Getallurgical Bulletin

THE GENERAL ENCINEERING COMPANY SALT LAKE CITY NEW YORK CITY N.S.A.

) -

Office and Laboratory 159 Pierpont Avenue Salt Lake City, Utah

METALLURGICAL BULLETIN

The General Engineering

Company

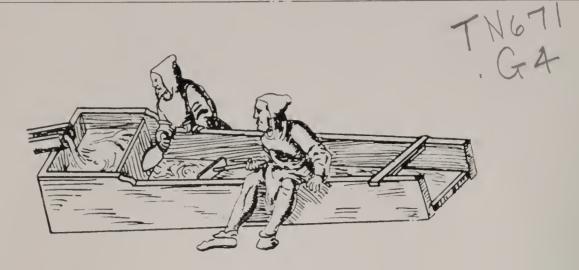
(Incorporated)

Consulting Engineers

OFFICERS

י גר ר

J. M. CALLOW ERNEST GAYFORD KARL BERNSON JAS. W. NEILL C. E. CHAFFIN President and Gen. Manager Vice-President and Secretary Director Director Director


22-9860

SALT LAKE CITY, UTAH 159 Pierpont Ave NEW YORK CITY 120 Broadway

Copyright 1922 by The General Engineering Company

U. S. A.

JAN 13 1922

ACKNOWLEDGMENTS

In a publication of this nature, use is made of data from a variety of sources, and it is our desire that full credit be given. Some material is obviously of a public nature and it is quite impossible to give credit to the originator, but where the information has been taken bodily or adapted from published tables credit is given with our table.

Use has been made of matter published in the bulletins of the American Insitute of Mining and Metallurgical Engineers, the Institute of Mining and Metallurgy, the U. S. Bureau of Mines, the U. S. Geological Survey, and other governmental bureaus: the Engineering & Mining Journal, the Mining and Scientific Press, Richard's Ore Dressing, Allen's Handbook of Ore-Dressing, various engineers-handbooks, manufacturers catalogs, etc.

Much of the data has been accumulated by the General Engineering Company in the course of its many years service, and much has been worked up for this bulletin.

Use has been made of some of the illustrations in Agricola's De Re Metallica made available by the translation and publication of Herbert Clark Hoover and Lou Henry Hoover.

© CI.A654902

4

METALLURGICAL BULLETIN

Successful mining depends upon profitable marketing of the products of the operations.

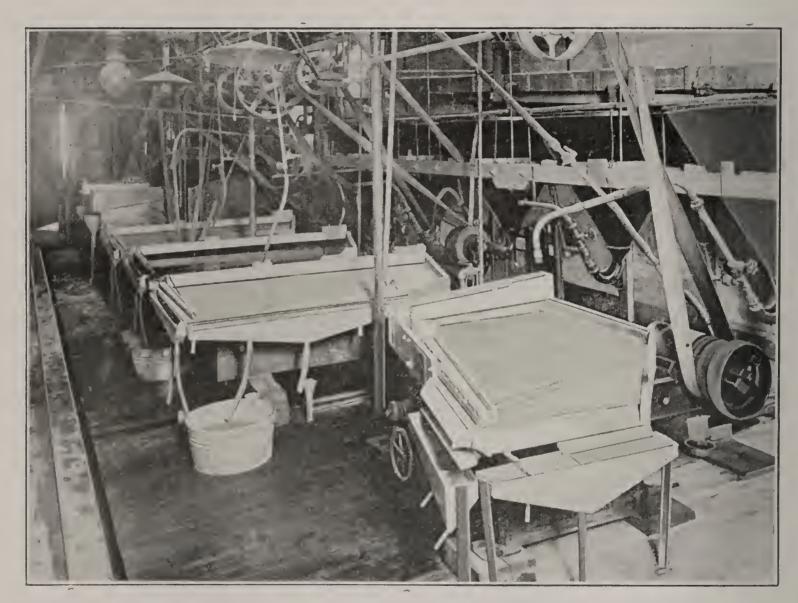
The very nature of ores, with the great variation in minerals, economic metals, refractory elements, grain sizes, physical properties, etc. makes its beneficiation more than a simple process.

All ores require treatment in a metallurgical plant before the products can be profitably marketed.

Successful metallurgical plants are predicated upon forehand knowledge of the behavior of the ore and its constituents under various treatments and conditions, worked out into a comprehensive plan or flow-sheet, and embodied in a design which utilizes the best of modern machinery and appliances to obtain the desired products with the minimum of operation difficulties and at minimum cost.

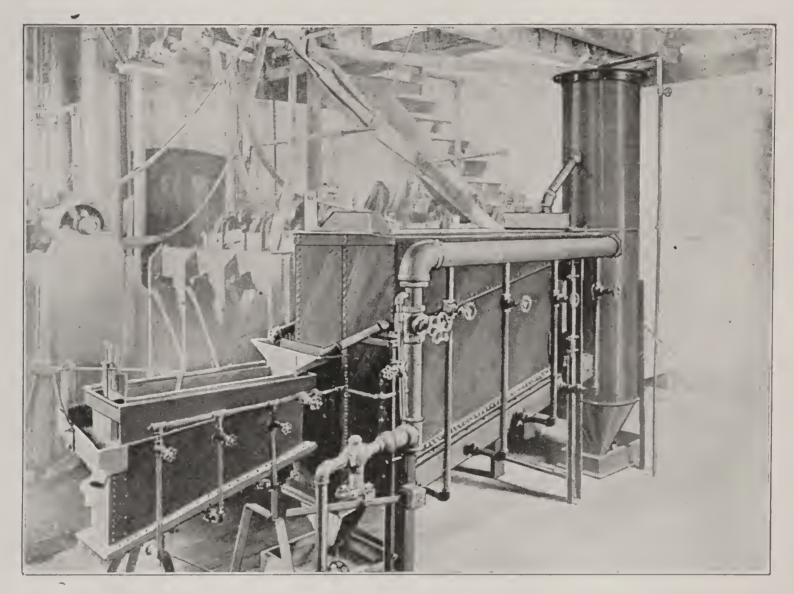
The business of the General Engineering Company is the work of putting mines upon an economical producing basis:— the examination of mines to determine those factors affecting production; sampling the mine for ore treatment; analysis and testing of ores, planning for economical recovery of the values; design of metallurgical plants based upon the results of metallurgical tests; purchase of equipment; erection and operation of plants; sampling and sale of metallurgical products; and solution of such engineering, metallurgical and economic problems as naturally arise in these connections. In addition, the plant and staff have served and will continue to be available for the solution of similar problems in industrial work.

The General Engineering Company was organized in 1905 with a strong engineering staff and a laboratory for testing ores. The original organization is practically intact, with such additions as naturally come to a business whose continued success demands the broadening and strengthening of its lines and the extension of its facilities. While the offices and testing plant are still in their original location, both have been more than doubled in floor space in the last few years.


John M. Callow, as president, has had the direct management of the company since its inception. The mining public is well aware of his international reputation as an expert in ore-treatment problems, and in the design of metallurgical plants and equip-

.

ment. He has developed Pneumatic Flotation, and it is largely to his efforts that the great success of this process is due. The Callow Tank and Callow Traveling Belt Screen are also successful machines of his invention.


Mr. Callow divides his time between the Salt Lake and the New York offices of the company.

The other officials of the company are well-known men of technical training and years of practical experience.

Testing Plant Concentrating Tables, Callow Tanks

Recognition of a world demand for the services of the General Engineering Company, as well as from engineers and operators of the eastern United States, led to the establishment of an office in New York City. The coordination of our two offices is quite thorough; Mr. J. M. Callow spending a part of his time at each office, and by a system of exchange of correspondence and data, full information regarding progress of all work and new developments are made available at both offices. In these times of rapid advance in the science and art of ore treatment and allied subjects, it is necessary to keep closely in touch, not only with new processes, but with new types of machinery. The General Engineering Company aims to be progressive; it has always been willing to spend the necessary time and money to investigate thoroughly such processes and equipment as in its judgement might be of value to its clientele, that it may be able to advise them of their merits.

Testing Plant Tonnage Pneumatic Flotation Equipment Jigs in background.

Modern plants make use of the pebble, ball, and rod mills for the finer crushing operations. The development of the pebble mill as a granular crusher for concentration was started in the testing laboratories of the General Engineering Company; it was among the first to adopt the ball mill for wet crushing. Rod mills and other improvements are being carefully investigated for the benefit of its clients.

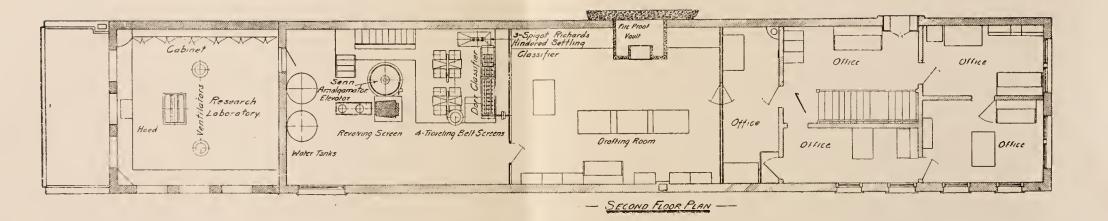
7

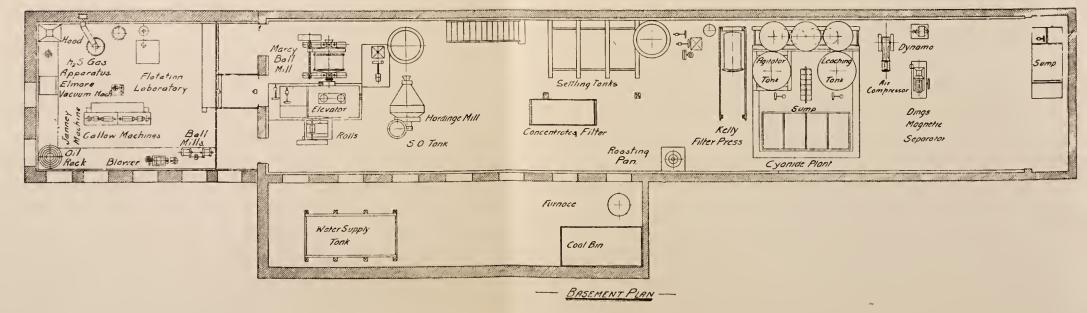
Flotation, the most important metallurgical process of recent years, has made tremendous strides since the General Engineering Company built the first Pneumatic Flotation plant in 1914. Particular attention has been given to the perfection and commercializing of special and new flotation reagents, and its laboratory is equipped to deal with flotation problems of any nature.

Some of the leaching processes have great commercial possibilities on ores and concentrated products. Leaching with acids and alkalies, sulphatizing roasting with leaching, etc. show promising results, both in the laboratories of the General Engineering Company and in several commercial plants.

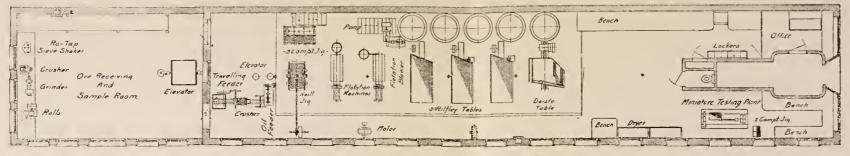
Investigation of new processes and new types of machinery is a specialty, for which the General Engineering Company's laboratories are particularly well equipped. A number of well known successful machines, devices and processes have been developed in these laboratories, under its supervision, or with its advice as consultants.

The sale of ore-shipments with the attendant supervision of sampling is done for clients unable to attend to such matters themselves. Familiarity with local samplers and smelters, ore schedules, etc, qualify the General Engineering Company peculiarly to safeguard their interests.

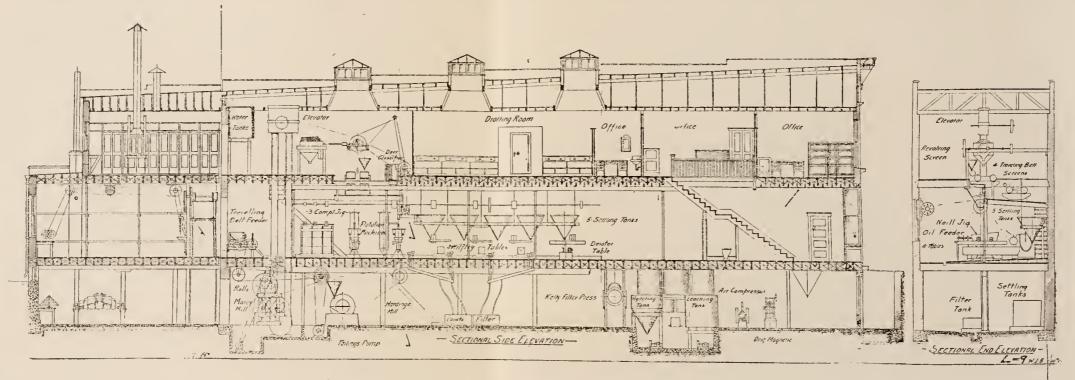

MINE EXAMINATION WORK


Before a mine can be valued or put into production, the economic method of treatment of its ore must be known. Likewise, before a treatment process can be worked out, the mine itself must be studied, for character of ore bodies, tonnage of ore available, determination of shipping ore, milling ore, and waste; all these have an economic bearing upon the property.

It follows logically that the examination and valuation of mines and the treatment of the ores are so closely related, that best results are obtained by the use of one organization for this work.


The General Engineering Company is affiliated with experienced mining engineers, and is prepared to undertake mine examinations and reports, in connection with proposed treatment plants, or for other purposes, as desired.

DEVELOPMENT OF PROSPECTS AND SMALL MINES.— The supervision of the development of smaller mining properties, aiming at the opening of such ore-bodies as may be made commercial by shipment or milling will be undertaken.



Testing Plant The General Engineering Co., Salt Lake City, Utah

- FIRST FLOOR PLAN-

Testing Plant The General Engineering Co., Salt Lake City, Utah

ORE TESTING

Mill operations can be expected to be successful only when the design of the plant is suitable to the ore to be treated. Accurate and complete data for the design of treatment plants for ores can only be obtained in a suitably equipped testing plant. The Ore Testing Plant of the General Engineering Company is generally recognized as the best equipped and the most practical in the entire world; on the results of its testing, a large number of successful plants have been built.

DESIGN OF TESTING LABORATORY

The Ore Testing Laboratory of the General Engineering Company is unique and differs from other plants of similar nature in that actual mill conditions are here duplicated, the process of whatever character being continuous and not intermittent. This plant is so arranged that all possible ore dressing combinations can be made at will, the ore starting at the feeder and progressing through, from machine to machine, in exactly the same manner as if it had been especially built for the particular ore.

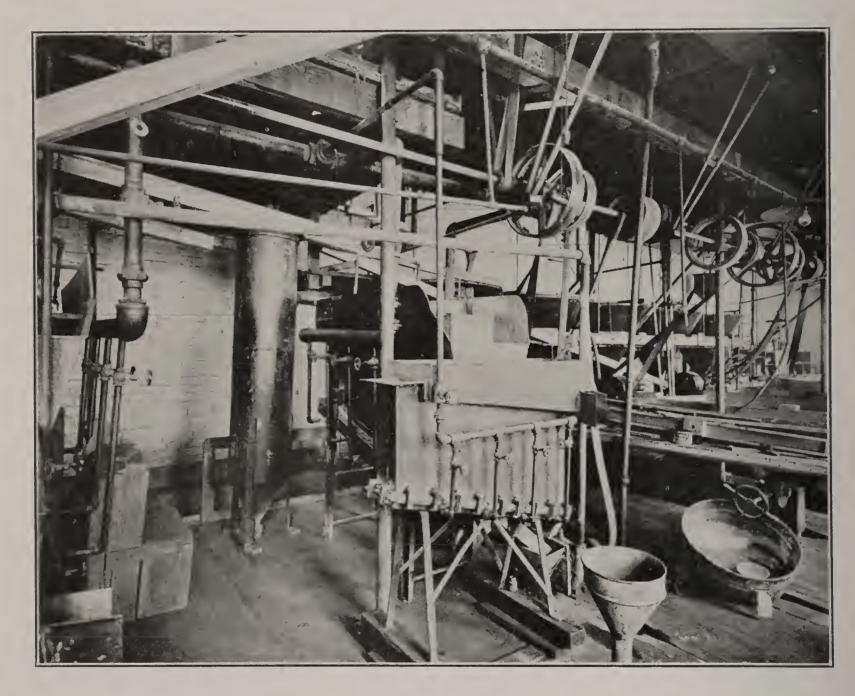
The laboratory covers two floors, each 20x120 feet, and part of an upper floor, 20x30 feet. The arrangement, variety and character of equipment, and the exceptional facilities will be better comprehended from an examination of the line drawings inserted here. As new machines are perfected and new processes commercialized, the General Engineering Company aims to include in its laboratory such new machines and such necessary equipment for new processes wherever possible; it is only by keeping up-to-date that the best service can be given.

METALLURGICAL TESTS

These divide naturally into three classes:

Preliminary Investigation Tests

Complete Metallurgical Tests


Tonnage Check Tests

In addition, Operating Tests may be desirable, either in a leased commercial plant, or in a new Pilot Plant.

It was formerly the custom to divide this metallurgical testing into three classes: Short Cut Tests, Preliminary Tests, Tonnage Tests; to some extent we follow this practice in special

.

cases. Long experience has brought increased confidence in the ability to attain in the smaller quantity tests the results obtained in the tonnage tests; as check results between the two show. The new system of tests offers the client in the Complete Metallurgical Test nearly all the information which was formerly obtained only by the Tonnage test.

Testing Plant Flotation and Gravity Concentration Equipment.

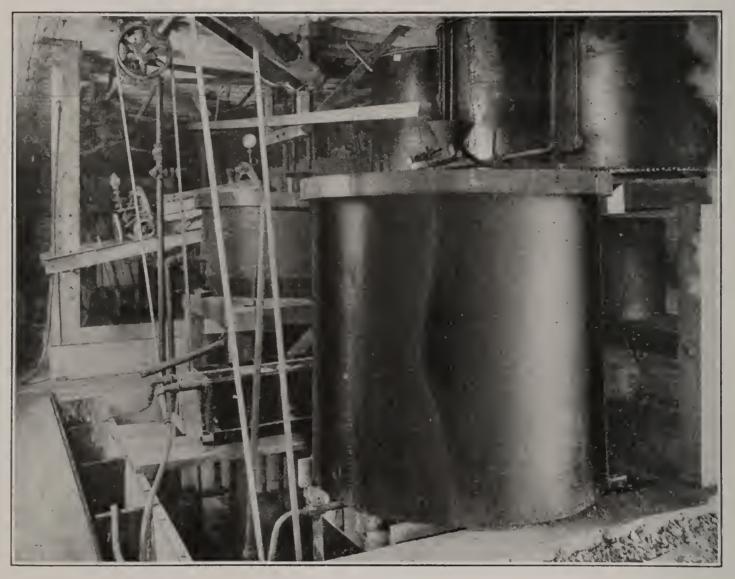
PRELIMINARY INVESTIGATION TESTS are made upon small samples, of from 50 to 100 pounds, to determine in a general way what process of milling is likely to be most applicable to the ore in question. Detail is not gone into and the report gives only an outline of the methods employed and the results obtained. COMPLETE METALLURGICAL TESTS are what the term implies, and, except where the client specifies the method or flowsheet, the sample is subjected to any or all of the established processes that could be considered applicable. The General Engineering Company's reports are very complete and detailed, generally accompanied by a flow-sheet, diagramatically illustrating the method of treatment employed to obtain the results shown in the reports; each sample and product from the test is given an individuality and identity of its own, and its importance or insignificance becomes at once apparent.

TONNAGE CHECK TESTS are made to establish the physical behaviour of the ore under conditions more nearly approaching practice. When satisfactory results are obtained with the smaller Complete Metallurgical Test, the Tonnage Check Test becomes unnecessary in many cases: however for such cases as appear to require the Tonnage Check Test, the necessary equipment is maintained in these laboratories.

OPERATING TESTS.—In addition to the laboratory tests outlined, it may be desirable, in certain cases, to make use of an operating mill and to treat several thousand tons of ore, following out the flow-sheet determined in the testing plant..

The General Engineering Company will take charge of such operations, recording all the information obtained, and furnishing a comprehensive report.

PILOT PLANT.—These are experimental operating plants built at the property, and are justified only when the ultimate erection of a reasonably large plant is contemplated, say of a daily capacity of 500 tons or more. Its capacity will depend upon local conditions at the property, but it should be large enough so that operating conditions and costs will be comparable to those of a full size commercial plant. With a capacity of 50 tons per day of 24 hours, the pilot plant should contribute materially to its support; and much of the machinery can be used afterwards in the commercial plant.


The General Engineering Company is prepared to design, erect and operate such pilot mills or experimental plants.

Information Required

In order to show the full commercial significance of the results obtained in the tests, the final deductions are usually reported in their money return per ton of crude ore treated, after subtracting all expenses and costs of milling, hauling, railroad freights and smelting. To do this correctly, it is necessary that there be furnished information as to:

Cost of hauling from mill to nearest R. R. station, Freight Schedules,

Ore Schedule under which the mill products would be sold.

Testing Plant

Cyanide Equipment, consisting of Leaching Tank, Agitating Tank, Solution Tank, Filter Press, Zinc Boxes, and Sumps.

As local conditions often have a direct bearing upon the best treatment for an ore, information should also be furnished as to:

Cost of labor, wages, etc. Cost of power, fuel, etc.

Water Supply.

Such information is naturally considered of a private nature.

If a smelter schedule has not previously been obtained, the General Engineering Company will obtain an analysis of the products to be sold and will assist in obtaining the most favorable terms from the ore buyers.

QUANTITY OF ORES REQUIRED FOR TESTS

For Preliminary Investigation, 50 to 100 pounds.

For Complete Metallurgical Tests, 350 to 500 pounds.

For Tonnage Check Tests, from 3 to 5 tons, depending upon the flow-sheet as determined by previous investigation.

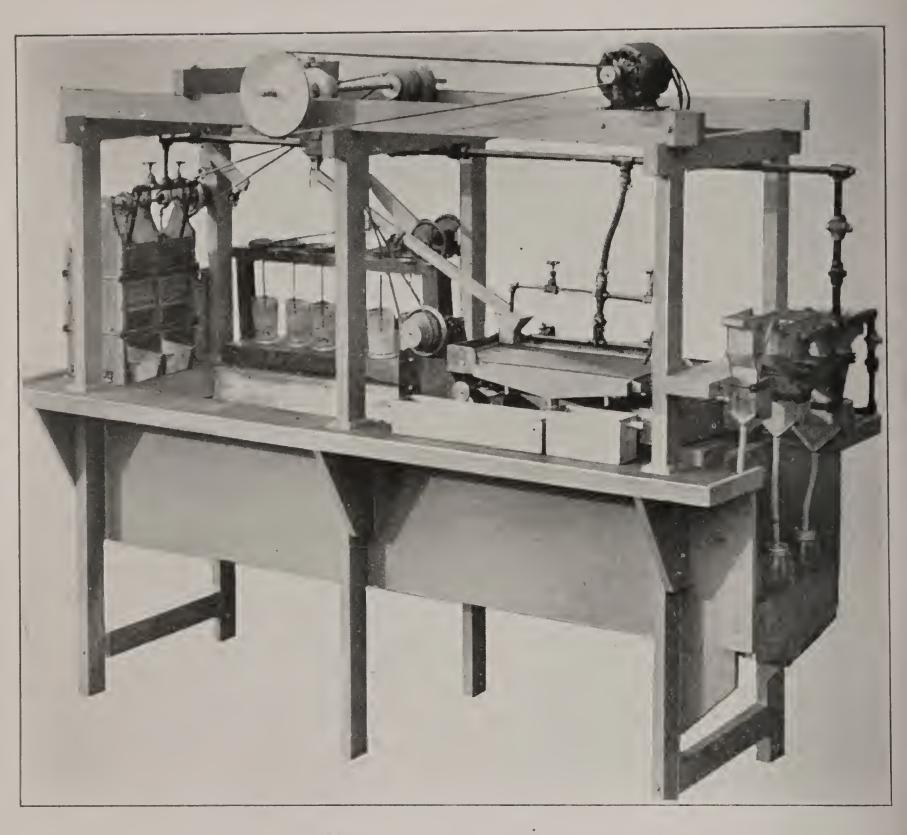
SHIPMENTS

All shipments should be consigned prepaid to the General Engineering Company, 159 Pierpont Avenue, Salt Lake City, Utah, mailing us bill-of-lading or express receipt.

In case of tonnage shipments that are to be sampled by the public sampler, notify us before shipment, and mark the bill-oflading "To be sampled in transit."

ASSAYING

The General Engineering Company do no assaying themselves; all work and reports are based upon the assays and chemical analyses of public and independent assayers. Before starting upon test work, the client is requested to designate such assayers in Salt Lake City as they may prefer, only the actual cost of the assaying being charged.


CHARGES FOR TEST WORK

The exact cost of a test cannot be stated in advance, as it depends upon how much work has to be done to reach definite conclusions and to make final recommendations. Charges range from \$150 to \$250 for preliminary investigation, from \$350 to \$750 for complete metallurgical test, and up to \$1000 for tonnage check tests

Conditions governing the operating tests vary to such a degree that it is impossible to give any estimated figures that would apply in specific cases. The charges in all cases are made as low as is consistent with good and thorough work. Anyone at all familiar with this class of work will realize that much time and care must be expended upon it, and that the renumeration should be commensurate.

Clients, when applying for terms, should roughly outline the character of the ore, the class of test, and give all information available with regard to the ore as affecting the test work; an approximate cost for the work can then be submitted by the General Engineering Company.

.

Miniature Ore Testing Plant

This is a complete, self-contained Ore Testing Plant consisting of: 2 compartment 4''x6'' jig; 12''x24'' concentrating table; 3 spigot hydraulic classifier; automatic feeder; $\frac{1}{4}$ H. P. motor; piping, belting, etc.

We have supplied many of these minature ore testing plants to universities and mining companies all over the world. If interested write for special bulletin.

Consulting and Special Work

As stated in the introduction, the General Engineering Company is concerned principally with the work of putting mines upon an economical producing basis.

As Consulting Engineers, the General Engineering Company advise upon the many special problems that come up in connection with mining and the industries associated with it; problems requiring inspection, investigation, research, special designing, etc.

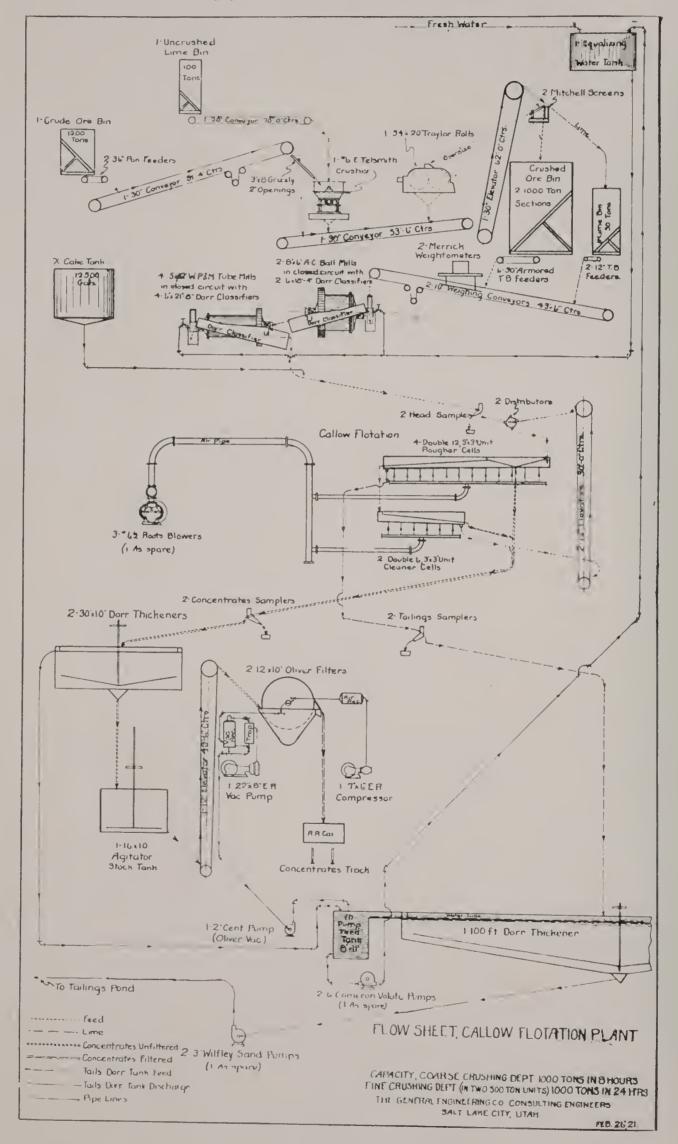
While the General Engineering Company has exceptional facilities for research, wide experience and a competent staff, it does not hesitate to go outside its own organization when thereby the interests of its clients are better served. It has close association with engineers, operators, and metallurgists, wellknown and thoroughly experienced in those allied lines of industry and practice which lie outside the regular field of the General Engineering Company.

