbitrary morphism of R-modules, then idug = g.

Our discussion so far amounts to nothing more or less than the fact that the
following data define a category. This category is called the category of R-
modules and is usually denoted by Mod(R).

The objects of Mod(R) are the R-modules. For every pair of objects M, and
M, in Mod(R) we define the set (M,, M,) of morphisms in Mod(R) from M, to M,
to be Homg (M,, M), the set of all R-module morphisms from the R-module M, to
the R-module M,. Next, we define the composition of morphisms in Mod(R). For
all triples M,, M,, and M, of objects in Mod(R) define (M,, M,) X (M, M,)—>
(M, M,) to be the map Hom (M, M) X Homg (M, M,) - Hom;(M,, M:) given by
(f, g)~ gf where gf is the composition of the R-module morphisms f: M,—> M,
and g : M; > M,;. It is an immediate consequence of our previous observations that
these data satisfy the axioms of a category, a fact we leave to the reader to verify.

One of the things that distinguishes the category Mod(R) from most of the
categories we have considered previously is the fact that for each pair of objects
M, and M. in Mod(R), the collection (M,, M:) of morphisms from M, to M, is not
just a set but is an abelian group in a natural way. For it is not difficult to check
that if f, g : M,—» M, are R-module morphisms, then the map f+ g : M,— M, defined
by (f+ g)(m)=f(m)+ g(m) for all m in M, is also an R-module morphism. Obvi-
ously, if f, g, and h are in Homg(M,, M>), then f+(g+h)=(f+g)+h and f+g=
g + £ Also, it is easily checked that the map 0: M,— M, given by 0(m) =0 for all m
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in M, is an R-module morphism called the zero morphism from M, to M,. Obvi-
ously, 0+ f=f+0=f for all R-module morphisms f: M,—»M,. Hence, the map
Homg(M,, M,) x Homz (M,, M) > Homz(M,, M) given by (f,g)—f+g is a law
of composition on Homg(M,, M;) which makes Homg(M,, M,) a commutative
monoid with the zero morphism as the identity element.

To see that this commutative monoid is actually a group, we observe that if
f:M,=» M, is a morphism of R-modules, then the map (- f): M,—> M, defined by
(—fYm)=—(f(m)) for all m in M, is also an R-module morphism with the
property f+(— f)=(— f)+ f=0. Thus, (— f) is the inverse of f for each element fin
Homg(M,, M), which finishes the proof that Homg(M,, M,) is an abelian group
under the law of composition (f, g) — f+ g for all f and g in Homg(M,, M,). Since
this law of composition plays an important role in studying modules, we make the
following definition.

Definition

Let £, g : M, » M, be R-module morphisms. We define their sum f + g : M, > M- to
be the R-module morphism given by (f + g)(m) = f(m)+g(m) for all m in M,.
The abelian group consisting of Homg (M,, M) together with the law of composi-
tion given by the sum of R-module morphisms will be called the group of R-module
morphisms from M, to M,.

Because the sets of morphisms Homg(M,;, M) in the category Mod(R) are
abelian groups, it is natural to ask if the composition maps Homg(M,, M;) X
Homg(M,, M;)>Homg(M,, M;) in Mod(R) are somehow compatible with the
group structure in Homz(M,, M), Homg(M:, M;), and Homz(M,, M;). That this is
indeed the case is easily seen. Suppose that f and g are in Homg (M, M) and h
and g are in Homg(M,, M;). A simple calculation shows that the morphism
h(f+g):M,— M, is the same as the morphism hf + hg : M, — M;. For

h(f+ g)(m)= h((f+ g)(m)) = h(f(m)+ g(m)) = hf(m)+ hg(m) = (hf + hg)(m)

for all m in M, which means that h(f+ g) = hf + hg. Similarly, one can show that
(h + g)f = hf + gf. Thus, we have established the following.

Basic Property 1.3

Let M,, M,, and M; be objects in Mod(R). The composition map
¥ : Homg (M;, M,) X Homg (M., M) » Homz (M, M;) has the following properties
for all f], fz in Homg(Ml, Mz) and all 81 82 in Homg(M;, M:):

@) v(fit+f,8)=¥(fi, 8)+¥(f, 8)-

() ¥(fi, 8+ g)=u(fi, )+ ¥(f, 8).

(c) For a fixed g in Homz(M,, M,), the map a, : Homz (M,, M;) - Homg (M,, M)
given by o, (f) = ¢(f, g) for all f in Homz (M), M,) is a morphism of abelian
groups.

(d) For a fixed f in Homs (M,, M) the map B, : Homz (M, M;) = Homgz (M,, M3)
given by B,(g) = ¢(f, g) for all g in Hom (M, M) is a morphism of abelian

groups.

The properties of the composition maps in Mod(R) just described are a
special case of a general notion of considerable importance in algebra.
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Definition
Let A, B, and C be abelian groups. A map ¢ : A X B— C is said to be a bilinear map
from A and B to C if for all a,, a; in A and b,, b, in B we have:

® v(ai+ ay b)) =¢(a), b))+ ¢(ay b)).
@) ¢(a,, bi+ b)) = ¢(a), b))+ y(a, by).

While we postpone a systematic development of the notion of bilinear maps
until later, the reader should be able to get some preliminary feel for this subject
by working out the following easily established properties.

Basic Properties 1.4
Let A, B, and C be abelian groups.

(a) A map ¢:A X B-C is bilinear if and only if it satisfies both of the following
conditions:
@) For each a in A, the map a,: B— C given by a/(b)=y(a, b) forall b in B
is a morphism of abelian groups.
(i) For each b in B, the map B, : A —» C given by B,(a) = ¢(a, b) for all a in
A is a morphism of abelian groups.
(b) If ¢: A X B-C is a bilinear map, then §(na, b) = n¥(a, b) = ¢(a, nb) for all n
inZ, ain A, and b in B. In particular, (0, b)=0=y(a,0)forall ain A and b
in B.
(c) Themap0: A X B — C givenby O(a, b) =0forall a in A and b in B is bilinear
and is called the zero bilinear map.
(d) If ¢, ¥2: A X B> C are bilinear maps, then the map ¢+ ¢.: A X B— C de-
fined by (¢1 + ¢.)a, b) = ¢i(a, b) + ¥(a, b) is bilinear.
(e) If ¢: AxX B->C is bilinear and f: C— D is a morphism of abelian groups, then
the composition fiy: A x B— D is bilinear.
) If y:AxB—->C is bilinear, then the map (—y¢):AxB—>C defined by
(- ¥Xa, b)=—(¥(a, b)) is bilinear.

