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Symmetric matrices and positive definiteness 

Symmetric matrices are good – their eigenvalues are real and each has a com
plete set of orthonormal eigenvectors. Positive definite matrices are even bet
ter. 

Symmetric matrices 

A symmetric matrix is one for which A = AT . If a matrix has some special 
property (e.g. it’s a Markov matrix), its eigenvalues and eigenvectors are likely 
to have special properties as well. For a symmetric matrix with real number 
entries, the eigenvalues are real numbers and it’s possible to choose a complete 
set of eigenvectors that are perpendicular (or even orthonormal). 

If A has n independent eigenvectors we can write A = SΛS−1. If A is sym
metric we can write A = QΛQ−1 = QΛQT , where Q is an orthogonal matrix. 
Mathematicians call this the spectral theorem and think of the eigenvalues as the 
“spectrum” of the matrix. In mechanics it’s called the principal axis theorem. 

In addition, any matrix of the form QΛQT will be symmetric. 

Real eigenvalues 

Why are the eigenvalues of a symmetric matrix real? Suppose A is symmetric 
and Ax = λx. Then we can conjugate to get Ax = λx. If the entries of A 
are real, this becomes Ax = λx. (This proves that complex eigenvalues of real 
valued matrices come in conjugate pairs.) 

Now transpose to get xT AT = xTλ. Because A is symmetric we now have 
xT A = xT λ. Multiplying both sides of this equation on the right by x gives: 

xT Ax = xTλx. 

On the other hand, we can multiply Ax = λx on the left by xT to get: 

xT Ax = xTλx. 

Comparing the two equations we see that xT λx = xTλx and, unless xT x is zero, 
we can conclude λ = λ is real. 

How do we know xTx = 0? 
⎤⎡ 

⎢⎢⎢⎣ 

x1 
x2 

. . . 
xn 

⎥⎥⎥⎦ 
=
|
x1|
T 2 2 2x x = x1 x2 xn· · · +
 x2 + +
 xn|
 |
 |
 |
 .· · ·


If x = 0 then xTx = 0. 
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With complex vectors, as with complex numbers, multiplying by the conju
gate is often helpful. 

Symmetric matrices with real entries have A = AT , real eigenvalues, and 
perpendicular eigenvectors. If A has complex entries, then it will have real 

Teigenvalues and perpendicular eigenvectors if and only if A = A . (The proof 
of this follows the same pattern.) 

Projection onto eigenvectors 

If A = AT , we can write: 

A = QΛQT 
⎡⎤⎡ ⎤Tλ1 q1 

T 
2 
. . 

⎢⎢⎢⎣ 

⎢⎢⎢⎣ 

⎥⎥⎥⎦ 

q ⎥⎥⎥⎦ 

λ2 
= q1 q2 qn· · · . . . . 

T 
nλn q

= λ1q1q1 
T + λ2q2q2 

T + + λnqnqT · · · n 

The matrix qkqk
T is the projection matrix onto qk, so every symmetric matrix is 

a combination of perpendicular projection matrices. 

Information about eigenvalues 

If we know that eigenvalues are real, we can ask whether they are positive or 
negative. (Remember that the signs of the eigenvalues are important in solving 
systems of differential equations.) 

For very large matrices A, it’s impractical to compute eigenvalues by solv
ing |A − λI| = 0. However, it’s not hard to compute the pivots, and the signs 
of the pivots of a symmetric matrix are the same as the signs of the eigenvalues: 

number of positive pivots = number of positive eigenvalues. 

Because the eigenvalues of A + bI are just b more than the eigenvalues of 
A, we can use this fact to find which eigenvalues of a symmetric matrix are 
greater or less than any real number b. This tells us a lot about the eigenvalues 
of A even if we can’t compute them directly. 

Positive definite matrices 

A positive definite matrix is a symmetric matrix A for which all eigenvalues are 
positive. A good way to tell if a matrix is positive definite is to check that all 
its pivots are positive. 
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Positive Definite Matrices. We are only covering Property 2. Enjoy the others!
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M3S3/S4 STATISTICAL THEORY II

POSITIVE DEFINITE MATRICES

Definition: Positive Definite Matrix
A square, p× p symmetric matrix A is positive definite if, for all x ∈ Rp,

xTAx > 0

Properties: Suppose that A

A = [aij ] =




a11 a12 · · · a1p
a21 a22 · · · a2p
...

