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PREFACE

The main thrust of this book is easily described. It is to introduce the reader who
already has some familiarity with the basic notions of sets, groups, rings, and
vector spaces to the study of rings by means of their module theory. This program
is carried out in a systematic way for the classically important semisimple rings,
principal ideal domains, and Dedekind domains. The proofs of the well-known
basic properties of these traditionally important rings have been designed to
emphasize general concepts and techniques. Hopefully this will give the reader a
good introduction to the unifying methods currently being developed in ring
theory.

Part I is a potpourri of background material, much of which is undoubtedly
familiar to the reader, some of which is probably new. In addition to the usual
notions of sets, monoids, and groups, heavy emphasis is put on maps and
morphisms of monoids and groups. This naturally leads to the notion of a cate
gory, which is briefly discussed in Chapter 3. In Chapter 4, the notions already
developed for sets, monoids, and groups are applied to a preliminary discussion of
the category of rings. Chapter 5 is far less formal. It is devoted to the study of
unique factorization in arbitrary commutative domains. Here the principal novel
ties are the heavy use of localization in commutative domains and the introduction
of chain conditions for ideals.
Part Two begins with a lengthy discussion of modules over general rings.

Starting from the notion of a basis for vector spaces, we develop free modules as
well as the general notion of sums and products in the category of modules over a
ring. Among other things, it is shown that a ring R is a division ring if and only if
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every R -module is free. This is the first step of our general program of studying
rings by means of their modules. Although Chapter 6 is too long to describe in
further detail, we caution the reader that familiarity with the contents of this
chapter is essential to the understanding of the rest of the book.
The remainder of Part Two is devoted to the next step of our program of

studying rings by means of their modules. Namely, it is shown that a ring is
semisimple if and only if its modules are semisimple. In this context, projective
modules arise naturally. So, also, does the notion of the radical of a ring. Although
this part of the book is devoted mainly to semisimple rings, some fundamental
facts are developed for general artin rings in the text as well as in the exercises.
The rest of the book is devoted almost exclusively to commutative rings.

Since localization and tensor products play such important roles in this theory,
Part Three starts with a discussion of these techniques. This is then followed by
the study of principal ideal domains. These rings are characterized as
commutative rings R with the property that submodules of free R -modules are
free. Thus, they arise naturally as the next step in our program of studying rings
by means of their modules. In describing the structure of finitely generated
modules over principal ideal domains, injective modules are introduced. Part
Three ends with applications of this structure theory to the study of
endomorphisms of finite-dimensional vector spaces. Included are such standard
items as canonical forms of matrices and determinants.
The final part of the book is devoted to algebraic extensions of fields and the

study of integral extensions of noetherian domains. The major aim of Chapter 12
is to develop finite galois theory of fields. This theory is used to study integral
extensions of noetherian domains which leads to the theory of Dedekind domains.
As part of our general module theoretic point of view, we characterize Dedekind
domains as those integral domains having the property that submodules of
projective modules are projective. The book ends with a description of the ideals
in Dedekind domains and the structure theorem for finitely generated modules
over such domains.
We recommend that the reader have pencil and paper close at hand when

reading the text. Proofs for many assertions have been omitted. The reader will be
able to supply the missing steps or proofs either by himself or after consulting
outlines given in the exercises. In addition to exercises explaining the text, there
are exercises dealing with related but supplementary material.
The partitioning of the book was done on pedagogical as well as logical

grounds. Part One can be used for a leisurely one-semester course on the
fundamental structures of algebra. Parts Two and Three can serve as a
one-semester introduction to general ring theory for more advanced students. For
students familiar with Chapters 1, 2, and 4, the entire text should constitute a full
year course in algebra.

We thank our publishers, Harper & Row, for their patience during the
preparation of the manuscript.

M. A.
D.A. B.



PART
ONE





Chapterl
AND
MAPS

INTRODUCTION

This chapter and the next are devoted to a review of the basic concepts of set and
group theory. Because we are assuming the reader already has some familiarity
with these topics, our exposition is neither systematic nor complete. Only a brief
description of the basic concepts and results that are needed in the rest of this
book is presented.
This should serve to give the reader some idea of the mathematical back

ground we are assuming as well as help fix conventions and notations for the rest
of the book. Although few proofs are given, outlines of proofs of the less obvious
results cited in the text are given in the exercises. It is hoped that the reader will
find completing these outlines a useful way of familiarizing himself with any new
concepts or results he may encounter in this or the next chapter.

1. SETS AND SUBSETS

We take a naive, nonaxiomatic view of set theory. We view a set as an actual
collection of things called the elements of the set. We will often denote the fact
that x is an element of the set X by writing xEX. From this point of view it is
obvious that two sets are the same if and only if they have the same elements. Or
stated more precisely, two sets X and Y are the same if and only if both of the



4 ONE/SETS AND MAPS

following statements are true:

(a) If xEX, then x£Y.
(b) If y£Y, then y£X.

In this connection, we remind the reader that in mathematical usage, a
statement of the form "If A, then B" is true unless A is true and B is false, in
which case it is false. In particular, if A is false, then the statement "If A, then B"
is true independent of whether B is true or false. To illustrate this point we show
that there is only one empty set.
We recall that a set X is said to be empty if X has no elements; or more

precisely, if the statement "X£X" is always false. Suppose now that the sets X
and Y are empty. Then both of the statements "x £ X" and "y £ Y" are always
false. Hence, by our convention concerning sentences of the form "If A, then B,"
both of the statements

(a) If x£X, then x £ Y;
(b) If y£Y, then yEX;

are true. This shows that if the sets X and Y are both empty, then X = Y. Follow
ing the usual conventions of set theory, we assume that there is an empty set. This
uniquely determined set will usually be denoted by 0.
An important set associated with a set X is the power set 2* of X which we

will define once we have recalled the notion of a subset of a set.
A set Y is said to be a subset of a set X if every element of Y is also an

element of X, or equivalently, the set Y is a subset of the set X if and only if the
statement "If y £ Y, then y £ X" is true. The fact that Y is a subset of X is often
denoted by YCX, which is sometimes also read as "Y is contained in X."
One easily verified consequence of this definition is that if X is any set, then

the empty set 0 is a subset of X. For the statement "If X £0, then x £ X," is true
for any set X because the statement "x £ 0" is always false. Also associated with
an element x of X is the subset {x} of X consisting precisely of the element x of X.
Further, the reader should have no difficulty verifying the following.

Basic Properties 1.1
Let X, Y, and Z be sets. Then:

(a) XCX.
(b) X= Y if and only if XC Y and YCX.
(c) If XCY and YCZ, then XCZ.
We are now in a position to define the power set 2 v of a set X. The set 2" is the

set whose elements are precisely the subsets of X. Stated symbolically, the power
set 2* of a set X is the set with the property that Y£2* if and only if YCX.
It is worth noting that 2" is never empty, even if X is empty. This is because

the empty set 0 is always contained in X and is thus an element of 2". Also, as we
have already observed, there is associated with each element x of X the element
{x} of 2". Hence, 2" consists of a single element if and only if X is empty.
We now recall the familiar notions of union and intersection of sets. Suppose
X is a set and if a subset of 2*. The intersection of the subsets of X in if is the
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subset D X' of X consisting of all x in X such that the statement "If X' E if,

then x £ X'" is true. It should be noted that if the subset if of 2* is empty, then
n X' = X. For if if is empty, then the statement "If X' £ if, then x £ X'" is true

for all x in X since the statement "X' £ iT' is false.
The union of the subsets of X in if is the subset U X' of X consisting ofye?

all x in X with the property that the statement "There is an X'Gif such that
x £ X'" is true. It should be noted that if if is empty, then U X' = 9. For if if is

x'esf

empty, then the statement "There is an X'Eif such that x £ X'" is false for all
x £X since there are no X' in 2" satisfying the condition that X' is in if.
In practice, a particularly useful way of studying a set is to represent it as a

union of some of its subsets. For this reason it is convenient to make the following
definition.

Definition
Suppose X is a set. A subset <g of 2" is called a covering of X if X = U X'.

xe«

Although coverings of various types play an important role in all of
mathematics, we will be particularly concerned with the type of coverings called
partitions.

Definition
A covering € of a set X is said to be a partition of X provided:

(a) If X'e% then X'±i.
(b) If X' and X" are distinct elements of % then X' n X" = 0.

The reader should convince himself that a set <€of nonempty subsets of a set
X is a partition of X if and only if each element in X is in one and only one subset
of X in <& For this reason, if <g is a partition of a set X, it makes sense to talk about
the element of <g containing a particular element X of X. We will usually denote by

[x]t the unique element of the partition <g of X containing the element x of X.
When there is no danger of ambiguity concerning the particular partition <g of a
set X, we will write [x] for [x]«.
Finally, we recall what is meant by the product Xx Y of two sets X and Y.

The set X x Y consists of all symbols (x, y) with x an element of X and y an
element of Y. Hence, two elements (x, y) and (x', y') in Xx Y are the same if and
only if x = x' and y = y'. Obviously, Xx Y is empty if and only if either X or Y is
empty.

2. MAPS

A map of sets consists of three things: a set X called the domain of the map, a set Y
called the range of the map, and a subset / of X x Y having the property that if x is
in X, then there is a unique y in Y such that the element (x, y) in Xx Y is in /.
These data X, Y, f will be denoted by /: X-» Y which is to be read as "/ is a map
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from X to Y." If x is in X, then the unique element y in Y such that (x, y) is in / is
called the value of the map / at x and is denoted by /(.*).
It is important to observe that according to this definition two maps cannot be

the same unless they have the same domain and range. Also, two maps f:X-» Y
and g :X-» Y with the same domains and ranges are the same if and only if their
values are the same for each x in X, that is, if and only if /(x) = g(x) for all x in X.
Thus, once having specified the domain and range of a map, it only remains to
describe its values for each x in X in order to completely determine the map. In
the future, when defining particular maps from a set X to a set Y, we shall
generally describe them by prescribing their values for each x in X rather than
by writing down a subset of X x Y In following this procedure it is of course
necessary to make sure that one and only one value in the range has been assigned
to each element of the domain. As an illustration of this point suppose that <€ is a
partition of a set X. Then we have already seen that for each x in X there is one
and only one element [x]« of <€ containing x. Thus, we obtain a map /c

,
:X -» <€ by

setting kt(x) = [x]t. Of course, we could have also defined the map fc« as the
subset of X x <€ consisting of all elements (x, [x]«) in X x <

g

with x in X.
We now describe some important maps of sets.

Example 2.1 Suppose f:X-» Y is a map and X' is a subset of X. We define a

map f\X' :X'-»Y called the restriction of / to X' by (/|X')(x') = f(x') for all x' in
X'.

Example 2.2 Associated with each subset X' of a set X is the inclusion map
from X' toX which is denoted by inc : X' -»X and is defined by inc(x) = x if x is an
element of X which is in X'.

Example 23 The inclusion map of a set X to itself is called the identity map
and is usually denoted by idx for each set X.

Example 2.4 Since the empty set 0 is a subset of any set X, we always have
the inclusion map inc :0-»X. Actually, this is the only map from 0 to X and this
unique map from 0 to a set X is called the empty map. In this connection, the
reader should convince himself that there are no maps from a nonempty set to the
empty set.

Example 2.5 We have already seen that associated with a partition <
€ of a set

X is the map k< : X-» <
g

given by k<(x) = [x] for each x in X where [x] is the unique
subset of X in <6 containing the element x. This map k^:X-»^ is called the

canonical or natural map from the set X to the partition '.€.

Suppose X and Y are sets. Then each map with domain X and range Y is

completely determined by a subset of X x Y and hence by an element of 2*xY
Thus, the collection of all maps from X to Y which we denote by (X, Y) is a set
which is a subset of 2*xV.
Of fundamental importance in constructing and analyzing maps is the notion

of the composition of maps. Given two maps /: X-» Y and g : Y-»Z with the range
of / the same as the domain of g, we define their composition gf to be the map
gf:X-»Z given by g/(x) = g(/(x)) for each x in X. It follows immediately from
this definition that if we are given three maps /: U-»X, g :X-» Y
,

and h : Y-»Z,
then the two maps h(gf): U-»Z and (/ig)/: U-»Z are the same. This property of
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the composition of maps is referred to as the associativity of the composition of
maps.

As an example of the composition of maps we point out that if / :X -» Y is a
map of sets and X' is a subset of X, then f\X' :X'-»Y, the restriction of ftoX', is
the composition X'-^X— *-»Y where inc:X'-»X is the inclusion map.

3. ISOMORPHISMS OF SETS

One of the most important problems in mathematics is deciding when two
mathematical objects have the same or similar mathematical properties and can
therefore be considered essentially the same. Since all the mathematical objects
we will be considering in this book consist of an underlying set together with some
additional structure, it is reasonable to first consider how sets are compared and
the circumstances under which they are considered essentially the same.
Because a map from a set X to a set Y associates with each element x in X an

element y in Y, a map clearly can be viewed as a method for comparing the sets X
and Y. If this is a reasonable idea, then we should be able to state in terms of maps
what is probably the simplest comparison of sets we can make: the fact that a set
is the same as itself. The reader should have no difficulty convincing himself that
the identity map on a set does indeed express this fact. It is interesting to note that
the identity map on a set can be completely described in terms of maps as is done
in the following.

Basic Property 3.1
For a map f:X-»X, the following statements are equivalent:

(a) /=idx.
(b) Given any map g:X-»Y, then gf=g.
(c) Given any map h : Y-»X, then fh = h.

Having decided that the identity map expresses the fact that a set is the same
as itself, it is reasonable to ask what kind of maps between two sets X and Y must
exist in order to conclude that X and Y resemble each other as much as possible.
In view of our previous discussion, this amounts to asking when is a map
f:X-» Y close to being an identity map? A possible answer might be that there is a
map g : Y-»X such that the composition gf:X-»X is the identity on X. But there
is no reason to favor the set X over the set Y. Hence, we should also require that
there be a map h : Y-»X such that fh =idy. However, the associativity of the
composition of maps implies that under these circumstances the two maps g and h
are the same. Therefore, it seems reasonable to consider two sets X and Y as
being essentially the same if there exists a pair of maps f:X-»Y and g:Y-»X
such that g/ = idx and fg =idY. In fact, this amounts to nothing more than the
familiar notion of two sets being isomorphic, as we see in the following.

Definition
Let X and Y be sets. A map f:X-» Y is said to be an isomorphism if and only if
there is a map g : Y-»X such that g/= idx and fg = idy. If f:X-» Y is an isomor
phism, then there is only one map g:Y-»X with these properties, and this
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uniquely determined map from Y to X, which we denote by /"', is called the
inverse of /. Finally, the set X is said to be isomorphic to Y if there is a map
f:X-»Y which is an isomorphism.
We remind the reader of the following.

Basic Properties 3.2

(a) All identity maps are isomorphisms which are their own inverses. Hence, all
sets are isomorphic to themselves.

(b) If f:X-»Y is an isomorphism, then the inverse f"':Y-»X is also an
isomorphism whose inverse is /, that is, (/"')"'=/. Hence, if X is isomorphic
to Y, then Y is isomorphic to X.

(c) The composition gf of two isomorphisms g and / is also an isomorphism with
inverse /"'g"'. Thus, if X is isomorphic to Y and Y is isomorphic to Z, then X
is isomorphic to Z.

(d) If gf is an isomorphism, then g is an isomorphism if and only if / is an
isomorphism.

Experience has shown, roughly speaking, that a map f:X-» Y is an isomor
phism if and only if it gives a way of identifying the set X with the set Y. A precise
formulation of this idea is given in the following familiar characterization of
isomorphisms.

Basic Property 3.3
A map f:X-» Y is an isomorphism if and only if it satisfies both of the following
conditions:

(a) If y £ Y, then there is an x in X such that f(x) = y.
(b) If x, and x2 are in X and f(x\) = f(x2), then x, = x2.
Although technically equivalent to the notion of an isomorphism, the condi

tions (a) and (b) of the above basic property are conceptually quite different from
our original definition of an isomorphism since these conditions describe what
the map does to the elements of the sets involved rather than how it is related to
other maps. We will often refer to an isomorphism as a bijective map when we
wish to emphasize this different approach to the concept of an isomorphism
of sets.

4. EPIMORPHISMS AND MONOMORPHISMS

Yet another aspect of the notion of an isomorphism of sets is given in the
following.

Basic Property 4.1
A map f:X-» Y which is an isomorphism satisfies the following conditions:

(a) If g,, g2: Y-»Z are two maps such that g,/ = gj, then g, = g2.
(b) If h,, h2: U-»X are two maps such that fh,=fh2, then h, = h2.
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It turns out that there are many important maps which satisfy one but not
necessarily both of the above conditions. For this reason we make the following
definitions.

Definitions
Let f:X-»Y be a map.

(a) / is called an epimorphism if given two maps g,,g2: Y-»Z, we have g, = g2
whenever g,f=g2f-

(b) / is called a monomorphism if given two maps h,, /t3: U-»X, we have /i, = h
2

whenever fh, = fll2-

Thus, if a map is an isomorphism, it is both an epimorphism and a mono
morphism.

We now list some easily verified properties of epimorphisms and mono
morphisms.

Basic Properties 4.2
Let f:X-»Y and g: Y-»Z be two maps.

(a) If / and g are both epimorphisms (monomorphisms), then the composition
gf:X-»Z is an epimorphism (monomorphism).

(b) If gf:X-»Z is an epimorphism, then so is g.
(c) If gf:X-»Z is a monomorphism, then so is /.

We have already seen how to describe in terms of what a map does to
elements the fact that it is an isomorphism. The same can be done for the notions
of epimorphisms and monomorphisms. In order to state this result, it is conve
nient to have the following.

Definitions
Let /:X-» Y be a map.

(a) / is said to be a surjection. or a surjective map, if for each y in Y there is an x in
X such that f(x) = y.

(b) / is said to be an injection, or an injective map, if given x, and x2 in X with the
property that f(x,) = f(x2), then x\ = x2.

Basic Properties 4.3

(a) A map is an epimorphism if and only if it is a surjective map.
(b) A map is a monomorphism if and only if it is an injective map.
(c) A map is an isomorphism if and only if it is an epimorphism and a

monomorphism.

As with isomorphisms, we will refer to an epimorphism (monomorphism) as a

surjective map (injective map) whenever we wish to emphasize what the map
does to the elements of the sets involved rather than its relation to other maps.
We conclude this section with the following useful property of surjective and

injective maps.
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Proposition 4.4
Suppose we are given a diagram of maps of sets

satisfying:

(a) ts = hg.

(b) s is a surjective map and h is an injective map.

Then there is one and only one map j:U-»Z such that js = g and hj = t.

5. THE IMAGE ANALYSIS OF A MAP

A map /: X-» Y of sets not only serves as a way of comparing the sets X and Y,
but also as a way of comparing subsets of X and subsets of Y. In the following
definitions we point out some of these relationships. Others will be discussed later

Definitions
Suppose f:X-» Y is a map of sets. If X' is a subset of X, then the subset of Y
consisting of all elements f(x) in Y with x in X' is called the image of X' under /
and is denoted by f(X'). The subset f(X) of Y is called the image of the map / and
is usually denoted by Im/.

Suppose we are given a map f:X-» Y. It is clear that / is a surjective map, or
equivalent ly an epimorphism, if and only if Im/= Y. However, regardless of
whether the map / itself is surjective, the map f0 :X -» Im /, defined by /0(x) = /(x)
for all x in X is always surjective. Hence, associated with each map / :X -» Y is
the surjective map /0:X-»Im/.
The importance of the map /0 lies in the fact that it completely determines the

map / if we assume that we know the range of /. For it is easily checked that the
map / is the composition

X-±-»lm f-^Y
where inc : Im /-» Y is the inclusion map of the subset Im / of Y. This representa
tion of a map f:X-» Y as the composition inc /« is called the image analysis of the
map /.
Although we have already pointed out that the map /0 is always a surjective

map, it is equally important to observe that all inclusion maps are injective maps,
or equivalently monomorphisms. The image analysis of a map therefore shows
that every map can be written as the composition of a surjective map followed by
an injective map. Because the representation of a map as the composition of a
surjective map followed by an injective map plays a critical role in analyzing
maps, we make the following definition.
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Definition
Let f:X-»Y be a map. By an analysis of / we mean a set A together with a
surjective map g:X-»A and an injective map h:A-»Y such that f=hg.

We end this preliminary discussion of the analysis of a map by pointing out

that all analyses of a map are essentially the same. Precisely, we have the
following.

Basic Property 5.1
Suppose

X-±-»A-t-»Y
and

are both analyses of the map f:X-»Y. Then there is one and only one map
j :A -» A ' such that jg = g' and h'j = h, and this uniquely determined map ; : A -» A '
is an isomorphism.

6. THE COIMAGE ANALYSIS OF A MAP

Another important standard analysis of a map is the coimage analysis. Before de
scribing this analysis, it is convenient to have the following.

Definitions
Suppose / : X-» Y is a map. If Y' is a subset of Y, then the set of all x in X with the
property f(x) is in Y' is called the preimage of Y' under / and is denoted by
/"'(!"). If y is an element of Y, we write /"'(y) for /"'({y}).

Suppose we are given a map f:X-» Y. Then it is not difficult to show that the
subset Coim / of 2* consisting of all subsets of X of the form /"'(y) with y in Im /
is a partition of X which we call the coimage of /. We have already seen that
associated with any partition ^ of a set X is the canonical map k^:X-»<€ defined
by kA.x) = [x]- for all x in X, where [x]t is the unique element of <g containing x.
Because each set in <€ is nonempty, it follows that the canonical map k, :X-» <€ is
a surjective map. In particular, the map Jlccmm;:-^-»Coim/ is surjective.
The map k,.,„m1:X-»Colmf has another important property: There is a

unique map j;:Coim/-» Y such that / = /;fcc0™;. We first show that such a map
exists. Suppose the subset X' of X is an element of Coim /. Then by definition
there is a y in Im/ such that f'\y) = X'. Hence, /(X') = {y}. Define the map

jy
:

Coim /-» Y by if(X') is the unique element y of Y such that f(X') = {y}. Then
hkcani,(x) = jt([x]) = f(x) for all x in X which shows that the map /;:Coim/-» Y

does indeed have the property f = jIkc*mi- That there is only one such map from
Coim /-» Y follows from the fact that fcc°,m; is surjective and hence an epimor-
phism. We leave it to the reader to verify that jf : Coim f-»-Y is also an injective
map with Im;,=Im/and so (//)0:Coim/-»Im/ is an isomorphism from Coim /to
Im/. The map /;:Coim/-» Y is called the map from Coim/ to Y induced by the
map/:X-»Y.
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It therefore follows that the composition X —»Coim/— '-»Y is an
analysis of the map /. This analysis is called the courtage analysis of the map /.
Further, because

X >c°"'
» Coim/ h-—»Y

»Im/—i=—»Y

are both analyses of /, we know that there is a unique isomorphism g :Coim /-»
Im/ such that gfcc0™;=/0 and incg=/,. The map g is easily seen to be the
isomorphism (//)0: Coim /-»Im/. This isomorphism is called the canonical isomor
phism from Coim / to Im /.

7. DESCRIPTION OF SURJECTIVE MAPS

Suppose / :X-» Y is a map. Then the coimage analysis X =!—» Coim / —-» Y
of / has the property that / is a surjective map if and only if ji :Coim f-»Y is a
surjective map and hence an isomorphism. This certainly suggests that when

f:X-»Y is a surjective map, the maps fcc^m;:X-»Coim/ and f:X-»Y are inti
mately connected. It is precisely this connection that we describe in this section.
We begin with the following.

Definition
Let 9, and 92 be two partitions on a set X. We say that 9\ is a refinement of 92 if
given a subset X' of X in 9,, there is a subset X" of X in 92 such that X"DX'. We
shall denote the fact that 9, is a refinement of 92 by writing 9, a 92.

Now if the partition 9, is a refinement of the partition 92, then given any
subset X' of X in 9u not only is there a subset X" of X in 92 containing X', but
there is only one such subset of X in 92. Hence, if 9, > 92, we can define the map
g*l,9l:9, -» 92 by setting g^.^X'), for each element X' in 9\, to be the unique
element of 92 containing the element X' of 9\. The map g*,.*, : £?, -» 0i2 is called
the canonical map from 9, to :'^2.
The map g»,.*,:#,-»^2 can be characterized as the unique map h:9,-»92

such that the diagram

9,

commutes, that is, such that hk9, = k9l. This, of course, shows that #,,.,. is a
surjective map. It also shows that #,,.,», is an injective map or, equivalently, is an
isomorphism if and only if 9\ = 92. Further, if 9\ = 92, then g»,.», = id»,. Finally, it
is straightforward to show that if two partitions 9\ and 92 of X have the property
that there is a map h : 9, -» 92 such that Wc,, = fc*. then 9, a £P2 and h = g*.9l. In
summary, we have the following.
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Basic Properties 7.1
Let 9\ and 92 be partitions of a set X. Then:

(a) There is a map h : ?,-»?2 such that hk* = k^ if and only if 9, >9,.

(b) If ?,>^2, there is only one map h : 9,-»92 such that hk», = k^; namely, the
canonical map g»,.^-

(c) If 9\ a 92, then the canonical map g^.91:9\-»92 is always a surjective map
which is an isomorphism if and only if 9, = 92.

(d) &i.* = id*-

We can now state the main results concerning the connections between arbi
trary surjective maps f:X-»Y and their associated surjective maps kc<»m,:X-»
Coim /.

Proposition 7.2
Let /, :X-» Y, and /2 :X-» Y2 be two surjective maps.

(a) The following statements are equivalent:

(i) There is a map h : Y,-» Y2 such that hf, = /2
.

(ii) There is a map g : Coim /,-»Coim /2 such that gfcc<»m;,= fcc..,mfc.

(Hi) Coim /,> Coim f2
.

(b) If there is a map /i: y,-» Y2 such that hf, =f2, then:
(i) There is only one such map.

(ii) There is only one map g : Coim /,-» Coim /2 such that

gfcc0,m;, = KcmmJb, namely, gcmm;,.cmmfi

(c) The following are equivalent:

(i) There is an isomorphism h:Y,-»Y2 such that hf,=f2.
(ii) Coim /, = Coim f2

.

(d) If Y is a partition of X and f:X-»Y is the canonical map, then Coim/= Y
and f=kcamI.

Roughly speaking, this proposition says that all surjective maps f:X-» Y with

a fixed domain X are essentially given by the canonical maps fc
«
: X-» <€ for all

partitions % of X. Hence, it is of considerable importance to know how to create
partitions of a set X. One of the most widely used devices for accomplishing this is

known as an equivalence relation, a notion we discuss in the next section. Before
doing this we point out the following generalization of some of our results to date
concerning surjective maps.

Proposition 7.3
Let /:X-» Y be a surjective map of sets. If g:X-»Z is a map of sets, then there
exists a map h: Y-»Z such that hf = g if and only if Coim/ > Coim g. If Coim/ ^
Coimg, then there is only one map h: Y-»Z such that hf = g.

8. EQUIVALENCE RELATIONS

By definition, a relation R on a set X is simply any subset ofXxX. We usually
denote the fact that an element (x,, x2) in X xX is in the relation R of X by writing
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X, R x2. If R is a relation on a set X and X' is a subset of X, then we denote by R\X'
the relation on X' given by Rfl(X' xX'). That is, if x\ and x2 are in X', then
(xi,x2)£R|X' if and only if (x',,x2)£R. The relation R|X' on X' is called the
relation on X' induced by R.

Definition
A relation R on a set X is called an equivalence relation if it satisfies the following
conditions:

(a) x R x holds for all x in X.
(b) If X, R x2 holds, then x2 R X, also holds.
(c) If x, R x2 and x2 R x3 hold for x,, x2, and x3 in X, then X, R x3 also holds.

We now describe how to associate with each equivalence relation R on a set
X a partition X[R of X. For each element x in X, denote by [x]R the subset of X
consisting of all elements x' in X such that x R x' holds. Let X/R be the subset of
2" consisting of the subsets [x]R of X as x ranges through all elements of X. Then
it is not difficult to show that X/R is a partition of X with the property [x]x* = [x]R
for each x in X. Hence, one way to create a partition on a set X is to start out with
an equivalence relation R on the set X and construct the partition X/R of X.
On the other hand, with each partition yfi on X, there is associated an

equivalence relation R(f?). Namely, for x, and x2 in X define x, R(9)x2 if and only
if there is a subset X' of X in 9 such that x, and x2 are both in X'. It is easy to
check that the relation R( :./i) we just defined is actually an equivalence relation.
Moreover, it is equally easy to see that if R is an equivalence relation on a set

X, then R(X/R) = R. Similarly, if 9 is a partition on a set X, then X/R(0i) = 9. This
description of how to go back and forth between equivalence relations and parti
tions of a set shows that these are really interchangeable notions, a fact that we
shall use freely from now on.
To illustrate this point, the reader should check the validity of the following

proposition.

Proposition 8.1
Let R and R' be two equivalence relations on a set X. Then X/R a X/R' if and only
if X, R x2 implies x, R' x2 for all x, and x2 in X.

This suggests the following definition.

Definition
Let R and R' be two relations on a set X. Then R < R' if and only if X, R x2 implies
X, R' x2; or, equivalent ly, RCR'.

It should be noted that if R and R' are equivalence relations on a set X, then
R<R' if and only if X/R > X/R'.
As our final example of the correspondence between the partitions and

equivalence relations on a set, we point out that if f:X-» Y is a map, then the
equivalence relation R on X corresponding to the partition Coim / of X is given by
x, R x2 if and only if /(x,) = /(x2). This equivalence relation is called the equivalence
relation associated with / and is sometimes denoted by R(/).
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9. CARDINALITY OF SETS

One of the earliest and most important mathematical processes one learns is that
of counting; and one of the basic problems in counting is to determine when two
sets of things have the same number of objects. This is usually done by showing
that the objects in one collection can be matched up with the objects in the other
collection. But the matching up of the objects in a set X with the objects in a set Y
is nothing more than a bijective map from X to Y. This leads us to say that an
arbitrary set X has the same number of elements as a set Y if and only if there is a
bijective map f:X-» Y. Obviously, a set X has the same number of elements as a
set y if and only if the set Y has the same number of elements as X. The fact that
two sets X and Y have the same number of elements is often denoted by
card(X) = card( Y) where card(X) is read as the cardinality of X. Or stated slightly
differently, two sets X and Y have the same cardinality (that is, the same number
of elements) if and only if they are isomorphic sets.
In addition to knowing when two sets have the same number of elements, it is

also important to know when one set Y has at least as many elements as another
set X. A little thought should convince the reader that in usual practice this simply
means that there is injective map / :X -» Y. This observation leads us to define
the cardinality of an arbitrary set X as being less than or equal to the cardinality
of a set Y ; symbolically, card(X) < card(Y) if and only if there is an injective map
f:X-»Y.
If this definition of card(X)scard(Y) really corresponds to the notion that

the set X has at most as many elements as the set Y, then it should have the
following properties:

(a) card(X)<card(X) for all sets X.
(b) If card(X)<card(Y) and card(Y)<card(X), then card(X) = card(Y).
(c) If card(X)<card(Y) and card(Y)<card(Z), then card(X)<card(Z).

It is trivial to verify that (a) and (c) are true. The fact that (b) is true is less
obvious and is equivalent to the following well-known Bernstein-Schroeder
Theorem.

Theorem 9.1
Suppose X and Y are two sets and f:X-»Y and g: Y-»X are injective maps.
Then X and Y are isomorphic sets.

An outline of a proof of this theorem is given in the exercises for the
convenience of those readers not familiar with this result.
There are two more properties of the cardinality of sets that one might expect

to be true judging from one's ordinary experience with counting. Namely, (1)
given a set X there is a set Y such that Y has actually more elements than X, that
is, card(X)<card(Y) but card(X)=£card(Y); or, more simply, card(X)<card(Y)
and (2) if X and Y are sets, then either card(X) < card( Y) or card( Y) < card(X).
The fact that given any set X there is a set Y such that card(X) < card( Y) fol

lows from the following proposition, a proof of which is outlined in the exercises.
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Proposition 9.2
Let X be any set. Then there is no surjective map from X to 2".

Hence, X and 2* are never isomorphic sets, which means card(X)=£card(2;f).
On the other hand, the map f:X-»2" given by /(x) = {x} for each x in X is clearly
an injective map. Therefore, card(X)scard(2*) which implies that card(X)<
card(2*) for each set X. Thus, given any set X there is a set Y such that
card(X)<card(Y), which settles the first question raised.
However, the second question, whether given two sets X and Y, either

card(X)scard(Y) or card(Y)scard(X), is much more complicated. In fact, it
cannot be settled except by the introduction of a notion of set theory which we
have not discussed at all; namely, the axiom of choice. Therefore, we shall return
to this second question in a later section after we have discussed this axiom of set
theory.

10. ORDERED SETS

There are various equivalent forms of the axiom of choice. We shall be concerned
with only three of them: the existence of choice functions, the well-ordering
axiom, and Zorn's lemma. Because all but the first of these forms of the axiom of
choice use the notion of an ordered set in their formulation, we shall begin this
discussion with the notion of an ordered set.

Definition
A relation R on a set X is said to be an order relation on X or an ordering of X, if it
satisfies:

(a) x R x for all x in X.

(b) If X, R x2 and x2 R xu then x, = x2.
(c) If X, R x2 and x2 R x3, then x, R x3.

An ordering R of X is called a total ordering of X if it also satisfies:

(d) If X, and x2 are in X, then either X, R x2 or x2 R x,.

Finally, a set X together with an ordering R (total ordering R) is called an
ordered set (totally ordered set).
The reader should observe that if the relation R on a set X is an order relation

and X' is a subset of X, then the relation R|X' is an order relation on X' called the
induced ordering on X'. Unless stated explicitly to the contrary, if X' is a subset of
an ordered set X, we always consider X' an ordered set under the induced order
ing. Obviously, if X is a totally ordered set so is X' for each subset X' of X.
When there is no danger of confusion concerning which ordering we mean,

we shall follow the usual practice of writing x, sx2 for X, R x2 when R is an order
relation on the set X.
We now offer as examples certain ordered sets that will be occurring fre

quently in the rest of the book.

Example 10.1 Suppose X is a set. It is easy to check that the relation R on 2"
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given by X' R X" if and onJy if X'CX" is an order relation. This is the only order
relation we shall ever consider on the set 2". Hence, when we consider 2X an
ordered set it is always with respect to this ordering. The reader should observe
that 2" is a totally ordered set if and only if X has at most one element.

The next example, which is closely related to our first one, is extremely useful
in constructing maps, as we shall see later on.

Example 10.2 Suppose we are given two sets X and Y. Let ST(X, Y) consist
of all triples (X', Y', f) where X' and Y' are subsets of X and Y, respectively, and
/ is a map from X' to Y'. Consider the relation R on ST{X, Y) given by
(X', y, /') R {X", Y", /") if and only if X' CX\ Y" C Y", and /"(x) = /'(x) for all x
in X'. It is easily seen that R is an order relation on 3'(X, Y). Hence, when we
refer to 3"{X, Y) as an ordered set, it is always with respect to this ordering.

Finally, we have the following familiar ordered sets.

Example 10.3 All of the following sets with their usual ordering are totally
ordered sets:

(a) The set N of all nonnegative integers, that is, all integers n^0.

(b) Z, the set of all integers.

(c) Q, the set of all rational numbers.

(d) R, the set of all real numbers.

Now that we have defined the notion of an ordered set we can start discussing
the axiom of choice.

11. AXIOM OF CHOICE

That every set X has a choice function is perhaps the simplest and most appealing
form of the axiom of choice. What this amounts to saying is that given any
nonempty collection of nonempty subsets of a set X, it is possible to choose an
element out of each one. Although this seems self-evident, it nonetheless cannot
be proven on the basis of the types of manipulations of sets we have permitted
ourselves until now. Formulated somewhat more precisely, this assertion be
comes the following.

Axiom of Choice 1
Given any set X, there is a map c :2* -{0}-»X (where 2" - {0} is the set of all
nonempty subsets of X) such that c(X') £ X' for all nonempty subsets X' of X.
Such a map c is called a choice function on the set X.

As an illustration of how this form of the axiom of choice is used, we prove
the following proposition.

Proposition 11.1
Let /: X-» Y be a surjective map of sets. Then there is a map g : Y-»X such that
fg=\AY.
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PROOF: If Y = 0, then X is empty and / is an isomorphism so there is nothing
to prove.

Suppose now that Y±Q and c:2"-{0}-»X is a choice function on X. Then
define g : Y-»X by g(y) = c(/"'(y)) for each y in Y. Since c(/"'(y)) is in f"\y), it
follows that /(cCr'(y))) = y for all y in Y. Therefore, the map g : Y-»X has the
property fg = idy.

In order to state the next form of the axiom of choice that interests us, it is
necessary to recall the definition of a well-ordered set.

Definition
An ordered set X is said to be well ordered if

(a) X is totally ordered.
(b) If X' is a nonempty subset of X, then there is an element X0 in X', called the
first element of X', having the property X0<> for all x in X'.

It is important to note that if X is a well-ordered set, then the first element of
a nonempty subset X' of X is uniquely determined. For if x0 and xS are both first
elements in X', then x0sx', and x,',sx0 which means that x0 = xJ.

Axiom of Choice 2
If X is a set, then there is an ordering on X which makes X a well-ordered set.
As stated earlier, these two forms of the axiom of choice that have been given

are equivalent. Although it is certainly not trivial to show that the assumption that
every set has a choice function implies that every set can be well ordered (see the
exercises for a discussion of this point), the reverse implication is quite simple to
establish as we now show.

Proposition 11.2
Let X be a well-ordered set. Then X has a choice function.

PROOF: Since the first element of any nonempty subset X' of X is a uniquely
determined element of X', we obtain a choice function c on X by defining the map
c :2*-{0} -» X as follows: c(X') is the first element of X' for each nonempty sub
set X' of X.

As a check on his understanding of well-ordered sets the reader should con
vince himself that while the set N of nonnegative integers is a well-ordered set,
neither the integers, rational numbers, nor real numbers is a well-ordered set even
though each of them is totally ordered.
We now turn our attention to the third and final form of the axiom of choice

which is of concern to us, namely, Zorn's lemma. Although this form of the axiom
of choice is much more technical and therefore has less intuitive appeal than the
others, it has the advantage of being the easiest to apply in most situations of
interest to us.
Before stating Zorn's lemma we review the notion of an inductive set.
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Definition
An ordered set X is said to be an inductive set if every nonempty totally ordered
subset X' of X has an upper bound in X. That is, for each nonempty totally
ordered X' of X there is an element x in X such that x a x' for all elements x' in
X'.

To help clarify this definition we give some important examples of inductive
sets.

Example 11.3 If X is a set, then the ordered set 2* is an inductive set.

PROOF: Suppose if is any subset of 2" and Y = U X'. Then it is obvious

that Y is an element of 2" which is an upper bound of if in the sense that YDX'
for all X' in if. Thus, certainly every nonempty totally ordered subset if of 2" has
an upper bound in 2".

Example 11.4 Let X and Y be sets. Then the ordered set ST(X, Y) is an
inductive set.

PROOF: Suppose y is a nonempty totally ordered subset of ST(X, Y), say
y = {(Xi, Y'„, m. Let X0 = UXi and Y0=UY'm
We claim that because if is totally ordered there is a map /0 : X0 -» Y0 such

that (X0, Y0, /0) is in 5". For suppose x0 is in X0, then by the definition of X0 there is
a triple (Xi, Y'„, /i) in ^ such that x0 is in Xi. Hence, it is tempting to define /0(x0)
to be f'Ax-i). In order for this to be legitimate, we must show that if there is some
other (XJ, Y'e, /£) in if with x0 in XL then f'£x0) = /Kx0), for otherwise the value
/0(x0) would not be uniquely determined but would depend on the particular ele
ment of V used in its construction. But the fact that /Kx0) = /a(x0) follows
from the fact that if is totally ordered. For we know that either
(XL YLfd^XL YLtt) or (XJ, Y'„f'd^(X'„, YLf'J. Now we suppose that
(Xi, Y'„, /;) s (XJ, YL f't,). Then we know that X; C XJ and /i(x) = f„(x) for all x
in X'„ and hence, in particular, /i(x0) = /£(x0). A similar argument works in case
(XJ, yj,/J)s(Xi, Y^/i).
Hence, we have shown that there is a map /0 : X0 -» y0. It is not hard to show

now that (X0, YB, /0) is an upper bound for if since (X0, Y0, /0) ^ (X, y, /') for all
(X', y,/')in if.

The form of the axiom of choice known as Zorn's lemma is simply the
following.

Axiom of Choice 3
If X is an inductive set, then there is an element x0 in X such that if x is in X and
x > x«, then x = x0. Such an element x of X is called a maximal element of X.

As an illustration of how Zorn's lemma is used, we finally give the much
delayed proof that if X and Y are two sets, then either card(X) s card(Y) or
card(Y) s card(X).
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Proposition 11.5
If X and Y are sets, then there is either an injective map from X to Y or from Y to
X.

PROOF: Let Inj(X, Y) be the ordered subset of ST{X, Y) consisting of all
triples (X', Y',f) with the property that f :X' -» Y' is an injective map. Using
the same type of argument as in Example 11.4, it is not difficult to see that
Inj(X, Y) is an inductive set.
Because Inj(X, Y) is an inductive set we know by Zorn's lemma that there is

a maximal element (X', Y', /') in Inj(X, Y). This maximal element (X', Y', /') has
the property that either X' = X or Y' = Y. For suppose there is an X0 in X but not
in X' and an element y0 in Y but not in Y'. Then the map g :X' U {x0} -» Y' U {y0}
denned by g(x) = f'(x) for x in X' and g(x0) = y0 is injective. Therefore,
(X'Ufx0}, Y'U{y0},g) is an element of Inj(X, Y) with the property that
(X', Y', /') < (X' U {*,}, Y' U {y0}, g). This contradicts the fact that (X', Y', /') is
a maximal element of Inj(X, Y). Therefore, our contention that either X' = X or
Y' = Y has been established.
If X' = X, then the composition X—'-^Y' -^+Y of injective maps is an

injective map from X to Y.
On the other hand, if Y' = Y, we can define the map g : Y -» X by letting g(y)

be the unique element in X such that /'(g(y)) = y. It is obvious that g is an injective
map, and so in this case we obtain an injective map from Y to X. This completes
the proof of the proposition.

We finish this discussion of the axiom of choice by pointing out that in the
exercises there is an outline of a proof of our repeated assertions that the various
conditions Axiom of Choice 1, 2, and 3 are equivalent. From now on we will make
free use of these forms of the axiom of choice, especially Zorn's lemma.

12. PRODUCTS AND SUMS OF SETS

In discussing the product of sets, it is convenient to have the notion of an
indexed family of subsets of a fixed set.

Definition
A family of subsets of a set X indexed by a set / is a map ,/,: /-»2*. The set / is
called the indexing set and the subset \p(i) of X is usually denoted by X. In
practice one denotes the map <

/» by {X],eI.

In connection with this definition we observe that associated with an indexed
family {X},e, of subsets of a set X is the subset if of 2" consisting of all subsets X'
of X such that X' = X, for some i in /. The reader should construct examples of
different indexed families of subsets of a fixed set X which give rise to the same
associated subset if of 2*.

Definition
The product of an indexed family {X],e, of subsets of a set X is the set of all maps
f:I-»X such that /(i)£X for all i in /. This product is denoted by n X.
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Usually a different notation is used for the elements of a product II X of an
leJ

indexed set {X},e; of subsets of X. If / is in II Xh then the element f(i) in X, is,e;

denoted by x, and the element / of II X is denoted by {x},e, where x, = Hi) for all i
IEi

in I.
If {X},e; is an indexed family of subsets of a fixed set X, then certain things

about the product II X, are obvious. First of all, if / = 0, then II X, consists of one
le; le;

element, namely, the empty map. So suppose from now on that /^ 0. Then it is
clear that if X = 0 for some i in I, then II X = 0. What might not be quite so

IEi

obvious, since it depends on the existence of choice functions, is that II X=£0 if
iEl

each X,±0. For if c:2*-{0} -» X is a choice function, then {c(X)},e; is in II X,
.6/

since each c(X) is in X, for all i in /. Hence, if 7=^=0,then U X = 0 if and only if,e;

X = 0 for some i in /.
In studying and using products of families of sets, the maps called projection

maps play an important role.

Definition
Let {X,},e; be an indexed family of subsets of a set X indexed by the nonempty set
/. Then for each k E I we have the map projk: II X-»X. given by projk({x,},c;) = X,«.

1<e;

The map projk: II X,-»Xk is called the Jtth projection map. Also, projk({x},<Bi) = xk is,e;

called the Jtth coordinate of the element {x,},. , in the product II .Y,.
le;

The following facts concerning projection maps are not difficult to establish.

Basic Properties 12.1
Let {X},e; be an indexed family of nonempty subsets of set X indexed by the
nonempty set I. Then:

(a) For each k in I, the map projk:II X,-»Xk is surjective.
IEl

(b) For each element {x,},ei in II X, we have {x,},el ={projk({x,}I£;)}kei.
let

We end this discussion of products of sets with a description of the set of all
maps (X, II Yi) from a set X to the product n Y, of the indexed family of sets,e; ,e;

{YJhe,. To do this, we first observe that if / is a map from X to II Y„ then for each k,e;

in /, the composition projk/ is a map from X to Yk. Hence, associated with an
element / in (X, II Y,) is the element {projk/}ke; of II(X, Yi). Thus, we obtain the,e; IE,

map /3 : (X, n Y,)- II(X, Y,) given by 0(/) = {projk/}ke, for each / in (X, II Y).
■el ,e; ,e;

Proposition 12.2
Let {Y}lE ; be an indexed family of subsets of a set Y indexed by the nonempty set
/ and X an arbitrary set. Then the map 0 :(X, II Y) -» II (X, Y) given by £(/) =
{projk/}ke; is an isomorphism of sets.
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Another useful construction associated with an indexed family {X},E, of
subsets of a set X is the sum of the indexed family.

Definition
Let {X},e, be an indexed family of subsets of a set X. The sum of this indexed
family is the subset II X, of X x / consisting of all elements (X, i) in X x I such
that x is in X.

If {X}, g , is an indexed family of subsets of a set X, the reader should observe
the following facts about the sum II X,. If / = 0, then Xx/ = 0 and hence,el

II X = 0. Also regardless of whether I is empty or not, II X = 0 if each X = 0.
lel IE1

Finally, II X,±9 if /=£0 and some X=£0.
IEI

Analogous to the projection maps for the product of an indexed family of
subsets of a set X is the injection maps for a sum of the indexed family of subsets
of X.

Definition
Let II X, be the sum of the indexed family {X},e , of subsets of X indexed by the,el

nonempty set /. For each k in / the map injk: Xk -» II X defined by injk(xO = (xk, k)
IE I

for each Xk in Xk is called the kth injection map.

We leave it to the reader to verify the following.

Basic Properties 12.3
Let II X, be the sum of the indexed family {X}i e , of subsets of a set X indexed by,el

the nonempty set /. The injection maps injn :X, -» II X, have the following proper-
.. ,el
ties:

(a) For each k in / the map injk :X, -» U X is injective.,el

(b) Letting Iminjk= Yk we have:

(i) YknYk=0if k±k<.
(if) II X, = U Yk.

We end this section by establishing the analog of Proposition 12.2 for sums.
To this end, we observe that if /: II X,-» Y is a map from the sum of the indexed

IEl
family {X], e i to the set Y, then for each k E I the composition / injk is a map from
Xk to Y. Hence, associated with an element / in (II Xh Y) is the element {/injk}kei

of II (X,, Y). Thus, we obtain the map y:(UX„ Y)-»n(X, Y) given by y(/) =,el lel ,el

{/injk}ke, for each / in (II X,, Y).
IE I

Proposition 12.4
Let {Xi},ei be an indexed family of subsets of X indexed by the nonempty set I
and let Y be an arbitrary set. Then the map y : ( II X,, Y)-» II (Xh Y) given by,EI ,el

y(/) = {/inJk}ne, for each / in (II X, Y) is an isomorphism of sets.
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EXERCISES

(1) Throughout this exercise R denotes the set of real numbers.

(a) Let /:R-»RxR be the map defined by f(x) = (cos x, sin x) for all x in R.
Describe:

(i) Im/.
(ii) /"'(y) for each y in Im/.

(b) Let R+ be the set of nonnegative real numbers. Show that the logarithmic map
log,:R+-»R is an isomorphism of sets whose inverse is the exponential map
from R to R\

(c) Show that any two circles, regardless of size, are isomorphic sets.

(d) Show that the subset of R x R consisting of all ordered pairs (x, y) satisfying
0 < y < it and x arbitrary is isomorphic to the set R x R. [Hint : Use polar coor

dinates.]

(e) Let C(R) denote the set of all maps from R to R which have all derivatives.
Consider the maps dldx : C(R) -» C*(R) and /S : C"(R) -» C°(R). Describe:
(i) the images of these maps;

(ii) the preimages of elements in their images;

(iii) the compositions of these two maps.

(2) Let X be a set consisting of a single point which we denote by x. For each set Y
we define the map a :(X, Y)-» Y by a(f) = f(x) for each / in (X, Y). Prove that
the map a is an isomorphism for each set Y.

(3) Prove that a map /: X-» Y is a monomorphism if and only if it is an injective
map. [Hint: To prove that the map / being a monomorphism implies that / is an
injective map, use the description of the maps of a single point to the set X given
in Exercise 2.]
(4) Prove that a map /:X-» Y is an epimorphism if and only if it is a surjective
map. [Hint: To prove that the map / being an epimorphism implies that it is a
surjective map, consider the maps of Y to a set consisting of two distinct points.]
(5) Suppose X is a set and <€C2X is a set of subsets of X. Show that the following
statements are equivalent:

(a) <g is a covering of X.

(b) If Y is an arbitrary set, then two maps f:X-» Y and g : X-» Y are the same if
the restriction maps f\X' and g\X' are the same for each subset X' of X in <€.

(6) Suppose that <gC2* is a covering for the set X and Y is an arbitrary set. Show
that the following statements are equivalent for a family of maps {fx :X' -» Y)x e t:
(a) There is a map /:X-» Y such that f\X' = fx for each X' in «.
(b) For each pair of elements X' and X" of « we have that fx\X' nX" = fx-\X' DX".
(7) Show that a subset <€of 2" is a partition of the set X if and only if <g satisfies:
(a) Each subset of X in <€ is not empty.
(b) Given any set Y and family of maps {fx :X' -» Y}xe« there is a unique
map /:X-» Y such that f\X' = fx- for all subsets of X in <&

(8) Consider the following diagram of sets and maps:
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Suppose that the diagram is commutative, that is, gf = ts.

(a) Prove that if / is surjective and t is injective, then there is one and only one
map h : Y-» U such that hf = s and th = g. [Hint : For each y £ Y, choose x £X
such that f(x) = y. Show that the element s(x) £ U is independent of the choice
of x and define h(y) to be s(x).]

(b) Prove that if / and s are surjective and g and t are injective, there are unique
isomorphisms h: Y-»U and h' : U-»Y such that h/ = s, h's = f, and h' = h'\

(9) Prove that for any set X, there is no surjective map from X to 2". [Hint: If
f:X-»2* is any map and X' = {xEX\x£f(x)}, show that X' is not in Im/.]
(10) The set of subsets of a set X has been denoted by 2". Show that if Y is a set
consisting precisely of two distinct elements which we denote by 0 and 1, then the
map /3 : (X, Y)-» 2* defined by 0(/) = / '(0) for all / in (X, Y) is an isomorphism of
sets.

(11) Show that if Y is a set with at least two distinct elements, then card((X, Y)) >
card(X) for all sets X.

(12) Let X be the subset of the set of real numbers satisfying the condition x is in
X if and only if 0<x<l.
(a) Show that each real number in X can be written in one and only one way as an
infinite decimal .ala2a^ . . . a„ . . . having the property that given any integer n
there is an integer m>n such that a„=f=9.

(b) Show that given any infinite decimal .a,a2a3 . . . a, . . . there is a unique element
x in X such that x = .a,a2a3 ... a

(c) Suppose /:N-»X is a map of the set of nonnegative integers N to X. For
each k in N, let .a,,ai: .. , ch.,. . . be the unique infinite decimal expansion of

f(k) satisfying the condition specified in part (a). For each k in N let bk be
different from 9 and aa. Show that the number b in X whose decimal expan
sion is .blb2...bn... is not in the image of /.

(d) Show that card(X)>card(N) and hence card(R)>card(N).
(13) Let X,, X2 be subsets of a set X and Y,, Y, subsets of a set Y. Suppose that
X = X,UX2, Y= Y,U Y2, and that X,nX2 = 0= Y,nY2. Show that if card(X) =
card(Y) for 1=1,2, then card(X) = card(Y).
(14) (a) Let X„ X2, X be sets with X, CX2 CX and let /: X-»X, be a map. Let Y be
the set of all subsets V of X such that /( V) U (X2 - X,) C V, where X3-X, =
{x £ X2|X <£X,}. Prove that if U = n V, then U C X2 and /(U) U (X2 - X.) = [/.vev

[Hinf : First prove that U EY. Then show that /([/) U (X2 - X,) £ V.]
(b) From (a), prove that X2 = (X,-/([/))U U. Then prove that card(X,) =
card(X2) if / is an injective map. [Hinf : Use the fact that X, = (X, - F(U)) U
/([/) and Exercise 13 above. Note that (X, -/([/)) D U = 0.]

(c) Show, finally, that if / is bijective, then card(X2) = card(X).
(15) Let X and Y be sets such that card(X)<card(Y) and card(Y)<card(X).
Prove that card(X) = card( Y). [Hint: let g:X-» Y and h : Y-»X be injective
maps. Let X2 = Im h and X, = Im hg and let / :X -» X, be the bijective map (hg)0.
Then use the preceding exercise. This is the Bernstein-Schroeder theorem.]
(16) Let X be the subset of the real numbers consisting of all reals of the form
l-I 0

n + 2 (})' where t > 0 and n is an integer. [We use the convention that 2 (£)' = 0.]

Is X a well-ordered set?
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(17) Let X be a well-ordered set. Show that if x EX and x is not an upper bound
for X (that is, there exist y £X such that y > x), then there is one and only one
element s(X)£X having the following two properties:
(I) x<s(x);
(ii) if x s y < s(x), then either y = x or y = s(x).
(18) Let X be a nonempty set.
(a) Prove that there are subsets X' of X which have a well ordering, that is, there
exists an ordering on X' which makes X' a well-ordered set. [Hint: Consider
subsets of X which consist of only one point.]

(b) If X\ CX2CX and R is an order relation on X'2, prove that Rfl(Xi x X\) is an
order relation on X\. As usual denote this relation on X\ by R|XJ.

(c) Let °W be the set of all pairs (X', R) where X' is a subset of X and R is a well
ordering of X' . Define an order relation on °W by setting (Xi, R,) < (X2, R2) if:
(i) XiCXJ.
(ii) r2|x',=r,.
(iii) If x, £Xi and x2£X2-X',, then x,<x2. Prove that W is an induc
tive set.

(d) Using Zorn's lemma, prove that W has a maximal element (X0, R). Show that
X0 = X. This proves that Zorn's lemma implies well ordering.

The next two exercises constitute a proof that the axiom of choice implies
Zorn's lemma.

(19) Let X be an inductive set having the additional property that every totally
ordered subset X' of X has a least upper bound in X, that is, among the upper
bounds of X' there is a first element. Let /:X-»X be a map satisfying the
following two conditions:

(i) x</(x)forall xEX.
(ii) xsys/(x) implies y = x or y=/(x).
We now outline a proof that these hypotheses imply the existence of an

element x in X such that /(x0) = x0. If a is an element of X, define a subset C of X
to be an u-chain if C satisfies the following conditions:
(i) aEC.
(ii) If a£C, then /(a) £C.
(iii) Every totally ordered subset of C has a least upper bound in C.

(a) Prove that if C = {x E X\a sX}, then C is an a -chain.
(b) If K„ is the intersection of all a-chains, prove that K„ is an a -chain.
(c) Prove that if x £ K, and x is comparable with every element of K„, that is, for
all y £ K, either x s y or y s x, then /(x) is comparable with every element of
K,. [Hint : Let C = (y£ JC |/(x) is comparable with y} and prove that C is an
a -chain.]

(d) Prove that if x £ K., then x is comparable with every element of K,, so that K„
is totally ordered. [Hint : Let C be the set of those elements x in K„ which are
comparable with every element of Jd. Show that C is an a -chain.]

(e) Prove that Kc is well ordered.

(f) Because K„ is totally ordered and is an a-chain, we may conclude that K„ has
a least upper bound x0 in K„. Prove that f(x0) = x0.

(20) Let X be an ordered set and let ST be the set of all totally ordered subsets T of
X. 5" is an ordered set under the usual order relation of inclusion.
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(a) Prove that 'J is an inductive set satisfying the additional condition that every
totally ordered subset of 5" has a least upper bound in 3".

(b) For each TG ST, let BT= {x G X\x > t for all t £ T). Assume that <p is a choice
function for X, and define /: 5"-»5" by

/(T) =
{

TU<p(BT), ifBT^0
if BT = 0

Prove that for all T £ ^, T < /(T) and that if T s T < /(T), then T = T' or
T'=/(D.

(c) Using Exercise 19 and still assuming the existence of <p, prove that 3" has a

maximal element. This establishes the fact that if the axiom of choice holds,
then every ordered set contains a maximal totally ordered subset.

(d) From (c) conclude that the axiom of choice implies Zorn's lemma.

(21) Let C, Y, and Z be sets. Define a map <p:(Xx Y, Z)-»(X, {Y, Z)) by setting,
for /:Xx Y^Z, «p(/)(X)(y ) = /((x, y)).
(a) Prove that <p is always an isomorphism.

(b) If g:Z-»Z' is a map, then for all sets W there is a map gw:(W,Z)-»(W,Z')
defined by gw(/) = gf. Prove that the following square is commutative:

(X x y, z)—*—--(X, ( y, Z))

(Xx y, z') - »(X,(y Z'»

where <p':(Xx y,Z')-»(X(y,Z')) is defined as in (a).

(22) Show that if X and y are arbitrary sets, then the sets 2"-Y and (Y, 2") are
isomorphic.

(23) Suppose that R is an order relation on a set X which is not a total ordering.
Suppose, in particular, that x and y are elements of X such that neither xRy nor
y R X holds. Show that there is an order relation R' on X such that x R' y and
x, R' x2 holds if X, Rx2 holds. [Hint: Show that the relation R' on X given by
X, R' x2 if either X, R x3 or both x,Rx and y R x2 hold is an order relation on X with
the desired properties.]

(24) Let R be an order relation on a set X. Show that there is a total ordering R' of
X such that x, R X3 implies x, R' x2.



Chapter2 MONOIDS
AND
GROUPS

For the convenience of handy reference as well as to fix notation and definitionsi
we presented in the previous chapter a rapid survey of those aspects of set theory
that we shall need in this book. In a similar spirit, some fundamental facts and
notions concerning monoids and groups are presented in this chapter. Because, as

in the case of set theory, we are assuming the reader is familiar with most of this
material, few proofs are given in the text. Illustrative material as well as outlines
of the more difficult proofs are included in the exercises to aid the reader in
gaining familiarity with the few notions or results he encounters here.

1. MONOIDS

Certainly everyone will agree that adding, multiplying, or somehow combining
two quantities to obtain a third is central to all of our experiences with algebra.
These are all instances of what is called a binary law of composition, a notion we
now define.

Definition
A binary law of composition on a set X is simply a map m:XxX-»X. Two
properties of a law of composition m:XxX-»X of particular interest are

(1) associativity, which means that m(x,, m(x2, x,))= m(m(x,, X2), x3) for all xu x2,
and x, in X;

(2) commutativity, which means that m(x,, x2) = m(x2, x,) for all x, and x2 in X.

27
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It is not difficult to create laws of composition which are neither associative
nor commutative. Although noncommutative laws of composition are of interest

to us in this book, nonassociative ones are not. Therefore, from now on when we

speak of laws of composition we shall always mean associative, but not necessar
ily commutative, ones.
We shall say that a law of composition m:XxX-»X on a set X has an

identity if there is an element e in X, such that m(e, x) = m(x,e)=x for all x in X.
It is important to note that if the law of composition m has an identity, then it has
only one. For if e,, e2 in X are both identity elements for m, then e, = mfo, e2) = e2.
This uniquely determined element e in X is called the identity of the law of
composition m.

We can now define the most general type of algebraic object of interest to us.

Definition
By a monoid structure on a set X we mean an associative law of composition
m :X x X -» X with identity. A monoid is a pair (X, m) where AT is a set and m is a
monoid structure on X. If (X, m ) is a monoid, then X is called the underlying set of
the monoid (X, m ). Finally, a monoid (X, m ) is called a commutative or abelian
monoid if m is a commutative law of composition on X.

We have already seen that the subsets of a set play an important role in set
theory. The analogous notion for monoids is that of a submonoid which we now
define.

Definition
A monoid (X', m') is said to be a submonoid of a monoid (X, m) if:

(a) X' is a subset of X containing the identity e of m.
(b) m(x,,x2) = m'(x,, x2) for all x, and x2 in X'. We shall denote the fact that
(X',m') is a submonoid of the monoid (X, m) by writing (X',m')C(X, m).

It is worth noting that if (X', m') is a submonoid of a monoid (X, m), then X'
is a subset of X containing the identity e of m such that m(xl, x2) is in X' if x, and
x2 are in X'. On the other hand, if X' is a subset of X containing the identity e of m
such that m(x,,x2) is in X' whenever x, and x2 are in X', then (X', m') is a
submonoid of (X, m) where m':X'x X'-»X' is defined by m'(x,. x2) - m(x,, x2) for
all X, and x3 in X'. In other words, the submonoids of a monoid (X, m) are
completely determined by the subsets X' of X containing e which have the
property that m(x,, x2) is in X' whenever x, and x2 are in X'. For this reason, it is
legitimate to refer to a submonoid (X', m') of a monoid (X, m) simply as the
submonoid X' of (X, m).
If m :Xx X-»X is a law of composition, then it is common practice to use

either the multiplicative notation xlx2 or additive notation x, + x2 to denote
m(X,, X2). When there is no danger of ambiguity concerning which particular law
of composition we mean, we shall tend to use the multiplicative notation for laws
of composition. The additive notation shall be used only for commutative laws of
composition. Of course, this does not preclude using the multiplicative notation
for a commutative composition. Whenever we use the multiplicative (or additive)
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notation for the law of composition of a monoid, we shall denote the identity of
the monoid by 1 (or 0). Finally, we shall refer to a monoid (X, m) as simply the
monoid X whenever there is no possible doubt as to which law of composition m
on X we have in mind.
Before giving some important examples of monoids and submonoids, we

state the following easily verified properties.

Basic Properties 1.1
Let if be a set of submonoids of the monoid X. Then:

(a) D X' is a submonoid of X.

(b) If if is a totally ordered subset of 2*. then U X' is a submonoid of X.
X'ey

Example 1.2 Let X be a set. Then the set of all maps (X, X) together with the
law of composition m : (X, X) x (X, X) -» (X, X) given by m(/,,/2)=/,/2, where
/1/2 is the composition X—^-»X— ^-»X of maps, is a monoid with identity element
id v. Since the maps from a set X to itself are called endomorphisms of X, this
monoid is called the monoid of endomorphisms of X and is denoted by End(X). It
is easily seen that the following are submonoids of End(X).

(a) Inj(X), the set of all injective endomorphisms of X.
(b) Sur(X), the set of all surjective endomorphisms of X.
(c) Aut(X), the set of all automorphisms of X, that is, isomorphisms from X to X.
The reader should also observe that Aut(X) = Inj(X) D Sur(X).

Example 1.3 A little thought should suffice to convince the reader that the set
N of nonnegative integers is a commutative monoid under the usual addition of
integers whose identity is 0 and satisfying:

(a) If x + y = z + y, then x = z for all integers x, y, z in N.
(b) There is an element t different from 0 in N with the property that a subset N'
of N is all of N if 0 is in N' and x + t is in N' whenever x is in AT.

(c) Further, the element t has the property that x + r=£0 for all x in N.

Condition (a) is obvious and (b) is the familiar induction principle which we
see by letting f = 1. What is perhaps not so obvious is that conditions (a), (b), and
(c) completely determine the monoid of positive integers under addition, a fact we
shall establish in the next section. In the meantime we will accept conditions (a),
(b), and (c) as axioms for the monoid N of nonnegative integers under addition.
We now describe the ordinary order relation on N in terms of these axioms. If

x and y are in N, then define x < y if there is a z in N such that x + z = y. It is not
difficult to show just using axioms (a), (b), and (c) that this defines an ordering on
N satisfying:

(I) If s s t and u < c, then s + u^t + v.
(iI) If 0 £ x < t, then x = 0 or f.
(iii) N is a totally ordered set under this ordering,

(rv) N is a well-ordered set with 0 the first element of N.

Since property (ii) implies there is only one element t in N satisfying axiom



30 TWO/MONOIDS AND GROUPS

(b), we follow the usual practice of denoting this element by 1 which we call the

element one of N.

Example 1.4 Since the ordinary product of nonnegative integers is as
sociative and the product of nonnegative integers is again a nonnegative integer,
the ordinary multiplication of nonnegative integers is also a law of composition on
N. In fact, it is well known that N together with this law of composition is a
commutative monoid with identity 1 having the property (x + y)z = xz + yz for all
x, y, and z in N. In this connection, the reader should not have too much difficulty
showing that if N is a commutative monoid satisfying axioms (a), (b), and (c)
above, then there is one and only one law of composition, which we write multi-
plicatively, satisfying:

(c) \x = x = xl for all x in N,
(d) (x + y)z=xz + yz,

and that this uniquely determined law of composition is commutative. Thus, the
axioms we gave for the additive monoid N of nonnegative integers also enables us
to construct the law of composition on N corresponding to the ordinary multipli
cation of positive integers. Finally, one should observe that 0x = 0 for all x in N.
For we have 0 = 0 + 0 and hence 0X = (0 + 0)x = 0x + 0x. Therefore, 0x + 0 = 0x + 0x,
which by axiom (a), implies 0x = 0.

2. MORPHISMS OF MONOIDS

In the previous chapter, we saw that maps between sets give a useful way of
comparing sets. Since monoids are sets together with additional structure, namely,
laws of composition, it seems reasonable that maps between the underlying sets of
two monoids which are somehow compatible with their laws of composition
should give useful ways of comparing the monoids. This approach leads to the
notion of a morphism from one monoid to another which we now define precisely.

Definition
Suppose (X', m') and (X, m) are two monoids with identity elements e' and e,
respectively. A morphism from (X', m ') to (X, m) is a map f:X'-»X satisfying:

(a)/(e') = e.
(b) /(m'(x,,x2)) = m(/(x,),/(xJ)) for all x, and x2 in X'.

The set of all morphisms from (X', m') to (X, m) will be denoted by ((X', m'),
(X, m)).

The reader should note that if we are given two monoids X' and X whose
laws of composition are written multiplicatively, then a morphism from X' to X is
a map of sets f:X' -» X satisfying:

(a)/(l)=l.
(b) /(x,x2) = /(x,)/(x2) for all x, and x2 in X.
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Similarly, if we write the laws of composition additively, then a morphism
from X' to X is a map of sets f:X' -» X satisfying:

(a) /(0) = 0.

(b) f(x, + x2) = f(x,)+f(x2) for all x, and x2 in X'.

When we denote the two monoids (X', m') and (X, m) by their underlying
sets X' and X, then we denote the set of morphisms from X' to X by
Morph(X', X) instead of ((X, m'), (X, m)).
We now illustrate this notion with some important examples.

Example 2.1 Let (X', m') be a submonoid of (X, m). Then the inclusion map
inc:X'-»X is a morphism from (X', m') to (X, m) called the inclusion morphism
and is denoted by inc:(X', m')-»(X, m). In particular, the identity map idx:X-»
X is a morphism from (X, m) to (X, m) which is called the identity morphism and
is denoted by idix.ml or more simply, id*.

Example 2.2 Suppose X is a multiplicative monoid, that is, its law of compo
sition is written multiplicatively. Associated with each element x in X are the
maps /, :X-»X, called left multiplication by x and defined by /,(y) = xy for all y
in X, and t, :X -» X, called right multiplication by x and defined by ♦, (y ) = yx for
all y in X. Thus, associated with a monoid X are the two maps L:X-» End(X) de
fined by L(x) = /, for all x in X and R :X-»End(X) defined by R(x) =., for all
x in X where End(X) is the monoid consisting of all endomorphisms of the set X.
It is easily checked that L :X -» End(X) is a morphism from the monoid X to the
monoid End(X). The map R :X -» End(X) is not a morphism but satisfies the
condition R(x,x2) = R(x2)R(X\). Obviously, though, L = R if and only if X is a
commutative monoid.

Example 2.3 Let N be the monoid of nonnegative integers under addition and
X an arbitrary monoid. Then it is not very hard to show that two morphisms
fuf2 :N-»X are the same if and only if /,(1) = /2(1). What is more difficult to show
(see the exercises) is that given any element x in X, there is a morphism /: N-»X
such that /(l) = x. Suppose for each x in X we denote the unique morphism /: N-»
X such that /(l) = x by /,

. Then it is fairly obvious that the two maps of sets
X-»Morph(N, X) and Morph(N, X)-»X given respectively by x-»f, and /-»
/(l) are isomorphisms of sets which are inverses of each other.

An interesting aspect of Example 2.3 is that it is really a reformulation of the
familiar notion of raising a number to an integral exponent. For suppose x is an
element of a multiplicatively written monoid X and /,:N-»X is the unique mor
phism such that /XI) = x. If we denote fx(n) by x", then we obtain the usual proper
ties of exponentiation: x

° = 1, x
' = x, and x"1+"* = x^x*. For this reason we will

usually use the notation x" to denote fx(n) for all n in N and x in X.
Of course, in order to completely justify this definition of exponentiation we

should show that (X"')"2 = x"'"2 for all n,, n2 in N and x in X. To do this it suffices to
show that for a fixed X in X and nl in N we have (x"1)" = xv for all n in N. This can
be easily carried out by induction on n. If n =0, we have (x"')°= 1 while x'"'°' =
X°= 1

. Suppose for n>0 we have that (x"')" = x'"1"'. Then (x"'>"+ll = (x"')"- xn' =
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x"'"-x"' = x"'"+"'l = x"''"+n. Hence, we have shown that (x"'Y = x'"'"l for all n in N,
which is our desired result.
Suppose X is a commutative multiplicative monoid. If x, and x2 are elements

of X, then it is not difficult to check that the map g:N-»X given by g(n) =

f=iWfn(n) is a morphism of monoids. Because g(l) = /„(l)/,2(l) = X,X2, it follows
that /„„(n) =/„(n)/„(n) for all n in N. Thus, we obtain in this case the usual
formula (x,x^'^x'xi for all n in N.
Suppose now that X is a commutative, additive monoid. For each element x

in X, let /,: N-»X be the unique morphism of monoids such that fAX) = x. Then we
will usually denote /,(n) by nx for all n in N. We have the usual rules 0x = 0,
lx = x, (n, + n2)X = n,x + n2X, and (n,n2)x = n^r^x) for all n, and n3in N. Further, as
above for x, and x2 in X, we obtain n(X, + x2) = nx, + nx2 for all n in N.
As an application of these ideas we cite the following.

Example 2.4 Let X be a set and End(X) the monoid of endomorphisms of X.
Then for each / in End(X) and each nonnegative integer n, the endomorphism / "
is called the nth iterate of /. The nth iterate of / is the formal way of expressing
the endomorphism of X which is the composition of / with itself n times. Notice
that /° = idx.

We now list some easily verified properties.

Basic Properties 2.5
Let f:X -» Y be a morphism of monoids.
(a) If X' is a submonoid of X, then f(X') is a submonoid of Y. If X' is
commutative monoid, then so is f(X').

(b) If Y' is a submonoid of Y, then /"'(Y') is a submonoid of X.
(c) Suppose that g: Y-»Z is a morphism of monoids, then the composition of
maps of sets gf:X-»Z is a morphism of monoids.

This last basic property suggests the following.

Definition
Let f:X-»Y and g:Y-»Z be morphisms of monoids. The composition of /
followed by g is defined to be the morphism gf: X-»Z given by the composition of
the maps of sets / followed by g.
It is obvious that the associativity of the composition of maps of sets implies

the associativity of the composition of morphisms of monoids.

3. SPECIAL TYPES OF MORPHISMS

In this section we develop for monoids the analog of the notions of isomorphic,
surjective, and injective maps already given for maps of sets.
We begin by pointing out the following characterization of the identity

morphisms of monoids which is the exact analog of the characterization given for
identity maps of sets.
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Basic Property 3.1
For a morphism f:X-»X of monoids, the following are equivalent:

(a) / is the identity morphism on X.
(b) If g:X-»Y is an arbitrary morphism of monoids, then gf = f.
(c) If h : U-»X is an arbitrary morphism of monoids, then fh = h.

Again in analogy with the situation for sets, we define an isomorphism of
monoids as follows.

Definition
A morphism f:X-»Y of monoids is an isomorphism if there is a morphism of
monoids g:Y-»X such that gf = idx and /g = idy. The monoid X is said to be
isomorphic to the monoid Y if there is an isomorphism f:X-»Y.

Basic Properties 3.2

(a) For each monoid X the identity morphism is an isomorphism.
(b) If f:X-»Y is an isomorphism of monoids, then there is only one morphism
g : Y-» X such that gf = id* and fg = idy. This uniquely determined morphism
g : Y-»X is also an isomorphism which is called the inverse of / and is denoted
by/"'. Clearly, (/-')-' = /.

(c) If f:X-» Y and g : Y-»Z are isomorphisms of monoids, then gf:X-»Z is also
an isomorphism of monoids with (gf)'' =f"'g"'.

(d) If f:X-» Y and g: Y-»Z are morphisms such that gf:X-»Z is an isomor
phism, then / is an isomorphism if and only if g is an isomorphism.

(e) Suppose X, Y, and Z are monoids. Then:
(i) X is isomorphic to Y if and only if Y is isomorphic to X.
(ii) If X is isomorphic to Y and Y is isomorphic to Z, then X is isomorphic to
Z.

An obvious question to ask at this point is how the fact that a morphism of
monoids f:X-»Y, which is an isomorphism of monoids, is related to its being an
isomorphism when viewed solely as a map of the underlying sets of X and Y. This
question is answered in the following easily verified proposition.

Proposition 3.3
Let X and Y be monoids.

(a) Suppose / :X-» Y is a bijective map of the underlying sets of X and Y. Then /
is a morphism of monoids if and only if the inverse map /"': Y-»X of the
underlying sets of Y and X is a morphism of monoids. Consequently:

(b) A morphism of monoids / :X-» Y is an isomorphism of monoids if and only if
it is an isomorphism when viewed solely as a map of the underlying sets of X
and Y. Hence:

(c) A morphism /: X-» Y of monoids is an isomorphism of monoids if and only if:
(i) Given y in Y, there is an x in X such that f(x) = y.
(II) If x, and x2 are in X and f(x,) = f(x2), then x, = x2.
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Finally:

(d) If the morphism of monoids f:X-»Y is an isomorphism, its inverse as a
morphism of monoids coincides with its inverse as a map of sets.

To illustrate some of the material developed until now, we substantiate our
earlier claim that the monoid (N, +) of nonnegative integers under ordinary addi
tion is completely described by the axioms we gave for (N, +).

Theorem 3.4
Suppose N and N' are commutative monoids (which we write additively) which
satisfy the axioms for the nonnegative integers under addition. Then there is one
and only one isomorphism N to N'.

PROOF: We first show that N and N' are isomorphic monoids. We have
already stated in Section 2 that if M is any commutative monoid satisfying the
axioms for the additive monoid of nonnegative integers and X is an arbitrary
monoid, then given x in X there is precisely one morphism f,:M-»X such that
/(l) = x where 1 is the one in Af. Hence, in particular, there are unique morphisms
f:N-»N' and g:N'-»N such that /(1)= 1' and g(l')= 1 where 1 is the one in N
and 1' is the one in N'. Therefore, the compositions gf and fg have the properties
that they are endomorphisms respectively of N and N' such that g/(l) = 1 and
fg(V)= V. Since the endomorphisms of N and N' are completely determined by
their values on 1 and 1', respectively, the fact that the endomorphisms gf and fg
have the property g/(l) = 1 = id^l) and /g(l') = 1' = id* (1'), it follows that gf = idN
and /g = idN-. Hence, f:N-»N' is an isomorphism with inverse g.
We now show that if h :N-»N' is an isomorphism of monoids, then h(l) = 1'.

Because f:N-»N' also has the property /(1)= 1', it follows that h =/, which es
tablishes that there is only one isomorphism from N to N', namely, the isomor
phism /.
Suppose h:N-»N' is an isomorphism. In order to show that h(l)=l' it

suffices to prove that the element h(l) of N' satisfies axiom (b) for the monoid of
nonnegative integers. Namely, we must show that if X is a subset of N' which
contains 0 and which contains x + /i(l) whenever it contains x, then X=N', for we
have already seen that the axioms for the monoid of nonnegative integers under
addition implies that 1', the one of N', is the only element of N' with this property.
Thus, if h(l) does indeed have this property our claim that /i(l)=1' will be
verified.

Suppose X is a subset of N' containing 0 and such that x + h(\) is in X
whenever x is in X. Because h(0) = 0, we have that 0£ h"\X). We also claim that
if n is in h'\X), then n + 1 is in h"\X). For if n is in h"\X), then h(n + l) =
h(n)+ h(l) is also in X since h(n) is in X and X has the property that x + /i(l) is in
X whenever x is in X. Thus, h'\X) = N since h "\X) is a subset of N containing
0 which also contains n + 1 whenever it contains n. Because h(h''(X))CX, it
follows that h(N)CX. But h(N) = N' because all isomorphisms are surjective
maps. Therefore, we have our desired result that X = N. This completes the proof
of the theorem.

Of course, the whole proof of this theorem depends on establishing the fact
that if M is a monoid satisfying the axioms for the nonnegative integers and x is an
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element of a monoid X, then there is a unique morphism of monoids f,:M-»X
such that fHX) = X. The reader is reminded that a detailed outline of the proof of
this fact is given in the exercises.
Returning to the general discussion of morphisms of monoids, we now define

surjective and injective morphisms of monoids which are the exact analogs of the
corresponding notions for maps of sets.

Definitions
Let f:X-»Y be a morphism of monoids.
(a) / is said to be a surjective morphism if as a map of the underlying sets of X and
Y it is surjective. In other words, / is a surjective morphism if and only if
given any y in Y, there is an x in X such that /(x) = y.

(b) / is said to be an injective morphism if as a map of the underlying sets of X and
y it is injective. In other words, / is an injective morphism if and only if
/to) = /to) implies x, = x2 for all x, and x2 in X.

We also have the following analogs of the formal properties of surjective and
injective maps of sets.

Basic Properties 3.5
Suppose f:X-»Y and g : Y-»Z are morphisms of monoids. Then:

(a) If / and g are surjective (injective) morphisms, then the morphism gf : X-» Z is
also a surjective (injective) morphism.

(b) If the composition gf:X-»Z is a surjective morphism, then g : Y-»Z is also a
surjective morphism.

(c) If gf:X-»Z is an injective morphism, then f:X-»Y is also an injective
morphism.

In dealing with sets, we have already seen that the notions of monomorphism
and injective map coincide as do also the notions of epimorphism and surjective
map. This is not quite the case for monoids. The reader will see in Section 9 that
epimorphisms of monoids need not be surjective. However, the following connec
tions between these concepts are valid.

Proposition 3.6
Let f:X-»Y be a morphism of monoids.

(a) / is a monomorphism if and only if / is an injective morphism.
(b) If / is a surjective morphism, then / is an epimorphism.
PROOF: We only prove that if / is a monomorphism, then / is injective. The

rest of the proposition is left as an exercise.

Suppose f:X-» Y is a monomorphism and x, and x2 are elements in X such
that /to) = /(x2). Let /t,,/t2:N-»X be the morphisms given by h\(n) = x" and
h^n) = x\ for all n in N. Then the compositions fh,, /h2 : N -» Y have the property
that /h,(l) = /h2(l). Hence, /h,=/h2 since a morphism from N to an arbitrary
monoid is completely determined by its value on 1. Since f:X-»Y is a
monomorphism, this implies that h, = h2. Therefore, x, = h,(l) = h2(l) = x2. Con
sequently, / is injective.
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We now point out some easily demonstrable properties of surjective and
injective morphisms of monoids that are analogs of properties of maps of sets.
These are important because they are often useful in showing that analogs of
results already obtained for maps of sets also hold for morphisms of monoids.

Proposition 3.7
Suppose X, Y, and Z are monoids and f:X-» Y and g : Y-»Z are maps of the
underlying sets of the monoids involved such that the map g/:X-»Z is a
morphism of monoids.

(a) If f:X-»Y is a surjective morphism of monoids, then the map g: Y-» Z is
also a morphism of monoids.

(b) If g : Y-» Z is an injective morphism of monoids, then the map / :X-» Y is also
a morphism of monoids.

As an example of how these observations can be used, we establish for
monoids the analog of the following result we have already obtained for sets.

Corollary 3.8
Suppose we are given a diagram of morphisms of monoids

satisfying:

(a) gf=st.

(b) / is a surjective morphism and s is an injective morphism.
Then there is one and only one morphism of monoids h :X-» Y which makes the
diagram commutative, that is, such that hf= t and sh =g.

PROOF: Viewing the diagram

simply as a diagram of maps of sets, the hypothesis that / is a surjective map and s
is an injective map such that gf=st implies that there is a unique map of sets
h:X-»Y such that s/i=g and hf=t. Since shf=st, it follows that shf is a
morphism. Because s is an injective morphism and the composition s(hf) is also a
morphism, it follows from our previous proposition that the map hf is a morphism
of monoids. Hence, by the same proposition, the fact that / is a surjective mor
phism and hf is a morphism of monoids implies that the map h is actually a
morphism of monoids. Now it is not difficult to check that the morphism h :X-» Y
has our desired properties and is the only morphism from X to Y having these
properties.
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4. ANALYSES OF MORPHISMS

We recall that a map of sets always has an analysis, that is, a factorization into a
surjective map followed by an injective map, and that any two analyses are
uniquely "isomorphic." Our purpose in this section is to establish analogous re
sults for morphisms of monoids.
Suppose f:X--» Y is a morphism of monoids. We have already seen that the

subset f(X) of Y is a submonoid of Y. This submonoid of Y is called the image of
/ and is often denoted by Im /. Further, the map /0 :X-»Im / defined by f0(x) = f(x)
for all x in X is obviously a surjective morphism. Because the inclusion morphism
inc:Im/-»y is an injective map, the fact that /=inc/0 shows that every mor
phism of monoids can be written as the composition of a surjective morphism
followed by an injective morphism. We summarize this discussion in the
following.

Definitions
Let f:X-» Y be a morphism of monoids. Then Im / is a submonoid of Y called the
image of /. Further, the map f0:X-»lmf is a surjective morphism while the
inclusion morphism inc : Im / -» Y is an injective morphism. Finally, the represen
tation of / as the composition of morphisms

x-^-im/-^*y

is called the image analysis of /. More generally, any representation of / as the
composition of morphisms of monoids hg with g a surjective morphism and h an
injective morphism is called an analysis of /.

Using Corollary 3.8 it is easy to show that analyses of morphisms of monoids
are unique in exactly the same sense that analyses of maps are unique. Specifically
we have the following.

Basic Property 4.1
Let X-^U-^Y

X-£-»U'-±*Y

be two analyses of the same morphism of monoids f:X-» Y. Then there exists one
and only one morphism of monoids / : U-» U' such that jg = g' and h'j=h and this
uniquely determined morphism j is an isomorphism.

Having developed the notion of the image analysis of a morphism of
monoids, we now discuss the coimage analysis of a morphism of monoids.
Suppose f:X-»Y is a morphism of monoids. Viewing / as a map of the

underlying sets of X and Y, we know that there is associated with the map / the
partition Coim fofX whose elements are the subsets of X of the form /"'(y) for
all y in Im /. Suppose f"\y,) and /"'(y2) are two elements of Coim /. The fact that /
is a morphism of monoids implies that if x, is in f\y,) and x2 is in /_,(y2), then x,x2
is in /"'(y,y2). This is equivalent to saying that if we denote by /"'(y,)/"'(y2) the set
of all elements in X of the form X,X2 with x, and x2 in / '(y2), then /"'(y,)/"'(y2)C
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f Xy,yi)- This condition can be restated as follows: If the subsets X, and X2 of X
are elements of Coim /, then there is one and only one element X3 in Coim / con
taining X,X2 where X,X2 is the set of all elements of X of the form x,x2 with X, in
X, and x2 in X2.
This property of the partition Coim/ of X suggests considering the map

m :Coim /x Coim/-» Coim/ where m(X,, X2) is the unique element of Coim/
containing the subset X,X2 of X. Now it is not difficult to check that the map
m :Coim /x Coim/-» Coim/ has the following interesting property. Suppose
k:X-»Coimf is the canonical map from X to the partition Coim/ of X. Then
k(x,x2) = m(k(x,), k(x2)) for all x, and x2 in X. But this implies, as we shall see
presently, that the map m :Coim / x Coim /-» Coim / is not only associative and
hence a law of composition but also that k(l) = [1] is the identity element for this
law of composition. In other words, (Coim/, m) is a monoid with [1] as identity
and the canonical map k :X -» Coim / is a surjective morphism. The validity of
these observations is an easy consequence of the following general proposition.

Proposition 4.2
Let X be a monoid, Y a set, and /:X -» Y a surjective map.

(a) There is at most one monoid structure m on Y such that the map /: X -» Y is a
morphism from the monoid X to the monoid ( Y, m).

(b) This unique monoid structure exists on Y if and only if there is a map
m : Yx Y -» Y such that f(x,x2) = m(f(x,), f(x2)) for all x, and x2 in X. Such a
map m, when it exists, is the unique monoid structure on Y making f:X -» Y
a morphism of monoids.

Thus, we see that the map m :Coim /x Coim / -» Coim / defined above is the
unique monoid structure on Coim/ such that the canonical surjective map
fccmm;: X -» Coim/ is a morphism of monoids. It is not difficult to check directly
that the injective map /;:Coim/ -» Y is a morphism of monoids. However, it is
worthwhile noting that this also follows from the fact that /= jtkc<»mf- For we have
already seen that the composition of maps f = jikcmm, being a morphism of
monoids together with the fact that fccmn,iis a surjective morphism, implies that the
map ji is a morphism of monoids (see Proposition 3.7). Finally, from this it follows
that the bijective map (j/)0 :Coim / -» Im / is an isomorphism of monoids.
We now summarize this discussion in the following.

Definitions
Let /:X -» Y be a morphism of monoids. Then the set Coim / together with the
unique monoid structure on Coim/ which makes the canonical map fcc0™;:X-»
Coim / a morphism, is called the coimage of the morphism / and is denoted by
Coim /.
The monoid Coim / has the further property that the unique map j1

: Coim /-»

Y which gives the coimage analysis of the map / is also a morphism. The
morphism /i : Coim / -» Y is called the morphism from Coim / to Y induced by the
morphism f:X-» Y. Thus, the composition

X >c"n"
»Coim/ h

-— » Y

is an analysis of / called the coimage analysis of /.
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Finally, the unique isomorphism g:Coim/-» Im/ such that g/cc0mi;=/0 and
incg = /; is simply the isomorphism (/;)0:Coim/-» Im/ which is called the
canonical isomorphism from Coim / to Im /.

5. DESCRIPTION OF SURJECTIVE MORPHISMS

As in the case of maps of sets, a morphism f:X-» Y of monoids is surjective if
and only if the injective morphism /,:Coim/ -» Y in the coimage analysis of / is
surjective or what is the same thing, an isomorphism. This suggests that connec
tions analogous to those already obtained for surjective maps of sets should exist
between arbitrary surjective morphisms of monoids f:X-»Y and their as
sociated surjective morphisms of monoids kcmmf:X -» Coim/. In fact, as we show
in this section, the results along these lines for monoids are identical with those
obtained for sets once one decides which partitions of the underlying set of a
monoid are sufficiently compatible with the monoid structure to be properly
considered partitions of the monoid itself and not just of its underlying set.
We have already seen that if f:X-» Y is a morphism, then the partition

Coim / is not arbitrary but satisfies the condition that if X, and X2 are subsets of X
in Coim /, then there is one and consequently only one subset X, of X in Coim /
such that X,X C X,. This suggests that in dealing with a monoid X, one should
consider only those partitions 9 of X which satisfy the condition that if X, and X2
are subsets of X in 9, then there is one (and consequently only one) subset X3 of
X in 9 such that X,X2 C X3. The appropriateness of this remark is reinforced by
the following.

Proposition 5.1
The following conditions are equivalent for a partition 9 of the underlying set of a
monoid X:

(a) If Xl and X2 are elements of 9, then there is one (and consequently only one)
element X3 in 9 containing X,X2.

(b) There exists one (and consequently only one) map m : 9 x 9 -» 9 such that
the canonical surjective map k&:X-»9 has the property kg(x\x2) =
m(fc»(X1). Mjfc)) for all x, and x2 in X.

(c) There exists one (and consequently only one) monoid structure on 9 such that
the canonical surjective map fc?:X -» 9 is a morphism of monoids.
In the light of this discussion it is reasonable to make the following.

Definitions
A partition of a monoid X is a partition 9 of the underlying set of X which has the
following property: If X, and X2 are elements of 9, there is one (and consequently
only one) element X3 in 9 containing X,X2.
If 9 is a partition of a monoid X, define the map m:9x9-»9 by letting

m(X,, X2) be the unique element of 9 containing the product XX2. This map is
called the canonical monoid structure on 9 since it is the unique monoid structure
on P which makes the canonical surjective map k»:X--»9 a morphism of
monoids.
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If 9 is a partition of a monoid X, then we shall denote the monoid (9, m)
consisting of the set 9 together with the canonical monoid structure m simply
by 9.
It should be noted that if 9 is a partition of the monoid X, then the canonical

monoid structure on 9 is completely described by the appealing formula [x,][x2] =
[x,x2] for all x, and x2 in X. In fact, this formulation has so much appeal that it is
the way we will describe the canonical monoid structure on 9 from now on.
In view of the correspondence between partitions and equivalence relations

on a set, it is reasonable to ask which equivalence relations on the underlying set
of a monoid correspond to the partitions of the monoid. This is answered in the
following.

Proposition 5.2
Let R be an equivalence relation on the underlying set of a monoid X. Then the
following are equivalent:

(a) The partition X/R of the underlying set of X is a partition of the monoid X.
(b) If X, R x2 holds, then XX, R xx2 and x,x R x2x both hold for X,, x2, and x in X.
(c) If x, R X2 and xi R X2 are true, then X,xi R x2x2 is true for all x,, x2, and xi, x2 in
X.

This leads to the following.

Definition
Let X be a monoid. An equivalence relation R on the underlying set of X is an
equivalence relation on the monoid X if it satisfies the following condition:

If X, R X2 and xi R x2 hold, then x,xi R x2x2 also holds for x,, x2, xi, x2 in X.

If R is an equivalence relation on a monoid X, we shall denote simply by X/R
the monoid (X/R, m) consisting of the partition X/R of the monoid X together
with the canonical monoid structure m.
Having established what we mean by partitions and equivalence relations on

monoids, our earlier results describing the surjective maps for sets can now be
transcribed verbatim for monoids. In order to give a little variety we shall state the
results for monoids in terms of equivalence relations rather than partitions.
Suppose X is a monoid. If R, and R2 are equivalence relations on the monoid

X with R, < R2, then X/R, a X/R2 and the canonical map gx,R,, M, : X/R, -»X/R2 is a
surjective morphism of monoids. This surjective morphism gxiR,.xiR2 is called the
canonical morphism from X/R, to X/R2. We now list some of the basic properties
of the canonical morphisms gx,R,.xiR2.

Basic Properties 5.3
Suppose R, and R2 are equivalence relations on the monoid X.

(a) There is a morphism h :X/R,-»X/R2 of monoids such that hkxm, = fcx,R, if and
only if R,<R2.

(b) If R,==R2, there is only one morphism of monoids h :X/R,-»X/R2 such that
hkxm, = kxm.,, namely, the canonical morphism gxm,.xiR2-
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(c) If R, s R2, then gxiR,, xiR2 :XfR, -» X/R2 is always a surjective morphism which is
an isomorphism if and only if R, = R2.

(d) gx,R,.xIR, = lUXiR,-

We now state the main results concerning the connections between arbitrary
surjective morphisms of monoids f:X-»Y and their associated surjective mor
phisms fccmm;:X-»Coim/.

Proposition 5.4
Let /, :X-» Y, and f2 : X-» Y2 be two surjective morphisms of monoids.

(a) The following statements are equivalent:

(i) There is a morphism h : Y,-»Y2 of monoids such that hf, = /2
.

(ii) There is a morphism g : Coim/, -» Coim /2 of monoids such that gfccmm;, =

(iii) Coim /,> Coim /2
.

(b) If there is a morphism h : Y
,

-» Y2 such that hf, = /2, then:

(i
) There is only one such morphism.

(0) There is only one morphism g : Coim /, -»Coim /2 such that gkcdm,, = kanmh,

namely, gc<»m;,.cmmfi.

(c) The following are equivalent:

(i
) There is an isomorphism of monoids h : Y, -» Y2 such that hf, = /2
.

(ii) Coim/, = Coim /2
.

(d) If Y is a partition of the monoid X and f:X-» Y is the canonical morphism,
then Coim/= Y and /= fccmm;.

As in the case of sets, the main content of this proposition is that all
surjective morphisms of monoids /: X-» Y with a fixed domain X are essentially
given by the canonical morphisms k»: X-»9 for all partitions 9 of the monoid X.
We end this section with the following generalization of some of the proper

ties of surjective morphisms of monoids we have discussed so far. The reader
should have no difficulty recognizing this as the exact analog of a result already
established for surjective maps of sets (Chapter 1

, Proposition 7.3).

Proposition 5.5
Let f:X-»Y be a surjective morphism of monoids. If g:X-»Z is an arbitrary
morphism of monoids, then there is a morphism of monoids h : Y-»Z such that
hf = gif and only if R(/) s R(g). If R(/) < R(g), then there is only one morphism
h: Y-»Z of monoids satisfying /i/=g.

6. GROUPS AND MORPHISMS OF GROUPS

Although the general notion of a monoid is important in a good deal of mathemat
ics, we shall be concerned in this book primarily with the special type of monoids
called groups. Because groups are monoids, everything we have shown about

monoids generally also holds for groups. However, there are special features of
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the theory of groups which do not hold for arbitrary monoids. This section is
devoted to outlining some of these special features.
Before defining groups, we discuss the notion of invertible elements of a

monoid. An element x in a monoid (X, m) with identity element e is said to be
invertible if there is an element y in X such that m(x, y) = m(y, x) = e. It is not
difficult to show that if x in the monoid (X, m) is invertible there is only one
element y in X with the property m(x, y) = m(y, x) = e.

Definitions
Let (X, m) be a monoid with identity e. An element x in X is said to be invertible if
and only if there is an element y in X such that m(x, y) = m(y, x) = e. If x in X is
invertible, then the unique element y in X such that m(x, y) = m(y, x) = e is called
the inverse of x. If we write the law of composition in the monoid (X, m) multi-
plicatively or additively, then the inverse of an invertible element x will be de
noted by x"' or -x, respectively.

As an immediate consequence of these definitions we have the following.

Basic Properties 6.1
Let X be a multiplicative monoid.

(a) The identity l of X is invertible with 1 ' = 1.
(b) If x in X is invertible, then its inverse x"' is also invertible and (x ')' = x.
(c) If x and y are elements of X and xy is invertible, then x and y are both
invertible in X.

(d) The set of invertible elements of X is a submonoid of X which we denote by
Inv (X).

(e) If /: X-» y is a morphism of monoids and x is an invertible element of X, then
f(x) is invertible in Y and /(X -') = /(x)"'. Hence:

(f) /(Inv(X))Clnv(Y).

By way of illustrating some of these points, we give the following examples.

Example 6.2 Let X be a set and End(X) the monoid of endomorphisms of X.
Then an element / in End(X) is invertible if and only if / is an automorphism of X.
Hence, Inv(End(X)) = Aut(X).

Example 6.3 Let X be a monoid and L : X-»End(X), the injective morphism
given by L(x) = l„ left multiplication by x, for all x in X. Then L(Inv(X)) C

Aut(X).

Example 6.4 Let N be the nonnegative integers. Then Inv((N, +)) = {0} while
Inv((N, x)) = {1}.

We now give some definitions concerning groups.

Definitions

(a) A group is a monoid X with the property that every element of X is invertible,
or, what is the same thing, Inv(X) = X.
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(b) A subgroup X' of a group X is a submonoid X' of X which is also a group.
(c) Suppose X and Y are groups. A morphism g :X-» Y of groups is simply the
same thing as a morphism from X to Y when X and Y are viewed as monoids.

(d) By a partition (equivalence relation) of a group X we mean a partition
(equivalence relation) of X when viewed as a monoid.

The reader should have no difficulty checking the following.

Basic Properties 6.5
Let X be a group.

(a) A subset X' of X is a subgroup of X if and only if:
(i) 1 £ X.
(ii) If x is in X', then x"' is also in X'.
(Hi) If x and y are in X', then xy is in X'.

(b) Suppose X and V are groups. A map /: X-» Y of the underlying sets of X and
y is a morphism of groups if and only if / satisfies /(X,X2) = f(x,)f(x2) for all
X,, x2 in X. Further, if /: X-» Y is a morphism of groups, then /(x"') = /(x) ' for
all x in X.

(c) Suppose /: X-» Y is a surjective morphism of monoids with X a group. Then
Y is a group.

Combining what has been shown about monoids with our discussion of
groups, we obtain the following important facts concerning groups.

Proposition 6.6
Suppose X is a group.

(a) If 9 is a partition of the group X, then 9 with its canonical monoid structure is
a group.

(b) Suppose Y is a monoid and f:X-»Y a morphism of monoids.
(i) If X——»Z—^Y is an analysis of /, then Z is a group, g is a surjective
morphism of groups, and h is an injective morphism of monoids.

(ii) In particular, Im / and Coim / are groups, the morphisms /0 :X -» Im / and
fccmmi:X-»Coim / are surjective morphisms of groups. The inclusion
morphism Im/-» Y and the canonical morphism Coim/ '' »Y are injec
tive morphisms of monoids.

(c) If X-^Z-^y and X-^Z'-^y are analyses of the morphism /, then
there is a unique morphism of groups t :Z-»Z' such that tg = g' and h = h't.

7. KERNELS OF MORPHISMS OF GROUPS

One of the basic differences between the theory of groups and the theory of
arbitrary monoids is that it is much easier to describe the partitions of a group than
it is to describe the partitions of an arbitrary monoid. In general, in order to
describe a partition 9 on a set or monoid X it is necessary to describe each of the
subsets of X individually. However, if X is a group, a partition 9 of the group X
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can be completely described in terms of the subset [1]* of X containing the
identity 1 of X. Exactly how this is accomplished is made clear in the following.

Proposition 7.1
Let /: X-» Y be a morphism of groups and let K = /"'(1). Then K has the follow
ing properties:

(a) K is a subgroup of X satisfying xK = Kx for all x in X.
(b) If X, and x2 are in X, then /(x,) = /(x2) if and only if there is a k e K such that
x,fc = x2. Hence, if x is in X, then /"'(/(x)) = xK.

(c) Thus, the elements of the partition Coim / of X are precisely the subsets of X
of the form xK for all x in X. Hence, the partition Coim / of X is completely
determined by K = [l]c»mi-

This result clearly indicates that subgroups K of a group X with the property
xK = Kx for all x in X play a fundamental role in studying groups. For this reason
they are given a special name.

Definitions
A subgroup K of a group X is called a normal or invariant subgroup of X if
xK = Kx for all x in X. If /: X-» Y is a morphism of groups, the normal subgroup
/"'(l) of X is called the kernel of / and is denoted by Ker/.
Suppose now we are given a partition & of a group X. As we have already

seen (Proposition 6.6), 9 is a group and the canonical map kyX-»9 is a
surjective morphism of groups. Hence, our previous proposition shows:

(a) K = [l]» is a normal subgroup of X.
(b) If x is in X, then [x]#=xK.
(c) Denoting [x], by xK, the law of composition in 0i takes on the form
(x,K)(x2K) = x,x2K.

(d) For each x in X, we have (xK)
' = x"'K.

Hence, associated with each partition 9 of a group is the normal subgroup
[1]» of X which completely determines the partition 9. It is natural to ask in this
connection if for each normal subgroup K of a group X is there a partition 9 of
the group X such that [!]«.= K? This question is answered in the affirmative in
the following.

Proposition 7.2
Let K be a normal subgroup of the group X. Then:

(a) The set XIK of all subsets of X of the form xK with x in X is a partition of the
group X.

(b) The canonical law of composition for the partition X/K of X is given by
(x,K)(x2K) = x,x2K.

(c) The monoid X/K is a group with (xK)' = x"'K for all x in X.
(d) The canonical morphism of groups fc*iK: X -» X/K given by fcxi*(x) = xK for
all x in X has the property Ker kx/K = K.

(e) If 0i is a partition of the group X with [1]»=K, then 9 = XIK.
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To emphasize the point that partitions of a group X are completely deter
mined by the normal subgroups of X, we introduce a new name and notation for
the partitions of a group.

Definition
Suppose K is a normal subgroup of a group X. The partition of the group consist
ing of the subsets of X of the form xK for all x in X together with the law of
composition (x,K)(X2K) = x,x2K is a group which we denote by XI K. The group
XIK is called either the factor group of X by K or the residue class group of X by
K. The canonical surjective morphism of groups kx,K:X -» XIK is called the
canonical morphism from the group X to the factor group XIK.

We now state in terms of this new terminology some of our previous results.

Proposition 7.3
Let X be a group.

(a) The partitions of the group X are precisely the factor groups XIK for all
normal subgroups K of X.

(b) Suppose f:X-»Y is a morphism of groups. Then Coim/= X/Ker/ and the
coimage analysis of /

X—^-»X/Ker / 2—„ y

can be described by kxw.e,i(x) = xK; and j,(xK) = f(x) for all x in X.

(c) Since /,
:X/Ker /-»Y is injective and Im/,= Im/, we have that the induced

morphism (j,)0 : X/Ker /-»Im / is an isomorphism of groups. The isomorphism
(;,)0 can also be characterized as the unique morphism h : X/Ker /-»Im / such
that the diagram

»X/Ker/

Im/

commutes, that is, /ifcxiKe,;=/0. Hence:

(d) The morphism of groups /: X-» Y is a surjective morphism if and only if the
morphism jf: X/Ker f-»Y is surjective and therefore an isomorphism.

(e) The morphism of groups f:X-»Y is injective if and only if Ker/ = {1}.

(f ) If K is a normal subgroup of X and kxw : X-»XIK the canonical morphism of
groups, then Ker (kx,x) = K.

Now it is not difficult to see that if K , and K are normal subgroups of a group
X, then K, C K2 if and only if XIK, is a refinement of XIK2. Moreover, if

K, CK2, then the canonical morphism gx,K,.x,K2:XIK,-»XIK2 can be described
by «xik,.xik2(XK,) = xK2 for all x in X. Clearly, if K, = K2, then gx,^.xiK, = id*iK,.
Further, we have the following analogs of results already obtained earlier for

sets and monoids.
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Proposition 7.4
Suppose /,:X-» Y, and f2:X-»Y2 are surjective morphisms of groups. Then:

(a) The following statements are equivalent:

(i) There is a morphism of groups h:Y,-»Y2 such that hf,=f2.
(ii) Ker/,CKer/2.
(ili) There is a morphism h':XIK,^XIK2 such that h'kx,Ki = kx,K,- The
morphism h' is nothing more than the canonical morphism gx,K,.x,K,-

(b) If there is a morphism h : Y,-» Y, such that hf,=f2, then:
(i) h is the unique morphism of groups with this property,

(ii) h is a surjective morphism.

(Hi) h is an isomorphism if and only if Ker /, = Ker /2
.

What this proposition says in essence is that the surjective morphisms f:X-»

Y of groups with a fixed domain X are, roughly speaking, completely determined
by the normal subgroups of X.
We devote the rest of this section to pointing out various important applica

tions of the notion of the kernel of a morphism of groups.
We begin with the following generalization of our previous proposition.

Proposition 7.5

(a) If X— '—» Y-±-»Z are morphisms of groups, then Ker(g/) = / '(Ker g) D Ker /.

Hence, if g is injective, then Ker(g/) = Ker /.

(b) If we are given a diagram of morphisms of groups

X2-^Z

with / a surjective morphism, then there exists a morphism i: Y-»Z which
makes the above diagram commute, that is, hg = i/

, if and only if

g(Ker /) CKer h. Moreover, there is at most one such morphism from Y to Z.

In the next proposition we investigate the connection a morphism of groups

f:X-»Y establishes between the subgroups of Y and those of X.

Proposition 7.6
Suppose f:X-»Y is a morphism of groups and K = Ker/. Then:

(a) If Y' is a subgroup of Y
,

then f'(Y') is a subgroup of X containing K.
Moreover, /"'( Y) is a normal subgroup of X if Y' is a normal subgroup of Y.

(b) Suppose X' is a a subgroup of X.
(i) /'(/(X')) is a subgroup KX' of X.
(ii) Moreover, the morphism of groups g:KX'-»f(X') given by g(y) = /(y)
for all y in KX' is a surjective morphism with kernel K. Thus, there is a

unique isomorphism of groups t:KX'IK-»f(X') which makes the
diagram
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KX'IK
iiOTiJE / l

KX' »f{X')

commute.

(iii) The morphism of groups h :X'-»/(X') given by h(y) = /(y) for all y in X'
is a surjective morphism with kernel X' D K. Hence, there is a unique
isomorphism of groups s:X'IXT,K-»f(X') which makes the diagram

X'lx n k
kx-IX-n ,c /
X'^f(X')

commute.

(iv) Because s:X'lX' fl K-»f(X') and f:X'KIK^f(X') are isomorphisms of
groups, we have that t's :X'lX' fl K-»X'KIK is also an isomorphism of
groups.

It is worth noting that although the morphism /: X-» Y was used to obtain the
isomorphism f"' s :X' IX' nK-» X'KlK, this isomorphism in fact depends only on
the subgroups X' and K of X and not on the morphism f:X-» Y. More precisely,
it is nothing more than the canonical isomorphism we describe below which
clearly has nothing to do with the morphism f:X-»Y.

Proposition 7.7
Suppose X' and K are subgroups of a group X with K a normal subgroup of X.

(a) KX' = X'K is a subgroup of X. Clearly, K and X' are subgroups of KX' with
K a normal subgroup.

(b) The morphism of groups g:X'--»X'KIK given by g(x) = xK for each x in X'
is a surjective morphism with kernel XTlK. Hence:

(c) The morphism js:X'IXT,K-»X'KIK induced by the surjective morphism
g:X'^X'KIK is an isomorphism.

Because the isomorphism /„ we just described is used a great deal it is
convenient to make the following definition.

Definition
Suppose X' and K are subgroups of a group X with K a normal subgroup of X.
Then the isomorphism js:X'lX'nK-»X'KIK induced by the surjective morphism
g:X'-»X'KIK given by g(x) = xK for all x in X' is called the canonical isomor
phism from X'lX'tlK to X'KIK. Unless stated otherwise, this is the only
isomorphism we consider between X'IX'ClK and X'KIK.

As might be expected, if we assume that we are given a surjective morphism
f:X-»Y, then much more can be said about the relationships between the sub
groups of X and Y than we were able to say when f:X-» Y was an arbitrary
morphism of groups.



48 TWO/MONOIDS AND GROUPS

Proposition 7.8
Let /:X-» Y be a surjective morphism of groups with kernel K.

(a) Suppose X' is a normal subgroup of X. Then:
(i) /(X) is a normal subgroup of Y.
(H) The morphism g:X-»Y//(X) of groups given by g(x) = f(x)f(X') is a
surjection with kernel /'(/(X')) = XK. Hence:

(iii) The morphism /,:X/X'K-» Y//(X) induced by g:X-»Y//(X) is an
isomorphism.

(iv) The isomorphism /,:X/X'K-» Y//(X') is the unique morphism from
XIX'K-»Ylf(X') which makes the diagram

XIX'K »Y//(X')

commute.

(b) Let if be the set of subgroups of X containing K and 5" the set of all
subgroups of Y. Then the maps a:5^-»3"and 0 : 5" -»if defined by a(X') =

/(X') and 0( Y') = /" '(Y) for all X' in 9 and Y' in ST have the following prop
erties:

(i) a and 0 are bijective maps which are inverses of each other,

(ii) X' in if is a normal subgroup of X if and only if a(X') = f(X') is a normal
subgroup of Y. Similarly, Y' is a normal subgroup of Y if and only if
0(Y') = r'(Y') is a normal subgroup of X.

(IIi) If X' in <f is normal in X, then the morphism of groups g : X-» Y//(X')
given by g(x) = f(x)f(X') for all x in X is surjective with kernel X'.
Hence, the induced morphism js:XIX'-» Ylf(X') is an isomorphism.

For ease of reference we make the following definition.

Definition
Let f:X-» Y be a surjective morphism of groups with kernel K and suppose X' is
a normal subgroup of X. Then the isomorphism XIX' K -» Y//(X'), which is the
unique morphism from XIX' K -» Ylf(X') which makes the diagram

X/X'K »Y//(X')

commute, is called the isomorphism from XIX'K-»YIf(X') induced by /.
A particularly important special case of the above are the surjective mor-

phisms of the form kxiK :X-»XIK where K is a normal subgroup of X. Suppose K
is a normal subgroup of X and X' is a subgroup of X. Then it is easily seen that
X'K is a subgroup of X which is a normal subgroup of X if X' is a normal
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subgroup of X. Also the group X'KIK is a subgroup of XIK which is a normal
subgroup of XIK if and only if X', and hence X'K, is a normal subgroup of X.
Thus, if X' is a normal subgroup of X, we obtain that XIX'K and
(XIK)I(X'KIK) are isomorphic groups by means of the isomorphism XIX'K -»
(XIK)I(X'KIK) induced by the canonical surjective morphism kxm :X-»X/K.
This isomorphism XIX'K -»(XIK)I(X'KIK) is called the canonical isomorphism
and is the only isomorphism between XIX'K and (XIK)I(X'KIK) we will con
sider. It should be noted that if X' D K, then X'K = X' and we have the notation-
ally appealing result that XIX' is isomorphic to (XIK)I(X'IK) under the canoni
cal isomorphism.

One last word concerning the canonical isomorphisms X'/X'nK-»X'K/K
and X/X'K-»(X/K)/(X'K/K). We usually consider these isomorphisms as iden
tifications. Therefore, we shall write X'lX' nK = X'KIK and XIX'K =
(X/K)/(X'K)/K meaning that they are being identified by means of the canonical
isomorphism or their inverses.

8. GROUPS OF FRACTIONS

We have already seen that associated with each monoid X is the group Inv (X) of
invertible elements of X. It is not difficult to show that the inclusion morphism

inc:Inv(X)-»X has the property that given any group G and morphism of
monoids /: G-»X, there is one and only one morphism of groups g : G-»Inv (X)
such that / = inc g. Moreover, this observation completely characterizes the group
Inv (X) as we see in the following.

Proposition 8.1
Let h : t/-»X be a morphism of monoids with U a group. Suppose h : U-»X has
the property that given any group G and any morphism of monoids /: G-»X there
is one and only one morphism of groups g : G -» U such that / = hg. Then h:U-»
X is an injective morphism with Im h = Inv(X). Hence, h0 : U -» Inv(X) is an
isomorphism of groups.

PROOF: Since U is a group, there is a unique morphism g : l/-»Inv (X) such
that incg = h where inc : Inv (X) -» X is the inclusion morphism. On the other
hand, the hypothesis in h:U-»X implies that there exists a unique morphism
g' :Inv (X)-» U such that hg' - inc. From these relationships it follows that hg'g =
h and inc gg' = inc. But the morphism h : t/-»X has the property that there is only
one morphism t : U-» U such that ht = h. Since g'g and idu both have this prop
erty, it follows that g'g = idL. One can also show that gg' : Inv (X)-»Inv (X) is the
idm. , \ , in a similar fashion or by using the fact that inc : Inv (X) -»X is a
monomorphism. Therefore, the morphism g : U-»lnv (X) is an isomorphism such
that inc g = h. From this it follows that h is a monomorphism and Im h = Inv (X).

This characterization of the morphism inc:Inv(X)-»X shows that the mor-
phisms of a group G to X are uniquely determined by the morphisms of G to the
group Inv(X). It is natural to ask if something similar can be done for the
morphisms of monoids from X to a group G. Specifically, is there a group H
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associated with the monoid X such that for each group G the morphisms of
monoids from X to G are uniquely determined by the morphisms of groups from
H to G? We now describe in what sense such a group H can be found.

Definition
Suppose X is a monoid. A group H together with a morphism h:X-»H of
monoids is called a group of fractions for X if for each group G and morphism of
monoids /:X-»G there is one and only one morphism of groups g:H-»G such
that f=gh.

The reader should have no difficulty in convincing himself that if a monoid X
has a group of fractions h :X-»H, then the group H has the property that the
morphisms from X to a group G are completely determined by the morphisms
from the group H to G. For it follows from the definition of a group of fractions
that the morphisms from X to G can be written uniquely as the compositions
X—^H—^G as g runs through group morphism from H to G. Hence, our
original problem will be solved for a monoid X if we can show it has a group of
fractions. The main result in this connection is the following.

Theorem 8.2
Let X be a monoid. Then:

(a) X has a group of fractions.
(b) If h, :X -» H, and h2:X-»H2 are two groups of fractions for X, then there are
unique morphisms of groups t,:H,-»H2 and f2:H2-»H, such that t,h, = h2
and t2h2 = h\. Further, these uniquely determined morphisms f , and f2 are
isomorphisms which are inverses of each other.

In other words, each monoid has an essentially unique group of fractions. Al
though this theorem is of interest for arbitrary monoids, we will prove it just for
commutative monoids because this is the only case we will have need of in this
book. Also, the proof in the commutative case is somewhat simpler. However, be
fore proving the existence part of the theorem for commutative monoids, we
prove part (b), the uniqueness statement, for arbitrary, not just commutative,
monoids.

PROOF: (b) Suppose h,:X-»H, and h2:X-»H2 are two groups of fractions
for the monoid X. Because t, :X -» H, is a morphism from X to a group we know
by the definition of a group of fractions that there is a unique morphism t, :H,-»

H2 of groups such that h2 = t,h,. Similarly, there is a unique morphism t2 :H2-»H\
of groups such that h, = t2h2.
We show that these unique morphisms are isomorphisms by showing that

f2f,:H,-»H, is the identity on H, and t,t2:H2-»H2 is the identity on H2. First we
observe that (f2f \)h, = h,, because (f2f,)/j, = t2(t , /i ,) = t2h2 = h,. But this implies that

t2t , = idH, because, by the definition of a group of fractions, there is only one
morphism / : H, -» H, such that /, h , = h , and obviously idH, h , = h , . By symmetry it
follows that f,f2 :H2-»H2 is the identity on H2. Hence. t, and f2 are isomorphisms
which are inverses of each other.
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In showing that commutative monoids have groups of fractions, the notion of
the product of two monoids comes up.

Definitions
Let X and Y be two monoids. The product X x Y is the monoid whose underlying
set is the Cartesian product XxY and whose law of composition is given by
(xi, y,)(x2, y2) = (x,x2, y,y2) for all x,, x2 in X and y,, y2 in Y. Clearly, (1, 1) is the
identity ofXxY.
The maps ix:X-»Xx Y and iY: Y-»Xx Y given by ix(x) = (x, 1) for all X in X

and iY(y) = 0,y) for all y in Y are injective morphisms of monoids called the
injections of X and Y into XxY.
The projection maps px-Xx Y-»X given by px(x, y) = x and pY:Xx Y-»Y

given by py(x, y) = y are surjective morphisms called the projections of XxY
onto X and Y, respectively.

Basic Properties 8.3
Let X and Y be monoids.

(a) The injection morphisms ix:X-»Xx Y and iY: Y-»Xx Y have the following
properties:

(i) ixU)iV(y) = /V(y)ix(X) for all X in X and yEY.
(it) If z is in X x Y, then there are unique elements x in X and y in Y such that
ix(x)iY(y) = z.

(b) XxY is commutative if and only if both X and Y are commutative.
In order to show that commutative monoids have groups of fractions, we

need the following description of the morphisms from the monoid X x Y to an
arbitrary monoid Z in terms of the morphisms from X and Y to Z.

Proposition 8.4
Let X, Y, and Z be monoids. Associated with each morphism / :X x Y-»Z are the
morphisms /ix:X-»Z and fiY:Y-»Z.

(a) For each morphism / :X x Y-»Z the morphisms fix and fiY have the property
that z,z2 = z2z, for each zl in lm(Jix) and z2 in Im(JiY).

(b) Two morphisms /,,/2:Xx Y-»Z are the same if and only if /,ix =/2ix and
/ll'y =/2lV

(c) If g :X -» Z and h:Y-»Z are two morphisms of monoids such that z,z2 = z2z,
for all z\ in Im g and z2 in Im h, then there is one and only one morphism/ :X x
Y^Z such that fix = g and fiY = h.

(d) If Z is a commutative monoid, then the map (Xx Y, Z)-»(X, Z) x (Y, Z) given
by f-»(fix,fiY) is an isomorphism from the set (XxY,Z) of all morphisms
from Xx Y to Z to the product (X, Z)x(Y, Z) of the sets of all morphisms
(X, Z) and ( Y, Z) from X and Y to Z, respectively.

With these preliminary results concerning products of monoids out of the
way, we return to our problem of constructing a group of fractions for a

commutative monoid X. In order to motivate the actual construction of this group
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of fractions, we first show that with each morphism from a commutative monoid

X to a group G, there is associated a morphism from XxXtoG. The definition of
this associated morphism is based on the following.

Lemma 8.5
Let Y be a commutative submonoid of the group G and let Y ' be the subset of G
consisting of all y

' with y in Y. Then:

(a) Y ' is a commutative submonoid of G.
(b) The map Y-»Yft' given by y-»y

"'
is an isomorphism of monoids.

(c) The elements of Y and Y"' commute, that is, if g, is in Y and g2 is in Y'\ then
g,g2 = g2g,.

(d) The subset YY"' consisting of all elements in G of the form g,g2 with g, in Y
and g2 in Y"' is a commutative subgroup of G.

Suppose X is a commutative monoid and /: X-»G is a morphism of monoids
with G a group. Then Y = Im / is a commutative submonoid of G because X is a
commutative monoid. From Lemma 8.5 it follows that Y ' is a commutative sub
monoid of G and the morphism t : Y-» Y ' given by r(y) = y ' for all y in Y is an
isomorphism of monoids. Hence, associated with the morphism f:X-»G is the
composite morphism

which can be described more directly as the morphism g :X-»G given by g(X) =

/(x)
' for all x in X. Because Im g = Y ' and Im /= Y, it follows from Lemma 8.5

that the elements of Im g and Im / commute. Hence, we know that there is one
and only one morphism /:XxX-»G such that /(x, l) = /(x) and /(l,x) = g(x) for
all x in X. Tracing through the various definitions we see that /: Xx X-»G can be
described more simply by /(X,, x2) = f(x,)f(x2)"' for all x, and x2 in X. Hence, by
Lemma 8.5(d), Im/ is the commutative subgroup (Im/)(Im/)"' of G.
Now it is easily seen that if (X,, x2) and (xi, x2) are in X x X, and if there is an

x £ X such that xx,x2 = xx|x2, then /(x,, x2) = /(xi, x2). For if xx,x2 = xxix2, then
/(x)/(x,)/(x2) = /(x)/(xi)/(x2) which, after multiplying both sides by /(x)"\ gives
/(x,)/(x2) = /(xi)/(x2). But this implies /(x,)/(x2)

' =/(x',)/(x2r' since
(Im /)(Im /)"' is a commutative subgroup of G. Hence, we have our desired result.
This observation suggests considering the relation R on XxX given by

(X,, x2) R (xi, x2) if and only if there is an x in X such that xx.x5 = xxix2. It is not
difficult to check that R is an equivalence relation on the commutative monoid Xx
X because X is a commutative monoid. Obviously, the equivalence relation R on
the monoid XxX depends only on the commutative monoid X and is independent
of the morphism f:X-»G we started with. On the other hand, we also know as a
consequence of our previous discussion that given any morphism / :X-» G with G
a group, the partition (XxX)/R of the monoid XxX is a refinement of the
partition Coim / of the monoid XxX. Hence, given any morphism / : X-» G with
G a group, we know that there is a unique morphism of monoids gi : (X x X)/R-» G
such that /= gifc,x«xliR. It is also not difficult to show that if we define the morphism
of monoids h :X-»(XxX)/R by /i(x) = [(x, 1)], where [(x, 1)] is the equivalence
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class of (x, 1) under R, then the diagram

X-*-»(XxX)/R

XI-
G

commutes. Hence, if we can show that the monoid (X x X)/R is a group, then the
morphism h :X-»(X x X)IR stands a reasonably good chance of being a group of
fractions for the commutative monoid X since h :X-»(XxX)/R has the property
that given any morphism of monoids /:X-»G with G a group, there is the
morphism g,:(XxX)/R-»G such that /=g/h.
We first observe that (X x X)/R is a commutative monoid with identity [(1,1)]

since XxX is a commutative monoid with identity (1, 1). Hence, to show that
(X x X)/R is a group, and thus a commutative group, it suffices to show that every
element [(X,, x2)] in (X x X)/R has an inverse. But [(x2, x,)][(x,, x2)] = [(x2xu x,x2)] =
[(x2x,, X2jc,)] = [(l, 1)]. Since (XxX)/R is commutative, [(X2, X,)] is the inverse of
[(x,,x2)] for a" elements [(x,, x2)] in (XxX)/R which shows that (XxX)/R is a
commutative group.

Summarizing our results, we know that the commutative group (X x X)/R has
the property that given any morphism of monoids /: X-» G, with G a group, there
is the morphism g,:(XxX)/R-»G of groups such that gih=f where
h :X-»(X x X)/R is the morphism given by h(x) = [(x, 1)] for all x in X Therefore,
we will have shown that the morphism of monoids h :X-»(Xx X)/R is a group of
fractions for X if we show that /t:X-»(XxX)/R has the property that two
morphisms of groups g,,g2:(XxX)/R-»G are the same if g,h = g2h.
To this end we observe that each element [(x,, x2)] in (Xx X)/R can be written

as [(x„ l)][(l,x2)] = [(x„l)][(x2,l)], = /i(x,)h(x2rl. Suppose g„g2:(XxX)/R-»G
are morphisms of groups such that g,/i = g2h. By our previous remark, g, = g2 if
and only if g,(/i(x,)'t(x2)-') = g2(/i(x,)/i(x2)"') for all x, and x2 in X. But
g,(h(x,)/j(x2) ') = g,(/i(x,))g,(/i(x2) ') = g.Wx.)(g.Wx,))_, = g2/i(x,)(g2/i(x2))

' =

ftCjU,))&Citer') = g2(h(x,)/i(x2) ')
. Thus, g, = g2 if g,/i =g2/i, which finishes the

proof that h :X-»XxX/R is a group of fractions for X.
Before showing how this notion of the group of fractions of a commutative

monoid can be applied to defining and constructing the additive group Z of all
integers from the monoid of nonnegative integers N under addition, we introduce
certain notational conventions and point out certain basic properties of groups of
fractions.
If we are writing our commutative monoid X multiplicatively, as we have

been doing until now, then we will write the commutative law of composition in
the group of fractions (X x X)/R also multiplicatively. Further, we shall denote
the element [(x,, x2)] in (X x X)/R by the fraction x,/x2. In this notation the law of
composition in (XxX)/R takes on the familiar form (x,/x2)(xi/x2) = x,xi/x2x2.
Also, we have the familiar formula (x,/x2)"' = x2/x,.
However, the question of when two fractions X,/x2 and x\lx2 are equal has a

slightly different answer than the usual one; namely, X,/x2 = xi/x2 if and only if

there is an x in X such that xx,x2 = xx2xi. Why we need this rather than the
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familiar criterion X,X2 - x2x\ for determining when two fractions xjx2 and x\lx'2 are
equal is made clear in the exercises. However, for the moment the reader should
observe that in the cases he is used to, each element x in X has the property that
xy, = xy2 implies y, = y2 for all y, and y2. Thus, under these circumstances it is
easily seen that our criterion for when two fractions xjx2 and xi/x2 are equal
coincides with the usual one that x,x2 = xix2.
One reason for introducing this notation is that it has the advantage of

familiarity which makes calculation easier. Another is that many of the previously
introduced morphisms have a more appealing description in this notation. For
example, the morphism h :X-»(XxX)/R has the form h(x) = x/l for all x in X.
Also, given a morphism of monoids f:X-»G with G a group, then the unique
morphism g,:(XxX)/R-»G such that / = g,h has the appealing description
gt(x,lx2) = /(x,)(/(x2)r' for all x, and x2 in X.
Because this construction of a group of fractions for a commutative monoid

will occur often in this book we make the following definition.

Definition
Let X be a commutative monoid. We denote by G(X) the commutative group
(XxX)/R where R is the equivalence relation on the monoid XxX given by
(X,, x2) R (xi, x'2) if and only if there is an x in X such that xxlx'2 = xx2xi. Then the
morphism h :X-»G(X) given by /i(x) = x/1 for all x in X is a group of fractions
for X which is called the standard group of fractions for X.

If we are writing the law of composition in X additively, then we will write
the law of composition in G(X) additively also. In this case we will denote the
element [(x,, x2)] in (X x X)fR by x, - x2. Then the law of composition in G(X)
becomes (x, - x2) + (x', - x2) = x, + xi - (x2 + x2) while the inverse -(x, - x2) of x, - x2
is(x2-x,). Also, we have that x,-x2 = xi-x2 if and only if there is an x in X such
that x + X, + x2 = x + xi + x2. The morphism h :X -» G(X) is given in this notation
by h (x) = x - 0 for all x in X. Finally, if / :X -» G is a morphism of monoids with
G a group, then the unique morphism of groups gi : G(X)-»G such that / = gih
can be described by g;(x,-x2) = /(X,)/(x2)"' for all x, and x2 in X.

Basic Properties 8.6
Let h :X-»H be a group of fractions for the commutative monoid X. Then:

(a) h is an epimorphism of monoids.

(b) h is an isomorphism if and only if X is a group.
(c) h is an injective morphism if and only if xy = xz implies y = z for all x, y, z in
X.

When the morphism h :X -» G(X) is an injective morphism we view X as a
submonoid of G(X) by identifying the element x/1 in G(X) with the element x in
X for each x in X. In this case the morphism h :X -» G(X) then is the inclusion of
the submonoid X of G(X).
Using these ideas, we now construct the group of integers from the monoid of

nonnegative integers.
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9. THE INTEGERS

Definition
We define the group of integers, which we denote by Z, to be G(N) where N is the
additive monoid of nonnegative integers. The law of composition in Z is of course
written additively.

Basic Properties 9.1
Let h : N-»Z be the standard group of fractions for N.

(a) h is an injective morphism and so, according to our convention, N is a
submonoid of Z (that is, we denote the element n - 0 in Z by n for each n in N).

(b) If g is an element of a group G, then there is one and only one morphism /: Z-»
G such that /(l) = g.

(c) The inclusion morphism N-»Z of monoids is an epimorphism of monoids
which is not a surjective morphism.

(d) We obtain an order relation on Z by defining z, < z2 for z, and z2 in Z if and
only if there is an element n in N such that z, + n = z2. This order relation has
th< following standard properties:

(i) Z is totally ordered.

(ii) If z, s z2 and zi s z'2, then z, + z\<z2 + z'2.
(iii) z in Z is in N if and only if 0 s z.
(iv) For each element z E Z, let Sz be the set of all x in Z satisfying X>i
Then each set S, is well ordered even though Z is not well ordered.

(v) If x > z, then X > z + 1 for each z in Z.
(e) If z is in Z but not in N, then - z is in N.
We recall that this last property is the basis of the notion of absolute value \z

\

of an integer z. The absolute value is the map ||:Z-»N given by |z
| = z if z is in N

and \z
\ = - z, if z is not in N.

We now introduce the monoid structure on Z given by multiplication of
integers.

We have already seen that there is a unique multiplicative monoid structure
on N with the properties:

(a) \n = n for all n in N

(b) (n, + n2)n = n,n + n2n

for all n, n,, and n2 in N. We also know that this monoid structure makes N a

commutative monoid. Using this multiplicative monoid structure on N we obtain a

commutative multiplicative monoid structure onNxN given by (n,, n2)(n\, n'2) =
(n,n\ + n2n'2, n,rt: + ni^forall n,, n',, n2, n'2in N. Thus, the set N x N has commuta
tive additive and multiplicative monoid structures. Now we obtained the group Z

of integers from the additive monoid N x N by introducing the relation R on N x N

given by (n,, n2) R (n \, n'2) if and only if n, + n'2 = n\ + n2. (Why don't we need that
there exists an n in N such that n + n, + n'2 = n +n\ + n2?) Not only is this
equivalence relation on the set N x N, an equivalence relation on the additive
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monoid N x N, it is also an equivalence relation on the multiplicative monoid N x

N. Thus, Z = (N x N)/R is a commutative multiplicative as well as additive
monoid. We now list some of the familiar properties of this multiplication, all of
which can be derived from this description of the multiplication of integers with
out much difficulty.

Basic Properties 9.2
The addition and multiplication defined on Z have the following properties:

(a) For all z, z,, and z2 in Z we have:

(i) z,z2 = z2z,.

(ii) z(z, + z2) = zz\ + zz2.
(Hi) z\=z.
(iv) 0z=0.

(v) (-zjz^-(z^).
(vi) If z,z2 = 0, then either z,=0 or z2 = 0.

(b) The injective map h : N-»Z is a morphism of monoids when both N and Z are
considered as multiplicative monoids. Thus, N can be considered a submonoid
of Z by means of the injective map h : N-»Z, both as additive and multiplica
tive monoids.

(c) If z,£z2 and n is in N, then nz,^nz2.
(d) The absolute value 1| :Z-»N is a morphism of the multiplicative monoids of Z
and N (that is, |z,z2| = |z,||z2| for all z,,z- in Z).

(e) 1 and
- 1 are the only invertible elements in the multiplicative monoid of Z.

The reader should observe that the first few properties cited above are noth
ing more than the assertion that Z is a commutative ring under addition and

multiplication. For the convenience of the reader we recall the following.

Definition
A set X together with two monoid structures + and x is called a ring if:

(a) Under addition X is an abelian group whose identity we denote by 0.
(b) x(x, + x2) = xx, + xx2, (X, + X2)x = x,x + X2X, for all x, X,, and x: in X.

A ring X is said to be a commutative ring if it is a commutative monoid under
multiplication.

The reader should show that for any ring X we have 0x = x0 = 0 and (- x,)x2 =
-(X1X2) for all x, X,, and x2 in X.
We will return to the general subject of rings later on. In the meantime we

point out certain interesting interpretations of some of our results to date concern
ing the ring Z.

We have already seen that if x is an element of a monoid X, the unique
morphism / : N -» X from the additive monoid N to X such that /(l) = x, if written
in the notation f(n) = x", gives us the notion of raising x to nonnegative integral
powers. An analogous interpretation exists for the morphism from the additive
group of Z to a group G. For we know that given any element g in the multiplica
tive group G, there is one and only one morphism /, :Z-» G such that /„(1) = g. If we
denote /„(z) by g: for all z in Z, then we have the familiar rules of exponentiation:
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g° = 1, g' = g, g!,gh = g'''+11' for all z, and z2 in Z. Also, we have g'' is the inverse of
g and for each n in N we have (g"')n = g". Hence, the unique morphism /,:Z-»G
such that //l) = g gives us the familiar notion of raising an element of a group to
positive as well as negative powers. For this reason we will usually use the
notation g' to denote fj(z) for all z in Z. That (g=')h = g'h for all z,, z2 in Z can be
deduced from the fact that (g"')"2 = g'"'"2' for all n, and n, in N.
Suppose G is a commutative multiplicative group. If g, and g2 are two ele

ments of G, then it is easy to check that the map b:Z-»G given by b(z) =

A,(z)/e(z) is a morphism of monoids. Since b(\) = /„(l)/nG) = gyg2, it follows that
/nft(z) = /„(z)/e(z) for all z in Z. Thus, we obtain in this case the usual formula
(g,g2>' = gfg2 for all z in Z.
Suppose now that G is a commutative, additive group. For each g in G, let

/,:Z-»G be the unique morphism such that //I) = g. Then we will usually denote
fjiz) by zg for z in Z. What we have already established shows that we have the
usual rules: 0g = 0, lg = g, (z, + z2)g = z,g + z2g, (z,z2)g = z,(z2g) for all g in G, and
z,, and z2 in Z. Further, if g, and g2 are in G, then z(g, + g2) = zg, + zg2 for all z in Z.
Summarizing, we see that associated with each abelian group G is the map

Zx G -» G given by (z, g)-»zg which has the following properties:

(a) (z, + z2)g = z,g + z2g.

(b) z(g. + g2) = zg, + zg2.

(c) lg = g.
(d) (z,z2)g = z,(z2g).

It should be observed that this operation of Z on abelian groups G also has
the property that if /:G,-»G2 is a morphism of abelian groups, then f(zg) = zf(g)
for all z in Z and g in G,.
We end this section by giving a generalization to arbitrary rings R of this

operation of the ring Z on abelian groups.

Definition
Let R be a ring. By an R -module structure on an abelian group M we mean a map
RxM-»M which we denote by (r, m)-»rm satisfying:

(a) (r, + r2)m = r,m + r2m.

(b) r(m, + m2) = rm, + rm2.

(c) (r,r2)(m) = r,(r2m).

(d) \m = m.

An abelian group together with an R-module structure is called an It-module.

We shall return later on to this general notion of a module. In fact, most of
this book will be devoted to a detailed study of rings and modules.

10. FINITE AND INFINITE SETS

In this section we point out some fundamental facts concerning finite and infinite
sets and give some applications to monoids and groups.
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Our development of the theory of finite sets is founded on certain basic facts
concerning the cardinality of subsets of N, the set of nonnegative integers. In
order to carry out this program it is convenient to have the familiar definitions.

Definitions
Let X be an ordered set.

(a) A subset X' of X is said to be an interval of X if whenever we have X, s
x sx2 with X, and X2 in X', then x is also in X'.

(b) Associated with any two elements x, and x2 in X are the intervals:
(i) [x,, x2] consisting of all x in X satisfying X,sx< x2.
(II) [x,, x2) consisting of all x in X satisfying x, s x < x2.
(ilI) (x,, x2] consisting of all x in X satisfying X, < x s x2.
(Iv) (x,, x2) consisting of all x in X satisfying X, < x < x2.
We now list most of the facts concerning the cardinality of subsets of N

which are of immediate concern to us. An outline of the proofs of the following
assertions is given in the exercises.

Proposition 10.1
Let N be the set of nonnegative integers.

(a) card([0, m)) < card([0, n)) if and only if m < n. Hence:
(b) card([0, m)) = card([0, n)) if and only if m = n.
(c) If n, + x = n2 and n\ + x' = n2, then card([n,, n2) U [n\, ri2)) ^ card([0,x + x')).
Further, card([n,, n2) U [n\, n2)) = card([0, x + x')) if and only if [n,, n2) D
[n',,n2) = 0.

(d) card([0, m) x [0, n)) = card([0, mn)).

(e) If N' C [n,, n2) for some n, and n2 in N, then there is a unique n in N such that
card(N') = card([0, n)).

(f) A subset N' of N has card(N') = card(N) if and only if N' has no upper bound
in N, that is, N' is not contained in [0, n) for any n in N.

The reader should have no difficulty convincing himself that the following
definition of finite and infinite sets agrees with his intuitive understanding of
these notions.

Definitions
A set X is said to be a finite set if there is an injective map / :X-» [0, n) for some n
in N. The set X is said to be infinite if no such injective map exists.

As a consequence of these definitions we have the following.

Basic Properties 10.2
Let X and Y be sets, with X a finite set.

(a) If /: Y-»X is injective, then Y is a finite set.
(b) If g :X-» y is a surjective map, then Y is finite.
(c) The set Y is infinite if and only if there is an injective map N-»y, or
equivalents card(Y)>card(N).
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We now turn our attention to studying finite sets. However, in order to do this
efficiently we must develop some new notions for products and sums in a monoid.
Until now we have only had to multiply or add at most three or four elements in a
monoid at a time. This required no special notation. However, to talk about multi
plying or adding an unspecified finite number of things together, as we will often
have to do from now on, does require some special notational devices. Therefore,

we interrupt our discussion of finite sets to develop these devices.
Let X be a multiplicative monoid. Then given a finite sequence

X,, . . . , x„ . . . , xk of elements of X with i in the interval [1, k] in N, we want to
i

define the product of the sequence which we denote by n x,. We do this by
1-1

induction on k. If k = 0, or what is the same thing, the sequence is empty, we
k k k+1

define II x, = 1. Assuming we know what II x, is for fc a0, we define II xi to bel-, l-, ,-,
i
(II x,)xk+,. Hence the product of any finite sequence X, x. of elements in X isl-,

defined. Although it is not trivial to do so, it can be shown that the associativity of
the product of a sequence of three elements [that is, (X,X2)x3 = x,(x2x3) for all X,,
x2, x3 in X] implies the associativity of the product of any finite sequence of
elements in X. Even to explain precisely what this means is a bit complicated. We
shall merely give some examples to illustrate the point.

Example 10.3 Suppose X,, . . . , x6 is a sequence of elements in the monoid X.
6 4

Then II x, = x,[(((x2x3)x4)x5)x6] = [[(x,x2)x3](x4X5)]x6 = II y, where y, = (x,x2), y2 =,-l 1-1

(x3), y3 = (x«x5), y4 = x6.

Example 10.4 Let a ...... x- be a sequence of elements in the monoid X.
7

Suppose y, = X, = x2 = x3, y2 = x4 = x5, y3 = x6 = x7. Then II x, = yi(yly5) =
3 1-1

II z, where z, = y], z2 = yl, z3 = yll-,

Suppose now that x,, . . . , xk is a sequence in a monoid X and / : [1, . . . , k] -»
[1, . . . , k] is an isomorphism of sets. Then xlm, . . . , xm is another sequence of

* k

elements in X and in general II x, ? II x;ill. However, it is not difficult to show thatl-, l-,
k k

II x, = II xm if any pair of elements in the sequence X,, . . . , xk commute. Thus, in,-l i-I
k

particular, if X is commutative, then II x, depends only on the elements which,-,

appear in the sequence and not on the order in which they appear. Therefore, if X
is a commutative monoid and {x,}le, is any finite family of elements in X (that is, /
is a finite set), it makes sense to speak of the product II x, of the elements in the

IEI

finite family {x,},e,.
Similarly, if X is a commutative monoid which is written additively and {x), e ,

is any finite family of elements in X, we can speak of their sum 1,e,x,. If / =0,
then 2le,x, =0.
We now return to our discussion of finite sets.
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Suppose X is a finite set. Then we know that for some integer m in N there is
an injective map / :X -» [0, m ). Hence, card(X) = card(Im / ). Since Im / C [0, m ),
we know from our discussion of the cardinality of subsets of N that there is a
unique integer n in N such that card(Im /) = card([0, n)). Thus, if X is a finite set,
there is a unique integer n in N such that card(X) = card([0, n)). This observation
leads to the following.

Definition
Let X be a finite set. Then the unique integer n in N such that card(X) =
card([0, n )) is called the number of elements in X. We will often denote the fact
that n is the number of elements in X by writing card(X) = n.

As an immediate consequence of this definition we have the following.

Basic Properties 10.5
Let X and Y be finite sets. Then the following are equivalent:

(a) Card(X) > card(Y).
(b) There is an injective morphism /: Y-»X. If Y±0, then (a) and (b) are equiva
lent to the following.

(c) There is a surjective map f:X-»Y.
The following results concerning finite sets can be deduced from our earlier

proposition dealing with the cardinality of subsets of N.

Proposition 10.6
Let X be a set, I a finite set, and {X},e; a family of finite subsets of X with
card(X) = n, for each i £ /. Then:

(a) U X, is finite set with card(U X,) s %e, n,. Further, card(U X) = 2,e; n, if and
'EI IE; 1EI

only if XnX, = 0 whenever i=h) in /.
(b) n X, is a finite set with card(II X) = II n,.le, le, le;

(c) If X, and X2 are finite sets, with card(X) = n, for i = 1, 2, then the set (X,, X2)
of all maps from X, to X2 is a finite set with card((X,,X2)) = n"'.

(d) In particular, since the set 2" of all subsets of a set X is isomorphic to (X, Y)
where Y = [0, 2), it follows that if X is a finite set with n elements, then 2" is a
finite set with card(2x) = 2".

We end our discussion of finite sets with this useful characterization of such
sets.

Proposition 10.7
Let X be a set. Then the following statements are equivalent:

(a) X is finite.
(b) If f:X-»X is injective, then / is an isomorphism.
(c) If g:X-»X is surjective, then g is an isomorphism.

Before discussing infinite sets, we give some illustrations of how some of
these facts concerning finite sets come up in the theory of monoids and groups.
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Proposition 10.8
Let X be a finite monoid (that is, X is finite as a set). If xy, = xy2 implies yl = y2 for
all x, y,, y2 in X, then X is a group.

PROOF: For each x in X, let I, :X-»X be the map of sets given by t(y) = xy
for all y in X. Since the fact that xy, = xy2 implies y, = y2, we see that each map
/, :X -» X is injective. Because X is a finite set, we know that each /, must be an
isomorphism of sets since it is injective. Thus, for each x in X, there is an x' in X
such that Ux')=l=xx'.
Therefore, in order to show that X is a group, we have to show that x'x also is

1. We know there is an x" in X such that x'x"= 1. Hence, we have x" = (xx')x" =
x(x'x") = x. Thus, 1 = x'x" = x'x, and we see that X is a group.

The reader should give an example of a monoid X which is not a group but
which nonetheless satisfies the condition that xy, = xy2 implies y, = y2 for all x, y,,
y2 in X.
Our next illustration of how the notion of finite sets comes up in dealing with

monoids and groups is based on the notion of a product of monoids which we now
define.

Definition

Let {X,},e, be a nonempty family of monoids. The law of composition on the
product of sets n X,, given by (xO,eiWW = (y,).e, where y, = wc' for all i £ /,

IEi

makes II X, a monoid which is called the product of the family {X},Ei and is
IEI

denoted by II X,. Each of the projection maps projk : II X, -»X given by
,el le,

projk((.X,)lei) = *k is a surjective morphism of monoids called the k -projection
morphism.

We now list some easily verified properties of the product of monoids.

Basic Properties 10.9
Let {X},ei be a nonempty family of monoids.

(a) The identity of II X, is {l,},e; where li is the identity of X.
IE J

(b) (x,),ei in II X is invertible if and only if x, is invertible in X for each i £ /. If
IEi

(*),ei is invertible, then (x,)r«[, = (.xr'),Ei. Thus:
(c) II X is a group if and only if each monoid X is a group.
Iel

(d) II X is commutative if and only if each X is commutative.
IEi

(e) If Y is a monoid, then a map /: Y-» II X is a morphism of monoids if and only
IEJ

if each of the maps proj,/: Y-»X, is a morphism of monoids. This implies:
(f) If Y is a monoid, then the map of sets

Morph (V
,

n x)-n Morph(Y, X) given by /^(proj,/),e,

V IEi / IEJ

is an isomorphism of sets.
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In addition to the product, there is another monoid associated with a family of

monoids {X},e ; which plays an extremely important role throughout this book and

mathematics generally.

In order to describe this we need the following.

Definition
Let {X},e i be a nonempty family of monoids. The support of an element {x,},e ; in

n X is the subset of J of / consisting of all i in / such that xrt l,. An element {x,} in,E;

II X is said to have finite support if its support is a finite set.
IE I

It is not difficult to check that the subset of n X, consisting of those elements
IEi

with finite support is a submonoid of n X which we denote by 2,tiX. For each k

1ti

in I we shall denote the composition 2 X, -^ II X, k—»Xk by projk : 2 X -» Xk
,el ,ei ,ei

which we call the fcth projection morphism. Also for each k in /, the map injk : Xk-»

2 X, given by injn(x) = {x,},Ei where xk = x and x,= l, for all i^fc, isa morphism of
,Ei

monoids which we call the kth injection morphism. Since for each k in / we have
that the composition Xk—-1—»2 X,

"""'
»Xk is idx„ it follows that each injk is an

IEi

injective morphism and each projk is a surjective morphism. We now list some
easily verified properties.

Basic Properties 10.10
Let {X},el be a nonempty family of monoids.

(a) {x,},eiX, is invertible if and only if each x, is invertible in X. If {x,},ei is

invertible in 2,eJX, then {x<Kei = {xi"'},Ei.
(b) 2,eiX is a group if and only if each X, is a group.
(c) 2IEiX is commutative if and only if each Xi is commutative.
(d) If / is finite, then 2,e,X = II X.

lEi

(e) If k and k' are distinct elements of /, then injk(x)injn(y) = injk (y)injk(X) for all

x in Xk and y eX, .

We now wish to describe for each monoid Y the morphisms from 1.^, X to Y.
Associated with a morphism of monoids /:2,eiX-»Y are the morphisms

/ injk : X.-» Y for each k in 7. Now it is not hard to check that two morphisms

/, , /2 : 2,ei X -» Y are the same if and only if /, injk = U injk for all k in I. Thus, the
map Morph(2,C,X, Y)-»II Morph(X, Y) of sets given by /-»(/injk)*e, is injec

isi

tive. This naturally raises the question: Is the map Morph(2,CiX, Y)-»

II Morph(X, Y) surjective and thus an isomorphism?,ei

In general, it is not surjective. For if /: 2,f , X— » Y is a morphism of monoids
and k and k' are distinct elements of /, the fact that injk(.xO injk (xn) =

injk (xk )injk(xk) tells us that the morphism / injk : Xk -» Y and / injk :Xk -»Y have
the property / injk(xk)/ injk (xk ) = / injk (xk )/ injk(xk) for all xk in X, and xk in Xk.
Thus, if f, : X, -» Y is a family of morphisms, then in order for there to be a

morphism / : 2X -» Y such that /k = / injk for all k in I, the family of morphisms
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fk : Xk -» Y must have the property fk(xk)fk(xk) = fk(xk)fk(xk) for all xk in X* and xk
in Xk whenever k and k' are distinct elements of /.
On the other hand, suppose we are given a family fk : Xk -» Y of morphisms

such that fk(xk)fk(xk) = fk(xk)fk(xk) for all xk in Xk and xk in Xk whenever k and fc'
are distinct elements of I. Let {x,},e, be an element of 2,e;X. Because only a finite
number of the jd=£ 1„ it follows that only a finite number of the elements in fk(xk) in
y are different from 1. Also, since the elements fk(xk) commute with each other we
can talk about the product of the elements fk(xk)±l which we can denote by
n fk (x,, ) without any confusion. Hence, we obtain a map / : 2,ei X -» Y by setting
kel

f({x,}le,) = II A(xk). It is not difficult to check that /:2,e,X -» Y is a morphismle,

which also has the property that /n = /injk for all k in /. Thus, we have shown the
following.

Proposition 10.11
Let {X}, e ; be a nonempty family of monoids. For each monoid Y, the map of sets
Morph(2,e;X,, Y)-»n Morph(X, Y) given by /-»(/ injk)nei for all morphisms

IE!

/ :2.eiX -» Y is an injective map. Further, an element {fk}ke, in II Morph(X, Y) is
in the image of Morph(2lEiX, y>-» II Morph(X, Y) if and only if fk(xk)fk(xk) =

fk{xk)fk(xk) for all xk in Xk and xk- in Xk- whenever k and k' are distinct elements of
/. Consequently, the map Morph(2,e,X, Y)-»II Morph(X,, Y) is an isomorphlE;

ism if y is a commutative monoid.

Because the monoid 2 X, plays a particularly important role when all the X,ld
are commutative, we give it a special name in that situation.

Definition
Let {JQi e , be a nonempty family of commutative monoids. Then the commutative
monoid 2 X, is called the sum of the family of monoids {X}, e i and is often denotedle,

by U X.
,e,

Returning to our discussion of finite and infinite sets, we devote the rest of
this section to developing a few useful facts concerning infinite sets.
As we have already seen, a set X is infinite if and only if card(X) > card(N).

Because N is itself infinite, N is the smallest infinite set and therefore in some
respects the simplest infinite set. For this reason, we begin our discussion of
infinite sets by pointing out certain facts about the cardinality of the set N.

Proposition 10.12
Let X be a set. Then card(X) = card(N) under the following circumstances:

(a) X = X, U X2 where card(X) = card(N) and card(X2) < card(N).
(b) There exists a partition {X}, E N of X where each set X is finite and not empty.
(c) X= NxN.
(d) There is a partition {X}, e N of X with card(X) = card(N) for all i in N.
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(e) X = n Yl where J is a finite nonempty set and card( Y)) = card(N) for all j in J.
As a consequence of these criteria of when a set X is isomorphic to N we

obtain the following facts concerning arbitrary infinite sets.

Proposition 10.13
Let X be an arbitrary infinite set. Then:

(a) There exists a partition {X},c, of X with card(X) = card(N) for all i in /.
(b) Card(NxX) = cardW.

EXERCISES

(1) Suppose H is a subgroup of a group G. A subset X of G is called a left coset of
H in G if there is an element x in G such that X = xH. A subset Y of G is called a
right coset of H in G if there is an x in G such that Y = Hx. The subset of 2°
consisting of the left cosets of H in G is denoted by GIH and is called the left
coset space of H in G. The subset of 2G consisting of the right cosets of H in G is
denoted by H\G and is called the right coset space of H in G. Show that the
following statements are true.

(a) Let x and y be two elements of G. Then the following statements are
equivalent:

(i) x and y belong to the same left coset of H in G.
(ii) xH = yH.
(iii) y'x is in H.
Similarly, the following statements are equivalent:

(iv) x and y are in the same right coset of H in G.
(v) Hx = Hy.
(vi) yx"' is in H.

(b) The subsets GIH and JFf\G of 2G are both partitions of G having the following
properties:

(I) For each x in G, the left coset xH is the unique element of GIH contain
ing x. Similarly, the right coset Hx is the unique element of H\G contain
ing x.

