LMIs in Control
On the 28th of April 2012 the contents of the English as well as German Wikibooks and Wikipedia projects were licensed under Creative Commons Attribution-ShareAlike 3.0 Unported license. A URI to this license is given in the list of figures on page 483. If this document is a derived work from the contents of one of these projects and the content was still licensed by the project under this license at the time of derivation this document has to be licensed under the same, a similar or a compatible license, as stated in section 4b of the license. The list of contributors is included in chapter Contributors on page 481. The licenses GPL, LGPL and GFDL are included in chapter Licenses on page 487, since this book and/or parts of it may or may not be licensed under one or more of these licenses, and thus require inclusion of these licenses. The licenses of the figures are given in the list of figures on page 483. This PDF was generated by the \LaTeX typesetting software. The \LaTeX source code is included as an attachment (source.7z.txt) in this PDF file. To extract the source from the PDF file, you can use the pdfdetach tool including in the poppler suite, or the http://www.pdflabs.com/tools/pdfkit-the-pdf-toolkit/ utility. Some PDF viewers may also let you save the attachment to a file. After extracting it from the PDF file you have to rename it to source.7z. To uncompress the resulting archive we recommend the use of http://www.7-zip.org/. The \LaTeX source itself was generated by a program written by Dirk Hünniger, which is freely available under an open source license from http://de.wikibooks.org/wiki/Benutzer:Dirk_Huenniger/wb2pdf.
Contents

1 Basic Matrix Theory 3
 1.1 Basic Matrix Notation .. 3
 1.2 Important Properties of Matrices 3
 1.3 External Links ... 4

2 Notion of Matrix Positivity 5
 2.1 Notation of Positivity .. 5
 2.2 Properties of Positive Matricies 5
 2.3 External Links ... 5

3 KYP Lemma (Bounded Real Lemma) 7
 3.1 The System ... 7
 3.2 The Data .. 7
 3.3 The Optimization Problem 7
 3.4 The LMI: The KYP or Bounded Real Lemma 7
 3.5 Conclusion: ... 8
 3.6 Implementation .. 8
 3.7 Related LMIs ... 8
 3.8 External Links ... 8

4 Positive Real Lemma 9
 4.1 The System ... 9
 4.2 The Data .. 9
 4.3 The LMI: The Positive Real Lemma 9
 4.4 Conclusion: ... 9
 4.5 Implementation .. 10
 4.6 Related LMIs ... 10
 4.7 External Links ... 10

5 KYP Lemma for QSR Dissipative Systems 11
 5.1 The Concept ... 11
 5.2 The System ... 11
 5.3 The Data .. 12
 5.4 The Optimization Problem 12
 5.5 LMI: KYP Lemma for QSR Dissipative Systems 12
 5.6 Conclusion: ... 12
 5.7 Implementation .. 12
 5.8 Related LMIs ... 12
 5.9 References ... 12
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6 KYP Lemma without Feedthrough</td>
<td>15</td>
</tr>
<tr>
<td>6.1 The Concept</td>
<td>15</td>
</tr>
<tr>
<td>6.2 The System</td>
<td>15</td>
</tr>
<tr>
<td>6.3 The Data</td>
<td>15</td>
</tr>
<tr>
<td>6.4 LMI: KYP Lemma without Feedthrough</td>
<td>15</td>
</tr>
<tr>
<td>6.5 Conclusion:</td>
<td>16</td>
</tr>
<tr>
<td>6.6 Implementation</td>
<td>16</td>
</tr>
<tr>
<td>6.7 Related LMIs</td>
<td>16</td>
</tr>
<tr>
<td>6.8 References</td>
<td>16</td>
</tr>
<tr>
<td>7 KYP Lemma for Descriptor Systems</td>
<td>19</td>
</tr>
<tr>
<td>7.1 The Concept</td>
<td>19</td>
</tr>
<tr>
<td>7.2 The System</td>
<td>19</td>
</tr>
<tr>
<td>7.3 The Data</td>
<td>19</td>
</tr>
<tr>
<td>7.4 LMI: KYP Lemma for Descriptor Systems</td>
<td>20</td>
</tr>
<tr>
<td>7.5 Conclusion:</td>
<td>20</td>
</tr>
<tr>
<td>7.6 Implementation</td>
<td>20</td>
</tr>
<tr>
<td>7.7 Related LMIs</td>
<td>20</td>
</tr>
<tr>
<td>7.8 References</td>
<td>21</td>
</tr>
<tr>
<td>8 Generalized KYP (GKYP) Lemma for Conic Sectors</td>
<td>23</td>
</tr>
<tr>
<td>8.1 The Concept</td>
<td>23</td>
</tr>
<tr>
<td>8.2 The System</td>
<td>23</td>
</tr>
<tr>
<td>8.3 The Data</td>
<td>23</td>
</tr>
<tr>
<td>8.4 LMI: Generalized KYP (GKYP) Lemma for Conic Sectors</td>
<td>23</td>
</tr>
<tr>
<td>8.5 Conclusion:</td>
<td>24</td>
</tr>
<tr>
<td>8.6 Implementation</td>
<td>24</td>
</tr>
<tr>
<td>8.7 Related LMIs</td>
<td>24</td>
</tr>
<tr>
<td>8.8 References</td>
<td>25</td>
</tr>
<tr>
<td>9 Discrete time Bounded Real Lemma</td>
<td>27</td>
</tr>
<tr>
<td>9.1 The System</td>
<td>27</td>
</tr>
<tr>
<td>9.2 The Data</td>
<td>27</td>
</tr>
<tr>
<td>9.3 The Optimization Problem</td>
<td>27</td>
</tr>
<tr>
<td>9.4 The LMI:</td>
<td>27</td>
</tr>
<tr>
<td>9.5 Conclusion:</td>
<td>28</td>
</tr>
<tr>
<td>9.6 Implementation</td>
<td>28</td>
</tr>
<tr>
<td>9.7 Related LMIs</td>
<td>28</td>
</tr>
<tr>
<td>9.8 External Links</td>
<td>28</td>
</tr>
<tr>
<td>10 Discrete Time KYP Lemma for QSR Dissipative System</td>
<td>29</td>
</tr>
<tr>
<td>10.1 The Concept</td>
<td>29</td>
</tr>
<tr>
<td>10.2 The System</td>
<td>29</td>
</tr>
<tr>
<td>10.3 The Data</td>
<td>30</td>
</tr>
<tr>
<td>10.4 The Optimization Problem</td>
<td>30</td>
</tr>
<tr>
<td>10.5 LMI: Discrete-Time KYP Lemma for QSR Dissipative Systems</td>
<td>30</td>
</tr>
<tr>
<td>10.6 Conclusion:</td>
<td>30</td>
</tr>
<tr>
<td>10.7 Implementation</td>
<td>30</td>
</tr>
</tbody>
</table>
Contents

10.8 Related LMIs .. 30
10.9 References .. 31

11 Discrete Time KYP Lemma with Feedthrough 33
11.1 The Concept .. 33
11.2 The System .. 33
11.3 The Data .. 33
11.4 LMI : Discrete-Time KYP Lemma with Feedthrough .. 33
11.5 Conclusion: .. 35
11.6 Implementation .. 35
11.7 Related LMIs .. 35
11.8 References .. 35

12 Schur Complement 37
12.1 External Links .. 37

13 LMI for Eigenvalue Minimization 39
13.1 The System .. 39
13.2 The Data .. 39
13.3 The Optimization Problem .. 39
13.4 The LMI: LMI for eigenvalue minimization .. 40
13.5 Conclusion: .. 40
13.6 Implementation .. 40
13.7 Related LMIs .. 40
13.8 External Links .. 40

14 LMI for Matrix Norm Minimization 41
14.1 The System .. 41
14.2 The Data .. 41
14.3 The Optimization Problem .. 41
14.4 The LMI: LMI for matrix norm minimization .. 42
14.5 Conclusion: .. 42
14.6 Implementation .. 42
14.7 Related LMIs .. 42
14.8 External Links .. 42

15 LMI for Generalized Eigenvalue Problem 43
15.1 The System .. 43
15.2 The Data .. 43
15.3 The Optimization Problem .. 43
15.4 The LMI: LMI for Schur stabilization .. 43
15.5 Conclusion: .. 44
15.6 Implementation .. 44
15.7 Related LMIs .. 44
15.8 External Links .. 44

16 LMI for Linear Programming 45
16.1 The System .. 45
16.2 The Data .. 45
Contents

16.3 The Optimization Problem .. 45
16.4 The LMI: LMI for linear programming 46
16.5 Conclusion: ... 46
16.6 Implementation .. 46
16.7 Related LMIs ... 46
16.8 External Links ... 46

17 LMI for Feasibility Problem ... 47
17.1 The System ... 47
17.2 The Data ... 47
17.3 The Optimization Problem .. 47
17.4 The LMI: LMI for Feasibility Problem 47
17.5 Conclusion: ... 48
17.6 Implementation .. 48
17.7 Related LMIs ... 48
17.8 External Links ... 48

18 Structured Singular Value .. 49
18.1 The System ... 49
18.2 The Data ... 49
18.3 The Optimization Problem .. 49
18.4 The LMI: ... 49
18.5 Conclusion: ... 49
18.6 Implementation .. 49
18.7 Related LMIs ... 50
18.8 External Links ... 50

19 Eigenvalue Problem ... 51
19.1 The System ... 51
19.2 The Data ... 51
19.3 The Optimization Problem .. 51
19.4 The LMI: ... 51
19.5 Conclusion: ... 51
19.6 Implementation .. 51
19.7 Related LMIs ... 52
19.8 External Links ... 52

20 LMI for Minimizing Condition Number of Positive Definite Matrix 53
20.1 The System: ... 53
20.2 The Optimization Problem: ... 53
20.3 The LMI: ... 53
20.4 Conclusion: ... 53
20.5 Implementation .. 54
20.6 References ... 54

21 Continuous Quadratic Stability .. 55
21.1 The System ... 55
21.2 The Data ... 55

VI
Contents

31.4 Conclusion: .. 88
31.5 Implementation ... 88
31.6 Related LMIs .. 88
31.7 External Links .. 88

32 D-Stabilization .. 89
32.1 The System ... 89
32.2 The Data .. 89
32.3 The Optimization Problem ... 89
32.4 The LMI: $D(q,r)^*$-Stabilization 90
32.5 Conclusion: ... 90
32.6 Implementation ... 90
32.7 Related LMIs .. 90
32.8 External Links .. 90

33 H-Stabilization .. 93
33.1 The System ... 93
33.2 The Data .. 93
33.3 The Optimization Problem ... 93
33.4 The LMI: $H(\alpha,\beta)^*$-Stabilization 94
33.5 Conclusion: ... 94
33.6 Implementation ... 94
33.7 Related LMIs .. 94
33.8 External Links .. 94

34 H_2 Norm of the System .. 95
34.1 The System ... 95
34.2 The Data .. 95
34.3 The Optimization Problem ... 95
34.4 The LMI: The H_2 Norm .. 95
34.5 Conclusion: ... 96
34.6 Implementation ... 96
34.7 Related LMIs .. 96
34.8 External Links .. 96

35 Algebraic Riccati Equation ... 97
35.1 The System ... 97
35.2 The Data .. 97
35.3 The Optimization Problem ... 97
35.4 The LMI: Algebraic Riccati Inequality 97
35.5 Conclusion: ... 97
35.6 Implementation: ... 98
35.7 External links .. 98

36 System Zeros without feedthrough 99
36.1 The System ... 99
36.2 The Data .. 99
36.3 The LMI: System Zeros without feedthrough 99
37 System zeros with feedthrough

37.1 The System 101
37.2 The Data 101
37.3 The LMI: System Zeros with feedthrough 101
37.4 Conclusion: 102
37.5 Related LMIs 102
37.6 Implementation 102
37.7 External Links 102

38 Negative Imaginary Lemma

38.1 The System 103
38.2 The Data 103
38.3 The LMI: LMI for Negative Imaginary Lemma 103
38.4 Conclusion: 104
38.5 Implementation 104
38.6 Related LMIs 104
38.7 External Links 104

39 Small Gain Theorem

39.1 Theorem 105
39.2 Proof 105
39.3 Conclusion: 106
39.4 External Links 106

40 Tangential Nevanlinna-Pick Interpolation

40.1 Tangential Nevanlinna-Pick 107
40.2 The System 107
40.3 The Data 107
40.4 The LMI:Tangential Nevanlinna- Pick 108
40.5 Conclusion: 108
40.6 Implementation 108
40.7 Related LMIs 109
40.8 External Links 109

41 Nevanlinna-Pick Interpolation with Scaling

41.1 Nevanlinna-Pick Interpolation with Scaling 111
41.2 The System 111
41.3 The Data 111
41.4 The LMI:Nevanlinna- Pick Interpolation with Scaling 112
41.5 Conclusion: 112
41.6 Implementation 112
41.7 Related LMIs 112
41.8 External Links 113
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>42</td>
<td>Generalized H_2 Norm</td>
<td>115</td>
</tr>
<tr>
<td>42.1</td>
<td>Generalized H_2 Norm</td>
<td>115</td>
</tr>
<tr>
<td>42.2</td>
<td>The System</td>
<td>115</td>
</tr>
<tr>
<td>42.3</td>
<td>The Data</td>
<td>115</td>
</tr>
<tr>
<td>42.4</td>
<td>The LMI: Generalized H_2 Norm LMIs</td>
<td>115</td>
</tr>
<tr>
<td>42.5</td>
<td>Conclusion</td>
<td>116</td>
</tr>
<tr>
<td>42.6</td>
<td>Implementation</td>
<td>116</td>
</tr>
<tr>
<td>42.7</td>
<td>Related LMIs</td>
<td>116</td>
</tr>
<tr>
<td>42.8</td>
<td>External Links</td>
<td>116</td>
</tr>
<tr>
<td>43</td>
<td>Passivity and Positive Realness</td>
<td>119</td>
</tr>
<tr>
<td>43.1</td>
<td>The System</td>
<td>119</td>
</tr>
<tr>
<td>43.2</td>
<td>The Data</td>
<td>119</td>
</tr>
<tr>
<td>43.3</td>
<td>Definition</td>
<td>119</td>
</tr>
<tr>
<td>43.4</td>
<td>LMI Condition</td>
<td>120</td>
</tr>
<tr>
<td>43.5</td>
<td>Implementation</td>
<td>120</td>
</tr>
<tr>
<td>43.6</td>
<td>Conclusion</td>
<td>120</td>
</tr>
<tr>
<td>43.7</td>
<td>External Links</td>
<td>120</td>
</tr>
<tr>
<td>44</td>
<td>Non-expansivity and Bounded Realness</td>
<td>123</td>
</tr>
<tr>
<td>44.1</td>
<td>The System</td>
<td>123</td>
</tr>
<tr>
<td>44.2</td>
<td>The Data</td>
<td>123</td>
</tr>
<tr>
<td>44.3</td>
<td>Definition</td>
<td>123</td>
</tr>
<tr>
<td>44.4</td>
<td>LMI Condition</td>
<td>124</td>
</tr>
<tr>
<td>44.5</td>
<td>Implementation</td>
<td>124</td>
</tr>
<tr>
<td>44.6</td>
<td>Conclusion</td>
<td>124</td>
</tr>
<tr>
<td>44.7</td>
<td>External Links</td>
<td>125</td>
</tr>
<tr>
<td>45</td>
<td>Change of Subject</td>
<td>127</td>
</tr>
<tr>
<td>45.1</td>
<td>Example</td>
<td>127</td>
</tr>
<tr>
<td>45.2</td>
<td>Conclusion</td>
<td>127</td>
</tr>
<tr>
<td>45.3</td>
<td>External Links</td>
<td>127</td>
</tr>
<tr>
<td>46</td>
<td>Congruence Transformation</td>
<td>129</td>
</tr>
<tr>
<td>46.1</td>
<td>Theorem</td>
<td>129</td>
</tr>
<tr>
<td>46.2</td>
<td>Example</td>
<td>129</td>
</tr>
<tr>
<td>46.3</td>
<td>Conclusion</td>
<td>129</td>
</tr>
<tr>
<td>46.4</td>
<td>External Links</td>
<td>130</td>
</tr>
<tr>
<td>47</td>
<td>Finsler's Lemma</td>
<td>131</td>
</tr>
<tr>
<td>47.1</td>
<td>Theorem</td>
<td>131</td>
</tr>
<tr>
<td>47.2</td>
<td>Alternative Forms of Finsler's Lemma</td>
<td>131</td>
</tr>
<tr>
<td>47.3</td>
<td>Modified Finsler's Lemma</td>
<td>131</td>
</tr>
<tr>
<td>47.4</td>
<td>Conclusion</td>
<td>132</td>
</tr>
<tr>
<td>47.5</td>
<td>External Links</td>
<td>132</td>
</tr>
<tr>
<td>48</td>
<td>D-Stability</td>
<td>133</td>
</tr>
<tr>
<td>49</td>
<td>Time-Delay Systems</td>
<td>135</td>
</tr>
</tbody>
</table>
Contents

50 Parametric, Norm-Bounded Uncertain System Quadratic Stability .. 137
 50.1 The System .. 137
 50.2 The Data ... 137
 50.3 The LMI: ... 137
 50.4 Conclusion: .. 137
 50.5 Implementation .. 137
 50.6 Related LMIs .. 138
 50.7 External Links .. 138

51 Stability of Structured, Norm-Bounded Uncertainty ... 139
 51.1 The System .. 139
 51.2 The Data ... 139
 51.3 The LMI: ... 139
 51.4 Conclusion: .. 139
 51.5 Implementation .. 139
 51.6 Related LMIs .. 140
 51.7 External Links .. 140

52 Stability under Arbitrary Switching ... 141
 52.1 The System .. 141
 52.2 The Data ... 141
 52.3 The LMI: ... 141
 52.4 Conclusion ... 141
 52.5 Implementation .. 141
 52.6 Related LMIs .. 142
 52.7 External links .. 142

53 Quadratic Stability Margins .. 143
 53.1 The System .. 143
 53.2 The Data ... 143
 53.3 The Optimization Problem ... 143
 53.4 The LMI: ... 143
 53.5 Conclusion: .. 143
 53.6 Implementation .. 143
 53.7 Related LMIs .. 144
 53.8 External Links .. 144

54 Stability of Linear Delayed Differential Equations ... 145
 54.1 The System .. 145
 54.2 The Data ... 145
 54.3 The LMI: ... 145
 54.4 Implementation .. 145
 54.5 Conclusion ... 145
 54.6 Remark ... 146
 54.7 External Links .. 146

55 H infinity Norm for Affine Parametric Varying Systems ... 147
 55.1 The System .. 147
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>60.5</td>
<td>Implementation</td>
<td>158</td>
</tr>
<tr>
<td>60.6</td>
<td>Related LMIs</td>
<td>158</td>
</tr>
<tr>
<td>60.7</td>
<td>External Links</td>
<td>158</td>
</tr>
<tr>
<td>61</td>
<td>LMI Condition For Exponential Stability of Linear Systems With Interval Time-Varying Delays</td>
<td>159</td>
</tr>
<tr>
<td>61.1</td>
<td>The System</td>
<td>159</td>
</tr>
<tr>
<td>61.2</td>
<td>The Data</td>
<td>159</td>
</tr>
<tr>
<td>61.3</td>
<td>The Optimization Problem</td>
<td>159</td>
</tr>
<tr>
<td>61.4</td>
<td>The LMI: (\alpha)-Stability Condition</td>
<td>160</td>
</tr>
<tr>
<td>61.5</td>
<td>Conclusion:</td>
<td>160</td>
</tr>
<tr>
<td>61.6</td>
<td>Implementation</td>
<td>160</td>
</tr>
<tr>
<td>61.7</td>
<td>External Links</td>
<td>160</td>
</tr>
<tr>
<td>61.8</td>
<td>Return to Main Page</td>
<td>161</td>
</tr>
<tr>
<td>62</td>
<td>Conic Sector Lemma</td>
<td>163</td>
</tr>
<tr>
<td>62.1</td>
<td>The System</td>
<td>163</td>
</tr>
<tr>
<td>62.2</td>
<td>The Data</td>
<td>163</td>
</tr>
<tr>
<td>62.3</td>
<td>The Feasibility LMI</td>
<td>163</td>
</tr>
<tr>
<td>62.4</td>
<td>Conclusion:</td>
<td>164</td>
</tr>
<tr>
<td>62.5</td>
<td>Implementation</td>
<td>164</td>
</tr>
<tr>
<td>62.6</td>
<td>Related LMIs</td>
<td>164</td>
</tr>
<tr>
<td>62.7</td>
<td>External Links</td>
<td>165</td>
</tr>
<tr>
<td>62.8</td>
<td>Return to Main Page</td>
<td>165</td>
</tr>
<tr>
<td>63</td>
<td>Polytopic Quadratic Stability</td>
<td>167</td>
</tr>
<tr>
<td>63.1</td>
<td>The System:</td>
<td>167</td>
</tr>
<tr>
<td>63.2</td>
<td>The Data</td>
<td>167</td>
</tr>
<tr>
<td>63.3</td>
<td>The Optimization</td>
<td>167</td>
</tr>
<tr>
<td>63.4</td>
<td>The LMI</td>
<td>168</td>
</tr>
<tr>
<td>63.5</td>
<td>Conclusion:</td>
<td>168</td>
</tr>
<tr>
<td>63.6</td>
<td>Implementation</td>
<td>168</td>
</tr>
<tr>
<td>63.7</td>
<td>Related LMIs</td>
<td>169</td>
</tr>
<tr>
<td>63.8</td>
<td>External Links</td>
<td>169</td>
</tr>
<tr>
<td>63.9</td>
<td>Return to Main Page</td>
<td>169</td>
</tr>
<tr>
<td>64</td>
<td>Mu Analysis</td>
<td>171</td>
</tr>
<tr>
<td>64.1</td>
<td>The System:</td>
<td>171</td>
</tr>
<tr>
<td>64.2</td>
<td>The Data</td>
<td>171</td>
</tr>
<tr>
<td>64.3</td>
<td>The LMI: (\mu)- Analysis</td>
<td>171</td>
</tr>
<tr>
<td>64.4</td>
<td>Conclusion:</td>
<td>171</td>
</tr>
<tr>
<td>64.5</td>
<td>Implementation</td>
<td>172</td>
</tr>
<tr>
<td>64.6</td>
<td>External links</td>
<td>172</td>
</tr>
<tr>
<td>65</td>
<td>Optimization Over Affine Family of Linear Systems</td>
<td>173</td>
</tr>
<tr>
<td>65.1</td>
<td>Optimization over an Affine Family of Linear Systems</td>
<td>173</td>
</tr>
<tr>
<td>65.2</td>
<td>The System</td>
<td>173</td>
</tr>
<tr>
<td>65.3</td>
<td>The Data</td>
<td>173</td>
</tr>
</tbody>
</table>

XIV
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>70.3</td>
<td>The LMI:</td>
<td>189</td>
</tr>
<tr>
<td>70.4</td>
<td>Implementation</td>
<td>189</td>
</tr>
<tr>
<td>70.5</td>
<td>Conclusion</td>
<td>189</td>
</tr>
<tr>
<td>70.6</td>
<td>Remark</td>
<td>190</td>
</tr>
<tr>
<td>70.7</td>
<td>External Links</td>
<td>190</td>
</tr>
<tr>
<td>70.8</td>
<td>Return to Main Page:</td>
<td>190</td>
</tr>
<tr>
<td>71</td>
<td>Discrete-Time Quadratic Stability</td>
<td>191</td>
</tr>
<tr>
<td>71.1</td>
<td>Discrete-Time Quadratic Stability</td>
<td>191</td>
</tr>
<tr>
<td>71.2</td>
<td>The System</td>
<td>191</td>
</tr>
<tr>
<td>71.3</td>
<td>The Data</td>
<td>191</td>
</tr>
<tr>
<td>71.4</td>
<td>The Optimization Problem</td>
<td>191</td>
</tr>
<tr>
<td>71.5</td>
<td>Conclusion</td>
<td>192</td>
</tr>
<tr>
<td>71.6</td>
<td>Implementation</td>
<td>192</td>
</tr>
<tr>
<td>71.7</td>
<td>Related LMIs:</td>
<td>192</td>
</tr>
<tr>
<td>71.8</td>
<td>External Links</td>
<td>192</td>
</tr>
<tr>
<td>71.9</td>
<td>Return to Main Page:</td>
<td>192</td>
</tr>
<tr>
<td>72</td>
<td>Stability of Lure's Systems</td>
<td>193</td>
</tr>
<tr>
<td>72.1</td>
<td>The System</td>
<td>193</td>
</tr>
<tr>
<td>72.2</td>
<td>The Data</td>
<td>193</td>
</tr>
<tr>
<td>72.3</td>
<td>The LMI: The Lure's System's Stability</td>
<td>193</td>
</tr>
<tr>
<td>72.4</td>
<td>Implementation</td>
<td>193</td>
</tr>
<tr>
<td>72.5</td>
<td>Conclusion</td>
<td>193</td>
</tr>
<tr>
<td>72.6</td>
<td>Remark</td>
<td>194</td>
</tr>
<tr>
<td>72.7</td>
<td>External Links</td>
<td>194</td>
</tr>
<tr>
<td>72.8</td>
<td>Return to Main Page:</td>
<td>194</td>
</tr>
<tr>
<td>73</td>
<td>L2 Gain of Lure's Systems</td>
<td>195</td>
</tr>
<tr>
<td>73.1</td>
<td>The System</td>
<td>195</td>
</tr>
<tr>
<td>73.2</td>
<td>The Data</td>
<td>195</td>
</tr>
<tr>
<td>73.3</td>
<td>The Optimization Problem:</td>
<td>195</td>
</tr>
<tr>
<td>73.4</td>
<td>Implementation</td>
<td>195</td>
</tr>
<tr>
<td>73.5</td>
<td>Conclusion</td>
<td>195</td>
</tr>
<tr>
<td>73.6</td>
<td>Remark</td>
<td>196</td>
</tr>
<tr>
<td>73.7</td>
<td>External Links</td>
<td>196</td>
</tr>
<tr>
<td>73.8</td>
<td>Return to Main Page:</td>
<td>196</td>
</tr>
<tr>
<td>74</td>
<td>Output Energy Bound for Lure's Systems</td>
<td>197</td>
</tr>
<tr>
<td>74.1</td>
<td>The System</td>
<td>197</td>
</tr>
<tr>
<td>74.2</td>
<td>The Data</td>
<td>197</td>
</tr>
<tr>
<td>74.3</td>
<td>The Optimization Problem:</td>
<td>197</td>
</tr>
<tr>
<td>74.4</td>
<td>Implementation</td>
<td>197</td>
</tr>
<tr>
<td>74.5</td>
<td>Conclusion</td>
<td>197</td>
</tr>
<tr>
<td>74.6</td>
<td>Remark</td>
<td>198</td>
</tr>
<tr>
<td>74.7</td>
<td>External Links</td>
<td>198</td>
</tr>
<tr>
<td>74.8</td>
<td>Return to Main Page:</td>
<td>198</td>
</tr>
</tbody>
</table>
84.7 External Links .. 222
84.8 Return to Main Page: .. 223

85 LMI for Decentralized Feedback Control .. 225
85.1 The System .. 225
85.2 The Data .. 225
85.3 The Optimization Problem .. 225
85.4 The LMI: LMI for decentralized feedback controller 226
85.5 Conclusion: ... 226
85.6 Implementation ... 226
85.7 Related LMIs .. 226
85.8 External Links ... 226
85.9 Return to Main Page .. 227

86 LMI for Mixed H_2/H_∞ Output Feedback Controller 229
86.1 The System .. 229
86.2 The Data .. 229
86.3 The Optimization Problem .. 229
86.4 The LMI: LMI for mixed H_2/H_∞ 229
86.5 Conclusion: ... 230
86.6 Implementation ... 230
86.7 Related LMIs .. 231
86.8 External Links ... 231
86.9 Return to Main Page .. 231

87 Quadratically Stabilizing Controllers with Parametric Norm-Bounded Uncertainty .. 233
87.1 The System .. 233
87.2 The Data .. 233
87.3 The LMI: ... 233
87.4 Conclusion: ... 233
87.5 Implementation ... 233
87.6 Related LMIs .. 234
87.7 External Links ... 234
87.8 Return to Main Page: .. 234

88 H-inf Optimal Quadratically Stabilizing Controllers with Parametric Norm-Bounded Uncertainty .. 235
88.1 The System .. 235
88.2 The Data .. 235
88.3 The Optimization Problem .. 235
88.4 The LMI: ... 235
88.5 Conclusion: ... 236
88.6 Implementation ... 236
88.7 Related LMIs .. 236
88.8 External Links ... 236
88.9 Return to Main Page: .. 236
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>89</td>
<td>Stabilizing State-Feedback Controllers with Structured Norm-Bounded Uncertainty</td>
<td>237</td>
</tr>
<tr>
<td>89.1</td>
<td>The System</td>
<td>237</td>
</tr>
<tr>
<td>89.2</td>
<td>The Data</td>
<td>237</td>
</tr>
<tr>
<td>89.3</td>
<td>The LMI:</td>
<td>237</td>
</tr>
<tr>
<td>89.4</td>
<td>Conclusion:</td>
<td>237</td>
</tr>
<tr>
<td>89.5</td>
<td>Implementation</td>
<td>237</td>
</tr>
<tr>
<td>89.6</td>
<td>Related LMIs</td>
<td>238</td>
</tr>
<tr>
<td>89.7</td>
<td>External Links</td>
<td>238</td>
</tr>
<tr>
<td>89.8</td>
<td>Return to Main Page:</td>
<td>238</td>
</tr>
<tr>
<td>90</td>
<td>Optimal State-Feedback Controllers with Structured Norm-Bounded Uncertainty</td>
<td>239</td>
</tr>
<tr>
<td>90.1</td>
<td>The System</td>
<td>239</td>
</tr>
<tr>
<td>90.2</td>
<td>The Data</td>
<td>239</td>
</tr>
<tr>
<td>90.3</td>
<td>The Optimization Problem</td>
<td>239</td>
</tr>
<tr>
<td>90.4</td>
<td>The LMI:</td>
<td>239</td>
</tr>
<tr>
<td>90.5</td>
<td>Conclusion:</td>
<td>239</td>
</tr>
<tr>
<td>90.6</td>
<td>Implementation</td>
<td>240</td>
</tr>
<tr>
<td>90.7</td>
<td>Related LMIs</td>
<td>240</td>
</tr>
<tr>
<td>90.8</td>
<td>External Links</td>
<td>240</td>
</tr>
<tr>
<td>90.9</td>
<td>Return to Main Page:</td>
<td>240</td>
</tr>
<tr>
<td>91</td>
<td>H_∞ Optimal Output Controllability for Systems With Transients</td>
<td>241</td>
</tr>
<tr>
<td>91.1</td>
<td>The System</td>
<td>241</td>
</tr>
<tr>
<td>91.2</td>
<td>The Data</td>
<td>241</td>
</tr>
<tr>
<td>91.3</td>
<td>The Optimization Problem</td>
<td>241</td>
</tr>
<tr>
<td>91.4</td>
<td>The LMI: H_∞ Output Feedback Controller for Systems With Transients</td>
<td>242</td>
</tr>
<tr>
<td>91.5</td>
<td>Conclusion:</td>
<td>242</td>
</tr>
<tr>
<td>91.6</td>
<td>Implementation</td>
<td>242</td>
</tr>
<tr>
<td>91.7</td>
<td>Related LMIs</td>
<td>242</td>
</tr>
<tr>
<td>91.8</td>
<td>External Links</td>
<td>242</td>
</tr>
<tr>
<td>91.9</td>
<td>Return to Main Page:</td>
<td>242</td>
</tr>
<tr>
<td>92</td>
<td>Quadratic Polytopic Stabilization</td>
<td>243</td>
</tr>
<tr>
<td>92.1</td>
<td>The System</td>
<td>243</td>
</tr>
<tr>
<td>92.2</td>
<td>The Data</td>
<td>243</td>
</tr>
<tr>
<td>92.3</td>
<td>The Optimization and LMI:LMI for Controller Synthesis using the theorem of Polytopic Quadratic Stability</td>
<td>243</td>
</tr>
<tr>
<td>92.4</td>
<td>Conclusion:</td>
<td>244</td>
</tr>
<tr>
<td>92.5</td>
<td>Implementation</td>
<td>244</td>
</tr>
<tr>
<td>92.6</td>
<td>Related LMIs</td>
<td>244</td>
</tr>
<tr>
<td>92.7</td>
<td>External Links</td>
<td>244</td>
</tr>
<tr>
<td>93</td>
<td>Quadratic D-Stabilization</td>
<td>245</td>
</tr>
<tr>
<td>93.1</td>
<td>The System</td>
<td>245</td>
</tr>
<tr>
<td>93.2</td>
<td>The Data</td>
<td>245</td>
</tr>
<tr>
<td>93.3</td>
<td>The Optimization Problem</td>
<td>246</td>
</tr>
</tbody>
</table>
93.4 The LMI: An LMI for Quadratic D-Stabilization 246
93.5 Conclusion: .. 247
93.6 Implementation ... 247
93.7 Related LMIs .. 247
93.8 External Links .. 247
93.9 Return to Main Page: ... 247

94 Quadratic Polytopic Full State Feedback Optimal H_∞ Control 249
94.1 Quadratic Polytopic Full State Feedback Optimal H_∞ Control ... 249
94.2 The System .. 249
94.3 The Optimization Problem: .. 250
94.4 The LMI: .. 250
94.5 Conclusion: .. 250
94.6 Implementation: .. 250
94.7 Related LMIs .. 250
94.8 External Links .. 251

95 Quadratic Polytopic Full State Feedback Optimal H_2 Control 253
95.1 Quadratic Polytopic Full State Feedback Optimal H_2 Control ... 253
95.2 The System .. 253
95.3 The Data .. 254
95.4 The Optimization Problem: .. 254
95.5 The LMI: An LMI for Quadratic Polytopic H_2 Optimal 254
95.6 Conclusion: .. 254
95.7 Implementation: .. 255
95.8 Related LMIs .. 255
95.9 External Links .. 255

96 Continuous-Time Static Output Feedback Stabilizability 257
96.1 The System .. 257
96.2 The Data .. 257
96.3 The Optimization Problem .. 257
96.4 The LMI: LMI for Continuous Time - Static Output Feedback
 Stabilizability .. 258
96.5 Conclusion: .. 258
96.6 Implementation .. 258
96.7 Related LMIs .. 259
96.8 External Links .. 259
96.9 Return to Main Page: ... 259

97 Multi-Criterion LQG ... 261
97.1 The System .. 261
97.2 The Data .. 261
97.3 The Optimization Problem .. 262
97.4 The LMI: Multi-Criterion LQG .. 262
97.5 Conclusion: .. 263
97.6 Implementation .. 263
97.7 Related LMIs .. 263
98 Inverse Problem of Optimal Control 265
 98.1 The System 265
 98.2 The Data 265
 98.3 The Optimization Problem 265
 98.4 The LMI: Inverse Problem of Optimal Control 266
 98.5 Conclusion: 266
 98.6 Implementation 266
 98.7 Related LMIs 266
 98.8 External Links 267
 98.9 Return to Main Page: 267

99 Nonconvex Multi-Criterion Quadratic Problems 269
 99.1 The System 269
 99.2 The Data 270
 99.3 The Optimization Problem 270
 99.4 The LMI: Nonconvex Multi-Criterion Quadratic Problems 270
 99.5 Conclusion: 271
 99.6 Implementation 271
 99.7 Related LMIs 271
 99.8 External Links 271
 99.9 Return to Main Page: 271

100 Static-State Feedback Problem 273
 100.1 The System 273
 100.2 The Data 273
 100.3 The Optimization Problem 273
 100.4 The LMI: Static State Feedback Problem 273
 100.5 Conclusion 274
 100.6 Implementation 274
 100.7 Related LMIs 274
 100.8 External Links 274
 100.9 Return to Main Page: 275

101 Mixed H2 Hinf with desired pole location control 277
 101.1 The System 277
 101.2 The Data 277
 101.3 The Optimization Problem 277
 101.4 The LMI: LMI for mixed H_2/H_∞ with desired Pole locations 278
 101.5 Conclusion: 279
 101.6 Implementation 279
 101.7 Related LMIs 279
 101.8 External Links 279
 101.9 Return to Main Page 279
Contents

102 Mixed H_2 H_∞ with desired pole location control for perturbed systems 281
 102.1 The System ... 281
 102.2 The Data .. 282
 102.3 The Optimization Problem 282
 102.4 The LMI: LMI for mixed H_2/H_∞ with desired Pole locations ... 283
 102.5 Conclusion: ... 283
 102.6 Implementation .. 283
 102.7 Related LMIs ... 283
 102.8 External Links ... 284
 102.9 Return to Main Page 284

103 Robust H_2 State Feedback Control 285
 103.1 Robust H_2 State Feedback Control 285
 103.2 The System ... 285
 103.3 The Problem Formulation: 286
 103.4 The LMI: .. 286
 103.5 Conclusion: ... 286
 103.6 External Links ... 286

104 LQ Regulation via H_2 control 287
 104.1 LQ Regulation via H_2 Control 287
 104.2 Relation to H_2 performance 287
 104.3 Data .. 288
 104.4 The Problem Formulation: 288
 104.5 The LMI: .. 288
 104.6 Conclusion: ... 288
 104.7 External Links ... 288

105 State Feedback 289

106 Optimal State Feedback 291

107 Output Feedback 293

108 Static Output Feedback 295

109 Optimal Output Feedback 297

110 Optimal Dynamic Output Feedback 299

111 Discrete Time Stabilizability 301
 111.1 The System .. 301
 111.2 The Data .. 301
 111.3 The Optimization Problem 301
 111.4 The LMI: .. 301
 111.5 Conclusion: ... 302
 111.6 Implementation .. 302
 111.7 Related LMIs ... 302
 111.8 External Links ... 302

XXII
111.9 Return to Main Page: ... 302

112 Quadratic Schur Stabilization .. 303
 112.1 The System ... 303
 112.2 The Data .. 303
 112.3 The LMI: .. 303
 112.4 The Optimization Problem 304
 112.5 Conclusion: .. 304
 112.6 Implementation ... 304
 112.7 Related LMIs .. 304
 112.8 External Links .. 305

113 Generic Insensitive Strip Region Design 307
 113.1 The System .. 307
 113.2 The Data .. 307
 113.3 The Optimization Problem 307
 113.4 The LMI: Insensitive Strip Region Design 308
 113.5 Conclusion: .. 308
 113.6 Implementation ... 308
 113.7 Related LMIs .. 308
 113.8 External Links .. 309
 113.9 Return to Main Page: 309

114 Generic Insensitive Disk Region Design 311
 114.1 The System .. 311
 114.2 The Data .. 311
 114.3 The Optimization Problem 311
 114.4 The LMI: Insensitive Strip Region Design 312
 114.5 Conclusion: .. 312
 114.6 Implementation ... 312
 114.7 Related LMIs .. 312
 114.8 External Links .. 313
 114.9 Return to Main Page: 313

115 Design forInsensitive Strip Region 315
 115.1 The System .. 315
 115.2 The Data .. 315
 115.3 The Optimization Problem 315
 115.4 The LMI: H_2 Optimal Control Design for Insensitive Strip Region 316
 115.5 Conclusion: .. 316
 115.6 Implementation ... 316
 115.7 Related LMIs .. 316
 115.8 External Links .. 316
 115.9 Return to Main Page: 317

116 Design forInsensitive Disk Region 319
 116.1 The System .. 319
 116.2 The Data .. 319
116.3 The Optimization Problem .. 319
116.4 The LMI: H_2 Optimal Control Design for Insensitive Disk Region 320
116.5 Conclusion: ... 320
116.6 Implementation .. 320
116.7 Related LMIs .. 320
116.8 External Links .. 320
116.9 Return to Main Page: .. 321

117 Quadratic Stability .. 323
117.1 The System: ... 323
117.2 The Optimization Problem: 323
117.3 The LMI: .. 324
117.4 Conclusion: ... 324
117.5 Implementation .. 324
117.6 References ... 324

118 Apkarian Filter and State Feedback 325
118.1 The System: ... 325
118.2 The Optimization Problem: 325
118.3 The LMI: .. 326
118.4 Conclusion: ... 326
118.5 Related LMIs ... 326
118.6 References ... 326

119 Minimum Decay Rate in State Feedback 327
119.1 The System: ... 327
119.2 The Optimization Problem: 327
119.3 The LMI: .. 328
119.4 Conclusion: ... 328
119.5 Related LMIs ... 328
119.6 References ... 328

120 Maximum Natural Frequency in State Feedback 329
120.1 The System: ... 329
120.2 The Optimization Problem: 329
120.3 The LMI: .. 330
120.4 Conclusion: ... 330
120.5 Related LMIs ... 330
120.6 References ... 331

121 Optimal Observer and State Estimation 333
122 LMI for the Observability Grammian 335
122.1 The System ... 335
122.2 The Data .. 335
122.3 The LMI: LMI to Determine the Observability Grammian 335
122.4 Conclusion: ... 336
122.5 Implementation .. 336
122.6 Related LMIs ... 336

XXIV
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>129 Mixed H2 HInf Optimal Observer</td>
<td>355</td>
</tr>
<tr>
<td>129.1 The System</td>
<td>355</td>
</tr>
<tr>
<td>129.2 The Data</td>
<td>355</td>
</tr>
<tr>
<td>129.3 The Optimization Problem</td>
<td>355</td>
</tr>
<tr>
<td>129.4 The LMI: H Optimal Observer</td>
<td>356</td>
</tr>
<tr>
<td>129.5 Conclusion:</td>
<td>356</td>
</tr>
<tr>
<td>129.6 Implementation</td>
<td>356</td>
</tr>
<tr>
<td>129.7 External Links</td>
<td>356</td>
</tr>
<tr>
<td>129.8 Related LMIs</td>
<td>357</td>
</tr>
<tr>
<td>129.9 Return to Main Page</td>
<td>357</td>
</tr>
<tr>
<td>130 H2 Optimal Filter</td>
<td>359</td>
</tr>
<tr>
<td>130.1 The System:</td>
<td>359</td>
</tr>
<tr>
<td>130.2 The Data</td>
<td>359</td>
</tr>
<tr>
<td>130.3 The Optimization Problem:</td>
<td>359</td>
</tr>
<tr>
<td>130.4 The LMI: H_2 Optimal filter</td>
<td>360</td>
</tr>
<tr>
<td>130.5 Conclusion:</td>
<td>360</td>
</tr>
<tr>
<td>130.6 Implementation</td>
<td>360</td>
</tr>
<tr>
<td>130.7 External links</td>
<td>361</td>
</tr>
<tr>
<td>131 HInf Optimal Filter</td>
<td>363</td>
</tr>
<tr>
<td>131.1 The System:</td>
<td>363</td>
</tr>
<tr>
<td>131.2 The Data</td>
<td>363</td>
</tr>
<tr>
<td>131.3 The Optimization Problem:</td>
<td>363</td>
</tr>
<tr>
<td>131.4 The LMI: H Optimal filter</td>
<td>364</td>
</tr>
<tr>
<td>131.5 Conclusion:</td>
<td>364</td>
</tr>
<tr>
<td>131.6 Implementation</td>
<td>364</td>
</tr>
<tr>
<td>131.7 External links</td>
<td>364</td>
</tr>
<tr>
<td>132 FDI Filter Design For Systems With Sensor Faults: an LMI</td>
<td>365</td>
</tr>
<tr>
<td>132.1 The System</td>
<td>365</td>
</tr>
<tr>
<td>132.2 The Data</td>
<td>365</td>
</tr>
<tr>
<td>132.3 The Optimization LMI</td>
<td>365</td>
</tr>
<tr>
<td>132.4 Conclusion:</td>
<td>366</td>
</tr>
<tr>
<td>132.5 Implementation</td>
<td>366</td>
</tr>
<tr>
<td>132.6 Related LMIs</td>
<td>366</td>
</tr>
<tr>
<td>132.7 External Links</td>
<td>366</td>
</tr>
<tr>
<td>132.8 Return to Main Page</td>
<td>366</td>
</tr>
<tr>
<td>133 H_2 Optimal State estimation</td>
<td>367</td>
</tr>
<tr>
<td>133.1 The System</td>
<td>367</td>
</tr>
<tr>
<td>133.2 The Data</td>
<td>367</td>
</tr>
<tr>
<td>133.3 The Optimization Problem</td>
<td>367</td>
</tr>
<tr>
<td>133.4 The LMI: LMI for H_2 Observer estimation</td>
<td>368</td>
</tr>
<tr>
<td>133.5 Conclusion</td>
<td>369</td>
</tr>
<tr>
<td>133.6 Implementation</td>
<td>369</td>
</tr>
<tr>
<td>133.7 Related LMIs</td>
<td>369</td>
</tr>
<tr>
<td>133.8 External Links</td>
<td>370</td>
</tr>
</tbody>
</table>

XXVI
133.9 Return to Main Page: ... 370

134 Hurwitz Detectability ... 371
 134.1 Hurwitz Detectability 371
 134.2 The System .. 371
 134.3 The Data .. 371
 134.4 The Optimization Problem 371
 134.5 The LMI: .. 372
 134.6 Conclusion: ... 372
 134.7 Implementation ... 372
 134.8 Related LMIs ... 372
 134.9 External Links ... 373
 134.10 Return to Main Page: 373

135 Full-Order State Observer 375
 135.1 Full-Order State Observer 375
 135.2 The System ... 375
 135.3 The Data .. 375
 135.4 The Optimization Problem 375
 135.5 The LMI: .. 375
 135.6 Conclusion: ... 376
 135.7 External Links ... 376
 135.8 Return to Main Page: 376

136 Full-Order H-infinity State Observer 377
 136.1 The System ... 377
 136.2 The Data .. 377
 136.3 Definition ... 377
 136.4 LMI Condition ... 378
 136.5 Implementation ... 378
 136.6 Conclusion ... 378
 136.7 External Links ... 379

137 Reduced-Order State Observer 381
 137.1 Reduced Order State Observer 381
 137.2 The System ... 381
 137.3 The Data .. 381
 137.4 The Problem Formulation 381
 137.5 The LMI: .. 382
 137.6 Conclusion: ... 383
 137.7 External Links ... 383
 137.8 Return to Main Page: 383

138 Optimal Observer; Mixed 385
 138.1 The System ... 385
 138.2 The Data .. 385
 138.3 The Optimization Problem 385
 138.4 The LMI: Discrete-Time Mixed H2-Hinf-Optimal Observer . 386

XXVII
Contents

138.5 Conclusion: .. 386
138.6 Implementation ... 387
138.7 Related LMIs .. 387
138.8 External Links ... 387
138.9 Return to Main Page: 387

139 Optimal Observer; H2 ... 389
 139.1 The System .. 389
 139.2 The Data ... 389
 139.3 The Optimization Problem 389
 139.4 The LMI: Discrete-Time H2-Optimal Observer 390
 139.5 Conclusion: .. 390
 139.6 Implementation ... 390
 139.7 Related LMIs .. 391
 139.8 External Links ... 391
 139.9 Return to Main Page: 391

140 Optimal Observer; Hinf 393
 140.1 The System .. 393
 140.2 The Data ... 393
 140.3 The Optimization Problem 393
 140.4 The LMI: Discrete-Time Hinf-Optimal Observer 394
 140.5 Conclusion: .. 394
 140.6 Implementation ... 394
 140.7 Related LMIs .. 395
 140.8 External Links ... 395
 140.9 Return to Main Page: 395

141 Discrete Time Detectability 397
 141.1 The System .. 397
 141.2 The Data ... 397
 141.3 The Optimization Problem 397
 141.4 The LMI: ... 397
 141.5 Conclusion: .. 398
 141.6 Implementation ... 398
 141.7 Related LMIs .. 398
 141.8 External Links ... 398
 141.9 Return to Main Page: 398

142 Schur Detectability ... 399
 142.1 The System .. 399
 142.2 The Data ... 399
 142.3 The Optimization Problem 399
 142.4 The LMI: ... 400
 142.5 Conclusion: .. 400
 142.6 Implementation ... 400
 142.7 Related LMIs .. 401
 142.8 External Links ... 401
Contents

157.2 The Data .. 455
157.3 The Optimization Problem 455
157.4 The LMI: The Lyapunov Inequality 455
157.5 Conclusion: .. 456
157.6 External Links .. 456
157.7 Return to Main Page: 456

158 An LMI for Multi-Robot Systems 457

159 Helicopter Inner Loop LMI 459
159.1 The System .. 459
159.2 The Data .. 459
159.3 The Control Architecture 460
159.4 The Optimization Problem 460
159.5 The LMI: H-Infinity Inner Loop D-Stabilization Optimization 460
159.6 Conclusion: .. 461
159.7 Implementation .. 461
159.8 Related LMIs ... 461
159.9 External Links .. 461
159.10 Return to Main Page: 462

160 Hinf LMI Satellite Attitude Control 463
160.1 The System .. 463
160.2 The Data .. 464
160.3 The Optimization Problem 464
160.4 The LMI: H∞ Feedback Control of the Satellite System .. 465
160.5 Conclusion: .. 466
160.6 Implementation .. 466
160.7 Related LMIs ... 466
160.8 External Links .. 466

161 H2 LMI Satellite Attitude Control 469
161.1 The System .. 469
161.2 The Data .. 471
161.3 The Optimization Problem 471
161.4 The LMI: H-2 Satellite Attitude Control 471
161.5 Conclusion: .. 472
161.6 Implementation .. 472
161.7 Related LMIs ... 472
161.8 External Links .. 473

162 Problem of Space Rendezvous and LMI Approaches ... 475
162.1 The System .. 475
162.2 The Data .. 476
162.3 The Optimization Problem 476
162.4 The LMI: Space Rendezvous LMI Optimization 477
162.5 Conclusion: .. 477
162.6 Implementation .. 477
1 Basic Matrix Theory

1.1 Basic Matrix Notation

Consider the complex matrix \(A \in \mathbb{C}^{n \times m} \).

\[
A = \begin{bmatrix}
a_{11} & \cdots & a_{1m} \\
\vdots & \ddots & \vdots \\
a_{n1} & \cdots & a_{nm}
\end{bmatrix} \in \mathbb{C}^{n \times m}
\]

Transpose of a Matrix

The transpose of \(A \), denoted as \(A^T \) or \(A' \) is:

\[
A^T = \begin{bmatrix}
a_{11} & \cdots & a_{n1} \\
\vdots & \ddots & \vdots \\
a_{1m} & \cdots & a_{nm}
\end{bmatrix} \in \mathbb{C}^{m \times n}.
\]

Adjoint of a Matrix

The adjoint or hermitian conjugate of \(A \), denoted as \(A^* \) is:

\[
A^* = \begin{bmatrix}
a_{11}^* & \cdots & a_{n1}^* \\
\vdots & \ddots & \vdots \\
a_{1m}^* & \cdots & a_{nm}^*
\end{bmatrix} \in \mathbb{C}^{m \times n}.
\]

Where \(a_{nm}^* \) is the complex conjugate of matrix element \(a_{nm} \).

Notice that for a real matrix \(A \in \mathbb{R}^{n \times m} \), \(A^* = A^T \).

1.2 Important Properties of Matrices

Hermitian, Self-Adjoint, and Symmetric Matrices

A square matrix \(A \in \mathbb{C}^{n \times n} \) is called Hermitian or self-adjoint if \(A = A^* \).

If \(A \in \mathbb{R}^{n \times n} \) is Hermitian then it is called symmetric.

Unitary Matrices

A square matrix \(A \in \mathbb{C}^{n \times n} \) is called unitary if \(A^* = A^{-1} \) or \(A^* A = I \).
1.3 External Links

- LMI Methods in Optimal and Robust Control\(^1\) - A course on LMIs in Control by Matthew Peet.
- LMIs in Systems and Control Theory\(^3\) - A downloadable book on LMIs by Stephen Boyd.

\(^1\) http://control.asu.edu/MAE598_frame.htm
\(^3\) https://web.stanford.edu/~boyd/lmibook/
2 Notion of Matrix Positivity

2.1 Notation of Positivity

A symmetric matrix $A \in \mathbb{R}^{n \times n}$ is defined to be:

- **positive semidefinite**, $(A \geq 0)$, if $x^T Ax \geq 0$ for all $x \in \mathbb{R}^n, x \neq 0$.
- **positive definite**, $(A > 0)$, if $x^T Ax > 0$ for all $x \in \mathbb{R}^n, x \neq 0$.
- **negative semidefinite**, $(-A \geq 0)$.
- **negative definite**, $(-A > 0)$.
- **indefinite** if A is neither positive semidefinite nor negative semidefinite.

2.2 Properties of Positive Matrices

- For any matrix M, $M^T M > 0$.
- Positive definite matrices are invertible and the inverse is also positive definite.
- A positive definite matrix $A > 0$ has a square root, $A^{1/2} > 0$, such that $A^{1/2} A^{1/2} = A$.
- For a positive definite matrix $A > 0$ and invertible M, $M^T A M > 0$.
- If $A > 0$ and $M > 0$, then $A + M > 0$.
- If $A > 0$ then $\mu A > 0$ for any scalar $\mu > 0$.

2.3 External Links

- LMI Methods in Optimal and Robust Control\(^1\) - A course on LMIs in Control by Matthew Peet.
- LMIs in Systems and Control Theory\(^3\) - A downloadable book on LMIs by Stephen Boyd.

\(^1\) http://control.asu.edu/MAE598_frame.htm
\(^3\) https://web.stanford.edu/~boyd/lmibook/
3 KYP Lemma (Bounded Real Lemma)

KYP Lemma (Bounded Real Lemma)

The Kalman–Popov–Yakubovich (KYP) Lemma is a widely used lemma in control theory. It is sometimes also referred to as the Bounded Real Lemma. The KYP lemma can be used to determine the H_{∞} norm of a system and is also useful for proving many LMI results.

3.1 The System

\[
\begin{align*}
\dot{x}(t) &= Ax(t) + Bu(t) \\
y(t) &= Cx(t) + Du(t) \\
x(0) &= x_0
\end{align*}
\]

where $x(t) \in \mathbb{R}^n$, $y(t) \in \mathbb{R}^m$, $u(t) \in \mathbb{R}^q$, at any $t \in \mathbb{R}$.

3.2 The Data

The matrices A, B, C, D are known.

3.3 The Optimization Problem

The following optimization problem must be solved.

\[
\begin{align*}
\minimize_{\gamma, X} \quad & \gamma \\
\text{subjectto} \quad & X > 0 \\
& \begin{bmatrix}
X & A \\
B^T & -\gamma I
\end{bmatrix} + \frac{1}{\gamma} \begin{bmatrix}C^T \\ D^T\end{bmatrix} \begin{bmatrix}C & D\end{bmatrix} < 0
\end{align*}
\]

3.4 The LMI: The KYP or Bounded Real Lemma

Suppose $\hat{G}(s)(A, B, C, D)$ is the system. Then the following are equivalent.

1) $\|G\|_{H_{\infty}} \leq \gamma$

2) There exists a $X > 0$ such that
KYP Lemma (Bounded Real Lemma)

\[
\begin{bmatrix}
A^T X + X A & X B & C^T \\
B^T X & - \gamma I & D^T \\
C & D & - \gamma I
\end{bmatrix} + \frac{1}{\gamma} \begin{bmatrix}
C^T \\
D^T
\end{bmatrix} < 0
\]

3.5 Conclusion:

The KYP Lemma can be used to find the bound \(\gamma \) on the \(H_\infty \) norm of a system. Note from the (1,1) block of the LMI we know that \(A \) is Hurwitz.

3.6 Implementation

Since the KYP lemma shown above is nonlinear in gamma, in order to implement it in MATLAB we must first linearize it by using the Schur Complement to arrive at the dual formulation below:

\[
\begin{bmatrix}
A^T X + X A & X B & C^T \\
B^T X & - \gamma I & D^T \\
C & D & - \gamma I
\end{bmatrix} < 0
\]

This dual KYP LMI is now linear in both \(X \) and \(\gamma \).

This implementation requires the use of Yalmip and Sedumi.

https://github.com/eoskowro/LMI/blob/master/KYP_Lemma_LMI.m

3.7 Related LMIs

Positive Real Lemma\(^1\)

3.8 External Links

A list of references documenting and validating the LMI.

- LMI Methods in Optimal and Robust Control\(^2\) - A course on LMIs in Control by Matthew Peet.
- LMI Properties and Applications in Systems, Stability, and Control Theory\(^3\) - A List of LMIs by Ryan Caverly and James Forbes.

\(^1\) https://en.wikibooks.org/wiki/LMIs_in_Control/KYP_Lemmas/Positive_Real_Lemma
\(^2\) http://control.asu.edu/MAE598_frame.htm
\(^3\) https://arxiv.org/abs/1903.08599/
\(^4\) https://web.stanford.edu/~boyd/lmibook/
4 Positive Real Lemma

Positive Real Lemma

The Positive Real Lemma is a variation of the Kalman–Popov–Yakubovich (KYP) Lemma. The Positive Real Lemma can be used to determine if a system is passive (positive real).

4.1 The System

\[
\begin{align*}
\dot{x}(t) &= Ax(t) + Bu(t) \\
y(t) &= Cx(t) + Du(t) \\
x(0) &= x_0
\end{align*}
\]

where \(x(t) \in \mathbb{R}^n, y(t) \in \mathbb{R}^m, u(t) \in \mathbb{R}^q \), at any \(t \in \mathbb{R} \).

4.2 The Data

The matrices \(A,B,C,D \) are known.

4.3 The LMI: The Positive Real Lemma

Suppose \(\hat{G}(s)(A,B,C,D) \) is the system. Then the following are equivalent.

1) \(G \) is passive, i.e. \(\langle u, Gu \rangle_{L^2} \geq 0(\hat{G}(s) + \hat{G}(s)^* \geq 0) \)

2) There exists a \(X > 0 \) such that

\[
\begin{bmatrix}
A^T X + X A & X B - C^T \\
B^T X - C & -D^T - D
\end{bmatrix} \leq 0
\]

4.4 Conclusion:

The Positive Real Lemma can be used to determine if the system \(G \) is passive. Note from the (1,1) block of the LMI we know that \(A \) is Hurwitz.
4.5 Implementation

This implementation requires Yalmip and Sedumi. https://github.com/eoskowro/LMI/blob/master/Positive_Real_Lemma.m

4.6 Related LMIs

KYP Lemma (Bounded Real Lemma)\(^1\)

4.7 External Links

A list of references documenting and validating the LMI.

- LMI Methods in Optimal and Robust Control\(^2\) - A course on LMIs in Control by Matthew Peet.
- LMI Properties and Applications in Systems, Stability, and Control Theory\(^3\) - A List of LMIs by Ryan Caverly and James Forbes.

\(^1\) https://en.wikibooks.org/wiki/LMIs_in_Control/KYP_Lemmas/KYP_Lemma_(Bounded_Real_Lemma)
\(^2\) http://control.asu.edu/MAE598_frame.htm
\(^4\) https://web.stanford.edu/~boyd/lmibook/
5 KYP Lemma for QSR Dissipative Systems

5.1 The Concept

In systems theory the concept of dissipativity was first introduced by Willems which describes dynamical systems by input-output properties. Considering a dynamical system described by its state \(x(t)\), its input \(u(t)\) and its output \(y(t)\), the input-output correlation is given a supply rate \(w(u(t), y(t))\). A system is said to be dissipative with respect to a supply rate if there exists a continuously differentiable storage function \(V(x(t))\) such that \(V(0) = 0\), \(V(x(t)) \geq 0\) and

\[
\dot{V}(x(t)) \leq w(u(t), y(t))
\]

As a special case of dissipativity, a system is said to be passive if the above dissipativity inequality holds with respect to the passivity supply rate \(w(u(t), y(t)) = u(t)^T y(t)\).

The physical interpretation is that \(V(x)\) is the energy stored in the system, whereas \(w(u(t), y(t))\) is the energy that is supplied to the system.

This notion has a strong connection with Lyapunov stability, where the storage functions may play, under certain conditions of controllability and observability of the dynamical system, the role of Lyapunov functions.

Roughly speaking, dissipativity theory is useful for the design of feedback control laws for linear and nonlinear systems. Dissipative systems theory has been discussed by Vasile M. Popov, Jan Camiel Willems, D.J. Hill, and P. Moylan. In the case of linear invariant systems, this is known as positive real transfer functions, and a fundamental tool is the so-called Kalman–Yakubovich–Popov lemma which relates the state space and the frequency domain properties of positive real systems. Dissipative systems are still an active field of research in systems and control, due to their important applications.

5.2 The System

Consider a continuous-time LTI system, \(\mathcal{G} : \mathcal{L}_2 \rightarrow \mathcal{L}_2\), with minimal state-space realization \((A, B, C, D)\), where \(A \in \mathbb{R}^{n \times n}, B \in \mathbb{R}^{n \times m}, C \in \mathbb{R}^{p \times n},\) and \(D \in \mathbb{R}^{p \times m}\).

\[
\begin{align*}
\dot{x}(t) &= Ax(t) + Bu(t), \\
y(t) &= Cx(t) + Du(t)
\end{align*}
\]
5.3 The Data

The matrices A, B, C and D which defines the state space of the system

5.4 The Optimization Problem

The system G is QSR dissipative if

$$\int_0^T (y^T(t)Qy(t) + 2y^T Su(t) + u^T(t)Ru(t)) dt \geq 0, \forall u \in L_2, \forall T \geq 0$$

where $u(t)$ is the input to G, $y(t)$ is the output of $G, Q \in S^p, S \in R^{p \times m},$ and $R \in S^m$.

5.5 LMI : KYP Lemma for QSR Dissipative Systems

The system G is also QSR dissipative if and only if there exists $P \in S^n$, where $P > 0$, such that

$$\begin{bmatrix} PA + A^T P - C^T QC & PB - C^T S - C^T QD \\ (PB - C^T S - C^T QD)^T & -D^T QD - (D^T S + S^T D) - R \end{bmatrix} \leq 0.$$

5.6 Conclusion:

If there exist a positive definite P for the the selected Q,S and R matrices then the system G is QSR dissipative.

5.7 Implementation

Code for implementation of this LMI using MATLAB. https://github.com/VJanand25/LMI

5.8 Related LMIs

KYP Lemma1

5.9 References

1https://en.wikipedia.org/wiki/Kalman%E2%80%93Yakubovich%E2%80%93Popov_lemma

6 KYP Lemma without Feedthrough

6.1 The Concept

It is assumed in the Lemma that the state-space representation \((A, B, C, D)\) is minimal. Then Positive Realness (PR) of the transfer function \(C(SI - A)^{-1}B + D\) is equivalent to the solvability of the set of LMIs given in this page. Consider now the following scalar example, where \((A, B, C, D) = (-a, 0, 0, 1)\), with \(a > 0\). The transfer function is \(H(s) = 0\) that is PR.

6.2 The System

Consider a continuous-time LTI system, \(G : \mathcal{L}_2 \rightarrow \mathcal{L}_2\), with minimal state-space realization \((A, B, C, 0)\), where \(A \in \mathbb{R}^{n \times n}, B \in \mathbb{R}^{n \times m}\), and \(C \in \mathbb{R}^{m \times n}\).

\[
\dot{x}(t) = Ax(t) + Bu(t), \\
y(t) = Cx(t)
\]

6.3 The Data

The matrices \(A, B\) and \(C\)

6.4 LMI: KYP Lemma without Feedthrough

The system \(G\) is positive real (PR) under either of the following equivalent necessary and sufficient conditions.

1. There exists \(P \in \mathcal{S}^n\), where \(p > 0\) such that

\[
PA + A^TP \geq 0 \\
PB = C^T
\]

2. There exists \(Q \in \mathcal{S}^n\), where \(Q > 0\) such that

\[
AQ + QA^T \geq 0 \\
B = QC^T
\]

This is a special case of the KYP Lemma for QSR dissipative systems with \(Q = 0, Q = 0.5\) and \(R = 0\).
The system G is strictly positive real (SPR) under either of the following equivalent necessary and sufficient conditions.

1. There exists $P \in \mathcal{S}^n$, where $p > 0$ such that

$$PA + A^TP < 0$$

$$PB = C^T$$

2. There exists $Q \in \mathcal{S}^n$, where $Q > 0$ such that

$$AQ + QA^T < 0$$

$$B = QC^T$$

This is a special case of the KYP Lemma for QSR dissipative systems with $Q = \varepsilon I$, $Q = 0.5$ and $R = 0$, where $\varepsilon \in \mathcal{R}_{>0}$.

6.5 Conclusion:

If there exist a positive definite P for the the selected Q, S and R matrices then the system G is Positive Real.

6.6 Implementation

Code for implementation of this LMI using MATLAB. https://github.com/VJanand25/LMI

6.7 Related LMIs

KYP Lemma

State Space Stability

Discrete Time KYP Lemma with Feedthrough

6.8 References

1 https://en.wikipedia.org/wiki/Kalman%E2%80%93Yakubovich%E2%80%93Popov_lemma

7 KYP Lemma for Descriptor Systems

7.1 The Concept

Descriptor system descriptions frequently appear when solving computational problems in the analysis and design of standard linear systems. The numerically reliable solution of many standard control problems like the solution of Riccati equations, computation of system zeros, design of fault detection and isolation filters (FDI), etc. relies on using descriptor system techniques.

Many algorithms for standard systems as for example stabilization techniques, factorization methods, minimal realization, model reduction, etc. have been extended to the more general descriptor system descriptions. An important application of these algorithms is the numerically reliable computation with rational and polynomial matrices via equivalent descriptor representations. Recall that each rational matrix $R(s)$ can be seen as the transfer-function matrix of a continuous- or discrete-time descriptor system. Thus, each $R(s)$ can be equivalently realized by a descriptor system quadruple $(A-sE, B, C, D)$ satisfying $R(S)=C(SE-A)^{-1}B+D$.