...
. . .

...
ap1 ap2 · · · app




is a positive definite matrix.

1. The r × r (1 ≤ r ≤ p) submatrix Ar,

Ar =




a11 a12 · · · a1r
a21 a22 · · · a2r
...

...
. . .

...
ar1 ar2 · · · arr




is also positive definite.

2. The p eigenvalues of A, λ1, . . . , λp are positive. Conversely, if all the eigenvalues of a matrix B are
positive, then B is positive definite.

3. There exists a unique decomposition of A

A = LLT (1)

where L is a lower triangular matrix

L = [lij ] =




l11 0 · · · 0
l21 l22 · · · 0
...

...
. . .

...
lp1 lp2 · · · lpp

.




Equation (1) gives the Cholesky Decomposition of A.

4. There exists a unique decomposition of A

A = SS (2)

where S can be denoted A1/2. S is the matrix square root of A.

5. There exists a unique decomposition of A

A = V DV T (3)
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2

where

D = diag(λ1, . . . , λp) =




λ1 0 · · · 0
0 λ2 · · · 0
...

...
. . .

...
0 0 · · · λp




is the diagonal matrix composed of the eigenvalues of A, and V is an orthogonal matrix

V TV = 1

Equation (3) gives the Singular Value Decomposition of A.

6. As A = V DV T,
|A| = |V DV T| = |V ||D||V T| = |V |2|D| = |D| > 0

as

|V | = 1 and |D| =
p∏

i=1

λi > 0

by 2 and 5.

7. By 6., as |A| > 0, A is non-singular, that is, the inverse of A, A−1 exists such that

AA−1 = A−1A = 1.

In fact
A−1 = (V DV T)−1 = V D−1V T

as
V −1 = V T.

8. A−1 is positive definite.

9. For x ∈ Rp,

min
1≤i≤p

λi ≤
xTAx

xTx
≤ max

1≤i≤p
λi

10. If A and B are positive definite, then

(i) |A+B| ≤ |A|+ |B|.
(ii) If A−B is positive definite, |A| > |B|.
(iii) B−1 −A−1 is positive definite.
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Singular Value Decomposition
Notes on Linear Algebra

Chia-Ping Chen

Department of Computer Science and Engineering

National Sun Yat-Sen University

Kaohsiung, Taiwan ROC

Singular Value Decomposition – p. 1
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Introduction

The singular value decomposition, SVD, is just as
amazing as the LU and QR decompositions.

It is closely related to the diagonal form A = QΛQT

of a symmetric matrix. What happens if the matrix
is not symmetric?

It turns out that we can factorize A by Q1ΣQT
2 ,

where Q1, Q2 are orthogonal and Σ is nonnegative
and diagonal-like. The diagonal entries of Σ are
called the singular values.

Singular Value Decomposition – p. 2
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SVD Theorem

Any m × n real matrix A can be factored into

A = Q1ΣQT
2 = (orthogonal)(diagonal)(orthogonal).

The matrices are constructed as follows: The
columns of Q1 (m × m) are the eigenvectors of
AAT , and the columns of Q2 (n × n) are the
eigenvectors of ATA. The r singular values on the
diagonal of Σ (m × n) are the square roots of the
nonzero eigenvalues of both AAT and ATA.

Singular Value Decomposition – p. 3
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Proof of SVD Theorem

The matrix ATA is real symmetric so it has a complete
set of orthonormal eigenvectors: ATAxj = λjxj, and

xT
i ATAxj = λjx

T
i xj = λjδij.

For positive λj’s (say j = 1, . . . , r), we define σj =
√

λj

and qj =
Axj

σj
. Then qT

i qj = δij. Extend the qi’s to a basis

for Rm. Put x’s in Q2 and q’s in Q1, then

(QT
1 AQ2)ij = qT

i Axj =

{
0 if j > r,

σjq
T
i qj = σjδij if j ≤ r.

That is, QT
1 AQ2 = Σ. So A = Q1ΣQT

2 .
Singular Value Decomposition – p. 4
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Remarks

For positive definite matrices, SVD is identical to
QΛQT . For indefinite matrices, any negative
eigenvalues in Λ become positive in Σ.

The columns of Q1, Q2 give orthonormal bases for
the fundamental subspaces of A. (Recall that the
nullspace of ATA is the same as A).

