

0.G.. MANCINO

FORTRAN CEP language

a FORTRAN || version for the C.E.P.

OTTOBRE 1963 - PISA

i. INTRODUCTION

The FORTRAN CEP language differs from FORTRAN II, as
described in [1], mainly because: ;

(1) it extends the variety of the modes for real quan
tities;

(2) it allows the addressing of a greater number of in
put-output equipments;

3) it removes the limitations on the list of quanti-
ties to be transmitted between the magnetic core memory and
the drum or the magnetic tape units.

A program, written in FORTRAN II language, may be com
piled by the FORTRAN CEP translator, which has been already
realized, with only a few modifications.

The definition of the FORTRAN CEP language ‘is the ob
ject of the present paper.

2. CHARACTERISTIC FEATURES OF THE CEP COMPUTER

The CEP has-been built at the University of Pisa. It is g
parallel binary computer with a 30 bit word lenght. Instrug
tions are single address with the possibility of two modifi
cations [2]. Every instruction occupies one word. The main
magnetic core! memory has 8192 words. The auxiliary memory
is composed of a magnetic drum with 16334 words and of eight

magnetic tape units.

There are 128 instructions and 210 pseudo-instructions
which refer to arbitrary closed subroutines [2].

Arithmetic is fixed or floating point.

The input is performed by three photo-electric paper
tape readers, and the output is realized by means of one on-
‘line typewriter, three paper tape high speed punches and one
on-line printer. In addition, .the CEP is equipped with one

off-line printer.

3. DEFINITION OF FORTRAN .CEP LANGUAGE

.FORTRAN CEP 1anguage will be defined stressingthe dif
ferences between it and FORTRAN II. Therefore parts and chap
ters of [1] will be referred to respectively by two numbers
between brackets and separated by a comma. When such a refe-
rence is associated with the title of a section of this pa-
per, everything in [1], related to that title and not redefi
ned in the same section or in others, must be intended as in

[1] changing at most the word FORTRAN to FORTRAN CEP.:

3.1. A PROGRAM AND ITS CONSTITUENT CHARACTERS

A program consists of a sequence of the statements de

scribed in the course of this paper.
The characters that can be used to compose such state

ments are:
(1) the capital letters of the English alphabet
@) the decimal digits
@) -the :special characters: + * - / L) o 5 gk
(4) the "blank” character. '

3.2, PUNCHING A PROGRAM

Each statement of a program is punched into a portion

of a paper tape with a maximum of 80 characters; however,if
a statement is longer, it can be continued till 8680 charac-
ters, dividing the portions with the guatern of characters
yv #, where 'y and v are respectively the carriage-return
character and the space-line character,

The beginning of a statement is signed by # and the
end by the pair of characters y v.

The beginning character # may be preceded by a state
ment number, greater than zero and less than lds, or by a
letter (cf. sections 3.6, 3.9.4 and 3.12) followed or not by
a statement number up to a maximum of six characters.The sta
tements must be punched in the same order as they arein the
program.

Blank characters may be used.and they are ignored e-

verywhere except in the alphanumeric fields."

3.3.QUANTITIES

A "guantity” is a constant, a variable, a subscrip-
ted variable, or a function.

Generally the mode of one or more quantities is spe-
cified by a "mode indicator”. This may appear on the crright
or on the left of the beginning character #, and is compo-
sed of a single letter, respectively followed or not by the
character ":".

Some mode indicators may be used without any special
provision; they are those containing one of the . follawing
letters: V
B, V, W, S, D, where

B specifies boolean quantities
V specifies floating point single precision quantities with
an absolute value equal to zero or included between the ap-

))i (.38 ag
proximate limits of 107°° and 10%°%,

W specifies floating point 'double precision quantities with
an absolute value equal to zero or included between the ap-

proximate :‘limite of 10'4”2 and 1014822

S specifies fixed point single precision quantities with va

lues included in the interval —1l——1,

D specifies fixed point double precision guantities with va
lues included in the interval —1——1.

Other mode indicators may be used for real quantities
provided ‘they are introduced by the MODE statement (cf. seg
tion ‘3.11.4) but they will be effective only if a suitable
group of pseudo-instructions is built to perform the opera-
tions required in the indicated modes.

A mode indicator~cannot:ge-given more than one mean-
ihgf:in the main program:and in its subprograms.

The :scope of ‘the mode .indicators will be specified

later.

3.3.1. CONSTANTS

Let 6 be a decimal digit and ® be:an octal digit. In
a program one may use:

(1)‘the integer constants having the ‘general 'form:

. o MR
where the sign is aptional and the maximum number of digits
is .
(2) the eonstants in the B mode having the general fom:

W e

where the maximum number of digits is 12.
(8) the constants in the V or W mode having the gene-

ral form:

) G mRE §u68 4% FEAL S 5§

where the sign is optional and parts of the general form may
be omitted as in [1, 2].

