
Calhoun: The NPS Institutional Archive

DSpace Repository

Theses and Dissertations 1. Thesis and Dissertation Collection, all items

2013-06

IPV6 alias resolution via induced router fragmentation

Brinkmeyer, William D., Jr.

Monterey, California: Naval Postgraduate School

http://hdl.handle.net/10945/34634

Downloaded from NPS Archive: Calhoun

NAVAL
POSTGRADUATE

SCHOOL

MONTEREY, CALIFORNIA

THESIS

IPV6 ALIAS RESOLUTION VIA INDUCED ROUTER
FRAGMENTATION

by

William D. Brinkmeyer Jr.

June 2013

Thesis Advisor: Robert Beverly
Second Reader: Geoffrey Xie

Approved for public release; distribution is unlimited

THIS PAGE INTENTIONALLY LEFT BLANK

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704–0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection
of information, including suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704–0188),
1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202–4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty
for failing to comply with a collection of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE
ADDRESS.

1. REPORT DATE (DD–MM–YYYY)2. REPORT TYPE 3. DATES COVERED (From — To)

4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

6. AUTHOR(S)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT
NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION / AVAILABILITY STATEMENT

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:

a. REPORT b. ABSTRACT c. THIS PAGE

17. LIMITATION OF
ABSTRACT

18. NUMBER
OF
PAGES

19a. NAME OF RESPONSIBLE PERSON

19b. TELEPHONE NUMBER (include area code)

NSN 7540-01-280-5500 Standard Form 298 (Rev. 8–98)
Prescribed by ANSI Std. Z39.18

27–3–2013 Master’s Thesis 2011-03-28—2013-06-21

IPv6 Alias Resolution via Induced Router Fragmentation

William D. Brinkmeyer Jr.

Naval Postgraduate School
Monterey, CA 93943

Department of the Navy

Approved for public release; distribution is unlimited

The views expressed in this thesis are those of the author and do not reflect the official policy or position of the Department of
Defense or the U.S. Government.IRB Protocol Number: N/A

IPv4 addresses are a scarce resource with available allocations nearing exhaustion. DoD and government agencies were
mandated to transition to IPv6 for greater security and flexibility. The transition to IPv6 faces a series of challenges associated
with protecting the network. Among many defensive challenges associated with IPv6 is the inability to accurately identify and
understand the network’s router-level topology. Providing an accurate IPv6 topology map is needed for security, situational
awareness, and understanding the operational deployment and evolution of IPv6. To better understand IPv6 networks, this
thesis focuses on the alias resolution problem whereby we seek to identify multiple interfaces belonging to a single IPv6
router. Alias resolution is critical to developing an accurate router-level topology map. This thesis presents a fingerprint-based
IPv6 alias resolution technique that induces fragmented responses from IPv6 router interfaces. We demonstrate perfect alias
resolution accuracy in a controlled environment, and on a small subset of the production IPv6 Internet for which ground-truth
is known. Internet-wide testing finds that over 70% of IPv6 interfaces probed respond to the method.

IPv6, Alias resolution

Unclassified Unclassified Unclassified UU 65

i

THIS PAGE INTENTIONALLY LEFT BLANK

ii

Approved for public release; distribution is unlimited

IPV6 ALIAS RESOLUTION VIA INDUCED ROUTER FRAGMENTATION

William D. Brinkmeyer Jr.
Lieutenant , United States Navy

B.S. Computer Information Systems, Chapman University, 2004

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN CYBER SYSTEMS AND OPERATIONS

from the

NAVAL POSTGRADUATE SCHOOL
June 2013

Author: William D. Brinkmeyer Jr.

Approved by: Robert Beverly
Thesis Advisor

Geoffrey Xie
Second Reader

Cynthia Irvine
Chair, Cyber Academic Group

iii

THIS PAGE INTENTIONALLY LEFT BLANK

iv

ABSTRACT

IPv4 addresses are a scarce resource with available allocations nearing exhaustion. DoD and
government agencies were mandated to transition to IPv6 for greater security and flexibility.
The transition to IPv6 faces a series of challenges associated with protecting the network.
Among many defensive challenges associated with IPv6 is the inability to accurately identify
and understand the network’s router-level topology. Providing an accurate IPv6 topology map
is needed for security, situational awareness, and understanding the operational deployment and
evolution of IPv6. To better understand IPv6 networks, this thesis focuses on the alias resolution
problem whereby we seek to identify multiple interfaces belonging to a single IPv6 router. Alias
resolution is critical to developing an accurate router-level topology map. This thesis presents a
fingerprint-based IPv6 alias resolution technique that induces fragmented responses from IPv6
router interfaces. We demonstrate perfect alias resolution accuracy in a controlled environ-
ment, and on a small subset of the production IPv6 Internet for which ground-truth is known.
Internet-wide testing finds that over 70% of IPv6 interfaces probed respond to the method.

v

THIS PAGE INTENTIONALLY LEFT BLANK

vi

Table of Contents

1 Introduction 1
1.1 Motivation . 2

1.2 Department of Defense Applicability 3

1.3 Research Questions . 4

1.4 Thesis Structure . 4

2 Background and Related Work 5
2.1 Background . 5

2.2 Related Work . 13

3 Methodology 21
3.1 Eliciting Fragmented Responses . 22

3.2 Ground-Truth Testing . 24

3.3 IPv6 Alias Resolution Algorithm . 26

3.4 Controlled Alias Resolution . 28

4 Analysis 29
4.1 Efficacy of TBT . 29

5 Conclusions 35
5.1 Limitations. 35

5.2 Future Work . 36

5.3 IPv6 Load Balancing . 38

List of References 40

vii

Initial Distribution List 47

viii

List of Figures

Figure 2.1 Alias vs. Non-alias. 5

Figure 2.2 IPv6 Header Format. 7

Figure 2.3 IPv6 Extension Headers. 9

Figure 2.4 IPv6 Fragment Header. 10

Figure 2.5 IPv6 Destination Options Header. 10

Figure 2.6 IPv6 Routing Header. 11

Figure 2.7 ICMPv6 Message Format. 12

Figure 2.8 Identifying Aliases with Atlas. 14

Figure 2.9 Identifying Non-aliases with Atlas. 14

Figure 2.10 Route Positional Method. 15

Figure 2.11 Using the Destination Options Header Method with IPv6-in-IPv4 Tun-
nels. 15

Figure 2.12 Destination Options Header After the IPv6 Routing Header. 16

Figure 2.13 Example Ground-truth Topology. 17

Figure 2.14 Traceroute Topology with False Links and Missing Nodes. 17

Figure 3.1 TBT, the “Too-Big Trick” . 23

Figure 3.2 GNS3 Test Topology with Asymmetric MTU Paths Inducing ICMPv6
Packet Too Big. 24

Figure 4.1 Histogram of IPv6 Fragment Identifiers Occurring ≥ 0.3% 32

ix

Figure 4.2 Histogram of IPv6 Fragment Identifiers Occurring ≥ 0.3% 32

x

List of Tables

Table 2.1 IPv6 Next Header Values. 6

Table 2.2 ICMPv6 Error Message Codes. 13

Table 4.1 TBT Response Characteristics . 30

Table 4.2 Operating System Identifiers for Alias Resolution 33

xi

THIS PAGE INTENTIONALLY LEFT BLANK

xii

List of Acronyms and Abbreviations

USG United States Government

DoD Department of Defense

IPv6 Internet Protocol version 6

IPv4 Internet Protocol version 4

IP Internet Protocol

IPID Internet Protocol Identifier

ICMPv6 Internet Control Message Protocol for IPv6

ICMP Internet Control Message Protocol

CIDR Classless Inter-Domain Routing

NAT Network Address Translation

IANA Internet Assigned Numbers Authority

TCP Transmission Control Protocol

UDP User Datagram Protocol

BGP Border Gateway Protocol

TTL Time-To-Live

MTU Maximum Transmission Unit

PMTU path MTU

DNS Domain Name Service

GNS3 Graphical Network Simulator

IOS Internetwork Operating System

OS Operating System

CDN Content Distribution Network

CAIDA Cooperative Association for Internet Data Analysis

AS Autonomous System

xiii

ARP Address Resolution Protocol

BSD Berkeley Software Distribution

TBT Too-Big Trick

SSRR Strict Source and Record Route

LSRR Loose Source and Record Route

CIO Chief Information Officer

IHL Internet Header Length

ISP Internet Service Provider

RIR Regional Internet Registry

DoS Denial of Service

MIDAR Monotonic ID-Based Alias Resolution

xiv

Acknowledgements

First and foremost, I would like to thank my wife, Edith, for all of her love and support. Thank
you for putting up with me spending countless hours on the computer and for keeping me
focused on what is most important. Without your continued sacrifice and support, I would
not be where I am today. I would like to thank our children, Brandon, Lance and Noelani for
reminding me to take breaks and enjoy the small things in life. I could’t have done this without
the support of my family.

I would also like to thank my second reader, Professor Geoff Xie, for his constructive feedback.
The ability to leverage your expertise was beneficial throughout this research. Finally, I would
like to thank my advisor Professor Rob Beverly for his mentorship, advice and encouragement
throughout this entire process. Without your guidance and insight, this work would not have
been possible.

xv

THIS PAGE INTENTIONALLY LEFT BLANK

xvi

CHAPTER 1:
Introduction

The address space in Internet Protocol version 4 (IPv4), 232, or approximately four billion ad-
dresses, is nearing exhaustion. The last available addresses have been allocated to the Regional
Internet Registries (RIRs) [1]. While there are approximately 230 million (<0.01%) unique
IPv4 addresses remaining [2], it is projected that IPv4 addresses for four of the five RIRs will
be exhausted by 2014 and complete IPv4 exhaustion by 2020 [3]. The exhaustion of IPv4 ad-
dresses presents the problem of not having enough globally unique addresses to meet demand.
Scarcity has made IPv4 addresses an economic commodity; IPv4 address blocks are sold and
companies have been purchased solely for their address allocations [4], [5]. Various methods
were introduced to delay the exhaustion of IPv4 addresses including Classless Inter-Domain
Routing (CIDR), to reduce the rate at which IPv4 address space would be consumed [6], and
Network Address Translation (NAT), to enable private address space to be used on internal net-
works [7]. However, these methods were only a short term solution to a larger problem and did
not solve the the IPv4 address exhaustion problem as the last available IPv4 address blocks were
allocated by Internet Assigned Numbers Authority (IANA) in February 2011 [1]. In addition to
not solving the IPv4 address exhaustion problem, NAT has the disadvantage of taking away the
end-to-end significance of an Internet Protocol (IP) address which can lead to the unanticipated
failures in end-to-end communications [7], [8].

As a result, Internet Protocol version 6 (IPv6), standardized 15 years ago [9] as the successor
to IPv4, is experiencing commercial deployment–primarily due to economic and business con-
straints, rather than any technical impetus [10]. Modern systems and hardware support IPv6,
service and content providers are deploying IPv6 [11], and United States Government (USG)
networks are mandating IPv6 [12]. Additionally, Google indicates that the percentage of users
that access Google over native IPv6 has exceeded 1% [13].