AQ2 = Q1Σ, meaning that A multiplied by a
column of Q2 produces a multiple of column of Q1.

AAT = Q1ΣΣTQT
1 and ATA = Q2Σ

TΣQT
2 , which

mean that Q1 must be the eigenvector matrix of AAT

and Q2 must be the eigenvector matrix of ATA.

Singular Value Decomposition – p. 5
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Applications of SVD

Through SVD, we can expand a matrix to be a sum
of rank-one matrices

A = Q1ΣQT
2 = u1σ1v

T
1 + · · · + urσrv

T
r .

Suppose we have a 1000 × 1000 matrix, for a total
of 106 entries. Suppose we use the above expansion
and keep only the 50 most most significant terms.
This would require 50(1 + 1000 + 1000) numbers, a
save of space of almost 90%.

This is used in image processing and information
retrieval (e.g. Google).

Singular Value Decomposition – p. 6
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SVD for Image

A picture is a matrix of gray levels. This matrix can be
approximated by a small number of terms in SVD.

Singular Value Decomposition – p. 7
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Pseudoinverse

Suppose A = Q1ΣQT
2 is the SVD of an m × n

matrix A. The pseudoinverse of A is defined by

A+ = Q2Σ
+QT

1 ,

where Σ+ is n × m with diagonals 1
σ1

, . . . , 1
σr

.

The pseudoinverse of A+ is A, or A++ = A.

The minimum-length least-square solution to
Ax = b is x+ = A+b. This is a generalization of the
least-square problem when the columns of A are not
required to be independent.

Singular Value Decomposition – p. 8
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Proof of Minimum Length

Multiplication by QT
1 leaves the length unchanged, so

|Ax−b| = |Q1ΣQT
2 x−b| = |ΣQT

2 x−QT
1 b| = |Σy−QT

1 b|,

where y = QT
2 x = Q−1

2 x. Since Σ is a diagonal matrix,
we know the minimum-length least-square solution is
y+ = Σ+QT

1 b. Since |y| = |x|, the minimum-length
least-square solution for x is

x+ = Q2y
+ = Q2ΣQT

1 b = A+b.

Singular Value Decomposition – p. 9
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The Schur Complement and Symmetric Positive
Semidefinite (and Definite) Matrices

Jean Gallier

December 10, 2010

1 Schur Complements

In this note, we provide some details and proofs of some results from Appendix A.5 (especially
Section A.5.5) of Convex Optimization by Boyd and Vandenberghe [1].

Let M be an n× n matrix written a as 2× 2 block matrix

M =

(
A B
C D

)
,

where A is a p× p matrix and D is a q × q matrix, with n = p+ q (so, B is a p× q matrix
and C is a q × p matrix). We can try to solve the linear system

(
A B
C D

)(
x

y

)
=

(
c

d

)
,

that is

Ax+By = c

Cx+Dy = d,

by mimicking Gaussian elimination, that is, assuming that D is invertible, we first solve for
y getting

y = D−1(d− Cx)

and after substituting this expression for y in the first equation, we get

Ax+B(D−1(d− Cx)) = c,

that is,
(A−BD−1C)x = c−BD−1d.

1
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If the matrix A−BD−1C is invertible, then we obtain the solution to our system

x = (A−BD−1C)−1(c−BD−1d)

y = D−1(d− C(A−BD−1C)−1(c−BD−1d)).

The matrix, A−BD−1C, is called the Schur Complement of D in M . If A is invertible,
then by eliminating x first using the first equation we find that the Schur complement of
A in M is D − CA−1B (this corresponds to the Schur complement defined in Boyd and
Vandenberghe [1] when C = B>).

The above equations written as

x = (A−BD−1C)−1c− (A−BD−1C)−1BD−1d

y = −D−1C(A−BD−1C)−1c+ (D−1 +D−1C(A−BD−1C)−1BD−1)d

yield a formula for the inverse of M in terms of the Schur complement of D in M , namely
(
A B
C D

)−1

=

(
(A−BD−1C)−1 −(A−BD−1C)−1BD−1

−D−1C(A−BD−1C)−1 D−1 +D−1C(A−BD−1C)−1BD−1

)
.

