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Telomeres have been proposed as a biomarker that integrates

the impacts of different kinds of stress and adversity into a

common currency. There has as yet been no overall

comparison of how different classes of exposure associate

with telomeres. We present a meta-analysis of the literature

relating telomere measures to stresses and adversities in

humans. The analysed dataset contained 543 associations

from 138 studies involving 402 116 people. Overall, there was

a weak association between telomere variables and exposures

(greater adversity, shorter telomeres: r ¼ 20.15, 95% CI 20.18

to 20.11). This was not driven by any one type of exposure,

because significant associations were found separately for

physical diseases, environmental hazards, nutrition,

psychiatric illness, smoking, physical activity, psychosocial

and socioeconomic exposures. Methodological features of the

studies did not explain any substantial proportion of the

heterogeneity in association strength. There was, however,

evidence consistent with publication bias, with unexpectedly

strong negative associations reported by studies with small

samples. Restricting analysis to sample sizes greater than 100

attenuated the overall association substantially (r ¼ 20.09, 95%

CI 20.13 to 20.05). Most studies were underpowered to detect

the typical association magnitude. The literature is dominated

by cross-sectional and correlational studies which makes causal

interpretation problematic.
1. Introduction
Exposure to stress and adversity across the lifespan is associated

with increased morbidity and mortality from many causes. This

implies that stress and adversity have a lasting impact on

general physiological processes ‘under the skin’. However, until

recently, there were few candidate markers of this accumulation
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of physiological damage. In the last 15 years, the idea that telomeres might serve such a role has rapidly

gained in scientific popularity. In particular, telomeres offer a potential ‘psychobiomarker’ that integrates

the organism’s experience of psychological states, social and environmental contexts, as well as physical

damage, into a common currency [1]. Telomeres are DNA–protein complexes that form protective caps

on the ends of chromosomes, and are thought to play a key role in preserving chromosomal stability. At

the cellular level, critically short telomere length leads to replicative senescence. At the whole organism

level, average telomere length reduces with age. Thus, telomere length or attrition is a biomarker of

ageing. As the impact of stress and adversity may be to increase the individual’s biological age (as

opposed to chronological age), telomere measures offer a metric with which to assess Hans Selye’s

famous contention that: ‘Every stress leaves an indelible scar, and the organism pays for its survival

after a stressful situation by becoming a little older’ [2].

Interest in using telomeres as a ‘psychobiomarker’ has grown rapidly, not just in human

epidemiology, but also in animal ecology [3] and animal welfare [4]. In the human literature,

telomeres have been studied in association with a wide range of exposure variables, including

psychological stress [5], psychiatric illness [6], socioeconomic status [7], environmental pollutants [8],

nutrition [9], smoking [10] and physical activity [11]. In several of these cases, the number of studies

is sufficient that meta-analyses have appeared [12–20], often finding that telomere length is associated

with the exposure, though weakly and variably. Reviewing the associations between telomeres and

different exposures separately is appropriate to answer questions about that particular exposure.

However, it loses sight of the most exciting promise of telomeres as a ‘psychobiomarker’: namely their

potential to integrate the consequences of quite different kinds of stress and adversity into a common

currency. Here, we set out to simultaneously review relationships of telomere length and attrition

with all the different kinds of stress and adversity that are being studied.

Having a single integrated dataset allows several possibilities not available in separate, specialist

meta-analyses. First, it offers a synopsis of the whole burgeoning field of telomere epidemiology.

Second, it allows explicit comparison of different association strengths on the same scale (is the

association of telomeres with psychological stress generally weaker or stronger than the association

with physical disease, or exposure to pollution?). Third, it offers potential to address unanswered

questions about telomere dynamics, such as whether, overall, early-life stressors are more strongly

associated with telomere shortening than stressors experienced in adult life, as has been suggested

[21]. Fourth, it leads to a large dataset within which some methodological issues of broad relevance

can be examined. These include whether different tissue types produce different patterns, and

whether the popular telomere length measurement method, quantitative polymerase chain reaction

(qPCR) [22], leads to generally weaker associations than other methods. This should be expected,

because measurement error is generally found to be higher in qPCR than more intensive methods

[23], and measurement error attenuates observed correlations.

With these objectives in mind, we carried out a systematic review and meta-analysis of the published

literature on telomeres in relation to stress and adversity in vivo, to May 2016. Our searches involved the

terms ‘stress’ and ‘adversity’ in combination with ‘telomere’. We extracted all associations with telomeres

reported in the papers, not just the associations of primary interest to the original authors. Our search

strategy was not intended to find the whole of the literature on telomeres and any particular exposure

variable. Authors may not always have used the descriptors we searched, and may have been more

likely to do so for some exposure variables than others. Nonetheless, our searches did produce the

largest telomere literature dataset assembled to date, and we believe that though not exhaustive, it

constitutes a good transect through the field of telomere epidemiology.
2. Methods
Our methods are described in detail in our protocol, which was registered via the Open Science

Framework prior to data extraction [24]. Raw data files and data analysis scripts are freely available in

an online archive on the Zenodo repository [25].

2.1. Search strategy and inclusion criteria
A PRISMA diagram for our study is available as electronic supplementary material. We searched the

Scopus and PubMed databases for papers including the words ‘stress’ or ‘adversity’, and ‘telomere’.

