# UINTA-SOUTHWESTERN UTAH FINAL ENVIRONMENTAL IMPACT STATEMENT COAL 

USS. DEPARTMENT OF THE INTERIOR BUREAU OF LAND MANAGEMENT




# FINAL UINTA-SOUTHWESTERN UTAH REGIONAL COAL ENVIRONMENTAL IMPACT STATEMENT 

Prepared by
THE DEPARTMENT OF THE INTERIOR bureau Of Land management


# Uinta-Southwestern Utah Coal Region Environmental Impact Statement 

U.S. Department of the Interior, Bureau of Land Management

Cooperating Agencies

U.S. Department of Agriculture Forest Service<br>U.S. Department of the Interior Geological Survey Fish and Wildlife Service

## Abstract

This statement assesses the environmental consequences of five alternative levels of coal development, including development of the Hollberg Preference Right Lease Application (PRLA) area and an exchange of Utah Power and Light Company (UP\&L) PRLA lands for coal leases on the Wasatch Plateau. The alternatives range from leasing 11 tracts ( 561.8 million tons) to leasing three tracts ( 153.7 million tons), and also includes the no action alternative. Alternative Two, the high level scenario ( 465.2 million tons) involving the leasing of seven tracts on the Wasatch Plateau for undergound mining only, is the preferred alternative. The statement assesses impacts that would occur in Carbon, Emery, Sanpete, and Sevier Counties as a result of proposed coal leasing and development, and impacts from the UP\&L exchange on the Kaiparowits Plateau in Garfield and Kane Counties.

The Draft EIS was filed with EPA October 8, 1980 and public hearings on the Draft were held in Escalante, Castle Dale, Price, and Salt Lake City. Comments were received from Federal, State, and local government agencies, the coal industry, and private citizens. The comment period ended December 9, 1980. This Final EIS incorporates the responses and text revisions resulting from comments received on the Draft.

Comments on the Draft were requested from the following: (see Attachment)
For further information regarding this statement or proposed alternative actions contact:

Mr. Ron Bolander
Team Leader
Bureau of Land Management
136 East South Temple
Salt Lake City, Utah 84111
Telephone 524-4257 (FTS 588-4257)
Date by Which Comments on the Final Statement Must be Received: APR 61981

Comments on the Draft Environmental Impact Statement were requested from the following agencies, interest groups, and individuals (an asterisk denotes comments were received).

## Federal Agencies

Departiment of Agriculture
*Forest Service
*Soil Conservation Service
Department of the Interior
Bureau of Land Management
*Geological Survey
*Heritage Conservation and Recreation Service
*National Park Service
Office of the Solicitor (Regional Office)
*Office of Surface Mining
*U.S. Fish and Wildlife Service
*Water and Power Resources Service
Federal Highway Administration
Small Business Administration
Office of Technological Assessment
*Environnental Protection Agency

## Local Agencies

Six County Association of Governments
Utah Association of Governments
*Southeastern Utah Association of Governments
Uintah Basin Association of Governments
Five County Association of Governments
Kane County Commission
*Garfield County Commission
Carbon County Cominission
*Emery County Commission
Sevier County Cominission
Sanpete County Commission
Other Organizations and Individuals
Numerous organizations and individuals expressing interest in the coal leasing program for the region have been sent copies of the DEIS, including Utah's congressional delegation, coal and other energy companies, universities and colleges, and local and statewide organizations.

## State Agencies

State of Colorado
Governor
Clearinghouse
Department of Natural Resources
State of 'Jtah
*Governor Clearinghouse
State Planning Coordinator
*Div. of Environmental Health Services
*Bureau of Air Quality Dept. of Natural Resources Utah Energy Office Div. of Water Resources Div. of State Lands and Forestry Div. of Oil, Gas, and Mining
*Div. of Wildlife Resources Div. of Transportation State Archives and Records Service Div. of Parks and Recreation *Div. of State History

Major Special Interest Groups
National Resources Defense Council
*Friends of the Earth
Public Lands Council
The Wilderness Society
Independent Petroleum Assoc. of America
Utah Mining Association
*Sierra Club
Farmers Home Administration
American Right-of-Way Association
Utah Geological Association
League of Women Voters of Utah
Western Colorado Resources Council
Four Corners Geological Society
Public Lands Institute
Utah Water Users Association
American Fisheries Society
Utah Geological and Mineralogical
Society
Wasatch Front Regional Council
Environmental Defense Fund
Environmental Policy Institute
Defenders of Wildlife
The Wildlife Society

## TABLE OF CONTENTS

| SUMMARY | UNRESOLVED ISSUES |
| :---: | :---: |
| INTRODUCTION ................................ S-1 | IDENTIFICATION OF THE PREFERRED ALTERNATIVE |
| ALTERNATIVES ................................ $5-1$ |  |
|  | CHAPTER 1 PURPOSE AND NEED |
| ALternative one, maximum level (561.8 MILLION TONS) |  |
|  | INTRODUCTION |
| $\begin{aligned} & \text { ALTERNATIVE TWO, (PREFERRED ALTERNATIVE) } \\ & \text { HIGH LEVEL (465.2 MILLION TONS)..................... } \end{aligned}$COAL LEASING PROGRAM. |  |
|  |  |
| alternative three, mid level (335.3 million TONS). | PURPOSE AND NEED FOR LEASING |
|  | the need for leasing in the region ............ 1 |
|  |  |
|  | GRAMMMAY SUNTA-SOUTHWESTERN UTAH COAL REGION..... 2 |
| hollberg prla |  |
|  | SCOPING ...xaramer 10 |
| ENVIRONMENTAL CONSEQUENCES OF THE PROPOSED ALTERNATIVE ACTIONS |  |
|  | Preference right lease applications. 12 |
| alternative one.... |  |
|  |  |
| alternative two - - | TRANSPORTATION.............................................. 12 ENERGY INDUSTRY DEVELOPMENTS............ |
|  | State and local land use plans, pro GRAMS AND CONTROLS |
|  |  |
| Alternative four .... | UTAH POWER AND LIGHT EX. CHANGE |
| UTAH POWER AND LIGHt exchange....) . | PURPose And need .... |
|  | LAND USE PLANNING PROCESS .-. |
|  |  |
|  |  |
| Y-337106 0123(04)(04-FEB-81-14:34.37) F0171d |  |

## TABLE OF CONTENTS

ALTERNATIVES ..... 13
INTERRELATIONSHIPS ..... 13
TRANSPORTATION ..... 13
COAL DEVELOPMENT ON THE KAIPAROWITS PLATEAU ..... 15
LOCAL LAND USE PLANS AND CONTROLS ..... 15
CHAPTER 2 ALTERNATIVES INCLUDING THE PROPOSED ACTION
INTRODUCTION ..... 17
FEDERAL COAL LEASING PRO- GRAM ..... 17
INDIVIDUAL TRACT DEVELOPMENT ..... 17
TUCKER CANYON TRACT ..... 17
MILLER CREEK TRACT ..... 21
GORDON CREEK TRACT ..... 21
SLAUGHTERHOUSE CANYON TRACT ..... 26
MEETINGHOUSE CANYON TRACT. ..... 26
RILDA CANYON TRACT ..... 26
COTTONWOOD TRACT ..... 32
NORTH HORN MOUNTAIN TRACT ..... 32
EMERY NORTH TRACT ..... 38
EMERY CENTRAL TRACT ..... 44
EMERY SOUTH TRACT ..... 44
HOLLBERG PRLA ..... 49
DESCRIPTION OF THE ALTERNA- TIVES ..... 49
alternative one ..... 49
ALTERNATIVE TWO (PREFERRED ALTERNATIVE) ..... 55
ALTERNATIVE THREE ..... 55
alternative four ..... 58
alternative five ..... 58
COMPARATIVE ANALYSIS MATRIX ..... 58
REQUIRED AUTHORIZATIONS ..... 58
MITIGATING MEASURES ..... 65
SURFACE MINE RECLAMATION ..... 67
UTAH POWER \& LIGHT EXCHANGE ..... 67
INTRODUCTION ..... 67
DESCRIPTION OF THE ALTERNATIVES ..... 71
ALTERNATIVE ONE ..... 71
ALTERNATIVE TWO ..... 71
CHAPTER 3 DESCRIPTION OF THE ENVIRONMENT
INTRODUCTION ..... 75
WASATCH PLATEAU ..... 75
CLIMATE, AIR QUALITY ..... 75
CLIMATE ..... 75
AIR QUALITY ..... 75
SOILS ..... 78
WASATCH PLATEAU COAL FIELD ..... 78
EMERY COAL FIELD ..... 78
WATER RESOURCES ..... 81
SURFACE WATER ..... 81
WATER QUALITY ..... 81
TRACE ELEMENTS ..... 86

|  | TRANSPORTATION........................... 111 |
| :---: | :---: |
| WATER RIGHTS............................................ 86 | CULTURAL RESOURCES.................. 114 |
| CONSUMPTIVE USES OF WATER ............................. 86 | SPECIAL DESIGNATION AREAS....... 116 |
| GEOLOGY, TOPOGRAPHY, PALEONTOLOGY, MINERAL RESOURCES. | VISUAL RESOURCES......................... 116 |
| WASATCH PLATEAU COAL FIELD .............................. 89 | RECREATION ................................... 119 |
| EMERY COAL FIELD .................................................. 91 | KAIPAROWITS PLATEAU .................. 119 |
| VEGETATION.................................... 91 | INTRODUCTION ................................ 119 |
| VEGETATIO TYPES............................................ 91 | CLIMATE AND AIR QUALITY............ 121 |
| threatened or endangered plants ................. 95 | SOILS ................................................ 121 |
| RECLAMATION POTENTIAL....................................... 95 | deep plateau soils association ......................... 121 |
| WILDLIFE .......................................... 96 | Shallow plateau soils association ................. 121 |
| THREATENED AND ENDANGERED SPECIES................ 100 | SHALLOW SOIL-ROCK OUTCROP ASSOCIATION......... 121 |
| FISHERIES .......................................................................... 100 | SANDY SOILS ASSOCIATION...................................... 122 |
| THREATENED OR ENDANGERED FISHES .................... 103 | BADLAND-ROCKLAND ASSOCIATION .......................... 122 |
| LAND USE ......................................... 103 | WATER RESOURCES........................ 122 |
| SOCIOECONOMICS ........................... 104 | GEOLOGY, TOPOGRAPHY, PALEONTOLOGY, MINERAL RESOURCES. |
| ECONOMIC AND DEMOGRAPHIC CONDITIONS ............. 104 |  |
|  | VEGETATION..................................... 123 |
| INFRASTRUCTURE CONDITIONS................................... 107 |  |
|  | VEGETATION TYPES................................................. 123 |
| SOCIAL CONDItIONS............................................ 107 |  |
|  | threatened or endangered plants ................... 125 |
| Y-337106 0125(04)(04-FEB-81-14:34:39) F0171d |  |

## TABLE OF CONTENTS

WILDLIFE ..... 125
LAND USE ..... 126
SOCIOECONOMICS ..... 126
TRANSPORTATION ..... 128
CULTURAL RESOURCES ..... 128
SPECIAL DESIGNATION AREAS ..... 129
VISUAL RESOURCES ..... 129
RECREATION ..... 129
CHAPTER 4 ENVIRONMENTAL CONSEQUENCES
INTRODUCTION ..... 133
ANALYSIS ASSUMPTIONS AND GUIDELINES ..... 133
FEDERAL COAL LEASING PRO- GRAM ..... 134
ALTERNATIVE ONE ..... 134
AIR QUALITY ..... 134
SOILS ..... 141
WATER RESOURCES ..... 142
GEOLOGY, TOPOGRAPHY, PALEONTOLOGY, mineral resources ..... 145
VEGETATION. ..... 146
WILDLIFE ..... 148
LAND USE ..... 152
SOCIOECONOMICS ..... 156
TRANSPORTATION ..... 164
CULTURAL RESOURCES ..... 169
SPECIAL dESIGNATION AREAS ..... 169
VISUAL RESOURCES ..... 169
RECREATION ..... 170
UNAVOIDABLE ADVERSE IMPACTS. ..... 171
the relationship between the short- TERM USE OF MAN'S ENVIRONMENT AND THE MAINTENANCE AND ENHANCEMENT OF LONG- TERM PRODUCTIVITY ..... 173
IRRETRIEVABLE OR IRREVERSIBLE COMMIT- MENT OF RESOURCES ..... 173
HOLLBERG PRLA ..... 174
AIR QUALITY ..... 174
SOILS ..... 174
WATER RESOURCES ..... 175
GEOLOGY, TOPOGRAPHY, PALEONTOLOGY, MINERAL RESOURCES ..... 175
VEGETATION ..... 176
WILDLIFE ..... 176
LAND USE ..... 176
SOCIOECONOMICS ..... 176
TRANSPORTATION ..... 177
CULTURAL RESOURCES ..... 177
SPECIAL DESIGNATION AREAS ..... 177
VISUAL RESOURCES. ..... 177
RECREATION ..... 177
UNAVOIDABLE ADVERSE IMPACTS ..... 178
THE RELATIONSHIP BETWEEN THE SHORT- TERM USE OF MAN'S ENVIRONMENT AND THE MAINTENANCE AND ENHANCEMENT OF LONG- TERM PRODUCTIVITY ..... 178
IRRETRIEVABLE AND IRREVERSIBLE COMMIT- MENT OF RESOURCES ..... 178
ALTERNATIVE TWO (PREFERRED ALTERNATIVE) ..... 178
INTRODUCTION ..... 178
AIR QUALITY ..... 178
SOILS ..... 179
WATER RESOURCES ..... 179
GEOLOGY, TOPOGRAPHY, PALEONTOLOGY, MINERAL RESOURCES ..... 179
VEGETATION ..... 180
WILDLIFE ..... 180
LAND USE ..... 182
SOCIOECONOMICS ..... 182
TRANSPORTATION ..... 192
CULTURAL RESOURCES ..... 196
SPECIAL DESIGNATION AREAS ..... 196
VISUAL RESOURCES. ..... 196
RECREATION ..... 196
UNAVOIDABLE ADVERSE IMPACTS ..... 198
the relationship between the short- TERM USE OF MAN'S ENVIRONMENT AND THE MAINTENANCE AND ENHANCEMENT OF LONG- TERM PRODUCTIVITY ..... 198
IRRETRIEVABLE OR IRREVERSIBLE COMMIT- MENT OF RESOURCES ..... 199
ALTERNATIVE THREE ..... 199
INTRODUCTION ..... 199
AIR QUALITY. ..... 199
SOILS ..... 200
WATER RESOURCES ..... 200
GEOLOGY, TOPOGRAPHY, PALEONTOLOGY, MINERAL RESOURCES ..... 200
VEGETATION ..... 200
WILDLIFE ..... 201
LAND USE ..... 204
SOCIOECONOMICS ..... 204
TRANSPORTATION ..... 212
CULTURAL RESOURCES ..... 214
SPECIAL DESIGNATION AREAS ..... 214
VISUAL RESOURCES ..... 214
RECREATION ..... 217
UNAVOIDABLE ADVERSE IMPACTS ..... 217
THE RELATIONSHIP BETWEEN THE SHORT- TERM USE OF MAN'S ENVIRONMENT AND THE MAINTENANCE AND ENHANCEMENT OF LONG- TERM PRODUCTIVITY ..... 219
IRRETRIEVABLE OR IRREVERSIBLE COMMIT- MENT OF RESOURCES ..... 219
ALTERNATIVE FOUR ..... 219
INTRODUCTION ..... 219
AIR QUALITY ..... 219
SOILS ..... 220
WATER RESOURCES ..... 220
GEOLOGY, TOPOGRAPHY, PALEONTOLOGY MINERAL RESOURCES ..... 220
VEGETATION ..... 220
WILDLIFE ..... 221
LAND USE ..... 221
SOCIOECONOMICS ..... 226
TRANSPORTATION ..... 232
CULTURAL RESOURCES. ..... 232
SPECIAL DESIGNATION AREAS ..... 232
VISUAL RESOURCES ..... 236
RECREATION ..... 236
UNAVOIDABLE ADVERSE IMPACTS ..... 236
THE RELATIONSHIP BETWEEN THE SHORT- TERM USE OF MAN'S ENVIRONMENT AND THE MAINTENANCE AND ENHANCEMENT OF LONG- TERM PRODUCTIVITY ..... 2.38
IRRETRIEVABLE OR IRREVERSIBLE COMMIT- MENT OF RESOURCES ..... 2.38
ALTERNATIVE FIVE ..... 238
INTRODUCTION ..... 238
AIR QUALITY ..... 238
SOILS ..... 239
WATER RESOURCES ..... 239
GEOLOGY, TOPOGRAPHY, PALEONTOLOGY MINERAL RESOURCES ..... 239
VEGETATION ..... 240
WILDLIFE ..... 240
LAND USE ..... 240
SOCIOECONOMICS ..... 240
TRANSPORTATION ..... 242
CULTURAL RESOURCES ..... 242
SPECIAL DESIGNATION AREAS ..... 242
VISUAL RESOURCES ..... 242
RECREATION ..... 245
PROPOSED UTAH POWER AND LIGHT EXCHANGE ..... 245
INTRODUCTION ..... 245
ALTERNATIVE ONE (FULL EXCHANGE OF THE PRLAs) ..... 245
ALTERNATIVE TWO (NO ACTION ON EXCHANGE
AND DEVELOPMENT OF PRLAS ON THE KAI- PAROWITS PLATEAU BY UP\&L) ..... 246
AIR QUALITY ..... 246
SOILS ..... 246
WATER RESOURCES ..... 246
GEOLOGY, TOPOGRAPHY, PALEONTOLOGY, MINERAL RESOURCES ..... 248
VEGETATION ..... 248
WILDI.IFE ..... 248
LAND USE ..... 250
SOCIOECONOMICS ..... 251
TRANSPORTATION ..... 53
CULTURAL RESOURCES ..... 253
SPECIAL DESIGNATION AREAS ..... 253
VISUAL RESOURCES ..... 253
RECREATION ..... 2
UNAVOIDABLE ADVERSE IMPACTS ..... 2
THE RELATIONSHIP BETWEEN THE SHORT-TERM USE OF MAN'S ENVIRONMENT AND THEMAINTENANCE AND ENHANCEMENT OF LONG-TERM PRODUCTIVITY258
IRRETRIEVABLE OR IRREVERSIBLE COMMIT- MENT OF RESOURCES ..... 258
CHAPTER 5 SUMMARY OF INDIVIDUAL TRACTS
INTRODUCTION ..... 259
TUCKER CANYON ..... 259
MILLER CREEK ..... 259
GORDON CREEK ..... 259
SLAUGHTERHOUSE CANYON. ..... 259
MEETINGHOUSE CANYON ..... 260
RILDA CANYON ..... 260
COTTONWOOD ..... 260
NORTH HORN MOUNTAIN ..... 261
EMERY NORTH ..... 261
EMERY CENTRAL ..... 262
EMERY SOUTH ..... 262
COMMENT LETTERS AND

RESPONSES $\quad$| POTENTIAL FOR SPECIAL |
| :---: |
| DESIGNATION IN GARFIELD |
| COUNTY |

APPENDIX 6 AREAS WITH

## SUMMARY

## INTRODUCTION

The Uinta-Southwestern Utah Coal Region is one of 12 coal production regions established by the U.S. Department of the Interior as part of a new Federal coal management program. The National Energy Plan announced by President Carter in April 1977 proposed greater use of the Nation's coal resources to offset reliance on imported oil and declining domestic oil resources. Renewed leasing of Federal coal is expected to facilitate production and use of coal to meet national energy requirements.

In response to the President's directive, the Secretary of the Interior established a Regional Coal Team for the Uinta-Southwestern Utah Coal Region and adopted a preliminary leasing target of 322 million tons of Federal coal for lease in mid-1981. The Secretary's leasing target decision considered production goals established by the Department of Energy (DOE). These goals reflect DOE's forecast of low, medium, and high levels of coal demand. Scoping meetings with the public, industry, and affected State and Federal agencies also influenced the Secretary's decision. The coal lands selected for leasing have undergone a land use planning process that identified areas suitable for further consideration for coal leasing and development.

This Uinta-Southwestern Utah Coal Region includes 17 counties in Utah and seven counties in Colorado. The area includes all the known commercially minable coal in Utah and 32 percent of that found in Colorado. The leasing proposed in this statement includes only areas in the Wasatch Plateau and Emery Coal Fields for which land use planning had been updated to determine suitability for leasing. These lands are entirely within Carbon, Emery, Sevier, and Sanpete Counties in central Utah.

In accordance with the National Environmental Policy Act of 1969 (as amended), the final regulations of the Council on Environmental Quality, and the DOI Coal Management Program the coal target and proposed coal leasing were presented to the public. Scoping meetings were held December 1979 and February 1980 in Price, Escalante, Richfield, and Salt Lake City, Utah. Participants at these meetings aided BLM in identifying the following as primary concerns in analyzing the proposed coal leasing program: socio-economics, hydrology, wildlife, land use, aesthetic values, cultural resources, and transportation. No alternative actions were suggested by the public at scoping meetings.

## ALTERNATIVES

Five alternatives were recommended by the Regional Coal Team for consideration in the EIS. These alternatives range from leasing 11 tracts to leasing 3 tracts, and the mandatory No Action. In addition, the proposed development of the Hollberg Preference Right Lease Application (PRLA) is included as part of all alternatives.

A proposed exchange of PRLAs covering Federal coal on the Kaiparowits Plateau in Garfield and Kane Counties for Federal coal in the Wasatch Plateau coal field is also analyzed in this statement. The PRLAs were submitted by Utah Power and Light Company (UP\&L) and would be exchanged for coal lands of equal value on the Wasatch Plateau. The lease areas proposed for exchange on the Wasatch Plateau are included in the lease tracts discussed in the leasing alternatives. The alternatives identified are:

## ALTERNATIVE ONE, MAXIMUM LEVEL (561.8 MILLION TONS)

Alternative One considers leasing 11 tracts and represents the maximum level of coal leasing for the region. One tract (Emery Central) would be surface mined, nine tracts (Tucker Canyon, Miller Creek, Gordon Creek, Meetinghouse Canyon, Rilda Canyon, Cottonwood Canyon, North Horn Mountain, Slaughterhouse Canyon, and Emery South) would be underground mined, and one tract (Emery North) would be a combination surface and underground mine. The Hollberg PRLA is also considered in this Alternative and would be underground mined. The tracts, totaling 37,906 acres, include 561.8 million tons of in-place Federal coal; however, only 256.2 million tons would be recovered.

## ALTERNATIVE TWO (PREFERRED ALTERNATIVE), HIGH LEVEL (465.2 MILLION TONS)

Alternative Two considers leasing seven tracts. The tracts are Tucker Canyon, Miller Creek, Gordon Creek, Rilda Canyon, Meetinghouse Canyon, Cottonwood Canyon, and North Horn Mountain. All tracts would be mined using underground methods. The Hollberg PRLA is also considered in this Alter-
native. The tracts, totaling 31,588 acres, include 465.2 million tons of in-place Federal coal; however, only 186.1 million tons would be recovered.

## ALTERNATIVE THREE, MID LEVEL (335.3 MILLION TONS)

Alternative Three was structured primarily to consider those tracts which have been identified for the proposed UP\&L exchange. They are: Meetinghouse Canyon, Cottonwood Canyon, and North Horn Mountain. These tracts would not be offered for competitive sale until they have been eliminated from consideration for exchange. All three tracts would be mined using underground methods. The Hollberg PRLA is also considered in this Alternative. The tracts, totaling 24,507 acres, include 335.3 million tons of in-place Federal coal; however, only 134.1 million tons would be recovered.

## ALTERNATIVE FOUR, LOW LEVEL (153.7 MILLION TONS)

Alternative Four considers leasing three tracts, Gordon Creek, Meetinghouse Canyon, and Cottonwood Canyon. All three tracts would be mined using underground methods. The Hollberg PRLA is also considered in this Alternative. The tracts, totaling 7,744 acres, include 153.7 million tons of inplace Federal coal; however, only 61.5 million tons would be recovered.

## ALTERNATIVE FIVE, NO ACTION

Alternative Five is the No Action Alternative. If implemented, this Alternative would result in no new leasing of Federal coal in 1981. However, the Hollberg PRLA could still be processed.

## HOLLBERG PRLA

The Hollberg PRLA could be developed under any of the above alternatives. The 3,036-acre tract would be mined by underground methods. It contains 39.3 million tons of in-place Federal coal, but only 19.5 million tons would be recovered.

## ENVIRONMENTAL CONSEQUENCES OF THE PROPOSED ALTERNATIVE ACTIONS

As specified in the National Environmental Policy Act of 1969, the five alternatives were evaluated to determine their environmental impacts. The results are summarized below.

## ALTERNATIVE ONE

The increased population associated with mining development would result in a long-term decrease in air quality in the region; however, except for locally high levels of TSP associated with surface mining and unpaved haul roads, NAAQS would not be exceeded.

Soil and vegetation productivity on 953 acres would be lost for the life of the mines. The 2,720 acres disturbed by surface mining would be progressively reclaimed and a maximum of 279 acres of unreclaimed lands per year would result from stripmining. A long-term increase in vegetation productivity on the Emery tracts ( 2,720 acres) would probably occur due to reclamation. The 441 acres occupied by housing development would not be reclaimed. An unquantified amount of soil would be lost from disturbed areas on the Wasatch Plateau prior to reclamation. Soil loss on the Emery coal field would be 1 ton per acre annually on disturbed sites.

The mining of 256.2 million tons of coal in the region would result in 305.6 million tons of coal becoming unrecoverable by present technology.

Change in aquifers and distribution of surface water due to subsidence could occur in the area of underground mining. The extent of this change is not known. The consumptive use of water in the region would increase by 1,075 acre-feet by the year 2000. Increased sewage effluent (974 acrefeet annually) would add 397 tons of salts per year to tributaries of the Colorado River. This would increase salinity at Imperial Dam by $0.09 \mathrm{mg} / \mathrm{L}$ in 2000.

Wildlife including 69 deer, 20 elk, and 8 moose annually would be displaced due to occupation or disturbance of habitat. Highway mortality of deer would increase by 68 deer per year. Elk migration in the Rock Canyon-Killpack Canyon area could be restricted by mine portal development. Conversion of 299 acres of irrigated cropland to housing devel-
opment or retired because of change of water use would displace 209 pheasants.

Conversion of irrigated cropland to urban use and retirement of irrigated land to provide water for community needs would result in a permanent loss of 270 acres of agricultural land in the region. Crop production on 29 acres retired to provide water for mining and 110 acres of irrigated cropland disturbed by surface mining on the Emery North tract would be lost until mining ceases and reclamation occurs. Stripmining on the Emery tracts would result in a loss of 4,060 AUMs over the life of the mines. The increased traffic in Huntington Canyon would conflict with livestock movement on and off the Plateau.

Population in the region would increase 7,931 by the year 2000, and housing needs would increase by 2,403 units. The additional income ( $\$ 107.3$ million annually) and buying power generated would increase the local rate of inflation. The effects of this inflation would be felt most acutely by persons living on fixed incomes and those with lower-paying employment such as trade and service workers. The increase of 3,109 jobs in the mining and construction industries, together with their relatively high wage scales, would make it more difficult for employers in lower-paying industries and government to hire and retain qualified employees.
Capital and operating expenditure requirements of local counties, school districts, and municipalities would rise as a result of the need to expand public services and facilities. The increased population in the region would require an additional 1,922 pupil spaces, 97 teachers, 8 doctors, and 15 police officers. There would be at least a temporary deterioration in the quality of services, causing inconvenience and dissatisfaction among those affected. Several communities, particularly Emery but also Castle Dale, Ferron, and Orangeville, would experience some loss of their present small-town atmosphere and cultural homogeneity.

Mine-related traffic would add 3,350 vehicles per day to highways in the region. Increased traffic on U-10 would result in increased maintenance cost and a doubling of traffic accidents. Traffic accidents in the region would increase by 72 accidents annually. A 23 -percent increase of truck traffic on Highways 31 and 29 in canyons west of Huntington and Orangeville would conflict with recreation and other traffic in those canyons. Coal haul traffic from the Tucker Canyon tract would result in 30 to 40 trucks daily passing through Scofield. This type of traffic increase would raise the noise level and traffic hazard for residents and visitors. Commuter and truck traffic associated with coal mine development in the region would result in the consumption of 1.6 million gallons of petroleum per year.

Inadvertent loss of cultural resources could occur, and sites that are salvaged would lose context for further study. Losses through illegal collection or vandalism would increase. The 13-percent increase in local demand for recreational opportunities resulting from population increases could result in overutilization and crowding of existing recreation developments and reduced hunter and fisherman success. The proposed development on the Emery North and Central tracts would conflict with wilderness suitability of a roadless area undergoing review.

The landscape modifications that would result from mining and associated development would modify the visual quality of those areas. The modification would be adverse only where it would exceed VRM objectives in the Emery North, Emery Central, and Tucker Canyon tracts. Surface mining on the Emery North and Emery Central tracts would be visible from Highway U-10 and the town of Emery. Development and operation of the Tucker Canyon tract would be visible to subdivision residents and recreationists at Scofield Reservoir.

## ALTERNATIVE TWO

In localized areas, high particulate concentrations could occur near unpaved haul and access roads. This would result in a short-term degradation of air quality; however, NAAQS would not be exceeded if BACT was applied.

Soil and vegetation productivity on 834 acres would be lost for the life of the mines. Housing development associated with coal production in the region would occupy 362 acres resulting in a permanent loss of soil and vegetation productivity on those acres. The remaining 472 acres would be reclaimed. Soil loss from development on the Wasatch Plateau is expected to be low.

About 186.1 million tons of coal would be mined, and the 279.1 million tons left in the ground would be unrecoverable by present technology.

Changes in aquifers and surface distribution of water due to subsidence could occur on 31,588 acres; the extent of this impact is unknown. The consumptive use of water in the region would increase by 867 acre-feet annually; sewage effluent discharge would increase by 795 acre-feet annually, and would increase the annual discharge of salt into Colorado River tributaries by 331 tons. This would increase the salinity level at Imperial Dam by $0.07 \mathrm{mg} / \mathrm{L}$ in 2000.

The loss of wildlife including 53 deer annually due to highway mortality and a 36 -percent increase in illegal killing would be unavoidable. Elk use of a

## SUMMARY

winter migration route off North Horn Mountain would be restricted for 40 years by development of portal facilities in Killpack or Rock Canyons. Surface disturbance would reduce the carrying capacity of the region by 60 deer annually for the life of the mines. Also, seven moose and 18 elk would be displaced from their habitat for the life of the mines. Conversion of irrigated cropland would displace 157 pheasants permanently.

Conversion of irrigated cropland for urban use and retirement of irrigated land to provide water for community and mining would result in a permanent loss of 221 acres of irrigated cropland in the region. Crop production on an additional 20 acres retired from change of water use to industrial would be lost for the life of the mines. About 472 acres of grazing land would be occupied for the life of the mines. The number of AUMs that would be lost is not known. Some conflict between mining traffic and livestock movement in Huntington Canyon would occur.

Coal development proposed in this alternative would cause a worsening of the local inflation rate, which would be particularly detrimental to persons living on low or fixed incomes. Income in the region would increase by $\$ 88.9$ million by 2000 . The increase of 2,645 jobs would cause competition for labor, with the relatively high wages paid in mining and construction making it difficult for other sectors to hire and retain qualified employees. Demand for infrastructure components and services would require increased capital and operating outlays by local governments. Space for 1,562 additional pupils would be required, and an additional 75 teachers would be needed. Also five additional doctors and 13 police officers would be needed in the region. The population increase of 6,516 would result in some loss of small-town atmosphere and cultural homogeneity in the affected communities, particularly Castle Dale, Ferron, and Orangeville.

Increased traffic ( 2,890 vehicles per day in the region) would cause crowding on highways U-10 and U-29, and conflicts with recreational traffic on roads on the Wasatch Plateau. Coal haulage through Scofield ( 30 to 40 trucks daily) would increase noise and traffic hazards for residents and visitors. The increase in traffic would result in an increase of about 49 traffic accidents annually. Haulage of coal to existing loadouts, commuting from local communities, and services to the mines from Price would result in the consumption of 1.33 million gallons of petroleum per year.

Inadvertent loss of cultural resources could occur, and sites that are salvaged would lose context for further study. Losses through illegal collection or vandalism would increase. The local
demand for recreation opportunities would increase by about 10 percent.
Landscape modification resulting from mining and associated development would be adverse on the Tucker Canyon tract where it would exceed VRM objectives. Development on that tract would be visible to nearby subdivision residents and recreationists on Scofield Reservoir.

## ALTERNATIVE THREE

Some local short-term degradation of air quality would result from traffic on unpaved haul and access roads, but NAAQS would not be exceeded if BACT was applied.
Soil and vegetation productivity on 472 acres would be lost for the life of the mines. Housing development associated with coal production in the region would permanently occupy 247 acres resulting in a permanent loss of soil and vegetation productivity on those lands. Soil losses are expected to be low.
About 134.1 million tons of coal would be mined, and approximately 201.2 million tons of coal would be made unrecoverable as a result of proposed mining.

Changes in aquifers and points of surface discharge due to potential subsidence on 24,507 acres could occur; however, the extent is not known. The consumptive use of water would increase by 612 acre-feet annually, and discharge of sewage effluent would increase 560 acre-feet per year. This discharge would add 207 tons of salt annually to Colorado River tributaries, and increase the salinity level at Imperial Dam by $0.04 \mathrm{mg} / \mathrm{L}$ in 2000.

Loss of wildlife habitat, including habitat for 103 pheasants, on irrigated cropland, and disturbance of wildlife due to mining activities would occur. Surface disturbance caused by mining would result in the loss of 28 deer and 8 elk in the region and deer highway mortality would increase by 20 deer annually.

Conversion of cropland for urban use and retirement of irrigated land to provide water for community and mining use would result in the loss of 170 acres of irrigated cropland in the region. Of this amount, the 156 acres of irrigated croplands committed to community use or retired from change of irrigation water to culinary use would be permanently lost and crop production on those lands would be lost. About 225 acres of grazing land on the Wasatch Plateau would be occupied by mining facilities.

Development of coal as proposed in this Alternative would result in a worsening of the local inflation rate, which would be particularly detrimental to persons living on low or fixed incomes. Income in the region would increase $\$ 58.2$ million annually by 2000. Competition for employees for 1,862 new mining related jobs, with relatively high wages paid in mining and construction would make it difficult for other sectors to hire and retain qualified employees. The demand for services and infrastructure components would require increased capital and operating outlays by local governments. Space for 1,129 additional students would be needed, and 55 new teachers would be required. Four additional doctors and eight police officers would also be needed. The population increase of 4,444 would require an additional 1,347 housing units and would result in some loss of small-town atmosphere and cultural homogeneity in the affected communities, particularly Castle Dale, Ferron, and Orangeville.

Mine related traffic in the region would add 1,900 vehicles per day to roads. Moderate increases in traffic on U-10 would cause overcrowding, increased traffic accidents (29 annually) and conflicts with recreation traffic. Haulage of coal to existing loadouts, commuting from local communities, and services to the mines from Price would result in the consumption of 0.75 million gallons of petroleum fuels per year.

Some inadvertent loss of cultural resources could occur and vandalism and illegal artifact collecting would increase due to the increased population. The local demand for recreation opportunities would increase by 7 percent. Overutilization at some sites would cause user dissatisfaction.

## ALTERNATIVE FOUR

Local and short-term degradation of air quality would occur near access roads associated with the proposed mines, but NAAQS would not be exceeded if BACT was applied.

Soil, vegetation, and wildlife productivity on 297 acres would be lost for the life of the mines. On lands committed to urbanization and not reclaimed ( 127 acres), the loss would be permanent.

About 61.5 million tons of coal would be mined and the 92.2 million tons of coal left in the ground would be unrecoverable by present technology.
Changes in aquifers and points of surface water discharge due to potential subsidence of 7,744 acres could occur; however the extent is not known. Consumptive use of water would increase by 312 acre-feet annually, and sewage effluent discharge would increase 288 acre-feet. The in-
creased salt load to tributaries of the Colorado River would be 117 tons annually. This would increase salinity at Imperial Dam by $0.03 \mathrm{mg} / \mathrm{L}$ in 2000.

Surface disturbance associated with mining would decrease big game population by 22 deer and four elk annually and road construction affecting riparian habitat would displace four moose. Increased traffic would cause deer highway mortality to increase by 22 deer annually.

The conversion of cropland for urban use (64 acres) and the retirement of irrigated lands to provide water for mining and community use ( 23 acres) would result in loss of crop production on 87 acres. Mining related traffic in Huntington Canyon would conflict with livestock movement in the canyon.

The population increase associated with this alternative would cause a worsening of the local inflation rate, which would be particularly detrimental to persons living on low or fixed incomes. Income in the region would increase by $\$ 30.6$ million annually by 2000 . The addition of 949 new jobs and competition for labor, with the relatively high wages paid in mining and construction, would make it difficult for other sectors to hire and retain qualified employees. Increased capital and operating layouts by local governments would be necessary to provide services for the increased population. Space for 520 additional students, and an increase of 25 teachers would be required. Also two new doctors and five police officers would be needed in the region. Increased population of 2,282 would require 691 new housing units, and would result in some loss of cultural homogeneity in the affected communities, particularly Castle Dale, Ferron, and Orangeville.

Traffic in the region would increase by 1,200 vehicles per day. There would be moderate increases in traffic ( 100 to 200 vpd ) along U-10 from Castle Dale northward, with somewhat greater increase on the Gordon Creek road. Vehicle accidents would increase by 25 accidents annually. Haulage of coal to existing loadouts, commuting from local communities, and services to the mines from Price would result in the consumption of about 0.9 million gallons of petroleum fuels per year.

Vandalism and illegal artifact collecting would increase as a result of the increased population in the area. Local recreation demand would increase by 4 percent.

## UTAH POWER AND LIGHT EXCHANGE

UP\&L acquired rights to prospecting permits (PRLAs) on 18,325.2 acres of Federal land on the

Kaiparowits Plateau in 1971. In 1976, UP\&L filed suit demanding the processing of the PRLAs and issuance of leases. They dropped the suit when Congress authorized an exchange of the PRLAs for coal leases on the Wasatch Plateau. If the exchange does not develop, UP\&L could demand processing of the PRLAs. Two alternatives were developed to consider impacts from the proposed exchange.

Alternative One considers approval of the exchange. The Department of Interior would issue to UP\&L a coal lease or group of leases in the Wasatch Plateau area in exchange for relinquishment of all or a portion of the PRLAs held by UP\&L on the Kaiparowits Plateau. The leases identified for selection by UP\&L are the Meetinghouse Canyon, Cottonwood, and North Horn Mountain tracts. Leasing and coal development on these three tracts is analyzed as Alternative Three of the coal leasing program previously discussed.

Alternative Two is the No Action Alternative. No exchange would be made and the PRLAs would be processed in accordance with regulations detailed in 43 CFR 3430. Meetinghouse Canyon, Cottonwood, and North Horn Mountain tracts would be available for competitive leasing.

A plan for development of the PRLAs has been prepared and submitted by UP\&L (UP\&L, 1979). According to this plan, four separate mines would be developed at about 2 year intervals. At full production, 18 million tons of coal would be mined annually. Of the 1.287 billion tons of in-place coal, 512 million tons would be recovered.

## Environmental Consequences

The loss of soil and vegetation production on 951 acres would be unavoidable for the life of the mines. About 270 acres would be reclaimed, but the loss of production on 681 acres would be permanent due to construction of housing and roads.
Mining of 512 million tons of coal on the PRLAs would result in 775 million tons of coal becoming unrecoverable by present technology.
Changes in aquifers due to mining and subsidence could occur; however, the extent is not known. Consumptive use of water in the area would increase by 1,434 acre-feet annually.

The 176 acres of irrigated cropland converted for community development in Garfield County would result in loss of pasture, hay, and small grains production. An additional 134 acres of irrigated land would be retired to meet water requirements of the
growing communities. Grazing capacity of 200 AUMs per year would be lost.

Population in Garfield County would increase 400 percent by the year 2000. Local communities would experience erosions of their small-town, rural way of life and community homogeneity. Local inflation rates would increase. Jobs and community infrastructure would improve; however, wage competition from the mining and construction sectors would bid up labor costs, making it difficult for local employers to hire and retain qualified workers.

Increased car and truck traffic associated with coal production would increase fuel consumption by 4.5 million gallons per year.

Inadvertent destruction or disturbance of undetected cultural resources and losses through illegal collection or vandalism would occur.

Local demand for dispersed and developed recreation opportunities would increase by approximately 160 percent resulting in over-utilization and crowding of existing recreation facilities and reduced hunter and fisherman success. Development would conflict with wilderness suitability of three areas undergoing wilderness review.

## UNRESOLVED ISSUES

Certain issues having direct bearing on implementation of the alternatives have not been resolved. Further analysis and action by appropriate parties and agencies are required in order to resolve the following issues:

1. The leasing target of 322 million tons for the region is subject to change based on the Na tion's energy needs. An annual shortfall of 5.5 million tons of coal could occur by 1990, based on 1979 projections by the Department of Energy unless new Federal leasing is initiated. A set of preliminary production goals issued by DOE in late 1980 indicate a substantially higher forecast demand for Utah coal. Based on these new goals, the Secretary could revise the Federal leasing target prior to his final decision on a lease sale.
2. Markets for coal were not identified; therefore, additional analysis of coal transportation systems and interrelated projects would be needed.
3. Tract boundaries are still subject to change based on additional exploratory drilling and subsequent surveys.
4. The determination of recoverable coal reserves on the tracts is subject to revision based on the ongoing drilling program of GS.
5. Coal values for the UP\&L exchange have not been agreed upon; therefore the amount of lands and type of exchange have not yet been decided. The BLM has received the GS evaluation of the coal values and is currently reviewing the evaluation and the procedures involved in the exchange agreement. A decision on the exchange has not been made at this time.
6. Cultural resource inventories of affected areas would also be required as provided for in the coal programmatic Memorandum of Agreement between the President's Advisory Council on Historic Preservation, Office of Surface Mining, and BLM. Full compliance with procedures outlined in 36 CFR, Part 800 Protection of Historic and Cultural Properties must also be completed.

## IDENTIFICATION OF THE PREFERRED ALTERNATIVE

Alternative Two, the high level scenario (465.2 million tons) involving the leasing of seven tracts on the Wasatch Plateau for underground mining only, is the preferred alternative.

## CHAPTER 1

## PURPOSE AND NEED

## INTRODUCTION

The Uinta-Southwestern Utah Coal Region is one of 12 coal production regions established by the United States Department of the Interior (DOI) in association with a new Federal coal management program which was initiated in June 1979 (BLM, 1979). This environmental impact statement (EIS) analyzes alternative levels of coal leasing in the region beginning in mid-1981. The R. J. Hollberg Preference Right Lease Application (PRLA) and a proposed Utah Power and Light Company (UP\&L) coal lease exchange are also considered.

## COAL LEASING PROGRAM

## Purpose and Need for Leasing

An integral feature of the new coal leasing program is the offering of Federal coal for lease beginning in 1981. A National Energy Plan announced by President Carter in April 1977 calls for significantly greater use of the nation's abundant coal resources to help offset reliance on imported oil and declining domestic oil and gas resources. Renewed leasing of Federal coal coupled with more active management of existing Federal coal leases is expected to facilitate production and use of coal to meet national energy requirements. The overall coal leasing program is described in the Federal Coal Management Program Final Environmental Statement (BLM, 1979).

## The Need for Leasing in the Region

In April 1980, the Secretary of the Interior adopted a preliminary leasing target of 322 million tons of in-place Federal coal for the Uinta-Southwestern Utah Coal Region. The target was established after analyzing potential production from planned and existing coal mines in the region, extensive public hearings, and consultation with State and local officials and the Departments of Energy and Justice. The target would aid DOI in directing its effort to satisfy anticipated coal demand in the region and
assure that Federal coal plays a major role in meeting the country's energy needs.

Factors used in determining the 322-million ton leasing target included the Intermountain Power Project (IPP) and projected production from existing mines. These factors combined with others described in Appendix 1 are expected to result in an anticipated annual coal production deficit of approximately 5.5 million tons by 1990. (See Appendix 1 for details on how the target and anticipated shortfall were determined.) The leasing target selected by the Secretary in April 1980 was designed to lease sufficient coal to cover this 5.5 million tons per year deficit and thus represents the Federal share of production that would satisfy projected 1990 demand. A final leasing target decision will be made by the Secretary that will include more recent DOE production goals for this region, which have increased significantly in the past year.

As of September 30, 1979 there were 201 Federal leases in the State of Utah totaling $7,720.28$ million tons of in-place reserves. Of this amount, 267.25 million tons are considered recoverable by surface methods and $2,977.62$ million tons are recoverable by underground methods. For the entire Uinta-Southwestern Utah Coal Region, the figures are 262 leases totaling $9,714.71$ million tons of inplace reserves, of which 279.58 million tons would be recovered by surface methods and $3,759.35$ million tons by underground methods (DOI, 1980).

Concern has been expressed by the Southeastern Utah Association of Local Governments regarding development of the coal production baseline to be used in this EIS. Recognizing that other estimates exist which project different population figures, it was decided to adopt the mid-level baseline analyzed in the Central Utah Coal Development Environmental Statement prepared in 1979 by Geological Survey. Thus annual production rate of 24 million tons by 1990 was projected for only the Four-County area in which the proposed leasing in 1981 and 1982 is located. Projection of 24 million tons production by 1990 as a baseline is based on certain assumptions which may or may not prove valid over time as conditions change.

## PURPOSE AND NEED

## Planning Process for the Coal Lease Program

The following discussion summarizes the overall Federal Coal Leasing Program. It is followed by a discussion of events specific to the Uinta-Southwestern Utah Coal Region which have led to the preparation of this EIS.

## SUMMARY

Federal coal would be leased based on the Federal land use planning process which considers input from State, industry and public sectors. Amounts leased would be based on regional production goals provided by the Department of Energy (DOE).

Bureau of Land Management (BLM) and Forest Service (FS) land use planning documents are the sources relied upon in the initial process of identifying areas suitable for further consideration for coal leasing. Criteria used to designate these lands are found in Section 522 of the Surface Mining Control and Reclamation Act of 1977 (SMCRA) and further detailed in 43 CFR 3461 (Regulations Pertaining to Coal Management, Federally Owned Coal: Federal Lands Review-Unsuitability for Mining).

After completion of land use planning, BLM issues a call for industry expressions of interest in coal leasing for those areas in the region found suitable for further consideration. A Regional Coal Team (RCT) is formed to overview the leasing process and make recommendations to the Director of BLM regarding leasing actions and regional leasing targets. A series of meetings are held, which are open to the public, to consider each of the following steps in the process. The expressions of industry interest and other geologic and mining information are used by the Geological Survey (GS) to delineate specific tracts for potential leasing. GS prepares tract summary reports which indicate annual production potential, expected mining methods, employment requirements, tract size, and other salient data. This information is used to prepare a site-specific environmental analysis for each tract. The RCT then ranks the tracts based on coal economics, environmental impacts, and socioeconomic impacts. The RCT also formulates preliminary alternatives consisting of different combinations of tracts to make up varying levels of production. After a preliminary cumulative analysis is prepared, the RCT reviews the analysis and may modify its previous decision concerning ranking and tract combinations for alternatives. An EIS is then
prepared which analyzes the environmental impacts of the alternatives selected.

## UINTA-SOUTHWESTERN UTAH COAL REGION

The Uinta-Southwestern Utah Coal Region is comprised of 17 counties in Utah and seven counties in Colorado (Figure 1-1). Several major coal fields are located in the region which cumulatively include all known commercially minable coal in Utah (Doelling, 1972) and 32 percent of the known commercially minable coal in Colorado (Landis, 1959).

The region is an active coal producing area. As of 1980, there were 39 producing leases in the region, 27 of which were in Utah. Nearly 9 million tons were produced that year (DOI, 1980). The coal from these leases is being taken out of 21 mines in the region which have Federal coal leases. Fourteen of the mines are in Utah and seven are located in Colorado. Ten mines in Utah and nine in Colorado have mining plans awaiting approval.

This EIS covers only lands for which land use planning has been sufficiently updated to consider the unsuitability criteria identified in SMCRA and 43 CFR 3461. These lands are entirely located within a four-county area in central Utah (Carbon, Emery, Sevier, Sanpete) and include public lands administered by FS and BLM as well as private lands overlaying Federal coal (Figures 1-2 and 1-3). The Wasatch Plateau and Emery coal fields, which encompass the Wasatch Plateau and Emery Known Recoverable Coal Resource Areas (KRCRA), are located in the area of consideration. Land use planning efforts in the Colorado portion of the region were not completed in time for consideration of leasing in this EIS.

BLM-administered lands in the area are located in the Moab District San Rafael Planning Area and Wattis Planning Unit. Land Use Plans were supplemented in July 1979 to consider the coal unsuitability criteria. The documents are available for review at the BLM District Office in Moab, Utah. FS lands in the area of concern are located in the MantiLaSal National Forest Ferron-Price Planning Unit. In May 1979, the Ferron-Price Land Management Plan and EIS were completed and are available for review at the Forest Supervisors Office in Price, Utah.

BLM issued a call for industry expressions of interest on August 23, 1979. An RCT under the chairmanship of the BLM State Director from Nevada was established on November 20, 1979. Team members include Utah and Colorado BLM State Di-

FIGURE 1-1 UINTA-SOUTHWESTERN UTAH COAL REGION


FIGURE 1-2
FOUR-COUNTY IMPACT AREA

BLM 1980

rectors and representatives of the State Governors of Utah and Colorado. The Office of Surface Mining (OSM), FS, GS, and NPS are represented on the team by ex-officio members. Using the industry expressions of interest and other geologic information, GS delineated 13 tracts for potential leasing. Due to data and time constraints, site specific analyses were prepared for only eight tracts. Pursuant to 43 CFR 3420.4-4, the tracts were ranked high, medium, and low for leasing desirability by the RCT during a meeting on February 5 and 6, 1980. The basis for ranking was coal economics, environmental impacts, and socioeconomic impacts. Table 1-1 shows the results of that ranking. The following subfactors were considered by the RCT in ranking the tracts for leasing:

1. Coal economics: production rate, estimated mine life, total coal reserves, recoverable reserves, coal quality (sulfur content and Btu value), surface ownership, type of mine (surface versus underground), coal transportation needs, and coal access;
2. Impacts on the natural environment: air quality, soils, hydrology, surface and underground water resources, vegetation, endangered and threatened species, reclamation potential, wildlife, cultural and historical values, recreation values, visual resources, and noise;
3. Socio-economic impact: effect on local population, infrastructure, social services, public safety, culture and well being, and agriculture; and
4. Unsuitability criteria: rights-of-ways and easements; land use for scientific studies, historic lands and sites, federally listed endangered and threatened species, eagle nests, state residents fish and wildlife, floodplains, and municipal watersheds.
Minutes of all RCT meetings are available for review at the BLM Utah State Office. Following a review of the preliminary cumulative analysis, the RCT at its meeting on April 3, 1980 reviewed and revised the alternatives. A final cumulative analysis was completed and reviewed by the RCT June 17, 1980. At that time, three additional tracts were delineated for consideration in the EIS and site specific analyses prepared. These were ranked by the RCT on July 30, 1980; results are also shown in Table 1-1. A final acceptance of all tract ranking and selection of alternatives was made during a July 30, 1980 RCT meeting. This EIS analyzes those alternatives.

On December 16, 1980 the RCT met once again. During this meeting modifications in tract boundaries and in-place coal figures were suggested by GS and accepted by the RCT. Those modifications
are reflected in Chapter 2, Alternatives Including the Proposed Action. Tracts modified were Slaughterhouse Canyon, Miller Creek, Gordon Creek and Emery North. The RCT also recommended preliminary lease sale dates of July 30, 1981 and February 4, 1982. The Utah State Director concurred with this recommendation.

The leasing target for the Uinta-Southwestern Utah Coal Region is based upon the difference between the Department of Energy's (DOE) coal production goals and the Department of the Interior's estimate of production from mines within the region which are not dependent upon new Federal coal leasing for production.

The leasing target can be expressed in two ways: tons of in-place Federal coal and tons of new annual production facilitated by Federal leasing. The Code of Federal Regulations calls for expressing the target in terms of in-place coal; however, revisions currently planned will allow for the use of both in-place and annual production figures. The numerical calculations needed to determine inplace Federal coal are being deemphasized in favor of presenting the lease target in terms of annual production. This should make the leasing target process more understandable and will keep the emphasis on any needed increases in annual production. The leasing target announced in April 1980 for the Uinta-Southwestern Utah Region assumed that the new competitive leases would achieve production beginning in 1990. The 322 -million-ton leasing target was based upon the DOE medium production goal for 1990. The target in terms of new annual production was 5.5 million tons annually. The preferred alternative would provide approximately 4.5 million tons of new production annually. Thus the preferred alternative's 466 million tons of in-place coal, while exceeding the target of 322 million tons in-place, is less than the target expressed in terms of annual production. The major reason for this difference is that the original target calculations used a 30 -year mine life estimate. This has been changed to a 40-year mine life estimate as shown in the DEIS based on a recommendation to the RCT by the Geological Survey. This change increases the amount of in-place coal necessary to support a given level of annual production. Also, it is now known that 100 percent of the coal in the tracts is Federally owned, not 82 percent as estimated earlier.

Subsequent to the decision to set the leasing target at 322 million tons, DOE issued new (but preliminary) coal production goals on August 7, 1980. These preliminary goals were significantly higher than the earlier versions for the Uinta-Southwestern Utah Region. The medium level goal was raised to 58.7 million tons annually for 1990. One reason for this change was that the earlier goal of

## RANKING OF COAL TRACTS IN THE UINTA-SOUTHWESTERN UTAH REGION

| Tract | Summary Ranking | Rationale |
| :---: | :---: | :---: |
| North Horn Mountain | High | High quality coal, near potential market, larger tract is ideal LMU, underground mining, minable from one location in Rock Canyon, impact expected in several communities of Emery County, some potential impacts to wildlife, no regional water aquifer impacted, and no perennial streams. |
| Meetinghouse Canyon | High | High quality coal (12,800 Btu) developable from existing operation, underground mining, deep coal, existing market available, minimal additional environmental impact anticipated because of existing facilities, smaller tract, and minor socioeconomic impact. |
| Cottonwood | High | High quality coal with good mining height, underground mining, existing potential market, some potential impact to groundwater hydrology, potential development from existing operation or small independent operation. Minor socioeconomic impact. |
| Gordon Creek | Medium-High | High quality underground minable coal near rail transportation. Could be mined from existing operations or independent new development, minor socioeconomic impact anticipated in Carbon County areas, some faulting will impact production and cause greater cost of production. Two small streams originating on the tract could be dewatered for short sections. Some potential impact to wildife. |
| Emery North | Medium-Low | Lower quality coal than in Wasatch Plateau, underground and surface minable coal. Rail transportation planned but not developed, marginal area to rehabilitate. Some potential disruption to hydrology and floodplain, near National Register site. |

TABLE 1-1 (Continued)

| Tract | Summary Ranking | Rationale |
| :---: | :---: | :---: |
| Emery Central | Medium-Low | Lower quality coal than Wasatch Plateau, surface minable coal, rail planned but not developed, long truck haul, potential for visual impact from I-70, near T\&E plant species that have been identified, marginal area to rehabilitate. |
| Emery South | Medium | Good quality coal ( $12,300 \mathrm{Btu}, 0.8$ percent sulfur), good thickness ( 9 feet), relatively long truck haulage to rail, underground or potentially surface mining, candidate T\&E plant species exists on tract, impacts can be avoided by underground mining, rehabilitation potential may be limited, small reserve that fits in best with existing holdings. No communities in near vicinity. |
| Slaughterhouse Canyon | Low | Small demonstrated reserve base of 5.55 million tons in two seams. Underground mining would occur, however, recovery would only average 31 percent as otherwise minable coal would be left in place to protect escarpments and support shallow overburden. Nearby riparian areas are critical moose winter range. The area is also habitat for big game, bear, and mountain lion. A 3-inch natural gas pipeline crosses the tract and would require protection from surface disturbance or subsidence. |
| Tucker Canyon | High | High quality low sulfur coal, small reserve but fits in well with fee land, relatively near rail transportation, underground mining likely from operation proposed on fee land, high interest for SBA tract, adjacent existing summer cabin development and visible from Scofield Reservoir. |
| Miller Creek | Medium-High | High quality underground coal, near rail transportation, potential development from existing operations, potential minor socioeconomic impact, faulting will impact production and cause greater cost of production. Potential impact on big-game habitat. |

TABLE 1-1 (Concluded)

| Tract | Summary Ranking | Rationale |
| :---: | :---: | :---: |
| Rilda Canyon | Medium-High | High quality coal, underground mining, surrounded by leased land, minable from existing holdings, high competitive interest, potential impact on North Emery Water Users Association culinary water, some wildlife impact, tributary to Huntington Canyon which is a scenic and outdoor recreation area. Probable transportation by truck on narrow canyon roads. |

## PURPOSE AND NEED

17.3 had been based upon the amount of Utah coal reserves listed by the Bureau of Mines that the State of Utah believes were overly conservative. When DOE updated the goals in 1980, new, much higher reserve figures for Utah were used. This largely contributed to the increase in the goals for Utah and thus for the region as a whole.

The 1979 DOE goal of 17.3 million tons could easily be met by production from existing mines in central Utah alone. Consequently, there was little reason to anticipate that any significant Southern Utah coal production would be needed, since that area remains substantially undeveloped at this time. The calculation leading to the leasing target of 322 million tons applied only to the central Utah area since that is where the proposed leasing in this lease sale round would take place and where the impacts would be concentrated. Since neither production nor leasing was expected from southern Utah it was essentially left out of the analysis except for the Kaiparowits Plateau PRLAs involved in the UP\&L exchange. No leasing was contemplated in the Colorado portion of the region so this area was also disaggregated and treated separately.

As a result of the issuance of the new DOE goals, a complete review of the leasing target will be presented to the Secretary following completion of the FEIS. The large upward change in the DOE goals will likely mean that not all of the increase in projected demand can be met from development of the proposed leases in central Utah alone. A demand of such magnitude would stimulate production from southern Utah and west-central Colorado as well, a factor that will be considered in recommending a final leasing target for a Secretarial decision. However, since no new leasing is currently proposed for these other areas at this time and since they are outside the impact study area, this possibility is not extensively discussed in this EIS. Any additional leasing in these areas would be subject to further environmental assessment.

## Scoping

Government agencies and the public participated in the scoping process through meetings, open houses, correspondence, etc. by providing information, making suggestions, and raising questions concerning the various issues involved.

A notice of intent to prepare the Uinta-Southwestern Utah Coal Region EIS and hold scoping meetings for the EIS was published in the Federal Register on November 19, 1979. Six public scoping meetings were held to identify the potential signifi-
cant issues and alternatives to be addressed in the EIS. Four of these scoping meetings were held concurrently with formal coal leasing target hearings. Dates, locations and attendees of the meeting are shown in Table 1-2.

No suggestions for alternatives were offered by the public during the scoping process, however, the following issues were identified:

1. Socioeconomics. Loss of economic growth possibilities in Garfield and Kane Counties resulting from a possible UP\&L exchange of PRLAs in that area for coal located on the Wasatch Plateau, "spillover" effects of increased mining activity in Sanpete County, and continued growth and development in Carbon and Emery Counties.
2. Hydrology. Possible impacts to aquifers, surface water, and water quality.
3. Wildlife. Disruption of migration routes and possible loss of habitat.
4. Land Use. Congestion in narrow canyons where mine sites would be located that may disrupt livestock movement and wildlife migration. Conflicts between coal mining and other mineral resource development such as oil and gas.
5. Visual Resources. Visual impacts resulting from possible surface mining in the Emery coal field and Slaughterhouse Canyon.
6. Cultural Resources. Nearly 60 archaeological sites have been identified in the vicinity of and some actually on the two proposed Emery tracts which are proposed for surface mining. Included is the Rochester-Muddy petroglyphs, a National Register property, which was excluded from the Emery North tract but would still remain adjacent to an intensive mining area.
7. Geology. Effects of possible subsidence, resulting from underground mining.
8. Vegetation. Recent surveys have revealed the presence of one candidate threatened plant species on the Emery South tract.
9. Transportation. Traffic congestion on roads, highways, and communities.

## Alternatives

Five alternatives were recommended by the RCT for consideration in the EIS. These alternatives range from leasing 11 tracts to no new leasing of Federal coal. In addition to the delineated tracts, possible development of the Hollberg PRLA will also be considered. The alternatives are presented in detail in Chapter 2.

TABLE 1-2
SCOPING MEETINGS

| Date | Location | Individuals or Agencies Attending |
| :--- | :--- | :--- |
| October 24-25, 1979 | Price, Utah | Federal agencies |
| December 3, 1979 | Escalante, Utah | Public (general, industry), <br> State and county agencies <br> Federal agencies |
| December 4, 1979 | Richfield, Utah | Public (general), county <br> agencies, Federal agencies |
| December 5, 1979 | Salt Lake City, Utah Utah | Public (general, industry), <br> State and county agencies <br> Federal agencies |
| December 6, 1979 | Public (general, industry), <br> State and county agencies <br> Federal agencies |  |
| February 13, 1980 |  |  |

The Secretary of the Interior's decision on a course of action is not limited solely to the alternatives presented in the EIS. He may, through the use of his discretionary authority, select additional alternatives that are intermediate in magnitude to those analyzed. These intermediate alternatives could be developed through changes in the proposed level of leasing, changes in the tract combinations, changes in the lease sale schedule, or modification of the leasing target. These alternatives could be developed in response to expressed preferences of the Governors of Utah and Colorado, the analysis in the EIS, recommendations of the RCT, public input, and coordination with other Federal agencies. Finally, at least one tract would be offered for lease only to small business.

## Preference Right Lease Applications

There are 30 PRLAs, including the Hollberg, in the region. Twenty-five are located in Utah, five in Colorado. Cumulatively they total 93,777 acres and contain an estimated 2.23 billion tons of in-place reserves (DOI, 1980). The holders of these applications are entitled to Federal coal leases if certain requirements are met. The BLM Grand Junction District in Colorado is in the process of finalizing an environmental assessment on the Douchester Colomine Joint Venture PRLAs. There are three applications located some 12 miles north of Fruta, Colorado which total 14,729 acres of public land. The PRLAs contain more than 300 million tons of inplace coal which would be mined by underground methods.

After completion of the environmental assessment, the company will be required to make a final showing concerning the economics of the proposal. If the applicant can demonstrate that commercial quantities of coal have been discovered and all other requirements are met, a preference right lease may be issued.

Environmental assessments have been prepared for the Hollberg and Utah Power and Light PRLAs. The remaining 19 PRLAs will require environmental assessments to be completed. At any rate, DOI is in the process of reviewing all applications and is committed to complete the process by the end of 1984.

The Hollberg PRLA is analyzed in this EIS because sufficient data are available to consider possible environmental implications of development. Also, this is the only PRLA located within the area in a region to which the unsuitability criteria were applied in time for consideration in the EIS. If the

Hollberg PRLA is approved, production will contribute to baseline figures used in subsequent calculations of the Federal coal leasing target.

## Interrelationships

## TRANSPORTATION

The Denver and Rio Grande Western Railroad Company (D\&RGW) has engaged in preliminary engineering studies, land exchange, and right-of-way application for construction of a railroad in Castle Valley from Wellington south to Emery. Feasibility of the railroad is tied to transportation of coal from existing and proposed mines.

## ENERGY INDUSTRY DEVELOPMENTS

Expansion of the Hunter powerplant from two $430-\mathrm{MW}$ units to four is pending and would require water, manpower, and socioeconomic investment.

A coal gasification plant in Emery County is proposed by Mountain Fuel Company to convert coal to natural gas and methanol. A preliminary figure of 3.5 million tons per year of coal consumption has been given. About 10,000 acre-feet of water per year would be required and an undisclosed number of skilled workers.

IPP in Millard County will consume 9 million tons of coal per year, which it is anticipated will come from the Wasatch and/or Emery coal fields. IPP gives impetus to construction of the D\&RGW railroad in Castle Valley and provides a new market for Carbon and Emery County coal.

## STATE AND LOCAL LAND USE PLANS, PROGRAMS AND CONTROLS

The State of Utah has no State land use plan. However, section 17 of the Utah State Code empowers counties within the State to develop zoning ordinances and enforcement procedures. Until recently both Carbon and Emery Counties had zoned both KRCRAs as $M$ and $\mathrm{G}-1$ which permitted mining. Recent amendments have now been developed which provide "critical environmental zones" which restrict mining activities over much of the Wasatch Plateau area located in those counties.
The State Division of Wildlife Resources (UDWR) has undertaken a program to establish viable

## PURPOSE AND NEED

moose and antelope herds in the proximity of the coal lease tracts. Critical wildlife habitat is located on or near some of the tracts and potential access routes. Development of the tracts and increased recreation use would interact with wildlife habitat and migration routes.

## UTAH POWER AND LIGHT EXCHANGE

## Purpose and Need

In October 1978, Congress amended the Mineral Leasing Act of 1920 (30 U.S.C. 201(a)) to authorize the Secretary of the Interior to issue leases for coal on Federal lands in Utah to UP\&L in exchange for eight PRLAs held by UP\&L on the Kaiparowits Plateau in southern Utah (Public Law 95-554, 92 Stat. 2072). UP\&L and DOI agreed on selected coal lands on the Wasatch Plateau for exchange. The Secretary of the Interior has committed, by written agreement with UP\&L and the Forest Service, to consider and possibly consummate the exchange by December, 1981. A copy of the agreement is located in Appendix 2.

The purpose of the proposed action, as analyzed in this EIS, is to exchange these PRLAs for coal leases on the Wasatch Plateau in central Utah. The need for the action, as stated by UP\&L in the agreement, is to allow acquisition of coal lands from which production can be obtained by 1985 to meet anticipated needs of UP\&L's Hunter powerplant Unit No. 4 in Emery County and IPP in Millard County. The exchange would be based on equal values of coal as determined by GS.

## Land Use Planning Process

The PRLAs are located on BLM-administered lands in the Cedar City District Escalante Planning Unit (Figure 1-4). Coal mining in the planning unit was considered and the coal unsuitability criteria identified in 43 CFR 3461 (Regulations Pertaining to Coal Management: Federally Owned Coal) were applied. A draft planning document was then prepared and made available for public comment in March 1980 and a final document completed in September 1980. The lands comprising the PRLAs were found to be suitable for further consideration for coal development.

## Scoping

The scoping process described previously in this chapter included the proposed exchange. Concern was expressed by the citizens of Escalante, Utah, and the county commissions of Kane and Garfield Counties over the socioeconomic aspects of the proposed exchange. They were specifically concerned about the loss of growth and development possibilities in southern Utah towns (if the exchange took place and PRLAs were not developed). Only brief comments were received regarding other resources. No suggestions for alternatives other than those already under consideration were received from the public or other government agencies.

## Alternatives

Two alternatives have been identified for this proposal and are described in detail in Chapter 2. They are: (1) approval of the proposed exchange in which UP\&L would be granted one, two, or three tracts on the Wasatch Plateau and (2) taking no action, in which no exchange would be made and the PRLAs on the Kaiparowits Plateau would be processed in accordance with regulations detailed in 43 CFR 3420. As a matter of policy, the Department is committed to process all PRLAs by December 1, 1984.

In addition to an outright exchange, a possible scenario for consummation of the exchange would be for UP\&L to receive bidding rights of equal value to those in the PRLAs. The bidding rights would then be used to offset bonus bid obligations UP\&L may sustain as a result of participation in Federal competitive coal lease sales. A third method of implementing Alternative One would be a combination of exchange of coal leases and coal lease bidding rights as authorized in 43 CFR 3435.1 .

## Interrelationships

## TRANSPORTATION

A major concern regarding the possible development of coal on the Kaiparowits Plateau is coal transportation. BLM contracted with Environmental Research \& Technology, Inc., Fort Collins, Colorado, to conduct a study of transportation corridors, methods of transportation, etc. Impacts associated


FIGURE 1-4
UP\&L EXCHANGE LANDS (GARFIELD PROJECT)

## PURPOSE AND NEED

with the transportation of coal from the Kaiparowits Plateau were studied. The final report was issued on August 1, 1980.

## COAL DEVELOPMENT ON THE KAIPAROWITS PLATEAU

Coal in southern Utah is essentially an untapped resource. Currently, no coal is being produced from the coal fields and the small amounts of past production have been confined to limited local markets. However, because the resource is extensive, interest in developing coal on the Kaiparowits Plateau is expected to increase. Two companies have submitted mining plans and are awaiting approval to begin development (GS, 1979).

## LOCAL LAND USE PLANS AND CONTROLS

Both Kane and Garfield Counties are revising zoning ordinances and master land use plans. That portion of the PRLAs which is located in Kane County falls in an area now zoned as MU-160 which is a multiple use zone. However, if the proposed revision is accepted mining will be a "conditional use" in this area, meaning that mining and reclamation plans must be filed with the Kane County Planning Commission and County Commissioners for their approval (personal communication, Carrico, Kane Co. Comm., 1980). Garfield County has no ordinances which apply to the PRLA area; however, the County Commission strongly favors some type of coal development.

## CHAPTER 2

## ALTERNATIVES INCLUDING THE PROPOSED ACTION

## INTRODUCTION

Five coal leasing alternatives selected for the Uinta-Southwestern Utah Coal Region and two alternatives for the proposed Utah Power and Light (UP\&L) exchange are described in detail in this chapter. Interactions between the coal leasing program and the proposed exchange are identified. Stipulations (mitigating measures) that would be a part of lease issuance, required authorizations for coal leasing, and surface mine reclamation information are also presented. Finally, anticipated environmental impacts of each alternative are summarized in narrative table form. The impacts discussed are those considered to be most significant as determined through the scoping process (40 CFR 1501.7) and environmental analysis (Chapter 4).

## FEDERAL COAL LEASING PROGRAM

Each coal leasing alternative is described by identifying specific tracts, in-place resources and recoverable coal reserves, annual production rates, acres proposed for leasing, and identification of surface or underground mining methods. The Hollberg Preference Right Lease Application (PRLA) is considered a part of each alternative because its issuance is not subject to the discretionary authority of the Secretary of the Interior.

Prior to discussion of the various alternatives, narrative summaries are presented for the individual tracts and the Hollberg PRLA which discuss tract locations and size, coal resources, probable mining methods, employment requirements, and probable water needs. Each tract considered in this environmental impact statement (EIS), is a Logical Mining Unit (LMU) as defined by Coal Lease Regulations 43 CFR 3400.5(cc) whether mined independently or in conjunction with adjacent leased or privately owned coal. Three tracts (Emery North, Emery Central, Emery South) are located in the Emery Known Recoverable Coal Resource Area (KRCRA) while the remaining eight tracts (Tucker Canyon, Miller Creek, Gordon Creek, Slaughterhouse Canyon, Rilda Canyon, Meetinghouse Canyon, Cottonwood and North Horn Mountain) are found in the Wasatch Plateau KRCRA. Tract delineation reports and site specific environmental analyses have been completed for all tracts under consideration
detailing probable mine development and anticipated environmental impacts. These reports are available for review at the Utah State Office and Moab District Office of the Bureau of Land Management (BLM) and the Salt Lake Office of the Geological Survey.

At its December 16, 1980 meeting, the RCT recommended that two lease sale dates be considered. The majority of the tracts would be offered for lease July 30, 1981, with a follow-up lease sale date of February 4, 1982. The Utah State Director, BLM, concurred with this recommendation.

## Individual Tract Development

## TUCKER CANYON TRACT

The Tucker Canyon tract, 161.4 acres in size, is located 2 miles northwest of Scofield, Utah (Figure $2-1$ ). Land surface on the tract is private and the coal is Federally owned. The tract contains an inplace coal resource of 2.15 million tons as shown in Table 2-1 of which 860,000 tons would be recovered at a 40 -percent rate. Coal quality on the tract has been determined by a private coal company but the data are not available for public distribution.

Following exploratory drilling, most favorable access to the coal beds would probably be from an area about 0.25 mile south of the tract on privately owned coal land. First production would be from the Upper O'Connor bed followed by development of the Flat Canyon bed. The tract could best be developed in association with adjoining private coal. If the tract were developed separately, the reserves in the Flat Canyon bed would probably not be mined due to the cost of gaining access. The coal is amenable only to underground mining and would probably be mined with continuous miners using room and pillar methods. Annual coal production would be 43,000 tons for the expected 20 -year mine life.

Surface facilities would include two portals and plant area consisting of a shop, change house, parking area, and coal storage area. A total of 10 acres would be required. Offsite facilities required would include ventilation facilities, waste disposal area, a 2 -mile haulage road, and 2.5 miles of power and telephone lines. These facilities would occupy approximately 24 acres. See Figure $2-2$ for a diagram of a possible layout for a surface facility.


FIGURE 2-1
GORDON CREEK, TUCKER CANYON, SLAUGHTERHOUSE CANYON AND MILLER CREEK TRACKS

TABLE 2-1
COAL QUANTITY: TUCKER CANYON TRACT

|  | Upper $0^{\prime}$ Connor | Flat Canyon | Total |
| :--- | :---: | :---: | :---: |



## ALTERNATIVES INCLUDING THE PROPOSED ACTION

The coal would be hauled by truck some 3 to 4 miles from the mine site to a railroad loading area near Scofield. Twenty people would be required for about 2 years for construction activities. The actual mining work force would be about 15 persons. Approximately 0.7 acre-feet of water would be required annually for mine operations and dust suppression. This water would probably be produced by the mine. A potable water source would need to be developed.

## MILLER CREEK TRACT

The Miller Creek tract, 2,000 acres in size, is located 4 miles southeast of Scofield and 20 miles northwest of Price, Utah (Figure 2-1). Land surface on the tract is privately owned and all of the coal is Federally owned. The tract contains an estimated in-place coal resource of 43.3 million tons (Table 2 2), of which 17.3 million tons would be recovered at a 40 -percent rate. Coal quality is inferred from the Utah No. 2 mine located west of the tract and is shown in Table 2-3.

Mining would be underground, with room and pillar the most likely method, due to extensive faulting expected to be encountered. Production would be 433,000 tons annually for the expected 40 -year life of the mine. Access to the reserves could be made through the Swisher Coal Co. operation to the east or from Valley Camp's Utah No. 2 mine to the west, or through a new rock slope portal in Broad Canyon near the southeast corner of the tract (Figure 2-1). Costly fault crossings would be required to gain access to the coal either from existing mines or a new portal in Broad Canyon.

If the tract is mined from one of the adjoining mines no surface disturbance would occur resulting from lease development. Construction of a rock slope portal and other onsite surface facilities in Broad Canyon (Figure 2-1) would result in a surface disturbance of approximately 26 acres. Two miles of new truck haulage road, telephone, and powerlines would also be necessary which would require 34 acres (Figure 2-3).

Approximately 133 permanent employees would be needed to mine the reserves within a 40 -year mine life whether the tract was mined separately or as part of an adjoining operation. Mining related activities would require approximately 6.6 acre-feet of water annually. This water would probably be supplied by mine workings. Potable water would also be required if a new portal was constructed. Potential sources of the water have not been determined.

## GORDON CREEK TRACT

The Gordon Creek tract, 4,280 acres in size, is located approximately 12 miles west of Helper, Utah (Figure 2-1). Land surface on the tract is privately owned and all of the coal is Federally owned. The tract contains an estimated in-place resource of some 64.9 million tons (Table 2-4) of which 26 million tons would be recovered at a 40 percent rate.

Mining would be underground probably using room and pillar methods with continuous miners. The Hiawatha and Castlegate A seams could be reached through existing mine workings located east of the tract or from a new portal site south of the tract. The Bob Wright seam could only be reached by establishing a new portal in the southeast corner of the tract. If the tract were mined independently of adjacent leases, recoverable resources would be approximately 24.3 million tons ( 37.5 percent recovery); if mined in conjunction with adjacent existing operations, recoverable reserves would be about 26 million tons ( 40 percent recovery). The difference in recoverable coal results from State and Federal regulations (30 CFR 211.35a, Utah State Industry Commission Coal Mine General Safety Orders Section 30) which require a 100 -foot property boundary if the tract is mined independently. Annual coal production would average 650,000 tons per year with a mine life of 37 years for an independent operation and 40 years if mined in conjunction with adjacent existing operations. Coal quality on the tract was determined by GS and is shown in Table 2-5.

Twenty-five acres of surface disturbance would result from the construction of new surface facilities, portals, and topsoil, waste, and coal storage areas (Figure 2-4). Sixty-five acres of surface disturbance would result from constructing 3 to 4 miles of haul and access roads, and 3 to 4 miles of power and telephone lines.

If the adjacent coal owner (Beaver Creek Coal Company) obtains the tract, the coal would be transported approximately 25 miles on existing roads by truck to the company's wash plant near Wellington, Utah. Independent operators would probably truck the coal to railroad loading facilities in Price ( 18 miles), Helper ( 12 miles), or the Castle Gate area ( 14 miles). Figure 2-4 depicts possible portal sites and new road locations.

About 180 permanent employees would be required for mine operation. If surface facilities were required, an additional 20 to 30 construction employees would be required for 1 to 2 years.

Water requirements to produce the coal would be approximately 10 acre-feet per year. The mine

TABLE 2-2
COAL QUANTITY: MILLER CREEK TRACT

## Coal Bed

Upper $0^{\prime}$ Conor Lower $0^{\prime}$ Connor Undetermined ${ }^{\text {a }}$ Total

| Demonstrated |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Reserve Base (tons) | 23,200,000 | 20,100,000 | 0 | 43,300,000 |
| Inferred |  |  |  |  |
| Resource (tons) | 0 | 0 | 0 | 0 |
| Total Estimated |  |  |  |  |
| In-Place Resource (tons) | 23,200,000 | 20,100,000 | 0 | 43,300,000 |
| Recoverable Reserves |  |  |  |  |
| Average Thickness |  |  |  |  |
| Recovery percentage | ined by GS |  |  |  |
| ${ }^{\text {a }}$ Inferred resource n | gned to a | c coal bed |  |  |

TABLE 2-3
COAL QUALITY: MILLER CREEK TRACT

| Coal Bed | Moisture <br> Percent | Ash <br> Percent | Sulfur <br> Percent | Fixed Car- <br> bon Percent | Volatiles <br> Percent | Btu/1b |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| A11 | 7.46 | 6.76 | 0.67 | 42.26 | 43.52 | 12,100 |
| Determined by GS $(1980)$ |  |  |  |  |  |  |

Determined by GS (1980)


TABLE 2-4
COAL QUANTITY: GORDON CREEK TRACT

|  |  | Coal Bed |  |  |  |  |
| :--- | ---: | ---: | ---: | :---: | :---: | ---: |
|  | Hiawatha | Castlegate A | Bob Wright | Lower 0'Connor | Total |  |
| Demonstrated <br> Reserve Base (tons) | $48,700,000$ | $2,700,000$ | $10,400,000$ | $3,100,000$ | $64,900,000$ |  |
| Inferred |  |  |  |  |  |  |
| Resource (tons) |  |  |  |  |  |  |

TABLE 2-5
COAL QUALITY: GORDON CREEK TRACT

| Coal Bed | Moisture Percent | Ash Percent | Sulfur Percent | Fixed Carbon Percent | Volatiles Percent | Btu/lb |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Hiawatha | 7.2 | 6.5 | 0.560 | 44.6 | 41.3 | 12,114 |
| Castlegate A | 5.4 | 5.9 | 0.450 | 44.9 | 43.7 | 12,686 |
| Bob Wright | -- | -- | Data not | available | - - - | - - - |
| Average | $\overline{6.3}$ | $\overline{6.2}$ | 0.505 | 44.75 | 42.5 | 12,400 |



FIGURE 2-4
GORDON CREEK TRACT SURFACE LAYOUT

## alternatives including the proposed action

workings would probably produce sufficient water for mining needs and dust suppression. Potable water would either be hauled to new surface facilities or an onsite well could be drilled. The amount or potential source of potable water required has not been determined.

## SLAUGHTERHOUSE CANYON TRACT

The Slaughterhouse Canyon tract, 440 acres in size, is located some 4 miles south of Scofield, Utah (Figure 2-1). Land surface on the tract is privately owned and all of the coal is Federally owned. The tract contains a demonstrated reserve of 5.55 million tons of coal in two seams (Table 26). Coal quality is shown in Table 2-7.

The coal would be mined by underground methods. Annual production would be about 215,000 tons over 8 years representing about 31 percent of the resource. The low ratio of recovered coal would result from the need to leave much of otherwise minable coal in place to protect escarpments and support shallow (by underground mining standards) overburden. The upper O'Connor seam would be mined first followed by mining of the lower O'Connor seam.

Total surface disturbance from all activities associated with development of the tract would be 47 acres. Surface facilities would disturb about 15 acres and a 3.2-mile long mine access road (necessary if mined independently of adjacent leases) would require 32 acres (Figure 2-5). If the adjacent lease holder obtains the tract, a 0.5 to 0.75 -mile long access road would be constructed.

About 60 workers would be needed during fullscale operation. Mine operations would be preceded by 1 to 2 years of construction employing about eight workers.

About 3.3 acre-feet of water would be needed yearly for dust control and other mine operations and would probably be hauled from Pleasant Valley Creek or possibly developed from the mine. Potable water would probably be hauled to the mine or a well drilled.

## MEETINGHOUSE CANYON TRACT

The Meetinghouse Canyon tract, 1,063.38 acres in size, is located approximately 10 miles northwest of Huntington, Utah (Figure 2-6). The coal is owned by the U.S. Government and the surface is managed by the Forest Service (FS). This is one of three tracts being considered for the proposed

UP\&L exchange. The tract contains an in-place coal resource of 31 million tons in two seams as shown in Table 2-8. Coal quality is shown in Table 2-9.

The tract could be mined from the Deer Creek Mine to the south, leased land on the northwest side of the tract, or a coal outcrop area in North Fork Meetinghouse Canyon. The coal would be developed by an underground mine probably using room and pillar mining methods. Annual coal production would average 310,000 tons for the projected 40 -year mine life. If the tract were mined independently of adjacent leases, barrier pillars would be required along the boundary thereby diminishing recoverable reserves. Mining of the Blind Canyon seam (upper seam) would be required in advance of mining the lower Hiawatha seam.
If the reserves were mined from UP\&L's nearby Deer Creek mine, no new surface facilities would be required with the possible exception of ventilation openings. Approximately 10 acres would be required to support surface facilities if an operation separate from the Deer Creek mine is established. These facilities would include coal and topsoil storage areas, and a waste dump. Construction of 2 miles of new haulage road would result in an additional 20 acres of disturbance. About 10 acres would be disturbed for power and telphone line construction. Figure 2-7 depicts possible surface facility and new access road locations.
The coal would be trucked approximately 10 miles on an existing road down Huntington Canyon to the proposed railroad loadout near the Hunter powerplant. If UP\&L obtained the tract, the coal would be used in the nearby Huntington and/or Hunter powerplants.

Approximately 65 to 85 permanent employees would be required if the adjacent lease owner obtained the tract. An independent operation would require 10 to 15 additional employees.

If the lease were obtained by UP\&L, water needs could be met by existing UP\&L water developments. About 4.8 acre-feet of water would be needed yearly for mining operations, dust control, etc. A 3 -mile extension from the existing UP\&L water line would be necessary. A source for potable water has not been determined if an independent operator obtained the tract.

