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Superspreading has been suggested to be amajor driver of overall
transmission in the case of SARS-CoV-2. It is, therefore, important
to statistically investigate the tail features of superspreadingevents
(SSEs) to better understand virus propagation and control. Our
extreme value analysis of different sources of secondary case
data indicates that case numbers of SSEs associated with SARS-
CoV-2 may be fat-tailed, although substantially less so than
predicted recently in the literature, but also less important
relative to SSEs associated with SARS-CoV. The results caution
against pooling data from both coronaviruses. This could
provide policy- and decision-makers with a more reliable
assessment of the tail exposure to SARS-CoV-2 contamination.
Going further, we consider the broader problem of large
community transmission. We study the tail behaviour of SARS-
CoV-2 cluster cases documented both in official reports and in
the media. Our results suggest that the observed cluster sizes
have been fat-tailed in the vast majority of surveyed countries.
We also give estimates and confidence intervals of the extreme
potential risk for those countries. A key component of our
methodology is up-to-date discrete generalized Pareto models
which allow for maximum likelihood-based inference of data
with a high degree of discreteness.
1. Introduction
Superspreading events (SSEs) have been recognized as a significant
source of disease transmission for respiratory coronaviruses such
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as SARS-CoV and SARS-CoV-2 [1,2]. SSEs may be defined as outbreaks in which a given individual (the
index case) infects a number of people (secondary cases) well above a certain measure, such as the average
or median number of infections. The number of secondary cases resulting directly from an index case can
be viewed as a random variable, say Z, defining the so-called offspring distribution. For both
coronaviruses, events having triggered more than six secondary cases have been suggested to constitute
SSEs [3]. Data on such SSEs that were curated and reported in [3] in the early stages of the COVID-19
pandemic is necessarily scarce: it consists mainly of 15 SSEs associated with SARS-CoV and 45 SSEs
associated with SARS-CoV-2, each represented by a number of secondary cases Zi resulting from a single
given index case in Europe, Asia or North America. The natural framework for the analysis of SSEs, and
more generally of atypical observations far away from the mean, is extreme value theory. Following this
framework, it was argued in [3] that SSEs are fat-tailed, although this was done by pooling the 60
available SSEs from SARS-CoV and SARS-CoV-2. A careful investigation of these SARS-CoV and SARS-
CoV-2 datasets reveals that the two largest observations in the pooled data are SARS-CoV SSEs; given the
small sample size, one may wonder whether the reported estimate of tail heaviness is representative of the
tail behaviour of SARS-CoV-2 SSEs.

This constitutes the motivation for this work, whose overarching goals are to show how to conduct a
statistically rigorous extreme value analysis of community transmission parameters, and to carry out
such an analysis in the example of SARS-CoV-2. By focusing directly on the raw SARS-CoV-2 data
considered in [3], we provide evidence of a lighter upper tail for SSEs with significantly less tail
exposure than predicted in their study. We arrive at the same conclusion by making use of a more
recent and much larger publicly available surveillance and contact-tracing database containing the
number of secondary cases Zi for 88 527 index cases in the Indian states of Andhra Pradesh and Tamil
Nadu [4]. We also analyse two other South Korean contact-tracing datasets, one collected in the first
half of 2020 [3], the other during the summer of 2021, when the Delta variant of SARS-CoV-2 was
responsible for the majority of positive cases [5]. The fat-tailedness of the secondary cases distribution
is found to be rather clear in the 2021 sample of data, while the analysis of the 2020 data is less
conclusive. In all these samples of data, we find point estimates of the extreme value index suggesting
that the secondary cases distribution has a finite third moment, which stands in contrast with the
earlier finding of Wong & Collins [3] of a distribution with an infinite variance.

In addition to that, we consider the broader problem of large community transmission, as it represents
the other fundamental source of pandemic risk. Large infection clusters, alongwith SSEs, have been argued
to play an important role in the transmission of SARS-CoV-2 [2]. In a similar spirit to Adam et al. [2], we
define a cluster of SARS-CoV-2 cases in our analysis as a local outbreak involving a minimum of two
cases, including confirmed close contacts with epidemiological linkage over a limited period of time. We
consider two databases constructed from government reports [6–9] and media sources [10], comprising
15 samples of SARS-CoV-2 cluster sizes recorded in 11 countries and four US states. Our results show
that 13 of these 15 countries and states have fat-tailed cluster size distributions, thus facilitating the
process of inferring their risk category in terms of large community transmission. This allows us to better
understand the drivers of superspreading and cluster formation in the ongoing COVID-19 pandemic.
The recent theory of discrete extremes [11–14] is our basic tool to address the highly discrete nature of
SARS-CoV-2 secondary transmission data and cluster sizes. Its use constitutes our main statistical
contribution to the study of the transmission of the SARS-CoV-2 virus. As we illustrate throughout the
paper, estimating and inferring the extreme value index and extreme percentiles of the underlying
discrete distributions with this methodology is much easier and more accurate than with classical
extreme value methods such as the Hill and generalized Pareto maximum likelihood estimators, which
heavily rely on the continuous data assumption.