All records up to the date of the search (11 May 2016) were screened (n ¼ 3647). We removed
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duplicates and then screened the remaining papers based on their titles and abstracts. In summary, this

involved removing any papers that: (i) were not complete original research papers available electronically

and in the English language; (ii) used study organisms from outside the animal kingdom; (iii) did not

study whole organisms; (iv) used genetically modified organisms; (v) experimentally applied non-

naturalistic exposures in captive animals; (vi) examined telomere length in transplanted tissues or

organs; (vii) were presented as concerning the physiological consequences of telomere length, rather

than the correlates of exposures; (viii) examined intergenerational questions (e.g. the effects of paternal

infection status on offspring telomere length); or (ix) used the same dataset, or participants reported

in a previously recorded paper, to address an exposure–telomere relationship we had already

recorded (where this occurred, the first-recorded association was the one used). This led to a

candidate set of 286 papers.

Although our searches were based on the terms ‘stress’ and ‘adversity’, we extracted all reported

associations with potential exposure variables found in the papers returned by our search, whether or

not they were the focus of the study’s stated objectives. This included control variables and covariates

as long as sufficient detail was provided. Thus, our search strategy consisted of finding papers on the

subjects of stress/adversity and telomeres, and sampling the full variety of exposures that fell out of

the papers captured by the search.

2.2. Association format
Associations could only be used if convertible into a correlation coefficient, the common association

metric that we chose based on initial scoping and piloting. Standard conversion formulae were used

[26–29], and the conversion algorithms are provided in the data repository. Usable statistics

comprised: correlation coefficients, standardised bs from regression models; unstandardized bs where

standard deviations for the independent and dependent variables were provided; unstandardized bs

from regressions with dichotomous independent variables where the standard deviation of the

dependent variable was provided; F-ratios from ANOVAs comparing two groups; t-statistics; Cohen’s

d or standardized mean difference statistics; group means with standard errors; and group means

with standard deviations. Where several alternative analyses were presented, we chose unadjusted in

preference to adjusted analyses; and from several adjusted analyses where no unadjusted data were

available, we chose the analysis that adjusted for the fewest variables. This was to maximize

comparability between studies that used different sets of control variables in multivariate models. For

longitudinal studies, associations were between change in telomere length (i.e. difference between

follow-up and baseline) and the exposure variable. For 125 papers, the reported information was not

sufficient to create a usable correlation coefficient.

2.3. Data extraction
Data from 218 associations (30%) were extracted independently by both G.V.P. and D.N. Any differences

were identified and resolved as part of the process of refining our data extraction methods. The

remaining associations were extracted by either G.V.P. or D.N., with G.V.P. checking and correcting

the whole dataset after extraction. As well as sample size and other statistics necessary for association

conversion, we extracted bibliographic information and a series of classificatory variables as described

in table 1. The life stage prior to birth was classed as embryonic, and the life stage prior to sexual

maturity (4745 days for human females/5110 days for males [30]) was defined as childhood. We also

identified any associations that could be considered subparts of others, for example, separate-by-sex

associations where the combined association was also reported, or associations between telomeres and

subscales where the association with the main scale was also reported. We did not include these

subscale and subgroup associations in our final analyses, though they are included in the unprocessed

dataset, in case they are of interest to others.

2.4. Final dataset
The extracted data are the ‘unprocessed data’ file in the data archive. We categorized exposure variables a
posteriori. We created both broad categories (11 categories plus ‘Other’, as specified in table 1), and fine

ones, for example, using specific diseases rather than ‘physical disease’, and specific types of

psychosocial or socioeconomic measures (35 fine categories, plus ‘Other’). No categories (broad or



Table 1. Characteristics of the associations included in the analysis. The numbers of unique studies for each category do not sum
to the number of studies in the whole dataset (138), as some studies contribute associations in several categories.

associations per cent of associations unique studies

adversity type

disease 94 17.3 53

environmental hazard exposure 11 2.0 8

nutrition 87 16.0 10

psychiatric illness 81 14.9 34

smoking 43 7.9 34

alcohol consumption 15 2.8 11

sleep quality 20 3.7 5

physical activity 16 3.0 11

psychosocial adversity 100 18.4 43

parental care 8 1.5 4

socioeconomic status 45 8.3 21

other exposures (uncategorized) 23 4.2 12

techniques

qPCR 467 86.0 110

Southern blot 52 9.6 23

flow-FISH 10 1.8 3

Q-FISH 11 2.0 3

TelSeq 3 0.6 1

tissues

buccal cells 11 2.0 7

white blood cells 523 96.3 126

other tissues 9 1.7 6

life stage at exposure

embryonic exposure 12 2.2 8

childhood exposure 77 14.2 23

adulthood exposure 450 82.9 119

age at exposure not reported 4 0.7 3

life stage at telomere measurement

embryonic 5 0.9 3

childhood 53 9.8 10

adult 479 88.2 123

not reported 6 1.1 3

sex of sample

male 70 12.9 17

female 88 16.2 28

both 385 70.9 98

longitudinal design

cross-sectional 506 93.2 133

longitudinal 37 6.8 6

(Continued.)
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Table 1. (Continued.)

associations per cent of associations unique studies

experimental study

correlational 532 98.0 135

experimental 11 2.0 6

total 543 100

rsos.royalsocietypublishing.org
R.Soc.open

sci.5:180744
5

fine) were created if the number of independent associations (i.e. from different papers) was less than 3

prior to the exclusions described below.

The final dataset analysed here (‘processed data’ file) differs from the unprocessed data in a number

of regards. We excluded 27 associations from studies of non-human animals, because we deemed these

too few (typically one study per species) for further analysis. We then excluded 11 associations that

appeared to be duplicates of those reported in other papers using the same data, and 14 associations

where the exposure variable was a medical treatment—the designs of these studies generally

confounded effects of the treatment on telomeres with effects of the disease the treatment was for.