The maximum number of significant digits, considered
in the conversion from the decimal to the binary system, is

8 or 16 according to whether the mode of the constant is V

or W.
4) the constants in the S or D mode having the gene-
ral form:
+0.86 :-- 6 if the value is in ~1——1
or
=100 222 0 if the value is -1

In the former case the sign and the zero before the
decimal point are optional and the maximum number of digits
after the decimal point, in the decimal to binary conver-
sion, is 10 or 20 depending on the constant being in S or D
mode. In the latter case the zeros after the decimal point
may be omitted.

(5) constants in other modes provided they have the
decimal point,

The mode of a constant, not of type (1), is descri-

bed by the rules in section 3.4.

3.3.2. VARIABLES

Variables are referred to by names, composed of let-
ters and digits, .and they may be integers or non-integers.

The general form of integer variables is the same as
indicated in [1,2] for fixed point variables (restricted to

integer values). An integer variable, that does not appear

o

in a subscript, may assume any integer value included in the
interval <8 B

The general form of non-integer variables is the same
as indicated in [1,8] for floating point (single precision)
variables. A non-integer variable may assume any value expres
sible as a constant in the variable mode.

The matrices may be integer or not and they are indi-
cated as integer or non-integer variables respectively.

The indices of a matrix element are called ’subscripts”
and they may be at most three.

The general form and values of subscripts are as in
[1,2]

Matrix elements are called "subscripted variables”.
They may be integers or non-integers and they are referred
to respectively with integer or non-integer variable names
(the same names of matrices to which they belong}, each one
followed by parentheses that enclose the subscript or the sub
scripts separated by commas.

The subscripted integer or non-integer variables may
assume any value which may be assumed by integer or non-inte
ger variables respectively.

From now on, a variable or a subscripted variablewill
be called a "generical variable”.

When it is necessary, the mode of a generical non-in-
teger variable is specified by the mode indicator or,if such
indicator is missing, by the [1,2] rules (cf. yet section 3.
4 for an exception).

A generical variable may be in only one mode in the sa
me main program or subprogram. In particular, a subscripted
variable must be in the mode of the matrix to which it be-
longs (cf. section 8.11.1).

Restrictions on variable names given in [1,2] also ap

-1

ply to variables in any other mode.

3.3.3. FUNCTIONS

The functions are divided into Library, Arithmetic Sta
tement 'and Fortran functions, and they are defined in sec-
tion 3.8.

A function is "called”, namely used, by writing its
name in .an arithmetic (cf. section 8.4.1) or boolean expres
sion (cf. section 8.4.2);parentheses must follow the func-
tion name enclosing the actual argument or .arguments of thae
function. If the actual .arguments are more than one, they
must be separated by commas.

Only one value is produced by every function by ap-
plying the calculation rules, specified in the definitionof
the function, to the given set of actual arguments.

Functions may be integers ar non-integers,

Integer function ' names have :genera] forms as indica
ted in [1,8] for fixed point function names (restricted to
integral values).

Non-integer function names have general forms as in-
dicated in [1,8] for floating point (single precision) func
tion names.,

An integer function may :assume ‘any integer 'value in-
cluded in the interval —2°%— 2°%, '

A non-integer function may assume any valuewhich may
be expressed as a constant in the mode of :the function.

In an expression, the mode of a non-integer function

is explained by the rules of section 3.4.

3.83.3.1., ACTUAL ARGUMENTS AND MODES

Each actual argument of :a Library or Arithmetic Sta-

tement function is an arithmetic expression of type 3.4.1

or boolean of type 8.4.2 according to whether the function .
is real or boolean.

Each actual argument of a Fortran function may be:
an arithmetic expression of type 8.4.1 or a boolean of ty-
pe 3.4,2, a matrix name,'the name of Library function with-
out : the terminal F, the name of a Fortran function, the
name of a SUBROUTINE :subprogram (cf. section 3.9.2) or a
Hollerith field.

The mode of an expression, when it is an actual ar-
gument, will be dealt with in section 3.4.

The mode of a matrix name, when it is an actual ar-
gument, is the same as in the DIMENSION statement (cf.see
tion. 3,11.1).

The mode of :a Library function name, .when it is an
actual argument, :is the same as in the definition of the
function (cf. section 8.5.1).

The mode of a Fortran function, :when it is an actual
argument, is that of the same name in the body of the FUNC-
TION subprogram which defines the function (cf. section 8.9,
1) ' '

The mode of ‘a name of a SUBROUTINE or of 'a Hollerith

field, when they are arguments, does not make sense.-

3.3.4. NOTES

3.3.4:1. Previously, the word "integer” has been used in-

"single precision integer”,

stead of
Later it will be written with the same meaning "inte

ger”, "integer of single precision”, or "in J mode”."

3.3.3.2. The mode of an integer constant, generical varia-
ble, function, or matrix is implicit in its form or in that

of its name as in [1]; therefore we agree that mode indica-

tors have effect only on quantities or matrices which are
not in the J mode, and that, if they are generical variables,

functionsor matrices, they have names in floating point 'as

in [1].

3.4. EXPRESSIONS

Expressions may be arithmetic or boolean and they a-
re substantially made up of operands fconstants, generical
variables or functions) operators f(arithmetic or logical)
and parentheses according to the respective formation rules,

Since an expression may be an argument of a function
contained in a longer expression, it is useful to distinguish
an expression not contained in another from an expression
which is argument of a function, referring to the first one
as a "total expression” and to the second one as an "argu-

ment expression”.