The number of global IPv6 Border Gateway Protocol (BGP) routing prefixes is growing expo-
nentially [14]. More than 6,000 autonomous systems, approximately 15%, now announce IPv6
reachability [15]. As IPv6 experiences an increased global adoption, the size of the IPv6 Inter-
net will continue to grow. Amid IPv6 measurement efforts underway [16], [17], understanding
the structure, and evolution, of the IPv6 router-level topology is an ongoing challenge. This
thesis is a step forward in understanding IPv6 topology.

1

1.1 Motivation

Department of Defense (DoD) and USG agencies were mandated to transition from IPv4 to IPv6
in an effort to provide greater security and flexibility to the networks under its cognizance [12].
With the transition to IPv6 comes a series of challenges associated with defending the network.
One challenge in securing and defending a network is the ability to accurately identify and un-
derstand the network’s topology, specifically from a router-level topology mapping perspective.

Providing an accurate IPv6 topology map is needed for network security, situational awareness,
and will aid in the identification of potential threats. Additionally, accurately identifying the
IPv6 topology can improve the general knowledge of IPv6 and is necessary in tracking its
evolution, for network research and routing protocol development. To better understand and
characterize IPv6 network topologies, this thesis focuses on the alias resolution problem as
alias resolution is critical in developing an accurate router-level topology map.

This research investigates IPv6 alias resolution: the process of determining if two IP addresses
are assigned to different interfaces of the same physical router [18]. Alias resolution reduces the
interface level graph, e.g., discovered via active probing, into a router-level graph [19], thereby
permitting a better understanding of the resilience and robustness properties of the network [20].

As IPv6 alias resolution provides the ability to construct accurate router-level topology maps,
the ability to compare both the IPv6 and IPv4 Internet topologies is desired in order to de-
termine similarities of the two topologies. The ability to identify dual stacked interfaces, i.e.,
interfaces that are configured with both an IPv4 and IPv6 address, is crucial to the identification
and protection of critical infrastructure and recognizing potential impacts of attacks. On dual
stacked links the potential exists for an attack utilizing IPv4 to impact the performance of IPv6
as well as an IPv6 attack to affect IPv4 performance. For example, a Denial of Service (DoS)
attack carried out on an IPv4 network where traffic flows over a dual stacked link can result in
the degradation of IPv6 data flow as well due to both IPv4 and IPv6 data flows being on the
same transmission medium (Ethernet, fiber optics, etc.).

Taking inspiration from prior IPv4 alias resolution work, this thesis presents a fingerprint based
IPv6 alias resolution technique that relies on eliciting fragmented responses from IPv6 router
interfaces. Although IPv6 has no in-network fragmentation [9], sources can send large IPv6
packets in fragments. This research finds that, as with IPv4 routers, the IPv6 fragment identifier
counter is frequently common across a router’s interfaces. While all IPv4 control-plane packets

2

sourced by a router require a unique fragment identifier, IPv6 fragment identifiers increase only
when the router must source a fragmented packet. Thus, as Chapter 3 will describe, in contrast
to fragmentation-based IPv4 alias resolution that is prone to false positives due to background
control-plane traffic incrementing a small 16-bit counter, this IPv6 technique is highly accurate
because control-plane messages are rarely fragmented, thus this traffic does not increment the
IPv6 32-bit counter.

This thesis seeks to detail and validate a new IPv6 alias resolution algorithm for performing
Internet-wide IPv6 alias resolution. Four primary contributions are made in this thesis:

1. Development of a fingerprint-based IPv6 alias resolution technique, termed the Too-Big
Trick (TBT).

2. Validation on a large virtualized testbed of common commercial routers.
3. Internet-wide probing of more than 49,000 distinct live IPv6 router interfaces of which

approximately 70% respond to tests.
4. Validation of the TBT technique on a small subset of the production IPv6 network for

which alias ground-truth is known, where perfect accuracy is obtained.

1.2 Department of Defense Applicability
Offensive and defensive cyber operations are inherently dependent on the structure of the Inter-
net. As the DoD transitions to IPv6, the need to understand the structure of the networks under
its responsibility, and more importantly the IPv6 Internet in general, becomes increasingly im-
portant. This work seeks to provide a tool that can be used by the DoD to develop accurate
router-level maps for use in cyber operations.

In developing a router-level topology map, the benefits of IPv6 alias resolution are not limited to
defensive or security measures. In an offensive cyber operation, having an accurate router-level
map can allow commanders to focus their resources appropriately. For example, given a pool
of IPv6 addresses as targets, understanding if a given address is an alias of any other addresses
will prevent duplication of effort, thus minimizing resource allocation to conduct an operation.
However, if the topology is unknown, an operation may require allocating resources for each
address, thus delaying the execution of other operations. Additionally, having an accurate rep-
resentation of the topology allows planners to assess the potential impact of an operation ahead
of time.

3

1.3 Research Questions
The questions that this research aims to answer are:

1. What are the limitations of current alias resolution techniques?
2. Are there any IPv4 alias resolution techniques that can be used in IPv6 alias resolution?
3. Is there a reliable identifier that can be used as a fingerprint for IPv6 alias resolution?

1.4 Thesis Structure
This remainder of this thesis is organized as follows:

• Chapter 2 provides and overview of the fundamentals of IPv6, highlights the major dif-
ferences between IPv4 and IPv6 and describes prior efforts including the techniques de-
veloped for use in both IPv4 and IPv6 alias resolution.
• Chapter 3 discusses the methodology used in this research to include the virtual testbed

components and configuration, topology and router configurations, preliminary findings
and ground-truth testing.
• Chapter 4 details the results of both virtual and live Internet ground truth alias resolution

testing, and provides initial results on the ability to perform end host alias resolution.
• Chapter 5 provides conclusion based on this research and provides recommendations for

future areas of research, including research to address the areas where TBT falls short.

4

CHAPTER 2:
Background and Related Work

Alias resolution is the process of determining if two IP addresses are assigned to different inter-
faces of the same physical router [18].

IPv6

Router

a b

c d

IPv6

Router

e f

g h

Figure 2.1: Interfaces located on the same physical router (i.e., a,b,c and d) are referenced as aliases
whereas interfaces on different physical routers (i.e., a and e) are not aliases.

Design differences between IPv4 and IPv6 obsolete some of the alias detection techniques used
in IPv4, while enabling new ones. This chapter covers IPv6 and relevant changes from IPv4
(§2.1), highlighting the technologies used in this research, and reviews existing alias resolution
techniques for both IPv4 and IPv6 (§2.2).

2.1 Background
Nearly 17 years its inception, IPv6 is finally gaining momentum partly due to IPv4 address
exhaustion. In January 2011, the last of the available IPv4 addresses were allocated to the
RIRs by IANA [1]. In September 2010, the Federal Chief Information Officer (CIO) mandated
that the USG transition to IPv6, outlining milestones to upgrade external facing servers and
services, and internal client applications supporting enterprise networks to operationally use
native IPv6 [21]. Comcast has started issuing IPv6 addresses to home users [22], and as the

5

population of Internet capable device users increases, the growth of the Internet is reliant on the
adoption of IPv6.

As IPv6, the successor to IPv4, gains popularity and is more widely implemented, the ability
to infer accurate IPv6 topologies increases, motivating the need for alias resolution. Alias reso-
lution is an important tool when attempting to create accurate views of a network. These maps
can provide the ability to identify critical points within a network allowing an organization to
focus its resources when attempting to identify and secure critical components and information
paths within a larger network.

In order to accurately identify and track the adoption of IPv6 while monitoring the growth of the
IPv6 Internet, there must be a mechanism that can be used to establish an accurate baseline of
nodes and infrastructure in use. Additionally, the ability to identify relationships among paths
becomes increasingly important when attempting to creating accurate views of IPv6 networks.
As a result, IPv6 alias resolution allows measurement researchers to track the changes of the
IPv6 Internet infrastructure as IPv6 is more widely deployed.

2.1.1 IPv6 Header
The IPv6 header was completely revamped from IPv4. As shown in Figure 2.2, some IPv4
header fields were removed or replaced by fields located in optional IPv6 extension headers. A
description of the IPv6 header fields is provided below [9]:

Version–specifies the Internet Protocol version, with IPv6 identified by the value of six. Traffic

Class–identifies the priority and class of service of this packet. Flow Label–is used to identify
packets that are part of a unique flow [23]. Payload Length–the payload length, in octets, of the
data that follows the IPv6 header. Next Header–identifies the type of header that immediately
follows the IPv6 header. Table 2.1 lists some of the next header values referenced in this work.

Table 2.1: IPv6 Next Header Values. From [24].
Decimal Keyword Protocol

41 IPv6 IPv6 encapsulation
43 IPv6-Route Routing Header for IPv6
44 IPv6-Frag Fragment Header for IPv6
58 IPv6-ICMP ICMP for IPv6
59 IPv6-NoNxt No Next Header for IPv6
60 IPv6-Opts Destination Options for IPv6

Hop Limit–similar to the Time-To-Live (TTL) field of the IPv4 header, an 8-bit counter that
specifies the number of hops a packet can traverse en route to a specified destination. The

6

originating source of the packet is responsible for assigning the hop limit value. Example default
hop limit values are 64 (Cisco and Juniper routers) [25], [26] and 128 (Windows) [27]. As a
packet is processed by the router, the router must decrease the hop limit value by one before
forwarding the packet. If the hop limit value reaches zero, the packet is discarded and an
Internet Control Message Protocol for IPv6 (ICMPv6) Time Exceeded message is returned to
the originating host in order to prevent routing loops. ICMPv6 is further described in § 2.1.3

Source Address–the 128-bit address of the node that originated the packet. Destination Address–
the 128-bit address of the recipient that the packet is destined for.

+-+
|Version| Traffic Class | Flow Label |
+-+
| Payload Length | Next Header | Hop Limit |
+-+
| |
+ +
| |
+ Source Address +
| |
+ +
| |
+-+
| |
+ +
| |
+ Destination Address +
| |
+ +
| |
+-+

Figure 2.2: IPv6 Header Format. From [9].

When comparing the IPv4 and IPv6 headers, one notices that the IPv6 header has fewer fields
and is aligned to support the current processors found in most host computers and devices by
using 4 and 8 bit boundaries that make header disassembly more efficient. Another difference
between the headers is that the IPv6 header has a fixed size of 40 bytes whereas the IPv4 header
size can vary from 20 to 60 bytes based on the Options field length. The IPv6 header has also
been simplified by removing all the fields (from IPv4) that have little to no use in the v6 version

7

of the protocol. Below are some examples of the field differences between the headers [9]:

In IPv4, the Internet Header Length (IHL) field was necessary to identify the size of the header.
The IHL field was removed due to the IPv6 header being a fixed size. Since IPv6 does not permit
in-path fragmentation, the Identification, Flags and Fragment Offset were moved to Fragment
header. The Header Checksum field was removed from the IPv6 header. Options are no longer
defined in the IPv6 header and have been moved to the Destination Options and Hop-by-Hop
Options extension headers.

