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Executive Summary

The Intelligent Systems Division of the National Institute of Standards and Technology

has been supporting the DARPA Mobile Autonomous Robot Software (MARS) program

over the past two calendar years.

Dr. Doug Gage, the DARPA MARS Program Manager, has expressed interest in an

evaluation of what it will take to achieve human level driving skills in terms of time and

funding. NIST has approached this problem from several perspectives: considering the

current state-of-the-art and extrapolating from there, decomposing the tasks identified by

the Department of Transportation for on-road driving and comparing that with

accomplishments to date, analyzing computing power requirements by comparison with

the human brain, and conducting a Delphi Forecast using the MARS researchers as the

experts in the field of autonomous driving.

Demo III: Current State-of-the-Art

Within DEMO-III, positive and negative obstacles can be detected, but little object

classification is performed. Using the LADAR, terrain is only classified as either

vegetation or ground. By adding color images from cameras, terrain can be further

classified as green vegetation, dry vegetation, soil/rock, ruts, tall grass, and outliers, but

only at very course resolution. The Demo III XUV is badly nearsighted and sensor

limited in its performance.

The primary form of knowledge representation in the world model is multiple occupancy

grid maps with different size cells as a function of the planning horizon at different levels

of control. Underlying data structures are used to associate terrain features with cells in

the map. Because of limitations in the object classification, only a small set of data

structures are available based on sensor data, while a larger set of data structures is

available based upon a priori information.

Planners in the DEMO-III vehicle use value-driven graph search techniques based upon

cost-based computations at all levels within the 4D/RCS hierarchy. Multiple planners

work concurrently at differing time horizons. Though higher-level planners have been

developed to support tactical behaviors and have been tested in simulation, they have not

been implemented in any substantial way on the DEMO-III vehicle. Planners have

primarily performed waypoint following, obstacle avoidance, and ensuring stability of the

vehicle based on the sensed support surface characteristics.
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• Based on extrapolation from the Demo III experience, it will take a new
generation of sensors and another fifteen calendar years of work at the current

level of effort to achieve intelligent on-road driving capability.

DoT Driver Education Task Analysis Decomposition

Using the Department of Transportation Driver Education Task Analysis, which

identifies 1339 different driving tasks that must be covered in a Drivers
1

Ed course that

are relevant to autonomous driving, an analysis has been made of the number of finite

state machine commands that would be required to execute those tasks, the state inputs

from the perception system that would be needed to drive those state machines, and the

situations and entities that would have to be perceived and understood to correctly

identify the necessary states. Table E-l summarizes our estimation of the number of state

tables, situations, world model states, world model entities, and world model entity

attributes we believe are necessary to enable autonomous on-road driving, as described

above.

Knowledge Total Number

State Tables (behaviors) 129

Situations 1000

World Model States 10000

World Model Entities 1000

World Model Attributes 7000

Table E-l: Knowledge Summary

The state tables can be completed with a modest effort of two man-years. The major

problem is obviously then in perception and world modeling. Analysis of driving tasks

has proceeded to the point that the requirements for a new generation of sensors can be

identified.

• Perception is the largest problem in autonomous driving, both for on-road and off-

road driving. A new generation of sensors is needed to provide the necessary

visual acuity. First prototypes can be produced in two to three calendar years at a

cost of $5-8 Million; refined, field hardened and tested production versions will

ultimately take something like $20-30 Million in engineering costs. The software

for perception is at least twice this amount, so total costs for perception will be in

the neighborhood of $100 Million or more.

It will take substantial effort to develop the perception and knowledge engineering

capabilities to set the 10,000 states that drive the state tables to generate correct driving

behaviors. Comparing the accomplishments under Demo III to the requirements from

this analysis, an estimate of necessary resources can be made.

Based on the Task Decomposition of DoT driving tasks, it is estimated that

approximately $300-400 million in funding will be needed to achieve intelligent

on-road driving skills. The ARL and TACOM autonomous mobility programs
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together total approximately $50 Million per calendar year (for multiple projects,

not all of which are relevant). Assuming $15-20 Million is relevant funding, this

would imply that it will take approximately two decades of additional work at

current support levels to reach intelligent on-road driving performance.

• Increased funding would shorten this time horizon. If adequate funding were

available, it is estimated that intelligent on-road driving could be achieved within

a decade, possibly as soon as 2010.

Analysis of Computing Power

Using several approaches to estimation, it is concluded that computing requirements for

driving at intelligent skills will be in the range of 10
11

to 10
14

instructions per second and

that a credible attack on the problem will require a minimum level of 10 to 10

instructions per second. Cluster computers could be built with today’s processors to

achieve these levels.

• Adequate computing power using cluster computers is now or will soon be

available. Computing power should not be a gating element, but engineering

attention needs to be paid to providing adequate processors with adequate inter-

processor communication and software development tools to researchers.

Delphi Forecast

A Delphi forecast, named for the Oracle at Delphi who was said to be able to forecast the

future, is a poll of experts as to when a certain future event might take place. The

concept is that a mean prediction of experts is as good an indicator of future events as is

possible to achieve. A poll was taken of the MARS researchers at the MARS Principal

Investigators’ meeting in San Diego in April, 2003.

• Based on the consensus of MARS researchers, it will take 1 5-20 calendar years

and of the order of $500M to achieve intelligent on-road driving skills.

Several MARS researchers emphasized that setting human level driving skills as the goal

was not the correct approach, that militarily useful capabilities would be achieved short

of that goal. Individual responses were sought from many of the participants to clarify

their positions; those are presented below in Section 6. All researchers felt that continued

research was needed.

• Targeting specific military driving modes to be solved in the foreseeable future

will still require continued research in sensors, perception, knowledge

management and planning.

4
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Conclusions

While the spread in these estimates is significant, the overall conclusions are that:

• Militarily useful autonomous driving capabilities can be developed in

approximately ten to twenty calendar years on continued research. The time

scale will depend upon the level of funding available.

• The cost will be in the range of three to five hundred million dollars, which is

consistent with current funding levels of Army autonomous mobility

programs extended over twenty calendar years.

• If adequate funding were available, it is estimated that intelligent on-road

driving could be achieved within a decade, possibly as soon as 2010.

• The biggest single problem is perception. The attack on the problem should

start with development of a new generation of sensors designed specifically

for autonomous driving.

• Continued research in sensors, perception, knowledge management and

planning, at a level at least equal to current funding is essential, even if the

scope is reduced to targeting specific military driving modes to be solved in

the near term.
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1.0 Introduction

The Intelligent Systems Division at the National Institute of Standards and Technology

(NIST) has been supporting the Defense Advanced Projects Agency (DARPA) Mobile

Autonomous Robot Software (MARS) program over the past two calendar years.

Dr. Doug Gage, the MARS Program Manager, proposed that a significant benchmark for

autonomous driving would be a system equivalent to a human chauffeur. This “robot

chauffeur” would be able to navigate roads and traffic on highways and in cities, finding

and driving to a requested destination. This is, more or less, the capability that Army
recruits bring with them to boot camp. The Army then provides additional training for

those selected to be Scouts, adding specific skills in off-road driving and understanding

of tactical behaviors. The Army could provide the same incremental training for an

autonomous system to produce a capable robot scout.

The questions important to planning at DARPA and the Army are, then, when will we
achieve human equivalent driving capability and how much effort will it take?

NIST has addressed this question in four different ways:

• Extrapolating from the State of the Art as represented by the Army Demo III

Experimental Unmanned Ground Vehicle project

• Estimating the amount of effort to build an autonomous driving system with

the capabilities defined by the Department of Transportation Manual Driver

Education Task Analysis

• Estimating necessary computer processing capability by comparison with the

human brain; and

• Using a Delphi Forecast to poll the MARS researchers to obtain a consensus

estimate of experts in the field of autonomous driving.

Dr. Gage believes strongly that there is an inverse relationship between the time needed

to achieve a goal and the level of funding for work toward that goal. Obviously you can’t

make a baby with nine women in one month, but in most cases you can accelerate

technology development with increased levels of funding. His “time/money” slide is

shown in Figure 1. He points out that this is a caricature of “management decision

space” and is not meant to represent actual programmatic data (KITT is the intelligent car

from the TV series Knight Rider and DATA is the character in Star Trek, Next

Generation).
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Figure 1

While we don’t know what these curves really look like, some inverse relationship

between funding and time scale is undoubtedly valid within ranges of modest funding

relative to the goal complexity.

This report argues from several different standpoints as to what might be the levels of

effort required to achieve the “robot chauffer.” As has just been pointed out, there is a

trade-off between time to achieve a goal and levels of funding; we estimate time frames

assuming current levels of funding and then point out the chances to reduce those time

frames.

1.1. Needs for Future Combat Systems Vehicles

The first question to address is the target goal point: what vehicles are we trying to drive

and where are we driving them?

This report assumes that appropriate vehicle platforms are being developed under other

programs. For example, the XUV platform used in the Demo III program was

specifically developed for autonomous scout missions. Future Combat Systems is

developing three new platforms, a small sensor platform, the Unmanned Armed
Reconnaissance Vehicle (UARV), and a robot “Mule” transport vehicle. In addition, the

UGCV program has an articulated vehicle under development and the Tactical Mobile

Robot (TMR) program developed the “Packbot” and “Throwbot” platforms that will be
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wrapped into FCS but which are not suitable for highway driving. Finally, many
different vehicles have been converted for teleoperation by the Department of Defense

and could be further modified for autonomous driving by the addition of an Autonomous

Navigation System package of sensors, computers, and software.

The primary targets for advanced autonomous driving capability are the FCS and Demo
III platforms. These are under development with substantial funding commitments and

will be available in production versions before intelligent on-road driving is achieved.

Production versions of wheeled vehicles are expected to be qualified for highway driving.

Appropriate vehicle platforms and the ANS baseline are assumed. The problem set that

needs to be addressed, then, is the sensors, the computing platforms and the software

beyond the required ANS capabilities of supervised teleoperation that are needed for

intelligent on-road driving.

Following Dr. Gage's direction, this report focuses on the sensors, computers and

software for autonomous on-road driving, the “robot chauffeur,” with Future Combat

Systems as the primary ultimate customer.

1.2. Needs for Intelligent Transportation Systems (DOT)

Researchers in the Department of Transportation Intelligent Transportation Systems

program envisages extensive use of automated vehicle guidance (AVG) technology for

public transit vehicles, for local shuttles to service public transportation stops, and for

automobiles and trucks in urban environments. [9]

DOT points out that it will be impossible to build sufficient additional road infrastructure

to accommodate the increase in population and the increase in vehicles per capita that can

be expected in the future. The only option is to increase the effective utilization of

existing infrastructure through better public transit and through AVG technology.

DOT sees AVG technology as embodying modifications to the roadway infrastructure

(marked and controlled lanes with computer supervision, wireless communication with

automated vehicles, and controlled entrance and exit gates for AVG lanes) as well as the

sensors and controls needed for basic AVG technology. The sensors and controls needed

for the DOT scenarios are therefore somewhat simpler than those needed for the general-

purpose unrestricted “robot chauffeur.”

Substantial progress in bringing adaptive cruise control and lane following to commercial

and public service applications has been made around the world. This represents an

excellent baseline for further work toward autonomous driving.

8
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1.3. Report Structure

Chapter 2 of this report summarizes the state of the art in terms of the Demo III

experience.

Chapter 3 provides a task analysis based on the DOT manual

Chapter 4 considers the needs for improved sensors.

Chapter 5 analyzes computing power requirements

Chapter 6 presents the results of the Delphi Forecast carried out at the April, 2003,

MARS Principal Investigators’ meeting in San Diego.

Finally, Chapter 7 itemizes the main conclusions drawn in earlier chapters.
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2.0 Current State of the Art

In order to determine how much is it going to take to reach intelligent performance in on-

road and off-road driving, we must first understand what is achievable now. We can use

our current capabilities as a benchmark, and extrapolate out to determine what it would

take to achieve intelligent level of on-road driving performance.

The DEMO III Experimental Unmanned Vehicle (XUV) effort seeks to develop and

demonstrate new and evolving autonomous vehicle technology, emphasizing perception,

navigation, intelligent system architecture, and planning. [16] Many believe that this

effort represents the state of the art in autonomous driving. As such, we will use this

effort to serve as a benchmark to represent what we can do now, and then project to the

capabilities needed to enable intelligent levels of performance. [16]

The autonomous navigation system (ANS) within the DEMO-III effort was recently

declared to have reached Technology Readiness Level 6 (TRL-6), indicating that the

ANS has been demonstrated and tested in a relevant environment. [5] Though focusing

primarily on off-road driving, the authors believe that the technology used in DEMO-III

will lend itself well as a starting point for on-road driving, as discussed below in Section

3.

In this section, we will look at the state of the art of the overarching architecture, and the

three main subsystems within the autonomous navigation systems: perception/sensory

processing, world modeling, and behavior generation.

2.1. Architecture

Within DEMO-III, the 4D Real-Time Control System (4D/RCS, the 4D referring to

planning in three spatial dimensions plus time, as used in the German autonomous

driving program) was used as the underlying architecture within the autonomous mobility

system. This architecture provides a reference model for the identification and

organization of software components for autonomous driving of military unmanned
vehicles. 4D/RCS defines ways of interacting to ensure that missions, especially those

involving unknown or hostile environments, can be analyzed, decomposed, distributed,

planned, and executed intelligently, effectively, efficiently and in coordination. To
achieve this, the 4D/RCS reference model provides well-defined and highly coordinated

functional modules for sensory processing, world modeling, knowledge management,

cost/benefit analysis, and behavior generation, and defines the interfaces and messaging

between those functional modules. The 4D/RCS architecture is based on scientific

principles and is consistent with military hierarchical command doctrine. [1]

10
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Figure 2-1 shows a high-level block diagram of a 4D/RCS reference model architecture

for a notional Future Combat System (FCS) battalion. 4D/RCS prescribes a hierarchical

control principle that decomposes high-level commands into actions that employ physical

actuators and sensors. Characteristics such as timing and node functionality may differ in

various implementations.