Many operations on standard matrices (e.g., finding the rank, determinant, inverse or generalized inverses), or the solution of linear matrix equations can be performed for rational matrices as well using descriptor system techniques. Other important applications of descriptor techniques are the computation of inner-outer and spectral factorisations, or minimum degree and normalized coprime factorisations of polynomial and rational matrices. More explanation can be found in the website of Institute of System Dynamics and control

7.2 The System

Consider a square, continuous-time linear time-invariant (LTI) system, $\mathcal{G} : \mathcal{L}_{2e} \rightarrow \mathcal{L}_{2e}$, with minimal state-space realization (E, A, B, C, D), where $E, A \in \mathbb{R}^{n \times n}, B \in \mathbb{R}^{n \times m}, C \in \mathbb{R}^{p \times n},$ and $D \in \mathbb{R}^{p \times m}$.

$$E\dot{x}(t) = Ax(t) + Bu(t),$$
$$y(t) = Cx(t) + Du(t)$$

7.3 The Data

The matrices E, A, B, C and D

7.4 LMI : KYP Lemma for Descriptor Systems

The system G is extended strictly positive real (ESPR) if and only if there exists $X \in \mathbb{R}^{n \times n}$ and $W \in \mathbb{R}^{n \times m}$ such that

$$E^T X = X^T E \geq 0$$

$$E^T W = 0$$

$$
\begin{bmatrix}
X^T A + A^T X & A^T W + X^T B - C^T \\
(A^T W + X^T B - C^T)^T & W^T B + B^T W - (D^T + D)
\end{bmatrix} < 0.
$$

The system is also ESPR if there exists $X \in \mathbb{R}^{n \times n}$ such that

$$E^T X = X^T E \geq 0$$

$$
\begin{bmatrix}
X^T A + A^T X & X^T B - C^T \\
(X^T B - C^T)^T & -(D^T + D)
\end{bmatrix} < 0.
$$

7.5 Conclusion:

If there exist a X and W matrix satisfying above LMIs then the system G is Extended Strictly Positive Real.

7.6 Implementation

Code for implementation of this LMI using MATLAB. https://github.com/VJanand25/LMI

7.7 Related LMIs

KYP Lemma\(^2\)

State Space Stability\(^3\)

Discrete Time KYP Lemma with Feedthrough\(^4\)

\(^2\) https://en.wikipedia.org/wiki/Kalman%25E2%2580%2593Yakubovich%25E2%2580%2593Popov_lemma

7.8 References

8 Generalized KYP (GKYP) Lemma for conic Sectors

8.1 The Concept

The conic sector theorem is a powerful input-output stability analysis tool, providing a fine balance between generality and simplicity of system characterisations that is conducive to practical stability analysis and robust controller synthesis.

8.2 The System

Consider a square, continuous-time linear time-invariant (LTI) system, \(G : \mathcal{L}_2 \rightarrow \mathcal{L}_2 \), with minimal state-space realization \((A, B, C, D)\), where \(\mathcal{E}, A \in \mathbb{R}^{n \times n}, B \in \mathbb{R}^{n \times m}, C \in \mathbb{R}^{p \times n}, \) and \(D \in \mathbb{R}^{p \times m}. \)

\[
\dot{x}(t) = Ax(t) + Bu(t), \\
y(t) =Cx(t) + Du(t)
\]

Also consider \(\pi_c(a,b) \in \mathcal{S}^m \), which is defined as

\[
\pi_c(a,b) = \begin{bmatrix}
-\frac{1}{b}I & \frac{1}{2}(1 + \frac{a}{b})I \\
\left(\frac{1}{2}(1 + \frac{a}{b})I\right)^T & -aI
\end{bmatrix}
\]

where \(a \in \mathcal{R}, b \in \mathcal{R}_{>0} \) and \(a < b \).

8.3 The Data

The matrices \(A,B,C \) and \(D \). The values of \(a \) and \(b \)

8.4 LMI : Generalized KYP (GKYP) Lemma for Conic Sectors

The following generalized KYP Lemmas give conditions for \(G \) to be inside the cone \([a,b] \) within finite frequency bandwidths.

1. (Low Frequency Range) The system \(G \) is inside the cone \([a,b]\) for all \(\omega \in \mathbb{R} ||\omega|| < \omega_1, \ det(j\omega I - A) \neq 0 \), where \(\omega_1 \in \mathcal{R}_{>0}, a \in \mathcal{R}, b \in \mathcal{R}_{>0} \) and \(a < b \), if there exist \(P, Q \in \mathcal{S}^n \) and \(\omega_1 \in \mathcal{R}_{>0} \), where \(Q \geq 0 \), such that
Generalized KYP (GKYP) Lemma for conic Sectors

\[
\begin{bmatrix}
A & B \\
I & 0
\end{bmatrix}^T \begin{bmatrix}
-Q & P \\
(\omega_1 - \bar{\omega}_1)^2 Q
\end{bmatrix} \begin{bmatrix}
A & B \\
I & 0
\end{bmatrix} - \begin{bmatrix}
C & D \\
0 & I
\end{bmatrix}^T \pi_e(a,b) \begin{bmatrix}
C & D \\
0 & I
\end{bmatrix} < 0
\]

If \(\omega_1 \to \infty\), \(P > 0\), and \(Q = 0\), then the traditional Conic Sector Lemma is recovered. The parameter \(\bar{\omega}_1\) is included in the above LMI to effectively transform \(|\omega| \leq (\omega_1 - \bar{\omega}_1)\) into the strict inequality \(|\omega| < \omega_1\).

2. *(Intermediate Frequency Range)* The system \(G\) is inside the cone \([a, b]\) for all \(\omega \in R|\omega_1 \leq |\omega| < \omega_2, \det(j\omega I - A) \neq 0\), where \(\omega_1, \omega_2 \in \mathbb{R}_{>0}, a \in \mathbb{R}, b \in \mathbb{R}_{>0}\) and \(a < b\), if there exist \(P, Q \in \mathbb{C}^n\) and \(\bar{\omega}_1 \in \mathbb{R}_{>0}\) and \(\bar{\omega}_2 = (\omega_1 + (\omega_2 - \bar{\omega}_2)/2)\), where \(P^H = P, Q^H = Q\) and \(Q \geq 0\), such that

\[
\begin{bmatrix}
A & B \\
I & 0
\end{bmatrix}^T \begin{bmatrix}
-Q & P + |\bar{\omega}Q| & \omega_1(\omega_2 - \bar{\omega} - 2)Q \\
P - |\bar{\omega}Q| & \omega_1(\omega_2 - \bar{\omega} - 2)Q
\end{bmatrix} \begin{bmatrix}
A & B \\
I & 0
\end{bmatrix} - \begin{bmatrix}
C & D \\
0 & I
\end{bmatrix}^T \pi_e(a,b) \begin{bmatrix}
C & D \\
0 & I
\end{bmatrix} < 0
\]

The parameter \(\bar{\omega}_2\) is included in the above LMI to effectively transform \(\omega_1 \leq |\omega| \leq (\omega_2 - \bar{\omega}_2)\) into the strict inequality \(\omega_1 \leq |\omega| < \omega_2\).

3. *(High Frequency Range)* The system \(G\) is inside the cone \([a, b]\) for all \(\omega \in R|\omega_2 < |\omega|, \det(j\omega I - A) \neq 0\), where \(\omega_2 \in \mathbb{R}_{>0}, a \in \mathbb{R}, b \in \mathbb{R}_{>0}\) and \(a < b\), if there exist \(P, Q \in \mathbb{S}^n\), where \(Q \geq 0\), such that

\[
\begin{bmatrix}
A & B \\
I & 0
\end{bmatrix}^T \begin{bmatrix}
-Q & P \\
P - \omega_2^2 Q
\end{bmatrix} \begin{bmatrix}
A & B \\
I & 0
\end{bmatrix} - \begin{bmatrix}
C & D \\
0 & I
\end{bmatrix}^T \pi_e(a,b) \begin{bmatrix}
C & D \\
0 & I
\end{bmatrix} < 0
\]

If \((A, B, C, D)\) is a minimal realization, then the matrix inequalities in all of the above LMI, then it can be nostrict.

8.5 Conclusion:

If there exist a positive definite \(q\) matrix satisfying above LMIs for the given frequency bandwidths then the system \(G\) is inside the cone \([a, b]\).

8.6 Implementation

Code for implementation of this LMI using MATLAB. https://github.com/VJanand25/LMI

8.7 Related LMIs

KYP Lemma

https://en.wikipedia.org/wiki/Kalman%25E2%2580%2593Yakubovich%25E2%2580%2593Popov_lemma
State Space Stability\(^2\)

Exterior Conic Sector Lemma\(^3\)

Modified Exterior Conic Sector Lemma\(^4\)

8.8 References

3. LMI Properties and Applications in Systems, Stability, and Control Theory, by Ryan James Caverly\(^1\) and James Richard Forbes\(^2\)

\(^2\) https://en.wikipedia.org/wiki/State-Space_Stability
\(^3\) https://en.wikipedia.org/wiki/Exterior_Conic_Sector_Lemma
\(^4\) https://en.wikipedia.org/wiki/Modified_Exterior_Conic_Sector_Lemma
9 Discrete time Bounded Real Lemma

Discrete-Time Bounded Real Lemma

A discrete time system operates on a discrete time signal input and produces a discrete time signal output. They are used in digital signal processing, such as digital filters for images or sound. The class of discrete time systems that are both linear and time invariant, known as discrete time LTI systems.

Discrete-Time Bounded Real Lemma or the H_∞ norm can be found by solving a LMI.

9.1 The System

Discrete-Time LTI System with state space realization (A_d, B_d, C_d, D_d)

$A_d \in \mathbb{R}^{n \times n}$, $B_d \in \mathbb{R}^{n \times m}$, $C_d \in \mathbb{R}^{p \times n}$, $D_d \in \mathbb{R}^{p \times m}$

9.2 The Data

The matrices: System $(A_d, B_d, C_d, D_d), P$.

9.3 The Optimization Problem

The following feasibility problem should be optimized:

γ is minimized while obeying the LMI constraints.

9.4 The LMI:

Discrete-Time Bounded Real Lemma

The LMI formulation

H_∞ norm $< \gamma$
Discrete time Bounded Real Lemma

\[P \in \mathcal{S}^n; \gamma \in \mathbb{R}_{>0} \quad P > 0, \]

\[
\begin{bmatrix}
 A_d^T P A_d - P & A_d^T P B_d & C_d^T \\
 * & B_d^T P B_d - \gamma I & * \\
 * & * & -\gamma I
\end{bmatrix} < 0,
\]

9.5 Conclusion:

The \(\mathcal{H}_\infty \) norm is the minimum value of \(\gamma \in \mathbb{R}_{>0} \) that satisfies the LMI condition. If \((A_d, B_d, C_d, D_d)\) is the minimal realization then the inequalities can be non-strict.

9.6 Implementation

A link to CodeOcean or other online implementation of the LMI MATLAB Code

9.7 Related LMIs

https://en.wikibooks.org/wiki/LMIs_in_Control/pages/KYP_Lemma_(Bounded_Real_Lemma) - Continuous time KYP_Lemma_(Bounded_Real_Lemma)

9.8 External Links

A list of references documenting and validating the LMI.

- LMI Methods in Optimal and Robust Control\(^2\) - A course on LMIs in Control by Matthew Peet.
- LMI Properties and Applications in Systems, Stability, and Control Theory\(^3\) - A List of LMIs by Ryan Caverly and James Forbes.

1 https://github.com/Harishankar-Prabhakaran/LMIs/blob/master/A2.m
2 http://control.asu.edu/MAE598_frame.htm
4 https://web.stanford.edu/~boyd/lmibook/
10 Discrete Time KYP Lemma for QSR Dissipative System

10.1 The Concept

In systems theory the concept of dissipativity was first introduced by Willems which describes dynamical systems by input-output properties. Considering a dynamical system described by its state \(x(t) \), its input \(u(t) \) and its output \(y(t) \), the input-output correlation is given a supply rate \(w(u(t), y(t)) \). A system is said to be dissipative with respect to a supply rate if there exists a continuously differentiable storage function \(V(x(t)) \) such that

\[
\dot{V}(x(t)) \leq w(u(t), y(t))
\]

As a special case of dissipativity, a system is said to be passive if the above dissipativity inequality holds with respect to the passivity supply rate \(w(u(t), y(t)) = u^T(t)y(t) \).

The physical interpretation is that \(V(x) \) is the energy stored in the system, whereas \(w(u(t), y(t)) \) is the energy that is supplied to the system.

This notion has a strong connection with Lyapunov stability, where the storage functions may play, under certain conditions of controllability and observability of the dynamical system, the role of Lyapunov functions.

Roughly speaking, dissipativity theory is useful for the design of feedback control laws for linear and nonlinear systems. Dissipative systems theory has been discussed by Vasile M. Popov, Jan Camiel Willems, D.J. Hill, and P. Moylan. In the case of linear invariant systems, this is known as positive real transfer functions, and a fundamental tool is the so-called Kalman–Yakubovich–Popov lemma which relates the state space and the frequency domain properties of positive real systems.Dissipative systems are still an active field of research in systems and control, due to their important applications.

10.2 The System

Consider a discrete-time LTI system, \(\mathcal{G} : \mathbb{Z}_2 \rightarrow \mathbb{Z}_2 \), with minimal state-space realization \((A_d, B_d, C_d, D_d)\), where \(A_d \in \mathbb{R}^{n \times n}, B_d \in \mathbb{R}^{n \times m}, C_d \in \mathbb{R}^{p \times n}, \) and \(D_d \in \mathbb{R}^{p \times m} \).

\[
x(k + 1) = A_d x(k) + B_d u(k)
\]

\[
y(k) = C_d x(k) + D_d u(k), \quad k = 0, 1, ...
\]
10.3 The Data
The matrices A_d, B_d, C_d and D_d

10.4 The Optimization Problem
The system G is QSR dissipative if

$$
\sum_{i=0}^{K} (\|\eta_i^T Q \|_i + 2\|\eta_i^T S \|_i + \|\eta_i^T R \|_i) dt \geq 0, \forall u \in \mathbb{Z}_{2e}, \forall k \in \mathbb{Z} \geq 0
$$

where η_k is the input to G, η_k is the output of G, $Q \in S^n$, $S \in \mathbb{R}^{p \times m}$, and $R \in S^m$.

10.5 LMI : Discrete-Time KYP Lemma for QSR Dissipative Systems
The system G is also QSR dissipative if and only if there exists $P \in S^n$, where $P > 0$, such that

$$\begin{bmatrix}
A_d^T P A_d - P - C_d^T Q C_d \\
(A_d^T P B_d - C_d^T S - C_d^T Q D_d)^T \\
B_d^T P B_d - D_d^T Q D_d - (D_d^T S + S^T D_d) - R
\end{bmatrix} \leq 0.$$

10.6 Conclusion:
If there exist a positive definite P for the the selected Q, S and R matrices then the system G is QSR dissipative.

10.7 Implementation
Code for implementation of this LMI using MATLAB. https://github.com/VJanand25/LMI

10.8 Related LMIs
KYP Lemma\(^1\)

KYP Lemma for continous Time QSR Dissipative system\(^2\)

\(^1\) https://en.wikipedia.org/wiki/Kalman%E2%80%93Yakubovich%E2%80%93Popov_lemma\(^1\)
\(^2\) https://en.wikibooks.org/wiki/LMIs_in_Control/pages/KYP_Lemma_QSR#3D_The_Data\(^2\)
10.9 References

11 Discrete Time KYP Lemma with Feedthrough

11.1 The Concept

It is assumed in the Lemma that the state-space representation \((A_d, B_d, C_d, D_d)\) is minimal. Then Positive Realness (PR) of the transfer function \(C_d(\text{SI} - A_d)^{-1}B_d + D_d\) is equivalent to the solvability of the set of LMIs given in this page. Consider now the following scalar example, where \((A_d, B_d, C_d, D_d)=(-\alpha, 0, 0, 1)\), with \(\alpha > 0\). The transfer function is \(H(s) = 0\) that is PR.

11.2 The System

Consider a discrete-time LTI system, \(G: \mathcal{Z}_2^e \rightarrow \mathcal{Z}_2^e\), with minimal state-space realization \((A_d, B_d, C_d, D_d)\), where \(A_d \in \mathbb{R}^{n \times n}, B_d \in \mathbb{R}^{n \times m}, C_d \in \mathbb{R}^{p \times n}\), and \(D_d \in \mathbb{R}^{p \times m}\).

\[
\begin{align*}
x(k+1) &= A_dx(k) + B_du(k) \\
y(k) &= C_dx(k) + D_du(k), k = 0, 1, \ldots
\end{align*}
\]

11.3 The Data

The matrices \(A_d, B_d, C_d\) and \(D_d\)

11.4 LMI: Discrete-Time KYP Lemma with Feedthrough

The system \(G\) is positive real (PR) under either of the following equivalent necessary and sufficient conditions.

1. There exists \(P \in \mathbb{S}^n\), where \(P > 0\) such that

\[
\begin{bmatrix}
 A_d^TPA_d - P & A_d^TPB_d - C_d^T \\
 (A_d^TPB_d - C_d^T)^T & B_d^TPB_d - (D_d^T + D_d)
\end{bmatrix} \leq 0.
\]

2. There exists \(Q \in \mathbb{S}^n\), where \(Q > 0\) such that
Discrete Time KYP Lemma with Feedthrough

\[
\begin{bmatrix}
A_dQ A_d^T - Q & A_dQ C_d^T - B_d \\
(A_dQ C_d^T - B_d)^T & C_d P C_d^T - (D_d^T + D_d)
\end{bmatrix} \leq 0.
\]

3. There exists \(P \in S^n \), where \(Q > 0 \) such that

\[
\begin{bmatrix}
P & PA_d & PB_d \\
(PA_d)^T & P & C_d^T \\
(PB_d)^T & C_d & D_d^T + D_d
\end{bmatrix} \geq 0.
\]

4. There exists \(Q \in S^n \), where \(Q > 0 \) such that

\[
\begin{bmatrix}
Q & A_dQ & B_d \\
(A_dQ)^T & Q & QC_d^T \\
(B_d)^T & (QC_d^T)^T & D_d^T + D_d
\end{bmatrix} \geq 0.
\]

This is a special case of the KYP Lemma for QSR dissipative systems with \(Q = 0 \), \(Q = 0.5 \) and \(R = 0 \).

The system \(G \) is strictly positive real (SPR) under either of the following equivalent necessary and sufficient conditions.

1. There exists \(P \in S^n \), where \(P > 0 \) such that

\[
\begin{bmatrix}
A_d^T P A_d - P & A_d^T P B_d - C_d^T \\
(A_d^T P B_d - C_d^T)^T & B_d^T P B_d - (D_d^T + D_d)
\end{bmatrix} < 0.
\]

2. There exists \(Q \in S^n \), where \(Q > 0 \) such that

\[
\begin{bmatrix}
A_dQ A_d^T - Q & A_dQ C_d^T - B_d \\
(A_dQ C_d^T - B_d)^T & C_d P C_d^T - (D_d^T + D_d)
\end{bmatrix} < 0.
\]

3. There exists \(P \in S^n \), where \(Q > 0 \) such that

\[
\begin{bmatrix}
P & PA_d & PB_d \\
(PA_d)^T & P & C_d^T \\
(PB_d)^T & C_d & D_d^T + D_d
\end{bmatrix} > 0.
\]

4. There exists \(Q \in S^n \), where \(Q > 0 \) such that

\[
\begin{bmatrix}
Q & A_dQ & B_d \\
(A_dQ)^T & Q & QC_d^T \\
(B_d)^T & (QC_d^T)^T & D_d^T + D_d
\end{bmatrix} > 0.
\]

This is a special case of the KYP Lemma for QSR dissipative systems with \(Q = \varepsilon 1 \), \(Q = 0.5 \) and \(R = 0 \). where \(\varepsilon \in \mathbb{R}_{>0} \).
11.5 Conclusion:

If there exist a positive definite P for the the selected Q, S and R matrices then the system G is Positive Real.

11.6 Implementation

Code for implementation of this LMI using MATLAB. https://github.com/VJanand25/LMI

11.7 Related LMIs

KYP Lemma1

State Space Stability2

KYP Lemma without Feedthrough3

11.8 References

3 https://en.wikipedia.org/wiki/KYP_Lemma_without_Feedthrough
12 Schur Complement

An important tool for proving many LMI theorems is the Schur Compliment. It is frequently used as a method of LMI linearization.

12.0.1 The Schur Compliment

Consider the matrices Q, M, and R where Q and M are self-adjoint. Then the following statements are equivalent:

1. $Q > 0$ and $M - RQ^{-1}R^* > 0$ both hold.
2. $M > 0$ and $Q - R^*M^{-1}R > 0$ both hold.
3. $\begin{bmatrix} M & R \\ R^* & Q \end{bmatrix} > 0$ is satisfied.

More concisely:

$$\begin{bmatrix} M & R \\ R^* & Q \end{bmatrix} > 0 \iff \begin{bmatrix} M & 0 \\ 0 & Q - R^*M^{-1}R \end{bmatrix} > 0 \iff \begin{bmatrix} M - RQ^{-1}R^* & 0 \\ 0 & Q \end{bmatrix} > 0$$

12.1 External Links

- LMI Methods in Optimal and Robust Control\(^1\) - A course on LMIs in Control by Matthew Peet.
- LMIs in Systems and Control Theory\(^3\) - A downloadable book on LMIs by Stephen Boyd.

\(^{1}\) http://control.asu.edu/MAE598_frame.htm
\(^{3}\) https://web.stanford.edu/~boyd/lmibook/
13 LMI for Eigenvalue Minimization

LMI for Minimizing Eigenvalue of a Matrix

Synthesizing the eigenvalues of a matrix plays an important role in designing controllers for linear systems. The eigenvalues of the state matrix of a linear time-invariant system determine if the system is stable or not. The system is stable if all the eigenvalues of the state matrix are located in the left half of the complex plane. Thus, we may desire to minimize the maximal eigenvalue of the state matrix such that the minimized eigenvalue is placed in the left half-plane, which guarantees that the system is stable.

13.1 The System

Assume that we have a matrix function of variables x:

$$A(x) = A_0 + A_1x_1 + \ldots + A_nx_n$$

where A_i, $i = 1, 2, \ldots, n$ are symmetric matrices.

13.2 The Data

The symmetric matrices A_i (A_0, A_1, \ldots, A_n) are given.

13.3 The Optimization Problem

The optimization problem is to find the variables $x = [x_1 \quad x_2 \ldots x_n]$ to minimize the following cost function:

$$J(x) = \lambda_{\text{max}}(A(x))$$

where $J(x)$ is the cost function and $\lambda_{\text{max}}(.)$ indicates the maximum eigenvalue of a matrix.

According to Lemma 1.1 in LMI in Control Systems Analysis, Design and Applications\(^1\) (page 10), the following statements are equivalent

$$\lambda_{\text{max}}(A(x)) \leq t \iff A(x) - tI \leq 0$$

where t is defined as the maximum eigenvalue of the matrix A.

13.4 The LMI: LMI for eigenvalue minimization

This optimization problem can be converted to an LMI problem.

The mathematical description of the LMI formulation can be written as follows:

$$\begin{align*}
& \min \quad t \\
& \text{s.t.} \quad A(x) - tI \leq 0
\end{align*}$$

13.5 Conclusion:

As a result, the variables x_i, $i = 1, 2, ..., n$ after solving this LMI problem.

Moreover, we obtain the maximum eigenvalue, t, of the matrix $A(x)$.

13.6 Implementation

A link to Matlab codes for this problem in the Github repository:

13.7 Related LMIs

LMI for Generalized Eigenvalue Problem

LMI for Matrix Norm Minimization

LMI for Maximum Singular Value of a Complex Matrix

LMI for Matrix Positivity

13.8 External Links

- State-space Representation of a System
- Eigenvalues and Eigenvectors of a Matrix

3 https://en.wikibooks.org/wiki/LMIs_in_Control/pages/LMI_for_Matrix_Norm_Minimization
4 https://en.wikibooks.org/wiki/LMIs_in_Control/Tools/Maximum_Singular_Value_of_a_Complex_Matrix
14 LMI for Matrix Norm Minimization

LMI for Matrix Norm Minimization

This problem is a slight generalization of the eigenvalue minimization problem for a matrix. Calculating norm of a matrix is necessary in designing an H_2 or an H_∞ optimal controller for linear time-invariant systems. In those cases, we need to compute the norm of the matrix of the closed-loop system. Moreover, we desire to design the controller so as to minimize the closed-loop matrix norm.

14.1 The System

Assume that we have a matrix function of variables x:

$$A(x) = A_0 + A_1 x_1 + \ldots + A_n x_n$$

where A_i, $i = 1, 2, \ldots, n$ are symmetric matrices.

14.2 The Data

The symmetric matrices A_i (A_0, A_1, \ldots, A_n) are given.

14.3 The Optimization Problem

The optimization problem is to find the variables $x = [x_1 \ x_2 \ldots x_n]$ in order to minimize the following cost function:

$$J(x) = ||A(x)||_2$$

where $J(x)$ is the cost function and $||.||_2$ indicates the norm of the matrix function A.

According to Lemma 1.1 in LMI in Control Systems Analysis, Design and Applications\(^1\) (page 10), the following statements are equivalent:

$$A^T A - t^2 I \leq 0 \iff \begin{bmatrix} -tI & A \\ A^T & -tI \end{bmatrix} \leq 0$$

14.4 The LMI: LMI for matrix norm minimization

This optimization problem can be converted to an LMI problem.

The mathematical description of the LMI formulation can be written as follows:

\[
\begin{align*}
\min & \quad t \\
\text{s.t.} & \quad \begin{bmatrix}
- t I & A(x) \\
A(x)^T & - t I \\
\end{bmatrix} \leq 0
\end{align*}
\]

14.5 Conclusion:

As a result, the variables \(x_i, \quad i = 1, 2, \ldots, n \) after solving this LMI problem and we obtain \(t \) that is the norm of matrix function \(A(x) \).

14.6 Implementation

A link to Matlab codes for this problem in the Github repository:
https://github.com/asalimil/LMI-for-Matrix-Norm-Minimization

14.7 Related LMIs

LMI for Matrix Norm Minimization\(^2\)
LMI for Generalized Eigenvalue Problem\(^3\)
LMI for Maximum Singular Value of a Complex Matrix\(^4\)
LMI for Matrix Positivity\(^5\)

14.8 External Links

A list of references documenting and validating the LMI.

\(^2\) https://en.wikibooks.org/w/index.php?title=LMIs_in_Control/pages/MatrixEigenValueMinimization&stable=0&Related_LMIs
\(^4\) https://en.wikibooks.org/wiki/LMIs_in_Control/Tools/Maximum_Singular_Value_of_a_Complex_Matrix
15 LMI for Generalized Eigenvalue Problem

LMI for Generalized Eigenvalue Problem

Technically, the generalized eigenvalue problem considers two matrices, like A and B, to find the generalized eigenvector, x, and eigenvalues, λ, that satisfies $Ax = \lambda Bx$. If the matrix B is an identity matrix with the proper dimension, the generalized eigenvalue problem is reduced to the eigenvalue problem.

15.1 The System

Assume that we have three matrice functions which are functions of variables $x = [x_1 \ x_2 \ ... \ x_n]^T \in \mathbb{R}^n$ as follows:

$A(x) = A_0 + A_1 x_1 + ... + A_n x_n$

$B(x) = B_0 + B_1 x_1 + ... + B_n x_n$

$C(x) = C_0 + C_1 x_1 + ... + C_n x_n$

where are A_i, B_i, and C_i ($i = 1, 2, ..., n$) are the coefficient matrices.

15.2 The Data

The $A(x)$, $B(x)$, and $C(x)$ are matrix functions of appropriate dimensions which are all linear in the variable x and A_i, B_i, C_i are given matrix coefficients.

15.3 The Optimization Problem

The problem is to find $x = [x_1 \ x_2 ... x_n]$ such that:

$A(x) < \lambda B(x)$, $B(x) > 0$, and $C(x) < 0$ are satisfied and λ is a scalar variable.

15.4 The LMI: LMI for Schur stabilization

A mathematical description of the LMI formulation for the generalized eigenvalue problem can be written as follows:
\[\begin{aligned}
\text{min} & \quad \lambda \\
\text{s.t.} & \quad A(x) < \lambda B(x) \\
& \quad B(x) > 0 \\
& \quad C(x) < 0
\end{aligned} \]

15.5 Conclusion:

The solution for this LMI problem is the values of variables \(x \) such that the scalar parameter, \(\lambda \), is minimized. In practical applications, many problems involving LMIs can be expressed in the aforementioned form. In those cases, the objective is to minimize a scalar parameter that is involved in the constraints of the problem.

15.6 Implementation

A link to Matlab codes for this problem in the Github repository:
https://github.com/asalimil/LMI-for-Schur-Stability

15.7 Related LMIs

LMI for Generalized Eigenvalue Problem\(^1\)
LMI for Matrix Norm Minimization\(^2\)
LMI for Maximum Singular Value of a Complex Matrix\(^3\)

15.8 External Links

- https://en.wikibooks.org/w/index.php?title=LMIs_in_Control/pages/MatrixEigenValueMinimization&stable=0#Related_LMIs
16 LMI for Linear Programming

LMI for Linear Programming

Linear programming has been known as a technique for the optimization of a linear objective function subject to linear equality or inequality constraints. The feasible region for this problem is a convex polytope. This region is defined as a set of the intersection of many finite half-spaces which are created by the inequality constraints. The solution for this problem is to find a point in the polytope of existing solutions where the objective function has its extremum (minimum or maximum) value.

16.1 The System

We define the objective function as:

\[c_1x_1 + c_2x_2 + ... + c_nx_n \]

and constraints of the problem as:

\[a_{11}x_1 + a_{12}x_2 + ... + a_{1n}x_n < b_1 \]
\[a_{21}x_1 + a_{22}x_2 + ... + a_{2n}x_n < b_2 \]
\[. \]
\[. \]
\[. \]
\[a_{m1}x_1 + a_{m2}x_2 + ... + a_{mn}x_n < b_m \]

16.2 The Data

Suppose that \(c_j \in \mathbb{R}^n\), \(a_{ij} \in \mathbb{R}^n\), and \(b_i \in \mathbb{R}^m\) are given parameters where \(i = 1, 2, ..., m\) and \(j = 1, 2, ..., n\). Moreover, \(x = [x_1 \ x_2 \ ... \ x_n]^T\) is an \(n \times 1\) vector of positive variables.

16.3 The Optimization Problem

The optimization problem is to minimize the objective function, \(c^Tx\) when the aforementioned linear constraints are satisfied.
16.4 The LMI: LMI for linear programming

The mathematical description of the optimization problem can be readily written in the following LMI formulation:

\[
\begin{align*}
\min & \quad c^T x \\
\text{s.t.} & \quad a_i^T x \leq b_i x
\end{align*}
\]

16.5 Conclusion:

Solving this problem results in the values of variables \(x \) which minimize the objective function. It is also worthwhile to note that if \(m \geq n \), the computational cost for solving this problem would be \(mn^2 \).

There does not exist an analytical formulation to solve a general linear programming problem. Nonetheless, there are some efficient algorithms, like the Simplex algorithm, for solving a linear programming problem.

16.6 Implementation

A link to Matlab codes for this problem in the Github repository:

https://github.com/asalimil/LMI-for-Linear-Programming

16.7 Related LMIs

LMI for Feasibility Problem\(^1\)

16.8 External Links

\(^1\) https://en.wikibooks.org/wiki/LMIs_in_Control/pages/LMI_for_Feasibility_Problem
17 LMI for Feasibility Problem

LMI for Feasibility Problem in Optimization

The feasibility problem is to find any feasible solutions for an optimization problem without regard to the objective value. This problem can be considered as a special case of an optimization problem where the objective value is the same for all the feasible solutions. Many optimization problems have to start from a feasible point in the range of all possible solutions. One way is to add a slack variable to the problem in order to relax the feasibility condition. By adding the slack variable the problem any start point would be a feasible solution. Then, the optimization problem is converted to find the minimum value for the slack variable until the feasibility is satisfied.

17.1 The System

Assume that we have two matrices as follows:

\[A(x) = A_0 + A_1x_1 + ... + A_nx_n \quad i = 1, 2, ..., n \]

\[B(x) = B_0 + B_1x_1 + ... + B_nx_n \quad i = 1, 2, ..., n \]

which are matrix functions of variables \(x = [x_1 \quad x_2 \quad ... \quad x_n]^T \in \mathbb{R}^n \).

17.2 The Data

Suppose that the matrices \(A_0, A_1, ..., A_n \) and \(B_0, B_1, ..., B_n \) are given.

17.3 The Optimization Problem

The optimization problem is to find variables \(x = [x_1 \quad x_2 \quad ... \quad x_n] \) such that the following constraint is satisfied:

\[A(x) < B(x) \]

17.4 The LMI: LMI for Feasibility Problem

This optimization problem can be converted to a standard LMI problem by adding a slack variable, \(t \).

The mathematical description for this problem is to minimize \(t \) in the following form of the LMI formulation:
min \ t \\
\text{s.t. \ } A(x) < B(x) + tI

17.5 Conclusion:

In this problem, \(x \) and \(t \) are decision variables of the LMI problem.

As a result, these variables are determined in the optimization problem such that the minimum value of \(t \) is found while the inequality constraint is satisfied.

17.6 Implementation

A link to Matlab codes for this problem in the Github repository:

https://github.com/asalimil/LMI-for-Feasibility-Problem-of-Convex-Optimization

17.7 Related LMIs

LMI for Linear Programming\(^1\)

17.8 External Links

\(^1\) https://en.wikibooks.org/wiki/LMIs_in_Control/pages/LMI_for_Linear_Programming
18 Structured Singular Value

The LMI can be used to find a Θ that belongs to the set of scalings $P\Theta$. Minimizing γ allows to minimize the squared norm of $\Theta M \Theta^{-1}$.

18.1 The System

M with transfer function $\hat{M}(s) = C(sI - A)^{-1}B + D$, $\hat{M} \in H_\infty$

18.2 The Data

The matrices $A \in \mathbb{R}^{n \times n}, B \in \mathbb{R}^{n \times m}, C \in \mathbb{R}^{o \times n}, D \in \mathbb{R}^{o \times m}$.

18.3 The Optimization Problem

There exists $\Theta \in \Theta$ such that $||\Theta M \Theta^{-1}||^2 < \gamma$.

18.4 The LMI:

Find $X > 0$:

$$\begin{bmatrix} A^T X + X A & X B \\ B^T X & -\Theta \end{bmatrix} + \gamma^{-2} \begin{bmatrix} C^T \\ D^T \end{bmatrix} \Theta \begin{bmatrix} C & D \end{bmatrix} < 0$$

18.5 Conclusion:

The optimization problem and the LMI are equivalent. γ must be optimized using bisection.

18.6 Implementation

https://github.com/mcavorsi/LMI
18.7 Related LMIs

Eigenvalue Problem\(^1\)

18.8 External Links

- LMI Methods in Optimal and Robust Control\(^2\) - A course on LMIs in Control by Matthew Peet.

\(^1\) https://en.wikibooks.org/wiki/LMIs_in_Control/Matrix_and_LMI_Properties_and_Tools/Continuous_Time/Eigenvalue_Problem

\(^2\) http://control.asu.edu/MAE598_frame.htm
19 Eigenvalue Problem

The maximum eigenvalue of a matrix is going to have the most impact on system performance. This LMI allows for minimization of the maximum eigenvalue by minimizing γ.

19.1 The System

\[
\begin{align*}
\dot{x}(t) &= Ax(t) + Bu(t), \\
y(t) &= Cx(t)
\end{align*}
\]

19.2 The Data

The matrices $A \in \mathbb{R}^{n \times n}, B \in \mathbb{R}^{n \times m}, C \in \mathbb{R}^{o \times n}$.

19.3 The Optimization Problem

Minimize γ subject to the LMI below.

19.4 The LMI:

Find $P > 0$:

\[
\begin{bmatrix}
-A^T P - PA - C^T C & PB \\
BT P & \gamma I
\end{bmatrix} > 0
\]

19.5 Conclusion:

The eigenvalue problem can be utilized to minimize the maximum eigenvalue of a matrix that depends affinely on a variable.

19.6 Implementation

https://github.com/mcavorsi/LMI
19.7 Related LMIs

Structured Singular Value

19.8 External Links

- LMI Methods in Optimal and Robust Control\(^1\) - A course on LMIs in Control by Matthew Peet.
- LMIs in Systems and Control Theory\(^3\) - A downloadable book on LMIs by Stephen Boyd.

\(^1\) https://en.wikibooks.org/wiki/LMIs_in_Control/Matrix_and_LMI_PROPERTIES_and_Tools/
\(^2\) Continuous_Time/Structured_Singular_Value
\(^3\) http://control.asu.edu/MAE598_frame.htm

52
20 LMI for Minimizing Condition Number of Positive Definite Matrix

20.1 The System:
A related problem is minimizing the condition number of a positive-definite matrix M that depends affinely on the variable x, subject to the LMI constraint $F(x) > 0$. This problem can be reformulated as the GEVP.

20.2 The Optimization Problem:
The GEVP can be formulated as follows:
minimize γ
subject to $F(x) > 0$;
$\mu > 0$;
$\mu I < M(x) < \gamma \mu I$.
We can reformulate this GEVP as an EVP as follows. Suppose,
$M(x) = M_0 + \sum_{i=1}^{m} x_i M_i$, $F(x) = F_0 + \sum_{i=1}^{m} x_i F_i$

20.3 The LMI:
Defining the new variables $\nu = 1/\mu$, $\tilde{x} = x/\mu$ we can express the previous formulation as the EVP with variables \tilde{x}, ν and γ:
minimize γ
subject to $\nu F_0 + \sum_{i=1}^{m} x_i F_i > 0$; $I < \nu M_0 + \sum_{i=1}^{m} x_i M_i < \gamma I$

20.4 Conclusion:
The LMI is feasible.
20.5 Implementation

20.6 References

- LMIs in Systems and Control Theory1 - A downloadable book on LMIs by Stephen Boyd.

\footnote{1 \url{https://web.stanford.edu/~boyd/lmibook/}}
21 Continuous Quadratic Stability

To study stability of a LTI system, we first ask whether all trajectories of system converge to zero as \(t \to \infty \). A sufficient condition for this is the existence of a quadratic function
\[V(\xi) = \xi^TP\xi, \quad P > 0 \]
that decreases along every nonzero trajectory of system. If there exists such a \(P \), we say the system is quadratically stable and we call \(V \) a quadratic Lyapunov function.

21.1 The System

\[
\dot{x}(t) = A(\delta(t))x(t)
\]

21.2 The Data

The system coefficient matrix takes the form of

\[
\dot{x}(t) = A_0 + \Delta A(\delta(t))x(t)
\]

where \(A_0 \in \mathbb{R} \) is a known matrix, which represents the nominal system matrix, while \(\Delta A(\delta(t))x(t) = \delta_1(t)A_1 + \delta_2(t)A_2 + \ldots + \delta_k(t)A_k \) is the system matrix perturbation, where \(A_i \in \mathbb{R}^{n \times n}, i = 1, 2, \ldots, k \), are known matrices, which represent the perturbation matrices. \(\delta_i(t), i = 1, 2, \ldots, k \), which represent the uncertain parameters in the system. \(\delta(t) = [\delta_1(t)\delta_2(t)\ldots\delta_k(t)]^T \) is the uncertain parameter vector, which is often assumed to be within a certain compact and convex set \(\Delta \) that is

\[
\delta(t) = [\delta_1(t)\delta_2(t)\ldots\delta]^T \in \Delta
\]

21.3 The LMI: Continuous-Time Quadratic Stability

The uncertain system is quadratically stable if and only if there exists \(P \in \mathbb{S}^n \), where \(P > 0 \), such that

\[
(A_0 + \Delta A(\delta(t))x(t))^T + P(A_0 + \Delta A(\delta(t))x(t)) < 0\delta(t) \in \Delta
\]

The following statements can be made for particular sets of perturbations.
21.3.1 Case 1: Regular Polyhedron

Consider the case where the set of perturbation parameters is defined by a regular polyhedron as

\[
\Delta = \delta(t) = [\delta_1(t)\delta_2(t)\ldots\delta_k(t)] \in \mathbb{R}^k \mid \delta_1(t), \delta_2(t), \ldots, \delta_k(t), \delta_i \leq \delta_i(t) \leq \delta_i \overline{t}
\]

The uncertain system is quadratically stable if and only if there exists \(P \in S^n \), where \(P > 0 \), such that

\[
(A_0 + \Delta A(\delta(t))x(t))^T + P(A_0 + \Delta A(\delta(t))x(t)) < 0, \delta_i(t) \in \delta_i, \delta_i, i = 1, 2, \ldots, k.
\]

21.3.2 Case 2: Polytope

Consider the case where the set of perturbation parameters is defined by a polytope as

\[
\Delta = \delta(t) = [\delta_1(t)\delta_2(t)\ldots\delta_k(t)] \in \mathbb{R}^k \mid \delta_1(t) \in \mathbb{R}_{\geq 0}, \sum_{i=1}^{k} \delta_i(t) = 1
\]

The uncertain system is quadratically stable if and only if there exists \(P \in S^n \), where \(P > 0 \), such that

\[
(A_0 + A_i)^T P + P(A_0 + A_i) < 0, i = 1, 2, \ldots, k.
\]

21.4 Conclusion:

If feasible, System is Quadratically stable for any \(x \in \mathbb{R}^n \)

21.5 Implementation

https://github.com/Ricky-10/coding107/blob/master/PolytopicUncertainties

21.6 External Links

- LMI Methods in Optimal and Robust Control\(^1\) - A course on LMIs in Control by Matthew Peet.

\(^1\) http://control.asu.edu/MAE598_frame.htm
22 Exterior Conic Sector Lemma

22.1 The Concept

The conic sector theorem is a powerful input-output stability analysis tool, providing a fine balance between generality and simplicity of system characterisations that is conducive to practical stability analysis and robust controller synthesis.

22.2 The System

Consider a square, continuous-time linear time-invariant (LTI) system, \(G : \mathcal{L}_2 \rightarrow \mathcal{L}_2 \), with minimal state-space realisation \((A, B, C, D)\), where \(E, A \in \mathbb{R}^{n \times n}, B \in \mathbb{R}^{n \times m}, C \in \mathbb{R}^{p \times n}, \) and \(D \in \mathbb{R}^{p \times m}. \)

\[
\dot{x}(t) = Ax(t) + Bu(t), \quad y(t) = Cx(t) + Du(t)
\]

22.3 The Data

The matrices \(A, B, C \) and \(D \)

22.4 LMI : Exterior Conic Sector Lemma

The system \(G \) is in the exterior cone of radius \(r \) centered at \(c \) (i.e. \(G \in \text{excone}_r(c) \)), where \(r \in \mathbb{R}_{>0} \) and \(c \in \mathbb{R} \), under either of the following equivalent necessary and sufficient conditions.

1. There exists \(P \in S^n \), where \(P \geq 0 \), such that

\[
\begin{bmatrix}
PA + A^T P - C^T C & PB - C^T (D - cI) \\
(PB - C^T (D - cI))^T & r^2 I - (D - cI)^T (D - cI)
\end{bmatrix} \leq 0.
\]

2. There exists \(P \in S^n \), where \(P \geq 0 \), such that

\[
\begin{bmatrix}
PA + A^T P - C^T C & PB - C^T (D - cI) & 0 \\
(PB - C^T (D - cI))^T & -(D - cI)^T (D - cI) & r I \\
0 & (r I)^T & -I
\end{bmatrix} \leq 0.
\]

Proof. Applying the Schur complement lemma to the \(r^2 I \) terms in (1) gives (2).
22.5 Conclusion:
If there exist a positive definite P matrix satisfying above LMIs then the system G is in the exterior cone of radius r centered at c.

22.6 Implementation
Code for implementation of this LMI using MATLAB. https://github.com/VJanand25/LMI

22.7 Related LMIs
KYP Lemma\(^1\)
State Space Stability\(^2\)

22.8 References

3. LMI Properties and Applications in Systems, Stability, and Control Theory, by Ryan James Caverly\(^1\) and James Richard Forbes\(^2\)

\(^1\) https://en.wikipedia.org/wiki/Kalman%E2%80%93Yakubovich%E2%80%93Popov_lemma
\(^2\) https://en.wikipedia.org/wiki/State-Space_Stability
23 Modified Exterior Conic Sector Lemma

23.1 The Concept

The conic sector theorem is a powerful input-output stability analysis tool, providing a fine balance between generality and simplicity of system characterisations that is conducive to practical stability analysis and robust controller synthesis.

23.2 The System

Consider a square, continuous-time linear time-invariant (LTI) system, \(\mathcal{G} : \mathcal{L}_2 \rightarrow \mathcal{L}_2 \), with minimal state-space realization \((A, B, C, D)\), where \(\mathcal{E}, A \in \mathbb{R}^{n \times n}, B \in \mathbb{R}^{n \times m}, C \in \mathbb{R}^{p \times n}, \) and \(D \in \mathbb{R}^{p \times m} \).

\[
\dot{x}(t) = Ax(t) + Bu(t), \\
y(t) = Cx(t) + Du(t)
\]

23.3 The Data

The matrices \(A, B, C \) and \(D \)

23.4 LMI: Modified Exterior Conic Sector Lemma

The system \(\mathcal{G} \) is in the exterior cone of radius \(r \) centered at \(c \) (i.e. \(\mathcal{G} \in \text{excone}_r(c) \)), where \(r \in \mathbb{R}_{>0} \) and \(c \in \mathbb{R} \), under either of the following sufficient conditions.

1. There exists \(P \in \mathcal{S}^n \), where \(P \geq 0 \), such that

\[
\begin{bmatrix}
PA + A^TP & PC^T(D - CI) \\
(PB - C^T(D - CI))^T & r^2I - (D - cI)^T(D - cI)
\end{bmatrix} \leq 0.
\]

Proof. The term \(-C^TC\) in the Actual Exterior Conic Sector Lemma\(^1\) makes the matrix inequality more negative definite.

Therefore,

\(^1\) https://en.wikipedia.org/wiki/Exterior_Conic_Sector_Lemma
2. There exists $P \in \mathbb{S}^n$, where $P \geq 0$, such that

\[
\begin{bmatrix}
PA + A^TP - C^TC & PB - C^T(D - CI) \\
(PB - C^T(D - CI))^T & r^2I - (D - cI)^T(D - cI)
\end{bmatrix} \leq \begin{bmatrix}
PA + A^TP & PB - C^T(D - CI) \\
(PB - C^T(D - CI))^T & r^2I - (D - cI)^T(D - cI)
\end{bmatrix}
\]

Proof. Applying the Schur complement lemma to the r^2I terms in (1) gives (2).

23.5 Conclusion:
If there exist a positive definite P matrix satisfying above LMIs then the system \mathcal{G} is in the exterior cone of radius r centered at c.

23.6 Implementation
Code for implementation of this LMI using MATLAB. https://github.com/VJanand25/LMI

23.7 Related LMIs
KYP Lemma
State Space Stability
Exterior Conic Sector Lemma

23.8 References

https://en.wikipedia.org/wiki/Kalman%E2%80%93Yakubovich%E2%80%93Popov_lemma
https://en.wikipedia.org/wiki/Exterior_Conic_Sector_Lemma

24 DC Gain of a Transfer Matrix

The continuous-time DC gain is the transfer function value at the frequency \(s = 0 \).

24.1 The System

Consider a square continuous time Linear Time invariant system, with the state space realization \((A, B, C, D)\) and \(\gamma \in \mathbb{R}_{>0}\)

\[
\dot{x}(t) = Ax(t) + Bu(t) \\
y = Cx(t) + Du(t)
\]

24.2 The Data

\(A \in \mathbb{R}^{n \times n}, B \in \mathbb{R}^{n \times m}, C \in \mathbb{R}^{p \times n}, D \in \mathbb{R}^{p \times m} \)

24.3 The LMI: LMI for DC Gain of a Transfer Matrix

The transfer matrix is given by \(G(s) = C(sI - A)^{-1}B + D \)

The DC Gain of the system is strictly less than \(\gamma \) if the following LMIs are satisfied.

\[
\begin{bmatrix}
\gamma I & -CA^{-1}B + D \\
(-CA^{-1}B + D)' & \gamma I
\end{bmatrix} > 0
\]

OR

\[
\begin{bmatrix}
\gamma I & -B^T A^{-T}C + DT \\
(-B^T A^{-T}C + DT)' & \gamma I
\end{bmatrix} > 0
\]
24.4 Conclusion

The DC Gain of the continuous-time LTI system, whose state space realization is give by
\((A, B, C, D)\), is

\[K = D - CA^{-1}B \]

- Upon implementation we can see that the value of \(\gamma\) obtained from the LMI
 approach and the value of \(K\) obtained from the above formula are the same.

24.5 Implementation

A link to the Matlab code for a simple implementation of this problem in the Github
repository:

https://github.com/yashgvd/LMI_wikibooks

24.6 External Links

- https://www.crcpress.com/LMIs-in-Control-Systems-Analysis-Design-and-
 Applications/Duan-Yu/p/book/9781466582996 - LMI in Control Systems Analysis,
 Design and Applications
- LMI Methods in Optimal and Robust Control\(^1\) - A course on LMIs in Control by Matthew
 Peet.
- LMI Properties and Applications in Systems, Stability, and Control Theory\(^2\) - A List of
 LMIs by Ryan Caverly and James Forbes.
 to DC Gain

\(^1\) http://control.asu.edu/MAE598_frame.htm

25 Discrete Time H2 Norm

Discrete-Time H2 Norm

A discrete time system operates on a discrete time signal input and produces a discrete time signal output. They are used in digital signal processing, such as digital filters for images or sound. The class of discrete time systems that are both linear and time invariant, known as discrete time LTI systems.

Discrete-Time LTI systems' H2 norm can be found by solving a LMI.

25.1 The System

Discrete-Time LTI System with state space realization (A_d, B_d, C_d, D_d)

\[A_d \in \mathbb{R}^{n \times n}, \quad B_d \in \mathbb{R}^{n \times m}, \quad C_d \in \mathbb{R}^{p \times n}, \quad D_d \in \mathbb{R}^{p \times m} \]

25.2 The Data

The matrices: System $(A_d, B_d, C_d, D_d), P, Z$.

25.3 The Optimization Problem

The following feasibility problem should be optimized:

\[\mu \text{ is minimized while obeying the LMI constraints.} \]

25.4 The LMI:

Discrete-Time Bounded Real Lemma

The LMI formulation

H2 norm $< \mu$
P ∈ S^n; Z ∈ S^p; µ ∈ R_{>0}

\[
P > 0, \quad Z > 0
\]

\[
\begin{bmatrix}
P & A_dP & B_d^* \\
* & P & 0 \\
* & * & I
\end{bmatrix} > 0,
\]

\[
\begin{bmatrix}
Z & C_dP \\
* & P
\end{bmatrix} > 0,
\]

\[
\text{tr}Z < \mu^2
\]

25.5 Conclusion:

The H2 norm is the minimum value of \(\mu \in R_{>0} \) that satisfies the LMI condition.

25.6 Implementation

A link to CodeOcean or other online implementation of the LMI

MATLAB Code\(^1\)

25.7 Related LMIs

25.8 External Links

A list of references documenting and validating the LMI.

- LMI Methods in Optimal and Robust Control\(^2\) - A course on LMIs in Control by Matthew Peet.
- LMI Properties and Applications in Systems, Stability, and Control Theory\(^3\) - A List of LMIs by Ryan Caverly and James Forbes.

1. https://github.com/Harishankar-Prabhakaran/LMIs/blob/master/A3.m
26 Discrete Time Minimum Gain Lemma

26.1 The Concept

The output of the system $y(t)$ is fed back through a sensor measurement F to a comparison with the reference value $r(t)$. The controller C then takes the error e (difference) between the reference and the output to change the inputs u to the system under control P. This is shown in the figure. This kind of controller is a closed-loop controller or feedback controller.

This is called a single-input-single-output (SISO) control system; MIMO (i.e., Multi-Input-Multi-Output) systems, with more than one input/output, are common. In such cases variables are represented through vectors instead of simple scalar values. For some distributed parameter systems the vectors may be infinite-dimensional (typically functions).

If we assume the controller C, the plant P, and the sensor F are linear and time-invariant (i.e., elements of their transfer function $C(s)$, $P(s)$, and $F(s)$ do not depend on time), the systems above can be analysed using the Laplace transform on the variables. This gives the following relations:

\[
Y(s) = P(s)U(s)
\]

\[
U(s) = C(s)E(s)
\]

\[
E(s) = R(s) - F(s)Y(s)
\]

Solving for $Y(s)$ in terms of $R(s)$ gives

\[
Y(s) = \left(\frac{P(s)C(s)}{1 + P(s)C(s)F(s)} \right) R(s) = H(s)R(s).
\]

The expression $H(s) = \frac{P(s)C(s)}{1 + P(s)C(s)F(s)}$ is referred to as the *closed-loop transfer function* of the system. The numerator is the forward (open-loop) gain from r to y, and the denominator is one plus the gain in going around the feedback loop, the so-called loop gain. If $|P(s)C(s)| \gg 1$, i.e., it has a large norm with each value of s, and if $|F(s)| \approx 1$, then $Y(s)$ is approximately equal to $R(s)$ and the output closely tracks the reference input. This page gives an LMI to reduce the gain so that the output closely tracks the reference input.
26.2 The System

Consider a discrete-time LTI system, \(G : \mathbb{R}^{2 \times e} \rightarrow \mathbb{R}^{2 \times e} \), with minimal state-space realization \((A_d, B_d, C_d, D_d)\), where \(A_d \in \mathbb{R}^{n \times n}, B_d \in \mathbb{R}^{n \times m}, C_d \in \mathbb{R}^{p \times n}, \) and \(D_d \in \mathbb{R}^{p \times m} \).

\[
x(k+1) = A_d x(k) + B_d u(k)
\]

\[
y(k) = C_d x(k) + D_d u(k), \quad k = 0, 1, \ldots
\]

26.3 The Data

The matrices \(A_d, B_d, C_d \) and \(D_d \)

26.4 LMI : Discrete-Time Minimum Gain Lemma

The system \(G \) has minimum gain \(\gamma \) under any of the following equivalent sufficient conditions.

1. There exists \(P \in S^n \), and \(\gamma \in \mathbb{R}_{\geq 0} \) where \(P \geq 0 \) such that

\[
\begin{bmatrix}
A_d^T P A_d - P - C_d^T C_d & A_d^T P B_d - C_d^T D_d \\
(A_d^T P B_d - C_d^T D_d)^T & B_d^T P B_d + \gamma^2 I - (D_d^T + D_d)
\end{bmatrix} \leq 0.
\]

2. There exists \(P \in S^n \), and \(\gamma \in \mathbb{R}_{\geq 0} \) where \(P \geq 0 \) such that

\[
\begin{bmatrix}
A_d^T P A_d - P - C_d^T C_d & A_d^T P B_d - C_d^T D_d & 0 \\
(A_d^T P B_d - C_d^T D_d)^T & B_d^T P B_d - (D_d^T + D_d) & \gamma I \\
0 & \gamma I & I
\end{bmatrix} \leq 0.
\]

\textit{proof} : Applying the Schur complement lemma to the \(\gamma^2 \) term in equation 1 gives equation 2.

26.5 Conclusion:

If there exist a positive definite \(P \) for the system \(G \), then the minimum gain of the system is \(\gamma \) can be obtained from above defined LMIs.

26.6 Implementation

Code for implementation of this LMI using MATLAB. https://github.com/VJanand25/LMI
26.7 Related LMIs

KYP Lemma

State Space Stability

KYP Lemma without Feedthrough

26.8 References

1 https://en.wikipedia.org/wiki/Kalman%E2%80%93Yakubovich%E2%80%93Popov_lemma
3 https://en.wikipedia.org/wiki/KYP_Lemma_without_Feedthrough
27 Modified Discrete Time Minimum Gain Lemma

27.1 The Concept

The output of the system $y(t)$ is fed back through a sensor measurement F to a comparison with the reference value $r(t)$. The controller C then takes the error e (difference) between the reference and the output to change the inputs u to the system under control P. This is shown in the figure. This kind of controller is a closed-loop controller or feedback controller.

This is called a single-input-single-output (SISO) control system; MIMO (i.e., Multi-Input-Multi-Output) systems, with more than one input/output, are common. In such cases variables are represented through vectors instead of simple scalar values. For some distributed parameter systems the vectors may be infinite-dimensional (typically functions).

If we assume the controller C, the plant P, and the sensor F are linear and time-invariant (i.e., elements of their transfer function $C(s)$, $P(s)$, and $F(s)$ do not depend on time), the systems above can be analysed using the Laplace transform on the variables. This gives the following relations:

$$Y(s) = P(s)U(s)$$

$$U(s) = C(s)E(s)$$

$$E(s) = R(s) - F(s)Y(s).$$

Solving for $Y(s)$ in terms of $R(s)$ gives

$$Y(s) = \left(\frac{P(s)C(s)}{1 + P(s)C(s)F(s)} \right) R(s) = H(s)R(s).$$

The expression $H(s) = \frac{P(s)C(s)}{1 + P(s)C(s)F(s)}$ is referred to as the closed-loop transfer function of the system. The numerator is the forward (open-loop) gain from r to y, and the denominator is one plus the gain in going around the feedback loop, the so-called loop gain. If $|P(s)C(s)| \gg 1$, i.e., it has a large norm with each value of s, and if $|F(s)| \approx 1$, then $Y(s)$ is approximately equal to $R(s)$ and the output closely tracks the reference input. This page gives an LMI to reduce the gain so that the output closely tracks the reference input.
27.2 The System

Consider a discrete-time LTI system, \(\mathcal{G} : \mathbb{Z}_n \to \mathbb{Z}_e \), with minimal state-space realization \((\mathcal{A}_d, \mathcal{B}_d, \mathcal{C}_d, \mathcal{D}_d)\), where \(\mathcal{A}_d \in \mathbb{R}^{n \times n} \), \(\mathcal{B}_d \in \mathbb{R}^{n \times m} \), \(\mathcal{C}_d \in \mathbb{R}^{p \times n} \), and \(\mathcal{D}_d \in \mathbb{R}^{p \times m} \).

\[
x(k+1) = \mathcal{A}_d x(k) + \mathcal{B}_d u(k)
\]
\[
y(k) = \mathcal{C}_d x(k) + \mathcal{D}_d u(k), k = 0, 1, ...
\]

27.3 The Data

The matrices \(\mathcal{A}_d, \mathcal{B}_d, \mathcal{C}_d \) and \(\mathcal{D}_d \)

27.4 LMI: Discrete-Time Modified Minimum Gain Lemma

The system \(\mathcal{G} \) has minimum gain \(\gamma \) under any of the following equivalent sufficient conditions.

1. There exists \(P \in \mathbb{S}_n \), and \(\gamma \in \mathbb{R}_{\geq 0} \) where \(P \geq 0 \) such that

\[
\begin{bmatrix}
A_d^T P A_d - P & A_d^T P B_d - C_d^T D_d \\
(A_d^T P B_d - C_d^T D_d)^T & B_d^T P B_d + \gamma^2 I - (D_d^T + D_d)
\end{bmatrix}
\leq
\begin{bmatrix}
A_d^T P A_d - P & A_d^T P B_d - C_d^T D_d \\
(A_d^T P B_d - C_d^T D_d)^T & B_d^T P B_d + \gamma^2 I - (D_d^T + D_d)
\end{bmatrix}
\]

Proof. The term \(-C_d^T C_d\) in Discrete Time Minimum Gain Lemma\(^1\) makes the matrix inequality more negative definite. Therefore,

\[
\begin{bmatrix}
A_d^T P A_d - P - C_d^T C_d & A_d^T P B_d - C_d^T D_d \\
(A_d^T P B_d - C_d^T D_d)^T & B_d^T P B_d + \gamma^2 I - (D_d^T + D_d)
\end{bmatrix}
\leq
\begin{bmatrix}
A_d^T P A_d - P & A_d^T P B_d - C_d^T D_d \\
(A_d^T P B_d - C_d^T D_d)^T & B_d^T P B_d + \gamma^2 I - (D_d^T + D_d)
\end{bmatrix}
\]

2. There exists \(P \in \mathbb{S}_n \), and \(\gamma \in \mathbb{R}_{\geq 0} \) where \(P \geq 0 \) such that

\[
\begin{bmatrix}
A_d^T P A_d - P & A_d^T P B_d - C_d^T D_d \\
(A_d^T P B_d - C_d^T D_d)^T & B_d^T P B_d - (D_d^T + D_d)
\end{bmatrix}
\leq
\begin{bmatrix}
A_d^T P A_d - P & A_d^T P B_d - C_d^T D_d \\
(A_d^T P B_d - C_d^T D_d)^T & B_d^T P B_d - (D_d^T + D_d)
\end{bmatrix}
\]

\[\gamma I\] \\
\[
\begin{array}{ccc}
0 & 0 & \gamma I \\
0 & \gamma I & I
\end{array}
\]

\[\leq 0.
\]

\[\leq 0.
\]

\[
proof : Applying the Schur complement lemma to the \gamma^2 term in equation 1 gives equation 2.
\]

27.5 Conclusion:

If there exist a positive definite \(P \) for the system \(\mathcal{G} \), then the minimum gain of the system \(\gamma \) can be obtained from above defined LMIs.

27.6 Implementation

Code for implementation of this LMI using MATLAB. https://github.com/VJanand25/LMI

27.7 Related LMIs

KYP Lemma\(^2\)

State Space Stability\(^3\)

KYP Lemma without Feedthrough\(^4\)

Discrete Time Minimum Gain Lemma\(^5\)

27.8 References

\(^2\) https://en.wikipedia.org/wiki/Kalman\%E2\%80\%93Yakubovich\%E2\%80\%93Popov_lemma

\(^3\) https://en.wikipedia.org/wiki/State-Space_Stability

\(^4\) https://en.wikipedia.org/wiki/KYP_Lemma_without_Feedthrough

28 Discrete-Time Algebraic Riccati Equation

28.1 The System
Consider a Discrete-Time LTI system

\[x_{k+1} = A_d x_k + B_d u_k \]
\[y_k = C_d x_k \]

Consider \(A_d \in \mathbb{R}^{nxn} \); \(B_d \in \mathbb{R}^{nxm} \)

28.2 The Data
The Matrices \(A_d \), \(B_d \), \(C_d \), \(Q \), \(R \) are given
\(Q \) and \(R \) should necessarily be **Hermitian** Matrices.
A square matrix is Hermitian if it is equal to its complex conjugate transpose.

28.3 The Optimization Problem
Our aim is to find
\(P \) - Unique solution to the discrete-time algebraic Riccati equation, returned as a matrix.
\(K \) - State-feedback gain, returned as a matrix.

The algorithm used to evaluate the State-feedback gain is given by

\[K = (R + B_d^T P B_d)^{-1} B_d^T P A_d \]

\(L \) - Closed-loop eigenvalues, returned as a matrix.
28.4 The LMI: Discrete-Time Algebraic Riccati Inequality (DARE)

An algebraic Riccati equation is a type of nonlinear equation that arises in the context of infinite-horizon optimal control problems in continuous time or discrete time.

The Discrete-Time Algebraic Riccati Inequality is given by

\[A_d^T P A_d - A_d^T P B_d (R + B_d^T P B_d)^{-1} B_d^T P A_d + Q - P \geq 0 \]

where \(P, Q \in \mathbb{S}^n \) and \(R \in \mathbb{S}^m \) where \(P > 0, Q \geq 0, R > 0 \).

\(P \) is the unknown \(n \) by \(n \) symmetric matrix and \(A, B, Q, R \) are known real coefficient matrices.

The above equation can be rewritten using the Schur Complement Lemma as:

\[
\begin{bmatrix}
 A_d^T P A_d - P + Q & A_d^T P B_d \\
 B_d^T P A_d & R + B_d^T P B_d
\end{bmatrix} \geq 0
\]

28.5 Conclusion:

Algebraic Riccati Inequalities play a key role in LQR/LQG control, H\(_2\)- and H\(_\infty\) control and Kalman filtering. We try to find the unique stabilizing solution, if it exists. A solution is stabilizing, if controller of the system makes the closed loop system stable.

Equivalently, this Discrete-Time algebraic Riccati Inequality is satisfied under the following necessary and sufficient condition:

\[
\begin{bmatrix}
 Q & 0 & A_d^T P & P \\
 0 & R & B_d^T P & 0 \\
 P A_d & P B_d & P & 0 \\
 P & 0 & 0 & P
\end{bmatrix} \geq 0
\]

28.6 Implementation

\(X \) in the output corresponds to \(P \) in the LMI

A link to the Matlab code for a simple implementation of this problem in the Github repository:

https://github.com/yashgvd/LMI_wikibooks
28.7 Related LMIs

LMI for Continuous-Time Algebraic Riccati Inequality
LMI for Schur Stabilization

28.8 External Links

A list of references documenting and validating the LMI.

29 Deduced LMI Conditions for H-infinity Index

H-infinity Index Deduced LMI

Although the KYP Lemma, also known as the Bounded Real Lemma\(^1\), is a basic condition to evaluate an upper bound on the \(H_\infty\), the verification of the bound on the \(H_\infty\)-gain of the system can be done via the deduced condition.

29.1 The System

A state-space representation of a linear system as given below:

\[
\begin{align*}
\dot{x}(t) &= Ax(t) + Bw(t) \\
y(t) &= Cx(t) + Dw(t)
\end{align*}
\]

where \(x(t) \in \mathbb{R}^n\), \(y(t) \in \mathbb{R}^m\) and \(w(t) \in \mathbb{R}^r\) are the system state, output, and the disturbance vector respectively. The transfer function of such a system can be evaluated as:

\[
G(s) = C(sI - A)^{-1}B + D
\]

29.2 The Data

Number of states \(n\), number of outputs \(m\) and number of external noise channels \(r\) need to be known. Moreover, the system matrices \(A, B, C, D\) are also required to be known.