To improve performance, the IPv6 header contains only essential data with everything else (e.g.,
fragmentation) handled by extension headers. Overall, the IPv6 header has been streamlined for
simplicity and performance.

2.1.2 Extension Headers
In addition to the changes in the IPv6 header, one of the most notable changes in IPv6 is the
use of extension headers to extend protocol functionality. Extension headers follow the IPv6
header and are a sequential list of optional internet layer information that are encoded in separate
headers that may be placed between the IPv6 header and the transport layer header in the packet
[9]. Extension headers contain an 8-bit option type that indicates the next extension header,
an 8-bit unsigned integer that tells how long the header is, and the option data payload that is
of variable size. Extension headers can be combined, where several appear concatenated (or
“chained”) in a single packet, but typically only a few are included [28]. The structure and
arrangement of extension headers is illustrated in Figure 2.3.

An IPv6 packet can contain any number of extension headers which provides additional internet-
layer information. Extension headers must be processed in the order that they are received.
Each extension header is identified by the Next Header field of the preceding header (e.g., a
next header value of 44 identifies the fragment header).

Extension headers are not examined or processed by any node along a packet’s delivery path
until the packet reaches the destination address identified in the IPv6 header, with the exception
of the Hop-by-Hop options [9] and the destination options [29] headers.

Since IPv6 extension headers must be processed by the destination node in the order that they
are received, RFC 2460 [9] recommends that those headers appear in the following order if
more than one extension header is used in the same packet:

8

+---------------+------------------------
| IPv6 header | TCP header + data
| |
| Next Header = |
| TCP |
+---------------+------------------------

+---------------+----------------+------------------------
| IPv6 header | Routing header | TCP header + data
Next Header =	Next Header =
Routing	TCP
+---------------+----------------+------------------------	
+---------------+----------------+-----------------+-----------------	
IPv6 header	Routing header
Next Header =	Next Header =
Routing	Fragment
+---------------+----------------+-----------------+-----------------

Figure 2.3: IPv6 extension headers are arranged with the next header value identifying subsequent
extension headers or protocols. From [9].

1. IPv6 Header
2. Hop-by-Hop Options header
3. Destination Options header
4. Routing header
5. Fragment header
6. Authentication header
7. Encapsulation Security Payload header
8. Destination Options header
9. Upper-layer header

The order of precedence for processing IPv6 extension headers determines the manner in which
an IPv6 packet will be processed by in-path routers, as used in prior techniques described
in §2.2. For example, if the Destination Options header is placed before the Routing header,
only the destination processes the Destination Options header; however, if placed after the rout-
ing header, each in-path router that supports source routing and the final destination process the
Destination Options header [29].

9

Fragment Header
IPv6 does not allow in-network fragmentation, therefore all fragmentation is pushed to the
source node to reduce overhead associated with packet fragmentation by in-path routers. The
Fragment Header, Figure 2.4, is used by an IPv6 source node when sending a packet that ex-
ceeds the path Maximum Transmission Unit (MTU) to its destination. Each packet receives
a Fragment Identification value that must be different from any other fragmented packet, dur-
ing the maximum lifetime of the packet, with the same source and destination addresses. The
fragment header is identified by the value 44 in the preceding Next Header field [9].

+-+
| Next Header | Reserved | Fragment Offset |Res|M|
+-+
| Identification |
+-+

Figure 2.4: IPv6 Fragment Header. From [9].

Destination Options Header
The destination options header, Figure 2.5 is used to carry optional information that need be
examined only by a packet’s destination node(s) [9]. As described by Qian et al. [29], the
placement of the Destination Options header in relation to a routing header will determine how
it will be processed. If the destination options header is placed before the routing header each
in-path router will process it, otherwise it is processed only by the destination node.

+-+
| Next Header | Hdr Ext Len | |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +
| |
. .
. Options .
. .
| |
+-+

Figure 2.5: IPv6 Destination Options Header. From [9].

Routing Header
The Routing header, identified by a next header value of 43, is used by an IPv6 source to list
one or more intermediate nodes that a packet should traverse en route to the destination. In IPv4

10

there are two forms of source routing that allow a collection of nodes to be specified that the
packet must traverse before reaching the destination: Strict Source and Record Route (SSRR),
which requires the entire path to be defined in advance; and Loose Source and Record Route
(LSRR), which only requires part of the path is set in advance [30].

The IPv6 Routing Header Type 0 is provides an extended version of IPv4 LSRR, thus using a
similar method of source routing in IPv6 widely disabled in IPv4 [31]. Packets containing a
routing header, Figure 2.6, that exceeds the size of a path’s specified MTU are discarded by the
receiving node following the processing of the routing header with the receiving node sending
a ICMPv6 Packet Too Big message [9].

While source routing is widely disabled in IPv4 due to security concerns and the similarities
between IPv4 and IPv6 source routing it is likely that IPv6 source routing will follow suit with
IPv4 and be disabled, thus rendering current source routing based alias resolution techniques
unusable.

+-+
| Next Header | Hdr Ext Len | Routing Type | Segments Left |
+-+
| |
. .
. type-specific data .
. .
| |
+-+

Figure 2.6: IPv6 Routing Header. From [9].

2.1.3 ICMPv6
ICMPv6, Figure 2.7, is used by IPv6 nodes to report errors encountered in processing packets,
and to perform other internet-layer functions, such as diagnostics and testing (e.g., traceroute6).
ICMPv6 operates on top of IPv6 as an extension header but actually works in conjunction
with IPv6 for protocol operations. ICMPv6 is an integral part of IPv6, and must be fully im-
plemented by every IPv6 node [32]. ICMPv6 is preceded by the IPv6 header and extension
headers, if used, and is identified by a Next Header value of 58, whereas in IPv4, Internet Con-
trol Message Protocol (ICMP) is identified by the Protocol value of one. ICMPv6 combines
functions previously subdivided among different protocols. For example, ICMPv6 Neighbor

11

Discovery combines Address Resolution Protocol (ARP), ICMP Router Discovery, and ICMP
Redirect used in IPv4 [33].

ICMPv6 error messages are structured to include as much of invoking packet as possible without
the ICMPv6 packet exceeding the minimum IPv6 MTU value of 1280 bytes [32], compared to
the Internet Header plus the first 64 bits of original data in ICMP, [34].

Since IPv6 does not allow in-path fragmentation, if the size of a packet exceeds the MTU of the
outgoing link, an ICMPv6 Packet Too Big message is sent to the originating node indicating the
MTU of the outgoing link [32]. This research relies on the ability for nodes to send and receive
Packet Too Big messages.

0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+
| Type | Code | Checksum |
+-+
| |
+ Message Body +
| |

Figure 2.7: ICMPv6 Message Format. From [32].

ICMPv6 messages contain a type and a code that relate the details of the message to the type of
message, as well as a checksum and a payload of variable size. ICMPv6 error messages relay
useful information back to the source of the packet about any error that may have occurred
along the path.

Type indicates the type of message [32].
There are two general types of ICMPv6 messages:
• ICMPv6 error messages

– Destination Unreachable (1)
– Packet Too Big (2)
– Time Exceeded (3)
– Parameter Problem (4)

• ICMPv6 informational messages
– Echo Request (128)
– Echo Reply (129)

12

Code used to create an additional level of message granularity. Table 2.2 summarizes the
different ICMPv6 codes.

Table 2.2: ICMPv6 Error Message Codes. After [32].
Type Code Code Description

1 0 no route to destination
1 communication with destination administratively prohibited
2 beyond scope of source address (draft)
3 address unreachable
4 port unreachable

2 0 Set by sender and ignored by the receiver
3 0 hop limit exceeded in transit

1 fragment reassembly time exceeded
4 0 erroneous header field encountered

1 unrecognized next header type encountered
2 unrecognized IPv6 option encountered

Checksum used to detect data corruption in the ICMPv6 message and parts of the IPv6 header.

2.2 Related Work
Significant research has been performed in the area of alias resolution. Various techniques exist
today to provide the ability to resolve alias pairs in an attempt to reduce interface-level network
maps to the more useful router-level maps [35]. Features such as source routing, previously
disabled in IPv4 due to security reasons, have been enabled in IPv6 allowing researchers to
develop additional alias resolution techniques using previously obsolete technologies.

2.2.1 Source Routing
Source routing provides the ability to transmit a packet along a set path, either completely or
partially, rather than relying on routers to provide path determination. Source routing is largely
disabled in IPv4 due to the potential security risks such as spoofing. With LSRR, an attacker
can send a packet to the destination with a spoofed source address, enabling the attacker to see
all of the return traffic by placing his address as a hop in the specified route.

These source routing methods can be used for remote network discovery, to bypass firewalls
and to achieve packet amplification for the purposes of generating denial-of-service traffic [30].

The reintroduction of source-routing, using the routing header in IPv6 has enabled several
new approaches including Atlas [36], the Route Positional Method [37], and the option header
method [29].

13

Atlas
Given a potential alias pair (x,y), Atlas [36] performs a User Datagram Protocol (UDP) tracer-
oute to y via x with the hop limit set to expire at x and relies on the fact that routers will generally
process the routing header before checking the hop limit. Figures 2.8 and 2.9 show prober, P,
and IPv6 routers, A and B. If x and y are aliases, both “hop limit exceeded” and “port unreach-
able” ICMPv6 messages will be generated. If x and y are not aliases, only an ICMPv6 “hop
limit exceeded” message will be generated.

P
A zy

x

B

Hop limit exceeded

Figure 2.8: Hop limit exceeded and port
unreachable messages indicate x and y are
aliases. After [36].

P
A yz

x

B

Hop limit exceeded

Figure 2.9: Non-aliases will only result in a
hop limit exceeded message being returned.
After [36].

By using source routing Atlas was more effective at discovering nodes compared to using tools
such as traceroute which only discovered 617 nodes, just 45% of those identified by Atlas.
Additionally, results showed that Atlas discovered a large number of prefixes compared to those
previously identified in the 6Bone registry [36]. The authors identify the inefficiency of Atlas
in performing alias resolution on large networks, but propose using Atlas in combination with
other techniques to further reduce redundant probing required by the system.

Route Positional Method
The route positional method [37] makes use of the observation that the source address of
ICMPv6 “hop limit exceeded” messages for packets that are not destined to the router at which
the expiration occurred is frequently the address of the ingress port. To discover aliases for
address y, probes are sent from p via x and y destined to p, with the hop limit set to expire at
y. Performing this probe for a large enough set of addresses x will result in ICMPv6 “hop limit
exceeded” messages originating from aliases of y.