## RILDA CANYON TRACT

The Rilda Canyon tract, 640 acres in size, is located approximately 12 miles west of Huntington, Utah (Figure 2-6). Land surface (FS) and coal are both Federally owned. The tract contains an esti-

TABLE 2-6
COAL QUANTITY: SLAUGHTERHOUSE CANYON TRACT

|  | Upper 0'Connor Lower $0^{\prime}$ Connor | Undetermined | Total |  |
| :--- | :---: | :---: | :---: | :---: |
| Demonstrated <br> Reserve Base (tons) <br> Inferred <br> Resource (tons) <br> Total Estimated <br> In-Place Resource | $1,960,000$ | $3,590,000$ | 0 | $5,550,000$ |
| (tons) <br> Recoverable Reserves <br> at 31 Percent <br> Average Thickness <br> (feet) | $1,960,000$ | $3,590,000$ | 0 | 0 |
| Recovery percentage determined by GS (1980) | 466,000 | $1,250,000$ | 0 | $5,550,000$ |

TABLE 2-7
COAL QUALITY: SLAUGHTERHOUSE CANYON TRACT

| Coal Bed | Moisture <br> Percent | Ash <br> Percent | Sulfur <br> Percent | Fixed Car- <br> bon Percent | Volatiles <br> Percent | Btu/1b |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| Castlegate A | 7.54 | 6.24 | 0.61 | 44.91 | 41.11 | 12,042 |
| Determined by GS (1979) |  |  |  |  |  |  |





FIGURE 2-6

TABLE 2-8
COAL QUANTITY: MEETINGHOUSE CANYON TRACT

|  | BLind Canyon | Hidawatha | Undetermined ${ }^{\text {a }}$ | Total |
| :--- | :---: | :---: | :---: | :---: |
| Demonstrated <br> Reserve Base (tons) <br> Inferred <br> Resource (tons) | $19,300,000$ | $11,700,000$ | 0 | $31,000,000$ |
| Total Estimated <br> In-Place Resource | 0 | 0 | 0 | 0 |
| (tons) <br> Recoverable Reserves <br> at 40 Percent | $19,300,000$ | $11,700,000$ | 0 | $31,000,000$ |
| Average Thickness <br> (feet) | $7,720,000$ | $4,680,000$ | 0 | $12,400,000$ |
| Recovery percentage determined by GS (1980) <br> aInferred resource not assigned to a specific coal bed |  |  |  |  |

TABLE 2-9
COAL QUALITY: MEETINGHOUSE CANYON TRACT

| Coal Bed | Moisture <br> Percent | Ash <br> Percent | Sulfur <br> Percent | Fixed Car- <br> bon Percent | Volatiles <br> Percent | Btu/lb |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Blind Canyon/ <br> Hiawatha | 3.1 | 6.0 | 0.45 | 47.9 | 43.4 | 12,800 |
| Estimated by Doelling (1972) |  |  |  |  |  |  |



FIGURE 2-7
MEETINGHOUSE TRACT SURFACE LAYOUT

## ALTERNATIVES INCLUDING THE PROPOSED ACTION

mated in-place reserve of 19.5 million tons (Table 2-10). Coal quality data have been determined but the information (obtained by a private coal company), is not available for public distribution; however, it is expected to be similar to that described for the Meetinghouse Canyon tract.

The tract cannot be mined independently of adjacent leases because it is surrounded by leased land and there is no other access. It could only be developed in conjunction with the UP\&L Deer Creek mine or a planned operation by Northwest Carbon Corporation, in which case a portal and other facilities would be constructed in Rilda Canyon less than 1 mile north of the tract on lands controlled by Northwest Carbon. UP\&L could also construct facilities in Rilda Canyon if it obtained the tract. It is possible that either UP\&L or Northwest Carbon could add the tract to their existing or planned mining operations without increasing planned tonnage rates.

Reserve figures in adjoining properties are not available, therefore, coal development can be discussed only as it applies to the tract itself. The reserves on the tract would support an annual production rate of 195,000 tons annually for a 40-year period. Fifty to 55 employees would be required on a permanent basis.

If the tract is obtained by UP\&L, the major portion of the reserves could be mined by longwall methods with development mining by continuous miners. If Northwest Carbon obtained the tract, the area would probably be mined by room and pillar methods with continuous miners because the configuration of Northwest's properties would not readily adapt to the longwall system.

About 20 acres would be required for the surface facilities in Rilda Canyon and another 43 acres for haulage roads, power and telephone lines, and other offsite facilities. See Figure 2-8 for probable location of new structures.

Water requirements would be about 3.0 acre-feet per year and would probably be available from mine workings. Potable water would need to be developed.

## COTTONWOOD TRACT

The Cottonwood tract, 2,400 acres in size, is located approximately 26 miles southeast of Price, Utah (Figure 2-9). Land surface on the tract is owned by the U.S. Government (FS and BLM), as is the coal. This tract is one of three being considered in the proposed UP\&L exchange. The tract contains an estimated in- place coal resource of 57.8 million tons in two minable seams (Table 2 -
11), of which about 23 million tons would be recovered at a 40-percent rate.
Tract-specific coal quality data are not available. However, data are available from nearby mines (compiled by GS, 1979), and are summarized in Table 2-12.

The coal reserves would be mined by underground methods, possibly longwall. The tract could be developed from UP\&L's existing Wilberg Mine or from new facilities in Grimes Wash if mined by an independent operator. An average annual production rate of 578,000 tons could be supported for a 40-year period.
If the tract is mined by UP\&L from the Wilberg Mine, additional surface facility requirements would be limited to ventilation openings. Development of the tract from Grimes Wash would require 10 to 15 acres for surface facilities. Road access to Grimes Wash and power and telephone lines would result in some 30 acres of surface disturbance. Figure 210 depicts possible surface facility and new access road locations.

One hundred forty-five to 165 permanent employees would be required to produce coal from the tract. An additional 15 to 20 employees would also be required for maintenance and operation of surface facilities. An estimated 30 to 40 temporary employees would be needed for 1 to 2 years to construct facilities for an operation in Grimes Wash.
Truck haulage to the proposed railroad loadout near the Hunter powerplant would be about 8 miles from UP\&L's Wilberg Mine or 10 miles from Grimes Wash.

If mined as an extension of UP\&L's existing operation, additional water needs would be limited to dust suppression. This water would be provided by the Wilberg Mine. Independent mining would require trucking of potable water. Water used for dust suppression could be produced by the mine or may also be trucked. About 9 acre-feet of water would be required annually if the tract is mined independently of adjacent operators.

## NORTH HORN MOUNTAIN TRACT

The North Horn Mountain tract is approximately 21,043 acres in size and located about 4 miles west of Orangeville, Utah (Figure 2-9). Both the surface (FS) and the coal are owned by the U.S. Government. This tract is one of three being considered in the proposed UP\&L exchange. The tract contains an estimated in-place coal resource of 246.5 million tons in two minable seams as shown in Table 2-13.

TABLE 2-10

## COAL QUANTITY: RILDA CANYON TRACT

|  | Coal Bed |  |  |
| :--- | :---: | ---: | ---: |
|  | Blind Canyon | Hiawatha | Total |
| Demonstrated <br> Reserve Base (tons) <br> Inferred <br> Resource (tons) | $12,200,000$ | $7,300,000$ | $19,500,000$ |
| Total Estimated |  |  |  |
| In-Place Resource | 0 | 0 | 0 |
| (tons) <br> Recoverable Reserves <br> at 40 Percent <br> Average Thickness <br> (feet) | $12,200,000$ | $7,300,000$ | $19,500,000$ |
| Recovery percentage determined by GS (1980) | $4,880,000$ | $2,920,000$ | $7,800,000$ |


RILDA CANYON TRACT SURFACE LAYOUT

R 6 E


FIGURE 2-9
NORTH HORN MOUNTAIN AND COTTONWOOD TRACTS

TABLE 2-11
COAL QUANTITY: COTTONWOOD TRACT

|  | Blind Canyon | Hiawatha | Total Bed |
| :--- | :---: | :---: | :---: |
| Demonstrated <br> Reserve Base (tons) <br> Inferred <br> Resource (tons) <br> Total Estimated <br> In-Place Resource | $16,000,000$ | $39,400,000$ | $55,400,000$ |
| (tons) <br> Recoverable Reserves <br> at 40 Percent | 0 | $2,400,000$ | $2,400,000$ |
| Average Thickness <br> (feet) | $16,000,000$ | $41,800,000$ | $57,800,000$ |
| Recovery percentage determined by GS $(1980)$ | $16,720,000$ | $23,120,000$ |  |

TABLE 2-12
COAL QUALITY: COTTONWOOD TRACT

| Coal Bed | Moisture <br> Percent | Ash <br> Percent | Sulfur <br> Percent | Fixed Car- <br> bon Percent | Volatiles <br> Percent | Btu/1b |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| Blind Canyon/ <br> Hiawatha | 5.5 | 7.6 | 0.58 | 45.68 | 41.23 | 12,578 |
| Determined by GS (1979) <br> Note:Tract specific coal quality data not available. <br> nearby mines, compiled by GS (1979)Data available from |  |  |  |  |  |  |



## ALTERNATIVES INCLUDING THE PROPOSED ACTION

Tract-specific coal quality data are not available. It is assumed the quality of the coal on North Horn Mountain is similar to the coal being taken from the nearby Wilberg and Deer Creek Mines as summarized in Table 2-14.
The coal would be mined underground probably using longwall methods except near outcrops and other areas that could only be mined by room and pillar. Mining reserves in the upper bed in advance of mining the lower bed would be required. Annual coal production would be approximately 2.47 million tons for the 40-year life of the mine.
Mine portal facilities would probably be located in Killpack Canyon. Fifty- five acres would be required to house surface facilities. Approximately 6 miles of new road would be required to reach the probable mine site. Power and telephone lines would be required. Appropriate rights-of-way would need to be obtained.
Approximately 90 acres would be required for these offsite facilities. Figure 2-11 depicts possible surface facility and new access road locations.
Should UP\&L obtain the lease, portal facilities would be close enough to the Hunter powerplant to consider a conveyor belt ( 8 to 9 miles long) from the mine to the plant. An operator other than UP\&L would probably haul the coal north to either Mohrland or Price, Utah, by truck or by the Castle Valley Railroad.
Seven hundred fifteen employees would be required on a permanent basis for the 40 -year mine life. One hundred twenty-five temporary employees would be required for 1 to 2 years for initial construction work. Following initial development work, water for dust control would probably be available from the mine workings. Potable water would be trucked or developed from a well. Approximately 38 acre- feet of water would be required annually.

## EMERY NORTH TRACT

The Emery North tract, 2,161 acres in size, is located 1 mile east of Emery, Utah (Figure 2-12). The tract contains an in-place coal resource of 36.2 million tons as shown in Table 2-15 of which about 24 million tons would be recovered.
BLM administers $1,480.75$ surface acres of the tract while 680.25 acres are in private ownership. All of the coal on the tract itself is owned by the Federal Government; however, some fee land (privately owned coal and surface) is intermingled within the tract area.
The Federal coal beneath the private lands on the tract would need to be mined in concert with
overall tract development in order to avoid isolating or cornering small portions of land within tract boundaries.

Coal quality data were obtained from the nearby Consolidation Coal Company mine and represent an average of all minable coal seams (Table 2-16).

The coal would be mined by a combination of surface and underground methods. Surface mining would be used for the first 20 years of production and underground methods for the final 20 years of the projected 40 -year mine life. Both dragline stripping and shovels and trucks would likely be used in surface mining operations. Underground mining would be initiated from the pit floors when maximum stripping depth was reached in each seam. The exposed coal seams would allow low cost access to fresh coal by as many entries as desired. During the initial 20 years of operation, an average of 549,000 tons would be mined annually. As strippable coal is depleted and a shift is made to underground production, an annual average production of 652,500 tons would be expected for the remaining 20 years.

Approximately 50 surface acres would be disturbed annually by surface mining for 20 years resulting in a total of 1,000 acres. Once underground mining began, an additional 5 acres of surface disturbance would be expected for the second 20-year period.

Surface facilities including coal storage areas would require 78 acres of land surface. Access and haulage roads ( 1.9 miles), and construction of power and telephone lines would require an additional 31 acres. Figure 2-13 depicts possible surface facility and new access road locations.

Reclamation efforts (discussed in detail in Surface Mine Reclamation Section, this chapter) would limit the amount of unreclaimed land at any one time to 259 acres or less.

The coal could be hauled using the proposed Castle Valley Railroad or be trucked to either Mohrland, Utah, some 49 miles away via U-10, Price, Utah, 60 miles to the north on U-10, or Salina, Utah, 59 miles away on U-10 and Interstate 70.

Approximately 60 permanent employees would be needed for the 20 years of surface mining. Permanent employees required for the 20 years of underground mining would total some 120 persons. Temporary employees needed for construction of surface mine facilities would be about 15 for 1 year. Twenty-five to 30 employees would be required for construction of underground facilities for 1 to 2 years.

Surface owner consultation resulted in two objections to surface disturbance within that portion of the tract located in Section 22, Range 6 E , Town-

COAL QUANTITY: NORTH HORN MOUNTAIN TRACT

|  | Blind Canyon | Hiawatha | Undetermineda | Total |
| :--- | ---: | :---: | :---: | :---: |
| Demonstrated <br> Reserve Base (tons) <br> Inferred <br> Resource (tons) | $122,000,000$ | $67,500,000$ | 0 | $189,500,000$ |
| Total Estimated <br> In-Place Resource | $9,700,000$ | $47,300,000$ | 0 | $57,000,000$ |
| (tons) <br> Recoverable Reserves <br> at 40 Percent | $131,700,000$ | $14,800,000$ | 0 | $246,500,000$ |
| Average Thickness <br> (feet) | $52,700,000$ | $45,900,000$ | 0 | $98,600,000$ |
| Recovery percentage determined by GS (1980) <br> a Inferred resource not assigned to a specific coal bed |  |  |  |  |

TABLE 2-14
COAL QUALITY: NORTH HORN MOUNTAIN

| Coal Bed | Moisture <br> Percent | Ash <br> Percent | Sulfur <br> Percent | Fixed Car- <br> bon Percent | Volatiles <br> Percent | Btu/lb |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| All | 5.5 | 7.6 | 0.58 | 45.68 | 41.23 | 12,578 |
| Determined by GS (1979) <br> Note:Tract specific coal quality data not available. <br> nearby mines, compiled by GS (1979) | Data available from |  |  |  |  |  |




FIGURE 2-12
EMERY NORTH, EMERY CENTRAL AND EMERY SOUTH TRACTS

COAL QUANTITY: EMERY NORTH TRACT

| Coal Bed |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | I/J | I/J | C/D | C/D | Total |
| Demonstrated |  |  |  |  |  |
| Reserve Base (tons) | 9,300,000 | 8,100,000 | 3,600,000 | 15,200,000 | 36,200,000 |
| Inferred |  |  |  |  |  |
| Resource (tons) | 0 | 0 | 0 | 0 | 0 |
| Total Estimated |  |  |  |  |  |
| In-Place Resources (tons) | 9,300,000 | 8,100,000 | 3,600,000 | 15,200,000 | 36,200,000 |
| Recoverable Reserves |  |  |  |  |  |
| Surface Mining | 7,910,000 | 0 | 3,060,000 | 0 | 10,970,000 |
| Recoverable Reserves |  |  |  |  |  |
| Underground | 0 | 4,540,000 | 0 | 8,510,000 | 13,050,000 |
| Average Thickness |  |  |  |  |  |
| Recovery percentage | rmined by | GS (1980) |  |  |  |

TABLE 2-16
COAL QUALITY: EMERY NORTH TRACT

| Coal Bed | Moisture <br> Percent | Ash <br> Percent | Sulfur <br> Percent | Fixed Car- <br> bon Percent | Volatiles <br> Percent | Btu/1b |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| A11 | 6.89 | 22.01 | 0.96 | 37.11 | 33.99 | 10,056 |
| Determined by GS (1979) <br> Note:Tract specific coal quality data not available. <br> nearby mines, compiled by GS (1979)  <br>  Data available from |  |  |  |  |  |  |



## ALTERNATIVES INCLUDING THE PROPOSED ACTION

ship 22 S. With the possible exception of subsidence, no surface disturbance would be anticipated as this part of the tract would be mined by underground methods.

Estimated water requirements for dust control of both surface and underground mining is 8.5 acrefeet per year. Potable water would also be required. Sources for the water have not been determined.

## EMERY CENTRAL TRACT

The Emery Central tract, 2,967.65 acres in size, is located about 4 miles south of Emery, Utah (Figure 2-12). The tract contains an in-place coal resource of $43,367,000$ tons of which $39,030,000$ tons would be recovered (Table 2-17).

Both the land surface (BLM) and coal are owned by the U.S. Government; however, a 480 -acre parcel of land owned by the State of Utah is nearly surrounded by the tract and should be mined along with the Federal coal (Figure 2-12). This Stateowned resource would provide an additional $14,200,000$ tons of coal of which $12,780,000$ tons could be recovered.

GS (1979) has determined coal data which are summarized in Table 2-18.

The coal resource is amenable to strip mining using draglines, trucks and shovels, or front end loaders and trucks. Mining would begin at the north boundary and progress southward. Mine life is estimated to be 40 years at a rate of 975,750 tons of coal per year. Approximately 43 surface acres would be disturbed annually by mining resulting in a total surface disturbance of nearly 1,710 acres over the life of the mine. Land reclamation could begin after the second or third year of operations and total unreclaimed land would not exceed 414 acres at any one time.

In addition to actual mining, other acreages would be disturbed. New access and haul roads totaling 4.8 miles in length and power and telephone lines would require 65 acres. Mine plant support facilities, including coal storage and topsoil and overburden storage areas, would require an additional 220 acres. Figure 2-14 depicts possible surface facility and new access road locations.

Reclamation efforts (see Surface Mine Reclamation Section, this Chapter) would limit the amount of unreclaimed land at any one time to not more than 414 acres.

Four alternatives exist for transportation of the coal to railroad facilities. The Castle Valley Railroad could be used or the coal could be trucked 57 miles south and west to Salina, Utah, over U-10
and Interstate 70 or 63 miles north to Price, Utah, on U-10. The fourth route could be to truck the coal 57 miles north to Mohrland, Utah.

Approximately 100 permanent employees would be required for mine operation. An additional 50 to 60 temporary employees would be needed during the initial construction period of 1 to 2 years.

Estimated water requirements for dust suppression and other mine related activities are 15 acrefeet per year. Transportation of potable water would also be necessary. The potential water source has not been determined.

## EMERY SOUTH TRACT

The Emery South tract is 748.49 acres in size and is located some 12 miles south of Emery, Utah (Figure 2-12). Both the land surface (BLM) and coal are owned by the U.S. Government. The tract contains a demonstrated reserve base of 11.53 million tons in two seams as shown in Table 2-19.

At the time this tract was first delineated it was anticipated that it would be surface mined; however, due to the location of the tract in a scenic corridor and the presence of a candidate endangered plant species on the tract, only underground mining would be allowed. The coal recovery, using underground mining rather than surface mining, would be reduced by nearly 5 million tons from 10.3 to 5.36 million tons.

Coal quality data were obtained from the nearby Dog Valley mine (GS, 1979) and are summarized in Table 2-20.

Two beds would be mined by underground methods. About 5.36 million tons would be mined. About 134,000 tons would be mined annually over a $40-$ year period using a single continuous miner.

Coal would be trucked using the Dog Valley mine road and Interstate 70 to Salina, Utah, some 45 miles to the west. Construction of 2 miles of new road would be necessary to connect the tract with the Dog Valley mine road. About 15 acres would be required for surface facilities and a coal shipping and stockpile area. Figure 2-15 depicts surface facility and new access road locations.

Approximately 37 permanent employees would be required for mine operation. Fifteen to 20 temporary employees would be needed for construction of surface facilities.

Water needs related to mining would be about 2 acre-feet per year and would probably require the drilling of wells on or near the tract. Potable water would be transported to the site.

TABLE 2-17
COAL QUANTITY: EMERY CENTRAL TRACT

|  | Coal Bed |  |  |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: |

TABLE 2-18
COAL QUALITY: EMERY CENTRAL TRACT

| Coal Bed | Moisture <br> Percent | Ash <br> Percent | Sulfur <br> Percent | Fixed Car- <br> bon Percent | Volatiles <br> Percent | Btu/1b |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| A11 | 8.0 | 14.3 | 0.8 | 47.9 | 38.1 | 11,000 |
| Determined by GS $(1979)$ |  |  |  |  |  |  |



FIGURE 2-14

EMERY CENTRAL TRACT SURFACE LAYOUT

COAL QUANTITY: EMERY SOUTH TRACT

|  |  | Coal Bed |  |
| :--- | :---: | :---: | :---: | :---: | :---: |

TABLE 2-20
COAL QUALITY: EMERY SOUTH TRACT

| Coal Bed | Moisture <br> Percent | Ash <br> Percent | Sulfur <br> Percent | Fixed Car- <br> bon Percent | Volatiles <br> Percent | Btu/lb |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| A11 | 5.6 | 7.5 | 0.82 | 46.1 | 38.9 | 12,322 |
| Determined by GS $(1979)$ |  |  | 0 |  |  |  |


FIGURE 2-15
Emery south tract surface layout

## ALTERNATIVES INCLUDING THE PROPOSED ACTION

## HOLLBERG PRLA

The Hollberg PRLA is $3,035.7$ acres in size and located 3 miles east of Emery, Utah (Figure 2-16). All of the coal on the PRLA is owned by the U.S. Government; $2,639.5$ surface acres are Federally owned (BLM) while the remaining 396.2 acres are in private ownership. Coal resources on the PRLA are estimated at 39.3 million tons of which 19.5 million tons are recoverable. Emery Energy Corporation proposes to mine an average 490,000 tons of coal annually for 40 years. The coal would be developed by underground methods, probably room and pillar.

Coal quality data were reported by GS (1980) and are summarized in Table 2-21.

Proposed surface facilities would occupy 7 acres in the southwest corner of the PRLA. A powerline ( 4 miles), 6 -inch waterline ( 4.5 miles), 4 -inch culinary waterline ( 5.5 miles), and a telephone line ( 4 miles) would be required and would cumulatively occupy 14 acres. A haulage and access road about 5.6 miles long and occupying 56 acres would also be constructed. Appropriate rights-of-way would need to be obtained. Figure 2-17 depicts surface facility and new haulage road locations.

Approximately 75 permanent employees would be required with an additional 15 to 25 construction workers needed for 2 years for mine development.

The coal could be trucked to railroad loading facilities at Mohrland ( 49 miles), Price ( 56 miles), Salina ( 55 miles), or the Castle Valley Railroad could be used.

## DESCRIPTION OF THE ALTERNATIVES

## ALTERNATIVE ONE


#### Abstract

Alternative One considers leasing 11 tracts and represents the maximum level of coal leasing for the region beginning in mid-1981 (Table 2-22). One tract (Emery Central) would be surface mined, nine tracts (Tucker Canyon, Slaughterhouse Canyon, Miller Creek, Gordon Creek, Meetinghouse Canyon, Rilda Canyon, Cottonwood Canyon, North Horn Mountain, and Emery South) would be underground mined, and one tract (Emery North) would be a combination surface and underground mine. The Hollberg PRLA is also considered in this alternative and would be underground mined.


The 11 tracts, totaling 37,906 acres, would be offered for competitive lease and would comprise approximately 561.8 million tons of in-place Federal coal. About 256.2 million tons of the coal would actually be mined. Average annual production from 1987 to 1995 would be approximately 6.55 million tons, declining to about 6.34 million tons per year as the Slaughterhouse Canyon tract, an 8-year operation, would cease production. In 2008, annual production would increase again to 6.61 million tons as increased production from the Emery North tract's underground operations would more than offset production loss as the Tucker Canyon tract is mined out.
A total of 358 construction workers would be required to bring the 11 mines into production. Construction would commence in 1985 and be completed by the end of 1987. Projected mining and coal transportation work forces would be about 1,600 people for the 40-year period beginning in 1987.

Discounting reclamation, surface mining would disturb 372 acres in 1990, 837 acres in 1995, 1,302 acres by 2000 , and 2,720 acres by the end of mine life. Approximately 101 acre-feet of water would be required annually for mine use from 1987 until the end of mine life.

Onsite surface facilities including coal and topsoil storage areas, would occupy 479 acres by 1987 (end of construction and development phase), and 484 acres by the year 2000. Implementation of this alternative would also require construction of offsite developments such as haulage and access roads, and power and telephone lines. Cumulatively, the developments would occupy 469 acres by the year 2000.

Housing and infrastructure requirements directly resulting from implementation of Alternative One would be 59 acres in 1985, 368 acres by 1990, 430 acres by 1995 , and 441 acres by the year 2000.
Implementation of this alternative would result in construction of 31 miles of new haulage and access roads and 30 to 40 miles of telephone and powerlines.
The Hollberg PRLA could be developed under this Alternative. With an estimated 19.5 million tons of recoverable reserves, Hollberg would produce an average of 490,000 tons of coal annually for 40 years. The work force would consist of 15 construction and 75 mining personnel. Onsite and offsite facilities would disturb a total of 77 acres, all of which would eventually be reclaimed. Development of the Hollberg PRLA would result in 5.6 miles of new road and 4 miles of powerline construction. Housing requirements would permanently occupy 32 acres.
Alternative One is summarized in Table 2-23.


FIGURE 2-16
HOLLBERG PRLA

TABLE 2-21
COAL QUALITY: HOLLBERG PRLA

| Coal Bed | Moisture <br> Percent | Ash <br> Percent | Sulfur <br> Percent | Fixed Car- <br> bon Percent | Volatiles <br> Percent | Btu/1b |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| A11 | 4.0 | 6.9 | 1.3 | 51 | 38.40 | $12,000-13,000$ |  |
| GS $(1980)$ |  |  |  |  |  |  |  |



HOLLBERG PRLA TRACT SURFACE LAYOUT

TRACTS INCLUDED IN THE UINTA-SOUTHWESTERN UTAH REGION EIS ALTERNATIVES

| Tract | Alternatives |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | One | Two | Three | Four | No Action |
| Cottonwood 2,400 acres |  |  |  |  |  |
|  |  |  |  |  |  |
| Meeetinghouse Canyon |  |  |  |  |  |
| 1,063.38 acres |  |  |  |  |  |
| Gordon Creek 4,280 acres |  |  |  |  |  |
| North Horn Mountain 21,043 acres |  |  |  |  |  |
|  |  |  |  |  |  |
| Tucker Canyon 161.4 acres |  |  |  |  |  |
| Miller Creek 2,000 acres |  |  |  |  |  |
| Rilda Canyon 640 acres |  |  |  |  |  |
| Slaughterhouse Canyon 440 acres |  |  |  |  |  |
| Emery North 2,161 acres |  |  |  |  |  |
| Emery Central 2,967.65 acres |  |  |  |  |  |
| Emery South |  |  |  |  |  |

TABLE 2-23


## ALTERNATIVES INCLUDING THE PROPOSED ACTION

## ALTERNATIVE TWO (PREFERRED ALTERNATIVE)

Alternative Two considers leasing seven tracts beginning in mid-1981. The tracts are Tucker Canyon, Miller Creek, Gordon Creek, Rilda Canyon, Meetinghouse Canyon, Cottonwood and North Horn Mountain (Table 2-22). All seven tracts would be mined using underground methods. The Hollberg PRLA is also considered in this Alternative. Development of the PRLA is discussed in Alternative One.

The tracts, totaling 31,588 acres, would be offered for competitive lease and would comprise approximately 465.2 million tons of in-place Federal coal. About 186.1 million tons of the coal would actually be mined. Average annual production from 1987 to 2007 would be approximately 4.67 million tons, declining to about 4.25 million tons per year thereafter as Tucker Canyon, a 20-year operation, would cease production.

A total of 240 construction workers would be required to bring the seven mines into production. Construction would commence in 1985 and be completed by the end of 1987. Projected mining and coal transportation work forces would be 1,348 and 57 personnel respectively.
Approximately 72 acre-feet of water would be required annually from 1987 until the end of mine life.

Onsite surface facilities, including coal and topsoil storage areas, would occupy 156 acres by 1987 (end of construction and development phase). No additional acreage would be required in future years for onsite facilities. Implementation of this AIternative would also require construction of offsite developments such as haulage and access roads, and power and telephone lines. Cumulatively, these developments would occupy 316 acres by 1987. No additional acreage would be required. Housing and infrastructure requirements directly resulting from implementation of Alternative Two would be 43 acres in 1985, 293 acres by 1990, 339 acres by 1995 , and 362 acres by the year 2000.
Implementation of this alternative would result in construction of 19.5 miles of new haulage and access roads and 20 to 25 miles of telephone and powerlines. Alternative Two is summarized in Table $2-24$. This is the Preferred Alternative because it would allow flexibility in meeting the leasing target. It also offers clearly competitive potential leases as well as tracts that would benefit existing operations. All underground tracts that have high or medium ranking are included in this Alternative.

## ALTERNATIVE THREE

Alternative Three was structured to satisfy two basic objectives: (1) to consider those tracts that have been identified for the proposed UP\&L exchange, and (2) to lease sufficient tonnages of coal to meet the Federal leasing target of 322 million tons voted by the Regional Coal Team on February 6,1980 , and approved by the Secretary of the Interior on March 28, 1980. The tracts included in this Alternative are: Meetinghouse Canyon, Cottonwood and North Horn Mountain (Table 2-22). These tracts will not be offered for competitive sale until they have been eliminated from consideration for exchange. All three tracts would be mined using underground methods. The Hollberg PRLA is also considered in this Alternative. Development of the PRLA is discussed in Alternative One.

The tracts, totaling 24,507 acres, would be offered for competitive lease and would comprise approximately 335.3 million tons of in-place Federal coal. About 134.1 million tons of the coal would actually be mined at an average annual production rate of 3.35 million tons for 40 years.

A total of 160 construction workers would be required to bring the three mines into production. Construction would commence in 1985 and would be completed by the end of 1987. Projected mining and coal transportation work forces would be 965 and 18 personnel respectively for a total of 983 through end of mine life in 2027.

Approximately 52 acre-feet of water would be required annually for the 40-year life of the mines.

Onsite surface facilities, including coal and topsoil storage areas, would occupy 75 acres by the end of 1987. No additional acreage would be required for onsite facilities. Implementation of this AIternative would also require construction of offsite facilities such as haulage and access roads, power and telephone lines. Cumulatively, these developments would occupy 150 acres by 1987. No additional acreage would be required. Housing and infrastructure requirements directly resulting from implementation of Alternative Three would be 23 acres in 1985, 200 acres by 1990, 235 acres by 1995 , and 247 acres by the year 2000.

Implementation of this alternative would result in construction of about 10.2 miles of new haulage and access roads and 11 miles of transmission lines.

Alternative Three is summarized in Table 2-25.
TABLE 2-24

TABLE 2-25
 development of the Hollberg PRLA

## ALTERNATIVES INCLUDING THE PROPOSED ACTION

## ALTERNATIVE FOUR

Alternative Four considers leasing three tracts, Gordon Creek, Meetinghouse Canyon, and Cottonwood in mid-1981 (Table 2-22). All three tracts would be mined using underground methods. The Hollberg PRLA is also considered in this Alternative. Development of the PRLA is discussed in AIternative One.
The tracts totaling 7,744 acres, would be offered for competitive lease and would comprise approximately 153.7 million tons of in-place Federal coal. About 61.5 million tons of the coal would actually be mined at an average annual production rate of approximately 1.54 million tons for 40 years.
A total of 65 construction workers would be required to bring the three mines into production. Construction would commence in 1985 and would be completed by the end of 1987. Projected mining and coal transportation work forces would be 430 and 52 personnel respectively for a total of 493 from 1985 through end of mine life in 2027.
Approximately 24 acre-feet of water would be required annually for the 40 -year life of the mines.
Onsite surface facilities, including coal and topsoil storage areas, would occupy 45 acres by the end of 1987. No additional acreage would be required for onsite facilities. Implementation of this AIternative would also require construction of offsite facilities such as haulage and access roads, and power and telephone lines. Cumulatively, these developments would occupy another 125 acres by 1987. No additional acreage would be required. Housing and infrastructure requirements directly resulting from implementation of Alternative Four would be 18 acres in 1985, 101 acres by 1990, 118 acres by 1995 , and 127 acres by the year 2000 .

Implementation of this Alternative would result in construction of less than 7.7 miles of haulage and access roads and less than 10 miles of transmission lines.

Alternative Four is summarized in Table 2-26.

## ALTERNATIVE FIVE

Alternative Five is the No Action Alternative. If implemented, this Alternative would result in no Federal coal from the 11 described tracts being offered for lease in 1981. However, the Hollberg PRLA is considered in this Alternative. Development of the PRLA is discussed in Alternative One.

Even with no additional leasing, the Wasatch Pla-teau-Emery area will continue to be an active coal
producing area. This anticipated growth and development was analyzed in the Central Utah Coal Development Environmental Statement (ES) prepared in 1979 by Geological Survey. The mid-level annual production rate of 24 million tons by 1990 was considered. Full production from 10 proposed underground mines, for which leases had been issued, added to the 1976 coal production in central Utah, plus a moderate increase in production from existing mines, was taken into account. Anticipated impacts that would result from this increase in coal production were analyzed. The ES is available for review at the BLM Utah State Office and the GS Area Office in Salt Lake City.

The annual production rate considered in the Central Utah EIS is subject to change as additional data are obtained and as local and national trends develop. However, to this point, the production rate planned from existing leases and private mines analyzed for central Utah has not been significantly altered.

Alternative Five is summarized in Table 2-27.

## COMPARATIVE ANALYSIS MATRIX

A comparative summary of major impacts for AIternatives One through Four is presented in Table 2-28. Alternative Five is the No Action Alternative, and no new coal leasing is proposed in that alternative. Therefore, there would be no comparative impacts related to Alternatives One through Four. The future environment (projected baseline) without the proposed alternatives is analyzed in Chapter Four, Alternative Five.

## REQUIRED AUTHORIZATIONS

The development of Federal coal resources is controlled by numerous laws and regulations imposed by Federal, State and local agencies and authorities. Federal laws of importance include the Federal Coal Leasing Amendments Act of 1976 (FCLAA), the Federal Lands Policy and Management Act of 1976 (FLPMA) and the Surface Mining Control and Reclamation Act of 1977 (SMCRA).

The purpose of FCLAA is to provide a more orderly procedure for the leasing and development of Federally-owned coal than was set forth in its parent document, the Mineral Leasing Act of 1920. FCLAA sets forth major requirements including strictly competitive bidding, the abolishment of preference right leasing, the concept of Logical Mining Units, Diligent Development requirements, Maxi-
TABLE 2-26
ALTERNATIVE FOUR SUMMARY

TABLE 2-27


| RESOURCE CATEGORY | ALTERNATIVE ONE | ALTERNATIVE TWO | ALTERNATIVE <br> THREE | ALTERNATIVE FOUR |
| :---: | :---: | :---: | :---: | :---: |
| Climate, Air Quality | Annual TSP concentrations in proximity to unpaved haul roads and surface mines would increase by 5 to 50 $\mathrm{ug} / \mathrm{m}^{3}$ resulting in local violations of NAAQS unless BACT is applied. | Annual TSP concentrations in proximity to unpaved haul roads associated with mines would increase by 5 to 50 ug/m ${ }^{3}$ resulting in local violations of NAAQS unless BACT is applied. | Annual TSP concentrations in proximity to unpaved haul roads associated with mines would increase by 5 to 50 $\mathrm{ug} / \mathrm{m}^{3}$ resulting in local violations of NAAQS unless BACT is applied. | Annual TSP concentrations in proximity to unpaved haul roads associated with mines would increase by 5 to 10 $\mathrm{ug} / \mathrm{m}^{3}$ resulting in local violations of NAAQS unless BACT is applied. |
| Soils | Cumulatively, 4,114 acres of surface disturbance would occur by end of mine life. 2,720 acres disturbance would result from surface mining. 3,673 acres would eventually be reclaimed. | Cumulatively, 834 acres of surface disturbance would occur by end of mine life. 472 acres would eventually be reclaimed. | Cumulatively, 472 acres of surface disturbance would occur by end of mine life. 225 acres would eventually be reclaimed. | Cumulatively, 297 acres of surface disturbance would occur by end of mine life. 170 acres would eventually be reclaimed. |
| Water Resources | Annual consumptive use of water would increase by 1,075 acre-feet in 2000 for the life of the mine and 974 acre-feet thereafter irreversibly lost to municipal use. | Annual consumptive use of water would increase by 867 acre-feet in 2000 for the life of the mine and 795 acre-feet thereafter irreversibly lost to municipal use. | Annual consumptive use of water would increase by 612 acre-feet in 2000 for the life of the mine and 560 acre-feet thereafter irreversibly lost to municipal use. | Annual consumptive use of water would increase by 312 acre-feet in 2000 for the life of the mine and 288 acre-feet thereafter irreversibly lost to municipal use. |
| Topogr aphy, Geology, Paleontology, Mineral Resources | Up to 10 feet of subsidence could occur on portions of 32,776 acres that would be mined by underground methods. Topography would be slightly altered by surface mining. With present technology about 305.6 million tons of coal would not be recovered. | Up to 10 feet of subsidence could occur on portions of 31,588 acres that would be mined by underground methods. Topography would be slightly altered by surface mining. With present technology about 279.1 million tons of coal would not be recovered. | Up to 10 feet of subsidence could occur on portions of 24,507 acres that would be mined by underground methods. With present technology about 201.2 million tons of coal would not be recovered. | Up to 10 feet of subsidence could occur on portions of 7,744 acres that would be mined by underground methods. With present technology about 92.2 million tons of coal would not be recovered. |
|  |  |  |  | (Continued) |

TABLE 2-28 (Continued)

| RESOURCE CATEGORY | ALTERNATIVE ONE | ALTERNATIVE TWO | ALTERNATIVE THREE | ALTERNATIVE FOUR |
| :---: | :---: | :---: | :---: | :---: |
| Vegetation | Vegetation <br> productivity on 441 <br> acres would be permanently lost. | Vegetation productivity on 362 acres would be permanently lost. | Vegetation productivity on 247 acres would be permanently lost. | Vegetation <br> productivity on 127 acres would be permanently lost. |
| Wildite | Possible disruption of elk migration of $f$ Wasatch Plateau. Loss of critical moose habitat. An increase in highway related deer loss. Increased poaching of game - | Possible disruption of elk migration off Wasatch Plateau. Loss of critical moose habitat. Increased poaching of game. | Possible disruption of elk migration off Wasatch Plateau. Incrased poaching of game. | Possible loss of critical moose habitat. Increased poaching of game. |
| Land Use | About 220 acres of irrigated cropland would be changed to community use. About 197 acres of irrigated cropland would be retired for lack of water. Two percent $(4,060)$ of the grazing AUMs would be lost from four allotments on the Emery tracts. | About 181 acres of irrigated cropland would be changed to community use. About 157 acres of irrigated cropland would be retired for lack of water. | About 124 acres of irrigated cropland would be changed to community use. About 109 acres of irrigated cropland would be retired for lack of water. | About 64 acres of irrigated cropland would be changed to community use. About 55 acres of irrigated cropland would be retired for lack of water. |
| Socioeconomics | Employment in Carbon and Emery Counties would be increased by 2,721 jobs over the baseline by the year 2000. Annual earnings in Carbon and Emery Counties would be increased by $\$ 88.4$ million by the year 2000. <br> Population in the region would increase | Employment in Carbon and Emery Counties would be increased by 2,465 jobs by the year 2000. This would result in an additional 6,073 people living in Carbon and Emery Counties by 2000 . Additional employment would bring in an additional $\$ 80.4$ | Employment in Carbon and Emery Counties would be increased by 1,765 jobs by 2000 . This would result in an additional 4,222 people living in Carbon and Emery Counties by 2000 . Additional employment would bring in an additional $\$ 54$ million in annual | Employment in Carbon and Emery Counties would be increased by 883 jobs by 2000. <br> This would result in an additional 1,415 residents and 730 residents to each county, respectively by 2000. Additional employment would bring in an additional 26.7 |

(Continued)

TABLE 2-28 Continued

| RESOURCE CATEGORY | ALTERNATIVE ONE | ALTERNATIVE TWO | ALTERNATIVE THREE | ALTERNATIVE FOUR |
| :---: | :---: | :---: | :---: | :---: |
| Socioeconomics (Continued) | by 7,931 persons by the year 2000 . <br> Emery and Carbon <br> Counties would experience <br> significant <br> infrastructure <br> impacts. The <br> elements most <br> af fected would be housing, education facilities, social services, and water and sewer capacities. | million in annual earnings to Carbon and Emery County by 2000. The most significant infrastructure impacts would occur in Emery County where overcrowding in the county schools would take place. Need for additional housing, social services, and water and sewer capacities would be substantially increased. | earnings to Carbon and Emery Counties by 2000. The most significant infrastructure impacts would occur in Emery County and its constituent communities. There would be additional shortages of classroom space in the schools, housing, social services, and water and sewer capacities by 2000 . | million in annual earnings to Carbon and Emery Counties. The infrastructure impacts resulting from this alternative would not be severe. |
| Transportation | An additional 3,350 vehicles per day would be on the roads in the area. Highway 10 from Price to Emery would be especially crowded with associated safety and maintenance problems. | An additional 2,890 vehicles per day would be on the roads in the area. Highway 10 from Price to Castle Dale would be especially crowded with associated safety and maintenance problems. | An additional 1,900 vehicles per day would be on the roads in the area. Highway 10 from Price to Ferron would be most heavily used. | An additional 1,200 vehicles per day would be on the roads in the area. |
| Cultural Resources | Unidentified sites could be destroyed. Increased vandalism and collecting would occur. | Unidentified sites could be destroyed. Increased vandalism and collecting would occur. | Unidentified sites could be destroyed. Increased vandalism and collecting would occur. | Unidentified sites could be destroyed. Increased vandalism and collecting would occur. |
| Special Designation Areas | Development in the Emery area would conflict with one roadless unit currently under wilderness review. | No significant impacts would occur. | No significant impacts would occur. | No significant impacts would occur. |

(Continued)

| RESOURCE CATEGORY | ALTERNATIVE ONE | ALTERNATIVE <br> TWO | ALTERNATIVE THREE | ALTERNATIVE FOUR |
| :---: | :---: | :---: | :---: | :---: |
| Visual Resources | Surface mining would dominate existing landscape and would be visible from U-10. Mining on the Tucker Canyon tract would be visible to subdivision residents and recreationists at Scofield Reservoir. | Mining activity on the Tucker Canyon tract would be visible to subdivision residents and recreationists at Scofield Reservoir. | No significant impacts would occur. | No significant impacts would occur. |
| Recreation | Local demand for recreation in the region would increase by approximately 13 percent. Some developed sites would experience overcrowding and deterioration. Some facilities in towns would be overcrowded. There would be a reduction in hunter and fisherman success. Traffic congestion on recreation roads would occur. | Local demand for recreation in the region would increase by approximately 10 percent. Some developed sites would experience overcrowding and deterioration. Some facilities in towns would be overcrowded. There would be a reduction in hunter and fisherman success. Traffic congestion on recreation roads would occur. | Local demand for recreation in the region would increase by approximately 7 percent. Some developed sites would experience overcrowding and deterioration. Some facilities in towns would be overcrowded. There would be a reduction in hunter and fisherman success. Traffic congestion on recreation roads would occur. | Local demand for recreation in the region would increase by approximately 4 percent. Some developed sites would experience overcrowding and deterioration. Some facilities in towns would be overcrowded. There would be a reduction in hunter and fisherman success. Traffic congestion on recreation roads would occur. |

mum Economic Recovery, and lease acreage restrictions.

FLPMA provides BLM with a statutory framework for land use planning on public lands and requires that BLM use the principles of multiple use and sustained yield, give priority to the protection of areas of critical environmental concern, consider present as well as future uses of public lands, and coordinate planning activities with those of Federal, State and local agencies. Title 5 of FLPMA authorizes BLM to grant required rights-of-way across public lands. Prior to issuance of such rights-ofway, an environmental assessment would be completed.

SMCRA establishes uniform minimum Federal standards for regulating surface mining and reclamation on Federal, State and private lands, and for ensuring adequate protection from environmental impacts of surface mining. This Act also sets forth provisions regarding environmental protection performance standards and designation of areas unsuitable for surface coal mining. The Act established the Office of Surface Mining (OSM) in the Interior Department to enforce the performance standards.

Each lease operator is required to submit a mining and reclamation plan that complies with OSM and GS regulations, which demonstrates that non-coal resources will be protected. This plan must be approved by the Secretary of the Interior following concurrence of GS and the land management agency and prior to beginning mining operations.

Under the mandate of several laws listed in 43 CFR 3400, Geological Survey is authorized to supervise production of coal resource in the lease areas. Included is the responsibility to identify logical mining units, enforce diligent development, maximum economic recovery and conservation of the mineral resource. On all Federal leases, coal operations are under jurisdiction of GS.

State regulations deal with such aspects as water and air pollution, land use, cultural and historic preservation, reclamation, wildlife and aquatic resources, and mine safety practices. The State responsibility for enforcement of these regulations and standards is considerable and is derived either from State legislation or through Federally authorized transfers of enforcement responsibility as provided by applicable Federal law.

Additional information concerning these laws, as well as other applicable Federal and State regulations and interagency relationships can be found in the Final Environmental Statement, Federal Coal Management Program (BLM, 1979).

Local regulations are generally imposed at the county level and involve special use permits, zoning variances, or construction permits where applicable.

## MITIGATING MEASURES

In addition to the laws and regulations which govern land management and coal leasing in general, several measures have been identified which would mitigate some anticipated impacts. The following measures would be made a stipulation to any lease issuance. Additional mitigating measures may be required as a result of further analysis and public review.

1. Leasing of those portions of the Emery North and Central tracts and the Hollberg and Utah Power and Light PRLAs, where construction or other disturbance would impair the wilderness suitability of areas under wilderness review, would not be allowed as long as the areas are under wilderness review.
2. Surface construction or underground activity that would result in subsidence would not be allowed within the Muddy Creek 100-year floodplain. However, the floodplain area would be leased for the purpose of allowing possible underground access to other areas of the Emery North tract provided this did not affect the floodplain.
3. The lessee would provide a qualified cultural resource specialist (approved by the land management agency) to intensively survey surface disturbed areas for the presence of cultural resources. All known cultural sites and those located during inventory that are of significant value would be avoided where feasible as provided for in 36 CFR, part 800, "Protection of Historical and Cultural Properties" and the Coal Programmatic Memorandum of Agreement between the President's Advisory Council on Historic Preservation, OSM, BLM, and SHPO. Impacts to all unavoidable sites would be mitigated using data recovery techniques, such as collection and/or excavation. The lessee would be responsible for mitigation. The cultural resource specialist and salvage techniques used would be subject to approval by the surface management agency.
4. The lessee would be required to evaluate the possible effects of blasting or other miningrelated activities on the Rochester-Muddy petroglyph site located adjacent to the Emery North tract. In addition, a latex print of this site would be made at the lessee's expense to monitor future vandalism. The lessee on the Emery North

## ALTERNATIVES INCLUDING THE PROPOSED ACTION

tract would be required to provide and/or maintain public access across the lease area to the site during all phases of mining and construction operation.
5. The lessee would be required to establish an approved surface subsidence monitoring system to measure the effects of the underground mining activities on the land surface topography, underground and surface hydrology, and vegetation. A satisfactory series of monitoring points shall be established on the lease area. The lessee would also be required to perform a hydrologic study to secure baseline data concerning the surface and subsurface water occurring on or flowing through the tract areas.
6. The lessee on the Rilda Canyon tract would be required to establish a water-monitoring system approved by the Forest Service to measure any effects mining operations may have on the supply and quality of the municipal water system for affected Emery County communities and other springs and flows in the area. The monitoring system would include the periodic measurement and analysis of water quantity and quality.
7. During all phases of the mining operation, travel would be restricted to rights-of-way access roads and existing public roads. Upon completion of the mining operation, new access roads of no future value would be closed when required by the appropriate Federal official.
8. It will be required that vegetation and landform alterations and structures such as roads, silos, portal facilities, water storage facilities, conveyor lines and transmission lines be located, constructed, and/or painted so as to visually blend with the natural surroundings. Vegetation removal will be permitted only when specifically approved by the surface management agency.
9. The location of any mine-related development in Retention (Class II) or Partial Retention (Class III) areas, will be subject to the approval of the surface management agency.
10. After coal mining activities have concluded, rehabilitation must be accomplished to restore the landscape to its former character to the greatest extent possible. Rehabilitation requirements may include terrain alterations to blend better with natural slopes; alteration, concealment, revegetation of cut-and-fill slopes; and removal of construction debris.
11. High voltage powerlines crossing Emery North and Meetinghouse tracts would be protected from the effects of subsidence resulting from underground mining.
12. Mining would not be allowed in the zone of subsidence beneath the communication facility on the Emery North tract.
13. It will be required that all support facilities, equipment, and similar developments be removed from the lease area within 2 years after the final termination of use of such facilities. All disturbed areas and those areas occupied by such facilities are to be rehabilitated in accordance with a reclamation plan approved by OSM.
14. Mining must be done in such a manner that rock escarpments and cliffs would be protected. Tracts involved include those on the Wasatch Plateau and the Emery tracts.
15. Prior to any ground disturbing actions on public lands, the areas are to be surveyed for the presence of threatened or endangered plant species. If such plants are encountered, it will be required that mining operations be conducted to avoid jeopardizing the plants and their habitat, or other appropriate measures will be taken to preserve the plant population.
16. Only underground mining would be permitted on the Emery South tract. No surface occupancy or development would be allowed on those areas inhabited by the candidate endangered plant species Townsendia aprica.
17. Where possible, roads would be located at least 0.25 mile from perennial streams to avoid pollution from accidental spills and fugitive dust.
18. Surface occupancy or disturbance of the drainage bottoms, plus a suitable buffer area, would be prohibited on the Tucker Canyon site.
19. The lessee would be required to replace lost surface water sources because of subsidence or make restitution to users as required by the State of Utah (Title 73323), or by the Office of Surface Mining Reclamation and Enforcement Regulations ( 30 CFR Chapter VII, 779.17 and 816.54), whichever is applicable.
20. The lessees would be required to maintain dust suppression standards as required by local, State, and Federal agencies.
21. The lessee would be required to maintain a mine development and operation of a size that is compatible with the physical environment. The limited area available for mine facilities at the coal outcrop, steep topography, adverse winter weather, and physical limitations on the size and design of the access road, are factors which would determine the ultimate mine size (all Forest Service tracts).
22. If removal of timber is required for clearing of construction sites, etc., such timber would be

## ALTERNATIVES INCLUDING THE PROPOSED ACTION

removed in accordance with Federal agency regulations (all Forest Service tracts).
23. Any current land surface improvements on the tract would need to be protected and/or maintained by the lessee. The continuance of current land uses on the tract would be guaranteed for post mining uses by the lessee (all Forest Service tracts).
24. Floodplains would be determined prior to approval of mine plan. The occupation of channels and floodplains would be allowed only if no suitable alternative is available (all Forest Service tracts).
25. Mining would be done in such a manner that escarpments would be protected (all Forest Service tracts).
26. The watershed treatment furrows and trenches on North Horn would be repaired by lessee if effectiveness is disturbed or damaged by effects of mining.
27. Sage grouse habitats and elk winter range on North Horn Mountain would be maintained by assuring responsibility by the lessee for making available future water sources equal to those presently existing.
28. A cattle driveway would be maintained in Rock Canyon.
29. The integrity of the elk migration route or routes from North Horn would be maintained.
30. The lessee would be required to use Best Available Control Technology (BACT) to minimize fugitive particulate emissions from haul and access roads and other mining related activities.
31. The lessee would provide a qualified paleontologist to conduct a literature search and field examination on all areas where surface disturbance would take place. Operators would immediately bring to the attention of the Authorized Officer any paleontological resources that might be altered or destroyed by their operations and would leave such discovery intact until told to proceed by the Authorized Officer. Impacts to known paleontological sites and those located during inventory or excavation would be mitigated using data recovery techniques, such as collection or excavation.

## SURFACE MINE RECLAMATION

Mining plans have not been prepared for proposed surface mining operations analyzed in this statement; therefore, it is assumed that a typical
surface mining sequence would occur. Figure 2-18 shows a scenario for a potential surface mining operation. Since the surface mines would disturb and reclaim areas in stages, only part of the potential mining area would be disturbed annually. Table 229 and Figure 2-19 illustrate the assumed reclamation schedule and maximum area of unreclaimed land at any one period of time. It is assumed that areas disturbed for underground mines and facilities would remain unreclaimed for the life of the mine.

As shown in Figure 2-20, vegetation would be established on initially disturbed acreage after 3 years. This does not imply that a total return to original vegetation would occur in that time period, but vegetation cover sufficient to retard wind and water erosion of soil would be established. Depending upon the original vegetation type in the area, restoration to original conditions would require a much longer period of time ( 15 to 20 years or more).

A detailed reclamation plan based on permanent program performance standards for surface mining ( 30 CFR Chapter VII, Subchapter K) must be submitted and approved by OSM prior to mining activity.

## UTAH POWER \& LIGHT EXCHANGE

## Introduction

UP\&L acquired rights to prospecting permits on 18,325.2 acres of Federal land on the Kaiparowits Plateau in 1971. These lands adjoin over 5,000 acres of State of Utah coal leases held by UP\&L.

In 1976, UP\&L initiated litigation demanding the Department of the Interior process the UP\&L PRLAs and issue coal leases. UP\&L agreed to dismiss its suit against the Department, however, when Congress authorized a coal lands exchange by amending the Mineral Leasing Act of 1920. An agreement was drawn up between UP\&L and Federal agencies on how to proceed with the exchange. If the exchange does not develop, UP\&L could reinstate its suit demanding that the PRLAs be processed. The Department would join UP\&L in asking the Court for prompt hearing of any new litigation.


FIGURE 2-18
TIME PHASED SCENARIO OF A POTENTIAL STRIP MINE

RECLAMATION SCHEDULE
$\left.\begin{array}{lcccc}\hline & \begin{array}{c}\text { Annual } \\ \text { Disturbance }\end{array} & \begin{array}{c}\text { Unreclaimed } \\ \text { Mined } \\ \text { Lands }\end{array} & \begin{array}{c}\text { Onsite and } \\ \text { Offsite } \\ \text { (Acres }\end{array} & \begin{array}{c}\text { Maximun } \\ \text { Facilitiesc }\end{array}\end{array} \begin{array}{c}\text { Unreclaimed } \\ \text { Landsd }\end{array}\right]$
abeginning in 1987 and continuing for the life of the mine
bAssumes 3-year period from initial disturbance to establishment of vegetation cover
Continues through life of mine
dMaximum area that would be unreclaimed at any one time



## Description of the Alternatives

## ALTERNATIVE ONE

Alternative One considers approval of the proposed exchange. The Department of the Interior, in accordance with P.L. 95-554 (92 Stat. 2073) would issue to UP\&L a coal lease or group of leases in the Wasatch Plateau area in exchange for relinquishment of all or a portion of the PRLAs held by UP\&L on the Kaiparowits Plateau. This exchange would be based on comparative coal values in the two areas. The leases identified for selection by UP\&L are the Meetinghouse Canyon, Cottonwood, and North Horn Mountain tracts. Leasing of these three tracts is analyzed as Alternative Three of the coal leasing program previously discussed in this Chapter. The tracts will not be available for competitive lease consideration until a final decision on the exchange is made.
Details concerning the exchange are contained in the agreement signed by the Department, FS, and UP\&L. A copy of the agreement and recent correspondence with UP\&L regarding the exchange are contained in Appendix 2.
Several details on the exchange have not yet been completed and negotiations are still in process between the Department of the Interior and UP\&L. BLM has received the GS final evaluation of the lands involved in the proposed exchange, and is currently reviewing that evaluation. It has not yet been determined how this evaluation will affect the proposed exchange. Therefore, it is not known exactly if one, two, three or none of the tracts would be involved and if the PRLAs would be exchanged.

For this alternative, it is assumed that all the PRLAs would be exchanged for the three tracts and that no development would occur on the PRLAs. Developments on the Meetinghouse, Cottonwood, and North Horn Mountain tracts are also discussed in Alternative Three of the coal leasing program.

There are three possible scenarios for implementation of the exchange as authorized in 43 CFR 3435.1. They are:

1. Outright exchange of the PRLAs for coal leases on the Wasatch Plateau.
2. The issuance of coal lease bidding rights of equal value to the PRLAs. These bidding rights would be used by UP\&L as script for bonus bids in Federal competitive coal lease sales.
3. A combination of an exchange and coal lease bidding rights.

A decision regarding the exchange must be made by December 1, 1981, per the agreement.

## ALTERNATIVE TWO

Alternative Two is the No Action alternative. No exchange would be made and the PRLAs would be processed in accordance with regulations detailed in 43 CFR 3430. Prior to lease issuance, UP\&L would be required to demonstrate commercial quantities of coal on the PRLAs. UP\&L would also need to obtain the necessary permits for mine plan approval and be in compliance with all NEPA requirements. Meetinghouse Canyon, Cottonwood, and North Horn Mountain tracts would be available for competitive leasing.

A plan for development of the PRLAs has been prepared and submitted by UP\&L (UP\&L, 1979). According to this plan, and assuming the Department issues the preference right lease, four separate mines would be developed at about 2-year intervals. Construction would begin in 1985. Full production would be reached by 1997 and would continue through 2027. Figure 2-18 depicts anticipated new development including mine sites, main access roads, powerline, central shops, office, and overland conveyor location. At full production, 18 million tons of coal would be mined annually. Mines No. 2, 3 , and 4 would produce 5 million tons each per year and mine number I would produce 3 million tons annually.

The coal seams would be reached by rock slopes varying from 2,500 to 4,100 feet in length. The mines would be developed by continuous miners with primary production by longwall panels. Room and pillar extraction methods would be required in some areas. A total of 18 longwall units and 36 continuous miners would be installed on a phased basis to reach desired production. Multiple seam underground mining would be accomplished by sequential seam development and extraction progressing downward from the top seam.

Each of the four mines would have a coal sizing plant at each portal to crush, screen, sample, and deliver coal to the overland belt system. Coal haulage between the mines to the rail loadout and storage facility would be by 60 and 72 -inch overland conveyor supported by cable suspension between concrete and steel frames. Most of the coal would then be transported by railroad to the Intermountain Power Project near Lynndyl, Utah, with the remainder used in other UP\&L powerplants or marketed elsewhere.

A construction work force of 150 and mine work force of 2,900 (including coal transportation person-
nel) would be employed. Access to the central office area would be from Escalante, Utah, some 10 miles to the north.

Onsite surface distrubance resulting from construction of portals, administrative and shop facilities, wash houses, parking areas, crushing bins, loadouts, coal storage areas, overland conveyor, etc., would be approximately 270 acres. Offsite surface disturbance resulting from road and transmission line construction would total about 330 acres.

Housing and infrastructure requirements would be 351 acres in Escalante, Tropic, Henrieville, and Cannonville, Utah.

Following completion of mining, 270 acres would be reclaimed. The roads and transmission lines would continue to be used by other companies in the area.

Water would be required underground primarily for dust supression and equipment cooling. Two possible sources of water were identified: (1) groundwater inflow into the mine from the coal zone strata, and (2) drilling of the Navajo Sandstone aquifer below the coal beds. Annual water needs for mining are estimated at 276 acre-feet ( 5 gallons of water per ton of coal mined). The amount of potable water required has not been determined.

Development of the PRLAs is summarized in Table 2-30.

DEVELOPMENT SUMMARY: UP\&L PRLAS ON KAIPAROWITS PLATEAU


## CHAPTER 3

## DESCRIPTION OF THE ENVIRONMENT

## INTRODUCTION

This chapter describes the existing environment in the Uinta-Southwestern Utah Coal Region that would be impacted by implementation of any of the five alternatives described for coal leasing or the two alternatives described for the proposed Utah Power and Light exchange. Data are commensurate with the significance of the anticipated impact with less important material summarized, consolidated, or simply referenced.

## WASATCH PLATEAU

## CLIMATE, AIR QUALITY

## Climate

The climate of the region is varied and strongly influenced by topographic features. The area is generally semiarid, characterized by low relative humidity, abundant sunshine, low to moderate precipitation, warm summers, and cold winters. Seasonal and daily variations in temperature can be extreme. Higher elevations are cool and moderately wet, while the lower elevations east of the Wasatch Plateau are drier and either mid-latitude steppe or desert.

The Sierra Nevada and Cascade Ranges, and finally the Wasatch Plateau deplete Pacific Ocean moisture before reaching the lower elevation areas east of the Wasatch Plateau. Annual average precipitation isopleths are presented in Figure 3-1. On the Wasatch Plateau in the area of the proposed tracts, average annual precipitation is 25.0 inches. This precipitation depletes the moisture of the wintertime flow from the west and its general downslope motion across Castle Valley, site of the Emery North, Central and South tracts, and makes winter drier there with about 3 inches of winter precipitation (BLM, EMRIA Report No. 16, 1979).

Precipitation east of the plateau is greatest in summer when moist tropical air masses from the Sea of Cortez or the Gulf of Mexico occasionally move into the region, resulting in thunderstorm activity. Sunshine and warmer temperatures (although only around 70 degrees F ), increase evaporation
and transpiration so that most of the summer rain evaporates quickly.

Average annual precipitation around the Emery tracts is less than 10 inches, with extensive areas receiving 6 to 8 inches (BLM, EMRIA Report No. 16, 1979). The town of Emery at 6,220 feet elevation receives 7.55 inches annually on the average. In the area of Castle Valley, the average annual temperature is 46 degrees F. July is the warmest month (average 70 degrees F) and January the coldest (average 20 degrees F). Wide daily temperature ranges (diurnal variation) are caused by relatively strong daytime warming and rapid nighttime cooling. In general, on mountain slopes where air drainage is good there is a smaller diurnal range than in the valley where air is more stagnant. Seasonal variation in mean daily (diurnal) range is greater for valleys than for the mountain slope areas.

At Emery, the frost-free or growing season is a little more than 4 months long (Richardson, 1975). Summer frosts with kill potential are not infrequent. The winter winds may also redistribute the snow leaving many areas bare, which would permit winterkill of new vegetation.

## Air Quality

Two sets of ambient air quality standards apply to the region, the National Ambient Air Quality Standard (NAAQS) and the Prevention of Significant Deterioration (PSD) standards.

NAAQS established for protection of human health and public welfare are shown in Table 3-1. Also shown are air pollutants measured during 1978 and 1979 in or near the region. Particulate concentrations exceeded the NAAQS at Price, but much of the particulate concentration in the region consists of suspended soil particles. Sulfur dioxide, nitrogen dioxide, and ozone concentrations were well within the NAAQS. Lead, hydrocarbons, and carbon monoxide have not been monitored in the region, but because these pollutants are emitted primarily from automobiles, concentrations are expected to be low and within the NAAQS.

The sulfur dioxide and nitrogen dioxide concentrations near Castle Dale will increase with the addition of the Hunter Unit 2 coal-fired powerplant and with the addition of units 3 and 4, but concentrations would be within the NAAQS.


COMPARISON OF MEASURED POLLUTANT CONCENTRATIONS AND THE NAAQS

| Pollutant | Location |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | Castle Dale | Price sured | Huntington ograms per | $\begin{aligned} & \text { 1t Wa } \\ & \text { c Met } \end{aligned}$ | NAAQS |
| Total Suspended |  |  |  |  |  |
| Particulates |  |  |  |  |  |
| Annual | a43 | $\mathrm{b}_{62}$ | C33 |  | 60 |
| Maximum 24 Hour | a 121 | b202 | C96 |  | 150 |
| Sulfur Dioxide |  |  |  |  |  |
| Annual | d0-13 | d0-13 | do-13 |  | 80 |
| Maximum 24 Hour | $\mathrm{d}_{53}$ | d53 | $\mathrm{d}_{27}$ |  | 365 |
| Maximum 3 Hour | d208 | d160 | d80 |  | 1,300 |
| Nitrogen Dioxide |  |  |  |  |  |
| Annual | d8 |  | $\mathrm{e}_{11}$ |  | 100 |
| Ozone |  |  |  |  |  |
| 1 Hour |  |  |  | ${ }^{\text {f }} 134$ | 240 |
| Carbon Monoxide ${ }^{\text {g }}$ |  |  |  |  |  |
| 8 Hour |  |  |  |  | 10,000 |
| 1 Hour |  |  |  |  | 40,000 |
| Hydrocarbons ${ }^{\text {9 }}$ |  |  |  |  |  |
| 3 Hour |  |  |  |  | 160 |
| Leadg |  |  |  |  |  |
| Annual |  |  |  |  | 1.5 |
| aoctober 1978 - September 1979 |  |  |  |  |  |
| bAugust 1977 - July 1978 |  |  |  |  |  |
| CDecember 1977 - November 1978 |  |  |  |  |  |
| dJanuary 1978 - December 1978 |  |  |  |  |  |
| eoctober 1977 - September 1978 |  |  |  |  |  |
| f1979 |  |  |  |  |  |
| GHas not been measured near the study region |  |  |  |  |  |
| Source TSP, $\mathrm{SO}_{2}$ Ozone dat | d $\mathrm{NO}_{2}$ data - <br> - Aerovironm | $\begin{aligned} & \text { h Burea } \\ & 1977 \end{aligned}$ | Quality |  |  |

PSD standards were established by the Environmental Protection Agency (EPA) to limit degradation of air quality in areas cleaner than the NAAQS and provide a limitation on the allowable increase in sulfur dioxide and total suspended particulates (TSP) above the existing baseline level. The majority of the region and nearby areas are designated as Class II areas under PSD, which allows moderate, well controlled growth. The Capitol Reef National Park is designated as Class I and is located 25 miles to the south of the proposed Emery surface mine tracts. Class I areas have more stringent limits on increased concentrations of sulfur dioxide and TSP, and are also given protection from visibility degradation. Regulations for visibility protection were promulgated by EPA in November 1980.
The BLM, in coordination with the National Oceanic and Atmospheric Administration (NOAA) and EPA, has been monitoring visibility by photographic and telephotometric methods at Cedar Mountain 30 miles southeast of Price beginning in November 1976. Cramer et al., (1978) summarized baseline visibility data collected in the region including the Cedar Mountain data. The highest measurements cited in the report were measured at Cedar Mountain and indicated the average visual range was 96 miles with a standard deviation of 14 miles. This implies that the probability of exceeding a visual range of 125 miles was only 2 percent.
Additional measurements of visual range have been made by the National Park Service in coordination with the EPA Environmental Monitoring Systems Laboratory beginning in the summer of 1978 at Capitol Reef, Canyonlands, and Bryce Canyon National Parks using multiwavelength telephotometry. Geometric means of the visual range measurements made during the summer, fall, and winter of 1978 and spring of 1979 were 127, 124 and 116 miles at Capitol Reef, Canyonlands, and Bryce Canyon respectively (Malm et al., 1980).

## SOILS

## Wasatch Plateau Coal Field

Soils data for the Wasatch Plateau were taken from a general soils map of Utah. The information is general in nature and cannot be used for detailed interpretive purposes.

Soils of the Wasatch Plateau represent three soil groups and six soil associations as shown in Table $3-2$. Soils are shallow (less than 20 inches) to deep (greater than 40 inches) and range in color from brown to grayish brown. Textures range from loam
to silt loam in the surface layers. Subsoils are primarily loams with a high rock fragment content.

Permeability is slow to rapid. Runoff is medium to slow and sediment production is moderately low. Small inclusions (less than 5 percent) of Rockland and Badland can be found on the Cottonwood Canyon and Meetinghouse Canyon tracts. These areas are dominated by very shallow soils over bedrock.

Soil condition is not a limiting factor for reclamation potential on the Wasatch Plateau. Soils data indicate sufficient topsoil volumes are present for revegetation except on some steep slopes, rocky areas, and escarpments. High salt content of some soils in the area would limit reclamation potential without special treatment.

## Emery Coal Field

Soils within the Emery coal field are formed from colluvium and residuum derived from sandstone and shale. Most soils are well drained, calcareous, loamy or coarse loamy in texture, and range from shallow to deep. The dominant landscapes where these soils occur are mesas, benches, steep slopes, and alluvial fans. Finer textured soils occur on floodplains or valley sideslopes where the parent material is residuum weathered from shale. On some sites soils have developed from marine shale and are high in soluble salts; these soils support only salt-tolerant vegetation.

The area is mainly comprised of three closely related soils, Chipeta, Persayo and Castle Valley and by miscellaneous land types. These three soils are shallow, calcareous, and well drained, with the only difference being parent material.

The miscellaneous land types include mixed Alluvial, Rockland Shaley Colluvial, and Badland. Little soil exists in these areas and most are moderately to severely eroded. Included are areas having excessive slopes ( 50 to 80 percent) where 50 to 70 percent of the surface is covered by stone. Over 97 percent of the Emery South tract is comprised of Rockland and Shaley Colluvial.

The erosion hazard potential is high on the majority of soils which comprise the coal field (Table 3-2).

Reclamation analysis studies conducted within a portion of the Emery Central tract and in an area adjacent to the Emery South tract (BLM, EMRIA Report No. 16, 1979) indicate that the primary soil constraints to revegetation on parts of these sites are inadequate topsoil volumes, poor topsoil quality, and toxic and nutrient-deficient overburden.
TABLE 3-2

(ContInued)

TABLE 3-2 (Concluded)


Overburden samples were analyzed both physically and chemically for suitability as a plant growth medium. Several potentially limiting characteristics were identified in some ( 40 percent) of the samples including nitrogen, potassium, and phosphorous deficiencies, high sodium concentrations, excessive boron and selenium levels, high arsenic and nickel levels, and high pH and salinity levels. The top 40 to 60 feet of deeply weathered and leached overburden can generally be used, with supplemental fertilization, as a topsoil amendment.

## WATER RESOURCES

The Emery and Wasatch Plateau coal fields are in the Upper Colorado River Basin in Utah. The principal subbasins are the Price River and San Rafael River, tributaries to the Green River, and the Dirty Devil River which flows into the Colorado. These river basins are shown in Figure 3-2. The geology and topography is such that the surface water divides do not always coincide with the ground water divides. The surface drainage patterns are to the east-southeast, whereas the geologic formations dip 5 to 6 degrees to the northwest (Doelling, 1972) and ground water generally flows in the same direction.

## Surface Water

Major perennial streams are the Price River, San Rafael River, Huntington, Cottonwood, Ferron, and Muddy Creeks. Muddy Creek is the only stream that crosses a tract (Emery North). The Muddy Creek 100-year peak flood flow is 4,590 cubic feet per second which is 12 feet higher in the channel than medium flow (Lines, 1980). The floodplain extends for 1.5 miles across the tract. Beaver and Jump Creeks originate on the Gordon Creek tract and drainage from all the tracts eventually enters one of the major perennial streams. No alluvial valley floors have been located in the vicinity of the tracts.

Streamflow data are available for numerous points in or near the study area (Table 3-3). Records show that the minimum flow of many of the streams is zero (GS, 1977). Even the major streams (Price, San Rafael, and Muddy) have been dry in their lower reaches sometime during the period of record.

The Cottonwood tract has one intermittent lake, Snow Lake, and two inventoried springs (Kelly, FS, 1980). The other seven tracts along the Wasatch Plateau have an undetermined number of springs
and seeps that have not been inventoried or enumerated. The tracts in the Emery coal field are essentially dry of springs and seeps. There are natural depressions such as tanks in the ephemeral drainages that collect rain water and hold it until evaporation takes place.

## Water Quality

As required by Section 303 of the Federal Water Pollution Control Act Amendments of 1972, P.L. 92500, the States of the Colorado River Basin have adopted salinity standards for locations on the Colorado River. The adopted standard at Imperial Dam near the Mexico-U.S. border in southern California is 879 milligrams per liter ( $\mathrm{mg} / \mathrm{L}$ ). The Colorado River Water Quality Office of Water and Power Resources Service (WPRS) estimates that the cumulative effects of all projects that have been approved to date or for which final environmental impact statements have been completed will increase the flow-weighted average dissolved solids concentration at Imperial Dam to about $1,046 \mathrm{mg} / \mathrm{L}$ during the timeframes addressed in this analysis. This is $167 \mathrm{mg} / \mathrm{L}$ or 29 percent above the standard adopted by the States (BLM, 1980).

The water quality of principal streams changes markedly between the headwaters and the mouth. The streams show a gradual increase in concentration of dissolved minerals as they flow down the canyons. As the streams leave the mountains and proceed into the valley the total dissolved solids (TDS) concentration picks up ten-fold because the stream crosses the Mancos Shale Formation which is high in salts. The streams go from a fresh water to saline situation. A comparison of TDS between mine effluent and streams is shown in Table 3-4.

In general, the concentration of dissolved solids in surface water ranges from about 200 to $500 \mathrm{mg} /$ L in headwater areas to about 1,000 to $6,000 \mathrm{mg} / \mathrm{L}$ in the lower reaches of most streams (GS, 1978). Table 3-5 shows water quality data for principal streams in the area. The concentration of dissolved solids in streams is usually inversely proportional to flow. Thus, the chemical quality of water is usually best during high flow and worst during low flow. Streams within the area of concern contain suspended sediment concentrations ranging from 2 $\mathrm{mg} / \mathrm{L}$ to $18,500 \mathrm{mg} / \mathrm{L}$, but occasionally have exceeded $200,000 \mathrm{mg} / \mathrm{L}(\mathrm{GS}, 1976)$.

$\begin{array}{llllll}0 & 10 & 20 & 30 & 40 & 50 \\ & 1 & 1 & & \end{array}$
FIGURE 3-2
MAJOR DRAINAGES FOUR-COUNTY IMPACT AREA

TABLE 3-3
STREAMFLOW DATA

| Station number | Station name | Period of record | $\begin{gathered} \text { Drainage } \\ \text { area } \\ \text { (sq mi) } \end{gathered}$ | Discharge |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | $(\mathrm{cfs})^{\mathrm{Av}}$ | $\begin{aligned} & \text { rage } \\ & \begin{array}{l} \text { (acre-ft } \\ \text { per year) } \end{array} \end{aligned}$ | Minimum (cfs) | Maximum (cfs) |
| Colorado River basin |  |  |  |  |  |  |  |
| 3085 | Minnie Maud Creek near Myton, UT | 1950-55 | 30 | 5.05 | 3,660 | 0 | 1,370 |
|  |  | 1957-76 |  |  |  |  |  |
| 3100 | Gooseberry Creek near Scofield, UT | 1940-76 | 16.4 | 18.4 | 13,330 | 0 | 414 |
| 3105 | Fish Creek above Reservoir near Scofield, UT | 1967-76 | 65 | 47.4 | 34,320 | 0.6 | 1,160 |
| 3126 | White River below Tabbyune Creek near Soldier Summit, UT | 1967-76 | 75 | 29.8 | 21,590 | 1.6 | 458 |
| 3127 | Beaver Creek near Soldier Summit, UT | 1960-76 | 26 | 4.24 | 3,070 | 1.2 | 135 |
| 3128 | Wilbw Creek near Castle Gate, UT | 1962-76 | 62 | 7.60 | 5,510 | 0 | 836 |
| $31425$ | Price River below Miller Creek near Wellington, UT | 1972-76 | 890 | -- | -- | 4.8 | 2,880 |
| 31428 | Desert Seep Wash near Wellington, UT | 1971-76 | 191 | -- | - | 0.5 | 1,840 |
| $3145$ | Price River at Woodside, UT | 1945-76 | 1,500 | 101 | 73,170 | 0 | 8,500 |
| 3150 | Green River at Green River, UT | 1894-99 | 44,850 | 6,352 | 4,602,000 | 255 | 68,100 |
|  |  | 1904-76 |  |  |  |  |  |
| 3180 | Huntington Creek near Huntington, UT | 1910-17 | 188 | 96.7 | 70,060 | 2 | 2,500 |
|  |  | 1929-29 |  |  |  |  |  |
|  |  | 1930-70 |  |  |  |  |  |
| 3245 | Cottonwood Creek near Orangeville, UT | 1909-20 | 205 | 96.8 | 70,130 | 1.2 | 7,220 |
|  |  | 1921-27 |  |  |  |  |  |
|  |  | 1932-70 |  |  |  |  |  |
|  |  | 1975-76 |  |  |  |  |  |
| 3265 | Ferron Creek near Ferron, UT | 1911-23 | 138 | 66.8 | 48,400 | 1 | 4,180 |
|  |  | 1947-76 |  |  |  |  |  |
| 32755 | Ferron Creek below Paradise Ranch near Clawson, UT | 1975-76 | 221 | - | -- | 0.8 | 137 |
| 3280 | San Rafael River near Castle Dale, UT | 1947-64 | 930 | 110 | 79,700 | 1.3 | 4,510 |
|  |  | 1972-76 |  |  |  |  |  |
| 3281 | San Rafael River at S. R. Bridge Campground near Castle Dale, UT | 1975-76 | 1,284 | - | -- | 5.0 | 257 |
| 3285 | San Rafael River near Green River, UT | 1909-18 | 1,670 | 152 | 110,100 | 0 | 12,000 |
|  |  | 1945-76 |  |  |  |  |  |
| 32905 | Seven Mile Creek near Fish Lake, UT | 1964-76 | 25 | 14.9 | 10,800 | 2.0 | 215 |
| 3305 | Muddy Creek near Emery, UT | 1910-13 | 105 | 37.5 | 27,200 | 0 | 3,340 |
|  |  | 1949-76 |  |  |  |  |  |
| 3321 | Muddy Creek below Hwy 1-70 near Emery, UT | 1973-76 | 418 | 15.6 | 11,300 | 0.05 | 2,070 |
| 3327 | Muddy Creek at Delta Mine near |  |  |  |  |  |  |
|  | Hanksville, UT | 1975-76 | 841 | -- | -- | 0 | 1,860 |
| 3328 | Muddy Creek at Mouth, near Hanksville, UT | 1975-76 | 1,552 | -- | -- | 0 | 8,320 |
| Sevier River basin |  |  |  |  |  |  |  |
| 20503 | Salina Creek near Emery, UT | 1963-76 | 53 | 17.2 | 12,460 | 1.7 | 519 |
| 2060 | Salina Creek near Salina, UT | 1915-16 | 290 | 21.1 | 15,290 | 0 | 1,800 |
|  |  | 1919-19 |  |  |  |  |  |
|  |  | 1943-55 |  |  |  |  |  |
|  |  | 1960-76 |  |  |  |  |  |

(GS, 1979)

COMPARISON OF DISSOLVED SOLIDS CONCENTRATIONS

TABLE 3-5


## DESCRIPTION OF THE ENVIRONMENT

## Trace Elements

In-stream concentrations of trace elements and heavy metals on the Wasatch Plateau are usually within the maximum limits set by Utah Water Quality Standards. However, in the lower reaches of principal streams concentration of certain elements commonly exceeds recommended limits, see Tables 3-6 and 3-7.

The 208 water quality program being conducted by the Southeastern Utah Association of Governments shows that water from area coal mines contains greater concentrations of arsenic, iron, manganese, and selenium than have been detected in streams. However, the Forest Service (FS) in their monitoring of Grimes Wash, which is the discharge point for the Wilberg Mine, shows that although arsenic, hexivalent chromium, and selenium are occasionally present at the lower limits of detection, the majority of the samples analyzed have shown no detectable concentrations. Iron concentrations are occasionally in excess of State drinking water standards (Rector, 1976).

## Ground Water

Geology is the principal factor controlling the occurrence and availability of ground water. Unconsolidated deposits of Quaternary age are the most permeable water-bearing formations in parts of the region; sandstone strata of Jurassic, Cretaceous, and Tertiary age contain the most extensive bedrock aquifers (Price and Arnow, 1974). The geologic formations in the region and their water-bearing properties are shown in Figure 3-3 (GS, 1979).

Two significant aquifer types are found within the coal tract areas. The first is a shallow or perched aquifer which is formed by water being impeded from deeper infiltration by one or more confining layers of material having relatively low permeability. The second aquifer of significance is formed by the Ferron Sandstone member of the Mancos Shale Formation. The Ferron Sandstone aquifer (Figure 33) underlays the Wasatch Plateau tracts at depths greater than 500 feet but in Castle Valley around the Emery coal field it is a surface outcrop where some coal mining occurs.

Information on springs within the tract areas is limited; however, Geological Survey (GS) and Utah Power \& Light (UP\&L) personnel did a water reconnaissance survey of East Mountain Springs in 1979 (UP\&L, 1980). This reconnaissance located 102 springs sites which are around and on the Meetinghouse Canyon and Cottonwood tracts.

Depths to ground water range from less than 50 feet to more than 1,000 feet (Price and Waddell, 1973). Groundwater levels are generally less than 50 feet beneath the land surface along alluvial plains of the larger perennial streams (Green, Price, and San Rafael Rivers) and 500 to more than 1,000 feet beneath the land surface on higher plateaus (Price and Waddell, 1973). Local perched ground-water bodies are only a few feet to a few tens of feet below land surface in much of the region. Generally, however, the perched water bodies probably would not sustain large perennial withdrawals from wells.

The chemical quality of ground water ranges widely because of great variations in geology, physiography, and climate. Generally, the best quality is in or near recharge areas or areas with sufficient flow to flush out the poorer quality water. Ground water generally contains less than $500 \mathrm{mg} / \mathrm{L}$ of dissolved solids throughout the Wasatch Plateau, 500 to $1,000 \mathrm{mg} / \mathrm{L}$ along the fringes of the Plateau and in the Book Cliffs, and 1,000 to $3,000 \mathrm{mg} / \mathrm{L}$ in the Emery coal field (Price and Waddell, 1973).

## Water Rights

The State Engineer is responsible for the administration of all water rights within the State and for determinirig whether or not proposed water right applications can be approved in light of existing State statutes and laws. The coal fields lay within Water Right Areas 91, the Price River drainage and 93, Emery County. In essence, there are no unappropriated water rights in areas 91 and 93 . Therefore, water would have to be purchased or leased for coal mining operations.

## Consumptive Uses of Water

Estimates of the present use of water in the study area are as follows: irrigation, 80 to 90 percent; municipal and industrial, 10 to 15 percent; managed wetlands, 0 to 5 percent.

The quantity of water applied annually to croplands averages 3.6 acre-feet per acre, and consumptive use on croplands averages 1.6 acre-feet per acre according to reports of the Utah Division of Water Resources $(1975,1976)$.
Large amounts of surface water are diverted annually for irrigation, about 90,000 acre-feet in the Price River Basin, 150,000 acre-feet in the San Rafael Basin, and 25,000 acre-feet in Muddy Creek Basin. Coal-fired electric powerplants (in operation or under construction) will use about 62,000 acre-

TRACE ELEMENT CONCENTRATION IN PRICE RIVER NEAR WOODSIDE

|  |  |  | (mg/L) | (mg/L) Highest <br> Recommended <br> Limits |
| :--- | :---: | :---: | :---: | :---: |
| Element | Times <br> Sampled | Exceeded <br> Limits | Highest <br> Reading | (EPA, 1973) |
| Cadmium | 11 | 1 | 0.113 | 0.03 |
| Copper | 7 | 1 | 0.035 | 0.033 |
| Lead | 9 | 2 | 0.038 | 0.03 |
| Mercury | 6 | 1 | 0.60 | 0.05 |
| Nickel | 6 | 4 | 0.075 | 0.01 |
| Silver | 6 | 1 | 0.004 | 0.001 |
| Zinc | 7 | 4 | 0.159 | 0.005 |

TABLE 3-7
TRACE ELEMENT CONCENTRATIONS IN THE GREEN RIVER AT GREEN RIVER, UTAH, 1976

|  | Concentrations $(\mathrm{mg} / \mathrm{L})$ |  |
| :--- | :---: | :---: |
| Elements | Total | Dissolved |
| Arsenic | $0.002-0.015$ | $0-0.033$ |
| Cadmium | $0-0.010$ | $0-0$ |
| Chromium | $0-0.096$ | $0-0.010$ |
| Cobalt | $0.050-0.050$ | $0-0$ |
| Copper | $0.010-0.110$ | $0.001-0.006$ |
| Iron | $0.590-32.000$ | $0-0.060$ |
| Lead | $0.100-0.200$ | $0-0.005$ |
| Manganese | $0.030-1.000$ | $0-0.020$ |
| Mercury | $0-0.0001$ | $0-0.0001$ |
| Selenium | $0.001-0.003$ | $0.001-0.002$ |
| Zinc | $0-0.150$ | $0-0.080$ |

Source: Unpublished data, Southeastern Utah Association of Governments

Cretaceous sedimentary rocks, upper coal-bearing sequence-Moderate permeability in sandstone and conglomerate, particularly along bedding planes, high permeability where fractured. Potential well yields generally 5 to $50 \mathrm{gal} / \mathrm{min}$ in sandstones and fractured conglomerates
$\square$
Tertiary sedimentary and volcanic rocksPermeability generally low to moderate in sandstone but locally high where fractured; low to moderate in rubble and cinders (openings contain finegrained sediments in places) locally very high in limestone solution channels and fractures. Potential well yields generally 5 to $50 \mathrm{gal} / \mathrm{min}$, locally more than $100 \mathrm{gal} / \mathrm{min}$; limestone solution channels and fractures may yield more than $500 \mathrm{gal} / \mathrm{min}$ locally
$\square$
Quaternary sediments-Low to high permeability. Generally yield 10 to 500 $\mathrm{gal} / \mathrm{min}$; locally more than $500 \mathrm{gal} / \mathrm{min}$ to wells and springs in valley fill


Cretaceous sedimentary rocks, lower coalbearing sequence-Permeability in upper sandstones moderate to high, in lower sandstones low to moderate;


## DESCRIPTION OF THE ENVIRONMENT

feet of water annually. Ground water is used for irrigation, livestock, and is the principal source of water for the small communities (total domestic use is about 10,000 acre-feet per year). Water from both wells and springs is utilized, but springs provide the greater quantity (GS, 1979).