29.3 The Feasibility LMI

For an arbitrary \(\gamma\), the transfer function \(G(s)\) satisfies

\[
\|G(s)\|_\infty < \gamma
\]

\(^{1}\) https://en.wikibooks.org/wiki/LMIs_in_Control/pages/KYP_Lemma_(Bounded_Real_Lemma)
if and only if there exists a symmetric matrix $X > 0$ and a matrix Ω, such that:

\[
\text{Find } X, \Omega : \\
\Theta + \Phi^\top \Omega \Phi + \Psi^\top \Omega^\top \Phi < 0
\]

where:

\[
\Theta = \begin{bmatrix}
0 & X & 0 & 0 & 0 \\
X & -X & 0 & 0 & 0 \\
0 & 0 & -\gamma I_m & 0 & 0 \\
0 & 0 & 0 & -X & 0 \\
0 & 0 & 0 & 0 & \gamma I_r
\end{bmatrix}
\]

\[
\Phi = \begin{bmatrix}
-I_n & A^\top & C^\top & I_n & 0 \\
0 & B^\top & D^\top & 0 & -\gamma I_r
\end{bmatrix}
\]

\[
\Psi = \begin{bmatrix}
I_n & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & I_r
\end{bmatrix}
\]

The above LMI can be combined with the bisection method to find minimum γ to find the minimum upper bound on the H_∞ gain of $G(s)$.

29.4 Conclusion:

If there is a feasible solution to the aforementioned LMI, then the γ upper bounds the infinity norm of the system $G(s)$.

29.5 Implementation

To solve the feasibility LMI, YALMIP toolbox is required for setting up the feasibility problem, and SeDuMi is required to solve the problem. The following link showcases an example of the feasibility problem:

https://github.com/smhassaan/LMI-Examples/blob/master/Deduced_hinf_example.m

29.6 Related LMIs

Bounded Real Lemma\(^2\)

\(^2\) https://en.wikibooks.org/wiki/LMIs_in_Control/pages/KYP_Lemma_(Bounded_Real_Lemma)
29.7 External Links

A list of references documenting and validating the LMI.

- LMIs in Control Systems: Analysis, Design and Applications\(^3\) - by Guang-Ren Duan and Hai-Hua Yu, CRC Press, Taylor & Francis Group, 2013, Section 5.2.2 pp. 153–156.

30 Deduced LMI Conditions for H$_2$ Index

H$_2$ Index Deduced LMI

Although there are ways to evaluate an upper bound on the H$_2$, the verification of the bound on the H$_2$-gain of the system can be done via the deduced condition.

30.1 The System

We consider the generalized Continuous-Time LTI system with the state space realization of (A, B, C, D)

\[
\dot{x}(t) = Ax(t) + Bu(t) \\
y(t) = Cx(t)
\]

where $x(t) \in \mathbb{R}^n$, $y(t) \in \mathbb{R}^m$ and $u(t) \in \mathbb{R}^r$ are the system state, output, and the input vectors respectively.

The transfer function of such a system can be evaluated as:

\[G(s) = C(sI - A)^{-1}B + D \]

30.2 The Data

The system matrices A, B, C are known.

30.3 The Optimization Problem

For an arbitrary $\gamma > 0$ (a given scalar), the transfer function satisfies

\[\left\| C(sI - A)^{-1}B + D \right\|_2 < \gamma \]

The H_2-norm condition on Transfer function holds only when the matrix A is stable. And this can be conveniently converted to an LMI problem if and only if 1. There exists a symmetric matrix $X > 0$ such that:

\[AX + XA^T + BB^T < 0, \quad \text{trace}(CXC^T) < \gamma^2 \]
2. There exists a symmetric matrix $Y > 0$ such that:

$AY + YA^T + C^TC < 0$, $trace(B^TYB) < \gamma^2$

30.4 The LMI - Deduced Conditions for H_2-norm

These deduced conditions can be derived from the above equations. According to this:

For an arbitrary $\gamma > 0$ (a given scalar), the transfer function satisfies

$$\|G(s)\|_2 < \gamma$$

if and only if there exists symmetric matrices Z and P; and a matrix V such that

$$trace(Z) < \gamma^2$$

$$\begin{bmatrix}
-Z & B^T \\
B & -P
\end{bmatrix} < 0$$

$$\begin{bmatrix}
-(V + V^T) & V^TA^T + P & V^TC^T & V^T \\
AV + P & -P & 0 & 0 \\
CV & 0 & -I & 0 \\
V & 0 & 0 & -P
\end{bmatrix} < 0$$

The above LMI can be combined with the bisection method to find minimum γ to find the minimum upper bound on the H_2 gain of $G(s)$.

30.5 Conclusion:

If there is a feasible solution to the aforementioned LMI, then the γ upper bounds the norm of the system $G(s)$.

30.6 Implementation

To solve the feasibility LMI, YALMIP toolbox is required for setting up the problem, and SeDuMi or MOSEK is required to solve the problem. The following link showcases an example of the problem:

https://github.com/yashgvd/ygovada

30.7 Related LMIs

Bounded Real Lemma

1 https://en.wikibooks.org/wiki/LMIs_in_Control/pages/KYP_Lemma_(Bounded_Real_Lemma)
Deduced LMIs for H-infinity index

30.8 External Links

A list of references documenting and validating the LMI.

- LMI Methods in Optimal and Robust Control\(^2\) - A course on LMIs in Control by Matthew Peet.
- LMI Properties and Applications in Systems, Stability, and Control Theory\(^3\) - A List of LMIs by Ryan Caverly and James Forbes.

\(^2\) http://control.asu.edu/MAE598_frame.htm
\(^3\) https://arxiv.org/abs/1903.08599/
31 Dissipativity of Systems

Dissipativity of Systems

The dissipativity of systems is associated with their supply function. In general, a linear system is dissipative if the accumulated sum (integration) of the supply function is non-negative over all the duration of $T \geq 0$.

31.1 The System

A state-space representation of a linear system as given below:

\[
\dot{x}(t) = Ax(t) + Bu(t) \\
y(t) = Cx(t) + Du(t)
\]

where $x(t) \in \mathbb{R}^n$, $y(t) \in \mathbb{R}^m$ and $u(t) \in \mathbb{R}^r$ are the system state, output, and the input vector respectively. A, B, C and D are system coefficient matrices of appropriate dimensions. The control input u is restricted to be a piece-wise continuous vector function defined of $[0, \infty)$.

The transfer function of such a system can be evaluated as:

\[
G(s) = C(sI - A)^{-1}B + D
\]

For such a system, a general quadratic supply function is defined as:

\[
s(u, y) = \begin{bmatrix} y & u \end{bmatrix} Q \begin{bmatrix} y \\ u \end{bmatrix}
\]

where Q is a real symmetric matrix of $(m+r)$ dimensions. Q need not be either symmetric positive or negative definite.

31.2 The Data

Number of states n, number of outputs m and number of control inputs r need to be known. Moreover, the system matrices A, B, C, D are also required to be known. The system should also be controllable.
31.3 The Feasibility LMI

The system $G(s)$ defined can be evaluated to be dissipative with respect to a supply function $s(u,y)$ iff there exist $P \geq 0$ and a Q (defining $s(u,y)$) such that the following is feasible:

$$\begin{align*}
\text{Find } P, Q : \\
& P \geq 0 \\
& \begin{bmatrix} A^\top P + PA & PB \\ B^\top P & 0 \end{bmatrix} - Q \begin{bmatrix} C & D \\ 0 & I \end{bmatrix} \leq 0.
\end{align*}$$

31.4 Conclusion:

If there is a feasible solution to the aforementioned LMI, then there exists a supply function $s(u,y)$ for which the system $G(s)$ is dissipative. Since the assumption of the system being controllable is required for it to be dissipative, this check can be used of as a sufficient condition to check the controllability of the linear system, just like the feasibility for Lyapunov stability.

31.5 Implementation

To solve the feasibility LMI, YALMIP toolbox is required for setting up the feasibility problem, and SeDuMi is required to solve the problem. The following link showcases an example of the feasibility problem:

https://github.com/smhassaan/LMI-Examples/blob/master/Dissipativity_example.m

31.6 Related LMIs

Continuous Time Lyapunov Inequality\(^1\)

31.7 External Links

A list of references documenting and validating the LMI.

\(^{1}\) https://en.wikibooks.org/wiki/LMIs_in_Control/Lyapunov_Inequality

32 D-Stabilization

\(\mathbb{D}_{(q,r)}\)-Stabilization

There are a wide variety of control design problems that are addressed in a wide variety of different ways. One of the most important control design problem is that of state feedback stabilization. One such state feedback problem, which will be the main focus of this article, is that of \(\mathbb{D}_{(q,r)}\)-Stabilization, a form of \(\mathbb{D}\)-Stabilization where the closed-loop poles are located on the left-half of the complex plane.

32.1 The System

For this particular problem, suppose that we were given a linear system in the form of:

\[\rho x = Ax + Bu, \]

where \(x \in \mathbb{R}^n\), \(u \in \mathbb{R}^r\), and \(\rho\) represents either the differential operator (in the continuous-time case) or the one-step forward operator (for the discrete-time system case). Then the LMI for determining the \(\mathbb{D}_{(q,r)}\)-stabilization case would be obtained as described below.

32.2 The Data

In order to obtain the LMI, we need the following 2 matrices: \(A\) and \(B\).

32.3 The Optimization Problem

Suppose - for the linear system given above - we were asked to design a state-feedback control law where \(u = Kx\) such that the closed-loop system:

\[\rho x = (A + BK)x \]

is \(\mathbb{D}_{(q,r)}\)-stable, then the system would be stabilized as follows.
32.4 The LMI: $\mathbb{D}_{(q,r)}$-Stabilization

From the given pieces of information, it is clear that the optimization problem only has a solution if there exists a matrix W and a symmetric matrix P that satisfies the following:

$$
\begin{bmatrix}
-rP & qP + AP + BW \\
qP + PA^T + WTBT & -rP
\end{bmatrix} < 0
$$

32.5 Conclusion:

Given the resulting controller matrix $K = WP^{-1}$, it can be observed that the matrix is $\mathbb{D}_{(q,r)}$-stable.

32.6 Implementation

- Example Code\(^1\) - A GitHub link that contains code (titled "DStability.m") that demonstrates how this LMI can be implemented using MATLAB-YALMIP.

32.7 Related LMIs

- ../H stabilization/\(^2\) - Equivalent LMI for $\mathbb{H}_{(\alpha,\beta)}$-stabilization.
- ../Continuous Time D-Stability Controller/\(^3\) - LMI for deriving a Controller using D-Stability.

32.8 External Links

A list of references documenting and validating the LMI.

- LMI Methods in Optimal and Robust Control\(^5\) - A course on LMIs in Control by Matthew Peet.

1 https://github.com/aramani3/MAE-598-LMI-Codes
2 Chapter 33 on page 93
5 http://control.asu.edu/MAE598_frame.htm
- LMIs in Systems and Control Theory7 - A downloadable book on LMIs by Stephen Boyd.

7 https://web.stanford.edu/~boyd/lmibook/
33 H-Stabilization

\(H_{(\alpha,\beta)} \)-Stabilization

There are a wide variety of control design problems that are addressed in a wide variety of different ways. One of the most important control design problem is that of state feedback stabilization. One such state feedback problem, which will be the main focus of this article, is that of \(H_{(\alpha,\beta)} \)-Stabilization, a form of \(D \)-Stabilization where the real components are located on the left-half of the complex plane.

33.1 The System

For this particular problem, suppose that we were given a linear system in the form of:

\[
\dot{x} = Ax + Bu,
\]

where \(x \in \mathbb{R}^n \) and \(u \in \mathbb{R}^r \). Then the LMI for determining the \(H_{(\alpha,\beta)} \)-stabilization case would be obtained as described below.

33.2 The Data

In order to obtain the LMI, we need the following 2 matrices: \(A \) and \(B \).

33.3 The Optimization Problem

Suppose - for the linear system given above - we were asked to design a state-feedback control law where \(u = Kx \) such that the closed-loop system:

\[
\dot{x} = (A + BK)x
\]

is \(H_{(\alpha,\beta)} \) stable, then the system would be stabilized as follows.
33.4 The LMI: $\mathbb{H}_{(\alpha,\beta)}$-Stabilization

From the given pieces of information, it is clear that the optimization problem only has a solution if there exists a matrix W and a symmetric matrix $P > 0$ that satisfy the following:

$$
\begin{align*}
AP + PA^T + BW + W^TB^T + 2\alpha P &< 0 \\
-AP - PA^T - BW - W^TB^T - 2\beta P &< 0
\end{align*}
$$

33.5 Conclusion:

Given the resulting controller matrix $K = WX^{-1}$, it can be observed that the matrix is $\mathbb{H}_{(\alpha,\beta)}$-stable.

33.6 Implementation

- Example Code1 - A GitHub link that contains code (titled "HStability.m") that demonstrates how this LMI can be implemented using MATLAB-YALMIP.

33.7 Related LMIs

- ../D stabilization/2 - Equivalent LMI for $\mathbb{D}_{(q,r)}$-stabilization.

33.8 External Links

A list of references documenting and validating the LMI.

- LMI Methods in Optimal and Robust Control3 - A course on LMIs in Control by Matthew Peet.

2. Chapter 32 on page 89
34 H-2 Norm of the System

H_2-norm of System

The H_2-norm is conceptually identical to the Frobenius (aka Euclidean) norm on a matrix. It can be used to determine whether the system representation can be reduced to its simplest form, thereby allowing its use in performing effective block-diagram algebra.

34.1 The System

Suppose we define the state-space system $G : L_2 \rightarrow L_2$ by $y = Gu$ if:

\[
\begin{align*}
\dot{x}(t) &= Ax(t) + Bu(t) \\
y(t) &= Cx(t) + Du(t)
\end{align*}
\]

where $A \in \mathbb{R}^{m \times m}$, $B \in \mathbb{R}^{m \times n}$, $C \in \mathbb{R}^{p \times m}$, and $D \in \mathbb{R}^{q \times n}$ for any $t \in \mathbb{R}$. Then the H_2-norm of the system can be determined as described below.

34.2 The Data

In order to determine the H_2-norm of the system, we need the matrices A, B, and C.

34.3 The Optimization Problem

Suppose we wanted to to infer properties of the system behaviour (which is represented in the form (A, B, C, D)). Then it becomes necessary to ensure that the overall system forms an algebra, as the standard use of block-diagram algebra would otherwise be invalid. The only way this is possible is by calculating H_2 and/or H_∞-norms - both of which are signal norms that (in a certain sense) measure the size of the transfer function.

34.4 The LMI: The H_2 Norm

Assuming that $\hat{P}(s) = C(sI - A)^{-1}B$, this means that the following are equivalent:
1) A is Hurwitz and $\|\hat{P}\|_{H_2}^2 < \gamma$

\[
\begin{aligned}
\text{trace}(CXC^T) &< \gamma \\
AX + XA^T + BB^T &< 0 \\
X &> 0
\end{aligned}
\]

2) H_2-norm of the System

34.5 Conclusion:

The LMI can be used to minimize the H_2-norm of the system. It is worth noting that a finite H_2-norm does not guarantee finite H_∞-norm, and that in order for the block diagram algebra to be valid, H_∞-norm must be finite.

34.6 Implementation

- Example Code\(^1\) - A GitHub link that contains code (titled "H2Norm.m") that demonstrates how this LMI can be implemented using MATLAB-YALMIP.

34.7 Related LMIs

- H_2-Filtering\(^2\) - LMI for H_2-Filtering
- Discrete-Time H_2 Norm\(^3\) - LMI for H_2-norm in the Discrete-Time case.

34.8 External Links

A list of references documenting and validating the LMI.

- LMI Methods in Optimal and Robust Control\(^4\) - A course on LMIs in Control by Matthew Peet.

4. http://control.asu.edu/MAE598_frame.htm
6. https://web.stanford.edu/~boyd/lmibook/
35 Algebraic Riccati Equation

Algebraic Riccati Equations are particularly significant in Optimal Control, filtering and estimation problems. The need to solve such equations is common in the analysis and linear quadratic Gaussian control along with general Control problems. In one form or the other, Riccati Equations play significant roles in optimal control of multivariable and large-scale systems, scattering theory, estimation, and detection processes. In addition, closed forms solution of Riccati Equations are intractable for two reasons namely; one, they are nonlinear and two, are in matrix forms.

35.1 The System

\[\dot{x}(t) = Ax(t) + Bu(t) \]

35.2 The Data

Following matrices are needed as Inputs:

\[A, B, N \]

35.3 The Optimization Problem

In control systems theory, many analysis and design problems are closely related to Riccati algebraic equations or inequalities. Find

35.4 The LMI: Algebraic Riccati Inequality

Title and mathematical description of the LMI formulation.
The Algebraic Riccati inequality is given by
\[
A^T P + PA - (PB + N^T)R^{-1}(B^T P + N) + Q \geq 0
\]
can be written using the Schur complement lemma as
\[
\begin{bmatrix}
A^T P + PA + Q & PB + N^T \\
* & R
\end{bmatrix} \geq 0
\]

35.5 Conclusion:

If the solution exists, LMIs give a unique, stabilizing, symmetric matrix P.

35.6 Implementation:

Matlab code for this LMI in the Github repository:

1. REDIRECT https://github.com/Ricky-10/coding107/blob/master/LMI_Algebraic_Riccati_Equations

35.7 External links

1 Chapter 1 on page 3
36 System Zeros without feedthrough

Let’s say we have a transfer function defined as a ratio of two polynomials:

\[H(s) = \frac{N(s)}{D(s)} \]

Zeros are the roots of \(N(s) \) (the numerator of the transfer function) obtained by setting \(N(s) = 0 \) and solving for \(s \). The values of the poles and the zeros of a system determine whether the system is stable, and how well the system performs. Similarly, the system zeros are either real or appear in complex conjugate pairs. In the case of system zeros without feedthrough, we take the assumption that \(D = 0 \).

36.1 The System

Consider a continuous-time LTI system, \(G \), with minimal statespace representation \((A,B,C,0)\)

\[
\dot{x}(t) = Ax(t) + Bu(t) \\
y(t) = Cx(t)
\]

36.2 The Data

The matrices:

\[
A \in \mathbb{R}^{n \times n} \\
M \in \mathbb{R}^{n \times q} \\
N \in \mathbb{R}^{q \times n}
\]

36.3 The LMI: System Zeros without feedthrough

The transmission zeros of \(G(s) = C(sI - A)^{-1}B \) are the eigenvalues of \(NAM \), where \(N \in \mathbb{R}^{q \times n}, M \in \mathbb{R}^{n \times q}, CM = 0, NB = 0, NM = 1 \). Therefore, \(G(s) \) is a minimum phase if and only if there exists \(P \in \mathbb{S}^{q} \), where \(P > 0 \) such that

\[
PNAM + M^T A^T N^T P < 0
\]
36.4 Conclusion:

If P exists, it ensures non-minimum phase. Eigenvalues of NAM then gives the zeros of the system.

36.5 Implementation

https://github.com/Ricky-10/coding107/blob/master/Systemzeroswithoutfeedthrough

36.6 External Links

A list of references documenting and validating the LMI.

- LMI Methods in Optimal and Robust Control\(^1\) - A course on LMIs in Control by Matthew Peet.
- LMIs in Systems and Control Theory\(^3\) - A downloadable book on LMIs by Stephen Boyd.
- Control_Systems/Poles_and_Zeros\(^4\)

\(^1\) http://control.asu.edu/MAE598_frame.htm
\(^3\) https://web.stanford.edu/~boyd/lmibook/
\(^4\) https://en.wikibooks.org/wiki/Control_Systems%2FPoles_and_Zeros
37 System zeros with feedthrough

Let’s say we have a transfer function defined as a ratio of two polynomials:
\[H(s) = \frac{N(s)}{D(s)} \]
Zeros are the roots of \(N(s) \) (the numerator of the transfer function) obtained by setting \(N(s) = 0 \) and solving for \(s \). The values of the poles and the zeros of a system determine whether the system is stable, and how well the system performs. Similarly, the system zeros are either real or appear in complex conjugate pairs. In the case of system zeros with feedthrough, we take \(D \) as full rank.

37.1 The System

Consider a continuous-time LTI system, \(G \), with minimal statespace representation \((A,B,C,D)\)

\[
\begin{align*}
\dot{x}(t) &= Ax(t) + Bu(t) \\
y(t) &= Cx(t) + Du
\end{align*}
\]

37.2 The Data

The matrices needed as inputs are:

\[
\begin{align*}
A &\in \mathbb{R}^{n \times n} \\
B &\in \mathbb{R}^{n \times m} \\
N &\in \mathbb{R}^{p \times n}
\end{align*}
\]

In this case, \(m \leq p \)

37.3 The LMI: System Zeros with feedthrough

The transmission zeros of \(G(s) = C(sI - A)^{-1}B + D \) are the eigenvalues of \(A - B(D^TD)^{-1}D^TC \). Therefore, \(G(s) \) is a minimum phase if and only if there exists \(P \in \mathbb{S}^q \), where \(P > 0 \) such that

\[
P(A - B(D^TD)^{-1}D^TC) + (A - B(D^TD)^{-1}D^TC)^TP < 0
\]
37.4 Conclusion:

If P exists, it ensures non-minimum phase. Eigenvalues of $A - B(D^T D)^{-1} D^T C$ then gives the zeros of the system.

37.5 Related LMIs

LMIs_in_Controls/pages/systemzeroswithoutfeedthrough

37.6 Implementation

https://github.com/Ricky-10/coding107/blob/master/systemzeroswithfeedthrough

37.7 External Links

A list of references documenting and validating the LMI.

- LMI Methods in Optimal and Robust Control2 - A course on LMIs in Control by Matthew Peet.
- LMI Properties and Applications in Systems, Stability, and Control Theory3 - A List of LMIs by Ryan Caverly and James Forbes.
- LMIs in Systems and Control Theory4 - A downloadable book on LMIs by Stephen Boyd.
- Control_Systems/Poles_and_Zeros5

1 https://en.wikibooks.org/wiki/LMIs_in_Controls%2Fpages%2Fsystmzeroswithoutfeedthrough
2 http://control.asu.edu/MAE598_frame.htm
3 https://https://arxiv.org/abs/1903.08599/
4 https://web.stanford.edu/~boyd/lmibook/
5 https://en.wikibooks.org/wiki/Control_Systems%2FPoles_and_Zeros
38 Negative Imaginary Lemma

Positive real systems are often related to systems involving energy dissipation. But the standard Positive real theory will not be helpful in establishing closed-loop stability. However transfer functions of systems with a degree more than one can be satisfied with the negative imaginary conditions for all frequency values and such systems are called "systems with negative imaginary frequency response" or "negative imaginary systems".

38.1 The System

Consider a square continuous time Linear Time invariant system, with the state space realization (A, B, C, D)

\[
\dot{x}(t) = Ax(t) + Bu(t) \\
y = Cx(t) + Du(t)
\]

38.2 The Data

$A \in \mathbb{R}^{n \times n}, B \in \mathbb{R}^{n \times m}, C \in \mathbb{R}^{m \times n}, D \in \mathbb{S}^m$

38.3 The LMI: LMI for Negative Imaginary Lemma

According to the Lemma, The aforementioned system is negative imaginary under either of the following equivalent necessary and sufficient conditions

- There exists a $P \in \mathbb{S}^n$, where $P \geq 0$, such that,

\[
\begin{bmatrix}
A^T P + PA & PB - A^T CT \\
B^T P - CA & -(CB + B^T CT)
\end{bmatrix} \leq 0
\]

- There exists a $Q \in \mathbb{S}^n$, where $Q \geq 0$, such that,

\[
\begin{bmatrix}
Q A^T + AQ & B - QA^T CT \\
B^T - CAQ & -(CB + B^T CT)
\end{bmatrix}
\]
38.4 Conclusion

The system is strictly negative if $\det(A) \neq 0$ and either of the above LMIs are feasible with resulting $P > 0$ or $Q > 0$.

38.5 Implementation

A link to the Matlab code for a simple implementation of this problem in the Github repository:

https://github.com/yashgvd/ygovada

38.6 Related LMIs

Positive Real Lemma

38.7 External Links

- LMI Methods in Optimal and Robust Control\(^1\) - A course on LMIs in Control by Matthew Peet.

\(^1\) http://control.asu.edu/MAE598_frame.htm
39 Small Gain Theorem

The Small Gain Theorem provides a sufficient condition for the stability of a feedback connection.

39.1 Theorem

Suppose B is a Banach Algebra and $Q \in B$. If $\| Q \| < 1$, then $(I - Q)^{-1}$ exists, and furthermore,

$$
(I - Q)^{-1} = \sum_{k=0}^{\infty} Q^k
$$

39.2 Proof

Assuming we have an interconnected system (G, K):

$$y_1 = G(u_1 - y_2) \text{ and } y_2 = K(u_2 - y_1)$$

The above equations can be represented in matrix form as

$$
\begin{bmatrix}
I & 0 \\
0 & I
\end{bmatrix}
\begin{bmatrix}
y_1 \\
y_2
\end{bmatrix} =
\begin{bmatrix}
0 & -G \\
-K & 0
\end{bmatrix}
\begin{bmatrix}
y_1 \\
y_2
\end{bmatrix} +
\begin{bmatrix}
G & 0 \\
0 & K
\end{bmatrix}
\begin{bmatrix}
u_1 \\
u_2
\end{bmatrix}
$$

Making $[y_1 \ y_2]^T$ the subject, we then have:

$$
\begin{bmatrix}
y_1 \\
y_2
\end{bmatrix} =
\begin{bmatrix}
I & G \\
K & I
\end{bmatrix}^{-1}
\begin{bmatrix}
0 & G \\
0 & K
\end{bmatrix}
\begin{bmatrix}
u_1 \\
u_2
\end{bmatrix} =
\begin{bmatrix}
(I - GK)^{-1}G & -G(I - KG)^{-1}K \\
-K(I - GK)^{-1}G & (I - KG)^{-1}K
\end{bmatrix}
\begin{bmatrix}
u_1 \\
u_2
\end{bmatrix}
$$

If $(I - GK)^{-1}$ is well-behaved, then the interconnection is stable. For $(I - GK)^{-1}$ to be well-behaved, $\|(I - GK)^{-1}\|$ must be finite.

Hence, we have $\|(I - GK)^{-1}\| < \infty$

$\| \| = \|$ and $\| < I$ for the higher exponents of $\|$ to converge to 0.
39.3 Conclusion

If $\| < 1$, then this implies stability, since the higher exponents of Q in the summation of $\sum_{k=0}^{\infty} Q^k$ will converge to 0, instead of blowing up to infinity.

39.4 External Links

A list of references documenting and validating the LMI.

- LMI Methods in Optimal and Robust Control1 - A course on LMIs in Control by Matthew Peet.

1 http://control.asu.edu/MAE598_frame.htm
2 https://web.stanford.edu/~boyd/lmibook/
40 Tangential Nevanlinna-Pick Interpolation

40.1 Tangential Nevanlinna-Pick

The Tangential Nevanlinna-Pick arises in multi-input, multi-output (MIMO) control theory, particularly H_∞ robust and optimal control.

The problem is to try and find a function $H : C \to C^{pq}$ which is analytic in C_+ and satisfies

$$H(\lambda_i)u_i = v_i,$$

with $\|H\|_\infty \leq 1$

(1)

40.2 The System

$N_{(ij)}$ is a set of pxq matrix valued Nevanlinna functions. The matrix valued function $H(\{\lambda\})$ analytic on the open upper half plane is a Nevanlinna function if $Im(H(\lambda)) \geq 0 (\lambda \in \pi^+)$.

40.3 The Data

Given:
Initial sequence of data points on real axis $\lambda_1, ..., \lambda_m$ with $\lambda_i \in C_+ = \{s|Re(s) > 0\}$, and two sequences of row vectors containing distinct target points $u_1, ..., u_m$ with $u_i \in C^q$, and $v_1, ..., v_m$ with $v_i \in C^p, i = 1, ..., m$.

40.4 The LMI: Tangential Nevanlinna-Pick

Problem (1) has a solution if and only if the following is true:

Nevanlinna-Pick Approach

\[N_{ij} = \frac{u_i^*u_j - v_i^*v_j}{\lambda_i + \lambda_j} \]

Lyapunov Approach

\(N \) can also be found using the Lyapunov equation:

\[A^*N + NA - (U^*U - V^*V) = 0 \]

where \(A = \text{diag}(\lambda_1, \ldots, \lambda_m), U = [u_1 \ldots u_m], V = [v_1 \ldots v_m] \)

The tangential Nevanlinna-Pick problem is then solved by confirming that \(N \geq 0 \).

40.5 Conclusion:

If \(N(\lambda_i) \) is positive (semi)-definite, then there exists a norm-bounded analytic function, \(H \) which satisfies \(H(\lambda_i)u_i = v_i \),

\[i = 1, \ldots, m \]

with \(||H||_\infty \leq 1 \)

40.6 Implementation

40.7 Related LMIs

Nevalinna-Pick Interpolation with Scaling\(^1\)

40.8 External Links

- LMI Methods in Optimal and Robust Control\(^2\) - A course on LMIs in Control by Matthew Peet.
- LMIs in Systems and Control Theory\(^3\) - A downloadable book on LMIs by Stephen Boyd.
- Generalized Interpolation in \(H_\infty\) by Donald Sarason.\(^4\)
- Tangential Nevanlinna-Pick Interpolation Problem With Boundary Nodes in the Nevanlinna Class And The Related Moment Problem by Yong Jian Hu and Xiu Ping Zhang.\(^5\)

2. http://control.asu.edu/MAE598_frame.htm
3. https://web.stanford.edu/~boyd/lmibook/
41 Nevanlinna-Pick Interpolation with Scaling

41.1 Nevanlinna-Pick Interpolation with Scaling

The Nevanlinna-Pick problem arises in multi-input, multi-output (MIMO) control theory, particularly H_∞ robust and optimal controller synthesis with structured perturbations.

The problem is to try and find $\gamma_{\text{opt}} = \inf(||DH^{-1}||_\infty)$ such that H is analytic in C_+,

\begin{equation}
\text{UNKNOWN TEMPLATE spaces}
\end{equation}

\begin{equation}
D = D^* > 0, \text{ and } D \in \mathbb{D} \text{ define the scaling, and finally,}
\end{equation}

\begin{equation}
H(\lambda_i)u_i = v_i
\end{equation}

\begin{equation}
\text{UNKNOWN TEMPLATE spaces}
\end{equation}

\begin{equation}
i = 1, \ldots, m
\end{equation}

\begin{equation}
\text{UNKNOWN TEMPLATE spaces}
\end{equation}

(1)

41.2 The System

The scaling factor \mathbb{D} is given as a set of mxm block-diagonal matrices with specified block structure. The matrix valued function $H(\{\lambda\})$ analytic on the open upper half plane is a Nevanlinna function if $\text{Im}(H(\lambda)) \geq 0 (\lambda \in \pi^+)$. The Nevanlinna LMI matrix N is defined as $N = G_{in} - G_{out}$. The matrix A is a diagonal matrix of the given sequence of data points $\lambda_i \in \mathbb{C}(A = \text{diag}(\lambda_1, \ldots, \lambda_m))$

41.3 The Data

Given:

Initial sequence of data points in the complex plane $\lambda_1, \ldots, \lambda_m$ with $\lambda_i \in$
C_+ \subset \{ s ; \Re(s) > 0 \}.
Two sequences of row vectors containing distinct target points \(u_1, \ldots, u_m \) with \(u_i \in \mathbb{C}^q \), and \(v_1, \ldots, v_m \) with \(v_i \in \mathbb{C}^p, i = 1, \ldots, m \).

41.4 The LMI: Nevanlinna-Pick Interpolation with Scaling

First, implement a change of variables for \(P = D^* D \) and \(N = G_{in} - G_{out} \).

From this substitution it can be concluded that \(\gamma_{opt} \) is the smallest positive \(\gamma \) such that there exists a \(P > 0, P \in \mathbb{D} \) such that the following is true:

\[
A^* G_{in} + G_{in} A - U^* PU = 0,
\]

\[
A^* G_{out} + G_{out} A - V^* PV = 0,
\]

\[
\gamma^2 G_{in} - G_{out} \geq 0
\]

41.5 Conclusion:

If the LMI constraints are met, then there exists a \(H_\infty \) norm-bounded optimal gain \(\gamma \) which satisfies the scaled Nevanlinna-Pick interpolation objective defined above in Problem (1).

41.6 Implementation

41.7 Related LMIs

Nevanlinna-Pick Interpolation\(^1\)

\(^1\) https://en.wikibooks.org/wiki/LMIs_in_Control/Matrix_and_LMI_PROPERTIES_AND_TOOLS/Tangential_Nevanlinna_Pick
41.8 External Links

- LMI Methods in Optimal and Robust Control\(^2\) - A course on LMIs in Control by Matthew Peet.
- LMIs in Systems and Control Theory\(^3\) - A downloadable book on LMIs by Stephen Boyd.
- Generalized Interpolation in \(H_\infty\).\(^4\)

\(^2\) http://control.asu.edu/MAE598_frame.htm

\(^3\) https://web.stanford.edu/~boyd/lmibook/

42 Generalized H_2 Norm

42.1 Generalized H_2 Norm

The H_2 norm characterizes the average frequency response of a system. To find the H_2 norm, the system must be strictly proper, meaning the state space represented D matrix must equal zero. The H_2 norm is frequently used in optimal control to design a stabilizing controller which minimizes the average value of the transfer function, G as much as possible. This optimal control problem is also called the Linear Quadratic Gaussian.

42.2 The System

Consider a continuous-time, linear, time-invariant system $G : L_{2e} \rightarrow L_{2e}$ with state space realization $(A, B, C, 0)$ where $A \in \mathbb{R}^{n \times n}$, $B \in \mathbb{R}^{n \times m}$, $C \in \mathbb{R}^{p \times n}$, and A is Hurwitz. The generalized H_2 norm of G is:

$$\|G\|_{2,\infty} = \sup_{u \in L_2, u \neq \text{zero}} \frac{\|Gu\|_{\infty}}{\|u\|_2}$$

42.3 The Data

The transfer function G, and system matrices A, B, C are known and A is Hurwitz.

42.4 The LMI: Generalized H_2 Norm LMIs

The inequality $\|G\|_{2,\infty} < \mu$ holds under the following conditions:

1. There exists $P \in \mathbb{S}^n$ and $\mu \in \mathbb{R}_{>0}$ where $P > 0$ such that:

 $$\begin{bmatrix}
 A^T P + PA & PB \\
 * & -\mu I
 \end{bmatrix} < 0$$

 $$\begin{bmatrix}
 P & C^T \\
 * & \mu I
 \end{bmatrix} > 0$$

2. There exists $Q \in \mathbb{S}^n$ and $\mu \in \mathbb{R}_{>0}$ where $Q > 0$ such that:
\[
\begin{bmatrix}
QA^T + AQ & B \\
* & -\mu 1
\end{bmatrix} < 0
\]
\[
\begin{bmatrix}
Q & QC^T \\
* & \mu 1
\end{bmatrix} > 0
\]

3. There exists \(P \in \mathbb{S}^n, V \in \mathbb{R}^{n \times n} \) and \(\mu \in \mathbb{R}_{>0} \) where \(P > 0 \) such that:

\[
\begin{bmatrix}
-(V + V^T) & V^T A + P & V^T B & V^T \\
* & -P & 0 & 0 \\
* & ** -\mu 1 & 0 & -P \\
* & * & * & -P
\end{bmatrix} < 0
\]

\[
\begin{bmatrix}
P & C^T \\
* & \mu 1
\end{bmatrix} > 0
\]

42.5 Conclusion:

The generalized \(H_2 \) norm of \(G \) is the minimum value of \(\mu \in \mathbb{R}_{>0} \) that satisfies the LMIs presented in this page.

42.6 Implementation

This implementation requires Yalmip and Sedumi.

Generalized \(H_2 \) Norm\(^1\) - MATLAB code for Generalized \(H_2 \) Norm.

42.7 Related LMIs

LMI for System \(H_2 \) \({2} \) Norm\(^2\)

42.8 External Links

- LMI Methods in Optimal and Robust Control\(^3\) - A course on LMIs in Control by Matthew Peet.

\(^1\) https://github.com/nnbeauli/Optimal-Control-LMI/blob/main/Gen_H2_Norm.m

\(^2\) https://en.wikibooks.org/wiki/LMIs_in_Control/pages/LMI_for_System_H2_Norm

\(^3\) http://control.asu.edu/MAE598_frame.htm

\(^4\) https://arxiv.org/abs/1903.08599/
• LMIs in Systems and Control Theory5 - A downloadable book on LMIs by Stephen Boyd.
• LMIs in Control Systems: Analysis, Design and Applications6 - by Guang-Ren Duan and Hai-Hua Yu, CRC Press, Taylor & Francis Group, 2013.

5 https://web.stanford.edu/~boyd/lmibook/
6 https://www.crcpress.com/LMIs-in-Control-Systems-Analysis-Design-and-Applications/
Duan-Yu/p/book/9781466582996
43 Passivity and Positive Realness

This section deals with passivity of a system.

43.1 The System

Given a state-space representation of a linear system

\[\dot{x} = Ax + Bu\]
\[y = Cx + Du\]

\(x \in \mathbb{R}^n, y \in \mathbb{R}^m, u \in \mathbb{R}^r\) are the state, output and input vectors respectively.

43.2 The Data

\(A, B, C, D\) are system matrices.

43.3 Definition

The linear system with the same number of input and output variables is called passive if

\[\int_0^T u^T y(t) dt \geq 0\]

hold for any arbitrary \(T \geq 0\), arbitrary input \(u(t)\), and the corresponding solution \(y(t)\) of the system with \(x(0) = 0\). In addition, the transfer function matrix

\[G(s) = C(sI - A)^{-1}B + D\]
of system is called is positive real if it is square and satisfies

\[G^H(s) + G(s) \geq 0 \forall s \in \mathbb{C}, \text{Re}(s) > 0 \]

43.4 LMI Condition

Let the linear system be controllable. Then, the system is passive if and only if there exists \(P > 0 \) such that

\[
\begin{bmatrix}
A^T P + PA & PB - C^T \\
B^T P - C & -D^T - D
\end{bmatrix} \leq 0
\]

43.5 Implementation

This implementation requires Yalmip and Mosek.

- https://github.com/ShenoyVaradaraya/LMI--master/blob/main/Passivity.m

43.6 Conclusion

Thus, it is seen that passivity and positive-realness describe the same property of a linear system, one gives the time-domain feature and the other provides frequency-domain feature of this property.

43.7 External Links

- LMI Methods in Optimal and Robust Control\(^1\) - A course on LMIs in Control by Matthew Peet.

\(^1\) http://control.asu.edu/MAE598_frame.htm
\(^2\) https://web.stanford.edu/~boyd/lmibook/
• LMIs in Control Systems: Analysis, Design and Applications3 - by Guang-Ren Duan and Hai-Hua Yu, CRC Press, Taylor & Francis Group, 2013

3 \url{https://www.crcpress.com/LMIs-in-Control-Systems-Analysis-Design-and-Applications/Duan-Yu/p/book/9781466582996}
44 Non-expansivity and Bounded Realness

This section studies the non-expansivity and bounded-realness of a system.

44.1 The System

Given a state-space representation of a linear system

\[
\begin{align*}
\dot{x} &= Ax + Bu \\
y &= Cx + Du
\end{align*}
\]

\(x \in \mathbb{R}^n, y \in \mathbb{R}^m, u \in \mathbb{R}^r\) are the state, output and input vectors respectively.

44.2 The Data

\(A, B, C, D\) are system matrices.

44.3 Definition

The linear system with the same number of input and output variables is called non-expansive if

\[
\int_0^T y^T y(t) dt \geq \int_0^T u^T u(t) dt
\]

hold for any arbitrary \(T \geq 0\), arbitrary input \(u(t)\), and the corresponding solution \(y(t)\) of the system with \(x(0) = 0\). In addition, the transfer function matrix

\[
G(s) = C(sI - A)^{-1} B + D
\]
of system is called is positive real if it is square and satisfies

\[G^H(s) + G(s) \geq I \forall s \in \mathbb{C}, \text{Re}(s) > 0 \]

44.4 LMI Condition

Let the linear system be controllable. Then, the system is bounded-real if an only if there exists \(P > 0 \) such that

\[
\begin{bmatrix}
A^T P + PA & PB & C^T \\
B^T P & -I & D^T \\
C & D & -I
\end{bmatrix} < 0
\]

and

\[
\begin{bmatrix}
PA + A^T P + C^T C & PB + C^T D \\
B^T P + D^T C & D^T D - I
\end{bmatrix} < 0
\]

44.5 Implementation

This implementation requires Yalmip and Mosek.

- https://github.com/ShenoyVaradaraya/LMI--master/blob/main/bounded_realness.m

44.6 Conclusion:

Thus, it is seen that passivity and positive-realness describe the same property of a linear system, one gives the time-domain feature and the other provides frequency-domain feature of this property.
44.7 External Links

- LMI Methods in Optimal and Robust Control\(^1\) - A course on LMIs in Control by Matthew Peet.
- LMI2 in Systems and Control Theory\(^2\) - A downloadable book on LMIs by Stephen Boyd.
- LMIs in Control Systems: Analysis, Design and Applications\(^3\) - by Guang-Ren Duan and Hai-Hua Yu, CRC Press, Taylor & Francis Group, 2013

\(^1\) http://control.asu.edu/MAE598_frame.htm
\(^2\) https://web.stanford.edu/~boyd/lmibook/

Duan-Yu/p/book/9781466582996
45 Change of Subject

LMIs in Control/Matrix and LMI Properties and Tools/Change of Subject

A Bilinear Matrix Inequality (BMI) can sometimes be converted into a Linear Matrix Inequality (LMI) using a change of variables. This is a basic mathematical technique of changing the position of variables with respect to equal signs and the inequality operators. The change of subject will be demonstrated by the example below.

45.1 Example

Consider \(A \in \mathbb{R}^{n \times n}, B \in \mathbb{R}^{n \times m}, K \in \mathbb{R}^{m \times n}, \) and \(Q \in \mathbb{S}^n, \) where \(Q > 0. \)

The matrix inequality given by:
\[
QA^T + AQ - QK^T BT - BKQ < 0
\]
is bilinear in the variables \(Q \) and \(K.\)

Defining a change of variable as \(F = KQ \) to obtain
\[
QA^T + AQ - F^T B^T - BF < 0,
\]
which is an LMI in the variables \(Q \) and \(F.\)

Once this LMI is solved, the original variable can be recovered by \(K = FQ^{-1}. \)

45.2 Conclusion

It is important that a change of variables is chosen to be a one-to-one mapping in order for the new matrix inequality to be equivalent to the original matrix inequality. The change of variable \(F = KQ \) from the above example is a one-to-one mapping since \(Q^{-1} \) is invertible, which gives a unique solution for the reverse change of variable \(K = FQ^{-1}. \)

45.3 External Links

A list of references documenting and validating the LMI.

- LMI Methods in Optimal and Robust Control\(^1\) - A course on LMIs in Control by Matthew Peet.

\(^1\) http://control.asu.edu/MAE598_frame.htm
• LMIs in Systems and Control Theory2 - A downloadable book on LMIs by Stephen Boyd.
• LMI Properties and Applications in Systems, Stability, and Control Theory3 - A downloadable book on LMIs by Ryan James Caverly and James Richard Forbes.

2 https://web.stanford.edu/~boyd/lmibook/
3 https://arxiv.org/abs/1903.08599v2/
46 Congruence Transformation

LMIs in Control/Matrix and LMI Properties and Tools/Congruence Transformation

This methods uses change of variable and some matrix properties to transform Bilinear Matrix Inequalities to Linear Matrix Inequalities. This method preserves the definiteness of the matrices that undergo the transformation.

46.1 Theorem

Consider \(Q \in \mathbb{S}^n, W \in \mathbb{R}^{n \times n} \), where \(\text{rank}(W) = n \). The matrix inequality \(Q < 0 \) is satisfied if and only if \(WQW^T < 0 \) or equivalently, \(W^TQW < 0 \).

46.2 Example

Consider \(A \in \mathbb{R}^{n \times n}, B \in \mathbb{R}^{n \times m}, K \in \mathbb{R}^{m \times p}, C^T \in \mathbb{R}^{n \times p}, P \in \mathbb{S}^n \) and \(V \in \mathbb{S}^p \), where \(P > 0 \) and \(V > 0 \). The matrix inequality given by

\[
Q = \begin{bmatrix}
A^TP + PA & -PBK + C^TV \\
* & -2V
\end{bmatrix} < 0,
\]

is linear in variable \(V \) and bilinear in the variable pair \((P,K)\). Choose the matrix \(\text{diag}(P^{-1}, V^{-1}) \) to obtain the equivalent BMI given by

\[
WQW^T = \begin{bmatrix}
P^{-1}A^T + AP^{-1} & -BKV^{-1} + P^{-1}C^T \\
* & -2V^{-1}
\end{bmatrix} < 0,
\]

Using a change of variable \(X = P^{-1}, U = V^{-1} \) and \(F = KV^{-1} \), the above equation becomes

\[
WQW^T = \begin{bmatrix}
XA^T + AX & -BF + XC^T \\
* & -2U
\end{bmatrix} < 0,
\]

which is an LMI of variables \(X, U \) and \(F \). The original variable \(K \) is recovered by doing a reverse change of variable \(K = FU^{-1} \).

46.3 Conclusion

A congruence transformation preserves the definiteness of a matrix by ensuring that \(Q < 0 \) and \(W^TQW < 0 \) are equivalent. A congruence transformation is related, but not equivalent to a similarity transformation \(TQT^{-1} \), which preserves not only the
Congruence Transformation

definiteness, but also the eigenvalues of a matrix. A congruence transformation is equivalent to a similarity transformation in the special case when $W^T = W^{-1}$.

46.4 External Links

A list of references documenting and validating the LMI.

- LMI Methods in Optimal and Robust Control1 - A course on LMIs in Control by Matthew Peet.

1 http://control.asu.edu/MAE598_frame.htm
2 https://web.stanford.edu/~boyd/lmibook/
3 https://arxiv.org/abs/1903.08599v2/
47 Finsler's Lemma

LMIs in Control/Matrix and LMI Properties and Tools/Finsler's Lemma
This method It states equivalent ways to express the positive definiteness of a quadratic form Q constrained by a linear form L. It is equivalent to other lemmas used in optimization and control theory, such as Yakubovich's S-lemma, Finsler's lemma and it is wedely used in Linear Matrix Inequalities

47.1 Theorem

Consider $\Psi \in S^n, G \in \mathbb{R}^{n \times m}, A \in \mathbb{R}^{m \times p}, H \in \mathbb{R}^{n \times p}$ and $\sigma \in \mathbb{R}$. There exists A such that

$$\Psi + GAH^T + HA^T G^T < 0,$$

if and only if there exists σ such that

$$\Psi - \sigma GG^T < 0$$

$$\Psi - \sigma HH^T < 0$$

47.2 Alternative Forms of Finsler's Lemma

Consider $\Psi \in S^n, Z \in \mathbb{R}^{p \times n}, x \in \mathbb{R}^n$ and $\sigma \in \mathbb{R}_{>0}$. If there exists Z such that

$$x^T \Psi x, 0$$

holds for all $x \neq 0$ satisfying $Zx = 0$, then there exists σ such that

$$\Psi - \sigma Z^T Z < 0$$

47.3 Modified Finsler's Lemma

Consider $\Psi \in S^n, G \in \mathbb{R}^{n \times m}, A \in \mathbb{R}^{m \times p}, H \in \mathbb{R}^{n \times p}$ and $\epsilon \in \mathbb{R}_{>0}$, where $A^T A$ is less than or equal to \mathbb{R}, and $R > 0$. There exists A such that

$$\Psi + GAH^T + HA^T G^T T < 0,$$

there exists ϵ such that

$$\Psi + \epsilon^{-1} GG^T + \epsilon H RH^T < 0.$$
47.4 Conclusion

In summary, a number of identical methods have been stated above to determine the positive definiteness of LMIs.

47.5 External Links

A list of references documenting and validating the LMI.

- LMI Methods in Optimal and Robust Control\(^1\) - A course on LMIs in Control by Matthew Peet.

\(^1\) http://control.asu.edu/MAE598_frame.htm
\(^2\) https://web.stanford.edu/~boyd/lmibook/
\(^3\) https://arxiv.org/abs/1903.08599v2/
48 D-Stability

1. Continuous Time D-Stability Observer\(^1\)

49 Time-Delay Systems

1. Delay Dependent Time-Delay Stabilization
2. Delay Independent Time-Delay Stabilization
50 Parametric, Norm-Bounded Uncertain System Quadratic Stability

Given a system with matrices A, M, N, Q the quadratic stability of the system with parametric, norm-bounded uncertainty can be determined by the following LMI. The feasibility of the LMI tells if the system is quadratically stable or not.

50.1 The System

$$\dot{x}(t) = Ax(t) + Mp(t), \quad p(t) = \Delta(t)q(t),$$
$$q(t) = Nx(t) + Qp(t), \quad \Delta \in \Delta := \{ \Delta \in \mathbb{R}^{n \times n} : \| \Delta \| \leq 1 \}$$

50.2 The Data

The matrices A, M, N, Q.

50.3 The LMI:

Find $P > 0, \mu \geq 0$:

$$\begin{bmatrix}
AP + PA^T & PN^T \\
NP & 0
\end{bmatrix} + \mu \begin{bmatrix}
MM^T & MQ^T \\
QM^T & QQ^T - I
\end{bmatrix} < 0$$

50.4 Conclusion:

The system above is quadratically stable if and only if there exists some $\mu \geq 0$ and $P > 0$ such that the LMI is feasible.

50.5 Implementation

https://github.com/mcavorsi/LMI
50.6 Related LMIs

Stability of Structured, Norm-Bounded Uncertainty\(^1\)
Stability under Arbitrary Switching\(^2\)
Quadratic Stability Margins\(^3\)

50.7 External Links

- LMI Methods in Optimal and Robust Control\(^4\) - A course on LMIs in Control by Matthew Peet.

\(^2\) https://en.wikibooks.org/wiki/LMIs_in_Control/Stability_Analysis/Continuous_Time/Stability_under_Arbitrary_Switching
\(^3\) https://en.wikibooks.org/wiki/LMIs_in_Control/Stability_Analysis/Continuous_Time/Quadratic_Stability_Margins
\(^4\) http://control.asu.edu/MAE598_frame.htm
51 Stability of Structured, Norm-Bounded Uncertainty

Given a system with matrices A,M,N,Q with structured, norm-bounded uncertainty, the stability of the system can be found using the following LMI. The LMI takes variables P and Θ and checks for a feasible solution.

51.1 The System

\[
\dot{x}(t) = Ax(t) + Mp(t), \quad p(t) = \Delta(t)q(t),
q(t) = Nx(t) + Qp(t), \quad \Delta \in \Delta, ||\Delta|| \leq 1
\]

51.2 The Data

The matrices A,M,N,Q.

51.3 The LMI:

Find $P > 0$:

\[
\begin{bmatrix}
AP + PA^T & PN^T \\
NP & 0
\end{bmatrix} + \begin{bmatrix}
M\Theta M^T & M\Theta Q^T \\
Q\Theta M^T & Q\Theta Q^T - \Theta
\end{bmatrix} < 0
\]

51.4 Conclusion:

The system above is quadratically stable if and only if there exists some $\Theta \in P\Theta$ and $P > 0$ such that

51.5 Implementation

https://github.com/mcavorsi/LMI
51.6 Related LMIs

Parametric, Norm-Bounded Uncertain System Quadratic Stability\(^1\)
Stability under Arbitrary Switching\(^2\)
Quadratic Stability Margins\(^3\)

51.7 External Links

- LMI Methods in Optimal and Robust Control\(^4\) - A course on LMIs in Control by Matthew Peet.

4. http://control.asu.edu/MAE598_frame.htm
52 Stability under Arbitrary Switching

LMIs in Control/Stability Analysis/Continuous Time/Stability under Arbitrary Switching

Using the LMI below, find a P matrix that fits the constraints. If there exists one, then the system can switch between subsystems A_1 and A_2 arbitrarily and remain stable.

52.1 The System

\[\dot{x}(t) \in \{A_1x(t), A_2x(t)\} \]

52.2 The Data

The matrices $A_1 \in \mathbb{R}^{n \times n}, A_2 \in \mathbb{R}^{n \times n}$.

52.3 The LMI

Find $P > 0$:

\[A_1^T P + PA_1 < 0 \quad \text{and} \quad A_2^T P + PA_2 < 0 \]

52.4 Conclusion

The switched system is stable under arbitrary switching if there exists some $P > 0$ such that the LMIs hold.

52.5 Implementation

https://github.com/mcavorsi/LMI
52.6 Related LMIs

Parametric, Norm-Bounded Uncertain System Quadratic Stability
Stability of Structured, Norm-Bounded Uncertainty
Quadratic Stability Margins

52.7 External links

- LMI Methods in Optimal and Robust Control - A course on LMIs in Control by Matthew Peet.

References:
53 Quadratic Stability Margins

The quadratic stability margin of the system is defined as the largest $\alpha \geq 0$ for which the system is quadratically stable. This LMI applies for systems with norm-bounded uncertainty.

53.1 The System

$$\dot{x}(t) = Ax(t) + B_p p(t), \quad p^T p \leq \alpha^2 x^T C_q^T C_q x$$

53.2 The Data

The matrices A, B_p, C_q.

53.3 The Optimization Problem

Maximize $\beta = \alpha^2$ subject to the LMI constraint.

53.4 The LMI:

Find P, λ, and $\beta = \alpha^2$:

$$\begin{bmatrix} A^T P + PA + \beta \lambda C_q^T C_q & PB_p \\ B_p^T P & -\lambda I \end{bmatrix} < 0$$

53.5 Conclusion:

If there exists an $\alpha \geq 0$ then the system is quadratically stable, and the stability margin is the largest such α.

53.6 Implementation

https://github.com/mcavorsi/LMI
53.7 Related LMIs

Parametric, Norm-Bounded Uncertain System Quadratic Stability
Stability of Structured, Norm-Bounded Uncertainty
Stability under Arbitrary Switching

53.8 External Links

- LMI Methods in Optimal and Robust Control - A course on LMIs in Control by Matthew Peet.
54 Stability of Linear Delayed Differential Equations

54.1 The System

\[\dot{x}(t) = Ax(t) + \sum_{i=1}^{L} A_i x(t - \tau_i), \]

where \(x(t) \in \mathbb{R}^n \) and \(\tau_i > 0 \).

54.2 The Data

The matrices \(A, \{A_i, \tau_i\}_{i=1}^{L} \).

54.3 The LMI:

Solve the following LMIP

\[
\begin{bmatrix}
A^\top P + PA + \sum_{i=1}^{L} P_i & PA_1 & \ldots & PA_L \\
A_1^\top P & -P_1 & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
A_L^\top P & 0 & \ldots & -P_L
\end{bmatrix} < 0, P_1 > 0, \ldots, P_L > 0.
\]

54.4 Implementation

https://github.com/mkhajenejad/Mohammad-Khajenejad/commit/50fc71737b69f2cf57d15634f2f19d091bf37d02

54.5 Conclusion

The stability of the above linear delayed differential equation is proved, using Lyapunov functionals of the form \(V(x, t) = x(t)^\top Px(t) + \sum_{i=1}^{L} \int_0^{\tau_i} x(t-s)P_i x(t-s) \, ds \), if the provided LMIP is feasible.
54.6 Remark

The techniques for proving stability of norm-bound LDIs [Boyd, ch.5] can also be used.

54.7 External Links

- LMI Methods in Optimal and Robust Control\(^1\) - A course on LMIs in Control by Matthew Peet.
- LMIs in Systems and Control Theory\(^3\) - A downloadable book on LMIs by Stephen Boyd.

\(^1\) http://control.asu.edu/MAE598_frame.htm
\(^3\) https://web.stanford.edu/~boyd/lmibook/
55 H infinity Norm for Affine Parametric Varying Systems

55.1 The System

\[
\dot{x}(t) = Ax(t) + B_w w(t), \\
z(t) = C_z(\theta)x(t) + D_{zw}(\theta)w(t),
\]

where \(C_z\) and \(D_{zw}\) depend affinity on parameter \(\theta \in \mathbb{R}^p\).

55.2 The Data

The matrices \(A, B_w, C_z(.), D_{zw}(.).\)

55.3 The Optimization Problem:

Solve the following semi-definite program

\[
\begin{align*}
\min_{\{P \succ 0, \gamma \geq 0\}} & \gamma \\
\text{s.t.} & \begin{bmatrix} A^T P + PA & PB_w \\ B_w^T P & -\gamma^2 I \end{bmatrix} + \begin{bmatrix} C_z^T(\theta) \\ D_{zw}^T(\theta) \end{bmatrix} \begin{bmatrix} C_z(\theta) \\ D_{zw}(\theta) \end{bmatrix} \preceq 0.
\end{align*}
\]

55.4 Implementation

https://github.com/mkhajenejad/Mohammad-Khajenejad/commit/5462bc1dc441bc298d50a2c35075e9466eba8355

55.5 Conclusion

The value function of the above semi-definite program returns the \(H_\infty\) norm of the system.
55.6 Remark

It is assumed that A is stable and (A, B_w) is controllable and the semi-infinite convex constraint $\rho(j\omega)\| < \gamma$ for all $\omega \in \mathbb{R}$, is converted into a finite-dimensional convex LMI.

55.7 External Links

- LMI Methods in Optimal and Robust Control\(^1\) - A course on LMIs in Control by Matthew Peet.
- LMIs in Systems and Control Theory\(^3\) - A downloadable book on LMIs by Stephen Boyd.

\(^1\) http://control.asu.edu/MAE598_frame.htm
\(^2\) https://arxiv.org/abs/1903.08599/
\(^3\) https://web.stanford.edu/~boyd/lmibook/
56 Entropy Bond for Affine Parametric Varying Systems

56.1 The System

\[\dot{x}(t) = Ax(t) + B_w w(t), \]
\[z(t) = C_z(\theta)x(t) + D_{zw}(\theta)w(t), \]

where \(C_z \) and \(D_{zw} \) depend affinely on parameter \(\theta \in \mathbb{R}^p \).

56.2 The Data

The matrices \(A, B_w, C_z(\cdot), D_{zw}(\cdot) \).

56.3 The Optimization Problem:

Solve the following semi-definite program

\[
\min_{\{P>0, \gamma^2, \lambda, \theta\}} \gamma^2
\]
\[\text{s.t. } D_{zw}(\theta) = 0, \begin{bmatrix} A^\top P + PA & PB_w & C_z(\theta)^\top \\ B_w^\top P & -\gamma^2 I & 0 \\ C_z(\theta) & 0 & -I \end{bmatrix} \preceq 0, \text{ Tr}(B_w^\top PB_w) \leq \lambda. \]

56.4 Implementation

https://github.com/mkhajenejad/Mohammad-Khajenejad/commit/02f31a2d7a22b2464dfe9212eb76409bda9439b1

56.5 Conclusion

The value function of the above semi-definite program returns a bound for \(\gamma \)-entropy of the system, which is defined as
\[I_\gamma(H_\theta) \triangleq \begin{cases} \frac{-\gamma^2}{2\pi} \int_{-\infty}^{\infty} \log \det (I - \gamma^2 H_\theta(i\omega)H_\theta(i\omega)^*) d\omega, & \text{if } \|\theta\|_\infty < \gamma \\ \infty, & \text{otherwise.} \end{cases} \]

56.6 Remark

When it is finite, \(I_\gamma(H_\theta) \) is given by \(\text{Tr}(B_w^T PB_w) \) where \(P \), is asymmetric matrix with the smallest possible maximum singular value among all solutions of a Riccati equation.

56.7 External Links

- [LMI Methods in Optimal and Robust Control]({http://control.asu.edu/MAE598_frame.htm}) - A course on LMIs in Control by Matthew Peet.
57 Dissipativity of Affine Parametric Varying Systems

57.1 The System

\[
\dot{x}(t) = Ax(t) + B_w w(t),
\]
\[
z(t) = C_z(\theta)x(t) + D_{zw}(\theta)w(t),
\]

where \(C_z\) and \(D_{zw}\) depend affinely on parameter \(\theta \in \mathbb{R}^p\).

57.2 The Data

The matrices \(A, B_w, C_z(.), D_{zw}(.)\).

57.3 The Optimization Problem:

Solve the following semi-definite program

\[
\begin{align*}
\min_{\{P > 0, \gamma, \theta\}} & \gamma \\
\text{s.t.} & \begin{bmatrix} A^\top P + PA & PB_w - C_z(\theta)^\top \\ B_w^\top P - C_z(\theta) & 2\gamma I - D_{zw}(\theta) - D_{zw}(\theta)^\top \end{bmatrix} \preceq 0.
\end{align*}
\]

57.4 Implementation

https://github.com/mkhajenejad/Mohammad-Khajenejad/commit/b6cd6b81f75be4a2052ba3fa76cad1a2f9c49caa

57.5 Conclusion

The dissipativity of \(H_\theta\) (see [Boyd,eq:6.59]) exceeds \(\gamma\) if and only if the above LMI holds and the value function returns the minimum provable dissipativity.
57.6 Remark

It is worth noticing that passivity corresponds to zero dissipativity.

57.7 External Links

- LMI Methods in Optimal and Robust Control\(^1\) - A course on LMIs in Control by Matthew Peet.
- LMIs in Systems and Control Theory\(^3\) - A downloadable book on LMIs by Stephen Boyd.

\(^1\) http://control.asu.edu/MAE598_frame.htm
\(^3\) https://web.stanford.edu/~boyd/lmibook/
58 Hankel Norm of Affine Parameter Varying Systems

58.1 The System

\[\dot{x}(t) = Ax(t) + B_w w(t), \]
\[z(t) = C_z(\theta)x(t) + D_{zw}(\theta)w(t), \]

where \(C_z \) and \(D_{zw} \) depend affinely on parameter \(\theta \in \mathbb{R}^p \).

58.2 The Data

The matrices \(A, B_w, C_z(.), D_{zw}(.). \)

58.3 The Optimization Problem:

Solve the following semi-definite program

\[
\begin{align*}
\min_{\{Q \geq 0, \gamma^2, \theta\}} & \quad \gamma^2 \\
\text{s.t.} & \quad D_{zw}(\theta) = 0, \quad A^\top Q + QA + C_z(\theta)C_z(\theta) \preceq 0, \quad \gamma^2 I - W_c^{1/2}QW_c^{1/2} \succeq 0,
\end{align*}
\]

where \(W_c \) is the controllability Gramian, i.e., \(W_c \triangleq \int_0^\infty e^{At}B_wB_w^\top e^{A^\top t}dt \).

58.4 Implementation

https://github.com/mkhajenejad/Mohammad-Khajenejad/commit/0faedcdd9fba92bc27a318d80159c04a0b342f35

58.5 Conclusion

The Hanakel norm (i.e., the square root of the maximum eigenvalue) of \(H_\theta \) is less than \(\gamma \) if and only if the above LMI holds and the value function returns the maximum provable Hankel norm.
58.6 Remark

D_{zw} is assumed to be zero.

58.7 External Links

- LMI Methods in Optimal and Robust Control\(^1\) - A course on LMIs in Control by Matthew Peet.
- LMIs in Systems and Control Theory\(^3\) - A downloadable book on LMIs by Stephen Boyd.

1 http://control.asu.edu/MAE598_frame.htm
3 https://web.stanford.edu/~boyd/lmibook/
59 Positive Orthant Stabilizability

Positive Orthant Stabilizability

The positive orthant stability of a linear system refers to the property of the system states being real and positive for all \(t \geq 0 \) and decaying down to zero over time. In this section, the feasibility problem for systems to be positive orthant stable, and the stabilizability conditions to make the system positive orthant stable will be covered.

59.1 The System

Consider a linear state-space representation of a system as:

\[
\dot{x}(t) = Ax(t) + Bu(t)
\]

where \(x(t) \in \mathbb{R}^n \) and \(u(t) \in \mathbb{R}^r \) are the system state and the input vector respectively. \(A \) and \(B \) are system coefficient matrices of appropriate dimensions.

59.2 The Data

Number of states \(n \) and number of control inputs \(r \) need to be known. Moreover, the system matrices \(A, B \) are also required to be known.

59.3 The Feasibility LMI

An LTI system is positive orthant stable if \(x(0) \in \mathbb{R}^n_+ \) implies that \(\forall t \geq 0, x(t) \in \mathbb{R}^n_+ \). Moreover, as \(t \to \infty \), \(x(t) \to 0 \). This is possible if and only if the following conditions hold:

\[
A_{ij} \geq 0, \forall i \neq j,
\]

\[
\exists P > 0 \text{ s.t. } PA^\top + AP < 0,
\]

The above LMI feasibility is the positive orthant stability criteria. To convert it into a positive orthant stabilizability check, the problem can be modified so that we check if \(\dot{x} = (A + BK)x \) is positive orthant stable. As \(K \) is also a design variable here, the second inequality in the above LMI will result in bilinearity. A simple change of
variables can overcome that to result in the following LMI feasibility problem for checking positive orthant stabilizability of the LTI system:

\[
\begin{align*}
\text{Find } Q, Y \text{ subj. to:} \\
&Q > 0, (AQ + BY)_{ij} \geq 0, \forall i \neq j, \\
&s.t. QA^\top + AQ + BY + Y^\top B^\top < 0,
\end{align*}
\]

If the above LMI is feasible, the LTI system is stabilizable with controller \(K = YQ^{-1} \).

59.4 Conclusion:

The feasibility of the above LMIs guarantees that the system is positive orthant stable if the first LMI is feasible or stabilizable with a controller if the second LMI holds.