3.4.1. ARITHMETIC EXPRESSIONS

The arithmetic expressions are made up in the usual
way,

Arithmetic operators are aymbols + , — , * , / and
* * which denote respectively addition, subtraction, multi
plication, division and exponentiation.

Operands may be integers or not.

Integer operands may appear everywhere in an arithme
tic expression (cf. section 8.4.1.8 for some exceptions).

Every dividend must lie on a line with its divisor.

Every base must 1i@ on a line with its exponent.

Two operators cannot appear consecutively.

10

3.4.1,1. HIERARCHY OF OPERATORS

On the same parenthsis level, the hierarchy of ope-
rators is defined in the following way:
first: * *
second: * and /
third: + and —

‘If the hierarchy is not specified by these rules or
by the use of parentheses, it is assumed from left to right.

For istance A** B * * C means (A * * B) * * C.

3.4.1.2. OPERANDS AND MODES

The value of a total or argument ‘arithmetic expres-
sion may be obtained in any real mode that will be called
the "mode of the total or argument arithmetic expression”.

This mode must be generally specified with the sui-
table mode indicator immediately preceding the total or ar
gument arithmetic expression.

If &b is a total or argument arithmetic expression
immediately preceded by a mode indicator, the non-integer
constants, generical variables and fungtions, contained in
(L but not in an argument expression inside (%., are thought
in the mode :specified by that indicator.

Mode indicators are not necessary before or inside'a
total arithmetic expression, when it is valid in [1] and
it is intended as in [1], except for the extension to the
value of integer operands.

Moreover, it is not necessary to indicate the mode
of a total arithmetic expression 6L1 when the constants, ge
nerical variables and functions, contained in CL1 but not
in an argument expression inside(ﬂq, are intended as in [1],
except for the extension to the value of integer operands.

Finally, it is not necessary to indicate the mode

11

of an argument arithmetic expression(ﬂu when the non-inte-
ger constants, generical variables and functions, contain-
ed ' in GLzbut not in an argument expression insidediq, are
thought in the mode of the function of which Qsis an argu
ment.

For istance, in the expressions:

L + 15

C(1,J) + A(I,K) * B(K,J)

18.26+L * * F-ACCAF(X,L+M, W: 18.275476543889E40+RIGAF (Y (K)/Z)
D: G(I) +0. 000256824753297699 ' * FUN(OMEGAF(E(1)))

the number 15 is assumed as an integer constant;

PR

the variables L, I, J, K, M are assumed as integer gquanti
ties;

the number 13.25 is assumed as a constant in the V mode;
the generical variableS‘C(I,J),'A(I,K), B(K,J), F, X, Z a-
re assumed as quantities in the V mode;

the function ACCAF(X,:': Z) is assumed as a quantityin the
V made; .
the number 13.2754768543889F40 is assumed as a constant in
the W mode;

the subscripted variable Y(K) is assumed as a quantity in -
the W mode;

the function RIGAF (Y(K)) is assumed as a quantity in the
¥ mode;

the number 0.000256324753207699 is assumed as a constant
in the D mode;

the subscripted variables G(I), E(I) are assumed as quanti
‘ties in the D mode;

the functions FUN(OMEGAF(E(I))), OMEGAF(E(I)) are assumed

as quantities in the D mode.

3.4.1.3. OPERATIONS AND MODES

Every arithmetic operation is executed in such a man-
ner that the result is in the J mode only if both the ope-
rands are in the J mode; otherwise the result of the operﬁ-
tion is in the mode of the operand or operands not in the J
mode,

The result of ‘the division of an integer quantity by
another is the integer part of the real quotient.

The addition and the subtraction between operands, o~
ne of which being in the S or D mode and the other one inte-
ger, are not allowed.

The division of a quantity in the J mode by a quanti-
ty in S or D mode is not allowed.

If an operation allowed is not mathematically defined
for certain values of the operands, or :if one of the Library
functions listed in Table I {cf. section 3.5) is not mathema
tically defined for certain values of its argumént, the com-
puter stops signalling the reason why the operation or the
function is not mathematically defined.

Thus, for example, if n is the value of the 'variable
N in the J mode and g is the value of the variable G in -the
V mode, the operation G * * N will cause the computerto stop

if n £0 and g = 0.

3.4.2. BOOLEAN EXPRESSIONS

Boolean expressions are made up with rules similar to
those of the arithmetic expressions.

More precisely:

13

(l) the following may be interpreted as boolean expressions:
(a) a positive octal constant with no more than twel-
ve digits;
(b) a generical variable with name indicating a non-
integer mode;

(¢) a function with name indicating.a non-integer mQ
de.

