
Transformation of Probability
Densities

This Wikibook shows how to transform the probability density of a continu-
ous random variable in both the one-dimensional and multidimensional case.
In other words, it shows how to calculate the distribution of a function of
continuous random variables. The first section formulates the general prob-
lem and provides its solution. However, this general solution is often quite
hard to evaluate and simplifications are possible in special cases, e.g., if the
random vector is one-dimensional or if the components of the random vector
are independent. Formulas for these special cases are derived in the subse-
quent sections. This Wikibook also aims to provide an overview of different
equations used in this field and show their connection.

1 General Problem and Solution (n-to-m map-
ping)

Let ~X = (X1, . . . , Xn) be a random vector with the probability density func-
tion, pdf, % ~X(x1, . . . , xn) and let f : Rn → Rm be a (Borel-measurable) func-
tion. We are looking for the probability density function %~Y of ~Y := ~f( ~X).
First, we need to remember the definition of the cumulative distribution
function, cdf, F~Y (~y) of a random vector: It measures the probability that
each component of Y takes a value smaller than the corresponding component
of y. We will use a short-hand notation and say that two vectors are "less or
equal" (≤) if all of their components are.

F~Y (~y) = P
(
~Y ≤ ~y

)
= P

(
~f( ~X) ≤ ~y

)
(1)

The wanted density %~Y (~y) is then obtained by differentiating F~Y (~y):

%~Y (~y) = ∂

∂y1
· · · ∂

∂ym
F~Y (~y) (2)

Thus, the general solution can be expressed as the m‘th derivative of an
n-dimensional integral:

Rn → Rm mapping

%~Y (~y) = ∂

∂y1
· · · ∂

∂ym

∫
{~x∈Rn|~f(~x)≤~y}

% ~X(~x) dnx (3)

The following sections will provide simplifications in special cases.
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2 Function of a Random Variable (n=1, m=1)
If n=1 and m=1, X is a continuously distributed random variable with the
density %X and f : R → R is a Borel-measurable function. Then also
Y := f(X) is continuously distributed and we are looking for the density
%Y (y). In the following, f should always be at least differentiable.
Let us first note that there may be values that are never reached by f, e.g.
y<0 if f(x) = x2. For all those y, necessarily %Y (y) = 0.

%Y (y) =

0, if y /∈ f(R)
?, if y ∈ f(R)

Following equations (1) and (2), we obtain

%Y (y) = d

dy
FY (y) = d

dy
P (Y ≤ y) = d

dy
P (f(X) ≤ y) (4)

We will now rearrange this expression in various ways.

2.1 Deviation using cumulated distribution function
FX

At first, we limit ourselves to f those derivative is never 0 (thus, f is a diffeo-
morphism). Then, the inverse map f−1 exists and f is either monotonically
increasing or monotonically decreasing.
If f is monotonically increasing, then x ≤ f−1(y) ⇔ f(x) ≤ f(f−1(y)) = y
and f ′ > 0. Therefore:

%Y (y) = d
dy
P (f(X) ≤ y) = d

dy
P (X ≤ f−1(y))

= d
dy
FX(f−1(y)) = %X(f−1(y))df

−1(y)
dy

If f is monotonically decreasing, then x ≤ f−1(y) ⇔ f(x) ≥ f(f−1(y)) = y
and f ′ < 0. Therefore:

%Y (y) = d
dy
P (f(X) ≤ y) = d

dy
P (X ≥ f−1(y))

= d
dy

(1− FX(f−1(y))) = −%X(f−1(y))df
−1(y)
dy

This can be summarized as:

%Y (y) =

0, if y /∈ f(R)
%X(f−1(y)) ·

∣∣∣df−1(y)
dy

∣∣∣ , if y ∈ f(R)
(5)

If now the derivative f ′(xi) = 0 does vanish at some positions xi, i =
1, . . . , N , then we split the definition space of f using those position into
N + 1 disjoint intervals Ij. Equation (5) holds for the functions fIj

limited
in their definition space to those intervals Ij. We have
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P (f(X) ≤ y) =
N+1∑
j=1

P (fIj
(X) ≤ y)