Finally, we excluded 129 associations based on subscales and subgroups of other associations reported

in the same studies.

For analysis, we reversed 149 correlations in sign to align all correlations into the same direction; that

is, so that a negative correlation indicates that greater stress and adversity is associated with short (or

shortening), rather than long (or lengthening), telomeres. For example, we reversed correlations where

the exposure variable represented higher socioeconomic status, better sleep or more parental care, to

align them with the more common case where a higher value of the exposure indicates more

adversity (e.g. disease, psychosocial stress, pollution exposure). The case of nutritional variables was

challenging, because it was often unclear if higher consumption was predicted to be positive or

negative in effect. We therefore reversed the direction of all nutritional variables, so that a negative

correlation means a deficit in consumption is associated with short telomeres. This had little impact

on the results, because the overall associations for many nutritional categories were null. The

categories with the strongest associations—fruit, legumes and vegetables, and vitamins—are cases that

clearly conform to our assumed ‘more is better’ principle.

2.5. Data analysis
Data were meta-analysed in R [31] using the ‘metafor’ package [32]. Estimation was by REML. As the

dataset includes multiple associations from the same studies, we used multilevel models containing

nested random effects of association and study. Meta-regression was used to examine differences in

association strength for different types of exposure, and different methodological features. Additional

analyses to detect outliers and account for possible publication bias patterns were implemented using

R packages ‘metaplus’ [33] and ‘weight’ [34] and are reported in the electronic supplementary

material, supplementary analysis. The full data analysis script is included in the data archive.
3. Results
3.1. Description of dataset
The final dataset consisted of 543 associations from 138 unique studies of human participants

(associations per study 1–43, mean 3.93). One hundred and sixty-eight associations were reported

by the study authors as being statistically significant, 349 as null and 26 were not reported as either

null or significant. Two hundred and ninety-four associations (54%) were completely unadjusted;

the remaining 249 (46%) featured some degree of statistical adjustment (for example, for age,

though the exact specification of the adjustment varied from study to study). Table 1 describes the

associations and studies included. Typically, they used qPCR to measure telomeres; did so in

leucocytes or whole blood; were correlational rather than experimental; and were cross-sectional

rather than longitudinal. This meant that the telomere variable was overwhelmingly a single
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whole dataset, and separately for the four bins of sample size. The k column represents the numbers of correlations and the
m column the number of unique studies.

rsos.royalsocietypublishing.org
R.Soc.open

sci.5:180744
6

measure of average length, rather than the rate of attrition. Associations with both length and attrition

are included in our main analyses, though we test whether study design moderates observed

correlations. The studies were mostly of adults, and mostly related to sources of stress and adversity

that were experienced in adulthood.
3.2. Overall association and publication bias
The distribution of correlations between exposure measures and telomeres is shown in figure 1a. Though

the modal correlation was close to zero, the distribution was asymmetric, with 399 correlations less than

zero (indicating that greater adversity was associated with shorter telomeres), and 144 greater than zero

(indicating that greater adversity was associated with longer telomeres). The majority of correlations fell

into what is conventionally defined as a ‘small’ effect size (20.2 , r , 0.2), with 294 small negative

correlations and 131 small positive ones. There were 105 instances of a moderate or large negative

association, against just 13 of a moderate or large positive association. In a simple meta-analytic

model with no moderators, the overall estimate of association was conventionally small and

significantly negative (r ¼ 20.15, 95% CI 20.18 to 20.11, p , 0.001). Thus, greater adversity was

correlated with shorter telomeres. There was substantial heterogeneity between associations (t ¼ 0.21,

Q542 ¼ 12 742.54, p , 0.001), and most of the variability resided at the between-study level rather than

between associations from the same study (r represents the intra-class correlation coefficient between

the associations from the same study; r ¼ 0.87). In the electronic supplementary material (§2), we

present evidence of over-dispersion of associations relative to a normal distribution: 12 studies were

classed as outliers, 10 reporting very strong negative associations and two reporting moderately

strong positive associations.
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The estimated association may have been affected by publication bias. The funnel plot of correlation

coefficient against sample size showed the inevitably broader range of observed correlations at smaller

sample size. However, the funnel was asymmetric, with strongly negative correlations appearing at

small sample sizes, but rather few of the strongly positive correlations that ought also to be expected,

given that true effects were weak and the precision of estimation low in small studies (figure 1b; see

also electronic supplementary material, §3). To further explore this, we divided sample sizes into four

bins (fewer than 100, 101–250, 251–1000, more than 1000; these bins represent approximate quartiles

of sample size). We then added sample size bin to the meta-analytic model as a moderator (this is the

conceptual equivalent of the Egger test for the multilevel model situation). Sample size bin explained

a significant amount of variability (Q3 ¼ 30.27, p , 0.001), though substantial heterogeneity remained

(t ¼ 0.19). In particular, associations with sample sizes of ‘fewer than 100’ were significantly more

negative than the reference category of more than 1000 (B ¼ 20.17, 95% CI 20.24 to 20.10, p , 0.001;

figure 1c; see also electronic supplementary material, §2). The other sample size bins did not differ

significantly from the reference category of ‘more than 1000’. Because the trim and fill methodology

for imputing the associations assumed to be missing is not defined for the multilevel situation, we

performed all subsequent analyses both on the whole dataset and, in parallel, on only the 370

correlations from 82 studies where the sample size was greater than 100 (henceforth the ‘reduced

dataset’). The central estimate from the reduced dataset was considerably weaker than the full dataset

(r ¼ 20.09 compared to r ¼ 20.15, 95% CI 20.13 to 20.05, p , 0.001), with substantial heterogeneity

(t ¼ 0.18, Q369 ¼ 4512.37, p , 0.001), and again, most of the variation residing between studies, rather

than between associations within studies (r ¼ 0.88).