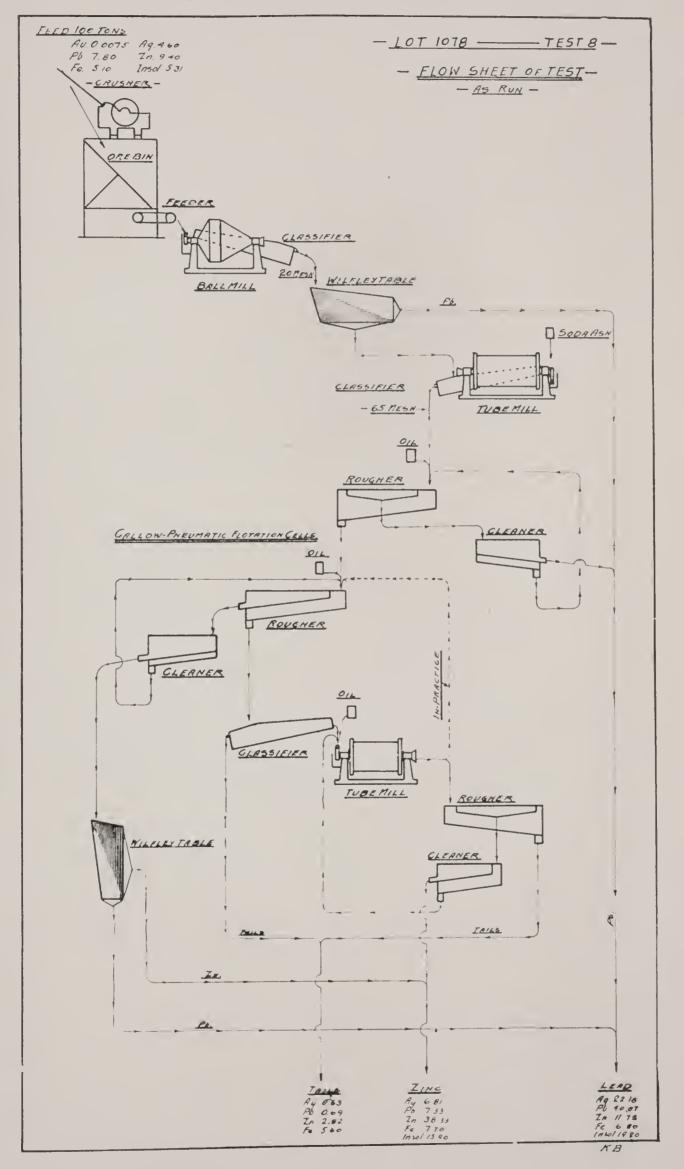
Similarly, special work has recently been done by this organization in such fields as: sugar refining (both beet and cane), phosphate and potash production, sewage disposal, thickening and filtration of difficult materials, roasting-and-leaching, new processes, etc.

FLOW SHEETS OF MILLS

The purpose of ore-testing work is two-fold: (a) to determine whether the ore may be treated at a profit, and (b) to find the process whereby the most profit may be obtained.

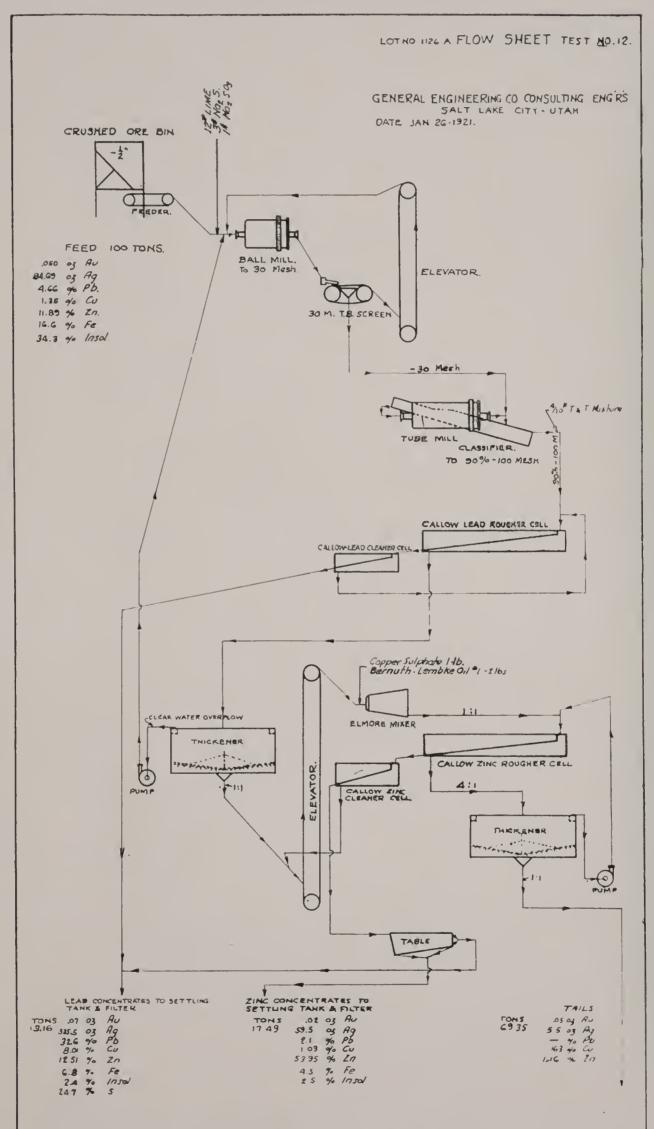
An ore-treatment process is best explained and comprehended by means of a Flow-Sheet and where considered necessary a flowsheet accompanies the ore testing report.

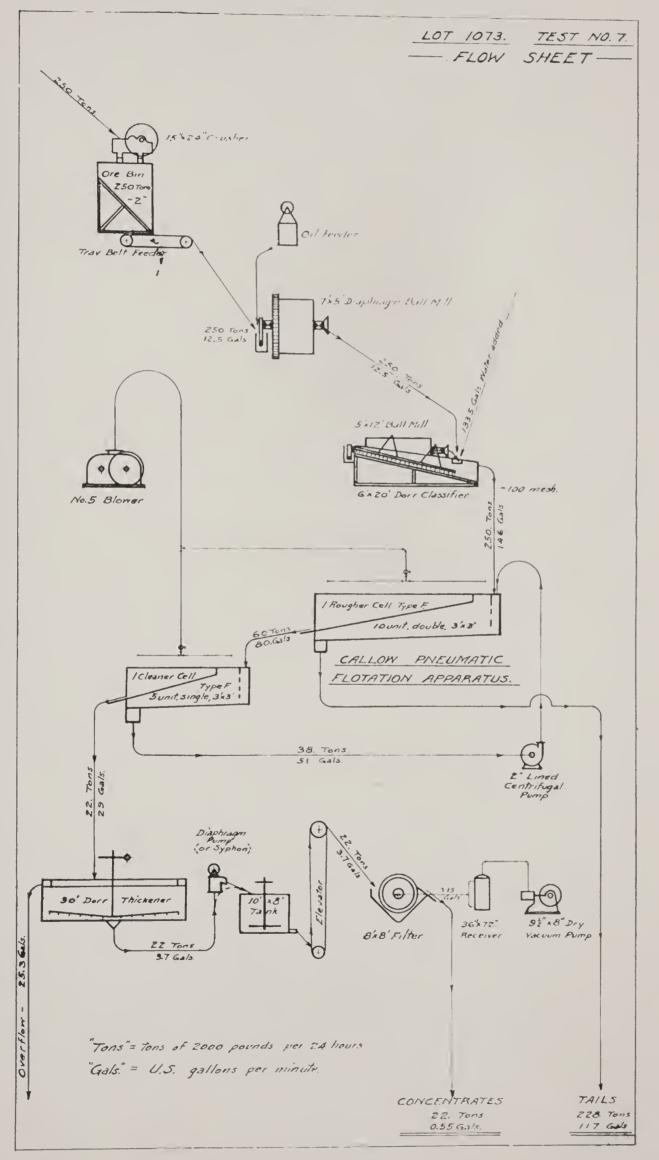

The flow-sheet is the basis upon which new plants are designed, and aims to show the movement of the various constituents of the ore stream from the time it enters until it leaves the mill; quite frequently there is added information in the way of quantities and assays of the various constituents or products, and the flow-sheet may include a water chart.


The varied characters of ores and their required treatment methods can be shown in no better manner than in the variation in the flow-sheets illustrated on the pages following. In the hundreds of flow-sheets in the test-report files of the General Engineering Company, very few are alike, indicating that requirements and conditions vary from mine to mine, and emphasizing the necessity for testing all ores, rather than depending upon the flow-sheet of an adjoining or similar property for the design of contemplated plants.

Various types of mills are illustrated by the flow-sheets on the pages which follow.

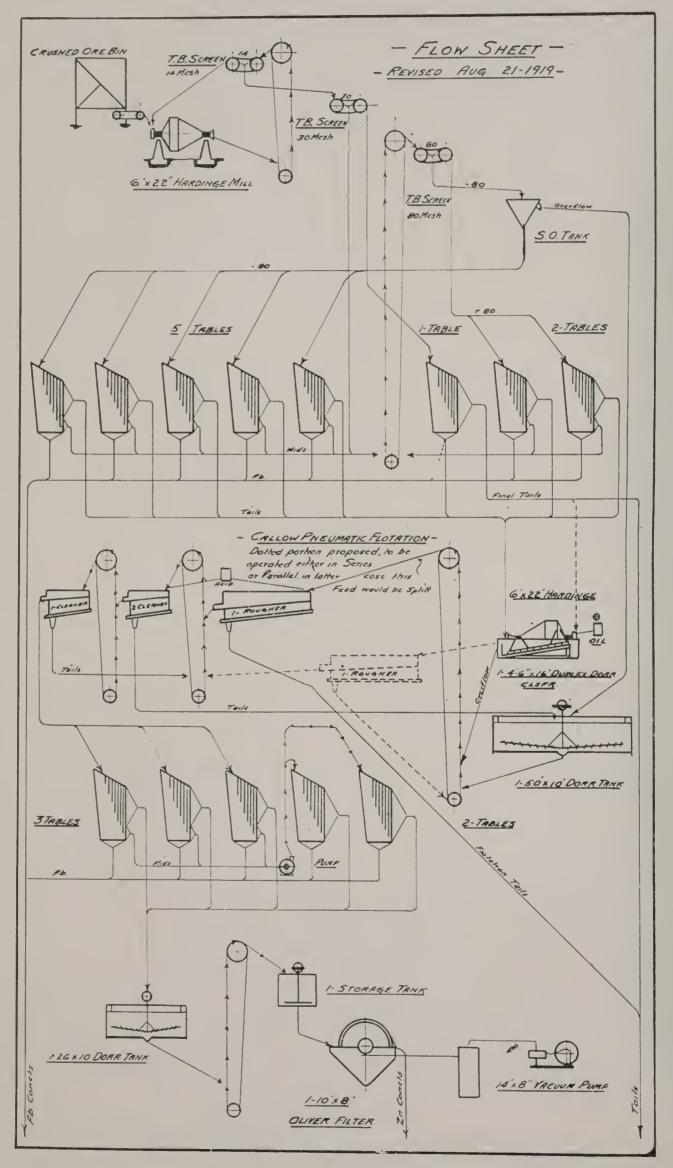
.....


Copper Ore, all Flotation

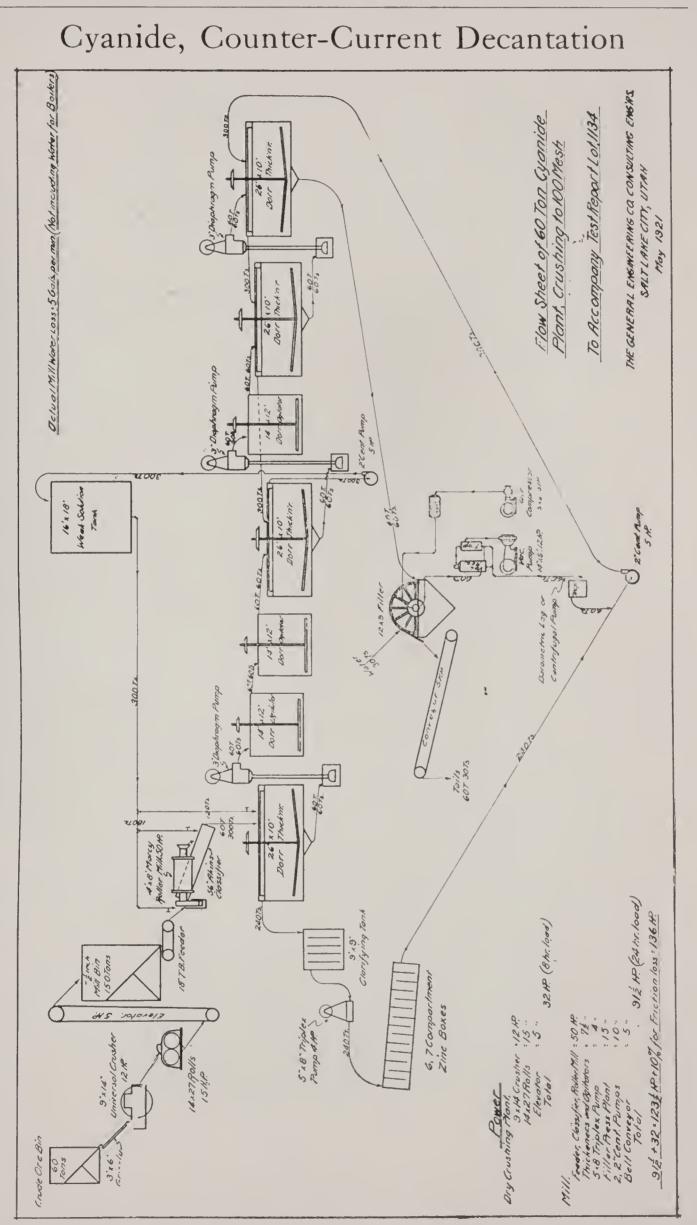


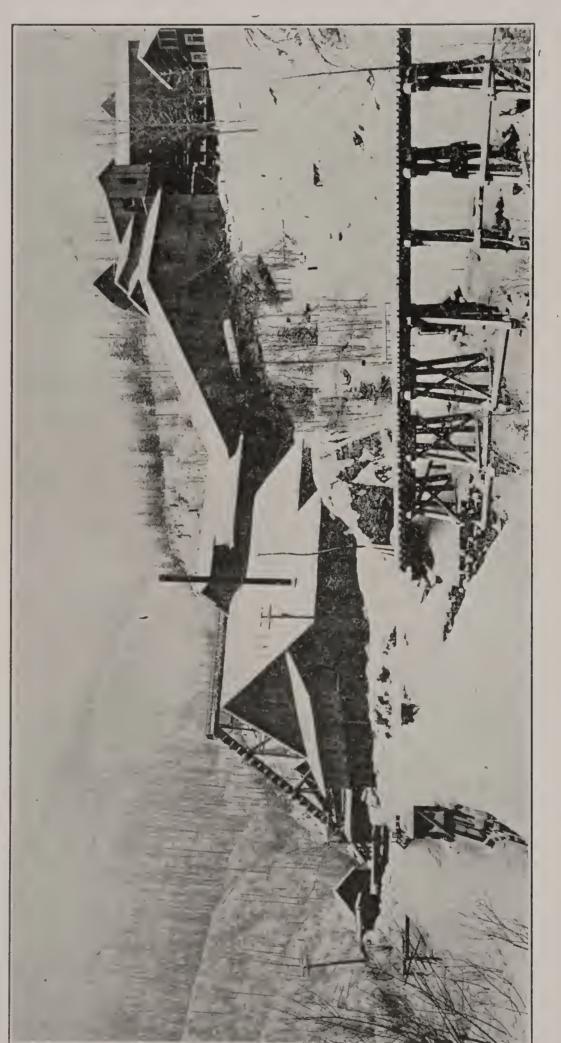
Gravity Concentration and Flotation

Complex Ore, All Flotation



Lead or Copper, All Flotation




19

Lead-Zinc Ore, Gravity Concentration and Flotation

.

Concentrator-Gravity and Flotation

Designed and built by the General Engineering Company.

C. C. Cunningham, Sandon, British Columbia.

Design, Erection, Operation

The results of the testing work and other investigations indicating that the ore may be mined, treated and disposed of at a reasonable profit, the obvious thing is to design and erect a plant suitable for the ore, so that operations may be begun at an early date.

First Pneumatic Flotation Plant in the World National Copper Company, Mullan, Idaho. Designed and built by the General Engineering Company

The General Engineering Company maintain a staff particularly well fitted by both technical training and experience to deal with the problems of design. With the test results before them, and such necessary data and decisions as to capacity, water supply, source of power, available sites, etc., the engineers make preliminary studies, designs and estimates for plants to give the desired metallurgical results. After staff consultation, such modifiations as are deemed advisable are made, and the results embodied in a report; a conference is held with the clients and decisions arrived at as to the design and other details.

A complete set of working drawings is prepared, specifications for machinery and building material are gotten out, the the equipment is ordered, and preparations are made to erect the plant.

The General Engineering Company supply a Superintendent of Construction who remains at the property during the construc-

Concentrator

Utah-Apex Mining Company, Bingham, Utah. Redesigned and rebuilt by the General Engineering Company

tion period; he, together with staff engineers, in collaboration with the management and engineers of the mining company, all working together, make up an organization which is efficient from the start; the work progresses smoothly to completion.

Once the enterprise is financed and the decision made to build the plant, good business demands that the plant be operating as soon as possible. Here the interests of the client and the General Engineering Company are identical, for its reputation for exceptional service is one of its greatest assets This exceptional service covers: economical design, the spending of no more money than is necessary for low operating costs and for the saving of only such values as can be saved at a profit; rapidity of construction, by proper planning and specifying, so that material is gotten on the ground when needed and the work of erection is expedited; efficient and competent supervision, insuring readiness-to-run with a minimum of changes.

The charges made by the General Engineering Company are based upon the cost of the work involved, and will be found reas-

Gravity Concentration and Flotation Magma Copper Company, Superior, Arizona Designed and built by The General Engineering Company

onable for the services rendered. Local conditions and expenses incident to work in different localities vary so widely that no definite figures can apply to all cases. In general, the fee to cover the design and superintendence of erection of metallurgical plants will be in the neighborhood of 10% of the cost of the work.

The fee for the operation of metallurgical plants is usually upon a per diem or monthly basis, and depends upon the character of the work involved.

Representative Mills

Designed and Constructed by

The General Engineering Company

Hecla Mining Company	Wallace, Ida. O	re Sorting Plant
Imlay Mining Company Jennie Gold Mining Co.	Imlay, Nev. Good Springs , · Nev.	Amalgamation—Cyanide
Pulaski Minerals Co.	Ketchum, Ida.	Amalgamation— Gravity Concentration
Tomahawk Mines Co.	Durango, Colo.	Amalgamation—Gravity Concentration— Cyanide
 Bingham & New Haven G. & C. Co. Yukon District G. M. Co. Conrad Cons, Mines Co. Iron Mountain Tunnel Co. Phoenix Mining Co. Rico-Wellington Mines Co. Utah Apex Mining Co. Watters Tunnel & Mining Co. National Copper & Pyrite Co. 	Bingham, Utah. Alaska Alaska Iron Mtn., Mont. Bingham, Utah. Rico, Colo. Bingham, Utah. Sheridan, Mont. Pyriton, Ala.	Gravity Concentration
Glasgow & Western Expl. Co.	Cherry Creek, Nev.	Gravity Concentration— Cyanide
Winnemucca Mountain Mining Co.	Winnemucca, Nev.	Cyanide
Dominion Molybdenum Co. American Graphite Co. Steel Alloys Co. Vermont Copper Co. Molybdenum Products Co. Bingham & New Haven G. & C. Co. Caldo Mining Co. National Copper Co. Carbon Mountain Graphite Co. Utah Cons. Mining Co. Armstead Mines Inc. Cons. Copper Mines Co.	Quyon, Quebec Ticonderoga, N. Y. Canada (molybdenum) S. Statford, Vt. Wilberforce, Ont. Bingham, Utah Frisco, Utah Mullan, Ida. Lineville, Ala. Tooele, Utah Talache, Ida. Kimberley, Nev.	Flotation Flotation—Gravity Concentration
Cia. Huanchaca de Bolivia		

Amalgamated M. & S. Corp Magna Copper Company Magna Copper Company C. C. Cunningham Noble Five Mine	. Pioche, Nev. Superior, Ariz. (copper) Superior, Ariz. (zinc) Sandon, B. C. Sandon, B. C.	Gravity Concentration— Flotation
El Rayo M. & D. Co.	Parral, Mex.	Flotation—Cyanide
Knight-Christensen Metal Co.	Silver City, Utah	Roasting—Acid Leaching
Tomboy Gold Mines Co.	Telluride, Colo.	Roasting-Magnetic Sepa- ration.

Pneumatic Flotation Plant

Consolidated Copper Mines Co., Kimberley, Nev. Redesigned and rebuilt by the General Engineering Company

METAL STATISTICS

The data contained in this section has been obtained from a variety of sources considered reliable.

"Round Numbers" are used and slight liberties have been taken with some of the statistics; it is believed that in the form here presented they will be found most serviceable.

Where possible, "foreign ores smelted in the U. S." have been omitted from U. S. production.

Aproximate Averages

	For 20 years up to 1920.									
	World	United States		Prices						
Metal	Production	Production	% of	f. o. b.						
	Per Year	Per Year	World	New York						
Gold	19,000,000 oz.	4,400,000 oz.	-23	\$20.67 per oz.						
Silver	15,000,000 oz.	61,000,000 oz.	$\frac{23}{31}$	0.61 per oz.						
Copper	1,910,000,000 lbs.	1,120,000,000 lbs.	59	$0.18\frac{1}{4}$ per lb.						
Leâd	*2,200,000,000 lbs.	*838,000,000 lbs.	*38.1	0.053 per 1b.						
Zinc	*1,790,000,000 lbs.	* 692,000,000 lbs.	*38.6	0.074 per lb.						

* For 17 years 1904 to 1920.

Gold and Silver

Production-United States and World

\$2	GOLD 20.67 per o	Ζ.		SILVER			
United Millions Dollars	States % World	World - Millions Dollars	Year	United Millions Ounces	States % World	World Millions Ounces	Ave. Price per Ounce
$\begin{array}{c} 79.2 \\ 78.7 \\ 80.0 \\ 73.6 \\ 80.5 \end{array}$	$\begin{array}{r} 31.1 \\ 30.2 \\ 27.0 \\ 22.5 \\ 23.2 \end{array}$	$\begin{array}{c} 254.6 \\ 261.0 \\ 296.7 \\ 327.7 \\ 347.4 \end{array}$	$ 1900 \\ 1901 \\ 1902 \\ 1903 \\ 1904 $	57.6 55.2 55.5 54.3 57.6	$\begin{array}{r} 33.1 \\ 31.9 \\ 34.1 \\ 32.4 \\ 35.1 \end{array}$	$\begin{array}{r} 173.6\\173.0\\162.8\\167.7\\164.2\end{array}$	\$0.62 .60 .53 .54 .58
$ \begin{array}{c c} 88.2 \\ 94.4 \\ 90.4 \\ 94.6 \end{array} $	$23.4 \\ 23.4 \\ 21.9 \\ 21.3$	$380.3 \\ 402.5 \\ 413.0 \\ 442.5$	1905 1906 1907 1908	$56.1 \\ 57.5 \\ 56.5 \\ 52.4$	$32.5 \\ 34.2 \\ 30.3 \\ 25.8$	$172.3 \\ 165.1 \\ 186.2 \\ 203.1$	$\begin{array}{c} .61 \\ .68 \\ .66 \\ .53 \end{array}$
$\begin{array}{c} 99.7\\ 96.3\\ 96.9\\ 93.5\end{array}$	$21.9 \\ 21.1 \\ 21.2 \\ 20.1$	$\begin{array}{r} 454.1 \\ 455.2 \\ 461.9 \\ 466.1 \end{array}$	$1909 \\ 1910 \\ 1911 \\ 1912$	$54.7 \\ 57.1 \\ 60.4 \\ 63.8$	$\begin{array}{c} 25.8 \\ 25.8 \\ 26.7 \\ 28.4 \end{array}$	$212.1 \\ 221.7 \\ 226.2 \\ 224.3$	$.52 \\ .54 \\ .53 \\ .615$
$ \begin{array}{c c} 88.9 \\ 94.5 \\ 101.0 \\ 92.6 \end{array} $	$19.3 \\ 21.5 \\ 21.6 \\ 20.4$	$\begin{array}{r} 460.5 \\ 439.0 \\ 468.7 \\ 454.2 \end{array}$	$1913 \\ 1914 \\ 1915 \\ 1916$	$\begin{array}{c} 66.8 \\ 72.5 \\ 75.0 \\ 74.4 \end{array}$	$\begin{array}{c c} 29.7 \\ 43.0 \\ 40.7 \\ 44.1 \end{array}$	$225.4 \\ 168.5 \\ 184.2 \\ 168.8$	$.604 \\ .553 \\ .507 \\ .658$
$\begin{array}{r} 83.8 \\ 68.6 \\ 60.3 \\ 49.5 \end{array}$	$20.0 \\ 18.0 \\ 16.5 $	$\begin{array}{c} 419.4 \\ 380.9 \\ 365.1 \\ \end{array}$	$ 1917 \\ 1918 \\ 1919 \\ 1920 $	$\begin{array}{c} 71.7 \\ 67.8 \\ 56.7 \\ 56.6 \end{array}$	$ \begin{array}{c c} 41.1 \\ 34.3 \\ 32.7 \\ \end{array} $	$\begin{array}{c} 174.2 \\ 197.4 \\ 174.5 \\ \end{array}$	$.824 \\ .98 \\ 1.12 \\ 1.015$

Smelter Production—United States and World									
	World		UNITED STATES						
Year	Moria Produc- tion Millions of lbs.	Ores of Co'per Millions of Tons	Yield %	From Dom's'c Ores Millions of lbs.	% of World's	Ap'aren t Con- sump'on Millions of lbs.	Prices Per lb. Cents		
$ \begin{array}{r} 1900 \\ 1901 \\ 1902 \\ 1903 \end{array} $	$ \begin{array}{r} 1,091 \\ 1,160 \\ 1,228 \\ 1,313 \end{array} $	* * * *	* * * *	606 602 660 698	55.651.953.653.2	$ \begin{array}{r} 357 \\ 383 \\ 552 \\ 526 \end{array} $	$ \begin{array}{r} 16.6 \\ 16.7 \\ 12.2 \\ 13.7 \end{array} $		
$1904 \\ 1905 \\ 1906 \\ 1907$	$1,454 \\ 1,570 \\ 1,589 \\ 1,596$	* * 18 20	* 2.53 2.15	$\begin{array}{c} 813 \\ 889 \\ 918 \\ 869 \end{array}$	$55.9 \\ 56.6 \\ 57.7 \\ 54.4$	$\begin{array}{c} 482 \\ 581 \\ 686 \\ 488 \end{array}$	$12.8 \\ 15.6 \\ 19.3 \\ 20.0$		
$ 1908 \\ 1909 \\ 1910 \\ 1911 $	$1,651 \\ 1,832 \\ 1,901 \\ 1,968$	$22 \\ 28 \\ 28 \\ 30$	$2.12 \\ 1.95 \\ 1.89 \\ 1.82$	$943 \\ 1,093 \\ 1,080 \\ 1,097$	$57.1 \\ 59.7 \\ 56.8 \\ 55.8 \\ 55.8 \\$	$ \begin{array}{r} 480 \\ 689 \\ 732 \\ 682 \end{array} $	$13.2 \\ 13.0 \\ 12.7 \\ 12.5$		
$1912 \\ 1913 \\ 1914 \\ 1915$	$2,209 \\ 2,133 \\ 2,023 \\ 2,326$	$36 \\ 36 \\ 35 \\ 43$	$1.75 \\ 1.67 \\ 1.60 \\ 1.66$	$1,243 \\ 1,224 \\ 1,150 \\ 1,388$	$56.3 \\ 57.4 \\ 56.8 \\ 59.7$	$776 \\ 812 \\ 702 \\ 1,137$	$16.5 \\ 15.5 \\ 13.3 \\ 17.5$		
$1916 \\ 1917 \\ 1918$	$2,994 \\ 3,147 \\ 3,076$	$58 \\ 59 \\ 62$	$1.70 \\ 1.60 \\ 1.51$	$1,928 \\ 1,886 \\ 1,909$	$64.4 \\ 60.0 \\ 62.0$	$1,479 \\ 1,395 \\ 1,662$	$24.6 \\ 27.3 \\ 24.7$		
$\begin{array}{c} 1919\\ 1920 \end{array}$	*	* *	*	$1,311 \\ 1,209$	*	$\begin{array}{c} 877\\1,054\end{array}$	$\frac{18.6}{18.4}$		

	Copper			
Smelter	Production—United	States	and	World

* Not Available.

High Price (1864), 55 cents (47 cent ave.); Low Price (1894), 9.00 cents (9.43 cents ave.)

Production in U. S.-By State Groups

Millions of Pounds

	1913	1914	1915	1916	1917	1918	1919	1920
Alaska	23	25	71	114	85	67	57	66
Arizona New Mexico }	454	447	495	775	827	866	597	605
California	32	30	38	43	45	44	24	12
Colorado Wyoming	9	7	8	9	8	7	4	2
Idaho Oregon Washington	10	7	8	12	10	11	9	6
Michigan	156	158	239	270	269	231	178	153
Montana	286	237	268	352	276	326	176	178
Nevada Utah	233	221	243	333	343	328	204	163
Tennessee	19	19	18	15	16	15	16	17
All Others	1	1	1	2	1	1	*17	1

*Including 15,500,000 lbs. undistributed.

Copper

Balance Sheet Refined Copper in U. S.

	On	Refined	in U.S.			Exp-For
Year	Hand Jan. 1.	Domestic Origin	Foreign Origin	Exported	Consumed	Domestic %
1913	105	1,237	378	817	812	35.6
1914	91	1,210	323	748	702	39.3
1915	174	1,388	246	589	1,137	24.0
1916	82	1,889	371	735	1,479	19.3
1917	128	1,874	555	1,048	1,395	26.3
1918	114	1,883	550	705	1,662	*8.2
1919	180	1,442	326	440	877	*7.9
1920	631	1,182	453	553	1,054	*8.5
1921	659	900	Est.	1175	Est.	
1922	384 Est.					

Millions of Pounds

*Additional exports of old copper, sheets, plates, etc., for the years 1918, 1919, 1920 increased exports and % to the following figures, respectively; 748, 10.8%; 517, 13.2%; 624, 14.4%.

Note.—The last column, gives in percent the ratio of the difference between the copper exported and that imported as foreign ores for smelting and refining, to the copper refined from domestic ores only. This is the actual percentage of copper produced from U. S. ores which is exported, without further manufacture. During the world war a great part of the copper produced was exported in manufactured form for which statistics are not available.