24 hr plans

replan every 2 hr

5 hr plans

replan every 25 min

1 hr plans

replan every 5 min

10 min plans

replan every 1 min

min plans

replan every 5 s

5 s plans

replan every 500 ms

500 ms plans

replan every

50 ms

Pan Tilt Iris Focus

Sensors and Actuators

PanH Tilt]
|

Speech Heading 50 ms plans

1 | II p p p |

output every

5 ms

Figure 2-1: A high level block diagram of a typical 4D/RCS reference model architecture. Commands
flow down the hierarchy, and status feedback and sensory information flows up. Large amounts of

communication may occur between nodes at the same level, particularly within the same subtree of the

command tree. UAV = Unmanned Air Vehicle, UARV = Unmanned Armed Reconnissance Vehicle, UGS
= Unattended Ground Sensors

The functions of the various levels in this hierarchical decomposition are as follows:

• At the Servo level, commands to actuator groups are decomposed into control

signals to individual actuators. In the example shown in Figure 2-1, outputs to

actuators are generated every 5 milliseconds (ms). Plans that look ahead 50

ms are regenerated for each actuator every 5 ms. Plans of individual actuators

are synchronized so that coordinated motion can be achieved for multiple

actuators within an actuator group.

• At the Primitive level, multiple actuator groups are coordinated and dynamical

interactions between actuator groups are taken into account. Plans look ahead

500 ms and are recomputed every 50 ms.
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• At the Subsystem level, all the components within an entire subsystem are

coordinated, and planning takes into consideration issues such as obstacle

avoidance and gaze control. Plans look ahead 5 seconds (s) and replanning

occurs every 500 ms.

• At the Vehicle level, all the subsystems within an entire vehicle are

coordinated to generate tactical behaviors. Plans look ahead 1 min and

replanning occurs every 5 s.

• At the Section level, multiple vehicles are coordinated to generate joint

tactical behaviors. Plans look ahead about 10 minutes (min) and replanning

occurs about every minute.

• At the Platoon level, multiple sections containing a total of 1 0 or more

vehicles of different types are coordinated to generate platoon tactics. Plans

look ahead about an hour (hr) and replanning occurs about every 5 min.

• At the Company level, multiple platoons containing a total of 40 or more

vehicles of different types are coordinated to generate company tactics. Plans

look ahead about 5 hr and replanning occurs about every 25 min.

• At the Battalion level, multiple companies containing a total of 160 or more

vehicles of different types are coordinated to generate battalion tactics. Plans

look ahead about 24 hr and replanning occurs at least every 2 hours.

At all levels, task commands are decomposed into jobs for lower level units and

coordinated schedules for subordinates are generated. At all levels, communication

between peers enables coordinated actions. At all levels; feedback from lower levels is

used to cycle subtasks and to compensate for deviations from the planned situations.

Figure 2-1 shows levels that are specific to military vehicles and, above the vehicle level,

to the coordinated control of multiple military vehicles. Each vehicle will contain

surrogate levels for the higher levels of planning above the vehicle level, such that if

communications are lost with external higher-level planners, each vehicle can

autonomously generate appropriate plans for itself on its own. In Section 3 a hierarchical

decomposition will be shown for on-road driving, where each vehicle is assumed

independent and must create its own plans for complete trips, and where the specific level

designations are renamed appropriately.

2.2. Sensors/Sensory Processing

Sensory processing algorithms use sensor data to compute vehicle position, range,

obstacle lists, obstacle positions, and terrain information. The suite of sensors used in the

mobility system include a General Dynamics/Schwartz Electro-Optics Scanning Laser
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Rangefinder (LADAR) 3
, a pair of color cameras for stereo vision, a stereo pair of

Forward-Looking Infra-Red (FLIR) cameras, a stereo pair of monochrome cameras, a

pan-tilt platform, a global positioning system (GPS) sensor, a force bumper that alerts the

system to obstacles in the vehicle’s immediate path, and an inertial navigation system

(INS) sensor. All sensors are mounted on the vehicle, which is equipped with electric

actuators on the steering, brake, transmission, transfer case, and parking brake. Feedback

from the sensors provides the controller with engine rotations per minute, speed,

temperature, fuel level, etc. A Kalman filter computes vehicle position and orientation

using data from the internal dead reckoning system and the carrier phase differential GPS
unit.

2.2.1. LADAR sensor

The LADAR sensor provides approximately 60,000 point range measurements per

second in an image array of 32 by 180 pixels covering a field of view (FOV) of about 20°

in elevation by 90° in azimuth. The sensor is mounted on a pan/tilt platform to increase

its rather narrow 20° vertical field of view (FOV). The range of the tilt motion is ± 30°

resulting in an accessible elevation field of view of about 80°. Using a priori knowledge

about the location and orientation of the LADAR mounting on the vehicle, calibration

factors, and vehicle position data, the range information is transformed into position and

orientation values in a world coordinate frame. A typical frame is shown in Figure 2-2

below. The resolution is quite course (.5 degree/pixel) and the sensor can only see the

ground out to about 20 m, so the vehicle is quite nearsighted. This scene is of a soldier at

a distance of about 20m. Obviously the image is very crude and does not allow object

identification at any distance.

Certain commercial software and tools are identified in this paper in order to explain our research. Such

identification does not imply recommendation or endorsement by the National Institute of Standards and

Technology, nor does it imply that the software tools identified are necessarily the best available for the

purpose.
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Figure 2-2: Demo III Scanning LADAR Image

Obstacles are defined as objects that project more than some distance above or below the

ground plane (defined as the plane on which the wheels of the vehicle lie). Positive

obstacles, which extend above the ground plane, are detected directly in the range

images, while negative obstacles are detected by inference as holes in the world model

map.

After a group of pixels has been labeled as an obstacle, additional processing is

performed to classify the obstacle type. The quality of the GD/SEO range data precludes

more than a coarse classification, which currently identifies only vegetation and ground.

[
11

]

2.2.2. Stereo vision sensors

Stereo vision provides another way of computing range information. The system is

equipped with a color camera pair with a 60° FOV and a FLIR camera pair with a 40°

FOV for night vision. The stereo system includes an iris controller; an image acquisition

unit; a stereo range algorithm; positive and negative obstacle detection algorithms; and a

terrain classification algorithm.

A multi-resolution approach, working from coarse to fine, is taken to determine

correspondence between the left and right images, resulting in a range image. For each

range image column, a set of obstacle detectors is applied to extract gaps and

discontinuities in the range data that indicate non-traversable regions. Non-traversable

regions are classified into either negative or positive obstacles. Negative obstacles are

detected by checking for gaps in the range data followed by a range jump. Positive

obstacles are detected by checking for upward slanted edges in the range data, i.e., any

upward protrusion out of the ground plane steep enough to be non-traversable or to cause

a tip-over hazard.

The LADAR data generally proved to be more robust than stereo. Stereo does not work

well when there are few definite verticals and does not work well when there is too much
fine-grained texture across the entire scene.

Terrain classification is performed on color images taken from one of the stereo images.

Classification types currently include green vegetation, dry vegetation, soil/rock, ruts, tall

grass, and outliers. The classification algorithm relies on color, and is based on Bayesian

assignment. [11]

Salient Point: Within DEMO-III
,
positive and negative obstacles can be detected

,
blit

little object classification is performed. Using the LADAR, terrain is only classified as

either vegetation or ground. By adding color imagesfrom cameras, terrain can be
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further classified as green vegetation , dry vegetation, soil/rock, ruts, tali grass, and
outliers, but only at very course resolution.

2.3. World Model

For the purpose of this paper, we describe the world model as

“the system's internal representation of the external world. It provides a central

repository for storing sensory data in a unified representation, and decouples the

real-time sensory updates from the rest of the system... World modeling

processes fuse information from multiple sensors, including navigation sensors,

LADAR, and stereo vision. The world model incorporates a set of maps at

multiple resolutions. Each map fuses sensory information and a priori knowledge

into its occupancy grid representation. Information at different hierarchical levels

has different spatial and temporal resolutions. The map is north-oriented and

scrolls as the vehicle moves. Various features are integrated over time, computing

confidence and filtering out spurious false detections.” [11]

2.3.1. Subsystem and Primitive Levels

Data from multiple sensor modalities is fused in an occupancy grid map in a way suitable

for path planning and vehicle control. The map consists of a two-dimensional array

(301x301 cells) containing information extracted from the processed sensor data. The

total extent of the map used in Demo III is 120 m x 120 m, so each cell in the map grid

represents an area of 0.4m x 0.4m. The information stored in a cell includes:

• The average ground elevation height, the variance of the height, and an elevation

confidence measure.

• A data structure describing the terrain covered by the cell. This includes a terrain

label (tall grass, dry vegetation, ruts, etc.) and a cost factor for determining the

relative safety of traversing that cell.

• A linked list structure describing the type of object viewed by the sensor (e.g.,

roads, buildings, fences, etc.). Each object has a name, a position, a confidence

measure, and a time stamp. [11]. Note that because of limitations in object

classification, this linked list is available in concept but has not been fully

implemented on the DEMO-III vehicle. Only a small set of data structures can be

classified based upon sensor data.

2.3.2. Vehicle and Section Levels

The vehicle and section levels also use a modified form of the obstacle grid map, with

each cell representing a lm x lm space or a 10m x 10m space. At these higer levels,

however, an a priori knowledge base is linked to cells in these maps which contains a

very rich representation of features in the outside world at a resolution and extent that is

dictated by the level of the architecture where it resides. Information in the knowledge

database is stored in attribute layers, where each group of related features is represented

as an independent layer. In Demo III, layers include an a priori layer that contains static
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knowledge about the environment and an obstacle layer that contains dynamic

knowledge. The basic form of the layer is a combination of a regular /7-dimensional grid

of cells that represents the system's discrete state space with regard to the layer's features

and a database of specific feature instantiations. Each cell of the grid structure contains a

set of flags that denotes which of that layer's possible features are contained in the cell

and pointers to the specific instantiations of each contained feature. Features, along with

their attributes, are stored in an underlying relational database. A feature may be a road,

with attributes including the number of lanes, speed limit, road marking, etc. If a cell in

the obstacle map contains a road object, a bi-directional pointer would exist between the

instantiation of the feature in the relational database and the cell in the obstacle map. [11]

Salient Point: The primaryform ofknowledge representation in the world model is

multiple occupancy grid maps with different size cells as afunction ofthe planning

horizon at different levels ofcontrol. Underlying data structures are used to associate

terrainfeatures with cells in the map. Because oflimitations in the object

classification, only a small set ofdata structures are available based on sensor data,

while a larger set ofdata structures is available based upon a priori information.

2.4. Behavior Generation/Planner

The behavior generation subsystem uses value-driven graph search techniques based

upon cost-based computations at all levels within the previously described 4D/RCS
reference model architecture. The function of the behavior generation at every level of

the hierarchy is the same: to create ordered time-tagged sets of actions to be performed

by the subordinate levels and to execute these actions.

2.4.1. Section and Vehicle Level

The role of the section level planner is to generate plans that last approximately 10

minutes and span approximately 1 0,000 meters in length with waypoints approximately

every 500 meters. The role of the vehicle level planner is to generate plans that last

approximately 1 minute and span approximately 1,000 meters in length with waypoints

every 50 meters.

At the section and vehicle level, the planner mixes a rule-base with a value-driven cost

evaluation to perform behavior generation. This allows vehicles to move across the

battlefield in an intelligent fashion. For example, this means that the vehicle does not

only move across the battlefield in a safe manner, but also can perform specific military

behaviors that are governed by rules from military doctrine, such as formation

maintenance or over-watch, while seeking out or avoiding certain terrain features to

allow for stealthy movement. [2] The planner at these levels also plans on incrementally

created planning graphs as described in [3].

This planner was ported to the XUV for DEMO-III but not used to its full capacity due to

the emphasis on the lower-level mobility and planning issues. This planner was used to a

greater extent, however, in other unmanned vehicle demonstrations. Most tactical
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behaviors, such as the ones described in the previous paragraph, remain elusive and were

not exhibited in any meaningful capacity during the DEMO-III effort.

2.4.2. Subsystem and Primitive Level Planner

The role of the subsystem level planner is to generate plans that last approximately 5

seconds and span approximately 100 meters in length with waypoints approximately

every 5 meters. The subsystem level representation only contains obstacles and a priori

data. The trajectories used by this level are straight-line approximations. Vehicle

dynamics are considered at the primitive level and are ignored at the subsystem level.

The planner finds the optimal shortest obstacle-free path available in the graph. [13]

The role of the primitive level planner is to generate plans that last approximately 0.5

seconds and span approximately 1 0 meters in length with waypoints approximately every

0.5 meters. At the primitive level, the support surface is used to determine the stability as

well as the roughness of the ride through several potential plans. The primitive level

utilizes a set of pre-computed trajectory path templates that include the vehicle dynamics,

including linear and angular speed and acceleration. The throttle, brake, and steering

actuators can only change the linear and angular speed at certain limited rates, which

means the vehicle can only execute certain limited trajectories. A set of those trajectories

that span the possible set of all trajectories are overlaid on the occupancy grid map. Each

trajectory is then followed from cell to cell, calculating the cost to traverse each potential

path. The cost function includes vehicle pitch and roll, roughness of the terrain, terrain

characteristics, and all linear and angular accelerations. In addition, each possible

trajectory is checked for protruding objects that may hit the undercarriage.

