
Historic, Archive Document

Do not assume content reflects current scientific knowledge, policies, or practices.

aTC424 .K2U5 13000

to improving the environment in Kansas

Soil Conservation Service
U.S. Department of Agriculture
Salina, Kansas

Completed watershed d major flood prevention watershed lake in Gre-

11-33 Bookplete (1-63)

NATIONAL

GRICULTURA CONTROL OF THE PARTMENT OF THE PART

LIBRARY

have provided ce 1967. This skiing, too.

Watershed Projects-Getting the Job Done

Watershed projects under Public Law 566, the Watershed Protection and Flood Prevention Act, are big business in Kansas.

Since the start in 1953 with five pilot projects covering 83,353 acres, local sponsors have made 100 applications for assistance in developing watershed projects. These cover over one-fifth of the state, a total of 10,855,182 acres.

An outstanding conservation treatment program has been carried out in this state since the early Dust Bowl days of the 1930's. The wet years of the 1940's and the disastrous floods of 1951 showed the need for additional protection by water-

Upstream land treatment-terraces, contour farming, grassed waterways, and a conservation cropping system-is the foundation of flood prevention in all watershed projects. This was being done in Wolf River Watershed in Brown County before the project reached the planning stage.

shed structural measures.

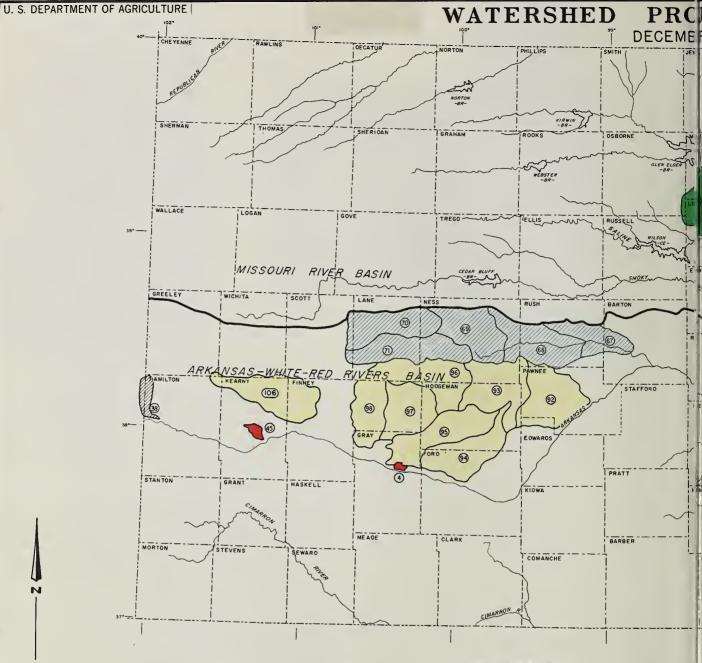
Construction of the first Public Law 566 floodwater retarding dam was started in 1957. Since then construction has taken place in 36 watersheds, of which 17 have been completed. This involves the construction of 6 grade stabilization structures; 11 miles of floodways; 28 miles of channel work; and over 375 reservoir-type structures, 6 of them multiple-purpose lakes.

Watershed development has made a significant impact on flood damage reduction and recreation development. Over 10,000 surface acres of water exist as a result of the watershed program in Kansas. This extensive water area is helping to satisfy the recreation needs of the communities involved.