(ii) For each x in G, we have card(xff) = card(H) = card(Hx).
(iii) card(G/H) = card(H\G).
(iv) card(Jf x (GIH)) = card(G) = card(H x (H\G)).

(c) If G is a finite group, then card(H) x card(G/H) = card(G) = card(H) x
card(H\G).

(d) GIH = H\G if and only if H is a normal subgroup of G.
(e) If card(G/H) = 2, then H is a normal subgroup of G.
(2) Let X be a set and Aut(X) the group of bijective maps f:X^X. For each x0 in
X define Autw(X) to be the subset of Aut(X) consisting of all bijective maps
f:X--»X with the property /(x0) = x0. Show that:
(a) Autw(X) is a subgroup of Aut(X) which is isomorphic to the group Aut(X
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(b) Card(Aut(X)/AutJ0(X)) = card(X).
(c) If X is a finite set with n elements, then card(Aut(X)) = n !, where n != 1 if
n = 0, and n ! = 1 x 2 x . . . x n for n >0.

(3) Let {Gilel be a family of submonoids (subgroups) of the monoid G. Show
that:

(a) G' = fI G, is a submonoid (subgroup) of G.
IEI

(b) If {G},e, is totally ordered under inclusion, then G" = U G, is a submonoidle,

(subgroup) of G.

(c) Give an example of a group G which contains subgroups G, and G2 such that
(j ,U G- is not a submonoid and hence not a subgroup of G.

(4) Let X be a subset of a monoid G. Then:
(a) The subset G' of G consisting of all finite products of elements in X is a
submonoid of G called the submonoid of G generated by X.

(b) Show that G' is the intersection of all submonoids of G containing X.

(c) The subset X of G is said to generate G if G' = G. Show that if X generates G
and f,,f2.G-»H are two morphisms of monoids, then /,=/2 if and only if
/,|X = /2|X. [Hint: Use the fact that if f,,f2:G-»H are two morphisms of
monoids, then the subset of G consisting of all x in G such that /,(x) = /2(x) is a
submonoid of G.]

(5) Let X be a subset of a group G and let X"' be the subset of G consisting of all
X"' where x is in X.

(a) Show that the submonoid G' of G generated by XUX"' is a subgroup of G.
The subgroup G' is called the subgroup of G generated by X.

(b) Show that the subgroup G' of G generated by X is the intersection of all
subgroups of G containing X.

(c) The set X is said to generate G if G is the subgroup of G generated by X.
Show that if X generates G and /,,/2:G-»H are two morphisms of groups,
then /, = U if and only if /,|X = /2|X. [Hint: use the fact that if /,

,
/2 : G-»H are

two morphisms of groups, then the subset of G consisting of all x in G such
that /,(x) = /2(x) is a subgroup of G]

(d) Suppose /: G-»H is a surjective morphism of groups. If the subset X of G
generates G, then /(X) generates H.

(6) Suppose x is an element of a group G. Show that:

(a) The subgroup of G generated by x is the subset {x'hez of G Hence:
(b) The image of the unique morphism /:Z-»G of groups with the property /(l) =

x is the subgroup of G generated by the element x in G.

A group generated by a single element is called a cyclic group.
(7) (a) A group G is a cyclic group if and only if there is a surjective morphism
f:Z-»G of groups. Hence:
(b) All cyclic groups are abelian.
(c) If Z' is a subgroup of Z

,

then there is a unique n in N which generates Z'.

[Hint: Use the Euclidean algorithm which states that if a and b are in N and
i»=£0, then there are q and r in N such that a = bq + r with 0 < r < b.]

(d) Every subgroup of a cyclic group is cyclic.

(e) Let Zn be the subgroup of Z generated by the element n in N.

(i) If n ± 0
,

then card(Z/Zn) = n.
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(ii) n = 0 if and only if Z/Zn is an infinite set.

(ilI) If n, and n2 are in N, then the cyclic groups Z/Zn, and Z/Zn2 are isomor
phic groups if and only if n, = n2.

(iv) If G is a cyclic group, then there is a unique element n in N such that G is
isomorphic to Z/Zn. Hence:

(v) Two cyclic groups are isomorphic if and only if their cardinalities are the
same.

(f ) Suppose G is a finite cyclic group with card(G) = g. For each positive integer n

dividing g, there is one and only one subgroup H of G with card(ff) = n.
If a group G is finite, then the number of elements in G is called the order

of G. If G is not finite, it is said to be of infinite order. The order of an element x
in a group G is defined to be the order of the subgroup of G generated by x.

(8) Let x be an element in a group G.

(a) x is of infinite order if and only if x' = 1 implies 2 = 0 where z is an integer in Z.
(b) The following statements are equivalent:

(i) x is of finite order.

(ii) There is a nonzero z in Z such that x'= 1.
(Hi) There is a nonzero n in N such that x"= 1.

(c) If x is of finite order, then the order of x is the smallest n in N such that x" = 1.
(9) (a) Show that if z, and z2 are in Z, then:

(i) z,|z2 (z, divides ;.) if and only if the subgroup Zz, of Z contains the
subgroup Zz2 of Z. Hence:

(ii) Zz, =Zz2 if and only if |z,| = |z2|.
(b) Suppose n, and n2 are positive integers, that is, n, and n2 are in N — {0}. Then
there is a unique positive integer n such that the subgroup of Z generated by n,

and n2 is Zn. Show that n is the largest integer in N -{0} which divides both n,

and n2. This positive integer n is called the greatest common divisor of n , and n2
and is denoted by gcd[nh n2]. Two numbers are said to be relatively prime if
gcd[n,, rt2J=l.

(c) Show that the positive integer n is the greatest common divisor of the positive
integers n, and n2 if and only if n satisfies:
-
(i) n\n, and n|n2.

(ii) n = z,n, + z2n2 where z, and z2 are in Z. Hence:

(d) The positive integers n, and n2 are relatively prime if and only if there are z\
and z2 in Z such that z,n, + z2n2 = 1.

(e) If /i: and n2 are positive integers, then there is a unique positive n such that Zn
is the subgroup Zn, n Zn2 of Z. This uniquely determined positive integer n is
called the least common multiple of n, and n2 and is denoted by lcm[n,, n.-J.
Show that lcm[n,, n2] is the smallest positive integer divisible by both nl and

n2.

(f) Show that for a pair of positive integers n, and n2 we have gcd[n,, n2] x

lcm[n,, n2] = n,n2. Hence, lcm[n,, n2] = n,n2 if and only if n, and n2 are rela
tively prime positive integers.

(10) Let n,, n2 be positive integers and let gcd[n,, n2]= n.

(a) Show that if n ^ 1, then Z/Zn, x Z/Zn2 = G is not a cyclic group by showing that
the set of all g in G with ng = 0 is a subgroup of G which is not cyclic.
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(b) Show that Z(lcm[n,, n2]) is the kernel of the group morphism /:Z-»Z/Zn, x

Z/Zn2 given by /(z) = (fc,(z), fc2(z)), where fe:Z-»Z/Zn, are the canonical
morphisms of groups. Hence, if gcd[n,, n2] = n = 1, then the induced morphism
Z/Z(lcm[n,, n2])-»Z/Zn, xZ/Zn2 is an isomorphism of groups. Hence:

(c) The group ZfZn, xZ/Zn2 is a cyclic group if and only if gcd[n,, n2] = 1.
(d) Suppose G, and G2 are finite cyclic groups of orders n, and n2, respectively.

(i) G\ x G2 is a finite cyclic group if and only if gcd[n,, n2] = 1.
(ii) If gcd[n,, n2] = 1, then G, x G2 is a cyclic group of order n,n2.
(iii) If G\ x G2 is a cyclic group, then an element (g,, g2) in G, x G2 generates
G, x G2 if and only if g, generates G, and g2 generates G2.

(11) Let n be a positive integer, and let k :Z-»Z/Zn be the canonical surjective
morphism of groups.

(a) Show that an element x in N-{0} has the property that k(x) generates Z/Zn if
and only if gcd[x, n] = 1.

(b) For each positive integer d the number of distinct generators of the cyclic
group Z/Zd is denoted by <fi(d). Show:

(i) If p is a prime number (that is, p =£1 and p and 1 are the only positive
integers that divide p), then <£(p) = p-l. More generally, <ti(p") =
p"-p""' for all positive integers n.

(If) Show that if m and n are relatively prime positive integers, then <ti(mn) =

<Km)<Mn).

(iiI) Hence, if a positive number n=p"' . . . pi' where the p, are distinct posi
tive prime numbers and the ni & 1, then

<Kn) = (pt-pF,)-(pt-prl)
(iv) For each positive integer n we have n =1d,„<fi(_d), where the sum is
taken over all positive integers d that divide n. [Hint : For each positive
integer d dividing n, let Xd be the subset of Z/Zn consisting of all ele
ments of order d. Show that the collection {Xd}d,. is a partition of Z/Zn
and that card(X,,) = <ti{d) for all d\n.]

(12) Throughout this exercise N denotes the additive monoid of nonnegative inte
gers. The purpose of this exercise is to describe the cyclic monoids, that is, the
monoids generated by a single element.

Let J be the complement in N x N of the set {(n, 0)|n > 0}. For each element
(x, t) in J denote by Nu.,l the subset of 2" defined as follows.
(i) If t = 0, and hence x = 0, define Nu.„ to be the collection {X„}„eN where for
each n in N the subset X„ of N consists of the single element n.

(ii) If 1=7*0, define Nu.„ to be the collection {X}0, ,.,,, where

if i<x
tn}„eH, if x<i<x + t

X-,

\{
i

+ t

(a) Show that each N,,.,, is a partition of the monoid N.

(b) Show that Ni„.,l = Nu.n if and only if x = x' and r = r'.
(c) Show that if 9 is a partition of the monoid N, then there is a unique ele
ment (X, t) in J such that 0> = N„.o-
Suppose C is a cyclic monoid.
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(d) Show that there is a unique element (x, t) in J such that C«Nu.,l. This
uniquely determined element (x, t) of J is called the invariant of C.

(e) Show that two cyclic monoids are isomorphic if and only if they have the same
invariant.

(f ) Show that C is infinite if and only if its invariant is (0, 0).
(g) If C is a finite monoid with invariant (x, t), then card(C) = x + f.
(h) Show that two cyclic monoids with the same number of elements need not be
isomorphic monoids,

(i) Let (x, 0 be the invariant of C. Show that C is a group (and hence a cyclic
group) if and only if x =0 and f =£0.

(13) Throughout this exercise N denotes the additive monoid of nonnegative inte
gers. The purpose of this exercise is to study the submonoids of N.

(a) Describe the submonoid of N generated by 2 and 3 and show that it is not
cyclic.

(b) More generally, show that for each integer n > 1, the submonoid generated
by n, n + 1, . . . , 2n — 1 cannot be generated by any fewer than n elements.

(c) Show that every submonoid of N is finitely generated. [Hinr: Show that every
nonzero submonoid of N is isomorphic to a submonoid of N having two
relatively prime elements. Then show that if N' is a submonoid of N having
two relatively prime elements, then there is an integer n in N' such that all
integers m a n are also in N'.]

(d) Show that every submonoid of a cyclic monoid is finitely generated.

(e) Is every submonoid of a finite cyclic monoid necessarily cyclic?

(14) Let Af be a multiplicative monoid. The subset C(Af) consisting of all x in M
such that xm = mx for all m in Af is called the center of Af. Show:

(a) C(Af) is a submonoid of Af which is a commutative monoid. Moreover,

C(Af ) = M if and only if Af is a commutative monoid.
(b) An invertible element x in Af is in C(Af) if and only if the inverse x"' of x is in
C(Af). Hence;

(c) If Af is a group, then C(Af) is a subgroup of Af which is a commutative group.
Moreover, every subgroup of C(M) is a normal subgroup of Af.

(d) If Af is a group and there is a subgroup Af ' of C(Af ) such that MIM' is a cyclic
group, then M is a commutative group. [Hint: Suppose x is in Af such that
k(x) generates Af/Af

'
where k : Af -» M/Af ' is the canonical morphism. Show

that each element m in Af can be written as x'c for some z in Z and c in Af '.]

(e) Suppose /:Af-»M' is a surjective morphism of monoids. Show that
/(C(Af)) C C(M').

(f) If Af' is a submonoid of M, then C(M) fl M' is a submonoid of C(Af').
(15) Let Af2(R) be the monoid whose elements are the 2x2 matrices

CJ]
over the real numbers R and whose law of composition is given by the usual
matrix multiplication

[a

b"\tu ul _ tau + bx av + by"\

c djlx y
j

[cu + dx cv + dy]
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(a) Show that C(Af2(R)) is the set of all matrices

i; a
for all a in R.

(b) Show that the map det : Af2(R) -» R given by

*.[; *I—-*.
(the ordinary determinant of a matrix) is a morphism from M2(R) to the
multiplicative monoid of R.

(c) Show that a matrix . I in M2(R) is an invertible element of M2(R) if and

only if

-ft >
Hence, Inv(M2(R)) is the set of all matrices with nonzero determinants.

f nv( M;(R)) is usually denoted by GL (R) and is called the 2x2 general linear
group of R. If we denote by R* the multiplicative group of nonzero real
numbers, then det : GL2(R) -» R* is a morphism of groups whose kernel is
usually denoted by SL2(R) and is called the 2x2 special linear group.

(d) Show that det:GL2(R)-»R* is surjective by showing that the map /:R*-»
GL2(R) given by

*>-ft !]
is a morphism of groups such that det/ = idR.. Also show that SL2(R)=)t{l}.

(e) Let H be the subgroup l\° °]
} of GL2(R). Show that HnSL2(R) = {l}

and that every element x in GL2(R) can be written in one and only one way as

x = hs with h in H and s in SL2(R). Is H a normal subgroup of GL2(R)?
(f) Show that C(GL2(R)) = GL2(R)nC(M2(R)), that is,

C(GL2(R)) ={ft :i

Thus, C(GL,(R)) = R*.
(g) Show that SL2(R)DC(GL2(R)) = C(SL2(R)) and is thus a cyclic group of order

2
.

(h) Show that SL2(R) and C(GL2(R)) together do not generate GL2(R). [Hint:
Consider the images of SL2(R) and C(GL2(R)) under the group morphism

det:GL2(R)-»R*.]
(i) Show that GL2(R) has elements of all possible orders.

(16) Let Q be the additive group of rational numbers and Z
,

the subgroup of Q, of
all integers. Show that the abelian group Q/Z has the following properties:

(a) Every element of Q/Z is of finite order.

(b) For each nonzero z in Z
,

the map /:Q/Z-»Q/Z given by f(x) = zx is a

surjective morphism of groups with Ker/«Z/|z|Z.
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(c) For each positive integer n in N, there is exactly one subgroup of Q/Z of order

n and this uniquely determined subgroup is cyclic.

(17) Suppose G is a group and S a set. An operation of G on S is a map /:GxS-»S
which, if we denote /(g, s) by gs for all g in G and s in S, satisfies:
(i) ls = s for all s in S.
(ii) g,(g2s) = (g,g2)s.

Suppose we are given an operation of the group G on the set S. Then:

(a) For each g in G, the map fs:S-»S given by /,(s) = gs for all s in S is an
isomorphism of sets. Hence, we obtain:

(b) The map a:G-»Aut(S) given by a(g) = f, for all g in G, is a morphism of
groups with kernel consisting of all g in G such that gs = s for all s in S.

(c) On the other hand, given a group morphism a : G -» Aut(S), we can define the
map /: G x S-»S by /(g, s) = a(g)(s). Show that this is an operation of G on S.
Hence:

(d) There is a natural isomorphism between the set of group morphisms
(G, Aut(S)) and the set of operations of G on S.

(18) Suppose we are given an operation of the group G on the set S. Then with
each element s in S, there is associated the map f,:G-»S given by /,(g) = g(s). The
image of /, is called the orbit of s under the operation of G on S. For each s in S,

we have:

(a) The subset G, consisting of all g in G such that g(s) = s is a subgroup of G.

(b) The partition of the map /,
:

G-»S is the same as the left coset space GIG, of
G, in G Hence, the coimage analysis of /, gives the isomorphism of sets
jl/.GIC—lmf,. Thus, card(G/G.) = cardflm /,).

(c) The subset SIG of 2
s

consisting of the elements Im /, of 2s for all s in S is a

partition of S called the orbit space of the operation of G on S.
(d) Suppose card(G) and card(S) are both finite. From each element i in SIG
choose one element s, in i. Then card(S) = 2„_siocard(G/G,,).

(e) If two elements s and s' in S are in the same orbit, then there is a g in G such
that gG,g

' = G,,

(19) Let G be a group. Show that the map f:GxG-»G given by (g, x) = gxg ' for
all g and x in G is an operation of the group G on the underlying set of G. For each

x in G, the orbit of v under this operation is called the conjugacy class of x and is

usually denoted by G. The subgroup G, of G consisting of all g in G such that
gxg"' = x is called the normalizer of x and is usually denoted by N,.

(a) Show that C = {x} if and only if x is in the center of G
(b) Suppose G is a finite group. Then there is a finite family {x,},e , of elements in G

which satisfy:

(i) No x, is in C(G).
(ii) C„ = G, implies i = j.

(iii) If G is a conjugacy class of G with more than one element, then G = G,
for some i in /.

If {x,},e, is a finite family of elements of G satisfying (i), (ii), and (iii), then

card(G) = card(C(G)) + 2 card(^")
where each card(rV„)<card(G). This equation is known as the class equation of
the group G.
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(20) A finite group G is called a p -group where p is a positive prime number if
card(G) = p" for some n in N. Show that if G is a p-group, then:
(a) Every subgroup and every factor group of G is a p-group.

(b) If G is not trivial, then C(G) is not trivial. [Hint: If card(C(G))= 1, then the
class equation gives

card(G) = p" = 1 + 2 cardf^-)

But this is impossible since p|card(G/rV„) for all i in I.]
(c) If p is a positive prime number, then every group of order p2 is abelian.
(d) If p is a positive prime number, show that Z/pZxZ/pZ and Z/p2Z are
nonisomorphic groups of order p2. Prove that any group G with card(G) = p2
is isomorphic to either Z/pZxZ/pZ or Z/p2Z.

(e) Let X be a square in the plane. Show that the set of distance-preserving maps
/ :X -» X is a subgroup of Aut(X) of order 8 which is not commutative. Be
cause 8 = 2', this shows that not all groups of order p' are abelian.

(f) Show that all groups of order less than 6 are abelian.

(21) In this exercise we outline a proof of the well-known Sylow theorem: Sup
pose G is a finite group with n = card(G). If n = pV . . . p°' is a prime decomposi
tion of n, that is, the p, are distinct positive primes and the a, are all positive
integers, then there exists a subgroup of G of order p°' for each i = 1, . . . , t.

(a) First prove the following. Suppose A is a finite abelian group of order n. If p is
a positive prime integer which divides n, then there is an element of order p in
A. [Hinf: Proceed by induction on n a 1. If n = 1, there is nothing to prove.
Suppose it is true if 1 < n < k. Show that it suffices to consider only the case
that there is a nonzero a in A such that (a), the subgroup of A generated by a,
is a proper subgroup whose order is not divisible by p. In this case there must
be an element of order p in A I(a) and hence a subgroup A' of A containing
(a) such that A 'I(a) is a cyclic group of order p. Show that if an element b in
A' is not in (a), then the order of b is p.]

(b) With this preliminary result out of the way, one can proceed to prove the
Sylow theorem as follows. Suppose card(G) = n. We want to show that if
n = p"q where p is a prime, a >0, and gcd[p°, q] = 1, then there is a subgroup
of G of order p°. Proceed by induction on n. If n = 1, there is nothing to
prove. Suppose now that it is true for 1 s n < k, and show that it is true for
n = k. Consider two separate cases: (1) p|card((C(G)) and (2) p/card(C(G)).
In the first case use the preliminary result (a). In the second case use
the class equation.

(22) Describe all groups of order at most 11.

(23) An endomorphism s :X-»X of a set X is said to be a peano successor function
if it satisfies:
(a) s is injective.

(b) X-\ms consists of a single element which we denote by x0.
(c) A subset Y of X is all of X if x0 is in Y and s(Y)CY.
The aim of this exercise is to show how, starting with a set X together with a
peano successor function s:X-»X, one can construct a monoid satisfying the
axioms given for the additive monoid of nonnegative integers.
Suppose s :X-»X is a peano successor function on the set X. Then s is an
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element of the monoid End(X). Show that the subset N of End(X) consisting of
all / in End(X) such that fs = sf is a submonoid of End(X). We now outline some
of the steps needed to show that the monoid N satisfies the axioms for the
additive monoid of nonnegative integers.

(a) Show that the map <t
i
: N-»X given by <£(/) = /(x0) is an isomorphism of sets.

(b) Show that a submonoid of N is all of N if it contains the element s.
(c) Show that N is a commutative monoid by showing that s is in C(N).
(d) We shall say that an element / in N is regular if fg = fh implies g = h for all g

and h in N. Show that all elements of N are regular by showing that the set of
all regular elements in N is a submonoid of N containing s.

(24) Let G be an abelian group which we write additively. Suppose g, and g3 are
elements of finite orders m, and m2, respectively.

(a) Show that the group morphism Zlm,ZxZlm2Z-»G given by

(x + m,Z, y + irt2Z)-»xg, + yg2 is an injective map if gcd[m,, m2]= 1
. Hence:

(b) If the gcd[m,, m2] = 1
, then the order of g, + g2 is m,m2.

(c) Show that there is an element in G of order lcm[m,, m3]. [Hint: Let a =

gcd[m,, m2]. Then what are the orders of ag, and ag, + ag27]

(25) Suppose G is a finite additive abelian group with m elements. Hence, the
order of each element of G is at most m which means that there is a largest integer

n which is the order of some element of G. Show that ng = 0 for each element g in

G.

(26) Suppose G is a finite abelian group which contains a cyclic subgroup H such
that GIH is cyclic and card(H) and card(G/H) are relatively prime. Show that G

is a cyclic group.

(27) The group of automorphisms of the set [1. nl is called the symmetric group on

n elements and is denoted by S„. The elements of S„ are called permutations of
[1, n]. For each pair of elements i<j in [1. n] define the permutation
(U):[l,n]-»[l,n]by

I
j, if x = i

i, ifx=;
x, if x is neither < nor j

The permutations (i
,
/) in S
„ are called the transpositions. Show:

(a) (i,/)' = (i,/).
(b) If i</<fc in [l,ii], then ft/)(A fc)(i,/) = (U).
(c) (j,k) = a(k-i,k)<T-' where o- = (/, /+l)(j + l,/ + 2)- . (/c-2,fc-l). [Hint:
Use (a) and induction on k - }.]

(d) Every element of S„ is a finite product of transpositions. [Hinf: For each a in
S„ define # a to be the number of x in [1, n] such that o^x) = x. Proceed by
induction on n - # a.]

(e) The set of transpositions {(i, i + l)},eM .,l generates S„.
(f) For each a in S„ define

H
I

[o-O')-o-(')]

sgn a =

n o-o
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Show that sgna = ±l. Hence, we have the map sgn : S„ -» Inv(Z) where
Inv(Z) is the group of invertible elements in the multiplicative monoid of Z
consisting of {1, — 1

}
.

We now want to show that sgn : S„-»Inv(Z) is a morphism
of groups.

(g) Show that if t is a transposition in S„, then sgn t = - 1.

(h) Suppose t = (k, k + 1). Show that if cr is in S„, then sgn(ar) = - sgn a =
sgn(o-)sgn(T). [Hint: First show that if i<j and i±k or j±k+\, then t(i)<
t(/). Using this, show that

II [aT(/)-OT(l)]=[o-T(fc+l)-0T(fc)]( J! [OT(/)-OT(i)])IsKJSn IsKisn
l+*or

= [o-(fc)-o-(fc + i)
]( IT W/)-«KOl)

f# * or

= - II [<K/)-<KOll
I- 1

.

i" rc J

(i) Combining (h) with the fact that S„ is generated by the transpositions of
the form (k, k + 1), show that the map sgn : S„-»Inv(Z) is a morphism of groups.

( j) Suppose cr = t, . . . t, where the t, are transpositions. Show that sgn a = 1 if

and only if / is an even number. The permutations a with sgn a = 1 are called
the even permutations.

(k) The set of even permutations which is denoted by A„ is a normal subgroup of

S„ of index 2 since it is precisely Ker sgn. The subgroup A„ is called the
alternating subgroup of S„.

(28) If G is a finite group and H is a proper subgroup of G, then G ± U xHx'.
xea

[Hint: Use the fact that if x and y are in the same left coset of H, then xHx'' =
yfly-'J
(29) Let G be a finite group of order n. Prove that G is a cyclic group if G has the
property that for each d\n, the number of elements x in G such that xd= 1 is less
than or equal to J. [Hint: For each d-,n, show that there are at most <ti(d) elements
of G of order d. Using the fact that 1d,. <ti(d) = n, show that there must be an
element in G of order n and hence that G is cyclic]

(30) The purpose of this exercise is to outline a proof of the fact that if N is an
additive monoid satisfying the axioms for the additive monoid of nonnegative in
tegers, then, given any element x in a monoid X, there is one and only one
morphism f:N-»X such that /(l) = x.
Suppose N is an additive monoid satisfying the axioms for the nonnegative in

tegers.

(a) Show that if X is a monoid, then a map /: N-»X is a morphism of monoids if

and only if /(0)= 1 and f(n + l) = /(n)/(l) for all n in N.
(b) Show that if /, g :X-» Y are morphisms of monoids, then the subset X' of X
consisting of all x in X such that /(x) = g(x) is a submonoid of X. Use this to
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show that two morphisms of monoids f,g:N-»X are the same if and only if
/(l) = g(l).

(c) Let X he a monoid and x an element in X. Show that for each n in N, there is
one and only one map gn:[0, n]-»X satisfying:
(0 g„(0)=l.

(ii) g„(l) = x.

(iii) For each m in [0, n), we have that g„(m + l) = gj(m)g„(l).
(d) Let x be an element in a monoid X. Define the map /,:N-»Xby f^n) = gj[.n)
where g„ is the unique map g„: [0, n]-»X satisfying the conditions in (c). Show
that /, is the unique morphism with the property /(l) = x.

(31) The purpose of this exercise is to outline proofs of some of the claims con
cerning the cardinalities of subsets of the set of nonnegative integers N.

(a) Suppose /: [0, m)-»[0, n) is an injective map. Show that if m > 1 and n>l,
then there is an injective g:[0, m)-»[0, n) such that g([0, m- 1))C[0, n-1).
Use this to prove by induction on n that if card([0, m))<card([0, n)), then
m <n.

(b) Suppose that n, + x = n2. Show that n, + y is in [n,, n2) for each g in [0, x) and
that the map /:[0, x)-»[n,, n2) given by /(y) = n, + y for all y in [0, x) is a
bijective map. Use this to show that if ni + X' = n5 and [n,, n2)n[ni, n2) = 4

i,

then card([n,, n2)U[ni, n2)) = card([0, x +x')). From this deduce that if

n', + x' = n'2, then card([n,, n2)U[ni,n2))<card([0,x + x')) and that equality
holds if and only if [nu n2)n[ni, n'2) = 0.

(c) Observe that if n>l, then [0, m)x[0, n) = ([0, m)x[0, n-l))U([0,m)x{n})
and also that ([0, m)x[0, n- 1))D([0, m)x{n}) = 0. Use this fact to show by
induction on n, that card([0, m) x [0, n)) = card([0, mn)).

(d) Suppose N' is a subset of N which has no upper bound. Show this means that
for each x in N' we have that S

, = {
y E N'\y > x] is not empty. Using the fact

that N and hence N' is well ordered, define the map s : N'-»N' by letting s(x)
be the first element of S, for each x in N'. Show that s is an injective map with
the property that if y in N' is not the first element y0 of N', then y = s(x) for
some x in N'. Denoting the nth iterate of s by s" for each n in N, show that the
map f:N-»N' defined by /(n) = s"(y0) is a bijective map.

(32) Let X be a set. Show that the maps n : 2" x 2* -» 2" and U : 2* x 2* -» 2* are
monoid structures on 2" where D :2* x 2" -»2" is defined by D(X', X") = X'DX"
and U : 2" x 2* -» 2" is defined by U(X', X") = X' U X" for all subsets X' and X"
of X
(a) Show that (2*, D) and (2*, U) are commutative monoids.

(b) Show that the map C:2*-»2* given by C(X') =X-X for all X in 2* is an
isomorphism of monoids which is its own inverse.

(c) Show that each element x in (2X, D) and (2x, U) is idempotent, that is, x
2 = x.

(33) Let X be a monoid, G a group and /: X-»G a morphism of monoids. Show
that if x in X is idempotent, that is, x

2 = x, then /(x) = 1 . Show that if every
element in X is idempotent, then the group of fractions of X is the trivial group.
Use this observation to give an example of a commutative nontrivial monoid, X,
that is, a monoid with more than one element whose group of fractions G(X) is

the trivial group. This also gives an example in which the natural morphism h : X -»
G(X) is not injective.
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The mathematical object known as a category makes precise many of the
similarities the reader has no doubt observed in our summary of set theory,
monoid theory, and group theory. Because categories are a useful ambience in
which to view mathematical systems generally, we devote this chapter to a brief
discussion of categories.

1. CATEGORIES

We have already seen, in discussing monomorphisms, epimorphisms, and
isomorphisms for sets, monoids, and groups, that the definitions as well as many
of the basic properties of these notions depended only on relations between the
maps and morphisms rather than on the actual structure of the sets, monoids, or
groups involved. In fact, experience has shown that a great many of the properties
of a wide variety of mathematical systems depend only on the way one chooses to
compare the objects in the system, rather than on the explicit structure of the
objects themselves. Of course, in order to take full advantage of this observation,
it is necessary to have a setting which makes this point explicit. This is accom
plished by the notion of a category. We start our discussion of categories by
pointing out certain common features of set and monoid theory which when ab
stracted lead to the definition of a category.
In dealing with set theory, the things of primary concern to us have been the

sets themselves, the maps between sets, and the composition of maps of sets.

75
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Because the sets themselves are the objects of study in set theory, it is reasonable
to call them the objects of set theory. Usually the collection of all objects of set
theory, that is, the collection of all sets, is denoted by Ob(Sets).
In addition to the objects of set theory, we have for each pair of objects X

and Y in Ob(Sets) the set (X, Y) of all maps from the set X to the set Y. Because
maps can only be the same if they have the same domain and range we see that
(X, Y) n (X, Y') = 0 unless X = X' and Y = Y'. Thus, set theory consists not only
of the collection of objects Ob(Sets) but also of the collection of sets of maps
(X, Y), one for each ordered pair of objects X and Y in Ob(Sets), which has the
property (X, Y) n (X', Y') = 0 unless X =X and Y = Y.
Next we observe that the composition of maps of sets gives rise to the maps

(U, X) x (X, Y) -» (U, X) given by (/, g) -» gf, where gf is the composition of the
map / followed by the map g. Further, this composition is associative, that is,
given /in ([/, X), gin(X, Y), and h in (Y,Z), then the elements h(gf) and (hg)f in
(U, Z) are the same. In addition to being associative, the composition maps
(X, Y)x(Y, Z)-»(X, Z) also have the property that given any object X in
Ob(Sets) there is an element / in (X, X) such that for each object Y in Ob(Sets) we
have gf = g for all g in (X, Y) and fb = b for all b in ( Y, X). Obviously, / = id*.
Summarizing this discussion, we see that associated with set theory there are

the following data:

(a) The collection of all sets called the objects and denoted by Ob(Sets).
(b) A collection of sets (X, Y), one for each ordered pair of objects X and Y in
Ob(Sets), satisfying the condition (X, Y) n (X', Y') = 0 unless X = X' and
Y = Y'. Namely, for each ordered pair of objects X and Y in Ob(Sets),
the set (X, Y) is the set of all maps from the set X to the set Y.

(c) For all triples of objects U, X, Y in Ob(Sets), we have maps ([/, X) x (X, Y) -»
([/, Y), given by the composition of maps, satisfying:
(i) If [/, X, Y, Z are objects in Ob(Sets) and / is in (U, X), g is in (X, Y), and h
is in (Y,Z), then the elements h(gf) and (hg)f in ([/, Z) are the same.

(ii) For each object X in Ob(Sets) there is an element / in (X, X), namely,
/ = idx, which has the property that for each object Y in Ob(Sets) we
have gf = g for all g in (X, Y) while fh = h for all h in ( Y, X).

In view of the parallels between set theory and monoid theory we developed
in the first two chapters, it should not come as a surprise that associated with
monoid theory is a structure very similar to the one we just pointed out for set
theory.

The collection of monoids, which we denote by Ob(Monoid), constitutes the
objects of monoid theory. For each ordered pair X and Y of Ob(Monoid) we
denote the set of all morphisms from the monoid X to the monoid Y by (X, Y).
Clearly, this collection of sets (X, Y) has the property (X, Y) n (X, Y') = 0 unless
X =X and Y=Y'.
Next, the composition of morphisms of monoids gives maps (X, Y)x(Y, Z)-»

(X, Z) for all triples of objects X, Y, and Z in Ob(Monoid), namely, (/, g)-»gf,
where gf is the composition of the morphism / :X -» Y followed by g : Y -» Z. As
in the case of sets we know these maps (X, Y)x(Y, Z)-»(X, Z) satisfy:
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(a) If U, X, Y, Z are objects in Ob(Monoid) and / is in (U,X),g is in (X, Y), and h
is in (Y,Z), then the elements h(gf) and (hg)f in (U,Z) are the same.

(b) For each object X in Ob(Monoid) there is an / in (X, X), namely, / = idx,
such that for each object Y in Ob(Monoid) we have gf = g for each g in
(X Y) while fh = h for all h in ( Y, X).
On the basis of these two models the reader should be just about ready to

make his own definition of a category.

Definition
A category <€ consists of the following:

(a) A collection Ob(^) whose elements are called the objects of <€.
(b) A collection of sets (X, Y), one for each ordered pair of objects X and Y of %
satisfying (X, Y)n(X, Y') = 0 unless X=X and Y = Y'. Each element of
(X, Y) is called a morphisrn from X to Y and (X, Y) is called the set of
morphisms from X to' Y. We will often denote the fact that / is in (X, Y) by
writing f:X-»Y.

(c) For each triple X, Y, Z of objects in % there is a map of sets (X, Y)x(Y,Z)-»
(X, Z) denoted by (/, g)-»g/ where gf is called the composition of the
morphisms f:X-» Y and g:Y^Z. These maps (X, Y)x(Y, Z)-»(X, Z) must
satisfy:

(i) If U, X, Y, Z are objects in <€ and / is in ([/, X), g is in (X, Y), and h is in
( Y, Z), then the elements (hg)f and h(gf) in (U,Z) are the same.

(ii) For each object X in % there is an / in (X, X) such that for each object Y
in % we have gf=g for all g in (X, Y) while fh = h for all /i in ( Y, X).

In view of our previous discussion it is obvious that set theory and monoid
theory are examples of categories, which we denote by Sets and Monoid, respec
tively. For these examples we have already seen that for each object X there is
only one morphism / in (X, X) with the property that for each object Y we have
gf = g for all g in (X, Y) while fh = h for all h in ( Y, X), namely, / = id*. It is not
difficult to see that this holds generally in categories. For suppose X is an object in
an arbitrary category <€ and / and /' are two morphisms in (X, X) such that for
each object Y in <€ we have gf = g and gf = g for all g in (X, Y) while fh = h
and fh = h for all h in ( Y, X). Then letting Y = X, it follows that f = ff = f
which is our desired result. This leads to the following.

Definition
Let % be a category. For each object X in <€ the identity morphisrn of X, which we
denote by. idx, is denned to be the unique morphism / in (X, X) such that for each
object Y in <gwe have gf=g for all g in (X, Y) and fh = h for all h in ( Y, X).
We have already seen that for each object X in Sets or Monoid the set (X, X)

together with the law of composition (X, X) x (X, X) -» (X, X) given by (/, g) -»
gf, where gf is the usual composition of morphisms, is a monoid with identity id v
which we denoted by End(X) and is called the monoid of endomorphisms of X.
This, too, generalizes to arbitrary categories. For it is not difficult to show that if X
is an object in a category % then the set (X, X) together with the law of
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composition (X, X)x(X, X) -» (X, X) given by (/, g) -» gf, where gf is the com
position in <g of the morphism / and the morphism g, is also a monoid with id x as
identity element. This suggests the following.

Definition
Let <€be an arbitrary category. Then for each object X in ^ the monoid consisting
of the set (X, X) together with the law of composition (X, X) x (X, X) -» (X, X)
given by (/, g) -» gf is a monoid with idx as identity which we denote by End(X)
and call the monoid of endomorphisms of X.

We devote the rest of this section to pointing out how other concepts we have
discussed earlier such as groups, finite sets, etc., give rise to categories. Other
interesting examples of categories are discussed later on in this chapter as well as
in the exercises at the end of the chapter. Before giving these examples it is useful
to have the following notation.
Let <g be a category. We shall often denote the set of morphisms from the

object X to the object Y by <g(X, Y) or Hom^X, Y) instead of simply by (X, Y).
Since all of the examples of categories we now consider are also examples of

subcategories of the categories of Sets or Monoid, we first introduce the general
notion of a subcategory of a category and then give our concrete examples.

Definition
A category <g' is said to be a subcategory of the category ^ if:

(a) Each object of <€' is also an object of <g.

(b) For all objects X and Y in <€', we have that <g'(X, Y) is a subset of <g(X, Y).
(c) For each object X in <g' the subset ^(X, X) of <g(X, X) contains the element
idx of «(X, X).

(d) Given any objects X, Y, and Z in <€' and morphisms / in <g'(X, Y) and g in
<£'( Y, Z), their composition gf in ^'(X, Z) is the same as their composition gf
in <g(X, Y) when / is viewed as an element of <g(X, Y) D <g'(X, Y) and g is
viewed as an element of <«( Y, Z) D W( Y, Z).

Finally, a category <g' is called a full subcategory of '<
>

if it is a subcategory of

<
6 which also satisfies:

(e) <g'(X, Y) = <g(X, Y) for all objects X and Y in «'.

The reader should have no difficulty verifying the following:

Basic Properties 1.1
Let ^ be a category.

(a) ^ is a full subcategory of <€.

(b) Two categories <
€

and <€' are the same if and only if ^ is a subcategory of <g'
and <€' is a subcategory of <€.

(c) If ^' is a subcategory of ^ and <€" is a subcategory of <€\ then <g" is a

subcategory of <€.

(d) If <T is a full subcategory of <
g

and <g" is a full subcategory of «', then «" is a

full subcategory of <€.
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(e) If <€' and <T' are full subcategories of <g, then <€' = <g" if and only if Ob(<g') =
Ob(<g").

As a consequence of this last basic property we see that in order to specify a
full subcategory <g' of a category <€ it suffices to describe which objects of <€ are
in <€'. We now use this fact to describe the categories of finite sets, groups, com
mutative monoid, commutative groups, etc.

Example 1.2 The category of finite sets is the full subcategory of Sets whose
objects are the finite sets in Sets. Therefore, the category of finite sets has all finite
sets as objects, the set (X, Y) of all morphisms from the finite set X to the finite
set Y is just the set of all maps from X to Y, while the composition (X, Y) x
(Y,Z)^(X,Z) for all triples of finite sets X, Y, Z is given by (/, g) -» gf, where gf
is the usual composition of the map f:X-»Y and g:Y -»Z.
Example 1.3 The category Group is defined to be the full subcategory of

Monoid whose objects are the monoids which are groups. Therefore, the objects
of Group are all groups, (X, Y) is the set of all morphisms of groups from the
group X to the group Y for all objects X and Y in Groups, and the composition
(X, Y) x(Y,Z)-» (X, Z) for all triples of groups X, Y, Z is given by (/, g)-» gf
where gf is the usual composition of the morphisms of groups f:X-»Y and
g:Y^Z.

Example 1.4 The category Abelian Monoid is the full subcategory of Monoid
whose objects are the commutative monoids. Therefore, the objects of Abelian
Monoid are all commutative monoids; for each ordered pair of objects X and Y in
Abelian Monoid we have (X, Y) is the set of all morphisms from the commutative
monoid X to the commutative monoid Y, while the composition (X, Y) x ( Y, Z) -»
(X,Z) for all triples X, Y, Z of commutative monoids is given by the usual
composition of morphisms of monoids.

Example 1.5 The category Abelian Group is the full subcategory of Group
whose objects are the commutative groups. The category Abelian Group is
usually denoted by sit . The reader is urged to give a detailed description of the
morphisms and composition of morphisms in sil as has been done in the previous
examples.

2. MORPHISMS

In this section we generalize to arbitrary categories some of the notions we have
already discussed for the categories of sets, monoids, groups, etc. We begin with
isomorphism, epimorphism, and monomorphism.
We recall that a map f:X-» Y of sets is said to be an isomorphism if and only

if there is a map g: Y-»X such that gf = id* and fg = idy. Similarly, a morphism
f:X-»Y of monoids is said to be an isomorphism if and only if there is a
morphism g:Y-»X such that gf = id* and fg = id Y- In both cases, the only notions
used in the definition of an isomorphism are morphisms, composition of mor
phisms, and identity morphisms. Because all of these concepts exist in any
category it is natural to make the following definition.
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Definition
Let <€be a category. A morphism / :X-» Y in <g is said to be an isomorphism if and
only if there is a morphism g : Y-»X in <g such that g/ = idx and /g = idv. The fact
that a morphism f:X-»Y is an isomorphism will often be denoted by writing
f:X«Y.
Just about all the familiar properties of isomorphisms in the categories of sets

and monoids also hold for arbitrary categories, as we point out in the following.

Basic Properties 2.1
Let <€ be a category.

(a) If f:X-» Y is an isomorphism in <€, then there is one and only one morphism
g : Y-»X such that g/= idx and /g = idy. This uniquely determined morphism g
is also an isomorphism which is called the inverse of / and is often denoted by
/"'.

(b) For each object X in <€, the morphism id* is an isomorphism which is equal to
its own inverse.

(c) If / :X-» Y and g : Y-» Z are isomorphisms in % then the composition gf:X-»
Z is an isomorphism with (g/)"' =/"'g"'.

(d) If f:X-» Y and g : Y-»Z are morphisms in <g such that gf is an isomorphism,
then g is an isomorphism if and only if / is an isomorphism.
We omit the proofs of these basic properties since they are the same as the

corresponding properties of isomorphisms in the categories Sets and Monoid.

Again in analogy with Sets and Monoid we have the following.

Definition
If X and Y are objects in a category % then X is said to be isomorphic to Y if
there is an isomorphism f:X-»Y. As we have already seen, because X is
isomorphic to Y if and only if Y is isomorphic to X, we will often use the
symmetric expression X and Y are isomorphic instead of the asymmetric expres
sions X is isomorphic to Y or Y is isomorphic to X.

As an immediate consequence of this definition and the basic properties of
isomorphisms, we have the following.

Basic Properties 2.2
Let X, Y, and Z be objects in a category <€. Then:

(a) X is isomorphic to X.
(b) If X is isomorphic to Y, then Y is isomorphic to X.
(c) If X is isomorphic to Y and Y is isomorphic to Z, then X is isomorphic to Z.

Having seen how the notion of isomorphism can be generalized from the
categories of Sets and Monoid to arbitrary categories, the reader should have no
difficulty seeing how the notions of epimorphism and monomorphism can be

likewise generalized to arbitrary categories. Consequently, we just give the defini
tions and basic properties of these notions for categories in general. It is left to the
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reader to make the appropriate connections with our discussion of these notions
for the categories of Sets and Monoid.

Definitions
Let f:X-»Y be a morphism in a category <€.

(a) f:X-» Y is said to be an epimorphism if given two morphisms g,, g2: Y-»Z in
% we have g, = g2 whenever g,f = g2f.

(b) f:X-» Y is said to be a monomorphism if given any two morphisms hu h2 : U-»
X in <€ we have h, = h2 whenever fh,=fh2.

Basic Properties 2.3
Let f:X-»Y and g: Y-»Z be two morphisms in %.

(a) If / and g are both epimorphisms (monomorphisms), then the composition
gf:X-»Z is an epimorphism (monomorphism).

(b) If gf:X-»Z is an epimorphism, then so is g.
(c) If gf:X-»Z is a monomorphism, then so is /.
(d) If f:X-»Y is an isomorphism, then / is both a monomorphism and an
epimorphism.

In connection with the last of these basic properties, it is worth observing that
a morphism in a category which is both a monomorphism and epimorphism need
not be an isomorphism. For we have already seen that the inclusion from the
monoid N of nonnegative integers under addition to the group Z of integers under
addition is a monomorphism as well as an epimorphism in the category Monoid
but is not an isomorphism in Monoid since it is not a surjective morphism.
Because the category Group is a full subcategory of Monoid, it is reasonable

to ask whether morphisms of Groups can be both monomorphisms and epimor
phisms without being isomorphisms. We have already seen that a morphism of
groups is an isomorphism if and only if it is bijective. Hence, it is natural to
wonder how monomorphisms and injective morphisms of groups as well as
epimorphisms and surjective morphisms of groups are connected. Using tech
niques similar to those used in Chapter 2, Proposition 3.6, it can be shown that a
morphism of groups is a monomorphism if and only if it is injective. In addition,
we leave it to the reader to show that surjective morphisms of groups are also
epimorphisms. This leaves the question of whether epimorphisms of groups are
necessarily surjective morphisms. In fact, it can be shown that this is indeed the
case. However, we will not prove this.
The reader has undoubtedly observed that we have made no attempt to

generalize the notions of surjective and injective morphisms from the categories
Sets and Monoid to arbitrary categories. Once having these notions for Sets it was
not difficult to transfer them to Monoid using the fact that every object in Monoid
has an underlying set. However, there is nothing in the definition of a category
which guarantees that each object has in any sense an underlying set. For this
reason, it is more difficult to define in an arbitrary category what is meant by
surjective and injective morphisms. In fact, no generally accepted way of doing
this exists at the present time.
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3. PRODUCTS AND SUMS

We begin by recalling some of the properties of the product II X of a family of
iEl

sets {X), e ;. Associated with the product II X, are the projection maps
Iel

proju :nX-» Xk, one for each k in /, which we showed to have the following
IE!

property: If Y is any set and fr.Y-» X, one for each i in /, is any family of maps
from y to the sets X, then there is a unique map / : Y -» II X such that fk : Y -» Xk,e;

is the composition Y—-—» II X, """' » Xk for each k in /. Or stated more suc-
iel

cinctly, if for each set Y we define the map of sets 0y:(Y, II X) -» II (Y, X) by
Iel IEI

PAf) - {projk/Jne, for all / in ( Y, II XI), then fiY is an isomorphism of sets for each
iEl

set Y. Also we showed that the product of a family of monoids has similar proper
ties. We now show that these properties of the product of a family of sets or
monoids can be used as the basis for the definition of a product of a family of
objects in an arbitrary category.
Suppose {X}, e , is a family of objects in a category <& Let X be an object in ^

and projk :X -» Xk a family of morphisms in <€, one for each k in /. These data
associate with each object Y in <€ the map of sets pY-(Y,X) -» II (Y, X) given by

IE»

fiv(f) = {projk/Jne; for all / in ( Y, X). In view of our preliminary remarks con
cerning the product of a family of sets or monoids it is tempting to make the
following definition.

Definition
Let {X)«C, be a family of objects in a category <& We say that an object in ^
together with a family {projk:X-» Xk}kc, of morphisms in <g is a product in <gof the
family {X],eI if for each object Y in <€ the map of sets

PY:(YX^U(YXd
IEI

given by 0y(/) = {projk/}ne, for all / in (Y, X) is an isomorphism of sets.
If X together with the family of morphisms {projk :X-»Xk}kc, is a product for

the family {X},ei, then each morphism projk:X-»Xn is called the fcth projection
morphism.

Although our previous discussion shows that if {X},Ei is a family of objects in
Sets, then the set II X, together with the usual projection maps projk : II X-»Xk is a

,EI ,e!

product of {X},e, in Sets, we have not answered the following obvious question
raised by this general definition of products in categories. Namely, if X is a set and
proji:X-»X* is a family of maps of sets such that X together with {proji:X-»
Xk}ke, is also a product for {X},eh then how are the sets II X, and X as well as the

1t;

families of maps {projk:II X-»Xk}ke,and {proji:X-»XJke, related? This question
,ei

is completely answered by the following.



Products and Sums 83

Basic Property 3.1
Let {X},eJ be a family of objects in the category <& If the object X together with
the family of morphisms {projn: X-»X,}ke, as well as the object X' together with
the family of morphisms {proji: X'-»Xk}ke, are both products for the family {X},eh
then there is one and only one morphism f:X-»X' such that the diagram

-»X'

X.

commutes for each k in /. Moreover, this uniquely determined morphism f:X-»
X' is an isomorphism.

PROOF: Because X' together with the family {proji: X'-»Xk}ke, of morphisms
is a product for the family {X,},eJ, we know that given any object Y in <€ and any
family {g,: Y-»X}ieJ of morphisms, there is a unique morphism g: Y-»X' such
that 0y(g) = {#},«=, where 0y is the map of sets 0y:(Y,X')-»n (Y,X) given by

le,

/WO = {proji h}ke, for all h in ( Y, X'). Or, stated in other words, there is a unique
morphism g:Y-»X' which makes the diagrams

Y—*—»X'
pr0if

X
commute for all k in I.
Thus, letting Y = X and gk: Y-»Xk be the morphisms projk:X-»Xk for each k

in /, there is a unique morphism f:X-»X' such that projk = proji /for all k in/, or,
equivalently, such that each of the diagrams

-»X'

X

commutes. This establishes the first part of the basic property. We now show that
this uniquely determined morphism f:X-»X' is an isomorphism.
Because X together with the family {pro}k:X-»Xk}ke, of morphisms is also by

assumption a product for {X),eh we know by what we have just shown that there
exists a unique morphism f:X'-»X such that

X'—*—»X

X

commutes for all k in /. Since / :X-»X' has the property that proji / = projk for all
k in / and /' :X'-»X has the property proji = projk /' for all k in /, it follows that
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the compositions X—'-*X'— '—»X and X'-L-»X—L*X' have the property that
projk(/'/) = projk for all /c in / and projj ff ' = proji for all kin I. But the fact that X
together with {pro}k-X-»Xk}ke, is a product for {X),e, implies that there is pre
cisely one morphism h :X-»X such that projk h = projk for all k in /. Since id* and
/'/both have this property, it follows that ff=idx. A similar argument shows that
ff' = idx. Therefore, we have shown that the morphism f:X-»X' is an
isomorphism.

In essence, this basic property explains in what sense products of families of
objects in a category are unique, assuming they exist. The problem of existence is
not trivial. Although we know that the categories Sets, Monoids, Groups, Abelian
Monoids, and Abelian Groups all have products for arbitrary families of objects

(the usual products together with the usual projection morphisms), there are
nonetheless categories that do not have this property. For example, if <€ is the
category of finite sets and {X},e,is an infinite family of sets with each X, having at
least two elements, then the family {X}rEi has no product in <€, even though it has
one in the larger category Sets.

Next we show how the notion of the sum II X, of a family of sets or abelian
IEi

monoids or groups can be generalized to arbitrary categories.
Recall that if {-Xi},e, is a family of commutative monoids, then associated with

the sum U X, of this family of monoids are the injection morphisms injk :X* -»

II X,, one for each k in /, which have the property that if Y is any commutative
IEi

monoid and {/, : X, -» Y},e, is any family of morphisms, then there is one and only
one morphism / : II X, -» Y with the property that / injk = /* for each k in /. Or

IEI

stated more succinctly, for each commutative monoid Y, the map of sets

aY :(IIX„ Y)-»Tl(X,, Y), given by aY(f) = (/injk)keJ, is an isomorphism. We,el ,e,

now show how this property of sums of commutative monoids can be used as the

basis for defining sums of a family of objects in an arbitrary category.
Suppose {X},e, is a family of objects in a category <& Let X be an object in <€

and injk:Xk-»X a family of morphisms, one for each k in I. These data associate
with each object Y in <g a map of sets aY:(X, Y)-»I1 (X„ Y) given by ay{/) =

IEI

(/injk)*ei for each / in (X, Y). In view of our preliminary remarks concerning the
sum of a family of abelian monoids, it is tempting to make the following definition.

Definition
Let {X},eJ be a family of objects in a category <&We say that an object X together
with a family {injk: X,-»X}ke, of morphisms in <€ is a sum in <g of the family {X)le,
if for each object Y in % the map

aY:(X, Y)^ri(*.. Y)
lEI

given by ay(/) = (/injn)ne, is an isomorphism of sets.
If X together with the family of morphisms {injk : Xk-»X}ke, is a sum of {X],eh

then each morphism in}k:Xk-»X is called the fcth injection morphism.



Exercises 85

As was the case with products, one might ask how two sums for a particular
family of objects in S6 are related. This is answered by the following basic prop
erty which we present without proof since the manner of proof is very similar to
that used in establishing the uniqueness of products of families of objects in a
category.

Basic Property 3.2
Let {Xj,e, be a family of objects in the category <€. If the object X together with
family of morphisms {injk:Xn-»X}ke,and the object X' together with the family of
morphisms {inji:Xk -»X'}ke, are both sums of {X },e;, then there is one and only
one morphism /:X-»X' such that the diagrams

X.

-»X'

commute for each k in I. Moreover, this uniquely determined morphism /: X-»X'
is an isomorphism.

Having explained in what sense sums for families of objects in a category are
unique, it remains to discuss when sums of objects in a category actually exist. As
in the case of products, this depends on the category. From our discussion con
cerning the sum of commutative monoids, it is obvious that the usual sum II X, of

le l

a family {X},e; of commutative monoids together with the usual injection mor
phisms injk : Xk -» II X, is a sum of {X},e; in the category Abelian Monoid. Hence,

ISI

each family of objects in Abelian Monoid has a sum. Similarly, the usual sum II X,
IEi

of a family of abelian groups {X}„=i together with the usual injection morphisms
injk :Xk-» II X is a sum of {X,},e, in the category Abelian Group. The reader

1et

should also check that what we defined as the sum of an indexed family of sets is
the sum of that indexed family in the category Sets.
On the other hand, the full subcategory <€of Abelian Groups consisting of all

finite abelian groups does not have the property that every family of objects in <€
has a sum in % even though it does have one in Abelian Group. For example, if
{XW is an infinite family of nontrivial finite abelian groups, then {X},e, does not
have a sum in <€.

EXERCISES

(1) A map /:X-»X2 between two ordered sets X, and X2 is said to be order
preserving if /(x,)>/(X2) whenever xl^x2. Show:
(a) The identity map on an ordered set is order preserving.

(b) The ordinary composition of two order-preserving maps is order preserving.

(c) Show that the following data define a category <€ called the category of
ordered sets.
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(i
) The objects of <
g

are the ordered sets.

(ii) For each pair of objects X, and X2 in % <€(X-,, X2) is the set of order-
preserving maps from X, to X2.

(iii) For all triples X,, X2, and X3 in Ob(<£) the composition map <€(X,, X2)x
^(X2, X3)-»<€(Xu X3) is given by (/, g)-»gf, the ordinary composition of
maps.

(d) Show that a morphism /: X,-»X2 of ordered sets is an isomorphism of ordered
sets, that is, / is an isomorphism in the category of ordered sets if and only if

(i) / as a map of sets is bijective and (ii) the map of sets /"' :X2-»X, is order
preserving.

(e) Give an example to show that a morphism /: X,-»X2 of ordered sets which is a

bijective map of sets need not be an isomorphism of ordered sets.

(f) Show that every nonempty indexed family of ordered sets has a sum and
product in the category of ordered sets. Suppose each set X in the nonempty
indexed family {X},c, is totally ordered. Is the sum or the product of the family
necessarily totally ordered?

(g) Show that a morphism /:X,-»X2 of ordered sets is a monomorphism
(epimorphism) in the category of ordered sets if and only if / is injective
(surjective) as a map of sets. [Hint: In order to show that if / is an epi
morphism, then it is a surjective map, it is useful to have the following con
struction. Suppose Z is a nonempty ordered set and z0 an element of Z.
Consider the ordered set Z' which as a set is Z U {f }, where t is an element not
in Z with the ordering given by:
(i) If z, and z2 are in Z, then z, a z2 in Z' if and only if z\ a z2 in Z.
(ii) If x is in Z', then x s t if either x = t or x is in Z and x < z0.
(iii) If x is in Z', then x a t if either x = t or x is in Z and X>z0.
After showing that Z' is an ordered set show that the following maps /, g :Z-»
Z' are distinct morphisms of ordered sets:

/(z) = z, for all z in Z

U ifz*z0
U, lfz = z0

(2) Let G be a group. A set S together with an operation of G on S is called a

G-set. If S, and S2 are G-sets, then a G-morphism from S
,

to S2 is a map of sets
f:S,-»S2 satisfying f(gs) = gf(s) for all g in G and s in Sl. Show:
(a) For each G-set S

,

ids is a G-morphism.

(b) If S,, S2, S' are G-sets and /: S,-»S2 and g : S2-»S3 are G-morphisms, then the
ordinary composition of maps g/:S,-»S3 is a G-morphism.

(c) Show that the following data define a category which is called the category of
G-sets, and is denoted by G-Sets.

(i) The objects of G-Sets are the G-sets.

(ii) For each pair of objects S
,

and S2 of G-Sets, G-Sets(S,, S2) is the set of
all G-morphisms from S

,

to S2.

(iii) For each triple S,, S2, and Sl of objects of G-Sets, the composition map
G-Sets(S,, S2)x G-Sets(S2, S,)-»G-Sets(S,, S,) is given by (/, g) i-»g/, the
ordinary composition of maps.
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(d) Show that a morphism /: S.-»S2 of G-sets is an isomorphism of G-sets, that
is, / is an isomorphism in the category G-Sets if and only if f:S,-»S2 is a
bijective map of sets.

(e) Show that every indexed family {X},e, of objects of G-Sets has a sum and
product in the category G-Sets.

(f) A G-set S' is said to be a G-subset of a G-set S if S' is a subset of S and the
inclusion map inc :S'-»S is a G-morphism.
(i) Suppose S' is a subset of the G-set S such that g(s') is in S' for all s' in
S'. Show that S' is a G-set by means of the operation G x S' -»S' given
by (g, s') = g(s') for all g in G and s' in S'. Also, show that the G-set S'
is a G-subset of S. Thus, the G-subsets of a G-set S are nothing more nor
less than the subsets S' of S satisfying g(s') is in S' for each s' in S'.

(ii) Suppose S is a G-set. Show that each orbit of S is a G-subset of S and
that S is isomorphic to the sum of the family of G-sets consisting of the
orbits of S.

(g) Suppose G' is a subgroup of G.
(i) Show that if X = yG' is a left coset of G' in G, then for each g in G, the
set g(X) = {gx},ex is the left coset (gy)G' of G' in G.

(ii) Show that the map G x GIG'-»GIG' given by (g, X)-»g(X) for all g in G
and X in GIG' is an operation of G on the set G/G'. This is the only way
we consider GIG' a G-set.

(iii) Show that a G-set S is isomorphic to a G-set GIG' for some subgroup G'
if and only if S is a nonempty set which has no G-subsets other than 0
and S. Such a G-set S is called a simple G-set.

(iv) Show that a G-set S is simple if and only if S^0 and any G-morphism

f:S'-»S is surjective if S'±0.
(v) Show that if G and G2 are two subgroups of G, then the G-sets GIG, and
GIG2 are isomorphic if and only if there is a g in G such that G, = gG2g"'.

(h) Suppose S is a G-set. Show that there is a family {X,},e, of simple G-sets such
that S is a sum of the family {X,},^,. Also, show that if {Yj},e., is another
family of simple G-sets such that S is a sum of the family {Yi},e;, then there is
an isomorphism of sets 9:1-» J such that the G-sets X, and Ym are isomor
phic for all i in /.

(i) Let S be a G-set. Show that if /: G-»S is a morphism of G-sets, then for each
g in G the map (gf):G-»S defined by (g/)(x) = /(xg) is also a G-morphism.
Further, if we denote the set of G-morphisms from G to S by (G, S), then the
map Gx(G, S)-»(G, S) given by (g,/)-»g/ is an operation of G on (G, S).
This is the only way we consider (G, S) as a G-set.

(j) Let S be a G-set. Show that the map 0:(G, S)-»S given by 0(/) = /(l) for all /
in (G, S) is an isomorphism in the category of G-sets.

(k) Show that if s is an element of the G-set S and f:G-»S is the unique G-
morphism such that /(1) = s, then Im/ is the orbit of s.

0) Show that a G-set is simple if and only if there is a G-morphism f:G-»S
which is surjective as a map of sets,

(m) Show that a G-morphism /:S,-»S2 of G-sets is a monomorphism in the
category of G-sets if and only if /, as a map of sets, is injective.

(n) Show that a G-morphism / : S, -» S2 of G-sets is an epimorphism in the cate
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gory of G-sets, if and only if
,

as a map of sets, it is surjective. [Hint: Show

(a) Im/ is a G-subset of S2 and (b) if X is any G-subset of a G-set S
,

then

the subset S - X consisting of all elements in S but not in X is also a G-
subset of S.]

(3) Suppose X is an ordered set. Show that the following data define a category
which we denote by <€(X) and call the category of the ordered set X.

(a) The objects of <€{X) are the elements of X.

(b) For each pair of objects X, and x2 in %(X), define ^(X)(x,,x2) to be the

ordered pair (x,, x2) if x, a x2 in X and to be empty otherwise.
(c) Show that for each triple of objects x,, x2, x3 there is one and only one map
<g(X)(X,, x2) x <g(X)(x2, x3)-»«(X)(x,, x3) and define that unique map to be the
composition of morphisms in <€(X).

(4) Suppose ^ is a category having the following properties: (a) the collection of
objects of % is a set; (b) if G and C2 are objects of % then the set <g(G, C2) is

empty or consists of a single element; and (c) if <g(G, C2) and ^(C^ G) are both
not empty, then G - G.
Let X be the set of objects of <€. Show that the relation a in X given by

G a C2 if and only if ^(G, C2) is not empty, is an order relation on X. The ordered
set consisting of X together with this order relation, is called the ordered set of <€

and is denoted by X{<€).

(5) Show that if X is an ordered set, then X(<€(X)) = X. The reader should also
convince himself that if <€ is a category satisfying the hypothesis of Exercise 4

,

then, although ^(X(<tf)) is not identical to % it is essentially the same thing as <&

(6) Let M be a monoid. Show that the following data define a category which we
denote by %(M) and call the category of the monoid M.

(a) Ob ^(Af) is the set consisting of the single element M.

(b) The set of morphisms <€(M)(M, M) is the set M.
(c) The composition map <g(Af, Af)x <g(Af, M)-»<g(M, M) is given by (m,, m2)-»
m2- m, = m,m2 where m\m2 is the product in the monoid M of the elements
m2, m, in M.

(7) Suppose <
g

is a category with one object C. Show that the set <g(C, C) together
with the law of composition given by the composition map <g(C, C)x<£(C, C)-»
^(C, C) is a monoid, which we denote by M(<€) and call the monoid of the category
<€.

(8) Show:

(a) If M is a monoid, then M(<€(M)) = M.
(b) If <€ is a category with one object, then although ^(M(<^)) need not be % it is

essentially the same thing as <€.

(9) Suppose <
€

is a category. Show that the following data give a category ^
which is called the opposite category of '(.'..

(a) The objects of <g0p are the same as the objects of ^.

(b) Sf(C,, C2)= «(C2, C,) for all objects C, and C2 in «.
(c) For all triples of objects G, G, and d in <g°p, the composition maps
«-(C„ G)x «"(C„ GHSr(C,, G) are given by (/, g)-g°/ where g°/ in
^""(G, C3) = ^(G, C,) is the composition fg in « of the morphisms G— *-»
G—UC, in «.

(10) Suppose X is an ordered set and ^(X) is the category of the ordered set X.
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Show that there is a unique ordered set Y such that <€(Y) = ^(X)". This uniquely
determined ordered set is called the opposite of X and is often denoted by X"*.
What does it mean about an ordered set X that X = X°"l
(11) Suppose Mis a monoid. Show that there is a unique monoid N such that
<£(N) = ^(M)"". This uniquely determined monoid is called the opposite of M and
is written M°°.

(a) Show that M is a group if and only if M0p is a group.
(b) Show that M = M

0p if and only if M is a commutative monoid.

So far in our discussion of categories, we have not dealt at all with the
problem of comparing two categories. We now describe how two categories are
compared.

Suppose <€, and <g2are two categories. A functor F from <g, to % consists of
the following data:

(a) A map from Ob «, to Ob <& which we denote by F:Ob %-»Ob <&.
(b) Maps F: %(C,, C2)-»<5g2(F(C,), F(C2)) for each pair of objects C, and C2 in %
satisfying

(i) F(idcl) = idFic,l and

(iI) given / : C, -» C2 and g : C2^d morphisms in %, then F(gf) = F(g)F(/).
We will usually denote the fact that F is a functor from <g, to <g2by writing
F: <€,-»%. It is the functors from one category to another that are the gadgets
used to compare categories. We now give some examples of functors.

(12) For a category % show that the following data define a functor F: <g-»<g.
(a) The map F:Ob <g-»Ob <g is the identity map.
(b) For each pair of objects C, and C2 in % the map F: <g(C,, C2)-» ^(Cl, C2) is the
identity map.
This functor F : <€ -» <€ is called the identity functor and is usually denoted

by id ,.

(13) Show that the following data give a functor F from the category of all
monoids, Monoid, to the category of all sets, Sets.

(a) F: Ob Monoid -» Ob Sets is given by F(M) is the underlying set of the monoid
M.

(b) For each pair of monoids M,,M2, the map F:Monoid(M,, M2)-»
Sets(F(M,), F(M2)) is given by F{f):F(M,)-»F(M2) is the map of sets given
by viewing the morphism of monoids f:M\-»M2 simply as a map of sets.
This functor F: Monoid-» Sets is called the forgetful functor.

(14) Show that for the categories, Group, ordered sets, and G-sets, there are
functors from each of them to sets which are analogs of the forgetful functor we
just denned from Monoid to Sets.

(15) Let C bean object in the category <& For each morphism /: X-» Y in % define
the map (C, /) : (C, X)-»(C, Y) by (C, /)(g) = /g for all g in (C, X). Show that the
following data define a functor (C, .):<g-» Sets:

(a) (C, .) :Ob C-»Ob Sets is given by (C, .)(X) = «(C, X) for each object X in «.
(b) For each pair of objects X and Y in % define (C, .) : (X, Y)^((C, X), (C, Y))
by (C, .)(/) = (C, /) for each / in {X, Y). The functor (C, .) : <g-» Sets is called
the functor from <€ to Sets represented by C.
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(16) Let <g and 3) be categories. Show that each functor F:«°„-»3 can be
described in terms of the categories ^ and 3) as follows:

(a) F is a map from Ob <€ to Ob 3) together with
(b) maps F:<€(C,, C2)-»3(F(C2), F(C,)) for each pair of objects C, and C2 in «
satisfying:

(I) F(idc) = idF,cl for all C in « and
(ii) For each triple G, C2, G of objects in <€ and morphisms C— *-»C2 and
g:C2-»C3, we have F(g/) = F(/)F(g).

Definition
Let % and 3 be categories. A contravariant functor h': < *,/ is
(a) a map F:Ob <£-»Ob 3 together with
(b) maps F:(C,,C3)-»(F(C3),F(C,)) for each pair of objects C, and & in <g
satisfying condition (b) above.

(17) Show that the contravariant functors from a category <g to a category 3) are
the same thing as the functors from the category <€°° to the category 3).
We now give some examples of contravariant functors from a category <€ to a

category 3). Of course, in view of Exercise 17 these are nothing more than exam
ples of functors from «0p to 3).

(18) Show that the following data describe a contravariant functor F : <g -» Iff"1'.
(a) F:Ob «-»Ob <€* is the identity map.
(b) F:<e(C„C2)-»<r,'(F(C2),F(C,)) is the identity map.
Show that viewed as a functor from <€°* to <€°v, the contravariant functor F is
nothing more or less than the identity functor on <€°*.

(19) Let C be an object in a category <€. For each morphism /: X-» Y in <€,define
the map (/, C):(Y, C)-»(X, C) by (/, C)(g) = gf. Show that the following data
define a contravariant functor (., C): <€ -»Sets:
(a) (

., C) : Ob <€-»Ob Sets is given by (., C)(X) = <€(X, C) for each object X in <&
(b) For each pair of objects X and Y in <

g

the map (.
, C):«(X, Y)-»

((Y, C)AX, C)) is given by (., C)(/) = (/, C) for all / in <g(X, Y).
For each object C in <g, the contravariant function (, C) : <

€ -»Sets is called the
contravariant functor represented by C.

(20) Suppose G is a group. The commutator subgroup of G, which is usually de
noted by [G, G], is defined to be the subgroup of G generated by all elements of
the form xyX'y"' with x and y elements of G. Show:
(a) [G, G] is a normal subgroup of G having the following properties:

(i) [G, G] = {1} if and only if G is abelian.
(ii) GI[G, G] is an abelian group.
(iii) A normal subgroup H of G has the property GIH is abelian if and only if

HZ)[G,G].
(iv) The canonical epimorphism k:G-»GI[G,G] has the property that for
each abelian group X, the map <fix:(GI[G, G], X)-»(G, X), given by
4ix(g) = gk for all group morphisms g : G/[G, G]-»X, is an isomorphism
of sets.

(v) If /: G-»G' is a morphism of groups, then /([G, G])C[G', G'].
Hence, there is a unique morphism of groups /,h:G/[G, G]-»G7[G', G']
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which makes the diagram

-»G'

GI[G,G]—±-»G'l[G',G']

commute.

(b) Show that the following data define a functor F :Groups-» s&l .
(I) F :Ob Groups-» ObM is given by F(G) = GI[G,G].
(ii) For each pair of groups G, and G2, the map F:(Gu G2)-»(F(G,), F(G2)) is
given by F(/) = /.b for all group morphisms /:G,-»G2.

(21) Suppose F:'i-»2 and G:2-»^ are functors of categories. Show that the
following data define a functor GF :<€-»%.
(a) GF: Ob <g-»Ob % is given by (GF)(C) = G(F(C)) for all C in Ob «.
(b) GF : <g(C,, C2) -» £(GF(C,),GF(C2)) is the composition of the following maps
«(C„ C2)-^» S(F(C,), F(C2))-^. S(GF(C,), GF(C2)).
The functor GF is called the composition of the functor F followed by G.
Show that if F:<g-»2>, G:2>-»£, and H: %-»& are functors of categories,

then (HG)F = H(GF).
(22) A category <€ is said to be a small category if the collection Ob <€of objects of
% is a set.

(a) Show that if <€and S are two small categories, then the collection (% 3)) of all
functors from <€ to ® is a set.

(b) Show that the following data define a category Cat called the category of all
small categories:

(i) Ob Cat is the collection of all small categories.

(II) For each pair of small categories <€, and % in Cat we define CatC^,, %) to
be the set of all functors from %, to %.

(III) The composition maps Cat(<g„ <g2)x Cat(«2, %)-»Cat(<g,, %) are given by
(F, G)-»GF, the composition of the functor F followed by G.

Definition
Suppose F and G are two functors from the category % to the category 2>. A
morphism tI

i from F to G, which we denote by «
/» : F-» G, consists of a family

{<fc}ieob « of morphisms *px: F(X)-» G(X) in S, one for each object X in Ob %
satisfying the condition that for each morphism f:X-»Y in % the diagram

F(X)
**
»G(X)

R/l G(;l

F(Y)—^-»G(y)

commutes.

(23) Suppose <
€

and 3 are categories and F^,!!,!:^-»2 are functors,
(a) If ,/» : F-»G and <t

i
: G-»H are morphisms of functors, show that one obtains a

morphism of functors <t»p:F-»H by denning (<ti4/)x: F(X)-» H(X) to be the
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composition F(X)-^+G(X)-^-»H(X) for each X in Ob<€. The morphism
<W»:F-»H is called the composition of the morphism <

/1 followed by 4
i.

(b) Show that if a:F-»G, /3:G-»H, and y:H-»I are morphisms of functors,
then (y&)a = y(/3a).

(24) Suppose that <
g

is a small category and 3
) is an arbitrary category.

(a) Show that if F
,

G:^-»2> are two functors, then (F, G) the collection of all
morphisms from F to G is a set.

(b) The following data define a category (% 3)) called the category of functors
from <

€

to 2.

(I) Ob(<g, 2>) is the collection of all functors from <
g

to 2.

(ii) Given two functors F
,

G in Ob(<g, 2) define (<g, 2>)(F, G) = (F, G), the set
of all morphisms from F to G

(iii) Given a triple F, G, H in Ob(«, 2>), the composition map (F, G) x
(G, H)-»{F, H) is given by (a, /3)-»0a where /3a is the composition of the
morphisms of functors a followed by /3

.

The category (<g, 2) is called the category of functors from ^ to 3.
(25) Let F

,
G : <€ -» 2> be functors. A morphism a : F-»G is an isomorphism if and

only if there is a morphism 0 : G-»F such that /3a = idF and afi = idfi.
(a) Show that if a : F-» G is an isomorphism of functors, then there is only one
morphism /3 : G-» F such that /3a = idF and afi = idG. This uniquely determined
morphism 0 : G -» F is also an isomorphism of functors called the inverse of a
and often denoted by a"'.

(b) Show that a morphism a : F-» G of functors is an isomorphism if and only if

for each X in <
g

we have that ax :F(X)-»G(X) is an isomorphism in 3).
(c) Suppose F

, G, H : <€ -» 2 are functors from <
g

to 2 and a : F-» G and 0 : G -»H
are morphisms of functors.

(i) If a is an isomorphism, then (a1)"' = a.
(ii) If a and (3 are isomorphisms, then /3a is an isomorphism.

(iii) If (ia is an isomorphism, then /3 is an isomorphism if and only if a is an
isomorphism.

(26) Let C,, C2 be objects in a category <€. Suppose /: C2-»G is a morphism in <&
Then for each X in <

€

we have the map of sets (/, X) : (G, X)-»(C2, X) given by
(/,X)(g) = gfforaIlgin(C„X).
(a) Show that the family {(/, X)}xea,<k is a morphism from the functor (C,, .): t-»
Sets to the functor (C2, .):^^Sets. This morphism is denoted by

(/,.):(C„.)-»(C2,.).
(b) Show that for each C in % the morphism (idc, .):(C, .)-»(C, .) of functors is

idic. ,-

(c) Let /: C,-»C2 be a morphism in *& Then the morphism (/, .):(C2, .)-»(C,, .) of
functors has the property that (/, C2)(idc2) = /. Hence, if /, /':C,-»C2 are
morphisms in % then (/, .) = (/', .) if and only if / = /'.

(d) Show that if f:C,-»C2 and g:C2-»G are morphisms in % then (g/,.) =

(/.Kg,.).
(e) Show that if /: G-»C2 is an isomorphism in % then (/, .):(C2, .)-»(G, .) is an
isomorphism of functors with (/, .)"' -(/"', .).

(f) Show that a morphism f:C,-»C2 in <
£

is an isomorphism if and only if the
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morphism of functors (/, .):(C2, .)-»(C, .) is an isomorphism of functors.
[Hint: If (/, .):(C2, .)-»(C,, .) is an isomorphism, then (/, C,):(C2, C,)-»(C„ C)
is an isomorphism of sets. Hence, there is a g:C2-»G such that (/, G)(g) =

idc,. Show that /:G-»C2 is an isomorphism by showing that g/ = idc, and
/g = idc]

(g) Show that a morphism f:C,-»C2 in <g is an epi morphism if and only if
(/, X):(C2, X)-»(C,,X) is an injective map of sets for each X in Ob <€.

(27) Suppose F:<i£-»Sets is an arbitrary functor and C is an object in <€. Let
((C, .), F) denote the collection of all morphisms from (C, .) to F. We want to show
that the map ((C,.),F)-»F(C) given by a-»ac(idc) is bijective.
(a) Suppose a : (C, .)-»F is a morphism of functors. Show that for each object X
in <

€

and each morphism f:C-»X the diagram

(C,C) c—»F(C)

(C,X)-

*</l

.FIX)

commutes. From this deduce that ax(f) = F(f)atc(idc) for all / in (C, X). This
result implies:

(b) If a, /3 :(C, .)-»F are two morphisms of functors, then a = 0 if and only if

ac(idc) = /3c(idc). Hence, the map ((C, .)
, F)-»F(C) given by a -»crc(idc) is

an injective map.

(c) Suppose x is an element of F(C). For each object X in % define a map
ax:(C,X)-»F(X) by setting ax(/) = F(/)(x) for each / in (C,X). Show that
the collection {ax}xeob, is a morphism a:(C,.)-»F with the property
atc(idc) = x. Hence:

(d) The map ((C, .)
,

F)-»F(C) given by a-»ac(idc) is bijective. The isomorphism
of sets ((C, .)

,

F)-»F(C) given by o-»ac(idc) is called the Yoneda isomorphism
and is generally considered an identification. It is a basic tool in almost all
work involving functors.

(28) Let Cu C2 be objects in a category <€. Show that for each morphism
a:(C2, .)-»(G, .) there is a unique morphism f:C,-»C2 such that a = (/, .).

(29) Let ^ be a category, F, G : i£-»Sets functors, and a : F-»G a morphism of
functors. If C is an object of <€ show that the diagram

((C, .)
,

F) »F(C)

((C .)
,

G)- •G(C)

commutes where ((C, .)
,

a)(/3) = a/3 for all morphisms 0 : (C, .)-»F and where the
horizontal maps are the Yoneda isomorphisms.



94 THREE/CATEGORIES

Suppose f:C-»C is a morphism in <& Show that the diagram

((C, .)
,

F) »F(C)

Fi;l

((C, .), F) »F(C)

commutes where ((/, .)
.

F)/3 = 0(/, .) for all morphisms 0 : (C, .)-»F and where the
horizontal morphisms are the Yoneda isomorphisms.

(30) Let <
€

be a category. A functor F: <£-»Sets is said to be a representable func
tor if there is a C in <

g

such that F is isomorphic to the functor (C, .).

Suppose a functor F :<g-». Sets is representable and we are given two
isomorphisms a:F-»(C,.) and a' :F-»(C, .). Show that there is a unique mor
phism / : C'-»C in <

g

such that (/, .)o = a' and this uniquely determined morphism

f:C'-»C is an isomorphism.
(31) Let <

€

be a category and {Fi },eJ an indexed family of functors from <
g

-» Sets.

(a) Show that the following data define a functor n Fi : <
g

-»Sets:

(i
) (II F,)(X) = II F,(X) for each X in Ob <€.

leJ ie/

(ii) If f:X-»Y is a morphism in % define

(riF)(/):riFw^nF(y) by (riF)(/)=nF(/)\ / ,eJ leJ VieJ / leJ

(b) Suppose fc is in J. For each X in Ob « define the map (pO;r:(nF)(X)-»Fk(.?0

to be the fcth projective map from n F1(X)-» F,£X). Show that the family

{(p*)x}xeok« is a morphism of functors pk : II F, -»Fk.

(c) Show that if G : <
€ -» Sets is an arbitrary functor and {a, : G -» F},ei is an arbi

trary family of morphisms, then there is a unique morphism a : G-» YlFl such
le,

that p*a = ak for each fc in J. We denote this uniquely determined morphism a
by ria,,

(d) Show that given any morphism 0 : G-»nF, 0 = np,0. In view of these re-

suits, it is reasonable to call the functor II F, the product of the indexed family
le,

{Fi}ieJ and the morphisms pk : II Fi -»Fk, the fcth projection morphisms.
,eJ

(32) Let <
g

be a category and {G},e, an indexed family of objects in <€.

(a) Show that a family of morphisms {
/
: Q-» C},e, is a sum for the family {G},«, if

and only if the morphism II(/) : (C, .)-» n(0, .) is an isomorphism of functors.le,

(b) Show that if C is an object of <g, then a morphism a :(C, .)-»n(G, .) is an,ei

isomorphism if and only if the uniquely determined family of morphisms
{/:C-»C,}le, such that pka = {fk, .) is a sum for the indexed family {G}.e,.

(c) The indexed family {GW has a sum in <
g

if and only if the functor
II(G, .):<€-» Sets is representable.
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Definition
We say that an object C in <€ is isomorphic to a sum of the family {Ci},ei if and
only if there is a family of morohisms {/: G-*C},ei which is a sum for the family
{C,},eI.

(d) An object C in ^ is isomorphic to a sum of {G}le; if and only if the functor
(C, .) is isomorphic to the functor ri(G, .).

(33) Let {Gj,e, be an indexed family of objects in a category <€.Show that a family
of morphisms {

/
: C -»G},e, is a product in % if and only if the corresponding fam

ily of morphisms {/ : G-»C}IeJ in 'iff"" is a sum in <£<"'for the indexed family {GW
of objects in <g°p. Restate the results of Exercise 32 for products of indexed
families of objects in a category <

€

using contravariant functors. More generally,
restate for contravariant functors the results obtained for functors in Exercises 15
through 32.

Definitions
Suppose F:<£-»2> is a functor.

(a) F is said to be a faithful functor if F:(C,, C2)-»(F(G), F(G)) is an injective
map for each pair of objects C, and G in <€.

(b) F is said to be a full functor if F:(G, C2)-»(F(G), F(C2)) is surjective for all
pairs of objects G and G in %

(c) F is said to be a fully faithful functor if F is both full and faithful.
(d) F is said to be dense if for each object Dm 3

) there is an object C in <
€

such

that D = F(C).

(34) Let <
g

be the category of ordered sets and F: <g-»Sets the forgetful functor
which assigns to each ordered set X its underlying set. Show that F is faithful and
dense but not full. Show that the forgetful functors from Monoid, Group, G-Sets
to Sets are all faithful and dense but not in general full.

(35) Let <
g

be a small category. Let ^-^"".Sets) be the functor given by
C-»(., C) where (.

,

C) is the functor represented by C in <€". Show that this
functor <€-»(<€°p, Sets) is a fully faithful functor which need not be dense.

(36) Show that the functor Group -»Ab given by G-»GI[G,G] is not full or
faithful but is dense.

Definitions
Let F:<iS-»2> be a functor of categories.

(a) F is said to be an isomorphism of categories if there is a functor G : S -» <€ such
that GF = id « and FG = id9.

(b) F is said to be an equivalence of categories if there is a functor G : 3) -» <€ such
that GF = id« and FG «id».

(37) Let F:^-»3) be a functor of categories. Show:
(a) If F is an isomorphism of categories, then there is one and only one functor
G:3-»^ such that GF = id« and FG = id3. If F is an isomorphism of
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categories, then the uniquely determined functor G : 2 -» <€ such that GF = id«
and GF = ida is also an isomorphism of categories which is called the inverse
of F and is denoted by F'\

(b) Let Cat be the category of all small categories, that is, categories whose col
lection of objects is a set. Show that the following data define a functor
a:Cat-»Cat which is an isomorphism of categories with oT' = a.
(i) a: Ob Cat-» Ob Cat is given by «(<g) = <€" for each category <g in Cat.
(iI) a:(«„<g2)-»(<«!p,«r) is defined as follows: For each functor
F : «, -» %, the functor a(F) : <€?-» <€? is given by the data a(F) :Ob <«?-»
Ob^f is the map F:Ob «,-»Ob <£2 (remember Ob <g= Ob <«°,i) while
a(F):«r(C„C2)-»«?(F(C,),F(C0) is the map F : «,(C2, C) -»
«2(F(C2), F(C,))[remember ^(C, C2)= «(C2, C,)].

(c) Show that the following data define a functor /3 : Monoid-» Monoid which is an
isomorphism of categories with /3"' = /3

.

(i) 0(Af) = M°* for each monoid Af in Ob Monoid.

(ii) If f:M,-»M2 is a morphism of monoids, define p(f):M7-»M? by
P(f)(m) = f(m) for all m in M7". (Remember as sets Af?p = M,.)

(d) Define analog isomorphisms for the categories of Groups and Ordered Sets.

(38) Show that a functor F: %-»3 of categories is an equivalence of categories if

and only if it is a fully faithful dense functor.
(39) Let 2 be the full subcategory of Cat consisting of those small categories with
one object.

(a) Show that the following data define a functor F: Monoid-»®:
(I) F : Ob Monoid-» Ob 9, given by F(Af), is the category <g(M) of M for
each monoid M.

(ii) If /:M,-»M2 is a morphism of monoids, then F(/):<g(Af )-»<g(M2) is the
functor F(/):<g(M,)(M„ M,)-»«(M2)(M2, Af2) given by F(/)(m,) = /(m,)
for all m, in «(M,)(Af,, M,) [remember <€(M)(M, M) = M for all monoids
M].

(b) Show that the following data define a functor G:3)-» Monoid:
(i) G: Ob 2-»Ob Monoid is given by G(<€) = M(<€), where M(<g) is the
monoid of the category <€.

(«) If H:*,-»^ is a morphism in 2>, then define G(H) :*#(<«,)-» *#(«2) by
G(H)(f) = H(f) for all / in M(«,) [remember that Af(«) = «(X, X)
where X is the unique object of Sg for each <

€

in 3].
(c) Show that GF = idM0nm.i while FG = id9. Hence, F and G are equivalences of
categories.

(40) Let % be the full category of Cat whose objects are those small categories <
£

satisfying %(G, C2) is either empty or consists of a single element for all pairs of
objects C, and C2 in « and C, = C2 if both <t{Cu C2) and <g(C2, G) are not empty.
Let 0 be the category of ordered sets. Show that 0 and £ are equivalent
categories.

(41) Let G be a group. Let <€(G) be the category of G and («(G), Sets) the
category of all functors from ^(G) to Sets.

(a) Let F:^(G)-» Sets be a functor. Show that associated with F is the G-set
which we denote by a(F) which consists of:
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(i) The set F(G).
(ii) For each g in G and s in F(G) gs is defined to be F(g)(s) where F(g) is
the image of g in End(F(G)) under the map /:<g(G)(G, G)-»
Sets(F(G), F(G)) [remember that G = «(G)(G, G) as a set].

(b) Suppose F,.F^^O-»Sets are functors and f:F,-»F2 is a morphism of
functors. Show that the map /: F,(G)-»F2(G) is a morphism of G-sets where
F,(G) and F2(G) are considered the G-sets a(F,) and a^F2) described in (a).

(c) Show that the following data define a functor a :(<£(G), Sets)-»G-Sets which
is an equivalence of categories.

(f) a :Ob(Sg(G), Sets)-»Ob(G-sets) is given by a(F) is the G-set described in
(a).

(ii) a :(F,, F2)-»(a(F,), a(Fi)) is given by a(/) = / for all morphisms of func
tors /:F,-»F2.

(42) Prove that if <€ is a category and X is in Ob(%), then (X, X) is a monoid.
(43) Let <g and 2 be categories, let F: <g-»3 be a functor, and let X be an object
of 2. Show that the following set of data defines a category, which we denote by
(F, X). The objects of (F, X) are all pairs (y, /) where y is an object of <€ and / is
in 2(F(y), X), that is, /: F(y)-»X is a morphism from F(y) to X in the category
2. If (y,,/,) and (y2,/2) are objects of (F.X), a morphism g:(y,,/,)-»(y2,/2) is
defined to be a morphism g:y,-»y2 in <€ such that /2F(g)=/,. If
d : (y ,. /,) -»fl (jra. A) and g2:(y2,/2)-»(y3,/3) are morphisms in (F, X), the composi
tion is defined to be the composition g2g, in the category <€.When <€ = 2 and F is
the identity, we denote (F, X) by (<g, X).
(44) Let Sg and 2 be categories, let F : •£ -» 3 be a functor, and let X be an object
of 2. Proceeding as in the foregoing exercise, construct a category (X, F) whose
objects are all pairs (y, /) where y is in Ob(<£) and /: X -» F(Y) is a morphism in
2. When <€ = 2 and F is the identity, we denote (X, F) by (X, <g).
(45) Let <6 be a category. Show that the following set of data defines a category
which we shall call T2(<g). The objects of T2(<g) are the morphisms /:X-» Y of «.
If /, :X, -» Y, and /2 :X2-» Y2 are objects of JV(<«), a morphism g : /, -»/2 in T2(<g) is
defined to be a pair of morphisms (g,, g2) in <g where g, :X,-»X2, g2: Y,-» Y2, and
grf,-f2g,- Composition of morphisms in T2(<tf) are defined in the obvious way
using the composition of morphisms in '(;.

(46) Let ^ be a category. Show that the following data describe a category which
we shall denote by <g[X]. The objects of ^[X] are the endomorphisms of % that
is, morphisms /: Y-» Y for all objects Y in <& If fl : Y-» Y, and /2 : Y2-» Y2 are
objects of <g[X], a morphism g :/,-»/2 in <g[X] is a morphism g : Y,-» Y2 in <€ such
that g/, = /2g. Composition of morphisms in <g[X] is defined in the obvious way.
Identify the category ^[X] with a suitable subcategory of T2(<tf ).
(47) Prove Basic Properties 2.1.

(48) Prove Basic Properties 2.3.

(49) Prove that products and sums do not generally exist in the category of finite
sets.

(50) Prove Basic Property 3.2.

(51) Prove that the sum of an infinite family of nontrivial abelian groups does not
exist in the category of finite abelian groups.
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(52) Show that the following data define a functor F:Sets[X]-»Sets:
(a) If (S, /) is an object of SetstX], that is, S is a set and f:S-»S is an
endomorphism of S, then F((S, /)) = S.

(b) Given a morphism g:(S,, /,)-»(S2, /2), that is, g is a map S,-»S2 satisfying
/2g = gf,. then F(g):F(S,)-»F(S2) is simply the map g:S,-»S2. Show that the
functor F is representable.



Chapter4 RINGS

In Chapter 2 we defined rings. In this chapter, we subject the category of rings
to the same type of analysis that we applied to the categories of sets, monoids, and
groups. In the course of this analysis we introduce polynomial rings over com
mutative rings and show in particular that the ring of polynomials over the ring of
integers plays an analogous role in the category of rings to that played by Z in the
category of groups and by N in the category of monoids.

1. CATEGORY OF RINGS

We now recall the definition of a ring.

Definition
A ring is a set R together with two laws of composition, addition written r, + r2 and
multiplication written rlr2, which satisfy:

(a) R is a commutative group under addition with identity denoted by 0.
(b) R is a monoid under multiplication, not necessarily commutative, with iden
tity element 1.

(c) For all elements ru r2, and r3 in R we have:
(i) r,(r2 + r3)=r,r2+r,r3.

(ii) {r, + r2)r3=r,r3 + r2r3.

99



100 FOUR/RINGS

Finally, a ring R is said to be commutative if R is a commutative monoid
under multiplication.
We assume the reader is familiar with the following easily verified properties.

Basic Properties 1.1
Let R be a ring. Then:

(a) r0 = 0 = 0r for all r in R.
(b) r,(-r2) = -(r,r2) = (-r,)r2 for all elements n and r2 in R.

The reader should note that the definition of a ring does not preclude the
possibility that 0 = 1. A consequence of the above basic properties is that if 0 = 1 in
a ring R, then R consists solely of the element 0. Clearly, there is a ring with only
one element, namely, the zero element. Such a ring is called the trivial or zero ring.
Before giving examples of rings we introduce the notion of a subring of a ring.

Definition
Let R be a ring. A subring R' of R is a ring which under addition is a subgroup of
R and under multiplication is a submonoid of R. In particular, the identity I of R is
contained in R'.

As an immediate consequence of this definition we have the following.

Basic Properties 1.2
Let R be a ring.

(a) If R' and R" are two subrings of R, then R' = R" if and only if their underlying
sets are the same.

(b) A subset X CR is the underlying set of a subring of R if and only if:
(i) X is closed under addition and multiplication, that is, if X, and x2 are in X,
then X, + x2 and x,x2 are in X.

(ii ) 0 and 1 are in X.

(iii) If x is in X, then -x is also in X.
In other words, to completely describe a subring R' of a ring R, it suffices to

describe the underlying set of R'.

Example 1.3 The following are familiar examples of commutative rings:

(a) The set of integers Z under ordinary addition and multiplication.

(b) The set of all rational numbers Q under ordinary addition and multiplication.
(c) The set R of all real numbers under ordinary addition and multiplication.

(d) The set of all complex numbers $ under ordinary addition and multiplication.

Also, it is not difficult to see that Z is a subring of Q which in turn is a subring
of R which finally is a subring of (p

.

Example 1.4 Let R be an arbitrary ring. Then it is not difficult to see that the

2x2 matrices over R (that is, the set of all arrays I

" l2

1 with the ru in R) with\r2, r22i
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the usual addition and multiplication of matrices given by

/>,, rl2\ />'„ r',2\_ /r,, + r',, r,2 + ri2\
\r2, r22) \r2, r22/ \r2, + r2, r-a+r'a)

and

/>,, r,2\/ri, r',2\ /r„ri, + r,2r2, r,,r',2+ rl2r2A
\r2, r22/\r2, r22/ \r2,r',, + r22r2, r2,r'l2 + r-nr'nl

is a ring. This ring is called the ring of two-by-two matrices over R and is usually

denoted by M2(R). The reader should not have great difficulty in showing that as

long as 1^0 in R, M2(R) is not a commutative ring.

Example 1.5 Let R be a ring. The subset T2(R) of M2(R) consisting of all

elements (
r"
r'M with r,2 = 0 is a subring of M2(R) called the ring of 2x2 lower

\r2, r22)

triangular matrices over R. As in Example 1.4, T2(R) is not commutative if 1 ± 0
in R.

Example 1.6 Let A be an abelian group and let End(A) be the set of all group
morphisms / : A -» A. It is not hard to check that if / and g are in End(A ), then the
map f+g:A-»A given by (/+g)(a) = /(a) + g(a) for each a in A is again a
morphism of groups called the sum of / and g. Further, the law of composition of
End(A) given by (/, g)-»/+g makes End(A) into an abelian group since (a) it is
associative, (b) the zero morphism 0: A-»A defined 0(a) = 0 for all a in A is an
identity, and (c) given a morphism / : A -» A, the map (- /) :A -» A given by (- /) x
(a) = -(/(a)) for all a in A is a morphism of groups with the property /+(-/) = 0.

We already know that End(A) is a multiplicative monoid with idA as identity
under the law of composition given by the composition of morphisms.
Finally, it is not difficult to check that End(A) together with the addition and

multiplication described above is a ring which is called the ring of endomorphisms
of the abelian group A.
Having described rings, we must describe how to compare two rings. Because

a ring is completely determined by its underlying set as well as its structure as an
additive group and multiplicative monoid, it is clear that a morphism f:R-»R'
from the ring R to the ring R' should be a map from the underlying set of R to that
of R' which is compatible with both the additive and multiplicative structures of R
and R'. In other words, a morphism /: R -»R' is a map of the underlying sets of R
and R' which is at the same time a morphism of the additive group structures as
well as the multiplicative monoid structures of R and R'. Stated symbolically we
have the following.

Definition
A morphism f:R-»R' from the ring R to the ring R ' is a map / from the underlying
set of R to the underlying set of R' satisfying, for all r, and r in R:

(a) /(r, + r2) = /(r,)+/(r2).
(b) /(r,r2) = /(r,)/(r2).

(0/(1) =1.
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We now list some easily verified properties of morphisms of rings.

Basic Properties 1.7
Let R, R', R", and R" be rings.

(a) The identity map on the underlying set of the ring R is a morphism of rings
which we denote by id*.

(b) If f:R-»R' and g:R'-»R" are morphisms of rings, then the composition
gf:R-»R" of the maps / and g is a morphism of rings which we denote by gf
and call the composition of the morphisms / and g.

(c) If f:R-»R', g:R'-»R", and h:R"-»R" are morphisms of rings, then the
morphisms (hg)f:R -»Rm and h(gf):R-»R" are the same, that is, the com
position of morphisms of rings is associative.

Our discussion shows that we can define a category called the category of
rings by the following data:

(a) The objects of this category are all rings.

(b) For any two rings R and R', the set (R, R') is the set of all ring morphisms
from R to R'.
For each triple of rir
by the map of sets

from R to R'.
(c) For each triple of rings R, R', and R", the composition of morphisms is given
bv the man of sets

(R,R')x(R',R")-»(R,R")

defined by (/, g)-»gf, the composition of ring morphisms.

The category given by these data is denoted by Rings.
Because we have defined isomorphisms, epimorphisms, and monomorphisms

in arbitrary categories, we have these notions for the category Rings. Also, the
fact that the objects of the category Rings have underlying sets makes it fairly
clear what we mean by a morphism of rings being surjective, injective, or
bijective. Either as immediate consequences of results already developed for
morphisms of monoids and groups or as consequences of easy direct calculations
we have the following relations between the various types of morphisms between
rings.

Basic Properties 1.8
Let /:R-»R' be a morphism of rings.

(a) If / is a surjective (injective) morphism, then / is an epimorphism (monomor-
phism).

(b) / is an isomorphism if and only if / is a bijective morphism.
These results naturally raise the question of whether a ring morphism f:R-»

R ' which is a monomorphism (epimorphism) is necessarily an injective morphism
(surjective morphism). We have already seen that monomorphisms in the
categories Monoid or Groups are injective morphisms. Also, although epimor
phisms in the category Group are surjective morphisms, the same is not true in the
category Monoid. The situation for the category Rings is the same as that for the
category Monoid. Namely, all monomorphisms in the category of Rings are injec
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tive morphisms, whereas not all epimorphisms are surjective morphisms. The
next section is devoted to showing that monomorphisms of rings are injective

morphisms. The fact that not all epimorphisms of rings are surjective morphisms
will be shown later on in this chapter. In the meantime we end this section by
pointing out the following easily verified analogs of results already established for
monoids and groups.

Basic Properties 1.9
Let R and S be rings.

(a) If R is a subring of S, then the inclusion map of sets R-»S is an injective
morphism of rings called the inclusion morphism and written inc :R-»S.

Now suppose f:R-»S is an arbitrary morphism of rings. Then:

(b) Im / is a subring of S called the image of /.
(c) The map /0:R-»Im/ is a surjective morphism of rings.
(d) The morphism f:R-»S is the composition of the morphisms of rings

R-^lmf-^*S
Finally, for ease of reference we make the following definition.

Definition
Suppose /: S-» T is a morphism of rings. For each subring R of S, the composition
R-^S—L-»T is called the restriction of / to R and is denoted by f\R.

2. POLYNOMIAL RINGS

We recall that the proof that monomorphisms in the category Monoid are injective

morphisms was based on the fact that the monoid N of nonnegative integers under
addition has the following property: If M is an arbitrary monoid, then the map of
sets(N, M)-»M, given by /-»/(l) for each morphism of monoids /: N -» M, is an
isomorphism of sets. Similarly, the proof that monomorphisms in the category
Groups are injective morphisms was based on the fact that the group Z of all
integers under addition has the property that for each group G, the map of sets
(Z, G)-»G, given by /-»/(l) for each morphism of groups /:Z-»G, is an isomor
phism of sets. Our proof that monomorphisms in the category Rings are injective

morphisms follows this pattern. That is, it is based on the fact that there is a ring S
containing an element x having the following property: For each ring R', the map
of sets (S, R')-»R', given by /-»/(x) for each morphism of rings /: S-»R', is an
isomorphism of sets. After discussing polynomial rings over commutative rings,
we will see that the ring of polynomials over the integers has the property just
described for the ring S.
In order to discuss rings of polynomials, it is convenient to have the following

notational device.

Let (r,),Ei be a family of elements in a commutative monoid R which we write
additively. The subset J of I consisting of all i in / such that r,=f=0 is called the



104 FOUR/RINGS

support of the family (rd,e,- The family (r!)le, of elements of R is said to be almost
zero if its support is a finite set. If (r)le, is an almost zero family of elements in R
with support J, we denote the finite sum 2,ei r, by 2,ei r,. Clearly, if (rl),e, and (ri),i=;
are two almost zero families of elements in R, then (r,+ r',),e, is an almost zero
family of elements in R and 2,eJ (ri+ r'i) = 2,e; ri+ 2,E; r\. Finally, if R is a ring and
(rhe, and (X,),e, are two families of elements with (rl),eI an almost zero family, then
(r,x),e, is also an almost zero family of elements in R.
Suppose R is a commutative ring. We denote by R[N] the set of all almost

zero families (r„)„eN of elements in R. It is left to the reader to check that the
following maps from R |N ] x R |N ] to R| NJ are laws of composition on R\ N] which
make R[N] a commutative ring. The addition law, add:R[N]xR[N]-»R[N], is
defined by add((r„)„eN, (r'J„eM) = (r„+r'„)„eH and the multiplication law,
mult:R[N]xR[N]-»R[N], is defined by mult((r„)„eN, (r0.«N) = (2,".0 r,r'„ -iW The
zero element of the ring R[N] is the element (r„)„eN with r„ = 0 for all n in N. The 1
of the ring R[N] is the element (r„)„eN with r„ = 0 for n=£0 and r0= 1.
We observe that the map h : R-»R[N] given by h(r) is the element (r0„eN with

r0= r and r„ = 0 for n=t=0, is an injective morphism of rings whose image consists
precisely of the elements (r„)„eN in R[N] with the property r„ = 0 if n ^0. Therefore,
identifying the subring of R[N] consisting of all (rO„eH with r» = 0 if n =£0 with R by
means of the injective morphism h:R-»R[N], we have that R is a subring of
R[N]. The reader should check that as a result of this identification of R with a
subring of R[N] we have the following rules of calculation: For r in R and (r„)„eN
in R[N] we have (a) r(rn)„eM = (rr„)„eM; (b) (r„)„e„r = (r„r)„eN; and (c) r + (r„)„eN =
(r^„eN, where K= r + r0 and r!

, = r„ for n >0.
Before we can go further in our analysis of the ring R[N], we need some

notation. For each pair (m, n) in N x N we introduce the symbol Sm.„ which stands
for the 0 of R if m =

£ n and for the 1 of R if m = n. If we let X = (6,. „)„eN, then it is

not difficult to establish:

(a) X' = (5,.0„eN, for all i in N.
(b) rX' = (r5,.„)„eN, for all i in N.

From these observations it follows that for each element (r„)„eN in R[N] we have
(/1l)„EN = 2-nenrnX .

In practice the ring R[N] is generally denoted by R[X], and the representa
tion 1„eHr„X" is used for the elements of R[N] rather than the representation
(r„)„eN. Because of this, we recapitulate what we have already established about
the ring R[X] using the notation 2„eN r„X" for the elements of R[X].

Definition
Let R be a commutative ring. The ring R\X] is called the ring of polynomials over
Jt. The elements 2„eN r„X" in R[X] for each almost zero family (r„)„eN of elements
in R are called the polynomials over R.

Basic Properties 2.1
Let R be a commutative ring and R[X] the ring of polynomials over R.

(a) Two elements 2„eN r„X" and 2„eN r'„X" in R[X] are the same if and only if

r„ = r'
„ for all n in N.
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(b) 2„eN r.X"+2„eN r;X" = 2„eN(r„+r;)X".

(c) (2„e„ r„X")(2„eN r;X") = 2„EN(2,"=0 r^X".
(d) R[X] is a commutative ring.
(e) The elements 2„eN r„X" with r„ = 0 if n^0 constitute a subring of R[X] which
is isomorphic to R by means of the ring morphism r-»2„eN r„X" for all r in R
where r„ = r if n = 0 and r„ = 0 if n > 0. This isomorphism is usually viewed as
an identification which means that we often write simply r for the element
2„eN r„X" where r0= r and r„ = 0 if n>0.

In order to state a fundamental property of polynomial rings which will be
used in showing that ring monomorphisms are injective, we make the following
observation. If S is a ring, the set of all elements x in S such that xs = sx for all s
in S is a commutative subring of S.

Definition
Let S be a ring. The subring of S consisting of all x in S such that xs = sx for all s
in S is called the center of S. We will denote the center of S by C(S).

It is clear that a ring S is commutative if and only if C(S) = S.

Proposition 2.2
Let R be a commutative ring, S an arbitrary ring, and /: R-»S a ring morphism
such that Im/CC(S). Then for each x in S, there is a unique ring morphism
/, : R [X] -» S such that /, \R = / and /, (X) = x. This ring morphism /, : R [X] -» S is
given by /,(2„eMr.X") = 2„e^(r„)j:".

PROOF: Since each element of R [X] can be written uniquely as 2 r„X\ we
obtain a map /,:R[X]-»S by setting /,(2„e„r„X") = 2„e„/(r„)x". Obviously,
/, |R = / and /, (X) = x. That /, : R [X] -» S is a ring morphism follows from the fact
that the element x in S commutes with each element of Im/ since Im/ is in the
center of S. The verification of this, as well as the uniqueness of the ring morph
ism /„

,

is left to the reader.

We now wish to apply this general result to find the ring morphisms from

Z[X] to an arbitrary ring S where Z is the ring of integers. To do this we first must
determine the ring morphisms from Z to S.
Let S be an arbitrary ring. Now viewing Z and S as abelian groups, we know

by the results of Chapter 2 that given any s in S there is one and only one

morphism /:Z-»S of abelian groups such that /(l) = s, namely, the morphism
given by /(z) = zs for all z in Z. Since any morphism of rings /:Z-»S is also a

morphism of the additive groups of Z to S which must have the property /(l) = 1
,

it follows there is at most one morphism of rings from Z to S. That there is a

morphism of rings from Z to S follows from the fact that the morphism of additive
groups /:Z-»S given by /(z) = zl is also a ring morphism. To see this, we
observe that since /:Z-»S already has the properties /(z, + z2) = /(z,) + /(z2> and
/(1)= 1
, we only have to show that /(z,z2) = /(z,)/(z2). But /(z,z2) = (z,z2)l and
/(z,)/(z2) = (z,l)(z2l). Hence, we must show that (z,z2)(l) = (z,l)(z2l) for all z, and

z2 in Z. We have already seen in Chapter 2 that (z,z2)(1) = z,(z2l). Hence, in order

to show that the map /:Z-»S is a morphism of rings we have to show that
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z,(z2l) = (z,l)(z2l) for all z, and z2 in Z. This follows from the fact that for each z2
in Z, the maps g :Z-»S and h :Z-»S given by g(z) = z(z2l) and h(z) = (zl)(z2l)
are the same because they are both easily seen to be group morphisms from the
additive group of Z to that of S satisfying g(l) = z2l = l(z2l) = /t(l). This shows
that the map /:Z-» S given by /(z) = z 1 for all z in Z is the unique morphism of
rings from Z to S. This proves the following.

Proposition 2.3
Given an arbitrary ring S, the map us :Z-» S given by us(z) = z 1 is the unique ring
morphism from Z to S.

We now show that for each ring S, the image of the unique ring morphism

us :Z-»S is a subring of the center of S. Suppose s is an element of S. We want to
show that s(zl) = (zl)s for all z in Z. Consider the map g:Z-»S given by
g(z) = (zl)s for all z in Z. Then g(z, + z2) = ((z, + z2)l)s=(zll)s + (z2l)s =
g(z,) + g(z2). Hence, g :Z-»S is a morphism of abelian groups with g(l) = s. Simi
larly, the map h:Z-»S given by h(z) = s(zl) for all z in Z is also a morphism of
abelian groups with h(\) = s. Since g(l) = /t(l), we conclude that g = h. Hence,
(zl)s = s(zl) for all s in S and z in Z. Therefore, Im usCC(S).
Because for each ring S the image of us :Z -» S is an important subring of S,

we make the following definition.

Definition
Let S be a ring and us:Z-»S the unique morphism of rings. The subring Im us of
C(S) is called the primitive subring of S.

As a consequence of the foregoing results, we now have the following.

Proposition 2.4
For each ring S, the map of sets (Z[X], S)-»S given by f-»f(X) for all ring
morphisms /:Z[X]-»S, is an isomorphism of sets.

PROOF: We first show that the map (Z[X], S)^S is surjective. Suppose t is
an element of S. Let f:Z-»S be the ring morphism us:Z-»S. Since Im/ is
contained in C(S), we know by Proposition 2.2 that there is a unique morphism
f,:Z[X]-»S such that /,|Z = / and /,(X) = t. Hence, the map (Z[X], S)-»S is surjec
tive.

Suppose now /, g :Z[X] -» S are ring morphisms such that f(X) = g(X). Since
there is only one ring morphism us:Z-»S we know that /|Z = g|Z. Hence, again by
Proposition 2.2, the fact that f(X) = g(X) and /|Z = g|Z implies that / = g. There
fore, the map (Z[X],S)-»S is injective as well as surjective and hence is an
isomorphism of sets.

Finally, we use this proposition to establish the following result which sup
plied the motivation for this entire section.

Proposition 2.5
In the category Rings every monomorphism of rings f:S-»T is an injective
morphism.
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PROOF: Suppose /: S-» T is a monomorphism. We want to show that if s, and
s2 are elements of S such that /(s,) = /(s2), then s, = s2. By our previous result we
know that there are morphisms of rings /,, /2:Z[X]-»S such that f\(X) = sl and

f2(X) = s2. Since /(*,) = /(s2), the compositions Z[X] -^-» T and Z[X] -^-» T have
the property ff,(X) = ff2(X) because ff,(X) = f(s,) = f(s2) = MX). This implies
that ff

,

= ff2, because our previous result showed that morphisms from Z[X] to T

are completely determined by their values on X. Because f:S-»T is a

monomorphism, the fact that ff, = ff2 implies that /, = f2
.

This in turn implies s, =

f,(X) = f2(X) = s2. Thus, we have our desired result that if f:S-»T is a

monomorphism, then / is an injective morphism.

3
. ANALYSES OF RING MORPHISMS

In this section we continue our discussion of some of the general properties of
rings that are direct analogs of results already considered for monoids and groups.
For instance, analyses of morphisms of rings, partitions of rings, and various
isomorphism theorems will be discussed. Because most of the proofs for these
results can be obtained by direct application of results already obtained for
monoids and groups, few proofs will actually be given. Those that are given will
be mainly for the purpose of illustrating how the appropriate results for monoids
and groups can be applied to rings. It is hoped that the reader will find it a useful
exercise to supply the missing proofs.
We have already seen that if f:R-»S is a morphism of rings, then

Im / is a subring of S and f:R-»S is the composition of the morphisms

R —*-» Im / -^-» S where /0 : R -» Im / is a surjective morphism and inc : Im / -» S

is an injective morphism. In analogy with the situation for monoids we make the
following definition.

Definition
Let f:R-»S be a morphism. Then the factorization

»Im/-

of / is called the image analysis of /.

More generally, any factorization

of / with g a surjective morphism of rings and h an injective morphism of rings is

called an analysis of /.

On the basis of our experience with monoids and groups one should expect
that any two analyses of a morphism of rings are essentially the same. That this is

indeed the case will follow from the following general considerations.

Proposition 3.1
Suppose R, S
,

and T are rings and f:R-»S and g:S-»T are maps of the under
lying sets of the rings involved such that the map gf : R -» T is a morphism of rings.
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(a) If / :R -» S is a surjective morphism of rings, then g : S -» T is also a morphism
of rings.

(b) If g : S -» T is an injective morphism of rings, then / :R -» S is also a morphism
of rings.

PROOF: (a) This can be proved directly from first principles or else derived
from the analogous result for monoids. We will take the second path. Because the
composition gf:R-»T is a morphism of rings, it is certainly a morphism of the
additive group of R to the additive group of T. Similarly, /: R-»S is a surjective
morphism of the additive group of R to that of S. Hence, by our previous results
concerning monoids, we know that the map g:S-»T is also a morphism of the
additive group of S to the additive group of T. A similar argument also shows that
g : S-» T is a morphism of the multiplicative monoid of S to that of T. Therefore,
the map g:S-»T is a morphism of rings because it is both a morphism of the
additive groups of S and T and a morphism of the multiplicative monoids of S
and T.

(b) This can be established in a manner similar to part (a) and is left as an
exercise.

As for monoids and groups, we have, as a direct consequence of this result,
the following.

Proposition 3.2
Suppose we are given a commutative diagram of morphisms of rings

satisfying:

(a) / is a surjective morphism.
(b) g' is an injective morphism.

Then there is one and only one morphism of rings h:S-»S' such that the diagram

S.

S'
commutes.

By way of application of this result we show in what sense any two analyses
of a morphism of rings are the same.

Proposition 3.3
If
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are analyses of the same morohism of rings f:R-»T, then there is a unique mor-
phism of rings j:S-»S' such that the diagram

commutes. This uniquely determined morphism j:S-»S' is an isomorphism of
rings.

PROOF: Because R-^S—^T and R -^S'—^T are analyses of the same
ring morphism f:R-»T, it follows that

S'

is a commutative diagram satisfying (a) g and g' are surjective morphisms and (b)
h and h' are injective morphisms. Hence, by our previous result there are unique
ring morphisms j:S-»S' and j':S'-»S such that the diagrams

and

S'

commute. If we show that this uniquely determined morphism j:S-»S' is an
isomorphism, we will have established our desired result.
It follows easily from the commutativity of the diagrams

and

S'

.S'
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that the diagram

commutes. But by our previous proposition we know that there is only one
morphism S-»S which makes the diagram

commute because g is a surjective morphism and h is an injective morphism.
Therefore, the fact that the identity morphism ids: S-»S in addition to j'j:S-»S
has this property implies that /'; = ids. A similar argument shows that jj

'

=ids.
Therefore, we have established that j:S-»S' is an isomorphism of rings, which
completes the proof of the proposition.

Having introduced the general notion of an analysis of a morphism of rings,
we now discuss the analog for ring morphisms of the coimage analyses of a

morphism of monoids or groups.
Suppose we are given a morphism of rings f:R-»S. Then viewed as a map of

sets, / has the coimage analysis R ——»Coim /— '-+S. Since f:R-»S is also a

morphism from the additive group of R to the additive group of S
,

we know that

Coim/ has a unique structure as a commutative group such that the maps
fcc„lm;:R-» Coim/ and 7,:Coim/-»S are morphisms of groups.
Because /:R-»S is also a morphism from the multiplicative monoid of R to

that of S
,

Coim / has a unique monoid structure such that the maps fcc<»mi-R-»
Coim/ and ;,:Coim/-»S are also morphisms of monoids. Thus, there are
uniquely determined laws of composition + and x on Coim/ such that Coim/
under + is a commutative group and under x is a monoid such that the maps

kcmm, : R -» Coim / and /i : Coim / -» S are simultaneously morphisms for both the
additive and multiplicative structures on R, Coim/, and S. Hence, if we show that
Coim / with these laws of composition is a ring, then we will have that the maps
fccmn.i : R -» Coim / and /; : Coim f-»S are morphisms of rings with the properties
(a) kcmm,-R-»Coimf is a surjective morphism of rings; (b) j;:Coim/-»S is an
injective morphism of rings; and (c) / = /;/fc™;- The fact that Coim / with + and x

as defined above is actually a ring follows from the following general property.

Basic Properties 3.4
Suppose f:R-»X is a surjective map of sets with R a ring.

(a) If + and x are two maps from XxX-»X such that
/(r, + r2) = /(J-,) + /(r2)
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and

/(r,r2) = /(r,)x/(r2)

for all pairs of elements r, and r2 in R, then X together with + and x is a ring
such that f:R-»X is a surjective morphism of rings,

(b) X has at most one ring structure such that the surjective map of sets f:R-»X
is a morphism of rings.

PROOF: Left as an exercise.

Summarizing, we have the following.

Proposition 3.5
Let /: R -» S be a morphism of rings. Then the set Coim / has a unique structure as
a ring such that the maps fccmm;: R-»Coim/and ;,:Coim/-»S are ring morphisms.
This uniquely determined ring structure on Coim / is given by
(a) [r,] + [r2] = [r, + r2]

(b) [r,][r2] = [r,r2]

for all elements r, and r2 in R where [r] stands for the unique element of Coim /
containing the element r in R. This naturally suggests the following.

Definitions
Let /: R -» S be a morphism of rings. The ring consisting of the set Coim / with the
laws of composition given by

[r,] + [r2] = [r, + r2]

and

[r,][r2] = [r,r2j

for all r, and r2 in R, is called the coimage of / and is denoted by Coim /. Moreover,
the factorization

R 5sa .Coirn / *—»S
of / into the surjective morphism of rings fca,™;:R-»Coim/ and the injective
morphism of rings j,: Coim /-» S is called the coimage analysis of /.

As with monoids and groups, one of the most important consequences of the
existence of the coimage analysis of a morphism is that it enables us to describe all
surjective ring morphisms f:R-»S for a fixed ring R essentially in terms of the
ring R itself. This observation is based on the easily verified fact that a morphism
of rings f:R-»S is a surjective morphism if and only if the injective morphism
;,:Coim/-»S is surjective and hence an isomorphism. Thus, we see that a

surjective morphism of rings /:R-»S is essentially the same as the surjective
morphism fcc<»m/:•R-»Coim /, because there is a unique isomorphism Coim /-»S
(why unique?), namely, the morphism /, : Coim / -» S, such that / = j1kc„,ml. There
fore, if we can determine which partitions of the ring R come from morphisms of
rings f:R-»S, we will have essentially described all surjective morphisms with
domain R.
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4. IDEALS

Suppose / : R -» S is a morphism of rings. Then the coimage analysis
R —^^^^Coim/ —'-+S of this morphism of rings is also the coimage analysis
of f:R-»S viewed just as a morphism from the additive group of R to that of S.
Hence, if we let / be the subgroup / '(0) of the additive group of R, we see that, as
an additive group, Coim / = RII and the map fco.m;: R -»Coim / is the map kR,, :R -»
RII given by the canonical morphisms of the group R to its factor group RII.
Now the fact that /:R-»S is also a morphism of rings shows that if X is in /,

then rx and xr are also in I for all r in R since /(rx) = /(r)/(x) = 0 = /(x)/( r) = f(xr).
Hence, the subgroup / = / '(0) also satisfies the condition r/C/and IrCl for all r
in R. Finally, we point out that the multiplication in Coim f = RII is given by
(r, + /)(r2 + I) = r, r2+ / for all r, and r2 in R. Summarizing, we have the following.

Basic Properties 4.1
Let f:R-»S be a morphism of rings.

(a) / = / '(0) is a subgroup of the additive group of R satisfying the conditions r/C
/ and IrCl for all r in R.

(b) As an additive group, Coim f = RII, while the multiplication in the ring Coim
/ is given by

(r, + /)(r2 + /) = (r,r2+/)

for all r, and r2 in R.

(c) The morphism of rings fc
i „„,:R-» Coim/ is the same as the map kR,,:R-»RII

where kR,, is the canonical morphism from the additive group of R to its factor
group RII.

Moreover, it is not difficult to check the following additional property.

Basic Properties 4.2
Let R be a ring and / a subgroup of R satisfying the conditions r/C/ and IrCl for
all r in R. Then:

(a) The partition RII of the additive group of R is also a partition of the multi
plicative monoid of R, or, what is the same thing, (r, + /)(r2 + /)C r,r2 + 1 for all

r, and r2 in R.

(b) The abelian group RII together with the multiplication given by (r, + /)x
(r2 + /) = r,r2+ 1 is a ring since the canonical surjective morphism of
groups kR„ :R-»R// has the properties
(0 kRn(r, + r2) = fc„*,(r,) + fcR„(r2) and

(ii) fcJ!,;(r,r2) = fc«,;(r,)/cR,;(r2)
for all r, and r2 in JR.

(c) This ring structure on RII is the unique ring structure which makes the
canonical surjective map

fc„„ :R-»RII

given by kR,(r) = r + I for all r in R a morphism of rings.
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(d) Finally, the morphism of rings kRn :R-»RII has the property: kR)ffl) = I-

These results suggest the following.

Definitions
Let R be a ring.

(a) A subgroup / of the additive group of R is said to be an ideal of R if rl C / and
IrCl for all r in R.

(b) If / is an ideal in R, then we denote by RII the ring which, as an additive
group, is the group R/I and whose multiplication is given by

(r, + I)(r2 + I) = (r,r2 + I)

for all r, and r2 in R. The ring RII is called the factor ring of R by the ideal /.
(c) The map kRl,:R-»RII given by kR,,(r) = r + I for all r in R is a surjective
morphism of rings which we call the canonical morphism from R to RlI.

(d) If / :R -» S is a morphism of rings, then the ideal /
"
'(0) of R is called the kernel

of / and is often denoted by Ker/.
The reader should have no difficulty in establishing the following properties

of ideals and factor rings which are exact analogs of what has already been
established for normal subgroups and factor groups of groups.

Proposition 4.3
Suppose f:R-»S is a morphism of rings with I = Keif.
(a) For each subset r + 1 of R in R II, the subset /(r + /) of S consists of the
single element /(r). Thus, we obtain a map j,:RII-»S given by j1(r + I) = f(r)
for all r in R, which is an injective morphism of rings.

(b) The composition

is nothing more than the coimage analysis of the morphism /. Thus:

(c) f:R^S is:
(i) injective if and only if Ker/ = 0;
(ii) surjective if and only if /,:R//-»S is an isomorphism;
(iii) an isomorphism if and only if Ker / = 0 and / is surjective.

(d) If /:R-» S is a surjective morphism and g :R -» T is an arbitrary morphism of
rings, then there exists a morphism h : S-» T of rings which makes the diagram

commute if and only if Ker / C Ker g. Moreover, if Ker / C Ker g, then there
is only one morphism h:S-»T of rings such that hf = g.

(e) If / : R -» S and g :R -» T are two surjective morphisms of rings, then Ker / =
Ker g if and only if there is an isomorphism of rings h:S-»T such that hf= g.
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(f) If J is an ideal of S, then /"'( J) is an ideal of R containing 7. Further, /"'(J) is
the kernel of the composition of morohisms

R-US-^*SU
As is the case with groups, we obtain much more detailed information when

dealing with surjective morphisms instead of arbitrary morphisms of rings. This
point is made explicit in the following.

Proposition 4.4
Suppose f:R-»S is a surjective morphism of rings with kernel /.

(a) If 7i is an ideal of R, then /(/,) is an ideal of S.
(b) If I, is an ideal of R, then /"'(/(/,)) = /, + /.
(c) If I, and /2 are two ideals of R, then /(/,) = /(/2) if and only if the ideals
f \f(I,)) and /"'(/(/2)). both of which contain I, are the same.

(d) Hence, if we denote the set of all ideals of R containing / by % and the set of
all ideals of S by $, then the maps ^l-»$ and £-»Ql given by /, -»/(/,)
and J-»/"'( J), respectively, are isomorphisms of sets which are inverses of
each other.

(e) For each ideal J of S, there is a unique morphism of rings h :R//"'(J)-»
SU which makes the diagram

R— '—»S

RIf\J)—^»SU

commute, and this unique morphism h :Rlf'\J)-»SU is an isomorphism.
Specializing these results to the case when R is a ring, / an ideal in R, and the

morphism of rings is the canonical surjective morphism kRn:R-»RII, we obtain
the following.

Corollary 4.5
Let I be an ideal in the ring R and kR,r.R-»RII the canonical surjective morphism.
Suppose I, is an ideal of R.

(a) /cRi,(/,) is the ideal, (/ + /,)// of RII. Moreover:
(b) The ideal /+ /, of R is the kernel of the composition R-»R//-»R///(/ + /,)//.
Hence:

(c) There is a unique ring morphism h:RII+I,-»RIH(I+I,)II which makes the
diagram

R—"-^RII

**i<;+I,t fcniIKI+l,ti;

«/(/ + /,)—^—RIIl(I+IMI
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commute. This uniquely determined morohism h is an isomorphism which we
consider an identification,

(d) If /,D /, then I+I, = I, and so the above isomorphism h takes the form
h:RfI,-»RIWJI.

5. PRODUCTS OF RINGS

The object of this section is to show that every nonempty indexed family of rings
has a product in the category Rings.
Let {R,},ei be a nonempty family of rings. Because each R, is an abelian group

under addition and a monoid under multiplication, the set II R, has a structure of

an additive abelian group and a multiplicative monoid, namely, that given by the
product of the indexed family {R},e, of abelian groups and the product of the
indexed family {R,},ei of multiplicative monoids (see Chapter 2, Section 10). Ex
plicitly, the addition in II R, is given by {r,},e, +{r!},e, = {

r, + ri},eI and the multi-
IEl

plication in II R
,

is given by {r,},e, {r'},e, = {r,r,'},e, for all {r,},ei and {r'},eJ. The
le,

reader can easily check that the set II R, with this addition and multiplication is a

,el

ring. This suggests the following.

Definition
Let (R,},e, be a nonempty indexed family of rings. The ring whose underlying set is

II R, and whose laws of composition are given by
IEi

{r,}le; +{ri},e, = {
r, + r;},e,

{r,},e,{r?},ei -{r,r'},e,

is called the product of the family {R,},e; of rings. This ring is denoted by II R,.
lel

One defense for this terminology is that II R, is a product for the nonempty
,EJ

family of rings {R,},e; in the category Rings. To see this we must define ring
morphisms projk: II R,-»Rk for each km I and show that the family {projk: II R,-»
Rk} of ring morphisms is a product in the category Rings for the nonempty family
{Rl},e; of rings. Obvious candidates for the ring morphisms projk: II R,-»Rk are the

,el

maps II R-»Rk given by {r^i-»rk for each {r,},ei. It is easily checked that these

maps are surjective ring morphisms. This suggests the following.

Definition
Let {R,},e i be a nonempty family of rings. The ring morphism proj* : II R-» R* given

,ei

by projilir},ed = rk for each k in / is called the Jtth projection morphism.
The fact that the family of ring morphisms {projk: II R,-»Ri}ke, is a product

for the nonempty indexed family {R,},eJof rings is the substance of the following.



116 FOUR/RINGS

Basic Property 5.1
Let {R,},e, be a nonempty indexed family of rings and S an arbitrary ring. Then the

map

/3s: (s
, n^UritS, ft)

defined by Bs(/) = {projk/}kei for each ring morphism f:S-»U R
,
is an isomor-

phism of sets.

Thus, we see that every nonempty indexed family of rings has a product in

the category Rings. This naturally raises the question whether every nonempty in

dexed family of rings has a sum in the category Rings. Although the answer to the

question is always affirmative, we shall only show, in the exercises for this chap
ter, that every nonempty indexed family of commutative rings has a sum in the

category of commutative rings.

EXERCISES

(1) Suppose R is a commutative ring and M is a monoid. Let R[M] be the set of all
maps f:M^R with the property that the set of all m in M such that f(m)±0 is a

finite subset of M.

(a) Show that if / and g are in R[M], then the map f+g:M--»R defined by
(f+g)(m) = f(m) + g(m) for all m inM is in R[M]. Prove that the map R[M]x
R[M]-»R[M] given by (/, g)-»/+g is a law of composition which makes
R[M] an abelian group whose identity is the map 0:M-»R given by 0(m) = 0

for all m in M.

(b) Show that if / and g are in R[M], then the map /g:M-»R defined by
fg(m) = 2„,m,. „/(m,)g(m,) [where 2^i. „/(m,)g(m,) stands for the sum of the
finite number of nonzero terms /(mi)g(m,) obtained by letting (m,, mi) range
over all the distinct ordered pairs of elements of M such that mlm, = m].
Prove that the map R[M]x R[M]-» R[M] given by (/, g)-»/g is a law of
composition which makes R[M] a monoid whose unit is the map \:M-»R
given by 1(1) = 1 and l(m) = 0 if m =

£
1 in M.

(c) Prove that R[M] together with the addition and multiplication just defined is a

ring. This ring is called the monoid ring of M over R.
(d) If we denote by J,meMrmm the map / :M -» R in R[M] such that f(m) = rm for
all m in M, then we see that the ring R[M] can be described as follows:
(i) R [M] consists of all sums 2,meMr„m with the elements rm in R having the
property rm = 0 except for a finite set of m in M.

(ii) 2„eMr„m = 1.„eMr'mrn if and only if rm = r'm for all m in M.

(Hi) 1.meMrmm +2„eMri,wi =2„eM(rm + r'^m.

(iv) C£neMrmm)(Z„eMr'mm) = 1„eM(Zm,mrmrmlrml)m.

(v) The zero element of R[M] is the element J.mSMrmm with rm = 0forall m in

M.

(vi) The identity of R[M] is the element 1m^Mrmm with r, = 1 arrd rm = 0 for
m=£l.
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(e) Show that the map <ti:R-»R[M] given by <£(x) = 2meM rmm with r, = x and

r„ = 0, for all m±\, is an injective morphism of rings whose image consists
precisely of the elements l.„^Mrmm of R[M] satisfying rm = 0 for m ± 1. If we
identify, as we usually shall, the element x in R with the element <j>(x) in
R[M], we see that R can be viewed as a subring of R[M] and <f

i

:R-»R[M] be
comes the inclusion map.

(f) Show that the map <l/:M-»R [M] given by ,/»(y ) = 2meM rmm where rm = 0 if

m^y and rm = 1 if m = y is an injective morphism from the monoid M to the
multiplicative monoid of the ring R[M]. Thus, if we identify, as we usually
shall, the element y in M with i^(y) in R[M], then M can be viewed as a

submonoid of the multiplicative monoid of R[M] and </
»
: M -»R[M] becomes

the inclusion map.
(g) Show that the ring R[Af] is commutative if and only if M is commutative.
(h) Show that the subring R of R[M] is contained in the center of R[M].
(i) Show that if N is the monoid of nonnegative integers under multiplication,
then R[N] is the ring of polynomials R[X] over R.

(2) Suppose R is a commutative ring. An R-algebra A is a morphism of rings

/ : R -» A such that the image of / is contained in the center of A. If f\ : R -» A, and
f2:R-» A2 are two R-algebras, then an R-algebra morphism from f, to /2 is a ring
morphism g:A,-»A2 such that g/,=/2.
(a) Show that if /:R-»A is an R-algebra, then idA:A-»A is an R-algebra
morphism.

(b) Show that if /, : R -» A,, f2 : R -» A2, and /3 : R -» A3 are R-algebras and g, : A,-» A2
and g2 : A2-» A3 are R-algebra morphisms, then the usual composition g2g, : A, -»

A3 of ring morphisms is an R-algebra morphism.

(c) Show that the following data define a category which we denote by R-Alg and
call the category of R-algebras.

(i) The objects of R-Alg are the R-algebras.
(ii) If /, : R -» A, and f2 : R -» A2 are two R-algebras, then R-Alg(/,, /2) is the set
of R-algebra morphisms from /, to /2

.

(iii) If /:R-»Ai, i = 1
, 2
,

3 are R-algebras, then the composition map
R-Alg(/,, f2) x R-Alg(/2, /3)^R-Alg(/„ /,) is defined by (g,, g2)»g2g,, the
ordinary composition of ring morphisms.

(3) Show that the category of Rings is isomorphic to the category of Z-algebras
where Z is the ring of integers.

(4) Suppose R is a commutative ring, M a monoid, and / : R -» A an R-algebra. We
want to determine the R-algebra morphisms from the R-algebra inc :R-»R[M] to
the R-algebra /:R-» A.
Associated with each R-algebra morphism g:R[M]-»A is the morphism of

monoids g\M :M-»A where A is considered a multiplicative monoid. Hence, we
have a map R-Alg(R[M], A)-»Monoid(M, A) given by g-»g|Af for each R-algebra
morphism g :R[M]-»A. We now outline a proof that this map R-Alg(R[M], A)-»
Monoid( Jvf, A) is an isomorphism of sets.

(a) Show that if g,, g2 : R[Af]^ A are two R-algebra morphisms, then g, = g2 if and
only if g,\M = g2\M.

(b) Suppose that we are given a morphism of monoids h :M-» A (remember that A

is being considered a multiplicative monoid). Show that the map g :R[M]-»A
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given by g(2meMrmm) = 2meM/(rm)/i(m) is an R-algebra morphism such that

g\M=h.
In the next set of exercises we use the notion of a monoid ring to discuss

polynomial rings in several variables, not just one variable.
Let N be the additive monoid of nonnegative integers. We have already seen

that if R is a commutative ring, then the R-algebra R[N] is isomorphic to the
R-algebra R[X], the ring of polynomials over R. The isomorphism R[N]-»R[X] is
given by 2„eN r„ -»2„eN r„X". We now discuss polynomial rings in two variables.

(5) Let N, and N2 denote two copies of the additive monoid of nonnegative inte
gers N. Suppose R is a commutative ring. Then R[N] is a commutative ring so we
can form the ring R[N,][N2], which is called the ring of polynomials over R in two
variables.

(a) Show that the subset M of K|N ]|N | consisting of all products n,n2 with n, in
N, and n2 in N2 is a submonoid of the multiplicative monoid of R[N,][N2].

(b) By the previous exercise, we know that there is a unique R-algebra morphism
h :R[Af]-»R[N,][hl2] such that h|M:Af-»R[N,][N2] is the inclusion morphism
of monoids. Prove that h :R[M]-»R[N,][N2] is an isomorphism of R-algebras.

(c) Let N, x N2 be the sum of the monoids N, and N2. Show that the map N, x N2-»
M given by (n,,n2)-»n,n2 is an isomorphism of monoids.

(d) Show that there is a unique morphism of R-algebras /:R[N,xN2]-»R[M]
such that /((»,, n:)) = n,n, in M for all (n,, n2) in N, x N2 and that / is an
isomorphism of R-algebras. This isomorphism is usually considered an iden
tification of R-algebras.

(e) The composition R[N, x N2]— '-»R[M ]—^RtN.HN2] is an isomorphism of R-
algebras which is also usually considered an identification of R-algebras.
In dealing with the polynomial ring in two variables R|N,)[N-| over R, the

elements n of N, are often denoted by X" and the elements n of N2 are often
denoted by XI Obviously, X"X" = XT"' while X"X2 = XT"'. Also one usually de
notes the R-algebra R[N,][N2] by R[X,][X2]. Clearly, in this notation the sub-
monoid Af of R[X,][X2] consists of all possible products Xf'X? and is called the
submonoid of monomials of R. Finally, the R-algebra R|N,xN;] is denoted by
R[X,,A:2]. Using the identification of R[N,xN2] with R[Af] the elements of
R[X,,X2] are usually written as 2<n,,,2,eNxN/-1.1»2X"'X?. The identification
R[X„X2]-»R[X,][X2] then takes the form

2 r„,.^X;'X2"'^2 (2 rn,.niXT')x;

We have already seen that the polynomial ring R[X] has the property that
given any commutative R-algebra h : R -» A (that is, an R-algebra / :R -» A with A a
commutative ring), the map R-Alg(R[X], A)-»A given by gh»g(X) is an isomor
phism of sets. In fact, given any A in A, the unique R-algebra morphism g : R[X]-»
A such that g(X) = A is given by g :E„eNrnXn -»E„eNr„A\ If we follow the usual
convention of denoting an element 2 r„X" of R[X] by /(X), then 2 r„A" is denoted
by /(A). Hence, in this notation the unique R-algebra morphism g :R[X]-» A such
that g(X) = A is given by /(X)^/(A) for all /(X) in R[X].
We now want to describe the R-algebra morphisms from R[X, X2] to an

arbitrary commutative R-algebra h:R-»A.
(6) Let h:R-»A be a commutative R-algebra. Show that the map of sets
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R-Alg(R[X,, X2], A)-» Ax A given by g-»(g(X,), g(X2)) is an isomorphism of sets
by showing:

(a) If f ,, g2 :R[X,, X2]-»A are two R-algebra morphisms, then g, = g2 if and only if
S.(X) = g2(X) and g,(X2) = g2(X2).

(b) If (A,, A2) is in A x A, then we know that the map g :R[X,, X2]-» A given by
g(2<„,,,2leNxNr„l„2XJlX;0 = 2,„,»,leNxNr„l»2A?lA;2 is a morphism of R -algebras
with the property that g(X,) = A, and g(X2) = A2.
As in the case of one variable, if we denote an element 2^.^eNxN r„,.mX"'X?

by f(X,X2) and 2,., .„^mxm r.ljqAr'A? by /(A,, A2) for each (A„A2) in Ax A, then
given any pair of elements A,, A2 in A, the unique R -algebra morphism
g:R[X,,X2]-»A such that g(X,) = A, and g(X2) = A2 is given by

/(X„XJ)K/(A„A2) for all /(X„X2) in R[X,,X2].
We now want to define a polynomial ring over a commutative ring R in any

number of variables.
Let / be a nonempty set and let N( be a copy of the additive monoid of

nonnegative integers for each i in /. We recall the definition of the standard sum
II N, of the indexed family )N,}„ i in the category of commutative monoids. As a
,e;

set, U Ni is the subset of n N, consisting of all {n,},ei with the property that the set

of all i in I such that n, ^ 0 is a finite subset of /. Addition in II N, is given by,el

{n,},eJ + {n ,},e, = {n. + n ,},e,. Also for each k E I, we have the morphism of monoids
injk : N. -» II N, given by injk(n) = {n<},e, satisfying n,-.= 0 if i f k and n, = n. Finally,

fel

we recall that the family {inj« : Nk -» II N,},e; of morphisms is a sum in the category
,el

of commutative monoids. That is, given any commutative monoid M,
the map (II N„ Af)-»II (N,, M) given by g h» {g injk}keJ is an isomorphism of sets.

let le,

We have also seen that the additive monoid N has the property that the map
(N, M)-»M given by g-»g(l) is an isomorphism of sets. Hence, if for each i in /
we denote by M, a copy of Af, we have that the map (II N„ M)-»Tl Ml given by
g-»{ginjk(l)}kei is an isomorphism of sets.

(7) Let / be a nonempty set and {X,},e, an indexed family of distinct symbols X,.
Let M be the set of all symbols II X"' with the n, £ N having the property that the

set of all i in / with n, ^ 0 is a finite subset of /.
(a) Show that M together with the multiplication given by II X"' . II X"' =le, ,el

II X"1'"' is a commutative monoid. This monoid M is called monoid of monomi-
,e;

als of the family of symbols {A',},- ,.

(b) Show that the map II N, -» JVf given by {n,},e, -» II X"i is an isomorphism of
monoids.

(c) For each k in I denote by xl the element IT X"< in M with the property that
le,

n, = 0 if iV fc and n, = n if i = fc
.

Show that for each commutative monoid A,
the map (Af, A)-»IIAh where each A, = A, given by g-»(g(X,)),el is an

lel

isomorphism of sets. Let {ajle, be an element of II Ai and g :M-» A the
IEI

unique morphism such that g(X)= a,. Then g(U X"1) is usually written as
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Definition
Let {X,}le, be a nonempty family of distinct symbols and R a commutative ring.
The ring of polynomials in the variables {X,},e, over R is the commutative R
algebra R[M] where M is the monoid of monomials of the indexed set {X},e;. This
ring is usually denoted by R[X],i=,. The elements of R[X]ie, are often denoted by
/(X).

(8) Suppose / : R -» A is an arbitrary commutative R -algebra. Show that the map
R-Mg(R[X,],eh A)-»I1 A„ where each A, = A, given by g-»[g(X,)),e, is an

IEI

isomorphism of sets by showing:

(a) If g,, g2 :R[Xi],e,-» A are two R -algebra morphisms, then g, = g2 if and only if
g,(X) = g2(X)foraII i in /.

(b) If {A,},ei is an element of II A,, then the map R[X,]M-»Tl A, given by
Id leJ

in,leUN, 'e' N. 'e'

is a morphism of R -algebras with the property that X-»A, for all i£/.

Definitions
Let S be a subset of a ring A. The subring of A generated by S is the intersection of
all the subrings of A containing S. If the subring of A generated by S is all of A,
then S is said to generate A.
Suppose h : R -» A is an R-algebra. If S is a subset of A, then the R -subalgebra

of A generated by S is the R -algebra given by h' :R-»A' where A' is the subring of
A generated by S and Im h, and h':R -»A' is given by h'(r) = h(r) for all r in R.
The subset S is said to generate the R-algebra A if A' = A.

(9) Let h:R-» A be a commutative R-algebra. Let {A,},e, be a family of elements of
A and R[X],e, the polynomial ring in the variables X,. Prove that the morphism of
R-algebras g :R[XiU,-» A given by g(f(X)) = /(A,) for all f{X) in R[Xi,e, has the
property that Im g is the R-subalgebra of A generated by the family {A,},e, of
elements of A. This subalgebra generated by {\),e, is sometimes also denoted by
R[A,]ie,.

(10) Show that if h :R-»A is a commutative R -algebra, then there is a family of
variables {XJ,e; such that there is a surjective morphism of R -algebras R[X,],e,-»
A.

(11) Let {X},eJ be a family of variables over the commutative ring R. Let {J,, J2} be
a partition of /.

(a) Let Mk be the monoid of monomials in {X},eJ, for k = 1, 2 and M the monoid of
monomials for {X,},eI. Define for each k = 1, 2 the map Mk-»M by
II X"' -» IIX,"' where nl = ni for all i in Jk and n, = 0 if i is not in Jk. Show that the
,gi, le,

map Mk-» M is an injective morphism of monoids for k = 1, 2. Usually one
identifies Af* with its image in M by means of the injective morphism Mk-»M
just described.

(b) Let g : R[X$lel,-»R[X,]^, be the unique morphism of R-algebras which has the
property that g\M,:M,-»R[M] is the composition M,-»A#-=-»R[M J. Show
that g is an injective morphism of R -algebras. Usually one identifies R[A)]ieJ,
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with its image in R[X],e; by means of the injective morphism g just de
scribed,

(c) Since R[X]ii=,, is a subring of the commutative ring R[Xi],eh we can view
R[X,],e, as an R[X,]iei,-algebra. Show that the unique R[X],ei, morphism
R[-X)l,ei,([-X'Jke*)-»R[A'Jle, which extends the composition M2-» M '-» R[X,],e,
is an isomorphism of R[X]iei,-algebras and hence of R-algebras. This
isomorphism is usually considered an identification.

(12) Let <g be the full subcategory of R-Alg consisting of the commutative R-
algebras. Let {Ai},e, and {YHleJ be disjoint indexed families of variables over R. Let
K = IUJ, the sum of the sets / and J, and let {Zk}keK be the family of variables
given by Zk = Xk if k £ / and Zk = Yk if k is in J.
(a) Show that the natural injective morphisms g : R[XA,e,-» R[Zk]keK and
h :R[Y3,«-»R[ZtU« given by g(X) = X, in R[Zk]kEK and /i(Y,) = Y, for j in J
are a sum in the category <g for the pair of R-algebras R[X],e; and RIY,]^.

(b) Suppose A is an ideal in R[X,] and B is an ideal in R\ V',]. Let A' and B' be the
images respectively of A and B in R[ZJ*eK. Show that the subset C of R[ZJ,
consisting of all finite sums of elements of the form HX^a' + g(Xk)b' with a' in
A', b' in B', and f(Zk), g(Zk) arbitrary elements of R[Zk]keK is an ideal in
R[ZJkeK.

(c) Show that the morphisms of R-algebras R[Xile,-» R[Zk]keK and R[Y,],eJ-»
R[Zk]keK induce morphisms of R-algebras R[X,],e,IA^R[Zk]keKIC and

R[Y)]iei/B-»R[Zn]keK/C and that these morphisms are a sum of the R-
algebras R[X],enlA and R[Y,],e,IB in the category <&

(d) Show that any two R-algebras in <€ have a sum in <g.

(e) Show that every finite family of R-algebras in 9? has a sum in <€.

(f) Show that every family of R-algebras in <€ has a sum in <g.

(13) Let <
ig

be the category of commutative monoids. Show that the following data
define a functor G: Sets-»^.

(a) G :Ob Sets -» Ob <
g

is given by G(X) = II N, where each N, = N, the addi-
XEX

tive monoid of nonnegative integers.

(b) Given a map f:X-» Y of sets, G(/): II N,-» II N, is the unique morphism of
xex yey

monoids such that for each u in X the composition G(/) inj„: N„-» II Ny is the
>ev

morphism g„:N-» II Ny given by g„(n) = {my}yey where my = 0 if y=£/(") and
yEV

m,= n if y=f(u).
Let F : <g -» Sets be the forgetful functor. Then for each commutative monoid

M and each set X define the map of sets ,/»M.x : <€(G{X), Af)-»Sets (X, F{M)) by
*frM.x(a)(x) = a({ny}yex) where nv = 0 if y±x and n,=l. Show that:
(c) Each of the maps ,pM.x is an isomorphism of sets.

(d) If f:X-»Y is a map of sets, then the diagram
<€(G(Y), M)^USets( Y

,

F(M))

<g(G(X), M) —^-»Sets(X, F(M))
commutes.
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(e) If g:L--»M is a morphism of monoids, then the diagram

<e(G(X), L)-^^Sets(X, F(L))

i0iXl.fl ,xr,fi

<€(G(X),M)- -»Sets(X, F(M))
commutes.

Exercise 13 is an example of a very general and important concept.

Definition
Let F : <g -» 3 be a functor of categories. A functor G : 3 -» <€ is said to be a left
adjoint of F if there is for each pair of objects C in <€ and D in 2> a map of sets
fcr:«(G(D),C)-»2>(D,F(C)) satisfying:

(a) Each ,/»c.D is an isomorphism of sets.

(b) If f:D-»D' is a morphism in Si, then for each C in <€ the diagram

<g(G(D'),C)-

i0i;l.0

«(G(D),C)-

-»3(D',F(C))

i;.Fic»

-»2>(D,F(C))
commutes,

(c) If g :C-»C is a morphism in % then for each D in 2, the diagram

«(G(D),C)-

i0<Dl.fl

<?(G(D),C')-

-»2'(D,F(C))

en,pum

-»2>(D, F(C))
commutes.

Given a pair of functors F : <g -» Si and G : 2 -» <€ we say that G is a right
adjoint of F if F is a left adjoint of G.
(14) Suppose F:^-»Si is a functor of categories.
(a) Show that if G, G':2 -»« are both right (left) adjoint of F, then G and G' are
isomorphic functors.

(b) Suppose G : 3) -» <€ is a left adjoint of F. Show:

(I) If f:C-»C is a monomorphism in «, then F(/):F(C)-»F(C) is a
monomorphism 3. [Hinf: Use the fact that the isomorphisms
,fec : <€(G(D), C)-» 2>(D, F(C)) have the property that for all D in 3), the
diagrams

<€(G(D, C) »2>(D, F(C))

«(G(D), C) »2>(D, F(C'))
commute.
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(iI) In a similar way show that if {/ : C -» Ci},ei is a product for the indexed
family {C,},e, of objects in % then {F(/) : F(C)-» F(G)},e, is a product in
2> for the family {F(G)},e, of objects in 2>.

(iii) Show that if g:D-»D' is an epimorphism in 2>, then G(g):G(D)--»
G(D') is an epimorphism in <&

(iv) Show that if {g
,
: D, -» D},e, is a sum for the family {D,},ei of objects in D,

then {G(g,):G(D,)-»G(D)} is a sum for the family {G(D,)},e, in <g.

(15) Let R be a commutative ring and <
g

the category of commutative R -algebras.
Show that the following data define a functor G :Sets-»^.

(a) G :Ob Sets -» Ob « is given by G(/) = R[A^],eI.
(b) If f:I^J is a map of sets, then G(f):R[X:le, -»R[X,],e, is the unique R-
algebra morphism having the property G(/)(X) = Xi,,l for all i in /.

Show that the forgetful functor F:<€-» Sets is a right adjoint of G.

(16) Let A be an arbitrary ring and n a nonzero positive integer.

(a) Show that the following data define a ring which we denote by M. (A) and call
the ring of n x n matrices over A.

(f) As a set M„(A) consists of all square arrays (A»Xule[,.„,xM..», that is

(A
n
,

. . . , A,

Aajli . . . 9 \-u

(ii) Addition in M„(A) is given by (A„) + (A J ) = (A, + A J ).
(iii) Multiplication in M„(A) is given by

(A,)-(Aik)=(2A„A1k)
M-l / il,kie[l.„lx[l.„l

(b) Show that if /:A-»A' is a morphism of rings, then the map M„(/):M„(A)-»
M„(A') defined by M„(/)(A,7) = (/(A,7)) is a morphism of rings having the follow
ing properties:

(i) / is injective if and only if M„(/) is injective.
(ii) / is surjective if the only if M„(/) is surjective.
(iii) / is an isomorphism of rings if and only if M„(/) is an isomorphism of
rings,

(iv) Show that if Ker /= I, then Ker (Af„(/)) consists of precisely all (A,7) with

A
„ in / for all (i,j) in [1, n]x[l, n].

(c) Show that the map A-» Af„(A) given by A -»(x,j) where x«= A for all i = 1
,

. . . ,rt

and xu = 0 if i=f=j is an injective morphism of rings.
(17) Suppose IC Af2(A) is an ideal of Af2(A). Show that:

(-)if(A;: $***— «*o*ttat«ii.(*;' j), g vMa!, 2>and

(0 0 \ „ . , /AA„ 0
\ /A„A 0\ /0 AA,.A

lo A J aS We" aS the terms ( 0 0
> ( 0 0
J-

(o 0 )'

6 VMaL 2)'(a!a SMS uj(2 A!!A)arein/forallAinA.
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(b) Show that the set of all A in A with the property that there is a (A0) in I such
that A = Ay for some i, j in [I, 2] x [l, 2] is an ideal in A which we denote
by /'.

(c) Show that / is the set of all (A,i) in M2(A) such that each A„ is in /'.
(d) Show that the map of sets Ideals(M2(A))-»Ideals(A) given by /-»/' is a
bijective map.

(e) Show that if g :M2(A) -» V is a surjective ring morphism with Ker g = I, then T
is isomorphic to the ring M2(A//').

(f) Show that the center of M2(A) is the subset of M2(A) consisting of all elements

(J °)wiwith A in the center of A.
(g) A ring A is said to be a simple ring if it is not the zero ring and (0) and A are the
only ideals of A. Show that M2(A) is a simple ring if and only if A is a simple
ring.

(18) Generalize the results of Exercise 17 to arbitrary Af„(A).
(19) Show that if A is a nonzero commutative ring, then A and M„(A) are isomor
phic rings if and only if n = 1. Does the same thing hold if A is not commutative?
(20) Suppose R is a nonzero commutative ring.
(a) Show that the following conditions are equivalent:

(i) R is a simple ring.

(ii) If v is in R and x=f=0, then there is a y in W such that xy = 1.
A nonzero commutative ring satisfying either of these conditions is called a

field.

(b) Let Z be the ring of integers.

(i) Show that ideals of Z are precisely the subgroups of Z.

(ii) Show that Z/nZ is a field if and only if n is a prime integer.
(c) Show that a commutative ring R is a field if and only if 1Vf„(R) is a simple ring
for all n.

(21) Let A be a ring. Denote by T„(A) the subset of M„(A) consisting of all (A,7) in

Af„(A) with A
,, = 0 if i<j.

(a) Show that T„(A) is a subring of M„(A).
(b) Show that the subset I of T„(A) consisting of all (A,,) such that A,, =0 for all i

is a proper ideal of T„(A).
(c) Describe the ring T„(A)//.
(d) Show that T„(A) is not simple even if A is simple provided n > 1 .
(22) Show that a ring A which has the property A

2 = A for all A in A is a

commutative ring.