59.5 Implementation

To solve the feasibility LMI, YALMIP toolbox is required for setting up the feasibility problem, and SeDuMi is required to solve the problem. The following link showcases an example of the feasibility problem:

https://github.com/smhassaan/LMI-Examples/blob/master/Positive_Orthant_LMI.m

59.6 External Links

A list of references documenting and validating the LMI.

- LMIs in Systems and Control Theory\(^1\) - A downloadable book on LMIs by Stephen Boyd.

1 https://web.stanford.edu/~boyd/lmibook/
LMI For Stabilization Condition for Systems With Unsymmetrical Saturated Control

The LMI in this page gives the feasibility conditions which, if satisfied, imply that the corresponding system can be stabilized.

60.1 The System

\[\dot{x}(t) = Ax(t) + BSat(u(t)), \]
\[x(0) = x_0, \]
\[Sat(u)_i =, \]

where \(x \in ^n \) is the state, \(u \in ^m \) is the control input.

For the system given as above, its symmetrical saturated control form can be derived by following the procedure in the original article. The new system will have the form:

\[\dot{x}(t) = Ax(t) + \tilde{B}sat(z(t)) + Ew \]

where \(w_i = u_i - \frac{\alpha_i - \beta_i}{2}, z_i = w_i \frac{2}{\alpha_i + \beta_i} \)

60.2 The Data

The system matrices \((A, \tilde{B}, E) \), the saturation bounds \((\alpha_i, \beta_i) \) of the control inputs. Positive scalars \(\rho, \eta \).
60.3 The LMI: The Stabilization Feasibility Condition

\[\text{Find} \, X, Y, Z : \]

subj. to: \(X > 0, \)

\[\left[AX + \hat{B}(D_s Y + \hat{D}_s Z) \right] + \left[AX + \hat{B}(D_s Y + \hat{D}_s Z) \right]^\top + \eta X + \frac{1}{\eta} E E^\top < 0 \]

\[\begin{bmatrix} \mu & Z_i \\ X \end{bmatrix} > 0, \, i = 1, \ldots, \bar{m} \]

Here \(D_s \) is a diagonal matrix with a component either 0 or 1, and \(D_s + D_s^- = \frac{\Lambda + T}{2} \) and \(\hat{D}_s = e_{f_m} \times D_s^- \)

60.4 Conclusion:

The feasibility of the given LMI implies that the system is stabilizable with control gains \(K = Y X^{-1}, H = Z X^{-1} \).

60.5 Implementation

A link to CodeOcean or other online implementation of the LMI

60.6 Related LMIs

60.7 External Links

- Stabilization of Systems with Unsymmetrical Saturated Control: An LMI Approach\(^1\) Link to the original article.

\(^1\) https://link.springer.com/content/pdf/10.1007/s00034-014-9786-5.pdf
61 LMI Condition For Exponential Stability of Linear Systems With Interval Time-Varying Delays

LMI Condition For Exponential Stability of Linear Systems With Interval Time-Varying Delays

For systems experiencing time-varying delays where the delays are bounded, the feasibility LMI in this section can be used to determine if the system is α-exponentially stable.

61.1 The System

\[
\begin{align*}
\dot{x}(t) &= Ax(t) + Dx(t - h(t)), & t \in \mathbb{R}^+, \\
x(t) &= \phi(t), & t \in [-h_2, 0],
\end{align*}
\]

where $x(t) \in \mathbb{R}^n$ is the state, $A, D \in \mathbb{R}^{n \times n}$ are the matrices of delay dynamics, and $\phi(t) \in \mathbb{R}^n$ is the initial function with norm $\|\phi\| = \sup_{-h \leq t \leq 0} \{ \|\phi(t)\|, \|\dot{\phi}(t)\| \}$ and it is continuously differentiable function on $[-h_2, 0]$. The time-varying delay function $h(t)$ satisfies:

\[
0 \leq h_1 \leq h(t) \leq h_2, t \in \mathbb{R}^+,
\]

61.2 The Data

The matrices (A, D) are known, as well as the bounds (h_1, h_2) of the time-varying delay.

61.3 The Optimization Problem

For a given $\alpha > 0$, the zero solution of the system described above is α-exponentially stable if there exists a positive number $N > 0$ such that every solution $x(t, \phi)$ satisfies the following condition:

\[
(t, \phi) \| \leq Ne^{-\alpha t} \|\phi\|, \forall t \in \mathbb{R}^+
\]
61.4 The LMI: α-Stability Condition

The following feasibility LMI can be used to check if the system is α-exponentially stable or not for a given $\alpha > 0$:

Find P, Q, R, U, S_i, where $i = 1, 2, \ldots, 5$:

$$
\begin{bmatrix}
M_{11} & M_{12} & M_{13} & M_{14} & M_{15} \\
* & M_{22} & 0 & M_{24} & S_2 \\
* & * & M_{33} & M_{34} & S_3 \\
* & * & * & M_{44} & S_4 - S_5 D \\
* & * & * & * & M_{55}
\end{bmatrix} < 0
$$

where:

$$
M_{11} = A^T P + PA + 2\alpha P - (e^{-2\alpha h_1} + e^{-2\alpha h_2})R + 0.5S_1(I - A) + 0.5(I - A^\top)S_1^\top + 2Q,
$$

$$
M_{12} = e^{-2\alpha h_1} R - S_2 A, \quad M_{13} = e^{-2\alpha h_2} R - S_3 A,
$$

$$
M_{14} = PD - S_1 D - S_4 A, \quad M_{15} = S_1 - S_5 A,
$$

$$
M_{22} = -e^{-2\alpha h_1} (Q + R), \quad M_{24} = S_2 D + e^{-2\alpha h_2} U,
$$

$$
M_{33} = -e^{-2\alpha h_1} (Q + R + U), \quad M_{34} = -S_3 D + e^{-2\alpha h_2} U,
$$

$$
M_{44} = 0.5(S_4 D + D^\top S_4^\top) - e^{-2\alpha h_2} U,
$$

$$
M_{55} = S_5 + S_5^\top + (h_2^2 + h_2^2) R + (h_2 - h_1)^2 U,
$$

The above LMI can be combined with the bisection method to find α.

61.5 Conclusion:

For systems with time-varying delays with intervals, the LMI in this section can be used to check if the system is exponentially stable with a certain α. The bisection algorithm can be additionally used to compute α.

61.6 Implementation

To solve the feasibility LMI, YALMIP toolbox is required for setting up the feasibility problem, and SeDuMi is required to solve the problem. The following link showcases an example of the feasibility problem:

https://github.com/smhsaan/LMI-Examples/blob/master/Intervaled_Delay_Sys_Stability_example.m

61.7 External Links

A list of references documenting and validating the LMI.
• LMI approach to exponential stability of linear systems with interval time-varying delays\(^1\) - Original Article by Phat et al.

\[\text{61.8 Return to Main Page:} \]

\(^1\) https://core.ac.uk/download/pdf/82311937.pdf
Conic Sector Lemma

For general input-output systems, sector conditions are formulated to verify or enforce the feedback stability. One of these sector conditions is the conic sector lemma, and the problem that designs the feedback controller is the conic sector theorem.

62.1 The System

Consider a square, continuous-time linear time-invariant (LTI) system, $G : \mathcal{L}_2 \rightarrow \mathcal{L}_2$, with minimal state-space realization (A, B, C, D), where $A \in \mathbb{R}^{n \times n}, B \in \mathbb{R}^{n \times m}, C \in \mathbb{R}^{m \times n}$, and $D \in \mathbb{R}^{m \times m}$. The state-space representation is:

$$\dot{x}(t) = Ax(t) + Bu(t)$$
$$y(t) =Cx(t) + Du(t)$$

where $x(t) \in \mathbb{R}^n$, $y(t) \in \mathbb{R}^m$ and $u(t) \in \mathbb{R}^m$ are the system state, output, and the input vector respectively.

62.2 The Data

The system coefficient matrices (A, B, C, D) are required. Optionally, the parameters to define a cone, either in the form of $[a, b]$ where $a, b \in \mathbb{R}, a < b$ or a radius $r \in \mathbb{R}_+$ and ceter $c \in \mathbb{R}$.

62.3 The Feasibility LMI

The system G is inside the given cone $[a, b]$ if the following is feasible:

Find: P
subj. to: $P > 0$

$$\begin{bmatrix}
PA + A^TP + C^TC & PB - \frac{a+b}{2}C^T + C^TD \\
(PB - \frac{a+b}{2}C^T + C^TD)^\top & D^TD - \frac{a+b}{2}(D + D^\top) + abI
\end{bmatrix} \leq 0.$$

163
Conic Sector Lemma

The above LMI can be used to also determine the cone parameters by setting a as a variable along with the condition $a < b$, and use the bisection method to find b.

If the given cone is represented by a center c and radius r, then the following feasibility problem can be evaluated to check if \mathcal{G} is inside the given cone:

Find: P

subj. to: $P > 0$

$$
\begin{bmatrix}
PA + A^T P + C^T C & PB - cC^T + C^T D \\
(PB - cC^T + C^T D)^T & D^T D - c(D + D^T) + (r^2 - c^2)I
\end{bmatrix} \leq 0.
$$

In order to also find the cone parameters, substituting $\gamma = r^2$ as a decision variable with additional constraint $\gamma \geq 0$ and then solving for c via the bisection method will give the cone in which the system \mathcal{G} resides if the problem is feasible.

62.4 Conclusion:

The aforementioned LMIs can be utilized to either check if \mathcal{G} is in the specified cone or not, or can be used to check the stability of \mathcal{G} by finding if a feasible cone can be obtained that encloses \mathcal{G}. An important point to note here is that the Conic Sector Lemma is a special case of the KYP Lemma\(^1\) for QSR dissipative systems with:

$$
Q = -1, \quad S = \frac{a}{c} + b2I = cI, \quad R = -abI = (r^2 - c^2)I.
$$

62.5 Implementation

To solve the feasibility LMI, YALMIP toolbox is required for setting up the feasibility problem, and SeDuMi is required to solve the problem. The following link showcases an example of the feasibility problem:

https://github.com/smhassaan/LMI-Examples/blob/master/Conic_sector_example.m

62.6 Related LMIs

Exterior Conic Sector Lemma\(^2\).

KYP Lemma\(^3\)

\(^1\) https://en.wikibooks.org/wiki/LMIs_in_Control/pages/KYP_Lemma_(Bounded_Real_Lemma)
\(^2\) https://en.wikibooks.org/wiki/LMIs_in_Control/pages/Exterior_Conic_Sector_Lemma
\(^3\) https://en.wikibooks.org/wiki/LMIs_in_Control/pages/KYP_Lemma_(Bounded_Real_Lemma)
62.7 External Links

A list of references documenting and validating the LMI.

62.8 Return to Main Page:

\(^4\) https://arxiv.org/abs/1903.08599/
63 Polytopic Quadratic Stability

An important result to determine the stability of the system with uncertainties

63.1 The System:
Consider the system with Affine Time-Varying uncertainty (No input)

\[
\dot{x}(t) = (A_0 + \Delta A(t)) x(t)
\]

where

\[
\Delta A(t) = A_1 \delta_1(t) + \ldots + A_k \delta_k(t)
\]

where \(\delta_i(t)\) lies in either the intervals

\[
\delta_i \in [\delta_i^-, \delta_i^+]
\]

or the simplex

\[
\delta(t) \in \delta : \Sigma \alpha_i = 1, \alpha \geq 0
\]

where \(x \in \mathbb{R}^m\) and \(A \in \mathbb{R}^{mxm}\)

63.2 The Data
The matrix A and \(\Delta A(t)\) are known

63.3 The Optimization
The Definitions: Quadratic Stability for Dynamic Uncertainty
The system

\[
\dot{x}(t) = (A_0 + \Delta A(t)) x(t)
\]
Polytopic Quadratic Stability

is Quadratically Stable over Δ if there exists a $P > 0$

Theorem

$(A + \Delta, \Delta)$ is quadratically stable over $\Delta := Co(A_1, ..., A_k)$ if and only if there exists a $P > 0$ such that

$$(A + A_i)^T P + P(A + A_i) < 0 \quad \text{for all} \quad i = 1, ..., k$$

The theorem says the LMI only needs to hold at the EXTREMAL POINTS or VERTICES of the polytope.

- Quadratic Stability MUST be expressed as an LMI

63.4 The LMI

$$(A + \Delta)^T P + P(A + \Delta) < 0 \quad \text{for all} \quad \Delta \in \Delta$$

63.5 Conclusion:

Quadratic Stability Implies Stability of trajectories for any Δ with $\Delta \in \Delta$ for all $t \geq 0$

Quadratic Stability is CONSERVATIVE.

There are Stable System which are not Quadratically stable.

Quadratic Stability is sometimes referred to as an "infinite-dimensional LMI"

- Meaning it represents an infinite number of LMI constraints.
- One for each possible value Δ with $\Delta \in \Delta$
- Also called a parameterized LMI
- Such LMIs are not tractable.
- For polytopic sets, the LMI can be made finite.

63.6 Implementation

A link to implementation of the LMI

63.7 Related LMIs

- Parametric Norm Bounded Uncertain System Quadratic Stability

63.8 External Links

A list of references documenting and validating the LMI.

- LMI Methods in Optimal and Robust Control\(^2\) - A course on LMIs in Control by Matthew Peet.
- LMI Properties and Applications in Systems, Stability, and Control Theory\(^3\) - A List of LMIs by Ryan Caverly and James Forbes.

63.9 Return to Main Page:

1 Chapter 50 on page 137
2 http://control.asu.edu/MAE598_frame.htm
3 https://arxiv.org/abs/1903.08599/
4 https://web.stanford.edu/~boyd/lmibook/
64 Mu Analysis

Mu Synthesis. The technique of μ synthesis extends the methods of H synthesis to design a robust controller for an uncertain plant. You can perform μ synthesis on plants with parameter uncertainty, dynamic uncertainty, or both using the "musyn" command in MATLAB. μ analysis is an extremely powerful multivariable technique which has been applied to many problems in the almost every industry including Aerospace, process industry etc.

64.1 The System:

Consider the continuous-time generalized LTI plant with minimal states-space realization

$$\dot{x} = Ax + Bu$$
$$y = Cx + Du$$

where it is assumed that D is Invertible.

64.2 The Data

The matrices needed as inputs are only, A and D.

64.3 The LMI: μ- Analysis

The inequality $\sigma(DAD^{-1}) < \gamma$ holds if and only if there exist $X \in \mathbb{S}^n$ and $\gamma \in \mathbb{R}_{>0}$, where $X > 0$, satisfying:

$$A^T X A - \gamma^2 X < 0$$

64.4 Conclusion:

The inequality $\sigma(DAD^{-1}) < \gamma$ holds for $D = X^{1/2}$, where X satisfies the above Inequality.
Mu Analysis

64.5 Implementation

- https://github.com/Ricky-10/coding107/blob/master/Mu%20Analysis - \(\mu \)-Analysis

64.6 External links

- https://www.mathworks.com/help/robust/mu-synthesis.html - MATLAB \(\mu \)-synthesis Implementation
- LMI Properties and Applications in Systems, Stability, and Control Theory\(^1\) - A List of LMIs by Ryan Caverly and James Forbes.

\(^1\) https://arxiv.org/abs/1903.08599/

172
65 Optimization Over Affine Family of Linear Systems

65.1 Optimization over an Affine Family of Linear Systems

Presented in this page is a general framework for optimizing various convex functionals for a system which depends affinely, or linearly, on a parameter using linear matrix inequalities. The optimization problem presented on this page generalizes an LMI which can be applied to various problems within linear systems and control. Some examples of these applications are finding the H_2 and H_∞ norms, entropy, dissipativity, and the Hankel norm of an affinely parametric system.

65.2 The System

Consider a family of linear systems
\[\dot{x} = Ax + B_w w, \]
\[z = C_z(\theta)x + D_{zw}(\theta)w \]
with state space realization (A, B_w, C_z, D_{zw}) where C_z and D_{zw} depend affinely on the parameter $\theta \in \mathbb{R}^p$.

We assume A is stable and (A, B_w) is controllable.

The transfer function, $H_\theta(s) = C_z(\theta)(sI - A)^{-1}B_w + D_{zw}(\theta)$ depends affinely on θ.

65.3 The Data

The transfer function H, and system matrices A, B_w, C_z, D_{zw} are known. φ represents the convex functionals, α and ψ represent some auxiliary variables dependent on the problem being solved.

65.4 The LMI: Generalized Optimization for Affine Linear Systems

Several control theory problems, mentioned earlier, take the following form:

\[\text{minimize } \psi_0(H_\theta) \]
\[\text{subject to } \psi_i(H_\theta) < \alpha_i, i = 1, \ldots, p \]

Problems of this nature can be formulated as an LMI by representing $\psi_i(H_\theta) < \alpha_i$ as an LMI in θ, α_i, and possibly ψ_i such that $F_i(\theta, \alpha_i, \psi_i) > 0$.
Thus, the general optimization problem to be applied to an affine family of linear systems is as follows:

\[
\begin{align*}
\text{minimize} & \quad \alpha_0 \\
\text{subject to} & \quad F_i(\theta, \alpha_i, \psi_i) > 0, \ i = 0, 1, \ldots, P
\end{align*}
\]

65.5 Conclusion:

The LMI for this generalized optimization problem may be extended to various convex functionals for affine parametric systems. For extensions of this LMI, see the related LMIs section.

65.6 Implementation

Implementation of LMIs of this form require Yalmip and a linear solver such as Sedumi or SDPT3.

- \(H_\infty\) Norm for Affine Parametric Systems\(^1\) - MATLAB code for an extension of this generalized LMI.
- Entropy Bond for Affine Parametric Systems\(^2\) - MATLAB code for an extension of this generalized LMI.

LMI can be applied to other extensions in stability and controller analysis. Please see the related LMI pages in the section below.

65.7 Related LMIs

- \(H_\infty\) Norm for Affine Parametric Systems\(^3\)
- Entropy Bond for Affine Parametric Systems\(^4\)
- Dissipativity for Affine Parametric Systems\(^5\) for Affine Parametric Systems\(^6\)

1. https://github.com/mkhajenejad/Mohammad-Khajenejad/commit/5462bc1dc441bc298d50a2c35075e9466e8ba8355
65.8 External Links

- LMI Methods in Optimal and Robust Control\(^7\) - A course on LMIs in Control by Matthew Peet.

65.9 Return to Main Page:

LMIs in Control: https://en.wikibooks.org/wiki/LMIs_in_Control

7 http://control.asu.edu/MAE598_frame.htm
8 https://web.stanford.edu/~boyd/lmibook/
 Duan-Yu/p/book/9781466582996
66 Hurwitz Stabilizability

This section studies the stabilizability properties of the control systems.

66.1 The System

Given a state-space representation of a linear system

\[\rho x = Ax + Bu \]
\[y = Cx + Du \]

Where \(\rho \) represents the differential operator (when the system is continuous-time) or one-step forward shift operator (Discrete-Time system). \(x \in \mathbb{R}^n, y \in \mathbb{R}^m, u \in \mathbb{R}^r \) are the state, output and input vectors respectively.

66.2 The Data

A, B, C, D are system matrices.

66.3 Definition

The system, or the matrix pair \((A, B)\) is Hurwitz Stabilizable if there exists a real matrix \(K\) such that \((A + BK)\) is Hurwitz Stable. The condition for Hurwitz Stabilizability of a given matrix pair \((A, B)\) is given by the PBH criterion:

\[
\text{rank} \left[\begin{bmatrix} sI & -A \\ B \end{bmatrix} \right] = n, \forall s \in \mathbb{C}, \text{Re}(s) \geq 0
\]

The PBH criterion shows that the system is Hurwitz stabilizable if all uncontrollable modes are Hurwitz stable.
66.4 LMI Condition

The system, or matrix pair \((A, B)\) is Hurwitz stabilizable if and only if there exists symmetric positive definite matrix \(P\) and \(W\) such that:

\[
AP + PA^T + BW + W^T B^T < 0
\]

Following definition of Hurwitz Stabilizability and Lyapunov Stability theory, the PBH criterion is true if and only if, a matrix \(K\) and a matrix \(P > 0\) satisfying:

\[
(A + BK)P + P(A + BK)^T < 0
\]

Letting

\[
W = KP
\]

Putting (4) in (3) gives us (2).

66.5 Implementation

This implementation requires Yalmip and Mosek.

- https://github.com/ShenoyVaradaraya/LMI--master/blob/main/Hurwitz_Stabilizability.m

66.6 Conclusion

Compared with the second rank condition, LMI has a computational advantage while also maintaining numerical reliability.
66.7 References

- LMI Methods in Optimal and Robust Control1 - A course on LMIs in Control by Matthew Peet.
- LMIs in Systems and Control Theory2 - A downloadable book on LMIs by Stephen Boyd.
- LMIs in Control Systems: Analysis, Design and Applications3 - by Guang-Ren Duan and Hai-Hua Yu, CRC Press, Taylor & Francis Group, 2013

66.8 Return to Main Page:

1 \url{http://control.asu.edu/MAE598_frame.htm}
2 \url{https://web.stanford.edu/~boyd/lmibook/}
3 \url{https://www.crcpress.com/LMIs-in-Control-Systems-Analysis-Design-and-Applications/}
\url{Duan-Yu/p/book/9781466582996}
67 Quadratic Hurwitz Stabilization for Polytopic Systems

This section studies the Quadratic Hurwitz stabilization for polytopic systems.

67.1 The System

Given a state-space representation of a linear system

\[\dot{x}(t) = A(\delta(t))x(t) + B(\delta(t))u(t) \]

\[A(\delta(t)) = A_0 + \delta_1(t)A_1 + \delta_2(t)A_2 \]

\[B(\delta(t)) = B_0 + \delta_1(t)B_1 + \delta_2(t)B_2 \]

67.2 LMI Condition

With \(\Delta = \Delta_p \), the quadratic Hurwitz Stabilization problem has a solution if and only if there exists a symmetric positive definite matrix \(P \) and a matrix \(W \) satisfying the below LMI:

\[(A_0 + A_i)P + P(A_0 + A_i)^T + (B_0 + B_i)W + W(B_0 + B_i)^T < 0, i = 1, 2, \ldots, k \]

In this case, a solution to the problem is given by

\[K = WP^{-1} \]
67.3 Conclusion

Stability of a system does not guarantee quadratic stability. Since quadratic stability can represent infinite LMI constraints, it is not tractable. Therefore, to make it feasible and tractable, polytopic sets are helpful.

67.4 External Links

- LMI Methods in Optimal and Robust Control1 - A course on LMIs in Control by Matthew Peet.
- LMIs in Systems and Control Theory2 - A downloadable book on LMIs by Stephen Boyd.
- LMIs in Control Systems: Analysis, Design and Applications3 - by Guang-Ren Duan and Hai-Hua Yu, CRC Press, Taylor & Francis Group, 2013

1 http://control.asu.edu/MAE598_frame.htm
2 https://web.stanford.edu/~boyd/lmibook/
68 Discrete-Time Lyapunov Stability

Discrete-Time Lyapunov Stability
A discrete time system operates on a discrete time signal input and produces a
discrete time signal output. They are used in digital signal processing, such as
digital filters for images or sound. The class of discrete time systems that are both
linear and time invariant, known as discrete time LTI systems.
Stability of DT LTI systems can be determined by solving Lyapunov Inequality.

68.1 The System
Discrete-Time System
\[x(t)_{k+1} = A_d x(t)_k, \quad A_d \in \mathbb{R}^{n \times n} \]

68.2 The Data
The matrices: System \(A_d, P \).

68.3 The Optimization Problem
The following feasibility problem should be optimized:

Find \(P \) obeying the LMI constraints.

68.4 The LMI:
Discrete-Time Bounded Real Lemma

The LMI formulation
\[
P \in \mathbb{S}^n
\]
Find \(P > 0, \)
\[
\left[A_d^T P A_d - P \right] < 0
\]
68.5 Conclusion:
If there exists a $P \in S^n$ satisfying the LMI then, $|\lambda_i(A_d)| \leq 1, \forall i = 1, 2, ..., n$; and the equilibrium point $\bar{x} = 0$ of the system is Lyapunov stable.

68.6 Implementation
A link to CodeOcean or other online implementation of the LMI MATLAB Code

68.7 Related LMIs
Continuous_Time_Lyapunov_Inequality2 - Lyapunov_Inequality

68.8 External Links
A list of references documenting and validating the LMI.

- LMI Methods in Optimal and Robust Control3 - A course on LMIs in Control by Matthew Peet.

68.9 Return to Main Page:

1. https://github.com/Harishankar-Prabhakaran/LMIs/blob/master/A1.m
2. https://en.wikibooks.org/wiki/LMIs_in_Control/Lyapunov_Inequality
69 LMI for Schur Stabilization

LMI for Schur Stabilization

Similar to the stability of continuous-time systems, one can analyze the stability of discrete-time systems. A discrete-time system is said to be stable if all roots of its characteristic equation lie in the open unit disk. This provides a condition for the stability of discrete-time linear systems and a linear time-invariant system with this property is called a Schur stable system.

69.1 The System

We consider the following system:
\[x(k + 1) = Ax(k) + Bu(k) \]
where the matrices \(A \in \mathbb{R}^{n \times n}, B \in \mathbb{R}^{n \times r}, \) \(x \in \mathbb{R}^n, \) and \(u \in \mathbb{R}^r \) are the state matrix, input matrix, state vector, and the input vector, respectively.

Moreover, \(k \) represents time in the discrete-time system and \(k + 1 \) is the next time step.

The state feedback control law is defined as follows:
\[u(k) = Kx(k) \]
where \(K \in \mathbb{R}^{n \times r} \) is the controller gain. Thus, the closed-loop system is given by:
\[x(k + 1) = (A + BK)x(k) \]

69.2 The Data

The matrices \(A \) and \(B \) are given.

We define the scalar as \(\gamma \) with the range of \(0 < \gamma \leq 1 \).

69.3 The Optimization Problem

The optimization problem is to find a matrix \(K \in \mathbb{R}^{r \times n} \) such that:
\[||A + BK||_2 < \gamma \]
According to the definition of the spectral norms of matrices, this condition becomes equivalent to:
\[(A + BK)^T(A + BK) < \gamma^2 I\]

Using the Lemma 1.2 in LMI in Control Systems Analysis, Design and Applications\(^1\) (page 14), the aforementioned inequality can be converted into:
\[
\begin{bmatrix}
-\gamma I & (A + BK) \\
(A + BK)^T & -\gamma I
\end{bmatrix} < 0
\]

69.4 The LMI: LMI for Schur stabilization

The LMI for Schur stabilization can be written as minimization of the scalar, \(\gamma\), in the following constraints:

\[
\begin{align*}
\min & \quad \gamma \\
\text{s.t.} & \quad \begin{bmatrix}
-\gamma I & (A + BK) \\
(A + BK)^T & -\gamma I
\end{bmatrix} < 0
\end{align*}
\]

69.5 Conclusion:

After solving the LMI problem, we obtain the controller gain \(K\) and the minimized parameter \(\gamma\). This problem is a special case of Intensive Disk Region Design (page 230 in [1]). This problem may not have a solution even when the system is stabilizable. In other words, once there exists a solution, the solution is robust in the sense that when there are parameter perturbations, the closed-loop system's eigenvalues are not easy to go outside of a circle region within the unit circle [1].

69.6 Implementation

A link to Matlab codes for this problem in the Github repository:
https://github.com/asalimil/LMI-for-Schur-Stability

69.7 Related LMIs

LMI for Hurwitz stability\(^2\)

69.8 External Links

69.9 Return to Main Page

LMIs in Control/Tools\(^3\)

\(^3\) https://en.wikibooks.org/wiki/LMIs_in_Control/Tools
70 L2-Gain of Systems with Multiplicative noise

70.1 The System

\[x(k+1) = Ax(k) + B_w w(k) + \sum_{i=1}^{L} (A_i x(k) + B_{w,i} w(k)) p_i(k), \quad x(0) = 0, \]
\[z(k) = C_z x(k) + D_{zw} w(k) + \sum_{i=1}^{L} (C_{z,i} x(k) + D_{zw,i} w(k)) p_i(k), \]

where \(p(0), p(1), \ldots \), are independent, identically distributed random variables with \(E p(k) = 0, E p(k) p^\top(k) = \Sigma = diag(\sigma_1, \ldots, \sigma_L) \) and \(x(0) \) is independent of the process \(p \).

70.2 The Data

The matrices \(A, B_w, \{A_i, B_{w,i}\}_{i=1}^{L}, C_z, D_{zw}, \{C_{z,i}, D_{zw,i}\}_{i=1}^{L}, \{\sigma_i\}_{i=1}^{L} \).

70.3 The LMI:

\[
\begin{aligned}
\min_{\{P \succ 0, \gamma^2\}} \gamma^2 \\
\text{s.t.} \quad & \begin{bmatrix} A & B_w \\ C_z & D_{zw} \end{bmatrix}^\top \begin{bmatrix} P & 0 \\ 0 & I \end{bmatrix} \begin{bmatrix} A & B_w \\ C_z & D_{zw} \end{bmatrix} - \begin{bmatrix} P & 0 \gamma^2 I \end{bmatrix} + \sum_{i=1}^{L} \sigma_i^2 \begin{bmatrix} A_i & B_{w,i} \\ C_{z,i} & D_{zw,i} \end{bmatrix}^\top \begin{bmatrix} P & 0 \\ 0 & I \end{bmatrix} \begin{bmatrix} A_i & B_{w,i} \\ C_{z,i} & D_{zw,i} \end{bmatrix}^\top \preceq 0
\end{aligned}
\]

70.4 Implementation

https://github.com/mkhajenejad/Mohammad-Khajenejad/commit/a34713575cd8ae9831cb5b7eb759d0fd45a8c37f

70.5 Conclusion

The optimal \(\gamma \) returns an upper bound on the \(L_2 \) gain of the system.
Remark

It is straightforward to apply scaling method [Boyd, sec.6.3.4] to obtain component-wise results.

External Links

- LMI Methods in Optimal and Robust Control1 - A course on LMIs in Control by Matthew Peet.
- LMI Properties and Applications in Systems, Stability, and Control Theory2 - A List of LMIs by Ryan Caverly and James Forbes.
- LMIs in Systems and Control Theory3 - A downloadable book on LMIs by Stephen Boyd.

Return to Main Page:

1 http://control.asu.edu/MAE598_frame.htm
2 https://arxiv.org/abs/1903.08599/
3 https://web.stanford.edu/~boyd/lmibook/
71 Discrete-Time Quadratic Stability

71.1 Discrete-Time Quadratic Stability

Stability is an important property, stability analysis is necessary for control theory. For robust control, this criterion is applicable for the uncertain discrete-time linear system. It is based on the Discrete Time Lyapunov Stability.

71.2 The System

\[x_{k+1} = A_d(\alpha)x_k \]

Where:
\[A_d(\alpha) = A_d + \Delta A_d(\delta(t)) \]
\[\Delta A_d(\delta(t)) = \sum_{k=1}^{n} \delta_k(t)A_{d;k} \in \mathbb{R}^{n \times n} \]
\[\delta(t) = [\delta_1(t),...\delta_n(t)] - \text{The set of perturbation parameters} \]
\[\delta(t) \in RA_{d;i} \in \mathbb{R}^{n \times n} \]

71.3 The Data

The matrices \(A \in \mathbb{R}^{n \times n}A_{d;i} \in \mathbb{R}^{n \times n} \).

71.4 The Optimization Problem

The following feasibility problem should be solved:

Find \(P > 0 \):
\[(A_{d;0} + \Delta A_d(\delta(t)))^TP(A_{d;0} + \Delta A_d(\delta(t))) - P < 0 \text{ for all } \delta \]

Where \(P \in \mathbb{R}^{n,n} \).

In case of polytopic uncertainty:

Find \(P > 0 \):
\[(A_{d;0} + A_{d;i})^TP(A_{d;0} + A_{d;i}) - P < 0 \text{ for all } i = 1,...n \]
71.5 Conclusion:

This LMI allows us to investigate stability for the robust control problem in the case of polytopic uncertainty and gives on the controller for this case.

71.6 Implementation:

71.7 Related LMIs:

- Discrete Time Stabilizability
- Polytopic stability for continuous time case
- Quadratic polytopic stabilization
- Discrete Time Lyapunov Stability

71.8 External Links

A list of references documenting and validating the LMI.

- LMI Methods in Optimal and Robust Control - A course on LMIs in Control by Matthew Peet.
- LMI Properties and Applications in Systems, Stability, and Control Theory - A List of LMIs by Ryan Caverly and James Forbes. (3.20.2 page 64)

71.9 Return to Main Page:

- Main Page

72 Stability of Lure's Systems

72.1 The System

\[
\begin{align*}
\dot{x}(t) &= Ax(t) + B_p p(t) + B_w w(t), \\
z(t) &= C_z x(t) \\
p_i(t) &= \phi_i(q_i(t)), i = 1, \ldots, n_p \\
q &= C_q x, \\
0 &\leq \sigma \phi_i(\sigma) \leq \sigma^2 \quad \forall \sigma \in \mathbb{R}
\end{align*}
\]

72.2 The Data

The matrices \(A, B_p, B_w, C_q, C_z\).

72.3 The LMI: The Lure's System's Stability

The following feasibility problem should be solved as sufficient condition for the stability of the above Lur'e system.

Find \(P > 0, \Lambda = \text{diag}(\lambda_1, \ldots, \lambda_{n_p}) \succeq 0, T = \text{diag}(\tau_1, \ldots, \tau_{n_p}) \succeq 0:\)

\[
\begin{bmatrix}
A^\top P + PA & PB_p + A^\top C_q^\top \Lambda + C_q^\top T \\
B_p^\top P + \Lambda C_q A + T C_q & \Lambda C_q B_p + B_p^\top C_q^\top \Lambda - 2T
\end{bmatrix} \prec 0
\]

72.4 Implementation

https://codeocean.com/capsule/0232754/tree

72.5 Conclusion

If the feasibility problem with LMI constraints has solution, then the Lure's system is stable.
72.6 Remark

The LMI is only a sufficient condition for the existence of a Lur’ë Lyapunov function that proves stability of Lur’ë system. It is also necessary when there is only one nonlinearity, i.e., when \(n_p = 1 \).

72.7 External Links

- LMI Methods in Optimal and Robust Control\(^1\) - A course on LMIs in Control by Matthew Peet.
- LMIs in Systems and Control Theory\(^3\) - A downloadable book on LMIs by Stephen Boyd.

72.8 Return to Main Page:

\(^1\) http://control.asu.edu/MAE598_frame.htm

\(^3\) https://web.stanford.edu/~boyd/lmibook/
73 L2 Gain of Lure's Systems

73.1 The System

\[\dot{x}(t) = Ax(t) + B_p p(t) + B_w w(t), \]
\[z(t) = C_z x(t), \]
\[p_i(t) = \phi_i(q_i(t)), i = 1, \ldots, n_p, \]
\[q = C_q x, \]
\[0 \leq \sigma \phi_i(\sigma) \leq \sigma^2 \forall \sigma \in \mathbb{R} \]

73.2 The Data

The matrices \(A, B_p, B_w, C_q, C_z \).

73.3 The Optimization Problem:

The following semi-definite problem should be solved.

\[
\begin{aligned}
\min_{\{P \succeq 0, \Lambda = \text{diag}(\lambda_1, \ldots, \lambda_{np}) \succeq 0, T = \text{diag}(\tau_1, \ldots, \tau_{np}) \succeq 0\}} & \gamma^2 \\
\text{s.t.} & \begin{bmatrix}
A^T P + PA + C_z^T C_z & PB_p + A^T C_q^T \Lambda + C_q^T T & \Lambda C_q B_p + B_p^T C_q^T \Lambda - 2T & \Lambda C_q B_w \\
B_p^T P + \Lambda C_q A + T C_q & B_w^T P & B_w^T C_q^T \Lambda & -\gamma^2 I
\end{bmatrix} \succeq 0
\end{aligned}
\]

73.4 Implementation

https://github.com/mkhajenejad/Mohammad-Khajenejad/commit/12a7039f9e3d966e24b43fd58a3ccej3725282ed2

73.5 Conclusion

The value function returns the square of the smallest provable upper bound on the \(\mathcal{L}_2 \) gain of the Lure's system.
73.6 Remark

The Lyapunov function which is used to proof is similar to the one for the systems with unknown parameters.

73.7 External Links

- LMI Methods in Optimal and Robust Control\(^1\) - A course on LMIs in Control by Matthew Peet.
- LMIs in Systems and Control Theory\(^3\) - A downloadable book on LMIs by Stephen Boyd.

73.8 Return to Main Page:

\(^1\) http://control.asu.edu/MAE598_frame.htm
\(^2\) https://arxiv.org/abs/1903.08599/
\(^3\) https://web.stanford.edu/~boyd/lmibook/
74 Output Energy Bound for Lure’s Systems

74.1 The System

\[\dot{x}(t) = Ax(t) + B_p p(t) + B_w w(t), \]
\[z(t) = C_z x(t), \]
\[p_i(t) = \phi_i(q_i(t)), i = 1, \ldots, n_p \]
\[q(t) = C_q x(t), \]
\[0 \leq \sigma \phi_i(\sigma) \leq \sigma^2 \forall \sigma \in \mathbb{R} \]

74.2 The Data

The matrices \(A, B_p, B_w, C_q, C_z, x(0) \).

74.3 The Optimization Problem:

The following optimization problem should be to find the tightest upper bound for the output energy of the above Lur'e system.

\[
\min_{P \succ 0, \Lambda = \text{diag}(\lambda_1, \ldots, \lambda_{np}) \succeq 0, T = \text{diag}(\tau_1, \ldots, \tau_{np}) \succeq 0} \quad
\begin{bmatrix}
 x^\top(0)(P + C_q^\top \Lambda C_q)x(0) \\
 A^\top P + PA \\
 B_p^\top P + \Lambda C_q A + TC_q \\
 T \Lambda + 2T
\end{bmatrix} \preceq 0
\]

74.4 Implementation

https://github.com/mkhajenejad/Mohammad-Khajenejad/blob/master/LMIs%20for%20Output%20Energy%20Bounds%20of%20Lure's%20Systems

74.5 Conclusion

The value function returns the lowest bound for the energy function of the Lure’s systems, i.e., \(J = \int_0^\infty z^\top z \, dt \) with initial conditions \(x(0) \).
74.6 Remark

The key step in the proof is to satisfy $\frac{d}{dt} V(x) + z^T z \leq 0$, where $V(.)$ is Lyapunov function in a special form.

74.7 External Links

- LMI Methods in Optimal and Robust Control\(^1\) - A course on LMIs in Control by Matthew Peet.
- LMIs in Systems and Control Theory\(^3\) - A downloadable book on LMIs by Stephen Boyd.

74.8 Return to Main Page:

1 http://control.asu.edu/MAE598_frame.htm
3 https://web.stanford.edu/~boyd/lmibook/
75 Stability of Quadratic Constrained Systems

75.1 The System

\[
\dot{x}(t) = Ax(t) + B_p p(t) + B_u u(t) + B_w w(t), \\
q(t) = C_q x(t) + D_{qp} p(t) + D_{qu} u(t) + D_{qw} w(t), \\
z(t) = C_z x(t) + D_{zp} p(t) + D_{zu} u(t) + D_{zw} w(t) \\
\int_0^t p^\top(\tau)p(\tau) \, d\tau \leq \int_0^t q^\top(\tau)q(\tau) \, d\tau.
\]

75.2 The Data

The matrices \(A, B_p, B_w, C_q, C_z, D_{qp}, D_{zw}\).

75.3 The LMI:

The following feasibility problem should be solved.

\[
\text{Find}\{P \succ 0, \lambda \geq 0\} : \\
\text{s.t.} \quad \begin{bmatrix}
A^\top P + PA + \lambda C_q^\top C_q & PB_p + \lambda C_q^\top D_{qp} \\
(PB_p + \lambda C_q^\top D_{qp})^\top & \lambda(I - D_{qp}^\top D_{qp})
\end{bmatrix} < 0.
\]

75.4 Implementation

https://github.com/mkhajenejad/Mohammad-Khajenejad/commit/38f3b55ca7060a1260384a96e9dc31142af07a9a

75.5 Conclusion

The integral quadratic constrained system is stable if the provided LMI is feasible.
75.6 Remark

The key point of the proof is to satisfy \(\dot{V} < 0 \) whenever \(p^T p \leq q^T q \), using \(S \)-procedure.

75.7 External Links

- LMI Methods in Optimal and Robust Control\(^1\) - A course on LMIs in Control by Matthew Peet.
- LMIs in Systems and Control Theory\(^3\) - A downloadable book on LMIs by Stephen Boyd.

75.8 Return to Main Page:

\(^1\) http://control.asu.edu/MAE598_frame.htm
\(^2\) https://arxiv.org/abs/1903.08599/
\(^3\) https://web.stanford.edu/~boyd/lmibook/
76 Conic Sector Lemma

Conic Sector Lemma
For general input-output systems, sector conditions are formulated to verify or enforce the feedback stability. One of these sector conditions is the conic sector lemma, and the problem that designs the feedback controller is the conic sector theorem.

76.1 The System
Consider a square, continuous-time linear time-invariant (LTI) system, \(G : \mathcal{L}_2 \rightarrow \mathcal{L}_2 \), with minimal state-space realization \((A, B, C, D)\), where \(A \in \mathbb{R}^{n \times n} \), \(B \in \mathbb{R}^{n \times m} \), \(C \in \mathbb{R}^{m \times n} \), and \(D \in \mathbb{R}^{m \times m} \). The state-space representation is:

\[
\dot{x}(t) = Ax(t) + Bu(t) \\
y(t) = Cx(t) + Du(t)
\]

where \(x(t) \in \mathbb{R}^n \), \(y(t) \in \mathbb{R}^m \) and \(u(t) \in \mathbb{R}^m \) are the system state, output, and the input vector respectively.

76.2 The Data
The system coefficient matrices \((A, B, C, D)\) are required. Optionally, the parameters to define a cone, either in the form of \([a, b]\) where \(a, b \in \mathbb{R}, a < b \) or a radius \(r \in \mathbb{R}_+ \) and ceter \(c \in \mathbb{R} \).

76.3 The Feasibility LMI
The system \(G \) is inside the given cone \([a, b]\) if the following is feasible:

\[
\text{Find: } P \\
\text{subj. to: } P > 0 \\
\begin{bmatrix}
PA + A^TP + C^TC & PB - \frac{a+b}{2}C^T + C^TD \\
(PB - \frac{a+b}{2}C^T + C^TD)^\top & D^TD - \frac{a+b}{2}(D + D^\top) + abI
\end{bmatrix} \leq 0.
\]
The above LMI can be used to also determine the cone parameters by setting a as a variable along with the condition $a < b$, and use the bisection method to find b.

If the given cone is represented by a center c and radius r, then the following feasibility problem can be evaluated to check if \mathcal{G} is inside the given cone:

Find: P
subj. to: $P > 0$ \[
\begin{bmatrix}
PA + A^TP + C^TC & PB - cC^T + C^TD \\
(PB - cC^T + C^TD)^T & D^TD - c(D + D^T) + (c^2 - r^2)I
\end{bmatrix} \leq 0.
\]

In order to also find the cone parameters, substituting $\gamma = r^2$ as a decision variable with additional constraint $\gamma \geq 0$ and then solving for c via the bisection method will give the cone in which the system \mathcal{G} resides if the problem is feasible.

76.4 Conclusion:

The aforementioned LMIs can be utilized to either check if \mathcal{G} is in the specified cone or not, or can be used to check the stability of \mathcal{G} by finding if a feasible cone can be obtained that encloses \mathcal{G}. An important point to note here is that the Conic Sector Lemma is a special case of the KYP Lemma\(^1\) for QSR dissipative systems with:

$Q = -1, S = \frac{a}{b} + bI = cI, R = -abI = (r^2 - c^2)I.$

76.5 Implementation

To solve the feasibility LMI, YALMIP toolbox is required for setting up the feasibility problem, and SeDuMi is required to solve the problem. The following link showcases an example of the feasibility problem:

https://github.com/smhassaan/LMI-Examples/blob/master/Conic_sector_example.m

76.6 Related LMIs

Exterior Conic Sector Lemma\(^2\).

KYP Lemma\(^3\)

76.7 External Links

A list of references documenting and validating the LMI.

- LMI Properties and Applications in Systems, Stability, and Control Theory4 - A List of LMIs by Ryan Caverly and James Forbes.

76.8 Return to Main Page:

4 https://arxiv.org/abs/1903.08599/
77 State Feedback

1. /H-infinity/\(^1\)
2. /H-2/\(^2\)
3. /Mixed/\(^3\)
4. Stabilization of Second-Order Systems\(^4\)
5. LQ Regulation via H2 Control\(^5\)
6. Controller to achieve the desired Reachable set; Polytopic uncertainty\(^6\)
7. Controller to achieve the desired Reachable set; Norm bound uncertainty\(^7\)
8. Controller to achieve the desired Reachable set; Diagonal Norm-bound uncertainty\(^8\)

1 https://en.wikibooks.org/wiki/%2FH-infinity%2F
4 https://en.wikibooks.org/wiki/LMIs%20in%20Control%20pages%2Fstabilization%20of%20second%20order%20systems
5 https://en.wikibooks.org/wiki/LMIs%20in%20Control%20pages%2FLQ%20Regulation%20via%20H2%20Control
8 https://en.wikibooks.org/wiki/LMIs%20in%20Control%20pages%2FReachable%20set%20diagonalNB
78 D-Stability

1. Continuous Time D-Stability Controller1

1 https://en.wikibooks.org/wiki/LMIs_in_Control/pages/Continuous_Time_D-Stability_Controller
79 Optimal State Feedback

1. /H-infinity/¹
2. /H-2/²
3. /Mixed/³

¹ https://en.wikibooks.org/wiki/%2FH-infinity%2F
80 Output Feedback

1. /H-infinity/1
2. /H-2/2
3. /Mixed/3

\begin{itemize}
 \item \url{https://en.wikibooks.org/wiki/%2FH-infinity%2F}
 \item \url{https://en.wikibooks.org/wiki/%2FH-2%2F}
 \item \url{https://en.wikibooks.org/wiki/%2FMixed%2F}
\end{itemize}
81 Static Output Feedback

1. /H-infinity/¹
2. /H-2/²
3. /Mixed/³
4. Continuous-Time Static Output Feedback Stabilizability⁴

¹ https://en.wikibooks.org/wiki/%2FH-infinity%2F
⁴ https://en.wikibooks.org/wiki/LMIs_in_Control/pages/CT-SOFS
82 Optimal Output Feedback

1. /H-infinity/\(^1\)
2. /H-2/\(^2\)
3. /Mixed/\(^3\)

1 https://en.wikibooks.org/wiki/%2FH-infinity%2F
83 Stabilizability LMI

Stabilizability LMI
A system is stabilizable if all unstable modes of the system are controllable. This implies that if the system is controllable, it will also be stabilizable. Thus, stabilizability is a essentially a weaker version of the controllability condition. The LMI condition for stabilizability of pair \((A, B)\) is shown below.

83.1 The System

\[
\dot{x}(t) = Ax(t) + Bu(t),
\]
\[
x(0) = x_0,
\]

where \(x(t) \in \mathbb{R}^n, u(t) \in \mathbb{R}^m\), at any \(t \in \mathbb{R}\).

83.2 The Data
The matrices necessary for this LMI are \(A\) and \(B\). There is no restriction on the stability of \(A\).

83.3 The LMI: Stabilizability LMI

\((A, B)\) is stabilizable if and only if there exists \(X > 0\) such that

\[
AX + XA^T + BB^T << 0
\]

where the stabilizing controller is given by

\[
u(t) = -\frac{1}{2}B^TX^{-1}x(t)
\]

83.4 Conclusion:
If we are able to find \(X > 0\) such that the above LMI holds it means the matrix pair \((A, B)\) is stabilizable. In words, a system pair \((A, B)\) is stabilizable if for any
initial state $x(0) = x_0$ an appropriate input $u(t)$ can be found so that the state $x(t)$ asymptotically approaches the origin. Stabilizability is a weaker condition than controllability in that we only need to approach $x(t) = 0$ as $t \to \infty$ whereas controllability requires that the state must reach the origin in a finite time.

83.5 Implementation

This implementation requires Yalmip and Sedumi.

https://github.com/eoskowro/LMI/blob/master/Stabilizability_LMI.m

83.6 Related LMIs

Hurwitz Stability LMI1

Detectability LMI2

Controllability Grammian LMI3

Observability Grammian LMI4

83.7 External Links

A list of references documenting and validating the LMI.

- LMI Methods in Optimal and Robust Control5 - A course on LMIs in Control by Matthew Peet.

1 https://en.wikibooks.org/wiki/LMIs_in_Control/Stability_Analysis/Hurwitz_Stability
3 https://en.wikibooks.org/wiki/LMIs_in_Control/pages/LMI_for_the_Controllability_Grammian
5 http://control.asu.edu/MAE598_frame.htm
7 https://web.stanford.edu/~boyd/lmibook/
83.8 Return to Main Page:
84 LMI for the Controllability Grammian

LMI to Find the Controllability Grammian

Being able to adjust a system in a desired manner using feedback and sensors is a very important part of control engineering. However, not all systems are able to be adjusted. This ability to be adjusted refers to the idea of a "controllable" system and motivates the necessity of determining the "controllability" of the system. Controllability refers to the ability to accurately and precisely manipulate the state of a system using inputs. Essentially if a system is controllable then it implies that there is a control law that will transfer a given initial state $x(t_0) = x_0$ and transfer it to a desired final state $x(t_f) = x_f$. There are multiple ways to determine if a system is controllable, one of which is to compute the rank "controllability grammian". If the grammian is full rank, the system is controllable and a state transferring control law exists.

84.1 The System

$$\dot{x}(t) = Ax(t) + Bu(t),$$
$$x(0) = x_0,$$

where $x(t) \in \mathbb{R}^n$, $u(t) \in \mathbb{R}^m$, at any $t \in \mathbb{R}$.

84.2 The Data

The matrices necessary for this LMI are A and B. A must be stable for the problem to be feasible.

84.3 The LMI: LMI to Determine the Controllability Grammian

(A, B) is controllable if and only if $W > 0$ is the unique solution to

$$AW + WA^T - BB^T < 0$$

where W is the Controllability Grammian.
84.4 Conclusion:

The LMI above finds the controllability gramian W of the system (A,B). If the problem is feasible and a unique W can be found, then we also will be able to say the system is controllable. The controllability gramian of the system (A,B) can also be computed as: $W = \int_0^\infty e^{As}BB^T e^{AT} s ds$, with control law $u(t) = B^TW^{-1}x(t)$ that will transfer the given initial state $x(t_0) = x_0$ to a desired final state $x(t_f) = x_f$.

84.5 Implementation

This implementation requires Yalmip and Sedumi.

https://github.com/eoskowro/LMI/blob/master/Controllability_Gram_LMI.m

84.6 Related LMIs

Stabilizability LMI\(^1\)

Hurwitz Stability LMI\(^2\)

Detectability LMI\(^3\)

Observability Grammian LMI\(^4\)

84.7 External Links

A list of references documenting and validating the LMI.

- LMI Methods in Optimal and Robust Control\(^5\) - A course on LMIs in Control by Matthew Peet.
- LMIs in Systems and Control Theory\(^7\) - A downloadable book on LMIs by Stephen Boyd.
- LMIs in Control Systems: Analysis, Design and Applications\(^8\) - by Guang-Ren Duan and Hai-Hua Yu, CRC Press, Taylor & amp; Franci Group, 2013, Section 6.1.1 and Table 6.1 pp. 166–170, 192.

\(^1\) https://en.wikibooks.org/wiki/LMIs_in_Control/pages/Stabilizability_LMI
\(^2\) https://en.wikibooks.org/wiki/LMIs_in_Control/Stability_Analysis/Hurwitz_Stability
\(^3\) https://en.wikibooks.org/wiki/LMIs_in_Control/pages/Detectability_LMI
\(^4\) https://en.wikibooks.org/wiki/LMIs_in_Control/pages/LMI_for_the_Observability_Grammian
\(^5\) http://control.asu.edu/MAE598_frame.htm
\(^7\) https://web.stanford.edu/~boyd/815b证券投资/815book/

84.8 Return to Main Page:

LMI for Decentralized Feedback Control

In large-scale systems like a multi-agent robotic system, national economies, or chemical refineries, an actuator should act based on local information, which necessitates a decentralized or distributed control strategy. In a decentralized control framework, the controllers are distributed and each controller has only access to a subset of local measurements. We describe LMI formulations for a general decentralized control framework and then provide an illustrative example of a decentralized control design.

85.1 The System

In a decentralized controller design, the state feedback controller $u = Kx$ can be divided into n sub-controllers $u_i = K_i x_i, \ i = 1, 2, ..., n$.

85.2 The Data

A general state space representation of a linear time-invariant system is as follows:
\[
\begin{align*}
\dot{x} &= Ax + Bu \\
y &= Cx + Du
\end{align*}
\]
where x is a $n \times n$ vector of state variables, B is the input matrix, C is the output matrix, and D is called the feedforward matrix. We assume that all the four matrices, A, B, C, and D are given.

85.3 The Optimization Problem

We aim to solve the H_∞-optimal full-state feedback control problem using a controller $u = Kx$.

In a decentralized fashion, the control input u can be divided into sub-controllers $u_1, u_2, ..., u_j$ and can be written as $u = [u_1 \ u_2 \ ... \ u_j]^T \times n$.

For instance, let $j = 3$ and $n = 6$. Thus, there are three control inputs $u_1, u_2,$ and u_3. We also assume that $u_1 \{1\}$ only depends on the first and the second states, while
u_2 and u_3 only depend on third to sixth states. For this example, the controller gain matrix can be described by:

$$K = \begin{bmatrix} k_1 & k_2 & 0 & 0 & 0 & 0 \\ 0 & 0 & k_3 & k_4 & k_5 & k_6 \\ 0 & 0 & k_7 & k_8 & k_9 & k_{10} \end{bmatrix}$$

Thus, the decentralized controller gain consists of sub-matrices of gains.

85.4 The LMI: LMI for decentralized feedback controller

The mathematical description of the LMI formulation for a decentralised optimal full-state feedback controller can be described by:

$$\min \gamma \\
\begin{bmatrix} Y A^T + AY + Z^T B_2^T + B_2 Z & *^T \\ B_1^T & -\gamma I \\ Y C_1^T + Z^T D_{12} & D_{11} - \gamma I \end{bmatrix}$$

where $Y > 0$ is a positive definite matrix and Z such that the aforementioned constraints in LMIs are satisfied.

85.5 Conclusion:

The controller gain matrix is defined as:

$$K = \begin{bmatrix} 0 & 0 \\ 0 & F \end{bmatrix}$$

where F can be found after solving the LMIs and obtaining the variables matrices Y and Z. Thus,

$$F = Z Y^{-1}.$$

85.9 Return to Main Page

LMIs in Control/Tools¹

¹ https://en.wikibooks.org/wiki/LMIs_in_Control/Tools
LMI for Mixed H_2/H_∞ Output Feedback Controller

The mixed H_2/H_∞ output feedback control has been known as an example of a multi-objective optimal control problem. In this problem, the control feedback should respond properly to several specifications. In the H_2/H_∞ controller, the H_∞ channel is used to improve the robustness of the design while the H_2 channel guarantees good performance of the system.

86.1 The System

We consider the following state-space representation for a linear system:

\[
\dot{x} = Ax + Bu
\]

\[
y = Cx + Du
\]

where A, B, C, and D are the state matrix, input matrix, output matrix, and feedforward matrix, respectively.

These are the system (plant) matrices that can be shown as $P = (A,B,C,D)$.

86.2 The Data

We assume that all the four matrices of the plant, A,B,C,D, are given.

86.3 The Optimization Problem

In this problem, we use an LMI to formulate and solve the optimal output-feedback problem to minimize both the $<>$ and $<>$ norms. Giving equal weights to each of the norms, we will have the optimization problem in the following form:

\[
\min ||S(P,K)||_{H_2}^2 + ||S(P,K)||_{H_\infty}^2
\]

86.4 The LMI: LMI for mixed H_2/H_∞

Mathematical description of the LMI formulation for a mixed H_2/H_∞ optimal output-feedback problem can be written as follows:
\[
\begin{align*}
\min & \quad \gamma_1^2 + \gamma_2^2 \\
\text{s.t.} & \quad \begin{bmatrix} X_1 & I \\ I & Y_1 \end{bmatrix} > 0 \\
& \quad \begin{bmatrix} AY_1 + Y_1 A^T + B_2 C_n + C_n B_2^T & *^T & *^T \\ A^T + A_n + (B_2 D_n C_2)^T.h(1) & X_1 A + A^T X_1 + B_n C_2 + C_2^T B_n^T & *^T & *^T \\ (B_1 + B_2 D_n D_{21})^T & (X_1 B_1 + B_n D_{21})^T & -\gamma I & *^T \\ C_1 Y_1 + D_{12} C_n & C_1 + D_{12} D_n C_2 & D_{11} + D_{12} D_n D_{21} & -\gamma I \end{bmatrix} < 0 \\
& \quad \begin{bmatrix} Y_1 & I \\ I & X_1 \\ (C_1 Y_1 + D_{12} C_n) & (C_1 + D_{12} D_n D_{21})^T & Z \\ C_1 Y_1 + D_{12} C_n & C_1 + D_{12} D_n C_2 & D_{11} + D_{12} D_n D_{21} & -\gamma I \end{bmatrix} > 0 \\
& \quad \begin{bmatrix} AY_1 + Y_1 A^T + B_2 C_n + C_n T B_2 T & *^T & *^T \\ (A^T + A_n + (B_2 * D_n * C_2)^T) & X_1 A + A^T X_1 + B_n C_2 + C_2^T B_n^T & *^T & *^T \\ (B_1 + B_2 D_n D_{21})^T & (X_1 B_1 + B_n D_{21})^T & -\gamma_2^2 I & *^T \\ (C_1 Y_1 + D_{12} C_n) & (C_1 + D_{12} D_n C_2) & (D_{11} + D_{12} D_n * D_{21}) & -I \end{bmatrix} < 0 \\
& \quad \text{trace}(Z) < \gamma_1^2 \\
& \quad D_{11} + D_{12} D_n D_{21} = 0
\end{align*}
\]

where γ_1^2 and γ_2^2 are defined as the H_2 and H_∞ norm of the system:

- $||S(P,K)||_{H_2}^2 = \gamma_1^2$
- $||S(P,K)||_{H_\infty}^2 = \gamma_2^2$

Moreover, X_1, Y_1, A_n, B_n, C_n, and D_n are variable matrices with appropriate dimensions that are found after solving the LMIs.

86.5 Conclusion:

The calculated scalars γ_1^2 and γ_2^2 are the H_2 and H_∞ norms of the system, respectively. Thus, the norm of mixed H_2/H_∞ is defined as $\beta = \gamma_1^2 + \gamma_2^2$. The results for each individual H_2 norm and H_∞ norms of the system show that a bigger value of norms are found in comparison with the case they are solved separately.

86.6 Implementation

A link to Matlab codes for this problem in the Github repository:

https://github.com/asalimil/LMI_for_Mixed_H2_Hinf_Output_Feedback_Controller
86.7 Related LMIs

86.8 External Links

86.9 Return to Main Page

LMIs in Control/Tools¹

¹ https://en.wikibooks.org/wiki/LMIs_in_Control/Tools
87 Quadratically Stabilizing Controllers with Parametric Norm-Bounded Uncertainty

If the system is quadratically stable, then there exists some $\mu \geq 0, P > 0,$ and Z such that the LMI is feasible. The Z and P matrices can also be used to create a quadratically stabilizing controller.

87.1 The System

\[
\dot{x}(t) = Ax(t) + Bu(t) + Mp(t), \quad p(t) = \Delta(t)q(t), \\
q(t) = Nx(t) + Qp(t) + D_{12}u(t), \quad \Delta \in \Delta := \{\Delta \in \mathbb{R}^{n \times n} : \|\Delta\| \leq 1\}
\]

87.2 The Data

The matrices A, B, M, N, Q, D_{12}.

87.3 The LMI:

\[
\begin{bmatrix}
AP + BZ + PA^T + Z^T B^T & PN^T + Z^T D_{12}^T \\
NP + D_{12}Z & 0
\end{bmatrix}
+ \mu \begin{bmatrix}
MM^T & MQ^T \\
QM^T & QQ^T - I
\end{bmatrix} < 0
\]

87.4 Conclusion:

There exists a controller for the system with $u(t) = Kx(t)$ where $K = ZP^{-1}$ is the quadratically stabilizing controller, if the above LMI is feasible.

87.5 Implementation

https://github.com/mcavorsi/LMI
87.6 Related LMIs

H-infinity Optimal Quadratically Stabilizing Controllers with Parametric Norm-Bounded Uncertainty

Stabilizing State-Feedback Controllers with Structured Norm-Bounded Uncertainty

Optimal State-Feedback Controllers with Structured Norm-Bounded Uncertainty

87.7 External Links

- LMI Methods in Optimal and Robust Control - A course on LMIs in Control by Matthew Peet.

87.8 Return to Main Page:

88 H-inf Optimal Quadratically Stabilizing Controllers with Parametric Norm-Bounded Uncertainty

If there exists some \(\mu \geq 0, P > 0, \) and \(Z \) such that the LMI holds, then the system satisfies \(\|L_2 \leq \gamma \|_L \). There also exists a controller with \(u(t) = Kx(t) \).

88.1 The System

\[
\begin{align*}
\dot{x}(t) &= Ax(t) + Bu(t) + Mp(t) + B_2w(t), & p(t) &= \Delta(t)q(t), \\
q(t) &= Nx(t) + D_{12}u(t), & \Delta &\in \Delta := \{ \Delta \in \mathbb{R}^{n \times n} : \|\Delta\| \leq 1 \} \\
y(t) &= Cx(t) + D_{22}u(t)
\end{align*}
\]

88.2 The Data

The matrices \(A, B, M, B_2, N, D_{12}, C, D_{22} \).

88.3 The Optimization Problem

Minimize \(\gamma \) subject to the LMI constraints below.

88.4 The LMI:

\[
\begin{bmatrix}
AP + BZ + PA^T + Z^TB^T + B_2B_2^T + \mu MM^T & (CP + D_{22}Z)^T & PNT + Z^TD_{12}^T \\
CP + D_{22}Z & -\gamma^2I & 0 \\
NP + D_{12}Z & 0 & -\mu I
\end{bmatrix} < 0
\]
88.5 Conclusion:

The controller gains, K, are calculated by \(K = ZP^{-1} \).

88.6 Implementation

https://github.com/mcavorsi/LMI

88.7 Related LMIs

Quadratically Stabilizing Controllers with Parametric Norm-Bounded Uncertainty\(^1\)
Stabilizing State-Feedback Controllers with Structured Norm-Bounded Uncertainty\(^2\)
Optimal State-Feedback Controllers with Structured Norm-Bounded Uncertainty\(^3\)

88.8 External Links

- LMI Methods in Optimal and Robust Control\(^4\) - A course on LMIs in Control by Matthew Peet.

88.9 Return to Main Page:
89 Stabilizing State-Feedback Controllers with Structured Norm-Bounded Uncertainty

The system is quadratically stable if and only if there exists some $\Theta \in P\Theta, P > 0,$ and Z such that

\[\Theta \in P\Theta, P > 0, \quad Z \text{ such that the LMI is feasible.} \]

Furthermore, there exists a quadratically stabilizing controller with $u(t) = Kx(t)$.

89.1 The System

\[
\begin{align*}
\dot{x}(t) &= Ax(t) + Bu(t) + Mp(t), \quad p(t) = \Delta(t)q(t), \\
q(t) &= Nx(t) + Qp(t) + D_{12}u(t), \quad \Delta \in \Delta, ||\Delta|| \leq 1
\end{align*}
\]

89.2 The Data

The matrices A, B, M, N, Q, D_{12}.

89.3 The LMI:

\[
\begin{bmatrix}
AP + BZ + PA^T + Z^TB^T & PN^T + Z^TD_{12}^T \\
NP + D_{12}Z & 0
\end{bmatrix}
+ \begin{bmatrix}
M\Theta M^T & M\Theta Q^T \\
Q\Theta M^T & Q\Theta Q^T - \Theta
\end{bmatrix} < 0
\]

89.4 Conclusion:

If the LMI is feasible, the controller, K, is calculated by $K = ZP^{-1}$.

89.5 Implementation

https://github.com/mcavorsi/LMI
89.6 Related LMIs

Quadratically Stabilizing Controllers with Parametric Norm-Bounded Uncertainty

H-infinity Optimal Quadratically Stabilizing Controllers with Parametric Norm-Bounded Uncertainty

Optimal State-Feedback Controllers with Structured Norm-Bounded Uncertainty

89.7 External Links

- LMI Methods in Optimal and Robust Control - A course on LMIs in Control by Matthew Peet.

89.8 Return to Main Page:

http://control.asu.edu/MAE598_frame.htm
90 Optimal State-Feedback Controllers with Structured Norm-Bounded Uncertainty

If there exists some $\Theta \in P\Theta, P > 0$, and Z such that the LMI is feasible, then the system satisfies $||y||_{L^2} \leq \gamma||u||_{L^2}$.

90.1 The System

$$\dot{x}(t) = Ax(t) + Bu(t) + Mp(t) + B_2w(t), \quad p(t) = \Delta(t)q(t),$$

$$q(t) = Nx(t) + D_{12}u(t), \quad \Delta \in \Delta, ||\Delta|| \leq 1$$

$$y(t) = Cx(t) + D_{22}u(t)$$

90.2 The Data

The matrices $A, B, M, B_2, N, D_{12}, C, D_{22}$.

90.3 The Optimization Problem

Minimize γ subject to the LMI constraints.