Another important factor is whether a cell contains recent sensor data. The cost

evaluation will assign larger costs to trajectories that place wheels of the vehicle in cells

that have never been seen by a sensor because these cells have unknown elevation and

may be holes or ditches. All of these parameters are taken under consideration in order to

calculate the cost of each trajectory. Replanning at this level is done at 4-10 EIz. [13]

Salient Point: Planners in the DEMO-III vehicle use value-driven graph search

techniques based upon cost-based computations at all levels within the 4D/RCS
hierarchy. Multiple planners work concurrently at differing time horizons. Though
higher-level planners have been developed to support tactical behaviors and have been

tested in simulation, they have not been implemented in any substantial way on the

DEMO-III vehicle. Planners have primarily performed waypointfollowing, obstacle

avoidance, and ensuring stability ofthe vehicle based on the sensed support surface

characteristics.

2.5 Extrapolating from the Demo III Experience

The discussion above highlights perception as the “tallest pole in the tent.” Demo III has

had some significant success, but it is badly nearsighted and can see only with very
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course resolution. Cost-based planning has been quite successful to the extent that the

sensor generated obstacle maps contain adequate data. Large obstacles, both positive and

negative, are routinely avoided and the vehicles can successfully follow roads and

waypoints across modest off-road terrain.

As will be analyzed in the coming sections, the most important near term focus should be

on new generations of sensors and sensory perception. The current CTA extension of

Demo III is indeed committing substantial resources to new generations of LADAR, but

more work is needed. There is no one responsible for developing sensors specifically for

autonomous driving but there should be.

Considering the time and resources that have been spent on Demo III, it is roughly

estimated that another decade and total funding of the order of several hundred million

dollars will be needed to achieve capability close to intelligent performance in driving.

This is roughly a continuation ofcurrent levels offundingfor approximately another

fifteen calendar years.

As was pointed out in the Introduction, Section 1, there is a trade-off between levels of

funding and time to realize needed capabilities. In this case we estimate that doubling of

effort (i.e. doubling offunding) would cut the time to realize intelligent driving to no

more than a decade. That is, intelligent driving could be achieved within one decade

and possibly as soon as 2010 ifadequatefunding were provided.

Of particular value to the Demo III continuation would be fielding of multiple vehicles

with full support teams such that demonstrations and testing could be carried out in

parallel with development. The current practice is to stop development during

demonstrations and field tests since the same vehicles and same staff is responsible for all

of these activities.
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3.0 Task Decomposition

3.1. Approach

As part of the DARPA MARS program, an effort has focused on analyzing what it would

take to achieve intelligent performance for on-road driving. The goal of this effort is to

provide a task analysis description of the on-road driving task at a level of detail to be

able to support work in the design and development of autonomous driving systems. This

effort, therefore, requires the collection, ordering, and representation of the knowledge

set that encompasses all of the on-road driving activities. This knowledge set has been

assembled from a number of different sources. The single largest source document has

been the Department of Transportation (DOT) manual entitled Driver Education Task

Analysis, Volume 1, Task Descriptions [14], authored by James McKnight and Bert B.

Adams. Table 3-1 lists each section of the DOT manual, and includes the number of

driving tasks that were listed in each section that are appropriate for autonomous driving.

Examples of tasks that are not appropriate include adjusting mirrors, changing the oil,

and adjusting head support.

Significant additional sources have been the DOT Manual of Uniform Traffic Control

Devices (MUTCD) document [17], numerous state traffic law documents, and

considerable discussion by the authors in attempting to mine their own driving task

knowledge.

DOT Manual Section # Section Description Number of Relevant Task

Items

11 Pre Operation 5

12 Starting 30

13 Accelerating 54

14 Steering 17

15 Speed Control 13

16 Stopping 20

17 Backing Up 12

18 Skid Control 17

21 Surveillance 32

23 Navigation 10

24 Urban Driving 16

25 Highway Driving 10

26 Freeway Driving 22

31 Following 30

32 Passing 67

33 Entering & Leaving Traffic 18

34 Lane Changing 13

35 Parking 76
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36 Reacting To Traffic 202

41 Negotiating Intersections 132

42 On Ramps and Off Ramps 82

43 Negotiating Hills 26

44 Negotiating Curves 13

45 Lane Usage 11

46 Road Surface &
Obstructions

135

47 Turnabouts 35

48 Off-Street Areas 55

49 RR Crossings, Bridges,

Tunnels

55

51 Weather Conditions 21

52 Night Driving 32

61 Hauling & Towing Loads 42

62 Responding to Car

Emergencies

31

63 Parking Disabled Cars 5

Total 1339

Table 3-1: Relevant DOT Manual Task Items

The above documents provided a large set of the on-road knowledge as it applies to

human drivers. These documents, however, have the shortcoming of not detailing the

assumed driving knowledge such as the understanding of what attributes of roads and

intersections are to be perceived, how vehicles are to be characterized, how objects (both

animate and inanimate) are to be sensed in order to allow an autonomous computer

control system to recognize and reason about them relative to the driving task context.

As a result, a major effort of this work has been to attempt to define the database

structures that might be used to represent all of the knowledge required about roads and

entities.

The overall approach is to analyze the driving tasks through a discussion of a large

number of scenarios of particular on-road driving subtasks and to derive from these

descriptions a task decomposition tree representation of all the task activities at various

levels of abstraction and detail. From this task tree we can organize the activities into a

more rigorous layering by the artifice of identifying an organizational structure of agent

control modules that are responsible for executing the different levels of the task

decisions. The organization structure which was developed for this effort can be found in

Figure 3-1

.

One may notice that the terminology used in the agent control models at each level of the

control hierarchy is different then that present in Figure 2-1 in Section 2. In both

hierarchies, the terminology used is tailored towards the domain of interest. Table 3-2

shows the correlation between the terminology of Figure 2-1 in Section 2 and Figure 3-1

in this section. While the terminology is different, the levels correspond and the time

horizons for planning and replanning are very similar.
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Figure 2-1 in Section 2

(Future Combat Systems Hierarchy)

Figure 3-1 in Section 3

(On-Road Driving Hierarchy)

Servo Steer Servo, Speed Servo

Primitive Goal Path Trajetory

Subsystem Elemental Maneuver Subsystem

Vehicle DriveBehavior Manager

Section RouteSegment Manager

Blatoon Destination Manager

Company Journey Manager

Table 3-2: Terminology Correlation Between Control Hierarchies

This use of separate executing agents organized into an execution hierarchy provides a

mechanism to formalize the task decision tree by assigning certain decisions to particular

agent control modules. This creates well-defined sets of subtask commands from each

supervisor agent control module to its subordinate agent control module, thus forcing us

to group and label various sets of related activities of the driving task with a context

identifier such as “PassVehlnFronf “TumLeftAtStopSign”,

“PullOffOntoLeftShoulder” etc. Each of these identifiers is really a subtask goal

command at different levels in the execution hierarchy. The task decision rules

appropriate to each of these subtask goal commands that identify the partial task

decomposition of the driving task that occurs within the one agent control module’s level

of responsibility can be encoded within Finite State Machines (FSMs). These FSMs can

be represented in both a state graph (Figure 3-2) as well as a state-table format (Figure 3-

3). In each of these FSMs are structured the set of rules that identify both the particular

situations that will trigger the FSM to step to the next state and the output action which is

the result of this task decision. This applies a well-structured formalism to the task

description while keeping it easily understandable to the user since each FSM only

encodes the small number of rules associated with one particular subtask activity at one

level in the task decomposition decision tree. [4]

It should be noted that there is a distinction between the agent hierarchy in Figure 3-1 and

the organizational unit hierarchy in Figure 2-1 . An example of an agent hierarchy is

(private, lieutenant, captain, major, colonel, general). An example of an organizational

hierarchy is (vehicle, section, platoon, company, battalion). Further discussion of this

distinction can be found on page 60 of [1].
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Figure 3-2: State Graph Representation of “Pass on Two-Lane Road”
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Once the FSMs have been encoded for each agent control module for all of the driving

tasks, we have essentially represented the main decision processing knowledge set as

many small groups of well ordered rules in an easily referenced (by task context and level

of abstraction), and easily modifiable (each FSM can easily have additional rules added

to it as additional alternate actions and their triggering situations are discovered) format.

The FSMs described above are used to encode the task decomposition knowledge. Each

line of each state table uses some symbolic value to describe the present situation that

must be matched in order to execute the corresponding output action of that rule. The

processing required to evaluate that this particular situation is true can be thought of as a

knowledge tree lying on its side, funneling left to right, from the detailed sensory

processing branching until all of the values have been reduced to the one appropriate

situation identification encoded in a symbolic value such as “ConditionsAreGoodToPass”

(see Figure 3-4). This lateral tree represents the layers of refinement processing made on

the present set of world model data to come to the conclusion that a particular situation

now exists such as “ConditionsAreGoodToPass”.

PLAN STATE TABLE

Figure 3-4: World Model Data Dependencies

The identification of these layers of knowledge processing to evaluate to the situation

value is done in reverse. We know that we cannot change into the oncoming traffic lane

(the “ChangeToLeftLane” action) during the passing operation until

“ConditionsAreGoodToPass”. Now we have to determine what are all of the things that

have to be taken into consideration in order for this to be true. To determine this, many
different example scenarios are reviewed to determine all of the pieces of knowledge

required for all of these variations. The results are grouped by category into (in this

example) five major evaluation areas. Thus, to be able to say that the

“ConditionsAreGoodToPass”, we first had to evaluate that each of the five sub groups

were true, namely, the five situations of “LegalToPass”, “EnvironmentSafeToPass”,

“SituationlnFrontOKtoPass”, “SituationlnBackOKtoPass”, and

“OncomingTrafficOKtoPass”, all had to be true.
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In this example, we have clustered all of the rules of the road that pertain to the passing

operation at this level of task detail into the “LegalToPass” sub group evaluation. We
have itemized nine world states to be evaluated and we have named them with the

identifiers such as “NoConstructionlnPassZone”, “NoTransitOrSchoolBusStopping”,

“NoPassZone-NotlnEffecf’, “LaneMarkingsAllowPass”, “NoIntersectionsInPassZone”,

“NoRailroadXInPassZone”, etc.

These world states can now be further broken into the primitive world model entities we
need to be able to measure (such as vehicles, their speed, direction, location, lane

markings, signs, railroad tracks, etc.) in order to determine that these world states exist.

These primitive world model entities then set the requirements for the sensory processing

system we need to build to support these control tasks. Everything has been determined

in the context of individual tasks we want the system to be able to do.

3.2. Metrics From The Task Decomposition Effort

Based upon preliminary work performed using the above analysis technique, we can

estimate:

• the number of state tables that are necessary to capture all the behaviors that we
wish the vehicle to execute,

• the number of situations that are needed to trip the actions in the state table,

• the number of world model states that must be true for a situation to be evaluated

as true,

• the number of world model entities that must exist to be able to evaluate the

world model states, and

• the number of attributes that must exist for the world model entities.

The current status of this effort is discussed later in this section and summarized in Table

3-3 in Section 3.2.6.

3.2.1. World Model States

As shown in Figure 3-1, there are 129 state tables (commands) that are captured among
all of the control modules in the task decomposition hierarchy. Each state table can be

seen as a type of behavior that the vehicle must be able to exhibit while driving on-road.