Lead and Zinc

Production United States and World

	LEAD					ZIN	C	
United Millions of lbs.	States % of World	World Millions of lbs.	Prices Cents per lb.	Year	United Millions of lbs.	States % of World	World Millions of lbs.	Prices Cents per lb.
$ \begin{array}{r} *645 \\ *650 \\ *645 \\ *647 \\ 614 \end{array} $	x x x 29.5	x x x 2087	$ \begin{array}{r} 4.4 \\ 4.3 \\ 4.1 \\ 4.2 \\ 4.3 \end{array} $	1900 1901 1902 1903 1904 1904	*248 *282 *315 *318 *373	x x x 27.0	x x x 1385	$ \begin{array}{r} 4.4 \\ 4.1 \\ 4.8 \\ 5.4 \\ 5.1 \end{array} $
$ \begin{array}{c} 604 \\ 700 \\ 730 \\ 623 \\ 706 \end{array} $	$\begin{array}{c} 29.0 \\ 33.2 \\ 33.3 \\ 27.1 \\ 30.3 \end{array}$	$2084 \\ 2107 \\ 2190 \\ 2300 \\ 2340$	$\begin{array}{r} 4.7 \\ 5.7 \\ 5.3 \\ 4.2 \\ 4.3 \end{array}$	$ 1905 \\ 1906 \\ 1907 \\ 1908 \\ 1909 $	*407 *450 *500 *420 *512	$\begin{array}{c} 28.0 \\ 29.0 \\ 30.7 \\ 26.3 \\ 30.0 \end{array}$	$1455 \\ 1550 \\ 1630 \\ 1595 \\ 1710$	5.96.15.94.75.4
$751 \\ 784 \\ 785 \\ 824 \\ 1025$	$\begin{array}{r} 31.0 \\ 31.8 \\ 30.6 \\ 32.4 \\ 56.0 \end{array}$	$2420 \\ 2455 \\ 2565 \\ 2540 \\ 1828$	$\begin{array}{r} 4.4 \\ 4.5 \\ 4.5 \\ 4.4 \\ 3.9 \end{array}$	$1910 \\ 1911 \\ 1912 \\ 1913 \\ 1914$	$*538 \\ 543 \\ 648 \\ 675 \\ 687$	$28.6 \\ 27.5 \\ 30.3 \\ 30.2$	$ 1885 \\ 1970 \\ 2140 \\ 2230 $	$5.4 \\ 5.7 \\ 6.9 \\ 5.6 \\ 5.1$
$ \begin{array}{r} 1014 \\ 1102 \\ 1097 \\ 1080 \\ 849 \\ 954 \end{array} $	$\begin{array}{c} 44.2 \\ 53.3 \\ 53.9 \\ 48.2 \\ 41.2 \\ 53.0 \end{array}$	$\begin{array}{c} 2290 \\ 2062 \\ 2035 \\ 2243 \\ 2060 \\ 1800 \ \mathrm{Est.} \end{array}$	$\begin{array}{r} 4.7 \\ 6.9 \\ 8.6 \\ 7.1 \\ 5.3 \\ 8.0 \end{array}$	$1915 \\ 1916 \\ 1917 \\ 1918 \\ 1919 \\ 1920$	$916 \\ 1129 \\ 1169 \\ 985 \\ 905 \\ 900$	$\begin{array}{c} 49.8\\ 50.3\\ 53.9\\ 51.3\\ 65.1\\ 60.0 \end{array}$	1840 2240 2170 1920 1390 1500 Est.	$\begin{array}{c} 12.4 \\ 13.4 \\ 10.2 \\ 9.1 \\ 7.3 \\ 8.1 \end{array}$

*Including foreign ores smelted in U.S.

x Figures not available.

31

COSTS

Milling Costs

The costs given in the following tables have been gathered from a variety of sources, such as published company reports, technical articles, handbooks, manufacturers catalogs, and private information. Usually the methods of arriving at the costs of the various operations and the distribution of overheads, etc., differ considerably, so that unless all details are known and comparable, considerable judgement must be used in applying such figures.

The only safe method of arriving at milling costs for proposed plants or processes is to furnish to competent engineers all the facts available, and let them estimate such costs.

In plants of the same type, the large factor producing the wide variation in costs per ton is obviously the capacity of the plant, greater economies being possible in a large plant than a small one.

Recent figures show increased costs because of the effects of the world war; it is believed that costs for the period 1912-1916 will be of as much value as for the period 1917-1920, and that actual costs will be found midway between these two sets of figures, for the years following the publication of this bulletin.

Tables of partial costs are given together with tables made up of the results of operations of individual plants. Total costs may be made up by totaling the partial costs, using the tables of total costs for the purpose of checking, and for estimating the effect of various variables, such as freight and transportation, power, labor, climate, etc.

The value extracted from the ore is believed to have some bearing upon the amount that may be expended to treat the ore, and for that reason the production has been calculated in dollars extracted rather than in assays of the mill feed. In some cases this figure has been roughly approximated, and it is intended to be used only for its bearing upon the cost, however variable that may be.

In the cases of Gold and Silver mills, a study of costs indicated that more consistent costs were obtained by a division as affected largely by climatic conditions:

DESERT CONDITIONS indicate high costs for power, water and transportation, with unfavorable labor, living and climatic conditions, or most of these.

AVERAGE CONDITIONS indicate that there are not more than two of the unfavorable factors under Desert Conditions, the balance being normal or favorable.

ø

Costs of Mill Operations

Flotation Concentration Mills

Copper, Iron, Zinc

Tons 24-Hrs.	Location	Value Extr per ton	xtrn %	Treatment Details	Cost Per Ton	% -200	Date	Remarks
$\begin{array}{r} 200\\ 400\\ 1100\end{array}$	New York Arizona Utah Montana Arizona	\$19.00	93	Cr. Ball. Flot Cr. Ball. Tab. Flot. Cr. Rolls Ball. Jig. Tab. Flot Cr. Rolls. Peb. Tab. Flot. Cr. Rolls. Ball. Tab. Flot.	\$1.31 0.87 2.75	45	1916 1919	Lead
$ 5000 \\ 10000 \\ 12000 \\ 12000 $	Arizona Arizona New Mexico Nevada Utah Arizona	$\begin{array}{c} 7.00 \\ 6.40 \end{array}$		Cr. Rolls. Ball. Tab Flot. Cr. Rolls. Ball. Tab. Flot. Cr. Rolls. Ball. Tab. Flot. Cr. Rolls. Ball. Tab. Flot. Cr. Rolls. Ball. Tab. Flot. Cr. Dis ² . Ball. Flot.	0.93		$ \begin{array}{r} 1919 \\ 1918 \\ 1918 \\ 1918 \\ 1918 \end{array} $	Copper Copper Copper Copper Copper Copper

Gravity Concentration Mills

Lead, Copper, Zinc

Tons 24-Hrs.	Location	Value Extr per ton	%	Treatment Details	Cost Per To n	% -200	Date	Remarks
$\begin{array}{r}150\\200\end{array}$	Utah Utah Utah Missouri			Sort. Cr. Roll. Conc. Cr. Roll. Jigs.	\$1.44 1.09 0.58 0.41		1912 1917 1912 1913	
500 500 1000	Colorado Missouri Idaho Idaho Idaho	11.00	· · · · · · · 91	Cr. St. Peb. Conc. Cr. Roll. Jig. Tab. Cr. Roll. Jig. Tab. Cr. Roll. Jig. Tab.	0.97 0.53 0.37		1912 1919 1908	Cyaniding Concentrates Lead-Silver Lead-Silver
1250	Idaho Missouri Missouri			Cr. Roll. Jig. Tab. Cr. Roll. Jig. Tab. Cr. Roll. Jig. Tab.	0.3(0.3; 0.2(0.34	· · ·	1911 1912 1913	
$3300 \\ 4500 \\ 6500$	Arizona New Mexico Arizona Nevada	4.80 3.40 3.15	70 70 67	Cr. Roll. Ch. Tab. Van. Cr. Roll. Tab. Van. Cr. Rolls. Tab. Van. Cr. Rolls. Tab. Van. Cr. Rolls. Tab. Van. Cr. Rolls. Tab. Van.	$\begin{array}{c} 0.57 \\ 0.50 \\ 0.41 \\ 0.49 \end{array}$		$ 1912 \\ 1913 \\ 1912 $	Copper-Disseminated Copper-Dissemintaed Copper-Disseminated Copper-Dissemintaed Copper-Disseminated
2000	Michigan Michigan Michigan	$2-4\frac{1}{2}$	70-80	Cr. S St. Jig. Tab. Cr. S St. Jig. Tab. Cr. S St. Jig. Tab.	$\begin{array}{c} .27-30\\ .24-30\\ .17-40\end{array}$		1908 1908	Copper-Amydaloid Copper-Amygdaloid Copper,Amyg.&Conglom. Conglom Costs Highest.

Abbreviations used in column of "Treatment Details" in all tables of Cost of Mill Operations:---

CR-Crushers ST-Stamps BALL-Ball mills PEB-Pebble or Tube Mills DISC-Disc Crushers CH-Chilean mills PAN-Grinding Pans TAB-Concentrating tables VAN-Vanners JIG-Hartz Jigs FLOT-Flotation CONC-Gravity Concentration CY-Cyanide AMAL-Amalgamation

Cost of Mill Operations

Silver Mills-All Slime Cyaniding

Average Conditions

Tons 24-Hrs.	Location	Value Extr perton	%	Treatment Details	Cost Per Ton	-200	Date	Remarks
	Canada Canada	\$30.00		Milling Cr. St. Peb. Cy.	\$2 - \$3 2.95	28	1913 1913	Costs Roughly Approx.
450	Canada Mexco Canada	10.25		Cr. St. Peb. Cy. Cr. St. Conc. Peb. Cy. Cr. Ball. Peb. Cy.	2.64		$\begin{array}{c} 1913 \\ 1918 \\ 1919 \end{array}$	

Silver-Desert Conditions

Tons 24-Hrs	Location	Value Extr per ton	xtru %	Treatment Details	Cost Per Ton%	00	Date	Remarks	-
110 130	Nevada Nevada Nevada Nevada	\$15 ['] .30 13 00 19.00 16.00	94 92	Cr. St. Peb. Cone. Cy. Cr. St. Peb. Conc. Cy. Tr. St. Peb. Conc. Cy. Cr. St. Ch. Peb. Cy.	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	•••	1913 1913 1913 1913 1914	-	-
250	Nevada Mexico Nevada	11.00	93	Milling Cr. St. Peb. Conc. Cy. Milling	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	} .	1912 1913 1912		
500	Nevada Nevada Nevada	$\begin{array}{c c} 16.30 \\ 16.00 \\ 24.00 \end{array}$		Cr. St. Peb. Conc. Cy. Cr. St. Peb. Conc. Cy. Cr. St. Peb. Conc. Cy.	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		1913 1914 1914 19	913. Cost \$2.50	

Gold Mills-Roasting Cyanide

Tons 24-Hrs.	Location	Value Extr per ton		$ \begin{array}{c c} Cost \\ Per \\ Ton \end{array} - \begin{array}{c} \% \\ -200 \\ \end{array} Date \\ Remarks \\ \end{array} $
	Washington Utah	\$8.00	1 Cr. Rols. Roast. Peb. Cy. Cr. Rolls. Roast. Peb. Cy.	\$2.00 1913 1.10 11–12 33% Roasted
600 700	W. Australia W. Australia	$5.00 \dots 9.50 85 - 4$. Cr. Rolls. Roast. Peb. Cy. 7 Cr. St. Pau. Con. Roast. Cv.	2.29 1913 2.08 1912 Conc. only Roasted.

Gold Mills-Amalgamation-Concentration

Tons 24-Hrs.	Location	Value Extr per ton	xtrn %	Treatment Details		$\begin{bmatrix} 76\\200 \end{bmatrix}$ Date	e Remarks
50	California California Korea	13.50	90	Cr. St. Amal. Cr. St. Amal. Cone. Cr. St. Conc. Amal.	$\begin{array}{c} +1.92 \\ 1.07 \\ +0.67 \\ \dots \end{array}$	1913	Followed by Cyanide Followed by Cyanide.
1000	California Alaska Fransvaal			Cr. St. Amal. Cr. St. Cone. Amal. Cr. St. Amal.	$\begin{array}{c} +0.22 \\ 0.24 \\ +0.27 \end{array}$	1912	Followed by Cyanide. Followed by Cyanide.
4000	Alaska 50. Dakota Alaska	2.50 1.05		Cr. St. Amal. Conc. Cr. St. Amal. Cr. Rolls. Peb. Conc.	$ \begin{array}{c c} 0.185 \\ +0.28 \\ 0.24 \end{array} $	1914	Followed by Cyanide. No Amalgamation

+ These are partial costs, as extraction is completed in Cyanide operation following.

Cost of Mill Operations

Gold Mills-All Slime Cyaniding

Average Conditions

Tons 21-Hrs.	Location	Value Extr per ton	xtrn %	Treatment Details	Cost Per Ton	Date	Remarks
$\begin{array}{c} 115\\150\end{array}$	California Montana Colorado Korea	\$14.00 11.55 6.50		Cr St. Peb. Cy. Cr. Peb. Cy. Milling Cr. St. Peb. Cy.	\$1.73 2.00 1.90 1.01	$ 1912 \\ 1918 \\ 1912 \\ 1914 $	Sand Leaching.
$\begin{array}{r} 250 \\ 250 \\ 300 \end{array}$	Cent. Am. Colorado New Zealand California California	$ \begin{array}{c} 7.00 \\ 26.00 \\ \dots \\ 11.00 \end{array} $	94 · · · · ·	Milling Cr. St. Peb. Conc. Cy. Cr. St. Peb. Conc. Cy. Cr. St. Ama. Peb. Conc. Cy. Cr. St. Conc. Peb. Cy.	$\begin{array}{c} 1 . 50 \\ 1 . 80 \\ 1 . 52 \\ 0 . 79 \\ 0 . 98 \\ \dots \end{array}$	$ 1910 \\ 1908 \\ 1915 \\ 1913 \\ 1912 $	
$\begin{array}{r} 400\\ 400\\ 500\end{array}$	Canada Colorado California Colorado Transvaal	6.50	75 93	Cr. St. Peb. Cone. Cy. Cr. Roll. Peb. Cone. Cy. Cr. St. Amal. Peb. Cone. Cy. Cr. St. Amal. Peb. Cone. Cy. Cr. St. Peb. Cy.	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$ 1913 \\ 1913 \\ 1917 \\ 1913 \\ 1913 \\ 1913 $	•
$ \begin{array}{r} 600 \\ 700 \\ 875 \end{array} $	Transvaal Canada India Transvaal Transvaal	$11.25 \\ 13.00 \\ 17.00 \\ 4.70 \\ 4.50$	85	Cr. St. Peb. Cy. Cr. St. Peb. Cy.	$\begin{array}{c ccccc} 1 & 09 & 60 \\ 1 & 24 & \dots \\ 0 & 86 & \dots \\ 0 & 87 & 60 \\ 0 & 91 & 60 \end{array}$	$1913 \\ 1914 \\ 1907 \\ 1913 \\ 1913 \\ 1913 \\$	· .
$\begin{array}{c}1350\\1400\end{array}$	Transvaal Transvaal Transvaai Transvaal			Cr. St. Peb. Cy. Cr. St. Peb. Cy. Cr. St. Amal. Peb. Cy. Cr. St. Peb. Cy.	$\begin{array}{c cccc} 0.82 & 62 \\ 0.85 & 60 \\ 0.84 & \dots \\ 0.69 & 60 \end{array}$	$ 1913 \\ 1913 \\ 1918 \\ 1913 $	Sands Treated Separately.
$\begin{array}{c} 2000\\2500 \end{array}$	Transvaal Transvaal Transvaal So. Da ota	$\left[egin{array}{c} 9.70 \\ 8.70 \end{array} ight]$		Cr. St. Peb. Cy. Cr. St. Peb. Cy. Cr. St. Peb. Cy. Cr. St. Amal. Peb. Cy.	$\begin{array}{c c c} 0.85 & \dot{60} \\ 1.22 & \dots \\ 1.02 & \dots \\ 0.79 & 30 \end{array}$	$ \begin{array}{r} 1913 \\ 1919 \\ 1917 \\ 1914 \\ 1914 \end{array} $	

Desert Conditions

Tons 24-Hrs.	Location	Value Extr per ton	xtrn %	Treatment Details	Cost Per Ton	-200	Date	Remarks
$\begin{array}{c} 100\\150\end{array}$	California So. Afriea Arizona Arizona	$\begin{array}{r} \$5.70 \\ 11.00 \\ 20.00 \\ 7.60 \end{array}$. 93 95	Cr. St. Am. Cy. Cr. St. Ch. Pan. Cy. Cr. St. Peb. Cy. Cr. St. Peb. Cy.	$egin{array}{c} 2.05\ 2.50 \end{array}$		$\begin{array}{r}1213\\1913\end{array}$	
270 400	Arizona Nevada Mexico Nevada		80	Cr. Ball. Peb. Cy. Cr. Roll. Ball. Peb. Cy. Cr. St. Peb. Cy. Cr. St. Peb. Cy.	$1.79 \\ 1.59 \\ 1.61 \\ 1.12$	70	17-18 1914 1912 1912	
1000	Mexico Nevada Nevada	$ \begin{array}{r} 5.75\\ 13.70\\ 12.50 \end{array} $	92	Cr. St. Peb. Cy. Cr. St. Ch. Peb. Conc. Cy. Cr. St. Ch. Peb. Conc. Cv.	$1.11 \\ 1.97 \\ 1.61$			\$2.20 cost in 1908 on \$10 Xtrn

+

Partial Milling Costs

CRUSHING

This general term applies to all milling processes which aim to reduce the sizes of the pieces of ore. For cost purposes it has been found practical to make four rough divisions of crushing;

BREAKING (preliminary crushing, coarse crushing) is the first operation and is done in Gyratory or Jaw Breakers or Crushers. Costs depend upon the character of the ore, the cost of power, and the load factor of the crushing unit, more than upon the relative capacity of the plant, according to most reported costs. Size of product: all through $1\frac{1}{2}$ " to 3".

Cost of Breaking, per ton of mill feed_____\$0.07 to 0.13

SECONDARY CRUSHING (intermediate crushing, fine crushing, stamping) follows breaking, and aims to give a product about all of which passes 4-mesh; it is performed with rolls, disc crushers, and stamps.

Cost of Secondary Crushing, per ton of mill feed____\$0.10 to 0.20

GRINDING (comminuting, pulverizing, primary grinding) gives a product of which 15% to 50% passes through a 200-mesh screen; BALL MILLS, Chileans, and pans are the commonly used machines.

Cost of Grinding, per ton of mill feed_____\$0.10 to 0.20

SLIMING (regrinding, fine grinding, secondary grinding, tubemilling) reduces a feed, all of which passes a 10-mesh to 20-mesh screen, and gives a product of which 50% to90% passes through a 200-mesh screen. This is generally done in tube mills using pebbles or small balls; it is also partially done in ball and rod mills. Cost of Sliming, per ton of mill feed______\$0.15 to 0.50

COST OF ALL CRUSHING TO SLIME, for each percentminus-200-mesh, per ton of run-of-mine ore, _____ ³/₄ to 1¹/₂ cents

Stamps, Chileans and Ball Mills are occasionally used for the combined operations of Secondary Crushing and Grinding, with a cost about equal to the sum of the two partial costs given above.

CONCENTRATING

By Vanners and Tables in Gold Stamp Mills, following Amalgamation,

	Cost per ton of mill feed\$	0.04	to	0.15
By	Jigs, Tables and Vanners on Lead and Copper Ore	es,		
	Cost per ton of mill feed	0.20	to	0.40
By	Tables after Flotation,			
	Cost per ton of mill feed	0.05	to	0.10
Bv	Flotation.	-		

Cost per ton of mill feed_____ 0.06 to 0.30

CYANIDING (not including crushing)

		per ton	ı m	illed
	SAND LEACHING, previous to 1912 (now ob-	-		
	solete)	0.15	to	1.25
	ALL SLIMING, Silver	. 1.00	to	2.00
	ALL SLIMING, Gold	0.50	to	1.00
	ALL SLIMING, Gold, South Africa only	0.30	to	0.60
Par	tial Costs: (Excluding South African figures)			
	Chemicals, Gold	0.25	to	0.60
	Chemicals, Silver	0.75	to	1.25
	Classifying	0.02	to	0.05
	Agitation	0.05	to	0.10
	Filtering, both cyanide and flotation slimes,	0.05	to	0.15
	Clarifying, Precipitating and Refining	0.15	to	0.50
	(higher costs are for silver ores)			
	per	ton so	tre	ated
	Roasting ores and concentrates	0.65	to	1.25

COPPER LEACHING

per	ton milled
Tailings, with Sulphuric acid, precipitated on	
scrap, 1914 2,000 tons daily capacityest.	0.70
Oxidized Ores, with Sulphuric Acid, 1918, 1,200	
tons dailyest.	1.06

DREDGING

River bottom carrying an average of 8.66 cents per yard, 1919, 5,000 yards per day, cost per yard_____6.41 cents

MISCELLAINEOUS

per ton m	illed
Water 0.01 to	0.25
General Expense, including Superintendence, Assaying, etc.	
Small plantabout	0.75
Large plant, several thousand tonsabout	0.10

· · ·

Cost of Power

STEAM POWER

Costs per H. P. per 24 hrs.

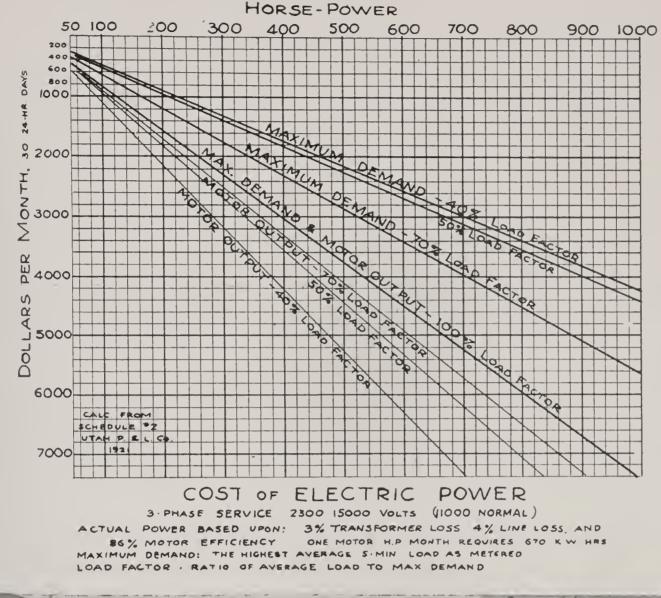
Non-Condensing Engines, coal at \$7.00_____\$ 0.20 to 0.22 Condensing Engines ______ 0.17 to 0.19

Compound Condensing Engines ______ 0.14 to 0.17 For each variation of \$1.00 per ton in cost of coal, costs per H. P. should be varied: $1\frac{1}{2}$ cents for Non-Condensing Engines, $1\frac{1}{4}$ cents for Condensing Engines, 1 cent for Compound Condensing Engines.

A rough general figure for power costs in mining camps is \$0.30 per H. P. per 24 hours.

See also "Steam Plants" (page 45) giving fuel consumption for different operating conditions, from which costs may be calculated.

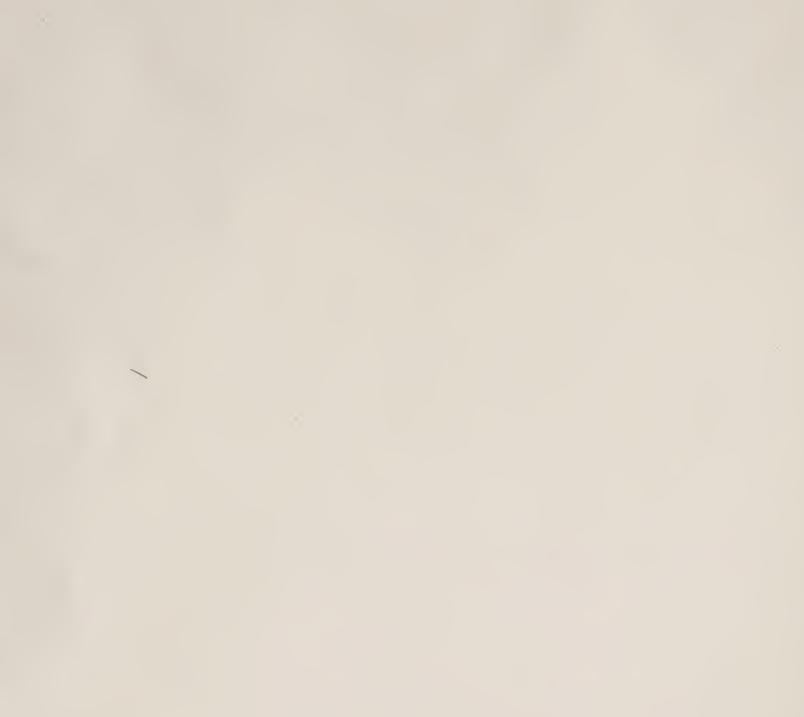
ELECTRIC POWER


Charges for electric power are usually based upon a variety of factors, in which the total power consumed and maximum demand have most influence in determining the rate.

The following rate comparison is based upon reported costs of power in milling plants:

Per	Per	Per				
H.P. year	H.P. month	K.W. hç	our		Condi	tions
\$150.00	\$12.50	2.0 cei	nts	Desert	and	unfavorable
120.00	10.00	1.6	"	> >	2,2	>>
90.00	7.50	1.2	,,	>>	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	**
75.00	6.25	1.0	"	Average	5	
60.00	5.00	0.8	,,	,,		
45.00	3.75	0.6	"	Favoral	ole	
30.00	2.50	0.4	"	>>		

Above figues are for 360 24-hour days per year, and an average motor efficiency of 85 to 88 per cent.


The diagram following gives monthly power costs for various powers, for various "load factors;" the load factor being the ratio of average load to maximum demand. In this schedule a discount of 10% is allowed when load factor is maintained at 50% or higher. Load factors based upon maximum demand vary from 50% to 95%, with an average around 70%; based upon connected load (ratio average power to total motor H.P.) this factor would vary between 40% and 65%.

Drafting Room The General Engineering Company Salt Lake City, Utah

.

Pneumatic Flotation Plant Utah Consolidated Mining Company, Tooele, Utah. Designed and built by the General Engineering Company

Cost of Erection

MILLING PLANTS

		Por com
	cap	acity
	per	24 hrs.
Coarse Concentration, no Flotation \$	§ 300 to	\$ 450
Gravity Concentration and Flotation		
All Flotation	600 to	800
Cyanide, All-Slime, Stamps or Ball Mills,		
Pebble Mills, Filtering or Counter-Current,	1,000 to	1,400
Stamps, with Vanners	475 to	550

Cost per ton

An empirical figure for the erection and installation of ore mills and similar reduction plants is: \$1.25 to \$1.50 for each \$1.00 cost of machinery, f. o. b. factory.

Under ordinary conditions, as found in mining camps, the cost of Mill Buildings may be arrived at as follows:

Wooden Buildings_____3 to 6 cents per cubic foot of volume

Steel Buildings_____7 to 10 cents per cubic foot of volume Erecting Mill and Smelter Buildings,

Wood, \$30.00 to \$40.00 per 1,000 feet B. M.

Steel, 0.75 to 1.5 cents per pound of steel.

Erection of Sectionalized machinery, two to three times that for standard equipment.

POWER

HORSE-POWER for DIFFERENT TYPES of	f MILLS
	H.P. per ton
	milled in
	24 hours.
Crushing only, product to contain 60-80% minus-	
200 - mesh	0.80 to 2.50
Coarse Gravity Concentration, 10-20 mesh	0.50 to 0.80
Stamp Mills with Vanners, 20-40 mesh	0.75 to 1.00
Gravity Concentration, Tables and Vanners, 30-100	
mesh	1.50 to 1.75
Concentration, all Flotation	1.25 to 4.00
Cyanide Mills, dry rolls, to 20 mesh	0.50 to 0.80
Cyanide Mills, wet stamping to 80 mesh	2.00 to 3.50
Magnetic Separator Mills	0.25 to 0.50
Combination Stamp Mills, 16-30 mesh	1.50 to 1.75
COSTS OF POWER, see under Costs	

POWER UNITS AND RELATIONS

One HORSE-POWER equals:

550 foot-pounds per second
33,000 foot-pounds per minute
1,980,000 foot-pounds per hour
2,545 B. T. U. (British Thermal Units) per hour
746 Watts, or 0.746 Kilowatts
4,562 Kilogram-Meters per minute
0.986 Metric Horse-Power

One Foot-Pound is the work required to raise one pound one foot, or overcome the resistance of one pound for one foot.

One B. T. U. (equal to 778 foot-pounds) is the heat required to raise one pound of water one degree F. (from 62° to 63°).

ELECTRICITY

VOLT is the unit of electrical pressure, electromotive force, or difference of potential. Symbol-E.

OHM is the unit of electrical resistance. Symbol-R.

AMPERE is the unit of electrical current, or rate of flow of electricity. Symbol-I.

Ohm's Law expresses the relations between the above:

 $I = \frac{E}{R}; R = \frac{E}{I}; E = IR$

WATT is the unit of electrical power, that delivered by one ampere at one volt pressure. 746 watts equal one horsepower. One thousand watts equal one Kilowatt.

With Direct Current, and single phase alternating at 100% power factor.

Watts, $W = EI = I^2 R$

With Alternating Current, power factor (PF) and phases affect power.

POWER FACTOR (symbol PF) is the ratio of actual watts to the product of current and voltage from switchboard readings.

Watts, Single phase, W = EI times PF.

Watts, Three phase, W = 1.732 times above.

Current, single phase, I = W divided by product of E and PF. Current, three phase, I = 0.578 times above.

Three phase Generator Current = 0.578 W divided by product of E and PF.

Three phase Motor Current = 0.578 HP times 746 divided by product of E and PF.

KILOWATT-HOURS-per-TON equals 21 times total Horsepower divided by tons-per-24-hours, when motor efficiency is about 85%.

1.