A moment of reflexion reveals that
(
A B
C D

)−1

=

(
(A−BD−1C)−1 0

−D−1C(A−BD−1C)−1 D−1

)(
I −BD−1

0 I

)
,

and then
(
A B
C D

)−1

=

(
I 0

−D−1C I

)(
(A−BD−1C)−1 0

0 D−1

)(
I −BD−1

0 I

)
.

It follows immediately that
(
A B
C D

)
=

(
I BD−1

0 I

)(
A−BD−1C 0

0 D

)(
I 0

D−1C I

)
.

The above expression can be checked directly and has the advantage of only requiring the
invertibility of D.

Remark: If A is invertible, then we can use the Schur complement, D − CA−1B, of A to
obtain the following factorization of M :

(
A B
C D

)
=

(
I 0

CA−1 I

)(
A 0
0 D − CA−1B

)(
I A−1B
0 I

)
.

If D−CA−1B is invertible, we can invert all three matrices above and we get another formula
for the inverse of M in terms of (D − CA−1B), namely,

(
A B
C D

)−1

=

(
A−1 + A−1B(D − CA−1B)−1CA−1 −A−1B(D − CA−1B)−1

−(D − CA−1B)−1CA−1 (D − CA−1B)−1

)
.

2
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If A,D and both Schur complements A − BD−1C and D − CA−1B are all invertible, by
comparing the two expressions for M−1, we get the (non-obvious) formula

(A−BD−1C)−1 = A−1 + A−1B(D − CA−1B)−1CA−1.

Using this formula, we obtain another expression for the inverse of M involving the Schur
complements of A and D (see Horn and Johnson [5]):

(
A B
C D

)−1

=

(
(A−BD−1C)−1 −A−1B(D − CA−1B)−1

−(D − CA−1B)−1CA−1 (D − CA−1B)−1

)
.

If we set D = I and change B to −B we get

(A+BC)−1 = A−1 − A−1B(I − CA−1B)−1CA−1,

a formula known as the matrix inversion lemma (see Boyd and Vandenberghe [1], Appendix
C.4, especially C.4.3).

2 A Characterization of Symmetric Positive Definite

Matrices Using Schur Complements

Now, if we assume that M is symmetric, so that A,D are symmetric and C = B>, then we
see that M is expressed as

M =

(
A B
B> D

)
=

(
I BD−1

0 I

)(
A−BD−1B> 0

0 D

)(
I BD−1

0 I

)>
,

which shows that M is similar to a block-diagonal matrix (obviously, the Schur complement,
A − BD−1B>, is symmetric). As a consequence, we have the following version of “Schur’s
trick” to check whether M � 0 for a symmetric matrix, M , where we use the usual notation,
M � 0 to say that M is positive definite and the notation M � 0 to say that M is positive
semidefinite.

Proposition 2.1 For any symmetric matrix, M , of the form

M =

(
A B
B> C

)
,

if C is invertible then the following properties hold:

(1) M � 0 iff C � 0 and A−BC−1B> � 0.

(2) If C � 0, then M � 0 iff A−BC−1B> � 0.

3
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Proof . (1) Observe that (
I BD−1

0 I

)−1

=

(
I −BD−1

0 I

)

and we know that for any symmetric matrix, T , and any invertible matrix, N , the matrix
T is positive definite (T � 0) iff NTN> (which is obviously symmetric) is positive definite
(NTN> � 0). But, a block diagonal matrix is positive definite iff each diagonal block is
positive definite, which concludes the proof.

(2) This is because for any symmetric matrix, T , and any invertible matrix, N , we have
T � 0 iff NTN> � 0.

Another version of Proposition 2.1 using the Schur complement of A instead of the
Schur complement of C also holds. The proof uses the factorization of M using the Schur
complement of A (see Section 1).

Proposition 2.2 For any symmetric matrix, M , of the form

M =

(
A B
B> C

)
,

if A is invertible then the following properties hold:

(1) M � 0 iff A � 0 and C −B>A−1B � 0.

(2) If A � 0, then M � 0 iff C −B>A−1B � 0.

When C is singular (or A is singular), it is still possible to characterize when a symmetric
matrix, M , as above is positive semidefinite but this requires using a version of the Schur
complement involving the pseudo-inverse of C, namely A−BC†B> (or the Schur complement,
C − B>A†B, of A). But first, we need to figure out when a quadratic function of the form
1
2
x>Px + x>b has a minimum and what this optimum value is, where P is a symmetric

matrix. This corresponds to the (generally nonconvex) quadratic optimization problem

minimize f(x) =
1

2
x>Px+ x>b,

which has no solution unless P and b satisfy certain conditions.