As a consequence of these results, it is not difficult to see that the set
B(A x B, C) of all bilinear maps from A x B to C is an abelian group, where the
addition 4, + y» is the bilinear map defined by (¢ + ¢»)(a, b) = ¥i(a, b) + ¥(a, b)
foralla in A and b in B.

This leads to the following.

Deflinition

Let A, B, and C be abelian groups. The sum of two bilinear maps ¢, y.: AXB->C
is the bilinear map ¢, + , given by (¢, + =) a, b) = ¢i(a, b) + ¢¥(a, b) for all a in
A and b in B. The abelian group B(A X B, C) consisting of the set of all bilinear
maps from A X B —» C together with the addition given by the sum of bilinear
maps is called the group of bilinear maps from A X B to C.

We end this preliminary discussion of bilinear maps of groups with the
following examples.

Example 1.5 For each abelian group C the map f: B@xZ, C)—C given by
f(¥)=14(1,1) for all ¢ in B(Zx Z, C) i5$ an isomorphism of abelian groups.
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PROOF: It is left as an exercise to the reader to show that f: BZXZ, C)-»Cis
a morphism of abelian groups. Having this result, we show that f is injective by
showing that Ker f=0.

Suppose ¢ is in Ker f or, what is the same thing, ¢(1, 1) =0. We want to show
that this implies that ¢ is the zero element of B(Z xZ, C). By Basic Properties 1.4,
because ¢(n, 1)=ny(1, 1)= (1, n) for all n in Z, the fact that (1, 1) =0 implies
¥(n, 1)= (1, n) =0 for all n in Z. But again by Basic Properties 1.4, we know that
for each n in Z the map a,:Z—C given by a.(m)=¢(n, m) is a morphism of
groups. Because a.(1) = ¢(n, 1) =0, it follows that a, =0, because a morphism of
groups from Z to C is completely determined by where it sends 1. Hence, for each
n in Z we have that a,(m) = ¢(n, m) =0 for all m in Z. Therefore, ¥(n, m) =0 for
all n and m in Z, which means that ¢ is the zero element of B(ZxZ, C). Hence,
the morphism of groups f: B(ZxZ, C)— C has a zero kernel and is therefore
injective.

We now show that f is surjective. This is based on the easily verified fact that
the map o :ZXxXZ—>Z given by yu(m, n) = mn is bilinear and yx(1, 1) = 1. Now sup-
pose c is an element of C. Then we know that there is a unique morphism of
groups h:Z— C such that h(1) = c. By Basic Properties 1.4, the composition
ZxZ-25>2-—*,C is a bilinear map. Because hy(1, 1) = h(1) = c, the bilinear map
hyo:Z X Z— C has the property (hy)(1, 1) = c. Hence, f(hy,) = c. This means that
the morphism of groups f:B(ZxZ, C)- C is surjective. Therefore, we have
shown that f is both injective and surjective and hence is an isomorphism.

Example 1.6 Let m, and m, be two relatively prime integers. Then B(2/m,Z x
Z/m,Z, C) =0 for all abelian groups C.

PROOF: Let k;:Z—>Z/mZ be the canonical surjective morphisms of groups for
i=1 and 2, and define k, xXk;:ZXZ->2Z/mZx2Z/mZ by (k,xk:)(n,n)=
(ki(ny), ko(ny)) forall n,and n,inZx Z. Clearly, k) X ky:ZXZ—->2Z/mZXZ/mZis a
surjective map.

Now suppose C is an abelian group and ¢ :Z/m,Z x Z/m,Z - C is a bilinear
map. Then it is easily shown that the composition ZXx Z—"i"—-»Z/m.Zx
Z/m;Z—>C is also a bilinear map. Because k; X k;:ZXZ—>2Z/mZ*XZ/m,Z is a
surjective map, we will have shown that the bilinear map ¢ :Z/m,ZxZ/m,Z - C is
zero if we show that the composition ¥ (k, X k.):ZxZ— C is zero. To do this, it
suffices by Example 1.5 to show that (k, X k;)(1, 1) =0.

The fact that m; and m. are relatively prime integers means that there are
integers z, and z, such that z,m, + z,m, = 1. Because k,:Z—2Z/m,Z is the canonical
morphism of groups, it follows that k,(1)=k,(z,m, + zam,) = k\(z:m1) = mak.(z;) be-
cause k(zim)=0. Hence, [(k, X k))(1, D=y (k(1), ko(1))= g (m.ki(22), k(1)) =
ma (ki(22), k(1)) = ¢ (ki(z,), m:k,(1)) (see Basic Properties 1.4). Because k(1) is in
Z/m,Z it follows that m.k,(1) =0, so that ¥ (k, X k2)(1,1) = ¢ (k,(2,),0) =0 (see
Basic Properties 1.4). Therefore, the bilinear map ¢(k, % k;):ZxZ— C is zero,
which means that ¢ :Z/mZx2/m,Z— C is zero, due to the fact that the map
ki X k::Z/m\Z x Z/m.Z is surjective. Because this is true for each ¢ in B(Z/m,Zx
Z/m.Z, C), it follows that BZ/m\Z % Z/m.,Z, C) =0 for all abelian groups C.
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2. THE COMPOSITION MAPS IN Mod(R)

Returning to the category Mod(R) of modules over the ring R, it turns out that the
sets of morphisms Homz (M, M,) are not only abelian groups but are also modules
over the center of the ring R. Recall that if R is a ring, then the center C(R) of R is
the set of all x in R such that rx = xr for all r in R. Recall also that if R is a ring,
then the center of R is a commutative ring and C(R)=R if and only if R is a
commutative ring.

We now describe a natural C(R)-module structure on the abelian group
Homg(M,, M) for all R-modules M, and M.. Suppose f: M,— M, is an R-module
morphism and c is an element in C(R). Define the map cf: M, > M, by (cf)(m) =
c(f(m)) for all m in M,. We claim that c¢f: M,—> M, is an R-module morphism.
Clearly, cf:M,> M, is a morphism of groups, that is, cf(m+m;)=
cf(m)+cf(my). Also, if r is in R, then cf(rm)=c(f(rm))=c(rf(m))=
(cr)f(m) = (rc)f(m)=r(cf(m)) = r((cf)(m)) for all m in M. Therefore,
cf: M, > M, is indeed an R-module morphism. We leave it to the reader to check
that the map C(R) X Homg(M,, M;) > Home(M,, M,) given by (c,f)—>cf is a
C(R)-module structure on Homz (M, M,).