Some flood control benefits:

- 1. Upper Verdigris Watershed project, Greenwood County, gave \$691,000 worth of benefits in heavy rains of July 11-12, 1972.
- 2. Protection was excellent in Silver Creek Watershed, Chase County, during heavy rains of May 31 and June 2, 1971. Heavy damage occurred in an adjacent unprotected watershed.
- 3. Heavy rains fell over a wide area of southcentral Kansas on April 18, 1970. There was excellent protection in Little Walnut-Hickory Watershed, Butler Rock Creek and Muddy County. Creek Watersheds, Butler and Cowley Counties, had sharp comparisons between protected and unprotected areas. Damage was heavy in unprotected Grouse Creek Watershed, Cowley County; and in unprotected Upper and Lower Elk River Watersheds in Elk County. Completed dams in Big Caney Watershed (Chautauqua,

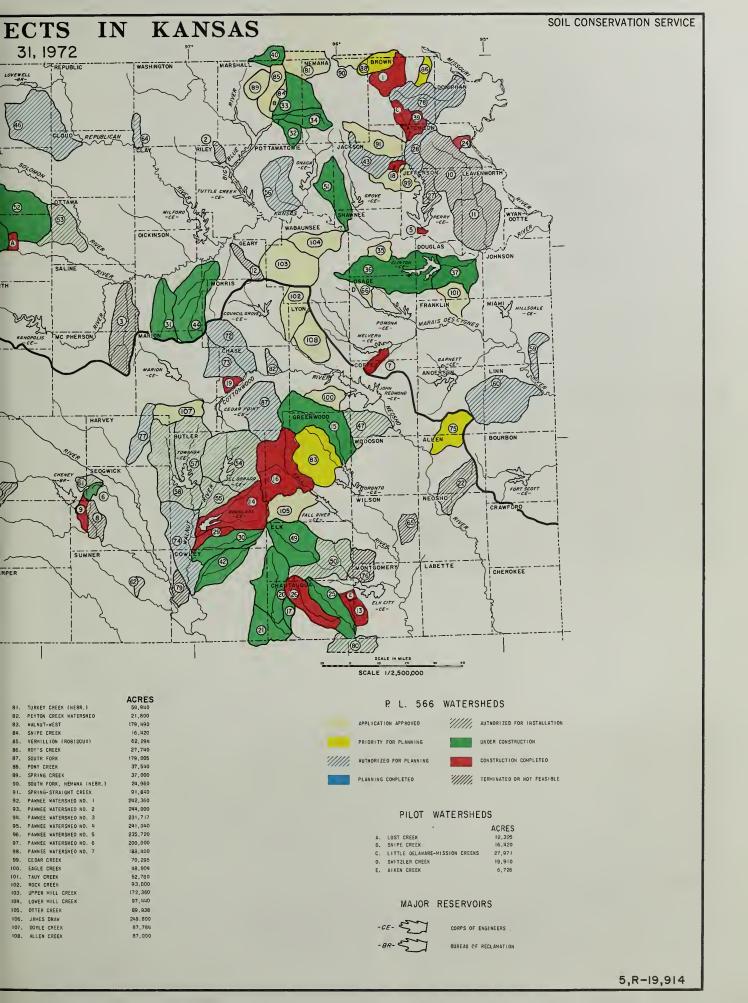
COVER PHOTO


Bee Creek Pilot Watershed dam in Chautauqua County, built in 1954, has a long record of success in reducing flood damage and furnishing recreation. The owner rents cabins at far right. The large building between the two arms of the lake and the adjacent waterfront area are used by the Se-Kan Scout Council.

Cowley, and Elk Counties) gave significant protection.

- 4. Six to 11 inches of rain fell on September 15-16, 1969, in Bee Creek Watershed, Montgomery and Chautauqua Counties. But there was little flood damage.
- 5. Heavy rains caused \$101,000 damage around Madison in Greenwood County July 23-26, 1968. But that's 74% less damage than would have occurred without the 34 dams then completed in Upper Verdigris Watershed.

This floodwater retarding dam in Frog Creek Watershed, Coffey County, reached its flood storage capacity when 11 inches of rain fell in three days in June 1967. Benefits from the 11 dams in the watershed were estimated at \$132,000, while millions of dollars of damage occurred in unprotected watersheds in that period.