These behaviors are:

• Into Journey Manager: Do Journey

• Out of Journey Manager: InitializeSystem, MakeVehOperational,

ShutDownVehicle, TumOffSystem, Goto Destination, FollowVehicle

• Out of Destination Manager: InitializeSystem, StartUpVehicle,

ShutDownVehicle, TumOffSystem, GoOn TurnRightOnto
,

GoOn TumLeftOnto
,
GoOn Becomes

,
GoOn

,
StopAt

,

FollowVehicle
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• Out of Route Segment Manager: InitSubsystems, StartUpVehicle,

ShutDownVehicle, TumOffSubsystems, FollowRoad, CrossThruIntersect,

GoLeftTo
,
GoRightTo

,
MakeUTum, BackupTo

,

RespondToOwnVehEmerg, AccommodateSchoolBus,
AccommodateEmerVeh

• Within Drive Behavior Manager:

o FollowRoad: PassVehlnFront, DriveOnTwoLaneRd,

DriveOnMultiLaneRd, PullOntoRoad, ChangeLanesToGoFaster,

ChangeToGoalLane, AccommodatePassingVeh,

RespondToFollowingVeh, NegotiateLaneConstriction,

RespondtoPedestrian, RespondToBicyclist, RespondToVehEnteringLane,

RespondToVehEnteringRoad

o CrossThru_Intersect: CrossThruStopSign, CrossThruYieldSign,

CrossThruSignalLight, CrossThruUncontrolledlnter,

MergelntoTravelLane, AccommodateMerge, NegotiateRRCrossing,

Negotiate TollBooth, Negotiate PedestrianCross

o GoLeftTo: TumLeftStopSign, TumLeftYieldSign,

TumLeftSignalLight, TumLeftUncontrolledlnter, TumLeft lntoDrive,

TumLeft FromDrive, TumLeft lntoParkingSpace, ForkLeft,

BackLeft lntoLane, BackLeft lntoDrive, BackLeft lntoParkingSpace,

BackOutGoLeft

o GoRightTo: TumRight StopSign, TumRight YieldSign,

TumRight SignalLight, TumRight Uncontrolledlnter,

TumRight lntoDrive, TurnRight FromDrive,

TumRight lntoParkingSpace, ForkRight, BackRight lntoLane,

BackRight lntoDrive, BackRight lntoParkingSpace, BackOut GoRight

o Make_U_Turn: Do U TumAtlntersection, TumAroundUsingDrive,

TumAroundlnRoad
o BackupTo : BackupVehicle, ParallelPark

• Out of Drive Behavior Manager: InitSubsystems, StartUpVehicle,

ShutDownVehicle, TumOffSubsystems, FollowLane, PassOnLeft, PassOnRight,

TumRightTo , TumLeftTo ,
StopAt, PullOff OnLeftShoulder,

PullOff OnRightShoulder, GotoGap LeftLane, GoToGap RightLane,

PreMerge LeftLane, PreMerge RightLane, ChangeTo LeftLane,

ChangeTo RightLane, StopAtlntersection, AbortPass, CreepForward,

PeekforPass, BackUp, BackOut ToGoLeft, BackOut ToGoRight,

Backlnto FromLeft, Backlnto FromRight, DoUTum Atlnter,

DoUTum MidRoad, Do3Pt_Utum, AllowVehToEnter FromLeft,

AllowVehToEnter FromRight, YieldToPassingVehicle, ReactToPassingVeh,

ReactToPassingVehAbort, PullOntoRd FromLeftSh,

PullOntoRoadFromRightSh
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• Out of Elemental Maneuver Subsystem: InitSubsystems, StartUpVehicle,

ShutDownVehicle, TumOffSubsystems, FollowStLine, FollowCirArcCW,
Follow_CirArc,CCW

• Out of Prim Trajectory to Steer Servo:

GoAt_SteerAngle,AngleVel,AngleAcc, InitializeSubsystem, PrepforStarting,

PrepForShutDown

• Out of Prim Trajectory to Speed Servo: GoAtSpeed, Acc, Dir(Fwd/Rev),

InitializeSubSystems, PrepforStarting, PrepforShutDown, MaintainForPark/Idle

3.2.2. Situations

Situations are shown on the left column of the state table, and indicate what has to be true

about the world for an action in the state table to occur. In the effort, we estimate that

there are, on average, seven situations per state table. Considering that we current have

129 state tables, that would result in approximately 1000 situations. In the case of

passing on a two lane undivided road, as shown in Figure 3-3, the situations are:

• Conditions Good To Pass

• Conditions Good To Pass In Passing Lane

• Cleared Of Passed Vehicle / Sufficient Return Space

• Returned To Lane

• Moving Into Passing Lane / Need to Abort Pass

• OK To Return To Lane

• Returned To Lane

• Passing Vehicle / Need to Abort Pass

In this case there are eight situations. In other state machines, there are often slightly

more or slightly less. Overall, seven is shown to be a reasonable average among all of the

state tables.

3.2.3. World Model States

World model states are individual states of the world that must collectively be true for an

overall situation to be true. We estimate that there are, on average, 10 world model states

per situation. Considering that we currently have approximately 1,000 situations, that

would result in approximately 10,000 world model states.

As an example, referring to Figure 3-4, in order for the situation

“ConditionsGoodToPass” to be true, all of the world model states must evaluate to true,

including:

• LegalToPass (which includes the world model states):

o NoConstructionlnPassZone

o NoTransitOrSchoolBusStopping

o NoPassZone-NotlnEffect

o LaneMarkingsAllowPass
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o NoIntersectionlnPassZone

o NoRailRoadOnPassZone

o NoBridgelnPassZone

o NoTunnellnPassZone

o NoTollBoothlNPassZone

• EnvironmentSafeToPass (which includes the world model states):

o WeatherNotObscuringPassZone

o RoadSplashNotSignificant

o WindsNotSignificant

o RoadSurfaceNotTooSlipperyToPass

o RoadSurfaceSuitableToPass

o OwnVehicleCapableToPAss

• SituationlnFrontOKToPass (which includes the world model states):

o NoHillBlockingSightlnPassZone

o NoCurveBlockingSightlnPassZone

o NoVehiclelnFrontAttemptingLeftTum

o NoVehicleEnteringRoadlnPassZone

o VehInFrontNotBlockingSightINPassZone

o NoPostalVehicleOrDeliveryVehicleMakingStops

o NoPedestrianOnRoadSidelnPassZone

o SufficientRetumSpacelnFrontAfterPass

o VehiclelnFrontDrivingNormally

o VehiclelnFrontNotAttemptingToPass

o NoPersonOnBikelnPAssZone

o NoVehicleOnRoadsideReadyToComelntoFane

o NoActiveEmergencyVehiclelnFront

• SituationlnBackOKToPass (which includes the world model states):

o VehiclelnBackNotAttemptingToPass

o VehiclelnBackNotTailgating

o VehicleINBackNotClosingRapidly

o NoActiveEmeregencyVehiclesFollowing

• OnComingTrafficOKToPass (which includes the world model states):

o NoAbnormalOnComingVehicleBehavior

o SufficientTime/DistToAvoidOnComingVehicle

In this case there are 39 world model states. This represents one of the more complex

state tables that was analyzed. Overall, 10 seems to be a reasonable average among all of

the situations.

3.2.4. World Model Entities

World model entities are objects in the world that can be given a name and have

attributes and state. For the most part, these are “physical things” that have geometric and

dynamic properties and characteristics, and are either known a priori or can be detected

by the sensors. Again referring to Figure 3-4, world model entities include:

• Own vehicle
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• Construction

• School bus

• No passing zone sign

• Lane markings

• Pedestrian crossing

• Pedestrians

• Indicators of other road intersecting

• Railroad crossings

• Bridge

• Tunnel

• Toll Booth

• Weather visibility

• Splash

• Wind
• Road surface friction

• Road integrity

• Road visibility

• Vehicle in front

• Vehicle in front field of view

• Postal vehicle or delivery vehicle

• Road in front of vehicle in front

• Vehicle in front state

• Bicyclist

• Motorcyclist

• Vehicle on side of road

• Emergency vehicle

• Vehicle in back

• Vehicle following

• Oncoming vehicle

World model entities are ubiquitous, in the sense that they can be generally usable to

determine multiple different world model situations or states. For example, the states of

vehicles in front of you can be used to determine if it is safe to pass (as in Figure 3-4), but

can also be used to choose an appropriate following distance One way to estimate the

number of world model entities is to sum up all the unique world model entities among
all of the state tables. Since all of the state tables and supporting world model states are

not yet completed, one can only do a gross estimation based on progress to date. As such,

we estimate that approximately 1000 world model entities need to be represented to

enable on-road driving.

3.2.5. World Model Attributes

Attributes and states of world model entities can be computed from sensory signals, or

can be predicted from a priori knowledge. In many cases, knowledge of the task defines
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what attributes need to be sensed. For example, referring to Figure 3-4, attributes of the

“vehicle in back" that are important to know for this activity are the vehicle’s:

• Position

• Speed

• Heading

• Acceleration/Deceleration

• Behavior

• Turn Indicators

• Headlights

• Horn

• Assigned Intent

On average, we estimate that there are approximately seven attributes of interest for each

world model entity. Considering that we estimate that there are approximately 1000

world model entities of interest, that results in approximately 7,000 world model

attributes.

3.2.6. Summary

Salient Point: Table 3-3 summarizes our estimation of the number of state tables,

situations, world model states, world model entities, and world model attributes we
believe are necessary to enable autonomous on-road driving, as described above.

Knowledge Total Number
State Tables (behaviors) 129

Situations 1000

World Model States 10000

World Model Entities 1000

World Model Attributes 7000

Table 3-3: Knowledge Summary

3.3. Comparison to Capabilities in DEMO-III

Now that we have estimated what knowledge is necessary to enable autonomous on-road

driving, we will explore how much of this knowledge has been encoded in the DEMO-III
effort described in Section 2 to determine where we are now and how far we have left to

go.

Although DEMO-III is focusing on off-road driving as opposed to on-road driving, it is

the authors' belief that many of the same underlying functionalities at the lower levels are

fundamentally the same. In both case, the vehicle is recognizing objects, planning

trajectory paths, and performing lane/path following. As such, the authors’ feel that the

DEMO-III effort serves as a reasonable benchmark to set time and funding estimates for

implementing autonomous on-road driving.
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It should be noted that although DEMO-III uses a cost-based planning approach as

opposed to the finite state machine approach described in this section, it is still possible to

draw meaningful correlation between the approaches by comparing the functionality that

are able to be accomplished in each approach.

As mentioned in Section 2.4.2, much of the work exhibited in DEMO-III focused on

waypoint following and trajectory generation. If we compare the DEMO-III capabilities

to the state tables listed in Section 3.2.1, we can show that 10 out of the 129 commands
have been implemented in DEMO-III. These 9 commands are shown below:

• Into Journey Manager: (none)

• Out of Journey Manager: (none)

• Out of Destination Manager: (none)

• Out of Route Segment Manager: (none)

• Within Drive Behavior Manager: (none)

• Out of Drive Behavior Manager: InitSubsystems, TumOffSubsystems,

FollowLane

• Out of Elemental Manuever Subsystem: Follow StLine, Follow CirArcCW,

Follow_CirArc,CCW (note that these are all combined into one command in

DEMO-III)

• Out of Prim Trajectory to Steer Servo: InitSubsystem, TumOffSubsystem,

GoAt_SteerAngle,AngleVel,AngleAcc,

• Out of Prim Trajectory to Speed Servo: InitSubsystem, TumOffSubsystem,

GoAt_Speed,Acc,Dir(Fwd/Rev), MaintainForPark/Idle

We can estimate that DEMO-III was able to accomplish about 8% (10/129) of the tasks

that are needed to achieve acceptable behavior while driving on-road.

Now, if we look at the amount of time and money that have been put into DEMO-III to

realize that 8%, we can estimate that there has been approximately 10 calendar years of

effort at a funding level of approximately 30 million dollars, fairly evenly split between

the efforts of General Dynamic Research Systems (GDRS) and NIST. This is only the

money that has been applied to the vehicle navigation system, not what has been applied

to building the hardware for the vehicle. Assuming that all commands are at equal level

of complexity, namely, that the effort needed to realize the command is equivalent for all

commands, then if 30 million dollars gets you 8% of the way there, that it would take

between 350 and 400 million dollars to get you 100% of the way to achieving acceptable

behavior while driving on-road.

Current funding for Army autonomous mobility programs at ARL and TACOM total

approximately $50M per calendar year. This funding covers many projects and only a

part of it is targeting the problem this report addresses. Funding specifically for

autonomous navigation is of the order of S15-20M per calendar year. The conclusion is

that, if current funding is continued, it will take more than twenty calendar years to reach

intelligent driving capability.
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The Future Combat System (FCS) Autonomous Navigation System (ANS) effort is the

ultimate target for autonomous driving capability. This effort is funded at 145 million

dollars over four years, which corresponds to about 35 million dollars per calendar year.

A major caveat, however, is that most of the $145 Million will go toward hardening

already proven capability, not advancing the state of the art, since the ANS procurement

specification only requires supervised teleoperation (which was demonstrated more than

a decade ago under the Demo II program) with autonomy as a goal, not a requirement. If

the goals for autonomous driving are to be achieved, other programs must be funded by

DARPA and the Army.

Salient Point: Based upon the functionality achieved in DEMO-III and the driving

task analysis performed by NIST as part of the DARPA MARS project, we estimate

that it will take approximately 300 to 400 million additional dollars to achieve

acceptable autonomous driving behavior, which would take 20 calendar years or

more based upon current funding levels.

3.4 Comparison to Current Status of Task Decomposition Effort

As mentioned earlier, we have only begun to explore all of the knowledge that is

necessary to enable acceptable on-road-driving. Table 3-4 compares what has been

accomplished to date against what is necessary to completely capture the knowledge for

acceptable on-road driving.

Knowledge Total Number Completed To
Date

Percentage

Completed

Time to

Complete

the Effort

State Table 129 60 46% 0.5 person-

month

Situation 1000 500 50% 0.5 person-

month

World Model State 10000 500 5% 1 person-

year

World Model

Entity

1000 100 10% 0.25 person-

year

World Model

Entity’ Attribute

7000 200 3% 0.25 person-

year

World Model

Entity Attribute

Sensor Resolution

Specification

7000 5 0.1% 0.5 person-

year

Total 2 person

years

Table 3-4: Knowledge Capture Summary and Progress To Date
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It is important to note that the goal of this effort is to determine the knowledge that is

necessary to capture to enable autonomous on-road driving, not to implement this

knowledge on the vehicle itself. This is primarily a research effort as opposed to an

engineering effort.

With that in mind, we can approximate, from a research perspective, how long and how
much money it will take to complete this effort. Up until the time this paper was written,

the task decomposition effort has been funded at a level of approximately $350K over the

course of two calendar years. As shown in Table 3-3, two persons are needed to complete

the task decomposition effort. At a loaded salary of $250K per person, that results in a

necessary funding level of $500K.