Slaughterhouse, Meetinghouse, Cottonwood, and North Horn Mountain tracts are located within watersheds that supply drinking water for small communities. The Straight Canyon watershed supplies municipal water for Orangeville and Castle Dale. A portion of the water supply for Huntington is diverted from Huntington Creek below the Huntington powerplant. The communities of Clear Creek and Scofield are supplied with surface water from Finn Canyon and springs in Boardinghouse Canyon. The North Emery Water Users Association culinary water system located in Rilda Canyon is supplied by springs developed in the Starpoint Sandstone underlaying the coal seams which would be mined.

## GEOLOGY, TOPOGRAPHY, PALEONTOLOGY, MINERAL RESOURCES

## Wasatch Plateau Coal Field

This coal field, in the approximate geographical center of Utah, covers nearly 700,000 acres. It is about 90 miles long, 12 miles wide, and is oriented in a north-south direction (Doelling, 1972). An erosional escarpment delineates the east boundary; the west boundary approximates the drainage divide of the plateau, and the north boundary is delineated by the Price River drainage. The coal field terminates at the Fish Lake Plateau. The Wasatch Plateau coal field is contiguous to the Book Cliff coal field on the northeast, the Emery coal field on the southeast, and the Mt. Pleasant and Salina Canyon coal fields on the west.

The area is one of rugged mountainous topography, mostly ledges and slopes. Deep canyons cut into the plateau from the east. The East Rim is a steep cliff with relief of nearly 1,000 feet. Elevations range from almost 7,000 feet to more than 10,000 feet above sea level. Coal outcrops occur mostly between 7,000 and 8,000 feet.

Sedimentary rock formations outcropping in the coal field are: Flagstaff Limestone, North Horn Formation, Price River Formation, Castlegate Sandstone, Blackhawk Formation, Starpoint Sandstone, and Mancos Shale (Table 3-8). Lithologies consist mainly of interbedded sandstone, shale, and limestone. The various formations are exposed along
the east escarpment of the Wasatch Plateau. The coal beds outcrop in the canyon walls and along the cliffs. Alluvial and colluvial deposits have accumulated along drainage bottoms, benches, and gentle slopes.

The geologic structure of the area is characterized by faulting, extensive regional jointing, and broad gently dipping folds. A notable fault structure is the Joes Valley graben where displacements of 1,500 vertical feet have occurred. Other large faults also occur as do many smaller ones. The North Horn Formation is landslide prone. Steepness of slope and continued wetting from seeps and springs have caused many slides to develop. Most of the slides have stabilized but a few have remained active (FS Ferron-Price Land Management Plan, 1979).
Scientifically significant fossils are expected to occur in the Blackhawk Formation. Some of the plant fossils are used for correlation and paleoenvironmental guides (Parker, 1976). The potential is only moderate for finding molluscs, turtle, crocodile, fish, and dinosaur fossils (personal communication, Robison, 1980). One insect fossil locality is known (personal communication, Jensen, 1978) and is scientifically significant.
Several localities of scientifically significant fossil vertebrates are in the North Horn Formation. Unique dinosaur and other reptilian fossils have been reported by Gilmore (1946). Rare fossilized dinosaur egg shells have been described by Jensen (1966). The mammalian fauna have been described by Gazin (1941) and others. Mammalian fossils of this age are considered significant as they are known only from the Rocky Mountain region of North America and Mongolia. A North American Land Mammal Age (Dragonian) is based on the fossil mammals from the North Horn Formation near North Horn Mountain.
The chance of finding significant fossils in the Mancos Shale, Starpoint Sandstone, Castlegate Sandstone, Price River, and Flagstaff Limestone is small. There has been no comprehensive survey of the region for paleontological resources; however, several unrelated studies have been completed. A literature search was conducted to evaluate research completed in this region and identify as far as possible the known fossils and their association with the various formations in the region. The results of this literature search are compiled in a technical report on file at the BLM Utah State Office.
The coal in the Wasatch Plateau coal field is only recoverable by underground mining methods. Coal beds of commercial interest are found in the lower one third of the Blackhawk Formation. The in-place resource on the tracts totals 470.8 million tons of

GENERALIZED STRATICRAPHIC COLLUN OF THE EAST-CENTRAL WASATCH PLATEAU

(Doelling, 1972 modified)

## DESCRIPTION OF THE ENVIRONMENT

which 187.8 million tons are recoverable. Coal resources are summarized in Table 3-9 and coal quality in Table 3-10.

A number of gas fields have been discovered in the area, three of which (Clear Creek, Gordon Creek, and Flat Canyon) occur within the Wasatch Plateau coal field and two adjacent to it (Joes Valley and Ferron). The gas is being extracted from the Ferron Sandstone. The Slaughterhouse Canyon tract is in the Clear Creek gas field, but no producing wells have been drilled on the tract. None of the remaining tracts occur within a Known Geologic Structure (KGS). Nearly all of the Wasatch Plateau coal field has been leased for oil and gas.

The eight tracts are not expected to contain significant minerals besides oil, gas, and coal.

## Emery Coal Field

The Emery coal field is located in Emery and Sevier Counties about 70 miles south of Price, Utah (Figure 3-4). It covers nearly 210 square miles, is 6 miles wide, 35 miles long, and is oriented north-east-southwest. The Coal Cliffs escarpment constitutes the east boundary, the south boundary is along the line where the Coal Cliffs disappear below the Fish Lake Plateau, and the west boundary is the Wasatch Plateau.

Three general landforms dominate the topography of the Emery coal field; the Coal Cliffs make up the eastern portion, Castle Valley extends down through the center, and buttes and knolls make up the western part (Doelling, 1972).

The only rock formation present is the Mancos Shale which is represented by three members: Blue Gate Shale, Ferron Sandstone, and Tununk Shale. Some Quaternary unconsolidated deposits cover the surface of the area (Table 3-8).

The geologic structure of the area consists of gently dipping beds on the west flank of the San Rafael Swell. The Joes Valley-Paradise Fault zone partially marks the west boundary of the coal field. According to Graham (1970), the vertical displacement could be up to 2,000 feet. Several small anticlinal structures are found in the Emery coal field and include the Last Chance Creek Dome and the Rochester Anticline.

Fossils reported in the Ferron Sandstone include plants associated with the coal beds (Cotter, 1976), molluscs (Cobban, 1976), microfossils (Cross, 1976), fish scales, shark teeth, and possibly some reptilian remains (Stokes and Balsley, 1968). The fossil plants associated with the coal could be scientifically significant as well as vertebrate fossils;
however, all of the fossils are expected to occur extensively outside tract boundaries. The Blue Gate Shale and Tununk Shale may be very fossiliferous in places. The fossils are also expected to occur outside the tract boundaries.

The depth to coal in the Emery coal field tracts is shallow enough to allow surface mining methods to be used on most of the area with the exception of a portion of the Emery North tract and the Emery South tract. Adjacent to the Emery North tract is the Hollberg PRLA which would also be mined underground. The minable coal is from the Ferron Sandstone Member of the Mancos Shale Formation. The in-place coal for the three Emery tracts totals 91.1 million tons of which 68.5 million tons are recoverable.

None of the Emery tracts or the Hollberg PRLA are on or adjacent to producing oil and gas fields. However, the entire area is considered by GS as prospectively valuable for oil and gas (personal communication, Kohler, 1980). Most of the area is leased for oil and gas.

## VEGETATION

Vegetation varies considerably over the region, ranging from low desert shrubs to conifer stands and mountain meadows. Change in elevation, with associated moisture and temperature changes, is a major factor in the distribution of vegetation types. Topography, aspect, soils, and past land use are also important factors that have affected plant distribution.

## Vegetation Types

Eleven major vegetation types are found within the region including: Agricultural, Riparian, Grassland, Desert Shrub, Sagebrush-Grass, Pinyon-Juniper Woodland, Mountain Brush, Ponderosa Pine, Aspen, Conifer-Aspen, and Mountain Meadow. A list of common species found in each vegetation type is in Appendix 3. The distribution of these vegetation types is shown in Figure 3-5.

Dominant vegetation types on the Wasatch Plateau coal field include Sagebrush-Grass, Aspen, and Conifer Aspen. The Riparian type, including cottonwood and willow trees, is found along perennial streams, and Mountain Brush is interspersed with other types. On the Emery coal field the shallow, saline soils and sparse precipitation have resulted in a plant distribution pattern made up of species adapted to this harsh environment. The dominant vegetation types in this area are Desert

TABLE 3-9

COAL RESOURCES

WASATCH PLATEAU COAL FIELD

| Tract Name | $\begin{gathered} \text { Area } \\ \text { (acres) } \end{gathered}$ | Demonstrated Reserve Base (tons $\times 10^{6}$ ) | Inferred Resources (tons $\times 10^{6}$ ) | Recoverable Reserves (tons X 10 ${ }^{6}$ ) |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Surface | Underground |
| North Horn Mtn. | 21,043.5 | 189.5 | 57.0 | - | 98.6 |
| Cottonwood | 2,400.0 | 55.4 | 2.4 | - | 23.1 |
| Meetinghouse |  |  |  |  |  |
| Canyon | 1,063.4 | 31.0 | - | - | 12.4 |
| Slaughterhouse |  |  |  |  |  |
| Canyon | 440.0 | 5.6 | - | - | 1.7 |
| Gordon Creek | 4,280.0 | 64.9 | - | - | 26.0 |
| Tucker Canyon | 161.4 | 2.2 | - | - | 0.9 |
| Miller Creek | 2,000.0 | 43.3 | - | - | 17.3 |
| Rilda Canyon | 640.0 | 19.5 | - | - | 7.8 |

EMERY COAL FIELD

| Tract Name | Area <br> (acres) | Demonstrated <br> Reserve Base <br> (tons $\times 10^{6}$ ) | Inferred <br> Resources <br> (tons $\left.\times 10^{6}\right)$ | Recoverable Reserves <br> $\left(\right.$ tons $\left.\times 10^{6}\right)$ <br> Underground |  |
| :--- | ---: | ---: | ---: | ---: | ---: |
| Emery North | $2,161.0$ | 36.2 | - | 11.0 | 13.1 |
| Emery Central | $2,967.7$ | 42.8 | 0.6 | 39.0 | - |
| Emery South | 748.5 | 11.5 | - | - | 5.4 |

TABLE 3-10

COAL QUALITY

| Tract | Moisture <br> Percent | Sulfur <br> Percent | Ash <br> Percent | Fixed Car- <br> bon Percent | Volatiles <br> Percent | Btul <br> Pound |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| North Horn | 5.5 | 0.6 | 7.6 | 45.7 | 41.2 | 12,600 |
| Cottonwood Canyon | 5.5 | 0.6 | 7.6 | 45.7 | 41.2 | 12,600 |
| Meetinghouse Canyon | 3.1 | 0.5 | 6.0 | 47.9 | 43.4 | 13,800 |
| Gordon Creek | 6.3 | 0.5 | 6.2 | 44.8 | 42.5 | 12,400 |
| Slaughterhouse Canyon | 7.5 | 0.6 | 6.2 | 44.9 | 41.1 | 12,040 |
| Miller Creek | 7.5 | 0.7 | 6.8 | 42.3 | 43.5 | 12,100 |
| Emery North | 6.9 | 1.0 | 22.0 | 37.1 | 34.0 | 10,100 |
| Emery Central | 8.0 | 0.8 | 14.3 | 47.9 | 38.1 | 11,000 |
| Emery South | 5.6 | 0.8 | 7.5 | 46.1 | 38.9 | 12,300 |
| Hollberg PRLA | 4.0 | 1.3 | 6.9 | 51.0 | 38.4 | 12,500 |

The above table is summarized from the Tract Summary Reports prepared by the Geological Survey, 1979 and 1980


FIGURE 3-4
UTAH COAL FIELDS


[^0]Shrub, Pinyon-Juniper Woodland, and Grassland. The Riparian type along perennial streams in the area includes greasewood, saltcedar, and saltgrass. A list of plant species in the Emery coal field is included in Energy Minerals Rehabilitation, Inventory and Analysis Report No. 16 (EMRIA No. 16). Studies in this area indicate the following vegetation production in pounds per acre: Pinyon-Juniper 1,000, Riparian 2,000, Desert Shrub 525, and Grassland 245 (EMRIA No. 16). Nonproductive areas such as cliffs, rocky outcrops, talus slopes, and Blue Gate Shale are also present in this area.

Agricultural lands, generally associated with communities in the region, have been reduced by urban development, change of water use, and powerplant development in Emery County. These lands include some natural meadows (pastures) and irrigated cropland. The most common crops are alfalfa and small grains. Approximately 180 acres of private irrigated agricultural land is on the Emery North tract.

## Threatened or Endangered Plants

Surveys in the area (Welsh, 1977; Welsh and Neese, 1979; Foster, 1979) have identified the presence of the candidate endangered species Townsendia aprica on the Emery South tract. Plants were found on the border of Sections 4 and 5, Township 24S., Range 6E., and adjacent to the west boundary of the tract in Section 5 and 6, Township 24S., Range 6E. The Fish and Wildlife Service defines a candidate threatened or endangered species as one named in a status review announcement in the Federal Register and expected to be proposed for official listing in the near future.
No other officially listed or candidate threatened or endangered species are known to exist on or near any of the 11 proposed coal leasing tracts or the Hollberg PRLA discussed in this statement. Proposed threatened or endangered plant species not yet listed or considered candidates (by the above definition) also exist in the region. A list of these species is found in the Final Environmental Statement, Central Utah Coal (GS, 1979).

## Reclamation Potential

## WASATCH PLATEAU COAL FIELD

The reclamation potential for disturbed areas on the Wasatch Plateau coal field is good. Moisture is adequate with average annual precipitation of 25.0 inches and good spring moisture (average 3.0 inches precipitation in March). Soils are shallow to
deep, loamy-fine, with a rich organic surface layer; however, disturbance on 25 to 33 -percent slopes and the presence of rocky inclusions would require special consideration during reclamation. Soil reconstruction potential for revegetation is fair to good (National Soils Handbook), and it is predicted that 50 to 80 percent of seeding attempts would be successful (Hagihara et al., 1972).

## EMERY COAL FIELD

Because of the lack of topsoil and nutrient deficient, toxic overburden on some sites, and limited precipitation ( 6 to 8 inches) the reclamation potential for disturbed areas in the Emery coal field would be limited in parts of the area. Several authors question the success of reclamation on areas of less than 12 inches annual precipitation (Aldon and Springfield, 1975; Bleak et al., 1965; Hagihara et al., 1972). However, recent research on reclamation in arid environments shows that success is possible (Thames, 1977; Vories, 1976; Hodder, 1979; Frischknecht and Ferguson, 1980).

Specific research on reclaimability of the Emery coal field is reported by Hodder in EMRIA Report No. 16 (1979) and 1979 Annual Progress Report, Revegetation Studies on Disturbed Overburden, Emery Coal Field (Frischknecht and Ferguson, 1980). The EMRIA report concludes: "The land use potential appears limited to range land and ... limited agriculture. Evidently these values are reclaimable." The report outlines problems with certain sites and soil types, indicates the unsuitability of some subsoils as a growth medium, and details the need for supplemental irrigation. Followup studies by Frischknecht and Ferguson (1980), present a more optimistic outlook. Except for Mancos Shale soils, container grown plants in soil from the area survived well and made excellent growth. On experimental plots there was little difference in frequency and number of seedlings between topsoil and subsoil areas, but plants were taller on topsoil plots. Herbage yields on topsoil plots were 1,079 pounds per acre, and 610 pounds per acre on subsoil plots.

Fall plantings were more effective than spring planting, and drilling or hand broadcasting and harrowing were most effective. Introduced wheatgrass became established more readily and produced higher early yields than native species. An alfalfa hay mulch applied at a rate of 2.5 tons per acre increased grass production on study plots.

Following fall seeding, if there was insufficient moisture for germination the following spring, supplemental irrigation would be necessary to promote germination and establishment of plants. On

## DESCRIPTION OF THE ENVIRONMENT

Mancos Shale areas, drip or sprinkler irrigation would probably be required to establish plants.
In a personal communication with Neil Frischknecht at the Intermountain Forest and Range Experiment Station Shrub Science Laboratory in Provo, Utah, he expressed the opinion that based on research in the Emery coal field, disturbed sites could be restored to the present condition or improved upon. This opinion is based on implementation of the following measures: the proper selection of overburden, supplemental fertilization, hay mulch on some soils, supplemental irrigation where necessary, choice of plant species, and use of container grown plants for transplanting on some sites.

## WILDLIFE

A large variety of wildlife characteristic of life zones ranging from Lower Sonoran to Canadian are found in the region. Approximately 90 species of mammals, 270 species of birds, 26 species of reptiles, 9 species of amphibians, and 25 species of fish are found in the region (Dalton et al, 1977). A complete list of wildlife species that may be found in the region has been prepared by UDWR (Dalton et al., 1977). The distribution of game species in relation to elevation and vegetation types is presented in Figure 3-6.

Deer populations currently are low, probably due to past deer harvest practices and recent severe winters. The range could support more deer. Encroachment by energy development and urbanization on critical winter ranges will limit future herd expansion. The locations of deer herd units and distribution of winter ranges are shown in Figure 37. The primary leasing areas are located in deer herd units $32,33,34,35,36$, and 45 . The ranges within these herd units have the potential to support 31,050 deer (UDWR Files, 1980). In 1979 these units supported a hunter harvest of 2,227 bucks.

In the period from July 1, 1977 to June 30, 1978 a total of 259 deer were killed in the region by vehicles (UDWR, 1979). This figure represents 3.6 percent of the total harvest during 1978. The magnitude of this loss is compounded by the fact that 51.8 percent of the total reported casualties were mature does. A 33 -mile stretch of $1-70$ from Fremont Junction to Salina is averaging 107 deer traffic mortalities annually with a high of 317 in 197879, a heavy snow year.

The region includes two elk herd units, Manti (12), and Fishlake (11). The location of these herd units and distribution of other big game species (except deer) are shown on Figure 3-8. The units
total 2,722 square miles, and include some of the most productive elk habitat in the State. Elk summer range is the Aspen and Conifer-Aspen type located at the higher elevations of the Wasatch Plateau. Elk usually utilize bench areas above the Cliff zone of the Wasatch Plateau that have been described as critical and high priority winter ranges. These winter ranges are located within the Transition and Canadian life zones. Elk use various poorly defined migration routes off East Mountain and North Horn Mountain to reach lower elevations during heavy snow years.
Utah Division of Wildlife Resources (UDWR) has a proposal to build an antelope herd of 700 animals by transplanting on 226,560 acres in Castle Valley. A resident herd in Icelander Wash in eastern Carbon and Emery Counties has fluctuated around 200 animals since a 1972 transplant.

Moose were introduced into the Fish Creek drainage west of Scofield Reservoir in 1973. The initial herd of 18 was supplemented with 19 moose in 1974 and 6 moose in 1978. Moose are scattered in that region, but illegal killing is presently limiting expansion of herd size. Current population levels are unknown but the herd is producing. UDWR projects establishment of a future herd of 487 animals spread out on 981,130 acres of the Wasatch Plateau.
Mountain lion population, characteristics, and distribution data are not available for Utah, but the harvest trend indicates an increasing population (UDWR, 1977). Studies in California, Nevada, Idaho, and British Columbia indicated home range sizes from 15 to 43 square miles (USFWS, 1976). Population densities of suitable range in Utah are probably similar. The home range of resident female mountain lions often overlap completely and are also overlapped by resident male home ranges (Siedensticker et al, 1973).

Black bear numbers in the region are not known. Studies in other States indicate home range sizes of 0.12 to 50.3 square miles (Amstrup and Beecham, 1976; Lindzey and Meslow, 1977). Bray and Barnes (1967) estimate minimal annual home range sizes of 20 square miles for adult males and 10 square miles for adult females. Home ranges of adult male and female bears often have considerable overlap. In areas of suitable habitat on the Wasatch Plateau bear population density is probably near the Bray and Barnes estimate of 1.5 bears per 10 square miles.

Sage grouse populations are localized in disjunct habitats on the Wasatch Plateau. A small isolated population of 40 to 65 birds occurs on North Horn Mountain and some sage grouse summer on the Gordon Creek and Miller Creek tracts.


FIGURE 3-6
TYPICAL VEGETATION AND GAME DISTRIBUTION CHANGES WITH ELEVATION

Antelope
Bighorn Sheep
Moose
Elk manage-
ment areas


## DESCRIPTION OF THE ENVIRONMENT

UDWR operates the Desert Lake Waterfowl Management Area approximately 35 miles north of the Emery North tract. This area has 2,621 total acres with 544 acres of open water. It provides habitat for 23 species of waterfowl, numerous shorebirds, raptors, and other bird species. Olson Slough, northeast of Desert Lake, provides limited waterfowl and hunter use.

The diversity of life zones in the region, represented by elevations from 11,600 feet in the Fishlake Mountains to 4,000 feet in the Green River drainage, provides habitat for a large variety of birdlife. At least 270 species of game and nongame birds are known to occur in the region. Golden eagles nest throughout the region and many active eyries are present. No eyries have been located on any of the tracts or in areas that would be disturbed by coal development associated with the leasing proposed in this statement; however, no inventories have been conducted on the tracts to systematically identify eyries.

Small mammals such as mice, rats, squirrels, shrews, moles, bats, gophers, and rabbits are distributed throughout the region. They serve as prey for larger predators such as raptors, badgers, foxes, coyotes, bobcats, and skunks. Small mammal populations are subject to extreme shortterm fluctuations in response to weather, food supply, predation, and disease.

A total of 26 species of reptiles and 9 species of amphibians are known to occur in the region. They feed on vegetation, insects, fish, small mammals, reptiles, and amphibians, and are in turn prey for predatory mammals and birds. No threatened or endangered reptiles or amphibians are known to occur in the region.

## Threatened and Endangered Species

The endangered American peregrine falcon has been sighted in the region. These birds are probably migrants although a few may be residents. The only known active eyrie is located adjacent to a historical eyrie along the San Rafael River in Emery County. Historically at least four to five eyries existed in Carbon and Emery Counties (Porter and White, 1973)

Bald eagles, an endangered species, are winter visitors to the region between November and March each year; they often congregate in groups at roost areas near food sources. A survey in January and February 1977 of known areas, recorded 31 bald eagles at four roost sites (Boner et al., 1977). None of the roost sites are near (within 5 miles) any of the proposed coal lease tracts.

The Uinta-Southwestern region includes the historical range of the endangered black-footed ferret (Snow, 1972; Scott et al., 1977). All of the Emery tracts are located within the historical range of the ferret. The nearest sighting of possible black-footed ferret sign occurred in 1977 and was 12 miles east of Ferron, Utah approximately 15 miles northeast of the Emery North tract (Boner et al., 1977). Location of this range and sightings of black-footed ferrets are shown on Figure 3-9. A survey during 1977 of the potential habitat in the region resulted in no direct observation or location of substantial sign of ferrets (GS, 1979).

## Fisheries

Twenty-five species of fish are known to inhabit waters within the region. Some of the more common species are rainbow, cutthroat, brown, and brook trout, channel catfish, largemouth bass, Colorado squawfish, humpback chub, bonytail chub, and razorback sucker. Fish habitat in the region is shown in Figure 3-10.

The Price River system has the most extensive fish habitat in the region. It is impounded at about 7,700 feet elevation in Scofield Reservoir. Scofield Reservoir is a very popular fishing spot and one of Utah's few class I fisheries. The reservoir has 2,800 surface acres and is managed for rainbow and cutthroat.
Above Scofield Reservoir eight streams contain naturally reproducing cutthroat populations in 63 stream miles of fish habitat. These streams are relatively small but do provide an opportunity for fishermen to fish wild trout streams. These same streams provide important spawning and nursery areas for cutthroats in the Scofield Reservoir. Gooseberry Creek, one of the tributaries above Scofield Reservoir, includes a 90 -acre impoundment (Gooseberry Reservoir), which is managed as a cutthroat-rainbow fishery. Catchable rainbows are stocked annually whereas the cutthroat population segment maintains itself through ingression of naturally produced fish from the stream above the reservoir.

Beaver Creek and White River enter the Price River above Price Canyon. Beaver Creek is a rather small stream with about 10 miles of trout habitat. The 38 -mile White River system, including the Right, Left, and Middle Forks has a naturally reproducing cutthroat trout population.
Huntington Creek, the northernmost tributary of the San Rafael, heads on the Wasatch Plateau and flows generally south and south/southeastward. About half the length of Huntington Creek is in a



## DESCRIPTION OF THE ENVIRONMENT

narrow canyon which generally coincides with its gamefish habitat. Electric Lake was constructed near the headwaters to store water for the UP\&L Huntington powerplant. The 3 miles of Huntington Creek above Electric Lake are managed as a cutthroat spawning and nursery area to naturally stock Electric Lake.

Electric Lake is a 476-acre reservoir managed for cutthroat trout. Cutthroat stock comes from naturally produced fish in the upstream nursery area with some supplemental stocking of hatchery fingerlings.

The 22 miles of Huntington Creek between Electric Lake Dam and the main diversion has cutthroat, brown, and rainbow trout. Some catchable rainbows and fingerling browns are stocked annually while cutthroats in the stream are naturally produced. Cottonwood Creek-Straight Canyon provides about 9 miles of brown trout habitat between Swasey diversion and Joes Valley Reservoir. Spawning habitat is quite limited, and fingerling and catchable brown trout are stocked annually to maintain a fishable population.

Joes Valley Reservoir is a 1,170-acre reservoir in the Cottonwood drainage currently managed for rainbow and cutthroat trout. Hatchery fingerlings are planted to maintain the rainbow population and cutthroats immigrate from wild stock in the tributary streams.

Above Millsite Reservoir Ferron Creek is a naturally reproducing cutthroat trout fishery. The tributaries of Big Bear, Cove, Indian, and Duck Fork Creeks add 25 miles of trout water; all are populated by naturally reproducing cutthroat trout. Gamefish habitat on Muddy Creek is limited to the upper 4 miles of its headwaters where there is a small wild cutthroat population.

## Threatened or Endangered Fishes

No threatened or endangered fish are known to exist on the tracts or within the zone of influence from proposed coal leasing and mining development in the region.

## LAND USE

The Four-County area contains lands in Federal, State, county, and private ownership and 109 Federal coal leases involving about 126,950 acres of land surface. In 1979 there were 11 leases producing coal in Carbon County, ten in Emery County, two in both counties, and one in Sevier County. Those 24 leases produced coal totalling 7.07 mil-
lion tons that year. Including fee coal from private lands, coal mines in the three counties produced about 10.5 million tons of coal in 1979.

All Known Recoverable Coal Resource Areas (KRCRA) lands in Carbon and Emery Counties were, until recently, zoned as M and $\mathrm{G}-1$, meaning that mining and grazing were acceptable. In 1980 the two counties amended zoning on some lands within the Wasatch KRCRA thereby creating two "critical environmental zones" (CE-1 and CE-2). According to the counties, mining is not permitted in CE-1 zone, but is permitted in CE-2. The Gordon Creek, Miller Creek, Rilda Canyon and North Horn Mountain tracts are entirely within CE-1 zoned areas as are about one-half of the Cottonwood tract and about one-fourth of the Meetinghouse tract (personal communication, Davis, Carbon County Planning Office and Almond and Johansen, Emery County Planning Office, 1980). The position taken by the counties is that no development of mines can occur in the CE-1 zones without rezoning of the minable area to $\mathrm{CE}-2$ or M and $\mathrm{G}-1$ and issuance of a conditional use permit by the county planning commission and county commissioners (ibid.).

Recent population growth, largely in response to increased coal mining and related industrial developments, especially the Huntington and Hunter powerplants, has changed and is changing land uses in the area. Agricultural lands around communities have been reduced in acreage by community and industrial development and change of water use. Irrigated croplands consisting mainly of alfalfa and small grain crops in the Huntington-Ferron area of Emery County have been most affected but agricultural lands in the vicinity of other communities in all four counties have also recently been retired. There are 180 acres of private irrigated cropland on the Emery North tract. There are no prime or unique farmlands on any of the tracts (personal communication, Brown, Soil Conservation Service, 1980). No other tracts contain cropland.

Grazing of sheep and cattle has long been an integral part of the area's agriculture. Sheep numbers declined steadily in all four counties from 1959 to 1974. In Sanpete and Sevier Counties a 4I-percent decrease occurred and sheep in Carbon and Emery Counties have decreased by 53 percent. Cattle numbers in all four counties are increasing. Sanpete and Sevier Counties increased in cattle by 13 percent between 1959 and 1974 while Carbon and Emery Counties increased by 19 percent.

Grazing of livestock is permitted on public and national forest lands through an allotment system that determines where grazing is permitted coupled with an animal unit month (AUM, see glossary) allocation that determines the type and number of live-

## DESCRIPTION OF THE ENVIRONMENT

stock that may be placed on an allotment. The Bureau of Land Management (BLM) San Rafael Planning Area contains 100 allotments totaling 80,418 AUMs. Three allotments (Lone Tree, Bunderson, and Sorenson) are on one or both of the Emery North and Emery Central coal tracts. The Lone Tree allotment contains a total of 5,371 AUMs, 34 of which are on the Emery North tract, 35 on Emery Central, and 35 on the Hollberg PRLA. The Bunderson allotment has 27 AUMs in total all of which are on the Emery North tract. The Sorenson allotment contains 630 AUMs, 36 of which are on the Emery Central tract and 25 on the Hollberg PRLA.
The Wasatch Plateau is grazed extensively. Most grazing occurs on FS allotments but BLM allotments and private lands are also grazed. Seventyeight FS allotments on the eastern slope of the Plateau provide over 530,000 acres of grazing land which in 1978 provided 66,638 AUMs (FS, FerronPrice Land Management Plan, 1979). Four tracts (Tucker Canyon, Miller Creek, Gordon Creek, and Slaughterhouse Canyon), are on 6,881 acres of private lands that are grazed.

Several east-slope canyons serve as transportation and/or utility corridors between Castle Valley and the Wasatch Plateau. Existing use and projected increased use due to expected baseline coal development and population growth makes increased congestion of certain canyon corridors inevitable. Most canyons with roads serve the livestock grazing industry as migration and transportation routes for animals that are seasonally grazed in the lowlands and on the Plateau. Huntington and Cottonwood Canyons are of particular concern because of heavy use by recreation, mine commuter, coal and service truck, and other traffic. Meetinghouse Canyon, while not heavily traveled by vehicles, is underlain by coal and has a $345-\mathrm{kV}$ powerline extending through it. The canyons are also important wildlife migration corridors.

A 1,680 -acre wetland is located about 2 miles southeast of the town of Emery and near, although not on, the Emery North and Emery Central tracts. Investigation determined that the acreage constitutes a wetland as defined in Executive Order 11990, Section 7(c).
The Denver and Rio Grande Western Railroad Company is considering constructing a railroad spur through the Castle Valley and has asked to consider a possible land exchange in the Castle Valley involving about 1,821 acres of private land and about 2,389 acres of public land. An environmental assessment on the exchange has been completed by BLM. Consummation of the exchange would result in 160 acres of the Emery North tract changing from public to private surface ownership. Minerals
would be retained in Federal ownership. The parcels comprising the 160 acres are T. 22 S, R. 5 E, Sec. 1 W $1 / 2$ SE $1 / 4$, Sec. 11 SE $1 / 4$ NW 1/4, Sec. 15 NE 1/4 NE 1/4.

Additional facilities located on the tracts include high voltage powerlines crossing the Emery North and Meetinghouse tracts, 0.5 mile of 3 -inch gas pipeline across the Slaughterhouse tract, and communication facilities on North Horn Mountain and Emery North tracts.

## SOCIOECONOMICS

## Economic and Demographic Conditions

Information contained in this section was developed through a BLM contract with Centaur Associates, Inc. of Washington, D.C., Task Order No. YA-510-PH9-109.

Between 1972 and 1978, most county economies in the Wasatch Plateau-Emery area were undergoing rapid expansion (Table $3-11$ ). During these 6 years, total employment grew at an average rate of 6.7 percent annually in Carbon County, 16.0 percent in Emery County, and 5.6 percent in Sevier County.

The increase in employment in Carbon and Emery Counties was spurred by rapid growth in the mining sector, which in 1978 was the largest employer in Carbon County and the second largest in Emery County, with 22.0 and 31.3 percent of countywide wage and salary employment, respectively. As regional trade centers, Carbon and Sevier Counties have also benefitted from the secondary employment generated by local mining activities. In comparison, the trade and services sectors in Emery County are relatively underdeveloped (accounting for only 13.7 percent of countywide wage and salary employment), with the result that Emery County benefits relatively little from the secondary employment generated by local mining activities.

Partly due to the relatively high average wage rates paid in the mining sector, Carbon and Emery Counties had the highest per capita incomes in the Four-County area in 1978 ( $\$ 6,837$ and $\$ 5,788$ respectively, versus $\$ 4,616$ in Sanpete and $\$ 5,788$ in Sevier). Nevertheless, every county except Carbon had a per capita income below the Statewide average in $1978(\$ 6,594)$, and all four counties fell significantly short of the U.S. average $(\$ 7,840)$ (Table 3-12).

The growth of employment opportunities has been accompanied by relatively rapid population growth in the Wasatch Plateau-Emery area (Table
TABLE 3-11
EMPLOYMENT TRENDS

| TYPE OF | CARBON COUNTY |  | EMERY COUNTY |  | SANPETE COUNTY |  | SEVIER COUNTY |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| EMPLOYMENT/SECTOR | 1972 | 1978 | 1972 | 1978 | 1972 | 1978 | 1972 | 1978 |
| Proprletors | 581 | 746 | 563 | 710 | 1,285 | 1,341 | 972 | 1,094 |
| Farm | 163 | 158 | 409 | 398 | 863 | 792 | 515 | 447 |
| Non-farm | 418 | 588 | 154 | 312 | 422 | 549 | 457 | 647 |
| Wage and Salary Employment ${ }^{\text {a }}$ | 5,114 | 7,660 | 1,873 | 4,409 | 3,537 | 3,498 | 3,376 | 4,662 |
| Farming | 53 (1.0) | $46(0.6)$ | 43(2.3) | 46(1.0) | 348(9.8) | 387(11.1) | 167(4.9) | 175(3.7) |
| Ag. Serv., For., Fish., and Other | 9(0.2) | 20(0.3) | L(--) | L(--) | 16(0.5) | $D(--)$ | 20(0.6) | L(--) |
| Mining | 1,004(20.4) | 1,668(22.0) | 474 (25.3) | 1,378(31.3) | $2(0.1)$ | $D(-)$ | 53(1.6) | 289 (6.2) |
| Construction | 121(2.4) | 322(4.2) | 440(23.5) | 1,303(29.5) | 319(9.0) | 148(4.2) | 123(3.6) | 362 (7.8) |
| Manufactur Ing | 213(4.2) | 301 (3.9) | 16(0.9) | $21(0.5)$ | 1,080(30.5) | 957(27.4) | 456(13.5) | $505(10.8)$ |
| Transprt., Comm., and Utilities | $517(10.1)$ | 696(9.0) | $D(--)$ | $D(-)$ | 38(1.1) | 64(1.8) | 152(4.5) | 244(5.2) |
| Trade | 1,043(20.4) | 1,566(20.4) | 206(11.0) | 390 (8.8) | 408(11.6) | 515(14.7) | 932(27.6) | 1,214(26.0) |
| Finance, Ins. and Real Estate | 143(2.8) | 238(3.1) | D(--) | $D(--)$ | 59(1.7) | 84 (2.4) | 83 (2.5) | 149(3.2) |
| Services | 446(8.7) | 852(11.0) | 146(7.8) | 254 (5.7) | 344 (9.7) | $317(9.0)$ | 416(12.3) | 551 (11.8) |
| Government | 1,529(29.9) | 1,764(23.0) | $512(27.3)$ | 582(13.2) | 923(26.1) | 965(27.6) | 974 (28.9) | 1,168(25.0) |
| Total Employment | 5,695 | 8,406 | 2,436 | 5,119 | 4,822 | 4,839 | 4,348 | 5,756 |

[^1]
## TABLE 3-12

PERSONAL INCOME

| County | Carbon | Emery | Sanpete | Sevier |
| :--- | :---: | :---: | :---: | :---: |
| Total Personal Income (millions) |  |  |  |  |
| 1970 | $\$ 47.2$ | $\$ 11.6$ | $\$ 28.3$ | $\$ 27.6$ |
| 1978 | $\$ 148.8$ | $\$ 60.0$ | $\$ 60.1$ | $\$ 80.1$ |
|  |  |  |  |  |
| Net Change | $\$ 101.1$ | $\$ 48.4$ | $\$ 31.8$ | $\$ 52.5$ |
|  |  |  |  |  |
| Annual Rate of Change (percent) | 15 | 23 | 9.9 | 14 |
|  |  |  |  |  |
| Average Week ly Wage (1978) | $\$ 238.00$ | $\$ 326.00$ | $\$ 142.00$ | $\$ 178.00$ |
| County Average | $\$ 289.00$ | $\$ 457.00$ | $\$ 209.00$ | $\$ 222.00$ |
| Construction | $\$ 423.00$ | $\$ 347.00$ | $\$ 200.00$ | $\$ 366.00$ |
| Mining |  |  |  |  |
| Per Capita Income (1978) | $\$ 6,837.00$ | $\$ 5,788.00$ | $\$ 4,616.00$ | $\$ 5,788.00$ |

## DESCRIPTION OF THE ENVIRONMENT

3-13). Since 1970, with the exception of Salina, every community has experienced a growth rate significantly above either the Statewide ( 2.6 percent) or national ( 0.8 percent) average between 1970 and 1978. The steady population growth of the 1970s represents a reversal of earlier declining trends. Between 1960 and 1970, every community lost population; many had been losing population steadily since the 1940 s. As a result, most communities started the 1970s with a substantial "cushion" of underutilized housing and public services.

## Infrastructure Conditions

By 1978, the recent population growth was placing strains on the Wasatch Plateau-Emery area's capacity to provide the new residents with needed housing, education, health care, and municipal services (e.g., police and fire protection, water, and sewage disposal).

The predominant housing type in most local communities is the single family home. However, rapidly escalating housing demand coupled with the high price and/or unavailability of conventional housing in some communities has contributed to a great expansion in the number of mobile homes, particularly in Castle Dale (where mobile homes accounted for 51.7 percent of the total housing stock in 1978), and Huntington ( 58.3 percent). In all communities, the housing vacancy rate is extremely low (Table 314). A vacancy rate of 3 to 4 percent is desirable.

The Sevier, North Sanpete, and South Sanpete School Districts as a whole were overcrowded in 1978, although the planned completion of new high schools in each district in 1981, 1980, and 1984 respectively, should help to alleviate the overcrowding (Table 3-15). While the Carbon and Emery School Districts both had excess capacity on a dis-trict-wide basis, individual schools were overcrowded in 1978. The Carbon School District has dealt with this problem through the addition of portable classrooms. The Emery District expects two new elementary schools to be completed by 1980 and 1981 respectively.

There are four hospitals in the region located in Price, Gunnison, Mt. Pleasant and Richfield (with $75,21,25$ and 28 beds respectively). The demand for acute care beds in the Gunnison hospital exceeds the nine acute care beds available, necessitating use of some of the hospital's 12 long-term beds for acute cases. The current level of health care personnel (doctors and nurses) is also inadequate by accepted standards of one physician per 1,000 inhabitants and one nurse per 285 inhabitants (Table 3-15).

Current levels of police protection in all local communities are insufficient, if judged according to the planning standard of 2.0 officers per 1,000 population for communities under 10,000 population (see Table 3-15). However, notwithstanding these deficiencies, crime rates in the area remain among the lowest in the State. Some local law enforcement agencies report difficulties in hiring and retaining qualified personnel in the face of stiff wage competition from the mines.

Among those communities with their own fire departments (Centerfield buys fire protection services from Gunninson), two (Helper and Gunnison) fall significantly below fire insurance underwriters' standards for pumping capacity based on population. The following communities have inadequate overall fire insurance ratings, based on such factors as pumping capacity, water supply, and personnel: Wellington, Emery, Huntington, Orangeville, Centerfield, Fairview, Gunnison, Mt. Pleasant, Spring City, Redmond, and Sigurd.

The availability of adequate water supplies constituted an actual or potential limit to growth in a number of communities in 1978, among them Price, Wellington, Castle Dale, Emery, Ferron and Gunnison (see Table 3-16). Price presently has an application pending for additional water rights from the White River, while Gunnison drilled a new well in 1979. Existing water treatment facilities were generally adequate in 1978, but many communities required upgrading of water storage capacity and/or transmission systems, particularly Helper, Price, Castle Dale, Huntington, Orangeville, Centerfield, Fairview, Gunnison, and Spring City.

By 1978, additional waste water treatment capacity was or shortly would be required in Helper, Price, Wellington, Ferron, Huntington, Emery, and Salina. Helper, Price, and Wellington are served by the Prive River Water Improvement District's trickling filter sewage treatment plant.

## Social Conditions

The Wasatch Plateau-Emery area was settled by Latter-Day Saints (Mormon) pioneers, and today the overwhelming majority of the population consists of Latter-Day Saints (LDS) Church members. The beliefs and values of traditional rural culture emphasize family solidarity, the small-town way of life with its neighborliness and freedom from crime, pressure and haste, and the aesthetic and recreational value of the surrounding rural environment.

Recent population growth has been accompanied by some erosion of these values and beliefs. However, the traditional socio-cultural structure present-
TABLE 3-13
POPULATION TRENDS

| County/Community | 1970 | 1978 | $\begin{array}{r} \text { Net Change } \\ 1970-1978 \\ \hline \end{array}$ | Average Annual Rate of Change |
| :---: | :---: | :---: | :---: | :---: |
| CARBON COUNTY | 15,647 | 21,643 | 5,996 | 4.1 |
| Helper | 1,964 | 3,030 | 1,066 | 5.6 |
| Price | 6,218 | 8,660 | 2,442 | 4.2 |
| Wellington | 922 | 1,299 | 377 | 4.4 |
| EMERY COUNTY | 5,137 | 9,849 | 4,712 | 8.5 |
| Castle Dale | 541 | 1,773 | 1,232 | 16.0 |
| Emery | 216 | 397 | 381 | 7.9 |
| Ferron | 663 | 1,280 | 617 | 8.6 |
| Huntington | 857 | 2,363 | 1,506 | 13.5 |
| Orangeville | 511 | 985 | 474 | 8.5 |
| SANPETE COUNTY | 10,976 | 14,119 | 3,143 | 3.2 |
| Centerfield | 419 | 600 | 181 | 4.6 |
| Fairview | 696 | 1,060 | 364 | 5.4 |
| Gunni son | 1,073 | 1,368 | 295 | 3.1 |
| Mt. Pleasant | 1,516 | 2,354 | 838 | 5.7 |
| Spring City | 456 | 698 | 242 | 5.5 |
| SEVIER COUNTY | 10,103 | 14,489 | 4,386 | 4.6 |
| Aurora | 493 | 779 | 286 | 5.9 |
| Redmond | 409 | 486 | 77 | 2.2 |
| Salina | 1,494 | 2,191 | 697 | 4.9 |
| Sigurd | 291 | 370 | 79 | 3.0 |
| TOTAL AREA |  |  |  |  |
| Population | 42,079 | 60,497 | 18,618 | 4.6 |
| Population Density | 4.4 | 6.4 | N/A | N/A |

HOUSING BY NUMBER AND TYPE (1978)

|  | Single | Multi | Mobile | Total | Vacancy Rate |
| :--- | ---: | ---: | ---: | ---: | ---: |
| Carbon County | NA | NA | NA | 6,566 |  |
| Helper | 786 | 124 | 35 | 945 | $<1.0$ |
| Price | NA | NA | NA | 2,683 | $<1.0$ |
| Wellington | 250 | 13 | 82 | 345 | $<1.0$ |
| Emery County | NA | NA | NA | 2,908 |  |
| Castle Dale | 220 | 24 | 261 | 505 | $<1.0$ |
| Emery | 100 | 0 | 27 | 127 | $<1.0$ |
| Ferron | 197 | 12 | 124 | 333 | $<1.0$ |
| Huntington | 248 | 20 | 375 | 643 | $<1.0$ |
| Orangeville | 185 | 13 | 77 | 275 | $<1.0$ |
| Sanpete County | 4,122 | 141 | 392 | 4,655 |  |
| Centerfield | 165 | 0 | 22 | 187 | Low |
| Fairview | 332 | 0 | 28 | 360 | Low |
| Gunnison | 336 | 0 | 19 | 382 | Low |
| Mt. Pleasant | 617 | 9 | 93 | 719 | $<1.0$ |
| Spring City | 268 | 0 | 11 | 279 | $2-3$ |
| Sevier County | 3,850 | 56 | 431 | 4,337 |  |
| Aurora | 240 | 24 | 0 | 228 | 1.5 |
| Redmond | 146 | 0 | 31 | 177 | 1.7 |
| Salina | 435 | 5 | 117 | 557 | $<1.0$ |
| Sigurd | 100 | 0 | 9 | 109 | $<1.0$ |

NA-not avallable

TABLE 3-15

EDUCATION, HEALTH, AND LAW ENFORCEMENT SERVICES (1978)

| County | Carbon | Emery | Sanpete | Sevier |
| :---: | :---: | :---: | :---: | :---: |
| Education |  |  |  |  |
| School Enrollment |  |  |  |  |
| Elementary | 2,198 | 1,188 | 982 | 1,370 |
| Excess Capacity | 236 | 6 | -100 | -87 |
| Secondary | 1,716 | 968 | 888 | 1,205 |
| Excess Capacity | 344 | 139 | -406 | -389 |
| Student/Teacher Ratio | 21.4 | 20.15 | 27 | 25 |
| Health Facilities |  |  |  |  |
| Hospital Beds | 75 | 0 | 21 | 28 |
| Occupancy Rate | 63.5 | 0 | 108.4 | 60.9 |
| Intensive Care Unit | yes | - | no | yes |
| Personnel |  |  |  |  |
| Doctors | 21 | 7 | 7 | 9 |
| Per Population Ratio | 1:2405 | 1:2462 | 1:2107 | 1:2415 |
| Nurses | 122 | 6 | 27 | 24 |
| Per Poulation Ratio | 1:408 | 1:2462 | 1:830 | 1:690 |
| Law Enforcement |  |  |  |  |
| Number of Officers | 24 | 12.5 | 7 | 12.5 |
| 0 fficers and Population |  |  |  |  |
| Ratio | 1:902 | 1:788 | 1:2017 | 1:1159 |

TABLE 3-16
WATER CONSUMPTION AND MAXIMUM CAPACITY

|  | Million gallons per day |  |  |
| :--- | :--- | :--- | :--- |
|  | Consumption | Water <br> Rights | Maximum Capacity In- <br> take and Treatment |
| Carbon County | 0.8 | 2.133 | 1.0 |
| Helper | 2.5 | 5.7 | 5.7 |
| Price | 0.33 | 0.39 | 4.0 |
| Wellington |  |  |  |
| Emery County | 0.55 | 0.601 | 1.3 |
| Castle Dale | 0.173 | 0.174 | 0.173 |
| Emery | 0.75 | NA | 0.75 |
| Ferron | 0.5 | 0.606 | 0.5 |
| Huntington | 0.22 | 0.357 | 0.288 |
| Orangeville |  |  |  |
|  |  |  |  |
| Sanpete County | 0.21 | 0.646 | 0.433 |
| Centerfield | 0.3 | 5.190 | 0.5 |
| Fairview | 0.4 | 0.8 | 0.720 |
| Gunnison | 0.54 | 1.64 | 1.9 |
| Mt. Pleasant | 0.17 | 0.288 | 0.288 |
| Spring City |  |  |  |
| Sevier County | 0.192 | 0.36 | 0.168 |
| Aurora | 0.2 | 0.253 | NA |
| Redmond | 1.5 | 1.375 | 1.365 |
| Salina | 0.09 | 0.923 | NA |
| Sigurd |  |  |  |

## DESCRIPTION OF THE ENVIRONMENT

ly remains largely intact in the Wasatch PlateauEmery area. This observation is supported by trends in such objective indicators as local marriage rates (which, while they have declined in recent years, remain high by comparison with State and national averages) and the relatively low incidence of divorce, alcoholism, mental illness, and crime.

Local residents' subjective responses in a series of unstructured interviews conducted in the study area during the fall of 1979 support this same conclusion. Based on the beauty of the total environment, the quality of their friends and neighbors, and the small-town way of life centered around the family, respondents rated the quality of life in most study area communities as very high.

The chief exception is Huntington in Emery County. In the past decade Huntington has experienced explosive population growth which, in the eyes of many residents, has greatly diminished Huntington's intimate, small-town character. In spite of these perceptions, however, energy development and the resultant population growth is viewed as having resulted in a net increase in the quality of life in Huntington, through the expansion of local cultural and social facilities, and above all through the generation of employment. The additional jobs make it possible for more young people to remain in the community, rather than emigrating in search of work following completion of their education.

In the remaining communities, while the degree of satisfaction with existing conditions remains high, respondents were generally in favor of coal or other economic development, provided that the pace of growth is carefully controlled in order to enable communities to make adequate preparations. Respondents in Emery were particularly insistent that the pace of growth be strictly controlled to preserve the local lifestyle.

It may, however, be beyond the ability of some Emery County communities to control growth so that it occurs only at a rate that protects the local lifestyle or that enables adequate preparation by the towns to match growth in population with growth in community infrastructure and social services. Rapid population increase in Emery County has resulted in a corresponding increase in the incidence of social problems such as delinquency, mental illness, divorce, family violence, violent crime, alcoholism, drug abuse, and suicides.

## TRANSPORTATION

Vehicular traffic within the area is carried on four major highways which form a loop through the area. The north leg is formed by U.S. 6, the east
leg by U-10, the south leg by $1-70$, and the west leg by U.S. 89. In addition, there is some local traffic across the Wasatch Plateau on U-29 between Orangeville and Ephraim, and on U-31 between Huntington and Fairview. The latter two roads are not always passable at higher elevations in the winter.

Average annual daily traffic (AADT) values for 1977 and 1978, are given in Table 3-17 at locations shown in Figure 3-11. In the locations where traffic is heaviest, (on U.S. 6 north and west of Price), there is already a four-lane highway. The Utah Department of Transportation is presently constructing a bypass south of Price which would relieve traffic congestion in the town. Highway U-10 immediately south of Price is reaching a practical maximum for a two-lane highway, considering the number of trucks it is carrying.

The main roads in this area are paved with asphalt. U-10, while paved with asphalt, was built for lighter-duty use than it is now getting from construction and increased coal mine development; furthermore, it was built on bentonitic Tropic shale, which has a very high shrink-swell coefficient. Continuing maintenance of this road is necessary. U-31 between Huntington and Fairview has been paved with asphalt. U-29 west of Orangeville has been paved as far as Joes Valley Reservoir; the county road connecting with Ephraim has a gravel surface.

The Denver \& Rio Grande Western (D\&RGW) Railroad mainline passes through Price and Helper, ascends to Soldier Summit, and descends through Spanish Fork Canyon into the Provo area. A D\&RGW spur line south from Thistle continues as far as Salina. The Salina spur is too light to accommodate the heavier 100 -ton coal cars. The Union Pacific Railroad mainline passes 2 miles west of Levan in Juab County. A coal loadout at this point is being used by Southern Utah Fuels in Convulsion Canyon. In addition, the Utah Railway goes southward from a point near Helper to serve the Hiawatha and Wattis mines. The Utah Railway shares track with the D\&RGW to form a dual track system across Soldier Summit. Parts of the Union Pacific mainline are double track; parts are not. Both the Union Pacific and D\&RGW mainline systems are heavily traveled; neither has reached capacity.

Projected for the future is a D\&RGW Castle Valley spur line, to begin at the Wellington coal loadout facilities about 1 mile west of Wellington and continuing southward some 65 miles through Castle Valley to a proposed loop and coal loadout facility about 4 miles southeast of Emery. A detailed proposal is not available; however, judging from available information the route would closely follow a proposed route studied by Kaiser Engineers in 1976 (unpublished maps on file, BLM), except that the

TABLE 3-17

## ANNUAL AVERAGE DAILY TRAFFIC FOR SELECTED YEARS

| Point | Location | $\begin{aligned} & \text { AADT } \\ & 1977 \end{aligned}$ | $\begin{aligned} & \hline \text { AADT } \\ & 1978 \\ & \hline \end{aligned}$ |
| :---: | :---: | :---: | :---: |
| 1. | Utah Hwy 96 between Scofield Res and U.S. 6 | 385 | 190 |
| 2. | U.S. 6 at Utah-Carbon County Line | 4,450 | 4,085 |
| 4. | U.S. 6 North of Price | 10,200 | 10,800 |
| 5. | U.S. 6 between Price and Wellington | 5,610 | 5,800 |
| 11. | U.S. 6 West of Sunnyside Jct (Utah Hwy 123) | 3,720 | 3,900 |
| 12. | Utah Hwy 123 between U.S. 6 and East Carbon City | 2,000 | 2,115 |
| 13. | U.S. 6 near Carbon-Emery County Line | 1,985 | 2,050 |
| 14. | Utah Hwy 10 South of Price | 6,975 | 7,450 |
| 16. | Utah Hwy 10 North of Huntington | 5,565 | 5,925 |
| 17. | Utah Hwy 31 West of Huntington | 985 | 1,130 |
| 18. | Utah Hwy 10 South of Huntington | 5,290 | 5,630 |
| 19. | Utah Hwy 29 West of Orangeville | 700 | 735 |
| 20. | Utah Hwy 10 South of Castledale | 2,650 | 2,850 |
| 22. | Utah Hwy 10 North of Ferron | 1,895 | 2,020 |
| 23. | Utah Hwy 10 South of Ferron | 1,825 | 1,940 |
| 25. | Utah Hwy 10 North of Emery | 675 | 720 |
| 28. | Utah Hwy 10 North of I-70 | 405 | 540 |
| 30. | Utah Hwy 72 near Sevier-Wayne County Line | 25 | 30 |
| 31. | Utah Hwy 72 South of I-70 | 25 | 30 |
| 33. | I-70 East of Salina | 2,275 | 2,450 |
| 34. | U.S. 89 South of Richfield | 3,035 | 3,225 |
| 35. | U.S. 89 North of Richfield | 3,300 | 3,375 |
| 36. | U.S. 89 North of Aurora | 2,275 | 2,395 |
| 37. | U.S. 89 South of Salina | 2,800 | 2,945 |
| 38. | U.S. 89 near Sanpete-Sevier County Line | 3,695 | 3,910 |
| 39. | Utah Hwy 28 North of Gunnison | 1,970 | 2,080 |
| 40. | U.S. 89 North of Gunnison | 1,365 | 1,445 |
| 41. | U.S. 89 North of Manti | 2,375 | 2,500 |
| 43. | U.S. 89 North of Ephraim | 1,850 | 1,960 |
| 44. | U.S. 89 South of Mt. Pleasant | 4,050 | 4,285 |
| 45. | U.S. 89 North of Mt. Pleasant | 1,765 | 1,825 |
| 46. | Utah Hwy 31 at Sanpete-Emery County Line | 210 | 470 |
| 48. | Utah Hwy 31 East of Fairview | 325 | 440 |
| 49. | U.S. 89 North of Fairview | 1,735 | 1,775 |

Notes: Points correspond to map, Figure 3-11, and correspond to the same locations as are given in the Alternatives.


โIーを ヨyก9I」
」४४HO ヨ9४ヨ7IW 0ヨ1つヨ7ヨS

## DESCRIPTION OF THE ENVIRONMENT

D\&RGW route would pass east of Elmo instead of west of it. An Environmental Assessment Report concerning the proposed land exchange was prepared by BLM's Moab District in June 1979. Although no definite construction schedule has been received from D\&RGW, it is expected that the railroad spur would be constructed and operable by 1990.

Traffic accident information obtained from the Utah Department of Transportation, Division of Safety, for the Final Environmental Statement, Development of Coal Resources in Central Utah, (GS, 1979) is summarized in Table 3-18. These figures may be compared with Statewide averages of 1.43 accidents per million vehicle miles for interstate routes, 3.53 for Federal-Aid primary routes, and 5.05 for Federal-Aid secondary routes.

## CULTURAL RESOURCES

Approximately 5 to 10 percent of the area on the tracts has been intensively evaluated. Seventy-nine cultural resource sites have been identified on the proposed tracts during these coal related inventories and several clearances for other energy related projects in the area. Twenty-seven are located on the Wasatch Plateau tracts and 52 on the Emery tracts. However, data are incomplete and an additional 235 to 290 sites could be found on the Emery tracts and 72 to 111 sites on the Wasatch Plateau tracts. An estimated 130 sites are located on the Hollberg PRLA. Table 3-19 lists the number of sites on each tract as well as density projections.

All but one of the 79 sites are prehistoric and are representative of three successive Aboriginal cultures, Paleo Indian, Desert Archaic and Fremont. Largely unknown in Utah, Paleo Indian groups ( 10,000 to 6,000 B.C.) in the southwest hunted now extinct mammals and bison. The Desert Archaic culture ( 8000 B.C. to A.D. 400) is characterized by a hunting and gathering economy. The later Fremont people (A.D. 400 to 1300) practiced corn, bean, and squash cultivation, the making of pottery, and permanent housing. The one historic site is a small Euro-American dump of minor scientific significance. Other historic sites, particularly remains of early mining efforts, are known to be in the area and could be located on some of the tracts. Additional inventories are needed to determine the extent of these sites.

The heaviest concentrations of sites in the study area are found on the proposed North Horn Mountain and Emery North tracts and the Hollberg PRLA (Table 3-19).

Varied plant and animal resources on the North Horn Mountain tract may have provided excellent hunting and gathering opportunities for both Fremont and Archaic groups. Indicative of this behavior, the majority of prehistoric sites consist of temporary camps, rock shelters, and open lithic scatters. Preliminary surveys are identifying concentrations of scientifically important sites which may collectively qualify to the National Register of Historic Places as an archaeological district. The potential for an archaeological district will be assessed when district boundaries and site densities are determined. Its eligibility as a National Register property will be made at the same time.

The Emery tracts and Hollberg PRLA contain an important resource of chert, a raw material used for tools by local prehistoric peoples, which is commonly found on large portions of these tracts. Preliminary surveys indicate these chert sources were heavily exploited and many of the sites identified on these tracts are amorphous large lithic scatters and quarries. In addition, many potentially significant temporary camps, rock shelters, and rock art sites are found in the canyons and pinyon-juniper sections of these tracts.

Prehistoric and historic site densities are anticipated to be very low for the proposed Slaughterhouse Canyon, Gordon Creek, Cottonwood, Meetinghouse Canyon, Rilda Canyon, Tucker Canyon and Miller Creek tracts. Currently no sites are known on any of these tracts; however small and sparsely distributed historic camps, prehistoric rock shelters, lithic scatters, and temporary camps have been found in the vicinity and some could be located on the tracts.

One National Register Property, The RochesterMuddy Petroglyph (42EM392) is located adjacent to the Emery North tract. A lithic and Fremont ceramic scatter which contained a Paleo-Indian lithic tool has been discovered on the Emery Central tract. If the diagnostic artifact is a Plano Complex projectile point, the site would be one of a very few early sites known in the area and would be of sufficient importance to be considered for nomination to the National Register of Historic Places. However, more data are needed before an eligibility determination can be made. No other National Register listed or nominated properties are known to be located on the proposed tracts or the Hollberg PRLA. National Register eligibility has not been determined for the remaining sites. The Trough Hollow Archaeological District, located a few miles east of the Emery coal tracts, is a scientifically valuable resource. Steps are underway to nominate the area to the National Register of Historic Places.

TRAFFIC ACCIDENT RATE, 1972 to 1976 CENTRAL UTAH REGION

| Highway | Location | ADT Accident |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  |  | miles | vpd | Rate |
| 1-70 | Salina to Spring Canyon Interchange | 17.5 | 1,274 | 3.09 |
| 1-70 | Spring Canyon to Fremont Junction | 16.4 | 1,217 | 3.46 |
| 1-70 | Fremont Jct. to Sevier-Emery Co. Line | 2.8 | 1,018 | 1.54 |
| U-96 | Total, Clear Creek to U.S. 6 | 22.9 | 337 | 2,80 |
| U.S. 6 | Wasatch-Utah Co. Line to Utah-Carbon Co. Line | 9.0 | 3,122 | 1.42 |
| U.S. 6 | Utah-Carbon Co. Line to U-33 at Castie Gate | 7.9 | 3,168 | 1.97 |
| U.S. 6 | U-33 to U-10 at Price | 10.2 | 5,467 | 3.91 |
| U.S. 6 | U-10 to Carbon-Emery Co. Line | 21.0 | 3,293 | 3.43 |
| U-123 | Total, Sunnyside to U.S. 6 | 11.4 | 1,148 | 3.94 |
| U-10 | U.S. 6 at Price to U-31 at Huntington | --data not available-- |  |  |
| U-10 | U-31 to U-57 S of Castle Dale | --data not available- |  |  |
| U-10 | U-57 to Ferron | 9.8 | 1,170 | 3.82 |
| U-10 | Ferron to Emery-Sevier Co. Line | 30.2 | 527 | 3.25 |
| U-10 | Emery-Sevier Co. Line to Fremont Junctlon | 5.8 | 372 | 3.30 |
| U-29 | U-10 to Orangeville | 3.8 | 936 | 4.00 |

Source: Utah Department of Transportation, Division of Safety, February 1978 (letter)
Notes: Based on acidents per million vehiclemiles, 1972 to 76 averages These locations approximate but do not exactly correspond to locations given for traffic projections ADT - 1972-76 average daily traffic vpd - vehicles per day, all types

TABLE 3-19

CURRENT AND PROJECTED NUMBER OF CULTURAL SITES ON EMERY COAL FIELD

| Number of Sites Currently | Projected Number <br> Recorded |  |
| :--- | :---: | :---: |
| Emery North | 40 | $150-175$ |
| Emery Centr al | 12 | $75-100$ |
| Emery South | 0 | $10-15$ |
| Hollberg PRLA | 0 | 130 |

CURRENT AND PROJECTED NUMBER OF SITES ON WASATCH PLATEAU

| Tracts | Number of Sites Currently <br> Recorded | Projected Number <br> of <br> Sites |
| :--- | :---: | :---: |
| Tucker Canyon | 0 | $1-2$ |
| Milier Creek | 0 | $2-5$ |
| Gordon Creek | 0 | $5-10$ |
| Slaughterhouse Canyon | 0 | $1-2$ |
| Meetinghouse Canyon | 0 | $2-5$ |
| Rilda Canyon | 0 | $1-2$ |
| Cottonwood | 0 | $5-10$ |
| North Horn Mountain | 27 | $55-75$ |

## SPECIAL DESIGNATION AREAS

There are no officially designated wilderness areas, primitive areas, natural areas, or wild and scenic rivers within any of the proposed lease tracts.
Portions of the proposed Emery North, Emery Central, and Hollberg lease areas are located within BLM Roadless Inventory Unit UT-060-012 (for location of the unit see Figure 3-12). This roadless unit was previously inventoried for possible inclusion in the National Wilderness Preservation System, was determined to lack wilderness character, and was released from further wilderness review (BLM IPP EIS, 1979). However, the inventory findings and subsequent decision were appealed (January 1980) and until a decision is again reached (timeframe unknown), the unit remains under wilderness review and must be managed in a manner that will not impair any suitability it may have for wilderness designation.
The Heritage Conservation and Recreation Service (HCRS) is conducting an inventory of the Nation's rivers and river segments to identify those that merit recognition and protection under the Wild and Scenic Rivers Act. Seventy miles of Muddy Creek have been included in a resultant nationwide listing of rivers and river segments which, according to HCRS, are in a relatively natural and undeveloped condition. One and one-half miles of Muddy Creek cross the Emery North tract. The likelihood of Muddy Creek receiving official status under the Wild and Scenic Rivers Act is not known. At this time, Muddy Creek is not subject to protection provided by that Act.

Within the Four-County region, there are no officially designated wilderness areas, primitive areas, or wild and scenic rivers, and Link Flat (outside the proposed lease tracts) is the only designated natural area. Within the Four-County region there are 12 areas that are presently being reviewed for wilderness values and five rivers that are presently being reviewed for wild and scenic river values. These 17 areas with potential for special designation are listed in Appendix 4. They are not located in the lease tracts except as previously discussed.

## VISUAL RESOURCES

The scenic character of the Four-County region is one of vast open space and variation in landform, vegetation, and color. The landscape includes sparsely vegetated desert valleys, forested plateaus, and colorful canyonlands. Rural towns, access roads, mining developments, power devel-
opments and transmission lines, livestock grazing, and recreational use have had some impact on natural scenic values, but much of the area appears undisturbed.

Coal mining and associated developments have modified the natural landscape character adjacent to the tracts on portions of the east Wasatch Plateau between Scofield Reservoir and Salina Canyon, and to a lesser extent in portions of the Emery coal field to the south and east of Ferron and Emery Utah. Landscape modification from coal mining is for the most part limited to areas with low or moderate scenic quality. The few intrusions that extend into areas of high scenic quality are limited to roadways, telephone lines, and powerlines. Direct mining activities are located away from major travel routes, and are seldom seen by individuals traveling through the region.
The lands containing the Wasatch Plateau and Emery lease tracts have been inventoried for visual resource values. The tract lands have neither outstanding nor unique scenic values. They are located on steeply dissected plateaus that are common to the region and are low to moderate in scenic quality. The tract lands have been given visual resource management (VRM) classifications as listed in Table 3-20. Management objectives for each VRM classification allow a different degree of modification in the landscape. Management objectives are described in Appendix 5.

The Tucker Canyon tract is located on a mountain slope visible from the following areas around Scofield Reservoir: (1) Scofield Reservoir State Park (more than 100,000 annual visits), viewing distance of approximately 4 miles; (2) Highway U-96 ( 345 vehicles daily), visible approximately 4 miles at a viewing distance of approximately 1.5 to 4 miles; (3) Scofield Lake, visible from as much as 40 percent of the lake at viewing distances of 0.5 to 4 miles and (4) Mountain Home and Aspen View subdivisions, three residential dwellings are located adjacent to the tract and the proposed Kristine mine would be highly visible at a distance of less than 0.3 mile. Other dwellings lie north of the tract boundary from where portions of the tract are visible from distances of less than 1 mile.

Although portions of the North Horn Mountain, Cottonwood, Meetinghouse and Rilda Canyon tracts are visible from well-traveled highways, the portions of the tracts where disturbance would occur are visible from low-volume, unpaved roads only. The Slaughterhouse, Gordon Creek, and Miller Canyon tracts are only visible from lowvolume, unpaved roads. The number of travelers that would be affected is not known.

Most of the Emery North tract is visible from the town of Emery at a distance of approximately 2
TABLE 3-20
VISUAL RESOURCE MANAGEMENT CLASSIFICATIONS

| Tract | CTassification | General Location of Classification Area |
| :---: | :---: | :---: |
| North Horn | Partial Retention Modification | Area highly visible from U-10 and forest access roads Remainder of tract |
| Cottonwood | Partial Retention Modification | Area highly visible from U-10 and forest access roads Remainder of tract |
| Meetinghouse Canyon | Partial Retention Modification | Area visible from U-31 Remainder of tract |
| Gordon Creek | $\begin{aligned} & \text { Class III } \\ & \text { Class IV } \end{aligned}$ | Far east boundary Remainder of tract |
| Emery North | Class II Class III Class IV | Southeast cliffs <br> Area highly visible from U-10 Remainder of tract |
| Emery Central | $\begin{aligned} & \text { Class II } \\ & \text { Class III } \end{aligned}$ | Cliffs highly visible from $\mathrm{I}-70$ Remainder of tract visible from U-10 |
| Emery South | Class II | Entire tract |
| Slaughterhouse Canyon | Class IV | Entire tract |
| Tucker Canyon | Class III | Entire tract |
| Miller Creek | $\begin{aligned} & \text { Class III } \\ & \text { Class IV } \end{aligned}$ | Far east boundary Remainder of tract |
| Rilda Canyon | Partial Retention Modification | Area visible from U.S. Highway 31 Remainder of tract |
| Hollberg PRLA | Class IV | Entire tract |

## DESCRIPTION OF THE ENVIRONMENT

miles. The Emery North tract is also visible to travelers on Highway U-10 ( 675 vehicles daily) for approximately 8 miles at viewing distances of 1 to 8 miles (Utah, 1978).

The Emery Central tract is less than 1 mile from Interstate 70, but is mostly hidden from view by the prominent Coal Cliffs. Most of the tract is visible from the town of Emery and from Highway U-10 at viewing distances of 4 miles or greater.

The north boundary of the Emery South tract is visible to travelers on Interstate 70 ( 1,690 vehicles daily) for less than 1 mile at a viewing distance of approximately 3 miles (Utah, 1980). Because of intervening high terrain, the tract can only be seen for a few seconds.

## RECREATION

Nearly all land in the Four-County region is used for dispersed outdoor recreation (e.g., big game, upland game and waterfowl hunting, fishing, sightseeing and off-road vehicle use). If overall statistics for the State of Utah are applied, approximately 17.5 percent or 11,144 residents of the FourCounty region presently hunt deer; approximately 1.7 percent or 1,083 residents hunt elk; 8.5 percent or 5,413 residents hunt upland game; and approximately 45 percent or 28,655 residents fish (Thayne and Hudson, 1978). The success trend in the region is down from early 1970 figures for big game hunting and fishing, but is generally up from early 1970 figures for upland game hunting (UDWR: Big Game, 1980; Upland Game, 1979; Fishery Management, 1979). Of the total people hunting deer in the Four-County region, no more than 41 percent of the deer hunters originate in the Four-County region (UDWR, Big Game, 1980). The percentages of elk hunters and fishermen originating from the FourCounty area are unknown but probably less than the deer hunter percentage. The percentage of upland game hunters originating in the Four-County region is unknown but probably greater than the deer hunter percentage. Off-road vehicle activity in the region is generally associated with hunting. Approximately 6.8 percent or 5,177 residents in the Four-County region own motorcycles and approximately 25 percent or 19,034 residents presently own a 2 -wheel drive truck or a 4 -wheel drive vehicle (SCORP, 1978).

The Wasatch Plateau and San Rafael Swell are the major recreation attractions in the region. Developed recreation sites (campgrounds and picnic areas) within the Plateau and Swell areas and their current visitor use are listed in Table 3-21. Of the 34 developed sites, 16 are now being used beyond their capacity (use greater than 40 percent). The

Forest Service has found that sites receiving more than 40 percent use deteriorate rapidly, are difficult to maintain, and are highly subject to vandalism. Sevier and Sanpete Counties have camping and picnicking sites in excess of demand. Carbon and Emery Counties have an excess of demand for camping and picnicking sites over the current supply (SCORP, 1973).

There are not enough golf courses, playfields, and swimming pools to meet standards proposed by the State of Utah (SCORP, 1970, 1978). A 1980 study by the Southeastern Utah Association of Local Governments (including Carbon, Emery, San Juan and Grand Counties) indicates that of 586 residents polled, 86 percent of the respondents rated local recreational facilities as poor. Fifty-six percent of the respondents indicated that recreational facilities should be either first or second priority for spending of local tax dollars. In the study, playgrounds and swimming pools were rated as the first and second recreational needs (SEUALG, 1980). According to a 1980 Centaur Associates study, some of the towns in the Four-County impact area have identified needs for other diversified recreational facilities including handball and tennis courts, bowling alleys, skating rinks, city parks, and ball parks (Centaur Associates, Inc., 1980).

None of the proposed lease tracts contain developed recreation sites. All of the tracts support intermittent dispersed recreational activities (e.g., big and upland game hunting, sightseeing, ORV activity). However, none of the tracts provided exceptional opportunities for any of these activities. In most cases, visitor use is unquantified. A road through the Emery North tract provides the only access to the Rochester Muddy Creek Petroglyph Panel, which currently provides an unquantified number of sightseeing days. The Huntington Canyon (U-31), Eccles Canyon and Scofield Reservoir (U-96) roads, which would provide access to the Meetinghouse, Rilda, Slaughterhouse and Tucker Canyon tracts respectively, currently provide recreational access to the Wasatch Plateau. Average daily traffic on these roads is shown under the Transportation section of this document.

## KAIPAROWITS PLATEAU

## INTRODUCTION

The Utah Power and Light Company PRLAs are located on the northern part of the Kaiparowits Plateau. The PRLAs are primarily in Garfield County.

RECREATION USE ON SELECTED DEVELOPED SITES IN THE FOUR-COUNTY REGION

| Managing Agency | $\begin{aligned} & \text { Visitor } \\ & \text { Daysáa }^{\text {and }} \end{aligned}$ | $\begin{aligned} & \text { Percent of Theoretical } \\ & \text { Maximum Capacityb } \end{aligned}$ |
| :---: | :---: | :---: |
| BLM |  |  |
| 1. Price Canyon Recreation Area | NAC | NA |
| 2. Cleveland Lloyd Dinosaur Quarry | d4,000 | NA |
| 3. Cedar Mountain Recreation Area | NA | NA |
| 4. San Rafael Campground | NA | NA |
| 5. The Wedge Overlook | NA | NA |
| FOREST SERVICE |  |  |
| 6. Fish Creek Campground | 2,200 | 50 |
| 7. Flat Canyon Campground | 27,600 | 114 |
| 8. Gooseberry Campground | 10,800 | 58 |
| 9. Lake Hill Campground | 4,000 | 20 |
| 10. Old Folk Flat Campground | 14,900 | 46 |
| 11. Spring City Picnic Area | 1,000 | 23 |
| 12. Indian Creek Campground | 5,900 | 8 |
| 13. Manti Community Picnic Area | 8,000 | 41 |
| 14. Pinchot Picnic Area | 5,800 | 30 |
| 15. Joes Valley Campground | 21,100 | 37 |
| 16. Twelve Mile Campground | 8,200 | 41 |
| 17. Ferron Canyon Campground | 6,800 | 18 |
| 18. Maple Canyon Campground | 4,200 | 18 |
| 19. Maple Grove Campground | 26,800 | 48 |
| 20. Gooseberry Campground | 10,800 | 58 |
| 21. Doctor Creek Campground | 12,400 | 30 |
| 22. Mackinaw Campground | 36,000 | 49 |
| 23. Bowery Picnic Area | 700 | 5 |
| 24. Doctor Creek Group Camping | 4,700 | 21 |
| 25. Frying Pan Campground | 3,800 | 25 |
| 26. Bowery Campground | 27,100 | 46 |
| 27. Monrovian Picnic Area | 4,300 | 8 |
| 28. Forks of Huntington Campground | 7,000 | 56 |
| 29. Ferron Reservoir Campground | 14,500 | 45 |
| STATE OF UTAH |  |  |
| 30. Scofield Lake State Recreation Area | 100,000 | 78 |
| 31. Huntington Lake State Beach | d104,180 | 10 |
| 32. Palisade Lake State Recreation Area | d 36,490 | 130 |
| 33. Green River State Recreation Area | d115,980 | 127 |
| 34. Goblin Valley State Reserve | d 18,020 | 100 |

Source: DOI, GS, 1979, Central Regional Coal Environmental Statement
aRecreation use reported in visitor days for 1977 (visitor day consists of 12 visitor hours which may be aggregated by one or more persons)
beyond 40 percent use, sites deteriorate rapidly, require heavy maintenance, and user experience levels diminish from overcrowding (i.e., loss of privacy, increase in noise, etc.)
${ }^{C}$ Not available
dGiven in number of visits - visitor day estimates are not available

## DESCRIPTION OF THE ENVIRONMENT

Mine number one and the railroad coal loadout are in Kane County.

The affected environment and environmental consequences of mining coal on the Kaiparowits Plateau are also discussed in the following documents: Final Environmental Impact Statement, Kaiparowits (DOI, 1976); Final Environmental Statement, Development of Coal Resources in Southern Utah (GS, 1979); and Kaiparowits Coal Development and Transportation Study (ERT, 1980).

## CLIMATE AND AIR QUALITY

The climate of the Kaiparowits Plateau is characterized by hot summers and cold winters. Mean January maximum and minimum temperatures recorded at Escalante (approximately 5,700 feet elevation) in January are about 38 degrees F. and 10 degrees $F$. July temperatures consist of a mean maximum of 84 degrees $F$. and mean minimum of 53 degrees $F$.

The lease area generally averages 8 to 12 inches of precipitation annually. The wettest period of the year on the Plateau normally occurs during the winter with a broad secondary maximum extending through late summer. About 62 percent of the annual precipitation usually falls during the winter even though the winter season air masses from the Pacific Ocean reaching Southern Utah from the west are often dry and associated precipitation is light. During the summer, moist air masses move into southern Utah primarily from the Gulf of California. Precipitation from these air masses usually results in thunderstorms with maximum activity occurring during late July (ERT, 1980).

Surface winds in the area are strongly influenced by local topography. During the daytime and strong regional wind conditions, surface winds are channeled by valleys and around blocking terrain, decreasing in speed and increasing in turbulence. At night, the upper level winds often become decoupled from the surface winds which flow downhill as air near the ground cools.

The Kaiparowits Plateau area is primarily a rural area with light industrial activity. The existing air quality is generally excellent. Limited air quality monitoring within the region has been conducted by the Utah Air Quality Bureau, Arizona State Department of Health Services, Salt River Project, and other short-term monitoring performed for potential powerplant sites. The data have been summarized recently in a report by Environmental Research and Technology for BLM (ERT 1980). Within the area of study, all air quality parameters appear to be within allowable State and Federal air quality standards
with the exception of the short-term particulate limitations during wind periods.

## SOILS

Soils in the study area receive 8 to 12 inches of rainfall annually and are moist for some part of the summer. Mean annual soil temperature is 47 degrees to 59 degrees $F$, while mean summer temperature is above 59 degrees $F$. Five soil associations have been identified in the area and are summarized as follows:

## Deep Plateau Soils Association

The Deep Plateau Soils Association is about 70 percent alluvial soils, 20 percent warm-temperature soils, and 10 percent soils with higher than normal organic matter. Slopes in this association vary from nearly flat to moderately steep.

These soils contain small to moderate amounts of exchangeable sodium. Depth of the soil often exceeds 40 inches. Surface layers exhibit colors from light brownish gray to reddish brown, with particles moderately coarse to moderately fine. Subsoil and lower lying layers consist of light reddish brown to pinkish gray particles of medium texture. Erosion susceptibility, should vegetation be removed, would be moderate because of the unconsolidated and medium-textured nature of the soils.

## Shallow Plateau Soils Association

The Shallow Plateau Soils Association is 55 percent soils 10 to 20 inches deep, and 45 percent soils deeper than 20 inches. These soils contain small to moderate amounts of exchangeable sodium. Surface layers display colors from reddish brown to yellowish red, with particles moderately coarse in texture. Subsoil contains medium-textured soil particles varying from brown to reddish brown to yellowish red. Substrata, found only in the deeper soils, varies from brown to yellowish red, with medium to coarse textured particles. Deeper soils also display a calcium carbonate layer between 6 and 24 inches deep.

## Shallow Soil-Rock Outcrop Association

The Shallow Soil-Rock Outcrop Association is comprised of 60 percent shallow and warm-tem-
perature soils, 15 percent rock outcrops, and 25 percent cool-temperature soils. Slopes vary from moderately steep to steep at an elevation of 5,000 to 8,000 feet.

These soils also contain small to moderate amounts of exchangeable sodium. Surface layers consist of medium to moderately-fine particles, varying from light brownish gray to light yellowish brown. Subsoil contains moderately fine particles exhibiting colors from pale brown to brownish gray. Soil depth in this association is 20 inches or less.

## Sandy Soils Association

The Sandy Soils Association is comprised of 60 percent sandy soils, and 20 percent warm-temperature soils. Slopes are nearly flat at an elevation of 4,400 to 5,500 feet. These soils contain small to moderate amounts of exchangeable sodium. Surface layer, substrata, and lower layers have coarsetextured, yellowish red particles.

## Badland-Rockland Association

The Badland-Rockland Association consists of 30 to 50 percent rock outcrops, 20 to 40 percent shallow and very shallow soils over sandstone bedrock or shale, and 5 to 10 percent deep and moderately deep soils. Slopes vary from nearly level to very steep. This association occurs on benches and mesas along steep-sided canyons. Runoff is rapid to very rapid with high sediment production.

## WATER RESOURCES

Surface drainage from the Plateau is through deeply cut steep-walled canyons. Drainage of the northern part of the Plateau is into the Escalante and Paria Rivers and in the southern part directly into Lake Powell through Wahweap, Last Chance, Warm Creek, Rock Creek, Little Valley, and Croton Canyon. All of these drainages are intermittent except the Paria and Escalante Rivers which are perennial streams draining the western and eastern sides of the Plateau. In late spring and early summer, the intermittent streams are completely dry except for occasional springs and seeps. Runoff is highly variable, generally of local extent, and may be of considerable magnitude during cloudburst activity.

The quality of surface water varies with the discharge, improving during periods of high flow.

Water samples taken during a period of low flow in October 1948 at the mouth of Wahweap, Warm, and Last chance Creeks, ranged from about 650 to $1,050 \mathrm{mg} / \mathrm{L}$ of dissolved solids. Water samples from springs and seeps contain a dissolved solids concentration commonly ranging from about 1,000 to $3,000 \mathrm{mg} / \mathrm{L}$.

The regional water table beneath the Kaiparowits Plateau ranges from less than 100 feet beneath land surface in the southern part of the Plateau to several thousands of feet beneath the higher benches in the northern part of the Plateau. Limited data indicate that direction of ground water movement in the regional system beneath the Plateau is southward toward the Colorado River. The Navajo Sandstone forms the principal regional aquifer. Around the margins of the Plateau where the Navajo Sandstone occurs near the surface is found the best source of ground water for large sustained withdrawals by wells. In these areas saturated sections of fractured formation up to 1,000 feet thick can yield up to 1,000 gallons per minute to single wells.

Beneath the higher benches of the Plateau, however, shallower perched water of limited extent and amount occurs above the regional water table. Data from exploratory drilling indicate that the principal coal beds are above the regional water table, but one or more perched ground water bodies may occur above or within these beds. Water was obtained for drilling on the PRLAs by trenching the alluvium in the bottoms of Alvey Wash and Right Hand Collet Canyon (Camp Spring).