Having seen that the sets of morphisms Homg(M,, M,) in Mod(R) are mod-
ules over the ring C(R), the center of R, it is natural to ask if the composition of
maps in Mod(R) is at all related to the C(R)-module structure on the groups of
morphisms in Mod(R).

Suppose f:M,—» M, and g : M,—> M; are R-module morphisms and ¢ is in
C(R). Then for each m in M, we have g((cf)(m)) = g(c(f(m)) =c(g(f(m)) =
(cg)(f(m)). Hence, g(cf)=1(cg)f. But c(g(f(m)) also equals c[(gf)(m)]=
(c(gf))(m) for all m in M,. Thus, g(cf) = (cg)f = c(gf). Therefore, in addition to
being bilinear maps of abelian groups, the composition maps ¢ : Homg (M, M,) X
Homg (M, M;)—>Homz(M,, M;) in Mod(R) have the property that ¢((cf, g)) =
¢(f,cg) = cy(f, g) forall c in C(R), f in Homg (M, M>), and g in Homg (M,, M3).
These properties of the composition maps in Mod(R) are a special case of the
following general notion.

Definition
Let A, B, and C be modules over a commutative ring R. Amap y:AXB—->Cis
said to be a bilinear map of R-modules if:

(a) ¢: A X B-C isabilinear map of the underlying abelian groups of A, B, and C.
(b) ¥(ra, b)=y(a, rb)=nry(a,b) for all rin R, a in A, and b in B.

This terminology enables us to summarize our previous discussion as fol-
lows:

Proposition 2.1
Let C(R) be the center of the ring R. Then the category Mod(R) has the following
properties:

(a) For all R-modules M, and M,, the sets Homg(M,, M,) are abelian groups under
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the addition f; + f, where f, + f, is the morphism of R-modules f,+ f,: M,» M,
defined by (f, + f,)(m) = fi(m) + f,(m) for all f, and f, in Homs (M,, M,).

(b) Each Homg (M, M) is a C(R)-module where for each ¢ in C(R) and f in
Homg(M,, M;), the morphism of R-modules cf:M,—> M, is defined by
cf(m)=c(f(m)) for all m in M,.

(¢) The composition maps Homg(M,, M,;) X Homgz (M>, M;) > Homg(M,, M,) in
Mod(R) are bilinear maps of C(R)-modules.

It should be noted that if R is commutative, then C(R) = R, and so each of the
groups Homg(M,, M) is an R-module, and the composition maps Homg(M,, M,) X
Homg(M;, M5)-> Homg(M,, M;) are bilinear maps of R-modules.

Returning to the category of modules over an arbitrary ring R, we point out
certain extremely useful facts concerning the C(R)-modules Homg(M,, M,)
which follow readily from the bilinearity of the composition of maps in Mod(R).

Definitions
Suppose M,, M;, and M, are R-modules.

(a) For each R-module morphism g:M,— M, define the map Homg(M,, g):
Homg (M,, M;)>Homz(M,, M;) by Homg(M,, g)f)=gf for all f in
Homg (M|, Mz).

(b) For each R-module morphism h:M;—» M,, define the map Homg(h, M>):
HomR(M‘, Mz)—>Homg(M,, Mz) by Homn(h, Mz)(f) = fh.

Basic Properties 2.2
Suppose M, M,, X, and Y are R-modules where R is an arbitrary ring.

(@) For each R-module morphism g:M,—» X, the map Homg(M, g):
Homg (M,, M,) > Homg (M,, X) is a morphism of C(R)-modules.

() If g:M,—> X and h:X > Y are R-module morphisms, then Homg(M,, hg):
Homgz(M,, M- Homg(M,, Y) is the composition Homg(M,, h)Homr(M,, g),
that is, Homg(M,, hg) = Homz(M,, h)Hom(M,, g).

) If g,8:M;>X are R-module morphisms, then Homz(M, g +g.) =
Homg (M|, g.) + Homg (Ml, gz).

(d) The map idy,:M,> M, has the property that Homge(M,,idw,):
Homg(M,, M,) > Homg(M,, M) is the identity on Homg(M,, M,).

(e) If 0: M,> X is the zero morphism, then Hom(M,, 0) = 0.

For morphisms from X to M,, we have a similar list of properties.

(a') For each R-module morphism g:X-—>M, the map Homg(g, M):
Homg (M, M,) > Homg (X, M,) is a morphism of C(R)-modules.

(') If h: Y > X and g: X - M, are R-module morphisms, then Homz(gh, M>):
Homg(M,, M;)>Homg(Y, M) is the composition Homg(h, M;)Homg
(g, M>), that is, Homg (gh, M,) = Homg (h, M:)Homz (g, M-).

(¢') If g1, 8:: X > M, are R-module morphisms, then Homg (g, + g2, M) = Homg
(g, M)+ Homg(g:, M>).

(d') The map idw,:M,—> M, has the property that Homg(idy,, M:): Homg
(M,, M;) > Homg(M,, M,) is the identity morphism.

(¢') If 0: X > M, is the zero morphism, then Homg (0, M;) = 0.
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As with bilinear maps of groups, we are delaying a systematic development of
the notion of bilinear maps of modules over commutative rings until later on. In
the meantime the reader will gain some familiarity with this notion by working out
the following facts concerning maps of modules over arbitrary commutative rings.
As is readily seen, they are simply a generalization of the basic properties already
given for bilinear maps of abelian groups.

Basic Properties 2.3
Let A, B, and C be modules over the commutative ring R.

(a) A map ¢: A XB-C is a bilinear map of R-modules if and only if it satisfies
both of the following conditions:
(1) For each a in A, the map «, : B = C given by a.(b) = ¢(a, b) for all b in
B is a morphism of R-modules.
(ii) For each b in B, the map B, : A — C given by B,(a) = ¢(a, b) for all a in
A is a morphism of R-modules.
M) ¢©0,b)=0=¢(a,0) forall ain A and b in B.
(¢) The map 0:A X B —>C given by 0(a,b)=0for allain A and b in B is a
bilinear map of R-modules which is called the zero bilinear map.
) If ¢, Y»: AXB—->C are bilinear maps of R-modules, then the map ¢+ y¢»:
A X B - C defined by (¢ + ¢»)(a, b) = i(a, b) + Ya(a, b) is bilinear.
(e) If y: AXB—Cis a bilinear map of R-modules and f: C— D is a morphism of
R-modules, then fiy: Ax B—D is a bilinear map of R-modules.
(f) If y:AxB—C is a bilinear map of R-modules and r is in R, then the map
n:AXxB->C given by (ny)a,b)=r(¥(a, b)) is a bilinear map of R-
modules. In particular, (—1)¢ is a bilinear map of R-modules.