Salient Point: It will take two person years and $500K in funding to complete the

task decomposition effort in order to determine all of the knowledge that is

necessary to capture to enable autonomous on-road driving. This will provide the

detailed requirements for the perception and world modeling capability needed for

intelligent autonomous driving and will in an of itself provide the structure of the

behavior generation side of the control hierarchy. Enough has been done to identify

the requirements for the next generation of sensors; these requirements are

presented in the Section 4.

3.5 Comparison to Current Status of the Cost-Based Search
Effort

In addition to the finite state machine-based approach mentioned earlier in Section 3,

cost-based planning represents another popular approach to controlling autonomous

vehicles.

The cost-based planning system that is currently used by the autonomous vehicle for on-

road planning is an implementation of the incrementally created graph planning approach

developed by Balakirsky [3]. As in many planning algorithms, this algorithm

incorporates a graph search algorithm that strives to find the cheapest path through a

graph that is composed of nodes (representing system states) connected by edges

(representing system actions). The cost of a path through the graph is defined as the sum
of the action costs (the edges) plus the costs of having occupied the traversed states (the

nodes). It is these costs that must be developed in order to achieve human-level driving

performance.

One such graph search algorithm is Dijkstra's shortest path algorithm [8]. An example of

this algorithm is shown in Figure 3-5 and may be summarized as follows:

1 ) Initialize the search. This includes setting the initial cost of all nodes (in the figure

nodes are shown as circles and node costs are the bold numbers next to them) to

infinity, and creating a set of open nodes that only contains the goal node (ng) at a

cost of zero. An open node is a node that the search has reached but not evaluated.

Nodes that have been fully evaluated are shown as bold circles in the figure.
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2) Find the least expensive member of the open set (denote this node by ncheap) and

remove it from the open set.

3) Compare ncheap to the start node (n s). This search proceeds from the goal to the

start, so if ncilcap is equal to the start node the search is finished. It can be noted

that this search may also proceed from start to goal without loss of generality.

4) Expand nc\ieap . During this step, the cost of reaching each of ncheap 's predecessors

(nodes connected by lines in the figure) must be determined. The following steps

occur for each predecessor:

a. Determine the cost of the edge that connects ncheap to the predecessor and

the cost of occupying the predecessor.

b. If the sum of these two costs plus the cost of nc/ieap is less then the current

cost of the predecessor, the edge is maintained as a forward pointing edge

(set to bold in the figure), any previous forward pointing edge is removed,

and the predecessor is added to the open set.

5) Go to step 2.

Figure 3-5: Example of Dijkstra graph search.

An example of this algorithm's application is shown in Figure 3-5. The optimal path from

any expanded node to ng lies along the decreasing cost path of bold edges (follow the

arrows). For this example, the search proceeds from the node labeled ng to the node

labeled ns . The search terminates at the optimal answer when the node ns is examined for

expansion. The optimal path found may be seen to be ns - n$ - 114 - n ? -%
While cost-based algorithms may differ in how they place and connect their planning

nodes, they must all perform the above-described search. As seen from the algorithm

description, each loop of the algorithm must make multiple calls to a cost generating

function (step 4a). A single plan may entail several hundred or even thousands of

algorithm loops, and the cost generator is at the heart of the loop, making its performance

critical.
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This cost function and the overall planning framework has been developed for basic road

driving. As of the time that this paper was published, the cost-based system was capable

of planning routes on/with:

• All type of roads including straight and curved lane segments

• Any number of lanes on a roadway

• Uni-directional and bi-directional traffic

• Multiple classes of static objects

• Moving objects in the environment assuming that the trajectory can be

probabilistically determined

• Approximately 12 cost factors, including speed limit conformance, proximity

with static and dynamic objects, conformance to lane markings, and abiding by a

small set of the rules of the road.

Enhancements to the planner that are expected to be accomplished in the next 12 months

include:

• Ensuring that the planner can run in real-time through the introduction of a

vehicle executor

• Dealing with intersections, initially with traditional 4-way intersections and then

with more complicated intersections that include exit and entrance ramps, etc.

analysis, we make the following assumptions:

While enhancements to the basic infrastructure still need to be made (for example

the inclusion of intersections), this work is trivial compared to the development

time/effort for the cost model. In other words, the representation and

implementation of the costs within the cost model is the primary indicator of the

time and effort it will take to enable on-road driving

The factors in which we apply costs are roughly the same as the 1,000 world

model entities that were described in Section 3.2.3.

Only 60% of the entities that are not already captured need to have a true weight

associated with them. The rest of the entities will have a yes/no type of value,

such that if the state evaluates to true (e.g., a non-traversable object in the arc

being evaluated), it will have an extremely large cost, thus prohibiting the

connected node from ever being evaluated independently of the rest of the

environment. If the state evaluates to false (i.e., it does not exist), it will have zero

cost. The entities that have a yes/no type require very little work to model while

the entities that need to be captured by a weight require a more significant amount

of work.

The time and effort to encode variable cost attributes increase at a squared-rate as

the number of variable cost attributes increase. This is mainly due to the

relationship between individual variable cost attributes, which increase as the

number of variable cost attributes increases.

Based on the above assumptions, there are 1,000 entities that would need to be

represented in this approach. Using our assumption that only 60% of them would need to

have true weighting values associated with them (while the others only need to be

In this
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indicated with a yes/no value by including a very large cost), that would leave 600 states

that would need costs associated with them.

Considering that it took approximately three working days to associate costs with the

existing 12 states, and that this time would grow in a squared fashion as more states were

introduced, it would take approximately 20 person-years to capture all of the necessary

costs to enable intelligent on-road driving.
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4.0 Sensors

The task decomposition described in Section 3 assumes the availability of sensors and

sensory processing systems that work at a specified level such that the vehicle control

system can recognize objects, and characteristics of objects, and then make appropriate

decisions based upon what it sees. The task decomposition effort has progressed to the

point that the requirements on the sensors and sensory processing software can be

specified, as described below.

4.1. Requirements of Sensor Resolution For On-Road Driving

In this section, we will look at some detailed examples of requirements for sensory

processing, following through with our passing example described in Section 3.0. In

particular, we will look at what it required of the sensors on the vehicle to determine, at

any given time and speed, if it is legal to pass.

As shown in Figure 3-4, in order for a passing operation to be legal, there cannot be:

• Any construction in the passing zone,

• A transit or school bus stopping in the passing zone,

• A no passing zone sign in the passing zone,

• Lane marking that prohibit passing

• Intersections in the passing zone

• Railroad crossing in the passing zone

• A bridge in the passing zone

• A tunnel in the passing zone

• A toll booth in the passing zone

Therefore, the sensory processing system must detect these items, or indicators that these

items are approaching, at a distance that allows the vehicle to pass safely. In this analysis

we make a few assumptions:
'y

• The vehicle can accelerate comfortably at 1 .7 m/s~

• Our vehicle is positioned approximately one second behind the vehicle in front of

it (i.e., our vehicle will be at the preceding vehicle current position in one second

traveling at constant velocity)

• Our vehicle will begin merging back into its original lane when it is one car

length in front of the vehicle it is passing

• The merging operation which brings the vehicle back into our vehicle's original

lane will take one second

• The average length of a vehicle is 5 meters.

With these assumptions, we explored what distance our vehicle would travel during a

passing operation, how long it would take to travel that distance, and what the final

velocity of the vehicle would be assuming initial speeds of 13 m/s (30 mph), 18 m/s (40

mph), and 27 m/s (60 mph). We limited the vehicle to traveling no faster than 9 m/s (20
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mph) faster than its original speed when starting to pass at the higher speeds. Table 4-1

shows the results.Table 4-1 shows the results.

Speed

(m/s)

Time to

Complete

Pass (s)

Distance

Traveled

in Pass

(m)

Final Velocity

at End of Pass

(m/s)

13 6.3 120 24

18 6.8 160 27

27 7.8 260 36

Table 4-1: Pertinent Values for Passing Operation at Various Speeds

Note that in this analysis we are assuming un-occluded visibility.

Assuming on-coming traffic is moving at the same speed, the sensor must detect on-

coming vehicles at 2x the distance traveled in passing.

If we look at the “ no railroad crossing in passing zone” requirement, we note that there

are multiple markings that can indicate a railroad crossing is upcoming, such as a

crossbuck just before the railroad crossing, or railroad signs at pre-defined distances

before the railroad crossing. Table 4-2 shows the specification on how far before a

railroad crossing a warning signs should be placed, what sign the size must be, and what

the size of the letter on the signs must be, according to the Manual of Uniform Traffic

Control Devices (MUTCD) [17].

Speed

(m/s)

Distance

from

Railroad

Crossing

(m)

Sign

Dimensions

(m x m)

Letter

height

(m)

13 100 0.450 x 0.450 0.125

18 145 0.450x 0.450 0.125

27 235 0.450 x0.450 0.125

Table 4-2: Specifications for Railroad Crossing Signs

Considering that the railroad warning sign is a pre-defined distance before the railroad

crossing, we can subtract that distance from the full passing distance shown in Table 4-1

to identify the distance forward our sensors need to be able to see. This resulting distance

is showing Table 4-3.

Speed

(m/s)

Passing

Distance

(m)

Warning
Sign

Distance

(m)

Sensor

Sign

Distance

(m)

13 120 100 19

18 160 145 14
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27 260 235 18

Table 4-3: Sensor Sight Distance for Railroad Warning Sign

This sets the specification for how far a sensor must be able to “see” to determine if there

is a railroad crossing sign in the passing zone. However, we can take this one step further

and determine what the resolution of the sensors must be to read the sign.

If we assume that the sign needs to be read (e.g., we do not know what the sign indicates

based on its shape and/or color), and that for each letter in the sign, we need a 20x20

array of pixels hits on that letter to be able to recognize the letter. Using simple

trigonometry based upon the distance to the sign and the size of the letters on the size as

shown in Table 4-2, we can show that we need a camera that has resolutions of about

0.02 degrees for all three cases above.

In some cases, a warning sign is not present and the sensors must rely on recognizing a

crossbuck that is immediately before the railroad crossing. In this case, we assume that

we need an array of 5 x 5 pixel hits on the crossbuck to recognize it by shape, and that the

size of the crossbuck is the standard 900 x 900 mm total dimensions, as specified by the

MUTCD manual. Based on this information, we would need a sensor with a resolution as

shown in Table 4-4 below.

Speed Sensor

(m/s) Resolution

(degrees)

13 0.0875

18 0.0649

27 0.0404

Table 4-4: Sensor Sight Distance for Crossbuck

Analysis of several other driving scenarios show that the figures in Table 4-4 are fairly

representative of the sensor resolution which is necessary for on-road driving.

4.2. Next Generation LADAR

One of the primary sensors we expect to be most valuable in on-road driving is LADAR
The LADAR used in Demo III, as described in Section 2 above, is clearly inadequate in

resolution and does not have the range required for full speed highway driving. A next

generation of laser range sensors has appeared on the market in the past two years, with

approximately ten times the speed (600,000 points per second) and much better range

(beyond 100 m). Figure 4-1 shows a typical scene. This is a very high resolution scan

which takes many seconds, but the same technology could produce a 256 x 256 range

image at 10 frames per second or better.
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Figure 4-1 High Resolution LADAR Image.Range to the nearest car is about 7

meters.
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Figure 4-2. A CCD picture of the road ahead. The car directly in front is 10 meters

away. The white car in the on-coming lane is 50 m away. The car behind it is 100 m
away, and the car behind it is 150 meters away.
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Figure 4-3 A LADAR point cloud taken from the same position as the photo in

Figure 4-2. The image is color coded for distance. Red is zero. Green is about 175

m. See scale at top right. Note the four cars. The car at 150 m is clearly visible.

Returns from the ground disappear at about 75 m.

Based upon experience from DEMO-III and a survey of available technology, a Broad

Agency Announcement (BAA) was released in June 2002. Phase 1 of the BAA focused

on the design of a LADAR for on road driving with the specs shown in Table 4-5.

Sensor

Type
Range

Resolution

FOV
Vert

and

Horiz

Resolution

- Vert and

Horiz

Ground
Range

Vertical

Surface

Range

Scan

Rate

Stabilization
*

Wide 5-10 cm or About 0.25-0.3 40-50 m 125-200 10 0.3 deg

FOV better 40 x degs or or better m or frames

LADAR 90 better better /sec or

degs better

Narrow 5-10 cm or About 0.05-0.06 40-50 m 125-200 10 0.03 degs

FOV better 5x5 degrees or or better m or frames

LADAR degs better better /sec or

better

Wrap 10-15 cm About 0.5 x 0.5 N/a 50 m About N/a

around 0.5 x degs 10
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LADAR 360

degs

frames

/sec

Table 4-5: Next Generation LADAR Specifications

In addition to these specifications, the LADAR must also:

• Operate in full sunlight

• Be eye-safe

• Be capable of penetrating dust, fog, smoke, grass and light foliage

• Be small sized, low cost, and ruggedly designed

Based on the BAA, four Phase 1 awards were made and the results of these awards have

been reviewed. Phase 2 awards, focusing on the development of the LADAR, are pending

the availability of funds. Based upon thefour award results, it is estimated that a

prototype ofa LADAR with the above specifications will take anywherefrom 16-30

months to manufacture and cost between one and three million dollars.

4.3 Next Generation Vision Systems

Similar to the LADAR specifications above, the Table 4-6 are the specifications for

camera systems that we believe can be implemented with currently available commercial

technology within the next 24 months at a cost of less than one million dollars.