Electrical Power Transmission

Copper Wire Table

Dimensions, Weights, Resistances, Carrying Capacities

No.	Diam. Inches	Area Circ. Mils	Weight Lbs. Per 1000 Ft.	Resistance Ohms Per 1000 Ft.	Carrying Amperes Rubber Insulation	Capacity Amperes Other Insualtion
0000 000 00 00 0	$ \begin{array}{r} .460 \\ .410 \\ .365 \\ .325 \end{array} $	$\begin{array}{cccccccccccccccccccccccccccccccccccc$.049 .062 .078 .098	$225 \\ 175 \\ 150 \\ 125$	$325 \\ 275 \\ 225 \\ 200$
$\begin{vmatrix} 1\\ 2\\ 3\\ 4 \end{vmatrix}$. 289 . 258 . 229 . 204	$\begin{array}{cccc} 83 & 690 \\ 66 & 370 \\ 52 & 630 \\ 41 & 740 \end{array}$	$253 \\ 201 \\ 159 \\ 126$.124 .156 .197 .249	$ \begin{array}{r} 100 \\ 90 \\ 80 \\ 70 \end{array} $	$150 \\ 125 \\ 100 \\ 90$
$\begin{array}{c} 5\\ 6\\ 8\\ 10\end{array}$. 182 . 162 . 128 . 102	$\begin{array}{cccc} 33 & 100 \\ 26 & 250 \\ 16 & 510 \\ 10 & 380 \end{array}$	100	.314 .395 .629 1.00	$55 \\ 50 \\ 35 \\ 25$	80 70 50 30
$ \begin{array}{r} 12 \\ 14 \\ 16 \\ 18 \end{array} $.081 .064 .051 .040	$\begin{array}{ccc} 6 & 530 \\ 4 & 110 \\ 2 & 580 \\ 1 & 620 \end{array}$	$ \begin{array}{r} 19.7 \\ 12.4 \\ 7.8 \\ 4.9 \end{array} $	$ \begin{array}{c} 1.59\\ 2.53\\ 4.02\\ 6.39 \end{array} $	$\begin{array}{c} 20\\ 15\\ 6\\ 3\end{array}$	$25 \\ 20 \\ 10 \\ 5$

Carrying Capacity, according to National Board of Fire Underwriters, is independent of Voltage Drop.

To determine size of conductor:

21.6 DI

Circ. Mils = _____ E

Where

D = Length of Transmission (one way)

I = Current in Amperes.

E = Total Volt Drop in wires

The above applies only to a Direct Current, or Single Phase Alternating with 100% Power Factor. Circular mills vary inversely as power factor.

Volt Drop in wires vary from 2% to 10% of the initial line voltage, and is a direct proportional loss of power.

For THREE PHASE Current, (given equal voltage, drop, and power), and at about 86% power factor, the total copper required is 75%' of that required for direct current : in other words there will be three wires each of one-ha!f the area of those required for the equal power direct current transmission. When value of current is obtained from motor manufacturer (or on name plate) it may be applied in the above formula without further allowance.

(For Induction Motor Current, see page 46).

Steam Plants

Coal and Water Consumption and Boiler Capacities for Various Types and Sizes of Steam Engines

	WATER -			FOR DELIVERED H. P. OF RATING COAL—TONS Per 24 Hours						8				
ENGINES	Size	Gals. Pounds			Boiler H. P. For F.			l Load—125-150 lbs. Press. BTU Per Lb. Coal As Used llowing Boiler Efficiencies						
TYPE	Н. Р.	Min. Full	I. H	. P.	Includ Aux il	1 or 4(101 (ToE	50 iz. T	ubi	60 Ilar		70		0
		Load Deliv.	Full Load	Half I oad				S	cot	ch M	larin Wate	e r T	ube	
Throttling			39			8	.2	6.	3	•••				
Plain Slide Valve Non-Condensing	$\begin{vmatrix} 100 \\ 150 \end{vmatrix}$	10	36 34	39 37		$\frac{15}{21}$. 1 . 4	11.16.	5	•••				
Automatic	100		29	$30\frac{1}{2}$										
Pl. Slide or Piston V. Non-Condensing	$\begin{array}{c c} 200\\ 300 \end{array}$		$\frac{27\frac{1}{2}}{26\frac{1}{2}}$	29 28	$\begin{array}{c} 220\\ 305 \end{array}$	25 35	0	19. 29.	5 9	10.22.	4 . 9 .	•••		· ·
Automatic	150			28	140									
Tandem-Compound Non-Condensing	$\begin{array}{c} 300 \\ 450 \end{array}$		$\frac{22}{21\frac{1}{2}}$	$\frac{26\frac{1}{2}}{26}$	$\begin{array}{c} 255\\ 370 \end{array}$	28. • • •		$\frac{22}{32}.$	3 9	19. 27.	9 24	$\frac{1}{1}, \frac{3}{2}$	21	3
Corliss	200	10	22	25	175			15.	6	13.	1 11	1.4		
Simple Non-Condensing	400 600	$\begin{array}{c}19\\27\end{array}$	$\begin{array}{c}21\frac{1}{2}\\21\end{array}$	$\begin{array}{c}24\frac{1}{2}\\24\end{array}$	$\begin{array}{c} 330\\ 485 \end{array}$									
Corliss	300	13	$19\frac{1}{2}$	$26\frac{1}{2}$	$\begin{array}{c} 225 \\ 435 \end{array}$. 1	6.9	$\frac{14}{2}$	1.6	12	. 9
Compound Non-Condensing	600 900	$\begin{array}{c c} 25\\ 37 \end{array}$	$\frac{19}{18\frac{1}{2}}$	$\frac{26}{25\frac{1}{2}}$	435 610	•••		•••	. 4	32.8 16.0	$5 28 \\ 0 40$	0.0	$\frac{25}{35}$. 0 . 0
Corliss	500	17	$14\frac{1}{2}$	16	280				. 4	20.9	9 18	3.3	15	.9
Compound Condensing	$\begin{array}{c} 1000 \\ 1500 \end{array}$	$\begin{array}{c c} 31 \\ 44 \end{array}$	$13\frac{3}{4}$ $13\frac{1}{4}$	$15\frac{1}{4}$ 15		•••	:	•••		58.(55.($) 33 \\) 48$	5.0 5.0	29 42	.0

Auxiliaries and steam losses are included in boiler H. P. and coal consumption on following basis: Up to 200 H. P., 20%; 300-600 H. P., 15%; 900 to 1,500 H. P., 10%.

Mechanical efficiency of all engines figured at 91%.

10000 BTU for coal as used is a lower value to cover coals with high ash; for other values, coal will vary inversely. 12,000 BTU is perhaps nearer normal.

Boiler H. P. calculated for feed water at 60 degrees F., 30# steam per hour per H. P. If feed is heated by exhaust, reduce rating and coal consumption 1% for every 12 degrees feed temperature is higher than 60 degrees F.

Induction Motors FULL LOAD CURRENT—RUNNING

Approximate Amperes per Terminal. For determining size of wires, capacity of fuse, and setting of circuit breakers.

For single phase motors, multiply the current per terminal for a two phase motor by two.

H. P.	110	Volts	220	Volts	440	Volts	550 V.	1100 V.	2200 V.
Motor	2 Ph.	3 Ph.	2 Ph.	3 Ph.	2 Ph.	3 Ph.	3 Ph.	3 Ph.	3 Ph.
	3.3	3.7	1.7	1.8	9	1.0			
	6	6.5	3.		1.5	1.6			
$\frac{2}{2}$	10.5	$\frac{12}{17}$	5.	6.	2.6	3.	2.5		
$\begin{bmatrix} 2\\ 3\\ 5 \end{bmatrix}$	$\frac{15}{27}$	$\frac{17}{30}$	$\begin{array}{c} 7.5 \\ 13. \end{array}$	$rac{9}{15}$.	3.8 6.5	$ \begin{array}{c} 4.5 \\ 7.5 \end{array} $	3.5		
	41	90							
7.5			$\frac{20}{25}$.	$\frac{22}{20}$.	10.	11.	9.		
$\begin{array}{c} 10\\15\end{array}$			$rac{25}{35}$.	$\begin{array}{c} 29.\\ 41. \end{array}$	$rac{12.5}{18.}$	$\begin{array}{c} 14.\\ 20. \end{array}$	$11. \\ 16.$		
10 20			$\frac{35}{48}$.	55.	$\frac{13}{24}$.	$\frac{20}{27}$.	$\frac{10}{22}$.		
$\overline{25}$			54.	62.	27.	$\frac{1}{31}$	$\overline{25}$		
30			70.	81.	35.	40.	32.	16	8
40			95.	109.	47.	54.	44.	21	11
50			110.	127.	55.	64.	52.	27	18
$\begin{array}{c} 75\\100\end{array}$			165.	192.	$\frac{83}{100}$	96.	77.	$\frac{39}{50}$	$\frac{20}{25}$
			215.	248.	108.	124.	100.	50	25
150			320.	366.	160.	183.	147.	80	40
$\begin{array}{c c} 200\\ 250 \end{array}$			410.	475.	205.	237.	192.	98	49
$\frac{250}{300}$			510. 600.	590. 700.	$\frac{250}{300}.$	$\begin{array}{c c} 295 \\ 350 \end{array}$	$237. \\ 285.$	$\begin{array}{c c}125\\150\end{array}$	$\begin{array}{c} 62 \\ 74 \end{array}$

From catalog, Westinghouse E. & M. Co.

Water and Pulp

Liquid or Fluid Measure

4 gills = 1 pint, pt.

2 pints = 1 quart, qt.

4 quarts = 1 gallon, gal.

 $31\frac{1}{2}$ gals. is frequently given as the equivalent of a barrel, but there is no standard barrel in the U. S., the capacity varying between this value and something over 50 gals.

1 cubic foot of water = 62.425 pounds = 28.3153 kilograms (kilos) = 7.48 gals.

1 cubic inch of water = 0.036125 pounds = 252.88 grains = 16.386 grams.

1 ton of water = 32.038 cubic feet = 239.665 gallons.

1 pound of water = 0.016019 cubic foot = 0.47933 quart = 27.681 cubic inches = 0.45359 liter.

1 U. S. gallon of water = 8.3448 pounds = 3785.3 grams.

1 cubic meter of water = 2204.6 pounds.

1 kilogram of water = 1 liter of water = 2.2046 pounds = 0.035317 cubic foot = 61.027 cubic inches = 1.0567 quarts.

1 cubic centimeter of water = 1 gram = 0.001 kilogram = 15.432 grains.

Multipliers

Cu. ft. per sec. \times 449 = U. S. gals. per min.

U. S. gals. per min. \times 3.85 = Cu. inches per sec.

U. S. gals. per min. $\times 6$ = Tons of water per day.

U. S. gals. per min. \times 500 = Pounds of water per hour.

Note—All the above figures are for water at specific gravity of 1.000.

Specific Gravity

Definition: The Specific Gravity of a solid or liquid is the ratio of the weight (mass) of the body to the weight (mass) of an equal volume of water under standard conditions. Density, which is frequently used for specific gravity is the mass (weight) per unit volume, and is the same if grams-per-cubic-centimeter is calculated, but of course different if pounds-per-cubic-foot is used.

Pure water at a temperature of 4° C or 39° F is at its maximum density and has a specific gravity of 1.000.

Sea water averages 1.028 specific gravity; it contains about 3.44% solids, of which about 2.5% of the total is sodium chloride.

The waters of Great Salt Lake and of the Dead Sea have a specific gravity of 1.17 and contain about 22.4% solids.

Water Requirements of Mills

	tons per t					n. m. r-ton
Coarse Gravity Concentration, Crushers, rolls, jigs, tables	15	to	20	2.5	to	3.5
Gravity Concentration, Crushers, ball and pebble mills,	_		10			يسر پر
tables, vanners	7	to		1.2		
Stamp Mills, with vanners	4	to	6	0.7	to	1.0
Gravity and Flotation Concentra Crushers, ball and pebble mills,	tion,					
tables and flotation	5	to	7	0.8	to	12
All Flotation Concentration,	U		*	0.0		£ . 🛏
Crushers, ball and pebble mills, and						
flotation	3	to	6	0.5	to	1.0
Cyanide Mills, shoveling tailing						
and filter-pressing	0.2	to	0.35	0.03	to	0.06
			1.0			

Cyanide Mills, sluicing tailing ____ 1.3 to 1.9 0.2 to 0.35 Above quantities do not include water for boilers nor return circuit water. With settling tanks or ponds, from 50% to 60% of the original water (except in case of mills shoveling tailing) is available for use on return to the mill circuit With automatic discharge tanks for sand and decantation tanks for slime, from 75% to 80% of the original water may be recovered and used again in the mill circuit.

For water requirements in individual machines, see particular machine under Mill Machinery.

Pulp Calculations

W = weight of a given volume of water (1 gram = 1 c.c.) Let Ws = weight of an equal volume of dry solids. Wp = weight of an equal volume of pulp, or by wetting solids to make water level equal. Gs = specific gravity of solids = $\frac{Ws}{W - (Wp - Ws)}$ $Gp = specific gravity of pulp = \frac{Wp}{W}$ $Ws = \frac{Gp - 1}{Gs - 1} GsW$ S = percent of solids in pulp = 100 $\frac{\text{Gp-1}}{\text{Gs-1}} \times \frac{\text{Gs}}{\text{Gp}}$ Weight per cubic foot $=\frac{\text{Gp}}{32.038}$ tons = 62.425 Gp pounds. Cubic Feet per ton = $\frac{32.038}{\text{Gp}}$ Cubic Feet pulp per ton dry solids = $\frac{32.038 (Gs - 1)}{(Gp - 1) Gs}$ Percent water in pulp = $100 - S = 100 - \frac{Gs - Gp}{(Gs - 1) Gp}$ Tons of dry solids per foot depth for round tanks of diameter D (in feet) = $\frac{D^2 (Gp - 1)Gs}{40.8 (Gs - 1)}$ See also Table of "Pulp and Sludge Density Relations."

Water Piping in Mills

Nominal Diameter of Pipe, $D = \sqrt{\frac{2}{U. S. gals. p. Min. \times 0.41}}$ velocity in ft. p. sec

Pipe diam. D	$\frac{1}{2}$	34	1	$1 - \frac{1}{4}$	$1 - \frac{1}{2}$	2	$2-\frac{1}{2}$	3	4	5
at 6 ft. p. s. maximum	$3-\frac{1}{2}$	8.2	14.6	23	33	58	91	130	233	365
at 4 ft. p. s. normal	$2-\frac{1}{2}$	5.5	9.8	15	22	39	61	87	156	245