As a consequence of these results it is not difficult to see that the set
B(A x B, C) of all bilinear R-module maps from A x B to C is an R-module under
the following operations: (1) for ¢, and ¢, in B(A X B, C) the sum ¢, + ¢, is the
bilinear map of R-modules defined by (¢, + y.)(a, b) = ¢.(a, b) + Y(a, b) for all
a in A and b in B, and (2) for r in R and ¢ in B(A X B, C), the product ry is
defined to be the bilinear map nj: A X B - C given by np(a, b) = r(¢(a, b)) for all
ain A and b in B.

This leads to the following.

Definition

Let A, B, and C be modules over the commutative ring R. The R-module consist-
ing of all bilinear R-module maps from A X B to C is called the module of all
bilinear R-module maps from A X B to C and is denoted by B(A x B, C).

3. ANALYSES OF R-MODULE MORPHISMS

This section is devoted to developing the analogs for the category of modules of
the notions of surjective and injective morphisms, analyses of morphisms, etc.,
that we have already discussed in other contexts. The only essentially new ideas
introduced are those of exact sequences and the fact that various properties of a
morphism f: M, —> M, of R-modules can be expressed in terms of the morphisms
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of C(R)-modules Homg(X, f): Homg(X, M,)-»Homz(X, M) for all R-modules X
as well as the C(R)-module morphisms Homg(f, X) : Homg(M:, X)—>Homg(M,, X)
for all R-modules X.

Because Mod(R) is a category, there is no need to define the notions of
isomorphism, epimorphism, or monomorphism for R-modules since we have al-
ready defined these notions for arbitrary categories. However, we have never de-
fined the notions of surjective, injective, and bijective morphisms for arbitrary
categories. Nonetheless, the reader’s previous experience with these notions
should immediately suggest their definitions for morphisms of R-modules. We
simply record them to avoid any possible doubt.

Definitions

Let f: M, > M, be a morphism of R-modules. Then the morphism f is surjective,
injective, or bijective if as a map on the underlying sets of M, and M, it is
respectively surjective, injective, or bijective.

We leave it to the reader to verify the following useful criteria for when a map
between modules is actually a morphism of modules. The reader who has diffi-
culty carrying out these demonstrations should consult the analogous results for
monoids, groups, and rings.

Basic Properties 3.1
Let f: M,—> M, be a morphism of R-modules and X an R-module.

(a) Suppose f:M,—> M, is a surjective morphism of modules. If g: M,—» X is a
map of sets such that the composition gf: M,— X of maps of sets is a
morphism of R-modules, then g: M,— X is a morphism of R-modules.

(b) Suppose f: M,— M, is an injective morphism of R-modules. If g: X - M, is a
map of sets such that the composition fg:X - M, of maps of sets is an
R-module morphism, then g : X — M, is a morphism of R-modules.

As in all the other situations we have studied so far, we have the following
easily verified connections between isomorphisms and bijective morphisms,
epimorphisms and surjective morphisms, etc.

Baslc Properties 3.2
Let f: M, > M, be a morphism of R-modules.

(a) The morphism f is an isomorphism if and only if it is bijective.
(b) If f is an injective morphism, then it is a monomorphism.
(c) If f is a surjective morphism, then it is an epimorphism.

PROOF: As an illustration of how our previous basic properties of surjective
morphisms can be used, we prove that if the morphism f: M, > M, is bijective, it is
an isomorphism. The rest of the proofs are left to the reader.

Suppose f: M,— M, is a bijective morphism. Then the inverse map f': M.~
M, has the property f ~'f = idy,. Because f is surjective and id, is a morphism of
modaules, it follows from Basic Properties 3.1 that f ': M, — M, is a morphism of
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R-modules. Combining this with the fact that f 'f = id,, and ff ~' = id., it follows
that f: M,—» M, is an isomorphism if it is bijective.

Actually, as we shall see shortly, a morphism of R-modules f: M,—> M, is
injective (surjective) if and only if f is a monomorphism (epimorphism). However,
before introducing the notions of Kernel and Cokernel of morphisms of R-
modules, which will accomplish this, we point out the following useful interpreta-
tion of the notions of isomorphism, epimorphism, and monomorphism.

Basic Properties 3.3
Let f: M,— M, be a morphism of R-modules.

(a) The following statements are equivalent:
(i) f:M,— M, is an isomorphism.
(if) For each R-module X, the morphism of C(R)-modules Homg(X,f):
Homg (X, M) > Homg (X, M,) is an isomorphism.
(iii) For each R-module X, the morphism of R-modules Homg(f, X):
Homg (M,, X)—> Homg (M,, X) is an isomorphism.

(b) The morphism f is an epimorphism if and only if for each R-module X, the
morphism of C(R)-modules Hom(f, X): Homg (M-, X)—> Homz(M,, X) is in-
jective.

(¢) The morphism f: M, M, is a monomorphism if and only if for each R-module
X, the morphism of C(R)-modules Homg(X, f):Homg (X, M,)-> Hom,
(X, M,) is injective.

(d) The following statements are equivalent:

() f:M,—> M, is the zero morphism.
(i) For each R-module X, the morphism of C(R)-modules Hom(X, f):
Homg (X, M) > Homg (X, M,) is the zero morphism.
(ilf) For each R-module X, the morphism of C(R)-modules Hom(f, X):
Hom(M,, X)—- Hom(M,, X) is the zero morphism. :

PROOF: (a) We show that the morphism f: M,— M, is an isomorphism if and
only if Homg(X, f): Homg(X, M,)>Homg(X, M) is an isomorphism of C(R)-
modules for all R-modules X.

Suppose f: M, = M, is an isomorphism. Then the inverse f': M,— M, has the
property that f 'f = idy, and ff ~' = id\,. Suppose X is an R-module. Then we have
Homge(X, idx,) =Homz(X, f'f). But, by what we saw in the last section (see Basic
Properties 2.2), Homg(X, f 'f) = Homp(X, f ') Homz (X, f) while Homg(X, idx,) is
the identity on Homgz(X, M,). Hence, Homz(X, f™") Homg(X, f) = idsomgx s A
similar argument shows that because ff ™' = idx,, then Homg(X, f) Homz(X, f ") =
iduomux. mp- Therefore, Homg (X, f): Homg (X, M) > Homg (X, M,) is an isomor-
phism with Homg(X, f ") as the inverse.