3.3. Categories of exposure
We divided our exposure variables into 11 broad categories plus ‘other’ and added category of exposure

to the meta-analytic model as a moderator. Exposure category did not explain a significant amount of the

heterogeneity (whole dataset: Q11 ¼ 17.25, p ¼ 0.10; reduced dataset: Q11 ¼ 14.70, p ¼ 0.20), suggesting

that the type of exposure studied, at this coarse level, does not explain the variation in association

between telomeres and exposure variables. We also fitted separate meta-analytic models to the

correlations in each of the 12 broad exposure categories (figure 2). In the whole dataset, the central
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estimate of association was numerically negative for all categories, and significantly so for all except

alcohol, sleep, parental care and ‘other’. In the reduced dataset, environmental hazard additionally

became non-significant. In some categories, excluding small studies markedly reduced the central

correlation estimate, for example: psychosocial (from r ¼ 20.16 to r ¼ 20.06); psychiatric illness (from

r ¼ 20.13 to r ¼ 20.08); and physical disease (from r ¼ 20.15 to r ¼ 20.11). In other categories, such

as smoking, socioeconomic status and physical activity, excluding the smaller studies had minimal

effect on the (already weaker) central correlation estimates.

We also created a finer 36-category classification of exposures. For example, we considered each

physical disease, psychiatric condition or psychosocial construct for which multiple independent data

points were available separately. The fine categories explained a significant amount of heterogeneity

in both the full (Q35 ¼ 59.28, p , 0.01; t ¼ 0.20) and reduced datasets (Q32 ¼ 58.03, p , 0.01; t ¼ 0.16;

note only 33 of the 36 fine categories were represented in the reduced dataset). We took smoking as

the reference category as this association is estimated with good precision due to a large number of

studies. Compared to smoking, in the full dataset, we found significantly stronger negative

correlations for environmental hazards (B ¼ 20.15, 95% CI 20.26 to 20.05, p , 0.01); HIV and AIDS

(B ¼ 20.15, 95% CI 20.28 to 20.02, p ¼ 0.02); schizophrenia (B ¼ 20.18, 95% CI 20.34 to 20.01, p ¼
0.04); and lower vitamin consumption (B ¼ 20.22, 95% CI 20.37 to 20.07, p , 0.01). Parkinson’s

disease gave a significantly weaker negative correlation than smoking (B ¼ 0.26, 95% CI 0.06–0.45,

p , 0.01). In the reduced dataset, the significant differences from smoking for environmental hazards

and schizophrenia became non-significant; the significant differences persisted for HIV and AIDS

(B ¼ 20.14, 95% CI 20.25 to 20.03, p ¼ 0.02) and Parkinson’s (B ¼ 0.41, 95% CI 0.21–0.60, p , 0.001);

and two new significant differences were found: poor parental care gave significantly stronger

negative correlations than smoking (B ¼ 20.14, 95% CI 20.27 to 20.01, p ¼ 0.04), and low

carbohydrate consumption gave significantly weaker ones (B ¼ 0.09, 95% CI 0.00–0.19, p ¼ 0.04). We

also considered whether the associations in the 36 fine categories differed significantly from zero

when considered separately (figure 3). In the full dataset, anxiety, cardiovascular disease, depression,

diabetes, lower education, environmental hazards, lower fruit, legume and vegetable consumption,

lower income, lower meat, fish and egg consumption, lower physical activity, post-traumatic stress

disorder (PTSD), schizophrenia, smoking, stress, traumatic experience and lower vitamin consumption

were all significantly correlated with shorter telomeres. Restricting consideration to the reduced

dataset, the associations remaining significantly less than zero were: anxiety; cardiovascular disease;

diabetes; education; lower fruit, legume and vegetable consumption; lower meat, fish and egg

consumption; lower physical activity; and smoking. In addition, the parental care correlation

(receiving poorer care associated with shorter telomeres), which had not been significantly different

from zero in the full dataset, became so in the reduced dataset.

3.4. Other moderators
We tested whether a series of different methodological features explained any significant amount of

heterogeneity between associations (table 2; we were unable to simultaneously include exposure

category and all the methodological variables in a single model for reasons of statistical power). There

was no strong evidence that the study design (longitudinal versus cross-sectional, or experimental

versus correlational), the life stage of the participants (either at exposure or telomere measurement),

the type of tissue or the sex of the participants explained a significant amount of the heterogeneity,

either in the full or reduced datasets.

There was some evidence for variation in association strength by telomere measurement technique in

the full dataset (table 2). Fluorescent in situ hybridization (FISH) techniques produced significantly

stronger negative associations than the dominant qPCR technique. Southern blot and TelSeq

associations did not differ significantly from qPCR, though TelSeq was represented in just one study.