The structure of the paper is as follows. We first describe the methods employed throughout our
study, including the discrete generalized Pareto distribution fitted to exceedances over a high
threshold by means of the maximum likelihood estimator. We then analyse our datasets, first on
SARS-CoV-2 secondary case numbers and then on cluster sizes, using these methods. The final
section gathers and contrasts these findings and concludes with additional comments about the scope,
limitations and robustness of our results, as well as ideas for further work.
2. Methods
We use several methods from extreme value theory, which constitutes the correct mathematical
framework for the analysis of high observations from a random phenomenon [15]. We are particularly
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interested in methods that can describe so-called fat-tailed random variables, which infrequently but
regularly generate very high values and therefore appear to be relevant in the analysis of SARS-CoV-2
transmission. A random variable X is fat-tailed if and only if its distribution function PðX � xÞ can be,
for large x, expressed as PðX � xÞ ¼ 1� x�1=j‘ðxÞ, where ℓ satisfies ℓ(tx)/ℓ(t)→ 1 as t→∞ for any
positive real number x. Informally, the tail behaviour of X is controlled by the extreme value index
ξ > 0, which must be estimated to get a precise understanding of tail heaviness. A standard estimator
in this context is the Hill estimator [16]. For a dataset Z1, . . . , Zn, the Hill estimator at threshold u is
defined as

ĵHu ¼ 1Pn
i¼1 1fZi.ug

Xn
i¼1

log
Zi

u

� �
1fZi.ug:

It is of course crucial, before using the Hill estimator, to ascertain whether the distribution of the data
points indeed has a heavy tail. A common diagnostic method is the mean excess plot, which estimates
the values of the mean excess function EðuÞ ¼ E½Z� ujZ . u� as function of u. A natural estimate of
E(u) is given, for each threshold u, by its empirical counterpart

ÊðuÞ ¼
Pn

i¼1 Zi1fZi.ugPn
i¼1 1fZi.ug

� u:

A fat-tailed distribution will typically have mean excess plots exhibiting a linear upward drift for large
values of u, whose slope is a consistent estimate of ξ/(1− ξ) when ξ < 1, see for example section 1.2.2,
pp. 14–19 and p. 152 in [17]. In the case ξ≥ 1, Theorem 3.4 and Remark 3.5 in [18] show that the
mean excess plot converges in a suitable sense to a random curve, which in the log–log scale is a
straight line with slope 1/ξ and random intercept term constructed upon a stable random variable
with index 1/ξ.

It has, however, been observed in the extreme value literature [18] that the mean excess function
very often exhibits a nonlinear behaviour at the right end of the mean excess plot, due to very high
variability of the estimate of E(u) when u is close to the highest Zi. As a consequence, good statistical
practice recommends to confirm a diagnostic of a heavy tail using other extreme value tools. One
such general approach, which does not presuppose that the data are fat-tailed, consists in using the
generalized Pareto maximum likelihood estimator applied to the excesses Zi− u. Recall that
the generalized Pareto distribution, with shape parameter ξ and scale parameter σ, has probability
density function

hj,sðxÞ ¼ 1
s

1þ j
x
s

� ��1=j�1
1fx.0, 1þjx=s.0g:

The generalized Pareto maximum likelihood estimator is then defined as, according to section 5.3.2 in
[17] and [19]

(ĵGPu , ŝGP
u ) ¼ argmin

j.�1, s.0

Xn
i¼1

log hj,sðZi � uÞ

¼ argmin
j.�1, s.0

Xn
i¼1

� logs� 1
j
þ 1

� �
log 1þ j

Zi � u
s

� �� �
1fZi.u, 1þjðZi�uÞ=s.0g:

The generalized Pareto maximum likelihood estimators are valid even when the underlying distribution
is not fat-tailed, which has made them very popular in the natural sciences [20].

However, both the Hill and generalized Pareto estimators of ξ suffer from jagged sample paths when
the data points Zi feature a substantial number of ties, that is, they come from a distribution with a high
degree of discreteness. This behaviour makes it extremely difficult to choose an accurate estimate of ξ,
which renders the two methods highly unsatisfactory. The essential reason behind this phenomenon is
that both estimators are built under the—generally incorrect—assumption that the data points come
from a pure (generalized) Pareto distribution, which is continuous, and as such, they cannot be
expected to handle a substantial degree of discreteness. We exemplify this phenomenon in figure 1a,b:
notice the stark difference in stability and smoothness of sample paths between a plot of the Hill
estimator as a function of the threshold value (henceforth referred to as a Hill plot) for continuous
data Zi and its counterpart for data rounded to the nearest integer up. Crucially in applied set-ups,
the asymptotic Gaussian confidence intervals constructed by approximating the distribution offfiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nPðX . unÞ