Suppose now that the morphism f: M,— M, has the property that for each
R-module X, the morphism of C(R)-modules Homg(X, f):Homg(X, M\)—>
Homz(X, M) is an isomorphism and hence a bijection. In particular, the mor-
phism Homg(M,, f): Homg(M;, M,)->Homg(M,, M,) is a bijection and so there is
a unique morphism of R-modules g : M,— M, such that Homg(M,, f)(g) =idwx,. By
definition, Homg (M., f)(g) is the composition M,—>M,—5 M,, so we have
fg =idy,. We now finish the proof that f is an isomorphism by showing that
&f = idu,.

Google



188 SIX/GENERAL MODULE THEORY

By hypothesis we know that the morphism of C(R)-modules
Homg(M,, f):Homz(M,, M,)=»Homg(M,, M:) is an isomorphism and is therefore
injective. Now gf is in Homg(M,, M\) and by definition Homg(M,, f)(gf) = f(gf)-
Because f(gf)=(fg)f and fg =idu,, it follows that Homg(M, f)(gf)=f On the
other hand, Homz(M,, f)(ids,) = fids, = f Because Homg(M,, f) is injective, the
fact that Homge (M, f)gf) = f = Homg (M,, f X(idy,) implies that gf = idx,, which is
our desired result. This finishes the proof of the equivalence of part (a), (i) and (ii).

The proof of the equivalence of parts (i) and (iii) is very similar to the proof
already given, and is left as an exercise for the reader. (b) and (c) are simply
restatements of the definitions involved and are therefore left to the reader to
verify.

(d) We saw in the last section that (i) implies (ii) and (iii). We will prove that
(iit) implies (i) and leave the proof that (ii) implies (i) to the reader.

(ili) implies (i). Suppose the morphism of R-modules f: M,—» M, has the
property that Homg(f, X): Homg(M,, X) - Homg(M,, X) is the zero morphism
of C(R)-modules for each R-module X. In particular, the morphism
Homg(f, M;) : Homg (M, M,) > Homz (M, M,) is the zero morphism. Hence, 0 =
Homgz (f, M»)idw,) = ids, f = f, which finishes the proof.

As we have already seen, the notion of a subset, subgroup, subring, etc., plays
an important role in studying sets, groups, and rings. Similarly, the notion of a
submodule plays an important role in studying modules.

Definition
An R-module M’ is a submodule of an R-module M if:

(a) The underlying set of M’ is a subset of the underlying set of M.
(b) The inclusion map M’'— M is a morphism of R-modules.

We now give an alternate description of the submodules of a module as well
as various elementary properties of submodules.

Basic Properties 3.4
Let M be an R-module.

(a) A submodule of M is nothing more than a subset M’ of the underlying set of
M satisfying:
(i) M’ is a subgroup of M.
(ii) If m is in M’, then rm is in M’ for all r in R. In particular, the subsets (0)
and M of M are submodules of M.
(b) If {M,}c; is a family of submodules of M, then QI M, is a submodule of M.

(c) If {M;}.c, is a family of submodules of M which is totally ordered by inclusion,
then ,U' M, is a submodule of M.
€

(d) If f: M— N is a morphism of R-modules and M’ is a submodule of M, then the
subset f(M') of N is a submodule of N.

(e) If f: M—> N is a morphism of modules and N’ is a submodule of N, then the
subset f'(N’) of M is a submodule of M.

These results suggest the following.
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Definitions
Let f: M— N be a morphism of R-modules.

(a) If N’ is a submodule of N, then the submodule f '(N’) is called the preimage of
N’ under f.

(b) If M' is a submodule of M, then the submodule f(M’) of N is called the image
of M’ under f.

(¢) The submodule f(M) of N is called the image of f and is also denoted by Im f.

Before going on to develop more general theory, we pause to consider some
examples.

Example 3.5 Suppose A is a Z-module. Then a subset A’ of A is a submodule
of A if and only if it is a subgroup of A.

Example 3.6 We have already seen that for a field K the notions of a vector
space over K and a module over K are the same. Similarly, the notions of
subvector spaces and submodules coincide.

Example 3.7 Let R be a commutative ring. Then the submodules of the
R-module R are nothing more or less than the ideals of the ring R. That this is not
necessarily the case when R is not commutative is shown later on.

Suppose we are given a morphism of R-modules f: M— N. Then we know
that as a map of sets the map f: M — N is the composition M——>Im -2 N. Be-
cause Im f is a submodule of N, the inclusion map, inc:Im f— N, is an injective
morphism of R-modules. Hence, f,: M—Im f is a morphism of R-modules be-
cause f=inc f, is a morphism of R-modules with inc an injective morphism of

R-modules. Clearly, the morphism f,: M—Im f is a surjective morphism of R-
modules. Therefore, we have shown that the composition M —L»Im f~=>Nisa

factorization of the morphism f into a surjective morphism followed by an
injective morphism. This leads to the following.

Definition , .

Let f: M - N be a morphism of R-modules. The factorization M——Imf——>N
of f into the surjective morphism f, followed by the injective morphism inc:Im f—
N is called the image analysis of f.

More generally, we have the following.

Definition

Suppose f:M-> N is a morphism of R-modules. Any factorization M—
X—> N of f with g a surjective morphism of R-modules and h an injective
morphism of R-modules is called an analysis of f.

As with sets, monoids, groups, etc., we have the following uniqueness prop-
erty for analyses of morphisms of R-modules.

Basic Property 3.8 . ‘
Suppose M—:>X—->N and M—4->X—->N are two analyses of the same
morphism f: M— N of R-modules. Then there is one and only one morphism
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t:X—- X' of R-modules such that the diagram

commutes, and this uniquely determined morphism of R-modules t: X — X' is an
isomorphism.

PROOF: See the proofs of the analogous result for monoids and groups.

Having described the image analysis of a morphism of modules, it is natural
to ask what the coimage analysis is for a morphism of modules. Past experience
indicates that this question is intimately related to the problem of determining
which partitions of the underlying set of a module M occur as the partitions as-
sociated with R-module morphisms f: M— N.

Suppose f: M— N is a morphism of R-modules. Then it is also a morphism
of the underlying abelian groups of M and N. Thus, we know that f '(0)=K is
a normal subgroup of f. Also, the coimage analysis of f as a morphism of abel-

ian groups is the factorization M—2*+M/K —** 5N of f where kux: M- M/K
is the canonical surjective morphism of abelian groups given by ky,x(m)=m+ K
for all m in M, and jwx: M/K— N is the injective morphism of abelian groups
juix(m+ K) = f(m) for all m in M.