The few seeps and springs that have been identified in the area are either located at contacts between massive sandstone and mudstone beds or in the bottoms of a few of the washes (Table 3-22). Most of the springs on the Plateau are located at the contact of the thick mudstone unit at the base of the Wahweap Formation and the mediumgrained massive sandstone beds at the top of the Drip Tank Member of the Straight Cliffs Formation. Other springs occur at the base of the porous and permeable sandstones within the Straight Cliffs Formation.

Little or no ground water quality data are available for large areas of the Kaiparowits Plateau. A regional analysis of ground water quality prepared for the Environmental Impact Statement for the Kaiparowits power project (BLM, 1976) was inferred largely from geology. That analysis indicated that ground water in most parts of the Plateau ranges from fresh ( 0 to $1,000 \mathrm{mg} / \mathrm{L}$ TDS) to slightly saline ( 1,000 to $3,000 \mathrm{mg} / \mathrm{L}$ TDS).

## GEOLOGY, TOPOGRAPHY, PALEONTOLOGY, MINERAL RESOURCES

The Kaiparowits Plateau is a large high plateau which characterizes the physiography of south-central Utah. The interior of the Plateau where the PRLAs are located consists of stair-stepped benches which range in elevations from 7,600 to 9,100 feet. The coal field is an upland area about 20 miles wide and 50 miles long trending in a northwesterly direction from the Glen Canyon National Recreation Area toward Escalante. Precipitous cliffs form most of the plateau margins; Straight Cliffs Escarpment on the east, East Kaibab Monocline to the west, and several north/northwest trending incised canyons to the south. The transitional nature of the boundary on the north end of the Plateau is not well defined (Doelling, 1972).

The important coal beds in the Kaiparowits Plateau occur in three zones in the John Henry Member of the Cretaceous Straight Cliff Formation. These three zones in descending order, Alvey, Rees, and Christensen, are separated by marine sandstones. Each zone may contain several potentially minable coal beds. The individual coal beds are generally quite lenticular and cannot be correlated with certainty without fairly detailed, closely spaced data which are not yet available.

Within the $18,000+$ acres being proposed for exchange, Utah Power and Light Company has identified as many as 13 coal beds that may be of sufficient continuity to warrant mining. These lands contain coal resources estimated at almost 1.3 billion tons. The average heating value for the coal in all beds is $10,135 \mathrm{Btu} / \mathrm{lb}$. as received. Ash content averages 10.5 percent and sulfur content 0.82 percent (UP\&L, 1979).

The area is structurally simple with the coal-bearing strata dipping gently on the flanks of a northsouth trending anticline and syncline. Overburden on the coal ranges from 0 feet at outcrops to 1,800 feet.

The PRLAs could possibly contain oil and gas, but the potential has not yet been tested. Only 3 wells have been drilled on the lands, none of which sustained commercial production. The nearest significant production has come from the Upper Valley Field 2 to 3 miles west of the PRLAs. Through October of 1979, in excess of 18 million barrels of oil had been produced from the field. All of the production has been from pre-Cretaceous rocks.

The Kaiparowits Plateau is characterized by expansive exposures of fossil-bearing sedimentary rocks, the only bedrock which has a realistic probability of yielding significant fossils. It is believed
that the fossils tend to occur in isolated pockets separated by wide horizontal and vertical expanses of unfossiliferous rock. The Moenkopi, Chenle, Kayenta, Kaiparowits and Wasatch Formations contain significant communities or individual organisms in abundance which have been afforded some form of legal or statutory protection (ERT, 1980).

## VEGETATION

Vegetation on the PRLAs is characteristic of the cold desert zone. The major factors in distribution of vegetation types are climate, topography, aspect, soils and past land use.

## Vegetation Types

Three major vegetation types are found on the PRLAs. The Pinyon-Juniper Woodland type is most common, occupying approximately 80 percent of the area. This type occurs on gentle to steep slopes with shallow to moderately deep soils. The Sagebrush Grass type occupies about 15 percent of the area in flats within the Pinyon-Juniper Woodland type. The Grassland type occupies less than 5 percent of the area and is currently being invaded by pinyon-juniper and sagebrush in some areas. The dominant species in these types are listed in Table 3-23.

Because of the lack of perennial streams, the Riparian type is limited to small patches of saltcedar (Tamarix aphylla) and greasewood (Sarcobatus vermiculatus) along the streambed in Alvey Wash and Little Valley Wash.

To enhance production of forage for grazing animals and stabilize soils, areas of Pinyon-Juniper Woodland and Sagebrush Grass vegetation types have been modified. On Camp Flat nearly 800 acres of pinyon-juniper were chained and the area seeded with crested wheatgrass. In Little Valley nearly 1,300 acres of sagebrush were sprayed or plowed, and seeded with crested wheatgrass. The success of these seedings indicates that reclamation of disturbed sites could be achieved. In terms of forage production, more usable forage would be produced after 5 years than is presently being produced on pinyon-juniper sites in the area (Phillips, 1976).
TABLE 3-22

| Name | Type | Location | Formation | Date | Temp | Flow In |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  | Degrees F | gal/min |
| Oak Spring | Spring | $\begin{aligned} & \text { NE } 1 / 4 \mathrm{NE} 1 / 4 \mathrm{Sec} .13 \text {, } \\ & \text { T. } 36 \text { S., R. } 2 \mathrm{E} \text {. } \end{aligned}$ | Ksd | 7/21/79 | 66 | 0.125 |
| Rock Spring | Spring | NE $1 / 4$ NE $1 / 4 \mathrm{Sec} .6$, T. 37 S., R. 3 E. | Kw ss | 7/21/79 | 59 | 1 |
| Camp Spring | Spring-Fed Stream | $\text { SW } 1 / 2 \mathrm{SW} 1 / 4 \mathrm{sec} .36 \text {, }$ $\text { T. } 37 \text { S., R. } 2 \text { E. }$ | - | 7/24/79 | 82 | 8.6 |
| Hard Head Water | Developed Spring | $\begin{aligned} & \text { SE } 1 / 4 \mathrm{sec} .15, \\ & \text { T. } 38 \mathrm{S.,} \mathrm{R.} 3 \mathrm{E} . \\ & \hline \end{aligned}$ | Kw | 7/24/79 | 61.5 | 1 |

TABLE 3-23

| Type | Common Name | Scientific Name |
| :---: | :---: | :---: |
| Pinyon-Juniper Wood land | Pinyon pine | Pinus edulis |
|  | Utah juniper | Juniperus osteosperma |
|  | Big sage | Artemisian tridentata |
|  | Rabbitbrush | Chrysothamnus nauseosus |
|  | Cheatgrass | Bromus tectorum |
| Sagebrush-Grass | Big sage | Artemisian tridentata |
|  | Rabbitbrush | Chrysothamnus nauseosus |
|  | Wheatgrass | Agropyron Spp. |
|  | Sand dropseed | Sporobolus cryptandrus |
|  | Squirreltall | Sitanion hystrix |
|  | Three awn | Aristida Spp. |
| Grassland | Blue grama | Bouteloua gracilis |
|  | Indian ricegrass | Oryzopsis hymenoides |
|  | Wheatgrass | Agropyron Spp. |
|  | Sand dropseed | Sporobolus cryptandrus |
|  | Cheatgrass | Bromus tectorum |

## DESCRIPTION OF THE ENVIRONMENT

## Threatened or Endangered Plants

A survey in 1977 failed to locate any threatened or endangered plant species on the PRLAs (Welsh, 1977). A list of officially listed or candidate threatened or endangered plants in the region may be found in the Final EIS, Development of Coal Resources in Southern Utah (GS, 1979).

## WILDLIFE

Wildlife in Garfield County is characterized by diversity of species and low population. The region is home for a large variety of species resulting from life zones ranging from desert shrub to high mountain forest. Species in the area include: 86 mammals, 328 birds, 36 reptiles, and 11 amphibians. Only species of significant human interest, and unique, rare, or endangered species are discussed here.

A relatively large amount of data are available for game species, however, data on nongame species are scarce. Data relating to big game species, cougar, and bear are discussed in terms of Utah Division of Wildlife Resources (UDWR) management units within the county. Information on upland game birds, waterfowl, and cottontail rabbits is given by county, as compiled by UDWR. Figures on current population are not available, but trends are known and relative abundance of game species can be inferred from harvest statistics.

The PRLAs are in deer herd unit 60 with deer herd unit 51B to the north on the Aquarius Plateau. A small recently introduced elk herd is spreading over the Aquarius Plateau. Presently only restricted hunting is allowed. Bighorn sheep were widespread in southern Utah before white men first came to the area. The larger populations are east of the Colorado River, and expansion to the west is blocked by Lake Powell. However, recent transplants were made in Moody Canyon and Rock Creek drainages west of the Colorado River.

Mountain lion (cougar) are found throughout the region where suitable habitat exists. Mule deer are their principal prey, and lion are usually associated with deer populations in remote areas. Currently, a 12 -year cougar predation study is being conducted by UDWR in this remote area.

Cottontail rabbits, ring-neck pheasants, and doves are found on agricultural lands associated with communities in the area. Blue grouse are found in the forests and meadows of the Aquarius Plateau with small isolated chukar populations centered around the watering holes in the desert can-
yons (Table 3-24). Waterfowl use is concentrated on the Aquarius Plateau. In addition, the Escalante River, its drainages, other intermittent streams, stock ponds, etc., are also used.

Raptor nesting sites were studied in eastern Garfield County (Hoffman, 1978). Sparrow hawks were the most numerous nesters followed by red-tail hawks, Cooper's hawks, and great-horned owls. Most common nest sites were cliffs, riparian tree vegetation, and solitary Douglas fir stands. Nesting concentration areas were Fifty Mile Mountain, upper Alvey Wash, The Gulch, Black Canyon, and the north 4 miles of Straight Cliffs. Spotted owls, a UDWR sensitive species, were noted in upper Alvey Wash, west of the PRLAs.

Several species of small mammals, such as mice, rats, squirrels, shrews, moles, bats, gophers, and rabbits, are distributed throughout the region. Many of these are prey for raptors, badger, fox, coyote, bobcat, and skunk. Rabbits, bobcat, fox and coyote are hunted or trapped for sport and pelts. The high price of bobcat pelts has led to their increased hunting and trapping and declining popuIation.

A total of 36 species of reptiles and 11 species of amphibians are in the area. They feed on vegetation, insects, fish, small mammals, reptiles, and amphibians, and are, in turn, prey for predatory mammals and birds. No threatened or endangered reptiles or amphibians are known in the region.

The American peregrine falcon (Falco peregrinus anatum) is one of the endangered bird species known in the region. Most sightings in recent years are probably migrant birds. The Northern bald eagle, an endangered species, winters in the valleys of Garfield County and along the Escalante River drainage.

In general, tributaries in the headwaters of the Escalante and Paria Rivers are cool, clear, and capable of supporting trout. As streamflow progresses downstream, irrigation withdrawals prevent stream growth; upper midsections of streams are usually dewatered. Downstream characteristics include warm temperature, high turbidity, heavy sediment load, high hardness and conductivity, fluctuating flow, many sections dewatered at times, and scarce fish.

Fish in the Escalante River system were investigated by McAda and others in their survey of fish in the southeastern Utah streams (McAda et al., 1977). It provides most of the fish data for this stream system. Although occasional trout are found in the Escalante, it is not classified as a sportfish stream by the Utah Division of Wildlife Resources. There are no reported endangered fish in the river. Seven streams tributary to the Escalante River

## DESCRIPTION OF THE ENVIRONMENT

have fish populations: Deer, Calf, Sand, Death Hollow, Pine, North, and Birch Creeks. Sections of Boulder and Pine Creeks are dewatered for irrigation, whereas sections of Sand and Death Hollow Creeks have slickrock substrates and steep gradients, limiting their capacities to produce fish.

The Utah Division of Wildlife Resources does not classify the Paria River as a gamefish stream, and in McAda's survey (1977) they found only speckled dace at six sampling stations, both inside and outside the county.

The Aquarius Plateau and Griffin Top have 40 reservoirs and/or lakes classified as trout waters. Only three of these reservoirs cover more than 40 acres and more than half of them cover less than 5 acres.

## LAND USE

The Kaiparowits Plateau is rural in character and nearly all of the lands are publicly owned and administered by BLM. Grazing is the predominate land use in the area. Parts of two grazing allotments (Alvey Wash and Last Chance) for cattle use during summer months are located on the PRLAs. About 200 AUMs are involved and the main grazing locations are in Little Valley, Camp Flat, and Relishen Seep areas. There are four springs on the two allotments.

In addition to grazing, the Federal lands are also managed for recreation use and mineral exploration and development.

Agricultural crop production is limited to small areas in or near the communities of Tropic, Henrieville, Cannonville, and Escalante. The predominant use of irrigated land is for pasture and alfalfa production, with limited acreage for small grains and corn. Lack of developed irrigation water and unfavorable economics have deterred further agriculture development.

## SOCIOECONOMICS

To an even greater extent than the Wasatch Pla-teau-Emery area, Garfield County and its constituent communities retain a rural flavor. The largest of these communities (Escalante) had less than 800 inhabitants in 1978; the remainder had populations ranging between approximately 140 and 400 . Population growth in Garfield County has been rather lethargic. Between 1960 and 1970 the population decreased 11.7 percent (from 3,577 to 3,157 ). From 1970 to 1976, the population remained around

3,200 . In 1978, the population was estimated to be around 3,600 .
The individual communities of Cannonville, Escalante, Henrieville, and Tropic have shown similar trends (Table 3-25). In the absence of major resource development projects, most of the communities in Garfield County are expected to either maintain approximately their current population levels or experience relatively slow but steady growth.

Employment in Garfield County has increased from 1,509 jobs in 1973 to 1,809 in 1978 (an increase of 20 percent, or an annual growth rate of 3.7 percent). At present, government is the largest employer providing 477 jobs or 26 percent of the total county employment. The service and manufacturing sectors are the next largest employer providing 296 jobs ( 16 percent) and 263 jobs ( 15 percent) respectively. Mining employment in Garfield County has grown from 13 jobs in 1973 to 113 jobs in 1978 (an increase of almost 800 percent). Total personal income in Garfield County has grown from \$10.9 million in 1973 to $\$ 19.9$ million in 1979 (an annual increase of 10.5 percent). Per capita income in Garfield County in 1978 was $\$ 5,574,15$ percent below the State average of $\$ 6,594$ and 29 percent below the national average of $\$ 7,840$.

The Garfield School District has substantial unused pupil capacity in nearly all schools. The district has been losing pupils at the rate of 2 to 3 percent per year resulting in loss of appropriations for school programs and teacher salaries. In the 1950s, there were approximately 1,600 pupils enrolled in district schools. At present, the figure is approximately half of that ( 842 pupils projected for fall of 1980). This decline in enrollment is most severe in Escalante where they are in danger of losing bus service due to declining enrollments. It is estimated that the district enrollment could double without the need for any additional construction (personal communication, Jolley, 1980). The exception to this situation is Escalante where little excess capacity exists in the elementary school.

The county is served by Garfield Memorial Hospital, a new 20-bed facility located in Panguitch. The hospital has been operating between 30 and 35 percent capacity. Based at the hospital, a team of three physicians and other health professionals extend health services to outlying areas through a network of satellite clinics.

None of the four communities under study has a full-time police force of its own; instead they rely on the Garfield County Sheriff's Office for police protection. These arrangements appear adequate at present, as attested by the extremely low local crime rates. Fire insurance ratings in all communities are unsatisfactory (i.e., between eight and ten).

UPLAND GAME IN GARFIELD COUNTY

| Species | Vegetation Types | $1979$ <br> Harvest | Percent of State Total | Remarks |
| :---: | :---: | :---: | :---: | :---: |
| Mourning Dove | Agricultural land, streamside, seedings | 3,915 | 1.1 | Generally found throughout county below 9,000 foot elevation. |
| Cottontail Rabbits | Agricultural streamside, sagebrush | 1,270 | 0.6 | Generally found throughout county below 9,000 foot elevation. |
| Sage Grouse | Sagebrush | 1,223 | 4.32 | Cencentrate on Aquarius Plateau, John's Valley, Sevier River. |
| Forest Grouse | Conifer-Aspen Mountain Meadow | 204 | 0.34 | Mountains above 8,500 foot elevation |
| Ring-neck Pheasant | Agricultural land | 190 | 0.09 | Sevier River Valley |
| Chukar | Desert Shrub | 175 | 0.30 | Escalante and Paria drainages. |

TABLE 3-25

POPULATION TRENDS IN GARFIELD COUNTY AND POTENTIALLY AFFECTED COMMUNITIES

|  | a 1960 | a 1970 | b1980 | Percent Change 1960-1970 | Percent Change 1970-1980 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Garfield County | 3,577 | 3,157 | 3,513 | -11.7 | 11 |
| Cannonville | 153 | 113 | 132 | -26.1 | 17 |
| Escalante | 702 | 638 | 641 | - 9.1 | 5 |
| Henrieville | 152 | 145 | 161 | - 4.6 | 11 |
| Tropic | 382 | 392 | 334 | -15.2 | -15 |
| Panguitch | 1,435 | 1,318 | 1,328 | -11.2 |  |
| ${ }^{1} 1970$ Census |  |  |  |  |  |
| $\mathrm{b}_{1980}$ Census preliminary estimates (these are subject to change) |  |  |  |  |  |

All of the communities, with the exception of Tropic, rely on individual septic tank systems. These systems are adequate to meet the communities' present liquid waste disposal requirements. Every community either has or is constructing an adequate water system. Escalante, for example, has been approved by FHA for a loan to upgrade the current culinary water system. The New Escalante Irrigation Company and the Pine Creek Irrigation Company are currently negotiating with the State Water Resources Division to improve existing irrigation systems.

While life in Garfield County remains largely rural in orientation and lifestyle, local residents are very aware of the implications of large-scale coal development for their area. A 1978 public opinion poll conducted in Tropic, Cannonville, and Henrieville revealed that although 95 percent of the interviewees wanted coal development to occur, most favored a moderate rate of coal development to allow local communities to provide necessary facilities and services. While undoubtedly leading to an erosion of the small-town, rural way of life, coal development was viewed as offering offsetting advantages, particularly in the form of new job opportunities which would enable young people to remain in the community rather than emigrating in search of work. Other potential advantages foreseen by respondents include better public services and facilities, entertainment, and cultural opportunities.

## TRANSPORTATION


#### Abstract

Vehicular traffic into eastern Garfield County is carried almost entirely by Utah Highway 12, connecting Escalante with U.S. 89. Utah Highway 12 leaves U.S. 89 south of Panguitch going east passing through Red Canyon and the northern portion of Bryce Canyon National Park. Both areas have excellent scenic values and carry considerable tourist traffic. U-12 then goes through the small communities of Tropic, Cannonville, Henrieville, and Escalante before terminating at Boulder, Utah. A road, presently being upgraded, connects Boulder with Grover and Torrey and Utah Highway 24, around the east side of Boulder Mountain through rough terrain. None of these routes are satisfactory for moving heavy traffic volumes. Fortunately, except for the $1,620 \mathrm{vpd}$ between the junction with U.S. 89 and Bryce Canyon, these roads carry light traffic (between 100 and 650 vpd ), including petroleum tank trucks from the west side of the Escalante Mountains westward to U.S. 89 .


Access to the north end of the Kaiparowits Plateau is almost entirely by an unpaved road south and west out of Escalante through Alvey Wash.

This road continues southward to U.S. 89 at Glen Canyon City. In places a safe speed on this road may be 20 miles per hour. It is also possible to reach the area over a poor road from the base of the Straight Cliffs southeast of Escalante up the Left Hand Collet Canyon, thus approaching the area from the south. Although traffic counts are not available, traffic across the Plateau would run on the order of 20 to 30 vpd , mostly trucks and fourwheel drive vehicles.

At present, no railroads serve the area. The nearest spur lines are a Union Pacific spur about 130 miles west of Escalante at Cedar City, and a Denver \& Rio Grande spur line, partly in poor condition, about 118 miles northwest at Marysvale. A study was recently completed to determine effects if any of several alternative rail routes projected to serve the Kaiparowits Plateau (ERT, 1980). Under consideration would be a 190 -mile route from the Union Pacific mainline at Milford generally south and east to Alton, then in a general concave northward curve onto the south edge of the Kaiparowits Plateau, from where various spur lines would branch to proposed mining developments including the PRLAs.

Scheduled air service is maintained to Cedar City and Page. The Escalante municipal airport has a paved and lighted runway for light planes.

## CULTURAL RESOURCES

Cultural resource inventories for the proposed lease area are incomplete, yet various research studies indicate that the Alvey Wash area supports a highly significant diverse and complex cultural resource base. The area represents a contact zone for northern and southern prehistoric (Fremont-Anasazi) and historic (Paiute-Navajo) culturally unique groups. The nature of this relationship between coexistent Fremont-Anasazi and Paiute-Navajo cultures is a major archaeological unknown which the Alvey Wash area has a potential for clarifying.

Site densities on the tract are anticipated to exceed five sites per square mile. Brief reconnaissance surveys performed adjacent to existing roads and drainages, identified 16 prehistoric and historic sites of Sevier Fremont, Kayenta Anasazi, and historic Paiute, Ute, and Navajo affiliation. Site types range from highly significant masonry structures and rockshelters to temporary camps, lithic scatters, and rock art. National Register of Historic Places eligibility for known sites has not been determined. It is anticipated that sites along Alvey Wash and environs represent a portion of an as yet undefined archaeological district of National Register caliber.

## DESCRIPTION OF THE ENVIRONMENT

No National Register listed or nominated properties are located on the PRLAs.

## SPECIAL DESIGNATION AREAS

Within Garfield County there are five designated natural areas located outside of PRLAs. There are no officially designated wilderness areas, primitive areas, or wild and scenic rivers in the County. There are, however, 24 areas that are presently being reviewed for wilderness values. Four rivers are presently being reviewed for wild and scenic river values. These 28 areas with potential for special designation are listed in Appendix 6. They are located outside of the PRLAs except for the three BLM roadless units previously mentioned.

The PRLAs are located within portions of three BLM roadless inventory units: UT-040-075, UT-040076, and UT-040-078. These units were inventoried for possible inclusion in the National Wilderness Preservation System, were determined to lack wilderness character and were released from further wilderness review (Utah BLM Intensive Wilderness Inventory, Wilderness Study Areas, 1980).

However, the inventory findings and the subsequent decision were protested (December, 1980) and until a decision is again reached (timeframe unknown) the units remain under wilderness review and must be managed in a manner that will not impair any suitability they may have for wilderness designation.

## VISUAL RESOURCES

The scenic character of Garfield County is one of open space and variation in landform, vegetation, and color with minimal human influence. The landscape includes sparsely vegetated desert valleys, forested plateaus and colorful canyonlands. Garfield County is rich in natural scenic attraction, including five designated outstanding natural areas, Kodachrome Basin State Reserve, and portions of Bryce Canyon National Park, Capitol Reef National Park, Glen Canyon National Recreation Area, Dixie National Forest, and the Kaiparowits Plateau. Small, somewhat isolated rural towns, access roads, mining developments, transmission lines, livestock grazing, and recreational developments have had only minimal impact on the area, which remains largely undisturbed by the presence of man.

The PRLAs are located in the north portion of the Kaiparowits Plateau, and would be highly visible from an ungraded low-volume access road. The
remote and pristine qualities of the Kaiparowits Plateau are valued by individuals and organizations throughout the nation. The lands encompassed by the PRLAs have neither outstanding nor unique scenic values. They are located in a rolling portion of the Kaiparowits that is moderate to low in scenic quality, is common throughout the area, and has been given a VRM Class IV rating. In some portions of the PRLAs, roads and other disturbances resulting from mineral exploration and livestock development are prevalent. However, most of the PRLAs and surrounding lands appear natural.

## RECREATION

Garfield County has an abundance of recreation resource lands and, along with Kane County, is the most tourism-dependent county in Utah. Within Garfield County are portions of the Dixie National Forest, Bryce Canyon National Park, Glen Canyon National Recreation Area, Capitol Reef National Park, and five designated outstanding natural areas.

Nearly all land in Garfield County is used for dispersed outdoor recreation (e.g., hunting, fishing, sightseeing, off-road vehicle use and backpacking. The Escalante River is known nationally for its backpacking opportunities). If Statewide statistics are applied, approximately 17.5 percent or 691 residents of Garfield County presently hunt deer; approximately 1.7 percent or 67 residents hunt elk; 8.5 percent or 336 residents hunt upland game and 45 percent or 1,778 residents fish (Thayne and Hudson, 1978). The success trend in the county is down from early 1970 figures for big game hunting and fishing, but is generally up from 1970 figures for upland game hunting (UDWR, Big Game, 1980; Upland Game, 1979; Fishery Management, 1979). Of the total people hunting deer in the Four-County region, only about 11 percent of the deer hunters originate in Garfield County (UDWR, Big Game, 1980).

Despite the recreation resources in the county, developed recreation sites (campgrounds and picnic areas), particularly campsites, are in short supply and do not meet standards proposed by the State of Utah (SCORP, 1973). Nine of the 17 developed sites listed in Table 3-26 demonstrate 1976 use rates at or greater than capacity.

There are not sufficient golf courses, tennis courts, playing fields and swimming pools in Garfield County to meet standards proposed by the State of Utah (SCORP, 1970).

The PRLAs support intermittent dispersed recreational activities (e.g. sightseeing and ORV activity).

## TABLE 3-26

RECREATION USE ON SELECTED SITES IN GARFIELD COUNTY

|  | Site | Visitor <br> Days | Pent of Managing <br> Theoretical |
| :--- | :--- | :--- | :--- |
| BLM | 1. Calf Creek | Maximum Capacity |  |

## DESCRIPTION OF THE ENVIRONMENT

Approximately 6.8 percent or 269 residents in Garfield County own motorcycles and approximately 35 percent or 383 residents presently own a two-wheel drive truck or a four-wheel drive vehicle. The region provides adequately for presently occurring off-road vehicle activity (SCORP, 1978). However, the area is not suited to provide intensively for any increase of these activities. The PRLAs do not contain any developed recreation sites. The existing road in Alvey Wash is used by an unquantified number of travelers for recreational access onto the Kaiparowits Plateau and could eventually be upgraded as a main access into the area.

## CHAPTER 4

## ENVIRONMENTAL CONSEQUENCES

## INTRODUCTION

This portion of the chapter (the first of three parts), is a description of the assumptions and guidelines used for impact analysis. The second part is a detailed analysis of the impacts of the five alternatives identified for the Federal coal leasing program and the Hollberg PRLA. Finally, the third part is an analysis of the two alternatives identified for the proposed Utah Power and Light (UP\&L) exchange.

Discussion of impacts is focused on those resources which would be most significantly affected. The majority of physical impacts would be restricted to the actual tracts or Preference Right Lease Applications (PRLAs). However, anticipated impacts to resources such as air quality, socioeconomics, transportation, recreation, and visual resources would have regional implications and are considered on a broader basis.

## ANALYSIS ASSUMPTIONS AND GUIDELINES

The following basic assumptions and estimates were made to facilitate analysis of the environmental impacts of mining and coal related developments considered in this statement:

1. The impacts described in this Chapter that are attributable to Alternatives One through Four would be in addition to those baseline impacts described in Alternative Five (No Action). The cumulative impacts that would result by the year 2000 can be determined by adding the projected impacts from proposed leasing to the projected baseline impacts from other development.
2. Proposed mines would not be producing before 1985, but would all begin production by 1987. Full projected production would be reached by 1990 .
3. Coal production figures are based on a 31 to 50 -percent recovery rate for underground mines and an 85 to 90 -percent recovery rate for surface mines.
4. Mine production would average 15 tons per man-shift for underground mining and 75 tons per man-shift for surface mining.
5. In underground mines, longwall mining methods would be used where technically and economically feasible. Room and pillar methods would be used where necessary.
6. Disturbed lands not occupied by housing development would be reclaimed. Lands converted to housing or retired to provide community water would not be reclaimed or returned to agriculture in the future.
7. Community development would be at the rate of 18 people per acre, half of which would be on irrigated agricultural land. The water required to irrigate 1 acre annually would supply the annual water needs of 14.3 people.
8. Water needs for mining and expanded communities would be met by obtaining rights to irrigation water. For each acre of community development, 0.38 acre of irrigated cropland would be retired to provide community water needs.
9. Annual water use per person would be at the rate of 225 gallons per day. For each gallon used, 0.5 gallon would be returned to the system for downstream irrigation use.
10. Sewage treatment plants and effluent would conform to State and/or EPA standards.
11. The planned Castle Valley Railroad Spur would be built by Denver and Rio Grande Western (D\&RGW) and functioning by the time the tracts begin producing coal.
12. Future traffic projections for 1995 on highway segments are based on historic trends plus projections for a coal production rate of 24 million tons per year and the distribution of increased population resulting from Federal coal leasing considered in this statement.
13. Future traffic would be accommodated on the existing and presently proposed highway system. Shortfalls in capacity would be accommodated through expansion of the specific overloaded elements of this system.
14. Coal-haul trucks using public roads would have a net load capacity of 25 tons.
15. All coal transportation to railroad loading facilities would be by truck with the possible exception of the North Horn Mountain tract on which a conveyor could be used to move the coal from the mine to UP\&L's Hunter powerplant.
16. Incidental service-truck traffic to mines would be 20 visits per day per million tons per year of coal production.

## ENVIRONMENTAL CONSEQUENCES

17. If the proposed UP\&L exchange is not consummated and commercial quantities of coal on UP\&L's PRLAs are subsequently proven, the PRLAs on the Kaiparowits Plateau would be developed in accordance with applicable laws and regulations.
18. Coal would be hauled off the Kaiparowits Plateau by railroad (ERT, 1980) in association with production of other mines in the area.

## FEDERAL COAL LEASING PROGRAM

## Alternative One

Alternative One considers the leasing of all eleven tracts identified in this EIS, and represents the maximum level of coal leasing proposed. The Hollberg PRLA is also considered as part of this Alternative. Tracts that would be mined by underground methods include Tucker Canyon, Slaughterhouse Canyon, Miller Creek, Gordon Creek, Meetinghouse Canyon, Rilda Canyon, Cottonwood, North Horn Mountain, and Emery South. The Emery Central tract would be surface mined. The Emery North tract would be mined by a combination of surface and underground methods. The following section discusses anticipated impacts that would result from implementing Alternative One.

## AIR QUALITY

Impacts to air quality would be particulate emissions from mining and related activities and increased emissions of all National Ambient Air Quality Standards (NAAQS) criteria pollutants from the resulting population increases. Dispersion modeling was performed by Radian Corporation under contract to BLM to estimate ground-level concentrations of total suspended particulates (TSP), sulfur dioxide, and nitrogen dioxide. Details of the model used, assumed meteorological conditions, and emission factors are presented in Appendix 7. The predicted annual TSP concentrations (above background levels) for Alternative One in the year 2000 are shown in Figure 4-1. The levels shown include impacts caused by mining, population related activities and major industrial sources, as well as impacts caused by leasing the tracts considered in this Alternative. Figure $4-2$ shows the impacts from these sources without the impacts that would result from leasing under this Alternative.

When the concentrations shown in Figure 4-1 are added to estimated annual background concentrations of 38 micrograms per cubic meter, TSP levels within several kilometers of the tracts and haul roads would exceed the secondary and possibly the primary annual NAAQS of 60 and 75 micrograms per cubic meter, respectively. The major contributor to the high particulate concentrations is dust from unpaved haul or access roads associated with underground and surface mines. The analysis assumed a worst case condition of only watering of unpaved roads as control for fugitive dusts. However, the State of Utah Air Quality Bureau in their comments on the DEIS, stated: "The State of Utah is committed to the maintenance of air quality standards and will insure through application of BACT that the NAAQS are not exceeded." Best Available Control Technology (BACT) would be determined at the time the State reviewed mine applications for issuance of an Air Quality Approval Order.

The population and transportation growth would have an insignificant effect on TSP concentrations near Price and Helper. However, the proximity of lease tracts to Castle Dale and Orangeville would cause an estimated 10 micrograms per cubic meter increase in TSP over the no action levels near these towns.

The population and transportation growth would have a small effect on the levels of nitrogen dioxide and sulfur dioxide in the region. A comparison of the estimated concentrations of nitrogen dioxide and sulfur dioxide for Alternative One (Figures 4-3 and 4-4) with the estimated concentrations with no new leasing (Figures $4-5$ and $4-6$ ) shows a negligible impact regionally. No exceedence of the NAAQS would be expected (Radian 1981).

A statistical technique was applied to annual average modeling results to estimate maximum short-term pollutant levels (Larsen, 1971). It was found that the major contribution to short-term (24 hour) TSP concentrations would be from mine haul roads. Since haul road traffic is proportional to the annual production, fugitive emissions generated by vehicle travel would be greater at the larger mines. High annual TSP concentrations were predicted to occur near the North Horn Mountain, Emery Central, Emery North, and Gordon Creek tracts.

Maximum 24 -hour TSP concentrations (including background) calculated for these areas were 210, 170 and 200 micrograms per cubic meter respectively. The possible interaction of emissions from the Cottonwood and Meetinghouse Canyon tracts and from nearby mines (several of which utilize the same haul road) would result in a 24 -hour TSP level of 185 micrograms per cubic meter. These concentrations would be greater than the allowable


FIGURE 4-1
ANNUAL AVERAGE TOTAL SUSPENDED PARTICULATES CONCENTRATION ISOPLETHS IN THE YEAR 2000 FOR ALTERNATIVE ONE (MICROGRAMS PER CUBIC METER)


FIGURE 4-2
ANNUAL AVERAGE TOTAL SUSPENDED PARTICULATES CONCENTRATION ISOPLETHS IN THE YEAR 2000 WITH NO NEW COAL LEASING (MICROGRAMS PER CUBIC METER)


FIGURE 4-3
ANNUAL AVERAGE NITROGEN DIOXIDE CONCENTRATION ISOPLETHS IN THE YEAR 2000 FOR ALTERNATIVE ONE (MICROGRAMS PER CUBIC METER)


FIGURE 4-4
ANNUAL AVERAGE SULFUR DIOXIDE CONCENTRATION ISOPLETHS IN THE YEAR 2000 FOR ALTERNATIVE ONE (MICROGRAMS PER CUBIC METER)


FIGURE 4-5


FIGURE 4-6
AVERAGE ANNUAL SULFUR DIOXIDE CONCENTRATION ISOPLETHS
IN THE YEAR 2000 WITH NO NEW COAL LEASING (MICROGRAMS PER CUBIC METER)

## ENVIRONMENTAL CONSEQUENCES

24-hour secondary NAAQS TSP standard of 150 micrograms per cubic meter.

The contribution of the proposed action to these concentrations would be $95,20,15$, and 15 micrograms per cubic meter respectively.

Based on the Radian analysis, which assumed only watering as control for fugitive dusts, BACT would be required to assure protection of the NAAQS. The predicted concentration values are regional approximations determined from statistical trends. Precise site-specific microscale dispersion modeling would be needed, at the time a mining proposal was submitted, to more adequately determine concentrations.

To predict regional visibility impacts upon important vistas seen from Class I areas, as identified by the National Park Service, four impact simulation scenarios were selected. In addition a simulation (scenario 5) was performed in order to predict the visibility of onsite mine emissions from Class 1 areas and a simulation (scenario 6) was performed in order to predict visibility impairment in Castle Valley under worst-case stagnation conditions. The sight paths and wind directions for scenarios 1 through 4 were chosen to maximize the amount of mine emissions that would be transported between the observer and the vista. For scenario 5, the observer was assumed to be looking almost directly at the North Horn mine area from a variety of distances. In scenario 6, the observer was assumed to be looking down the full length of the Castle Valley modeling region. This represents a worst-case orientation, since the amount of polluted air through which the observer would be looking is maximized. Higher than average background visual ranges of 121 miles and 243 miles were chosen to represent worst-case conditions. Visual range reduction and contrast reduction were used to characterize visibility impacts. The results of the application of the models to the six selected scenarios are summarized in Table 4 in Appendix 7 which indicates that there would be no perceptible visibility impairment looking from Class I areas to the scenic vistas identified by the National Park Service. Table 4 also indicates that perceivable regional visibility impairment caused by the proposed action would rarely occur, except under conditions of severe stagnation (scenario 6). Visibility impairment due to dust emissions in the immediate vicinity of the mines, however would probably be perceptible at fairly long distances from the source (scenario 5). Onsite dust clouds, therefore, would probably be seen by observers in Class I areas who are looking directly at the mines (Radian 1981). Particulate emission rates used for visibility modeling assumed only watering for control of fugitive dusts from unpaved haul and access roads. Application of BACT would reduce visibility impacts.

## SOILS

The construction of mine facilities (buildings, haul roads, storage sites, sediment ponds, portals, powerlines and telephone lines), and housing and support facilities for population increases as a result of mine development, would cumulatively disturb 679 acres by 1987, 1,688 acres by 1990, 2,215 acres by 1995, 2,696 acres by 2000, and 4,114 acres by the end of mine life. Of this total, 2,720 acres of disturbance would be associated with surface mining activities. A total of 93 acres of soil would be disturbed annually by surface mining. As reclamation efforts would occur contemporaneously with mining operations, maximum disturbed area subject to wind and water erosion would be 279 acres from surface mining and 953 acres disturbed for onsite and offsite facilities for all mines.

The disturbance on 3,673 acres would be of a temporary nature since the land would eventually be reclaimed. The loss of soil productivity on 441 acres would be permanent due to the construction of housing and support facilities for future population increases in the region.

Surface mining activity would alter soil structure causing changes in the soil-water regime including water infiltration and permeability rates and the inherent ability of the soil to hold water. Changes in the soil-water regime would limit plant growth (Merz and Finn, 1951; Chapman, 1967; Geyer and Rogers, 1972).

Soil erosion would occur where surface disturbing activities occur. Soil loss through erosion is dependent on the soil's physical characteristics, degree of slope, length of slope, climatic conditions during soil exposure, and the effec tiveness of erosion control measures. Because these variables are so great, soil loss estimates can be quite variable.

No attempt was made to quantify soil losses on the Wasatch Plateau, because information was not available as to exactly where mine or support facilities might be located. Soil losses are expected to be low if reasonable care in site selection is taken and erosion control measures are implemented.

Sediment yield studies conducted on a simulated post mining area in the Emery coal field indicate that soil losses would range from 0.45 to 1.2 tons per acre per year for surface mines in that area (BLM EMRIA Report No. 16, 1979). Soil loss tolerance values (maximum rate of soil erosion that can occur and still remain productive) are 1 to 2 tons per acre per year ( 1 ton $=0.0063$ inch soil acre). No significant increase in sediment yields is expected assuming reasonable care in surface shaping is employed during reclamation (BLM EMRIA Report No. 16, 1979). Assuming a 3 -year period from the

## ENVIRONMENTAL CONSEQUENCES

disturbance until initial establishment of vegetation cover, and a soil loss of 1 ton per acre per year, 0.0189 inch of soil would be lost for each acre disturbed by surface mining (Soil Conservation Service, 1978).

Potentially toxic and nutrient deficient overburden not adequately buried or treated would delay reclamation of some disturbed areas (Berg, 1975). Areas where timely revegetation did not occur would be subject to continued wind and water erosion at approximately the above mentioned rate until vegetation became established.
Stockpiled topsoil on the Wasatch Plateau and Emery tracts would be subjected to wind and water erosion, causing additional soil losses. Soil loss amounts from this source cannot be quantified. Other impacts to soil as a result of removal, handling, and stockpiling include the loss of fertility by the introduction of inferior subsoils and the biological death of soil micro-organisms (Environmental Protection Agency, 1974). The overall effect would be a loss in soil productivity for the period from disturbance until reclamation was successful.

## WATER RESOURCES

The proposed leasing and development of coal would have little impact on water resources on a regional basis. Enforcement of regulatory requirements related to the Surface Mining Control and Reclamation Act of 1977 would minimize the impact of mining and confine effects to the extent possible to the leased tracts. Consequently the impacts on water resources resulting directly from leasing and development of new Federal coal would occur almost entirely in the vicinity of the lease tracts and would have no significant effect on the regional hydrologic system. Impacts that would result from underground and surface mining are discussed below.

## Surface Water Source Distribution

The existing surface water source distribution would be disrupted by surface mining and by possible subsidence associated with underground mining. The impact would be that of the shift of the water source physical location. Surface mining would disrupt existing drainage patterns and remove any natural ephemeral ponds or tanks.

Muddy Creek, a perennial stream, crosses the Emery North coal tract. The Muddy's 100 -year peak flood flow is 4,590 cubic feet per second (CFS) which is 12 feet higher in the channel than the
medium flow. The floodplain would be excluded from the minable coal area because of the floodplain determination (43 CFR 3461.1 no. 16). Office of Surface Mining regulations 30 CFR 816.57 would require a buffer strip of 100 feet beyond the actual floodplain width. Therefore, no impacts to the floodplain would occur.

Subsidence from underground mining could affect stream flow and ponded water such as Snow Lake. The overburden of three underground mines ranges from 200 feet thick at South Emery to 2,000 feet thick at North Horn. The deeper the overburden the less likely fissures would affect the surface waters. Subsidence fissures that intersect surface water supplies would dewater them to some extent depending on several factors such as depth of overburden, soil texture, formation, water flow, etc. This dewatering could be of short duration if the fissures were filled quickly with sediment or long lasting when the fissures are not able to be sealed off naturally.

## Water Quantity

The increased consumptive use of water attributable to the leasing of coal and associated population increases is shown in Table 4-1. The increased use would be 577 acre-feet in 1987, increasing to 1,075 acre-feet in 2000. This would represent a loss of stream flow in certain tributaries of the Green and Colorado Rivers of less than 1 percent. The water would come from existing permitted uses that are not being fully utilized or the transfer of current water rights from other uses such as irrigation.

## Water Quality

Additional development within the region would generally increase sedimentation and salinity of streams. The causes would be: (1) increased sediment and salt loading from municipal and industrial wastes, leaching of spoil piles, construction sites, and mine effluent, and (2) the concentrating effects of the consumptive use of good-quality water that formerly diluted poorer quality water entering the surface-water system downstream.

Chemical quality alterations of the water due to the coal mining operations would be generally of local extent. The coal being mined has a sulfur content of less than 1 percent, therefore, leaching would add very little sulfur to the drainage and (because most of the water in the study area is highly alkaline), it would buffer any acid mine water that

TABLE 4-1

CUMULATIVE IMPACTS ON WATER RESOURCES AND REGIONAL SIGNIFICANCE
ALTERNATIVE ONE


## ENVIRONMENTAL CONSEQUENCES

reached the drainages. A study of mine drainage in Colorado shows essentially no coal-mine drainage problems attributed mainly to the low sulfur content of western coal (Wentz, 1974).
The total dissolved solids (TDS) in streams on the Wasatch Plateau range from 200 to 500 milligrams per liter ( $\mathrm{mg} / \mathrm{L}$ ). UP\&L monitoring of their Wilberg Mine for 1979 showed an average TDS concentration of $283 \mathrm{mg} / \mathrm{L}$ for Cottonwood Creek and an average TDS concentration of $915 \mathrm{mg} / \mathrm{L}$ for Wilberg. The 1979 discharge from Wilberg Mine into Grimes Wash was 217 acre-feet for the year (UP\&L, 1980). Therefore, the weighted average TDS concentration for Cottonwood Creek is 284.95 $\mathrm{mg} / \mathrm{L}$, only a $1.95 \mathrm{mg} / \mathrm{L}$ increase with the mine discharge. For other mines the increase could be more or less than experienced at the Wilberg Mine depending on the relative amounts of water and the dissolved solids concentration of the different sources of water involved. However, it is believed that the conditions at the Wilberg Mine are representative of conditions to be found in the proposed lease areas. It seems unlikely, therefore, that mine discharge would require special treatment. The impact of discharging mine effluent into local streams is not expected to have any significant impact on water quality with respect to aquatic biota or downstream use.

Muddy Creek, which flows through the area of the Emery tracts is saline. Monitoring in the area shows the Muddy TDS to be $5,380 \mathrm{mg} / \mathrm{L}$ (BLM EMRIA No. 16, 1979). Also sampling of the Browning mine spoil leachates shows a TDS concentration of $4,970 \mathrm{mg} / \mathrm{L}$. It is assumed that the leachates from the Emery tracts would be similar to that of the Browning mine. The discharge of water used for washing coal or leachate issuing from waste-rock piles is expected to contain dissolved solids concentration approximately twice that occurring in the wash water (Colorado School of Mines Research Institute and Engineering Enterprises, Inc., 1976). If the quality of this water did not meet the established effluent limitation (CFR 30 817.42), treatment would be required prior to discharge.

The increase in salinity at Imperial Dam as a result of the proposed coal development was computed using a mathematical model prepared by the Water and Power Resources Service Colorado River Water Quality Office (BLM, 1980). The increase in salinity at Imperial Dam would range from $0.05 \mathrm{mg} / \mathrm{L}$ in 1987 to $0.09 \mathrm{mg} / \mathrm{L}$ in 1995 and remain at $0.09 \mathrm{mg} / \mathrm{L}$ in 2000 (Table 4-1). Increased costs to downstream users would range from $\$ 20,000$ to $\$ 35,000$ per year for commercial garden vegetable production in Imperial Valley.
The growth in population associated with the proposed coal development would result in discharge
of about 974 acre-feet per year of sewage effluent. This effluent would contribute an estimated 397 tons per year of salt to the receiving streams tributary to the Colorado River. Any activity contributing to the salinity of the river is of major concern to member States of the Colorado River Compact, related Federal and State agencies and downstream users. This impact on water quality would continue after mining was completed.

Mining would increase the potential for accidental spills of chemicals, fuel oils or other pollutants. North Horn Mountain, Cottonwood, Rilda Canyon, Meetinghouse Canyon, and Slaughterhouse Canyon tracts lay within municipal watersheds. These spills could contaminate the drinking water supplies and present a significant health hazard. Such spills would be monitored and cleaned up according to State regulations. Damage to the water supply would be minor if the spills are contained, otherwise, water supplies could be contaminated for a long period of time.

## Erosion and Sediment

Concentrations of suspended sediments would increase temporarily several fold in the tract areas particularly if high-intensity rainfall occurs during construction, or if sediment-retaining structures fail. The runoff from areas disturbed by surface activities associated with surface or underground mining must not transport offsite more than $30 \mathrm{mg} / \mathrm{L}$ total suspended solids as an average of daily values for 30 consecutive discharge days (30 CFR 816.42 and 817.42). If the regulations are adhered to the sediment increase would be relatively insignificant compared to the naturally occurring sediment loads in the lower stream reaches.

Analysis of stripmining in other areas having similar environmental characteristics (Van Voast and Hedges, 1975), indicates that during the initial years of mining the sediment yield may be two or more times the amount under natural conditions. As mining progresses and reclamation practices begin, the rate of erosion is slowed. Retention of sediment from the mined areas on the lease tracts, would largely eliminate the potential for increased sediment yields from surface mined areas to reach the streams.

## Ground Water

The impacts to the ground water resources as a result of the proposed leasing and development of coal would occur almost entirely in the mine areas
and would not have any effect on the regional ground water system. Impacts would be from disturbance of certain aquifers; the modification of aquifers by replaced spoils materials, collapsed overburden, and subsidence or fracturing of overlaying rocks from underground mining; water diversion from one drainage to another; and water quality impairment by leaching.

## Disturbance of Aquifers

Surface mining of the Emery coal field tracts would replace the coal beds and any overlaying aquifer with a single aquifer comprised of broken spoil materials. It is expected that these tracts would be mined by dragline method; therefore, the spoil material can be expected to have a higher recharge capacity plus more capacity to store and transmit ground water than the present conditions (Rahn, 1975).

Underground mine workings would intercept perched ground water and percolating ground water recharge supporting spring discharge, thereby causing the flow of springs and seeps to diminish or go dry. As mining progresses, roofs would begin to subside and ultimately collapse. Successive layers of overburden up to a limit of about 30 times the thickness of the coal removed would collapse and subside. As fracturing progresses upward, perched water would probably drain through the rubble down to the working level of the mine or below. Ultimately this water would discharge elsewhere and present springs and seeps supported by perched water would lose flow or dry up.

## Transbasin Diversion

In large underground workings extending under more than one surface water basin, mine drainage could intercept water from one drainage basin and divert it to another. The extent of this impact is unknown but it would be of local significance only.

## Trace Elements

Mine drainage may contain concentration of trace elements, particularly arsenic, iron, manganese, and selenium, slightly greater than normally found in natural streams of the area, as experienced in some coal mines in central Utah based on unpublished data from Southeastern Utah Association of Governments. However, total quantities of mine drainage associated with the leases considered in
this EIS would be less than 500 acre-feet per year. Reasonable enforcement of mitigations regarding FWPCA of 1977, SMCRA of 1977 and State of Utah effluent standards would prevent contamination of streams. IO4Water Quality

It is unlikely that underground mining would seriously affect the chemical quality of ground water or adversely affect the quality of the water for onsite or downstream uses.

## GEOLOGY, TOPOGRAPHY, PALEONTOLOGY, MINERAL RESOURCES

## Wasatch Plateau Coal Field

Topography would be altered mostly as a result of subsidence on portions of the 32,028 total acres leased. The surface area affected by subsidence would range from 90 to 130 percent of the area mined (GS, 1979). The amount of subsidence would range from a maximum in the center of the mined areas to very small amounts in the peripheral areas. Maximum subsidence would be from 50 to 90 percent of the thickness of the coal removed and, therefore, would probably not exceed 10 feet on any of the tracts involved in underground mining. Surface expressions of subsidence could include open and closed fractures, buckled and bulged bedrock, and sinkholes and other depressions (Dunrud, 1976); however, thick overburden would limit surface expressions of subsidence. An undetermined amount of slumping of escarpments associated with underground mining activities could occur but would be minor.

Underground hazards to miners, including caveins, bumps, squeezes, flooding, and dangerous concentrations of methane, are in part unavoidable. About 3 fatalities and 233 nonfatal accidents would be expected per year owing to coal mining at proposed new mines (according to 1979 Mine Safety and Health Administration statistics).

Significant plant fossils used for correlation and paleo-environmental guides could be inadvertently destroyed by coal removal in the Blackhawk Formation. Significant disturbances to the other scientifically important fossils mentioned in Chapter 3 most likely would not occur if mitigating measures are followed. However, surveys and mining activities could also expose new fossils and enhance paleontological studies.

Approximately 282.9 million tons of coal would not be recovered using current mining techniques. The unrecovered portion represents 50 to 69 per-

## ENVIRONMENTAL CONSEQUENCES

cent of the total coal resource. The mineral value of the land would be depleted except for the oil and gas potential.

Potential oil and gas resources occur stratigraphically well below the coal- bearing Blackhawk For-mation. While the resource itself would not be damaged, surface and subsurface changes due to subsidence could hinder subsequent exploration, and location of facilities related to oil and gas development.

## Emery Coal Field

Topography would be altered on portions of 5,877 acres. Subsidence resulting from underground mining of the Emery North and South tracts would be similar to that discussed for the Wasatch Plateau coal field except that subsidence effects would be more pronounced due to the shallower overburden. Subsidence could be as much as 10 feet in some areas of underground mining, but would generally average much less. Surface mining in the Emery Central tract could alter local topography as much as 30 feet, but would generally average less after reclamation. Minor slumping of escarpments on the Emery Central and Emery South tracts could occur.

Significant plant fossils used for correlation and paleoenvironmental guides, and any vertebrate fossils present could be inadvertently destroyed by coal removal in the Ferron Sandstone Member. Significant disturbances to other scientifically important fossils mentioned in Chapter 3 would most likely not occur if mitigating measures are followed. However, surveys and mining activities could also expose new fossils and enhance paleontologic studies.

About 22.7 million tons would not be recovered using current mining techniques. This represents 50 to 60 percent of the total resource if underground mined and 10 to 15 percent if surface mined. The mineral value of the land would be depleted except for the oil and gas potential.

The potential oil and gas resources occur stratigraphically well below the coal-bearing Ferron Sandstone Member of the Mancos Shale Formation. Surface and subsurface changes due to subsidence, while not affecting the resource itself, could hinder subsequent exploration and location of facilities related to oil and gas development.

## VEGETATION

Implementation of this Alternative, involving development of coal on 11 tracts, would disturb a total of approximately 4,114 acres of vegetation by the year 2026. Acres of vegetation that would be lost are shown by year and vegetation type in Table $4-2$. The vegetation types that would be impacted most are: Pinyon-Juniper Woodland, Desert Shrub, and Agricultural. This disturbance of vegetation would result from development of stripmines on the two Emery tracts ( 2,720 acres), onsite facilities for all mines ( 484 acres), offsite facilities (469 acres), and development of housing ( 441 acres ) for the increased population. Since mining plans have not been submitted or housing areas identified, the figures are only estimates based on projected areas of development and the percentage of vegetation types found in those areas. The actual acreage of vegetation types that would be disturbed, should this Alternative be implemented, may vary from these projected figures.

Loss of vegetation production would result from disturbance or removal of plants for development of mine facilities, access roads, powerlines, topsoil stockpiles, and urban development. Stripmining on two tracts would result in total removal of vegetation from 2,720 acres by the year 2026. However, only 93 acres would be disturbed annually by stripmining, and required reclamation of mined lands would follow resulting in a total of 279 acres of unreclaimed mined lands annually after the third year. When added to the lands disturbed for onsite and offsite facilities (394 acres) the maximum unreclaimed lands after the third year would be 673 acres annually from stripmining.

Vegetation loss on 953 acres would begin in 1985 with the construction of roads and surface facilities; these developments plus 441 acres for housing and stripmining operations on 2,720 acres would total 4,114 acres by 2026. This loss would be reduced progressively as reclamation becomes effective. Loss of vegetation on 441 acres due to housing development associated with this Alternative would continue since these areas would remain committed to urbanization and would not be reclaimed. The acreage lost to housing development would be in the following vegetation types: Agriculture 50 percent ( 220 acres), Sagebrush-Grass 25 percent (111 acres), Pinyon-Juniper Woodland 15 percent ( 66 acres), and Desert Shrub 10 percent (44 acres). An additional 97 acres of irrigated agricultural land would be retired because of conversion of irrigation water to community and industrial use.

For areas that would be reclaimed, the duration of the impact of total vegetation loss would depend

TABLE 4-2
TOTAL CUMLATIVE IMPACTS ON VEGETATION
ALTERNATIVE ONE

| Vegetation Types | Impacts On Tracta (Acres) |  |  | Impacts Off Tract ${ }^{\text {b }}$ (Acres) |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1987 | 1990 | 1995 | 2000 | 1987 | 1990 | 1995 | 2000 | TOTALC |
| Agriculture | 6 | 14 | 34 | 52 | 10 | 10 | 10 | 10 | 62 |
| Riparian | 10 | 17 | 29 | 50 | 23 | 23 | 23 | 23 | 73 |
| Grassland | 29 | 43 | 81 | 118 | - | - | - | - | 118 |
| Desert Shrub | 90 | 212 | 410 | 551 | 42 | 42 | 42 | 42 | 593 |
| Sagebrush Grass | 44 | 44 | 44 | 44 | 102 | 102 | 102 | 102 | 146 |
| Pinyon-Juniper Woodland | 137 | 260 | 376 | 565 | 73 | 73 | 73 | 73 | 638 |
| Mountain Brush | 21 | 21 | 21 | 21 | 93 | 93 | 93 | 93 | 114 |
| Aspen | 40 | 72 | 106 | 76 | 39 | 39 | 39 | 39 | 115 |
| Conifer Aspen | 48 | 60 | 70 | 42 | 67 | 67 | 67 | 67 | 109 |
| Non Productive | 54 | 108 | 145 | 267 | 20 | 20 | 20 | 20 | 287 |
| Total | 479 | 851 | 1,316 | 1,786 | 469 | 469 | 469 | 469 | 2,255 |

a Includes mining operation and onsite facilities
Includes offsite facilities (roads, powerlines, etc.)
CTotal disturbance by year 2000 (housing development would require an additional 441 acres bringing total vegetation disturbance to 2,696 acres; disturbance from stripmining would continue through 2026 bringing the total disturbance to 4,114 acres)

## ENVIRONMENTAL CONSEQUENCES

upon the success of reclamation. Because of the well developed soils and annual average precipitation of 25 inches, reclamation attempts on the Wasatch Plateau tracts are expected to be 50 to 80 percent successful (Hagihara et al., 1972). On steep slopes and areas of poorly developed soils in this area, 30 percent of revegetation attempts are expected to be successful. At the end of the mine life, vegetation loss would continue for about 7 years. Two years would be required for reclamation work and 5 years for establishment of vegetation cover. Shrub and tree cover would not become established for approximately 15 years after reclamation begins. Reestablishment of native species is expected to occur through natural succession over the long term. On areas of Aspen-Conifer, restoration to the original type would take longer. Fifteen to 20 years or more would be required for a return to original conditions.

Reclamation of vegetation on the Emery tracts would be more difficult. Due to climate (average annual precipitation 7.55 inches) and soil conditions, some special treatment and supplemental irrigation may be necessary. The disturbance of topsoil through stripmining would compound this problem. Studies at nearby Huntington and other sites in Utah indicated a decrease in plant production of approximately 40 percent with removal of the top 3 inches of soil. The amount of water needed to produce predisturbance levels of vegetation increased 60 to 90 percent (Lyons, 1978). In a study of the reclaimability of these lands (EMRIA Report No. I6, 1979) it was concluded that because of the extent and sensitivity of present vegetation and the severity of the climate, the post-mining environment on some sites would probably not be suitable for plant growth without significant long-term support for seeded shrubs and grasses; however reclamation would be successful with proper treatment. Positive results would be achieved in years with above normal precipitation, but success in dry years may depend on supplemental irrigation (Bleak et al., 1965; Aldon and Springfield, 1975).

The use of native species for reclamation has the highest potential for reclamation success (BLM EMRIA Report No. 16, 1979). On similar sites in the southwest, seeding with fourwing saltbush and alkali sacaton achieved a 25 -percent ground cover of perennial vegetation (Aldon, 1973). Grasses may be a significant part of reclamation efforts; studies on the nearby Manti LaSal National Forest showed an increase in production of air dry forage of 403 pounds per acre following chaining and seeding of pinyon-juniper sites. Of this total, 379 pounds were contributed by grass (Phillips, 1977). In this study shrub cover increased only 2 percent. Grass competition is a major deterrent of shrub and forb sur-
vival, and could produce a monoculture as a result of reclamation (Hubbard, 1956).

Mitigating measures regarding survey and clearance of proposed onsite and offsite locations and routes for mining facilities associated with the Emery South tract would effectively eliminate impacts to the candidate endangered species Townsendia aprica. Formal consultation, as provided for in Section 7 of the Threatened and Endangered Species Act, was initiated with the Fish and Wildlife Service, February 1, 1980. This consultation resulted in a biological opinion regarding distribution of this plant and potential impacts of the proposed action. Consultation was reinitiated August 1980 based on additional information. An amendment to the biological opinion based on the new information was received October 21, 1980. The biological opinion and amendment are included as Appendix 8.

## WILDLIFE

The surface disturbance of 1,232 acres in 2000 from portal, road, and facilities construction plus the unreclaimed stripmined lands could decrease the deer population in herd units $34,35,36$, and 45 by 69 deer or 1 percent in 2000 (Table 4-3). This loss would not be significant even when combined with losses from traffic collisions and illegal killing.

Elk use of winter migration routes off East and North Horn Mountains could be altered for 40 years by the placement of portals and roads in Killpack or Rock Canyon and the subsequent activity. It is difficult to quantify this effect but herds from 40 to 250 animals per event have utilized these routes (personal communications, Ward, FS 1980). The restriction of access to winter range would be critical to elk during heavy snow years if they are forced to exist on lower elevation wintering grounds. An undetermined loss of elk could occur.

Encroachment by mining activity on mountain lion and black bear home ranges, illegal killing, and loss of prey species such as deer and elk would reduce lion and bear populations by an unknown amount until reclamation was completed. The increased development and widespread human disturbance on this range would cause abandonment of some home areas and a reduction in size or use of others.

Potential damage to riparian zones, a critical element of wildlife habitat, could occur from portal and road construction; however stipulations, where practical, could alleviate this impact. Moose require willows year-round and disturbance of riparian habitat associated with development of the Slaughter-

TABLE 4-3

## BIG GAME IMPACTS

## ALTERNATIVE ONE

| Tract | Acres Disturbed | $\begin{aligned} & \text { Disturbed } \\ & \text { Range } \end{aligned}$ | Species | Losses/Year ${ }^{\text {a }}$ |
| :---: | :---: | :---: | :---: | :---: |
| Gordon Creek | 90 | High Priority - Summer | Deer | 12 |
|  |  | Critical - Winter | Elk | 4 |
|  |  | Critical - Yearlong | Moose | 4 |
| STaughterhouse Canyon | 47 | High Priority - Summer | Deer | 7 |
|  |  | Substantial - Summer | Elk | 2 |
|  |  | Critical - Yearlong | Moose | 1 |
| MeetinghouseCanyon | 40 | High Priority - Summer | Deer | 5 |
|  |  | Critical - Winter | Elk | 0 |
| Cottonwood | 40 | High Priority - Winter | Deer | 5 |
|  |  | Critical - Winter | Elk | 0 |
| North Horn Mountain | 145 | High Priority - Winter | Deer | 18 |
|  |  | Critical - Winter | Elk | 8 |
| Emery North | 259 | Limited - Yearlong | Deer | 1 |
| Emery Central | 414 | Limited - Yearlong | Deer | 1 |
| Emery South | 40 | Limited - Yearlong | Deer | 0 |
| Rilda Canyon | 63 | High Priority - Summer | Deer | 8 |
|  |  | High Priority - Winter | Elk | 2 |
| Miller Creek | 60 | High Priority - Summer | Deer | 8 |
|  |  | Critical - Winter | Elk | 3 |
|  |  | Critical - Yearlong | Moose | 2 |
| Tucker Canyon | 34 | High Priority - Summer | Deer | 4 |
|  |  | Critical - Yearlong | Moose | 1 |
|  |  | Critical - Winter | Elk | 1 |
| Total | 1,232 |  | Deer | 69 |
|  |  |  | Elk | 20 |
|  |  |  | Moose | 8 |

${ }^{\text {I }}$ Includes 0.1 -mile influence zone.

## ENVIRONMENTAL CONSEQUENCES

house Canyon (8 years), Gordon Creek (40 years), Tucker Canyon (20 years), and Miller Creek (40 years) tracts could displace nine moose annually (based on 1.12 moose per linear mile of suitable riparian habitat). This displacement would begin with construction in 1985 on tracts in and adjacent to the restricted area now supporting the nucleus of the introduced herd (UDWR, 1979). This displacement would become significant as the moose herd expands to occupy available habitat. The present expansion of this herd has been impaired by an illegal kill of 6 to 9 animals annually.

Acreage converted to urban use would be irreversibly lost as wildlife habitat. Half of the acreage would come from irrigated farmlands adjacent to existing communities. Many species inhabit these farmlands, notably pheasants, cottontails, doves, small birds, and rodents. With 299 acres committed to urban use or retired from change of water use by 2000, a total of 209 pheasants could be displaced (Appendix 9). This loss would be insignificant since 0.1 percent of the pheasant habitat would be affected regionally. Even in Emery County, which could receive a population growth of 38 percent by 1995 over the 1980 base, less than 1 percent of the pheasant habitat would be lost.

Rehabilitation success on 2,720 acres of surface mined lands would vary; however, overall productivity on disturbed acreage would probably increase. From recent experience at other sites only a simple vegetation type may result from reclamation efforts. Thus the variety and distribution of wildlife would be affected as the wildlife communities would be typified by high density populations of a few species. The change to a more homogenous plant community would affect the distribution of predator species. Generally open field hunters such as buteos would be benefitted by increased grassland, but the accipters could not utilize their hunting techniques in this open plant community.

Surface expression of subsidence such as cracks, bulges, and displacements are not expected to directly affect wildlife, but any reduction or elimination of surface water flows and associated vegetation communities due to subsidence could adversely affect some species. Loss of water sources would result in reduced utilization of habitat by mobile species such as deer, elk, beaver, and birds, and elimination of species such as small mammals, reptiles, and amphibians that are unable to relocate. Because of lack of data on wildlife population and the unpredictability of subsidence and its effects, the number of animals that could be affected cannot be quantified. At the projected production level up to 32,776 acres could be susceptible to subsidence.

Construction of 35 miles of new utility lines in the area would provide additional perching and hunting sites for raptors and other birds. This would be a beneficial impact; however, use of these structures along roadsides or in areas open to significant human access would expose the birds to illegal shooting and disturbance. The Utah Division of Wildlife Resources (UDWR) records of reported raptor mortality during 1974 to 1976 indicate shooting was the most common cause of death for bald and golden eagles in the State. Studies in Utah found a significant increase in raptor mortality due to shooting along utility lines paralleled by a road (Ellis et al., 1969). The extent of losses from this activity cannot be quantified, but any loss would be significant if it included birds of national interest. The new utility lines would also create an additional flight hazard for all bird species (Stahlecker, 1975; Weir, 1976), and an unknown number of birds would be killed. If birds such as the peregrine falcon or bald eagle, already limited in number, are killed the loss would be significant.
With this proposed level of production 31.1 miles of new road would need to be constructed for access and truck hauling of coal. Most of these roads would be in high prority (UDWR Habitat Rating) deer, elk, and moose summer or winter range, and would be a new hazard for these animals and other forms of wildlife. In Colorado with similar situations, it was projected from past experience that annually 7.6 percent of the deer utilizing habitat adjacent to a new road system could become a traffic mortality (personal communication, Reed, 1977). In 1977-78, a normal snow year, 70 verified traffic mortalities occurred on highways in deer herd units $33,34,35,36$ and 45 (usually only 55 percent of the actual losses are verified). With this proposal, by 1990 an additional 68 deer would be killed annually by traffic (Table 4-4) but after the initial impact, habituation to the road and dispersal of deer by human activity would reduce this impact. However the projected increase in traffic on the region's highways would result in some increased deer mortality. There would be an 83 -percent increase equal to 5 percent of the 1979 legal harvest in these units. This is less than 1 percent of the deer populations on these units.
New roads could be a limiting factor to small isolated populations and become a barrier to small animal movement especially among forest dwelling species (Oxley et al., 1973). On the Wasatch Plateau many of the new roads would pass through forest and meadow habitat.
Raptors, especially owls, buteos, and eagles are frequently killed on roads and highways while scavenging. According to UDWR records of reported raptor mortality in the State during 1974 to 1976, highway mortality was the second most common

TABLE 4-4

POTENTIAL DEER TRAFFIC MORTALITY FROM NEW ROADS alternative one


## ENVIRONMENTAL CONSEQUENCES

cause of death. With the projected traffic increase, raptor traffic mortality would also increase. Quantification is impossible without specific research to record mortality and population densities.

Another potential effect of new road construction and increased use of existing road systems would be the harassment effect. Elk, a species sensitive to vehicle traffic, would be adversely affected by the increased use of unimproved roads from an expanding outdoor oriented population (Hieb, 1976). By 2000 an additional 2,522 off-road vehicles would be located in the Four-County region. The elk range of the Manti elk unit on the Wasatch Plateau is an area with an extensive road system that leaves few areas inaccessible to vehicles. Assuming future use of this road system remains unregulated, elk use up to 0.5 mile from each side of the roads could be reduced (Lyon, 1979). Seventy-five percent of the elk habitat (summer and winter) in the Manti elk herd unit is located within 1 mile of a road.

The presence of a larger human population (10 percent increase by 2000) could exert greater pressures on the wildlife populations through harvest, harassment, and displacement from habitat. The legal harvest could be controlled by instituting more stringent regulations and harassment could be partially controlled by regulations, but the presence of humans in wildlife habitat could not be eliminated.

UDWR reports a 250 -percent increase in citations issued for violations of wildlife laws and regulations from 1972 to 1979 (personal communication, Dalton, UDWR 1980). Population increase for the same period was 48 percent. In 1975, 73 percent (319) of the citations issued were for violations that directly reduced wildlife populations. With an 10 -percent projected population increase by 2000 the illegal taking of wildlife could increase a minimum of 50 percent (assuming a rate equal to the 1972 to 1979 increase).

Increased human disturbance could jeopardize the utilization of most of the potential moose habitat on the Wasatch Plateau and the establishment of a future herd of 487 moose and an antelope herd of 700 animals in Castle Valley. Presently a known illegal kill of 6 to 9 moose each year is delaying expansion of the herd. Increased disturbance and illegal killing would exacerbate this situation. Following a 1973 antelope transplant of 125 animals on Clark Bench in Kane County continuous illegal killing prevented the establishment of a herd commensurate with the habitat potential. Presently less than 20 antelope occupy the site (personal communication, Helms, UDWR, 1980).

## Fisheries

Pollution of fisheries from coal wastes and coal mine drainage would not be anticipated with reasonable enforcement of applicable State and Federal laws. Fugitive dust from hauling trucks could add sediment and coal fines to 3.0 miles of stream habitat located in steep canyons where roads could not be located more than 0.25 mile from the streambed. If accidental pollution (such as the recent accidental cement poisoning in Huntington Creek which adversely affected 2 miles of cutthroat trout fishery) from spillages of coal, untreated mine drainage, caustics, sewage, or petroleum products occurs, fisheries that would be affected are the Price River, Huntington Creek, and Pleasant Valley Creek. This could directly kill fish and/or the aquatic fauna, or increase algae growth choking the stream. The effects would be localized and, where coal sediments were involved, prolonged.

Four streams, Beaver, Gordon, Jump, and Miller Creeks could suffer dewatering for short sections if subsidence occurred and altered the channels. Mitigation measures could repair the channel and restore the flow avoiding permanent damage and total loss of fisheries.

Anticipated population increases could significantly increase fishing pressure on popular waters such as Electric Lake, Huntington Creek, Joes Valley Reservoir, and Scofield Reservoir. These same waters could become fished out unless hatchery production was increased to satisfy the demand, or harvest limits reduced.

## LAND USE

A projected maximum total of 2,696 acres would change from one land use to another by year 2000, principally from grazing to mining and support uses, from irrigated cropland to community use, and from irrigated cropland to retired cropland. Of this amount, 2,255 acres would be temporarily disturbed; 1,302 by mining operations, 469 by on-tract support facilities, and 484 by offsite support facilities. The remaining 441 acres would be permanently changed to housing and community infrastructure use.

Changed use of the 2,696 acres would affect irrigated cropland agriculture, community development, and livestock grazing in Carbon and Emery counties. By the year 2000 Carbon and Emery Counties would experience a permanent 237 -acre decline in irrigated cropland, consisting mainly of alfalfa and small grains, to meet community growth and water requirements. Crop production on an-
other 138 acres would be temporarily lost (40 years) until termination of mining; 28 acres retired to provide water for mining-related activities, and 110 acres on the Emery North tract that would be disturbed by surface mining operations. It is assumed that the 110 acres would be reclaimed and returned to agricultural production after reclamation. Less than 1 percent of the two-county total of irrigated cropland would be lost but would consist mainly of lands that are among the finest for agricultural use because of favorable soil, slope, water availability, and accessibility. Such cropland comprises only a small percentage of the overall cropland base in the region. Some prime farmland could be among that which is converted or retired, unless wise planning is employed to avoid such areas.

Community development in the Helper-Price-Wellington area and the Huntington- Castle Dale-Oran-geville-Ferron area would result in the permanent loss of 154 of the 237 acres. These communities are sited largely on lands that, if available for agriculture, would be highly productive. About one-half of future community expansion would occur on remaining similar farmland if current community development trends in the area persist (personal communication, Davis, Carbon County Planner, and Almond, Emery County Planner, 1980). No significant impacts would occur to Sanpete or Sevier counties. Table 4-5 shows county, selected community, and total acreage figures for community development, irrigated cropland converted to community use, and irrigated cropland retired to provide community water. Acreage retired for lack of irrigation water could be retained as productive agricultural land by using a rest-rotation pattern that would grow irrigated crops on a bi-yearly basis, alternating with acreage for which water is available.

The impacts of community development on conversion and retirement of irrigated cropland could be reduced significantly if measures such as regulation of community expansion to avoid good cropland, lining canals to eliminate seepage, and sprinkler application of irrigation water were implemented. Without these or other effective measures, the losses described above would be expected to occur.

Three grazing allotments in Castle Valley would be temporarily reduced in available AUMs by development of the Emery North and Emery Central tracts. The Lone Tree allotment would be reduced by 69 AUMs annually, from 5,371 to 5,302 . Over the life of the two mines, a total of 2,080 Lone Tree AUMs would be lost. The Bunderson allotment of 27 annual AUMs would be eliminated for the life of the Emery North tract surface operations for a total loss of 540 AUMs. The Sorenson allotment of 630 AUMs would be reduced by 36 AUMs annually for a total of 1,440 over the life of the mines. The effects
of the AUM losses described would be a 1-percent reduction in grazing on the Lone Tree allotment and a 6-percent reduction on the Sorenson allotment. Post-reclamation grazing could be enhanced with improvement of forage production on the reclaimed lands.

Impacts to the livestock grazing industry in the Wasatch Plateau area would be caused by increased difficulty in moving animals to and from grazing areas served by Huntington Canyon. Congestion caused by greater development and traffic in the canyon would result in greater hazards of road strikes to migrating livestock.

Only a minor reduction of grazing acreage in the Wasatch Plateau area would result directly from development of coal tracts because a maximum of 411 acres of surface disturbance would occur, 123 acres of which would be on private land. However, subsidence could cause livestock-related impacts by reducing the flow of or drying up an undetermined number of natural springs thereon. Livestock watering impoundments and livestock water conveyance pipelines could be disrupted by subsidence also, resulting in the inability of livestock to graze where water sources would be eliminated. Actual land that would be affected by subsidence cannot be determined at this time.

Land-use zoning (CE-1) in Carbon and Emery Counties on lands occupied by the Cottonwood, Gordon Creek, Meetinghouse Canyon, Miller Creek, North Horn Mountain, and Tucker Canyon tracts could possibly impede development of any or all of those tracts if the counties were to oppose rezoning requests.

About 2.6 miles of the proposed Castle Valley railroad spur on the Emery North tract would not be viable if the tract were developed unless mine development could be designed to avoid or otherwise protect the railroad. This would require an agreement between the surface owner and proponents of the railroad.

High voltage powerlines crossing Emery North and Meetinghouse tracts are located above coal seams proposed for underground extraction. Proposed mitigation would prevent damage to the powerlines from subsidence. Communication sites on North Horn and Emery North tracts would likewise be protected from subsidence damage through proposed mitigation. An existing 3 -inch gas pipeline crossing the Slaughterhouse tract would require protection from surface disturbance or subsidence.
TABLE 4-5
ACREAGE CONVERTED TO COMMUNITY DEVELOPMENT, IRRIGATED CROPLAND CONVERTED TO COMMUNITY DEVELOPMENT, AND IRRIGATED CROPLAND RETIRED TO PROVIDE COMMUNITY WATER * ALTERNATIVE ONE Irrigated Acreage Total
Acreage
Converted

| Location | Total Acreage Converted ${ }^{\text {a }}$ |  | Irrigated Acreage Converted |  | Irrigated Acreage Retired |  | Total Acreage Converted |  | Irrigated Acreage Converted |  | Irrigated Acreage Retired |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Base | Alt. 1 | Base | Alt. 1 | Base | Alt. 1. | Base | Alt. 1 | Base | Alt. 1 | Base | Alt. 1 |
|  | 1987 |  |  |  |  |  | 1990 |  |  |  |  |  |
| Carbon County | 283 | 65 | 141 | 33 | 33 | 8 | 352 | 129 | 176 | 64 | 41 | 15 |
| Helper | 39 | 9 | 19 | 5 | 4 | 1 | 49 | 19 | 25 | 9 | 6 | 2 |
| Price | 117 | 27 | 59 | 14 | 14 | 3 | 149 | 54 | 74 | 27 | 17 | 6 |
| Wellington | 48 | 5 | 24 | 3 | 6 | 1 | 52 | 12 | 26 | 6 | 6 | 1 |
| Emery County | 104 | 115 | 52 | 57 | 12 | 13 | 156 | 191 | 78 | 95 | 18 | 22 |
| Castle Dale | 19 | 24 | 9 | 12 | 2 | 3 | 28 | 65 | 14 | 33 | 3 | 8 |
| Emery | 4 | 11 | 2 | 5 | 0 | 1 | 6 | 10 | 3 | 5 | 1 | 1 |
| Ferron | 25 | 27 | 13 | 13 | 3 | 3 | 35 | 48 | 17 | 24 | 4 | 6 |
| Huntington | 0 | 12 | 0 | 6 | 0 | 1 | 0 | 36 | 0 | 18 | 0 | 4 |
| Orangeville | 25 | 16 | 13 | 8 | 3 | 2 | 30 | 29 | 15 | 15 | 3 | 3 |
| Sanpete County | 102 | 14 | 51 | 7 | 12 | 2 | 162 | 21 | 81 | 11 | 19 | 3 |
| Fairview | 9 | 4 | 5 | 2 | 1 | 0 | 13 | 5 | 7 | 3 | 2 | 1 |
| Mt. Pleasant | 15 | 9 | 7 | 5 | 2 | 1 | 29 | 9 | 15 | 4 | 3 | 1 |
| Gunn ison | 1 | 0 | 0 | 0 | 0 | 0 | 20 | 2 | 10 | 1 | 2 | 0 |
| Centerfield | 1 | 0 | 0 | 0 | 0 | 0 | 9 | 1 | 4 | 0 | 1 | 0 |
| Spring City | 4 | 1 | 2 | 0 | 2 | 0 | 8 | 2 | 4 | 1 | 1 | 0 |
| Sevier County | 204 | 17 | 102 | 8 | 24 | 2 | 294 | 26 | 147 | 13 | 34 | 3 |
| Aurora | 12 | 3 | 6 | 2 | 1 | 0 | 19 | 4 | 9 | 2 | 2 | 0 |
| Redmond | 9 | 2 | 4 | 1 | 1 | 0 | 11 | 2 | 5 | 1 | 1 | 0 |
| Salina | 29 | 8 | 15 | 4 | 3 | 1 | 63 | 14 | 32 | 7 | 8 | 2 |
| Sigurd | 11 | 0 | 5 | 0 | 1 | 0 | 6 | 0 | 3 | 0 | 1 | 0 |
| Four-County Total | 693 | 211 | 346 | 105 | 81 | 25 | 964 | 367 | 482 | 183 | 112 | 43 |

Irrigated
əбеョ」วท
TABLE 4-5, Concluded
TABLE 4-5, Concluded

| Location | Total Acreage Converted ${ }^{\text {a }}$ |  | Irrigated Acreage Converted |  | Irrigated Acreage Retired |  | Total <br> Acreage Converted |  | \|rrigated Acreage Converted |  | Irrigated Acreage Retired |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Base | Alt. 1 | Base | Alt. 1 | Base | Alt. 1. | Base | Alt. 1 | Base | Alt. 1 | Base | Aft. |
|  |  |  | 199 |  |  |  |  |  |  |  |  |  |
| Carbon County | 433 | 159 | 216 | 80 | 50 | 18 | 453 | 157 | 226 | 78 | 52 | 18 |
| Helper | 61 | 22 | 30 | 11 | 7 | 3 | 64 | 22 | 32 | 11 | 7 | 3 |
| Price | 193 | 68 | 96 | 39 | 22 | 9 | 213 | 69 | 106 | 35 | 25 | 8 |
| Wellington | 59 | 16 | 29 | 8 | 7 | 2 | 61 | 13 | 30 | 7 | 7 | 2 |
| Emery County | 201 | 215 | 101 | 107 | 23 | 25 | 203 | 229 | 101 | 115 | 23 | 26 |
| Castle Dale | 36 | 45 | 18 | 23 | 4 | 5 | 36 | 48 | 18 | 24 | 4 | 6 |
| Emery | 7 | 22 | 4 | 11 | 1 | 3 | 6 | 23 | 3 | 12 | 1 | 3 |
| Ferron | 42 | 56 | 21 | 28 | 5 | 6 | 42 | 62 | 21 | 31 | 5 | 7 |
| Huntington | 8 | 24 | 4 | 12 | 1 | 3 | 8 | 28 | 4 | 14 | 1 | 3 |
| Orangeville | 36 | 30 | 18 | 15 | 4 | 3 | 36 | 32 | 18 | 16 | 4 | 4 |
| Sanpete County | 221 | 24 | 111 | 12 | 26 | 3 | 289 | 22 | 145 | 11 | 34 | 3 |
| Fairview | 15 |  | 8 | 3 | 2 | 1 | 16 | 5 | 8 | 3 | 2 | 1 |
| Mt. Pleasant | 35 | 9 | 18 | 5 | 4 | 1 | 36 | 8 | 18 | 4 | 4 | 1 |
| Gunnison | 28 | 3 | 14 | 1 | 3 | 0 | 30 | 2 | 15 | 1 | 3 | 0 |
| Centerfield | 12 | 1 | 6 | 0 | 1 | 0 | 13 | 1 | 7 | 0 | 2 | 0 |
| Spring city | 9 | 3 | 4 | 1 | 1 | 0 | 10 | 2 | 5 | 1 | 1 | 0 |
| Sevier County | 456 | 32 | 228 | 16 | 53 | 4 | 571 | 33 | 286 | 16 | 66 | 4 |
| Aurora | 33 |  | 17 | 2 | 4 | 0 | 33 | 6 | 17 | 3 | 4 | 1 |
| Redmond | 19 | 3 | 9 | 1 | 2 | 0 | 19 | 3 | 10 | 1 | 2 | 0 |
| Salina | 99 | 16 | 50 | 8 | 12 | 2 | 105 | 17 | 52 | 9 | 12 | 2 |
| Sigurd | 8 | 1 | 4 | 0 | 1 | 0 | 12 | 1 | 6 | 0 | 1 | 0 |
| Four-County Total | 1,311 | 430 | 656 | 215 | 152 | 50 | 1.516 | 441 | 758 | 220 | 175 | 51 |

## ENVIRONMENTAL CONSEQUENCES

## SOCIOECONOMICS

## Economic and Demographic Impacts

Information in this section was developed through a BLM contract with Centaur Associates, Inc. of Washington, D.C.

Additional employment in Emery County would peak at 1,559 jobs in 2000, compared to 4,984 jobs in 1977 and 24 percent above the baseline estimate of 6,592 in 2000 (Table 4-6). Direct employment at the mines would account for two-thirds of the additional employment bringing employment in mining to 3,851 or 47 percent of total employment in Emery County by 2000 (compared to 2,894 or 43.9 percent under the projected baseline), and increasing the county economy's already great dependency on the mining sector. This increased dependency would carry with it greater risk of severe economic dislocation if mining operations are disrupted (e.g., by a labor stoppage).

Increased employment effects on the remaining three counties would be much smaller. Carbon County would gain up to 1,162 additional jobs (including 500 in mining) bringing total employment to 13,578 by 2000 (an increase of 5,902 since 1977). Although both Sanpete and Sevier Counties are expected to experience large employment increases between 1977 and 2000, only a small fraction of the additional jobs (144 in Sanpete, 244 in Sevier) would be attributable to renewed coal leasing.

In addition to mining, a large proportion of the new jobs generated would be in the construction sector. Because of their relatively high wage scales, competition from the mining and construction sectors would make it more difficult for employers in lower-paying industries and government to hire and retain qualified employees. Raising their pay scales to compete with mining and construction would reduce profits, even jeopardize the continued existence of some businesses, and would increase government operating costs.