p ðĵHun � jÞ by a Gaussian distribution with expectation 0 and variance ξ2, which is valid
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Figure 1. (a,b) Hill plots (solid lines) and corresponding 90% Gaussian asymptotic confidence intervals (dashed lines) as
functions of the threshold value u, for n = 10 000 simulated data points Zi from the Burr distribution with probability density
function f (x) = ξ−1 x−ρ/ξ−1 (1 + x−ρ/ξ)1/ρ−1 ( for x > 0) with ξ = 1/2 and ρ =−1 in (a,c), and for the data dZie (i.e. the
smallest integer larger than or equal to Zi) in (b,d). (c,d) Averaged Hill plots when this experiment is repeated N = 1000 times.
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when un→∞ satisfies reasonable conditions [21], are highly unstable when the data features a large
number of ties, thus making inference using the Hill estimator unadvisable. The bottom panels of this
figure (figure 1c,d) further show the impact of these data ties: the Hill estimator for discrete data tends
to be strongly biased and much more so than the Hill estimator for continuous data.

An alternative option properly taking the discreteness of the data into account is to employ discrete
models to construct an estimator of the extreme value index. This was pursued by Shimura [11] and Hitz
et al. [13], which used so-called D-GPD (for discrete generalized Pareto distribution) models, first
employed by Prieto et al. [12] to model road accidents and more recently by Ranjbar et al. [14] to
model hospital congestion. The D-GPD, whose probability mass function is

pj,sðxÞ ¼ 1þ j
x
s

� ��1=j
� 1þ j

xþ 1
s

� ��1=j

for x ¼ 0, 1, 2, . . . with pj,sðxÞ . 0,

for ξ≥ 0 or ξ < 0 and σ/ξ a negative integer, has been shown to outperform the continuous GPD when
there are a large number of tied observations: see the simulated Poisson and discrete inverse-Gamma
examples in section 3.1 of Hitz et al. [13], which, respectively, show that the GPD provides poor
model fits and poor tail estimates when the data are highly discrete, while the D-GPD distribution
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performs well. Its closed-form survival and probability mass functions allow for an exact likelihood-
based inference constructed upon the maximum likelihood estimators

(ĵu, ŝu) ¼ argmin
j.�1, s.0

Xn
i¼1

log pj,sðZi � uÞ:

When ξ = 0, the convention we adopt is that (1 + ξz)−1/ξ = exp (− z), for any z [ R. These maximum
likelihood estimators of the extreme value index ξ and scale parameter σ of the D-GPD model are
readily obtained through the R maximization routine optim. Using the classical theory of maximum
likelihood estimators, confidence intervals for ξ may be derived from ĵu by estimating the total Fisher
information matrix I(ξ, σ) using a finite difference method and then deducing the following
100a% confidence interval for ξ

ĵu þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(̂Iðj, sÞ�1)1,1

q
F�1 1� a

2

� �
, ĵu þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(̂Iðj, sÞ�1)1,1

q
F�1 1þ a

2

� �� �
,

where F denotes the standard normal distribution function and F�1 its inverse (quantile function).
Modelling Z− u conditional on Z ≥ u by a D-GPD distribution with parameter estimates ðĵu, ŝuÞ
suggests the following estimate of the 100αth percentile of Z adapted from ([12], formula (5), p. 41):

q̂a ¼ ŝu

ĵu

nð1� aÞPn
i¼1 1fZi�ug

 !�ĵu

�1

0
@

1
Aþ u� 1

2
666

3
777,

for α∈ (0, 1) large enough. Here, d�e denotes the ceiling function, that is, dxe denotes the smallest integer
larger than or equal to x. Estimating this quantile by plugging in the aforementioned estimates of ξ and σ
makes it possible to infer extreme quantile levels and therefore get precise information on the tail
behaviour of a distribution with a large degree of discreteness. For each of the extreme value
estimators we have introduced (Hill estimator, GPD and D-GPD maximum likelihood estimators), a
common practice for selecting a suitable pointwise estimate of ξ, colloquially referred to as
‘eyeballing’, is to pick out a sufficiently high threshold u corresponding to a stable region of the plot
[15]. We shall indeed also adopt this practice and will clearly indicate selected thresholds or threshold
regions in our analyses.