90.4 The LMI:

Find $P > 0, Z$:

$$\begin{bmatrix} AP + BZ + PA^T + Z^T B^T + B_2B_2^T + M\Theta M^T & (CP + D_{22}Z)^T & PN^T + Z^TD_{12}^T \\ CP + D_{22}Z & -\gamma^2I & 0 \\ NP + D_{12}Z & 0 & -\Theta \end{bmatrix} < 0$$

90.5 Conclusion:

The controller is $K = ZP^{-1}$.
90.6 Implementation

https://github.com/mcavorsi/LMI

90.7 Related LMIs

Quadratically Stabilizing Controllers with Parametric Norm-Bounded Uncertainty\(^1\)

H-infinity Optimal Quadratically Stabilizing Controllers with Parametric Norm-Bounded Uncertainty\(^2\)

Stabilizing State-Feedback Controllers with Structured Norm-Bounded Uncertainty\(^3\)

90.8 External Links

• LMI Methods in Optimal and Robust Control\(^4\) - A course on LMIs in Control by Matthew Peet.

90.9 Return to Main Page:

\(^1\) https://en.wikibooks.org/wiki/LMIs_in_Control/Controller_Synthesis/Continuous_Time/Quadratically_Stabilizing Controllers with Parametric Norm-Bounded Uncertainty
\(^3\) https://en.wikibooks.org/wiki/LMIs_in_Control/Controller_Synthesis/Continuous_Time/Stabilizing State-Feedback Controllers with Structured Norm-Bounded Uncertainty
\(^4\) http://control.asu.edu/MAE598_frame.htm
91 H_∞ Optimal Output Controllability for Systems With Transients

H_∞ Optimal Output Controllability for Systems With Transients

This LMI provides an H_∞ optimal output controllability problem to check if such controllers for systems with unknown exogenous disturbances and initial conditions can exist or not.

91.1 The System

\[
\dot{x} = Ax + B_1v + B_2u, \quad x(0) = x_0,
\]
\[
z = C_1x + D_{11}v + D_{12}u,
\]
\[
y = C_2x + D_{21}v,
\]

where $x \in \mathbb{R}^n$ is the state, $v \in \mathbb{R}^r$ is the exogenous input, $u \in \mathbb{R}^m$ is the control input, $y \in \mathbb{R}^p$ is the measured output and $z \in \mathbb{R}^s$ is the regulated output.

91.2 The Data

System matrices $(A,B_1,B_2,C_1,C_2,D_{11},D_{12},D_{21},D_{22})$ need to be known. It is assumed that $v \in L_2[0,\infty)$. N_1,N_2 are matrices with their columns forming the basis of kernels of C_2D_{21} and C_2D_{12} respectively.

91.3 The Optimization Problem

For a given γ, the following H_∞ condition needs to be fulfilled:

\[
\gamma_w = \sup \left\| x_0 \right\|_\infty \left(\left\| x_0 \right\|_\infty + R_{x0} \right)^{1/2} < \gamma_w,
\]
91.4 The LMI: H_∞ Output Feedback Controller for Systems With Transients

\[
\begin{align*}
\min_{\gamma, X_{11}, Y_{11}}: & \gamma \\
\text{subj. to: } & X_{11} > 0, Y_{11} > 0, \\
& \begin{bmatrix} N_1 & 0 \\ 0 & I \end{bmatrix}^T \\
& \begin{bmatrix} A^T X_{11} + X_{11}A - \gamma^2 I & X_{11}B_1 & C_1^T \\ B_1 & D_{11} & -I \\ D_{11}^T & -I & -\gamma^2 I \end{bmatrix} \begin{bmatrix} N_1 & 0 \\ 0 & I \end{bmatrix} < 0, \\
& \begin{bmatrix} N_2 & 0 \\ 0 & I \end{bmatrix}^T \\
& \begin{bmatrix} AY_{11} + Y_{11}A^T & Y_{11}C_1^T & B_1 \\ B_1 & D_{11} & -I \\ D_{11}^T & -I & -\gamma^2 I \end{bmatrix} \begin{bmatrix} N_2 & 0 \\ 0 & I \end{bmatrix} < 0, \\
& \begin{bmatrix} X_{11} & I \\ I & Y_{11} \end{bmatrix} \geq 0, X_{11} < \gamma^2 R,
\end{align*}
\]

91.5 Conclusion:
Solution of the above LMI gives a check to see if an H_∞ optimal output controller for systems with transients can exist or not.

91.6 Implementation
A link to CodeOcean or other online implementation of the LMI

91.7 Related LMIs
Links to other closely-related LMIs

91.8 External Links
• LMI-based H_∞-optimal control with transients\(^1\) Link to the original article.

91.9 Return to Main Page:

\(^1\) https://www.tandfonline.com/doi/pdf/10.1080/00207179.2010.487222?needAccess=true
92 Quadratic Polytopic Stabilization

A Quadratic Polytopic Stabilization Controller Synthesis can be done using this LMI, requiring the information about $A, \Delta_A(t), B$ and $\Delta_B(t)$ matrices.

92.1 The System

\[\dot{x}(t) = Ax(t) + Bu(t), \]
\[x(0) = x_0, \]

where $x(t) \in \mathbb{R}^n$, $u(t) \in \mathbb{R}^m$, at any $t \in \mathbb{R}$.

The system consist of uncertainties of the following form

\[\Delta_A(t) = A_1 \delta_1(t) + .. + A_k \delta_k(t) \]
\[\Delta_B(t) = B_1 \delta_1(t) + .. + B_k \delta_k(t) \]

where $x \in \mathbb{R}^m, u \in \mathbb{R}^n, A \in \mathbb{R}^{m \times m}$ and $B \in \mathbb{R}^{m \times n}$

92.2 The Data

The matrices necessary for this LMI are $A, \Delta_A(t) \ i.e \ A_i , B$ and $\Delta_B(t) \ i.e \ B_i$

92.3 The Optimization and LMI

LMI for Controller Synthesis using the theorem of Polytopic Quadratic Stability

There exists a K such that

\[\dot{x}(t) = (A + \Delta_A + (B + \Delta_B)K)x(t) \]

is quadratically stable for $(\Delta_A, \Delta_B) \in C_0((A_1, B_2), ..., (A_k, B_k))$ if and only if there exists some $P>0$ and Z such that

\[(A + A_i)P + P(A + A_i)^T + (B + B_i)Z + Z^T(B + B_i)^T < 0 \quad \text{for} \quad i = 1, ... k. \]
92.4 Conclusion:

The Controller gain matrix is extracted as $K = ZP^{-1}$

Note that here the controller doesn't depend on Δ

- If you want K to depend on Δ, the problem is harder.
- But this would require sensing Δ in real-time.

92.5 Implementation

This implementation requires Yalmip and Sedumi.
https://github.com/JalpeshBhadra/LMI/blob/master/quadraticpolytopicstabilization.m

92.6 Related LMIs

Quadratic Polytopic H_∞ Controller\(^1\)

Quadratic Polytopic H_2 Controller\(^2\)

92.7 External Links

- LMI Methods in Optimal and Robust Control\(^3\) - A course on LMIs in Control by Matthew Peet.

\(^{1}\) https://en.wikibooks.org/wiki/LMIs_in_Control/pages/Quadratic_Polytopic_Hinf-Optimal_State_Feedback_Control/
\(^{2}\) https://en.wikibooks.org/wiki/LMIs_in_Control/pages/quadratic_polytopic_h2_optimal_state_feedback_control
\(^{3}\) http://control.asu.edu/MAE598_frame.htm
\(^{4}\) https://arxiv.org/abs/1903.08599/
\(^{5}\) https://web.stanford.edu/~boyd/lmibook/
93 Quadratic D-Stabilization

Continuous-Time D-Stability Controller

This LMI will let you place poles at a specific location based on system performance like rising time, settling time and percent overshoot, while also ensuring the stability of the system.

93.1 The System

Suppose we were given the continuous-time system

\[\dot{x}(t) = Ax(t) + Bu(t) \]
\[y(t) = Cx(t) + Du(t) \]

whose stability was not known, and where \(A \in \mathbb{R}^{m \times m} \), \(B \in \mathbb{R}^{m \times n} \), \(C \in \mathbb{R}^{p \times m} \), and \(D \in \mathbb{R}^{q \times n} \) for any \(t \in \mathbb{R} \).

Adding uncertainty to the system

\[\dot{x}(t) = (A + A_i)x(t) + (B + B_i)u(t) \]

93.2 The Data

In order to properly define the acceptable region of the poles in the complex plane, we need the following pieces of data:

- matrices \(A, B, A_i, B_i \)
- rise time \((t_r) \)
- settling time \((t_s) \)
- percent overshoot \((M_p) \)

Having these pieces of information will now help us in formulating the optimization problem.
93.3 The Optimization Problem

Using the data given above, we can now define our optimization problem. In order to do that, we have to first define the acceptable region in the complex plane that the poles can lie on using the following inequality constraints:

Rise Time: \(\omega_n \leq \frac{1.8}{t_r} \)

Settling Time: \(\sigma \leq \frac{-1.6}{t_s} \)

Percent Overshoot: \(\sigma \leq \frac{-\ln(M_p)}{\pi} |\omega_d| \)

Assume that \(z \) is the complex pole location, then:

\[
\begin{align*}
\omega_n^2 &= \|z\|^2 = z^* z \\
\omega_d &= \text{Im} z = \frac{(z - z^*)}{2} \\
\sigma &= \text{Re} z = \frac{(z + z^*)}{2}
\end{align*}
\]

This then allows us to modify our inequality constraints as:

Rise Time: \(z^* z - \frac{1.8^2}{t_r^2} \leq 0 \)

Settling Time: \(\frac{(z + z^*)}{2} + \frac{4.6}{t_s} \leq 0 \)

Percent Overshoot: \(z - z^* + \frac{\pi}{\ln(M_p)} |z + z^*| \leq 0 \)

which not only allows us to map the relationship between complex pole locations and inequality constraints but it also now allows us to easily formulate our LMIs for this problem.

93.4 The LMI: An LMI for Quadratic D-Stabilization

Suppose there exists \(X > 0 \) and \(Z \) such that

\[
\begin{bmatrix}
-rP & AP + BZ \\
(AP + BZ)^T & -rP
\end{bmatrix} + \begin{bmatrix}
0 & A_i P + B_i Z \\
(A_i P + B_i Z)^T & 0
\end{bmatrix} < 0
\]

\[
AP + BZ + (AP + BZ)^T + A_i P + B_i Z + (A_i P + B_i Z)^T + 2\alpha P < 0, \text{ and}
\]

\[
\begin{bmatrix}
AP + BZ + (AP + BZ)^T & c(AP + BZ - (AP + BZ)^T) \\
c((AP + BZ)^T - (AP + BZ)) & AP + BZ + (AP + BZ)^T
\end{bmatrix} + \begin{bmatrix}
A_i P + B_i Z + (A_i P + B_i Z)^T \\
c((A_i P + B_i Z)^T - (A_i P + B_i Z))
\end{bmatrix} < 0
\]

for \(i = 1, \ldots, k \)
93.5 Conclusion:

Given the resulting controller $K = ZP^{-1}$, we can now determine that the pole locations $z \in \mathbb{C}$ of $A(\Delta) + B(\Delta)K$ satisfies the inequality constraints $|x| \leq r$, $\text{Re}(x) \leq -\alpha$ and $z + z^* \leq -c|z - z^*|$ for all $\Delta \in C_0(\Delta_1, \ldots, \Delta_k)$.

93.6 Implementation

The implementation of this LMI requires Yalmip and Sedumi https://github.com/JalpeshBhadra/LMI/blob/master/quadraticDstabilization.m

93.7 Related LMIs

- ../Continuous Time D-Stability Observer1 - Equivalent D-stability LMI for a continuous-time observer.

93.8 External Links

- LMI Methods in Optimal and Robust Control2 - A course on LMIs in Control by Matthew Peet.

93.9 Return to Main Page:

2 http://control.asu.edu/MAE598_frame.htm
4 https://web.stanford.edu/~boyd/lmibook/
94 Quadratic Polytopic Full State Feedback Optimal H_∞ Control

94.1 Quadratic Polytopic Full State Feedback Optimal H_∞ Control

For a system having polytopic uncertainties, Full State Feedback is a control technique that attempts to place the system’s closed-loop system poles in specified locations based off of performance specifications given. H_∞ methods formulate this task as an optimization problem and attempt to minimize the H_∞ norm of the system.

94.2 The System

Consider System with following state-space representation.

$$\dot{x}(t) = Ax(t) + B_1q(t) + B_2w(t)$$

$$p(t) = C_1x(t) + D_{11}q(t) + D_{12}w(t)$$

$$z(t) = C_2x(t) + D_{21}q(t) + D_{22}w(t)$$

where $x \in \mathbb{R}^m$, $q \in \mathbb{R}^n$, $w \in \mathbb{R}^g$, $A \in \mathbb{R}^{m \times m}$, $B_1 \in \mathbb{R}^{m \times n}$, $B_2 \in \mathbb{R}^{m \times g}$, $p \in \mathbb{R}^p$, $C_1 \in \mathbb{R}^{p \times m}$, $D_{11} \in \mathbb{R}^{p \times n}$, $D_{12} \in \mathbb{R}^{p \times g}$, $z \in \mathbb{R}^s$, $C_2 \in \mathbb{R}^{s \times m}$, $D_{21} \in \mathbb{R}^{s \times n}$, $D_{22} \in \mathbb{R}^{s \times g}$ for any $t \in \mathbb{R}$.

Add uncertainty to system matrices

$A, B_1, B_2, C_1, C_2, D_{11}, D_{12}$

New state-space representation

$$\dot{x}(t) = (A + A_i)x(t) + (B_1 + B_{i1})q(t) + (B_2 + B_{i2})w(t)$$

$$p(t) = (C_1 + C_{i1})x(t) + (D_{11} + D_{i1})q(t) + (D_{12} + D_{i2})w(t)$$

$$z(t) = C_2x(t) + D_{21}q(t) + D_{22}w(t)$$
94.3 The Optimization Problem:

Recall the closed-loop in state feedback is:

\[S(P, K) = \begin{bmatrix} A + B_2 F & B_1 \\ C_1 + D_{12} F & D_{11} \end{bmatrix} \]

This problem can be formulated as \(H_\infty \) optimal state-feedback, where \(K \) is a controller gain matrix.

94.4 The LMI:

An LMI for Quadratic Polytopic \(H_\infty \) Optimal State-Feedback Control

\[\|S(P(\Delta), K(0,0,0,F))\|_{H_\infty} \leq \gamma \]

\(Y > 0 \)

\[
\begin{bmatrix}
Y(A + A_i)^T + (A + A_i)Y + Z^T(B_2 + B_{1,i})^T + (B_2 + B_{1,i})Z & *^T & *^T \\
(B_1 + B_{1,i})^T & -\gamma I & *^T \\
(C_1 + C_{1,i})Y + (D_{12} + D_{12,i})Z & (D_{11} + D_{11,i}) & -\gamma I
\end{bmatrix} < 0
\]

94.5 Conclusion:

The \(H_\infty \) Optimal State-Feedback Controller is recovered by \(F = ZY^{-1} \)

Controller will determine the bound \(\gamma \) on the \(H_\infty \) norm of the system.

94.6 Implementation:

https://github.com/JalpeshBhadra/LMI/tree/master

94.7 Related LMIs

Full State Feedback Optimal \(H_\infty \) Controller\(^1\)

94.8 External Links

- LMI Methods in Optimal and Robust Control\(^2\) - A course on LMIs in Control by Matthew Peet.
- LMI Properties and Applications in Systems, Stability, and Control Theory\(^3\) - A List of LMIs by Ryan Caverly and James Forbes.
- LMI\(s\) in Systems and Control Theory\(^4\) - A downloadable book on LMIs by Stephen Boyd.

\(^2\) http://control.asu.edu/MAE598_frame.htm
\(^3\) https://arxiv.org/abs/1903.08599/
\(^4\) https://web.stanford.edu/~boyd/lmibook/
95 Quadratic Polytopic Full State Feedback Optimal H_2 Control

95.1 Quadratic Polytopic Full State Feedback Optimal H_2 Control

For a system having polytopic uncertainties, Full State Feedback is a control technique that attempts to place the system's closed-loop system poles in specified locations based on performance specifications given, such as requiring stability or bounding the overshoot of the output. By minimizing the H_2 norm of this system we are minimizing the effect noise has on the system as part of the performance specifications.

95.2 The System

Consider System with following state-space representation.

\[
\dot{x}(t) = Ax(t) + B_1q(t) + B_2w(t) \\
p(t) = C_1x(t) + D_{11}q(t) + D_{12}w(t) \\
z(t) = C_2x(t) + D_{21}q(t) + D_{22}w(t)
\]

where $x \in \mathbb{R}^m$, $q \in \mathbb{R}^n$, $w \in \mathbb{R}^g$, $A \in \mathbb{R}^{mxm}$, $B_1 \in \mathbb{R}^{mxn}$, $B_2 \in \mathbb{R}^{mxg}$, $p \in \mathbb{R}^p$, $C_1 \in \mathbb{R}^{pxm}$, $D_{11} \in \mathbb{R}^{pxn}$, $D_{12} \in \mathbb{R}^{pxg}$, $z \in \mathbb{R}^s$, $C_2 \in \mathbb{R}^{sxm}$, $D_{21} \in \mathbb{R}^{sxn}$, $D_{22} \in \mathbb{R}^{sxg}$ for any $t \in \mathbb{R}$.

Add uncertainty to system matrices

$A, B_1, B_2, C_1, C_2, D_{11}, D_{12}$

New state-space representation

\[
\dot{x}(t) = (A + A_i)x(t) + (B_1 + B_i)q(t) + (B_2 + B_i)w(t) \\
p(t) = (C_1 + C_i)x(t) + (D_{11} + D_i)q(t) + (D_{12} + D_i)w(t) \\
z(t) = C_2x(t) + D_{21}q(t) + D_{22}w(t)
\]
95.3 The Data

The matrices necessary for this LMI are

\[S(P, K) = \begin{bmatrix} A + B_{22}F & B_1 \\ C_1 + D_{12}F & D_{11} \end{bmatrix} \]

This problem can be formulated as \(H_2 \) optimal state-feedback, where \(K \) is a controller gain matrix.

95.4 The Optimization Problem:

Recall the closed-loop in state feedback is:

\[
S(P, K) = \begin{bmatrix} A + B_{22}F & B_1 \\ C_1 + D_{12}F & D_{11} \end{bmatrix}
\]

\[\log |S(P(\Delta), K(0, 0, 0, F))|_{H_2} \leq \gamma \]

\[X > 0 \]

\[
\begin{bmatrix} AX + B_2Z + XA^T + Z^TB_2^T & B_1 \\ B_1^T & -I \end{bmatrix} + \begin{bmatrix} A_iX + B_{2,i}Z + XA_i^T + Z^TB_{2,i}^T & B_{1,i} \\ B_{1,i}^T & 0 \end{bmatrix} < 0 \quad i = 1, \ldots, k
\]

\[
\begin{bmatrix} X & (C_1X + D_{12}Z)^T \\ C_1X + D_{12}Z & W \end{bmatrix} + \begin{bmatrix} 0 & (C_{1,i}X + D_{12,i}Z)^T \\ C_{1,i}X + D_{12,i}Z & 0 \end{bmatrix} > 0 \quad i = 1, \ldots, k
\]

\[\text{Trace} W < \gamma \]

95.6 Conclusion:

The \(H_2 \) Optimal State-Feedback Controller is recovered by \(F = ZX^{-1} \)
95.7 Implementation:

https://github.com/JalpeshBhadra/LMI/blob/master/H2_optimal_statefeedback_controller.m

95.8 Related LMIs

H_2 Optimal State-Feedback Controller\(^1\)

95.9 External Links

- LMI Methods in Optimal and Robust Control\(^2\) - A course on LMIs in Control by Matthew Peet.
- LMI Properties and Applications in Systems, Stability, and Control Theory\(^3\) - A List of LMIs by Ryan Caverly and James Forbes.

UNKNOWN TEMPLATE bookcat

\(^1\) https://en.wikibooks.org/w/index.php?title=LMIs_in_Control/pages/Full-State_Feedback
\(^2\) http://control.asu.edu/MAE598_frame.htm
\(^3\) https://arxiv.org/abs/1903.08599/
\(^4\) https://web.stanford.edu/~boyd/lmibook/
96 Continuous-Time Static Output Feedback Stabilizability

In view of applications, static feedback of the full state is not feasible in general: only a few of the state variables (or a linear combination of them, $y = Cx(t)$, called the output) can be actually measured and re-injected into the system.

So, we are led to the notion of static output feedback

96.1 The System

Consider the continuous-time LTI system, with generalized state-space realization $(A, B, C, 0)$

$$\dot{x}(t) = Ax(t) + Bu(t)$$
$$y(t) = Cx(t)$$

96.2 The Data

• $A \in \mathbb{R}^{n \times n}, B \in \mathbb{R}^{n \times m}, C \in \mathbb{R}^{p \times n}$
• $x \in \mathbb{R}^{n}, y \in \mathbb{R}^{p}, u \in \mathbb{R}^{m}$

96.3 The Optimization Problem

This system is static output feedback stabilizable (SOFS) if there exists a matrix F such that the closed-loop system

$$\dot{x} = (A - BKC)x$$

(obtained by replacing $u = -Ky$ which means applying static output feedback) is asymptotically stable at the origin
96.4 The LMI: LMI for Continuous Time - Static Output Feedback Stabilizability

The system is static output feedback stabilizable if and only if it satisfies any of the following conditions:

- There exists a $K \in \mathbb{R}^{m \times p}$ and $P \in \mathbb{S}^n$, where $P > 0$, such that
 \[
 \begin{bmatrix}
 A^T P + PA - PBB^T P & PB + C^T K^T \\
 KC + B^T P & -1
 \end{bmatrix} < 0
 \]

- There exists a $K \in \mathbb{R}^{m \times p}$ and $Q \in \mathbb{S}^n$, where $Q > 0$, such that
 \[
 \begin{bmatrix}
 QA^T + AQ - QC^T CQ & BK + QC^T \\
 CQ^T + K^T B^T & -1
 \end{bmatrix} < 0
 \]

- There exists a $K \in \mathbb{R}^{m \times p}$ and $Q \in \mathbb{S}^n$, where $Q > 0$, such that
 \[
 \begin{bmatrix}
 QA^T + AQ - BB^T & B + QC^T K^T \\
 B^T + KCQ^T & -1
 \end{bmatrix} < 0
 \]

- There exists a $K \in \mathbb{R}^{m \times p}$ and $P \in \mathbb{S}^n$, where $P > 0$, such that
 \[
 \begin{bmatrix}
 A^T P + PA - C^T C & PBK + C^T \\
 K^T B^T P & -1
 \end{bmatrix} < 0
 \]

96.5 Conclusion

On implementation and optimization of the above LMI using YALMIP and MOSEK (or) SeDuMi we get 2 output matrices one of which is the Symmetric matrix P (or Q) and K

96.6 Implementation

A link to the Matlab code for a simple implementation of this problem in the Github repository:

https://github.com/yashgvd/LMI_wikibooks
96.7 Related LMIs

Discrete time Static Output Feedback Stabilizability
Static Feedback Stabilizability

96.8 External Links

- LMI Methods in Optimal and Robust Control\(^1\) - A course on LMIs in Control by Matthew Peet.

96.9 Return to Main Page:

\(^1\) http://control.asu.edu/MAE598_frame.htm
\(^2\) https://arxiv.org/abs/1903.08599/
Multi-Criterion LQG

The Multi-Criterion Linear Quadratic Gaussian (LQG) linear matrix inequality will allow one to form an optimized controller, similar to that in an LQR framework, for a state space system with gaussian noise based on several different criterions defined in the Q and R matrices, that are optimized as a part of the arbitrary cost function. Just like traditional LQR, the cost matrices must be tuned in much a similar fashion as traditional gains in classical control. In the LQR and LQG framework however, the gains are more intuitive as each correlates directly to a state or an input.

The System

The system is a linear time-invariant system, that can be represented in state space as shown below:

\[\dot{x} = Ax + Bu + w, \]
\[y = Cx + v, \]
\[z = \begin{bmatrix} Q^{1/2} & 0 \\ 0 & R^{1/2} \end{bmatrix} \begin{bmatrix} x \\ u \end{bmatrix} \]

where \(x \in \mathbb{R}^n \), \(y \in \mathbb{R}^l \), \(z \in \mathbb{R}^m \) represent the state vector, the measured output vector, and the output vector of interest, respectively, \(w \in \mathbb{R}^p \) is the disturbance vector, and \(A,B,C,Q,R \) are the system matrices of appropriate dimension. To further define: \(x \) is \(\in \mathbb{R}^n \) and is the state vector, \(A \) is \(\in \mathbb{R}^{n \times n} \) and is the state matrix, \(B \) is \(\in \mathbb{R}^{n \times r} \) and is the input matrix, \(w \) is \(\in \mathbb{R}^r \) and is the exogenous input, \(C,Q,R \) are \(\in \mathbb{R}^{m \times n} \) and are the output matrices, and \(y \) and \(z \) are \(\in \mathbb{R}^m \) and are the output and the output of interest, respectively.

\(Q \geq 0 \) and \(R > 0 \), and the system is controllable and observable.

The Data

The matrices \(A,B,C,Q,R,W,V \) and the noise signals \(w,v \).
97.3 The Optimization Problem

In the Linear Quadratic Gaussian (LQG) control problem, the goal is to minimize a quadratic cost function while the plant has random initial conditions and suffers white noise disturbance on the input and measurement.

There are multiple outputs of interest for this problem. They are defined by

\[
z = \begin{bmatrix} Q^{1/2} & 0 \\ 0 & R^{1/2} \end{bmatrix} \begin{bmatrix} x \\ u \end{bmatrix}, Q_i \geq 0, R_i > 0, i = 0, \ldots, p.
\]

For each of these outputs of interest, we associate a cost function:

\[
J^i_{LQG} = \lim_{t \to \infty} Ez_i(t)^T z_i(t), i = 0, \ldots, p.
\]

Additionally, the matrices \(X_{LQG}\) and \(Y_{LQG}\) must be found as the solutions to the following Riccati equations:

\[
A^T X_{LQG} + X_{LQG} A = X_{LQG} BR^{-1} B^T X_{LQG} + Q = 0 \\
AY_{LQG} + Y_{LQG} A^T - Y_{LQG} C^T V^{-1} C Y_{LQG} + W = 0
\]

The optimization problem is to minimize \(J^0_{LQG}\) over \(u\) subject to the measurability condition and the constraints \(J^i_{LQG} < \gamma_i, i = 0, \ldots, p\). This optimization problem can be formulated as:

\[
\max \text{trace}(X_{LQG} U + Q Y_{LQG}) - \sum_{i=1}^{p} \gamma_i \tau_i,
\]

over \(\tau_1, \ldots, \tau_p\), with:

\[
Q = Q_0 + \sum_{i=1}^{p} \tau_i Q_i, \\
R = R_0 + \sum_{i=1}^{p} \tau_i R_i.
\]

97.4 The LMI: Multi-Criterion LQG

\[
\max : \text{trace}(X U + (Q_0 + \sum_{i=1}^{p} \tau_i Q_i) Y_{LQG}) - \sum_{i=1}^{p} \gamma_i \tau_i,
\]

over \(X, \tau_1, \ldots, \tau_p\), subject to the following constraints:
\[X > 0, \]
\[\tau_1 \geq 0, ..., \tau_p \geq 0, \]
\[A^T X + X A - X B (R_0 + \sum_{i=1}^{p} \tau_i R_i)^{-1} B^T X + Q_0 + \sum_{i=1}^{p} \tau_i Q_i \geq 0. \]

97.5 Conclusion:

The result of this LMI is the solution to the aforementioned Ricatti equations:

\[A^T X_{LQG} + X_{LQG} A = X_{LQG} B R^{-1} B^T X_{LQG} + Q = 0 \]
\[A Y_{LQG} + Y_{LQG} A^T - Y_{LQG} C^T V^{-1} C Y_{LQG} + W = 0 \]

97.6 Implementation

This implementation requires Yalmip and Sedumi.

https://github.com/rezajamesahmed/LMImatlabcode/blob/master/multicriterionquadraticproblems.m

97.7 Related LMIs

1. Inverse Problem of Optimal Control\(^1\)

97.8 External Links

- LMI Methods in Optimal and Robust Control\(^2\) - A course on LMIs in Control by Matthew Peet.
- LMI Properties and Applications in Systems, Stability, and Control Theory\(^3\) - A List of LMIs by Ryan Caverly and James Forbes.

97.9 Return to Main Page:

\(^2\) http://control.asu.edu/MAE598_frame.htm
\(^3\) https://arxiv.org/abs/1903.08599/
\(^4\) https://web.stanford.edu/~boyd/lmibook/
98 Inverse Problem of Optimal Control

In some cases, it is needed to solve the inverse problem of optimal control within an LQR framework. In this inverse problem, a given controller matrix needs to be verified for the system by assuring that it is the optimal solution to some LQR optimization problem that is controllable and detectable. In other words: in this inverse problem, the controller is known and the LQR gain matrices are to be calculated such that the controller is the optimal solution.

98.1 The System

The system is a linear time-invariant system, that can be represented in state space as shown below:

\[
\dot{x} = Ax + Bu,
\]

\[
z = \begin{bmatrix} Q^{1/2} & 0 \\ 0 & R^{1/2} \end{bmatrix} \begin{bmatrix} x \\ u \end{bmatrix}
\]

where \(x \in \mathbb{R}^n \), \(y \in \mathbb{R}^l \), \(z \in \mathbb{R}^m \) represent the state vector, the measured output vector, and the output vector of interest, respectively, \(w \in \mathbb{R}^p \) is the disturbance vector, and \(A, B, C, Q, R \) are the system matrices of appropriate dimension. To further define: \(x \) is \(\in \mathbb{R}^n \) and is the state vector, \(A \) is \(\in \mathbb{R}^{n \times n} \) and is the state matrix, \(B \) is \(\in \mathbb{R}^{n \times r} \) and is the input matrix, \(w \) is \(\in \mathbb{R}^p \) and is the exogenous input, \(C, Q, R \) is \(\in \mathbb{R}^{m \times n} \) and are the output matrices, and \(y \) and \(z \) are \(\in \mathbb{R}^m \) and are the output and the output of interest, respectively.

98.2 The Data

The matrices \(A, B, C \) that define the system, and a given controller \(K \) for which the inverse problem is to be solved.

98.3 The Optimization Problem

In this LMI, the following cost function is to be minimized for a given controller \(K \) by finding an optimal input:
the solution of the problem can be formulated as a state feedback controller given as:

\[K = -R^{-1}B^TP, \]
\[A^TP + PA - PBR^{-1}B^TP + Q = 0 \]

98.4 The LMI: Inverse Problem of Optimal Control

the inverse problem of optimal control is the following: Given a matrix \(K \), determine if there exist \(Q \geq 0 \) and \(R > 0 \), such that \((Q, A)\) is detectable and \(u = Kx \) is the optimal control for the corresponding LQR problem. Equivalently, we seek \(R > 0 \) and \(Q \geq 0 \) such that there exist \(P \) nonnegative and \(P_1 \) positive-definite satisfying

\[
(A + BK)^TP + P(A + BK) + K^TRK + Q = 0 \\
B^TP + RK = 0 \\
A^TP_1 + P_1A < Q
\]

98.5 Conclusion:

If the solution exists, then \(K \) is the optimal controller for the LQR optimization on the matrices \(Q \) and \(R \)

98.6 Implementation

This implementation requires Yalmip and Sedumi.

https://github.com/rezajamesahmed/LMImatlabcode/blob/master/inverserprob.m

98.7 Related LMIs

1. Multi-Criterion LQG\(^1\)]

\(^1\) https://en.wikibooks.org/w/index.php?title=LMIs_in_Control/pages/Multi-Criterion_LQG&stable=0
98.8 External Links

- LMI Methods in Optimal and Robust Control\(^2\) - A course on LMIs in Control by Matthew Peet.
- LMI Properties and Applications in Systems, Stability, and Control Theory\(^3\) - A List of LMIs by Ryan Caverly and James Forbes.

98.9 Return to Main Page:

\(^2\) http://control.asu.edu/MAE598_frame.htm
\(^4\) https://web.stanford.edu/~boyd/lmibook/
99 Nonconvex Multi-Criterion Quadratic Problems

The Non-Concex Multi-Criterion Quadratic linear matrix inequality will allow one to form an optimized controller, similar to that in an LQR framework, for a non-convex state space system based on several different criterions defined in the Q and R matrices, that are optimized as a part of the arbitrary cost function. Just like traditional LQR, the cost matrices must be tuned in much a similar fashion as traditional gains in classical control. In the LQR and LQG framework however, the gains are more intuitive as each correlates directly to a state or an input.

99.1 The System

The system for this LMI is a linear time invariant system that can be represented in state space as shown below:

\[\dot{x} = Ax + Bw, x(0) = x_0 \]

where the system is assumed to be controllable.

where \(x \in \mathbb{R}^n \) represents the state vector, respectively, \(w \in \mathbb{R}^p \) is the disturbance vector, and \(A, B \) are the system matrices of appropriate dimension. To further define: \(x \) is \(\in \mathbb{R}^n \) and is the state vector, \(A \) is \(\in \mathbb{R}^{n \times n} \) and is the state matrix, \(B \) is \(\in \mathbb{R}^{n \times r} \) and is the input matrix, \(w \) is \(\in \mathbb{R}^r \) and is the exogenous input.

for any input, we define a set \(p+1 \) cost indices \(J_0, ..., J_P \) by

\[
J_i(u) = \int_0^\infty \begin{bmatrix} x^T & u^T \end{bmatrix} \begin{bmatrix} Q_i & C_i \\ C_i^T & R_i \end{bmatrix} \begin{bmatrix} x \\ u \end{bmatrix} dt, \\
\]

\[
i = 0, ..., p
\]

Here the symmetric matrices,

\[
\begin{bmatrix}
Q_i & C_i \\
C_i^T & R_i
\end{bmatrix}, i = 0, ..., p
\]

are not necessarily positive-definite.
99.2 The Data
The matrices A, B, C.

99.3 The Optimization Problem
The constrained optimal control problem is:

$$\max: J_0,$$

subject to

$$J_i \leq \gamma_i, i = 1, \ldots, p, x \to 0, t \to \infty$$

99.4 The LMI: Nonconvex Multi-Criterion Quadratic Problems
The solution to this problem proceeds as follows: We first define

$$Q = Q_0 + \sum_{i=1}^{p} \tau_i Q_i,$$

$$R = R_0 + \sum_{i=1}^{p} \tau_i R_i,$$

$$C = C_0 + \sum_{i=1}^{p} \tau_i C_i,$$

where $\tau_i \geq 0$ and for every τ_i, we define

$$S = J_0 + \sum_{i=1}^{p} \tau_i J_i - \sum_{i=1}^{p} \tau_i \gamma_i$$

then, the solution can be found by:

$$\max: x(0)^T P x(0) - \sum_{i=1}^{p} \tau_i \gamma_i$$

subject to

$$\begin{bmatrix} A^T P + P A + Q & P Q + C^T \\ B^T P + C & R \end{bmatrix} \geq 0\quad \tau_i \geq 0$$
99.5 Conclusion:

If the solution exists, then K is the optimal controller and can be solved for via an EVP in P.

99.6 Implementation

This implementation requires Yalmip and Sedumi.

https://github.com/rezajamesahmed/LMImatlabcode/blob/master/multicriterionquadraticproblems.m

99.7 Related LMIs

1. Multi-Criterion LQG1
2. Inverse Problem of Optimal Control2
3. Nonconvex Multi-Criterion Quadratic Problems3
4. Static-State Feedback Problem4

99.8 External Links

A list of references documenting and validating the LMI.

- LMI Methods in Optimal and Robust Control5 - A course on LMIs in Control by Matthew Peet.
- LMI Properties and Applications in Systems, Stability, and Control Theory6 - A List of LMIs by Ryan Caverly and James Forbes.
- LMIs in Systems and Control Theory7 - A downloadable book on LMIs by Stephen Boyd.

99.9 Return to Main Page:

1 https://en.wikibooks.org/w/index.php?title=LMIs_in_Control/pages/Multi-Criterion_LQG
3 https://en.wikibooks.org/wiki/LMIs_in_Control/pages/Nonconvex_Multi-Criterion_Quadratic_Problems
4 https://en.wikibooks.org/wiki/LMIs_in_Control/pages/SSFP
5 http://control.asu.edu/MAE598_frame.htm
6 https://arxiv.org/abs/1903.08599/
7 https://web.stanford.edu/~boyd/lmibook/
100 Static-State Feedback Problem

We are attempting to stabilizing The Static State-Feedback Problem

100.1 The System
Consider a continuous time Linear Time invariant system

$$\dot{x}(t) = Ax(t) + Bu(t)$$

100.2 The Data
A, B are known matrices

100.3 The Optimization Problem
The Problem's main aim is to find a feedback matrix such that the system

$$\dot{x}(t) = Ax(t) + Bu(t)$$

and

$$u(t) = Kx(t)$$

is stable Initially we find the K matrix such that $(A + BK)$ is Hurwitz.

100.4 The LMI: Static State Feedback Problem
This problem can now be formulated into an LMI as Problem 1:

$$X(A + BK) + (A + BK)^T X < 0$$

From the above equation $X > 0$ and we have to find K

The problem as we can see is bilinear in K, X
• The bilinear in X and K is a common paradigm
• Bilinear optimization is not Convex. To Convexify the problem, we use a change of variables.

Problem 2:

\[AP + BZ + PA^T + Z^T B^T < 0 \]

where \(P > 0 \) and we find \(Z \)

\[K = ZP^{-1} \]

The Problem 1 is equivalent to Problem 2

100.5 Conclusion

If the (A,B) are controllable, We can obtain a controller matrix that stabilizes the system.

100.6 Implementation

A link to the Matlab code for a simple implementation of this problem in the Github repository:

https://github.com/yashgvd/ygovada

100.7 Related LMIs

Hurwitz Stability

100.8 External Links

• LMI Methods in Optimal and Robust Control\(^1\) - A course on LMIs in Control by Matthew Peet.
• LMI Properties and Applications in Systems, Stability, and Control Theory\(^2\) - A List of LMIs by Ryan Caverly and James Forbes.
• https://www.mathworks.com/help/control/ref/dcgain.html - Mathworks reference to DC Gain

\(^1\) http://control.asu.edu/MAE598_frame.htm
100.9 Return to Main Page:
101 Mixed H2 Hinf with desired pole location control

LMI for Mixed H_2/H_∞ with desired pole location Controller

The mixed H_2/H_∞ output feedback control has been known as an example of a multi-objective optimal control problem. In this problem, the control feedback should respond properly to several specifications. In the H_2/H_∞ controller, the H_∞ channel is used to improve the robustness of the design while the H_2 channel guarantees good performance of the system and additional constraint is used to place poles at desired location.

101.1 The System

We consider the following state-space representation for a linear system:

$$\dot{x} = Ax + B_1 u + B_2 w$$
$$z_\infty = C_\infty + D_{\infty 1} u + D_{\infty 2} w$$
$$z_2 = C_2 x + D_{21} u$$

where

- $x \in \mathbb{R}^n$, $z_2, z_\infty \in \mathbb{R}^m$ are the state vector and the output vectors, respectively
- $w \in \mathbb{R}^p$, $u \in \mathbb{R}^r$ are the disturbance vector and the control vector
- $A, B_1, B_2, C_\infty, C_2, D_{\infty 1}, D_{\infty 2}$, and D_{21} are the system coefficient matrices of appropriate dimensions

101.2 The Data

We assume that all the four matrices of the plant,$A, B_1, B_2, C_\infty, C_2, D_{\infty 1}, D_{\infty 2}$, and D_{21} are given.

101.3 The Optimization Problem

For the system with the following feedback law:
$u = Kx$

The closed loop system can be obtained as:

$$
\dot{x} = (A + B_1K)x + B_2w
$$

$$
z_\infty = (C_\infty + D_{\infty 1}K)x + D_{\infty 2}w
$$

$$
z_2 = (C_2 + D_{21}K)u
$$

Thus the H_∞ performance and the H_2 performance requirements for the system are, respectively

$$
||G_{z_\infty w}(s)||_\infty < \gamma_\infty
$$

and

$$
||G_{z_2 w}(s)||_2 < \gamma_2
$$

For the performance of the system response, we introduce the closed-loop eigenvalue location requirement. Let

$$
D = s|s \in C, L + sM + sM^T < 0,
$$

It is a region on the complex plane, which can be used to restrain the closed-loop eigenvalue locations. Hence a state feedback control law is designed such that,

- The H_∞ performance and the H_2 performance are satisfied.
- The closed-loop eigenvalues are all located in D, that is,
 $$
 \lambda(A + B_1K) \subset D.
 $$

101.4 The LMI: LMI for mixed H_2/H_∞ with desired Pole locations

The optimization problem discussed above has a solution if there exist two symmetric matrices X, Z and a matrix W, satisfying

$$
\min c_2 \gamma_2^2 + c_\infty \gamma_\infty
$$

s.t.
Conclusion:

\[
\begin{bmatrix}
(AX + B_1W)^T + AX + B_1W & B_2 & (C_\infty X + D_{\infty 1}W)^T \\
B_2^T & -\gamma_\infty I & D_{\infty 2}^T \\
C_\infty X + D_{\infty 1}W & D_{\infty 2} & -\gamma_\infty I
\end{bmatrix} < 0
\]

\[
AX + B_1W + (AX + B_1W)^T + B_2B_2^T < 0
\]

\[
\begin{bmatrix}
-Z & C_2X + D_{21}W \\
(C_2X + D_{21}W)^T & -X
\end{bmatrix} > 0
\]

\[
\text{trace}(Z) < \gamma_2^2
\]

\[
L \otimes M \otimes (AX + B_1W) + M^T \otimes (AX + B_1W)^T < 0
\]

where \(c_2 > 0\) and \(c_\infty > 0\) are the weighting factors.

101.5 Conclusion:

The calculated scalars \(\gamma_\infty\) and \(\gamma_2\) are the \(H_2\) and \(H_\infty\) norms of the system, respectively. The controller is extracted as \(K = WX^{-1}\).

101.6 Implementation

A link to Matlab codes for this problem in the Github repository:

101.7 Related LMIs

Mixed H2 Hinf with desired pole location for perturbed system\(^1\)

101.8 External Links

- LMI Methods in Optimal and Robust Control\(^2\) - A course on LMIs in Control by Matthew Peet.
- LMI Properties and Applications in Systems, Stability, and Control Theory\(^3\) - A list of LMIs by Ryan Caverly and James Forbes.

101.9 Return to Main Page

LMIs in Control/Tools\(^5\)

\(^1\) https://en.wikibooks.org/wiki/LMIs_in_Control/pages/mixh2hinfdesiredpole4perturbed
\(^2\) http://control.asu.edu/MAE598_frame.htm
\(^4\) https://web.stanford.edu/~boyd/lmibook/
\(^5\) https://en.wikibooks.org/wiki/LMIs_in_Control/Tools
102 Mixed H2 Hinf with desired pole location control for perturbed systems

LMI for Mixed H_2/H_∞ with desired pole location Controller for perturbed system case

The mixed H_2/H_∞ output feedback control has been known as an example of a multi-objective optimal control problem. In this problem, the control feedback should respond properly to several specifications. In the H_2/H_∞ controller, the H_∞ channel is used to improve the robustness of the design while the H_2 channel guarantees good performance of the system and additional constraint is used to place poles at desired location.

102.1 The System

We consider the following state-space representation for a linear system:

\[
\dot{x} = (A + \Delta A)x + (B_1 + \Delta B_1)u + B_2 w \\
z_\infty = C_\infty + D_{\infty 1}u + D_{\infty 2} w \\
z_2 = C_2 x + D_{21} u
\]

where

- $x \in \mathbb{R}^n$, $z_2, z_\infty \in \mathbb{R}^m$ are the state vector and the output vectors, respectively
- $w \in \mathbb{R}^p$, $u \in \mathbb{R}^r$ are the disturbance vector and the control vector
- $A, B_1, B_2, C_\infty, C_2, D_{\infty 1}, D_{\infty 2}$, and D_{21} are the system coefficient matrices of appropriate dimensions.
- ΔA and ΔB_1 are real valued matrix functions which represent the time varying parameters uncertainties.

Furthermore, the parameter uncertainties ΔA and ΔB_1 are in the form of

$[\Delta A \quad \Delta B_1] = HF[E_1 \quad E_2]$ where

- H, E_1 and E_2 are known matrices of appropriate dimensions.
- F is a matrix containing the uncertainty, which satisfies

$F^TF < I$
102.2 The Data

We assume that all the four matrices of the plant, A, $\Delta A, \Delta B_1, \Delta B_2,$ $C_\infty, C_2, D_{\infty 1}, D_{\infty 2}$, and D_{21} are given.

102.3 The Optimization Problem

For the system with the following feedback law:

$$u = Kx$$

The closed loop system can be obtained as:

$$\dot{x} = ((A + \Delta A) + (B_1 + \Delta B_1)K)x + B_2w$$

$$z_\infty = (C_\infty + D_{\infty 1}K)x + D_{\infty 2}w$$

$$z_2 = (C_2 + D_{21}K)u$$

the transfer function matrices are $G_{z\infty w}(s)$ and $G_{z2w}(s)$

Thus the H_∞ performance and the H_2 performance requirements for the system are, respectively

$$\|G_{z\infty w}(s)\|_\infty < \gamma_\infty$$

and

$$\|G_{z2w}(s)\|_2 < \gamma_2$$

For the performance of the system response, we introduce the closed-loop eigenvalue location requirement. Let

$$D = s|s \in C, L + sM + sM^T < 0,$$

It is a region on the complex plane, which can be used to restrain the closed-loop eigenvalue locations. Hence a state feedback control law is designed such that,

- The H_∞ performance and the H_2 performance are satisfied.
- The closed-loop eigenvalues are all located in D, that is,

$$\lambda(A + B_1K) \subset D.$$
The LMI: LMI for mixed H_2/H_∞ with desired Pole locations

The optimization problem discussed above has a solution if there exist scalars α, β, two symmetric matrices X, Z and a matrix W, satisfying

$$\min c_2 \gamma_2^2 + c_\infty \gamma_\infty$$

s.t.

$$\begin{bmatrix}
\Psi(X,W) & B_2 & (C_\infty X + D_\infty 1 W)^T & (E_1 X + E_2 W)^T \\
B_2^T & -\gamma_\infty I & D_\infty 2^T & 0 \\
C_\infty X + D_\infty 1 W & D_\infty 2 & -\gamma_\infty I & 0 \\
(E_1 X + E_2 W) & 0 & 0 & -\alpha I
\end{bmatrix} < 0$$

$$\begin{bmatrix}
\langle AX + B_1 W \rangle + B_2 B_2^T + \beta H H^T & (E_1 X + E_2 W)^T \\
E_1 X + E_2 W & -\beta I
\end{bmatrix} < 0$$

$$\begin{bmatrix}
-Z & C_2 X + D_{21} W \\
(C_2 X + D_{21} W)^T & -X
\end{bmatrix} > 0$$

$\text{trace}(Z) < \gamma_2^2$

$L \otimes + M \otimes \langle AX + B_1 W \rangle + M^T \otimes \langle AX + B_1 W \rangle^T < 0$

where $\Psi(X,W) = \langle AX + B_1 W \rangle + \alpha H H^T$

$c_2 > 0$ and $c_\infty > 0$ are the weighting factors.

102.5 Conclusion:

The calculated scalars γ_∞ and γ_2 are the H_2 and H_∞ norms of the system, respectively. The controller is extracted as $K = WX^{-1}$

102.6 Implementation

A link to Matlab codes for this problem in the Github repository:

102.7 Related LMIs

Mixed H2 Hinf with desired poles controller\(^1\)

\(^1\) https://en.wikibooks.org/w/index.php?title=LMIs_in_Control/pages/mixedhinfh2desiredpole/&stable=0
102.8 External Links

- LMI Methods in Optimal and Robust Control\(^2\) - A course on LMIs in Control by Matthew Peet.
- LMI Properties and Applications in Systems, Stability, and Control Theory\(^3\) - A List of LMIs by Ryan Caverly and James Forbes.

102.9 Return to Main Page

LMIs in Control/Tools\(^5\)

\(^2\) http://control.asu.edu/MAE598_frame.htm

\(^3\) https://arxiv.org/abs/1903.08599/

\(^4\) https://web.stanford.edu/~boyd/lmibook/

103 Robust H2 State Feedback Control

103.1 Robust H_2 State Feedback Control

For the uncertain linear system given below, and a scalar $\gamma > 0$. The goal is to design a state feedback control $u(t)$ in the form of $u(t) = Kx(t)$ such that the closed-loop system is asymptotically stable and satisfies:

$$||G_z(s)||_2 < \gamma$$

103.2 The System

Consider System with following state-space representation.

$$\dot{x}(t) = (A + \Delta A)x(t) + (B_1 + \Delta B_1)u(t) + B_2w(t)$$
$$z(t) = Cx(t) + D_1u(t) + D_2w(t)$$

where $x \in \mathbb{R}^n$, $u \in \mathbb{R}^r$, $w \in \mathbb{R}^p$, $z \in \mathbb{R}^m$. For H_2 state feedback control $D_2 = 0$

ΔA and ΔB_1 are real valued matrix functions that represent the time varying parameter uncertainties and of the form

$$[\Delta A \quad \Delta B_1] = HF \begin{bmatrix} E_1 & E_2 \end{bmatrix}$$

where matrices E_1, E_2 and H are some known matrices of appropriate dimensions, while F is a matrix which contains the uncertain parameters and satisfies.

$$F^TF \leq I$$

For the perturbation, we obviously have

$$[\Delta A \quad \Delta B_1] = \begin{bmatrix} 0 & 0 \end{bmatrix}, \text{ for } F = 0$$

$$[\Delta A \quad \Delta B_1] = H \begin{bmatrix} E_1 & E_2 \end{bmatrix}, \text{ for } F = 0$$
103.3 The Problem Formulation:

The H_2 state feedback control problem has a solution if and only if there exist a scalar β, a matrix W, two symmetric matrices Z and X satisfying the following LMI's problem.

103.4 The LMI:

$$\min \gamma^2 :$$

$$\begin{bmatrix}
AX + B_1 W & B_2 B_2^T + \beta HH^T \\
E_1 X + E_2 W & -\beta I
\end{bmatrix} < 0$$

$$\begin{bmatrix}
-Z & CX + D_1 W \\
(CX + D_1 W)^T & -X
\end{bmatrix} < 0$$

$\text{trace}(Z) < \gamma^2$

where $\langle M \rangle_s = (M + M^T)$ is the definition that is need for the above LMI.

103.5 Conclusion:

In this case, an H_2 state feedback control law is given by $u(t) = WX^{-1}x(t)$.

103.6 External Links

- LMIs in Control Systems Analysis, Design and Applications - Duan and Yu
- A course on LMIs in Control by Matthew Peet.

UNKNOWN TEMPLATE bookcat
104 LQ Regulation via H2 Control

104.1 LQ Regulation via H_2 Control

The LQR design problem is to build an optimal state feedback controller $u = Kx$ for the system $\dot{x} = Ax + Bu, x(0) = x_0$ such that the following quadratic performance index.

$$J(x, u) = \int_0^\infty (x^T Q x + u^T R u) dt$$

is minimized, where

$$Q = Q^T \geq 0, R = R^T > 0$$

The following assumptions should hold for a traditional solution.

$A1. (A, B)$ is stabilizable.

$A2. (A, L)$ is observable, with $L = Q^{1/2}$.

104.2 Relation to H_2 performance

For the system given above an auxiliary system is constructed

$$\dot{x} = Ax + Bu + x_0 \omega, y = Cx + Du$$

where

$$C = \begin{bmatrix} Q^{1/2} \\ 0 \end{bmatrix}, D = \begin{bmatrix} 0 \\ R^{1/2} \end{bmatrix}$$

Where ω represents an impulse disturbance. Then with state feedback controller $u = Kx$ the closed loop transfer function from disturbance ω to output y is

$$G_{y\omega}(s) = (C + DK)[sI - (A + BK)]^{-1}x_0$$

Then the LQ problem and the H_2 norm of $G_{y\omega}$ are related as

$$J(x, u) = ||G_{y\omega}(s)||_2^2$$
Then H_2 norm minimization leads minimization of J.

104.3 Data

The state-representation of the system is given and matrices Q, R are chosen for the optimal LQ problem.

104.4 The Problem Formulation:

Let assumptions A_1 and A_2 hold, then the state feedback control of the form $u = Kx$ exists such that $J(x,u) < \gamma$ if and only if there exist $X \in \mathbb{S}^n$, $Y \in \mathbb{S}^r$ and $W \in \mathbb{R}^{rxn}$. Then K can be obtained by the following LMI.

104.5 The LMI:

$$\min \gamma ::$$

$$(AX + BW) + (AX + BW)^T + x_0x_0^T < 0$$

$$\text{trace}(Q^{1/2}X(Q^{1/2})) + \text{trace}(Y) < \gamma$$

$$\begin{bmatrix}
-Y & R^{1/2}W \\
(R^{1/2}W)^T & -X
\end{bmatrix} < 0$$

104.6 Conclusion:

In this case, a feedback control law is given as $K = WX^{-1}$.

104.7 External Links

- LMIs in Control Systems Analysis, Design and Applications - Duan and Yu
- A course on LMIs in Control by Matthew Peet.

UNKNOWN TEMPLATE bookcat
105 State Feedback

1. /H-infinity/¹
2. /H-2/²
3. /Mixed/³
4. /Closed-Loop Robust Stability and Controller synthesis of Discrete-Time System with Polytopic Uncertainty/⁴

¹ https://en.wikibooks.org/wiki/%2FH-infinity%2F
106 Optimal State Feedback

1. Discrete Time Hinf Optimal Full State Feedback Control\(^1\)
2. Discrete Time H2 Optimal Full State Feedback Control\(^2\)
3. Discrete Time Mixed H2-Hinf Optimal Full State Feedback Control\(^3\)

\(^1\) https://en.wikibooks.org/wiki/LMIs_in_Control/pages/Discrete_Time_H%28%22%29_Optimal_Full_State_Feedback_Control
\(^2\) https://en.wikibooks.org/wiki/LMIs_in_Control/pages/Discrete_Time_H2_Optimal_Full_State_Feedback_Control
\(^3\) https://en.wikibooks.org/wiki/LMIs_in_Control/pages/Discrete_Time_Mixed_H2-H%28%22%29_Optimal_Full_State_Feedback_Control
107 Output Feedback

1. /H-infinity/
2. /H-2/
3. /Mixed/

1 https://en.wikibooks.org/wiki/%2FH-infinity%2F
108 Static Output Feedback

1. \(H\text{-}\text{infinity}/^1 \)
2. \(H\text{-}2/^2 \)
3. \(H\text{-Mixed}/^3 \)
4. Discrete-Time Static Output Feedback Stabilizability\(^4\)

1 https://en.wikibooks.org/wiki/%2FH-infinity%2F
4 https://en.wikibooks.org/wiki/LMIs_in_Control/pages/DT-SOFS
109 Optimal Output Feedback

1. /H-infinity/\(^1\)
2. /H-2/\(^2\)
3. /Mixed/\(^3\)

1 https://en.wikibooks.org/wiki/%2FH-infinity%2F
110 Optimal Dynamic Output Feedback

1. Discrete Time Hinf Optimal Dynamic Output Feedback Control¹
2. Discrete Time H2 Optimal Dynamic Output Feedback Control²
3. /Mixed/³

111 Discrete Time Stabilizability

Discrete-Time Stabilizability

A discrete time system operates on a discrete time signal input and produces a discrete time signal output. They are used in digital signal processing, such as digital filters for images or sound. The class of discrete time systems that are both linear and time invariant, known as discrete time LTI systems.

Discrete-Time LTI systems can be made stable using controller gain K, which can be found using LMI optimization, such that the close loop system is stable.

111.1 The System

Discrete-Time LTI System with state space realization (A_d, B_d, C_d, D_d)

$A_d \in \mathbb{R}^{n \times n}, \quad B_d \in \mathbb{R}^{n \times m}, \quad C_d \in \mathbb{R}^{p \times n}, \quad D_d \in \mathbb{R}^{p \times m}$

111.2 The Data

The matrices: System $(A_d, B_d, C_d, D_d), P, W$.

111.3 The Optimization Problem

The following feasibility problem should be optimized:

Maximize P while obeying the LMI constraints.

Then K is found.

111.4 The LMI:

Discrete-Time Stabilizability

The LMI formulation
Discrete Time Stabilizability

\[P \in S^n; W \in R^{m \times n} \]
\[P > 0 \]
\[\begin{bmatrix} P & A_dP + B_dW \\ * & P \end{bmatrix} > 0, \]
\[K_d = WP^{-1} \]

111.5 Conclusion:

The system is stabilizable iff there exits a \(P \), such that \(P > 0 \). The matrix \(A_d + B_dK_d \) is Schur with \(K_d = WP^{-1} \).

111.6 Implementation

A link to CodeOcean or other online implementation of the LMI MATLAB Code\(^1\)

111.7 Related LMIs

111.8 External Links

A list of references documenting and validating the LMI.

- LMI Methods in Optimal and Robust Control\(^2\) - A course on LMIs in Control by Matthew Peet.
- LMI Properties and Applications in Systems, Stability, and Control Theory\(^3\) - A List of LMIs by Ryan Caverly and James Forbes.

111.9 Return to Main Page:

\(^1\) https://github.com/Harishankar-Prabhakaran/LMIs/blob/master/A4.m
\(^2\) http://control.asu.edu/MAE598_frame.htm
\(^4\) https://web.stanford.edu/~boyd/lmibook/
112 Quadratic Schur Stabilization

LMI for Quadratic Schur Stabilization A discrete-time system is said to be stable if all roots of its characteristic equation lie in the open unit disk. This provides a condition for the stability of discrete-time linear systems with polytopic uncertainties and a linear time-invariant system with this property is called a Schur stable system.

112.1 The System

Consider discrete time system

\[x_{k+1} = Ax_k + Bu_k, \]

where \(x_k \in \mathbb{R}^n, u_k \in \mathbb{R}^m, \) at any \(t \in \mathbb{R}. \)

The system consist of uncertainties of the following form

\[\Delta A(t) = A_1 \delta_1(t) + \ldots + A_k \delta_k(t) \]
\[\Delta B(t) = B_1 \delta_1(t) + \ldots + B_k \delta_k(t) \]

where \(x \in \mathbb{R}^m, u \in \mathbb{R}^n, A \in \mathbb{R}^{m \times m} \) and \(B \in \mathbb{R}^{m \times n} \)

112.2 The Data

The matrices necessary for this LMI are \(A, \Delta A(t) \) i.e. \(A_i \) and \(\Delta B(t) \) i.e. \(B_i \)

112.3 The LMI:

There exists some \(X > 0 \) and \(Z \) such that

\[
\begin{bmatrix}
X & AX + BZ \\
(AX + BZ)^T & X
\end{bmatrix}
+ \begin{bmatrix}
0 & A_i X + B_i Z \\
(A_i X + B_i Z)^T & 0
\end{bmatrix} > 0 \quad i = 1, \ldots, k
\]
112.4 The Optimization Problem

The optimization problem is to find a matrix $K \in \mathbb{R}^{r \times n}$ such that:

$$\|A + BK\|_2 < \gamma$$

According to the definition of the spectral norms of matrices, this condition becomes equivalent to:

$$(A + BK)^T (A + BK) < \gamma^2 I$$

Using the Lemma 1.2 in LMI in Control Systems Analysis, Design and Applications\(^1\) (page 14), the aforementioned inequality can be converted into:

$$\begin{bmatrix}
-\gamma I & (A + BK) \\
(A + BK)^T & -\gamma I
\end{bmatrix} < 0$$

112.5 Conclusion:

The Controller gain matrix is extracted as $F = ZX^{-1}$

$$u_k = Fx_k$$

$$x_{k+1} = Ax_k + Bu_k,$$

$$= Ax_k + BFx_k$$

$$= (A + BF)x_k$$

It follows that the trajectories of the closed-loop system $(A + BK)$ are stable for any $\Delta \in C_0(\Delta_1, \ldots, \Delta_k)$

112.6 Implementation

https://github.com/JalpeshBhadra/LMI/blob/master/quadratic_schur_stabilization.m

112.7 Related LMIs

Schur Complement\(^2\)

Schur Stabilization\(^3\)

\(^2\) https://en.wikibooks.org/wiki/LMIs_in_Control/pages/Schur_Complement
\(^3\) https://en.wikibooks.org/w/index.php?title=LMIs_in_Control/pages/SchurStabilization&stable=0#External_Links
112.8 External Links

- LMI Methods in Optimal and Robust Control\(^4\) - A course on LMIs in Control by Matthew Peet.
- LMI in Control Systems Analysis, Design and Applications\(^7\)

Unknown Template bookcat

4 http://control.asu.edu/MAE598_frame.htm
5 https://arxiv.org/abs/1903.08599/
6 https://web.stanford.edu/~boyd/lmibook/
 Duan-Yu/p/book/9781466582996
113 Generic Insensitive Strip Region Design

Insensitive Strip Region Design

Suppose if one were interested in robust stabilization where closed-loop eigenvalues are placed in particular regions of the complex plane where the said regions has an inner boundary that is insensitive to perturbations of the system parameter matrices. This would be accomplished with the help of 2 design problems: the insensitive strip region design and insensitive disk region design (see link below for the latter).

113.1 The System

Suppose we consider the following continuous-time linear system that needs to be controlled:

\[
\begin{align*}
\dot{x} &= Ax + Bu, \\
y &= Cx
\end{align*}
\]

where \(x \in \mathbb{R}^n \), \(y \in \mathbb{R}^m \), and \(u \in \mathbb{R}^r \) are the state, output and input vectors respectively. Then the steps to obtain the LMI for insensitive strip region design would be obtained as follows.

113.2 The Data

Prior to obtaining the LMI, we need the following matrices: \(A \), \(B \), and \(C \).

113.3 The Optimization Problem

Consider the above linear system as well as 2 scalars \(\gamma_1 \) and \(\gamma_2 \). Then the output feedback control law \(u = Ky \) would be such that \(\gamma_1 < \lambda_i(A_c^s) < \gamma_2 \), where:

\[
A_c^s \triangleq \frac{1}{2} \langle A_c \rangle_s = \frac{(A + BKC)^T + (A + BKC)}{2}
\]

Letting \(K \) being the solution to the above problem, then
\[\gamma_1 < \alpha_1 \leq Re(\lambda_i(A + BK)) \leq \alpha_2 < \gamma_2, \quad i = 1, 2, ..., n \]

where

\[
\begin{cases}
\alpha_1 = \lambda_{\text{min}}(A_s^c) \\
\alpha_2 = \lambda_{\text{max}}(A_s^c)
\end{cases}
\]

113.4 The LMI: Insensitive Strip Region Design

Using the above info, we can simplify the problem by setting \(\gamma_1 \) to \(-\infty\) for all practical applications. This then simplifies our problem and results in the following LMI:

\[
\begin{cases}
\min \gamma \\
\text{s.t. } (A + BK)^T + (A + BK) < \gamma I
\end{cases}
\]

113.5 Conclusion:

If the resulting solution from the LMI above produces a negative \(\gamma \), then the output feedback controller \(K \) is Hurwitz-stable. However, if \(\gamma \) is a really small positive number, then \(\alpha_2 = \lambda_{\text{max}}(A_c^s) \) must be negative for the controller to be Hurwitz-stable.

113.6 Implementation

- Example Code\(^1\) - A GitHub link that contains code (titled "InsensitiveStripRegion.m") that demonstrates how this LMI can be implemented using MATLAB-YALMIP.

113.7 Related LMIs

- Insensitive Disk Region Design\(^2\) - Equivalent LMI for Insensitive Disk Region Design
- \(H_2\) Strip Region Design\(^3\) - LMI for \(H_2\) Strip Region Design

1 https://github.com/aramani3/MAE-598-LMI-Codes
3 https://en.wikibooks.org/wiki/LMIs_in_Control/pages/H2_StripRegion
113.8 External Links

A list of references documenting and validating the LMI.

- LMI Methods in Optimal and Robust Control\(^4\) - A course on LMIs in Control by Matthew Peet.

113.9 Return to Main Page:

\(^4\) http://control.asu.edu/MAE598_frame.htm
\(^5\) https://arxiv.org/abs/1903.08599/
\(^6\) https://web.stanford.edu/~boyd/lmibook/
114 Generic Insensitive Disk Region Design

Insensitive Disk Region Design

Similar to the insensitive strip region design problem, insensitive disk region design is another way with which robust stabilization can be achieved where closed-loop eigenvalues are placed in particular regions of the complex plane where the said regions has an inner boundary that is insensitive to perturbations of the system parameter matrices.

114.1 The System

Suppose we consider the following linear system that needs to be controlled:

\[
\begin{align*}
\rho x &= Ax + Bu, \\
y &= Cx
\end{align*}
\]

where \(x \in \mathbb{R}^n \), \(y \in \mathbb{R}^m \), and \(u \in \mathbb{R}^r \) are the state, output and input vectors respectively, and \(\rho \) represents the differential operator (in the continuous-time case) or one-step shift forward operator (i.e., \(\rho x(k) = x(k+1) \)) (in the discrete-time case). Then the steps to obtain the LMI for insensitive strip region design would be obtained as follows.

114.2 The Data

Prior to obtaining the LMI, we need the following matrices: \(A \), \(B \), and \(C \).