Destination Options Header Method
This method uses the mandatory source routing features of IPv6 to direct packets through spe-
cific in-path routers, viarouters, and through IPv6-in-IPv4 tunnels using a strategically placed
destination options header. The destination options header is processed by each viarouter, in-
path routers that support source routing, if placed before the IPv6 routing header. If the des-
tination options header is placed after the IPv6 routing header, only the final destination will

14

P
B c

a bA z

y

x

C

Hop limit exceeded

Figure 2.10: The Route Positional Method observes the source address of ICMPv6 “hop limit exceeded”
messages. After [37].

process it [29]. The destination options header is placed before the IPv6 routing header when
sending probes through tunnels, whereas placing the destination options header after the IPv6
routing header is used when tunnels are not expected to be encountered.

The Destination Options header method, proposed by the same authors as Route Positional
Method, makes use of the fact that setting an invalid bit sequence in the IPv6 options header
will result in an ICMPv6 “parameter problem” message being generated, originating from the
ingress interface of the packet generating the response. By probing via multiple intermediate
routers (similar to the Route Positional Method), multiple aliases of the target address may be
discovered.

Tunnel

S d

X Y

IPv6 N
etw

ork

IPv4 Network

IP
v6

IP
v6

IPv6

IPv4{IPv6} IPv4{IPv6}

Figure 2.11: To discover aliases using IPv6-in-IPv4 tunnels place the destination options header before
the IPv6 routing header. After [29].

Figure 2.11 illustrates an example where the destination options header placed before the IPv6

15

routing header identifying source host S sending a probe to itself through an IPv6-in-IPv4 tunnel
by way of a viarouter, d. The first two bits of the destination options header are “10”, which
causes the viarouter d to discard the packet and send an ICMPv6 parameter problem message
to the probing host S. If the source address of the ICMPv6 parameter problem message is not
equal to the destination address, d, then d and and the source of the ICMPv6 parameter problem
message are aliases.

S
IPv6

PacketDstAft(S, v, d)

Figure 2.12: To force only the destination to process the destination options header, place it after
the IPv6 routing header. After [29].

Figure 2.12 illustrates the second technique where the destination options header placed after
the IPv6 routing header identifying source host S sending a probe to itself by way of a viarouter,
v. By placing the destination options header after the IPv6 routing header, only the destination
d will process the destination options header and send an ICMPv6 parameter problem message
back to prober S. If the source of the ICMPv6 parameter problem message is not equal to the
destination d, then d and and the source of the ICMPv6 parameter problem message are aliases.

Qian et al. [29] compared the destination options header method to the address-based method
described [38]. Test results showed that the non-tunneled method identified 3426 alias pairs and
the tunneled method identified 4544 alias pairs. When both methods are combined, a total of
5566 alias pairs were identified with 84.5% accuracy compared to 3383 identified with address-
based technique.

2.2.2 Inference Methods
Traceroute-based Methods
Traceroute-based methods send TTL limited probes to determine interface-level network maps.
Traceroute send a series of TTL limited probes to determine the path a packet would travel to

16

a given destination. As the traceroute probe is processed by in-path routers, the TTL value is
decremented by one until reaching zero, where an ICMP “Time Exceeded” message is gener-
ated, with a source address of the router’s inbound interface that generated address as the and
sent back to the originating source. This returns the addresses for the inbound interface

Factors such as per-packet load balancing can complicate traceroute methods, causing missing
nodes and links or false links [39]. For example, given the topology shown in Figure 2.13,
comprised of probing source, S, and routers A, B, C, D and E. A traceroute is performed from S

to E, with the traceroute probes traveling via L, TTL=1, ATTL=2, and DTTL=3, to destination
E, TTL=4. The resulting topology, shown in Figure 2.14, indicates a direct path of L, A, D, E,
which indicates a false link between A and D.

S L

A B

C D

E 2

1

0

10

1

2

0 1 0 1

0 0 1

TTL=1

TTL=2

TTL=3
TTL=4

Figure 2.13: Example Ground-truth Topology.
After [39].

S L

A

D

E

0

1 0

0 1

0 1

Figure 2.14: Traceroute Topology with False
Links and Missing Nodes. After [39].

Paris-traceroute
Paris-traceroute [39] is the current state of the art used to correct the deficiencies of Traceroute
for IPv4 networks. Paris traceroute provides the ability to accurately identify load-balanced
IPv4 routes, that traceroute can sometimes misrepresent, and provide an accurate interface-
level topology map for IPv4 networks by utilizing per flow load balancing and simultaneously
manipulating the Identifier and Sequence number fields of the ICMP routing header and the
sequence number field of the Transmission Control Protocol (TCP) header. The authors have
identified the need for future work to develop an IPv6-based method of Paris traceroute, but at
the time of this work is not yet implemented.

2.2.3 Internet Protocol Identifier (IPID)
Design differences between IPv4 and IPv6 obsolete some of the alias detection techniques used
in IPv4, while enabling new ones. As described in §2.1.1, IPv6 does not permit in-network
fragmentation, hence the IPID field was removed from the IPv6 header. Additionally, as shown

17

Chapter 3, the implementation of IPv6 fragmentation reduces the amount of fragmented traffic
generated by routers, thus the IPv6 equivalent of IPID, the fragment identification counter, can
increment little, if any, over a relatively long period of time. This hinders a direct application of
the velocity modeling used by methods such as RadarGun.

RadarGun
RadarGun [40] introduces velocity modeling as a method for conducting alias resolution. It
compares the rate at which a target interface’s IPID counter increases with respect to a group of
continuous probes sent to the target interface. RadarGun reduced the number of probes required,
and the number of false positives generated, as compared to the Rocketfuel method [35]. There
is not a guaranteed solution however, due to the approximation characteristics of this method.

The small IPID counter space is impacted by the pigeon hole principle. In the pigeonhole
principle, given n pigeons and m holes, if n >m, it is guaranteed that at least one hole will have
two pigeons in it.

When attempting to perform large scale alias resolution, for example across one million ad-
dresses, the limited 16-bit IPID counter space will result in many addresses will producing
a similar IPID value. Applying the pigeonhole principle and using the relatively small IPID
space can lead to collisions, thus causing potential false positives during large scale alias reso-
lution [41].

Another complication of using the IPv4 IPID counter to infer aliases is raised from the birth-
day paradox. As the number of target interfaces exceeds the 65,536 possible IPID values, the
chances that two interfaces will have the same IPID value increases greatly [41].

Additionally, RadarGun attempts to identify aliases by comparing the distance of slopes, based
on a threshold between the IPID time series of two interfaces, to determine whether the inter-
faces share a common counter [40]. Due to the approximation characteristics of this method
and the complications caused by the pigeon hole principle, birthday paradox, and low entropy
of IPID velocity, false alias positives can exist for any chosen threshold.

Monotonic ID-Based Alias Resolution (MIDAR)
Monotonic ID-Based Alias Resolution (MIDAR) improves upon RadarGun by introducing
monotonic bounds testing and comparing velocities in which given IPID counters increase to
determine whether two given addresses use a shared counter [41]. This technique reduced the

18

number of false positives compared to the RadarGun implementation. Despite the improve-
ments introduced in MIDAR, the technique does not solve the IPv6 alias resolution problem
as the IPv6 fragment counter does not have a natural velocity, as observations will show in
Chapter 4.

19

THIS PAGE INTENTIONALLY LEFT BLANK

20

CHAPTER 3:
Methodology

Fingerprinting is a method to uniquely identify a device, or class of devices, based on externally
observable common features and characteristics. Fingerprints may exist at many granularities.
Operating System (OS) fingerprinting uses variations in the implementation of standards and
guidance, e.g., the recommended default TTL value is 64 [42] however, the default initial TTL
value can vary based on the OS type and version. Physical device fingerprinting uses variations
unique to a physical machine in order to create a signature that can reliably used to identify
a given machine, for example identifying the skew of a given machine’s internal clock to ac-
curately identify a remote machine [43]. As another example, wireless fingerprinting can use
a combination of variables such as clock skew, received signal strength and 802.11 sequence
numbers in order to develop a fingerprint for identifying a wireless device [44].

One means of router-level alias resolution is to find a unique identifier that is common to all
interfaces such that it can serve as a router fingerprint. In determining a technique to perform
router-level alias resolution, inspiration was taken from prior work in IPv4 alias resolution that
used fragmentation identifiers as the unique identifier to determine the relationship between
router interfaces.

Two factors complicate IPv4 identifier-based alias resolution. First, the natural rate that the
IPID counter increments, which is caused by both control and data plane traffic, implies that
observed counters from two true aliases may have large gaps due to a large volume of IPv4
incrementing the counter. In IPv6, however, as observations will show in Chapter 4, the IPv6
fragment identification counter does not increment at the same rate as the IPv4 identifier due to
routers rarely being the source of fragmented traffic. Second, the 16-bit IPv4 identifier space
is small relative to the number of possible Internet router interface aliases, yielding false posi-
tives. The 32-bit IPv6 fragment identifier serves a similar purpose as the IPv4 identifier, but the
expanded identifier space can provide a more reliable identifier minimizing the likelihood of
false positives caused by counter rollover. The increased IPv6 fragment identifier counter space
limits problems that may be caused by the pigeonhole principle as discussed in § 2.2.3.

This chapter describes a fingerprinting-based IPv6 alias resolution technique used to induce
fragments from a remote router that will be used in determining the relationship between frag-

21

ment identifiers and the interfaces with which the fragment identifiers are associated. Next,
the controlled testing environment is described to show that the technique does not produce
false positives, in contrast to existing IPv4 alias resolution approaches. Finally, this chapter
describes the algorithm developed to perform IPv6 alias resolution and the controlled testing
used to verify the accuracy of this alias resolution technique.

3.1 Eliciting Fragmented Responses
IPv6 does not permit in-network fragmentation, and the IPv6 header does not include any iden-
tifier field akin to IPv4. Instead, IPv6 requires that all fragmentation be completed by the source
node. If a router’s forwarding table entry for a packet is via an interface with a MTU smaller
than the size of the packet, the router drops the packet and sends an ICMPv6 “packet too big”
message to the source of the packet [32]. Since the MTU field value in the ICMPv6 packet too
big message is less than the existing path MTU (PMTU), the router updates the PMTU with
the specified value. It is then the responsibility of the end-host to maintain state ([45] states
the node must maintain state for a minimum of five minutes, although it is recommended that
state be maintained for a minimum of ten minutes), typically in the destination cache, of the
path MTU feasible for a particular destination. This end-host then sends packets smaller than
the PMTU, or can fragment large packets by using the IPv6 fragment header.

This research provides a technique, TBT, that forces a remote router to originate fragmented
packets. Figure 3.1 is a timing diagram of TBT between a prober and an IPv6 interface. The
prober first sends a 1300 byte ICMPv6 echo request, i.e., a ping request, to a candidate IPv6
router interface. The ping request is 1300 bytes as this is small enough to pass most tunnels, but
larger than the IPv6 minimum MTU of 1280 bytes. The prober receives an 1300 byte ICMPv6
echo response and then sends an ICMPv6 packet too big message with its own source IPv6
address destined for the IPv6 router interface under test. The ICMPv6 packet too big message
contains an MTU of 1280 along with the first 1184 bytes of the original ICMPv6 echo request
sent from the prober. (RFC 4443 [32] states that an ICMPv6 packet too big message should
include “as much of the invoking packet as possible without the ICMPv6 packet exceeding
the minimum IPv6 MTU.”). This “false” too big message sent by the prober mimics a PMTU
constraint coming from a router along the reverse path from the interface to our prober. While
the prober’s source IPv6 address is used for the ICMPv6 packet too big message rather than an
intermediate router, test results show that the receiving router is indifferent.

