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Filamentous organisms represent an example where
incomplete separation after cell division underlies the
development of multicellular formations. With a view to
understanding the evolution of more complex multicellular
structures, we explore the transition of multicellular growth
from one to two dimensions. We develop a computational
model to simulate multicellular development in populations
where cells exhibit density-dependent division and death rates.
In both the one- and two-dimensional contexts, multicellular
formations go through a developmental cycle of growth and
subsequent decay. However, the model shows that a transition
to a higher dimension increases the size of multicellular
formations and facilitates the maintenance of large cell clusters
for significantly longer periods of time. We further show
that the turnover rate for cell division and death scales with
the number of iterations required to reach the stationary
multicellular size at equilibrium. Although size and life cycles
of multicellular organisms are affected by other environmental
and genetic factors, the model presented here evaluates the
extent to which the transition of multicellular growth from
one to two dimensions contributes to the maintenance of
multicellular structures during development.

1. Introduction
A key component of multicellular organisms is a developmental
life cycle where a multicellular body plan can be constructed and
maintained. Such life cycles have evolved several times through
the history of life [1–3]. Currently, the term multicellularity applies
to a variety of body plans, ranging from filamentous bacteria
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Figure 1. Birth and death rates for two different species as a function of population density (total number of cells at each iteration).
The carrying capacity (K) is reached when birth and death rates are equal in the population. The rates at carrying capacity are defined
here as the turnover rate. The plot shows that the same carrying capacity can be reached by species with different turnover.

to higher eukaryotes possessing complex ontogenies [1,3,4]. Multicellular organisms display several
properties, which include cell-to-cell adhesion, cell-to-cell communication, multicellular developmental
cycle and, in some cases, cell differentiation.

The mechanisms that give rise to multicellular formation are variable, but most fall under two
scenarios: (i) a cell division where mother and daughter cells remain together after cell reproduction
and (ii) colonial aggregation, where individuals from the same or different species develop certain
types of interactions with each other (e.g. cell adhesion, chemotaxis) [1]. The first scenario, where
mother and daughter cells fail to separate after division, has played an important role in many of the
multicellular transitions known to have happened during the evolution of life. It is, for instance, the
basis of all prokaryotic filamentous life forms we know today, and it is likely to have played a basal role
in multicellular eukaryotic groups, including plants and animals [1,2].

The study of cell division and death in a density-dependent context, where mother and daughter
cells remain together after division along a single dimension, has provided insights into the variability
of the filament sizes that can be observed in strains with the same growth rate (which is equivalent to
‘absolute fitness’ in evolutionary terms) [5]. When birth and death rates are equal at carrying capacity,
one can refer to this value as the turnover rate θ (see figure 1 and theoretical framework for more
details). By looking at various turnover rates, Rossetti et al. [5] developed a model based on cell-
density-dependent birth and death rates in order to explore filament length distributions. They found
that strains with the same growth rate, but different generation time, show different filament length
distributions. Hence, a predictable multicellular life cycle can emerge from these scenarios. Their model
and the associated experimental evidence facilitate the understanding of simple multicellularity from
an ecological perspective. In many cases, variation in generation time can explain the variation of mean
filament lengths and the differences in developmental cycles.

Here, we explored the outcome of these dynamics in two dimensions. In particular, we investigated
how the transition from one to two dimensions can impact multicellular developmental cycles. This
can shed light on the evolution of more complex multicellular structures (when compared to one-
dimensional filaments). Our work analyses cell clustering resulting from three main assumptions: (i) an
incomplete separation between mother and daughter cells after cell division, (ii) adhesion to adjacent
neighbours, and (iii) birth and death rates implemented in a density-dependent manner. Given different
birth and death rates, and the previously mentioned assumptions, the population dynamics result in a
diversity of cluster sizes that mimic multicellular bodies in two dimensions. The clusters are analysed
in terms of their size distribution and maintenance over time. We show that cluster size scales with the
turnover rate and discuss its implications on the developmental constraints that can affect the evolution
of multicellularity.