) If(®, and® , are interpretable as bodlean expressions
and 1f the first character of 052 is not the symbol -, then
the following are also interpretable as boolean expressions:
(a) .- B2

(e) 031 * 052

(f) 051 & 052

(e) (B

B) A total or argument expression, interpretable as boolean
and immediately preceded itby the mode imdicator "B.",
is treated as 'a boolean expression in which symbols as -

* and + are respectively the logical operators "not”, "and”,

: ”O T "e

5+ 3.4.2.1. OPERANDS AND MODES
Al

If ® is a total or argument boolean expression, the
constants, generical variables and functions, contained ‘in
(®» but not contained in an argument expression inside 65 %

are thought as boolean.
I1f an expression, interpretable as boolean and not im

mediately preceded by the mode indicator "B :", is argument

v
of a boolean function, it is also treated as boolean.
v In an arithmetic statement (cf. section 8.8), the ge-
nerical variable on the left side and the total expression

on the right side are treated as boolean if they are both in

14

terpretable as such and the letter B precedes the beginning

character # of the statement.

3.4.2,2, HIERARCHY OF OPERATORS

On the same parenthesis level, the hierarchy of logi
cal operators is defined in the following way:
first: «—

second: *

third: +
If the hierarchy is not determined by these rules or

parentheses, it is assumed from left to right.

3.4.2.3. ORPERATIONS

All logical operations are performed upon the full
36-bit words [2].

3.5 DEFINITION OF FUNCTIONS

3.5.,1., LIBRARY FUNCTIONS

These functions are predefined by means of closed sub-
routines which may be on library paper tapes or magnetic
tape.

Twenty-six library functions are already available.

They are listed in Table I where x denotes the value
of the sole dummy argument.

Other functions may be added to the library.

3.5.2. ARITHMETIC STATEMENT FUNCTIONS

These functions are defined by a single = statement

15

TABLE I
Function Description of the function Woda of
Hanes funct. argum,

SQRTF Square root of x A A
CRTF Cubic root of x \' \'
LOGF Logarithm, on base e, of x v \'
LOGXF Logarithm, on base 10, of x Vv Vv
EXPF Exponential, on .base e, of x v \Y
EXPXF Exponential, on base 10, of x \' \'}
‘SINF Sine of 'x (x in ‘radians) v v
COSF Cosine of x (x in radians) % A
TANF Tangent of x (x in radians) % %
CTANF Cotangent of 'x (x in radians) \4 \%
ASINF Arc in radians,included in the Vv \'

inte?val —T/2—m/2, which has x

as ‘sine
ACOSF ‘Arc in radians,included in the \' \'

interval O—m, which has x as cosine
ATANF - Arc in radians,included in the Vv Vv

interval —n/2—mn/2,which has x

as tangent
SINHF Hyperbolic sine of x \' \'
COSHF Hyperbolic cosine of x % %
TANHF Hyperbolic tangent of x \' \'
ASINHF Argument of the-hyperbolic sine of x \% '
ACOSHF Argument of the hyperbolic.cosine of x A \'
ATANHF .Argument of the hyperbolic tangent o f x A \'}
ABSF Absolute value of x \' A
EXPSF Exponential, on base e, of x S S
LOGSF Logarithm, on base e, of x S S
EXPDF Exponential, on base e, of x D D
LOGDF ‘Logarithm, on base e, of x D D
EXPWF Exponential, on base e, of x W W
LOGWF Logarithm, on base e, of x W W

16

which has the general form:
& 6

where ¢ is the name of the function followed by parentheses,
which enclose the dummy argument or arguments of the same finc-
tion', and { is an arithmetic expression of the type 3.4.1.
or boolean of the type 8.4.2 which involves the 'same argu-
ments.

Each argument of J must ‘be ‘a non-subscripted vari able,
If the arguments of 5 are more than one they must be‘se;;\arm
ted by commas. The argument names ofa‘:may be used to indica
te other ;/ariables in another part of the program. The expres
sion & must not contéin subscripted vafiables, but may use
-vqfiables, ‘library functions, and functions defined by a pre
ceding statement of the above said form, freely.

The function ¢ assumes the mode of the expressionf) "

The mode of each dummy argument is such aspertains to
it, in & , by virtue of the rules on the mode of the operands
of an expression (cf. sectio‘n 8.4,

A function defined in the above said form may be cal-
led only in the particular main program or subprogram 'where
its definition appears which must precede the first executa-
ble statement of that program or subprogram.

Examples:

ALFAF(X) = B * TANF(A+X)+LOGF(X)

XBETAF(L) = N+M * * L, -

GAMMAF (X) = D: .27847570190872322567+25 * X + LOGDF(X)
DELTAF(X,Y) = W: 4517 * D - 230.556897465999E+54/ X+EXPWF (Y)
ETAF(X,Y) = W: -.2017543742185E-40+X/J+K/Y-X * * Y
TETAF(F,G,I) = W:ETAF(F, DELTAF(F,G)) /XBETAF(I)
EQUIVAF(P,Q = B:P * Q + (-P) * (-Q

17

3.5.3, FORTRAN FUNCTIONS

See page 16 of [1], replacing the word FORTRAN with
the words FORTRAN CEP, ‘and compare [2,8] with section 8.9.

3.5.4. NOTES

3.5.4.1. Every function must be used .in the mode .it has in

its definition.