%Y (y) = d
dy
P (f(X) ≤ y) =

N+1∑
j=1

%X(f−1
Ij

(y)) ·
∣∣∣∣∣df
−1
Ij

(y)
dy

∣∣∣∣∣
With the convention that the sum over 0 addends is 0 and using the inverse
function theorem, it is possible to write this in a more compact form (read
as: sum over all x, where f(x)=y):

R → R mapping

%Y (y) =
∑

x,f(x)=y

%X(x)
|f ′(x)|

(6)

2.2 Deviation using Integral Substitution
In this section we consider a different deviation.
The probability in (4) is the integral over the probability density. Again in
the case of monotonically increasing f, we have:∫ y

−∞ %Y (u) du = P (Y ≤ y) = P (f(X) ≤ y) = P (X ≤ f−1(y))
=

∫ f−1(y)
−∞ %X(x) dx

Now we substitute u = f(x) in the integral on the right hand site, i.e.
x = f−1(u) and du

dx
= f ′(x). The integral limits are then from -∞ to y and

in the rule “dx = dx
du
du” we have dx

du
= d f−1(u)

du
due to the inverse function

theorem. Consequentially:∫ y
−∞ %Y (u) du =

∫ y
−∞ %X(f−1(u)) d f−1(u)

du
du

Taking the derivative of both sides with respect to y, we get:
%Y (y) = %X(f−1(y)) d f−1(y)

dy

Following the same argument as in the last section, we can again derive
equation (6).
This rule often misleads physics books to present the following viewpoint,
which might be easier to remember, but is not mathematically sound: If
you multiply the probability density %X(x) with the “infinitesimal length”
dx, then you will get the probability %X(x) dx for X to lie in the interval
[x, x+dx]. Changing to new coordinates y, you will get by substitution:

%X(x) dx = %X(x(y)) dx
dy︸ ︷︷ ︸

%Y (y)

dy
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2.3 Deviation using the Delta Distribution
In this section we consider another different deviation, often used in physics.
We start again with equation (4) and write this as an integral:

%Y (y) = d
dy
P (f(X) ≤ y)

= d
dy

∫
{x∈R|f(x)≤y} %X(x) dx

= d
dy

∫
R Θ(y − f(x)) %X(x) dx

=
∫
R

d
dy

Θ(y − f(x)) %X(x) dx
=

∫
R δ(y − f(x)) %X(x) dx

The intuitive interpretation of the last expression is: one integrates over all
possible x-values and uses the delta “function” to pick all positions where
y = f(x). This formula is often found in physics books, possibly written as
expectation value, 〈. . .〉:

R → R mapping (using Dirac Delta Distribution)

%Y (y) =
∫
R
δ(y − f(x)) %X(x) dx = 〈 δ(y − f(x)) 〉 .

(7)

We can see this formula is equivalent to equation (6) using the following
identity ∫

R
δ(h(x)) g(x) dx =

∑
x,h(x)=0

g(x)
|h′(x)|

2.4 Example
• Let us consider the following specific example: let %X(x) = exp[−0.5x2]√

2π
and f(x) = x2. We choose to use equation (6) (equations (5) and (7)
lead to the same result). We calculate the derivative f ′(x) = 2x and
find all x for which f(x)=y, which are −√y and +√y if y>0 and none
otherwise. For y>0 we have:
%Y (y) = ∑

x,f(x)=y

%X(x)
|f ′(x)| = %X(−√y)

|f ′(−√y)| + %X(+√y)
|f ′(+√y)| = exp[−0.5y]√

2π 2√y + exp[−0.5y]√
2π 2√y

= exp[−0.5y]√
2π y

Since f never reaches negative values, the sum remains 0 for y<0 and
we finally obtain:

%Y (y) =

0, if y ≤ 0
exp[−0.5y]√

2π y , if y > 0
This example is illustrated in figure 1.
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Figure 1: Random numbers are generated according to the standard normal
distribution X ∼ N(0,1). They are shown on the x-axis of figure (a). Many
of them are around 0. Each of those numbers is mapped according to y = x2,
which is shown with grey arrows for two example points. For many generated
realisations of X, a histogram on the y-axis will converge towards the wanted
probability density function %Y shown in (c). In order to analytically derive
this function, we start by observing that in order for Y to be between any
v and v + ∆v, X must have been between either −

√
v + ∆v and −

√
v, or,

between
√
v and

√
v + ∆v. Those intervals are marked in figures (b) and (c).