2. Theoretical framework
Based on a program written in C++, we developed a two-dimensional square lattice model, where each
node of the lattice can be either empty or occupied by a cell. Every cell is then subjected to a specified
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set of rules. Each cell possesses a birth and a death rate that vary in a density-dependent manner. As
population density increases, the birth rate decreases, whereas the death rate increases. After a division,
mother and daughter cells are not able to separate. Cells adhere to their immediate neighbours if they
come from the same cluster. Newborn clusters belonging to the same population grow on independent
lattices, eliminating the possibility of cluster re-aggregation. Cell death can lead to the separation of
adjacent cells.

2.1. Density-dependent birth and death rates
At every iteration, birth and death rates are computed according to the total number of cells present
in the population. These are based on the functions β(Nc) for birth and δ(Nc) for death rates

β(Nc) = 1 − c1Nc (2.1)

and
δ(Nc) = c2Nc, (2.2)

where c1 = (1 − θ )/K and c2 = θ/K. Nc is the total number of cells in the population and K is the carrying
capacity. K is reached when birth and death rates are equal. At carrying capacity, we have β(K) = δ(K) =
θ < 1, with θ being the turnover rate (figure 1). Equations (2.1) and (2.2) are linear with respect to the
population size, which is a common assumption used in first-order ecological approximations. In Rossetti
et al. [5], the authors also explored nonlinear functions (e.g. sigmoidal), but did not observe a significant
qualitative change in the results. Based on this experience, we did not try to elaborate on nonlinear
functions.

We have further made the simplifying assumption that in two dimensions, cells in the cluster have
equal access to a well-mixed nutrient liquid washing over them, as one would observe in a monolayer
biofilm. As long as this is the case, a linear function for the density-dependent birth and death rates is a
fair approximation, and further geometrical and spatial factors would not have to be considered.

Given equations (2.1) and (2.2), a cell can undergo one of four events during each iteration: divide,
die, divide and then die, or take no action. Accordingly, a list containing the events affecting each node
is created and its order of execution is randomized. It is also ensured that cells that both divide and die
give birth before their death.

2.2. Cell division and cluster growth
If a cell receives the instruction to divide, then its neighbourhood is evaluated for empty nodes; if there
is more than one empty node, then one of them is randomly chosen, and the daughter cell will be placed
there (figure 2a). In the absence of a free node, an empty position is created to accommodate the daughter
cell by shifting a neighbouring node in a random direction. If more than one cell needs to be shifted, then
all cells placed along the same direction are moved to their respective neighbour’s position along the
same direction (figure 2b). When a cell dies inside a cluster, the occupied space becomes free (figure 2c).
Furthermore, every time a cell dies, the cluster to which it belongs is evaluated to determine whether
this death induces a cluster break, which results in one or more nascent clusters. A cluster break occurs
only on the death of a cell that links two or more regions of the cluster (figure 2d). Every nascent cluster
is grown on a new lattice in order to avoid interactions that can affect their size and shape. Movie S1
in the electronic supplementary material exemplifies the growth and breakage of the largest cluster in a
population.

2.3. Neighbourhood and cell adhesion
The neighbourhood of a cell refers to its immediate neighbours separated by a single position. In our
two-dimensional lattice model, the neighbourhood of a focal cell corresponds to a total of eight positions,
which is known as the Moore’s neighbourhood in the field of cellular automata (figure 2). A daughter
cell can only occupy positions in the neighbourhood of the mother cell. The model assumes mother–
daughter adhesion after cell division. Additionally, while growing in the same cluster, all newly adjacent
cells are linked to their neighbour cells.

3. Results
We first investigated how the growth rate in one and two dimensions varies with the turnover. In the one-
dimensional case, our results were in agreement with Rossetti et al. [5]: all populations in one dimension
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birth (addition of a new cell)

(a) configuration with empty squares available:

(b) configuration with fully occupied squares and activation of the ‘pushing’ method:

(c) scenario resulting in one single cluster:

(d) scenario resulting in multiple new born clusters:

death (removal of an existing cell)

Figure 2. Schematic view representing cluster growth and breakage. (a,b) Birth: addition of a new cell to the cluster, where the daughter
cell is placed next to the mother cell, simulating an incomplete cell division. (a) If there are free squares surrounding the mother cell,
one of them will be chosen randomly to place the new cell. (b) If there are no free squares next to the mother cell, one of the eight
squares surrounding themother cell will be chosen randomly and the daughter cell will be positioned on this square, shifting the previous
occupant of the square aswell as all the cells adjacent to it. (c,d) Removal of cells owing to death can result in cluster breakage, depending
on whether the positions occupied by the dead cells represented the only link among two or more cluster sections.

have the same growth rate, independent of their turnover (figure 3). Furthermore, the in silico populations
showed equal growth rate, whether they were grown in one or two dimensions (figure 3). This first
evaluation ruled out the possibility that diversity in multicellular development in these simulations
arises from differences in growth rate.