3 Pseudo-Inverses

We will need pseudo-inverses so let’s review this notion quickly as well as the notion of
SVD which provides a convenient way to compute pseudo-inverses. We only consider the
case of square matrices since this is all we need. For comprehensive treatments of SVD and
pseudo-inverses see Gallier [3] (Chapters 12, 13), Strang [7], Demmel [2], Trefethen and Bau
[8], Golub and Van Loan [4] and Horn and Johnson [5, 6].

4
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Recall that every square n× n matrix, M , has a singular value decomposition, for short,
SVD , namely, we can write

M = UΣV >,

where U and V are orthogonal matrices and Σ is a diagonal matrix of the form

Σ = diag(σ1, . . . , σr, 0, . . . , 0),

where σ1 ≥ · · · ≥ σr > 0 and r is the rank of M . The σi’s are called the singular values of M
and they are the positive square roots of the nonzero eigenvalues of MM> and M>M . Fur-
thermore, the columns of V are eigenvectors of M>M and the columns of U are eigenvectors
of MM>. Observe that U and V are not unique.

If M = UΣV > is some SVD of M , we define the pseudo-inverse, M †, of M by

M † = V Σ†U>,

where
Σ† = diag(σ−1

1 , . . . , σ−1
r , 0, . . . , 0).

Clearly, when M has rank r = n, that is, when M is invertible, M † = M−1, so M † is a
“generalized inverse” of M . Even though the definition of M † seems to depend on U and
V , actually, M † is uniquely defined in terms of M (the same M † is obtained for all possible
SVD decompositions of M). It is easy to check that

MM †M = M

M †MM † = M †

and both MM † and M †M are symmetric matrices. In fact,

MM † = UΣV >V Σ†U> = UΣΣ†U> = U

(
Ir 0
0 0n−r

)
U>

and

M †M = V Σ†U>UΣV > = V Σ†ΣV > = V

(
Ir 0
0 0n−r

)
V >.

We immediately get

(MM †)2 = MM †

(M †M)2 = M †M,

so both MM † and M †M are orthogonal projections (since they are both symmetric). We
claim that MM † is the orthogonal projection onto the range of M and M †M is the orthogonal
projection onto Ker(M)⊥, the orthogonal complement of Ker(M).

Obviously, range(MM †) ⊆ range(M) and for any y = Mx ∈ range(M), as MM †M = M ,
we have

MM †y = MM †Mx = Mx = y,

5
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so the image of MM † is indeed the range of M . It is also clear that Ker(M) ⊆ Ker(M †M)
and since MM †M = M , we also have Ker(M †M) ⊆ Ker(M) and so,

Ker(M †M) = Ker(M).

Since M †M is Hermitian, range(M †M) = Ker(M †M)⊥ = Ker(M)⊥, as claimed.

It will also be useful to see that range(M) = range(MM †) consists of all vector y ∈ Rn

such that

U>y =

(
z

0

)
,

with z ∈ Rr.

Indeed, if y = Mx, then

U>y = U>Mx = U>UΣV >x = ΣV >x =

(
Σr 0
0 0n−r

)
V >x =

(
z

0

)
,

where Σr is the r × r diagonal matrix diag(σ1, . . . , σr). Conversely, if U>y =
(
z
0

)
, then

y = U
(
z
0

)
and

MM †y = U

(
Ir 0
0 0n−r

)
U>y

= U

(
Ir 0
0 0n−r

)
U>U

(
z

0

)

= U

(
Ir 0
0 0n−r

)(
z

0

)

= U

(
z

0

)
= y,

which shows that y belongs to the range of M .

Similarly, we claim that range(M †M) = Ker(M)⊥ consists of all vector y ∈ Rn such that

V >y =

(
z

0

)
,

with z ∈ Rr.

If y = M †Mu, then

y = M †Mu = V

(
Ir 0
0 0n−r

)
V >u = V

(
z

0

)
,

6

Page = 25



for some z ∈ Rr. Conversely, if V >y =
(
z
0

)
, then y = V

(
z
0

)
and so,

M †MV

(
z

0

)
= V

(
Ir 0
0 0n−r

)
V >V

(
z

0

)

= V

(
Ir 0
0 0n−r

)(
z

0

)

= V

(
z

0

)
= y,

which shows that y ∈ range(M †M).