Test results also show that the candidate routers update the PMTU for an interface regardless

22

ICMP6 Echo Resp 1300B

ICMP6 Echo Req 1300B, Seq=1

ICMP6 Echo Req 1300B, Seq=0

ICMP6 Too Big

Frag ID=x, Offset=0

Frag ID=x, Offset=1232

ICMP6 Echo Req 1300B, Seq=2

Frag ID=x+1, Offset=0

Frag ID=x+1, Offset=1232

IP
v
6
 In

terface
P

ro
b
er

Figure 3.1: TBT, the “Too-Big Trick:” A prober spoofs an ICMPv6 too big message such that
subsequent large ping responses are fragmented.

of the contents or size of the invoking packet included in the ICMPv6 packet too big message.
However, beds the question of whether or not a stateful node will reject an ICMPv6 packet too
big message if the contents of the invoking packet do not match a previously sent message. To
prevent such occurrences, the TBT technique includes the exact contents, up to 1184 bytes, of
the initial ICMPv6 echo request.

Following the ICMPv6 packet too big message, a series of 1300 byte ICMPv6 echo requests
are sent to the candidate router interface. These ICMPv6 echo requests arrive at the router
interface without fragmentation, but the router forwarding table now has a cached PMTU of
1280 bytes for packets destined to the prober. Each received ping causes the router to send
two fragments per ICMPv6 echo reply, each with the same fragment identifier, but different
offsets. As we will show next (§3.2), popular commercial routers use a common counter for the
fragment identifier, regardless of the physical interface. Further, §4.1 shows that this counter
frequently is monotonic and sequential.

A natural question is whether the ICMPv6 packet too big message is required. The prober could

23

A

Host 1

R2

R3

Host 2R4R1

A
B

A B

A

B

C

B

C

Figure 3.2: GNS3 Test Topology with Asymmetric MTU Paths Inducing ICMPv6 Packet Too Big.

instead send a larger than typical MTU echo request packet, e.g., 2000 bytes. Once received
and reassembled, the remote router should respond in-kind with a 2000 byte reply that would
be fragmented. Thus, the echo packets would be fragmented in both the forward and reverse
direction. However, as we find in our real-world testing in §4.1, such fragmented requests are
frequently either blocked or not processed by the receiving router. Using TBT results in ≈ 6%
more interfaces successfully identified than when sending large request packets. This is most
likely due to destination hosts only being required to accept fragments with a reassembled size
of 1500 bytes [9].

3.2 Ground-Truth Testing
This section will describe the efforts to develop, test and validate the functionality and accuracy
of TBT. Graphical Network Simulator (GNS3) [46] was used to build virtual test topologies of
routers and virtual hosts, while Internet ground-truth testing was conducted on three different
sets of routers for which ground-truth was known.

3.2.1 Virtual Topologies
TBT emulates a normal operational mode whereby the forward path from the prober to an in-
terface can carry full 1500 byte packets, while the reverse path is asymmetric and has a smaller,
1280 byte MTU. To understand the behavior of commercial routers in such situations, we im-
plement the topology of Figure 3.2 in GNS3. In this test, static IPv6 routes pin traffic from Host
1 to Host 2 to take the upper path from R1→ R2→ R4. Reverse traffic from Host 2 to Host 1 is
statically configured to take R4→ R3→ R1. We set the MTU of all links to 1500 bytes, except
for the R1C↔ R3A link which is set to 1280 bytes.

24

A secondary goal of creating the topology in GNS3 was to verify that the composition of an
ICMPv6 Packet Too Big message was in accordance with RFC 1981 [45] to craft a correct and
realistic packet too big message. Once each static route was verified, the Maximum Transmis-
sion Unit (MTU) value of the link between R1 and R4 was reduced to the minimum IPv6 MTU
value of 1280 [9]. A 1400 byte ICMPv6 echo request was sent from Host1 to Host2 with the
goal eliciting an ICMPv6 echo reply that would exceed the MTU threshold, thereby forcing R4
to send an ICMPv6 Packet Too Big message to Host2.

Following the successful host-based experiment, a 1400 byte ICMPv6 echo request was sent
from Host1 to R3’s inbound interface to force R3, now the source of the 1400-byte ICMPv6
echo reply, to elicit a ICMPv6 Packet Too Big message resulting in R3 storing the learned
PMTU of 1280 bytes in its destination cache.

The attempt to force the router to automatically fragment all traffic exceeding the specified 1280
byte PMTU was successful based on verifying the source address of the ICMPv6 echo reply as
R3’s inbound interface. Additionally, the resulting fragments with an initial fragment identifier
value of one, with subsequent fragment identifier values that were sequential. Additional tests
conducted for each router resulted in sequential fragment identifier values for subsequent frag-
mented traffic. Finally, the test sequence was repeated with Host2 sending a series of 1400 byte
ping requests to each router producing the identical results. As a result of rebooting the routers,
the fragment identifier counter was reset resulting in an initial fragment identifier value of one.

Identifying the behavior of the fragment identifier field provided a common identifier that could
be used in the alias resolution algorithm. Given the findings from the fragmentation test, a
similar experiment was conducted to determine if a similar result would occur against an end-
host. To facilitate sending ICMPv6 Packet Too Big messages to any host on any path, we reset
the virtual topology to its original configuration with all MTU values a standard Ethernet MTU
of 1500 bytes [47], static routes were removed restoring routing in all directions.

Following the reconfiguration of the virtual topology, traffic flow was verified to be unrestricted
by sending 1400 byte ICMPv6 echo requests to each interface while monitoring the traffic
with Wireshark. An ICMPv6 Packet Too Big message was sent with a MTU value of 1280
bytes from Host1 to Host2, observing delivery to Host2 as expected. The expected response
was that Host2 would drop the packet and update its destination cache (or routing table), as
previously observed in routers. Following the ICMPv6 Packet Too Big message, a series of
1400 byte ICMPv6 echo requests were sent from Host1 to Host2 from which Host2 generated

25

fragmented ICMPv6 echo replies, confirming that this technique can work against end-hosts.

3.2.2 End-host testing
End-host probing was also conducted against various OSs to determine if the observed behavior
of the host changed based on the OS. Virtual hosts were configured using Virtualbox and were
then connected to the virtual topology to accommodate TBT testing. Each end-host was sent an
initial ICMPv6 echo request to ensure the end-host was responsive. Then an ICMPv6 packet
too big message was sent followed by a series of 1300 byte ICMPv6 echo requests to elicit
fragmented packets to verify the behavior of the fragment identification counter. Once the TBT
testing completed, the end-host was restarted and another round of TBT testing was completed,
for a total of three rounds per end-host. This additional test was to performed to determine the
behavior of the initial fragment identifier following a restart of the OS. The expected result
from restarting the end-host was that the end-host fragment identifier counter would be reset
to its initial state, e.g., for Windows systems, the fragment identifier counter would reset to
one, or zero for Windows 7, regardless of how many fragments were sent prior to the restart.
Additionally, for Linux systems, the initial fragment identifier would result in a different random
value, and subsequent fragment identifiers would be sequential.

Another observation is that the initial fragment identifiers could also be used as proxy for re-
motely measuring the uptime of a router or end-host. Since the fragment counters are only
incremented when the router or end-host is the source of fragmented traffic, a fragment identi-
fier value of one would lead to the conclusion that the router or end-host has not sourced any
fragmented traffic. However, if the destination is known to have sourced prior fragmented traf-
fic, one would conclude that the router or end-host has recently been restarted or has not been
the source of any fragmented traffic since last restarted.

3.3 IPv6 Alias Resolution Algorithm
Given the success in the controlled test environment, we develop an IPv6 alias resolution algo-
rithm. There are two points of note:

• First, as we will detail in §4.1, more than 28% of live Internet interfaces we probed
had sequential identifiers that start at either zero or one. In other words, prior to our
probing these routers had sourced no fragmented IPv6 traffic. The presence of multiple
interfaces starting with a low fragment identifier, such as zero or one, could lead to false
positives during alias resolution if the algorithm fails to adequately cause non-aliases

26

Algorithm 1 v6aliases(A,B): Determine whether A and B are IPv6 aliases
send(A,TooBig)

2: send(B,TooBig)
for i in range(5) do

4: ID[0]← echo(A)
ID[1]← echo(B)

6: if (ID[0]+1) 6= ID[1] then
return False

8: ID[2]← echo(A)
if (ID[1]+1) 6= ID[2] then

10: return False
return True

with relatively close fragment identifiers to diverge. For example, given two interfaces
A, with an initial fragment identifier of one, and B, with an initial fragment identifier of
three. If each interface is probed twice in the pattern A, A, B, B, the result would be 1,
2, 3, 4. Based on sequential identifiers, A and B would appear to be aliases, when in fact
they are not. Additionally, the algorithm must sufficiently prevent two non-aliases from
converging due to a probing pattern. Therefore the alias algorithm must be careful to
avoid false positives.
• Second, because the counter only increases when sending fragmented IPv6 traffic, which

is a rare event, we can reasonably expect, in the absence of our probing, the counter to
remain static.

Algorithm 1 provides the alias resolution pseudocode [48]. To determine whether two IPv6
addresses (A and B) are aliases, an initial echo request probe is sent to each destination, then
the fake ICMPv6 packet too big messages are sent. Next, a probe is sent to A. Once the
fragment ID from A is received, B is probed (each step proceeds synchronously; therefore, no
race condition exists). The fragment identifiers from A and B are compared. If at anytime the
fragment identifiers are not sequential, the test returns false to avoid generating needless traffic.
Note that when performing O(n2) alias comparisons between all pairs of discovered interfaces,
the common case will be a true negative where our algorithm quickly exits, thus the algorithm
has a small constant factor. Only if the fragment identifiers are sequential are further probes sent
to ensure no false positives. Based on the above observations, we ensure that, in each round of
execution through the for loop, address A is probed a different number of times than B to avoid
potential counter synchronization issues in the case that the addresses are not true aliases.

27

3.4 Controlled Alias Resolution
Controlled alias resolution testing was conducted on three commercial grade topologies, for
which ground-truth was known; the first, comprised entirely of Cisco routers, the second, con-
sisting of all Juniper routers [49], and the third, containing a combination of Cisco and Juniper
routers. As results will show in Chapter 4, each topology contained routers that responded to
TBT, however, as discussed in §3.1, algorithm 1 testing is conducted on routers with sequential
counters as the algorithm is based on analyzing fragment identifiers that increment sequentially.