3.5.4.2. Dummy arguments are replaced, :at :execution - time,
by the ‘actual arguments taken in the isame order;therefore,
there must 'be 'agreement :in :number, order and mode ,between

the two sets of arguments.

3.6. ARITHMETIC STATEMENT

An arithmetic:statement thas, excluding :the 'mode :in-

dicators, thé.generaquorm:
Vv =%

where U is a generical variable,js'is an expression ‘and
the sign = does not indicate equality between ‘the two si-
des but an assignment of the ‘value of &.toV:.

If the letter B precedes, as said in 3.2, ‘the begin
ning character # of the arithmetic.statement,Q’.and\ﬁ (sup
posed interpretable as boolean) are treated as boolean: o-

therwise:

(a)qf is a generical real variable and may be preceded im-

mediately by a mode indicatar to :specify its mode;

'(b)%s is an arithmetic expression of the 'type 3.4.1 with a
mode equal to, or different from, that of’Uﬁbut 'such
that neither of :the members is in the J mode if the o-

ther ig in the S or in the D mode.

18

If the mode of‘f, is .different from that of 1 and the
value of ¥, does not -exceed ‘the limits for V', this value is
expressed in the mode of V and then assigned to V. In this
case, ifVis in J mode and & is in V or W mode, to Vit is
assigned .the .value of the integer part of the result of % .

If the mode of & is different from that of VW but the
result of & exceeds the limits for V', toV it is assigned
the best approximate value for\t between the limits-foer,
expressed in the mode of V.

1f V and & have the same mode specified immediately
before each of them by the suitable mode indicator, it may
be substituted, on the left side as on the right side,bythe
letter denoting the common mode, placed, as said in 3.2, be-
fore the beginning character # of the arithmetic statement.

Examples:

L= L+15

€I, J) = €(1,J) .+ A(LK * B(K,J)

A = 13.25+L* *F+ACCAF(X,L+M, W: 18.275476543889 FA0+RIGAF (Y (K))Z)
S: AHB3(I+3)=D:G(I) + 0.000256324753297699 '* FUN(OMEGAF (E(I)))
W 12#D(K,J) = LOGWF(R) ‘— AL(J):/A2(K)+L* *M * R+M-L

B # U= EQUIVAF (S,T)

B 30 # Vv *3877

B 15 # FIMP(I) = - P(I)+Q(I)

3.7. coNTRon STATEMENTS [2,2]

3,7,1, UNCONDITIONAL GO TO, COMPUTED GO TO,ASSIGNED GO TO

and ASSIGN

Thage .are no restrictions on Assigned GO TO in the ran
ge of a DO.

19

3.7.2. IF

The expression may be arithmetic of type 3.4.1 or boo
lean of type 3.4.2.

Examples:

IF(D:A(I,J)-A(J,1))12, 15, 24
IF(B:-P+Q) 5, 7, 7

3.7.3. SENSBE LIGHT, IF(SENSE LIGHT), IF(SENSE SWITCH), IF AC
CUMULATOR ®VERFLOW, IF QUOTIENT OVERFLOW and IF DIVIDE

CHECK

There are no changes.

3.7.45 D0

No IF-type or GO TO-type transfer is allowed into the
range of a DO from outside its range.

Not the first one, but the:last:statement in the ran-
ge of a DD must not be one of the following. statements: FOR-
MAT, - DIMENSION, - EQUIVALENCE, COMMON, FREQUENCY :and MODE.:

3.7.5. CONTINUE, PAUSE aand STOP

There are no changes.

3.8. END

It assumes the simple form END and it is used only to
signal to the FORTRAN ‘CEP translator that the end of the pro
gram has been reached.-

The general form indicated in [2,2] is accepted, but
the reference to the sense switches is ignored.

END must always be the last statement of a programand

must never be omitted.

20

3.9. SUBPROGRAM STATEMENTS [2,3]

A subprogram may call other subprograms except itself
or one that refers to it.

A FUNCTION subprogram may be referred to by an arith-
metic expression of type 8.4.1 or boolean of type 3.4.2,
which contains the name of the Fortran function; a SUBROUTI-
NE subprogram may be referred to only by a CALL statement ff
section 8.9.8).

Hand-coded subprogram are briefly treated in section 4,

3.9.1. FUNCTION

' In a FUNCTION statement, each dummy argument may be a
name of a non-subscripted variable, the name of a SUBROUTINE
subprogram, the name of ‘a Fortran function, or the name, yith-
out' the terminal F, of a Library function.

The mode of the function referred to is that belonging
to the name of it in the body of the FUNCTION subprogram.-
The mode of a dummy argument is that belonging ‘to it

‘in the body of the FUNCTION subprogram.

‘A dummy ‘argument, which is the name of 'a matrix, must
appear in a DIMENSION statement with the same dimensions and
the :same mode of the name of the matrix that .corresponds to
it as actual argument.