However, measurement technique was confounded with sample size in the data: FISH and Southern

blot were used in relatively small sample studies (medians 49 and 56), TelSeq in one very large study

(sample size 11 670) and qPCR in a range of sample sizes (median 285). We have already established

that correlations were weaker in larger samples, and the order of central correlation estimates for the

four techniques (FISH: r ¼ 20.29, 95% CI 20.43 to 20.16; Southern blot: r ¼ 20.15, 95% CI 20.20 to

20.09; qPCR: r ¼ 20.14, 95% CI 20.18 to 20.10; TelSeq: r ¼ 20.04, 95% CI 20.08 to 20.01) mirrored

the order of their median sample sizes. Including sample size (square-root transformed) in the model

as an additional moderator, the overall moderating effect of measurement technique became

marginally non-significant (Q3 ¼ 7.10, p ¼ 0.07). However, the 95% confidence interval for the
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median
sample size m rk

cancer

cardiovascular

diabetes

HIV and AIDS

Parkinson’s disease

sleep apnoea

environmental hazards 

carbohydrate consumption (lower)

dairy consumption (lower)

fat and oil consumption (lower)

fruit, legume and veg consumption (lower)

grain consumption (lower)

meat, fish, egg consumption (lower)

protein consumption (lower)

tea and coffee consumption (lower)

vitamins (lower) 

anxiety

depression

PTSD

schizophrenia

smoking

alcohol consumption

sleep (poorer)

physical activity (lower)

caregiving

mood (lower)

social network (smaller)

stress

traumatic experience

work-related stress

parental care (poorer)

composite socioeconomic (lower)

education (lower)

income (lower)

occupation or employment status (lower)

other

–0.60 –0.40 –0.20
correlation with telomere measure

0 0.20

environmental hazards
nutrition (poorer) 

psychiatric illness

alcohol

sleep

physical activity

psychosocial

parental care

socioeconomic status

other

2552.5
2552.5

976
1003
123

671.5
283
283

104.5
208
303
303
86

224
556
556
766
766

421.5
556
464
556
766
766
976
976

421.5
556
976

1003
56
0

200
237.5

88
332
76

2843.5
86

110
280
341
273
284
124
283

1006
1434
72.5

0
82
0

2193.5
2193.5
227.5

647
670

893.5
388
435

142.5
203.5

253
253

282.5
285
215
283

421.5
428
198
341

4
4

13
12
17
10
3
3
6
3
6
6

11
5
5
4
4
4
8
5

24
19
4
4

10
10
4
3
3
2

10
0
7
6

31
14
8
2
8
3

43
35
15
14
20
10
16
12
6
0
4
0

10
10
14
9

36
30
10

9
8
4
4
4

18
15
11
7

12
11

130
81

3
3
9
8

11
8
3
3
5
3
5
5
8
3
3
2
3
3
5
3
6
4
3
3
3
3
3
2
2
1
1
0
5
4

22
13
5
1
3
2

34
27
11
10
5
4

11
7
4
0
3
0
5
5

11
6

18
13
4
3
4
2
4
4

12
10
9
6
4
3

57
33

–0.04
–0.04
–0.13
–0.13
–0.28
–0.23
–0.28
–0.28

0.09
0.28

–0.07
–0.07
–0.26
–0.17

0.02
0.02

–0.09
–0.09
–0.02
–0.01
–0.05
–0.05
  0.06

0.06
–0.07
–0.07
–0.02
–0.01
–0.13
–0.08
–0.26

–0.05
–0.04
–0.12
–0.09
–0.17
–0.01
–0.30
–0.16
–0.07
–0.06
–0.03
–0.03
–0.02
–0.01
–0.02
–0.02
–0.09

–0.16

–0.01
–0.01
–0.07
–0.03
–0.09
–0.02
–0.19
–0.01
–0.11
–0.15
–0.03
–0.03
–0.05
–0.05
–0.09
–0.02

0.00
0.00

–0.13
–0.08

[–0.11, 0.04]

[–0.24, 0.2]

[–0.40, 0.07]

[–0.56, 0.01]

[–0.29, 0.85]

[–0.27, 0.13]

[–0.42, 0.07]

[–0.02, 0.07]

[–0.27, 0.08]

[–0.11, 0.08]

[–0.10, 0.01]

[–0.07, 0.19]

[–0.14, 0.00]

[–0.09, 0.07]

[–0.33, 0.16]

[–0.08, –0.01]

[–0.19, 0.00]

[–0.04, 0.01]

[–0.49, 0.17]

[–0.09, –0.04]

[–0.08, 0.03]

[–0.04, 0.02]

[–0.04, 0.00]

[–0.02, 0.01]

[–0.07, 0.01]

[–0.04, 0.00]

[–0.04, 0.02]

[–0.22, –0.08]

[–0.08, 0.03]

[–0.09, 0.00]

[–0.05, 0.01]

[–0.02, 0.03]

[–0.11, 0.04]

[95% CI]

[–0.23, –0.02]

[–0.41, –0.15]

[–0.56, –0.01]

[–0.26, –0.44]

[–0.27, –0.13]

[–0.51, –0.01]

[–0.03,   0.06]

[–0.27,   0.08]

[–0.11,   0.06]

[–0.09, –0.01]

[–0.07,   0.19]

[–0.14,   0.00]

[–0.10,   0.05]

[–0.33,   0.07]

[–0.34, –0.18]

[–0.08, –0.01]

[–0.20, –0.04]

[–0.31, –0.03]

[–0.50, –0.10]

[–0.11, –0.02]

[–0.08,   0.02]

[–0.08,   0.04]

[–0.04, –0.01]

[–0.33,   0.16]

[–0.26, –0.05]

[–0.02, –0.01]

[–0.13, –0.01]

[–0.15, –0.03]

[–0.52,   0.14]

[–0.23,   0.01]

[–0.08,   0.03]

[–0.09, –0.01]

[–0.16, –0.01]

[–0.02,   0.03]

[–0.18, –0.09]
[–0.12, 0.04]

Figure 3. Central estimates of correlation and 95% confidence intervals for separate meta-analytic models for each fine category of
exposure. For each fine category, the first row represents the full dataset, and the second, the reduced dataset (only sample sizes of
100 or greater). The k column represents the numbers of correlations and the m column the number of unique studies. Note that all
nutritional fine categories are treated as if more of the food category equalled better nutrition, and hence less adversity. Fine
categories are grouped by broad category.
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parameter estimate for FISH still did not cross zero (B ¼ 20.18, 95% CI 20.33 to 20.04, p ¼ 0.01).