(23) Let G be a finite group and R a commutative ring. Show that the center of

R[G] is not R. [Hint: Consider the element 2,ecg in R[G].]
(24) Prove Basic Properties 1.1.

(25) Prove that M2(R) is not a commutative ring if R is not the zero ring.

(26) Write out a detailed proof of Proposition 2.2.

(27) Write out a detailed proof of Basic Properties 3.4.

(28) Write out a detailed proof of Proposition 4.3.

(29) Write out a detailed proof of Proposition 4.4.
Let <€ be a category. Suppose that for every pair of objects X and Y of ^, the

set of morphisms <g(X, Y) is an abelian group. If f:X-»Y and g:X-»Y are in
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^(X, Y), denote by f+g:X^Y their sum in <g(X, Y). Suppose, in addition, that
for every triple of objects X, Y, Z of <€, and every pair of morphisms / :X -» Y
and g:X-» Y, we have (f + g)h =fh+gh for all h in «(Z,X) and /i'(/ + g) =
fc '/ + h 'g for all h ' in ^ff( Y, Z). In this case, <g is called a preadditive category.
(30) Prove that if <g is a preadditive category and 0 :X-» Y is the zero element of
the group <g(X, Y), then 0/ = 0 and g0 = 0 for all / in <g(Z, X) and all g in <g( Y, Z).
(31) It was remarked at the end of Chapter 3 that if X and Y were abelian groups
and if / : X-» Y and g :X-» Y were group morphisms, then /+ g : X-» Y defined by
setting (/+ g)(X) = f(x) + g(x) is again a group morphism from X to Y. Prove that
the category of abelian groups, which we denote by sit , is a preadditive category,
where the group operation in slS (X, Y) is that described above.
(32) Let R be a ring. Show that the following data define a preadditive category
which we denote by <g(R) and call the category of the ring R.

(i) Ob <g(R) is the set consisting of the single element R.

(«) The set of morphisms % (R )(R, R ) is the set R.

(Hi) The composition map (R, R ) x (R, R ) -» (R, R ) is given by (r,, r2) -» r2° r, =
r,r2 where r,r2 is the product in R of the elements r, and r2 in R.

(iv) The addition map (R,R)x(R,R)-»(R,R) is given by (r,,r2)H»n + r2
where r, + r2 is the sum in R of the elements r, and r2 in R.

(33) Let <g and 3 be preadditive categories. A functor F:<€-»3) is said to be
additive if for every pair of objects X and Y of % F(/ + g) = F(/) + F(g) for
every pair of morphisms / :X -» Y and g :X -» Y.
(a) Show that if F:<g-»3 and G:1-»9aie additive functors and <ti:F-»G and

,/
» : F-» G are two morphisms from F to G, then <£ + ^ : F-» G is a morphism of

functors where (4i + ,/0(X):F(X)-»G(X) is defined to be <£(X)+,MX) for
every object X of ^

(b) Let <
g

be a small preadditive category and 0
) any preadditive category. We

denote (%, 3)Y the full subcategory of (<£, 3)) whose objects are the additive
functors from % to 3). For each pair of objects F, G in (<g, 3)\ define addition
in (F, G) as in part (a). Prove that with this addition, (<g, 2Y is a preaddi
tive category.

(34) Let <
g

be a preadditive category and let /,:X-»X, /2: Y-» Y be objects of
^[X]. If g, :/,-»/2 and g2:/,-»/2 are morphisms of ^[X], then g, and g2 are mor
phisms from X to Y such that gi/,=/2g, and g2/,=/2g2. Prove that the mor
phism g, + g2 from X to Y in ^ also has the property that (g, + g2)/, = /2(g, + g2) so
that g, + g2 is a morphism from /, to /2 in ^[X]. With this addition of morphisms in
^[X], prove that ^[X] is a preadditive category.
(35) Let R be a commutative ring, let <g(R) be the category of the ring R, and let
s£i be the category of abelian groups. Denote the preadditive category
(<£(R),MY by Mod(R). Similarly, denote the preadditive category

(<€(R[X]), MlY by Mod(R[X]), where R[X] is the polynomial ring over R.
(a) Prove that the following data define a functor T from (Mod(R))[X] to
Mod(R[X]).
(I) If <j>:F-»F is an object of (Mod(R))[X], let T(<£) be the functor from
«(R[X]) to M defined by:
(a) T(<*i)(R[X]) = F(R).
(b) T(<M2>„X"):F(R)-»F(R) is the morphism defined by a-»
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2F(r„)<fi(R)"(a) for all a in F(R), where <ti(R)" means the composition of
the endomorphism <MR):F(R)-»F(R) with itself n times, and
F(r„): F(R)-» F(R) is the morphism defined by the functor F

(ii) If g : <ti,-»<fi2 is a morphism in (Mod(R))[X], define T(g) : T(<j>,)-» T(<fc) by
letting T(gKR[X]):T(^,)(«tA'])-»T(^2)(R[X]) be the morphism

g(R):F,(R)-»F2(R) where 4i,:F,-»F, and <tfi2:F2-»F2.
(b) Prove that the functor T defined above is additive.
(c) Prove that the functor T is an isomorphism of categories.
(36) Let Group be the category of all groups and sit the full subcategory of Group
consisting of the abelian groups. Show that the inclusion functor i ...■■!/--Group
has a left adjoint.

(37) Let <€ be the category of commutative monoids and sil the full subcategory
of <g consisting of the abelian groups. Show that the inclusion functor i:sii -»<€
has a left adjoint.

(38) Show that the following data define a functor F: Rings-» Monoid:
(a) The map F:Ob Rings-»Ob Monoid is given by F(R) is the multiplicative
monoid of the ring R for each ring R.

(b) For each ring morphism f:R,-»R2 we define F(/):F(R,)-»F(R2) to be the
map / viewed as a morphism of the multiplicative monoid of R, to that of R2.
Prove that the functor F: Rings-» Monoid has a left adjoint.

(39) Generalize Exercise 38 to the category of R-algebras for any commutative
ring R.
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Chapter5 UNIQUE
FACTORIZATION
DOMAINS

In this chapter we will be mainly concerned with examples and properties of
commutative rings with which the reader is for the most part familiar. For exam

ple, the basic properties of Z, the ring of integers, and K[X], the ring of
polynomials over a field K. are discussed, including the fact that they are unique
factorization domains. We will also show that the ring R[X] of polynomials over a
ring R is a unique factorization domain if and only if the ring R is a unique
factorization domain. From these sample results it is obvious that one of our
major preoccupations in this chapter is the question of when commutative rings
are unique factorization domains.
The reader who is at all familiar with the notion of a ring being a unique

factorization domain should have no difficulty seeing that this idea is intimately
connected with the general one of divisibility in a ring. For instance, we usually
say that a nonzero integer n 1 1 in the ring Z of all integers is a prime if and only if
±1 and ±n are the only integers which divide n. Further, the fact that every
integer can be written (in an essentially unique way) as a finite product of primes is
also a statement concerning how integers divide each other. Because for rings
generally, and not just for integers, questions of divisibility are related to unique
factorization, we begin this chapter by studying divisibility in commutative rings.
Related matters such as unique factorization and rings of quotients will be taken
up later on.

Because we are only interested in commutative rings in this chapter, we make
the blanket assumption that unless stated to the contrary all rings are commuta
tive. We remind the reader that since we are assuming that our rings are commuta
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tive. an ideal in a ring R is simply a subgroup I of R satisfying the condition that
rid for all r in R.

1. DIVISIBILITY

We begin by recalling what it means for one element in a ring to divide another.

Definition
Let x and y be elements in a ring R. We say that x divides y if there is an element z
in R such that xz = y. We often denote the fact that x divides y by writing x\y.

We leave it to the reader to verify the following.

Basic Properties 1.1
Let R be a ring.

(a) For each element x in R we have that x|x.
(b) If x, y, and z are elements in R such that x|y and y\z, then x\z.
(c) For a fixed element x in R, the set of all elements in R divisible by x is the set
Rx consisting of all elements of the form rx with r in R.

(d) For each x in R, the set Rx of all elements of R divisible by x is the unique
ideal J of R satisfying:

(i
) x is in J.

(ii) If / is an ideal of R containing x, then J CI.
For each element x in R, because the set Rx of all elements in R divisible by x

is an ideal in Ft. it is reasonable to expect that ideals of this type play an important
role in studying divisibility. For this reason we give such ideals a special name.

Definitions
For each x in R, the ideal Rx is called the ideal or the principal ideal generated by
the element x. We will often use the notation (x) for the ideal Rx generated by x.
An ideal / in R is called a principal ideal if there is an element xEl such that

Rx = I.

The reader should have no difficulty verifying the following.

Basic Properties 1.2
Let x and y be elements in a ring R.

(a) x|y if and only if (x)D(y).
(b) (x) = (y) if and only if x|y and y\x.
(c) For an element x in R, the following statements are equivalent:

(i) x|l.
(ii) (x) = R=(l).
(iii) x is an invertible element in the multiplicative monoid of R.

(iv) x|y for all y in R.

(v) (xy) = (y) for all y in R.
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In a ring R because we have x\y if and only if (x)D(y), we see that the study
of the way the elements of R divide each other is the same thing as studying the
order relation given by inclusion on the set of principal ideals of R. Stated more
symbolically, if we denote the set of all principal ideals of R by PJ(R), then the
map /:R-»PJ(P) given by f(x) = Rx for all x in R is a surjective map with the
property that x|y if and only if /(x)D/(y).
But this is not the only relationship between R and PI(R). For it is not

difficult to show that PI(R) has a (unique) commutative monoid structure such
that with this monoid structure the map /:P-»PJ(P) is a morphism from the
multiplicative monoid of R to PI(R). The existence of this monoid structure in
PI(R) is based on the following general definition.

Definition
Let I and J be ideals in the ring R. The set of all finite sums 2 x,y, with x, in / and y,
in J is an ideal in R which we denote by IJ and call the product of / and J.
It is easily checked that the product of ideals in a ring has the following set of

properties.

Basic Properties 1.3
Let I,, I2, and I, be ideals in a ring R. Then:

(a) hh = ZJi.
(b) Rh = I,R = /,.
(c) /,(/2/,) = (!,«!,.
(d) If /, D h, then hh D hh.
(e) The product of two principal ideals is again a principal ideal because (x)(y) =

(xy) for all x and y in R.

Thus, we see that the product of ideals defined above makes the set of all
ideals in R a commutative, multiplicative monoid with the principal ideal R =(1)
as identity element. Because the product of principal ideals is again a principal
ideal, we see that the set Pit R ) of all principal ideals in R is a submonoid of the
monoid of all ideals in R. It is obvious that this is the unique monoid structure on

PI(R) which makes the surjective map f:R-» PJ(R) a monoid morphism from the
multiplicative monoid of R to PI(R).

Definition
If R is a ring, we denote by PI(R) the commutative monoid whose elements are
the principal ideals of R and whose multiplication is given by (x)(y) = (Xy) for all x
and y in R.

Because the morphism f:R-» PI(R) from the multiplicative monoid of R to
PI(R) is surjective, we know that the canonical morphism /, :Coim/-»P/(P)
given by j;([x]) = /(x) for all a in R is an isomorphism of monoids. Hence, any
description of the monoid Coim/ gives an alternate description of PI(R). So we
now turn our attention to studying Coim /.
We have already shown that if x| 1, then /(xy) = Rxy = Ry= /(y) for all y in R.

Hence, it is obvious that the set of all elements x in R such that x|l plays an
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important role in describing Coim/. Because this type of element plays a signifi
cant role in all of ring theory, not just commutative ring theory, we make the
general statement.

Definition
Let R be an arbitrary, not necessarily commutative, ring. An element x in R is
called a unit in R if x is an invertible element of the multiplicative monoid of R,

that is, there is a y such that xy = 1 = yx. The group Inv(R), which is the sub-
monoid of the multiplicative monoid of R consisting of all units or invertible ele
ments in R, is called the group of units of R and is denoted by U(R).

Returning to the morphism of monoids f:R-»PI(R) in the case when R is
commutative, we see that since /(uy) = /(y) for all u in U(R) we have xU(R) C [x]
for each x in R where [x] is the unique element of Coim / containing x. Although it
is not true for arbitrary rings R that xU(R) = [x] for all x in R (see the exercises
for an example), it is true for rings R which are integral domains. We recall the
following.

Definition
An element x in a ring R is said to be regular if xy = 0 implies y = 0. A ring R is
said to be an integral domain if R ^ (0) and every nonzero element in R is regular.
Clearly, every subring of an integral domain is also an integral domain.

As an easy consequence of this definition we have the following.

Basic Properties 1.4
Let R be a ring.

(a) An element x in R is regular if and only if xy, = xy2 implies y, = y2.
(b) The set of all regular elements in R is a submonoid of the multiplicative
monoid of R.

(c) Because each unit in R is regular, we have that U(R), the group of units in R,
is a submonoid of the monoid of regular elements of R.

(d) If x and y are elements of R such that x is regular and (X) = (y), then y is
regular and there is a unit u in R such that ux = y.

(e) If x and y are elements in an integral domain, then (x) = (y) if and only if there
is a unit u in R such that ux = y.

PROOF:(a)-(c) Left as exercises.

(d) Because we are assuming that (x) = (y), we know there are elements u,
and u, in R such that u,x = y and u2y = x. Hence, u2u,x = x or equivalently
x(u2u, - 1) = 0. The fact that x is regular implies u,u2- 1 = 0. Thus, u, and u2 are
units in R. Therefore. y = u,x where u, is a unit in R. This also implies y is regular,
since both u and x are regular and the product of regular elements is regular [see
parts (b) and (c)].

(e) Follows trivially from (d).

As a consequence of this discussion we have the following description of the
coimage of the morphism from the multiplicative monoid of an integral domain R
to PI(R).
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Proposition 1.5
Let R be an integral domain and f:R-»PI(R) the surjective morphism from the
multiplicative monoid of R to PI(R) given by f(x) = Rx.

(a) The elements of Coim / consist of the subsets of R of the form xU(R) for all x
in R.

(b) The multiplication in Coim / is given by (X, U(R)) . (x2 U(R)) = x,x2 U(R) for all
xl and x2 in R.

2. INTEGRAL DOMAINS

Before giving examples to illustrate some of the material of the preceding section,
we recall some of the basic facts concerning fields.

Definition
A ring R is called a field if R ^(0) and every nonzero element of R is a unit in R, or
what amounts to the same thing, U(R) = R-{0}.

Basic Properties 2.1
Suppose R is a ring and R =£(0).

(a) If R is a Meld, then R is an integral domain.
(b) R is a field if and only if (0) and R are the only ideals of R.
(c) If S is a nontrivial ring and R is a field, then every morphism of rings f:R-»S
is an injective morphism.

PROOF: (a) Already proven.

(b) Suppose R is a ring such that (0) and R are the only ideals in R. Let x be a
nonzero element in R. Then the ideal (x) is not the zero ideal and so must be the
whole ring R. This means that there is a y in R such that yx = 1 or equivalently, x
is a unit in R. Hence, every nonzero element in R is a unit in R which means that R
is a field. The fact that if R is a field, then (0) and R are the only ideals of R is
obvious.

(c) Follows trivially from (b).

Example 2.2 We have already shown that the ring Z of all integers is an
integral domain (see Chapter 2, Basic Properties 9.2). Also, U(Z) consists of 1 and- 1 and is thus isomorphic to the group Z/2Z.
Example 2.3 Let m, and m2 be any two nonzero elements of Z which are not

units. Then the ring Z/(m ,m2) is not an integral domain because m, + (m,m2) and
rW2+ (wi,m2) are nonzero elements whose product is zero.

Proposition 2.4
Let R be a ring. Then the ring R[X] of polynomials over R is an integral domain if
and only if R is an integral domain. In particular, if R is a field, then R[X] is an
integral domain.

PROOF: Because R is a subring of R[X], it is an integral domain if R[X] is an
integral domain.
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Suppose R is an integral domain. Let 2,eN rJC' and 2,eM r',X' be two nonzero
elements in R[X]. Then there are nonzero integers n, and n2 such that r„,^0 while
r, = 0 for all i>rt, and rJ^0 while ri = 0 for all i>n2. From these remarks it
follows that the product

\,eN / V,eN / leN \k-0 /

is not zero. For the coefficient of X"''"2 in 2,eN(2i-0r,,r?_k)X' is 2I'-V' rkr»',+^-n
which under our hypothesis, equals r„,ri,. But r„,r'„ is not zero because r„, and r^
are nonzero elements in the integral domain R.

In the proof of the last proposition we made implicit use of the notion of the
degree of a polynomial. Before going on with our next example, we give an
explicit formulation of this useful notion.

Definition
Let R[X] be the ring of polynomials over a ring R. The degree of a nonzero
polynomial 2,eN r,X' is denned to be the largest nonnegative integer i such that

r, ± 0. We shall usually denote the degree of a nonzero polynomial £ rJC by
deg (2,eN r,X'). If the degree of a polynomial 2,eN r,X' is n, then r, is called the
leading coefficient of the polynomial.

The argument we just used to show that if R is an integral domain then so is

R[X] can also be used to establish the following.

Basic Property 2.5
Let /(X) = E,gN fiX' and g(X) = 2,eM SiX' be two nonzero polynomials in R [X] of
degrees m and n, respectively. Then:

(a) /(X) is in the subring R of R[X] if and only if deg(/(X)) = 0.
(b) If /(X)g(X)*0, then

deg (/(X)g(X)) < deg (/(X)) + deg (g(X))

(c) deg (/(X)g(X)) = deg (/(X)) + deg (g(X)) if and only if rm . s„ ± 0 where rm is
the leading coefficient of /(X) and s„ is the leading coefficient of g(X). Hence:

(d) If deg(/(X)g(X)) = deg(/(X)) + deg(g(X)), then the leading coefficient of
/(X)g(X) is the product of the leading coefficients of /(X) and g(X).

(e) If R is an integral domain, then deg(/(X)g(X)) = deg(/(X)) + deg(g(X)).

Proposition 2.6
Let R[X] be the ring of polynomials over the integral domain R. Then U(R[XJ) =

U(R). In particular, if R is a field, then U(R [X]) is precisely the set of nonzero
elements of R.

PROOF: Because R is a subring of R[X], it follows trivially that U(R)C
U(R[X]). Suppose now that /(X) = 2,eN riX' is a unit in R[X]. Then there is
a g(X) in R[X] such that /(X)g(X)= 1. Because R is an integral domain, we
know that deg(/(X)g(X)) = deg(/(X)) + deg(g(X)). Because deg(l) = 0 =

deg (/(X)) + deg (g(X)), it follows that deg (/(X)) = 0 and deg (g(X)) = 0. Hence,
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f(X) and g(X) are in R, which means that f(X) is in U(R). Therefore, U(R[X]) C
U(R) which completes the proof of the fact that U(R)= l/(R[X]).

Because a field is an integral domain, we know that every subring of a field is
an integral domain. We now show that if R is an integral domain, then R is a
subring of a field. We do this by constructing a particular field containing R called
the field of quotients of R for each integral domain R. Not only does the field of
quotients of an integral domain show that every integral domain is a subring of a
field, but it is also a very useful tool for studying the integral domain itself. In
particular, as we shall see later on, the field of quotients of an integral domain R is
useful in studying unique factorization domains. The reader should observe that
the following construction of the field of quotients of an arbitrary integral domain
is modeled on the construction of ordinary rational numbers from the ring of
integers as well as our construction of the ring of all integers Z from the nonnega-
tive integers N.

We recall that the field of rational numbers Q consists of fractions n,/n2
where n, and n2 are integers with n2 =£0, subject to the condition that two fractions
ii,/n2 and ni/n2 are equal if and only if n,n2= n2n[. Moreover, the addition and
multiplication in Q are given by the formulas

n, , ni_W,n2 + n2nj

n2 n'2 n2ri2

n2 n2 n2n'2

We now generalize this construction to an arbitrary integral domain.
Suppose R is an integral domain. Then the subset S = R-{0} of R is a

submonoid of the multiplicative monoid of R.
Consider the addition and multiplication on R x S given by

(r, s) + (f, s') = (rs' + r<s, ss')
(r,sXr;s') = (rr',ss')

It is easy to see that R x S is a commutative monoid under addition with
identity (0, 1) and a commutative monoid under multiplication with identity (1, 1).
The multiplication also distributes over addition so that R x S is almost a com
mutative ring. The only way it fails to be a ring is that elements do not, in general,
have additive inverses.

From our experience with the integers and rational numbers, it seems reason
able to consider the following relation / on R x S. Namely, (n, s,)/(r2, s2) if
r,s2 = r2s,. It is a routine matter to check that / is an equivalence relation not only
on R x S considered as a set, but also on the additive and multiplicative monoid
structures of R x S. Therefore, R x SII has induced additive and multiplicative
monoid structures having the following properties:

(«) Under addition, R x SII is an abelian group whose zero element is fc(0, 1)
where k:RxS-»RxSII is the canonical surjective map.

(b) Multiplication distributes over addition in R x SII; hence:
(c) R x SII is a commutative ring.
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We denote the element fc(r, s) in R x SII by rls. It is easily checked that the
elements rls of R x S// have the following familiar properties:

(a) r/s = 0 if and only if r = 0.
(b) rls = r'ls' if and only if rs' = r's.
(c) rls + r'h' = (rs' + r's)lss'.
(d) r/s . r'/s' = rr'lss'.

(e) 1/l is the identity.

We now show that these properties imply that R x SII is a .field. First of all
the identity element 1/1 is not 0. Second, if rls =£0, then r ± 0 which means that r
is in S and hence slr is in R x S//. But (rls)(sIr) = rs/rs = 1/1. Hence, if rls =f

=

0
,

then rls is a unit with sIr as the inverse. Thus, R x S// is a field which we shall
denote by Q(R).
We now show that Q(R) is a field which contains R. To do this we consider

the map f:R-»Q(R) given by /(r) = r/1 for all r in R which is easily seen to be an
injective morphism of rings, since Ker / = 0. Thus, we can view R as a subring of
Q(R) by identifying the element r/1 in Q(R) with the element r in R for each r in
R. From now on we will consider R a subring of Q(R) by means of this identifica
tion.

Definition
For each integral domain R, the field Q(R) containing the ring R as a subring is

called the field of quotients of R. If R = Z, then Q(Z) is denoted more simply by Q

and is called the field of rational numbers.

Proposition 2.7
Let R be an integral domain.

(a) Let T be an arbitrary ring (not necessarily commutative) with 1 =£0. If /: R -» T

is a morphism of rings such that /(r) is invertible in T for all nonzero elements

r in R [that is, /(r) is in U(T) for all r=£0], then / is injective and there is a

unique morphism of rings g:Q(R)-»T such that g\R=f. The morphism
g:Q(R)-»T is given by g(rls) = f(r)f(s)' where /(s) ' is the inverse of /(s)
in T. Finally, g:Q(R)-»T is an injective morphism.

(b) The inclusion morphism R-»Q(R) is an epimorphism in the category of all
rings as well as in the category of commutative rings.

(c) R = Q(R) if and only if R is a field.

PROOF: (a) Let / : R -» T be a morphism of rings such that for each r =£ 0 we
have that /(r) is invertible in T. Since 1 =£ 0 in T

,
it follows that /(r) ± 0 if r ± 0.

Because R is an integral domain, we know that S = R -{0} is a submonoid of
the multiplicative monoid of R. Because /(r) is invertible in T for each nonzero r

in R, we have that f(S) is contained in U(T). From the fact that f:R-»T is a

morphism of the multiplicative monoid of R to that of T, it follows that /(S) is a

commutative submonoid of the group U(T). We have already seen in Chapter 2
,

Lemma 8.5 that under these circumstances the subset f(S)f(S)

' of U(T) consist
ing of all products /(s,)/(s2) ' is a commutative subgroup of U(T).
The fact that this subgroup of U(T) is commutative enables us to show that
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the elements in the image of the map h.RxS^T given by h(r, s)=f(r)f(s)"'
commute with each other. From this fact it follows that if (r,, s,) and (r2, s2) are in
R x S, then (r,, s,)/(r2, s2) if and only if h((r,, s,)) = h((r2, s2)). Therefore, there is a
unique morphism of rings g:RxS//-»T such that the diagram

RxS

commutes where RxS-»Rx SII is the canonical surjective morphism. This es
tablishes the first part of (a). For we have (1) RxSII = Q(R), (2) g(rls) =
nr)f(s)'' because g(rls) = h((r, s)) = /(r)/(s)', and (3) g(r) = g(r/l) = /(r) for
all r in R, which shows that g\R =/. Because it is obvious that g is an injective
morphism, in order to finish the proof of (a) it only remains to show that
g :Q(R)-»T is the only morphism from Q(R) to T whose restriction to R is /.
This is implied by the fact that the inclusion morphism R -» Q(R) is an epimor-
phism in the category of rings, a result we now prove.

(b) Suppose /: Q(R)-» T is a morphism of rings. Then f(rls) = /(r/1 . lIs) =
f(rll)f(Us). Because 1 = s .(lls) = (Us)-s, it follows that l=/(l) = /(s)x
f(lls) = f(lls)f(s). Hence, /(1/s) is the inverse of f(s) in T. This shows that / is
completely determined by its restriction to R or, what is the same thing, R -»

Q(R) is an epimorphism.
(c) Left as an exercise.

We end this section by pointing out certain consequences of this proposition.
Suppose R is a subring of the integral domain R'. Because Q(R') is a field, the

inclusion morphism R -» Q(R') is the composition of the inclusion morphisms R -»
R' and R'-»Q(R') and has the property that if r is a nonzero element of R, then r
is invertible in Q(R'). Thus, by our proposition, there is a unique morphism
g : Q(R)-» Q(R') such that g\R is the inclusion morphism R-»Q(R'). It is easily
checked that the injective morphism g : Q(R)-»Q(R') is given by g(rls) = rls for
all r and s in R with s=£0. This enables us to consider Q(R) as a subring of Q(R')
by identifying the quotient rls in Q(R) with the same quotient rls in Q(R').
Hence, from now on we shall use this identification to consider Q(R) a subring of
Q(R') whenever R is a subring of R'.
This convention has the following consequence. Suppose R is an integral do

main and R' is a subring of Q(R) containing R, that is, RCR'CQ(R). Then by
what we have just agreed upon, we have Q(R)CQ(R')CQ(Q(R)). But Q(R) =
Q(Q(R)), because Q(R) is a field. Therefore, we have the following.

Proposition 2.8
Suppose R is an integral domain and R' is a subring of Q(R') containing R. Then
Q(R) = Q(R').

Finally, the fact that for each integral domain the inclusion morphism R-»

Q(R) is an epimorphism in the category of rings shows that in the categories of
rings and commutative rings, epimorphisms need not be surjective. To see this,
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consider the infective epimorphism Z-- Q. If this morphism were also surjective, it
would be an isomorphism which would mean that Z is a field. But this is certainly
not the case since U(Z) = ± 1 which is very different from Z - {0}.

3. UNIQUE FACTORIZATION DOMAINS

In this section we discuss the general notion of a ring being a unique factorization
domain. Because we will be dealing only with rings that are integral domains, we
assume once and for all that unless stated to the contrary all the rings in this
section are commutative and integral domains.

Probably the best-known example of a unique factorization domain is the ring
Z of integers. We usually say that a nonzero, nonunit number p in Z is a prime if
± 1 and ± p are the only integers dividing p. The prime numbers in Z have the
following well-known properties which are usually summarized by saying that Z is
a unique factorization domain: (a) Given any nonzero n in Z different from ± 1,
there is a nonempty finite family of prime elements (p,),e; such that « - II p„ the

IEi

product of the p,, and (b) if (p,),E; and (pi^i are two nonempty finite families of
prime elements in Z such that IIp,= FIpi, then card (/) = card (/) and there is an

le; ies

isomorphism of sets f:I-»J such that p,=u,pm, where u, is a unit in Z, that is,
ui=±l, for all i in /.
Using this description of the fact that the ring Z is a unique factorization do

main as a starting point, it is natural to consider the following conditions on an
arbitrary integral domain R as a description of when such a ring should generally
be considered a unique factorization domain:
There is a set 9 of nonzero elements of R which are not units satisfying:

(I) If p is in 9, then up is in 9 for all units u in R.
(ii) If n is a nonzero element of R which is not a unit, then there is a finite
nonempty family (pd,e, of elements in 9 such that n = II pi.

,e,

(III) If (p,),ei and (p1)iei are two nonempty finite families of elements in P such
that II p, = II ph then card (/) = card (J) and there is an isomorphism of sets

f:I-»J such that p, = uipJu, where l4 is a unit in R for all i in /.
It is interesting to note that the above conditions on the subset 9 of R

completely determines the subset 9 as we see from the following.

Proposition 3.1
Let 9 be a subset of a ring R consisting of nonzero, noninvertible elements of R
which satisfies conditions (i), (ii), and (iii) just given. Then the following state
ments are equivalent for a nonzero, noninvertible element r in R:

(a) r is in .A
(b) If x\r, then x is either a unit or ux = r with u a unit in R.
(c) If r\rlr2 and r/r,, then r\r2.
PROOF: (a) implies (b). Suppose r is in 9 and x\r, that is, xy = r for some y in

R. We want to show that either x or y is a unit. We prove this by contradiction.
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Assume that neither x nor y is a unit in R. Then we know that there are nonempty

finite families (p,),e; and (p,),<n of elements in 9 such that x = II p, and y = II p.
lel ,eJ

Because xy = r and xy = (II p,)(II p1), we have r = II p II pi. From condition (iii)
iEi ieJ le; ,el

(as well as from the fact that r£?), we see that 1 = card (/) + card (J). This
means that either card (/) or card (J) must be zero, and this is a contradiction.
Because (b) obviously implies (a), the equivalence of (a) and (b) is estab

lished.

(a) implies (c). Assume r is in 9 and suppose r\r,r2, that is, rr' = r,r2 for some
r' in R. We want to show that r then divides r, or r2. If either r, or r2 is zero or a
unit, the result is trivial, so we can assume that neither r, nor r2 is zero or a unit.
Let (p,),ei and (p,)ie; be nonempty finite families of elements in 9 such that
r, = U p, and r2 = II p,. Because rr' = II p, II pi and r is in 0\ it follows that r' is not
,el ,eJ ,el iei

a unit (why?), and so r' = II pk where (p*)*ek is a nonempty family of elements in
kSJC

?. Hence, r II p* = II p, II p, which by condition (iii) for 9 means that ur = p,

for some / in I or J and u a unit in R. Thus, r\p, and, because pi|r, or pi|r2
depending on whether / is in / or J, it follows that r|r, or r|r2. Therefore, if r is in
9 and r|r,r2, then r\r, or r|r2.
(c) implies (a). Suppose a nonzero, noninvertible element r in R has the

property that if r\r,r2, then r\r, or r|r2. It is not difficult to show by induction that
this condition implies that if r\r,r2 . . . r„, then r\r, for some 1 < i < n. Because r=£0
and is not a unit, we know that there is a nonempty finite family ( p,)„=i of elements
in 9 such that r=Up,. Thus, r|p, for some i in I Because p, is in ?, we know by

,el

the equivalence of (a) and (b) that r = npi with u a unit in R, because r\p, and r is
not a unit. From this it follows that r is in £?, because p, is in 3° and thus up, is in S9
for any unit u in R.

Because elements in a ring R satisfying either (b) or (c) in the above proposi
tion play an important role in studying unique factorization domains, we make the
following definition.

Definitions
Let R be a commutative ring (not necessarily an integral domain), and let r be a
nonzero, noninvertible element of R. Then:

(a) r is said to be irreducible if whenever r= r,r2, either r, or r2 is a unit.
(b) r is said to be a prime element if whenever r|r,r2 and rjfn, then r|r2.

We now list some easily verified properties.

Basic Properties 3.2
Let R be an integral domain.

(a) A nonzero, noninvertible element r in R is irreducible if and only if R is the
only principal ideal of R containing (r) properly [that is, R is the only principal
ideal different from (r) which contains (r)]. Hence, r is irreducible if and only
if ur is irreducible for all units u in R.
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(b) A nonzero element r in R is a prime element in R if the ring RIRr is an integral
domain. Hence, r is a prime element if and only if ur is prime for all units u in
R.

(c) Suppose r is a prime element in R. Then:

(i) r is an irreducible element of R. m

(ii) Suppose r , r„ is a finite set of prime elements in R and r\Yl r,. Then
r = ur, for some i=\, . . . ,n and some unit ,l in R.

(d) Let (r,),e; and (r,),ei be two nonempty finite families of prime elements in R. If
n r, = II rh then card (/) = card (J) and there is an isomorphism of sets / : / -»

J such that r, = u,rm with i4 a unit in R for all i in /.
The reader should observe that although we have shown that every prime

element in an integral domain is irreducible, we have not claimed that every ir
reducible element is prime. An example is given in the exercises which shows that
irreducible elements need not be prime. Later on we explain what additional prop
erty an irreducible element must have in order to be a prime element.
Summarizing our discussion so far, we have the following.

Proposition 3.3
Let R be an integral domain. Then every nonzero element which is not a unit in R
can be written as a finite product of prime elements if and only if there exists a
subset 9 of R satisfying:

(a) If r is in 9, then:
(i) r^0 and r is not a unit,

(ii) ur is in 9 for each unit il in R.
(b) Every nonzero, noninvertible element in R can be written as a finite product
of elements in 9.

(c) If (r,),e, and (ri),ei are nonempty finite families of elements in 9 such that

n r = n ri, then card (/) = card (J) and there is an isomorphism of sets / : / -»le, ieJ
J such that r, = u,7>,,, with u, a unit in R for all i in /.
Further, if it is true that every nonzero, nonunit element of R can be written

as a finite product of prime elements, then the set 9 is precisely the set of prime
elements in R. This result suggests the following.

Definition
An integral domain R is a unique factorization domain if every nonzero, noninver
tible element in R can be written as a finite product of prime elements. We denote
the fact that R is a unique factorization domain by writing R is a UFD.

4. DIVISIBILITY IN UFD'S

Having generalized the notion of unique factorization domain from the ring Z of
integers to arbitrary integral domains, we now show that some other familiar no
tions concerning the divisibility of integers can also be generalized to arbitrary in
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tegral domains. We start with the notions of the greatest common divisor and least
common multiple of a finite nonempty family of integers. The reader should have
no difficulty in convincing himself that the following definitions for arbitrary in
tegral domains give the familiar concepts when specialized to Z.

Definition
Let r,, . . . , r„ be a finite, nonempty set of elements in an integral domain R.

(a) An element r in R is said to be a greatest common divisor for the set n, . . . , r„
if and only if:
(i) r\r, for all i = l,...,n.
(ii) If X |n for all i = 1, . . . , n, then x\r. We shall denote the fact that r is a
greatest common divisor of n, . . . , r„ by writing r = gcd[n, . . . , r,].

(b) An element r in R is said to be a least common multiple of r , r„ if and
only if:

(i
) r,\r for all i = l,...,n.

(ii) If r, \x for all i = 1 n, then r\x. We shall denote the fact that r is a least
common multiple of r\ r„ by writing r = 1cm [r,, . . . , r»J.

Before discussing these ideas further, it is convenient to introduce the notion
of the ideal generated by a family {x,},e, of elements in an arbitrary commutative
ring R (that is, R need not be an integral domain). It is easily seen that if {XJ,e, is a

family of elements in R, then the set of all elements of the form 2,eJ r,xn where
{r,},Ei is an almost zero family of elements in R, is an ideal in R containing the
element x

, for each i £ /.

Definition
Suppose {X,},ei is a family of elements in an arbitrary commutative ring R. Then
the ideal consisting of all elements of the form 2,eJ r,x„ where {r,},e, is an almost
zero family of elements in R, is called the ideal generated by the family {x,},e, and is
denoted by OO,e, or 2,e„Rx,.

It is left to the reader to establish the following characterization of the ideal
generated by a family of elements in a ring.

Basic Property 4.1
Suppose {x,},e; is a family of elements in the arbitrary commutative ring R. Then
an ideal J in R is the ideal generated by {x,},e, if and only if:
(a) x, is in J for each i in /.

(b) If J' is another ideal containing x, for all i in /, then J' D J.

Returning to our discussion of greatest common divisors and least common
multiples, the reader should have no difficulty establishing the following.

Basic Properties 4.2
Let r\ r„ be a finite number of elements in a ring R.

(a) An element r is a gcd [r,, . . . , r„] if and only if Rr is the smallest principal
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ideal containing the ideal generated by r , r„. More specifically:

(i) Rroi Rr,.

(ii) If Rx D 2 Rrh then Rx D Rr.,-l

(b) If r isagcd[r,, . . . , r„], then r' is aged [r, r„] if and only if Rr = Rr'.
(c) The set r,, . . . , r„ has a greatest common divisor if and only if there is a
principal ideal / such that:

(i) I D i Rr,.,-l
m

(ii) If J is another principal ideal such that J D I, Rr,, then J D I.
Moreover, if /, and /2 are two principal ideals satisfying conditions (i) and

(ii), then I, = 72. Hence, two elements x, and x2 are both gcd[r,, . . . , r„] if and
only if x, is a gcd[r,, . . . , r„] and x, = ux2 where u is a unit of R.

(d) An element r = lcm[r,,. . . , r„] if and only if (r) = (r,)n(r2)n . . . n(r„).
(e) If X, = lcm[r ,r„], then x2 = lcmtn, . . . , r„] if and only if Rx, = Rx2.
Hence, x, and x2 are both lcm[r,, . . . , r„] if and only if x, is a lcm[r., . . . , r„]
and X; - ux2 where u is a unit of R.

(f) The set ru . . . , r„ has a least common multiple if and only if (r,) D . . . n (r„) is
a principal ideal.

(g) Every nonempty finite family of elements in R has a least common multiple
(greatest common divisor) if and only if every pair of elements in R has a
least common multiple (greatest common divisor).

In arbitrary integral domains, although not every pair of nonzero elements
need have a least common multiple or greatest common divisor (see the exercises
for examples), all unique factorization domains do have this property as we now
proceed to show.

Suppose R is a UFD and that 9 is the set of prime elements of R. We define a
relation A on ;P by setting p,Ap2 if and only if there is a unit u in R such that
p, = up2. The reader can easily check that A is an equivalence relation on 9. Let /
be the set of equivalent classes of A. Because each element i in / is a nonempty
subset of 9, we may choose, for each i in /, an element p, of 9 such that p, is in i.

Definition
Let R be a UFD, 9 the set of prime elements of R, and / the set of equivalence
classes of the equivalence relation A on 9 defined by setting p,Ap2 if and only if
there is a unit a in R such that p, = up2. A family of prime elements (pJ,e, of R is
a representative family of primes if for each , in /, the element p, is in i.

Basic Properties 4.3
Let R be a UFD and [p,}le, a representative family of primes.

(a) If p is any prime element of R, then there is a unique i in / such that p = up,
where u is a unit of R.

(b) If p, and p, are elements of the representative family {p,},Ei, then p, = up, for
some unit u in R if and only if i = j and u = 1.
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(c) If r is a nonzero element of R, then there exists a unique almost zero family
{n,(r)},ei of elements of N such that r = uU p"ii" where u is a unit in R.

IE!

Moreover, if {«J,},e; is another representative family of prime elements in R,
then r = u' U q"1lrl where u' is a unit in R. Hence, the almost zero family

1EI

{nl(r)},e, of N depends only on the element r because it is independent of the
particular choice of representative family of primes used to obtain it.

This last property suggests the following.

Definition
Let Rbea UFD and r a nonzero element of R. An almost zero family {rt,(r)},e, of
elements of N is called the prime exponents for r if for some, and hence any,
representative family of primes {p,}le; for R we have r = u II pi'"' where u is a
unit in R.

Basic Properties 4.4
Let R be a UFD and let r, and r2 be nonzero elements of R.

(a) r, is a unit in R if and only if n,(r) = 0 for all i in / where {n,(r)},e; is the
prime exponents of R.

(b) {n,(r,r2)},e, = {n,(r,)+ n,(r2)},e,.

(c) r,|r2 if and only if n,(r,)<n,(r2) for all i in I.
(d) Given any almost zero family {n,},e; of elements in N, there is a nonzero ele
ment r in R such that n* (r) = n* for all i in /.

(e) rl = ur2 where u is a unit in R or equivalently (r,) = (r2) if and only if
n,(/-,)= n,(r2) for all i in /.

Using prime exponents for nonzero elements of a UFD, we can prove the
following.

Proposition 4.5
Let r,, . . . , r, be nonzero elements of a ring R which is a UFD.

(a) For each i in /, let M = max (iu(r,), . . . , /i,(r,)). An element r in R is a
lcm [r,, . . . , r,] if and only if n,(r) = M, for all i in /. Hence, the set of
elements r,,...,r, has a least common multiple in R.

(b) For each i in /, let mi =min(n,(r,) n*(r,)). An element r in R is a
gcd [r,, . . . , r,] if and only if n, (r) = m, for all i in /. Hence, the set of elements
r,, . . . , r, has a greatest common divisor in R.

PROOF: Obviously {Afi}1e, and {m,},e, are almost zero families of elements in

N. Thus, by Properties 4.4 we know that there are elements r and r' in R such that
n,(r) = M, for all i in / and ni = (r') = m, for all i in /.

(a) Suppose r is an element of R such that n,(r) = M for all i in /. Because
n,(r) & n,(n) for each k = I, .... f and all i in /, it follows from Properties 4.4 that
each rk\r for k = 1,..., t. Moreover, if x is a nonzero element of R such that n|x
for each k = 1,. . ., t, then again by 4.4, we know that n,(rk) ^ n,(x) for each
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k = l t and all i in /. Therefore, n(x) aM = n,(r) for all i in /. Thus, r|x,
which shows that r is a lcm [n, . . . , r,].
(b) Left as an exercise because it is entirely analogous to that for part (a).

Because in all unique factorization domains every pair of nonzero elements
has a least common multiple, it is natural to ask how close an integral domain is to

being a UFD if every pair of nonzero elements in it has a least common multiple.
Although this condition does not quite guarantee that an integral domain is a UFD,
it does imply that every irreducible element in the ring is a prime element. After
establishing this fact, we will discuss what further conditions the ring must satisfy
in order to guarantee that it is indeed a unique factorization domain.
We recall the following.

Definition
Two nonzero elements ru r2 in a ring R are said to be relatively prime if
gcd(r,, r2)=l, that is, R is the only principal ideal containing r, and r2. The
following are the properties of relatively prime elements that we shall need.

Basic Properties 4.6
Let x and y be nonzero elements in R.

(a) Assume x is not a unit. Then x is irreducible if and only if y is relatively prime
to x whenever x does not divide y.

(b) Suppose x and y are relatively prime and x and y have a lcm, that is, (x)D(y)
is principal. Then xy = lcm[x, y] or equivalently (x)n(y) = (xy).

PROOF: (a) See Basic Properties 3.2.

(b) Suppose x and y are relatively prime. Because xy is obviously in (x) D (y),
to show that (xy) = (x)n(y) it suffices to show that x\z and y|z implies xy|z.
By assumption, x and y have a lcm which we will denote by s. Because x|xy

and y |xy, we have that s|xy, that is, ts = xy. On the other hand, s = t ,x and s = r2y.
Therefore, xy = ts = tt,x = tUy, which implies that t \x and t\y. But this means that t

is a unit in R because gcd [x, y] = 1. Therefore, s = t "'xy which shows that xy =

lcm [x, y] if x and y are relatively prime elements in R which have a lcm.

As a consequence of these observations we have the following characteriza
tion of prime elements.

Proposition 4.7
Let x be an element of the ring R which is neither zero nor a unit. Then x is a
prime element if and only if x is irreducible and the ideal (x)D(y) is principal for
all y in R. that is, the pair x, y have a lcm for all y in R.

PROOF: Suppose x is a prime element in R. We want to show that x is
irreducible and (x)n(y) is principal for all y in R. Because we have already shown
that every prime element is irreducible, it only remains to establish the second
condition.
Let y be in R. If y is in (x), then (y)C(x) and so (x)D(y) = (y) which is

principal.
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Suppose now that y is not in (x). Let z be in (x)D(y), that is, x\z and y|z.
Then z = yv and thus x\yv. Because x is a prime and xjfy, the fact that x\yv
implies that x\v, that is, xw = v. Therefore, z = yv = yxw which means that xy\z.
Hence, we have shown that if y is not in (x), then (x)n(y)C(xy). Since (xy)C
(x) n (y) we have that (x) D (y) = (xy) if y is not in (x). Therefore, if .v is a prime,
we have shown that (X) n (y) is a principal ideal for all y in R, which completes
the proof of the proposition in one direction.
Suppose now that X is irreducible and (x) D (y) is principal for all y in R. We

want to show this implies that x is a prime. Assume that x\yz and x/y. Since x is
irreducible, the fact that y is not in (x) implies that x and y are relatively prime

(see Basic Properties 4.6). But we have also seen (Basic Properties 4.6) that if x
and y are relatively prime and (x)fl(y) is principal, then (xy) = (x)D(y). This
implies that xy|yz since yz is in (x) by assumption and in (y) by definition. The
fact that xy|yz implies that x|z. Hence, if x|yz and x](y, then x|z, which means that
x is a prime element in R. This completes the proof of the proposition.

As an immediate consequence of this characterization of prime elements we
have the following.

Corollary 4.8
If the ring R has the property that the intersection of any two principal ideals is
principal, then every irreducible element in R is prime.

Summarizing our discussion so far we have the following.

Proposition 4.9
A ring R is a unique factorization domain if and only if every nonzero, nonunit
element can be written as a finite product of irreducible elements and the intersec
tion of any two principal ideals is principal.
We shall present another version of this description of unique factorization

domains which is given solely in terms of the structure of the principal ideals in
the ring. This new description will be used in the next section to prove that
principal ideal domains are unique factorization domains. To do this, we develop
the general notion of the ascending chain condition for a set of subsets of a set
because our new description of unique factorization domains utilizes this ex
tremely important general concept.

Proposition 4.10
Let ybea nonempty set of subsets of a set X. Then the following statements
about if are equivalent:

(a) If
X,CX2CX3C---CA'iC---

is any ascending chain of subsets of X in if, then there is an integer n such that
A>X„forall i>n.

(b) Every nonempty subset ST of if contains a maximal element; that is, there is
an element X0 in 3" with the property that if X, is in W and X D X0, then
Ai = A0.
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PROOF: (a) implies (b). Suppose 5" is a nonempty subset of if which has no
maximal element. Then given any element X in ST there is an X in ST such that
XCX but X,±X,. Hence we can construct by induction an ascending chain of
distinct elements in 3" as follows. Let X, be an arbitrary element of 3". Suppose we
have defined X„. Since ST has no maximal element, there are elements in iJ distinct
from Xn but which contain X„. Define X„+, to be one of these elements in ST. In
this way we obtain an ascending chain of distinct elements of ST

X,CX2C-CX,C- ..

which contradicts the hypothesis of (a). Hence, if if satisfies condition (a), then
each nonempty subset 3" of if must have a maximal element, which shows that (a)
implies (b).

(b) implies (a). Suppose every nonempty subset ST of if has a maximal ele
ment. Let X\ C X2 C . . . C X„ C . . . be an ascending chain of elements in if and let
5" be the subset of if consisting of the elements X,, X2, . . . , X,, . . . of if. Then if
has a maximal element, say X„. Obviously, X = X„ for all i ^ n. This shows that
(b) implies (a).

Because subsets if of 2" satisfying either of the above equivalent conditions
play an important role throughout all of algebra we make the following definition.

Definition
Let X be a set. A nonempty subset if of 2* is said to be noetherian, or to satisfy
the ascending chain condition, if every nonempty subset of if contains a maximal
element or, equivalently, given any ascending chain

X,CX2C---CX„C---

of elements in if there is an n such that X = X, for all i > n.
We now state and prove our final result of this section.

Theorem 4.11
A ring R is a unique factorization domain if and only if the set of principal ideals
PI(R) of R satisfies:

(a) PI(R) is noetherian.
(b) If /, and /2 are in PI(R), then /, n /2 is also in P/( JO-

PROOF: Suppose R is a unique factorization domain. Since we have already
seen that for UFD's the intersection of two principal ideals is again a principal
ideal, we only have to show that PI(R) is noetherian. Suppose

(r,)C(r2)C---C(n)C--

is an ascending chain of principal ideals. We can assume without loss of generality
that none of the rk are zero. The fact that (r,) C(r2) C . . . C(rk) C . . . is equivalent to

nir,) > n,(r2) > . . . > n{rk) >...

for all i where {n,(n)},e, are the prime exponents for rk and /c = 1,2, Hence, for
each i in /, there are integers m ',such that ni (rk ) = n, (r'm, ) for all k ^ m ,' [remember

v
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all the n,(rn)a0]. For each i let m, be the smallest integer satisfying this condi
tion. Because n,(rk) = 0 for all but a finite number of i in I, only a finite number of
the m, are different from l and thus the set of m, has a maximum which we denote
by m. Hence, n,(rk) = n,(rm) for all i in / and all k a m, which means that (n) =
(r„) for all k am (see Basic Properties 4.4). This shows that if R is a unique
factorization domain, then PI(R) is noetherian which finishes the proof that R
satisfies (a) and (b).
Suppose R is a ring which has the property that the intersection of any two

principal ideals is principal and PI(R) is noetherian. We want to show this implies
R is a unique factorization domain. Because we have already shown that a ring R
in which the intersection of two principal ideals in principal is a unique factoriza
tion domain provided every nonzero, nonunit element in R can be written as a
finite product of irreducible elements, it suffices to show that if PI(R) is noether
ian, then every nonzero, nonunit in R can be written as a finite product of
irreducible elements.
Let T be the subset of PI(R) consisting of all principal ideals (x) ± R such

that x is not a finite product of irreducible elements. Suppose ST is not empty.
Because PI(R) is noetherian, we know that ST has a maximal element (x). Now x
is not irreducible because an irreducible element is obviously the finite product of
irreducible elements, namely, of one element. Hence, x = yz where neither y nor
z is zero or a unit. Therefore, (y) D (x) and (z)D(x) and both are different from
(x). This implies that neither (y) nor (z) is in ST since (x) is a maximal element of
ST. Therefore, y and z can both be written as a finite product of irreducible ele
ments which implies that x = yz can also be written as a finite product of
irreducible elements. But this contradicts the fact that x could not be so written.
Therefore, the set ST is empty, which means that every nonzero element in R
which is not a unit is a finite product of irreducible elements. This finishes the
proof of the theorem.

S. PRINCIPAL IDEAL DOMAINS

In this section we give an introduction to the important type of unique factoriza
tion domains known as principal ideal domains. Here we shall be mainly con
cerned with the ideal theory of such rings. Much later on we shall examine the
module theory for principal ideal domains.

Definition
A principal ideal domain is an integral domain R which has the property that every
ideal in R is principal. We shall often use PID as an abbreviation for principal
ideal domain.

Our first concern is to show that every PID is a unique factorization domain.
In the last section we showed that an integral domain is a unique factorization do
main if the intersection of two principal ideals is a principal ideal and the set of
principal ideals is noetherian. Because in a PID all ideals are principal, PID's cer
tainly have the property that the intersection of two principal ideals is a principal
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ideal. Therefore, to show that PID's are unique factorization domains, it suffices
to show that the set of principal ideals in a PID, namely, the set of all ideals in a
PID, is noetherian. This will follow trivially from the following more general con
siderations which will play a large role in the rest of this book.

Proposition 5.1
Let R be an arbitrary, commutative ring. Then the set of ideals in R is noetherian
if and only if every ideal / in R is finitely generated; that is, if / is an ideal in R,
then there are a finite number of elements in / which generate /.
PROOF: Suppose every ideal in R is finitely generated. We want to show that

this implies that the set of ideals in R is noetherian. Suppose

7,C/2C .. C/„C--
is an ascending chain of ideals in R. Then it is easily seen that J = U /„ is an ideal

„EN

in R. Because every ideal in R is finitely generated, we know that J is finitely
generated. Suppose x,,...,x, generate J. Because J = U /„, it follows that each x,

•EN

is in /„,,,, for some n(xj) in N. Hence, the finite set of integers n(x,), . . ., n(x,) has a
maximum m which has the property that each x,, . . . , * is in Im. Because ImCJ and
Im contains a set of generators for J, it follows that /„ = J. This clearly implies that
/„ = /„ for all n a m. Therefore, if every ideal in R is finitely generated, then the set
of all ideals in R is noetherian because we have shown that given any ascending
chain of ideals in R

I,CI2C- . -C/„C- . .

there is an integer m such that /„ = Im for all n^m.
Suppose now that the set of ideals in R is noetherian. We want to show that

each ideal in R is finitely generated. Suppose that this is not the case. Then there is
an ideal J in R which is not finitely generated. We define the sequence x,,
x2,...,x. of elements in R by induction as follows. Let x, be an arbitrary element
in J. Suppose we have defined the sequence X,, . . . , x„. Because J is not finitely
generated, we know that the ideal (x , x„) which is contained in J and gener
ated by X,, . . . , x. is not all of J. Define x„H to be an arbitrary element of J not in
(x,, ..., x„). In this way we obtain a sequence x,, x2 x„, . . . of elements in R
with the property that all the ideals in the ascending chain

(x,)C(x,,X2)C . . . C(x x„)C . . .

are distinct. Because this contradicts the fact that the set of ideals in the ring R is
noetherian, we see that there are no ideals J in R which are not finitely generated.
Hence, we have shown that if the set of ideals in R is noetherian, then every ideal
in R is finitely generated.

For ease of reference we make the following definition.

Definition
A commutative ring R is said to be a noetherian ring if the set of ideals in R is
noetherian.
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Hence, our previous result can be rephrased as follows: A commutative ring
R is noetherian if and only if every ideal in R is finitely generated. As an
immediate consequence we have the following.

Corollary 5.2
Every PID is a noetherian ring.

Because this was precisely the missing step in proving that a PID is a unique
factorization domain, we also have the following.

Theorem 5.3
Every PID is a unique factorization domain.

We pause now in our general development of PID's in order to give some
examples of PID's. The first example we consider is that of the ring Z of all
integers. The fact that Z is a PID is based on the following well-known proposi
tion.

Proposition 5.4
Let a and b be integers with b±0.
Then there exist integers q and r such that:

(a) a = qb + r.

(b) 0<|r|<|fo|.

PROOF: We prove this result under the additional hypothesis that a >0 and
b > 0. The fact that this implies the general result is left as an exercise to the
reader.

Since a >0 and b >0, it follows that (a + \)b > a. Therefore, the subset N' of
N consisting of those n in N such that nb > a is not empty. Hence, the fact that N
is well ordered implies that N' has a first element q'. Because q'b >a >0, it
follows that q'al or, equivalently, q = q' — \ is in N. Because q' = q + \ is the
smallest integer n in N such that nb > a, it follows that (q + l)b > a > qb >0 or,
equivalently, b>a-qbs:0. Therefore, the pair q and r = a-qb satisfy our de
sired conditions: a = qb + r and 0<|r|<|b|.

We now use this to prove the following.

Proposition 5.5
The ring Z of all integers is a PID.

PROOF: Let / be an ideal of Z. If / = 0, then I is certainly principal, so we may
assume that l=f=0. Let N' be the subset of N consisting of all |x

| as x runs through

all the nonzero elements in /. Because /=£0, we know that N' is a nonempty subset
of N and hence has a first element of the form \b\±0 with b in /. Suppose a is an
arbitrary element of /. Then by our previous result we know that there are q and r

in Z such that a = qb + r with 0< \r
\ < \b\. Because a and b are in I
, it follows that

r = a — bq is also in /. Hence, if r±0, then \r\ <\b\ is also in N' which contradicts
the fact that |b
| is the first element of N'. Thus, r = 0 or a = bq. Therefore, every
element of I is divisible by b which implies that I is the principal ideal Zb. Hence,
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every ideal / of Z is a principal ideal which means that Z is a principal ideal
domain.

A few minutes' thought should suffice to convince the reader that the proof
that Z is a PID which we just gave depends in an essential way on the existence of
the absolute value map ||:Z-»N. But the only property of the absolute value
actually used in the proof is that if a and b are in Z with b =£0, then there are q
and r- in Z satisfying a = qb + r where 0s|r| <|b|. These observations suggest
the following question: Is an integral domain R a PID if there is a map / : R - {0}-»
N satisfying the following condition: Given any a and b in R with b ± 0, there
exist q and r in R such that a = qb + r where either r = 0 or f(r)<f(b)? The
proof that this is indeed the case is essentially identical to the proof that Z is a
PID. All one has to do is show that if / is a nonzero ideal of R, then (1) there is an
element b in / different from zero such that f(b)sf(x) for all nonzero x in I, and
(2) the defining property of / implies that any such ^ in 7 is a generator for /. The
details are left to the reader to carry out. We summarize this discussion in the
following definition and proposition.

Definition
Let R be an integral domain. A map / : R - {0}-» N is called a Euclidean function on
R if given a and b in R with b =£0, there are q and r in R such that a = qb + r and
either r = 0 or f(r)<f(b). An integral domain for which there exists a Euclidean
function is called a Euclidean domain.

Proposition 5.6
R is a PID if R is a Euclidean domain.

It is obvious from our discussion that the absolute value is a Euclidean func
tion on Z and so Z is a Euclidean domain. We now show that if R is a field, then the
degree of a polynomial is a Euclidean function on R[X], the ring of polynomials
over R, and so R[X] is a Euclidean domain and therefore a PID. This fact is an
easy consequence of the following general lemma.

Lemma 5.7
Let R be an arbitrary ring and b(X) a nonzero polynomial in R[X] whose leading
coefficient is a unit in R. Then given any polynomial a(X) in R[X], there exist
polynomials q(X) and r(X) in R[X] such that a(X) = q(X)b(X) + r(X) where
either r(X) = 0 or deg(r(X))<deg(b(X)).

PROOF: The result is obvious if a(X) = 0. So we may suppose a{X)±0. If
deg (a(X)) < deg (b(X)), then q(X) = 0 and r(X) = a(X) have our required proper
ties. Suppose now that m =deg(a(X))>deg(b(X))= t. Let a(X) = 2,eN a,^' and
b(X) = 2,eN b,Xl. Then a„±0 and a, = 0 for all i > m while b, is a unit in R and bi = 0
for all i>t. Then it is easily checked that the degree of a,(X), where a,(X) =
a(X)-b;'amb(X)Xm[, is less than the degree of a(X) if a,(X)=£0. Thus, if
deg(a(X))>deg b(X), then there are q,(X) and a,(X) in R[X] such that a(X) =
ql(X)b(X) + a,(X) where either a,(X) = 0 or deg (a,(X)) < deg (a(X)). We leave it
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to the reader to show how this result may be used to prove the lemma by induction
on n = deg (a(X)) - deg (b(X)).
This lemma immediately implies the following.

Proposition 5.8
Let R be a field. Then the map deg:R[X]-{0}-»N is a Euclidean function on the
integral domain R[X] and so R[X] is a Euclidean domain and consequently a PID.

With these examples of PID's in mind, we return to our general discussion of
PID's. In this connection the following notion is useful.

Definition
An ideal / in an arbitrary commutative ring R is said to be a maximal ideal if R is
the only ideal of R containing I properly, that is, R is the only ideal different from
/ containing R.
The following characterization of maximal ideals is very useful.

Basic Property 5.9
Let / be a proper ideal of R (that is, I±R). Then / is a maximal ideal of R if and
only if the ring RII is a field.

PROOF: We have already seen that a ring is a field if and only if the zero ideal
is the only proper ideal in the ring. Hence, the ring RII is a field if and only if (0) is
the only proper ideal in RII. The fact that I±R is equivalent to the fact that (0) is a
proper ideal of R. The bijective correspondence between the ideals of RII and the
ideals of R containing / (see Chapter 4, Proposition 4.4), shows that (0) is the only
proper ideal of RII if and only if R is the only ideal of R containing / properly.
Therefore, RII is a field if and only if / is a maximal ideal of R.
A maximal ideal is a special case of a prime ideal which we now define.

Definition
Let R be an arbitrary commutative ring. An ideal / of R is a prime ideal of R if RII
is an integral domain.

Basic Properties 5.10
Let R be an arbitrary commutative ring.

(a) An ideal I=f=R is a prime ideal if and only if xy in I implies either x or y is in /.
(b) R is an integral domain if and only if (0) is a prime ideal in R.
(c) An ideal / i* R is a prime ideal in R if and only if hhCl implies either I, C I or
I2C I for all ideals I, and h in I.

(d) If R is an integral domain, then x is a prime element if and only if RX is a
nonzero prime ideal in R.

We now point out the following important characterization of prime elements
in a PID.
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Proposition 5.11
For an element x in a ring R which is a PID, the following statements are
equivalent:

(a) x is irreducible.

(b) x is a prime element.

(c) (x) is a prime ideal.

(d) (x) is a maximal ideal in R.

(e) Rl(x) is a field.

PROOF: The equivalence of (a), (b), and (c) as well as the equivalence of (d)
and (e) have already been established. We finish the proof by showing that (a) and

(d) are equivalent.
By definition, an element a in R is irreducible if and only if R is the only

principal ideal of R which contains (x) properly. But all the ideals of R are
principal ideals because R is a PID. Hence, x is irreducible if and only if R is the
only ideal of R containing (x) properly. Therefore, x is irreducible if and only if
(x) is maximal, which is our desired result.

This proposition is very useful in constructing fields of various types. For
instance, for each prime p in Z, we have that Z/pZ is a field. Because p =

card(ZlpZ), this shows that there are a great many fields with only a finite number
of elements. Other examples of how this proposition can be used to construct
fields are given in the exercises.

6. FACTOR RINGS OF PID'S

This section is devoted to studying the rings of the form RII where / is a proper
nonzero ideal in a ring R which is a PID.

Proposition 6.1
Let (x) be a proper nonzero ideal in the PID, R. Then:

(a) A maximal ideal (p) in R contains (x) if and only if p is a prime which divides
x. Hence;

(b) (x) is contained in only a finite number of maximal ideals of R. A set
(p,), . . . , (p,) of distinct maximal ideals of R is precisely the set of all maximal

l

ideals of R containing (x) if and only if x = u Up"1 where u is a unit in R and

all the n,>0.

(c) Suppose

(r,)D(r2)0-0(r»)0--

is a descending chain of ideals in R each of which contains the ideal (x).
Then there is an integer m such that (rk) = (r„) for all ks:m.

PROOF: (a) and (b) are left as exercises to the reader,

(c) Suppose (n)D(r2)D ... D(r,)D ... is a descending chain of ideals in R all
of which contain (x). Letting {ni(r)},e, be the family of prime exponents of an
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element r in R with respect to a representative family of primes {p,},Ei, we have

n,(x) > . . . > n,(r,+,) > n,(r.) a . . . > n,(r,)

for all i in /. Hence, for each i in / there is a nonnegative integer, and hence a
smallest integer m„ such that n,Ck) = rti(r„,) for all k ^ m,. Because n,(x) = 0 for
all but a finite number of i in /, all but a finite number of m, = 0. Hence, the family
{m,},ei has a maximum, m, which has the property that n,(rk) = n,C„ ) for all k > m
and all i in /. This obviously implies our desired result that (rk) = (rm) for all
k >m.

Because of the importance in all of algebra of the type of phenomenon de
scribed in the last part of this proposition, we make the following definition.

Definition
A set .'/ of subsets of a set X is said to be artinian or to satisfy the descending chain
condition if given any descending chain

X,DX2D--OX„D--

of subsets of X in if there is an integer m such that X, = Xm for all i ^ m.
A commutative ring R is said to be artinian or satisfy the descending chain

condition if the set of all ideals in R is artinian.

We leave it to the reader to verify the following.

Basic Properties 6.2

(a) Let & be a set of subsets of a set X. Then if is artinian if and only if every
nonempty subset ST of if has a minimal element, that is, there is an X0 in ST
such that if X is in 5" and X CX0, then X = X0.

(b) A ring R is artinian if every nonempty set of ideals has a minimal element.

Using the relationship between the ideals in a ring R containing a fixed ideal /
of R and the ideals of RII, we obtain the following restatement of Proposition 6.1.

Proposition 6.3
Let R be a PID and / a nonzero proper ideal of R. Then the ring RII has the
following properties:

(a) Every ideal in RII is principal.
(b) RII has a finite number of maximal ideals.
(c) RII is an artinian ring,

We now develop two results concerning arbitrary commutative rings which,
when applied to factor rings of a PID, will give us the final result of this section.

Lemma 6.4
Let /,, ...,/„ be ideals in an arbitrary commutative ring such that for all j > 1 the
ideal generated by /, and /) is all of R. Then R is also generated by /
, and the
product /2 . . . /„ of the set of ideals {/2 !„}.
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PROOF: Because R is generated by /, and I, for all / > 1 we know that for each

/ > 1 there are elements r, in /, and s, in /, such that r,+ s, = I. Hence, 1 =

II (r, +s,). After carrying out the indicated multiplication, we see that all the

terms except one in the resulting sum are in /, while the remaining one is in

h . . . L. Therefore, 1 is in the ideal generated by /, and h- . . L from which it
follows that I, and h . . . L generate R.

As our first application of this lemma, we prove the following.

Proposition 6.5
Let /,, ...,/„ be a finite set of ideals in a ring R such that the ideal generated by /,

n

and Ii is R whenever i ± /. Then D /, = /, . . - /„.

M n

PROOF: Because it is obvious that n /,D II I, we only have to show that

n /*D n I,, which we do by induction on n. Suppose n = 2. Then 1 = r, + r2 with r, in

1 1 and r2 in /2. Suppose r is in /,D/2. Then r=rr, + rr2 where both rr, and rr2 are in
the product /1/2. Hence, I,nI2Cl,I2 or, equivalently, I,nL^I,h if I, and I2

generate R.

Suppose / /„ have the property that I and l generate R whenever i=f=j.
By the inductive hypothesis we have I2n ... n /„ = I2 . . . /„, and so 7, D I2 D ...

D /. = I, n(I2 . . . IN). Because 7
, and 7) generate R for j = 2 n, we have by

our lemma that /1 and h...L generate R. Hence, it follows from our inductive hy
pothesis that /,n(/2.../,)= /,(/2 .../„). Therefore, /, n ... n /„ = /,... /„, which
finishes our inductive proof.

Suppose {ZJkeK is a family of ideals in R and fk:R-»RIIk is the canonical sur-
jective morphism of rings for each k. Then define the morphism /: R -». n RIIk by

ken

/(x) = (/i(X))*eK where n RIIk is the product of the family of rings {RIIJkeK- Then
keK

it is obvious that Ker / = n Ik. Although it is not so clear how to describe Im / in
keK

general, there is a special case in which this can easily be done.

Proposition 6.6
Let /,, ...,/„ be a finite set of ideals in the ring R such that R is generated by I, and

/) whenever i±j. If for every k in [1, . . . , n] we denote by fk:R-»RIIk the canoni

cal surjective morphism, then the morphism f:R-»U RIIk given by /(r) =k-, „

(fk(r))k£U. .„, for all r in R is a surjective morphism with Ker /= D Ik = I, . . . /„.

Hence, / induces an isomorphism

n/. '-'lk
fc-,

PROOF: We leave it to the reader to show that the proposition in question is
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equivalent to the statement that given any set of elements a a„ in R there is a

single element r in R satisfying r-ak is in lk for each k in [1 n]. We now
prove this second assertion by induction on n.
Suppose n = 2. We want to show that given any pair of elements a, and a2 in R

there is an r in R such that r- a, is in /, and r-a2 is in /2. Because R is generated
by I, and /2 we know there are elements r, in I, and r2 in /2 such that 1 = r, + r2.
Thus, a, = a,r, + a,r2 while a2 = a2r, + a2r2. Then it is easily seen that r =
a2r, + a,r2 has the desired properties: r — a, is in /, and r — a2 is in /2.
Assume now that n >2. We want to show that given any sequence a,, . . . , ft,

of elements in R, we can find an r in R such that r - ft is in Ik for all k = 1, . . . , n.
By our inductive hypothesis, we know there is an element r' in R such that r' — a,
is in /< for i = 1, . . . , n - 1. But by Lemma 6.4, we know that /, . . . /„-, and /„
generate R so that there is an r in R with r— r" in /, . . . /„., and r-a„ is in /„.
However, r — a, = r — r' + r' — a, and, since r - r' is in /, . . . /„-.CJ, and r' - a, is
in /,

,

it follows that r - ft is in /, for i = 1
,
. . . , n — 1
.

Therefore, we see that the morphism /: R -» n R//k is a surjective morphism.

Since we have already observed that the kernel of / is D Ik, we see that the
morphism / induces an isomorphism R/DI, = II RIIk.

k-l k-l

This proposition is known as the Chinese Remainder Theorem.
If R is a PID and / is a nonzero proper ideal of R, we have I = (a) for some a

in R. Letting a = p"' . . . p"' be a factorization of a into powers of distinct primes,
we see that I = I,,...,I, where the ideal /1 = (p°l) for ; = 1 t. Because J, and Ik

together generate R when j±k, our last result tells us that RII = R//, x . . . xRII,.
Thus, we have the following.

Proposition 6.7
Let R be a PID and I a nonzero proper ideal of R. Then RII is isomorphic to the
product of rings RII,x- . . x RII, where each ideal J) is generated by a power of a
prime element in R.

7. DIVISORS

In the preceding sections, the formulation of concepts and proofs have been
primarily in terms of elements in a commutative ring. In this section, we indicate
how these ideas may be presented in ideal-theoretic terms. Because the proofs of
the propositions stated in this section can be obtained from those already given in
preceding sections, no proofs are included here. The reader is urged, however, to
familiarize himself with the contents of this section because this language will be
extensively used from now on.

Definition

A principal divisor of an integral domain R is any nonzero principal ideal of R.

The reader should have no difficulty in establishing the following.
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Basic Properties 7.1
Let R be an integral domain.

(a) If /, and h are principal divisors of R, then 1,12 is a principal divisor. Hence,
the set of all principal divisors of R is submonoid of PI(R), the monoid of all
principal ideals of R (see Section 1).

(b) If /, /i, and /2 are principal divisors of R such that //, = II2. then I, = /2.
(c) For two principal divisors I, = (n) and h = (r2) of R, the following are
equivalent:

(I) /, D h.

(U) r,|r2.

(ilI) There is a principal divisor I such that II, = /2.
We summarize some of these observations in the following.

Definitions
Let R be an integral domain. We denote by PD(R) the submonoid of PI(R) con
sisting of all principal divisors.
If 7, and I2 are two principal divisors of R, we say that I, divides J2, which we

denote by I,\I2, if there is a principal divisor I such that II, = /2.
We now point out, for principal divisors, the following obvious analogs of the

notions of irreducible and prime elements.

Definition
Let R be an integral domain and / a principal divisor of R different from R.

(a) / is said to be an irreducible divisor of R if R and I are the only principal
divisors containing /.

(b) I is said to be a principal prime divisor of R if / is a prime ideal of R.

Basic, Properties 7.2
Let r be a nonzero element of R. Then:

(a) r is irreducible if and only if (r) is an irreducible divisor.
(b) r is a prime element if and only if (r) is a principal prime divisor.

For convenience of reference we make the following.

Definition
The set of all principal prime divisors for an integral domain R is denoted by

PPD(R).

We now list some properties of principal divisors of R which can either be
easily derived from or proven in essentially the "same way as their analogs for
nonzero elements of R. ^

Basic Properties 7.3
Let R be an integral domain.

(a) A principal divisor / is a principal prime divisor if and only if given two
principal divisors /, and I2 such that I,h C /, then either I, or I1 is contained in I.
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(b) Every principal prime divisor is irreducible.

(c) If /, and h are principal prime divisors and I, C I2, then U = h-
(d) Suppose {/hKcP,to«l and {nv}yeppD,R} are two almost zero families of elements
in N. Then

FI $"* = EI *"* ifandonlyif nv = ni
VePPtHR) VemxRl

for all q$GPPD(R).

The reader should have no difficulty establishing the following characteriza
tion of UFD's in terms of the monoid PPD(R).

Proposition 7.4
An integral domain R is a unique factorization domain if and only if for each
principal divisor I of R there is an almost zero family {n.v}vr m*m of elements in N
such that / = n $"*

.tePPDiRl

Combining this last proposition with the previous basic properties we have
the following.

Proposition 7.5
Suppose R is a unique factorization domain. Then, given any principal divisor / of
R, there is one and only one almost zero family {n«hiemi„!, of elements in N such
that I = n $"*.

«EPJiDiI!i

This result serves as the basis for the following.

Definition
Suppose R is a unique factorization domain. If / is a principal divisor of R, then
the unique representation I = II H$"«, with {n<B}«eppDi,» an almost zero family

lePPDi«l

of elements in N, is called the primary decomposition of /.
The uniquely determined integers nv for each $ in PPD(R) which appear in

the primary decomposition of / is denoted by n«(/) for each 9J in PPD(R).
Finally, if x is a nonzero element of R, then for each ty in PPD(R), we denote

by nv(x) the integer n«((x)).

It is important, at this point, to compare the almost zero family {n«0)K,EPPD<R,
with the family of prime exponents {n,(x)},ei associated with a representative fam
ily of prime elements, introduced in Section 4.
The following basic facts concerning primary decompositions of principal

divisors of unique factorization domains should be verified.

Basic Properties 7.6
Let R be a unique factorization domain. Then we have:

(a) A principal divisor / is R if and only if n«(/) = 0 for all $ in PPD(R).
(b) If I, and I2 are principal divisors of R, then nv(_I,I2) = n«(/,) + n«(/2) for all ty in
PPD(R).
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(c) For two principal divisors /, and /2, the following are equivalent:

(i) I,Dh.
(ii) /,|/2, that is, IJ = h for some principal divisor / of R.
(iii) For each $ in PPD(R) we have

n,(/2)2=n2.(/,).

We underscore, at the risk of being redundant, the following analogs for the
nonzero elements of a unique factorization domain.

Basic Properties 7.7
Let R be a unique factorization domain.

(a) An element r in R is a unit in R if and only if n«(r) = 0 for all $ in PPD(R).
(b) Suppose that r, and r2 are two nonzero elements of R. Then nv(r,) = nv(r2) for

all ty in PPD(R) if and only if there is a unit u such that un = r2.
(c) If r, and r2 are nonzero elements of R, then nv(r,r2) = nv(r,)+ nv(r2) for all $ in
PPDOR).

(d) For two nonzero elements r, and r2 in R, the following are equivalent:

(0 r.|r,.

(ii) n.B(r2)==iu.(r,) for all ty in PPD(R).

As for greatest common divisors and least common multiples, the basic prop

erties already cited for these notions for elements fully justify the following

analogs for principal divisors.

Definition
Let /,,...,/„ be a finite family of principal divisors of an integral domain R.

(a) A principal divisor I is said to be the greatest common divisor of /,,...,/„
which we denote by / = gcd[/,, ...,/„] if:

(i) / D (7„ ...,/„), the ideal generated by U I,
.

l» ,

(ii) If J is a principal divisor of R containing (/ , /„), then JDI.
(b) A principal divisor / is said to be the least common multiple of /,,..., /„, which
we denote by / = lcm[/,, ...,/„] if / = /,n . . . n/„.
We now state the analog, for divisors, of Proposition 4.5.

Proposition 7.8
Let /,, ...,/„ be a finite family of principal divisors of a unique factorization do
main R.

(a) For each ^ in PPD(R), let nv = min (n„*(/,), . . . , n«(/„)). Then {n^neppm«, is an
almost zero family of elements in N with the property that / = II $"* is.,,

T . «EPPDi«Igcd[/„...,/„].
(b) For each $ in PPD(R), let nv = max(n«(/,), . . . , n«(/„)). Then {nv}VEPPDIRl is

an almost zero family of elements in N with the property that I = II $"* is... . T T , «ePPDiRI
the lcm[/,,. ..,/„].

(c) If l, and 7
2 are two principal divisors of R, then

/,/2 = (lcm[/„/2])(gcd[/„/2])
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Note that this last statement asserts that if x and y are nonzero elements of a
UFD, R, then if c is a lcm[x, y] we have xy = cd where d is a gcd[x, y].

Corollary 7.9
Suppose R is a unique factorization domain. Let {p,;},,-,,,.,„, be a family of prime
elements of R with the property (ov) = '$ for all 93 in PPD(R) (that is, a
representative family of prime elements of R).

(a) If x is a nonzero element of R, then there is a uniquely determined unit u in R
such that x = u II pS"<".

vePPD<JO

(b) If X,,...,x„ is a finite family of nonzero elements in R and n« =
min(nv(x,), ...,nv(x„)) for each $ in PPD(R), then x = II p$« is a,. , «ePPDiRigcd[x„...,xj.

(c) If X, x„ is a finite family of nonzero elements in R and nv =

max(n,(X,), . . . , n«(x„)), then x = IIpi^ is a lcm[x,, . . . , X„].
(d) If x, and X2 are nonzero elements of R and x — lcm[x,, x2] and y = gcd[x,, x2],
then xy = KX1X2 with u a unit in R.

8. LOCALIZATION IN INTEGRAL DOMAINS

In this section we apply the notion of localization for integral domains to obtain
some new examples of unique factorization domains as well as principal ideal
domains. We begin by saying what we mean by localization for integral domains.
Let R be an integral domain with field of quotients Q(R). Suppose S is a

submonoid of the multiplicative monoid of nonzero elements in R. Let Rs be the
subset of Q(R) consisting of all quotients rls with s in S. Then it is easily checked
that Rs is a subring of Q(R) containing R as a subring. Clearly, if S - R - {0}, then
Rs= 0(R). Because the rings of the form Rs play an important role in studying in
tegral domains, they are given a special name.

Definitions
Let R be an integral domain. A subset S of R is called a multiplicative subset of R
if it is a submonoid of the multiplicative monoid of nonzero elements of R. If S is
a multiplicative subset of R, the subring of Q(R) consisting of all quotients rls
with s in S is called the localization of R with respect to S and is denoted by Rs.

In order to underscore the connection between localization and unique fac
torization domains, we show how to express, in terms of localization, that an
integral domain is a unique factorization domain.

Proposition 8.1
For an integral domain R the following are equivalent:

(a) R is a unique factorization domain.

(b) Rs=Q(R), where S is the multiplicative set consisting of all elements of R
which can be written as a unit in R times a finite product of prime elements
in R.
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(c) There is a multiplicative set S consisting of elements which can be written as a
unit in R times a finite product of prime elements in R such that Rs= (?(R).

PROOF: (a) implies (b) and (b) implies (c) are trivial.

(c) implies (a). In order to show that R is a UFD, we must show that every
nonzero element r in R is a unit times a finite product of prime elements. Since we
are assuming that Rs= Q(R), we know that if r is a nonzero element in R, then

Mr = r'ls where r' is in R and s is in S. From this it follows that rr' = s = u Yl p,

where u is a unit in R and the p, are prime elements in R. The fact that this implies
that both r and r' are of the form a unit in R times a finite product of prime
elements in R follows easily by induction on n, the number of prime elements in

the expression rr' = u n p,. This proof is left as an exercise for the reader.

The following general properties of localization play an important role in our
applications of this technique to the study of unique factorization domains.

Proposition 8.2
Let S and T be multiplicative subsets of the integral domain R.

(a) Because RCRsCQ(R), we have Q(R) = Q(Rs).
(b) If SCT, then RCRsCRTC <?(R). Hence, if Rs= Q(R) = Q(Rs), then Rr =

Q(RT) = Q(R).
(c) T is a multiplicative subset of Rs and S is a multiplicative subset of RT which
are related by:

(i) (Rs)T= RsT- (RT)s where ST is the multiplicative subset of R consisting of
all products st where s is in S and t is in T. Clearly, ST contains S U T.

(ii) Rst contains Rs and RT.

(d) If x is a nonzero element in R, then .visa unit in Rs if and only if rx is in S for
some r in R or, what is the same thing, Rxr,S±0.

(e) If x is a prime element in R, then x is either a prime or a unit in R$ according to
whether RxDS is empty or not empty.

PROOF: Left as an exercise for the reader.

As an easy consequence of this proposition we have the following.

Corollary 8.3
Suppose S is a multiplicative subset of the unique factorization domain R. Then

Rs is also a unique factorization domain.

PROOF: Let T be the multiplicative subset R -{0} of R. Because R is a UFD,
we know that all the elements of T can be written as a unit in R times a finite
product of prime elements in R. Because units in R remain units in Rs and prime
elements in R are either units or primes in Rs, we know that T, viewed as a
multiplicative subset of Rs, consists of elements which are units times a finite
product of primes in Rs. Therefore, by our characterizations of unique factoriza
tion domains by means of localization (see Proposition 8.1), it will follow that Rs is
a unique factorization domain if we show that (Rsh=Q(Rs)- But the fact that
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Q(Rs)=Q(R)D(Rs)TDRT=Q(R) = Q(Rs) implies (Rsh = Q(Rs), which gives us
our desired result, namely, that Rs is a UFD.

The remaining results concerning unique factorization domains which we
develop in this section depend on the relationship between PPD(R) and PPD(Rs)
where S is a multiplicative subset of the integral domain R. Because the elements
of PPD(R) and PPD(Rs) are principal prime ideals of R and Rs, respectively, it is
appropriate to begin this discussion by pointing out some of the general connec
tions between the ideals of R and those of Rs. We first make the useful definition.

Definition
Suppose S is a multiplicative subset of the integral domain R. If / is an ideal of R
we denote by IRs or /s the ideal of Rs generated by the subset I of Rs.

Basic Properties 8.4
Let S be a multiplicative subset of the integral domain R. If / is an ideal of R,
then:

(a) The ideal Is of Rs consists of all elements of Rs which can be written in the
form xls with x in / and s in S.

(b) If {xk}kEK generates I as an ideal in R, then {xk}keK generates /.
, as an ideal in Rs-

(c) Hence, if / is a finitely generated ideal of R, then Is is a finitely generated ideal
of Rs.

(d) In particular, if / is a principal ideal of R, then h is a principal ideal of Rs.
(e) Is = Rs if and only if /nS=£0.

PROOF: (a) Because Is is the ideal of Rs generated by the subset / of Rs, we
know that the elements of /s are the finite sums (r./sjX, + . . . + (r„/s„)x„ with the x,

in / and rl and sl in R and S, respectively. But

Il

where r, = II sk. Because 2"., r,fpci is in / and n si is in S, it follows that the

elements of /s can all be written in the form xls with x in / and s in S. Because
each element xls with x in / and s in S can be written as (1/s) - x and each 1 Is is in
Rs, it follows that each such xls is in /s. Thus, Is consists precisely of the elements
xls with x in / and s in S.

(b) Suppose {xk}keK generates the ideal / of R. We want to show that {xk}keK
also generates the ideal /s of Rs. Suppose xls is in /s. Then there is a finite subset
K' of K and a family {rk}keK of elements of R such that x = 2 rkxk. Therefore,

k<EK

xls = CS,keKrkxk)ls=1keK(rkls)-xk. Because each rkls is in Rs, we see that the
family {xk}keK does indeed generate the ideal Is of Rs.
(c), (d), and (e) are left as exercises.

If J is an ideal of Rs, then it is not difficult to check that JnR is an ideal of R.
Thus, associated with the ideal J of Rs is the ideal J n R of R. On the other hand,
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associated with each ideal / of R is the ideal Is of Rs. We now investigate the
connections between these two operations.

Proposition 8.5
Suppose S is a multiplicative subset of the integral domain R. Then for each ideal
J of Rs, the ideal J("lR of R has the following properties:
(a) For an element x in R the following statements are equivalent:

(i) x is in J('\R.
(ii) There is an s in S such that sx is in J.
(Hi) sx is in J for all s in S.
(iv) xls is in J for all s in S.
(v) xls is in J for some s in S.

(b) (Jr,R)s=J.
(c) If J ± Rs, then (J D R) D S = 0.
(d) If J is a prime ideal of Rs, then J D R is a prime ideal of R.
(e) If J, and J2 are ideals of Rs such that JlnR=J2r,R, then J,=J2.

PROOF: We leave everything except part (d) as an exercise. Part (d) is an
obvious special case of the following.

Lemma 8.6
Suppose f:R-»T is a morphism of arbitrary commutative rings. If / is a prime
ideal of T, then f"\I) is a prime ideal of R.
PROOF: The morphism f:R-»T induces an injective morphism of rings
RIf'\I)-»TII. Because / is a prime ideal of T, we know that TIl is an integral
domain. Hence, RIf'(I) is an integral domain because it is isomorphic to a
subring of the integral domain TII. Therefore. /"'(/) is a prime ideal of R.

As an immediate consequence of Prdposition 8.5 and Basic Properties 8.4 we
have the following.

Corollary 8.7
Suppose S is a multiplicative subset of the integral domain R.

(a) Rs is noetherian if R is noetherian.
(b) Rs is a PID if R is a PID.

PROOF: (a) We show that Rs is noetherian by showing that each ideal J of Rs
is finitely generated. Because R is noetherian every ideal of R is finitely gener
ated. In particular, J D R is a finitely generated ideal of R for each ideal J of Rs.
Hence, by our previous basic properties, (JnR)s is a finitely generated Rs ideal.
But we have just shown that J = (JnR)s, which means that J is a finitely gener
ated ideal of Rs because a finite set of generators for the ideal J D R of R is also a
set of generators for the Rs ideal (JrlR)s = J. Hence, Rs is noetherian, if R is
noetherian.

(b) Proven similarly.

We now want to investigate the connections between an ideal I of R and the
ideal Is n R of R. It is obvious that /s n R D /. In the exercises, an example is given
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to show that Is D R need not be /. The reason for this is that the ideal Is D R must,
as we have already seen, have the property that if x is in R and sx is in Is n R for
some s in S, then x is in J, n R [see Proposition 8.5(a)]. However, the ideal / need
not have this property. In fact, this observation completely accounts for the
difference between / and Is D R as we shall presently see.
To this end, we notice that if / is any ideal in an integral domain R and S is a

multiplicative set in R, then the set of all x in R such that sx is in / for some s in S
is an ideal of R containing /. The importance of this ideal is that it is precisely
Is D R, a fact which we shall verify soon. For convenience of reference we make
the following definition.

Definition
Let / be an ideal in an integral domain R and let S be a multiplicative subset of R.
We call the ideal consisting of all x in R such that sx is in / for some s in S, the
S -closure of I. We denote the S-cIosure of / by C7s(/). We say that I is S -closed if
i=as(i).

Basic Properties 8.8
Suppose S is a multiplicative set in the integral domain R. If / is an ideal of R,
then:

(a) asa)=isnR.
(b) Cls(I) is S-closed because if J is any ideal of Rs, then J OR is S-closed.
(c) Hence, Is D R = I if and only if I is S-closed.
(d) If / is a prime ideal of R, then / is S-closed if and only if / n S = 0.
(e) If l is another ideal in R, then Is = (/')* if and only if Cls(I) = Cfe(.D-
(f) If / ± R is an S-closed ideal, then / n S = 0.
PROOF: (a) We have already seen that since /s is an ideal in Rs, an

element x in R is in h D R if and only if there is an s in S such that sx is in Is, that
is, such that sx = rls' with r in I and s' in S. Therefore, if x is in Is nR, then
ss'x = r in /. From this it follows that Is D R CCls(I). On the other hand, if x is in
Cls(I), then sx — r for some r in I and some s in S which implies that x = rls or,
equivalents, x is in Isr,R. This shows that Cls(I)ClsnR and thus Cls(I) =
IsnR.
(b) and (c) are left as exercises.

(d) Suppose / is a prime ideal in R. Then I ± R. Now if S D I ± 0, then Is =
Rs and so h D R = R ± I. Thus, under these circumstances, / is not S-closed.
Hence, if / is S-closed, then S D / = 0.
Assume S n / = 0. Let X be an element in R having the property that there is

an s in S such that sx is in /. This implies x is in / because I is a prime ideal and sx
is in / although s is not in /.
(e) Clearly, in order to show that Is = I's if Cls(I) = C/s(T). it suffices to show

that /s = (C/s(/))s. Because Cls (I)DI, we have that (Os(/))sD/s. We now show
/sD(C/s(/))s. Each element of (Cls(I))s can be written in the form yls with y in
Cls(I) and s in S. The fact that y is in C/s(/) means that s'y = x for some x in /

and some s' in S. Therefore, y = xls' which implies yls = xlss'. But x/ss' is in Is.
This shows that (C/s(/))s C/s which finishes the proof that /s = (C7s(/))s. The rest
of part (e) is left as an exercise, as is the proof of (f).
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As a partial summary of these results concerning the relationship between the
ideals of R and those of Rs we have the following.

Proposition 8.9
Let S be a multiplicative subset of an integral domain R. Then the map

/: {S-closed ideals of R}-» {ideals of Rs}
given by /(/) = Is for all S-closed ideals I of R has the following properties:
(a) / is a bijective map whose inverse is given by /"'(J) = J D R for all ideals J of
Rs.

(b) If the S-closed ideal / can be generated by n elements, then /(/) = Is can also
be generated by n elements.

(c) An S-closed ideal / of R is a prime ideal of R if and only if /(/) = Is is a prime
ideal of Rs.

(d) Hence, / induces a bijective map between the prime ideals of R which do not
meet S and all the prime ideals of Rs.

9. A CRITERION FOR UNIQUE FACTORIZATION

We now apply these results to unique factorization domains. We begin with the
following.

Definition
Suppose S is a multiplicative subset of the integral domain R. Then we denote by

PPDs(R) the subset of PPD(R) consisting of all principal prime divisors / such
that /nS = 0.
By our previous results we know that if ty is in PPDs(R), then tys is a

principal prime divisor of Rs. This suggests considering the map PPDs(R)-»
PPD(Rs) given by $-»^s for all ¥ in PPDs(R). Because the elements of PPDs(R)
are S-closed, we know that the map PPDs(R)-» PPD(Rs) is always injective.
Hence, it is natural to ask when the map PPDs(R)-» PPD(Rs) is surjective or,
what is the same thing, bijective. In the exercises we will give an example of an
integral domain R which has a multiplicative set S such that the map PPDs(R)-»
PPD(Rs) is not bijective. In the meantime, we point out some cases where this
map is an isomorphism and give some applications of this fact. We begin with the
simplest case.

Proposition 9.1
Suppose R is a PID. If S is any multiplicative subset of R, then the map

PPDs(R)-»PPD(Rs)
is bijective.

PROOF: We have already shown that Rs is a PID because R is a PID. Hence,
PPD(Rs) is nothing more than the set of nonzero prime ideals of Rs. Suppose $ is
a nonzero prime ideal of Rs. Then we known that $ D R is a prime ideal of R with
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the property 0g D R)s = 93. Therefore, tyr,R is a nonzero prime ideal of R and
hence an element of PPD(R) since R is a PID. Because $ DR is also S-closed, it
follows that ySnR is an element of PPDs(R) which goes to ty under the map
PPDs(R)--»PPD(Rs). This shows that if R is a PID, then the map PPDs(R)-»
PPD(Rs) is surjective and hence bijective.

In connection with this result, it is interesting to observe the following easily
verified proposition.

Proposition 9.2

Suppose R is a PID and X is an arbitrary subset of PPD(R). If S consists of all s
in R not divisible by any prime element p in R such that (p) is in X, then:

(a) S is a multiplicative subset of R.

(b) X = PPDs(R)-
(c) The map X-»PPD(Rs) given by $-»^s for all ^ in X is bijective.

This last observation can be used to show that given any integer n > 0 there is
a PID R with Card (PPD(R)) = n. To accomplish this, all one has to do is show that
there is a PID R with PPD(R) an infinite set. For suppose R is a PID with PPD(R)
an infinite set. Then given any integer n ^0, there is a subset X of PPD(R) with
n-elements. But by our previous result, there is a multiplicative subset S of R
such that X = PPDs(R). Therefore, Rs is a PID such that PPD(Rs) has n-elements
because the map X^PPD(Rs) given by $-»$s for all ty in X is an isomorphism
of sets.
We now show that there are PID's R with PPD(R) an infinite set. In

particular, we show that Z and R[X], the ring of polynomials over a field, all have
an infinite number of principal prime divisors.
We first observe that the rings Z and R[X], with R a field, all have the

property that if a is any nonzero noninvertible element in any such ring, then
either 1+ a or 1- a is not a unit. That this is true for Z is left as an exercise. If R is
a field, then we know that a nonzero polynomial in R[X] is a unit if and only if its
degree is zero. Because deg (1 + a) - deg (a) for any nonzero element a of degree
greater than zero, then 1+ a is not a unit. The fact that Z and R[X], with R a field,
have infinitely many principal prime divisors, now follows from the more general
proposition.

Proposition
Let R be a unique factorization domain with the property that either 1+ r or 1- r
is not a unit for all elements r in R which are neither zero nor a unit. Then PPD(R)
is an infinite set.

PROOF: Suppose PPD(R) is finite with $,, . . . , $„ its distinct elements. Let p,
n

be a generator of $, for each i = 1, . . . , n. Then II p, is not a unit in R and hence
n n li n

1 + Tlp, or 1 - IIp, is not a unit in R. Therefore, pi|(l + IIp,) or pi|(l - flp,) for,-l ,-l l-l l-l
some j = \,...,n. In either event p,|l, which is impossible. This contradiction
shows that the set PPD(R) is infinite.
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We now return to our general question as to when the injective map

PPDs{R)-» PPD(Rs) is bijective for a multiplicative subset S of an integral domain
R. We have already seen that PPDs(R)-» PPD(Rs) is an isomorphism of sets for
any multiplicative set S in a PID, R. As a result of some slightly more general
considerations which are of considerable interest in their own right, we will ex
tend this result to arbitrary multiplicative sets of arbitrary UFD's.
We begin with the following useful lemma.

Lemma 9.4
Let S be a multiplicative subset of the integral domain R. Suppose the set of
principal ideals in R is noetherian. If x is a nonzero element of R, then x = st
where s is in S and t is not divisible by any nonunit in S.

PROOF: Let ST be the set of all principal ideals (y) with the property that there
is an s in S such that sy = x. 5" is not empty because (x) is in ST. Therefore, the set
W has a maximal element (t), because the set of principal ideals in R is noetherian.
We claim that only the units in S divide t. For suppose f = Us, with s, a nonunit in
S. Because x = ts with s in S, then x = t,s,s. So (f ,) is in ST and contains (f) but is

not equal to t because t = t,s, with s, not a unit. This contradicts the fact that (f) is
a maximal element of ST, Therefore x = ts where s is in S and t is not divisible by

any nonunit in S, completing the proof of the lemma.

Definition
Let S be a multiplicative subset of the integral domain R. We say S is generated by
primes if for each x in S there are elements u, p , p, in S such that x =

up , p, where u is a unit of R and p , p, are prime elements of R.

Lemma 9.5
Let R be an integral domain such that the set of principal ideals in R is noetherian.
Suppose S is a multiplicative subset of R generated by primes.

(a) Let x be an element in R with the property that s in S is a unit in R if s\x in R.
Suppose r is an element in R such that x\r in Rs. Then x\r in R.

(b) Each principal divisor of Rs can be generated by an element x in R satisfying
the hypothesis of (a).

(c) If $ is a principal prime divisor of Rs, then there is a principal prime divisor $'
of R such that $i = ^J.

PROOF: (a) Suppose x has the property that if s in S divides x in R, then s is
a unit in R. Further, suppose r in R is divisible by x in Rs, that is, r = (tls)x with f

in R and s in S. By hypothesis, s = u Tl p, where u is a unit in S and p,, . . . , p. are

prime elements of R contained in S. Because none of the p, divide x, the fact that

tx = rs = ru II p, implies (by induction on n) that s\t in R. Hence, x|r in R, whichl-,

completes the proof of (a).
(b) Suppose (rls) is a principal divisor of Rs. Because the set of principal
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ideals of R is noetherian, we know by Lemma 9.4 that r = s'x with s' in S and x
an element of R satisfying the hypothesis of (a). Hence, x =(r/s)(s/s'). which
means that xRs = (rls)Rs because sls' is a unit in Rs. This completes the proof of

(b).

(c) Suppose *g is a principal prime divisor of Rs. Then by (a) and (b) we know
that $ = xRs where x is an element of R having the property that if r is in R and
jc |r in Rs, then x\r in R. We now show that this property, combined with the fact
that x is a prime element in Rs (remember xRs is a principal prime divisor in Rs),

implies that x is a prime element in R.

For suppose r, and r2 are in R and x\r,r2 in R. Then x\r,r2 in Rs and hence x\r,
or x|r2 in Rs. Therefore, it follows that X|r, or x\r2 in R which finishes the proof
that X is a prime element in R. Because the principal prime divisor (X) of R
obviously has the property (X)s = xRs = $, the proof of (c) is complete.

As an immediate consequence of this lemma we have the following.

Proposition 9.6
Suppose R is an integral domain with the property that its set of principal ideals is
noetherian. Further, suppose S is a multiplicative subset of R generated by
primes. Then the map

PPDs(R)^PPD(Rs)

given by P-»Ps is an isomorphism of sets.

We now give several applications of this result. The first is to show that if S is
a multiplicative set in a unique factorization domain R, then the map PPDs(R)-»
PPD(Rs) is an isomorphism. This will follow from our previous proposition and
the following general observation.

Proposition 9.7
Suppose S is a multiplicative subset of an integral domain R. Let T be the subset
of R consisting of all r in R such that r divides s for some s in S. Then:

(a) T is a multiplicative subset of R containing S.
(b) RT = Rs.

(c) IT= h for all ideals / of R.
(d) CUI) = CW) for all ideals / or R.
(e) PPDs(R) = PPIMR).
(f) The maps PPDs(R)--» PPD(Rs) and PPIMR)-» PPD(RT) are the same.

PROOF: (a) Left as an exercise.

(b) Because T D S we know that RT D Rs. Therefore, we must show that
RTC Rs. To do this, it suffices to show that 1/f is in Rs for all t in T. But if t is in T,
then rt is in S for some r in R. Because 1/f = rlrt and r/rr is in Rs, it follows that
llt is in Rs, which is our desired result.
(c), (d), and (f) are left as exercises.

We are now in position to prove the following.
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Proposition 9.8
If S is a multiplicative subset of the unique factorization domain R, then the map

PPDs(R)-»PPD(Rs)
is an isomorphism.

PROOF: Suppose S is a multiplicative subset of R and T is the multiplicative
set of R consisting of all t in R such that t\s for some s in S. By Proposition 9.7,

because we know that PPDs(R) = PPDT(R), that Rs = RT, and the maps

PPDs(R)-»PPD(Rs) and PPDT(R)-»PPD(RT) are the same, it suffices to show
that PPDT(R)^ PPD(RT) is an isomorphism. Clearly, T has the property that if r
in R divides something in T, then r is in T. Hence, the fact that R is a UFD implies
that T is generated by primes. Also, the set of principal ideals of R is noetherian
because R is a UFD. Hence, by Proposition 9.6, the map PPDT(R)-»PPD(RT) is
an isomorphism.

Earlier we showed that if R is a unique factorization domain and S is a
multiplicative set in R, then Rs is a unique factorization domain. Under these

circumstances it is tempting to ask if R is a unique factorization domain just

because there is a multiplicative set S such that Rs is a unique factorization do

main. Although the answer for arbitrary S is no (see the exercises for examples),

there are special rings and special sorts of multiplicative sets for which the answer

is yes, as we now show in the following.

Theorem 9.9
Suppose R is an integral domain whose set of principal ideals is noetherian. Also,

suppose S is a multiplicative subset of R generated by primes. If Rs is a unique
factorization domain, then R is a unique factorization domain.

PROOF: Let T be the multiplicative set of R consisting of all r in R which
divide elements in S. Since every element of S is a finite product of units and

prime elements in R, it is obvious that T has the property that T is generated by
primes. Therefore, because the set of principal ideals in R is noetherian, we know

that PPDT(R)-» PPD(RT) is an isomorphism. Because RT = Rs, we also know
that RT is a unique factorization domain. We now show that these facts together

imply that R is a unique factorization domain.
Let V be the elements in R which can be written as a finite product of units

and primes in R. Then clearly V is a multiplicative set of R containing T. By
Proposition 8. 1, we know that in order to show that R is a unique factorization do
main, it suffices to show that Q(R) = RV.
To do this, we first observe that since a prime element in R is either a unit or a

prime element in RT, the multiplicative subset V of RT has the property that every
element of V is a finite product of units and prime elements in RT. Further, the
fact that PPIMR)-» PPD(RT) is surjective implies that given any prime element y
in RT, there is a prime element r in R (and hence in V) such that yRr= tRt or,
equivalently, there is a unit z in RTsuch that y = zr. Hence, every nonzero element

of RT can be written as zv with z a unit in RT and v in V. This implies that

(RT)v=Q(RT) = Q(R). Because VDT, we know that VT= V. Hence, Q(R) =

(RT)V = RTV= Rv, which gives us our desired conclusion that Rv= Q(R) or, equiv
alently, R is a unique factorization domain.
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10. WHEN R[X] IS A UFD

In this section we show how the criterion established in Theorem 9.9 for when an
integral domain is a unique factorization domain can be used to show that if R is a
UFD, then R[X] is a UFD. The proof will proceed in several steps. First of all we
show that because R is a unique factorization domain, the set of principal ideals in

R[X] is noetherian, something which must be true if R[X] is to be a unique factor
ization domain. What we actually show is a little more general, namely, the
following.

Lemma 10.1
Suppose R is an integral domain whose set of principal ideals is noetherian. Then
the set of principal ideals of R[X] is also noetherian.

PROOF: Suppose
(a,(X))C(a2(X))C- . -C(ft,(X))C- . .

is an ascending chain of principal ideals in R[X]. We want to show that for some
integer m>0we have (ft, (X)) = (ft, (X)) for all n a m. Clearly, we can assume
without loss of generality that all the a„(X)=£0.
Because

a2(X)|a,(X), a3(X)|a2(X), . . . , etc.

we have that deg (a,(X))>deg (a2(X))> . . . >deg (a„(X))> . . -. Hence, there is an
integer h > I such that deg(ft(X)) = deg(a„(X)) for all i a h. So again without
loss of generality we can assume that the degrees of the a, (X) are all the same.
The fact that deg(a„.,(X)) = deg(a„(X)) and ft.,(X)|ft(X) implies that there is a
nonzero r„+, in R such that rn.,ft.,(X) = a„(X). In particular, if we let b„ be the
leading coefficient of ft, (X) for each n, we have the ascending chain of principal
ideals in R

b,RCb2RC-CbJlC---

because r„+,b„n = b„ for all n. Because the set of principal ideals of R is noeth
erian, we know there is an integer m > 1 such that b„R = bmR for all nam. Hence,
rm+,bm.,R = bm.,R, which implies rm., is a unit in R. A similar argument shows that
rm„ is a unit in R for all j a: 1. Therefore, the ideals (^^(X)) are all the same for
integers j a 0, which shows that (ft, (X)) = (ft, (X)) for all n>m. Hence, the set of
principal ideals in R[X] is noetherian if the set of principal ideals in R is
noetherian.

Next we want to show that if p is a prime element in R, then p is also a prime
element in R[X]. This follows from the following general lemma.

Lemma 10.2
Let / be a prime ideal in the arbitrary commutative ring R. Then the ideal IRIX] of
R[X] generated by the set / is a prime ideal of R[X]. Actually R[X]IIR[X] is
isomorphic to the integral domain (RII)[X].

PROOF: Let g:R-»RII be the canonical surjective morphism. Then (RII)[X]
is an integral domain and we know that the morphism of rings g' :R-»(RII)[X]
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which is the composition R— -£-»R//-i:!£-»(R//)[X] can be extended to a unique

morphism f:R[X]-»(RII)[X] with the property that f(X) = X (see Chapter 4,
Proposition 2.2). More precisely, the map f:R[X]-»(RII)[X] given by
/(2,eN a,X') = 2leNg(a,)X' is a morphism of rings. Clearly, / is a surjective mor
phism of rings. Because /(2 a,X') = 0 if and only if each a, is in /, it follows that
Kerf = IR[X]. Therefore, / induces an isomorphism R[X]IIR[X]-»(RII)IX],
which shows that R[X]IIR[X] is an integral domain because (RII)[X] is an
integral domain. Thus, IR[X] is a prime ideal in R[X].

Before proving our main theorem, we need one more preliminary result. Sup
pose R is an integral domain. Then so is R[X]. Because RCQ(R), we know that
R[X]CQ(R)[X]. Clearly, Q(R)[X]CQ(R[X]), because R-{0}d?[X]-{0}, and
so Q(R[X]) = Q(Q(R)[X]). Now let S be a multiplicative set in R. Because RsC
Q(R), we have that Rs[X]CQ(R)[X]CQ(RLY]). On the other hand, S is also a
multiplicative set in R[X] because RCR[X]. Thus, the ring R[X]s is also con
tained in Q(R[X]). We claim that R-&X] and R[AT]s are the same subring of
Q(R[X]) as we now show.
An element of R[X]s can be written as (E,eMa,X')/s for some 2,eNaX' in

R[X] and s in S. But this is clearly the same thing: 1leMaJsX' in Q(R[X]). Be
cause 2,^,a,l sX' is in Rs[X], it follows that R[X]s CRs[X].
An element of Rs[X] can be written as 11eh a,h,X'. Suppose

deg (2,eM a,/s1X') = n. Then a, = 0 for all i > n. Let s = IT s, and let t, = s/s, for all
1-°

/ = 0 n. If we set b, = a,t, for i = 0, . . . , n and b< = 0 for all i > n, then
2,eMMsX' =2,eN(a,/s1)X' in Q(R[X]). Because Z^HbJsX1 also equals
(2,eNb,X')/s which is in R[X]s, we have that Rs[X]CR[X]s. This finishes the
proof of the lemma.

Lemma 10.3
Let S be a multiplicative subset of the integral domain R. Then the subrings Rs[X]
and R[X]s of Q(R[X]) are the same.

Putting together these preliminary results with our previous results about
unique factorization domains, we obtain the following.

Theorem 10.4
If R is a unique factorization domain, then so is R[X].

PROOF: Because R is a UFD, we know that its set of principal ideals is
noetherian. Therefore, we know by Lemma 10.1 that the set of principal ideals in

R[X] is noetherian. Hence, if we can find a multiplicative subset S of R[X] such
that (a) S is generated by primes and (b) R[X], is a unique factorization domain,
then it follows from Theorem 9.9 that R[X] is a unique factorization domain.
Let S be the multiplicative set of R consisting of all nonzero elements in R.

Because R is a unique factorization domain, S is generated by primes. Because R
is a subring of R[X], we know that the units in R are also units in R[X]. But we
have also shown that prime elements in R are also prime elements in R[X]. There
fore, viewing S as a multiplicative set in R[X], it follows that the multiplicative
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subset S of R[X] is generated by primes. Hence, if we show that R[X]s is a UFD,
then we will have finished the proof that R[X] is a UFD.
But we have already seen that R[X]s=Rs[X]. Because S is the set of all

nonzero elements of R, we have that Rs=Q(R) and so R[X]s= Q(R)[X]. But
Q(R)[X] is a principal ideal domain, and hence a unique factorization domain,
since Q(R) is a field. Therefore, R[X]s is a unique factorization domain, which
finishes the proof that R[X] is a unique factorization domain.

EXERCISES

(1) Let R be an integral domain.
(a) Show by induction on n that R[X,, . . . , X„] is an integral domain for all
positive integers n.

(b) Show that if / is any set, then R[X,],e, is an integral domain. [Hint: Show
that if /,,...,/„ is any finite set of elements of R[X,],e„ then there is a finite
subset J of I such that the image of R[X,]le, in R[X,]^, under the usual
injection morphism R[X,],e, -»R[X,],e, contains/ ,/„.

(c) Show that if J is a subset of / and f(X) is a prime element in R [X, ],eJ, then
the image of f(X) in R[X,],e, is also a prime element in R[Xl],e,.

(d) Prove by induction on n that if R is a unique factorization domain, then so is
R[X X„] for all positive integers n.

(e) Prove that if R is a unique factorization domain, then so is R[X,],e, for any
set /.

(f) Prove that if R [X, ],e, is a unique factorization domain for some nonempty set
/, then R is a unique factorization domain.

(2) Let R be an arbitrary nonzero commutative ring.

(a) Show that R[X] is not an artinian ring.
(b) Show that R[X,]^, is not a noetherian ring if I is an infinite set.
(3) Let K be a field and f(X) an element of K[X]. An element a in K is said to be a
root of the polynomial f(X) if /(a) = 0.
(a) Show that a in K is a root of the polynomial f{X) if and only if (X - a)|/(X)
in K[X]. [Hint: Using the Euclidean algorithm write f(X) = q(X)(X - a) +
r(X) where either r(X) = 0 or deg r(X) < deg (X - a).]

(b) Show that if deg f(X) = n, then f(X) has no more than n roots in K.
(4) Suppose K is a field and G is a finite subgroup of the multiplicative group of
nonzero elements of K. Prove that G is a cyclic group. [Hint : Use the preceding
exercise together with Exercise 29 of Chapter 2.]
(5) Show that if K is a finite field, then the group of units in K is a cyclic group. In
particular, if p is a prime integer, then U(Z/pZ) is a cyclic group of order p - 1.
If R is a commutative ring and / is an ideal of R, we shall write x =y(I) to

mean x - y is in I. If I is a principal ideal generated by an element m, we shall
write x =y'(m)' instead of x =y((m)).
(6) Let p be a positive prime element in the ring of integers, Z.

(a) Prove that (fj - 0(p) for l<fc<p where (f ) is the binomial coefficient.
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[Hint: Recall that

ft
)' p!

k\(p-k)!
and that Z is a UFD.

(b) If x and y are integers, prove that (x + v)p" '■ xp" '+ yp"(p) for any n in N.
(c) Prove that if x and y are integers such that x ■ y(p"), then x" = y"(p"+ ') for any

n in N.

(d) Prove that if p is an odd prime, then (l+p)'"","l+p""'(p") for all n&2.
[Hinr: Use induction on n.]
The purpose of the next exercise is to outline a proof of the fact that the

group of units in the ring Z/p"Z is a cyclic group of order (p - I)p""' for all odd
prime numbers p in Z and all positive integers n.

(7) Let p be a prime number in Z and n a positive integer.
(a) Show that every integer z in [0, p") can be written in one and only one way as
the sum a0 + a,p + . . . +an ,p"

'

where the a, are in [0, p).

(b) Let fc:Z-»Z/p"Z be the canonical surjective morphism of rings. Show that
k\[0, p"):[0, p")-»Z/p"Z is a bijective morphism of sets.

(c) Show that k(a„ + a,p + Ha, ,p" ') is a unit in Z/p"Z if and only if a°±

0
. Hence, card (l/(Z/p"Z)) = (p - l)(p""').

(d) Let k
' :Z/p"Z-»Z/pZ be the canonical surjective map of rings. Show that if x

is in l/(Z/p"Z), then /c'(X) is in U(Z/pZ). Also show that the induced map

/: U(Z/p"Z)-» U(Z/pZ) given by f(x) = k'(x) is a surjective morphism of
groups.

(e) Show that Ker/ consists precisely of all the elements k((k+ a,p + . . . +
a, ,p" ') with a0=l. Thus, card (Ker f) = p"'\

(f ) Assume, now, that p is an odd prime. Show that Ker / is a cyclic group by
showing that the order of fc(l +p) in l/(Z/p"Z) is p" '. [Hinf: Use the fact
that(l + p)'-'-l+p"-'(p"),]

(g) Prove that t/(Z/p"Z) is cyclic of order (p - l)p". [Hint: Use the fact that Ker/

is a cyclic group of order p"

'

and t/(Z/p"Z)/Ker /=• U(Z/pZ) is a cyclic group
of order p - l .]

(h) Is U(Z/8Z) cyclic? More generally, is U(Z/2"Z) cyclic if n 2:3?
(8) Let R be a commutative ring, $ a prime ideal of R, and f(X) =
X"+a,X"'l+ . . . + O0 a polynomial in R[X] such that all the a, are in $ but <h is

not in $\ Show that /(X) is an irreducible element of R[X]. [Hint: Suppose f(X)

is not irreducible. Then f(X) = g(X)h(X) with neither g(X) nor h(X) units in

R[X]. Then show that either g(0) or /i(0) is in $. Finally, show that if g(0) is in %
then every coefficient of g(X) is in $, which is impossible. This result is known as
Eisenstein's irreducibility criterion.
(9) Let K be a field and /: K-»R a K-algebra with R not the zero ring. Show:
(a) f:K-»R is an injective morphism of rings.
(b) The additive group of R can be viewed as a K-vector space by defining kr =

f(k) r for all k in K and r in R. This is the only way we consider R as a

K-vector space.
(c) Show that for each r in R, the map lr:R-»R given by l£x) = rx is a linear
transformation of the K-vector space R. Further, show that ln = /,

, if and only

if r, = r2.
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(d) Let V be a vector space over K. Show that the following data define a
K-algebra called the K-endomorphism ring of V and is denoted by EndKf. V).
(i) As a set EndK(V) consists of all the linear transformations /: V-»V.
(ii) The addition in EndK(V) is given by (f+g)(v)=f(v) + g(v) for all /, g in
EndK(V).

(iii) The multiplication in EndK( V) which is written as / . g is the composition
of the linear transformations g followed by /.

(iv) The ring morphism K-»EndK(V) which makes EndK(V) a K-algebra is
given by k**fy where /*:V-»V is the linear transformation fk(v) = kv
for all v in V.

(e) Show that the map g:R-»EndK(A) given by g(r) = /r for each r in R is an
injective K-algebra morphism.

(f) Show that if V is a finite-dimensional vector space over K of dimension n,
then the K-algebras End,K V) and M„(K) are isomorphic K-algebras which as
vector spaces over K are of dimension n2. [Hint: Choose a basis »,, . . . , »„.
Define the map a : EndK ( V) -» M„ (K ) by a ( /) as the matrix corresponding to /
with respect to the basis u,, ... , v„. Show that a is an isomorphism of
K-algebras.]

(g) Show that if R is a K-algebra whose dimension as a vector space over K is
finite, say n, then R is isomorphic as a K-algebra to a K-subalgebra of Af„(K).

(h) Give an example of a K-algebra R whose dimension as a vector space over K
is n and which is isomorphic as a K-algebra to a K-subalgebra of M,„(K)
with m < n.

(10) Let K be a field and consider K[X] a K-algebra in the usual way, that is, by
means of the ring morphism K-»K[X] defined by a l-»2aX' where a0 = a and
a, =0 for i >0. If f(X) is a polynomial in K[X], we consider K[X]If(X) x
K[X] a K-algebra by means of the composite ring morphism K-»
K [X] —*-♦ F[X]If(X)K [X] where k is the usual canonical surjective ring
morphism.

(a) Show that K -»K[X]//(X)K[X] is an injective morphism unless f(X) is
a nonzero constant, that is, /(X) = 2a,X' with a0 ± 0 and a, = 0 for i > 0.

(b) Suppose deg/(X) = n. Show that the K-algebra K[X]//(X)K[X] is an n-
dimensional vector space over K [Hint: Show that fc(X°), . . . , fc(X" ') are a
basis for K[X]//(X)K(X) as a vector space over K.]

(c) Let /(X) be an irreducible polynomial over K[X]. Recall that the K-algebra
L = K[X]//(X)K[X] is a field. If we identify K with its image in L, the
polynomial f(X) can then be considered as an element of L[X]. Show that the
polynomial /(X) has a root in L. [Hint: Show that the element fc(X) in L is a
root of /(X).]

(d) Show that if /(X) is an arbitrary polynomial, then there is a field L containing
K as a subfield such that L is a finite-dimensional vector space over K and
/(X) has a root in L.

(11) Let K be a finite field; for instance, K = Z/pZ where p is a prime in Z.
(a) For each integer n > 0, show that there is an irreducible polynomial /(X) in
K[X] with deg/(X)>n.

(b) Show that if n is any positive integer, there is a finite field LD K with
card(L) > n.
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(c) Let K be a finite field. Show that the unique ring morphism f:Z-»K given by
/(z) = z . 1 for each z in Z has Ker / = pZ for some positive prime element p.
This prime number p is called the characteristic of the field K. Hence, the field
K is a Z/pZ-algebra where p is the characteristic of the field K.

(d) Show that card(K) = p" for some positive integer n.

(e> Show that pfc=0 for all k in K.

(f) Show that if x and y are arbitrary elements of K, then (X + y)p = x"+ y". More
generally, (x + yY" = x"' + yp" for all integers n.

(g) Show that if K is of characteristic p, then there is an irreducible element f(X)
in Z/pZ[X] such that K is isomorphic to (Z/pZ[X])//(X)(Z/pZ[X]). [Hint:
Use the fact that U(K) is a cyclic group.]

(h) Show that if K is a finite field of characteristic p, then for each integer n and
each k in K, the polynomial Xp"-k has at least one root in K. [Hint: Use the
fact that for each integer n, the map f:K-»K given by f(k) = kp" is a
morphism of rings.]

(12) Let £ be a field and consider the unique ring morphism f:Z-»K given by
/(z) = zl.
(a) Show that Ker/=(n) where n is either 0 or a positive prime number. The
number n is called the characteristic of the field K.

(b) Suppose the characteristic of the field K is zero. Show that there is a unique
morphism of rings Q-»K where Q is the field of rational numbers. This unique
morphism of rings is injective and one usually identifies Q with its image in K
by means of this unique morphism.

(c) If the characteristic of K is p, then show that there is a unique morphism of
rings ZlpZ-»K. Show that this unique morphism is an injective morphism.
One usually identifies Z/pZ with its image in K by means of this unique
morphism.

(d) Show that if the characteristic of K is p, then (x + y)p" = x"" + y°" for all
integers n.

(13) Let K be a field. Then the field of quotients of K[X] is called the field of
rational functions in one variable over K, or more simply, the rational function field
over K, and is usually denoted by K{X). K(X) is considered a K-algebra by
means of the composition of ring morphisms K -» K [X] -» K (X) where K [X] -»
K(X) is the usual inclusion of an integral domain into its field of quotients. K is
usually identified with its image in K(X)by means of this injective ring morphism.
(a) Show that the characteristic of K(X) is the same as the characteristic of K.
(b) Show that K(X) is always an infinite-dimensional vector space over K.
(c) Show that there is always an injective morphism f:K(X)^K(X) of K-
algebras which is not surjective. [Hint: Let f:K[X]^K(X) be the uniquely
determined K-algebra morphism with the property f(X) = X\ Show that there
is a unique morphism g:K(X)-»K(X) of K -algebras such that g\K[X] = f.
Prove that the morphism g is injective but not surjective.]

(d) Suppose K is a field of characteristic p ± 0. Show that the polynomial t '" - X
in K(X)[t] has no solution for any n > 1. Hence, the ring morphisms
K(X)-»K(X) given by x )+xp" for all x in K(X) are injective but not surjec
tive ring mophisms for all n>l.

(14) Prove Basic Properties 1.1 and 1.2.

-
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(15) Prove that the product of two ideals / and J in a commutative ring R, as
denned in Section 1, is an ideal in R.

(16) Let K be a field, let S = K[X, Y, U, V], and let I be the ideal in S generated
by the elements X - UY and Y- VX. Define R to be SII.
(a) Prove that the principal ideals (k(X)) and (k(Y)) are equal in R where k:S-»
R is the canonical ring surjection.

(b) Let f:R-»PI(R) be the monoid morphism described in Section 1. Use (a) to
show that xU(R) =£[x] where x = k(X), U(R) is the group of units of R, and [x]
is the unique element of Coim / containing x.

(17) Give a detailed proof of Basic Properties 3.2.

(18) Let R be an integral domain, x an irreducible element of R, and y an element
of R not divisible by x. Prove that if x and y have a least common multiple, then it
must be (up to a unit factor) the element xy.

(19) Let K be a field and let R = K[X, Y, Z]II where / is the principal ideal
generated by the polynomial X2 - YZ.
(a) Prove that X2- YZ is a prime element in K[X, Y, Z] and hence, / is a prime
ideal.

(b) Let k : K [X, Y, Z] -» R be the canonical surjective morphism. Prove that k(X)
is irreducible in R, but show that k(X) is not a prime element in R. [Hint:
Observe that k(X*) = k(Z)k(Y).]

(c) Prove that k(X) and k(Y) do not have a least common multiple in R.
(d) Let S = R-{0}. Show that Rs is a UFD even though R is not a UFD.
(20) Prove Basic Properties 4.3.

(21) Prove Basic Properties 4.4.

(22) Prove Basic Properties 5.10.

(23) Let Z be the ring of integers and let S be the set of all odd integers. If I is the
ideal in Z consisting of all multiples of 6, that is, I - (6), show that IsrlZ±I. In fact,
prove that /snZ = (2).
(24) Let R =K[X, Y,Z]/(X2- YZ) be the ring of Exercise 19, with
k:K[X, Y, Z]-»R the canonical surjective ring morphism.
(a) Prove that (X, Y) is a prime ideal in K[X, Y,Z] containing {X2- YZ).
(b) Prove that ty = (k(X), k(Y)) is a prime ideal in R.
(c) Can ty be generated by a single element?

(d) Let S = R - ty. Prove that S is a multiplicative subset of R.
(e) Show that the ideal ^Rs is principal in Rs. [Hint : Show that tyRs = k(X)Rs.]
(f) Show that the natural map PPDs(R)-»PPD(Rs) is not surjective. [Hint: Con
sider the principal prime divisor k(X)Rs in PPD(Rs).]
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Earlier, in discussing the group Z of integers under addition, we showed that for
each element a in the abelian group A, there is one and only one group morphism
/„:Z-»A such that /„(l) = a. Also, for each a in A and n in Z we denned na by
na = /„(n). We then showed that viewing Z as the ring of integers, the map Z x A -»
A given by (n, a)^+na for all n in Z and a in A has the following properties:

(1) (n, + n2)a = n,a + n2a.

(2) n(a, + a2) = na, + na2.
(3) (n,n2)a = n,(n2a).

(4) la = a.

The reader should have no difficulty in seeing that properties (1) and (4) alone
guarantee that the map Z x A -» A we just described is the only map from Z x A to
A satisfying properties (1) through (4).
Vector spaces over a field K give another example of a similar structure. We

recall that a vector space V over a field K consists of an abelian group V together
with a map K x V-» V, usually described by (k, v) >+kv, satisfying the following
conditions:

(1) (k, + fc2)t1 = k,v + k2v,

(2) k(vl + v2) = kv, + kv2,

(3) (k,k2)v = kl(k2v),

(4) \v = v,

for all k, ku k2 in K and v, v,, v2 in V.
176
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The striking similarity of these structures suggests that they are simply exam
ples of a single general notion. The following definitions show that this is indeed
the case.

Definitions
Let R be a ring.

(a) By an R-module structure on an abelian group M we mean a map R xM-»M,
which we denote by (r, m)^rm for all r in R and m in M, satisfying:
(I) (r, + r2)m = r\tn + r2m,

(ii) r(wi, + m2) = rm, + rm2,

(ilI) (nrjm = r,(r2m),
(iv) lm=m,
for all m, m,, m2, in M and r, r,, r2 in R.

(b) An /?-module consists of an abelian group M together with an R-module
structure RxM^Mon M.

Our previous remarks show that each abelian group has a unique Z-module
structure over the ring Z of integers. Because each Z-module is also an abelian
group, we see that Z-modules and abelian groups are essentially the same thing.

Our previous remarks also show that vector spaces are nothing more than
R -modules where R is a field. However, unlike the situation for Z, it is perfectly
possible for a given abelian group M to have more than one R-module structure if
R is not the integers. For example, suppose R = C, the field of complex numbers.
Then it is easily checked that the two maps / :C x C -» C and g:CxC-»C defined
by /(z,, z2) = z,z2 and g(z,, z2) = zlz2, where f is the complex conjugate of z, are
different C-module structures on the abelian group consisting of the additive
group C of the field C.
Before pointing out other types of modules with which the reader has some

familiarity, we make the following notational convention. If M stands for an
R-module, then we will use the same letter Af to denote the underlying abelian
group of the R-module M.

Example 1 Let R be a ring. Denoting the additive group of R by R, it is easily
checked that the map R xR-»R given by (r,, r2)**r,r2 for all r, and r2 in R, is an
R-module structure on R. Hence, associated with a ring R is the R-module struc
ture R x R-»R given by (r,, r2)i-» r,r2. This R-module is usually denoted simply by
R.

Example 2 Let R be a ring. We recall that an ideal 7 of R is a subgroup of R
with the property that ri and ir are in I for all r in R and i in /. If / is an ideal in R,
it is easily checked that the map R x /-»/ given by (r, i) h» ri for all r in R and i in /
is an R-module structure on the additive group of I. Hence, associated with each
ideal I of R is the R-module consisting of the additive group of / together with the
R-module structure R x7-»/ given by (r, i) i+ri. This R-module will usually be
denoted also by I.

Example 3 Suppose f:R-»R' is a morphism of rings. Then it is easily
checked that the map RxR' given by (r, r') **f(r)r' for all r in R and r' in R' is an
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R -module structure on the additive group R' of the ring R'. Hence, associated
with each ring morphism f:R-»R' is the R-module consisting of the additive
group R' of the ring R' together with the R-module structure R x R'-»R' given by
(r, r') ,-»/(r)r'. In particular, if / is an ideal of R, the canonical morphism of rings
kRl,:R-»RII gives an R-module structure on the additive group RII. This R-
module will be denoted simply by RII.

Thus, we see that a great many of the mathematical objects familiar to the

reader are either modules or have modules associated with them in a fairly obvi

ous and simple-minded way. This list by no means exhausts the types of

mathematical objects that can be viewed as modules.
Because of this wide prevalence of modules in much of algebra, the theory of

modules occupies a large place in this book. This chapter is devoted for the most

part to generalities concerning arbitrary modules over arbitrary rings together

with illustrative examples and applications. In succeeding chapters specific situa

tions will be studied, such as modules over semisimple rings, principal ideal do
mains, and Dedekind domains.

1. CATEGORY OF MODULES OVER A RING

Our main concern in this section is to study the elementary properties of the

collection of R-modules for a fixed ring R. After discussing the morphisms of
R-modules, we show that the collection of R-modules together with these mor

phisms form a category. The rest of the section is then devoted to studying the

basic properties of the category of R-modules.
As with the other mathematical objects we have considered, we begin our

study of modules by deciding how to compare them. Because an R-module M is
an abelian group M together with an R-module structure on M, it is clear that a
morphism f:Ml^M2 from the R-module M, to the R-module M2 should be a
morphism of the underlying groups of M, and M2 which is compatible with the
R-module structures on M, and M2. Stated more precisely, we have the following.

Definition
Let M, and M2 be R-modules. By an R-module morphism from M, to M2 we mean
a morphism of groups f:M,-»M2 which satisfies f(rm) = rf(m ) for all r in R and
all m in M,. An R-module morphism will often be called simply an R-morphism.

The reader should have no difficulty seeing that if R = Z, then a morphism
/ : M, -» M2 of Z-modules is nothing more than a morphism of groups. Also, it is
obvious that if R is a field, then a morphism / : M, -» M2 of R-modules is the same
thing as a linear map of vector spaces.
We have the following easily verified analogs of results already obtained for

sets, groups, and rings.

Basic Properties 1.1
Let R be a ring.
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(a) For each R-module M, the identity map idM: M-»M is a morphism of R-
modules.

(b) If / :M, -» M2 are g : M2 -» M3 are R-morphisms, then the composition of maps
gf:M,-»M) is a morphism of R-modules.

These results suggest the following.

Definitions
Let R be a ring.

(a) For each R-module M, the morphism of R-modules idM: M-»M is called the
identity morphism of M.

(b) If / :M , -» M2 and g:M2-»M) are morphisms of R-modules, then the com
position gf : M, -» M3 of / and g is the morphism from M, to M3 given by the
ordinary composition of / and g viewed as maps from M, to M2 and M2 to M3,
respectively.

As an immediate consequence of these definitions we have the following.

Basic Properties 1.2
Let R be a ring.

(a) The composition of morphisms of R-modules is associative, that is, if / :M,-»
M2, g : M2 -» M3, and h : M3 -» M4 are R-module morphisms, then h (gf) = (hg)f.

(b) For each R-module M the identity morphism idM: M-»M has the following
properties:

(i) If f:M-»M' is an arbitrary morphism of R-modules, then /idM = /.
(ii) If g:M'-»M is an arbitrary morphism of R-modules, then idMg = g.

Our discussion so far amounts to nothing more or less than the fact that the
following data define a category. This category is called the category of R-
modules and is usually denoted by Mod(R).
The objects of Mod(R) are the R-modules. For every pair of objects M, and

M2 in Mod(R) we define the set (M,, M2) of morphisms in Mod(R) from M, to M2
to be HomR(M,, M2), the set of all R-module morphisms from the R-module M, to
the R-module M2. Next, we define the composition of morphisms in Mod(R). For
all triples M,, M2, and M3 of objects in Mod(R) define (M,, M2)x(M2, M3)-»
(M,, M2) to be the map HomR(M,, M2) x HomR(M2, M3) -» Hom«(M,, M2) given by
(f,g)i-»gf where gf is the composition of the R-module morphisms /:M,-»M2
and g:M2-» M3. It is an immediate consequence of our previous observations that
these data satisfy the axioms of a category, a fact we leave to the reader to verify.
One of the things that distinguishes the category Mod(R) from most of the

categories we have considered previously is the fact that for each pair of objects
M, and M2 in Mod(R), the collection (M,, M2) of morphisms from M, to M2 is not
just a set but is an abelian group in a natural way. For it is not difficult to check
that if /, g : M,-»M2 are R-module morphisms, then the map /+ g :M,-»M2 defined
by (f+g)(m) = f(m) + g(m) for all m in M, is also an R-module morphism. Obvi
ously, if /, g, and h are in Hom^M,, M2), then f+(g + h) = (f+g)+h and f+g =
g + f. Also, it is easily checked that the map 0 :M,-»M2 given by 0(m) = 0 for all m
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in M, is an R-module morphism called the zero morphism from Af, to M2. Obvi
ously, 0+/ = /+0 = / for all R-module morphisms /:Af,-»Af2. Hence, the map
HomR (Af , , Af2) xHomR(M,, Af2) -» HomR (Af, , Af2) given by ( /, g )i-»/ + g is a law
of composition on HomR(Af,, Af2) which makes HomR(Af,, Af2) a commutative

monoid with the zero morphism as the identity element.
To see that this commutative monoid is actually a group, we observe that if

/:Af,-»Af2 is a morphism of R?-modules, then the map (-/):Af,-»Af2 denned by

(-/)(m) = -(/(m)) for all m in Af, is also an R-module morphism with the
property /+(-/) = (-/) + / = 0. Thus, (- /) is the inverse of / for each element / in
HomR(Af,, Af2), which finishes the proof that Hom^M,, Af2) is an abelian group
under the law of composition (/, g) t-»f+ g for all / and g in Hom^Af ,, Af2). Since
this law of composition plays an important role in studying modules, we make the
following definition.

Definition
Let /, g : Af, -» Af2 be R-module morphisms. We define their sum / + g : Af , -» Af2 to
be the R-module morphism given by (/ + g)(m) = /(m) + g(m) for all m in Af,.
The abelian group consisting of HomR(Af,, Af2) together with the law of composi
tion given by the sum of R-module morphisms will be called the group of K-module
morphisms from M, to Af2.

Because the sets of morphisms HomR(Af,, Af2) in the category Mod(R) are
abelian groups, it is natural to ask if the composition maps HorrMM,, M.-)x
HomR(Af2, Af3)-»HomR(Af,, Af3) in Mod(R) are somehow compatible with the
group structure in HomR(Af,, Af2), HomR(Af2, Af3), and HomR(Af,, Af3). That this is

indeed the case is easily seen. Suppose that / and g are in HomR(Af„ Af2) and h
and g are in HomR (Af2, Af 3)

. A simple calculation shows that the morphism

h(/ + g):Af, -»Af3 is the same as the morphism hf+hg:M,-»M,. For

h(f+ g)(m) = /.((/+ g)(m)) = /i(/(rn) + g(m)) = hf(m) + hg(m) = (hf+ hg)(m)

for all m in Af, which means that h(/+ g
) = hf+ hg. Similarly, one can show that

(h + g)f = hf + gf. Thus, we have established the following.

Basic Property 1.3

Let Af,, Af2, and Af3 be objects in Mod(R). The composition map

<
/» :HomR(Af,, Af2)x HomR(Af2, M3)-»HomR(Af,, M3) has the following properties

for all fu f2 in HomR(Af,, Af2) and all g,, g2 in HomR(Af2, Af3):

(a) .K/i + U, «.) = <K/„ *.).+ Hh, g.).
(b) <M/„ g. + 82) = <M/,, g.) + Hfu 82).
(c) For a fixed g in HomR(Af,, Af2), the map a, :HomR(Af,, Af2)-»HomR(Af,, Af3)
given by a»(/) = <^(/,g) for all / in HomR(Af,, Af2) is a morphism of abelian
groups.

(d) For a fixed / in HomR(Af,, Af2) the map fy : HomR (Af2, Af 3) -» HomR (Af ,, Af3)
given by /3;(g) = </»(/, g) for all g in HomR(Af2, Af3) is a morphism of abelian
groups.

The properties of the composition maps in Mod(R) just described are a

special case of a general notion of considerable importance in algebra.
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Definition
Let A, B, and C be abelian groups. A map </

»
: A x B -» C is said to be a bilinear map

from A and B to C if for all a,, a2 in A and b,, b
2 in B we have:

(i) ^(a, + a2, b,) = <l/(au b,) + <A(a2, b,).

(ii) 0(a„ b
,

+ b2) = «A(a,, b,) + tf»(a,, b2).

While we postpone a systematic development of the notion of bilinear maps
until later, the reader should be able to get some preliminary feel for this subject
by working out the following easily established properties.

Basic Properties 1.4
Let A, B, and C be abelian groups.

(a) A map ,p : A x B-» C is bilinear if and only if it satisfies both of the following
conditions:

(i) For each a in A, the map a„ : B -» C given by oUb) = «/»(a, b) for all b in B

is a morphism of abelian groups,

(ii) For each b in B, the map 0h : A -» C given by ft (a) = ,A(a, b) for all a in
A is a morphism of abelian groups.

(b) If ,p : A x B -» C is a bilinear map, then i/»(na, b) = n,Ma, b) = ,Ma, nb) for all n

in Z
,
a in A, and b in B. In particular, ,//(0, b) = 0 = ,/»(a, 0
) for all a in A and b

in B.

(c) The map 0 : A xB-»C given by 0(a, b) = 0 for all a in A and b in B is bilinear
and is called the zero bilinear map.

(d) If </»,, fc : A x B -» C are bilinear maps, then the map ,/», + </»2: A x B -» C de
fined by (,/», + ,/»2)(a, b) = ,/»,(a, b) + ,/»2(a, b) is bilinear.

(e) If 0 : A x B-»C is bilinear and /: C-»D is a morphism of abelian groups, then
the composition fty:A'x.B-»D is bilinear.

(f) If tp:AxB-»C is bilinear, then the map (-,/0: A xB-»C defined by
(- ,/»)(a, b) = -(,Ma, b)) is bilinear.
As a consequence of these results, it is not difficult to see that the set

B(A x B, O of all bilinear maps from A x B to C is an abelian group, where the
addition ,^

,

+ fa is the bilinear map defined by (<A, + ,^)(a, b) = <A,(a, b) + fc(a, b)
for all a in A and b in B.
This leads to the following.

Definition
Let A, B, and C be abelian groups. The sum of two bilinear maps <^,,,fc:AxB-»C

is the bilinear map ,/
»
,

+ </»2given by (,/», + ,^)(a, b) = </»,(a, b) + ,^2(a, b) for all a in

A and b in B. The abelian group B(A x B, C) consisting of the set of all bilinear
maps from A x B -»C together with the addition given by the sum of bilinear
maps is called the group of bilinear maps from Ax B to C.

We end this preliminary discussion of bilinear maps of groups with the
following examples.

Example 1.5 For each abelian group C the map /:B(ZxZ, C)-»C given by
/(</»)
= ,/»(l, 1) for all ,/

; in B(ZxZ, C) is an isomorphism of abelian groups.
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PROOF: It is left as an exercise to the reader to show that /: B(Z x Z, C)-»C is
a morphism of abelian groups. Having this result, we show that / is injective by
showing that Ker/ = 0.
Suppose <

/» is in Ker / or, what is the same thing, ,/»(l, 1) = 0. We want to show
that this implies that ,p is the zero element of B(Z x Z

,

C). By Basic Properties 1 .4,
because ,/»(n, 1) = n<p{\, 1) = ,/»(1, n) for all n in Z

,

the fact that \p(\, 1) = 0 implies

,/»(n, l) = </»(l, n) = 0forall n in Z. But again by Basic Properties 1.4, we know that
for each n in Z the map a„:Z-»C given by a„(m) - 4,(n, m) is a morphism of
groups. Because a,(\) = <l/(n, 1) = 0

,
it follows that a» = 0
,

because a morphism of
groups from Z to C is completely determined by where it sends 1 . Hence, for each

n in Z we have that a„(m)= <l/(n, m) = 0 for all m in Z. Therefore, ,p(n, m) = 0 for
all n and m in Z, which means that </

»

is the zero element of 6(ZxZ, C). Hence,
the morphism of groups /:B(ZxZ. C)-»C has a zero kernel and is therefore
injective.
We now show that / is surjective. This is based on the easily verified fact that

the map ,/»0:ZxZ-»Z given by ,/»b(m, n) = mn is bilinear and </»0(l. 1)= 1
. Now sup

pose c is an element of C. Then we know that there is a unique morphism of
groups h:Z-»C such that h(\) = c. By Basic Properties 1.4, the composition

Z x Z—°-+ Z —*-» C is a bilinear map. Because hfy{\, 1) = h ( 1) = c, the bilinear map
h,p0:ZxZ^C has the property (/n/»0)(l, 1

) = c. Hence, /(h,/»0) = c. This means that
the morphism of groups /: B(ZxZ, C)-»C is surjective. Therefore, we have
shown that / is both injective and surjective and hence is an isomorphism.
Example 1.6 Let m, and m2 be two relatively prime integers. Then B(Zlm,Z x

Z/m2Z, C) = 0 for all abelian groups C.

PROOF: Let fc,:Z-»Z/wi,Z be the canonical surjective morphisms of groups for

i = l and 2
,

and define fc
, x /c2:ZxZ-»Z/m,ZxZ/m2Z by (fc, x k2)(n,, n2) =

(fc,(n,), fc2(n2)) for all n, and n2 in Z x Z. Clearly, /c
, x /c2:Z x Z-»Z/m,Z x Z/m2Z is a

surjective map.
Now suppose C is an abelian group and ,f

r :Z/m,Z x Z/m2Z-» C is a bilinear
map. Then it is easily shown that the composition ZxZ—^-»Z/m,Zx
Z/m2Z —*-»C is also a bilinear map. Because k

, x k2:Z x Z-»Z/m,Z x Zlm2Z is a

surjective map, we will have shown that the bilinear map </
»
: Z/m ,Z x Zlm^Z -» C is

zero if we show that the composition ,/»(fc, x fc2) : Z x Z -» C is zero. To do this, it

suffices by Example 1.5 to show that ,fr(k, x fc2)(l, 1) = 0
.

The fact that m. and m: are relatively prime integers means that there are
integers z, and z2 such that z,m, + zrtn2 = 1

. Because k, :Z-»Z/m,Z is the canonical
morphism of groups, it follows that k,(\) = k,(z,m, + z2m2) = fc,(z2m2) = m2fc,(z2) be
cause fc,(z,m,) = 0. Hence, [</»(fc, x fc2)](l, l)=^(fc,(l), fc2(l))=./»(m2fc,(z2), fc2(l)) =

m2,/»(fc,(z2),fc2(l)) = <Mfc,(z2),m2fc2(l)) (see Basic Properties 1.4). Because fc2(l) is in

Z/m2Z it follows that nt2fc2(l) = 0
,

so that ^(fc, x /c2)(l,l) = ^(fc,(z2),0) = 0 (see
Basic Properties 1.4). Therefore, the bilinear map ,/»(fc, x fc2):ZxZ-»C is zero,
which means that ,/»:Z/m,ZxZ/m2Z-»C is zero, due to the fact that the map

k, x k2:Zlm,Z x Z/m2Z is surjective. Because this is true for each ty in B(Z/m,Zx
Z/m2Z, C), it follows that B(Z/m,Z x Z/m2Z, C) = 0 for all abelian groups C.
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2. THE COMPOSITION MAPS IN Mod(R)

Returning to the category Mod(R) of modules over the ring R, it turns out that the
sets of morphisms HomR (M,,M2) are not only abelian groups but are also modules
over the center of the ring R. Recall that if R is a ring, then the center C(R) of R is
the set of all x in R such that rx = xr for all r in R. Recall also that if R is a ring,
then the center of R is a commutative ring and C(R) = R if and only if R is a
commutative ring.

We now describe a natural C(R )-module structure on the abelian group
HomR(M,, M2)for all R-modules M, and M2. Suppose /: M, -» M2 is an R-module
morphism and c is an element in C(R). Deflne the map cf:M\-» M2 by (cf)(m) =
c(f(m)) for all m in M,. We claim that c/:M,-»M2 is an R-module morphism.
Clearly, cf:M,-»M2 is a morphism of groups, that is, c/(m, + m2) =

cf(m,) + cf(m2). Also, if r is in R, then cf(rm)= c(f(rm)) = c(rf(m)) =

(cr)/(m) = (rc)/(m) = r(c/(m)) = r((c/)(m)) for all m in M. Therefore,

cf :M , -» M2 is indeed an R-module morphism. We leave it to the reader to check
that the map C(R)x HomR(M,, M2)-»HomR(M,, M2) given by (c,f)t-»cf is a
C(R )-module structure on HomR(M,, M2).
Having seen that the sets of morphisms HomR(M,, M2) in Mod(R) are mod

ules over the ring C(R), the center of R, it is natural to ask if the composition of
maps in Mod(R) is at all related to the C(R)-module structure on the groups of
morphisms in Mod(R).
Suppose f:M,-»M2 and g:M2-»M, are R-module morphisms and c is in

C(R). Then for each m in M, we have g((cf)(m)) = g(c(f(m)) = c(g(f(m)) =

(cg)(/(m)). Hence, g(cf) = (cg)f. But c(g(/(m)) also equals c[(gf)(m)] =
(c(gf))(m) for all m in M,. Thus, g(cf) = (cg)f = c(gf). Therefore, in addition to
being bilinear maps of abelian groups, the composition maps ,p : HomR(M,, M2) x
HomR(M2, M.0-» Horn* (M,, Af3) in Mod(R) have the property that <l/((cf, g)) =

<K/. eg) = c,/»(/, g) for all c in C(R), / in Hom«(M,, M2), and g in HomR(M2, M3).
These properties of the composition maps in Mod(R) are a special case of the
following general notion.

Definition
Let A, B, and C be modules over a commutative ring R. A map ,p : A x B-»C is
said to be a bilinear map of R-moduIes if:

(a) i/»:AxB-»Cisa bilinear map of the underlying abelian groups of A, B, and C.
(b) ,/»(ra, fe)= <A(a, nV)= r>p(a, b) for all r in R, a in A, and b in B.

This terminology enables us to summarize our previous discussion as fol
lows:

Proposition 2.1
Let C(R) be the center of the ring R. Then the category Mod(R) has the following
properties:

(a) For all R-modules M, and M2, the sets HomR(M,,M2) are abelian groups under
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the addition /, + /2 where /, + /2 is the morphism of R-modules f, + /2 :M , -» M2
defined by (/, + /2)(m) = /,(m) + /2(m) for all /, and /2 in HomR (M,,M2).

(b) Each HomR(M,, M2) is a C(R )-module where for each c in C(R) and / in
HomR(M,, M2), the morphism of R-modules c/:M,-»M2 is defined by
cf(m) = c(f(m)) for all m in M,.

(c) The composition maps HomR(M,, M2)xHomR(M2, M3)-»HomR(M,, M3) in

Mod(R) are bilinear maps of C(R )-modules.

It should be noted that if R is commutative, then C(R) = R, and so each of the
groups HomR(M,, M2) is an R-module, and the composition maps Hom^Af,, M2)x
HomR(M2, M3)-»HomR(M,,M3) are bilinear maps of R-modules.
Returning to the category of modules over an arbitrary ring R, we point out

certain extremely useful facts concerning the C(R )-modules HomR(M,, M2)
which follow readily from the bilinearity of the composition of maps in Mod(R).

Definitions
Suppose M,, M2, and M3 are R-modules.

(a) For each R-module morphism g:M2-»M3 define the map HomR (M,,g):
HomR(M,,M2)-»HomR(M,,M3) by HomR(M„g)(/) = gf for all / in
HomR (M„M2).

(b) For each R-module morphism h:M3-»M,, define the map HomR(h, M2):
HomR(M„ M2)-»HomR(M3, M2) by HomR(/i, M2)(/) = fh.

Basic Properties 2.2

Suppose M,, M2, X, and y are R-modules where R is an arbitrary ring.

(a) For each R-module morphism g:M2-»X, the map HomR(M,,g):
HomR(M,,M2)-»HomR(M,,X) is a morphism of C(R )-modules.

(b) If g:M2-»X and h :X-» Y are R-module morphisms, then HomR(M,, hg):
HomR(M,,M2-»HomR(M,, Y) is the composition HomR(M,,h)HomR(M,,g),
that is, HomR(M,,/ig)= HomR(M,.h)Hom^M,.g).

(c) If g,, g2:M2-»X are R-module morphisms, then HomR(M,,g, + g2) =
HomR(M,, g,) + HomR(M,, g2).

(d) The map idM, :M2-»M2 has the property that HomR(M,,idM2):
HomR(M,,M2)-»HomR(M,,M2) is the identity on HomR(M,, M2).

(e) If 0:M2-»X is the zero morphism, then Hom(M,,0) = 0.

For morphisms from X to M,, we have a similar list of properties.

(a') For each R-module morphism g:X-»M,, the map HomR(g, M2):
HomR(M,, M2)-»HomR(X, M2) is a morphism of C(R )-modules.

(b') If h: Y-»X and g:X-»M, are R-module morphisms, then Horn* (g/i, M2) :
HomR(M,,M2)-»HomR(y, M2) is the composition HomR (h, M2)HomR
(g, M2), that is, HomR(g/i, M2) = HomR(h, M2)HomR(g, M2).

(c') If g,, g2:X-»M, are R-module morphisms, then HomR(g, + g2, M2) = HomR
(g„ M2) + HomR(g2, M2).

(d') The map idM, :M,-»M, has the property that HomR (idM„ M2) : HomR
(M,, M2)-»HomR(M;, M2) is the identity morphism.

(e') If 0:X-»M, is the zero morphism, then HomR(0, M2) = 0.
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As with bilinear maps of groups, we are delaying a systematic development of
the notion of bilinear maps of modules over commutative rings until later on. In
the meantime the reader will gain some familiarity with this notion by working out
the following facts concerning maps of modules over arbitrary commutative rings.
As is readily seen, they are simply a generalization of the basic properties already
given for bilinear maps of abelian groups.

Basic Properties 2.3
Let A, B, and C be modules over the commutative ring R.

(a) A map ,/»:AxB-»Cisa bilinear map of R-modules if and only if it satisfies
both of the following conditions:

(i) For each a in A, the map a„:B-»C given by a»(b) = <l/(a, b) for all b in
B is a morphism of R-modules.

(ii) For each b in B, the map /3fc :A -» C given by &(a) = ,p(a, b) for all a in
A is a morphism of R -modules.

(b) ,A(0, b) = 0 = «Ka, 0) for all a in A and b in B.
(c) The map 0:A x B -» C given by 0(a, b) = 0 for all a in A and b in B is a
bilinear map of R-modules which is called the zero bilinear map.

(d) If ,p,, fa: A xB-»C are bilinear maps of R-modules, then the map ,/
»
,

+ <
/* :

Ay-B-»C defined by M + <A2)(a, b) = <p,(a, b) + «/»2(a, b) is bilinear.
(e) If ,/»: A x B-»C is a bilinear map of R-modules and /: C-»D is a morphism of
R-modules, then /l/»:AxB-»D is a bilinear map of R-modules.

(f) If ,p: A x B-»C is a bilinear map of R-modules and r is in R, then the map
np:AxB-»C given by (n/»)(a, b) = r(</»(a, fe)) is a bilinear map of R-
modules. In particular, (— l)tf» is a bilinear map of R-modules.

As a consequence of these results it is not difficult to see that the set
B(AxB, C) of all bilinear R-module maps from A x B to C is an R-module under
the following operations: (1) for <

p
l

and </»2 in B{A x B, C) the sum ,/
»
,

+ <^2 is the

bilinear map of R-modules defined by (,/», + ,/»2)(a, b) = ^,(a, b) + ,/»2(a, b) for all
a in A and b in B, and (2) for r in R and ,/

» in B(A x B, C), the product n/» is

defined to be the bilinear map np:AxB-»C given by np(a, b) = r(,/»(a, ii )) for all
a in A and b in B.
This leads to the following.

Definition
Let A, B, and C be modules over the commutative ring R. The R-module consist
ing of all bilinear R-module maps from AxB to C is called the module of all
bilinear R-module maps from A x B to C and is denoted by B(A x B, C).

3. ANALYSES OF R-MODULE MORPHISMS

This section is devoted to developing the analogs for the category of modules of
the notions of surjective and injective morphisms, analyses of morphisms, etc.,

that we have already discussed in other contexts. The only essentially new ideas
introduced are those of exact sequences and the fact that various properties of a

morphism / : M, -» M2 of R-modules can be expressed in terms of the morphisms
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of C(.R)-modules HomR(X, /) :Hom„(X, Afl)-»HomR(X, M2) for all R-modules X
as well as the C(R)- module morphisms HomR(/, X) :Hom^M;, -Y)-»HomR(M,, X)
for all R-modules X.
Because Mod(R) is a category, there is no need to define the notions of

isomorphism, epimorphism, or monomorphism for R- modules since we have al
ready defined these notions for arbitrary categories. However, we have never de
fined the notions of surjective, injective, and bijective morphisms for arbitrary
categories. Nonetheless, the reader's previous experience with these notions
should immediately suggest their definitions for morphisms of R-modules. We
simply record them to avoid any possible doubt.

Definitions
Let / :M, -» M2 be a morphism of R-modules. Then the morphism / is surjective,
injective, or bijective if as a map on the underlying sets of M, and M2 it is
respectively surjective, injective, or bijective.

We leave it to the reader to verify the following useful criteria for when a map
between modules is actually a morphism of modules. The reader who has diffi
culty carrying out these demonstrations should consult the analogous results for
monoids, groups, and rings.