For comparison purposes, we will contrast the resulting extreme quantile estimates with those
provided by the (conditioned) negative binomial distribution. Recall that the probability mass function
of the negative binomial distribution (with parameters r > 0 and p∈ (0, 1)) conditional on Z > u, is
given by

P p,r,uðZ ¼ kÞ ¼ ðGðk þ rÞ=ðk!GðrÞÞÞprð1� pÞk
1�Pu

i¼0ðGðiþ rÞ=ði!GðrÞÞÞprð1� pÞi , for all k . u:

Here G denotes Euler’s Gamma function. With a dataset z1, . . . , zn, the parameter estimators are,
therefore, obtained as the maximum log-likelihood solution

argmax
ðp, rÞ[ð0, 1Þ�ð0, 1Þ

Xn
i¼1

logP p,r,uðZ ¼ ziÞ:

Ever since the seminal work of Lloyd-Smith et al. [1], the negative binomial distribution has been widely
used to describe the number of secondary cases resulting from an index case of SARS-CoV. As suggested
in [3,22], this model has exponentially decreasing probability mass functions and thus cannot be
expected to accurately represent tail heaviness in SARS-CoV-2 transmission data. We provide below
further evidence for this claim, and for the suitability of D-GPD maximum likelihood estimates in the
context of discrete data, through several datasets gathering numbers of SARS-CoV-2 secondary cases
and cluster sizes in different settings.
3. Data and results
3.1. Analysis of secondary case data
Our first two datasets were reported in [3]. They consist of 15 SSEs associated with SARS-CoV (Dataset S1)
and 45 SSEs associated with SARS-CoV-2 (Dataset S2), each resulting in more than six secondary cases,
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Figure 2. Secondary case data from Wong & Collins [3] (Datasets S1 and S2). (a) Histogram of the number of secondary cases for
SARS-CoV (blue, n = 15) and SARS-CoV-2 (red, n = 45) SSEs. (b) Fitted probability mass function, conditional on Z > 6, of the
negative binomial distribution for SARS-CoV (blue) and SARS-CoV-2 (red) SSEs. (c) Hill estimates of ξ for SSEs associated with
SARS-CoV (solid blue), SARS-CoV-2 (solid red), and the pooled data (solid black), obtained from the exceedance values Zi− u
given Zi≥ u, as function of the threshold u, along with the resulting 90% confidence intervals for SARS-CoV (dashed blue)
and SARS-CoV-2 (dashed red) SSEs. (d ) Mean excess plots of SARS-CoV (blue) and SARS-CoV-2 (red) SSEs, quantified by the
average of the exceedances Zi− u given Zi≥ u, as function of u. (e) Discrete GPD maximum likelihood estimates of ξ for
SARS-CoV (solid blue) and SARS-CoV-2 (solid red) SSEs, calculated from the exceedances Zi− u given Zi≥ u, as function of u,
along with their corresponding 90% confidence intervals (dashed lines), and the Hill plot produced by combining SARS-CoV
and SARS-CoV-2 SSEs (black line). ( f ) Logarithm of the probability mass functions Ps,jðX ¼ xÞ of the D-GPD fits to the
exceedance values Zi− u given Zi≥ u, for the thresholds u = 6 (dotted lines) and u = 10 (solid lines), for SARS-CoV (blue)
and SARS-CoV-2 (red).
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alongwithmonth of occurrence and location of the superspreading event, and its setting.We refer toWong&
Collins [3] for further details about the construction of these datasets. Pooling the 15 SSEs associated with
SARS-CoV and 45 SSEs associated with SARS-CoV-2 into a single sample and making use of a generalized
Pareto approximation, Wong & Collins [3] have suggested that the distribution of the number of secondary
cases Z belongs to the Fréchet maximum domain of attraction [23], that is, the set of Pareto-type
distributions, with extreme value index ξ between 0.5 and 1 (the estimate provided in [3], fig. 1E is ĵ � 0:6).
The index ξ tunes the tail heaviness of the distribution, with higher positive values indicating a heavier
upper tail: moments of order higher than or equal to 1/ξ do not exist. An estimate of ξ around 0.6 means
that the second moment of Z does not exist, reflecting the outsized contribution of SSEs to overall
transmission. Most importantly perhaps, these findings on the tail heaviness of Z invalidate the
conventional assumption that Z follows a negative binomial distribution for either coronavirus, whereas
this assumption was widely adopted in the literature on disease transmission ever since the influential
work [1] on SARS-CoV, and it is still widely employed for SARS-CoV-2 (e.g. [5,24,25]).

Based on our statistical analysis of these datasets, summarized in figure 2, one may, however, argue
that the method of Wong & Collins [3] is inappropriate for examining the tail behaviour of their
particular 60 SSEs. The sparsity of data on SSEs is addressed by combining the 15 and 45
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observations associated with SARS-CoV and SARS-CoV-2 into a single sample, whereas the two datasets
correspond to completely different distributions (figure 2a) and should not be pooled accordingly. This is
apparent from either a Kolmogorov–Smirnov test, with p-value 0.015, or the more common approach
making the questionable assumption that Z follows a negative binomial distribution. The conditional
(given Z > 6) negative binomial fit of the probability mass function to the Zi (by construction larger
than 6), calculated as described in the last paragraph of the Methods section (figure 2b), already
suggests that the upper tail of Z for SARS-CoV appreciably dominates that for SARS-CoV-2. In other
words, even a naive analysis of the SSE distributions, using the classical negative binomial
distribution and not accounting for the heavy tail in the data, indicates that the SSEs for SARS-CoV
and those for SARS-CoV-2 exhibit different statistical behaviour. This is confirmed by an analysis of
the data properly taking into account its extremes (figure 2c): the ξ estimates obtained from the Hill
estimator in the special case of SARS-CoV-2 vary between 0.35 and 0.45, and as such differ
substantially from the various competing estimates found to vary between 0.5 and 1 in [3]. Even the
90% confidence intervals of ξ for SARS-CoV-2 (dashed red lines in figure 2c) only partially contain the
estimated extreme value index plot for SARS-CoV (solid blue line), reflecting a net difference between
the two fat-tailed distributions of secondary cases associated with SARS-CoV and SARS-CoV-2. This
conclusion is corroborated by the mean excess function estimates (figure 2d ), which similarly indicate
the relevance of separating the analysis for each coronavirus. This suggests that although SARS-CoV
and SARS-CoV-2 belong to the same family of respiratory diseases, SSEs are larger in scale for SARS-
CoV in comparison with SARS-CoV-2. For all these reasons, pooling the data before applying extreme
value tools can lead to misleading conclusions on the propagation of the SARS-CoV-2 virus.