Example:
The :subprogram
FUNCTION ZETA (X,Y) Yy ¢

W # ZETA= ((X+G)/(X-6))* *Y yv

%'END YV

21

could be referred to by the arithmetic statement
F=W:ZETA(A*C, B*S-T) +K*Z/N yv

3.9.2. SUBROUTINE

In a SUBROUTINE statement, each dummy argument may be
as in '3.9.1,

The mode of a dummy argument 'is that belonging ‘to it
in the body of the SUBROUTINE subprogram. A dummy argument,
which is the name of a matrix, must appear in .a DIMENSION sta
tement as in 3.9.1.

Example:
The subprogram
SUBROUTINE SPUR (A,N,R)yv

D # R=0. Yv
DO 10 I=1,Nyv
D10 # R=R+A(I,I)y9

END yv
could be referred to by the statement given as second exam-
ple in 3.9.8, if C appears in a DIMENSION statement as a ma-

trix in the D mode.

5.8.3. CALL
The actual ‘arguments are set as:those of the FORTRAN
functions (cf. section 8.8.8.1).
Examples:
CALL RIS (SIN,X,A,B, 6HRESULT)
CALL SPUR (C,50,D:T)
CALL QUIBUS (B:G*E+F,W:253.256764357856, LOGW, S: A+B/J, X1)

22

3.9.4. SUBROUTINE NAMES AS ARGUMENTS

A list of names of Fortran functions, of Library fun-
ctions without the terminal F and of SUBROUTINE subprograms,
which are actual arguments of FUNCTION or SUBROUTINE subpro-
gram, must be punched, as 'said in 3.2, with the letter F be-
fore the beginning character #. Such a list may be punched
between any two statements of a program containing references
to the FUNCTION and SUBROUTINE subprograms.

Example:
F # SIN, COS, MAP

3.8.5. RETURN

There are no changes.

.3.10. .INPUT/OUTPUT STATEMENTS

Input ‘and output statements are used for the transmis
sion of information, at execution time, between magnetic co-
‘re memory on one side and magnetic-tapes, magnetic drum, pa-
ﬁer tape readers, high speed.punches, on-line typewriter and

on-line printer on the other side.

3.,10.1. LIST OF QUANTITIES

Some of -the input/output statements contain a list of
quantities ‘to be transmitted. This list may be, in each of
the input/output statements to which it is associated, as de
scribed in pages 87 and 38 of [1].

In the list several mode indicators may appear, each
of which may be introduced before any list element and also
before any variable which is not part of a subscript or.of an
indexing information.-

A mode indicator specifies the mode of the generical

23

non-integer variables, that follow it, until another mode
indicator occurs. The variables of the list not pregeded by
a mode indicator have the mode as said in [1].

Extra-parentheses are not required.

To transmit an entire matrix it is only necessary to
mention the name of the matrix in the list.

A matrix, which is simply listed by its name, is in-
tended in the mode it would have if it is to be considered
as a variable of the list. This mode must be equal to that
of the matrix in its DIMENSION statement.

The elements of a matrix are stored in ordercof in-
creasing storage locations.

For instance, in the list:

T, K,' B(K);, D: ((caM(I,2*3), I=1,8), J=1,6), (((A(1,J,L),
J=1.,7), 1=1..B) LK)

W: (AH55(1,5) ,1=1,4),V:BMS, C, (D: E(Y) , S: F(I1;9),1=1,100,2) ,G

K, I, J, L are integer variables;

T, B(K), BMS, C are generical variables in the V mode;

cam(1,2 * J), A(1,J,L), E(I) are subscripted variables in

the D mode;

AH55 (1,5) is a subscripted variable in the W mode;

F(I,9) is a subscripted variable in the S mode;

G is the matrix in the S mode with dimensions defined in 3.

i 1 5 S
3.10.2. FORMAT [2,4]

3.10.2.1. UNIT RECORD

A unit record may be:
f
() a printed line with a maximum of 68 or 102 charag
ters depending on whether the output is performed by means

of typewriter or printer;

24

(2) a portion of punched paper tape ending with the
pair of characters Yv and composed by 68 characters at the
most;

(8) ‘a record of a BCD magnetic tape with a maximum
of 132 characters.

'3.,10.2,2. NUMERICAL FIELDS

The conversions :already available arfe listed in Ta-
ble II. Each conversion ‘depends on :the mode of the quanti-
ty that is to be transmitted and oh the corresponding nume
rical format specificatien; yet the format specificationof
type O over-rides any other mode. ‘

Numerical format ispecifications may be in the forms
indicated in [2,4] and they describe the external form of
the numerical information :asin [2.4]. '

The number of position:to the :right of the decimal
point, in a numerical :field controlled by 'an E- aor F- ‘type

specification, is not-treated modulo.
3.10.2.3. ALPHANUMERICAL :FIELDS

The :format 'specification of ‘type 'A over-rides any o-
ther mode.

3.10.2.4, BLANK FIELDS

The :number of blank characters provided in an output
record or characters skipped in ' an input record may not ex-

ceed the record maximum length.

3,10.2.,5. REPETITION OF FIELD FORMAT. REPETITION OF GROUPE.