3.1. Growth in two dimensions increases cluster size at carrying capacity
Filament lengths resulting from a one-dimensional growth process have been shown to be dependent
on the turnover θ [5]. Our results corroborated this relation in one dimension and showed that,
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Figure 3. Growth rate across populations in one and two dimensions. The plot shows the mean and standard deviation of the growth
curve of all the populations studied: five different turnovers (0.9, 0.5, 0.1, 0.01, 0.001) in both one- and two-dimensional simulations (100
samples each). The dashed line indicates the number of iterations t(K) at which the carrying capacity is reached. Although each scenario
has different birth and death rates and morphology, all populations reach their carrying capacity at the same time, indicating the same
growth rate.
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Figure 4. Cluster size at carrying capacity for various turnovers in one and two dimensions. (a) The longest filament length (cells) in
one dimension and (b) the largest cluster size (cells) in two dimensions as a function of the number of iterations. The different colours
indicate the different turnovers (from 0.001 in yellow to 0.9 in black), and the dashed line the number of iterations t(K) at which the
carrying capacity is reached (in both cases, this occurs at the 15th iteration, because the growth curve for all turnovers in both dimensions
is the same; see also figure 3). In contrast to filaments growing in one dimension, clusters in two dimensions can reach larger sizes and
maintain them for a longer time. The central mark shows the mean and the extremes of the error bars represent the upper and lower
limits of 95% of the data points. (c,d) Box plots of the largest filaments and cluster sizes at carrying capacity (at the 15th iteration) for
one and two dimensions, respectively. The central bar represents the median, the edges of the box show the 25th and 75th percentiles,
the whiskers extend to the extreme data points not considered outliers, and the outliers are plotted individually as red crosses.

by decreasing the turnover, the maximum filament length before reaching carrying capacity in each
population was increased (figures 4a,c). For comparison, we investigated the formation of multicellular
clusters in two dimensions. We were interested in understanding the extent to which turnover can affect
the cluster sizes in a two-dimensional growth process. We simulated the growth of individual cells that
remain together after an incomplete cell division and adhere to their immediate neighbours. The results
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indicate that the transition of the growth process from one to two dimensions changes the size dynamics
of multicellular formation considerably.

First, the turnover did not significantly affect multicellular formation during the exponential growth
phase in two dimensions. The largest cluster in every simulated population grew at a similar rate
and reached a similar maximum size at carrying capacity, independent of turnover (figure 4b,d). In
contrast, filaments growing in one dimension showed more turnover-dependent variability during the
exponential growth phase (figure 4a). In one dimension, the longest filament in each population reached
its maximum length after a different number of iterations, depending on the turnover. For instance, the
peak of the longest filament appeared later in populations with low turnovers than those with high
turnovers, but always before the carrying capacity was reached (figure 4a). Moreover, populations with
low turnovers, in comparison with high turnovers, displayed longer filaments during the exponential
growth phase (figure 4a,b). The overall maximum length reached by one-dimensional filaments was
around 60% of the number of cells at carrying capacity. This length was only reached for the lowest
turnover (θ = 0.001). The maximum length in populations with the largest turnover did not reach 4%
of the carrying capacity (figure 4a). In two dimensions, the maximum size reached by clusters is almost
that of the population size at carrying capacity. More than 96% of the cells within the same population
belonged to the same cluster at a time point close to the transition from exponential to stationary phase.

These results show that the turnover mainly affects the variability in size of one-dimensional
filaments, but not of the two-dimensional clusters (figure 4). The maximum size of the two-
dimensional clusters is governed more by the carrying capacity than by the turnover. Furthermore,
transition of growth to a two-dimensional plane notably increased the maximum size of
multicellular formations.