Sensor

Type

FOV
Vert

and

Horiz

Resolution

- Vert and

Horiz

Scan

Rate

Stabilization

Wide
FOV

camera

About

21 x 28

degs

0.1 degs or

better

10

frames/sec

or better

0.1 deg

Narrow
FOV

camera

About 2

x 2 degs

0.01

degrees or

better

10

frames/sec

or better

0.01 degs

Wrap
around

camera

About

90 x 360

degs

1 .0 degrees

or better

About 10

frames/sec

N/a

Table 4-6: Color Camera Specifications

The importance of high resolution foveal vision should be emphasized as a good solution

to the resolution/processing load trade. For example, the MARS work on reading road

signs shows that you need high resolution to be able to read road signs, and that means

the signs get quite close before they are legible if you have a single fixed resolution

camera. High resolution in only a (steerable) part of the field of view would allow signs

to be read at a much greater distance. As another example, consider Dickmann's camera

configuration with a high resolution central field of view and multiple cameras providing

peripheral fields of view. The view of the central fields of view are shown in the figure
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below. Note how difficult it is to really see any detail in the low resolution image but

how the high resolution image provides detail but lacks any context. The two scenes

together make the highway scene understandable.

Figure 4-2: Foveal/Peripheral Camera Views from Autonomous Driving Program at

Universitat de Bundeswehr (Munich, Germany)

4.4 Comparison with Requirements

In this section, we compare the required sensor resolution that we derived from the task

decomposition effort in Section 5.1 to LADAR and vision specifications expected to be

available in the next 16-30 months as described in sections 5. 2.and 5.3. Table 4-7 shows

the results.

Speed (m/s) Needed Resolution

Based on Task

Decomposition

(Sect 5.1

)

Expected LADAR
Resolution -

Narrow FOV
(Sect 5.2) (degrees)

Expected Camera

Resolution -

Narrow FOV
(Sect 5.3) (degrees)

13 0.1042 0.05 0.02

18 0.0711 0.05 0.02

27 0.0406 0.05 0.02

Table 4-7: Comparison of Needed and Expected Sensor Resolution

As shown in Table 4-7, it appears that the needed resolution from both the vision and the

LADAR sensor should be available within the next 16-30 months assuming that funding

becomes available to pay for the required development effort.

44



Achieving Intelligent Performance in Autonomous Driving

4.5 Sensory Processing

Perception is currently seen as the major roadblock to autonomous mobility. In order to

make progress, the focus of perception research for autonomous vehicles needs to

change, and the resources allocated to it must be increased substantially.

Sensory processing needs to undergo major changes, not so much to the basic algorithms

and low level processing, but in the way these procedures are applied to sensory data and

how sensing interacts with planning and execution modules of an autonomous vehicle.

Sensing and sensory processing must become highly active, involve multiple cooperating

and competing processes, be intentional and focused, and be inherently error tolerant.

While the basic sensory processing algorithms will not change much, the way they are

applied and combined will be fundamentally different. Even with greatly increased

processor speeds, applying the algorithms to all the sensory data all the time will not be

feasible. Focusing attention and using temporal as well as spatial characteristics of the

data will be essential for successful perception.

For successful understanding of the environment around the vehicle, multiple sensors and

sensory modalities will run in real time on the moving vehicle and will return fused, time-

stamped data. Sensors will be active in the sense of being pointable and zoomable (both

of which could be accomplished without moving parts if the sensors have enough pixels).

Sensory processing will include sensor control, tied to the intentions of the vehicle (e.g.,

looking for signs, markings, and other vehicles that impact the behavior of the vehicle).

The sensors will need to attach position information to each data sample.

Real-time segmentation will be carried out on each image based on color, texture, range,

and other features, giving a vector of characteristics at each spatial location (or each pixel

if the pixel has no range information). Sensory processing will be carried out both on

individual images and on combined image data (maps). Information will flow between

these two kinds of processing, reinforcing or attenuating their results. Attention will be

focused on subsets of sensory data according to the state of the vehicle, and sensory

processing algorithms will be selected according to the information needed. Thus, a

sensor may be pointed to the side of the street to look for signs giving the speed limit of

the current stretch of road. Sign detection and number detection algorithms would be

applied to regions of the images that correspond to the expected height of the signs.

Similarly, other features of the data will be isolated and tracked. New basic algorithms

will be developed as needed and tailored to the domain, but in most cases modest

improvements in image-processing techniques will be sufficient.

A range of objects will be recognized in real time, depending on the task being carried

out. These will include stationary objects like signs, markings, telephone poles, parked

cars, etc., and moving objects such as pedestrians or other vehicles. Sensory processing

will try to identify stationary objects to determine what information they provide.

Sensory processing will try to identify moving objects, compute their relative velocities
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and accelerations, and determine time to contact. Recognition will be of two sorts:

recognition based on expectation (top down), and recognition of unexpected objects or

aberrant situations (bottom up). For example, recognizing road signs could be an ongoing

subtask that would scan selected locations of a sensor's field of view and apply templates

taken from the manual of road signs. For most unexpected situations, motion detection

and fast but simple processing of the entire sensory data would be applied, with regions

that appear aberrant being added to the list of regions for attention. As an example,

construction activity or a multi-vehicle wreck may not be recognizable from data in the a

priori knowledge base, but they must be sensed and placed in the world model as objects

in the roadway that must be avoided.

At higher levels, the sensory processing will attempt to build situation awareness. This

will require sensory processing modules to be tightly linked with the planning and

execution modules. Sensing will be driven by the intentions of the system and the

associated knowledge requirements, which can usually be known a priori. It is well

known that humans modify their eye fixation patterns depending on the task they are

trying to accomplish. A similar mechanism will be necessary to enable the situation to be

understood rapidly enough for interaction.

At all levels, a major factor in sensory processing will be the use of range information as

well as color, texture, etc. Knowing range to an object allows recognition to be based on

actual size and surface shapes instead ofjust coloring or texture. This makes many
operations relatively simple (e.g., segmentation, recognition). Another major factor will

be communication between different levels of the sensory processing and world model

hierarchy, and with the planning and execution modules. This will affect which

algorithms are applied to which sensor data and the confidence in their results.

All of the processing will need to take place in bounded time, although the bounds will

depend on the type of processing. Measuring color or texture, for example, would take

place at the input rate at which sensor data, whereas object identification would be

needed at the rate at which decisions about objects are made. Confidences will be

associated with each measurement, and will be adjusted over time as new information

about each feature become available.

Overall, there will be a movement in sensory processing away from pure bottom-up

processing to top-down and bottom up processing tightly coupled to planning and

execution. As the goals of the vehicle change, the algorithms applied to sensory data will

change and the interpretation of the environment may also change.

Clearly there is a great deal ofwork to be done in model based perception. A new
generation ofsensors is the starting pointfor attacking this problem. While prototypes

ofnext generation sensors have been estimated at $3-4 Million over 2 to 3 calendar

years
, the total engineering effort in achieving refined, field tested and hardened

deployable versions will take up to a decade and will cost $20-30 Million. The software

engineering effort is at least twice that great and probably more. Achieving the

required level ofperception is a decade long effort costing in excess of$100 Million.
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5.0 Computer Processing Capability Analysis

The benchmark for intelligent systems is human levels of performance. The question

arises as to when we will achieve such levels of performance in autonomous driving.

This is an issue of direct importance to military force planning and to highway safety.

Many researchers have pointed out the there are useful levels of performance well below

true human levels of performance. The Future Combat Systems “Mule” and convoying

capability would be examples. Still, for the purposes of technology forecasting, it is

useful to ballpark human computational capabilities.

One necessary precursor of achieving the goal is adequate computing power. Dr. Doug
Gage argues that computing power is not the principal problem, that even if we had the

necessary computing power we wouldn’t know what to do with it. This report lays out

one specific research approach to autonomous driving that has had significant early

success. The authors believe that this approach will prove viable in achieving human
levels of performance at some point in the future.

Research to date has indicated the need for massive computing power to provide the

necessary perception and world modeling capabilities for autonomous driving, well

beyond the levels employed to date. In attempting to ballpark resources and time scales

to reach minimum levels of human equivalent performance in autonomous driving, it is

necessary to quantify what levels of computing are needed.

To reverse Dr. Gage's argument, if researchers had functional software for autonomous

driving, transported magically from the future, they would only be able to test and

demonstrate that software if they had appropriate computers to run it on. This chapter

attempts to ballpark what levels of computing power might be needed to run such

software.

5.1 Global Estimates

Several authors have addressed this issue, with greater or lesser credibility and

generating greater or lesser levels of hostility from those who disagree with them.

Several quantitative assessments stand out among recent books:

Ray Kurzweil [12] argues that there are 10
1

1

neurons in the human brain, with an average

of 1 000 synapses per neuron, and that each synapse can perform approximately 1 00

computations per second. He thus concludes one needs 10
16
computations per second to

equal the performance of the human brain, and, by Moore's Law, predicts that desktop

computers will reach this level by approximately 2025.

James Albus [2] modifies this calculation by noting that there is massive redundancy in

neural circuits (since memory representations are distributed and to cope with noise and
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attrition of neurons over time). Using a factor of 100 to 1000 for redundancy, the

equivalent processing power of the human brain is of the order of 1

0

1

3

- 1

0

1

4

computations

per second.

It can further be argued that the computational power of one synapse is somewhat less

than one byte. Current computers are reaching 64 bit word lengths, and 128 bit word

lengths can be expected in the future. Thus, current computers are crunching 8 bytes

with each computational cycle and in the future will operate on 16 bytes in each cycle.
1 ") i j

One can therefore argue that computers only need to achieve 10 ”-10 computations per

second to match the computational processing power of the human brain.

Churchland and Sejnowski[6] estimate 10 ~ neurons in the brain, an order of magnitude

larger than Kurzweil and Albus. That would give an estimate of 10 -10 computations

per second to match computational processing power.

None of these sources cite any definitive reference studies and all use scaling from

typical neuron densities in the cerebral cortex, which varies, and layering also varies, so

an order of magnitude estimate seems to be the best one can do. Grossberg [10]argues

that the number of neurons is not a useful measure of computational power, that instead it

is the local processing architecture that is the key to effective neuronal computing.

Moravec [15] makes a more interesting calculation. He points out that the retina does

edge and motion detection computations for each of 10 pixels at a rate of about 10 times

per second. He then notes that we know how to duplicate these calculations on a

computer. It takes 100 calculations to do run spatial and temporal filters for one pixel, so

the computer processing equivalent of the retina is

10
h
pixels x 100 instructions/pixel x 10 /second = 10

9
instructions/second

He then takes the ratio of the number of neurons in the cerebral cortex divided by the

number of neurons in the retina, which is about 10\ and concludes that the total

processing power of the brain is 10
Q
x 10

5 = 10
14

instructions/second.

Moravec argues that redundancy in the cortex should be comparable to redundancy in the

retina. He does not address computer word length.

The above citations point to a range of estimates of the processing power of the human
brain in the range of 1

0

1 “-
1

0

1

4

instructions per second.

An interesting additional benchmark is provided by Big Blue, the special purpose

computer that beat Garry Kasparov at chess. Big Blue had an equivalent processing

power of 3 x 10
1

” instructions per second. This was superhuman performance in one

small domain of human endeavor, but one that is considered important in terms of

strategic planning abilities. Quite interesting was the fact that Big Blue used cost based

search and stored patterns to evaluate moves; these are basically the strategies used in

path planning in Demo III.
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Clearly the task of driving does not take the entire computational capability of the human
mind at all times since it is possible to drive and daydream, listen to the radio, talk on a

cell phone, eat, talk, plan, and any of numerous other simultaneous tasks. Some of these

clearly distract the driver in an unsafe manner, leading to legislation restricting the use of

handheld phones, for example. However, when totally focused on new and unusual or

difficult driving situations, or in bad weather or emergency situations, a good driver is

totally focused on the task at hand.

Perception is the most compute intensive task in routine driving. Visual processing

accounts for some 1 0-20% of the visual cortex, auditory processing another 1 0% and

motor control about 10%. Add to that some level of planning and symbolic reasoning

needed for following traffic laws and analyzing various road situations and a level of

50% or so of the total computational capability of the brain might be employed, on an

intermittent basis, in driving.

If we expect robot vehicles to be always focused on the task at hand and not subject to

distraction, then we will need to be at least within an order of magnitude of the

computing power of the brain to achieve human levels of performance.

A significant advantage in computing power for robot vehicles comes from the use of

LADARs for range imaging. The mammalian visual system commits large amounts of

processing to processing stereo images to obtain depth information; LADARs deliver that

information directly from a single image. So there may be some reduction in processing

needed for robotic driving, perhaps a factor of two in perception processing.

We thus argue that 10
1

1

instructions per second would be a good estimate of the lower

end of the computing power needed (an order of magnitude below the lowest level argued

above), and 10
14
would be a highest end estimate (the highest level above).

Again making the argument that useful levels of performance will be achieved well
1112

before full human levels of performance, then 10 -10 instructions per second seems

like a best estimate target range for minimally sufficient computing power for good

autonomous driving.

5.2 Moore’s Law

Gordon Moore, one of the inventors of the integrated circuit and founder and Chairman

of Intel, noted in about 1970 that the number of transistors on a chip was doubling every

eighteen months
4

. This was an observation of manufacturing efficiency using ever better

lithography process technology. Since the cost of a chip is more or less constant, the

implication is that you get twice as much computing power per dollar every 1 8 months.

4
Moore’s original estimate was a twelve month doubling period; apparently he revised that to twenty-four

months some ten years later. An eighteen month doubling period has been widely used as “Moore’s Law”

since the 1970’s. Actual doubling periods have ranged between twelve and twenty-four months.
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Moore's Law has held true for more than three decades. In fact, the doubling period has

been decreasing and was approximately twelve months between 1 995 and 2002 before

lagging this year.