Isolating Candidate Interfaces
Selection of candidate IPv6 router interfaces consisted of two phases: an initial phase to deter-
mine the responsiveness of each interface to TBT, and a second phase for isolating interfaces
with sequential fragment identifiers from randomized fragment identifiers. As Chapter 4 will
show, Juniper routers produce randomized fragment identifiers that can lead to false-negative
alias resolution results. As to not skew the results, interfaces that produce randomized fragment
identifiers were eliminated from ground-truth testing.

The isolation process consisted of sending an initial ICMPv6 echo request to a candidate in-
terface to verify that the interface was responsive. If the interface was not responsive to the
ICMPv6 echo request, the interface was removed from subsequent testing. If the interface
responded to the ICMPv6 echo request, an ICMPv6 packet too big message was sent to the
candidate interface followed by a series of ten 1300 byte ICMPv6 echo requests.

Each ICMPv6 echo request was sent in succession, waiting either for an ICMPv6 echo re-
ply or a timeout condition before sending the next ICMPv6 echo request. Once the series of
ICMPv6 echo requests were finished, the returned fragment identifiers were analyzed to deter-
mine whether the series was sequential or randomized, with the interfaces with sequential frag-
ment identifiers being grouped into candidate interfaces for subsequent alias resolution testing.

Alias Resolution of Candidate Interfaces
Following successful isolation of sequential fragment identifier producing interfaces, full-scale
alias resolution was conducted. Alias resolution was executed for each interface against every
other interface, then compared the results against the ground-truth list of true aliases. Alias res-
olution results for each set of candidate interfaces were analyzed to verify accuracy of both alias
and non-alias identification. This analysis was performed to validate the accuracy of algorithm 1
and to determine the presence of false positives and negatives.

28

CHAPTER 4:
Analysis

This chapter considers the real-world efficacy of TBT by performing Internet-wide probing. The
performance of TBT is measured in terms of the fraction of Internet infrastructure responsive
to the technique, as well as by testing against a subset of the topology for which ground truth is
known.

Two traceroute datasets were used to determine candidate IPv6 router interfaces. The first
dataset included 23,892 distinct IPv6 interfaces discovered via traceroutes from 33 vantage
points belonging to a commercial Content Distribution Network (CDN) to approximately 12,300
destinations. Interestingly, nine link-local (fe80::/10) interfaces were found, suggesting that
these non-public IPv6 addresses are being used for a small number of public links. The second
data set was from the Cooperative Association for Internet Data Analysis (CAIDA) [50] with
38,300 distinct IPv6 interfaces, 25,174 of which were not also present in the CDN trace. For
those traces that complete, the last hop IPv6 address of the target is ignored so as to only include
router interfaces. Thus, a total of≈49k distinct live Internet IPv6 router interfaces were probed.

It is important to note that the router interfaces we test are widely disbursed, and belong to mul-
tiple networks, spanning a total of 2,617 autonomous systems. The largest number of interfaces
advertised by a single Autonomous System (AS) is 2,014 (ASN 3356, Level 3), and the median
number of interfaces per AS is three. The CDN trace was collected on May 3 and 23, 2012,
while the CAIDA traces were collected in August, 2012. Interfaces derived from the CDN trace
were actively probed on August 28, 2012 , while the CAIDA interfaces were probed on August
29, 2012.

4.1 Efficacy of TBT
The goal of this research is two-fold, determine: i) how many live IPv6 interfaces respond to
TBT; and ii) in what way these interfaces respond. All testing is performed from a single IPv6
vantage point. For each interface, a 1300 byte ICMPv6 echo request is first sent in order to
determine if the interface is operational and responding to pings. If an interface is responsive to
ICMPv6 ping requests, TBT is then used to send the ICMPv6 packet too big message that causes
the router to update the interface’s PMTU destination cache corresponding to the vantage point.
Finally, ten 1300 byte ICMPv6 echo requests were sent to induce fragmented replies, from

29

Table 4.1: TBT Response Characteristics
CDN CAIDA

ICMPv6 responsive 18486/23892 77.4% 18959/25174 75.3%
Post-TBT unresponsive 235/18486 1.3% 66/18959 0.4%
Post-TBT nofrags 5519/18486 29.9% 5800/18959 30.6%
TBT responsive 12732/18486 68.9% 13093/18959 69.1%
TBT sequential 8288/12732 65.1% 9183/13093 70.1%
TBT sequential (1) 3455/12732 27.1% 3496/13093 26.7%
TBT random 4320/12732 33.9% 3789/13093 28.9%

which the fragment identifier for each given response was captured to disk for analysis. The
packet monitor, running on the same machine as the prober, did not experience any packet loss.

Table 4.1 summarizes the responsiveness of the sample of Internet IPv6 interfaces to TBT.
18,486 of 23,892 (77.4%) and 18,959 of 25,174 (75.3%) interfaces respectively were observed
responding to “normal” ICMPv6 pings. The unresponsive interfaces may be due to router be-
havior, the delay between obtaining interfaces and subsequent probing, or ICMPv6 filtering.
As these interfaces cannot be expected to respond to TBT, unresponsive interfaces are exclude
from further analysis. Of the interfaces responding to the initial echo request, ≈ 70% returned
fragmented echo replies after a ICMPv6 packet too big was sent to the interface. Thus, this
technique works for a significant fraction of Internet IPv6 routers probed.

Three primary conditions result from sending the TBT: subsequent ping responses from the
router are sent fragmented, subsequent ping responses are sent unfragmented, or the router stops
responding to ping requests. Approximately 29% of the interfaces probed continued to send
unfragmented responses after sending TBT. This result could be caused by filtering of ICMPv6
Packet Too Big messages either by the destination router or by firewalls located in the path
between the prober and destination. Additional probing using TBT should be performed against
these interfaces from multiple vantage points to determine if a change in path results in the same
unfragmented responses. A small fraction, between 1.3% and 0.4%, of interfaces respond to the
initial echo request, but then cease to respond to subsequent echo requests following the TBT
for a few minutes. We conjecture that these behaviors are due to paths that filter fragments
or ICMPv6 packet too-big messages, routers incorrectly implementing IPv6, or other security
measures.

Next, the sequence of returned fragment identifiers are characterized. Recall that ten ICMPv6
echo requests are sent after the TBT, therefore resulting in ten responses where each response
consists of two fragmented packets, i.e., 20 total packets with identifiers. As shown in Table 4.1,

30

≥65% of interfaces that respond to TBT return sequential identifiers, e.g., 120, 121, ...,

130. However, as many as 34% return random identifiers, a behavior consistent with BSD
systems and BSD-based routers [51]. While TBT works for these interfaces, in so far as it
induces routers to send fragmented responses, it does not admit a fingerprint for alias resolution.
However, if the destination cache was maintained globally for all interfaces by a router, instead
of per-interface, it would provide a useful fingerprint for alias resolution. For example, given
two addresses A and B, after sending a Packet Too Big message to interface A, probes sent to
A and B, which didn’t receive the Packet Too Big message, would both result in fragmented
packets of the PMTU size. Additionally A and B could then be confirmed to be aliases by
sending a second Packet Too Big message to B with a different MTU value. If subsequent
probes sent to both A and B result in fragmented packets that are the size of the new PMTU
size, A and B are aliases, otherwise if the fragmented packet sizes are different, then A and B

can be confirmed as non-aliases.

An interesting characteristic of those interfaces with sequential identifiers is that a significant
fraction (27.1% and 26.7% respectively) had an initial fragment identifier of one. This suggests
that, in the uptime of the router, it had sent zero fragmented IPv6 packets prior to this probing.
As discussed in Chapter 3, non-alias interfaces that begin with correlated counters are taken
into account; the algorithm advances the fragment counters at different rates to prevent false
positives.

To understand the initial values of fragment counters in the wild, Figures 4.1 and 4.2 are his-
tograms of initial fragment identifiers that occur with at least a 0.3% frequency. We see that one
is the most common initial identifier for every sequence echoed and that all common identifiers
are less than 50.

While this research presents and validates a new technique for IPv6 alias resolution, large-
scale alias resolution on the IPv6 Internet is left for future work. However, it was observed
that the second most common initial fragment identifier within a returned identifier sequence
is 11, while there are modes at 21, 31, and 41. These modes are due to the probing naturally
encountering aliases. Since each interface is probed 10 times, if an alias is later probed, the
counter will have advanced to 10 and thus the new round of probing expects to receive an initial
fragment identifier of 11.

Finally, a natural question is whether routers can be induced to send fragmented responses with-
out TBT. Instead, large ICMPv6 echo requests are sent to an IPv6 router interface which are

31

1 11 2 0 3 10 12 21 13 4 5 22 20 14 31 9
Initial Fragment ID

0

5

10

15

20

25

30
Fr

ac
tio

n
of

 R
es

po
nd

in
g

In
te

rfa
ce

s

Figure 4.1: Histogram of IPv6 Fragment Iden-
tifiers Occurring ≥ 0.3%

1 11 2 21 0 12 3 31 10 13 41 20 4 22 23 14 51 30
Initial Fragment ID

0

5

10

15

20

25

30

Fr
ac

tio
n

of
 R

es
po

nd
in

g
In

te
rfa

ce
s

Figure 4.2: Histogram of IPv6 Fragment Iden-
tifiers Occurring ≥ 0.3%

themselves fragmented, such that the receiving IPv6 router interface must reassemble the frag-
ments to respond, and then send a fragmented response. Again the two datasets of IPv6 inter-
faces are probed and find that this method results in 64.2% and 65.1% of interfaces successfully
responding. However, using TBT results in over 5% more responses, which can equate to sig-
nificantly more absolute interfaces. More importantly, sending large, fragmented probes results
in much more traffic whereas the TBT technique is more efficient. Additionally, the increased
traffic consumes available bandwidth, resulting in potential performance degradation during
alias resolution testing. Measurement studies, including alias resolution solutions, should seek
to minimize the impact on the networks being tested. For these reasons, this research focuses
on TBT for alias resolution.

4.1.1 End-host Results
End hosts may have multiple IPv6 addresses assigned by their Internet Service Provider (ISP),
so it is useful to determine if end host’s interfaces respond to TBT in as similar fashion as router
interfaces respond, and whether or not TBT correctly identifies aliases for end host interfaces.
Various OSs were examined to identify how a given OS responds to TBT. Table 4.2 summarizes
an end host’s response to TBT based on the type of OS.

As Table 4.2 will show, all of the tested Linux OSs respond to TBT with a random initial
fragment identifier followed by subsequent sequential fragment identifiers. An exception oc-
curs when probing an Berkeley Software Distribution (BSD)-based OS, resulting in random-
ized fragment identifiers for both initial and subsequent fragments. Although the results from
BSD-based systems support the explanation that Juniper routers respond to TBT with random

32

fragment identifiers, since Juniper OSs consist of a BSD underlying OS, this work was not able
to confirm this hypothesis on Juniper OS images either using GNS3 or a lab test environment.
Such testing is left for future work to confirm Juniper OS router behavior.