Yet, the low sample size of this SSE dataset puts a question mark over the quality of the statistical
analysis. Trustworthy extreme value inference may require a larger sample size, of the order of at
least several thousands. This is why we also analysed a much larger Indian secondary case dataset of
size n = 88 527 (Database S3). This comprehensive surveillance and contact-tracing database was
collected in 2020 by the public health authorities of the two Indian states of Andhra Pradesh and
Tamil Nadu, whose residents total about 10% of India’s population. It was studied for instance in
[4,22], and we refer to the latter for more information about the database’s construction and contents.
Results are reported in figure 3. Although the barplot of this data (figure 3a) gives evidence of a
considerable right skewness and its summary extreme value analysis (figure 3b) suggests a heavy
right tail, it should be noted that since the Zi range from 0 to 39 with a sample size of 88 527, the data
are necessarily highly discrete with a large number of tied observations (see table 1).

Ignoring the discrete nature of the Zi by modelling their tail behaviour with the (generalized) Pareto
distribution is inappropriate, as this typically results in unreliable extreme value index estimates and
confidence intervals [13]. This becomes obvious here by superimposing both the classical Hill and
continuous generalized Pareto maximum likelihood estimators of the extreme value index as functions
of a varying threshold u in figure 3c. Clearly, both plots are so volatile and jagged that it is hard to
identify any stable region, and therefore a reasonable point estimate of ξ cannot easily be determined.
Using the D-GPD distribution to fit exceedances Zi− u above the threshold u (rather than trying to fit
the whole of the distribution, as Kremer et al. [22] did using a discrete Pareto distribution) results in a
much smoother and stable fit (figure 3c), and leads to an estimate of ξ around 0.24 with the 90%
confidence intervals overwhelmingly suggesting an estimate greater than 0, thus confirming the fat-
tailed nature of SARS-CoV-2 SSEs (figure 3d ) in this sample. Interestingly, revisiting the small SARS-
CoV-2 SSE dataset (Dataset S2) of size 45 using the D-GPD maximum likelihood estimation method
(figure 2e) results in an estimate of around 0.25, in agreement with the results from the Indian
secondary case data. This suggests that the distribution of SARS-CoV-2 SSEs has a finite third
moment and possibly even a fourth moment. These results are different from those obtained for the
SARS-CoV SSEs. The latter rather point towards a distribution with infinite variance and thus a much
heavier right tail. This is confirmed by considering the fitted D-GPD probability mass functions for
secondary cases (figure 2f ) that decrease much more rapidly for SARS-CoV-2 than for SARS-CoV.

To examine the extreme value behaviour of the SARS-CoV-2 offspring distribution in different
conditions, we turn to the analysis of two contact-tracing datasets in South Korea, a country which
has a similar population density to the Indian state of Tamil Nadu, but did not resort to any full
lockdown and has one of the largest and best-organized epidemic control programmes in the world.
The first dataset was collected in the first half of 2020 (Database S4), while the second was collected
during the fourth community epidemic in the summer of 2021 (Database S5) in the context of the
assessment of transmission dynamics for the Delta variant of SARS-CoV-2. The first dataset, which
consists of n = 5165 numbers of SARS-CoV-2 secondary cases Zi, was analysed in [3] (see table 2).
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ĵ ¼ 0:239 over the stable region u∈ [0, 10] is indicated with the horizontal red line.

royalsocietypublishing.org/journal/rsos
R.Soc.Open

Sci.10:220977
8

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

07
 A

pr
il 

20
23

 