GALLONS per Minute

CONSULTING ENGINEERS

Pulp and Sludge Density Relations*

Per	Ratio of	Specific Gravity of Pulp and Volume of One Ton in Cubic Feet, for Slimes Containing Solids of Dif- ferent Specific Gravities.									
Cent Solids.	Solids to Solution.	2.5	50	·2.	70	2.	90	3.1	0	3.3	30
		S. G.	Vol.	S. G.	Vol.	S. G.	Vol.	S. G.	Vol.	S. G.	Vol.
$\begin{array}{c} 5\\ 6\\ 7\\ 8\\ 9\\ 10\\ 11\\ 12\\ 13\\ 14\\ 15\\ 16\\ 17\\ 18\\ 19\\ 20\\ 21\\ 22\\ 23\\ 24\\ 25\\ 26\\ 27\\ 28\\ 29\\ 30\\ 31\\ 32\\ 33\\ 4\\ 5\\ 36\\ 37\\ 38\\ 39\\ 40\\ 41\\ 42\\ 43\\ 41\\ 45\\ 46\\ 47\\ 49\\ 50\\ 51\\ 52\\ 53\\ 54\\ 55\\ 56\\ 57\\ 53\\ 9\\ 60\\ 61\\ 62\\ 63\\ 64\\ 65\\ 66\\ 7\\ 68\\ \end{array}$	1:19.0001:15.6671:13.2861:11.5001:10.1111: 9.0001: 8.0911: 7.3331: 6.6921: 6.1441: 5.6671: 5.2501: 4.8821: 4.5661: 4.2631: 4.0001: 3.7621: 3.5451: 3.3481: 3.1671: 3.0001: 2.8461: 2.7041: 2.7041: 2.2571: 2.0301: 1.9401: 1.8571: 1.7781: 1.7781: 1.7781: 1.5641: 1.5641: 1.2221: 1.4391: 1.2731: 1.2221: 1.1741: 1.2811: 0.9411: 1.0001: 0.9411: 0.9521: 0.8091: 0.7541: 0.5631: 0.6391: 0.5731: 0.5631: 0.5631: 0.5631: 0.5741: 0.5631: 0.5751: 0.5381: 0.5381: 0.4931: 0.471	$\begin{array}{c} 1.031\\ 1.037\\ 1.044\\ 1.050\\ 1.057\\ 1.064\\ 1.071\\ 1.078\\ 1.092\\ 1.099\\ 1.103\\ 1.092\\ 1.099\\ 1.103\\ 1.114\\ 1.121\\ 1.129\\ 1.136\\ 1.144\\ 1.152\\ 1.160\\ 1.168\\ 1.176\\ 1.185\\ 1.193\\ 1.202\\ 1.211\\ 1.220\\ 1.211\\ 1.220\\ 1.238\\ 1.247\\ 1.256\\ 1.266\\ 1.276\\ 1.285\\ 1.295\\ 1.305\\ 1.316\\ 1.326\\ 1.276\\ 1.285\\ 1.295\\ 1.305\\ 1.316\\ 1.326\\ 1.370\\ 1.381\\ 1.393\\ 1.404\\ 1.416\\ 1.429\\ 1.381\\ 1.393\\ 1.404\\ 1.416\\ 1.429\\ 1.381\\ 1.393\\ 1.404\\ 1.416\\ 1.429\\ 1.381\\ 1.393\\ 1.404\\ 1.416\\ 1.429\\ 1.534\\ 1.563\\ 1.577\\ 1.592\\ 1.603\\ 1.577\\ 1.592\\ 1.603\\ 1.577\\ 1.592\\ 1.603\\ 1.639\\ 1.663\\ 1.577\\ 1.592\\ 1.603\\ 1.639\\ 1.663\\ 1.623\\ 1.639\\ 1.663\\ 1.623\\ 1.639\\ 1.663\\ 1.623\\ 1.639\\ 1.663\\ 1.623\\ 1.639\\ 1.663\\ 1.623\\ 1.639\\ 1.663\\ 1.623\\ 1.639\\ 1.663\\ 1.623\\ 1.639\\ 1.663\\ 1.639\\ 1.663\\ 1.639\\ 1.669\\ 1.663\\ 1.639\\ 1.669\\ 1.672\\ 1.689\\ 1.689\\ 1.689\\ 1.689\\ 1.689\\ 1.689\\ 1.689\\ 1.689\\ 1.689\\ 1.689\\ 1.689\\ 1.689\\ 1.689\\ 1.689\\ 1.689\\ 1.689\\ 1.689\\ 1.689\\ 1.689\\ 1.689\\ 1.689\\ 1.689\\ 1.689\\ 1.689\\ 1.689\\ 1.689\\ 1.689\\ 1.689\\ 1.689\\ 1.689\\ 1.689\\ 1.689\\ 1.689\\ 1.689\\ 1.689\\ 1.689\\ 1.689\\ 1.689\\ 1.689\\ 1.689\\ 1.689\\ 1.689\\ 1.689\\ 1.689\\ 1.689\\ 1.689\\ 1.689\\ 1.689\\ 1.689\\ 1.689\\ 1.689\\ 1.689\\ 1.689\\ 1.689\\ 1.689\\ 1.689\\ 1.689\\ 1.689\\ 1.689\\ 1.689\\ 1.689\\ 1.689\\ 1.689\\ 1.689\\ 1.689\\ 1.689\\ 1.689\\ 1.689\\ 1.689\\ 1.689\\ 1.689\\ 1.689\\ 1.689\\ 1.689\\ 1.689\\ 1.689\\ 1.689\\ 1.689\\ 1.689\\ 1.689\\ 1.689\\ 1.689\\ 1.689\\ 1.689\\ 1.689\\ 1.689\\ 1.689\\ 1.689\\ 1.689\\ 1.689\\ 1.689\\ 1.689\\ 1.689\\ 1.689\\ 1.689\\ 1.689\\ 1.689\\ 1.689\\ 1.689\\ 1.689\\ 1.689\\ 1.689\\ 1.689\\ 1.689\\ 1.689\\ 1.689\\ 1.689\\ 1.689\\ 1.689\\ 1.689\\ 1.689\\ 1.689\\ 1.689\\ 1.689\\ 1.689\\ 1.689\\ 1.689\\ 1.689\\ 1.689\\ 1.689\\ 1.689\\ 1.689\\ 1.689\\ 1.689\\ 1.689\\ 1.689\\ 1.689\\ 1.689\\ 1.689\\ 1.689\\ 1.689\\ 1.689\\ 1.689\\ 1.689\\ 1.689\\ 1.689\\ 1.689\\ 1.689\\ 1.689\\ 1.689\\ 1.689\\ 1.689\\ 1.689\\ 1.689\\ 1.689\\ 1.689\\ 1.689\\ 1.689\\ 1.689\\ 1.689\\ 1.689\\ 1.689\\ 1.689\\ 1.689\\ 1.689\\ 1.689\\ 1.689\\ 1.689\\ 1.689\\ 1.689\\ 1.689\\ 1.689\\ 1.689\\ 1.689\\ 1.689\\ 1.689\\ 1.689\\ 1.689\\ 1.689\\ 1.689\\ 1.689\\ 1.689\\ 1.689\\ 1.689\\ 1.689\\ 1.689\\ 1.689\\ 1.$	$\begin{array}{c} 31.03\\ 30.85\\ 30.66\\ 30.27\\ 30.08\\ 29.88\\ 29.70\\ 29.50\\ 29.50\\ 29.50\\ 29.31\\ 29.18\\ 28.93\\ 28.74\\ 28.54\\ 28.35\\ 28.74\\ 28.54\\ 28.35\\ 28.17\\ 27.78\\ 27.58\\ 27.58\\ 27.39\\ 27.21\\ 27.01\\ 26.82\\ 26.62\\ 26.43\\ 26.24\\ 26.05\\ 25.86\\ 25.66\\ 25.66\\ 25.66\\ 25.66\\ 25.86\\ 25.66\\ 25.66\\ 25.66\\ 25.66\\ 25.66\\ 25.66\\ 25.66\\ 25.66\\ 25.66\\ 25.66\\ 25.66\\ 25.66\\ 25.66\\ 25.66\\ 25.66\\ 25.66\\ 25.66\\ 25.66\\ 25.66\\ 25.66\\ 25.66\\ 25.66\\ 25.66\\ 25.66\\ 25.86\\ 25.66\\ 25.66\\ 25.86\\ 25.66\\ 25.86\\ 25.66\\ 25.86\\ 25.66\\ 25.86\\ 25.66\\ 25.86\\ 25.66\\ 25.86\\ 25.66\\ 25.86\\ 25.66\\ 25.86\\ 25.66\\ 25.86\\ 25.66\\ 25.86\\ 25.66\\ 25.86\\ 25.66\\ 25.86\\ 25.66\\ 25.66\\ 25.86\\ 25.66\\ 25.66\\ 25.66\\ 25.86\\ 25.66\\ 25.66\\ 25.66\\ 25.66\\ 25.66\\ 25.66\\ 25.66\\ 25.66\\ 25.66\\ 25.66\\ 25.66\\ 25.66\\ 25.66\\ 25.66\\ 25.66\\ 25.66\\ 25.66\\ 25.66\\ 25.66\\ 25.66\\ 25.66\\ 25.66\\ 25.66\\ 25.66\\ 25.66\\ 25.66\\ 25.66\\ 25.66\\ 25.66\\ 25.66\\ 25.66\\ 25.66\\ 25.66\\ 25.66\\ 25.66\\ 25.66\\ 25.66\\ 25.66\\ 25.66\\ 25.66\\ 25.66\\ 25.66\\ 25.66\\ 25.66\\ 25.66\\ 25.66\\ 25.66\\ 25.66\\ 25.66\\ 25.66\\ 25.66\\ 25.66\\ 25.66\\ 25.66\\ 25.66\\ 25.66\\ 25.66\\ 25.66\\ 25.66\\ 25.66\\ 25.66\\ 25.66\\ 25.66\\ 25.66\\ 25.66\\ 25.66\\ 25.66\\ 25.66\\ 25.66\\ 25.66\\ 25.66\\ 25.66\\ 25.66\\ 25.66\\ 25.66\\ 25.66\\ 25.66\\ 25.66\\ 25.66\\ 25.66\\ 25.66\\ 25.66\\ 25.66\\ 25.66\\ 25.66\\ 25.66\\ 25.66\\ 25.66\\ 25.66\\ 25.66\\ 25.66\\ 25.66\\ 25.66\\ 25.66\\ 25.66\\ 25.66\\ 25.66\\ 25.66\\ 25.66\\ 25.66\\ 25.66\\ 25.66\\ 25.66\\ 25.66\\ 25.66\\ 25.66\\ 25.66\\ 25.66\\ 25.66\\ 25.66\\ 25.66\\ 25.66\\ 25.66\\ 25.66\\ 25.66\\ 25.66\\ 25.66\\ 25.66\\ 25.66\\ 25.66\\ 25.66\\ 25.66\\ 25.66\\ 25.66\\ 25.66\\ 25.66\\ 25.66\\ 25.66\\ 25.66\\ 25.66\\ 25.66\\ 25.66\\ 25.66\\ 25.66\\ 25.66\\ 25.66\\ 25.66\\ 25.66\\ 25.66\\ 25.66\\ 25.66\\ 25.66\\ 25.66\\ 25.66\\ 25.66\\ 25.66\\ 25.66\\ 25.66\\ 25.66\\ 25.66\\ 25.66\\ 25.66\\ 25.66\\ 25.66\\ 25.66\\ 25.66\\ 25.66\\ 25.66\\ 25.66\\ 25.66\\ 25.66\\ 25.66\\ 25.66\\ 25.66\\ 25.66\\ 25.66\\ 25.66\\ 25.66\\ 25.66\\ 25.66\\ 25.66\\ 25.66\\ 25.66\\ 25.66\\ 25.66\\ 25.66\\ 25.66\\ 25.66\\ 25.66\\ 25.66\\ 25.66\\ 25.66\\ 25.66\\ 25.66\\ 25.66\\ 25.66\\ 25.66\\ 25.66\\ 25.66\\ 25.66\\ 25.66\\ 25.66\\ 25.66\\ 25.66\\ 25.66\\ 25.66\\ 25.66\\ 25$	$\begin{array}{c} 1 & 032 \\ 1 & 039 \\ 1 & 046 \\ 1 & 053 \\ 1 & 060 \\ 1 & 067 \\ 1 & 067 \\ 1 & 074 \\ 1 & 082 \\ 1 & 097 \\ 1 & 104 \\ 1 & 112 \\ 1 & 119 \\ 1 & 128 \\ 1 & 136 \\ 1 & 144 \\ 1 & 152 \\ 1 & 161 \\ 1 & 169 \\ 1 & 178 \\ 1 & 178 \\ 1 & 187 \\ 1 & 195 \\ 1 & 205 \\ 1 & 214 \\ 1 & 223 \\ 1 & 223 \\ 1 & 242 \\ 1 & 252 \\ 1 & 262 \\ 1 & 272 \\ 1 & 283 \\ 1 & 242 \\ 1 & 252 \\ 1 & 262 \\ 1 & 272 \\ 1 & 283 \\ 1 & 242 \\ 1 & 252 \\ 1 & 262 \\ 1 & 272 \\ 1 & 283 \\ 1 & 304 \\ 1 & 314 \\ 1 & 326 \\ 1 & 336 \\ 1 & 348 \\ 1 & 359 \\ 1 & 371 \\ 1 & 383 \\ 1 & 395 \\ 1 & 408 \\ 1 & 408 \\ 1 & 408 \\ 1 & 408 \\ 1 & 408 \\ 1 & 408 \\ 1 & 408 \\ 1 & 408 \\ 1 & 408 \\ 1 & 408 \\ 1 & 408 \\ 1 & 408 \\ 1 & 408 \\ 1 & 408 \\ 1 & 408 \\ 1 & 408 \\ 1 & 408 \\ 1 & 408 \\ 1 & 408 \\ 1 & 408 \\ 1 & 408 \\ 1 & 408 \\ 1 & 408 \\ 1 & 408 \\ 1 & 408 \\ 1 & 408 \\ 1 & 408 \\ 1 & 408 \\ 1 & 408 \\ 1 & 408 \\ 1 & 408 \\ 1 & 408 \\ 1 & 408 \\ 1 & 408 \\ 1 & 408 \\ 1 & 408 \\ 1 & 408 \\ 1 & 408 \\ 1 & 408 \\ 1 & 408 \\ 1 & 408 \\ 1 & 408 \\ 1 & 408 \\ 1 & 408 \\ 1 & 408 \\ 1 & 408 \\ 1 & 408 \\ 1 & 408 \\ 1 & 408 \\ 1 & 408 \\ 1 & 408 \\ 1 & 408 \\ 1 & 408 \\ 1 & 408 \\ 1 & 408 \\ 1 & 408 \\ 1 & 408 \\ 1 & 408 \\ 1 & 408 \\ 1 & 408 \\ 1 & 408 \\ 1 & 408 \\ 1 & 408 \\ 1 & 408 \\ 1 & 408 \\ 1 & 408 \\ 1 & 408 \\ 1 & 408 \\ 1 & 408 \\ 1 & 408 \\ 1 & 408 \\ 1 & 408 \\ 1 & 408 \\ 1 & 408 \\ 1 & 408 \\ 1 & 408 \\ 1 & 408 \\ 1 & 408 \\ 1 & 408 \\ 1 & 408 \\ 1 & 408 \\ 1 & 408 \\ 1 & 408 \\ 1 & 408 \\ 1 & 408 \\ 1 & 408 \\ 1 & 408 \\ 1 & 408 \\ 1 & 408 \\ 1 & 408 \\ 1 & 408 \\ 1 & 408 \\ 1 & 408 \\ 1 & 408 \\ 1 & 408 \\ 1 & 408 \\ 1 & 408 \\ 1 & 408 \\ 1 & 408 \\ 1 & 408 \\ 1 & 408 \\ 1 & 408 \\ 1 & 408 \\ 1 & 408 \\ 1 & 408 \\ 1 & 408 \\ 1 & 408 \\ 1 & 408 \\ 1 & 408 \\ 1 & 408 \\ 1 & 408 \\ 1 & 408 \\ 1 & 408 \\ 1 & 408 \\ 1 & 408 \\ 1 & 408 \\ 1 & 408 \\ 1 & 408 \\ 1 & 408 \\ 1 & 408 \\ 1 & 408 \\ 1 & 408 \\ 1 & 408 \\ 1 & 408 \\ 1 & 408 \\ 1 & 408 \\ 1 & 408 \\ 1 & 408 \\ 1 & 408 \\ 1 & 408 \\ 1 & 408 \\ 1 & 408 \\ 1 & 408 \\ 1 & 408 \\ 1 & 408 \\ 1 & 408 \\ 1 & 408 \\ 1 & 408 \\ 1 & 408 \\ 1 & 408 \\ 1 & 408 \\ 1 & 408 \\ 1 & 408 \\ 1 & 408 \\ 1 & 408 \\ 1 & 408 \\ 1 & 408 \\ 1 & 408 \\ 1 & 408 \\ 1 & 408 \\ 1 & 408 \\ 1 & 408 \\ 1 & 408 \\$	$\begin{array}{c} 30.99\\ 30.79\\ 30.59\\ 30.39\\ 30.99\\ 30.79\\ 30.59\\ 30.39\\ 30.19\\ 29.99\\ 29.79\\ 29.59\\ 29.39\\ 29.19\\ 28.78\\ 28.58\\ 28.38\\ 28.38\\ 28.38\\ 28.18\\ 27.98\\ 27.77\\ 27.57\\ 27.37\\ 27.77\\ 27.57\\ 27.37\\ 27.17\\ 26.97\\ 26.56\\ 26.36\\ 26.16\\ 25.95\\ 25.75\\ 25.55\\ 25.55\\ 25.55\\ 25.55\\ 25.55\\ 25.55\\ 25.55\\ 25.55\\ 25.55\\ 25.55\\ 25.55\\ 25.55\\ 25.55\\ 25.55\\ 25.55\\ 25.55\\ 25.55\\ 25.55\\ 25.55\\ 25.55\\ 25.55\\ 25.55\\ 25.55\\ 25.55\\ 25.55\\ 25.55\\ 25.55\\ 25.55\\ 25.55\\ 25.55\\ 25.55\\ 25.55\\ 25.55\\ 25.55\\ 25.55\\ 25.55\\ 25.55\\ 25.55\\ 25.55\\ 25.55\\ 25.55\\ 25.55\\ 25.55\\ 25.55\\ 25.55\\ 25.55\\ 25.55\\ 25.55\\ 25.55\\ 25.55\\ 25.55\\ 25.55\\ 25.55\\ 25.55\\ 25.55\\ 25.55\\ 25.55\\ 25.55\\ 25.55\\ 25.55\\ 25.55\\ 25.55\\ 25.55\\ 25.55\\ 25.55\\ 25.55\\ 25.55\\ 25.55\\ 25.55\\ 25.55\\ 25.55\\ 25.55\\ 25.55\\ 25.55\\ 25.55\\ 25.55\\ 25.55\\ 25.55\\ 25.55\\ 25.55\\ 25.55\\ 25.55\\ 25.55\\ 25.55\\ 25.55\\ 25.55\\ 25.55\\ 25.55\\ 25.55\\ 25.55\\ 25.55\\ 25.55\\ 25.55\\ 25.55\\ 25.55\\ 25.55\\ 25.55\\ 25.55\\ 25.55\\ 25.55\\ 25.55\\ 25.55\\ 25.55\\ 25.55\\ 25.55\\ 25.55\\ 25.55\\ 25.55\\ 25.55\\ 25.55\\ 25.55\\ 25.55\\ 25.55\\ 25.55\\ 25.55\\ 25.55\\ 25.55\\ 25.55\\ 25.55\\ 25.55\\ 25.55\\ 25.55\\ 25.55\\ 25.55\\ 25.55\\ 25.55\\ 25.55\\ 25.55\\ 25.55\\ 25.55\\ 25.55\\ 25.55\\ 25.55\\ 25.55\\ 25.55\\ 25.55\\ 25.55\\ 25.55\\ 25.55\\ 25.55\\ 25.55\\ 25.55\\ 25.55\\ 25.55\\ 25.55\\ 25.55\\ 25.55\\ 25.55\\ 25.55\\ 25.55\\ 25.55\\ 25.55\\ 25.55\\ 25.55\\ 25.55\\ 25.55\\ 25.55\\ 25.55\\ 25.55\\ 25.55\\ 25.55\\ 25.55\\ 25.55\\ 25.55\\ 25.55\\ 25.55\\ 25.55\\ 25.55\\ 25.55\\ 25.55\\ 25.55\\ 25.55\\ 25.55\\ 25.55\\ 25.55\\ 25.55\\ 25.55\\ 25.55\\ 25.55\\ 25.55\\ 25.55\\ 25.55\\ 25.55\\ 25.55\\ 25.55\\ 25.55\\ 25.55\\ 25.55\\ 25.55\\ 25.55\\ 25.55\\ 25.55\\ 25.55\\ 25.55\\ 25.55\\ 25.55\\ 25.55\\ 25.55\\ 25.55\\ 25.55\\ 25.55\\ 25.55\\ 25.55\\ 25.55\\ 25.55\\ 25.55\\ 25.55\\ 25.55\\ 25.55\\ 25.55\\ 25.55\\ 25.55\\ 25.55\\ 25.55\\ 25.55\\ 25.55\\ 25.55\\ 25.55\\ 25.55\\ 25.55\\ 25.55\\ 25.55\\ 25.55\\ 25.55\\ 25.55\\ 25.55\\ 25.55\\ 25.55\\ 25.55\\ 25.55\\ 25.55\\ 25.55\\ 25.55\\ 25.55\\ 25.55\\ 25.55\\ 25.55\\ 25.55\\ 25.55\\ 25.55\\ 25.55\\ 25.55\\ 25.55\\ 25.55\\ 25.55\\ 25.55\\ 25.55\\ 25.55\\ 25.55\\ 25.55\\ 25.55\\ 25.55\\ 25.55\\ 25.55\\ 25.55\\ 25.55\\ 25.55\\ 25$	$\begin{array}{c} 1.034\\ 1.034\\ 1.041\\ 1.048\\ 1.055\\ 1.063\\ 1.070\\ 1.078\\ 1.085\\ 1.093\\ 1.101\\ 1.109\\ 1.117\\ 1.125\\ 1.134\\ 1.142\\ 1.151\\ 1.159\\ 1.168\\ 1.177\\ 1.186\\ 1.195\\ 1.205\\ 1.215\\ 1.224\\ 1.234\\ 1.244\\ 1.255\\ 1.265\\ 1.276\\ 1.287\\ 1.298\\ 1.309\\ 1.320\\ 1.322\\ 1.343\\ 1.355\\ 1.265\\ 1.276\\ 1.287\\ 1.298\\ 1.309\\ 1.320\\ 1.322\\ 1.343\\ 1.355\\ 1.367\\ 1.380\\ 1.392\\ 1.405\\ 1.418\\ 1.445\\ 1.458\\ 1.473\\ 1.596\\ 1.613\\ 1.629\\ 1.645\\ 1.664\\ 1.683\\ 1.723\\ 1.548\\ 1.762\\ 1.596\\ 1.613\\ 1.629\\ 1.645\\ 1.664\\ 1.683\\ 1.723\\ 1.723\\ 1.742\\ 1.762\\ 1.596\\ 1.613\\ 1.629\\ 1.645\\ 1.664\\ 1.683\\ 1.723\\ 1.723\\ 1.742\\ 1.762\\ 1.783\\ 1.803\\ 1.803\\ 1.803\\ 1.803\\ 1.803\\ 1.803\\ 1.803\\ 1.803\\ 1.803\\ 1.803\\ 1.803\\ 1.803\\ 1.803\\ 1.803\\ 1.803\\ 1.803\\ 1.803\\ 1.803\\ 1.803\\ 1.803\\ 1.803\\ 1.803\\ 1.803\\ 1.803\\ 1.803\\ 1.803\\ 1.803\\ 1.803\\ 1.803\\ 1.803\\ 1.803\\ 1.803\\ 1.803\\ 1.803\\ 1.803\\ 1.803\\ 1.803\\ 1.803\\ 1.803\\ 1.803\\ 1.803\\ 1.803\\ 1.803\\ 1.803\\ 1.803\\ 1.803\\ 1.803\\ 1.803\\ 1.803\\ 1.803\\ 1.803\\ 1.803\\ 1.803\\ 1.803\\ 1.803\\ 1.803\\ 1.803\\ 1.803\\ 1.803\\ 1.803\\ 1.803\\ 1.803\\ 1.803\\ 1.803\\ 1.803\\ 1.803\\ 1.803\\ 1.803\\ 1.803\\ 1.803\\ 1.803\\ 1.803\\ 1.803\\ 1.803\\ 1.803\\ 1.803\\ 1.803\\ 1.803\\ 1.803\\ 1.803\\ 1.803\\ 1.803\\ 1.803\\ 1.803\\ 1.803\\ 1.803\\ 1.803\\ 1.803\\ 1.803\\ 1.803\\ 1.803\\ 1.803\\ 1.803\\ 1.803\\ 1.803\\ 1.803\\ 1.803\\ 1.803\\ 1.803\\ 1.803\\ 1.803\\ 1.803\\ 1.803\\ 1.803\\ 1.803\\ 1.803\\ 1.803\\ 1.803\\ 1.803\\ 1.803\\ 1.803\\ 1.803\\ 1.803\\ 1.803\\ 1.803\\ 1.803\\ 1.803\\ 1.803\\ 1.803\\ 1.803\\ 1.803\\ 1.803\\ 1.803\\ 1.803\\ 1.803\\ 1.803\\ 1.803\\ 1.803\\ 1.803\\ 1.803\\ 1.803\\ 1.803\\ 1.803\\ 1.803\\ 1.803\\ 1.803\\ 1.803\\ 1.803\\ 1.803\\ 1.803\\ 1.803\\ 1.803\\ 1.803\\ 1.803\\ 1.803\\ 1.803\\ 1.803\\ 1.803\\ 1.803\\ 1.803\\ 1.803\\ 1.803\\ 1.803\\ 1.803\\ 1.803\\ 1.803\\ 1.803\\ 1.803\\ 1.803\\ 1.803\\ 1.803\\ 1.803\\ 1.803\\ 1.803\\ 1.803\\ 1.803\\ 1.803\\ 1.803\\ 1.803\\ 1.803\\ 1.803\\ 1.803\\ 1.803\\ 1.803\\ 1.803\\ 1.803\\ 1.803\\ 1.803\\ 1.803\\ 1.803\\ 1.803\\ 1.803\\ 1.803\\ 1.803\\ 1.803\\ 1.803\\ 1.803\\ 1.803\\ 1.803\\ 1.803\\ 1.803\\ 1.803\\ 1.803\\ 1.803\\ 1.803\\ 1.803\\ 1.803\\ 1.803\\ 1.803\\ 1.803\\ 1.803\\ 1.803\\ 1.803\\ 1.803\\ 1.803\\ 1.803\\ 1.803\\ 1.$	$\begin{array}{c} 30.95\\ 30.74\\ 30.53\\ 30.32\\ 30.11\\ 29.90\\ 29.69\\ 29.68\\ 29.27\\ 29.06\\ 28.85\\ 28.65\\ 28.44\\ 28.23\\ 28.02\\ 27.81\\ 27.60\\ 27.39\\ 27.18\\ 26.97\\ 26.76\\ 26.55\\ 26.34\\ 26.13\\ 25.92\\ 25.71\\ 25.50\\ 25.29\\ 25.71\\ 25.50\\ 25.29\\ 25.71\\ 25.50\\ 25.29\\ 25.71\\ 25.50\\ 25.29\\ 25.71\\ 25.50\\ 25.29\\ 25.71\\ 25.50\\ 25.29\\ 25.71\\ 25.50\\ 25.29\\ 25.71\\ 25.50\\ 25.29\\ 25.71\\ 25.50\\ 25.29\\ 25.71\\ 25.50\\ 25.29\\ 25.71\\ 25.50\\ 25.29\\ 25.71\\ 25.50\\ 25.29\\ 25.71\\ 25.50\\ 25.29\\ 25.71\\ 25.50\\ 25.29\\ 25.71\\ 25.50\\ 25.29\\ 25.71\\ 25.50\\ 25.29\\ 25.71\\ 25.50\\ 25.29\\ 25.71\\ 25.50\\ 25.29\\ 25.71\\ 25.50\\ 25.29\\ 25.71\\ 25.50\\ 25.29\\ 25.71\\ 25.50\\ 25.29\\ 25.71\\ 25.50\\ 25.29\\ 25.71\\ 25.50\\ 25.29\\ 25.71\\ 25.50\\ 25.29\\ 25.71\\ 25.50\\ 25.29\\ 25.71\\ 25.50\\ 25.29\\ 25.71\\ 25.50\\ 25.29\\ 25.71\\ 25.50\\ 25.29\\ 25.71\\ 25.50\\ 25.29\\ 25.71\\ 25.50\\ 25.29\\ 25.71\\ 25.50\\ 25.29\\ 25.71\\ 25.50\\ 25.29\\ 25.71\\ 25.50\\ 25.29\\ 25.71\\ 25.50\\ 25.29\\ 25.71\\ 25.50\\ 25.29\\ 25.71\\ 25.50\\ 25.29\\ 25.71\\ 25.50\\ 25.29\\ 25.71\\ 25.50\\ 25.29\\ 25.71\\ 25.50\\ 25.29\\ 25.71\\ 25.50\\ 25.29\\ 25.71\\ 25.50\\ 25.29\\ 25.71\\ 25.50\\ 25.29\\ 25.71\\ 25.50\\ 25.29\\ 25.71\\ 25.50\\ 25.29\\ 25.71\\ 25.50\\ 25.29\\ 25.71\\ 25.50\\ 25.29\\ 25.71\\ 25.50\\ 25.29\\ 25.71\\ 25.50\\ 25.29\\ 25.77\\ 25.50\\ 25.29\\ 25.77\\ 25.50\\ 25.29\\ 25.77\\ 25.50\\ 25.29\\ 25.77\\ 25.50\\ 25.29\\ 25.77\\ 25.50\\ 25.29\\ 25.77\\ 25.50\\ 25.29\\ 25.77\\ 25.50\\ 25.29\\ 25.77\\ 25.50\\ 25.77\\ 25.50\\ 25.77\\ 25.50\\ 25.77\\ 25.50\\ 25.77\\ 25.50\\ 25.77\\ 25.50\\ 25.77\\ 25.50\\ 25.77\\ 25.50\\ 25.77\\ 25.50\\ 25.77\\ 25.50\\ 25.77\\ 25.50\\ 25.77\\ 25.50\\ 25.77\\ 25.50\\ 25.77\\ 25.50\\ 25.77\\ 25.50\\ 25.77\\ 25.50\\ 25.77\\ 25.50\\ 25.77\\ 25.50\\ 25.77\\ 25.50\\ 25.77\\ 25.50\\ 25.77\\ 25.50\\ 25.77\\ 25.50\\ 25.77\\ 25.50\\ 25.77\\ 25.50\\ 25.77\\ 25.50\\ 25.77\\ 25.50\\ 25.77\\ 25.50\\ 25.77\\ 25.50\\ 25.77\\ 25.50\\ 25.77\\ 25.50\\ 25.77\\ 25.50\\ 25.77\\ 25.50\\ 25.77\\ 25.50\\ 25.77\\ 25.50\\ 25.77\\ 25.50\\ 25.77\\ 25.50\\ 25.77\\ 25.50\\ 25.77\\ 25.50\\ 25.77\\ 25.50\\ 25.77\\ 25.50\\ 25.77\\ 25.50\\ 25.77\\ 25.50\\ 25.77\\ 25.50\\ 25.77\\ 25.50\\ 25.77\\ 25.50\\ 25.77\\ 25.50\\ 25.77\\ 25.50\\ 25.77\\ 25.50\\ 25.77\\ 25.50\\ 25.50\\ 25.50\\ 25.50\\ 25$	$\begin{array}{c} 1.035\\ 1.042\\ 1.049\\ 1.057\\ 1.065\\ 1.072\\ 1.060\\ 1.088\\ 1.096\\ 1.105\\ 1.105\\ 1.113\\ 1.122\\ 1.130\\ 1.139\\ 1.148\\ 1.157\\ 1.166\\ 1.175\\ 1.184\\ 1.194\\ 1.204\\ 1.214\\ 1.224\\ 1.214\\ 1.224\\ 1.244\\ 1.255\\ 1.266\\ 1.277\\ 1.288\\ 1.299\\ 1.310\\ 1.322\\ 1.334\\ 1.346\\ 1.358\\ 1.371\\ 1.384\\ 1.396\\ 1.411\\ 1.425\\ 1.384\\ 1.396\\ 1.411\\ 1.425\\ 1.384\\ 1.396\\ 1.411\\ 1.425\\ 1.483\\ 1.497\\ 1.512\\ 1.528\\ 1.544\\ 1.560\\ 1.577\\ 1.594\\ 1.611\\ 1.628\\ 1.665\\ 1.6684\\ 1.704\\ 1.724\\ 1.560\\ 1.577\\ 1.594\\ 1.611\\ 1.628\\ 1.665\\ 1.6684\\ 1.704\\ 1.724\\ 1.745\\ 1.560\\ 1.577\\ 1.594\\ 1.611\\ 1.628\\ 1.665\\ 1.6684\\ 1.704\\ 1.724\\ 1.745\\ 1.560\\ 1.577\\ 1.594\\ 1.611\\ 1.628\\ 1.665\\ 1.6684\\ 1.704\\ 1.724\\ 1.745\\ 1.611\\ 1.831\\ 1.854\\ 1.854\\ 1.854\\ 1.854\\ 1.854\\ 1.854\\ 1.854\\ 1.854\\ 1.854\\ 1.854\\ 1.854\\ 1.854\\ 1.854\\ 1.854\\ 1.854\\ 1.854\\ 1.854\\ 1.854\\ 1.854\\ 1.854\\ 1.854\\ 1.854\\ 1.854\\ 1.854\\ 1.854\\ 1.854\\ 1.854\\ 1.854\\ 1.854\\ 1.854\\ 1.854\\ 1.854\\ 1.854\\ 1.854\\ 1.854\\ 1.854\\ 1.854\\ 1.854\\ 1.854\\ 1.854\\ 1.854\\ 1.854\\ 1.854\\ 1.854\\ 1.854\\ 1.854\\ 1.854\\ 1.854\\ 1.854\\ 1.854\\ 1.854\\ 1.854\\ 1.854\\ 1.854\\ 1.854\\ 1.854\\ 1.854\\ 1.854\\ 1.854\\ 1.854\\ 1.854\\ 1.854\\ 1.854\\ 1.854\\ 1.854\\ 1.854\\ 1.854\\ 1.854\\ 1.854\\ 1.854\\ 1.854\\ 1.854\\ 1.854\\ 1.854\\ 1.854\\ 1.854\\ 1.854\\ 1.854\\ 1.854\\ 1.854\\ 1.854\\ 1.854\\ 1.854\\ 1.854\\ 1.854\\ 1.854\\ 1.854\\ 1.854\\ 1.854\\ 1.854\\ 1.854\\ 1.854\\ 1.854\\ 1.854\\ 1.854\\ 1.854\\ 1.854\\ 1.854\\ 1.854\\ 1.854\\ 1.854\\ 1.854\\ 1.854\\ 1.854\\ 1.854\\ 1.854\\ 1.854\\ 1.854\\ 1.854\\ 1.854\\ 1.854\\ 1.854\\ 1.854\\ 1.854\\ 1.854\\ 1.854\\ 1.854\\ 1.854\\ 1.854\\ 1.854\\ 1.854\\ 1.854\\ 1.854\\ 1.854\\ 1.854\\ 1.854\\ 1.854\\ 1.854\\ 1.854\\ 1.854\\ 1.854\\ 1.854\\ 1.854\\ 1.854\\ 1.854\\ 1.854\\ 1.854\\ 1.854\\ 1.854\\ 1.854\\ 1.854\\ 1.854\\ 1.854\\ 1.854\\ 1.854\\ 1.854\\ 1.854\\ 1.854\\ 1.854\\ 1.854\\ 1.854\\ 1.854\\ 1.854\\ 1.854\\ 1.854\\ 1.854\\ 1.854\\ 1.854\\ 1.854\\ 1.854\\ 1.854\\ 1.854\\ 1.854\\ 1.854\\ 1.854\\ 1.854\\ 1.854\\ 1.854\\ 1.854\\ 1.854\\ 1.854\\ 1.854\\ 1.854\\ 1.854\\ 1.854\\ 1.854\\ 1.854\\ 1.854\\ 1.854\\ 1.854\\ 1.854\\ 1.854\\ 1.854\\ 1.854\\ 1.854\\ 1.854\\ 1.854\\ 1.854\\ 1.854\\ 1.854\\ 1.854\\ 1.854\\ 1.854\\ 1.854\\ 1.854$	$\begin{array}{c} 30.92\\ 30.70\\ 30.48\\ 30.27\\ 30.05\\ 29.83\\ 29.61\\ 29.40\\ 29.40\\ 29.40\\ 29.40\\ 29.40\\ 29.40\\ 29.40\\ 29.40\\ 29.40\\ 29.40\\ 29.53\\ 28.74\\ 28.53\\ 28.74\\ 28.53\\ 28.74\\ 27.66\\ 27.44\\ 27.23\\ 27.01\\ 26.79\\ 26.58\\ 26.37\\ 26.15\\ 25.93\\ 25.71\\ 25.50\\ 25.28\\ 25.06\\ 24.85\\ 24.63\\ 25.71\\ 25.50\\ 25.28\\ 25.06\\ 24.85\\ 24.63\\ 24.41\\ 24.19\\ 23.98\\ 23.76\\ 23.55\\ 23.33\\ 25.71\\ 25.88\\ 24.63\\ 24.41\\ 24.19\\ 23.98\\ 23.76\\ 23.55\\ 23.33\\ 23.11\\ 22.89\\ 22.68\\ 22.46\\ 22.24\\ 22.02\\ 21.81\\ 22.68\\ 22.46\\ 22.24\\ 22.02\\ 21.81\\ 21.60\\ 20.73\\ 20.51\\ 20.29\\ 20.08\\ 19.87\\ 19.65\\ 19.43\\ 19.20\\ 19.65\\ 19.43\\ 19.21\\ 19.00\\ 18.78\\ 19.65\\ 19.43\\ 19.21\\ 19.00\\ 18.78\\ 18.56\\ 18.34\\ 18.12\\ 17.91\\ 17.69\\ 17.47\\ 17.26\\ 17.26\\ 10.22\\ 10.22\\ 10.22\\ 10.22\\ 10.22\\ 10.22\\ 10.22\\ 10.22\\ 10.22\\ 10.22\\ 10.22\\ 10.22\\ 10.22\\ 10.22\\ 10.22\\ 10.22\\ 10.22\\ 10.22\\ 10.22\\ 10.22\\ 10.22\\ 10.22\\ 10.22\\ 10.22\\ 10.22\\ 10.22\\ 10.22\\ 10.22\\ 10.22\\ 10.22\\ 10.22\\ 10.22\\ 10.22\\ 10.22\\ 10.22\\ 10.22\\ 10.22\\ 10.22\\ 10.22\\ 10.22\\ 10.22\\ 10.22\\ 10.22\\ 10.22\\ 10.22\\ 10.22\\ 10.22\\ 10.22\\ 10.22\\ 10.22\\ 10.22\\ 10.22\\ 10.22\\ 10.22\\ 10.22\\ 10.22\\ 10.22\\ 10.22\\ 10.22\\ 10.22\\ 10.22\\ 10.22\\ 10.22\\ 10.22\\ 10.22\\ 10.22\\ 10.22\\ 10.22\\ 10.22\\ 10.22\\ 10.22\\ 10.22\\ 10.22\\ 10.22\\ 10.22\\ 10.22\\ 10.22\\ 10.22\\ 10.22\\ 10.22\\ 10.22\\ 10.22\\ 10.22\\ 10.22\\ 10.22\\ 10.22\\ 10.22\\ 10.22\\ 10.22\\ 10.22\\ 10.22\\ 10.22\\ 10.22\\ 10.22\\ 10.22\\ 10.22\\ 10.22\\ 10.22\\ 10.22\\ 10.22\\ 10.22\\ 10.22\\ 10.22\\ 10.22\\ 10.22\\ 10.22\\ 10.22\\ 10.22\\ 10.22\\ 10.22\\ 10.22\\ 10.22\\ 10.22\\ 10.22\\ 10.22\\ 10.22\\ 10.22\\ 10.22\\ 10.22\\ 10.22\\ 10.22\\ 10.22\\ 10.22\\ 10.22\\ 10.22\\ 10.22\\ 10.22\\ 10.22\\ 10.22\\ 10.22\\ 10.22\\ 10.22\\ 10.22\\ 10.22\\ 10.22\\ 10.22\\ 10.22\\ 10.22\\ 10.22\\ 10.22\\ 10.22\\ 10.22\\ 10.22\\ 10.22\\ 10.22\\ 10.22\\ 10.22\\ 10.22\\ 10.22\\ 10.22\\ 10.22\\ 10.22\\ 10.22\\ 10.22\\ 10.22\\ 10.22\\ 10.22\\ 10.22\\ 10.22\\ 10.22\\ 10.22\\ 10.22\\ 10.22\\ 10.22\\ 10.22\\ 10.22\\ 10.22\\ 10.22\\ 10.22\\ 10.22\\ 10.22\\ 10.22\\ 10.22\\ 10.22\\ 10.22\\ 10.22\\ 10.22\\ 10.22\\ 10.22\\ 10.22\\ 10.22\\ 10.22\\ 10.22\\ 10.22\\ 10.22\\ 10.22\\ 10.22\\ 10.22\\ 10.22\\ 10.22\\ 10.22\\ 10.22\\ 10.22\\ 10$	$\begin{array}{c} 1.036\\ 1.043\\ 1.051\\ 1.059\\ 1.067\\ 1.075\\ 1.083\\ 1.091\\ 1.099\\ 1.108\\ 1.117\\ 1.125\\ 1.134\\ 1.143\\ 1.153\\ 1.162\\ 1.171\\ 1.181\\ 1.191\\ 1.201\\ 1.211\\ 1.222\\ 1.222\\ 1.242\\ 1.253\\ 1.264\\ 1.275\\ 1.287\\ 1.299\\ 1.311\\ 1.323\\ 1.335\\ 1.347\\ 1.360\\ 1.373\\ 1.387\\ 1.400\\ 1.414\\ 1.428\\ 1.442\\ 1.456\\ 1.471\\ 1.487\\ 1.503\\ 1.519\\ 1.535\\ 1.551\\ 1.568\\ 1.585\\ 1.603\\ 1.621\\ 1.669\\ 1.678\\ 1.697\\ 1.718\\ 1.789\\ 1.678\\ 1.697\\ 1.718\\ 1.789\\ 1.678\\ 1.697\\ 1.718\\ 1.789\\ 1.678\\ 1.697\\ 1.718\\ 1.761\\ 1.789\\ 1.678\\ 1.697\\ 1.718\\ 1.791\\ 1.761\\ 1.789\\ 1.678\\ 1.697\\ 1.718\\ 1.761\\ 1.789\\ 1.678\\ 1.901\\ 1.901\\ 1.901\\ 1.901\\ 1.901\\ 1.901\\ 1.901\\ 1.901\\ 1.901\\ 1.901\\ 1.901\\ 1.901\\ 1.901\\ 1.901\\ 1.901\\ 1.901\\ 1.901\\ 1.901\\ 1.901\\ 1.901\\ 1.901\\ 1.901\\ 1.901\\ 1.901\\ 1.901\\ 1.901\\ 1.901\\ 1.901\\ 1.901\\ 1.901\\ 1.901\\ 1.901\\ 1.901\\ 1.901\\ 1.901\\ 1.901\\ 1.901\\ 1.901\\ 1.901\\ 1.901\\ 1.901\\ 1.901\\ 1.901\\ 1.901\\ 1.901\\ 1.901\\ 1.901\\ 1.901\\ 1.901\\ 1.901\\ 1.901\\ 1.901\\ 1.901\\ 1.901\\ 1.901\\ 1.901\\ 1.901\\ 1.901\\ 1.901\\ 1.901\\ 1.901\\ 1.901\\ 1.901\\ 1.901\\ 1.901\\ 1.901\\ 1.901\\ 1.901\\ 1.901\\ 1.901\\ 1.901\\ 1.901\\ 1.901\\ 1.901\\ 1.901\\ 1.901\\ 1.901\\ 1.901\\ 1.901\\ 1.901\\ 1.901\\ 1.901\\ 1.901\\ 1.901\\ 1.901\\ 1.901\\ 1.901\\ 1.901\\ 1.901\\ 1.901\\ 1.901\\ 1.901\\ 1.901\\ 1.901\\ 1.901\\ 1.901\\ 1.901\\ 1.901\\ 1.901\\ 1.901\\ 1.901\\ 1.901\\ 1.901\\ 1.901\\ 1.901\\ 1.901\\ 1.901\\ 1.901\\ 1.901\\ 1.901\\ 1.901\\ 1.901\\ 1.901\\ 1.901\\ 1.901\\ 1.901\\ 1.901\\ 1.901\\ 1.901\\ 1.901\\ 1.901\\ 1.901\\ 1.901\\ 1.901\\ 1.901\\ 1.901\\ 1.901\\ 1.901\\ 1.901\\ 1.901\\ 1.901\\ 1.901\\ 1.901\\ 1.901\\ 1.901\\ 1.901\\ 1.901\\ 1.901\\ 1.901\\ 1.901\\ 1.901\\ 1.901\\ 1.901\\ 1.901\\ 1.901\\ 1.901\\ 1.901\\ 1.901\\ 1.901\\ 1.901\\ 1.901\\ 1.901\\ 1.901\\ 1.901\\ 1.901\\ 1.901\\ 1.901\\ 1.901\\ 1.901\\ 1.901\\ 1.901\\ 1.901\\ 1.901\\ 1.901\\ 1.901\\ 1.901\\ 1.901\\ 1.901\\ 1.901\\ 1.901\\ 1.901\\ 1.901\\ 1.901\\ 1.901\\ 1.901\\ 1.901\\ 1.901\\ 1.901\\ 1.901\\ 1.901\\ 1.901\\ 1.901\\ 1.901\\ 1.901\\ 1.901\\ 1.901\\ 1.901\\ 1.901\\ 1.901\\ 1.901\\ 1.901\\ 1.901\\ 1.901\\ 1.901\\ 1.901\\ 1.901\\ 1.901\\ 1.901\\ 1.901\\ 1.901\\ 1.901\\ 1.901\\ 1.901\\ 1.901\\ 1.901\\ 1.901\\ 1.901\\ 1.901\\ 1.901\\ 1.901\\ 1.$	$\begin{array}{c} 30.89\\ 30.66\\ 30.43\\ 30.21\\ 29.99\\ 29.77\\ 29.54\\ 29.32\\ 29.90\\ 29.77\\ 29.54\\ 29.32\\ 29.10\\ 28.88\\ 28.66\\ 28.43\\ 28.21\\ 27.99\\ 27.76\\ 27.54\\ 27.32\\ 27.09\\ 26.87\\ 26.65\\ 26.42\\ 26.20\\ 25.98\\ 25.75\\ 25.53\\ 25.31\\ 25.08\\ 24.64\\ 24.41\\ 24.19\\ 23.97\\ 23.75\\ 23.52\\ 23.30\\ 23.08\\ 22.85\\ 22.63\\ 22.41\\ 24.41\\ 24.19\\ 23.97\\ 23.75\\ 23.52\\ 23.30\\ 23.08\\ 22.85\\ 22.63\\ 22.41\\ 24.19\\ 23.97\\ 23.75\\ 23.52\\ 23.30\\ 23.08\\ 22.85\\ 22.63\\ 22.41\\ 24.19\\ 23.97\\ 23.75\\ 23.52\\ 23.30\\ 23.08\\ 22.85\\ 22.63\\ 22.41\\ 24.19\\ 23.97\\ 23.75\\ 23.52\\ 23.30\\ 23.08\\ 22.85\\ 22.63\\ 22.41\\ 24.19\\ 23.97\\ 23.75\\ 23.52\\ 23.30\\ 23.08\\ 22.85\\ 22.63\\ 22.41\\ 22.18\\ 21.96\\ 20.62\\ 20.40\\ 20.85\\ 22.63\\ 22.41\\ 22.18\\ 21.96\\ 20.62\\ 20.40\\ 20.85\\ 22.63\\ 22.41\\ 22.18\\ 21.96\\ 20.62\\ 20.40\\ 20.85\\ 22.63\\ 22.85\\ 22.63\\ 22.41\\ 22.18\\ 21.96\\ 20.62\\ 20.62\\ 20.40\\ 20.85\\ 22.63\\ 22.41\\ 22.18\\ 21.96\\ 20.62\\ 20.62\\ 20.62\\ 20.62\\ 20.62\\ 20.62\\ 20.62\\ 20.62\\ 20.62\\ 20.62\\ 20.62\\ 20.62\\ 20.62\\ 20.62\\ 20.62\\ 20.62\\ 20.62\\ 20.62\\ 20.62\\ 20.62\\ 20.62\\ 20.62\\ 20.62\\ 20.62\\ 20.62\\ 20.62\\ 20.62\\ 20.62\\ 20.62\\ 20.62\\ 20.62\\ 20.62\\ 20.62\\ 20.62\\ 20.62\\ 20.62\\ 20.62\\ 20.62\\ 20.62\\ 20.62\\ 20.62\\ 20.62\\ 20.62\\ 20.62\\ 20.62\\ 20.62\\ 20.62\\ 20.62\\ 20.62\\ 20.62\\ 20.62\\ 20.62\\ 20.62\\ 20.62\\ 20.62\\ 20.62\\ 20.62\\ 20.62\\ 20.62\\ 20.62\\ 20.62\\ 20.62\\ 20.62\\ 20.62\\ 20.62\\ 20.62\\ 20.62\\ 20.62\\ 20.62\\ 20.62\\ 20.62\\ 20.62\\ 20.62\\ 20.62\\ 20.62\\ 20.62\\ 20.62\\ 20.62\\ 20.62\\ 20.62\\ 20.62\\ 20.62\\ 20.62\\ 20.62\\ 20.62\\ 20.62\\ 20.62\\ 20.62\\ 20.62\\ 20.62\\ 20.62\\ 20.62\\ 20.62\\ 20.62\\ 20.62\\ 20.62\\ 20.62\\ 20.62\\ 20.62\\ 20.62\\ 20.62\\ 20.62\\ 20.62\\ 20.62\\ 20.62\\ 20.62\\ 20.62\\ 20.62\\ 20.62\\ 20.62\\ 20.62\\ 20.62\\ 20.62\\ 20.62\\ 20.62\\ 20.62\\ 20.62\\ 20.62\\ 20.62\\ 20.62\\ 20.62\\ 20.62\\ 20.62\\ 20.62\\ 20.62\\ 20.62\\ 20.62\\ 20.62\\ 20.62\\ 20.62\\ 20.62\\ 20.62\\ 20.62\\ 20.62\\ 20.62\\ 20.62\\ 20.62\\ 20.62\\ 20.62\\ 20.62\\ 20.62\\ 20.62\\ 20.62\\ 20.62\\ 20.62\\ 20.62\\ 20.62\\ 20.62\\ 20.62\\ 20.62\\ 20.62\\ 20.62\\ 20.62\\ 20.62\\ 20.62\\ 20.62\\ 20.62\\ 20.62\\ 20.62\\ 20.62\\ 20.62\\ 20.62\\ 20.62\\ 20.62\\ 20.62\\ 20.62\\ 20.62\\ 20.62\\ 20.62\\ 20.62\\ 20$
69 70	$\begin{array}{c} 1:0.449 \\ 1:0.420 \end{array}$	$\left \begin{array}{c}1.706\\1.724\end{array}\right $	$\begin{array}{c c}18.75\\18.56\end{array}$	$1.768 \\ 1.786$	$ \begin{array}{c cccccccccccccccccccccccccccccccccc$	1.825 1.817	$\begin{array}{c}17.53\\17&29\end{array}$	$1.878 \\ 1.902$	$\begin{array}{c c}17.04\\16.83\end{array}$	$\begin{array}{c c}1.927\\1.953\end{array}$	$\begin{array}{r}16.61\\16.39\end{array}$