3.2. Growth in two dimensions facilitates the maintenance of large cell clusters
In order to compare how filaments and clusters maintained larger sizes, we defined a maintenance period,
which is the number of iterations required for a filament or a cluster at its maximum size to break down
and reach a stationary size.

In the one-dimensional scenario, maximum and average filament lengths started decreasing before
the end of the exponential phase [5] (figure 4a). However, the largest clusters growing in two dimensions
took longer to decrease in size and reach their stationary size (four times longer for the highest turnover,
and almost 100× longer for the lowest turnover; electronic supplementary material, table S2 and
figure 5a). We subsequently used a non-parametric hypothesis test (details in Material and methods
section) to check if the median and distribution of the number of iterations during maintenance time were
significantly different in one- or two-dimensional growth conditions. Results showed that populations
with the same turnover maintained the largest cluster size for significantly longer periods of time when
they grew in a two- versus one-dimensional environment (electronic supplementary material, table S1).
Furthermore, our results showed that the number of iterations during the maintenance period scaled
with the turnover (figure 5a).

The size of filaments and clusters also differed during the maintenance period, depending mainly
on the number of growth dimensions in addition to turnover in the case of one-dimensional filaments
(figure 5b). The size of the largest clusters in two-dimensional populations did not show any difference
among the different turnovers. The average size of the largest clusters in two dimensions exceeded the
average size of the largest filaments in one dimension by more than one order of magnitude in all cases
(figure 5b).

3.3. Clusters are further maintained once the stationary size is reached
We investigated whether the clusters were preserved or if they dissolved into one-cell elements once the
maintenance period was over. We continued to observe variably sized clusters beyond the maintenance
period (pie charts in figure 6). The size distribution of the largest clusters in each population was found to
be turnover-dependent. The largest clusters generated from the lowest turnover (θ = 0.001), for instance,
maintained an average size above 50 cells, and up to 150 cells in some cases (boxplots in figure 6).
Moreover, we observed that after the largest cluster reached a stationary size in each population, the
majority of clusters had at least two cells. The proportion of clusters with more than two cells could
reach more than 75% of the total number of clusters present in the population at the lowest turnover (pie
charts in figure 6).
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Figure 5. Maintenance period. (a) Mean number of iterations during the maintenance period, i.e. time between the iteration when the
largest filament or cluster reaches its maximum size and the iteration when it reaches the stationary size. The iterations are plotted as a
function of the turnover for one-dimensional (black) and two-dimensional (blue) simulations. The methodology to assess the iteration
at which each simulation reaches stationary size is described in the Material and methods section. Each circle represents one run while
squares represent the mean value over 100 sets of independent runs for the different turnovers in one and two dimensions. The data can
be fitted with a power law (line), with scaling exponents−0.41 (one dimension) and−0.87 (two dimensions). (b) Size of the largest
filament or cluster during the maintenance period as a function of the length of the maintenance period (number of iterations). The
central mark shows the mean and the extremes represent the upper and lower limits of 95% of the data points. The variability of sizes in
the graph reflects how the largest filament or cluster changes its size in each population during this period, as it starts with its maximum
size and reaches its lowest size (stationary size).

4. Discussion
Filamentous growth, which represents cell divisions without detachment in one dimension, is a common
pattern observed in biological systems. Throughout the evolution of life, the transition of multicellular
growth from one to two dimensions allowed access to a new phenotypic morphological space. Two
important eukaryotic clades provide examples of this transition. In the plant lineage, once restrictions
posed by the cell wall were overcome, body plans changed from an unbranched filamentous organization
into a branched and pseudo-parenchymatous morphology [6,7]. Animals, which lacked a cell wall, and
consequently the one-dimensional restriction that it posed, did not have to go through a filamentous
stage. Hence, they had the potential to develop directly into two- or three-dimensional growth after the
transitions from a unicellular to a multicellular state [7].

Filamentous-branched morphologies can be perceived as an intermediate state between filamentous
and clustered multicellular organisms (both in two and three dimensions). Compared with three-
dimensional clustered structures, filamentous growth and two-dimensional structures offer better



8

rsos.royalsocietypublishing.org
R.Soc.opensci.3:160554

................................................