We revisit the estimation of, and inference about, the underlying extreme value index by comparing
the D-GPD estimates with the classical GPD and Hill estimates. Results are displayed in figure 4. A least-
squares fit to the first part of the mean excess plot (figure 4b) suggests a linearly increasing fit to the mean
excess function with a slope of around 0.85, but this ignores the flat or even slightly linearly decreasing
right-hand part of the data cloud. This throws the assumption that the offspring distribution is fat-tailed
in doubt, although the barplot of the data (figure 4a) would tentatively back the heavy tail assumption.
The Hill estimator, which presupposes that the data are fat-tailed and graphed as a black line in figure 4c,
does not exhibit any stable region which would allow to produce a reasonable point estimate.
In such scenarios, best practice in extreme value theory requires calculating alternative extreme value
estimators whose consistency does not rest upon the heavy tail assumption (unlike the Hill estimator),
such as the general GPD and D-GPD estimators. These are also represented in figure 4c. Clearly, the
paths of these two estimates follow a similar trajectory which is very different from that of the Hill
plot. They point towards substantially lower estimates of ξ, and even though the estimates are overall
larger than 0, the validity of the heavy tail assumption ξ > 0 is not obvious for this dataset. Figure 4d
further supports this observation: in the (somewhat) stable region around the threshold u = 10, the
90% confidence interval produced through maximum likelihood theory contains the value 0. Our
conclusion from the analysis of this dataset is that the distribution of the number of secondary cases is
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discrete GPD maximum likelihood (solid bold red) estimates of ξ. (d ) Discrete GPD maximum likelihood estimates of ξ (solid red)
and their associated 90% confidence intervals (dashed red).
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either fat-tailed but with a low extreme value index, or perhaps even has an exponential-type tail. As a
consequence, our finding is qualitatively different from that of Wong & Collins [3], since we do not obtain
ξ estimates similar to those found by merging Datasets S1 and S2.

The second South Korean contact-tracing dataset comprises n = 33 903 SARS-CoV-2 numbers of
secondary cases Zi (Database S5) detected between 25 July 2021 and 15 August 2021. It was initially
explored in [5], where it was highlighted that the Delta variant accounted for the majority of those
cases. We, therefore, investigate this dataset to ascertain whether the tail behaviour of SSEs is
substantially different for the Delta variant. The data are presented in table 3. The results we obtain
for this dataset are displayed in figure 5. The barplot of the data in figure 5a again backs the
assumption of a heavy tail, but here, the mean excess plot in figure 5b suggests a more convincing
linearly increasing fit to the mean excess function with a slope of around 0.3. The Hill estimator and
both continuous and discrete GPD maximum likelihood estimators, represented in figure 5c, appear to
support the fat tail assumption of the offspring distribution which is mainly dominated here by the
Delta variant. Once again, the D-GPD estimate has a much smoother and more stable sample path,
with a stable zone over u∈ [1, 10] indicating a point estimate of around 0.21. The 90% confidence
interval of the D-GPD estimate over that region, provided in figure 5d, does not contain 0 and offers
further justification of the assumption that the offspring distribution is fat-tailed in this dataset, in
contrast to the 2020 South Korea data where the validity of this conclusion is much less clear.
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3.2. Analysis of cluster size data
We broaden our analysis by examining whether SARS-CoV-2 cluster sizes are fat-tailed. We consider a
database of 15 samples of cluster sizes recorded in 11 countries and four US states. We define a
cluster as a local outbreak involving a minimum of two cases, including confirmed close contacts with
epidemiological linkage observed up to extinction of the outbreak. This differs from the number of
secondary cases linked to a single, given index case in an SSE, since the cluster size is now the total
number of infected people over the duration of the outbreak. The number of reported clusters per
country or state varies from 29 (France) to 4769 (Colorado, USA). The database is constructed from
government reports [6–9] (Database S6) and media sources [10] (Database S7). The median cluster
sizes were 5 (Database S6) and 33 (Database S7), and the largest clusters had sizes 1761 (Database S6,
in a Colorado prison) and 7000 (Database S7, in an Italian football stadium). We denote by Yi the
number of SARS-CoV-2 cases in cluster i. The ξ estimates from each sample of cluster sizes allow to
infer the risk category of the corresponding country/state in terms of local community transmission.

Figures 6 and 7 display the D-GPD maximum likelihood estimates of ξ as functions of the cluster size
u. Eyeballed thresholds are indicated by the vertical dashed lines in figures 6 and 7. The final selected
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estimates are reported in table 4, where 13 out of the 15 countries or states appear to have fat-tailed
cluster size distributions (confirmed at the 90% confidence level except for China). We note that there
is strong variation in point estimates of ξ across countries and states. The low sample sizes of the data
available in each case (except for the two US states of Colorado and Oregon) certainly play an
important role in that variation. Heterogeneity in population density and healthcare policies may also
be substantial factors, although this would have to be cross-checked using complete demographic and
public health data. The analysis for California and the UK was inconclusive. For the California
dataset, this is possibly due to a strong degree of heterogeneity (see the histogram in the bottom left
panel of figure 7). A stratified study of the Californian data might be more conclusive. For the UK
dataset, the fact that the sample is so small (26 clusters) in a country with a highly developed
healthcare and contact-tracing system is suspicious and may suggest reporting issues.