A FORMAT statement may ‘include up to three levels of

parentheses, For example, the :statement:

TABLE 11

Inner numeri=

Character of

cal infarmation] mode contia Outer numerical information
‘Bimary hrteger| J I Decimal integer in the interval -zésy——z35
) (1).Js
Binary integer| ‘D 0 Octal integer in the interval
Y -400000000008——— 777777777777
i Decimal fixed-pdimt number included.in the in-
§§§§gep§i221- s F .terval -1+— 1.The maximum number of decimal
sion binary .digits. (considered in.the decimal to.binary s
Sumber stem conversion) after the point, is 10. :
Fixed-point Decimal fixed-point number included‘in the in-
.double preci- D F terval -1+———1,The maximum number of .decimal
sion binary digits. (considered.in the decimal to.binary sy
.number stem conversion) after the point, is 20,
Floating-point | Decipal number,without exponent, equal to.zero
single preci- v F or with absolute value includedzgetqsen the ap
sion binary proximate.limits of 10°88 and 10738 ” | the ma-
number Ximum number of significant digits, considered
in the decimal to.binary system conversion,is8,
Decimal number, without exponent, equal to zero
Floating-point or with absolute value. included hezzggg the: ap
-.4932 =
gggglebiﬁzﬁgi . p | proximate 1imits or 107%°% and 10 () e
numbes maximum. number of significant digits conside-
) red in the decimalito binary system conversion
i® 18.
~"Decimal number with exponent on line with the
mantissa, .separated from it by the letter E.
Floating-point The magnitude of such a number must.be zero or
single preci- :Iin¢luded between the approximate .limits of
sion binary ¥ 2 =8 +3
:number 10 and 10 «-The maximum number of'signifi
cant digits,considered in the decimal to bina-
ry system conversion, is 8.
Decimal number with exponent on.line with the
mantissa, separated from it by the letter E. The
Floating-point magnitude of such a number must be zero or.in-
.double preci- W E cluded between+2ggz;pappréximate‘.Iimits of
:iggerbiuary 10~ and 10 . The maximum number of si-
gnificant digits,considered in the decimal to
.binary system.conversion, is 186.

(1) Octal numbers in the interval 400000000000+ 777777777777 .are converted in
the binary system as the opposites of the complement of 8.

(2) It is obvious that those limits meet uniformity requirements.and:not prac-
.tical requirements when the decimal number. is without exponent.

26

FORMAT (2(3(2(F14.7,E16.6),13/) ,8E20.8//))

is allowed.

3.10.2.6. SCALE FACTORS. MULTIPLE - RECORD FORMATS. FORMAT AND
INPUT/OUTPUT STATEMENT LISTS. ENDING A FORMAT STATE
MENT. FORMAT STATEMENTS READ AT EXECUTION TIME. CABR
RIAGE CONTROL OF THE PRINTER OFF OR ON LINE.

There are no changes.

3.10.2.7. DATA INPUT AT EXECUTION TIME

The blank characters in numerical fields are ignored.

The numbers, contrdlled.by the numerical specification
of type I, are not treated modulo.

Rel axations, in input data format, are permitted in a-
ny precision. Numbers affected by writing errors or by magni-
tude errors will not be converted and the computer will stop

signalling the error type.-

3.10.3. READ

The READ statement has the general form:
READ W /(L
where:
(a) W is a positive integer constant or an integer variable
which specifies the number of :the paper tape reader to be u-
sed;
Uﬂ OL is the number O or a reference to a FORMAT statement,ma
de by means of a statement number or'a matrix name;
(c):f is the list of quantities as is described in 3.10.1.
ILmay,asmmm the values 1,2 or 3.

The general form indicated in [2,4] is allowed andit is
equivalent to a READ statement for the paper tape reader Nel.

27

The READ statement causes the reading and the conver
sion (if it is necessary) of data punched on paper tape, up
to the end of the list.

If R is the number 0 , reading is not done under the
control of a FORMAT statement; otherwise reading is control
led by the FORMAT statement referred to. In the first case,
to the variables of the list may correspond only numerical
data of type indicated in table II and ended by blank .cha-
racters and/or by the pair of characters y'v.

Examples:

READ 12, (FRM (K), K = 1,8)

READ I/0 ,T, K,B(K), D:((CAM(I,R * J), I=1,8), J=15),
((Ca(x,9,L), J=1,7), 1=1,5),L=1,K)

READ LF/FRM, W: (AH55(I,5),I=1,4), V: BRMS,C, (D:E(I),S:F(I9),
1=1,100,2),G

3.10.4. READ INPUT TAPE, READ TAPE, READ DRUM, PRINT, WRITE
OUTPUT TAPE, WRITE TAPE AND WRITE DRUM [2,4]

The reference to a FORMAT statement, if any, may .be
done through a name of a matrix as well as by means of asta
tement number.

The list is that indicated in 3.10.1.

The magnetic tape units are numbered from 1 to 8.

There are not 8 magnetic drums but there are 8 regions

of the same magnetic drum.

3.10.5. PUNCH

The PUNCH statement has the general form:

ponat W/ R, T

28

where:

(a)lL is a positive integer constant or an integer variable
that specifies the number of the high speed punch to be u-
sed;

(b)d{ is a reference to a FORMAT statement, made by means of
a statement number or a matrix name;

(e) L is a list of quantities as said in 3.10.1.