Annual earnings are projected to increase by $\$ 107.3$ million by the year 2000, including $\$ 42.8$ million in Carbon County and $\$ 45.6$ million in Emery County. (All figures are expressed in constant 1977 dollars.) As a result, total personal income in Carbon County would reach $\$ 301.9$ million or $\$ 9,299$ per capita by 2000, compared with a 1978 per capita income of $\$ 6,837$ and an estimated per capita income of $\$ 8,668$ in 2000 without further coal development. Similarly, Emery County would have a total personal income of $\$ 164.3$ million by 2000 or a per capita income of $\$ 9,104$ (versus $\$ 5,788$ in 1978 and $\$ 8,550$ in 2000 without further
coal development). The resultant increase in individual average buying power would, in turn, intensify inflationary pressures in the study area, to the detriment of persons on low or fixed incomes.
Due to the relatively small pool of unemployed labor in the Wasatch Plateau-Emery area, and the special skills required for underground coal mining, most of the employment openings would be filled by new in-migrants rather than existing residents. The majority of these in-migrants would be expected to settle in Emery County. As result, Emery County's population would increase by 4,124 by the year 2000 compared to its 1978 population of 9,849 and 30 percent above its projected baseline population of 13,922 in 2000 (Table 4-7).
The following communities would sustain the largest population increases: Ferron, whose population would increase by 1,113 by 2000 , i.e., 53 percent above its projected baseline population of 2,088; Castle Dale, an increase of 866 in 2000, or 35 percent above its baseline estimate of 2,506 ; and Price, an increase of 1,242 or 10 percent above its baseline estimate of 12,555 .

Projected population growth in these and other communities, in addition to the number of new residents, would also be a function of their respective capacity to absorb the additional residents without placing excessive strain on local infrastructure, e.g., housing, public services, and facilities. The effects of population growth on the social fabric of individual communities must also be taken into consideration in assessing the local impacts of population growth. The sections below address the infrastructure and social impacts of the forecasted population growth.

## Infrastructure

This section analyzes the most significant potential increased demands on housing, education, health care, and municipal services in Carbon and Emery counties. No significant infrastructure impacts in Sanpete or Sevier counties would be anticipated. The most severe stress on infrastructure would be felt in Emery County and its constituent communities. Overcrowding in the county's elementary and secondary schools (which would need approximately 660 and 470 additional pupil spaces respectively by 2000 as a result) would result unless new school facilities were built. Increases in population would also exacerbate the countywide shortage of doctors (four doctors would be required by 2000 in addition to the 14 that would be needed under the projected baseline) and 15 nurses would be needed in 2000, in addition to the 48 required under the projected baseline) (Table 4-8).
TABLE 4-6
PROJECTED EMPLOYMENT IMPACTS ALTERNATIVE ONE

|  | Carbon County |  |  |  |  | Emery County |  |  |  | Sanpete County |  |  | Sevier County |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1987 | 1990 | 1995 | 2000 | 1987 | 1990 | 1995 | 2000 | 1987 | 1990 | 1995 | 2000 | 1987 | 1990 | 1995 | 2000 |
| Additional |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Emp loyment |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| by Alternative One |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Mine Construction | 95 | 0 | 0 | 0 | 340 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Mining | 281 | 560 | 560 | 500 | 480 | 957 | 957 | 957 | 25 | 50 | 50 | 50 | 50 | 100 | 100 | 100 |
| Other (secondary) | 324 | 564 | 651 | 662 | 454 | 484 | 568 | 602 | 81 | 90 | 101 | 94 | 69 | 110 | 133 | 144 |
| Total | 700 | 1,124 | 1,211 | 1,162 | 1,274 | 1,441 | 1,525 | 1,559 | 106 | 140 | 151 | 144 | 119 | 220 | 233 | 244 |
| Projected |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Employment w/o |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Alternative One |  | 11,048 | 11,701 | 12,416 | 5,506 | 5,944 | 6,294 | 6,592 | 6,435 | 6,662 | 7,100 | 7,925 | 7,556 | 8,179 | 9,479 | 10,832 |
| Total Employment |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Including Alternative One |  | 12,172 | 12,912 | 13,578 | 6,780 | 7,385 | 7,819 | 8,151 | 6,541 | 6,802 | 7,251 | 8,069 | 7,675 | 8,399 | 9,712 | 11.076 |

PROJECTED POPULATION IMPACTS

28,090
3,915
11,350
2,265

14,230 $\begin{array}{r}698 \\ 2,269 \\ 2,460 \\ 1,772 \\ \\ \hline 8,608\end{array}$
 18,985

79,913
6,136 -
(1. $\varepsilon$
,
81,037
〔S9 $9^{\circ}$ \& $-$ 20,309
1,155

TABLE 4-7 (Concluded)

|  |  | 1995 |  |  | 2000 |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Total | Total | Increment | Total | Total | Increment |
|  | 1978 | Without the | With the | Due to the | W1thout the | With the | Due to the |
|  | Total | Proposed | Proposed | Proposed | Proposed | Proposed | Proposed |
|  | Population | Alternatlve | Alternative | Alternative | Alternative | Alternative | Alternative |
| Carbon | 21,643 | 29,626 | 32,491 | 2,865 | 29,889 | 32,712 | 2,823 |
| Helper | 3,030 | 4,148 | 4,585 | 401 | 4,184 | 4,579 | 395 |
| Price | 8,660 | 12,217 | 13,449 | 1,232 | 12,555 | 13,797 | 1,242 |
| Wellington | 1,299 | 2,370 | 2,657 | 287 | 2,391 | 2,617 | 226 |
| Emery | 9,849 | 13,913 | 17,785 | 3,872 | 13,922 | 18,046 | 4,124 |
| Castle Dale | 1,773 | 2,505 | 3,318 | 813 | 2,506 | 3,372 | 866 |
| Emery | 397 | 554 | 941 | 387 | 540 | 952 | 412 |
| Ferron | 1,280 | 2,087 | 3,094 | 1,007 | 2,088 | 3,201 | 1,113 |
| Huntington | 2,363 | 2,505 | 2,931 | 426 | 2,506 | 3,001 | 495 |
| Orangeville | 985 | 1,670 | 2,212 | 542 | 1,671 | 2,248 | 577 |
| Sanpete | 14,119 | 20,509 | 20,943 | 434 | 21,687 | 22,027 | 390 |
| Centerfield | 600 | 1,091 | 1,104 | 13 | 1,103 | 1,115 | 12 |
| Falrview | 1,060 | 1,355 | 1,455 | 100 | 1,367 | 1,457 | 90 |
| Gunn 1 son | 1,368 | 2,503 | 2,546 | 43 | 2,531 | 2,558 | 27 |
| Mt. Pleasant | 2,354 | 3,031 | 3,196 | 165 | 3,060 | 3,212 | 152 |
| Spring Clty | 698 | 879 | 926 | 47 | 886 | 929 | 43 |
| Sevier | 14,489 | 23,228 | 23,801 | 573 | 25,170 | 25,764 | 594 |
| Aurora | 779 | 1,412 | 1,509 | 97 | 1,417 | 1,524 | 107 |
| Redmond | 486 | 843 | 895 | 52 | 849 | 908 | 59 |
| Sallna | 2,191 | 4,028 | 4,297 | 269 | 4,138 | 4,441 | 303 |
| Sigurd | 370 | 515 | 527 | 12 | 585 | 603 | 18 |
| Reglonal Total | 60,100 | 87,276 | 95,020 | 7,744 | 90,668 | 98,599 | 7,931 |

TABLE 4-8
IMPACTS ON EDUCATION, HEALTH, AND POLICE SERVICE REQUIREMENTS IN 2000 ALTERNATIVE ONE

| County | $\begin{gathered} \text { Existing } \\ \text { Capacity } \\ 1978 \\ \hline \end{gathered}$ | ```Total Need With Alt. 1``` | Increment Due To <br> Alt. 1 | Percent Increase <br> Due To <br> Alt. 1 |
| :---: | :---: | :---: | :---: | :---: |
| Carbon County |  |  |  |  |
| Pupil Spaces ${ }^{\text {a }}$ |  |  |  |  |
| Elementary | 2,828 | 3,827 | 330 | 9.4 |
| Secondary | 2,139 | 2,911 | 251 | 9.4 |
| Teachers ${ }^{\text {b }}$ | 192 | 315 | 33 | 12.0 |
| Doctors ${ }^{\text {c }}$ | 21 | 33 | 3 | 10.0 |
| Nurses | 122 | 115 | 10 | 9.5 |
| Police Officers ${ }^{\text {d }}$ | 24 | 65 | 5 | 8.3 |
| Emery County |  |  |  |  |
| Pupil Spaces |  |  |  |  |
| Elementary | 1,940 | 2,887 | 660 | 30.0 |
| Secondary | 1,417 | 2,057 | 470 | 30.0 |
| Teachers | 129 | 246 | 56 | 29.0 |
| Doctors | 7 | 18 | 4 | 29.0 |
| Nurses | 6 | 63 | 15 | 31.0 |
| Police Officers | 12.5 | 36 | 8 | 29.0 |
| Sanpete County |  |  |  |  |
| Pupil Spaces |  |  |  |  |
| Elementary | 1,789 | 2,489 | 44 | 2.0 |
| Secondary | 743 | 1,984 | 35 | 2.0 |
| Teachers | 152 | 172 | 3 | 2.0 |
| Doctors | 7 | 22 | 0 | 0.0 |
| Nurses | 27 | 78 | 2 | 2.0 |
| Police Officers | 7 | 44 | 1 | 2.0 |
| Sevier County |  |  |  |  |
| Pupil Spaces |  |  |  |  |
| Elementary | 1,783 | 3,349 | 77 | 2.0 |
| Secondary | 1,111 | 2,396 | 55 | 2.0 |
| Teachers | 165 | 230 | 5 | 2.0 |
| Doctors | 9 | 26 | 1 | 4.0 |
| Nurses | 24 | 90 | 2 | 2.0 |
| Police Officers | 12.5 | 52 | 1 | 2.0 |

aprojected enrollment is based on the assumption that school district enrollment is the same proportion of county population in the future as in 1978
bprojected need for teachers assumes the same teacher/pupil ratio as in 1978
${ }^{\text {CProjected need for doctors and nurses is based on the planning standard of one per }}$ 1,000 population and one per 285 population, respectively
dprojected need for police officers is based on a standard of two full time equivalent officers per 1,000 person

## ENVIRONMENTAL CONSEQUENCES

In order to meet the housing needs of the additional population, Castle Dale would need an additional 262 housing units by 2000; Ferron would require an additional 337 units; Huntington 150 units; and Orangeville 178 (Table 4-9).

Communities in Emery County would have adequate firefighting capacity to handle increased fire protection needs. Levels of police coverage would decline in all communities. Local police departments are already understaffed and renewed coal leasing would account for a relatively small proportion of the additional police officers required.

In order to meet the demands of increased population growth, Castle Dale would have to acquire rights to an additional 0.2 million gallons per day ( mgd ) of water by 2000 (in addition to the 0.6 mgd needed to satisfy the projected baseline need). While it would have adequate supplies of treated water to meet the anticipated demand, Emery would have insufficient sewage treatment capacity. As a result, Emery would have to expand its existing 0.013 mgd total-containment sewage treatment lagoon and/or meet the State requiremnts for secondary waste water discharges (Table 4-10).

The amount of Ferron's present water rights could not be determined, but the town would probably need to secure new water rights or sources. Ferron's sewage treatment lagoon, while presently overloaded and discharging wastes into Ferron Creek, nevertheless meets EPA standards for such secondary discharges. Renewed coal leasing would increase the likelihood that Ferron would have to build an expanded sewage treatment facility capable of treating 0.4 mgd of wastes by 2000 .

Huntington's existing infrastructure could adequately absorb expected growth resulting from proposed leasing. However, Orangeville, while it currently has rights to 0.4 mgd of water, would need to secure rights to an additional 0.09 mgd by 2000. No additional water rights would be needed if no further coal development takes place.

Carbon County would also experience significant infrastructure stress although to a lesser extent than Emery County. The county schools would need to provide approximately 330 additional places for elementary students and 251 for secondary students by 2000, or otherwise face overcrowding (Table 4-8). (Under the baseline, the county would have adequate capacity in its elementary schools through 2000, but would need 630 more secondary school places in order to avoid overcrowding.)

To meet the projected population growth the city of Price would require 376 additional housing units by 2000. In Helper, 120 more housing units would be required by 2000 .

There should be no significant impacts on municipal services and facilities in Carbon County.

In general, counties, school districts, and municipalities in the Wasatch Plateau-Emery area have substantial unused taxing and bonding authority on which to rely in funding needed infrastructure improvements. An increase in local assessed valuations, which determine the amount of revenues communities receive at a given property tax rate as well as their maximum allowable bonded indebtedness would also require consideration.

As an alternative to increased outlays on public services and facilities, with the associated burden on taxpayers, local governments could accept a degradation in the quality and quantity of services offered. For example, school overcrowding could be alleviated by busing pupils or resorting to split sessions. Increased water demand could be met by restrictions on non-essential water uses, such as watering lawns. However, in addition to the hardship or inconvenience caused to residents, local governments' ability to cut back services may be limited by State or Federal regulations (such as EPA regulations governing sewage discharge).

Local governments are more limited in their ability to assure provision of adequate supplies of housing and health care personnel, which are largely private sector functions. Failure to provide enough new housing of suitable quality and at an affordable price (due to high land and construction costs, restrictive zoning regulations or limitations on new sewer or water hookups) would force many new residents to live in substandard housing or in unplanned trailer settlements on unincorporated lands. From the community standpoint, this situation could result in a loss of potential tax revenues, create obstacles to effective community planning, and make it more difficult to integrate the newcomers into the local political process.

A further decline in the availability of health care facilities and/or personnel would result, at a minimum, in greater inconvenience to residents forced to travel long distances for health care. At worst, it could contribute to an increase in the incidence and severity of health problems among residents, if the latter respond to the inconvenience by foregoing needed health care.

A reduction in hunting opportunities would cause an unquantified loss in revenue in the region from hunting-related expenditures.

## Social Impacts

Information in this section was obtained by Drs. Bruce Chadwick, Stanley Albrecht, and Howard

TABLE 4-9
PROJECTED HOUSING IMPACTS IN 2000 ALTERNATIVE ONE

|  | Projected Need Without This Proposed Action | Projected Need With This Proposed Action | Increment Due To The Proposed Action | Percent Increase Due To The Proposed Action |
| :---: | :---: | :---: | :---: | :---: |
| Carbon County | 9,057 | 9,912 | 855 | 9.4 |
| Hel per | 1,268 | 1,388 | 120 | 9.4 |
| Price | 3,805 | 4,181 | 376 | 9.8 |
| Wellington | 724 | 792 | 68 | 9.4 |
| Emery County | 4,219 | 5,469 | 1,250 | 30.0 |
| Castle Dale | 759 | 1,021 | 262 | 34.0 |
| Emery | 163 | 288 | 125 | 77.0 |
| Ferron | 633 | 970 | 337 | 53.0 |
| Huntington | 759 | 909 | 150 | 20.0 |
| Orangeville | 506 | 684 | 178 | 35.0 |
| Sanpete County | 6,571 | 6,689 | 118 | 2.0 |
| Centerfield | 334 | 338 | 4 | 1.0 |
| Fairview | 414 | 441 | 27 | 6.5 |
| Gunnison | 767 | 775 | 8 | 1.0 |
| Mt. Pleasant | 927 | 973 | 46 | 5.0 |
| Spring City | 268 | 281 | 13 | 5.0 |
| Sevier County | 7,627 | 7,806 | 180 | 2.3 |
| Aurora | 429 | 461 | 32 | 7.5 |
| Redmond | 257 | 276 | 18 | 7.2 |
| Salina | 1,254 | 1,346 | 92 | 7.3 |
| Sigurd | 177 | 182 | 5 | 2.7 |
| Regional Total | 27,474 | 29,876 | 2,403 | 8.7 |

TABLE 4-10
IMPACTS ON WATER SUPPLY AND SEWAGE TREATMENT REQUIREMENTS ALTERNATIVE ONE

|  | Water Requirements (MGD) |  |  | Sewage Treatment Capacity (MGD) |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Projected | Increment | Percent | Projected | Increment | Percent |
|  | Need In | Due To | Increase | Need In | Due To | Increase |
|  | 2000 | Alt. 1 | Due To Alt. 1 | 2000 | Alt. 1 | Due to Alt. 1 |
| Carbon County | 7.3 | 0.63 | 9.4 | 3.6 | 0.3 | 9.4 |
| Helper | 1.0 | 0.08 | 8.7 | 0.5 | 0.04 | 8.7 |
| Price | 3.0 | 0.25 | 8.7 | 1.5 | 0.13 | 8.7 |
| Wellington | 0.6 | 0.05 | 9.0 | 0.3 | 0.03 | 9.0 |
| Emery County | 4.0 | 0.8 | 25.0 | 2.0 | 0.4 | 25.0 |
| Castle Dale | 0.75 | 0.17 | 29.0 | 0.4 | 0.09 | 29.0 |
| Emery | 0.2 | 0.07 | 54.0 | 0.1 | 0.04 | 54.0 |
| Ferron | 0.7 | 0.21 | 43.0 | 0.35 | 0.1 | 43.0 |
| Huntington | 0.66 | 0.09 | 16.0 | 0.33 | 0.05 | 16.0 |
| \% Orangeville | 0.50 | 0.11 | 28.0 | 0.25 | 0.06 | 28.0 |
| sanpete County | 4.9 | 0.09 | 2.0 | 2.5 | 0.05 | 2.0 |
| Centerfield | 0.25 | 0.003 | 1.0 | 0.13 | 0.002 | 1.5 |
| Fairview | 0.32 | 0.02 | 7.0 | 0.16 | 0.01 | 6.3 |
| Gunnison | 0.57 | 0.006 | 1.0 | 0.29 | 0.003 | 1.0 |
| Mt. Pleasant | 0.72 | 0.03 | 5.0 | 0.36 | 0.02 | 5.5 |
| Spring City | 0.20 | 0.01 | 5.0 | 0.1 | 0.005 | 5.0 |
| Sevier County | 5.7 | 0.13 | 2.0 | 2.9 | 0.07 | 2.4 |
| Aurora | 0.34 | 0.02 | 7.0 | 0.17 | 0.01 | 5.8 |
| Redmond | 0.20 | 0.01 | 7.0 | 0.1 | 0.005 | 5.0 |
| Salina | 1.0 | 0.07 | 7.0 | 0.5 | 0.04 | 8.0 |
| Sigurd | 0.13 | 0.003 | 2.7 | 0.07 | 0.002 | 2.9 |

## ENVIRONMENTAL CONSEQUENCES

Bahr of Brigham Young University. In the fall of 1979 they conducted field studies to determine social well-being and public attitudes in the study area.

Even without further coal development, most communities in the study area would experience, to varying degrees, a diminution of their small-town ambience and way of life due to population growth; and a decrease in cultural homogeneity and social solidarity proportional to the number of non-LDS Church members among the new in-migrants. However, the incremental social changes would be negligible in communities located in Sanpete and Sevier counties, which are located far from the proposed mine sites and would experience less population growth than Emery and Carbon Counties. Although the Helper-Price-Wellington area of Carbon County would gain an additional 1,863 residents by 2000, the incremental social changes of this population growth would likewise probably be minor. With 13,000 residents in 1978, and expected to grow to 19,000 by 2000 even without further coal development, the Helper-Price-Wellington area is already becoming relatively urbanized, with a concomitant increase in social and cultural heterogeneity. While the pace of social changes already taking place in Helper-Price-Wellington would accelerate, renewed coal leasing would not have a significant effect on the nature or direction of those changes.

In Emery County, the likelihood of significant social changes is substantially greater, particularly in the community of Emery, where newcomers would outnumber native residents by 1990. Emery's small size (less than 400 residents in 1978), rural lifestyle, and cultural homogeneity make it more susceptible to the effects of sudden, rapid population growth than other study area communities. This susceptibility is reflected in the attitudes expressed in interviews with Emery residents. The latter, while not actively hostile toward development, are less enthusiastic about it than residents of other Emery County communities and favor a moderate, controlled approach to growth.

The effects of rapid population growth on Castle Dale, Ferron, and Orangeville would be mitigated somewhat by their larger size, greater experience in integrating non-LDS outsiders into their community fabric, and residents' relatively favorable attitudes toward development. (In interviews, respondents in these three communities were found to have fewer reservations about development than respondents in Emery. While aware of the social costs of development, they generally considered these costs justified by the potential benefits of growth in terms of access to improved public services, facilities, and better shopping, cultural, and recreational facilities.)

Of the five Emery County communities studied, Huntington would be the least likely to experience severe social change. Huntington has a relatively large population base to begin with ( 2,363 residents in 1978), and the incremental population would not exceed 500 persons. Perhaps most important, Huntington already went through a period of adjusting to the social impacts of rapid population growth in the 1970s. As a result, Huntington has largely lost its small-town atmosphere and values, but residents have also enjoyed the benefits of development in terms of jobs, better public service, etc., and are therefore very receptive to further growth.

The fact remains, however, that the growth that would occur as a result of development of newly leased coal would increase the burden on Carbon and Emery Counties and the communities therein to deal with social disorders such as mental illness, family violence, violent crime, divorce, suicide, drug abuse, and alcoholism. The extent of the impact cannot be quantified but would be greater in Emery County than in Carbon County. The experiences in recent years in Gillette and Rock Springs, Wyoming from social problems arising from rapid community growth illustrate what can occur where community services cannot keep pace with growth.

## TRANSPORTATION

Table 4-11 shows predicted increases in traffic due to development of the eleven tracts during full mine operation (1990 and thereafter). The greatest volume of traffic increase would occur along U-10 from Clawson northward. Values shown in the table are as predicted with the Castle Valley RR spur line in place; if the railroad spur is not built for some reason, there would be a large increase in the number of trucks going northward along U-10, mainly to the Wellington loadout and to existing loadout facilities at Mohrland, on the Utah Railway system.

Additional traffic due entirely to mining development would not itself be enough to overload any of the State highways in the area. However, additional traffic would be enough to exceed a practical maximum of 500 vehicles per day (vpd) for the existing gravel surface of the Gordon Creek road from the mine to the Utah Railway, beyond which the road is now hard surfaced.

Direct, mine-related traffic would add about 3,350 vpd to the highways of the area, traveling approximately 16 million miles per year. Cumulative traffic for the entire area is shown in Table 4-12 (point numbers refer to locations in Figure 3-11 (Chapter 3 ), and are the same for the incremental and cumulative tables for all alternatives).

TABLE 4-11
ANNUAL AVERAGE DAILY TRAFFIC INCREASE
DUE TO ALTERNATIVE (1990-2000)
ALTERNATIVE ONE

| Point | Location | All | Trucks |
| :---: | :---: | :---: | :---: |
| 1. | U-96 South of U.S. 6 | 119 | 43 |
| 2. | U.S. 6 at Utah-Carbon County Line | 458 | 61 |
| 3. | Gordon Creek Road | 488 | 214 |
| 4. | U.S. 6 North of Price | 858 | 280 |
| 5. | U.S. 6 Between Price and Wellington | 111 | 0 |
| 14. | U-10 South of Price | 1,336 | 499 |
| 15. | Wellington Loadout Road | 189 | 189 |
| 16. | U-10 North of Huntington | 1,147 | 310 |
| 17. | U-31 West of Huntington | 391 | 176 |
| 18. | U-10 South of Huntington | 1,092 | 422 |
| 19. | U-29 West of Orangeville | 459 | 201 |
| 19a. | Castle Valley RR Loadout S of Castle Dale | 334 | 334 |
| 20. | U-10 South of Castle Dale | 1,297 | 215 |
| 21. | North Horn Mountain Mine | 1,228 | 99 |
| 22. | U-10 North of Ferron | 695 | 116 |
| 23,25. | U-10 South of Ferron, North of Emery | 300 | 29 |
| 26. | Emery North Mine | 162 | 34 |
| 27. | Emery Central Mine | 153 | 38 |
| 27a. | U-10 South of Emery | 101 | 21 |
| 27 b . | Castle Valley RR Loadout South of Emery | 41 | 41 |
| 28. | U-10 North of I-70 | 142 | 62 |
| 29. | Emery South and Dog Valley Mines | 97 | 46 |
| 33. | I-70 East of Salina | 17 | 0 |
| 37. | U.S. 89 South of Salina | 33 | 16 |
| 47. | New Road, Pleasant Valley to U-31 | 48 | 0 |
| 48. | U-31 East of Fairview | 48 | 0 |

Note: Castle Valley RR spur assumed built to Emery

|  | 1985 |  | 1987 |  | 1990 |  | 1995 |  | 2000 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Point Location | All | Trucks | All | Trucks | All | Trucks | All | Trucks | A11 | Trucks |
| 1. U-96 S of U.S. 6 | 953 | 171 | 1,075 | 208 | 1,327 | 291 | 1,377 | 293 | 1,427 | 295 |
| 2. U.S. 6 at Utah-Carbon County Line | 8,740 | 1,430 | 9,519 | 1,575 | 11,166 | 1,844 | 13,166 | 2,144 | 15,128 | 2,362 |
| 3. Gordon Creek Road | 339 | 139 | 339 | 139 | 827 | 353 | 827 | 353 | 827 | 353 |
| 4. U.S. 6 N of Price | 17,563 | 3,033 | 18,201 | 3,210 | 20,018 | 3,715 | 21,518 | 3,940 | 22,893 | 4,093 |
| 5. U.S. 6 between Price \& Wellington | 11,156 | 1,806 | 16,394 | 2,698 | 25,490 | 3,959 | 39,703 | 6,102 | 43,667 | 5,958 |
| 6. Soldier Cr Rd at Duchesne-Carbon Co Line | 65 | 3 | 68 | 3 | 75 | 5 | 90 | 4 | 112 | 5 |
| 7. Soldier Cr Rd at Soldier Cr Mine | 145 | 14 | 193 | 17 | 295 | 23 | 333 | 24 | 355 | 25 |
| 8. Deadman Canyon Mine | 322 | 160 | 408 | 191 | 551 | 243 | 794 | 348 | 794 | 348 |
| 9. Dugout Canyon Road | 965 | 80 | 1,242 | 103 | 1,555 | 128 | 1,555 | 128 | 1,555 | 128 |
| 10. Soldier Cr Rd at U.S. 6 | 1,431 | 301 | 1,855 | 314 | 2,424 | 394 | 2,682 | 500 | 2,704 | 501 |
| 11. U.S. 6 W of U-123 (Sunnyside Jct) | 5,356 | 851 | 5,890 | 906 | 6,256 | 986 | 7,056 | 1,106 | 8,140 | 1,206 |
| 12. U-123 E of U.S. 6 | 2,656 | 160 | 2,850 | 168 | 3,056 | 176 | 3,156 | 180 | 3,256 | 184 |
| 13. U.S. 6 near Carbon-Emery County Line | 3,300 | 495 | 3,460 | 520 | 3,700 | 555 | 4,100 | 615 | 4,500 | 675 |
| 14. U-10 S of Price | 5,983 | 1,407 | 6,082 | 1,353 | 7,881 | 2,072 | 8,393 | 2,166 | 8,830 | 2,229 |
| 15. Weilington Loadout Road | 883 | 883 | 970 | 970 | 589 | 589 | 620 | 620 | 620 | 620 |
| 16. $\mathrm{U}-10 \mathrm{~N}$ of Huntington | 5,514 | 1,290 | 5,614 | 1,290 | 6,694 | 1,369 | 7,144 | 1,502 | 7,430 | 1,543 |
| 17. U-31 W of Huntington | 1,483 | 185 | 1,697 | 189 | 2,307 | 378 | 2,532 | 392 | 2,668 | 404 |
| 18. $\mathrm{U}-10 \mathrm{~S}$ of Huntington | 3,883 | 979 | 4,024 | 983 | 5,139 | 1,213 | 5,636 | 1,260 | 6,018 | 1,313 |
| 19. U-29 W of Orangeville | 2,103 | 559 | 3,190 | 597 | 3,871 | 812 | 4,001 | 817 | 4,019 | 817 |
| 19a. Castle Valley RR Loadout S of Castle Dale | 834 | 834 | 1,500 | 1,500 | 2,435 | 2,435 | 2,435 | 2,435 | 2,435 | 2,435 |
| 20. U-10 S of Castle Dale | 1,250 | 150 | 1,460 | 210 | 3,060 | 507 | 3,613 | 557 | 3,999 | 570 |
| 21. North Horn Mountain Mine | - | - | - | - | 1,228 | 99 | 1,228 | 99 | 1,228 | 99 |
| 22. $\mathrm{U}-10 \mathrm{~N}$ of Ferron | 1,250 | 150 | 1,460 | 210 | 2,458 | 408 | 3,011 | 458 | 3,397 | 471 |
| 23. U-10 S of Ferron, $N$ of Emery | 1,050 | 126 | 1,226 | 181 | 1,791 | 288 | 2,355 | 333 | 2,709 | 343 |
| 26. Emery North Mine | - | - | - | - | 162 | 34 | 162 | 34 | 162 | 34 |
| 27. Emery Central Mine | - | - | - | - | 153 | 38 | 153 | 38 | 153 | 38 |

27. Emery Central Mine
TABLE 4-12 (Concluded)

| Point | Location | 1985 |  | 1987 |  | 1990 |  | 1995 |  | 2000 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | All | Trucks | All | Trucks | All | Trucks | All | Trucks | All | Truc |
| 27a. | U-10 S of Emery | 930 | 112 | 1,090 | 131 | 1,582 | 214 | 2,234 | 320 | 2,643 |  |
| 27b. | Castle Valley RR Loadout S of Emery | - | - | - | - | 840 | 840 | 840 | 840 | 840 |  |
| 28. | U-10 N of 1-70 | 930 | 112 | 1,090 | 131 | 1,817 | 407 | 2,069 | 465 | 2,508 | 5 |
| 29. | Emery South \& Dog Valley Mines | 70 | 10 | 70 | 10 | 167 | 56 | 167 | 56 | 167 |  |
| 30. | U-72 near Sevier-Wayne County Line | 37 | 1 | 40 | 2 | 45 | 2 | 55 | 2 | 66 |  |
| 31. | U-72 S of 1-70 | 270 | 184 | 368 | 185 | 442 | 185 | 454 | 185 | 454 | 1 |
| 32. | Spring Canyon Road at 1-70 | 1,085 | 591 | 1,0,85 | 591 | 949 | 283 | 961 | 348 | 961 | 3 |
| 33. | 1-70 E of Salina | 5,075 | 1,520 | 5,047 | 1,412 | 4,772 | 928 | 4,355 | 993 | 4,479 | 1,0 |
| 34. | U.S. 89 S of Richfield | 5,143 | 771 | 5,538 | 830 | 5,770 | 866 | 5,770 | 866 | 5,599 | 8 |
| 35. | U.S. 89 N of Richfield | 6,800 | 1,020 | 7,738 | 1,161 | 7,835 | 1,175 | 6,800 | 1,020 | 6,121 | 9 |
| 36. | U.S. 89 N of Aurora | 7,835 | 1,175 | 8,711 | 1,307 | 8,800 | 1,320 | 7,835 | 1,175 | 6,645 |  |
| 37. | U.S. 89 S of Salina | 3,175 | 1,135 | 2,866 | 828 | 2,716 | 587 | 2,471 | 652 | 2,586 | 6 |
| 38. | U.S. 89 near Sanpete-Sevier County Line | 5,828 | 1,170 | 6,132 | 1,113 | 6,000 | 720 | 6,000 | 720 | 6,390 | 1,0 |
| 39. | U-28 N of Gunni son | 3,848 | 873 | 3,822 | 777 | 3,500 | 420 | 3,500 | 420 | 3,818 |  |
| 40. | U.S. 89 N of Gunnison | 1,870 | 75 | 1,874 | 75 | 1,980 | 79 | 2,250 | 90 | 2,570 |  |
| 41. | U.S. 89 N of Manti | 2,875 | 115 | 2,518 | 101 | 2,635 | 105 | 3,500 | 140 | 4,973 |  |
| 42. | Public Road E of Ephraim | 285 | 11 | 317 | 12 | 380 | 15 | 510 | 20 | 665 |  |
| 43. | U.S. 89 N of Ephraim | 2,255 | 90 | 2,277 | 91 | 2,415 | 97 | 2,745 | 110 | 3,127 |  |
| 44. | U.S. 89 S of Mt. Pleasant | 1,645 | 66 | 1,574 | 63 | 1,660 | 66 | 2,000 | 80 | 2,475 |  |
| 45. | U.S. 89 N of Mt. Pleasant | 3,770 | 151 | 3,859 | 154 | 4,000 | 160 | 4,225 | 169 | 4,432 |  |
| 46. | U-31 at Sanpete-Emery County Line | 540 | 22 | 627 | 25 | 725 | 29 | 840 | 34 | 992 |  |
| 47. | New Road, Pleasant Valley to U-31 | 1,067 | 43 | 1,216 | 48 | 1,583 | 61 | 2,276 | 89 | 3,123 |  |
| 48. | U-31 E of Fairview | 1,607 | 64 | 1,843 | 73 | 2,308 | 90 | 3,116 | 123 | 4,065 |  |
| 49. | U.S. 89 N of Fairview | 2,040 | 82 | 2,029 | 81 | 2,150 | 86 | 2,485 | 100 | 2,898 | 1 |

## ENVIRONMENTAL CONSEQUENCES

Without any additional Federal coal leasing, it is expected that U-10 would become crowded from Price southward to about Castle Dale. With the leasing of the 11 coal tracts, U-10 would become crowded throughout most of its length, including the length of road northward from I-70 to the Emery loadout. The Gordon Creek Road would become seriously overcrowded for a gravel road carrying 45 percent trucks. West of Orangeville, U-29 would become crowded beginning about 1990, as would the roads serving both the central and southern loadouts on the Castle Valley Railroad spur.

Additional passage of 34 to 40 trucks per day from the Tucker Canyon tract through Scofield would cause a significant impact upon its residents and visitors in the form of safety concerns and noise.
Traffic increases due to additional leasing would reduce the level of service afforded by the existing Forest highway system. In most cases the present level of service is at stable flow with reduced speed, due to the percentage of truck traffic and limited passing opportunities. The level of service would approach unstable flow or forced flow at decreased speed with the additional traffic. Accident rates would increase due to the additional traffic at grade intersections and increased congestion.

Additional development of existing lease and additional leasing, within the Forest boundary served by Highway 31, would be expected. The percentage of truck traffic would be expected to increase as would overall traffic from this development. The total traffic could reach or exceed the maximum capacity of the existing road.

Highway construction and maintenance is primarily funded from taxes on motor fuel. Due to increased engine efficiencies and the continuing effects of inflation, the Utah Department of Transportation (UDOT) feels that present funding formulas would be inadequate to meet increased maintenance needs of highways which would be exposed to increased use by coal haulage.

Information from UDOT Division of Traffic Safety indicates that the traffic accident rate would not increase, i.e., that the number of traffic accidents would be expected to increase in proportion to the volume of traffic. On the basis of Statewide accident rates as shown in Chapter 3, the incremental traffic increase would cause about 72 additional traffic accidents per year.

The increased travel projected under the four alternatives would generate from $\$ 67,500$ to $\$ 144,000$ in increased fuel revenues annually. This revenue would be sufficient to apply only a minimum surface rehabilitation treatment to 1 mile of
highway each year where many hundreds of miles are affected.

Utah's highways have usually been constructed to accommodate traffic for 20 years after they were built. Nearly all of the highways impacted by the proposed coal development are approaching or have already exceeded the 20 year design traffic volume. Significant traffic increases will only exacerbate an already serious deficiency in the financial resources required to maintain, let alone improve, the affected highways. With many of the highways in a precarious condition, the increased travel (with a high percentage of trucks) would precipitate the deterioration of many highways. Immediate attention would be required just to retain a tolerable level of service. Without additional financing by a factor somewhere between fifty and one hundred times the previously mentioned revenue, the impacted roads will be adversely affected. Even then, it is assumed that such amounts would be made available each year over the life of the impact and that the onset of development would occur slowly (UDOT, 1980).

## Energy Requirements and Conservation Potential

The additional traffic would consume about 1.6 million gallons of fuel per year in transporting coal to railroad loadouts, in commuting of miners, and in providing service from Price to the various mines. These figures already reflect Environmental Protection Agency fuel consumption standards for light vehicles. The use of community-to-mine buses could reduce fuel consumption materially. One operator in the Pleasant Valley area has instituted a trial contract carrier bus service for employees with origins in Spanish Fork, Payson, and Price. The results of this experimental program are not known.

A net energy analysis estimate was made comparing the amount of energy in the coal produced from the tracts, the energy expended in its production, and the energy in the coal left in the ground after mining. Total energy output for this Alternative is estimated at 6.15 million billion Btu. Energy required for production of the coal is estimated at 212,949 billion Btu. Finally, energy left underground, and considered unrecoverable after mining is estimated at 7.55 million billion Btu.

See Appendix 10 for tract-by-tract energy balance analysis.

## ENVIRONMENTAL CONSEQUENCES

## CULTURAL RESOURCES

Because site densities are fairly low (1 to 15) on tracts that would be underground mined, except the North Horn Mountain tract, and proposed surface disturbance is relatively minimal, most direct impacts would be avoided by relocating or adjusting facilities. With increased site densities ( 55 to 75 projected number of sites on the North Horn Mountain tract) there would be less opportunity for avoidance of sites. Where avoidance would be impossible, excavation and salvage would result in saving important cultural values.

The loss of up to 275 projected cultural sites on the tracts proposed for surface mining would occur because of the nature of ground-disturbing activities associated with surface mining. This would be particularly evident on the Emery North and Central tracts which have projected site densities of 150 to 175 and 75 to 100 respectively. Avoidance through facility relocation and adjustment would not be possible; therefore, an intensive excavation and salvage program would be required. Significant loss of cultural sites on the Slaughterhouse tract is expected to be low because of the projected low site density.

No direct impacts to the Rochester-Muddy Petroglyph, a National Register property, are anticipated because it is not located on an area that would be surface mined. The mitigation measure requiring monitoring of the effects of blasting and vandalism would protect the site from mining-related and other activities. One potentially significant Paleo Indian site on the Emery Central tract would be destroyed although salvage of scientific values would occur.

The extent of losses from the construction of offsite facilities is unknown. Excavation and salvage would reduce the chances of inadvertent losses of cultural values.
the damage or destruction of cultural sites from mining activities would result in the following losses: (1) scientific and cultural information for future research; (2) resources that may be valuable in terms of uniqueness in their natural setting; and (3) buried, unsalvaged sites. The loss of these values, on the other hand, would be partially offset by information gained from an overall excavation and salvage program. Such information would add to the growing data base on cultural resources in Utah and the knowledge of resource utilization and settlement patterns.

Indirect impacts would increase as a result of greater accessibility and local population increases. Recreational activities of two types, those intentional, illegal activities associated with artifact collection
and treasure hunting, and unintentional recreational use (hiking, hunting, ORV), would cause irreplaceable, unmitigatable site damage. Both scientific and aesthetic site values would be lost as a result of these indirect impacts. This loss would occur to many on and offsite significant cultural resources in Emery, Sevier, and Carbon Counties.

## SPECIAL DESIGNATION AREAS

If allowed, mining activities, surface mining disturbance, and the construction and presence of ancillary facilities in the Emery North and Emery Central tracts would impair wilderness character and, therefore, wilderness designation suitability within the portion of BLM Roadless Unit UT-060-012 where development would occur. However, because wilderness suitability impairment would result, mining and construction would not be allowed in Unit UT-060-012 as long as it is undergoing wilderness review. (See Chapter 2, Mitigation Section.)

Mining activities, surface mining disturbance, and the construction and presence of ancillary facilities would probably foreclose potential wild and scenic river designation for the 1.5 miles of the Muddy River that flow through the Emery North tract. Foreclosure would continue during the life of the mining operation until rehabilitation restored the natural character of the tract. Because the river channel would not be altered and because the water quality and quantity would not be affected to any noticeable extent, it is unlikely that the Muddy River's potential for wild and scenic river designation would be affected below the Emery North tract.

Some of the 17 areas in the region with potential for wilderness or other special designation could receive additional off-road vehicles and/or other dispersed recreational use because of the coal-related population increase. Resultant littering and vandalism would degrade values for which the areas are being studied. Federal agencies managing the lands (BLM and FS) may be under stress to protect these values with no foreseeable increase in funding for that purpose. However, it is very unlikely that possible degradation would affect the designation suitability of any area due to the temporary nature of impacts resulting from dispersed recreational use.

## VISUAL RESOURCES

At the Emery North and Emery Central tracts, surface mining and associated onsite development

## ENVIRONMENTAL CONSEQUENCES

would severely modify the land form, would dominate the landscape, and would change the scenic character of the two tracts from natural to industrial setting until rehabilitation was completed. The additional impact to the Emery North tract from underground mining would be insignificant. Although no outstanding or unique scenic values would be lost, surface mining activity would conflict with visual resource management (VRM) guidelines for VRM class III areas on the Emery North and Central tracts. Surface mining disturbance and facilities on the Emery North tract would be clearly visible from the town of Emery and to travelers on Highway U10 (675 vehicles daily). These mining activities on the Emery North tract would be considered an unacceptable intrusion to some, and an item of interest to others.

Because of the intervening Coal Cliffs, surface mining and subsequent land disturbance on the Emery Central tract would not be visible to travelers on I-70, although fugitive dust resulting from the mining operation may be visible. Surface mining disturbance would be visible from the town of Emery and from Highway $\mathrm{U}-10$, but because of the viewing distance of at least 4 miles, the visual disturbance would not be obvious or disturbing to most people. The development of associated facilities off the Emery North and Emery Central tracts is not anticipated to significantly impact visual resource values because developments and disturbance would be similar to existing disturbance in the areas affected, and would be designed to meet the VRM objectives of those areas.

Visual impact resulting from underground mining and associated development at the Emery South tract would be less significant than the surface mining impact previously discussed. Development would modify the natural appearing landscape in areas on and off the tract, but overall the scenic character of the tract would remain natural. Visual impact would be similar through all mining years. No outstanding or unique scenic qualities would be lost from development of this tract.

Development of new portals and associated facilities (e.g. buildings, transmission lines, access roads, and coal conveyors) both on and off the Slaughterhouse Canyon, North Horn, Cottonwood, Rilda Canyon, Meetinghouse, Gordon Creek, and Miller Creek tracts would not be anticipated to significantly impact visual resource values. Generally development and disturbance would be visible from low-volume ungraded roads only, would be similar to existing disturbance in the areas affected, and would be designed to meet the VRM objectives of the areas. If existing portals were used for development of Rilda Canyon, Meetinghouse Canyon, and Cottonwood, no additional visual impact would be anticipated on or off these tracts.

There would be a visual conflict with Tucker Canyon (Class III) where developments would be clearly visible from large areas on and about Scofield Reservoir, including the Scofield Reservoir State Park, Highway 96, and the Mountain Home and Aspen View subdivisions. The proposed mining would degrade the visual resources enjoyed by recreationists visiting the reservoir. However, due to the viewing distance from most of Scofield Lake, and from Scofield Reservoir State Park U-96, and if properly located and colored, most structures would be largely unnoticed by recreationists. Roads for access or exploration could be plainly visible if located on mountain slopes facing the reservoir. Mining disturbance would significantly degrade the visual resources enjoyed by residents of the adjacent subdivisions. Because the tracts are so close to subdivisions, mining roads, drill pads, and shaft hoists could be clearly visible and mining associated noise could be clearly audible from several dwellings, depending on the exact placement of facilities.
Reclamation would be effective in reestablishing the present scenic quality and character of the Wasatch Plateau tracts upon completion of the mining operations. The arid nature and lack of topsoil in the three Emery tracts would make reclamation difficult and the Emery tracts would probably continue to appear somewhat disturbed after reclamation was completed. The average visitor would probably note little change in the region's overall scenic character from development and reclamation of the tracts.

## RECREATION

By the year 2000, mining-related population growth would increase the local demand (users originating from within the Four-County region) for both dispersed and developed recreation opportunities in the Four-County region by approximately 13 percent from 1980 use figures.
Table 4-13 shows the anticipated increase in local demand for hunting and fishing during selective mining operation years. This increase in demand would occur at the same time that game numbers would be reduced from mining-related displacement and road kills. The additional competition for available game and fish would lead to less hunting and fishing success. To maintain present hunting success it could be necessary to restrict animal harvests, thereby reducing hunting opportunities. To maintain present fishing success, stocking activities would have to be increased by the Utah Division of Wildlife Resources, which has no foreseeable increase in funds for this purpose.

Table 4-14 shows the anticipated increase in local demand for off-road vehicle (ORV) activities during selective mining operation years. Although the Four-County area has adequate miles of primitive dirt roads to absorb the ORV demand, the increase would conflict with other recreational uses, reducing the overall opportunity for dispersed recreation and reducing the quality of the recreational experience to some visitors.

Developed recreation sites in the Four-County region would receive increased use by the new population. Additional recreational pressures would most often occur at sites being used at greater than 20 percent of their design capacity, probably increasing use to 40 percent or more at some of the sites, which would result in overcrowding, user dissatisfaction, and deterioration of the environment and facilities through vandalism and littering. Overcrowding and deterioration would intensify at some sites presently being used at greater than 40-percent capacity. These overcrowded conditions would cause additional recreational pressures on undeveloped, dispersed areas. Federal and State governments would be under greater stress to provide adequate maintenance for existing developed sites and to construct adequate new sites, although there is no foreseeable increase in funding for these purposes. The overcrowded conditions of available recreation facilities in the towns would accelerate, resulting in facility deterioration and in user dissatisfaction. Stress would be placed on local governments (again, with limited funds) to provide recreation facilities (e.g., playfields, swimming pools, golf courses) to meet minimum standards recommended by the Utah Outdoor Recreation Agency (SCORP, 1978).

Development of the tracts, including onsite and offsite disturbance and development of homesites, would displace dispersed recreational use from as much as 679 acres in 1987, 1,688 acres in 1990, 2,215 acres in 1995 and 2,696 acres in the year 2000 and 4,114 by end of mine life in 2026. Because surrounding areas offer comparable or better opportunities and because access to these surrounding areas would not be eliminated, the recreational opportunity lost would not be significant, even when the increase in recreational demand is considered. Visual and audio impacts from mining the Tucker Canyon and North Emery tracts would, however, reduce the quality of the recreational experience to some recreationists visiting the Scofield Reservoir area and the Rochester-Muddy Creek petroglyphs. Also, increased industrial traffic resulting from mining operations in the Meetinghouse, Rilda Canyon, Slaughterhouse, and Tucker Canyon tracts would present a danger to recreational traffic on the Huntington Canyon, Eccles Canyon, and Scofield Reservoir access roads, resulting in stress to
the recreational visitor, and loss of enjoyment with the recreational experience.

## UNAVOIDABLE ADVERSE IMPACTS

A short-term increase in TSP would occur because of surface mine disturbance and traffic increases on unpaved roads. The increased population would cause an increase in the emission of all NAAQS pollutants.

The loss of soil and vegetation productivity on 4,114 acres would be unavoidable for the life of the mines. An unquantified amount of soil would be lost from disturbed areas prior to reclamation. The mining of coal in the region would result in 305.6 million tons of coal becoming unrecoverable by present technology. Changes in aquifers and distribution of surface water due to subsidence could not be avoided. The consumptive use of water in the region would increase by 1,075 acre-feet by the year 2000. Increased sewage effluent would add 397 tons of salts per year to the Colorado River. The loss of wildlife due to occupation (69 deer annually) or disturbance of habitat and illegal killing or highway mortality ( 68 deer annually) would be unavoidable.

Conversion of irrigated cropland to urban use and retirement of irrigated land to provide water for mining and community needs would result in a loss of 299 acres of agricultural land in the region. The loss of crop production on 110 acres of irrigated cropland disturbed by surface mining on the Emery North tract could not be avoided. Stripmining on the Emery tracts would result in a loss of 4,060 AUMs over the life of the mines.

Population in the region would increase by 7,931 in the year 2000, and housing needs would increase by 2,403 units. The additional income ( $\$ 107.3$ million annually) and buying power generated would increase the local rate of inflation. The effects of this inflation would be felt most acutely by persons living on fixed incomes and those with lower-paying employment such as trade and service workers. The greatly increased labor requirements ( 3,109 jobs) of the mining and construction industries, together with their relatively high wage scales, would make it more difficult for employers in lower-paying industries and government to hire and retain qualified employees.

Capital and operating expenditure requirements of local counties, school districts, and municipalities would rise as a result of the need to expand public services and facilities. Unless communities plan needed improvements in advance and assure adequate funding, there would be at least a temporary
TABLE 4-13
PROUECTED INCREASE IN LOCAL HUNTER AND FISHERMAN DEMAN ALTERNATIVE ONE

| Year | Projected Annual Increase In Numbers |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Coal-Related Population | $\begin{gathered} \text { Deer } \\ \text { Hunters } \\ \hline \end{gathered}$ | $\begin{aligned} & \text { Elk } \\ & \text { Hunters } \end{aligned}$ | Upland Game/Waterfowl Hunters | Fishermen | Inreased Demand For Fish | Overall Percent Increase from 1980 |
| 1987 | 3,777 | 661 | 64 | 321 | 1,700 | 36,890 | 5.9 |
| 1990 | 6,616 | 1,158 | 113 | 562 | 2,977 | 64,601 | 10.4 |
| 1995 | 7,744 | 1,355 | 132 | 658 | 3,485 | 75,625 | 12.2 |
| 2000 | 7,931 | 1,388 | 135 | 674 | 3,569 | 77,447 | 12.5 |
| Note: | Project ions were made assuming that the percentage of Utan's population that currently hunts or fishes would remain the same, and that the Utah percentage can be applied to the Four-County area. Approximately 17.5 percent of Utah's population hunt deer, 1.7 percent hunt elk, and 8.5 percent hunt upland game or waterfowl. Approximately 53 percent of Utah's population under the age of 12 and 42 percent of the population over the age of 12 fish. Approximately 27 percent of Utah's population is under 12 and 73 percent is over 12 in age (Thayne and Hudson, 1978). |  |  |  |  |  |  |

TABLE 4-14
PROJECTED INCREASE IN LOCAL OFF-ROAD VEHICLE DEMAD WITHIN THE FOUR-COUNTY REGION ALTERNATIVE ONE

|  | Projected Coal- <br> Related Popula- | Project Increase <br> in Pickup and <br> Four Wheel Drive | Projected In- <br> crease in <br> Motorcycle | Overall <br> Percent <br> Increase fram |
| :--- | :---: | :---: | :---: | :---: |
| Year | tion Increase | Numbers | Numbers | 1980 |
| 1987 | 3,777 | 944 | 257 | 5.9 |
| 1990 | 6,616 | 1,654 | 500 | 10.4 |
| 1995 | 7,744 | 1,936 | 527 | 12.2 |
| 2000 | 7,931 | 1,983 | 539 | 12.5 |
| Note: |  | Projections were made assuming that the percentage of the population |  |  |

in the Four-County region that owns off-road vehicles would remain
the same ( 6.8 percent of the population currently owns motorcycles,
and 25 percent of the population currently owns four-wheel drive vehicles or light pickups) (Scorp, 1978)

## ENVIRONMENTAL CONSEQUENCES

deterioration in the quality of services, causing inconvenience and dissatisfaction among those affected.

By 2000, housing units would increase by 2,403 units. Several communities, particularly Emery but also Castle Dale, Ferron, and Orangeville, would experience some loss of their present small-town atmosphere.

Mine-related traffic would add $3,350 \mathrm{vpd}$ to highways in the region. Increased traffic on $\mathrm{U}-10$ would result in increased maintenance cost and a doubling of traffic accidents. A 23 -percent increase in truck traffic on Highways 31 and 29 west of Huntington and Orangeville would conflict with recreation and other traffic in those canyons. Traffic accidents would increase by 72 accidents annually.

Inadvertent destruction or disturbance of undetected cultural resources and losses through illegal collection or vandalism could not be avoided. The 13-percent increase in demand for recreational activities resulting from population increases could result in overutilization and crowding of existing recreation developments and reduced hunting and fishing success. The landscape modifications that would result from mining and associated development would degrade the visual quality of those areas. The modification would be adverse only where it would exceed VRM objectives in the Emery North, Emery Central and Tucker Canyon tracts.

## THE RELATIONSHIP BETWEEN THE SHORT-TERM USES OF MAN'S ENVIRONMENT AND THE MAINTENANCE AND ENHANCEMENT OF LONG-TERM PRODUCTIVITY

The increased population associated with mining development would result in a long-term decrease in air quality in the region; however, NAAQS would not be exceeded.

Coal mining in the region could result in some loss of paleontological resources, but where a paleontologist is available to monitor mining activities, significant fossils may be recovered which would be otherwise unavailable. Recovery would add to the long-term knowledge of paleontological resources in the area.

The short-term use of the environment for coal production and associated housing development would result in a long-term loss of soil and vegetation productivity on 441 acres permanently occupied by housing. A long-term increase in vegetation productivity on the Emery tracts ( 2,720 acres) would probably occur if reclamation was successful.

Replacement of native plant species with introduced species would cause a long-term change in species composition. The extraction of 256.2 million tons of coal would render the remaining unmined 305.6 million tons of coal unrecoverable over the long term. Changes in aquifers and points of surface discharge due to subsidence would result in a long-term local change in surface water distribution and ground water storage. The short-term consumptive use of 1,075 acre-feet of water per year would be reduced by 101 acre-feet when mining ceases. The use of 974 acre-feet per year for community use and salt load of 397 tons per year would continue in the long term.
Disturbance or occupation of habitat up to 40 years by mining activity would result in a long-term redistribution of wildlife populations and migration routes. Permanent occupation of 441 acres by urban development would cause a long-term loss of wildlife habitat principally occupied by 209 pheasants, and an unknown number of cottontail rabbits and mourning doves. The loss of crop production on 220 acres occupied by housing and 168 acres retired due to conversion of water use would be a long-term loss in productivity. The 29 acres of irrigated cropland retired due to conversion of irrigation water for mining use could be restored to production in the long term.
The growth in population of 7,931 people in the region would increase the area's potential productivity by enlarging its labor force, but the 3,109 jobs associated with Federal leases mining would not continue in the long-term. Infrastructure improvement such as water systems would also contribute to increased productivity by providing facilities useful for commerce and industry as well as the residential population. The increase of 2,403 housing units would be long-term. Higher incomes and increased buying power in the area would attract trade and service establishments, contributing to a larger and more diversified trade and service sector.

Any loss of cultural resources would result in a long-term loss of scientific knowledge and interpretive values. Excavation and salvage of sites would expand knowledge of cultural resources in the region. The development of recreational facilities as a result of demand by the increased population would be a long-term increase in capacity of recreation developments in the region.

## IRRETRIEVABLE OR IRREVERSIBLE COMMITMENT OF RESOURCES

[^2]
## ENVIRONMENTAL CONSEQUENCES

air quality. Soil and vegetation productivity on 1,394 acres would be irretrievably lost for the life of the mines. Productivity on 441 acres occupied by housing would be irreversibly lost. Soil lost to wind and water erosion prior to reclamation would be irretrievable. Replacement of native vegetation with introduced species would irreversibly commit those areas to a different species composition.

The 256.2 million tons of coal mined would be irretrievable and the 305.6 million tons of coal left in the ground would be irreversibly unrecoverable by present technology. Increased water consumption for mining and community needs would be irretrievable. Any change in aquifers, ground water storage potential, or point of discharge due to subsidence would be irreversible. The increased consumptive use of water for community use ( 974 acre-feet per year) and increased salt loading of 397 tons per year into the Colorado River would be irreversible.

Any wildlife losses (including 137 deer annually) through displacement from habitat, traffic mortality, or illegal killing would be irretrievable. Habitat (for 209 pheasants, cottontail rabbits, and mourning doves) occupied by community development would be irreversibly lost. The loss of 4,060 AUMs of grazing on the Emery tracts would be irretrievable.

The growth in population of 7,931 persons foreseen under this alternative would be irreversible except at considerable economic and human cost. Likewise, the commitment of capital, physical resources, and labor to build 2,403 housing units and infrastructure that would be required to support the growth in population, commerce, and industry would be an irretrievable impact. The loss of smalltown atmosphere and community solidarity in some communities as a consequence of coal development would be irreversible.

Development of the coal mines as proposed would result in the irretrievable consumption of 1.6 million gallons of petroleum fuels. Lives and money lost as a result of an increase of 72 traffic accidents per year would be irretrievable.

The loss of cultural resources in coritext would be irretrievable and any loss of interpretive values would be irreversible. The adverse impacts to visual resources would be irretrievable for the life of the mines, but would be reversible following reclamation.

## HOLLBERG PRLA

## AIR QUALITY

Minimal emission increases of other pollutants, such as nitrogen oxides, sulfur oxides, carbon monoxide, and photo-chemical oxidants would occur from vehicular traffic and sources associated with population growth.

Visibility reduction and atmospheric discoloration would periodically occur in the immediate vicinity of the mine and associated haul and access roads as a result of particulate emissions but the effects would be highly localized and insignificant on a regional basis.

The nearest Class I area is Capitol Reef National Park about 25 air miles south of the tract. Considering the distance from the tract to Capitol Reef and the rapid fallout of particulates with distance from the mine and unpaved roads, no impacts to air quality and air quality related values (including visibility) would occur at Capitol Reef.

## SOILS

Construction of mine facilities, exploration, and population increases as a result of mine development would cumulatively disturb 109 acres by the end of mine life. By 1988, reclamation would occur on an estimated 15 acres required for exploration purposes. The disturbance on 77 acres would be of a temporary nature since the land would eventually be reclaimed. The loss of soil productivity on 32 acres would be a permanent impact from the construction of housing and support facilities for future population increases.

Surface facilities for underground mining would impact soils by alteration of existing soil properties and characteristics through disturbance and mixing of soil. These properties include soil micro-organism composition, structure, infiltration rates, permeability rates, water holding capacities, nutrient levels, and productivity potentials.

The primary impact to soils would be a small increase in soil erosion, caused by surface disturbance associated with construction of buildings, haul roads, storage sites, sediment ponds, powerlines, telephone lines, and portals.

Sediment yield studies conducted in the Emery area indicate that soil losses would range from 0.45 to 1.2 tons per acre per year for surface mines (BLM EMRIA Report No. 16, 1979). Soil losses resulting from surface disturbing activity associated

## ENVIRONMENTAL CONSEQUENCES

with underground mining would be less than or equal to this amount.

## WATER RESOURCES

The existing water source distribution could be disrupted by subsidence in connection with the mining. The subsidence could impact both the ground water aquifers and the distribution of surface waters in the area. The water affected, however, would stay within the drainage basins and the impact would be that of the shift of water-source physical location. Changes in location would disrupt livestock and wildlife water in the area and any other uses taking place there. However, surface water is scarce on the tract with only a few springs and seeps known. If these waters are affected by mining, the lessee would replace the water or make restitution, as required by the State of Utah (Title 73323), or by Office of Surface Mining Reclamation and Enforcement regulations (30 CFR 211), whichever is applicable.

The minor consumptive use of water ranges from 13 acre-feet in 1985 to 81 acre-feet in 2000. This would represent a loss of stream flow of less than 1 percent in 1985 to 2000.
The waters within the Muddy Creek Basin are fully appropriated (Burton, 1980). Therefore, an individual or corporation would have to acquire water rights by purchasing or leasing. Some water use would change from irrigation to municipal and industrial use for this coal lease. The loss of irrigated acres to municipal and industrial use would range from 4 acres in 1985 to 28 acres in 2000.

Muddy Creek changes from a fresh water stream to a saline condition below the town of Emery. The chemical quality of the water is not likely to be affected by coal mining because sampling of existing mine leachates in the area has shown them to be of higher quality than the Muddy. Mine drainage may contain concentrations of trace elements and others in slightly greater than normal amounts for the area waters. However, reasonable enforcement of mitigations regarding Office of Surface Mining regulations and State effluent standards would prevent contamination of streams. Concentration of suspended sediment may increase several-fold temporarily during times of construction but due to the small acreages it should not be significant.

The increased population would cause an increase in waste products which could contaminate aquatic environments if proper sanitation practices are not followed; such potential would be generally of local extent.

## GEOLOGY, TOPOGRAPHY, PALEONTOLOGY, MINERAL RESOURCES

Subsidence could occur on most of the $3,035.7$ acres, and would be affected by several variables including: (1) mining methods, (2) overburden thickness, (3) extraction amount, and (4) geometry of mine workings. Tension cracks could occur above barrier pillars a few months after mining, while compression bulges could be formed on the surface approximately 1.5 to 2 years after completion of mining. Also, additional tension cracks could occur as the surface subsides several years after mining completion (Dunrud, 1976; DOI, 1979). However, the nearby Emery mine has experienced few problems with subsidence using the room and pillar method in the same coal field (BLM, 1979).

Construction of surface facilities would cause permanent changes of the natural topography on 6.8 acres. Road construction would affect 56 acres due to leveling, cuts, and fills.

No known faults occur on the subject land and mine stress releases are expected to be minimal due to shallow overburden.

Inadvertent losses of plant, invertebrate, and vertebrate fossils could occur as a result of mining activities. Unauthorized collection and vandalism could also occur. However mining and excavation could expose fossils which would otherwise not have been discovered. Avoidance or recovery of fossils encountered during development and mining would occur as stipulated in approved mining plan.

At a 49.6 percent recovery rate, 50.4 percent ( $19,800,000$ tons) of coal in the minable seams would be left in place along with coal in seams not presently considered to be economically minable.

Among the hazards of underground mining are cave-ins, bumps, squeezes, flooding, and accumulations of methane gas. These hazards can be very dangerous to personnel and property but can be alleviated by detailed geologic and engineering studies prior and during mining operations (DOI, 1979).

Drilling for uranium and oil and gas in areas which have been mined would be difficult due to the loss of mining fluids in mined-out areas until the hole is cased. Oil, gas, and uranium potential exists in the area and drilling for any of these commodities would conflict with coal development. After extraction is completed, exploratory well activity would require close coordination between the drilling company and Emery Energy Corporation. Mining of any uranium ore bodies would not be affected by the coal mine.

## ENVIRONMENTAL CONSEQUENCES

## VEGETATION

Development of mine facilities, haul road, and utilities for the Hollberg PRLA would result in destruction of vegetation on 77 acres beginning in 1987 and continuing for the 40 -year life of the mine. This loss of vegetation would be primarily Pinyon-Juniper Woodland and Desert Shrub vegetation types. Reclamation of this acreage is expected to be successful in less than 30 percent of attempts (Hagihara et.al., 1972).
Development of housing for the population increase associated with development of this tract would destroy vegetation on an increasing number of acres until full development occurred in the year 2000. Principal types that would be affected are Agricultural, Sagebrush-Grass, and Pinyon-Juniper Woodland. Vegetation would be lost as follows: 14 acres in 1987, 25 acres in 1990, 30 acres in 1995, and 32 acres in the year 2000. This loss would be permanent since the area occupied by housing would not be reclaimed. The total vegetation loss including full development of mining and housing needs in the year 2000 would be 109 acres.

## WILDLIFE

The surface disturbance of 77 acres would not impact the widely scattered deer population. A few rabbits and rodents would be displaced by the surface disturbance.

The 5.6 miles of haul road have the potential of killing one deer per year. Construction of new utility lines in the open area could provide additional perching and hunting sites for raptors. Use of these structures along roadsides or in areas open to human access would expose the birds to illegal shooting and disturbance.
The addition of 471 people to Emery County would cause an irreversible loss of 26 acres. Half of this would be farmland supporting seven pheasants annually. This loss is not significant but would add to the total losses expected from the combined projected levels of (coal mining) production in the region (Wildlife, Alternative One).

## LAND USE

A total of about 109 acres of land would change in use. Seven acres would be used for onsite mining facilities and 70 acres for offsite facilities. The remaining 32 acres would be used for housing and community development. All acreage except
that used for housing and community development would be reclaimed after termination of mining activities.

Land use impacts would be largely confined to Emery County where all mine-related land disturbance and 26 of 32 acres changed to community development would occur. Castle Dale would increase in size by 8 acres and Ferron by 15 acres as a result of housing development caused by development of the PRLA.

About 16 acres of irrigated cropland would be converted to housing and other community infrastructure, 4 acres would be retired to provide community water, and 2 acres would be retired to provide mine water. Crops lost from the 22 converted or retired acres would be mostly alfalfa and small grains such as wheat.

There are two grazing allotments with a small portion of their AUMs on the PRLA. Of the 60 annual AUMs on the PRLA only a small portion would be lost as a result of development and operation of the mine.

About 1 mile of the projected Castle Valley Railroad spur which would cross private surface on the PRLA would be jeopardized unless the mine development could be designed to avoid or otherwise protect the railroad. This would require an agreement between the surface owner and the lessee.

## SOCIOECONOMICS

Development of the Hollberg tract as a result of the PRLA would result in additional impacts to the impact area as discussed below. The baseline environment would be the same as discussed previously.

The maximum employment impacts attributable to the Hollberg tract would occur in Emery County, where tract development would generate an additional 197 jobs (including 131 direct mining jobs) by 2000, or 3 percent above the baseline. Carbon, Sanpete, and Sevier Counties would experience minimal employment impacts.

Development of the Hollberg tract would generate an additional $\$ 1.26$ million in annual earnings by the year 2000, including $\$ 159,000$ in Carbon County and $\$ 1.03$ million in Emery County (1977 dollars). This is compared to a base of $\$ 259.2$ million and $\$ 118.9$ million for each county respectively.

As a result of the increased employment opportunities Emery County would receive significant increases in population ( 471 persons by the year 2000). Individual communities which would experience the most significant impacts are Emery (147

## ENVIRONMENTAL CONSEQUENCES

persons, or 21 percent of the town's total projected population in 2000) and Ferron (269 or 11 percent of the total population in 2000). Tract-related population increments in the remaining communities would amount to less than 1 percent of the projected 2000 population.

For the most part incremental needs for infrastructure and community services due to development of the Hollberg tract are insignificant. The exceptions are discussed below.

In the town of Emery an additional 43 housing units (21 percent of the projected total growth by 2000) would be needed. In Ferron, 79 additional units (11 percent of the projected total growth by 2000) would be required.

Long-term additional water needs generated by tract development would be greatest in Emery ( 0.07 mgd or 51 percent of the projected deficit in 2000), and Ferron ( 0.12 mgd or 39 percent of their projected deficit).

There would also be increased need for an additional 0.1 mgd of sewage treatment capacity in the town of Ferron by 1990. While small in absolute terms, this amounts to 25 percent of its total projected need in 1990.

Other infrastructure and community service needs would not be affected to any significant degree in these or other communities by development of the Hollberg tract.

## TRANSPORTATION

The company could utilize rail facilities at either Price or Salina, with the coal trucked over U-10 to Price, or U-10 and I-70 to Salina. The proposed action would result in 80 to 100 truck trips per day on the roads (based on 5 days worked per week and loads of 25 tons per trip). The average of this range would represent a 12.5 -percent increase in traffic on U-10 between the towns of Emery and Ferron if the Price route is chosen, and a 3.6-percent increase on I-70 at the Salina interchange if the Salina route is chosen. The 12.5 -percent increase in traffic on U-10 would aggravate an already undesirable situation since coal hauling has increased traffic since early 1975. Road deterioration would accelerate and noise and air pollution would increase for residents living near U-10. Traffic accidents would increase by four accidents per year.

If the Castle Valley Railroad spur is built (the addition of this mine may help to make such a venture profitable), the transportation effects would be
reduced. The primary impact would be the increased truck traffic to the rail loading facility.

## CULTURAL RESOURCES

Of the 130 known cultural sites on the PRLA, 20 appear to be located on proposed facility or corridor areas. However, this is an estimate and the location of proposed facilities would need to be inventoried to identify all sites, known and unknown, which might be affected by proposed developments. It is anticipated that most direct impacts would be avoided by relocating or adjusting facilities. Inventories and salvage measures would mitigate impacts to cultural resources on sites where it would not be possible to relocate or adjust facilities. With salvage would be the loss of some scientific data. Such a loss would be considered insignificant.

## SPECIAL DESIGNATION AREAS

Mining activities and the construction of ancillary facilities in the Hollberg PRLA would impair wilderness character and therefore wilderness suitability in BLM Roadless Unit UT-060-012. Because impairment would occur, mining and construction could not be allowed as long as Unit UT-060-012 is undergoing wilderness review (see Chapter 2, Mitigation Section).

## VISUAL RESOURCES

Mining and associated developments would modify the natural appearing landscape in a portion of the tract, but would not conflict with the area's VRM Class IV objectives, nor affect any outstanding or unique scenic values. Visual impact on the tract would be similar through all operational years. Reclamation would not be entirely effective in reestablishing present scenic quality and character upon completion of the mining operation.

## RECREATION

Displacement of recreation visitors would be of minimal impact because the surrounding country offers comparable values and experiences. At the height of the mining activity, mining-related population growth would increase the regional demand for
both dispersed and developed recreation opportunities to an unknown amount.

## UNAVOIDABLE ADVERSE IMPACTS

A short-term reduction in visibility would occur as a result of particulate emissions from construction and operation of the mine.

Soil and vegetation productivity would be lost on 109 acres for the life of the mine. Of this amount, 77 acres would be reclaimed, and 32 acres would be permanently occupied by housing development. Soil losses ranging from 0.45 to 1.2 tons per acre would occur until reclamation was completed.

Subsidence could occur on 3,036 acres due to underground mining. The extraction of coal would render 19.8 million tons of coal unrecoverable by present technology. An undetermined number of fossils would be lost as a result of mining.

Consumptive use of water would increase by 81 acre-feet in the year 2000.

Some wildlife would be unavoidably displaced from habitat and highway mortality would increase slightly. About 28 acres of irrigated cropland would be changed to community use or retired. Crop production on this acreage would be lost. A small loss in grazing AUMs would occur.

Population increases would require 122 new houses and increased demand for water and sewer hookups. Traffic in the area would increase slightly.

Some loss of cultural resources and scientific data would occur. Recreation demand would increase slightly.
the relationship between the SHORT-TERM USE OF MAN'S ENVIRONMENT AND THE MAINTENANCE AND ENHANCEMENT OF LONG-TERM PRODUCTIVITY

The short-term use of the area for mining would result in a long-term loss of soil, vegetation, and wildlife productivity on 32 acres occupied permanently by housing development. Extracting coal as proposed would cause 19.8 million tons of coal to be unrecoverable, and potential subsidence would limit certain uses over the long term. Crop production on 28 acres of irrigated cropland would be permanently lost. Loss of cultural sites in context would limit long-term gathering of scientific data in areas disturbed.

## IRRETRIEVABLE AND IRREVERSIBLE COMMITMENT OF RESOURCES

The loss of soil, vegetation, and wildlife productivity on 109 acres would be irretrievable. The 19.5 million tons of coal mined would be irretrievable and the 19.8 million tons left in the ground would be irreversibly lost. Subsidence on up to 3,036 acres would be irreversible. The 81 acre-feet of water used annually would be irretrievable. Wildlife lost to traffic mortality or illegal killing would be irretrievable. Lost crop production on 28 acres would be irretrievable and this acreage would be irreversibly committed to urban development. Any loss of cultural resources would be irretrievable.

## Alternative Two (Preferred Alternative)

## INTRODUCTION

Seven tracts are considered for leasing: Tucker Canyon, Miller Creek, Gordon Creek, Meetinghouse, Rilda Canyon, Cottonwood, and North Horn Mountain. The following section discusses anticipated impacts that would result from implementing AIternative Two.

Possible development of the Hollberg PRLA is considered to be a part of this Alternative. Development of the PRLA has been analyzed in Alternative One and will not be repeated here. The reader is referred to Alternative One.

## AIR QUALITY

Interaction of emissions from the Gordon Creek, Miller Creek, and existing mines in the area would increase annual average TSP concentrations by 5 to 10 micrograms per cubic meter above the no action levels. Concentrations in the five other lease areas would be essentially the same as described in Alternative One (Figure 4-1). The TSP concentrations predicted would result in localized violations of the NAAQS unless BACT is applied.

The lesser development considered in Alternative Two would result in a 28 percent decrease in emission rates considered in scenario 6 (Table 4, Appendix 7) and would correspondingly reduce the visibility impacts. Impacts identified for scenario 5 (looking at the North Horn Mountain plume) would

## ENVIRONMENTAL CONSEQUENCES

remain the same as described in the Alternative One analysis.

## SOILS

The construction of mine facilities, housing, and support facilities for population increases as a result of mine development would cumulatively disturb 638 acres by 1985, 765 acres by 1990, and 834 by end of mine life. The disturbance of 472 acres would be a temporary loss of soil productivity since the area would be eventually reclaimed. The loss of productivity on 362 acres would be permanent due to occupation by housing and support facilities for future population increases in the region.

As discussed in Alternative One, development of surface facilities for underground mining would reduce soil productivity by alteration of existing soil properties and characteristics through disturbance and mixing of soil and stockpiling topsoil. These properties include soil micro-organism composition, structure, infiltration rates, permeability rates, water holding capacities, nutrient levels, and productivity potentials (for detailed analysis see Alternative One).

The primary impact to soils would be a small increase in soil erosion caused by surface disturbance associated with the construction of buildings, haul roads, storage sites, sediment ponds, powerlines, telephone lines, and portals.

Sediment yield resulting frôt mining activities cannot be quantified because detailed soils data are not available. However, data from general soils maps indicate that low yields would be expected on most disturbed areas on the Wasatch Plateau.

## WATER RESOURCES

The hydrologic impacts having regional consequence would result from an increased consumptive use of about 867 acre-feet of water per year for mine use and domestic purposes and the discharge of about 795 acre-feet per year of sewage effluent (see Table 4-15).

The conversion of water use from agricultural to industrial and community use would result in a reduction of about 241 acres of irrigated agriculture land. The use of water for mining would decrease when mining ceases but demiand for community use would continue because the related population increase would be expected to remain.

The growth in population would result in a degradation of water quality from the estimated average annual discharge of 172 tons of salt in 1987 to 331 tons of salt in 2000 in sewage effluent. The increase in salinity at Imperial Dam as a result of new Federal coal development would range from 0.04 $\mathrm{mg} / \mathrm{L}$ in 1987 to $0.07 \mathrm{mg} / \mathrm{L}$ in 1995 and remain at $0.07 \mathrm{mg} / \mathrm{L}$ in 2000. Increased costs to the farmers as a result of this salinity problem would range from $\$ 16,000$ per year in 1987 to $\$ 28,000$ per year in 2000 for commercial garden vegetable production.

Potential subsidence on 31,588 acres could impact both the ground water aquifers and the distribution of surface waters in the area. The water affected however would stay within the drainage basins and the impact would be that of the shift of water-source physical location. However, surface water is scarce on the tracts with only a few springs and seeps known. If these waters are affected by mining the lessee would replace the water or make restitution, as required by the State of Utah (Title 73323), 30 CFR 211, or the Office of Surface Mining Reclamation and Enforcement, whichever is applicable.

Mine drainage may contain concentrations of trace elements and others in slightly greater than normal amounts for the area waters. However, reasonable enforcement of mitigations regarding Office of Surface Mining (OSM) Regulations and State effluent standards would prevent contamination of streams. Concentration of suspended sediment may increase temporarily several-fold during construction but due to the small acreages and enforcement of OSM Regulations it should not be significant.

## GEOLOGY, TOPOGRAPHY, PALEONTOLOGY, MINERAL RESOURCES

## Wasatch Plateau Coal Field

No significant changes are anticipated to topography or geology on the 31,588 acres that would be leased. However, some subsidence would be expected. The surface area that would be susceptible to subsidence would range from 90 to 130 percent of the area actually mined. Subsidence would be greatest at the center of the mined-out area and much less in the peripheral areas. Maximum subsidence would be from 50 to 90 percent of the thickness of the coal removed. It is not anticipated that subsidence would exceed 10 feet in any area. Expressions of subsidence reflected at the land surface include open and closed fractures, buckled

## ENVIRONMENTAL CONSEQUENCES

and bulged bedrock, sinkholes, and other depressions (Dunrud, 1976). Mining hazards as described in Alternative One, and operation of the proposed mines would result in two fatalities and 157 nonfatal accidents per year by 1990 .

Significant plant fossils used for correlation and paleoenvironmental guides could be inadvertently destroyed by coal removal in the Blackhawk Formation. Disturbances to the other scientifically important fossils probably would not occur. Mining activities and required surveys could also expose new fossils and enhance paleontological studies.
Approximately 279.1 million tons of coal would not be recovered using current mining techniques. This represents 50 to 60 percent of the total inplace coal resource. The mineral value of the land would be depleted except for the oil and gas potential.

The potential oil and gas resources occur well below the Blackhawk Formation, and subsurface mining activities could hinder subsequent exploration and location of facilities related to oil and gas development.

## VEGETATION

Implementation of this Alternative involving underground mining on seven tracts would result in loss of vegetation production on 834 acres by the year 2000. The principal cause of this loss would be housing development on the Agricultural, Sage-brush-Grass, and Pinyon-Juniper Woodland types, and development of portal facilities and access roads associated with mining the tracts. The acres of vegetation that would be lost are shown by year and vegetation type in Table 4-16.

No unique or rare vegetation types or plant associations would be affected by coal development as proposed in this Alternative. As discussed under Alternative One, reclamation attempts on these tracts are expected to be successful ( 50 to 80 percent). Aspen, which reproduces by sprouting, would invade disturbed areas if mature trees are nearby.

Lands occupied for housing development would be committed to urbanization, and vegetation productivity on 362 acres would be permanently lost. Distribution of this loss among vegetation types would be in the approximate percentages discussed in the Alternative One analysis. An additional 60 acres of irrigated agricultural land would be retired because of conversion of irrigation water to community and industrial use by the year 2000. The balance of the disturbed acreage would be reclaimed and vegetation production restored in approximately 2 to 5 years after mining ceases.

This Alternative would not directly impact any listed or candidate threatened or endangered plant species; however, inadvertent destruction of threatened or endangered species found in the region could occur through housing development, off-road vehicle activities, or unlawful collecting of these species.

## WILDLIFE

The surface disturbance of 472 acres (beginning in 1985 and continuing for 40 years) from portal, road, and facilities construction could decrease the deer population annually in herd units 34,35,36, and 45 by 60 deer or 1 percent (Table 4-17). This loss would not be significant even when combined with losses from traffic collisions and illegal killing.

Elk use of winter migration routes off East and North Horn Mountains could be restricted for 40 years by the placement of a portal in Killpack or Rock Canyons and the subsequent activity. It is difficult to quantify this effect but herds up to 250 animals per event have utilized these routes (personal communications, Ward, FS). The restriction of access would be critical to elk during heavy snow years when they are forced to exist on lower elevation wintering grounds, and an undetermined loss of elk could occur.

The slight loss of prey species such as deer and elk could reduce lion and bear populations by an unknown amount until reclamation was completed. The increase in widespread human disturbance could cause abandonment of some home ranges and a slight reduction in the overall population.

As discussed in Alternative One, damage to riparian habitat could occur from road construction. The disturbance of riparian habitat in the Gordon Creek ( 40 years), Tucker Canyon (20 years), and Miller Creek (40 years) tracts could displace seven moose annually. This displacement would become significant when the herd expands to occupy all available habitat.

Half of the acreage required for urban use would come from irrigated farmlands adjacent to existing communities. Many species inhabit these farmlands, notably pheasants, cottontails, doves, small birds, and rodents. With 241 acres committed to urban use and water withdrawals by 2000, a total of 157 pheasants could be displaced (Appendix 9). This loss would be insignificant since less than 0.1 percent of the pheasant habitat would be affected regionally.

Surface expression of subsidence such as cracks, bulges, and displacements are not expected to directly affect wildlife, but any reduction or

CUMULATIVE IMPACTS ON WATER RESOURCES AND REGIONAL SIGNIFICANCE ALTERNATIVE TWO

| ITEM | 1987 | 1990 | 1995 | 2000 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Population Impact <br> from Leasing | 2,993 | 5,265 | 6,105 | 6,516 |

Consumptive Use of Water ${ }^{\text {a }}$
Increase (+) or
Decrease (-) in

| Stream Flow (ac-ft/yr) | -377 | -663 | -769 | -795 |
| :--- | ---: | ---: | ---: | ---: |
| Mining Use |  |  |  |  |
| Percent Change in Stream Flow <br> Decrease in Irrigated Acreage <br> -72 | -0.21 | -0.34 | -72 | -72 |
| Increase in Dissolved Solids <br> In Colorado River mg/L | 0.05 | -204 | -234 | -241 |
| Increased Cost to Downstream <br> Users (Dollarsb) | 16,000 | 24,000 | 28,000 | 28,000 |

aUsed 225 gallons per day per person and allowed 50 percent return
flow through sewage effluent
based on 393,000 (1978 dollars) for each $1 \mathrm{mg} / \mathrm{L}$ increase in dissolved solid concentration

TABLE 4-16
TOTAL CUMLATIVE IMPACTS ON VEGETATION ALTERNATIVE TWO

| Vegetation Types | Impacts On Tracta (Acres) |  |  | Impacts Off Tract ${ }^{\text {D }}$ (Acres) |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1987 | 1990 | 1995 | 2000 | 1987 | 1990 | 1995 | 2000 | TOTAL |
| Agriculture | - | - | - | - | - | - | - | - | 0 |
| Riparian | 7 | 7 | 7 | 7 | 23 | 23 | 23 | 23 | 30 |
| Grassland | - | - | - | - | - | - | - | - | 0 |
| Desert Shrub | - | - | - | - | 10 | 10 | 10 | 10 | 10 |
| Sagebrush Grass | 44 | 44 | 44 | 44 | 86 | 86 | 86 | 86 | 130 |
| Pinyon-Juniper Woodland | 16 | 16 | 16 | 16 | 30 | 30 | 30 | 30 | 46 |
| Mountain Brush | 21 | 21 | 21 | 21 | 75 | 75 | 75 | 75 | 96 |
| Aspen | 28 | 28 | 28 | 28 | 39 | 39 | 39 | 39 | 67 |
| Conifer Aspen | 40 | 40 | 40 | 40 | 53 | 53 | 53 | 53 | 93 |
| Total | 156 | 156 | 156 | 156 | 316 | 316 | 316 | 316 | 472 |

Includes mining operation and onsite facilities
${ }^{\text {b }}$ Includes offsite facilities (roads, powerlines, etc.)
CTotal disturbance by year 2000 (housing development would require an additional 362 acres bringing total vegetation disturbance to 834 acres)

## ENVIRONMENTAL CONSEQUENCES

elimination of surface water flows and associated vegetation communities due to subsidence could adversely affect some species (see description in Alternative One). At the projected production level, up to 31,588 acres could be susceptible to subsidence.

Construction of 19 miles of utility lines in the area would provide additional perching and hunting sites for raptors and other birds. This would be a beneficial impact; however, as analyzed in Alternative One, the use of these structures along roadsides or in areas open to significant human access would expose the birds to illegal shooting and disturbance.

Construction and use of 19.2 miles of new road would result in the loss of an additional 53 deer that would be killed annually by traffic (Table 4-18). This would be a 70-percent increase equal to 3 percent of the 1979 legal harvest in these units. This is less than 1 percent of the unit's populations.

Another potential effect of new road construction and increased use of existing road systems would be the harassment effect. Elk, a species sensitive to vehicle traffic, would suffer reduced use of habitat due to the increased use of unimproved roads from an expanding outdoor oriented population (Hieb, 1976). By 2000 due to population increases an additional 2,072 off-road vehicles would be located in the Four-County region.

The 9-percent increase in human population could cause some additional loss of wildlife through harvest, harassment, and displacement from habitat. The legal harvest could be controlled, but the population increase could increase the illegal harvest of wildlife by 36 percent. Increased human population pressures could delay the establishment of a moose herd of 487 animals on the Wasatch Plateau and an antelope herd of 700 animals in Castle Valley.