If M is a symmetric matrix, then in general, there is no SVD, UΣV >, of M with U = V .
However, if M � 0, then the eigenvalues of M are nonnegative and so the nonzero eigenvalues
of M are equal to the singular values of M and SVD’s of M are of the form

M = UΣU>.

Analogous results hold for complex matrices but in this case, U and V are unitary
matrices and MM † and M †M are Hermitian orthogonal projections.

If M is a normal matrix which, means that MM> = M>M , then there is an intimate
relationship between SVD’s of M and block diagonalizations of M . As a consequence, the
pseudo-inverse of a normal matrix, M , can be obtained directly from a block diagonalization
of M .

If M is a (real) normal matrix, then it can be block diagonalized with respect to an
orthogonal matrix, U , as

M = UΛU>,

where Λ is the (real) block diagonal matrix,

Λ = diag(B1, . . . , Bn),

consisting either of 2× 2 blocks of the form

Bj =

(
λj −µj

µj λj

)

with µj 6= 0, or of one-dimensional blocks, Bk = (λk). Assume that B1, . . . , Bp are 2 × 2
blocks and that λ2p+1, . . . , λn are the scalar entries. We know that the numbers λj± iµj, and

the λ2p+k are the eigenvalues of A. Let ρ2j−1 = ρ2j =
√
λ2
j + µ2

j for j = 1, . . . , p, ρ2p+j = λj

for j = 1, . . . , n − 2p, and assume that the blocks are ordered so that ρ1 ≥ ρ2 ≥ · · · ≥ ρn.
Then, it is easy to see that

UU> = U>U = UΛU>UΛ>U> = UΛΛ>U>,

7
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with
ΛΛ> = diag(ρ2

1, . . . , ρ
2
n)

so, the singular values, σ1 ≥ σ2 ≥ · · · ≥ σn, of A, which are the nonnegative square roots of
the eigenvalues of AA>, are such that

σj = ρj, 1 ≤ j ≤ n.

We can define the diagonal matrices

Σ = diag(σ1, . . . , σr, 0, . . . , 0)

where r = rank(A), σ1 ≥ · · · ≥ σr > 0, and

Θ = diag(σ−1
1 B1, . . . , σ

−1
2p Bp, 1, . . . , 1),

so that Θ is an orthogonal matrix and

Λ = ΘΣ = (B1, . . . , Bp, λ2p+1, . . . , λr, 0, . . . , 0).

But then, we can write
A = UΛU> = UΘΣU>

and we if let V = UΘ, as U is orthogonal and Θ is also orthogonal, V is also orthogonal and
A = V ΣU> is an SVD for A. Now, we get

A+ = UΣ+V > = UΣ+Θ>U>.

However, since Θ is an orthogonal matrix, Θ> = Θ−1 and a simple calculation shows that

Σ+Θ> = Σ+Θ−1 = Λ+,

which yields the formula
A+ = UΛ+U>.

Also observe that if we write

Λr = (B1, . . . , Bp, λ2p+1, . . . , λr),

then Λr is invertible and

Λ+ =

(
Λ−1

r 0
0 0

)
.

Therefore, the pseudo-inverse of a normal matrix can be computed directly from any block
diagonalization of A, as claimed.

Next, we will use pseudo-inverses to generalize the result of Section 2 to symmetric

matrices M =

(
A B
B> C

)
where C (or A) is singular.
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4 A Characterization of Symmetric Positive Semidefi-

nite Matrices Using Schur Complements

We begin with the following simple fact:

Proposition 4.1 If P is an invertible symmetric matrix, then the function

f(x) =
1

2
x>Px+ x>b

has a minimum value iff P � 0, in which case this optimal value is obtained for a unique
value of x, namely x∗ = −P−1b, and with

f(P−1b) = −1

2
b>P−1b.

Proof . Observe that

1

2
(x+ P−1b)>P (x+ P−1b) =

1

2
x>Px+ x>b+

1

2
b>P−1b.

Thus,

f(x) =
1

2
x>Px+ x>b =

1

2
(x+ P−1b)>P (x+ P−1b)− 1

2
b>P−1b.