Moderation by measurement technique was non-significant in the reduced dataset, though 95% of the

associations in the reduced dataset used qPCR; there were no FISH associations at all, and only 15

instances of Southern blot.
4. Discussion
Telomere length or attrition has been proposed as a common currency ‘psychobiomarker’ of the impact of

many different types of stress and adversity on the individual. Here, we meta-analysed an exceptionally

large and diverse dataset consisting of 543 associations from 138 studies featuring over 400 000 human

participants. The results confirm that, in the published literature, telomere length is indeed

significantly associated, in the predicted direction, with a wide range of exposures including

environmental hazards, smoking, psychiatric illness, psychosocial factors, socioeconomic factors,

parental care, poor nutrition and physical activity. The large heterogeneity estimate even after



Table 2. Tests of potential moderators of the association strength between exposure variables and telomere length or telomere
attrition. For reasons of statistical power, potential moderators were added one at a time.

moderator

test of

moderation (Q)

p-value

(Q) parameter estimates (95% CIs)

whole dataset

longitudinal design Q1 ¼ 0.04 0.95 cross-sectional (ref )

longitudinal 20.002 (20.05, 0.04)

experimental study Q1 ¼ 2.84 0.09 correlational (ref )

experimental 20.11 (20.24, 0.02)

life stage at exposure Q3 ¼ 0.40 0.94 adult (ref )

child 0.003 (20.05, 0.05)

embryonic 0.02 (20.08, 0.12)

not reported 20.03 (20.16, 0.10)

life stage at telomere

measurement

Q3 ¼ 2.03 0.57 adult (ref )

child 0.07 (20.04, 0.18)

embryonic 20.005 (20.26, 0.25)

not reported 20.08 (20.34, 0.17)

tissue type Q2 ¼ 1.64 0.44 blood (ref )

buccal cells 20.08 (20.25, 0.10)

other 20.09 (20.26, 0.09)

technique Q3 ¼ 8.97 0.03* qPCR (ref )

FISH 20.21 (20.35 – 0.07)

Southern blot 20.03 (20.12, 0.07)

Telseq 0.09 (20.30, 0.49)

sex Q2 ¼ 0.29 0.86 both sexes (ref )

female 20.01 (20.07, 0.05)

male 20.01 (20.06, 0.04)

reduced dataset

longitudinal design Q1 ¼ 0.00 0.98 cross-sectional (ref )

longitudinal 20.0006 (20.04, 0.04)

experimental study Q1 ¼ 3.24 0.07 correlational (ref )

experimental 20.13 (20.28, 0.01)

life stage at exposure Q3 ¼ 0.87 0.83 adult (ref )

child 0.02 (20.03, 0.06)

embryonic 0.03 (20.9, 0.15)

not reported 20.01 (20.13, 0.10)

life stage at telomere

measurement

Q3 ¼ 5.91 0.12 adult (ref )

child 0.08 (20.03, 0.19)

embryonic 0.40 (0.005, 0.79)

not reported 0.06 (20.28, 0.39)

tissue type a a a

technique Q2 ¼ 0.10 0.95 qPCR (ref )

FISHb

Southern blot 20.009 (20.12, 0.10)

Telseq 0.05 (20.30, 0.39)

(Continued.)
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Table 2. (Continued.)

moderator
test of
moderation (Q)

p-value
(Q) parameter estimates (95% CIs)

sex Q2 ¼ 0.94 0.62 both sexes (ref )

female 0.03 (20.03, 0.08)

male 0.004 (20.04, 0.05)

*p , 0.05.
aCannot be tested because there is only a single study in any tissue type other than blood/white blood cells in the reduced
dataset.
bNo FISH studies in the reduced dataset.
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controlling for exposure type suggests that there is more variation in results between different studies of

the same exposure than between different types of exposure.

We emphasize that because our search strategy was based on ‘stress’ and ‘adversity’, our dataset is

neither exhaustive nor a representative sample of all the work being carried out in human telomere

epidemiology. We are likely to have captured almost all work on psychosocial stress, which

necessarily involves one of our search terms, but only some of the studies of smoking or physical

diseases. Thus, the relative abundance of exposure types in the dataset should not be interpreted as

informative: for example, our dataset contains more studies of psychosocial exposures than of

smoking, whereas the true abundances in the literature may well be the opposite way around (see

[17,18]). However, the dataset is very large, and there are substantial numbers of studies in every

broad category. Thus, it is still useful for comparing the typical strength of association of different

types of exposure with telomere measures, as well as exploring cross-cutting issues. For several of the

exposure variables in our dataset, there are published specialist meta-analyses covering just that

exposure type. In many cases, these have appeared since we began data collection for this paper.

Where such a specialist meta-analysis exists and we had more than five associations in our dataset,

we compared the by-category results from our figure 3 with the key results of the corresponding

specialist meta-analyses (table 3). There was, overall, a high degree of agreement. We view this good

agreement between the specialist reviews and subsets of our dataset as confirmation that the search

strategy we used yielded a sufficiently robust transect of the telomere epidemiology literature for the

comparisons we have presented to be meaningful.