Basic Properties 3.1
Let / :M, -» M2 be a morphism of R-modules and X an R-module.
(a) Suppose /:M,-»M2 is a surjective morphism of modules. If g :M2-»X is a
map of sets such that the composition g/:M,-»X of maps of sets is a
morphism of R-modules, then g : M2 -» X is a morphism of R-modules.

(b) Suppose / :M, -» M2 is an injective morphism of R-modules. If g :X -» M, is a
map of sets such that the composition /g :X -» M2 of maps of sets is an
R-module morphism, then g :X -» M, is a morphism of R-modules.

As in all the other situations we have studied so far, we have the following
easily verified connections between isomorphisms and bijective morphisms,
epimorphisms and surjective morphisms, etc.

Basic Properties 3.2
Let f:M,-»M2 be a morphism of R-modules.

(a) The morphism / is an isomorphism if and only if it is bijective.
(b) If / is an injective morphism, then it is a monomorphism.
(c) If / is a surjective morphism, then it is an epimorphism.
PROOF: As an illustration of how our previous basic properties of surjective

morphisms can be used, we prove that if the morphism /: M, -» M2 is bijective, it is
an isomorphism. The rest of the proofs are left to the reader.

Suppose / :M, -» M2 is a bijective morphism. Then the inverse map f :M2-»
M, has the property /"'/ = idM,. Because / is surjective and idM, is a morphism of
modules, it follows from Basic Properties 3.1 that /"' : M2-» M, is a morphism of
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R -modules. Combining this with the fact that /"'/ = idM, and ff "' = id**,, it follows
that / :M , -» Af2 is an isomorphism if it is bijective.
Actually, as we shall see shortly, a morphism of R -modules f:M,^M2 is

injective (surjective) if and only if / is a monomorphism (epimorphism). However,
before introducing the notions of Kernel and Cokernel of morphisms of R-
modules, which will accomplish this, we point out the following useful interpreta
tion of the notions of isomorphism, epimorphism, and monomorphism.

Basic Properties 3.3
Let f:M,-»M2 be a morphism of R-modules.

(a) The following statements are equivalent:

(i) f:M,-»M2 is an isomorphism.
(iI) For each R-module X, the morphism of C(R)-modules HomR(X,/):
HomR(X, M,)-»HomR(X, M2) is an isomorphism.

(iii) For each R-module X, the morphism of R-modules HomR(/, X):
HomR(Af2, X)-»HomR(M,, X) is an isomorphism.

(b) The morphism / is an epimorphism if and only if for each R -module X, the
morphism of C(R )-modu!es Hom(/, X):HomR(M2, X)-»HomR(M,, X) is in
jective.

(c) The morphism /: M, -» Af2 is a monomorphism if and only if for each R-module
X, the morphism of C(R)-modules HomR(X,/):HomR(X, M,)-»HomR
(X, M2) is injective.

(d) The following statements are equivalent:

(i) / :M , -» M2 is the zero morphism.
(ii) For each R -module X, the morphism of C(R)-modules Hom(X,/):
HomR(X, M,)-»HomR(X, M2) is the zero morphism.

(iii) For each R -module X, the morphism of C(R)-modules Hom(/,X):
Hom(Af2, X)-»Hom(M,,X) is the zero morphism.

PROOF: (a) We show that the morphism /:M,-»M2 is an isomorphism if and
only if HomR(X, /):HomR(X, Af,)-»HomR(X, Af2) is an isomorphism of C(R)-
modules for all R-modules X.
Suppose / :M, -» M2 is an isomorphism. Then the inverse /"' :M2-» M, has the

property that /"'/ = idM, and ff "' = idn,,. Suppose X is an R -module. Then we have
HomR(X, idM,) = HomR(X, /"'/). But, by what we saw in the last section (see Basic
Properties 2.2), HomR(X, /"'/) = HomR(X, /"') HomR(X, /) while HomR(X, idM,) is
the identity on HomR(X, M,). Hence, HomR(X,/ ') HomR(X, /) = idH0mKix.M,l. A
similar argument shows that because ff

"' = idM„ then HomR(X, /) HomR(X, / ') =
idH0m^xM,l. Therefore, HomR(X,/):HomR(X, M,)-»HomR(X, M2) is an isomor
phism with HomR(X, /"') as the inverse.
Suppose now that the morphism f:M,-»M2 has the property that for each

R module X, the morphism of C(R)-modules HomR(X, /):HomR(X, M,)-»
HomR(X, M2) is an isomorphism and hence a bijection. In particular, the mor
phism HomR(Af3, /):HomR(M2, M,)-»HomR(Af2, M2) is a bijection and so there is
a unique morphism of R-modules g:M2-»Af, such that HomR(M2, /)(g) = idM,. By
definition, HomR(M2,/)(g) is the composition Af2—^M,—*-»Af2, so we have
fg = idjjj. We now finish the proof that / is an isomorphism by showing that
gf = idM,.
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By hypothesis we know that the morphism of C(R)-modules
HomR(Af,, /):HomR(M,, Af,)-»HomR(Af,, Af2) is an isomorphism and is therefore
injective. Now gf is in HomR(Af,, Af,) and by definition HomR(M, , /)(g/) = /(g/).
Because f(gf) = (fg)f and /g = idM,, it follows that HomR(Af/)(g/) = /. On the
other hand, HomR(M, ,/)(idM,) = /idM, = /. Because HomR(Af,,/) is injective, the
fact that HomR(M, f)(gf) = f = HomR(M, , /)(idM,) implies that gf = idM„ which is
our desired result. This finishes the proof of the equivalence of part (a), (i

) and (ii).
The proof of the equivalence of parts (i) and (iii) is very similar to the proof

already given, and is left as an exercise for the reader, (b) and (c) are simply
restatements of the definitions involved and are therefore left to the reader to
verify.

(d) We saw in the last section that (i) implies (ii) and (iii). We will prove that

(iii) implies (i) and leave the proof that (ii) implies (i
) to the reader.

(iii) implies (i). Suppose the morphism of R -modules /:M,-»Af2 has the
property that HomR(/, X):HomR(Af2, X)-»HomR(M, , X) is the zero morphism
of C(R)-modules for each R -module X. In particular, the morphism
HomR(/, Af2):HomR(Af2, Af2)-»HomR(M,, Af2) is the zero morphism. Hence, 0 =

HomR(/, Af2)idM2) = idM,/ = /, which finishes the proof.

As we have already seen, the notion of a subset, subgroup, subring, etc., plays
an important role in studying sets, groups, and rings. Similarly, the notion of a

submodule plays an important role in studying modules.

Definition
An R-module M' is a submodule of an R-module Af if:

(a) The underlying set of M' is a subset of the underlying set of Af.
(b) The inclusion map M' -»Af is a morphism of R -modules.

We now give an alternate description of the submodules of a module as well
as various elementary properties of submodules.

Basic Properties 3.4
Let Af be an R-module.

(a) A submodule of Af is nothing more than a subset M' of the underlying set of
M satisfying:
(i) M' is a subgroup of Af.
(ii) If m is in Af', then rm is in Af' for all r in R. In particular, the subsets (0)
and Af of Af are submodules of Af.

(b) If {Af,},e, is a family of submodules of Af, then D Af, is a submodule of Af.
Ie;

(c) If {Af,},e, is a family of submodules of Af which is totally ordered by inclusion,
then U Af, is a submodule of Af.
IEi

(d) If /: Af-»Nisa morphism of R-modules and Af' is a submodule of Af, then the
subset /(M') of N is a submodule of N.

(e) If f:M-»N is a morphism of modules and N' is a submodule of N, then the
subset f \N') of Af is a submodule of Af.
These results suggest the following.
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Definitions
Let f:M-»N be a morphism of R-modules.

(a) If N' is a submodule of N, then the submodule / \N') is called the preimage of
N' under /.

(b) If M' is a submodule of M, then the submodule /(M') of N is called the image
of M' under /.

(c) The submodule /(M) of N is called the image of / and is also denoted by Im /.
Before going on to develop more general theory, we pause to consider some

examples.

Example 3.5 Suppose A is a Z-module. Then a subset A' of A is a submodule
of A if and only if it is a subgroup of A.

Example 3.6 We have already seen that for a field K the notions of a vector
space over K and a module over K are the same. Similarly, the notions of
subvector spaces and submodules coincide.

Example 3.7 Let R be a commutative ring. Then the submodules of the
R-module R are nothing more or less than the ideals of the ring R. That this is not
necessarily the case when R is not commutative is shown later on.

Suppose we are given a morphism of R-modules f:M-»N. Then we know
that as a map of sets the map / :M -» N is the composition M—^ImZ-^N. Be
cause Im/ is a submodule of N, the inclusion map, inc:Im/-»N, is an injective
morphism of R-modules. Hence, f0:M-»Imf is a morphism of R-modules be
cause / = inc/0 is a morphism of R -modules with inc an injective morphism of
R-modules. Clearly, the morphism /0:M-»Im/ is a surjective morphism of R-
modules. Therefore, we have shown that the composition M—^ImZ-^N is a
factorization of the morphism / into a surjective morphism followed by an
injective morphism. This leads to the following.

Definition
Let /: M -» N be a morphism of R-modules. The factorization M—°-*lm f-t^N
of / into the surjective morphism /0 followed by the injective morphism inc : Im /-»
N is called the image analysis of /.
More generally, we have the following.

Definition
Suppose f:M-»N is a morphism of R -modules. Any factorization M— *-»
X—^-»N of / with g a surjective morphism of R -modules and h an injective
morphism of R -modules is called an analysis of /.

As with sets, monoids, groups, etc., we have the following uniqueness prop
erty for analyses of morphisms of R -modules.

Basic Property 3.8
Suppose M " »X - >N and M-!-+X-^—»N are two analyses of the same
morphism /:Af-»N of R-modules. Then there is one and only one morphism
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t :X-»X' of R-modules such that the diagram

.X.

commutes, and this uniquely determined morphism of R-modules t :X-»X' is an
isomorphism.

PROOF: See the proofs of the analogous result for monoids and groups.

Having described the image analysis of a morphism of modules, it is natural
to ask what the coimage analysis is for a morphism of modules. Past experience
indicates that this question is intimately related to the problem of determining
which partitions of the underlying set of a module Af occur as the partitions as
sociated with R-module morphisms /:Af-»N.
Suppose /: Af-»N is a morphism of R-modules. Then it is also a morphism

of the underlying abelian groups of Af and N. Thus, we know that / '(0) = K is
a normal subgroup of /. Also, the coimage analysis of / as a morphism of abel
ian groups is the factorization Af — >Af/K — »N of / where kM,K:M-»MIK
is the canonical surjective morphism of abelian groups given by kM,K(m) = m + K
for all m in Af, and jMiK: Af/K-»N is the injective morphism of abelian groups
jM,K(m + K) = f(m) for all m in Af.
Now K = /"'(0) is not just a subgroup of Af. Because /: Af-»N is a morphism

of modules, K is a submodule of Af because K = / '(0) and (0) is a submodule of
N (see Basic Properties 3.4 of submodules). We will now use this fact to show that
the abelian group Af/K has a unique R-module structure such that the abelian
group morphisms kWK'-M-»MIK and ;MiK:Af/K-»N are morphisms of R-

modules. In this way, the composition Af—^—»MIK —^-+N is not only an
analysis of / as a morphism of abelian groups but also as a morphism of
R-modules. It is this analysis of / as an R-module which we will call, for obvious
reasons, the coimage analysis of /.
Instead of just showing how to define an R-module structure on Af/K having

our desired properties, we deal with the following situation which, while it has the
appearance of being more general, really is not, as we shall see later. Namely, sup
pose Af ' is an arbitrary submodule of the I?-module Af. Then Af ' is also a subgroup
of the underlying abelian group of Af and hence a normal subgroup of Af.
Therefore, we can form the factor group Af /Af ' which is also an abelian group. We
now use the fact that Af' is a submodule, not just a subgroup of Af, to show that
there is an R -module structure on Af/Af' with the property that the canonical
morphism of groups /cM,M :Af-» Af/Af' is a morphism of R-modules.
We first show that if r is in R and X is a subset of Af which is an element of

Af/Af', then there is a unique subset Y of Af consisting of all the elements rx with
x in X. Because the elements of Af/Af' are of the form m + Af

' for some m in Af,
we know that X = m + Af ' for some m in Af. Hence rX = rm + rM'. Because Af ' is
a submodule of Af we know that rAf'CAf'. Therefore, rm + rM' is contained in
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rm+M'. Hence, rX is contained in the element rm + M of MIM'. Because rX±0
and MIM' is a partition of M, we know that rm + M' is the only element of MIM'
containing rX where X=m + M'. This means that we obtain a map R x MIM' -»
MIM' by defining (r, m + M' ) H»rm + M' for all r in R and m in M. We claim that
this map is our desired R -module structure on the abelian group MIM' because it
has the property that the morphism of groups km* :M-» MIM' is also a morphism
of R-modules. This can be shown directly using straightforward calculations, or
more indirectly as follows.
It is not difficult to check that the surjective morphism of abelian groups

kWM : Af-» MIM' has the property that kWM(rm) = rm + M' for all r in R and m in
M. Combining this with the following easily verified general observation we obtain
not only that the map R x MIM' -»MIM' given by (r, m +M) i-» rm +M for all r in
R and m in M is an R-module structure such that the surjective morphism of
groups kM,M :M-»MIM' is a morphism of R-modules, but that it is the only R-
module structure on MIM' with this property.

Proposition 3.9
Let R be a ring. Suppose N is an abelian group and R x N-»N is a map which we
denote by (r, n) (-» m for all r in R and n in N. Further, suppose that M is an
R-module and that there is a surjective morphism of groups f:M-»N satisfying
f(rm) = rf(m) for all r in R and m in M. Then:

(a) The map RxN-»N is an R-module structure on N.
(b) The R-module consisting of N together with the given R-module structure
RxN^N has the property that f:M-»N is a morphism of R-modules.

(c) The given R-module structure R x N-» N is the only R-module structure on N
such that the morphism of groups f:M-»N is a morphism of R-modules.

We summarize this discussion in the following.

Definitions
Let M' be a submodule of the R-module M. We denote by MIM' the R-module
consisting of the abelian group MIM' together with the unique R-module struc
ture having the property that the surjective morphism of abelian groups

kww :M-» MIM' is a morphism of R-modules. This R-module structure on MIM'
is given by r(m + M') = rm + M' for all r in R and m in M.
The R-module MIM' is called the factor module of M by M' and the surjec

tive morphism of R-modules <cMiM : Af -»M/M' is called the canonical morphism
from M to MIM'.

We now use the notion of a factor module to finish our discussion of the
coimage analysis of a morphism of R-modules.
Suppose f:M-»N is a morphism of R-modules. Then associated with the

morphism / is the submodule K = / '(0) of M together with the coimage analysis
Af—^M/K-^N of / viewed as a morphism of the underlying abelian
groups of M and N. Because K is a submodule of M, we know by our previous
discussion that the R-module structure of the factor module MIK is the unique
R-module structure on the abelian group MIK with the property that the mor
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phism kM,K:M-»MIK of abelian groups is a morphism of R -modules. Thus, view
ing MIK as the factor module of M by K, we have the R -module morphism / =
Jmik^mik where fcMiK is a surjective morphism of R-modules. From this it follows
that jm,K'-MIK-»N is an injective morphism of R-modules. Therefore, the com

position of R-module morphisms M-^M/K-^N is an analysis of the R-
module morphism /. This suggests the following.

Definitions
Let f:M-»N be a morphism of R-modules.

(a) The submodule / '(0) of M, which we will often denote by Ker/, is called the
kernel of /.

(b) The analysis M '-""•"» M/Ker / — » N of / is called the colmage analysis
of / where fcMiKer;:M-» M/Ker/ is the canonical surjective morphism of
R-modules from M to the factor module M/Ker/ given by kMn^,,(m) =
m + K for all m in M, and /MiKer; :M/Ker /-»N is the injective morphism of
R-modules given by jM,Kd(m +K) = f(m) for all m in M.

The reader will recall that early in this section he was asked to show that an
injective (surjective) morphism of R-modules is a monomorphism (epimorphism)
of R-modules. At the time it was claimed that the converses of these statements
are also true. This is now shown in the following.

Proposition 3.10
Let /:M-»N be a morphism of R-modules.

(a) The following statements are equivalent:

(i) Ker/=0.
(ii) / is injective.
(Hi) / is a monomorphism.

(b) / is an epimorphism if and only if / is surjective.
(c) The following statements are equivalent:

(i) / is an isomorphism.
(ii) / is both surjective and injective.
(iii) / is both an epimorphism and a monomorphism.

PROOF: (a) (i) => (ii). The kernel of / and injectivity of / are the same regard
less of whether / is viewed as a morphism of modules or abelian groups. Because
it has already been shown that a morphism of abelian groups is injective if its
kernel is zero, we know that Ker/ = 0 implies / is injective as a morphism of
R-modules.
(ii)=>(iii). Left as an exercise.
(iii) => (i). Suppose / :M -» N is a monomorphism and let K = Ker /. Then the

inclusion morphism inc : K -» M has the property that / inc = 0, while the zero
morphism 0 : K -» M also has the property / 0 = 0. Hence, because / is a
monomorphism, it follows that inc = 0. This implies that K = 0, because the inclu
sion morphism is injective. Therefore, / being a monomorphism implies Ker / = 0.
(b) Obviously the morphism of R-modules /: M-» N is surjective if and only

if Im / = N. Because Im / is a submodule of N, it follows that Im / = N if and only
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if N/Im/=0, the zero R-module. Because the canonical morphism kNnmi:N-»
N/Im / is surjective, it follows that N/Im / = 0 if and only if fcNi,mi = 0, that is, is
the zero morphism. Clearly, the morphism f:M-»N has the property fcW,m;/ = 0
while 0/ also equals 0.
Assume now that / is an epimorphism. Then the fact that kNnmtf = 0 = 0/ im

plies that fcW,m; = 0 which means that Nflm / = 0 or, what is the same thing, Im / =
N. Hence, / being an epimorphism of R-modules implies that / is a surjective
morphism of R-modules. Since the reader has already shown that surjective
morphisms are epimorphisms, the proof of (b) is complete.

(c) This is an immediate consequence of previously established results.

So far, in dealing with a morphism /: M-»N of R-modules, we have found it
useful to introduce various other R-modules associated with / such as Ker /, Im /,
and Coim /. In the course of the last proof, the R -module N/Im / together with the
canonical morphism fcVi,m;:N-»N/Im/ was also utilized. Because the morphism
fcVi,m;: N-» N/Im / is generally useful in studying the morphism / :M -» N, we make
the following definition.

Definition
Let f:M-»N be a morphism of R-modules. Then the canonical surjective
morphism fcW,m,:N-»N/Im/ is called the cokernel of /. We shall usually denote
the R -module Nflm f by Coker / and, unless stated to the contrary, whenever we
write a morphism N-»Coker/ we mean the canonical surjective morphism
/cW,ni;:N-»N/Im/.

With this definition of cokernel, part (b) of the preceding proposition may
now be stated as follows. The following statements are equivalent:

(i
) Coker / = 0.

(ii) / is surjective.
(Hi) / is an epimorphism.
We end this section with the following easily verified set of properties.

Basic Properties 3.11
Let M be an R-module.

(a) If M' is a submodule of M, then M' is the kernel of the canonical surjective
morphism kWM'M-»MIM'.

(b) Suppose f:M-»N is a morphism of R-modules. Then:
(i) / is the zero morphism if and only if Ker/=M
(ii) Im / is the kernel of Coker /, that is, Im / is the kernel of the surjective
morphism N-» Coker/.

4. EXACT SEQUENCES

We begin this section with the important notion of exact sequences of morphisms
of R-modules. After developing some of the basic properties of exact sequences,
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we apply this notion to obtain new descriptions of cokernels and kernels of

morphisms of R-modules.

Definition

Let R be a ring. A sequence Af,—-»M2—2—»M, of morphisms of R-modules is said
to be exact if Im /, = Ker /,

.

Given an arbitrary subset / of consecutive integers,
the sequence »Af<-,— '-^»M, —'-»Ml+l— ^Afi+2-»- . . is said to be exact if

Im/-, = Ker/, for all i in /.
Before giving examples of exact sequences of R-modules, we make the

following important general observation. A sequence of R-modules »

Af,_, —'-^ Af, — '—»Afm -» . . . can also be viewed as a sequence of abelian groups

because each R -module Af, has an underlying abelian group and each R -module
morphism / : Af, -» Af,+, is also a morphism from the underlying abelian group of
Af, to that of A(+,- Because Im/,-, and Ker/, are the same subsets of Af, whether
we view fl-, and /, as morphisms of R-modules or morphisms of abelian groups, it

follows that the sequence of R-modules » Af,_, -» M, -» Af,+, -» -is exact if

and only if it is exact when viewed as a sequence of morphisms of the underlying
abelian groups of the M,.

We now give some examples to illustrate the utility of this terminology.

Example 4.1 Let /:Af,-»Af2 be a morphism of R-modules. Then:

(a) / is a monomorphism if and only if the sequence 0-»Af,— '-*M2 is exact.
(b) / is an epimorphism if and only if the sequence Af,—'-+M2-»0 is exact.
(c) / is an isomorphism if and only if the sequence 0-»Af,-»Af2-»0 is exact.

PROOF: (a) We know that a morphism /: Af,-» Af2 is a monomorphism if and
only if Ker /= 0. On the other hand, by definition, the sequence 0-»Af,-^-»Af2 is
exact if and only if Im(0-»Af,) = Ker/. Since Im(0-»Af ,)={«), it follows that
0-»Af, — '—»M2 is exact if and only if Ker/ = (0). Therefore, the sequence
0-»Af,—'—»M2 is exact if and only if / is a monomorphism.
(b) and (c). Because the proofs of (b) and (c) are similar to those given in part

(a), these proofs are left to the reader to carry out.

Example 4.2 Suppose /: M,-»M2 is a morphism of R-modules. Then the fol
lowing sequences are exact:

(a) 0-»Ker/-^M,-^+M2.
(b) M,—UM^Coker/^0.
PROOF: (a) The inclusion morphism inc : Ker /-» Af , is a monomorphism.

Hence, we know by our previous example that 0-»Ker f-^*M, is exact. The fact
that Ker f-^M,—!-+M2 is exact is obvious, because the image of the morphism
Ker/-»M, is Ker/.
(b) Left as an exercise.

Example 4.3 Let Af,— '--»M2— *—»M, be a sequence of R-modules. Then:

(a) 0 -» Af ,—'-» M2—*-» Af 3 is exact if and only if Im / = Ker g and the morphism

/0 : Af , -» Ker g is an isomorphism.



Exact Sequences 195

(b) M,—!-»M2— ^Af3-»0 is exact if and only if Im/= Ker g and the morphism
g:M2-»M3 is an epimorphism.

We end this preliminary discussion of exact sequences by pointing out how

one compares sequences of morphisms of R-modules.
We first recall that a diagram of morphisms of R-modules

M, -»M2

is said to commute if g2f, = h,g,. More generally, for an arbitrary subset / of
consecutive integers, a diagram of morphisms of R-modules

. . »M,-, —"^+Ml »Ml+, ——»M,+2 ►. . .

'N,-, -—*N,—*N,„—-NM ». . .

commutes if each square in the diagram commutes, that is, & . ,/ = hg, for all i in /.
As an almost immediate consequence of these definitions, we have the fol

lowing.

Basic Property 4.4
Suppose the diagram of R -modules

»Af,-,-^»M-^Ml+1 ». . .

»N.-.-^N.-^N,+, ». . .

commutes. Then for each R-module X, the diagrams of C(R)-modules

»Hom«(X, M,_,)
"""""*
''">Hom.rfX, Ml)

"-"**i ,Hom„(X, M,-,) ». . .

>-HomR(X, N,_,) H0m.iX.,.„»HomR(X, NJ H0m.iXM >Hom^X, N,-l)— .

and

»HomR(Nl+„ X) "—*+'. x\Uom^N„ X)
"—"»'"

»Hom«(N,-,, X)
H.m,Rlh,.X!

H0m»if,.,. Xl

»Hom„(M,+„ X) ——-—♦Hom«(M„ X) - iHom^JHi-,, X) -H0mjiii1+,, Jil H0mitii1.Xl

commute.
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PROOF: All one has to do to prove this is to observe that if the diagram of
R -modules

M,—*-»]»4-.

Ni- .*N,-i

commutes, then for each R-module X the diagrams of C(R)-modules

and

Hom^X, M)- -»Hom^X, M,-,)

H0mrfX.nl HoutXa-,l

HomR(X, Nd- -»Hom^X, N,-,)

Hom„W„ X)
H0m,i>fJ0

>Hom«(N„ X)

Horn^M,-,, X)-

H.m^»1..Vl

l(..in* ,. Xl
.♦Hom^M, X)

commute. To see this, we simply observe that because g,-,/= fag,, it follows that
Hom^X, g, ,f!) = HomR(X, hg) for each R-module X. But Hom^X, #-,/) =

Hom„(X, g,-,)Homu(X,/) while Hom^X, hig,) = Homu(X, h^HomR(X, g,). Hence,
for each R-module X we have our desired result that HomK(X, g, OHom^X, f) =
HomR(X, hJHom^X, g<). The rest of the proof goes in a similar way and is left to
the reader to verify.

We now explain how to compare sequences of morphisms of R-modules.

»Afl-, — '—»M, »Afi-i- of

Definition
By a morphism from the sequence - -

morphisms of R -modules to the sequence »Ni-,-^*Ni —^Nl+, »..
we mean a family {g,},ei of R-module morphisms gl :M, -»N, such that the dia
gram of R -modules

commutes.
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We say that the morphism {g}^, is respectively a monomorphism, epimor-
phisni. or isomorphism if each of the morphisms g, is either a monomorphism,
epimorphism, or isomorphism.

We leave it to the reader to verify the following.

Basic Properties 4.5
Suppose we are given the morphism

of sequences of R-modules.

(a) If {g,},e, is an isomorphism, then the family {g,:'},ei of morphisms of R-modules

is a morphism from the sequence . . . -»N, ,—Li—»N, —»N1+,-» -to the
sequence . >M, »M,—.—»Ml, ,-»... which is also an isomorphism.

(b) If {gl},e, is an isomorphism, then the sequence - . .-»M,-,-»M,-»M,-n-»- . . is

exact if and only if the sequence » Ni-, -» Nl -» N,rl -» . . . is exact.

(c) For the morphism of sequences {g^e,, the following statements are
equivalent:

00 {gke, is an isomorphism.

(ii) For each R-module X, the morphism of sequences of C(R)-modules

»Hom„(X, Af,_,) "'"""""•' >Hom„(X, At,)
H,""',XA'

»HomR(X, MJ„)-

HiwntfX.fc ,l

»HomR(X,N,l)-

H.<ill|K\.K,.!i

-»HomR(X,N,)- -»HomR(X,N1+,)-

is an isomorphism.

(iii) For each R-module X, the morphism of sequences of C(R)-modules

»HomR(Nl.l,X)H°m,fk'"xl>HomR(NhX)
H°"*;tXI

»HomR(N,-„ X) -

"HomR(Afl+,, X) H0mtli1,xl >HomR(Af„ X) H0m^xl >HomR(M,. „ X)-

is an isomorphism.
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We now turn our attention to describing when a sequence of R -modules
0 »M, —'—»M2— 2-»M3 is exact in terms of the morphisms from R -modules X
to the R -modules Af ,, M2, and Af '. We begin by making the following useful obser
vation.

Suppose M is an arbitrary R-module. Considering the abelian group of R an
R-module by means of the R-module structure RxR-»R given by (r, x)-»rx
where rx is the product in R of the elements r and x in R, we want to describe
HomR(R, Af ). The first thing we do is show how we can consider HomR(R, M) an
R-module.
We already know that HomR(R, Af) is an abelian group. Therefore, it only

remains to define an R-module structure on the abelian group Hom^R, Af). Sup
pose f:R-»M is a morphism of R-modules and suppose r is an element of R.
Then define the map {rf ) : R -»M by (rf)(x) = f(xr) for all x in R. We claim that the
map rf:R-»M is a morphism of R-modules. For (rf)(x\ + xi) = f(x\+x2)r =
f(x,r+x2r)=f(x,r)+f(x2r) = (rf)(x,) + ((rf)(x2) for all x, and x2 in R. Therefore,

rf is a morphism of abelian groups. Also, if s and x are in R, then rf(sx) = f(sxr) =

s(f(xr)) = s(rf(x)). Hence, rf: R -»M is a morphism of R-modules. It is not diffi
cult to verify that we obtain an R-module structure on Hom„( R M) by means of
the map R xHom^R, M)-»HomR(R, M) denned for all r in R and / in
Hom^R, M) by (r,f)-»rf where (rf)(x) = f(xr) for all x in R. Summarizing, we
have the following.

Definition
Let M be an arbitrary R-module. We consider the abelian group Hom^R, M) an
R-module by means of the R-module structure RxHomR(R, M)-»HomR(R, Af)
defined for all r in R and / in Hom^R, Af) by (r, f)^-»rf where rf is the R-module
morphism from R to Af given by (rf)(x) = f{xr) for all x in R.

We now give our main result concerning the R-modules Hom^R, Af).

Proposition 4.6

For each R-module Af, the map aM: Hom^R, M)-»M given by aUf) = /(l) for all /
in HomR(R, Af) is an isomorphism of R-modules.
Further, if g:M-»N is a morphism of R-modules, then the morphism of

abelian groups Hom«(R, g):HomR(R, Af)-»HomR(R, N) is a morphism of R-
modules with the property that the diagram

HomR(R, Af)
°"
»Af

n.!.nmR.«, •

Hom^R, N)
*" »N

commutes.

PROOF: We first show that for each R-module Af, the map aM:Hom«(R, Af)-»
Af is a morphism of R-modules. For if /, and f2 are in HomR(R, Af), then
«M(/, + /2) = (/,+/2)(l) = /,(l)+/2(l) = aM(/,) + aM(/2). Thus, aM is a morphism of
abelian groups. Also, aM is a morphism of R-modules because if r is in R and / is
in Hom„(R,Af), then aM(r/) = (r/)(l) = /(lr)=r/(l) = r(aM(/)).
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Next we show that aM is an isomorphism of R- modules. Suppose a«(/) = 0.
Then /(1) = 0 which implies /(r) = 0 for all r in R because /(r) = rf(l) = 0. There
fore, if citAf) = 0, then / = 0 which means that Ker aM = 0. Hence, aM is an injecti ve
morphism. We now show that aM is also surjective. Suppose m is in M. Define the
map /:R-»Af by f(r) = rm. It is easily checked that /is an R-module morphism
with the property that /(l) = m or, equivalently, atAf) = m. Because m was an
arbitrary element of Af, we have that aM is surjective as well as injective and
hence an isomorphism of R-modules. This finishes the proof of the first part of the
proposition.
We now show that if /: Af-»N is a morphism of R-modules, then the mor

phism of abelian groups HomR(R, g):HomR(R, Af )-»HomR(R, N) is a morphism
of R-modules. To do this we must show that if r is in R and / is in HomR(R, Af),
then HomR(R, g)(rf) = r(HomR(R, g )(/)). But HomR(R, g)(rf) = g(rf), the com
position of the morphism (rf ) and g. Because g(rf)(x) = g(rf(x)) = g(f(xr)) for
each x in R while r(HomR(R, g)(/))(x) = ((r(g/))(x) = gf(xr) for all x in R, it
then follows that HomR(R, g)(rf) = r(HomR(R,g))(/). Hence, HomR(R,g):
HomR(R, M)-»HomR(R, N) is indeed a morphism of R -modules.
Finally, we show that the diagram of morphisms of R-modules

HomR(R,M)-^-»Af

H0miKR.1l »

HomR(R, N)-^-»N

commutes. For if / is in HomR(R, M), therefore a«(/) = /(l), which implies
that (gaM)(/) = g(/(l)). But on the other hand, (aN HomR(R,g))(/) =
(HomR(R,g)(/))(l) = (g/)(l) = g(/(l)). Therefore we have our desired result
that gaM = aN HomR(R, g).

Let us apply this result to show that a sequence 0-»Af,— '-+M2— ^Af3 of

R-modules is exact if for all R-modules X, the sequence of C(R)-modules 0-»

Hom„(X, Af,)
"°m'ix"

»HomR(.y, M2)
H°"'"'x"

»HomR(X, M,) is exact. In par
ticular, we know that the sequence of C(R )-modules 0-»

Hom^R, Af ,)—"'"""'*" »HomR(R, Af2)—
H"m'""'

»HomR(R, M,) is exact, which im
plies that the sequences of the underlying abelian groups is also exact. But by
Proposition 4.6, we know that this sequence of abelian groups can also be viewed
as a sequence of R-modules. Therefore, viewed as a sequence of R-modules, it is
also exact.

It also follows from our previous proposition that the R-module isomor
phisms aMl :HomR(R, M,)-»Af, defined by aM,(/) = /(l) for all / in HomR(R, Af,)
for i = l, 2, 3 gives an isomorphism of the following sequences

0 »HonUR, Af,) H°"V*
"
»HomR(R, Af,)

""^'"i
»HomR(R, Af,)

Af, ' » Af2 '- » Af,
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of morphisms of R-modules. Because a sequence of R-modules is exact if it is
isomorphic to an exact sequence of R-modules, it follows that the sequence of

morphisms of R-modules 0-»M,— '—»M2— ^M3 is also exact.
We now state the following general result, of which the preceding observa

tion is a part.

Theorem 4.7

Let M,—^-»M2—*-+M3 be a sequence of R-modules. Then the following state
ments are equivalent:

(a) The sequence of R-modules 0-»M,—*-»M2—*-»M3 is exact.
(b) For each R-module X, the sequence of C(R)-modules 0-»

Hom^X, M,)
Hl"""'X"

»Hom«(X, M2)
"""**'"

»HomR(X, M,) is exact.

(c) The sequence of R-modules 0-»HomR(R, M,) »HomK(K, M2)

. .—»HomR(R, M.) is exact.
(d) The composition gf is zero and for each morphism h :X-» M2 such that gh = 0,
there is a unique morphism h':X-»M, such that fh' = h.

PROOF: (a) implies (b). We suppose X is an arbitrary R -module and 0-»
M,— L+M2— t-»M, is exact. From Basic Properties 3.3 we know that 0-»

HomR(X, M,) »HomR(X, M2) is exact and, from Basic Properties 2.2,

we know that HomR(X,gf) = 0 because g/ = 0. But HomR(X, gf) =

HomR(X,g)HomR(X,/), so it follows that Im(HomR(X,/))CKer(HomR(X,g)).

Thus, to show that 0-»HomR(X, M,) »HomR(X, M2) »HomR

(X, M3) is exact, it remains only to show that Ker(HomR(X, g)) is contained in

Im(HomR(X,/)).
Suppose that u is in Ker(HomR (X, g)). Then u:X-»M2 is such that gn=0.

Therefore, Imu is contained in Kerg. But since 0-»M,— '—»M2— *-»M3 is exact,
we know that Ker g = Im /. Because / is a monomorphism, the morphism /0 : M, -»
Im/ is an isomorphism with inverse /0'. Define a map u':X-»M, by u'(x) =

f0'u(x) for all x in X. It is easy to see that u' is a morphism of R -modules and that
u =HomR(X, /)(u'). Thus, u is in Im(HomR(X,/)) and we have shown that 0-»

HomR(X, M,)
H<"""'X;l

»HomR(X, M2)
"°m"lK" »HomR(X, M3) is exact.

(b) obviously implies (c) and that (c) implies (a) is precisely what we proved in

the paragraphs immediately preceding the statement of this theorem.

(b) and (d) are clearly equivalent.

The rest of this section is devoted to developing criteria for when a sequence
M,-»M2-»M3-»0 of R -modules is exact in terms very similar to those already

used to describe when a sequence of R -modules 0-»M, — '-»M2—'-»M, is exact.
We have the following.

Theorem 4.8

Let M,—^M2—^M, be a sequence of R-modules. Then the following state
ments are equivalent:
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(a) M, —I—»M2— ^My^0 is an exact sequence of R-modules.
(b) The composition gf is zero and, for each morohism of R-modules h :M2-»X
such that h/ = 0, there is a unique morphism ri':Af3-»X such that h'g = h.

(c) For each R-module X, the sequence of C(R)-modules 0-»

Hom,(M„X) H0m'ifcX' >HomR(M2,X) ""'"" >HomR(M„X) is exact.

PROOF: (a) implies (b). Because M,—L»M2— t-»M, »0 is exact, the com

position gf is zero. Suppose, now, that h :M2-»X is a morphism such that h/ = 0. If
x is an element of M,, there is some element y in M2 such that g(y) = x because g
is an epimorphism. If y' is another element of M2 such that g(y') = x, then
g(y — y') = 0 and thus y - y ' = /(z) for some z in Af , since Im / = Ker g. Therefore,
h(y-y') = hf(z) = 0, so /i(y) = /i(y') if g(y) = g(y') = x. Consequently, we can
define a map h' :M3-»X by setting h'(x) = h(y) where y is any element in g '(x).
The reader can show that the map h' : Af3-»X is a morphism of R-modules and
that h'g = h. That the morphism h' is the only one having the property that h'g = h
follows from the fact that g is an epimorphism. Hence, (a) implies (b).
(b) implies (c) is obvious.

(c) implies (a). It has already been seen that the exactness of

0 »HonMM3, X)—'<"*" ' »Homu(Af2, X) for all R-modules implies
that M2—t-»M) »0 is exact (see Basic Properties 3.3). The fact that g/ = 0
follows from Basic Properties 3.3 because the composition HomR(Af3, X)-»
Hom«(Af2, X) ——»HomR(Af,,X) is zero for all R -modules X. Hence, to
show that M3— '-+M2— ^M, »0 is exact, we need only show that Kerg is
contained in Im/.
To this end, consider the R-module X = M2/Im/ and the canonical epimor

phism k :M2-» Af2/Im /. We claim that Horn* (/, X)(fc) = 0, for HomR (/, X)(fc) = kf
and kf = 0 because Im/=Ker/c. Thus, there is a unique morphism fc':M3-»
X such that HomR(g, X)(k') = k since we are assuming that 0-»
HomR(M3,X)

"°m""XI
>HomR(M2,X)

Hl"""'/X'
>HomR(M„X) is exact for

every R -module X. This means that k = k'g.
Now suppose that x is in Ker g. Then k(x) = k'(g(x)) - fc'(0) = 0, so x is in

Ker k. Because Ker k = Im /, we see that x is in Im / and we have therefore shown
that Kerg is contained in Im/. This completes the proof that M——»M2— *-»
M, »0 is exact.

5. ISOMORPHISM THEOREMS

We have already developed for groups and rings a body of theorems known as
isomorphism theorems. In this section we point out their analogs for modules over
a ring. Some of these results are then used to study the relationships given by a
morphism f:M-»N of R-modules between various submodules of M and N.
Since another convenient notion to have is that of a set of generators for a
module, we begin with the following easily verified results on which the definition
of a set of generators for a module is based.
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Basic Properties 5.1
Let Af be an R- module, let S be a subset of Af, and let {Afi},e, be the family of
submodules of Af consisting of all submodules M of M which contain S. Then the
submodule D M of M consists precisely of all elements of Af which can be

le,

written as a finite sum 1 r,S, with r, in R and s, in S.

Definition
Let S be a subset of an R- module Af.

(a) The submodule Af
' of Af consisting of finite sums 2 r1s, with r, in R and si in S

is called the submodule of Af generated by the set S.

(b) The subset S of Af is said to generate the module Af if the submodule of Af
generated by S is all of Af.

(c) A module Af is said to be finitely generated if there is a finite subset of Af which
generates Af.

Before developing the basic properties related to these definitions, we give
examples to illustrate some of these notions.

Example 5.2 Let V be a vector space over a field K. Then any basis for V is
also a set of generators for V. Hence, V is a finite-dimensional vector space over
K if and only if it is a finitely generated module over K.

Example 5.3 Suppose A is a finite abelian group. Then A is a finitely gener
ated module over the ring of integers Z because the whole set A is clearly a finite
set which generates the Z-module A.

Example 5.4 Let R be a ring. Earlier in this chapter we described how we

view R as an R-module. We recall that the additive group of this R-module is the

additive group of the ring and that the R-module structure on this module is the
map R x R -» R given by (r,, r2) -»r,r2 for all r, and r2 in R. Then any unit in the ring
R is a generator for this R -module R. In particular, 1 is a generator for R as an
R-module. Letting R be Z, the ring of integers, we see that Z is a finitely generated
Z-module which is not a finite abelian group.

Example 5.5 We have already observed that if R is a commutative ring, then
a subset I of R is an ideal of the ring R if and only if it is a submodule of R when R
is viewed as an R-module in the usual way. The reader should have no difficulty
verifying that the ideal generated by a subset S of R is the same thing as the
submodule of R generated by S. In particular, an ideal in R is finitely generated if
and only if it is a finitely generated R-module.

Example 5.6 Let Z be the ring of integers and let Q be the field of rational
numbers. Since under addition Q is an abelian group, Q is also a Z-module. The
Z-module Q is not a finitely generated Z-module.

PROOF: We prove that Q is not finitely generated by showing that the sub-
module generated by any finite number of elements in Q is not all of Q.

n

Suppose zjz\, . . . , zjz'„ is a finite set of elements in Q. Let s = U z'. Because
,=l

there are an infinite number of prime elements in Z and only a finite number of
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them divide s, we know there is a prime number p which does not divide s. We
claim that the element 1/p in Q is not in the submodule generated by

zllz',, . . . , zjz'„. For if it were, we would have x,, . . . , xn in Z such that 1/p =

2r., x,(z,/z'). Then 1/p = 2"-, xa,lz', = zlU z\ = zls for some z in Z. Hence, zp =

s, which means that p divides s. But p was chosen to be a prime not dividing s.
This contradiction shows that the element 1/p of Q is not in the submodule of Q
generated by z,lz\, . . . , z„lz'„. Hence, no finitely generated submodule of Q is all
of Q which shows that Q is not a finitely generated Z-module.

Returning to our general discussion of generators for modules, we have the
following.

Basic Properties 5.7

Let S be a subset of an R-module M.

(a) The following statements are equivalent:

(i
) M is generated by S.

(iI) M is the only submodule of M containing S
.

(iii) If /:X-»M is a morphism of R-modules and SC Im/, then / is surjec-
tive.

(iv) If f:M-»X is a morphism of R-modules and /(s) = 0 for all s in S
,

then

/=0.
(v) If f,,f2:M-»X are morphisms of R-modules such that f\(s) = f2(s) for all

s in S
,

then /, = /2
.

(b) If /: Af-»X is a surjective morphism of R-modules and S generates M, then
/(S) generates X. In particular, if M is finitely generated, then so is X.

(c) If /:M-»X is a surjective morphism, then S generates M if and only if /(S)
generates X and Ker / is contained in the submodule of Af generated by S.

(d) Let 0 »M' —'-»M—^»M" »0 be an exact sequence of R-modules. Sup
pose the module M is generated by the subset S' and the module M" is

generated by the subset S". For each s in S", choose one element m, in f"'(s)
and let T be the subset of M consisting of all elements m,.
Then:

(i) card(S') = card(i(S')).
(ii) card(T) = card(S").
(iii) i(S') U T generates M.

(e) If 0-»M'-»M-»M"-»0 is an exact sequence of R-modules and M' and M" are
finitely generated R-modules, then M is also a finitely generated R-module.

PROOF: (a) (i) implies (iI) is obvious.

(ii) implies (iii). Suppose f:X-»M is a morphism of R-modules such that

S C Im /. Because Im / is a submodule of M containing S and, by hypothesis, M is

the only submodule of M containing S
,
it follows that Im / = Af which means that
f:X-»M is a surjective morphism of R-modules.

(iii) implies (i). Let M' be the submodule of M generated by S. The inclusion
morphism inc :M'-»M obviously has the property that Im(inc) contains S

. Hence,

by hypothesis the morphism inc :M'-»M is surjective which means that M' = M
or, what is the same thing, M is generated by S.
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Thus, we have shown that (i), (ii), and (iii) are equivalent. We finish the proof
of (a) by showing that (ii), (iv), and (v) are equivalent.

(ii) implies (iv). Suppose f:M-»X is a morphism of R-modules such that
f(s) = 0 for all s in S. Then S is contained in Ker / which must be all of Af since Af
is the only submodule of Af containing S. Therefore, / is the zero morphism.
(iv) implies (ii). Suppose Af

'
is the submodule of Af generated by S. Then the

canonical surjective morphism fcMiM .: Af -» Af /Af ' has the property that
Ker kWM = Af'. So kMIM(s) = 0 for all s in S. Hence, by hypothesis, kMm .. Af -»

Af/Af ' is the zero map. But this implies Af/Af' = 0 since the morphism kmM- is
surjective. Therefore, Af ' = Af, which means that S generates Af. We have already
seen that this implies that Af is the only submodule of Af containing S. So the
proof that (ii) implies (iv) is complete, which establishes the equivalence of (ii) and

(iv). We finish the proof of (a) by establishing the equivalence of (iv) and (v).
(iv) implies (v). Suppose /,,/,: M-»X are two morphisms of R-modules such

that /,(s) = /2(s) for all s in S. Then the morphism f,-f2:M-»X has the property
(/ -/,)(s) = 0 for all s in S. Hence, by hypothesis, /,-/2 = 0 or equivalently/, =/2.
(v) implies (iv). Suppose f:M-»X is a morphism of R-modules such that

f(s) = 0 for all s in S. The zero morphism 0 : Af -»X has the property that 0(s) = 0 =
f(s) for all s in S. Therefore, by hypothesis, / = 0 because they agree on S. This
shows that (v) implies (iv) which completes the proof of the equivalence of (iv) and

(v) as well as the proof of (a).
(b) Suppose /: Af -»X is a surjective morphism of R-modules and S generates

M. We want to show that /(S) generates X. Let X' be the submodule of X
generated by f(S). Then f"\X') is a submodule of Af containing S. Hence,
f'\X') = M because Af is the only submodule of Af containing S. Because
f{f\X'))CX', it follows that /(Af)CX'. Combining this with the fact that /: Af-»
X is surjective, we have that XC X'. Hence, X = X', which means that /(S)
generates X. The rest of (b) is obvious.

(c) Suppose /: Af-»X is a surjective morphism and S is a subset of Af with the
property that /(S) generates X and the submodule Af' generated by S contains
Ker /. We want to show that Af

' = Af. To do this it suffices to show that if m is in
Af, there are finite sets s , s„ of elements in S and r , r, in R such that
m = 2". , r,$.

Suppose m is in Af. Because f(S) generates X we know there are a finite
number of elements s , s, in S and ru . . . , r, in R such that /(m) = 2i., rj(sd-
From this it follows that the element m-2i., na is in Ker/. Because Ker/ is
contained in the submodule generated by S, we know that there are finite sets
of elements s,+,, . . . , s„ in S and r,+, r, in R such that m -1\., r,sl =
2".,+, r,S,. Thus, m =21., rksk, which is our desired result.
The rest of (c) follows from previously established results and is left as an

exercise.

(d) also follows from previously established results and is likewise left as an
exercise.

We end this discussion of generators for modules with the following.
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Definition
Let {MJle, be a family of submodules of an R-module Af. The submodule of M
generated by the set U M, is called the submodule of M generated by the family

{Aii},e; of submodules of Af.

We leave it to the reader to verify the following.

Basic Property 5.8
Let {M},e, be a family of submodules of an R-module Af. The submodule gener
ated by the family {M},Ei of submodules of Af consists of all possible finite sums
m, H + m, where each m, is in Afi for some / in I.

Having established the basic facts concerning generators for modules, we
now study the relationships given by a morphism /: Af-»N of R -modules between
the submodules of Af and those of N. We begin with the following.

Proposition 5.9
Let f:M-»N be a morphism of R-modules with Ker/=K. Suppose Af' is a
submodule of Af. Then:

(a) f(M') is a submodule of N.
(b) f'\f(M')) is the submodule of Af generated by Af' and K. Consequently:
(c) /-'(/(M')) = M' if and only if M'OK.
(d) If we denote by Af' + K, the submodule of Af generated by Af ' and K, then:
(i) The morphism g :M' + K-»f(M') given by g(x) = /(x) for all x in M' + K is
a surjective morphism whose kernel is K. Hence:

(ii) The morphism J, : (Af
'
+ K)IK-»f(M') given by the coimage analysis of g is

an isomorphism.

(e) The morphism h:M'-»f(M') given by /i(m) = /(m) for all m in Af' is a
surjective morphism with kernel KnM'. Hence, the morphism
jb:M'IM'r,K-»f(M') given by the coimage analysis of h is an isomorphism.

(f) The isomorphism t:M'IMT,K-»(M' + K)IK which is the composition of
isomorphisms Af7M'nK-^/(M')— ^(Af' + K)/K can be described by
t(m +M'nK) = m + K for all m in Af.

PROOF: Because the proofs of these results are essentially the same as their
obvious analogs for groups, we leave the verification of these facts to the reader to
carry out.

Specializing the above results to the special case when the R -module mor
phism f:M-»N is surjective, we obtain the following stronger conclusions.

Proposition 5.10
Let /:Af-»N be a surjective morphism of R-modules with kernel K.

(a) For each submodule N' of N we have /(/"'(N')) = JV.
(b) For each submodule Af' of Af containing K, we have that /"'(/(Af')) = Af'.
Hence:

(c) If ST is the set of submodules of N and if is the set of submodules of Af
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containing K, the maps of sets if-» ST given by Af'-»/(Af') for all Af' in if and
ST-»if given by N'--»f\N') for all N' in 3", are isomorphisms of sets which
are inverse of each other. Finally:

(d) For each submodule Af' of M containing K, we have that the coimage analysis
of the surjective morphism Af'-»/(Af') given by m**f(m) for all m in Af'
yields the canonical isomorphism M'IK-»f(M') given by m + K >+f{m) for all
m in Af'.

6. NOETHERIAN AND ARTINIAN MODULES

We now apply these results to obtain some preliminary information concerning
noetherian and artinian modules, notions which, for modules, are analogous to
those we have already discussed for ideals in rings. (See Chapter 5, Section 5.)

Definitions
Let Af be an R-module.

(a) Af is said to be a noetherian module, or to satisfy the ascending chain condition,

if the set of all submodules of Af is noetherian. That is, Af is noetherian if
given any ascending chain of submodules Af0 C Af , C . . . C M, C Mn., C . . .

there is an integer n such that Af* = Af„ for all i > n.

(b) Af is said to be artinian, or to satisfy the descending chain condition, if the set of
all submodules of Af is artinian. That is, Af is artinian if given any descending
chain Af0DAf,D- . OAfDM+,D- . . of submodules, there is an integer n
such that Af= Af„ for all i>n.

Before giving examples of noetherian and artinian modules, we develop some
of their basic properties.

Basic Properties 6.1
Let Af be an R-module.

(a) The following statements are equivalent:

(i) Af is noetherian.

(ii) Every submodule of Af is finitely generated.

(Hi) Every nonempty subset of submodules of Af has a maximal element.

(b) If 0-»Af' —-»M—^-»Af"-»0 is an exact sequence of R -module v then Af is
noetherian if and only if Af' and Af" are noetherian.

PROOF: (a) We have already proven that if R is a commutative ring, then R is
noetherian if and only if all ideals of R are finitely generated. We know that the
ideals of R are precisely the submodules of R. The reader should therefore have
no difficulty in translating the proof of Chapter 5, Proposition 5.1 for the special
module R to an arbitrary module Af over an arbitrary ring R.
(b) Suppose Af is noetherian and 0-»Af' —^Af—^-»Af"-»0 is an exact se

quence of R-modules. We show that Af" and Af ' are noetherian by showing that
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every submodule of M " and M ' is finitely generated. Suppose X is a submodule of
M". Because the morphism f:\f-» M" is surjective, we know that /(/ "'(X)) = X
by Proposition 5.10. Since M is noetherian, the submodule / '(X) of M is finitely
generated. From this it follows that X = /(/ '(X)) is also finitely generated (see
Basic Properties 5.7). Hence, if M is noetherian, so is M".
We now show that every submodule of M' is also finitely generated. From the

fact that i:M-»Af is a monomorphism, it follows that each submodule of M' is
isomorphic to a submodule of M. Hence, each submodule of M ' is finitely gener
ated because it is isomorphic to a submodule of M which we know is finitely
generated because M is noetherian. Therefore, if M is a noetherian module and
0-»M'-»M-»M"-»0 is exact, then M and M" are noetherian.
We now complete the proof of (b) by showing that if 0-»W— '—»M —'—»M"-»

0 is an exact sequence of R -modules with M' and M" noetherian modules, then M
is noetherian. Suppose X is a submodule of Af. Then the morphism g:X-»/(X)
given by g(x) = f(x) for all x in X is a surjective morphism with kernel K n X
where K =ker/ = Imi. Because 0-»M'—'-»M—*-»Af"-»0 is exact, it follows
that Hi"\K nX)) = K flX and so the sequence 0-»r'(K DX)->-X-2-»/(X)-»
0 is exact where the morphism i"\K flX)-»X is given by y ,-»i(y) for all y in
r'(K n X). But the fact that i"'(K D X) and /(X) are submodules of the noeth
erian modules M' and M", respectively, implies that both i"\K n X) and /(X) are
finitely generated. This, combined with the fact that 0-»i"'(Kn X)-»X-»/(X)-»
0 is exact, implies that X is finitely generated (see Proposition 5.7). Because this is
true for each submodule X of M, we have that M is noetherian, which completes
the proof of (b).

We now use these various descriptions of noetherian modules to give some
examples of noetherian modules.

Example 6.2 Suppose R is a principal ideal domain. Then R, viewed as an
R-module in the usual way, is a noetherian R-module. We have already seen that
the submodules of R are nothing more than the ideals of R and that an ideal is
generated by a set S if and only if as a module it is generated by S. Because each
ideal in R is generated by one element, each submodule of R is also generated by
one element. Hence, every submodule of R is finitely generated, which means that
K is a noetherian module.

Example 6.3 Suppose A is a finite abelian group. Then viewing A as a module
over the integers Z in the usual way, we have that A is a noetherian Z-module. For
the submodules of A are nothing more than the subgroups of A and because each
submodule has only a finite number of elements, it is finitely generated.

Example 6.4 Let V be a finite-dimensional vector space over a field K. Now a
submodule V" of V is nothing more than a subvector space of V. Because subvec-
tor space V" of V is finitely generated, each finite-dimensional vector space over a
field is a noetherian module.

Having developed some of the basic properties of noetherian modules, we
turn our attention to artinian modules.
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Basic Properties 6.5
Let M be an R-module.

(a) The following statements are equivalent:
(i
) M is an artinian module.

(ii) Every nonempty set of submodules of M has a minimal element.

(b) If 0 -» M' — '-»M —L-» M" -» 0 is exact, then M is an artinian R -module if and
only if M' and M" are artinian R -modules.

PROOF: (a) This was already established when we showed in the last chapter
that a set & of subsets of a set X is artinian if and only if every nonempty subset
of 3" has a minimal element (see Chapter 5

, Basic Properties 6.2).
(b) Suppose M is an artinian module and 0-»Af' ——»M—^-»M"-»0 is an

exact sequence of modules. We want to show that this implies that M" and M ' are
artinian. We begin by showing that Af " is artinian.
Suppose

X0DX\D---DX,OX^D---

is a descending chain of submodules of Af". Then

/-'(XP/"tt)D"0/l(Xp/l(X.,)D-

is a descending chain of submodules of Af. Because M is artinian, there is an
integer n such that f"\X,) = f"\X„) for all i>n. The fact that /:Af-»Af" is

surjective implies that /(/ "'(X,)) = X, for all i. In particular, X, = ff'\X,)) =
f(f"\X„)) = X„ for all i > n. Hence. the fact that M is artinian and /:M-» Af"-»0 is

exact implies that M" is artinian.
We now show that M' is artinian. Suppose

Y0DY,o--oypy„,3---

is a descending chain of submodules of M'. Then

i(y0)Di(y,)D .. -Di(Y^i(YM)D- . .

is a descending chain of submodules of M. Because M is artinian, there is an
integer n such that i(Yi) = i(Y„) for all j>n. Because i:M'-»M is a

monomorphism, we know that i"'(i(Y)))=Yj for all /. In particular, Y
) =

i'(i(Y))) = i"'(i(Yn))= y„ for all j > n. Hence, the fact that 0-»Af' —'-+M is

exact and M is artinian implies that M' is also artinian.
To finish the proof of (b) we have to show that if 0-»M'-»M -»M"-»0 is

an exact sequence of R -modules with the property that M' and M" are artinian
modules, then M is also artinian. Suppose

is a descending chain of submodules of Af. Then

/(X0)D/(X,)D . . . D/(X)D/(X,,,)D . . . .

is a descending chain of submodules of M" whereas

i\XQ)Di '(X,)D- .Di'(Xl)Di'(Xl„)D- . .
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is a descending chain of submodules of M'. Because M" and M' are artinian, we
know there is an integer n" such that /(X) = f(X'!) for all j a n". Similarly, there
is an integer n' such that i"'(X) = i"'(X„) for all /an'. Therefore, if we let
n = maximum of n' and n", we have that /(X) = /(X„) and i"'(X) = i"'(Xn)fora]l
/>n.
Now for each / in N define gi: X-»/(X) by g,: (x) = /(x) for all x in Xi. Clearly,

g, is a surjective morphism with kernel KC\Xl where K = Ker/. Because
0-»Af' —^Af— *-»Af"-»0 is exact, i: M' -»M is a monomorphism with i(Af')= K.
Therefore, i"'(X) = i'(K D X,) and so i(i"'(X,)) = K n X,. Hence, if we define
hl:i'\Xi)-»X, by hi(x) = i(x) for all x in i"'(X), then the sequence 0-»
r\X,)—Uy, '' »/(X)-»0 is exact for all j in N.
Suppose j a n. Then we have the commutative diagram

0 >.r'(X)^X-^/(X,) »0

! I'
0—»i-'(XO^X.^-./(X,)—»0

with exact rows. From this it follows that Im h, = Im /i
„ = Kerg„, so that X, is a

submodule of X, containing Ker g„. Therefore, we know that g^'(g.(X)) = X,. But
g„(X) = g,(X) = /(X) = /(Xn), so that we also have g;'(g.(X)) = g„'(/(X)) = X„.
Therefore, it follows that X = X„ for each j a n. Thus, the descending chain of
submodules of M

X0DXD--OX,3X+,D--

has the property that there is an integer n in N such that X = X„ for all /an.
Because this is true for any descending chain of submodules of Af, we have shown
that M is an artinian module if there is an exact sequence 0-»M' —,—»M—^-»M"-»

0 of R -modules with M' and M" artinian modules.

We now give some examples of artinian modules.

Example 6.6 Every finite abelian group A is an artinian Z-module.

Example 6.7 Every finite-dimensional vector space V over a field K is an
artinian K-module.

PROOF: Let 5" be a nonempty set of submodules of V. Because the sub-
modules of V are the same thing as the subvector spaces of V, we know that
dimK(V')^dimK( V) for all submodules V" of V in 5", where dimK( V) stands for
the dimension of the vector space V over K. Because N is well ordered, we know
there is a submodule V0 of V in ST such that dimK ( V*0) ^ dimK ( V") for all V" in ST.
Then V0 is a minimal element of ST. For if V" in ST is contained in V0, then
dimK(V')^dimK(V0)^dim(V). Hence, dimK(V') = dimK(V0). Because V is a

subspace of the finite-dimensional vector space V0 of the same dimension as V0. it

follows that V = V0. This shows that V0 is indeed a minimal element of 3". Hence,

V is an artinian JC-module because every nonempty subset of submodules of V

has a minimal element.
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Example 6.8 Let R be a principal ideal domain and / a nonzero ideal in R.
Then RII is an artinian R-module as well as an artinian R//-module.
PROOF: This follows easily from the result established in the previous chap

ter (see Chapter 5, Proposition 6.3) that RII is an artinian ring.

7. FREE R-MODULES

Undoubtedly, the modules that are most familiar to the reader are vector spaces
over a field. Probably the most distinctive feature of the theory of vector spaces is
that every vector space has a basis. After generalizing the notion of a basis from
vector spaces over fields to modules over arbitrary rings, we introduce the notion
of a free module over an arbitrary ring. Namely, an R -module is a free R -module
if and only if it has a basis.
We recall that a subset S of a vector space V over a field K is said to be

linearly independent if each finite subset of distinct elements s , s„ in S has
the property that given k , k„ in K such that 2" , fc,s, = 0, then each fc = 0 for
i — 1, .... r. This suggests the following general definition.

Definition
Let Af be an R-module. A subset S of Af is said to be a linearly independent subset
of Af if each finite subset of distinct elements s,, . . . , s„ in S has the property that
given ru . . . , r. in R such that 2"., rls, = 0, then each r, = 0 for i = 1, . . . , n.

Before giving examples of linearly independent subsets of modules, it is
convenient to have the following easily verified properties.

Basic Properties 7.1
Let Af be an R-module.

(a) The empty set is a linearly independent subset of Af.

(b) A subset S of Af consisting of a single element nt is a linearly independent
subset of Af if and only if for any r in R we have rro = 0 implies r = 0. Hence,
the subset {m} is linearly independent if and only if the morphism of R-
modules R-»M given by r-»rm is a monomorphism.

(c) If S is a linearly independent subset of Af, then every subset of S is also a
linearly independent subset of Af.

(d) For a subset S of Af, the following statements are equivalent:

(i
) S is a linearly independent subset of Af.

(ii) Each finite subset of S is a linearly independent subset of Af.

(iii) If {r,},es is an almost zero family of elements of R such that 2,es r,s =0,
then r, = 0 for each s in S.

(iv) If {r,},es and {r',},^s are two almost zero families of elements of R such
that 2,es r,s = 2,e5 r'.s, then r,=r', for all s in S.

We now give some examples to illustrate various types of linearly indepen
dent subsets of modules.
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Example 7.2 Suppose the Z-module A is a finite abelian group. Then the
empty set is the only linearly independent subset of A.

PROOF: By Basic Properties 7. 1, we know that every subset of a linearly inde
pendent subset S of A must be linearly independent. Hence, if there are any
nonempty linearly independent subsets of A, there must be one consisting of a
single element. But again by Basic Properties 7.1, we know that an element a in A
is linearly independent if and only if the morphism of Z-modules Z-» A given by
z-»za is a monomorphism. But this cannot be an injective morphism for any a in
A because Z is an infinite set and A is a finite set. Hence, the empty set is the only
linearly independent subset of A if A is a finite group.

Lest the reader be misguided into thinking by this example that the finiteness
of an abelian group has too much to do with the fact that the empty set is the only
linearly independent subset of the abelian group, we now give an example of an
infinite abelian group with the property that the empty set is its only linearly inde
pendent subset.

Example 7.3 Because the field Q of rational numbers contains the ring Z of
integers, the additive group of Q, which we also denote by Q, contains the additive
group of Z, which we also denote by Z. Then the abelian group Q/Z is an infinite
group with the property that the empty set is its only linearly independent subset.

PROOF: We first show that Q/Z is an infinite group. To see this, let
p,. P2, . . . . p be the distinct positive prime numbers. We have already seen
that there are an infinite number of primes. It is easily checked that if p, and p, are
distinct positive primes, then the cosets 1/p, + Z and 1/pi+Z are distinct elements
of Q/Z. Hence, the cosets 1/p,+Z, 1/p2 + Z, . . . , 1/p„+Z, ... are all distinct ele
ments of Q/Z and so Q/Z is an infinite group.
Suppose z,/z2 + Z is an element of Q/Z. Then z2=£0 and z2(z,/z2 + Z) =

z1z2/z2 + Z=z, + Z = Z which is the zero element of Q/Z. Hence, given any element
x in Q/Z, there is a nonzero element z in Z such that zx = 0. Therefore, no single
element in Q/Z is a linearly independent subset of Q/Z which means that the
empty set is the only subset of Q/Z which is linearly independent.

Example 7.4 Let R be a nonzero ring. Then an element x in R is linearly
independent if and only if rx = 0 implies r = 0. Hence, R always has at least one
linearly independent element, for example, 1 or any other unit in R.

Example 7.5 Let R be a commutative nonzero ring. Then an element x in R is
linearly independent if and only if x is a regular element in R. Moreover, any
subset S of R which contains two distinct nonzero elements in R is not linearly
independent.

PROOF: We only prove the last assertion of the example. Suppose x and y are
distinct nonzero elements in a subset S of R. Then xy + (- y)x = 0. Because x and- y are both not zero, it follows that the subset {x, y) and hence the set S is not a
linearly independent subset of R.
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Having generalized the notion of a linearly independent subset of a vector
space over a field to arbitrary modules, we can now generalize the notion of a
basis for vector spaces over a field to arbitrary R-modules.

Definition
A subset B of an J?-module Af is said to be a basis for Af if B is a linearly
independent subset of Af which also generates Af.
An R-module Af is said to be a free R-module if M has a basis.

As a first step in studying free R-modules, we point out the following easily
verified properties.

Basic Properties 7.6
Let R be a ring.

(a) A subset B of an R-module Af is a basis for Af if and only if given an element
m in M there is a unique almost zero family {rk}h, « of elements in R such that
2fctg fhb = m.

(b) A subset B' of a basis B of an R-module Af is all of B if and only if B'
generates Af.

(c) Suppose Af is a free R-module with basis B. If /: Af-»N is an isomorphism of
R-modules, then N is a free R-module with basis /(B).

(d) The zero module is a free module with the empty set as basis.

(e) An R-module Af is isomorphic to the R-module R if and only if Af is a free
R-module which has a basis consisting of a single element.

PROOF: (a), (b), (c), and (d) are left as exercises because they follow im
mediately from the definitions involved.

(e) We have already seen that 1 in R is a linearly independent subset of R.
Because it also generates R, we know that R is a free R-module with a basis
consisting of a single element, namely, 1. Hence, if / : R -» N is an isomorphism of
R-modules, then by (c) N is a free R-module with basis consisting of the single
element /(l).
On the other hand, suppose N is a free R-module with basis consisting of the

single element n. Then it is easily seen that the map / : R -» N given by f(r)=rn is
an isomorphism of R- modules.

Recalling that the ideals of a commutative ring R are the same thing as the
submodules of the R-module R, we leave it to the reader to establish as an
application of our discussion of free modules the following characterization of
when a commutative ring is a PID.

Proposition 7.7
A commutative ring R is a PID if and only if every submodule of R is a free
R-module. Further, if R is a PID, then every basis of a nonzero submodule of R
has precisely one element.

Again generalizing from vector spaces, we make the following definition.
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Definition
Let B be a basis for the free R-module Af. For each element m in M, the unique
almost zero family {rb}beB of elements in R with the property that m = 2 rbb is
called the set of coordinates with respect to the basis B of the element m. If {rb}beB is
the set of coordinates with respect to B of the element m in Af, then for each b in
B the element rb is called the 6th coordinate of m. For each m in M the bth
coordinate of m will usually be denoted by mb. In this notation the set of
coordinates of an element m in Af with respect to B is the almost zero family
{mb}beB of elements of R. Clearly, m = 2teB mbb for each m in M.

The reader should have no difficulty verifying that the coordinates of ele
ments in a free R- module have the following.

Basic Properties 7.8
Let B be a basis for the free R-module Af.

(a) If m is an element of Af, then m = 0 if and only if mb = 0 for all b in B.
(b) Two elements m and m' in Af are the same if and only if mk = mb for all b in B.
(c) If {ri,}i,eB is an almost zero family of elements of R, then there is a unique
element m in M such that mb = rb for all b in B, namely, m = 2i,EB r6b.

(d) An element m in Af is the element x in B if and only if mb = 0 for b^X and
m,= l.

(e) For each element m in Af and r in R we have (rm)b= r(mb) for each b in B. In
particular, for each m in M we have (-m)b=-(mb) for all b in B.

(f ) For each pair of elements m and m' in M we have (m + m')i, = mb+ mi for all b
in B.

These rules for calculating with coordinates of elements in a free R-module
suggest the following way of constructing a free R-module F(B) starting from a
set B. As a set, F(B) is the set of all almost zero families {rb}beB of elements in R.
We define the addition in F(B) by {rb}beB + {rb}beB = {rb+ rHbeB. Simple calculations
show that F(B) with this addition is an abelian group where the element {rb}bSB
satisfying rb = 0for all b in B is the zero element and -{rb}beB = {-rb}beB. It is also
easily checked that the map RxF(B)--»F(B) given by (r, {rb}beB) i-» r{rb}b£B =

{rrb}beB for all r in R and {rb}beB in F(B) is an R-module structure on F(B). We now
show that the R -module F(B) we just constructed is a free R -module.
For each x in B, let us denote by Sx the almost zero f*rnijv {rb}beB of elements

of R given by rb = 0 for b =f
=
x and r, = 1. Let B' be the set o"Kafl x in B. It is then not

difficult to see that B' is a basis for the R-module F(B). Hence, F(B) is a free
R-module with basis B'. Finally, we observe that the map B-»B' given by x i-»8x
for all x in B is an isomorphism of sets which we usually consider an identifica
tion. Obviously, this identification simply consists of writing x for 8

, for every
element x in B.

We now summarize this discussion in the following.

Definition
Let R be a ring and B an arbitrary set. By the free R-module generated by B we
mean the free R-module F(B) whose elements are the almost zero families {rb)beB
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of elements in R, whose addition is given by {rb}beB + {rfibeB = {rb+ rfibeB and whose
R-module structure is given by r{rb}beB = {rrb}beB.

Further, the map B ■-»F(B) given by x t-» 8, for all x in B, where 5, stands for
the almost zero family {rb}beB satisfying rb = 0 if b ± x and r, = 1, is an injective
map which we will usually consider an inclusion map simply by identifying the
element 8, of F(B) with the element x in B. In this way, B becomes a basis for the
free module F(B).

We now point out some important features of free modules and bases of free
modules.

Proposition 7.9
Let R he a ring.

(a) If B is a basis for the free R- module Af and X is an arbitrary R- module, then
given any map g from B to the underlying set of X there is one and only one
morphism /: Af-»X of R-modules such that f\B = g. This uniquely determined
morphism of R-modules /: Af -»X is given by /(m) = 2tes mbg{b) for all m in
Af where {mb}beB is the set of coordinates of m relative to the basis B of Af.

(b) Suppose S is a subset of the R-module Af and suppose /: F(S)-» Af is the
unique morphism of J?-modules with the property that f\S: S-»M is the inclu
sion map. Then:

(i) The submodule of Af generated by S is Im/; hence:
(ii) S generates Af if and only if /: F(S) -»Af is surjective. Thus, every mod
ule is a factor module of a free module.

(iii) The set S is linearly independent if and only if the map /: F(S)-» Af is a
monomorphism.

(iv) S is a basis for Af if and only if /: F(S)-» Af is an isomorphism of
R-modules.

(c) A subset S of an R-module Af is a basis for Af if and only if given any
R- module X and any map of sets g:S-»X, there is one and only one mor
phism f:M-»X of K-modules such that f\S = g.

PROOF: The proofs of (a) and (b) are left as exercises for the reader.

(c) Suppose S is a subset of the R-module Af with the property that given any
R-module X and any map g:S-»X, there is one and only one morphism of
R -modules /:Af-»X such that f\S = g. Stated more symbolically, S has the
property that if we denote by (S, X) the set of all maps from the set S to the
underlying set of the R-module X, then the map ax:HomR(Af, X)-»(S, X) given
by a(f) = f\S for all / in HomR(Af, X) is an isomorphism of sets.
Now let /: F(S)-» Af be the unique morphism of R-modules such that

f\S : S-» Af is the inclusion map. If we show that /: F(S)-» Af is an isomorphism of
R-modules, then it will follow from (b) that S is a basis for Af.
Suppose X is an R?-module. Because SC F(S) is a basis for the free R-

module F(S), we know by (a) that given any R-module X the set (S, X) of all
maps from S to the underlying set of X is isomorphic to the set Hom„(F(S), X) by
means of the map Bx :HomR(F(S), X)-»(S, X) given by B(f) = f\S for all / in
HomR (F(S), X). Now it is easy to check that for each R -module X, the diagram

-.L.
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HomR (M, X)
H°m''/X'

>Hom« (F(S), X)

(S,X)

of maps commutes. For every R-module X, because both the maps ax and Bx are
isomorphisms of sets, it follows that Hom«(/, X):HomR(M, X)-»HomR(F(S), X)
is also an isomorphism of sets for every R-module X. Hence, HomR(/, X):
HomR(M, X)-»HomR(F(S), X) is an isomorphism of C(R)-modules for every
R -module X. But we have already seen that a morphism of R -modules f:F(S)-»
M is an isomorphism of R-modules if and only if HomR(/, X) :HonMM, X)-»
HomR(F(S), X) is an isomorphism of C(R)-modules for all R-modules X (see
Basic Properties 3.3). Therefore, the morphism /: F(S)--»M is an isomorphism of
R-modules which shows that S is a basis for Af.

As an application of this last result we prove:

Proposition 7.10

Suppose Af is a free R-module and 0-»X' —'—»X—L-»X"-»0 is an exact sequence
of R-modules. Then the sequence of C(R)-modules

0 »HomR(Af,X')
H0m,'M;'

»HomR(M,X)
"•",'*"

>HomR(Af,X") »0

is exact.

PROOF: We have already shown (see Theorem 4.7) that if 0-»
X'—'—»X —*-» X" -» 0 is an exact sequence of R -modules, then for any R -module
Af, the sequence of C(R )-modules

0—»HomR(M, X') "^".Hom.(Af, X) ""■'*" >Hom,(M, X")

is exact. Therefore, to finish the proof of the proposition it suffices to show that if
Af is a free R-module and X—L-»X"-»0 is an exact sequence of R-modules, then
the morphism HomR(M, g) :HomR(M, X)-»Homu(M, X") of C(R)-modules is sur-
jective.
Let B be a basis for the free R-module M. Suppose h :M-»X" is a morphism

of R-modules. Let t = h\B. Because X— '--»X" is a surjective morphism of R-
modules, we know that there is a map u:B-»X such that the composition B—*-»
X—^X" is the map f :B-»X". Simply define u(b) to be an element of the
nonempty set g"'(r(b)) for each b in B. Because B is a basis for the free
R-module M, we know there is a morphism d:M-»X such that d\B = u. Con
sider the R-module morphism Af-»X" which is the composition
M-^X-^X". For each b in B we have that gd(b) = gu(b) = f(b). Hence,
the composition gd:M -» X" has the property that (gd)IB = t = h \B. Because the
morphisms gd and h from M to X" agree on the basis B of M, they must be the
same. But gd = HomR(M, g)(d). Hence, HomR(M, g)(d) = h, which implies that if
Af is free and X—^X'-»0 is exact, then HomR(Af, g):HomR(M, X)-»
HomR(Af, X")-»0 is exact.
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8. CHARACTERIZATION OF DIVISION RINGS

We now turn our attention to describing those rings R with the property that every
R-module is a free R-module. The reader is already familiar with the fact that
fields have this property. We now show that division rings, which are the natural
generalization of the notation of a field to arbitrary, not necessarily commutative,
rings, also have the same property.

Definition
A ring R is called a division ring if it is not the zero ring and every nonzero element
in R is a unit in R.

Obviously, a commutative ring is a division ring if and only if it is a field. So
fields are special cases of division rings.
In order to show that every module over a division ring has a basis, it is

convenient to have the notion of a maximal linearly independent subset of a
module over an arbitrary ring R.

Definition
A subset 5 of an R- module M is said to be a maximal linearly independent subset
of Af if S is linearly independent and S is not contained in any larger linearly
independent subset of Af.

The main result about maximal linearly independent subsets of a module Af is
that every linearly independent subset of Af is contained in a maximal such subset
of Af. The proof of this fact is the burden of the following.

Basic Properties 8.1
Let Af be an R-module.

(a) If {S,},ei is a totally ordered family of linearly independent subsets of Af, then
S = U & is a linearly independent subset of Af.
IEi

(b) Every linearly independent subset S of Af is contained in a maximal linearly
independent subset of Af.

(c) Af has a maximal linearly independent subset.

(d) If Af is a free R-module, then every basis for Af is a maximal linearly indepen
dent subset of Af.

PROOF: (a) Suppose {S,},eI is a totally ordered family of linearly independent
subsets of Af. We now show that S = US is a linearly independent subset of Af

,e,

by showing that each finite subset of S is linearly independent. Suppose J,, . . . , s„
is a finite set of distinct elements in S. Then there is a finite subset {i,, . . . , i„} of /
such that sl is in S
,, for all / = 1
,

. . . , n. Because the family {S,},ei is totally ordered
by inclusion, this implies that there is a maximal element, say Si„ which contains
all the other S,r Hence, the set {s,, . . . , s„} is contained in S
i, which means that the
set {s,, . . . , s.} is linearly independent because it is a subset of the linearly inde
pendent subset S

,

of Af. Because each finite subset of S is linearly independent, it

follows that S is linearly independent.
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(b) Suppose S is a linearly independent subset of M. Let ST be the set
consisting of all linearly independent subsets of M containing S. We consider ST
an ordered set by inclusion. Then, by our previous result, J" is an inductive set.
For if {S,},e; is a nonempty totally ordered subset of ST, then S = U S is in ST and

is an upper bound for {S,},ei. Therefore, by Zorn's lemma, we know that ST has a

maximal element, say T. Then T is a linearly independent subset of Af containing
S which is a maximal linearly independent subset of Af. For if T" 3 T and T is a
linearly independent subset of Af, then T' is clearly in 9'. Because T is a maximal
element of 5", it follows that T = T'. This shows that T is a maximal linearly inde
pendent subset of Af containing S.

(c) Because every R-module has at least one linearly independent subset,
namely, the empty set, it follows from (b) that every R -module has a maximal
linearly independent subset.

(d) Left as an exercise for the reader.

Although the reader has just seen that a basis for a free R-module is a
maximal linearly independent set, it is not generally true that every maximal
linearly independent set in an R -module, even a free R-module, need be a basis
for the R-module. For example, let R = Z and consider Z as a module over Z. Then
Z is a free Z-module with basis {1}. Because Z is a domain, we know that any
nonzero element, say 2, is a linearly independent subset of Z. But {2} is a maximal
linearly independent subset of Z because we have already seen that no two
distinct nonzero elements in a commutative ring are ever linearly independent (see
Example 7.5). Nonetheless, 2 is clearly not a basis for Z even though it is a
maximal linearly independent subset of Z. However, for the special case of
division rings we do have the following.

Proposition 8.2
Let D be a division ring. Then the following statements are equivalent for a subset
B of a D-module Af :

(a) B is a basis for Af.

(b) B is a maximal linearly independent subset of Af. Since every module has a
maximal linearly independent subset, every module over a division ring D has
a basis and is therefore a free D-module.

PROOF: Because the reader has already shown that every basis of a module is
a maximal linearly independent subset of the module, we only have to show that

(b) implies (a). Suppose B is a maximal linearly independent subset of the D-
module Af. We want to show that B is a basis for Af, or what is the same thing, B
generates Af. Thus, we want to show that if m is in Af, then there is a finite set of
elements b,,...,b, in B and a finite set of elements r,, . . . , r, in D such that
m = 2'. , ribh
If m = 0 or is in B, there is obviously nothing to prove. So suppose m±0 and

m is not in B. Then the set B U {m} is not linearly independent because it contains
B properly and B is a maximal linearly independent subset of Af. Hence, there
must be some finite subset B' of B U {m} which is not linearly independent, for we
have already seen that a set is linearly independent if and only if every finite
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subset is linearly independent. For the same reason we know that the subset B' is
not contained in B. Hence, the subset B' = {m, b,,..., br} with the b , b, in B,

Because this set is not linearly independent, we know that there is a sum rm +
2i-, rlb, = 0 with the elements r, r,,. . . , r, in D and not all are zero. If r = 0, then we
would have 2!. , r,b, = 0 with some r,^0. But this cannot happen because the fact
that {b,l . . . , b,}CB and B is linearly independent shows that the set {bu . . . , b,} is
also linearly independent. Hence, r±0. Because D is a division ring, r is a unit and
thus has an inverse 1/r. Multiplying the equation rm = 2i. , (-r)b, by Mr on the left,

we see that m = 2 (1/r(-ri))b,. Therefore, m is in the submodule generated by B.
,-,

This finishes the proof that a maximal linearly independent subset B of a
D-module M is a basis for M because it generates M.
The rest of the proposition is left as an exercise for the reader.

Having established that all modules over division rings are free, we will have
a complete description of all nonzero rings R with the property that all R -modules
are free if we show that any nonzero ring with this property must be a division
ring. Because we are trying to describe when a ring is a division ring in terms of its
module theory, it is reasonable to expect that a module-theoretic description of
when a ring is a division ring would be helpful. We do this now in terms of the
properties of the R-module R.
Suppose R is a division ring. We claim that the R -module R has the following

properties: (a) R ± (0) and (b) (0) and R are the only submodules of R. By
definition, a division ring R is not zero so (a) is trivially satisfied. Suppose now
that M is a nonzero submodule of a division ring R. Then there is a nonzero x in
M. Because R is a division ring there is a y in R such that yx = 1. Because yx is in
M, it follows that 1 is in M and so r=r\ is in M for all r in R, which means that
M = R. So we see that a division ring R also satisfies (b), that is, it has the
property that (0) and R are the only submodules of R.
On the other hand, it is not difficult to see that a nonzero ring R which has the

property that (0) and R are its only submodules, is a division ring. To show this we
first show that if x is a nonzero element of R and yx = 0, then y = 0. The set M of
all y in R such that yx = 0 is a submodule of R, because it is the kernel of the
morphismof R -module R -»R given by rl-»ncfora!l rin R. Now M±R because 1
is not in R (remember R is not the zero ring). Therefore, M = (0) because (0) and R
are the only submodules of R. Hence, if yx = 0, then y = 0 because it is in M and
M = (0).
Next we observe that if x is a nonzero element of R, then there is a y in R

such that yx = 1. For the subset Rx is a submodule of R which is not the zero
submodule of R because it contains the nonzero element x. Hence, Rx = R be
cause (0) and R are the only submodules of R and Rx±0. This means that there is
a y in R such that yx = 1.
We now show that these two observations imply that a nonzero ring R is a

division ring if (0) and R are the only submodules of R. To do this we must show
that if x is a nonzero element of R, then there is a y in R such that yx = 1 = xy. By
what we have just shown we know that if x is a nonzero element of R, then there
is a y in R such that yx = 1. Multiplying both sides of this equation by y on the
right, we obtain yxy = y or, equivalently, y(xy - 1) = 0. The fact that R is not the
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zero ring means that 1^0. Because yx = 1, it follows that y =£0. But this, combined
with the fact that y(xy-l) = 0, implies that xy-l=0. For if xy-l=£0, then by
previous observation we would have y(xy- 1)=£0 because both y and xy- 1 are
different from zero. Hence, xy = 1 which gives our desired result that yx = 1 = xy.
Thus, we have shown that a nonzero ring R is a division ring if (0) and R are the
only submodules of R.
We summarize our discussion up to this point in the following.

Proposition 8.3
A ring R is a division ring if and only if the R-module R is a nonzero module
satisfying the condition that (0) and R are the only submodules of R.

This result suggests that for an arbitrary ring R the nonzero R -modules M
with the property that (0) and Af are the only submodules of Af, might be worth
considering. In fact they play an important role in all of ring theory and for this
reason are given a special name.

Definition
Let R be an arbitrary ring. An R -module Af is called a simple R-module if M=f=(0)
and (0) and Af are the only submodules of Af.

In this terminology our previous result becomes: A ring R is a division ring if
and only if the R-module R is a simple R-module. We leave it to the reader to
verify the following characterization of simple R-modules.

Basic Properties 8.4
Let R be an arbitrary ring and Af a nonzero R-module. The following conditions
are equivalent:

(a) Af is generated by each nonzero element in M.

(b) For every R-module X, every morphism f:X-»M is either zero or an
epimorphism.

(c) For every R-module X, every morphism f:M-»X is either zero or a
monomorphism.

As an immediate consequence of these basic properties, we have the
following.

Corollary 8.5
Let Af be a simple R-module. Then every endomorphism of Af is either zero or an
automorphism. Hence, EndR( Af ), the ring of endomorphisms of Af, is a division
ring.

The main point to establish about simple modules in connection with our
problem of showing that a nonzero ring R is a division ring if every R-module is
free is that every nonzero ring R has at least one simple R-module.
Suppose we know that our nonzero ring R, which has the property that every

R-module is free, also has a simple R-module Af. Then the simple R-module Af
must have a basis B since Af is a free R-module. Because Af =f

=

(0), we know that

B is not empty. We now show that B consists of exactly one element. Let b be an
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element of B. Then by one of our characterizations of simple modules (Basic
Property 8.4), we know that the element b generates Af since b ± 0. By Basic
Property 7.6, it follows that {b} = B. Hence, B consists of a single element.
But we have already shown that a free module over a ring R has a basis

consisting of one element if and only if it is isomorphic to R. Hence, the simple
R-module Af is isomorphic to R which means that R is a simple R-module.
Hence, R is a division ring because we have already seen that a ring R is a division
ring if and only if the R-module R is a simple R-module. Thus, our problem of
showing that a nonzero ring R is a division ring if every R-module is free is solved
once we establish that every nonzero ring has a simple module. To this end it is
convenient to have the following.

Definition
Let Af be a nonzero R-module. A submodule Af' of Af is said to be a maximal
submodule of Af if and only if M'±M and Af' and Af are the only submodules of
Af containing M'.

The following characterization of maximal submodules of a module is an
almost immediate consequence of the definition.

Basic Property 8.6
A submodule Af' of the R-module Af is a maximal submodule of Af if and only if
Af/Af' is a simple R-module.

PROOF: This is a direct consequence of the isomorphism established by the
canonical surjective morphism kM,M-:M-»MIM' between the set of submodules
of Af containing Af' and the set of submodules of MIM'.

Hence, in order to show that a nonzero ring R has simple modules, it suffices
to show that the R-module R has a maximal submodule Af because in that case
RIM is a simple R-module.

Proposition 8.7
Let R be a nonzero ring. Then every submodule Af' of R, different from R, is
contained in a maximal submodule of R. Consequently, the ring R has at least one
maximal submodule Af which means that R also has the simple R-module RIM.

PROOF: Let M' be a submodule of R different from R. Let ST be the set of all
submodules of R different from R and containing M'. Then 5" is not empty be
cause Af' is in ST. We now show that viewing ST as an ordered set under inclusion,
&" is an inductive set.
To do this we must show that a nonempty totally ordered subset 5"' of 5T has

an upper bound in 3'. Because ST' is a totally ordered set of submodules of M we
know that N = U X is a submodule of M. Because each X in T' contains Af' , we

know that N contains Af '. We also claim that N ± R. If N = R, then 1 is in N
which means that 1 is in X for some X in ST' because N = U X. But then that X

Xe3"

would be all of R, which is a contradiction. Hence, N ± R which means that N is
in ST and is an upper bound for ST' .
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Because ST is an inductive set, it must have a maximal element M by Zorn's
lemma. We leave it to the reader to verify that M is a maximal submodule of R.
Because M obviously contains M', the first part of the proposition is proven.
In the light of this result, to see that R contains at least one maximal sub-

module, all we have to do is find some submodule M' of R different from R.
Because R is not the zero ring, the zero submodule of R will do.
The rest of the proposition now follows trivially from our previous character

ization of maximal submodules.

In the light of this discussion, we have also established the following.

Theorem 8.8
For a nonzero ring R, the following statements are equivalent:

(a) R is a division ring.

(b) Every R-module is a free R-module.

(c) Every nonzero R-module generated by a single element is a free R-module.

As our final remark in this preliminary discussion of simple modules we point
out the following.

Proposition 8.9
Let R be a nonzero ring. An R-module M is simple if and only if M is isomorphic
to RIN where N is a maximal submodule of R.

PROOF: Suppose M is a simple R-module. Then M^(0) and M is generated
by any nonzero element m in M. Let m be a nonzero element in M. Then the
morphism of R-modules /:R-»M given by /(r) = rm for all r in R is surjective
since m generates Af. Hence, M is isomorphic to R/Ker/. Because R/Ker/ is a
simple R-module, it follows that Ker/ is a maximal submodule of R.

The rest of the proposition follows from previous results and is therefore left
as an exercise.

9. RANK OF FREE MODULES

The topic that we consider in this section is the analog of dimension for vector
spaces. It is well known that if a vector space has a basis with n elements (n a
nonnegative integer), then any other basis also has n elements. Although this is
not the case for free modules over arbitrary rings, it is true for a large class of
rings known as left noetherian rings. This section is devoted to establishing this

fact.
We begin by introducing some convenient terminology.

Definitions
Let R be a ring.

(a) A submodule of R is called a left ideal of R.
(b) R is said to be a left noetherian ring if the set of left ideals of R is noetherian.

(c) R is said to be left artinian if the set of left ideals is artinian.
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The terminology left ideal for a ring R comes from the fact that a left ideal is a
subgroup I of the additive group of R closed under multiplication on the left by
elements of R, that is, rid I for all r in R. Subgroups / of a ring R closed under
multiplication on the ring, that is, IrC I for all r in R, are called right ideals of R, a
notion we shall return to later on. In this terminology an ideal of R is a subgroup

of R which is both a left and a right ideal. Finally, in the case of commutative
rings, left ideals, right ideals, and ideals are all the same. Hence, a commutative
ring is left noetherian (left artinian) if and only if it is noetherian (artinian) in the
sense discussed in Chapter 5. This observation gives a ready supply of examples
of left noetherian (left artinian) rings, namely, the commutative noetherian and
artinian rings we discussed in Chapter 5. In addition, we point out that division
rings R are both left noetherian and left artinian rings because the only left ideals
of R are (0) and R.
The principal property of left noetherian rings that interests us at the moment

is the following.

Basic Property 9.1
If R is a left noetherian (left artinian) ring, then every finitely generated R-module
is noetherian (artinian).

PROOF: We will show that all finitely generated modules over a left noeth
erian ring are noetherian. The proof that all finitely generated modules over a left
artinian ring are artinian proceeds in an analogous way and is left as an exercise.
Saying that a ring R is left noetherian is the same thing as saying that R is a

noetherian R-module. Suppose now that M is a finitely generated R-module. We
show by induction on the number of generators of M that M is a noetherian R-
module. The proof depends heavily on the fact established in Section 6 that if
0-»M'-»Af-»Af'-»0 is an exact sequence of R-modules, then M is noetherian if
M' and M" are noetherian (see Basic Properties 6.1).
Suppose M can be generated by one element M. Then the map R-»M given

by r-»rm is a surjective morphism of R-modules. Because the sequence R-»M-»
0 of R-modules is exact and R is noetherian, it follows that M is noetherian.
Hence, any R-module that can be generated by one element is noetherian.
Suppose now that we know that all R-modules that can be generated by n

elements (n a 1) are noetherian, and suppose M can be generated by the n + 1
elements m m„, m„+,. Let M' be the submodule of M generated by
m,, . . . , m„. Then M' is noetherian because M' can be generated by n elements.
Let kMm :M -»MIM' be the canonical surjective morphism. Because m m*+,

generate M and kMm is a surjective morphism, it follows that
kM,M(m,), . . . , kM,M(m„l,) generate MIM'. But the fact that m,, . . . , m, are in M'
means that kWM(m\), .... kWM(mn) are all zero. Hence, MIM' is generated by the
one element /cMiM-(m„+,). that is, M" is generated by one element and is therefore
noetherian by the first step in our inductive proof. Because the sequence
0 -» M'—'^—»M >M"

»MIM' -» 0 is exact and both M' and MlM' are noeth
erian, it follows that M is noetherian. This completes the proof.

By combining this result with the following general fact concerning noeth
erian (artinian) modules, we will obtain our desired result concerning the number
of elements in a basis for a free module over a left noetherian ring.
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Proposition 9.2
Let M be a noetherian (artinian) module over an arbitrary ring R. If / :M-» Af is a
surjective (injective) morohism of R-modules, then / is an isomorphism.

PROOF: Assume that M is a noetherian module and /: M-» Af is a surjective
morphism. For each integer i a 1, let /' be the composition ff

,
. . . ,/ of i -times.

Then each /' is a surjective morphism because it is the composition of a finite
number of surjective morphisms. Also, for each i we have Ker/' CKer/'+'.
Therefore, we have the ascending chain of submodules

Ker/CKer/2C--CKer/'cKer/,+,C--

Because Af is noetherian we know that there is some n such that Ker /" = Ker /"+1.
We now show that this implies that Im/"nKer/ = 0.
For suppose x is in Im /"DKer /. Then x = /"(y) for some y in Af because x is

in Im/". Because x is also in Ker/, we have /(x) = /"+'(y) = 0 and hence y is in
Ker/"+'. But Ker/" = Ker/"+' which means that /"(y) = 0 or, equivalently, x = 0.

Therefore, we have Im /TlKer / = 0. However, Im/" = Af because /":Af-»Af is

surjective. Therefore, 0 = AfDKer /= Ker /. Hence, / is an isomorphism because

it is injective as well as surjective.
The proof that if Af is an artinian module and /: Af-»Af is an injective mor

phism, then / is an isomorphism proceeds in a similar fashion. The hypothesis that
/:Af-»Af is an injective morphism implies that /':Af-»Af is also injective for all
integers i a 1 since they are compositions of injective morphisms. Obviously,
Im / ' D Im / l+' for all i a 1 and so we have the descending chain of submodules

Im/Dlm/23-Olm/'Dlm/'+,D--

Because Af is an artinian module, we know that there is an integer n such that
Im /" = Im /"+'. We now show that this fact combined with the hypothesis that / is
injective implies that / is surjective and hence an isomorphism.
Let x be an element of Af. Then /"(X) is in Im/". Because Im/" = Im/"+',

there is a y in Af such that /"(x) = /"+'(y) = /"(/(y)). The fact that /" is injective
shows that f(y) = x because /"(x-/(y)) = 0. Hence, the injective morphism
/:M-»Af is also surjective and therefore an isomorphism.

We now apply these results to prove the following.

Proposition 9.3

If a free module Af over a left noetherian ring R has a finite basis with n elements,
then all bases of Af are finite with n elements.

PROOF: We first show that if R is a left noetherian ring and B is a finite basis
for a free module Af, then any other basis B' of Af has card(B')<card(B).
Because the free R- module Af has the finite basis B, Af is a finitely generated

R-module and is therefore a noetherian R-module. Suppose B' is another basis
and that card(B')>card(B). Then there is a surjective map g:B'-»B which is not
injective. Let /: Af-»Af be the unique morphism of R-modules such that /(b') =
g(b')fora!l b'in B. Then Im/=Af because Be Im/andB generates Af. Because
Af is a noetherian R-module, it follows from Proposition 9.2 that the surjective
morphism /: Af -» Af is an isomorphism. Because f(b') = g(b') for all b' in B', the
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fact that / is injective implies that g : B' -» B is injective, which contradicts the fact
that g:B'-»B is a surjective map which is not injective. Consequently, our as
sumption that card(B')>card(B) is false or, equivalently, card(B')<card(B).
From this it follows that if a free module Af over a left noetherian ring R has a

finite basis, then all bases are finite. Further, if B and B' are two bases for Af, we
have card(B')<card(B) and card(B)<card(B') because both B and B' are finite.
Therefore, all bases of Af are finite with the same number of elements.

In connection with this result, we make the following definition.

Definition
Let R be an arbitrary ring and Af a free R-module. We define the rank of M to be
the nonnegative integer n, if every basis of Af has cardinality n. If Af has a
well-defined rank, we denote it by rankR(Af).

Proposition 9.3 shows that if R is a left noetherian ring, then every finitely
generated free R-module has a well-defined rank.
As noted earlier, although this result is not true for arbitrary rings, the

following considerably weaker result does hold for arbitrary rings.

Proposition 9.4
Let Af be a free module over an arbitrary ring R. Then the following statements
are equivalent:

(a) There is a basis B for Af with a finite number of elements.
(b) Af is a finitely generated R-module.

(c) Every basis of Af has a finite number of elements.

PROOF: (a) implies (b) is obvious.

(b) implies (c). Suppose B is a basis for Af and suppose m,, ... , m„ is a finite
set of elements of Af which generates Af. Then for each i= 1, . . . , n, there is a
finite subset B, of B such that m< = 2b,eB, r,,bi with the rn in R. Then the set

n

B' = U Bl is a finite subset of B which generates M, because the submodule gen-

erated by B' contains all the elements m, m,. But we have already seen (Basic
Properties 7.6) that a subset of a basis of an R -module Af which generates Af is
the whole basis. Hence, B' = B which means that B is a finite set.
(c) implies (a) is trivial.

As a final comment about cardinality of bases of free modules, we have the
following.

Proposition 9.5
Let R be an arbitrary ring and let Af and M ' be free R-modules with bases B and
B', respectively. If card(B) = card(B'), then Af and Af' are isomorphic.

10. COMPLEMENTARY SUBMODULES OF A MODULE

This section is devoted to generalizing the familiar notion of complementary sub-
spaces of a vector space to modules over arbitrary rings. We recall that if V is a
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subspace of the vector space V over a field K, then a complement of V is a
subspace V" of V such that V'n V" = (0) and the whole space V is generated by
V" and V". Generalizing this notion to modules over arbitrary rings we obtain the
following.

Definition
Let Af' be a submodule of the R-module M. A complement of Af' in Af is a
submodule Af" of Af such that (a) Af'nAf" = 0 and (b) Af is generated by Af' and
M". A submodule Af ' of M is said to be a summand of M if it has a complement in
Af.

Before giving some examples of summands of modules we establish the
following criteria for when a submodule Af" of an R-module Af is the complement
of a submodule Af' of Af.

Basic Properties 10.1
Let Af' be a submodule of the R-module Af.

(a) A submodule Af" of Af is a complement of Af' if and only if Af' is a
complement of Af" in Af.

(b) A submodule Af
"
is a complement of Af ' in Af if and only if the canonical sur-

jective morphism kM:M:M-»MIM' has the property that kMm\M" :Af"-»
Af/Af' is an isomorphism of R- modules. Hence:

(c) If Af ' is a summand of Af, then all complements of Af ' in Af are isomorphic R-
modules because they are all isomorphic to the R-module Af/Af'.

PROOF: (a) Trivial.

(b) Let Af" be a submodule of Af. Then the morphism /: Af"-» Af/Af' given by
/(X) = x + Af

' for all x in Af" is the same as the morphism kWM |Af". Because f(x) =
x + M' is the zero element of Af/Af' if and only if x is in Af', we have
Ker/ = Af"n Af'. Therefore, /:Af"-» Af/Af' is a monomorphism if and only if
Af"nAf' = 0.
Also, because fcMiM:Af-» Af/Af' is surjective with KerfcM,M =Af', we know

by the basic properties of surjective morphisms that kMm(kMm(M")) is the sub-
module of Af generated by Af' and Af". Combining this fact with the fact that

/(Af") = *M.M(Af"), we see that /(Af") = Af/Af
' if and only if Af' and Af" generate

Af. Therefore, the morphism /: Af"-» Af/Af' is injective and surjective if and only
if Af'nAf" = (0) and Af is generated by Af' and Af". Thus, we have our desired
result that the morphism /:Af"-» Af/Af' is an isomorphism of R-modules if and
only if Af" is a complement of the submodule Af' of Af.
(c) Follows trivially from (b).

For two submodules Af ' and Af " of a module Af, because the relationships Af '

is a complement of Af " in Af and Af " is a complement for Af ' in Af are equivalent,
we can simplify our terminology as follows.

Definition
We shall say that two submodules Af' and Af " of Af are complementary in Af if Af '

is a complement of Af" in Af or, equivalently, Af " is a complement for Af ' in Af.
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We now give some examples of summands of modules.

Example 10.2 If Af is an R-module, then (0) and Af are summands of M
whose complements are Af and (0), respectively.

A more interesting situation is illustrated in the following.

Example 10.3 Suppose B is a basis for a free R-module Af. Let B' be a subset
of B and Af' the submodule of Af generated by B'. Then Af", the submodule of M
generated by B" = B-B', is a complement of Af' in Af. Hence, Af' is a summand
of Af. Further, each of the R-modules Af' and Af" is a free R-module.

PROOF: Follows readily from definitions and is therefore left as an exercise.

As a consequence of this example, we obtain the following generalization to

modules over division rings of the fact that subspaces of vector spaces over fields

have complements.

Example 10.4 Let D be a division ring. Then every submodule of a D-module
Af is a summand of Af.

PROOF: Let Af' be a submodule of the D-module Af. Because D is a division
ring, Af' is a free D-module and so has a basis B'. Hence, B' is a linearly indepen
dent subset, not only of Af', but of Af also. Therefore, there exists a maximal

linearly independent subset B of Af containing B'. But this maximal linearly inde
pendent subset B of Af is a basis of Af because D is a division ring. Hence, the
submodule Af' of Af is generated by the subset B' of the basis B of the free
D-module Af. This implies that Af' is a summand of Af as the reader has just seen

in our previous example.

In a later chapter, we shall obtain a description of all rings R having the
property that every submodule of an R-module M is a summand of Af. Such rings
are called semisimple rings.

We now return to our general discussion by relating the notion of com

plementary submodules of a module to properties of exact sequences.

Proposition 10.5
Suppose 0-»Af' —^-»Af— 1-»M"-»0 is an exact sequence of R-modules. Then the
following statements are equivalent:

(a) Im / is a summand of Af.
(b) There is a morphism /i:Af"-»Af such that gh:Af"-»Af" is idM-.
(c) There is a morphism t : Af -» M ' such that tg : Af ' -» Af ' is idM .

PROOF: (a) implies (b). Because the sequence 0-»Af' —*-»Af—t-»Af"-»0 is

exact we know that g is a surjective morphism with Ker g = Im /. Hence, the
morphism /, : Af /Ker g-»M" given by the cokernel analysis of g is an isomorphism.
The fact that Im / = Ker g together with the fact that Im / is a summand of Af
means that there is a complementary submodule N of Kerg in Af. By Basic
Property 10.1, we know that the restriction of /cMiKc, :Af -»Af/Kerg to N
is an isomorphism. Denoting this isomorphism by u:N-» Af /Ker g, it is not dif
ficult to check that the morphism h:M"-»M which is the composition
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Af"—^-»Af/Ker g — » has the property that composition Af"—^Af—"-»M" is
idM-

(b) implies (c). Suppose h : Af"-»Af is a morphism with the property that the
composition Af"—*-»Af—*-»M" is idM-. Let s:M-»M be the composition
Af—^M"—*-»Af. Consider the morphism idM - s : Af -» Af given by (idM - s)x
(m) = m — s(m) for all m in Af.
First of all, it is easily seen that (idm- s)(m') = m' for all m' in Im /. For if m'

is in Im/ = Kerg, then (id„ - s)(m') = m' - hg(m') = m'.
Secondly, we claim that Im(idm - s ) C Im /. Because Im / = Ker g, it suffices

to show that g(idM-s) = 0. But for each m in Af we have g(idM-s)(m) =
g(m-hg(m)) = g(m)-g(hg(m)) = g(m)-(gh)(gm) = g(m)-g(m) = 0 since gh =

idM:
Combining these two facts, we see that we obtain a morphism w : Af-»Im / by

defining w(m) = (idM- s)(m) for all m in M which has the property that the
composition Im/—,;!L-+M—-—»Im/ is idim;. Because f:M'-»M is a

monomorphism, we know that /0 :Af
' -»Im / is an isomorphism. It now follows that

the morphism t:M-»M' which is the composition M— 'L+lmf— -—»M' has the
property that the composition Af' —-^-»M— '—»M' is idM-.

(c) implies (a). Suppose that t :M-»M' is a morphism such that the composi

tion M'—^M—^M' is idM . We show that Im/ is a summand of Af by showing
that Ker f is a complement for Im/ in Af. Because Af' —'—»M —'-»Af' is idM, it
follows that if x is in Im/nKer f, then x=f(m') for some m' in Af', and t(x) =
f/(m') = 0. But r/(m') = m' because f/=idM which implies that m'=0 and hence
x = f(m') = 0. Therefore, we have that Im /DKer t = 0. Hence, we are done if we
show that Af is generated by Im / and Ker t. But the submodule generated by Im /
and Ker t is r'(f(Im/)). The fact that tf = idM implies that f(Im/) = Af'. Hence,
t "'(r(Im/)) = t "'(Af') = Af, which shows that Af is generated by Im/ and Ker f.

In connection with this result we point out the following often used
terminology.

Definitions
Let 0-»Af' —'—»M —L-*M"-»0 be an exact sequence of R -modules.

(a) The monomorphism / is said to be a splittable monomorphism if there is a
morphism t : Af -» Af' such that the composition Af' —'-»M—^Af' is idM . Any
morphism t : Af -» Af ' such that tf = idM is called a splitting for /.

(b) The epimorphism g : At-» Af" is said to be a splittable epimorphism if there is a
morphism s : Af"-» Af such that the composition Af"—^Af —?-»M" is idM . Any
morphism s:Af"-»Af with the property gs = idM is called a splitting for the
epimorphism g.

(c) The exact sequence 0 -» Af
'— '—»Af —*-» Af" -» 0 is said to be splittable if either

/ is a splittable monomorphism or, equivalently, g is a splittable epimorphism.

On the basis of what has already been established, the reader should not have
difficulty in proving the following.
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Basic Properties 10.6

(a) Let 0-»Af' —'-*M—L+M"-»0 be an exact sequence of R-modules.
(I) A morphism t : Af -» Af

'
is a splitting for the monomorphism / if and only if

Ker t and Im / are complementary submodules of Af.
(ii) A morphism s : Af"-» Af is a splitting for the epimorphism g : Af -» Af

" if and
only if Im s and Ker g are complementary submodules of Af.

(b) 0-»Af'—*-»Af—£-»Af"-»0 is a splittable exact sequence of R-modules if and
only if there are morphisms t :Af -»Af' and s : Af"-»Af satisfying:
(i) gf = 0.

(ii) f/ = idM, and gs = idM .
(Hi) fs=0.

(iv) /f + sg = idM.

PROOF: (a) Left as an exercise.

(b) Suppose 0-»Af' —'—»M— L^M"-»0 is an exact splittable sequence of R-
modules. Then let s : Af" -» Af be a splitting for g. For every m in Af the element
m-sg(m) is in Kerg = Im/. Then the map t:M-»M' defined by t{m) =

f0\m - sg(m)) is our desired morphism, which we leave to the reader to verify as
well as the rest of (b).

These criteria for when an exact sequence is splittable yield the following
useful proposition.

Proposition 10.7
Let 0-»M' —'—»M— !-»M"-»0 be an exact sequence of R-modules. Then the fol
lowing statements are equivalent:

(a) The exact sequence 0-»Af' —l-*M-JL»M''-»0 is splittable.
(b) For each R-module X the sequence of C(R)-modules

0 »Horn„**, Af)
"°m'•"n »HomR(X, M)

H°"','X"
>Hom^X, Af") »0

is exact.

(c) For each R-module X, the sequence of C(R)-modules

0 »HomR(Af", X)
H°"V"XI

,HomB(Af, X) *— >HomR(Af'. X) ^0

is exact.

PROOF: We only prove the equivalence of (a) and (b). The equivalence of (a)
and (c) proceeds in an analogous fashion and is left as an exercise.

(a) implies (b). Suppose the exact sequence 0-» Af' —^-»Af —S-»Af"-»»0 is splitt
able. Then there is a splitting for the epimorphism g, that is, a morphism s : Af"-» Af
such that the composition Af"—^Af —^Af" is idM . Hence, for each R-module X,
the composition of C(R)- modules

HomR(X, Af")
"'"""'*"

>Hom«(X, Af )—H'"""'x" >Hom«(X, Af")
is the identity because HomR(X, g)Hom,,(X, s) = HomR(X, gs) = Hom„(X, idM) =

idH0m*x.M-,. Therefore, for each R-module X, the C(R)-morphism
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HomR(X, g):HomR(X, M)-»Horri,,(X, M") is an epimorphism. Combining this
with the fact that the sequence

0 »HomR(X, Af')
"""'*"

>HomR(X, Af)
""'X"

>HomR(X, AT)

is always exact, we obtain that the sequence of C(R)-modules

0 »Hom„(Xi Af' )
"°"'''X" »HomR(X,M ) u°m*K" »HomR(X, Af") »0

is exact for all R-modules X.

(b) implies (a). If, for all X, the sequence of C(R)-modules

0 »Homi!(X, AT)
""""""

»Hom„(X, Af)
H^""

>HomR(X, M") »0

is exact, then in particular, the sequence

HomR(Af", M)—"'"'""''." »HomR(M", Af") »0

is exact. Therefore, there is a morphism f :Af"-»Af such that Horn^CAf", g)(t) =

idM-. But HomR (Af",g)(f) = gi- So we see that gf = idM, which means that t :M"-»
Af is a splitting for the epimorphism g:Af-»M". Hence, the sequence 0-»
M'—'--»M—L+M"-»0 is splittable. The reader should notice that condition (b) in
Proposition 10.7 simply states that the sequence is exact. However, the exactness
for all X immediately implies that the sequence splits as an exact sequence of
C(R )-modules.

As an interesting example of how all these notions can be used, we will prove
that if Af ' is a submodule of a free module Af of rank n over a PID, then Af' is a
free module of rank at most n. We begin with the following preliminary result
which we leave to the reader to prove.

Proposition 10.8
Let Af be an R-module and let R be an arbitrary ring. Suppose Af' and Af" are
submodules of Af which are free R-modules with bases B' and B", respectively.
Then Af' is a complement of Af" in Af if and only if:

(a) B'nB" = 0.
(b) Af is a free R-module with basis B'UB".

We now turn our attention to the main point of this digression.

Theorem 10.9
Let R be a PID. Suppose N is a submodule of the finitely generated free R-
module Af of rank n. Then N is a finitely generated free R -module of rank at
most n.

PROOF: The proof is based on the fact established earlier that since R is a
PID, every submodule of R is a free R-module of rank at most one. Keeping this
fact in mind, we prove the theorem by induction on n, the rank of Af.
If n = 0, there is nothing to prove because Af = (0). Suppose n = 1. If b is the

unique element of the basis of Af, then the morphism of R -modules f:R-»M
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given by f(r) = rb for all r in R is an isomorphism of R -modules. Hence, the
submodule M' of Af is isomorphic to the submodule /"'(Af') of R. By our initial
observation, /"'(Af') is a free R -module of rank at most one which means that Af'
is a free submodule of Af of rank at most one. Thus, the theorem has been
established for n = 1.
Suppose now that the theorem is true for all free R-modules of rank at most n

{n a 1) and suppose Af' is a submodule of the free R -module Af with rank Af =
n+\. Let {b, b„+,}be a basis for Af and let/: M-»R be the unique morphism
with the property f(b,) = 1 and f(b) = 0 for all i a 2. Then an element m = 2". / r,b,
in Af is in Ker / if and only if r, = 0. This implies that Ker / is the submodule of Af
generated by the linearly independent set {b2, . . . , b„+,}. Therefore, Ker / is a free
module of rank n.
Now letting g:N-»R be the morphism f\N, we know that Ker g = NDKer /.

Hence, Ker g is contained in the free R-module Ker / of rank n. Therefore, by our
inductive hypothesis we know that Ker g is a free R- module of rank m<n. Be
cause Im g is a submodule R, it is a free R-module of rank 0 or 1. Hence, we have
the exact sequence 0-»Kerg — !=s—»N—-—»Img-»0 where Img is a free R-
module of rank 0 or 1.
If rank Im g =0, then Im g = (0) which means that N = Ker g and so N is a

free R -module of rank m < n and we are done.
Suppose rank Img = 1. Then Img has a basis consisting of one element b.

Because g0: N-»Im g is surjective, there is an element x in N such that g0(x) = b.
Let h:\tn g-»N be the morphism of R-modules with the property that h(b) = x.
Then the composition Img—*-»N—^Img has the property g0h(b)=b. Be
cause {b} is a basis for Im g and the two morphisms g0h and id,„, , agree on that
basis, they are the same, that is, g0/i = id,mt.
Therefore, it follows from Proposition 10.5 that Im h is a complement for

Kerg in N. Further, h0:Img-»Imh is an isomorphism and x = fh{b). Hence, {x) is
a basis for Im h since {b} is a basis for Im g. Therefore, if we let B' be a basis for
Ker g, we have by Proposition 10.8 that N is a free R-module with basis B' U{x}
where .v is not in B'. Because B' has m elements and m < n, it follows that N is a
free R-module with rank N=m + l<n + l= rank Af, which is our desired result.

Corollary 10.10
Let R be a PID. If Af is an R-module which can be generated by n elements, then
every submodule of M can also be generated by m elements where m ^ n.

PROOF: Suppose S is a set of generators for Af with n elements. Then the
free R-module F(S) generated by S has rank n and the unique morphism
f:F(S)-»M such that /|S = inc is an epimorphism because S generates Af (see
Proposition 7.9). Let N be a submodule of Af. Then by Theorem 10.9, we know
that f"\N) is a free submodule of Af of rank m s n. Hence, /"'(N) can be gen
erated by m elements, which implies that f(f'\N)) = N can also be generated by
m elements, where m < n.
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11. SUMS OF MODULES

In an earlier chapter the notion of a sum of an indexed family of objects in an
arbitrary category was introduced. This section is devoted to discussing the notion
of sums in the category of R-modules for an arbitrary ring R. We start by looking
at complements of submodules from the point of view of sums of modules. To this
end, it is useful to have yet another easily verified description of complementary
submodules of a module.

Proposition 11.1
Let Af' and Af" be submodules of an R-module Af.

(a) AT D Af" = (0) if and only if whenever m\ + m" = m'2 + m" with m\ and m'2 in
M' and m" and m" in Af", we have m\ = m'2 and m"= m".

(b) Af and Af" are complementary submodules in Af if and only if every element
m in Af can be written in one and only one way as a sum m' + m" with m'
in Af' and m" in Af".

We now use this result to describe when a submodule Af ' of a module Af is a
complement for a- submodule Af" of Af in terms of the morphisms from Af', Af",
and Af to various K-modules.

Proposition 11.2
Let Af ' and Af" be submodules of the R-module Af. Then the following statements
are equivalent:

(a) Af' and Af" are complementary submodules of Af.

(b) For each R-module X and pair of morphisms /' :Af'-»X and /": Af"-»X, there
is one and only one morphism f:M-»X such that /|Af'=/' and f\M" = f".

(c) There are morphisms pM :Af-»Af' and pM :Af-»Af" satisfying:

(i
) The composition Af'-^Af-^Af' is idM and Af"-^Af-^»Af' is the

zero morphism.

(ii) The composition M''-^Af-^Af" is idM and Af'-^Af-^Af" is the
zero morphism.

(HI) For each m in Af we have m =pM(m) + ptr(m).

PROOF: (a) implies (b). Suppose Af" is a complement of Af

'

in Af. Then, by our
previous result, we know that each element m in Af can be written in one and only
one way as a sum m' + m" with m' in Af' and m" in Af". Hence, given any
R-module X and morphisms /':Af'-»X and /":Af"-»X, we can define a map

/: Af-»X by f(m) = f(m') + f"(m") where m' and m" are the unique elements in
Af' and Af", respectively, such that m = m' + m". It is easy to check that / is

actually a morphism of R-modules with the properties f\M'=f and /|Af" = /".
That this is the only morphism with these properties follows from the fact that
Af ' U Af " generates Af.

(b) implies (c). Suppose Af

'

and Af" are submodules of the R-module Af with
the property that given any R-module X and morphisms /' : Af'-»X and /": Af"-»
X, there is a unique /:Af-»X such that f\M'=f and /|Af" = /". Then define
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pM :M-» Af ' to be the unique morphism with the property that pM|Af ' : Af ' -»M ' is
the identity and pM\M" : Af"-»Af' is the zero morphism. Then pM :M-»M' clearly
satisfies part (i). Similarly, define pM- : Af -» Af

"
to be the unique morphism with the

property that pM-|Af":Af"-»Af" is the identity and pM-\M' : Af' -» Af" is the zero
morphism. Then pM-:Af-»Af" clearly satisfies part (ii). Therefore, in order to
finish the proof, we must show that pM and pM- satisfy condition (iii).
To this end, consider the morphism h:M-»M given by h(m) =

pM{m) + pM(m) for all m in Af. Now for each m' in Af', we have h(m') =

pM(m') + pM{m') = pM(.ni') = m' and similarly, h(m") = m" for each m" in Af ". In
other words, the morphism h:M-»M has the property that h \M' : Af ' -»M is the
inclusion morphism and h |M" : Af"-» Af is the inclusion morphism. But idM : Af -»
Af also has these properties. Therefore, h = idM because the submodules M' and
M" of M by hypothesis have the property that two morphisms with domain M
are the same if their restrictions to M' and M" are the same. Thus, we have
m = h(m) = pMim) + pMim) for each m in Af, which finishes the proof that (b)
implies (c).

(c) implies (a). Left as an exercise.

Restating part (b) of this proposition in slightly different terms, we see that
M' and Af" are complementary submodules of Af if and only if for each R- module
X, the map

^Hom^Af, X^Hom^M' , X)xHomR(Af", X)

given by <px(f) = (/|Af', /|Af") is an isomorphism of sets. What this in essence says
is that Af together with the morphisms Af'—^Af and M''-^Af is the sum of the
R-modules Af ' and Af" in the category of R-modules if and only if Af ' and Af" are
complementary submodules of Af.
Specializing the definition of a sum of an arbitrary family of objects in an

arbitrary category to the category of R-modules, we obtain the following.

Definition
Let {Af,},ei be a family of R -modules. A module Af together with a family of
morphisms {g-,:M-» Af},e, is said to be a sum of the family of R-modules if and only
if for each R-module X, the map of sets <px: HomR(Af, X)-» II HomR(M , X) givenle,

by <p*(/) = {/g,},e, for all / in HomR(Af, X) is an isomorphism of sets.
We recall that when discussing sums in arbitrary categories, we explained in

what sense a sum of a family of objects in a category is unique. Specializing that
discussion to the category R-modules, we have the following.

Proposition 11.3
Let {Afi},e, be a family of R-modules. Suppose that R-modules Af and Af ' together
with the family of morphisms {g,:Af,-»Af},e, and {g;:Af,-»Af'},E; are sums for
{Afl},e,. Then there is a unique morphism h :Af-»Af ' such that hg, = g\ for all i in /
and this uniquely determined morphism is an isomorphism.

Having defined, as well as having established, the uniqueness of a sum of a
family of R-modules {Afj,ei, it is natural to ask if every family of R-modules has a
sum.
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We recall that this question was answered in the affirmative in the special

case when R is the ring of intergers Z. Given a family {Ai},ei of Z-modules, or,
what is the same thing, abelian groups, we constructed the abelian group IIA as

lEI

follows. As a set U A is the subset of II A consisting of all elements (O,),el
1EI ,el

satisfying a, = 0 for all but a finite number of i in /. The addition in II Ai is given
1EI

by (a,),e, + (a'),e, = (a, + a',)^ for all (a,),e, and (ai),ei in II A, which makes II A
1EI 1EI

an abelian group. Also, for each k in / we defined the morphism fk : Ak -» II A by
lEI

fk(a) is the element (a,),e, with the property ai = 0 for i ± k and a, = a for i = k
for each element a in Ak. Finally, we showed that the family of morphisms

{fk : Ak -» II A}ke, is a sum for the given family of abelian groups {AW We recall
1EI

that the morphisms of abelian groups fk : A, -» II A are monomorphisms which we
iel

called the canonical injections of A* into II A. This suggests the following con-
,SI

struction of the sum II A of a family of R -modules {A},e, over an arbitrary ring
IEl

R. Because each R -module A is an abelian group, we can form their sum II A as
lei

abelian groups in the manner just described. We leave it to the reader to check
that the map R x UA-»IIA given by (r, (a,),Ei)t-»(ra,),e; for all r in R and

,e; ,e;

(aO,e, in II A is an R -module structure. The abelian group II A together with this
iSI lEI

R -module structure will also be denoted by II A.
1EI

Now it is easily checked that for each fc in /, the canonical injection fk: Ak-»
IIA is not only a morphism of abelian groups, but is also an R-module morphism.
,el

Finally, it is not difficult to check that the family {fk : Ak -» II A,}ke, of morphisms
1EI

is a sum of the family of R -modules {AJie,- For the sake of completeness we
outline a proof of this fact.
Suppose X is an arbitrary R-module and {gk: Ak-»X},e, is an arbitrary family

of R-module morphisms. We have to show that there is a unique morphism

/:IIA-»X with the property that for each k in /, the composition
IEl

Ak —^ II A —'—»X is the same as the given morphism gk :A, -» X. To this end we
IEl

first observe that if (a,),ei is an element of JJ A, then the family (gi(a,)),e, of
Iel

elements in X is an almost zero family of elements in X because all but a finite
number of the a, are zero. Hence, we can define a map /: II A,-»X by /((aj,e,) =

IEl

2,e,gi(a,) for all (a) in II A,. We leave it to the reader to show that this map / is an,el

R-module morphism having our desired property that for each k in /, the composi
tion Ak— .*-» II A,— '-+X is the given morphism gk: Ak-»X. The fact that this is the

1EI

only morphism from II A to X satisfying this condition follows from the observa-
lEI

tion that II A is generated by the family {Im/k}nEI of submodules of II A.,el lel

We summarize part of this discussion in the following.
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Definitions
Let {A,}le, be a family of R-modules.

(a) We denote by II A the R module consisting of the abelian group U A, together,El lEl

with the R -module structure R x II A-,-» II A given by (r, (a,)le;)-»(ro,),e; for
iEI 1EI

all r in R and (a<)le; in II A*
ISI

(b) The R-module morphisms fk : Ak -» U A, defined by fk(a) = (oOie, where a, = 0,e,

for i + k and «, = a for i = k for all a in Ak, is called the kth injection morphism
from Ak to II A,.

IEI

(c) The sum of the family {A}1ei of R-modules consisting of the family of
morphisms {fk : Ak -» II A}i, i is called the standard sum of the family {AJle, of

IEI

R -modules.

(d) Given any R -module X and any family {gk : A, -»X}ne, of R -module mor
phisms we denote by II gi : II A -»X the unique morphism from II A to X

le, ,El IEI

with the property that gk = ( II gl)fk for all k in /. The morphism II & is called
lEI ;€i

the sum of the family of morphisms {gk:Ak-»X) and can be described by
U g,((a,),E,) is the sum 2,e,g,(a,) of the almost zero family (g,(O,))iE, of ele-
,El

ments in X for each element (a,),e, of II A.
IEI

Having shown that every family of R -modules has a sum in the category of
R-modules, we now turn our attention to some basic properties of sums of
families of R-modules. Although these will be stated in terms of arbitrary sums,

the reader may find it helpful to see the form these results take in the specific case
of standard sums.

Basic Properties 11.4
Suppose {/.A-»A},e, is a sum for the family {AJ,e, of R-modules. Then:

(a) If g, h:A-»X are two morphisms of R-modules, then g = h if and only if
gfl = hf, for all i in /.

(b) The R -module A is generated by the family of submodules {Im /j},eI.
(c) For each k in /, there is one and only one morphism pk:A-»Ak such that
pkf, = 0 if k ± i and p,f, = id^

(d) For each k in /, Ker pk is generated by the set of all submodules Im / of A
with i ± k.

(e) For each k in /, the morphism fk:Ak-»A is a splitting monomorphism having
the property that Ker pk is a complement for Im fk

.

PROOF: (a) Follows from the definition of a sum of a family of modules.
(b) It follows from (a) that the subset S = U Im /, of A has the property that

le,

two morphisms g, h:A-»X are the same if g(x) = h(x) for all x in S. We have
already seen that this property of the set S assures that S generates A.
(c) Because {/:A-»A},e, is a sum of the family {A},e, of R -modules, we

know that given any R -module X and any family {g,: Ai-»X},e, of R-module
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morphisms there is a unique morphism g :A -»X such that gf, = g, for all i in /. For
each k in I define the family of morphisms {g» :A,-»Ak\,e, by gtt =0 if fc^ i and
gu=idA,. Then by our initial observation, there is a unique R-module morphism
pk :A -» At satisfying pkf, = ga for all i in /. Hence, p*/k = idA, while pkf, = 0 for
i ± k, which establishes (c).
(d) Because pkf, = 0 for i ± k, it follows that Im / C Ker pk for each i ± k.

Hence, to show that Ker pk is generated by the set of all submodules Im /, with
i ± k, it suffices to show that for each element x in Ker pk there is a finite set of
distinct elements i,- ...,i„ in /, all of which are different from k, such that x =

2"-,/i(a,,) where each », is in A-,r Because A is generated by the family of
submodules {Im f,},e,, we know that given an element x in Ker pk, there is a finite
set i, i„ of distinct elements in / such that x = 2"-, /,(»,) where each «, is in
A,,. If none of the i, = fc, then we are done. Suppose one of the ii = k, say i, = k.

Then p*(jc) = p*/l(*1)+2i>,pl/i(ai,) = ai„ because p*/,, = pk/k = idA, and p*/, = 0 for
all />!. Hence, a, = p*(x) = 0 because x is in Kerpk. Therefore, x = 2i>, /,(a,,)
where no ii = fc

.

This shows that each element in Ker pk can be written as a finite
sum of elements in Im f, with i ± k or, what is the same thing, Ker pk is generated
by the set of all submodules Im / with i $ k.
(e) Because the morphism pk:A-»Ak has the property pkfk =idA„ it follows

that fk : Ak-» A is a splitting monomorphism and Ker pk is a complement for Im /*
.

Because the morphisms p,:A-»A, described in the above basic properties
play an important role in studying sums of i? -modules, we make the following de
finition.

Definition
Let {A,},e, be a family of R-modules and {/ : A,-»A}le, a sum for this family. For
each km I, the fcth projection morphism is the unique morphism pi : A -*Ak having
the properties pkfk = iAM and pkf, = 0 for i'.± k

.

We now point out the following basic properties for projection morphisms.

Basic Properties 11.5
Suppose the family {

/
: A-» A}.e, of R -module morphisms is a sum for the family

\A,},e, of R-modules. Suppose {p,:A-»A}ieJ are the projection morphisms for
this sum. Then:

(a) For each x in A, there are only a finite number of i in / such that p, (x) ± 0.

(b) For each x in A, we have x = 2,ei/p,(x). Hence, two elements x and y in A are
equal if and only if p,(x) = p(y) for all i in /.

(c) The map t :A-» U A, given by f(x) = (p,(x)),e; for each x in A is an isomor-
ICI

phism of K?-modules.

PROOF: (a) Let x be in A. Because A is generated by the family of sub-
modules {Im f,},eh it follows that there is a finite set i,
,
. . . , i„ of elements in / such

that x = 2i"-, /i(a,,) with the a* in Alr Hence, if k is not one of the i,
,

. . . , i„
,

then

pn(x) = 2"-, p*/i(a,,) = 0 since pkfn = 0 because k ± i,. Therefore, p*(x) = 0 for all

but a finite number of k in I.

(b) For each x in A, because the elements p*(x) in A. are zero for all but a
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finite number of k, it follows that for each a in A we know that (/p,( a ))le, is an
almost zero family of elements in A. Hence, we can form the sum 2,eI/p,(a) for
each a in A. Thus, we can define the map f:A-»A by f(a) = £,e,/p,(a) for each i
in / which is easily seen to be a morphism of R-modules. Our aim is to show that

/ = idA, which will give our desired result that a = 2,eI/p,(a) for each a in A.
Now idA obviously has the property idA/ =/ for all i in I. Therefore, if we

show that / also has the property ff, = f, for all i in /, then we will have that /= idA
since we have already seen that two morphisms g, h:A-»X are the same if

gf, = hf, for all i in /. Let * in Ak. Then f(fk(ak)) = 2,e,f,p,(fk(ak)) = fkpk(fk(ak)) be
cause p,fk = 0 if i ± k. Because pkfk = idA„ it then follows that /(/n(a*)) = /*(<!*) for
all ak in Ak or, equivalently, ffk = fk

. Because this is true for each /c in /, we have
the result that ff

, = f, for all i in / and hence / = idA. The rest of (b) is obvious.
(c) For each x in A, because we have that p,(x) = 0 for all but a finite number

of i in /, it follows that (p,(x)),e, is an element of U A for each x in A. Hence, we
IE7

can define a map f : A -» II A by t (x) = (p,(x)),e; for each x in A. We leave it to the
IEI

reader to check that this map is a morphism of R-modules.

We also can define the map s:IIA-»A by s((a,),ei) = E,e;/(a,), since

(/(a<)),eJ is an almost zero family of elements in A for each element (a,),e, in U A.
le;

We leave it to the reader to check that this map is a morphism of R-modules. Now
for each x in A, we have st(x) = s(p,(x)),e, =2,ei/p,(x) = x. Hence, sf = idA.
Hence, we will have shown that f is an isomorphism with inverse s, if we show
that ts = id u A,.

,e;

But for each (a, )le, in II A we have rs((a,)leJ) = t (2,e,/,(a,)) = (pk(2le,/,(a,))ke,.
le,

Because pk1.,e,f,(a,) = 1,eIpkf,(a,) and pkf = 0 for i =£ k and pkfk = idA„ it follows
that pk (2,Ei f, (ol)) = ak, for each fc in /. Hence, ts = id u A„ which finishes the proof of
. 1C,

(c).

In connection with part (c) of these basic properties, we outline the following
alternate proof of the fact that the morphism f:A-»IIA given by t(a) =

le,

(p,(o)),e, for each a in A is an isomorphism. This alternate proof is based on the
fact that for each k in / the composition f/*:Ak-»IIA is the fcth inclusion

,SI

morphism A:A*-»llA since tfk(ak) = (p,fk(ak)),e1 while p,/*(ak) = 0 for k=f=ile,

andp*/*(ak) = ak. Because {
/ :A -»A},e; and {jl : A -» II A},e; are both sums for

le,

the family {A},e; of R-modules, we know by the uniqueness theorem for sums of
R-modules that there is only one morphism s : A -» II A such that sf, = j, for all i

,el

in / and this uniquely determined morphism is an isomorphism. Because we have

shown that tf
, = j, for all i in /, we know that t = s and is therefore an

isomorphism.

We now point out an important special type of sum of a family of R-modules.

Proposition 11.6
Let M be an R-module and {Mi},e, a family of submodules of M. Then the
following statements are equivalent:
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(a) The family {inc: M,-»M}lel of morphisms is a sum for the family {M},<=; of
R-modules.

(b) The family {M},e, of submodules of M satisfies:
(i) M is generated by {Afj,ei.
(ii) For each j in I, let Nl be the submodule of M generated by {MJ,e,-uj- Then
Ni n M, = 0 for each / in /.

(c) For each minAf, there is a unique almost zero family of elements {mj,ei in M
satisfying:

(i) m, is in M for each i in I.
(ii) m = 2,ei m,.

PROOF: (a) implies (b). The fact that M is generated by the family {M},e,
of submodules of M follows from Basic Properties 11.4. Again by 11.4 we know
that the projection morphisms pk:M-»Mk have the property that p* |M = 0 for
i =£j and p \Mk = idM, for each k in /. Suppose now that m is in N) n M, for some j
in /. Then pi(m) = m because m is in Mi. On the other hand, m = m, + . . . + m,

where each mk is in some M with i =£j because Ni is generated by {M,},ei-iil. Con
sequently, pi(m) = pi(m,)H + pi(m„) = 0 because p,|M =0 for i£j. There
fore, we have m = pi(m) = 0 which shows that N, n M, = 0 for all / in I.
(b) implies (c). The fact that M is generated by the family {M},Ei of sub-

modules of M implies that given any m in M there is an almost zero family {m,},e,
of elements in M satisfying m = E,e, m, and m, is in M for each i in I. Suppose
now that {m'},e; is another almost zero family of elements of M satisfying m =
2,eimi and mi is in M for each i in /. Then 0=m-m =2,e,mi -2,Eimi =
2,£; mi - m 'i. From this equation it follows that ml — m) is in Ni (~lM = 0 for each ;

in /. Hence, we have m, = m, for all j in I. Therefore, given any m in M, there is

one and only one almost zero family {m,},ei of elements in M satisfying m =
2,cim, where each m, is in M.
(c) implies (a). For each m in M, let {m,\„ , denote the unique almost zero

family of elements in M satisfying m = 2le; m, where each m, is in M,. Now
suppose we are given a family {/ :M-».X},e; of morphisms of R -modules. Then
define the map /:M-»X by /(m) = 2,E»/(mi) for each m in M. It is easily checked
that / is a morphism of R-modules with the property f\M, =/ for each i in /.

Moreover, because M is generated by the family {M},e; of submodules of M
(why?), f:M-»X is the only morphism of R -modules such that /|M=/. This
implies that the family of morphisms {inc: M^M},ei is a sum for the family
{M},e; of R -modules, as the reader can readily verify.

In connection with this result we make the following definition.

Definition
Suppose {M},ei is a family of submodules of an R-module M. We say that M is

the sum of the family {M,},e, if the family of morphisms {inc :M -» M},eJ is a sum.
We denote the fact that M is the sum of the family {M},eJ by writing M = II M. If

IEJ

/ is a finite set, say [1, .... n], then we will often write M, U . . . II M„ for II M.
We end this section with some examples of sums of R-modules.

Example 11.7 Let {Ri}i, , be an indexed family of R-modules with each
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R, = R for all i in I. For each / in /, let {Sn},e, be the element of U ft satisfying
lel

80
= 0 if i =f

= j and Sj = 1
. Then II ft is a free R -module with basis B consisting of

the elements {M,e, for all ;' in /.

PROOF: Follows immediately from the fact that II ft = F(/), the free R-

module generated by I.
Because the type of bases, as well as the free R-modules, described in this

example occur frequently, we make the following definition.

Definition
Let II R, be the standard sum of the family {R,},e; of R-modules with R, = R for

all i in I. Then the standard basis for II R, is the basis B of II R, consisting of all
,EI IEI

elements {r,}lel with the property that there is a j in / such that r, = 0 for i ± j and

r, = l.

Example 11.8. Let M be a free R-module with basis B. Then letting (Rt}r,«

be the family of R-modules with Rb = R for all b in B, the map /: II Rb -»M given
MB

by /({rk}beB) = 2beBrbb is an isomorphism of R-modules.

PROOF: See Proposition 7.9.

Combining these two examples we have the following.

Example 11.9 An R-module M is a free R-module if and only if there is an
indexed family {R,},eI of R-modules with R, = R for all i in / such that M« II R.

,e;

The reader is probably familiar with the fact that if V is an n-dimensional
vector space over a field K, then the ring of endomorphisms of V can be
represented as the ring of n x n matrices over K. We generalize this representa
tion here in order to explain our next example.
Let R be an arbitrary ring, and M a free R-module with basis B =

{
b , b„}. If f:M-»M is an R-endomorphism, then /(2i,) = £"-, r^bl for all i =

1
,

. . . , n. The elements rv are uniquely determined elements of R. Hence, as
sociated with each / in EndR(Af) is an n x n square array (r«) of elements of R,
called a square matrix of order n over R. We shall denote by M„(R) the set of all
square matrices over R of order n. We make M„(R) a ring by defining the
following laws of composition:

{rn) + (r'll) = (rn + r',,)

(*)-(r:,>-(*)
where

s«

= X ruri,
k-l

The reader should verify that M„(R), together with these laws of addition and
multiplication, is a ring. The zero element is the matrix (r^) where rn=0 for all i
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and /. The one of MAR) is the matrix (rv) where rv =0 if i±j, and rv = 1 if i = j.
Finally, the reader should verify that the map p : End* (M)-»M„(R) given by
p(f) — (rv) for all / in EndR(Af), where f(b,) = 2"., r«bi, is an isomorphism of rings.
For each k = 1, . . . , n, let G be the subset of M„(R) consisting of all matrices

(r,i) such that r« =0 if i±k. The reader should verify that:

(a) Each G is a left ideal of MAR) but not a right ideal of MAR).
(b) Let eu be the matrix (s«) where s« = 0 if k±i or l±j and su = 1. Show that each
G is generated, as a left ideal, by the element eu.

(c) Show that Cke,k is contained in G and that the map g:G-»G denned by
g(x) = xc« is an isomorphism of M„(R)-modules.

With these preliminary remarks out of the way, we can state the following.

Example 11.10 The ring MAR) is the sum of the family of left ideals
{G}*-, - That is, M„(R)= U G
PROOF: Show that the family {G} satisfies condition (c) of Proposition 11.6.

12. CHANGE OF RINGS

Until now we have considered modules over a fixed ring R. In this section we
examine the connections that a ring morphism f:R-»S gives between the modules
over S and the modules over R.
Suppose / :R -» S is a morphism of rings. If M is an S-module, then it is easily

seen that the map R x M-»M given by (r, m)-»f(r)m is an R -module structure on
the underlying abelian group of M.

Definition
Let /: R-»S be a morphism of rings. Suppose M is an S-module. The R -module
consisting of the underlying abelian group of M together with the R-module struc
ture given by (r, m) i-»/(r)m is called the JR -module induced by /. The R-module in
duced by / is usually denoted by the same symbol M and the R-module structure
(r, m)**f(f)m is written more simply as (r, m),-»rm.

We now point out some obvious properties.

Basic Properties 12.1
Let f:R-»S be a morphism of rings.

(a) Suppose M is an S-module. Then each S-submodule of M is also an R-
submodule of the induced R-module M.

(b) Suppose g :M-»M' is a morphism of S-modules. Then g is also a morphism of
the induced R-modules M and M'. Further, Ker g, Im g, Coim g, Coker g are
the same whether g is regarded as a morphism of S-modules or a morphism of
R-modules. Hence:

(c) If M'-»M-»M" is an exact sequence of S-modules, then it is also an exact
sequence of R-modules.

(d) Suppose M and M ' are S-modules. Because each S-morphism g : Af -»M ' is
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also an R-morphism we have that Homs(M,M')CUomR(M,M'). In fact,
Homs(M, M' ) is a subgroup of HomR(M, M').

(e) For each S-module Af, we have that Ends(M) is a subring of EndR(M).
(f) Suppose {gl :M -»M},e , is a sum of the family of S-modules {M},eJ. Then
{gl:M-»M} is also a sum of the family of R -modules {M},ei.

PROOF: (a) through (e) are obvious.

(f) Clearly, it suffices to prove (f ) in the case that {gi : Mi -» M} is the standard
sum of the family {M},ei of S-modules. But in this special case the result is
obvious.

In connection with this list of basic properties it is worthwhile considering the
following.

Example 12.2 Let Z-»Z|.X') be the inclusion morphism of rings.

(a) The Z-submodule Z of Z[X] is not a Z[X]-submodule of Z[X].
(b) It is easily seen that the set {X"}„eH is a basis for Z[X] viewed as a Z-module.
Hence, there is a unique Z-module morphism f :Z[X]-»Z[X] such that f(X') =
i for all i in N. It is easily seen that this is not a morphism of Z[X]-modules.
Hence:

(c) The subring End2i*,(Z[X]) of Endz(Z[X]) is not all of Endz(Z[X]).

Thus, we see that although a ring morphism /: R-»S gives some connections
between the category of S-modules and the category of R -modules, these connec
tions are not terribly strong in general. However, these connections are much
stronger in the case / :R -» S is a surjective morphism of rings as we now see in the
following.

Basic Properties 12.3
Suppose f:R-»S is a surjective morphism of rings.

(a) Suppose X is a subset of the S-module M. Then X is an S-submodule of M if
and only if X is an R-submodule of the induced R-module M. In particular:

(b) An S-module M is a simple S-module if and only if the induced R -module M
is a simple R-module.

(c) A map f:M-»M' of S-modules is a morphism of S-modules if and only if,
viewed as a map of the induced R-modules M and M', / is a morphism of
R -modules. Hence:

(d) For each pair of S-modules M, and M2, we have Homs(M,, M2) =

HomR(M,,M2). In particular:

(e) For each S-module M we have Ends(M) = EndR(M).

PROOFS: Left as exercises.

It is not true, in general, that a ring morphism /: R-»S carries the center of R
into the center of S. However, if /(C(R))CC(S), then associated with the ring
morphism f:R-»S is the ring morphism /' :C(R)-»C(S) given by f(x) = f(x) for
all x in C(R). Hence, for each pair of S-modules M,, M2 we have that
Homs(M,,M2) is not only a C(S)-module, but also a C(R)-module; that is,
Homs(Af,, M2) is the C(R)-module induced by the ring morphism /' : C(R)-»C(S).
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In this case, it is not difficult to check that Homs(M,, Af2) is a ('(R)-submodule of

HomR(Af„Af2).
It is worth noting, however, that if /:R-»S is a surjective morohism of rings,

then it is automatically true that /(C(R))CC(S), although, even in this case,
f(C(R)) need not be all of C(S). Therefore, if f:R-»S is surjective, we have that
Homs(Af,, Af2) = HomR(Af,, Af2) has two C(R)-module structures. One is given by
the usual operation of C(R) on HomR(Af,, Af2) and the other is given by the
operation of C(R) on Homs(Af,, Af2) induced by the ring morphism /':C(R)-»
C(S). The reader should check that these two operations are really the same.
In order to look more deeply into the connections between the 5-modules and

R -modules given by a surjective ring morphism /:R-»S, we need to introduce a
few new concepts.
Suppose Af is an R-module and / is a left ideal of R. The subset IM,

consisting of all finite sums 1 rlml with r, in I and m, in Af, is easily seen to be a
submodule of Af. Hence, in particular, if /, and h are left ideals of R, then IJ2 is a
left ideal of R contained in /2. Moreover, Il(I2M) = (I,I2)M for all left ideals I, and
h in R. Finally, RM = M for all R-modules Af.
Next, suppose Af is an R-module. Then it is easily seen that the subset

ann(M) of R, consisting of all r in K such that rm = 0 for all m in Af, is an ideal
of R.

Definition
For each R -module Af, the ideal annR (M ) of R is called the annihilator of Af. The
R -module Af is called a faithful It -module if annR(Af) = 0.

Basic Properties 12.4
Let f:R-»S be a ring morphism.

(a) If M is an S-module, then / '(anns(M)) is the annihilator of the R-module Af
induced by /. In particular:

(b) If Af is an S-module, then Ker/ is contained in the annihilator of the R-
module M.

Suppose M is an R-module and I is an ideal contained in ann(Af). Then M is
an R//-module where the R//-module structure RIIxM-»M is given by
(r + I, m)-»rm for all r in R. This Rl7-module has the property that the R-module
structure induced by the canonical ring morphism k:R-»RII is the R-module
structure we started with on Af. The R //-module structure we just defined in Af is
the only way we consider Af an R//-module. Further, the reader should check that
Af is a faithful R//-module if and only if / = ann(Af).
Using these observations, it is not difficult to see that the category of

R//-modules is the full subcategory of R -modules whose annihilators contain /.
Suppose / is an ideal in R. If Af is an R-module, then ann(Af //Af) O /. Hence,
MIIM is an R//-module. It is not hard to show that the canonical R-morphism
k :M-»MIIM has the following property. For each R//-module N, the morphism
Hom„(&, N):HomR(Af//Af, N)-»HomR(Af, N) is an isomorphism. Recalling that
HomR(Af//Af, N) = Hom«i;(Af//Af, N), we have the isomorphism HomRii
(MIIM, N)-»HomR(Af, N) which we consider an identification.
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The following is another important property of the R -morphism k:M-»
MIIM. Suppose f:M,-»M2 is a morphism of R-modules. Because /(/Af,)C/M2,
there is a unique morphism f:MJIM,-»MJIM2 of R -modules, and hence of
R//-modules, such that the diagram

M,-L»M2

I.
, |.

™mm„t« mjim,-Umjim,
commutes.

Basic Properties 12.5
Let M,, M2, and My be R -modules and let / be an ideal of R.

(a) The map HomR(M,, M2)-»HomRi,(M,/7M,, M2IIM2) given by /-»/ is a group
morphism.

(b) If /:M,-»M2 and g :M2-»M3 are R-morphisms, then gf= gf. Hence, if g
f =

0
, then gf= 0.

(c) If M,— '-+M2— t-»M2-»0 is an exact sequence of R-modules, then
M,//M, »M2lIM2—*-»MylIM2-»0 is an exact sequence of R//-modules.

(d) If {/» :M„ -»M}„eA is a sum for the family {M„}„eA of R -modules, then

{J. :M„/rM„-»M/7M}„eA is a sum of the family of R //-modules {M.I
7M„ }„eA.

PROOF: (a) through (c) are straightforward,

(d) Use the standard sum.

13. TORSION MODULES OVER PID'S

As an illustration of the ideas introduced in Sections 11 and 12, we develop a
useful structure theorem for torsion modules over PID's. Throughout this section

R is a PID.
Let x be an element of an R -module M. The annihilator of x is the ideal

ann(x) of R consisting of all r in R such that rx = 0
. It is obvious that ann(x) is the

kernel of the R-morphism f:R-»M given by f(r) = rx. Hence, R/ann(x) = (x)
where (x) is the submodule of M generated by x. The element x is said to be a

torsion element if ann(x) ± 0
. Using the fact that R is an integral domain, it is not

difficult to show that the subset r(M) of M consisting of all the torsion elements of
M is a submodule of M called the torsion submodule of M. Finally, M is said to be

a torsion module if t(M) = M.
Suppose M is a torsion K-module. For each prime ideal (p) of R we denote

by M,„, the subset of M consisting of all m in M such that p"m =0 for some n in
N. The reader can easily see that Mlp, is a submodule of M for each prime ideal
(p) of R. We now show that M = UM„,i where (p) ranges over PPD(R).
We do this by showing: (a) For each prime ideal (p) we have M,plnN,pl = 0

where N,p, is the submodule generated by all M„, where (q) ranges over PPD(R) -
{(p)} and (b) M is generated by the family of submodules {M,p,}iplepnxR, (see
Proposition 11.6).
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(a) Suppose X£Af^nN,,,. Then p"X=0 for some n. Because x is in Nipl, x =
x, + . . . + x, where each x, has the property that qt'x, = 0 for some prime ele-

n

ment q, such that (q,) ± (p). Hence, rx = 0 where r=H q"'. Because r and p"

are relatively prime, we have sr + tp" = 1 for some s and t in R. Thus, x =

srx + tp"x= 0. Therefore, Mipl D N„, = 0 for all (p) in PPD(R).
(b) Let x be in Af and (a) = ann(x). We have already seen that there is an

r l

isomorphism f:RI(a)-»(x). Now RI(a) = n RI(pl') where a = u U p"< for

some unit u in R (see Chapter 5). Thus, every element of R I(a) may be
written as a f -tuple (n, . . . , f,)^ where r, denotes the coset of the element r, in
RI(pl'). If we set y, =(0,...,1,0 0) where T is in the ith coordinate, then
p"'y, =0 = p!l,/(y1). Hence, /(yi) is in AfiP1l, Moreover, it is easy to see that
x =2/(y,). This proves (b).

Hence, we have almost proven the following.

Theorem 13.1

Let M be a torsion module over a PID R. Then M = U M,pl as (p) ranges over
PPD(R). Further, M is a finitely generated R-module if and only if each Mipl is
finitely generated and M,„ = 0 for all but a finite number of (p) in PPD(R).

PROOF: The first part of the theorem has already been established. The sec
ond part is a consequence of the following general observation. Suppose a module
X = II Y„. Then X is finitely generated if and only if Y„ = 0 for all but a finite
„€.A

number of a in A and each Y„ is a finitely generated module. The proof of this is
left to the reader.

As an application of this theorem we develop the basic facts concerning par
tial fractions, a subject the reader was undoubtedly introduced to in connection
with techniques of integration.

Proposition 13.2
Let K be the field of quotients of the PID R and let {p„}„Ey, be a representative
family of prime elements of R. If x is an element of K, there exists a finite subset
A' of A such that x = r0 + 2„E,< r„p"„"w where:

(a) r0 and r„ are in R.

(b) r„ is not divisible by p„ for all aEA'.
(c) n(a)>0 for each aEA'.

Moreover, the subset A' and the integers n(p„) are uniquely determined by
these conditions.

PROOF: It is easily seen that M = KIR is a torsion R-module. Hence, by our
previous theorem we have M= II MM. Let k:K-»KIR be the canonical

epimorphism. Then fc(X) = 2„eAm„ with each m„£M,P,j where only a finite
number of m„ =£0. Let A' be the subset of A consisting of all a £ A such that
m.±0. Then fc(x) = 2„eA m» and m„ =£0 for all a in A'.
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If fcOO = m., then p?-x„ £ R for some m. >0. Let n, be the smallest integer
such that pl"x„ E R. We know that n, >0 because m„ =£0. Let r„ = p!l-X„. Then
k(x -1„eA r„p„"') = 0 so that x -2„eA r„p„"- = r0 in R. Thus, we have X =

r0 + 2.e/r„p."" and conditions (a), (b), and (c) are easily verified.
The proof of the rest of the proposition is left to the reader.

The above expression for x is not the one that is usually used. For example, it
is different from the expression used in integrating rational functions. We now
describe how to modify it.
First, let p be a prime element of R and let s :RI(p)-»R be a map of sets such

that /cs = id,,rt„l where k:R-»RI(p) is the canonical ring morphism. If r is an
element of R, then for each n >0 there exist unique elements w, in R/(p) such that
r-2"."0 s(ti,)p' is in (p"). When n = 1, this is clear. Assuming by induction that the
statement is true for n — 1, we prove it for n.
Let % vn-2 be such that x—2JT0 s(vi)p'= bp""'. Let v„ in RI(p) be such

that b-s(v„) = tp for some t in R. Then X = 2,"=0 s(«,)p'+fp". Hence,

X-2JVT01 s(«,)p' is in (p"). The uniqueness of the «i is easy to verify.
We can restate this result as follows. For each element x in R and integer

n>l, we have that x can be written uniquely in the form
N-!

x = 2 rup'+tnp"
i_0

where r,.„ £Ims and t„ is in R. Multiplying by p "", we have that xp "" can be
written

xp^J.+ X^-p"'
k-l

with t„ in R and rtn in Im s in one and only one way. Hence, if we define rk = rfcn for
fc < n - 1 and n, = 0 for k a n, we obtain the unique expression

xp" = U+f,rkpk (*)

where t„ is in R and where the finite number of rk which are not zero are in Im s.
Returning to Proposition 13.2 we know that each x in K, where K is the field

of quotients of the PID R, can be written uniquely as x = r0 + 2„eA r„p„"- where A'
is a finite subset of A and n„>0 for all a£A'. Suppose for each a in A we
choose a map of sets s„:RI(p„)-»R such that K,s„ = id^,pj. Then applying for
mula (*) to r„p;"" we have

r„p„ '=k+ 2 rt.p.'

where f„. is in R, all but a finite number of the elements rt„ in R are zero, and
rt„£lms. if rk.„=£0. Further, this expression is unique. Hence,

where the f„. are in R, all but a finite number of the rk.„ are zero, and rt„ is in Im s»
if rn.„^0. Hence, we have our desired version of Proposition 13.2.
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Proposition 13.3
Let R be a PID, K its field of quotients, and {p„}„eA a representative family of
prime elements of R. Suppose, further, that for each a in A we have a map
s„:RI(p„)-»R such that k„s„=idR,lPj where Jt,: R-»RI(p„) is the canonical
epimorphism.