Now K = f7'(0) is not just a subgroup of M. Because f: M— N is a morphism
of modules, K is a submodule of M because K = f '(0) and (0) is a submodule of
N (see Basic Properties 3.4 of submodules). We will now use this fact to show that
the abelian group M/K has a unique R-module structure such that the abelian
group morphisms ku,x: M—>M/K and jwx:M/K->N are morphisms of R-

modules. In this way, the composition M fuox »sM/K —%* 5N is not only an
analysis of f as a morphism of abelian groups but also as a morphism of
R-modules. It is this analysis of f as an R-module which we will call, for obvious
reasons, the coimage analysis of f.

Instead of just showing how to define an R-module structure on M/K having
our desired properties, we deal with the following situation which, while it has the
appearance of being more general, really is not, as we shall see later. Namely, sup-
pose M’ is an arbitrary submodule of the R-module M. Then M’ is also a subgroup
of the underlying abelian group of M and hence a normal subgroup of M.
Therefore, we can form the factor group M/M’ which is also an abelian group. We
now use the fact that M’ is a submodule, not just a subgroup of M, to show that
there is an R-module structure on M/M' with the property that the canonical
morphism of groups kun: M— M/M' is a morphism of R-modules.

We first show that if r is in R and X is a subset of M which is an element of
M/M', then there is a unique subset Y of M consisting of all the elements rx with
x in X. Because the elements of M/M' are of the form m + M’ for some m in M,
we know that X = m + M’ for some m in M. Hence rX = rm + rM'. Because M’ is
a submodule of M we know that rM’'C M'. Therefore, rm + rM’ is contained in

Google



Analyses of R-Module Morphisms 191

rm+ M'. Hence, rX is contained in the element rm + M of M/M’. Because rX+0
and M/M’ is a partition of M, we know that rm + M’ is the only element of M/M’
containing rX where X =m+ M’'. This means that we obtain a map R x M/M’'—»
M/M' by defining (r, m+ M') > rm+ M’ for all r in R and m in M. We claim that
this map is our desired R-module structure on the abelian group M/M’ because it
has the property that the morphism of groups k- : M= M/M’ is also a morphism
of R-modules. This can be shown directly using straightforward calculations, or
more indirectly as follows.

It is not difficult to check that the surjective morphism of abelian groups
kv : M—> M/M’ has the property that kyw(rm)=rm+ M for all rin R and m in
M. Combining this with the following easily verified general observation we obtain
not only that the map R x M/M'-> M/M'’ given by (r, m+ M) »rm + M for all rin
R and m in M is an R-module structure such that the surjective morphism of
groups kw,u: M— M/M' is a morphism of R-modules, but that it is the only R-
module structure on M/M’ with this property.

Proposition 3.9

Let R be a ring. Suppose N is an abelian group and Rx N —>N is a map which we
denote by (r,n) -»rn for all r in R and n in N. Further, suppose that M is an
R-module and that there is a surjective morphism of groups f: M— N satisfying
f(rm)=rf(m) for all r in R and m in M. Then:

(a) The map RX N- N is an R-module structure on N.

(b) The R-module consisting of N together with the given R-module structure
R X N- N has the property that f: M— N is a morphism of R-modules.

(c) The given R-module structure R X N— N is the only R-module structure on N
such that the morphism of groups f: M— N is a morphism of R-modules.

We summarize this discussion in the following.

Definitions
Let M’ be a submodule of the R-module M. We denote by M/M’ the R-module
consisting of the abelian group M/M’ together with the unique R-module struc-
ture having the property that the surjective morphism of abelian groups
kv : M—> M/M' is a morphism of R-modules. This R-module structure on M/M !
is given by r(m+M')=rm+ M’ for all rin R and m in M.

The R-module M/M’ is called the factor module of M by M’ and the surjec-
tive morphism of R-modules kuu: M—>M/M' is called the canonical morphism
from M to M/M".

We now use the notion of a factor module to finish our discussion of the
coimage analysis of a morphism of R-modules.

Suppose f: M— N is a morphism of R-modules. Then associated with the
morphism f is the submodule K = f7'(0) of M together with the coimage analysis

M5 MK 45N of f viewed as a morphism of the underlying abelian
groups of M and N. Because K is a submodule of M, we know by our previous
discussion that the R-module structure of the factor module M/K is the unique
R-module structure on the abelian group M/K with the property that the mor-
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phism kyx: M= M/K of abelian groups is a morphism of R-modules. Thus, view-
ing M/K as the factor module of M by K, we have the R-module morphism f =
jwixkax where ky;x is a surjective morphism of R-modules. From this it follows
that jux: M/K— N is an injective morphism of R-modules. Therefore, the com-

position of R-module morphisms M Su%, M/K %N is an analysis of the R-
module morphism f. This suggests the following.

Definitions
Let f: M—> N be a morphism of R-modules.

(a) The submodule f'(0) of M, which we will often denote by Ker f, is called the
kernel of f.

() The analysis M ety MIKer f Junat, N of fis called the coimage analysis
of f where kuxes: M — M/Kerf is the canonical surjective morphism of
R-modules from M to the factor module M/Ker f given by kukes(m)=
m + K for all m in M, and jux.s: M/Ker f = N is the injective morphism of
R-modules given by juikes(m + K) = f(m) for all m in M.

The reader will recall that early in this section he was asked to show that an
injective (surjective) morphism of R-modules is a monomorphism (epimorphism)
of R-modules. At the time it was claimed that the converses of these statements
are also true. This is now shown in the following.

Proposition 3.10
Let f: M—> N be a morphism of R-modules.

(a) The following statements are equivalent:
@) Ker f=0.
(if) f is injective.
(iii) f is a monomorphism.
(b) f is an epimorphism if and only if f is surjective.
(c) The following statements are equivalent:
(i) f is an isomorphism.
(i) f is both surjective and injective.
(ifi) f is both an epimorphism and a monomorphism.

PROOF: (a) (i) = (ii). The kernel of f and injectivity of f are the same regard-
less of whether f is viewed as a morphism of modules or abelian groups. Because
it has already been shown that a morphism of abelian groups is injective if its
kernel is zero, we know that Ker f=0 implies f is injective as a morphism of
R-modules.

(i) > (lif). Left as an exercise.

(itf) = (i). Suppose f: M —» N is a monomorphism and let K = Ker f. Then the
inclusion morphism inc: K - M has the property that f inc =0, while the zero
morphism 0: K -> M also has the property f0=0. Hence, because f is a
monomorphism, it follows that inc = 0. This implies that K = 0, because the inclu-
sion morphism is injective. Therefore, f being a monomorphism implies Ker f = 0.