In detecting significant negative associations between telomere variables and a wide variety of

different exposures, our findings appear to support the contention that telomeres are a useful

integrative ‘psychobiomarker’ [1,4]. Nonetheless, they bring to the fore a number of important caveats.

The first caveat is that the observed correlations are in the range that would conventionally be

considered weak or small [39]. This has methodological implications for the use of telomere measures

in research. A correlation coefficient of r ¼ 20.15 (our central estimate from the whole dataset)

requires a sample size of 359 to be detected as significant (p , 0.05) with 80% power. Only 38% of

the associations had this sample size. Using the central correlation estimate from the reduced dataset

(r ¼ 20.09), the required sample size rises to 1007 (which was met by 21% of associations). Thus,

significance tests from individual small-n studies should not be taken as strong evidence that a given

exposure variable does or does not associate with telomere length, or associates differently from other

variables. Moreover, with correlations typically of small magnitude, telomere length is likely to have

limited value as an indicator of adversity exposure in individual people.

The weakness of observed associations may be related to the fact that the extant literature relies

almost entirely (93% of associations) on cross-sectional studies using telomere length measured at a

single point in time. Where there are true environmental effects on telomere attrition, measured

associations between telomere length and environmental factors in cross-sectional studies are likely to

be weak, because the individual variation in telomere length at birth, which is substantially heritable,

dwarfs the amount by which telomeres shorten over the life-course [40,41]. Thus, any environmental

signal in cross-sectional telomere studies will be diluted by a large component of irrelevant individual

variability. Longitudinal studies that examine telomere attrition, rather than telomere length, thus

effectively controlling for different individual starting telomere lengths, are potentially much more

powerful for detecting possible environmental influences (see [42] for discussion and [43,44] for



Table 3. Comparison of the present findings by fine category with key results of specialist meta-analyses, where available.
Represented are central meta-analytic estimates with 95% confidence intervals. Note that we have reversed the direction of our
correlations compared to figure 3 where this is necessary for the comparison. TL, telomere length; SMD, standardized mean
difference; OR, odds ratio; d, Cohen’s d; r, correlation coefficient.

exposure category specialist meta-analysis findings present findings

cardiovascular disease significant association between CVD and

short TL, OR ¼ 1.54 (1.30, 1.83) [12]

significant negative correlation between

CVD and TL, r ¼ 20.13

(20.23, 20.02)

diabetes significant association between diabetes and

short TL, OR ¼ 1.29 (1.11, 1.50) [13]

significant negative correlation between

diabetes and TL, r ¼ 20.28

(20.41, 20.15)

Parkinson’s disease no significant association between TL and

disease, SMD ¼ 0.36 (20.25, 0.96) [14]

no significant association between TL and

disease, r ¼ 0.09 (20.26, 0.44)

sleep apnoea significantly shorter TL in sleep apnoea,

SMD ¼ 20.03 (20.06, 20.00) [15]

association between TL and disease

negative but not significant

r ¼ 20.07 (20.27, 0.13)

anxiety significantly shorter TL in anxiety disorders,

SMD ¼ 20.53 (21.05, 20.01) [16]

significantly shorter TL in anxiety

disorders, r ¼ 20.05

(20.08, 20.01)

depression significantly shorter TL in depressive

disorders, SMD ¼ 20.55 (20.92,

20.18) [16]; d ¼ 20.21 (20.29,

20.12) [35]; r ¼ 20.12 (20.17,

20.07) [36]

significantly shorter TL in depressive

disorders, r ¼ 20.12 (20.20,

20.04), became marginally non-

significant in reduced dataset

PTSD significantly shorter TL in PTSD,

SMD ¼ 21.27 (22.12, 20.43) [16]

significantly shorter TL in PTSD,

r ¼ 20.17 (20.31, 20.03); became

non-significant in reduced dataset

schizophrenia no significant association between TL and

psychosis/schizophrenia, SMD ¼ 20.2

(20.68, 0.21) [16]; SMD ¼ 0.34 (0.77,

154) [37]

significantly shorter TL in paranoid

schizophrenia compared to controls

SMD ¼ 20.48 (20.94, 20.03) [38]

significant association between TL and

schizophrenia, r ¼ 20.30

(20.50, 20.10); became non-

significant in reduced dataset

smoking smokers significantly shorter TL than non-

smokers, SMD ¼ 20.17

(20.24, 20.09) [17]

smokers significantly shorter TL than

non-smokers, r ¼ 20.07

(20.11, 20.02)

physical activity significant positive association between

physical activity and TL, SMD ¼ 0.91

(0.48, 1.35) [19]

significant positive association between

physical activity and TL, r ¼ 0.02

(0.01, 0.04)

stress weak negative correlation between perceived

stress and TL, r ¼ 20.06 (20.10,

20.01); possible publication bias [18]

weak negative correlation between

perceived stress and TL, r ¼ 20.07

(20.13, 20.01); became non-

significant in reduced dataset

(Continued.)
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Table 3. (Continued.)

exposure category specialist meta-analysis findings present findings

socioeconomic status

other than education

no significant association with TL,

SMD ¼ 0.10 (20.03, 0.24) [20]

no significant association with TL for

composite measures, r ¼ 0.03

(20.03, 0.08) or occupation, r ¼ 0.00

(20.02, 0.03);

significant association between income

and TL, r ¼ 0.09 (0.01, 0.16), became

non-significant in reduced dataset

education more education associated with significantly

longer TL, SMD ¼ 0.06 [0.00, 0.12) [20]

more education associated with

significantly longer TL, r ¼ 0.05 [0.01,

0.09)
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examples of animal studies using this type of design). However, in the present dataset, we were not able

to confirm that longitudinal studies produce systematically stronger negative correlations than the cross-

sectional ones. This may be because longitudinal studies are few, limiting statistical power. Moreover, the

follow-up tends to comprise a fairly short stretch of adult life in these human studies (mean 1576 days,

s.d. 882 days). A possible alternative to life-course longitudinal designs in some cases is the ‘blood–

muscle’ model, where telomere length in adult muscle (where telomere length changes little) is used

to estimate starting telomere length for blood [45].