Using the D-GPD model, one can gain further insight into large cluster sizes by providing
extrapolated estimates of extreme percentiles qα potentially beyond the sample maximum, through the
estimate q̂a described in the Methods section. Estimated 95th and 99th percentiles are given in table 4.
One may also match the estimated percentiles with actual observations to get a sense of what would
constitute a conducive environment for the formation of large SARS-CoV-2 clusters. For example, the
estimated 95th percentile of 120 cases in Kerala is close to two clusters of 113 cases (nursing home)
and 132 cases (local transmission) already observed in Kerala. Likewise, the estimate q̂0:95 ¼ 272 cases
in Canada is fairly close to a cluster of 324 cases in Canadian nursing homes. In Oregon, the
estimated 99th percentile q̂0:99 ¼ 124 cases is in the vicinity of a cluster of 134 cases in a care home
setting. In Colorado, the estimate q̂0:99 ¼ 140 cases is close to a cluster of 134 cases in a nursing home.
All of these clusters bar one (the local transmission cluster in Kerala) correspond to indoor
environments where social distancing is difficult to practise.
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4. Discussion
In summary, we have investigated four datasets of secondary case numbers Zi for SARS-CoV-2 as a way
to estimate and infer the extreme value index of the related underlying offspring distribution. Motivated
by the highly discrete nature of such data, we used the discrete GPD (D-GPD) maximum likelihood



Table 4. Final results for SARS-CoV-2 cluster sizes by country (first column), the corresponding sample size n (second column),
D-GPD maximum likelihood ξ estimate and 90% confidence interval (third column), selected cluster size threshold u and
associated number nu of exceedance values Yi− u given Yi≥ u upon which the ξ estimate is calculated (fourth column), D-GPD
maximum likelihood 95% and 99% percentile estimates of cluster size (fifth and sixth columns), and the sample maximum (last
column). The top table corresponds to data from official sources (Database S6), and the bottom table to data from media
sources (Database S7). The results reported in the latter table only concern the nine countries and states for which the extreme
value analysis was conclusive.

Database S6

location n ĵ ½90% CI� u (nu) q̂0:95 q̂0:99 Max. Yi (setting)

Colorado, USA 4769 0.53 [0.41, 0.64] 27 (474) 48 140 1761 (prison)

Hong Kong 54 0.55 [0.16, 0.93] 17 (34) 119 310 732 (dancing)

Kerala, India 113 0.36 [0.11, 0.62] 22 (60) 120 255 580 (unknown)

Oregon, USA 795 0.21 [0.10, 0.31] 15 (254) 64 124 639 (prison)

Database S7

location n ĵ ½90% CI� u (nu) q̂0:95 q̂0:99 Max. Yi (setting)

Australia 355 0.28 [0.09, 0.48] 25 (145) 157 326 662 (cruise ship)

Brazil 42 0.58 [0.00, 1.16] 15 (22) 82 220 191 (hospital)

Canada 100 0.42 [0.15, 0.69] 25 (74) 272 624 1500 (meat processing plant)

China 34 0.84 [−0.12, 1.80] 16 (10) 99 401 368 (market)

France 29 1.08 [0.32, 1.83] 26 (17) 443 2530 2500 (religious gathering)

Italy 41 1.02 [0.25, 1.79] 34 (15) 378 2013 7000 (stadium)

New Jersey, USA 183 0.20 [0.08, 0.33] 75 (157) 299 496 1042 (prison)

Singapore 45 0.90 [0.19, 1.61] 20 (21) 156 661 797 (worker housing)

South Korea 45 0.98 [0.37, 1.59] 22 (24) 324 1616 5016 (religious gathering)
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estimation method, which produces smoother and more stable plots of the associated D-GPD estimator
than the classical continuous GPD and Hill estimators. We first provided evidence that the small SSE
dataset (Dataset S2) compiled by Wong & Collins [3] during the early phase of the COVID-19
pandemic was fat-tailed, thus confirming their findings, although we show in various ways that this
dataset should not be pooled with their 15 SSEs associated with SARS-CoV (Dataset S1), since they
correspond to substantially different distributions. On the other hand, as accurate extreme value
inference requires a large sample size in general, we also analysed an Indian secondary case dataset
of size 88 527 collected in 2020 (Database S3), which contains a very large number of tied
observations. The D-GPD estimate of the extreme value index is around 0.24, which is in full
agreement with the estimate of around 0.25 found by revisiting the small SSE dataset of size 45 from
Wong & Collins [3]. The distribution of SARS-CoV-2 SSEs, therefore, appears to have at least a finite
third moment, whereas that of SARS-CoV SSEs is found to have a much heavier upper tail with
infinite variance and therefore stronger superspreading effect. In an effort to account for the quality of
implemented control programmes as well as the nature of the variant under study, we used two extra
South Korean contact-tracing datasets. For the first dataset (Database S4), collected in the first half of
2020 and used in [3], we cannot disprove that the distribution of the number of secondary cases has
an exponential-type tail. By contrast, for the second South Korean dataset (Database S5) collected
during the summer of 2021, in which the majority of cases correspond to the Delta variant of SARS-
CoV-2 [5], we obtained a D-GPD estimate, ĵ � 0:21 clearly suggesting a heavier upper tail for the
Delta variant and therefore more pronounced superspreading potential in South Korea relative to the
first half of 2020.