*H. B. Lowden, Metallurgical and Chemical Engineering,

Circulating Feed

To find total tonnage in a crushing element of a mill, when part of the load is returned from classifier or sizing screen, back to the beginning:

$$Q = \frac{100T}{100 - P}$$

Where

T = Initial Tonnage per day, feed and discharge from element.

P = % of oversize returned.

Q = Total Tonnage per day through the element.

Example:

T = 100 tons, P = 75% Q =
$$\frac{100 \times 100}{100 - 75}$$
 = 400

tons.

Recovery and Ratio of Concentration

Knowing the assay value of the Heads, Tails and Concentrates,

$$R = \frac{C - T}{H - T}, \quad E = \frac{100 C}{H R}, \quad E = \frac{100 C \times (H - T)}{H \times (C - T)}$$

Where

H = heads assay, T = tailing assay, C = Concentrates assay, R = ratio of concentration (tons into one,) E = recovery in %.

Example:

Heads, 2.4% Pb; Tails, 0.95% Pb;

	11.9 - 0.95	10.95	Concentrates, 11.95% Pb.
R =	2.4 - 0.95	1.45	= 7.56, Ratio of Concentration.
F	11.9×100	11.90	CE C C D
C ==	$\frac{1}{2.4 \times 7.56} = -$	18.15	= 65.6%, Recovery.

Equivalents of Weights and Measures*

LENGTH

1 mile = 5,280 feet = 1609.31 meters.

1 foot = 12 inches = 0.30479 meter. 1 inch = 25.3995 millimeters.

1 kilometer = 1,000 meters = 0.62138 mile = 3281 feet. 1 meter = 100 centimeters = 3.280899 feet = 39.370791 inches.

1 centimeter = 10 millimeters = 0.393708 inch.

1 millimeter = 0.039371

SURFACE

1 square yard = 9 square feet = 0.83610 square meter.

1 square foot = 144 square inches = 9.2900 square decimeters = 929.00 square centimeters.

1 square inch = 6.4514 square centimeters.

1 square meter <u>100</u> square decimeters <u>10764</u> square feet.

1 square decimeter = 100 square centimeters = 0.10764 square foot = 15.501 square inches. 1 square centimeter = 100 square millimeters = 0.15501 square inch.

1 square millimeter = 0.00155 square inch.

VOLUME

1 cubic yard = 27 cubic feet = 0.76451 cubic meter = 201.97 gallons.

1 cubic foot = 1728 cubic inches = 0.28315 cubic meter = 7.4805 gallons = 28.3153 liters = 29.922 quarts.

1 cubic inch = 0.017316 quart = 16.386 cubic centimeters.

gallon = 4 quarts = 0.13368 cubic foot = $^{2}31.0000$ cubic inches = 3.7852 liters.

- 1 quart = 2 pints = 57.75 cubic inches = 0.94630 liters = 0946.30 cubic centimeters.
- 1 cubic meter == 1,000 liters == 1.3080 cubic yards == 35.317 cubic feet== 264.19 gallons.

1 liter, or 1 cubic decimeter = 1,000 cubic centimeters = 0.035317 cubic foot = 61.027 cubic inches = 0.26419 gallons = 1.0567 quarts.
1 cubic centimeter = 0.061027 cubic inch.

*Taken from C. Herring. Table of Equivalents of Units of Measurement.

WEIGHT

1 ton = 2,000 pounds avoirdupois = 907.18 kilos. This is the ton used throughout this book unless otherwise specified.

1 long ton = 2,240 pounds avoirdupois = 1016.05 kilos.

- 1 metric ton = 1,000 kilos = 2204.62 pounds avoirdupois = 1.1023 tons
- 1 pound avoirdupois = 16 ounces avoirdupois = 0.45359 kilo = 7,000 grains = 1.2153 pounds troy.

1 pound troy = 5760 grains = 0.82286 pound avoirdupois = 12 ounces trov == 0.37324 kilo.

- 1 ounce avoirdupois = 437.50 grains = 28.3495 grams = 0.91146 ounce troy.
- 1 ounce troy = 480 grains = 20 pennyweights = 31.1035 grams = 1.0971 ounces avoirdupois. The troy ounce and pound are used only for gold and silver and other precious metals.
- 1 grain <u>— 64.799 milligrrams</u>.

1 kilo or kilogram = 1000 grams = 2.2046 pounds avoirdupois.

- gram = 0.035274 ounce avoirdupois = 0.032151 ounce troy =15.43235
- 1 milligram == 0. 015432 grains.

•

MISCELLANEOUS MULTIPLIERS

Avoirdupois oz. per min. $\times 0.0450 =$ Tons per day. Troy oz. per min. $\times 0.04937 =$ Tons per day. Grams per m.n. $\times 0.00159 =$ Tons per day. Tons per day $\times 630$. = Grams per min. Tons per day $\times 1.39 =$ Pounds Av. per min. Troy oz. per ton $\times 0.00343 = \%$ per ton. % per ton $\times 292$. = Troy oz. per ton. Avoirdupois ounces $\times 0.9114 =$ Troy oz. Troy ounces $\times 1.0971 =$ Avoirdupois oz. Grams $\times 0.0321 =$ Troy oz. Grams $\times 0.0353 =$ Avoirdupois oz. Millimeters $\times 0.04 =$ inches. Inches $\times 25$. = millimeters. 1 Gram per Metric ton = 1.55 cents in silver (at 50c). 1 Dwt. of gold = \$1.00. 1 Pound Avoirdupois = 453.60 grams.

PRESSURE

- 1 atmosphere at mean sea level = 760 millimeters or 29.922 inches of mercury column, = 10.333 meters or 33.001 feet of water column, = 14.696 pounds per square inch, = 1.0333 kilos per square centimeter.
- 1 pound per square inch = 0.070310 kilo per square centimeter = 2.041 inches of mercury = 2.31 ft. head of water.
- 1 kilo per square centimeter = 14.223 pound per square inch.

Altitude Above	Moreury	Barometric Col.	Pressure Water Col.	Pounds	Approx. Boiling	Relative Volumetric
Sea Level	MM.	Inches	Feet	Per Sq. In.		Efficiency
$ \begin{array}{r} 0 \\ 1000 \\ 2000 \\ 3000 \end{array} $	762 7:3 707 681	30.00 28.85 27.82 25.82	$ \begin{array}{r} 34.0 \\ 32.7 \\ 31.5 \\ 30.3 \end{array} $	$ \begin{array}{r} 14.72 \\ 14.17 \\ 13.64 \\ 13.13 \end{array} $	$ \begin{array}{r} 212 \\ 210 \\ 208 \\ 206 \end{array} $	$\begin{array}{c} 1.000 \\ 0.965 \\ 0.93 \\ 0.895 \end{array}$
$ \begin{array}{r} 4000 \\ 5000 \\ 6000 \\ 7000 \end{array} $	$657 \\ 631 \\ 610 \\ 587$	$25.85 \\ 24.92 \\ 24.00 \\ 23.1$	$\begin{array}{c} 29,2\\ 28.1\\ 27.0\\ 26.0\end{array}$	$\begin{array}{c} 12.64 \\ 12.17 \\ 11.71 \\ 11.27 \end{array}$	204 202 201 199	0.86 0.83 0.80 0.77
$ \begin{array}{r} 8000 \\ 9000 \\ 10000 \\ 11000 \end{array} $	$562 \\ 540 \\ 517 \\ 503$	$22.17 \\ 21.3 \\ 20.34 \\ 19.8$	$\begin{array}{c} 25.0 \\ 24.1 \\ 23.2 \\ 22.4 \end{array}$	$10.85 \\ 10.45 \\ 10.06 \\ 9.69$	$ 197 \\ 195 \\ 193 \\ 191 $	$\begin{array}{c} 0.74 \\ 0.71 \\ 0.68 \\ 0.66 \end{array}$
$\begin{array}{r} 12000 \\ 13000 \\ 14000 \\ 15000 \end{array}$	485 464 447 432	$ \begin{array}{r} 19.1 \\ 18.3 \\ 17.6 \\ 17.0 \\ \end{array} $	$\begin{array}{c} 21.6 \\ 20.8 \\ 20.0 \\ 19.3 \end{array}$	$9.33 \\ 8.98 \\ 8.64 \\ 8.32$	$ 190 \\ 188 \\ 186 \\ 184 $	$\begin{array}{c} 0.635 \\ 0.61 \\ 0.59 \\ 0.57 \end{array}$

ALTITUDE EFFECTS

FALLING BODIES

$$v = gt = 32.16 t = \sqrt{2gh} = 8.02 \sqrt{h} = \frac{2h}{t}$$

where

- v = velocity at the end of t seconds
 g = force (acceleration) of gravity,
 = 32.16 ft. p. sec. p. sec.
- h = height or space passed in t seconds.

The following table gives the falls and maximum velocities (in feet per minute) for different periods of time from beginning of fall. Any other values within these limits may be found per interpolation, or by plotting three or four values nearest to that desired.

Time	Fa	11	Velocity
Sec.	Ft.	In.	Max. Ft. P. M.
$\begin{array}{c} 0.05 \\ 0.10 \\ 0.15 \\ 0.20 \end{array}$		$\begin{array}{r} \frac{\frac{1}{2}}{2} \\ 2 \\ 4\frac{1}{4} \\ 7.7 \end{array}$	$97 \\ 193 \\ 290 \\ 386$
$0.25 \\ 0.3 \\ 0.4 \\ 0.5$	$\begin{array}{c} & 1 \\ & 1 \\ & 2 \\ & 4 \end{array}$	${ \begin{array}{c} 12.\\ 5.3\\ 6.7\\ 0.2 \end{array} }$	$\begin{array}{c} 483 \\ 579 \\ 772 \\ 965 \end{array}$
$\begin{array}{c} 0.6 \\ 0.7 \\ 0.8 \\ 0.9 \end{array}$	$ \begin{array}{c} 6 \\ 7 \\ 10 \\ 13 \end{array} $	11.0	$1158 \\ 1351 \\ 1544 \\ 1737$
$ \begin{array}{c} 1.0\\ 1.5\\ 2.0\\ 2.5\\ 3.0 \end{array} $	$ \begin{array}{c c} 16 \\ 36 \\ 64 \\ 100 \\ 144 \end{array} $	$\begin{vmatrix} 2\\ 4\\ 6 \end{vmatrix}$	$ 1930 \\ 2895 \\ 3860 \\ 4825 \\ 5790 $

CENTRIFUGAL FORCE

- $F = 1.227 \text{ W R } n^2 = .000341 \text{ W R } N^2$ pounds where
- F = force or pull on the radius arm in pounds
- W = weight of the body in pounds
- N = revolutions per minute

n = revolutions per second

Pneumatic Flotation Plant Designed and built by the General Engineering Company

MILLING MACHINERY

Owing to the diverse character of ores, the capacities, power consumption, water requirements, etc. of the various machines used in milling operations can only be given in very general figures.

The information given in this section is for general estimating purposes, and while taken from reliable sources, it cannot be expected to supplant the experience of engineers and operators in close touch with the development of the art of ore-treatment.

Crushing Machinery

Some rocks offer as much as five times the resistance to crushing as others; this variation affects capacity, power and repairs.

There is a constant development in crushing machinery, new machines replacing older types, larger sizes being developed, etc.; at the same time many of the very oldest of machines retain their position: with possibly one or two exceptions, it is believed that the machines for which data is given represent those most in use at the time of this publication.

Blake Jaw Crushers

(BREAKERS)

Opening		CAI	PACITY		
For Feed	Min. P	roduct	Max. I	Horse	
Inches	Size Inches	Tons Per Hr.	Size Inches	Tons Per Hr.	Power
$7x10 \\ 9x15 \\ 10x20$	$1 \\ 1 \\ \frac{1}{2}$	$\begin{array}{c}1\frac{1}{2}\\6\\10\end{array}$	$\begin{array}{c}2\\2\frac{1}{2}\\3\end{array}$	$\begin{array}{r} 5\\12\\20\end{array}$	6-9 10-15 15-20
$\begin{array}{r} 12x24 \\ 18x30 \\ 24x36 \end{array}$	$\begin{array}{c}2\\2\frac{1}{2}\\4\end{array}$	20 30 70	4 5 6	$\begin{array}{c} 35\\50\\100\end{array}$	20-28 35-50 50-60

Gyratory Crushers

(BREAKERS)

	Openings		CAPA	CITY		
Size No.	For Feed	Min. Product		Max.	Horse	
	Inches	Size Inches	Tons Per Hr.	Size Inches	Tons Per Hr.	Power
$\begin{array}{c}1\\2\\3\end{array}$	5x18 6x21 7x22	$ \begin{array}{c} 1 \\ 1^{\frac{1}{8}} \\ 1^{\frac{3}{8}} \end{array} $	$\begin{array}{r} 4\\6\\10\end{array}$	$\begin{array}{c} 2 \\ 2\frac{1}{4} \\ 2\frac{1}{2} \end{array}$	$\begin{array}{r} 8\\12\\20\end{array}$	5-8 7-12 10-16
$\begin{bmatrix} 4\\5\\6\end{bmatrix}$	8x30 10x38 12x44	$1\frac{1}{2}$ $1\frac{3}{4}$ 2	$\begin{array}{c}15\\30\\50\end{array}$	$3 \\ 3\frac{1}{2} \\ 3\frac{1}{2}$	$\begin{array}{c} 40\\70\\90\end{array}$	$ \begin{array}{r} 14-21 \\ 22-30 \\ 28-45 \end{array} $
$\begin{array}{c c} 7\frac{1}{2} \\ 8 \\ 9 \end{array}$	$\begin{array}{c} 14 \mathrm{x} 52 \\ 18 \mathrm{x} 68 \\ 21 \mathrm{x} 76 \end{array}$	$2\frac{1}{2}$ $3\frac{1}{2}$ 4	$\begin{array}{c} 80\\130\\250\end{array}$	$\begin{array}{c} 4\\ 4\\ 5\end{array}$	$120 \\ 150 \\ 300$	50-75 70-110 100-150

Disc Crushers

Size	Opening		CAPA	CITY		
Diam.	For	Min. F	Min. Product Max.		Product	Horse
Discs Inches	Feed . Inches	Size Inches	Tons Per Hr.	Size Inches	Tons Per Hr.	Power To Run
18 24 36 48	$ \begin{array}{r} 1\frac{1}{2} \\ 2\frac{1}{2} \\ 3\frac{1}{2} \\ 6 \\ \end{array} $		$5-8 \\ 12-15 \\ 25-30 \\ 45-60$	$\begin{array}{c}1\\1\frac{1}{2}\\2\\2\frac{1}{2}\end{array}$	$ \begin{array}{r} 12-15 \\ 25-30 \\ 50-60 \\ 100-120 \end{array} $	$ \begin{array}{r} 12-18 \\ 18-25 \\ 30-40 \\ 50-65 \end{array} $

Adapted from catalog, Chalmers & Williams, Inc.

.

Size	Max.		AT 50. 1	к. г. М.			A'1 100	R. P. M.	
Diam. x Face Inches	Feed Inches	Peripheral Speed Ft. P. M.	Horse Power	Capacity '	1″	Peripheral Speed Ft. P. M.	Horse Power	Capacity 1/4" Opening	Tons 24H 1'' Opening
9x9 12x12 18x10	3/8 1/2 3/4	118 157 235	$ \begin{array}{r} 11/4 \\ 2 \\ 31/2 \end{array} $	$\begin{array}{c}13\\23\\29\end{array}$		$\begin{array}{r} 235\\315\\470\end{array}$		$\begin{array}{r} 26\\ 47\\ 58\end{array}$	
24x12 30x14 36x14	$ \begin{array}{c} 1 \\ 1\frac{1}{4} \\ 1\frac{1}{2} \end{array} $	$315 \\ 390 \\ 470$	$6\\9\\12$	$\begin{array}{c} 47\\68\\82\end{array}$	$190 \\ 275 \\ 330$	630 780 940	12 18 24	$95 \\ 137 \\ 165$	380 550 660
42x16 48x16 54x20	$ \begin{array}{c} 1\frac{3}{4} \\ 2 \\ 2\frac{1}{4} \end{array} $	550 630 705	$\begin{array}{c}15\\25\\40\end{array}$	$110 \\ 125 \\ 175$	$440 \\ 500 \\ 700$	1100 1260 1410	30 50 80	$220 \\ 250 \\ 350$	$880 \\ 1000 \\ 1400$
60x24 72x24	$\frac{2\frac{1}{2}}{3}$	785 940	65 100	$\begin{array}{c} 235\\ 280 \end{array}$	940 1120	1570 1880	130 200	$\begin{array}{c} 470 \\ 560 \end{array}$	1880 2240

Crushing Rolls

Size represents commonly manufactured sizes. Power and capacity of other sizes will be proportional to both dimensions of nearest size given.

Max. Feed is the size of rock the rolls should nip when close up. (15 deg. or 30 deg. "angle of nip"). While rolls will nip larger pieces (1-24 the diameter plus opening between rolls), the strength of the roll parts is such that it is generally inadvisable to crush pieces larger than designated.

Speeds of rolls given in manufacturers tables are usually the maximum for which designed; the speeds here given cover the usual speeds; H. P. and capacity for other speeds being proportional. 700 F. P. M. for coarse rock (max. feed), and 1000 F. P. M. for fine material, are common in larger plants, and for some very large rolls speeds nearly 2000 F. P. M. are used.

Capacities are 10% of the theoretical; with proper feeding devices, capacities may be doubled and probably tripled. Capacities are proportional to opening; tabulated values are for material weighing 100# per cubic foot.

Horse powers are for the capacities given, and indicate the amount which should be available for variations in feed; with doubled capacity due to better feeding, power required will be increased about 50%.

For finished products down to as fine as 16-mesh, rolls may be used to advantage, but where further reduction is required it is usually better practice to reduce to about $\frac{1}{4}$ " in the rolls, and finish in ball, pebble, or rod mills.

			CAPA	CITY		
R. P. M.	Feed	Fine Product		Coarse Product		TLesse
R. F. M .	reed	$\mathbf{M}\mathbf{esh}$	Tons Per Hr.	Mesh	Tons Per Hr.	Horse Power
29 37	8 Mesh 2 Mesh	$\begin{array}{c} 30\\ 30\end{array}$	$3\frac{1}{2}-5$ 7	$\begin{array}{c} 6\\ 6\end{array}$	$\begin{array}{c c} 7\frac{1}{2} \\ 12 \end{array}$	50-90 75-12 0

6 ft. Chilean Mills

Water required : about 1 gal. P. M. per 24-Hr. Ton.

	Weight	DR	OPS		CAPA	CITY		Horse
	of Stamp		Per	Fine P	roducts	Coarse	Products	Power Per
	Pounds	Inches	Minute	Mesh	Tons Per 24 Hrs.	Mesh	Tons Per 24 Hrs.	Stamps
-	850	7-8	90-106	40	4.3	12	6	2.4
	1050	6-8	94-108	30	4.6	3	10	2.6
	1250	6-8	90-110	14	5.4	$3\frac{1}{2}$	12	3.0
1	1500	$6\frac{1}{2}-8$	96-100	10	8	3	14	3.5

Stamp Mills

Water required per Stamp: 3-10 gals. per minute; about 1 gal. P. M. per 24-Hr. Ton.

Cylindrical Ball Mills

Capacities are for medium hard quartz and in closed circuit with classifier or screen.

Size of Mill in Feet Dia. X Length	Tons per 24 hrs. 2″ to 48 Mesh	Tons per 24 hrs. 2" to 14 Mesh	H. P. Required to Run	H. P. of Motor Recom- mended	R. P. M. of Mill	Ball Charge in Pounds
3x3 3x5	$\begin{array}{c} 20\\ 30 \end{array}$	$\begin{array}{c} 30\\ 40 \end{array}$	$\begin{array}{c}10\\15\end{array}$	$\frac{15}{25}$	$\begin{array}{c} 40\\ 40\end{array}$	$1,200 \\ 2,000$
4x4 $5x4$ $5x5$	$\begin{array}{c} 40\\ 60\\ 75\end{array}$	$75 \\ 120 \\ 150$	$\begin{array}{c} 25 \\ 40 \\ 50 \end{array}$	$\begin{array}{c} 40\\ 60\\ 75 \end{array}$	$ \begin{array}{r} 32\frac{1}{2} \\ 28 \\ 28 \end{array} $	$3,000 \\ 5,000 \\ 6,500$
6x4 6x5	$\begin{array}{c} 120\\ 150\\ 100 \end{array}$	$\begin{array}{c} 210 \\ 260 \\ 220 \end{array}$	$\begin{array}{c} 60\\ 80\\ 100 \end{array}$	$\begin{array}{c} 85\\ 100\\ 195 \end{array}$	24 24	9,000 11,000
$ \begin{array}{c c} 6x6 \\ 7x5 \\ 7x6 \end{array} $	$ \begin{array}{r} 190 \\ 225 \\ 275 \end{array} $	$\begin{array}{c} 320\\ 375\\ 450 \end{array}$	$\begin{array}{c} 100\\110\\135\end{array}$	$125 \\ 125 \\ 150$	$\begin{array}{c} 24 \\ 20 \\ 20 \end{array}$	$ \begin{array}{r} 13,500 \\ 18,000 \\ 23,000 \\ \end{array} $
8x5 8x6	$\begin{array}{c} 320\\ 385 \end{array}$	$\begin{array}{c} 500 \\ 600 \end{array}$	$\begin{array}{c} 150 \\ 180 \end{array}$	$\begin{array}{c} 175\\ 200 \end{array}$	18 18	25,000 30,000

From catalog, The Allis-Chalmers Mfg. Co.

Conical Ball Mills

Capacities given are for medium hard quartz ore and in closed circuit with classifiers or screens.

	Tons per 24 hrs. 2" to 20 Mesh		H. P. Motor Recomended		Ball Charge in Pounds
Ft. In.	2 00 20 Micsh				
3x8	8	5	$7\frac{1}{2}$	35	1,000
$4\frac{1}{2}x16$ 5x22	$\begin{array}{c} 40\\ 60\end{array}$	$\frac{18}{30}$	$\frac{25}{40}$	$\frac{33}{29}$	$4,500 \\ 7,500$
				$\frac{26}{26}$	í l
$\begin{array}{c} 6x22 \\ 7x22 \end{array}$	$\frac{150}{200}$	$50 \\ 75$	$\frac{60}{100}$	$\frac{20}{24}$	$12,000 \\ 20,000$
7x36	$\frac{200}{250}$	85	125	$\overline{24}$	27,000
8x22	300	110	150	22	30,000
8x36	400	150	200	22	34,000
8x48	550	200	250	22	42,000

From catalog, The Hardinge Co

Conical Pebble Mills

Capacities given are for medium hard quartz ore and in closed circuit with classifiers or screens.

		H. P. Req'd. to run	H. P. Motor Recom- mended	R. P. M. of Mill	Pebble Charge in Pounds
3x8	6	3	5	36	300
$\frac{1}{2}$ x16	20	8	$12\frac{1}{2}$	32	2,500
6x22	45	18	25	28	4,500
					4,800
					5,500
					10,000
					$11,000 \\ 12,000$
	$\frac{\text{length}}{\text{Inches}} \frac{\frac{1}{4}}{\frac{3x8}{\frac{1}{2}x16}}$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

From catalog, The Hardinge Co.

Cylindrical Pebble Mills (Tube Mills)

Capacities are for medium hard quartz and in closed circuit with classifiers or screens.

(Intermediate Lengths furnished every 2 feet; power, capacity, and pebble charge proportional)

Size of Mill In Feet Dia x Length	Tons per 24 hrs. 8 Mesh to 95 %-100M	H. P. Required to Run	H. P. Motor Recom- mended	R. P. M. of Mill	Pebble Charge in Pounds
$ \begin{array}{r} 4x8 \\ 4x12 \\ 4x16 \\ 4x20 \end{array} $	$25 \\ 29 \\ 38 \\ 40$	$ \begin{array}{r} 15 \\ 23 \\ 30 \\ 38 \end{array} $	$20 \\ 30 \\ 40 \\ 50$	$ \begin{array}{r} 32 \\ 32 \\ 32 \\ 32 \\ 32 \end{array} $	5,000 7,500 10,000 12,500
$5x8 \\ 5x12 \\ 5x16 \\ 5x22$	$42 \\ 50 \\ 59 \\ 75$	$22 \\ 33 \\ 44 \\ 61$	$40 \\ 50 \\ 50 \\ 75$	28 28 28 28 28	$7,800 \\11,800 \\15,700 \\21,500$
6x8 6x12 6x16 6x22	$55 \\ 71 \\ 90 \\ 118$	$34 \\ 52 \\ 70 \\ 97$	$50 \\ 75 \\ 100 \\ 125$	$24 \\ 24 \\ 24 \\ 24 \\ 24$	$11,300 \\ 17,000 \\ 22,600 \\ 30,200$
7x10 7x16 8x10 8x16	$85 \\ 120 \\ 112 \\ 186$	$63 \\ 100 \\ 83 \\ 134$	$75 \\ 125 \\ 100 \\ 150$	20 20 18 18	$19,200 \\ 30,800 \\ 25,100 \\ 40,200$

From catalog, Allis-Chalmers Co.