Windows-based OSs however, behave similar to Cisco in that the majority of Windows OSs
respond to TBT with an initial fragment identifier of one, followed by sequential subsequent
fragment identifiers. The exception in Windows systems is Windows 7, which responds with an
initial fragment identifier of zero, followed by subsequent fragment identifiers being received
in multiples of two (i.e., 0, 2, 4, 6, . . .). This behavior was unexpected, as no such behavior was
observed by any other platform, and should be explored in future work to determine possible
reasons of the observed results.

Table 4.2: Most operating systems provide a reliable identifier that can serve as a fingerprint for alias
resolution.

Operating System Initial Fragment ID Subsequent Fragment IDs
Ubuntu Random Sequential
Fedora Random Sequential
FreeBSD Random Random
OpenSUSE Random Sequential
Windows XP 1 Sequential
Windows 2003 Server 1 Sequential
Windows 7 0 2,4,6,8,. . .

4.1.2 Accuracy of TBT Alias Resolution
Imperative to understanding the performance of the TBT alias resolution technique is having
known ground-truth. In this subsection the inference accuracy of TBT is tested on both a virtual
network topology in GNS3 [46], as well as on a small subset of the live IPv6 Internet for which
ground-truth is available.

First, a virtual network topology is constructed in GNS3 [46] consisting of 26 Cisco routers,
each containing up to four interfaces. Using the TBT tool, and algorithm as implemented in
the publicly available ScaPy tool [48], a complete test is run comparing each interface to every
other interface in the topology, i.e., the O(n2) all pairs testing that would be performed in the
wild. All discovered aliases and non-aliases are then compared against known ground truth.
The test results provide a count of identified aliases and identified non-aliases.

This controlled test results in 92 of 92 alias matches and 1584 of 1584 non-alias matches for
a total accuracy of 100% with perfect precision and recall. The results, although constrained

33

by the virtual topology and simulation available in GNS3, help validate the ability of TBT in
identifying IPv6 aliases and non-aliases.

Next, a list of IPv6 interfaces from eight physical production routers of a commercial IPv6
service provider was obtained. This small ground-truth dataset included 72 interfaces with each
router having between 2 and 21 interfaces. Using TBT, pair wise alias resolution, i.e., each
interface is compared against every other interface, was performed to determine the accuracy
of TBT against IPv6 Internet production routers. TBT correctly identified 808 of 808 true alias
pairs with zero false positives.

34

CHAPTER 5:
Conclusions

This research developed and tested a new method for IPv6 alias resolution. TBT elicits a frag-
ment identifier fingerprint from a significant fraction of production Internet IPv6 router inter-
faces. Further, this work has demonstrated an IPv6 alias resolution algorithm that is highly
accurate among networks for which ground truth is known.

As IPv6 grows and gains importance, understanding its router-level topology and relationship
to the IPv4 topology is increasingly important. In particular, this research examines how TBT
can aid in developing router-level IPv6 topology maps. Comparing these topology maps to
those previously inferred will yield valuable insights into the structure of the IPv6 network,
and determine how it differs from the IPv4 topology. Additionally, topology comparisons can
provide a way to examine how the IPv6 network evolves as its adoption grow.

5.1 Limitations
Although this research showed that approximately 70% of IPv6 router interfaces on the Inter-
net respond to TBT, Cisco and Juniper routers were the only routers in which ground-truth was
known. TBT correctly identifies IPv6 aliases for routers that use a sequential fragment counter;
however an extensive list of fragment counter behavior for all router manufacturers and models
was not determined. An understanding of fragment counter behaviors based on router manu-
facturer and model can provide a better understanding of observed router behavior and allow
researchers to better utilize existing and future measurement techniques.

All Internet-based tests were conducted from a single vantage point. Although the test results
were promising, approximately 30% of the probed interfaces either did not respond following
the TBT or responded with unfragmented traffic. With only a single vantage point, this research
was unable to determine the cause of these failures.

35

5.2 Future Work
This section serves as a consolidated list for future research efforts using TBT in IPv6 alias
resolution.

5.2.1 Use of Multiple Vantage Points
To understand instances where TBT fails, future efforts will use multiple vantage points to help
distinguish between path and host filtering of fragments, ICMPv6 Packet Too Big messages,
or ICMPv6 as a whole. By using multiple vantage points, probes can be sent via different
path, to better understand the variety of behaviors observed in Table 4.1. The results could
explain the cause of some router interfaces to respond to TBT with non-fragmented responses.
Additionally, testing of different routers models, both in hardware and within GNS3 could be
used to better understand the variety of behaviors observed in Table 4.1.

5.2.2 Scalability and Efficiency
Throughout this research, scalability and efficiency were kept in mind. As the longevity of
previous IPv6 techniques come into question due to security concerns of source routing, so
does the longevity of TBT due to its inefficient algorithm. As IPv6 is more widely adopted, the
number of interfaces will increase and so will the time and resources required to perform alias
resolution. Currently, a complete test using TBT requires comparing each interface to every
other interface in the topology, i.e., the O(n2) all pairs testing that would be performed in the
wild, and verify the results against known truth. Given the performance of TBT against the test
virtual topology in GNS3, to perform pair-wise alias resolution for the 49,000 IPv6 interfaces
discovered in this research, it would take more than three thousand years. This provides an
unacceptable method to be used for large scale IPv6 alias resolution. Therefore, an optimized
algorithm is needed to improve efficiency and scalability of TBT.

5.2.3 Internet-wide Alias Resolution
In addition to the development of a more efficient algorithm, Internet-wide IPv6 alias resolution
should be performed. An important step is making the algorithm robust to packet loss, or
another TBT-like process causing the fragment counter to increase. Currently, algorithm 1 does
not account for packet loss nor does it account for any other measurements or traffic that could
increment the fragment identifier counter.

36

Accounting for Packet Loss
TBT does not account for packet loss as it waits a given period for a fragmented response be-
fore timing out and continuing with additional probing. An improvement to TBT could include
sending an additional probe to the target, then verifying if the counter is sequential after ac-
counting for the lost packet, such that if the last fragment identifier received was x, the expected
fragment identifier following the lost packet would be x+2, then return to sequential checking.

Accounting for Additional Fragmented Traffic
TBT was not designed to account for the generation of additional fragmented traffic as it was
observed that no such traffic had been generated by the IPv6 routers tested during this research.
Due to this observation, algorithm 1 was designed only to account for sequential fragment
identifiers. TBT will require a more robust algorithm that can account for additional fragmented
traffic that might cause the fragment identifier counter to increase. This could be accomplished
by introducing a threshold to account for such variations.

5.2.4 Effects of Fragment Counter Rollover in IPv6 Alias Resolution
IPv4 alias resolution techniques can suffer from the pigeonhole principle when using the IPID
counter due the small size of counter space relative to the volume of traffic incrementing the
counter. To determine the potential for encountering errors due to the pigeonhole principle, a 232

Fragment counter rollover test should be conducted to understand the likelihood of encountering
such errors during Internet-wide alias resolution.

5.2.5 Comparison with Current Techniques
To determine how TBT can enhance IPv6 alias resolution and topology measurement research,
both ground-truth and Internet-wide comparison studies should be conducted. For instances
where ground-truth is not known, Domain Name Service (DNS) could be used to verify alias
resolution results. Although DNS may not provide a complete picture, it may however provide
additional weight to alias inferences. This can be accomplished by comparing IPv4 A [52] and
IPv6 AAAA [53] resource records to confirm the existence of inferred aliases. These tests can
help determine the added benefits of TBT and how TBT complements existing alias resolution
techniques. The findings from comparison studies may provide insight on improvements to
TBT and existing alias resolution techniques.

37

5.2.6 Fingerprinting Congruent IPv4 and IPv6 Interfaces
Finally, the ability to identify dual stacked interfaces (i.e., a single interface may have both IPv4
and IPv6 addresses assigned) is crucial to the identification and protection of critical infrastruc-
ture and recognizing potential impacts of attacks. On dual stacked links the potential exists for
an attack utilizing IPv4 to impact the performance of IPv6 as well as an IPv6 attack to affect
IPv4 performance. For example, a DoS attack carried out on an IPv4 network where traffic
flows over a dual stacked link may result in the degradation of IPv6 data flow as well due to
both IPv4 and IPv6 data flows being on the same transmission medium (Ethernet, fiber optics,
etc.). Future research should seek to understand the relationships between IPv4 and IPv6 and
attempt to determine congruent IPv4/IPv6 fingerprinting techniques to aid in the production of
an accurate topology of the Internet.

5.3 IPv6 Load Balancing
Early work was accomplished to determine what fields are used in IPv6 per-flow load balancing,
a virtual test topology was designed and implemented using gns3! (gns3!) [46]. The virtual
topology consisted of routers loaded with Cisco Internetwork Operating System (IOS) images
and Lubuntu virtual hosts, integrated using VirtualBox. Wireshark was used to monitor traffic
behavior within the virtual test topology. Each router interface was configured with dual stacked
IPv4/IPv6 addresses. The dual stacked configuration provided to facilitate the verification of
known IPv4 load balancing to verify the proper function and results of running a traceroute.
Following the verification of excepted IPv4 load balancing behavior, the goal was to determine
what fields of the IPv6 header were used in per-flow load balancing.

Motivated by prior IPv4 load balancing efforts [39], experiments were conducted to determine
what effects changes to the IPv6 header had on IPv6 load balancing. Each experiment consisted
of manually altering the values within the ranges of each IPv6 header field. The header fields
were altered one field at a time, using the ScaPy packet manipulation library [54]. Three differ-
ent protocols (ICMP, TCP and UDP) were used to send test probes across load balanced path
and the routes were verified using Wireshark packet captures on each incoming virtual router
interface.

Test results revealed that per-flow load balancing used the source and destination address, source
and destination port, and protocol fields of the IPv6 header shown in Figure 2.2. The tests
confirmed the expected results that per-flow load balancing would be accomplished using a
seven-tuple consisting of source and destination addresses and ports, protocol, router ID and

38

ingress interface [55]. The results provided the ability to maintain a consistent path from a
source to the destination for the duration of a set of test probes.

By understanding the load balancing schemes of IPv6 routers, test probes could be manipulated
to travel along different paths to potentially identify possible alias candidates for future testing.
With the ability to manipulate the path that a test probe traveled, the next step was to verify the
process of fragmenting IPv6 traffic once an ICMPv6 Packet Too Big message was received by
an end-host. Future work should determine the applicability of using load balancing in alias
resolution testing using TBT, i.e., as an alternative solution to testing the 29/interfaces that
responded with unfragmented traffic.