0.9 0.5 0.1 0.01 0.001
0

20

40

60

80

100

120

140

160

180

turnover

st
at

io
na

ry
 s

iz
e 

(n
o.

 c
el

ls
)

one-cell two-cell

cells belonging to:

>two-cell clusters

77%

20%
3%

30%

31%

40%

16%

17%

66%

14%

14%

72%

14%

11%

75%

Figure 6. Stationary size in two-dimensional growth. The box plots show the size of the largest cluster per turnover during 100 iterations
after stationary size is reached for 100 independent simulation experiments. The central bar represents the median, the edges of the box
show the 25th and 75th percentiles, the whiskers cover the extreme data points not yet considered as outliers and the outliers are plotted
individually as red crosses. Pie charts illustrate the relative percentage of cells, within a population of 5000 cells at carrying capacity,
belonging to one-cell, two-cell or to larger clusters for a given number of iterations, once the stationary size has been reached.

access to resources for each individual cell in the structure. On the other hand, the average physical
distance between two cells or groups of cells can potentially be reduced in compact three-dimensional
architectures in comparison with structures growing in one or two dimensions without subsequent
folding. As Schlichting [8] has hypothesized, differences in geometrical placement of cells can lead
to differences in the cellular environment. These differences (a kind of symmetry breaking) can
subsequently lead to the differences in cellular differentiation states and the evolution of distinct
developmental programmes. Hence, moving towards more complex algorithms with differences in
individual cellular environments would be a potentially informative extension of this work. Once
one allows for differences in cellular environments, and the associated problem of how nutrients
are transported and distributed across distances, then one enters the arena of some of the most
important problems in the evolution of multicellular development. These include fundamental problems
such as division of germline versus soma [9], terminal differentiation [10], vascularization [11] and
motility [12].

In this work, we analysed the transition from one to two dimensions and its developmental
implications in an ecological context. It has been shown previously that a density-dependent model
with the incomplete division assumption permits a multicellular life cycle in one dimension [5].
Here, we tested the effect of a similar model in two dimensions on multicellular organization. We
assumed both incomplete cell division and adhesion to close neighbours to mimic events in pseudo-
parenchymal growth. Given the same carrying capacity, clusters growing in two dimensions under
these assumptions can reach larger sizes in comparison with filaments in one dimension. The most
striking difference, however, lies in the maintenance time for the longest one-dimensional filaments and
the largest two-dimensional clusters. It takes 4–100 times longer to break two-dimensional clusters to
their stationary size in comparison with one-dimensional filaments. This difference is a direct result of
having cells in multicellular clusters connected to a larger number of neighbours than those in one-
dimensional filaments. Thus, a transition from one to two dimensions results in an increased robustness
in organism size maintenance. Moreover, the maintenance period scales inversely with the turnover
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and exhibits a power law with a scaling exponent circa twofold larger than in one dimension. We
hypothesize that in a three-dimensional scenario, where a cell can have up to 26 neighbours, multicellular
development would be even more robust as breakage probability decreases with higher number of
connected neighbours.

Although size and life cycles of many multicellular organisms can also be affected by other genetic,
environmental, ecological and physical factors, this model has allowed us to evaluate, in more general
terms, how growth in two dimensions can trigger and support multicellular states. Examples of such
ecological and physical factors are, for instance, various shear forces, predator attacks, sharp obstacles,
etc. In two dimensions, cells have equal access to the nutrient liquid washing over the cluster. Therefore,
local depletion of resources does not represent a strong impediment for evolving multicellular structures
as in three dimensions. The results of the model imply the potential importance of density-dependent
cell death in multicellular development. In the context of one-dimensional growth, on average, cell
death reduces filament length by half [5], as a dying cell can break a filament in two. Cell death in
two-dimensional clusters has a lower likelihood of breaking the cluster. However, cell death in a two-
dimensional cluster can affect shape. For instance, it has been shown that localized cell death plays
a role in biofilm formation [13] and multicellular development in an experimentally evolved yeast
[14], complemented with theoretical models [15,16]. Programmed cell death is also known to influence
development in animals [17]. If ecological death played a role in the early evolution of multicellularity,
then an important question is whether this density-dependent death was subsequently genetically
assimilated and evolved into programmed cell death.