Because the probability is equal to the area under the probability density
function, we can determine %Y from the condition that the grey shaded area
in (c) must be equal to the sum of the areas in (b). The areas are calculated
using integrals and it is useful to take the limit ∆v → 0 in order to get the
formula noted in (c). 5



• Another example is the inverse transformation method. Suppose a
computer generates random numbers X with a uniform distribution on
[0, 1], i.e.

%X(x) ≡

1, if 0 ≤ x ≤ 1
0, else.

If we want to obtain random numbers according to a distribution with
the pdf %Z , we choose f as the inverse function of the cdf of Z, i.e.
Y = f(X) = F−1

Z (X). We can now show that Y will have the same
distribution as the wanted Z, %Y = %Z by using equation (5) and the
fact that f−1 = FZ :

%Y (y) =

0, if y /∈ F−1
Z (R)

%X(FZ(y)) ·
∣∣∣dFZ(y)

dy

∣∣∣ , if y ∈ F−1
Z (R)

= 1 ·
∣∣∣dFZ(y)

dy

∣∣∣ = %Z(y)
.

An example is illustrated in figure 2.
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Figure 2: Random numbers yi are generated from a uniform distribution
between 0 and 1, i.e. Y ∼ U(0, 1). They are sketched as colored points on
the y-axis. Each of the points is mapped according to x=F-1(y), which is
shown with gray arrows for two example points. In this example, we have
used an exponential distribution. Hence, for x ≥ 0, the probability density is
%X(x) = λe−λx and the cumulated distribution function is F (x) = 1− e−λx.
Therefore, x = F−1(y) = − ln(1−y)

λ
. We can see that using this method, many

points end up close to 0 and only few points end up having high x-values -
just as it is expected for an exponential distribution.
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3 Mapping of a Random Vector to a Random
Variable (n>1, m=1)

We will now investigate the case when a random vector X with known density
% ~X is mapped to (scalar) random variable Y and calculate the new density
%Y (y).
According to (3), we find:

%Y (y) = d

dy

∫
{~x∈Rn|f(~x)≤y}

% ~X(~x) dnx (8)

The direct evaluation of this equation is sometimes the easiest way, e.g., if
there is a known formula for the area or volume presented by the integral.
Otherwise one needs to solve a parameter-depended multiple integral.
If the components of the random vector ~X are independent, then the prob-
ability density factorizes:

% ~X(x1, . . . , xn) = %X1(x1) · . . . · %Xn(xn)
In this case the delta function may provide a fast tool for the evaluation:

%Y (y) =
∫
Rn % ~X(x1, . . . , xn) δ(y − f(~x)) dx1 . . . dxn

=
∫
R %Xn(xn) · · ·

∫
R %X1(x1) δ(y − f(~x)) dx1 . . . dxn

(9)

If one wants to avoid calculations with the delta function, it is of course pos-
sible to evaluate the innermost integral

∫
dx1, provided that the components

are independent:
%Y (y) =

∫
Rn−1

∑
x1,f(~x)=y

% ~X
(~x)∣∣∣ ∂f(~x)

∂x1

∣∣∣ dx2 . . . dxn

3.1 Examples
• Let Y = f( ~X) = X1 + X2 with the independent, continuous random

variable X1 and X2. According to equation (9), we have:
%Y (y) =

∫
R %X2(x2)

∫
R %X1(x1) δ(y − x2 − x1) dx1 dx2

=
∫
R %X2(x2) %X1(y − x2) dx2

If one uses the sum formula instead, the sum runs over all x1, for which
f(~x) = x1+x2 = y, i.e. where x1 = y - x2. The derivative is ∂(x1+x2)

∂x1
= 1,

so that one also obtains the equation %Y (y) =
∫
R %X2(x2) %X1(y−x2) dx2.