Then each element x in K can be written uniquely in the form

where
°eA VS1 '

(a) rb, rfc„ are elements of R.

(b) All but a finite number of rt„ = 0.
(c) If rt„=£0, then n.„£ Ims„.
We now give two classical applications of this proposition.
Let R = Z, the ring of integers and K = Q, the field of rational numbers. For

each positive prime number p define sp:ZI(p)-»Z by sP(x) is the smallest positive
integer in the coset x. Clearly, kpSp = idziw where fc„:Z-»Z/(p) is the canonical
epimorphism. Equally obviously, Im sp = [0, p - 1] for each positive prime number
p. Proposition 3.3 yields the following in this context.

Proposition 13.4
Each rational number x can be written uniquely in the form

r0 + *Z i'Z rp.kpk)
p \k-l I

where p ranges over all positive prime integers and where:

(a) r« and r„.k are in Z.

(b) All but a finite number of rp.n=£0.

(c) If rp.k ± 0, then rpX £ [0, p - 1].
Another classical application of Proposition 13.3 is the one we alluded to in

the beginning of this section concerning rational functions.
Let L be a field. Let R be the PID L[X] and K = L(X), the field of quotients

of L[X], which is also called the field of rational functions over L. The set A of all
monic irreducible elements of K[X] is a representative family of prime elements
of K[X]. Suppose p(X) is in A. Then it is not very difficult to show, using the
Euclidean algorithm, that if degree p(X) = n, then each coset in K[X]I(p(X)) con
tains either the element 0 or precisely one monic polynomial of degree less than n.
Thus, we obtain a map sp<xl:K[X]I(p(X))-»K[X] where spixi(Y) = 0 or is the
unique monic polynomial of degree <nin Y for each coset Y in K[X]I(p(X)).
Obviously, kPms^xl = idnxwpuol. Equally obvious is the fact that Im sp,xi is the
set of all monic polynomials of degree < degree p(X) union (0). Thus, we have in
this context the following.

Proposition 13.5
Let L be a field, L[X] the polynomial ring over L, and L(X) the field of rational
functions over L. Then each rational function r(X) in L(X) can be written uni-



246 SIX/GENERAL MODULE THEORY

quely in the form

r(X) = a(X) +2(2 UuWp (*)"*)piXl \k-l /

where p(X) ranges over all monic irreducible polynomials in L[X] and:

(a) a(X) and lP,„AX) are in L[X].
(b) All but a finite number of lPixiAX) are zero.
(c) If lPlxlAX) is not zero, then deg (lplxJ.X))<dcg p(X).

In the particular case L = R, the field of real numbers, it is well known that an
irreducible element p(X) of R[X] has degree at most 2. Hence, in this case, the
polynomials lp,xlAX) entering into the formula are either constants, that is, ele

ments of R, or linear, that is, of the form X- a for some a in R. With this remark
in mind, the reader should have no difficulty seeing that when specialized to the

case L = R, Proposition 13.5 gives the usual theorem about partial fractions used
in calculus to integrate rational functions.

14. PRODUCTS OF MODULES

This section is devoted to studying the elementary properties of products of
indexed families of modules over an arbitrary ring R.
Because we have already defined and proved the uniqueness of products in

arbitrary categories, provided they exist, there is no need to go into these matters
again. However, for ease of reference we recall the following.

Definition
Let {AfJ.e, be an indexed family of R -modules. A family {fr. M-»Af,},e, is called a
product of the family {M },e; if given any family of morphisms {gi : X-» M } there is a
unique morphism g:X-»M such that flg = g, for each i in /.

Basic Properties 14.1
Let {/:Af-»Afi},e; be a family of morphisms.

(a) {/: Af-»M},e, is a product for the indexed family {Af<},e; of R-modules if and
only if for each R- module X, the map

<p: Hornu (X,M) -» Yl Horn* (X, M, )

given by <p(g) = (/g),e, for all R-morphisms g :X-»M is an isomorphism of
abelian groups.

(b) If {/:Af-»M,},e, and {f'r.M'-»M},e, are both products for the indexed set
{M},eh then there is a unique R-morphism h :M-» M ' such that f'h = fi for all i
in /. This unique R-morphism h is an isomorphism.

It now remains for us to show that each indexed family of R -modules has a
product.

Suppose {Ml},e, is an indexed family of R-modules. Viewing the Af, solely as
abelian groups, we saw in Chapter 3 that the abelian group consisting of the set
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II M, together with the addition defined by {mj,ei +{m',},ei = {mi +mi},eJ is a

product in the category of abelian groups of the family {M,},e,. It is easily checked
that the map R x n M-»II Ai given by (r, {m,})-»{rm,},ei for all r in R and

IEi lei

{m,},e; in II M, is an R -module structure in the abelian group II M. We denote
,ei ,ei

this R -module also by II Aft.
,e;

It is easy to check that for each / in /, the map proj,- : II M, -» Ml given byle,

proji({m,},e;) = m; is a surjective morphism of R -modules. Finally, it is also easy
to show, just as we did for sets and groups, that {proji : II Af, -» Af1}iei is a prod-

leJ

uct for the indexed family {M,},e; of R -modules. We only point out here that if we
are given a family {gl:X-»Af i}iei of R-morphisms, then the unique morphism
Ilg,:X-»IIM such that /(IIg,) = g, for all i in / is given by ng,(x) = {g,(jc)},E;.
IEi IEi IEi

This shows that every indexed family of R -modules has a product in the category
of R -modules.
This discussion suggests the following.

Definitions
Let {M},eJ be an indexed family of R -modules. The R -module II M described

IEi

above is called the product of the indexed family {M,),c,. For each j in I, the
R-morphisms proj, : II M -» Afi given by proji({m,}) = m, is called the jth projec

iel

tion morphism. The product {proji :IIM, -* M, } is called the standard product of
the family {M,},el of R -modules.

Basic Properties 14.2
Let {/, :M-»M,} be a product for the indexed family {M},ei of R -modules.

(a) The map h:M-»IIM given by h(m) = {proji (m)},e, is an R -module
IEi

isomorphism.

(b) If f :R ' -» R is a ring morphism, then {f, :M -» Ml},e, is also an R '-product for
the family {M,}lei of R '-modules.

(c) For each R -module X, we know that HomR(X, M) and HomR(M,X,) are
C(R)-modules for each i in I. Hence, II HonMC, X,) is also a C(R)-module

IEi

and the map <p:Horn* (X, M) -» II HomR (X, Mi) given by <p(g) = {/g},Ei is an
lei

isomorphism of C(R )-modules.
(d) Suppose K is an ideal in the ring R. Then {M/KM,},eJ is a family of
RIK -modules as well as R -modules. Then {fr.MIKM-»MJKM,},^ is a
product of {M,lKM,},E, in the category of R -modules as well as in the cate
gory of R/K-modules.

We now show how the sums and products of an indexed family of R-modules
are related. We deal mainly with standard sums and products. We leave it to the
reader to generalize these results to arbitrary sums and products.
Suppose {M,}.ei is a family of R -modules. Then by definition, the sum II M,
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consists of all the elements {mi},£; in II M, with the property that wi, = 0 for all but a

finite number of i in /. Thus, as a set, we have II M, C II M,. It is easy to see that
IEi IEI

this subset II Af, of II Af< is actually a submodule of II Af,. Hence, we have that
,el ,el ,e,

II Af, is the submodule of II Ml consisting of all elements {mi},ei satisfying m, = 0
lel le,

for all but a finite number of i in I. From this observation it follows that II Af, =
,el

U M, if I is a finite set. Thus, we have:
,e;

Proposition 14.3
Let {M,}le, be a family of R-modules. Then:

(a) II M, is a submodule of II M,.,el ,el

(b) If I is a finite set, then M, = II Afi.
,el ,el

More generally, suppose {/:Af-»Af,},e,and {g,:M,-»N},e, are a product and
a sum for the family {Afi},e, of R-modules. Then in Basic Properties 11.4 we saw
that for each k in I there are unique morphisms pk : N-»Mk such that pkgk = idM,
and pkg, = 0 for iV k. Thus, there is a unique morphism h:N-»M such that flh = p,
for each i in I. We leave it to the reader to verify that this uniquely determined
morphism h :N-» Af is always a monomorphism and is an isomorphism if / is a
finite set. Also, the reader should show that if {/ : Af-»M},e, and {g, -.:Ml-»N},e,
are the standard product and sum of {Af,},e,, then h : N -» Af is the inclusion mor
phism described in Proposition 14.3.
We now conclude this discussion of products by pointing out the following

useful criterion for when a module Af is isomorphic to a sum and, hence a product,
of a finite family {Af,},ei of R-modules.

Proposition 14.4
Let {Afi},ei be a finite family of R-modules. A module Af is isomorphic to a sum,
or equivalently, a product, of the finite family {Afj,e; if and only if there exist
morphisms pk :Af-»Afk and ik :Mk-»M for each k in I satisfying:
(a) p*i, =0 if j±k and p*fc =idMn.
(b) idM = 2*e; ikpk ; that is, m =I,ke,Upk(m) for all m in Af.

PROOF: Left as an exercise for the reader.

EXERCISES

(1) Let Rbea ring. Let {FJ.e; be a family of free R -modules and suppose B, CFi

is a basis for F. Show that if {/ : F -» Af } is a sum of the family {F},eJ, then Af is a

free R -module with basis U/(Bi).
IEI

(2) Let R be a ring. Suppose {M,}le, is a family of R-modules and that for each , in

/ we are given a set / and a family {/0 : N«-» Af,},ej, of morphisms of R-modules
which is a sum for the family {NJiej, of R-modules. Show that if {gi : Af,-» Af} is a
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sum for the family {Af,},e, and L = U J, [that is, L is the subset of /x (U J,) such
,SI ,e ,

that (i
, j) is in L if and only if ;' £ J,], then the family {/„g, : Nv-»M}lLlleL is a sum for

the family of R-modules {N,,},UleL.

(3) Suppose R is an arbitrary ring. Let {/: M-»M},e, be a sum for the family of
R-modules {Af,},e, where only a finite number of the Af, = (0). Show:

(a) Af is a noetherian module if and only if / is finite and each of the M, are
noetherian modules.

(b) Show that Af is an artinian module if and only if / is finite and each of the Af,

is artinian.

(4) Suppose Af is a module over an arbitrary ring R. A finite ascending chain of
submodules of Af

0 = M0CM,CM2C- . .CM„-,CM^M

is said to be a composition series for Af of length n if M,.,JM, is a simple R -module
for each I = 0

,

. . . , n — 1.

(a) Show that an R -module Af has a composition series if and only if it is both a

noetherian and artinian module.

(b) If 0-» Af' -» Af-» Af"-»0 is an exact sequence of R-modules, show that Af has a

composition series if and only if Af ' and Af" have a composition series.
(c) Suppose Af is a sum for a finite family {M,},ei of R-modules. Show that M has a

composition series if and only if each Af, has a composition series.
(d) Show that a ring R has a composition series when viewed as a module over
itself if and only if every finitely generated R -module has a composition
series.

(e) Let R be a PID and S = RI* where a is a nonzero ideal.

(i
) Show that S has a composition series.

(ii) Show that any S-algebra A which is a finitely generated S-module also has

a composition series.

(5) Let M be a module over an arbitrary ring R. Let Af , and Af 2 be submodules of M,
let Af, II Af2 be the standard sum of Af , and Af2, and let / : Af, -» Af be the inclusion
morphisms. If /,II/2:AfiII Af2-»Af is the usual morphism given by/,II/2(m,, m2) =
m, + m2, then show:

(a) Im(/,U/2) is the submodule of Af generated by Af, and Af2 and

(b) Kertf.U/O^Af.nAf2.
(6) Let {wil},ei be a family of elements in an R-module Af. For each i in / let A be
the subset of R consisting of all r in R such that rm, = 0. Show:
(a) Each A is a left ideal of R.
(b) Let {Af, },e, be the family of R-modules with the property that M = Af for all i

in /. Show that the map /:R-»n Af given by /(r) = (mi,),e, is a morphism of
IEI

R-modules with the property Ker/=n A,. Hence:

(c) RInA, is isomorphic to a submodule of II Af,.
IEI

(d) Show that if R is commutative, then n A, is the annihilator of the submodule
Af' of Af generated by the elements {m,},e, of Af. 4

(7) Suppose Af is a noetherian module over a commutative ring R. Show that if I

is the annihilator of Af, then RI I is a noetherian ring.
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(8) Let R be a commutative ring and F a finitely generated free R -module. Show:
(a) Every basis of F is a finite set.
(b) Any two bases of F have the same number of elements.
(9) Let R be an arbitrary ring and G the group of automorphisms of the free
R-module F. Suppose {b,},el is a basis for F and {F},ei is the family of R-modules
such that F=F for each i in I. Let XC n fi be the subset consisting of all

IEi

elements {x,} in II F such that {x,},eiis a basis for F. Show that card(G) = caid(X).
,el

(10) Let K be a finite field with q elements. Suppose V is a finite-dimensional K-
vector space, say dimKV=n. Find a formula which expresses card( Autx( V)) in
terms of q and n.

(11) Suppose we are given a commutative diagram of R-modules

I I I

0 0

I I
A' A A"

{• I- I-
0 »B'-^»B-L^B" »0

I' I' |- (*>

0—»c —r-»C -i-»C"—»o
lh ih lf

c

D' D D"

I I !

0 0 0

with exact rows and columns.

(a) Show that there are unique R-morphisms

a':A'^A, B':A-»A", y':D'-»D, «':D-»D"

such that if they are put in (*), the resulting diagram also commutes.
(b) Show that there is a unique morphism « : A"-»D' with the following property:
Given b in B and a" in A" such that B(b) = g"(a"), then an element c' in C
has the property that b'(c') = e(a") if and only if f(b) = y(c').

(c) Show that the sequence

0 »/4'-2-»A-^A"-^»D'-r-»D-L*D" »0

is exact.
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(12) Suppose we are given a commutative diagram

0 0 0

I I I
A' A A"

I- I- I-
B'-^B-^B" »0

I' I' I' (**>

0 »C —y-*C -*-»C"

I"
'

I" I"
'

D' D D"
I I I

0 0 0
with exact rows and columns. Then prove the following assertions.

(a) There are unique R-morphisms

a':A'^A, B':A^A", y':D'-»D, and 5':D-»D"

such that if they are put in (**), the resulting diagram commutes.
(b) There is a unique morphism e:A"-»D' satisfying the same conditions of
Exercise 11(b).

(c) The sequence

A' -£* A -2-»A"— '--»D' -UD-^D"

is exact.

(d) a

'
:A ' -» A is a monomorphism if and only if a : B ' -» B is a monomorphism.

(e) 8':D-»D" is an epimorphism if and only if B:C-»C is an epimorphism.
(13) An R-module M is said to be scmisimple if and only ifM= II S, where each S,

le,

is a simple R-module. Suppose M is a semisimple R-module and that {/ : Sl -»
M),e, is a sum of the family of simple R-modules {&},eI. Then show the following:

(a) If N is a proper submodule of M, that is, N=f=M, then there is an i in / such that
tfnim/^0.

(b) Every submodule of Af is a summand of M.
(c) M is a module with a composition series if and only if the set / is finite.
(14) Suppose Af is an R-module with a composition series. Show that the follow
ing are equivalent statements:

(a) M is semisimple.
(b) If N is a proper submodule of Af, then there is a nonzero submodule N' of Af
such that N n N' = 0.

(c) If N is a submodule of Af, then N is a summand of Af. Hence, we have:
(d) If Af is semisimple, then so is every submodule and factor module of Af.
(15) Let R be a ring, S a simple R-module, and <€s the full subcategory of the
category of R-modules consisting of all R-modules Af such that there is an integer
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n in N with the property Af « U S, where each S, = S. We denote the module
.<ElO.nl

II S, with each S, = S by nS. Establish the following:
,e[0.»l

(a) Each module Af in <& is a semisimple noetherian and artinian module.
(b) 0S = 0.
(c) mS = nS if and only if m = n. If Af is in %s, the uniquely determined integer n
such that M = nS will be denoted by ls(M) and is called the S -length of Af.

(d) Suppose 0-»Af' -»Af-»Af"-»0 is an exact sequence of R-modules with Af in
<&,. Then:

(i) The exact sequence is splittable.

(ii) Af
' and Af" are in <€s-

(iii) /s(Af) = /s(Af')+'s(Af").
(iv) The monomorphism Af'-»Af is an isomorphism if and only if ls(M') =

ls(M).
(v) The epimorphism Af-»Af" is an isomorphism if and only if ls(M) =

ls(M").
(vi) If 0-»M0-»Af,-»Af2-»- . -»Af„-»0 is an exact sequence of modules in ^s,
then 2r.0(-l)VM) = 0.

(16) For a ring R we denote by S(R) a set of nonisomorphic simple R-modules
such that each simple R-module is isomorphic to one and only one element of

S(R). Also, we denote by 2 the full subcategory of Mod(R) consisting of those
R-modules which have a composition series.

(a) If 0-» Af,-» M2-» M3-» M4-»0 is an exact sequence of R-modules, then M, and
M4 are in 2 if M: and M, are in 3).

(b) If 0-»Af,-»Af2-»M3-»0 is an exact sequence of R-modules with M, and Af3 in
'i\ then M2 is also in u\

(c) For each M in 2 and S in S(R) show there is a unique submodule Ms of M
such that:

(i) Ms = nS for some n in N.

(ii) If M' is a submodule of Af such that Af' ~ mS for some m, then Af ' C Afs.
(d) If /:S-»Af is a morphism of R-modules with S in S(R) and Af in 3), then
Im/CAfs.

(e) If Af is in % then Af = 0 if and only if Afs = 0 for all S in S(R).
(f) If /:Af'-»Af" is an R-morphism in 2>, then /(Afi)CAfl for each S in S(R).
(g) Show that the following data define a functor Fs:3)-»<€s for each S in S(R).
(i) Fs :Ob 3 -» Ob <gs is given by Fs(Af) = Afs.
(ii) If /:Af'-»Af" is a morphism in S, then Fs(f): Afs-»Afs is given by
Fs(/)(m') = /(m') for all m' in Afi.

(h) If 0 »Af' —^Af— *-»Af" is an exact sequence of modules in 2, then

0 »Fs(Af') Fsli'»Fs(Af) F*'"»Fs(M)

is an exact sequence of modules in •&.
(17) Let R be a ring and let S(R) and 3) be as in Exercise 16.
(a) For each module M m 2 there is a unique submodule Af , such that:
(i) Af, is semisimple.

(ii) If Af'CAf is a semisimple submodule of Af, then Af'CAf,.
(b) If A is a semisimple R-module and / :A -»M an R-morphism, then Im / C Af ,.
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(c) If /:Af'-»Af" is a morphism in % then f(M\)CM'L
(d) Let if be the full subcategory of 3) whose objects are the semisimple R-
modules in 2. Show that the following data describe a functor G, : 3)-»if.

(i) G,:Ob 3)^Ob & is given by G(Af) = Af,.

(ii) If /: Af'-»Af" is a morphism in Q), then G,(/):G,(Af')-»G,(AO is given
by G,(/)(m') = /(m') for all m' in Af'.

(e) If Af is in 2>, then G,(Af) = 0 if and only if Af = 0.
(f) Let Af be an R-module in @. Define the sequence of submodules

M0CM,CM2C---CAf.C---

of M by induction on n. Af0 = 0 and Af, is G(M). Suppose we have defined
Af,, . . . , Mk. Define Afn+, as follows. Let k : Af -» Af/Af* be the canonical sur-
jective morphism. Then set Mk+, = fc"'(G,(M/Mi)). This sequence of sub-
modules is known as the Socle series for M.

(i) Show that for some n, we have M„ = Af. We will denote the smallest value
of n such that Af, = Af by L(Af ). Obviously, L(M) = 0 if and only if Af = 0
and L(Af ) = 1 if and only if Af is a semisimple nonzero R -module.

(n) If /:Af'-»Af" is a morphism in % then /(Af',)C Af7 for each i in N.
(Hi) For each integer i in N, the following data describe a functor G : 2-»3),
where 3)l is the full subcategory of 3) consisting of those Af in 3) with
L(Af)<i.
(1) G: Ob 2>-»Ob % is given by G(Af) = (Af,).
(2) If/: Af' -»U" is a morphism in % then G,(/) :G(Af')-»G(Af") is given
by G,(/)(m') = /(m') for all m' in G,(Af).

(g) If 0-»Af'-»Af-»Af" is an exact sequence of modules in 2, then 0-»G(Af')-»
G(Af)-»G(Af") is an exact sequence of R -modules in %.

(h) If 0^Af'-» Af-» Af"-»0 is an exact sequence of R-modules in % then L(Af')^
L(Af) and L(M")<L(M).

(i) If Af is an R -module in 3), then G+,(Af)/G(Af) is in 2, for all i in N and is
zero if and only if iaL(Af). Further, if /: Af-»Af' is a morphism in 3), then
there is a unique morphism F,(/):G+,(M)/G(Af)-»G1+,(Af')/G(Af') such that
the diagram

G.,(Af)-^*G+,(M')

G1+,(Af )/G, (Af )—^UG,+I(Af')/G (Af ')

commutes, where the vertical morphisms are the usual canonical surjective
morphisms.

(j) The following data define a functor F:2>-»2i,.

(i) F:Ob^-»ObS), is given by F(Af ) = II G>,(Af)/G(Af).

(ii) If /:Af-»Af' is a morphism in % then F(/):F(Af)-»F(Af') is given by
F(/){X,},eN = {F(/)(x,)},eN for all {x},eH in II G„(Af)/G(Af).

IEN

(18) The notation is the same as in the previous exercises.
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(a) For each R -module M in 3, show that M = II Ms and Ms = 0 for all but a
ses,Rl

finite number of S in S(R).
(b) Given M and M' in 2>, and morphisms gs:Afs-»Ms, there is a unique mor-
phism II gs : II Ms -» II Ms such that the diagram

sesiftl 5E5i■l sesiRl

Ms-^Mi

I I
II Ms » U Mi
sesiRl sesIRl

commutes for all S' in S(R) where the vertical maps are the usual injection
morphisms.

(c) Given any morphism f:M-»M' in ®,, then /= II /s
.

sesIRl

(d) Suppose M = II nsS is in 9,.
sesiRi

(i
) All but a finite number of ns = 0.

(«) Ms - nsS for all S in S(R).
(Hi) If M= II n'sS, then ns = ns for all SES(R). For each S in S(R), we

sE5iRl

define ns(M) to be the uniquely determined integer such that M =

II ns(M)S.
ses,Rl

(e) If {S,},eJ and {Si},eJ are two finite families of simple R-modules, then II S =,e;

II S, if and only if there is a bijective map a : I-»J such that S, = SUo fof all '

in I.

(f) If 0-»M'-»M-»M"-»0 is an exact sequence of modules in @„ then

ns(M) = ns(M') + ns(M") for all S in S(R).
(g) If 0-»M0-»M,-»- . -^M,-»0 is an exact sequence of modules in 9i, then
2i.0(-l)'ns(M) = 0 for all S in S(U).

(h) Suppose 0 = M0CM, C- . . CM, , CM, = M is a composition series for the R-

module M in 2,. Then U M+,/M, " II ns(M)S. Hence, if 0 =
1-0 5E5iRl

M0CMiC- . CMi, ,CMA = M is another composition series, then m = n-
1sesiRl ns(M) and there is a permutation o- : [0, . . . , m - 1]-»[0, . . . , m - 1], S, ==
T„i, where the S, = M,-lIM, and Tl = MU,/M', for i = 0, . . . , n - 1. This common
value of the lengths of composition series is called the length of M and is

usually denoted by /(M). Clearly, /(M) = 2sEsi,ons(M).
(i) If 0-»M0-»M,-»- . .-»M„-»0 is an exact sequence of modules in %, then
2U (- 1)7(M) = 0. In particular, if 0^M,^M2^M,-»0 is exact, then /(M2) =

/(M,) + /(M2).
(19) Notation is the same as in Exercise 17(f). We outline a proof that if

0-»M'-»M-»M"-»0 is an exact sequence of R-modules in % then F(M) =
F(M') U F(M").
(a) First consider the special case that M' is semisimple and proceed by induction
on L(M). If L(M') :sl, we already have the result. Suppose this is true for
L(M)<k and assume L(M) = k + l. Then use the commutative diagram



Exercises 255

0 0

I I
0 »G,(Af') »GW) »GAM")

1 I I
0 »Af' » M » M" »0

I I
MIG,(M) »M7G,(M") »0

I I
0 0

with exact rows and columns and the fact that L(M/G,(M)) = k to show that
the desired result holds for M.

(b) Proceed to prove the general case by induction on /(F(Af)). If /(F(M))sl,
there is nothing to prove. Suppose the result holds if /(F(Af )) < k and assume
l(F(M)) = k+l. Obviously, one can assume that M'±0. Let S be a simple
submodule of M'. Use the commutative diagram

0 0

I I
s==s

I I
0 »M'--»M »M" »0

I I
0 »M'IS- -^MIS »M" »0

I I
0 0

with exact rows and columns and the fact that l(F(MIS)) = k to prove the
desired result for M.

(20) Same notation as above. Let 0 = M0CM,C- . -CM. =M be a composition
series for Af in 3). Then show:

(a) F(MHIJM^/M.

(b) n = /(F(Af)).
(c) If 0 = M0CM', C . . . CM'm = M is another composition series for M, then m =
n; and if we let S, = Mm/M and S', = M'>,/M' for i = 0, . . . , n - 1, then there is
a permutation «r: [0 n - 1]-»[0, . . . , n - l]such that S, •» Siw for all i =
0 n-1.

(d) Show that UF(M)) is the length of each composition series for M. It is called
the length of M and is denoted by /(Af).

(e) If 0-»Af0-»M,-»- . -»M.-»0 is an exact sequence of modules in 2, then
2:.0(- l)7(M) = 0. In particular, if 0-»M'-»M-»Af"-»0 is exact, then /(Af) =

Z(M')+/(M").
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(21) Same notation as above. Let F be the free R-module generated by N, the set
of all nonnegative integers. Let ®0 be the full subcategory of 3 consisting of
R-modules FIK with K a submodule of F.
(a) Each M in 3 is isomorphic to some object FIK in 3)0.
(b) 3)0 is a small category; that is, the objects in S>0 form a set.

(c) Let [3)0] be the partition of 3)0 given by the equivalence relation Af , R Af2 if and
only if Af, = Af2 as R -modules. For each M in 2>0, denote by [Af] the unique
element of [3)0] containing Af. Let A be the free abelian group generated by
[3)0], X the subset of A consisting of all elements of the form [Af ] - [Af '] -
[Af"] if there is an exact sequence of R -modules 0-»Af'-»Af-»Af"-»0, and
A' the subgroup of A generated by X. Then the abelian group A IA' is called
the Grothendieck group of 2 and is denoted by ©(®).
(i) The map of sets g:2'0-»®(®) given by g(Af) = [Af] for each Af in 2„
satisfies g(Af) = g(Af) if Af « Af' and if 0-»Af'-»Af -»Af"-»0 is exact,
theng(Af) = g(Af') + g(Af").

(ii) Suppose C is an abelian group and f:20-»C is any map of sets satisfy
ing /(Af)=/(Af') if Af = Af'; and if 0-»Af'-»Af -»Af"-»0 is an exact
sequence of R -modules, then /(Af) = /(Af ') + /(Af"). Then there is a
unique morphism of abelian groups h :@(2>)-»C such that / = hg.

(iii) If h:©(S)-»C is any morphism of abelian groups, then /tg:30-»C has
the properties of / cited in part (ii). Hence, for each abelian group C
we obtain a map ,/»c :(©(©), C)-»[30, C] given by tpc(h) = hg where
(@(3), C) is the set of all group morphisms from ®(3)) to C and [2>0, C] is
the set of maps of sets / : 30 -» C satisfying the conditions of part (ii).
Show that 4i

,

is an isomorphism of sets for each abelian group C.

(d) Let S(R) be the subset of 20 consisting of simple R-modules such that each
simple R-module is isomorphic to one and only one element of S(R). Let
G(S(R)) be the free abelian group generated by the set S(R). Define
a : G(S(R))-»Qi(3)) to be the unique morphism of abelian groups such that

a(S) = [S] for each S in S(R). Show that a is a surjective morphism of abelian
groups.

(e) For each module Af in 3)0 there is a unique family {ns(Af)}ses<Ri of elements of
Af such that F(Af)= II ns(Af)S. Hence, all but a finite number of the ele-

sesiRl

ments ns(Af) are zero. Define /:2i0-»G(S(R)) by /(Af) = 2ses,,o MAf)S.
Show:

(i) If Af-Af', then /(Af) = /(Af ').

(ii) If 0-»Af'-»Af-»Af"-»0 is an exact sequence of R -modules in 3)0, then
/(Af) = /(Af') + /(Af").

(iii) f(S) = S for all S in S(R).
(f) The unique group morphism h:Qi(3>o)-»G(S(R)) such that fg = h has the
property that the composition

G(S(R))—^©(aO-^GfSO?))

is the identity of G(S(R)).
(g) The morphism a:G(S(.R))-»©(S0) is an isomorphism of abelian groups.
Hence:

(h) ©(S0) is a free abelian group with basis {[S]}sesiRl.
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(i) If Af is in 2>0, then [Af] = 2sesi«i ns[S] in ©(2>0) if and only if given any
i-,

composition series 0 = M0CAf, C- . -CM, = Af for Af we have II Afi+,«
l-0

II nsS. In particular, /(Af) = Ssesm ns.
ses,Rl

(22) Let 0-»Z/pZ—^G—^ZlpaZ^0 be an exact sequence of abelian groups
where p is a prime integer and a is any integer. Show that if g is not a splittable
epimorphism, then G=Z/p2aZ and so G is a cyclic group. [Hint: Consider the
canonical epimorphism fc:Z/p2aZ-»Z/paZ.]

(a) Prove that Ker k = paZlp2aZ which is isomorphic to Z/pZ by means of the
morphism /:Z/pZ-»paZ/p2aZ given by j(z + pZ) = paz + p2aZ.

(b) Prove that there is a morphism h:Zlp2aZ-»G such that gh = k.
(c) Show that there is a commutative diagram of abelian groups

0 »ZlpZ-i--»Zlp2aZ-±»ZlpaZ »0

i- !, 1

0 »ZlpZ-UG -^-» ZlpaZ »0

and that h'=0 if and only if the epimorphism g is splittable.
(d) Show that if g is not splittable, then the morphism h:Zlp2aZ-»G is an
isomorphism.

(23) Let I be a left ideal in a ring R and let C be the center of R. Consider each
R-module Af a C-module by means of the inclusion morphism C-»R.
(a) If Af is an R-module, show that Af ', the subset of Af consisting of all m in Af
such that Im = 0, is a C-submodule of Af.

(b) Show that if f:RII^M is an R -morphism, then f{\+I) is in Af'.
(c) Show that the map 4iM:HomR(R//, Af)-»Af' given by /-»/(l) for all / in
HomR(R//, Af ) is an isomorphism of C-modules.

(d) Show that if /: Af,-»Af2 is a morphism of R-modules, then /(Af[)CAf2 and that
the map /':Aff-»Af2' defined by /'(m) = /(m) for all m in Aff is a C-module
morphism.

(e) Show that the following data define a functor F:Mod(R)-»Mod(C).
(i) F:Ob Mod(R)-»ObMod(C) is given by F(Af) = Af'.
(ii) For each pair of R -modules Af, and Af2 the map F:HomR(Mu Af2)-»
Homc(F(Af,), F(Af2)) is defined by F(/) = /'.

(f) Show that the functor F:Mod(R)-»Mod(C) also has the property that
FrHonMAf,, Af2)-»Homc(F(M,), F(Af2)) is a morphism of C-modules.

(g) Show that the functor F is isomorphic to the functor Hom^R//, .) :Mod(R)-»
Mod(C).

(h) Show that the functor F is left exact; that is, if 0-»Af,-»M2-»Af3 is an exact
sequence of ^-modules, then 0-»F(Af,)-»F(Af2)-»F(Af3) is an exact sequence

of C-modules.

(i) Suppose R =Z, the ring of integers, / = nZ, and Af is the abelian group
Q/Z. Show that (Q/Z)', and hence Homz(Z/nZ, Q/Z), is isomorphic to Z/nZ.

(24) Let R and S be rings and let F: Mod(R)-»Mod(S) be a functor. F is said to
preserve arbitrary sums if whenever the indexed family of R-morphisms
{Af,—'-»M),et is a sum for {Af,},eI, the indexed family of S-morphisms
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{F(Af,) —»F(M)}le, is a sum for the family of S-modules {F(Mi)},e,. F is said
to be an additive functor if it preserves finite sums; that is, if / is a finite set and the
family of R -morohisms {M,—'-»M}le, is a sum for {M,},eh then the family of

S-morphisms {F(M) —»F(Af)},e, is a sum for the family of S-modules
{F(Af,)W
(a) Show that if the functor F has the property that for each pair Af, and Af2 of
R-modules the map F:HomR(Af,, Af2)-»Homs(F(Af,), F(Af2)) is a morphism
of abelian groups, then F is an additive functor.

(b) Show that if F is an additive functor then for each pair Af, and Af2 of
R -modules, the map F:HomR(Af,, Af2)-»Homs(F(Af,), F(Af2)) is a morphism
of abelian groups. [Hint: Use the following description of the addition in
HomR(Afi, Af2). For each R-module define the R-morphism AM:Af-»Af IIAf
by A(m) = (m,m) and the R-morphism +M:MUM-»M by +«(nt,,»i2) =
m, + m2. Suppose f,,f2:M,-»M2 are R -morphisms. Show that the composi

tion Af, *'* >M,IIM, ''"'' >Af,UAf2 +-*
»Af2 is the R-morphism /,+

/2:Af,-»Af2.]

(c) Let R be a ring with center C. Suppose Af is an R-module. Show that the
functor HomR(Af, -):Mod(R)-»Mod(C) described by the following data is
an additive functor.

(i) HomR(M, )(X) for each R-module X is the C-module Hom„(M, X).
(ii) For each R-morphism f:M,-»M2 define HomR(M, .)(/): HomR
(M, M,)-»HomR(M, M2) to be the C-morphism HomR(M,f).

(d) Show that if the R-module M is a finitely generated R-module, then the
functor Hom«(M, -):Mod(R)-»Mod(S) preserves arbitrary sums. Is this
necessarily true if M is not finitely generated?

(25) Suppose /, :M ,-»M and f2 : Af2-» M are morphisms of R-modules. Show that
the subset Af, x M2 of M,ll Af2 consisting of all (m,, m2) in M, II M2 such that

/,(wi,) = /2(m2) has the following properties:

(a) Af , x Af2 is a submodule of Af,II Af2.

(b) The maps p,:Af, x Af2-»M, and p2 :M, x Af2-» Af2 given by p,(m,,m2)= m,

and p2(m,,m2) = m2 for all (m,,m2) in Af,xAf2 are R-module morphisms
with the property that the diagram

Af,xAf2-^Af1

"I I"
M2—»M

A

commutes.

(c) Suppose g:X^Af,xAf2 is a morphism of R-modules. Then the R-mor
phisms p,g:X-»Af, and p2g:X-»M2 associated with g have the property
flplg=f2p2g-

(d) If X is any R-module and /i,:X-»Af, and h2:X-»M2 are any two R-
morphisms such that f,h,=f2h2, then there is one and only one R-morphism
h :X-»Af,x Af2 such that h\ = plh and h2 = p2h.
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(e) For each R -module X, define F(X) to be the set of all pairs (h,, h2) of
R-morphisms h,:X-»Ml and h2:X-»M2 which satisfy f,hrX-»M and
f2h2:X-»M are equal. Then (h,, h2) + (hi, h2) = (h, + hi, h2+h'2) is a law of
composition on F(X) which makes F(X) an abelian group.

(f) If h:X-»Y is a morphism of R -modules and (h,, hi) is in F(Y), then
(/i.h, ri2/i) is in F(X). Moreover, the map F(h) : F( Y) -» F(X) given by F(h) x
(h,, h2) = (hh,, hh2) is a morphism of abelian groups. Finally, there is a con-
travariant functor F:Mod(R)-» s&l with the property F :Ob Mod(R ) -»
Ob sll is given by X« F(X) and where F :Horn* (X, Y) -» Homz
(F(Y),F(X)) is given by h~F(h) for all h in Hom*(X, Y).

(g) The map HomB(X,M,xM!)-»F(X) given by gi-»(p,g, p2g) for each X in
Mod(R) is an isomorphism of functors HomR(-, Af,XAf2)-»F.

(h) Suppose we are given an R-module N together with R-morphisms g, :N-»Ml
and g2:N-»M2 satisfying:

(•) /2g2
= /.g, and

(ii) given any commutative diagram of R-morphisms

"i i"
M2-T*M

there is a unique R -morphism t:X-»N such that h,t = g, and h2f = g2. In
particular, there is a unique R -morphism u:N-»M,x M2 such that p,u =

g, and p2K = g2, and this uniquely determined R -morphism u is an

isomorphism.

Summarizing, we have that given any diagram of R-morphisms

M,

hI
M2-^M

there exists a commutative diagram of R-morphisms

I- I'
M2—r»Mh

with the property that given any commutative diagram of R-morphisms

X— '-*M,

I° I"
M2—-»Af

h

there exists a unique R-morphism t:X-»N such that ^r = /i, and g2r = h2. Any
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such triple (N, g,, g2) is called a pull-back for the diagram

Af2-^-»Af

The triple (Af, x Af2, p,,p2) is called the standard pull-back of the diagram

Af,

!<
Af2— -»Af

The next exercise is devoted to developing some of the basic properties of
pull-backs.

(26) Consider the commutative diagram of R-modules with exact rows and col
umns

0 0

I I
Ker p2 Ker /,

I J
0 »Kerp, »M,xM,-^M,

h I"
0 »Ker/2 » Af2 -±*M

(a) Show that there are unique R -morphisms g, : Ker p, -» Ker f2 and g2 :Ker p2-»
Ker/, which make the diagram commute.

(b) Show that these uniquely determined R -morphisms g, and g2 are isomor

phisms of R-modules.

(c) Show that the morphisms f2p2 :M2 x M, -»M, /,p, : M2 x M, -»M are the same
and that:

(i) Ker(/,p,) = Ker/,UKer/,.
(ii) Im(/,p,) = Im/lnim/2.

(d) Show that Im p, = M, if and only if Im /, Clm f2
. Similarly, Im p2 = M2 if and

only if Im/2Clm/,.
(e) Show that p, :M, x M2 -» M2 is a splittable epimorphism if and only if there is a

morphism h :M , -» M2 such that f2h, = /,
.

(27) Suppose /, : M-»M, and f2:M-»M2 are morphisms of R-modules. Show that
the subset N of M, UM2 consisting of all pairs (J,(m), -f2(m)) for all m in M is a

submodule of M,IIAf2 and that the R-module (M,UM2)IN, which we denote by

Af , x M2, has the following properties:

(a) If i,:Af,-»M, x M2 and i2 : Af 2 -» Af , x M2 are the compositions

M, -^Af, II Af2-*-»(Af, II Af2)/N and Af2-^-Af,UAf2-i-»(Af,UAf2)/N, re
spectively, then I,/, = i2/2.
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(b) If g :M, x M2-»X is a morphism of R -modules, then gi,f, = gijf2.
(c) If X is an R-module and g,:M,-»X and g2:M2-»X are two R-morphisms such

u
that g,/, = g2/2, then there is one and only one R -morphism h :M, x M2-»X
such that hi, = g, and /u2 = g2.

(d) For each R -module X define G(X) to be the set of all pairs (g„g2) of
R-morphisms g,:M,-»X and g2:M2-»X such that gj, = g2f2. Then
(g,.g2) + (gi,g2) = (g, + gi.g2 + g2) is a law of composition on G(X) which
makes G(X) an abelian group.

(e) If t :X-» Y is a morphism of R-modules and (g,, g2) is in G(X), then (fg,, tg2)
is in G(Y). Moreover, the map G(t):G(X)--»G(Y) given by G(f)(h„/i2) =
(rt,, f/i2) is a morphism of abelian groups. Finally, there is a functor
G :Mod(R)-» ,s# with the property that G :Ob Mod(R)-»Ob .s# is given by
X^G(X) and where G :Hom„(X, Y)-»Homz(G(X), G(Y)) is given by r«-»
G(f) for all t in HomR(X, Y).

(f) The maps Hom„(M, x M2, X)-»G(X) given by h ,-»(/ii,, /u2) for each X in

Mod(R) is an isomorphism of functors HomR(M, xM2, -)-»G.
(g) Suppose we are given an R-module L together with R-morphisms g,:M,-» L,
g2:M2-»L satisfying:

(i) gj,=gj2-
(ii) Given any commutative diagram of R-morphisms

M2—+X

there is a unique R -morphism h:L-»X such that hgl = h\ and hg2 = h2. In
particular, there is a unique R -morphism v :M, x Af2-»L such that di, = g,
and «i2 = g2 and this uniquely determined R -morphism t> is an isomorphism.

Summarizing, we have that given any diagram of R-morphisms

I-

there exists a commutative diagram of R-morphisms

i" |«
M2 »L

with the property that given any commutative diagram of R-morphisms

M2 »X
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there is a unique R-morphism h :L-»X such that hg, = h, and hg: = h. Any such
triple (L, g,, g:) is called a push-out for the diagram

Af-^-Af,

I'
M

The triple (M , x Af2, i,, i2) is called the standard push-out of the diagram

M-^Af2

I'
Af2

The next exercise is devoted to giving some of the basic properties of
push-outs.

(28) Consider the commutative diagram

Af -^-» Af, » Coker/, »Q

I. j.
Af2 »M, x Af2 »Coker i2 »0

I
'
I

Coker /2 Coker i,

I I
0 0

of R-modules with exact rows and columns.

(a) Show that there are unique R-morphisms h , :Coker/,-» Coker i2 and
h2: Coker /2-» Coker i, which make this diagram commute.

(b) Show that these uniquely determined morphisms are isomorphisms.

(c) Show that i,/, = i2/2 and that:

(i) Coker(i,/,) = Coker /,U Coker f2
.

(ii) Ker(i,/,) is the submodule of Af generated by Ker/, and Ker/2.
(d) Show that Ker i2 = /2(Ker /,) from which it follows that i2 is a monomorphism

if /, is a monomorphism.
(e) Show that i2 is a splittable monomorphism if and only if there is a morphism
g:Af,-»Af2 such that gf,=f2.

(29) Let R be an arbitrary ring.

(a) Show that if {Af,},e, is a family of R-modules, then ann( 1 1 Af,)= nann(Af,).
1EI ,e;

(b) Let Af be an R-module and suppose {m,},eJ generates Af as a module over the
center of R. Let {Af,},e, be the family of R-modules with each Af, = Af. Show
that the element (m,),ei in II M has the property that ann((mi)le,) = ann(Af)

IEi

from which it follows that there is an exact sequence of R-modules 0-»

R/ann(Af)^IIAfi.
lEl

(c) Let I be an ideal of R. Let Mod( R), be the full subcategory of Mod(R) whose



Exercises 263

objects are those R -modules Af such that IM = 0. Show that Mod(.R); has the
following properties:

(i) If 0-»Af,-»M2-»M3-»0 is an exact sequence of R -modules with Af2 in
Mod(R)i, then Af, and Af, are also in Mod(R)i.

(ii) If {M,},e, is a family of R-modules in Mod(R),, then II M is also in,e;

Mod(R),.

(iii) The category Mod(R), is equivalent to the category Mod(R/7).
(d) Let <€ be a full subcategory of Mod(U) which satisfies:

(i) If 0-»Af,-»M2-»Af3-»0 is an exact sequence of R-modules with Af2 in %
then Af, and Af3 are also in •&

(II) If {M,},ei is a family of R-modules in % then II Mi is also in <&le;

Show that there is an ideal / of R such that % = Mod(R ),. [Hint: Let

/ = n ann(M). Show first that <€ CMod(R),. Next show that « DMod(R)i
ME«

by showing

(1) RII is in <
g

and

(2) all sums U M, with M, = RII for all i in I are in <«.]
,el

(30) Let R be a commutative ring and X a monoid. This exercise is devoted to
giving a description of the R [X]-modules.
(a) By an A' -module structure on an R -module Af we mean a law of composition
XxAf-»Af which we denote by (x, m) -»xm which satisfies:
(I) \m = m for all m in M
(u) X,X2(m) = X,(x2m) for all xux2 in X and m in M.
(iii) X(rm)= r(xm) for all x in X, r in R, and m in M

(b) An R -module M together with an X-module structure on M is called an
X-module. If M,, JVf2 are two X-modules, then a map /:Af,-»M2 is called a

morphism of X-modulcs if and only if / is a morphism of J? -modules which also
satisfies f(xm) = xf(m) for all x in X and m in Af. Clearly, if f:M,-»M2 and
g:M2^M3 are morphisms of A'-modules, then the ordinary composition of
maps g/:Af,-»M3 is also a morphism of X-modules. Show that there is a

category <
i

whose objects M are the X-modules, where ^(M,, Af2) is the set
of all X-module morphisms from Af , to Af2 and where the composition maps
^(Af,, Af2)x<g(Af2, Af3)-»'£(M,, Af3) are given by the usual composition of
maps.

(c) Show that if Af is an X-module, then the map R[X]xAf-»Af given by
(2.exr.x, m)-»1xexrx{xm) is an R[X]-module structure on the abelian group
Af. We denote that R[.Y]-module consisting of underlying abelian groups of
the X-module Af together with the R[X]-module structure we just defined by

F(M).
(d) Show that if Af, and Af2 are two X-modules, then a map /:Af,-»Af2 is a

morphism of X-modules if and only if it is a morphism from the R[X]-
modules F(M,) to F(Af2) [remember as sets, F(Af) = Af for all X-modules
Af]. Hence, «(M„ M2) = HomRix,(F(Af ,), F(M2)).

(e) Show that the following data define a fully faithful functor F:<g-»

Mod(.R[X]):
(i) F:Ob <g-»ObMod(R[X]) is given by Af -»F(Af) for all X-modules Af.
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(ii) F : <g(M,, Af2) -»HomR,x,(Af,, M2) is the identity map for all M,, M2 in <g.
(I) Show that the functor F: <g-»Mod(R[X]) is an isomorphism of categories by
showing that given an R[X]-module N, there is one and only one X-module M
such that F(M) = N.

(31) Let {M},ei be a family of submodules of an R -module M.

(a) Define the R-morphism/: II M-»M by /((m,),ei) = 2li=,m,. Show that Im/is
ISI

the submodule of M generated by the family {Af},ei of submodules of M.
(b) Suppose/ = {1,2}. Show that the sequence 0-»M,nM2— ^Af.IIAf.—^M is
exact where g:M,nM2-»M,IIM2 is given by g(m) = (m, -m) for all m in
M,nM2.

(32) Let R be a commutative ring with the property that each prime ideal of R is
finitely generated. We outline a proof that R is noetherian, or, what is the same
thing, every ideal of R is finitely generated. We assume that not every ideal of R is
finitely generated and get a contradiction.

(a) Show that the ordered set ST of all ideals of R which are not finitely generated
is an inductive set and thus has a maximal element I.

(b) Because / is not R or a prime ideal, there are elements a,b in R but not in /
such that ab is in /. Hence, the ideals (I, a) and ( /, b ) generated by / and a and

/ and b respectively are finitely generated R-modules. Hence, there is an
exact sequence 0-»ln(b)-»IU(b)-»(I, b)-»0 of R-modules where (b) is the
ideal generated by b.

(c) Show that the subset I:b of R consisting of all r in R such that rb E / is an
ideal of R containing / properly and is thus a finitely generated R -module.

(d) Show that the R -morphism g:I:b-»R given by g(x) = bx for all x i n / : b has
the property Im g = / n (b) which shows that / n (b) is a finitely generated R-
module.

(e) Use the fact that both ln(b) and (/, b) are finitely generated R-modules to
deduce that IU(b) and hence / is finitely generated.

(33) Let I be an ideal in an integral domain R. If K is the field of quotients of R, let
/' be the subset of K consisting of all q in K such that qa is in R for all a in /.
(a) Show that /' is a submodule of the R-module K.
(b) Associated with each q in /' is the map <p(q):I-»R given by ,p(q)(a) = qa.
Show:

(i) For each q in J", the map 4,(q):I-»R is a morphism of R-modules.
(ii) The map ,^:/',-»Hoit1«(/, R) given by q,-»*p(q) is an isomorphism of
R-modules.

(34) Let R be a commutative ring. A sequence of elements au a2 a„ in R is
called a regular li-sequence if a, is regular in R and for each i = 2, . . . , n, the image
of a, under the canonical R-morphism R-»RI(a a,-,) is a regular element in
RI(a,, . . . , a,-,). Prove that if R is an integral domain and I is an ideal of R which
contains a regular R- sequence with at least two elements, then I' = R where /' is
the submodule of K, the field of quotients of R, defined in Exercise 33.
(35) Let R be a PID which is not a field and K its field of quotients which we view
as an R-module. Let k:K-»KIR be the canonical surjective morphism of R-
modules. For each x in K, we denote k(x) by [X].
(a) Show that KIR is a torsion R-module.
(b) Show that (KIR)w=f=0 for each prime ideal (p) in PPD(R).
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(c) Let (p) be a fixed prime ideal in PPD(R) and let M be the submodule of KIR
generated by all the elements of the form [(1/p)n] with n a positive integer.

(i) Show that M = (K/R)„,,.
(II) Show that Af is not a finitely generated R-module by showing that
ann (Af ) = 0 while ann (Af ') =£0 for each finitely generated submodule Af

'

of Af.

(d) Let Af be as in part (c). For each integer n, let Af„ be the submodule of M
generated by [(1/p)n]. Show:

(I) M, C Af2 C Af, C . . . C Af„ C . . ..
(«) A4*Afl+, for all I -1,2,
(III) Af is the union of all the M„.
(Iv) Af„ is isomorphic to RIp'R for each positive integer n.

(e) Show that every nonzero element of Af can be written as [mlp"] where p does
not divide m.

(f) Show that if p does not divide m, then Af„ is the submodule of Af generated by
[mlp"\. [Hint: Proceed by induction on n.]

(g) Show that the Af„ are the only nonzero proper submodules of Af. Hence, Af
has the property that every proper submodule of Af is generated by a single
element even though Af is not finitely generated.

(h) Show that Af is an artinian module. Thus, Af is an example of an artinian mod
ule which is not finitely generated and hence not noetherian.

(I
) Give an example of a noetherian module which is not artinian.

(36) Let C be the field of complex numbers. For each z in C we denote by z the
complex conjugate of z, that is, if z = x + iv, then z = x - iy.
(a) Show that the set R = C x C together with the following addition and multipli
cation is a ring:

(z,, z2) + (u,, u2) = (z, + u,, z2+ u2)

(z,,z2)(u,, u2) = (z, u,, z,u2 + z2fi,)

(b) Describe the center C(R) of R.
(c) Show that the subset I of R consisting of all elements of the form (0, u) is an
ideal of R and that the ring RII is isomorphic to the field C of complex num
bers.

(d) Show that under the canonical ring morphism R-»RII, the image of C(R) is

not all of RII and hence not all of C(RIT).
(37) Let F be a free R-module, R an arbitrary ring, / an ideal of R, and k : F-»FIIF
the canonical R-morphism.
(a) Show that if B is a basis for F

,

then k(B) is a basis for the R//-module FIIF
and the map B-»k(B) given by b t-»k(b) is an isomorphism of sets.

(b) Suppose RlI is left noetherian. Show that if F is finitely generated, then any
two bases of F have the same number of elements.

(38) Show that if R is an arbitrary commutative ring, then any two bases for a

finitely generated free R-module have the same cardinality.

(39) Show that if D is a division ring, then any two bases for the same D- module
have the same cardinality, whether the D-module is finitely generated or not.

(40) Show that if R is a commutative ring, then any two bases for a free R-module
have the same cardinality, whether the free R-module is finitely generated or not.



Chapter7 SEMI-
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In Chapter 6 we saw that if every left R-module is free, then R is a division ring.
However, when R is a division ring, we know that R is not only a free module but
also a simple R-module. Thus, in the case where R is a division ring, to say that
every module is free is the same as to say that every module is the sum of copies
of a fixed simple free module, namely R. We can therefore ask the following ques
tions:

(1) What rings have the property that every module is the sum of a fixed simple
module?

More generally:

(2) What rings have the property that every module is the sum of simple modules

(not necessarily a fixed one)?

This chapter is devoted to answering these questions, and naturally we begin
with the first one.
As a matter of notational convenience, we shall denote HomR(X, Y) by

(X, Y) for all R -modules X and Y.

1. SIMPLE RINGS

Suppose that R is a ring, M0 is a simple R-module, and every R-moduIe is a sum of
copies of M0. Then this should be almost as good as being a division ring. We

266
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know, by Chapter 6, Corollary 8.5, that EndR(Af0), the endomorphism ring of M0,

is a division ring. We denote End*(M0) by A0. Can R be related to A0 in some way?
If M0 were R itself, then A« would be equal to R. In fact, the morphism
an :(R, R)-»R given by aR(f) = f(l) is not only an isomorphism of R-modules as
shown in Chapter 6, Proposition 4.6 but is an isomorphism of rings, as the reader
can readily verify. But what happens if M0 ± R ? Certainly each element rER in
duces an endomorphism of M„ as an abelian group, namely the group morphism
which sends an element x in M0 to rx. Because R is not necessarily commutative,
this endomorphism of M0 is not necessarily an endomorphism of R-rnodules.
However, A0 is a ring and M0 is a A0-module by denning A . x = A(x) for A £ A0
and xEM. The reader should check that this operation does really define M0 as a
A-module. We then observe that the group endomorphism of M0 induced by an
element rE R is an endomorphism of M0 as a A0-module, because r(Ax) = r\(x) =
A(nc) for all rER, A£A0, and xEM0. In fact, we have the following.

Proposition 1.1
Let R be a ring and M any R-module. If A denotes the endomorphism ring of M
as an R-module, then M is a A-module under the operation A . x = A(x) for A £ A,
x E M. Moreover, if ft denotes the endomorphism ring of M now considered as a
A-module, there is a canonical ring morphism y of R into ft which to each element
rER assigns the endomorphism of M denned by r(x) = rx. If M = R, then ft = A =
R and y is the identity.

PROOF: The only part of the above statement not already discussed is that
which says the map y :R-»ft is a ring morphism and that if M = R, then y is the
identity. However, this too may be easily checked by the reader.

As a result of Proposition 1. 1 we know that we have a canonical ring mor
phism y : R -» ft0 where ft0 is the ring of endomorphisms of M0 as a A0-module, Af0
is a vector space over A0, and ft0 is the ring of endomorphisms of the vector space

Af0 over the division ring A0. We now ask the following two questions:

(a) Is 7:R-»ft0 an isomorphism of rings?
(b) Is M0 a finite-dimensional vector space over A0?

If the answers to (a) and (b) are yes, then this tells us that the ring R is the
endomorphism ring of a finite-dimensional vector space over a division ring.
Let us now show that the answers to (a) and (b) are indeed affirmative. Of

course, we must somehow use the fact that every R-module is the sum of copies
of M0. In particular, R itself is such a sum and we can prove the following.

Lemma 1.2
Let R be a ring, {M,}„ey, an indexed family of R- modules, and {R, k : M„-»R} a
sum of the M„. Then M„ = 0 for all but a finite number of aEA.

PROOF: By Chapter 6, Basic Properties 11.5 we know that for each rER we
have r = 2i,p„(r) where the morphisms p„ :R-»M„ are the projection morphisms
of this sum. Because p„ is an epimorphism, we may prove that M„ = 0 for a certain
a by showing that p„ is the zero morphism. Again by Chapter 6, Basic Property
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1 1.5 we know that for each r £ R, p„ (r) ± 0 for finitely many a. In particular, let
a,,...,a„ be such that p„,(l) =£0. We claim that Af„ = 0 for a ± a,, ... , a„. To do
this, we must show that p„(r) = 0 for all r £ R if a =£a a„. However, be
cause 2"=, i^O) = 1, we have r = r . 1 = r2i^O) = 1i„p„,(r). Because this ex
pression for r is unique, we must have p„{r) = 0 for a =£a , a„ and we are

done.

Corollary 1.3
If R is a sum of copies of a module Af, then R is the sum of a finite number of
copies of Af.

Proposition 1.4
Let R be a ring, Af an R- module, and A the endomorphism ring of Af. If R is the
sum of a finite number, n, of copies of Af, then Af is isomorphic as a A-module to
the sum of n copies of A. Thus, Af is a finitely generated free A-module.

PROOF: Denote the sum of n copies of Af by Af". Because Af ~ (R, Af) as an
R -module we also have Af = (R, M) as a A-module, where the operation of A on
(R, Af) is defined by (A . /)(r) = A(/(r)), that is, the operation of A on (R, Af )
comes through the operation of A on Af. Using the fact that R = Af " as an
R -module. we have (R, Af ) = (Af ", Af ) as A modules where again the operation of
A on (Af ", Af) is defined by (A . f)(x) = A(/(x)). But (Af ", Af ) = (Af, Af )" and this
too is an isomorphism of A-modules, where (Af, Af) is regarded as a A-module by
setting (A . /)(x) = A(/(x)). However, (Af, Af ) = A by definition, and A is consi
dered a A-module by multiplication, that is, A . p. = A/i, where A/a is the en
domorphism defined by A/a(X) = A(/*(X)). Thus, A is considered a A-module in the

same way as (Af, Af ) is defined to be a A-module above. Hence, the chain of
isomorphisms Af = (R, Af ) = (Af ", Af ) = (Af, Af )" = A" is a chain of isomorphisms
as A-modules and we therefore have Af « A", as asserted.

If the reader would like a more explicit description of this isomorphism, con
sider {R, i„:Af-»R} a given sum of n copies of Af(a= 1,. . . , n). Then 1 =
22-, i„(wi„) with m„ £ Af. Taking A" to be the set of all n-tuples (A,, . . . , A„), the
reader may check that the isomorphism h:A"-»Af is given by fc(A,, . . . , A„) =
2"_, A„(wi„).
Letting Af = Af0 and A = A0 in Proposition 1.4, we see that Af0 is a finite-

dimensional vector space over A0. This answers question (b). To answer question
(a), consider the following:

Proposition 1.5
Let E be an R-module, A' its endomorphism ring as an R-module, and ft' its
endomorphism ring as a A'-module, with y' :R-»il' the canonical ring morphism.
Let Af be an R-module such that E is the sum of n copies of Af and let A and ft be
the corresponding endomorphism rings of Af with 7:R-»ft the canonical ring
morphism. If y' is injective, then so is -y. If y' is surjective, then so is 7.

PROOF: For convenience we shall assume that E is the standard sum of n
copies of Af, that is, E is the module of n-tuples of elements of Af. An R
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endomorphism of E is then an n2-tuple {A.s} of R-endomorphisms of Af because
(E, E) = (AT, Af ") = n(M, Af); this latter product involving n2 factors. Explicitly, if
{K,p} is an endomorphism of E, the element (xu . . . , x„) of E is sent to (2,"., A,,(xi),
2". , A2i(xi), . . . , 2". , A„,(Xi)). Now suppose that oi : Af-» Af is a A-endomorphism of
Af. Define the map a>" :E-»E by <w"(x,,...,x„) = (<o(x,), ...,ai(x„)). The reader
can easily check that this is an endomorphism of E as an abelian group. We claim
that this is also an endomorphism of E as a A'-module. To see this, we must prove
that if A' £ A', then a>"(k'(x)) = A'(ai"(x)) for all x £ E. However, we have al
ready said that A' = {A^} so that, if x = (x, x„), we have a>"(\'(x)) =

to"(2A,i(x,), 2A2,(x,), . . . , 2A„,(x,)) = (co(2A,i(xi)) gi(2 A„,(x,)», . . . ,
2<d(A„,(xi)). Because ai£ft and A„„£A, we have ai(A„(xi)) = Aa(oi(Xi)) so
(2 <d(A„(x,)), .... 2 oi(A„,(x,))) = (2 A„<d(x,), .... 2 A„^i(x,)).
When we compute A'(fti"(x)), we get A'(w"(x)) = A'(ai(x,),...,o)(x„)) =

(2A„(w(X,)), . . . , 2 A„,(a)(x,))). Hence, we see that ai"(A'(x)) = A'«j"(x)) and m" is
indeed an element of ft'.
Suppose that y':R-»il' is surjective. We want to show that y:R-»il is

surjective. Thus, given to£ft,we must show that <o(x) = rx for some r £ R and all
x £ Af. Because to": E-»E is an element of ft', and because we are assuming that
y' is surjective, there is an element rER such that a>"(x)= rx for all x£E This
means that for every n-tuple (x,, . . . , x„) of elements of M we have
w"(X,, . . . , x„) = (oi(X,), . . . , ai(x„)) = (rx,, . . . , rx„) so that, in particular, we have

<d(x) = rx for all x £ Af and y is surjective.
Now suppose that y:R-»il' is injective. This is just a fancy way of saying

that if r £ R and r(x,, . . . , x„) = 0 for all (x,, . . . , x„) in E, then r = 0. From this we
want to deduce that if rER is such that rx =0 for all x£Af, then r = 0. But, if
rx = 0 for all x £ Af, then 0 = (rx,, . . . , rx„) = r(x,, . . . , x„) for all (x,, . . . , x„) £ E and
so r must be 0. Thus, we have shown that if y' is injective, so is y.

From this proposition, using the fact that if E = R we have y' :R -»ft' is the
identity, we obtain the following.

Corollary 1.6
Let R be a ring, Af an R-module, A the endomorphism ring of the R -module Af,
and ft the endomorphism ring of the A-module Af. If R is the sum of copies of Af,
then the canonical ring morphism y:R-»il is an isomorphism.

This proposition shows that 7 :R -»ft0 is an isomorphism of rings, which an
swers question (a) in the affirmative. Hence, we see that if a ring R has the
property that every R -module or, more particularly, R itself, is the sum of copies
of a fixed simple R-module, then R is isomorphic to the endomorphism ring of a
finite-dimensional vector space over a division ring.
Of course we must now ask if this is the best we can do. Namely, the above

result is true, but we have really only used the fact that R is the sum of copies of a
simple module. But our original problem was to describe rings all of whose mod
ules are a sum of a fixed simple module. The following theorem shows that we
have already solved this problem.



270 SEVEN/SEMISIMPLE RINGS AND MODULES

Theorem 1.7
Let R be a ring. Then the following statements are equivalent:

(a) R is isomorphic to the endomorphism ring of a finite-dimensional vector space
over a division ring.

(b) R is the sum of copies of a fixed simple R-module.
(c) Every K-module is the sum of copies of a fixed simple R-module.

PROOF: The proof of this theorem is lengthy, and involves proving various
lemmas and propositions in a slightly more general setting than we seem to need.
This is because we want ultimately to study rings which have the property that
every module is the sum of simple modules, without specifying that all these
simple modules be isomorphic to one fixed one.
We begin by showing that (a) implies (b). Let D be a division ring, V a

finite-dimensional (say n-dimensional) vector space over D, and let R be the
endomorphism ring of V. We shall show that R is the sum of copies of a fixed
simple R-module. From our discussion we have the clue that V must be the simple
R- module we are looking for. Hence, let us first show that V is really a simple
R-module, and that R is the sum of n copies of V.
To show that V is a simple R-module, it suffices to show that if v E V and

vfc0, then the R-submodule generated by v is all of V. In other words, we must
show that if v' is any element of V, then there is an endomorphism / of V such
that t1

'

=/(»). But this is obvious. Because v =
£ 0
,

we know that v may be extended
to a basis for V over D. Then an endomorphism /of V is determined by assigning
arbitrary values in V to the elements of this basis. Assigning the value v' to v and,
say, zero to all other basis elements, we get an endomorphism /: V-» V such that
f{v) - v' . This proves that V is simple as an R-module.
We now want to show that R is a sum of n copies of V. Consider R as the ring

M,{D) of n x n matrices over D by choosing a basis x,, x. of V. Under this
identification of R with Af„(D), the R-module V becomes the Af„(D)-module given
by the operation (dn)(S.?., cpb) =2,"., c',X, where c\ - 2"., cfo We have already
seen in Chapter 6

,

Example 11.10 that M„(D)= II G where G is the left ideal of
kell.nl

A#„(D) generated by the matrix ek, all of whose entries are zero except for the
entry in the first column and fcth row which is 1. We also saw that G = G for all

k = l,...,n and I = 1
, ...,n. Therefore, if we show that G = V as M„(D)-

modules, we will have shown that M„(D) and hence R is isomorphic to the sum of

n copies of the fixed simple module V. That C, = V follows from the fact that the
map /: C,-» V given by /(<ti) = 2"., <t>x,for all (d„) in G is an M„(D)-isomorphism.
This finishes the proof that (a) implies (b).

We have already shown that (c) implies (a). Thus, we must show that (b)
implies (c) to finish the proof of Theorem 1.7. Here is where we start to set things
up a bit more generally.
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2. SEMISIMPLE MODULES

Definition
An R-module M is said to be a semisimple module if it is the sum of simple
modules. A ring R is said to be semisimple if it is semisimple as an R-module.

Basic Properties 2.1

(a) A simple module is semisimple.
(b) A sum of semisimple modules is semisimple.
(c) If a ring R is semisimple, then every free R-module is semisimple.
(d) If a ring R is semisimple, then every R-module contains a simple module.

PROOF: (a) and (b) are completely trivial [see exercises of Chapter 6 for (b)].
(c) is an immediate consequence of (b), because every free R-module is a sum

of copies of R.

(d) is also quite easy. For, if M is a nonzero R-module, we have 0=£Af =
(R, Af) = ( II At, Af), where At are simple modules (we actually know that there

are only finitely many m, by Lemma 1.2). Because (II At, Af) = II (M, Af), and,ei le,

because ( II At, Af ) ± 0, we have II (At, Af) ± 0. But then (At, Af ) must be different
le, ,eJ

from zero for at least one index i, and so for some i we have / : At -» Af and / ± 0.
Because At is a simple module, we know that / is injective. Hence, the image of /,
being isomorphic to At, is a simple submodule of Af.

Example 2.2 Every vector space over a division ring is semisimple.

Example 2.3 Every division ring and every endomorphism ring of a finite-
dimensional vector space over a division ring is semisimple.

In fact, these rings, in addition to being semisimple, are also examples of what
are called simple rings. Since we have mentioned the term, we shall define it here
but we will not discuss simple rings until later.

Definition
A ring R is called simple if it has no ideals other than (0) and (1).

Although the rings we have mentioned so far are both semisimple and simple,
in general, it is not the case that a simple ring is semisimple. Examples will be
given later to illustrate this fact.

Now let us return to semisimple modules.

Proposition 2.4
An R-module Af is semisimple if and only if every submodule Af' of Af is a
summand of Af.

PROOF: Recall that a submodule Af' of Af is a summand if and only if there is
a submodule Af " of Af such that {Af, i' : Af ' -» Af, i" : Af "-» Af } is a sum of Af

'
and

Af" where V and i" are the inclusion morphisms. As we saw in Chapter 6,
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Proposition 1 1.6, this means that Af ' D Af " = 0 and Af ' + Af" (the submodule gen
erated by Af ' and Af ") is equal to all of Af. Equivalently, Af

' is a summand of Af if
there is a morphism p : Af -» Af ' such that pi = idM where i : Af

' -» Af is the inclu
sion morphism. Kerp is then the module Af" of the preceding description of
summands.

Suppose that Af is a semisimple module, Af' is a submodule of Af, and that
Af = UM, where Af, are simple modules which we may assume to be submodules
of Af. Consider the set Jf of pairs (N, fN) where N is a submodule of Af containing
Af' and fN:N-»M' is a morphism such that fNiN=idM where iN:Af'-»N is the
inclusion. We order the set Jf by setting (N,, /N,)<(N2, /Nl) if N, is a submodule of
N2 and /NJN, =/Nl. This clearly defines an order relation on Jf. ^V is not empty
because (Af', idM) is in Jf. If {(N„,/NJ) is a totally ordered subset of Jf, let
N= UN„ and define fN:N-»M' by Mx) = fNm(x) if xEN„. Clearly, N is a sub-
module of Af containing Af', fN:N-»M' is a morphism, and fNis=idM-. Equally
clearly, the pair (N, fN) is the l.u.b. of the set {(N„, fNJ}. Thus, we may apply Zorn's
lemma and conclude that Jf contains a maximal element (N, fN). We shall show
that N = Af and this will then tell us that Af' is a summand of Af because it is a
summand of N. Suppose that N^Af. Then, for some i, the submodule Af, is not
contained in N. For, if Af.C N for all i, then U Af,C N and thus M= N contrary to
our assumption. If M is not contained in N, then Af, f1 N = 0 because the only
other alternative is that Af,.D N = Af i which implies that M CN (do not forget
that Af, is a simple module). Because M fI N = 0, the submodule N + M gener
ated by N and M in Af is a sum of N and M so that we may define a morphism
/ :N + Af, -» Af ' by sending N to Af' by fN and sending Af, to zero in Af '. The
inclusion i : Af ' -» N + Af, is the composition Af ' -» N -» N + M so that it is clear
that fi = idM- and f\N = fN. Therefore, the pair (N + M,/) is in Jf and is properly
larger than (N,fN). This contradiction of the maximality of (N,/N) is Jf shows that
N = Af and thus Af ' is a summand of Af.
Now let us suppose that every submodule of Af is a summand of Af, and show

that Af is semisimple. First, we show that every nonzero submodule Af' of Af
contains a simple submodule. Let X£Af' with x=£0, and let if be the set of
submodules of Af' not containing x. if is not empty, because it contains the zero
module. Order the set if by inclusion and suppose {N„} is a totally ordered subset
of if . Then UK, is also in if (why?) so that, by Zorn's lemma, if contains a
maximal element, say N. Now N is a summand of Af'. In fact, if Af" is any
submodule of Af ', then Af" is a summand of Af'. For, if Af" is a submodule of Af ', it
is also a submodule of Af and hence, by our assumption on Af, Af" is a summand of
Af. This means we have a morphism p:Af-»Af" such that pi" = idM- where
i" :M"-»M is the inclusion. If j : Af"-» Af ' is the inclusion of Af" in Af ' and i' : Af ' -»
Af is the inclusion of Af ' in Af, we have i" = i'j. Then pi" = pi'j so that pi' : Af ' -» Af "

is a morphism such that (pi')} =idM- and thus Af" is also a summand of Af'.
In particular, then, our module N is a summand of Af ' and thus we may find a

submodule N' of Af ' such that NnN' = 0 and N + N' = Af ', that is, Af ' is gener
ated by N and N'. We claim that N' is a simple module. For, if N' contains a
nontrivial submodule N", we know that N" is a summand of N' (same argument as
above for Af '), and hence there is a submodule N'" of N' such that N"'rlN" = 0 and
N'"+N" = N'. Thus, Af' = N+N' = N + N'"+N". Now consider our element
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x E Af' especially for which our module N was found. We claim that either x£N +
N" or x£N+ AT. For, suppose xEN + N" and x eN+N'". Then x = n, + n" and
x = n2 + n'" where n,,n2EN, n"E N", and n"'£ N"\ Because n, + n" = n2 + n"', we
have n,-n2 = n'"— n". However, n,-n2£N and n'"-n"EN', and, because
NnN' = 0,we must have n,-n2 = 0= n'"-n". If n"'-n" = 0, then n"' = 0=n" be
cause N"nNm = 0. Thus, x = n, = n2 and hence x is in N which is impossible be
cause N does not contain x. Consequently, either x£N+N" or x£N+Nm and
this contradicts the maximality of N as a submodule of Af' not containing x.
Hence, N' must be a simple module.
We now use the fact that every submodule of M contains a simple module to

show that Af is semisimple. The idea is to take as large a semisimple submodule of
M as we can find and show that it is Af. We might naively start by considering the
set of all semisimple submodules of M and ordering this set by inclusion. How
ever, we would have difficulty then in showing that the union of a completely or
dered subset is semisimple. Thus, we have to be a little careful about how we
define our ordered set of submodules. Let if, be the set of simple submodules of
Af and let 2*1 be the set of subsets of if ,. An element of 2*' is then a set S = {MJ
of simple submodules of Af. We define a subset if of 2y' by saying that an element
S = {Af„} of 2*' is in if if and only if the submodule generated by the Af„, denoted
by (S), is a sum of the At, ; that is, if (S) = II Af„. Because 2y' is an ordered set (the

tt

usual ordering), the subset if is also ordered. Obviously, if is not empty because
Af contains simple modules. To apply Zorn's lemma to if , we want to show that if
{St} is a totally ordered subset of if, then S = U Sk is again in if. Because each Sk is
a set of simple submodules of Af, S = U Sk is a set of simple submodules of Af, say

S = {Af„}. What we must show is that ((S), L: Af„-»(S)) is a sum where L is the
inclusion morphism. The reader should check that, because the set {Sk} is totally
ordered, the corresponding set of modules {(Sk)} is totally ordered and (S) = U (SO.
Now suppose that we have a family of morphisms f„:M„-»N for all Af„£ S.

We want to define a morphism f:(S)-»N such that /|Af„ = /„ for all a, and show
that such a morphism / is unique. This will show that (S) = UAf„. If such an /
exists, it must be unique because the Af„ generate (S). That the Af„ generate (S)
can be seen from the fact that each (Sk) is generated by some of the Af„£ S and

(S) = U(&).
We now show that an f:(S)-»N such that /|Af„ = /„ for all a exists. For each

k let gk:(Sk)-»N be the unique morphism such that gk|Af„ = /„ for every Af„ in Sk.
Such a g* exists, because each S* = II Af„. Clearly, if S^CS*,, then g^KSk,) = gkl.

Thus, we define f:(S)-»N by /(x) = gk(x) if x £ (Sk) and, as we have seen several
times already, this defines a map / which is a morphism. Also, /|Af„ = (J\(Sk))\M„ if
Af„£Sk, and/|(Sk) = gn by definition, so/|Af„ = gk \Af„ = /„

. This shows that S is in
if and thus, by Zorn's lemma, we may assume that if contains some maximal ele
ment which we shall again denote by S = {Af„}.
We claim that (S) = Af. But suppose not. Then Af = (S)lIAf' because every

submodule of Af is a summand. Because Af' is a nonzero submodule of Af, Af'
contains a simple submodule N and, because Af ' n (S) = 0
,

we have N ("\ (S) = 0.
Hence, the submodule of Af generated by N and (S) is a sum, and thus the set
SU{N} is an element of if. This, however, contradicts the maximality of S in if
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and so we must have (S) = M. But (S), being a sum of simple modules, is
semisimple and so we have shown that M is semisimple.

Corollary 2.5
If M is a semisimple module, then so is every submodule and factor module of M.

PROOF: If M is semisimple, then every submodule of M is a summand of M.
But we have seen that if M ' is a submodule of Af, then every submodule of M' is
also a summand of M' so that, by Proposition 2.4, M' is also semisimple.
If M" is a factor module of M, we have an epimorphism f:M-»M" and we let

M' = Ker/. We thus obtain an exact sequence 0-»M'-»M-»Af"-»0 which splits
because AT, being a submodule of M, is a summand of M. But then M" is
isomorphic to a submodule of M and hence is semisimple, because we have al
ready shown that every submodule of M is semisimple.

Corollary 2.6
If R is a semisimple ring, then every R-module is semisimple.

PROOF: If R is semisimple, then every free R-module is semisimple by Basic
Property 2. 1 of semisimple modules. However, because every module is a factor
module of a free R -module (Chapter 6, Proposition 7.9), we have, by Corollary
2.5, that every module is semisimple.

Corollary 2.7
If R is a sum of copies of a fixed simple module Af0, then every R-module is the
sum of copies of M0.

PROOF: The hypothesis on R implies that R is semisimple so that every R-
module is semisimple, by Corollary 2.6. By the proof of Basic Property 2.1 of
semisimple modules, we know that every R-module contains a simple submodule
isomorphic to M0. Thus, if M is itself a simple module, it must be isomorphic to Af0
and hence every simple R-module is isomorphic to Af0. Consequently, because
every R-module is a sum of simple modules, we have that every R-module is a
sum of copies of M0.

We have therefore proved Theorem 1.7, because the only remaining step to
prove was the implication (b) implies (c), which we have just completed.
Earlier in this section we mentioned simple rings. We are now ready to

consider the following.

Example 2.8 Let D be a division ring, let V be a finite-dimensional
vector space over D, and let R = EndD( V), the ring of endomorphisms of V. We
shall show that R is a simple ring, that is, it has no ideals other than (0) and (1). We
shall show this by considering a correspondence between left ideals of R and
subvector spaces of V as follows: For each subspace W of V, let I(W) =

{/£R|/(x) = 0 for all x £ W}, and for each left ideal I of R, let W(I) =
{x £ V|/(x) = 0 for all / £ /}. The reader can easily check that I(W) is a left ideal
of R and that W(JT) is a vector subspace of V. What we will prove is that for every
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subspace W of V, we have W(I( W)) = W and that for every left ideal / of R we
have I(W(I)) = I.
To prove that W(I(W)) = W is easy. For clearly, W(I(W))Z) W for any

subspace W of V. It is equally obvious that /(W(I)) D I for any left ideal / of R.
To see that WD W(I(W)), we shall prove that if x E W, then x E W(I(W)). To
say that x E W(I(W)) means that there is some fEl(W) such that /(x)=£0. But
/(W) consists of those f:V-»V such that W C Ker /. If we produce an / : V -» V
whose kernel is precisely W, then / will be in I(W) and f(x) ± 0 if x £ W. How
ever, because V is a vector space, every subspace of V is a summand, so, in
particular, there is a subspace W such that V = W II W. The projection mor-
phism p' : V-»W has as its kernel the subspace W. The morphism f = i'p':
V -» V, where i':W'-»V is the inclusion, also has kernel W. This proves that
W(I(W)) = W. The reader should observe that the finite dimensionality of V was
not used in this argument.

To prove that /(W(I)) = I requires more power. We have already observed
that I CI(W(I)) so we must show that / D I(W(I)). Because / is a submodule of
R and R is semisimple, we know that / is a summand of R. Thus, there is an
epimorphism p:R-»l such that pi:I-»I is the identity, where i:I-»R is the
inclusion. This tells us that / is generated by c0 = p(l), because 1 generates R as
an R -module. Because p is a morphism of R -modules, we have el=e0e0 =

e0p(l) = p(c0 . 1) = p(«0) = p(i(«0)) = pi(e0) = e„.
Using this information, we are ready to look at I(W(I)). First of all, W(I) =

Ker c0. For W(I) = {xG V\f(x) = 0 for all / £ /}. But then, because e0 £ /, W(I) C
Ker c0. However, if x £ Ker c0 and / £ /, then / = /'c0 for some /' £ R, because e0
generates / as a left ideal, and /(x) = /' e0(x) = 0. Hence, if x £ Ker c0, x £ W(I)
and so we do have W(I) = Ker c0. Now let g be an element of /( W(/)). We have
W(I) C Ker g, so that Ker e0 C Ker g [do not forget that W(I) = Ker c0]. From this,
together with the fact that el = e0, we may conclude that g = ge0, that is, g(«) =

ge0(») for all v GV. Hence, (v - c0(u )) £ Ker c0 for all v. If Ker g contains Ker c0,
we then have g(v - e0(v)) = 0 for all u£ V, or g(v) = ge0(v) for all v, and so
g = gc0 which is in /.
Knowing that /(W(/)) = I and W(I(W)) = W, the map from the set J of left

ideals of R to the set °W of vector subspaces of V defined by I i-» W(I) is easily
seen to be bijective. For, if W(I,) = W(/2), we have /, = I(W(I,)) = I(W(I2)) = I2 so
that the map is injective, while, if WE W, we have W = W(I( W)) so that the map
is surjective. We now use this isomorphism between Ji and W to show that R is a
simple ring.

Suppose that / is an ideal. Then W(I) is not only a subvector space of V but
is actually an R -submodule of V. To see this we want to show that, if x £ W(I)
and gER, then g . x = g(x) is again in W(I). That is, if /(x) = 0 for all / £ /, we
want to show that /(g(x)) = 0 for all / £ /. However, /(g(x)) = (/g)(x) and, since /
is assumed to be an ideal, fg is again in /, so that fg(x) = 0. Thus, W(I) is an
R -module. Because V is a simple R -module, we must have W(I) = 0 or W(I) =

V. From the isomorphism between $ and W, we then conclude that / = R or
I = (0). Hence, the only ideals of R are (0) and R, and R is thus a simple ring.
Besides showing that R is simple, we can use this isomorphism between left

ideals and subvector spaces to establish that the intersection of all maximal left

s"
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ideals of R is zero. First of all, if W, and W2 are subspaces of V, we have
I(W,)rlI(W2)Cl(W,+ W2), where W,+ W2 is the subspace of V generated by W,
and W2. This is clear, because if /£ /( W,)n/( W2), then /(x) = 0 for all X £ W, and
/(x) = 0 for all x £ W2, so /(x) = 0 for all xEW, + W2. If W is a one-dimensional
subspace of V, then W contains no subspace other than (0), so that, by our
correspondence between W's and /'s, we know that /( W) is contained in no ideal
other than R. Hence, /(W) is a maximal left ideal of R. If {x,, . . . , x.} is a basis
for V, and W, is the subspace generated by x<, then W, + 1- VV„ = V. Thus,

/( V) = /( W, + . . . + W„) D /(W,) n . . . n /(W„). But /( V) = 0 so that /(W,) n . . .
fl /(W„) = 0. Because the intersection of the maximal left ideals /(Wl) is zero, it
follows that the intersection of all the maximal left ideals in R is zero.
As a consequence of this discussion we have the following.

Proposition 2.9
Let V be a finite-dimensional vector space over a division ring D. Then the ring
R = EndD(V) has the following properties:

(a) R is a simple ring.
(b) The intersection of the maximal left ideals of R is zero.

(c) R is left artinian and left noetherian.

PROOF: (a) and (b) have already been demonstrated.

(c) It is not difficult to see that, if /, and h are left ideals of R, then /, C /? if and
only if W(/,) D W(I2). Thus, if /, D /2 D . .. D /„ D . . . is a descending chain of left
ideals of R, then W(/,) C W(h) C . . . C W(L ) C . . . is an ascending chain of sub-
vector spaces of V. The vector space V is a noetherian D-module, because it is a
finitely generated module over the noetherian ring D. Thus, for an integer m, we
have W(Im.k)= W(L) for all /c>0. This implies that /„+k = /„ for all Ks0.
Hence, R is a left artinian ring.

The proof that R is left noetherian proceeds similarly.

3. PROJECTIVE MODULES

We have seen in our proof of Theorem 1.7 that if every module over a ring R is
a sum of copies of a simple module M0, then R is a pretty special sort of ring. Is
Af0, besides being simple, any special sort of module? We know that M0 cannot, in
general, be free, for then that would imply that R is a division ring. It turns out,
however, that Af0 does share some properties with free modules. For instance, be
cause R itself is a sum of copies of Af0, we have morphisms i.M0-»R and
p :R -» M0 such that pi = id*,. That is, M0 is a summand of a free module, namely,
R. Since every free module is a summand of a free module, namely, itself, this is a
property shared by M0 and free modules. Proposition 7. 10, Chapter 6, tells us that
if 0 »M' —'—»M ' >Af" »0 is an exact sequence of R -modules and if F is
any free R-module, then 0-»(F, M' )-»(F, Af)-»(F,M")-»0 is exact. We claim
that M0, being a summand of R, also has the property that 0-»(M0,M')-»
(M0, M)-»(M0, M")-»0 is exact. In fact, if all we knew were that M0 was
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a summand of a free R -module, not necessarily of R itself, the same would be
true.

To see this, suppose that M0 is a summand of the free module F and that we
therefore have morphisms i : M0-» F and p : F-»M0 such that pi = id*,. Given an h
in (M0, M"), we establish the exactness of the sequence (M0, M)—— -»(M0, M")

»0 by producing an element q in (M0, M) such that gq = h. To produce the
morphism q, we first consider the morphism hp :F -» M". Because F is free, there
is a morphism /i' :F-»M such that gh' = hp. Define q:M0^M by q = h't Then
gq = g(/i'i) = (g/t')i = (hp)i = h(pO = /t, and so we have the result.
This property of M0 is so important that modules having this property are

given a special name.

Definition
A module P is called projective if for every exact sequence of R -modules,

0 »M'-^M^-+M" »0, the sequence 0-»(P,M')-»(P,M)-»(P, M")-»0

is exact.

Basic Properties 3.1

(a) A module is projective if and only if it is a summand of a free module.
(b) A module P is projective if and only if every exact sequence 0-»M' -» M-» P-»

0 of P-modules splits.

(c) A sum of modules is projective if and only if each summand is projective.

PROOF: (a) We have already seen that if P is a summand of a free module,
then P is projective. We know there is an epimorphism F—^P where F is a free
module. If P is projective, the sequence (P, F)-»(P, P)-»0 is exact, so, in
particular, there is a morphism h : P-» F such that gh = idP. Thus, Pisa summand
of the free module F.

(b) If P is projective and 0-»M'-»M-»P-»0 is exact, then so is 0-»(P, M')-»
(P, M)--»(P, P)-»0. Thus, there is a morphism h:P-»M such that the composi
tion P -» M -» P is idp and hence the original sequence splits. Conversely, if every
exact sequence 0-»M'-»M-»P-»0 splits, then in particular the sequence

0 »M' »F—!-*P »0 splits, where g : F-»P is a surjective morphism of a

free module F onto P and M' = Ker(F—-1-»P). Therefore, P is a direct summand
of F and, by (a), is projective.
(c) Let {P, i„:P,-»P} be a sum of the modules P„ and let p„:P-»P„ be the

corresponding projections. If P is a projective, then clearly each P„ is projective.
One may use the same proof that was used in showing that a summand of a free
module is projective. If we now assume that each P„ is projective, we show that

P is projective as follows. Let 0 »M' »M—!—»P »0 be exact. Because

each P„ is projective, there is a morphism h
,
: P„ -»M such that gh, = i„ for each

o. Thus, there is a unique morphism h : P -»M such that hi„ = /i„ for each a. To
show that h is a splitting for g, that is, gh = idP, we need only show that (g/i)i„ = i„

for each a. But (g/i)i„ = g(hi„) = g/u = i„ and we are done.

Having these basic properties of projective modules at our disposal, we can
get a slight refinement of Theorem 1.7.
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Theorem 3.2
Let R be a ring. Then the following statements are equivalent:

(a) R is the endomorphism ring of a finite-dimensional vector space over a
division ring.

(b) R is the sum of copies of a simple module M0.

(c) Every R-module is the sum of copies of a projective R-module P0.

(d) Every R-module is the sum of copies of a simple R-module Af0.

PROOF: Because we have already shown that (a) implies (b) and (d) implies

(a), we need only show that (b) implies (c) and (c) implies (d). We have already
seen that Af0 is projective if R is the sum of copies of Af0. Because (b) implies that
every R -module is the sum of copies of M0 (Theorem 1.7), every R-module is the
sum of copies of a projective module P0 = M0. Hence, (b) implies (c). In order to
prove that (c) implies (d), we first prove Proposition 3.3.

Proposition 3.3
Let R be a ring. Then every R-module is projective if and only if every R- module
is semisimple.

PROOF: If every R-module is projective, then every exact sequence 0-»
M'—»Af-»Af"-»0 splits. Thus, if Af is any R-module and M' is a submodule of M,
then M' is a summand of M, so that M is semisimple. Conversely, if every R-
module is semisimple, let P be an R-module and we shall show that P is
projective. Consider the exact sequence 0-»M'-»F-»P-»0, where F is a free
R-module. Because M' is a submodule of F and F is semisimple, the exact se
quence splits. Hence, P is a summand of the free module F and thus is projective.
Getting back to our proof that (c) implies (d), suppose we know that every

R-module is a sum of copies of a projective module P0. Then, by Basic Property
3.1 of projective modules, we have that every module is projective and hence, by
Proposition 3.3, every module is semisimple. Thus, every module is a sum of
simple modules. But, if Af0 is a simple module, Af0 = P0, because M0, being a sum
of copies of P0, must contain a submodule isomorphic to P0. Because M0 is simple,
M0 is equal to this submodule so that M0 and P0 are isomorphic. Thus, (c) implies
(d), and the proof of Theorem 3.2 is complete.

Condition (c) of Theorem 3.2 gives another description of endomorphism
rings of vector spaces, which is very closely analogous to the description of
division rings. Namely, for division rings, every module is the sum of copies of the
fixed free module R, while for endomorphism rings of vector spaces every module
is the sum of copies of a fixed projective module P0.
We now turn to question (2) asked at the beginning of this chapter; namely,

what rings have the property that all modules are sums of simple modules? In
view of our results, this is the same as asking what rings R have the property that
all R -modules are semisimple? From Proposition 3.3 we know that such rings are
precisely those for which all modules are projective. But this still does not tell us
much about the explicit structure of the ring itself. We shall devote the rest of this
section to proving the following theorem.



Projective Modules 279

Theorem 3.4
Let R be a ring. Then the following statements are equivalent:

(a) R is the product of a finite number of endomorphism rings of finite-
dimensional vector spaces over division rings.

(b) R is semisimple.
(c) Every R-module is projective.

(d) Every R-module is semisimple.

PROOF: (a) implies (b). Let D,,...,D, be division rings, not necessarily dis
tinct, and let V,, . . . , V, be finite-dimensional vector spaces over D,, . . . , D„ re
spectively. Let R, be the endomorphism ring of V, over D, for i= 1, .... s and let
R = R, x . . . x R„ We show that R is the sum of simple R -modules.
Recall that R is a ring in which addition and multiplication are defined

component-wise, that is, (r r,) + (r\, . . . ,r',) = (r, + r\,. . . ,r, + r',) and
(r,, . . . , r,)(r',, . . . ,r',) = (r,r\, . . ., rar',). The map p, : R -»R. defined by

(r,, . . . ,r,)-»ii is a ring surjection. Because we have already seen that VI is a
simple R, -module, VI becomes an R -module via the morphism pi, and, because p*
is surjective, V, is a simple R -module. We also know that if V, is a vector space of
dimension n, over D„ then R, is a sum of n, copies of V, as an R, -module. Now,
because R is a sum of R, as R -modules, and because each R, is a sum of copies of
V, as R, ,-modules and hence also as R -modules, it follows that R is the sum of
copies of the V, and thus R is the sum of simple modules. This shows that (a)
implies (b).

Before showing that (b) implies (a) we observe that, even though we have not
assumed that all the Dl are distinct, nor that all the V, are distinct, VI and Vl are
not isomorphic as R -modules if i =f

=
/. In fact, if / : V, -» V) is an R -morphism, then

for all v, £ V, we have /(«,) = /(l,ci) where 1
, = (0, 0
,

1,0 0
) with 1 in the

ith spot, and /(l,»i) = \{f{v,) = 0 because f(v,) £ Vi and 1,Di = 0 for all u, £ V
, if

it).
The proof that (b) implies (a) is based on the following generalization of

Proposition 1.5.

Proposition 3.5
Suppose E is an R-module. Let A = End«(E), ft = EndA(E), and -y':R-»ft, the
canonical morphism. Let M,, . . . ,M, be left R -modules such that E =
M" ' II . . . IIM",- and such that (Ml, M, ) = 0 for i ± j. In addition, let Ai = EndR (M, )

and CI, = EndAi(Mi), and let yi:R-»ili be the corresponding morphisms. Finally,
let y : R -»ft, x . . . x ft, be the obvious morphism. If y' is injective, then so is y. If

y
'
is surjective, then so is y.

PROOF: We shall only sketch the proof because the details are pretty much as
they were in the proof of Proposition 1.5. If at, E ft, are given for i = 1 s, we

define u>"' : M?'-» M"' by air<mM, .... m,n,) = (to,(m„), . . . , ci>,(m,„,)). We then define
ai" :E-»E by o)"(«,, . . . , e.) = (a>"'{e,), . . . ,a>"-(e,)) where e
i £ Af "'. Using the fact

that (M, M,) = 0 for i ± j and hence that (Afp, M"1) = 0 for i =f
=
j, we prove that to"

is a A-endomorphism of E; that is, <o" £ ft. To do this, we first use the fact that

A = (E, E) = ( UM ,"
., U M,"<) = II(M T;M ,"
,) = U(Af ?
,

M?) [because (Ml; M?) = 0
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for i =f
= j] and then the fact, as in Proposition 1.5, that an element of (M|\ M"1) is a

collection of morohisms Ai=(A,„B) where A^ : Ml— »M is in A,. Thus, if

(e,,...,e,) is in E and A:E-»Ii, then A =(A,, . . . , A,), where Ai=(A,v^) and
A(e , e,) = (A,(e,), . . . , A,(e,)). The operation of (A^) on «

, is then the same as

in 1.5. With this setup, the proof now proceeds as did the proof of 1.5.
To show that (b) implies (a) we assume that R is semisimple. Then R =

M,"• II- . . II M",- where each M is a simple R-module and Mi is not isomorphic to Ml

if i=£/. Because the M, are nonisomorphic simple modules, (M, M,) = 0 for i±j.
Letting E = R in Proposition 3.5, we see that the ring morphism y.R -»llft, is an
isomorphism where each iI, = EndA,(M) and each A, is the division ring EndR(M).
Since each M is a finite-dimensional vector space over Al (Proposition 1.4), we
have that (b) implies (a).
The remaining equivalences of Theorem 3.4 have already been established, so

the proof of the theorem is complete.

Corollary 3.6
Every semisimple ring is a left artinian ring and left noetherian ring.

1i

PROOF: Let R be a semisimple ring. Then R = II M, where each M, is a simple

R- module. Obviously, every simple module over any ring is artinian as well as

noetherian. Hence, II M is artinian (noetherian), because a finite sum of artinianl-,

(noetherian) modules is artinian (noetherian). Therefore, R is both a left artinian
and a left noetherian ring.

4. THE OPPOSITE RING

Associated with every ring R is the ring R", called the opposite ring. The underly
ing set of R° is the same as that of R. The addition in R° is also the same as that of
R. It is only in the multiplication that they differ. For r, and r2 in R° we define the
product r,r2 to be the element r2rl in R. In short, the multiplication in R" is opposite
to that in R. The reader is invited to check that R" is a ring. Obviously, R" = R if

and only if R is a commutative ring. It is equally obvious that (R"f = R.

Definition
An R°-module M is called a right R-module. A morphism / of R°-modules is

called a morphism of right Jt-modules.

Suppose M is a right R-module. Since M is an R°-module, we know that for
each m in M and n, r2 in R° we have r,(r3m) = (r2r,)m. If we write mr for mt, then
the formula r,(r2m) = (r2r,)m becomes (mr2)r, = m(r2r,). Because this latter for
mula is easier to handle, we always write the operation of the elements of R on the
right when dealing with right R-modules. In fact, this is the reason for this
terminology.

In the light of this discussion we see that a right R-module M is the same
thing as an abelian group M together with a map MxR-»M which we denote by
(m, r) t-» mr satisfying:
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(a) (mr,)r2 = m(r,r2).

(b) (m, + m2)r = m,r+m2r.

(c) m(r, + r2) = mr, + mr2.
(d) m 1 = m.

In this notation we see that a morphism f:M-»N of right R-modules is the
same thing as a morphism of abelian groups satisfying f(mr) = f{m)r.
In view of these remarks, the reader should have no difficulty expressing our

results for modules for right modules. In particular, the ring R can be viewed as a
right R-module. Moreover, the right submodules of R are precisely what we
called, in Chapters S and 6, the right ideals of R.
Linguistic symmetry suggests that because we have right modules we should

also have something called left modules, as we do for left and right ideals. How
ever, the reader will immediately see, if he writes down the obvious axioms for a
left module, that they are the same as the axioms already given for a module. In
fact, most authors refer to modules as left modules, as we may also do occasion
ally for the sake of clarity.
We have defined a ring R to be semisimple if it is semisimple as a left module.

We did not say that R is left semisimple because, as we shall presently show, a
ring R is semisimple if and only if R" is also semisimple.
In dealing with this question we have to introduce a little more terminology.

Definitions
Let R and S be rings. A map /: R-»S is called an antimorphism if it is a morphism
of abelian groups satisfying f(r,r2) = f(n)f(n) and /(1)= 1.
An antimorphism f:R-»S is called an anti-isomorphism if it is a bijective

map.

Basic Properties 4.1
Let R be a ring.

(a) The identity map of sets idR : R -» R" is an anti-isomorphism.

(b) The composition of two antimorphisms of rings is a ring morphism.

(c) A ring S is anti-isomorphic to R if it is isomorphic to R".
(d) If / :R -» S is an antimorphism, then the subgroup Ker / of R is an ideal of R.
We say that any ring anti-isomorphic to R is an opposite ring of R.
Now, the left (right) module theory of a ring R is identical to the right (left)

module theory of an opposite ring of R. For, if f:R-»S is an anti-isomorphism
with inverse g:S-»R, and if M is any left (right) R-module, then M becomes a
right (left) S-module by setting ms = g(s)m(sm = mg(s)) for all j£S and all
m £ M. If M is a simple left R-module, then M is a simple right S-module, and
conversely. Also, if R is the sum of copies of a simple left R-module Af (or if R is
left semisimple), then S is clearly the sum of copies of the right S-module M (or S
is right semisimple), and conversely. Every left R-module is R-projective if and
only if every right S-module is projective, etc.
Suppose that a ring R is the sum of copies of one simple right R-module. De

noting by R" its opposite ring, we know that R" is the sum of copies of a simple left
R0-module. Hence, we know that R° is the endomorphism ring of a finite
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dimensional vector space over a division ring D. But what about R? If we could
show that R, too, is the endomorphism ring of a (left or right) vector space over a
division ring, that would imply that R is a sum of copies of a simple left R-module.
Hence, R would be left semisimple as well as right semisimple and, in fact, this
would imply that every left semisimple ring is also right semisimple, and con
versely. This is so because every left semisimple ring is the product of a finite
number of endomorphism rings of vector spaces over division rings. Because the
opposite of a product of rings is the product of the opposite rings, we would have
the implications

R left semisimple =£> R0 right semisimple => R ° left semisimple
=$,R right semisimple

On the other hand, we would have

R right semisimple =>R" left semisimple
=>R° right semisimple (by the above)
=>R is left semisimple

AH this distinction between left and right semisimplicity will therefore disap
pear if we prove the following.

Proposition 4.2
Let R be the endomorphism ring of a finite-dimensional left vector space V over a
division ring D. Let V* be the group of D-morphisms of V into D. Then V* can be
considered a right vector space over D in such a way that R" is isomorphic to the
endomorphism ring of V* over D. Hence, R" is also left semisimple.

PROOF: We make V* into a right D-module by setting v*d to be the mor-
phism of V into D defined by v*d(x) = v*(dx) for all x £ V. The reader may
check that V* is a right D-module under this operation. If V is n -dimensional
with basis {x,, . . . , x„ }, define x * £ V* by x ?(x,) = S

,7 (the Kronecker delta, that is,

S
,, = 0 if i =£ j and 6
„ =

1). It can be easily verified that {x*, . . . , x?} is a basis for
V* over D, and thus V* too is an n -dimensional right vector space over D. Let

S = EndD( V*). Because D is a division ring, its opposite ring D° is also a division
ring and V* is a left n -dimensional vector space over D°. Obviously, EndD( V*) =

EndD°(V*) so that S is the endomorphism ring of a finite-dimensional left vector
space over a division ring and is therefore left semisimple. Define the map h : R -»

S as follows: If fER (that is, /: V-» V) and u*S V*, h(f) is that element of S

which takes the element v* to v*f £ V*. Thus, h(f)(v*) = v*f. The map h is a

group morphism which carries 1 into 1
. Further, we have that h(/,/2)(f*) =

v*f,f2 = (v*f,)f2 = h(f2)(v*fd = h(Mh(fMv*)) = (hV2)hVi))(v*) for all t1*£
V* so that h(f,f2) = /i(/2)/i(/,). Hence, h :R -»S is an antimorphism. Being an
antimorphism, the kernel of h is a two-sided ideal of R. However, we know that R

is a simple ring, so that Ker h is either (0) or R. Because /i(l) = 1 ± 0
, Ker h ± R

so Ker h = (0), from which it follows that h is injective. If we can show that h is

surjective, we will have shown that h is an anti-isomorphism and that S "R".
Therefore, we must try to prove that h is surjective.
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Let g : V*-» V* be an element of S. We want to show that there is an /: V-» V
such that g(t1*) = v*f for all v* £ V*. Letting {x,, . . . , x„} be a basis for V, we have
the corrresponding basis {xT, . . . , XJ} of V* as described at the beginning of our
proof. It then suffices to find /: V-» V such that g(xf ) = xf/ for i = 1, . . . , n be
cause from this it follows that g(v*) = v*f for all v* £ V*. Suppose that g(xf )(x,) =

c„ and define / : V -» V by /(x, ) = 2k o*,xk. Then (x T/)(X, ) = x f (/(x, )) = x T(2* c^ ) =
c«
= g(xf )(x,) for each i and j so that g(xf ) = xf/ for all i, and h is therefore surjec-
tive. Hence, S^R" which completes the proof of the proposition, because S =

EndD(V*).

As any easy consequence of the fact that left semisimplicity implies right
semisimplicity, we have the following.

Proposition 4.3
Every semisimple ring is left and right artinian as well as left and right noetherian.

EXERCISES

(1) Let R be a ring and M an R-module. We call the R -module M a generator if for
every nonzero R -morphism /: X-» Y, the morphism HomR(M, /) :HomR(M, X)-»
HomR(M, Y) is not zero.

(a) Prove that if M is any R -module, then MUR is a generator.
(b) If X is an R-module, let / be the set of all R-morphisms from M to X. For
each iel, let Af, be the module Af and define the morphism e: II M -»X by

IEI

the property that e(m,)=i(wi,) for every m,£M. Prove that if M is a
generator, then e is an epimorphism. [Hint: Let X' = Im e and show that the
canonical surjective morphism X-»XIX' must be zero.]

(c) Prove that the R -module M is a generator if and only if for every R -module X
there is a set / and an epimorphism II M -» X where Afi = M for each i £ /.

(d) Prove that the R -module Af is a generator if and only if there is an epimor
phism M"-»R for some positive integer n, where Af" denotes the sum of
n copies of Af.

(e) Consequently, prove that Af is a generator if and only if Af" = Af' IIR for
some R -module Af' and some positive integer n.

(2) Let R be a ring and Af an R -module. Recall that Af is a balanced R-module if
the canonical morphism k:R-»il is an isomorphism where il = EndA(Af) and
A = End„(Af).
(a) Prove that if Af is any R-module, then Mil R is balanced.
(b) Use (a) to prove that if the R-module M is a generator, then M is balanced.
(c) Prove that every left ideal in a simple ring R is balanced.
(3) Let R,, ... , R„ be rings and let R = R, x . . . x R„.
(a) Prove that C(R) = C(R,) x .. . x C(R„) where C(R) and C(R) denote the
centers of the rings R and R,.

(b) Let k be a field and let <t
i
: k-»R be a non trivial ring morphism such that Im <
j>

is contained in C(R). If ir,:R-»R, denotes the projection morphism, prove
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that tt,<ji : fc-»R, is a nontrivial ring morphism and that Im -rrd is contained in
C(R,) for i = l,..., n.

(c) Using the same notation as in (b), suppose that R, considered as a vector space
over k via the morphism <

ti
,

is a finite-dimensional vector space over k. Prove

that each ring R, is a finite-dimensional vector space over k via the morphism

(d) Prove that the center of a simple ring is always a field.

(e) If R, = EndD,(Vr) where D, is a division ring and V
l is a finite-dimensional

vector space over D„ prove that C(R) = C(D,).

H

(f) Let R be a semisimple ring and suppose that R = II EndoX V,) where D, arel-,

division rings and V
* are finite-dimensional vector spaces over A. If R is a

finite-dimensional vector space over a field fc contained in C(R), prove that D*

is also a finite-dimensional vector space over k and that k is contained in
C(D,). [Really we should say that the projection TT,:R-»EnduXV,) maps k

monomorphically into the center of D,.]
(g) Prove that if R is a commutative semisimple ring, then R is isomorphic to a

finite direct product of fields.

(4) Let D be a division ring, k a field contained in C(D), and suppose that D is a

finite-dimensional vector space over k. Suppose that every polynomial f(X) in

k[X] has a root in k. Prove that D = k. [Hint: If D is an n -dimensional vector
space over Jlc

,

and a is any element of D, then the elements 1
, a, . . . , a* are linearly

dependent over k. We therefore have elements c0, . . . , c„ £ fc such that 2,".0 cia' = 0

and not all c, = 0. Let /(X) = 2 oX'. Then /(X) is a polynomial in fc[X] and thus
has the root, u.inK where K is the subring of D generated by k and the element
a. Let g(X)£/c[X] be a polynomial of lowest possible degree which has a as a

root. Then g(X) also has a root b in /c. Prove that a = b and thus a £ k.]
(5) Let G be a finite group and R a commutative ring. If M and N are modules
over the group ring R(G) (see Exercise 1 of Chapter 4 for the definition of group
ring and monoid ring) and if f:M-»N is an R-module morphism, define the map
f:M-»N by /(m) = 2,eox 'f(xm) for all m in M.
(a) Prove that f:M-»N is an R(G)-morphism.
(b) Prove that if rER, then r/ :M -» N defined by (Jf)(m) = (/(m)) for all m in
Af is an R(G)-morphism.

(6) Let G be a finite group of order n and let K be a field whose characteristic does
not divide n. We will denote the element n . 1 in K by n, and its inverse in K by
1/n. Let g :M-»N be a K(G)-morphism and let /: N-»M be a K-morphism such
that gf = idN.
(a) Prove that the composition g((1/n)/) = idN.
(b) From (a) deduce that K(G) is a semisimple ring. [Hint: Prove that every
K(G)-epimorphism g:M-»N is splittable.

This latter fact is known as Maschke's theorem, that is, if G is a finite group
and K is a field whose characteristic does not divide the order of G, then K(G) is

semisimple.]

(7) (a) Let G be a finite group and let C(G) be the group ring of G over the
complex numbers. Prove that C(G) is isomorphic to the direct product of a finite
number of matrix rings over the complex numbers. [Hint : Notice that C C C(C(G))
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and that C(G) is a finite-dimensional vector space over C. Then use Exercises 3, 4,
and 7.]

(b) Prove that there are only finitely many nonisomorphic simple C(G)-modules
V,, . . . , V, and that each Vl is a finite-dimensional vector space over C.

(c) Prove that the center of C(G) is isomorphic to the product of t copies of C
where r is the number of nonisomorphic simple C(G)-modules. Hence, the
number of nonisomorphic simple C(G)-modules is equal to the dimension of
the center of C(G) as a vector space over C.

(d) Assume, further, that G is an abelian group, so that C(G) is a commutative
ring. Prove that C(G) has only a finite number of nonisomorphic simple mod
ules and that these are all one-dimensional vector spaces over C. Prove that
the number of nonisomorphic simple modules is equal to the order of the
abelian group G.

In the language of group representations, this last fact is stated as follows: All
the irreducible complex representations of an abelian group are one-dimensional.

(8) (a) Let G be a finite group and R a commutative ring. Prove that an element
2»eg f,g of -R(G) is in the center of R(G) if and only if rg = r, whenever g and g'
are conjugate elements of G. (Recall that two elements g and g' of a group G are
said to be conjugate if there is an element h in G such that g' = hgh"'. Conjugacy
is an equivalence relation on the set G.)
(b) Let G be a finite group. Prove that the center of C(G) is a d-dimensional vec
tor space over C where d is the number of conjugacy classes of G.

(c) Hence, prove that the number of nonisomorphic simple C(G)-modules is
equal to the number of conjugacy classes of G.

(9) (a) Let R be a ring and M an R -module. Suppose that the sequences
0-»K,— ^P.-^UAf -»0 and 0-»K2— ^P2-^-»M-»0 are exact and that P, and
P2 are projective R-modules. Prove that P,UK2 and P2IIK1 are isomorphic.
[Hint: Use the "pull-back" of

P2

P.^*M

(b) Show that the isomorphism 0:P,UK2-»P2IIK, can be so chosen that the
morphism u:Pl-»P2 defined as the composition P, —'-+P,UK2— *-»
P2UK,—E-»P2 has the property that g2u = g, where i is the injection of P, into
P,UK2 and p is the projection of P2UKl onto P2.

(10) Let R be a ring and let M and N be R-modules. If 0--N-^-»Xl-^M-»0
and 0-»N »X2 —2-»M-»0 are exact sequences, we say they are equivalent if
there is an R-morphism h :X,-»X2 such that the diagram

0 »N-^»X, -i-»M »0

0 »N-^X2-^M »0

commutes.
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(a) Prove that if the morphism h exists, it is an isomorphism.
(b) Prove that the equivalence we have just defined is reflexive, symmetric, and

transitive.

(c) Let 0-»K— ^-»P—^M-»»0 be an exact sequence, with P a projective R-
module. Prove that if 0-»N—!—»X— i-»M -»0 is an exact sequence, then there
are R-morphisms /i:P-»X and h':K-»N such that the diagram

0 »K-^P-^M »0

-I 'I
0 »N-UX-5-»M »0

commutes.

(d) Using the notation of part (c), let 0-»N-L-»Y-!i-»M-»0 be the exact se
quence obtained from 0-»K— ^-»P —^-»Af -»0 and the morphism h' as in
Chapter 6, Exercise 28. Prove that the exact sequences 0-»N— '—»X—^M -»
0 and 0 -» N ——»Y——»M -» 0 are equivalent. Hence, show that the cardinality
of the set of equivalence classes of exact sequences of the form 0-»

N—'-+X— L+M-»0 cannot exceed the cardinality of HomR(K, N).
(11) We retain the notation and terminology of the preceding exercise and let
Exti(Af, N) denote the set of equivalence classes of exact sequences of the form:
0-»N-!-»X-JL->-M-»0.
(a) Define a morphism <£:HomR(K, N)-»ExtR(Af, N) as follows. For each R-
morphism h':K-»N, let 0-»N— '—»Y— t-+M-»0 be the exact sequence ob
tained from the exact sequence 0-»K— ^-»P— 2-»M-»0 and the R-morphism
h':K^N. Let <f>(h') be equal to the equivalence class in Ext)KM, N) of the
exact sequence 0-»N—'—»Y— L^M-»0. Prove that <t

i

is a surjective map.

(b) Prove that if h\:K-»N and hi:K-»N are two R-morphisms from K to N,
then <fi(h\) = <ti(h'2) if and only if h

i = h
'2 + ta for some R-morphism t : P-» N.

(c) Prove that there is a unique group structure on ExtR(M, N) such that the map

<
ft : HomR(K, N)-»Exti(M, N) is a morphism of groups and that the sequence

of abelian groups

HomR (P, N)
"""""•. Nl

»HomR (K, N) » Ext^M, N) »0

is exact.

(d) Let 0-»K'— *-»P' —2—»Af-»0 be an exact sequence with P' a projective R-
module. Let <£' :HomR(K', N)-»ExtR(M, N) be the map analogous to the map

<
ti defined in part (a). Prove that <ti' is a morphism of abelian groups where the

group structure on ExtR(M, N) is the one defined using the map <t
i

in part (c).

[Hint: Use Exercise 9.]
(e) Let E, and E2 be elements of ExtR(Af, N) represented by the exact sequences
0-»N-^X,-^M-»0 and 0-»N-^-»X2-^-»M-»0, respectively.
(i) Prove that the sequence

0 »NUN^X.UX^MUM »0 (*)

is exact.

(ii) Let A : M -» M II M be the morphism defined bym,-»(m,m) for all m in
M, and let V : N II N -» N be the morphism defined by (n,, n2) ►* n, + n2
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The exact sequence (*) together with the morphism A :M -» M IIM gives
rise to the exact sequence

0 »NUN-L*Y-L-»M »0 (**)

and the exact sequence (**) together with the morphism V:NUN-»N
gives rise to an exact sequence

0 »N-UZ-^M »0 (E)

Define E, + E2 to be the equivalence class of the exact sequence (E) in
Ext|((M, N). Prove that E, + E2 is the sum of E, and E2 in the group struc
ture of Exti(Af, N) which we defined in part (c) using the map <

ti
.

(12) (a) Let u :Ml-»M2 be a morphism of R-modules and let N be any R-module.
Consider exact sequences

0 »K,-^P,-^M, »0
and .

0 »K2-^P2—^M2 »0

with P, and P2 projective R -modules. Prove that there exist R-morphisms h:P,-»

P2 and h':K,-»K2 such that f}2h = p
,

and hal — a2h'. Using the morphisms
<£,:Hom„(JiC,,N)^ExtUM„N) and <fc : HomR (K2, N)-»Ext'R(M2, N) together
with the morphisms h and h', define a morphism E*(u):Ext'„(M2, N)-»
ExtUM„N).
(b) Let E be an element of Extr(M2, N) represented by the exact sequence

0 »N-UX-^M2 »0 (*)

Let 0-»N——»Y——»M,-»0 be the exact sequence obtained from (*) and the
morphism u :M , -» M2 of part (a). Prove that the equivalence class of the exact
sequence 0-»N ' »Y——»Ml-»0 in Exti(M,,N) is independent of the
choice of the representative exact sequence (*) for E. Define the map
ExtUu,N):ExtUM2, N) -» Exti(M„ N) by sending the element E in
Ext«(M2,N) to the equivalence class of 0-»N-!—»Y-!-»Ml-»0 in
Exti(M,, N). Prove that Extj!(.it, N) is a morphism of abelian groups.

(c) Using the notation of the preceding two parts, prove that the morphisms

E*(u) and Exti(u, N) are the same.
(d) Let v :N, -» N2 be an R -morphism and M an R -module. Carry out similar pro
cedures for defining morphisms E.(v) and ExtUM, v) from ExtUM, N,) to
ExtUM, N2), and show that they yield the same morphism.

(e) Finally, show that Exti(M, N) is an additive functor.
(13) Let 0-»M'-*-»M-^-»M"-»0 and 0-»N'-±-»N-*:-»N"-»0 be exact se

quences of R -modules.
(a) Let 0-»K—AP —^-»M-»0 be an exact sequence, with P a projective R-
module. Define a map 8 :HomK(M, N") -» ExtUM, N') as follows: First show
that if s is in HomR(M, N"), we obtain a commutative diagram

0 »K -=-»P-2-»M »0

•
I I- I"

0 »M' -AM -AM" »0
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The morphism h' in HomR(K, M') goes, via the appropriate morphism

<
fi :HomR(K,M')-»Extl,(M,M'), to <Hh'). Show that <M/i') depends only on

the morphism s and define 8(s) - <f>(h'). Prove that 5 is a morphism of abelian
groups and that the sequence

0 »HomK(Af, N') »HomR(Af, N) »HomR(Af, N")—^ExtUM, N')

»Exti(M, N) »ExtUM, N")

is exact.

(b) Define a map 8 :HomR(Af,N")-»Exti(M,N') as follows: Let s be an R-
morphism from Af to N". Then the exact sequence 0-»N'-»N-»N"-»0 to
gether with the morphism s yields an exact sequence 0-»N'-»X-»M-»0.
Define 5 (s) to be the equivalence class of 0-» N' -» X -» M -»0 in Ext^M, N').
Prove that 5 is a morphism and is, in fact, the morphism described in part (a).

(c) Carry out similar discussions to define morphisms d and d from
HomR(M',N) to Exti(M ", N). Show that these morphisms are equal and
prove that the sequence

0 »HomR(M", N) »HonMAf, N) »Hom„(M', N)
—?-»ExtUM", N) »Ext'R(M, N) »Extii(M', N)

is exact.

(14) (a) Prove that an R -module P is projective if and only if ExtUP, N) = 0 for
all R -modules N.
(b) Prove that R is a semisimple ring if and only if ExtUM, N) = 0 for all

R -modules Af and N.
(c) Let R be the ring of integers, Z. What is Exti(Z/(m),Z/(n))?



Chapter8ARTINIAN
RINGS

In the last chapter we described semisimple rings by means of their module
theory. It is our aim in this chapter to give an ideal theoretic description of
semisimple rings.

Our starting point is the observation made in Chapter 7, Proposition 4.3 that
all semisimple rings are left and right artinian. This naturally suggests the ques
tion: Which left and right artinian rings are semisimple? In answering this question
many classical notions, such as the radical of a ring, idempotents, etc., are intro
duced and discussed.

1. IDEMPOTENTS IN LEFT ARTINIAN RINGS

We begin by giving an ideal theoretic characterization of when a ring is isomor
phic to the endomorphism ring of a finite-dimensional vector space over a division
algebra.

Theorem 1.1
A ring R is the endomorphism ring of a finite-dimensional vector space over a
division ring if and only if it is a simple left (or right) artinian ring.

PROOF: Having already proved half of this theorem (see Chapter 7, Proposi
tion 2.9), we shall prove only that if R is left artinian and simple, then R is what we
have claimed it to be. (If R is right artinian and simple, then R" is left artinian and

289
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simple, etc.) Because R is left artinian, we know that the set of nonzero left ideals

of R contains a minimal element, say /0. Obviously, /0 is a simple R-module. If our
theorem is true, then all simple R-modules should be isomorphic to /0 and R

should be a sum of copies of /0. We now proceed to prove this.

Suppose that R is not the sum of a finite number of copies of /0. Consider the

set {J} of all nonzero left ideals of R which are not the sum of a finite number of
copies of /0. Because R is in this set, the set is nonempty. Therefore, there is a
minimal element, say J0, in the set. We want to show that J0 contains /0 (or an
isomorphic copy of /0) as a summand. For then we would have J0 = /0 II J, where
J, is a nonzero submodule of J0 unless J0°= h- Because J0E{J}, J0 cannot be
isomorphic to /0, so J, =£(0). If J, £ {J}, then J, is itself a sum of copies of /0, so
that because J0 = /0 II J,, we would have J0 € {J}, which is a contradiction. Thus,
J,E{J) and J,C J0, contradicting the minimality of J0£{J}. This contradiction
shows that R is a sum of copies of /0 and thus we would be done.
We now show that /0 is contained in J0. To do this, let I, and /2 be any two

nonzero left ideals. Because R is a simple ring and /2 =£0, the ideal generated by /2
in R is all of R. Thus, we can find elements bu. .. , b, £ h and r,, . . . , r, £ R such
that 1 -Ibr,. Then for every a El, we have a = a . 1 = a^br, = 2(ab,)ri and
ab, £ /2 for all i. Because I, =£(0), there is an a in /, which is not zero. Hence,
ab, ± 0 for some i. Thus, there are elements a, £ I, and a2 E /2 with a,a2 =£0. In
particular, then, we can find an element a, £ /0 and an element a2EJ0 such that
a,a2±0. Define the morphism f:I0^JB by /(x) = xa2£J0. Because /(a,) =
a,a2=£0, Ker/=£ 70. Thus, because /0 is simple, Ker/ = 0 and / is a monomor-
phism. The image of / is then a left ideal isomorphic to /0 contained in J0, and we
may assume that this ideal is actually equal to /0. This shows that J0 contains a
copy of /0.
Next we show that /0 is a summand of J0. We can do this if we show that /0 is a

summand of R. By what has already been said, we know that we can find elements
a,,a2E I0 such that a,a2 =£0. Because /0 is simple, the left ideal /J consisting of all
elements of the form aa2 with a running through all elements of /0 must be /0 itself

or (0). Since a,a2 =£0, we have /0 = /0- In particular, a2 = aa2 for some a £ /0, and
therefore aa2 = a'a2 or (a - a2)a2 = 0. We claim that a = a2. For, if not, then
a — a2 ± 0 and, because /0 is simple and a — a2 is in /0, we have that a — a2 gener

ates /0. Then a, = r(a-a2) for some r£ R and hence a,a2 = r(a - a2)a2 = 0,
which is a contradiction. Thus, a = a2 and, because a ± 0, /0 is generated by a. Let

p : R -» /0 be defined by p (r ) = ra. If i : /0 -» R is the inclusion morphism, then for
each x £ /0 we have pi(x) — x because x = ra for some r ER and thus pi (X ) =
pi(ra) = p(ra) = ra2 = ra = x. Hence, pi = idfo which shows that /0 is a summand
of R. This implies that /0 is a summand of any left ideal of R in which it is
contained. In particular, /0 is a summand of J0 and our previous discussion then
tells us that R is a sum of copies of /0. Applying Theorem 1.7, Chapter 7, we now
know that R is the endomorphism ring of a finite-dimensional vector space over a
division ring.

Before isolating and generalizing some of the crucial arguments in this proof
to obtain results about semisimple rings in general, let us look at an example of a
ring which is simple but not artinian and hence not semisimple.
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Example 1.2 Let D be a division ring and V an infinite-dimensional vector
space over D with a denumerable basis Z, that is, card(Z) = card(N). We shall use
the fact, stated in an exercise in Chapter 6, that a nonfinite-dimensional subspace

of a vector space with a denumerable basis also has a denumerable basis. Denote
by R the endomorphism ring EndD( V) of V over D. Let / be the set of elements
fER such that Im/ is a finite-dimensional subspace of V. Then the reader can
verify easily that / is a two-sided ideal of R. Because the identity of R is not in /,
and because / is clearly not zero, we see that R is not a simple ring. We now show
that RII is a simple ring.
Let / be an element of RII, and let_/£R be such that k(J) = f where
k:R-»RII is the canonical morphism. If /=£0, then f£I so that Im/ is not
finite-dimensional. Therefore, because Im / is a subspace of V, the dimension of
Im/ is also denumerable. Let X' be a basis for Ker/ and let X be a linearly
independent subset of V such that X' fl X = 0 and X' U X is a basis for V. Then
f(x) is a basis for Im / and, because / restricted to the subspace generated by X is
injective, we see that X is denumerable. Let X, and X2 be denumerable subsets of
X such that X = X, U X2 and X, n X2 = 0. If X' is finite, choose X, to have the same
number of elements as X'. Let h':X'-»X, be a bijective map and h:X-»X2 a
bijective map. Define h : V-» V to be the morphism corresponding to the map
X' UX-» V which sends an element x' E X' to h'(x') and an element xEXtoh(x).
Then, because the restriction of ii to X' U X is injective, fi itself is injective. The
image of h is, clearly, the subspace generated by X.
Now extend /(X) to a basis Y of V so that Y = /(X) U Y' and /(X) n Y = 0.

Let g: Y-» V be a map such that g(y') = 0 for y'£ Y' and g|/(X) be a bijective
map of /(X) onto Y. Because /(X) and Y are denumerable, this is possible. Now
let g : V-» V be the morphism corresponding to the map g. Clearly g is an
epimorphism because the image contains Y and Ker g D Im / = 0. We claim that
gfh is an automorphism of V. For, if gfh(v) = 0, then //!(«) £ Ker g so that, be
cause Ker g D Im / = 0, we have fh(v) = 0. But h(v) is in the subspace generated by
X and / is injective on that subspace, so this tells us h(v) = 0. Because h is
injective, we have v = 0 and thus gfh is injective.
To see that gfh is surjective, we observe that g is surjective and, in fact, any

element of V is the image under g of an element in the subspace generated by
/(X). Because the image of h is the space generated by X, it is clear that gfh is
surjective and thus the morphism is an automorphism. This tells us that the ideal
generated in R by / is all of R, and so the same can be said for / in R II. As a result,
we see that RII is a simple ring.
Because RII is simple, we know that RII is semisimple if and only if it is left

or right artinian. Let us show that RII is not right artinian. Since V has a
denumerable basis X, we may write X as the union of a denumerable number of
disjoint denumerable subsets: X = U X„ where X„ (*1 Xm = 0 for n ± m and each

X. is denumerable. If I'k is the set of / £ R such that Im / is contained in the
subspace generated by U X., then I'k is a right ideal of R. Let Ik = I'k + 1
, and let

/k=/k//- Because /JD/5D--, we have /,O/2D-- and so 7,D/2D-- is a

decreasing chain of right ideals in RII. We claim that the ideals in this chain of
ideals do not satisfy the descending chain condition, and thus RII is not right
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artinian. If it did, we would have /„ = /„+k for some integer n and all fc>0. But we
can show that for every integer n, /„ £ L «. To see this, take an / : V -» V such that
Im / is the whole subspace generated by U Xk. This can be done by choosing a

kz»

surjective map of X onto U Xk and then extending. If / £ /„+,, then / = g + h
where g £ I'„, and h£/, that is, Im h is finite-dimensional. Because X„ is denum-
erable and Im g is contained in the subspace generated by U X„, we clearly can-

not have Im(g + h) equal to the subspace generated by U A*. Thus, / £ /„+, and
ken

the proof is complete.

If we analyze the proof of Theorem 1.1, we see that if all we had wanted to
show was that R is left semisimple we would not have had to bother showing that

/0 is contained in J0 but simply that if {J} is the set of nonsemisimple submodules
of R and J„ is a minimal element of this set, then any minimal ideal contained in J0
is a summand of J0. Because R is assumed artinian, every left ideal of R contains a
minimal left ideal of R, so then, if each left ideal / were a summand of J0, we
would have J0 = l©Ju and if J, were not semisimple, the minimality of J0£{J}
would be contradicted. If J, were semisimple, so too would be J0 (which is absurd),
and so we would have to conclude that {J} is empty and that therefore R is left
semisimple. Thus, the crucial step in such a proof is showing that if I is a minimal
left ideal of R, then 7 is a summand of R (and hence of any left ideal that contains

/). The proof of Theorem 1.1 shows us that we may deduce that / is a summand of
R from the fact that I2±(0) where I2 is the left ideal consisting of all finite sums
2a,b, with a, and b, £ /. This observation immediately leads us to the following.

Proposition 1.3
A ring R is left semisimple if and only if it is left artinian and for every minimal
left ideal / of R, /2=£ 0.
PROOF: If R is artinian and I2 =f

=
0 for every minimal left ideal / of R, then our

foregoing discussion shows that R is left semisimple. The converse is straightfor
ward, and the proof goes as follows.
We have already seen that if R is left semisimple, then R is left artinian (see

Proposition 4.3, Chapter 7). If / is any nonzero ideal of R, I is a summand of R

since R is semisimple, and therefore we have a morphism R—^I such that

p
i = id, where i:I-»R is the inclusion. Letting e = p(l), we have e
2 = ep(1) =

p(«) = p(i(e)) = pi(e) = e so that, because e
2 = e^0we have I2 ± 0. Because I2 ± 0

for every left ideal of R, this is certainly true of minimal left ideals, and we are
through.

We see from this proof and the proof of Theorem 1 . 1 that we actually have
the following auxiliary result:

Proposition 1.4
Let R be any ring and / a nonzero left ideal of R. Then / is a summand of R if and
only if / can be generated by an element e such that e2 = e. If / is a minimal left
ideal of R, then / is a summand of R if and only if I2 ± 0.
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The reader is urged to supply the proof which may be obtained by reading the
proofs of Theorem 1.1 and Proposition 1.3 carefully.
We have been talking about elements e such that e2 = e, and have also rather

cavalierly introduced a new term I2. Let us stop to make two definitions.

Definitions

(a) An element e in a ring R is called an idempotent if e = e2.
(b) If / is a left ideal of R and M is a left R-module, we denote by IM the
submodule of M consisting of all finite sums 2 a,m, with a, £ I and m, E M. We
define I"M inductively by setting I'M = 7(/""'M ). In particular, if M is a
left ideal of R, we obtain left ideals IM, I"M. If M = /, we get I" defined for
every n.

Basic Properties 1.5

(a) If e is an idempotent, then so is 1-e and e(l - e) = (1 - e)e = 0.
(b) If / is a left ideal of R and M is a left R -module, then-/"'(/"'Af) = n(I"'M) =
I-'^M.

We leave the proofs of these properties to the reader.

Example 1.6 In the ring of two-by-two matrices over a field, the idempotents

other than f_ land! J are all matrices of the form I I with deter

minant zero. The reader can check easily that every such matrix is idempotent. To

see that these are all the idempotents, suppose we have an idempotent I I.

Then, because

(a b\(a b\ = (a2+bc b(a + d)\
\c d)\c d) \c(a + d) cb + d2)'

we must have a = a2 + be, b = b(a + d), c = c(a + d ), and d = cb + d2. If either b or
c is not zero, this forces the condition a + d = 1, and the condition bc = a-a2 =
a(l - a) forces the determinant to be zero if a + d = 1. If b = c = 0, and if we do not
take a + d = 1, then a = d = 0 or a = d-\.
Example 1.7 If R is the ring of two-by-two triangular matrices over a field K,

that is, R consists of all matrices of the form I ), then a similar computation

shows that the idempotents are either ( ), ( j, ( J, or ( . J. R is a

three-dimensional vector space over the field K, so that R is both left and right
artinian. This follows from the fact that a left (right) ideal of R is, in particular, a
subvector space of R and thus, because finite-dimensional vector spaces are
artinian, any decreasing sequence of left (right) ideals of R must satisfy the
descending chain condition. R is not simple, nor is it semisimple. If it were
semisimple, every left ideal would be a summand and hence, by Proposition 1.4,

would be generated by an idempotent other that L j. However, in R we have
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the left (actually two-sided) ideal / consisting of all elements ( I. Because this

ideal contains no idempotent, it cannot be generated by an idempotent and so R is

not semisimple. The elements I. ..
) have the property that ( H J

=

(. A. This leads us to the following.

Definition
Let R be a ring and x an element of R. If x" = 0 for some positive integer n, then x

is said to be a nilpotent element. If / is a left ideal of R all of whose elements are
nilpotent, then / is called a nil left ideal of R. If 7 is a left ideal of R such that
I" = 0 for some positive integer n. then / is called a nilpotent left ideal.

The example above shows that the ideal / of all elements I
ft

_ I is a nil ideal.

In fact, because the product of any two elements in / is zero, I is nilpotent. The
reader can show easily that every nilpotent element of R is in /, so that / consists
of all the nilpotent elements of R. Finally, it should be observed that the map

h:R-»KxK defined by M ) = (x, z), is a surjective ring morphism whose

kernel is /. Here, by K x K we mean the product of the field K with itself. As a

consequence, because K x K is a semisimple ring and RII is isomorphic to K x K,
we see that RII is a semisimple ring.

2. THE RADICAL OF A LEFT ARTINIAN RING

The considerations of Section 1 lead us to the following questions. Suppose R is a

left artinian ring. Is there always some ideal of R such that RII is semisimple?
Moreover, is it possible to describe such ideals explicitly? For example, we
showed in Example 1.7 that dividing out by all nilpotent elements gave a

semisimple ring.

Let us take these questions one at a time. Can we find an ideal / in the left
artinian ring R such that RII is semisimple? If / were a maximal ideal (that is,
maximal among the set of ideals), then RII would not only be a simple but also
semisimple, because R and hence RII is left artinian. If we wanted to use Zorn's
lemma, we could easily prove that any ring R has a maximal ideal, and we would
then have answered our first question for left artinian rings. However, because we
are assuming that our ring is left artinian, perhaps we can find another proof of
existence of maximal two-sided ideals without resorting to Zorn's lemma, a

procedure which is always welcomed by mathematicians who prefer to have as
many things independent of the Axiom of Choice as possible.
Because our ring R is left artinian, we know without using Zorn's lemma that

R has simple modules, for instance, a minimal left ideal. Let M be a simple R-
module and let / = ann(M) be the annihilator of M. Recall that ann(M) =

{
x £ R \xm = 0 for all m E M], and that ann(M) is an ideal of R. Then M is an
RII-module which is faithful and simple also as an R //-module. Recall that an
R -module of M is faithful if ann(Af ) = 0. Thus, RII is a left artinian ring having a
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simple faithful module. If we show that the left artinian ring RII is therefore a
simple ring, this will show that / is a maximal ideal of R. We do this in the
following.

Proposition 2.1
Let R be a left artinian ring. Then R is simple if and only if R has a simple faithful
R-module.

PROOF: If R is left artinian, it has a simple module M. If, further, R is simple,
we must have ann(M ) = 0 because ann(M) is an ideal and hence must be (0) or R.
But Mf0 so ann(M) f K and thus M is faithful.
Conversely, suppose R is artinian and has a simple faithful module M. If we

show that R is semisimple and that all minimal left ideals are isomorphic to M, we
will have that R is simple, because, in that case, R is a sum of minimal left ideals
all isomorphic to a fixed module M. To show that a left artinian ring is semisimple,
it suffices by Proposition 1.3 to show that if / is any minimal left ideal of R, then
I2 =

f=

0
. So, let / be any minimal left ideal of R. We observe that IM =
£ 0
,

because

otherwise we would have / Cann(M) and because I ± 0 and M is faithful [that is,
ann(M) = 0] this is impossible. Therefore, there exists an element x EM such that
Ix ± 0

,

where Ix = {ax} with a EI. But then Ix = M because M is simple and Ix is

a nonzero submodule of M. We thus obtain an epimorphism f:I-»M defined by
f(a) = ax. Because Ker/ =f

= I and / is minimal (and therefore simple), we have
Ker/ = 0 and / is an isomorphism. Therefore, we have shown that every minimal
left ideal of R is isomorphic to M. Furthermore, I2 =£ 0. Because, if Ix - M, there

is an a £ / such that ax = x. Thus, a2x = a(ax) = ax = x ± 0 and so a2 =£ 0. Be
cause a

2 £ I2, we have I2 =f
=

0. This completes the proof of the proposition.

Theorem 2.2
Let R be a left artinian ring and let M be a simple R -module. Then ann(M) is a
maximal ideal of R. Furthermore, the correspondence Af-»ann(Af) induces an
isomorphism between the set of isomorphism classes of simple R-modules and
the set of maximal ideals of R. Moreover, the set of maximal ideals of R is finite.

If {/,, ...,/,} is this set of maximal ideals of R, we have the ring RII, D . . . D /, is

isomorphic to the ring R//, x . . . x RII, defined by k(r) = (k,(r), . . . , k,(r)) where
ki:R-»RII, is the canonical surjection. Thus, R//,D- . -nI, is semisimple.

PROOF: If M is a simple R-module, then M is a simple faithful module over
R/ann(M), so that ann(M) is a maximal ideal of R because, by Proposition 2.1,

R/ann(Af) is simple. Clearly, if Af, and M2 are isomorphic, ann(M,) = ann(M:).
Therefore, the map sending a simple R-module Af to ann(Af) induces a map <

p

from the set of isomorphism classes of simple R-modules to the set of maximal
ideals of R. If / is a maximal ideal of R, then R/I is a left artinian simple ring and
so RII has a simple faithful module M which is also a simple R-module. There
fore, ann(Af ) = / and so the map <
p is surjective. It is injective because, if

ann(M ,) = ann(M2) = /, then M, and M2 are both simple R//-modules and M, and

M2 must be isomorphic, because RII is a simple left artinian ring. Thus, the map <p

is an isomorphism of sets.

If the set of maximal ideals of R were infinite, we could find a set {/,, h, . . .}
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of distinct maximal ideals. Then, setting Jk = 7, D n Ik, we would have a
decreasing sequence of ideals: J, D J2 D Because R is left artinian, we get

J. = J.., = . . . for some integer n. But then, because J.., = J„ n/„„=J„,wc have
J„ C/„.,. This implies that /, Cln., for some / = 1, . . . , n and hence /, = /„+l.
To see this, consider first any two ideals / and J. Then the left ideal I + J

gene railed by / and J (namely, the set of all elements a + b with a E I and b E J)
is also an ideal. Hence, if I and J are distinct maximal ideals, we must have
I + J = R. Suppose that /, =f= Ln for j = \, . . . , n. Then, for each j = 1

,

. . . , n, we

can find ft £ I, and bl £ /,., such that 1 = a, + b,
. Hence, 1 = n1 = II(ai + bl). How

ever, II(ft + b,) = a, ... a. + sums of products each of which contains at least
some b as a factor. Because /„ , , is an ideal, each such product is in h+,, so that the
sum of those products is again in /„<,. Also, because each Ik is an ideal, the term
a, . . . a„ is in /, n . . . D /„ and thus in I,+,. Hence, 1 = n(ft + b,) is in /„+,, which is

a contradiction. Therefore, we have I, = /„+, for some /, contradicting the fact that
all the L were distinct. Thus, the set of maximal ideals of R is finite.
Because we have shown that for any two ideals I and J we have I + J = R, we

may apply the Chinese Remainder Theorem (see the exercises in Chapter 6) to the
set of all maximal ideals /,,...,/, and obtain the isomorphism of rings k:RII,n
.. . ni, -»RII, x . . . xRII, induced by the surjective ring morphism k:R-»
RIlx-xRIl.
We now know that if R is left artinian and {/,, ...,/,} is the set of all maximal

ideals of R, then RII,n- . -nI, is semisimple. Thus, if /, n . . . n /, = 0, R itself is

semisimple. Now we may ask if /, n . . . D /, is the smallest ideal J such that RU

is semisimple. As a preliminary step in answering this question, we show that if R

is a semisimple ring, then fllk = 0
, where {Ik} is the set of all maximal ideals of R.

If R is semisimple, we know that J2 ^ 0 for every minimal left ideal J of R. If

{/,,...,/,} is the set of maximal ideals of R and if I, D . . . D /, £ 0
,

then /, D . . . D /,

contains some minimal left ideal J. Because J is a simple R-module, ann(J ) is one
of the ideals Ik. Hence, IkJ = 0. However, because J C /, n . . . n /„ J is in /k, so

J2 C Ik J = 0 and J2 = 0. This contradicts Proposition 1.3, and so /, n . . . D /, = 0.

Definition
Let R be an artinian ring and I,,...,l, the set of all maximal ideals of R. The
radical of R [written rad(7?)] is the ideal /,n- . D/, of R.

In this terminology our preceding discussion gives the following.

Theorem 2.3
A ring R is semisimple if and only if it is left artinian and rad(R) = 0.

Corollary 2.4

If R is a left artinian ring and J is an ideal of R such that RU is semisimple, thenJ = /, n . . . n /, where {Ik} is the set of all maximal ideals of R which contain J.

Thus, rad(R) is the smallest ideal J such that RU is semisimple.
PROOF: Because there is a bijective map between ideals of RU and ideals of

R containing J, the maximal ideals of RU correspond to the maximal ideals

h I, of R which contain J. If RU is semisimple, then rad(U/J) = 0 so that
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(hI J) n ... n (/,/J) = 0. Because (1,l J) n . . . n (1,l J) = (/, n . . . D /,)/J, we have/,n-ni, =J.
We have now answered the questions we posed by giving a description of the

smallest ideal J of R such that RU is semisimple, namely, the radical. We saw in
Example 1.7 that the radical might have something to do with nilpotent elements,

nilpotent left ideals, or nil left ideals. We make this connection more specific in the
following.

Proposition 2.5
If R is a left artinian ring, then rad(R) is nilpotent.

The proof of this proposition uses the following description of the radical of a
left artinian ring.

Proposition 2.6
The radical of a left artinian ring R is the intersection of all the maximal left ideals
of R.

PROOF: If / is a maximal ideal of R, then RlI is a simple left artinian ring. As
we saw in Example 2.8 in Chapter 7, the intersection of all maximal left ideals of

RII is zero. Hence, / is the intersection of all maximal left ideals containing /.
Consequently, the radical of R, being the intersection of all maximal ideals of R,

equals the intersection of all those maximal left ideals of R which contain some
maximal ideal of R. However, every maximal left ideal J of R does contain some
maximal ideal I. For RU is a simple R-module and thus ann(R//) is a maximal
ideal / which is contained in J. Thus, the intersection of the maximal ideals of R,
which is the radical of R, is contained in the intersection of the maximal left ideals
of R. Hence, rad(R) is the intersection of the maximal left ideals of R.

We now return to the proof of Proposition 2.5.

PROOF: Let 7 = rad(R) and consider the decreasing chain of ideals 73/*0
V D . . . . Because R is left artinian, there is a positive integer n such that /" = /"'*
for all k > 0. We want to show that /" = 0. Let J = V and suppose J ± 0. Then
j2 = /"+" = /" = j ± o. Thus, J2 ± 0 and J2 = J. Among the nonempty set of all left
ideals J' CJ such that JJ' ± 0 there is a minimal one, JJ. Then, because JJ'0 =£0,
there is an element b £ JJ such that Jb =£0. Jb is clearly a left ideal of R contained
in J'0, and J( Jb) = J2b = Jb±0. Thus, Jb = J'0. Because JbCRbCJ'0 = Jb, we
have J'0 = Rb, that is, J'0 is the left ideal generated by the element b. Also, from the
fact that J(Jb) = Jb, we see that JJ'0 = J'0, because J'0 = Jb = Rb. Let us conclude
from this that J'0 = 0.
The element b is in J'0 = Jb so that b = ab where a E J. Therefore, (l-a)b=0.
If we show that the left ideal generated by (1 - a) is R, then t»(l — a) = I for some
»£R so that 0=t1 .0 = t1((l-a)b) = («(l-a))fo = 1 . b = b. Hence, b and J0 are
both zero.

Why then does (I- a) generate all of R as a left ideal? If it did not, then

(1

- a) would be contained in some maximal left ideal. But a is contained in every
maximal left ideal of R because a E J C rad(J?) and rad(R) is the intersection of
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all the maximal left ideals of R. Thus, (1 — a) cannot be contained in any maximal
left ideal, because otherwise, 1 would be contained in that ideal. Hence, (1 — a)
generates R as a left ideal, and our proof is complete.

From the fact that the radical of a left artinian ring is nilpotent, we get the
following.

Proposition 2.7
A left artinian ring is left noetherian.

PROOF: We know that R/rad(R) is semisimple and therefore left noetherian.
Hence, if we show that rad(R) is a left noetherian R-module, we will be done,
because 0-»rad(R)-»R-»R/rad(R)-»0 is an exact sequence of left R-modules
with both rad(R) and R/rad(R) noetherian modules.
Let / = rad(R), and consider the chain / D /2 D . .. D /" D /"'' = 0. Each of

the ideals /* is artinian and, therefore, so is each factor module IkIIk+\ In
addition, each of the R -modules IkIIk+' is annihilated by /, so that /'//'+' is an
R //-module and artinian. If we can show that /*//*+' is a noetherian R //-module,
then it will also be a noetherian R -module. (Why?) Finally, if we show that /*//'''
is noetherian for each k, we can show that / itself is noetherian. This is so
because, first of all, I*+' is noetherian (because it is zero). Now suppose /' is
noetherian, and let us show that /*"' is noetherian. We have the exact sequence
0-»/' -» Ik '-» Ik-'IIk -»0. Because /' and /''//' are noetherian, /*"' is noeth
erian, and so, by induction, we finally get / is noetherian.

How, then, do we see that /V/'+1 is noetherian? Because we have seen that

/'//'+' is an artinian R//-module, and because all R//-modules are semisimple, we
have that /V/'+' is a semisimple artinian module. If we prove that all such modules
are noetherian, we will be done.

Lemma 2.8
Let M be an artinian semisimple module over an arbitrary ring. Then M is a
noetherian module.

PROOF: Because M is a semisimple module. M = II M„ where each M„ is a

simple R-module. We leave it to the reader to show that A must be a finite set
because M is assumed to be an artinian module. However, we know that simple
modules are noetherian, so that Af, being a finite sum of noetherian modules, is
noetherian.

This lemma shows that /V/''1 is noetherian for each k and so the proof of
Proposition 2.7 is complete.

3. THE RADICAL OF AN ARBITRARY RING

We have discussed the radical of an artinian ring but not of an arbitrary ring. We
could define the radical of an arbitrary ring to be the intersection of its maximal
ideals. However, we know in the artinian case that this is the same as the
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intersection of its maximal left ideals and it was this latter property of the radical
that played a crucial role in the proof of Proposition 2.5.

Definition
Let R be a ring. The radical of R [written rad(R)] is the intersection of the
maximal left ideals of R.

Proposition 3.1
Let R be any ring and let / be a left ideal of R. Then the following statements are
equivalent:

(a) \ + a has a left inverse for all a in /; that is, there is a b in R such that
b(l + a)=\.

(b) If Af is a finitely generated left R-module and IM = M, then Af = 0.
(c) / is contained in the radical of R.

PROOF: (a) implies (b). Assume that M is finitely generated and that /Af = Af.
Let m, m, be a set of generators of Af. Then, because IM = Af, we have
m, = 2,'= , a,m\ with a,, £ / and m,' in Af. For any m £ Af, we have m = 2". , b,m, with
b,ER, and so for any m in Af we have m = 2«b,a„m,'=2,(21£i,a,,)m,'. Notice that
1, b,anEI for each j so that Af is finitely generated over I in the sense that there is
a finite set {mi, . . . , ml) of elements of Af such that every element of Af may be
written as a linear combination of the mi, ... , m'„ with coefficients in /.
Let {mi, .... mi} be a minimal set of generators of Af over I (that is, no subset

of {mi, . . . , mi} generates Af over /). If Af were not zero, then s would have to be
greater than zero. Assume Af^0. Because 7Af = Af, mi = 2?=, am\ with a, £/ so
that we get (1 - a,)mi = 1\-2 am\. But because 1 - a, has a left inverse, we have,
multiplying through by this left inverse, that m\=Y,U2b,m\ with b,EI. Thus,
{m5, .... mi} generates Af over I and this contradiction proves that Af must be
zero.

(b) implies (c). Let J be a maximal left ideal of R, and suppose that / is not
contained in J. Letting M = RU, we then have /Af =£0. However, because J is
maximal, M is simple and so IM = Af. But Af is generated by one element and so
by (b) we have Af = 0, which is a contradiction. Hence, I C J for every maximal
left ideal, and thus / Crad(R).
(c) implies (a). Because / Crad(R), we have, for all a El, that a £ rad(R) so

that 1+ a is not in any maximal left ideal of R. Thus, the left ideal generated by
1+ a is all of R and so there is a bER such that b(l + a)=l.
As a result of this proposition we see that if I is a left ideal contained in

rad(R), then /Af = 0 for every simple R-module Af. In fact, rad(R) is the intersec
tion of the annihilators of all simple R-modules. Hence, rad(R) is an idea!, not just
a left ideal, of R.
The reader should also observe that if 1+ a has a left inverse for all a £ I,

then 1+ a also has a right inverse for all a Ei. To see this, let v(l + a) = 1. Because
va £ /, — va is also in / and hence 1- va has a left inverse, say w(l - va) = 1. But,
because v(l + a) = 1, we have v + va - 1 or v = 1- va. Thus, wv = 1 and therefore
1 + a = (ww)(l + a) = w(v(\ + a))= w from which we get (1 + a)v = wv = 1 and 1 + a
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has v as a right inverse. It is important to note that we made use of the fact that

every element b of I (or at least every left multiple of a) had the property that
1+ b has a left inverse in order to prove this.

On the basis of these remarks, we leave it to the reader to prove the
following.

Proposition 3.2
Let R be a ring. Then rad(R) is an ideal which is equal to the intersection of all

maximal right ideals as well as the intersection of all maximal left ideals of R.

Proposition 3.3
If J? is a ring and / is a left (right) nil ideal of R, then I is contained in rad(R).
PROOF: If a is any nilpotent element of R, say a"=0, then the identity
l-a" =(\-a + a2±- . ±a""')(l + a) shows that \ + a has a left inverse. Thus, if I
is nil ideal, we have that \ + a has a left inverse for every aEl and so, by
Proposition 3.1, /Crad(R).

The reader might suspect, as a result of Proposition 3.3, that the radical of

every ring is a nil ideal. For artinian rings we know it is even nilpotent. Let us look

at the following.

Example 3.4 Let R be the subring of the rational numbers consisting of those

fractions alb for which b is not divisible by 2. Obviously, this is the ring of

quotients Zs where S is the multiplicative subset of Z consisting of all odd

integers. Because R is a commutative ring, we need not worry about distinctions

between left and right ideals. Let us try to find all the maximal ideals of JR. We

leave it to the reader to check that there is only one, namely the subset / or R
consisting of those elements alb such that a is divisible by 2. Hence, the radical of
R is just / itself. Because R is an integral domain, I contains no nilpotent element
other than zero, so / is certainly not a nil ideal, let alone nilpotent.
Lest the reader think that all nil ideals are nilpotent (they are, of course, in an

artinian ring), we suggest that he work out the following.

Example 3.5 Let S = k[X,, X2, . . .] be the polynomial ring over a field k in a

denumerable number of indeterminates X,, X2, For each n, because
fc[X„...,X.]Cfc[X,,...,X.+,], we have S = U/c[X,,...,X„]. Let X be the

ideal in S generated by {XT'J„eN-ro, and let R = SIX. Denote by X the residue
class of X modulo X, and let / be the ideal in R generated by all the X. / is a nil
ideal. To see this, the reader should show, using the generalization of the binomial
theorem, that if a,, ... , a„ are nilpotent elements in a commutative ring, then any
linear combination of them is nilpotent. Because R is commutative and X!'1 = 0, /
is a nil ideal. But I is not a nilpotent ideal. The idea behind this is that if /" = 0 for
some n, then X; = 0. But all we are given is that XI+ ' = 0. The reader should carry
out these arguments in sufficient detail to convince himself that this nil ideal is not

nilpotent.

The radical of a ring has some very useful properties. We list some of these in

the following.
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Basic Properties 3.6
Let R be a ring and let J = rad(R). Then:
(a) If M is a finitely generated R -module such that MUM = (0), then M = (0).
(b) If M is a finitely generated R-module and nt,, . . . , m, are elements of Af, then
{m, m,} generates Af if and only if {m,, . . . , m,} generates MUM as an
R/J-module, where m* denotes the residue class of m, in MUM. Thus, if RIJ is
a division ring, any two minimal sets of generators of Af have the same
number of elements, and a minimal set of generators of M may be selected
from any given set of generators. Hence:

(c) If Af is a finitely generated R- module and f:X-»M is a morphism of R-
modules such that the composition X—^Af—*-»Af/JAf is surjective, then / is
surjective. In particular, if Af' is a submodule of Af such that M' + JM=M,
then Af ' = Af.

(d) If Af and N are finitely generated projective R-modules such that MUM and
NUN are isomorphic as R/J-modules, then Af and N are isomorphic. In
particular, if RIJ is a division ring, every finitely generated projective R-
module is free.