We broaden our analysis by providing evidence that SARS-CoV-2 cluster sizes are typically fat-tailed,
based on 15 samples from 11 countries and four US states. We infer the risk exposure and risk category of
each country and state by making use of D-GPD maximum likelihood estimates of both the extreme
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value index and extreme percentiles, along with their associated confidence intervals. For the sake of
simplicity, we used a straightforward threshold selection rule, which is to spot a stability region in the
estimates (as a function of the threshold value) and choose an estimate whose value is representative
of those reached in this region. This practice, colloquially known as ‘eyeballing’, is standard in applied
extreme value analysis: see for example the discussion on p. 77 of chapter 4 in [26]. It applies
reasonably well to the D-GPD sample paths, because they are overall much smoother and more stable
than the standard Hill and GPD maximum likelihood sample paths, which are not designed to handle
the discreteness of the data. The development of more elaborate statistical techniques for the choice of
threshold in discrete GPD maximum likelihood estimation, such as methods based on asymptotic
m.s.e. minimization or the bootstrap in the spirit of the approaches outlined in section 5.4 of Gomes &
Guillou [27] for Hill estimation, is an open question which is beyond the scope of this paper.

A limitation of our study lies in the quality of the data, as it is not obvious whether all SSEs or clusters
over a given time period were available, or whether cluster sizes were correctly recorded. To check
robustness against missing data, we have reproduced part of our analysis of cluster data by removing
10% of observations at random in each sample containing at least 100 data points, and replicating this
experiment 10 000 times. Robustness against poor recording was checked by multiplying each
observation Yi by an independent normal variate Wi having mean μ = 1 and standard deviation σ =
0.05, and then reproducing our analysis of cluster data on the Y0

i =Wi Yi, this experiment being again
replicated 10 000 times. There is indeed some variation in the resulting estimates of ξ (figures 8
and 9), but this does not affect our conclusion on the fat-tailed behaviour of the data, except in rare
situations when almost all the large values in the data go missing. This highlights the importance of
accurate data reporting as a prerequisite to such analyses. A further limitation lies in the assumption
of independent data that is implicitly made in order to derive confidence intervals for extreme value
parameters, even though the data are implicitly time series. Handling serial dependence in the current
setting of discrete epidemiological data is obviously an interesting but very difficult question,
involving the hitherto open problem of extreme value dependence in discrete time series, which
deserves a study of its own.

It should be noted that, in classical epidemiological models, accurate estimation of the basic
reproduction number R0 is of crucial importance, as it informs the extent of restrictions on social
interactions and other control measures that should be imposed to terminate the spread of an
epidemic. The range of R0 for SARS-CoV-2 has been revised in [28] to 4.7–11.4, which is considerably
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Figure 9. Robustness check (with respect to poor recording of the data) for the analysis of cluster cases (Databases S6 and S7).
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higher than most early estimates. This might explain why moderate restrictions that were implemented in
some nations, e.g. France, Italy, Spain, the UK, Australia and New Zealand, turned out to be insufficient
and replaced by nationwide or statewide lockdowns and/or border closures. It should be clear that our
results are, by construction, robust to mis-specified estimates of the expected number of secondary cases
R0 since they solely rely on extreme values of numbers of secondary cases.

Our approach can be viewed as a proof of concept that transmission data from a respiratory disease
should not be pooled with data from a similar disease, since similar R0 numbers or parameters of average
transmission do not, in general, induce similar parameters of large community transmission. As such,
preparing proactive control measures actually requires a fine assessment of how unequal the
distributions of SSEs associated with different SARS-CoV-2 variants are. Liu & Rocklöv [29] conclude
that the reproductive number of the Delta variant is far higher than that of the historical SARS-CoV-2
virus. Similarly, Ito et al. [30] estimate that the effective reproduction number of the Omicron variant
is more than three times that of the Delta variant in Denmark. Our analysis of secondary case data
did not, strictly speaking, allow one to conclude statistically that SSEs linked to the Delta variant had
a different extreme value index from those linked to the original strains of SARS-CoV-2. However, in
the contact-tracing data recorded in South Korea, we did find a heavy tail in the offspring distribution
when the Delta variant made the majority of cases, as opposed to when it did not. This tentative
finding of a heavier tail in the data linked to the Delta variant is coherent with the higher
reproductive number of the Delta variant found in [29]. The question of estimating parameters of
large community transmission for the Omicron variant remains open, as we could not find a dataset
whose sample size would enable us to draw statistically principled conclusions about the tail
behaviour of Omicron-related SSEs.
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