Integrating over x2 first leads to the following, equivalent expression:
%Y (y) =

∫
R %X1(x1) %X2(y − x1) dx1

• If Y = X1 −X2 with independent X1 and X2, then
%Y (y) =

∫
R %X1(x1) %X2(x1 − y) dx1.
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• If Y = X1 ·X2 with independent X1 and X2, then
%Y (y) =

∫
R %X1(x1) %X2

(
y
x1

)
1
|x1| dx1.

• If Y = X1
X2

with independent X1 and X2, then
%Y (y) =

∫
R %X1(x2 · y) %X2(x2) |x2| dx2.

• Given the independent random variables X1 and X2 with the density

% ~X(x1, x2) =

1/π, if x2
1 + x2

2 ≤ 1
0, otherwise

Let Y :=
√
X2

1 +X2
2 . According to equation (8), we need to solve:

%Y (y) = d
dy

∫{
~x∈Rn|
√
x2

1+x2
2≤ y

} 1
π
dx1 dx2

The last integral is over a circle with radius y ≤ 1, hence with the area
πy2. This simplifies the calculation:
0 ≤ y ≤ 1⇒ %Y (y) = 1

π
d
dy

(πy2) = 2π y
π

= 2y.
If y<0, we integrate over an empty set, which gives 0. If y>1, % ~X = 0.
Therefore, the final result is:

%Y (y) =

2y, if 0 ≤ y ≤ 1
0, otherwise

This example is illustrated in the figure 3.
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Figure 3: Figure (a) shows a sketch of random sample points from a uniform
distribution in a circle of radius 1, subdivided into rings. In figure (b), we
count how many of those points fell into each of the rings with the same width
∆v. Since the area of the rings increases linearly with the radius, one can
expect more points for larger radii. For ∆v → 0, the normalized histogram in
(b) will converge to the wanted probability density function %Y. In order to
calculate %Y analytically, we first derive the cumulated distribution function
FY, plotted in figure (d). FY(y) is the probability to find a point inside the
circle of radius v (shown in grey in figure (c)). For v between 0 and 1, we
find FY (v) = Av

Atot
= πv2

π12 = v2. The slope of FY is the wanted probability
density function ρY (y) = dFY (y)

dy
= 2y, in agreement with figure (b).
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4 Invertible Transformation of a Random Vec-
tor (n=m)

Let ~X = (X1, . . . , Xn) be a a random vector with the density % ~X(x1, . . . , xn)
and let f : Rn → Rn be a diffeomorphism. For the density %~Y of ~Y := ~f( ~X)
we have:∫

G % ~X(~x) dnx =
∫
f(G) % ~X(f−1(~y))

∣∣∣∂(x1,...,xn)
∂(y1,...,yn)

∣∣∣ dny
and therefore

Rn → Rn mapping

%~Y (~y) = % ~X(f−1(~y))
∣∣∣∣∣∂(x1, . . . , xn)
∂(y1, . . . , yn)

∣∣∣∣∣ , (10)

where Φf−1 =
∣∣∣∂(x1,...,xn)
∂(y1,...,yn)

∣∣∣ is the Jacobian determinant of f−1. Note that
Φf−1 = (Φf )−1. In the one-dimensional case (n=1), equation (10) coincides
with equation (5).

4.0.1 Examples

• Given the random vector ~X and the invertible matrix A and a vector
~b, let ~Y = A ~XT +~b. Then %~Y (~y) = % ~X

(
A−1 (~y −~b)

)
|detA−1|. Also,

detA−1 = 1/ detA.

• Given the independent random variablesX1 andX2, we introduce polar
coordinates Y1 =

√
X2

1 +X2
2 and Y2 = atan2(X2, X1). The inverse map

is X1 = Y1 cosY2 and X2 = Y1 sin Y2. Due to Jacobian determinant y1,
the wanted density is %~Y (y1, y2) = y1 % ~X(y1 cos y2, y1 sin y2).