PROOF: (a) Left to the reader.
(b) Clearly, if {m,, . . . , m,} generates Af, then {m,, .... m,} generates Af/JAf

as an R-module and hence as an R/J-module.
Suppose that {TO,, . . . , nt,} generates MUM as an R/J-module and hence as

an R-module. Let Af' be the submodule of Af generated by {m,, . . . , m,} and let
Af" = Af/Af'. Then JAf" = (JAf +Af')/Af' where JM + M' is the submodule of Af
generated by JAf and Af'. Because {nt,, . . . , m,} generates MUM, it follows that
M = Af'+JM. Thus, Af/(Af ' + JAf ) = 0. But Af/(Af ' + JAf ) = Af/Af '/(JAf + Af ')/

Af' = Af"/JAf ". Therefore, M"UM" = 0
. The fact that Af is a finitely generated R-

module implies that Af " is also finitely generated. Therefore, by (a), Af " = 0
,

and

thus, Af = Af '.

(c) Follows readily from (b).
(d) Let / : Af/JAf-» N/JN be an isomorphism, where Af and N are finitely gen

erated projective R-modules, and let k,:M-»MUM and k2:N-»NUN be the
canonical surjective morphisms. Because Af is R -projective, there is a morphism
g:M-»N such that k2g = fk,. The composition fk, is surjective because / and fc

.

are surjective. Hence, by (c), the morphism g:M-»N is surjective.
Because N is projective, the morphism g :M-»N is a splittable epimorphism.

Let t : N-»M be a splitting for g, that is, gt = idN. Because t is injective, it suffices
to show that t is surjective in order to conclude that f is an isomorphism.
Because r(JN)CJAf, we know that t:N-»M induces a unique morphism

t :NUN -» Af /JAf such that tk2 = k,t. It follows that /F = idw.w because ftk2 =
fk,t = k2gt = k2 and k2 is surjective. The fact that / is an isomorphism implies that

f = /"'. Hence, r is, in particular, surjective. Thus, tk2 is surjective. Because tk2 =
k,t, it follows from (c) that t is surjective. Hence, t:N-»M is an isomorphism,
which finishes the first part of (d).
To see the second part of (d), observe that if R /J is a division ring, then any

two finite-dimensional vector spaces over RIJ are isomorphic if and only if they
have the same dimension. Now suppose P is a finitely generated projective
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R -module. Then PUP is a finitely generated R /J-module and hence is an RU-
vector space of dimension n. Let F be a free R -module having a basis X with
card(X) = n. It is easy to see that k(X) is a basis for FUF as an R /J-module,
where k:F-» FUF is the canonical morphism. Hence, FUF is an n -dimensional
vector space over RU and is therefore isomorphic to PUP. Thus, P and F are
isomorphic, and this completes the proof of (d).

EXERCISES

(1) Show that the subring of M2(Q), where Q is the field of rational numbers, con

sisting of all I _ 1with a an integer, is right noetherian but not left noetherian.

(2) Show that the subring of M2(R), where R is the field of real numbers, consisting

of all I 1 with a in Q, is right artinian but not left artinian.

(3) Let J be the radical of the left artin ring R. Suppose 0-»K-»P-»M-»0 is an
exact sequence of finitely generated R-modules with P a projective R -module.
Then M is projective if and only if 0-»KUK -» PUP-» MUM-»0 is exact. [Hint :
(a) Show that 0-»KUK-»PUP is exact if and only if HomR(P, S)-»
HomR(K, S)-»0 is exact for all finitely generated semisimple modules S.

(b) Show that HomR(P, X)-»HomR(K, X)-»0 is exact for all finitely generated
R-modules X, if and only if it is exact for all X which are semisimple R-
modules.]

(4) Let J be the radical of the left artin ring R, M a finitely generated R-module,
and k :M-»MUM the canonical surjective map. Suppose N is a submodule of M
such that k\N:N-»MUM is not the zero morphism, or equivalently, N CJM.
Then given any submodule L of k(N), there is a submodule N' of N such that the
induced morphism N'UN' -» MUM is a monomorphism whose image is precisely
L. [Hint: Show that a minimal element N' of the nonempty set of all submodules
X of N with the property k(X) = L has the property N'UN'-» MUM is a
monomorphism.]

(5) Let J be the radical of a left artin ring R and P a finitely generated projective
R -module. Let K be a submodule of P with KtJP and L an arbitrary sub-
module of the image of K in PUP. Show that there is a submodule K' of K
having the following properties:
(a) The image of K' in PUP is L.
(b) K' is a summand of P and hence of K.
(c) K' is a projective R -module.
(6) Let J be the radical of a left artin ring R. For an epimorphism A—!-»!} of
finitely generated P-modules, the following statements are equivalent:

(a) A morphism g :X-»A is an epimorphism if the composition X— *-»A —'—»B is
an epimorphism.

(b) Ker/CJA, or equivalently, the epimorphism AUA-»BUB induced by
f:A-»B is an isomorphism.

(7) Let R be an arbitrary ring. An epimorphism / : Y-»Z or arbitrary R-modules is
called an essential epimorphism if it has the property that a morphism g:X-» Y is
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an epimorphism if the composition X— *-» Y—*-»Z is an epimorphism. Show that
if /: A-»B and g:B-»C are epimorphisms of R-modules, then gf is an essential
epimorphism if and only if both / and g are essential epimorphisms.
(8) Let J be the radical of a left artin ring R and M a finitely generated R-module.
(a) Show that there is an essential epimorphism f:P-»M with P a finitely gener
ated projective P-module. Such an essential epimorphism is called a projective
cover of M.

(b) Suppose f:P-»M and f :P'--»M are two projective covers of M. Then there is
a morphism h:P-»F such that fh=f and any such h is an isomorphism.
Hence, the projective covers of finitely generated R -modules are essentially
unique.

(c) If P is a finitely generated R -module and / : P-»M is an epimorphism, then / is
a projective cover for M if and only if the composition P-»M-»MUM is a
projective cover for MUM.

(9) Let J be the radical of a left artin ring R.
(a) If P is a finitely generated projective R -module, then the canonical epimor
phism k :P-»PUP is a projective cover for PUP.

(b) Two finitely generated projective R modules P and P' are isomorphic if and
only if PUP and P'lJP' are isomorphic.

(c) Let {/ : A,-»B,},e, be a finite family of essential epimorphisms of finitely gen

erated R -modules. Then the morphism 11/ :U A,-» II B, given byIE, ,e; ,e;

11/ :{a,},e, ={/(a,)},e, is an essential epimorphism.

(d) Let P be a finitely generated projective R-module. Then PUP~ U S, where
lei

the {S,},e; are a finite family of simple R -modules. Suppose / :P-»S, are
projective covers for the Si. Then P= II P, where each projective R-module P,

1e;

has the property that P/JP is simple.
(e) If P~ U P and P= U Pi where the P, P, are projective P-modules such that

all the P /JP and P'JJP'k are simple R -modules, then there is an isomorphism
of sets a:I-»K such that P =Pi,n for all i in /.

Definition
Let R be an arbitrary ring. An R-module M is said to be indecomposable if (0) and
M are the only submodules of M which have complements in M.

(10) Show that every noetherian M is the finite sum of indecomposable sub-
modules of M.

(11) Let J be the radical of a left artin ring R.
(a) Show that every finitely generated R -module is isomorphic to a finite sum of
indecomposable P-modules.

(b) Show that a finitely generated projective R -module P is indecomposable if
and only if P/JP is a simple R-module.

(c) Let &(R) be the collection of finitely generated indecomposable projective
modules and let iflR) be the collection of simple P-modules. Show that the
map 9(R)-»if{R) given by P^PUP for all P in &{R) induces an isomor
phism between the isomorphism classes of indecomposable projective
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R-modules and the isomorphism classes of simple R -modules. Hence,

the number of nonisomorphic indecomposable finitely generated projective
R -modules is the same as the number of nonisomorphic simple R-
modules, which is finite.

(d) If P is a finitely generated indecomposable projective module, then there is an
idempotent element e in R such that P is isomorphic to the left ideal Re of R.

(12) Let K be a field and T„ (K) the ring ofnxn triangular matrices over K, that is,
T„ (K) is the subring of M„ (K) consisting of all matrices (a,7) with an = 0 if j > i.
(a) Show that T,(K) is an artin ring.
(b) Show that the radical J of T„(K) consists of all matrices (a„) in T.(K) with
a, = 0 for all 1=1, . n. Also, J" =0 and J"'=f=(0).

(c) Show that the ring Tn(K)U= Tl K, where each K, = K and hence T„(K) has

precisely n nonisomorphic simple modules.

(d) For each k = 1, . . . , n define lk to be the subset of T„(K) consisting of all (a,7)
with <*i=0 if j±k.
(i) Each lk is a left ideal of Tn(K).
(ii) Each h is an indecomposable projective T„(K)-module.
(iii) If Ik«Ik, then k = k'.
(iv) If P is an indecomposable projective T„(.K)-module, then P = Ik for some
k. Further, each nonzero submodule of P is an indecomposable projective
module.

(e) Every submodule of a finitely generated projective T„(K)-module is a projec
tive module.

(f ) Show that the subset / of T„ (K) consisting of all (av) with av = 0 if i < n is an
ideal in Tn(K).
(i) Show that as a left module the ideal / is the sum of n copies of a
projective simple T„(K)-module.

(ii) As a right module, / is an indecomposable projective T„(K)-module.
(iii) T„(K)II« T„ ,(K) for each n.

(g) Show that each indecomposable finitely generated projective T„(K)-module
has precisely one composition series.

(h) Show that l(Ik) = (n-k)+ 1.
(i) Because T„ (K) is a subring of M„(K), we can view Af„(K)asa T„(K>module.
Show that A£(K) is a projective T„(K )-module. Also, find the indecompos-

l

able projective modules P,, . . . , P, such that M„(K) « U P,.
\m\

(j) Show that the map <l>:T„{K)^Tn{Kf given by <£((<*,)) = (a*) is an isomor
phism of rings.

(k) Show that the categories Mod(T„(K)) and Mod(T„(KD are equivalent
categories.

(13) Let K be a field. Let L,(K) be the subring of T„(K) consisting of all matrices
(O«) in T„(K) such that a„ = aa = . . . = a™.
(a) The radical J of L„(K) consists of all matrices (al7) with a,,=0 for all i =
1 n.

(b) Show that the rings K and L„(K)U are isomorphic.
(c) All simple L„(K)-modules are isomorphic.
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(d) L„(K) is the only indecomposable, finitely generated projective

L„(K)-module.
(e) All finitely generated projective L„(K)-modules are free modules.
(f) If K is a submodule of a free L„(K)-module F and K C JF, then K has no
projective submodules.

(g) Because L„(K) is a subring of T„(K), we can view T„(K) as an L„(K)-
module. Is T„(K) a projective L„(K)-module?

(h) Because L„(K) is a subring of M„(K), we can view M,(K) as an L„(K)-
module. Is M„(K) a projective L„(K)-module?

(i) Show that L„(K) and L„(K)°P are isomorphic rings.
(14) Let K be a field and V„(K) the subset of T„(K) consisting of all (an) such that
an
= 0 unless either i = j or / = 1.
(a) Show that V„(K) is a subring of T„(K).
(b) Show that the radical J of V„(K) consists of all (au) satisfying ai, =0 for all
i = 1, . . . , n.

(c) Show that J2 = 0.
n

(d) Show that the rings V„(K)U and n K, (where each K, = K) are isomorphic.

(e) Show that V„(K) has precisely n nonisomorphic simple modules.
(f) Find n idempotent elements «,,...,«„ such that the projective V„(K)-
modules V.(K)e, are indecomposable with no two distinct ones isomorphic.

(g) Show that every submodule of a finitely generated indecomposable V„(K)-
module is a projective V„(K)-module.

(h) Show that J is a projective V„(K)-module and find the indecomposable pro
jective V„(K)-modules whose sum is J.

(i) Show that every submodule of a finitely generated V„(K)-module is a projec
tive V*„(K)-module.

(j) Because V„(K) is a subring of T„(K) and M„(K), we can view T„(K) and
Mn(K) as V„(K)-modules. Is either of them a projective V„(K)-module?

(15) Same hypotheses and notation as in Exercise 14.

(a) Show that V„(K) has precisely n nonisomorphic simple right modules.
(b) Let c, e„ be the idempotents you obtained in Exercise 14(f). Show that
the right ideals e,V„(K) are indecomposable projective V^K)- modules such
that e,V„(K)« e,V„(K) if and only if i = /.

(c) Show that the submodules of the finitely generated indecomposable right

V„(K)-modules are projective right V„(K)-modules.
(d) Every submodule of a finitely generated projective right V„(K)-module is a
projective V,(K)-module.

(e) Show that J is a projective right Vn(K)-module and find the indecomposable
projective right V„(K)-modules whose sum is J.

(f) Are T„(K) and Af„(K) projective as right V„(K)-modules?
(g) Are V„(K) and V„(Kr isomorphic rings?
(16) Let R be a commutative ring and M a monoid. Define the map e:R[M]-»R
by eC^rm!) = 2r,.

(a) Prove that « is an R -algebra morphism which enables us to view R as an
R[M]-module.

(b) Prove that / = Ker e is generated as an R- module by {1 - m}m-M.
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(c) For each R[M]- module A we denote by A" the R[M]-submodule of A
consisting of all a in A such that ma = a for all m in M. Show that the map
HomRIMi(R, A)-» A given by /-»/(l) is an injective R-morphism whose image
is A ". Thus, we obtain an isomorphism HomRiM,(R, A ) -» A

" which we usu
ally view as an identification of R -modules. Consequently, we have:

(d) If 0-» A,-» A2-» Ay is an exact sequence of R[M]-modules, then 0-»A" -»
A" -»A" is an exact sequence of R -modules.

(e) R is a projective R[M]-module if and only if given any exact sequence 0-»
A,-»A2-»A3-»0 of R [Af]-modules, the sequence of R-modules 0-»Af-»
A" -»A" -»0 is exact.

(17) Let M be a monoid. An M-module is an abelian group A together with a map
MxA-»A which we denote by (m,fl)-»ma satisfying
(i) m(a, + a:) = mal + ma2,

(ii) (m,m2)fl = m,(m2a),

(iii) 1a = a,
for all m, m,, m- in M and a, a,, a in A. Show that the following data define a
category called the category of M-modules and denoted by Mod(Af).
(a) Ob Mod(M) are the M-modules.
(b) (A,, A2) is the set of all morphisms of abelian groups f:A,-»A2 such that

f(ma) = mf(a) for all m in M.

(c) (A,, A3) x (A2, A,)-»(A,, Ay) is given by ordinary composition of morphisms of
abelian groups.

(18) Let R be a commutative ring and M a monoid. Show that the category of
R[M]- modules is isomorphic to the category <g defined by the following data:
(a) An object of <€ is a pair (A, /) where A is an R-module and /: M x A -» A is an
Af-module structure on A such that m(ra) = r(ma) for all m in M and r in R.

(b) A morphism (A, f)-»(A',f) is an R-module map g: A-»A' such that g(ma) =
mg(a) for all m in M.

(c) Composition of morphisms is the ordinary composition of R- module mor
phisms.

[Hint: Show that there is a natural functor F:Mod(R[M])-»« with the
property F(A) — (A,f) where A is the R-module given by the fact that R is a
subring of R [M] and f:MxA-»A is given by /(m, a ) = ma. Show that there is a
natural functor G:<€ -»Mod(R) with the property G(A,f) is the R[M]-module
whose underlying abelian group is that of A and where the operation R [M] x A -»
A is given by (2,e,r,mh a) = 1,e,r,(m,a). Then GF and FG are identity functors
on Mod(R [M]) and % respectively. The categories Mod(R [M]) and ^ are usually
identified by means of the functors F and G.]
(19) Let G be a group and R a commutative ring. Let A and B be R[G]-modules.
(a) If /: A-»B is an R-morphism and g is in G, then the map (gf):A-»B defined
by (gf)(a) = g(f(g (a)) is also an R-morphism.

(b) The map GxHomR(A, B)-»HomR(A, B) given by (g,f)-»gf makes
HomR (A, B) a G-module.

(c) Show that g(rf) = r{gf) for all g in G, r in R, and / in HomR(A, B). Hence,
HomR(A, B) is an R[G]-module.

(d) HomR (A, B)G = HonWA, B).
(20) Let K be a field and G a group. Then:
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(a) K[G] is a semisimple ring if and only if K is a projective K[G]-module.
[Hint: Show that all K[G]-modules are projective if and only if K is a
projective K[G]-module.]

(b) Show that (K[G]f is the set of all 2r& in K[G] such that r, = r, for all i and j.
(c) Show that K is a projective K[G]-module if and only if G is a finite group and
the characteristic of K does not divide the order of G.

(d) K[G] is a semisimple ring if and only if G is a finite group and the characteris
tic of K does not divide the order of G.

(21) Suppose J is the radical of an artin ring R. Show that if e is an idempotent
element of RIJ, there is an idempotent element e' in R such that k(e') = e where
fc :R-»R/J is the canonical surjective ring morphism. [Hint: Use the fact that
every finitely generated module has a projective cover.]

Definition
Let <g and 3 be categories. A duality between <g and 2 is a contravariant functor
F:<€-»2 satisfying:

(a) If D is an object of 2, then D^F(C) for some C in <€.
(b) For each pair of objects C, and G in % the maps F:(C, C2)-»(F(G), F(C,))
are isomorphisms.

(22) Let F : <g -» 2> be a contravariant functor. F is a duality if and only if there
is a contravariant functor G:3)-»^ such that GF «id« and FG = ida.
(23) Let K be a field and <g the category of finite-dimensional vector spaces over
K. Show that the functor (,K) :<g-»<g given by X-»HomK(X, K) is a duality.
[Hinr: Show that the usual K-morphisms ,/»x:X-»HomK(HomK(X, K), K) given
by ,K(x)(/) = /(x) for all x in X and / in HomK(X, K) define an isomorphism of
functors /«->.( ,K)( , K).
(24) Let K be a field and f:K-»R a .K -algebra such that R is a finite-dimensional
algebra over K.
(a) Show that the map g :K -» JT" given by g(fc) = f(k) for all fc in K makes R"p a
K-algebra.

(b) Show that an R -module M is a finitely generated R-module if and only if
viewed as a vector space over K by means of the ring morphism K^R it is a
finite-dimensional vector space over K.

(c) Let M be a finitely generated R -module and f:M-»K a K-morphism. Show
that if r is in R the map (rf):M-»K defined by rf(m ) = f(rm ) for all m in M
is a K-morphism. Finally, show that the map R°,,x HomK(M, K)-»
HomK(Af, K) given by (r, /)-» r/ is an R0p-module structure on HomK(M, K).
This is the only way we consider HomK(Af, K) an R0p-module.

(d) Let mod(R) and mod(R'"') denote the full subcategories of Mod(R) and
Mod(R"p) respectively consisting of finitely generated R and R"" modules.
Show that there is a natural functor F:mod(R)-»mod(R',p) whose map on
objects is given by F(M) = HomK (Af, K) and show that F is a duality.

(e) Show that a sequence M,-»Af;.-» Af3 in mod(R) is exact if and only if F(M,)-»
F(M2)-»F(M,) is exact in mod(R0p).

(f) Show that a module M in mod(R) is projective if and only if F(M) has the
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property that if 0-»Nl-»N2-»N3-»0 is an exact sequence in mod^""), then

Hom^(N2i F(Af))-»HomR..(N„F(M))-»0 is exact.
(g) Show that a morphism f:M,-»M2 is an isomorphism if and only if
F(/):F(M2)-»F(Af,) is an isomorphism.

(h) Show that /(Af) = /(F(M)).
(i) Show that Af is an indecomposable module if and only if F(Af) is indecompos
able.

(j) Show that {f,:M,-» M },eJ is a sum of a finite family of morphisms in mod(R)
if and only if {F(/,):F(M)-»F(M,)},e; is a product in mod(R0p).

(25) Let K be a field. Show that the contravariant functor ( ,K):Mod(K)-»
Mod(K) has the following properties.
(a) ( ,K) is exact; that is, if 0-» V,-» V2-» V3-»0 is an exact sequence of K-
modules, then 0-»Hom,<(V3, K)-»HomK(V2, K)-»HomK(V,, K)-»0 is also
an exact sequence of K -modules.

(b) The (covariant) functor ( ,K)( , K):Mod(K)-»Mod(K) is exact.
(c) For each vector space V define the map ,/»v:V-»( , K)( ,K)(V) =
HomK(HomK(V,K),K) by <pv(v )(/) = /(«). Prove the following:
(i) 4,v is a K-morphism for each V in Mod(K).
(ii) ,pV is a monomorphism for each V in Mod(K).
(iii) <lfv is an isomorphism if and only if V is a finite-dimensional K-vector

space.

(iv) If /: V-» W is a morphism of K-vector spaces, then the diagram

V '- » W

HomK(HomK( V, K), K) '."."" » HomK(Hom(W, K), K)

(d) Show that the family {,MVeM0**, is a morphism of functors from /m0*,o to

( , K)( , K).
(26) Let K be a field and K-»R a finite K-algebra.
(a) Show that if M is an arbitrary R-module and / is in HomK(Af, K), then for
each r in R, the map (r/):Af-»K given by (r/)(m) = f(rm) is in
HomK(M,K).

(b) Prove that the map R " x HomK (Af, K)-»HomK(Af, K) given by (r,f)-»rf is
an R^-module structure on HomK(M, K).

(c) Show that the following data define a contravariant functor ( , K):Mod(R)-»
Modd?"p).

(i) ( , K):Ob Mod(R)-»Ob Mod(R0p) is given by M -»HomK(M, K).
(ii) If f:M-»N is an R-morphism, then ( ,K)(/):( ,K)(N)-»( ,K)(Af)isthe
morphism (/
, K):HomK(N, K)-»HomK(Af, K).

(d) Show that ( , K):Mod(R)-»Mod(R'v) is an exact functor.
(e) For each R -module M define the map ^M:M-»HomK ( ,HomK(M, K), K)by
<Mm)/ = /(m).
(i) Show that fa is an injective R -morphism for each R-module M which is

an isomorphism if and only if Af is a finitely generated R -module.
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(ii) Show that for each R-morphism /:M-»N, the diagram

Honh(Hom(M, K), K) U2LJW1 » HomK (HomK (N, K), K)

commutes.

Definition
Let R be an arbitrary ring. An R -module / is said to be injective if given any
monomorphism A—*-»B of R-modules, the sequence HomR(B, /)-»
HomR(A, 7)-»0 is exact.

(27) Let K be a field, K^R a finite-dimensional K -algebra.
(a) A finitely generated R-module / is an injective R-module if and only if
Horn* (/, K) is a projective R^-module.

(b) If X is a finitely generated R-module, then there is a monomorphism X-»I
where / is a finitely generated injective R-module.

(c) If X is a finitely generated R -module, then there is a monomorphism X-»l
with I a finitely generated injective R -module with the property that if /' is a
submodule of / and /TlX = 0, then /'=0.

(d) Let M be an arbitrary R -module and M' a finitely generated submodule of R.
Show there is a submodule N of M satisfying:
(i) M'HM = 0and
(ii) M'lN is a finitely generated R-module.

(e) Let R = T„ (K). Show that the left ideal / consisting of all (a,7) with an = 0 if
;' > / is an injective as well as a projective T„ (K)-module. Are there any other
left ideals of T„(K) which are injective T„(K)-modules?

(28) (a) Let V,, . . . , V, be finite-dimensional vector spaces over the division rings
D,, . . . , D„, and W,,..., Wm finite-dimensional vector spaces over the division

n m

rings K,, . . . , Km. Suppose that II Endo,( V,)= II EndKi(W,). Prove that m = n and,- l ,-,

that there is a permutation a of the set {1, .... n} such that D, ~ K„m and W„i,l = V,
as A-vector spaces.
(b) Apply this to Theorem 3.4, Chapter 7, to prove the uniqueness of the division
rings and vector spaces that occur in the decomposition of semisimple rings.

(29) Prove that every left nil ideal of a ring R is contained in the radical of R.
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Chapter9 LOCALIZATION
AND
TENSOR
PRODUCTS

1. LOCALIZATION OF RINGS

In Chapter 5 we introduced rings of quotients of integral domains in connection
with our study of UFD's. In this section we generalize this construction to
arbitrary commutative rings.

Definition
A multiplicative subset S of a ring R is a subset of R containing 1 and not

containing 0 which is a submonoid of the multiplicative monoid of R.

The reader should notice that, when R is an integral domain, the definition of
multiplicative subset just given coincides with our previous definition.

Example 1.1 Let R be a commutative ring and x a nonnilpotent element of R.
Then the set S of all {x"}„eH is a multiplicative subset of R.

Example 1.2 Let P be a prime ideal in a ring R. Then S = R-%i, the set of all r
in R which are not in $, is a multiplicative subset of R.

PROOF: The fact that $ is a prime ideal says that if s, and .v2are not in $, then
S\s2 is not in $. Hence, S = R-ty is a multiplicative subset of R.

Example 1.3 Let f:R-»R' be a ring morphism. If S is a multiplicative subset
of R, then /(S) is a multiplicative subset of R' if and only if SDKer/ = 0.
Suppose that S is a multiplicative subset of a ring R. Consider the set RxS.

313
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As in the case of integral domains, we define an addition and multiplication as

follows:
(r, s) + (r', s') = (s'r+sr', ss')

and

(r, s)(r' , s') = (rr' , ss')

As in the case of Chapter 5, it is easy to see that R x S is a commutative
monoid under addition with identity (0, l) and a commutative monoid under mul
tiplication with identity (l, 1). Also, the map R-»RxS given by r-»(r, 1) is an
injective map which is both a multiplicative and additive monoid morphism.
To obtain the ring of quotients of R with respect to S, we consider the

relation I on R x S defined by (r,, s,)I(rn) if there exists an element s in S such
that s(s2r, - s,r2) = 0. As in the case of integral domains, it is easy to check that / is
an equivalence relation with respect to both monoid structures on R x S and that
(R x S)II is a ring having the property that the canonical surjective map k :R x
S -»(R x S)II is a morphism with respect to both monoid structures on R x S.
Moreover, the composite map R -» R x S -»(R x S)II is a ring morphism. The
reader should check that if R is an integral domain, then (R x S)II is the same as
the ring Rs as defined in Chapter 5.

Definition
Let S be a multiplicative subset of the ring R. The ring (R x S)II is called the ring
of quotients of R with respect to S and is denoted by R?. The ring morphism R -»
Rs, which is the composition R-»RxS^(Rx S)II is called the canonical mor
phism.
Further, for each element (r, s) in R x S, the image of (r, s) in Rs is denoted

by rls.

Basic Properties 1.4
Let S be a multiplicative subset of the ring R.

(a) rh = r'ls' if and only if there exists an s" in S such that s'Xs'r- sr') = 0.
Hence, 1=£0.

(b) rh + r'ls'=(s'r+sr')lss'.
(c) rls . r'ls' = rr'lss'.
(d) rls is invertible in Rs if and only if r is in S.
(e) The kernel of the canonical ring morphism R -» Rs given by r-» r/1 is the set of
all r in R such that sr = 0 for some s in S. Hence, if S consists solely of regular
elements in R, the ring morphism R^Rs is injective.

PROOF: Left as an exercise.
As a consequence of (d) above, we have that the ring morphism R-»Rs has

the property that the image of r in Rs is a unit in Rs if and only if r is in S. In fact,
this property can be used to characterize the ring of quotients Rs in the category
of commutative rings, as we see in the following.

Proposition 1.5
Let S be a multiplicative subset of the ring R.
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(a) If /: R -» T is a ring morphism with the property that /(s) is a unit in T for all s
in S, then there is a unique ring morphism g:Rs-»T such that / is the
composition R »Rs— L+T. The morphism g is given by g(rls) = g(r)l
g(s) for all r in R and s in S.

(b) If h:R-»R' is a morphism of rings satisfying:
(i) h(s) is a unit in R' for each s in S and
(ii) for each ring morphism f:R-»T such that f(s) is a unit in T for all s in S,
there is a unique ring morphism g : R ' -» T such that / is the composition
gh, then the unique ring morphism to : R ' -» Rs, such that ai/t : R -» Rs is
the canonical morphism, is an isomorphism of rings.

PROOF: Because the proof of this proposition is entirely analogous to that
given for the characterization of fields of quotients for integral domains in
Chapter 5, we recommend that the reader supply the details himself.

Before developing further properties of rings of quotients, we give a few
examples.

Example 1.6 Let S be the multiplicative set Z - 2Z and k :Z -» Z/6Z the canon
ical ring morphism. Because S fl Ker k = 0, we know that S' = k(S) is a multi
plicative subset of Z/6Z. Then the canonical ring morphism Z/6Z -» (Z/6Z)s is
surjective and (Z/6Z)s = Z/2Z as rings.

PROOF: It is easy to see that the multiplicative subset S' of Z/6Z is the set

{fc(l), fc(3), fc(5)}. Suppose /:Z/6Z-»T is a ring morphism such that f(s) is
invertible for all s in S'. In particular, f(k(3)) is a unit in T. Because k(2)kQ) = 0, it
follows that f(k(2)) = 0. Hence, Ker / contains the ideal of Z/6Z generated by k(2).
Therefore, there is a unique morphism g :Z/2Z-» T such that / is the composition
Z/6Z-»Z/2Z— ^T where Z/6Z-»Z/2Z is the canonical surjective morphism. In
addition, the morphism Z/6Z-»Z/2Z carries every element of S' to a unit in Z/2Z,

namely, 1. Hence, the morphism Z/6Z-»Z/2Z satisfies Proposition 1.5 (b). There
fore, we have a unique isomorphism oi : Z/2Z -» (Z/6Z)s such that the composition

Z/6Z-»Z/2Z— ^(Z/6Z).y is the canonical morphism Z/6Z -» (Z/6Z)s . Hence, the
canonical morphism Z/6Z -» (Z/6Z)s is surjective and (Z/6Z)s =Z/2Z.

Example 1.7 Let R = 2[X]II where I is the ideal generated by 2X. Then R is
not an integral domain. However, the element k{2 + X) is a regular noninvertible
element in R where k :Z[X]-»R is the canonical surjective ring morphism. Hence,
the multiplicative subset S ={fc(2 + X)"}„eH has the property that the canonical
morphism R -» Rs is an injective, but not surjective, epimorphism of rings.

PROOF: Because Z is a UFD, we know that Z[X] is also a UFD. We have also
seen the fact that 2 is a prime element of Z implies 2 is a prime element of Z[X].
Because Z[X]/X = Z we know that X is a prime element in Z[X]. Hence, k(2) and
k(X) are not zero in R, even though k(2)k(X) = k(2X) is zero in R. Therefore, R is
not an integral domain.

We now show that fc(2 + X) is regular in R. Suppose k(f(X))k(2 + X) = 0. This
means that /(X)(2 + X) = 2Xg(X) for some g(X) in Z[X]. Because neither 2 nor X
divides 2 + X in Z[X], it follows from the fact that Z[X] is a UFD that
2X|/(X). Hence, fc(/(X)) = 0, which means that k(2 + X) is regular in R. Thus,
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S = {k(2 + X)"}„eH consists solely of regular elements in R. This implies that the
canonical morphism R-»Rs is injective.
Clearly, the image of k(2 + X) in Rs is invertible in Rs. Therefore, to show

that R-»Rs is not surjective, it suffices to show that k(2 + X) is not invertible in R.
Suppose k(2 + X) were invertible in R. Then we would have elements f(X)

and g(X) in Z[X] such that f(X)(2+ X) = 1+ 2Xg(X). Setting X = 0 we get /(0)2 =
1, which means that 2 divides 1 in Z. This contradiction shows that k(2 + X) is not
invertible in R.

The fact that R-»Rs is an epimorphism is a consequence of our characteriza
tion of rings of quotients given in Proposition 1.5, which we state formally in the
following.

Corollary 1.8
Let S be a multiplicative subset of the ring R.

(a) The canonical morphism R-»Rs is an epimorphism in the category of com
mutative rings.

(b) The canonical morphism is an isomorphism if and only if every element of S is
invertible in R.

2. LOCALIZATION OF MODULES

One of the most useful tools in commutative ring theory is the localization of
modules, a construction which parallels that for rings.
Let S be a multiplicative subset of a ring R. For each R-module M consider

the relation N on Af x S defined by (m,, s,)N(m2, s2) if there exists an s in S such
that s(s2ml-s,m2) = 0. N is an equivalence relation. Denoting the equivalence
class of an element (m, s) by mIs, we make (Af x S)/N into an Rs -module as
follows:

(a) m,ls, + mJs2 = (s2m, + s,m2)ls,S2.

(b) (rls)(mh') = rmhs'.

This Rs-module is denoted by Ms.

Definition
Let S be a multiplicative subset of the ring R. For each R-module M, the
Rs-module Ms is called the module of quotients of Af with respect to S.

Basic Properties 2.1
Let S be a multiplicative subset pf the ring R and let M be an R-module.

(a) mls = m'ls' if and only if there is an s" in S such that s"(s'm- sm') = 0.
(b) mls + m'ls' = (s'm + sm')lss'.
(c) (rls)(mls') = rmlss' for all r in R and s in S.
(d) For each s in S, the Rs-morphism Ms^Ms given by mIs' ,-»(s/l)(m/s') is an
isomorphism.
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The canonical ring morphism R-»Rs enables us to consider Ms an R-module.
This operation is given by r(mls) = rmls for all r in R, m in Af, and s in S. The
map Af-»Afs given by m-»mll is easily seen to be an R -morphism.

Proposition 2.2
Let S be a multiplicative subset of R.

(a) For each R-module Af the kernel of the R-morphism Af -» Afs consists of all m
in Af such that sm = 0 for some s in S.

(b) If a subset X of M generates Af, then the image of X in Ms generates Afs as an
Rs-module. Thus, if Af is a finitely generated R-module, then Ms is a finitely
generated Rs-module.

(c) If f:M-»M' is a morphism of R-modules, then there is one and only one
morphism /s:Afs-»Afs of Rs-modules such that the diagram of R-modules

M-UM'

I , I
Ms^» MS

commutes. The morphism fs:Ms-»M's is given by fs(mls) = f(m)ls for all m in
Af and s in S.

Because the morphisms fs of Rs-modules associated with morphisms / of
R-modules are very important, we now list some of their useful properties.

Basic Properties 2.3
Let S be a multiplicative subset of a ring R.

(a) If a morphism / : Af -»M of R -modules is idM or 0, then fs :Ms-» Ms is idMs or 0.
(b) If /: M-»M" and g :M"-»M'" are morphisms of R -modules, then (gf)s = gsfs-
(c) The map HomR(Af, Af' )-»HomRs(Ms, M's) given by f^fs is a morphism of
R-modules. [Recall that Hom«(Af, M' ) is always a module over the center of
R. Because R is commutative, HomR(M, Af' ) is an R -module.]

(d) The map EndJ,(M)-»End,,s(Afs) given by f^fs is a morphism of rings.

A less obvious property of localization than those we have considered until
now is the following.

Proposition 2.4

Let M' — '—»M —2-»Af" be an exact sequence of R-modules. If S is a multiplicative
subset of R, then the sequence of Rs-modules M's—^Ms—^Ms is also exact.
Hence, if . . .-»Af+,-»Af-»Af-,-»Ml-2-»- . . is an exact sequence of R-modules,
then »(M.,)s-»(M)s-»(Af,-,)s-»(Af,-2)s-»' " ' is an exact sequence of Rs-
modules.

PROOF: Because fg = 0, we have by Basic Properties 2.3 that 0 = (g/)s = gsfs-
Thus, Im/s CKergs- We now show that Kergs Clm/s.
Suppose gs(mls) = 0. Then g(m)/s=0. Hence, there is an element s' in S

such that s'g(m) = 0. Therefore, g(s'm) = 0, which means s'm =/(m') for some
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m' in Af' because Im/=Kerg. From this it follows that fs(m'ls's)=mls, which
implies Im/sDKergs.
The rest of the proposition is a formal consequence of what we have shown.

We now turn our attention to studying the relation between the R-
submodules of the R-module Af and the Rs-submodules of the Rs-module Ms.
This situation is very similar to that considered in Chapter 5 for ideals in integral
domains.

Suppose Af is an R-module and that N is an Rs-submodule of Afs. We denote
by Af nN the preimage of N under the morphism Af-»Afs. Because Af-» Ms is a
morphism of R-modules, M D N is a submodule of Af. Therefore, by Proposition
2.4, (Af n N)s is an Rs -submodule of Afs.

Proposition 2.5
The Rs-submodule (Af D N)s of Afs is the Rs-submodule N of Ms.
PROOF: First we show that (Af n N)s CN. Each element in (Af D N)s is of

the form mls with m in Af D N and s in S. Because m is in N and N is an
Rs-submodule of Ms, we have shown that mIs = (lls)(m) is in N. Hence,
(MnN)sCN.

We now show that (Af D N)s D N. Let y be an element of N. Then y = mIs
for some m in Af. Because sy is in N, m is also in N. Thus, m is in Af D N and so
mls is in (Af D N)s.

Corollary 2.6
If Af is a noetherian R-module, then Afs is a noetherian Rs-module. In particular,
if R is a noetherian ring, then Rs is a noetherian ring.

PROOF: We need only show that each Rs-submodule N of Afs is a finitely
generated Rs -module. We know by Proposition 2.5 that N = (Af n N)s. Because
Af is a noetherian R-module, Af D N is a finitely generated R-module. Therefore,
by Proposition 2.2, we have that (Af n N)s, and hence N, is a finitely generated
Rs-module.

We know that if Af' is a submodule of an R-module Af, then (Af')s is an
Rs-submodule of Afs. In order to investigate the connections between the R-
submodules Af ' and (Af')s n Af, it is convenient to introduce the following.

Definitions
Let S be a multiplicative subset of a ring R and Af an R-module.

(a) The kernel of the canonical morphism Af-»Afs is called the S-torsion sub-
module of Af and is denoted by rs(Af ). Af is an 5- torsion module if Af = fs(Af ).
Af is S-torsionless if fs(Af) = 0.

(b) If Af'is a submodule of Af, then the S-closure of Af ' in Af is the preimage of
the S-torsion submodule of Af/Af' under the canonical morphism Af-»Af/Af'.
The S-closure of Af' in Af is denoted by Ct(Af'). Af' is S-closed if Af

' =

C/s (Af').
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Basic Properties 2.7

(a) ts(M) is the set of all m in M such that sm - 0 for some s in S.
(b) ts(M) is an S-torsion module and Mlts(M) is S-torsionless.
(c) Cls(M') is the set of m in M such that sm is in Af' for some s in S. Cls(M') is
S-closed and MICls(M') is S-torsionless.

(d) If 0-»Af'-»Af-»Af"-»0 is an exact sequence of J?-modules, then 0-»Af'-». /
C/s(Af')-»fs(Af")-»0 is exact. Hence, the morphism Afi-»(C/s(Af'))s is an
isomorphism.

PROOF: We prove the last part of (d). Because 0-» M' -» C/s(Af ')-» fs(Af")-»0
is an exact sequence of R -modules, we know by Proposition 2.4 that the sequence
of Rs-modules 0-»(Af')s-»(Cys(Af'))s-Kfs(Af"))s-»0 is exact. But

(fs(M"))s=0 because fs(Af") is an S-torsion module. Hence, 0-»(Af')s-»
(Cls(M'))s -»0 is exact which means that (Af')s -»(Cls(M'))s is an isomorphism.

We return to the problem of describing Afi n Af for submodules Af ' of Af.

Proposition 2.8
For each submodule Af' of Af we have that AfinAf = C7s(Af').

PROOF: Clearly, AfinAf contains Af'. If x is an element of Afi flAf, then
x = m'Is with m' in Af'. Hence, sx = m' is in Af'. Because x is also in Af, we see
that AfinAfcas(Af').
Suppose x is in C/s(Af'). Then x is in Af and sx = m' in Af' for some s in S.

Thus, x = m'ls in Afi which implies that x is in AfinAf. Therefore, Afin
AfDCMAf') which finishes the proof that AfinAf = C/s(Af').

Corollary 2.9
If N is an Rs-submodule of Afs, then NnAf is S-closed.

PROOF: We know that N = (N n M)s by Proposition 2.5. Therefore, N n Af =
(NnAf)snAf which is S-closed by Proposition 2.8.

Corollary 2.10
Suppose $ is a prime ideal in R and S a multiplicative subset of R.

(a) % = Rs if and only if S n $ ± 0.
(b) If Sn$ = 0, then:
(i) ty is S-closed.

(ii) tys is a prime ideal of Rs.

We summarize all of these results in the following.

Theorem 2.11
Let S be a multiplicative subset of R.

(a) If Af is an R-module, then the map from the set of submodules of Afs to the set
of S-closed submodules of Af given by N i-» N n Af is a bijective map of sets.

(b) The map from the set of prime ideals of Rs to the set of prime ideals of R
which do not meet S given by $,-»5gnR is a bijective map of sets.
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PROOF: (a) follows from previous discussion.

(b) follows from previous discussion once one makes the following observa

tion. If $ is a prime ideal of Rs, then ty fl R is a prime ideal of R because it is the
preimage of ^ under the ring morphism R-»Rs. That tyCR does not meet S
follows from the fact that ($ fl R)s = ty ± R.

3. APPLICATIONS OF LOCALIZATION

We now give some illustrations of how localization can be used. Some of these

results will be used later on.
We have seen that ideals contained in the radical of a ring have some special

properties. In fact an ideal / is in the radical of a ring R if and only if 1+ a is an
invertible element of R for all a in /. Hence, if / is an arbitrary proper ideal in a
commutative ring R and S is a multiplicative set of R containing all elements of
the form 1+ a where a is in /, then the ideal Is of Rs is either all of Rs or is in the

radical of Rs. Because Is = Rs if and only if / D S ± 0, it is desirable to find such a
multiplicative set S with the property that S n / = 0.
But this is easily accomplished because the set S of all elements of the form

1+ a with a in / is a multiplicative subset of R which clearly does not meet /.

Lemma 3.1
If / is a proper ideal in a ring R and S is the set of all elements 1 + a with a in /,
then:

(a) S is a multiplicative subset of R.

(b) Is is contained in the radical of Rs.

We now apply this to the following situation.

Proposition 3.2

Let M be a finitely generated R -module and / an ideal of R such that IM = M.
Then there is an element a in / such that am = m for all m in M.

PROOF: Let S = {l + a}„e;. Then because M=IM, it is easy to show that
Ms = IsMs- Because Ms is a finitely generated Rs module and by Lemma 3.1 we
know that Is Crad(Rs), it follows that Ms = 0, that is, M is an S-torsion module.
Let m ,,..., m, be a finite set of generators for the R -module M and let $u . . . , s,

be elements of S such that sim, = 0for i = 1, . . . , t. Then s = II s, is an element of

s such that sm, = 0 for i = 1, . . . , f. Because m,, . . . , m, generate M over R, it
follows that sm = 0 for all m in M. But s = 1 - a for some a in I; hence, am = m
for all m in M.

Because our next illustration involves integral domains, we introduce some
standard simplifications of terminology.
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Definition

Let R be an integral domain and S the multiplicative subset of nonzero elements
of R.

(a) An /{-module is said to be a torsion module if it is S-torsion.

(b) A module is said to be torsion-free if it is S-torsionless.

Proposition 3.3
If R is an integral domain and M is a finitely generated torsion-free R -module,
then Af is isomorphic to a submodule of a finitely generated free module.

PROOF: Let {mi , m,} be a set of generators for M. Among the linearly in
dependent subsets of {m,, . . . , m,}, choose a maximal one and let us say it is

{m , m,}. Because M is torsion-free, any set consisting of one nonzero ele
ment is linearly independent; so clearly, f>l. For each i>l, we have that
{m,, . . . , m„ m,+,} is a linearly dependent set, so we can find rM, .... ru, «, in R with
v, =#0 such that vml+, = 2,'-, r^tni. Let v = u, . . . v,-,. Then v =f=0 and »m,+, =

2J., aum, where an = (vlv,)r0 E R.
Hence, vMCF, where F is the free R-module generated by {m,, . . . , m,}. It is

easily seen that the map f:M-»F given by f{m)=vm for all m in M is a
morphism of R -modules. Because M is torsion-free and v is a nonzero element in
R, f:M-»F is an injective morphism. Hence, /0:M-»Im/ is an isomorphism,
which completes the proof.

In the following example we show that the restriction in Proposition 3.3 that
the torsion-free module M be finitely generated is essential.

Example 3.4 Let R be an integral domain which is not a field, and let K be its
field of quotients. Then K is a torsion-free R-module. We shall show that K
cannot be a submodule of a free module. If it were, say K CF where F is a free
module, and let X - {x„} be a basis for F. For each y £ K, let r„ (y ) £ R be defined
by y = 2 r„(y)x„. The map r„ :K-»R is well defined because {x„} is a basis for F,
and clearly r„ is a morphism of K to R for each a. Because K ± 0, we must have
r»(y) =£0 for some y £ K and some a. However, every morphism from K to R is
zero. If we grant this fact, it then follows that r„(y) = 0 for all y £ K and this
shows that K cannot be a submodule of a free module. To see that every mor
phism of K into R is zero, suppose we have f:K-»R and / is not zero.
First we show that Im / £ 0 implies Im / = R. Let a be a nonzero element of

R. Because aK - K, it follows that }{K) = f(aK) = af(K). Letting a be a nonzero
element in f(K) we know there is a b in f(K) such that ab = a. Because a =f

=

0
,

this implies b = 1 and hence f(K) = R.
Because f(K) = R, we have by our previous observation that aR = R for all

nonzero a in R. This implies that R is a field, which contradicts our original as
sumption.

Our final illustration involves the notion of a local ring which we now define.

Definition

A commutative ring R is called a local ring if it has only one maximal ideal J. The
field RIJ is called the residue class field of the local ring R.
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Basic Properties 3.5
Suppose R is a local ring with maximal ideal J.

(a) J is the radical of R.
(b) J is the set of all nonunits of R.
We now give some examples of local rings.

Example 3.6 Any field is a local ring with (0) as unique maximal ideal.

Example 3.7 We have already seen that if $ is a prime ideal of R, then
S = R - y$ is a multiplicative subset of R. The ring Rs is a local ring with tys its
unique maximal ideal, as can be seen by applying Theorem 2.10.

This construction is so prevalent in commutative algebra that it has been
given a special name and notation.

Definition
Let $ be a prime ideal in the ring R. The local ring Rs when S = R - *$ is called the
local ring of $ and is denoted by Rv. Moreover, for each R-module M. the
Rv-module Ms is denoted by Mv. Similarly, if f:M-»N is an R-morphism, the
Rv-morphism fs:Mv-»Nv is denoted by /».

It is clear that $v = tyRv is the radical of the local ring Rv. This follows from
the bijective correspondence that we have exhibited between prime ideals of R
not meeting R - ty and the prime ideals of Rv.
The following theorem, as innocuous as it may seem, gives us one of the most

important tools in commutative ring theory.

Theorem 3.8
Let M be an R-module. Af = 0 if and only if Mv = 0 for all maximal ideals $ of R.

PROOF: Obviously, if M = 0, then Mv = 0 for all maximal ideals $ of R.
Suppose Mv = 0 for every maximal ideal $ of R. This means that for each m

in M and each maximal ideal ty, there is an element s in R - ty such that sm = 0. If
M =

f= 0
,

choose a nonzero element m in M. Let / = ann(m ). Then / is not all of R

and is therefore contained in some maximal ideal 9J. However, because Mv = 0
,

there is an s in R - 5$ such that sm = 0. Hence, s is in /. But 95 D /, so we have a

contradiction.

As one indication of how this theorem is used we prove the following.

Proposition 3.9
An R-morphism f:M-»N is the zero morphism if fv : Afv-» Nv is the zero mor-
phism for every maximal ideal $ of R.

PROOF: We prove this by showing that for any multiplicative subset S of R,
we have (Im/)s = Im(/s).
Suppose x is in (Im/)s. Then x=f(m)ls for some m in M and s in S. But

f(m)ls=fs(mls). So x is in Im(/s). Conversely, if x is in Im(/s), then x=fs(mls)
for some mls in Ms. But fs(mls) = f(m)ls which is in (Im/)s. So x is in (Im/)s.
Hence, (Im f)s = Im(/s).
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Returning to our proposition, the assumption that fa - 0 for all maximal ideals
$ of R implies that Im(/«) = 0 for all ty. Because Im(/«) = (Im /)«, we have that
(Im f)v = 0 for all maximal ideals $ of R. By Theorem 3.8, we know that Im / = 0
and hence / = 0.

Corollary 3.10
Let f:M-»N be a morphism of R-modules.

(a) / is a monomorphism if and only if /« is a monomorphism for all maximal
ideals $ in R.

(b) / is an epimorphism if and only if fv is an epimorphism for all maximal ideals
q$inR.

(c) / is an isomorphism if and only if /« is an isomorphism for all maximal ideals
q$ inR.

4. TENSOR PRODUCTS

As in the rest of this chapter, all rings are assumed to be commutative unless
specified otherwise.

In Chapter 6, Section 2, we discussed in some detail the notion of a bilinear

map of modules over a commutative ring. In this section we show how the tensor
product of two R-modules A and B converts the study of bilinear maps on A x B
to the study of morphisms of the tensor product of A and B.

Definition
Let A and B be R -modules. A tensor product of A and B is an R-module T(A, B)
together with a bilinear map tj:A xB-»T(A, B) satisfying the following condi
tion:

For each R-module C and each bilinear map B: A xB-»C there exists a
unique morphism of R-modules fi:T(A,B)-»C such that P( = B.

Recall that if A, B, and C are R-modules, then B(A x B, C), the group of all
bilinear maps from A x B to C, is an R-module (see the end of Chapter 6, Section
2). Moreover, if £ : A x B -» T(A, B) is a tensor product of A and B, then for each
R-module C we define the map ip(C) :Hom„(T(A, B), C)-»B(A x B, C) by <p(C) x

(6) = B$ for all B in HomR (T(A, B), C). It is not difficult to show that each <p(C) is
an R-morphism. We further make the convention that if X and Y are R-modules,
we will denote the R-module HomR(X, Y) by R(X, Y) or (X, Y), depending on
whether we want to emphasize the ring R or not.

Basic Properties 4.1
Let A and B be R-modules.

(«) For each R-module C, the R-morphism <p(C):(T(A, B), C)-»B(AxB, C) is
an isomorphism.

(b) If f ' :A x B -» T'(A, B) is another tensor product of A and B there is a unique
R-morphism h : T(A, B)-» T"(A, B) such that h( = f '. This unique morphism b
is an isomorphism of R-modules.
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PROOF: (a) This is essentially a recapitulation of the definition of tensor

product.

(b) Because f':A xB-»T'(A,B) is a bilinear map, we know there is a
unique R -morphism h : T(A, B)^T'(A, B) such that h( = $'. Because
$':A xB-»T'(A, B) is a tensor product of A and B, we have the isomorphism
<p'(C):(T(A,B),C)-»B(AxB,C) for each R-module C. We know that the
morphism h : T(A, B)-» T (A, B) induces a morphism (/i, C):(T'(A, B), C)-»
(T(A, B), C) for each R-module C. We leave it to the reader to check that for each
R -module C, the diagram

(T'(A, B), C)
"cl »B(A x B, C)

(T(A, B), C)
*'cI »B(A x B, C)

commutes. The fact that the horizontal morphisms are isomorphisms implies that

(h, C):(T{A, B), C)-»(T(A, B), C) is an isomorphism for every R-module C. By
Chapter 6, Basic Property 3.3 this implies that h is an isomorphism.

Having explained in what sense tensor products of R -modules are unique, we
now show that every pair of R -modules has a tensor product.
Associated with any map of sets B : A x B -» C of the underlying set of the

R -modules A, B, and C is the unique R -morphism B':F(A xB)-»C satisfying
B'\A x B = B where F(A x B) is the free R -module generated by the set A x B.
It is obvious that B:AxB^C is a bilinear map if and only if the following ele
ments of F(A x B) are in Ker fl':

(i) (a, b) + (a, b') - (a, b + b') for all a in A and b, b' in B.
(ii) (a, b) + (a', b)-(a + a',b) for all a, a' in A, and b in B.
(iii) (ra, b) - (a, rb) for all r in R, a in A, and b in B.
(iv) r(a, b)-(ra, b) for all r in R, a in A, and b in B.

Let K(A x B) be the submodule of F(A x B) generated by the elements de
scribed in conditions (i), (ii), (iii), and (iv) above. One easily verified property of

the submodule K(AxB) of F(A xB) is the fact that the composition A x
B -**-» F(A x B)— *-» F(A x B)IK(A x B) is a bilinear map. Letting A®B =

R

F(A xB)IK(AxB) and £:AxB-»A®B the bilinear map fc(inc), we verify
K

that the pair consisting of the R -module A(g)B and the bilinear map $:AxB-»
R

A®B is a tensor product of A and B.
R

First observe that because AxB generates F(AxB), the image of $
generates A®B. Now suppose that B:AxB-»C is a bilinear map. Then by our

R

previous discussion, the R-morphism B':F(A x B)-»C contains K(A x B) in its
kernel. Hence, there is a unique R-morphism fi:A®B-»C such that fik = B''.

R

But B$ = /3fc inc = B' inc = 0'|A x B = 0. Thus, we have shown that given any
bilinear map B:AxB-»C there is an R- morphism J3 :A® B -» C such that /3£ =
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B. Because we already know that Im £ generates A®B, /3 : A® B -» C is the only
R s

R -morphism satisfying fif = 0. This completes the proof that f :A xB-»A®B
is a tensor product.

Definition
Let A and B be R -modules. We call the tensor product $ : A x B -» A® B the
standard tensor product. For each element (a.h) in A x B. we denote the element
£((a,b)) by a®b.

Basic Properties 4.2
Let A and B be R -modules.

(a) The set of all elements of the form a® b generates A®B.
R

(b) a®(b, + b2) = a®b, + a®b2, (a, + a2)®b = a,®b + a2®b, ra®b =

a®rb = r(a ®b) for all a, a,, a2 in A, all b, bu b2 in B, and all r in R.
(c) 0® b=0 = a®0 for all a in A and b in B.
(d) -(a®b) = (-a)® b = a®(-b) for all a in A and b in B.

PROOF: Left as an exercise.

Proposition 4.3
Suppose {a,},e, is a set of generators for the R-module A and {b,},ey is a set of
generators for the R -module B. Then:

(a) The elements {a,® b,}i,.ile;x;are a set of generators for the R -module A® B.
(b) Let C be an R-module and let /:{a,®bi}uiieixi-»C be a map of sets. Then
there is an R -module morphism g:A®B-»C with the property g(a,® b,) =

R

/(a,® bi) for all (i
,
;'
) £ / x J if and only if:

(i) /((a,1 + afe)®b,) = /(a,,®bl) + /(a,2®b,) for all i,
,
i2 in I and / in J.

(ii) /(a,®(fe,, + bfc)) = /(a, ®b,,) + /(a,®bfc) for all i in / and /,, U in J.

(iii) /(rft®bi) = /(a,® J*,) = r/(a,®bi) for all r in R, i in /, and ;' in J.

Further, if the map /:{a,® bi},-! -» C satisfies the above condition, then there

is only one R -module morphism g:A®B-»C such that g(a,®bi>=
/(a,® b,) for all (i, /) £ / x J.

PROOF: Good exercise.

We now give some examples to illustrate these ideas.

Example 4.4 For each R -module B, there is a unique R -isomorphism
f:R®B-»B having the property f(r®b) = rb for all r in R and b in B. This

K

unique isomorphism is often considered an identification of R -modules.

PROOF: It is easily checked that the map /' : R x B -» B given by /'(r, b) = rb
for all r in R and B is a bilinear map. Hence, there is a unique R -morphism
f:R®B-»B such that /(r® ii) = rb.

On the other hand, it is easily shown that the map g:B-»R®B given by
g(b)=l®b for all b in B is also an R -morphism. But g/(r®b) = g(rb) =
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1® rb = r® b for all r in R and b in B. This implies that gf = idR ,3B because the
elements of the form r® b generate R® B. Also, /g(b) = /(l ® b) = b for all b in
B. Hence, /g = id«. So / is an isomorphism with /"' = g.
Example 4.5 Let M be an R -module and / an ideal of R. Then there is a

unique R -isomorphism /:(R//)® M^MIIM satisfying /(fc,(r)® m) = k2(rm)
R

where k , :R -» R l1 and fc
2
: M -» MUM are the canonical surjective R -morphisms.

PROOF: First observe that if k,(r) = k,(r'), then k2(rm) = k2(r'm). Hence, we
have a map /':R// x M-»MIIM given by /'(Jfe,(r), m) = fc2(rm) for all r in R and
m in M. Straightforward calculations show that this is a bilinear map. Therefore,

there is a unique R-morphism /:R//®M-»M//M satisfying f(k,(r)®m) =

R

k2(rm) for all r in R and m in M.
On the other hand, consider the map g

'
:M-»R //® Af where g'(m) =

R

fc,(l)® m for all m in M. This map is easily seen to be an R-morphism. Suppose a

is in / and m is in M. Then g'(am) = fc,(l)® am=afc,(l)® m=0® m=0. Hence,
Ker g ' D /M. Therefore, we have an R -morphism g :MIIM -» R //® M such that

R

g (fc2(m )) = fc,( 1 )® m for all m in M. The reader can verify, as in Example 4.4, that

g
f

and fg are identity maps. Hence, / is an isomorphism.
Example 4.6 Suppose f:R-»R' is a ring morphism. Because R' is an R-

module, for any R -module M we have R'®Af. Then for each element r' in R,I

there is a unique R-morphism fr=R'®M-»R'®M having the property

R R

j, (X® m) — r'x®m for every x in R' and m in Af.
- Moreover, the map R' x (R'®M)-»R'®M given by (r',y) = /,(y) for all

R R

r' in R' and y in R'® M is an R '-module structure on R'®M.

R R

In connection with this example we make the following convention. If Mis an

R -module and f :R-»R' is a ring morphism, the only R -module structure we will
consider on R ' ® M is that described above.

R

s

Example 4.7 Let S be a multiplicative subset of a ring R. For each R -module
M, there is a unique Rs -isomorphism f:Rs®M-»Ms such that f(rls®m) =

R

rmls for all r in R, s in S
,

and m in M. This isomorphism is usually considered an

identification of Rs -modules.

PROOF: First observe that the map f':Rs xM-»Ms given by /'(r/s, m) =
rmls is a bilinear map of R -modules. Hence, there is a unique R-morphism

/ : Rs® M^Ms such that f(rls®m ) = rmls. Next, observe that / is not only an

R

R-morphism but also an Rs-morphism.
Now define a map g':M x S-»Rs®M by g'(m, s)= \ls®m for all m in M

R

and s in S. Recalling that M x S is an R-module by means of the operation
r(m, s) = (rm, s), it is easily seen that g
'
is an R-morphism. Moreover, the sub-
module N, consisting of (m, s) such that s'm = 0 for some s' in S

,
is contained in
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Kerg'. For, if s'm = 0, then g'(m, s) = 1/s® m = s'lss'® m = \lss'® s'm
= 1/ss'®0=0. Hence, g' indicates a unique R -morphism g :Ms -»Rs® M

R

(recall that M, = M x SIN). The reader should now be able to verify that gf and
fg are identity maps. This shows that / is an Rs -isomorphism with /"' = g.
Example 4.8 If A and B are R -modules, then there is a unique R-

isomorphism / : A® B-»B® A such that f(a® b ) = b®a for all a in A and b in
* R

B. In case A = B, notice the morphism / : A® A -» A® A is not necessarily the
R R

identity morphism.

Example 4.9 If A, B, and C are R -modules, there is a unique R -isomorphism
f:(A®B)®C^A®(B®C) satisfying f((a® b)®c) = a® (b®c) for all a in

R R

A, b in B, and c in C. This isomorphism is usually regarded as an identification.

PROOF: Consider the map f:AxB xC-»A®(B®C) given by
R R

f((a,b,c)) = a®(b®c). For each c in C, we obtain the map f":A®B-»
R

A®(B®C) given by /'c'((a, b)) = /"((a, b, c)) = a®(b® c). ft is a bilinear map
R R

for each c in C. Hence, for each c in C, there is a unique R -morphism f'c:A®B-»
R

A®(B®C) satisfying f'A,a®b)= a® (b®c).
R

Define the map /' :(A® B) x C -» A® (B® C) by /'((x, c)) = /&c) for each x
R R R

in A®B and c in C. Notice that if x = a®b, then f'((a®b, c)) = a®(b®c).
The reader should verify that /' is a bilinear map. Hence, there is a unique R-
morphism f :(A®B)®C-»A®(B®C) such that f((a®b)®c) =

R R R

f'((a®b,c)) = a®(b®c).
A similar argument shows that there is a unique R -morphism

g:A®(B®C)-»(A®B)®Csuch that g(a®(b® c)) = (a® b)® c. It is then
R R R R

easy to show that g/and /g are identity morphisms. This finishes the proof of the
example.

Example 4.10 Let A and B be R -modules and S a multiplicative subset of R.
Then the Rs- morphism f:As®B -» A® Bs given by f(als®b) = (a® bIs) for

R R

all a in A, b in B, and s in S is an isomorphism of Rs -modules.

PROOF: This follows from the preceding example, because As® B =
R

(A®Rs)®B=A®(Rs®B) = A®Bs where all the equalities are our agreed
R R R R R

upon identifications as R -modules. The reader can check easily that these are

Rs -isomorphisms and that the resulting identification As®B = A®Bs is given
R R

by the above morphism /.

Example 4. 11 Let / : R -» R ' be a ring morphism. Then there is a unique mul
tiplication on the abelian group R' ®R' satisfying (ri® rty(r',® ri)= r\r',® r^r',
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which makes R'®R' a commutative ring with 1 = 1®1. Further, the mapI
m :R'®R'-»R' given by m(r\®r'2) = rjr5 is a surjective ring morphism.

R

PROOF: This result can be established using techniques similar to those em
ployed in Example 4.9.

Example 4.12 Let S be a multiplicative subset of a ring R. By the preceding
example, Rs®Rs is a ring. The surjective ring morphism m :Rs® Rs -»Rs given

R R

by m(rls®r'ls') = rr'lss' is an isomorphism of rings, which we consider an
identification.

PROOF: it is easily checked that the map h : Rs -» Rs® Rs given by h(rls) =
R

r/s® 1 is a morphism of rings. We now show that hm = id^^Rs. Because h and m
R

are also R -module morphisms, it is sufficient to show that hm(rls® r'ls') =

rls® r'ls' for all r, r' in R and s, s' in S because the elements rh® r'ls' gener

ate Rs®Rs as an R -module. Now hm(rls®r'ls') = h(rr'lss') = rr'lss' ®\. But
R

rls® r'ls' = rs'lss' ® r'ls' = rlss' ® s'r'ls' = rlss'® r'l\ = rr'lss'® 1. Hence,
hm(rls® r'ls') = rls® r'ls' for all r, r' in R and s, s' in S. So hm = idRs®^ and

m is therefore injective. This shows that ,n is an isomorphism.

5. MORPHISMS OF TENSOR PRODUCTS

Suppose we are given R -morphisms f:A-»A' and g :B -» B ' . We consider in this
section how these morphisms may be put together to obtain an R -morphism from
A®B to A'®F.
R R

We observe that the map h :A x B -» A' ®B' given by h((a, b)) =
R

Ka)®g(b) for all a in A and b in B is a bilinear map. Hence, there is a unique
R-morphism h :A®B -» A' ® B' such that h(a® b) = h((a, b)) = f(a)®g(b)
for all a in A and b in B.

Definition
Suppose that /: A -» A' and g :B -»B' are R -module morphisms. The unique R-
morphism from A®B to A'®^ given by a® b -»f(a)®g(b) is denoted by

R R

f®g and is called the tensor product of / and g.
If g = idB, we will often write /® B instead of /® idB, similarly, for / = idA.
The notation f®g is suggestive, because (f®g)(a ® b) = f(a)®g(b) for

all a in A and b in B. We now list some easily verified properties.

Basic Properties 5.1
Let A, A' and B, B' be R -modules.

(») (/,+/2)®g=/,®g+/2®g for all R-morphisms /,,/2:A-»A' and all R-
morphisms g:B-»B'.
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(b) /®(g, + g2> = /®g,+/®g2 for all R -morphisms /:A-»A' and all R-
morphisms g,, g2 :B-»B'.

(c) rf®g=/®Jg = r(/®g)forall r in R, /£(A, A'), g £(B, B'). Hence:
(d) The map (A, A')x(B,B')-»(A®B, A'®B') given by (f,g)-»f®g is
bilinear.

In addition, we also point out the following.

Basic Properties 5.2
Let A, A', A" and B, B', B" be R -modules.

(a) Suppose /,:A-»A', f2:A'-»A" and g,:B-»B', g2:B'-»B" are R-
morphisms. Then (/2/,)®(g2g,) = (/2®g2)(/,®g,).

(b) idA®idB =idAglB-

(c) If /: A -»A' and g:B-»B' are isomorphisms, then (/®g): A® B -» A'® B
is an isomorphism with inverse /'®g_l.

Proposition 5.3
If 0-»M'— '-+M—*-»M"-»0 is a splittable exact sequence of R -modules, then for
any R-module B, the sequence 0-»B®Af' ld,'a;»B®M ^ »B®Af"-»0 is

R R R

also a splittable exact sequence of R -modules.

PROOF: The fact that 0-» Af '—'--»M—^Af "-»0 is a splittable exact sequence
means that there are morphisms s and t such that s/ = idM, gt = idM-, st = 0,

and /s + fg=idM. Hence, idB®s and idB®f have the following properties:
(idB®s)(idB®/) = id„®M, (idB®g)(idB®f) = idBglM., (id„®s)(idB®0 = 0, and

(idB®/)(idB®s) + (idB®f)(idB®g) = idB0M. Because (idB®/)(idB®g) = 0, it

follows from Chapter 6, Basic Property 10.6 that 0-»B®M'———»
R

B®M—:—»B® M"-»0 is an exact splittable sequence of R-modules.
R R

We now show how Example 4.6 can be generalized using these notions.

Example 5.4 Let f:R -»R' be a ring morphism. Suppose M is an R-module
and M' is an R '-module. Then M' is also an R-module and we have the R-module
M'®M. For each r' in R', the map f,:M' -»M' given by fAjn') — r'm' is an
R

R -morphism. Therefore, for each r' in R', we have the R -morphism
/, ® 1M:M'®M-»M'® M. From Basic Properties 5.1 and 5.2 it follows that the

R R

map R'x(Af'®Af)-»M'®M given by (r',x)-»(/, ® lM)(x) is an R'-module
R R

structure on M' ® Af. Simplifying notation, the operation of R' on Af
'
® Af is

R

uniquely determined by r'(m'®m) = r'm'® m for all r' in R', m' in Af', and m
in Af. Thus, if x = 2?., m',®m, is an arbitrary element of Af'® Af, then r'x =

R

2r., r'm',®m,. The reader should check that when Af' = R', the R'-module

R'® Af we just described is the same as that of Example 4.6.
R
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As with Example 4.6, we make the convention that M' ® M will be consi
dered an R '-module only as described in Example 5.4.

Example 5.5 Let / : R -» R ' be a ring morphism. If g :M \ -» M 5 is a morphism
of R'-modules and h:M,-»M2 is a morphism of R -modules, then the R-
morphism g® h :M \® M, -» M'2 ® M2 is also an R '-morphism. This and the obvi-

R

ous analogs of Basic Properties 5.1 and 5.2 for this situation involving both R'-
and R -modules are left to the reader to verify.
Our next proposition is concerned with the following situation.

Let f:R -»R' be a ring morphism. Suppose A is an R -module and B', C are
R '-modules. If g :B'®A-»C is an R '-morphism, then for each a in A, define the

R

mapg„ :B'-»C by g„(b') = g(b' ® a). It is easy to see that g„ is an R'-morphism,
that is, g„ is in HomR (B', C). Because HomR (B', C) is an R'-module, it is also
an R -module. Letting ,/»(g): A -»HomB (B', C) be the map given by [<Mg)](a) =
g„, it can be shown that ,/»(g) is a morphism of R-modules.
We can therefore define a map ,/

» :HomR(B'® A, C')-»Hom,t

(A, HomR (B', C')) by g -» ,/»(g). Again the reader can check that this map ,^ is a

morphism of abelian groups, that is, ,^(g, + g2) = <A(g,) + ,A(g2).
Next we observe that not only is HomR(B'® A, C) an R'-module, but

R

HomR(A, HomR (B', C)) also has a natural R'-module structure. To see this we
observe that if X' is any R'-module, then the map R' xHomR(A, X')-»
HomR(A,X') given by (r',f)-»r'f, where (r'/)(a) = r'(/(a)), is an R'-module
structure on HomR(A, X'). Letting X' = HomR (B', C), we obtain the R '-module
structure on HomR(A, HomR(B', C)) we wanted. We leave it to the reader to
check that the morphism of abelian groups ,/»:HomR(B'® A, C)-»

R

HomR(A, HomR (B', C") is also a morphism of R '-modules.

Proposition 5.6
Let f:R-»R' be a ring morphism. If A is an R-module and B', C are R-
modules, then the morphism of R'-modules ,/»:HomR(B'® A, C')-»

R

HomR(A,HomR(B',C')) given by [^(g)(a)](b') = g(b'®a) for all g in
HomR(B'® A, C), a in A, and b' in B' is an isomorphism of R '-modules.

R

PROOF: We first show that (/» is a monomorphism. Suppose ,/»(g) = 0. Then
<A(g)(a) = 0 for all a in A. This means that for every b' in B' we have [«Mg)(a)]
(b') = 0 for each a in A. Because [,A(g)(o)](b') = g(b'® a)), it follows that
g(b'®a) = 0 for all elements b'®a in B'®A. Hence, g=0, because the ele
ments b'®a generate B'®A. Thus, Ker</»=0 so ,^ is a monomorphism.

R

To show that ,p is surjective, let h : A -»HomR(B', C) be an R-morphism.
Define a map g':B'x A -»C by g'((b', a)) = [h(a)](b'). The reader can check
that g
'
is a bilinear map of R -modules. Hence, there is a unique R -morphism
g:B'®A-»C such that g{b' ® a
) = g'((b', a)) = [h(a)](b'). To see that g is an

R '-morphism and not just an R -morphism, we first recall that an element of
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B'® A is of the form 2"_, b',® a,, and

r'('Zl>'l®a)='2r'b'l®al

for all r' in R'. Hence,

=2g(r'ii:®a,) = i>(«<)(r'b:)~ - 1-,

= g r'(/i(a,))(b.))= r'«(g b',® a
,)
).

The reader can check easily that </»(g) = h, which shows that $ is surjective
and hence an isomorphism.

As an immediate consequence, we have the following.

Corollary 5.7

If A, B, and C are R -modules, then the R -morohism

<
p
: HomR (B®A,C)^ HomR (A, HomR (B,C))

r R

given by

lMg)(a)\{b) = g{b®a)

for all g in Homi!(B® A, C), a in A, and b in B is an isomorphism.

Another important consequence of Proposition 5.6 is the following.

Proposition 5.8
Let {/, : A, -» A },eJ be a sum for the family of R -modules {A },eJ. If V : R -» R ' is a
ring morphism and B is any R '-module, then the family (/,®idB : A®B-»
A®B},ei is a sum of the family {A®B},e, of R'-modules.

R R

-PROOF: We have to show that for each R '-module C, the morphism of
R'-modules <

p

:HomR(A® B, C)-»n HomR(A®B, C), given by <p(g) =

R le, R

{g(f,®idB)}leh is an isomorphism of R -modules. We do know that

4
> :HomR(A® B, C)-»HomR(A, HomR(B, C)) is an isomorphism of R -modules.

R

Because A is a sum of the A's we have the R '-module isomorphism
<p':HomR(A, HomR(B, C))-»IIHomR(A„HomR(B, C)) given by <p'(/i) =

{b/},eJ. Applying Example 5.5, we also have the R '-module isomorphisms
</»r':HomR(A, HomR(B, C))-»HomR(A® B, C) for each i in /. This gives the

R '-module isomorphism

fl <Ar' :f[ HomR(A„ HomR(B, C))-»H HomR(A® B, C)
Tel

defined by

n^r'({/iiW) = {^rl(/i,)},<
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Hence, the proposition is established if we show that the morphism <p:

Horn* (A® B, C)-» n HomR (Ai® B, C)) is the composition of the isomorphisms
R 1EI R

HomR (A® B, C)-^*Hom„(A, HomR (B, C))^-»

n Hom^A, Horn* (B, C)) '"'*" >Y[ Horn, (A® B, C).e;

Using the following observations, the reader should be able to write a
complete proof of this fact. The proof boils down to showing that ,Ar'(<Kg)/) =

g(/®idB) for all i in /. For any h, in Hom„(A, HomR(B, C)) we have $j\h,)
(a<®b) = [/i,(a,)](b). Hence, ^r'Wg)/,)(a<® b) =W«)/l(a,)P) =W«)x
Ui(a,))](b) = g(/,(a,)® b) = g(/,® idB)(a,® b).

Corollary 5.9
If v :R -»K' is a ring morphism and F is a free R -module with basis B, then
R®F is a free R '-module and the set {l®ii}teB is a basis for the R '-module
R

R®F.
R

PROOF: Using Example 1 1.8 of Chapter 6, this follows directly from Proposi
tion 5.8.

As an application of this corollary, we have the following.

Proposition 5.10
Let v :R -» R ' be a ring morphism. If M is a projective R -module, then R ' ® M is

5

a projective R '-module.

PROOF: Because a module is projective if and only if it is a summand of a free
module, there is a free R -module F such that F = M U N for some R -module N.
By Proposition 5.8 we know that R'®F=R'®MIIR'®N. Hence, R' ® M is a

I! R R R

summand of the free R '-module R ' ® F. Thus, R' ® Mis a projective R '-module.
R R

We conclude this section by showing that if A'-» A -»A"-»0 is an exact se
quence of R-modules and B is an R-module, then A'®B-»A®B -» A"®B-»0

R R R

is also an exact sequence of R -modules.
Suppose v :R -»R' is a ring morphism. If /: A,-»A2 is a morphism of R-

modules and B and C are R '-modules, the following diagram of R '-modules is
commutative:

Hom„.(B® A3, C)-^-»HomR(A2,HornR(B, C))
R

H0mR.i,lJ»®;.O HlH0nmlJ.H0m,HB. c»

Horn, (B® A,, C)-^-»HomR(A„ HomR (B, C))
R

We now use this observation to prove the following.



Morphisms of Tensor Products 333

Theorem 5.11

Let v : R -» R ' be a ring morphism. If A '—L+A —*-»A " -» 0 is an exact sequence of
R -modules and B is any R '-module, then the sequence of R '-modules

b®a-^Ub®a^Ub®a» »0

is exact.
* *

PROOF: In order to show that the sequence of R '-modules

b®a'^^Ub®a-^Ub®a" »0IS*
is exact, it suffices to show that for every R '-module C, the sequence

0 »HomR{B®A", C) »HomR(B® A, C) »HomR(B® A', C)

is exact (see Chapter 6, 4.9). By our previous remark we have the isomorphism of
sequences

0-»HonMB® A", C)-»Hom*(B® A, C)-»Hom„(B® A', C)
* * if

|. |. I.
-

0-»HomR(A", HomR (B, C))-»Hom„(A, HomR(B, C)) -♦HomR (A",Horn* (B, C))

Because A'-»A-»A"-»0 is exact, the bottom row of this diagram is exact.

Hence, the top row is exact.

In the following example we show that there are exact sequences 0-»A'-»

A -»A"-»0 such that for some B, the sequence 0-»B® A'-»B® A -»B®A"-»

0 is not exact.

Example 5.12 Consider the exact sequence of Z-modules 0-»Z—'—»Z-»
Z/2Z-»0 where / is multiplication by 2

. Let B =Z/2Z. Then the morphism

idB®/:B®Z-»B®Z is the zero morphism because B®Z = B and idB®/ is

z z z

multiplication by 2. Hence, idB®/ is not a monomorphism.

Example 5.13 Let / be an ideal in R and k:R-»RII the canonical ring
morphism. IfA'-»A-»A"-»0isan exact sequence of R -modules, then A 'IIA ' -»
AIIA-» A" IIA"-» 0 is an exact sequence of R //-modules.
PROOF: Recall that RII® X = XI IX for all R -modules X by Example 4.5.

R

Example 5.14 Let S be a multiplicative subset of a ring R. Suppose / is an
ideal of R and A is an R -module. From the exact sequence of R -modules 0-»

IA-»A-^A/M-»0 we obtain the exact sequence of Jls-modules 0-»(/A)s-»
As —'-»(AIIA)s -»0. The reader has already shown in the course of the proof of
Proposition 3.2 that (IA)s = IsAs. Hence, the surjective Rs -morphism As -»

(AIIA)s induces an isomorphism AsIIsAs = (A//A)s. It is not hard to show that
the inverse, /, of this isomorphism is given by /(fc(a)/s) = ks(ah).

Example 5.15 Let M be a finitely generated R -module such that MffiM = 0

for all maximal ideals 9J of R. Then Af = 0
.
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PROOF: Clearly, R, ® (Af,fpAf ) = 0 for every maximal ideal $ of R. Because
R

Rv®MffiM = MVIPVMV, we have MVIPVMV = 0 for each ^g. However, Af is a
R

finitely generated R«-module and thus Af« is a finitely generated R«-module.
Hence, Afv = 0 for every maximal ideal ty of R. By Theorem 3.8, we have

Af = 0.

6. LOCALLY FREE MODULES

In this section we give some further indications of how localizations can be used

in commutative ring theory. Our discussion is centered on characterizing, in terms
of localizations, when finitely generated modules over noetherian rings are projec

tive.

We begin with the following.

Proposition 6.1
Let R be a local ring. A finitely generated R-module Af is projective if and only if
it is a free R-module.

PROOF: Obviously if Af is a free R-module, it is a projective R -module.
Suppose M is a projective R-module. Because R/rad(R) is a field, we know

by Chapter 8, Basic Properties 3.6 that Af is a free R-module.

Corollary 6.2
If Af is a finitely generated projective R-module, then Mv is a finitely generated
free Rv-module for every prime ideal ty of R.

PROOF: Because Af is a finitely generated projective R-module, it follows
that R«® Af =MV is a finitely generated projective R«-module. But by Proposi-

R

tion 6.1 this implies that Af« is a free R- -module.

This suggests the following.

Definition
An R-module Af is said to be locally free if Af« is a free R«-module for each prime
ideal ty of R.

Having seen that a finitely generated projective R-module is locally free, we
now consider under what conditions a locally free R-module is projective.
In order to simplify notation, we assume throughout the rest of this section

that all rings are noetherian.

Given two R-modules A and B and a multiplicative subset S of R, we have
already described the morphism of R-modules HomR(.A, B)-»HomRs(As, Bs)
given by /i-»/s. This morphism enables us to define an Rs-morphism
HomR(A, B)s-»Hom,ts(.As, Bs) defined by //si-»1/s . fs
. Our aim now is to show
that if A is a finitely generated R-module, then Hom^A, B)s -»Hom*s( As, Bs) is

an Rs isomorphism for all R-modules B.
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Suppose A = R. Using the fact that the morphism HomR(R, B)-»B given by

/*-»/(!) is an isomorphism of R -modules, it is not hard to see that the following
diagram is commutative:

Hom„(R, B)s »Hom«s(Rs, Bs)

-I _ I'
Bs Bs

where a(//s)=/(l)/s and B(g) = g(\). Because a and B are isomorphisms, it
follows that Hom(R, B)s-»HomRs(Rs, Bs) is an isomorphism.

Now suppose A is a finitely generated free R -module; that is, A = II Rl

where each R, = R. Because As = Rs®A = Rs® U R, = II Rs®R, = II (Rs)h it,-, ,-, ,-,

is easy to show that HomR(A, B)s-»HomRs(As, Bs) is an isomorphism in this
case. We now use this to prove the following.

Proposition 6.3
Let A be a finitely generated R-module and B an arbitrary R -module. Then the
Rs-morphism HomR(A, B)s-»HomRs(As, Bs) is an isomorphism.

PROOF: Because A is finitely generated, there is an exact sequence 0-»K-»
F-»A-»0 where F is a finitely generated free R-module. But R is a noetherian
ring and F is a finitely generated R-module, so K is also a finitely generated R-
module. Hence, there is an epimorphism F'-»K with F' a finitely generated free
R -module. Thus, the composition F'-»K^F yields the exact sequence F'-»F-»
A-»0. From this it follows that the sequence of Rs-modules F's-»Fs-»As-»0 is
also exact.

Using these exact sequences, we obtain for any R-module B the following
commutative diagram

0 »Hom„(A, B)s^-»HomR(F, B)s—^Hom^F, B)s

I- I' I'
0 »HomRs(As, Bs)-^Hom«s(Fs, Bs)-^HomRs(Fi, Bs)

with exact rows. Because F and F' are finitely generated free R -modules, we
know by our discussion preceding the statement of this proposition, that fi and y
are isomorphisms. It follows immediately that a is a monomorphism.
To show that o is surjective, let x be in HomRs(As, Bs). Then tB"'a'(x) =

7"'t'o-'(x) = 0. Hence, B'a'(x) = a(y) for some y in HomR(A, B)s. a'a(y) =

00" (y) = BB"'a'(x) = o-'(x). This implies that x = a(y) since a' is injective. Thus,
o is surjective and hence an isomorphism.

Theorem 6.4
If R is a noetherian ring, then a finitely generated R-module is projective if and
only if it is locally free.
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PROOF: We have already seen that every finitely generated projective module

is locally free.
Suppose A is a finitely generated locally free R-module. To show that A is

projective, it suffices to show that if B-»B" is an epimorphism of R-modules, then
HonuCA, JB)^HomR(A, B") is also an epimorphism. By Corollary 3.10 we know
that HomR (A, B)-»HomR(A, B") is an epimorphism if HomR (A, B)v-»
Homu(A, B'% is an epimorphism for every maximal ideal $ of R. Because A is
finitely generated we have for every maximal ideal 95 of R a commutative diagram

HomR(A, Bh, »Hom„(A, B'%

HomR,(Ap, B«) »Hoit^Av, B$)

with the vertical arrows isomorphisms by virtue of Proposition 6.3. Because A« is

a free R^-module and BV-»B% is an epimorphism, the bottom horizontal arrow is
an epimorphism. Hence, the top horizontal arrow is an epimorphism. This finishes

the proof of the theorem.

We now apply this result to obtain a result which is interesting in its own right
and will be used later.

Theorem 6.5
Let R be a commutative noetherian ring, A a finitely generated projective R-
module, and G and H finitely generated R-modules such that AUG « HUG. Then
H is a projective R-module.

PROOF: We shall show that Re ® His a free R -module for every prime ideal
R

$ of R. By Theorem 6.4, this will show that H is projective.
To show that R« ® H is R^-free, we may assume that R is a local ring and

R

that A is consequently a free R-module. Under this additional assumption, we
want to show that H is a free R-module.
Next, let us suppose that G contains no free submodules as a summand, and

prove that H is free under this assumption. Later, we will be able to remove this
restriction from G
With this assumption on G, we notice that if / : G -» R is any morphism from

G to R, then ImfCJ where J is the maximal ideal of R (remember that we are
assuming that R is a local ring). If not, then Im / would contain a unit because J is
the set of all nonunits of R, and hence be all of R. In that case, / would be an
epimorphism and R would be a summand of G, contrary to our assumption about
G. Thus, Im / C J. As a corollary, if g : G -» F is a morphism where F is any free
module of finite rank, we have Im g C JF. To see this, the reader should show
that if Im g £ JF, then one of the coordinate projections from F to R carries Im g
onto R.
Now consider the morphism puj2 :G-»A where p:A U G -» A is the projec

tion onto A, u:HIIG-»AIIG is our given isomorphism, and ;2 : G -» H II G is
the injection. Then Im( puj2) C JA by what we have just said. On the other hand, if
/, :H-» H U O is the injection of H into HUG, then clearly A =
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Im(puj',) + Im( puj2). Hence, letting A' = Im( pujl). we have A = A' + JA, which is
equivalent to saying that A IA' = J(A IA'). Because J = rad(R), it follows that
AIA'=0. Hence, A = A'.
Knowing that A' = A, we see that the morphism pujl :H-»A is an

epimorphism. Because A is free, H = A U Q where Q = Ker pig,. Thus,
AUG«=HUG*AUQUG and, tensoring with RU, we see that QUQ = (0).
For we have (A U G)®RU °=A/JAU G/JG and (AUQUG)®R/J«
AUAU QUQ UGUG. Because all of these modules are finite-dimensional
vector spaces over RU, it follows, by adding dimensions of vector spaces, that the
dimension of QUQ is zero. Thus, QUQ = 0. But Q, being a summand of H, is
finitely generated so that if QUQ = (0), we have Q = (0). Thus, given our as
sumption on G, we see that puj, :H-»A is an isomorphism so that H is free.
What happens now if we remove the condition on G that it contain no free

submodule as a summand? If G contains a nonzero free summand, then the set of
nonzero free summands is not empty, so there is a maximal free summand G'
because G is a noetherian module. Then G = G' II G" and clearly G" cannot
contain a free summand. We now have (A II G') IIG" = A II G «HIIG =
(if II G') II G", and AUG' is a finitely generated free module. The modules
HUG' and G" are also finitely generated. By what we have already shown, we
know that HUG' and AUG' are isomorphic (because G" contains no free
summand) and so HUG' is free. Because H is a summand of a free module of
finite rank, it is a finitely generated projective module and hence free because R is
a local ring. This is the result that we wanted and Theorem 6.4 tells us that H is a
projective R -module.

EXERCISES

(1) Prove that the characteristic of a local ring is either zero or a power of a
prime.where the characteristic of a local ring R is the smallest nonnegative integer
n such that n 1 = 0 in R.

(2) Show that the assumption, in Example 5.15, that the module M be finitely gen
erated is necessary.

(3) Let R be a commutative ring, J an ideal, and M= RU.
(a) Prove that if J is generated as an ideal by a set of idempotents, then Mv = 0 or
M« = R« for every maximal ideal $ of R.

(b) Prove that if J is finitely generated, then M is a projective R-module and
hence J is a principal ideal generated by a single idempotent.

(c) Let K be a field and let R = n K, where K = K for each i in N. For each finite
,«N

strictly increasing set of positive integers i,<i2<- . . < i,, let ei, ...t be the
element of R all of whose coordinates are zero except those in the places

i,
, ...,i„ in which case the coordinates are 1. Let J be the ideal generated by

all the elements eil i..

(i) Prove that each element «,, ,. is an idempotent.

(ii) Prove that J is a proper ideal of R.
(iii) Prove that J is not a principal ideal.
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(d) Conclude from the above that the module M = RU is a finitely generated free
R-module which is not R -projective. This shows that Theorem 6.4 would not
be true if we did not assume that R is noetherian.

(4) An R -module A is finitely presented if there are free finitely generated F, and
F0, and morphisms / : F, -» F0, g : F0 -» .A such that F,—'-» F0—*-» A -» 0 is exact.
(a) Prove Proposition 6.3 assuming that R is a commutative, not necessarily
noetherian ring, and that the module A is finitely presented.

(b) Prove that if R is any commutative ring and A is a finitely presented R-
module, then A is R-projective if and only if A is locally free.

(5) (a) Prove that if A is a finitely presented R-module, and M—'—»A is an
epimorphism with M a finitely generated R-module, then Ker / is a finitely gener
ated R -module.

(b) Prove that an R-module C is finitely presented if and only if there is an exact
sequence A-»B-»C-»0of R -modules with A and B finitely presented R-
modules.

(c) Show that a ring R is left noetherian if and only if every finitely generated R-
module is finitely presented.

(6) Let R be a commutative ring and A an R-module.
(a) Let / be an ideal of R and let I®A-»A be the composite morphismI
I® A l@A » R® A -»A where i :I-»R is the inclusion and the morphism
R R

R ® A -» A is the natural isomorphism. Prove that if the morphism I® A-»A
R R

is a monomorphism for every finitely generated ideal /, then it is a monomor-

phism for every ideal / of R.
(b) Let B' be a submodule of an R -module B and let x be an element in the kernel
of the morphism A®B' A®' »A ® B, where i : B ' -» B is the inclusion. Prove

R R

that there is a submodule B of B containing B' such that
(i) BIB' is finitely generated and
(ii) x is in the kernel of the morphism A®B' A^' »A® B, where j:B'-»B

R R

is the inclusion. [Hint : Use the explicit construction of A® B in terms of
R

generators and relations to describe what it means for the element x to be

inKer(A®B'-»A®B).]
R R

(c) Assume that the morphism /® A-»A is a monomorphism for every ideal / of
R

R. Prove that if 0-»B'-»B-»B"-»0 is exact and B" is cyclic, then 0-»
A®B'-»A®B is exact. [Hint: Use the fact that B" is cyclic to show that
R R

we have the following diagram with exact rows and columns:

0 0
1 i

0 -» / = /
I I

0-»B'-»B'UK-»R-»0
II I I

0-»B' -» B -» B"-»0
i i I
0 0 0
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where / = ann(B"). Tensoring each term in the diagram with A and using the
fact that the middle row splits, show that Ker(A® /-»A)-»A® B'^A®B

R X R

is exact. Then use the fact that A®I-»A is a monomorphism.]I
(d) Prove that if the morphism I® A -»A is a monomorphism for every finitely

R

generated ideal / of R, then for every monomorphism 0-»B'-»B, the mor
phism A®B'-»A®B is a monomorphism. [Hint : Use part (a) and induction

R R

on the number of generators of Coker(B'-»B), assuming Coker(B'-»B) is
finitely generated. Then use part (b) to go from the assumption that

Coker(B'-»B) is finitely generated, to the general case.]
(7) Let R be a commutative ring, let A be an R -module, and let B be a se
quence (finite or infinite) of R -modules and R-morphisms: B =

. . . -»B, —UB,+, ——»Bi+2-» . . .. The module_ A is a flat R-module if the se
quence A® B is exact whenever the sequence B is exact. By A® B we mean, of

K R

course, the sequence . . --»A®B, ——'-»A®Bl+, '^—» A® Bi+2-» . . .. The
» R R

R -module is faithfully flat if it is flat and has the additional property that A®B
R

exact implies B is exact.
(a) Prove that the following conditions on A are equivalent:
(i) A is a flat R- module.
(II) For every R-monomorphism B'-»B, the morphism A®B'-»A®B is a

R R

monomorphism.

(Hi) For every finitely generated ideal / of R, the morphism I® A -» A is a
R

monomorphism.

(iv) If 2r., rla, = 0 with r, in R and a, in A for i = 1, . . . , n, then there exist
elements b,,...,bm in A and elements s,7 in R with Uisn and 1 s
j s m such that 2,"., ns,7 = 0 for all j, and a, = 2,s«b, for all i.

(b) Prove that the following conditions on A are equivalent:
(i) A is a faithfully flat R- module.
(ii) A is a flat R-module and A® B 5*0 for every nonzero R-module B.

R

(iii) A is a flat R-module and, for every maximal ideal 93 of R, A/93A^0.
(8) Let f:R-»R' be a morphism of commutative rings. If R', considered as an
R- module via /, is a flat R-module, then / is called a flat morphism. Similarly, if R '
is a faithfully flat R- module, / is called a faithfully flat morphism.
(a) Suppose that / is a flat (faithfully flat) morphism. Prove that if B is a flat
R'-module, then it is a flat (faithfully flat) R-module.

(b) Let A be a flat (faithfully flat) R- module. Prove that R
'
® A is a flat (faithfully
R

flat) R'-module.
(c) Let S be a multiplicative subset of R and f:R-»Rs the canonical morphism.
Prove that / is a flat morphism.

(9) Let R be a local ring with maximal ideal J and residue class field K = RU. Let
A be a finitely generated R- module.
(a) Prove that there is a finitely generated free R- module F and an epimorphism
g:F-»A such that Ker g is contained in JF. [Hint : Let AUA be generated by
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the cosets of «,,..., a, in A, and let F be the free module generated by
elements X,, . . . , x„. Define g by setting g(x,) = a, for i = 1, . . . , n.]

(b) Prove that if A is a flat R -module, / is any ideal of R, and0-»A"-»A'-»A-»
0 is an exact sequence of R -modules, then 0 -» A "IIA " -» A 'IIA ' -» A IIA -» 0 is
exact. Here we need not assume that R is local nor that A is finitely generated.
[Hint: Use Exercise 7(a)(iv).]

(c) Using parts (a) and (b), prove that if R is local and A is finitely generated, then
A flat implies A is free.

(10) Let R be a commutative noetherian ring and A a finitely generated R-
module. Prove that A is flat if and only if A is projective. Is the condition that R
be noetherian essential here?

(11) Let R be any commutative ring and A and R- module. Prove that A is flat if
and only if it is locally flat (that is, A® R* is R»-flat for every maximal ideal 53
of R).

"

(12) Let /: R -» R
'
be a faithfully flat ring morphism and A an R- module. Assume,

also, that R and R' are commutative rings (although this restriction will not be
necessary once we have defined tensor products over noncommutative rings).

(a) Prove that if R'®A is a finitely generated R'-module, then A is a finitelyl
generated R- module.

(b) Prove that if R'® A is a finitely presented R '-module, then A is a finitely
K

presented R-module.

(13) Let R be a commutative ring and M a finitely generated projective R- module.
(a) Prove that M is finitely presented.
(b) If 53 is a prime ideal of R, prove that there are elements m,, . . . , m» in M such
that {1 ® m,, ... , 1® m„} is a basis of Rv® M.

R

(c) Let Fbe the free R-module generated by {x , X„}, let / : F -» M be defined
by f(x, ) = m,, and let L = Coker /. Show that Rv ® L =0 and that there is an

R

element y, not in 5? such that y,A = 0 for all A in L.
(d) Let R,„l denote the ring of quotients of R with respect to the multiplicative
subset {yl).eK. Prove that Riy„®L=0, where L = Coker / in part (c).

R

(e) Letting K = Ker /, prove that RM ® K is a finitely generated R<„i- module and
thatR«®K=0.

*

I
(f ) Prove that, if ^J' = $R„„, then Rv = (R,„,h-- Hence, show that there is an
element y2 in R,„, such that y2 is not in $' and y2z = 0 for all z in R,„l®K.

R

[Hint: Use the fact that 0 = R,® K =(R1„l), ®(Ri„,®K) and that
R

Rod® K is a finitely generated Ri„,-rnodule.

' i»i>/i
«<*i

(g) (i) Prove that for some positive integer v, yTy2 = yS with y
'2 in R.

(ii) Prove that y2 is not in $ and that for each element c in K, there is an
integer /x such that y"y5c =0.

(Hi) Let y = y,y2. Prove that Rlyl® L=0 = Ri„® K.

R R

(h) Conclude from all of the above that for every maximal (or prime) ideal $ of iR,
there is an element y in R - 93 such that Ri„® M is a free Riy,-inodule of
finite rank. "
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(14) Let R be a commutative ring and M an R -module. Suppose that for each
maximal ideal ^ of R, there is an element y in R - $ such that R,„® Mis a free
R.v 1-module of finite rank.

(a) Prove that for every maximal ideal $ of R, Rv®M is a free Rv-
module of finite rank.

(b) Prove that for every prime ideal (Q of R, Re ® Mis a free Rc-module of finite
rank.

(c) Show that if R,„ ® M is free of rank n, then Rc ®M is free of rank n for all
R R

prime ideals D of R not containing y.
(d) For each maximal ideal $ of R, let y(93) be an element in R -%$ such that
R,ylvn ® M is free of finite rank. Let / be the ideal of R generated by all the

R

elements y($) as $ runs through all maximal ideals of R. Prove that / is not a
proper ideal of R, that is, I = R, and consequently there are finitely many
maximal ideals, say $,, . . . i $< such that the ideal generated by y,, . . . , y,
[where y, = yOg,)] is R.

(e) Let <fa:R -»R<„i be the canonical ring morphism for i = l,...,f, let S =
Rin, x . . . x Rinl, and let <f

i
: R -» S be the ring morphism determined by the

<ti,. Prove that <
ti is a faithfully flat ring morphism. [Hint: Use part (b)

(iii) of Exercise 7.]
(f) Using the fact that Ri,0®M is a free R^-module of finite rank, prove that

R

S®M is a finitely generated S-module.

R

(g) Conclude from the above that M is a finitely generated R- module.
(h) Let n, = rank(R,„,® M) and let n = max(n,).

R

(i) Prove that S®M is a summand of S" where S" denotes the sum of n

R

copies of S and S = R,„i x . .. x R„,,.
(ii) Prove that S®M is a finitely presented S-module.

R

(iii) Conclude that M is a finitely presented R- module.
(iv) Finally, conclude that M is a projective R- module.

(15) Let R be a commutative ring and M a finitely generated R- module. Assume
that for each prime ideal £1 of R, Rt® Mis a free Rc-module and that, for each

R

D, there is an element y in R - D such that the rank of Rc ® Mis constant for all
prime ideals C not containing y

.

(a) Let $ be a maximal ideal of R and let mu . . . , m» be elements of M such that
{l®m,, ..., l®m„} is a basis for R«® Mover Rv. Let F be the free R-

R

module with basis {
x ,x„} and f:F-»M the R-morphism defined by

f(x,) = m,. Prove that there is an element y, in R-$g such that
Ry,l®F — '-^-»R,„, ® M is an epimorphism.

R R

(b) Let y2 in R - P be such that for all primes £} not containing y2, the module
Rc®M has constant rank (namely, n =rank RP®M). Let y = y,y2. Prove

R R

that Ri,l®F—^-»Ri„®Mis an epimorphism.

R R

(c) Show that if C is a prime ideal of R„„ then Q' = QRW where D is a prime
ideal of R not containing y

.
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(d) Prove that if D is a prime ideal of R not containing y, then the morphism
Re® F—,Ji^-»Rc® Af is an isomorphism.
K R

(e) Prove that the morphism R<y,® F-»Riy, ®Af is an isomorphism. This shows
R R

that for each maximal ideal ty of R, there is an element y in R - ty such that
R,,l® Af is a free Rly,-module of finite rank.
R

The following exercise is a summary of the preceding three exercises.

(16) Let Af be a module over the commutative ring R. Prove that the following
statements are equivalent:

(a) Af is a finitely generated projective R-module.

(b) Af is a finitely presented R -module having the property that R«® Af is a free
Ri-module for every maximal ideal ^ of R.

(c) For each maximal ideal ty of R there is an element y in R - $ such that
Ry,® Af is a free Riy,-module of finite rank.
R

(d) M is a finitely generated R-module such that Rc®M is a free Rc-module for
R

every prime ideal D of R and, for every prime ideal D, there is an element y in
R - D such that the rank of Re ® M equals the rank of Re ® Af for all prime

R R

ideals D' not containing y.
(17) Prove Theorem 6.5 without the assumption that R is a noetherian ring. [Hinr:
Show that the module Af satisfies condition (d) of Exercise 16.]
(18) Let R be a commutative ring. The support of an R-module Af is the set
Supp(Af) of all prime ideals ^ in R such that Af* =/-(). In this exercise we develop
some of the basic properties of the support of R-modules.

(a) Show that if Af is an R-module, then Supp(Af) = 0 if and only if Af = 0.
(b) Show that if D 3 ty are prime ideals of R and ^ is in Supp(Af ), then D is in
Supp(Af).

(c) Show that if 0-»Af'-»Af-»Af"-»0 is an exact sequence of R-modules, then
Supp(Af ) = Supp(Af ') U Supp(M").

(d) Show that if / is an ideal of R, then Supp(R//) consists precisely of the prime
ideals $ of R containing I.

(e) Show that if Af is a finitely generated R-module, then Supp(Af ) consists pre
cisely of the prime ideals of R containing the annihilator of Af.

(f) If Af is a finitely generated R-module, then $ is in Supp(Af) if and only if
Af«/P«Af, ^ 0.

(g) Show that Supp(M®N) = Supp Af D Supp N if Af and N are finitely gener-
R

ated R-modules.

(h) Let R be the ring of integers Z and Af the Z-module Q/Z where Q is the field of
rational numbers. Determine Supp(Q/Z). What is the annihilator of Q/Z? Is
Supp(Q/Z) the set of all prime ideals of Z containing ann(Q/Z)?

(19) Let R be an arbitrary commutative ring and A a finitely presented R-module.
Show that for each multiplicative subset S of R and each R-module B the
Rs-morphism HomR(A, B)s-»HomRs(As, Bs) is an isomorphism.

(20) Let Af be a module over the commutative ring R. For each nonnegative

integer n define ® Af to be the n-fold tensor product Af®- . ®Af of Af with itself
R R R



Exercises 343

by induction on n as follows:

®M=R and ®Af = (®Af)®Af for n>0
K R R R

(a) Show that for each pair n, m of nonnegative integers there are unique R-
„ m n+m

module morphisms /„.m :(®Af)®(®Af)-»® Af satisfying:
R R R R

(i) If n = 0 = m, then /00 :R®R -»R has the property /O.0(r,®r2) = nr2 for all r,
R

and r2 in R.
m m

(u) If n=0 and m>0, then f0 m :R®(®M)-»®M has the property
R

/0.m(r®(y,® . . -®ym))= r(y.® . . -®y,„)forall r in R and y,, . . . , ym in Af.

(iii) If n>0 and m=0, then /„.0:(®M)®R-»®Af has the property
R R

(x,® . . -®x„)®r = r(x,® . . -®x„) for all x , x„ in M and r in R.

(iv) If n>0 and m>0, then /„.m:(®M)®(®M)-»®M has the property
R R R R

/».m((X,®- . -®x„)®(y,, . ..,y„)) = X,®- . -®x„®y,®- . -®ym for all
x , x„ in Af and y,, . . . , y„ in M.

n

(b) Denote by TR (Af ) the sum of the family of R-modules {®Af }„eN which we also

denote by II ®M.
n-0

(i) Letting gn:®M-»TR(M) be the usual inclusion morphisms, show that
there is a unique R-morphism / : TR (M)® TR (M)-» TR (Af ) such that for all

R

pairs of nonnegative integers n, m we have /(gn(x)®gm(y)) =
n m

g»+„A.m(x®y) for all x in ®M and y in ®M.

(ii) Show that the underlying abelian group of TR(M) together with the multi
plication TR(M)xTR(M)-»TR(M) given by (x, y) -»/(x®y) for all x in
T«(M) and y in TR (M) is a ring. Show that this ring structure in TR (M) has
the property that the map R-»TR (Af ) given by the usual injective mor-

0 * R

phism R = ®M -» U®Af, is a morphism of rings such that the image of R

under this ring morphism R -» Tr (Af ) is contained in the center of TR (Af).
Hence, the rings R and TR(Af) together with the morphism of rings R -»
I« (Af) just described is an R -algebra which is called the tensor algebra of
Af over R. Usually the ring R is considered a subring of TR (Af ) by viewing
the injective ring morphism R-»TR (M ) as an identification of R with its
image under the ring morphism R -» TR(Af ). With this convention in mind
the tensor algebra R-»TR(M) is just denoted by TR(Af).

(21) Let R be a commutative ring and Af an R-module. Let h:R-»A be an
arbitrary R -algebra. We want to describe in this exercise the R -algebra mor
phisms from TR(Af) to A.

, I

(a) Recalling that ®Af = R®Af we see that ®Af = Af, using the usual identifica-
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,

tion of R®M with Af. Hence, viewing the injection morphism ®Af-»TR(Af)
R

as an identification, we see that TR(Af)DAf as an R -submodule of Tk(M).
Show that the subring generated by R and Af is all of TR(Af).

(b) Suppose /: T« (Af )-» A is a morphism of R -algebras, that is, / is a morphism of
rings such that f\R = h.
(i) Show that f\M :Af-»A is a morphism of R-modules where A is consid
ered an R-module by means of the ring morphism h:R-»A.

(ii) Show that if g : TR (Af )-» A is also a morphism of R -algebras, then g = / if
and only if g|Af = /|Af.

(HI) Suppose that g:Af-»A is a morphism of R-modules. Show that there is
one and only one morphism of R -algebras t : TR(Af)-»A such that f|Af =

g. Hence, denoting the set of R -algebra morphisms of TR(Af) to h :R-»A
by (T„(Af),A), we obtain that the map (TR(Af), A)-»HomR(Af, A) given
by /-»/|Af is an isomorphism of sets.

(iv) Suppose the R -algebra q : R -»T has the property that there is an injective
morphism v :M-»T of R-modules such that for each R -algebra h :R-»A,
the map from the set (I\ A) of R -algebra morphisms to HomR(Af, A) given
by f-»fv is an isomorphism of sets. Prove that the uniquely determined
morphism of R -algebras u : T*(Af)-»r satisfying u\R = q and u|Af = v is
an isomorphism of R -algebras.

(22) Let R be a commutative ring and Af an R-module. Show that if the R-module
Af is isomorphic to R, then:

(a) I* (Af) is a commutative R -algebra and
(b) Tu(Af) is isomorphic to the R -algebra R[X].
Further, show that if Af is isomorphic to a free R-module with a basis consist

ing of two or more elements, then TR(Af) is not commutative.

(23) Suppose Af is a module over the commutative ring R. Let / be the ideal of
2

Ti,(Af) generated by the elements of ®Af of the form x®y - y®x for all x, y
in Af.

(a) Show that the composition of ring morphisms R-»TR(M)-»TR(M)II is an
injective ring morphism with the property that the image of R in TR(Af)// is
contained in the center of TR(Af)//. Thus, the composition R-»TR(M)II is an
R -algebra. Usually R is identified with its image under this morphism. The
R -algebra TR(Af)/7 is called the symmetric algebra of Af over R and is
denoted by Su(Af).

(b) Show that SR(Af) is a commutative R -algebra.

(c) Show that if R-»A is a commutative R -algebra and / : TR (Af ) -» A is a
morphism of R -algebras, then there is a unique morphism of R -algebras

SR(Af)-»A such that the diagram

TR(Af)

SR(M)

commutes, where TR(Af)-»SR(Af) is the canonical surjective morphism of
rings.
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(d) Show that the composition of R -module morphisms M-»T«(M)-»S«(M) is
injective. This injective R -module morphism M-»SR(M) is usually con
sidered an identification of M with its image in SR(M).

(e) Suppose R -» A is a commutative R -algebra (that is, A is a commutative ring).
(i) Show that if /: SR(M) -» A is an R -algebra morphism, then/|M:M-»Ais
a morphism of R -modules.

(II) Letting (SR (Af ), A) denote the set of R -algebra morphisms from SK (M) to
A, show that the map (SR(M), A)^HomR(Af, A) given by f-»f\M is an
isomorphism of sets.

(IIi) Suppose R -»T is a commutative R -algebra and u :Af-»r is a morphism of
R -modules such that for each commutative R -algebra R-»A, the map
(r, A)-»HomR (Af, A) given by / •-»/u for each R -algebra morphism / from
r to A is an isomorphism. Show that the unique R -algebra v : SR(M)-»T
which has the property that v\M=u is an isomorphism of R -algebras.

(f) Show that TR(M) is commutative if and only if the canonical R -algebra
morphism TR(M)-»SR(M) is an isomorphism.

(g) Suppose that M is a free R -module with basis {m,}le,- Show that the R -algebra
S«(M) is isomorphic to the polynomial ring R[X,],eI.

(24) Suppose R -» A and R -» T are algebras over the commutative ring R. We now
want to make the R -module A®r an R-algebra.

R

(a) Show that there is a unique R -module morphism (A®r)x(A®i>-»A®r
R R R

such that (x®y, x'® y')^xx'® yy' for all x, x' in A and y, y' in r.
(b) Show that this uniquely determined R -module morphism

(A®r)x(A®r)-»A®r has the property that it
,

together with the law of

R R R

composition given by the underlying group structure on A® r
,

make A® r a

R R

ring.

(c) Show that the ring A® r has the property that the map R-»A®r given by

R R

r-»r(l ® 1
) is a ring morphism whose image is in the center of the ring A® I\
R

Hence, R-»A ® T is an R-algebra called the tensor product of the R -algebras A

R

and r.
(d) Show that the maps /:A-»A®r and g:r-»A®r given respectively by

R R

f(x) = x® 1 for all x in A and g(y) = 1 ® y for all y in r have the properties:
(i) / and g are R -algebra morphisms.
(ii) The images of / and g commute, that is, /(x)g(y) = g(y)/(x) for all x in A

and y in r.
(iii) The images of / and g together generate the ring A®I\

R

The R-algebra morphisms /:A-»A®r and g:r-»A®r are called the

R R

canonical morphisms.

(e) Let R-»2 be an arbitrary R- algebra. Then associated with each R- algebra
morphism h : A® r-»2 are the R- algebra morphisms hf: A-»2and hg :r-»2.
Show:

(i) The images of hf and hg in 2 commute, that is, hf(x)hg(y) = hg(y)hf(x)
for all x in A and y in r.
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(ii) If h':A®r-»2 is an R -algebra morphism, then h=h' ft and only
R

if hf = h'f and hg = h'g.
(iii) If /' : A -» 2 and g' : r -» 2 are R- algebra morphisms such that their images
in 2 commute, that is, g'(y )/'(x) = /'(x)g'(y) for all x in A and y in r,
then there is a unique R- algebra morphism h :A®r-»2 such that /' = hf
and g' = hg.

(f) We now show that the properties of the tensor product of two R -algebras
given in (e) essentially describe this algebra. Suppose we are given an R-
algebra R -»ft. Then the R -algebra ft is isomorphic to A® r if and only if

R

there are R-algebra morphisms /:A-»ft and g:T-»il such that:
(i) The images of / and g in ft commute.
(ii) Given any R- algebra R-»2 and R-algebra morphisms /':A-»2 and
g' : r -» 2 such that their images in 2 commute, then there is a unique R-
algebra morphism h :ft-»2 such that /' = hf and g' = hg.

(25) Suppose R -» A and R -»T are commutative R -algebras.
(a) Show that A®r is a commutative R-algebra.

R

(b) Show that in the category of commutative R -algebras, A ® T is the sum of the
R -algebras A and I\ *

(c) Suppose that R -»T is the polynomial ring R[X,],e,. Show that A® R[X*] is
isomorphic to the polynomial ring A[X],e,.

(d) Suppose S is a multiplicative subset of R and R -» A is the R-algebra R^Rs-
Further, suppose f:R -»T has the property that f(S) Cr does not contain 0
and is thus a multiplicative subset of T. Show that Rs® r is isomorphic to r;is,.

R

(26) Let R be a commutative ring. Then Af„(R), the ring of n x n matrices over R,

can be considered an R-algebra by means of the ring morphism R -» Af„(R) given
by r^rl where I is the identity matrix. Show that if R -»A is an arbitrary R-
algebra, then A® M„(R) is isomorphic to M„(A).

R

(27) Let S be a multiplicative subset of the commutative ring R and let / :R -» A
be an R-algebra.

(a) Consider the map As x As -» As given by (x/s, x'ls')**xx'lss'. Show that the
underlying abelian group of the R -module As together with this map as
multiplication makes As a ring which we denote by As.

(b) Show that the map Rs -» As given by rls **f(r)ls is a ring morphism whose
image is contained in the center of As. Hence, Rs-»As is an Rs -algebra.

(c) Show that As is isomorphic to Rs® A.
R

(d) Show that A is a commutative R-algebra if and only if Av is a commutative
R«-algebra for every maximal ideal ^ of R.

(e) Let M be an R -module and U a multiplicative subject of R.
(i) Show that the Rv -algebra (TR(M))u is isomorphic to the Rv -algebra

TRu(Mv).

(ii) Show that the Rv -algebra (SR(M))u is isomorphic to the Rv -algebra

SRv(Mu).

(28) Let R be a commutative algebra and R -» A an arbitrary R-algebra. Suppose
R^R' is a commutative R-algebra.
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(a) Show that the canonical ring morphism R'-»R'®A given by r' i-»r'® 1 for all
R

r' in R' makes R'® A an R'-algebra. This is the usual way R'® A is considered
R R

an R '-algebra.
(b) Suppose X is a monoid. Show that the R'-algebra R'[X] is isomorphic to
R'®R[X].
R

(29) Suppose R is a commutative ring and R-»A is an arbitrary R -algebra. Show
how Examples 5.4 and 5.5 can be generalized from the case A is a commutative
R -algebra to the case of arbitrary R -algebras.

(30) Let R be an integral domain with field of quotient K.

(a) Show that an R -module M is a torsion R -module if and only if K® Af = 0.■ R

(b) Show that if Af and N are R-modules such that M®N = 0, then either M or N
R

is a torsion module. [Hint: Use the characterization of torsion modules given
in (a).]

(c) An R -module Af is said to be divisible by an element r in R if the R -morphism
Af ' »Af given by m -» rm for all m in M is surjective. The R -module Af is
said to be divisible if it is divisible by every nonzero element of R.
(i) Show that if /: Af-»Af' is a surjective morphism of R-modules and Af is
divisible, then Af' is divisible.

(ii) Show that K and hence every factor module of K is a divisible R -module,
(iii) Show that if Af is a torsion R -module and N is a divisible R-module, then
Af®N = 0.
R

(31) Let f:R-»R' be a morphism of commutative rings. Suppose Af and N are
R'-modules and hence also R-modules by means of the ring morphism /.
(a) Show that there is a unique morphism of /{-modules g :M®N-»M®N which

R R'

has the property g(m®n) = m®n for all m in Af and n in N.

(b) Show that g:M®N-»M®N is surjective.
R R'

(c) Show that g:M®N-»M®N is an isomorphism if f:R-»R' is surjective. In
R R'

the case f:R-»R' is surjective, then the isomorphism g:M®N-»M®N is
R R'

usually considered an identification.

(32) Let R be a PID.
(a) Show that an R-module M is a divisible R-module if and only if (Rffi)® M
= 0 for each nonzero prime ideal $ of R.

(b) Show that an R-module Af is divisible if and only if (M®Rffi)®
R RIV

(RI^®M) = 0 for all nonzero prime ideals $ of R.
R

(c) Show that if an R-module Af has the property that Af®Af = 0, then Af is
divisible.

(d) Show that an R-module Af has the property Af®Af = 0 if and only if Af is a
R

torsion J?-module which is also divisible.

(33) Let R be a PID. Suppose r, and r2 are two elements in R. Show that the ring
RI(r,)®RI(r2) is isomorphic to RI(r) where r is a greatest common divisor of r,

R

and r2.

-
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(34) Let S be a multiplicative subset of a commutative ring R and M an R-module.
(a) Show that the R-morphism M-»Ms is an isomorphism if and only if the
R-morphism M— '—»M which is given by m**sm for all m in M is an
isomorphism for each s in S.

(b) Let $ be a maximal ideal of R and M an R -module such that tyM = 0. Show
that the R-morphism M-»MV is an isomorphism.

(c) Show that the canonical R -morphism /: M-»Ms has the following properties:
(i) For each Rs -module N and Rs -morphism g:Ms-»N, the composition
gf:M-»N is an R-morphism.

(ii) For each Rs -module N, the map HomRs(Afs, N)-»HomR(M, N) given by
g<-*gf is an isomorphism of R-modules.

(d) Suppose M is an R-module, M' is an 'Rs -module, and h:M-»M' an R-
morphism such that for each Rs-module N, the map HomRs(Af', N)-»
HomR(M, N) given by gi-»gh is an isomorphism of R-modules. Show that
there is a unique Rs -morphism u :M'-»Ms such that uh = / and that uniquely
determined Rs -morphism u is an isomorphism.

(35) Let S be a multiplicative subset of a commutative ring R.

(a) Show that there is a unique functor F:Mod(R)-»Mod(Rs) such that F(M) =

Ms for each R-module M and F: Hom„(M, N)-» Horn* (F(M ), F(N)) is given
by F{f) = fs for each / in Hom„(Af, N).

(b) The canonical ring morphism f:R-»Rs enables us to view each Rs-module as
an R-module. Show that there is a unique functor G :Mod(Rs)-»Mod(R) such
that G(X), for each Rs-module X, is the Rs-module X viewed as an R-module
and where G :HomRs(X, X')-»HomR(G(X), G(X')) is given by G(/) is the
Rs -morphism / viewed as an R-morphism.

(c) Show that F is a left adjoint of G.
(36) Our purpose in this exercise is to generalize the notion of the tensor product
of modules over commutative rings to modules over arbitrary rings. It is suggested

that the reader review the notions of left and right modules over an arbitrary ring

R as discussed in the exercises for Chapter 6.
Let R be an arbitrary ring with center C(R). Suppose Af is a right R-module

and N is a left R-module. M and N are also C(R)-modules because C(R) is a
subring of R. Hence, we can form the C(R)-module M® N. Let J be the C(R)-

cIRl

submodule of Af ® N generated by the elements of the form mr®n — m®rn for
C<Rl

all m in M, n in N, and r in R. Then the tensor product of M and N over R is
denned to be the C(R)-module (M® N)U which is denoted by M®N. The

cMl R

image in M®N of the element m®n in M® N is also denoted by m®n. The
R clRl

reader should verify the following rules of calculation in Af®N:
X

(i) (m, + m2)®n = rn,®n + m2®n
(ii) m®(n, + n2) = m®n, + m®n2
(Hi) mr®n = m®m for all m, m,, m2 in M, n, n,, n2 in N, and r in R as well as

(iv) c(m®n) = mc®n = m®cn for all c in C(R), m in M, and n in N.

The reader should try to generalize as many of the notions and results de

veloped for the tensor product of modules over a commutative ring to the tensor
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product of modules over arbitrary rings. We indicate some of these generaliza
tions now.

(a) Let M be a right R- module and N a left R-module and X an arbitrary C(R)-
module. A map / : Af x N -» X is said to be a bilinear map if / is bilinear when
viewed as a map of C(R)-modules and also satisfies f((mr, n)) = /((m, rn))
for all m in Af, n in N, and r in R. Show:
(i) If /, g : Af x N-»X are bilinear maps, then / + g:AfxN-»X defined by
(/ + g )(("i, n)) = /(m, n) + g(m, n) for all m in M, n in N is a bilinear
map called the sum of the bilinear maps / and g.

(ii) If c is in C(R) and/:Af xN-»X is a bilinear map, then (c/):Af x]V-»
X defined by (c/)((m, n)) = c(f{(m, n)» is a bilinear map.

(iii) The set B(Af, N;X) of all bilinear maps is a C(R (module under the
addition and multiplication defined in (i) and (ii).

(iv) If g:X-»Y is a morphism of C(.R)-modules and /:Af xN-»X is a
bilinear map, then the composition gf:MxN-»Y is a bilinear map.

(v) The map f : Af x N-» M®N given by /((m, n)) = m®n is a bilinearI
map whose image generates M®N as a C(R)-module.

(vi) For each C(R)-module X the map Homc,,,l(M®N,X)-»B(M, N;X)

given by /»-»/£ for all / in Homci,tl(M® N, X) is an isomorphism of
C(R)-modules.

(vii) Furthermore, the C(R)-isomorphisms described in Part (vi) give rise to
an isomorphism of the functors

Homci«,(Af®N, .) :Mod(C(R))-»Mod(C(R))
R

and

and

and

B(M, N; .):Mod(C(R))-»Mod(C(R))

HomciR,(Af®N, .)(X) = HomciRl(M®N, X)
K

B(Af, N; .)(X) = B(M, N; X)

for all X in Mod(C(R)).
(b) Let X be a C(R)-module. Then we consider the C(R)-module HomclR,(N, X)
a right R -module by defining (/r) for each / in Homci,o(N, X) and r in R to be
the map fr:N-»X given by (/r)(n) = f(m) for all n in N which is easily seen
to be in HoitlcWN, X). Show that for each C(R)-module X, the map

a :HomclR,(M®N, X)-»Hom„(M, HomciR,(N, X))
R

given by [a(/)(m)](n) = /(m®n) for all / in Homci«,(M®N, X), m in Af,
and n in N is an isomorphism of C(R)-modules.

(c) Let X be a C(R)-module. We consider Homci«l(M, X) a left R- module by
defining for each / in Homci«i(Af, X) and r in R, the map (rf):M-»X by
(rf)(m) = /(mr) for all m in M. Show that for each C(R)-module X, the
map

0 :Homc,«,(M® N, X)-»HomR(N, HonWM, X))
R



350 NINE/LOCALIZATION AND TENSOR PRODUCTS

given by t/3(/)(n)](m) = /(m®n) for all / in Homc,R,(M®N, X), m in M,
R

and n in N is an isomorphism of C(R)-modules,
(d) Use these basic facts to develop the analogs for the tensor product of
modules over arbitrary rings of results already obtained for tensor products of
modules over commutative rings.

(37) Let R be a commutative ring. An element x in R is said to be nilpotent if
x" = 0 for some integer n.

(a) Show that the set N of all nilpotent elements in R is an ideal in R.
(b) Show that if x in R is not nilpotent, then there is a prime ideal of R not
containing x. [Hint: Show that the subset S = {X"},eN of R is a multiplicative
subset of R and consider the ring Rs.]

(c) Show that N is the intersection of all the prime ideals of R.
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We have already shown that if R is a ring, then every R-module is free if and only
if K is a division ring. If we relax the condition of freeness to projectivity, we get
the result that every R-module is projective if and only if R is semisimple. Now
for any ring R and any R-module M, we have seen that there is an epimorphism
/: F-»M where F is a free P-module. We therefore obtain an exact sequence 0-»
K—L+F—!-»M-»0 where K = Ker/, and we may ask whether K itself must be
free or projective? To tackle this question, we shall restrict ourselves to commuta
tive rings R, for the good reason that the noncommutative case is too complicated
for us to consider here.
Our question, then, is: For what commutative rings R is it true that every

submodule of a free module is free or that every submoduie of a free module is
projective? The condition that every submodule of a free module be projective
may be replaced by the equivalent condition that every submodule of a projective
be projective. For it easily follows that if the latter condition holds, the former
does because free modules are projective. On the other hand, if P is any projec
tive module, and V is a submodule of P, then P< is projective. Because P is
projective, it is a summand of some free module F and hence it is isomorphic to a
submodule of F. But P', being a submodule of P, is then also isomorphic to a
submodule of F and is therefore projective. We therefore want to study the cases:

(a) Every submodule of a free module is free.

(b) Every submodule of a projective module is projective.

In the first case, we are led immediately to principal ideal domains. That is, if
R is a commutative ring such that every submodule of a free module is free, then

351
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the ideals of R, being submodules of the free module R, are all free. However, in
Chapter 5, we saw that in a commutative ring R, an ideal is free if and only if it is a
principal ideal generated by a regular element. Thus, if all the ideals of R are free,
then every ideal in R is principal and R is an integral domain. Hence, R is a
principal ideal domain. Naturally, we must answer the question: If R is a principal
ideal domain, is it true that every submodule of a free R-module is free? In the
course of answering this question, we obtain some information concerning the
second question. The main emphasis of this chapter is the study and application of
PID's. Later on we will return to a more detailed study of rings satisfying condi
tion (b).

1. SUBMODULES OF FREE MODULES

Theorem 1.1
Let R be a ring (not necessarily commutative) all of whose left ideals are projec
tive. If F is a free R-module and Af is a submodule of F, then Af is a sum of left
ideals of R and hence, projective. More generally, every submodule of a projec
tive R-module is projective and every projective R-module is a sum of left ideals
of R. In particular, if every left ideal of R is free, then every submodule of a free
R-module is free.

PROOF: We let X be a basis for F and, for every subset Y of X we denote by
( Y) the submodule of F generated by Y. The idea of our proof is to consider sub
sets Y of X such that (Y) n Af is a sum of left ideals of R, where Af is our given
submodule of F. We then take a maximal such subset Y* and show that Y* = X.
Because F = (X), we have Af = Af n F = Af D (X) = Af fl ( Y*) so that Af is seen
to be a sum of left ideals.
Let <&be the set of ordered pairs ( Y, S) where Y is a subset of X and S is a

set of submodules of ( Y) n Af each of which is isomorphic to a left ideal of R and
such that (Y)nAf is the sum of these submodules. We order the set <S by setting
( Y„ S,) < ( Y2, S2) if Y, C Y2 and S, C S2. If {( Y„, S„)} is a totally ordered subset of
% consider the pair ( Y, S) where Y = U Y. and S = U S„. It is clear that ( Y) =
U ( Y„) so that (Y) n Af = U ( Y„) n Af = U [( Y„) n Af ]. Because each ( Y„) D Af
is the sum of the submodules in the set S„, a simple argument shows that ( Y, S) is
an element of <S. Thus, 'S contains a maximal element (Y*, S*). Suppose that
Y* ± X. Then choose an element x in X but not in Y*, and let Y = Y* U {x}.
If we denote by Af + ( Y*) the submodule of F generated by Af and ( Y*), we

know that this submodule consists precisely of all elements of the form m + v
where m £ Af and v £ ( Y*). Let / = {r £ R \rx £ Af + ( Y)*)}. Then, clearly, / is a
left ideal of R. If m is an element of Af D (Y), then m is in (Y) so that m = v + rx
where v is in ( Y*) and r is in R. Thus, rx =m-veM + ( Y*), so that r £ /. If
m = v' + r'x is another way of writing m as an element of (Y), then v' + r'x = v +
rx and v' - v = (r - r')x. Because v' - v E ( Y*) and x is not in Y*, the fact that
(r - r')x is in ( Y*) implies that r - r' = 0 or r = r'. Hence, » - «' = 0 and v = «'.
Thus, if m is in Af n ( Y), there is one and only one way that m may be written
m = v + rx with t1£(Y*) and rER. Define a map /:Af n(Y)-»/ by setting
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f(m) = r where r is the unique element in / such that m =v + rx. The reader can
verify easily that / is a morphism. This morphism is an epimorphism for if r £ /,
then rx E M + ( Y*) so that rx = m + v where v £ ( Y*). Thus, m = rx - v E (Y)
and m is therefore in Af D ( Y). Because r = /(m), / is surjective. The kernel of /
is clearly M n ( Y*) because, if m = v + rx and /(m) = r = 0, then m = t1 £ ( Y*)
and m e M n ( Y*). Moreover, if m £ Af n ( Y*), m - » +0 . x where t1£ ( Y*),
and /(m) = 0.
Because Ker/ = Af n(Y*), we have the exact sequence

0 »MD( Y*)—UAf n ( Y)—U/ »0

where i is the inclusion. By our hypothesis on left ideals of R, I is projective so
that the exact sequence is splittable. In particular, there is a monomorphism / : I-»
M n (Y) such that fj = id;, and /(/) is a submodule of Af D (Y) isomorphic to I.
Hence, Af n (Y) is the sum of Af n ( Y*) and /(/). If we set S = S* U {;'(/)}, we
see that (Y, S) is in ^ and is properly larger than (Y*, S*), contradicting the
maximality of (Y*. S*). Hence, Y* = X and Af is the sum of left ideals of R.

We know by Chapter 7, Basic Properties 3. 1 that a sum of projective modules
is projective so that we may conclude that Af is a projective module. We saw in
the introduction to this chapter that if every submodule of a free module is
projective, then every submodule of a projective module is projective. The same
argument shows that if every left ideal of R is projective, then every projective
module is a sum of left ideals of R. For, since every projective is a summand of a
free module, it is a submodule of a free module and hence is a sum of left ideals. If
every left ideal of R is free, then every projective module is free because a sum of
free modules is free. In particular, we have the following.

Corollary 1.2
Let R be a commutative ring. Then the following three conditions are equivalent.

(a) R is a principal ideal domain.
(b) Every submodule of a free R -module is free.
(c) Every submodule of a finitely generated free R -module is free. In particular, if
R is a PID, then every projective R -module is free.

From the point of view of our main program, we might say that Theorem 1.1
finishes everything off because we now know that, for a commutative ring R, R is
a PID if and only if every submodule of a free module is free. Also, we know that
R has the property that every ideal is projective if and only if every submodule of
a projective module is projective. However, it is worth our time to look at
commutative rings in general and some examples of PID's in particular to see how
the peculiar property of being a PID is reflected in module theory.
The reader has already seen examples of PID's. Another interesting example

of a PID, actually a Euclidean ring, is the following.

Example 1.3 Let R be the set of all complex numbers a + bi such that a and
b are integers. Under the usual addition and multiplication of complex numbers, R
is a ring, acutally a subring of the field of complex numbers. Recall that addition is
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deflned as

(a, + b,i) + (a2 + b2i) = (ai + a2) + (b, + b2)i

and multiplication is

(a, + b,i)(a2 + b2i) = (a,a2 - b,b3) + (a,b2 + a2b,)i
To see that R is a Euclidean ring (clearly it is an integral domain), we must

define a map g :R -{0}-»N such that if x, y £R and y =£0, then there exist
elements q and rER such that x = qy + r where either r = 0 or g(r) < g(y).
Define the map g:R -{0}-»N by g(a + bi) = a2+b2. Because a and b are

integers, a2 + b' is an integer; in fact, it is always a positive integer. Notice that if
z = a + bi is in R, then the element a - bi is also in R, and we denote it by z. The
element z is called the conjugate of z and it should be observed that 1 = z.
Another fact worth noting is that for all z £ R - {0}, g(z) = zz = g(z). It is also
true that g(z.z2) = g(z,)g(z2). This may be verified by direct computation or by the
following more indirect method. First notice that z7z2 = £,£2. Once we have this,
we have g(z,z2) = (z,z2)(z7z2) = z,z2£,£2 = z,z,z2z2 = g(z,)g(z2). From this fact it is
obvious that g(ab)^g(a) if g(b)±0.
Let us take elements x = xl + x2i and y = yl + y2LU x = qy + r, with r = 0 or

g(r) < g(y ), we have xy = qyy + ry with ry = 0 or g(ry ) = g(r)g(y ) < g(y)g(y ) =
g(y)g(y) = g(yy)- Conversely, if we can find a q' and an r' such that xy =

q'yy + r' with g(r') < g(yy) (or r' = 0), then we have xyy = q'yyy + r'y. Thus,
r'y = (x - q'y)yy and so r'y/yy = x — q'y £ R [do not forget that yy is just an
ordinary integer, namely, (y, + y2)]. Moreover, the reader can check that

glyyi g(yy)

and, because g(r')<g(yy), we have

Vyy/ g(yy)

g(r'y) g(yy)g(y)__ r
.

g(y7) g(yy)
8Ky)

Setting r = r'y/yy, we have X -q'y = r or x = q'y + r with g(r)<g(y).
This argument shows us that in order to prove that g is a Euclidean function it

is sufficient to prove that if y is a positive integer and x is an arbitrary element of
r, then x = qy + r with g(r) < g(y). In this case, g(y ) = y2 and we want to find
q = q, + q2i so that g(x - qy ) < y2. Because x - qy = (x, - q,y) + (x2 - q2y)i, we
want to find integers q, and q2 so that (x, - qly)2 + (x2 - q2yf < y2.
If we could find integers q, and q2 such that |X

, - q,y | < y/2 and \x
2 - q2y | s

y/2, we would be done. But this boils down to proving that if x is an integer and y

is a positive integer, then we can find integers q and r such that x = qy + r and

\r
\ s y/2. We know from our proof of the fact that the ring Z is a Euclidean ring

that we may find q
'

and r' such that x = q'y + r' with 0 < r' < y. If r s y/2, we are
allright. Suppose r'>y/2 and let r = r'-y. Then \r

\ = y -r' < y -y/2= y/2
and x = q'y + r' = q'y + r + y =(q' + \)y + r. Hence, in this case setting q =

q
'

+ 1
, we have x = qy + r with \r
\ s y/2. Thus, we can always find q and r with

the desired property. Hence, we have shown that there are integers 41 and q2 such
that |X,-<j,y|<y/2 and |X2— <j2y|sy/2. This completes the proof that

g :R -{0}-»N is a Euclidean function. Hence, R is a Euclidean ring.
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Definition
The ring R defined in Example 1.3 is called the ring of Gaussian integers and is
usually denoted by Z(V^\). The map g :R -»Z [with g(0) = 0] is called the norm
map and g(z) is called the norm of Z.

Having shown that the Gaussian integers is a Euclidean ring, we know that it
is a PID.

2. FREE SUBMODULES OF FREE MODULES

We have already seen in Chapter 6 that if F is a free module of rank n over a
PID R, then every submodule F' of F is free of rank at most n. We also know that
every ideal in a commutative ring is of rank at most the rank of the ring, namely,
one. These results suggest the following: If F is a free module of rank n over an
arbitrary commutative ring R and F" C F is a free submodule of F, then rank
F' ^ n. This section is devoted to demonstrating this fact.
If R is an integral domain, we can verify this conjecture immediately. Let K

be the field of quotients of R, and let F' be a free module of rank m contained as a
submodule in the free R -module F of rank n. Because F' is contained in F,
K®F' CK®F where K®F' is a vector space over K of dimension m and K®F
R R R

is a vector space over K of dimension n. We know that the finite-dimensional vec
tor space K®F cannot contain a subspace of dimension greater than itself. Thus,

R

K®F' must have dimension m less than or equal to n. Hence, rank F' s rank F
R

But what happens if R is not an integral domain? Can we reduce the problem
to the preceding case? Suppose we have a prime ideal %& in R and suppose we
know that F'®R/$-»F®R/^$ is a monomorphism whenever F is a free R-

R R

module of rank n and F' is a free submodule. Then, because R/$ is an integral
domain and because F®RIty is a free R /$-module of rank n having F'®RIty

R R

as a free R/$-submodule, we know that F'®RIty must have rank at most n. But
R

rank F'®RW = rank F' because if F' = 1,R, then F'®RW = 'L,R®RW =
R R R

2,R/93. This shows that rank F' srank F
However, how can we produce a prime ideal of such that F'®R/$-» F®Rffi

R R

is a monomorphism? We can do it if we show that there is a prime ideal $ and a
monomorphism (as R-modules) f:Rffi-»R. For then, because F and F' are free
the morphisms F' ® R/$ -»F'®R=F' and F® R /$ -» F® R = F would also be

R R R R

monomorphisms and we would have the commutative diagram

F'®RW— »R®RW

F'®/ F®f

i®R

F'®R —5—» F®R
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where i : F'^F is the inclusion. Because i®R and F'®/are monomorphisms, the
R K

composition (i®r)(F' ®/) = (F®/)(i® R/$) is a monomorphism, from which it

follows that i®R/$ is a monomorphism.
Granted the above argument, how do we find a prime ideal $ and a

monomorphism f:Rffi-»R? For that matter, how do we find a monomorphism
h :R//-» R for any proper / at all? Because R is not an integral domain (if it were
we would not be concerned about it), there is some nonzero element xER which
is not regular. The morphism R-»R which sends r-»rx, then has a nontrivial ker
nel /, and clearly the induced morphism RII-»R is a monomorphism.
Now let us suppose that R is a noetherian ring, and let 3 be the set of all

proper ideals / such that there is a monomorphism RI1-»R. Because R is
noetherian, there is a maximal element, say /,.. in this nonempty collection. If we
show that h is a prime ideal, we will be done, at least in the case when R is
noetherian. If h is not a prime ideal, we can find elements a, b in R with ab £ h
and neither a nor b in /0. Because /0 is in S, there is a monomorphism f:RIh-»R-
If X = /(T), where T is the identity of RIh, then clearly /0 is the annihilator of x and,
because abEh, we have abx =0. However, because b£h, we know that bx ^0
because 0 ± f(b) = f(b . T) = bf(l) = bx. Now let J' = h + Ra; that is, J' is the ideal
generated by h and a. Then if y£ J", we have y = z + ra where zEl0 and rER.
Consequently, y(bx) = zbx + rabx = bzx + rabx =0+0because zX=0forall zEh.
Thus, J' is contained in the annihilator, J, of bx and we have a monomorphism
RIJ-»R where r\ = rbx. Because bx±0, J cannot be all of R because 1 . bx =£0.
But JDJ'Dl0 because a £ I0 and this contradicts the maximality of /0- There-
fore, /,, is a prime ideal and we are done.
We summarize what we have just established in the following.

Proposition 2.1
Let R be a noetherian ring. Then there is a monomorphism of R?-modules Rffi-»R
with $ a prime ideal of R.

Finally, we ask what happens if R is not noetherian. Rewording our
original problem, what we want to show is that if F is a free R -module of rank n,
then any set of n + 1 elements of F is not linearly independent. Let {x , X„} be

a basis for F
,

and let {y,, . . . , y„.,} be a set of elements in F. If R were noetherian,
we would already know that {y,, . . . , y„+,} is not a linearly independent set by what
we have just proved. How can we reduce this situation to the noetherian case?
Here we resort to a standard type of argument.
Let y, = 2 aipc, with a,, £ R, and let S be the smallest subring of R containing

the elements a,7, that is, S is the intersection of all the subrings of R containing the
ay. Now let G be the S-submodule of F generated by X,, . . . , x„, that is, G consists
of all linear combinations 2 s,x, with s, £ S. Clearly, {x,, ...,x„} is a basis for the
S-module G, and y , y„+, are in G because y, = 2 av £ S. If we knew that S

were noetherian, we could then conclude that {y,, . . . , y„+,} is not linearly indepen
dent over S and, hence not linearly independent over R, because R contains S
.

How then do we show that S is a noetherian ring? In general, how can we show
that if R is a commutative ring and {a,, . . . , a,} is a finite set of elements of R, then
the smallest subring of R containing a , a, is noetherian?
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Let Z be the ring of integers and let R be any commutative ring. Then we have
seen that we always have a unique ring morphism f:Z-»R denned by /(n) = n . 1.
If a is an element of R, it is clear that the smallest subring of R containing a must
be the image of the morphism g:Z[X]-»R given by g(2nJX,) = 2/(n,)a'. Also, if
T is a subring of R and a is an element of R, then the smallest subring of R
containing both T and a is the image of the morphism h : T[X]-» R defined by
/i(2 b,X') = 2 b,a' where b, E T. Thus, by induction, one sees that the smallest sub-
ring of R containing a,, . . . , a, is the image of the morphism k : Z[X,, . .., X,]-»R
where fc(2 n ,,... ,iX\' . . . Xj') = 2 f(n ,,... „)a ',' . . . a ','

.

Because the image of a

noetherian ring is always noetherian we will be done if we show that
Z[Xu . . . , X,] is noetherian.
The ring Z, being a PID, is certainly noetherian. If we prove the following

theorem, we will have solved our problem completely.

Theorem 2.2 (Hubert's Basis Theorem)

If R is a noetherian ring, then the polynomial ring R[X,, . . . , X„] is also noeth
erian.

PROOF: Because R[X„. . . ,X.] = R'[X.] where R' = R[X„ . . . , X„_,], it

clearly suffices to prove the theorem for the case n = 1
. Thus, we want to show

that the polynomial ring in one variable, R[X], is noetherian if R is.
Let / be an ideal in R [X]. How can we show that it is finitely generated? Sup

pose we have a fixed finite set of elements /.(X), . . . , /,(X) in / with /i(X) =
2,"t0 hX' such that for any g = 2"0 a,X' in / we have am = 2 rlb^ with r, £ R. If

m >max(n,), then g,(A') = g(X)-2,,., r,Xm""'fi(X) is an element in / of degree
m, less than m. If m, a max(n,), we may do the same thing to gl that we did to g

and so, proceeding in this way we see that if n = max(ni) and g(x) is an element of

/ of degree greater than or equal to n, we may find elements h,(X), . . . , h,{X) in
R[X] such that g{X)-1h,(X)f,(X) is in / and has degree less than n.
Let /„ , denote the set of elements of / of degree less than n. It is clear that

/„ , is an R -module. Moreover, it is a submodule of the R -module consisting of all
elements of R[X] of degree less than n, and this latter module is a finitely gener
ated R -module because it is generated as an R -module by 1, X, . . . , X"''. Because

R is noetherian, finitely generated R -modules are noetherian, and so /, , is a
finitely generated R-module. Say that I,-, is generated by k,(X), . .., k,(X). Then,

if g(X) is an element of / of degree m ^ n, we have as we have already seen,
g(X)--2h1(X)f,(X)el, , so that g(X)-2 /i,(X)/(X) = 5: rMX) for some
r,,...,r, in R from which it follows that g(X) = 2h,(X)/,(X) + 2r,fc(X). If

g(X) is an element of / of degree less than n, then g(X) is in /„_, and g(X) =

2 rMX). Thus, the set /,(X), . . . , /,(X), fc,(X), . . . , k,(X) generates /.

The question then is, how do we find these elements /,(X), . . . , /,(X) having
the property needed for the leading coefficients of elements of /? The answer is

quite simple. Let J be the set of all leading coefficients of elements of /, together
with the element zero. That is, a nonzero element a of R is in J if and only if there

is some element /(X)£/ such that /(X) = 2f.0ftX' with a* = a. The set J is

clearly an ideal of R. Because J is an ideal of R, J is finitely generated, say by
b„ . . . , b,. Thus, there are elements /,(X), . . . , /,(X) in / with /,(X) = 2,\0 hX'
and such that b,„, = b

,. These elements are what we have been looking for because
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if g(X) is an element of /, the leading coefficient of g(X) is in J and is therefore a
linear combination of h b, with coefficients in R. Our proof is now complete.

Corollary 2.3
If R is a commutative ring and a,, . . . , a, are elements of R, then the smallest
mibring of R containing au . . . , a, is noetherian.

It is this corollary which puts the finishing touch on our discussion of free
submodules of free modules over commutative rings. In fact, we have now proven
the following.

Theorem 2.4
If F is a finitely generated free module over the commutative ring R and if F' is a
free submodule of F, rank F' s rank F.

Corollary 2.5

(a) If a module M is generated by s elements, then any linearly independent sub
set of M has no more than s elements.

(b) If M is free and has rank at least s, then any s elements which generate M are
a basis for M.

(c) If / :M -» N is an epimorphism of the free module M onto the free module N,
and if M and N have the same finite rank, then / is an isomorphism.
PROOF: First we prove (a). Because M is generated by s elements, there is an

epimorphism f:F-»M where F is a free module having a basis of s elements. If
X is a linearly independent subset of M, the submodule (X) generated by X is a
free submodule of M with basis X. We have the inclusion i:(X)-»Af and, be
cause F —'—»M is an epimorphism and (X) is free and hence projective, there is a
morphism g : (X) -» F such that fg = i. But I : (X) -» M is a monomorphism, from
which it follows that g is a monomorphism. Thus, the image of g is a free
submodule of F isomorphic to (X). By Theorem 2.4 this submodule must have
rank at most s and so, therefore, must (X).
(b) Of course, it follows from (a) that any basis of M must have s elements,

because we are assuming that M has a set of generators consisting of s elements
and that every basis of M has at least s elements.
Let {wi,, . . . , m, } be a set of generators for M and let {x,, . . . , x, } be a basis

for M. Then we have an epimorphism f:M-»M defined by setting f(x,) = m,. Be
cause / is an epimorphism and M is free, the exact sequence 0 -» K -» Af —-'—»M -»
0 is splittable, where K = Ker /. K is finitely generated and projective, being a
summand of a finitely generated free module. If $ is any maximal ideal of R, we
have the exact sequence

0 -» Rv® K -» Rv®M -» Rv® M -» 0i ■ «

where now all the R^-modules are finitely generated and free. Because

rank(R„®M ) = rank(R*,®M) + rank(Rv®K) we have Rv®K = (0) for all $ and* R R R

so K = (0). This shows that / is an isomorphism from which it follows that
{m,, . . . , m,} is a basis for M.
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(c) Left as an exercise.

The proof we have given of Theorem 2.4 is not the most efficient. A different
one involving exterior powers would yield a shorter proof, provided the reader
were completely familiar with exterior powers. However, we are not assuming
such familiarity and, moreover, we are tempted to say that the techniques we have
used in proving Theorem 2.4 are perhaps more important than the result itself.
Showing the existence of a monomorphism RI^-»R for some prime ideal ty of R
in the noetherian case is a special case of a fundamental step in the noetherian de
composition theory of modules, and the Hilbert Basis Theorem is one of the basic
theorems of mathematics. Finally, the reduction from arbitrary commutative rings
to noetherian ones is a very helpful procedure when it works. It might also be
observed that, in the noetherian case at least, the proof given here can be
generalized easily to show that the cardinality of a basis of F' cannot exceed that
of a basis of F even when the cardinality of a basis of F is not necessarily finite.

3. FINITELY GENERATED MODULES OVER PID'S

The rest of this chapter is devoted to developing various structure theorems for
finitely generated modules over PID's.
Suppose R is a PID. We have already seen in Chapter 9, Proposition 3.3, that

every finitely generated torsion-free R -module is a submodule of a free R-
module. Because submodules of free modules over PID's are free, we have the
following.

Proposition 3.1
If R is a PID, then every finitely generated torsion-free module is free.

This result begins to show us how the module theory over PID's may be quite
special. For suppose that R is a PID and that M is a finitely generated R -module.
The torsion submodule of M, r(M) is then a finitely generated module and
Mlt(M) is a finitely generated torsion-free module and therefore free. Conse
quently, the exact sequence 0-» t (Af )—'-+M—^Af/f (Af )-»0 is splittable and we
see that M is the sum of a finitely generated torsion module and a finitely gener
ated free module. Therefore, to study finitely generated R -modules, it suffices to
study finitely generated torsion modules, because we know what finitely generated
free modules are like. It should be observed that if the finitely generated module
M is also a sum {M '— lj-» M, F —^-»M] where M ' is a torsion module and F is free,
and p,:M-»M', p2:Af-»F are the projection morphisms, then there are unique
isomorphisms h,:M'-»t(M ) and /i2:F-»M/f(Af) such that the diagram

0 »M'-±-»M-^F »0

i"
'

II l-

0 »t(M)— '-»M-*-»Mlt(M) »0

is commutative.

If the morphisms /i
,

and h
2 exist, they are obviously unique. Also, if one of
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them exists, they both exist and h, must be a monomorphism while h- must be an
epimorphism. Finally, it is clear that h, will be an isomorphism if and only if h2 is
an isomorphism. Therefore, let us show that h\\M' -»t(M) exists and is an
epimorphism.

We first observe that the composition kjl:M'-»Mlt(M) must be zero. This
comes from the general fact that if / :M , -» Af2 is a morphism from the torsion
module M , to the torsion-free module Af2, then / must be zero. Because kj, is zero,
the image of j, is contained in i(Af ) and so we define h, : Af ' -» f (Af ) by h,(m ') =
/,(m'). Clearly, h, is a monomorphism. To see that h, is surjective, suppose
m £ t (Af). Then m = /,p,(m) + /2p2(m), because /,p, + J2p2 = idM. Because p2(m)
is in F, p2(m) must be zero for otherwise p2(m) would be a nonzero torsion
element of F. Hence, m = j,p,(m) = h,(p,(m)) and h, is therefore surjective.
Because every finitely generated module over a PID R is uniquely the sum of

a finitely generated torsion module and a free module of finite rank, to see what
finitely generated R -modules look like, it suffices to study finitely generated tor
sion R -modules.
If we look at a PID R, the most conspicuous torsion modules around are the

cyclic modules, that is, those of the form RII where / is a nonzero ideal of R.
Therefore, we should be reasonably content if we show that every finitely gener
ated torsion module is a sum of such torsion modules. But what about uniqueness
of such a sum? For example, consider the ring Z of integers, and the torsion mod
ule Af = Z/(6)UZ/(3)UZ/(8). We know that Z/(6) = Z/(2)IIZ/(3) and that Z/(24) =

Z/(3)UZ/(8). Thus we may write:

(a) Af = Z/(6)UZ/(3)UZ/(8) or

(b) Af = Z/(2)UZ/(3)UZ/(24) or

(c) Af = Z/(2)UZ/(3)UZ/(8)UZ/(3) or

(d) Af = Z/(6)UZ/(24).

Thus, we see that a finitely generated torsion module over Z can be written in
many ways as a sum of cyclic modules. Are there conditions one can put on a
representation of a torsion module as a sum of cyclic modules which force the
representation to be unique, at least up to isomorphism? For example, if we look
at (c), we observe that each summand of Af is a factor of Z by a power of a prime,
and these cannot be broken down any further into a sum of nonzero modules as
we show later. Can Af be written as a direct sum of Z modulo powers of primes in
some other way? It turns out that the answer is no, as we shall eventually see. If
we look at (d), this seems to be an efficient decomposition of Af because it
involves the least number of summands. It has the property that 6 divides 24. Is it
possible to write Af as a sum of Z/(n,) such that n< divides n,+, in any other way
than (d)? We shall eventually show that the answer to this also is no. Also, from
the prime factorizations of 6 = 3 x 2 and 24 = 3 x 8, we may read off (c) once we
have (d). Also, from (c) we may read off (d) by writing a table:

2\ 2
3, 3

and then taking 2' x 3 = 24 and 2 x 3 = 6. In short, what we are saying is that if we
can write the decomposition of a module as a sum of factors of Z by powers of
primes II Z/(p?), then we can write it as a sum II Z(ei) where e, divides ei+, and
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vice versa. The rest of this chapter is devoted to proving the existence and
uniqueness of such decompositions for any finitely generated torsion module over
any PID.
Let R be a PID and let M be a finitely generated torsion module over R. Then

ann(M) is a nonzero ideal of R. This can be seen by choosing a finite set
{m,, . . . , m,} of generators of Af. If we let 7) = {r ER\rm, = 0}, then l±(0) be
cause M is a torsion module and hence every element of M is a torsion element.
Because R is a PID, we have I, = (a,) and, because a,mh .... a,m, = 0 for i =
1 s, we see that a,, . . . , a, is in the annihilator of M and a,, . . . , a, =£0. Thus,
ann(M) =£0 and in fact ann(M) = /, D . . . n /,

.

Hence, ann(M) = (a) where a =

lcm[a , a,]. In general, if a module M is generated by submodules
M,, . . . , M„ the reader can readily check that ann(M) = ann(M,) n . . . n ann(Af,).
To see that torsion modules which are not finitely generated need not have non
zero annihilators, let us look at the following.

Example 3.2 Let Z be the ring of integers and Q the rational numbers. Then
Q/Z is a torsion module. For if alb E Q represents an element x of Q/Z, we have
bx represented by b(alb) = a £Z and so bx = 0 with b=£0. If ann(Q/Z) ± (0),
there is an n in Z such that n(Q/Z) = 0. This means that for every alb EQ,n(alb)

is in Z. If we choose m EZ such that n and m are relatively prime, clearly n(1/m)

is not in Z. Thus, ann(Q/Z) = (0). Let us return to the case of an arbitrary, not
necessarily finitely generated torsion module Af. We assume throughout the rest
of this section that the annihilator (a) of M is not zero. Using the fact that R is a

UFD, we may write a = pi' . . . p'1 where p„...,p, are distinct primes and
v,, . . . , v, are positive integers. The first thing we notice is the following.

Lemma 3.3

If M is an R -module, m an element of M, and a, b two relatively prime elements
of R such that am =bm = 0

,

then m = 0.

PROOF: Because a and b are relatively prime and R is a PID, we can find
elements r, s£j? such that ra + sb = \. Then m = 1 . m = (ra + sb)m =
ram + sbm = 0.