114.3 The Optimization Problem

Consider the above linear system as well as 2 positive scalars \(\gamma \) and \(q \). Then the output feedback control law \(u = Ky \) would be designed such that:

\[\eta = \| A + BK + qI \| < \gamma \]

Recalling the definition, we have:
\[\mathbb{D}_{q,\eta} = \{ s \in \mathbb{C}, |s+q| < \eta \} = \{ x+jy | x, y \in \mathbb{R}, (x+q)^2 + y^2 < \eta^2 \} \]

and

\[\mathbb{D}_{q,\gamma} = \{ s \in \mathbb{C}, |s+q| < \gamma \} = \{ x+jy | x, y \in \mathbb{R}, (x+q)^2 + y^2 < \gamma^2 \} \]

Letting \(K \) being the solution to the above problem, then

\[\lambda_i(A+BKC) \in \mathbb{D}_{q,\eta} \subset \mathbb{D}_{q,\gamma}, \ i = 1,2,...,n \]

114.4 The LMI: Insensitive Strip Region Design

Using the above info, we can convert the given problem into an LMI, which - after using Schur compliment Lemma - results in the following:

\[
\begin{aligned}
& \min \gamma \\
& \text{s.t.} \left[\begin{array}{cc}
-\gamma I & (A+BKC+qI) \\
(A+BKC+qI)^T & -\gamma I
\end{array} \right] < 0
\end{aligned}
\]

114.5 Conclusion:

For Schur stabilization, we can choose to solve the problem with \(q = 0 \). Schur stability is achieved when \(\gamma \leq 1 \). Alternately, if \(\gamma \) is greater than (but very close to) 1, then Schur stability is also achieved when \(\eta = \|A+BKC+qI\|_2 \leq 1 \).

114.6 Implementation

- Example Code\(^1\) - A GitHub link that contains code (titled "InsensitiveDiskRegion.m") that demonstrates how this LMI can be implemented using MATLAB-YALMIP.

114.7 Related LMIs

- \(H_2 \) Disk Region Design\(^2\) - LMI for Disk Region Design with minimal \(H_2 \) gain

• Insensitive Strip Region Design3 - Equivalent LMI for Insensitive Strip Region Design

114.8 External Links

A list of references documenting and validating the LMI.

• LMI Methods in Optimal and Robust Control4 - A course on LMIs in Control by Matthew Peet.
• LMI Properties and Applications in Systems, Stability, and Control Theory5 - A List of LMIs by Ryan Caverly and James Forbes.
• LMIs in Systems and Control Theory6 - A downloadable book on LMIs by Stephen Boyd.
• LMIs in Control Systems: Analysis, Design and Applications - A book co-authored by Guang-Ren Duan and Hai-Hua Yu.

114.9 Return to Main Page:

3 https://en.wikibooks.org/wiki/LMIs_in_Control/pages/Insensitive_Strip_Region_Design
4 http://control.asu.edu/MAE598_frame.htm
5 https://https://arxiv.org/abs/1903.08599/
6 https://web.stanford.edu/~boyd/lmibook/
115 Design for Insensitive Strip Region

Insensitive Strip Region Design with Minimum H_2 Gain

When designing controllers with insensitive region conditions, the aim is to place the closed-loop poles of the system in a particular region defined by its inner boundary. These regions are specified based on their insensitivity to perturbations to the system parameter matrices.

One type of such design is the Insensitive Strip Region Design\(^1\). In this section, building upon that, optimization problems will be provided that ensure that the conditions for insensitive strip region design are satisfied with some bounds on the H_2 gain of the closed-loop system.

115.1 The System

A state-space representation of a linear system as given below:

\[
\begin{align*}
\dot{x}(t) &= Ax(t) + Bu(t) \\
y(t) &= Cx(t)
\end{align*}
\]

where $x(t) \in \mathbb{R}^n$, $y(t) \in \mathbb{R}^m$ and $u(t) \in \mathbb{R}^r$ are the system state, output, and the input vector respectively.

115.2 The Data

To solve the design optimization problem, the linear system matrices A, B, C are required. Furthermore, to define the strip region on the eigenvalue-space, two parameters γ_1 and γ_2 are required.

115.3 The Optimization Problem

The problem of designing an H_2 optimal controller that results in the closed loop system insensitive to a certain strip region involves two sub-problems:

- Finding a control gain K such that: $\|K\|_2 < \gamma$.

\(^1\) https://en.wikibooks.org/wiki/LMIs_in_Control/pages/Insensitive_Strip_Region_Design
• The conditions for insensitive strip region design for the closed-loop system, as provided in the section Insensitive Strip Region Design2 are fulfilled.
• The optimization goal is to minimize γ such that above two hold.

115.4 \textbf{The LMI: H_2 Optimal Control Design for Insensitive Strip Region}

The problem above has a solution if and only if the following optimization problem has a solution (K, γ):

\[
\begin{align*}
\min \gamma \\
\text{s.t.} & \begin{bmatrix} -\gamma I & K \\ K^\top & -\gamma I \end{bmatrix} < 0 \\
& 2\gamma_1 I < (A + BK_C)^\top + (A + BK_C) < 2\gamma_2 I
\end{align*}
\]

115.5 \textbf{Conclusion:}

By using the design problem provided here, an optimal H_2 controller is designed to make the closed-loop system robust to perturbations in the system matrices.

115.6 \textbf{Implementation}

To solve the optimization problem with LMI presented here, YALMIP toolbox is required for setting up the feasibility problem, and SeDuMi is required to solve the problem. The following link showcases an example of the feasibility problem:

https://github.com/smhassaan/LMI-Examples/blob/master/H2_Strip_example.m

115.7 \textbf{Related LMIs}

Insensitive Strip Region Design3

115.8 \textbf{External Links}

A list of references documenting and validating the LMI.

2 https://en.wikibooks.org/wiki/LMIs_in_Control/pages/Insensitive_Strip_Region_Design
3 https://en.wikibooks.org/wiki/LMIs_in_Control/pages/Insensitive_Strip_Region_Design
• LMIs in Control Systems: Analysis, Design and Applications4 - by Guang-Ren Duan and Hai-Hua Yu, CRC Press, Taylor & Francis Group, 2013, Section 10.1.1 pp. 322–323.

115.9 Return to Main Page:

116 Design for Insensitive Disk Region

Insensitive Disk Region Design with Minimum H_2 Gain

Apart from the design for the insensitive strip region with minimum H_2 gain\(^1\), another type of such design is the Insensitive Disk Region Design\(^2\). In this section, optimization problems will be provided that ensure that the conditions for insensitive disk region design are satisfied with some bounds on the H_2 gain of the closed-loop system.

116.1 The System

A state-space representation of a linear system as given below:

$$\rho x = Ax + Bu$$
$$y = Cx$$

where $x \in \mathbb{R}^n$, $y \in \mathbb{R}^m$ and $u \in \mathbb{R}^r$ are the system state, output, and the input vector respectively. ρ represents the differential operation for continuous time systems, or the one-step shift forward operator for discrete time case.

116.2 The Data

To solve the design optimization problem, the linear system matrices A, B, C are required. Furthermore, to define the disk region on the eigenvalue-space, its radius γ_0 is required.

116.3 The Optimization Problem

The problem of designing an H_2 optimal controller that results in the closed loop system insensitive to a certain disk region involves two sub-problems:

- Finding a control gain K such that: $\|K\|_2 < \gamma$.
- The conditions for insensitive disk region design for the closed-loop system, as provided in the section Insensitive Disk Region Design\(^3\) are fulfilled.

\(^1\) https://en.wikibooks.org/wiki/LMIs_in_Control/pages/H2_StripRegion

\(^2\) https://en.wikibooks.org/wiki/LMIs_in_Control/pages/Insensitive_Disk_Region_Design

\(^3\) https://en.wikibooks.org/wiki/LMIs_in_Control/pages/Insensitive_Disk_Region_Design
The optimization goal is to minimize γ such that above two hold.

116.4 The LMI: H_2 Optimal Control Design for Insensitive Disk Region

The problem above has a solution if and only if the following optimization problem has a solution (K, γ):

$$\min \gamma$$

$$\text{s.t.} \begin{bmatrix} -\gamma I & K \\ K^\top & -\gamma I \end{bmatrix} < 0$$

$$\begin{bmatrix} -\gamma_0 I & A + BK + qI \\ (A + BK + qI)^\top & -\gamma_0 I \end{bmatrix} < 0$$

116.5 Conclusion:

By using the design problem provided here, an optimal H_2 controller is designed to make the closed-loop system robust to perturbations in the system matrices.

116.6 Implementation

To solve the optimization problem with LMI presented here, YALMIP toolbox is required for setting up the feasibility problem, and SeDuMi is required to solve the problem. The following link showcases an example of the feasibility problem:

https://github.com/smhassaan/LMI-Examples/blob/master/H2_Disk_example.m

116.7 Related LMIs

Insensitive Disk Region Design\(^4\)

116.8 External Links

A list of references documenting and validating the LMI.

\(^4\) https://en.wikibooks.org/wiki/LMIs_in_Control/pages/Insensitive_Disk_Region_Design

320
116.9 Return to Main Page:
117 Quadratic Stability

117.1 The System:

A TS fuzzy model allows the representation of a non-linear model as a set of local LTI (Linear Time Invariant) models [1, p.10], each one called subsystem. A subsystem is the local representation of the system in the space of premise variables \(z(t) \) which are known and could depend on the state variables and input variables.

117.2 The Optimization Problem:

Let consider an autonomous system \(x = Ax \) with \(A \) being a constant matrix. If we define the Lyapunov function \(V(x) = x^TPx \), then the system is stable if there exist \(P > 0 \) such that condition is satisfied.

\[A^TP + PA < 0 \]

If we have a family of matrices \(A(\delta(t)) \) (where \(\delta(t) \) is a parameter that is bounded by a polytope \(\Delta \)) instead of a single matrix \(A \), then the system equation becomes \(x = A(\delta(t))x \) and condition should be satisfied for all possible values of \(\delta(t) \). If exists \(P > 0 \) such that following condition is satisfied then the system is quadratically stable.

\[A(\delta(t))^TP + PA(\delta(t)) < 0 \ \forall \delta(t) \in \Delta. \]

Since there are an infinite number of matrices \(A(\delta(t)) \) there is also an infinite number of constraints like that for quadratic stability mentioned previously that should be fulfilled. From a practical point of view this makes the problem impossible to be solved. Let consider now that the system \(x = A(\delta(t))x \) can be written in a polytopic form as a Takagi-Sugeno (TS) polytopic system with premise variables \(z(t) \) and a set of \(r \) subsystems \(A_i \) for \(i = 1, \ldots, r \).

\[x(t) = \sum_{i=1}^{r} (h_i(z(t))) A_i x(t). \]

It can be proven that a polytopic autonomous system is quadratically stable if previous condition is satisfied in the vertices (subsystems) of the polytope. Therefore there is no need to check stability in an infinite number of matrices, but only in subsystems matrices \(A_i \).
\[A_i^T P + PA_i < 0 \quad \forall i = 1, \ldots, r. \]

Stability conditions can be applied to the closed-loop system and the following set of conditions are obtained.

\[G_{ii}^T P + PG_{ii} < 0 \quad \forall i = 1, \ldots, r. \]

\[((G_{ij} + G_{ji})/2)^T P + P((G_{ij} + G_{ji})/2) \leq 0 \quad \forall i, j \in \{1, \ldots, r\}, i < j. \]

where \(G_{ij} = A_i + B_i K_j \) and \(h_i(z(t)) h_j(z(t)) \neq 0 \).

In the special case where matrices \(B_i \) are constant (i.e. \(B_i = B \)), the first set of inequalities are enough to prove stability. Therefore, assuming constant \(B \) for all the subsystems, if there exist \(P > 0 \) such that conditions are fulfilled, then the polytopic TS model (2.2) with state feedback control is quadratically stable inside the polytope.

\[(A_i + BK_i)^T P + P(A_i + BK_i) < 0 \quad \forall i = 1, \ldots, r. \]

The assumption of constant \(B \) can be achieve using a prefiltering of the input. This change is not restrictive and the main consequence is the addition of some new state variables (the ones from the filter) to the TS model.

117.3 The LMI:

The design of the controller that stabilizes the closed-loop system boils down to solve the Linear Matrix Inequality (LMI) problem of finding a positive definite matrix \(P \) and a set of matrices \(K_i \) such that conditions are fulfilled. However, since the constraints should be linear combinations of the unknown variable, the following change of variables is applied: \(W_i = K_i Q \) where \(Q = P^{-1} \). The solution of the LMI problem is the set of matrices \(W_i \) such that conditions are fulfilled.

\[Q > 0 \]

\[A_i Q + Q A_i^T + BW_i + W_i^T B^T < 0. \quad \forall i = 1, \ldots, r. \]

The i-th controller is computed from the solution as \(K_i = W_i Q^{-1} \)

117.4 Conclusion:

The LMI is feasible.

117.5 Implementation

117.6 References

118 Apkarian Filter and State Feedback

118.1 The System:

The number of LMI constraints needed to check quadratic stability is reduced if all the subsystems in the polytopic model has the same matrix \(B \). This can be achieved by adding an Apkarian filter in the input of the system.

118.2 The Optimization Problem:

Apkarian Filter

Let consider our TS-LIA model. This can be re written in linear form as:

\[
\dot{x} = A(z(t))x + B(z(t))u
\]

The filter should be such that the equilibrium of the states are the input values and the dynamics should be fast, so we could assume the dynamics of the filter negligible (i.e. the input of the filter is equivalent to the input of the quadrotor). One possible filter is shown , where \(A_F = -100I_4, B_F = 100I_4 \) and \(I_4 \in \mathbb{R}^{4 \times 4} \) is the identity matrix.

\[
\dot{x}_F = A_F x_F + B_F u_F; y_f = x_f
\]

When applying the filter, we are imposing that the output of the filter is the new input of the TS-LIA model (i.e. \(u = y_F \)). Then, the extended model is:

\[
x_e = \begin{bmatrix} A(z(t)) & B(z(t)) \\ 0 & A_F \end{bmatrix} x_e + \begin{bmatrix} 0 \\ B_F \end{bmatrix} u_F = A_e(z(t))x_e + B_e u_f; x_e = \begin{bmatrix} x \\ x_F \end{bmatrix}
\]

This prefiltering does not affect the procedure followed to obtain the TS-LIA model, so the premise variables, membership functions and activations functions remains the same.

State Feedback Controller Design
Let consider the state feedback control law for the extended TS-LIA model:
\[\dot{x}_e = \sum_{i=1}^{32} h_i(z(t))[A_{ei}x_e + B_{ei}u_F], \]
where the state feedback control laws are:
\[u_F = \sum_{i=1}^{32} h_i(z(t))K_i x(t), \]
we get the closed loop system:
\[\dot{x}_e = \sum_{i=1}^{32} \sum_{j=1}^{32} h_j(z(t))\left[A_{ei}x_e + B_{ei}K_j x_e\right]. \]

118.3 The LMI:

The design of the controller is done by solving an LMI problem involving the quadratic stability constraints. In case we want D- stabilization, the following set of LMI constraints are needed:
\[
L \otimes P + M \otimes (A_{ei} + B_e K_i) + M^T \otimes (A_{ei} + B_e K_i)^T P < 0 \quad \forall i = 1, \ldots , 32.
\]

118.4 Conclusion:

The LMI is feasible.

118.5 Related LMIs

- LMI for Natural Frequency in State Feedback. https://en.wikibooks.org/wiki/LMIs_in_Control/pages/Maximum_Natural_Frequency_in_State_Feedback#The_LMI%3A
- LMI for Minimum Decay Rate in State Feedback. https://en.wikibooks.org/wiki/LMIs_in_Control/pages/Minimum_Decay_Rate_in_State_Feedback#The_LMI%3A

118.6 References

119 Minimum Decay Rate in State Feedback

119.1 The System:

The number of LMI constraints needed to check quadratic stability is reduced if all the subsystems in the polytopic model has the same matrix B. This can be achieved by adding an Apkarian filter in the input of the system.

119.2 The Optimization Problem:

Apkarian Filter

Let consider our TS-LIA model. This can be re written in linear form as:

$$\dot{x} = A(z(t))x + B(z(t))u$$

The filter should be such that the equilibrium of the states are the input values and the dynamics should be fast, so we could assume the dynamics of the filter negligible (i.e. the input of the filter is equivalent to the input of the quadrotor). One possible filter is shown , where $A_F = -100I_4$, $B_F = 100I_4$ and $I_4 \in \mathbb{R}^{4 \times 4}$ is the identity matrix.

$$\dot{x}_F = A_Fx_F + B_Fu_F; y_f = x_f$$

When applying the filter, we are imposing that the output of the filter is the new input of the TS-LIA model (i.e. $u = y_F$). Then, the extended model is:

$$\dot{x}_c = \begin{bmatrix} A(z(t)) & B(z(t)) \\ 0 & A_F \end{bmatrix} x_c + \begin{bmatrix} 0 \\ B_F \end{bmatrix} u_F = A_c(z(t))x_c + B_cu_f; x_e = \begin{bmatrix} x \\ x_F \end{bmatrix}$$

This prefiltering does not affect the procedure followed to obtain the TS-LIA model, so the premise variables, membership functions and activations functions remains the same.

State Feedback Controller Design
Let consider the state feedback control law for the extended TS-LIA model: \(\dot{x}_e = \sum_{i=1}^{32} h_i(z(t)) [A_{ei}x_e + B_{ei}u_F] \), where the state feedback control laws are: \(u_F = \sum_{i=1}^{32} h_i(z(t)) K_i \).

We get the closed loop system: \(\dot{x}_e = \sum_{i=1}^{32} \sum_{j=1}^{32} h_j(z(t)) [A_{ei}x_e + B_{ei}K_j]x_e \).

119.3 The LMI:

The design of the controller is done by solving an LMI problem involving the quadratic stability constraints. In case we want D-stabilization, the following set of LMI constraints are needed:

\[
L \otimes P + M \otimes P(A_{ei} + B_eK_i) + M^T \otimes (A_{ei} + B_eK_i)^T P < 0 \quad \forall i = 1, \ldots, 32.
\]

A pair of conjugate complex poles of the closed loop system can be written as \(s = -\xi \omega_n \pm j\omega_d \) where \(\xi \) is the damping ratio, \(\omega_n \) is the undamped natural frequency and \(\omega_d \) is the frequency response defined as \(\omega_d = \omega_n \sqrt{1 - \xi^2} \). Three different LMI regions have been considered, each one related with a performance specification regarding \(\alpha = \xi \omega_n, \omega_n \) and \(\xi \):

Minimum Decay Rate:

If we want to set a minimum decay rate \(\alpha \) in the closed loop system response, the poles should be inside the LMI region defined in: \(S_\alpha = \{ s = x + jy | x < -\alpha \} \), where \(\alpha > 0 \). In this case \(L_\alpha = 2\alpha \) and \(M_\alpha = 1 \).

Applying condition to the closed-loop system, the LMI condition associated to this LMI region is:

\[
2\alpha P + (A_{ei} + B_eK_i)^T P + P(A_{ei} + B_eK_i) < 0 \quad \forall i = 1, \ldots, 32.
\]

119.4 Conclusion:

The LMI is feasible.

119.5 Related LMIs

- Maximum Natural Frequency in State Feedback https://en.wikibooks.org/wiki/LMIs_in_Control/pages/Maximum_Natural_Frequency_in_State_Feedback#The_LMI%3A

119.6 References

120 Maximum Natural Frequency in State Feedback

120.1 The System:

The number of LMI constraints needed to check quadratic stability is reduced if all the subsystems in the polytopic model has the same matrix B. This can be achieved by adding an Apkarian filter in the input of the system.

120.2 The Optimization Problem:

Apkarian Filter

Let consider our TS-LIA model. This can be re written in linear form as:

$$\dot{x} = A(z(t))x + B(z(t))u$$

The filter should be such that the equilibrium of the states are the input values and the dynamics should be fast, so we could assume the dynamics of the filter negligible (i.e. the input of the filter is equivalent to the input of the quadrotor). One possible filter is shown, where $A_F = -100I_4$, $B_F = 100I_4$ and $I_4 \in \mathbb{R}^{4 \times 4}$ is the identity matrix.

$$\dot{x}_F = A_Fx_F + B_Fu_F; y_f = x_f$$

When applying the filter, we are imposing that the output of the filter is the new input of the TS-LIA model (i.e. $u = y_F$). Then, the extended model is:

$$\dot{x}_e = \begin{bmatrix} A(z(t)) & B(z(t)) \\ 0 & A_F \end{bmatrix} x_e + \begin{bmatrix} 0 \\ B_F \end{bmatrix} u_F = A_e(z(t))x_e + B_eu_F; x_e = \begin{bmatrix} x \\ x_F \end{bmatrix}$$

This prefiltering does not affect the procedure followed to obtain the TS-LIA model, so the premise variables, membership functions and activations functions remains the same.

State Feedback Controller Design
Let consider the state feedback control law for the extended TS-LIA model:
\[\dot{x}_e = \sum_{i=1}^{32} h_i(z(t))[A_{ei}x_e + B_{ei}u_F], \]
where the state feedback control laws are:
\[u_F = \sum_{i=1}^{32} h_i(z(t))K_i x(t), \]
we get the closed loop system:
\[\dot{x}_e = \sum_{i=1}^{32} \sum_{j=1}^{32} h_j(z(t))[A_{ei}x_e + B_{ei}K_j]x_e. \]

120.3 The LMI:

The design of the controller is done by solving an LMI problem involving the quadratic stability constraints. In case we want D-stabilization, the following set of LMI constraints are needed:
\[L \otimes P + M \otimes (A_{ei} + B_{ei}K_i) + MT \otimes (A_{ei} + B_{ei}K_i)^T P < 0 \forall i = 1, \ldots, 32. \]

A pair of conjugate complex poles \(s \) of the closed loop system can be written as
\[s = -\xi \omega_n \pm j \omega_d, \]
where \(\xi \) is the damping ratio, \(\omega_n \) is the undamped natural frequency and \(\omega_d \) is the frequency response defined as
\[\omega_d = \omega_n \sqrt{1 - \xi^2}. \]

Three different LMI regions have been considered, each one related with a performance specification regarding \(\alpha = \xi \omega_n, \omega_n \) and \(\xi \):

Maximizing Natural Frequency:

Natural frequency is related with the maximum frequency response in the undamped case (\(\xi = 0 \)). If we want to set a maximum \(\omega_n \) condition, the LMI region associated is
\[S_\rho = \{ s = x + jy \mid |x + jy| < \rho \}, \]
\[:L_\rho = \begin{bmatrix} -\rho & 0 \\ 0 & \rho \end{bmatrix}, M_\rho = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}. \]

Resulting LMI condition is:
\[\begin{bmatrix} -\rho P & P(A_{ei} + B_{ei}K_i) \\ (A_{ei} + B_{ei}K_i)^T P & -\rho P \end{bmatrix} < 0 \forall i = 1, \ldots, 32. \]

120.4 Conclusion:

The LMI is feasible.

120.5 Related LMIs

- Minimum Decay Rate in State Feedback. https://en.wikibooks.org/wiki/LMIs_in_Control/pages/Minimum_Decay_Rate_in_State_Feedback#The_LMI%3A
120.6 References

121 Optimal Observer and State Estimation
LMI for the Observability Grammian

Observability is a system property which says that the state of the system $x(T)$ can be reconstructed using the input $u(t)$ and output $y(t)$ on an interval $[0, T]$. This is necessary when knowledge of the full state is not available. If observable, estimators or observers can be created to reconstruct the full state. Observability and controllability are dual concepts. Thus in order to investigate the observability of a system we can study the controllability of the dual system. Although system observability can be determined with multiple methods, one is to compute the rank of the observability grammian.

122.1 The System

\[
\begin{align*}
\dot{x}(t) &= Ax(t) + Bu(t), \\
y(t) &= Cx(t) + Du(t), \\
x(0) &= x_0,
\end{align*}
\]

where $x(t) \in \mathbb{R}^n$, $u(t) \in \mathbb{R}^m$, at any $t \in \mathbb{R}$.

122.2 The Data

The matrices necessary for this LMI are A and C.

122.3 The LMI: LMI to Determine the Observability Grammian

(A, B) is observable if and only if $Y > 0$ is the unique solution to

\[
AY + YA^T - C^TC < 0
\]

where Y is the observability grammian.
122.4 Conclusion:

The above LMI attempts to find the observability grammmian Y of the system (A,C). If the problem is feasible and a unique Y is found, then the system is also observable. The observability grammmian can also be computed as: $Y = \int_0^\infty e^{ATs}C^T Ce^{As}ds$. Due to the dual nature of observability and controllability this LMI can be determined by determining the controllability of the dual nature, which results in the above LMI. The Observability and Controllability matrices are written as O and C respectively. They are related as follows:

$$O(C,A) = C(A^T, C^T)^T$$

$$C(A,B) = O(B^T, A^T)^T$$

Hence (C,A) is observable if and only if (A^T, C^T) is controllable. Please refer to the section on controllability grammmians.

122.5 Implementation

This implementation requires Yalmip and Sedumi.

https://github.com/eoskowro/LMI/blob/master/Observability_Gram_LMI.m

122.6 Related LMIs

Stabilizability LMI1

Hurwitz Stability LMI2

Detectability LMI3

Controllability Grammian LMI4

122.7 External Links

A list of references documenting and validating the LMI.

- LMI Methods in Optimal and Robust Control5 - A course on LMIs in Control by Matthew Peet.

1 https://en.wikibooks.org/wiki/LMIs_in_Control/pages/Stabilizability_LMI
2 https://en.wikibooks.org/wiki/LMIs_in_Control/Stability_Analysis/Hurwitz_Stability
5 http://control.asu.edu/MAE598_frame.htm
LMI Properties and Applications in Systems, Stability, and Control Theory6 - A List of LMIs by Ryan Caverly and James Forbes.

LMI Properties and Applications in Systems, Stability, and Control Theory8 - by Guang-Ren Duan and Hai-Hua Yu, CRC Press, Taylor & Francis Group, 2013, Section 6.1.1 and Table 6.1 pp. 166–170, 192.

\textbf{122.8} Return to Main Page:

6 https://arxiv.org/abs/1903.08599/
7 https://web.stanford.edu/~boyd/lmibook/
8 https://www.crcpress.com/LMIs-in-Control-Systems-Analysis-Design-and-Applications/
9 Duan-Yu/p/book/9781466582996
9 https://link.springer.com/book/10.1007/978-1-4757-3290-0#toc
123 H-infinity filtering

For systems that have disturbances, filtering can be used to reduce the effects of these disturbances. Described on this page is a method of attaining a filter that will reduce the effects of the disturbances as completely as possible. To do this, we look to find a set of new coefficient matrices that describe the filtered system. The process to achieve such a new system is described below. The H-infinity-filter tries to minimize the maximum magnitude of error.

123.1 The System

For the application of this LMI, we will look at linear systems that can be represented in state space as

\[
\dot{x} = Ax + Bw, \quad x(0) = x_0 \\
y = Cx + Dw \\
z = Lx
\]

where \(x \in \mathbb{R}^n\), \(y \in \mathbb{R}^l\), \(z \in \mathbb{R}^m\) represent the state vector, the measured output vector, and the output vector of interest, respectively, \(w \in \mathbb{R}^p\) is the disturbance vector, and \(A, B, C, D\) and \(L\) are the system matrices of appropriate dimension.

To further define: \(x \in \mathbb{R}^n\) and is the state vector, \(A \in \mathbb{R}^{n \times n}\) and is the state matrix, \(B \in \mathbb{R}^{n \times r}\) and is the input matrix, \(w \in \mathbb{R}^r\) and is the exogenous input, \(C \in \mathbb{R}^{m \times n}\) and is the output matrix, \(D\) and \(L\) are \(\mathbb{R}^{m \times r}\) and are feedthrough matrices, and \(y\) and \(z\) are \(\mathbb{R}^m\) and are the output and the output of interest, respectively.

123.2 The Data

The data are \(w\) (the disturbance vector), and \(A, B, C, D\) and \(L\) (the system matrices). Furthermore, the \(A\) matrix is assumed to be stable.

123.3 The Optimization Problem

We need to design a filter that will eliminate the effects of the disturbances as best we can. For this, we take a filter of the following form:
\[
\dot{\sigma} = A_f \sigma + B_f \sigma, \quad \sigma(0) = \sigma_0 \\
\dot{\hat{z}} = C_f \sigma + D_f y,
\]

where \(\sigma \in \mathbb{R}^n \) is the state vector, \(\hat{z} \in \mathbb{R}^m \) is the estimation vector of \(z \), and \(A_f, B_f, C_f, \text{and} D_f \) are the coefficient matrices of appropriate dimensions.

Note that the combined complete system can be represented as

\[
\begin{align*}
\dot{x}_e &= \tilde{A} x_e + \tilde{B} w, \quad x_e(0) = x_{e0} \\
\tilde{z} &= \tilde{C} x_e + \tilde{D} w,
\end{align*}
\]

where \(\tilde{z} = z - \hat{z} \in \mathbb{R}^m \) is the estimation error,

\[
x_e = \begin{bmatrix} x \\ \sigma \end{bmatrix}
\]

is the state vector of the system, and \(\tilde{A}, \tilde{B}, \tilde{C}, \tilde{D} \) are the coefficient matrices, defined as:

\[
\begin{align*}
\tilde{A} &= \begin{bmatrix} A & 0 \\ B_D C & A_f \end{bmatrix}, \\
\tilde{B} &= \begin{bmatrix} B \\ B_f D \end{bmatrix}, \\
\tilde{C} &= \begin{bmatrix} L - D_f C & -C_f \end{bmatrix}, \\
\tilde{D} &= -D_f D
\end{align*}
\]

In other words, for the system defined above we need to find \(A_f, B_f, C_f, \text{and} D_f \) such that

\[
|G_{\tilde{z}w}(s)|_{\text{inf}} < \gamma,
\]

where \(\gamma \) is a positive constant, and

\[
G_{\tilde{z}w}(s) = \tilde{C}(sI - \tilde{A})^{-1} \tilde{B} + \tilde{D}.
\]

123.4 The LMI: H-inf Filtering

The solution can be obtained by finding matrices \(R, X, M, N, Z, D_f \) that obey the following LMIs:
\[\begin{bmatrix} R A + A^T R + Z C + C^T Z^T & * & * & * \\ M^T + Z C + X A & M^T + M & * & * \\ B^T R + D^T Z^T & B^T X + D^T Z^T & -\gamma I & * \\ L - D_f C & -N & -D_f D & -\gamma I \end{bmatrix} < 0 \]

123.5 Conclusion:

To find the corresponding filter, use the optimized matrices from the solution to find:

\[A_f = X^{-1} M, B_f = X^{-1} Z, C_f = N, D_f = D_f \]

These matrices can then be used to produce \(\tilde{A}, \tilde{B}, \tilde{C}, \tilde{D} \) to construct the filter described above, that will best eliminate the disturbances of the system.

123.6 Implementation

This implementation requires Yalmip and Sedumi.

https://github.com/rezajamesahmed/LMImatlabcode/blob/master/hinf_filtering.m

123.7 Related LMIs

H-2_filtering\(^1\)

123.8 External Links

This LMI comes from

- "LMIs in Control Systems: Analysis, Design and Applications" by Guang-Ren Duan and Hai-Hua Yu
- LMI Methods in Optimal and Robust Control\(^3\) - A course on LMIs in Control by Matthew Peet.

\(^1\) https://en.wikibooks.org/wiki/LMIs_in_Control/pages/H-2_filtering
\(^3\) http://control.asu.edu/MAE598_frame.htm
• LMI Properties and Applications in Systems, Stability, and Control Theory4 - A List of LMIs by Ryan Caverly and James Forbes.
• LMIs in Systems and Control Theory5 - A downloadable book on LMIs by Stephen Boyd.

123.9 References

123.10 Return to Main Page:

4 https://arxiv.org/abs/1903.08599/
5 https://web.stanford.edu/~boyd/lmibook/
124 H2 filtering

For systems that have disturbances, filtering can be used to reduce the effects of these disturbances. Described on this page is a method of attaining a filter that will reduce the effects of the disturbances as completely as possible. To do this, we look to find a set of new coefficient matrices that describe the filtered system. The process to achieve such a new system is described below. The H2-filter tries to minimize the average magnitude of error.

124.1 The System

For the application of this LMI, we will look at linear systems that can be represented in state space as

\[\dot{x} = Ax + Bw, \quad x(0) = x_0 \]
\[y =Cx + Dw \]
\[z = Lx \]

where \(x \in \mathbb{R}^n \), \(y \in \mathbb{R}^l \), \(z \in \mathbb{R}^m \) represent the state vector, the measured output vector, and the output vector of interest, respectively, \(w \in \mathbb{R}^p \) is the disturbance vector, and \(A, B, C, D \) and \(L \) are the system matrices of appropriate dimension. To further define: \(x \) is \(\in \mathbb{R}^n \) and is the state vector, \(A \) is \(\in \mathbb{R}^{n \times n} \) and is the state matrix, \(B \) is \(\in \mathbb{R}^{n \times r} \) and is the input matrix, \(w \) is \(\in \mathbb{R}^r \) and is the exogenous input, \(C \) is \(\in \mathbb{R}^{m \times n} \) and is the output matrix, \(D \) and \(L \) are \(\in \mathbb{R}^{m \times r} \) and are feedthrough matrices, and \(y \) and \(z \) are \(\in \mathbb{R}^m \) and are the output and the output of interest, respectively.

124.2 The Data

The data are \(w \) (the disturbance vector), and \(A, B, C, D \) and \(L \) (the system matrices). Furthermore, the \(A \) matrix is assumed to be stable.

124.3 The Optimization Problem

We need to design a filter that will eliminate the effects of the disturbances as best we can. For this, we take a filter of the following form:
\[
\dot{\sigma} = A_f \sigma + B_f y, \quad \sigma(0) = \sigma_0
\]
\[
\dot{\hat{z}} = C_f \sigma,
\]
where \(\sigma \in \mathbb{R}^n \) is the state vector, \(\hat{z} \in \mathbb{R}^m \) is the estimation vector, and \(A_f, B_f, C_f \) are the coefficient matrices of appropriate dimensions.

Note that the combined complete system can be represented as
\[
\dot{x}_e = \tilde{A} x_e + \tilde{B} w, \quad x_e(0) = x_{e0}
\]
\[
\tilde{z} = \tilde{C} x_e,
\]
where \(\tilde{z} = z - \hat{z} \in \mathbb{R}^m \) is the estimation error,
\[
x_e = \begin{bmatrix} x \\ \sigma \end{bmatrix}
\]
is the state vector of the system, and \(\tilde{A}, \tilde{B}, \tilde{C} \) are the coefficient matrices, defined as:
\[
\tilde{A} = \begin{bmatrix} A \\ B_f C \\ A_f \end{bmatrix}, \quad \tilde{B} = \begin{bmatrix} B \\ B_f D \end{bmatrix}, \quad \tilde{C} = \begin{bmatrix} L \\ -C_f \end{bmatrix}
\]

In other words, for the system defined above we need to find \(A_f, B_f, C_f \) such that
\[
||G_{\tilde{z}w}||_2 < \gamma,
\]
where \(\gamma \) is a positive constant, and
\[
G_{\tilde{z}w}(s) = \tilde{C} (sI - \tilde{A})^{-1} \tilde{B}
\]

124.4 The LMI: H-2 Filtering

For this LMI, the solution exists if one of the following sets of LMIs hold:
Matrices \(R, X, M, N, Z, Q \) exist that obey the following LMIs:
Conclusion:

\[R - X > 0, \]
\[\text{trace}(Q) < \gamma^2, \]
\[\begin{bmatrix}
 -Q & * & * \\
 L^T & -R & * \\
 -N^T & -X & -X
\end{bmatrix} < 0, \]
\[\begin{bmatrix}
 RA + A^T R + ZC + C^T Z^T & * & * \\
 MT + ZC + XA & MT + M & * \\
 B^T R + D^T Z^T & B^T X + D^T Z^T & -I
\end{bmatrix} < 0. \]

or

Matrices \(\bar{R}, \bar{X}, \bar{M}, \bar{N}, \bar{Z}, \bar{Q} \) exist that obey the following LMIs:

\[\bar{R} - \bar{X} > 0, \]
\[\text{trace}(\bar{Q}) < \gamma^2, \]
\[\begin{bmatrix}
 -\bar{Q} & * & * \\
 \bar{R}B + \bar{Z}D & -\bar{R} & * \\
 \bar{X}B + \bar{Z}D & -\bar{X} & -I
\end{bmatrix} < 0, \]
\[\begin{bmatrix}
 \bar{R}A + A^T \bar{R} + \bar{Z}C + C^T \bar{Z}^T & * & * \\
 \bar{M}T + \bar{Z}C + \bar{X}A & \bar{M}T + \bar{M} & * \\
 \bar{L} & -\bar{N} & -I
\end{bmatrix} < 0. \]

124.5 Conclusion:

To find the corresponding filter, use the optimized matrices from the first solution to find:

\[A_f = X^{-1} M, B_f = X^{-1} Z, C_f = N \]

Or the second solution to find:

\[A_f = \bar{X}^{-1} \bar{M}, B_f = \bar{X}^{-1} \bar{Z}, C_f = \bar{N} \]

These matrices can then be used to produce \(\tilde{A}, \tilde{B}, \tilde{C} \) to construct the final filter below, that will best eliminate the disturbances of the system.

\[\dot{x}_e = \tilde{A}x_e + \tilde{B}w, x_e(0) = x_{e0} \]
\[\tilde{z} = \tilde{C}x_e, \]
124.6 Implementation

This implementation requires Yalmip and Sedumi.

https://github.com/rezajamesahmed/LMImatlabcode/blob/master/H2_Filtering.m

124.7 Related LMIs

H-infinity filtering¹

124.8 External Links

This LMI comes from
- ² - “LMIs in Control Systems: Analysis, Design and Applications” by Guang-Ren Duan and Hai-Hua Yu

Other resources:
- LMI Methods in Optimal and Robust Control³ - A course on LMIs in Control by Matthew Peet.

124.9 References

124.10 Return to Main Page:

¹ https://en.wikibooks.org/wiki/LMIs_in_Control/pages/H-infinity_filtering#Conclusion%
³ http://control.asu.edu/MAE598_frame.htm
⁵ https://web.stanford.edu/~boyd/lmibook/
H2 Optimal Observer

State observer is a system that provides estimates of internal states of a given real system, from measurements of the inputs and outputs of the real system. The goal of H_2-optimal state estimation is to design an observer that minimizes the H_2 norm of the closed-loop transfer matrix from w to z. Kalman filter is a form of Optimal Observer.

125.1 The System

Consider the continuous-time generalized plant P with state-space realization

$$\dot{x} = Ax + B_1w(t),$$

$$y = C_2x + D_{21}w$$

125.2 The Data

The matrices needed as input are A, B, C, D.

125.3 The Optimization Problem

The task is to design an observer of the following form:

$$\dot{x} = A\hat{x} + L(y - \hat{y}),$$

$$\hat{y} = C_2\hat{x}$$

125.4 The LMI: H_2 Optimal Observer

LMIs in the variables P, G, Z, ν are given by:

$$\begin{bmatrix}
PA + A^TP - GC_2 - C_2^TG^T & PB_1 - GD_{21} \\
* & -1
\end{bmatrix} < 0$$

$$trZ < \nu$$

347
125.5 Conclusion:

The H_2-optimal observer gain is recovered by $L = P^{-1}G$ and the H_2 norm of $T(s)$ is $\mu = \sqrt{\nu}$

125.6 Implementation

126 External Links

A list of references documenting and validating the LMI.

- LMI Methods in Optimal and Robust Control1 - A course on LMIs in Control by Matthew Peet.
- LMI Properties and Applications in Systems, Stability, and Control Theory2 - A List of LMIs by Ryan Caverly and James Forbes.
- LMIs in Systems and Control Theory3 - A downloadable book on LMIs by Stephen Boyd.

126.1 Return to Main Page:

1 http://control.asu.edu/MAE598_frame.htm
3 https://web.stanford.edu/~boyd/lmibook/
HInf Optimal Observer

H-Optimal observers yield robust estimates of some or all internal plant states by processing measurement data. Robust observers are increasingly demanded in industry as they may provide state and parameter estimates for monitoring and diagnosis purposes even in the presence of large disturbances such as noise etc. It is there where Kalman filters may tend to fail. State observer is a system that provides estimates of internal states of a given real system, from measurements of the inputs and outputs of the real system. The goal of H-optimal state estimation is to design an observer that minimizes the H norm of the closed-loop transfer matrix from w to z.

127.1 The System

Consider the continuous-time generalized plant P with state-space realization

\[
\begin{align*}
\dot{x} &= Ax + B_1 w, \\
y &= C_2 x + D_{21} w
\end{align*}
\]

127.2 The Data

The matrices needed as input are \(A, B_1, B_2, C_2, D_{21}, D_{11} \).

127.3 The Optimization Problem

The observer gain \(L \) is to be designed such that the H of the transfer matrix from w to z, given by

\[
T(s) = C_1(sI - (A - LC_2))^{-1}(B_1 - LD_{21}) + D_{11}
\]

is minimized. The form of the observer would be:

\[
\begin{align*}
\dot{x} &= Ax + L(y - \hat{y}), \\
\hat{y} &= C_2 \hat{x}
\end{align*}
\]
127.4 The LMI: H Optimal Observer

The H-optimal observer gain is synthesized by solving for $P \in \mathbb{S}^{n_x}, G \in \mathbb{R}^{n_x \times n_y}$, and $\gamma \in \mathbb{R}_{>0}$ that minimize $\zeta(\gamma) = \gamma$ subject to $P > 0$ and

$$\begin{bmatrix} PA + A^T P - GC_2 - C_2^T G^T & PB_1 - GD_{21} & C_1^T \\ * & -\gamma I & D_{11}^T \\ * & * & -\gamma I \end{bmatrix} < 0$$

127.5 Conclusion:

The H-optimal observer gain is recovered by $L = P^{-1}G$ and the H norm of $T(s)$ is γ.

127.6 Implementation

Link to the MATLAB code designing H- Optimal Observer

https://github.com/Ricky-10/coding107/blob/master/HinfinityOptimalobserver
128 External Links

- LMI Methods in Optimal and Robust Control\(^1\) - A course on LMIs in Control by Matthew Peet.
- LMIs in Systems and Control Theory\(^3\) - A downloadable book on LMIs by Stephen Boyd.

128.1 Return to Main Page:

1 http://control.asu.edu/MAE598_frame.htm
3 https://web.stanford.edu/~boyd/lmibook/
Mixed H2-HInf Optimal Observer

The goal of mixed $H_2 - H$-optimal state estimation is to design an observer that minimizes the H_2 norm of the closed-loop transfer matrix from w_1 to z_1, while ensuring that the H norm of the closed-loop transfer matrix from w_2 to z_2 is below a specified bound.

129.1 The System

Consider the continuous-time generalized plant P with state-space realization

$$
\dot{x} = Ax + B_{1,1}w_1 + B_{1,2}w_2,
$$

$$
y = C_2x + D_{21,1}w_1 + D_{21,2}w_2
$$

where it is assumed that (A,C_2) is detectable.

129.2 The Data

The matrices needed as input are $A, B_1, B_2, C_2, D_{21}, D_{11}$.

129.3 The Optimization Problem

The observer gain L is to be designed to minimize the H_2 norm of the closed-loop transfer matrix $T_{11}(s)$ from the exogenous input w_1 to the performance output z_1 while ensuring the H norm of the closed-loop transfer matrix $T_{22}(s)$ from the exogenous input w_2 to the performance output z_2 is less than γ_d, where

$$
T_{11}(s) = C_{1,1}(sI - (A - LC_2))^{-1}(B_{1,1} - LD_{21,1})
$$
$$
T_{22}(s) = C_{1,2}(sI - (A - LC_2))^{-1}(B_{1,2} - LD_{21,2}) + D_{11,22}
$$

is minimized. The form of the observer would be:

$$
\hat{x} = A\hat{x} + L(y - \hat{y}),
$$

$$
\hat{y} = C_2\hat{x}
$$

is to be designed, where $L \in \mathbb{R}^{nx \times ny}$ is the observer gain.
129.4 The LMI: H Optimal Observer

The mixed $H_2 - H$-optimal observer gain is synthesized by solving for $P \in \mathbb{S}^{n_x}, G \in \mathbb{R}^{n_x \times n_y}$, and $\nu \in \mathbb{R}_{>0}$ that minimize $\zeta(\nu) = \nu$ subject to $P > 0, Z > 0$,

$$
\begin{bmatrix}
PA + A^TP - GC_2 - C_2^TGT & PB_1 - GD_{21} \\
\star & -1
\end{bmatrix} < 0
$$

$$
\begin{bmatrix}
PA + A^TP - GC_2 - C_2^TGT & PB_1 - GD_{21} \\
\star & -\gamma_1
\end{bmatrix} < 0
$$

$$
\begin{bmatrix}
P & C_{1,1}^T \\
\star & Z
\end{bmatrix} > 0
$$

$$
trZ < \nu
$$

129.5 Conclusion:

The mixed $H_2 - H$ -optimal observer gain is recovered by $L = P^{-1}G$, the H_2 norm of $T_{11}(s)$ is less than $\mu = \sqrt{\nu}$ and the H norm of $T(s)$ is less than γ_d.

129.6 Implementation

Link to the MATLAB code designing $H_2 - H$- Optimal Observer

Code $H_2 - H$ Optimal Observer\(^1\)

129.7 External Links

- LMI Methods in Optimal and Robust Control\(^2\) - A course on LMIs in Control by Matthew Peet.
- LMI Properties and Applications in Systems, Stability, and Control Theory\(^3\) - A List of LMIs by Ryan Caverly and James Forbes.

\(^1\) https://github.com/Ricky-10/coding107/blob/master/Mixed%20H2-Hinf%20Optimal%20Observer

\(^2\) http://control.asu.edu/MAE598_frame.htm

\(^3\) https://arxiv.org/abs/1903.08599/

\(^4\) https://web.stanford.edu/~boyd/lmibook/
129.8 Related LMIs

- H_2 Optimal observer\(^5\)
- H Optimal observer\(^6\)

129.9 Return to Main Page:

\(^5\) https://en.wikibooks.org/wiki/LMIs_in_Control_H2Optimalobserver

\(^6\) https://en.wikibooks.org/wiki/LMIs_in_Control_F infinityoptimalobserver
130 H2 Optimal Filter

Optimal filtering is a means of adaptive extraction of a weak desired signal in the
presence of noise and interfering signals. Optimal filters normally are free from sta-
bility problems. There are simple operational checks on an optimal filter when it is
being used that indicate whether it is operating correctly. Optimal filters are prob-
ably easier to make adaptive to parameter changes than suboptimal filters. The goal
of optimal filtering is to design a filter that acts on the output \(z \) of the generalized
plant and optimizes the transfer matrix from \(w \) to the filtered output.

130.1 The System:

Consider the continuous-time generalized LTI plant with minimal states-space re-
alization

\[
\dot{x} = Ax + B_1 w \\
z = C_1 x + D_{11} w, \\
y = C_2 x + D_{21} w,
\]

where it is assumed that \(A \) is Hurwitz.

130.2 The Data

The matrices needed as inputs are \(A, B_1, C_2, D_{21} \).

130.3 The Optimization Problem:

An \(H_2 \)-optimal filter is designed to minimize the \(H_2 \) norm of \(\tilde{P}(s) \) in following
equation.
\[\hat{P}(s) = \tilde{C}_1(sI - \tilde{A})^{-1}\tilde{B}_1 + \tilde{D}_{11}, \]

where

\[
\tilde{A} = \begin{bmatrix} A & 0 \\ B_fC_2 & A_f \end{bmatrix} < 0
\]

\[
\tilde{B}_1 = \begin{bmatrix} B_1 \\ B_fD_{21} \end{bmatrix} < 0
\]

\[
\tilde{C}_1 = \begin{bmatrix} C_1 - D_fC_2 - C_f \end{bmatrix} < 0
\]

\[
\tilde{D}_{11} = D_{11} - D_fD_{21}
\]

To ensure that \(\hat{P}(s) \) has a finite \(H_2 \) norm, it is required that \(D_f = D_{11} \), which results in \(\tilde{D}_{11} = D_{11} - D_fD_{21} = 0 \).

13.0.4 The LMI: H2- Optimal filter

Solve for \(A_n \in \mathbb{R}^{n_x \times n_x}, B_n \in \mathbb{R}^{n_x \times n_y}, C_f \in \mathbb{R}^{n_x \times n_x}, X, Y \in \mathbb{S}^{n_x}, Z \in \mathbb{S}^{n_z} \) and \(\nu \in \mathbb{R}_{>0} \) that minimize \(\zeta(\nu) = \nu \) subject to \(X > 0, Y > 0, Z > 0 \).

\[
\begin{bmatrix}
YA + ATY + B_nC_2 & A_n + C_2^T B_n^T + ATX & YB_1 + B_nD_{21} \\
* & A_n + A_n^T & XB_1 + B_nD_{21} \\
* & * & -1
\end{bmatrix} < 0
\]

\[
\begin{bmatrix}
-Z & C_1 - D_fC_2 & -C_f \\
* & -Y & -X \\
* & * & -X \\
\end{bmatrix} < 0
\]

\(Y - X > 0 \)

\(\text{tr}Z < /nu \)

13.0.5 Conclusion:

The filter is recovered by \(A_f = X^{-1}A_n \) and \(B_f = X^{-1}B_n \).

13.0.6 Implementation

MATLAB code of \(H_2 \) Optimal filter\(^1\)

\(^1\) https://github.com/Ricky-10/coding107/blob/master/H2Optimal%20Filter
130.7 External links

- http://home.eng.iastate.edu/~julied/classes/ee524/LectureNotes/l10.pdf - Optimal Filtering

Optimal filtering is a means of adaptive extraction of a weak desired signal in the presence of noise and interfering signals. The goal of optimal filtering is to design a filter that acts on the output \(z \) of the generalized plant and optimizes the transfer matrix from \(w \) to the filtered output.

131.1 The System:

Consider the continuous-time generalized LTI plant with minimal states-space realization

\[
\dot{x} = Ax + B_1 w \\
z = C_1 x + D_{11} w, \\
y = C_2 x + D_{21} w,
\]

where it is assumed that \(A \) is Hurwitz.

131.2 The Data

The matrices needed as inputs are \(A, B_1, C_2, C_1, D_{11}, D_{21} \).

131.3 The Optimization Problem:

An \(H \)-optimal filter is designed to minimize the \(H \) norm of \(\tilde{P}(s) \) in following equation.

\[
\tilde{P}(s) = \tilde{C}_1 (sI - \tilde{A})^{-1} \tilde{B}_1 + \tilde{D}_{11},
\]

where

\[
\tilde{A} = \begin{bmatrix} A & 0 \\ B_f C_2 & A_f \end{bmatrix} < 0 \\
\tilde{B}_1 = \begin{bmatrix} B_1 \\ B_f D_{21} \end{bmatrix} < 0 \\
\tilde{C}_1 = [C_1 - D_f C_2 - C_f] < 0 \\
\tilde{D}_{11} = D_{11} - D_f D_{21}
\]
131.4 The LMI: H- Optimal filter

Solve for $A_n \in \mathbb{R}^{n_x \times n_x}, B_n \in \mathbb{R}^{n_x \times n_y}, C_f \in \mathbb{R}^{n_x \times n_z}, X, Y \in \mathbb{S}^{n_x}$ and $\nu \in \mathbb{R}_{>0}$ that minimize $\zeta(\nu) = \nu$ subject to $X > 0, Y > 0$.

\[
\begin{bmatrix}
YA + A^T Y + B_n C_2 & A_n + C_2^T B_n^T + A^T X & YB_1 + B_n D_{21} & C_1^T - C_2^T D_f^T \\
* & A_n + A_n^T & XB_1 + B_n D_{21} & -\gamma I \\
* & * & -\gamma I & D_1^T - D_2^T D_f^T \\
* & * & * & -\gamma I
\end{bmatrix} < 0
\]

$Y - X > 0$

131.5 Conclusion:

The filter is recovered by $A_f = X^{-1} A_n$ and $B_f = X^{-1} B_n$.

131.6 Implementation

131.7 External links

- LMI Properties and Applications in Systems, Stability, and Control Theory\(^1\) - A List of LMIs by Ryan Caverly and James Forbes.

\(^1\) https://arxiv.org/abs/1903.08599/
FDI Filter Design For Systems With Sensor Faults: an LMI

Systems with faulty sensors are a very common type of systems. In many cases, redundancy is added in the form of additional sensors, but in certain cases it could be a costly solution. For general linear system models, the LMI in this section can be utilized to design state estimators which can detect and isolate faulty sensor readings in order to mitigate their effects.

132.1 The System

\[
\dot{x}(t) = Ax(t) + B_1w(t) + B_2u(t) \\
y(t) = Cx(t) + v(t)
\]

where \(x(t) \in \mathbb{R}^n \) is the state, \(u(t) \in \mathbb{R}^m \) is the control input, \(w(t) \in \mathbb{R}^r \) is the process noise, \(y(t) \in \mathbb{R}^p \) is the output and \(v(t) \in \mathbb{R}^q \) is the measurement noise.

132.2 The Data

The state space matrices \((A, B_1, B_2, C)\) are required to be known.

132.3 The Optimization LMI

The following LMI is used to design the Fault Detection and Isolation (FDI) filter:

\[
\begin{align*}
\min_{\Phi, \Theta, \gamma}, \\
\text{subj. to: } & \Phi > 0, \\
& \begin{bmatrix}
A^\top \Phi + \Phi A + C^\top \Theta \Theta^\top + \Theta C & \Phi B_1 & \Theta & I \\
* & -\gamma I & 0 & 0 \\
* & * & -\gamma I & 0 \\
* & * & * & -\gamma I
\end{bmatrix} < 0
\end{align*}
\]

Then the filter is \(K = \Phi^{-1} \Theta \).
132.4 Conclusion:

The LMI designed in this section is used to design filters that can work on systems that are prone to sensors getting damaged or faulty.

132.5 Implementation

To solve the feasibility LMI, YALMIP toolbox is required for setting up the feasibility problem, and SeDuMi is required to solve the problem. The following link showcases an example of the feasibility problem:

https://github.com/smhassaan/LMI-Examples/blob/master/FDI_Filter_example.m

132.6 Related LMIs

H-infinity Optimal Filter\(^1\)

H-infinity Optimal Observer\(^2\)

132.7 External Links

A list of references documenting and validating the LMI.

- LMI Methods in Optimal and Robust Control\(^3\) - A course on LMIs in Control by Matthew Peet.

132.8 Return to Main Page:

\(^1\) https://en.wikibooks.org/wiki/LMIs_in_Control/pages/HinfinityOptimalfilter
\(^2\) https://en.wikibooks.org/wiki/LMIs_in_Control/pages/HinfinityOptimalObserver
\(^3\) http://control.asu.edu/MAE598_frame.htm
\(^5\) https://web.stanford.edu/~boyd/lmibook/
133 H_2 Optimal State estimation

The H_2 norm of a stable system H is the root-mean-square of the impulse response of the system. The H_2 norm measures the steady-state covariance (or power) of the output response to unit noise input. In this module, the goal of H_2 optimal state estimation is to design an observer that minimizes the H_2 norm of the closed loop transfer matrix.

133.1 The System

Consider the continuous-time generalized plant P with state-space realization:

\[
\begin{align*}
\dot{x}(t) &= Ax(t) + B_1 u(t) + B_2 w(t) & x(0) &= x_0 \\
y(t) &= C_1 x(t) + D_1 u(t) + D_2 w(t) \\
z(t) &= C_2 x(t)
\end{align*}
\]

where it is assumed that (A, C_2) is detectable. An observer of the form

133.2 The Data

- $x \in \mathbb{R}^n$, $y \in \mathbb{R}^l$, $z \in \mathbb{R}^m$ are respectively the state vector, the measured output vector, and the output vector of interests.

- $w \in \mathbb{R}^p$ and $u \in \mathbb{R}^r$ are the disturbance vector and the control vector, respectively.

- A, B_1, B_2, C_1, C_2, D_1, and D_2 are the system coefficient matrices of appropriate dimensions.

133.3 The Optimization Problem

Given the system and a positive scalar γ we have to find the matrix L such that
An observer of the form
\[\dot{x}(t) = Ax(t) + (Ly - Ly) + B_1 u(t) + B_2 w(t) \]
\[\dot{x}(t) = (A + LC_1)x(t) - Ly + (B_1 + LD_1)u(t) + (B_2 + LD_2)w(t) \]
is to be designed, where L is the observer gain.

Defining the error state as
\[e = x - \hat{x} \]
The break dynamics are found to be
\[\dot{e} = (A + LC_1)e + (B_2 + LD_2)w \]
\[\ddot{z}(t) = C_2 e \]

For the system we introduce a full state observer in the following form:
\[\dot{x} = (A + LC_1)\hat{x} - Ly + (B_1 + LD_1)\hat{u}, L \] are the observation vector and the observer gain.

The transfer function for this case is \(G_{zw}(s) = C_2(sI - A - LC_1)^{-1}(B_2 + LD_2) \) and thus the problem of \(H_2 \) state observer design is to find L such that \(|G_{zs}(s)|_2 < \gamma\)

133.4 The LMI: LMI for \(H_2 \) Observer estimation

The \(H_2 \) state observer problem has a solution if and only if there exists a matrix \(W \), a symmetric matrix \(Q \) and a symmetric matrix \(X \) such that
\[
\begin{bmatrix}
XA + WC_1 + (XA + WC_1)^T & X B_2 + WD_2 \\
(XB_2 + WD_2)^T & -I
\end{bmatrix} < 0
\]
\[
\begin{bmatrix}
-Q & C_2 \\
C_2^T & -X
\end{bmatrix} < 0
\]
\[\text{trace}(Q) < \gamma^2 \]
and from the solution of the above LMIs we can obtain the observer matrix as

$$L = X^{-1}W$$

133.5 Conclusion

Thus by formulation, we have converted the problem of \(\text{H}_2 \) state observer design into an LMI feasibility problem by optimizing the above LMIs. In application we are often concerned with the problem of finding the minimal attenuation level \(\gamma \).

On implementation and optimization of the above LMI using YALMIP and MOSEK (or) SeDuMi we get 3 matrices as output, \(X, W \) and \(Q \) and also \(\rho \) which is used to calculate \(\gamma \) which is the \(\text{H}_2 \) norm of the system.

There exists another set of LMIs which holds true for the same optimization problem as above.

$$A^T Y + C_1^T V^T + Y A + V C_1 + C_2^T C_2 < 0$$

$$
\begin{bmatrix}
-Z & \ Y B_2 + V D_2 \\
(YB_2 + VD_2)^T & -Y
\end{bmatrix} < 0
$$

\[\text{trace}(Z) < \gamma^2\]

When a minimal \(\rho \) is obtained, the minimal attenuation level is \(\gamma = \sqrt{\rho} \).

133.6 Implementation

A link to the Matlab code for a simple implementation of this problem in the Github repository:

https://github.com/yashgvd/ygovada

133.7 Related LMIs

\(\text{H}_\infty \) State Observer Design

Discrete time \(\text{H}_2 \) State Observer Design
133.8 External Links

- LMI Methods in Optimal and Robust Control\(^1\) - A course on LMIs in Control by Matthew Peet.

133.9 Return to Main Page:

1 http://control.asu.edu/MAE598_frame.htm
134 Hurwitz Detectability

134.1 Hurwitz Detectability

Hurwitz detectability is a dual concept of Hurwitz stabilizability and is defined as the matrix pair \((A,C)\), is said to be Hurwitz detectable if there exists a real matrix \(L\) such that \(A+LC\) is Hurwitz stable.

134.2 The System

\[
\begin{align*}
\dot{x}(t) &= Ax(t) + Bu(t), \\
y(t) &= Cx(t) + Du(t) \\
x(0) &= x_0
\end{align*}
\]

where \(x(t) \in \mathbb{R}^n\), \(y(t) \in \mathbb{R}^m\), \(u(t) \in \mathbb{R}^q\), at any \(t \in \mathbb{R}\).

134.3 The Data

• The matrices \(A,B,C,D\) are system matrices of appropriate dimensions and are known.

134.4 The Optimization Problem

There exist a symmetric positive definite matrix \(P\) and a matrix \(W\) satisfying

\[
A^TP + PA + W^TC + CTW < 0
\]

There exists a symmetric positive definite matrix \(P\) satisfying

\[
N_c^T(A^TP + PA)N_c < 0
\]
with N_c being the right orthogonal complement of C.

There exists a symmetric positive definite matrix P such that

$$A^T P + PA < \gamma C^T C$$

for some scalar $\gamma > 0$

134.5 The LMI:

Matrix pair (A, C), is Hurwitz detectable if and only if following LMI holds

- $A^T P + PA + W^T C + C^T W < 0$.
- $N_c^T (A^T P + PA) N_c < 0$
- $A^T P + PA - \gamma C^T C < 0$

134.6 Conclusion:

Thus by proving the above conditions we prove that the matrix pair (A, C) is Hurwitz Detectable.

134.7 Implementation

Find the MATLAB implementation at this link below

1 https://github.com/JalpeshBhadra/LMI/blob/master/hurwitz_detect.m

134.8 Related LMIs

Links to other closely-related LMIs

LMI for Hurwitz stability

LMI for Schur stability

Schur Detectability

1 https://github.com/JalpeshBhadra/LMI/blob/master/hurwitz_detect.m
2 https://en.wikibooks.org/wiki/LMIs_in_Control/Stability_Analysis/Hurwitz_Stability
3 https://en.wikibooks.org/wiki/LMIs_in_Control/pages/SchurStabilization
4 https://en.wikibooks.org/wiki/LMIs_in_Control/pages/Schur_Detectability#Related_LMIs
134.9 External Links

A list of references documenting and validating the LMI.

- LMI Methods in Optimal and Robust Control - A course on LMIs in Control by Matthew Peet.

134.10 Return to Main Page:

- https://en.wikibooks.org/wiki/LMIs_in_Control
135 Full-Order State Observer

The problem of constructing a simple full-order state observer directly follows from the result of Hurwitz detectability LMI’s, Which essentially is the dual of Hurwitz stabilizability. If a feasible solution to the first LMI for Hurwitz detectability exist then using the results we can back out a full state observer L such that $A + LC$ is Hurwitz stable.

135.2 The System

\[
\begin{align*}
\dot{x}(t) &= Ax(t) + Bu(t), \\
y(t) &= Cx(t) + Du(t) \\
x(0) &= x_0
\end{align*}
\]

where $x(t) \in \mathbb{R}^n$, $y(t) \in \mathbb{R}^m$, $u(t) \in \mathbb{R}^q$, at any $t \in \mathbb{R}$.

135.3 The Data

- The matrices A, B, C, D are system matrices of appropriate dimensions and are known.

135.4 The Optimization Problem

The full-order state observer problem essential is finding a positive definite P such that the following LMI conclusions hold.

135.5 The LMI:

1) The full-order state observer problem has a solution if and only if there exist a symmetric positive definite Matrix P and a matrix W that satisfy
• \(A^T P + PA + W^T C + C^T W < 0 \).

Then the observer can be obtained as \(L = P^{-1}W \).

2) The full-state state observer can be found if and only if there is a symmetric positive definite Matrix \(P \) that satisfies the below Matrix inequality

• \(A^T P + PA - C^T C < 0 \)

In this case the observer can be reconstructed as \(L = -\frac{1}{2}P^{-1}C^T \). It can be seen that the second relation can be directly obtained by substituting \(W = -\frac{1}{2}C^T \) in the first condition.

135.6 Conclusion:

Hence, both the above LMI's result in a full-order observer \(L \) such that \(A + LC \) is Hurwitz stable.

135.7 External Links

A list of references documenting and validating the LMI.

• LMIs in Control Systems Analysis, Design and Applications - Duan and Yu
• LMI Methods in Optimal and Robust Control - A course on LMIs in Control by Matthew Peet.
• LMIs in Systems and Control Theory - A downloadable book on LMIs by Stephen Boyd.

135.8 Return to Main Page:
136 Full-Order H-infinity State Observer

In this section, we design full order H-\(\infty\) state observer.

136.1 The System

Given a state-space representation of a linear system

\[
\dot{x}(t) = Ax(t) + B_1 u(t) + B_2 w(t), \quad x(0) = x_0 \\
y(t) = C_1 x(t) + D_1 u(t) + D_2 w(t) \\
z(t) = C_2 x(t)
\]

- \(x \in \mathbb{R}^n, y \in \mathbb{R}^l, z \in \mathbb{R}^m\) are the state vector, measured output vector and output vectors of interest.
- \(w \in \mathbb{R}^p, u \in \mathbb{R}^r\), are the disturbance vector and control vector respectively.

136.2 The Data

\(A, B_1, B_2, C_1, C_2, D_1, D_2\) are system matrices

136.3 Definition

For the system , a full order state observer of the form of equation (1) is introduced and the estimate of interested output is given by .

\[
\dot{\hat{x}}(t) = (A + LC_1)\hat{x} - Ly + (B_1 + LD_1)u
\]

The estimate of interested output is

\[\hat{z}(t) = C_2\hat{x}(t)\]
Given the system and a positive scalar γ, L is found such that

$$
\| G_{zw}(s) \|_\infty = \gamma
$$

The H_∞ state observers problem has a solution if and only if there exists a symmetric positive definite matrix P and a matrix W satisfying the below LMI:

$$
\begin{bmatrix}
A^T P + C_1^T W^T + PA + WC_1 & PB_2 + WD_2 & C_2^T \\
(PB_2 + WD_2)^T & -\gamma I & 0 \\
C_2 & 0 & -\gamma I
\end{bmatrix}
$$

When such a pair of matrices is found, the solution is

$$
L = P^{-1}W
$$

This implementation requires Yalmip and Mosek.

- https://github.com/ShenoyVaradaraya/LMI--master/blob/main/hinf_obs.m

Thus, an H_∞ state observer is designed such that the output vectors of interest are accurately estimated.
136.7 External Links

- LMI Methods in Optimal and Robust Control\(^1\) - A course on LMIs in Control by Matthew Peet.

1. http://control.asu.edu/MAE598_frame.htm
2. https://web.stanford.edu/~boyd/lmibook/
 Duan-Yu/p/book/9781466582996
137 Reduced-Order State Observer

The Reduced Order State Observer design paradigm follows naturally from the design of Full Order State Observer.