## Fisheries

Accidental pollution from spillages of coal, untreated mine drainage, caustics, sewage, or petroleum products could adversely affect fisheries in Price River, Huntington Creek, and Pleasant Valley Creek. This could directly kill fish and/or the aquatic fauna. The effects would be localized and where coal sediments occurred, could be prolonged.

Anticipated population increases could slightly increase fishing pressure on popular waters such as Electric Lake, Huntington Creek, Joes Valley Reservoir, and Scofield Reservoir.

## LAND USE

A projected maximum total of 834 acres would change in use from grazing and irrigated cropland to mining and community development by the year 2000. Of this amount, 472 acres would be temporarily disturbed, 156 by onsite support facilities, and 316 by offsite support facilities. The remaining 362 acres would be permanently changed to housing and community infrastructure use.

Community development in Carbon and Emery Counties would cause the permanent loss of 206 acres of irrigated cropland consisting mostly of alfalfa and small grains. Another 20 acres would be temporarily retired from crop production to provide water for mining. Less than 1 percent of the irrigated cropland in the two counties would be affected but the loss would be significant because the lost acreage would be among the most productive farmlands and would be concentrated around community fringes, resulting in reduced availability of livestock feed in affected communities. Sanpete and Sevier Counties would not be significantly affected. See Table 4-19 for acreage requirements for community development and associated irrigated acreage losses. Some prime farmland could be lost, but it would be possible to avoid this with wise planning.
Development of the Meetinghouse Canyon tract would cause increased congestion and traffic in Huntington Canyon. This would hinder movement of livestock to and from grazing areas. About 472 acres of land on the Wasatch Plateau would be removed from grazing for the life of the coal mines. Subsidence could cause displacement or total loss of livestock water in the areas of underground mining.

All tracts have areas that have been zoned to exclude mining as a permitted activity. This could impede development of the mines.

## SOCIOECONOMICS

The greatest employment increase would be felt in Emery County, where additional employment would be 1,308 by the year 2000, compared to 4,984 jobs in 1977 and 20 percent above the projected baseline of 6,592 (see Table 4-20). Direct mining employment would account for 815 new jobs, bringing employment in mining to 3,745 or 47 percent of total employment in Emery County, compared with 2,894 or 43.6 percent under the projected baseline.

TABLE 4-17
BIG GAME IMPACTS
ALTERNATIVE TWO

| Tract | Acres Disturbed | Disturbed Range | Species | Losses/Yeara |
| :---: | :---: | :---: | :---: | :---: |
| Gordon Creek | 90 | High Priority - Summer | Deer | 12 |
|  |  | Critical - Winter | Elk | 4 |
|  |  | Criticai - Yearlong | Moose | 4 |
| Meetinghouse Canyon | 40 | High Priority - Summer | Deer | 5 |
|  |  | Critical - Winter | Elk | 0 |
| cottonwood | 40 | High Priority - Winter | Deer | 5 |
|  |  | Critical - Winter | Elk | 0 |
| North Horn Mountain | 145 | High Priority - Winter | Deer | 18 |
|  |  | Criticai - Winter | Elk | 8 |
| Rilda Canyon | 63 | High Priority - Summer | Deer | 8 |
|  |  | High Priority - Winter | Elk | 2 |
| Miller Creek | 60 | High Priority - Summer | Deer | 8 |
|  |  | Criticai - Winter | Elk | 3 |
|  |  | Critical - Yeariong | Moose | 2 |
| Tucker Canyon | 34 | High Priority - Summer | Deer | 4 |
|  |  | Critical - Yeariong | Moose | 1 |
|  |  | Critical - Winter | Elk | 1 |
| Total | 472 |  | Deer | 60 |
|  |  |  | Elk | 18 |
|  |  |  | Moose | 7 |

TABLE 4-18

POTENTIAL DEER TRAFFIC MORTALITY FROM NEW ROADS ALTERNATIVE TWO

|  | New Roads <br> (Miles) | Deer Range | Deer Loss/ <br> Yeara | Totai Number <br> of Years |
| :--- | :---: | :--- | :---: | :---: |
| Gordon Creek | 3.5 | Summer | 14 | 40 |
| Cottonwood | 2.2 | Winter | 4 | 40 |
| Meetinghouse | 2.0 | Winter | 4 | 40 |
| North Horn | 6.0 | Winter | 12 | 40 |
| Tucker Canyon | 2.0 | Summer | 8 | 20 |
| Miller Creek | 1.0 | Summer | 4 | 40 |
| RIlda Canyon | 2.5 | Summer | 7 | 40 |
| Total |  |  | 53 |  |
| al,280 acres (1 mile each side of road) $\times$ road length/deer density |  |  |  |  |
| (Dalton, UDWR) $\times 0.076=$ Deer Loss/Year |  |  |  |  |

TABLE 4-19
ACREAGE CONVERTED TO COMMUNITY DEVELOPMENT, IRRIGATED CROPLAND CONVERTED TO
COMMUNITY DEVELOPMENT, AND IRRIGATED CROPLAND RETIRED TO PROVIDE COMMUNITY WATER alternative two

| Location | Total Acreage Converted ${ }^{\text {a }}$ |  | Irrigated Acreage Converted |  | Irrigated Acreage Retired |  | Total <br> Acreage Converted |  | Irrigated Acreage Converted |  | Irrigated Acreage Retired |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Base | Alt. 2 | Base | Alt. 2 | Base | Alt. 2. | Base | Alt. 2 | Base | Alt. 2 | Base | Alt. 2 |
|  |  |  | 19 |  |  |  |  |  |  |  |  |  |
| Carbon County | 283 | 72 | 141 | 36 | 31 | 8 | 352 | 126 | 176 | 63 | 39 | 14 |
| Helper | 39 | 10 | 19 | 5 | 4 | 1 | 49 | 19 | 25 | 9 | 6 | 2 |
| Price | 117 | 30 | 59 | 15 | 13 | 3 | 149 | 55 | 74 | 28 | 16 | 6 |
| Wellington | 48 | 6 | 24 | 3 | 5 | 1 | 52 | 11 | 26 | 6 | 6 | 1 |
| Emery County | 104 | 81 | 52 | 41 | 11 | 9 | 156 | 146 | 78 | 73 | 17 | 16 |
| Castle Dale | 19 | 15 | 9 | 8 | 2 | 2 | 28 | 41 | 14 | 21 | 3 | 5 |
| Emery | 4 | 0 | 2 | 0 | 0 | 0 | 6 | 0 | 3 | 0 | 1 | 0 |
| Ferron | 25 | 8 | 13 | 4 | 3 | 1 | 35 | 24 | 17 | 12 | 4 | 3 |
| Huntington | 0 | 8 | 0 | 4 | 0 | 1 | 0 | 25 | 0 | 13 | 0 | 3 |
| Orangeville | 25 | 10 | 13 | 5 | 3 | 1 | 30 | 27 | 15 | 14 | 13 | 3 |
| Sanpete County | 102 | 12 | 51 | 6 | 11 | 1 | 162 | 18 | 81 | 9 | 18 | 2 |
| Fairview | 9 | 3 | 5 | 1 | 1 | 0 | 13 | 4 | 7 | 2 | 2 | 0 |
| Mt. Pleasant | 15 | 6 | 7 | 3 | 2 | 1 | 29 | 8 | 15 | 4 | 3 | 1 |
| Gunnison | 1 | 0 | 0 | 0 | 0 | 0 | 20 | 1 | 10 | 0 | 2 | 0 |
| Centerfield | 1 | 0 | 0 | 0 | 0 | 0 | 9 | 0 | 4 | 0 | 1 | 0 |
| Spring City | 4 | 1 | 2 | 0 | 0 | 0 | 8 | 2 | 4 | 1 | 1 | 1 |
| Sevier County | 204 | 2 | 102 | 1 | 23 | 0 | 294 | 3 | 147 | 2 | 32 | 0 |
| Aurora | 12 | 0 | 6 | 0 | 1 | 0 | 19 | 0 | 9 | 0 | 2 | 0 |
| Redmond | 9 | 0 | 4 | 0 | 1 | 0 | 11 | 0 | 5 | 0 | 1 | 0 |
| Salina | 29 | 0 | 15 | 0 | 3 | 0 | 63 | 1 | 32 | 0 | 7 | 0 |
| Sigurd | 11 | 0 | 5 | 0 | 1 | 0 | 6 | 0 | 3 | 0 | 1 | 0 |
| Four-County Total | 693 | 191 | 346 | 96 | 76 | 18 | 964 | 293 | 482 | 147 | 106 | 32 |

TABLE 4-19, Concluded

| Location | Total Acreage Converted ${ }^{\text {a }}$ |  | Irrigated Acreage Converted |  | Irrigated Acreage Retired |  | Total Acreage Converted |  | irrigated Acreage Converted |  | Irrigated Acreage Retired |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Base | Alt. 2 | Base | Alt. 2 | Base | Alt. 2. | Base | Alt. 2 | Base | Alt. 2 | Base | Alt. 2 |
|  |  |  | 19 |  |  |  |  |  |  |  |  |  |
| Carbon County | 433 | 146 | 216 | 73 | 48 | 16 | 453 | 156 | 226 | 78 | 50 | 17 |
| Helper | 61 | 21 | 30 | 11 | 7 | 2 | 64 | 22 | 32 | 11 | 7 | 2 |
| Price | 193 | 63 | 96 | 31 | 21 | 7 | 213 | 69 | 106 | 34 | 23 | 6 |
| Wellington | 59 | 13 | 29 | 7 | 7 | 2 | 61 | 13 | 30 | 7 | 7 | 2 |
| Emery County | 201 | 170 | 101 | 85 | 22 | 19 | 203 | 182 | 101 | 91 | 17 | 20 |
| Castle Dale | 36 | 48 | 18 | 24 | 4 | 5 | 36 | 51 | 18 | 25 | 4 | 6 |
| Emery | 7 | 0 | 4 | 0 | 1 | 0 | 6 | 0 | 3 | 0 | 1 |  |
| Ferron | 42 | 29 | 21 | 15 | 5 | 3 | 42 | 32 | 21 | 16 | 5 | 4 |
| Huntington | 8 | 27 | 4 | 13 | 1 | 3 | 8 | 29 | 4 | 15 | 1 | 3 |
| Orangeville | 36 | 32 | 18 | 16 | 4 | 4 | 36 | 35 | 18 | 18 | 4 | 4 |
| Sanpete County | 221 | 20 | 111 | 10 | 25 | 2 | 289 | 19 | 145 | 10 | 32 | 2 |
| Fairview | 15 | 5 | 8 | 2 | 2 | 0 | 16 | 5 | 8 | 3 | 2 | 1 |
| Mt. Pleasant | 35 | 9 | 18 | 4 | 4 | 1 | 36 | 8 | 18 | 4 | 4 | 1 |
| Gunnison | 28 | 1 | 14 | 0 | 3 | 0 | 30 | 1 | 15 | 0 | 3 | 0 |
| Centerfield | 12 | 0 | 6 | 0 | 1 | 0 | 13 | 0 | 7 | 0 | 2 | 0 |
| Spring City | 9 | 3 | 4 | 1 | 1 | 0 | 10 | 2 | 5 | 1 | 1 | 0 |
| Sevier County | 456 | 3 | 228 | 2 | 50 | 0 | 571 | 5 | 286 | 2 | 63 | 1 |
| Aurora | 33 | 0 | 17 | 0 | 4 | 0 | 33 | 0 | 17 | 0 | 4 | 0 |
| Redmond | 19 | 0 | 9 | 0 | 2 | 0 | 19 | 0 | 10 | 0 | 2 | 0 |
| Salina | 99 | 1 | 50 | 0 | 11 | 0 | 105 | 1 | 52 | 0 | 12 | 0 |
| Sigurd | 8 | 0 | 4 | 0 | 1 | 0 | 12 | 0 | 6 | 0 | 1 | 0 |
| Four-County Total | 1,311 | 339 | 656 | 170 | 145 | 37 | 1,516 | 362 | 758 | 181 | 274 | 40 |

TABLE 4-20
PROJECTED EMPLOYMENT IMPACTS alternative Two

|  | Carbon County |  |  |  |  | Emery County |  |  |  | Sanpete County |  |  | Sevier County |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1987 | 1990 | 1995 | 2000 | 1987 | 1990 | 1995 | 2000 | 1987 | 1990 | 1995 | 2000 | 1987 | 1990 | 1995 | 2000 |
| Additional |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Employment |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Mine Construction | 95 | 0 | 0 | 0 | 263 | 0 | 0 | 0 | 0 | 56 | 56 | 56 | 0 | 0 | 0 | 0 |
| Mining | 268 | 534 | 534 | 534 | 408 | 815 | 815 | 815 | 28 | 56 | 56 | 56 | 0 | 32 | 40 | 43 |
| Other (secondary) | 288 | 495 | 574 | 623 | 378 | 402 | 468 | 493 | 62 | 66 | 75 | 81 | 4 | 32 | 40 | 43 |
| Total | 651 | 1,029 | 1,108 | 1,157 | 786 | 1,217 | 1,283 | 1,308 | 90 | 122 | 131 | 137 | 4 | 32 | 40 | 43 |
| Projected |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Employment w/o Alternative Two | 10,572 | 28,173 | 11,701 | 12,416 | 5,506 | 5,944 | 6,294 | 6,592 | 6,435 | 6,662 | 7,100 | 7,925 | 7,556 | 8,179 | 9,479 | 10,832 |
| Total Employment |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Including Alter- |  |  |  |  |  |  |  |  |  | 6,784 | 7,231 | 7,989 | 7,560 | 8,211 | 9,519 | 10,875 |
| native Two | 11,223 | 29,202 | 12,809 | 13,573 | 6,292 | 7,161 | 7,577 | 7,900 | 6,525 | 6,784 | 7,231 | 7,989 | 7,560 | 8,211 | 9,519 | 10,875 |

## ENVIRONMENTAL CONSEQUENCES

Carbon County would experience smaller employment increases resulting in a maximum of 1,157 jobs (including 534 direct mining jobs) in 2000. Total employment in Carbon County would reach 13,573 by 2000 (an increase of 5,922 since 1977). The employment increases in Sanpete and Sevier Counties would be minimal.

The additional employment would bring in an additional $\$ 88.9$ million in annual earnings by 2000, most of it concentrated in Carbon ( $\$ 43.1$ million) and Emery ( $\$ 37.3$ million) Counties. (All figures are expressed in 1977 dollars.) Total personal income in Carbon County would thus be $\$ 302.2$ million in 2000 or $\$ 9,244$ per capita (compared with $\$ 6,837$ in 1978 and $\$ 8,673$ in 2000, under the baseline projection). Emery County would have a total personal income of $\$ 156.3$ million or $\$ 9,926$ per capita. (Emery County had an average per capita income of $\$ 5,788$ in 1978, and is projected to reach $\$ 8,544$ by 2000 under the baseline.)

The magnitude of the projected increase in employment, combined with the small pool of unemployed labor in the Four-County area, means that most of the job openings would be filled by new inmigrants rather than existing residents. In addition, special skills are required for underground mining, further reducing the number of local residents available to fill new job openings in the mines.

The majority of new in-migrants would probably reside in Emery County resulting in a population increase of 3,271 by the year 2000 (see Table 4-21). This figure is 23 percent above Emery County's projected population of 13,922 in the year 2000. The largest community-level population impacts would be felt by Price ( 1,233 additional inhabitants, 10 percent above its projected population of 12,555, and 5,128 above the 1978 population); Castle Dale ( 916 additional inhabitants or 36 percent above the baseline estimate of 2,506 in 2000); and Orangeville ( 621 new residents, 37 percent above its estimated baseline population of 1,671 in 2000).

## Infrastructure

The most severe stress on infrastructure would be felt in Emery County and its constituent communities. Overcrowding in the county's elementary and secondary schools would mean an additional 523 and 372 pupil spaces respectively by 2000 would be required. The countywide shortage of doctors and nurses would be exacerbated. Three doctors would be needed in 2000 in addition to the projected baseline need of 14 and 11 nurses would be needed in 2000, in addition to the 49 under the projected baseline need (Table 4-22).

In order to meet the projected housing needs of the additional population, Castle Dale would need an additional 278 housing units by 2000 ( 36 percent above the projected baseline need of 759); Ferron would require an additional 175 units by 2000 (27 percent above the baseline); Huntington 158 units ( 21 percent above the baseline); and Orangeville 188 ( 37 percent greater). (See Table 423.)

Communities in Emery County have adequate firefighting capacity to handle the anticipated increased demand. While levels of police coverage would decline in all communities, local police departments already are understaffed and additional coal leasing would account for a relatively small proportion of the additional police officers required.

Carbon County would also experience significant infrastructure stress although to a lesser extent than Emery County. The County's schools would need to provide 329 additional places for elementary students and 249 secondary students by 2000. (Under the baseline, the County would have adequate capacity in its elementary schools through 2000, but would need 630 more secondary school places in order to avoid overcrowding.)

Carbon County faces a serious shortage of doctors and nurses under the projected baseline. To meet the needs of the additional population that would result from this alternative two additional physicians and ten additional nurses would be needed to meet accepted health planning standards (Table 4-22).

To meet the projected population growth, Price would require 374 additional housing units by 2000. In Helper, 122 more housing units would be required by 2000.

There would be no significant infrastructure impacts in Sanpete or Sevier Counties.

## Social Impacts

Sanpete and Sevier Counties would experience negligible social impacts because they are located some distance from the proposed mine sites and would experience little incremental population growth as a result of renewed leasing. Although the Helper-Price-Wellington area of Carbon County would gain an additional 1,870 residents by 2000, the incremental social impacts of this growth would be minimal. The Helper-Price-Wellington area, which had 13,000 residents in 1978 and is expected to reach 19,000 by 2000 , is already becoming relatively urbanized, with a concomitant increase in ethnic and cultural heterogeneity. While the pace of social changes already taking place in Helper-Price-
TABLE 4-21

CTED POPULATION
ALTERNATIVE TWO

|  |  | 1987 |  |  | 1990 |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Total | Total | Increment | Total | Total | Increment |
|  | 1978 | Without the | With the | Due to the | Without the | With the | Due to the |
|  | Total | Proposed | Proposed | Proposed | Proposed | Proposed | Proposed |
|  | Population | Alternative | Alternative | Alternative | Alternative | Alternative | Alternative |
| Carbon | 21,643 | 26,919 | 28,206 | 1,287 | 28,173 | 30,436 | 2,263 |
| Helper | 3,030 | 3,751 | 3,938 | 187 | 3,944 | 4,279 | 335 |
| Price | 8,660 | 10,858 | 11,398 | 540 | 11,429 | 12,420 | 991 |
| Wellington | 1,299 | 2,167 | 2,270 | 103 | 2,254 | 2,455 | 201 |
| Emery | 9,849 | 12,168 | 13,628 | 1,460 | 13,113 | 15,746 | 2,633 |
| Castle Dale | 1,773 | 2,204 | 2,481 | 277 | 2,360 | 3,097 | 737 |
| Emery | 397 | 492 | 492 | 0 | 525 | 525 | 0 |
| Ferron | 1,280 | 1,782 | 1,932 | 150 | 1,967 | 2,407 | 440 |
| Huntington | 2,363 | 2,239 | 2,385 | 146 | 2,360 | 2,808 | 448 |
| Orangeville | 985 | 1,483 | 1,670 | 187 | 1,574 | 2,066 | 492 |
| Sanpete | 14,119 | 18,362 | 18,572 | 210 | 19,442 | 19,758 | 316 |
| Centerfield | 600 | 890 | 891 | 1 | 1,027 | 1,029 | 2 |
| Fairview | 1,060 | 1,256 | 1,311 | 55 | 1,322 | 1,394 | 72 |
| Gunnison | 1,368 | 2,011 | 2,012 | 1 | 2,355 | 2,361 | 6 |
| Mt. Pleasant | 2,354 | 2,669 | 2,778 | 109 | 2,933 | 3,072 | 139 |
| Spring City | 698 | 785 | 808 | 23 | 850 | 884 | 34 |
| Sevier | 14,489 | 18,687 | 18,723 | 36 | 20,309 | 20,362 | 53 |
| Aurora | 779 | 1,034 | 1,035 | 1 | 1,155 | 1,158 | 3 |
| Redmond | 486 | 658 | 659 | 1 | 694 | 695 | 1 |
| Salina | 2,191 | 2,774 | 2,780 | 6 | 3,384 | 3,393 | 9 |
| Sigurd | 370 | 564 | 565 | 1 | 491 | 505 | 13 |
| Regional Total | 60,100 | 76,136 | 79,129 | 2,993 | 81,037 | 86,302 | 5,265 |

TABLE 4-21 (Concluded)

|  |  | 1995 |  |  | 2000 |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Total | Total | Increment | Total | Total | Increment |
|  | 1978 | Without the | With the | Due to the | Without the | With the | Due to the |
|  | Total | Proposed | Proposed | Proposed | Proposed | Proposed | Proposed |
|  | Population | Alternative | Alternative | Alternative | Alternative | Alternative | Alternative |
| Carbon | 21,643 | 29,626 | 32,251 | 2,625 | 29,889 | 32,691 | 2,802 |
| Helper | 3,030 | 4,148 | 4,531 | 383 | 4,184 | 4,585 | 401 |
| Price | 8,660 | 12,217 | 13,346 | 1,129 | 12,555 | 13,788 | 1,233 |
| Wellington | 1,299 | 2,370 | 2,596 | 226 | 2,391 | 2,627 | 236 |
| Emery | 9,849 | 13,913 | 16,965 | 3,052 | 13,922 | 17,193 | 3,271 |
| Castle Dale | 1,773 | 2,505 | 3,360 | 855 | 2,506 | 3,422 | 916 |
| Emery | 397 | 554 | 554 | 0 | 540 | 540 | 0 |
| Ferron | 1,280 | 2,087 | 2,600 | 513 | 2,088 | 2,664 | 576 |
| Huntington | 2,363 | 2,505 | 2,984 | 479 | 2,506 | 3,029 | 523 |
| Orangeville | 985 | 1,670 | 2,250 | 580 | 1,671 | 2,292 | 621 |
| Sanpete | 14,119 | 20,509 | 20,875 | 366 | 21,687 | 22,032 | 345 |
| Centerfield | 600 | 1,091 | 1,093 | 2 | 1,103 | 1,105 | 2 |
| - Falrview | 1,060 | 1,355 | 1,439 | 84 | 1,367 | 1,453 | 86 |
| - Gunnlison | 1,368 | 2,503 | 2,510 | 7 | 2,531 | 2,538 | 7 |
| Mt. Pleasant | 2,354 | 3,031 | 3,192 | 161 | 3,060 | 3,212 | 152 |
| Spring Clity | 698 | 879 | 923 | 44 | 886 | 927 | 41 |
| Sevier | 14,489 | 23,228 | 23,290 | 62 | 25,170 | 25,268 | 98 |
| Aurora | 779 | 1,412 | 1,415 | 3 | 1,417 | 1,420 | 3 |
| Redmond | 486 | 843 | 844 | 1 | 849 | 852 | 3 |
| Salina | 2,191 | 4,028 | 4,037 | 9 | 4,138 | 4,153 | 15 |
| Sigurd | 370 | 515 | 519 | 4 | 585 | 592 | 7 |
| Regional Total | 60,100 | 87,276 | 93,381 | 6,105 | 90,668 | 97,184 | 6,516 |

Source: UPED model

IMPACTS ON EDUCATION, HEALTH, AND POLICE SERVICE REQUIREMENTS IN 2000 ALTERNATIVE TWO

| County | Existing Capacity 1978 | ```Total Need With Alt. 2``` | Increment Due To <br> Alt. 2 | ```Percent Increas Due To Alt. 2``` |
| :---: | :---: | :---: | :---: | :---: |
| Carbon County |  |  |  |  |
| Pupil Spaces ${ }^{\text {a }}$ |  |  |  |  |
| Elementary | 2,828 | 3,825 | 329 | 9.4 |
| Secondary | 2,139 | 2,909 | 249 | 9.4 |
| Teachers ${ }^{\text {b }}$ | 192 | 315 | 27 | 9.4 |
| Doctors ${ }^{\text {c }}$ | 21 | 32 | 2 | 7.0 |
| Nurses | 122 | 115 | 10 | 9.5 |
| Police Officers ${ }^{\text {d }}$ | 24 | 65 | 5 | 8.3 |
| Emery County |  |  |  |  |
| Pupil Spaces |  |  |  |  |
| Elementary | 1,940 | 2,751 | 523 | 23.0 |
| Secondary | 1,417 | 1,960 | 372 | 23.0 |
| Teachers | 129 | 234 | 44 | 23.0 |
| Doctors | 7 | 17 | 3 | 21.0 |
| Nurses | 6 | 60 | 11 | 22.0 |
| Police Officers | 12.5 | 34 | 7 | 26.0 |
| Sanpete County |  |  |  |  |
| Pupil Spaces |  |  |  |  |
| Elementary | 1,789 | 2,490 | 39 | 2.0 |
| Secondary | 743 | 1,983 | 31 | 2.0 |
| Teachers | 152 | 172 | 3 | 2.0 |
| Doctors | 7 | 22 | 0 | 0.0 |
| Nurses | 27 | 78 | 1 | 1.0 |
| Police Officers | 7 | 44 | 1 | 2.0 |
| Sevier County |  |  |  |  |
| Pupil Spaces |  |  |  |  |
| Elementary | 1,783 | 3,282 | 11 | 0.3 |
| Secondary | 1,111 | 2,349 | 8 | 0.3 |
| Teachers | 165 | 225 | 1 | 0.4 |
| Doctors | 9 | 25 | 0 | 0.0 |
| Nurses | 24 | 89 | 0 | 0.0 |
| Police Officers | 12.5 | 50 | 0 | 0.0 |

aprojected enrollment is based on the assumption that school district enrollment is
the same proportion of county population in the future as in 1978
bprojected need for teachers assumes the same teacher/pupil ratio as in 1978
CProjected need for doctors and nurses is based on the planning standard of one per 1,000 population and one per 285 population, respectively
dprojected need for police officers is based on a standard of two full time
equivalent officers per 1,000 person

PROJECTED HOUSING IMPACTS IN 2000 ALTERNATIVE TWO

|  | Projected Need Without This Proposed Action | Projected Need With This Proposed Action | Increment Due To The Proposed Action | Percent Increase Due To The Proposed Action |
| :---: | :---: | :---: | :---: | :---: |
| Carbon County | 9,057 | 9,906 | 849 | 9.4 |
| Hel per | 1,268 | 1,390 | 122 | 9.6 |
| Price | 3,805 | 4,179 | 374 | 9.8 |
| Wellington | 724 | 796 | 72 | 10.0 |
| Emery County | 4,219 | 5,210 | 991 | 23.0 |
| Castle Dale | 759 | 1,037 | 278 | 36.0 |
| Emery | 163 | 163 | 0 | 0.0 |
| Ferron | 633 | 808 | 175 | 27.0 |
| Huntington | 759 | 917 | 158 | 21.0 |
| Orangeville | 506 | 694 | 188 | 37.0 |
| Sanpete County | 6,571 | 6,675 | 104 | 1.6 |
| Centerfield | 334 | 360 | 26 | 7.7 |
| Fairview | 414 | 460 | 46 | 11.0 |
| Gunnison | 767 | 769 | 2 | 0.2 |
| Mt. Pleasant | 927 | 928 | 1 | 0.1 |
| Spring City | 268 | 280 | 12 | 4.4 |
| Sevier County | 7,627 | 7,657 | 30 | 0.3 |
| Aurora | 429 | 430 | 1 | 0.2 |
| Redmond | 257 | 258 | 1 | 0.4 |
| Salina | 1,254 | 1,258 | 4 | 0.3 |
| Sigurd | 177 | 179 | 2 | 1.0 |
| Regional Total | 27,474 | 29,448 | 1,974 | 7.2 |

## ENVIRONMENTAL CONSEQUENCES

Wellington would be accelerated, it is unlikely to have a significant impact on the nature or direction of these changes.

The Emery County communities of Castle Dale, Ferron, and Orangeville would experience a more significant incremental social change. Even without renewed leasing, these communities are expected to experience considerable population growth, entailing some loss of small-town values and an increase in social heterogeneity, particularly if a large proportion of the new in-migrants are non-Mormons. A population increase of 36 percent in Castle Dale and Orangeville and 28 percent in Ferron by 2000, would lead to a further lessening of the small-town atmosphere and an increase in social heterogeneity. More social services would be required to deal with increasing problems such as alcoholism, divorce, mental disorders, drug abuse, and family violence. However, the results of local interviews indicate that residents, while aware of the social costs, are receptive to development because of the advantages it brings in terms of access to better public services, facilities, improved shopping, cultural, and recreational facilities.

The town of Emery would experience no incremental population growth, and therefore no direct social change. Huntington would also be unlikely to experience severe social impacts since Huntington has a relatively large population base to begin with ( 2,363 residents in 1978), and the incremental population would not exceed 523 persons. Perhaps most important, Huntington has already gone through a period of adjusting to the social impacts of rapid population growth in the 1970s. As a result, Huntington has largely lost its small-town atmosphere and values but residents have also enjoyed the benefits of development in terms of jobs, better public services, etc., and are therefore very receptive to further growth.

## TRANSPORTATION

Traffic increases due to additional leasing of tracts under Aiternative Two are shown in Table 424. The traffic increase by itself is not enough to overload any of the State highways, but would be enough on the Gordon Creek Road and on the North Horn Mountain mine access road to justify paving with a hard surface. The traffic increase would aggregate to about 13 million miles annually of direct, mine-related traffic, consuming about 1.33 million gallons of petroleum-based fuels per year. Additional traffic would require increased road maintenance, which, according to UDOT, is inadequately funded by present motor fuel tax distribution formulas.

Traffic increases due to additional leasing would reduce the level of service afforded by the existing Forest highway system. In most cases the present level of service is at stable flow with reduced speed, due to the percentage of truck traffic and limited passing opportunities. The level of service would approach unstable flow or forced flow at decreased speed with the additional traffic. Accident rates would increase due to the additional traffic at grade intersections and increased congestion.

Additional development of existing lease and additional leasing, within the Forest boundary served by Highway 31, would be expected. The percentage of truck traffic would increase as would overall traffic from this development. The total traffic could reach or exceed the maximum capacity of the existing road.

Cumulative traffic is shown in Table 4-25. The increases in traffic would be enough to exacerbate the crowding of the north end of $\mathrm{U}-10$, down to Castle Dale, but would raise only two new crowded categories, in the vicinity of the Hunter powerplant south of Castle Dale about 2000, and along U-29 in the vicinity of Orangeville. According to UDOT Division of Traffic Safety, the traffic accident rate is not expected to increase due to the increase in traffic although the number of accidents would increase.

On the basis of Statewide accident rates, there would probably be an increase of about 49 vehicle accidents per year in the area due to the increased traffic.

The increased travel projected under the four alternatives would generate from $\$ 67,500$ to $\$ 144,000$ in increased fuel revenues annually. This revenue would be sufficient to apply only a minimum surface rehabilitation treatment to 1 mile of highway each year where many hundreds of miles are affected.

Utah's highways have usually been constructed to accommodate traffic for 20 years after they were built. Nearly all of the highways impacted by the proposed coal development are approaching or have already exceeded the 20 -year design traffic volume. Significant traffic increases will only exacerbate an already serious deficiency in the financial resources required to maintain, let alone improve, the affected highways. With many of the highways in a precarious condition, the increased travel (with a high percentage of trucks) would precipitate the deterioration of many highways. Immediate attention would be required just to retain a tolerable level of service. Without additional financing by a factor somewhere between fifty and one hundred times the previously mentioned revenue, the impacted roads will be adversely affected. Even then, it is assumed that such amounts would be made available each year over the life of the impact and

## ANNUAL AVERAGE DAILY TRAFFIC INCREASE <br> DUE TO ALTERNATIVE (1990-2000) <br> ALTERNATIVE TWO

| Point | Location | Al1 | Trucks |
| :---: | :---: | :---: | :---: |
| 1. | U-96 South of U.S. 6 | 98 | 33 |
| 2. | U.S. 6 at Utah-Carbon County Line | 412 | 44 |
| 3. | Gordon Creek Road | 488 | 214 |
| 4. | U.S. 6 North of Price | 814 | 263 |
| 5. | U.S. 6 Between Price and Wellington | 107 | 0 |
| 14. | U-10 South of Price | 1,062 | 389 |
| 15. | Wellington Loadout Road | 189 | 189 |
| 16. | U-10 North of Huntington | 873 | 200 |
| 17. | U-31 West of Huntington | 391 | 176 |
| 18. | U-10 South of Huntington | 905 | 317 |
| 19. | U-29 West of Orangeville | 459 | 201 |
| 19a. | Castle Valley RR Loadout S of Castle Dale | 334 | 334 |
| 20. | U-10 South of Castle Dale | 1,104 | 116 |
| 21. | North Horn Mountain Mine | 1,228 | 99 |
| 22. | U-10 North of Ferron | 502 | 17 |
| 23,25. | U-10 South of Ferron, North of Emery | 0 | 0 |
| 26. | Emery North Mine | 0 | 0 |
| 27. | Emery Central Mine | 0 | 0 |
| 27 a . | U-10 South of Emery | 0 | 0 |
| 27 b . | Castle Valley RR Loadout South of Emery | 0 | 0 |
| 28. | U-10 North of I-70 | 0 | 0 |
| 29. | Emery South and Dog Valley Mines | 0 | 0 |
| 33. | I-70 East of Salina | 0 | 0 |
| 37. | U.S. 89 South of Salina | 0 | 0 |
| 47. | New Road, Pleasant Valley to U-31 | 41 | 0 |
| 48. | U-31 East of Fairview | 41 | 0 |

Note: Castle Valley RR spur assumed built to Emery
TABLE 4-25
ANNUAL AVERAGE DAILY TRAFFIC PROJECTED FOR SELECTED YEARS ALTERNATIVE TWO

| Point Location | 1985 |  | 1987 |  | 1990 |  | 1995 |  | 2000 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | All | Trucks |
| 1. U-96 S of U.S. 6 | 953 | 171 | 1,075 | 208 | 1,306 | 281 | 1,356 | 283 | 1,406 | 285 |
| 2. U.S. 6 at Utah-Carbon County Line | 8,740 | 1,430 | 9,519 | 1,575 | 11,120 | 1,827 | 13,120 | 2,127 | 15,082 | 2,345 |
| 3. Gordon Creek Road | 339 | 139 | 339 | 139 | 827 | 353 | 827 | 353 | 827 | 353 |
| 4. U.S. 6 N of Price | 17,563 | 3,033 | 18,201 | 3,210 | 19,974 | 3,698 | 21,474 | 3,923 | 22,849 | 4,076 |
| 5. U.S. 6 between Price \& Wellington | 11,156 | 1,806 | 16,394 | 2,698 | 25,486 | 3,959 | 39,699 | 6,102 | 43,663 | 5,958 |
| 6. Soldier Cr Rd at Duchesne-Carbon Co Line | 65 | 3 | 68 | 3 | 75 | 5 | 90 | 4 | 112 | 5 |
| 7. Soldier Cr Rd at Soldier Cr Mine | 145 | 14 | 193 | 17 | 295 | 23 | 333 | 24 | 355 | 25 |
| 8. Deadman Canyon Mine | 322 | 160 | 408 | 191 | 551 | 243 | 794 | 348 | 794 | 348 |
| 9. Dugout Canyon Road | 965 | 80 | 1,242 | 103 | 1,555 | 128 | 1,555 | 128 | 1,555 | 128 |
| 10. Soldier Cr Rd at U.S. 6 | 1,431 | 301 | 1,855 | 314 | 2,424 | 394 | 2,682 | 500 | 2,704 | 501 |
| 11. U.S. 6 W of U-123 (Sunnyside Jct) | 5,356 | 851 | 5,890 | 906 | 6,256 | 986 | 7,056 | 1,106 | 8,140 | 1,206 |
| 12. U-123 E of U.S. 6 | 2,656 | 160 | 2,850 | 168 | 3,056 | 176 | 3,156 | 180 | 3,256 | 184 |
| 13. U.S. 6 near Carbon-Emery County Line | 3,300 | 495 | 3,460 | 520 | 3,700 | 555 | 4,100 | 615 | 4,500 | 675 |
| 14. U-10 S of Price | 5,983 | 1,407 | 6,082 | 1,353 | 7,607 | 1,962 | 8,119 | 2,056 | 8,556 | 2,119 |
| 15. Wellington Loadout Road | 883 | 883 | 970 | 970 | 589 | 589 | 620 | 620 | 620 | 620 |
| 16. $U-10 \mathrm{~N}$ of Huntington | 5,514 | 1,290 | 5,614 | 1,290 | 6,420 | 1,259 | 6,870 | 1,392 | 7,156 | 1,433 |
| 17. U-31 W of Huntington | 1,483 | 185 | 1,697 | 189 | 2,307 | 378 | 2,532 | 392 | 2,668 | 404 |
| 18. U-10 S of Huntington | 3,883 | 979 | 4,024 | 983 | 4,952 | 1,108 | 5,449 | 1,155 | 5,831 | 1,208 |
| 19. U-29 W of Orangeville | 2,103 | 559 | 3,190 | 597 | 3,871 | 812 | 4,001 | 817 | 4,019 | 817 |
| 19a. Castle Valley RR Loadout $S$ of Castle Dale | 834 | 834 | 1,500 | 1,500 | 2,435 | 2,435 | 2,435 | 2,435 | 2,435 | 2,435 |
| 20. U-10 S of Castle Dale | 1,250 | 150 | 1,460 | 210 | 2,867 | 408 | 3,420 | 458 | 3,806 | 471 |
| 21. North Horn Mountain Mine | - | - | - | - | 1,228 | 99 | 1,228 | 99 | 1,228 | 99 |
| 22. U-10 N of Ferron | 1,250 | 150 | 1,460 | 210 | 2,265 | 309 | 2,818 | 359 | 3,204 | 372 |
| 23. U-10 S of Ferron, $N$ of Emery | 1,050 | 126 | 1,226 | 181 | 1,491 | 259 | 2,055 | 304 | 2,409 | 314 |
| 26. Emery North Mine | - | - | - | - | - | - | - | - | - | - |

TABLE 4-25 (Concluded)

| Point | Location | 1985 |  | 1987 |  | 1990 |  | 1995 |  | 2000 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | All | Trucks | All | Trucks | All | Trucks | All | Trucks | All | Truck |
| 27. | Emery Central Mine | - | - | - | - | - | - | - | - | - |  |
| 27. | U-10 S of Emery | 930 | 112 | 1,090 | 131 | 1,481 | 193 | 2,133 | 299 | 2,542 | 3 |
| 27b. | Castie Valley RR Loadout S of Emery | - | - | - | - | 799 | 799 | 799 | 799 | 799 |  |
| 28. | $\mathrm{U}-10 \mathrm{~N}$ of 1-70 | 930 | 112 | 1,090 | 131 | 1,675 | 345 | 1,927 | 403 | 2,366 | 4 |
| 29. | Emery South \& Dog Valley Mines | 70 | 10 | 70 | 10 | 70 | 10 | 70 | 10 | 70 |  |
| 30. | U-72 near Sevier-Wayne County Line | 37 | i | 40 | 2 | 45 | 2 | 55 | 2 | 66 |  |
| 31. | U-72 S of 1-70 | 270 | 184 | 368 | 185 | 442 | 185 | 454 | 185 | 454 | 1 |
| 32. | Spring Canyon Road at 1-70 | 1,085 | 591 | 1,085 | 591 | 949 | 283 | $96 i$ | 348 | 961 | 34 |
| 33. | 1-70 E of Salina | 5,075 | 1,520 | 5,047 | 1,412 | 4,755 | 928 | 4,338 | 993 | 4,462 | 1,03 |
| 34. | U.S. 89 S of Richfield | 5,143 | 771 | 5,538 | 830 | 5,770 | 866 | 5,770 | 866 | 5,599 | 8 |
| 35. | U.S. 89 N of Richfield | 6,800 | 1,020 | 7,738 | 1,161 | 7,835 | 1,175 | 6,800 | 1,020 | 6,121 | 9 |
| 36. | U.S. 89 N of Aurora | 7,835 | 1,175 | 8,711 | 1,307 | 8,800 | 1,320 | 7,835 | 1,175 | 6,645 | 9 |
| 37. | U.S. 89 S of Salina | 3,175 | 1,135 | 2,866 | 828 | 2,683 | 571 | 2,438 | 636 | 2,553 | 62 |
| 38. | U.S. 89 near Sanpete-Sevier County Line | 5,828 | 1,170 | 6,132 | 1,113 | 6,000 | 720 | 6,000 | 720 | 6,390 | 1,04 |
| 39. | U-28 N of Gunnison | 3,848 | 873 | 3,822 | 777 | 3,500 | 420 | 3,500 | 420 | 3,818 | 7 |
| 40. | U.S. 89 N of Gunnison | 1,870 | 75 | 1,874 | 75 | 1,980 | 79 | 2,250 | 90 | 2,570 |  |
| 41. | U.S. 89 N of Manti | 2,875 | 115 | 2,518 | 101 | 2,635 | 105 | 3,500 | 140 | 4,973 |  |
| 42. | Public Road E of Ephraim | 285 | 11 | 317 | 12 | 380 | 15 | 510 | 20 | 665 |  |
| 43. | U.S. 89 N of Ephraim | 2,255 | 90 | 2,277 | 91 | 2,415 | 97 | 2,745 | 110 | 3,127 |  |
| 44. | U.S. 89 S of Mt. Pleasant | 1,645 | 66 | 1,574 | 63 | 1,660 | 66 | 2,000 | 80 | 2,475 |  |
| 45. | U.S. 89 N of Mt. Pleasant | 3,770 | 151 | 3,859 | 154 | 4,000 | 160 | 4,225 | 169 | 4,432 | 1 |
| 46. | U-31 at Sanpete-Emery County Line | 540 | 22 | 627 | 25 | 725 | 29 | 840 | 34 | 922 |  |
| 47. | New Road, Pleasant Valley to U-31 | 1,067 | 43 | 1,216 | 48 | 1,576 | 61 | 2,269 | 89 | 3,116 |  |
| 48. | U-31 E of Fairview | 1,607 | 64 | 1,843 | 73 | 2,301 | 90 | 3,109 | 123 | 4,038 |  |
| 49. | U.S. 89 N of Fairview | 2,040 | 82 | 2,029 | 81 | 2,150 | 86 | 2,485 | 100 | 2,898 | 1 |

[^3]that the onset of development would occur slowly (UDOT, 1980)

## Energy Requirements and Conservation Potential

It is anticipated that the 2,890 vpd of direct, mine-related traffic would consume about 1.33 million gallons of petroleum-based fuel and consume the equivalent lives of 75 vehicles annually in traveling about 13 million miles per year. The use of buses in hauling commuting miners from homes to jobs and return, or even van pools could reduce these figures substantially.

A net energy analysis estimate was made comparing the amount of energy in the coal produced from the tracts, the energy expended in its production, and the energy in the coal left in the ground after mining. Total energy output for this Alternative is estimated at 4.63 million billion Btu. Energy required for production of the coal is estimated at 152,038 billion Btu. Finally, energy left underground, and considered unrecoverable after mining is estimated at 6.39 million billion Btu.

See Appendix 10 for tract-by-tract energy balance analyses.

## CULTURAL RESOURCES

Impacts to cultural resources would be the same as analyzed for underground mining on the Wasatch Plateau, Alternative One. In summary, there would be insignificant direct losses of cultural resources on these tracts with low densities of cultural sites because of avoidance, excavation, and salvage measures. There would be less of an opportunity for avoidance of sites on the North Horn Mountain tract where the projected site density is higher ( 55 to 65 sites).

Expanded populations and better access would cause a loss of cultural sites within the region from vandalism, pothunting, and arrowhead collecting.

## SPECIAL DESIGNATION AREAS

Some of the 17 areas in the Four-County region with potential for wilderness or other special designation could receive increased ORV and other dispersed recreation use because of the coal related population increase. Resultant littering and vandalism would degrade values for which the areas are being studied. Federal agencies managing the
lands (BLM and FS) may be under stress to protect these values with no foreseeable increase in funding for that purpose. However, it is very unlikely that possible degradation would affect the designation suitability of any area due to the temporary nature of impacts resulting from dispersed recreational use.

## VISUAL RESOURCES

Impacts to visual resources in the North Horn Mountain, Cottonwood, Meetinghouse, Tucker Canyon, Gordon Creek, Miller Creek, and Rilda Canyon tracts would be the same as identified in Alternative One. A summary of these impacts follows.

Disturbance and facilities (e.g., transmission lines, access roads, and coal conveyors) associated with underground mining of the North Horn, Cottonwood, Rilda Canyon, Meetinghouse, Gordon Creek, and Miller Creek tracts, and located both on and off the tracts, would not be highly visible nor conflict with VRM objectives. There would be a visual conflict with Tucker Canyon (VRM Class III) where facilities and disturbance associated with underground mining would be clearly visible from large areas on and about Scofield Reservoir, including the Scofield Reservoir State Park, Highway 96, and the Mountain Home and Aspen View subdivisions, degrading the visual resources enjoyed by visitors to the reservoir and residents of the subdivisions.

In most cases, reclamation would be effective in reestablishing the present scenic quality and character of the Wasatch Plateau tracts upon completion of the mining operations. The average visitor would probably note little change in the region's overall scenic character from development and reclamation of the tracts.

## RECREATION

By the year 2000 mining-related population growth would increase the local demand (users originating from within the Four-County region) for both dispersed and developed recreation opportunities by approximately 10 percent from 1980 use figures. Table 4-26 and Table 4-27 show the anticipated increases in demand for hunting and fishing and ORV activity respectively during the life of the mining operation. Increased demand for dispersed activities, as well as increased use of developed recreation sites and urban facilities, would result in impacts similar to those identified for Alternative One but smaller in extent and intensity. The extent
TABLE 4-26
PROJECTED INCREASE IN LOCAL HUNTER AND FISHERMAN DEMAND ALTERNATIVE TWO


## TABLE 4-27

ALIEREATIVE TWO

| Year | Projected CoalRelated Population Increase | Project Increase in Pickup and Four-Wheel Drive | Projected Increase in Motorcycle | Overall Percent Increase fron |
| :---: | :---: | :---: | :---: | :---: |
| 1987 | 2,993 | Numbers | Nunbers |  |
| 1990 | 5,265 | 1316 | 204 | 4.7 |
| 1995 | 6,105 | 1,516 | 358 | 8.3 |
| 2000 | 6,516 | 1,526 | 415 | 9.6 |
| Note: Projections were made assuming that the percentage of the populatio 10.2 in the Four-County region that ouns off-road vehicles would remain the same ( 6.8 percent of the population currently owns motorcycles, vehicles or light pickups) (Scorp, 1978) and 25 percent of the population currently owns four-wheel drive |  |  |  |  |
|  |  |  |  |  |

## ENVIRONMENTAL CONSEQUENCES

cannot be quantified. In summary, the additional competition for fish and game would lead to less hunter and fisherman success or restricted harvests. Increased use would increase ORV conflict with other recreational uses. Overuse of developed campgrounds, picnic areas, playfields, swimming pools and golf courses would result in continued deterioration of existing facilities, user dissatisfaction, and additional recreation pressures on undeveloped areas. Federal, State, and local governments would be under stress with limited funds to provide recreation facilities to meet minimum standards recommended by the Utah Outdoor Recreation Agency (SCORP, 1978).

Development of the tracts and of homesites would displace dispersed recreational use from as much as 638 acres in 1987, 765 acres in 1990, 811 acres in 1995, and 834 acres in the year 2000.

Loss of recreational opportunities from displacement would be minimal. Visual and audio impacts from mining the Tucker Canyon tract would reduce the quality of the recreational experience of people visiting the adjacent Scofield Reservoir and residents of the adjacent subdivision. Impacts to recreational traffic on the Huntington Canyon, Eccles Canyon, and Scofield Reservoir roads would be the same as were identified in Alternative One (i.e., increase in danger, stress, and visitor dissatisfaction).

## UNAVOIDABLE ADVERSE IMPACTS

In localized areas, high particulate concentrations could occur near unpaved haul and access roads. This would result in a short-term degradation of air quality.

The loss of soil and vegetation productivity on 834 acres would be unavoidable for the life of the mines. Changes in aquifers and surface distribution of water due to subsidence could not be avoided. The consumptive use of water in the region would increase by 867 acre-feet annually; sewage effluent discharge would increase by 795 acre-feet annually , and would increase the annual discharge of salt into Colorado River tributaries by 331 tons. The loss of wildlife including 53 deer annually due to highway mortality and a 36 -percent increase in illegal killing would be unavoidable. Surface disturbance would reduce the carrying capacity of the region by 60 deer annually for the life of the mines. Conversion of irrigated cropland for urban use and retirement of irrigated land to provide water for community and mining would result in loss of 241 acres of irrigated cropland in the region. About 472 acres of grazing land would be occupied for the life of the mines.

The unavoidable adverse socioeconomic impacts of this alternative would include: (1) a worsening of the local inflation rate, which would be particularly detrimental to persons living on low or fixed incomes; (2) an increase of 2,645 mining jobs would cause competition for labor, with the relatively high wages paid in mining and construction making it difficult for other sectors to hire and retain qualified employees; (3) increased capital and operating outlays by local governments; and (4) a population increase of 6,516 would result in some loss of smalltown atmosphere and cultural homogeneity in the affected communities, particularly Castle Dale, Ferron, and Orangeville.

The adverse impacts on Highways U-10 and U29, and conflicts with recreational traffic on roads on the Wasatch Plateau would be unavoidable. Increased traffic would result in an increase of about 49 traffic accidents annually.

Inadvertent loss of cultural resources could occur, and sites that are salvaged would lose context for further study. The demand for recreation opportunities would increase by about 10 percent.

Landscape modification resulting from mining and associated development would be an unavoidable adverse impact on the Tucker Canyon tract where it would exceed VRM objectives.

## THE RELATIONSHIP BETWEEN THE SHORT-TERM USE OF MAN'S ENVIRONMENT AND THE MAINTENANCE AND ENHANCEMENT OF LONG-TERM PRODUCTIVITY

Housing development associated with coal production in the region would occupy 362 acres resulting in a long-term loss of soil and vegetation productivity on those acres. The 279.1 million tons of coal left in the ground after mining would be unrecoverable resulting in a long-term loss of that resource. Changes in aquifers or points of surface discharge due to the potential subsidence on 31,588 acres would be a long-term change in local surface water distribution and ground water storage potential. Consumptive use of water for community use (795 acre-feet annually) would continue. The 72 acre-feet used annually for coal mining would become available for other use after mining ceases.

Disturbance or occupation of wildlife habitat for up to 40 years by mining activity would result in a long-term redistribution of wildlife populations and migration routes. The long-term productivity of wildlife, including habitat for 157 pheasants, on 241 acres occupied by housing development or retired would be permanently lost. The occupation of 181

## ENVIRONMENTAL CONSEQUENCES

acres of cropland for housing and the retiring of 60 acres because of the change in water use would continue after mining ceases and would result in a long-term reduction in cropland productivity.

Implementation of this Alternative would have a positive long-term impact on productivity through: (1) an increase in the size of the labor force; (2) infrastructure improvements useful for commercial and industrial development; and (3) increased income and buying power which would contribute to the development of a larger and more diversified trade and services sector. This Alternative would also have one potential negative impact on productivity, i.e., an increased vulnerability to economic disruptions caused by fluctuations in the coal industry.

## IRRETRIEVABLE OR IRREVERSIBLE COMMITMENT OF RESOURCES

Emissions attributable to increased population growth in the region would cause an irreversible deterioration in air quality. Soil and vegetation productivity on 834 acres would be irretrievably lost for the life of the mines. Productivity on 362 acres permanently occupied by housing development would be irreversibly lost.

The 186.1 million tons of coal mined would be irretrievable, and the 279.1 million tons left in the ground would be unrecoverable by present technology. Increased water consumption (867 acre-feet annually) for mining and community needs would be irretrievable. Any change in aquifers or point of water discharge due to subsidence would be irreversible. The degradation in downstream water quality due to the discharge of 331 tons of salt annually in sewage effluent would be irreversible.

Lost production of crops from irrigated lands converted to community use or retired because of conversion of water use would be irretrievable, and the 181 acres would be irreversibly committed to urban use. Lost grazing capacity due to occupation by mining facilities would be irretrievable. Wildlife productivity on these lands would be irreversibly lost. Wildlife losses to traffic mortality, loss of habitat, and illegal killing would be irretrievable.

The growth in population expected to result from this Alternative would be irreversible except at considerable human and economic cost. The commitment of capital, physical resources, and labor to build 1,974 housing units and infrastructure required to support the additional population, commerce, and industry would be an irretrievable impact. The loss of small-town atmosphere and community soli-
darity in some communities as a result of development would be irreversible.

Haulage of coal to existing loadouts, commuting from local communities, and services to the mines from Price would result in the consumption of 1.34 million gallons of petroleum fuels per year, and over the mining period irretrievably commit the lifetimes of 75 vehicles annually for the life of the mines. Lives and money lost due to an increase of 49 traffic accidents annually would be irretrievable.

The landscape modification associated with the Tucker Canyon tract and associated loss in visual quality would be irretrievable for the life of the mine.

## Alternative Three

## INTRODUCTION


#### Abstract

Alternative Three considers leasing three tracts: Meetinghouse Canyon, Cottonwood, and North Horn Mountain. All mining would be underground. These are the three tracts identified for exchange by UP\&L. The tracts are not available for consideration for competitive lease until a decision is reached concerning the proposed exchange. The following section discusses anticipated impacts that would result from implementing Alternative Three.

Possible development of the Hollberg PRLA is considered to be a part of this Alternative. Development of the PRLA has been analyzed in Alternative One and will not be repeated here. The reader is referred to Alternative One.


## AIR QUALITY

TSP concentrations near the tracts considered in this Alternative would be approximately the same as described under Alternative One (Figure 4-1). Localized violations of the NAAQS for TSP would occur unless BACT is applied.

Development of the tracts included in Alternative Three would result in a 28 percent reduction from emission rates used for scenario 6 with a corresponding reduction in visibility impacts. Impacts identified for scenario 5 (looking at the North Horn Mountain mine) would be the same as described in Alternative One.

## ENVIRONMENTAL CONSEQUENCES

## SOILS

The construction of mine facilities, housing, and support facilities for population increases as a result of mine development would cumulatively disturb 248 acres by 1985, 425 acres by 1990, and 472 acres by the end of mine life. The disturbance of 225 acres would be a temporary loss of soil productivity since the area would eventually be reclaimed. The loss of productivity on 247 acres would be permanent due to occupation by housing and support facilities for future population increases in the region.
As discussed in Alternative One the primary impacts to soils would be a temporary loss of soil productivity and a small increase in soil erosion caused by surface disturbance associated with the construction of buildings, haul roads, storage sites, sediment ponds, powerlines, telephone lines, and portals.

Data from general soils maps indicate that sediment yield resulting from mining activities would be low on most disturbed areas on the Wasatch Plateau.

## WATER RESOURCES

The hydrologic impacts having regional consequence would result from an increased consumptive use of about 612 acre-feet of water per year for mine use and domestic purposes and the discharge of about 560 acre-feet per year of sewage effluent (Table 4-28).

The change of water use from agricultural to industrial and community use would result in a reduction of about 170 acres of irrigated agriculture land. The use of water for mining would decrease when mining ceases but demand for community use would continue because the related population increase would be expected to remain.

The growth in population would result in degradation of water quality from the estimated average annual discharge of 45 tons of salt in 1985 to 207 tons of salt in sewage effluent by 2000. The increase in salinity at Imperial Dam as a result of new Federal coal development would range from 0.01 $\mathrm{mg} / \mathrm{L}$ in 1985 to $0.04 \mathrm{mg} / \mathrm{L}$ in 1995 and remain at $0.04 \mathrm{mg} / \mathrm{L}$ in 2000. Increased costs to the farmers as a result of this salinity problem would range from $\$ 4,000$ per year in 1985 to $\$ 16,000$ per year in 2000 for commercial garden vegetable production.

Potential subsidence on 24,507 acres could impact both the ground water aquifers and the distribution of surface waters in the area. The water
affected however would stay within the drainage basins and the impact would be that of the shift of water-source physical location. Surface water is scarce on the tracts with only a few springs and seeps known. If these waters are affected by mining the lessee would replace the water or make restitution, as required by the State of Utah (Title 73323), 30 CFR 211, or the Office of Surface Mining Reclamation and Enforcement, whichever is applicable.

## GEOLOGY, TOPOGRAPHY, PALEONTOLOGY, MINERAL RESOURCES

No significant changes are anticipated to topography or geology on the 24,507 acres that would be leased on the Wasatch Plateau coal field. However, some subsidence could be expected. The surface area that would be susceptible to subsidence has been calculated to range from 90 to 130 percent of the area mined. Subsidence of up to 10 feet would be expected in some areas where the coal is nearest the surface but would probably average much less. Surface expressions of subsidence include open and closed fractures, buckled and bulged bedrock, sinkholes, and other depressions. Mining hazards as described in Alternative One, and operation of the proposed mines would result in 1.7 fatalities and 117 nonfatal accidents per year by 1990.

Significant plant fossils used for correlation and paleoenvironmental guides could be inadvertently destroyed by coal removal in the Blackhawk Formation. Disturbances to the other scientifically important fossils probably would not occur. Mining activities and required surveys could also expose new fossils and enhance paleontological studies.

Approximately 201.2 million tons of coal would not be recovered using current mining techniques. This represents 60 percent of the total in-place coal resource. The mineral value of the land would be depleted except for the oil and gas potential.

The potential oil and gas resources occur well below the Blackhawk Formation. While not disturbing the resource itself, subsurface mining activities could hinder subsequent exploration and location of facilities related to oil and gas development.

## VEGETATION

Implementation of this Alternative would result in loss of vegetation production on 472 acres by the year 2000. The principal cause of this loss would

## ENVIRONMENTAL CONSEQUENCES

be housing development on the Agricultural, Sage-brush-Grass, and Pinyon-Juniper Woodland types, and development of mining facilities and roads in the Conifer- Aspen and Sagebrush-Grass vegetation types. The acres of vegetation that would be lost are shown by year and type in Table 4-29.

The area that would be disturbed does not contain any unique or rare vegetation types, and there would be no significant impacts beyond the period when reclamation would be successful. As discussed in Alternative One, reclamation on these tracts is expected to be successful in 50 to 80 percent of attempts. Vegetation production would be restored in approximately 2 to 5 years after mining ceases. Lands occupied by housing developments would be committed to urbanization and would not be reclaimed. Therefore, vegetation production on 247 acres would be permanently lost. An additional 46 acres of irrigated agricultural land would be retired because of conversion of irrigation water to community and industrial use by the year 2000.

Implementation of this Alternative would not directly impact any threatened or endangered plant species; however, inadvertent destruction of these species could occur in the region through housing development, off-road vehicle activities, or unlawful collecting.

## WILDLIFE

The surface disturbance of 225 acres beginning in 1985 for portal, road, and facilities construction could decrease the deer population in herd units 34, 35, 36 and 45 by 28 deer, an insignificant loss (Table 4-30). Elk and moose losses would also be insignificant.

Elk use of winter migration routes off East and North Horn Mountains could be restricted for 40 years by the placement of portals and roads and the subsequent activity in Killpack Canyon or Rock Canyon. It is difficult to quantify this effect but herds up to 250 animals per event have utilized these routes (personal communications, Ward, FS). The restriction of access would be critical to elk during heavy snow years when they are forced to exist on lower elevation wintering grounds and some elk loss could occur.

Encroachment by mining activity on mountain lion and black bear home ranges could reduce these populations slightly. The increased human disturbance would cause abandonment of some home areas and a reduction in size or use of others.

Half of the acreage converted to urban use would come from irrigated farmlands adjacent to existing communities. With 170 acres committed to
urban use or retired due to change of water use by 2000, a total of 103 pheasants could be displaced (Appendix 9). This loss would be insignificant.

Surface expressions of subsidence such as cracks, bulges, and displacements are not expected to directly affect wildlife, but any reduction or elimination of surface water flows and associated vegetation communities due to subsidence could adversely affect some species (see Alternative One). At the projected production level, up to 24,507 acres could be susceptible to subsidence.

Construction of 10.2 miles of new utility lines in the area would provide a few additional perching and hunting sites for raptors and other birds. Some of these sites would be alongside roads where the raptors would be susceptible to indiscriminant shooting. The expected loss would be small.
With this proposed level of production 10.2 miles of new road would be needed. All of these roads would be in deer and elk winter range. Highway mortality of deer would increase by 20 deer annually (Table 4-31). The road in North Horn tract could cause an unknown amount of elk highway mortality especially during heavy snow years when the elk are concentrated at lower elevations. The deer mortality is expected to be insignificant.

Another potential effect of new road construction and increased use of existing road systems would be the harassment effect. Elk, a species sensitive to vehicle traffic, would be adversely affected by the increased use of improved roads from an expanding outdoor-oriented population (Hieb, 1976). By 2000 due to population increases an additional 1,413 off-road vehicles would be located in the Four-County region. Assuming future use of this road system remains unregulated, elk use up to 0.5 mile from each side of the roads would be reduced (Lyon, 1979).

The slight increase in population (7 percent) due to this proposal would not significantly impact wildlife region-wide. Some local impacts may occur in Emery County where the greatest population growth would occur ( 30 percent by 2000). Species located adjacent to the growing communities such as pheasants, doves, rabbits, and birds would incur most of the illegal killing.

## Fisheries

Pollution of fisheries from coal wastes and coal mine drainage would not be anticipated, with reasonable enforcement of applicable State and Federal laws, if accidental pollution from spillages of coal, untreated mine drainage, caustics, sewage, or petroleum products occurs. Huntington Creek could

CUMULATIVE IMPACTS ON WATER RESOURCES AND REGIONLL SIGNIFICANCE ALTERNATIVE THREE

| ITEM | 1987 | 1990 | 1995 | 2000 |
| :---: | :---: | :---: | :---: | :---: |
| Population Impact from Leasing | 2,136 | 3,595 | 4,2२2 | 4,444 |
| Consumptive Use of Water ${ }^{\text {a }}$ |  |  |  |  |
| Increase (+) or |  |  |  |  |
| Decrease (-) in |  |  |  |  |
| Stream Flow ( $\mathrm{ac}-\mathrm{ft} / \mathrm{yr}$ ) | -269 | -453 | -532 | -560 |
| Mining Use | - 52 | - 52 | - 52 | - 52 |
| Percent Change in Stream Flow | -0.22 | -0.36 | -0.40 | -0.43 |
| Decrease in Irrigated Acreage | -89 | -140 | -162 | -170 |
| Increase in Dissolved Solids In Colorado River mg/L | 0.03 | 0.04 | 0.04 | 0.04 |
| Increased Cost to Downstream Users (Dollarsb) | 12,000 | 16,000 | 16,000 | 16,000 |
| aused 225 gallons per day per flow through sewage effluent bBased on 393,000 (1978 dollar dissolved solid concentration |  | aused 225 gallons per day per person and allowed 50 percent return flow through sewage effluent | percent <br> rease | return |

TABLE 4-29
TOTAL CUMLATIVE IMPACTS ON VEGETATION
ALTERNATIVE THREE

| Vegetation Types | Impacts On Tract ${ }^{\text {a }}$ (Acres) |  |  | Impacts Off Tract ${ }^{\text {b }}$ <br> (Acres) |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1987 | 1990 | 1995 | 2000 | 1987 | 1990 | 1995 | 2000 | TOTAL ${ }^{\text {c }}$ |
| Agriculture | - | - | - | - | - | - | - | - | 0 |
| Riparian | - | - | - | - | - | - | - | - | 0 |
| Grassland | - | - | - | - | - | - | - | - | 0 |
| Desert Shrub | - | - | - | - | - | - | - | - | 0 |
| Sagebrush Grass | 32 | 32 | 32 | 32 | 42 | 42 | 42 | 42 | 74 |
| Pinyon-Juniper Woodland | 16 | 16 | 16 | 16 | 14 | 14 | 14 | 14 | 30 |
| Mountain Brush | 4 | 4 | 4 | 4 | 32 | 32 | 32 | 32 | 36 |
| Aspen | 3 | 3 | 3 | 3 | 26 | 26 | 26 | 26 | 29 |
| Conifer Aspen | 20 | 20 | 20 | 20 | 36 | 36 | 36 | 36 | 56 |
| Total | 75 | 75 | 75 | 75 | 150 | 150 | 150 | 150 | 225 |

Includes mining operation and onsite facilities
bIncludes offsite facilities (roads, powerlines, etc.)
CTotal disturbance by year 2000 (housing development would require an additional 247 acres bringing total vegetation disturbance to 472 acres)

|  |  | TABLE 4-30 <br> BIG GAME IMPACTS alternative three |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Tract | Acres Disturbed | Disturbed Range | Species | Losses/Yeara |
| Meetinghouse Canyon | 40 | High Priority - Summer Criticai - Winter | Deer <br> Elk | $\begin{aligned} & 5 \\ & 0 \end{aligned}$ |
| Cottonwood | 40 | High Priority - Winter Critical - Winter | Deer <br> Elk | $\begin{aligned} & 5 \\ & 0 \end{aligned}$ |
| North Horn Mountain | 145 | High Priority - Winter Critical - Winter | $\begin{aligned} & \text { Deer } \\ & \text { Eik } \\ & \hline \end{aligned}$ | $\begin{array}{r} 18 \\ 8 \\ \hline \end{array}$ |
| Total | 225 |  | Deer Eik Moose | $\begin{array}{r} 28 \\ 8 \\ 0 \\ \hline \end{array}$ |

alncludes 0.2-mile influence zone.

TABLE 4-31

POTENTIAL DEER TRAFFIC MORTALITY FROM NEW ROADS ALTERNATIVE THREE

| Lease | New Roads <br> (Miles) | Deer Range | Deer Loss/ <br> Yeara | Total Number <br> of Years |
| :--- | :---: | :---: | :---: | :---: |
| Cottonwood | 2.2 | Winter | 4 | 40 |
| Meetinghouse | 2.0 | Winter | 4 | 40 |
| North Horn | 6.0 | Winter | 12 | 40 |
| Total | 10.2 |  | 20 |  |
| al,280 acres (1 mile each side of road) X road length/deer density |  |  |  |  |
| (Daiton, UDWR) $\times 0.076=$ Deer Loss/Year |  |  |  |  |

## ENVIRONMENTAL CONSEQUENCES

be affected. This could directly kill fish and/or the aquatic fauna, or increase algae growth choking the stream. The effects would be localized and, where coal sediments occurred, would be prolonged.

## LAND USE

A projected maximum total of 472 acres would change in use from grazing and irrigated cropland to mining and community development by the year 2000. Of this amount, 225 acres would be temporarily disturbed, 75 by onsite support facilities, and 150 by offsite support facilities. The remaining 247 acres would be permanently changed to housing and community infrastructure use.

About 156 acres of good-quality, irrigated cropland, some of which may be prime, would be permanently lost in Carbon and Emery counties to provide for community expansion and community water requirements. An additional 14 acres would be retired for the life of the mines in order to meet mining water requirements. The loss of prime land could be avoided with wise planning. See Table 432 for acreage requirements for community development and associated irrigated acreage losses.

Increased congestion and traffic in Huntington Canyon would hinder movement of livestock to and from grazing areas. About 225 acres of land on the Wasatch Plateau would be disturbed by mine development and would be removed from grazing for the life of the coal mines. Subsidence could cause displacement or total loss of livestock water in the areas of underground mining.

All tracts have areas that have been zoned to exclude mining as a permitted activity. This would impede development of the mines.

## SOCIOECONOMICS

The greatest employment increases would be felt in Emery County, where additional employment would reach 1,300 by the year 2000, 20 percent above the projected baseline of 6,592 jobs (Table $4-33$ ). Direct mining employment would account for 796 new jobs, bringing employment in mining to 3,630 or 46 percent of total employment in Emery County by 2000.

Carbon County would experience much smaller employment increases, i.e., a maximum of 465 jobs. Total employment in Carbon County would reach 12,881 by 2000 (an increase of 5,230 since 1977). The employment increases in Sanpete and Sevier Counties would be negligible.

The additional employment would bring in an additional $\$ 58.2$ million in annual earnings by 2000, most of it concentrated in Carbon ( $\$ 18.4$ million) and Emery ( $\$ 35.6$ million) Counties. (All figures are expressed in 1977 dollars.) Total personal income in Carbon County would thus be $\$ 277.5$ million in 2000 , or $\$ 8,952$ per capita (a $\$ 2,034$ per capita increase since 1978, and slightly more than the $\$ 8,673$ projected in the baseline). Emery County would have a total personal income of $\$ 154.6$ million or $\$ 9,076$ per capita. (Emery County had an average per capita income of $\$ 5,788$ in 1978, and is projected to reach $\$ 8,544$ by 2000 in the baseline.)

The magnitude of the projected increase in employment, combined with the small pool of unemployed labor in the Four-County area, means that most of the job openings would be filled by new inmigrants rather than existing residents. In addition, special skills are required for underground mining, further reducing the number of local residents available to fill new job openings in the mines.

The majority of new in-migrants would probably reside in Emery County whose population as a result would increase by 3,111 people by the year 2000 (see Table 4-34). This figure is 22 percent above Emery County's projected population of 13,922 in 2000. On the individual community level, the following communities would sustain the largest population increases: Castle Dale (whose population would increase by 902 by 2000 , or 36 percent above its projected population of 2,506 in 2000; Orangeville ( 591 more than its projected baseline of 1,671); and Price ( 522 more than its projected baseline population of 12,555 ).

## Infrastructure

The most severe stress on infrastructure would be felt in Emery County and its constituent communities. Overcrowding in the County's elementary and secondary schools would mean an additional 498 and 355 pupil spaces would be required respectively by 2000). The increased population would also exacerbate the County-wide shortage of doctors (three more would be needed, in addition to the projected baseline need of 14) and nurses (of whom 11 more would be needed in 2000, in addition to the 49 required under the baseline), Table 4-35.

In order to meet the housing needs of the increased population, Castle Dale would need an additional 273 housing units by 2000; Ferron would require an additional 170 units by 2000; Huntington 142 units; and Orangeville 179 (see Table 4-36).

| Location | Total Acreage Converted ${ }^{\text {a }}$ |  | Irrigated Acreage Converted |  | Irrigated Acreage Retired |  | Total Acreage Converted |  | Irrigated Acreage Converted |  | Irrigated Acreage Retired |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Base | Alt. 3 | Base | Alt. 3 | Base | Alt. 3. | Base | Alt. 3 | Base | Alt. 3 | Base | Alt. |
|  |  |  | 19 |  |  |  |  |  |  |  |  |  |
| Carbon County | 283 | 28 | 141 | 14 | 36 | 4 | 352 | 48 | 176 | 24 | 45 | 6 |
| Helper | 39 | 4 | 19 | 2 | 5 | 1 | 49 | 8 | 25 | 4 | 6 | 1 |
| Price | 117 | 12 | 59 | 6 | 15 | 2 | 149 | 22 | 74 | 11 | 19 | 3 |
| Wellington | 48 | 2 | 24 | 1 | 6 | 0 | 52 | 5 | 26 | 3 | 7 | 1 |
| Emery County | 104 | 84 | 52 | 42 | 13 | 11 | 156 | 142 | 78 | 71 | 20 | 18 |
| Castle Dale | 19 | 24 | 9 | 12 | 2 | 3 | 28 | 40 | 14 | 20 | 4 | 5 |
| Emery | 4 | 0 | 2 | 0 | 1 | 0 | 6 | 0 | 3 | 0 | 1 | 0 |
| Ferron | 25 | 14 | 13 | 7 | 3 | 2 | 35 | 26 | 17 | 13 | 4 | 3 |
| Huntington | 0 | 11 | 0 | 5 | 0 | 1 | 0 | 23 | 0 | 12 | 0 | 3 |
| Orangeville | 25 | 16 | 13 | 8 | 3 | 2 | 30 | 27 | 15 | 13 | 4 | 3 |
| Sanpete County | 102 | 4 | 51 | 2 | 13 | 1 | 162 | 6 | 81 | 3 | 21 | 1 |
| Fairview | 9 | 1 | 5 | 0 | 1 | 0 | 13 | 1 | 7 | 0 | 2 | 0 |
| Mt. Pleasant | 15 | 2 | 7 | 1 | 2 | 0 | 29 | 3 | 15 | 1 | 4 | 0 |
| Gunnison | 1 | 0 | 0 | 0 | 0 | 0 | 20 | 0 | 10 | 0 | 3 | 0 |
| Centerfield | 1 | 0 | 0 | 0 | 0 | 0 | 9 | 0 | 4 | 0 | 1 | 0 |
| Spring City | 4 | 1 | 2 | 0 | 1 | 0 | 8 | 1 | 4 | 0 | 1 | 0 |
| Sevier County | 204 | 2 | 102 | 1 | 26 | 0 | 294 | 4 | 147 | 2 | 29 | 1 |
| Aurora | 12 | 0 | 6 | 0 | 2 | 0 | 19 | 0 | 9 | 0 | 2 | 0 |
| Redmond | 9 | 0 | 4 | 0 | 1 | 0 | 11 | 0 | 5 | 0 | 1 | 0 |
| Salina | 29 | 0 | 15 | 0 | 4 | 0 | 63 | 1 | 32 | 0 | 8 | 0 |
| Sigurd | 11 | 0 | 5 | 0 | 1 | 0 | 6 | 0 | 3 | 0 | 1 | 0 |
| Four-County Total | 693 | 118 | 346 | 59 | 88 | 16 | 964 | 200 | 482 | 100 | 115 | 26 |

## TABLE $4-32$ ACREAGE CONVERTED TO COMMUNITY DEVELOPMENT, IRRIGATED CROPLAND CONVERTED TO COMMUNITY DEVELOPMENT, AND IRRIGATED CROPLAND RETIRED TO PROVIDE COMMUNITY WATER <br> TABLE 4-32 ACREAGE CONVERTED TO COMMUNITY DEVELOPMENT, IRRIGATED CROPLAND CONVERTED TO COMMUNITY DEVELOPMENT, AND IRRIGATED CROPLAND RETIRED TO PROVIDE COMMUNITY WATER AL TERNATIVE THREE <br> 

Irrigated
Acreage
Retired Irrigated

Acreage
Converted
Base Alt. 3 Base Alt. 3 Base Alt. 3. Base Alt. 3 Base Alt. 3 Base Alt.

| Carbon County | 283 |
| :--- | ---: |
| Helper | 39 |
| Price | 117 |
| Wellington | 48 |

Emery County 104 Castle Dale Emery

Huntington Orangevilie

Sanpete County
Mt. Pleasant
Gunnison
Centerfield
Sevier County
Four-County


| $\frac{6}{i}$ |
| :--- |
| 3 |
| 1 |

TABLE 4-32, Concluded

| Location | Total Acreage Converted ${ }^{\text {a }}$ |  | Irrigated Acreage Converted |  | Irrigated Acreage Retired |  | Total Acreage Converted |  | Irrigated Acreage Converted |  | Irrigated Acreage Retired |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Base | Alt. 3 | Base | Alt. 3 | Base | Alt. 3. | Base | Alt. 3 | Base | Alt. 3 | Base | Alt. 3 |
|  | 1995 |  |  |  |  |  | 2000 |  |  |  |  |  |
| Carbon County | 433 | 59 | 216 | 30 | 56 | 8 | 453 | 62 | 226 | 31 | 58 | 8 |
| Helper | 61 | 9 | 30 | 5 | 8 | 1 | 64 | 10 | 32 | 5 | 8 | 1 |
| Price | 193 | 28 | 96 | 14 | 25 | 4 | 213 | 29 | 106 | 15 | 27 | 4 |
| Wellington | 59 | 5 | 29 | 3 | 7 | 1 | 61 | 6 | 30 | 3 | 8 | 1 |
| Emery County | 201 | 164 | 101 | 82 | 26 | 21 | 203 | 173 | 101 | 86 | 26 | 22 |
| Castle Dale | 36 | 47 | 18 | 23 | 5 | 6 | 36 | 50 | 18 | 25 | 5 | 6 |
| Emery | 7 | 0 | 4 | 0 | 1 | 0 | 6 | 0 | 3 | 0 | 1 | 0 |
| Ferron | 42 | 29 | 21 | 15 | 5 | 4 | 42 | 31 | 21 | 16 | 5 | 4 |
| Huntington | 8 | 25 | 4 | 13 | 1 | 3 | 8 | 26 | 4 | 13 | 1 | 3 |
| Orangeville | 36 | 31 | 18 | 15 | 5 | 4 | 36 | 33 | 18 | 16 | 5 | 4 |
| Sanpete County | 221 | 6 | 111 | 3 | 29 | 1 | 289 | 7 | 145 | 4 | 37 | 1 |
| Fairview | 15 | 1 | 8 | 0 | 2 | 0 | 16 | 2 | 8 | 1 | 2 | 0 |
| Mt. Pleasant | 35 | 3 | 18 | 1 | 5 | 0 | 36 | 3 | 18 | 1 | 5 | 0 |
| Gunnison | 28 | 0 | 14 | 0 | 4 | 0 | 30 | 0 | 15 | 0 | 4 | 0 |
| Centerfield | 12 | 0 | 6 | 0 | 2 | 0 | 13 | 0 | 7 | 0 | 2 | 0 |
| Spring City | 9 | 1 | 4 | 0 | 1 | 0 | 10 | 1 | 5 | 1 | 1 | 0 |
| Sevier County | 456 | 4 | 228 | 2 | 59 | 1 | 571 | 5 | 286 | 3 | 74 | 1 |
| Aurora | 33 | 0 | 17 | 0 | 4 | 0 | 33 | 0 | 17 | 0 | 4 | 0 |
| Redmond | 19 | 0 | 9 | 0 | 2 | 0 | 19 | 0 | 10 | 0 | 3 | 0 |
| Salina | 99 | 1 | 50 | 0 | 13 | 0 | 105 | 1 | 52 | 0 | 13 | 0 |
| Sigurd | 8 | 0 | 4 | 0 | 1 | 0 | 12 | 1 | 6 | 0 | 2 | 0 |
| Four-County Total | 1,311 | 233 | 656 | 117 | 170 | 31 | 1,516 | 247 | 758 | 124 | 195 | 32 |

TABLE 4-33

|  | Carbon County |  |  | Emery County |  |  |  |  | Sanpete County |  |  | Sevier County |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1987 | 1990 | 1995 | 2000 | 1987 | 1990 | 1995 | 2000 | 1987 | 1990 | 1995 | 2000 | 1987 | 1990 | 1995 | 2000 |
| Additional |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Emp loyment |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Mine Construction 0 | 0 | 0 | 0 | 220 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Mining 72 | 158 | 158 | 158 | 398 | 796 | 796 | 796 | 15 | 29 | 29 | 29 | 0 | 0 | 0 | 0 |
| Other (secondary) 183 | 248 | 281 | 307 | 370 | 414 | 483 | 504 | 20 | 26 | 30 | 31 | 18 | 29 | 34 | 37 |
| Total 255 | 406 | 439 | 465 | 988 | 1,210 | 1,279 | 1,300 | 35 | 55 | 59 | 60 | 18 | 29 | 34 | 37 |
| Projected |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Employment w/o |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Alternative Three 10,572 | 11,048 | 11,701 | 12,416 | 5,506 | 5,994 | 6,294 | 6,592 | 6,435 | 6,662 | 7,100 | 7,925 | 7,556 | 8,179 | 9,479 | 10,832 |
| Total Employment |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Including Alter- |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| native Three 10,827 | 11,454 | 12,140 | 12,881 | 6,494 | 7,204 | 7,573 | 7,892 | 6,470 | 6,717 | 7,159 | 7,985 | 7,574 | 8,208 | 9,513 | 10,869 |

TABLE 4-34

|  |  | 1987 |  |  | 1990 |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Total | Total | Increment | Total | Total | Increment |
|  | 1978 | Without the | With the | Due to the | Without the | With the | Due to the |
|  | Total | Proposed | Proposed | Proposed | Proposed | Proposed | Proposed |
|  | Population | Alternative | Alternative | Alternative | Alternative | Alternative | Alternative |
| Carbon | 21,643 | 26,919 | 27,431 | 512 | 28,173 | 29,036 | 863 |
| Hel per | 3,030 | 3,751 | 3,826 | 75 | 3,944 | 4,082 | 138 |
| Price | 8,660 | 10,858 | 11,073 | 215 | 11,429 | 11,826 | 397 |
| Wellington | 1,299 | 2,167 | 2,210 | 43 | 2,254 | 2,340 | 86 |
| Emery | 9,849 | 12,168 | 13,685 | 1,517 | 13,113 | 15,665 | 2,552 |
| Castle Dale | 1,773 | 2,204 | 2,641 | 437 | 2,360 | 3,087 | 727 |
| Emery | 397 | 492 | 492 | 0 | 525 | 525 | 0 |
| Ferron | 1,280 | 1,782 | 2,025 | 243 | 1,967 | 2,426 | 459 |
| Huntington | 2,363 | 2,239 | 2,436 | 197 | 2,360 | 2,768 | 408 |
| Orangeville | 985 | 1,483 | 1,771 | 288 | 1,574 | 2,058 | 484 |
| Sanpete | 14,119 | 18,362 | 18,426 | 64 | 19,442 | 19,550 | 108 |
| Centerfield | 600 | 890 | 891 | 1 | 1,027 | 1,029 | 2 |
| Fairview | 1,060 | 1,256 | 1,270 | 14 | 1,322 | 1,344 | 22 |
| Gunnison | 1,368 | 2,011 | 2,012 | 1 | 2,355 | 2,360 | 5 |
| Mt. Pleasant | 2,354 | 2,669 | 2,699 | 30 | 2,933 | 2,979 | 46 |
| Spring City | 698 | 785 | 794 | 9 | 850 | 864 | 14 |
| Sevier | 14,489 | 18,687 | 18,730 | 43 | 20,309 | 20,381 | 72 |
| Aurora | 779 | 1,034 | 1,037 | 3 | 1,155 | 1,159 | 4 |
| Redmond | 486 | 658 | 660 | 2 | 694 | 695 | 1 |
| Salina | 2,191 | 2,774 | 2,782 | 8 | 3,384 | 3,398 | 14 |
| Sigurd | 370 | 564 | 567 | 2 | 486 | 490 | 4 |
| Regional Total | 60,100 | 76,136 | 78,272 | 2,136 | 81,037 | 84,632 | 3,595 |

TABLE 4-34 (Concluded)

|  |  | 1995 |  |  | 2000 |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Total | Total | Increment | Total | Total | Increment |
|  | 1978 | Without the | With the | Due to the | Without the | With the | Due to the |
|  | Total | Proposed | Proposed | Proposed | Proposed | Proposed | Proposed |
|  | Population | Alternative | Alternative | Alternative | Alternative | Alternative | Alternative |
| Carbon | 21,643 | 29,626 | 30,682 | 1,056 | 29,889 | 31,000 | 1,111 |
| Helper | 3,030 | 4,148 | 4,317 | 169 | 4,184 | 4,362 | 178 |
| Price | 8,660 | 12,217 | 12,713 | 496 | 12,555 | 13,077 | 522 |
| Wellington | 1,299 | 2,370 | 2,465 | 95 | 2,391 | 2,491 | 100 |
| Emery | 9,849 | 13,913 | 16,868 | 2,955 | 13,922 | 17,033 | 3,111 |
| Castie Dale | 1,773 | 2,505 | 3,359 | 854 | 2,506 | 3,408 | 902 |
| Emery | 397 | 554 | 554 | 0 | 540 | 540 | 0 |
| Ferron | 1,280 | 2,087 | 2,610 | 523 | 2,088 | 2,648 | 560 |
| Huntington | 2,363 | 2,505 | 2,948 | 443 | 2,506 | 2,973 | 467 |
| Orangeville | 985 | 1,670 | 2,231 | 561 | 1,671 | 2,262 | 591 |
| Sanpete | 14,119 | 20,509 | 20,636 | 127 | 21,687 | 21,820 | 133 |
| Centerfield | 600 | 1,091 | 1,093 | 2 | 1,103 | 1,105 | 2 |
| Falrview | 1,060 | 1,355 | 1,379 | 24 | 1,367 | 1,394 | 27 |
| Gunni son | 1,368 | 2,503 | 2,509 | 6 | 2,531 | 2,538 | 7 |
| Mt . Pleasant | 2,354 | 3,031 | 3,087 | 56 | 3,060 | 3,117 | 57 |
| Spring Clity | 698 | 879 | 896 | 17 | 886 | 903 | 17 |
| Sevier | 14,489 | 23,228 | 23,312 | 84 | 25,170 | 25,259 | 89 |
| Aurora | 779 | 1,412 | 1,415 | 3 | 1,417 | 1,421 | 4 |
| Redmond | 486 | 843 | 844 | 1 | 849 | 853 | 4 |
| Salina | 2,191 | 4,028 | 4,041 | 13 | 4,138 | 4,151 | 16 |
| Sigurd | 370 | 515 | 521 | 6 | 585 | 601 | 16 |
| Reglonal Total | 60,100 | 87,276 | 91,498 | 4,222 | 90,668 | 95,112 | 4,444 |

IMPACTS ON EDUCATION, HEALTH, AND POLICE SERVICE REQUIREMENTS IN 2000 ALTERNATIVE THREE


PROJECTED HOUSING IMPACTS IN 2000 ALTERNATIVE THREE

|  | Projected Need Without This Proposed Action | Projected Need With This Proposed Action | Increment Due To The Proposed Action | Percent Increase Due To The Proposed Action |
| :---: | :---: | :---: | :---: | :---: |
| Carbon County | 9,057 | 9,394 | 337 | 3.7 |
| Hel per | 1,268 | 1,322 | 54 | 4.3 |
| Price | 3,805 | 3,963 | 158 | 4.1 |
| Wellington | 724 | 754 | 30 | 4.1 |
| Emery County | 4,219 | 5,162 | 943 | 22.0 |
| Castle Dale | 759 | 1,032 | 273 | 36.0 |
| Emery | 163 | 163 | 0 | 0.0 |
| Ferron | 633 | 803 | 170 | 27.0 |
| Huntington | 759 | 901 | 142 | 19.0 |
| Orangeville | 506 | 685 | 179 | 35.0 |
| Sanpete County | 6,571 | 6,611 | 40 | 0.6 |
| Centerfield | 334 | 335 | 1 | 0.2 |
| Fairview | 414 | 423 | 9 | 2.0 |
| Gunnison | 767 | 769 | 2 | 0.2 |
| Mt. Pleasant | 927 | 944 | 17 | 2.0 |
| Spring City | 268 | 274 | 5 | 0.6 |
| Sevier County | 7,627 | 7,654 | 27 | 0.3 |
| Aurora | 429 | 430 | 1 | 0.2 |
| Redmond | 257 | 258 | 1 | 0.4 |
| Salina | 1,254 | 1,259 | 5 | 0.3 |
| Sigurd | 177 | 179 | 2 | 1.0 |
| Regional Total | 27,474 | 28,821 | 1,347 | 5.0 |

Communities in Emery County have adequate firefighting capacity to handle the increased demand. Levels of police coverage would decline in all communities. Local police departments already are understaffed and renewed coal leasing would account for a relatively small proportion of the additional police officers required.