As a result of this fact, we see that if q is any prime of R such that (q) ± (j>,)
for i = 1

,

. . . , t, and if q "m =0 for some positive integer v and some m E Af, then
m = 0. Another immediate result is that if ptm = 0 for /j, > vh then p I'm = 0

. For
we have ptm = pt'"ip"'m) = 0 and (alp"')(p"'m) = 0. Because a=Up',', the
elements pi"1 and alp"1 are relatively prime so that, by Lemma 3.3, p"'m must be
zero.

In Chapter 6 we proved that if M is a torsion module over a PID and if Af ,„
denotes the submodule of Af consisting of those elements m EM such that q"m =

0 for some positive integer v and prime q, then M is the sum of the submodules
Afi,l where the (q) run through all the distinct PPD of R. As a consequence of our
previous observations we have the following.

Proposition 3.4
Let Af be a torsion module with ann(Af) = (a), a =£0. If a = pp . . . p"\ then:

(a) M = Af„,lU---11Afip,l.
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(b) ann(M,„,,) = (p,"') for all i = 1, . . . , t.

PROOF: (a) follows from Lemma 3.3.

(b) We now show that if we let (b.) = ann(Afip„), then (b,) = (p?). We first
show that p?Mipl, = 0. Let m be in AfiP1,. Then p"m =0 for some v. If v > v,, we
have seen by our previous remarks p"'m =0. If v £ y„ then certainly p"'m =0.
Thus, (b,)D(p''), that is, bl\p?. Hence, bl = upl where u is a unit and p. < vi.
Therefore, (bl) = (pD, and we have ann(Af,Pli) = (pD 3 (pT).
To show that (pr') = ann(Af,M), it suffices to produce at least one element

m £ Af such that p ",'m = 0 but p ?"'m ± 0. Let b = alp,. Then b is not in (a) so
there is some element m'£Af such that bm'±0. Let m=(a/p?')m'. Then
p"m=p','(alp})m' = am' = 0, but prr'm =prr'(a/p?)m' = (a/p,)m' = bm'=£0.

It is clear that our next step must be to study the modules Af having the
property that ann(Af) = (p") for some prime p and fixed positive integer v. To get
a clue as to what we might expect, suppose that v = 1. Then Af is an R/(p)-
module because pM = 0, and because Rl(p) is a field, M is a vector space over
R l(p ) and is therefore a sum of copies of R /(p ). We might expect that if v > 1, the
module Af is still a sum of modules of the type Rl(p "') where y

, < ii. In general, we
cannot expect Af to be a sum of modules Rl(p") with v fixed as the example
RI(p")URI(p) quickly shows. But that Af contains a submodule isomorphic to
Rl(p") is clear.
This comes from the fact that every element of Af is annihilated by p * for

some p. s v. Hence, if every element were killed by p * for some p. < v, we would
have ann(Af) = (p") for some v' < v contradicting the fact that ann(Af) = (p").
Therefore, there is an element m EM whose annihilator is (p") and hence the
morphism R -» M sending 1 to m has kernel (p "). As usual, this implies that there

is a monomorphism RI(p")-»M. Notice that the element m whose annihilator is

(p ") is such that {m} is a linearly independent subset of Af when Af is considered
an R/(p")-module. Therefore, viewing Af as an R/(p")-module, Af contains a
nonempty maximal linearly independent subset {m„}. The submodule of Af gener
ated by this subset is then a free R l(p')-module F, and we have the exact se
quence

0 »F-^►M-^MIF »0

where i is the inclusion and k the canonical epimorphism.
Suppose this exact sequence were splittable, then we would have Af as a sum

of F and a submodule Af ' isomorphic to Af IF. F itself is a direct sum of copies of
Rl{p") because F is a free R/(p">module. What about Af'? Notice that because
Af' is a submodule of Af, every element of Af ' is killed by p" for some p. < v.
Suppose not, and suppose m

' £ Af ' is such that the annihilator of m ' is (p "). Then
{m„} U {m '} is a linearly independent subset of Af which contradicts the fact that

{m„} is a maximal linearly independent subset of Af. Consequently, ann(Af ') =

(p"') for some v' < v and by induction on the exponent v (the case v - 1 having
been already disposed of), we may conclude that Af ' is a sum of modules Rl(p "')

with v, < v
'

. Therefore, Af, being the sum of F and Af ', would be a sum of
modules RI(p'') where y

, < v. Hence, we have a structure theorem for Af if we
show that the exact sequence 0-»F-» Af -»Af/F-»0 is splittable.



Injective Modules 363

If we could show that Af/F is R/(p ")-projective, then we would know that
the above sequence is splittable. However, looking at the example 0-»Z/(4)-»
Z/(4)IIZ/(2)-»Z/(2)-»0, we see that the sequence is splittable but Z/(2) is clearly
not a projective Z/(4)-module (why?). Is there something special about F, then,

that makes the sequence splittable? The answer is yes, and the reason for this
answer is found by studying so-called injective modules.

4. INJECTIVE MODULES

Definition
Let R be an arbitrary, not necessarily commutative ring and let M be an fi-
module. Af is called an injective module if

,

for every monomorphism / : A -» B of

R -modules, the morphism (B, Af ) -» (A, Af ) is an epimorphism.

Basic Properties 4.1

(a) If Af is an injective R -module, then every exact sequence 0-»
Af—Ua^-»B-»0 is splittable.

(b) If Af is the product of modules {Af„}, then Af is injective if and only if each Af„

is injective.

(c) If Af is an injective R -module and <p:R-»S is a ring morphism, then the

S-module R(S, Af) is injective where the operation of S on R(S, Af ) is given
by (sf)(s') = f(s's) for s and s' in S

.

PROOF: (a) If Af is injective, the morphism (A, Af) '/MI »(Af, Af) is an
epimorphism so that there is a morphism h : A -» Af such that (/, Af)(h) = idM. Be
cause (/, Af )(h) = h

f ' = idM, h is a splitting for the monomorphism /.

(b) The proof is similar to part (c) of Chapter 7
, Basic Properties 3.1.

(c) Let f:A-»B be a monomorphism of left S-modules, and let g:A-»
R(S, Af) be an S-morphism. Because A and B are S-modules, they are R-
modules induced by the morphism <

p and / is also a monomorphism of R-
modules. Moreover, the map g':A-»Af defined by g'(a) = [g(a)](l) is an R-
morphism, where / is the identity element of S. Because Af is injective as an
R-module, there is an R-morphism h' :B-»M such that h'f = g'. Define the map

h : B-»R(S, Af ) by [h(b)](s) = h'(sb). Then h is an S-morphism and hf = g. This
shows that R(S, Af) is an injective S-module.

The reader should recall that the property of projectives corresponding to

Basic Properties 4.1(a) here was an if and only if statement. For projectives this
followed from the fact that every module is the factor module of a projective (ac
tually free) module. Is it also true that every R-module is a submodule of an
injective module? If so, we could make Basic Properties 4. 1(a) into an if and only

if statement too. We approach this question obliquely.

Proposition 4.2
Let R be a ring and Af an R-module. Af is injective if and only if for every left
ideal I of R and every R -morphism g : I-» Af, there is a morphism h : R -» Af such
that /i|/ = g.
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PROOF: If M is injective, then this is just a special case of the definition of
injectivity, so clearly the condition is necessary.
To prove sufficiency, we may consider a module B and submodule A, with a

morphism g:A-»M. We then want to produce a morphism h:B-»M such that
h\A = g. As usual, if we want to extend a morphism all the way from A to B, we
consider those submodules of B to which it can be extended, show there is a

maximal one, and then show that this maximal one is B. Therefore, let <Sbe the set

of pairs (A', g') where A' is a submodule of B containing A and g' :A'^M is a
morphism extending g. We order 9 by setting (A\,g\)<(A'2,g2) if A\CA2 and
g'2\A\ = g\. If {(A'„, g'„)} is a totally ordered subset of % let A' = UAi and define
g':A'-»M by setting g'(a') = gj,a') if a'EA'„. As usual, g' is a map, it is a
morphism, and (A',g') is in <S. The reader should verify all of this. Now let
(A*, g*) be a maximal element of <8. If A*±B, choose an element b£B with
b£A*, and let A' = A* + (b). A' contains A* properly and we shall construct a
morphism g':A'^M extending g*. This will contradict the maximality of
(A*, g*) in <Sand so we will have proved that A* = B and g* is our sought-for h.
We are tempted to extend g* to g':A'-»M by setting g'(a* + rb) =

g*(a*) + rg'(b) if we could just decide how to define g'(b). Let I = {r £ R |rb £ A *}.
/ is clearly a left ideal of R. Define the map ;' : /-»M by /(r) = g*(rb). It is easy to
see that j is an R-morphism. Our hypothesis on M tells us that there is a morphism
j':R-»M such that j'\I = j. Let j'(l) = m<, and now define a map g':A-»Af by
setting g'(a* + rb) = g*(a*)-rm0 for all a* in A* and r in R. We claim that g' is
a map. For if a* + r,b = a* + r2b, then (r, - r2)b = a*- a* which is in A* and so
r, - r2 is in /. Therefore, g*(a ? - aT) = g*((r, - r3)b) = j(n - r2) = /'((r, - r2)l) =
(n - r2)/'(l) = (r, - r2)m0. As a result, g*(a,) + r,m0 = g*(a2) + r2m0 which shows
that g' is a map. The reader should check that g' is a morphism, and that it clearly

extends g*. This shows that A* must be B, and our proof of the proposition is
complete.

An immediate consequence is the following.

Proposition 4.3
If R is a ring, the following statements are equivalent:

(a) R is semisimple.
(b) Every left ideal of R is a summand of R.

(c) Every R -module is injective.
(d) Every R-module is projective.

The criterion for injectivity of a module given in Proposition 4.2 permits us to

prove a less obvious result for noetherian rings.

Proposition 4.4
If R is a left noetherian ring and M is a sum of the R-modules M„, then M is
injective if and only if each Af„ is injective.

PROOF: If M is injective, each summand Af„ is injective by Basic Properties
4.1 of injective modules. The converse is proved as follows.
Suppose each M„ is injective, that / is a left ideal of R, and / : I -» M is an
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R-morphism. Because R is left noetherian, I is finitely generated, say by elements
au . . . , a.. If {L : Af„-»Af} and {p„ :M-»M„} are the injections and projections of
Af as the sum of the Af„, we know that for each m £ Af, p„ (m) = 0 for all but a finite
number of indices. For each element a„ there are only finitely many o's such that
p»f(ai)±0. Let {a*} be the set of the a's such that pOi/(O,)=£0 for some i. There are
only finitely many such a,'s, say {au . . . , a,}, because there are only finitely many

elements a,. Let Af' be the sum Af„,ll . .. II Af„, with AC —^Af' -^»Af„, the injec
tions and projections. The morphism j : Af'-» Af is the unique morphism such that
//„, = i,

, and we claim that / = jf where /' : I-»Af ' is the unique morphism such that
<lJ'=pmf-
To see that / = //' we must show that ;/'(*) = /(*) for k=\,...,n since

a ,a, generate /. Using the fact that 2 /„,<}„,=idm, we have jf'(ak) =

;'(2 j„,q.,)/'(a*) = 2 L,p„1f((k). This last sum is equal to /(*) because p„(/(a*)) = 0

if a#«,,... , a,. Thus, /(a*) = //'(ak) for all fc = 1
,

. . . , n. Hence, / = if.
Af' is injective because it is a sum of a finite number of injective modules and

hence also the product of these modules. Therefore, there is a morphism g
'
: R -»

Af' such that g'\I = f. Let g:R-»Af be the composition //'. Then g|/ = (/g')|/ =
/(g'|7) = //' = / and so Af is injective.
We can also obtain information from Proposition 4.2 about injective modules

over PID's, because the ideals in a PID are so much less complicated than the
ideals of a general noetherian ring. We first give some definitions.

Definitions
Let R be an integral domain and Af an R-module.

(a) An element m £ Af is said to be divisible by a nonzero element a e R if m - am'
for some m'£Af.

(b) An element m £ Af is divisible if it is divisible by every nonzero element of R.
(c) Af is called a divisible module if every element of Af is divisible.

Basic Properties 4.5 .

Let R be an integral domain.

(a) A factor module of a divisible module is divisible.
(b) The set of divisible elements of a module Af is a divisible submodule of M.

(c) A torsion-free divisible module is injective.
(d) An injective module is divisible.

(e) A necessary and sufficient condition that a module over a PID be injective is

that it be divisible.

PROOF: (a) and (b) are left as exercises.

(c) If / is any ideal of R, Af a torsion-free divisible R -module, and f:I-»R a

morphism, we want to produce a morphism g:R-»Af such that g\I = f. For any
a,, a2 £ I we have f(a,a2) = a,f(a2) = a2f(a,). If / is not the zero morphism (if it is,
we just set g = 0), there is an element a £ / such that /(a) ± 0. Let m0 £ Af be
such that ont0 = f(a) (this may be done because Af is divisible), and define g : R -»
Af by g(r)= rm0. If a' is in I, we have ag(a') = aa'm0 = a'am0= a' f(a) = af(a')
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so that a(g(a')-/(a')) = 0. Because Af is torsion-free and a =£0, g(a') = f(a'),
and therefore g\I = f.
(d) This follows from the following observation which is not difficult to

verify. Let R be an integral domain. An R-module Af is divisible if and only if
given any nonzero element a in R and R-morphism f:(a)-»M, there is an
R-morphism g:R-»M such that g\(a) = f. Combining this with Proposition 4.2, we
see that every injective R-module Af is divisible. This same observation also
proves (e).

Example 4.6 Let R be an integral domain, and K its field of quotients. Then K
is torsion-free. If a E R and blc £ K, we have blc = a(blac) provided a ± 0. Thus,
K is divisible and therefore injective. The module KIR is divisible because it is a
factor module of K. In particular, if R is a PID, then KIR is an injective R-
module.

We now show that if R is a PID, then every R-module is a submodule of an
injective R-module. Let Af be an R -module, let /: F-» Af be an epimorphism of a
free R -module onto Af, and let L = Ker/. Now F is a submodule of an injective
R-module. This may be seen by writing F = U R, where each R, is isomorphic to R.
Then F =11 R, CUK, where each K, is isomorphic to the field of quotients K of
R. It is not difficult to check that UK, is divisible and torsion-free. Therefore, UK
is injective. Because L is a submodule of F, L is a submodule of II K, and
U(KJL) is divisible, being a factor module of a divisible module. However, R is a
PID so that II(JC/L) is injective. We have FIL CU(K,/L) and Af is isomorphic to
FIL. Therefore, M is isomorphic to a submodule of an injective R -module. From
this it is easy to prove the foUowing.

Theorem 4.7
If R is any, not necessarily commutative, ring and M is any R-module, then M is a
submodule of an injective R-module.

PROOF: We always have the ring morphism <p:Z-»R where Z is the ring of
integers and where <p(n) n . 1. M is thus a Z-module and because Z is a PID, M is
contained in an injective Z-module, N. By Basic Properties 4. 1 of injective mod
ules, we know that Z(R,N) is an injective R-module. Also, since MCN,
Z(R, M) C Z(R, N). In addition, we know that M « R (R, M) C Z(R, Af ) because an
R-morphism of R into Af is certainly a Z-morphism of R into Af. Thus, Af C
Z(R, Af ) C Z(R, N) where Z(R,N) is an injective R-module.

From this we immediately have the following.

Corollary 4.8
If R is any ring and Af an R-module, then Af is injective if and only if every exact
sequence 0-»Af-»A-»B-»0 is split table.

5. THE FUNDAMENTAL THEOREM FOR PID'S

The reader will recall that injective modules were introduced in connection with
our discussion of Rl(p") modules (v>0) where p is a prime element in the PID R.
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We showed that if M is a faithful R/(p")-module, then there is an exact sequence
of R/(p")-modules 0-»F-»M-»M7F-»0 where F is a free R/(p")-module and
MIF is not a faithful RKp' )-module. The reader will also recall that if this exact
sequence of R/(p")-modules is splittable, then we obtain a structure theorem for
Af. We now show that this sequence is splittable by showing that F is an injective
RI(j>")- module.

Proposition 5.1
Let R be a PID and b a nonzero element of R. Then RI(b) is an injective
R/(b)-module.

PROOF: We have the ring morphism <p:R-»RI(b). If we can find an injective
R-module Af such that RKb)«R(RI(b), Af), then by Basic Properties 4.1 we
know that RI(b) is R/(b)-injective. In Example 4.6 we showed that if R is a PID
and K its field of quotients, then KIR is an injective R-module. If we show that
Rl(b)^R(Rl(b), KIR), we will be done.
Consider the morphism KIR—*-»KIR which sends x to bx. We claim that

the kernel of this morphism is the image of the morphism R —t—»KIR which sends
r to fc(r) where k:K-» KIR is the canonical morphism. If bx = 0 and x = (ulv),
then 0 = bx = k(bulv) implies that bu = vc for some c £ R. Hence, x = k(ulv) -
k(cIb) =f(c). Clearly, bf(r) = bk(rlb) — k(r) = 0, so our assertion about Im/ is
true. Now the reader can check that Ker/ = (b) so that, because Im/ =
RIKer f = RI(b), we have the exact sequence

0-»RI(b)-»KIR -^KIR -0

the latter zero being justified because KIR is divisible.
From the exact sequence above we obtain the exact sequence 0-»R(RI(b),

Rl(b))-»R(Rl(b),KIR) """"'" R(RI(b),KIR), and the morphism (RI(b),b)
is easily seen to be zero. Therefore, R(RI(b), R l(b)) ^R(R l(b), KIR). Finally,
we know that Rl(b) = RI(b)(Rl(b), Rl(b)) = R(RI(b), RI(b)). Thus, Rl(b) is an
injective R I(b)- module.

With this result we are able to prove the following.

Proposition 5.2
If R is a PID and M is an R-module whose annihilator is (p") for some prime
element pER and positive integer v, then M is the sum of modules Rl(p"') with
v, s v. If M is finitely generated, M is the sum of a finite number of such modules.
PROOF: First we observe that if F is a free R/(p*)-module, then F is an

injective R/(p")-module. To see this recall that Rl(p") is a noetherian ring.
Because F = II Rl(p") and each Rl(p") is Rl(p ")-injective, it follows from Prop
osition 4.4 that F is an injective R l(p")- module.
Suppose now that M is an R-module whose annihilator is (p"), that is, M is a

faithful R/(p')-module. We have already seen that under these circumstances
there is an exact sequence of R/(p")-modules 0-»F-»M-»M/F-»0 with F a free
R/(p")-module such that ann(Af/F) = (p") with ti<v. Because F is an injective
R/(p')-module, we have that Af = F IIMIF. By induction on v, we know that MIF
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is a sum of modules Rl(p"') where v<,<p.. Because F=U Rl(p"), we have M is a
sum of modules Rl(p"1) with v,s,v.

We leave the proof of the rest of the proposition to the reader.
Putting Propositions 5.2 and 3.4 together, we get the following.

Theorem 5.3
Let R be a PID and Af a torsion module with nontrivial annihilator (a). If
a - p"i, . . . , p"' is a prime factorization of a, then Af is the sum of modules Rl(p"')
where v,, s v, for i = 1, . . . , t If M is a finitely generated torsion module, M is the
sum of a finite number of modules Rl(p"").

Can we go further? That is, can we decompose the modules Rl(p") even
further as sums? Suppose Rl(p") = Af, IIAf,. Then (p") = ann(Af,UAf2) =
ann(M,) n ann(Af2) so we have ann(Af ,) = (p "') and ann(Af2) = (p "2

) with either v,

or v2 equal to i». It can be shown that Rl(p)®Rl(p")=°°Rl(p), and we know that

R

Rl(p)®(MlUM2)«(Rl(p)®M,)U(Rl(p)®M2). Because Rl(p) is a one-

R R R

dimensional vector space over RI(p), we must have either Rl(p)®M, = 0 or

R

R/(p)®Af2 = 0. Say R/(p)® Af2 = 0. Then Af2 = (p)Af2 because R/(p)®Af2 =

R R R

M2/(p )Af2. But if Af2. =(p)Af2, then Af2 = (p")M2 for every p
i and, because

(p"OM2 = 0
,

we have M2 = 0
. Consequently, the modules RI(p") cannot be re

duced further.

Our next question is about the uniqueness of this type of decomposition of
torsion modules M with nontrivial annihilator. Suppose Af = II II Rl(p"'»<)

ip, 1ipiel„,

where (p) runs through PPD(R ), and let Nlpl = U R /(p V). Then Mip, = Ni„„

a fact we leave to the reader to verify.
Therefore, if M = U II RI(p"'»i) and M = U U Rl(p*'<»), we know that

for each (p) in PPD(R) we have II Rl(p"'»i) = II R/(p%i). Thus, to show

that these two decompositions of Af are essentially the same, it suffices to show
that for each (p) any two decompositions of Af,„, are essentially the same. This
amounts to proving that for each (p), there is a bijective map /:/ipl-» J,pl such
that y,,, = /n;i,,,,,- We prove this only in the case M,p, is finitely generated.

Proposition 5.4
Let R be a PID and Af a finitely generated R- module whose annihilator is (p ' ) for
some prime element p in R. Then any two decompositions of Af as a sum of
modules RI(p") are essentially the same in the sense described above.

n m

PROOF: Suppose Af = II R/(p")= II R/(p"'). Assume the exponents
v,,...,v, and p.l,...,p.m have been so labeled that v, ^ v2 . . . a vn and pi, a /i2a
. . . a p.m. We want to show that m = n and that v, = Hi for i = 1 , . . . , m. This is a

special case of the following much more general theorem.



The Fundamental Theorem for PID's 369

Theorem 5.5
Let R be a noetherian commutative ring and I,CI2C . . . C/„, J, C . . . C Jm two
sequences of proper ideals of R such that

*IT...II —X.-U ..II —/, "/, J, UJm

Then n = m and Ik = Jk for k = 1, . . . , n.

PROOF: To show that m = n, we take a maximal ideal Af containing L and,
tensoring, one obtains

xv .— R ._ „ ii --*. i\ R ^" R̂ TT n R ^N iv
Affl11---11*?®!"^^11---11^^

These are vector spaces over RIM which, on the one hand, are n- dimensional be
cause RIM®RIIk=RIM, and at most m-dimensional because RIM(x)RUk=(fi)

R R

or R IM. Hence, n<m. Similarly, m s n so m = n.
To show that /„ =J„, we tensor everything with Rlh. Then RIL®Rlh =

R

RIL because Ik C/„. Therefore, we see that RILU . . . U RII, =
RKL, J,) II . . . II Rl(h, J») where (/„, Jk) denotes the ideal generated by /„ and Jk.
Because the sum of n copies of RlL is a free R //.-module, and because RI(L, Jk)
is a direct summand of this RII„- module for each k, we know that R/(/„, Jk) is a
projective RIL-module. Thus, the canonical epimorphism RIL -»R l(L,Jk) is a
splittable R IL -epimorphism, and we have RIL = RI(L,Jk)UZk where Zk "
(Z,, Jk)IL and Zk is a finitely generated R IL- module. Because RILU- . -URIL ~
Rl(L,J,)U-URI(L,L) and because RIL «RI(L,Jk)UZk, we get (11R/
(/„, Jk))IIdlZn)^ II JiVd,, Ji,), with II Zk finitely generated. Tensoring both sides
by RIM where M is any maximal ideal of R, we get (RIM(g)URI

R

(/„, Jk))U(RIM® II Zk) «RIM®(URl(L, J*)). Knowing that both sides are finite-

dimensional vector spaces over RIM, we conclude that R/M®(IIZk) = 0 for
s

every maximal ideal M of R. Therefore, by Chapter 9, Example 5.15, we know
that II Zk = (0). Hence, Zk = (0) for k = 1, . . . , n, and, in particular, Z„ = (0). Be
cause Z, was the kernel of RIL -»RI(L, J„), we must have J„ C /„, if Z„ = (0). A
similar argument shows that /„ C J„, so we have L = J».
Now suppose that Ik=Jk for /c = n, n - 1, . . . , r + 1, and let us prove that I, =

J,. Tensoring RII,U- . -IIR/L by RII„ we get RILU- . URILURIL^U- . URIL
isomorphic to RKL, J,)U- . .URl(I„J,)URIL.lU- -URIL, because /k=Jk for
k = t + \,...,n. Letting F=RIL II . . . URII, (t times), G = RII,., II- - -II R//,, and
H = R/(/,, J,) II- . .URIa, l\ we have

FUG^HUG

where F, G, and H are finitely generated RII, modules and F is a free RIL-
module. We know by Chapter 9, Theorem 6.5 that this implies H is a projective
RII, -module.
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Because H is a projective R II, -module, R/(i, Jk) is also a projective RIh-
module for k = \,...,t because it is a summand of H. Thus, the canonical
epimorphism of RII, -modules RII,^RI(I„Jk) is splittable for each k, and we
have RII, =°=Rl(I„Jk)UZ'k where each Z\ is a finitely generated R//,-module.

Thus, we have HU(U Z[)UG = HUG. Using the same argument as before, we

see that Z'k = 0 for k = 1, . . . , t. In particular, Z', = 0 and thus we have J, C /,
. Simi

larly, /, C J, and so I, = J,. This completes the proof of the theorem.

The foregoing arguments give us the following.

Theorem 5.6

If R is a PID and Af is a finitely generated torsion module, then M is the sum of a

finite number of modules RI(p?) where the p, are prime elements of R and the v0
are positive integers. Any two such decompositions are identical up to order.

Now suppose that Af is a finitely generated torsion module and that we have

its decomposition Af = II (IIR/pf") where (p.), . . . , (p,) are distinct elements of

PPD(R). Let us assume that for each i = 1
,

. . . , r, we have i;Man2a"-> ii,„,. By
choosing n to be the largest of n„..., n„ and by setting vu = 0 for n,<j s n, we
obtain v„ a vn& . . . a i»to for i = 1

,
. . . , f.

Define the elements e
, £R for ;'= 1 n by

€
i = p!'"p2,il-- p,'.

Then for no j is ei a unit and we have, for each / = 2
,

. . . , n, that ei divides «i-, or,

equivalently, (e, ,)C(e1). Moreover, by the Chinese Remainder Theorem (Chapter

5
, Proposition 6.6) because R/(e,) = R/(pra)II- . .URI(p"*), we see that M =

R/(«,) II- - . ll R /(c). Thus, every finitely generated torsion module Af over a PID

is a sum R/(e,) II- . IIR/(e„) where (e,)C(e2)C- . -C(«,) and (c)=£R. By
Theorem 5.5 we know that type of decomposition of M is unique.
We have seen that a finitely generated module is the sum of its torsion sub-

module and a free module, and a finitely generated free module is the finite sum of

copies of R = R/(0). Thus, because (0) is contained in every ideal, we see that an
arbitrary finitely generated R-module Af is the sum of modules

R/(d)II- . UR/(e„) where (e,)C . . . C(e„)=£R and we now allow («,) to be (0).
This sum is unique for the number of e"s equal to zero determines the free part of
M while the rest give the decomposition of f(Af).
Notice, too, that (0) is a prime ideal of R. Thus, R = R/(0) is R modulo a

power of a prime ideal. We combine all of these observations in the following.

Theorem 5.7
Let R be a PID and Af a finitely generated R-module. Then:

(a) Af is the finite sum R/(e,) U- . . IIR/(e„) where («,)C . . . C(e„) ± R and Af may
be written as such a direct sum in only one way.

(b) Af is the finite sum II IIR/(p°il) where each (p,) is a prime ideal of R (possibly

zero). Af may be written as such a sum in only one way.
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Theorem 5.7 is called the fundamental theorem for finitely generated modules

over PID's.

Definition

(a) The ideals («,), ...,(«„) of R uniquely associated with the finitely generated
module M as in Theorem 5.7 are called the invariant factors of Af.

(b) The nonzero prime ideals (p,) of R uniquely associated with the finitely gener
ated module M as in Theorem 5.7 are called the elementary divisions of Af.

The next chapter is devoted to various applications of the fundamental
theorem.

EXERCISES

(1) Throughout this exercise R is a noetherian commutative ring. Let Af be an
R-module. We say that a prime ideal ^ of R is an associated prime ideal of Af if
there is an element x in M such that ty is the annihilator of x ; that is, P consists of
all r in R such that rx = 0. We denote by AssR(Af ), or more simply Ass(Af ), the
set of prime ideals associated with Af.

(a) Show that a prime ideal *$ of R is in Ass(Af ) for an R-module Af if and only if
there is a monomorphism R/$-»Af.

(b) For each prime ideal $ of R show that Ass„(R/$) = {^}.
(c) Let Af be an R-module. For each element x in Af, let ann(X) denote the
annihilator of x. If if is the set of all ideals of the form ann(x) for all nonzero x
in Af, then the maximal elements of the set if are in Ass(M). [Hint: Generalize
the procedure used in showing that there is always an injective morphism
RIty-»R of R-modules for some prime ideal $ if R is not the zero ring.]

(d) An R-module Af ^(0) if and only if Ass(Af )=£<*i.
(e) Let 0-»Af'-»Af-»Af"-»0 be an exact sequence of R-modules. Show that

Ass(M') CAss(M) CAss(M') U Ass(M").
(0 Let Af be an R-module. We say that an element r in R is a zero divisor for Af
if there is a nonzero element x in Af such that rx = 0. Show that an element r in
R is a zero divisor for Af if and only if r is in ty for some $ in Ass(Af ). Hence,
U 5g is the set of zero divisors for Af. [Hint : To show that if r in R is a
«eAuiMl

zero divisor in Af, then r is in $ for some ty in Ass(Af), consider the
submodule Rx of Af where x is a nonzero element of Af such that rx = 0.]

(g) Let Af be a finitely generated R-module. Show that there is a finite chain
0 = Af0 C Af , C . . . C Af„ = Af of submodules of Af such that for 0 s i < n we
have Afm/Af = R/$i for some prime ideal $, of R. [Hint : Let if be the set of
all submodules of Af for which the statement above is valid. Show that if
Af ± (0), then if ± <
fi and that Af is a maximal element of if.

(h) Show that if Af is a finitely generated R-module, then Ass(Af) is a finite set.
[Hint : This follows from (g) using (b) and (e).]

(2) Suppose R is a commutative noetherian ring and {Af,},e; is a family of
R-modules. Prove that Ass(IIAfi)= U Ass(Af,). Use this result to show that
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there is an R-module M which is not finitely generated such that AssR(M) is
finite.

(3) Let Z be the ring of integers and Q the field of rational numbers.

(a) Show that the Assz(Q/Z) consists precisely of all the nonzero prime ideals of
Z.

(b) Let M be a finite abelian group of order n. How are the set Ass(Af) and the
prime divisors of n related?

(4) Let R be a commutative noetherian domain. Show that an R -module M is a
torsion R -module if and only if the ideal (0) is not in Ass(M).
(5) (a) Let R be an arbitrary commutative ring. Show that if an ideal I of R is

n

contained in a finite union U tyl of prime ideals $, of R, then / C$, for some
L-l

i = l,..., n. [Hint: Proceed by induction on n to show that if I£%$, for each
i=l,...,n, then /£U$,.]
(b) Use (a) to establish the following result. Let M be a finitely generated module
over a commutative noetherian ring R and / an ideal of R. Then the following
statements are equivalent:

(i) There is a nonzero element x in M such that Ix = 0.
(ii) For each r in /, there is a nonzero element x in M such that rx = 0.
(iii) There is a prime ideal $ in Ass(M) such that ICty.

(c) Let f:R-»R' be a ring morphism of commutative, noetherian rings. Suppose
M is an R'-module which we consider an R-module by means of the ring
morphism f:R-»R'. Show:
(i) If $' is a prime ideal of R' in Ass*(Af), then f '(/") is in Ass«(Af).
(ii) If M is a finitely generated R'-module and $ is a prime ideal of R in
Ass«(M), then there is a prime ideal $' of R' in AssR(Af) such that
*'D/(P).

(iii) If R is a PID and M is a finitely generated R'-module, then AssR(M) is a
finite set.

(d) Let M be a finitely generated R-module with R a noetherian ring. Then the
underlying abelian group M of M has the property that Assz(M) is finite.

(e) Let R be a noetherian ring and M an R-module whose underlying abelian
group is isomorphic to (Q/Z) where Q is the field of rational numbers. Show
that M is not a finitely generated R-module.

(6) Let R be an arbitrary ring. Show that for a monomorphism f:A-»B of
R-modules, the following statements are equivalent:

(a) If b is a nonzero element of B, then there is an element r in R such that rb is a
nonzero element of /(A).

(b) If B' is a nonzero submodule of B, then BT,f(A)±0.
(c) An R' morphism g:B-»C is a monomorphism if the composition gf: A -»C is
a monomorphism. A monomorphism f:A-»B is said to be an essential
monomorphism if it satisfies any of the above equivalent conditions. If A is a
submodule of a module B, then B is said to be an essential extension of A, if the
inc:A-»B is an essential monomorphism.

(7) Suppose R is an arbitrary ring.

(a) Show that for each R-module A, the morphism id , is an essential

monomorphism.
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(b) Show that the composition of two essential monomorphisms is an essential
monomorphism.

(c) Suppose A is a submodule of a module B. Show that if {Ei}leJ is a totally
ordered family of submodules of B which are essential extensions of A, then
the submodule E = U E, is an essential extension of A.

(d) Suppose A is a submodule of B. Show that there is a maximal essential exten
sion E of A contained in B, that is, E D A is an essential extension of A and if
E' D E is an essential extension of A, then E' = E. Show also that E is the only
essential extension of E in B.

(e) Suppose A is a submodule of the injective R-module B. Show that A is the
only essential extension of A in B if and only if A has no essential extensions
except itself, that is, if A is a submodule of any R-module which is an
essential extension of A, then A=A'.

(8) Let R be an arbitrary ring. Suppose A is a submodule of the R -module B and

/:A-»Camorphismof R-modules. Then the push-out B x C of the morphisms

C

gives rise to the following commutative exact diagram

0 »A
,nc
»B »BIA »0

-»C »B x C »BIA »0

(a) Show that the monomorphism C-»B x C is essential if and only if a sub-
module A' of B is the submodule A whenever A' contains A and there is an
R-morphism f':A'-»C with the property f'\A =/.

(b) Show that an R-module A is injective if and only if A has no essential exten
sions except itself.

(c) An R-module E containing the R-module A is said to be an injective envelope
of A if E is an injective R-module which is also an essential extension of A.
Show that every R-module has an injective envelope.

(d) Show that if E, D A and E2DA are injective envelopes of A, then there is an
isomorphism f:E,-»E2 such that f(a) = a for all a in A.

(9) Show that a ring R is left noetherian if and only if every sum of injective
R-modules is injective. The proof that if R is left noetherian, then a sum of
injective R-modules is injective is given in the text. We now outline a proof that if
every sum of injective R-modules is injective, then R is left noetherian. Let
h Cl, C . . . C /„ C . . . be an ascending chain of left ideals in R and let / be the left
ideal U /„. For each n let E„ be an injective R-module containing RIL and

1l~,

f,:I-»E, the composition I ,nc »R-»RIL 1nc
» E„.
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(a) Define g:/-» II E„ by g(r) = (/„(r))„eN for all r in I and show that Img is
contained in the submodule II E„ of II E„. Let /:/-» II E„ be defined by

n=0 n=0 n=0

/(r) = g(r)foralI r in J*.

(b) By hypothesis II E„ is injective; hence, there is a morphism h:R-»U E,

such that h\I=f. Show that there is an n such that /i(R)CE0LTE,II- -UE..
(c) Show that because /(/) D E0II . . . UE„, it follows that / = /„+'.
(10) Let S be a multiplicative subset of the commutative noetherian ring R.

(a) Show that if E is an injective R-module, then Es is an injective Rs-module.
[Hint: Use the fact that if Af is a finitely generated R-module, then for all
R -modules X, the morphism of R -modules HomF(M, X)s -» HomRs(Ms, Xs) is
an isomorphism.]

(b) Viewing each Rs- module as an R -module by means of the canonical mor
phism R-»Rs, show that every injective Rs -module is also an injective
R -module.

(c) Let $ be a prime ideal of R and let E be an R«-module which is an injective
envelope of the J^-module RvfflRv. Show that viewing E as an R-module,
then E is an injective envelope for the R-module R/$.

(d) Let R be a PID with field of quotients K and (p) a prime ideal in PPD(R).
Show that (KIR),P, is an injective envelope for each of the R- modules RIp'R
for all positive n.

(11) Let R be an integral domain. Show that its field of quotients is an injective
envelope for R.

(12) Let 0-»M,-»M2-»M3-»0 be an exact sequence of R -modules over an arbi
trary ring R. Suppose we are given monomorphisms fl : M, -» E, with Ei injective

for i = 1,3. Show that there is a commutative exact diagram

0 0 0

I I I
0 »M, »M2 »Mt M)

I" I' I*
0 »E, »E, U E, »E3 »0

where E, -» E, II E3 is the usual injection morphism and E\ U E3 -» E3 is the ca
nonical projection morphisms.

(13) Let R be a commutative noetherian ring. Show:
(a) Ass (Rffi) = {ty} for each prime ideal $ of R.
(b) If ACB is an essential extension of R -modules, then Ass(A) = Ass(B).
(c) If E is an injective envelope for a finitely generated R -module A, then there is
a finite family 9J 95„ of prime ideals in R satisfying:

(i) E = E, II . . . . UE, where E, is an injective envelope of R/$, for each i =
1.....B.

(ii) The distinct prime ideals amongst the $<,...,$. are precisely the prime
ideals in Ass( A).

(14) Let R he a commutative noetherian ring and M an R -module. Show:
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(a) Ass(M)CSupp(M).

(b) If S is a multiplicative subset of R, then AssRs(Ms) consists of precisely those
prime ideals tyRs in Rs where $ is a prime ideal of R in Ass(M) such that

(15) Suppose A is a finitely generated module over the commutative noetherian
ring R. Show that for each R-module B, we have Ass(HomR(A, B)) =

Ass(B)DSupp(A). We outline a proof as follows:
(a) Using the fact that HomR,,( A,;, Bv) = Hom«( A, B)m for each prime ideal $ of
R, show that Supp(HomR(A, B))CSupp(A) and hence Ass(HomR(A, B))c
Supp(A).

(b) Because A is a finitely generated £ -module, we know there is an exact se
quence F-» A -»0 with F a finitely generated free R-module. Show this implies
that HomR(A, B) is isomorphic to a submodule of a finite sum of copies of B
which implies Ass(Hoiriit(A, B))CAss(B); and so combining with (a), we
have Ass(HomR(A, B)) CSupp(A) D Ass(B).

(c) Suppose 5
J5 is in Supp(A)n Ass(B). Then Av±0, and there is an exact

sequence 0-»Rffi-»B. Show:
(i) Ass^HonWAv, Rvlq$Rv)) ± 0

,

and so

(ii) AssR(HomR(A,R/$)) = {$}, which implies
(III) $g£Ass(HomR(A, B)). This implies

(d) Ass(Hom«(A, B)) = Ass(B) n Supp(A).
(16) Show that the following statements are equivalent for a ring R (not necessar
ily commutative):
(a) Every submodule of a projective £

. -module is projective.

(b) Every factor of an injective R-module is injective. [Hint : To show that (b)
implies (a) observe that given an exact sequence 0 -» At'—^— »M -» M" -» 0 of

R -modules and an injective module E containing M, we obtain the commuta
tive exact diagram

with E" an injective R -module because it is a factor of the injective R -module
E.]

(17) Let R be an arbitrary ring.
(a) Show that an R-module E is an injective R-module if and only if ExtR(X, E) =

0 for each R -module X.
(b) Suppose 0-»M-»E-»E"-»0 is an exact sequence of R -modules with E an
injective module. Show that for each R -module X, there is an exact sequence
of abelian groups

HomR(X, E) »HomR(X, E") »ExtR(X, M) »0



Chapterl 1 APPLICATIONS
OF
THE
FUNDAMENTAL
THEOREM

1. DIAGONALIZATION

Because the ring, Z, of integers is our most familiar PID, we take a quick look at
what some of the results of Chapter 10 tell us about Z-modules, or just plain
abelian groups. We know that every finitely generated abelian group is the sum of
a finitely generated free abelian group, and a finitely generated torsion group. Be
cause we know that all cyclic groups Z/(a) are finite if a ± 0, we know that every
finitely generated torsion group is finite. In fact, if G is a finitely generated torsion
group, we have G=Z/(e,)II- . UZ/(«.) where 0=£(e,)C- . . C(e„)=£Z. The order
of Z/(fl ) is I«k|, and so the order of G is n|ek|.

Alternatively, we can write G = II UZI(p"»), and then the order of G is

ripf1'". Theoretically, we are now in a position to compute the number of

nonisomorphic abelian groups there are of a given order. For example, suppose
we are given an integer m and we are asked to find all abelian groups of order ,n.

We may write m = p "' . . . p ",<
.

If G is an abelian group of order m, we know that

r

G = II II Z/(pr.) with 2, v0 = v,. Moreover, if we take any set of positive integers

{v0} such that 2,i>« = v„ we obtain an abelian group II UZI(p?) of order m and

, )

distinct sets {,/„}, {i/li} yield nonisomorphic abelian groups.

If we let ir(v) be the number of distinct ways that the positive integer v may
be written as a sum of positive integers, then it is clear that the number of

376
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nonisomorphic abelian groups of order m is ir(i>,) . . . ir(v,) where m=p*'- . . p"1.
Thus, if m = 25, we have 25 = 52 so that, because tt(2) = 2, there are precisely two
abelian groups of order 25, namely, Z/(5)UZ/(5) and Z/(25). In general, ir(v) is
extremely difficult to calculate, and that is why we said that we are "theoretically"
in a position to determine all abelian groups of a given order.
Having discussed finite abelian groups we now turn our attention to applying

the fundamental theorem to finitely generated modules over arbitrary PID's.

Theorem 1.1
Let F be a free R -module of rank n over a PID R. If F' is a submodule of F such
that FIF' is a torsion module, then there exists a basis x , x„ for F and
nonzero elements a,, . . . , a„ in R satisfying:

(a) (fl,)C(a2)C--C(o.).
(b) a,x,, .... a„x„ is a basis for F'.
Furthermore, if X5, . . . , x', is any other basis for F and bu . . . , b, are elements

of R which satisfy (a) and (b) relative to xi, . . . , x'„, then (bi) = (ai) for all i = 1
n.

PROOF: Because F is a finitely generated free R -module and R is a PID, we
know that F' is a free R -module with rank F' s rank F. We now show that because
FIF' is a torsion module, rank F' = rank F.

Lemma 1.2
Let R be an arbitrary integral domain. Suppose F' CF is a free submodule of the
free R -module F with rank F = n. Then rank F' = rank F if and only if FIF' is a
torsion module.

PROOF: Consider the exact sequence 0-»F'-»F-»F/F'-»0. Then 0-».
K® F'-»K® F-»K®(FIF')-»0 is an exact sequence of K -modules where K
R I R

is the field of quotients of R. Because FIF' is a torsion module if and only if
K®(FIF') = 0, we have that the K-morphism k®F'-»K®F is an isomorphism
R R R

if and only if FIF' is a torsion module. But K®F'-»K®Fisa K -isomorphism
K R

if and only if the K -vector spaces K®F' and K®F have the same K-
R R

dimension. But rankF' and dimension K®F' are the same as are rank F and
R

dimension K®F. Hence, FIF' is a torsion module if and only if rankF =
rankF'.

"

With this preliminary result out of the way we can proceed to show that there
is a basis x,, . . . , x„ for F and nonzero elements au . . . , an in R satisfying
Theorem 1.1 (a) and (b). Our proof is based on the following.

Lemma 1.3
Let R be a PID. Suppose k:R-»RI(e) is the canonical epimorphism and that
h : F-»RI(e) is an epimorphism from a free R-module F of finite rank. Then there
is an epimorphism /: F-»R and an isomorphism f : RI(e)-»RI(e) such that kf = th.

f
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PROOF: Because k:R-»RI(e) is an epimorphism and F is a projective R-
module, we know there is a morphism g : F-» R such that kg - h. Hence, /c(Im g) =
RI(e). We leave it to the reader to take care of the case Im g = (0).
Suppose Img = (a) with a±0. Then R/(e) = fc(Img) = (a,«)/(e), which im

plies that (a, «) = R. Hence, a and e are relatively prime, so there exist elements t

and s such that ta + se = 1. From this it follows that the morphism t :RI(e)-»RI(e)
given by fc(r)-»ffc(r) for all r in R is an isomorphism of R -modules.
Because Im g is a free R-module with basis a, the epimorphism g0:F-»Img

has a splitting g' : Im g-»F and g'(a) = x. is part of a basis xu : . . , x„ of F. Hence,
there is a morphism v:F-»R such that «(x,) = « and v(x,) = 0 for i=M. Define the
morphism f:F--»R by f=tg + sv. We leave it to the reader to check that this
morphism has the desired properties.

We now turn to proving the first part of Theorem 1. 1. If rank F = 1, the reader
can verify immediately that if F' C F is a nonzero free submodule of F, then given
any basis x, of F there is an element a, in R such that a,x, is a basis for F'.
Suppose now that rank F = n > 1. Then FIF' is a finitely generated torsion

module so FIF' = RI(e,)U- . -UR/(e„) with (e,)C(e2) . . C(«„). We therefore
have the projection morphism p :FIF'-»RI(e,) whose kernel is

R/(e2)II- II R/(«„). Define /i:F-»U/(e,) to be the composition F^FIF'-»
R/(«,) where F-»FIF' is the canonical epimorphism. By Lemma 1.3, we have the
commutative diagram

F »FIF' »0

j, |•
R-^RI(e,) »0

I I
0 0

with exact rows and columns. Clearly, f(F') C(e,) since kf(x') = 0 for all x' in F'.
Because (€,) is the annihilator FIF', we have that «,F C F'. Because there is an x,
in F such that /(x,)= 1, it follows that /(e,x,) = e,, so that /(F') = (e,). Letting
/' : F' -» (e ,) be the morphism given by /'(x ') = f(x') for all x

'
in F' , we obtain the

commutative diagram

0 » F »F » FIF' »0

I' I' I"
o—k«,)—»n -*-»*/(€,)—»o
I I I
0 0 0

with exact rows and columns.

Let F, = Ker/ and F', = Kerf. Then F', CF, and F', = F' n F,. This shows
that e,F,CF', because e,FCF'. Let x, be an element of F such that /(x,)= 1.
Then F = F, II (x,) and F' = F\ U (e,x,) where (x,) and (e,x,) denote the sub-
modules generated by x, and e,x,. Thus, rank F, = rank F\ - n - 1 where n =
rank F. Then, by induction, there is a basis x2, . . . , x„ of F, and nonzero elements
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a2, . . . ,a„ in R such that a2x2, . . . , a„x„ is a basis for F\ and (a2) C(a3) C . . . C (a, ).
From this it follows that (a2) = ann(F,/F9. Because e,F, CF1, we know that e, is
in ann(F,/Fi) = (a2). Thus, (e,)C(a2)- . . C(a„). Setting a, = e,, we see that the
basis x x, of F and the elements a,, . . . , a. of R satisfy the conditions of
Theorem 1.1. This completes the proof of the first part of the theorem.
The uniqueness part of the proof is left as an exercise.

Corollary 1.4
Let F, and F be free modules of finite rank over the PID R, and let /: F,-»F be a
morphism. Then F, has a basis {z,, ... ,z,},F has a basis {x,, . . . , x,}, and there are
nonzero elements a ,amER with (a,) C . . . C(a„) such that /(z<) = alx, for i =

1, .... m and f(z,) = 0 for / > m. If {z\, .... z',}, {xi, .... x',} and {a',, . . . , a'„} satisfy
the same conditions, then m' = m, (ai) = (a,) for i = 1, . . . , m, and the submodules
generated by {xi, . . . , x^} and {x,, . . . , xm] are equal.

PROOF: Let Im /=F'. We know that FIF' = TUG where T is the torsion
submodule of FIF' and G is a free R-module. Let k' : F-»FIF' be the canonical
epimorphism and k'\T) - L. Then L is a free submodule of F containing F' and
rank L = rank F' because LIF' = T, which is a torsion module. Also, FIL ■*G.
Hence, F=LIIL' where L' is a free R-module isomorphic to G. Applying
Theorem 1.1 we can find a basis x , xm for L and nonzero elements a,,...,am
in R such that a,x,, . . . , o.xn is a basis for F' and (o,) C(a2) . . . C (am ).
Letting x„+,, . . . , x, be a basis for L', we have that xu . . . , xm, x„+,, . . . , x, is a

basis for F. Because the morphism /0:F,-»F' is a splittable epimorphism, there is
a splitting g:F'-»F, for /« and F, = g(F') 11Ker /0

. Let z, = g(x,) for i = 1 , . . . , m
and zm+,, . . . , z, be a basis for Ker /0

. Then zu . . . , zm, z„+,, . . . , z, is a basis for F,.

It is easily verified that the bases X,, . . . , x, and zu . . . , z, for F and F,, respec
tively, together with the elements a, am in R satisfy the conditions of the
corollary.
The uniqueness proof is again left as an exercise.

If F, and F are free modules of finite ranks t and s, respectively, over a

commutative ring R, and if {z,, .... z,}, {x,, . . . , x,} are bases for F, and F,

respectively, any morphism f:F,-»F gives rise to a matrix (<!«) with t rows and s

columns where /(z,) = 2aipc,. Conversely, any matrix (an) with t rows and s

columns gives rise to a morphism f:F,-»F by defining /(z,) = £a«Xi. In other
words, the setup is exactly the same as for finite-dimensional vector spaces over

a field. What Corollary 1.4 tells us is that if R is a PID and f:F,-»F is a

morphism, then we may find bases {z , z,} and {x,, . . . , x,} of of F, and F,

respectively, such that with respect to these bases the morphism / has the matrix

,a„0,...,0 0,...,0,

0
,

a2, .... 0 0, . . . , 0

6 a„,0,...,0

9

0 0,...,0

6,..., 6
, 6,..., 6/
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where (0)=£(a,)C- . -C(o,). For this reason, Corollary 1.4 is referred to as the
diagonalization theorem for matrices over a PID. Notice that if s = t and / is a
monomorphism, then s = t = n and Coker/ is a torsion module. Conversely, if
s = t and Coker / is a torsion module, then / is a monomorphism. (Why?)

2. DETERMINANTS

Having reached the point of considering matrices, we digress for a bit and
study determinants. We assume that the reader is acquainted with matrices and
determinants over fields, and we shall use this familiarity as a starting point for
introducing determinants over an arbitrary commutative ring.

Suppose that we have a 2 x 2 matrix I
" l2

) with du in a field R. Then we

ordinarily say that the determinant of this matrix is auan - a\2a2\. Of course, from
the definition, we see that there is no reason to suppose that R is a field; it might
just as well be any commutative ring. Therefore, we see that to every 2x2 matrix

("
,2
) with u„ in a commutative ring R, we may associate an element of R,

a2, a22J

namely, 011022-021012.
Now let us suppose that F is a free R-module of rank 2, and that {x,, x2] is a

basis for F. Then if y, and y2 are any two elements of F, we have y, = aux, + anx2
and y2 = 021X1 + 022^2 with a* in R. Therefore, we can unambiguously associate to

the ordered pair of elements (y,, y2) the matrix (
" '2

1 and, to this matrix we

can associate its determinants 011022-021012- It should be observed that this matrix
associated to the ordered pair (y,. y2) depends not only on the chosen basis {x,. x2]
but also on the order in which they are written.
Thus, having chosen a basis for F in a given order, we can define a map a

from the set FxF to R which to every element (y,, y2) of FxF assigns the
element 0l1022-02.0,2 of R with Oi, defined as above. The reader might also note
that if /: F-»F is defined to be the endomorphism of F which sends x, to y, and x2
toy2, then the matrix of /with respect to the basis {x,,x2} is precisely I

" '"
).

V02I 022/

The map a :FxF-»R has a few properties that are worth noting. First, a is
bilinear. Second, if y, = y2, then «-(y,, y2) = 0. For this reason, a is said to be a
skew-symmetric bilinear map of FxF to R. The term "skew-symmetric" is
explained by the following observation. If it were true that o-(y,, y2) = a(y2, y,) for
all y,, y2 in F, we would be tempted to say that a is "symmetric," that is, its value
does not depend on the order of the ordered pair (y,, y2). However, we can show
that this is, in general, not the case; in fact, o-(y,, y2) = - o-(y2, y,) for all (y,, y2) in
F x F. To see this, consider o-(y, + y2, y, + y2). From the fact that o-(y, y ) = 0 for all
y £ F, we know that o-(y, + y2, y, + y2) = 0. However, by the property of bilinear-
ity of o-, we have 0 = o-(y, + y2, y, + y2) = o-(y,, y, + y3) + o-(y2, y, + y2) =

o-(y,, y,) + o-(y,, y2) + o-(y2, y,) + o-(y2, y2) = 0 + o-(y„ y2) + o-(y2, y,) +0. Thus, 0 =

o"(y,. y2) + o-(y2, y,) or o-(y,, y2) = - o-(y2, y,). For this reason, o- is said to be
skew-symmetric, the prefix "skew" referring to the minus sign.
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In all of the foregoing discussion, we have considered 2x2 matrices and free
modules of rank 2. There is nothing sacred about the number two and so we are
led to make the following:

Definition
Let M be a module over the commutative ring R. A map /3 :M x . . . xM-»R from
the n-fold Cartesian product of M to R is said to be n -linear if for all m,, ... , m„,
mEM, and all r, s in R, we have 0(nt,, . . . , rnu + sm, nu+,, . . . , m») =
r0(m,, . . . , m„ m^ , m„) + s0(m,, . . . , m, m,+l, . . . , m„) for each 1 = 1, . . . , n.
The n-linear map p:Mx- -xM-»R is said to be skew-symmetric if
/3(m,, . . . , m„) = 0 whenever m, = m,„ for some i = 1, . . . , n- 1.

Basic Properties 2.1

(a) If p:\fx---xM-»R is an n-linear skew-symmetric map, then

/3(m,, . . . , m,, . . . , nik, . . . , m„) = -p(m,, ..., m*, ...,«% m.) for all 1<

j < k s n. Consequently, 0(wi,, . . . , m„) = 0 whenever m, = mk for some j ^ fc.

(b) Let Sk„(M) be the set of all skew-symmetric n-linear maps from Mx . . . x Af
to R. For /3,,/32£Sk„(Af) and rER, define 0, + 02:Af x . . . x Af -»R by
(/S, + fr)(m,, ... ,m„) = 0,(m„ ... ,m„) + 02(m,, ..., m„) and define rfir.Mx

. . -xM -» R by (r/3,)(m , m»)=r -/3,(m,, ..., m»). Then /3
,

+ /32 is in

Sk„(M), r/8, is in Sk„(M), and with this definition of addition and of the
operation of R on Sk„(M ), Sk„(M) is an R-module.

(c) If f:M-»N is a morphism of R-modules, then we have a map/x- . xf:Mx
. . -xM-»Nx- . xN. If /3£Sk„(N), then the map 0 . (/x . . -xf):M x . . -x
M-»R is in Sk„(Af). Thus, we have a map Sk„(/):Sk„(N)-»Sk„(Af) defined
by Sk„(/)(/3) = 0 . (/x- . x/). This map is a morphism of R -modules. Fi
nally:

(d) If g is a morphism g:N-»W, we have the equality Sk„(g/) = Sk„(/)Sk„(g).

PROOF: (a) We prove this assertion by induction on k-j. When Ilc— j = 1, the
proof proceeds as in our discussion of bilinear maps. For we have

0 = /3(m,, . . . , nti + wii+,, mi + rni',, . . . , m„)
= /3(nt,, . . . , nti, mi + nti.,, . . . , m„) +/3(nt,, . . . , m,+ ,, nti + mi+,, . . . , m„)
= 0+/3(m,, . . . , mh m,+,, . . . , m„) + /3(m mM„ m,, . . . , m„)+0

Thus,

0 = /3(m nti, Wi+,, . . . , m„) + /3(m,, . . . , mi+,, rni, . . . , m„)

or

/3(m,, . . . , m„ mi+,, . . . , m,) = — fi(m,, .... m,+,, mir . . . , m„)
Having disposed of the case k-j = 1

, we take care of the case k-j = p with

p > 1 as follows. We have

li(m,. . . . , nti, . . . , nU-,, m*, . . . , m„) = — /3(wi,, . . . , mi, . . . , mk, mn-,, . . . , m»)
= 0(nt,, . . . , wik, . . . , nti, m*-,, . . . , m»)
= — f3{m,, . . . , mk mn,, nii, . . . , m.)

and we are done.
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Now if m^iih for some l</</csn, we have

fit m,, . . . , m,, .... rrik, . . . , m„) = — /3(m , mi, m*, mi+ , m») = 0

and this completes the proof of (a).
(b), (c), and (d) The reader can verify easily that /3

,

+ 0
2 and r/3, are again in

Sk„(M). The only thing that need be observed in order to show that Sk.(M) is an
R-module is that the zero map, that is, the map which sends ( mu .--, m„) to 0 for
all m , m„ £ M, is in Sk„(Af) and is the zero element of Sk»(M). The fact that
Sk.(/) is a morphism follows from straightforward computation. So does the
equality Sk.(gf) = Sk„(/)Sk„(g).

Proposition 2.2

If F is a free R-module of rank n, then Sk„(F) is a free R-module of rank 1
.

PROOF: Let F be a free R-module with basis {x , x„}. We shall prove that

Sk»(F) is free of rank 1 by induction on n. It is clear that when n = 1
, Sk,(M) =

(M, R) for any module M, because to say that a map p:M-»R is 1-linear is

equivalent to saying that it is a morphism, and the condition of skew-symmetry is

vacuous. Thus, if F is a free module with basis {x,}, we have Sk,(F) = (F, R) and
(F,R) is free of rank 1 because the morphism f:F-»R defined by /(x,) = 1 is a

basis for (F, R).
Assuming that our proposition is true for free modules of rank n-lwe shall

prove it for free modules of rank n, by establishing an isomorphism between

Sk»(F) and Sk„ ,(F') where F' is the submodule of F generated by the subset

{
x , x„-,} of the basis {x,, . . . , x„} of F

Define /i :Sk„(F)-»Sk„-,(F') by /i(fl)(y , y„_,) = fi(x., y,, . . . , y„-,) for all

/3 e Sk„(F). From the fact that fl is n-linear and skew-symmetric, it follows easily
that /i(/3) is (n- l)-linear and skew-symmetric, so that h(f}) is in Sk„-,(F'). It is

also trivial to show that h is a morphism. To see that h is an isomorphism, it will
suffice to show that there is a map h' :Sk„-,(F')-»Sk„(F) such that the composi
tions hh' and h 'h are the appropriate identity maps. It then follows that h' is itself

a morphism and is the inverse of /i.

Let fi' : F' x . . . x F' -» R be an element of Sk„_,(F'); and let m,, . . . , m„ be
elements of F. Because F is the sum of F' and the submodule generated by
x„, each m, may be written uniquely as m, = y, + rye with y

, £ F' and r, £ R.
For each i = l,...,n, let (yu...,y, y„) denote the (n - l)-tuple
(y,, .... y,-,, ym, y„) in F' x . . . x F'. Now define h'(/}'):Fx- . . x F-»R by
/i'(8')(m, m.) = 2;.,(-l)'+V1/3'(y %...,y»). Our remarks about the
uniqueness of the elements y

, and r, indicate that h'(p') is a map from the n-fold
Cartesian product F x . . . x F to R. What we shall show is that /i'(/3') is actually
in Sk.(F); that is, /i'(8') is n-linear and skew-symmetric.
To show n-linearity, let m , m„, m be elements of F, and let r, s be

elements of R. We have, as before, m.^y.+ rr x„, and we set m = z + fx» with

z £ F' and t E R. Then rmi= ryi+ rriX„ and sm = sz + stx„ so that

rm,+ sm = (ry,+ sz) + (rr,+ st)x.
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Computing h'(P')(m,, .. ., rm,Jt- rm, ml+,, ... , m,), we get

h'(/3')(wi rnli+ sm, m,+ , mj

= 2 (- l)'+V,/3'(y„ . . . , y ry,+ sz, . . . , y„)

+ (- 1)'+Vi+ st)P'(y y,-„ ye y»)

+2 (- D'+V^'(y,, . . . , ry,+ sz, .... y,, .... y„)

= 2 (- irV/3'(y„ . . . , y., . . . , y„ . . . , y»)

+X(-D,+l/-ls/3'(y .A....,*..-,*)
+ '(-l)h'rrlp'(y„...,yh„y, y„)

+ (-l)'''sr/3'(y »-,. »+,,.... yJ

+ 2(-i)'+,"i0'(y yi y,,...,y-)
1<1

+ 2 w/3'(y z, . . . , yi, . . . , y„)

= rft'(/8')(m„ . . . , m,, . . . , mO + s/i'GS')(m, m, . . . , m»)

Thus, h '(/}') is n -linear. To see that h'(B') is skew-symmetric, we take
m,, . . . , m„£ F, and assume that mi=mi+, for some /. We want to show that
/j'(/3')(m„...,m„) = 0. But

A'OS')(m,, . . . , m„)

-2 (-D*''r,/B'(y, * yO

= 2 (- D'+V,/3'(y1 ft y,, y/+,, . . . , yO
i<i

+ 2 (" l)'+,r,/3'(y,, . . . , y1 »+,, . . . , y„ . . . , y„)

+(-i),+,r,«'(y.,..., ft, »+.,...,*)
+(-i)J+,ij+,/5'(y,. ....». ft+ yO

Since m, = rnJ+,, we have y
( = y,+, and r, = ri+, so that

(- l)'+,r,B'(y„ ...,% y,+, y„) + (- l)'+2ri+lfi'(y„ . . . , t„ y,+,, . . . , y.) - 0

Moreover, because fl' itself is skew-symmetric, each of the terms
rfi'(f,, ...,%,..., y,, y,+;, . . . , y„) and rfi'(y,, ...,yh y,+,, . . . , y„ . . . , y„) is zero,
and so h'(P')(m,, . . . ,m„) = 0.

We have now shown that for each 0' £Sk„_,(F'), the map iV(0') is in
Sk„(F), and so we define the map h' :Sk„-,(F')-»Sk„(F) by sending B

' to /i'(0').
All that remains to be shown is that if B£Sk„(F) and fi'£ Sk„_,(F'), then
h'h(fi) = B and hh'(P') = B'. First we consider fc'fc(B). We have fc'/i(0)x
(m , m„) = 2(-l)'+V,/i(B)(y,,... , ft
, ... ,yj where the notation is that

which we have consistently been using. But 2(-l)'+'r,/t(0)(y,. . . . , %

. . . , y„) = 2(- l)'+'r,B(x„, y, % ... , y„) by the definition of h(B). Hence, to



384 ELEVEN/APPLICATIONS OF THE FUNDAMENTAL THEOREM

show that h'h(P) = /3
,

we must show that

/3(m„ . . . , m.) = 2 (- D'+V,0(*., y %..., y„)
But

fi(m,,.. . ,m„) = /3(y, + r,X , y„ + r„x„) = 0(y, y„)

+2 0(y,. . . . • y,-,i r'x»i y*+,. . . . . y-)

This last equality is obtained by using the n -linearity of 0 and observing that
the terms of the form 0(y rlx r,xn y») are all zero because

0(y,, . . . , Jyc„, . . . , rpr„, . . . , y„) = r,rfi(yu ...,x„,... ,X„, . . . , y„) and 0 is skew-
symmetric. Similarly, all terms having more than two entries which are multiples
of x, are zero and so P(m,, . . . , m„) reduces to what we have written.
Now /3(y,, . . . , rx„, . . . , y„) = r,/3(y,, ... ,x„,. .. , y„) and applying Basic Prop

erties 2.1, we have /3(y,, . . . , x„, . . . , y„) = (- 1)'+'0U„ y, % . . . , y.) if x.

is in the ith spot. Hence, 20(y rtx , y„) = 2(- l)'+'n0(x« y,,. . . ,

yh . . . , y„), and we would be done provided we could show that /3(y , y„) = 0.

The fact that /3(y,,...,y„) = 0 comes from the following.

Lemma 2.3
Let M be an R-module, M' a submodule generated by p elements, and let
{y,, . . . , y„} be a subset of M' with n >p. If /3 : Afx . . . x M-»R is an n-linear
skew-symmetric map, then /3(y„ . . . , yn) = 0.

PROOF: Let x , xP generate Af' and let y, = 2 O,pt, for i = 1
, .... /t Using

i-I
the n-linearity of 0

,

we have 0(y , y„) = 0(2 a,i,Xi„ . . . ,2 ft,,.xi,) =

2 «,„ . . . a»,,/3(X,„ . . . , Xi,). However, because the indices jk just range from 1 to p,
and because n >p, we must always have at least two of the x's equal. Hence, we

have P(x, xj = 0 for all j , ;'
„ and thus 0(y , y„) = 0
.

In the case at hand, we have y,, . . . , y„ £ F' with F' of rank n - 1. Hence,
0(y,, . . . , y.) = 0 and we have shown that /i'/i(/3) = 0.

Next we confirm the fact that hh'(fi') = p'. For this, we compute
Wj'(0')(y„...,y,,-,) and we get h/i'(0')(y„. . . xy,-,) = h'(P')(x„, y ,y.-) =
/3'(y,.- . . . y») because y

, = y,+0x„ for i= I n-1. Thus, hh'(/3') = /3
'

and our
proof of Proposition 2.2 is complete.

Having established these results, how do we proceed to determinants? Con
sider a free module F of rank n, and let /: F-» F be an endomorphism of F. Then,
by Basic Properties 2.1, we have an endomorphism Sk„(/):Sk„(F)-»Sk„(F).
Using Proposition 2.2, we know that Sk. (F) is a free module of rank one. Putting
that together with the following fact, we shall be in a position to define determi
nants.

Lemma 2.4
Let R be a commutative ring and G a free R-module of rank one. Let 0:R-»
(G, G) be the morphism defined by 0(r)(g) = rg. [0(r) may also be described as
fl(r)=ridc, because (G,G) is an R-module.] Then 0 is an isomorphism.
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PROOF: That 0 is a morphism is easily established and, because Ker 0 is the
annihilate-!' of G, 0 is in fact a monomorphism. To see that 0 is an epimorphism,
we choose a basis {x} of G and let f:G-»G be any element of (G,G). Then
f(x) = rx for some rE R so that /( y) = ry for all y £ G. Hence, / = 0(r) and 0 is an
epimorphism; hence, an isomorphism.

It is important to notice that although it required choosing a basis of G to
prove that 0 is an isomorphism, the morphism 0 itself is denned without recourse
to a basis of G. In practical, computational terms, what this means is the follow
ing. If {x} and {y} are two bases of G, and f:G-»G is an endomorphism of G, we
know that f(x) = rx and /(y) = ry, where /=0(r). In short, the element r is
determined by / and is independent of the basis chosen for G. The element r is
0"'(/) and is determined by evaluating / on any basis of G.

Definition
Let F be a free R- module of rank n, and let f:F^F be an endomorphism of F.
The determinant of / is denned to be 0"'(Sk„(/)) where 0 :R-»(Sk„(F), Sk„(F)) is
the isomorphism described in Lemma 2.4. The determinant of / will be denoted
either by det/ or |/|.

Basic Properties 2.5

(a) Let F be a free module of finite rank n. Then \r idF| = r". In particular |idF| = 1.
(b) If F is a free R-module of finite rank and / and g are endomorphisms of F,
then |fe| = l/||*|. Hence, \fg\ = \gf\.

(c) Let F be a free R -module of finite rank n and / an endomorphism of F If
{x , x„} is a basis for F, let /(x,) = 2"., Oipc, for i = 1, . . . , n. Then \f

\ =

2»sig(7r)a,.,,, . . . a„.M where it runs through all permutations of the set
{1, . . . , n}, and sig(7r) = ± 1 depending on whether v is an even or odd permu
tation.

(d) Let F be a free R-module of rank n and / an endomorphism of F. If
{x,,...,x,} is a basis of F and f(x,) = f(x,) for some i ± j, then |/

| = 0
.

PROOF: (a) is left to the reader.

(b) To prove (b), recall that Sk„(/)(0) = |/|0 and Sk„(g)(/3) = |g|/8 for all

/3 £ Sk„ (F). Moreover, it is clear that for any h : F— F, if Sk„ (n )(/3 ) = r/3 for all

0 S Sk„(F), then \h\ = r. Now, we compute Sk„(/g)(0) for any & £ Sk„(F). We
have Sk„(/g)(0) = (Sk„(«)Sk„(/))(/3) = |/|(|g|0) = |/||g|0. Hence, we have |/g| =
|/||g|. Because |/||g| = |g||/| = \gf\, we also have |/g| = |g/|.
(c) To compute |/|, we choose a basis of Sk.(F) and see what Sk„(/) does to

that basis. The first problem then is how to go about finding a basis of Sk„(F). In
the proof of Proposition 2.2, we chose a basis {xu . . . , x,} of F, defined F to be the
submodule generated by {.v,. . . . , x„ ,}

,

and established an isomorphism

h':Sk„-,(F')-»Sk„(F). Thus, if we know a basis for Sk„-,(F'), we know one for
Sk„(F). In the case n = 1
, we have already seen that a basis for Sk,(F) may be
obtained by considering the morphism f which sends x, to 1 in R where {xi} is a

basis for F Furthermore, an element 0 of Sk,(F) is completely determined by its
value on x, and /3(X,) = r if and only if 0 = r£
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Let us now assume that if {x,, . . . , x„-,} is a basis for F, then: (1) any element
P of Sk„-,(F') is completely determined by its value on (x , x„,) in F' x . . . x
F'; (2) there is an element £

,' £Sk„-,(F') such that ('(x,,. . . . x„-,) = 1; (3) this
element f ' is a basis for Sk„ ,(F); and (4) /3(x,, . . . , x„-,)- r if and only if /3 = rf '

for all 0 £ Sk„-,(F). We shall show that if F is free with basis {x x„}, then the

corresponding four statements are true for Sk„(F).
To prove (1), suppose that £,,02£Sk„(F), and that ft,(x,, . . . , x„) =

f}2(x,, . . . , x,). Using the morphism h :Sk„(F)-»Sk„ ,(F') established earlier

(where F is generated by (x, x„), we have (/i(0,))(x,, . . . , x„- ,) = 0,(x„, x,, . . . ,

x„-,) = (-l)" '0,(x x„) = (-l)n '02(x„ . . . , x„) = 02(x„, x *.-,) =

Ci(02))(x x„ ,)
. Hence, by our assumption about F', we have h(@,) = h(f}2),

so (because h is an isomorphism) (3
,

= 02.

To prove (2), we take the element f'£Sk, ,(F') such that £'(X,, . . . ,x„-,)= 1
.

Using the morphism /i':Sk„ ,(F)-»Sk„(F) which is the inverse of h, we have
fc'tt')(x , x„) = (- ir'f (x„ .... x._,) = (- 1)"''. Thus, *'((- IY+'( ') x
(x, x„)= 1

, and we may choose f = /i'((- l)"+'f').
Because f is a basis of Sk„ ,(F') and h' is an isomorphism, it is clear that £ is

a basis of Sk„(F), and (3) is established.
Finally, to prove (4), it is clear that if /3 = rf , then 0(x,, . . . ,x„) = r. But

conversely, if /3(x,, . . . , x„) = r, then h(/8)(x„. . . ,x„ ,) = 0(x„, x,, . . . ,x„-,) =

(-l)""'fi(x x„) = (-l)""'r, so we have h(/3) = (-l)""'rf , because (4) holds for
F. However, 0 = /i'/i(/3) = h'((-l)"'rf )=rfe'((- l)""'f)= rf and we are done.
Having a basis for Sk„(F), we are now in a position to compute |/

|. We have

/(xi) = 2 a,,xi where {x,, .... x„} is a basis of F. Let f be the element of Sk„(F) such
that ((x,,. . . ,x„)= 1

. From the foregoing discussion, we need only compute
Sk„(/)(f)(x,, . . . ,x„) because this element of R is precisely |/

|. By definition,

Sk.(/)(fl(x„ . . . , x.) = «/(x,), .... /(*.)) = f(2aUlx.„ . . . , 2fl„iA) =

2 a,i.a2i . . . a»i.f (xi, Xi„). Observe that this sum ranges over all n -tuples of
indices (i , j„) with each index ranging over {1, . . . , n}. However, if any two
of the indices ;'k and j, are equal, we have f (xi„ . . . , Xi.) = 0. Thus, we may restrict
ourselves to just those n -tuples (ju . . . , i») in which the jk are all distinct. But each
such n -tuple determines a unique permutation it of the set {1, . . . , n], and we may
write (7r(l), . . . , ir(n)) for the n-tuple (},, . . . ,/»). With this notation, we write

2 a„,a2fc . . . a„l.£ (xh x,.) = 2 a,„,,a2„m . . . 4»i»£ (x.,,,, .... x.,.,) where the
sum ranges over all permutations 7r of the set {1 n}. It is a triviality to show
(using skew-symmetry of £) that f (x.,„, . . . , x„„) = sig(7r)^(x,, . . . , x„) = sig(7r)
[because f(x ,x„)=l], and therefore we have Sk„(/)(£)(x,,. . .,x.) =
2„ sig(ir)a,„„la2.,2, . . . a,.,.,.

(d) Left as an exercise.

Example 2.6 Let F be free of rank two, with basis {x,, x2} and let /: F-» F be a

morphism given by f(x,) = aMX, + a,2x2 and /(x2) = a2,X, + a22x2. By the above, we
have |/

| = ana22-a,2a2, and we see that we have our usual definition of
determinant.

Example 2.7 Let F be a free module of rank n and f:F-»F an endomor-
phism. Then F* = (F, R) is also free of rank n, and we have the endomorphism

f* : F*^F*, where f* = (/, R). We can show that |/| = |/*|. To do this, choose a
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basis {x,, . . . , x„} for F. Then {£ , £,} is a basis for F* where f,(xi) = 5„ (the
Kronecker delta). Simple linear algebra tells us that if /(x,) = 2 *pci and /*(£) =

2 b«f,, then bn = af. Property (c) above tells us that |/| = 2„± a,,,,, . . . a„„„„ and that
|/*| = E„± a,,,,, ... a„„,„.However, because sig(ir) = sig(7r"') and because a*,,=
Ar-'.i,l.io, we have

sig(7r)a,.i,l . . . an„<nl = sig(ir)a.-'.i,l»i,l . . . a.-'.oo.<„l
= sig(ir"')a.-'ill, . . . a.-'i„,.

Thus |/| = |/*|.

Example 2.8 If F is a free R -module of finite rank and f:F-»F is an
automorphism, then |/

| is a unit. We will see in a little while that |/| is a unit if and
only if / is an automorphism.

3. MATRICES

Having defined the determinant of an endomorphism of a free module, we are now
ready to define the determinant of a square matrix over a commutative ring R. To
make sure, though, that we are all talking about the same thing, let us denote by

[n] the set of integers {1, . . . , n} and make the following:

Definition
An m-by-n matrix (written m x n matrix) over a commutative ring R is a map
from the set [m] x [n] to R. If m = n, the matrix is called a square matrix.

If A : [m] x [n]-»R is an m x n matrix, we usually write the element A(i, j) as
a,, and denote the matrix by A = (au). This leads to the usual way of illustrating the
matrix as a rectangular array:

«n. M,2. . . . ,

02,, 022, . . . ,

Om,l fl»n2,

Definition

If A:[m]x[n]-»R is an mxn matrix, its tranpose is a matrix 'A:[n]x[m]-»R
denned by 'A(i,j) = A(j,i). If A,, A2:[m]x[n]-»R are matrices, we denote by
A, + A2:[m]x[n]-»R the matrix defined by (A, + A2)(i, j) = A,(i, j) + A2(i, j), and
call it the sum of A, and A:.

If r is an element of R, we define rA, : [m] x[n]-»R by (rA.Ki, j) = r(A,(i, /)).
Finally, if A, : [m] x [n]-» R and A2:[n] x [p]-» R, we define A,A2:[m] x [p]-»

R by A,A2(i, /) = 2J., A,(i, fc)A2(fc, ;'). This matrix is called the product of A, and
At.

The reader has seen all of these definitions before when R is a field. There is

essentially no difference between the formal properties of matrices defined over a

commutative ring and those defined over a field. In particular, if m and n are fixed,
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the set of all m x n matrices over R, denoted by Jl(m, n) is an R -module under
the addition and scalar multiplication defined above. Multiplication of matrices is

associative, and '{A\Ai) = 'AJA,.
If F and G are free modules of ranks m and n, respectively, with respective

bases {x,, . . . , xm} and {y,, .... y„}, then the map h :(F, G)-»M(m, n) defined by
h(f)(i,j) = a,, where f(x,) = 2,auyh is an isomorphism of R-modules. Letting
{&, . . . , &<} and {17,, . . . , tj„} denote the bases of F* and G*, respectively, with
£(x,) = S

,, and T)k(y,) = &,, we have the isomorphism h' :(G*, F*)-»^#(n, m), and
for all / £ (F, G) we have ' [h(f)] = h'(f*). Finally, if H is a free module of rank p

with basis {z,, .... zP), the isomorphisms h":(G, H)-»M(n, p) and h'":(F, H)-»
M(m, p) have the property that h"\gf ) = h(f)h"(g) for/ : F-» G and g : G -»H.
Now suppose that A is a square matrix of order n, that is, A is an nxn

matrix. Let F be a free R-module with basis {
X x,} and define f:F-»F by

/U) = 2"., A(i,j)xh that is, f = h'\A) where h:(F,F)^M(n,n) is the isomor

phism described above. Because / has a determinant, we are tempted to define the
determinant of A as the determinant of /. However, if G were another free

R -module of rank n, with basis {y,, . . . , y„ }, and if we defined g :G-»G byg(y) =
2,". , A(i, /)yi, could we be sure that |/| = |g|?
To see that is is the case, we use Basic Properties 2.5, for that says that

|/
| = 2„sig0r)A(l, ir(l))A(2, tt(2)) . . . A(n, 7r(n)) = |g|.

Definition
Let A be a square matrix over R of order n, let F be a free R -module of rank n

with basis {x,,...,x.}, and let f:F-»F be the endomorphism defined by

f(x,) = 2, A(i, j)x,. The determinant of A, denoted by |A| or det A, is defined to be
the determinant of /. If A is written (Oi,), then \A\ is usually written |a,i|.

Basic Properties 3.1

(a) If A, and A2i2 are square matrices of order n, then |A,A3| = |A,||A2|.
(b) If A is a square matrix, then |'A|= \A\.
(c) If A is a square matrix of order n,

2. sig(7r)A(l, ir(l))A(2, tt(2)), . . . , A(n, 7r(n)).
(d) If A is a square matrix with two rows equal or two columns equal, then

then \A \ =

|A| = 0
.

The proofs of these properties are left to the reader.
Although (c) above gives us a way of concretely computing the determinant

of a matrix, it possibly is different from what the reader has generally taken to be

the definition of the determinant. For example, if

A = l

flu a.2 a.,

02, aZ; <32,

fl„ Oi2 a„

one is usually told that

|A| = a„
a2i a2i -an a2. On + a,3

a2, fl22

a.2 a„ Oil a» fll. Oi:
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and one assumes that determinants of square matrices of order two are known.
This is, of course, a very useful inductive way of defining determinants that can be
established immediately from (c) after we set things up properly.
First, let us say that a map f:[n,]-» [n3] is order-preserving if whenever i s /

in [n,], we have /(0 — /0). If n,^n2, we can have order-preserving maps which
are injective; in fact, the number of order-preserving injective maps of [nl] into

[ii2] is I )
where I j is the binomial coefficient. Although this is clear, we may

actually get more detailed information from the following.

Example 3.2 If n is a positive integer, there are n distinct order-preserving in
jective maps of [n-l] to [n]. They are the maps er.[n-\]-»[n] defined by
e,(k) = k if k < i, and «,(fc) = k + 1 if k^i. The index i runs from 1 to n. If n = 1,
then [n - 1] = 0, and of course there is only one map from the empty set to [1]. Let
us agree to use the same symbol e, to denote one of the above types of maps of

[n — 1] into [n] whatever the integer n. Thus, €2:[2]-»[3] is not the same map as
«2:[3]-»[4], but the meaning is still clear.
Now let f:[p]-»[n] be any order-preserving injective map of [p] into [n].

Then we have 1</(l)</(2)< . . .</(p)<n. Letting / be the complement of the
image of / in [n], we may arrange the elements of / so that I={i,, k, ... , i„ „} with
1 < i, < i2< . . . < i,,-P < n. Because h ^ p + k for k = 1, . . . , n - p, we have the maps
e,, : [p + k - l]-»[p + /c

] for k = 1 n — p. The reader may now easily convince
himself that /= «,._, . . . «,.
Getting back to our matrices, we have the following.

Definition
Let A:[m]x[n]-»R be an mxn matrix over R. A matrix A' :[m']x[n']-»R is

called a submatrix of A if A' is the composition [m']x[n'] —^-»[m]x
[n]—^-»R where f:[m']-»[m] and g:[n']-»[n] are order-preserving injective
maps. If A is a square matrix of order n, the submatrix A,, =

A . (e x «i):[n - l]x[n - 1]-»R is called the complement of A(i,j), where
e,, e

i :[n - l]-»[Ji ] are the maps introduced in Example 3.2 above. The element
(-l)'''|A,| is called the cofactor of the element A(i,j).

Notice that |A,| is the determinant of a square matrix of order n - 1 and that
the cofactor is not just this determinant but carries a sign along with it.

Example 3.4 Let

A =

The following are examples of submatrices of A:

(i) (a"
""

a
")

(if) (°12) (ilI) (a» a
")

\a„ an 033/ W/ W 033/

It might be instructive to note that (

" " "

) is not a submatrix of A.\a„ a.2 a,,;
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Proposition 3.5
Let A be a square matrix of order n, and let i be some fixed integer between 1 and
n. Then

t (-ir'fl.lA,|-fc|A|- 1 (-l)'+'*|Aik|i-, i-,

for k = 1 n, where 5» is the Kronecker delta.

PROOF: We know that |A| = 2. sig(7r)a,„,i . . . a„„i„l. This sum is easily seen to
be 2"=, ck, £,sig(ir')O,.-in . . . 4I . . . a— '<nlwhere it' ranges over all permutations
such that 7r'(i) = /. Thus, to show that |A| = 2"-,(- l)'+'ajA„|, it remains only to
show that 2. sig(ir')a„i,, . . . 4i . . . an»,nl = (- 1)'''|AiI where ir' is as above.
Because A„ is an (n-l)x(n-l) matrix, we have |Ai| =

2„sig(o-)A«(l,o-(l)) . . . A«(n-l,o-(n-l)) where a ranges over all permutations
of {1, . . . , n - 1}. Now a may also be regarded as a permutation of {1 n

] with

o-(n) defined to be equal to n, and we may therefore consider, for each such o-, the
composition of permutations (j

,

/+ 1
,

. . . , n)o-(n, n - 1, . . . , i) where the notation

(i ik) means the permutation taking r, into iM for ; = 1
,

. . . , k— 1
, taking ik

into iu and leaving everything else fixed. The reader may now easily check that if

we denote the composition (j
,
j f + 1, . . . , n)a(n, n - 1, . . . , i) by it', then 7r'(i) = j

and the term A«(l,o-(l))- . . A„(n - l,a(n- 1)) equals the term

O,^,l ... 4; ... «■».<n,. It is also easy to see that sig(ir') = (-l)2""'"sig(o-) =
(-l)l+lsig(o-), so that the assertion 2„ sig(-,r')a,.Vl ...&,... anrM = (-l)'''\A,,\ fol
lows immediately. We therefore have established the fact that

lAl-E(-iro.dA.I-fclAl

Using the above equality, we can now show that

SMr'oilAwhfclAI-0 when l ± k

For consider the matrix A' where A'(i',j") = A(i',j') if i'^fc, but A'(fc,i') =
A(i, /'). Then A' is a matrix whose ith row is equal to the fcth row, so that (by
Basic Properties 3.1) |A'| = 0. On the other hand, |Ai',| is clearly equal to -|A«|
(why?), so we have

0 = -|A'| = i(-l),^'a,llA;i| = 2(-ira1i|Ak1|i-, ~l

This finishes the proof that

g(-l)'+'A,|Aw|
= &|A|

The reader may prove for himself that

fc|A|-2(-D,+l*lA-l

Corollary 3.6
Let A be a square matrix of order n, and let A be the square matrix of order n

defined by A(i, /)-(- 1)'+i|A„|. Then AA = AA = |A|7, and |AA|= |A|". Further
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more, if \A\ is a unit, then ((H\A\)A)A = I = A({ll\A\)A), so that A has an
inverse matrix A'' =(1/|A|)A

Proposition 3.7
Let F be a free module of rank n, and /: F-»F an endomorphism of F. Then |/| is

contained in ann(Coker/) and in ann(Ker/).

PROOF: Let {x,, . . . , x„} be a basis for F and let A = (an) be the matrix corres
ponding to / with respect to this basis. Letting A be the matrix introduced in
Proposition 3.6, we denote by / the endomorphism of F corresponding to A.
Because AA = \A \I = AA, we see that the compositions ff: F-» F and ft : F-» F are
both simply the endomorphism of F obtained by multiplying each element of F by
|A| (or by |/|, since |A| = |/|).
Suppose, now, that x£Ker/. Then (ff)(x) = /(/(x)) = /(0) = 0. However,

(#)(x) = |/|x so that we have shown |/|X = 0 if x £ Ker /. Hence, |/| £ ann(Ker /).
Now let x be any element of F. Then l/lx = (#)(x) = /(/(x)) so that for each

x G F we see that there is a y £ F [namely, /(x)] with the property that /(y ) = l/lx.
Using this fact, we can show that l/

l
is in ann(Coker /). For, if z £ Coker /, let

z = fc(x) where x £ F and k:F-» Coker / is the canonical morphism. Then l/lz =
|/|fc(x) = fc(|/|x) = fc(/(y)) = (fc/)(y) = 0 because kf - 0, and thus |/| annihilates
every element of Coker /.

Corollary 3.8

If F is a free module rank and f:F-»F is an endomorphism, then / is an
automorphism if and only if |/| is a unit in the ring R.

PROOF: In Example 2.8 we saw that if / is an automorphism, then |/| is a unit.
Conversely, if |/| is a unit, we must have Ker / = 0 = Coker/ because

|/
| £ ann(Coker /) D ann(Ker /).

4. FURTHER APPLICATIONS OF THE FUNDAMENTAL THEOREM

In this section, K will denote a field and V will be a finite-dimensional vector
space over K. We denote by K[X] the polynomial ring in one indeterminate over
K, and we recall that K[X] is a PID; in fact, it is a Euclidean ring.

If T : V-» V is a linear transformation (or endomorphism) of the vector space
V, we may make V a module over K[X] by defining Xv = T(v) for every v £ V.
Thus, if P(X) = 2 ckX1 is an element of K[X] and w£ V, we have P(X) . v =

2 a,T'(v). Because V is a finite-dimensional vector space, V is obviously finitely
generated as a K[X]-module. In fact, the morphism e : K[X] ® V-» V defined by

K

e(P(X)® «
) = P(X)- v is clearly an epimorphism of K[X]-modules, and

K[X]® V is a free K[X]-module whose rank is equal to the dimension of the

X

K -vector space V.
Not only is V a finitely generated K[X]-module, it is actually a torsion mod

ule over K[X]. To see this, we must show that if v £ V, then there is some element
P(X) of K[X] such that P(X)u =0. Because V is finite-dimensional over K, say
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dim V = n, we know that the n + 1 elements v, T(v), T2(v), ...,T*(v) are linearly
dependent over K. Thus, we may find n + 1 elements a0, a,, . . . , a„ of K, not all of
which are zero, such that 2r.0a,T,(«) = 0. Letting P(X) = 2"-0 a*X', we have
P(X)« = 0, with P(X) ± 0. Because V is a torsion module and e : K[X]® V-» V

K

is an epimorphism of the free K[X]-module K[X]® V onto V, it follows that
K

Kere is a free K[X]-module of rank n, where n = dimKV. (Do not forget that
K[X] is a PID.) We shall now begin to study Ker e.
First, it is clear that if P(X)EK[X] and v £ V, then

XP(X)® v-P(X)® Xt1£Ker e. Thus, any finite sum of elements of this form is
again in Kere. If Q(X)<=K[X], then Q(X)[XP(X)® v-P(X)®Xv] =
XQ(X)P(X)® v-Q(X)P(X)® Xv so that the set of all finite sums of elements
of the form XP(X)® v-P(X)® Xv is a submodule of K [X] ® V contained in

K

Ker e. Let us call this submodule L. What we propose to show is that L is
precisely Ker e. Once we have succeeded in proving this, we will have shown that
the morphism y:K[X]®V-»K[X]®V defined by y{P{X)®v) =

K K

XP(X)®v-P(X)®Xv has, as its image, the kernel of e. Thus, the sequence of
K[X]-modules

K[X]® V^-»K[X]® V-^V »0
K K

will have been shown to be exact. In addition, using the fact that V is a torsion
module together with our observation at the very end of Section 2, we will know
that y is a monomorphism, and hence the sequence

0 »K[X]®V-1^K[X]®V—^V »0 (1)
K K

will have been shown to be exact.
To see that L =Kere, consider first elements in K[X]® V of the form

K

aX""®v where a E K and v £ V. If m = 0, then Xm = 1 and a® v = l®av
so that a®v =\®e(a®v). If m = 1, we have aX®c =
aX®v -a®Xv + a®Xv = aX®v-a®Xv + l®aXv. Letting l = aX®v-
a®Xv, we have / £ L and aX® v = I + 1® e(aX® v). Suppose, now, that we
have shown that aX"'®v = J + \®e(aX"® v) for m =0, . . . , k and all v £ V,
where ( is some element in L depending, of course, on a, m, and v. Then
aXk+,®v=XaXk®v-aXk®Xv + aXk®Xv = h + aX''®Xv where /, =

XaXk® v - aXk®XvGL. By our induction assumption, we have aXk ® Xv =
/2 + 1® e(aX" ® Xv) with /2 £ L. Note that e(aXk® Xv) = aXk^v = e(aXk+' ® v)
so that, setting / = /, + /2

,

we have aXk+'® v = l + I® e(aXk+' ® v). We have
therefore shown that every element of the form aX"®v may be written as

/ + 1 ® e(aXm®v) with lEL.lt follows immediately, then, that every element y

in K[X] ® V may be written y = / + 1 ® e(y) with J £ L.

Now suppose that y is in Ker e. Writing y = I + 1 ® e(y), with / £ L, we see
that y = 1 because 1 ® e(y) = 1 ® 0=0. Hence, Ker e CL CKer e, so that L -
Kere. This proves that the sequence (1) is exact.
To tie up some of the above material with the reader's past experience, let us

choose a convenient basis for K[X]® Vand see what the corresponding matrix
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of y looks like. If {v,,---,v,} is a basis for V over K, we know that
{l®«„...,l®t1„} is a basis for K[X]®V over K[X]. Because 7(1®^) =

K

X® v, - 1® Xv, =X(1 ® «,) - 1® T(«,), we have

-yd ® t1,)= X(l ® vd - 2 1® <w =£ (5„X - a„)(l ® "i
)

i-1 i-1

where T(t;,) = 2"-, a«t1,, with a, £ K. Thus, the matrix of -y with respect to this
basis is

'
X— an —an . . . -aln
-a2, X-an ... -a2, \ (*)

-a„, -a„2 . . . X-am

where

is the matrix of T with respect to the basis {d,, . . . , w„}.

Definition
The matrix (*) is called the characteristic matrix of the matrix A. The element \y

\

of K[X] is called the characteristic polynomial of the transformation T and the
determinant of the matrix (*) is called the characteristic polynomial of the matrix
A.

Because V is the cokernel of y, we know that |y
|
is in the annihilator of V (see

Proposition 3.7). If we write

\y\ = a0 + a,X+- . - + aJC"

we see, first of all, that a, = 1 and that the transformation

oJ+a,T+fl2T2+-+T": V-»V

is the zero morphism of V into itself because |-y|u = (2a,X')D = 2ai(T'(tO) = 0

where / = id„. Therefore, we obtain the Cayley-Hamilton theorem.

Theorem 4.1

If K is a field and A =(a«) is a square matrix of order n, then:

(a) The characteristic polynomial of A is a monic polynomial of degree n.
(b) A is a root of its characteristic polynomial.

Example 4.2 Consider the matrix
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Then its characteristic polynomial is X' + X2 -23X + 34;

/ 9 18 -2\
A'= -26 27 52

\ 108 -4 -208/

/ 9+3-46 + 34 18 + 5-23+0 -2 + 2+0+0 \
A3+A'-23A+34/= -26+3 + 23 + 0 27 + 8-69 + 34 52-6-46 + 0 1

\108-16-92 + 0 -4+4+0+0 -208 + 36+138 + 34/

and each of the sums is zero as we hoped and, hopefully, expected.
Returning to our general discussion, we make use of the fact that K[X] is a

PID and exploit the results of Section 1. By Corollary 1.4 we know that there are
bases {z,, . . . , z»} and {y, y„} of the free K[X]-module K[X] ® V such that

K

r(y,) = P,(X)z, where P<(X) are elements of K[X] and (0) ± (P,(X)) C . . .
C(P„(X)). Because we may choose any unit multiple of P,(X) in place of P,(X),
we may assume that each Pi(X) is a monic polynomial. The reader should not
overlook the fact that some (Pi(X)) may equal (R) and thus some P,(X) = 1.
The polynomials Pl(X) are the invariant factors of the K[X]-module V, and
V«K[X]/(P,(X))UK[X]/(P2(X))U-UK[X]/(P„(X)) as a K[X]-module.
The ideal (P,(X)) is the annihilator of V as a K[X]-module.

Definition
The monic polynomial P,(X) in the above decomposition of V as a K[X]-module
is called the minimal polynomial of the transformation T. The nonunit polynomials
P,(X), i = 1, .... r are called the invariant factors of T.

In a little while we shall see what the modules K[X]/(P,(X)) look like as
vector spaces over K. First, however, let us look at |y|, the characteristic poly
nomial of T, and see how it may be expressed in terms of the invariant factors of
T.

Using our above basis {z,, . . . , z„} and {y,, . . . , y„} for K[X]® V, we may
K

write y =2 bnzl and zl = 2 c,*yn with b» and Cu in K[X]. Therefore, zi =2k clky* =
2t, dkbkiz, so that we have CB = /„ where C is the matrix (c«), B is the matrix (b^),
and /„ is the n x n matrix defined by Hi, j) - &V L is called the identity matrix.
Thus, we have \CB\ = 1 or \C\\B\ = 1 so that both \C\ and \B\ are units of K[X]. In
particular, because the only units of K[X] are the nonzero polynomials of degree
zero (that is, constants), we have that \B\ and \C\ are constants.
Letting P,(X) = Ph we have -y(y,) = Plz, = 2 P,Cnyk so that, with respect to the

basis {y,, . . . , y„}, y has the matrix (d*) where d» = P,c*. The matrix (d«) is the
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product of the matrices P and C where

P =

0

P2

0

and C is as above. Thus, |y
|

= |d,k| = |PC| = |P||C|. The element \y
\
is the charac

teristic polynomial of T and is monic. The element \P
\

is clearly equal to
P,P2 . . . P, and, because each P, is monic, this product is monic. Finally, \C\ is a

unit, hence a constant. Thus, |C| = 1 because |P||C| = |y
|

= a monic polynomial.
This gives us the following.

Proposition 4.3
The characteristic polynomial of a transformation T is the product of the invariant
factors of T.

If L is any field containing K and A is any element of L, then for any
polynomial Q(X)EK[X] we obtain an element Q(A)£L. For if (?(X) =
<h+a\X + - . - + aJC with <t,EK, then a,A'£L for each i and Q(A) =
O0 + a,\ + . . . + a„A ".If Q(X) = Q,(X) . . . Q, (X) where the Q

,

(X) are elements of
K[X], and if A £ L, then Q(A) = 0 if and only if Q,(A) = 0 for some i = 1

,

. . . , s.

If, for each i = 1
,

. . . , s - 1, we have Qm(X) divides Ql(X), that is, Q(X) =
T,(X)Qn.,(X), then it is clear that if Q,+,(A) = 0, we have Q,(A) = 0 also. Thus, in
this case, if A £ L, then Q(A) = 0 if and only if Q,(A) = 0.

Corollary 4.4
Let T : V -» V be a linear transformation of the finite-dimensional vector space V
over the field K, and let L be any field containing K. If A is an element of L, then A

is a root of the characteristic polynomial of T if and only if A is a root of the
minimal polynomial of T.

5. CANONICAL FORMS

Having seen that our vector space V is, as a K[X]-module, isomorphic to the sum
of modules of the form K[X]I(P(X)), we are naturally interested in seeing what
such K [X]-modules look like as vector spaces over K. For simplicity, but with no
loss of generality, we shall assume that P(X) is monic so that we have P(X) =
X" + a^X"-' + . . . + ai with a,EK. Weclaim that the set {I

,

X, X', ..., X""'} is a

basis for K[X]I(P(X)) over K, where 1 and X' are the cosets of, respectively, 1

and X' in K[X]l(P(X)). That this set generates K[X]/(P(X)) over K is clear
from the fact that if F(X) is any element of K[X], then F(X) =

Q(X)P(X) + R(X) where either R(X) is zero or the degree of R(X) is less than d.
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Because every polynomial in K [X] of degree less than d is a linear combination,
with coefficients in K, of the elements l,X, . . . ,Xd"\ it follows that
{!, X, . . . , X'-'} generates K[X]l(P(X)) over K.
Now suppose we have a linear combination SfrJ c,X' which is zero. It follows

that 2f.d c,X' is divisible by P(X) in K[X]. However, P(X) is of degree d and the
degree of a product of polynomials in K[X] is the sum of the degrees of the
factors. Hence, if Xf.d c,X' = P(X)Q(X), it must be the case that Q(X) = 0.
Therefore, 2f."0' c,-X_' =0, and_ thus c,

= 0 for i = 0 d — 1. Thus, we have
shown that the set {T

,
X, . . . , Xd"'} is linearly independent over K and that this set

is a basis for K[X]/(P(X)) as a vector space over K.
Because multiplication by X on K[X]I(P(X)) is a linear transformation on

this vector space, we may see what the matrix associated with this morphism is

with respect to the basis just described. Writing X° for T, we see that X . X' = X'+'
for i=0,...,d-2. However, X . Xd"' = X" = - lf:i a^-J? [because

P(X) = Xd + a,Xd"' + ... + *]. Thus, we get the square matrix of order d:

0 1 0 ... 0

0 0 1 ... 0

0 0 0 ... 1
-a* -a,l-, —ad-2 . . . -a,

Returning now to our vector space V, we have V =
K[X]l(P,(X))U- . UK[X]l(Pr(X)) where P,(X), . . . , P,(X) are the invariant
factors of T. Because V is a sum of these modules as a K[X]-module, V is

certainly a sum of these modules as a vector space. Do not forget, too, that the
operation T on V is multiplication by X. Thus, a basis for V may be found which

is the union of bases for each of the vector spaces K[X]/(P(X)), and the matrix
for T with respect to this basis will be easy to compute.
To see what we mean by this, let us suppose that we have a vector space V, a

transformation T: V-» V, and subspaces V V, such that T( V,)C V
,

for i =

1
,

. . . , r. Suppose, moreover, that V = V,U . . . II Vr. If we let {u,„ .... «<*} be a

basis for V,(i = 1
,

. . . , r), then {t1n, .... t1n„ t»n, . . . , v*,} is clearly a basis for V. If

j.

T(ti„) = 2 aW for lsisr, ls/<dl
k-l

then the matrix of T\V, (the restriction of T to Vi) is

A = (a|0

and the matrix of T with respect to the basis {«,,} is

'A, 0 ... 0

0 A2

0 0 ... i4r
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or, in more detail,

0

0

0

0

0

0

flu

vfl*,

ald,

Qdj,

Applying these observations to our vector space V=
K[X]/(P,(X)) II . . . II K[X]/(P,(X)),_we let V, = K[X]/(P(X)) and, if d, is the de
gree of P,(X), we have the basis {1, X, ... , X''-'} of V,. Because T\ V, is multiplica
tion by X, we have the matrix

a'- I :
I (*)

where P,(X) = X"' + a„X"r' + . . . + a*. Thus we have the following.

Proposition 5.1
If T: V-» V is a linear transformation of a finite-dimensional vector space V over
a field K, then V has a basis with respect to which T has the matrix of the form

0 l 0 0

9 0 l 0

6 0 0 1

-ald, — aur\
— O,

A' 0 . . 0

0 A2 . .. 0
0 0 . . A"

where for each i = 1, . . . , r, A1 is a square matrix of order d, of the form (*), dl is
the degree of the invariant factor P,(X) of T, and P(X) = X"' + OnX"'"' + --- + ald,.

Our discussion thus far has made use of the invariant factor decomposition of
a module over a PID. Now we shall make use of the decomposition involving
elementary divisors. We recall from Chapter 10 that if we take the invariant
factors P,(X), and factor them: P,(X) = PT1(X) .. . P£(X) where P*,(X) are
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irreducible (hence prime) polynomials, then

K[X] A K[X]
(P(X)) "(PJW)

and thus

We have already seen how we may choose a basis of K[X]/P(X) when P(X)
is any polynomial. We might ask, though, in view of (1), whether there is some
nice way of choosing a basis for K[X]/(P"(X)), given one for K[X]/(P(X)). To
answer this question, let us look first at the case v = 2. We have the exact se
quence of K[X]-modules (hence of vector spaces over K):

n .(WO) K[X] k K[X]

As a sequence of vector spaces over K, this sequence is splittable. Hence, we
may find a basis for K[X]/(P2(X)) as follows. Choose a basis {w,, . . . , w,} of
(P(X))/(P2(X)), and a basis {», »„} of K[X]/(P(X)). Letting 5,£K[X]/
(P2(X)) be such that k(6,) = »h then the union {w,, . . . , w,} U {v, . . . , vd] is a basis
for K[X]/(P2(X)).
Now as a K[X]-module, (P(X))/(P2(X)) is isomorphic to K[X]/(P(X)). To

see this, we map K[X] onto (P(X))/(P2(X)) by sending the polynomial F(X) in
K[X] to F(X)P(X) where F(X)P(X) denotes the coset class of F(X)P(X)
modulo P\X). Clearly, the kernel of this morphism is the ideal generated by
P(X), so K[X]/(P(AT))«(P(X))/(P2(X)). Thus, if {5, «„} is a basis for
K[X]I(P(X)), and if v,,...,vd are elements of K[X] such that v, is the coset of v,
in K[X]/(P(X)), then {P(X)u„ .... P(X)«,} is a basis for (P(X))/(P2(X)) where
P(X)c is the coset of P(X)v, in (P(X))l(P\X)). But it is also clear that if v, is the
coset of «, in K[X]I(P\X)), then k(v,) = $,. Hence, we see that the set
{v 0* P(X)v„ ..., P(X)vd) is a basis for K[X]/(P2(X)). This description of
a basis for K[X]/(P2(X)) leads us to the following.

Lemma 5.2
Let P(X) be an element of K[X] of degree d, and let {v vd} be a basis for

K[X]/(P(X)) as a vector space over JC. Let {v , vt) be elements of K[X]
such that V, is the residue class of v, in K[X]/(P(X)). If v is a positive integer, the
set of all products {P'(X)v,} where / = 0, . . . , v - 1, and i = 1, ..... d is a set of dv
elements of K[X], If P\X)v, denotes the coset of P'(X)ti, in K[X]/(P"(X)), the
set {P^X)»,} is a basis for K[X]/(P'(X)) as a vector space over K.

PROOF: Left as an exercise.

The following example not only serves to illustrate the use of Lemma 5.2, but
is actually the most important type of application of 5.2.

Example S3 Let P(X) = X - A, and consider K [X]/((X - A )4). We know that
K [X]/(X - A ) is a one-dimensional vector space having, as basis, {1}. Therefore,

{
I,

(X - A) . 1, (X - A)2 . 1, (X - A)3 . 1} is a basis for K[X]/((X - A)4). As before,
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we know that multiplication by X is a linear transformation on K[X]I((X - A)4),
and we shall now see what its matrix is with respect to the above basis. We have

X-I = (X-A)-I + A-T
X(X-A)-1 = (X-A) . 1 + A(X-A)- 1

3~T / v 1Vix-(x-\y-i = (x-\y-i + K(x-x.y- 1
X(X-A)'- 1=(X-A)4- H-A(X-A)'- 1=0 + A(X-A)31

Thus, the matrix with respect to the given basis is

The reader should now find it easy to convince himself that if we had consid
ered the general case K[X]/((X - A)"), then this vector space has a basis with
respect to which multiplication by X has the v x v matrix

1 0 ... 0 0
A 1 ... 0 0

0 0 ... A 1

0 0 ... A

Example 5.4 Suppose V is a five-dimensional vector space over a field K,
T:V-»V is a linear transformation, and T has invariant factors P,(X) =
(X-2)2(X-1), P2(X) = (X-2)(X-1). Then we have

K[X] u K[X] K[X] K[X]
((X-2)2) ((X-D)"((X-2))"((X-1))

Each of the four modules has a basis with respect to which multiplication by X
has a matrix like that of Example 5.3. Taking these modules in order, we have the
four matrices

lo 2}
(1), (2), and (1)

The union of these bases gives us a basis for V with respect to which multiplica
tion by X (that is, the transformation T) has the matrix

'2 1 0 0 0>

0 2 0 0 0

0 0 10 0
0 0 0 2 0.00001,
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The fact that (X-2f occurs as a factor of P,(X) accounts for the element 1 off the
diagonal.

It is now not much of a jump from the above examples to a more general
situation. We assume that V is an n -dimensional vector space over the field K,
and that T : V -» V is a linear transformation. Further, we assume that all the
irreducible factors of the invariant factors of T are linear. This would be the case,
for instance, if K were the field of complex numbers. With these assumptions, we
see that

K[X]_K[X]_ JJ...JJ((x-a,d ((X-A.P)
The reader should not assume here that all the A, need be distinct, as Example 5.4
above amply illustrates. For in that example, we have s =4 with A, = A3 = 2 and

A2 = A4 = 1. Nevertheless, using Lemma 5.2 and the subsequent examples, we
know that V has a basis with respect to which T has the matrix

0 ...
A, ...

0 0 ...

where each A is a square matrix of order v, of the form

/A
,

1 0 . . 0 0

1
° A
,

1 . . 0 0

IA- :'

1

\° 0 0 .. . A
,

1

\0 0 0 .. A
,

We have therefore almost obtained the following.

Theorem 5.6
Let V be a finite-dimensional vector space over a field K and T: V-» V a linear
transformation. If all the irreducible factors of the characteristic polynomial of T

are linear, then V has a basis with respect to which T has a matrix

A, 0 ...

0 A2 ...

0 0 ...

where each matrix A is as above.
PROOF: In the statement of this theorem we are assuming that the irreducible

factors of the characteristic polynomial of T are all linear, whereas in the preced
ing discussion we had assumed that all the irreducible factors of the invariant fac
tors of T were linear. But by Proposition 4.3 we know that the characteristic
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polynomial of T is the product of the invariant factors of T so that the irreducible
factors of T are linear if and only if those of the invariant factors are all linear.
With this observation, the theorem is proven.

Definition
The form of the matrix of T given in the above theorem is called the Jordan
Canonical Form of the transformation T.

EXERCISES

(1) Let F be a free module over the commutative ring R with basis {xl, ... , x„}.
Let f be the element of Sk„ (F) defined by the property that £(x,, . . . , xn ) = 1. For
each x in F, define the map f,:Fx . . . xF-»R by /, (y ,, ..., y„-,) =
£(x, y y„_,).

'
^i

'

(a) Show that for each x in F, /, is in Sk„-,(F).
(b) Prove that the map / : F-» Sk, - ,(F) defined by f(x ) = fx is an isomorphism of
R -modules.

(2) Let R be a commutative ring and M an R -module. If / is in Sk„(M) and g is in
Sk„-,(M), define di(f,g):MURx- .xMUR.-»R by

<fi(f, g)((w,, J-,), . . . , (m„ rp)) = /(m,, . . . , mp) + X (- l)'+'r^(mu . . . , m,, . . . , mp)
where, as usual, (m,, . . . , mh . . . ,mp) means the (p - l)-tuple obtained from
(m , mP) by omitting m,.

(a) Show that <l>(f,g) is in SMMIIR).
(b) Show that <^SMM)USkp-^M^SMMU R) sending (/

,

g
)

to <fi(f,g) is a

monomorphism of R-modules.

(c) If h :Mil R x ... x MU R -» R is an element of Sk„(M II R), define / in Sk„(M)
and g in Skp-,(M) as follows: /(m,, . . . , m„)= h((m,,0), . . . ,(mP, 0)) and
g(m„...,m,-,) = /i((0, l),(m,,0),...,(m1,-„0)). Prove that h=<i>{f,g) and
hence that <

ti is an epimorphism. From this conclude that <f
>

is an isomorphism.

(3) Show that if R is an integral domain and / is an ideal of R, then Sk„(/) = 0 for
all p >2.

(4) Let K be a subfield of the field L. Let V be an n-dimensional vector space over
K and let /: V-» V be a K-morphism of V into V.
(a) Prove that L® V is an n-dimensional vector space over L.

K

(b) Prove that the characteristic polynomial of the L-morphism L®/: L® V-»

K K

L® V is in K[AT] and is equal to the characteristic polynomial of /.

x

(c) How do the invariant factors of / and of L®/ compare?
K

(5) Let A be a 4x4 matrix over the complex numbers whose characteristic
polynomial is (X-2)(X+l)(X+i)(X+2i). Prove that A can be diagonalized.
(6) Prove that if K is a field and f(X) is in K[X](/^ 0), then there is a vector space

V over K and a linear transformation T: V-» V such that f(X) is the characteris
tic polynomial of T.

-
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(7) Let Af be a finitely generated module over a commutative ring R and let

/ : Af-» Af be an R -epimorphism. Prove that / is an isomorphism. [Hint : Show first
that one may assume that R is a local ring. Next, assume that F—^-»M -»0 is an
epimorphism where F is a finitely generated free module such that
FUF-^MUM is an isomorphism, where J = rad(R). Then show that there is an
endomorphism f:F-»F such that af = fa, and that / is an epimorphism, hence an
isomorphism. This shows that |/

|

(the determinant of /) is a unit in R. Let 2r-0 a,X'
be the characteristic polynomial of /. Then a0 = ± |/

| and /"' = (1/a0)g where g =
2i1.; a/'"'. Use this to show that if x is in Ker a, then x = /(y ) for some y in Ker a.
Finally, use this last fact to show that Ker / = 0 and hence that / is an
isomorphism.]

(8) Let V be an n-dimensional vector space over the rational numbers, and let
«, v„ be a fixed basis of V. If a is a permutation of the set {1, . . . , n], let
T„ : V-» V be the unique vector space endomorphism of V which sends each basis
vector V: to «*».
(a) Prove that the matrix of T„ with respect to the basis {

t1 , v,} has the

property that exactly one entry in each row and each column is 1 while all the
others are zero. Any matrix with this property is called a permutation matrix.

(b) Prove that the determinant of a permutation matrix is either 1 or - 1.

(c) Prove that if Af is a permutation matrix, then there is a permutation a of the
set {1, . . . , n} such that Af = T„

(d) Prove that the map which sends each permutation a to the matrix T„ is an
isomorphism from the permutation group S„ onto the subgroup of permutation

matrices.

(e) Prove that a permutation a is even if and only if |T„| = 1 where |T„| denotes the
determinant of the matrix T„

(9) Let A be a square matrix of order n over a commutative ring R, say A = (a,,).
Define the trace of A, denoted by Tr04), to be the element 2,"-, a,,.
(a) Prove that if B is a square matrix of order n over R such that \B\ is a unit in R,
then Tt(BAB ') = Tt(A).

(b) Let G be a finite group and let R(G) be the group ring of G over R. Then R(G)

is a free R-module whose basis consists of the elements gu...,g. of G. R{G)

is an R(G)-module and multiplication by each element x of R(G) is an
endomorphism of R(G) as an ^-module. Thus, to each element x in R(G) is

associated a square matrix A of order n, corresponding to the R-
endomorphism of R(G) induced by multiplication by x. Let S(x) = Tr(A(x)).
(i) Prove that if g and g

'

are conjugate, then S(g) = S(g').
(ii) Prove that A(g) is a permutation matrix for each g in G.
(Hi) Prove that S(g) = n . 1 if g is the identity element of G and that S(g) = 0

if g is any other element of G.
(10) Let R be a ring and Af an R-module. Then Af * = HomR (Af, R) is a right
R-module and we can form the abelian group Af*®Af.

I!

(a) Prove there exists a unique morphism <
t> :Af*®Af -»Hom,t(Af, Af) such

R

that [<fi(g® m)](m') = g(m')m. Show also that if R is a commutative ring,
then <

ti is an R -morphism.
(b) Prove that if Af is a free R -module with basis {x,, . . . , x,}, then Af * is a free
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right R-module with dual basis {xT, . . . , x?} where xf:M-»R is defined by
setting x?(x,) = 8« where 5« is the Kronecker delta.

(c) Prove that if Af is a free R -module having a finite basis, then the morohism <£
defined in part (a) is an isomorphism. [Hint: Let {x,, . . . , x„} be a basis for Af
and let {xT, . . . , x?} be the dual basis. Show that if / is in HomR(M, Af), then
the element Ex?/®x, in Af*®Af is such that <K2x?/®x,) = /.]

R

(d) Let R be a ring and Af an R -module. Prove that there exists a unique mor-
phism T:M*®M-»R such that T(g®m) = g(m) for all g in Af* and m in M.

R

Prove that T is an R -morphism when R is a commutative ring.
(e) Let R be a commutative ring, M a free R-module of finite rank, and /: Af-» Af
an R-endomorphism of Af. Define Tr(/) in R to be the element T(<£"'(/))
where <

fi is the morphism defined in part (a). Prove that if {x,, . . . , x„} is a basis
for Af and A = (a«) is the matrix of / with respect to this basis, then Tr(/) =
Tr(A).

(11) Let V be an n-dimensional vector space over the field K, and let /: V-» V be a

K-endomorphism of V. If the characteristic polynomial of / is X" + a,X""' + . . . +
an prove that Tr(/) = -a, and that |/| = (-l)"a„.
(12) Let V be an n-dimensional vector space over the field K, and let /: V-» V be a

K-endomorphism of V. An element A in K is called an eigenvalue of / if there is

some nonzero vector u in V such that /(u) = A«. Such a vector v is called an
eigenvector of f for the eigenvalue A.
(a) Let A be an element of K. Prove that A is an eigenvalue of / if and only if A is a

root of the characteristic polynomial of /.

(b) Prove that if / has n distinct eigenvalues, then V has a basis consisting of
eigenvectors of /. Show that the converse need not be true.

(c) Suppose that for some integer d > 0
,

we have f = idv. Prove that if A is an
eigenvalue of /, then \* = 1

.

We shall now apply some of the above exercises to study some elementary
facts about group representations.
In genera!, if K is a field, a K{G ) module Af which is finite-dimensional as a

K-vector space, is called a matrix representation of G, where K(G) denotes the
group ring of G over K. For in that case, we may choose a basis {

x , x„] for Af
as a vector space over K and, for every g in G, the matrix AtAg) = (a,j(g)) corres
ponding to the K-automorphism of Af obtained by operation on Af by the element

g gives us a map from G to the group of square matrices of order n over K with
nonzero determinant. This latter group is denoted by GL(n, K), the general linear
group over K. The map g -»AM(g) is actually a group morphism, as the reader can
easily check. Because of this, we say that a K(G (-module is a representation of
the group G. A simple K(G)-module is called an irreducible representation. We
saw in the exercises to Chapter 7 that if K is a field whose characteristic does not
divide the order of G, then K(G) is semisimple so that every representation of G

is a sum of irreducible representations. The number of nonisomorphic irreducible
representations is finite, and each one is a finite-dimensional vector space over K.

(13) Let C(G) be the group ring of the finite group G over the complex numbers,
and let Af, . . . , M, be all the nonisomorphic irreducible representations of G.
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(a) Letting n, denote the dimension of Af as a vector space over C, prove that
n = 2,L, n] where n is the order of G.

(b) Let Af be a finitely generated C(G )-module. Then for each x in C(G), multipli
cation by x on M is an endomorphism /, of M as a C-vector space. Define
SM: C(G)-»C by SM(x) = Tr(/,). Denote the restriction of S« to G by *M: G-»C.
(i) Prove that *M(g) is a sum of roots of unity, that is, xM(g) = 2 Ai where

A?= 1 for some v,£ N. Use the fact that every polynomial in C[X] has all
of its roots in C[X].

(ii) Prove that if g and g' are conjugate elements of G, then xM(g) = xM(g')-
(iiI) Prove that if Af' and Af" are finitely generated C(G)-modules and if
M=M'U M", then SM = SM. + SM-.

(iv) Let Af
' and Af" be finitely generated C(G)-modules. Define an operation

on Af '®Af
" by setting g(m,®m2) = gm,®gm2 for all g in G, m, in Af ',

c

and m2 in Af ". Show that this does make Af '®Af
" into a finitely gener

ated C(G)-module.
(v) With Af

' and Af " as above, let Af = Af '®Af ". Prove that S« = SMS„-.
c

(c) We have assumed that the irreducible representations M are vector spaces of
dimension n, over C. Let e, denote the identity automorphism of Af,. Because

C(G) = n Endc(Af,), we may assume that e, is in C(G) for each i = 1, .... f,-,
and, in fact, 1 = 2d. Prove that SM,(ci) = n, and that SM,(ci) = 0 for i =f

=
j.

(d) Let Af be a finitely generated C(G )-module and suppose that Af =

Af 1' II . . . II Af "• where the Afl are the irreducible C(G^representations
and u, are nonnegative integers.

(i) Prove that the integers u, u, are uniquely determined by Af.

(ii) Prove that S« = h,Sm, + . . . + u,SMi.

(iii) Show that the map SM determines the C(G)-module Af. From this, deduce
that xM determines the module Af.

(e) Let Af = C(G). Af is called the left regular representation of G. We will denote
Sm and \v by So and x<- respectively, in this case.

(i) Prove that xg - iuxm, + . . . + n,xM,. Consequently:
(ii) Prove that (1/n)2n^M,(l)= 1 while 2wA8) = 0 if g >s any element of
G other than 1

.

(14) Let Af be a finitely generated K(G)-module, where K is a field. Denote
HomK(Af,K) by Af*. For g in G and / in Af*, define gf in Af* by (g/)(m) =
f(g'm).
(a) Prove that the operation of G on Af * defined above makes Af * a finitely gener
ated left K(G)-module. Af * is called the contragradient representation of Af.

(b) Prove that Af - Af **.
(c) Prove that Af is a simple K(G)-module if and only if Af* is a simple
K(G)-module.

(d) Let {x, x,} be a basis for Af over K, and let {x*,..., x*} be the dual basis
for Af *. If AM(g) = (fl«(g)) denotes the matrix corresponding to the operation
of g on Af with respect to the basis {x,, . . . , x,}, and AM-(g) = (bn(g)) de
notes the corresponding matrix for Af*, prove that b«(g)= ^.(g_,).

(e) Assume now that K = C. Prove that x*(g"') = xM-(g) = xM(g) for all g in G,
where xM(g) denotes the complex conjugate of xtAg)-
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(f) Still assuming that K = C, prove that M* and M are isomorphic if and only if
*M(g) is real for every g in G. [Hint: Use Exercise 13 (d) (iii).]

I

(15) If G is a finite group of order n, we have C(G)=IIR, where R, = Endc(M),-,

and M,, . . . , M, are the distinct irreducible representations of G over C. We let
x, = xM,.

(a) If e, = 2,ec a&g, prove that a^ = (n,/n)x,(g_l) where e, = idM„ n, = dimension of
Af, over C. [Hinr: Use Exercise 11(c), (e).]

(b) If N, and N2 are C(G)-modules, define <*„„ x*,) = (1/n)2xN,(g)XN,(g"').
Prove that (*hxi>=5u. [Hinf: Use part (a) together with the fact that
X,(«,) = n,8,7.]

(16) Let K be an algebraically closed field, that is, a field with the property that
every polynomial in K[X] has its roots in K (for example, the field C). Let V be a
finite-dimensional vector space over K and let G be a finite abelian subgroup
of AutK( V). Prove that there is a basis for V such that with respect to this basis,
every element of G is a diagonal matrix.

In the next set of exercises we give a brief introduction to the notion of
graded rings and graded algebras.

We begin with some preliminary definitions and observations. Let R be a
ring. A representation of the underlying abelian group into a sum II R, is called a

leN

grading of R if for all i and j in N we have R,R, C R,^. A ring R together with a
grading is called a graded ring. If R = U R, is a graded ring, then the subgroup R,

IEN

is called the homogeneous component of R of degree i and the elements of R, are
called the homogeneous elements of R of degree i. Obviously, each element r of R
can be written in one and only one way as 2]°-0 r, where each r, is homogeneous of
degree i and all but a finite number of the r, =0. Each r, is called the ith
homogeneous component of N.

(17) Let R = II R, be a graded ring. Given two elements 2r.0 r, and 2F-0 r',, show:
IEN

(a) in+ir'.-ifa + r',).
1-0 ,-0 ,-0

(b) (2 r,)(t r',)= 2 2 for',).
1-0 l-0 n-Ok^»-l

Further, show that:

(c) R0 is a subring of R.

(d) Each R, is both a left and right R0-module by means of the map R0xfi-» R,
given by (r0, ri)-»r0r, and R, x R0-»R, given by (rh r0)-»r,r0.

(18) Suppose R = II R, and R' = II R', are two graded rings. By a morphism of
IEN ,EN

graded rings from R to R' we mean a morphism of rings f:R-»R' such that
f(R,)CR'l for all i in N.
(a) Suppose that R"= U R", isathird graded ring and/:R-»R' andg:R-»R" are,EN

morphisms of graded rings. Show that the usual composition of ring mor-
phisms gf:R^R" is also a morphism of graded rings, which is called the
composition of the morphisms of the graded morphisms / and g.

(b) Show that the following data define a category, Gr Rings, called the category
of graded rings. The objects of Gr Rings are the graded rings, the morphisms
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between the objects of Gr Rings are the graded morphisms, and the composi
tion in Gr Rings is the composition of graded morphisms we just defined.

(c) Show that a morphism f:R-»R' of rings is a graded morphism if and only if
for each r in R and i in N we have f(r, ) is the ith homogeneous component of

f(r).
(19) Suppose R = II R, and R' = II R', are graded rings. Show that if f:R-»R' is a

i N i. N

morphism of graded rings, then the ideal Ker / has the property that r is in Ker / if
and only if each homogeneous component r, of r is also in Ker/.

(20) An ideal / in a graded ring R = U R, is said to be a homogeneous or graded
IEN

ideal of R if an element r in R is in / if and only if each homogeneous component
rl of r is in /. Show that for each ideal / of R the following statements are
equivalent:

(a) / is a homogeneous ideal in R.
(b) / is generated (as an ideal) by homogeneous elements of R.
(c) /= URnl.

IEN

If / is homogeneous ideal in R, we denote J?
i n / by /. for all i in N. We call /.

the ith homogeneous component of /.

(d) Suppose / is a homogeneous ideal of the graded ring R.

(i) Show that there is a natural isomorphism of abelian groups RII-» II R,ll.
IEN

(ii) Show that this sum decomposition of RII is a grading of RII. The graded
rings consisting of the ring R II together with the grading RII =

II R,lh is called the factor ring of R by I in the category of graded
IEN

rings.

(Ui) Show that the canonical surjective ring morphism k :R-»RII is a graded
morphism.

(e) Show that each morphism in the category of graded rings has an analysis.

(21) Let K be a commutative ring. A graded K -algebra is a graded ring R = II R,
IEN

together with a ring morphism / : K -» R such that: (1) / : K -» R is a K-algebra, (2)

/ is an injective morphism with /(K) = R0.
(a) Let M be a K-module. Show that the representation of the tensor algebra

TK (M) as the sum II®M is a grading on TK (M). This is the only way we ever
IEN

consider TK(M) a graded ring. Show that the usual K -algebra structure K -»
TK(M) on TK(Af ) makes TK(Af ) a graded K-algebra. This is the only way we
consider TK(M) a K-algebra.

(b) Let Af be a K-module. Show that the kernel I of the canonical surjective
morphism TK(M)-» SK(M) is a homogeneous ideal of TK(M). Hence, SK(M) is

a graded ring because it is a factor ring of a graded ring by a homogeneous
ideal. This is the only way we consider the symmetric algebra SK(M) a graded
ring. Show that the usual K-algebra structure K-»SK(M) makes SK(M) a

graded K-algebra. This is the only K-algebra we consider on SK(M ).

(c) Let R = K[X,]iEi be a polynomial ring over K. For each n in N, let R„ be the
R-submodule generated by the monomials II X"' of degree n. Show that the



Exercises 407

representation R = U R„ is a grading on R which makes R a graded K-
algebra.

(d) Let F be the free K -module generated by the set J. Show that SK(F) and
K[Xi]ISJ are isomorphic graded K-algebras.

(22) Let K be a commutative ring. A graded K-algebra R = II R, is said to be

generated by the homogeneous elements of degree 1 if the subring generated by
R0lIR, is all of R.

(a) Let M be a K-module. Show that the K-algebras TK(Af) and SK(M) are
generated by the homogeneous elements of degree 1.

(b) Let K-»R be a graded K-algebra generated by its homogeneous elements of
degree 1. Suppose K-»A is a K-algebra and f,g:R-»A are two K-algebra
morphisms (not necessarily graded). Then / = g if and only if f\Rl = g\R,-

(c) Show that if f:R-»A is a graded surjective morphism of graded K-algebras,
then A is generated by its homogeneous elements of degree 1 if R is generated
by its homogeneous elements of degree 1.

(d) Let R = II R, be a graded K-algebra which is generated by its homogeneous
leN

elements of degree 1. If / is a homogeneous ideal such that ir,R0 = 0, then RII
is a graded K-algebra which is generated by its homogeneous elements of
degree 1.

(e) Let R = II Rl be a graded K-algebra which is generated by its homogeneous
IEN

elements of degree 1. Then R, is a K-module. Show that the unique K-algebra

/: TK(M)-»R, such that f\Rl : R,-»R is the inclusion morphism, is a surjective
graded K-algebra morphism.

(23) Let R=U R, and R' = U R', be two graded K-algebras where K is an
i--N ,EH

arbitrary commutative ring.

(a) Show that the K-module R®R' = U II (R,®Rl).
K nEN ,+,-n K

(b) Denoting II R,®R, by (R®R')„, show that for each n in N, the above sum

representation R(g)R' = II (R®R')„ is a grading on the K-algebra R®R'
K rr.N K K

which makes R®R' a graded K-algebra called the graded tensor product of R
and R'. K

(c) Show that if R and R' are both generated by their homogeneous elements
of degree 1, then their graded tensor product R®R' is also generated by
its homogeneous elements of degree 1.

(d) Extend the notion of a tensor product of two K-algebras to the tensor product
of a finite number of K-algebras.

(e) Extend the notion of the graded tensor product of two graded K-algebras to
the graded tensor product of a finite number of graded K-algebras.

(f) Suppose the K-module M= M, U- . UM„ a finite sum. Then
(i) (SK(Af,)®- . -®Sk(M;)), - M, U . . . II M, = M.

K K

(ii) The unique K-algebra morphism /:SK(Af)-»SK(M,)®- . -®SK(M,) with
K K

the property f\M:M-»SK(M,)®- . -®SK{M,) is given by the monomor-
K K

phism M -»(Sk(M,)®- . -®Sk(M,)), is a graded K-algebra isomorphism.
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In the next set of exercises we give a brief introduction to exterior algebras.

(24) Let M be a module over a commutative ring K. Let / be the ideal in TK (M )
generated by the homogeneous elements of degree 2 of the form x® x for all x in
M. Show:

(a) The ideal / is a homogeneous ideal in TK(Af) with the property / fl
(TK(M))0 = (0).

(b) The graded ring TK(M)II is a graded K- algebra which is generated by its
homogeneous elements of degree 1.
The graded K- algebra TK (M)II is called the exterior algebra of M over K

and is usually denoted by AM. Also, for each n in N, the nth component
„

(AM)„ of AM is denoted by AM. Finally, if k : TK(M)-» AM is the canonical
surjective K- algebra morphism and x ,x, are elements of M, then the

image in AM under k of the element X,® . . -®x, in the sth component ®M
of TK(M) is denoted by x, a - . . ax,.

(c) If x is in M, then x ax = 0.
(d) If x,,x2, x are in M, then:
(i) (X, + x2)ax =X,AX +X]AX.

(B) x a(X, + x2) = x ax, + x ax2.

(Hi) x,ax2 = -X2Ax,. [Hinf: Use the fact that (x, + x2)a(x, + x2) = 0.]
(e) Let o- be a permutation of [l,...,n]. Then x„,l,a- . . ajc,.,=
sgn o-(x, a . . . a x„) where sgn a is the signature of a (that is, sgn a = 1 if a is
even and sgn a = — 1 if a is odd).

(f) Let x,, . . . , xn be n elements in M. If there are distinct i and j such that Xi = Xi,
then X, a- . . ax„ = 0.

(g) If k is in K, then
X, A . . . A fcx, A . . . A X„ = fc(X, A . . . A X„ )

for all X,, . . . ,x„ in M.

(h) X,A . . . AXi A(X +X')AX,+2A . . . AX, = X,A . . . AXi AX AXi+2A . . . AX„ +X,A . . .

AX, AX'Ax, +2A . . . AX,.

(i) AM = M
(25) Let K-»T be a K- algebra and M a K-module.
(a) Suppose /:AM-»r is a K -algebra morphism. Then /|AM:M-»r is a
morphism of K-modules with the property f(m,)f(m2) = 0 for all m,, m2 in M.

(b) If /, g:AM-»r are two K-algebra morphisms, then / = g if and only if

/|AM = g|AM.
(c) Given any K-module morphism h:M-»r with the property that
h(m,)/i(m2) = 0 for all m,,m2 in M, then there exists a unique K-algebra

l

morphism /: AM -»T such that /|AM = h.
(26) Let M be a module over the commutative ring K. Suppose that K -» r is a
K-algebra and g:M-»r a morphism of K-modules having the properties: (1)
g(m,)g(m2) = 0 for all m,, m2 in M and (2) given any K-algebra 2 and any
K-module morphism h :M-»S satisfying h(m,)h(m2) = 0 for all m,, m2, there

,

exists a unique K-algebra morphism / :AM -» Y with the property that /|AM = g
is an isomorphism of K -algebras.
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(27) Let A. and A2 be two K-algebras and T an arbitrary K-algebra. Let fr.A,-»
A,® A2and/2:A2-»A,® A2bethe K-algebra morphisms /,(x,) = X, ® 1 for all x, in
K K

A, and /2(x2) = 1® x2 for all x2 in A2.
(a) Let /: A, ® A2-»r be a morphism of K-algebras. Show that the compositions

K

ff, :A, -» r and ff2 : A2 -» T have the property #,(x,)#2(x2) = #2(x2)#,(X,) for all x,
in A, and x2 in A2.

(b) If /, g:A, ®A2-»r are two K-algebra morphisms, then f = g if and only if
ff, = gf, and ff2 = gf2.

(c) Given any K-algebra morphisms g,:A,-»r and g2:A2-»I\ then there is a
unique K-algebra morphism g : A,® A2-»T such that gf, = g, and g/2 = g2.

K

(d) Extend the results in (a), (b), and (c) to tensor products of a finite number of
K-algebras.

(28) Let M be a K-module and suppose that Af = M,IIM2. Show that AM and
AM,®AM2 are isomorphic graded K-algebras, as outlined below:

K

(a) Show that the map /: Af,IIAf2-»AAf,® AAf2 given by f((m,,m2)) =
K

m,® 1+ 1® m2 for all m, in Af, and m2 in M2 has the following properties:
(i) / is an injective K-module morphism whose image is (AM,® AAf2),.

K

(ii) /((m,, m2))/((mi, m2)) = 0 for all m,, mi in M, and m2, m2 in M2.
(b) Suppose r is a K-algebra and g : Af, IIM2-»r is a K-module morphism with
the property that g((m,, m2))g((mi, m'2)) = 0 for all m,, m',inM, and m2, m2 in
M2. Letting g, = g|M, and g2 = g|M2, show:

(i) There exist K-algebra morphisms gi:AM,-»rand g2:AAf2-»r such that
, ,

gi|AAf , = g,, g2|AM2 = g2 and gi(X)g2(y) = 0 for all x in AM, and y in AM2.
(II) There is a unique K-algebra morphism g':AM,® AM2-»r such that
g'/:Af,UAf2-»ris the given g : Af , II Af2-» r. K

(c) The unique K-algebra morphism h :A(Af,IJAf2)-»A(M,)® A(Af2)with the
I k

property h|A(AfiIIAf2) =/ is an isomorphism of graded K-algebras. This
uniquely determined isomorphism will usually be considered an identification.

(29) Generalize Problem 28 to show that if K is a commutative ring and Af =
Af , II . . . II Af, is a K-module, then the graded K-algebras AAf and
AAf, ® . . . ® AAf, are isomorphic.

K K

(30) Let K be a commutative ring and I an ideal in K Show that the K-algebra
AK// has the following properties:

(a) AK// = 0 and so AK// = 0 for all na2.
(b) The graded K-algebra AKII is isomorphic to the graded K-algebra K + KII
described as follows:

(i) As a K- module K + KII is the sum KUKII.
(II) (x, y)(x', y') = (xx',xy' + x'y).
(Hi) The grading of K + KII is given by the sum decomposition KUKII.

(31) Let /,, ...,£, be a finite family of proper ideals in the commutative ring K. Let
n

Af = II K//i. Prove that the underlying K-module structure of the K-algebra AAfi-,
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can be described as follows:

(a) AM = 0 for all p > n.

(b) AM =£0 for psn. .

(c) Suppose lspsn and let V,, . . . , V,n. be the ( J distinct subsets of [1, n]
with p elements each. For each V) let IV

l be the ideal of K generated by all the

ideals /i with i £ V,. Then AM is isomorphic to K//V,IIK//V, II . . . II K//v,.,,,.
(32) Let 7

, C J: C . . . C /„ ± K be ideals in the commutative ring K, and let M =

n
II K//i. Show that the underlying K-module of the K-algebra AM has the follow-i-,

ing properties:

(a) AM = 0 for all p>n.

(b) ann(AM) = Ip for each p = 1
,

. . . , n and so AM ± 0 for p = I, . . . , n.
Consequently:

(c) If /i C /; C . . . C I'm± K are also ideals in K such that the K -module M' =

II KIl, is isomorphic to M, then m = n and I, = I', for all i = 1
,

. . . , n.
J- 1

(33) Let M be a free K-module of rank n. Prove that the underlying K-module of
the K-algebra AM has the following properties:

p

(a) AM = 0 for all p>n.

(b) AM is a free K -module of rank ( J for each p = 1
,

. . . , n.

(34) Let K be a commutative ring.
(a) Suppose /: M-»N is a morphism of K-modules. Show that the uniquely deter
mined K-algebra morphism /':AM-»AN such that f'\M is the composition
M—'-+N-»AN, is a graded K-algebra morphism. This uniquely determined
graded K-algebra morphism /' is usually denoted by A/ and the induced

p p p p p

morphisms AM-»AN are usually denoted by A/:AM-»AN.
(b) Show that if f:M-»M' and g:M'-»M" are K-module morphisms, then
AgA/=A«f.

(c) If f:M-»M is the idM, then A/ is the identity on AM.
(d) If F:M-»N is an isomorphism, then A/ is an isomorphism.
(e) If f:M-»N is surjective, then A/ is surjective. p

(f) If a K-module M can be generated by n elements, then AM = 0 for all p>n.
(35) Let M be a module over the commutative ring K. Suppose n is a positive

integer and X is a K-module. Let x M be the n-fold Cartesian product of M with
itself. A map/: xM-»X is called n -linear if for all mu . . . , m,, m in M and r, s in
K we have f(m , rm, + sm, m, „ ,m„) = rf(m,,...,mhm,-,,...,m„) +
sf(m,,.. .,m,mi+,,...,m„) for each i = \,...,n. The n -linear map is said to be
skew-symmetric if f(m , , . . . , m„ ) = 0 whenever m, = m, , + , for some i = 1 n - 1 .
(a) Show the map g:xM-»®M given by g(m,,. . . , m„) = m,® .. ® m. is n-
linear, having the following properties:

" »

(i) If / :® M-»X is a morphism of K -modules, then fg : x M -» X is n -linear.
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(ii) Suppose that X is a K -module. A map h : x M -» X is n -linear if and only
1i

if there is a K-morphism f:®M-»X such that fg = h.
Fl

(iii) If f,,f2:(g)M-»X are two K-morphisms such that f\g=f2g, then f\=f2.
Hence, we obtain an isomorphism between the set of n -linear maps

x M -»X and HomK (® M, X).
(b) Show that for each positive integer n the map g:xM-» AAf given by
3(m m,) = m,A'"Am, is a skew-symmetric map having the following
properties:

B R

(i) If / :AM -»X is a morphism of K-modules, then //3 : x M -»X is a skew-
symmetric map.

(ii) For each K-module X, let Sk„(M, X) be the set of skew-symmetric maps
from M to X. Show that Sk^M, X) has a natural K-module structure such

that the map HomK(AM,X)-»Sk.(M, X) given by /i-»//S for all / in
n

HomK(AAf, X) is an isomorphism of K-algebras.
(36) Let F be a free K-module of rank n and f:F-»F a morphism of K-modules.
Show:
n

(a) AF is isomorphic to K.
n n n

(b) A/: AF-»AF is the K-module morphism multiplication by |/|, the determi
nant of /.

(c) Use (b) to show that if g:F-»F is a K-morphism, then \gf\ = |g||/|.
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Chapterl 2 ALGEBRAIC
FIELD
EXTENSIONS

In the preceding section, we proved that if the irreducible factors of the charac
teristic polynomial of a linear transformation were all linear, then that linear trans
formation had a matrix of a certain canonical form. We will see that the assertion
that all the irreducible factors of a polynomial over a field are linear means that all
the roots of the polynomial are in the field. This leads us naturally to consider the
question of whether a polynomial over a field K has some roots in K or, for that
matter, whether it has roots anywhere. This question takes us finally to the study
of algebraic extensions of fields.
Although we are primarily interested in fields at this point, we can with little

loss of time study polynomials over a commutative ring R and then specialize to
the case when R is an integral domain and, in particular, a field.

1. ROOTS OF POLYNOMIALS

Let R be any commutative ring, and let / £ R [X] be amonic polynomial. Then we
have the following.

Lemma 1.1

(a) / is a regular element of R[X].
(b) If g is any element of R[X], then there exist elements q and r in R[X] such
that g = qf+r, with r = 0 or deg r<deg/. Moreover, q and r are unique.

415
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PROOF: The proof of (a) is completely trivial. The proof of the existence of
the elements q and r in (b) follows almost line for line the proof of the fact that if
K is a field, then K[X ] is a Euclidean ring. The one observation that must be made
in transposing this proof to the case of an arbitrary ring R is that because / is
assumed to be monic, there is no fudging required on the leading coefficient of /.
The uniqueness of the elements q and r follows from the fact that / is a regular
element. For, if g = q,f+r, = q2f+r2, we have (q\-q2)f = r2-r,. Because
deg(r2 - r,) < deg / and deg(q, -q2)f a deg/ if q,-q2±0, we must have r2-r,=0
and (q, -q2)/ = (). But then q,-q2=0 because / is regular, and the proof of
uniqueness is complete.

The reader should observe that Lemma 1.1 could be used to prove that K[X]
is Euclidean when K is a field.
Now let a be an element of the ring R and let / be the monic polynomial
X — a. If g is any element of R [X] we have g = q(X - a) + r where r = 0 or deg
r = 0, that is, r is an element of R. If a is a root of g, that is, if g(a) = 0, then we
have 0 = g(a) = q(a)(a -a) + r, so that r = 0. Conversely, if r = 0, we have
g(a) = q(a)(a - a) = q(a) . 0 = 0 and a is a root of g. Consequently, we have
the following.

Proposition 1.2
Let a be an element of R and let g be any element of R[X]. Then a is a root of g if
and only if g is divisible by (X-a).

Now for any integer k >0, the polynomial (X-a)k is a monic polynomial of
degree k and hence is a regular element in R[X]. Therefore, for any nonzero ele
ment h of R[X], the product (X - a)kh is of degree greater than or equal to k.
Hence, given a polynomial g in R[X] having a as a root, there is a largest positive
integer v such that (X-a)' divides g.

Definition
The element a £ R is a root of the polynomial g of multiplicity v if v is the largest
positive integer such that (X-a)" divides g.

Suppose that a, and a2 are distinct elements of R which are roots of g of
multiplicities v, and v2, respectively. Then, because (X- a,)"' divides g for i = 1, 2,
we have g - (X-a,)y'h, = (X- a2)"2h2. If a2 - a, is not a zero divisor, then we have
0 = g(a2) = (a2 - a,Y'h,(a2), so that h,(a2) = 0, and a2 is therefore a root of h , of
multiplicity k>0. Clearly, k^,^, and we have h\ = (X-a2)kh\. Hence, g =

(X-a,y(X-a2)khl = (X-a2)"2h2=-(X-a2)k(X-a2)"2'kh2. Because (X-a2)k is reg
ular in R [X], we have (X - a,)"'h, = (X - a2p "kh2. Consequently, if v2 - k> 0, we
have (a2- a,Y'h,(a2) = (a2-a2)"2 kh2(a2) = 0 and thus h,(a2) = 0. But this con
tradicts the fact that a2 is a root of h, of multiplicity k so that we must have
v2
- k =0. Hence, g =(X - a,)"'(X - a2Y'h\. Notice, too, that v, + v2 must be less
than or equal to the degree of g.

Extending the argument given above, the reader can now prove the following.
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Proposition 1.3
Let R be an integral domain, let al,...,a, be distinct elements of R, and let g be
an element of R[X] having each of the elements a, as a root with multiplicity v,.
Then g = (X — a,)"' . . (X - a,y-h where hER [X]. Moreover, 2 j>, s deg g and
no a: is a root of h

.
Corollary 1.4

If R is an integral domain and g is an element of R[X] of degree n, then g can have
no more than n roots.

The statement of Proposition 1.3 can be strengthened by omitting the
hypothesis that R be an integral domain and insisting instead that for each pair of
distinct indices (i

, /), the element a, - a, be regular. To see that one cannot do any
better than that, consider the following.

Example 1.5 Let R be the ring Z/(6). The element 3X+3 in R[X] has the
roots 1

, 3
,

and 5 in R, each with multiplicity one (because 3X+3 is a linear
polynomial). Obviously, 3X+3 is not divisable by (X- l)(X-3)(X-5). Observe
that 3-1=5-3 = 2, and 5-1=4, both of which are zero divisors.
So far we have been talking about polynomials in R[X] which have roots in

R. However, it need not happen that an element of R[X] have a root in R. For
example, if Q is the field of rational numbers, the element X2-2 in Q[X] has no
root in Q, since V5 is irrational. As another example, if R = Z/(2), the field of
integers modulo 2

,

the polynomial X2 +X + 1 in R[X] has no root in R. However,

Q is contained in another field, namely the field R of real numbers, and therefore

Q[X] is contained in R[X], The element X2 - 2 of Q[X], considered as an element
of R[X], has a root (in fact two roots) in R. Can we find a field K containing Z/(2)
such that the element X2 + X+ 1

, considered as an element of K[X], has a root in
K?

Example 1.6 Consider a set K having four elements: {0, 1 , a, b }, and make it a
field by defining the following addition and multiplication tables (the element 0 will
of course be the zero element, so we will not include it in our tables):

Add 1 a b Mult 1 a b

l 0 b a 1 1 a b

a b 0 1 a a b 1

b a 1 0 b b 1 a

The reader may verify that K is a field with these operations. Because 1 + 1 = 0, we
see that Z/(2) is a subfield of K [here we are of course denoting the elements of
Z/(2) by 0 and 1]. The polynomial X2 + X + 1 is an element of K[X] and a2 + a +

l=b+a + l = l + l=0. Hence, X2 + X + 1 has a root in K, namely the element
a. In fact, the element b is also a root, and so all the roots of X2 + X + 1 are in K.
Although X2 + X+ 1 is an irreducible element of Z/(2)[X], it factors into linear
factors in K[X] : X2 + X + 1 = (X - a)(X - b).
The construction of K in Example 1.6 seems terribly ad hoc but actually it is

not. We will show that if K is any field and / any element of K[X], there is a field
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L containing K such that the element /, considered as an element of L[X], has at
least one root in L.
First of all, because K is a field, K[X] is a PID. Thus, if /£ K[X], f is a

product of irreducible polynomials: / = /,.../, with f,EK[X], If we can find a
field L containing K which contains a root, say, of /,, then L will also contain a

root of / because / = /, .../.../, in L[X] as well as in K[X] (although in L[X]
the polynomials /„...,/, need no longer be irreducible). Hence, let us suppose
that we have an irreducible polynomial / in K[X] and see if we can find a field L

containing K which contains a root of /.

Because / is an irreducible polynomial, and because K[X] is a PID, the ideal
(/) is a maximal ideal in K[X]. Hence, the ring K\X]l(f) is a field which we shall
denote by L. If we denote by k:K[X]-»L the canonical ring morphism, and by

i : K-»K[X] the canonical "inclusion" morphism, the composition ki :K-»L is a

ring morphism. Because fci(l)= 1
, the morphism ki is not zero, so that ki is a

monomorphism (do not forget that K is also a field). Making the usual identifica
tion of K with its isomorphic image in L under the monomorphism ki, we may

assume that L contains K.
We will now show that L contains a root of /. To this end, let a G L he the

image of X under the morphism k, that is, a = k(X). If f=c0 + c,X+- . - + cJC"
with c, £ K, then /, considered as an element in L[X], is really fci(c0) + ki(c,)X +
.+ki(c„)X". But then

f(a) = ki(c0) + ki(c,)k(X)+ . . . + fci(c„ )*(*)"
= *(i(c0)+ Kc,)X+ . . . + 1(c„)X"
= fc(c0+c,X+--+c^T") = fc(/) = 0

because / G Ker (Ik ). This shows that L contains the root, a, of the polynomial /.

Hence, we see that given a polynomial /£K[X], we may find a field L,
containing K and containing at least one root of / whether / is irreducible or not.

If the polynomial / has degree n, we know it has no more than n roots in any field
containing K. Hence, if a , a, are all the roots of / contained in L,, with
multiplicities v,, . . . , v„ we know that in L,[X] f may be written as a product
(X - a,)"' . . . (X - a,)"-g, . . . g, where the gi are irreducible polynomials in L,[X]
without roots in L. By applying the same construction as before, we may con
struct a field L2 containing L, which contains a root, say, of g,. In L2[X], then, /

has additional roots and we may proceed to construct a sequence of fields K C

L, C L2 C . . . containing more and more roots of /. However, because / has at most

n roots, we arrive, after a finite number of steps, at a field L, in which / factors
completely as a product

(X-a,)'' . ..(X-a,)HX-a„l)"- (X-a.y-g

where g is a constant and 4 £ L, for i = 1, . . . , m. In this case, we say that L,
contains all the roots of /.

Notice that our construction has been such that each L,., is a finite-
dimensional vector space over L,, as well as being a field. Notice, too, that each

Li+„ being a vector space over Li, is also a vector space over K. The following fact
tells us that each L, is, in fact, a finite-dimensional vector space over K.
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Proposition 1.7

Let K CL CAf be fields. Suppose that L is a finite-dimensional vector space over
K, and that Af is a finite-dimensional vector space over L. Then M is a
finite-dimensional vector space over K. In fact, if we denote by [L:K] the
dimension of the vector space L over K, by [Af :L] the dimension of M over L,
and by [Af :K] the dimension of M over K, then we have [Af :K] = [Af : L][L :K].
PROOF: Let {X,, . . . , x„} be a basis for L over K, and let {y,, . . . , ym) be a basis

for M over L. Then, because the elements x, and y, are all in Af, we may consider
the elements x,y, in Af. We shall show that the set {x,y,} is a basis for Af as a vector
space over K. First we show that this set generates Af over K. This is simple, for if
z £ Af, then z = 2 /iy; with each /;£L But, for each ;' = 1, . . . , m, we have I, =
2r., a„x, with an £ K. Hence, z = 2". hy, = 2„, (2r., a^<,)y, = 2 a^y,, and so {x^}
generates Af over K.
If we have a linear combination 2 b«x,yi = 0 with b^EK then we have

2i"L, (2r., ft«x,)yi =0. Because 2,"-, b^x, £L for each /, this tells us that 2,"-, bnx, =0
for each /. However, because b^ G K, we must have bv = 0 for each i and j and so
we are done.

To sum up this entire discussion, we may state the following.

Theorem 1.8
Let K be a field and let / be an element of K\X). Then there is a field L containing
K which is a finite-dimensional vector space over K, such that in L[X] f factors
into the product c(X-a,)"1 . . . (X-cL)"- where the a, EL and cEK.
The only "new" fact is that the element c is in K. However, this follows from

the fact that / is, after all, an element of K[X] and the constant c, above, is merely
the leading coefficient of / which is, therefore, in K.
In Example 1.6, it turned out that when we found a root of our given poly

nomial, we found all the roots. To show that this is not always the case, let us
consider the following.