W may assume the values 1,2 or 8.

The general form indicated in [2,4] is allowed and
it is equivalent to a PUNCH statement for the high speed punch
No 1.

The PUNCH statement causes the conversion (if it 1is
necessary) and the punching of :the list quantities on a pa-
per tape.-

‘ Successive records are punched in agreement with the
FORMAT statement referred to, until the list is exhausted.
Examples:
PUNCH 10, (((A(1,J,K),B(I,d,K), K=1,5), C(I,J), J=1,8),

' D(1), I=M,40)
PUNCH 8/7, ((w:A(I,J), D:B(I+2,8 * J), I=1,15,2),J=1,4)
PUNCH K/12, 1, S : (C(1,3-2), J=4,7), D(I)

3.10.6. TYPE

TYPE is a statement which has the general form:

TYPE OL:,ﬁ
where (R and 2 are as 'in '3.10.5.
The TYPE statement causes the conversion (if it is ne
cessary) and the printing of the quantities of the list on

the on-line typewriter.
Successive lines are printed accordingly with the re-

ferred FOBMAT statement until the list is exhausted.

——

29

Example:
TYPE 12, A, B, J,'D: c(J), b3, G(J)

3,10.7. END FILE, REWIND AND BACKSPACE

Magnetic tape units are numbered from 1 to 8.
3.11 SPECIFICATION STATEMENTS [2,5]

3,11,1 DIMENSION

In the list of matrix names, each subscripted with
one, two or three positive integer constants which denote
in the given order the number of rows, columns and layers
of the ‘matrix, may appear several mode indicators, each of
which may be introduced before any matrix name.

‘A mode ‘indicator :specifies the mode of non-integer-
matrices, referred to with names following it, 'until ano-
ther mode :indicator occurs.

Matrices, 'the names of which :are not preceded by :a
mode indicator, have :the mode as iin [1].

The elements of a matrix are all in the mode of the
matrix.

For example, in the following statements:

DIMENSION W: A(5), B(4,20), D:.C(3,17,8), INT(12)

DIMENSION JOB(7), F(14,8), S: G(20,4,50),H(11,5) , W: TAB(50,50)
the elements of the matrices referred to with INT, JOB

.are all integers;

the elements of the matrix referred to with F are all in the
V mode; ’ '

the elements of the matrices referred to with A, B, TAB are
all in the W mode;

the elements of the matrices referred to with G, H are all in

30

the S mode;

the elements of the matrix referred to with C are all in the
D mode.

3,11.2. EQUIVALENCE AND COMMON.

In an EQUIVALENCE statement the :subscripted variable

C(p), with p > O, means the (p-1)th location after the high-
‘er-order word of the variable C or the first elementof the
matrix C.

If p is not specified it is taken to be 1.

The COMMON .area is assigned beginning at location 8000
and continuing downward in.the main memory.

The elements of each matrix are stored in order of ‘in
creasing storage locations.-

Dummy variable names, placed in a COMMON statement to’
force correspondence in main memory locations between two va -
riables which otherwise will occupy different relative posi
tions,-must<also:appeariin a DIMENSION statement.

For example, the.statements:
DIMENSION W: E(3)
COMMON . A, 'B, C, D .
EQUIVALENCE (C,E(2))

will cause storage to be assigned in the following way:

D

B

A
E' (1)

C EI1(1)
E! (2)
EI1(2)
EY (8)

EII(3)

31

I IT
where E {i}) and E (i) represent the first and second part
‘respectively of the element Efi} in double precision .and
: II
the locations increase, one by one, from D to E (3).

3.11.3. FREQUENCY

May be used, but it is simply ignored.-

3.11,4. MODE
MODE is a statement which has the general form:
MoDE M , ., M,... M

where each T, is one of the letters G, K, L, M, N, P, QA,
T, U, Y followed by a positive integer constant between pa-

rentheses.

| Every letter indicates the real .mode of which the in
teger constant, following.ic, makes .explicit the number of
words.a quantity occupies under ‘that mode, ;

The MODE statement introduces real modes different

from that indicated in section 3.3 and must precede the o-
ther ;statements in which they appear.
For example, if the letter K is assumed to specify integer
quantities in double precision, the statement which intrody
ces the mode K 1is:
MODE K (2)

3.12. COMMENT

A comment must be punched, as said in 8.2,with the
letter C before the beginning character #.

32

4. HAND-CODED SUBPROGRAMS

Subprograms written in symbolic language LPSC (Linguag.
gio Programmativo Simbolico CEP [3]) may be called by a FOR
TRAN CEP program as FORTRAN CEP subprograms of ‘type FUNCTION
or SUBROUTINE provided that the coding is done in the suita-
ble way. ’

REFERENCES

[1] IBM Reference Manual 704 FORTRAN Programming Systenm,
Form C 26 ~ 6108,

[2] Manuale delle istruzioni CEP - Centro Studi Calcolatrici
Elettroniche, Pisa (Italia) 1960.

[8] La programmazione simbolica per la CEP - Centro Studi Cal
colatrici Elettroniche, Pisa (Italia), 1981.