If P has some negative eigenvalue, say −λ (with λ > 0), if we pick any eigenvector, u, of
P associated with λ, then for any α ∈ R with α 6= 0, if we let x = αu − P−1b, then as
Pu = −λu we get

f(x) =
1

2
(x+ P−1b)>P (x+ P−1b)− 1

2
b>P−1b

=
1

2
αu>Pαu− 1

2
b>P−1b

= −1

2
α2λ ‖u‖2

2 −
1

2
b>P−1b,

and as α can be made as large as we want and λ > 0, we see that f has no minimum.
Consequently, in order for f to have a minimum, we must have P � 0. In this case, as
(x + P−1b)>P (x + P−1b) ≥ 0, it is clear that the minimum value of f is achieved when
x+ P−1b = 0, that is, x = −P−1b.

Let us now consider the case of an arbitrary symmetric matrix, P .

Proposition 4.2 If P is a symmetric matrix, then the function

f(x) =
1

2
x>Px+ x>b

9
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has a minimum value iff P � 0 and (I − PP †)b = 0, in which case this minimum value is

p∗ = −1

2
b>P †b.

Furthermore, if P = U>ΣU is an SVD of P , then the optimal value is achieved by all x ∈ Rn

of the form

x = −P †b+ U>
(

0

z

)
,

for any z ∈ Rn−r, where r is the rank of P .

Proof . The case where P is invertible is taken care of by Proposition 4.1 so, we may assume
that P is singular. If P has rank r < n, then we can diagonalize P as

P = U>
(

Σr 0
0 0

)
U,

where U is an orthogonal matrix and where Σr is an r× r diagonal invertible matrix. Then,
we have

f(x) =
1

2
x>U>

(
Σr 0
0 0

)
Ux+ x>U>Ub

=
1

2
(Ux)>

(
Σr 0
0 0

)
Ux+ (Ux)>Ub.

If we write Ux =
(
y
z

)
and Ub =

(
c
d

)
, with y, c ∈ Rr and z, d ∈ Rn−r, we get

f(x) =
1

2
(Ux)>

(
Σr 0
0 0

)
Ux+ (Ux)>Ub

=
1

2
(y>, z>)

(
Σr 0
0 0

)(
y

z

)
+ (y>, z>)

(
c

d

)

=
1

2
y>Σry + y>c+ z>d.

For y = 0, we get
f(x) = z>d,

so if d 6= 0, the function f has no minimum. Therefore, if f has a minimum, then d = 0.
However, d = 0 means that Ub =

(
c
0

)
and we know from Section 3 that b is in the range of

P (here, U is U>) which is equivalent to (I − PP †)b = 0. If d = 0, then

f(x) =
1

2
y>Σry + y>c

and as Σr is invertible, by Proposition 4.1, the function f has a minimum iff Σr � 0, which
is equivalent to P � 0.
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Therefore, we proved that if f has a minimum, then (I − PP †)b = 0 and P � 0.
Conversely, if (I − PP †)b = 0 and P � 0, what we just did proves that f does have a
minimum.

When the above conditions hold, the minimum is achieved if y = −Σ−1
r c, z = 0 and

d = 0, that is for x∗ given by Ux∗ =
(−Σ−1

r c
0

)
and Ub =

(
c
0

)
, from which we deduce that

x∗ = −U>
(

Σ−1
r c

0

)
= −U>

(
Σ−1

r c 0
0 0

)(
c

0

)
= −U>

(
Σ−1

r c 0
0 0

)
Ub = −P †b

and the minimum value of f is

f(x∗) = −1

2
b>P †b.

For any x ∈ Rn of the form

x = −P †b+ U>
(

0

z

)

for any z ∈ Rn−r, our previous calculations show that f(x) = −1
2
b>P †b.

We now return to our original problem, characterizing when a symmetric matrix,

M =

(
A B
B> C

)
, is positive semidefinite. Thus, we want to know when the function

f(x, y) = (x>, y>)

(
A B
B> C

)(
x

y

)
= x>Ax+ 2x>By + y>Cy

has a minimum with respect to both x and y. Holding y constant, Proposition 4.2 implies
that f(x, y) has a minimum iff A � 0 and (I −AA†)By = 0 and then, the minimum value is

f(x∗, y) = −y>B>A†By + y>Cy = y>(C −B>A†B)y.