Sources in the semiconductor industry have predicted the end of viability of current

lithography techniques for manufacturing ever more powerful chips by 2020 at the latest.

Moore's Law is expected to hold true for at least this decade, however. Other approaches

to computing, including quantum computing, optical computing and molecular

electronics, are subjects of active research and may become viable as lithography reaches

its twilight years.

Both Kurzweil and Moravec present graphs of computing power (per thousand dollars)

and note that there is a more or less continuous curve over the past one hundred calendar

years! That period covers five different computing technologies: mechanical, electro-

mechanical, vacuum tube, discrete transistor, and integrated circuit based computers.

Even more interesting is that the slope of the curve increases over time: this is a growth

rate faster than exponential.

Growth of Computing Power

Figure 5-2: Growth of Computing Power per $1000 over 100 years
5

Note that the curve is not a straight line and the doubling period is decreasing over time.

The curve has continued past the year 2000, reaching about 6 x 10
9
instructions per

second per thousand dollars this year.

' Interpolated from source data in Moravec [15]pp320-321.
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5.3 Availability of Adequate Computing Power

Computing power per dollar has been nearly doubling every year since 1995. This is

faster than historical trends and may not continue unabated, and various doubling periods

should be considered in forecasting. Using a baseline of 10
g
instructions per second per

$1000 in the year 2000, we can extrapolate when different levels of processing power

will be available for different assumptions of doubling periods:

12 Month Doubling 15 Month Doubling 1 8 Month Doubling

10
11

instructions/sec 2007 2009 2011

10
1

" instructions/sec 2010 2013 2015
i

10
J
instructions/sec 2014 2017 2020

Table 5-1: Moore’s Law Predictions of Available Computing Power per $1000

It would seem that adequate computing power will be available in single processors for
1117 .

only $1000 between 2007 and 2015 if the estimate of 10 -10 “ instructions per second is

correct.

The military is not constrained to using $1000 computers. Cluster computers with

processing power of 10
1

1

ips could be assembled for less than $20,000 with today's P4 or

G5 or Itanium processors and 1

0

1 ”
ips could be similarly attained in three or four calendar

years.

Researchers have in general not been pushing computing power nor computing

architectures. The Demo III project uses multiple dual-processor G4 boards but found

that inter-processor communication was such a severe problem that the final demos were

executed with world modeling and path planning on a single board. Clearly inter-

processor communication in cluster computers is as important as individual processor

speed.

The conclusion is that adequate computing power is now or will soon be available with

cluster computers to mount a credible attack on autonomous driving. The caveat is

that significant engineering effort should befocused on creating appropriate duster

computers that provide adequate processors and adequate inter-processor

communication and appropriate development and debugging tools to support

researchers.

Given a development period of three to four calendar years for software to run on new
computing architectures, a forecast is made of 2010 or 201 1 for reaching a minimal level

of human-equivalent performance in autonomous driving.

5.4 Confirmation from Other Sources
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Other researchers have forecasted 2010 as a reasonable time frame for reaching human
levels of performance in autonomous driving.

• Ernst Dickmanns [7], of the Universitat de Bundeswehr in Munich, spoke at NIST
in 1 999. He estimated that it would take another ten calendar years before

adequate computing would be available for truly safe autonomous driving. He
felt it would take a factor of 1000 computing power beyond what he was working

with at the time to achieve his goals. This would be computing power in the 1

0

1

1

-

10
l_

range.

• The Department of Transportation Intelligent Vehicle Initiative in the early

1990's was focused on autonomous driving. Their programmatic forecast was

human level driving by 2010.
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6.0 Delphi Forecast

As another approach to Technology Forecasting, NIST received approval from Dr. Gage

to carry out a Delphi forecast on autonomous driving at the spring MARS PI meeting,

held in San Diego April 6-10, 2003.

A Delphi forecast, named for the Oracle at Delphi who was said to be able to forecast the

future, is a poll of experts as to when a certain future event might take place. The

concept is that a mean prediction of experts is as good an indicator as is possible to

achieve.

NIST conducted a Delphi forecast for the Robotic Industries Association in the 1970's,

with some success, involving very interesting and useful interaction between university.

Government and industry researchers. It was based on this former experience that we
proposed to address the current topic of intelligent skill in autonomous on-road driving.

A letter was sent to MARS researchers before the April PI meeting in San Diego,

explaining the Delphi procedure and asking attendees to consider two questions:

“As a MARS PI you are considered to be an expert in autonomous robot

software. We ask you to answer the following two questions:

1. When will human level driving be accomplished in autonomous

systems (at a level adequate to get a driver’s license)?

2. What is your assumption of funding (per year or in total) to achieve

this result?

Note that the time it takes to achieve a milestone of this magnitude depends

upon the funding level. If you wish to give multiple answers (different years

with different funding levels) please do so.”

6.1 Results: Round 1

Several responses were received by email prior to the meeting. These results showed a

striking bi-modal distribution, with estimates made by Government and industry

researchers being generally much more optimistic than predictions made by university

researchers.
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Human Equivalent Autonomous Driving

5

5-10 11-15 16-20 21-25 26-30 >30

Year

Figure 6-1: Early Round One Forecasts

Additional inputs were received at the PI meeting in San Diego. The final first round

results are shown in Figure 6-1

.

To the extent that participants identified themselves there was still a bi-modal

distribution, although not nearly as marked, with several academics predicting 10

calendar years and the outliers past 30 calendar years being responses from industry

participants.

Many of the inputs received contained notes and comments justifying the predictions.

This is generally what is sought in Round 2 of a Delphi. With an agenda slot to make a

presentation to the participants at the meeting, it was decided to try to include the

significant comments in the presentation and to only carry out two rounds.

H Academic

Govt/lnd
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Years

Figure 6-2: Final Round One Forecasts

The median prediction is 15 calendar years, with first and third quartiles at 10 and 20

calendar years. In terms of funding, the median prediction was $350 M, with the first and

third quartiles at $100 M and $1000 M.

6.2 Clarification and First Round Comments

The lack of any consensus in the predictions, and the apparent difference in outlook

between Govemment/Industry and Academic groups led us to pose the following

possible explanations:

• Different definitions of the problem

• Different estimates of the level of funding to be provided

• Different estimates of technological difficulty

• Different estimates of the current state-of-the-art

• Different presumptions of scale of engineering effort

These were addressed in the presentation to the meeting on the second day, before the

second round was conducted.
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Definition of the Problem

Dr. Jim Albus, Senior Technical Fellow at NIST, provided the following definition of

intelligent driving ability:

• Ability to drive on-road and off-road

• Ability to drive on highways, winding roads, streets, dirt roads, and trails

• Ability to obey rules of the road

• Ability to cope with on-coming traffic, city streets, pedestrians, traffic signs and

signals, and intersections

• Ability to read maps and pick routes from point A to point B
• Ability to find a parking space and park

• Ability to drive day and night, rain or shine, snow, sleet, mud
• Ability to safely maintain control at operational speed under all conditions

• Ability to deal with tall grass, weeds, woods, ditches, stumps, and marsh hidden

by vegetation

Later discussion with participants brought out the fact that many of these capabilities

(particularly the last three) are far beyond what is required to get a driver’s license and

that we had, in fact, changed the question we were asking. We were now after a higher

level of skill than had been considered in the first round, but one that is closer to what we
thought Doug Gage was originally after. This increased level of difficulty is reflected in

the second round results which push the predictions further into the future.

As another way of defining the problem, the Levels of Autonomy used by Boeing in the

solicitation for the Autonomous Navigation System for Future Combat Systems were

presented. These are shown in the table below. Doug Gage pointed out that abstract

levels are not really a useful taxonomy, that you need to define specific capabilities to do

engineering. While this is true, it was felt that the Boeing FCS chart did bring out useful

points that would focus the problem definition.

Level Description Perception/

Situation

Awareness

Decision

Making

Capability Example

1 Tethered

Teleoperation

None None Tethered

Steer, Speed

Brake

Tethered

Operator

2 Remote

Teleoperation

Driving

Sensors

None Remote

Steer, Speed

Brake

Remote

Operator

3 Advanced

Teleoperation

Local

Vehicle

State

Vehicle

Health

Vehicle

Remote with

vehicle state

knowledge

Remote

Operator with

Vehicle State
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State Info Knowledge

4 Supervised,

Externally

Planned Route

Basic

Perception,

World

Model

Externally

generated

dense way
point path

Operator helps

with obstacles

Basic leader-

follower

5 Supervised

Internally

Planned Route

Sensors for

obstacles

and hazards

Local

planning/

replanning

Operator helps

with hazards

and obstacles

Convoying,

remote path

following

6 Unsupervised

Hazard

Negotiation/

Avoidance

Local

perception

correlated

with WM

Cost based

path

planning

Open terrain

with operator

intervention

Basic open

and rolling

terrain

navigation

7 Basic

Autonomous

operations

Path

planning

using

internal

WM

Complex

obstacles and

terrain

Limited speed,

operator

directed/assisted

tactical

behaviors

Robust open

terrain

navigation

8 Autonomous

Fusion of

Sensors and

Data

Sensor

fusion

Robust

planning for

complex

terrain

Complex

terrain, limited

speed, little

operator help,

scripted tactical

behaviors

Robust

complex

terrain

navigation

9 Data Fusion of

similar data

among
Cooperative

Vehicles

Advanced

decisions

based on

shared data

from other

vehicles

Complex

obstacles and

terrain

Complex terrain

at full speed;

Autonomous

initiation of

scripted tactical

behaviors

Coordinated

group

achievement

of goals

• 10 Autonomous

Collaborative

Operations

Fusion of

ANS and

RSTA data

among all

vehicles

Collaborative

Reasoning,

planning, and

execution;

Tactical

behaviors

based on

situation

Achieve goals

in collaboration

with no operator

oversight

Final goal of

FCS

Table 2: Levels of Autonomy for Future Combat Systems

The FCS solicitation has Levels 1-6 as required deliverables and higher levels as a

program goal. It is anticipated that at least Level 7 should be available in a hardened
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state by the year 2006 (when the technology will be frozen for final design for

manufacturing).

The point was made that Demo III vehicles had already achieved Level 7, Basic

Autonomous Operations, at Technology Readiness Level 6 (a demonstration of capability

in a relevant environment) in experiments this past winter at Toelle Army Depot in Utah

and at Ft. Indiantown Gap in Pennsylvania. It was further stated that the Demo III

program should achieve at least Level 8 autonomy by the year 2006 if funding is

maintained.

The participants were asked again to predict when intelligent skills would be obtained,

now thinking specifically about Level 9 capability.

6.3 Level of Funding

FCS has budgeted $140 million over the next four calendar years for the development of

an Autonomous Navigation System. While only a portion of that will go toward

advancing the technology, this is a significant sum. This is in addition to the

development of drive-by-wire vehicles, operator interfaces, RSTA and C4ISR.

FCS is only one of many government programs addressing intelligent vehicles. For

example, the Unmanned Air Vehicle program is one to two orders of magnitude larger

than the Unmanned Ground Vehicle program.

To provide guidance to the participants in the forecast, everyone was asked to assume

approximately $500 million over the next ten calendar years. This translates to about

2000 person-years of engineering effort (i.e., 10 teams of 20 professionals working for 10

years) which is a substantial amount of engineering.

6.4 Technological Difficulty

The questions that must be answered in order to quantify the effort needed, are:

• What are the perceptual requirements?

• What are the world modeling requirements?

• What are the planning, decision-making, and control requirements?

• What are the system integration and testing requirements?

• What are the requirements for learning?

• What are the software engineering requirements?

The participants were asked to reflect on these questions, and to offer comments and

inputs to the report.
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6.5 State of the Art

Benchmarks: Current and Past Programs

Many past and current programs have shown significant success in autonomous driving.

Some examples are

• Demo III has demonstrated Level 7 autonomy.

• TARDEC VTI (Vetronics Technology Integration) program (Crew Automation

Testbed and Road Follower). Carried out a recent live fire demo at Ft. Bliss.

• Primus C (German version of Demo III) is not far behind Demo III

• Prof. Ernst Dickmanns at Universitat de Bundeswehr in Munich and Daimler-

Benz have achieved commercial prototypes of intelligent cruise control which

are now in field test; these are based on the German autonomous driving program

wTich achieved hands free driving in highway traffic and 150 km/hr highway

speeds.

• CMU NavLab drove across the United States with hands free 97% of the time.

• DARPA MARS researchers have demonstrated substantial autonomous capability

• DARPA PerceptOR is evaluating perception capability for autonomous driving

• The Army Research Lab has funded the Robotics Collaborative Technology

Alliance, headed by General Dynamics Robot Systems, as a follow-on R&D
effort beyond Demo III.

• The Department of Transportation is funding development and testing of driver

assist technologies to improve highway safety. These are generally based on

autonomous driving research.

While none of these programs have demonstrated anything close to real human
performance in autonomous driving, substantial progress has been made and is being

made.