137.2 The System

\[
\begin{align*}
\dot{x}(t) &= Ax(t) + Bu(t), \\
y(t) &= Cx(t) + Du(t) \\
x(0) &= x_0
\end{align*}
\]

where \(x(t) \in \mathbb{R}^n\), \(y(t) \in \mathbb{R}^m\), \(u(t) \in \mathbb{R}^q\), at any \(t \in \mathbb{R}\).

137.3 The Data

- The matrices \(A, B, C, D\) are system matrices of appropriate dimensions and are known.

137.4 The Problem Formulation

Given a State-space representation of a system given as above. First an arbitrary matrix \(R \in \mathbb{R}^{(n-m)\times n}\) is chosen such that the vertical augmented matrix given as

\[
T = \begin{bmatrix} C \\ R \end{bmatrix}
\]

is nonsingular, then

\[
CT^{-1} = \begin{bmatrix} I_m & 0 \end{bmatrix}
\]

Furthermore, let
\[T A T^{-1} = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix}, \ A_{11} \in \mathbb{R}^{m \times m} \]

then the matrix pair \((A_{22}, A_{12})\) is detectable if and only if \((A, C)\) is detectable, then let

\[T x = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}, \ TB = \begin{bmatrix} B_1 \\ B_2 \end{bmatrix} \]

then a new system of the form given below can be obtained

\[\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} B_1 \\ B_2 \end{bmatrix} u, y = x_1 \]

once an estimate of \(x_2\) is obtained the the full state estimate can be given as

\[\hat{x} = T^{-1} \begin{bmatrix} y \\ \hat{x}_2 \end{bmatrix} \]

the the reduced order observer can be obtained in the form.

\[\dot{z} = Fz + Gy + Hu, \]
\[\hat{x}_2 = Mz + Ny \]

Such that for arbitrary control and arbitrary initial system values, There holds

\[\lim_{t \to \infty} (x_2 - \hat{x}_2) = 0 \]

The value for \(F, G, H, M, N\) can be obtain by solving the following LMI.

137.5 The LMI:

The reduced-order observer exists if and only if one of the two conditions holds.

1) There exist a symmetric positive definite Matrix \(P\) and a matrix \(W\) that satisfy

- \(A_{22}^T P + P A_{22} + W_{12} A_{12}^T + A_{12}^T W < 0.\)

Then \(L = P^{-1} W\)

2) There exist a symmetric positive definite Matrix \(P\) that satisfies the below Matrix inequality

382
Conclusion:

- \(A_{22}^T P + PA_{22} - A_{12}^T A_{12} < 0 \)

Then \(L = -\frac{1}{2} P^{-1} A_{12}^T \).

By using this value of \(L \) we can reconstruct the observer state matrices as

\[
F = A_{22} + LA_{12}, \quad G = (A_{21} + LA_{11}) - (A_{22} + LA_{12})L, \quad H = B_2 + LB_1, \quad M = I, \quad N = -L,
\]

137.6 Conclusion:

Hence, we are able to form a reduced-order observer using which we can back of full state information as per the equation given at the end of the problem formulation given above.

137.7 External Links

A list of references documenting and validating the LMI.
- LMIs in Control Systems Analysis, Design and Applications - Duan and Yu
- LMI Methods in Optimal and Robust Control - A course on LMIs in Control by Matthew Peet.

137.8 Return to Main Page:
Optimal Observer; Mixed

In many applications, perhaps even most, the state of the system cannot be directly known. In this case, you will need to strategically measure key system outputs that will make the system states indirectly observable. Observers need to converge much faster than the system dynamics in order for their estimations to be accurate. Optimal observer synthesis is therefore advantageous. In this LMI, we seek to optimize both H_2 and H_{∞} norms, to minimize both the average and the maximum error of the observer.

138.1 The System

\[
\begin{align*}
x_{k+1} &= A_dx_k + B_{d1,1}w_{1,k} + B_{d1,2}w_{2,k}, \\
y_k &= C_{c2}x_k + D_{d21,1}w_{1,k} + D_{d21,2}w_{2,k}
\end{align*}
\]

where $x \in \mathbb{R}^n$ and is the state vector, $A \in \mathbb{R}^{n \times n}$ and is the state matrix, $B \in \mathbb{R}^{n \times r}$ and is the input matrix, $w \in \mathbb{R}^r$ and is the exogenous input, $C \in \mathbb{R}^{m \times n}$ and is the output matrix, $D \in \mathbb{R}^{m \times r}$ and is the feedthrough matrix, $y \in \mathbb{R}^m$ and is the output, and it is assumed that (A_d, C_{d2}) is detectable.

138.2 The Data

The matrices $A_d, B_{d1}, C_{cd2}, C_{cd1}, D_{d21}$.

138.3 The Optimization Problem

An observer of the form:

\[
\begin{align*}
\hat{x}_{k+1} &= A_d\hat{x}_k + L_d(y_k - \hat{y}_k), \\
\hat{y}_k &= C_{d2}\hat{x}_k
\end{align*}
\]

is to be designed, where $L_d \in \mathbb{R}^{n \times ny}$ is the observer gain.

Defining the error state $e_k = x_k - \hat{x}_k$, the error dynamics are found to be
\(e_{k+1} = (A_d - L_d C_d) e_k + (B_{d1,1} - L_d D_{d21,1}) w_{1,k} + (B_{d1,2} - L_d D_{d21,2}) w_{2,k} \),

and the performance output is defined as

\[
\begin{bmatrix}
Z_{1,k} \\
Z_{2,k}
\end{bmatrix} = \begin{bmatrix}
C_{d1,1} \\
C_{d1,2}
\end{bmatrix} e_k + \begin{bmatrix}
0 & D_{d11,12} \\
D_{d11,21} & D_{d11,22}
\end{bmatrix} \begin{bmatrix}
w_{1,k} \\
w_{2,k}
\end{bmatrix}.
\]

The observer gain \(L_d \) is to be designed to minimize the \(H_2 \) norm of the closed loop transfer matrix \(T_{11}(z) \) from the exogenous input \(w_{2,k} \) to the performance output \(z_{2,k} \) is less than \(\gamma_d \), where

\[
T_{11}(z) = C_{d1,1} (z1 - (A_d - L_d C_d))^{-1} (B_{d1,1} - L_d D_{d21,1}),
\]

\[
T_{22}(z) = C_{d1,2} (z1 - (A_d - L_d C_d))^{-1} (B_{d1,2} - L_d D_{d21,2}) + D_{d11,22}
\]

138.4 The LMI: Discrete-Time Mixed H2-Hinf-Optimal Observer

The discrete-time mixed-\(H_2 H_{inf} \)-optimal observer gain is synthesized by solving for \(P \in S^{nz}, Z \in S^{nz}, G_d \in R^{nz \times ny}, \) and \(v \in R > 0 \) that minimize \(J(v) = v \) subject to \(P > 0, Z > 0, \)

\[
\begin{bmatrix}
P & PA_d - G_d C_d & PB_{d1,1} - G_d D_{d21,1} \\
P & 0 & 1
\end{bmatrix} > 0,
\]

\[
\begin{bmatrix}
P & PA_d - G_d C_d & PB_{d1,2} - G_d D_{d21,2} & 0 & C_{d1,2}^T \\
P & 0 & \gamma_d^1 & D_{d11,22}^T & \gamma_d^1
\end{bmatrix} > 0,
\]

\[
\begin{bmatrix}
Z & PC_{d1,1} \\
* & P
\end{bmatrix} > 0,
\]

\[
trZ < v
\]

where \(tr \) refers to the trace of a matrix.

138.5 Conclusion:

The mixed-\(H_2 H_{inf} \)-optimal observer gain is recovered by \(L_d = P^{-1} G_d \), the \(H_2 \) norm of \(T_{11}(z) \) is less than \(\mu = \sqrt{v} \), and the \(H_{inf} \) norm of \(T_{22}(z) \) is less than \(\gamma_d \). This result gives us a matrix of observer gains \(L_d \) that allow us to optimally observe the states of the system indirectly as:

\[
\hat{x}_{k+1} = A_d \hat{x}_k + L_d (y_k - \hat{y}_k), \\
\hat{y}_k = C_{d2} \hat{x}_k
\]
138.6 Implementation

This implementation requires Yalmip and Sedumi.

https://github.com/rezajamesahmed/LMImatlabcode/blob/master/mixedh2hinfobsdiscretetime.m

138.7 Related LMIs

Discrete-Time_Hinfinity-Optimal_Observer
Discrete-Time_H2-Optimal_Observer

138.8 External Links

This LMI comes from Ryan Caverly's text on LMI's (Section 5.3.2):

Other resources:
- LMI Methods in Optimal and Robust Control - A course on LMIs in Control by Matthew Peet.

138.9 Return to Main Page:

3 https://arxiv.org/abs/1903.08599/
4 http://control.asu.edu/MAE598_frame.htm
5 https://web.stanford.edu/~boyd/lmibook/
139 Optimal Observer; H2

In many applications, perhaps even most, the state of the system cannot be directly known. In this case, you will need to strategically to measure key system outputs that will make the system states indirectly observable. Observers need to converge much faster than the system dynamics in order for their estimations to be accurate. Optimal observer synthesis is therefore advantageous. In this LMI, we seek to optimize the H2 norm, which conceptually is minimizing the average magnitude of error in the observer.

139.1 The System

\[x_{k+1} = A_dx_k + B_d1w_k, \]
\[y_k = C_{c2}x_k + D_{d21}w_k \]

where \(x \in R^n \) and is the state vector, \(A \in R^{n \times n} \) and is the state matrix, \(B \in R^{n \times r} \) and is the input matrix, \(w \in R^r \) and is the input matrix, \(D \in R^{m \times r} \) and is the feedthrough matrix, \(y \in R^m \) and is the output, and it is assumed that \((A_d,C_{c2})\) is detectable.

139.2 The Data

The matrices \(A_d,B_d1,C_{cd2},C_{cd1},D_{d21} \).

139.3 The Optimization Problem

An observer of the form:

\[\hat{x}_{k+1} = A_d\hat{x}_k + L_d(y_k - \hat{y}_k), \]
\[\hat{y}_k = C_{d2}\hat{x}_k \]

is to be designed, where \(L_d \in R^{n_x \times n_y} \) is the observer gain.

Defining the error state \(e_k = x_k - \hat{x}_k \), the error dynamics are found to be

\[e_{k+1} = (A_d - L_dC_{d2}e_k + (B_d1 - L_dD_{d21})w_k, \]

389
and the performance output is defined as
\[z_k = C_{1d} e_k. \]
The observer gain \(L_d \) is to be designed such that the \(H_2 \) of the transfer matrix from \(w_k \) to \(z_k \), given by
\[L_d T(z) = C_{d1}(z1 - (A_d - L_d C_{d2}))^{-1}(B_{d1} - L_d D_{d21}), \]
is minimized.

139.4 The LMI: Discrete-Time H2-Optimal Observer

The discrete-time \(H_2 \)-optimal observer gain is synthesized by solving for
\(P \in S^{n_z} \),
\(Z \in S^{n_z} \),
\(G_d \in R^{n_x \times n_y} \), and \(v \in R_{>0} \) that minimize \(J(v) = v \) subject to \(P > 0, Z > 0, \)
\[
\begin{bmatrix}
P & PA_d - G_d C_{d2} & PB_{d1} - G_d D_{d21} \\
* & P & 0 \\
* & * & 1 \\
\end{bmatrix} > 0,
\]
\[
\begin{bmatrix}
Z & PC_{d1} \\
* & P \\
\end{bmatrix} > 0,
\]
\[
\text{tr } Z < v
\]
where \(\text{tr} \) refers to the trace of a matrix.

139.5 Conclusion:

The \(H_2 \)-optimal observer gain is recovered by \(L_d = P^{-1} G_d \) and the \(H_2 \) norm of \(T(z) \) is \(\mu = \sqrt{v} \). The \(L_d \) matrix is the observer gains that can be used to form the optimal observer:

\[
\hat{x}_{k+1} = A_d \hat{x}_k + L_d (y_k - \hat{y}_k),
\]
\[
\hat{y}_k = C_{d2} \hat{x}_k
\]

139.6 Implementation

This implementation requires Yalmip and Sedumi.

https://github.com/rezajamesahmed/LMImatlabcode/blob/master/Discrete_Time_H2_Optimal_Observer_LMIs_Wikibook_Example.m
139.7 Related LMIs

Mixed H2-Hinfinity discrete time observer
Discrete-Time_Hinfinity-Optimal_Observer

139.8 External Links

This LMI comes from Ryan Caverly's text on LMI's (Section 5.1.2):

Other resources:

• LMI Methods in Optimal and Robust Control - A course on LMIs in Control by Matthew Peet.
• LMIs in Systems and Control Theory - A downloadable book on LMIs by Stephen Boyd.

139.9 Return to Main Page:

1 https://en.wikibooks.org/wiki/LMIs_in_Control/pages/discrete_time_mixed_h2_hinf_optimal_observer#Implementation
3 https://arxiv.org/abs/1903.08599/
4 http://control.asu.edu/MAE598_frame.htm
5 https://web.stanford.edu/~boyd/lmibook/
140 Optimal Observer; Hinf

UNKNOWN TEMPLATE FULLPAGENAME

In many applications, perhaps even most, the state of the system cannot be directly known. In this case, you will need to strategically to measure key system outputs that will make the system states indirectly observable. Observers need to converge much faster than the system dynamics in order for their estimations to be accurate. Optimal observer synthesis is therefore advantageous. In this LMI, we seek to optimize the H-infinity norm, which conceptually is minimizing the maximum magnitude of error in the observer.

140.1 The System

The system needed for this LMI is a discrete-time LTI plant G, which has the state space realization:

$$
\begin{align*}
 x_{k+1} &= A_dx_k + B_{d1}w_k, \\
 y_k &= C_{d2}x_k + D_{d21}w_k
\end{align*}
$$

where $x \in \mathbb{R}^n$ and is the state vector, $A \in \mathbb{R}^{n \times n}$ and is the state matrix, $B \in \mathbb{R}^{n \times r}$ and is the input matrix, $w \in \mathbb{R}^r$ and is the exogenous input, $C \in \mathbb{R}^{m \times n}$ and is the output matrix, $D \in \mathbb{R}^{m \times r}$ and is the feedthrough matrix, $y \in \mathbb{R}^m$ and is the output, and it is assumed that (A_d,C_{d2}) is detectable.

140.2 The Data

The matrices $A_d,B_{d1},C_{d2},D_{d21},D_{d11}$.

140.3 The Optimization Problem

An observer of the form:

$$
\begin{align*}
 \hat{x}_{k+1} &= A_d\hat{x}_k + L_d(y_k - \hat{y}_k), \\
 \hat{y}_k &= C_{d2}\hat{x}_k
\end{align*}
$$

is to be designed, where $L_d \in \mathbb{R}^{nxny}$ is the observer gain.
Defining the error state \(e_k = x_k - \hat{x}_k \), the error dynamics are found to be

\[
e_{k+1} = (A_d - L_d C_d) e_k + (B_{d1} - L_d D_{d21}) w_k,
\]

and the performance output is defined as

\[
z_k = C_{d1} e_k + D_{d11} w_k.
\]

The observer gain \(L_d \) is to be designed such that the \(H_{\infty} \) of the transfer matrix from \(w_k \) to \(z_k \), given by

\[
T(z) = C_{d1} (z1 - (A_d - L_d C_d)^{-1} (B_{d1} - L_d D_{d21}) + D_{d11},
\]

is minimized.

140.4 The LMI: Discrete-Time H\(\infty \)-Optimal Observer

The discrete-time \(H_{\infty} \)-optimal observer gain is synthesized by solving for \(P \in S^{n_x} \), \(G_d \in \mathbb{R}^{n_x \times n_y} \), and \(\gamma \in \mathbb{R}_{>0} \) that minimize \(J(\gamma) = \gamma \) subject to \(P > 0 \), and

\[
\begin{bmatrix}
P & PA_d - G_d C_d & PB_{d1} - G_d D_{d21} & 0 & C_{d1}^T & D_{d11}^T
\end{bmatrix}
\begin{bmatrix}
P A_d - G_d C_d & PB_{d1} - G_d D_{d21} & 0 & C_{d1}^T & D_{d11}^T
\end{bmatrix} > 0.
\]

140.5 Conclusion:

The \(H_{\infty} \)-optimal observer gain is recovered by \(L_d = P^{-1} G_d \) and the \(H_{\infty} \) norm of \(T(z) \) is \(\gamma \). This matrix of observer gains can then be used to form the optimal observer formulated by:

\[
\hat{x}_{k+1} = A_d \hat{x}_k + L_d (y_k - \hat{y}_k),
\]

\[
\hat{y}_k = C_{d2} \hat{x}_k
\]

140.6 Implementation

This implementation requires Yalmip and Sedumi.

https://github.com/rezajamesahmed/LMImatlabcode/blob/master/Hinfobsdiscretetime.m
140.7 Related LMIs

Mixed H2-Hinfinty discrete time observer
Discrete-Time_H2-Optimal_Observer

140.8 External Links

This LMI comes from Ryan Caverly's text on LMI's (Section 5.2.2):

Other resources:

• LMI Methods in Optimal and Robust Control - A course on LMIs in Control by Matthew Peet.
• LMIs in Systems and Control Theory - A downloadable book on LMIs by Stephen Boyd.

140.9 Return to Main Page:
141 Discrete Time Detectability

Discrete-Time Detectability

A discrete time system operates on a discrete time signal input and produces a discrete time signal output. They are used in digital signal processing, such as digital filters for images or sound. The class of discrete time systems that are both linear and time invariant, known as discrete time LTI systems.

Discrete-Time LTI systems can be made detectable using observer gain L, which can be found using LMI optimization, such that the close loop system is detectable.

141.1 The System

Discrete-Time LTI System with state space realization (A_d, B_d, C_d, D_d)

$A_d \in \mathbb{R}^{n \times n}, \quad B_d \in \mathbb{R}^{n \times m}, \quad C_d \in \mathbb{R}^{p \times n}, \quad D_d \in \mathbb{R}^{p \times m}$

141.2 The Data

The matrices: System $(A_d, B_d, C_d, D_d), P, W$.

141.3 The Optimization Problem

The following feasibility problem should be optimized:

Maximize P while obeying the LMI constraints.

Then L is found.

141.4 The LMI:

Discrete-Time Detectability

The LMI formulation
Discrete Time Detectability

\[P \in S^n; W \in R^{m \times n} \]

\[P > 0 \]

\[
\begin{bmatrix}
P & A_d^T P + C_d^T W \\
* & P
\end{bmatrix} > 0,
\]

\[L = P^{-1} W \]

141.5 Conclusion:

The system is detectable iff there exists a \(P \), such that \(P > 0 \). The matrix \(A_d + LC_d \) is Schur with \(L = P^{-1} W \)

141.6 Implementation

A link to CodeOcean or other online implementation of the LMI
MATLAB Code\(^1\)

141.7 Related LMIs

https://en.wikibooks.org/wiki/LMIs_in_Control/pages/Detectability_LMI - Continuous time Detectability

141.8 External Links

A list of references documenting and validating the LMI.

- LMI Methods in Optimal and Robust Control\(^2\) - A course on LMIs in Control by Matthew Peet.
- LMI Properties and Applications in Systems, Stability, and Control Theory\(^3\) - A List of LMIs by Ryan Caverly and James Forbes.

141.9 Return to Main Page:

\(^1\) https://github.com/Harishankar-Prabhakaran/LMIs/blob/master/A5.m
\(^2\) http://control.asu.edu/MAE598_frame.htm
\(^4\) https://web.stanford.edu/~boyd/lmibook/
142 Schur Detectability

Schur Detectability

Schur detectability is a dual concept of Schur stabilizability and is defined as follows, the matrix pair \((A, C)\), is said to be Schur detectable if there exists a real matrix \(L\) such that \(A + LC\) is Schur stable.

142.1 The System

We consider the following system:

\[
\begin{align*}
 x(k+1) &= Ax(k) + Bu(k) \\
 y(k) &= Cx(k) + Du(k)
\end{align*}
\]

where the matrices \(A \in \mathbb{R}^{n \times n}\), \(B \in \mathbb{R}^{n \times r}\), \(C \in \mathbb{R}^{m \times n}\), \(D \in \mathbb{R}^{m \times r}\), \(x \in \mathbb{R}^n\), \(y \in \mathbb{R}^m\), and \(u \in \mathbb{R}^r\) are the state matrix, input matrix, state vector, and the input vector, respectively.

Moreover, \(k\) represents time in the discrete-time system and \(k+1\) is the next time step.

The state feedback control law is defined as follows:

\[
u(k) = Kx(k)\]

where \(K \in \mathbb{R}^{n \times r}\) is the controller gain. Thus, the closed-loop system is given by:

\[
x(k+1) = (A + BK)x(k)
\]

142.2 The Data

- The matrices \(A, B, C, D\) are system matrices of appropriate dimensions and are known.

142.3 The Optimization Problem

There exist a symmetric matrix \(P\) and a matrix \(W\) satisfying

\[
\begin{bmatrix}
 -P & A^TP + C^TW^T \\
 PA + WC & P
\end{bmatrix} < 0
\]
There exists a symmetric matrix P satisfying

$$\begin{bmatrix} -N_c^T P N_c & N_c^T A^T P \\ PAN_c & -P \end{bmatrix} < 0$$

with N_c being the right orthogonal complement of C.

There exists a symmetric matrix P such that

$$\begin{bmatrix} -P & PA \\ A^T P & -P - \gamma C^T C \end{bmatrix} < 0$$

$\gamma > 1$

142.4 The LMI:

The LMI for Schur detectability can be written as minimization of the scalar, γ, in the following constraints:

$$\text{min} \quad \gamma$$

s.t.

$$\begin{bmatrix} -P & A^T P + C^T W^T \\ PA + WC & P \end{bmatrix} < 0$$

$$\begin{bmatrix} -N_c^T P N_c & N_c^T A^T P \\ PAN_c & -P \end{bmatrix} < 0$$

$$\begin{bmatrix} -P & PA \\ A^T P & -P - \gamma C^T C \end{bmatrix} < 0$$

142.5 Conclusion:

Thus by proving the above conditions we prove that the matrix pair (A, C) is Schur Detectable.

142.6 Implementation

A link to Matlab codes for this problem in the Github repository: Schur Detectability

1 https://github.com/JalpeshBhadra/LMI/blob/master/schur_detect.m
142.7 Related LMIs

LMI for Hurwitz stability\(^2\)

LMI for Schur stability\(^3\)

Hurwitz Detectability\(^4\)

142.8 External Links

142.9 Return to Main Page

LMIs in Control/Tools\(^5\)

\(^2\) https://en.wikibooks.org/wiki/LMIs_in_Control/Stability_Analysis/Hurwitz_Stability

\(^3\) https://en.wikibooks.org/wiki/LMIs_in_Control/pages/SchurStabilization

\(^4\) https://en.wikibooks.org/wiki/LMIs_in_Control/pages/Hurwitz_detectability

\(^5\) https://en.wikibooks.org/wiki/LMIs_in_Control/Tools
143 Robust Stabilization of Second-Order Systems

Stabilization is a vastly important concept in controls, and is no less important for second order systems with perturbations. Such a second order system can be conceptualized most simply by the model of a mass-spring-damper, with added perturbations. Velocity and position are of course chosen as the states for this system, and the state space model can be written as it is below. The goal of stabilization in this context is to design a control law that is made up of two controller gain matrices K_p, and K_d. These allow the construction of a stabilized closed loop controller.

143.1 The System

In this LMI, we have an uncertain second-order linear system, that can be modeled in state space as:

$$\begin{align*}
(A_2 + \Delta A_2)\dot{x} + (A_1 + \Delta A_1)x + (A_0 + \Delta A_0)x &= Bu \\
y_d &= C_d\dot{x} \\
y_p &= C_p x
\end{align*}$$

where $x \in \mathbb{R}^n$ and $u \in \mathbb{R}^r$ are the state vector and the control vector, respectively, $y_d \in \mathbb{R}^{m_p}$ and $y_d \in \mathbb{R}^{m_p}$ are the derivative output vector and the proportional output vector, respectively, and $A_2, A_1, A_0, B, C_d, C_p$ are the system coefficient matrices of appropriate dimensions. $\Delta A_2, \Delta A_1,$ and ΔA_0 are the perturbations of matrices $A_2, A_1,$ and A_0, respectively, are bounded, and satisfy

$$|\Delta A_2|_2 \leq \epsilon_2, |\Delta A_1|_2 \leq \epsilon_1, |\Delta A_0|_2 \leq \epsilon_0,$$

or

$$\max\{\|\Delta a_{2ij}\|\} \leq \eta_2, \max\{\|\Delta a_{1ij}\|\} \leq \eta_1, \max\{\|\Delta a_{0ij}\|\} \leq \eta_0,$$

where $\epsilon_2, \epsilon_1, \epsilon_0$ and η_2, η_1, η_0 are two sets of given positive scalars, $\Delta a_{2ij}, \Delta a_{1ij},$ and Δa_{0ij} are the i-th row and j-th column elements of matrices $\Delta A_2, \Delta A_1,$ and $\Delta A_0,$.
respectively. Also, the perturbation notations also satisfy the assumption that
\(\Delta A_2, \Delta A_0 \in S^n \) and \(A_2 + \Delta A_2 > 0 \).

To further define: \(x \in \mathbb{R}^n \) and is the state vector, \(A_0 \in \mathbb{R}^{n \times n} \) and is the state matrix on \(x \), \(A_1 \in \mathbb{R}^{n \times n} \) and is the state matrix on \(\dot{x} \), \(A_2 \in \mathbb{R}^{n \times n} \) and is the state matrix on \(\ddot{x} \), \(B \in \mathbb{R}^{n \times r} \) and is the input matrix, \(u \in \mathbb{R}^r \) and is the input, \(C_d \) and \(C_p \) are \(\in \mathbb{R}^{m \times n} \) and are the output matrices, \(y_d \in \mathbb{R}^m \) and is the output from \(C_d \), and \(y_p \in \mathbb{R}^m \) and is the output from \(C_p \).

143.2 The Data

The matrices \(A_2, A_1, A_0, B, C_d, C_p \) and perturbations \(\Delta A_2, \Delta A_1, \Delta A_0 \), describing the second order system with perturbations.

143.3 The Optimization Problem

For the system defined as shown above, we need to design a feedback control law such that the following system is Hurwitz stable. In other words, we need to find the matrices \(K_p \) and \(K_d \) in the below system.

\[
(A_2 + \Delta A_2)\ddot{x} + (A_1 - BK_p C_p + \Delta A_1)\dot{x} + (A_0 - BK_d C_d + \Delta A_0)x = 0
\]

However, to do proceed with the solution, first we need to present a Lemma. This Lemma comes from Appendix A.6 in "LMI's in Control systems" by Guang-Ren Duan and Hai-Hua Yu. This Lemma states the following: if \(A_2 > 0, A_1 + A_1^T > 0, A_0 > 0 \), then the following is also true for the system described above:

The system is hurwitz stable if

\[
\lambda_{min}(A_2) > |\Delta A_2|_2, \lambda_{min}(A_1 + A_1^T) > |\Delta A_1|_2, \lambda_{min}(A_0) > |\Delta A_0|_2
\]

or

the system is hurwitz stable if

\[
\lambda_{min}(A_2) > \sqrt{l_2 max\{||\Delta a_{2ij}||\}}, \lambda_{min}(A_1 + A_1^T) > \sqrt{l_1 max\{||\Delta a_{1ij}||\}}, \lambda_{min}(A_0) > \sqrt{l_0 max\{||\Delta a_{0ij}||\}}
\]

, where \(l_2, l_1, l_0 \) are the numbers of nonzero elements in matrices \(\Delta A_2, \Delta A_1, \Delta A_0 \), respectively.
143.4 The LMI: Robust Stabilization of Second Order Systems

This problem is solved by finding matrices $K_p \in \mathbb{R}^{r \times m_p}$ and $K_d \in \mathbb{R}^{r \times m_d}$ that satisfy either of the following sets of LMIs.

\[
A_0 - BK_dC_d > \epsilon_0 I, \\
(A_1 - BK_pC_p) + (A_1 - BK_pC_p)^T > \epsilon_1 I.
\]

or

\[
A_0 - BK_dC_d > \eta_0 \sqrt{l_0} I, \\
(A_1 - BK_pC_p) + (A_1 - BK_pC_p)^T > \eta_1 \sqrt{l_1} I.
\]

143.5 Conclusion:

Having solved the above problem, the matrices K_p and K_d can be substituted into the input as $u = K_pC_p \dot{x} + K_dC_d \dot{x}$ to robustly stabilize the second order uncertain system. The new system is stable in closed loop.

143.6 Implementation

This implementation requires Yalmip and Sedumi.

https://github.com/rezajamesahmed/LMImatlabcode/blob/master/ROBstab2ndorder.m

143.7 Related LMIs

Stabilization of Second-Order Systems\(^1\)

143.8 External Links

This LMI comes from

- \(^2\) "LMIs in Control Systems: Analysis, Design and Applications" by Guang-Ren Duan and Hai-Hua Yu

Other resources:

\(^1\) https://en.wikibooks.org/w/index.php?title=LMIs_in_Control/pages/stabilization_of_second_order_systems\&stable=0

\(^2\) https://www.crcpress.com/LMIs-in-Control-Systems-Anal}
• LMI Methods in Optimal and Robust Control3 - A course on LMIs in Control by Matthew Peet.
• LMI Properties and Applications in Systems, Stability, and Control Theory4 - A List of LMIs by Ryan Caverly and James Forbes.
• LMIs in Systems and Control Theory5 - A downloadable book on LMIs by Stephen Boyd.

143.9 References

143.10 Return to Main Page:

3 http://control.asu.edu/MAE598_frame.htm
4 https://arxiv.org/abs/1903.08599/
5 https://web.stanford.edu/~boyd/lmibook/
Robust Stabilization of H_∞ Optimal State Feedback Control

144.1 Robust Full State Feedback Optimal H_∞ Control

Additive uncertainty

Full State Feedback is a control technique which places a given system's closed loop system poles in locations specified by desired performance specifications. One can use H_∞ methods to turn this into an optimization problem with the goal to minimize the impact of uncertain perturbations in a closed loop system while maintaining system stability. This is done by minimizing the H_∞ norm of the uncertain closed loop system, which minimizes the worst case effect of the system disturbance or perturbation. This can be done for single-input single-output (SISO) or multiple-input multiple-output (MIMO) systems. Here we consider the case of a MIMO system with additive uncertainties.

144.2 The System

Consider linear system with uncertainty below:

$$\begin{bmatrix} \dot{x} \\ z \end{bmatrix} = \begin{bmatrix} (A + \Delta A) & (B_1 + \Delta B_1) \\ C & D_1 \end{bmatrix} \begin{bmatrix} x \\ u \\ w \end{bmatrix}$$

Where $x(t) \in \mathbb{R}^n$ is the state, $z(t) \in \mathbb{R}^m$ is the output, $w(t) \in \mathbb{R}^p$ is the exogenous input or disturbance vector, and $u(t) \in \mathbb{R}^r$ is the actuator input or control vector, at any $t \in \mathbb{R}$

ΔA and ΔB_1 are real-valued matrices which represent the time-varying parameter uncertainties in the form:

$$\begin{bmatrix} \Delta A & \Delta B_1 \end{bmatrix} = HF \begin{bmatrix} E_1 & E_2 \end{bmatrix}$$

Where H, E_1, E_2 are known matrices with appropriate dimensions and F is the uncertain parameter matrix which satisfies: $F^TF \leq I$

For additive perturbations: $\Delta A = \delta_1 A_1 + \delta_2 A_2 + \ldots + \delta_k A_k$

Where
$A_i, i = 1, 2, ..., k$ are the known system matrices and
$\delta_i, i = 1, 2, ..., k$ are the perturbation parameters which satisfy $|\delta_i| < r_i, i = 1, 2, ..., k$

Thus, $\Delta A = HFE$ with

$H = \begin{bmatrix} A_1 & A_2 & \ldots & A_k \end{bmatrix}$

$E = (\sum_{i=1}^{k} r_i^2)^{1/2}$

$F = (\sum_{i=1}^{k} r_i^2)^{-1/2} \begin{bmatrix} \delta_1 I \\ \delta_2 I \\ \vdots \\ \delta_k I \end{bmatrix}$

144.3 The Data

$A, B_1, B_2, C, D_1, D_2, E_1, E_2, \gamma$ are known.

144.4 The LMI: Full State Feedback Optimal H_∞ Control LMI

There exists $X > 0$ and W and scalar α such that

$$
\begin{bmatrix}
\Psi(X, W) & B_2 & (CX + D_1 W)^T & (E_1 X + E_2 W)^T \\
B_2^T & -\gamma I & D_2^T & 0 \\
CX + D_1 W & D_2 & -\gamma I & 0 \\
E_1 X + E_2 W & 0 & 0 & -\alpha I
\end{bmatrix} < 0
$$

Where $\Psi(X, W) = (AX + B_1 W)_s + \alpha HH^T$

And $K = WX^{-1}$.

144.5 Conclusion:

Once K is found from the optimization LMI above, it can be substituted into the state feedback control law $u(t) = Kx(t)$ to find the robustly stabilized closed loop system as shown below:

$$
\begin{bmatrix}
x \\
z
\end{bmatrix} =
\begin{bmatrix}
(A + \Delta A) + (B_1 + \Delta B_1)K & B_2 \\
(C + D_1)K & D_2
\end{bmatrix}
\begin{bmatrix}
x \\
w
\end{bmatrix}
$$

where $x(t) \in \mathbb{R}^n$ is the state, $z(t) \in \mathbb{R}^m$ is the output, $w(t) \in \mathbb{R}^p$ is the exogenous input or disturbance vector, and $u(t) \in \mathbb{R}^r$ is the actuator input or control vector, at any $t \in \mathbb{R}$

Finally, the transfer function of the system is denoted as follows:
\[G_{zw}(s) = (C + D_1 K)(sI - [(A + \Delta A) + (B_1 + \Delta B_1)K])^{-1}B_2 + D_2 \]

144.6 Implementation

This implementation requires Yalmip and Sedumi. https://github.com/rubindan/LMIcontrol/blob/master/HinfFilter.m

144.7 Related LMIs

Full State Feedback Optimal H_inf LMI1

144.8 External Links

- LMI Methods in Optimal and Robust Control2 - A course on LMIs in Control by Matthew Peet.

144.9 Return to Main Page:

LMIs in Control: https://en.wikibooks.org/wiki/LMIs_in_Control

2. http://control.asu.edu/MAE598_frame.htm
4. https://web.stanford.edu/~boyd/lmibook/
145 Robust H inf State Feedback Control

1. REDIRECT LMIs in Control/pages/Robust H inf State Feedback Control1

1 Chapter 144 on page 407
146 LMI for Time-Delay system on delay Independent Condition

146.1 The System

The problem is to check the stability of the following linear time-delay system

\[
\begin{align*}
\dot{x}(t) &= Ax(t) + A_dx(t - d) \\
 x(t) &= \phi(t), t \in [-d, 0], 0 < d \leq \bar{d},
\end{align*}
\]

where

\[A, A_d \in \mathbb{R}^{n \times n}, A \in \mathbb{R}^{n \times r} \] are the system coefficient matrices, \\
\[\phi(t) \] is the initial condition, \\
\[d \] represents the time-delay, \\
\[\bar{d} \] is a known upper-bound of \(d \).

146.2 The Data

The matrices \(A, A_d \) are known.

146.3 The LMI: The Time-Delay systems (Delay Independent Condition)

From the given pieces of information, it is clear that the optimization problem only has a solution if there exists two symmetric matrices \(P, S \in S^n \) such that \(P > 0 \)

\[
\begin{bmatrix}
A^T P + PA + S & PA_d \\
A_d^T P & -S
\end{bmatrix} < 0
\]
This LMI has been derived from the Lyapunov function for the system. By Schur Complement we can see that the above matrix inequality is equivalent to the Riccati inequality

\[A^T P + PA + PA_d S^{-1} A_d^T P + S < 0 \]

146.4 Conclusion:
We can now implement these LMIs to do stability analysis for a Time delay system on the delay independent condition

146.5 Implementation
The implementation of the above LMI can be seen here
https://github.com/yashgvd/LMI_wikibooks

146.6 Related LMIs
Time Delay systems (Delay Dependent Condition)

146.7 External Links
- http://control.asu.edu/MAE598_frame.htm

146.8 Return to Main Page:
147 LMI for Time-Delay system on delay Dependent Condition

147.1 The System

The problem is to check the stability of the following linear time-delay system on a delay dependent condition

\[
\begin{align*}
\dot{x}(t) &= Ax(t) + A_dx(t-d) \\
x(t) &= \phi(t), t \in [-d,0], 0 < d \leq \bar{d},
\end{align*}
\]

where

\[A, A_d \in \mathbb{R}^{n \times n}, A \in \mathbb{R}^{n \times r}\] are the system coefficient matrices,

\[\phi(t)\] is the initial condition

\[d\] represents the time-delay

\[\bar{d}\] is a known upper-bound of \(d\)

For the purpose of the delay dependent system we rewrite the system as

\[
\begin{align*}
\dot{x}(t) &= Ax(t) + A_dx(t-d) \\
\dot{x}(t) &= (A + A_d)x(t) - A_d(x(t) - x(t-d))
\end{align*}
\]

147.2 The Data

The matrices \(A, A_d\) are known

147.3 The LMI: The Time-Delay systems (Delay Dependent Condition)

From the given pieces of information, it is clear that the optimization problem only has a solution if there exists a symmetric positive definite matrix \(X\) and a scalar \(0 < \beta < 1\) such that
\[
\begin{bmatrix}
\Phi(X) & \bar{d}XA^T & \bar{d}XAT_d
\\
\bar{d}AX & -\bar{d}\beta I & 0
\\
\bar{d}A_dX & 0 & -\bar{d}(1-\beta)I
\end{bmatrix} < 0
\]

Here \(\Phi(X) = X(A + A_d) + (A + A_d)X + \bar{d}A_dA_d^T < 0 \)

This LMI has been derived from the Lyapunov function for the system. It follows that the system is asymptotically stable if

\[
P(A + A_d) + (A + A_d)^TP + \bar{d}PA_dA_d^TP + \frac{\bar{d}}{\beta}A^TA + \frac{\bar{d}}{1-\beta}A_d^TA_d < 0
\]

This is obtained by replacing \(X \) with \(P^{-1} \)

147.4 Conclusion:

We can now implement these LMIs to do stability analysis for a Time delay system on the delay dependent condition

147.5 Implementation

The implementation of the above LMI can be seen here

https://github.com/yashgvd/LMI_wikibooks

147.6 Related LMIs

Time Delay systems (Delay Independent Condition)

147.7 External Links

- LMI Methods in Optimal and Robust Control\(^1\) - A course on LMIs in Control by Matthew Peet.

\(^1\) http://control.asu.edu/MAE598_frame.htm

147.8 Return to Main Page:
148 LMI for Stability of Retarded Differential Equation with Slowly-Varying Delay

This page describes an LMI for stability analysis of a continuous-time system with a time-varying delay. In particular, a delay-independent condition is provided to test uniform asymptotic stability of a retarded differential equation through feasibility of an LMI. The system under consideration pertains a single discrete delay, with the extent of the delay at any time bounded by some known value. Moreover, the delay is assumed to vary only slowly in time, with a temporal derivative bounded by a value less than one. Solving the LMI for a particular value of this bound, uniform asymptotic stability can be shown for any time-delay satisfying this bound.

148.1 The System

The system under consideration is one of the form:

\[\dot{x}(t) = Ax(t) + A_1 x(t - \tau(t)) \quad t \geq t_0, \quad 0 \leq \tau(t) \leq h, \quad \dot{\tau}(t) \leq d < 1 \]

In this description, \(A \) and \(A_1 \) are matrices in \(\mathbb{R}^{n \times n} \). The variable \(\tau(t) \) denotes a delay in the state at time \(t \geq t_0 \), assuming a value no greater than some \(h \in \mathbb{R}_+ \). Moreover, we assume that the function \(\tau(t) \) is differentiable at any time, with the derivative bounded by some value \(d < 1 \), assuring the delay to be slowly-varying in time.

148.2 The Data

To determine stability of the system, the following parameters must be known:

- \(A \in \mathbb{R}^{n \times n} \)
- \(A_1 \in \mathbb{R}^{n \times n} \)
- \(d \in [0, 1) \)
148.3 The Optimization Problem

Based on the provided data, uniform asymptotic stability can be determined by testing feasibility of the following LMI:

148.4 The LMI: Delay-Independent Uniform Asymptotic Stability for Continuous-Time TDS

Find:

\[P, Q \in \mathbb{R}^{n \times n} \]

such that:

\[
\begin{bmatrix}
P^T P + PA + Q & PA_1 \\
A_1^T P & -(1-d)Q
\end{bmatrix} < 0
\]

148.5 Conclusion:

If the presented LMI is feasible, the system will be uniformly asymptotically stable for any delay function \(\tau(t) \) satisfying \(\dot{\tau}(t) \leq d < 1 \). That is, independent of the values of the delays \(\tau(t) \) and the starting time \(t_0 \in \mathbb{R} \):

- For any real number \(\epsilon > 0 \), there exists a real number \(\delta > 0 \) such that:
 \[t_0 \| C \| < \delta \Rightarrow \| (t \| < \epsilon \quad \forall t \geq t_0 \]

- There exists a real number \(\delta_a > 0 \) such that for any real number \(\eta > 0 \), there exists a time \(T(\delta_a, \eta) \) such that:
 \[t_0 \| C \| < \delta_a \Rightarrow \| (t \| < \eta \quad \forall t \geq t_0 + T(\delta_a, \eta) \]

Here, we let \(x_{t_0}(\theta) = x(t_0 + \theta) \) for \(\theta \in [-\tau(t_0), 0] \) denote the delayed state function at time \(t_0 \). The norm \(t_0 \| C \| \) of this function is defined as the maximal value of the vector norm assumed by the state over the delayed time interval, given by:

\[
t_0 \| C \| := \max_{\theta \in [-\tau(t_0), 0]} (t_0 + \theta)\|
\]

Obtaining a feasible point for the LMI, this result can be proven using a Lyapunov-Krasovkii functional:

\[
V(t, x_t) = x^T(t)Px(t) + \int_{t-\tau(t)}^{t} x^T(s)Qx(s)ds
\]
Notably, if matrices $P > 0, Q > 0$ prove feasibility of the LMI for the pair (A, A_1), these same matrices will also prove feasibility of the LMI for the pair $(A, -A_1)$. As such, feasibility of this LMI proves uniform asymptotic stability of both systems:

$$\dot{x}(t) = Ax(t) \pm A_1 x(t - \tau(t)) \quad t \geq t_0, \quad 0 \leq \tau(t) \leq h \quad \dot{\tau}(t) \leq d < 1$$

Moreover, since the result is independent of the value of the delay, it will also hold for a delay $\tau(t) \equiv 0$. Hence, if the LMI is feasible, the matrices $A \pm A_1$ will be Hurwitz.

148.6 Implementation

An example of the implementation of this LMI in Matlab is provided on the following site:

- https://github.com/djagt/LMI_Codes/blob/main/stblty_cTDS_SlowVarying.m

Note that this implementation requires packages for YALMIP with solver mosek, though a different solver can also be implemented.

148.7 Related LMIs

148.8 External Links

The presented results have been obtained from:

Additional information on LMI's in control theory can be obtained from the following resources:

- LMI Methods in Optimal and Robust Control\(^1\) - A course on LMIs in Control by Matthew Peet.

\(^1\) http://control.asu.edu/MAE598_frame.htm
• LMI Properties and Applications in Systems, Stability, and Control Theory2 - A List of LMIs by Ryan Caverly and James Forbes.
• LMIs in Systems and Control Theory3 - A downloadable book on LMIs by Stephen Boyd.

\textbf{148.9 Return to Main Page:}

2 https://arxiv.org/abs/1903.08599/
3 https://web.stanford.edu/~boyd/lmibook/
149 LMI for Robust Stability of Retarded Differential Equation with Norm-Bounded Uncertainty

This page describes an LMI for stability analysis of an uncertain continuous-time system with a time-varying delay. In particular, a delay-independent condition is provided to test uniform asymptotic stability of a retarded differential equation with uncertain matrices through feasibility of an LMI. The system under consideration pertains a single discrete delay, with the extent of the delay at any time bounded by some known value. The matrices describing the system are assumed to be uncertain, with the norm of the uncertainty bounded by a value of one. In addition, the delay is assumed to vary only slowly in time, with a temporal derivative bounded by a value less than one. Solving the LMI for a particular value of this bound, uniform asymptotic stability can be shown for any time-delay satisfying this bound, independent of the value of the uncertainty function.

149.1 The System

The system under consideration is one of the form:

\[\dot{x}(t) = (A + H\Delta(t)E)x(t) + (A_1 + H\Delta(t)E_1)x(t - \tau(t)) \quad t \geq t_0, \quad 0 \leq \tau(t) \leq h, \quad \dot{\tau}(t) \leq d < 1 \]

In this description, \(A \) and \(A_1 \) are matrices in \(\mathbb{R}^{n \times n} \). The variable \(\tau(t) \) denotes a delay in the state at time \(t \geq t_0 \), assuming a value no greater than some \(h \in \mathbb{R}_+ \). Moreover, we assume that the function \(\tau(t) \) is differentiable at any time, with the derivative bounded by some value \(d < 1 \), assuring the delay to be slowly-varying in time. The uncertainty \(\Delta(t) \in \mathbb{R}^{r_1 \times r_2} \) is also allowed to vary in time, but at any time \(t \geq t_0 \) must satisfy the inequality:

\[\Delta^T(t)\Delta(t) \leq I \]

The uncertainty affects the system through matrices \(H \in \mathbb{R}^{n \times r_1} \) and \(E, E_1 \in \mathbb{R}^{r_2 \times n} \), which are constant in time and assumed to be known.
149.2 The Data

To determine stability of the system, the following parameters must be known:

\[A, A_1 \in \mathbb{R}^{n \times n} \]
\[H \in \mathbb{R}^{n \times r_1} \]
\[E, E_1 \in \mathbb{R}^{r_2 \times n} \]
\[d \in [0, 1) \]

149.3 The Optimization Problem

Based on the provided data, uniform asymptotic stability can be determined by testing feasibility of the following LMI:

149.4 The LMI: Delay-Independent Robust Uniform Asymptotic Stability for Continuous-Time TDS

Find:

\[\epsilon \in \mathbb{R}, \ P, Q \in \mathbb{R}^{n \times n} \]

such that:

\[
\begin{bmatrix}
A^TP + PA + Q & PA_1 & PH & \epsilon E_1^T \\
A_1^TP & -(1-d)Q & 0 & \epsilon E_1^T \\
H^TP & 0 & -\epsilon I & 0 \\
\epsilon E & \epsilon E_1 & 0 & -\epsilon I
\end{bmatrix} < 0
\]

149.5 Conclusion:

If the presented LMI is feasible, the system will be uniformly asymptotically stable for any delay function \(\tau(t) \) satisfying \(\dot{\tau}(t) \leq d < 1 \), and any uncertainty \(\Delta(t) \) satisfying \(\Delta^T(t)\Delta(t) \leq I \). That is, independent of the values of the delays \(\tau(t) \), uncertainties \(\Delta(t) \), and the starting time \(t_0 \in \mathbb{R} \):

- For any real number \(\epsilon > 0 \), there exists a real number \(\delta > 0 \) such that:
 \[t_0 \|c < \delta \ \Rightarrow \ \|(t)\| < \epsilon \ \ \forall t \geq t_0 \]

- There exists a real number \(\delta_a > 0 \) such that for any real number \(\eta > 0 \), there exists a time \(T(\delta_a, \eta) \) such that:
 \[t_0 \|c < \delta_a \ \Rightarrow \ \|(t)\| < \eta \ \ \forall t \geq t_0 + T(\delta_a, \eta) \]
Here, we let $x_{t_0}(\theta) = x(t_0 + \theta)$ for $\theta \in [-\tau(t_0), 0]$ denote the delayed state function at time t_0. The norm $t_0\|c\|$ of this function is defined as the maximal value of the vector norm assumed by the state over the delayed time interval, given by:

$$t_0\|c\| := \max_{\theta \in [-\tau(t_0), 0]} \|x(t_0 + \theta)\|$$

The proof of this result relies on the fact that the following inequality holds for any value $\epsilon > 0$ and constant matrices α, β of appropriate dimensions:

$$\alpha \Delta(t) \beta + \beta^T \Delta^T(t) \alpha^T \leq \epsilon^{-1} \alpha\alpha^T + \epsilon \beta^T \beta$$

Using this inequality with $\alpha^T = \begin{bmatrix} H^T P & 0 \end{bmatrix}$ and $\beta = \begin{bmatrix} E & E_1 \end{bmatrix}$, the described LMI can then be derived from that presented in https://en.wikibooks.org/wiki/LMIs_in_Control/Time-Delay_Systems/Continuous_Time/LMI_for_Stability_of_Retarded_Differential_Equation_with_Slowly-Varying_Delay, corresponding to a situation without uncertainty.

149.6 Implementation

An example of the implementation of this LMI in Matlab is provided on the following site:

- https://github.com/djagt/LMI_Codes/blob/main/Rstblty_cTDS_SlowVarying.m

Note that this implementation requires packages for YALMIP with solver mosek, though a different solver can also be implemented.

149.7 Related LMIs

149.8 External Links

The presented results have been obtained from:

Additional information on LMI's in control theory can be obtained from the following resources:

- LMI Methods in Optimal and Robust Control¹ - A course on LMIs in Control by Matthew Peet.

149.9 Return to Main Page:

¹ http://control.asu.edu/MAE598_frame.htm
³ https://web.stanford.edu/~boyd/lmibook/
This page describes a bounded real lemma for a continuous-time system with a
time-varying delay. In particular, a condition is provided to obtain a bound on the
L_2-gain of a retarded differential system through feasibility of an LMI. The system
under consideration pertains a single discrete delay, with the extent of the delay at
any time bounded by some known value. This delay is only present in the state,
with no direct delay in the effects of exogenous inputs on the state. In addition, the
delay is assumed to vary only slowly in time, with a temporal derivative bounded
by a value less than one, although results can also be attained if no bound is
known. Solving the LMI for a particular value of the bound, while minimizing a
scalar variable, an upper limit on the L_2-gain of the system can be shown for any
time-delay satisfying this bound.

150.1 The System

The system under consideration is one of the form:

\[
\begin{align*}
\dot{x}(t) &= Ax(t) + A_1 x(t - \tau(t)) + B_0 w(t) \quad t \geq t_0, \quad 0 \leq \tau(t) \leq h, \quad \dot{\tau}(t) \leq d < 1 \\
z(t) &= C_0 x(t) + C_1 x(t - \tau(t))
\end{align*}
\]

In this description, A and A_1 are constant matrices in $\mathbb{R}^{n \times n}$. In addition, B_0 is a
constant matrix in $\mathbb{R}^{n \times n_w}$, and C_0, C_1 are constant matrices in $\mathbb{R}^{n_z \times n}$ where $n_w, n_z \in \mathbb{N}$ denote the number of exogenous inputs and regulated outputs respectively. The
variable $\tau(t)$ denotes a delay in the state at time $t \geq t_0$, assuming a value no greater
than some $h \in \mathbb{R}_+$. Moreover, we assume that the function $\tau(t)$ is differentiable at
any time, with the derivative bounded by some value $d < 1$, assuring the delay to
be slowly-varying in time.

150.2 The Data

To obtain a bound on the L_2-gain of the system, the following parameters must be
known:
Bounded Real Lemma under Slowly-Varying Delay

\[A, A_1 \in \mathbb{R}^{n \times n} \]
\[B_0 \in \mathbb{R}^{n \times n_w} \]
\[C_0, C_1 \in \mathbb{R}^{n_z \times n} \]
\[h \in \mathbb{R}_+ \]
\[d \in [0, 1) \]

150.3 The Optimization Problem

Based on the provided data, we can obtain a bound on the \(L_2 \)-gain of the system by testing feasibility of an LMI. In particular, the bounded real lemma states that if the LMI presented below is feasible for some \(\gamma > 0 \), the \(L_2 \)-gain of the system is less than or equal to this \(\gamma \). To attain a bound that is as small as possible, we minimize the value of \(\gamma \) while solving the LMI:

150.4 The LMI: L2-gain for TDS with Slowly-Varying Delay

Solve:

\[
\min \gamma \\
\text{such that there exist:}
\]

\[
P, P_2, P_3, R, S, S_{12}, Q \in \mathbb{R}^{n \times n}
\]

for which:

\[
P > 0, \quad R > 0, \quad S > 0, \quad Q > 0
\]

\[
\begin{bmatrix}
\Phi_{11} & \Phi_{12} & S_{12} & R - S_{12} + P_2^T A_1 & P_2^T B_0 & C_0^T \\
* & \Phi_{22} & 0 & P_3^T A_1 & P_3^T B_0 & 0 \\
* & * & -S - R & R - S_{12}^T & 0 & 0 \\
* & * & * & -2R - S_{12} - S_{12}^T - (1 - d)Q & 0 & C_1^T \\
* & * & * & * & -\gamma^2 I & 0 \\
* & * & * & * & * & -I
\end{bmatrix} < 0
\]

where:

\[
\Phi_{11} = A^T P_2 + P_2^T A + S + Q - R \\
\Phi_{12} = P - P_2^T + A^T P_3 \\
\Phi_{22} = -P_3 - P_3^T + h^2 R
\]

In this notation, the symbols \(* \) are used to indicate appropriate matrices to assure the overall matrix is symmetric.
150.5 Conclusion:

If the presented LMI is feasible for some γ, the system is internally stable, and will have an L_2-gain less than γ. That is, independent of the values of the delays $\tau(t)$:

$$\|L_2\| < \gamma$$

It should be noted that this result is conservative. That is, even when minimizing the value of γ, there is no guarantee that the bound obtained on the L_2-gain is sharp.

In a scenario where no bound d on the change in the delay is known, the above LMI can still be used to obtain a bound on the L_2-gain. In particular, setting $Q = 0$ in the above LMI, a bound can be attained independent of the value of the derivative of the delay.

150.6 Implementation

An example of the implementation of this LMI in Matlab is provided on the following site:

- https://github.com/djagt/LMI_Codes/blob/main/L2gain_cTDS.m

Note that this implementation requires packages for YALMIP with solver mosek, though a different solver can also be implemented.

150.7 Related LMIs

150.8 External Links

The presented results have been obtained from:

Additional information on LMI's in control theory can be obtained from the following resources:

- LMI Methods in Optimal and Robust Control\(^1\) - A course on LMIs in Control by Matthew Peet.
- LMIs in Systems and Control Theory\(^3\) - A downloadable book on LMIs by Stephen Boyd.

150.9 Return to Main Page:

\(^1\) http://control.asu.edu/MAE598_frame.htm
\(^2\) https://arxiv.org/abs/1903.08599/
\(^3\) https://web.stanford.edu/~boyd/lmibook/
151 LMI for L2-Optimal State-Feedback Control under Time-Varying Input Delay

This page describes a method for constructing a full-state-feedback controller for a continuous-time system with a time-varying input delay. In particular, a condition is provided to obtain a bound on the L_2-gain of closed-loop system under time-varying delay through feasibility of an LMI. The system under consideration pertains a single discrete delay in the actuator input, with the extent of the delay at any time bounded by some known value. Moreover, the delay is assumed to vary only slowly in time, with a temporal derivative bounded by a value less than one, although results may also be attained if no bound is known. Solving the LMI for a particular value of the bound, while minimizing a scalar variable, an upper limit on the L_2-gain of the system can be shown for any time-delay satisfying this bound.

151.1 The System

The system under consideration is one of the form:

\[
\dot{x}(t) = Ax(t) + B_2 u(t - \tau(t)) + B_1 w(t) \quad t \geq t_0, \quad 0 \leq \tau(t) \leq h, \quad \dot{\tau}(t) \leq d < 1
\]

\[
z(t) = C_1 x(t) + D_{12} u(t - \tau(t))
\]

In this description, A and A_1 are constant matrices in $\mathbb{R}^{n \times n}$. In addition, B_1 is a constant matrix in $\mathbb{R}^{n \times n_w}$, and B_2 is a constant matrix in $\mathbb{R}^{n \times n_u}$, where $n_w, n_u \in \mathbb{N}$ denote the number of exogenous and actuator inputs respectively. Finally, C_1 and D_{12} are constant matrices in $\mathbb{R}^{n_z \times n}$ and $\mathbb{R}^{n_z \times n_u}$ respectively, where $n_z \in \mathbb{N}$ denotes the number of regulated outputs. The variable $\tau(t)$ denotes a delay in the actuator input at time $t \geq t_0$, assuming a value no greater than some $h \in \mathbb{R}_+$. Moreover, we assume that the function $\tau(t)$ is differentiable at any time, with the derivative bounded by some value $d < 1$, assuring the delay to be slowly-varying in time.

151.2 The Data

To construct an L_2-optimal controller of the system, the following parameters must be known:
A ∈ \mathbb{R}^{n \times n}
B_1 ∈ \mathbb{R}^{n \times n_w}
B_2 ∈ \mathbb{R}^{n \times n_u}
C_1 ∈ \mathbb{R}^{n_z \times n}
D_{12} ∈ \mathbb{R}^{n_z \times n_u}
h ∈ \mathbb{R}_+
d ∈ [0,1)

In addition to these parameters, a tuning scalar \(\epsilon > 0 \) is also implemented in the LMI.

151.3 The Optimization Problem

Based on the provided data, we can construct an \(L_2 \)-optimal full-state-feedback controller of the system by testing feasibility of an LMI. In particular, we note that if the LMI presented below is feasible for some \(\gamma > 0 \) and matrices \(\bar{P}_2^{-1} > 0 \) and \(Y \), implementing the state-feedback \(u(t) = Kx(t) \) with \(K = Y\bar{P}_2^{-1} \), the \(L_2 \)-gain of the closed-loop system will be less than or equal to \(\gamma \). To attain a bound that is as small as possible, we minimize the value of \(\gamma \) while solving the LMI:

\[
\begin{align*}
\min \gamma \\
such that there exist:
\bar{P}, \bar{P}_2, \bar{R}, \bar{S}, \bar{S}_{12}, Q ∈ \mathbb{R}^{n \times n}, \quad Y ∈ \mathbb{R}^{n_u \times n}

\text{for which:}
\begin{bmatrix}
\bar{\Phi}_{11} & \bar{\Phi}_{12} & \bar{S}_{12} \\
\ast & \bar{\Phi}_{22} & 0 \\
\ast & \ast & -\bar{S} - \bar{R} \\
\ast & \ast & \ast & -(1 - d)\bar{Q} - 2\bar{R} + \bar{S}_{12} + \bar{S}_{12}^T \\
\ast & \ast & \ast & \ast & 0 \\
\ast & \ast & \ast & \ast & \ast & -\gamma^2I
\end{bmatrix}
\begin{bmatrix}
B_1 & \bar{P}_2^T C_1^T \\
\epsilon B_1 & 0 \\
0 & 0 \\
0 & Y^T D_{12}^T \\
\end{bmatrix} < 0
\end{align*}
\]

where:
\[
\begin{align*}
\bar{\Phi}_{11} &= A\bar{P}_2 + \bar{P}_2^T A^T + \bar{S} + \bar{Q} - \bar{R} \\
\bar{\Phi}_{12} &= \bar{P}_2 - \bar{P}_2 + \epsilon \bar{P}_2^T A^T \\
\bar{\Phi}_{22} &= -\epsilon \bar{P}_2 - \epsilon \bar{P}_2^T + h^2 R
\end{align*}
\]
In this notation, the symbols $*$ are used to indicate appropriate matrices to assure the overall matrix is symmetric.

151.5 Conclusion:

If the presented LMI is feasible for some $\gamma, Y, \tilde{P}_2 x(t)$, implementing the full-state-feedback controller $u(t) = K x(t) = Y \tilde{P}_2^{-1}$, the closed-loop system will be asymptotically stable, and will have an L_2-gain less than γ. That is, independent of the values of the delays $\tau(t)$, the system:

$$
\dot{x}(t) = Ax(t) + B_2 K x(t - \tau(t)) + B_1 w(t)
$$
$$
z(t) = C_1 x(t) + D_{12} K x(t - \tau(t))
$$

with:

$$
\|L_2 < \gamma\|_{L_2} K = Y \tilde{P}_2^{-1}
$$

will satisfy:

$$
\|L_2 < \gamma\|_{L_2}
$$

Here we note that $\tilde{P}_2^{-1} x(t)$ is guaranteed to exist as P_2 is positive definite, and thus nonsingular.

It should be noted that the obtained result is conservative. That is, even when minimizing the value of γ, there is no guarantee that the bound obtained on the L_2-gain is sharp, meaning that the actual L_2-gain of the closed-loop can be (significantly) smaller than γ.

In a scenario where no bound d on the change in the delay is known, or this bound is greater than one, the above LMI may still be used to construct a controller. In particular, if the presented LMI is feasible with $\tilde{Q} = 0$, the closed-loop system imposing $u(t) = K x(t) = Y \tilde{P}_2^{-1}$ will be internally exponentially stable with an L_2-gain less than γ independent of the value of $\tilde{\tau}(t)$.

151.6 Implementation

An example of the implementation of this LMI in Matlab is provided on the following site:

- https://github.com/djagt/LMI_Codes/blob/main/L2_OptStateFdbck_cTDS.m

Note that this implementation requires packages for YALMIP with solver mosek, though a different solver can also be implemented.
151.7 Related LMIs

151.8 External Links

The presented results have been obtained from:

Additional information on LMI's in control theory can be obtained from the following resources:

- LMI Methods in Optimal and Robust Control\(^1\) - A course on LMIs in Control by Matthew Peet.
- LMIs in Systems and Control Theory\(^3\) - A downloadable book on LMIs by Stephen Boyd.

151.9 Return to Main Page:

1 http://control.asu.edu/MAE598_frame.htm
3 https://web.stanford.edu/~boyd/lmibook/
152 Discrete Time

1. REDIRECT LMIs in Control/Discrete Time/Stability Condition for Discrete-Time TDS1

1 https://en.wikibooks.org/wiki/LMIs%20in%20Control%2FDiscrete%20Time%2FStability%20Condition%20for%20Discrete-Time%20TDS
153 LMI for Attitude Control of Nonrotating Missiles, Pitch Channel

LMI for Attitude Control of Nonrotating Missiles, Pitch Channel

The dynamic model of a missile is very complicated and a simplified model is used. To do so, we consider a simplified attitude system model for the pitch channel in the system. We aim to achieve a non-rotating motion of missiles. It is worthwhile to note that the attitude control design for the pitch channel and the yaw/roll channel can be solved exactly in the same way while representing matrices of the system are different.

153.1 The System

The state-space representation for the pitch channel can be written as follows:

\[
\dot{x}(t) = A(t)x(t) + B_1(t)u(t) + B_2(t)d(t)
\]
\[
y(t) = C(t)x(t) + D_1(t)u(t) + D_2(t)d(t)
\]

where \(x = [\alpha \ w_z \ \delta_z]^T\), \(u = \delta_{zc}\), \(y = [\alpha \ n_y]^T\), and \(d = [\beta \ w_y]^T\) are the state variable, control input, output, and disturbance vectors, respectively. The parameters \(\alpha, w_z, \delta_z, n_y, \beta, \) and \(w_y\) stand for the attack angle, pitch angular velocity, the elevator deflection, the input actuator deflection, the overload on the side direction, the sideslip angle, and the yaw angular velocity, respectively.

153.2 The Data

In the aforementioned pitch channel system, the matrices \(A(t), B_1(t), B_2(t), C(t), D_1(t), \) and \(D_2(t)\) are given as:

\[
A(t) = \begin{bmatrix}
-a_4(t) & 1 & -a_5(t) \\
-a_1(t)a_4(t) - a_2(t) & \dot{a}_1(t) - a_1(t) & a_1(t)a_5(t) - a_3(t) \\
0 & 0 & -1/\tau_z
\end{bmatrix}
\]

\[
B_1(t) = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}, \quad B_2(t) = \frac{w_x}{57.3} \begin{bmatrix}
-1 & 0 & J_x - J_2 \\
0 & \frac{J_x}{J_z} & 0
\end{bmatrix}
\]

\[
C(t) = \frac{w_x}{57.3} \begin{bmatrix}
57.3g & 0 & 0 \\
V(t)a_4(t) & 0 & V(t)a_5(t)
\end{bmatrix}
\]
\[D_1(t) = 0, \quad D_2(t) = \frac{1}{57.3g} \begin{bmatrix} 0 & 0 \\ V(t)b_7(t) & 0 \end{bmatrix} \]

where \(a_1(t) \sim a_0(t), \quad b_1(t) \sim b_7(t), \quad \dot{a}_1(t), \quad \dot{b}_1(t) \) and \(c_1(t) \sim c_4(t) \) are the system parameters. Moreover, \(V \) is the speed of the missile and \(J_x, \quad J_y, \quad \text{and} \quad J_z \) are the rotary inertia of the missile corresponding to the body coordinates.