The second caveat is that the literature may be affected by publication bias, a conclusion that echoes

those of some narrower reviews [18]. We found evidence of stronger negative correlations in published

studies with small samples, and removing the small samples nearly halved the strength of the overall

association between exposure variables and telomeres. (An alternative approach to correcting for

publication bias reported in the electronic supplementary material suggests an even greater degree of

attenuation.) Directionally stronger associations in small samples are usually taken as evidence that

small studies with results contrary to prediction are being selectively withheld or rejected. Publication

bias is not the only possible interpretation of this pattern, though. It could be that smaller studies

measure stresses and adversities with greater precision, or use more selected participant samples, so

that the variation in exposure is greater, and as such genuinely detect stronger negative correlations

with telomeres. Nonetheless, many of the most striking claims, for example, regarding psychosocial

associations with telomeres, are based on small-n findings that are atypically strong. The problem of

selective appearance of associations in the literature may be worse than our findings suggest. For

example, large-n epidemiological studies are likely to be published whatever the results, but authors

often have degrees of freedom concerning which of many available predictor variables they report,

and in how much detail. Even a slight bias towards including or providing detailed results

preferentially for those measures that produce patterns conforming to expectation would suffice to

distort the meta-analytic conclusions considerably.

The third caveat is that it is hard, from the present literature, to make inferences about causality in the

relationships between telomere variables and exposures to stress and adversity. This is because of the

overwhelming reliance on cross-sectional and correlational designs. Several of the specialist meta-

analyses have concluded with calls for more longitudinal research [18,19]. It is disappointing to note

that in the course of this review, we have recurrently encountered correlational findings described as

if they were causal (e.g. [7,19,46,47]), and cross-sectional findings described as if they were

longitudinal (e.g. [9,16,38,46]) in article titles, abstracts and discussions.

A cross-sectional correlation between telomere length and an exposure could arise for three reasons:

the exposure causes telomeres to shorten (causality); short telomeres cause the exposure (reverse

causality); or some third variable is causally related to both telomeres and the exposure (third

variable). Causality should not be assumed without further evidence. Reverse causality is plausible

for many physical diseases. In some cases, this is supported by longitudinal evidence (e.g. [45,48,49])

and Mendelian randomization studies [50,51]. Reverse causality may be possible for psychological and

behavioural variables too, because short telomere length can change patterns of gene expression [52],

with possible consequences for brain function. Third-variable explanations are plausible for many of
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the correlations described here. Childhood adversity, for example, is a third variable of potential general

importance [21]. Childhood adversity is a known risk factor for a number of the variables considered

here as exposures, such as poor physical and psychiatric health, smoking and low socioeconomic

status. Childhood adversity may also accelerate telomere shortening [53]. As the highest rate of

telomere shortening occurs early in life [54,55], it is perhaps more plausible that developmental

conditions affect both the risk of the adult exposures and adult telomere length, than the adult

exposures affecting adult telomere length directly. However, we did not find evidence in the present

dataset that exposures during childhood produce significantly stronger correlations with telomere

length than exposures during adulthood (though see [56] for a Cohen’s d effect size of 20.35 in a

specialist meta-analysis of early-life adversity and telomere length).

In relation to our objective of understanding methodological sources of variation in measured

associations, we were not able to reach any strong conclusions. Most of the methodological variables

we recorded did not explain any significant fraction of the observed heterogeneity, but we cannot

infer that they make no systematic difference. This is because many of the non-standard

methodological choices in the dataset (e.g. longitudinal design, tissue other than blood, measurement

technique other than qPCR) were rare. Moreover, the different features of the methodology did not

vary independently of one another, or of exposure type. We found some evidence suggesting FISH

might produce stronger correlations with predictor variables than other measurement techniques.

However, the FISH studies also featured small samples, and small sample size was associated with

stronger correlations. After controlling for sample size, the moderating effect of measurement

technique was attenuated. To make progress on methodological questions such as whether, for

example, qPCR produces weaker associations than other techniques due to greater measurement error

[23,57,58], it will be necessary to take more homogeneous sets of studies, all focussing on the same

relationship, in order to isolate the consequences of this single methodological factor. For example, in

recent meta-analyses of telomeres and sex [59], and telomeres and depression [36], stronger

associations were found by Southern blot and/or FISH than by qPCR.

We conclude with a plea to the field. We had to exclude 125 papers because of failure to describe data in

enough detail; this is nearly as many as we were able to include (138). Common omissions were simple,

such as not providing means and standard deviations per group, not providing sufficient detail of

regression models, or providing only a p-value for the key result. Moreover, there may have been cases

where researchers measured more variables than those they reported. These failings could easily be

addressed by more careful reporting of statistics, better refereeing and, above all, fostering a culture in

which all raw data are made freely available. Given the subtlety of any associations between telomere

dynamics and environmental exposures, it will be necessary to pool our collective evidence in order to

understand them. It is a great waste if much of that evidence is not usable for meta-analysis.
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