Some details of Demo III and current work, as presented in earlier sections of this report,

were provided to the participants. Participants in the Delphi were told to assume, within

a decade:

• LADAR with range to 200 meters, depth resolution of 4 cm, foveal resolution

near that of human eye, 90 deg peripheral FOV, 3 saccades/sec, 10 frames/sec

• 10 " ops/sec on-board computing power

• Availability of maps of road networks and terrain features to 3 m resolution

• Access to military or civilian situational awareness reports

6.6 Results: Round 2

A second round was conducted after the above discussion, with instructions to:

• Assume FCS Level 9 autonomy (full speed on difficult terrain, city and highway

driving)

59



Achieving Intelligent Performance in Autonomous Driving

• Assume hundreds of millions of dollars in funding. Obviously how it is spent will

be important

• Assume key enabling technologies under development

The results are shown below. Given that the problem posed was more difficult that in the

first round, it is not surprising that estimates are further in the future. Basically all of the

short term estimates gone, with nothing remaining less than 10 yrs. All long term

estimates remained unchanged, and many were resubmitted with lengthier justifications.

Years

Figure 6-3: Round Two Forecasts

The overall result was a compressed range of 5 calendar years for the middle two

quartiles (2015 to 2020) instead of 10 (2010 to 2020), and a median forecast of 2020

instead of 2015.

In terms of funding, the range was also compressed and the median further in the future:

lengthened: first quartile $360M, Median $500M, third quartile $800M. The span here is

a factor of 2.2 (800/360) instead of 10 (1000/100) so there is a tighter agreement among
the participants.

The bi-normal distribution between academic and Govemment/industry participants was
much less marked in the second round, although in general Government and industry

forecasts, to the extent the participants identified themselves, were more optimistic.
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6.7 Further Comments

A number of attendees at the San Diego meeting did not participate in the study and

several submitted responses that they were unable to make a rational forecast. To draw

out their arguments, several researchers were queried in one-on-one discussions and some

were asked for written submissions. The comments below by Ron Arkin of Georgia

Tech are considered representative:

The question you ask in your survey is ill-posed.

My basic position can be summed up by recognizing the need for developing the

scientific underpinnings of the field before we rush off to establish timetables for

implementation. Robotics science is only beginning to be understood and to

establish timetables for achieving human level performance seems as foolish to

me as establishing timetables to cure cancer, or other basic scientific endeavors.

There are many breakthroughs yet to come in the basic science in understanding

human behavior, computational intelligence, and robot-human-environment

interaction before such questions can be answered. Funding is required at the

basic research level to enable these robotic revelations before robust performance

in dynamic and uncertain domains can be guaranteed. Funding enables advances,

without it the field will stagnate. But we should not be seduced by the remarkable

successes already achieved in such short time frames.

Further, your question seems ill-posed in that it is not even clear that robots

should even attempt to achieve human-level performance (why?), or even what or

how to characterize human-level performance. Surveys such as this are best left

for futurists, not scientists. All they do is to set up expectations which can perhaps

devastate the field (e.g., the AI winter) if they are not met. Hopefully our lessons

from history will prevent us from making the same mistakes.

Several responses were along the same lines, arguing that robots should not attempt

human-level performance and that the basic research issues were so substantial that

forecasting engineering success was futile.

An extreme position was taken by one respondent that ( 1 ) we would probably achieve

near human level performance fairly quickly (5 calendar years) and (2) that we would

never achieve fully human level performance.

Again, when queried on human level driving skills, or at least achieving a militarily

useful level of driving skill, Alan Schultz of the Naval Research Lab responded:

Ah, but those are two very different things. When I think of achieving human
level performance in driving, I believe the single major problem is perception.
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And I believe that this will continue to be a problem for a long time. However, a

militarily useful level of performance is achievable in a much shorter time from.

The difference is in the scope of capability needed. For human level driving

performance I include everything from detecting and interpreting signs, road

conditions (e.g. spotting ice) etc. The system must be able to handle all

contingencies and unexpected conditions and above all, must do so with an

extremely high level of reliability and safety.

A military system is more constrained in the environment to be used and most

importantly, in most operational situations can operate with a lower level of

reliability and safety.

In summary, I project a higher cost and longer time to reaching human-level

performance because of the extreme difficulty in obtaining reliable and robust

perception.

For militarily systems, I would have picked the middle two quartiles.

Several researchers commented on specific technical issues that needed to be addressed

and that were felt to be particularly difficult and that would take substantial time to

resolve. John Feddema of Sandia comments:

I think human-level driving performance could occur much earlier in ideal

weather conditions and very structured environments. I do not believe we have a

sensor that will reliably work in rain, snow and fog. I also do not think that we
even know how to handle the combinatorial explosion of conditions that occur in

unstructured environments.

Johann Borenstein of the Universtiy of Michigan wrote:

My concern is that the performance criteria of "passing a driver's license test" is

not sufficient for the safe operation of a vehicle in traffic. Specifically my point is

that a human driver's license test assumes correctly that the driver has the inherent

ability to do human reasoning and applying human commonsense. I argue that

equipped with these skills humans are capable of predicting and dealing with an

unlimited number of exceptions. Lacking these skills, a robotic driver will be

unable to predict and deal with these exceptions. I agree that many of these

exceptions can be anticipated by the robot designers, and appropriate responses

can be preprogrammed. However, it is also my contention that there are infinitely

many possible exceptions and not all can be pre-programmed.

Based on my slight disillusionment with the capabilities of technology to compete
with nature I stated my original opinion that it will take 20 <calendar> years or

even more before a robotic driver is feasible. I continue to stand by this opinion
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despite the more optimistic views of many of my peers.

The author, having trained three children to drive and supervised each one of them for

some 50 hours of driving experience beyond basic Drivers Ed, was of the opinion that

exceptions were indeed critically important, and that getting a driver's license did not

make one a competent driver, but that there did not seem to be much reasoning or

common sense exhibited in those hours of additional training. Instead, each child had to

actually experience examples of problems that are encountered in driving and had to be

specifically instructed in how they should be handled.

Clearly some generalization occurs in such training and instruction is at a high level; this

brings up the whole issue of learning and human-machine interface. Jean Scholtz of

NIST comments:

Currently human interaction with robotic driving platforms consists of two

modes: autonomous or tele-operation. There are instances where a few

commands such as back-up and try again are available to the operator. Tele-

operation may suffice as a fallback mode of operation for off-road driving or

other types of robotic tasks, such as search and rescue, but tele-operation is of

limited use for on-road driving in urban terrain. The urban situation has

numerous vehicles, pedestrians, traffic controls, and road obstructions such as

detours, potholes, and parked cars that an on-road driving vehicle must sense and

react to quickly. It is unlikely that a remote operator can react quickly enough to

safely navigate through urban situations.

There are a number of roles that HRI needs to support. For on-road driving, a

supervisor might oversee a number of different vehicles operating in the same

general geographic area. An operator might be called on to provide support for a

vehicle that is having problems navigating in a particular situation. A team mate

might be the driver of a manned vehicle that is operating in conjunction with an

unmanned vehicle to accomplish a particular task. A mechanic might be needed

to fix sensory equipment or other mechanical problems and would need to issue

some commands to the robot to ensure that the problem had been fixed. In the

on-road driving domain there are likely to be a number of bystanders; that is,

people who have not been exposed to any robot training but who will be driving

or walking in the same environment that the robot is navigating. In addition, there

are information consumers. These are the people who are interested in the

information provided by the robot. That information might be surveillance

information or medical information provided by search and rescue robots. The

consumers of information might be allowed to interaction with various sensors

(such as cameras) on the robot or they might have to make requests through the

supervisor or operator to obtain information.

Another issue is that of HRI awareness. In situations where there are multiple

people and multiple robotic platforms, teams will function effectively only if user

interfaces provide for awareness between the various team members. Humans
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must be aware of what robots are doing but in addition robots need to be aware of

what other robots are doing and what the humans are doing. As with any team,

humans need to be aware of what each other is doing. In particular when a

number of humans are interacting in different roles with the same platform, the

user interface needs to provide this awareness.

Basic research issues for HR1 include:

Determination of the information and level of abstraction necessary to

provide the situation awareness for each interaction role.

Interactions to support adjustable autonomy

Platform independent interaction vocabulary

Fusion techniques for providing sensory information to maximize

situational awareness and minimize user’s cognitive load

Robot awareness of user’s cognitive and physical workload

Smooth handoff or switching strategies between roles and platforms

Interactions with teams of robots

Interaction architectures integrated with real-time robotics architectures

Metrics and methodologies for evaluation of FIRI

Underlying all these issues is the premise that the current robot platforms and the

current interaction modalities and platforms will evolve. HRI needs to be

designed for the robots and interaction modalities of the future. A research

program devoted to HRI issues is needed to make significant progress in these

areas. A five <calendar> year, $50 Million interdisciplinary program (cognitive

psychologists, HCI researchers, and robotics researchers) would produce good

results for HRI as there currently exists additional funding in modality research as

well as in augmented cognition. The results from these efforts could be integrated

into a more specialized program in HRI.

Jim Keller of UPenn believes the most important issue is knowledge management:

I think the biggest challenge is management of the knowledge base that

constitutes a good driver and not necessarily the navigation, perception, command
and control aspects that typicall come to mind in a robotic application.

Perhaps it would be better to qualify the level of expertise to the following levels:

• Just received drivers' license (requires <10 years to get there): this is the

robotics part of the problem.

• Approximate expertise after human has been driving one year, five years,

etc.

o As the level of expertise is increased, the knowledge base

management is more the issue. In this regard, until the robot

becomes conscious, I do not think it will ever exceed human
performance. The solution is more complex than other knowledge
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base issues like computer chess because of the real time

representation.

• Another way of making the problem tractable would be to limit the speeds

expected (i.e. type of road).

Similarly, John Weng of Michigan State University comments:

Human level performance requires a highly integrated driving system. Human
designed domain knowledge tends to leave many holes, which are in fact infinite

or unbounded in possibility. Real world “living” experience and learning while

“on the fly” is a powerful way of filling these holes with skills of “interpolation”

between known cases and new exceptions.

Finally, there were those that thought that producing useful military technology should be

addressed as an engineering problem rather than one of basic research trying to achieve

an abstract (and unjustified) goal of matching human performance. Alan Schultz ofNRL
makes that point above. Sebastian Thrun ofCMU notes:

To me, it is *not* a question of human level computation to achieve

human level driving.

If we want vehicles to drive people autonomously, I believe the technology

mostly exists, but it would require instrumenting our roads. We already have

instrumented our environment to facilitate human driving. The steps necessary

to facilitate autonomous driving would be minor in comparison. I believe the

most important hurdle towards autonomous driving is not technical, but societal

(and to a minor extent: legal).

Autonomous driving on roads designed only for human driving is a different

. story, one with great importance for the military. Again, I believe we don't

need human level cognition, perception, or reasoning. But we do need

significant advances towards reliable perception. I personally believe some of

these advances will be tied to computational power, but the computational

metaphors will be quite different, in that probabilistic computation will play

a pivotal role in the design of autonomous driving systems.
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6.8 Results

While the results are not considered definitive, particularly because of the change in the

problem definition between rounds one and two, it is clear that researchers generallyfell

that it would take at least ten calendar years andprobably closer to twenty calendar

years to achieve the capabilities ofautonomous driving desiredfor Future Combat
Systems, and thatfunding ofthe order ofS500M would be needed.

It wasfurther clear that setting general human levels ofautonomy is not the correct

approach , that specific military needs and modes ofdriving need to be addressed and
solved, and that this involves continued research in sensors, perception, knowledge

management and planning.
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7.0 Conclusions

Useful and practical autonomous driving is in its infancy. As such, there will certainly be

unforeseen challenges and periods of both pessimism and over-optimism. Nonetheless, a

review of the accomplishments to date, and a survey of current views of experts in the

research community is useful, and has provided a basis for a best-estimate at this time of

the nature and size of the challenge. While not unanimous, the most prevalent views lead

to these overall conclusions:

• Militarily useful autonomous driving capabilities can be developed in

approximately ten to twenty calendar years on continued research. The time

scale will depend upon the level offunding available.

• The cost will be in the range ofthree to five hundred million dollars, which is

consistent with currentfunding levels ofArmy autonomous mobility programs

extended over twenty calendar years.

• The biggest single problem is perception. The attack on the problem should

start with development ofa new generation ofsensors designed specificallyfor

autonomous driving.

The conclusions of the different approaches to estimating time and cost for achieving

intelligent on-road driving, which support the overall conclusions above, are summarized

below.

First: Based on extrapolation from the Demo III experience, it will take another fifteen

calendar years of work at the current level of effort to achieve intelligent on-road driving

capability.

Second: Based on the Task Decomposition of driving tasks using the DoT manual, it is

estimated that approximately $300-400 Million in funding will be needed to achieve

intelligent on-road driving skills. Over a twenty calendar year period, this is $ 1 5-20 M
per year, roughly the level of funding now provided under the ARL and TACOM
programs. Increased funding would reduce the time scale.

Third: A new generation of sensors designed specifically for autonomous driving is

needed to provide the necessary visual acuity. This is critical because perception

emerges as the largest problem in autonomous driving.

Fourth: Engineering attention needs to be paid to providing adequate processors with

adequate inter-processor communication to researchers along with software development

and debugging tools. Adequate computing power using cluster computers is now or will

soon be available, making it possible to address these engineering issues in the near

future. Computing power should not be a gating element.

Fifth: Based on the Delphi Forecast of MARS researchers, it will take 15-20 calendar

years and of the order of $500M to achieve intelligent driving skills.
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Sixth: Several MARS researchers emphasized that setting intelligent driving skills as the

goal was not the correct approach, that militarily useful capabilities would be achieved

short of that goal

Seventh: Continued research in sensors, perception, knowledge management and

planning, at a level at least equal to current funding is essential, even if the scope is

reduced to targeting specific military driving modes to be solved in the near term.
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