P. L. 566 WATERSHEDS

ACRES

		ACRES			ACRES			~01120
1.	WALNUT CREEK	80,594	28,	GRASSNOPPER-COAL CREEK	61,440	54.	UPPER WALNUT NORTH	169,820
2.	NORTH OTTER CREEK	13,500	29.	MUODY CREEK	29,960	55.	UPPER WALNUT SOUTH	112,1B0
3.	GYP SUM CREEK	167,680	30.	ROCK CREEK	B5,B50	56.	ROCK CREEK WATERSHEO N45	126,000
4.	CIMARRON WATERSHED	6,440	31,	TURKEY CREEK	107,226	57.	WNITEWATER EAST	153,000
5.	THOMPSONVILLE WATERSNEO	4,062	32.	IRISH CREEK	30,586	58.	WHITEWATER WEST	174,960
6.	ANOALE WATERSHED	16,421	33.	NORTH SLACK VERMILLION	104,416	59.	MI OOLE CREEK	43,311
7,	FROG CREEK	22,496	34.	UPPER SLACK VERMILLION	54,886	60.	BIG SUGAR CREEK	203,350
В.	CLEAR CREEK	38,800	35.	SHUNGANUNGA WATERSHEO	23,506	61.	MT. HOPE WATERSHED	23,078
9.	SPRING CREEK	27,840	36.	UPPER WAKARUSA WATERSNEO	234,944	62.	NARGIS CREEK	6,300
10.	UPPER BIG STRANGER CREEK	190,923	37.	LOWER WAKARUSA WATERSNEO	94,977	64.	ORY CREEK	15,100
11.	LOWER BIG STRANGER CREEK	156,671	38.	CHEYENNE CREEK (COLO.)	B,970	65.	CEOAR CREEK	32,740
12.	NUMBOLOT WATERSNEO	30,458	39.	LITTLE OELAWARE-MISSION	61,120	66.	SWITZLER CREEK	20,200
13.	BEE CREEK	45,360	40.	MISSION CREEK (NEBR.)	12,820	67.	WET WALNUT NO. I	132,600
14.	LITTLE WALNUT-NICKORY	171,510	41.	GOOSE CREEK	33,300	6B,	WET WALNUT NO. 2	244,520
15.	UPPER VEROIGRIS RIVER	210,860	42.	TIMBER CREEK	101,700	69.	WET WALNUT NO. 3	228,100
16.	UPPER FALL RIVER	200,001	43.	ELK CREEK	91,115	70.	WET WALNUT NO. 4	214, 100
17.	GRANT-SNANGHAI	25,200	44.	LYONS CREEK	179,776	71.	WET WALNUT NO. 5	201,200
1B.	NEBO CREEK	9,360	45.	LAKIN WATERSNEO	10,806	72,	OI AMONO CREEK	102,600
19.	SILVER CREEK	18,418	46.	BUFFALO CREEK	243,560	73.	MIOOLE CREEK	72,838
20.	UPPER BIG CANEY	142,500	47.	BIG CREEK	84, 100	74.	MICOLE WALNUT	182, 131
21,	LOWER BIG CANEY	139,380	48.	SPILLMAN CREEK	119,360	75.	OEER CREEK	71,900
22.	BIG CREEK	70,972	49.	UPPER ELK RIVER	138,800	76.	OUCK CREEK	42,320
24.	WHITE CLAY-SREWERY-WHISKEY	12,540	50.	LOWER ELK RIVER	130,440	77,	SANO CREEK	64,300
25.	TWIN CANEY	98,370	51.	CROSS CREEK	113,786	7B.	WOLF RIVER	159,369
26.	MI DOLE CANEY	100,210	52.	UPPER SALT CREEK	205,99B	79.	ARK TRIBS	35,300
27.	WALNUT-BRUSH-LITTLE SLOUGH	60.938	53.	LOWER SALT CREEK	93.875	во.	COTTON-COON-MISSION (OKLA.)	2,528

SOURCE:
SCS DRAWINGS 5,R-19,914 (1964), 5,P-22,312 (1965),
KANSAS WATER RESOURCES BOARD MAP OF FEDERAL
WATER PROJECTS IN KANSAS (DEC.1965) AND USGS
BASE MAP OF KANSAS (1963). (LAMBERT CONFORMAL
CONIC PROJECTION).