(b) Obviously the morphism of R-modules f: M— N is surjective if and only
if Im f = N. Because Im f is a submodule of N, it follows that Im f = N if and only
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if N/Im f=0, the zero R-module. Because the canonical morphism kyjm;: N—
N/Im f is surjective, it follows that N/Im f = 0 if and only if kvums =0, that is, is
the zero morphism. Clearly, the morphism f: M— N has the property knjm;f=0
while 0 f also equals 0.

Assume now that f is an epimorphism. Then the fact that ky;.,f =0 = 0f im-
plies that ky,.;=0 which means that N/Im f=0 or, what is the same thing, Im f =
N. Hence, f being an epimorphism of R-modules implies that f is a surjective
morphism of R-modules. Since the reader has already shown that surjective
morphisms are epimorphisms, the proof of (b) is complete.

(c¢) This is an immediate consequence of previously established results.

So far, in dealing with a morphism f: M— N of R-modules, we have found it
useful to introduce various other R-modules associated with f such as Ker f, Im f,
and Coim f. In the course of the last proof, the R-module N/Im f together with the
canonical morphism kyum;: N— N/Im f was also utilized. Because the morphism
knims: N— N/Im f is generally useful in studying the morphism f: M— N, we make
the following definition.

Definition

Let f: M—N be a morphism of R-modules. Then the canonical surjective
morphism knums: N—> N/Im f is called the cokernel of f We shall usually denote
the R-module N/Im f by Coker f and, unless stated to the contrary, whenever we
write a morphism N->Coker f we mean the canonical surjective morphism
Kknmg: N->N/Im f.

With this definition of cokernel, part (b) of the preceding proposition may
now be stated as follows. The following statements are equivalent:

@@ Coker f=0.
(i) f is surjective.
(i) f is an epimorphism.

We end this section with the following easily verified set of properties.

Basic Properties 3.11
Let M be an R-module.

(a) If M’ is a submodule of M, then M’ is the kernel of the canonical surjective
morphism Ky : M—>M/M'.
(b) Suppose f: M— N is a morphism of R-modules. Then:
@) f is the zero morphism if and only if Ker f=M.
(i) Im f is the kernel of Coker f, that is, Im f is the kernel of the surjective
morphism N-Coker f.

4. EXACT SEQUENCES

We begin this section with the important notion of exact sequences of morphisms
of R-modules. After developing some of the basic properties of exact sequences,
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we apply this notion to obtain new descriptions of cokernels and kernels of
morphisms of R-modules.

Definition

Let R be aring. A sequence M, .-L>M2—">M; of morphisms of R-modules is said
to be exact if Im f, = Ker f,. Given an arbitrary subset I of consecutive integers,

the sequence -:-—-> M, foy M~ My 225 My, -+ is said to be exact if
Imfi.,=Kerf for all i in L

Before giving examples of exact sequences of R-modules, we make the
following important general observation. A sequence of R-modules :---—

M,_,— M,—> M,,, - - - - can also be viewed as a sequence of abelian groups
because each R-module M, has an underlying abelian group and each R-module
morphism f; : M, > M,., is also a morphism from the underlying abelian group of
M, to that of M,.,. Because Im f;-, and Ker f; are the same subsets of M; whether
we view f,_, and f; as morphisms of R-modules or morphisms of abelian groups, it
follows that the sequence of R-modules - - > M., > M, > M., —--- is exact if
and only if it is exact when viewed as a sequence of morphisms of the underlying
abelian groups of the M,.
We now give some examples to illustrate the utility of this terminology.

Example 4.1 Let f: M,— M, be a morphism of R-modules. Then:

(a) f is a monomorphism if and only if the sequence 0—» M,— > M, is exact.
(b) f is an epimorphism if and only if the sequence M,—{> M,—0 is exact.
(¢) f is an isomorphism if and only if the sequence 0—» M,—» M,—0 is exact.

PROOF: (a) We know that a morphism f: M,— M, is a monomorphism if and
only if Ker f=0. On the other hand, by definition, the sequence 0—»M,——>M, is
exact if and only if Im (0—» M,)=Ker f. Since Im (0> M,)={(0), it follows that
0-M,—>M; is exact if and only if Ker f=(0). Therefdre, the sequence
0—»M,—>M: is exact if and only if f is a monomorphism.

(b) and (c). Because the proofs of (b) and (c) are similar to those given in part
(a), these proofs are left to the reader to carry out.

Example 4.2 Suppose f: M,—= M: is a morphism of R-modules. Then the fol-
lowing sequences are exact:

(a) 0-Ker f=>M,— M.
(b) M,—L>M.—Coker f-0.

PROOF: (a) The inclusion morphism inc:Ker f— M, is a monomorphism.
Hence, we know by our previous example that 0—Ker f —2 5 M, is exact. The fact
that Ker f—=>M,—L> M. is exact is obvious, because the image of the morphism
Ker f-> M, is Ker f.

(b) Left as an exercise.

Example 4.3 Let M,—>M.—t>M, be a sequence of R-modules. Then:

(8) 0> M,—L5> M,—%» M, is exact if and only if Im f = Ker g and the morphism
fo: Mi—>Ker g is an isomorphism.
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(b) M,—>M,—~>M,—0 is exact if and only if Im f = Ker g and the morphism
g2:M,— M, is an epimorphism.
We end this preliminary discussion of exact sequences by pointing out how

one compares sequences of morphisms of R-modules.
We first recall that a diagram of morphisms of R-modules

MILMZ

N—25N;

is said to commute if g,f, = h,g.. More generally, for an arbitrary subset I of
consecutive integers, a diagram of morphisms of R-modules

-1 t 'Ml
lﬂ—l 1- lﬂﬂ 1&2
=Nt == Ni—=>Niei5—> Ny —>- - -
commutes if each square in the diagram commutes, that is, g... fi= hig forall iin L

As an almost immediate consequence of these definitions, we have the fol-
lowing.

Basic Property 4.4
Suppose the diagram of R-modules

fi. /
e M —SM—>M,,,—>- - -

lll-l 1‘4 lﬂﬁl
e oo Ny = Ny—ts Ny —+ - -
commutes. Then for each R-module X, the diagrams of C(R)-modules

Homp(X, fi-1)
—

- - -—Homg(X, M;.)) Homax(X, M) =258, omu(X, Mi,)) —> - -

Homp(X, gi-1) Homgp(X. g1) Homg(X. gi+1)

.« .—Homx(X, Ni.;) ————>Hom(X, N) —————Homg(X, N.;) —>- - -

Homp(X, hi-1) Hompg (X, k)

and

.. .___)Homl(N‘_H’ X) M’HOH‘R(N(,X) MHO‘TM‘(N}—], X) —_— ..