Carbon County would also experience significant stress on infrastructure although to a lesser extent than Emery County. The County schools would need to provide 130 additional places for elementary students and 99 for secondary students by 2000. Under the projected baseline, the County would have adequate capacity in its elementary schools through 2000, but would need 630 more secondary school places in order to avoid overcrowding.

Carbon County faces a serious shortage of doctors and nurses even without renewed leasing. One additional physician and three more nurses would be needed to meet accepted health planning standards (Table 4-35).

To meet the projected population growth, Price would require 158 additional housing units by 2000 , compared with the 3,805 units needed under the projected baseline. In Helper, 54 additional housing units would be required by 2000, bringing the total requirement to 1,322 housing units.

No significant infrastructure impacts would occur in Sanpete or Sevier counties.

## Social Impacts

Communities in Sanpete and Sevier Counties would experience only negligible social changes. Although the Helper-Price-Wellington area of Carbon County would gain an additional 800 residents by 2000, the incremental social impacts of this growth would be minimal. The Helper-PriceWellington area, which had 13,000 residents in 1978 and is expected to reach 19,000 by 2000, is already becoming relatively urbanized, with a concomitant increase in ethnic and cultural heterogeneity. The pace of social changes already taking place in Helper-Price-Wellington would probably accelerate; however, it is unlikely to have a significant change on the nature or direction of these changes.

Significant incremental social impacts on the Emery County communities of Castle Dale, Ferron and Orangeville would be expected. Even without renewed leasing, these communities will experience considerable population growth, entailing some loss of small-town values and an increase in social heterogeneity, particularly if a large proportion of the
new in-migrants were non-Mormons. An additional population increase of 36 percent by 2000 in Castle Dale and Orangeville and 27 percent in Ferron, would lead to a further lessening of the small-town atmosphere and an increase in social heterogeneity. More social services would be required to deal with increasing problems such as alcoholism, divorce, mental disorders, drug abuse, and family violence. However, the results of local interviews indicate that residents, while aware of the social costs, are receptive to development because of the advantages it brings in terms of access to better public services, facilities, and improved shopping, cultural, and recreational facilities.

The town of Emery would experience no significant incremental population growth. Huntington would be unlikely to experience severe social impacts since the commmunity has a relatively large population base to begin with ( 2,363 residents in 1978), and the incremental population would not exceed 500 persons. Perhaps most important, Huntington has already gone through a period of adjusting to the social impacts of rapid population growth in the 1970s. Huntington has largely lost its small-town atmosphere and values, but residents have also enjoyed the fruits of development in terms of jobs, better public services, etc., and are therefore very receptive to further growth.

## TRANSPORTATION

Additional traffic volumes due to leasing proposed under Alternative Three are shown in Table 4-37. Except for some minor traffic increase between Price and Salt Lake City due to general population increase, all the increase in traffic would occur on U-10 and its feeder routes between Price and Ferron. The increase in traffic is not enough to crowd any of the local roads, but in conjunction with other traffic on the roads is likely to contribute to an average of about 29 increased traffic accidents per year, resulting from a direct, mine-related traffic increase of some 8 million miles per year.

Traffic increases due to additional leasing would reduce the level of service afforded by the existing Forest highway system. In most cases the present level of service is at stable flow with reduced speed, due to the percentage of truck traffic and limited passing opportunities. The level of service would approach unstable flow or forced flow at decreased speed with the additional traffic. Accident rates would increase due to the additional traffic at grade intersections and increased congestion.

Additional development of existing lease and additional leasing, within the Forest boundary served by Highway 31, would be expected. The percent-

TABLE 4-37
ANNUAL AVERAGE DAILY TRAFFIC INCREASE
DUE TO ALTERNATIVE (1990-2000)
ALTERNATIVE THREE

| Point | Location | ATI | Trucks |
| :---: | :---: | :---: | :---: |
| 1. | U-96 South of U.S. 6 | 0 | 0 |
| 2. | U.S. 6 at Utah-Carbon County Line | 186 | 9 |
| 3. | Gordon Creek Road | 0 | 0 |
| 4. | U.S. 6 North of Price | 289 | 9 |
| 5. | U.S. 6 Between Price and Wellington | 74 | 0 |
| 14. | U-10 South of Price | 816 | 189 |
| 15. | Wellington Loadout Road | 0 | 0 |
| 16. | U-10 North of Huntington | 816 | 189 |
| 17. | U-31 West of Huntington | 246 | 108 |
| 18. | U-10 South of Huntington | 785 | 255 |
| 19. | U-29 West of Orangeville | 459 | 201 |
| 19a. | Castle Valley RR Loadout $S$ of Castle Dale | 274 | 274 |
| 20. | U-10 South of Castle Dale | 1,098 | 106 |
| 21. | North Horn Mountain Mine | 1,228 | 99 |
| 22. | U-10 North of Ferron | 496 | 17 |
| 23,25. | U-10 South of Ferron, North of Emery | 0 | 0 |
| 26. | Emery North Mine | 0 | 0 |
| 27. | Emery Central Mine | 0 | 0 |
| 27. | U-10 South of Emery | 0 | 0 |
| 27 b . | Castle Valley RR Loadout South of Emery | 0 | 0 |
| 28. | U-10 North of I-70 | 0 | 0 |
| 29. | Emery South and Dog Valley Mines | 0 | 0 |
| 33. | I-70 East of Salina | 0 | 0 |
| 37. | U.S. 89 South of Salina | 0 | 0 |
| 47. | New Road, Pleasant Valley to U-31 | 0 | 0 |
| 48. | U-31 East of Fairview | 0 | 0 |

## ENVIRONMENTAL CONSEQUENCES

age of truck traffic would increase as would overall traffic from this development. The total traffic could reach or exceed the maximum capacity of the existing road.

Cumulative traffic in the area is shown on Table 4-38. U-10 would be crowded as far south as Castle Dale without any additional leasing. Alternative Three would add to the traffic volume and add to the crowded category of that section of U-10 between Castle Dale and Ferron. Although the number of traffic accidents would increase, the traffic accident rate is expected to stay about at Statewide levels for the types of roads in the area.

Increased traffic would require increased road maintenance, presently inadequately funded by motor fuel tax distribution formulas, according to UDOT. Additional mine-related traffic is likely to cause some interference with recreation traffic in the canyons, and vice versa.

The increased travel projected under the four alternatives would generate from $\$ 67,500$ to $\$ 144,000$ in increased fuel revenues annually. This revenue would be sufficient to apply only a minimum surface rehabilitation treatment to one mile of highway each year where many hundreds of miles are affected.
Utah's highways have usually been constructed to accommodate traffic for 20 years after they were built. Nearly all of the highways impacted by the proposed coal development are approaching or have already exceeded the 20 year design traffic volume. Significant traffic increases would only exacerbate an already serious deficiency in the financial resources required to maintain, let alone improve, the affected highways. With many of the highways in a precarious condition, the increased travel (with a high percentage of trucks) would precipitate the deterioration of many highways. Immediate attention would be required just to retain a tolerable level of service. Without additional financing by a factor somewhere between fifty and one hundred times the previously mentioned revenue, the impacted roads would be adversely affected. Even then, it is assumed that such amounts would be made available each year over the life of the impact and that the onset of development would occur slowly (UDOT, 1980).

## Energy Requirements and Conservation Potential

About 1,900 vehicles per day of direct, mine-related traffic, would travel about 8 million miles per year, consume about 0.75 million gallons of petro-leum-based fuels per year, and wear out the annual
equivalent of 49 vehicles. The practice of busing miners from homes to jobs and return could reduce these figures substantially.

A net energy analysis estimate was made comparing the amount of energy in the coal produced from the tracts, the energy expended in its production, and the energy in the coal left in the ground after mining. Total energy output for this Alternative is estimated at 3.36 million billion Btu. Energy required for production of the coal is estimated at 103,540 billion Btu. Finally, energy left underground, and considered unrecoverable after mining is estimated at 5.03 million billion Btu.
See Appendix 10 for tract-by-tract energy balance analyses.

## CULTURAL RESOURCES

Low site densities and the avoidance, excavation, and salvage on the Meetinghouse and Cottonwood tracts would mitigate most direct adverse impacts to cultural resources. Increased density of sites on the North Horn Mountain tract ( 55 to 75 ) would result in avoidance being less successful. However, the chances of inadvertent losses would be reduced because of excavation and salvage.

Loss of cultural sites from vandalism, pot-hunting, and arrowhead collecting would result from an expanded population and better access. The extent of such losses is unknown.

## SPECIAL DESIGNATION AREAS

Some of the 17 areas in the Four-County region with potential for wilderness or other special designation could receive increased ORV and other dispersed recreation use because of the coal-related population increase. Resultant littering and vandalism would degrade values for which the areas are being studied. Federal agencies managing the lands (BLM and FS) may be under stress to protect these values with no foreseeable increase in funding for that purpose. However, it is very unlikely that possible degradation would affect the designation of suitability of any area due to the temporary nature of impacts resulting from dispersed recreational use.

## VISUAL RESOURCES

Impacts to visual resources in the Meetinghouse, Cottonwood, and North Horn tracts would be the
TABLE 4-38
ANNUAL AVERAGE DAILY TRAFFIC PROJECTED FOR SELECTED YEARS ALTERNATIVE THREE

|  | 1985 |  | 1987 |  | 1990 |  | 1995 |  | 2000 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Point Location | All | Trucks | All | Trucks | All | Trucks | All | Trucks | All | Truck |
| 1. U-96 S of U.S. 6 | 953 | 171 | 1,075 | 208 | 1,208 | 248 | 1,258 | 250 | 1,308 | 252 |
| 2. U.S. 6 at Utah-Carbon County Line | 8,740 | 1,430 | 9,519 | 1,575 | 10,862 | 1,791 | 12,862 | 2,091 | 14,834 | 2,309 |
| 3. Gordon Creek Road | 339 | 139 | 339 | 139 | 339 | 139 | 339 | 139 | 339 | 139 |
| 4. U.S. 6 N of Price | 17,563 | 3,033 | 18,201 | 3,210 | 19,413 | 3,443 | 20,913 | 3,668 | 22,288 | 3,821 |
| 5. U.S. 6 between Price \& Wellington | 11,156 | 1,806 | 16,394 | 2,698 | 25,441 | 3,959 | 39,654 | 6,102 | 43,618 | 5,958 |
| 6. Soldier Cr Rd at Duchesne-Carbon Co Line | 65 | 3 | 68 | 3 | 75 | 5 | 90 | 4 | 112 |  |
| 7. Soldier Cr Rd at Soldier Cr Mine | 145 | 14 | 193 | 17 | 295 | 23 | 333 | 24 | 355 | 2 |
| 8. Deadman Canyon Mine | 322 | 160 | 408 | 191 | 551 | 243 | 794 | 348 | 794 | 348 |
| 9. Dugout Canyon Road | 965 | 80 | 1,242 | 103 | 1,555 | 128 | 1,555 | 128 | 1,555 | 12 |
| 10. Soldier Cr Rd at U.S. 6 | 1,431 | 301 | 1,855 | 314 | 2,424 | 394 | 2,682 | 500 | 2,704 | 501 |
| 11. U.S. 6 W of U-123 (Sunnyside Jct) | 5,356 | 851 | 5,890 | 906 | 6,256 | 986 | 7,056 | 1,106 | 8,140 | 1,206 |
| 12. U-123 E of U.S. 6 | 2,656 | 160 | 2,850 | 168 | 3,056 | 176 | 3,156 | 180 | 3,256 | 18 |
| 13. U.S. 6 near Carbon-Emery County Line | 3,300 | 495 | 3,460 | 520 | 3,700 | 555 | 4,100 | 615 | 4,500 | 67 |
| 14. U-10 S of Price | 5,983 | 1,407 | 6,082 | 1,353 | 7,207 | 1,730 | 7,719 | 1,824 | 8,156 | 1,887 |
| 15. Wellington Loadout Road | 883 | 883 | 970 | 970 | 400 | 400 | 431 | 431 | 431 | 431 |
| 16. $\mathrm{U}-10 \mathrm{~N}$ of Huntington | 5,514 | 1,290 | 5,614 | 1,290 | 6,209 | 1,216 | 6,659 | 1,349 | 6,945 | 1,390 |
| 17. U-31 W of Huntington | 1,483 | 185 | 1,697 | 189 | 2,162 | 310 | 2,387 | 324 | 2,523 | 33 |
| 18. $\mathrm{U}-10 \mathrm{~S}$ of Huntington | 3,883 | 979 | 4,024 | 983 | 4,713 | 1,017 | 5,210 | 1,064 | 5,592 | 1,117 |
| 19. U-29 W of Orangeville | 2,103 | 559 | 3,190 | 597 | 3,871 | 812 | 4,001 | 817 | 4,019 | 81 |
| 19a. Castle Valley RR Loadout S of Castle Dale | 834 | 834 | 1,500 | 1,500 | 2,375 | 2,375 | 2,375 | 2,375 | 2,375 | 2,375 |
| 20. U-10 S of Castle Dale | 1,250 | 150 | 1,460 | 210 | 2,625 | 382 | 3,178 | 432 | 3,564 | 44 |
| 21. North Horn Mountain Mine | - | - | - | - | 945 | 76 | 945 | 76 | 945 |  |
| 22. $\mathrm{U}-10 \mathrm{~N}$ of Ferron | 1,250 | 150 | 1,460 | 210 | 2,162 | 306 | 2,715 | 356 | 3,101 | 36 |
| 23. U-10 S of Ferron, $N$ of Emery | 1,050 | 126 | 1,226 | 181 | 1,491 | 259 | 2,055 | 304 | 2,409 | 3 |
| 26. Emery North Mine | - | - | - | - | - | - | - | - | - |  |
| 27. Emery Central Mine | - | - | - | - | - | - | - | - | - |  |

TABLE 4-38 (Concluded)

| Point | Location | 1985 |  | 1987 |  | 1990 |  | 1995 |  | 2000 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | All | Trucks | All | Trucks | All | Trucks | All | Trucks | All | Truck |
| 27a. | U-10 S of Emery | 930 | 112 | 1,090 | 131 | 1,491 | 193 | 2,133 | 299 | 2,542 | 348 |
| 27b. | Castle Valley RR Loadout S of Emery | - | - | - | - | 799 | 799 | 799 | 799 | 799 | 79 |
| 28. | U-10 N of 1-70 | 930 | 112 | 1,090 | 131 | 1,675 | 345 | 1,927 | 403 | 2,366 | 45 |
| 29. | Emery South \& Dog Valley Mines | 70 | 10 | 70 | 10 | 70 | 10 | 70 | 10 | 70 | 1 |
| 30. | U-72 near Sevier-Wayne County Line | 37 | 1 | 40 | 2 | 45 | 2 | 55 | 2 | 66 |  |
| 31. | U-72 S of 1-70 | 270 | 184 | 368 | 185 | 442 | 185 | 454 | 185 | 454 | 18 |
| 32. | Spring Canyon Road at 1-70 | 1,085 | 591 | 1,085 | 591 | 949 | 283 | 961 | 348 | 961 | 34 |
| 33. | 1-70 E of Salina | 5,075 | 1,520 | 5,047 | 1,412 | 4,755 | 928 | 4,338 | 993 | 4,462 | 1,03 |
| 34. | U.S. 89 S of Richfield | 5,143 | 771 | 5,538 | 830 | 5,770 | 866 | 5,770 | 866 | 5,599 | 84 |
| 35. | U.S. 89 N of Richfield | 6,800 | 1,020 | 7,738 | 1,161 | 7,835 | 1,175 | 6,800 | 1,020 | 6,121 | 91 |
| 36. | U.S. 89 N of Aurora | 7,835 | 1,175 | 8,711 | 1,307 | 8,800 | 1,320 | 7,835 | 1,175 | 6,645 | 99 |
| 37. | U.S. 89 S of Salina | 3,175 | 1,135 | 2,866 | 828 | 2,683 | 571 | 2,438 | 636 | 2,553 | 62 |
| 38. | U.S. 89 near Sanpete-Sevier County Line | 5,828 | 1,170 | 6,132 | 1,113 | 6,000 | 720 | 6,000 | 720 | 6,390 | 1,04 |
| 39. | $\mathrm{U}-28 \mathrm{~N}$ of Gunnison | 3,848 | 873 | 3,822 | 777 | 3,500 | 420 | 3,500 | 420 | 3,818 | 3 |
| 40. | U.S. 89 N of Gunnison | 1,870 | 75 | 1,874 | 75 | 1,980 | 79 | 2,250 | 90 | 2,570 | 0 |
| 41. | U.S. 89 N of Manti | 2,875 | 115 | 2,518 | 101 | 2,635 | 105 | 3,500 | 140 | 4,973 | 19 |
| 42. | Public Road E of Ephraim | 285 | 11 | 317 | 12 | 380 | 15 | 510 | 20 | 665 |  |
| 43. | U.S. 89 N of Ephraim | 2,255 | 90 | 2,277 | 91 | 2,415 | 97 | 2,745 | 110 | 3,127 | 12 |
| 44. | U.S. 89 S of Mt. Pleasant | 1,645 | 66 | 1,574 | 63 | 1,660 | 66 | 2,000 | 80 | 2,475 | 9 |
| 45. | U.S. 89 N of Mt. Pleasant | 3,770 | 151 | 3,859 | 154 | 4,000 | 160 | 4,225 | 169 | 4,432 | 17 |
| 46. | U-31 at Sanpete-Emery County Line | 540 | 22 | 627 | 25 | 725 | 29 | 840 | 34 | 992 | 3 |
| 47. | New Road, Pleasant Valley to U-31 | 1,067 | 43 | 1,216 | 48 | 1,535 | 61 | 2,228 | 89 | 3,075 | 12 |
| 48. | U-31 E of Fairview | 1,607 | 64 | 1,843 | 73 | 2,260 | 90 | 3,068 | 123 | 3,997 | 16 |
| 49. | U.S. 89 N of Fairview | 2,040 | 82 | 2,029 | 81 | 2,150 | 86 | 2,485 | 100 | 2,898 | 11 |

Note: Castle Valley Rallroad assumed built to Emery by 1990

## ENVIRONMENTAL CONSEQUENCES

same as identified in Alternative One. In summary, the disturbance and facilities associated with underground mining of the three tracts, where located both on and off the tracts, would not be highly visible nor conflict with VRM objectives. Reclamation would be effective in reestablishing the present scenic quality of the three tracts upon completion of the mining operations.
The average visitor would probably note little change in the region's overall scenic character from development of the tracts.

## RECREATION

By the year 2000, mining-related population growth would increase the local demand for both dispersed and developed recreation opportunities by approximately 7 percent from 1980 use figures. Tables 4-39 and Table 4-40 show the anticipated increases in demand for hunting, fishing, and ORV activity during the life of the mining operation. Increased demand for dispersed activities, as well as increased use of developed recreation sites and urban facilities, would result in impacts similar to those identified for Alternative One but reduced in extent and intensity. The extent cannot be quantified. In summary, the additional competition for fish and game would lead to reduced hunter and fisherman success or restricted harvest. Increased use would increase ORV conflict with other recreational uses. Overuse of developed campgrounds, picnic areas, playfields, swimming pools, and golf courses would result in continued deterioration of existing facilities, user dissatisfaction, and additional recreational pressures on undeveloped areas. Federal, State, and local governments would be under stress with limited funds to provide recreation facilities to meet minimum standards recommended by the Utah Outdoor Recreation Agency (SCORP, 1978).

Development of the tracts and of homesites would displace dispersed recreational use from as much as 344 acres in 1987, 425 acres in 1990, 460 acres in 1995, and 472 acres in the year 2000. Loss of recreational opportunities would be minimal. Impacts to recreational traffic on the Huntington Canyon road would be similar to those identified in Alternative One, but less in extent and intensity (i.e., increase in danger, stress, and visitor dissatisfaction).

## UNAVOIDABLE ADVERSE IMPACTS

Some local short-term degradation of air quality would result from traffic on unpaved haul and access roads. Population increases would result in increased emissions of all NAAQS pollutants.

Soil and vegetation productivity on 472 acres would be lost for the life of the mines. Approximately 201.2 million tons of coal would be made unrecoverable as a result of proposed mining. Changes in aquifers and points of surface discharge due to potential subsidence on 24,507 acres could not be avoided. The consumptive use of water would increase by 612 acre-feet annually, and discharge of sewage effluent would increase 560 acre-feet per year. This discharge would add 207 tons of salt annually to Colorado River tributaries. Conversion of irrigated land for community expansion and retirement of irrigated land to provide water for community and mining use would result in the loss of 170 acres of irrigated cropland in the region. The loss of wildlife habitat, including habitat for 103 pheasants on irrigated cropland, and disturbance of wildlife due to mining activities could not be avoided. Surface disturbance caused by mining would result in the loss of 28 deer in the region and deer highway mortality would increase by 20 deer annually.

The unavoidable adverse socioeconomic impacts of this Alternative would include: (1) a worsening of the local inflation rate, which would be particularly detrimental to persons living on low or fixed incomes; (2) competition for labor ( 1,862 new jobs), with the relatively high wages paid in mining and construction making it difficult for other sectors to hire and retain qualified employees; (3) increased capital and operating outlays by local governments; and (4) an increase in population of 4,444 persons resulting in some loss of small-town atmosphere and cultural homogeneity in the affected communities, particularly Castle Dale, Ferron, and Orangeville.

Moderate increases in traffic on $\mathrm{U}-10$ would cause overcrowding, increased traffic accidents (29 annually), and conflicts with recreation traffic.

Some inadvertent loss of cultural resources could occur and vandalism and illegal artifact collecting would increase due to the increased population. The demand for recreation opportunities would increase by 7 percent. Overutilization at some sites would cause user dissatisfaction.

PROUECTED IICREASE IN LOCAL OFF-ROAD VEHICLE DEMAD WITHIN THE FOUR-COUNTY REGION

| Year | Projected CoalRelated Population Increase | Project Increase in Pickup and Four-Wheel Drive Numbers | Projected Increase in Motorcycle Nunbers | Overal1 Percent Increase fram 1980 |
| :---: | :---: | :---: | :---: | :---: |
| 1987 | 2,136 | 534 | 145 | 3.4 |
| 1990 | 3,595 | 899 | 245 | 5.7 |
| 1995 | 4,2२2 | 1,056 | 287 | 6.6 |
| 2000 | 4,444 | 1,111 | 302 | 7.0 |

Note: Projections were made assuming that the percentage of the population
in the Four-County region that owns off-road vehicles would remain
the same ( 6.8 percent of the population currently owns motorcycles,
and 25 percent of the population currently owns four-wheel drive
vehicles or light pickups) (Scorp, 1978)

## PROUECTED INCREASE IN LOCAL HUNTER AND FISHERMW DEMAN

## TABE 4

vehicles or light pickups) (Scorp, 1978) is over 12 in age (Thayne and Hudson, 1978).

## THE RELATIONSHIP BETWEEN THE SHORT-TERM USE OF MAN'S ENVIRONMENT AND THE MAINTENANCE AND ENHANCEMENT OF LONG-TERM PRODUCTIVITY

The degradation of air quality attributable to the population increase in the region would continue into the long term.

Housing development associated with coal production in the region would permanently occupy 247 acres resulting in a long-term loss of soil, vegetation, and wildlife productivity on those lands.

Mining coal at a 40 -percent recovery rate would render 201.2 million tons of coal unrecoverable by present technology. Changes in aquifers or points of surface discharge would result in a long-term change in local surface water distribution and ground water storage potential. The demand for 560 acre-feet annually for community use would continue into the long term. About 156 acres of irrigated cropland would be kept out of production in the long term due to occupation by housing and conversion of water use to culinary use.

Implementation of this Alternative would have a positive long-term impact on productivity through: (1) an increase of 1,862 workers in the labor force; (2) infrastructure improvements useful for commercial and industrial development; and (3) increased income and buying power which would contribute to the development of a larger and more diversified trade and services sector. This Alternative would also have one potential negative impact on productivity, i.e., an increased vulnerability to economic disruptions caused by fluctuations in the coal industry.

## IRRETRIEVABLE OR IRREVERSIBLE COMMITMENT OF RESOURCES

Emissions attributable to increased population would cause an irreversible deterioration in air quality. The loss of soil, vegetation, and wildlife productivity on 472 acres for the life of the mines would be irretrievable. On the lands committed to urbanization and not reclaimed (247 acres), the loss would be irreversible.

The 134.1 million tons of coal that would be mined would be irretrievable, and the 201.2 million tons left in the ground would be unrecoverable by present technology. The 612 acre-feet of water used annually for mining and community use would be irretrievable, and the demand for 560 acre-feet annually for community use would be irreversible.

The increased salt loading of 207 tons annually in Colorado River tributaries would be irreversible. Any change in aquifers or surface water distribution due to subsidence would be irreversible. The 124 acres of irrigated croplands committed to community use would be irreversibly lost and lost crop production on those lands plus 46 acres of land retired from change of water use would be irretrievable.

The growth in population of 4,444 persons expected to result from coal development would be irreversible except at considerable human and economic cost. The commitment of capital, physical resources and labor to build 1,347 housing units and infrastructure required to support the additional population, commerce, and industry would be an irretrievable impact. The loss of small-town atmosphere and community solidarity in some communities as a result of development would be irreversible.
Haulage of coal to existing loadouts, commuting from local communities, and services to the mines from Price would result in the consumption of 0.66 million gallons of petroleum fuels per year. Lives and money lost due to the increased number of traffic accidents would be irretrievable.

## Alternative Four

## INTRODUCTION


#### Abstract

Alternative Four considers leasing three tracts: Gordon Creek, Meetinghouse Canyon, and Cottonwood. All mining would be underground. The following section discusses anticipated impacts that would result from implementing Alternative Four.

Possible development of the Hollberg PRLA is considered a part of this Alternative. Development of the PRLA has been analyzed in Alternative One and will not be repeated here. The reader is referred to Alternative One.


## AIR QUALITY

Concentrations of TSP would be an estimated 5 to 10 micrograms per cubic meter above the no new leasing levels (Figure 4-2) in the vicinity of the Gordon Creek tract. Levels near the Cottonwood and Meetinghouse Canyon tracts would be about 5 micrograms per cubic meter above the no new leasing level (Figure 4-2). Localized violations of the NAAQS for TSP would occur unless BACT is applied. There would be no perceivable regional

## ENVIRONMENTAL CONSEQUENCES

visibility impairment caused by development of the tracts as proposed in Alternative Four.

## SOILS

The construction of mine facilities and housing for population increases as a result of mine development would cumulatively disturb 188 acres by 1985, 271 acres by 1990 and 297 acres by the end of mine life. The disturbance on 170 acres would be a temporary loss of soil productivity since the area would be eventually reclaimed. The loss of productivity on 127 acres would be permanent due to occupation by housing and support facilities for future population increases in the region.
As discussed in Alternative One, primary impacts to soils would be a temporary loss of soil productivity and a small increase in soil erosion caused by surface disturbance associated with the construction of buildings, haul roads, sediment ponds, powerlines, telephone lines, and portals.

Data from general soils maps indicate that sediment yields resulting from mining activities would be low on most disturbed areas on the Wasatch Plateau.

## WATER RESOURCES

The hydrologic impacts having regional consequence would result from an increased consumptive use of about 312 acre-feet of water per year for mine use and domestic purposes and the discharge of about 288 acre-feet per year of sewage effluent (see Table 4-41).

The impact of changing water use from agricultural to industrial and community use would result in a reduction of about 87 acres of irrigated agriculture land. The use of water for mining would end when mining ceases, but demand for community use would continue because the related population increase would be expected to remain.

The growth in population would result in degradation of water quality from the estimated average annual discharge of 17 tons of salt in 1985 to 117 tons of salt in sewage effluent by 2000. The increase in salinity at Imperial Dam as a result of new Federal coal development would range from 0.01 $\mathrm{mg} / \mathrm{L}$ in 1985 to $0.02 \mathrm{mg} / \mathrm{L}$ in 1995 and remain at $0.03 \mathrm{mg} / \mathrm{L}$ in 2000. Increased costs to the farmers as a result of this salinity problem would range from $\$ 4,000$ per year in 1985 to $\$ 12,000$ per year in 2000 for commercial garden vegetable production.

Potential subsidence on 7,744 acres could impact both the ground water aquifers and the distribution of surface waters in the area. The water affected, however, would stay within the drainage basins and the impact would be that of the shift of water-source physical location.

## GEOLOGY, TOPOGRAPHY, PALEONTOLOGY, MINERAL RESOURCES

No significant changes are anticipated to topography or geology on the 7,744 acres that would be leased on the Wasatch Plateau coal field. However, some subsidence could be expected. The surface area susceptible to subsidence has been calculated to range from 90 to 130 percent of the area mined. Subsidence of up to 10 feet would be expected in some areas where the coal is nearest the surface but would probably average much less. Surface expressions of subsidence include open and closed fractures, buckled and bulged bedrock, sinkholes, and other depressions. Mining hazards as described in Alternative One, and operation of the proposed mines would result in 0.8 fatalities and 60 nonfatal accidents per year by 1990 .

Significant plant fossils used for correlation and paleoenvironmental guides could be inadvertently destroyed by coal removal in the Blackhawk Formation. Significant disturbances to the other scientifically important fossils mentioned in Chapter 3 most likely would not occur. However, mining activities and required surveys could also expose new fossils and enhance paleontological studies.

Approximately 92.2 million tons of coal would not be recovered using current mining techniques. This represents 50 to 60 percent of the total in-place coal resource. The mineral value of the land would be depleted except for the oil and gas potential.

The potential oil and gas resources occur well below the Blackhawk Formation, and subsurface mining activities could hinder subsequent exploration and location of facilities related to oil and gas development.

## VEGETATION

Implementation of this Alternative would result in loss of vegetation production on 297 acres by the year 2000. The principal cause of this loss would be housing development on the Agricultural, Sage-brush-Grass, and Pinyon-Juniper Woodland types, and development of mining facilities and roads in the Aspen, Sagebrush-Grass and Conifer-Aspen

## ENVIRONMENTAL CONSEQUENCES

vegetation types. The acres of vegetation that would be lost are shown by year and type in Table 4-42.

The area that would be disturbed does not contain any unique or rare vegetation types, and there would be no significant impacts beyond the period when reclamation would be successful. As discussed in Alternative One, reclamation on these tracts is expected to be successful in 50 to 80 percent of attempts. Vegetation production would be restored in approximately 2 to 5 years after mining ceases. Lands occupied by housing developments would be committed to urbanization and would not be reclaimed. Therefore, vegetation production on 127 acres would be permanently lost. An additional 23 acres of irrigated agricultural land would be retired because of conversion of irrigation water to community and industrial use by the year 2000.

Implementation of this Alternative would not directly impact any threatened or endangered plant species; however, inadvertent destruction of these species could occur in the region through housing development, off-road vehicle activities, or unlawful collecting.

## WILDLIFE

The surface disturbance of 170 acres beginning in 1985 for portal, road, and facilities construction could decrease the deer population in herd units $34,35,36$, and 45 by 22 deer annually, an insignificant loss (Table 4-43). As shown in Table 4-44 deer highway mortality in the region would increase by 22 deer annually.

Elk use of winter migration routes off East Mountain could be altered by development of the Cottonwood tract and other concurrent developments in the vicinity. Present data do not allow for quantification of this effect.

Encroachment by mining activity on mountain lion and black bear home ranges could reduce these populations slightly. The increased human disturbance would cause abandonment of some home areas and a reduction in size or use of others.

As analyzed in Alternative One, potential damage to riparian zones, a critical element of wildlife habitat, could occur from 7.7 miles of road construction. Moose require willows year-round and disturbance of riparian habitat in the Gordon Creek tract for 40 years could displace four moose annually. This could delay the expansion of this introduced herd.

Some irrigated acreage ( 87 acres) could be converted for urban use or retired due to change of
water use. This would reduce carrying. capacity by 65 pheasants annually, an insignificant loss.

Any reduction or elimination of surface water flows and associated vegetation communities due to subsidence could adversely affect some species. Loss of water sources would result in reduced utilization of habitat by mobile species such as deer, elk, beaver, and birds, and elimination of species such as small mammals, reptiles, and amphibians that are unable to relocate. At the projected production level, up to 7,744 acres could be susceptible to subsidence.

## Fisheries

Pollution of fisheries from coal wastes and coal mine drainage would not be anticipated with reasonable enforcement of applicable State and Federal laws. Fugitive dust from hauling trucks could affect 3.0 miles of stream habitat located in steep canyons where roads could not be located more than 0.25 miles from the streambed. If accidental pollution from spillages of coal, untreated mine drainage, caustics, sewage, or petroleum products occurs, fisheries that could be affected are the Price River and Huntington Creek. This could directly kill fish and/or the aquatic fauna, or increase algae growth choking the stream. The effects would be localized and, where coal sediments occurred, could be prolonged.
Three streams, Beaver, Gordon, and Jump Creeks, could suffer dewatering for short sections if subsidence occurs and alters the channels. Mitigation measures could repair the channel and restore the flow avoiding permanent damage and total loss of fisheries.

## LAND USE

A projected maximum total of 297 acres would change in use from grazing and irrigated cropland to mining and community development by year 2000. Of this amount, 170 acres would be temporarily disturbed, 45 by onsite facilities, and 125 by offsite facilities. The remaining 127 acres would be permanently changed to housing and community infrastructure use.

About 80 acres of good quality irrigated cropland, possibly including some prime cropland, would be permanently lost to meet community growth (Table $4-45$ ). Prime farmland could be avoided with proper planning. Another 7 acres would be retired from production in order to meet mining water require-

CUMULATIVE IMPACTS ON WATER RESOURCES AND REGIONAL SIGNIFICANCE ALTERNATIVE FOUR

| ITEM | 1987 | 1990 | 1995 | 2000 |
| :--- | :---: | :---: | :---: | :---: |
| Population Impact <br> from Leasing | 993 | 1,812 | 2,124 | 2,282 |
| Consumptive Use of Watera <br> Increase (+) or |  |  |  |  |
| Decrease (-) in | -125 | -228 | -268 | -288 |
| Stream Flow (ac-ft/sr) | -24 | -24 | -24 | -24 |
| Mining Use |  |  |  |  |
| Percent Change in Stream Flow | -0.06 | -0.11 | -0.13 | -0.14 |
| Decrease in Irrigated Acreage | -41 | -70 | -81 | -87 |
| Increase in Dissolved Solids <br> In Colorado River mg/L | 0.01 | 0.02 | 0.02 | 0.03 |
| Increased Cost to Downstream <br> Users (Dollarsb) | 4,000 | 8,000 | 8,000 | 12,000 |

aused 225 gallons per day per person and allowed 50 percent return flow through sewage effluent
bBased on 393,000 (1978 dollars) for each $1 \mathrm{mg} / \mathrm{L}$ increase in dissolved solid concentration

TABLE 4-42
TOTAL CLMLLATIVE IMPACTS ON VEGETATION ALTERNATIVE FOUR

| Vegetation Types | Impacts On Tracta <br> (Acres) |  |  | Impacts Off Tract ${ }^{\text {D }}$ (Acres) |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1987 | 1990 | 1995 | 2000 | 1987 | 1990 | 1995 | 2000 | TOTAL |
| Agriculture | - | - | - | - | - | - | - | - | 0 |
| Riparian | - | - | - | - | - | - | - | - | 0 |
| Grassland | - | - | - | - | - | - | - | - | 0 |
| Desert Shrub | - | - | - | - | - | - | - | - | 0 |
| Sagebrush Grass | 5 | 5 | 5 | 5 | 31 | 31 | 31 | 31 | 36 |
| Pinyon-Juniper Woodland | 9 | 9 | 9 | 9 | 20 | 20 | 20 | 20 | 29 |
| Mountain Brush | 3 | 3 | 3 | 3 | 24 | 24 | 24 | 24 | 27 |
| Aspen | 13 | 13 | 13 | 13 | 31 | 31 | 31 | 31 | 44 |
| Conifer Aspen | 15 | 15 | 15 | 15 | 19 | 19 | 19 | 19 | 34 |
| Total | 45 | 45 | 45 | 45 | 125 | 125 | 125 | 125 | 170 |

Includes mining operation and onsite facilities
DIncludes offsite facilities (roads, powerlines, etc.)
CTotal disturbance by year 2000 (housing development would require an additional 127 acres bringing total vegetation disturbance to 297 acres)

TABLE 4-43

BIG GAME IMPACTS
ALTERNATIVE FOUR

| Tract | Acres Disturbed | Disturbed Range |  | Losses/Yeara |
| :---: | :---: | :---: | :---: | :---: |
| Gordon Creek | 90 | High Priority - Summer | Deer | 12 |
|  |  | Critical - Winter | Elk | 4 |
|  |  | Critical - Yearlong | Moose | 4 |
| Meetinghouse | 40 | High Priority - Summer | Deer | 5 |
| Canyon |  | Critical - Winter | Elk | 0 |
| cottonwood | 40 | High Priority - Winter | Deer | 5 |
|  |  | Critical - Winter | Elk | 0 |
| Total | 170 |  | Deer | 22 |
|  |  |  | Elk | 4 |
|  |  |  | Moose | 4 |

alncludes $0.1-\mathrm{mile}$ influence zone.

## TABLE 4-44

POTENTIAL DEER TRAFFIC MORTALITY FROM NEW ROADS
ALTERNATIVE FOUR

| Lease | New Roads (Miles) | Deer Range | $\begin{gathered} \text { Deer Loss/ } \\ \text { Yeara } \end{gathered}$ | Total Number of Years |
| :---: | :---: | :---: | :---: | :---: |
| Gordon Creek | 3.5 | Summer | 14 | 40 |
| cottonwood | 2.2 | Winter | 4 | 40 |
| Meetinghouse | 2.0 | Winter | 4 | 40 |
| Total | 7.7 |  | 22 |  |

TABLE 4-45
ACREAGE CONVERTED TO COMMUNITY DEVELOPMENT, IRRIGATED CROPLAND CONVERTED TO alternative four

| Location | Total <br> Acreage Converted ${ }^{\text {a }}$ |  | Irrigated Acreage Converted |  | Irrigated Acreage Retired |  | Total <br> Acreage Converted |  | Irrigated Acreage Converted |  | Irrigated Acreage Retired |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Base | Alt. 4 | Base | Alt. 4 | Base | Alt. 4. | Base | Alt. 4 | Base | Alt. 4 | Base | Alt. 4 |
|  |  |  | 19 |  |  |  |  |  |  |  |  |  |
| Carbon County | 283 | 34 | 141 | 17 | 35 | 4 | 352 | 62 | 176 | 31 | 44 | 8 |
| Helper | 39 | 5 | 19 | 3 | 5 | 1 | 49 | 10 | 25 | 5 | 6 | 1 |
| Price | 117 | 15 | 59 | 8 | 15 | 2 | 149 | 29 | 74 | 15 | 19 | 4 |
| Wellington | 48 | 3 | 24 | 2 | 6 | 1 | 52 | 6 | 26 | 3 | 7 | 1 |
| Emery County | 104 | 18 | 52 | 9 | 13 | 2 | 156 | 32 | 78 | 16 | 20 | 4 |
| Castle Dale | 19 | 5 | 9 | 3 | 2 | 1 | 28 | 9 | 14 | 5 | 4 | 1 |
| Emery | 4 | 0 | 2 | 0 | 1 | 0 | 6 | 0 | 3 | 0 | 2 | 0 |
| Ferron | 25 | 2 | 13 | 1 | 3 | 0 | 35 | 5 | 17 | 3 | 4 | 1 |
| Huntington | 0 | 2 | 0 | 1 | 0 | 0 | 0 | 6 | 0 | 3 | 0 | 1 |
| Orangeville | 25 | 3 | 13 | 2 | 3 | 1 | 30 | 6 | 15 | 3 | 4 | 1 |
| Sanpete County | 102 | 3 | 51 | 1 | 13 | 0 | 162 | 5 | 81 | 3 | 20 | 1 |
| Fairview | 9 | 1 | 5 | 0 | 1 | 0 | 13 | 1 | 7 | 0 | 2 | 0 |
| Mt. Pleasant | 15 | 1 | 7 | 0 | 2 | 0 | 29 | 3 | 15 | 1 | 4 | 0 |
| Gunnison | 1 | 0 | 0 | 0 | 0 | 0 | 20 | 1 | 10 | 0 | 3 | 0 |
| Centerfield | 1 | 0 | 0 | 0 | 0 | 0 | 9 | 0 | 4 | 0 | 1 | 0 |
| Spring City | 4 | 0 | 2 | 0 | 1 | 0 | 8 | 1 | 4 | 0 | 1 | 0 |
| Sevier County | 204 | 0 | 102 | 0 | 26 | 0 | 294 | 1 | 147 | 0 | 37 | 0 |
| Aurora | 12 | 0 | 6 | 0 | 2 | 0 | 19 | 0 | 9 | 0 | 2 | 0 |
| Redmond | 9 | 0 | 4 | 0 | 1 | 0 | 11 | 0 | 5 | 0 | 1 | 0 |
| Salina | 29 | 0 | 15 | 0 | 4 | 0 | 63 | 0 | 32 | 0 | 8 | 0 |
| Sigurd | 11 | 0 | 5 | 0 | 1 | 0 | 6 | 0 | 3 | 0 | 1 | 0 |
| Four-County Total | 693 | 55 | 346 | 27 | 87 | 6 | 964 | 100 | 482 | 50 | 121 | 13 |

COMMUNITY DEVELOPMENT, AND IRRIGATED CROPLAND RETIRED TO PROVIDE ? Four-County Toral
TABLE 4-45

TABLE 4-45, Concluded

| Location | Total Acreage Converted ${ }^{\text {a }}$ |  | Irrigated Acreage Converted |  | irrigated <br> Acreage <br> Retired |  | Total Acreage Converted |  | irrigated Acreage Converted |  | Irrigated Acreage Retired |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Base | Alt. 4 | Base | Alt. 4 | Base | Alt. 4. | Base | Alt. 4 | Base | Alt. 4 | Base | Alt .4 |
|  |  |  | 19 |  |  |  |  |  |  |  |  |  |
| Carbon County | 433 | 73 | 216 | 37 | 54 | 9 | 453 | 79 | 226 | 40 | 57 | 10 |
| Helper | 61 | 12 | 30 | 6 | 8 | 2 | 64 | 13 | 32 | 7 | 8 | 2 |
| Price | 193 | 34 | 96 | 17 | 24 | 4 | 213 | 38 | 106 | 19 | 26 | 5 |
| Wellington | 59 | 7 | 29 | 4 | 7 | 1 | 61 | 7 | 30 | 4 | 8 | 1 |
| Emery County | 201 | 38 | 101 | 19 | 25 | 5 | 203 | 41 | 101 | 20 | 25 | 5 |
| Castle Dale | 36 | 10 | 18 | 5 | 5 | 1 | 36 | 11 | 18 | 6 | 5 | 2 |
| Emery | 7 | 0 | 4 | 0 | 1 | 0 | 6 | 0 | 3 | 0 | 1 | 0 |
| Ferron | 42 | 6 | 21 | 3 | 5 | 1 | 42 | 6 | 21 | 3 | 5 | 1 |
| Huntington | 8 | 7 | 4 | 4 | 1 | 1 | 8 | 7 | 4 | 4 | 1 | 1 |
| Orangeville | 36 | 7 | 18 | 4 | 5 | 1 | 36 | 7 | 18 | 4 | 5 | 1 |
| Sanpete County | 221 | 6 | 111 | 3 | 28 | 1 | 289 | 6 | 145 | 3 | 36 | 1 |
| Fairview | 15 | 1 | 8 | 0 | 2 | 0 | 16 | 1 | 8 | 1 | 2 | 0 |
| Mt. Pleasant | 35 | 3 | 18 | 1 | 5 | 0 | 36 | 3 | 18 | 1 | 5 | 1 |
| Gunnison | 28 | 0 | 14 | 0 | 4 | 0 | 30 | 0 | 15 | 0 | 4 | 0 |
| Centerfield | 12 | 0 | 6 | 0 | 2 | 0 | 13 | 0 | 7 | 0 | 2 | 0 |
| Spring City | 9 | 1 | 4 | 0 | 1 | 0 | 10 | 1 | 5 | 0 | 1 | 0 |
| Sevier County | 456 | 1 | 228 | 0 | 57 | 0 | 571 | 1 | 286 | 1 | 72 | 0 |
| Aurora | 33 | 0 | 17 | 0 | 4 | 0 | 33 | 0 | 17 | 0 | 4 | 0 |
| Redmond | 19 | 0 | 9 | 0 | 2 | 0 | 19 | 0 | 10 | 0 | 3 | 0 |
| Salina | 99 | 0 | 50 | 0 | 13 | 0 | 105 | 0 | 52 | 0 | 13 | 0 |
| Sigurd | 8 | 0 | 4 | 0 | 1 | 0 | 12 | 0 | 6 | 0 | 2 | 0 |
| Four-County Total | 1,311 | 118 | 656 | 59 | 164 | 15 | 1,516 | 127 | 758 | 64 | 190 | 16 |

## ENVIRONMENTAL CONSEQUENCES

ments. Sanpete and Sevier Counties would not be significantly affected.
Impacts to livestock grazing from traffic and congestion in Huntington Canyon and the nature of impacts from subsidence that could result from underground mines on the Wasatch Plateau would be the same as described in Alternative One. Subsidence would only impact the areas that would be developed under this Alternative.
The implications of county zoning on development of the tracts, all of which are in CE-1 zoned areas, are the same as described in Alternative One.

## SOCIOECONOMICS

Carbon and Emery Counties would experience an additional 543 and 340 jobs respectively by the year 2000 (see Table 4-46). Total employment in Carbon County would reach 12,959 in 2000 (a 5,308 job increase since 1977). Employment in Emery County would reach 6,932 in 2000 (1,948 more than in 1977). Forty-six percent of the additional employment generated in Carbon County ( 251 jobs) and 60 percent of the new jobs in Emery County (202 jobs) would be direct employment at the mines. Employment increases in Sanpete and Sevier Counties would be minimal.
For the four counties as a whole, new employment generated would bring an additional $\$ 30.6$ million (1977 dollars) in annual income by 2000, including $\$ 18.2$ million in Carbon County and $\$ 8.5$ million in Emery County. As a result, total personal income in Carbon County would reach $\$ 277.3$ million or $\$ 8,858$ per capita by 2000 (compared with $\$ 6,837$ in 1978 , and $\$ 8,673$ in 2000 under the projected baseline). In Emery County, total personal income would be $\$ 127.5$ million or $\$ 8,702$ per capita (versus $\$ 5,788$ in 1978 and $\$ 8,596$ in 2000 under the projected baseline).
Over the long term, most of the new job openings generated would probably be filled by new inmigrants rather than existing residents. The pool of locally available unemployed labor is expected to be small, and underground coal mining requires special skills not readily available locally.
In spite of in-migration, the population increases would be relatively small (see Table 4-47). Most of the new residents would be expected to settle in Carbon County (which would receive an additional 1,415 inhabitants for a total population of 31,304 by 2000, an increase of 9,661 since 1978) and Emery County 730 additional residents for a total population of 14,652 by 2000 , or 4,804 more than the 1978 population). Population impacts on the individ-
ual community level would be relatively small (i.e., less than 10 percent above the population projected for the year 2000 under the baseline).

## Infrastructure

The added stress on infrastructure generally would not be severe. In Emery County, where the most stress would be felt, school facilities would still not be overburdened. However, the shortage of doctors and nurses would be slightly exacerbated. One more doctor would be required in Emery by 2000, in addition to the 14 more needed under the baseline, and three nurses would be needed by 2000, in addition to the 49 needed under the baseline (Table 4-48).

The communities of Castle Dale, Ferron, Huntington, and Orangeville would require a somewhat significant expansion of their existing housing stock (i.e., $62,33,40$, and 40 units respectively) by the year 2000 in order to accommodate the projected growth in population (see Table 4-49). However, only 5 to 9 percent of the expected increases in individual community housing requirements would be attributed to renewed coal leasing. The remaining housing units would be required under the baseline needs.

Infrastructure stress on Carbon County generally would be even less severe than in Emery County. Carbon County's schools would need to provide 166 additional places for elementary students (see Table 4-48). Under the baseline, 630 secondary places would be required.

Carbon County would face a serious shortage of doctors and nurses. One additional physician and five additional nurses would be needed to meet accepted health planning standards (see Table 4-48).

To meet the projected population growth, the city of Price would require 206 additional housing units by 2000. In Helper, 68 more housing units would be required by 2000, bringing the total requirement to 1,336 housing units.

No significant infrastructure impacts would be anticipated for Sanpete or Sevier Counties.

## Social Impacts

Communities in the Wasatch Plateau-Emery area would experience only a negligible social change. The incremental population increase (5 percent or less above the projected population baseline) is too small to have a measurable effect on local social structures beyond those already expected to occur.
TABLE 4-46

|  | Carbon County |  |  |  |  | Emery County |  |  | Sanpete County |  |  |  | Sevier County |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1987 | 1990 | 1995 | 2000 | 1987 | 1990 | 1995 | 2000 | 1987 | 1990 | 1995 | 2000 | 1987 | 1990 | 1995 | 2000 |
| Additional |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Emp loyment |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| by Alternative Four |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Mine Construction | 48 | 0 | 0 | 0 | 67 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Mining | 126 | 251 | 251 | 251 | 101 | 202 | 202 | 202 | 15 | 29 | 29 | 29 | 0 | 0 | 0 | 0 |
| Other (secondary) | 378 | 139 | 271 | 292 | 118 | 112 | 128 | 138 | 17 | 21 | 24 | 26 | 6 | 9 | 10 | 11 |
| Total | 552 | 490 | 522 | 543 | 286 | 314 | 330 | 340 | 32 | 50 | 53 | 55 | 6 | 9 | 10 | 11 |
| Projected |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Employment w/o |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Alternative Four | 10,572 | 11,048 | 11,701 | 12,416 | 5,506 | 5,944 | 6,294 | 6,592 | 6,435 | 6,662 | 7,100 | 7,925 | 7,556 | 8,179 | 9,479 | 10,832 |
| Total Employment |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Including Alter- |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| native Four | 11,124 | 11,538 | 12,223 | 12,959 | 5,792 | 6,258 | 6,624 | 6,932 | 6,467 | 6,712 | 7,153 | 7,980 | 7,662 | 8,188 | 9,489 | 10,843 |

TABLE 4-47

|  |  | 1987 |  |  | 1990 |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Total | Total | Increment | Total | Total | Increment |
|  | 1978 | Without the | With the | Due to the | Without the | With the | Due to the |
|  | Total | Proposed | Proposed | Proposed | Proposed | Proposed | Proposed |
|  | Population | Alternative | Alternative | Alternative | Alternative | Alternative | Alternative |
| Carbon | 21,643 | 26,919 | 27,539 | 620 | 28,173 | 29,296 | 1,123 |
| Helper | 3,030 | 3,751 | 3,845 | 94 | 3,944 | 4,124 | 180 |
| Price | 8,660 | 10,858 | 11,129 | 271 | 11,429 | 11,955 | 526 |
| Wellington | 1,299 | 2,167 | 2,222 | 55 | 2,254 | 2,355 | 101 |
| Emery | 9,849 | 12,168 | 12,487 | 319 | 13,113 | 13,693 | 580 |
| Castle Dale | 1,773 | 2,204 | 2,290 | 86 | 2,360 | 2,517 | 157 |
| Emery | 397 | 492 | 492 | 0 | 525 | 525 | 0 |
| Ferron | 1,280 | 1,782 | 1,826 | 44 | 1,967 | 2,054 | 87 |
| Huntington | 2,363 | 2,239 | 2,277 | 38 | 2,360 | 2,464 | 104 |
| Orangevilie | 985 | 1,483 | 1,542 | 59 | 1,574 | 1,678 | 104 |
| Sanpete | 14,119 | 18,362 | 18,408 | 46 | 19,442 | 19,537 | 95 |
| Centerfield | 600 | 890 | 890 | 0 | 1,027 | 1,027 | 0 |
| Fairview | 1,060 | 1,256 | 1,268 | 12 | 1,322 | 1,342 | 20 |
| Gunnison | 1,368 | 2,011 | 2,011 | 0 | 2,355 | 2,356 | 1 |
| Mt. Pleasant | 2,354 | 2,669 | 2,692 | 23 | 2,933 | 2,976 | 43 |
| Spring City | 698 | 785 | 792 | 7 | 850 | 863 | 13 |
| Sevier | 14,489 | 18,687 | 18,695 | 8 | 20,309 | 20,323 | 14 |
| Aurora | 779 | 1,034 | 1,035 | 1 | 1,155 | 1,156 | 0 |
| Redmond | 486 | 658 | 658 | 0 | 694 | 694 | 0 |
| Salina | 2,191 | 2,774 | 2,775 | 1 | 3,384 | 2,387 | 3 |
| Sigurd | 370 | 564 | 564 | 0 | 486 | 487 | 1 |
| Regional Total | 60,100 | 76,136 | 77,129 | 993 | 81,037 | 82,849 | 1,812 |

TABLE 4-47 (Concluded)

|  |  | 1995 |  |  | 2000 |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Total | Total | Increment | Total | Total | Increment |
|  | 1978 | Without the | With the | Due to the | Without the | With the | Due to the |
|  | Total | Proposed | Proposed | Proposed | Proposed | Proposed | Proposed |
|  | Population | Alternative | Alternative | Alternative | Alternatlve | Alternative | Alternative |
| Carbon | 21,643 | 29,626 | 30,943 | 1,317 | 29,889 | 31,304 | 1,415 |
| Helper | 3,030 | 4,148 | 4,359 | 211 | 4,184 | 4,410 | 226 |
| Price | 8,660 | 12,217 | 12,836 | 619 | 12,555 | 13,234 | 679 |
| Wellington | 1,299 | 2,370 | 2,489 | 119 | 2,391 | 2,518 | 127 |
| Emery | 9,849 | 13,913 | 14,593 | 680 | 13,922 | 14,652 | 730 |
| Castle Dale | 1,773 | 2,505 | 2,689 | 184 | 2,506 | 2,710 | 204 |
| Emery | 397 | 554 | 554 | 0 | 540 | 540 | 0 |
| Ferron | 1,280 | 2,087 | 2,189 | 102 | 2,088 | 2,198 | 110 |
| Huntington | 2,363 | 2,505 | 2,627 | 122 | 2,506 | 2,637 | 131 |
| Orangeville | 985 | 1,670 | 1,792 | 122 | 1,671 | 1,802 | 131 |
| Sanpete | 14,119 | 20,509 | 20,616 | 107 | 21,687 | 21,801 | 114 |
| Centerfleld | 600 | 1,091 | 1,091 | 0 | 1,103 | 1,103 | 0 |
| Fairview | 1,060 | 1,355 | 1,376 | 21 | 1,367 | 1,392 | 25 |
| Gunnison | 1,368 | 2,503 | 2,504 | 1 | 2,531 | 2,532 | 1 |
| Mt. Pleasant | 2,354 | 3,031 | 3,081 | 50 | 3,060 | 3,111 | 51 |
| Spring City | 698 | 879 | 894 | 15 | 886 | 901 | 15 |
| Sevier | 14,489 | 23,228 | 23,248 | 20 | 25,170 | 25,193 | 23 |
| Aurora | 779 | 1,412 | 1,413 | 1 | 1,417 | 1,418 | 1 |
| Redmond | 486 | 843 | 843 | 0 | 849 | 849 | 0 |
| Salina | 2,191 | 4,028 | 4,032 | 4 | 4,138 | 4,143 | 5 |
| Sigurd | 370 | 515 | 516 | 1 | 585 | 587 | 2 |
| Reglonal Total | 60,100 | 87,276 | 89,400 | 2,124 | 90,668 | 92,950 | 2,282 |

IMPACTS ON EDUCATION, HEALTH, AND POLICE SERVICE REQUIREMENTS IN 2000 ALTERNATIVE FOUR

| County | Existing Capacity 1978 | ```Total Need With Alt. 2``` | Increment Due To <br> Alt. 2 | ```Percent Increase Due To Alt. 2``` |
| :---: | :---: | :---: | :---: | :---: |
| Carbon County |  |  |  |  |
| Pupil Spaces ${ }^{\text {a }}$ |  |  |  |  |
| Elementary | 2,828 | 3,662 | 166 | 4.7 |
| Secondary | 2,139 | 2,786 | 126 | 4.7 |
| Teachers ${ }^{\text {b }}$ | 192 | 300 | 14 | 4.8 |
| Doctors ${ }^{\text {C }}$ | 21 | 31 | 1 | 3.0 |
| Nurses | 122 | 109 | 5 | 4.8 |
| Police Officers ${ }^{\text {d }}$ | 24 | 62 | 3 | 5.0 |
| Emery County |  |  |  |  |
| Pupil Spaces |  |  |  |  |
| Elementary | 1,940 | 2,344 | 117 | 5.2 |
| Secondary | 1,417 | 1,670 | 83 | 5.2 |
| Teachers | 129 | 201 | 10 | 5.2 |
| Doctors | 7 | 15 | 1 | 7.1 |
| Nurses | 6 | 52 | 3 | 6.1 |
| Police Officers | 12.5 | 29 | 2 | 7.4 |
| Sanpete County |  |  |  |  |
| Pupil Spaces |  |  |  |  |
| Elementary | 1,789 | 2,464 | 13 | 0.5 |
| Secondary | 743 | 1,962 | 10 | 0.5 |
| Teachers | 152 | 170 | 1 | 0.6 |
| Doctors | 7 | 22 | 0 | 0.0 |
| Nurses | 27 | 77 | 0 | 0.0 |
| Police Officers | 7 | 44 | 0 | 0.0 |
| Sevier County |  |  |  |  |
| Pupil Spaces |  |  |  |  |
| Elementary | 1,783 | 3,276 | 3 | 0.1 |
| Secondary | 1,111 | 2,343 | 2 | 0.1 |
| Teachers | 165 | 225 | 0 | 0.0 |
| Doctors | 9 | 25 | 0 | 0.0 |
| Nurses | 24 | 88 | 0 | 0.0 |
| Police Officers | 12.5 | 50 | 0 | 0.0 |
| aprojected enrollment is based on the assumption that school district enrollment is the same proportion of county population in the future as in 1978 |  |  |  |  |
| bprojected need for teachers assumes the same teacher/pupil ratio as in 1978 |  |  |  |  |
| cprojected need for doctors and nurses is based on the planning standard of one per 1,000 population and one per 285 population, respectively |  |  |  |  |
| dprojected need for police officers is based on a standard of two full time equivalent officers per 1,000 person |  |  |  |  |

PROJECTED HOUSING IMPACTS IN 2000
ALTERNATIVE FOUR

|  | Projected Need Without This Proposed Action | Projected Need With This Proposed Action | Increment Due To The Proposed Action | Percent Increase Due To The Proposed Action |
| :---: | :---: | :---: | :---: | :---: |
| Carbon County | 9,057 | 9,485 | 428 | 4.7 |
| Helper | 1,268 | 1,336 | 68 | 5.3 |
| Price | 3,805 | 4,011 | 206 | 5.4 |
| Wellington | 724 | 762 | 38 | 5.2 |
| Emery County | 4,219 | 4,440 | 221 | 5.2 |
| Castle Dale | 759 | 821 | 62 | 8.2 |
| Emery | 163 | 163 | 0 | 0.0 |
| Ferron | 633 | 666 | 33 | 5.2 |
| Huntington | 759 | 799 | 40 | 5.2 |
| Orangeville | 506 | 546 | 40 | 7.9 |
| Sanpete County | 6,571 | 6,606 | 35 | 0.5 |
| Centerfield | 334 | 334 | 0 | 0.0 |
| Fairview | 414 | 422 | 8 | 2.0 |
| Gunnison | 767 | 767 | 0 | 0.0 |
| Mt. Pleasant | 927 | 942 | 15 | 2.0 |
| Spring City | 268 | 273 | 5 | 2.0 |
| Sevier County | 7,627 | 7,634 | 7 | 0.01 |
| Aurora | 429 | 430 | 1 | 0.2 |
| Redmond | 257 | 257 | 0 | 0.0 |
| Salina | 1,254 | 1,255 | 1 | 0.01 |
| Sigurd | 177 | 178 | 1 | 0.6 |
| Regional Total | 27,474 | 28,165 | 691 | 2.5 |

## ENVIRONMENTAL CONSEQUENCES

## TRANSPORTATION

Additional traffic which would result from this Alternative is shown in Table 4-50.

Cumulative traffic volumes are shown in Table 451. This Alternative would add to the crowded conditions in the already crowded portion of U-10, i.e., that part between Price and Castle Dale. It would also add to congestion in the vicinity of Orangeville. It is anticipated, however, that the traffic accident rate would remain within the Statewide averages for the types of highways under consideration, although the number of accidents would increase.
The greatest impact of the additional traffic volume would be on the Gordon Creek Road, which has a gravel surface west of its crossing with the Utah Railway, and which already carries a substantial amount of coal-related traffic, where dust would create a traffic hazard and where increased maintenance would be necessary.

A moderate amount of increased maintenance would also be required on $\mathrm{U}-10$ and its feeder routes south of Castle Dale. About 0.9 million gallons of petroleum fuels would be used per year by the increased traffic.

There would be a moderate amount of interference between mine-related and recreational traffic in Huntington and Cottonwood Canyons.

Based on Statewide accident figures, it is expected that additional coal-related traffic might have an additional 25 vehicle accidents per year in traveling some 6 million miles per year.
The increased travel projected under the four alternatives would generate from $\$ 67,500$ to $\$ 144,000$ in increased fuel revenues annually. This revenue would be sufficient to apply only a minimum surface rehabilitation treatment to 1 mile of highway each year where many hundreds of miles are affected

Utah's highways have usually been constructed to accommodate traffic for 20 years after they were built. Nearly all of the highways impacted by the proposed coal development are approaching or have already exceeded the 20 -year design traffic volume. Significant traffic increases would only exacerbate an already serious deficiency in the financial resources required to maintain, let alone improve, the affected highways. With many of the highways in a precarious condition, the increased travel (with a high percentage of trucks) would precipitate the deterioration of many highways. Immediate attention would be required just to retain a tolerable level of service. Without additional financing by a factor somewhere between fifty and one hundred times the previously mentioned revenue, the
impacted roads would be adversely affected. Even then, it is assumed that such amounts would be made available each year over the life of the impact and that the onset of development would occur slowly (UDOT, 1980).

## Energy Requirements and Conservation Potential

It is expected that 1,200 vehicles per day would consume 0.9 million gallons of fuel per year in traveling about 6.2 million vehicle miles.
A net energy analysis estimate was made comparing the amount of energy in the coal produced from the tracts, the energy expended in its production, and the energy in the coal left in the ground after mining. Total energy output for this Alternative is estimated at 1.535 million billion Btu. Energy required for production of the coal is estimated at 52,888 billion Btu. Finally, energy left underground, and considered unrecoverable after mining is estimated at 2.3 million billion Btu.

See Appendix 10 for tract-by-tract energy balance analyses.

## CULTURAL RESOURCES

The avoidance, excavation, and salvage measures would mitigate adverse impacts to cultural resources.

Loss of cultural sites from vandalism, pot-hunting, and arrowhead collecting would result from an expanded population and better access. The extent of such losses is unknown.

## SPECIAL DESIGNATION AREAS

Some of the 17 areas in the Four-County region with potential for wilderness or other special designation could receive increased ORV and other dispersed recreation use because of the coal-related population increase. Resultant littering and vandalism would degrade values for which the areas are being studied. Federal agencies managing the lands (BLM and FS) may be under stress to protect these values with no foreseeable increase in funding for that purpose. However, it is very unlikely that possible degradation would affect the designation of suitability of any area due to the temporary nature of impacts resulting from dispersed recreational use.

## ANNUAL AVERAGE DAILY TRAFFIC INCREASE DUE TO ALTERNATIVE (1990-2000) ALTERNATIVE FOUR

| Point | Location | Al1 | Trucks |
| :---: | :---: | :---: | :---: |
| 1. | U-96 South of U.S. 6 | 0 | 0 |
| 2. | U.S. 6 at Utah-Carbon County Line | 174 | 8 |
| 3. | Gordon Creek Road | 488 | 214 |
| 4. | U.S. 6 North of Price | 584 | 227 |
| 5. | U.S. 6 Between Price and Wellington | 37 | 0 |
| 14. | U-10 South of Price | 374 | 239 |
| 15. | Wellington Loadout Road | 189 | 189 |
| 16. | U-10 North of Huntington | 185 | 50 |
| 17. | U-31 West of Huntington | 246 | 108 |
| 18. | U-10 South of Huntington | 291 | 128 |
| 19. | U-29 West of Orangeville | 459 | 201 |
| 19a. | Castle Valley RR Loadout S of Castle Dale | 0 | 0 |
| 20. | U-10 South of Castle Dale | 77 | 4 |
| 21. | North Horn Mountain Mine | 0 | 0 |
| 22. | U-10 North of Ferron | 77 | 4 |
| 23,25. | U-10 South of Ferron, North of Emery | 0 | 0 |
| 26. | Emery North Mine | 0 | 0 |
| 27. | Emery Central Mine | 0 | 0 |
| 27a. | U-10 South of Emery | 0 | 0 |
| 27 b . | Castle Valley RR Loadout South of Emery | 0 | 0 |
| 28. | U-10 North of I-70 | 0 | 0 |
| 29. | Emery South and Dog Valley Mines | 0 | 0 |
| 33. | I-70 East of Salina | 0 | 0 |
| 37. | U.S. 89 South of Salina | 0 | 0 |
| 47. | New Road, Pleasant Valley to U-31 | 0 | 0 |
| 48. | U-31 East of Fairview | 0 | 0 |

$$
\begin{aligned}
& 2 . \\
& 3 . \\
& 4 . \\
& 5 . \\
& 6 . \\
& 7 . \\
& 8 . \\
& 9 . \\
& 10 . \\
& 11 . \\
& 12 . \\
& 13 . \\
& 14 . \\
& 14 . \\
& 15 . \\
& 16 . \\
& 17 . \\
& 18 . \\
& 19 .
\end{aligned}
$$

|  | 1985 |  | 1987 |  | 1990 |  | 1995 |  | 2000 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Point Location | All | Trucks |
| 1. U-96 S of U.S. 6 | 953 | 171 | 1,075 | 208 | 1,208 | 248 | 1,258 | 250 | 1,308 | 252 |
| 2. U.S. 6 at Utah-Carbon County Line | 8,740 | 1,430 | 9,519 | 1,575 | 10,882 | 1,791 | 12,882 | 2,091 | 14,844 | 2,309 |
| 3. Gordon Creek Road | 339 | 139 | 339 | 139 | 827 | 353 | 827 | 353 | 827 | 353 |
| 4. U.S. 6 N of Price | 17,563 | 3,033 | 18,201 | 3,210 | 19,744 | 3,662 | 21,244 | 3,887 | 22,619 | 4,040 |
| 5. U.S. 6 between Price \& Wellington | 11,156 | 1,806 | 16,394 | 2,698 | 25,416 | 3,959 | 39,629 | 6,102 | 43,593 | 5,958 |
| 6. Soldier Cr Rd at Duchesne-Carbon Co Line | 65 | 3 | 68 | 3 | 75 | 5 | 90 | 4 | 112 | 5 |
| 7. Soldier Cr Rd at Soldier Cr Mine | 145 | 14 | 193 | 17 | 295 | 23 | 333 | 24 | 355 | 25 |
| 8. Deadman Canyon Mine | 322 | 160 | 408 | 191 | 551 | 243 | 794 | 348 | 794 | 348 |
| 9. Dugout Canyon Road | 965 | 80 | 1,242 | 103 | 1,555 | 128 | 1,555 | 128 | 1,555 | 128 |
| 10. Soldier Cr Rd at U.S. 6 | 1,431 | 301 | 1,855 | 314 | 2,424 | 394 | 2,682 | 500 | 2,704 | 501 |
| 11. U.S. 6 W of $\mathrm{U}-123$ (Sunnyside Jct) | 5,356 | 851 | 5,890 | 906 | 6,256 | 986 | 7,056 | 1,106 | 8,140 | 1,206 |
| 12. U-123 E of U.S. 6 | 2,656 | 160 | 2,850 | 168 | 3,056 | 176 | 3,156 | 180 | 3,256 | 184 |
| 13. U.S. 6 near Carbon-Emery County Line | 3,300 | 495 | 3,460 | 520 | 3,700 | 555 | 4,100 | 615 | 4,500 | 675 |
| 14. U-10 S of Price | 5,983 | 1,407 | 6,082 | 1,353 | 6,919 | 1,812 | 7,431 | 1,906 | 7,868 | 1,969 |
| 15. Wellington Loadout Road | 883 | 883 | 970 | 970 | 589 | 589 | 620 | 620 | 620 | 620 |
| 16. $U-10 \mathrm{~N}$ of Huntington | 5,514 | 1,290 | 5,614 | 1,290 | 5,732 | 1,109 | 6,182 | 1,242 | 6,468 | 1,283 |
| 17. U-31 W of Huntington | 1,483 | 185 | 1,697 | 189 | 2,162 | 310 | 2,387 | 324 | 2,523 | 336 |
| 18. U-10 S of Huntington | 3,883 | 979 | 4,024 | 983 | 4,338 | 919 | 4,835 | 966 | 5,217 | 1,019 |
| 19. U-29 w of Orangeville | 2,103 | 559 | 3,190 | 597 | 3,871 | 812 | 4,001 | 817 | 4,019 | 817 |
| 19a. Castle Valley RR Loadout S of Castle Dale | 834 | 834 | 1,500 | 1,500 | 2,101 | 2,101 | 2,101 | 2,101 | 2,101 | 2,101 |
| 20. U-10 S of Castle Dale | 1,250 | 150 | 1,460 | 210 | 1,840 | 296 | 2,393 | 346 | 2,779 | 359 |
| 21. North Horn Mountain Mine | - | - | - | - | - | - | - | - | - | - |
| 22. $\mathrm{U}-10 \mathrm{~N}$ of Ferron | 1,250 | 150 | 1,460 | 210 | 1,840 | 296 | 2,393 | 346 | 2,779 | 359 |
| 23. U-10 S of Ferron, N of Emery | 1,050 | 126 | 1,226 | 181 | 1,491 | 259 | 2,055 | 304 | 2,409 | 314 |
| 26. Emery North Mine | - | - | - | - | - | - | - | - | - | - |
| 27. Emery Central Mine | - | - | - | - | - | - | - | - | - | - |

27. Emery Central Mine
28. U-10 S of Castle Dale U-10 N of Ferron

$$
2-2+8
$$

$$
\frac{n \cdot 1}{\text { fulod }}
$$

TABLE 4-51 (Concluded)

| Point | Location | 1985 |  | 1987 |  | 1990 |  | 1995 |  | 2000 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | All | Trucks |
| 27a. | U-10 S of Emery | 930 | 112 | 1,090 | 131 | 1,481 | 193 | 2,133 | 299 | 2,542 | 348 |
| 27 b . | Castle Valley RR Loadout $S$ of Emery | - | - | - | - | 799 | 799 | 799 | 799 | 799 | 799 |
| 28. | U-10 N of 1-70 | 930 | 112 | 1,090 | 131 | 1,675 | 345 | 1,927 | 403 | 2,366 | 452 |
| 29. | Emery South \& Dog Valley Mines | 70 | 10 | 70 | 10 | 70 | 10 | 70 | 10 | 70 | 10 |
| 30. | U-72 near Sevier-Wayne County Line | 37 | 1 | 40 | 2 | 45 | 2 | 55 | 2 | 66 | 2 |
| 31. | U-72 S of 1-70 | 270 | 184 | 368 | 185 | 442 | 185 | 454 | 185 | 454 | 185 |
| 32. | Spring Canyon Road at 1-70 | 1,085 | 591 | 1,085 | 591 | 949 | 283 | 961 | 348 | 961 | 348 |
| 33. | 1-70 E of Salina | 5,075 | 1,520 | 5,047 | 1,412 | 4,755 | 928 | 4,338 | 993 | 4,462 | 1,030 |
| 34. | U.S. 89 S of Richfield | 5,143 | 771 | 5,538 | 830 | 5,770 | 866 | 5,770 | 866 | 5,599 | 840 |
| 35. | U.S. 89 N of Richfield | 6,800 | 1,020 | 7,738 | 1,161 | 7,835 | 1,175 | 6,800 | 1,020 | 6,121 | 918 |
| 36. | U.S. 89 N of Aurora | 7,835 | 1,175 | 8,711 | 1,307 | 8,800 | 1,320 | 7,835 | 1,175 | 6,645 | 997 |
| 37. | U.S. 89 S of Salina | 3,175 | 1,135 | 2,866 | 828 | 2,683 | 571 | 2,438 | 636 | 2,553 | 621 |
| 38. | U.S. 89 near Sanpete-Sevier County Line | 5,828 | 1,170 | 6,132 | 1,113 | 6,000 | 720 | 6,000 | 720 | 6,390 | 1,041 |
| $39 .$ | U-28 N of Gunnison | 3,848 | 873 | 3,822 | 777 | 3,500 | 420 | 3,500 | 420 | 3,818 | 730 |
| 40. | U.S. 89 N of Gunnison | 1,870 | 75 | 1,874 | 75 | 1,980 | 79 | 2,250 | 90 | 2,570 | 103 |
| 41. | U.S. 89 N of Manti | 2,875 | 115 | 2,518 | 101 | 2,635 | 105 | 3,500 | 140 | 4,973 | 199 |
| 42. | Public Road E of Ephraim | 285 | 11 | 317 | 12 | 380 | 15 | 510 | 20 | 665 | 26 |
| 43. | U.S. 89 N of Ephraim | 2,255 | 90 | 2,277 | 91 | 2,415 | 97 | 2,745 | 110 | 3,127 | 125 |
| 44. | U.S. 89 S of Mt. Pleasant | 1,645 | 66 | 1,574 | 63 | 1,660 | 66 | 2,000 | 80 | 2,475 | 99 |
| 45. | U.S. 89 N of Mt. Pleasant | 3,770 | 151 | 3,859 | 154 | 4,000 | 160 | 4,225 | 169 | 4,432 | 177 |
| 46. | U-31 at Sanpete-Emery County Line | 540 | 22 | 627 | 25 | 725 | 29 | 840 | 34 | 992 | 38 |
| 47. | New Road, Pleasant Valley to U-31 | 1,067 | 43 | 1,216 | 48 | 1,535 | 61 | 2,228 | 89 | 3,075 | 123 |
| $48 .$ | U-31 E of Fairview | 1,607 | 64 | 1,843 | 73 | 2,260 | 90 | 3,068 | 123 | 3,997 | 161 |
| 49. | U.S. 89 N of Fairview | 2,040 | 82 | 2,029 | 81 | 2,150 | 86 | 2,485 | 100 | 2,898 | 117 |

## VISUAL RESOURCES

Impacts to visual resources in the Gordon Creek, Meetinghouse, and Cottonwood tracts would be the same as identified in Alternative One. In summary, the disturbance and facilities associated with underground mining of the three tracts, where located both on and off the tracts, would not be highly visible nor conflict with VRM objectives. Reclamation would be effective in reestablishing the present scenic quality of the three tracts upon completion of the mining operations.

The average visitor would probably note little change in the region's overall scenic character from development of the tracts.

## RECREATION

By the year 2000, mining activity and mining-related population growth would increase the local demand (users originating from within the FourCounty region) for both dispersed and developed recreation opportunities by approximately 4 percent from 1980 figures. Tables $4-52$ and 4-53 show the anticipated increases in demand for hunting, fishing, and ORV activity respectively, during the life of the mining operations. Increased demand for dispersed activities, as well as increased use of developed recreation sites and urban facilities, would result in impacts similar to those identified for Alternative One, but less in extent and intensity. The extent cannot be quantified.

In summary, the additional competition for fish and game would lead to less hunter and fisherman success or restricted harvest. Increased ORV use would increase ORV conflicts with other recreational uses. Overuse of developed campgrounds, picnic areas, playfields, swimming pools, and golf courses would result in continued deterioration of existing facilities, user dissatisfaction, and additional recreation pressures on undeveloped areas. Federal, State and local governments would be under stress with limited funds to provide recreation facilities to meet minimum standards recommended by the Utah Outdoor Recreation Agency (SCORP, 1978).

Development of the tracts and of homesites would displace dispersed recreational use from as much as 225 acres in 1987, 271 acres in 1990, 288 acres in 1995, and 297 acres in the year 2000. Loss of recreational opportunities would be minimal. Impacts to recreational traffic on the Huntington Canyon road would be similar to those identified in Alternative One, but less in extent and intensity (i.e., increase in danger, stress, and visitor dissatisfaction).

## UNAVOIDABLE ADVERSE IMPACTS

Local and short-term degradation of air quality would occur near access roads associated with the proposed mines. Increased emission of all NAAQS pollutants would occur as a result of the increased population in the region.

Soil, vegetation, and wildlife productivity on 297 acres would be lost for the life of the mines. Approximately 92.2 million tons of coal would not be recovered using current mining techniques. Changes in aquifers and points of surface water discharge due to potential subsidence on 7,744 acres could not be avoided. Consumptive use of water would increase 312 acre-feet annually, and sewage effluent discharge would increase 288 acre-feet. The increased salt load in tributaries of the Colorado River would be 117 tons annually. The conversion of cropland for urban use and the retirement of irrigated lands to provide water for mining and community use would result in loss of crop production on 87 acres. Surface disturbance associated with mining would decrease the deer population by 22 deer annually and road construction affecting riparian habitat would displace four moose. Increased traffic would cause deer highway mortalities to increase by 22 deer annually.

The unavoidable adverse socioeconomic impacts of this alternative would include: (1) a worsening of the local inflation rate, which would be particularly detrimental to persons living on low or fixed incomes; (2) addition of 949 new jobs and competition for labor, with the relatively high wages paid in mining and construction making it difficult for other sectors to hire and retain qualified employees; (3) increased capital and operating layouts by local governments; and (4) an increased population of 2,282 and some loss of small-town atmosphere and cultural homogeneity in the affected communities, particularly Castle Dale, Ferron, and Orangeville.

Moderate increases in traffic (100 to 200 vpd) along U-10 from Castle Dale northward, with a somewhat greater increase on the Gordon Creek road would be unavoidable. Vehicle accidents would increase by 25 accidents annually.
Vandalism and illegal artifact collecting would increase as a result of the increased population in the area. Recreation demand would increase by 4 percent.
TABLE $4-52$
PROUECTED INCREASE IN LOCAL HNTTER AND FISHEBMWN DEMAD
ALTERNATIVE FOR

| Year | Projected Annual Increase In Numbers |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Coal-Related | Deer | Elk | Upland Game/Waterfowl Hunters | Fishermen | Inreased Demand For Fish | Overall Percent Increase from 1980 |
|  | Population | Hunters | Hunters | fowl Hunters | 447 | 9,700 | 1.6 |
| 1987 | 993 | 174 | 17 | 154 | 815 | 17,686 | 2.9 |
| 1990 | 1,812 | 317 | 31 | 181 | 956 | 20,745 | 3.3 |
| 1995 | 2,124 | 372 | 36 | 194 | 1,027 | 22,286 | 3.6 |
| 2000 | 2,282 | 399 | 39 | Lem lutah's |  |  | ishes would remain |
| Note: | Projections were made assuming that the percentage of Utan's populationty area. Approximately 17.5 percent of Utah's percent of Utah's population is under 12 and 73 percent is over 12 in age (Thayne and Hudson, 1978). of Utah's population under the age of 12 and 42 percent of the population over the age of 12 fish. Approximately 27 population hunt deer, 1.7 percent hunt elk, and 8.5 percent hunt upland gane the age of 12 fish. Approximately 27 |  |  |  |  |  |  |

## TABLE 4-53

PROUECTED INCREASE IN LOCAL OFF-ROAD VEHICLE DEMMDD WITHIN THE FOUR-COUNTY REGION
ALTERNATIVE FOUR

|  | Projected CoalRelated Population Increase | Project Increase in Pickup and Four-Wheel Drive Nunbers | Projected Increase in Motorcycle Nunbers | Overall Percent crease fra 1980 |
| :---: | :---: | :---: | :---: | :---: |
| Year | 993 | 248 | ${ }^{66}$ | 1.6 2.9 |
| 1990 | 1,812 | 453 | 123 | 3.3 |
| 1995 | 2,124 | 531 | 145 | 3.6 |
| 2000 |  | 51 |  |  |

Note: Project ions were made assuming that the percentage of would remain in the Four-County region that owns the same ( 6.8 percent of the populationcurrens four-wheel drive and 25 percent of the populat (Scorp, 1978)
vehicles or light pickups) (Scorp, 1978)

## THE RELATIONSHIP BETWEEN THE SHORT-TERM USE OF MAN'S ENVIRONMENT AND THE MAINTENANCE AND ENHANCEMENT OF LONG-TERM PRODUCTIVITY

Housing development associated with coal production in the region would permanently occupy 127 acres resulting in a long-term loss of soil, vegetation, and wildlife productivity on those acres. Mining coal at a 40 -percent recovery rate would render 92.2 million tons of coal unrecoverable by present technology. Changes in aquifers or points of surface water discharge would cause a long-term change in local surface water distribution and ground water storage potential. Increased salt loading (117 tons annually) and consumptive use of water (288 acre-feet annually), attributable to the increased population, would continue into the long term.