Example 1.9 Let Q be the rational numbers and let / in Q[X] be the polyno
mial X3 - 2. Because we know that there is no rational number whose cube is 2,
this polynomial is clearly irreducible in Q[X]. However, we know from elemen
tary function theory that the function Xy-2 has a real zero, because X3-2 is a
continuous function which takes on the value - 2 at 0 and the value 6 at X = 2.
Thus, the function has a real zero somewhere between 0 and 2. Let us denote the
real zero of this function by ^/l and let us denote the smallest subfield of the reals
which contains both Q and i/2 by L,. The field L, then, is a subset of the reals, and
in particular, L, contains no complex numbers of the form a + bi with b ± 0. Now
L, is isomorphic to Q[X]/(X3-2) for we may map Q[X] into L, by sending any
polynomial 2 aX' in Q[X] to the element 2 a,(i/2)' in L,. That 2 al{i/l)' is indeed
an element of L, comes from the fact that because the a, are in Q they are in L,;
because >?/2 is L,, so is cVi)' for any i a 0; and because a,Ci/2)' is in L,, so also is
2ai('v/2)'. Because X'-2 gets sent to zero in L,, the kernel of the morphism
Q[X]-» L, contains the ideal generated by X' — 2 which is prime, because X3 - 2
is irreducible. Therefore, the ideal (X3 - 2) in Q[X] is maximal, because Q[X] is a
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PID. If the kernel of the morphism were bigger than the ideal generated by X3 - 2,
it would have to be all of Q[X] which is impossible because 1 is sent to 1 in L,.
Thus, the image of Q[X] in L, is isomorphic to the field Q[X]/(X3-2). Because
this image contains both Q and i/2 it must be all of L^ because L, is the smallest
subfield of the reals containing both Q and "i/2.
Note that L, is a three-dimensional vector space over Q and also that every

element of L, is uniquely expressible as a sum: a0 + a,'$/2+ a2i/i with a,£Q.
More importantly, observe that Ll cannot contain any other root of X3-2 besides
*Vl. For if it did, the function X3 - 2 would have more than one real zero (because
every element of L, is a real number), and we know that the graph of X3-2
crosses the X-axis at only one point. In fact, in L,[X] the polynomial X3 - 2 factors
into (X-1v/2)(X2 + ,v/2X + ^4) and this second factor is irreducible in L,[X].
Now we could find a field L2 containing a root of X2 + i/2X+ "¥a and contain

ing L, simply by considering L,[X]/(X2 + "v^X + S/4). However, let us consider
the complex number z = - 1/2 + (V3/2)i (where i=V^T). Then z2 =-
1/2 - (V5/2)i as the reader can easily verify, and z3 = 1. If we take the complex
number z^, we have (zi/lf = z\V2f = 1.2 = 2. Therefore, z^/l is a complex
root of X' - 2. Similarly, z2^/l is another complex root of X' - 2. (This, of course,
was to be expected since z2i/2 is the complex conjugate of z^Vl.) Both zi/2 and
z2^/2 are roots of the polynomial X2 + 'v/2X+ >J/4 as can be easily verified using
the fact that z2 + z + l =0.
Let L2 be the smallest subfield of the complex numbers containing L, and

z "i/2. Then an argument, similar to the preceding one which showed that L, and
Q[X]/(X3-2) were isomorphic, shows that L2 is isomorphic to L.[X]/(X2 +
.V2X+ ift). The field L2 contains z^/l and i/l. Therefore, it contains (z^2) x
i/2y' = z and hence also z2 and z2i/2. Thus, L2^iw contains all the roots
of X3 - 2; that is, in L2[X] the polynomial X3 - 2 factors into the product (X -
VS)(X - z^/2)(X - z2>i/2). Because L2 is a two-dimensional vector space over L,
and L, is a three-dimensional vector space over Q, we know by Proposition 1.7
that L2 is a six-dimensional vector space over Q Therefore, in order to factor the
cubic X3-2 into a product of linear factors, it seems to require going to an
extension whose dimension over Q is 6.
The field L2 was described as the smallest subfield of the complex numbers

containing L, and z^/2. We saw that it must also contain z and i/2. The reader
should show that L2 may be described as the smallest subfield of the complex
numbers containing z and "i/2, as well as Q. Also, because z3= 1, z is a root of
X3- 1 = (X- 1)(X2 + X+ 1) and hence of X2 + X+ 1. The reader should show that
L2 is isomorphic to Q[X, y]/(X2 +X+l, Y3-2). The isomorphism is set up by
mapping Q[X. Y] into L sending X to z and Y to i/2.

2. ALGEBRAIC ELEMENTS

So far, we have been concentrating on a field K, a polynomial /£K[X], and we
have been looking for fields L containing K having roots of /. Let us change our
point of view now and consider a field K contained in a field L. Because L
contains K, L is a vector space over K, but we do not insist now that L be a
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finite-dimensional vector space over K. If a is any element of L, we may consider
the smallest subring of L containing both K and a and denote it by K[a]. Clearly,
this subring consists precisely of those elements of L of the form 2,"-0 c,a' where
c, E K. In other words, K[a] is the image of the ring morphism h :K[X]-»L de
fined by setting h(2 c,X') = 2 c,a'. Now there are two possibilities for h : Either it
is a monomorphism or it has a nonzero prime ideal for a kernel. That the kernel
has to be prime (zero or not) comes from the fact that the image of h, being a
subring of a field, is an integral domain.

Definition
We say that the element a £ L is algebraic over K if the kernel of the morphism h
above is not zero. Otherwise, we say that a is a transcendental over K.

If a is algebraic over K, then the ring K[a] is isomorphic to K[X]I(f) where
/ is an irreducible polynomial. (We may, of course, choose / to be the unique
monic polynomial that generates the kernel of h.) In this case, we see that K[a] is
not only a subring, but actually a subfield of L, because (/), being a nonzero prime
ideal in K[X], is maximal.

Definition
The unique monic irreducible polynomial / such that K[a] = K[X]I(J) is called the
minimal polynomial of a.

Basic Property 2.1
If a E L is algebraic over K and / the minimal polynomial of a in K[X], then K[a]
is a vector space over K of dimension n, where n = deg /. The proof of this is left
to the reader.

If a is transcendental over K, then K[a] is isomorphic to K[X] and the
smallest subfield of L containing K \a ] is the field of quotients of K\a } which is
obviously isomorphic to K(X), that is, the field of rational functions of X. In this
book, however, we will not be dealing much with transcendental elements.

Definition
If L is a field containing the field K, we say that L is an algebraic extension of K, if
every element of L is algebraic over K. If L is an extension of K, we denote by
[L:K] the dimension of L as a vector space over K (finite or not), and call [L:K]
the degree of the extension L over K.

Basic Properties 2.2

(a) If K is a subfield of L and a EL, then a is algebraic over K if and only if there
is a polynomial /=£0 in K[X] such that /(a) = 0.

(b) If K C L C M are fields and a£Mis algebraic over K, then a is algebraic
over L.

(c) If K C L are fields and L is a finite-dimensional vector space over K, then L is
an algebraic extension of K.
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(d) If K C L are fields and a,b £ L are algebraic over K, then a ± b, ab, and
ab"' are algebraic over K.

(e) If K C L are fields, then the set of elements of L which are algebraic over K is
a subfield of L.

(f) If K C L CM are fields and M is algebraic over K, then Af is algebraic over L.
(g) If KCLCM are fields with L an algebraic extension of K and M an
algebraic extension of L, then M is an algebraic extension of K.

PROOF: (a) and (b) left as exercises.

(c) If L is a finite-dimensional vector space over K, say of dimension n,
consider for any element a of L the set of n + 1 elements: {1, a, a2, . . . , a"}. Then
this set is linearly dependent, so that we may find elements c0, c c,£K, not
all zero, such that 2,"-0 aa' = 0. If we let /£ K[X] be the polynomial 2IU e,.X", then
/(a) = 0, so a is algebraic over JC.
(d) If a is algebraic over K, then K CJC[a]CL, and K[a] is a field with
[K[a]:K]<» [because K[a] = K[X]/(/)]. Because b£L is algebraic over
K, b is algebraic over K[a] so that K\a]\b] is finite-dimensional over K[a].
Thus, by Proposition 1.7 K[a][b] is finite-dimensional over K and, by (c), is
algebraic over K. But K[a ][b ] is a subfield of /. containing a and b. Hence, it
contains a ± b, ab, and ab'' all of which are therefore algebraic over K.
(e) and (f) are left as exercises.
(g) To see that M is algebraic over K, choose any element b £ M. Because M

is algebraic over L, there is a polynomial / = 2,".0 alX' £ L[X] such that /(b) = 0.
Because a, £ L and L is algebraic over K, we have K[o0] is algebraic over K

and [K[afl]:K]<a2. Similarly, [K[a0, . . . , a,+']:K[a0, . . . ,a,]]<°° for i =

1, . . . , n- 1, where K[a0, . . . , a,+,] is defined inductively to be K[a0, . . . , a,][a+,].
Thus, [K[a0, . . . , a„]:K]<°° by repeated application of Proposition 1.7. But b is
algebraic over K[a0, . . . , a„ ] because the polynomial / = 2,"-0 a,X' is an element of
K[a,,...,a„][X], and /(b) = 0. Thus, [K[<h,. . . , a„][b]:K[o« a.]]<»
which, again by 1.7, tells us that [K[o0, . . . , a,][b]:K]«*2. Hence,
K[a«, . . . ,a„, b] is an algebraic extension of K. Because it contains b, b is
algebraic over K, and we are done.

In the proofs of (d) and (g) we got involved with K[a][b] and K[cui, .... a„].
Let us introduce some terminology that will make it easier to talk about these
fields.

Definition
Let K CL be. fields. We say that L is a finitely generated extension of K" if I.
contains a finite number of elements a , a„ such that L is the smallest subfield
of L containing K and the elements a a,. In this case, we write L =
K(a,, . . . , a„). L is called a simple extension of K if L = K(a) for some aEL.

If L = K(a,, . . . , a„), it is easy to see that L is the field of quotients of the
image of the ring morphism h:K[X,,. . . ,X„]-»L denned by setting h(c) = c for
cEK and h(X,) = a, for i = 1 n. It is clear that for any a,, . . . , ft, CL, the
smallest subring of L containing K and a,, .... ft, is the image of h, and is denoted
by K[au . . . , ft,]. This conforms with the notation we used in the proof of (g)
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above. Moreover, when we said that K[ai, . . . , a,+,] = K[a0, .... a,][a,+,], we were
merely using the fact that K[X0, . .., X,][X,+,] is isomorphic to K[X0, . . . ,X.l],
which implies the above equality. If a,, .... ft, are all algebraic over K, then
K[au . . . , a„] = K(a,, .... ft,). For when n = 1, we have already observed this to
be the case. Using induction on n, we have K[al, . . . ,a„] = K[a,, .... ft,-,][a»] =
K(a,, . . . ,ft,,)[ft,] = K(a,, . . . , ft,-,)(a„) and this last field is easily seen to be
K(a„...,ft).
From this last observation we may conclude that if L is a finitely generated

extension of K with L = K(au . . . , ft,) and a, algebraic over K for i = 1, . . . , n,
then [L : K] <°° and L is an algebraic extension of K. It is obvious, too, that if L is
an extension of K of finite degree, then L is a finitely generated algebraic exten
sion of K.
The reader may wonder if and when finitely generated extensions are simple

extensions. In the next example we show this is not always the case.

Example 2.3 Let K be any field, let K[X, Y] be the polynomial ring in two
indeterminates over K, and let L = K(X, Y) be the field of quotients of K[X, Y].
Then L is finitely generated (by two elements) over K. We claim that L is not a
simple extension of K. For suppose there was an element zEL such that L =
K(z). Then, because XEL, X = f(z)lg(z) where / and g are polynomials over K
in one variable. Letting h(U, V)= Ug(V)-f(V), we see that h is a polynomial
over K in two variables with h(X, z) = 0. Then h(X, V) is a polynomial in
K(X)[V] of which z is a root.
Thus, z is algebraic over K(X) and therefore L is algebraic over K(X) be

cause L = K(z). But Y £ L, so Y is also algebraic over K(X). This says that there
is a nonzero polynomial P£K(X)[V] such that J>(Y) = 0. However, this implies
that the zero element of K[X, Y] can be expressed as a polynomial over K, not all
of whose coefficients are zero. Because this is absurd, we see that L is not a
simple extension of K. (This example, by the way, is basic in understanding the
notion of transcendence degree of transcendental extensions.)

Proposition 2.4
Let K be an infinite field and L be a finitely generated extension of K having the
property that only finitely many extensions L' of K exist such that KCL'CL
Then L is a simple algebraic extension of K.

PROOF: Consider any two elements a,,a2 £ L. For each c £ K, we have the
element al + ca2EL and clearly K C K (a, + ca2) C K(al- a2) C L. Because K has
infinitely many elements and because there are only finitely many fields between
K and L, there must be two distinct elements c,, c2 £ K such that K(ai + C,a2) =
K(a, + C2d2) = L'. The field L' contains both a, + c,a2 and o, + c2a2. Therefore, it
contains a, + c,a2 - (al + dd2) = (c, - c2)a2. However, c, - c2 is a nonzero element
of K, so that L' also contains a2. But then c,a2EL', so that a, + c,a2-c,a2 =
a,£L'. Thus, L' contains both a, and a2; so L' contains K(a,,a:).
Therefore, we have shown that K(au a2) = K(a, + c,a2) = L' and K(au a2) is a

simple extension of K. By induction, we can show that for any finite set of
elements {a,, ...,«„} of L, the field K(a,, . . . , a„) is a simple extension of K.
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Hence, the field K(au . . . , a, ) is a simple extension of K. Hence, the fact that L is
a finitely generated extension of K implies that L is a simple extension of K.

That L must be an algebraic extension of K follows from the fact that a
simple transcendental extension of K (whether K is finite or infinite) contains in
finitely many subfields containing K (prove this!).
The reader will see in the exercises that the assumption that K be infinite is

not necessary. However, the proof for finite K is quite different.
Proposition 2.4 naturally raises the question as to whether a converse state

ment is true. Let us therefore prove the following.

Proposition 2.5
If L is a simple algebraic extension of a field K, then there are only finitely many
fields L' such that KCL'CL.
PROOF: Let L = K(a) where a is algebraic over K. Then a is the root of an

irreducible monic polynomial / in K[X] of degree n = [L : K]. If K C L' C L, then
a is the root of an irreducible monic polynomial g in L'[X] and g divides / in
L'[X]. If b0, ... , b„ are the coefficients of g in L', then L' = K(b0, ..., bm) be
cause obviously [L:L'] = [L:K(b0 bm)] and Kft,...,i>„)CL'. This
shows the intermediate fields L' (that is, those containing K but contained in L)
are determined by the various possible irreducible factors of / in fields between K
and L. Because / has only finitely many irreducible factors in L[X], and because
any irreducible factor of / in L'[X] (where KCL'CL) must be a product of
irreducible factors of / in L[X], there are only finitely many fields L' between K
and L.

Before giving our next example we introduce the following.

Definition
Let R be an arbitrary not necessarily commutative ring and h :Z-»R the unique
ring morphism given by h(n) = n . 1 for all n in Z. The characteristic of R is \c

\

where (c) = Ker/i.

Basic Properties 2.6
Suppose R is a ring of characteristic c.

(a) cr = 0 for all r in R.
(b) If c is a prime and r, and r2 are elements of R such that nr2 = r2r,, then
(r, + r2Y" = re,'+rV for all n in N.

(c) If R is an integral domain, then c is a prime.

PROOF: (a) Left as an exercise.
(b) We prove this for n = 1 and leave the obvious induction to the reader.

Because r, and r2 commute we have (r, + r2)c = S.-0(, l^,r2"* where I , ) is the

binomial coefficient. Because c is prime it is easy to show that c divides I ,
)

for

0 < k < c. Hence, (r, + r2y = r\ + r\.
(c) Left as an exercise.
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We now give an example of a finitely generated algebraic extension which is

not simple.

Example 2.7 Let K be the field of rational functions in two variables X and Y
over the field Z/22. K is then an infinite field of characteristic two. Let L' be the
field K[t/]/(l/2-X) and let L = L'[V]/(V2- Y) where U and V are indetermi-
nates. The reader should prove that U' - X is irreducible in K [ U] and that V2 - Y
is irreducible in L'[ V]. It can also be readily checked that L is an algebraic exten
sion of K of degree 4, that L contains VXand VT, and that L = K(VX, VT). If
L were a simple extension of K, it would have to contain just a finite number of
intermediate fields L' between K and L. Because K is infinite, this would mean
that for two distinct c„ c2 £ K, K(VX+ c,vT) = K(VX+ c2VT) which would
imply (as we saw in Proposition 2.4) that K(VX, V?) = K(VX+ c,VY). We
show, however, that K(VX+ cVY) ± K(VX, VY) for every c £ K. We do this
by showing that [K(VX+cVT):K]s2 for all c£K Because
[K(VX, VT): K] = 4, we cannot have K(VX+ cVY) = K(VX, VT). Because
the characteristic of K is two, (VX+ c VT)2 = X + c2Y £ K. Thus, Vx+ cVT
is a root of a quadratic polynomial over K, and therefore we have the desired
inequality.

We now put together some of this preliminary material that we have de
veloped. In Theorem 1.8, we started with a field K, a monic polynomial / in
K[X], and we found a field L containing K such that [L:K]<°° and such
that / factors into a product of linear polynomials in L[X], say / =
(X — a,)*' . . . (X - am )"-. Because [L:K]<°°, we know that L is an algebraic
extension of K. More important, though, the field // = K{a, <im) is an

algebraic extension of K (contained in L) and L' is the smallest subfield of L
containing K such that / is a product of linear factors in L[X]. L' is called a
splitting field for / and, in fact, we have the following.

Definition
Let K be a field, and / an element of K[X]. A splitting field of / is a field L
containing K having the property that / splits completely into linear factors in
L[X] and L contains no proper subfield with this property.

The reader should be able to prove the following with no difficulty.

Basic Properties 2.8

(a) For any field K and any fEK[X], there exists a splitting field for /.
(b) If /£ K[X] and L is a splitting field of /, then L is a finite algebraic extension
of K. In fact, if a , a„, are all the roots of / in L, then L = K(au . . . ,am).

3. MORPHISMS OF FIELDS

We have avoided listing one other basic property of splitting fields because
we would first like to emphasize a basic question. The question is: How
unique is a splitting field of a polynomial in K[X]7 What we shall show is that if L,
and L2 are both splitting fields of a polynomial fGK[X], then there is a field
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isomorphism a : L,^L2 such that o-(c) = c for all c £ K. To expect that there be
only one such isomorphism would be a little too much. For, if t:L2-»L2 is an
automorphism of L2 leaving K fixed, that is, such that t(c) = c for all cEK, then
clearly to- : L,-»L2 would be another isomorphism of L, into L2 such that tcr(c) = c
for all c£K Of course, one might well ask if automorphisms t:L2-»L2, other
than the identity, can exist if they must leave K fixed. These questions lead us
naturally and immediately to the study of isomorphisms and automorphisms of
fields.

Definition
Let L, and L2 be fields containing a field K. A field morphism o- : L,-»L2 is said to
be a morphism over K if o-(c) = c for all c £ K. Such a morphism is also said to be
one which leaves K fixed.

Basic Properties 3.1

(a) If or : L,-»L2 is a morphism over JC, then cr is a K-morphism of the K-vector
space L, into the vector space L2.

(b) If o-:L,-»L2 is a morphism over K and a£L, is a root of the polynomial /£
K[X], then a(a)EL2 is also a root of /.

The proofs of these two facts are left to the reader.

Example 3.2 Let Q be the field of rationals and let L = Q(V2), that is, L
is the smallest subfield of the reals containing VI (and also Q). Every ele
ment of L is uniquely of the form a + b VI where a, b £ Q. Define a:L-»L
by a(a + b VI) = a - bVl.
The reader should verify that a is an automorphism of L over Q. In fact, this

automorphism and the identity on L are the only automorphisms of L leaving Q
fixed. (Actually, any automorphism of L would automatically leave Q fixed.) The
reason for this is quite clear. For suppose that t : L -» L is an automorphism over
Q other than the identity. Because T is an automorphism over Q and because
V5 is a root of X' - 2, T(V2) must also be a root of X2 - 2 by Basic Properties 3. 1
above. But the only roots of X2 - 2 in L are V2 and - V2. If T(V2) = V5, then we
would have (because t leaves Q fixed) T(a + bV2) = a + bV2 and so t would be
the identity. If T(V2) = -VI, then T(a +bVl) = a + bT(Vl) = a-bV2andr =
a. Thus, we have only the two possibilities mentioned above. This example shows,

by the way, that the splitting field L of X2 - 2 does admit an automorphism over Q
other than the identity.

Now let us suppose that we have two fields L, and L2 containing K, and that
a : L, -» L2 is a field morphism over K. Then we know that a is a monomorphism
because a is not the zero morphism. The morphism a may be extended to
a morphism a : L,[X] -» L2[X] by defining o-(a0 + a,X H + a„X") =

o-(a0)+o-(a,)X + ... + cr(a„)X" for every element a0+- +a„X" £L,[X]. The
morphism <t leaves every element of K[X] fixed. Thus, if a polynomial / in K[X]
is a product / = /,/2 in L,[X], we have o-(/) = / = cr(/,/2) = o-(/,)<x(/2) in L2[X].
We can apply this to the case when L, and L2 are both splitting fields of a

polynomial / £ K[X]. For, if a : L, -» L2 is a morphism over K, then, because / =
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(X - a,r . . . (X - a„)"- in L,[X], we have / = o-(X-a,)"' . .. o-(X-ft.)"" =
(A'-«r(a,)r,-(X-o-(ft.)r- in L2(X). Thus, K(o-(a,),. . . ,o-(ft,)) is a sub-
field of L2 containing K in which / splits completely into linear factors and
because L2 was a splitting field of /, we must have L2 = K(a(a,), . . . , o-(ft,)).
But clearly K(a(a,), . . . , o-(a„)) is contained in Im o- = L,, so a is an
isomorphism of L, onto L2. This shows that if we have a morphism <r:L,-»

L2 over K, then o- must be an isomorphism when Ll and L2 are splitting
fields of the same /£K[X]. The trick then is to show that there is some
morphism of L, into L2 over K when L, and L2 are splitting fields for a
polynomial / £ K[X].
To find a morphism a:L,-»L2 over K, we first observe that L, =

K(a, ft.) where / = (X - a,)*' . . . (X - ft,)'-. We know that K(a,) = K[a,]
and that for each i we have K(a,, . .., a,+,) = K[a , a,][ftl+,]. We shall show
that if a, : K[a , a,]-»L2 is a morphism over K, then m may be extended to a
morphism crl+, :K[a , ft>,]-»L2 if i <a Clearly, if m is a morphism over K
and if cr,+, extends ov, then ou, is also a morphism over K. Note that o-0:K-»L2
may be taken to be the inclusion. Hence, if we show how to go from a, to <r,. ,, we
are done.

If a+l £ K(a,, . . . , 4), then K(a,,. . . , am) = K(a,, . . . , a,) so we simply
define cr,-i = 05. (This would be the case, say, if at = V2 and a2 = - V2, as in
Example 3.2.) Thus, we may assume that a,^^K(a a,). Letting K,=
K(a,, ...,a,), we have / = (X — a,)"' . . .(X- »)''/, . . ./, where fu...,f, are
irreducible polynomials in K,[X]. Because /(a,+,) = 0, it follows that ft+, must be a
root of one of the polynomials fu . . . , /,

,

and we may as well assume it is a root of

fl
. Using the notation we introduced before, we have the morphism o-, :K,[X]-»

L2[X] and thus we have, because a, is a morphism over K,

f = <*(/) = (X - o-Ka,))"' . . . (X - o-,taflVK/,) . . . <?,(/,)
This is a factorization of / in L2[X]. However, because L2 is a splitting field

of /, we know that there is an element b £ L2 which is a root of <7l(/,) (because
L2[X] is a UFD and the linear polynomials in L2[X] are irreducible elements of
L2[X]). Define a morphism o-i+,:Kl[X]-»L2 by a',+,(g) = [cr,(g)](b) for any

g £ K,[X]. The kernel of cri+, contains /1 because ft is a root of cr,(/,), and
therefore Kero-'., contains the maximal ideal (/,). However, i7wO)=! so
Ker o-i+, ^ K[X], and thus Ker o-'+, is precisely the ideal (/,). This tells us that the
induced morphism o-'+,:K,[X]/(/,)-»L2 is a monomorphism. On the other hand,
from all of our previous discussion about finding roots of polynomials, we know
that we have an isomorphism T:K,[X]/(/,)-»Ki(a,+,) = K(a ,a,+,). The
morphism o-'mT"':K(a,,...,a,+,)-»L2 is now easily seen to be a morphism of
K(a,,...,a,+,)-»L2 which extends cr,, and we are done. We therefore have the
following.

Thee rem 3.3

If L, and L2 are splitting fields of /£ K[X], then there is an isomorphism a:L,-»
L2 over K. Thus, any two splitting fields of / are isomorphic over K.
If we look at the crucial step of the proof of Theorem 3.3 we see that we can

guarantee the existence of an extension of a : K' -» L to K'(a)-»L if the minimal
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polynomial of a in K'[X] goes over by a : K'[X]-»L[X] into a polynomial which
has a root in L. Suppose, then, that we have a field L having the property that
every element of L[X] has a root in L. Then such a field should be a sort of
"universal receiver" of morphisms. Let us try to make this a bit more precise.

Definition
A field L is said to be algebraically closed if every element of L[X] has a root in L.
A field L containing a field K is said to be an algebraic closure of K if L is an
algebraic extension of K which is also algebraically closed.

Basic Properties 3.4

(a) A field L is algebraically closed if and only if the only irreducible elements of
L[X] are linear.

(b) If L is an algebraically closed field containing a field K, then the set of
elements in L algebraic over K is an algebraic closure of K.

(c) If KCK'CL are fields with K' an algebraic extension of K and L an
algebraic closure of K', then L is an algebraic closure of K.

PROOF: (a) It is very easy and is left to the reader.

(b) We know by Basic Property 2.2 of algebraic extensions that the set K of
elements of L algebraic over K is a field. It is also clearly an algebraic extension
of K. What must be shown is that K is an algebraically closed field.
Suppose, then, that /£K[X]. Being an element of K[X], f is also an element

of L[X] and therefore / has a root, a, in L. This tells us that a is algebraic over K
and therefore K(a) is algebraic over K which in turn is algebraic over K. By Basic
Properties 2.2, K(a) is algebraic over K, so a itself is algebraic over K. Because a
is an element of L which is algebraic over K, a is in K. This shows that / actually
has a root in K. and hence K is algebraically closed.
(c) Left to the reader.

Example 3.5 Let Q be the field of rational numbers and let C be the field of
complex numbers. We assume that the reader knows that C is algebraically
closed. This is the Fundamental Theorem of Algebra, first proved by Gauss. We
assume also that the reader knows that the numbers e and it are not algebraic over
Q. Thus, C is an algebraically closed field containing Q which is not an algebraic
extension of Q.
The set Q of elements of C which are algebraic over Q provides us with an

algebraic closure of Q. If, in place of Q, we were to consider the field R of real
numbers, the field C would be an example of an algebraic closure of R. For C is
algebraically closed and is an algebraic extension of R: C = R[X]/(X2+1).
We shall assume throughout the rest of this book that an algebraic closure

exists for any field K. The reader may supply his own proof of this fact by doing
the exercises at the end of this chapter.
The following proposition makes clear what we meant when we said that an

algebraically closed field was a "universal receiver."
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Proposition 3.6
Let K CK0CK' be fields with K' an algebraic extension of K. Let L be an
algebraically closed field containing K and let 00 : K0-» L be a morphism over K.
Then there is a morphism a:K'-»L such that a restricted to K0 is a0.

PROOF: Let 9 be the set of all pairs (E, t) where E is a subfield of K'
containing K0 and t.E-»L is a morphism extending ob. The set if is not empty
because it contains (K0, <T0).We order y by setting (E,, t,) s (E2, t2) if E, C E2 and
t2 is an extension of n to E2. If {(E„ t,)} is a totally ordered subset of if, we let
E = UE, and define t : E-»L by setting t(c) = Tl(e) if e £ E,. The pair (E, t) is in $f
and is an upper bound for {(El, tO}- Hence, by Zorn's lemma, we know that $f
contains a maximal element which we denote by (E0, t0).
We claim that E0 = K'. If not, we could find an element a £ K', a£E0. Be

cause K' is algebraic over K, it is algebraic over E0 and so a has a minimal poly
nomial /£E0[X]. Because L is algebraically closed, the polynomial t0(/)£L[X]
has a root in L, and therefore, by the argument used in the proof of Theorem 3.3,
we know that t0 may be extended to a morphism T,:E0(a)-»L. This contradicts
the maximality of (E0, t0), so that we must have E0 = K', and the proof of the
proposition is complete.

Corollary 3.7
If L, and L2 are algebraic closures of the field K, then there is an isomorphism
<t:L,-»L2 over K.

PROOF: The existence of a morphism a:L,-»L2 over K follows from Propo
sition 3.6 because L, is an algebraic extension of K and L2 is algebraically closed.
Because L, is algebraically closed and a is a monomorphism, the image of a is
also algebraically closed. But the image of a is contained in L2 and therefore L2 is
algebraic over Im a (because it is algebraic over K). This implies that L2 = Im a,
and we have our result.

Corollary 3.7 shows us that any two algebraic closures of K are isomorphic
over K. We therefore usually talk about the algebraic closure of a field K and
denote it by K. Also, because every algebraic extension of K admits a
monomorphism into K over K, we generally assume thatall our algebraic exten
sions of our field K are contained in K. Thus, if K C L C K, we may talk about the
isomorphisms of L into K over K and included among them is the inclusion of L
into K.

Proposition 3.8
Let L be an algebraic extension of K and let a : L -» L be an endomorphism over
K. Then a is an automorphism.

PROOF: Because a is a monomorphism, we must simply prove that it is
surjective. If a £ L, let / be the minimal polynomial of a in K[X]. To show that
a = o-(b) for some b we restrict our attention to the finitely generated extension L'
of K which is the subfield generated by all roots of / which are contained in L.
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Clearly, a EL' and [L' :K] < °°. Because the endomorphism a must carry roots of
/ into roots of /, it follows that a restricted to L' carries L' into L'. But a
restricted to L' is still a monomorphism and, because L' is a finite-dimensional
vector space over K, a must be surjective. Thus, a = a(b) for some b£L' and a
is therefore surjective.

We use Proposition 3.8 to prove the following.

Proposition 3.9
Let K C L C K be fields and let a : L -» K be a morphism over K. Then there
exists an automorphism &:K-»K which extends a.

PROOF: By Proposition 3.6 we know that there is an endomorphism a:K-»K
extending the morphism a:L--»K. But Proposition 3.8 tells us that a must be an
automorphism.

We are now in a position to prove one of the most basic facts about isomor

phisms of fields.

Theorem 3.10
Let K CLCM CK be fields where K is the algebraic closure of K. Let {a,} be
the set of distinct morphisms of L into K over K, and let {t,} be the set of distinct
morphisms of M into K over L. For each index i, let a, be an automorphism of K
which extends a,. (Although there may be many which extend cr, choose only one
for each i.) Define on :M -» K to be the composition air,. Then {to«} is the set of all
distinct morphisms of M into K over K.

PROOF: First we show that if a>n= avi , then i = V and j = /'. If ai„ = <U,T, then

<
?,

Ty = <TiTi. Hence, for any b EL we have al(b) = cri(b) = ot(i)(6)) = <r,Ti(b) =
5i-7j(b) = oi'(Ti'(b)) = 5i(i1) = or(b), so that oi = a, and hence i = £'. From the fact
that <?,T/ = airi ., we may conclude that i) = Ti and so j = /'.
Because it is clear that each a*, is a morphism of Af into K over K, all that

remains to be shown is that if a>:M-»K is any morphism of M into K over K,
then a>= ain for some pair (i,;). Given our oi:M-»K, the restriction of <o to L

gives a morphism of L into K over K. Hence, a>\L = av for some i. Consider the
morphism a",'a> :M-»K. It is easy to see that this morphism is t, for some j. This
gives us a>= <7iTi= a>u and we are done.

4. SEPARABILITY

Definition
If K CL CK, we denote by [L:K], the cardinality of the set of morphisms of L

into K over K. [L : K], is called the separable degree of L over K.

We will study the separable degree of L over K when [L:K]<<*2. If

[L:K]<°°, then we know that L is a finitely generated extension of K, so that

L = K(a,, . . . , am). In order to determine all the isomorphisms of L into K it is

sufficient (by Theorem 3.10) to study the morphisms of K(a , ai+,) into K over
K(a,, . . . , a,). Because K is an algebraic closure of each of the fields
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K(a a,), our problem boils down to studying the morphisms of a simple ex
tension K(a) of K into K over K.
We have seen that if a :K(a)-»K is a morphism over K, then a(a) must be a

root of the minimal polynomial f of a over K. Conversely, if b £ K is a root of /,
then there exists a unique morphism a : K(a)-» K over K which carries a into b.
For, if b £ K is a root of /, then K(b) - K[X]I(f). Because K(a) « K[X]I(f), it
is trivial to verify the above statement (and the reader is strongly urged to do so).
As a result of this we see that the number of distinct morphisms of K(a) into K
over K is precisely equal to the number of distinct roots of /. Because the number
of distinct roots of / is less than or equal to deg/, while [K(a):K] = deg/, we
immediately have [K(a):K], s[K(a):K].

Proposition 4.1
If KCLCK are fields and [L:K]<°°, then [L:K],<[L:K].

PROOF: Follows easily from previous discussion.

If a polynomial / in K[X] of degree n does not have n distinct roots, then in
K[X] we have / = (X - a,)"' . . . (X - cu )*- with at least one of the integers o larger
than 1, say v,>\. Let us write f = (X-a,)"'g where g is an element of K[X].
Now if h is a polynomial over any field (in fact, over any commutative ring),

say h = cn + c,X+ . . . + C,X", then the derivative of h may be defined formally as
h' = c, + 2c2X+- . +nc,X""'. The usual rules for derivatives of sums and pro
ducts hold, that is, (h, + h2)' = h

'l + h'2 and (/i,/i2)' = /iirt2 + /i,/i$. The reader may
check these facts for himself if he has not already verified them. Applying dif
ferentiation to our polynomial /, we find that /' = v,(X - a,)"r'g + (X - a,)"'g' =
(X- a,)"'"'[v,g+(X- a,)g']. Because we are assuming v, > 1

, we see that v, - 1 >0
and so /' also has a, as a root. We therefore see that if / has a root a of multiplicity
bigger than one, then /' also has a as a root. The reader should show that the
converse is true: If / and /' have a common root a, then / has a as a root with
multiplicity greater than 1

.

Now let us suppose that / is an irreducible (monic) polynomial in K[X] of
degree n having fewer than n distinct roots. (What we are trying to do, after all, is

find out under what conditions we may have [K(a) : K], < [K(a) : K].) Then / has

a root a of multiplicity v > 1, and /' also has a as a root. Because K(a) = K[X]I(J)
(with X being sent to a), we see that (/) is the ideal of polynomials in K [X ] having

a as a root. Because a is a root of /', /' is in the ideal generated by / and hence is a

multiple of /. But if /' =£ 0
,

this is absurd because deg /'sn-1 while deg / = n. The
only way out of this absurdity is for /' to be the zero polynomial. Although this
may seem absurd, the reader should consider the polynomial f=X2-b in K[X]
where K is a field of characteristic two. Then /' = 2X = 0. Of course, if K has
characteristic zero, it is impossible for a polynomial / of positive degree to have a

zero derivative. So we see that for characteristic zero, we must always have
[K(a):K], = [K(a):K]. Hence, if KCLCK and [L:K]<°°, we have [L:K],=
[L:K] if K has characteristic zero.
Let us assume, then, that we are in characteristic p > 0

,

and that /' = 0. If

f=c<l+clX+c2X2+-- . -(-A'", we have/' = c, + 2c2X+- . +nX""' = 0 which means
that ic, = 0 for i = 1

,

. . . , n(c, = 1). If p does not divide i, this means that c, = 0
,

so
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in order that /' = 0 it is necessary (and sufficient) that c, = 0 when p ± i. Thus,
/ = c0 + CpX" + c2PX2' +... + c^X" with cw = 1, and we may write / = g,(X')
where g, £ K[X] is defined to be g, = c0 + c^X + c2pX2 + . . . + cX". Clearly, g, is
irreducible because / is, and it may or may not be the case that g\ = 0.
If g\ = 0, then we may write g, = g2(X") for some irreducible g2, and so forth.

If g, = g2(X ' ), then / - g,(X* ) = g2(X"2) so, continuing in this way we finally arrive
at a situation where / = g(Xp"), g is an irreducible monic polynomial in K[X], and
g'=£0. In K[X], g = (X-b,) . . . (X-bm) with the b, distinct, because we are
assuming that g' =f=0 and hence g cannot have multiple roots. Then, because / =
g(Xp*_), we have / = (X"' - b,) . . . (X'" - bm ). Because h £ K, we can find unique
a, in K such that a?"= b, (namely the root of X'"-b,). Observe that if ar = a','',
then 0 = a'*—a''* = (al-a',Y* so that ck = a',. We therefore have / =
(X'" - a',') . . . (X'" - ap„") = (X- a,)'' . . . (X- a,)1". This shows that / has m dis
tinct roots each occurring with the same multiplicity p ", and deg f = n = mp ". To
sum up this entire discussion, we have the following.

Theorem 4.2
Let K be a field and let / be an irreducible monic polynomial in K[X] of degree n.
If the characteristic of K is zero, then / has n distinct roots a, an and

[K(a,):K], = [K(a):K] = iu If the characteristic of K is p>0, then / has m
distinct roots a, am each of multiplicity p" where ix is a nonnegative integer

(i
t is possible that pi = 0), and we have n = mp*. Hence, for i = 1
,

. . . , m, we have
[K(ai):K], = m and p"[K(a,):K], = [K(a,):K]. In particular, it is always true
that [K(a,):K]. divides [K(a.):K].

Corollary 4.3
If K C L C K are fields and [L : K] < °°, then [L : K], divides [L : K].
Example 4.4 Let K = (Z/2Z)(X), that is, K is the field of quotients of the

polynomial ring in one indeterminate over the field Z/2Z. Then K has characteris
tic two. In K[Y], we have the irreducible polynomial /= Y2-X. To show that
Y2-X is irreducible, the reader need only show that VXis not in K. But because
(X) is a prime ideal in Z/2Z[X], the proof that VXis not in K is exactly analogous
to the proof that Vp is not a rational number if p is a prime number. Now /' = 0

,

so

f=g(Y2) where g = Y-X. Thus, / has one root which we denote by VXand this
root has multiplicity 2. Consequently, [K(VX):K], = 1 while [K(VX):K] = 2.

Definition

If K is a field and aE_K, we say that a is separable over K if [K(a):K], =
[K(a) : K]. If K C L C K, we say that L is a separable extension of JC if for every

a £ L, a is separable over K. If /£ K[X], we say that / is a separable polynomial if

every irreducible factor of / in K[X] has no multiple roots. The field K is perfect if

every element of K[X] is separable.

Basic Properties 4.5

(a) An element a £ K is separable over K if and only if its minimal polynomial in
K[X] is separable.
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(b) If K C L C K and a £ K is separable over K, then a is separable over L.
(c) If K C L C K and [L : K] <°°, then L is a separable extension of K if and
only if [L:K],=[L:K].

(d) If {a,} is a set of elements in K, then each a, is separable over K if and only if
K({a,}) is separable over K, where K({a,}) denotes the smallest subfield of K
containing K and all the elements a,.

(e) If KCLCK, then the set L' of all elements of L which are separable
over K is a separable extension of K.

(f ) If K C L C Af C K, if L is a separable extension of K, and if Af is a separable
extension of L, then M is a separable extension of K.

(g) If K C L C M C K and if M is a separable extension of K, then Af is a separ
able extension of L and L is a separable extension of K.

(h) If K is a field of characteristic zero, then K is perfect.
(i) If K is a perfect field, then every algebraic extension of K is perfect.
(j) Every finite field is perfect.

PROOF: The proof of (a) is trivial and is left to the reader, while the proof of

(b) follows immediately from (a).
(c) If [L : K] < °° and [L :K], = [L : K], we must show that if a E L, then
[K(a):K],=[K(a):K]. But if [K(a):K], <[K(a):K], we would have
[L:K], =[L:K(a)],[K(a):K], <[L:K(a)][K(a):K] = [L:K], which is a
contradiction. Hence, every element of L is separable over K, and L is separable
over K.
Conversely, suppose [L :K] <°° and that L is a separable extension of K. We

want to show that [L : K], = [L : K]. Because [L:K]<cc, L = K(a cu).
Moreover, because each ckEL is separable over K, each al is separable over
K(a ,a,-,) [where K(a,, . . . ,a,-,) = K when i=l]. Thus, [L:K],=

Tl [K(a„ ..., a.):K(a„ ..., *-,)], = n [K(a„ .... a,):K(fl„ . . . , a,-,)] = [L : K],
and (c) is proven.

(d) We suppose that each a.e K is separable over K, and prove that K({a,}) is
separable over K. Let a G K({al}). Then there is an integer m such that a £
K(«i, . . . , An). If we know that K(a,, ... , a,„) is a separable extension of K, we
will be done. But, as in the proof of (c), we know that because each a, is separable
over K, we have

[K(a,, .... a,) : K(a,, .... a,-,)], = [K(a,, . . . , a,) : K(a,, .... a,-,)]

Thus, [K(a,,...,am):K], = [K(a a„):K] and by (c), K(a, ft,) is a
separable extension of K.

(e) Follows immediately from (d). If we let {a,} be the set L' of all elements of
L which are separable over K, then by (d) we know that K({a,}) is a separable
extension of K. Because K({a,})CL and every element of K({a,}) is separable
over K, we have L' = K({a,}).
(f) Let us first prove (f) when [Af:K]<°°. In that case, we know that

[M : L] < °°, [L :K] < °°, and [Af :K] = [Af :L][L: K]. But our hypothesis tells us
that [Af:L], =[Af:L] and [L:K], =[L:K] so that, because [Af :K], =
[Af :L],[L :K]„ we have [Af :K], = [Af :K] and Af is separable over K.
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Now, without assuming [M : K] <», let us take a £ M and show that a is
separable over K. Let / be the minimal polynomial of a in L[X\, with / =
b0 + b,X+- . .+ X", b, £ L. Then / is a separable polynomial and therefore a is also
separable over K(b0, .... b„-,). Because bl £ L, each b, is separable over K so
that, by (d) we know that K(b0, ..., b„-,) is separable over K. We are now in the
situation K C K(b0, .... b„-,) C K(b0, . . . , b„-,, a) with [K(b0, . . . , b._u a) :K] <
°°, and each field separable over the preceding one. Thus, K(b0, . . . , b»-,, a) is
separable over K and, because it contains a, a is separable over K. This proves
(f).
The proof of (g) follows trivially from (b). The proof of (h) is trivial.

(i) First observe that a field K is perfect if and only if every monic irreducible
polynomial in K[X] is separable. Thus, if a field K is perfect, every algebraic ex
tension of K is a separable extension of K and, if every simple algebraic exten
sion of K is a separable extension, K is perfect.
Now let L be an algebraic extension of K, and assume that K is perfect. To

show that L is perfect we must show that if Af is a simple algebraic extension of
L, then M is a separable extension of L. But if M = L(a), then M = K(L, a) is
separable over K because K is perfect. But then by (g), M is a separable exten
sion of I. and we are done.
(j) If K is a finite field, then K contains Z/pZ for some prime p (p =

characteristic of K) and is a finite, hence algebraic extension of Z/pZ. Thus, if we
show that Z/pZ is perfect for every prime p, we will have our result by applying (i)
above.

To see that Z/pZ is perfect, we want to show that every monic irreducible
polynomial in ZlpZ[X] is separable. If we had a monic irreducible polynomial /
that was not separable, we would have f=g(X') for some g€Z/pZ[Xj. Let us
therefore show that any polynomial /£Z/pZ[X] which is such that / = g(X') can
not be irreducible.

Let g = c0+c,X+-- - + CJC and f=c0 + clX' + - . - + cJC. Now we know
that a = a" for every a £Z/pZ. (We may know this for several reasons. One is that
the nonzero elements of Z/pZ form a multiplicative group of order p — 1. Thus,
a""' = 1 for all a ± 0. Hence, a' = a for a ± 0. Clearly, though, 0" = 0, so a' = a
for all a £ Z/pZ.) Thus, c, = c"

,

for each i, and we have / = c? + c?X" + . . .
+ c°„X"° = (c0+ c,X + . . . + cnX"Y = g". This shows that every irreducible / in
Z/pZ[X] must be separable and Z/pZ is therefore perfect.

This last proof actually shows that any algebraic extension of Z/pZ is perfect.
This was why, in giving an example of an inseparable extension in Example 4.4,
we had to go to a transcendental extension K = Z/2Z(X) of Z/2Z before we
could find an inseparable polynomial.

5. GALOIS EXTENSIONS

Our discussion of separable extensions revolved around the problem of determin
ing those algebraic extensions L of K which admitted many morphisms into K
over K. If L = K(a, a»), we saw that a morphism a:L-»K over K was
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completely determined by what it did to the elements a,. In particular, a, and o-(a)
had to be roots of the same irreducible polynomial in K[X]. Suppose the elements
a, £ L had the property that all the roots of the minimal polynomial / of a, were in
L. Then for any a:L-»K over K, a{a,) would have to be an element of L so that
a would actually be an endomorphism, hence, an automorphism of L. Fields of
this type are given a special name.

Definition
Let KCLCK be fields. L is called a normal extension of K if every morphism
a:L-»K over K is an automorphism of L. L is a galois extension of K if L is both
a normal and separable extension of K.

Basic Properties 5.1

(a) If K CL CMC K are fields and if M is a normal extension of K, then Af is a
normal extension of L.

(b) If K CL CK are fields, then L is a normal extension of K if and only if every
irreducible element of K[X] that has a root in L splits into a product of linear
factors in L[X].

PROOF: (a) is trivial. The proof of (b) is not completely trivial, but we leave it
to the reader.

Normal extensions are not as well behaved as algebraic extensions or sepa
rable extensions. For instance, if K CL CM are fields, if L is an algebraic
(separable) extension of K, and if M is an algebraic (separable) extension of L,
then M is an algebraic (separable) extension of K. This is not so for normal exten
sions.

Example 5.2 Let Q be the field of rational numbers, and consider the polyno
mial X*-2 in Q[X]. The proof that this polynomial is irreducible in Q[X] is
outlined in the exercises. Now QCv^), that is, the smallest subfield of the reals
containing Q and a root of X*-2, is an extension of degree 4 over Q. However,
QCv^), being a subfield of the reals, does not contain all the roots of X4-2. For
instance, it does not contain ±i^/2 where i2 = -l. Therefore, QCi/2) is not a
normal extension of Q. However, QCC/2) contains Q(V5) and we have the inclu
sions: QcQ(V5)cQ(1v/2). Because [Q(Vi) :Q] = 2 and [Q(V2) :Q(V2")] = 2, each
of the fields is a normal extension of the preceding one [all quadratic extensions
are necessarily normal (why?)]. But this does not force Q(i/2) to be normal over
Q.

If L is a normal extension of K, then the set of automorphisms of L over K
has [L:K]s elements, and is a group. If L is a galois extension of K and
[L : K] <», we then have [L : K], = [L :K], so that the group of automorphisms
of L over K (or K-automorphisms of L) is a group whose order is the degree of
the extension L over K.

Definition
If L is a galois extension of K, the group of K-automorphisms of L is called the
galois group of L over K and is denoted by G(LIK).
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Proposition 5.3
Let L be an algebraic extension of K, with LCK. The intersection Af of all
normal extensions of K in K containing L is a normal extension of K. If
[L:K]<*, then [Af : K ]<°°. Finally, if L is a separable extension of K, then Mis
a galois extension of K.

PROOF: The set of normal extensions of K in K containing L is not empty
because K is such an extension. To see that Af is a normal extension of K, we
must show that if a : Af -» K is a morphism over K, then Im o- is contained in Af.
Extend a to an automorphism a:K-»K over K. If Af' is a normal extension of K
in K containing L, then a\M':M'-»K is a morphism over K, so its image is
contained in Af'. Because (a\M')\M = a, we see that Imo- is contained in Af'.
Hence, Im o- n Af ' = Af and Af is therefore a normal extension of K.
Before proceeding to the proof of the remaining two statements, we should

get a good look at what Af is really like.
Suppose that L = K({ai}) where the indexing set may or may not be finite, and

let {cf,} be the set of all morphisms of L into K over K. We then have the set of
elements {o-,(ai)} in K, and we may consider the field L' = K({o-i(ai)}). Because the
inclusion L-»K is among the set {a,}, we have KCLCL' CK. What we shall show
is that M=L'. If we do this, our remaining assertions about Af will follow easily.
For, if [L :K]<°°, then we may assume that the set {ai} is finite. Moreover, be
cause [L : K], would then be finite, the set {o-i(a,)} would be finite, and thus M
would be a finitely generated algebraic extension of K. Hence, we would have
[Af:K]<°°.
Finally, if we were given that L is a separable extension of K, we would know

that each a, is separable over K. Because the minimal polynomial f,EK[X] of a, is
also the minimal polynomial of o-,(a,) if o-,:L-»K is a morphism over K, it
follows that each of the elements o-,(a,) is separable over K. Thus, L' =
K({oi(a,)}) is a separable extension of K and so, therefore, is Af.
In order to show that L' = Af, where L' — K({CTi(a1)}), it will suffice to show

that L' is contained in Af and that L' is a normal extension of K. Obviously, L' is
contained in Af.

To see that L' is a normal extension of K, we let T:L'-»K be a morphism
over K, and we show that T(ori(ai))£ L' for all i, ;. This suffices to show that
Im t CL' and hence that L' is normal over K. Now if /i is the minimal polynomial
of a, over K, then oi(a,) is also a root of /,. Because t is a morphism over K,
T(oi(ai)) is a root of /i. Thus, there is a morphism of K(a,) into K over K which
carries a, to T(o-i(ai)), and this morphism may be extended to a morphism over L

into K over K. The morphism, then, must be one of our o-'s, say it is ok. Hence, we
have shown that T{a,(a,)) - <Tk(a,) for some k, and therefore Im t is contained in
L'. This proves that L' = Af and the proof of Proposition 5.3 is complete.

Consequently, we have the following.

Proposition 5.4

If K is a field and f E K[X] is an irreducible separable polynomial, then the
splitting field of / is a galois extension of K of finite degree.
We will shortly be able to prove a converse to this proposition.
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Suppose we consider the following situation: K CL C Af are fields, [Af : K] <
°°, and Af is a galois extension of K. We may let G = G(MIK) be the galois group
of Af over K. Because Af is a normal extension of K, it is a normal extension of L.
Also, because M is a separable extension of K, it is a separable extension of L,
and thus M is a galois extension of L. If we set H = G(MIL) = the galois group of
Af over L, we see that H is a subgroup of G because H is the set of automor
phisms of Af over L. Because the order of H is [M:L] and the order of G is
[Af : K], we see that the index of H in G is [L :K]. We are now in a position to
state and start proving the main theorem of galois theory. The theorem is the
following.

Theorem 5.5
Let Af be a galois extension of K, with [Af :K] < <*>.Let if be the set of subgroups
of G = G(Af/K), and let 3" be the set of fields L such that KCLCAf. Define
e:ST^if by setting 0(L) = G(Af/L) for LeST. Then:

(a) 0 is a bijective map and 0(L,)C0(L2) if and only if L2CL,.
(b) 0(L) is a normal subgroup of G if and only if L is a normal extension of K.
(c) If L is a normal extension of K, then L is a galois extension of K and the map
p:G-»G(LIK) denned by p(a) = a\L induces an isomorphism GI0(L)^
G(LIK).

(d) If L, and L2 are in ST, there exists a morphism o-: L,-»L2 over K if and only if
there exists an element t£G such that txt"' £ 0(L2) for all x £ 0(L,).
The real heart of the theorem is part (a). The rest will be fairly straightfor

ward and parts will be left as exercises for the reader.
In order to show that 0 : ST-»if is bijective, we will construct a map 0' : if-» ST

and show that it is the inverse of 0. To construct a map 0', we have to associate to
a subgroup H of G an intermediate field 0'(H) :K C 0'(H) C Af. Let us therefore
study the following general problem.
Suppose we have a field Af and a finite set H of automorphisms of Af which

form a group under composition. That is, if we let Aut(Af ) be the group of all
automorphisms of the field Af, we consider a finite subgroup H of Aut(Af ). Denote
by Af" the subset of Af consisting of all x E Af such that o-(x) = x for all a E H.
The subset Af " of Af is actually a subfield of Af as can easily be verified by the
reader.

Definition
The subfield Af" of Af described above is called the fixed field of H.

Basic Property 5.6
If H is a group of automorphisms of a field Af and if H' is a subgroup of H, then
M" CM"'. The proof of this is obvious.

Retaining the notation that we used in Theorem 5.5, we are now in a position
to define a map 0 : if-» ST. If H is a subgroup of G = G(MIK), then H is a finite
group of automorphisms of Af, and we may define 0'(H) = Af ". Clearly, Af

"
C

Af. Equally clearly, K C Af " for, because H C G, every element in H leaves every
element of K fixed. Thus, KCAfHCAf and so 0'(H)£5". Having defined 0',
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what we would like to do is show that 00'(H) = H for all H £ V, and 0' 0(L) = L
for all L£^
Clearly, we have 00'(H)DH and 0'0{L)DL. Without too much difficulty, we

can prove that 0'0(L) = L. To do this we prove the following.

Lemma 5.7
Let M be a separable extension of a field L, and let a be an element in Af which is
not in L. Then there is a morphism a:M-»L over L such that a{a)^a.

PROOF: Because Af is separable over L, the element a is separable over L.
Moreover, because a £ L, [L(a):L], ± 1, so there is a morphism a0:L(a)-»L
over L which is not the inclusion, that is, o0(a) ± a. Extending a0 to a : Af -» L we
have the result.

As a result of Lemma 5.7 we see that if Af is a galois extension of L and if H
is a galois group of Af over L, then Af" = L. For otherwise there would be some
element a£M but not in L that was left fixed by every morphism a : Af -» L over
L, and that is precisely what Lemma 5.7 says cannot happen. Consequently, we
may conclude that 0'0(L) = L for all L£5", because 0(L) is the galois group of Af
over L and 0'(0(L)) is the fixed field of this group, which must be L.
Because 0'0 is the identity on ST, we see that 0' is injective. Thus, & must be a

finite set because if, being the set of subgroups of a finite group, is finite. Hence,

we have the following interesting fact.

Proposition 5.8
Let K be an infinite field and L a separable extension of K of finite degree. Then
L is a simple extension of K.

PROOF: By Proposition 5.3, we have KCLCM where Af is a galois exten
sion of K of finite degree. From the fact that 0 : 3" -» if is injective, we know that
the set of fields containing K and contained in Af is finite. Hence, the set of fields
containing K and contained in L is certainly finite. By Proposition 2.4, then, L
must be a simple extension of K.

The preceding proposition is true even when K is finite. However, as in 2.4,
one has to provide a different (but still easy) proof. See the exercises.
Returning to Theorem 5.5 how can we prove that 00'(H) = HI We know that

00' (H) D H, so that the number of elements of 00' (H) is greater than or equal to
that of H. Because 00'(H) is the galois group of Af over 0'(H), we have
[Af : 0'(H)] is equal to the number of elements in 00'(H). Therefore, if we can
show that [Af : 0'(H)] is less than or equal to the number of elements of H, we will
be done.

PROOF OF THEOREM 5.5: Let L = 0'(H) and let H = {a (r„}, where on =

idM. Notice that the morphisms <Jy:M[X]-»M[X] are automorphisms of Af[X]
and that the subring of Af [X] left fixed by all the o-, is just L[X]. Thus, if a £ Af,

n

and if we consider the polynomial g = U (X-a,(a)) in Af[X], we have gEL[X].
,-,

For if we take any ah we have cr,(g) = n(X-o-ic*v(a)) and, because the set
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{ojo-,, . . . , oj<r,,} is equal to the set {a,, ... , a.}, aj(g) = g for / = 1, . . . , n. As a
result we see that if a £ M and if /£ L[X] is the minimal polynomial for a over L,

n

then / divides g = II (X- oia) because g(a) = 0 and g EL[X]. Because deg g = n,
,-1

we must have deg /s n. Now suppose that K is infinite. Then L, too, is infinite and
because M is a separable extension of L, we know that M = L(a) for some a EM.
But we have seen that the degree of the minimal polynomial of a over L

cannot exceed n so that [M:L]<n. Thus, when K is infinite, we have shown that
[M:0'(H)] is less than or equal to the number of elements of H and therefore
00'(H) = H and we are done.
The only place that we have used the fact that K was infinite was in asserting

that M was a simple extension of L. Because the reader will prove for himself that
this is still true when the fields are finite, we may consider the theorem to be
proved in general, that is, 0 is an isomorphism whose inverse is 0'.
The fact that 0(L,)C0(L2) if and only if L2CL, follows immediately from

the bijectivity of 0. It is certainly clear that if L2C L,, then 0(L,)C(L2). Now, if
0(L,)C0(L2), we have L, = 0'0(L,)D 0'0(L2) = L2 and Theorem 5.5(a) is
established.

To prove part (b), suppose first that H is a normal subgroup of G and let
L = 0'(H). We want to show that L is a normal extension of K. If a £ L and
& :L-»K is a morphism over K, we want to show that a'(a)EL. This will show
that every morphism a' :L-»K over K is an endomorphism (hence, an auto
morphism) and that L is normal over K. Given a' : L -» K, we know that there is
an automorphism a':K-»K over K that extends a'. Restricting a' to M, we
obtain an automorphism a of M over K which is an extension of a'. Thus, for any
a £ L, we have a(a) = o-'(a) £ Af. To show that a'(a) £ L it suffices to show that
t{a' (a)) = a'(a) for all t£H For this will show that a'(a) £M" = 0W) = L. Be
cause H is assumed to be normal, we know that for every a £ G(MIK) and every
t£H, we have a"'Ta=T' where t'EH. In particular, then, for a £L we have
a"\a(a) = T'(a) = a, so that Ta'(a) = a(a) for all a £L. But a'(a) = a(a) for
a £L, so Ta'(a) = a'(a) and thus a'(a)EL.
Conversely, suppose L is a normal extension of K, with H = G(MIL). We

want to show that H is a normal subgroup of G = G(MIK) or that cr'to- £H for
all o- £G and all t£H. To see that a 'to- £H, we must show that a''Ta(a)= a for
all a EL. Because L is assumed to be normal over K, a(a) £L for all a EG.
Thus, T(a(a)) = a(a) for t£H and hence a'\T(a(a))) = a"\a(a)) = a. This
proves (b).
To prove (c) we know that if K C L C M, then L is a separable extension of

K. Hence, if L is also a normal extension of K, L is a galois extension and there is
a galois group G(LIK) consisting of all automorphisms of L over K. Thus the
map p:G-» G(LIK) defined by setting p(a) = a\L is well defined and is clearly a
group morphism.

We have already seen that if a' : L -» L is an automorphism of L, then there is
an automorphism a of M such that or|L = o-'. Hence, p is surjective. Also, it is
clear that H C Ker p because t|L = idL for all T E H. On the other hand, if o- £ G
is such that p(a) = a\L is the identity on L, then a E G(MIL) = H. Hence, H =
Kerp and the induced morphism GIH^G(LIK) is an isomorphism.
We leave the proof of (d) for the reader.
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EXERCISES

(1) Let F be a finite field.
(a) Prove that F has characteristic p =£0, where p is a prime.
(b) Prove that F has p" elements for some positive integer n.
(c) Prove that F is a splitting field for the polynomial X""-X in Z/pZ[X].
(d) Prove that for any prime integer p and any positive integer n, there is a finite
field of order p".

(e) Prove that two finite fields are isomorphic if and only if they have the same
number of elements.

(2) Prove that if K C L are finite fields, then L is a galois extension of K. Prove,
therefore, that L is a simple extension of K.
(3) Let K be a finite field of order q and let L be a finite extension of K, say
[L:K] = n.
(a) Prove that L has q" elements.
(b) Prove that the galois group of L over K is cyclic and that it is generated by the
automorphism a:L-»L over K defined by a(x) = x".

(4) Let G be a group and K a field. Let a\ or. be distinct group morphisms
from G to the multiplicative group of nonzero elements of K. Let au . . . , ft, be
elements of K such that ala,(x)+- . + a„a*(x) = 0 for all x in G. Prove that
a, = . . . = a. = 0. [Hint: Use induction on n.]
(5) Let X C L be finite fields, and let a be a generator of the galois group of L
over K. Prove that there is an element a in L such that {a, a(a), . ... a""\a)} is a
basis of L over K. [Hinf: Using preceding exercise, show that the minimal
polynomial P(X) of the linear transformation a:L-»L must be equal to the
characteristic polynomial of o-. Hence, show that, as a vector space, L =
K[X]/P(X).]
(6) Let K be an infinite field and let /(X,, .... X„) be an element of K[X,, .... X.].
Prove that there exist elements a, ft, in K such that f(au . . . , ft,)^0.
(7) Let K C L be fields. Assume that there are only finitely many fields between
K and L. Prove that L is a finitely generated extension of K. This shows that the
assumption in Proposition 2.4 that L be a finitely generated extension of K is
redundant.

(8) In this exercise, we outline a proof (following Artin) of the existence of an
algebraic closure. Let K be a field.
(a) To each / in K[X], with degree (/)>1, associate the symbol X; and let
R = K[{X;}]. Prove that the ideal in R generated by all elements of the form
/(X;), with / in K[X], is not the unit ideal. [Hint: Suppose 21., g,f,(Xli)= 1.
Let L be an extension of K containing at least one root of each of the /,. Show
that this leads to the contradiction: 0=1.]

(b) Let Af be a maximal ideal of R containing the ideal generated by the elements
/(X;), and let E, = RIM. Identify K with its image in E, via the morphism K -»
K[{X,}] = R^RIM = E,. Prove that every polynomial in K[X] of degree at
least one has a root in the field El.

(c) Let E, C E2 C . . . be an increasing sequence of fields with the property that
every polynomial in Ek [X] of degree at least one, has a root in Ek.l. Prove that

E = U E„ is an algebraically closed field containing K.
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(d) Prove that the set of elements in E which are algebraic over K is an algebraic
closure of K.

(9) Let Z be a ring of integers and let p be a prime number. Prove that the
polynomial X'"' + X*"2 + - . +1 is an irreducible polynomial in Z[X]. [Hint: Let

X=Y+\ and show that /(Y+1) = 2J:J (?
) Y'"\

(10) Let C* be the multiplicative group of nonzero complex numbers, and let Z„
be the subset of C* consisting of all roots of the polynomial Xm — 1

.

(a) Show that Zm is a subgroup of C* of order m.

(b) Prove that Zm is cyclic. The elements of Z„ which generate Z„ are called
primitive mth roots of unity.

(c) Show that if £ is a primitive mth root of unity, then Q(f ) contains all mth
roots of unity, where Q is the field of rational numbers.

(d) Prove that Q(£) is a galois extension of Q whose galois group is isomorphic to

a subgroup of the group of units of Z/mZ. [Hint: Show that if or is an
automorphism of Q(f ), then o-(£) = £' where t is an integer relatively prime to
m.]

(11) Let f, C be the t distinct primitive mth roots of unity, where t = <fi(m).
(a) Prove that Q(£) = Q(6) for all i, / = 1, . . . , t.

(b) Letting K denote the field Q(£) for any i = 1
,

. . . , t, show that the polynomial

<Pm(X) = II (X-£) in K[X] is actually in Q[X]. [Hint: Show that every au-l-l

tomorphism a of K effects a permutation of the set {{,, . . . , £,}, and thus
a : K [X] -» K [X] leaves <Pm(X) invariant. The polynomial <Pm(X) is called the
mth cyclotomic polynomial. It has degree 4i(m).]

(c) Prove that X„ - 1 = II <Pj(X). Note that because each polynomial ®d(X) has
d,m

degree <f>(d), we retrieve our old formula: m =2ji„ <fi(d). See the exercises of
Chapter 13 for more information about the cyclotomic polynomials.

(12) (a) Assuming that the field of complex numbers is algebraically closed, prove
that the only irreducible polynomials over the real numbers are linear or
quadratic.

(b) Factor the polynomial x4+ 1 over the real numbers.

(13) (a) Give several examples of nonnormal field extensions of the rational num
bers. Find their least normal extensions and compute their galois groups.

(b) Give at least two examples of a field and an inseparable extension of that field.

(14) Let K C L be fields with L an algebraic extension of K. The separable
closure of K in L is the subset of L consisting of all elements which are separable
over K. K is said to be separately closed in L if K is its separable closure in L.
(a) Show that the separable closure of K in L which we denote by Ks is a field
extension which is separably closed in L.

(b) Show that K is separably closed in L if and only if either:
(i) L = K or

J (ii) characteristic of K is p ± 0 and each element a in L has a minimal
polynomial over K of the form X'" - b for some nonnegative integer n,
and b in K.

(c) Show that K is separably closed in L if and only if L = K or characteristic of
K is p ± 0 and given a in L there is a nonnegative n such that ap" is in K.
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(d) If [L:K]<°°, then K is separably closed in L if and only if either:
(I) L = K or
(ii) the characteristic of K is p 4 0 and there is a positive integer n such that
Lp" CK where Lp" is the image of the ring morphism L^L given by
x-»xp" for all X in L.

(e) An algebraic field extension L of K is said to be purely inseparable if K is
separably closed in L. Show that if K CL CM are algebraic field extensions
of K, then Af is a purely inseparable extension of K if and only if L is a purely
inseparable extension of K and M is a purely inseparable extension of L.

(f) Suppose [L:K]<°° and L is a purely inseparable extension of K. If
[L :K] ± 1, then [L : K] = p" for some positive integer where p is the charac
teristic of K.

(15) Let L C K be an algebraic field extension of the field K. Let a be an element
of L.
(a) Let f(X) in K[X] be the minimal polynomial of a over K. Show that a is
separable over K if and only if the prime decomposition Pl(X)"' . . . Ps(X)"*
of f(X) in L[X] has the property that all the n, = 1.

(b) Show that the following statements are equivalent.

(i) a is separable over K.
(ii) If Af is a field extension of K, then K[a] ® Af is a semisimple ring.

K

(III) K[a]® K[a] is a semisimple ring. [Hint: Use the fact that if f(X) is a
K

polynomial in K[X] and Af is a commutative K-algebra, then the K-
algebra K[X]If(X)K[X]®M is isomorphic to the K -algebra
M[XVf(X)M[X].]

(c) If [L:K]<°°, then the following are equivalent:
(I) L is a separable extension of K.
(ii) If Af is a field extension of K, then L®Af is a semisimple ring.

K

(Hi) L®L is a semisimple ring. [Hint: Use the fact that if /,:A,-»r, and
K

/2:A2-»r2 are injective morphisms of K -algebras, then there is a
unique morphism of K-algebras /:A,® A2-»T,®r2 with the prop-

K K

erty /(x,® A2) =/(x,)®/(A2) and this unique morphism is injective.]
(d) Show that if K (a ) is a purely inseparable extension of K, then K (a )® K(a ) is
a local ring. Is the converse true?

(16) Let G be a group of automorphisms of the commutative ring L. Let F(G) be
the free L-module generated by G. Show that there is a unique map F(G)x
F(G)-»F(G) satisfying (xg, x'g') ,-»xg(X')gg' for all x, x' in L and g, g' in G, which
is a law of composition making the underlying abelian group of F(G) a ring. We
denote this ring, which is called the twisted group ring of G over L , by L{G}.
(a) Show that the map L-»L{G} given by x-»2,Eo x,g where x, = x and x, = 0 for
g ± 1 is an injective ring morphism. L is usually considered a subring of L{G}
by identifying each x in L with its image under the ring morphism L-»L{G}
just described.

(b) Show that L°, the set of all x in L such that g(x) = x for all g in G, is a subring
of L which is contained in the center of L{G).

(c) Let K be a subring of L°.
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(i) Show that for each 2,e0X,g in L{G} the map /e,60V:L-»L given by
/s,<=oi,,(y) = 2,EGX«g(y) for all y in L, is a K-module morphism of L.

(ii) Show that the map /:L{G}-»EndK(L) given by /(2,eo x,g) = /i,eoW is a
morphism of rings where EndK(L) is the endomorphism ring of the K-
module L.

(d) Show that /: L{G}-»EndK(L) is also a K-algebra morphism where L{G] and
EndK(L) are considered K-algebras in the obvious way.

(e) Show that /:L{G}-»End«(L) is injective if L is a field. [Hint: Use
Exercise 4.]

(f) Suppose L and K are fields and [L:K]<°°. Show that:
(i) G is a finite group of order at most [L :K].
Hi) The following are equivalent.

(1) Order of G equals [L:K].
(2) /: L{G}-» EndK(L) is an isomorphism.
(3) L is a galois extension of K with galois group G.

(17) Let L be an algebraic field extension of the field K. Suppose K, and K2 are
subfields of L which are finite galois extensions of K and K,K2 is the subfield of L
generated by K, and K2.
(a) Show that KlK2 is a finite field extension of K.
(b) Show that K,K2 is a galois extension of K.
(c) Let G be the galois group of KlK2 over K and G, and G2 the galois groups of
K, and K2 over K, respectively. Then:
(i) The map G-»G,xG2 given by a—»(o-|K,, a\K2) is an injective group
morphism.

(ii) If K,nK2 = K, then the injective group morphism G-»G,xG2 is an
isomorphism.

(18) Let L be a purely inseparable algebraic extension of the field K.
(a) Show that there is a unique K-algebra morphism f:L®L-»L with the prop
erty /(x®y) = xy for all x, y in L.

(b) Show that / is surjective and Ker / is the ideal generated by x® 1 - 1® x.
(c) Show that Ker/ is a nilideal, that is, every element of Ker/ is nilpotent.
(d) Show that L®L is a local ring with Ker / as its unique maximal ideal.

K

(19) Suppose L is a field extension of the field K with [L:K]<<xi such that L®L
is a local ring. Is L necessarily a purely inseparable extension of K?
(20) Let L be a field extension of the field K. Suppose we are given a family {x,}le,
of elements in L. Then there exists a unique K-algebra morphism /: K[X,],eI -»
L satisfying f(X,) = x,. The family of elements {x,},e; are said to be algebraically
independent over K if / : K[X,],e1 -» L is injective.
(a) Show that an element x in L is algebraically independent over K if and only if
it is transcendental over K.

(b) If {XJ,e; is a family of elements of L, we denote by K[x,],el the subring of L
generated by K and the elements {x,},eh and by K(x,),eh the subfield of L
generated by K and the elements {x,},e;.
(i) Show that K(xi),e, is the field of quotients of K[x,],E,.

(ii) Show that if {*i}„1 is algebraically independent over K, then K(x,)^, is
isomorphic as a K-algebra to the field of quotients K(X,),et of K[-Xi],e,
which is a K-algebra in the obvious way.
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(c) Suppose {X,},e; is a family of elements in L. Show that the following state
ments are equivalent:

(i
) {xiJle; is algebraically independent over K.

(ii) If / = I, U h is a partition of /, then {xi},e;, is algebraically independent
over K and {x,},e,, is algebraically independent over K(Xi),eI,.

(Hi) There exists a partition / = I, U h of / such that {x,}iE;, is algebraically in
dependent over K and {x,}leh is algebraically independent over K(X;);E;,.

(d) Suppose that x,, . . . , x„ is a finite family of elements in L. Show that this
family of elements is algebraically independent over K if and only if Xm is

transcendental over K(x,ei),, n for all i = 0
,

. . . , n — 1
.

(21) Let L be a field extension of the field K. A family {x,},. , is said to be a

transcendence basis for L over K if {x,},E; is algebraically independent over K and

L is algebraic over K(x, )iE;.
(a) Show that if {x,},e; is algebraically independent over K, then there is a

transcendence basis of K containing {x, },. ,.

(b) Show that L has a transcendence basis over K.
(c) Suppose {x,}yei is a family of elements of L such that K(x,),e,=.L- Show that
{x,},e, contains a transcendence basis for L over K.

(22) Let L be a field extension of the field K which has a finite transcendence basis
{x,, . . . ,x„} with nal.

(a) Show that if a> is transcendental over K, then there are n-\ distinct elements,
say x2, . . . , x„, such that {a>,x2 x.} is a transcendence basis for L over K.

(b) Proceed by induction on n to show that if {a>,, . . . , m„] is an algebraically inde
pendent set over K, then m s n and there are n - m distinct elements say
jU+,, . . . , x„ such that {a>,, . . . , atm, xm+ , x„} is a transcendence basis of L

over K.
(c) Show that all transcendence bases of L over K have the same number of
elements, namely n, which is called the degree of transcendence of L over K.

(23) Let L be a field extension of the field K. Show that any two transcendence
bases for L over K have the same cardinality.
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DOMAINS

The commutative rings we have discussed until now have been flelds and principal
ideal domains. These rings are precisely the class of commutative rings with the
property that submodules of free modules are free. We have already seen that
projective modules are a natural generalization of free modules. Hence, the class
of commutative rings with the property that every submodule of a projective mod
ule is projective is a natural generalization of the class of PID's. Such rings are
called hereditary rings. We remind the reader that we have already shown in
Chapter 10, Theorem 1. 1 that a commutative ring is hereditary if and only if every
ideal of the ring is projective.
In this chapter we study the most classical example of hereditary commuta

tive rings, namely, hereditary integral domains. These rings are better known as
Dedekind domains.
Historically, Dedekind domains arose in number theory as the ring of all

integral elements in some finite algebraic extension of the rational numbers.
Therefore, in this chapter, we also discuss integral extensions of PID's and, more
generally, integral domains.

1. DEDEKIND DOMAINS

Definition
A ring R is called a Dedekind domain if all nonzero submodules of free R-modules
are faithful and projective.

445
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Basic Properties 1.1

(a) If R is a Dedekind domain, it is an integral domain.
(b) If R is a Dedekind domain, every ideal of R is projective, and every projec
tive R -module is a sum of ideals of R.

(c) A commutative ring R is a Dedekind domain if and only if every nonzero sub-
module of a projective R- module is a sum of faithful projective ideals of R.

(d) R is a Dedekind domain if and only if R is an integral domain and every ideal
of R is projective.

(e) A Dedekind domain is a noetherian integral domain.
(f) If R is a Dedekind domain and S is a multiplicative subset of R. then Rs is a
Dedekind domain.

(g) If R is a Dedekind domain and $ is a prime ideal of R. then Rv is a PID.

PROOF: (a) Left as an exercise.
(b) is just a restatement of Chapter 10, Theorem 1.1, as are Properties (c) and

(d). Before proving (e) we establish the following.

Lemma 1.2
Let M be an R-module over an arbitrary ring R. Then Af is a projective R-module
if and only if there is a family {mi}iei of elements in Af and a family of
R-morphisms {

/,
: Af'-» R}iei such that for each m in Af we have:

(a) /i(m) = 0 for all but a finite number of /£J.
(b) m=1,EJf,(m)m,.

PROOF: Suppose h:F-»M is an epimorphism with F a free R-module with
basis J. For each j in J we have the morphism p; : F-»R defined by p,(S,ke, rkk) = r,

.

If Af is projective, there is a splitting s : Af-»F for the epimorphism h
. Let

"1i
= h(j) and let /1 :M-»R be the composition pls for each } in J. The reader can
check that the families {mi}iE; and {

/, : Af-»R};E; satisfy (a) and (b).
Suppose that {m,} and {f,:M-»R}le! satisfy (a) and (b). Clearly, {m,}^

generates Af. Hence, there is an epimorphism h:F-»M, where F is a free R-
module generated by J, given by h(j) = m, for all j in J. Define s:M-»F by
s(m) = 2iei/i(m)j for all m in Af. It is not hard to check that s is a splitting for h

,

and so Af is projective because it is a summand of F.

PROOF OF BASIC PROPERTIES 1.1: Because R is a Dedekind domain, we
know that every nonzero ideal of R is faithful and projective. Let I be a nonzero
ideal of R. Then by Lemma 1.2 we know that there are elements {a,} in I and
morphisms {

/, :I-»R] such that for each a El, a = 2,/i(a)ai with only finitely
many of the elements /;(a) different from 0

.

Notice that because each /:/-»R is an R-morphism, we have af,(a') =

f,(aa') = fl(a'a) = a'f,(a) for every /j and every pair of elements a, a' in /.

Because / is a nonzero ideal of R, / contains an element a ± 0 and a is regular
because R is an integral domain. Then a = 2 f,(a)cii with only finitely many of the
/i(a), say /i,(a), . . . , /.(a) different from zero. Hence, we have a =

/i,(a)ai, + - . .+/i,(a)ai,. But because fi(a)a, = af,(a,), we have a =

fh(a)ah + - . . + /i.(a)a,„ = a[fh(ah)+- . .+/,.(«,„)] so that 1 =/i,(a,,)+- . .+/*.(%.).
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From this it follows easily that the set {o^, .... a,„} generates I. Thus, / is finitely
generated, and this shows that R is noetherian.
(f) If R is a Dedekind domain and S is a multiplicative subset of R, then we

know that Rs is an integral domain. Hence, to show that Rs is Dedekind, it suffices
by (d) to show that every ideal of Rs is projective. By the results of Chapter 9, we
know that if /' is an ideal of Rs, then l = Is where / is an ideal of R. But then,
because R is Dedekind, / is a projective R-module so that again by Chapter 9 we
know that /' = Is is a projective Rs-module, and we are done.
(g) By (f), we know that R;; is a Dedekind domain. Hence, Rv is a local ring

and every ideal is finitely generated and projective. Because every finitely projec
tive module over a local ring is free, we know that every ideal of Rv is free. This
implies that every ideal of Rv is principal and hence Rv is a PID.

We have shown that Dedekind domains are pretty close to being PID's, be
cause R * is a PID for every prime ideal 1> of R, if R is Dedekind. In fact, if R is a
local Dedekind domain, then R is a PID.
Another important class of Dedekind domains which are PID's are those with

only a finite number of maximal ideals.

Definition
A semilocal ring is a commutative ring having only a finite number of maximal
ideals.

Proposition 1.3
Let R be a semilocal integral domain. If M is a finitely generated projective R-
module, then M is a free R -module.

PROOF: Let 5R,, ...,$, be the distinct maximal ideals of R. Then J =
l

$, n . . . D % is rad(R) and by the Chinese Remainder Theorem, RU = II RI%.
1=1

In order to show that the finitely generated projective module M is free, it suffices,
by Chapter 8, Basic Properties 3.6, to show that MUM is a free RU -module.

But MUM as RU®M as(U Jl/$,)<g)Af-,U(R/$,®M). Because R/$, is a
R 1-l R ,-l R

field, Rlty,®M is a finite-dimensional vector space over Rffi, for each i =
R

1, . . . , f. If we show that all of these vector spaces have the same dimension s, it
will follow, as the reader can show, that MUM is a free R /J-module of rank s.
Let s be the dimension of the K-vector space K®M where K is the field of

R

quotients of R. For each maximal ideal $, we know that Mv, is a free Rv-module.
Because K® (Rv;® Af) = K® M, we have that s = rank Mv,. It is now easy to

**, « *
see that s =dimR/$,®Af as a vector space over R/93, for each i.

R

As an immediate consequence of this proposition we have the following.

Corollary 1.4
If R is a semilocal Dedekind domain, then R is a PID.

So far, it looks as though we are heading toward a statement that Dedekind
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domains are PID's. This is far from being the case, but we must develop a bit more
machinery and prove a few more results before we can be fully convinced. In any
event, we are in a position to prove the following.

Proposition 1.5
Let R be an integral domain. Then R is a Dedekind domain if and only if R is
noetherian and Rv is a PID for every prime ideal ty of R.

PROOF: If R is Dedekind, we know that R is noetherian and R. is a PID for
every prime. Hence, we work on the converse, and we need only show that if / is
any ideal of R, then / is projective. However, because we are assuming that R is
noetherian, it suffices by Chapter 9, Theorem 6.4 to show that Rv®I is Rv-

■

projective for every prime ideal ty of R. But because Rv is a PID for every prime
ideal $, and because R«®/ is an ideal of Rv, it follows that Rv®I, being a

R R

principal ideal of Rv, is Rv-free. Thus / is projective and R is Dedekind.

From Proposition 1.5 we can deduce some results similar to those we know
about PID's. For instance, suppose R is a PID, Q its field of quotients, and x an
element of Q such that x2 £ R. Then we can prove easily that x itself must be in R.
For we may write x = alb with a and b relatively prime, and then we have

a2lb2 = cER or a2 = b2c so that a2 divides c (because a and b are relatively
prime). Thus, c = a2c', 1 = b2c', and b is a unit. This shows that alb £ R, so x £ R.
As a special case, we know from this that V2 is not rational. For, by the above
result, if it were rational it would have to be an integer, and we know that there is
no integer whose square is 2. To see that similar results can be proven for
Dedekind domains, consider the following.

Example 1.6 Let R be a Dedekind domain, Q its field of quotients, and x E Q
such that X2 £ R. Then x £ R. To see why this is so, we use what we have just seen
about PID's. Because R is a domain, R%, is contained in Q for every prime ideal $,
and R is contained in Rv. Also, Q is the field of quotients of Rv. Thus, if x E Q and
x2ER, then x2ERv for each $. Hence, xERv for each ty because each Rv is a
PID. Suppose x = alb with a,b ER, b =£0. What we would like to show is that
a = rb for some r£ R, for then we would have x = alb = rblb = rER.
Consider, then, the set / of elements y £ R such that ya = rb for some r £ R,

that is, / = {y £ R \ya £ (b)}. It can be easily shown that I is an ideal in R [in fact, it
is usually denoted by (b):(a)]. If we can show that I = R, then 1 £ / and we have
our result. But, if / =£R, then / is contained in some prime ideal ^. Because b £ /,
we also have b £ ty. However, we know that x £R« also; thus, x = a' lb' with
b' £ ty. This is absurd, for a'lb' = alb implies a'b = ab' and hence, b' £ I Cty.
Therefore, I = R and we have our result.

The reader might well ask whether what we have just done works for square
roots only. That is, we have shown that if x£Q is a root of x2-c, where c£R,
then x £ R provided R is a Dedekind domain. Could we equally well have done it
for a cubic, a quartic, in fact for any polynomial with coefficients in R? When we
say any polynomial, we have to be careful. For instance, if we consider the
polynomial 4x: - 1, the rational number I is a root of it but j is not an integer.
However, the roots of 4x2- 1 and of x2-l are the same, but the latter is not a
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polynomial all of whose coefficients are integers, while the former is not a monic
polynomial. This suggests that we might restrict our inquiry to roots of monic
polynomials all of whose coefficients are in our given ring R. Let us take a look at
what this means if R is a PID.

Proposition 1.7
Let R be a PID with field of quotients Q, let /£ R[X] be a monic polynomial, and
let a£Q be such that /(a) = 0. Then aER.

PROOF: Suppose f = X" + c,X""' + . . . + c with c, E R, and suppose a = ulv
with u, v E R, v ± 0. Because f(a) = 0, we have (ulv)" + c,(ulv)""[ + . . . + c„ = 0.
If we multiply through by v" we get u" +(c,v)u""' + - . . + c„v" = 0 or
v(-cu"-' - cuu""2 c„v"'') = u\
Assuming that u and v are relatively prime (which we may do because R is a

PID and hence a UFD), we see that v divides u" and therefore v is a unit.

The reader should observe that we really have used the property that R is a
UFD rather than its being a PID to prove the proposition.
Example 1.6 suggests that we prove the following.

Corollary 1.8
Let J? be a Dedekind domain, and Q its field of quotients. If a C Q is an element
which is a root of a monic polynomial /£R[X], then aeR.

PROOF: As in Example 1.6, we observe that for every prime $, we have
RCRvCQ and thus a is a root of / £ Rv[X] for every P. Because Rv is a PID,
Proposition 1.7 tells us that aeRv for every P. Letting a = ulv and / =
{yCR\yuG(v)}l we prove as in Example 1.6 that I=R and thus aER.

Notice that the crucial step in both Examples 1.6 and 1.8 was the one that
showed that if x £ Q and x £ RP for every prime p, then x ER. This generalizes
to arbitrary integral domains as we point out in the following.

Proposition 1.9
If R is an arbitrary integral domain with quotient field Q, then R = D Rv where ty
ranges over all prime ideals of R.

2. INTEGRAL EXTENSIONS

So far we have been talking about elements a in the field of quotients Q of an
integral domain R which are roots of monic polynomials in R[X]. However, there
is no reason why we cannot consider a more general situation of, say, a ring R
contained in another ring S, and talk about elements of S which are roots of monic
polynomials in R[X].

Definition
Let R C S be commutative rings. An element a£Sis said to be integral over R if
a is the root of a monic polynomial in R[X]. We say that S is integral over R if
every element of S is integral over R. We say that R is integrally closed in S if the
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only elements of S which are integral over R are the elements of R. We say that an
integral domain R is integrally closed if it is integrally closed in its field of
quotients.

Basic Properties 2.1

(a) If R is a UFD, R is integrally closed.
(b) If R is a Dedekind domain, R is integrally closed.
(c) If R C S and a E S, then a is integral over R if and only if the subring R -,a ] of
S is a finitely generated R-module.

(d) If R C S and a E S, then a is integral over R if and only if there is a faithful
R[a]-module M which is finitely generated as an R-module.

(e) If R C S and a,, diES are integral over R, then a, ± a2 and a,a2 are integral
over R.

(f) If R C S, then the set of elements in S which are integral over R is a subring of
S containing R.

(g) If R C S C T are rings with S integral over R and T integral over S, then T is
integral over R.

PROOF: (a) and (b) have already been proven.

(c) and (d) We will prove that if a is integral over R, then R[a] is a finitely
generated R-module. Then we will show that if R[a] is a finitely generated R-
module, there is a faithful R[a]-module M which is finitely generated as an
R-module. Finally, we will show that if there is a faithful R[o]-module which is
finitely generated as an R-module, then a is integral over R. This will prove the
equivalence of conditions (c) and (d) with the condition that a is integral over R.
Suppose that a is integral over R, and let fER[X] be a monic polynomial

such that /(a) = 0. R[a] is the image of the morphism R[X]-» S defined by sending
gER[X] to g(a)ES. Consider any element gER[X]. From the fact that / is
monic, we may write g = qf + r with deg r < deg / where q and r are in R[X].
Because f(a) = 0, we have g(a) = q(a)f(a) + r(a) = r(a), and thus the image of g in
S is equal to the image of r in S. This shows that R[a] is the image of the set of
polynomials in R[X] whose degrees are less than the degree of /. This is clearly a
finitely generated R-module.
Now suppose that R[a] is a finitely generated R-module. Then R[a] is

certainly a faithful R[a]-module which is a finitely generated R-module, so we
may choose M to be R[a] itself.
Finally, suppose that we have a faithful R[a]-module M which is finitely

generated as an R-module, and let {mu . . . , m„} be a set of generators over R.
Because Af is an R [a]- module, multiplication by a on M makes sense and we
have am, = 2,"-, c«m, with c„ £R for i = 1, ...,J%,;' = 1, ..., n. We therefore have
2". , (aS« - cH)m, = 0 for i = 1, . . . , n. Let F be the free R-module with basis
{x,, . . . , x„}, let k:F-»M be the epimorphism defined by sending x, to m, for
i ~ 1, .... n, and let g : F-» F be the endomorphism whose matrix with respect to
the basis {x,, .... x„} is (a8v - d). If we denote by L the cokernel of g, we have a
unique morphism k':L-»M such that k = k'k" where k":F-»L is the canonical
epimorphism. This is due to the fact that kg = 0. Hence, /c' is an epimorphism and,
because \g\L =0 where |g | is the determinant of g, we also have |g \M = 0. How
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ever, the determinant of g is an element of R[a] and, because M is assumed to be
a faithful R [a ]-module, this determinant must be zero. If we let / £ R [X] be the
characteristic polynomial of the matrix (c«), that is, if we let / = \X8n - cn\, then
we know that / is a monic polynomial in R[X] and clearly f(a) = \g

\ = 0. Thus, we

produced a monic polynomial in R[X] of which a is a root, and a is thus integral
over R.

(e) If a, and a2 are in S and integral over R, then R[al] is a finitely generated
R-module and, because a2 is also integral over R[a,], R[a,, a2] is a finitely gener
ated R[a,]-module. Thus, R[au a2] is a finitely generated R-module. Clearly,
R[a,, a2] is a faithful T-module for any subring T of R[al, a2]. Hence, if b is any
element of R[a,, a2], then R[a,, a2] is a faithful R[b]-module and is finitely gener
ated as an R-module. Thus, every bER[a,, a2] is integral over R. In particular,
a,±a2 and 0,02 are integral over R.

(f) is an immediate corollary of (e).
(g) See comparable theorems for algebraic extensions (see Chapter 12, Basic

Properties 2.2).

Example 2.2 Let R = Z and let S = Q(Vd) where d is a square free integer,
that is, it has no square factors. Then every element x of S can be written uni
quely as x = a + bVd If 2a and a2-b2d are integers, then x is a root of the
monic polynomial X2 - 2aX + a2-b2d. Hence, x is integral over Z. We want to
show now that if x is integral over Z, then 2a and a2 -b2d are in Z.
Because [CKVd) : Q] = 2 we know that S is a galois extension of Q whose

galois group consists of the automorphisms id, and a:S-»S where
a(a + bVd) = a - bVd. If x = a + bVdin S is integral overZ, then x is the root
of a monic polynomial / in Z[X]. Because a(x) is also a root of /, we have that
o-(x) is integral over Z. Consequently, x + o-(x) and xo-(x) are integral over Z. But

x + o-(x) = 2a and x<r(x) = a2 — b2d. Therefore, 2a and a2-b2d are elements of

Q which are integral over Z if and only if 2a and a2 — b2d are integers. In
connection with this example, we make the following.

Definition

If R CS are commutative rings, the subring of S consisting of all elements in S

integral over R is called the integral closure of R in S.

Basic Property 2.3

If R C S C T are rings, if S' is the integral closure of R in S, and if T is the integral
closure of S' in T

,

then T is the integral closure of R in T.

Theorem 2.4
Let R be an integrally closed noetherian integral domain, K its field of quotients,
and L a separable extension of K with [L : K] < °°. If S is the integral closure of R

in L, then S is a finitely generated R -module. Hence, S is also a noetherian inte
grally closed integral domain.

PROOF: Because L is a separable extension of K, we know that L is a simple
extension of K, that is, L = K(a) for some aeL. We claim that a = a'h with
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a' £ S and v £ R. To see this, let /£ K[X] be the minimal polynomial for a so that

/(a)=a"+^a"' + --+- = 0
v v

where u , u„, t1£R. Multiplying through by «" we get (ya)" + u,(va)""' +

(va)" + u,(va)""' + (u2v)(va)" ""+ h «""'u„ =0, so that ua is a root of a monic
polynomial in R[X] and is therefore in S. Hence, va = a'(=S and a = a'lv.
We next claim that L = K(a'). But this is clear because if {1, a, a2, ... , a" '} is

a basis for L over K, then so is {1, a',..., a'""'}. Therefore, we may assume that
L = K(a) with aES.
Next, we may assume that L is a galois extension of K. Because L is

separable over K, we know that there is a galois extension M of K containing L,
with [M :K] < °°. Thus, we have R C JC C L C M, and if we let T be the integral
closure of R in M, we know that R C S C T. If we show that, for galois extensions,
the integral closure is a finitely generated R -module, then we will know that T is
finitely generated over R. However, because S is an R-submodule of T, it follows

(because R is noetherian) that S, too, is a finitely generated R -module. Thus, we
shall assume that L is a galois extension of K, and we let G = {o-0, . . . , o-„-,} be the
galois group of L over K, with a0 = identity.
Next, we define a map Tr: L-»K by setting Tr(a) = 1'Zl, a,(a) for aeL. Ob

serve first, that for all a EL, Tr(a) is indeed an element of K. For if we take any
o-,GG we have <ri(Tr(a)) = a,(S,"-0 o-1(a)) = 2,"."0l aiav(a) = Tr(a) because {aja,}
runs through G as i runs from 0 to n - 1. Thus, Tr(a) is left fixed by each a^G
and must therefore be an element of K. Observe next that if a £ S, Tr(a) £ R. For,
if a is integral over R, then so is a1 (a) for i = 0, . . . , n — 1, and hence Tr(a) =

2r."0' o,(«) is integral over R. But because Tr(a)£K and R is integrally closed, we
must have Tr(a)ER.
It is clear that Tr(a, + a2) = Tr(a,)+Tr(a2) and that Tr(ca) = c Tr(a) for all
cEK and all aEL. Thus, Tr:L-»K is a morphism of L into K as K-vector
spaces.

Suppose that we can now show that the morphism Tr is not the zero mor
phism. Assuming this, we claim that we may establish an isomorphism (of K-
vector spaces) 8 : L -» (L, K) as follows: For each a E L, define 5(a) : L -» K by
S(a)(b) = Tr(ab). The reader can check easily that 8(a):L-»K is indeed a
K-morphism of L into K and that 8 is also a morphism of K-vector spaces.
Because L and (L, K) have the same finite dimension over K, it suffices to show
that Ker 8 = 0 if we want to show that 8 is an isomorphism.
Suppose, then, that 0(a) = 0 for some aeL. This means that Tr(ab) = 0 for

all b£L. Because we are assuming that Tr is not the zero morphism, we know
there is some element b0EL such that Tr(b0)=£0. If a =£0, consider the element
b = a"'b0. Then Tr(aii) = Tr(a(a"'b0)) = Tr(b0)=£0 which is a contradiction.
Hence, a = 0, and we have shown that 8 is an isomorphism because Ker 8=0.
Using the fact that 8 is an isomorphism, we can finish the proof of the

theorem. For, given our basis {1, a, a2, ... , a""'} of L (with a, and hence a', in S),
we have the dual basis (/S0 £„_,) for (L, K). If we let b, = 8"'(ft) for i =
0 n — 1, then {b0, .... b„_,} is a basis for L over K. Because ft(a') = S

,, (by
definition of dual basis), we have Tr(b,a') = 8(b,)(a') = Pl(a') = &,. If, now, x is any
element of S

,

then we have seen that, because xa' is also in S
,

Tr(xa')ER. Writing
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x = Sp01 c,b,, we have xa' = 2 cfaa' and Tr(xa') = Tr(2 c^M»') = 2 c,Tr(b,a') =

2 c,5« = c,. Thus, if x £ S, we have shown that c, e R for i = 0, . . . , n— 1. This
shows that S is contained in the R -module generated by {b0, . . . , b„-,}. Because
this is a finitely generated R-module. S is also a finitely generated R-module be
cause R is noetherian.
Our whole proof now rests on the assumption we made that Tr:L-»K is not

the zero morphism. Hence, we must show that Tr(b) =£0 for some b £ L. We know
that {1, a, . . . , a"''} is a basis for L over K, so to show that Tr ± 0, we must show
that Tr(a' ) ^ 0 for some i = 0, . . . , n - 1. Suppose this were not the case. Then for
each / = 0, . . . , n — 1 we would have

«70(a') + o-,(a')+- . . + a,-,(a') = 0
or

a0(ay + o-,(a)' + . . . + cr„-,(a)' = 0

If we take L" = L x . . . x L (n times) and consider it as an L -vector space
with the usual basis: {(1, 0, . . . , 0), . . . , (0, 0, . . . , 1)}, we have the endomorphism
g :L-»L whose corresponding matrix is (01(0)') where i, / = 0 n — \. From
the fact that 2,^0' al (a)' = 0 for ;' = 1, . . . , n - 1, we see that Ker g contains the
element (1,1,..., 1) and thus Kerg^0. Hence, |g

| = 0 because |g|Kerg=0.
Therefore, assuming that Tr(a') = 0 for i = 0

,

. . . , n - 1, we have arrived at the
conclusion that |g

| = 0
. We must therefore show that we cannot have |g|=0 to

come up with a contradiction. For this we prove the following.

Lemma 2.5
Let R be any commutative ring, and let {a0, . . . , a„-,} be a set of elements of R
The determinant of the matrix (bn)(i = 0

,

. . . , n - 1; j = 0, . . . , n — 1
) with h, =

(a,)' is the product II (a< - a,). Thus, if R is an integral domain, this deter-
minant is not zero if all elements a, are distinct.

PROOF: We want to compute the determinant of the matrix

O0 a, a-

a
l

a
]

a
\

a0 a , a2

When n = 2, we have our result. Therefore, we use induction to prove Lemma
2.5 in general. Succesively multiplying each row of the matrix by a0 and subtract
ing the result from the row below it

,

we get a matrix

1 ... 1

a, - a0 . . . a,-, - a0
a,(a,-a0) .. a»-,(a„-, - fl0)

0 ar2(a.-a0) ... a^(a,-,- a0) .
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whose determinant is equal to that of the original matrix. Because the first

column is zero from the second row on, the determinant of the above matrix is the
determinant of the matrix

a\ — <h a2— <i0 ... an-, — d0

a,(a,-a0) a2(a2-a0) ... a„ ,(0,_,-00)

var2(a,-a0) a"'\a2-a0) .-- allfta„-,- fl0) /
Finally, the determinant of this matrix is easily seen to be

(a,-a0)- . -(0,-,-a0)

1 1 ... 1

fl, a2
. . . a»-,

„»-J _n-2 „»-2a, a2
. . . a„-,

and our induction hypothesis finishes the proof.

PROOF OF THEOREM 2.4, CONTINUED: Returning to our main theorem, we
had concluded that if Tr = 0, then |g

| = 0 where g was a morphism whose matrix

was (oi(a)J) for i, / = 0
,

. . . , n - 1. Letting a, = a,(a), we see that we are precisely
in the situation of Lemma 2.5. Thus, \g

\ - II {<r,(a) - <r,(a)). But because L is

n-l£lsiJ=0

galois over K, we know that oi(a) =£ oi(a) for i ^ j because the minimal polynomial
of a is separable, that is, it has distinct roots. Thus, we cannot have |g

| = 0 and

hence Tr : L -» K is not the zero morphism. This completes the proof that S is a

finitely generated R-module.
Being a finitely generated module over the noetherian ring, it is obviously a

noetherian module and hence a noetherian ring.

Finally, we show that S is integrally closed. We have already seen that if

aEL then a = a'lv with vEK and a' £ S. Thus, L is the field of quotients of S. If

S were not integrally closed in L, then the integral closure of R in L would
properly contain S which would be a contradiction. Thus, we have shown that S is

an integrally closed noetherian integral domain, finitely generated as an R-module.
This completes the proof of Theorem 2.4.

In the next section we will use this theorem to construct Dedekind domains
which are not necessarily PID's.

3. CHARACTERIZATIONS OF DEDEKIND DOMAINS

Proposition 3.1
An integral domain R is a Dedekind domain if and only if R is noetherian, integ
rally closed, and has the property that every prime ideal other than (0) is maximal.

PROOF: If R is a Dedekind domain, we know it is noetherian and integrally
closed. Also, we know that every Rv is a PID for every prime ideal ^ ± 0. Be
cause of the correspondence between the prime ideals in a ring and its localiza
tions, the fact that Rv is a PID for all nonzero prime ideals $ of R, implies that
every nonzero prime ideal of R is maximal.
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Conversely, suppose R is noetherian, integrally closed, and that every prime
ideal $ other than (0) is maximal. By Proposition 1.5 it suffices to prove that Rv is
a PID for every prime $. Now Rv is a noetherian local domain, because R is a
noetherian domain. We claim that R« is integrally closed. For if a E Q where Q is
the field of quotients of R, and also of RP, and if a is integral over RP, we have

a"+-a"' + -a"-2+- ..+- = <)
s s s

with c, and s in R, and s£ P. Multiplying through by s", we get (sa)" +
sc(sa)""' + . . . + s""'c„ = 0 so that sa is integral over R. Because R is integrally
closed, we must have sa = a' £R, so a = a' Is with a' £ R and s £ P. Hence,
a £ Rv.
In addition to being integrally closed, Rv contains no prime ideal other than

(0) and PRv. For if F were a prime ideal of R« distinct from (0) and PR«, then
F ("lR would be a prime ideal of R different from (0) and properly contained in P.
This would contradict the fact that nonzero prime ideals of R are maximal.
Hence, PRv is the only prime ideal of Rv other than (0). If we can now prove the
following fact, we will be done.

Lemma 3.2
Let R be a local noetherian integrally closed domain whose only prime ideals are

(0) and M where M is the maximal ideal of R. Then R is a PID.

PROOF: If M = (0), then R is a field and we need not bother any more. We
may therefore assume that M ± (0). What we propose to do is show that M is a
principal ideal. From this it follows that every ideal of R is principal. For suppose
that / is an ideal of R generated minimally by {u,, . . . , u„}. Recall that this implies
that if 2 rlul = 0, then r,EM for i = 1, . . . , n. Now let F be a free R- module with
basis {x,, . . . , x„} and let g : F-»I be the epimorphism defined by setting g(xi) = i4.
If N = Kerg, we have the exact sequence 0-»N-»F— ^/^0. If we can show
that NIMN = 0, we will have N = 0 for since R is noetherian and F is finitely
generated, N is finitely generated. Thus, NIMN = 0 implies N = 0.
To this end, consider an element z = 2 r,x, £ N. Then 0 = g(z) = 2 r,g(x,) =

2 tm, so that r, £ M. Because we are assuming that Af is principal, we have M =
(a). Hence, r, = s,a with S,ER, i = l,...,n. Then z = a1s,x,. But 0 = g(z) =
g(a I,S,x,) = ag(Zs,x,) and because g(2s,x,)£/ we must have either a=0 or
g(2s,x,) = 0. Our assumption that M^0 implies that g(2,S,x,) = 0 or that
2 spb £ N. Hence, z = a 2 slX, £ MN, and we have shown that IV C MN or
NIMN = 0. Because N = (0), g is an isomorphism, which means that / is free.
Because free ideals in a commutative ring are principal, we know that / is a
principal ideal. Hence, to show that R is a PID it suffices to show that M is
principal.
To prove that M is principal, consider any element x ^ 0 in Af. If we let

S = {x"}»»0, then S is a multiplicative subset of R, and R CRsCQ where Q is the
field of quotients of R and of Rs. But Rs must itself be a field. For otherwise, Rs
contains a maximal ideal $' ^(0) and ty' D R is then a nonzero prime ideal of R. In
that case, we would have $' n R = M because M is the only other prime ideal
contained in R. But because x £M, x £$' DR so that x S$'. This is absurd
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because x is a unit in Rs and thus could not be contained in $'. Hence, Rs is a field
and must therefore be all of Q.
We have thus shown that if z is any element of Q and x is any nonzero

element of Af, then z = rlx" with r£R and n^0. Now let b be a fixed nonzero
element of Af and x any nonzero element of Af. Then Mb = rlx" for some rER
and n a0 so that we have x" = rb. This shows that for each element x of M there is
an integer n a0 such that x" £(b). From the fact that R is noetherian, we know
that Af is finitely generated, say by {x,, . .., x,}. Then x"'E (b) and hence, if we
take n sufficiently large [say n a (f - l)max(n,)], we have Af" C(b). Now let us take
the smallest integer n such that Af" C(b). Then Af""' is not contained in (b), so we
may find an element c £ Af ""' with c £ (b). Because cAf C Af " C(b), we see that
(clb)MCR and, because c£(b), cIb€R.
Now (clb)M is clearly an ideal of R. Therefore, we either have (clb)MCM

or (c/b)Af = R. We claim that (cIb)M cannot be contained in Af. For if z E Q is
such that zAf CAf, then Af is an R[z]-module which is faithful as an R[z]-module
and finitely generated as an R-module. Hence, z is integral over R (by Basic
Properties 2.1) and, because we are assuming that R is integrally closed, z £R.
But if z = c/b, then z £ R. Therefore, we have (clb)M CAf and hence (clb)M =
R. However, R is a free R -module and multiplication by cIb is a monomorphism.
Thus, Af is isomorphic to R and is therefore a principal ideal. This completes the
proof of the lemma and also the proof of Proposition 3.1.

Suppose, now, that R is a Dedekind domain, K the field of quotients of R. I. a
separable extension of K of finite degree, and S the integral closure of R in L.
Then we know that S is a noetherian integrally closed domain. If we show that
every nonzero prime ideal ty of S is maximal, then by Proposition 3.1 we know
that S is Dedekind. The fact that every nonzero prime ideal of R is maximal is a
special case of the following.

Proposition 3.3
Let RCS be commutative rings with S integral over R, and let $, C% be prime
ideals in S such that ^lnR=%nR. Then $, = 5&.

PROOF: For the sake of convenience, we reduce the problem to the case of
integral domains. For, if S is integral over R and / is any ideal of S, then SII
contains RIInR and SII is integral over RIInR. Consequently, we know that
S/$1 is integral over R/$, <~,R. We now show that if R CS are integral domains
with S integral over R, and if P is a prime ideal in S such that P n R = (0), then
P = (0).
If ty ± (0), there is an a £ $ with a ^ 0. Because S is integral over R, there is

a monic polynomial / £ R [X] such that /(a) = 0. If / = X" + c,X""' + . . . + c„,
with ci £ R, we may assume that c„ ± 0. For if c„ = 0, we have / = Xg with g
monic in R [X] and because f(a) = ag(a) = 0 with a =£0, we have g(a) = 0. Con
tinuing in this way we see that we eventually come to a monic polynomial in R [X]
with a nonzero constant term of which a is a root. Hence, we may assume that

c„=£0. Because /(a) = 0, we have a" + c,a""' + . . . + c„ =0 or c„ =
-a(a""' + c,a""2+- . . + c„ ,) £ $. But c„ is also in R, so c„ £5gDR =0or c» =0,
which is absurd. This proves Proposition 3.3.
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Theorem 3.4
Let R be a Dedekind domain with field of quotients K, and let L be a separable
extension of K of finite degree. If S is the integral closure of R in L, then S is a
Dedekind domain.

PROOF: We know that S is a noetherian integrally closed integral domain. We

want to show that every prime ideal other than (0) is maximal. Suppose % is a
nonzero prime ideal in S which is not maximal. Then $, is contained in some
maximal ideal %. Because 1 £ %, we have $, n R ± R and % n R =£R. Also, by
Proposition 3.3, because *g, ± (0), $, D R ± (0). Thus, $, n R is a maximal ideal of
R and so is %nR. But *£, flR C^nR so that ^,nR and %r,R must be
equal. By Proposition 3.3, we have $, = 9J2 which is a contradiction. This tells us
that 93, must be maximal and our proof is complete.
We use this theorem to show that there are Dedekind domains which are not

PID's. In Example 2.2 we found that if R = Z and L = Q(Vd) where d is a square
free integer, then the integral closure S of Z in L is the set of all elements x =
a + b Vd satisfy 2a and a2 - b2d are in Z. By Theorem 3.4 we now know that S is
a Dedekind domain. We consider the ring S for d = -5.

Example 3.5 We first show that when d = -5, S consists of all x =
a + bV^l with a and b integers. Certainly all such elements are in S. It therefore
remains to show that if a and b are rational numbers such that la and a2 + 5b2 are
integers, then a and b are integers. We see this as follows.
If 2a = n and a2 + 5b1 = m where n and m are integers, n2 + 20b2 = Am. Setting

b — ulv with u and v relatively prime integers, we have 20k2 = v2(4m - n2). If n is
even, we get 5u2 = v\m - n2/4). Thus, «2|5 so » = ± 1. In this case a and b are both
integers.

If n is odd, then n2 = 4f + l for some integer t and we have 20u2 =
t;2(4(m-f)-l). Because 4|20u2 and 4 does not divide 4(m-f)-l, we see that
v = 2w. Hence, 5u2 = n>2(4(m - 1)- 1). This equation in Z/4Z becomes u2+ w2 = 0. It
is easy to check that this implies u2 = 0 = w2. Hence, it and w must be even, which

contradicts the assumption that u and ti are relatively prime. This finishes the
proof that the elements x of S are precisely of the form a + b V^5 with a and b
inZ.
It is easy to see that in S, the element 6 = 3 . 2 = (1 + Vr5)(l - V3!). Using

the description of the elements of S, it is not hard to show that 2 is an irreducible

element of S but 2 does not divide either 1 + V^5 or 1 - V^5. Hence 2 is not a
prime element. This shows that S is not a UFD and hence not a PID although it is
a Dedekind domain.

4. IDEALS

Before studying arbitrary finitely generated modules over Dedekind domains, we

study the multiplicative structure of the ideals in R.

Definition
Let R be an integral domain with field of quotients K. An R-submodule J of K
will be called an ideal of R if there is a nonzero element c £R such that ex £ R for
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all x £ J. If J is an ideal of R contained in R (that is, our usual ideal), then J is
called an integral ideal of R.

Basic Properties 4.1
(a) If J is an ideal of R and R is noetherian, then J is a finitely generated R-
module.

(b) If J, and J2 are ideals of R, then the submodule generated hy /, and J: is an
ideal of R, denoted by (J,, J2).

(c) If J, and J2 are ideals of R, then the submodule generated by all elements of the
form a,a2 with al £ J, and a2£ J2 is an ideal of R denoted by J,J2. The proofs
are left as exercises.

Definition
If R is an integral domain and J is an ideal of R, J is called an invertible ideal of R
if there is an ideal J' such that /J' = R.

Basic Properties 4.2
(a) An ideal J of R is invertible if and only if J is a projective R-module. In this
case J is finitely generated.

(b) The set <€of nonzero ideals of R forms a commutative monoid under multipli
cation in which the invertible elements are precisely the invertible ideals.

(c) R is a Dedekind domain if and only if every nonzero ideal of R is invertible.
(d) R is a Dedekind domain if and only if the set <€of nonzero ideals of R forms a
group under multiplication.

(e) R is a Dedekind domain if and only if every integral ideal of R is the product
of a finite number of integral prime ideals of R. This factorization into prime
ideals is unique when R is Dedekind.

PROOF: (a) If J is invertible, there is an ideal J' such that JJ' = R. Hence, we
may find a,, ...,<%, € J and bl, . ..,&„£J' with 2a,b, = l. Define f,:J-»R by
f,(a) = abl for aEJ. / is an R-morphism of J into R and, for every a 6 J we have
a = a . 1 = a 2 a,bL = 2 a,(ab,) = 2 fl(a)ck. Thus, J is seen to be projective.
Conversely, if J is projective, we may find {a,}CJ and fr.J-»R such that for

all a £J/(a) = 0 except for a finite number of i and a = 2/(a)ai. Let c £ R be a
nonzero element such that cJCR. Then for any a,,a2eJ and fr.J-»R, we have
/(ca,a2) = ca,/(a2)=ca2/(a,) so that, because c=£0, we obtain fl,/(a2) = a2/(a,).
Thus, f,(a)la = q, in K, the field of quotients of R, is the same for all « in J.
Because only a finite number of the f,(a)±0, only a finite number, say <j,, . . . , q„,
are not zero. If a s J and a ±0, we have a = 1".,f,(a)a, = '2".\ (q,a)a, = a 2,"-, q.al.
Hence, sr., qlal = 1, and we see again that J is generated by {a,, . . . , a„}. Let J' be
the R-submodule of K generated by {<},, . . . , q„}. Because J' is finitely generated,
we find a nonzero c ER such that cJ' C R by taking the common denominator of
q,,...,q„. Hence, J' is an ideal. Clearly, /J' = R and thus J is invertible.
(b) Left to the reader.
(c), (d) and (e) Here what we shall do is prove that if R is Dedekind, then

every ideal of R is invertible. Then we prove that if every ideal in R is invertible,
the set <g of nonzero ideals of R is a group under multiplication. Next we will
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prove that if % is a group under multiplication, then every integral ideal is the
product of a finite number of integral prime ideals. Finally, we will prove that if
every integral ideal of R is a product of finitely many prime ideals, then R is
Dedekind. This will complete the cycle and take care of (c), (d) and (e). The last
part of (e) will be proven separately.
Suppose that R is Dedekind. Then every integral ideal of R is projective and

hence invertible. For if J is any ideal of R, there is a nonzero c £ R such that cJ is
an integral ideal. Because cJ is projective, J is projective (being isomorphic to
cJ), and so J is invertible.
Now if every nonzero ideal of R is invertible, it follows from (b) that <€ is a

group under multiplication.
If % is a group under multiplication, let us first show that R must be

noetherian. Because ^ is a group, every ideal is invertible (because R is the
identity element of the group), and thus every ideal is finitely generated [by (a)].
Now suppose that not every integral ideal is the product of a finite number of

prime ideals. Because R is noetherian, there is a maximal such integral ideal, say I.
I cannot be a maximal ideal, because then it would be prime. Hence, I is contained
in some maximal ideal 272. Because IC&1, we have 97r'/c97r'M = R. Notice that
for any invertible ideal J, J"' = {x £ K\xJ C R}. Because since J"'J=R,J"' is
certainly a subset of this set (which we shall call J', even when J is not assumed to
be invertible). Since R=J"'JCJ'JCR, we have J"'J = J'J so that, multiplying by
J'' on the right we get J"' = J'. In particular, if J is an integral ideal, J' D R so that
in our case 27T' =W'DR. Hence, SPT'/ D I. If Wl'I = /, we get I = 272/ and, be
cause R is a noetherian integral domain, 1 = 0. This follows from the fact that
localizing at 272, we get IR& = 272 IRm so that IRW = (0). Because R is an integral
domain, IRn = (0) implies that / = (0). However, we are assuming that / =f

=

(0) so

272' / properly contains / and is therefore the product of a finite number of prime
ideals; that is,Wl = 93, . . . 93„. But then I = 27293, . . . 9B, is also the product of a
finite number of prime ideals, contrary to the nature of I. Thus we have our
conclusion.
The last step is to show that if every nonzero integral ideal is the product of a

finite number of prime ideals, then R is Dedekind. It is sufficient to prove that the
hypothesis implies that every nonzero integral ideal is invertible, from which the
fact that R is Dedekind follows immediately due to (a). In order to show that
every nonzero integral ideal is invertible, it suffices to prove that every prime ideal

is invertible because a product of invertible ideals is clearly invertible and every
ideal is assumed to be a product of prime ideals.
Notice first that every nonzero prime ideal contains an invertible prime ideal.

For, let 93 =
£

(0) be a prime ideal and let x £ 93, x ± 0. Then (x) C ty and (x) =
$, . . . 93, where the ty, are prime ideals. Because (x) C$, we have ty, . . . $i C5J5
from which it follows that some $, is contained in ty. Now clearly (x) is an
invertible ideal (it's free!) and, from general principles in any commutative
monoid we know that if a product of elements is invertible, then each of the
factors is invertible. Hence, each 93, is invertible, and ty contains an invertible
prime ideal.

Next we show that if 93 is an invertible prime ideal, then 9
2 is a maximal ideal.

To prove that $ is maximal, it suffices to show that if a is any element of R not

-
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contained in P, then (93, a) = R. However, because 93 is invertible, it will suffice to
prove that 93(93, a) = 93, for then, multiplying both sides by 93 ', we get (93, a) = R.
Because 93 obviously contains 93(93, a), all we must do now is show that 93 is
contained in 93(93, a).
In R, the ideal (93, a) is a product of prime ideals: (93, a) = d . . . D,. In

R = R/93, we therefore have (93, a) = d . . . d where 7 in JJ means 7/93 for any
integral ideal 7 in R containing 93. Now (93, a) is a principal ideal in the integral

domain R, so that (93, a) is invertible. Hence, each of the ideals d is an invertible
prime ideal in R. The ideal (93, a2) is also a principal, hence invertible, ideal of R

and, because (93, a2) = (%af, we have (5g, a2) = d, . . . , d1.
Writing (93, a2) as a product of prime ideals in R, we have (93, a2) = SD', . . . C„

so that (93, a ) = d . . .d, and each of the d is an invertible prime ideal of R.
We have now got the ideal (93, a2) in R written as the product of invertible prime
ideals in two different ways. To see what this implies, let us prove the following.

Lemma 4.3
Let R be an integral domain. If / is an integral ideal of R and 7 = 93, . . . 93, =
d . . .d where the 93, and D, are proper invertible prime ideals of R, then s = t
and, after renumbering the Q„ we have 93, = &, for i = 1, . . . , s.

PROOF: We proceed by induction on t. The case r = 1 is left to the reader.
For t > 1, consider the set {931, . . . , 93,} of prime ideals and from this set take

a minimal element, say 93,. Because 93. D 93i . . . 93, = d . . . D, we must have 93,
containing some Di, say d- Similarly, D, must contain some 93, so we have
93,DdD93,. But having chosen 93, to be a minimal element of the set
{93,,..., 93,}, we have 93, = 93h and so 93, =d Multiplying by 93T1, we get
932
. . . 93, = d . . .d and our result follows by induction.
Applying this fact to our situation, we have (93, a2) = d . . . d' =
dddd . . .dd so that s -2t and, by renumbering, we have 02i-, =d =
d for j = 1, .... f. Because the Ci and D'i contain 93. we therefore have di-, =d = Q, for / = 1, ... , t. Hence, (93, a2) = d . . . D2 = (93, a)2 in R. Now 93 is
contained in (93, a2), and so 93 is seen to be contained in (93, af. This means that
if x£93, then x = y+za + ra2 where y£ 93% z£93, and r£R. Then ra2 =
x - y - za £ 93 and, because a 6 93. r £ 93. Thus, x = y +(z + ra)a where y £ 932
and z + ra E 93, which means that x G (932, 93a) = 93(93, a). Because this is true for
every x E 93, we have 93 C 93(93, a) which is what we wanted to prove.

Having shown that every prime ideal in R contains an invertible prime ideal,
and that every invertible prime ideal is maximal, we now know that every prime
ideal in R is invertible. This proves that every integral ideal is invertible and hence
R is Dedekind. That the factorization into a product of prime ideals is unique in a
Dedekind domain follows from Lemma 4.3.
These basic properties show that Dedekind domains share many arithmetic

properties with PID's. If we think only in terms of ideals rather than elements, we
still get unique factorization into prime ideals in Dedekind domains.
This unique factorization into prime ideals is very useful. For instance, sup
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pose we have an integral ideal 7 of a Dedekind domain R. Then / = 5R,, . . . ,5R,
with each *.!>, a prime ideal. The ideals, s4\. are the only prime ideals of R
containing / for if $ is a prime containing 7, $ contains the product $, . . . $, and
therefore contains some ^. But all the nonzero prime ideals of a Dedekind do
main are maximal, so that $ = Hv Now if a is an element of R not contained in
any of the ideals $„..., $„ then (I, a) = R. For if 93 is a proper prime ideal
containing (/, a), it must also contain I and must therefore be one of the ideals %*,.
But because ty contains (I, a), it contains a and hence a £$, which is impossible.
Thus, (/, a) = R.
If we let S = R — UPh we know that S is a multiplicative set and that R* is a

Dedekind semilocal domain. Therefore, by Corollary 1.4, Rs is a PID. Also, we
know that RslIRs =(RII)s- Because (/, a) = R for every aES, multiplication by
every element of S is an isomorphism on RII. From this it follows that
(R//)s = RII. As a result we have the following.

Proposition 4.4
If R is a Dedekind domain and I is a proper integral ideal of R, then every ideal of
R II is principal. In fact, RII *■RslIRs where S = R - U P, and / = IIP,.
PROOF: We have already seen that RII « RslIRs. Because we know that Rs is

a PID (being a semilocal Dedekind domain), it follows that every ideal of RslIRs is
principal, and so the same is true of RII.

As an immediate corollary we have the following.

Corollary 4.5
Let R be a Dedekind domain. Then every ideal of R may be generated by two
elements. In fact, if I is an ideal of R and a E I is a nonzero element, there is a
bGl such that I = (a,b).
Knowing that every ideal in a Dedekind domain may be generated by two

elements with one of the two elements arbitrarily preassigned enables us to prove
a useful lemma.

Lemma 4.6
Let R be a Dedekind domain, and let /, and /. be ideals of R with h integral. Then
there is an integral ideal J, isomorphic to /71 with (J,, /2) = R.

PROOF: Let I,-(a,b) with a a nonzero element of I,h. Because IJ2CI, (do
not forget that /2 is assumed to be integral), we have (/,/2, b) C I, = (a, b) C (I,h, b)
so that I, = (I,I2,b). Now (b) = /,(/;'b); so we have /, = (/,/,, b) =
(/,/,, I,(lVb) = /,(/,, l\lb)). Letting J, = I^'b, we have J, C R (because b £ /,), and
from the fact that /, = /,(/,, J,) we get (/,, J,) = R.

The reader may well wonder why, of all possible lemmas, we have chosen to
record Lemma 4.6. To justify our choice, consider two (not necessarily distinct)
integral ideals /: and / in a Dedekind domain R. Applying Lemma 4.6 to the ideals

I]' and /2, we obtain an integral ideal J, = (/T')'b = I,b such that (J, /2) = R. Be
cause J, and / 1 are isomorphic, the sum I,UI: is isomorphic to J,II/2. The mor
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phism o- : J, U /2 -» R defined by a(au a2) = a, + a2 is an epimorphism because
(J,, /2) = R and Ker o- = J, D /2 = J,/2 [the last equality being true because (J,, /2) =
JZ]. We therefore have the splittable exact sequence 0 -» J,/2-» J, II /2-»R -»0 so
that J, Uh ~ RUJ,h. Finally, because J, = I,b, it follows that J,/2 = /,/2 and we
therefore get 7,11/2= J,II/2 = RIIJ,/2 = R II I,h. From this discussion we obtain
the following.

Theorem 4.7
Let R be a Dedekind domain and M a finitely generated projective R-module.
Then Af is isomorphic to the sum FII / where F is a free R-module of finite rank,
and / is an (integral) ideal of R.

PROOF: By Chapter 10, Theorem 1.1 we know that Af - /, II . . . U /„ where
each /, is an integral ideal of R. If n = 1, our proposition is true because we may
then take F=(0). If n = 2, our preceding discussion has shown us that /1II/2 =
R U I,I2 and so we may take F = R and / = /, /2. Proceeding by induction, suppose
we know that /, II . .. U /„, = FU /, . . . !„,. Then /, II- -U/.=
F'U/, .../„-.UJ. ^F'IIRU/, .../„-,/. = FU/ where F = F'UR and / =
/, . . . /„. This proves the theorem.

Theorem 4.7 as it now stands is not completely satisfactory, for we would like
to have some uniqueness theorem. Namely, we would like to say that if M =
F, II/, = F2U /2, then F, = F2 and /, = 72. That F, « F2 is clear because they both are
free modules having the same rank. The problem, then, is the uniqueness of the
ideals I,, I2. In the exercises, you will be asked to prove that if M = FII / with F
free of rank n, then /"' = Sk.+,(M ). This, then, will show that / ', and hence, also /,
is determined uniquely by Af.

5. FINITELY GENERATED MODULES OVER DEDEKIND DOMAINS

Having determined the structure of finitely generated projective modules over
Dedekind domains, we consider arbitrary finitely generated modules.
If M is a finitely generated R-module we have the exact sequence

Because Mlt(M) is a finitely generated torsion free R-module, we know by
Chapter 9, Proposition 3.3 that Mlt(M) is a submodule of a free R-module.
Hence, M/f(Af) is a projective R-module. because R is a Dedekind domain.
Thus, k is a splittable epimorphism which implies that Af ~ r(Af)UAf /f (Af ). Be
cause we know what Mlt(M) looks like, we turn our attention to determining the
structure of finitely generated torsion modules over Dedekind domains.
To this end, let Af be a finitely generated torsion module over the Dedekind

domain R. Then it is clear that the annihilator of Af is not zero, and we let
/ = ann(Af). If I =%...ty, and S = R-U%, we know that RII=RslIRs«
RII®Rs. Also, because /Af = (0), we have Af = Af//Af = R/7® Af =
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(RII®Rs)®M«RlI®(Rs®M). Letting M' = Rs®M and R' = Rs, we know
R R R R R

that M' is a finitely generated torsion module over the PID R'. Hence, M' is the
sum R'lrjIR'fI'2 . .. U R'II'„ where I\ are nonzero ideals of R' and I\ C- . . C/!,
In fact, because ann(Af ') = /i = /Rs, and because 7) = (/'i n R)R', we have

f^.f(§i(fn...nf).ff(,:|s,n.;.ni|i7)
R ' - ' R

where I, =/',nR and / = /, C h C . . . C /„. Hence, M' is isomorphic to
(RI1,11 .URIL)®R'. Finally, because multiplication by every element of S

S

is an isomorphism on RII, the same is true for RII, for j = l,...,n. Thus,
RII,®R'«RII,. Because M' = M, we have M=R//,U . . UU/7. with

R

/, C /2 C . . . C I.. We now summarize these results in the following.

Theorem 5.1
If M is a finitely generated module over the Dedekind domain R, then M is
isomorphic to a sum R//, II- . . II RIL II Fil/ where I, C---C/„ are integral
nonzero ideals of R, F is a free module of finite rank, and / is an invertible ideal.
The ideals /, /,,..., /, are uniquely determined by M and so is the module F.

PROOF: We have already seen that Af is the sum of r(M) and M/f(M) and
that these modules are uniquely determined by M. By our preceding discussions,

Mlt(M) is projective and is therefore isomorphic to FII I, while t (M) is isomor
phic to RII, II . . . II RIh with 7, C . . . c /„. Our uniqueness theorem, Chapter 19,
Theorem 5.5, tells us that the ideals /i are uniquely determined by f(M), while
FII / is determined by M/f(M). We have already observed that the ideal I is
uniquely determined by Mlt(M).
The fact that F is also uniquely determined by Mlt(M) is obvious.

EXERCISES

(1) Let R be a Dedekind domain and M an R -module with M = F II / where F is a
finitely generated free R-module of rank n and / is an ideal of R. Prove that
Sk.+,(M)«r'. [Hinf : Using the fact that SM/IIRHSM/)IISkp-.tf), show that

Sk.+,(M)«uY"?'1W,a) where ("
+

') is the binomial coefficient and

(nl
'
jSk,(/) means the sum of Sk,(/) with itself ("T ) times. Then using the

fact that Sk„(/) = 0 for p >2, show that Sk„+,(M) = Sk,(/) = HornR(/, R) = /"'.
(2) Let R be an integrally closed integral domain with field of quotients K, and let
L be an algebraic extension of K. If x is an element of L which is integral over R,
and f{X)EK[X] is the minimal polynomial of x over K, prove that f(X) is in
R[X].
(3) Let R be an integrally closed domain with field of quotients K. Let L be a field
containing K and a an element of L which is algebraic over K. If f(X) in K[X] is
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the minimal polynomial of a over K, prove that a is integral over R if and only if

f(X) is in R[X].
(4) Let f be a primitive mth root of unity.
(a) Prove that if f(X) in Q[X] is the minimal polynomial for f over Q, then f(X) is
in Z[X] where Z is the ring of integers.

(b) Prove that there is a monic polynomial g(X) in Z[X] such that Xm - 1 =
f(X)g(X).

(c) If p is a prime number and f(iP)±0, prove that there is a monic polynomial
k(X) in Z[X] such that g(X') = f(X)k(X), where g(AT) is the polynomial
whose existence was proven in part (b).

(d) Under the hypotheses of part (c), prove that the polynomial X" - 1 in ZlpZ[X]
has a zero derivative. [Hint: Use the fact that g(X") = f(X)k(X) and that the
coset of g(X') in Z/pZ[X] is the same as that of g(X)' in Z/pZ[X]. Thus, the
reductions modulo p of f(X) and g(X) have a common nonzero root.]

(e) Conclude from part (d) that if p is a prime which does not divide m, then f
must be a root of /.

(f) Conclude from the above that <Pm(X) must be an irreducible polynomial in
Z[X], that is, $tm(X) is the minimal polynomial for the primitive mth roots
of unity.

(5) Let K be a quadratic extension of the rational numbers Q.
(a) Prove that there is a square-free integer d (that is, an integer d having no
square factors) such that K is isomorphic to Q(Vd).

(b) Let Q(Vd) be the integral closure of Z in Q(Vd). Prove that if d = 2 mod 4 or
d = 3 mod 4, then the elements 1, Vd are a free basis of Q(Vd) over Z.

(c) Prove that if d = 1(4), then the elements 1, 1/2(1 + Vd) are a free basis of
Q(Vd) over Z.

The next set of exercises is devoted to an exposition of the theorem known as
the Hilbert Nullstellensatz.

(6) Let R be a subring of the integral domain S.

(a) Suppose that x is an element of R which has an inverse 1/x in S. Show that 1/x
is in R if 1/x is integral over R.

(b) Suppose S is integral over R and S is a field. Show that R is then a field.
(7) Show that the following statements are equivalent for an integral domain R
with field of quotients K.
(a) There is a finitely generated ring extension R[x,, ...,*,] of R which is a field
that is algebraic over K (because R[x , jc] is a field containing R, it clearly
contains K).

(b) There is a nonzero element y in R such that Rv is a field where V is the
multiplicative subset {y"}„eH of R.

(c) The intersection of all the nonzero prime ideals of R is not zero. [Hint: To
show that (a) implies (b), first show that there are monic polynomials f,
,

. . . , f,

in K[X] such that /(x,) = 0 for i = 1 , . . . , n. Next, show that there is a nonzero
element y in R such that all the polynomials /,,...,/, are in RV[X]. Finally,
show that R[.\ ,. . ... v. ] is an integral extension of RV, and hence RV is also

a field.]
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(8) Suppose K CL are fields such that L is a finitely generated ring extension of
K; that is, there is a finite family of elements x,,...,x„ in L such that L =
K[xu . . . , x„]. Then L is an algebraic extension of K with [L :K]<°°. [Hinf: It
suffices to show that all the x, are algebraic over K. Suppose this is not the case.
Then after suitable relabeling we can assume that x,,...,x, is a transcendence
basis for L over K with f a 1. Show that this implies that the ring K[xu . . . , x,] has
a nonzero radical and is isomorphic to the polynomial ring K[Xu ... , X,]. Finally
show that this leads to a contradiction by showing that if S is any integral domain,
then the radical of S[X] is zero.]
(9) Suppose K is a field, M is a maximal ideal of K[X,, .... X„], and L is the field
K[X„...,X„]/M.
(a) Show that the composition of ring morphisms K-»K[X,, . . . , Xn] —*-»L is an
infective morphism. This gives an identification of K with a subfield of L
which enables us to consider K a subfield of L.

(b) Show that L is an algebraic extension of K with [L:K]<°°. This result is
known as the Hilbert Nullstellensatz.

(10) Suppose K is an algebraically closed field. Show that the polynomial ring
K[X,, . . . , X„] has the following properties:
(a) An ideal / of K[X,, . . . , X„] is a maximal ideal if and only if there are n
elements c, c„ in K such that / is generated by the elements X,-
c,, . . . , A, c„.

(b) Let c,,...,c, and c ',,..., c'„ be two families of n elements in K (with pos
sible repeats). Show that the maximal ideals generated by X,-c,,...,
X„ — c and X, — c\,...,Xn — c'„ are the same if and only if c, = c\ for all
i = 1, . . . , n.

(11) Show that the following statements are equivalent for an integral domain R.

(a) There is a finitely generated ring extension R[x x„] of R which is a field.

(b) There is a nonzero element y in R such that Rv is a field where V is the
multiplicative subset {y"}„eN of R.

(c) The intersection of all the nonzero prime ideals of R is not zero. Further, if
SDR is a finitely generated ring extension of R which is a field, then SDK
where K is the field of quotients of R and [S :K] <°°.

(12) A commutative ring R is said to be a Jacobson ring if each prime ideal ty of R
is the intersection of the maximal ideals of R containing $. Show that if R is a
Jacobson ring, then:

(a) RII is a Jacobson ring for all ideals / of R.
(b) The radical of R is the ideal of R consisting of all the nilpotent elements of R.
(13) Suppose S D R are commutative rings with S a finitely generated ring exten
sion of R. Suppose, also, that R is a noetherian Jacobson ring. Then:
(a) S is a noetherian Jacobson ring.

(b) If Af is a maximal ideal of S, then IM'-RHMisa maximal ideal of R and
SIM is a finite algebraic extension of RIM'. [Hint: Obviously S is noetherian.
Assume that S is not a Jacobson ring. Show that this implies that there is a
prime ideal $ of S which is not the intersection of the maximal ideals of S
containing $ but such that each prime ideal of S properly containing $ is the
intersection of the maximal ideals containing it. Let R' = RW where $' =
R n $, and let S' = S/$. Show that R' C S' are integral domains having the
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properties:

(i) S' is a finitely generated ring extension of R .

(ii) Each nonzero prime ideal of S' is the intersection of the maximal ideals
containing it.

(iii) The radical of S' is not zero. Show that this leads to a contradiction.]
(14) Let R be a local Dedekind domain with field of quotients K. If R -f

- K, show
that all of K is the only subring of K properly containing R.
(15) Let R be a Dedekind domain which is not equal to its field of quotients K. Let

S be a proper subring of K containing R.
(a) Assume that ty is a nonzero prime ideal of S and $' = R n$. Show:
(i) 1>' =

f= 0
,

and so $' is a maximal ideal of R.
(iI) Ry = Sty = S«.
(iii) The natural ring morphism Rffi^SfflS is injective, and hence the
ring morphism Sffl S -» SVI0$' S)y is injective.

(iv) Each of the ring morphisms in the composition Rffi-»SfflS-»
S«7($'S)«-»Sv/$S« is an isomorphism.

(v) 5g'S is a maximal ideal of S.

(vi) 9
3 = 5g'S and is a finitely generated maximal ideal of S.

(b) S is a noetherian ring with the property that each nonzero prime ideal of S is a

maximal ideal of S.

(c) S is a Dedekind ring.

(d) Let X be the set of nonzero prime ideals of R which are the intersection of a

prime ideal of S with R. Then S = n Rv. Further, S = R if and only if X
SEX

contains each nonzero prime ideal of R.

(16) Let R be a Dedekind domain with field of quotients K and let C(R) be the
group of ideals of R.

(a) Show that C(R) is a free abelian group with the integral prime ideals in C(R) a

basis for C(R).
(b) Show that if / is an ideal in C(R), then there are integral ideals J, and J2 such
that / = J,J!' and (J„ J2) = R.

(c) Define the map /: U(K)-»C(R) by f(x) = xR for all x in U(K) where U(K)
denotes the group of units of K. Show:
(i) / is a morphism of groups,
(ii) Ker/= U(R).
(iii) U(K)lU(R) is a free abelian group.

(d) Coker / is called the ideal class group of R and is usually denoted by CI(R).
Show that the following statements are equivalent for any pair of ideals /, and

h in C(R):
(i) k(I,) = k(l2), where k:C(R)-»C\(R) is the canonical group surjection.
(ii) There is an x in U (K) such that xl, = h.
(iii) /
, and /2 are isomorphic R-modules.

(e) Show the image in Cl(R) of an ideal / in C(R) is a torsion element of
Cl(R) if and only if /" = Rx for some positive integer N and some x in K.

(17) Let Ji be a Dedekind domain with field of quotients K. For each subset A of
the nonzero prime ideals of R let RA be the intersection of all the subrings Rv of K
with 5

g a prime ideal not in A. Then:
(a) RA is a Dedekind domain containing R with field of quotients K.
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(b) If ty is a nonzero prime ideal of R, then tyR A = RA if and only if $ is in A.
(c) An element x in K is a unit in R A if and only if the ideal Rx can be written as a
product II ty"' with the ty^ in A and the v, integers (negative as well as positive
integers).

(d) Let A be a finite set. Then the group morphism g:U(RA)-»C(R) given by
g(x) = Rx for all x in U(RA) has the following properties:
(i) Img is contained in the subgroup of C(R) generated by the $ in A.
(ii) Kerg = U(R) and hence U(RA)IU(R) is a free group of rank at most
card( A ).

(Hi) Rank U(RA)IU(R) = card A if and only if the image of $ in Cl(R) is a
torsion element for each ty in A.

(18) Let R be a Dedekind ring with field of quotients K. Show that the following
statements are equivalent.

(a) If S is a subring of K containing R, then there is a multiplicative subset V of R
such that S = Rv.

(b) Cl(R) is a torsion group. [Hint : To show that (a) implies (b) it clearly suffices
to show that the image of 5g in C/(R) is a torsion element for each prime ideal
$ in C(R). Let $ be a prime ideal in C(R) and let A = {$}. Then because RA is
a ring of quotients of R and is different from R, it follows that there is a
nonunit in R which is a unit in R \ Show that this implies the image of $ in
Cl(R) is a torsion element of R.
To show that (b) implies (a), suppose S is a subring of JC containing R.

Show that V = R n U(S) is a multiplicative subset of R and that RV = S. Be
cause RVCS, it suffices to show that S CRV. To do this, use the fact that if X is
in S, then there are integral ideals /, and I2 in R such that xR = UV and
(/,,/2) = R.]

(19) Let R be a Dedekind domain with field of quotients K.

(a) Show that R is a PID if and only if CI(R) = {1}.
(b) Show that if R is a PID and S is a subring of K containing R, then S = RV
where V is the multiplicative subset U(S)UR of R.

(20) Show that for an integral domain R, the following statements are equivalent:

(a) R is a Dedekind domain.

(b) Given any nonzero element x in an ideal / of R, there is a y in / such that
(x, y) = I. [Hint : To show that (b) implies (a) it suffices to show that Rv is a PID
for each prime ideal $ of R. Suppose ^ is a nonzero ideal of R and M = tyRv
is the maximal ideal of R. Show that (b) implies that the ideal M of Rv can be
generated by a pair of elements x and y with x in M2. This implies M is
actually principal which in turn implies Rv is a PID.]
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Algebraic element, 421
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of a module, 241, 294
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Antimorphism, 281
Artinian, IS3
Artinian module, 206
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Ascending chain condition, 146
modules, 206
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Bernstein-Schroeder theorem, 24,
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opposite, 88
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Cayley-Hamilton theorem, 393
Center monoid, 68
Center ring, 105
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of field, 174
of ring, 424

polynomial
of a matrix, 393
of a transformation, 393

Choice function, 17
Class equation, 71
Cofactor, of a matrix entry, 389
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of a map, 11
of a morphism
monoids, 38
rings. 111

Coimage analysis
map of sets, 12
morphism
of modules, 192
of monoids, 38
of rings, 111
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Commutative R-algebra, 118
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Complement
of a matrix entry, 389
of a submodule, 225
Complementary submodules, 225
Composition
of functors, 91
of maps, 6
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arbitrary category, 77
modules, 179
monoids, 32

series, 249

Conjugacy class, 70
Conjugate complex numbers, 354
Contragradient representation, 404
Coordinates with respect to a basis,
213

Coset
left, 64

right, 64

Covering, of a set, 5
Cyclotomic polynomial, 441

Dedekind domain, 445
Degree
of an extension of fields, 421
of a polynomial, 134
of transcendence, 444
Descending chain condition, 153
modules, 206

Determinant matrix, 388
Determinant morphism, of free R-
modules, 385

Diagonalization theorem, for ma
trices over a PID, 379

Divisibility, in a ring, 130
Divisible element, of a module, 365
Division ring, 216, 219, 221
Domain, of a map, 5
Duality between categories, 307

Eigenvalue, 403

Eigenvector, 403
Eisenstein's irrcducibility criterion,
172

Elementary divisors, of a module,
371

Empty map, 6
Endomorphism, 29
Endomorphism ring, of a vector
space, 173

Epimorphism, 9, 81
essential, 302

splittable, 227

Equivalence
of categories, 95
relation, 14
associated with a map, 14
monoid, 40

Euclidean domain, 150
Exact sequence, 194
equivalent, 285

splittable, 227

Exterior algebra, 408
ExtBHM,N), 286

Factor group, 45
Factor module, 191
Factor ring, 113
of R by /, 406
of PID's, 152
Faithfully flat morphism, 339
Faithfully flat R-module, 339
Family, of subsets of a set, 20
Field, 133
algebraically closed, 428
of quotients, of a ring, 136
of rational functions, 174
perfect, 432

Finitely generated field extension,
422

Finite set, 58
Finite support, 62
First element, 18
Fixed field, 437
Flat morphism, 339
Free module, 212
generated by a set, 213
Full subcategory, 78
Functor, 89
additive, 258

contravariant, 90
dense, 95
faithful, 95
forgetful, 89
full, 95
fully faithful, 95
identity, 89
left exact, 257
representable, 89, 90, 94

Fundamental theorem
for finitely generated modules
over PID, 370
of Galois theory, 437

Galois extension, 435
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Galois group, 435
General linear group, 403
General linear group, 403
2x2, 69
Generator, 283
Greatest common divisor, 66, 141
for family of principle divisors,
158

Grothendick group, 256
Group, 42
cyclic, 65
general linear, 69, 403

of bilinear maps, 181
of fractions of a monoid, 50
of integers, 55
of module morphisms, 180
of units of a r,ng, 132

r.71
special linear, 69
symmetric, 72

G-set, 86
G-subset, 87

Hilbert basis theorem, 357
Hilbert Nullstellensatz, 464
Homogeneous component, of a
graded ring, 405

Ideal, 113
generated by a family of ring
elements, 141

graded, 406

,ntegral, 458
invertible, 458
left, 221
maximal, 151
nil. 294

nilpotcnt, 294
prime, 151
principle, 130
right, 222

5-closure of, 163
Idempotenl, 74, 293
Identity, of a law of composition, 28
Identity functor, 89
Identity map, 6
Identity morphism
arbitrary category, 77
modules, 179
monoids, 31

Image

map, 10

morphism
of modules, 189
of monoids, 37
of rings, 103

Image analysis

map, 10

morphism
of modules, 189
of monoids, 37
of rings, 107

Inclusion map, 6
Inclusion morphism
monoids, 31
rings, 103

Indexing set, 20
Inductive set, 19
Infinite set, 58
Injection, 9

Injection map into the sum, 22
Injection morphism
arbitrary category, 84
modules, 234
monoids, 62
Injective envelope, 373
Injective morphism
modules, 186
monoids, 35
Integral closure, 451
Integral domain, 132
Integral element, over a ring, 449
Integral extension, 449
Integrally closed, 450
Intersection, of subsets, 4
Invariant factors
of a module, 371
of a transformation, 394
Inverse morphism
in arbitrary category, 80
of monoids, 33
Invertible element, of monoid, 42
Irreducible divisor, 156
Irreducible group representation,
403

Irreducible ring element, 139
Isomorphism
arbitrary category, 80
monoid, 33
of categories, 95
set, 7

theorems for modules, 201-206

Jacobson ring, 465
Jordan canonical form, of a trans
formation, 401

Kernel, of morphism
groups, 44
modules, 192

rings, 113

Leading coefficient, of a poly
nomial, 134

Least common multiple, 66, 141
of a family of principle divisors,
158

Left adjoint, of a functor, 122
Left coset, 64
space, 64

Length, of a module, 255
Linearly independent subset, of a
module, 210

Localization, of a ring, 159
with respect to a prime ideal, 322
Locally flat morphism, 340
Locally free I?-module, 334

Map of sets, 5
inverse, 8

Maschke's theorem, 284
Matrix, 387
Maximal element, of a set, 19
Maximal linearly independent sub
set

of a module, 216
Minimal polynomial, 394, 421
Module, 57, 177
artinian, 153

balanced, 283
divisible, 347, 365
faithful, 241, 294
finitely generated, 202

finitely presented, 338
flat, 339
free, 212

indecomposable, 303

induced by a morphism, 239
injective, 309, 363
left, 281

locally free, 334
noetherian, 206

of bilinear R -module maps, 185
of quotients with respect to a
multiplicative subset, 316
projective, 277

right, 280

semisimple, 251, 271

simple, 219, 221
S-torsion, 318
5-torsionless, 318
torsion, 242
Monoid, 28
commutative, 28

cyclic, 67
of endomorphisms, 29, 78
of monomials, 119, 120
of nonnegative integers, 29, 31, 34
Monoid ring, of M over R, 116
Monomorphism, 9
arbitrary category, 81
between exact sequences, 196
essential, 372
functors, 91
graded rings, 405

groups, 43
modules, 178
monoids, 30
right modules, 280

rings, 101

splittable, 227

tensor products, 328

Multiplicative subset, of a ring, 313
Multiplicity, of a root, 416

n-fold tensor product, of a mod
ule, 342

Nil left ideal, 294
Nilpotent element, of a ring, 294,
350

Nilpotent left ideal, 294
n-linear map, 381, 410
Noetherian, 146
Normal extension, of a field, 435
Normalizes of a group element, 70
Normal subgroup, 44
Norm, of a map, 355
Number, of elements in a set, 60
nth iterate, of an endomorphism,
32

Object, in a category, 77
Operation, of a group on a set, 70
Orbit, 70
Orbit space, 70
Order
finite group, 66
group element, 66
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Ordered set, 16
of a category, 88
Ordering, induced on a subset, 16

Order-preserving map, 85, 389
Order relation, on a set, 16

Partition
group, 43
monoid, 39
set, 5

Peano successor function, 71
Permutation, 72
even, 73

Permutation matrix, 402

p-group, 71
Polynomial ring, 104
criterion for integral domain, 171
criterion for UFD, 170, 171
in several variables, 118, 120

Preadditive category, 125
Preimage
of a map, 11
of a morphism of modules, 189

Primary decomposition, 157
Prime exponents for a ring ele
ment, 143

Prime ring element, 139
Primitive mth roots, of unity, 441

Principle divisor, 155
Principle ideal domain, 147
Principle prime divisor, 156
Product
of ideals, 131
of matrices, 387
Product family
of modules, 246
of monoids, 51, 61
of objects in arbitrary categories,
82

of rings, 115
of sets, 5
of subsets, 20
Projection map, onto the product,
21

Projection morphism
arbitrary category, 82
modules, 235, 247

monoids, 61, 62
ring, 115
Projective cover, 303
Pull-back, 260
Purely inseparable extension, 442
Push-out, 262

Radical
of arbitrary ring, 299
of artinian ring, 296
R-algebra, 117

Range, of a map, 5
Rank, of a free K-module, 224
Refinement, of a partition, 12

Regular element, 132

Regular I?-sequence, 264
Relation
induced on a set, 13
induced on a subset, 14

Relatively prime integers, 66

Relatively prime ring elements, 144

Representation
irreducible, 403

left regular, 404
of a group, 403

Representative family, of primes,
142

Residue class field, of a local ring,
321

Residue class group, 45
Restriction
of a map, 6
of a morphism of rings, 103

Right adjoint, of a functor, 122

Right coset, 64

space, 64

Right R module. 280
Ring, 56, 99
artinian, 153
commutative, 56, 100

graded, 405

group, 284

hereditary, 445
Jacobson, 465
left artin, 221
left noetherian, 221
local, 321
monoid, 116
noetherian, 148

of endomorphisms of an abelian

group, 101
of Gaussian integers, 355
of n x n matrices, 123
of polynomials, 104
of quotients of R with respect
to a multiplicative subset, 314

opposite, 280

polynomial, 104, 118, 120
semilocal, 447

semisimple, 271

simple, 124, 271

twisted group ring, 442

S-closure
ideal, 163
submodule, 318

Separable closure, 441

Separable degree, of an extension,

430

Separable element, over a field, 432

Separable extension, of a field, 432

Separable polynomial, 432

Simple field extension, 422

Simple C-set, 87
SK„(M), 381
Small category, 91

Special linear group
2x2, 69

Splitting field, of a polynomial, 425

Square matrix, 387

Standard group, of fractions for a
mono,d, 54

Standard sum, of a family of mod
ules, 234

Standard product, of a family of
modules, 247

Standard tensor product, of com
mutative rings, 325

S-torsion submodule, of M, 318
Subalgebra, generated by a set, 120

Subcategory, 78

Subgroup, 43
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alternating, 73
commutator, 90
generated by a set, 65

normal, 44
Submalrix, 389
Submodule, 188
generated by a family of sub-
modules, 205

generated by a set, 202

maximal, 220

S-closure of, 318
torsion, 242

Submonoid, 28

generated by a set, 120

Subring, 100
generated by a set, 120

primitive, 106
Sum
of bilinear maps, 181, 349
of matrices, 387
of morphism of modules, 180
Sum fam,ly
of modules, 232
of monoids, 63
of morphisms of R-moduIes,

234

of submodules, 237
of subsets, 22
Summand of a module, 225
Support
of an element, 62
of a module, 342, 374

Surjection, 9
Surjective morphism
of modules, 186
of monoids, 35
Sylow theorem, 71
Symmetric group, 72

Tensor algebra, 343
Tensor product
arbitrary rings, 348
commutative rings, 323
n-fold
of a module, 342

R-algebras, 345
Torsion element, 242
Totally ordered set, 16
Trace, 452
of a matrix, 402
Transcendence basis, 444
Trancendental element, over a
field, 421

Transpose, of a matrix, 387
Transposition, 72
Twisted group ring, 442

Underlying set, of a monoid, 28
Union, of subsets, 5
Unique factorization domain, 140
Unit, in a ring, 132

Value, of a map, 6

Well-ordered set, 18

Yoneda isomorphism, 93

Zero bilinear map, 181, 185
Zero divisor, of a module, 371

8'- 93PH5
74 75 76 77 9 8 7 6 5 4 3 2 1



.1 .:

::

::

::

:.
..







Ba&flHral

.-.

.■■•'-■:•:.fl"tt...•-_. fltt_.-...SV:;


	Front Cover
	Title Page (Page iii)
	Copyright (Page iv)
	Table of Contents (Page v)
	Section 1 (Page ix)
	Section 2 (Page 1)
	Section 3 (Page 3)
	Section 4 (Page 5)
	Section 5 (Page 7)
	Section 6 (Page 8)
	Section 7 (Page 10)
	Section 8 (Page 11)
	Section 9 (Page 12)
	Section 10 (Page 13)
	Section 11 (Page 15)
	Section 12 (Page 16)
	Section 13 (Page 17)
	Section 14 (Page 20)
	Section 15 (Page 23)
	Section 16 (Page 27)
	Section 17 (Page 30)
	Section 18 (Page 32)
	Section 19 (Page 37)
	Section 20 (Page 39)
	Section 21 (Page 41)
	Section 22 (Page 43)
	Section 23 (Page 49)
	Section 24 (Page 55)
	Section 25 (Page 57)
	Section 26 (Page 64)
	Section 27 (Page 75)
	Section 28 (Page 79)
	Section 29 (Page 82)
	Section 30 (Page 85)
	Section 31 (Page 99)
	Section 32 (Page 103)
	Section 33 (Page 107)
	Section 34 (Page 112)
	Section 35 (Page 115)
	Section 36 (Page 116)
	Section 37 (Page 127)
	Section 38 (Page 129)
	Section 39 (Page 130)
	Section 40 (Page 133)
	Section 41 (Page 138)
	Section 42 (Page 140)
	Section 43 (Page 147)
	Section 44 (Page 152)
	Section 45 (Page 155)
	Section 46 (Page 159)
	Section 47 (Page 164)
	Section 48 (Page 169)
	Section 49 (Page 171)
	Section 50 (Page 176)
	Section 51 (Page 178)
	Section 52 (Page 183)
	Section 53 (Page 185)
	Section 54 (Page 193)
	Section 55 (Page 201)
	Section 56 (Page 206)
	Section 57 (Page 210)
	Section 58 (Page 216)
	Section 59 (Page 221)
	Section 60 (Page 224)
	Section 61 (Page 231)
	Section 62 (Page 266)
	Section 63 (Page 289)
	Section 64 (Page 313)
	Section 65 (Page 351)
	Section 66 (Page 376)
	Section 67 (Page 415)
	Section 68 (Page 445)
	Index (Page 468)