39

THIS PAGE INTENTIONALLY LEFT BLANK

40

LIST OF REFERENCES

[1] L. Smith and I. Lipner, “The IANA IPv4 address free pool is now depleted,” Feb. 2011.
[Online]. Available: http://www.nro.net/news/ipv4-free-pool-depleted

[2] Hurricane Electric, “Hurricane Electric IPv4 exhaustion counters,” 2013. [Online].
Available: http://ipv6.he.net/statistics

[3] G. Huston, “IPv4 address report,” 2013. [Online]. Available: http://www.potaroo.net/
tools/ipv4/index.html

[4] R. Miller, “IPv4 addresses now driving hosting deals,” 2012.
[Online]. Available: http://www.datacenterknowledge.com/archives/2012/07/16/
ipv4-addresses-now-driving-hosting-deals

[5] C. Marsan, “Sales of unused IPv4 addresses gathering steam,” 2012. [Online]. Available:
http://www.networkworld.com/news/2012/052412-ipv4-resales-259588.html

[6] V. Fuller and T. Li, “Classless Inter-domain Routing (CIDR): the Internet address assign-
ment and aggregation plan,” RFC 4632, Internet Engineering Task Force, Aug. 2006.

[7] P. Srisuresh and K. Egevang, “Traditional IP Network Address Translator (Traditional
NAT),” RFC 3022, Internet Engineering Task Force, Jan. 2001.

[8] T. Hain, “Architectural implications of NAT,” RFC 2993, Internet Engineering Task Force,
Nov. 2000.

[9] S. Deering and R. Hinden, “Internet Protocol, version 6 (IPv6) specification,” RFC 2460
(Draft Standard), Internet Engineering Task Force, Dec. 1998.

[10] K. Claffy, “Tracking IPv6 evolution: data we have and data we need,” SIGCOMM Comput.

Commun. Rev., vol. 41, no. 3, pp. 43–48, Jul. 2011.

[11] N. Sarrar, G. Maier, B. Ager, R. Sommer, and S. Uhlig, “Investigating IPv6 traffic: what
happened at the world IPv6 day?” in Proceedings of the 13th International Conference on

Passive and Active Measurement, 2012.

41

[12] R. Mohan, “Will U.S. government directives spur IPv6 adoption?” Sep. 2010.
[Online]. Available: http://www.circleid.com/posts/20100929_will_us_government_
directives_spur_ipv6_adoption/

[13] Google, Inc., “IPv6 adoption,” 2013. [Online]. Available: http://www.google.com/intl/en/
ipv6/statistics.html

[14] G. Huston, “IPv6 BGP statistics,” 2012. [Online]. Available: http://bgp.potaroo.net/v6/
as2.0/

[15] RIPE-NCC, “IPv6 enabled networks,” 2012. [Online]. Available: http://v6asns.ripe.net/v/
6

[16] A. Dhamdhere, M. Luckie, B. Huffaker, k. claffy, A. Elmokashfi, and E. Aben, “Measuring
the deployment of IPv6: topology, routing and performance,” in Proceedings of the 2012

ACM Internet Measurement Conference, 2012, pp. 537–550.

[17] S. Zander, L. L. Andrew, G. Armitage, G. Huston, and G. Michaelson, “Mitigating sam-
pling error when measuring Internet client IPv6 capabilities,” in Proceedings of the 2012

ACM Internet Measurement Conference, 2012, pp. 87–100.

[18] K. Keys, “Internet-scale IP alias resolution techniques,” SIGCOMM Comput. Commun.

Rev., vol. 40, pp. 50–55, Jan. 2010.

[19] K. Claffy, Y. Hyun, K. Keys, M. Fomenkov, and D. Krioukov, “Internet mapping: from art
to science,” in Conference For Homeland Security, March 2009.

[20] W. Willinger, D. Alderson, and J. C. Doyle, “Mathematics and the Internet: a source of
enormous confusion and great potential,” Notices of the AMS, vol. 56, no. 5, 2009.

[21] V. Kundra, “Transition to IPv6,” 2010. [Online]. Available: http://www.whitehouse.gov/
sites/default/files/omb/assets/egov_docs/transition-to-ipv6.pdf

[22] J. Brzozowski, “IPv6 home networking pilot market deployment technical de-
tails,” Apr. 2012. [Online]. Available: http://corporate.comcast.com/comcast-voices/
ipv6-deployment-technology-2

[23] S. Amante, B. Carpenter, S. Jiang, and J. Rajahalme, “IPv6 flow label specifications,”
RFC 6437, Internet Engineering Task Force, Nov. 2011. [Online]. Available:
http://www.ietf.org/rfc/rfc6437.txt

42

[24] “Protocol numbers,” Protocol Numbers, Internet Assigned Numbers Authority,
Oct. 12012. [Online]. Available: http://www.iana.org/assignments/protocol-numbers/
protocol-numbers.txt

[25] Cisco Systems, “Cisco IOS IPv6 command reference,” 2011. [Online]. Available:
http://www.cisco.com/en/US/docs/ios/ipv6/command/reference/ipv6_cr_book.pdf

[26] Juniper, “IPv6 hop-limit.” [Online]. Available: http://www.juniper.net/techpubs/software/
erx/junose700/swcmdref-a-m/html/i-commands285.html

[27] Microsoft, “TCP/IPv6 configurable registry settings.” [Online]. Available: http:
//msdn.microsoft.com/en-us/library/aa915728.aspx

[28] S. Hogg and E. Vyncke, IPv6 Security. Cisco Systems, 2009.

[29] S. Qian, Y. Wang, and K. Xu, “Utilizing destination options header to resolve IPv6 alias
resolution,” in GLOBECOM, Dec. 2010, pp. 1–6.

[30] I. U. of Southern California, “Internet Protocol,” RFC 791, Internet Engineering Task
Force, Sep. 1981.

[31] P. Biondi and A. Ebalard, “IPv6 routing header security,” 2007.

[32] A. Conta, S. Deering, and M. Gupta, “Internet Control Message Protocol (ICMPv6) for
the Internet Protocol version 6 specification,” RFC 4443, Internet Engineering Task Force,
Mar. 2006.

[33] E. N. T. Narten and W. Simpson, “Internet Protocol, version 6 (IPv6) specification,” RFC
2461, Internet Engineering Task Force, Dec. 1998.

[34] J. Postel, “Internet Control Message Protocol,” RFC 792, Internet Engineering Task Force,
Sep. 1981.

[35] N. Spring, R. Mahajan, and D. Wetherall, “Measuring ISP topologies with Rocketfuel,”
SIGCOMM Comput. Commun. Rev., vol. 32, pp. 133–145, August 2002.

[36] D. G. Waddington, F. Chang, R. Viswanathan, and B. Yao, “Topology discovery for public
IPv6 networks,” SIGCOMM Comput. Commun. Rev., vol. 33, pp. 59–68, July 2003.

[37] S. Qian, M. Xu, Z. Qiao, and K. Xu, “Route positional method for IPv6 alias resolution,”
in Computer Communications and Networks (ICCCN), Aug. 2010.

43

[38] R. Govindan and H. Tangmunarunkit, “Heuristics for Internet map discovery,” in INFO-

COM 2000. Nineteenth Annual Joint Conference of the IEEE Computer and Communica-

tions Societies. Proceedings. IEEE, vol. 3, mar 2000, pp. 1371–1380 vol.3.

[39] B. Augustin, X. Cuvellier, B. Orgogozo, F. Viger, T. Friedman, M. Latapy,
C. Magnien, and R. Teixeira, “Avoiding traceroute anomalies with Paris traceroute,”
in Proceedings of the 6th ACM SIGCOMM Conference on Internet Measurement, ser.
IMC ’06. New York, NY, USA: ACM, 2006, pp. 153–158. [Online]. Available:
http://doi.acm.org/10.1145/1177080.1177100

[40] A. Bender, R. Sherwood, and N. Spring, “Fixing Ally’s growing pains with velocity mod-
eling,” in Proceedings of the 8th Internet Measurement Conference, 2008.

[41] K. Keys, Y. Hyun, M. Luckie, and K. Claffy, “Internet-scale IPv4 alias resolution with
MIDAR,” Networking, IEEE/ACM Transactions on, vol. PP, no. 99, p. 1, 2012.

[42] A. Malis, C. Graff, D. Estrin, D. Farinacci, G. Finn, and J. Postel, “IP
option numbers,” nov 2012. [Online]. Available: http://www.iana.org/assignments/
ip-parameters/ip-parameters.xml

[43] T. Kohno, A. Broido, and K. C. Claffy, “Remote physical device fingerprinting,” in
Proceedings of IEEE Security and Privacy, 2005, pp. 211–225. [Online]. Available:
http://dx.doi.org/10.1109/SP.2005.18

[44] L. C. C. Desmond, C. C. Yuan, T. C. Pheng, and R. S. Lee, “Identifying unique devices
through wireless fingerprinting,” in Proceedings of the first ACM Conference on Wireless

Network Security, ser. WiSec ’08. New York, NY, USA: ACM, 2008, pp. 46–55.
[Online]. Available: http://doi.acm.org/10.1145/1352533.1352542

[45] J. McCann, S. Deering, and J. Mogul, “Path MTU discovery for IP version
6,” RFC 1981, Internet Engineering Task Force, Aug. 1996. [Online]. Available:
http://www.ietf.org/rfc/rfc1981.txt

[46] J. Grossman, B. Marsili, C. Goudjil, and A. Eromenko, “GNS3 graphical network
simulator,” 2012. [Online]. Available: http://www.gns3.net/

[47] C. Hornig, “A standard for the transmission of IP datagrams over Ethernet networks,” RFC
894, Internet Engineering Task Force, Apr. 1984.

44

[48] W. Brinkmeyer and R. Beverly, “Too-Big Trick Python prototype,” 2012. [Online].
Available: http://www.cmand.org/tbt/

[49] “Internet2 network NOC–visible network,” 2012. [Online]. Available: http://noc.net.
internet2.edu/i2network/live-network-status/visible-network.html

[50] “The CAIDA UCSD IPv6 topology dataset,” 2012. [Online]. Available: http:
//www.caida.org/data/active/ipv6_allpref_topology_dataset.xml

[51] M. J. Silbersack, “Improving TCP/IP security through randomization without sacrificing
interoperability,” in Proceedings of BSDCan, 2006.

[52] P. Mockapetris, “Domain names - concepts and facilities,” RFC 1034, Internet Engineering
Task Force, Nov. 1987. [Online]. Available: http://www.ietf.org/rfc/rfc1034.txt

[53] V. Jacobson, R. Braden, and D. Borman, “IPv6 DNS extensions,” RFC 1886, Internet
Engineering Task Force, Dec. 1995. [Online]. Available: http://www.ietf.org/rfc/rfc1886.
txt

[54] P. Biondi, “ScaPy.” [Online]. Available: http://www.secdev.org/projects/scapy/

[55] Cisco Systems, “How does load balancing work?” 2005. [Online]. Available: http:
//www.cisco.com/en/US/tech/tk365/technologies_tech_note09186a0080094820.shtml

45

THIS PAGE INTENTIONALLY LEFT BLANK

46

Initial Distribution List

1. Defense Technical Information Center
Ft. Belvoir, Virginia

2. Dudley Knox Library
Naval Postgraduate School
Monterey, California

3. Dr. Robert Beverly
Naval Postgraduate School
Monterey, California

4. Dr. Geoffrey Xie
Naval Postgraduate School
Monterey, California

47

clgrant
Rectangle