Since we want f(x, y) to be uniformly bounded from below for all x, y, we must have
(I−AA†)B = 0. Now, f(x∗, y) has a minimum iff C−B>A†B � 0. Therefore, we established
that f(x, y) has a minimum over all x, y iff

A � 0, (I − AA†)B = 0, C −B>A†B � 0.

A similar reasoning applies if we first minimize with respect to y and then with respect to x
but this time, the Schur complement, A− BC†B>, of C is involved. Putting all these facts
together we get our main result:

Theorem 4.3 Given any symmetric matrix, M =

(
A B
B> C

)
, the following conditions are

equivalent:

(1) M � 0 (M is positive semidefinite).
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(2) A � 0, (I − AA†)B = 0, C −B>A†B � 0.

(2) C � 0, (I − CC†)B> = 0, A−BC†B> � 0.

If M � 0 as in Theorem 4.3, then it is easy to check that we have the following factor-
izations (using the fact that A†AA† = A† and C†CC† = C†):

(
A B
B> C

)
=

(
I BC†

0 I

)(
A−BC†B> 0

0 C

)(
I 0

C†B> I

)

and (
A B
B> C

)
=

(
I 0

B>A† I

)(
A 0
0 C −B>A†B

)(
I A†B
0 I

)
.
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The QR decomposition of a matrix
Matrices > Basics | Matrix products | Special matrices | QR | Matrix inverses | Linear maps | Matrix
norms | Applications

Basic idea

Case when the matrix has linearly independent columns

General case

Full QR decomposition

Basic idea
The basic goal of the QR decomposition is to factor a matrix as a product of two matrices
(traditionally called , hence the name of this factorization). Each matrix has a simple structure
which can be further exploited in dealing with, say, linear equations.

The QR decomposition is nothing else than the Gram-Schmidt procedure applied to the columns of
the matrix, and with the result expressed in matrix form. Consider a  matrix 

, with each  a column of .

Case when  is full column rank
Assume first that the 's (the columns of ) are linearly independent. Each step of the G-S
procedure can be written as

 
We write this as

 
where  ( ) and .

Since the 's are unit-length and normalized, the matrix  satisfies .
The QR decomposition of a  matrix  thus allows to write the matrix in factored form:

 
where  is a  matrix with , and  is ,upper-triangular.

Matlab syntax
>> [Q,R] = qr(A,0); % A is a mxn matrix, Q is mxn orthogonal, R is nxn upper triangular
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Example: QR decomposition of a 4x6 matrix.

Case when the columns are not independent
When the columns of  are not independent, at some step of the G-S procedure we encounter a
zero vector , which means  is a linear combination of . The modified Gram-
Schmidt procedure then simply skips to the next vector and continues.

In matrix form, we obtain , with , , and  has an upper
staircase form, for example:

 
(This is simply an upper triangular matrix with some rows deleted. It is still upper triangular.)

We can permute the columns of  to bring forward the first non-zero elements in each row:

 
where  is a permutation matrix (that is, its columns are the unit vectors in some order), whose
effect is to permute columns. (Since  is orthogonal, .) Now,  is square, upper
triangular, and invertible, since none of its diagonal elements is zero.

The QR decomposition can be written

 
where

1. , ;
2.  is the rank of ;
3.  is  upper triangular, invertible matrix;
4.  is a  matrix;
5.  is a  permutation matrix.

Matlab syntax
>> [Q,R,inds] = qr(A,0);  % here inds is a permutation vector such that A(:,inds) = Q*R

Full QR decomposition
The full QR decomposition allows to write  where  is square and orthogonal (

). In other words, the columns of  are an orthonormal basis for the whole
output space , not just for the range of .

We obtain the full decomposition by appending an  identity matrix to the columns of : 
. The QR decomposition of the augmented matrix allows to write
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where the columns of the  matrix  are orthogonal, and  is upper triangular
and invertible. (As before,  is a permutation matrix.) In the G-S procedure, the columns of  are
obtained from those of , while the columns of  come from the extra columns added to .

The full QR decomposition reveals the rank of : we simply look at the elements on the diagonal of 
 that are not zero, that is, the size of .

Matlab syntax
>> [Q,R] = qr(A); % A is a mxn matrix, Q is mxm orthogonal, R is mxn upper triangular

Example: QR decomposition of a 4x6 matrix.
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