Flood protection was needed in Middle Caney Watershed, Chautauqua County. And the City of Sedan needed additional water supply. A multiple-purpose dam was built in 1965 to form the 70-acre Sedan Lake. The city shared in the cost of the dam to provide 660 acre-feet of municipal water storage, in addition to the flood water storage capacity provided by federal funds.

Multiple use of a "single-purpose" lake-- fishing in a flood control reservoir in Frog Creek Watershed, Coffey County.

Multiple-Use Lakes

The main purposes of the watershed program are inherent in the name of the enabling legislation, the Watershed Protection and Flood Prevention Act.

In Kansas much emphasis is being placed upon multiple uses of the water stored in watershed lakes. Benefits from multiple uses of watershed works are substantial. Such uses include: flood control, irrigation,

Scouts enjoy canoeing, fishing, and swimming at Quivira Scout Lake in Twin Caney Watershed, north of Sedan in Chautauqua County. When a floodwater retarding dam was built on the Quivira Scout Council Ranch, the Council paid to enlarge the dam so that an additional 8,710 acre-feet of water was provided for recreation.

recreation, fish and wildife, municipal and industrial use, and livestock use. Improved water quality is another benefit.

Though most Kansas watershed reservoirs are "single-purpose," they frequently have some combination of multiple uses in addition to flood protection. Such dams have been financed solely on the basis of flood control benefits exceeding the cost of construction.

However, there are also a number of "multiple-purpose" reservoirs in Kansas.
Multiple-purpose dams often provide a sizable savings both to the federal government and to local groups over developing the services provided in several single-purpose dams.

Completed multiple-purpose reservoirs in Kansas include: Caney, Sedan, and Quivira Lakes in Chautauqua County; Eureka and Madison Lakes in Greenwood County; and Winfield Lake in Cowley County.

The watershed way speaks for itself in improving the environment in Kansas.

One of the floodwater retarding dams in Twin Caney Watershed, Chautauqua County, forms Timber Hill Lake. This lake provides a supplementary municipal water supply for the City of Caney. The landowner developed a recreation area around the lake, with SCS technical assistance and a Farmers Home Administration loan.

A prime example of a multiple-purpose watershed reservoir in Kansas is Winfield Lake in Timber Creek Watershed, Cowley County. Flood detention storage is 5,035 acre-feet of water. The City of Winfield purchased an additional capacity of 9,038 acre-feet of municipal water supply and 9,037 acre-feet of water for recreation. Camping by one of the nation's largest watershed lakes is a Kansas Wildlife Federation group.

Heavy rains on
April 18, 1970, produced sharp contrasts in protected
and unprotected
areas. Five inches
of rain in six hours
caused much flood
damage above a
watershed dam in
Muddy Creek
Watershed,
Butler, County.

Flood Control Benefits

In contrast to the scene at the top of the page, this bottomland field of wheat was undamaged by the storm. It is three miles downstream in Muddy Creek Watershed -- below a watershed dam.

The April 1970 storm extended into Elk County, where the north part of the City of Moline was flooded. A watershed dam is planned in Upper Elk River Watershed that will provide protection to the city and surrounding farm land.

Although eight inches of rain fell in six hours in the vicinity of this bottomland farmstead and field, no flooding occurred. The flood plain was protected by eight watershed dams in Rock Creek Watershed, Butler and Cowley Counties. Rainfall averaged over five inches in six hours over the entire watershed during the April 18, 1970, storm.

USDA-5CS-LINCOLN, NEBR. 1973 5,0-31,600