10

https://en.wikipedia.org/wiki/Jacobian determinant
https://en.wikipedia.org/wiki/Polar coordinate system
https://en.wikipedia.org/wiki/Polar coordinate system


5 Possible simplifications for multidimensional
mappings (n>1, m>1)

Even if none of the above special cases apply, simplifications can still be
possible. Some of them are listed below:

5.1 Independent Target-Components
If one knows beforehand that the components of Yi will be independent, i.e.

%~Y (y1, . . . , yn) = %Y1(y1) · . . . · %Yn(yn) ,
then the density %Yi

of each component Yi = fi( ~X) can be calculated like in
the above section Mapping of a Random Vector to a Random Variable.

5.1.1 Example

Given the random vector ~X = (X1, X2, X3, X4) with independent compo-
nents. Let f : R4 → R2, ~Y = ~f( ~X) := (X1 + X2, X3 + X4). Obviously, the
components Y1 = X1 + X2 and Y2 = X3 + X4 are independent and therefore:

%Y1(y1) =
∫
R %X1(y1 − x2) %X2(x2) dx2 and

%Y2(y2) =
∫
R %X3(y2 − x4) %X4(x4) dx4.

Note that the components of ~Y can be independent even if the components
of ~X are not.

5.2 Split Integral Region
Sometimes it is useful to split the integral region in equation (3) into parts
that can be evaluate separately. This can be made explicit by rewriting (3)
with delta functions:

%~Y (~y) =
∫
Rn % ~X(~x) δ(y1 − f(~x)1) · . . . · δ(ym − f(~x)m) dnx

and then use the identity δ(x− x0) =
∫
R δ(x− ξ) δ(ξ − x0) dξ.

5.2.1 Example

To illustrate the idea, we use a simple Rn→ R example: Let Y = X1
2 + X2

2 + X3
with

% ~X(x1, x2, x3) =


e−x3
π
, if x2

1 + x2
2 ≤ 1 ∧ x3 ≥ 0

0, else
The parametrisation of the region where at the same time x1

2 + x2
2 + x3 ≤ y

and x1
2 + x2

2 ≤ 1 and x3 ≥ 0 may not be obvious, so we use the two above
formulas:
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%Y (y) =
∫
R3 % ~X(~x) δ(y − f(~x)) dx1 dx2 dx3

=
∫∞

0
∫∫
x2

1+x2
2≤1

e−x3
π
δ(y − x2

1 − x2
2 − x3) dx1 dx2 dx3

=
∫∞

0
∫∫
x2

1+x2
2≤1

e−x3
π

∫
R δ(ξ − x2

1 − x2
2) δ(y − x3 − ξ) dξ dx1 dx2 dx3

=
∫∞

0
∫
R

[∫∫
x2

1+x2
2≤1

e−x3
π
δ(ξ − x2

1 − x2
2) dx1 dx2

]
δ(y − x3 − ξ) dξ dx3

Now, we have split the integral such that the expression in brackets can be
evaluated separately, because the region depends on x1 and x2 only and may
contain x3 only as parameter.∫∫

x2
1+x2

2≤1
e−x3
π
δ(ξ − x2

1 − x2
2) dx1 dx2 =

e−x3 , if 0 ≤ ξ ≤ 1
0, else

Therefore:

%Y (y) =
∫∞

0
∫ 1

0 e
−x3 δ(y−x3−ξ) dξ dx3 =

∫ y
max(0,y−1) e

−x3 dx3 =


e1−y − e−y, if y > 1
1− e−y, if 0 ≤ y ≤ 1
0, if y ≤ 0

5.3 Helper Coordinates
If f is injective, then it can be easier to introduce additional helper coor-
dinates Ym+1 to Yn, then do the Rn → Rn transformation from section
Invertible Transformation of a Random Vector and finally integrate out all
helper coordinates of the so-obtained density.

5.3.1 Example

Given the random vector ~X = (X1, X2, X3) with the density % ~X(~x) and the
following mapping:(

Y1
Y2

)
=
(

1 2 3
4 5 6

)X1
X2
X3


Now we introduce the helper coordinate Y3 = X3, which results in the trans-
formation matrix

A =

1 2 3
4 5 6
0 0 1


with the corresponding pdf % ~X(A−1 ~y) |detA−1|. Thus, we finally obtain

%~Y (y1, y2) =
∫
R % ~X

A−1

y1
y2
y3


 |detA−1| dy3 .