				(Tr	ommel	s)				
Diam.	Tons	CAPACITY Tons Per 24 Hrs1-12 Slope			Length Ave			R.P.M. Spray Gals.		Water . Min.
Inehes	1⁄4″ Deep	1⁄2" Deep	1" Deep	2" Deep	Inches	Min.	2' Deep		1/4" Deep	1" Deep
30	8	24	70	200	60	0.33	0.75	16-22	16	
36	10	30	88	240	72	0.50	1.1	16-20	20	10
42	12	35	100	280	84	0.75	1.6	15-18	24	12
48	14	40	115	320	96	1.1	2.3	14-17	28	14
60	18	52	145	400	120	2.0	4.0	13-16	36	18
72		65	180	490	144	3.3	6.0	12 - 15		23
96			220	620	192	5.6	9.0	10-12		28

Revolving Screens (Trommels)

Capacities iuclude all undersize, and are based upon the maximum R. P. M. given. Minimum R. P. M. will reduce capacity about proportionally.

Depth of ore should be based upon hole in screen, between 2 and 10 times the diameter of the hole, depending upon the quality of screening required (undersize in oversize).

Capacity will vary as the slope: $\frac{1}{2}$ " per foot will have about half the capacity of the above, 2" per foot will have double the capacity of the above, for the same conditions, with slightly better quality of screening on the flatter slopes.

Length of screen has no appreciable effect upon capacity, but increased length should slightly improve quality.

Horse Power will increase with the length.

Present day practice turns to the use of the Vibratory type of Screen with its high ratio of capacity to floor space, and low power consumption.

Inclined Impact Screens

About 45° Inclination

Mesh 6 8 10 14 20	screening area
Tons, 24 Hrs. 17 15 13 10 7	

Callow Traveling Belt Screen

Capacity, 24" Duplex

Mesh	6	8	10	14	20	28	35	48	65	100	150
Tons, 24 Hrs.	600	450	400	320	250	210	175	140	110	75	50

Feed should carry $3\frac{1}{2}$ -4 tons water per ton ore.

Undersize spray water: 6-10 gals. per minute.

Oversize spray water: 8-12 gals per minute.

To convert square hole screen(cloth or metal) into their equivalent in Millimeters:

Square holes in inches x 33 = round holes in M. M.

Round holes in M. M. x 0.0303 = square holes in inches. Square holes x 1.32 = round holes.

Ι.,

Hydraulic Classifiers

Hydraulic water: 5 - 20 tons per ton of ore. 1 - 3.3 gals. per minute per 24-hour-ton.

Callow Settling Tanks

Capacities, on Dilute Slimes giving a **Clear** overflow and discharging a thickened pulp of 15% to 25% solids.

Butte Slimes: 25 - 30 gals. per min. of feed

Coeur D'Alene Slimes: 30 - 35 gals. per min. of feed

Bingham Slimes: 35 - 40 gals. per min. of feed

As Feed Desliming Tanks for Tables - 30 Mesh Feed in $4\frac{1}{2}$ or 5 to 1 water. 50 tons solids per 24 hours, contained in 35 - 40 gals. per min.

Products: Overflow 31/2% Solids; Thickened Pulp 33% (67% moisture).

Thickening Tanks

Flotation Concentrates,	5-10	Sq.	Ft.	Per	24-Hr	Ton	of	Solids
Slimes (Cyanide Plants),	3-10	66	6.6	66	66	66	66	6.6
Easy Settling Ores,	3-6	6.6	66	66	66	66	66	6.6
Difficult " " 1	10-40	6.6	66	6.6	6.6	66	6.6	66

Vacuum Filters-Continuous

Built in various sizes from 4' Diam. with 4 sq. ft. filtering area up to 14' Diam. with over 600 sq. ft. filtering area.

Capacity depends upon physical condition of the solids (Colloidal or Granular), screen analysis, amount of water to be removed, etc.

Feed: Flotation concentrates, 50% moisture; cake: 10 - 15% moisture, 3 to 7 sq. ft. filtering area per 24 hr-ton of solids.

Vacuum Pump Capacity:—From 0.75 to 1.00 cu. ft. displacement for each square foot of Filter area, at 20 to 22 inches (mercury) vacuum.

Minimum Wash-Capacity Ratio of Water Feed Tons Per Water To Per 24 Hrs. Ore In Machine Feed G. P. M. Tables Unclassified $-2\frac{1}{2}$ m.m 1.5 to 1 75-150 10-15 Unclassified —20 Mesh 15-60 2.5 to 1 8-12 Unclassified —60 Mesh 10 - 303.0 to 16-10 Screen or $Classified_{+}30$ 25 - 50Screen or Classified+120 10 - 253.0 to 15-10 Vanners -20 Mesh 5-10 5 to 1 3-5 -200 Mesh3-5 4 to 1 1.5 - 3

Concentrating Tables and Vanners

Vanners are little used since the adoption of flotation.

Feed Sizes Mesh	No. Compts 18''x36''	Water Gals. Per Min.	Capacity Tons Per 24 Hrs.	Horse Power
8-14	4	8-16	5-15	3
$\frac{4-6}{2-3}$	3	$15-20 \\ 18-30$	8-20 10-30	$\frac{2\frac{1}{2}}{2}$
MM	2	18-90	10-30	2
15-25	1	20-30	15-50	$1\frac{1}{2}$
25-50	1	30-50	30-100	$1\frac{1}{2}$

Hartz Jigs

Horse Power Size Cu. Ft. Outlet No. Per Min R. P. M. 5 lbs. $3\frac{1}{2}$ lbs. Inches 100 420° 4.63.5 $\mathbf{5}$ $\frac{1}{4}$ $\mathbf{5}$ 2006156.75.0 $\mathbf{5}$ 200455 7.15.3 $\frac{1}{2}$ 250530 8.3 6.2510.66 300 305 8.0 1 11.0 50044015.36 600 335 19.114.08 $\mathbf{2}$ 8 23.6800 41517.5900 27527.120.10 3 1400390 38.428.10 29045.433. 1216004 220038059.443. 1229048. 65.0240014 53453000 81.5 60. 14 3000 24581.0 60. 16 $5\frac{1}{2}$ 3800 315101.075.164000 235107. 80. 16 6 4600270122.90 16

Flotation Type Rotary Blowers

Adapted from catalog, P. H. & F. M. Roots Co.

Above table based upon free air at sea level. Capacity given is for 5 lbs. pressure, and will be increased slightly for 3½ lbs. pressure. Horse-power will be reduced slightly as altitude increases. For combustion purposes at higher altitudes, additional capacity must be provided to equal sea-level conditions; but for flotation purposes, such allowance is unnecessary.

Pneumatic Flotation

Capacity is for $1\frac{1}{2}$ to 2 tons of feed per square foot of aerating surface per 24 hours.

Air required is approximately 10 cubic feet of free air per minute per square foot of aerating surface, at $3\frac{1}{2}$ lbs. per square inch for flat bottom and 5 lbs, for sloping bottom cells.

Pulp for pneumatic flotation should usually carry from 20 to 25 per cent solids.

Drying Ores and Concentrates

(Condensed from Ruggles-Coles Eng. Co. Cat. No. 16) HEAT AND COAL TO DRIVE OFF MOISTURE (Theoretical) PER TON (2,000 lbs.) OF DRY MATERIAL

[At 100% I	Efficiency			At 100% Eff	iciency
Moisture	Water	Total	Coal	Moisture	Water	Total	Coal
%	Lbs.	B. T. U.	Lbs.	%	Lbs.	B. T. U.	Lbs.
1	20	86,200	7.2	25	667	809,550	67.5
2	41	109,680	9.2	30	857	1,021,970	85
4	83	156,630	13.1	35	1,077	1,267,930	106
6	128	207,940	17.7	40	1,333	1,554,130	130
8	174	258,370	21.5	50	2,000	2,299,840	193
10	222	312,040	$\frac{21.0}{26.0}$	60	3,000	3,417,840	$\frac{135}{285}$
10 12	$\frac{222}{273}$	/		70	/	/ /	$\frac{280}{440}$
		369,050	$\frac{30.8}{25.6}$	19	4,667	5,280,430	
14	325	427,190	35.6	80	8,000	9,007,840	756
16	381	489,800	40.8	85	13,333	12,734,090	1,060
18	439	554,640	46.2	90	18,000	20,188,000	1,680
20	500	622,840	52	95	38,000	42,548,000	3,550

Total B. T. U. include 63840 B. T. U. to raise temperature of material from 60 deg. F. to 212 deg F. at which point evaporation takes place (at sea level); specific heat of material taken as 0.21

Coal assumed to have 12000 B. T. U. per lb. as used and is for 100% per cent efficiency as specified. Efficiencies in drying vary widely, depending upon the method of applying heat, the type of apparatus, etc., probably from 25% to 75%. Table of coal added to original data by General Engg., Co.

В	elt	Mate	erial		M	lax. Lengt Slopes	ths				
Width Inches	Ply A ve.	Max. Sizes	Wt. Cu. Ft.	Horiz.	1-12		1/4	1/3	Tons Per Hr.	Horse Power	Max. Belt
		*			5	$\begin{array}{c} \text{Deg} \\ 9\frac{1}{2} \end{array}$	rees 14	181/2	100 F.P.M.	100 F. P. M.	Speed F. P. M.
12	3	11/2-21/2	$50\\100$	$700 \\ 500$	520 325	$\begin{array}{r} 410 \\ 245 \end{array}$	$\begin{array}{c} 340 \\ 195 \end{array}$	280 160	11 22	2.2	300
16	4	21/2-4	$\begin{array}{c} 50 \\ 100 \end{array}$	$\begin{array}{c} 730 \\ 520 \end{array}$	$\begin{array}{c} 530\\ 330 \end{array}$	$\begin{array}{c} 400\\240\end{array}$	$\begin{array}{c} 340 \\ 195 \end{array}$	$\begin{array}{c} 285\\ 160 \end{array}$	20 40	3.8	300
20	4	31/2-5	$\begin{array}{c} 50 \\ 100 \end{array}$	$\begin{array}{c} 610\\ 435 \end{array}$	$\begin{array}{c} 450 \\ 280 \end{array}$	$\begin{array}{c} 325\\ 200 \end{array}$	$\begin{array}{c} 280 \\ 160 \end{array}$	$\begin{array}{c} 245 \\ 135 \end{array}$	31 62	4.8	400
24	5	41/2-8	$\begin{array}{c} 50 \\ 100 \end{array}$	$\begin{array}{c} 685 \\ 490 \end{array}$	$\begin{array}{c} 490\\ 310 \end{array}$	$\begin{array}{c} 375\\225\end{array}$	$\begin{array}{c} 305 \\ 175 \end{array}$	$\begin{array}{c} 250 \\ 140 \end{array}$	46 92	7.6	450
30	6	6-12	$\begin{array}{c} 50 \\ 100 \end{array}$	670 480	$\begin{array}{c} 465 \\ 290 \end{array}$	350 210	$290 \\ 165$	245 135	75 150	11.5	500
36	6	71⁄2-15	$\begin{array}{c} 50\\100\end{array}$	$\begin{array}{c} 645 \\ 460 \end{array}$	$\begin{array}{c} 450 \\ 280 \end{array}$	$\begin{array}{c} 325 \\ 195 \end{array}$	$\begin{array}{c} 260 \\ 150 \end{array}$	235 130	105 210	14.5	500
42	7	9-18	$\begin{array}{c} 50\\100\end{array}$	$\begin{array}{c} 690 \\ 490 \end{array}$	$\begin{array}{c} 465 \\ 290 \end{array}$	$\begin{array}{c} 340\\ 200 \end{array}$	$275 \\ 155$	230 125	$\frac{140}{280}$	20	600
48	8	10-20	50 100	$715 \\ 510$	$\begin{array}{c} 465\\ 290\end{array}$	$\begin{array}{c} 335\\200 \end{array}$	$\begin{array}{c} 280\\ 160 \end{array}$	235 130	185 370	25.5	600

Belt Conveyors

* Smaller figure is for sized material, larger for run-of-mine. For other plies of belt, max. length and power proportional. For other speeds, capacity and horse power proportional.

Adapted from catalog of Dodge Sales & Engineering Co.

Diam. Length	R. P. M.	Н. Р.	R. P. M.	Н. Р.
$\begin{array}{c} 4\frac{1}{2}'x40'\\5'x50'\\6'x60'\end{array}$	$\begin{array}{c} 4\\ 3\\ 2\frac{1}{2} \end{array}$	$\begin{array}{c}10.5\\14.5\\27.0\end{array}$	5 4 3	$ \begin{array}{r} 13.5 \\ 19.1 \\ 32.2 \end{array} $

H. P. Required for plain Cylindrical Dryers

Belt and Bucket Elevators

Spacing = twice the projection of Bucket from Belt.

Bucket	Belt Plies	Max. Lift Feet	Head Pulley Diam. Inches	R. P. M.	Tons Per Hr.	Horse Power For Max. Lift
24x8	$ \begin{array}{c} 10\\ 8\\ 5 \end{array} $	$ \begin{array}{r} 95\\80\\50\end{array} $	$\begin{array}{c} 80\\ 64\\ 40 \end{array}$	$\begin{array}{r} 29\\32\\40\end{array}$	$ 180 \\ 160 \\ 125 $	$\begin{array}{r} 34\\ 25\\ 13 \end{array}$
20x8		$\begin{array}{c} 80\\60\\40\end{array}$	$\begin{array}{c} 64\\ 48\\ 32 \end{array}$	$\begin{array}{c} 32\\ 37\\ 45 \end{array}$	$\begin{array}{c} 130\\110\\90 \end{array}$	$\begin{array}{c} 21\\ 13\\ 7\end{array}$
16x8		$\begin{array}{c} 75\\60\\40\end{array}$	$\begin{array}{c} 64\\ 48\\ 32 \end{array}$	$\begin{array}{c} 32\\ 37\\ 45 \end{array}$	$\begin{array}{c}105\\90\\75\end{array}$	$\begin{array}{c}16\\11\\6\end{array}$
14x7		$95 \\ 75 \\ 50$	$\begin{array}{c} 64\\ 48\\ 32 \end{array}$	$\begin{array}{c} 32\\ 37\\ 45 \end{array}$	77 65 55	$\begin{array}{c}14\\10\\5.5\end{array}$
12x6	$\begin{bmatrix} 8\\ 6\\ 4 \end{bmatrix}$	$\begin{array}{r}105\\80\\50\end{array}$	$\begin{array}{c} 64\\ 48\\ 32 \end{array}$	$\begin{array}{c} 32\\ 37\\ 45 \end{array}$	$58\\49\\40$	$\begin{array}{c} 12.2\\7.8\\4.0\end{array}$
10x6	$\begin{array}{c} 6 \\ 4 \end{array}$	$\begin{array}{c} 80\\ 55\end{array}$	$\frac{48}{32}$	$\begin{array}{c} 37\\ 45 \end{array}$	$\begin{array}{c} 41\\ 34 \end{array}$	$\begin{array}{c} 6.6\\ 3.8 \end{array}$
8x5	$\begin{array}{c} 6\\ 4\end{array}$	90 60	$\frac{48}{32}$	$\begin{array}{c} 37\\ 45 \end{array}$	27 22	$\begin{array}{c} 4.9\\ 2.7\end{array}$
6x4	· 5 3	$90 \\ 45$	$\begin{array}{c} 40\\24\end{array}$	$\begin{array}{c} 40\\52\end{array}$	$\frac{16}{12}$	$\begin{array}{c} 2.7\\ 1.2 \end{array}$

The tonnage and horsepower in the above table are based upon the buckets being:

25% Full of Dry Material, 100 lbs. per cu.ft., or 50% Full of Dry Materials, 50 lbs. per cu. ft, or 40% Full of water and lesser amounts of pulp.

This provides liberal allowance for feed variations.

Speeds (R. P. M.) Give centrifugal discharge for the corresponding pulley diameters.

It is usual in mining practice to use greater number of plies of belt, to allow for wear.

Adapted from catalog of Dodge Sales & Engineering Co.

Strength of Timber

Table 1

Unit Stress in Pounds per Square Inch. (Americal Railway Engineering Association, 1909)

	Bending				Shea	ring		Compression					
	Extr Fiber		Modulus of Elasteity	Parallel to the Grain		Sh	udinal ear eams	to	ndicular the ain		the		king es for mns
Kind of Timber	Average Ultimate	Working Stress	Average	Average Ultimate	Working Stress	Average Ultimate	Working Stress	Elastic Limit	Working Stress	Average Ultimate	Working Stress	Length Under 15xd	Length Over 1Exd +
Douglas Fir Longleaf Pine Shortleaf Pine White Pine	$ \begin{array}{r} 6,100 \\ 6,500 \\ 5,600 \\ 4,400 \end{array} $	1,200 1,300 1,100	$\frac{1,510,000}{1,610,000}$ $\frac{1,480,000}{1,130,000}$	690 720 710 400	170 180 170 100	$ \begin{array}{r} 270 \\ 300 \\ 330 \\ 180 \end{array} $	$ \begin{array}{r} 110 \\ 120 \\ 130 \\ 70 \end{array} $	and approximate the second sec	310 260 170 150	3,600 3,800 3,400 3,000	$\begin{array}{r} 1,200 \\ 1,300 \\ 1,100 \\ 1.000 \end{array}$	900 975 825 750	$\begin{array}{r} 1,200 \\ 1,300 \\ 1,100 \\ 1,000 \end{array}$
Spruce Norway Pine Tamarack Western Hemlock	4,800 4,200 4,600 5,800	800 900	$1,310,000\\1,190,000\\1,220000\\1,480,000$	$600 \\ *590 \\ 670 \\ 630$	$150 \\ 130 \\ 170 \\ 160$	$170 \\ 250 \\ 260 \\ *270$	$70 \\ 100 \\ 100 \\ 100 \\ 100$	370 440	$180 \\ 150 \\ 220 \\ 220 \\ 220$	3,200 *2,600 *3,200 3,500	$1,100\\800\\1,000\\1,200$	$825 \\ 600 \\ 750 \\ 900$	$1,100 \\ 800 \\ 1,000 \\ 1,200$
Redwood Bald Cypress Red Cedar White Oak	5,000 4,800 4,200 5,700	$900 \\ 900 \\ 800 \\ 1,100$	1,150,000	500	80 120 210	270		$ \begin{array}{r} 400 \\ 340 \\ 470 \\ 920 \end{array} $	$150 \\ 170 \\ 230 \\ 450$	$3,300 \\ 3,900 \\ 2,800 \\ 3,500$	$900 \\ 1,100 \\ 900 \\ 1,300$	$675 \\ 825 \\ 675 \\ 975$	$900 \\ 1,100 \\ 900 \\ 1.300$

Multiply values in last column by $(1 - \frac{L}{60 \text{ d}})$.

Above stresses are intended for railroad use. For highway bridges and trestles increase 25%. For structures protected from weather and free from impact, increase 50%. For deflection under long continued loading use 50% of the corresponding modulus of elasticity. Above stresses are for green timber and are to be used without increasing the live load stress for impact. Values noted * are for partially air dry timber. Building laws of various cities specify maximum loads slightly at variance with above figures, both higher and lower. The above figures, however, may be safely followed. In the formula for columns, 1 = length of column in inches, d = least side or diameter in inches. = least side or diameter in inches.

Table III

Unit working stresses in pounds per square inch, long columns.

White Pine or Tamarack, 1,000 $(1 - \frac{z}{d60})$ pounds per sq. inch.

Effective length col. in inches Least side or dia. in inches	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
Working Stress	750	733	717	700	683	667	650	633	617	600	583	567	550	533	517	500

White Pine or Tamarack was selected because the working stress for compression perpendicular to the grain is 1000 pounds. For other woods select the corresponding values from Table I above, and increase or decrease proportionally. For rectangular columns take the safe load unit stress for the square column whose side is equal to the least side of the rectangular section, and increase proportionally. For round column, take the safe load unit stress for the square column whose side is equal to the diameter of the round column and multiply by the decimal 0.78.

(Carnegie)

Strength of Timber

Table II

Safe load in pounds, uniformly distributed, for rectangular Spruce beams. Max. bending stress, 1000 pounds per sq. inch.

Size of Timber Inches	Moment	Limit for Shear Short	Distance between supports, in feet									
inches	Ft. lbs.	Lengths	6	8	10	12	14	16	18	20	22	24
2x4 6 8 10 12	$\begin{array}{r} 445\\ 1,000\\ 1,775\\ 2,795\\ 4,000\end{array}$	$ \begin{array}{r} 1,120\\ 1,494\\ 1,866 \end{array} $				1,852	1,588	500 888 1,388 2,000	790 $1,234$	712	1,010	926
$3x6 \\ 8 \\ 10 \\ 12 \\ 14 \\ 16$	$\begin{array}{c} 1,500\\ 2,670\\ 4,190\\ 6,000\\ 8,190\\ 10,660\end{array}$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			2,133	1,779 2,778	2,382		$1,185 \\ 1,851 \\ 2,667 \\ 3,630$	$1,668 \\ 2,400$	2,181	1,389 2,001 2,721
$4x6 \\ 8 \\ 10 \\ 12 \\ 14$	2,000 3,555 5,555 8,000 10,900	2,988 3,732 4,480			2,844	2,372 3,704		$\begin{array}{r} 1,776 \\ 2,776 \\ 4.000 \end{array}$	1,580	$2,224 \\ 3,200$		1,852 2,668
$\begin{array}{r}16\\18\\20\\22\\24\end{array}$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c c} 6,720 \\ 7,468 \\ 8,212 \end{array} $		· · · · · · · · ·	· · · · · · · · ·	· · · · · · · · ·				· · · · · · · · · ·	6,544	6,000 7,408

*These figures meet the New York building requirements for oak and of Boston for white pine, spruce and oak.

Spruce was selected to list in the above table because the working stress for bending (as per table I) is 1000 pounds. For other woods, select corresponding values from Table I above and increase or decrease proportionally. For other sizes select a timber from the table of same depth and increase or decrease proportionately with width of timber. For other lengths, allowable loads may be figured from "maximum bending moments" as listed above.

For concentrated load at center, safe load is half the above.

Table IV

Safe loads in pounds on square wooden columns.

	1		Side o	f Square, I	nches				
Length in Feet	4	6	8	10	12	14	16	17	20
5	12,000			· · · · · · · · · · ·					
5 6	$\begin{array}{c} 12,000 \\ 11,200 \end{array}$		• • • • • • • • • • •	· · · · · · · · · · · ·	Working	Stroin -			
7	10,400	27.000 .			(1)			
8	9,600 8,800	$rac{26,400}{25,200}$.	48,000			—)pounds 30)			
10		24,000	48,000		per sq. in	ch. ove horizont	tal		
10 11	8,000	22,800	46,400		lines are 1	maximum			
12		21,600	44,800 41,600			safe loads.			
14 16		19,200	38,400						
18			35,200		100,800		192.000		
20			32000	60 000	96.000	140.000	$192,000^{1}$	243.000	300 000

White Pine or Tamarack

65

Principal Economic Minerals

F				
MINERAL	SPEC. GRAV.	HARD- NESS	COMPO FORMULA	SITION PER CENT
ANTIMONY				
STIBNITE	4.55	2	56 53	5b-71.4, 5-28.6
COPPER				
ATACAMITE -Oxychloride	3.75	3-3.5	$CuCl_2 3Cu(OH)_2$	Cu-59.5, CI-16.6, OH-23.9
AZURITE -Bive Corbonate	3.78	3.5 - 4.5	2 Си <i>СО</i> 3 Си(ОН) ₂	Cu-55.3, O-13.9, CO2-25.5, H2O-5.2
BORNITE Variegated, Peacock-	5.15	3	Cu_5 Fe S_4 , or (or Cu_3 Fe S_3)	Cu-63.3, Fe-11.1, 5-25.6
BROCHANTITE -Basic Sulphate	3.9	3.5 - 4	Cu50 ₄ 3Cu(OH) ₂	Cu- 66.2, 504-25.0 OH-88
CHALCOCITE	5.65	2.5 - 3	Cu ₂ 5	Cu-79.9, 5-20.1
CHALCOPYRITE Copper Pyrites	4.2	3.5-4	CuFe52	Cu-34.6, Fe-30.4, 5-35.0
CHRYSOCOLLA - Silicate	2.1	2-4	Cu 5iO3 2H20	Cu-36.1, SiO ₂ -34.3, O-9.1 H10-20.5
COVELLITE	4.6	1.5 - 2	CuS,	Cu-66.5, 5-33.5
CUPRITE -Red Oxide, Ruby-	6.0	3.5-4	Cu ₂ O	Cu-88.5, 0-11.2
ENARGITE -Sulph-Arsenate	4.45	3	Cu3 As 54	Cu-48.4, As-19.0, 5-32.6
MALACHITE -Green Carbonate	4.0	3.5 - 4	СиСО3 Си(ОН)2	Cu-57.5, 0-14.5 CO2-19.9, H2O-8.1
MELACONITE -Black Oxiac	5.95	3	CuO	Cu-79.9, O-20.1
TETRAHEDRITE Gray Copper	4.75	3-4.5	4 Cu2 5 56 53 (As, Fc, Pb, In, Ag)	Cu-52.2, 56-24.7,. 5-23.1
IRON				
HEMATITE SPECULAR IRON Iron Oxide	5. i	5.5 - 6.5	Fez Oz	Fe-69.9, 0-30.1
LIMONITE Brown Hematita, Bog Ore	3.6-4.0	5 - 5.5	2 Fe 2 03 3H20	Fe-59.8, 0-25.7, H20-44
MAGNETITE Magnetic Oxide	5.17	5.5-6.5	Fe3 04	Fe-72.4, 0-27.6
ARSENOPYRITE Mispickel	6.05	5.5 - 6	Fa As S	Fe - 43.7, As - 31.2, 5-25.1
MARCASITE White Pyrites PYRITE Pyrites	4.9 5.1	6-6.5	Fe Sz	Fe-46.55, 5-53.45

Principal Economic Minerals

MINERAL	SPEC. GRAV.			DSITION PER CENT
IRON-CONTO.				
PYRRHOTITE Magnetic Pyrites	4.65	3.5-4.5	Fe ,, 5,2	Fe-61.5, S-38.5
SIDERITE Spathic Iron	3.85	3-4.5	Fe CO3 (Mn, Ca, Mg)	
LEAD				
ANGLESITE -sulphote	6.2	2.75-3	Pb 504	Pb-68.3, 5-10.6, 0-21.1
CERRUSSITE -Carbonate	6.55	3-3.5	Pb CO3	Pb - 77.5, O - 6.0, CO2 - 16.5
GALENA -Sulphide	7.45	2.5	P6 5	Pb-86.6, S-13.4
MANGANESE				
PYROLUSITE -Dioxide	4.82	2 - 2.5	Mn Oz	Mn.63.2, 0-36.8
PSILOMELANE				
RHODONITE -silicate	3.5		Mn SiOz	Mn-47.7, 5:02-52.3
RHODOCHROSITE - Carbonate	3.5		Mn CO3	Mn0-61.7, CO2-38.3
MANGANITE	4.3		$Mn_2O_3H_2O$	Mn-62.5, 0-27.3 H20-10.2
MERCURY				
CINNABAR - Sulphide	8. 1	2.2.5	Hg S	Hg-86.2; S-13.8
MOLYBDENUM				
MOLYBOENITE - Sulphiae	4.75	1-1.5	Mosz	Mo-59.95, 5-20.05
WULFENITE Leca Molybdate	6 85	3	Pb Mo 04	Pb-56.4, Mo-26.2, 0-17.4
SILVER				
ARGENTITE -Glance	7.3	2-2.5	Ag25	Ag- 87.1, 5-12.9
CERARGYRITE Horn Silver	5,55	1.5-2	AgCI	Ag-75-3, C1-24.7
PROUSTITE Light Red - Ruby Silver	5.6	2.5	A93A55,	Ag. 65.4, As. 15.2 5-19.4
PYRARGYRITE Ruby Silver	5.8	2-2.5	Ag, 50 53	Ag-59.9, 56-22.3 5-17.8
STEPHANITE -Sulph-Antimonite	6.2	2 • 2 • 5	Ags 50 54	Ag-68.5, Sb-15.3 S-16.3
SYLVANITE Telluride	8.1		Au Ag Tez	

.