153.3 The Optimization Problem

The optimization problem is to find a state feedback control law \(u = Kx \) such that:

1. The closed-loop system:
 \[
 \dot{x} = (A + B_1K)x + B_2d \\
 z = (C + D_1K)x + D_2d
 \]
 is stable.

2. The \(H_\infty \) norm of the transfer function:
 \[
 G_{zd}(s) = (C + D_1K)(sI - (A + B_1K))^{-1}B_2 + D_2
 \]
 is less than a positive scalar value, \(\gamma \). Thus:
 \[||G_{zd}(s)||_\infty < \gamma \]

153.4 The LMI: LMI for non-rotating missile attitude control

Using Theorem 8.1 in [1], the problem can be equivalently expressed in the following form:

\[
\min \gamma \\
\text{s.t.} \quad X > 0
\]

\[
\begin{bmatrix} (AX + B_1W)^T + AX + B_1W & B_2 & (CX + D_1W)^T \\ B_2^T & -\gamma I & D_2^T \\ CX + D_1W & D_2 & -\gamma I \end{bmatrix} < 0
\]

153.5 Conclusion:

As mentioned, the aim is to attenuate the disturbance on the performance of the missile. The parameter \(\gamma \) is the disturbance attenuation level. When the matrices \(W \) and \(X \) are determined in the optimization problem, the controller gain matrix can be computed by:

\[K = WX^{-1} \]
153.6 Implementation

A link to Matlab codes for this problem in the Github repository:
https://github.com/asalimil/LMI-for-Non-rotating-Missle-Attitude-Control

153.7 Related LMIs

LMI for Attitude Control of Nonrotating Missles, Yaw/Roll Channel

153.8 External Links

153.9 Return to Main Page

LMIs in Control/Tools

154 LMI for Attitude Control of Nonrotating Missiles, Yaw/Roll Channel

LMI for Attitude Control of Nonrotating Missiles, Yaw/Roll Channel

Deriving the exact dynamic modeling of a missile is a very complicated procedure. Thus, a simplified model is used to model the missile dynamics. To do so, we consider a simplified attitude system model for the yaw/roll channel of the system. We aim to achieve a non-rotating motion of missiles. Note that the attitude control design for the yaw/roll channel and the pitch channel can be solved exactly in the same way except for different representing matrices of the system.

154.1 The System

The state-space representation for the yaw/roll channel can be written as follows:

\[
\begin{align*}
\dot{x}(t) &= A(t)x(t) + B_1(t)u(t) + B_2(t)d(t) \\
y(t) &= C(t)x(t) + D_1(t)u(t) + D_2(t)d(t)
\end{align*}
\]

where \(x = [\beta \ w_y \ w_x \ \delta_z \ \delta_y]^T\), \(u = [\delta_{zc} \ \delta_{yc}]^T\), \(y = [n_z \ w_x]^T\), and \(d = \delta_z\) are the state variable, control input, output, and disturbance vectors, respectively. The parameters \(\alpha\), \(w_z\), \(\delta_z\), \(\delta_{zc}\), \(n_y\), \(\beta\), and \(w_y\) stand for the attack angle, pitch angular velocity, the elevator deflection, the input actuator deflection, the overload on the side direction, the sideslip angle, and the yaw angular velocity, respectively.

154.2 The Data

In the aforementioned yaw/roll channel system, the matrices \(A(t), B_1(t), B_2(t), C(t), D_1(t), \) and \(D_2(t)\) are given as:

\[
A(t) = \begin{bmatrix} A_{11}(t) & A_{12}(t) \\ 0 & A_{22}(t) \end{bmatrix}
\]

where

\[
A_{11}(t) = \begin{bmatrix} -b_4(t) & 1 & \frac{\alpha(t)}{57.3} \\ -\hat{b}_1(t)b_4(t) - b_2(t) & -\hat{b}_1(t) - \hat{b}_1(t) & \frac{J_y - J_z}{57.3 J_z} w_z(t) - \frac{\hat{b}_1(t)}{57.3} \\ c_2(t) & J_y - J_z & \frac{\hat{b}_1(t)}{57.3} \end{bmatrix}
\]
\[
A_{12}(t) = \begin{bmatrix} 0 & -b_5(t) \\ 0 & -b_1(t) b_5(t) - b_3(t) \\ -c_3(t) & c_4(t) \end{bmatrix}
\]
\[
A_{22}(t) = -\frac{1}{\tau_x \tau_y} \begin{bmatrix} \tau_x & 0 \\ 0 & \tau_y \end{bmatrix}
\]

and
\[
B_1(t) = \begin{bmatrix} 0 & 0 \\ 0 & 0 \\ \frac{1}{\tau_x} & 0 \\ 0 & \frac{1}{\tau_y} \end{bmatrix}, \quad B_2(t) = \begin{bmatrix} a_6(t) \\ -\dot{b}_1(t) a_6(t) \\ 0 \\ 0 \end{bmatrix}
\]
\[
C(t) = -\frac{1}{57.3g} \begin{bmatrix} V(t) b_4(t) & 0 & 0 & V(t) b_5(t) \\ 0 & 0 & 0 & 0 \end{bmatrix}
\]
\[
D_1(t) = 0, \quad D_2(t) = -\frac{V(t)}{57.3g} \begin{bmatrix} b_6(t) \\ 0 \end{bmatrix}
\]

where \(a_1(t) \sim a_6(t) \), \(b_1(t) \sim b_7(t) \), \(\dot{a}_1(t) \), \(\dot{b}_1(t) \) and \(c_1(t) \sim c_4(t) \) are the system parameters. Moreover, \(V \) is the speed of the missile and \(J_x, J_y, \) and \(J_z \) are the rotary inertia of the missile corresponding to the body coordinates.

154.3 The Optimization Problem

The optimization problem is to find a state feedback control law \(u = K x \) such that:

1. The closed-loop system:
 \[
 \dot{x} = (A + B_1 K)x + B_2 d \\
 z = (C + D_1 K)x + D_2 d
 \]
 is stable.

2. The \(H_\infty \) norm of the transfer function:
 \[
 G_{zd}(s) = (C + D_1 K)(sI - (A + B_1 K))^{-1} B_2 + D_2
 \]
 is less than a positive scalar value, \(\gamma \). Thus:
 \[
 \|G_{zd}(s)\|_\infty < \gamma
 \]

154.4 The LMI: LMI for non-rotating missile attitude control

Using Theorem 8.1 in [1], the problem can be equivalently expressed in the following form:
\[
\begin{align*}
\min \quad & \gamma \\
\text{s.t.} \quad & X > 0 \\
& \begin{bmatrix}
(AX + B_1W)^T + AX + B_1W & B_2 & (CX + D_1W)^T \\
B_2^T & -\gamma I & D_2^T \\
CX + D_1W & D_2 & -\gamma I
\end{bmatrix} < 0
\end{align*}
\]

154.5 Conclusion:
As mentioned, the aim is to attenuate the disturbance on the performance of the missile. The parameter \(\gamma\) is the disturbance attenuation level. When the matrices \(W\) and \(X\) are determined in the optimization problem, the controller gain matrix can be computed by:
\[
K = WX^{-1}
\]

154.6 Implementation
A link to Matlab codes for this problem in the Github repository:
https://github.com/asalimil/LMI-for-Attitude-Control-Nonrotating-Missle-Yaw-Roll-Channel

154.7 Related LMIs
LMI for Attitude Control of Nonrotating Missles, Pitch Channel\(^1\)

154.8 External Links

154.9 Return to Main Page
LMIs in Control/Tools\(^2\)

\(^1\) https://en.wikibooks.org/wiki/LMIs_in_Control/pages/LMI_for_Attitude_Control_of_Nonrotating_Missles
\(^2\) https://en.wikibooks.org/wiki/LMIs_in_Control/Tools
155 LMI for H_2/H_∞ Polytopic Controller for Robot Arm on a Quadrotor

155.1 The System:

\[
\begin{align*}
\dot{x}(t) &= Ax(t) + B_1w(t) + B_2u(t) \\
z(t) &= C_1x(t) + D_{11}w(t) + D_{12}u(t) \\
y(t) &= C_2x(t) + D_{21}w(t) + D_{22}u(t) \\
\dot{x}_K(t) &= A_Kx_K(t) + B_Ky(t) \\
u(t) &= C_Kx_K(t) + D_Ky(t)
\end{align*}
\]

155.2 The Optimization Problem:

Given a state space system of

\[
\begin{align*}
\dot{x}(t) &= Ax(t) + B_1w(t) + B_2u(t) \\
z_1(t) &= C_1x(t) + D_{11}w(t) + D_{12}u(t) \\
y(t) &= C_2x(t) + D_{21}w(t) + D_{22}u(t) \\
\dot{x}_K(t) &= A_Kx_K(t) + B_Ky(t) \\
u(t) &= C_Kx_K(t) + D_Ky(t)
\end{align*}
\]

where A_K, B_K, C_K, and D_K, form the K matrix as defined in below. This, therefore, means that the Regulator system can be re-written as:

\[
\begin{bmatrix}
\dot{x}(t) \\
z_1(t) \\
z_2(t) \\
y(t)
\end{bmatrix} =
\begin{bmatrix}
A & B & 0 & B \\
C & D & 0 & D \\
0 & 0 & 0 & I \\
C & D & I & D
\end{bmatrix}
\begin{bmatrix}
\dot{x}(t) \\
w_1(t) \\
w_2(t) \\
u(t)
\end{bmatrix}
\]

With the above 9-matrix representation in mind, the we can now derive the controller needed for solving the problem, which in turn will be accomplished through the use of LMI's. Firstly, we will be taking our H_2/H_∞ state-feedback control and
make some modifications to it. More specifically, since the focus is modeling for worst-case scenario of a given parameter, we will be modifying the LMI’s such that the mixed H_2/H_∞ controller is polytopic.

155.3 The LMI:

H_2/H_∞ Polytopic Controller for Quadrotor with Robotic Arm.

Recall that from the 9-matrix framework, $w_1(t)$ and $w_2(t)$ represent our process and sensor noises respectively and $u(t)$ represents our input channel. Suppose we were interested in modeling noise across all three of these channels. Then the best way to model uncertainty across all three cases would be modifying the D matrix to D_i, where ($i=1,..,k$ parameters, $D_i = nI$, and n is a constant noise value). This, in turn results in our $D_{11}-D_{22}$ matrices to be modified to $D_{11,i} - D_{22,i}$.

Using the LMI’s given for optimal H_2/H_∞-optimal state-feedback controller from Peet Lecture 11 as reference, our resulting polytopic LMI becomes:

$$\min_{\gamma_1, \gamma_2, X_1, Y_1, Z, A_n, B_n, C_n, D_n} \gamma_1^2 + \gamma_2^2$$

$$\begin{bmatrix}
AA_i & AB_i^T & AC_i^T \\
AB_i & BB_i & BC_i^T \\
AC_i & BC_i & -I \\
\end{bmatrix} < 0$$

$$\begin{bmatrix}
AA_i & AB_i^T & AC_i^T & AD_i^T \\
AB_i & BB_i & BC_i^T & BD_i^T \\
AC_i & BC_i & -I & CD_i \\
AD_i & BD_i & CD_i & -\gamma_2^2 I \\
\end{bmatrix} < 0$$

$$\begin{bmatrix}
Y_1 & I & AD_i^T \\
I & X_1 & BD_i \\
AD_i & BD_i & Z \\
\end{bmatrix} > 0$$

$CD=0$

$\text{trace}(Z) < \gamma_1^2$

where $i=1,..,k$, $||S(K, P)||_{H_2} < \gamma_1$ and $||S(K, P)||_{H_\infty} < \gamma_2$ and:

$$AA_i = AY_1 + Y_1A^T + B_2C_n + C_n^TB_2^T$$

$$AB_i = A^T + A_n + [B_2D_nC_2]^T$$

$$AC_i = [B_1 + B_2D_nD_{21,i}]^T$$

$$AD_i = C_1Y_1 + D_{12,i}C_n$$

$$BB_i = X_1A + A^TX_1 + B_nC_2 + C_2^TB_n^T$$

$$BC_i = [X_1B_1 + B_nD_{21,i}]^T$$

$$BD_i = C_1 + D_{12,i}D_nC_2$$

$$CD_i = D_{11,i} + D_{12,i}D_nD_{21,i}$$

446
After solving for both the optimal H_2 and H_∞ gain ratios as well as $X_1, Y_1, Z, A_n, B_n, C_n, D_n$, we can then construct our worst-case scenario controller by setting our D matrix (and consequently our $D_{11}, D_{12}, D_{21}, D_{22}$ matrices) to the highest n value. This results in the controller:

$$K = \begin{bmatrix} A_K & B_K \\ C_K & D_K \end{bmatrix}$$

which is constructed by setting:

$$D_K = (I + D_{K_2}D_{22})^{-1}D_{K_2}$$
$$B_K = B_{K_2}(I + D_{22}D_K)$$
$$C_K = (I - D_KD_{22})C_{K_2}$$
$$A_K = A_{K_2} - B_K(I - D_{22}D_K)^{-1}D_{22}C_K$$

where:

$$X_2Y_T^2 = I - X_1Y_1$$
$$\begin{bmatrix} A_{K_2} & B_{K_2} \\ C_{K_2} & D_{K_2} \end{bmatrix} = \begin{bmatrix} X_2 & X_1B_2 \\ 0 & I \end{bmatrix}^{-1} \begin{bmatrix} A_n - X_1AY_1 & B_n \\ C_n & D_n \end{bmatrix} \begin{bmatrix} Y_T^2 & 0 \\ C_2Y_1 & I \end{bmatrix}$$

155.4 Conclusion:

The LMI is feasible and the resulting controller is found to be stable under normal noise disturbances for all states.

155.5 Implementation

155.6 References

1. An LMI-Based Approach for Altitude and Attitude Mixed H_2/H_∞-Polytopic Regulator Control of a Quadrotor Manipulator by Aditya Ramani and Sudhanshu Katarey.
156 An LMI for the Kalman Filter

This is a An LMI for the Kalman Filter. The Kalman Filter is one of the most widely used state-estimation techniques. It has applications in multiple aspects of navigation (inertial, terrain-aided, stellar.)

156.1 The System

Continuous Time:
\[
\begin{align*}
\dot{x}(t) &= Ax(t) + Bu(t) + w(t), \\
y(t) &= Cx(t) + v(t)
\end{align*}
\]

The process and sensor noises are given by \(w(t) \) and \(v(t) \) respectively.

Discrete Time:
\[
\begin{align*}
x_{k+1} &= Ax_k + w_k \\
y_k &= Cx_k + v_k
\end{align*}
\]

The process and sensor noises are given by \(w_k \) and \(v_k \) respectively.

156.2 The Data

The data required for the Kalman Filter include a model of the system that the states are trying to be output and a measurement that is the output of the system dynamics being estimated.

156.3 The Filter

The Filter and Estimator equations can be written as:

Continuous Time
\[
\dot{\hat{x}}(t) = A\hat{x}(t) + Bu(t) + L(y(t) - \hat{y}(t))
\]
Discrete Time

\[\hat{x}_{k+1} = A\hat{x}_k + L(C\hat{x}_k - y_k) \]

156.4 The Error

The error dynamics evolve according to the following expression

Continuous Time

\[\dot{e}(t) = (A + LC)e(t) + w(t) + Lv(t) \]

Discrete Time

\[e_{k+1} = (A + LC)e_k + w_k + Lv_k \]

156.5 The Optimization Problem

The Kalman Filtering (or LQE) problem is a Dual to the LQR problem. Replace the matrices \((A,B,Q,R,K)\) from LQR with \((A^T,C^T,V_1,V_2,L^T)\).

The Kalman Filter chooses \(L\) to minimize the cost \(J = E[e^T e]\). This cost can be thought of as the covariance of the state error between the actual and estimated state. When the state error covariance is low the filter has converged and the estimate is good.

The Luenberger or Kalman gain can be computed from \(L = \Sigma C^T V_2^{-1}\)

The process and measurement noise covariances for the Kalman filter are given by

\[V_1 = E[w(t)w(t)^T] \text{ aka: Q} \]
\[V_2 = E[v(t)v(t)^T] \text{ aka: R} \]

The matrix \(\Sigma\) satisfies the following equality

\[A\Sigma + \Sigma A^T + V_1 = \Sigma C^T V_2^{-1} C\Sigma \]

We also cover the discrete Kalman Filter formulation which is more useful for real-life computer implementations.

The discrete Kalman filter chooses the gain \(L = \Sigma C^T (C\Sigma C^T + V)^{-1}\) where the PSDs of the process and sensor noises are given by

\[W = E[w_k w_k^T] \text{ aka: Q} \]
\[V = E[v_k v_k^T] \text{ aka: R} \]
The steady-state covariance of the error in the estimated state is given by Σ and satisfies the following Riccati equation.

$$
\Sigma = A\Sigma A^T + W - A\Sigma C^T(C\Sigma C^T + V)^{-1}C\Sigma A^T
$$

- **Objective:** State Estimate Error Covariance
- **Variables:** Observer Gains
- **Constraints:** Dynamics of System to be Estimated

156.6 The LMI: H2-Optimal Control Full-State Feedback to LQR to Kalman Filter

The Kalman Filter is a dual to the LQR problem which has been shown to be equivalent to a special case of H2-static state feedback.

Start with the H2-Optimal Control Full-State Feedback.

The following are equivalent

1. $||S(K,P)||_{H2} < \gamma$

2. $K = ZX^{-1}$ for some Z and $X > 0$ where

$$
\begin{bmatrix}
X \\
Z
\end{bmatrix} + \begin{bmatrix}
X & Z^T \\
Z & B_2^T
\end{bmatrix} + B_1B_1^T < 0
$$

$$
\begin{bmatrix}
X \\
C_1X + D_{12}Z
\end{bmatrix} \begin{bmatrix}
(C_1X + D_{12}Z)^T \\
W
\end{bmatrix} > 0
$$

$TraceW < \gamma$

To solve the LQR problem using H2 optimal state-feedback control the following variable substitutions are required.

$$
C_1 = \begin{bmatrix}
Q^{1/2} \\
0
\end{bmatrix},
D_{12} = \begin{bmatrix}
R^{1/2} \\
0
\end{bmatrix},
D_{11} = 0,
B_2 = B, B_1 = I
$$

Then

$$
S(P, K) = \begin{bmatrix}
A + B_2K & B_1 \\
C_1 + D_{12}K & D_{11}
\end{bmatrix} = \begin{bmatrix}
A + BK & I \\
Q^{1/2} & 0 \\
K & 0
\end{bmatrix}
$$

This results in the following LMI.
An LMI for the Kalman Filter

\[
\begin{bmatrix}
 X \\
 Z
\end{bmatrix} + \begin{bmatrix} X & Z^T \end{bmatrix} \begin{bmatrix} A^T \\ B^T \end{bmatrix} + I < 0
\]

\[
\begin{bmatrix}
 \left(\frac{Q^{1/2}}{2} \right) X + \begin{bmatrix} \frac{R^{1/2}}{2} \\ 0 \end{bmatrix} Z \\
 W
\end{bmatrix} > 0
\]

\[\text{Trace} W < \gamma\]

To solve the Kalman Filtering problem using the LQR LMI replace \(A, B, Q, R, K \) with \(A^T, C^T, V_1, V_2, \) and \(L^T \). This results in the following LMI.

\[
\begin{bmatrix}
 X \\
 Z
\end{bmatrix} + \begin{bmatrix} X & Z^T \end{bmatrix} \begin{bmatrix} A^T \\ C^T \end{bmatrix} + I < 0
\]

\[
\begin{bmatrix}
 \left(\frac{V_1^{1/2}}{2} \right) X + \begin{bmatrix} \frac{V_2^{1/2}}{2} \\ 0 \end{bmatrix} Z \\
 W
\end{bmatrix} > 0
\]

\[\text{Trace} W < \gamma\]

The discrete-time Kalman Filtering LMI is saved for another page as it requires derivation of the Discrete-Time LQR LMI problem which was not covered in class.

156.7 Conclusion:

The LMI for the Kalman Filter allows us to calculate the optimal gain for state estimation. It is shown that it can be found as a special case of the H2-optimal state feedback with the appropriate substitution of matrices. The LMI gives us a different way of computing the optimal Kalman gain.

156.8 Implementation

A link to CodeOcean or other online implementation of the LMI

156.9 Related LMIs

Links to other closely-related LMIs
- H2OptimalObserver\(^1\)

156.10 External Links

A list of references documenting and validating the LMI.

- LMI Methods in Optimal and Robust Control\(^2\) - A course on LMIs in Control by Matthew Peet.
- LMI Properties and Applications in Systems, Stability, and Control Theory\(^3\) - A List of LMIs by Ryan Caverly and James Forbes
- LMIs in Systems and Control Theory\(^4\) - A downloadable book on LMIs by Stephen Boyd
- https://us.artechhouse.com/All-Source-Positioning-Navigation-and-Timing-P2082.aspx - All Source Position, Navigation and Timing. New textbook that has a good development and description of the Kalman Filter and some of its very practical uses and implementations by Boeing Senior Technical Fellow Ken Li.

156.11 Return to Main Page:

\(^2\) http://control.asu.edu/MAE598_frame.htm
\(^3\) https://arxiv.org/abs/1903.08599/
\(^4\) https://web.stanford.edu/~boyd/lmibook/
157 HInf Optimal Model Reduction

Given a full order model and an initial estimate of a reduced order model it is possible to obtain a reduced order model optimal in H_∞ sense. This methods uses LMI techniques iteratively to obtain the result.

157.1 The System

Given a state-space representation of a system $G(s)$ and an initial estimate of reduced order model $\hat{G}(s)$.

\[
G(s) = C(sI - A)B + D,
\hat{G}(s) = \hat{C}(sI - \hat{A})\hat{B} + \hat{D},
\]

Where $A \in \mathbb{R}^{n \times n}, B \in \mathbb{R}^{n \times m}, C \in \mathbb{R}^{p \times n}, D \in \mathbb{R}^{p \times m}, \hat{A} \in \mathbb{R}^{k \times k}, \hat{B} \in \mathbb{R}^{k \times m}, \hat{C} \in \mathbb{R}^{p \times k}$ and $\hat{D} \in \mathbb{R}^{p \times m}$. Where n, k, m, p are full order, reduced order, number of inputs and number of outputs respectively.

157.2 The Data

The full order state matrices A, B, C, D and the reduced model order k.

157.3 The Optimization Problem

The objective of the optimization is to reduce the H_∞ norm distance of the two systems. Minimizing $-\|\hat{G}\|_\infty$ with respect to \hat{G}.

157.4 The LMI: The Lyapunov Inequality

Objective: $\min \gamma$.

Subject to: $P = \begin{bmatrix} P_{11} & P_{12} \\ P_{21} & P_{22} \end{bmatrix} > 0$,

455
\[
\begin{bmatrix}
A^T P_{11} + P_{11} A & A^T P_{12} + P_{12} \hat{A} & P_{11} B - P_{12} \hat{B} & C^T \\
\hat{A}^T P_{12} + P_{12} A & \hat{A}^T P_{22} + P_{22} \hat{A} & P_{12} B - P_{22} \hat{B} & \hat{C}^T \\
B^T P_{11} - \hat{B}^T P_{12} & B^T P_{12} - \hat{B}^T P_{22} & -\gamma I & D^T - \hat{D}^T \\
C & \hat{C} & D - \hat{D} & -\gamma I
\end{bmatrix} > 0
\]

It can be seen from the above LMI that the second matrix inequality is not linear in $\hat{A}, \hat{B}, \hat{C}, \hat{D}, P$. But making \hat{A}, \hat{B} constant it is linear in \hat{C}, \hat{D}, P. And if P_{12}, P_{22} are constant it is linear in $\hat{A}, \hat{B}, \hat{C}, \hat{D}, P_{11}$. Hence the following iterative algorithm can be used.

(a) Start with initial estimate \hat{G} obtained from techniques like Hankel-norm reduction/Balanced truncation.

(b) Fix \hat{A}, \hat{B} and optimize with respect to \hat{C}, \hat{D}, P.

(c) Fix P_{12}, P_{22} and optimize with respect to $\hat{A}, \hat{B}, \hat{C}, \hat{D}, P_{11}$.

(d) Repeat steps (b) and (c) until the solution converges.

157.5 Conclusion:

The LMI techniques results in model reduction close to the theoretical limits set by the largest removed hankel singular value. The improvements are often not significant to that of Hankel-norm reduction. Due to high computational load it is recommended to only use this algorithm if optimal performance becomes a necessity.

157.6 External Links

A list of references documenting and validating the LMI.

157.7 Return to Main Page:
158 An LMI for Multi-Robot Systems

An LMI for Multi-Robot Systems

1. Consensus for Multi-Agent Systems/¹

This is a Helicopter Inner Loop LMI. Optimization methods and optimal control have had difficulty gaining traction in the rotorcraft control law community. However, this LMI derived in the referenced paper attempts to address the issues with a LMI for Robust, Optimal Control.

159.1 The System

Continuous Time:

\[
\begin{align*}
\dot{x}(t) &= \hat{A}x(t) + B_1w(t) + \hat{B}_2u(t), \\
z(t) &= C_1x(t) + D_{12}u(t)
\end{align*}
\]

The Helicopter model is given by knowledge of the stability and control derivatives which populate the elements of the \hat{A}, \hat{B}_2 matrices in the dynamic equations above.

The state vector is given by the typical elements of a rigid 6-DOF body model. $x = [u, w, q, \theta, v, p, \psi, r]^T$. The input vector is given by $u = [\delta_0, \delta_{1s}, \delta_{1c}, \delta_T]^T$ which pertain to the main rotor collective, longitudinal/lateral cyclic and tail rotor collective blade angles in radians.

The gust disturbance is denoted by $w(t)$ and is assumed to be random in nature. The stability and control derivative matrices are modeled with uncertainty as follows:

\[
\hat{A} = A + \Delta A, \hat{B}_2 = B_2 + \Delta B
\]

The Δ terms represent the uncertainties in the helicopter system model.

159.2 The Data

The Data required for this LMI are the stability and control derivatives that populate the A and B-matrices of the system above which can be obtained from linearizing non-linear models. It can also be obtained from experimental methods such as step responses and swept sines (System Identification.)
159.3 The Control Architecture

A control architecture for the inner loop of the helicopter model mentioned above is designed using a state feedback control law.

\[u = Kx(t) \]

The objective for the inner loop control is to design a full state feedback law such that the closed-loop helicopter system satisfies the following 3 performance specifications.

159.4 The Optimization Problem

Objective 1: The closed-loop system is internally stable for any admissible uncertainty.

Objective 2: Poles of the close-loop system lie within the disk \(D(−q, r) \) with center \(-q + j_0\) and radius \(r, q > r > 0\), for any admissible uncertainty.

Objective 3: Given gust disturbance suppression index \(γ\), for any admissible uncertainty, the effect of the gust disturbance to selected flight states and control input is in the given level, i.e.

\[
\int_0^\infty \left\{ x^T(t)Qx(t) + u^T(t)Ru(t) \right\} \ dx < \gamma^2 \int_0^\infty w(t)^T w(t) \ dt.
\]

where \(w(t) \in L_2(0, \infty) \), \(Q \) and \(R \) are weighting matrices with appropriate dimensions and \(Q = Q^T \geq 0, R = R^T > 0 \).

It can be shown that the inner loop performance specifications listed in Objectives 1-3 can be met with a state feedback control law if the LMI described in the following section is true.

- Objective: Objectives listed above
- Variables: Controller Gains
- Constraints: Rotorcraft Dynamics and Modeled Actuator Limits

159.5 The LMI: H-Inf Inner Loop D-Stabilization Optimization

The paper derives and LMI of the form below and asserts that the if there exists a constant \(\epsilon \), matrix \(Z \) with appropriate dimensions and a symmetric positive matrix \(P \), such that
Conclusion:

\[
\begin{bmatrix}
\Psi_{11} & B_1 & XC_1^T + Z^TD_12^T & A_\alpha X + B_2 Z & XF_1^T + Z^TF_2^T & \epsilon H \\
B_1^T & -\gamma^2 I & 0 & 0 & 0 & 0 \\
C_1X + D_{12}Z & 0 & -I & 0 & 0 & 0 \\
X A_\alpha^T + Z^TB_2^T & 0 & 0 & -rX & XF_1^T + Z^TF_2^T & 0 \\
F_1X + F_2 Z & 0 & 0 & F_1X + F_2 Z & -\epsilon I & 0 \\
\epsilon H^T & 0 & 0 & 0 & 0 & -\epsilon I
\end{bmatrix} < 0
\]

where, \(\Psi_{11} = A_\alpha X + X A_\alpha^T + B_2 Z + Z^T B_2^T, A_\alpha = A + \alpha I \)

This LMI is shown to satisfy Objectives 1, 2, 3, and the control law is given by

\[
u(t) = Kx(t) \\
K = ZX^{-1}
\]

159.6 Conclusion:

The LMI for Helicopter Inner Loop Control design provides an optimization-based approach towards achieving Level 1 Handling Qualities per ADS-33E. This is an interesting way to approach a very difficult problem that has usually been approached through classical control methods and with extensive piloted simulation and flight test.

159.7 Implementation

A link to CodeOcean or other online implementation of the LMI

159.8 Related LMIs

Links to other closely-related LMIs

- Optimal_Output_Feedback_Hinf_LMI

159.9 External Links

A list of references documenting and validating the LMI.

- LMI Methods in Optimal and Robust Control - A course on LMIs in Control by Matthew Peet.

2 http://control.asu.edu/MAE598_frame.htm
• https://scialert.net/fulltext/?doi=srj.2008.39.52 - Multi-Mode Flight Control for an Unmanned Helicopter Based on Robust H∞D-Stabilization and PI Tracking Configuration

159.10 Return to Main Page:
160 Hinf LMI Satellite Attitude Control

UNKNOWN TEMPLATE FULLPAGENAME
This is a H_∞ LMI for Satellite Attitude Control. Satellite attitude control is necessary to allow satellites in orbit accomplish their mission. Poor satellite attitude control results in poor pointing performance which can result in increased cost, delayed service, and reduced lifetime of the satellite.

160.1 The System
The full derivation of the system from first principles is accomplished in the companion LMI for H_2 Satellite Attitude Control. The link to that page is at the bottom with the references.

Continuous Time:

\[I_x \ddot{\phi} + 4(I_y - I_z)\omega_0^2 \phi + (I_y - I_z - I_z)\omega_0 \dot{\psi} = T_{cx} + T_{dx} \]
\[I_y \ddot{\theta} + 3(I_x - I_z)\omega_0^2 \theta = T_{cy} + T_{dy} \]
\[I_z \ddot{\psi} + (I_x + I_z - I_y)\omega_0 \dot{\psi} = T_{cz} + T_{dz} \]

The above model was derived by substituting satellite attitude kinematics into the attitude dynamics of a satellite. The following are definitions of the variables above:

- Moments of inertia about the corresponding axis: I_x, I_y, I_z
- Euler Angles: ϕ, θ, ψ
- Disturbance Torques (flywheel, gravitational, and disturbance): T_c, T_y, T_d
- Rotational-angular velocity of the Earth: $\omega_0 = 7.292115 \times 10^{-5}$ [rad/s]

The state-space representation of the system can be found by the following steps. Let

\[x = \begin{bmatrix} q & \dot{q} \end{bmatrix}^T, \quad z_\infty = 10^{-3} M\ddot{q}, z_2 = q, \]

Introduce the notations

\[I_{\alpha\beta} = I_\alpha - I_\beta, \quad I_{\alpha\beta\gamma} = I_\alpha - I_\beta - I_\gamma \]

where α, β, γ stand for any element in x, y, z. Then the state-space system is:
\[
\dot{x} = Ax + B_1 u + B_2 d \\
\zeta_\infty = C_1 x + D_1 u + D_2 d \\
\zeta_2 = C_2 x
\]

where the matrices in the above state-space representation are defined as follows:

\[
A = \begin{bmatrix}
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 \\
-4\omega_0^2 I_{yz} & 0 & 0 & 0 & -\omega_0 I_{yzz} & \frac{I_x}{I_z} \\
0 & -3\omega_0^2 I_{xz} & 0 & 0 & 0 & \frac{I_y}{I_z} \\
0 & 0 & -\omega_0^2 I_{yx} & 0 & 0 & 0 \\
\end{bmatrix}
\]

\[
B_1 = B_2 = \begin{bmatrix}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 1 \\
\frac{1}{I_x} & 0 & 0 \\
0 & \frac{1}{I_y} & 0 \\
0 & 0 & \frac{1}{I_z} \\
\end{bmatrix}
\]

\[
C_1 = 10^{-3} \begin{bmatrix}
-4\omega_0^2 I_{yz} & 0 & 0 & 0 & -\omega_0 I_{yzz} \\
0 & -3\omega_0^2 I_{xz} & 0 & 0 & 0 \\
0 & 0 & -\omega_0^2 I_{yx} & 0 & 0 \\
\end{bmatrix}
\]

\[
C_2 = \begin{bmatrix}
I_{3x3} & 0_{3x3} \\
\end{bmatrix}
\]

\[
D_1 = 10^{-3} \times L_1, \quad D_2 = 10^{-3} \times L_2
\]

160.2 The Data

Data required for this LMI include moments of inertia of the satellite being controlled and the angular velocity of the earth. Any knowledge of the disturbance torques would also facilitate solution of the problem.

160.3 The Optimization Problem

The idea is to design a state feedback control law for the previous satellite state-space system of the form
This control law is designed so that the closed-loop system is stable and the transfer function matrix from disturbance to output

\[G_{z\infty d}(s) = (C_1 + D_1 K)(sI - (A + B_1 K))^{-1}B_2 + D_2 \]

satisfies

\[||G_{z\infty d}(s)||_{\infty} = (C_1 + D_1 K)(sI - (A + B_1 K))^{-1}B_2 + D_2 \]

for a minimal positive scalar \(\gamma_{\infty} \) which represents the minimum attenuation level.

The idea here is to attenuate the disturbances as much as possible while still maintaining the ability of the satellite to track. This minimum attenuation level is found from the LMI in the following section.

- **Objective:** H\(\infty \) norm
- **Variables:** Controller Gains
- **Constraints:** Satellite Attitude Dynamics and Kinematics. Maximum safe rotational rate of Satellite, maximum jet pulse thrust

160.4 The LMI: H\(\infty \) Feedback Control of the Satellite System

Duan and Yu approach the H\(\infty \) satellite system as follows. The minimum attenuation level from disturbance to output can be found by solving the following LMI optimization problem.

\[
\begin{align*}
\min & \quad \gamma_{\infty} \\
\text{s.t.} \quad & X > 0 \\
& \begin{bmatrix}
 (AX + B_1 W)^T + AX + B_1 W & B_2 & (C_1 X + D_1 W)^T \\
 B_2^T & -\gamma_{H\infty} I & D_2^T \\
 C_1 X + D_1 W & D_2 & -\gamma_{H\infty} I
 \end{bmatrix} < 0
\end{align*}
\]

which is the same as Theorem 8.1 in Duan and Yu's Book, the solution to the H\(\infty \) problem.
160.5 Conclusion:

The Duan and Yu textbook takes as typical values of the satellite moment of inertias as:

\[I_x = 1030.17 \text{kg} \cdot \text{m}^2, I_y = 3015.65 \text{kg} \cdot \text{m}^2, I_z = 3030.43 \text{kg} \cdot \text{m}^2 \]

They then proceed to solve the optimization problem to find a controller gain that yields an attenuation level of 0.0010. Though this value is very small and represents very good attenuation the optimized controller pushes the poles of the closed loop system very close to the imaginary axis, resulting in slow oscillatory behavior with a very long settling time.

To address this a second approach was used by the authors which involves modifying the final LMI in the expression above and requiring that it be constrained as follows

\[
-I < \begin{bmatrix}
(AX + B_1W)^T + AX + B_1W & B_2 & (C_1X + D_1W)^T \\
B_2^T & -\gamma H_\infty I & D_2^T \\
C_1X + D_1W & D_2 & -\gamma H_\infty I
\end{bmatrix} < 0
\]

These results are planned verified in the linked code implementation using YALMIP, whereas the authors took advantage of the MATLAB LMI Toolbox to achieve their results.

160.6 Implementation

A link to CodeOcean or other online implementation of the LMI

160.7 Related LMIs

Links to other closely-related LMIs
- H2_LMI_SatelliteAttitudeControl\(^1\)
- Optimal_Output_Feedback_Hinf_LMI\(^2\)
- Full-State_Feedback_Optimal_Control_Hinf_LMI\(^3\)

160.8 External Links

A list of references documenting and validating the LMI.

1. https://en.wikibooks.org/wiki/LMIs_in_Control/Applications/H2_LMI_SatelliteAttitudeControl

466
• LMI Methods in Optimal and Robust Control4 - A course on LMIs in Control by Matthew Peet.

4 http://control.asu.edu/MAE598_frame.htm
Satellite attitude control is important for military, civil, and scientific activities. Attitude control of a satellite involves fast maneuvering and accurate pointing in the presence of all kinds of disturbances and parameter uncertainties.

161.1 The System

The satellite state-space formulation is given in the H_∞ LMI page for Satellite Attitude Control which is also in the applications section of this WikiBook. This section discusses the derivation of that state-space formulation based on first principles.

The attitude dynamics of a satellite in an inertial coordinate system can be described in terms of the time rate of change of its angular momentum and the sum of the external torques and moments acting on the system. That is:

$$\dot{H} = T_c + T_g + T_d,$$
$$H = I_b \omega,$$

where the following variables are defined as follows:

- $T_c, T_g,$ and T_d are the flywheel torque, the gravitational torque, and the disturbance torque.
- H is the total momentum/torque acting on the satellite
- I_b is the inertia matrix/tensor for the satellite
- ω is the angular velocity vector of the satellite.

The time derivative of the total angular momentum in an arbitrary rotating reference frame (such as the body frame of the satellite) is given by:

$$\dot{H} = I_b \dot{\omega} + \omega \times (I_b \omega),$$

which takes into the account of the angular velocity of the rotating reference frame relative to the inertial reference frame where Newton's laws are valid.

Combining equations, collecting terms and choosing the principle axes of the spacecraft so that the Inertia Tensor is diagonalized yields the following equations of motion:
\[I_b \dot{\omega} + \omega \times (I_b \dot{\omega}) = T_c + T_g + T_d, \]

Using the small angle approximation, the angular velocity of the satellite in the inertial coordinate system represented in the body coordinate system can be written as

\[
\omega = \begin{bmatrix} \dot{\phi} - \omega_0 \psi \\ \dot{\theta} - \omega_0 \\ \dot{\psi} + \omega_0 \psi \end{bmatrix}
\]

where \(\omega_0 = 7.292115 \times 10^{-5} \text{[rad/s]} \)

These equations form the basis of the state-space representation used in the H-inf LMI for satellite attitude control. For clarity, they are repeated below.

\[
\dot{x} = Ax + B_1 u + B_2 d
\]
\[
z_{\infty} = C_1 x + D_1 u + D_2 d
\]
\[
z_2 = C_2 x
\]

\[
A = \begin{bmatrix}
0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 \\
-4\omega_0^2 I_{yz} & 0 & 0 & 0 & 0 & -\omega_0 I_{yz} & I_x \\
0 & -3\omega_0^2 I_{xz} & 0 & 0 & 0 & \omega_0 I_{xz} & 0 \\
0 & 0 & -\omega_0^2 I_{yx} & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & \omega_0^2 I_{yx} & 0 & 0 & 0 \\
\end{bmatrix}
\]

\[
B_1 = B_2 = \begin{bmatrix}
\frac{1}{I_x} & 0 & 0 \\
0 & \frac{1}{I_y} & 0 \\
0 & 0 & \frac{1}{I_z} \\
\end{bmatrix}
\]

\[
C_1 = 10^{-3} \times \begin{bmatrix}
-4\omega_0^2 I_{yz} & 0 & 0 & 0 & -\omega_0 I_{yz} \\
0 & -3\omega_0^2 I_{xz} & 0 & 0 & 0 \\
0 & 0 & -\omega_0^2 I_{yx} & \omega_0 I_{yz} & 0 \\
\end{bmatrix}
\]

\[
C_2 = \begin{bmatrix}
I_{3x3} & 0_{3x3} \\
\end{bmatrix}
\]

\[
D_1 = 10^{-3} \times L_1, D_2 = 10^{-3} \times L_2
\]
161.2 The Data

Data required for this LMI include moments of inertia of the satellite being controlled and the angular velocity of the earth. Any knowledge of the disturbance torques would also facilitate solution of the problem.

161.3 The Optimization Problem

The optimization problem seeks to minimize the \(H_2 \) norm of the transfer function from disturbance to output. Thus, we expect slightly different results than the \(H_{-\infty} \) case. Deriving the \(H_2 \) control problem and setup also serves for useful setup for the mixed \(H_{-\infty}/H_2 \) optimization that the book follows up with later.

- Objective: \(H_2 \) norm
- Variables: Controller Gains
- Constraints: Satellite Attitude Dynamics and Kinematics. Maximum safe rotational rate of Satellite, maximum jet pulse thrust

161.4 The LMI: H-2 Satellite Attitude Control

Duan and Yu use the following H-2 Satellite Attitude Control LMI to minimize the attenuation level from disturbance to output. Note that in the \(H_2 \)-case we are minimizing the integral of the magnitude of the bode plot transfer function whereas in the \(H_{-\infty} \) case the optimization is minimizing the maximum value of the bode plot magnitude.

To design an optimizing controller of the form

\[
 u = Kx
\]

such that the closed-loop system is stable and the transfer function matrix

\[
 G_{z_2w}(s) = C_2(sI - (A + B_1 K))^{-1} B_2
\]

satisfies

\[
 \|z_2w(s)\|_2 < \gamma_2
\]

for a minimal positive scalar \(\gamma_2 \).

This scalar is found from the solution of the following LMI
min \(\rho \)

s.t. \(AX + B_1W + (AX + B_1W)^T + B_2B^T_2 < 0 \)

\[
\begin{bmatrix}
-Z & C_2X \\
(C_2X)^T & -X
\end{bmatrix} < 0
\]

\[
\text{trace}(Z) < \rho
\]

where \(\rho = \gamma^2_2 \).

and the controller is given by \(K = WX^{-1} \)

161.5 Conclusion:

The LMI for H-2 Satellite Attitude Control comes up with a different attenuation value for the disturbance vs the H-inf problem which is expected. It also serves for good preparation for the mixed H2/H-inf problem that Duan and Yu cover in a later section. Though no implementation is included for the mixed H2/H-inf optimization problem it is interesting to compare the results of all three cases for the satellite attitude control problem.

161.6 Implementation

A link to CodeOcean or other online implementation of the LMI

161.7 Related LMIs

Links to other closely-related LMIs

- Hinf_LMI_SatelliteAttitudeControl\(^1\)
- H2OptimalOutputFeedback\(^2\)
- Full-State_Feedback_Optimal_Control_H2\(^3\)

\(^1\) https://en.wikibooks.org/wiki/LMIs_in_Control/Applications/Hinf_LMI_SatelliteAttitudeControl
\(^3\) https://en.wikibooks.org/wiki/LMIs_in_Control/pages/Full-State_Feedback_Optimal_Control_H2_LMI
161.8 External Links

A list of references documenting and validating the LMI.

- LMI Methods in Optimal and Robust Control\(^4\) - A course on LMIs in Control by Matthew Peet.

\(^4\) http://control.asu.edu/MAE598_frame.htm
162 Problem of Space Rendezvous and LMI Approaches

In Section 12.4 of their book LMIs in Control Systems: Analysis, Design, and Applications, Duan and Yu discuss the problem of space rendezvous and how it can be formulated into an LMI problem. Modeling and simulating space rendezvous is of importance because it is used for any cargo or passenger spacecraft traveling to and from earth-orbiting space stations and also for satellites servicing aging in-orbit satellites, and for potential missions to mine asteroids.

162.1 The System

Though Duan and Yu first mention space rendezvous in Example 7.14 of their book. In this example, they show that the relative orbital dynamic model of spacecraft rendezvous can be described by the famous Clohessy-Wiltshire equations.

\[
\begin{align*}
 m\ddot{r}_x - 2m\omega_0\dot{r}_y - 3m\omega_0^2 r_x &= T_x + d_x \\
 m\ddot{r}_y + 2m\omega_0\dot{r}_x &= T_y + d_y \\
 m\ddot{r}_z + m\omega_0^2 r_z &= T_z + d_z
\end{align*}
\]

where
- \(r_x, r_y, r_z \) are the components of the relative position between chaser and target
- \(\omega_0 = \pi/12 \) [rad/h] is the orbital angular velocity of the target satellite
- \(m \) is the mass of the chaser
- \(T_i, (i = x, y, z) \) is the i-th component of the control input force acting on the relative motion dynamics
- \(d_i, (i = x, y, z) \) is the i-th component of the external disturbance

The C-W equations give a first-order approximation of the chaser’s motion in a target-centered coordinate system and is often used in planning space rendezvous problems (ISS, Salyut, and Tiangong space stations are just some examples.)

With appropriate definitions of states and variables the dynamic equations of motion for space-rendezvous can be converted into standard state-space form for LMI optimization as follows:
\begin{equation}
\dot{x} = Ax + B_1 u + B_2 d \\
y = C x
\end{equation}

where the vectors in the above state-space representation are defined as follows:

\[x = \begin{bmatrix} r_x & r_y & r_z & \dot{r}_x & \dot{r}_y & \dot{r}_z \end{bmatrix}^T \]

\[y = \begin{bmatrix} r_z & r_y & r_z \end{bmatrix}^T \]

\[u = \begin{bmatrix} T_x & T_y & T_z \end{bmatrix}^T \]

\[d = \begin{bmatrix} d_x & d_y & d_z \end{bmatrix}^T \]

and the matrices in the above state-space representation are defined as follows:

\[A = \begin{bmatrix}
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 \\
3\omega_0^2 & 0 & 0 & 0 & 2\omega_0^2 & 0 \\
0 & 0 & -2\omega_0 & 0 & 0 & 0 \\
0 & 0 & -\omega_0^2 & 0 & 0 & 0 \\
\end{bmatrix} \]

\[B_1 = B_2 = \begin{bmatrix} 0_{3\times3} \\
I_3 \end{bmatrix} \]

\[C = \begin{bmatrix} I_3 & 0_{3\times3} \end{bmatrix} \]

162.2 The Data

The data required are the mass properties of both the target and chaser vehicles for space rendezvous. Also required is the orbital angular velocities of the target and chasers and measurements of relative kinematics between the two.

162.3 The Optimization Problem

The optimization problem is trying to attenuate the disturbance to output transfer function using either the H-inf or H2 norm.
162.4 The LMI: Space Rendezvous LMI Optimization

The space rendezvous problem can be approached with either H-inf or H-2 optimization formulations. Both formulations can achieve closed-loop stability which ensures that rendezvous occurs because the relative distance between target and chaser eventually approaches zero. The LMIs for the H-inf and H2 optimization problem are shown below which are easily solvable because the matrices for the space rendezvous problem are available above in standard form.

Duan and Yu approach the H_{∞}. The minimum attenuation level from disturbance to output can be found by solving the following LMI optimization problem.

$$
\begin{align*}
&\text{min} \gamma_{H\infty} \\
\text{s.t. } X \succ 0 \\
\begin{bmatrix}
(AX + B_1W)^T + AX + B_1W & B_2 & (C_1X + D_1W)^T \\
B_2^T & -\gamma_{H\infty}I & D_2^T \\
C_1X + D_1W & D_2 & -\gamma_{H\infty}I
\end{bmatrix} \prec 0
\end{align*}
$$

which is the same as Theorem 8.1 in Duan and Yu's Book, the solution to the H_{∞} problem.

162.5 Conclusion:

The LMI for Space Rendezvous is a useful and interesting method to model and simulate practical problems in spacecraft engineering. Space Rendezvous usually requires very good vision-based navigation or an exceptional human operator that can close the gap for final mating of the two docking adapters.

162.6 Implementation

A link to CodeOcean or other online implementation of the LMI

162.7 Related LMIs

Links to other closely-related LMIs
Problem of Space Rendezvous and LMI Approaches

- Optimal Output Feedback Hinf LMI
- H2OptimalOutputFeedback

162.8 External Links

A list of references documenting and validating the LMI.

- LMI Methods in Optimal and Robust Control³ - A course on LMIs in Control by Matthew Peet.
- http://control.asu.edu/MAE598_frame.htm

3 http://control.asu.edu/MAE598_frame.htm
163 Template

This methods uses LMI techniques iteratively to obtain the result.

163.1 The System

Given a state-space representation of a system $G(s)$ and an initial estimate of reduced order model $\hat{G}(s)$.

\[
G(s) = C(sI - A)B + D, \\
\hat{G}(s) = \hat{C}(sI - \hat{A})\hat{B} + \hat{D},
\]

Where $A \in \mathbb{R}^{n \times n}, B \in \mathbb{R}^{n \times m}, C \in \mathbb{R}^{p \times n}, D \in \mathbb{R}^{p \times m}, \hat{A} \in \mathbb{R}^{k \times k}, \hat{B} \in \mathbb{R}^{k \times m}, \hat{C} \in \mathbb{R}^{p \times k}$ and $\hat{D} \in \mathbb{R}^{p \times m}$.

163.2 The Data

The full order state matrices A, B, C, D.

163.3 The Optimization Problem

The objective of the optimization is to reduce the H_∞ norm.

163.4 The LMI: The Lyapunov Inequality

Objective: $\min \gamma$.

Subject to: $P = \begin{bmatrix} P_{11} & P_{12} \\ P_{21} & P_{22} \end{bmatrix} > 0, \\
\begin{bmatrix}
A^T P_{11} + P_{11} A & A^T P_{12} + P_{12} \hat{A} & P_{11}B - P_{12}\hat{B} & C^T \\
\hat{A}^T P_{12}^T + P_{12}^T \hat{A} & \hat{A}^T P_{22} + P_{22} \hat{A} & P_{12}^T \hat{B} - P_{22}\hat{B} & \hat{C}^T \\
B^T P_{11} - \hat{B}^T P_{12}^T & B^T P_{12} - \hat{B}^T P_{22} & -\gamma I & D^T - \hat{D}^T \\
C & \hat{C} & D - \hat{D} & -\gamma I
\end{bmatrix} > 0$
163.5 Conclusion:
The LMI techniques results in model reduction close to the theoretical bounds.

163.6 External Links
A list of references documenting and validating the LMI.

- LMI Methods in Optimal and Robust Control1 - A course on LMIs in Control by Matthew Peet.
- LMIs in Systems and Control Theory2 - A downloadable book on LMIs by Stephen Boyd.

1 http://control.asu.edu/MAE598_frame.htm
2 https://web.stanford.edu/~boyd/lmibook/
164 Contributors

<table>
<thead>
<tr>
<th>Edits</th>
<th>User</th>
</tr>
</thead>
<tbody>
<tr>
<td>51</td>
<td>1234qwer1234qwer41</td>
</tr>
<tr>
<td>1</td>
<td>AinzoOoalGown2</td>
</tr>
<tr>
<td>38</td>
<td>Aramani3</td>
</tr>
<tr>
<td>315</td>
<td>Asalimil4</td>
</tr>
<tr>
<td>6</td>
<td>Atcovi5</td>
</tr>
<tr>
<td>87</td>
<td>Bryan.c.chu6</td>
</tr>
<tr>
<td>1</td>
<td>DannyS7127</td>
</tr>
<tr>
<td>59</td>
<td>DirkHunniger8</td>
</tr>
<tr>
<td>78</td>
<td>Djagt9</td>
</tr>
<tr>
<td>36</td>
<td>Eoskowvo10</td>
</tr>
<tr>
<td>11</td>
<td>Fatima10711</td>
</tr>
<tr>
<td>311</td>
<td>GovadaYashaswy12</td>
</tr>
<tr>
<td>34</td>
<td>HarishankarPrabhakaran13</td>
</tr>
<tr>
<td>6</td>
<td>JackBot14</td>
</tr>
<tr>
<td>1</td>
<td>JackPotte15</td>
</tr>
<tr>
<td>165</td>
<td>Jalpeshbhadra116</td>
</tr>
<tr>
<td>51</td>
<td>Mcavorsi17</td>
</tr>
<tr>
<td>32</td>
<td>Minorax18</td>
</tr>
<tr>
<td>213</td>
<td>Mkhajenejad119</td>
</tr>
<tr>
<td>12</td>
<td>Mmpeet20</td>
</tr>
</tbody>
</table>

1 https://en.wikibooks.org/wiki/User:1234qwer1234qwer4
Contributors

13 Mwadieh
51 Nnbeauli
1 QuiteUnusual
249 Rezajamesahmed
1 ShakespeareFan00
106 Shassaan
22 Skatarey95
5 Talitsky
2 Tegel
5 Tpati1994
5 Uziel302
57 Varadaraya Ganesh Shenoy
22 Vasenti
1 ZI Jony

List of Figures

- cc-by-sa-3.0: Creative Commons Attribution ShareAlike 3.0 License. http://creativecommons.org/licenses/by-sa/3.0/
- cc-by-sa-2.5: Creative Commons Attribution ShareAlike 2.5 License. http://creativecommons.org/licenses/by-sa/2.5/
- cc-by-sa-2.0: Creative Commons Attribution ShareAlike 2.0 License. http://creativecommons.org/licenses/by-sa/2.0/
- cc-by-sa-1.0: Creative Commons Attribution ShareAlike 1.0 License. http://creativecommons.org/licenses/by-sa/1.0/
- cc-by-2.0: Creative Commons Attribution 2.0 License. http://creativecommons.org/licenses/by/2.0/
- cc-by-2.0: Creative Commons Attribution 2.0 License. http://creativecommons.org/licenses/by/2.0/deed.en
- cc-by-2.5: Creative Commons Attribution 2.5 License. http://creativecommons.org/licenses/by/2.5/deed.en
- cc-by-3.0: Creative Commons Attribution 3.0 License. http://creativecommons.org/licenses/by/3.0/deed.en
- PD: This image is in the public domain.
- ATTR: The copyright holder of this file allows anyone to use it for any purpose, provided that the copyright holder is properly attributed. Redistribution, derivative work, commercial use, and all other use is permitted.
- EURO: This is the common (reverse) face of a euro coin. The copyright on the design of the common face of the euro coins belongs to the European Commission. Authorised is reproduction in a format without relief (drawings, paintings, films) provided they are not detrimental to the image of the euro.
- CFR: Copyright free use.

Copies of the GPL, the LGPL as well as a GFDL are included in chapter Licenses35. Please note that images in the public domain do not require attribution. You may click on the image numbers in the following table to open the webpage of the images in your web browser.

35 Chapter 165 on page 487
The corresponding Source for a work in object code form means all the source code necessary for the work, including those parts of the work that are not modified, plus any additional source code derived by modification of the corresponding Source, that are not on a physical medium, in object code form or otherwise. Such a corresponding Source is in the form of electronic data or on a magnetic or optical medium, unless the Copyright Notice states that it is on a paper medium. The corresponding Source must be written in a human-readable language, and if not on a physical medium, must otherwise be prepared so that it can be easily read by a human. The corresponding Source may consist of more than one separate physical medium, as long as each medium is individually capable of storing a complete copy of the Source Code. The corresponding Source may also be available in multiple human-readable formats, as long as the source code is shareable by other parties. The corresponding Source must be accompanied by the means of communicating corresponding Source, if the corresponding Source is on a physical medium.

The corresponding Source for a work in object code form means all the source code necessary for the work, including any parts of the work that are not modified, plus any additional source code derived by modification of the corresponding Source, that are not on a physical medium, in object code form or otherwise. Such a corresponding Source is in the form of electronic data or on a magnetic or optical medium, unless the Copyright Notice states that it is on a paper medium. The corresponding Source must be written in a human-readable language, and if not on a physical medium, must otherwise be prepared so that it can be easily read by a human. The corresponding Source may consist of more than one separate physical medium, as long as each medium is individually capable of storing a complete copy of the Source Code. The corresponding Source may also be available in multiple human-readable formats, as long as the source code is shareable by other parties. The corresponding Source must be accompanied by the means of communicating corresponding Source, if the corresponding Source is on a physical medium.

The corresponding Source for a work in object code form means all the source code necessary for the work, including any parts of the work that are not modified, plus any additional source code derived by modification of the corresponding Source, that are not on a physical medium, in object code form or otherwise. Such a corresponding Source is in the form of electronic data or on a magnetic or optical medium, unless the Copyright Notice states that it is on a paper medium. The corresponding Source must be written in a human-readable language, and if not on a physical medium, must otherwise be prepared so that it can be easily read by a human. The corresponding Source may consist of more than one separate physical medium, as long as each medium is individually capable of storing a complete copy of the Source Code. The corresponding Source may also be available in multiple human-readable formats, as long as the source code is shareable by other parties. The corresponding Source must be accompanied by the means of communicating corresponding Source, if the corresponding Source is on a physical medium.

The corresponding Source for a work in object code form means all the source code necessary for the work, including any parts of the work that are not modified, plus any additional source code derived by modification of the corresponding Source, that are not on a physical medium, in object code form or otherwise. Such a corresponding Source is in the form of electronic data or on a magnetic or optical medium, unless the Copyright Notice states that it is on a paper medium. The corresponding Source must be written in a human-readable language, and if not on a physical medium, must otherwise be prepared so that it can be easily read by a human. The corresponding Source may consist of more than one separate physical medium, as long as each medium is individually capable of storing a complete copy of the Source Code. The corresponding Source may also be available in multiple human-readable formats, as long as the source code is shareable by other parties. The corresponding Source must be accompanied by the means of communicating corresponding Source, if the corresponding Source is on a physical medium.

The corresponding Source for a work in object code form means all the source code necessary for the work, including any parts of the work that are not modified, plus any additional source code derived by modification of the corresponding Source, that are not on a physical medium, in object code form or otherwise. Such a corresponding Source is in the form of electronic data or on a magnetic or optical medium, unless the Copyright Notice states that it is on a paper medium. The corresponding Source must be written in a human-readable language, and if not on a physical medium, must otherwise be prepared so that it can be easily read by a human. The corresponding Source may consist of more than one separate physical medium, as long as each medium is individually capable of storing a complete copy of the Source Code. The corresponding Source may also be available in multiple human-readable formats, as long as the source code is shareable by other parties. The corresponding Source must be accompanied by the means of communicating corresponding Source, if the corresponding Source is on a physical medium.

The corresponding Source for a work in object code form means all the source code necessary for the work, including any parts of the work that are not modified, plus any additional source code derived by modification of the corresponding Source, that are not on a physical medium, in object code form or otherwise. Such a corresponding Source is in the form of electronic data or on a magnetic or optical medium, unless the Copyright Notice states that it is on a paper medium. The corresponding Source must be written in a human-readable language, and if not on a physical medium, must otherwise be prepared so that it can be easily read by a human. The corresponding Source may consist of more than one separate physical medium, as long as each medium is individually capable of storing a complete copy of the Source Code. The corresponding Source may also be available in multiple human-readable formats, as long as the source code is shareable by other parties. The corresponding Source must be accompanied by the means of communicating corresponding Source, if the corresponding Source is on a physical medium.

The corresponding Source for a work in object code form means all the source code necessary for the work, including any parts of the work that are not modified, plus any additional source code derived by modification of the corresponding Source, that are not on a physical medium, in object code form or otherwise. Such a corresponding Source is in the form of electronic data or on a magnetic or optical medium, unless the Copyright Notice states that it is on a paper medium. The corresponding Source must be written in a human-readable language, and if not on a physical medium, must otherwise be prepared so that it can be easily read by a human. The corresponding Source may consist of more than one separate physical medium, as long as each medium is individually capable of storing a complete copy of the Source Code. The corresponding Source may also be available in multiple human-readable formats, as long as the source code is shareable by other parties. The corresponding Source must be accompanied by the means of communicating corresponding Source, if the corresponding Source is on a physical medium.

The corresponding Source for a work in object code form means all the source code necessary for the work, including any parts of the work that are not modified, plus any additional source code derived by modification of the corresponding Source, that are not on a physical medium, in object code form or otherwise. Such a corresponding Source is in the form of electronic data or on a magnetic or optical medium, unless the Copyright Notice states that it is on a paper medium. The corresponding Source must be written in a human-readable language, and if not on a physical medium, must otherwise be prepared so that it can be easily read by a human. The corresponding Source may consist of more than one separate physical medium, as long as each medium is individually capable of storing a complete copy of the Source Code. The corresponding Source may also be available in multiple human-readable formats, as long as the source code is shareable by other parties. The corresponding Source must be accompanied by the means of communicating corresponding Source, if the corresponding Source is on a physical medium.

The corresponding Source for a work in object code form means all the source code necessary for the work, including any parts of the work that are not modified, plus any additional source code derived by modification of the corresponding Source, that are not on a physical medium, in object code form or otherwise. Such a corresponding Source is in the form of electronic data or on a magnetic or optical medium, unless the Copyright Notice states that it is on a paper medium. The corresponding Source must be written in a human-readable language, and if not on a physical medium, must otherwise be prepared so that it can be easily read by a human. The corresponding Source may consist of more than one separate physical medium, as long as each medium is individually capable of storing a complete copy of the Source Code. The corresponding Source may also be available in multiple human-readable formats, as long as the source code is shareable by other parties. The corresponding Source must be accompanied by the means of communicating corresponding Source, if the corresponding Source is on a physical medium.

The corresponding Source for a work in object code form means all the source code necessary for the work, including any parts of the work that are not modified, plus any additional source code derived by modification of the corresponding Source, that are not on a physical medium, in object code form or otherwise. Such a corresponding Source is in the form of electronic data or on a magnetic or optical medium, unless the Copyright Notice states that it is on a paper medium. The corresponding Source must be written in a human-readable language, and if not on a physical medium, must otherwise be prepared so that it can be easily read by a human. The corresponding Source may consist of more than one separate physical medium, as long as each medium is individually capable of storing a complete copy of the Source Code. The corresponding Source may also be available in multiple human-readable formats, as long as the source code is shareable by other parties. The corresponding Source must be accompanied by the means of communicating corresponding Source, if the corresponding Source is on a physical medium.
The Free Software Foundation may publish revised and/or new versions of the GNU Free Documentation License from time to time. See http://www.gnu.org/copyleft/fdl.html for more information.

This License is designed for a particular class of documentation which has been designed to preserve the original排污版 and machine-readable nature of public domain documentation and to ensure accurate, accessible human interpretation by providing the machine-readable source files from which such documentation can be reconstructed. For full legal information please see the GNU Free Documentation License itself, available at http://www.gnu.org/copyleft/fdl.html.

You may add a Front-Cover Text or Back-Cover Text in a document only as requested or authorized in writing to you by the copyright holder.

You may add a statement about disclaiming warranties in Genuine CDDL text so long as the statements include the word "DISCLAIMER." You may add a Front-Cover Text to your document only as requested or authorized in writing to you by the copyright holder.

The following is a list of special sections that are not covered by the contents of a section "Entitled XYZ" according to this definition.

* A "Missive Multifaceted Collaboration Site" (or "MMC") site means a website of multiple authors or contributors, each of whom is an individual or multiple individuals working together on their own terms to produce documentation.

* The "MMC" is defined in paragraph 1 of this License.

* "Modify" means any change to the text, structure or material, whether major or minor.

* "N. Do not retitle any existing section to be Entitled "Endorsements" or to contain endorsements or similar text.

* "A "Transparent" copy of the Document means a machine-readable copy, such as TTY format, produced by such means that the electronic version can be easily manipulated and/or translated into human-readable form.

* "A Modified License" is considered to be included by reference in this definition.

* "A "Fixed" copy of the Document means a copy that can be modified in the usual way for printing or for serious copying, and means a copy that is it not "Transposed" copy is "Opaque."
The "Corresponding Application Code" for a Combined Work means the object code and/or source code for the Application, including any data and utility programs needed for reproducing the Combined Work from the Application, but excluding the System Libraries of the Combined Work. 1. Exception to Section 3 of the GNU GPL. You may convey a Combined Work under terms of your choice that, taken together, effectively do not restrict modification of the portions of the Library contained in the Combined Work and recombine or repackage the minimal corresponding source code. You may convey such a Combined Work subject to terms that permit, the user to recombine or relink the Application with a modified version of the Combined Work, not having been explicitly excluded from this License by the Copyright holder of the Library. You may not convey a Combined Work under any terms that restrict or forbid copying of source or object code for the Library. 2. Conveying Modified Versions. a) You may convey a Combined Work under terms of your choice that, taken together, effectively do not restrict substitution of a different version of the Library in a Combined Work from the one distributed by you under version 3 of the GNU GPL. You may not convey a Combined Work under terms that restrict or forbid using or copying the Library. 3. Object Code Incorporating Material from Library Header Files. You may convey a Combined Work under terms of your choice that, taken together, effectively do not restrict copying of object code for the Library. You may not convey a Combined Work under terms that restrict or forbid copying of an object code for the Library. 4. Combined Libraries. You may place library facilities that are a work based on the Library, side by side in a single library together with other library facilities that are not Applications and are not covered by this License, and convey such a combined library under terms of your choice, if you do both of the following: a) Accompany the combined library with a copy of the corresponding version of the Library (i.e., a modified version that is based on the version you convey). b) Accompany the combined library with a copy of the Corresponding Application Code of the corresponding version of the Library (i.e., the library mechanism for linking with the Library). c) The Library is covered by section 6 of the GNU GPL, and only to the extent that such information is necessary to install and execute a modified version of the Combined Library that is interface-compatible with the Combined Library you are distributing. 5. Combined Libraries. You may convey a Combined Work under terms of your choice that, taken together, effectively do not restrict substitution of a different version of the Library in a Combined Work from the one distributed by you under version 3 of the GNU GPL, but only to the extent that such information is necessary to install and execute a modified version of the Combined Work produced by recombining or relinking the Application with a modified version of the Linked Version. 6. Combined Libraries. The Free Software Foundation may publish revised and/or new versions of the GNU Lesser General Public License from time to time. Such new versions will be similar in spirit to the present version, but may differ in detail to address new problems or concerns. Each version is given a distinguishing version number. If the Library as you received it specifies that a proxy can decide whether a new version of the GNU Lesser General Public License or of any later version applies to it, you have the option of following the terms and conditions of that published version or of any later version published by the Free Software Foundation. If the Library as you received it does not specify a version number of the GNU Lesser General Public License, you may choose any version of the GNU Lesser General Public License ever published by the Free Software Foundation. If the Library as you received it specifies that a proxy can decide whether future versions of the GNU Lesser General Public License shall apply, that proxy’s public statement of acceptance of any version is permanent authorization for you to choose that version for the Library.