Remark: If the joint pdf %~Y (y1, y2), i.e. the conditional distribution,
is not of interest and one is only interested in the marginal distribution
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with %Y1(y1) =
∫
R %~Y (y1, y2) dy2, then it is possible to calculate the den-

sity as described in section Mapping of a Random Vector to a Random
Variable for the mapping Y1 = 1 X1 + 2 X2 + 3 X3 (and likewise for
Y2 = 4 X1 + 5 X2 + 6 X3).

6 Real-World Applications
In order to show some possible applications, we present the following ques-
tions, which can be answered using the techniques outlines in this Wiki-
book. In principle, the answers could also be approximated using a numeri-
cal random number simulation: generate several realizations of ~X, calculate
~Y = f( ~X) and make a histogram of the results. However, many such random
numbers are needed for reasonable results, especially for higher-dimensional
random vectors. Gladly, we can always calculate the resulting distribution
analytically using the above formulas.

6.1 Statistical Physics
• Suppose atoms in a laser are moving with normally distributed veloci-

ties Vx, %Vx(vx) = exp[−v2
x/2σ2]√

2πσ2 , σ2 = kBT/m. Due to the Doppler effect,
light emitted with frequency f0 by an atom moving with vx will be de-
tected as f ≈ f0 ( 1 + vx / c ). Hence, f is a function of Vx. What does
the detected spectrum, %f , look like? (Answer: Gaussian around f0.)

• Suppose the velocity components of an ideal gas (Vx, Vy, Vz) are identi-
cally, independently normally distributed as in the last example. What
is the probability density %V of V =

√
V 2
x + V 2

y + V 2
z ? (The answer is

known as Maxwell-Boltzmann distribution.)

6.2 Quantifying Uncertainty of Derived Properties
• Suppose we do not know the exact value of X and Y, but we can assign

a probability distribution to each of them. What is the distrubution of
the derived property Z = X2 / Y and what is the mean value and stan-
dard deviation of Z? (To tackle such problems, linearisation around the
mean values are sometimes used and both X and Y are assumed to be
normally distributed. However, we are not limited to such restrictions.)

• Suppose we consider the value of one gram gold, silver and platinum in
one year from now as independent random variables G, S and P, respec-
tively. Box A contains 1 gram gold, 2 gram silver and 3 gram platinum.
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Box B contains 4, 5 and 6 gram, respectively. Thus,
(
A
B

)
=
(

1 2 3
4 5 6

)GS
P

.
What is the value of the contents in box A (or box B) in one year from
now? (The answer is given in an example above.) Note that A and B
are correlated.

Note that the above examples assume the distribution of ~X to be known. If it
is unknown, or if the calculation is based on only a few data points, methods
from mathematical statistics are a better choice to quantify uncertainty.

6.3 Generation of Correlated Random Numbers
Correlated random numbers can be obtained by first generating a vector of
uncorrelated random numbers and then applying a function on them.

• In order to obtain random numbers with covariance matrix CY, we can
use the following know procedure: Calculate the Cholesky decomposi-
tion CY = A AT. Generate a vector ~x of uncorrelated random numbers
with all var(Xi) = 1. Apply the matrix A: ~Y = A ~X. This will result
in correlated random variables with covariance matrix CY = A AT.

• With the formulas outlined in this Wikibook, we can additionally study
the shape of the resulting distribution and the effect of non-linear trans-
formations. Consider, e.g., that X is uniform distributed in [0, 2π],
Y1 = sin(X) and Y2 = cos(X). In this case, a 2D plot of random num-
bers from (Y1, Y2) will show a uniform distribution on a circle. Al-
though Y1 and Y2 are stochastically dependent, they are uncorrelated.
It is therefore important to know the resulting distribution, because
%~Y (y1, y1) has more information than the covariance matrix CY.

Latest version of this article online on: https://en.wikibooks.org/wiki/Probability/Transformation
of Probability Densities
Author: Lars Winterfeld
Licence: Creative Commons Attribution-Share Alike 3.0
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