Empirical tests can provide more insight on the role of turnover in multicellular development in two
or even three dimensions. As genetic programmes in most multicellular organisms play an important
role in size and shape, it would be necessary to investigate simple organisms that could allow us to
better understand the role of turnover in the early evolution of multicellularity. An interesting alternative
would be to study the growth of clusters of cancer cells. It has been previously suggested that cancer cells
can give insights into the emergence of multicellularity. For instance, many genes that are associated
with the early evolution of metazoans have an important role in the growth of tumours [18,19] and,
moreover, some authors have suggested that cancer could putatively be an atavistic state of multicellular
life, involving adhering cells with limited cellular cooperation and moderate division of labour [20].
Thus, exploring the role of turnover in tumour cells under carrying capacity could be an experimental
platform to test the theoretical work presented here.

5. Material and methods
5.1. In silicomodel
The two-dimensional square lattice model described in the Theoretical framework section was written
in C++ in the form of a command-line executable. Node topology was analysed using the open-source
library LEMON (Library for Efficient Modelling and Optimization in Networks) [21]. Uniform random
numbers were generated using an open-source library in C++ written by Agner Frog that implements
an SIMD-oriented fast Mersenne twister algorithm [22].

5.2. Definition of duration (number of iterations) and size (number of cells) for the maintenance
period

As defined in the Results section, the maintenance period is the number of iterations required for a
filament or cluster at its maximum size to break down and reach a stationary size, where variations in
size remain within a specific fraction of the maximum size for an indefinite time period. The maintenance
period starts when the largest filament or cluster in a population reaches its maximum size and ends
at the iteration (if) when stationary size is reached. In order to find the latter for each turnover, we
defined an initial point i along the number of iterations axis (the x-axis in our case). This initial value
i was chosen heuristically with the basic requirement of referring to an early iteration point, usually
after maximum size is reached, and notably much earlier before the maintenance period is over. Two
windows along the same axis were additionally defined: the first window (w1) goes from iteration 1 to
iteration i = 50, and the second (w2) from iteration i to iteration 2i. We then calculated the range r1and r2
resulting from the size variation over each of the two windows w1and w2, and we repeated this procedure
subsequently incrementing the value i along the x-axis until i reaches half of the iterations run for the
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sample, coinciding with the measurement of the largest windows w1and w2. Note that in some cases,
where the stationary size is located after the half of the full data range, the starting value of w1 was
different from iteration 1 and was shifted to the right of the x-axis. We then compared the difference
obtained for each pair of range values and defined the iteration i with the largest positive difference
(r1 − r2) as the iteration value when stationary size is reached (if). We repeated the procedure for each
simulation in both dimensions and with the five different turnovers.

In order to measure the size during the maintenance period, we counted the number of cells in
the longest filament or in the largest cluster over time, starting from the iteration when it reached its
maximum size and ending at the iteration when the stationary size was achieved.

5.3. Measuring stationary size
The stationary size was defined by taking the mean of the size of the longest filaments or the largest
clusters per turnover for 10 (one dimension) or 100 (two dimensions) iterations after leaving the
maintenance period. This difference in the total number of iterations defining the value of the stationary
size for both dimensions depended on the number of iterations of our dataset.

Additionally, a subset of all clusters that persist after the maintenance period was chosen to determine
the relative percentage of cells in the populations of each turnover in two dimensions that belong to
one-cell, two-cell or larger clusters.

5.4. Statistical test
In order to evaluate the different lengths of the maintenance period, we performed a pairwise
comparison of one- and two-dimensional turnover populations generated at equal turnover rates.
Because the data were not assumed to be normally distributed, a Wilcoxon rank-sum test was applied
as a non-parametric hypothesis. For each tested pair, the null hypothesis of having an equal median of
number of iterations was rejected (electronic supplementary material, table S1). The Wilcoxon rank-sum
test was performed using MATLAB.

Data accessibility. The datasets used in this study are available at Dryad under accession number at http://dx.doi.org/
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