Principal Economic Minerals

MINERAL	SPEC. GRAV	HARD. NESS	FORMULA	PER CENT
			TORNOLA	
TIN				
CASSITERITE	6.95	6-7	5n 02	5n · 78.8, 0 - 21.2
Tinstone	0.00		01102	51178.0, 0 2172
TUNGSTEN				
	705	E	(F. M.) WA	(5.11) 222 111 513
WOLFRAMITE	7.35		(Fe, Mn) WO4	(Fe.M)-30.9, W-51.3 0-17.8
HÜBNERITE	7.35	45	Mn WO4	Mn-18.1, W-60.7, 0-21.1
SCHEELITE	6.0	4.5-5	Ca WO4	CaO - 19.5, W-63.9 0-16.7
ZINC				0 10.7
CALAMINE -Hydrous Silicate	3.45	4.5-5	$2 ZnO SiO_2 + H_2O$	Zn-54.2, SiOz-38.3 H20-7.5
MARMATITE Iron Blende	3.9-4.2	5	(Zn Fe)S	Zn ± 42.7, Fe ± 36.4 5.20.9
SMITHSONITE -Carbonate	4.35	5	Zn COz	Zn-52.1, C-9.6 (0-38.3
SPHALERITE Blende, Jack	4.0	3.5-4	Zn S	Zn. 67.1, 5-32.9
WILLEMITE -Silicote	4.0	5.5	2 ZnO, 5:02	Zn-38.6, SiO2-41.4
ZINCITE -Oxide	5.5	4-4.5	ZnO	Zn - 80.3, 0 - 19.7
GRAPHITE - Black Lead	2.15		С	
GANGUE				
ANHYDRITS - Anhydrous Sulphate	2.95	3-3.5	Ca 504	CaO-41.2, 503-58.8
BARITE Baryta, Heavy Spar	4.5	2.5-3.5	Ba SO ₄	Ba O - 65.7, 503 -34.3
CALCITE Spar,"Lime", Limestone	2.72	3	Ca CO3	CaO-56.0, CO ₂ -44.0
DOLOMITE Magnesium Limestone	2.85	3.5-4	$CaMg(CO_3)_2$	Ca O-30.42, MgO-21.9 CO2-47.7
GYPSUM -Hydrous Sulphate	2.32	1.5-2	Ca 504 2H20	CaD-32.6, 503-46.5 H20-20.9
MAGNESITE - Carbonate	3.1	3-4.5	Mg CO ₃	Mg 0-47.8, CO ₂ -52.2
QUARTZ	2.65	7	SiOz	Si-46.9, 0-53.1
Various Common Gangue Silicates	2.5 to 3.5			

A list of Minerals, their Description and Specific Gravity

			Spec. G	irav.
Aluminum	A1			2.60
Andalusite	A1_SiO_5	Silicate of aluminum	3.16—	-3.20
Anglesite	PbSO	Lead sulphate	6.12	-6.39
		Hard Coal		
Antimony	Sb			6.71
		Phosphate of lime	3.17—	-3.23
Aragonite	CaCO	Carbonate of lime		2.94
Argentite	Ag S	Silver sulphide	7.20—	-7.36
Arsenic	As		• • •	5.78
Arsenolite	As ₂ O ₂	White arsenic	3.70—	-3.72
Asphaltum				
Atacamite	CuCl ₂ 3Cu(OH) ₂	Chloride of copper		3.75
		Blue carbonate of copper.		-3.83
Barite	,BaŠO,	Barium sulphate		
Bauxite	A1 ₂ O ₃ 2H ₂ O	Hydrate oxide of aluminu		2.55
Beryl	Be ₃ Al ₃ Si ₆ O ₁₈	Silicate of beryllium	2.63—	-2.80
Bismuth	Bi		•••	9.80
Bismuthinite	Bi ₂ S ₃	Sulphide of bismuth	6.4 —	-6.50
Bituminous Co	a1	Soft coal	1.14—	-1.40
Bornite	Cu ₂ FeS ₃	Sulphide of copper and irc	n4.90—	-5.40
Cadmium	Cd			8.60
Calamine	H ₂ Zn ₂ SiO ₅	Silicate of zinc	3.40-	-3.50
Calcite	CaCO ₂	Carbonate of lime		2.7
Cassiterite	SnO	Dioxide of tin	6.8 –	-7.10
Cerargyrite	AgCĨ	Horn Silver		5.55
Cerussite	PbCO ₃	Carbonate of lead	6.46-	-6.57
Chalcocite	Cu ₂ S	Copper glance	5.5 –	-5.8
Chalcopyrite	CuFeS ₂	Copper pyrite	4.1 –	-4.3
Chromite	$\dots \operatorname{FeCr}_2 \overline{O}_4$	Chromic iron	4.32-	-4.57
Chromium	Cr	Chromic iron		6.50
Chrysolite	(MgFe) ₂ SiO ₄	Silicate of magnesia and in Sulphide of mercury	·on3.27–	-3.37
Cinnabar	HgS	Sulphide of mercury	8.0 -	-8.2
Cobalt				8.6
Cobaltite	CoAsS	Sulph-arsenide of cobalt	6.0 –	-6.30
Copper	Cu		8.8 –	-8.90
Corundum	A1 ₂ O ₃	Oxide of aluminum	3.95-	-4.10
Cracolito	Na A1E	Eluoride of aluminum & s	sodium	3.0
Cuprite	Cu O	Red copper ore	5.85-	-6.15
Cvanite	A1 SiO	Aluminum silicate	3.56-	-3.67
Diamond	C		••••	3.50
Dolomite	(CaMg)CO ₃	Carbonate of lime and		
		magnesia		
Enargite	CuAsS,			4.45
Epidote	HCa ₂ (Å1Fe) ₃	Silicate of iron alumina		
	Si ₃ O ₁₃			-3.5
	0 10			

Fluorite	CaF ₂	Fluor spar	3.2
FrankEnite		Oxide of zinc, manganese	
		and iron	
		Sulphide of lead	
Gypsum	$CaSO_4 + 2H_2O$	Sulphate of lime	23
Hematite	Fe _s O _s	Red oxide of iron	4.90
Ice	H_JO		0.915
Iodyrite	AğI	Iodide of Silver	5.6 — 5.7
Iridium	I r		22.42
Iron	Fe		7.85
Kaolinite	_2H_OA1_O_2SiO	Silicate of alumina	2.6
Lead			
		Brown oxide of iron	3.640
		Carbonate of magnesia	
	**	Magnetic oxide of iron	
		Green carbonate of coppe	
Manganese	Mn		
Manganite	Mn_O_H_O	Hydrate manganese oxide	42 -4.4
Monazite			
		White iron pyrite	
	Hg		
		Nickel sulphide	
		Lead arsenate	
Muscovite	H KA1 (SiO)	Potash mica	2.76-3.0
	2 3 (4/3		
Niccolite	NiAs	Nickel arsenide	7 33-7 67
Onal	SiO nH O		10 23
Orniment	$A \leq S$	Yellow sulphide of arseni	-34 - 35
Orthoclase	\mathbb{K}^{3}_{2}	Potash Feldspar	2 46-2 6
Ozocorito		Potash Feldspar Mineral wax	0.85_0.00
Palladium	Pa		11 3 11 8
Provotito	$\Delta \propto \Delta \propto S$	Light red silver ore	5 57 5 64
Duronermite	$-\Lambda g_3 \Lambda s S_3$	Darls red silver are	5.57 - 5.04
Pyrargyrite	Ag,505 ₃	"Dark red silver ore	4.05 5.00
Pyrite	FeS ₂	Iron sulphide	4.955.10
Pyrolusite	MnO_{p}		482
Pyromorphite	$.3PD_3P_2O_8PDCI_2$	Lead phosphate	
Pyrrhotite	re, ₁ S ₁₂	Magnetic pyrite	4.58-4.64
Quartz		D.1.1.1.1.1	. 2.05-2.66
		Red sulphide of arsenic	
		Carbonate of manganese	
Rhodonite	$MnSiO_3$	Silicate of manganese	3.403.68
Rutile	T10,	Dioxide of titanium	4.2
Serpentine	$H_{1}Mg_{2}Si_{2}O_{9}$	Silicate of magnesia Carbonate of iron	2.50-2.65
Siderite	"FeCO ₃	Carbonate of iron	3.83.9

Silver	Ag		. 10.1—11.1
Smaltite	CoAs	Arsenide of cobalt	
Smithsonite	ZnCO	Carbonate of zinc	
Sphalerite	ZnS	Sulphide of zinc	
Spinel	MgAl _o O ₄	Aluminate of magnesia	3.5 —4.1
Stephanite	Ag ₅ S ₄ Sb	Brittle silver	6.2 —6.3
Stibnite	Sb ₂ S ₃	_Sulphide of antimony	4.54.6
Sulphur	S		. 2.08
Sylvanite	(Au,Ag)Te ₂	Telluride of gold and silver	7.98.3
Talc	$H_2Mg_3Si_4O_{12}$	Silicate of magnesia	2.7 —2.8
Tephroite	Mn_2SiO_4	Silicate of Manganese	4.04.1
Tetrahedrite	4Cu ₂ S,Sb ₂ S ₃	Gray copper	4.4 —5.1
Tin	Sn		. 7.29
Topaz		"Fluo-silicate of alumina	3.43.6
Tourmaline		Silicate of alumina, iron an	d
		magnesia	
	Zn_2SiO_4	Silicate of zinc	3.94.18
Wolframite	(Fe,Mn)WO ₄	Tungstate of iron and	
		manganese	7.27.5
Wulfenite	PbMoO ₄	Molybdate of lead	6.7 —7.0
Zinc	Zn		. 7.15
Zincite	ZnO	Zinc oxide	5.43—5.7
Zircon	"ZrSiO ₄	Silicate of zerconium	• 4.70

Areas and Circumferences of Circles

Dia.	Area	Cir.	Dia.	Arca	Cir.	Dia.	Area	Cir	Dia.	Area	Cir.
$\frac{1/8}{1/4}$	$\begin{array}{c} 0 & 0123 \\ 0 & 0 & 91 \\ 0 & 1104 \\ 0 & 1963 \\ 0 & 3067 \end{array}$	$\begin{array}{r} .3926 \\ .7854 \\ 1.178 \\ 1.570 \\ 1.963 \end{array}$	10 11 11 12 12	$\begin{array}{r} 78.54 \\ 86.59 \\ 95.03 \\ 103.87 \\ 113.10 \end{array}$	$\begin{array}{c} 31.41 \\ 32.99 \\ 34.55 \\ 36.13 \\ 37.70 \end{array}$	$30 \\ 31 \\ 32 \\ 33 \\ 34$	$\begin{array}{c} 706.86 \\ 754.77 \\ 804.25 \\ 855.30 \\ 907.92 \end{array}$	$\begin{array}{c} 94.25\\ 97.39\\ 100.5\\ 103.6\\ 106.8\end{array}$	$ \begin{array}{r} 65 \\ 66 \\ 67 \\ 68 \\ 69 \\ \end{array} $	$\begin{array}{c} 3318.3\\ 3421.2\\ 3525.7\\ 3631.7\\ 3739.3 \end{array}$	$\begin{array}{c} 204.2 \\ 207.3 \\ 210.5 \\ 213.6 \\ 216.8 \end{array}$
$ \begin{array}{r} 3/4 \\ 7/8 \\ 1 \\ 1/8 \\ 1/4 \end{array} $	$\begin{array}{c} 0.4417 \\ 0.6013 \\ 0.7854 \\ 0.9940 \\ 1.227 \end{array}$	$\begin{array}{c} 2.356 \\ 2.748 \\ 3.141 \\ 3.534 \\ 3.927 \end{array}$	$1 \\ 13 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 2 \\ 1 \\ 2 \\ 1 \\ 2 \\ 1 \\ 2 \\ 1 \\ 2 \\ 2$	$\begin{array}{c} 122.72 \\ 132.73 \\ 143.14 \\ 153.94 \\ 165.13 \end{array}$	$\begin{array}{r} 39.27 \\ 40.84 \\ 42.41 \\ 43.98 \\ 45.55 \end{array}$	35 36 37 38 39	$\begin{array}{r} 962.11\\ 1017.9\\ 1075.2\\ 1134.1\\ 1194.6\end{array}$	$\begin{array}{c c}109.9\\113.1\\116.2\\119.4\\122.5\end{array}$	70 71 72 73 74	$\begin{array}{r} 3848.5\\ 3959.2\\ 4071.5\\ 4185.4\\ 4300.8 \end{array}$	$219.9 \\ 223.1 \\ 226.1 \\ 229.3 \\ 232.5$
3 8 1/2 5/8 3/4 7/8	$1.485 \\ 1.767 \\ 2.074 \\ 2.405 \\ 2.761$	$\begin{array}{r} 4.320 \\ 4.712 \\ 5.105 \\ 5.498 \\ 5.890 \end{array}$	$\begin{array}{c}15\\1&2\\16\\1&2\\17\end{array}$	$\begin{array}{c} 176.71 \\ 188.69 \\ 201.06 \\ 213.82 \\ 226.98 \end{array}$	$\begin{array}{r} 47.12 \\ 48.69 \\ 50.26 \\ 51.83 \\ 53.41 \end{array}$	$ \begin{array}{r} 40 \\ 41 \\ 42 \\ 43 \\ 44 \end{array} $	$1256.6 \\ 1320.3 \\ 1385.4 \\ 1452.2 \\ 1520.5$	$\begin{array}{c} 125.7 \\ 128.8 \\ 131.9 \\ 135.1 \\ 138.2 \end{array}$	75 76 77 78 79	$\begin{array}{r} 4417.9\\ 4536.5\\ 4656.6\\ 4778.4\\ 4901.7\end{array}$	$235.6 \\ 238.7 \\ 241.9 \\ 245.0 \\ 248.2$
$\begin{array}{c}2\\1/4\\1/2\\3/4\\3\end{array}$	$\begin{array}{c} 3 & 141 \\ 3 & 976 \\ 4 & 909 \\ 5 & 940 \\ 7 & 069 \end{array}$	$\begin{array}{c} 6.283 \\ 7.069 \\ 7.854 \\ 8.639 \\ 9.425 \end{array}$	$18^{1/2}\\18^{1/2}\\19^{1/2}\\1/2$	$\begin{array}{r} 240.53 \\ 254.47 \\ 268.80 \\ 283.53 \\ 298.65 \end{array}$	54.9856.6558.1259.6961.26	$45 \\ 46 \\ 47 \\ 48 \\ 49$	$\begin{array}{c} 1590.4 \\ 1661.9 \\ 1734.9 \\ 1809.5 \\ 1885.7 \end{array}$	$\begin{array}{c} 141.4 \\ 144.5 \\ 147.7 \\ 150.8 \\ 153.9 \end{array}$	80 81 82 83 84	$\begin{array}{c} 5026.5\\ 5153.0\\ 5281.0\\ 5410.6\\ 5541.8\end{array}$	$\begin{array}{c} 251.3 \\ 254.5 \\ 257.6 \\ 260.7 \\ 263.9 \end{array}$
$ \begin{array}{c} 1/4 \\ 1/2 \\ 3/4 \\ 4 \\ 1/2 \\ 1/2 \end{array} $	$\begin{array}{r} 8.296 \\ 9.621 \\ 11.045 \\ 12.566 \\ 15.904 \end{array}$	$\begin{array}{c} 10.21 \\ 11.00 \\ 11.78 \\ 12.57 \\ 14.14 \end{array}$	$\begin{array}{c} 20 \\ 1 \\ 21 \\ 22 \\ 22 \end{array}$	$\begin{array}{r} 314.16\\ 330.06\\ 346.36\\ 363.05\\ 380.13 \end{array}$	$\begin{array}{c} 62.82 \\ 64.40 \\ 65.97 \\ 67.54 \\ 69.11 \end{array}$	$50 \\ 51 \\ 52 \\ 53 \\ 54$	$\begin{array}{c} 1963.5\\ 2042.8\\ 2123.7\\ 2206.1\\ 2290.2 \end{array}$	$\begin{array}{c} 157.1 \\ 160.2 \\ 163.4 \\ 166.5 \\ 169.6 \end{array}$	85 86 87 88 89	5674.5 5808.8 5944.7 6082.1 6221.1	$\begin{array}{c} 267.0\\ 270.2\\ 273.3\\ 276.5\\ 279.6\end{array}$
5 $1/2$ 6 $1/2$ 7	$\begin{array}{c} 19.635\\ 23.758\\ 28.274\\ 33.183\\ 38.485 \end{array}$	$\begin{array}{c} 15.71 \\ 17.28 \\ 18.85 \\ 20.42 \\ 21.99 \end{array}$	$\begin{array}{c} 1 \\ 23 \\ 1 \\ 24 \\ 1 \\ 24 \\ 1 \\ 2 \end{array}$	$\begin{array}{r} 397.61 \\ 415.48 \\ 433.74 \\ 452.39 \\ 471.44 \end{array}$	$\begin{array}{c} 70.69\\ 72.26\\ 73.83\\ 75.40\\ 76.97\end{array}$	55 56 57 58 59	$\begin{array}{c} 2375.8 \\ 2463.0 \\ 2551.8 \\ 2642.0 \\ 2734.0 \end{array}$	172.8175.9179.0182.2185.4	90 91 92 93 94	$\begin{array}{c} 6361.7 \\ 6503.8 \\ 6647.6 \\ 6792.9 \\ 6939.8 \end{array}$	282.7285.9289.0292.2295.3
$ \begin{array}{c} \frac{1}{2}\\ 8\\ \frac{1}{2}\\ 9\end{array} $	$\begin{array}{c} 44.179 \\ (50.265) \\ 56.745 \\ 63 \\ 617 \\ 70 \\ 882 \end{array}$	$\begin{array}{c c} 23.56\\ 25.13\\ 26.70\\ 28.27\\ 29.84 \end{array}$	$25 \\ 26 \\ 27 \\ 28 \\ 29$	$\begin{array}{r} 490.87\\ 530.93\\ 572.50\\ 615.75\\ 660.52\end{array}$	$\begin{array}{c} 78.54 \\ 81.68 \\ 84.82 \\ 87.96 \\ 91.11 \end{array}$	$ \begin{array}{c} 60 \\ 61 \\ 62 \\ 63 \\ 64 \end{array} $	2827.4 2922.5 3019.1 3117.2 3217.0	$\begin{array}{c} 188.5\\ 191.6\\ 194.8\\ 197.9\\ 201.1 \end{array}$	95 96 97 98 99	$\begin{array}{c} 7088.2\\ 7238.2\\ 7389.8\\ 7543.0\\ 7697.7\end{array}$	298.4 301.6 304.7 307.9 311.0

International Atomic Weights

From Smithsonian Table-1916

Element	Symbol	Atomic Weight	Valence
Aluminum Antimony Argon Arsenic Barium	Al Sb A As Ba	$\begin{array}{r} 27.1 \\ 120.2 \\ 38.88 \\ 74.96 \\ 137.37 \end{array}$	$ \begin{array}{r} 3 \\ 3, 5 \\ 0 \\ 3, 5 \\ 2 \end{array} $
Bismuth Boron Bromine Cadmium Caesium	$\begin{array}{c} \mathrm{Bi} \\ \mathrm{B} \\ \mathrm{Br} \\ \mathrm{Cd} \\ \mathrm{Cs} \end{array}$	$\begin{array}{c} 208.0 \\ 11.0 \\ 79.92 \\ 112.40 \\ 132.81 \end{array}$	3, 5 3 1 2 1
Calcium Carbon Cerium Chlorine Chlorine	Ca C Ce Cl Cr	$\begin{array}{r} 40.07 \\ 12.00 \\ 140.25 \\ 35.46 \\ 52.0 \end{array}$	$2 \\ 4 \\ 3, 4 \\ 1 \\ 2, 3, 5$
Cobalt. Columbium [Niobium]. Copper. Dysprosium. Erbium.	Co Cb Cu Dy Er	58.97 93.5 63.57 162.5 167.7	2, 33, 51, 233
Europium Fluorine Gadolinium Gallium Germanium	Eu F Gd Ga Ge	$152.0 \\ 19.0 \\ 157.3 \\ 69.9 \\ 72.5$	$ \begin{array}{c} 3 \\ 1 \\ 3 \\ 3 \\ 4 \end{array} $
Gluciniun Gold Helium Holmium Hydrogen	Gl Au He Ho H	$ \begin{array}{r} 9.1 \\ 197.2 \\ 3.99 \\ 163.50 \\ 1.008 \end{array} $	$\begin{array}{c}2\\1,3\\0\\3\\1\end{array}$
Indium Iodine Iridium Iron Krypton	$In \\ I \\ Ir \\ Fe \\ Kr$	$114.8\\126.92\\193.1\\55.84\\82.92$	$\begin{matrix}3\\1\\4\\2,3\\0\end{matrix}$
Lanthanum Lead Lithium Lutecium Magnesium	La Pb Li Lu Mg	$139.0 \\ 207.10 \\ 6.94 \\ 174.0 \\ 24.32$	$3\\2,4\\1\\3\\2$
Manganese Mercury Molybdenum Neodymium Neon	Mn Hg Mo Nd Ne	54.93200.696.0144.320.2	$2, 3, 7 \\ 1, 2 \\ 4, 6 \\ 3 \\ 0$

International	Atomic	Weights-	-Cont
			00110

Element	\mathbf{Symbol}	Atomic Weight	Valence
Nickel Niton Nitrogen Osmium Oxygen	Ni Nt Os O	58.68222.414.01190.916.0	$ \begin{array}{c} 2, 3 \\ \dots \\ 3, 5 \\ 6, 8 \\ 2 \end{array} $
Palladium Phosphorus Platinum Potassium Praseodymium	$egin{array}{c} \mathrm{Pd} \ \mathrm{P} \ \mathrm{Pt} \ \mathrm{K} \ \mathrm{Pr} \end{array}$	$106.7 \\ 31.04 \\ 195.2 \\ 39.10 \\ 140.6$	2, 43, 52, 513
Radium Rhodium Rubidium Ruthenium Samarium	Ra Rh Rb Ru Sa	$226.4 \\ 102.9 \\ 85.45 \\ 101.7 \\ 150.4$	$\begin{array}{c}2\\3\\1\\6,8\\3\end{array}$
Scandium Selenium Silicon Silver Sodium	Sc Se Si Ag Na	$\begin{array}{r} 44.1 \\ 79.2 \\ 28.3 \\ 107.88 \\ 23.00 \end{array}$	$2, \begin{array}{c}3\\4, 6\\4\\1\\1\end{array}$
Strontium Sulphur Tantalum Tellurium Terbium	$\begin{array}{c} \mathbf{Sr} \\ \mathbf{S} \\ \mathbf{Ta} \\ \mathbf{Te} \\ \mathbf{Tb} \end{array}$	$\begin{array}{r} 87.63 \\ 32.07 \\ 181.5 \\ 127.5 \\ 159.2 \end{array}$	$2, 4, 6 \\ 5 \\ 2, 4, 6 \\ 3 $
Thallium Thorium Thulium Tin Tin Titanium	$\begin{array}{c} Tl \\ Th \\ Tm \\ Sn \\ Ti \end{array}$	$204.0 \\ 232.4 \\ 168.5 \\ 119.0 \\ 48.1$	$1, 3 \\ 4 \\ 3 \\ 2, 4 \\ 4$
Tungsten Uranium Vanadium Xenon	$egin{array}{c} W \ U \ V \ X e \end{array}$	$184.0 \\ 238.5 \\ 51.0 \\ 130.2$	$\begin{array}{c} 6 \\ 4, \ 6 \\ 3, \ 5 \\ 0 \end{array}$
Ytterbium	Yb Yt Zn Zr	$173.0 \\ 89.0 \\ 65.37 \\ 90.6$	3 3 2 4

Foreign Coins VALUES IN UNITED STATES CURRENCY

(Authorized by the Secretary of the Treasury of the U. S., Oct. 1, 1920) All money in gold unless marked: (s), silver standard, or (gs) gold and silver standard.

Country	Coin Standard Monetary Unit	Value U. S. Gold Dollars 1920
North America Canada Cuba Haiti Santa Domingo New Foundland Mexico		\$1.0000 1.0000 0.2500 1.0000 1.0000 0.4985
Central America Costa Rica. Guatemala. Henduras. British Honduras. Nicaragua. Salvador. Panama.	Colon Peso [s] Peso [s] Dollar Cordoba Colon [s] Balboa	$\begin{array}{c} 0.4653 \\ 0.6864 \\ 0.6864 \\ 1.0000 \\ 1.0000 \\ 0.5000 \\ 1.0000 \end{array}$
South America Argentina Bolivia Brazil Chile Columbia Ecuador Paraguay Peru Uruguay Venezuela	Peso Boliviano Milreis Peso Dollar Sucre Peso Libra Peso Bolivar	$\begin{array}{c} 0.9648\\ 0.3893\\ 0.5462\\ 0.3650\\ 0.9733\\ 0.4867\\ 0.9648\\ 4.8665\\ 1.0342\\ 0.1930 \end{array}$
	Krone Franc [gs] *Crown Krone Markka Franc [gs] Mark Pound Sterling	$\begin{array}{c} 0.2026\\ 0.1930\\ ^{*}0.203\\ 0.2680\\ 0.1930\\ 0.1930\\ 0.2382\\ 4.8665\end{array}$
Greece Netherland [Holland]. Italy *Jugo-Slavia Norway	*Crown Krone *Mark Escudo Leu	$\begin{array}{c} 0.1930 \\ 0.4020 \\ 0.1930 \\ ^*0.203 \\ 0.2680 \\ ^*0.238 \\ 1.0805 \\ 0.1930 \\ 0.5146 \end{array}$

* Values obtained from other sources than U. S. Treasury.

Country	Coin Standard Monetary Unit	Value U. S. Gold Dollars 1920
Serbia Spain Sweden Switzerland Turkey	Dinar Peseta [gs] Krona Franc Piaster	$\begin{array}{c} 0.1930 \\ 0.1930 \\ 0.2680 \\ 0.1930 \\ 0.0440 \end{array}$
Africa Egypt Liberia British Colonies	Dollar	4.9431 1.0000 4.8665
Asia India Indo-China Japan Persia	Rupee Piaster [s] Yen Achrefi [g]	$\begin{array}{c} 0.3244 \\ 0.7413 \\ 0.4985 \\ 0.0959 \\ 0.1264 \end{array}$
Phillipines	Tical Dollar Tael [s]	$\begin{array}{c} 0.1264 \\ 0.50000 \\ 0.3709 \\ 0.5678 \\ 1.0278 \\ \text{to } 1.1449 \end{array}$
	Dollar [s] Dollar [s]	0.7374 to 0.7455

Foreign Coin--Cont.

(Note-Chinese money varies in value between various ports)

Graphite Flotation Plant Carbon Mountain Graphite Company, Lineville, Ala. Designed and built by the General Engineering Company

I N D E X METALLURGICAL BULLETIN

Page

.

	0
Altitude Effects	52
Assaying Atomic 'Weights	13 •72-73
Ball Mills, conical	57
Ball Mills, cylindrical Barometric Pressure at altitudes	57 52
Belt Conveyors	62
Belt Screens, Callow	59
Blake Crushers	55
Blowers, Flotation Boiler Capacities, Coal Consumption	61 45
Boiling Points at altitudes	52
Breakers, Blake and Gyratory	55
Bucket Elevators, Belt-and	63
Callow Screens	59
Callow Settling Tanks	60
Centritugal Force	53
Charges for Ore-Testing Charges for Erection, Operation	13 25
Chemical Elements, properties	72-73
Chilean Mills	56
Circles, Circumferences and Areas	71
Circulating Feed Classifiers, Hydraulic	50 60
Coal Consumption, Dryers	
Coal Consumption, Steam Plants	45
Coins, Foreign, value of	74-75
Concentration, Milling costs Erection costs	32, 33, 36 42
Power required	42
Water required	
Flow Sheets	
Consulting work	15 62
Copper Production, Smelter	
Refinery balance sheet	30
by states	29
Copper Minerals	
Crushing, costs	36
divisions or classification of	36
Power required	42 55
Crushers, Blake, Gyratory, Disc Crushing Machinery	and the set of a
Cyanidation, Milling costs	
Erection costs	42
Power required	42 47
Water required Flow-sheet of mill	21
Design of Plants	23-25 55
Disc Crushers	

THE GENERAL ENGINEERING COMPANY

index-continued

	Page
Dredging, costs Dryers, Cylindrical, power Drying Ores	37 63 62
Electricity, Costs of Power Units and Relations Current in circuits Power in circuits Power Transmission	43 43
Elements, Chemical Elevators, Belt-and-Bucket Engines, Steam, Types, water and coal consumption Equivalents of Weights and Measures	63
Falling Bodies, formulae Fees, Ore Testing Erection, Operating Filtering Concentrates Filters, Vacuum Flotation, Pneumatic	60 60
Testing Equipment Blowers Milling costs	7, 10 62 33, 36
Flow-sheets of mills Force, Centrifugal, Gravity Foreign Coins, value of	
Gold Production Gravity, Falling Bodies Gyratory Crushers	28 53 55
Hardinge Mills Hartz Jigs Hydraulic Classifiers Induction Motors, current	• 60
Information required for ore testing	11, 12
Jigs, Hartz	61
Kilowatt-hours-per-Ton	43
Laboratory, Plans Leaching Copper, costs Lead Minerals Production	37 67 et seq
Measures Metallurgical Tests Metal Statistics Milling Costs Milling Machinery Mills, Ball Chilean	9, 11 28-30 32-37 54-63 57
Pebble (Tube) Stamp Flow-sheets of	58 57 15-21
Representative, designed and constructed by the General Engineering Company	

index-continued

Page	Р	a	g	e	
------	---	---	---	---	--

Mine Examination Minerals, Principal Economic Minerals, List of Minature Ore-Testing Plant Money, value of Foreign Coins Motors, Current Multipliers	66-68 69-71 14 74-75 43,46
Operation of Plants	23, 25
Ore Testing	9-14
Pebble Mills, conical and cylindrical	58
Pilot Plants	11
Piping in Mills, Water	48
Plants constructed by General Engineering Company, illustrated.	27
Cons. Copper Mines Co., C. C. Cunningham Magna Copper Company National Copper Company Dominion Molybdenite Company Utah-Apex Mining Company Utah Consolidated Mining Company	22 25 23 54 24
Pneumatic Flotation	61
Power, Costs	38, 39
Electrical Transmission	44
in Electrical Circuits	43
Mill Horse Power	42
Units and Relations	43
Pressures, Multipliers	52
Pulp Calculations	48
Pulp Density Relations	49
Pump, Vacuum, capacity for filtering	60
Quantity of Ore for Tests	13
Ratio of Concentration, Formulae Recovery, Formulae Rolls, Crushing Rod or Roller Crushing Mills	
Sale of Ore for Clients Screens, Revolving, Trommels Impact Belt, Callow Conversion formulae	59
Shipments of samples for testing Silver Poduction Silver, economic minerals Specific Gravity, definition of Minerals	66-71
Stamp Mills	57
Steam Plants	45
Surface, tables	51
Tables, Concentrating	60
Tanks, Callow Settling	60
Thickening	60

THE GENERAL ENGINEERING COMPANY

index-continued

	Page
Testing of Ores, classes of tests	9-11
Timbers, strength of	64, 65
Trommel Screens	59
Tube (Pebble) Mills	58
Vanners, Frue	60
Water, Constants	46-47
Water Piping in Mills	48
Weights and Measures	46-52
Wiring Table-Copper Wire, for Electricity	44
Wooden Beams, strength of	65
Columns, strength of	64, 65
Zinc Production	31
Zinc, economic minerals	68

•

•