Homg(gi+1. X) Homp(g X) Homg(gi-1. X)

-« « ——>Homg(Mi+1, X) Homx(M,, X) Homg(M,_,, X)—> -

_
Homg(fi+1. X) Homg(fi X)

commute.
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PROOF: All one has to do to prove this is to observe that if the diagram of
R-modules

M—L—’M—l

M—T’N:-l

commutes, then for each R-module X the diagrams of C(R)-modules

Homg(X. {)

Homg(X, M) Homx(X, M.-\)

Homp(X. g9 Homp( X, gi-1)

Homx(X, waﬂom.(X, N.)

and
Home(N;-;, X)——2_,Homx(N, X)
Homp(g;-). X) Homp(gs X)
Homg(M,_,, X) r—ry Homg(M, X)

commute. To see this, we simply observe that because g,-.fi= h.g, it follows that
Homg(X, g-.f) = Homg(X, hg) for each R-module X. But Homg(X, g-.f) =
Homg(X, gi-)Homg(X, f) while Homg(X, hg) = Homg(X, h)Homg(X, g). Hence,
for each R-module X we have our desired result that Homg(X, g.- )Homg(X, f) =
Homg(X, h)Homg(X, g). The rest of the proof goes in a similar way and is left to
the reader to verify.

We now explain how to compare sequences of morphisms of R-modules.

Definition , .
By a morphism from the sequence ---—— M, ,—> M, — M,,,—>--- of
morphisms of R-modules to the sequence ---—— N,_, h""N.- s Nyy—e -

we mean a family {g}ie; of R-module morphisms g : M, = N; such that the dia-
gram of R-modules

fi

;M,-__, b #M ;Mhl Do oo
1ll-l ln ln.
;Nl—l A l"Nl K, :NHI >

commutes.
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We say that the morphism {g}:c; is respectively a monomorphism, epimor-
phism, or isomorphism if each of the morphisms g, is either a monomorphism,
epimorphism, or isomorphism.

We leave it to the reader to verify the following.

Basic Properties 4.5
Suppose we are given the morphism

fi

— M, —" s M— M., —
llﬂ-l 1& lﬂol
>N\ AM"M , >N.., >

of sequences of R-modules.

(a) If {g}ic;is an isomorphism, then the family {g; '}.c; of morphisms of R-modules
is a morphism from the sequence - - - > N;_,—=N;——— N, - - - to the
sequence - - -—>M,_, fio > M, SN ;.1=>+ + + which is also an isomorphism.

() If {g}.c: is an isomorphism, then the sequence - - - > M., > M~>M,., = - - is
exact if and only if the sequence -:-— N,_;=> N, > N,,,—>- - - is exact.

(¢) For the morphism of sequences {g}c:, the following statements are
equivalent:

(i) {g}ie: is an isomorphism.
(i) For each R-module X, the morphism of sequences of C(R)-modules

HomptX. f, ) Homg(X. f;)
_—

. .—Homg(X, M,_)) Homg(X, M) Homg(X, M., ,))—>- - -

Homp( X. gi-1) Homp( X, g) Homp( X.gi+1)

.. ——»Hom.(X, N(—|) mHom.(X, N;) —m—»Homg(X, Nln) —> -

is an isomorphism.
(iti) For each R-module X, the morphism of sequences of C(R)-modules

Hom,(h,,..X) Homg( fi X)
——e——p

- «~——Homg(N,., X) Homg(N,, X) ————Homz(N,_,, X)—>- - -

- -——Homg(M,.,, X) Homg(M, X) Homg(M,.,, X)—>* -

—_—
Homatf;1.X) Homg(h, X)

is an isomorphism.
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We now turn our attention to describing when a sequence of R-modules
0— M, —L> M,—£> M, is exact in terms of the morphisms from R-modules X
to the R-modules M, M., and M,. We begin by making the following useful obser-
vation.

Suppose M is an arbitrary R-module. Considering the abelian group of R an
R-module by means of the R-module structure R X R—R given by (r, x)->rx
where rx is the product in R of the elements r and x in R, we want to describe
Homg(R, M). The first thing we do is show how we can consider Homz(R, M) an
R-module.

We already know that Homg(R, M) is an abelian group. Therefore, it only
remains to define an R-module structure on the abelian group Homg(R, M). Sup-
pose f:R—>M is a morphism of R-modules and suppose r is an element of R.
Then define the map (rf): R—» M by (rf)(x) = f(xr) for all x in R. We claim that the
map rf:R—->M is a morphism of R-modules. For (rf)(x,+x;)=f(x,+x)r=
f(xir+ x2r) = f(x,r) + f(xar) = (rf )(x:) + ((rf )(x2) for all x, and x, in R. Therefore,
rf is a morphism of abelian groups. Also, if s and x are in R, then rf(sx) = f(sxr)=
s(f(xr)) = s(rf(x)). Hence, rf: R— M is a morphism of R-modules. It is not diffi-
cult to verify that we obtain an R-module structure on Homg(R, M) by means of
the map R XHomg(R, M)->Homg(R, M) defined for all r in R and f in
Homg(R, M) by (r, f)- rf where (rf)(x) = f(xr) for all x in R. Summarizing, we
have the following.

Definition

Let M be an arbitrary R-module. We consider the abelian group Homg(R, M) an
R-module by means of the R-module structure R X Homg(R, M)—>Homgz(R, M)
defined for all  in R and f in Homg(R, M) by (r, f) = rf where rf is the R-module
morphism from R to M given by (rf)(x) = f(xr) for all x in R.

We now give our main result concerning the R-modules Homg(R, M).

Proposition 4.6
For each R-module M, the map an: Homg(R, M)— M given by ax(f) = f(1) for all f
in Homgz(R, M) is an isomorphism of R-modules.

Further, if g: M— N is a morphism of R-modules, then the morphism of
abelian groups Homg(R, g):Hom«(R, M)->Homg(R, N) is a morphism of R-
modules with the property that the diagram

Homg(R, M)—2>M
Homp(R.g2) s

Homg(R, N)—2—>N
commutes.

PROOF: We first show that for each R-module M, the map ay: Homg(R, M)—>
M is a morphism of R-modules. For if f, and f; are in Homg(R, M), then
a(fi+ ) =(fi+ £)A) = fi(1)+ £,(1) = an(f)) + an(f2). Thus, ax is a morphism of
abelian groups. Also, ax is a morphism of R-modules because if r is in R and f is

in Homg(R, M), then aw(rf) = (rf)(1) = 