Implementation of this Alternative would have a positive long-term impact on productivity through: (1) an increase in the size of the labor force, (2) infrastructure improvements useful for commercial and industrial development, and (3) increased income and buying power which would contribute to the development of a larger and more diversified trade and services sector. This Alternative would also have one potential negative impact on productivity, i.e., an increased vulnerability to economic disruptions caused by fluctuations in the coal industry.

## IRRETRIEVABLE OR IRREVERSIBLE COMMITMENT OF RESOURCES

Air quality degradation resulting from increased population would be irreversible. The loss of soil, vegetation, and wildlife productivity on 297 acres for the life of the mines would be irretrievable. On lands committed to urbanization and not reclaimed (127 acres), the loss would be irreversible. Wildlife lost to disturbance of habitat on highway mortality would be irretrievable.

The 61.5 million tons of coal that would be mined would be irretrievable, and the 92.2 million tons of coal left in the ground would be unrecoverable by present technology. Water used for mining and community use ( 312 acre-feet annually) would be irretrievable, and any change in aquifers or surface distribution due to subsidence would be irreversible. The demand for 288 acre-feet of culinary water annually and the increased salt loading (117 tons annually) associated with the increased population would be irreversible. The 64 acres of irrigated
croplands converted to community use would be irreversibly lost and lost crop production on those lands plus 23 acres of land retired from change of water use would be irretrievable.

The growth in population of 2,282 persons expected to result from this level of coal development would be irreversible except at considerable human and economic cost. The commitment of capital, physical resources and labor to build 691 housing units and infrastructure required to support the additional population, commerce, and industry would be an irretrievable impact.

Haulage of coal to existing loadouts, commuting from local communities, and services to the mines from Price would result in the consumption of about 0.9 million gallons of petroleum fuels per year. Lives and money lost because of increased traffic accidents would be irretrievable. Artifacts lost to vandalism or illegal collecting would be irretrievable. Loss of context of sites through salvage or disturbance would be irreversible.

## Alternative Five

## INTRODUCTION

Alternative Five would involve no leasing or production of coal from any of the 11 tracts described in this statement. Development of the Hollberg PRLA, as analyzed in Alternative One, could proceed without competitive coal leasing, and is considered part of this Alternative. Present and projected coal production would continue thereby resulting in an annual production rate of 24 million tons per year by 1990. This production level was analyzed in the Final Environmental Statement, Development of Coal Resources in Central Utah (DOI, GS, 1979). This analysis is also used as the baseline for the projection of impacts from additional coal leasing in the area as proposed in the four previous alternatives. The following is a summary of the analysis as contained in the previously mentioned final EIS. For a more detailed discussion of impacts, refer to that EIS.

## AIR QUALITY

The projected air quality impacts from existing mines, future mining developments not associated with leasing the tracts considered in this EIS, towns, roadways, and major point sources were estimated. The predicted annual TSP concentrations

## ENVIRONMENTAL CONSEQUENCES

for the year 2000 are shown in Figure 4-2. The interaction of emissions from clustered mines and haul roads is expected to generate TSP levels within several kilometers of the mines and roads which may exceed the NAAQS. This situation is expected to occur near the cluster of mines west of Helper, northwest of Castle Dale and Orangeville, and in the southwest corner of Carbon County. Annual average concentrations near the mines and haul roads in these areas are expected to be near 100 micrograms per cubic meter including a background level of 38 micrograms per cubic meter (Radian, 1981). These high values of TSP concentrations, exceeding the NAAQS, were predicted assuming only watering to control dust from unpaved haul and access roads which are the major contributors to TSP levels. The Utah Air Quality Bureau has published draft fugitive dust regulations that, when promulgated and enforced, may suppress TSP levels such that the NAAQS would not be violated.

Population and transportation growth are expected to cause TSP concentrations to increase 15 mi crograms per cubic meter above background levels near Price and Helper and 5 micrograms per cubic meter near Castle Dale and Orangeville. Annual average nitrogen dioxide concentrations are presented in Figure 4-5 and sulfur dioxide levels are shown in Figure 4-6. Rural levels of nitrogen dioxide and sulfur dioxide are projected to be below the NAAQS, while within several hundred meters of the towns the concentrations of nitrogen dioxide and sulfur dioxide would be higher, it is expected that the NAAQS would still be met (Radian 1981).

## SOILS

Soils would be temporarily disturbed on 2,924 acres as a result of mining and related activities, including community development, and about 650 acres, half of the community development, may lose productivity permanently because of occupation by structures or hard surface. Enforcement of existing regulations would preclude significant adverse impacts pertaining to soil erosion and reduction in soil productivity on reclaimed areas. Reclamation of soils disturbed by off-road recreation vehicles would not be the responsibility of the mining companies so the disturbance would constitute an adverse environmental impact where ORVs are used indiscriminantly. After reclamation, many of the sites that were disturbed for mining would have erosion rates less than the present due to slope modification, erosion control structures, and revegetation.

## WATER RESOURCES

About 5,900 acre-feet of water probably would be diverted over the long term from agricultural to public water supply. The additional 945 acre-feet per year required for mining would be a short-term commitment but may be long term if the level of mining remains as high or higher than the projected level. At this level of use, the quantity involved would not be a significant adverse impact. Mining operations in or below saturated beds would cause local water-level declines and change the magnitude and direction of local ground-water flow patterns. The amount of ground water and saturated beds affected, however, would be small. The area affected by mining would be about one-half of 1 percent of the region. As the deeper saturated beds would not be affected, the mines would impact an insignificant percentage of the total saturated strata. Water levels in some places would recover within a few years after mining ceases; in other places, such as those where water is contained in thin saturated sandstone beds, water levels might never recover. The flow of some springs might decrease.

Sewage effluent returned to the water system from the increased population would add approximately 1,392 tons of salt. Even with this additional loading, the water should still be usable for some downstream irrigation.

## GEOLOGY, TOPOGRAPHY, PALEONTOLOGY, MINERAL RESOURCES

Some modifications of the land surface and drainage patterns within the central Utah coal region would be unavoidable. Following mining and reclamation, traces of some excavations, wasterock piles, and sludge and settling ponds would remain, but would become less noticeable with each year because of reclamation. During mining, and for a short but undeterminable time (probably 3 to 5 years) afterward, some of the ground surface overlaying the mines could subside as much as 10 feet, and as much as 39,000 acres could be subject to potential subsidence. Federal mining regulations provide for monitoring subsidence and limiting its effect in sensitive areas.

Subsidence, where it does occur, would be accompanied by shallow to deep open fractures, sinkholes, and compressional upbucklings of surface rocks. The cracks would partially fill and heal with soil over time.

Mining-induced tremors, with magnitude as great as 4.5 would increase with mining activity. The tremors would be hazardous to mine workings and ancillary facilities, but damage is not expected to be significant to susceptible structures beyond individual mine areas. Underground hazards to miners, including cave-ins, bumps, squeezes, flooding, and dangerous concentrations of methane, are in part unavoidable. About 4.7 fatalities and 317 nonfatal accidents would be expected per year owing to coal mining at proposed new mines.
About 382 million tons of coal would be left in place and may not be recoverable. Uncontrolled, and uncontrollable coal-bed fires are in part unavoidable. This impact is not quantifiable nor predictable and significance cannot, therefore, be determined. Unavoidable destruction, disturbance, and removal of paleontological resources, both exposed and unexposed, would occur. The potential significance of this impact cannot be meaningfully assessed. A beneficial impact of development would be the exposure of fossils for scientific collection and examination if a paleontologist is present to do so.

## VEGETATION

The loss of vegetation that would result from development of coal mines and associated housing necessary to produce 24 million tons per year by 1990 is shown by vegetation type and percent in Table 4-54.
Additional housing that would be needed by the year 2000 would add 192 acres to the total disturbance. Thus, the total loss of vegetation that would occur in 2000 would be 3,116 acres. Of this amount, 1,600 acres would be reclaimed following completion of mining. The 1,516 acres that would be occupied for housing would be committed to urbanization, and vegetation production on these acres would be permanently lost.

No unique or rare vegetation types or plant associations would be affected by coal development. In terms of total vegetation resources in the region, the loss of vegetation would not be significant. Successful reclamation of 1,600 acres would increase vegetation production on those acres by about 40 percent.
No threatened or endangered plant species in the region would be directly impacted by proposed coal developments. Inadvertent impacts (loss of individual plants) could result from housing development, off-road vehicle activities, or unlawful collecting of these species.

## WILDLIFE

The temporary loss of 1,624 acres of wildlife habitat resulting from construction and operation of proposed coal mines and ancillary facilities would occur. Permanent loss of about 1,300 acres (1,516 acres by the year 2000) of wildlife habitat that would be occupied by houses and community facilities is unavoidable. Loss of wildlife would result from loss of habitat and increased human disturbance. Elk habitat on 353 of acres of land occupied by surface facilities would be lost, and elk use on about 9,400 acres would be reduced due to human disturbance. Deer habitat on 1,404 acres would be lost due to construction of surface facilities and deer use on 7,256 acres would be reduced because of human disturbance. Carrying capacity for 260 deer would be lost annually. Any loss of the endangered bald eagle or peregrine falcon or other birds of national interest is not quantifiable but would be significant. Direct impacts on wildlife would include deaths resulting from construction and operation of the proposed mines, highway mortality, illegal killing, and deaths from wire strikes. Deer highway mortalities would increase by 95 deer annually because of increased traffic in the region. Long-term alteration of migration routes and use patterns would be unavoidable. Impacts to fisheries would be slight under reasonable enforcement of existing laws and regulations. However, accidental releases of materials toxic to fish and other aquatic organisms might occur.

## LAND USE

A total of 1,300 acres $(1,516$ acres by the year 2000) surrounding or within existing communities would be converted from existing uses to housing or other higher community uses. About 800 acres of agricultural land, less than 0.3 percent of the agricultural land in the seven counties in the region might be converted to community use or retired from production to supply community water needs. The loss of grazing capacity would be about 4,170 AUMs over the life of the proposed mines and 11,700 AUMs per year due to community development.

## SOCIOECONOMICS

The major impacts at the projected level would result from a rapid regional population increase from 55,000 in 1975 to 70,000 to 75,000 in 1990. Population in Emery County would almost double

TABLE 4-54
TOTAL CUMULATIVE IMPACTS ON VEGETATION ALTERNATIVE FIVE

| Vegetation Types | Area Impacted 1990a Acres Percent | Total Impact $2000^{\text {D }}$ Acres |
| :---: | :---: | :---: |
| Agricultural | 65022 | 746 |
| Riparian | 13 | 13 |
| Grassl and | 2208 | 220 |
| Sagebrush-Grass | 1,178 - 40 | 1,226 |
| Pinyon-Juniper Woodland | 70024 | 748 |
| Mountain Meadow | 20 | 20 |
| Aspen | 58 2 | 58 |
| Conifer Aspen | 85 | 85 |
| Total | 2,924 100 | 3,116 |
| Source: Final Environmental Statement Central Utah Coal (GS, 1979) |  |  |
| a Projected impacts that would result from mining coal at the rate of 24 Million tons per year by 1990 |  |  |
| housing. About 192 acres would be required to fill this need. come from the following vegetation types: Agricultural-96 acres, |  |  |

and that in Carbon County would increase by 50 percent. Sevier, Wayne, Piute, and Sanpete would have about 10 percent growth. Housing needs would parallel the population growth. Social impact would be most adverse to those 65 and older, about 10 percent of the regional population. This segment typically is supported by fixed incomes, and not likely to take advantage of expanded job opportunities, so they will be adversely affected by the rising prices anticipated to accrue from strong economic expansion. Competition for labor would adversely affect existing businesses; however, this impact would be lessened by the additional revenues that would accrue from economic expansion. The net effect of expanded coal mining on related occupations would be 182 direct supporting jobs for every 1,000 jobs in coal mining. The mining workforce in the region would increase to 7,430 by the year 1990.

Rapid growth will place temporary financial pressure on local governments and the quality and quantity of local services such as water supply, sewage, and solid waste disposal, health care, social services, police and fire protection, recreation facilities, and education. In addition, lasting cultural changes must be expected in Emery and perhaps Sevier and Wayne Counties.

## TRANSPORTATION

More intensive use of transportation facilities is a necessary part of resource development. The projected annual average daily traffic on highways in the region is shown in Table 4-55. Taking into consideration the historical trends in western coal development, the addition of significant volumes of highway traffic would result in accelerated deterioration of the regional highway system and increased levels of accidents, fuel consumption, air pollution, noise, and congestion. The construction or reconstruction of 49 miles of roads would be required to provide mine access. Upgrading of the major highway network to meet increased traffic levels in general, especially the expansion of State road-10, may require additional rights-of-way. The degree to which this action would result in increased rail operations with associated adverse impacts is dependent on the, as yet, undecided market of the coal produced.

## CULTURAL RESOURCES

Salvage excavation of threatened archaeologic or historic sites may be required. Data would be preserved, but sites or portions of sites would be lost.

Some loss would occur for buried sites encountered during dirtmoving operations even if they were recognized early. Changes in setting of sites, either by the introduction of project activities and facilities or by moving certain things to avoid impacts, would degrade archaeologic and historic values. Vandalism impacts would occur due to an increased population and easier accessibility.

Positive impacts would also result from coal development. Valuable information has been gathered and other surveys could be necessary prior to any disturbance. The additional surveys would result in the accumulation of data that would otherwise not have been available until the future, or which may have been lost. Any salvage excavation that is required will result in the preservation of data and material (including some that might otherwise be lost to vandalism), although in situ value is lost.

## SPECIAL DESIGNATION AREAS

The proposed new coal mines and tranportation routes do not intrude directly onto wilderness or roadless areas of the National Forest System or National Parks. A complete analysis of direct impacts on roadless areas on public lands is not possible because of: (1) the conceptual nature of much of the utility and transportation systems, and (2) the incomplete status of a roadless inventory program for the purpose of formulating guidelines for identifying the size, location, and characteristics of areas having roadless and wilderness values. All existing and potential roadless and wilderness areas would be subject, however, to the indirect impact of more intensive use by the increased population at the projected level of coal development. This usage would tend to degrade the natural characteristics of these areas. On a regional basis, the impact is not expected to be significant.

## VISUAL RESOURCES

More urbanization would occur in existing communities; improved and extended access roads and secondary ancillary facilities would be needed. In some cases the visual character of smaller, outlying communities would be changed from rural-ranching to one of more urbanization. Some secondary visual resource degradation would be caused by noise and dust from increased industrial activities, and by indiscriminant increases in ORV use, littering, and vandalism. In addition, road construction and utility line construction would introduce strong axis lines which would change the natural landscape character. To some individuals, this would
TABLE 4-55
ANNUAL AVERAGE DAILY TRAFFIC PROJECTED FOR SELECTED YEARS alternative five

|  | 1985 |  | 1987 |  | 1990 |  | 1995 |  | 2000 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Point Location | All | Trucks | All | Trucks | All | Trucks | All | Trucks | All | Truck |
| 1. U-96 S of U.S. 6 | 953 | 171 | 1,075 | 208 | 1,208 | 248 | 1,258 | 250 | 1,308 | 252 |
| 2. U.S. 6 at Utah-Carbon County Line | 8,740 | 1,430 | 9,519 | 1,575 | 10,708 | 1,783 | 12,708 | 2,083 | 14,670 | 2,301 |
| 3. Gordon Creek Road | 339 | 139 | 339 | 139 | 339 | 139 | 339 | 139 | 339 | 135 |
| 4. U.S. 6 N of Price | 17,563 | 3,033 | 18,201 | 3,210 | 19,160 | 3,435 | 20,660 | 3,660 | 22,035 | 3,81 |
| 5. U.S. 5 between Price \& Wellington | 11,156 | 1,806 | 16,394 | 2,698 | 25,379 | 3,959 | 39,592 | 6,102 | 43,556 | 5,958 |
| 6. Soldier Cr Rd at Duchesne-Carbon Co Line | 65 | 3 | 68 | 3 | 75 | 5 | 90 | 4 | 112 |  |
| 7. Soldier Cr Rd at Soldier Cr Mine | 145 | 14 | 193 | 17 | 295 | 23 | 333 | 24 | 355 | 2 |
| 8. Deadman Canyon Mine | 322 | 160 | 408 | 191 | 551 | 243 | 794 | 348 | 794 | 34 |
| 9. Dugout Canyon Road | 965 | 80 | 1,242 | 103 | 1,555 | 128 | 1,555 | 128 | 1,555 | 12 |
| 10. Soldier Cr Rd at U.S. 6 | 1,431 | 301 | 1,855 | 314 | 2,424 | 394 | 2,682 | 500 | 2,704 | 50 |
| 11. U.S. 6 W of U-123 (Sunnyside Jct) | 5,356 | 851 | 5,890 | 906 | 6,256 | 986 | 7,056 | 1,106 | 8,140 | 1,20 |
| 12. U-123 E of U.S. 6 | 2,656 | 160 | 2,850 | 168 | 3,056 | 176 | 3,156 | 180 | 3,256 | 18 |
| 13. U.S. 6 near Carbon-Emery County Line | 3,300 | 495 | 3,460 | 520 | 3,700 | 555 | 4,100 | 615 | 4,500 | 67 |
| 14. U-10 S of Price | 5,983 | 1,407 | 6,082 | 1,353 | 6,545 | 1,573 | 7,057 | 1,667 | 7,494 | 1,73 |
| 15. Wellington Loadout Road | 883 | 883 | 970 | 970 | 400 | 400 | 431 | 431 | 431 | 43 |
| 16. $\mathrm{U}-10 \mathrm{~N}$ of Huntington | 5,514 | 1,290 | 5,614 | 1,290 | 5,547 | 1,059 | 5,997 | 1,192 | 6,283 | 1,23 |
| 17. U-31 W of Huntington | 1,483 | 185 | 1,697 | 189 | 1,916 | 202 | 2,141 | 216 | 2,277 | 22 |
| 18. U-10 S of Huntington | 3,883 | 979 | 4,024 | 983 | 4,047 | 791 | 4,544 | 838 | 4,926 | 89 |
| 19. U-29 w of Orangeville | 2,103 | 559 | 3,190 | 597 | 3,412 | 611 | 3,542 | 616 | 3,560 | 61 |
| 19a. Castle Valley RR Loadout S of Castle Dale | 834 | 834 | 1,500 | 1,500 | 2,101 | 2,101 | 2,101 | 2,101 | 2,101 | 2,10 |
| 20. U-10 S of Castle Dale | 1,250 | 150 | 1,460 | 210 | 1,763 | 292 | 2,316 | 342 | 2,702 | 35 |
| 21. North Horn Mountain Mine | - | - | - | - | - | - | - | - | - |  |
| 22. U-10 N of Ferron | 1,250 | 150 | 1,460 | 210 | 1,763 | 292 | 2,316 | 342 | 2,702 | 35 |
| 23. U-10 S of Ferron, $N$ of Emery | 1,050 | 126 | 1,226 | 181 | 1,491 | 259 | 2,055 | 304 | 2,409 | 31 |
| 26. Emery North Mine | - | - | - | - | - | - | - | - | - |  |
| 27. Emery Central Mine | - | - | - | - | - | - | - | - | - |  |

TABLE 4-55 (Concluded)

| Point | Location | 1985 |  | 1987 |  | 1990 |  | 1995 |  | 2000 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | All | Trucks | All | Trucks | All | Trucks | All | Trucks | All | Truck |
| 27a. | U-10 S of Emery | 930 | 112 | 1,090 | 131 | 3,028 | 1,698 | 2,133 | 299 | 2,542 | 3 |
| 27b. | Castle Valley RR Loadout S of Emery | - | - | - | - | 799 | 799 | 799 | 799 | 799 | 7 |
| 28. | U-10 N of 1-70 | 930 | 112 | 1,090 | 131 | 1,675 | 345 | 1,927 | 403 | 2,366 |  |
| 29. | Emery South \& Dog Valley Mines | 70 | 10 | 70 | 10 | 70 | 10 | 70 | 10 | 70 |  |
| 30. | U-72 near Sevier-Wayne County Line | 37 | 1 | 40 | 2 | 45 | 2 | 55 | 2 | 66 |  |
| 31. | U-72 S of 1-70 | 270 | 184 | 368 | 185 | 442 | 185 | 454 | 185 | 454 | 1 |
| 32. | Spring Canyon Road at 1-70 | 1,085 | 591 | 1,085 | 591 | 949 | 283 | 961 | 348 | 961 | 3 |
| 33. | 1-70 E of Salina | 5,075 | 1,520 | 5,047 | 1,412 | 4,755 | 928 | 4,338 | 993 | 4,462 | 1,03 |
| 34. | U.S. 89 S of Richfield | 5,143 | 771 | 5,538 | 830 | 5,770 | 866 | 5,770 | 866 | 5,599 | 8 |
| 35. | U.S. 89 N of Richfleld | 6,800 | 1,020 | 7,738 | 1,161 | 7,835 | 1,175 | 6,800 | 1,020 | 6,121 |  |
| 36. | U.S. 89 N of Aurora | 7,835 | 1,175 | 8,711 | 1,307 | 8,800 | 1,320 | 7,835 | 1,175 | 6,645 |  |
| 37. | U.S. 89 S of Salina | 3,175 | 1,135 | 2,866 | 828 | 2,683 | 571 | 2,438 | 636 | 2,553 | 6 |
| 38. | U.S. 89 near Sanpete-Sevier County Line | 5,828 | 1,170 | 6,132 | 1,113 | 6,000 | 720 | 6,000 | 720 | 6,390 | 1,04 |
| 39. | U-28 N of Gunnison | 3,848 | 873 | 3,822 | 777 | 3,500 | 420 | 3,500 | 420 | 3,818 |  |
| 40. | U.S. 89 N of Gunnison | 1,870 | 75 | 1,874 | 75 | 1,980 | 79 | 2,250 | 90 | 2,570 |  |
| 41. | U.S. 89 N of Manti | 2,875 | 115 | 2,518 | 101 | 2,635 | 105 | 3,500 | 140 | 4,973 |  |
| 42. | Public Road E of Ephraim | 285 | 11 | 317 | 12 | 380 | 15 | 510 | 20 | 665 |  |
| 43. | U.S. 89 N of Ephraim | 2,255 | 90 | 2,277 | 91 | 2,415 | 97 | 2,745 | 110 | 3,127 |  |
| 44. | U.S. 89 S of Mt. Pleasant | 1,645 | 66 | 1,574 | 63 | 1,660 | 66 | 2,000 | 80 | 2,475 |  |
| 45. | U.S. 89 N of Mt. Pleasant | 3,770 | $15 ?$ | 3,859 | 154 | 4,000 | 160 | 4,225 | 169 | 4,432 |  |
| 46. | U-31 at Sanpete-Emery County Line | 540 | 22 | 627 | 25 | 725 | 29 | 840 | 34 | 992 |  |
| 47. | New Road, Pleasant Valley to U-31 | 1,067 | 43 | 1,216 | 48 | 1,535 | 61 | 2,228 | 89 | 3,075 |  |
| 48. | U-31 E of Fairview | 1,607 | 64 | 1,843 | 73 | 2,260 | 90 | 3,068 | 123 | 3,997 |  |
| 49. | U.S. 89 N of Fairview | 2,040 | 82 | 2,029 | 81 | 2,150 | 86 | 2,485 | 100 | 2,898 |  |

Note: Castle Valley Rallroad assumed built to Emery by 1990
detract from the enjoyment of viewing the landscape; to others, new roads would provide additional access to scenic enjoyment.

## RECREATION

Recreation resource use would increase about 10 percent as a result of increases in population. Increases in traffic and use of recreation sites would reduce recreational enjoyment, and over-use of natural and man-made recreational resources could result in deterioration of the resources and reduced opportunity for recreational pursuits. Asthetic values would decrease locally because of plant sites, ancillary facilities, and coal haul systems and generally because of increased vandalism, littering, and ORV use.

## PROPOSED UTAH POWER AND LIGHT EXCHANGE

## Introduction

Two alternatives have been identified. Alternative One considers consummation of the exchange in full. However, it must be recognized that the exchange would be based on equal coal values which have not yet been determined. Therefore, the land amounts subject to exchange could vary. Alternative Two considers No Action, in which case it has been assumed that the PRLAs on the Kaiparowits Plateau would result in Federal coal leases that would be developed in accordance with existing laws and regulations. A general analysis of impacts is presented because UP\&L has not developed specific information on developing the PRLAs. An analysis of coal development on the Kaiparowits Plateau, including the PRLAs, was recently completed by Environmental Research and Technology, Inc. (ERT, 1980). The reader is referred to this document for further information since it was used as a primary source of data for this analysis. The terms PRLA and Kaiparowits Plateau are used interchangeably throughout this analysis.

## Alternative One (Full Exchange of the PRLAs)

If UP\&L exchanged its PRLAs for coal lands on the Wasatch Plateau, environmental and socioeconomic impacts associated with development of the PRLAs would not occur. The environmental and socioeconomic setting would remain as described in Chapter 3. Opportunities for growth and development in an economically depressed area would be foregone. The economic trend, especially in Escalante would continue downward. The four communities of Tropic, Henrieville, Cannonville, and Escalante would continue to experience a decline in their combined population from 1,459 in 1978 to 1,095 in 1987. Thereafter an upward trend would again resume reaching 1,357 in 2000.

Infrastructural and social strains resulting from rapid growth would not occur. However, the longterm demographic and economic stagnation in the area would continue. The size of the local population would continue to dwindle and the average age of the population would increase as the younger residents leave the area in search of better social and economic opportunities elsewhere. Personal incomes would continue to be low, almost 15 percent below the Statewide average. Local business volume would remain correspondingly low.

An increase in housing vacancies would be expected. This in turn would probably result in a decline of home values and rents. Local elementary and secondary schools would continue to have substantial overcapacity in room and facilities.

Expenditures for establishment of local police departments, acquisition of additional firefighting equipment, expansion of water supplies, and construction of sewage treatment facilities would not be necessary.

Implementation of the UP\&L exchange would allow residents of Cannonville, Escalante, Henrieville, and Tropic to avoid the erosion of their smalltown, rural way of life and community homogeneity which would result from large scale population growth associated with development of the Kaiparowits PRLAs. On the other hand, residents would lose the potential advantages of development such as job opportunities, better public services and facilities, entertainment, and cultural opportunities.

The environmental and socioeconomic impacts that would result from development of the selected lands on the Wasatch Plateau have been analyzed in Alternative Three (Coal Leasing Program) of this statement.

## ENVIRONMENTAL CONSEQUENCES

# Alternative Two (No Action on Exchange and Development of the PRLAs on the Kaiparowits Plateau by UP\&L) 

## AIR QUALITY

Direct air quality effects arising from mining and transportation would be from increased fugitive dust levels and air quality changes due to increased population. In the relatively undeveloped southern Utah region, the major pollutant would be suspended particulate matter with current and projected impacts from gaseous pollutants a minor contributor. The Kaiparowits Coal Development and Transportation Study (ERT 1980) considered a mid-level production of 15 million tons per year from the North Kaiparowits Area (which would include the UP\&L PRLA area) and a high level production of 30 million tons per year from North Kaiparowits. Unmitigated TSP mine emissions would exceed Class I increments and the NAAQS locally. Eighty-eight percent mitigation (including chemical stabilization of haul roads, enclosure of coal storage and handling operations etc.) would be necessary to meet air quality standards at the North Kaiparowits area. With 88 -percent mitigation, visibility could still be affected. Visual range, for example, viewing from Bryce Canyon toward Navajo Mountain would be reduced approximately 12 percent (from the present 124 miles to 110 miles).

No studies have been performed specifically for the PRLA; therefore it is uncertain what contribution the PRLA would have to this total estimated impact. However it would be equal to or less than that indicated. More precise quantification of potential air quality impacts requires air quality modeling based on specific mining and reclamation plans. Lease stipulations for BACT would be identified by BLM to ensure compliance with Federal and State air quality regulations. Air quality control strategies in addition to reduction of direct mining operation emissions would require enforcement measures and cooperation among Federal, State, local agencies, and industry.

## SOILS

The construction of mine facilities (buildings, haul roads, storage sites, sediment ponds, portals, powerlines and telephone lines) and housing and support facilities as a result of mine development, would cumulatively disturb 951 acres by the end of mine life. The disturbance of 600 acres would be of
a temporary nature since the area would be reclaimed. The loss of productivity on 351 acres would be permanent due to the construction of housing and support facilities for future population increases in the region.

Soil erosion would occur where surface disturbing activities occur. Soil loss through erosion is dependent on the soil physical characteristics, degree of slope, length of slope, climatic conditions during soil exposure, and the effectiveness of erosion control measures. Because these variables are so great, soil loss estimates can be quite variable. No attempt was made to quantify soil losses in the Kaiparowits area, because detailed soils data are not available. Stockpiled topsoil would be subjected to wind and water erosion, causing additional soil losses.

Other impacts to soil as a result of removal, handling, and stockpiling include the loss of fertility by the introduction of inferior subsoils and the biological death of soil micro-organisms (Environmental Protection Agency, 1974). The overall effect would be a loss in soil productivity for the period from disturbance until reclamation was successful.

## WATER RESOURCES

## Surface Water

Mining of the Garfield deposit would have little effect on the surface water resources either onsite or in adjacent areas. Impacts include (1) reduction in stream flow of the Escalante and Paria Rivers resulting from increased consumptive use in the towns of Escalante, Cannonville, Tropic, and Henrieville; (2) potential for increased salinity and pollution of the Paria and Escalante Rivers resulting from mine related population increase and (3) effects of land subsidence on surface drainage.

Pumping from deep wells in the Navajo Sandstone on the lease would have little effect on the base flow of perennial streams in the area for many years because of thick beds of shale, siltstone, and other material of low permeability overlaying the Navajo Sandstone. However, the cone of depression caused by pumping would deepen and expand until sufficient natural discharge is intercepted to sustain the pumping.

[^4]
## ENVIRONMENTAL CONSEQUENCES

to contribute to stream flow except during periods of flash flooding.

The estimated increase of consumptive use attributable to mining would reach maximum 10 years after mine operation began. Assuming that the average use of water is 225 gallons a day per person, water requirements resulting from mine-related population growth in Escalante Valley would increase by about 510 acre-feet per year by the year 2000 and about 924 acre-feet in the Paria River basin. Assuming that 112.5 gallons per day per person are required for sanitary purposes and returned as effluent, the resulting consumptive use would reduce current yield on watersheds by less than I percent or about 255 acre-feet per year in the Escalante Valley and 462 acre-feet per year in the Paria River Valley.

The extent to which ground water discharges from septic tanks to the adjacent stream channels would ultimately determine the extent of pollution to the streams resulting from the increased population. By assuming a worst-case condition of all sewage effluent entering the stream, a maximum impact to water quality can be calculated. Assuming that 112.5 gallons per day per person of sewage effluent with a dissolved solids concentration of 200 to $300 \mathrm{mg} / \mathrm{L}$ greater than presently occurs reaches the rivers, the increased salt load would be about 104 tons per year in the Escalante River and 189 tons per year in the Paria River. Although the resulting effect on the salinity at Imperial Dam on the Colorado River would be undetectable, an increase in the salinity of the Colorado River is a major concern to a number of State and Federal agencies as well as lower Colorado Basin water users.

The result of septic tank discharges reaching streams would be an increase in the biological oxygen demand, fecal coliforms, suspended solids, nitrates, nitrites, chlorine, ammonia, and orthophosphates below the point of discharge that would adversely impact the aquatic biology. The effects would be most pronounced near the source of pollution and diminish progessively downstream. Because of downstream diversion for irrigation, it is doubtful that the nutrient content in municipal waste resulting from mine-related increase in population would ever reach the Colorado River.

## Ground Water

Impacts on ground water from mining the Garfield coal deposits would have both local and regional effects on the ground water system. Local impacts would result from disturbance of perched aquifers in the base area causing: (1) interruption of
the natural perched ground water flow system in, above, and adjacent to the mined areas, and (2) changes in the chemical quality of the perched ground water in areas affected by subsidence.

Regional impacts would result from the lowering of the hydraulic head in the Navajo Sandstone by pumping four deep wells to supply operating needs. Water in the Navajo Sandstone occurs under artesian conditions at the lease site and consequently the impacts from pumping would spread rapidly and cover wide areas. Although there are no known water supplies currently developed in the Navajo Sandstone that would be impacted, natural discharge from the Navajo Sandstone would be eventually diminished.

The coal beds occur in the zone of aeration thousands of feet above the regional water table; therefore hydrologic impacts resulting directly from mining would be local in nature and limited by the extent of the perched reservoir. Pumping water from the mines would reduce ground water storage and lower the water level in the affected reservoirs. The impacted area would expand as mining progressed.

Collapsed sedimentary formations in the mine roof following the retreat of longwall mining would ultimately cause the overlaying formations to sag and fracture. Effects would be negligible during early years of mining but would increase as mining progressed. The maximum effect would not occur until mine abandonment. Subsidence and the resultant fracturing of the overlaying rocks would permit the downward movement of water into the mines. As a result water perched hundreds of feet above the mining level would begin to drain causing a lowering of the water level in all the overlaying affected reservoirs. Discharge from these sources would decline according to the degree natural discharge of springs and seeps is affected by mine drainage. Data are not available to project the extent of such a discharge.

Changes in chemical quality would not interfere with any existing water supplies or affect the water for industrial uses in the mines. Mixing of water could degrade water quality in the deeper aquifers within and immediately adjacent to the mined areas but no existing water supplies would be affected.

Mining would have no direct impacts on the regional ground water system. However, four wells are proposed to provide a total of 380,000 gallons per day (427 acre-feet per year) from deep wells developed in the Navajo Sandstone when the full production is reached. Sustained pumping from each of the four wells at a rate of about 66 gallons per minute would cause a water level decline of less than 28 feet in the vicinity of each well after 40

## ENVIRONMENTAL CONSEQUENCES

years of pumping (depending on well construction, pumping rate, etc.).

## GEOLOGY, TOPOGRAPHY, PALEONTOLOGY, MINERAL RESOURCES

Topography may be altered on portions of the PRLAs by subsidence. The surface area affected by subsidence would range from 90 to 130 percent of the area actually mined (GS, 1979). Dunrud (1976) reports that maximum subsidence would be from 50 to 90 percent of the thickness of the coal that is mined depending on depth of coal beds and type of overlaying material. Subsidence is expressed on the surface by open and closed fractures, buckled and bulged bedrock, sinkholes, and other depressions. Mining beneath cliffs or in steep canyons could result in rockfalls and small landslides.

Approximately 775 million tons of coal would not be recovered using current mining techniques. The unrecovered portion represents approximately 60 percent of the total in-place coal resource.

Potential oil and gas resources in the area occur stratigraphically below the coal-bearing formations. While the resource itself would not be damaged, surface and subsurface changes resulting from mining could hinder subsequent exploration and location of oil and gas development related facilities.

Mining activities could result in the inadvertent loss of plant, invertebrate, and vertebrate fossil materials. However, fossils not previously available for study could be exposed and scientific knowledge increased. The probability of encountering scientifically significant fossils is low (ERT, 1980).

## VEGETATION

The proposed development of coal on the PRLA tracts would disturb a total of approximately 951 acres of vegetation by the year 2000. The acres of vegetation that would be lost are shown by year and type in Table 4-56. The vegetation types most affected would be Pinyon-Juniper Woodland and Sagebrush-Grass. The disturbance and loss of vegetation production would result from development of onsite facilities ( 270 acres), offsite facilities (330 acres), and housing (351 acres) for the increased population.
Loss of vegetation production would begin in 1985, as a result of removal of vegetation for development of portal facilities, conveyors, railroad
loadout, topsoil stockpiles, access roads, utility lines, and urban development. Required reclamation would follow the closure of mines after completion of mining; therefore, loss of vegetation production on 270 acres would be temporary for the life of the mines ( 40 years). Lands disturbed for roads and housing would not be reclaimed, and loss of vegetation production on 681 acres would be permanent. An additional 41 acres of irrigated agricultural land would be retired because of conversion of irrigation water to community use.
The acreage lost to housing development would be in the following vegetation types: Agriculture 50 percent (176 acres), Pinyon-Juniper Woodland 25 percent ( 88 acres), and Desert Shrub 25 percent ( 87 acres). These lands would be in or adjacent to existing communities in Garfield County.
It is expected that reclamation attempts on most disturbed sites would be effective. Adequate soil depths and annual average rainfall ranging from 12 to 15 inches would allow restoration of vegetation production to meet or exceed present levels. Depending upon the post mining use desired, reclamation could result in changes of vegetation types from Pinyon-Juniper Woodland and SagebrushGrass to Grassland. Usable forage production on such areas would probably be higher than present levels (Phillips, 1976).
No threatened or endangered plant species have been identified in the area. Stipulations required for approval of a mining plan would provide for a survey for threatened or endangered plant species. Such a survey, plus required avoidance of such plants, would prevent adverse impacts to any threatened or endangered plants as a result of mining development on the tracts.

## WILDLIFE

The disturbance of 270 acres by mine development would not significantly impact any known wildlife populations. Some cougar home ranges could be altered, affecting the 12 -year cougar predation study. This rocky Pinyon-Juniper vegetation type is sparsely inhabited and post mining rehabilitation could actually improve the productivity of the area. The presence of human activity at these mines could adversely affect the raptor nesting concentration area immediately west of the leases. Careful consideration to design and programming of the mine development would be required to avoid undue disturbances and harrassment to this nesting area.
The 33 miles of road in Alvey Wash and Right Hand Collet Canyons, altering 330 surface acres,

TABLE 4-56

## TOTAL CUMUATIVE IMACTS ON VEGETATION ALTEPNTIVE TWD

| Vegetation Types | Inmacts Oisited (acres) |  |  | Impacts Offsite (acres) |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1987 | 1990 | 1995 | 2000 | 1937 | 1900 | 1995 | 2000 | TOTAL ${ }^{\text {c }}$ |
| Riparian | - | - | - | - | 17 | 17 | 17 | 17 | 17 |
| Grassland | 29 | 42 | 54 | 54 | 16 | 16 | 16 | 16 | 70 |
| Sage ${ }^{\text {rush }}$ Grass | 58 | . 84 | 108 | 108 | 116 | 116 | 116 | 116 | 224 |
| Pinyon-Jıniper Woodland | 13 | 63 | 81 | 81 | 165 | 165 | 165 | 165 | 246 |
| Non Productive | 15 | 21 | 27 | 27 | 16 | 16 | 16 | 16 | 43 |
| Total | 145 | 210 | 270 | 270 | 330 | 330 | 330 | 330 | 600 |

Traludes minim operation and onsite facilities
${ }^{b}$ Includes offsite facilities (roals, porerlines, etc.)
CTotal distumance by year 2000 (housing developneit would require an additional 351 acres bringing total vergetation distarbance to 951 acres)

## ENVIRONMENTAL CONSEQUENCES

could have significant impacts on the riparian habitats of these desert canyons. The roads would be 50 -feet wide with gravel surface supporting heavy truck and commuter traffic. The initial surface disturbance, noise, dust, and continual human presence, would eliminate all raptor nesting and reduce chukar, deer, and other wildlife use of watering sites, a critical factor in this arid climate. The end result would be reduced wildlife species populations that depend upon these canyons for their water needs.

The $138-\mathrm{kV}$ powerline running southwest from the leases would not be a significant impact to wildlife. Bird migration routes are unknown in this area so the impact to migrating birds cannot be estimated. Hazards to raptors would be minimal and some benefits may accrue from poles used as perches in the open country away from roads.

Conversion of cropland to urban use would affect less than 1 percent of this habitat type in Garfield County. Locally significant cropland losses could occur around Tropic and Escalante reducing dove and cottontail populations.

Demand would increase for hunting and other recreation related to wildlife from a greatly increased local population. Legal hunting and harvest would be regulated by appropriate regulations and by limits, but illegal hunting would increase. In Carbon and Emery Counties, where energy developments spawned a 48- percent population increase between 1977 and 1979, citations for violations of wildlife have increased 250 percent over the same period (personal communication, Dalton, UDWR, 1980).

Population increases around Escalante and Tropic would be over 400 percent by 2000 . This potential for increases in illegal killing could affect the growth of the introduced elk herd on the Aquarius Plateau, the recovery of the deer herd from its present low point, and the continuation of a viable raptor population in the canyon country. The most significant impacts to raptors would be caused by increased population. Illegal shooting and highway mortality would increase, and little could be done to eliminate these impacts (ERT, 1980). Raptors have been protected by law for several years; however, significant man-caused losses still occur. This trend probably would continue. The temporary elimination of small mammals and reptiles due to occupation of habitat by structures would eliminate raptor use on affected areas. After reclamation, the areas may be enhanced for some prey species, and raptors adapted to hunting open country broken by clumps of retained trees would be benefitted. Also affected would be the upland game populations adjacent to the communities.

Increased recreation population would also probably fish out the native trout populations in streams in this area requiring additional stocking to maintain a fisheries. The increased demand for improved access could lead to upgrading of existing backroads and additional roads opening up many areas. This generally leads to a decline in the sensitive wildlife species and fished out or hunted out areas. Specifically the Aquarius Plateau and Griffin Top, with its many small fisheries and elk habitat, could be susceptible to degradation from improved access. Extended access south into the Kaiparowits Plateau could conceivably adversely affect the establishment of the proposed desert bighorn sheep herd on the southern Kaiparowits Plateau.

## LAND USE

An estimated 951 acres would change from livestock grazing and irrigated pasture and cropland to community development and mining use by the year 2000. Of this, 270 acres would be disturbed for the life of the mines and 681 acres would change from irrigated farmland and other lands vacant of constructed facilities, to roads and expanded community infrastructure, mainly housing.

About 176 acres of the 351 that would be permanently converted for community development would come from irrigated lands. This would cause a loss of pasture, hay, and other livestock feedcrops such as small grains and corn. Additional permanent reduction of livestock pasture and feedcrops would be caused by the retirement of another 41 acres of irrigated land to meet the water requirements of expanded communities. The permanent loss of irrigated cropland production would occur on a total of 217 acres although the retired acreage might be included in a rest-rotation farming system that would maintain it as productive irrigated farmland.

Water supply for mining-related uses would be obtained by drilling deep wells into the Navajo Sandstone aquifer. Therefore, it is assumed that no retirement of irrigated land in the area would be necessary to provide mining water. The 217 acres of irrigated lands that would be converted or retired amount to only about 1 percent of the irrigated acreage in Garfield County. The significance of the loss is not amount of acres lost but, rather: (1) the lost acreage would be among the most productive in the county; (2) lost acreage would be concentrated near communities impacting their local economy, particularly Escalante and Tropic; and (3) the loss of crops from the 217 acres would fall almost exclusively on the production of livestock and result in a diminished role of the presently important livestock industry in the county economy. The loss of

## ENVIRONMENTAL CONSEQUENCES

productivity from the 217 acres is significant also in that the good quality acreage lost would be from a finite resource base which cannot be appreciably expanded. Table 4-57 shows the acreage impacts to the county and selected community relationships of land converted to community use, and irrigated cropland retired to provide community water.

A maximum of 200 AUMs per year would be lost. The actual number of AUMs lost would depend on where facilities were placed and where and to what extent subsidence would occur, and the effects on several livestock watering features in the area including several springs. As with irrigated acreage loss, the 200 AUMs are a minute portion of the total available within the county. The significance of the loss rests on the fact that it would be an additional increment of impact to the livestock industry which is the major recipient of other land use impacts that would result from development of the PRLAs. Reclamation of disturbed lands on the two affected allotments could actually result in improved range.

## SOCIOECONOMICS

## Economic and Demographic Impacts

Within Garfield County, direct socioeconomic impacts would be felt primarily in the communities of Cannonville, Escalante, Henrieville, and Tropic. If the PRLAs were developed, the combined population would rise to 1,725 in 1987, 3,248 in 1990, 6,469 in 1995, and 7,679 in 2000 (an increase of approximately 425 percent between 1978 and 2000). Consequently, these four communities would experience infrastructural and social strains implied by the projected rapid population growth.

Direct employment generated by development of the PRLAs would reach 350 workers (including 150 mine construction workers) in 1987; 1,050 (including 150 construction workers) in 1990; 2,500 in 1995; and 2,900 in 2000. These figures do not include secondary employment in trade, services, etc. However, this omission should not cause significant distortions in the analysis, since the bulk of the secondary employment would be concentrated outside the study area in trade centers such as Panguitch, Kanab (Kane County), and St. George (Washington County). However, most of the new jobs would be filled by new in-migrants rather than existing residents. Underground coal mining requires specialized job skills possessed by relatively few area residents who, therefore, generally would be limited to ancillary jobs such as driving coal trucks.

Development of PRLAs would lead to a significant increase in average income and purchasing power which, together with the limited supply of such necessities as housing, would exert strong upward pressure on the local rate of inflation. Wage competition from the mining and construction sectors would also bid up labor costs, making it more difficult and expensive for local employers in other sectors to hire and retain qualified workers, and possibly driving some out of business.

## Infrastructure

Development of the PRLAs would require the four area communities to provide housing for up to 2,900 additional households by 2000. Such an increase would be beyond the present capacity of the local prefabricated housing industry and building contractors. It would necessarily result in a great expansion in the number of mobile homes, placing severe strains both on the local communities in planning and financing the provision of needed public services, and on workers and their families forced to live in "aluminum ghettos." New elementary and secondary schools in both Escalante and Tropic would need to be constructed in order to accommodate the increased population.

Increased health care needs would require doubling the number of hospital beds in Garfield County and recruiting additional doctors, nurses and dentists. In addition, provision of certain health care services (e.g. long-term nursing care, radiological services), would become economically feasible given the projected population associated with development of the PRLAs.

Establishment of local police departments, acquisition of additional firefighting equipment, expansion of water supplies, and construction of centralized sewage treatment facilities would be necessary.

## Social Impacts

Residents of Cannonville, Escalante, Henrieville, and Tropic would experience an erosion of their small-town rural way of life and community homogeneity which would result from large-scale population growth associated with development of the PRLAs. Social problems such as alcoholism, drug abuse, divorce, violent crime, and mental illness would increase. On the other hand, residents would lose the potential advantages of development such as job opportunities, better public services and facilities, entertainment, and cultural opportunities if development did not occur.
TABLE 4-57
ACREAGE CONVERTED TO COMMUNITY DEVELOPMENT, IRRIGATED CROPLAND CONVERTED TO COMMUNITY DEVELOPMENT, AND IRRIGATED CROPLAND RETIRED TO PROVIDE COMMUNITY WATER uP\&L EXCHANGE-ALTERNATIVE TWO

| Location | Total Acreage Converted ${ }^{\text {a }}$ |  | Irrigated Acreage Converted |  | Irrigated Acreage Retired |  | Total Acreage Converted |  | Irrigated Acreage Converted |  | Irrigated Acreage Retired |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Base | Alt. 2 |
|  |  |  | 19 |  |  |  |  |  |  |  |  |  |
| Garfleld County | 46 | 35 | 23 | 18 | 5 | 4 | 58 | 115 | 29 | 57 | 7 | 13 |
| Cannonvilie | 0 | 4 | 0 | 2 | 0 | 0 | 0 | 13 | 0 | 6 | 0 | 1 |
| Escalante | 0 | 11 | 0 | 6 | 0 | 1 | 0 | 37 | 0 | 18 | 0 | 4 |
| Henrieville | 1 | 4 | 0 | 2 | 0 | 0 | 2 | 13 | 1 | 6 | 0 | 1 |
| Pangultch | 15 | 4 | 8 | 2 | 2 | 0 | 21 | 12 | 10 | 6 | 2 | 1 |
| Tropic | 1 | 8 | 0 | 4 | 0 | 1 | 2 | 26 | 1 | 13 | 1 | 3 |
|  | 1995 |  |  |  |  |  | 2000 |  |  |  |  |  |
| Garfleld County | 78 | 289 | 39 | 144 | 9 | 33 | 100 | 351 | 50 | 176 | 12 | 41 |
| Cannonville | 0 | 32 | 0 | 16 | 0 | 4 | 1 | 39 | 0 | 19 | 0 | 4 |
| Escalante | 1 | 92 | 0 | 46 | 0 | 11 | 2 | 112 | 1 | 56 |  | 13 |
| Henrieville | 3 | 32 | 2 | 16 | 1 | 4 | 5 | 39 | 2 | 19 | 0 | 4 |
| Panguitch | 31 | 29 | 16 | 14 | 12 | 3 | 45 | 35 | 23 | 18 | 5 | 4 |
| Tropic | 4 | 66 | 2 | 33 | 2 | 8 | 6 | 81 | 3 | 40 | 1 | 9 |

## ENVIRONMENTAL CONSEQUENCES

## TRANSPORTATION

In the Garfield County area direct mine-related commuter and service truck traffic would amount to about 5,200 vehicles per day. By 2000, vehicles resulting from direct, mine-related usage (including commuters) would be traveling 58 million miles annually. The distribution of direct mine traffic and that due to population increases from mining development is shown in Table 4-58.

Accumulated traffic (baseline, plus that due to mining development) is shown in Table 4-59. Although traffic volumes would increase markedly over present and projected baseline levels, by the year 2000 none of the affected highways would reach the crowded category except for U.S. 89 south of Panguitch at the very end of the study period. The traffic accident rate would remain about the same as in the central Utah region.

Increased maintenance would be needed, but the increase in maintenance would not necessarily be in proportion to the increase in traffic.

## Energy Requirements and Conservation Potential

In the northern Kaiparowits Plateau area, direct commuting and service traffic to the mines would add about $5,200 \mathrm{vpd}$ to the traffic base, consuming some 4.25 million gallons of fuel per year by 2000 and in the process wearing out 360 cars and trucks per year, on the average.

## CULTURAL RESOURCES

Development of the proposed alternative would result in indirect and possibly direct impacts to prehistoric and historic sites.

The degree and quantity of direct impacts to sites cannot be determined until intensive inventories are conducted on surface disturbance areas. Surface disturbances associated with the construction of mine portals, access roads, conveyors, etc. could result in damage to sites when encountered if facilities could not be relocated. Some buried sites, lacking surface indications, could also be irretrievably lost. In most cases, scientific values would be salvaged from sites prior to construction and mining. Some archaeological data would be lost for future scientific use.

Indirect impacts would result from greater accessibility and local population increases. Recreational
activities of two types, those intentional, illegal activities associated with artifact collection, and treasure hunting and unintentional recreational use (hiking, hunting, ORV) would cause irreplaceable, unmitigatable site damage. Both scientific and aesthetic site values would be lost as a result of these indirect impacts. Sites located on the proposed development area and in a large influence zone would be more susceptible to indirect impacts.

## SPECIAL DESIGNATION AREAS

Mining activities and the construction of ancillary facilities on the PRLAs would impair wilderness character and, therefore, wilderness designation suitability within those portions of BLM Roadless Units UT-040-075, UT-040-076 and UT-040-078 where development would occur. Because wilderness suitability would be impaired, mining and construction would not be allowed within the roadless units as long as they are undergoing wilderness review (see Chapter 2, Mitigation Section).

Some of the 28 areas in the region with potential for wilderness or other special designation could receive additional ORV and/or other dispersed recreational use because of the coal-related population increase. Resultant littering and vandalism would degrade values for which the areas are being studied. Federal agencies managing the lands (NPS, BLM, and FS) may be under stress to protect these values with no foreseeable increase in funding for that purpose. However, it is very unlikely that possible degradation would affect the designation of suitability of any area due to the temporary nature of impacts resulting from dispersed recreational use.

## VISUAL RESOURCES

The visual modification that would result from underground mining and associated developments would occur largely in areas already disturbed by mineral exploration and livestock developments. The overall scenic character of the tract areas would change from natural to industrial during the life of the mining operation. Mining activities and disturbance would be highly visible to an unknown number of recreationists using the Alvey Wash road for access onto the Kaiparowits Plateau, and would be considered a visually degrading intrusion to many and an item of interest to others during the life of the mining operation. No outstanding or unique scenic qualities would be lost, nor would mining development conflict with VRM objectives for the area. Reclamation would be effective in reestablishing present scenic quality and character.
TABLE 4-58

| Location | 1385 |  | 1987 |  | 1990 |  | 1995 |  | 2000 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Total | Trucks |
| U-12 in Eoulder | 0 | 0 | 21 | 2 | 69 | 7 | 159 | 20 | 195 | 25 |
| U-12 SW of Boulder | 0 | 0 | 19 | 3 | 65 | 8 | 166 | 20 | 200 | 24 |
| U-12 in Escalante | 183 | 103 | 570 | 162 | 1,143 | 240 | 2,468 | 379 | 2,345 | 444 |
| U-12 W of Escalante | 243 | 97 | 754 | 150 | 1,453 | 220 | 2,738 | 344 | 3,557 | 401 |
| U-12 E of Henrieville | 243 | 97 | 781 | 155 | 1,543 | 233 | 3,255 | 377 | 3,831 | 442 |
| U-12 W of Henrieville | 214 | 97 | 649 | 152 | 1,263 | 226 | 2,730 | 358 | 3,107 | 418 |
| U-12 SE of Cannonville | 214 | 97 | 652 | 153 | 1,273 | 227 | 2,756 | 363 | 3,139 | 425 |
| U-12 NW of Cannonville | 185 | 97 | 53.4 | 151 | 1,037 | 225 | 2,232 | 360 | 2,553 | 421 |
| U-12 SE of Tropic | 185 | 97 | 551 | 154 | 1,094 | 234 | 2,383 | 380 | 2,737 | 445 |
| U-12 NW of Tropic | 124 | 97 | 308 | 151 | 627 | 226 | 1,374 | 365 | 1,616 | 428 |
| U-12 at Bryce Canyon | 124 | 97 | 392 | 160 | 937 | 257 | 2,245 | 451 | 2,681 | 533 |
| U-12 at U.S. 89 | 124 | 97 | 384 | 159 | 2,169 | 253 | 2,164 | 440 | 2,532 | 521 |
| U.S. 89 N of Hatch | 32 | 29 | 120 | 51 | 301 | 89 | 689 | 160 | 826 | 189 |
| U.S. 89 S of Panguitch | 92 | 68 | 479 | 150 | 1,279 | 305 | 3,050 | 622 | 3,669 | 747 |
| U.S. 89 in Panguitch | 92 | 68 | 365 | 131 | 883 | 237 | 2,019 | 448 | 2,403 | 533 |

TABLE 4-59
total projected traffic, including additional traffic due to mining activity

| Location | 1985 |  | 1987 |  | 1990 |  | 1995 |  | 2000 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Tota? | Trucks | Total | Trucks | Tot:1 | Trucks | Total | Trucks | Total | Trucks |
| U-12 in Boulder | 140 | 16 | 177 | 20 | 232 | 26 | 341 | 40 | 376 | 46 |
| U-12 Siv of Boulder | 135 | 16 | 163 | 23 | 218 | 25 | 331 | 40 | 386 | 45 |
| U-12 in Escalante | 751 | 152 | 1,157 | 214 | 1,777 | 295 | 3,163 | 439 | 3,618 | 511 |
| U-12 W of Escalante | 567 | 142 | 1,099 | 198 | 1,320 | 271 | 3,142 | 400 | 4,010 | 464 |
| U-12 E of Henrieville | 797 | 175 | 1,370 | 233 | 2,169 | 322 | 4,045 | 475 | 4,605 | 551 |
| U-12 W of Henrieville | 656 | 159 | 1,119 | 217 | 1,752 | 295 | 3.278 | 434 | 3,721 | 50.4 |
| U-12 SE of Cannonville | 684 | 164 | 1,152 | 224 | 1,803 | 303 | 3,339 | 446 | 3,792 | 518 |
| U-12 NW of Canronville | 657 | 154 | 1,036 | 223 | 1,570 | 302 | 2,818 | 444 | 3,209 | 515 |
| U-12 SE of Tropic | 825 | 187 | 1,272 | 250 | 1,817 | 335 | 3,178 | 492 | 3,627 | 571 |
| U-12 NW of Tropic | 764 | 164 | 589 | 223 | 1,348 | 302 | 2,167 | 448 | 2,504 | 521 |
| U-12 at Sryce Canyon | 1,668 | 254 | 2,034 | 327 | 2,577 | 434 | 4,153 | 646 | 4,823 | 751 |
| U-12 at U.S. 39 | 1,523 | 243 | 1,937 | 314 | 2,553 | 413 | 3,972 | 621 | 4,607 | 723 |
| U.S. 89 N of Hateh | 1,735 | 245 | 1,935 | 281 | 2,221 | 332 | 2,306 | 428 | 3,211 | 491 |
| U.S. 89 S of Panguitch | 1,822 | 362 | 2,315 | 462 | 3,230 | 636 | 5,183 | 984 | 6,033 | 1,148 |
| U.S. 89 in Panguitch | 4,409 | 803 | 4,966 | 914 | 5,749 | 1.066 | 7,384 | 1,361 | 8,446 | 1,562 |

## ENVIRONMENTAL CONSEQUENCES

## RECREATION

The mining-related population, when at its highest level from the years 1997 through 2000, would increase the demand for both dispersed and developed recreation opportunities in the region by approximately 160 percent from 1980 use figures.

Table 4-60 shows the anticipated increase in local demand for hunting and fishing during the selective mining operation years. The additional competition for available game and fish would lead to less hunter and fisherman success. To maintain present hunting success it could be necessary to restrict animal harvests, thereby reducing hunting opportunities. To maintain present fishing success, stocking activities would have to be increased by the Utah Division of Wildlife Resources. UDWR has no foreseeable increase in funds for this purpose.

Table 4-61 shows the anticipated increase in local demand for ORV activities during selected mining operation years. Although Garfield County has adequate miles of primitive dirt roads to absorb the ORV demand, the increase would conflict with other recreational uses, reducing the overall opportunity for dispersed recreation and reducing the quality of the recreational experience to some visitors.

Developed recreation sites in the region would receive increased use by the new population, which would intensify present overcrowding, causing user dissatisfaction and deterioration of the environment and facilities through vandalism and littering. This overcrowded condition would cause additional recreational pressures on undeveloped, dispersed areas. Federal and State governments would be under stress to provide adequate maintenance for existing developed sites and to construct adequate new sites, while there is no foreseeable increase in funding for these purposes. Overcrowded conditions of recreation facilities in the towns would intensify, resulting in their deterioration and in user dissatisfaction. Stress would be placed on local governments (again, with limited funds) to provide recreation facilities (e.g., playing fields, swimming pools, tennis courts, golf courses) to meet minimum standards recommended by the Utah Outdoor Recreation Agency (SCORP, 1978).

Development of the PRLAs and of homesites would displace ORV use from as much as 951 acres. Because surrounding areas offer comparable or better opportunities and access to these surrounding areas would not be eliminated, the recreational opportunity lost would not be significant, even when the increase in recreational demand is considered. The upgrading of the Alvey Wash and Right Hand Collet Canyon roads would improve
recreational access into the Kaiparowits Plateau area. Visual and audio impacts from mining would reduce the quality of the recreational experience of some people using the Alvey Wash road for access onto the Kaiparowits Plateau. Other visitors would find the mining operation to be an interesting addition to their recreation experience.

## UNAVOIDABLE ADVERSE IMPACTS

The loss of soil and vegetation production on 951 acres would be unavoidable for the life of the mines. The disturbance on 270 acres would eventually be reclaimed but the loss of 681 acres would be permanent due to construction of housing and support facilities. An unquantified amount of soil would be lost as a result of erosion. Mining of coal on the PRLAs would result in 775 million tons of coal left underground and unrecoverable by present technology. Changes in aquifers due to mining and subsidence could not be avoided. Consumptive use of water in the area would increase by 255 acrefeet in Escalante Valley and 462 acre-feet in the Paria River basin. The loss of wildlife due to occupation of habitat, illegal killing or highway mortality would be unavoidable.

About 176 acres converted for community development would come from irrigated lands, resulting in loss of pasture, hay, small grains, and corn. An additional 41 acres of irrigated land would be retired to meet water requirements of the growing communities. A maximum of 200 AUMs per year would be lost.

Local communities would experience erosion of their small-town, rural way of life and community homogeneity which would result from large-scale population growth. The local inflation rate would be increased. Traffic resulting from development of the PRLAs would be consuming approximately 4.5 million gallons of fuel per year by 2000.

Inadvertent destruction or disturbance of undetected cultural resources and losses through illegal collection or vandalism could not be avoided. Demand for both dispersed and developed recreation opportunities would increase by approximately 160 percent by 2000 resulting in overutilization and crowding of existing recreation facilities and reduced hunter and fisherman success.
TABLE 4-60
PROJECTED LOCAL INCREASE IN HUNTER AND FISHEPMWN DEMAND IN GARFIELD COUNTY
UP\&L EXCHANGE - ALTERNATIVE TWO


## TABLE 4-61

PROJECTED LOCAL INCREASE IN OFF-ROAD VEHICLE DEMAND WITHIN GARFIELD COUNTY

| Projected <br> Year | Coal- Projected Related Population Increase | Increase Projected in Pickup and FourWheel Drive Numbers | In- Overall Per-crease in Motor-cent Increasecycle Numbers $\quad$ from 1980 . |  |
| :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |
|  |  |  | 42 | 16 |
| 1990 | 2,068 | 724 | 141 | 52 |
| 1995 | 5,200 | 1,820 | 354 | 160 |
| 2000 | 6,322 | 2,213 | 430 | 160 | Note: Projections were made assuming that the percentage ould remain

in Garfield County that owns mepulation currently owns motorcycles, and 35 percent of the population currently
vehicles or light pickups) (Scorp, 1978).

## ENVIRONMENTAL CONSEQUENCES

## THE RELATIONSHIP BETWEEN THE SHORT-TERM USES OF MAN'S ENVIRONMENT AND THE MAINTENANCE AND ENHANCEMENT OF LONG-TERM PRODUCTIVITY

Increased population associated with mining development would result in a long-term decrease in air quality in the area; however, NAAQS would not be exceeded.

Short-term use of the environment for coal production would result in a long-term loss of soil and vegetation productivity on 681 acres permanently occupied by roads and housing. The extraction of 512 million tons of coal would render the remaining unmined 775 million tons unrecoverable over the long-term. The loss of crop production on 217 acres occupied by housing or retired due to conversion of water use would be a long-term loss in productivity.

Development of the PRLAs would lead to a significant increase in average income and purchasing power. This, together with the limited supply of necessities such as housing, would exert strong upward pressure on the local rate of inflation over the life of the mines. Wage competition from the mining and construction sectors would bid up labor costs, making it difficult for local employers to hire and retain qualified workers.

Any loss of cultural resources would result in a long-term loss of scientific knowledge and interpretive values. The development of recreational facilities as a result of demand by the increased population would be a long-term increase in capacity of recreation developments in the area.

## IRRETRIEVABLE OR IRREVERSIBLE COMMITMENT OF RESOURCES

Emissions attributable to population growth in the area would cause an irreversible deterioration in air quality. Soil and vegetation productivity on 951 acres would be irretrievably lost for the life of the mines; of that amount, 681 acres occupied by roads and housing would be permanently lost. Soil lost to wind and water erosion would be irretrievable.

The 512 million tons of coal mined would be irretrievable and the 775 million tons of coal left in the ground would be irreversibly unrecoverable by present technology. Increased water consumption for mining and community needs would be irretrievable. Any changes in aquifers, ground water storage po-
tential, or point of discharge due to subsidence would be irreversible.

Any wildlife losses through displacement from habitat, traffic mortality, or illegal killing would be iretrievable. The loss of 200 AUMs annually would be irretrievable.

Growth in population of over 400 percent $(7,679$ people by 2000) would be irreversible. Likewise the commitment of capital, physical resources, and labor to build an additional 2,900 housing units and infrastructure that would be required to support the growth in population, commerce, and industry would be an irretrievable impact. The loss of smalltown atmosphere resulting from coal development would be irreversible.

The annual consumption of 4.5 million gallons of fuel by 2000 would be irretrievable. Lives and money lost as a result of an increase in traffic accidents due to the increased traffic would be irretrievable.

The loss of cultural resources in context would be irretrievable and any loss of interpretive values would be irreversible.

## CHAPTER 5

## SUMMARY OF INDIVIDUAL TRACTS

## INTRODUCTION


#### Abstract

This chapter presents a summary of the significant unavoidable impacts expected to occur on individual tracts being considered for leasing after mitigating measures have been applied. The only alternative available for each individual tract is lease or not lease. However, coal resource data are still being obtained by GS and tract boundaries are subject to modification.


## TUCKER CANYON

This tract is 161.4 acres in size. The surface is privately owned. Coal would be mined by underground methods from two beds. Using current mining technology, approximately 860,000 tons of coal or 40 percent of the total in-place resource would be recovered during the projected 20 -year mine life. Approximately $1,280,000$ tons would be left underground. Both the coal mined and the coal left behind would represent an irretrievable commitment of the resource.

Thirty-four acres of land would be required for facilities and haulage roads. This acreage would be reclaimed following completion of mining activities. Mine facilities would be visible to some 100,000 visitors annually due to its close proximity to Scofield Reservoir, a popular recreation area. The workings would also be visible from portions of a new subdivision. An undetermined amount of noise resulting from mining operations and resultant truck traffic would be noticeable by recreationists, residents of the subdivision and the community of Scofield. Increased truck traffic (42 trips per day) through Scofield would result in traffic congestion and human safety concerns. The operation would provide 15 permanent jobs and 20 temporary construction jobs.

## MILLER CREEK

This tract is 2,000 acres in size. The surface is privately owned. Coal would be mined by underground methods from two beds. Using current mining technology, $17,320,000$ tons of coal, or 40 percent of the total in-place resource, would be recovered during the projected 40 -year mine life. Approximately $25,980,000$ tons would remain under-
ground. Both the coal mined and the coal left behind would represent an irretrievable commitment of the resource.

About 60 acres would be required for surface facilities and haulage roads. This acreage would be reclaimed following completion of mining activities. The operation would provide permanent jobs for about 133 persons and temporary construction jobs for an additional 20 people. Housing would be difficult to obtain especially if other tracts in the area are developed.

## GORDON CREEK

This tract is 4,280 acres in size. The surface is privately owned. Coal would be mined by underground methods from three beds. Using current mining technology, approximately $25,960,000$ tons of coal, or 40 percent of the resource, would be recovered over the projected 40-year mine life, while $38,940,000$ tons would remain underground. Both the coal mined and left would be irretrievably committed. About 4,280 acres would be susceptible to subsidence. Beaver and Gordon Creeks originate on the tract and could suffer dewatering for short sections. Riparian areas on and in the vicinity of the tract are critical moose winter habitat. Projected coal truck traffic (189 round trips per day) would cause additional congestion on an already heavily utilized highway near Price, Utah.

Ninety acres would be required for surface facilities and haulage roads. This acreage would be reclaimed following completion of mining activities.

Approximately 180 permanent employees would be required for mine operation. An additional 20 to 30 temporary construction employees would also be required. Housing requirements for these employees and their families could only be met by constructing new homes in the Price-Helper area. As a result, approximately 64 acres would change from agriculture and non-use to community development.

## SLAUGHTERHOUSE CANYON

This tract is 440 acres in size, and the surface is privately owned. The tract contains a demonstrated reserve of 5.55 million tons. The coal would be recovered by underground mining. Annual production

## SUMMARY OF INDIVIDUAL TRACTS

would be about 215,000 tons over 8 years representing a 31-percent recovery rate. The low recovery rate would result from the need to leave otherwise minable coal in place to protect the escarpment and support shallow overburden. The upper O'Connor seam would be mined first followed by mining of the lower O'Connor seam.

Total surface disturbance from all activities associated with development of the tract would be 47 acres. Construction of surface facilities would disturb about 15 acres and a 3.2-mile access road (necessary if mined independent of adjacent leases) would disturb about 32 acres. If the adjacent lease holder obtains the tract, a 0.5 to $0.75-$ mile access road would be constructed. Potential soil loss due to wind and water erosion has not been quantified but would be irretrievable; however, reclamation potential for this area is good.

About 60 workers would be needed during fullscale operation. Mine operations would be preceded by 1 to 2 years of construction employing about eight workers.

About 3.3 acre-feet of water would be needed yearly for dust control and other mine operations and would probably be hauled from Pleasant Valley Creek. Potable water would probably be hauled to the mine or a well drilled.

The area is habitat for big game, bear, and mountain lion. Mining activities would force these species from the area. Riparian areas near the tract are critical moose winter range. Nearby human activity, while not actually destroying riparian areas, may force the moose to leave.

A 3 -inch natural gas pipeline crosses the tract and would require stipulations for protection from surface disturbance or possible subsidence if the lease is developed.

## meEtinghouse canyon

This tract is 1,063 acres in size. The surface is National Forest land. Coal would be mined by underground methods from two beds. Using current mining technology, some $12,400,000$ tons of coal or 40 percent of the total resource would be recovered over the projected 40 -year mine life. Approximately $18,600,000$ tons would remain underground. Both the coal mined and left behind would be irretrievably committed.

About 40 acres would be required for surface facilities and haulage roads. This acreage would be reclaimed following completion of mining activities. Coal-related traffic in Meetinghouse Canyon would significantly increase and some congestion would
be expected. Ranchers would experience increased difficulty in moving livestock to and from grazing areas on the Wasatch Plateau. Development of the tract would result in 85 permanent jobs and 15 temporary construction jobs. Housing in the small towns nearest the tract would be difficult to obtain.

## RILDA CANYON

This tract is 640 acres in size. The surface is Na tional Forest land. Due to a lack of access, this tract could only be developed in conjunction with adjacent leases. No surface disturbance with the possible exception of subsidence would occur on the tract. Surface facilities would be located to the north in Rilda Canyon. Two companies could mine the tract and both have indicated that they intend to develop their existing leases, whether or not they obtain the tract. Some $7,800,000$ tons of coal, representing a 40 -percent recovery rate would be obtained from the tract. About 11,700,000 tons would be left underground.

Offsite developments would require 63 acres for surface facilities and haulage roads. A portion of these developments would occur within a municipal watershed area for several small Emery County communities. Possible impacts to the watershed and water quality are being analyzed by the companies and negotiations for mitigation are underway. Inclusion of the tract in a mining operation would result in 55 permanent jobs and 10 temporary construction jobs.

## COTTONWOOD

This tract is 2,400 acres in size. The surface is Federal land managed by the Forest Service and BLM. Coal would be mined by underground methods from two beds. Using current mining technology, some $23,120,000$ tons of coal or 40 percent of the total resource would be recovered over the projected 40 -year mine life. Approximately $34,680,000$ tons would remain underground. Both the coal mined and left behind would be irretrievably committed. Subsidence could occur on all or any part of 2,400 acres. Two springs and an ephemeral lake could be affected and possibly dewatered affecting both livestock and wildlife.

Forty acres would be required for surface facilities and haulage roads. This acreage would be reclaimed following completion of mining activities. One hundred forty-five to 165 permanent employees would be required. An additional 30 to 40 temporary employees would be required for construc-
tion work. Housing requirements for these employees and their families could only be met by constructing new homes in the Emery County area. As a result, 45 acres of irrigated farmland adjacent to the communities would be permanently lost to community development.

## NORTH HORN MOUNTAIN

This is the largest tract being considered for leasing. Annual production would be more than double that of any other tract. It encompasses 21,043 acres of National Forest land. Coal would be mined by underground methods from two beds. Using current mining technology, $98,600,000$ tons of coal or 40 percent of the total in-place resource would be recovered during the projected 40 -year mine life. Approximately $147,900,000$ tons would remain underground. Both the coal mined and the coal left underground would represent an irretrievable commitment of the resource.

One hundred forty-five acres would be required for surface facilities and haulage roads. This acreage would be reclaimed following completion of mining activities.

Scientifically important fossilized bones characteristic of Cretaceous through Paleocene ages are found in the North Horn Formation and some amount would be destroyed by mining activities. Important fossils from the Blackhawk Formation would also be destroyed. However, it is not believed that a significant portion of these fossils would be lost as they are found in other areas of the region. Mining activities would also expose fossils for scientific study that would otherwise be unrecoverable.

Numerous pre-historic cultural sites have been located on the tract. Through inventories and avoidance, most of these sites could be protected. However, some buried sites could be damaged or destroyed, resulting in an irretrievable loss of potential scientific data. Information concerning past cultures would increase from study of discovered and salvaged artifacts.

Seven hundred fifteen employees would be required on a permanent basis and an additional 125 temporary construction workers would be required. It would be extremely difficult for the small communities in Emery County to meet the housing and services requirements of the employees and their families. By the year 2000 approximately 208 acres of land would be changed from agriculture and nonuse to community development. The situation would be further exacerbated if other tracts in the area are leased. This change would be permanent.

## EMERY NORTH

This tract is 2,161 acres in size. The surface is private land, and public land administered by BLM. Coal would be mined by a combination of surface and underground methods. Using current mining technology, $24,020,000$ tons of coal or about 63 percent of the total in-place resource would be recovered during the projected 40 -year mine life. Approximately $12,180,000$ tons would not be recovered. Both the coal mined and the coal left behind would represent an irretrievable commitment of the resource. Surface mining during the first 20 years of the lease operation would disturb a total of 1,109 acres with a maximum of 259 acres disturbed at any one time. Chapter Two presents a reclamation schedule for this tract.

About 110 acres of irrigated cropland would be removed from production until reclaimed following surface mining, resulting in temporary loss of crops and habitat for small wildlife, especially pheasants and cottontail rabbits.
About 61 AUMs per year would be lost for a total of 1,220 for the 20 -year surface mining period. Additional AUMs would be lost until vegetation could be adequately reestablished on lands disturbed in the last few years of surface mining. Post-mining increase of AUMs may occur if increased forage production on reclaimed acreage were attained.

Surface mining could result in a lowering of the water table in the vicinity of the tract.

Underground mining during the last 20 years of mine operation would result in potential subsidence up to 10 feet on 1,161 acres.
The tract and surrounding area is rich in pre-historic cultural sites of scientific value, some of which could be damaged or destroyed wherever disturbance would occur. Some sites and artifacts would also be discovered as concentrated inventories would be conducted wherever surface disturbance would be planned.

Surface mining and associated development would severely modify and dominate the landscape, changing the scenic qualities from a natural to an industrial character. Surface mining operations would be visible from Highway 10 and from the community of Emery, Utah. Approximately 60 permanent employees would be needed for the 20 years of surface mining. Permanent employees required for the 20 years of underground mining would be 120. Temporary employees needed for construction of surface mine facilities would be 15. Twenty-five to 30 would be required for construction of underground facilities. Housing for these workers and their families would be in short supply

## SUMMARY OF INDIVIDUAL TRACTS

and the Emery County communities would be hard pressed to provide adequate homes and services.

## EMERY CENTRAL

This tract is 2,968 acres in size. The surface is public land managed by BLM. Coal would be surface mined from two beds. Using current mining technology, $39,030,000$ tons of coal or 90 percent of the total in-place resource would be recovered during the projected 40 -year mine life. Approximately $4,337,000$ tons would not be recovered. Both the coal mined and the coal left behind would represent an irretrievable commitment of the resource.

Surface mining and support facilities would disturb a total of 1,995 acres over the mine life. The maximum unreclaimed disturbed acreage at any one time would be 414 acres. A reclamation schedule for this tract is presented in Chapter Two.

About 71 AUMs would be lost annually for a total of 2,840 for the mine life. Additional AUMs would be lost until vegetation could be adequately reestablished on lands disturbed in the last few years of mining. Post-mining AUMs would increase on the revegetated acreage if increased forage production could be attained.
There are many pre-historical cultural sites on the tract, some of which could be destroyed by surface disturbance associated with mining. Some recovery of artifacts would occur and would add to the information base concerning the pre-historic cultures. Other values would be irretrievably lost.
The landscape would be modified from a natural character to industrial.

One hundred permanent employees would be required for mine operation. An additional 50 to 60 temporary employees would be required for construction of surface facilities. Emery County communities would be hard pressed to accommodate these workers and their families with homes and services.

## EMERY SOUTH

This tract is 749 acres in size. The surface is public land administered by BLM. Coal would be mined by underground methods from two beds. Using current mining technology $5,360,000$ tons of coal or 46 percent of the total in-place resource would be recovered during the projected 40 -year mine life. Approximately $6,170,000$ tons would remain underground. Both the coal mined and the coal left behind would represent an irretrievable
commitment of the resource. Thirty-five acres would be required for surface facilities and haulage roads. This acreage would be reclaimed following completion of mining activities.
A candidate endangered species Townsendia aprica is located on the tract. However, a No Surface Disturbance stipulation where the plant is located should protect it.

Thirty-seven permanent employees and 15 to 20 temporary construction employees would be required.

The Uinta-Southwestern Utah environmental impact statement team has reviewed 25 letters, and transcripts of testimony from 14 persons recorded at four public hearings during the comment period on the Draft EIS.

This section contains reproductions of all letters received in comment on the Draft EIS, substantive excerpts from oral testimony given at the public hearings, and reproductions of written exhibits presented at those hearings. Specific comments on the Draft EIS are bracketed and BLM responses are adjacent to the comments.

As required by Council of Environmental Quality Regulations, all comments from letters and hearing testimony were responded to by EIS team specialists. Where comments warranted changes in the content of the EIS or presented new information, the text of the Final EIS was revised accordingly.

The following section presents reproductions of all letters received during the Draft EIS comment period. Letters are numbered in the order they were received. Specific comments are bracketed, with BLM responses adjacent.

## Letter

1. Utah International Incorporated
2. North Emery Water Users Association
3. Utah Wildlife Federation
4. John Wiener
5. John Wiener
6. Federal Highway Administration, Region 8 Utah Division
7. Valley Camp Coal Company
8. Ron Dutton
9. Mountain Fuel Resources
10. Water and Power Resources Service
11. Martin Schweizer
12. Donald L. Schein
13. A. F. King
14. Getty 0il Company
15. Rex Wells
16. Sierra Club, Utah Chapter
17. State of Utah
18. Southern California Edison Company

1§. Forest Service, U.S. Department of Agriculture
20. Office of Surface Mining
21. Soil Conservation Service
22. National Park Service
23. U.S. Fish and Wildlife Service
24. Environmental Protection Agency
25. Department of Energy

UTAH INTERNATIONAL INC.
salt lake city. utah

## Page 2

We would suggest that :lorth Horn lountain be eliminated from this trade. The Cottonwood and Meetinghouse Canyon tracts will fit logically into the present V.P. \& L. holdings and still allow then access to a large
amount of coal between Huntington Canyon and Joe's Valley.

In the interest of free enterprise operating in an atmosphere of open involving the exchange of land as proposed. involving the exchange of land as proposed.
 tracts listed in alternative two for competitive bidding, or ( 2$)$ a olan that would allow U.P.\& $L$. to develop their PLRA's in the kaiparowits,



## noz มวเinj $5^{\circ} 0$ :ว

Utah International Inc., Salt Lake City, Utah

 the Interior concerning the proposed UP\&L exchange.

Response $1-2$
The North Horn Mountain area has been specifically identified as an exchange tract in the agreement signed by the government and UP\&L. However, the North Horn Mountain tract is included in Alternative two and would
 cussed in the EIS.

UTAH INTERNATIONAL INC. POST OFFICE BOX :5:79 - SALT LAKE CITY, UTAH 84115
SIREET ADQRESS • 20 WEST 2950 SOUTH • (BOI) 487.9641 Novernber 21, 1980
November 21, 1980
Ronald Bolander, EiS Team Leader
Bureau of Land Nanagement 136 East South Temple

Salt Lake City, Utah 84111
FROM: Oonald R. Olsen, Senior Geologist
Utah International Inc.
Salt Lake City, Utah 34115
SUBJECT: Comments on the Uinta-Southwest Utah Oraft
Envirommental Impact Statement, prepared for presentation at
1380 at 7:00 PM

Ay conments are primarily directed to the leasing alternatives offered on pages 45 through 53 of the EIS document

Ve certainly do not begrudge Utah Power \& Light Co. being adequately compensated for their PRLA's in the Kaiparowits aroa if the company is not allowed to develop them because of various government decisions. wisdon of the proposed land exchange listed as alternative three in

We wish to note the significance of trading the Neetinghouse Canyon, Cottonwood and North Horn Mountain tracts as a group to II.P.\& L. The 50 miles of outcrop along the east side of the Wasatch Plateau from within Huntington Canyon on the north, to the south side of North Horn Mountain. Control of the outcrop and the associated lease areas, along with properties already controlled by U.P.\& L. Would give almost exclusive
control of all coal from the outcrop west to joe's Valley to one company.

Put in another way, U.P.\& L. would have the principal right, without averaging 13 miles wide; an area of 220 square miles, more than 6 townships, or plus 140,000 acres.

The principal exceptions to total control are the operations at Trail Mountain, and two small tracts north of Trail Mountain, belonging to Peabody (?). We do not feel that these exceptions will greatly alter

Few if any companies would feel that they were in a position to bid competitively for the land west of リ.P.\& L.'s present and traded lands because of the high expense of access to the deep, underground coal. We ust assume, however that some companies would be interested in a chance to effectively eliminate that opportunity.
North Emery Water Users Association

Elmo, UTAH 84521
October 27, 1980
Office of Surface Mining
Region
1020 15th Street
Denver, COLORADO
Denver, COLORNDO 89202

## Dear Sirs,

Having been directed by the foard of Directurs of the North Enery Water Users
 Carbon Corporation.
The mine would be located in Emery County, Utah with portals in the Northwest Quarter of the Southwest quarter of Section 28, Township 16 South, Range 7 East, Salt Lake Base and Meridian.
North Emery Nater Users Association is a non profit Association providing culinary and domestic livestock water to 632 families living in the North


 spring in a smaller side canyon to the South approximately 1000 feet. See
Attachment $A$ - Location Map.
North Emery Water Users Association in no way wishes to oppose the development of a coal mine in Rilda Canyon. Quite the contrary, we welcome the menters of our Association. Ve feel the new mine will be beneficial to our area.
 that is available. We recognize their right to construct facilities in 632 families have to a steady, uncontaminated source of water. That source of water was developed some 6 years ago by the Association.
We would like to express the concerns that we have in relationship to the
Mr. Ron Bolander
Team Leader
Bureau of Land Management
136 East South Temple
Salt Lake City, UTAH 84111

## November 21, 1980

The North Emery Water Users Association would like to take this opportunity to comment on the
Statement - Coal.
-Our conuments are related to Northwest Carbon Corporations' plans to develope a coal mine in Rilda Canyon.

Enclosed you will find copies of two letters,one adressed to the Office of Public Water Supplies, Utah State Division of Health. We feel these We would appreciate your review of this situation.

Office of Surface Mining
October 27,1980
Page 3


## Office of Surface Mining October 27, 1980 Page 5


Sincerely,
suansoljul

[^5] sources"
Systein.

We are confident that our concerns will be considered by everyone involved.
-Kıàaวu!S


Enclosures
Don Crane - O.S.M.
Cleon Feight - D.O.G.M.
Bill Boley - Manti-LaSal National Forest

$\ddot{u}$

North Emery Water Users Association
P.O. Box 418
EImO. UTAH 84521

October 27, 1980 Larry Miez Public Water Supplies Bureau of Public wate Sivision of Health 150 West North Temple

Salt Lake City, UTAH
Dear Sirs,
North Emery Water Users Association would like to take this opportunity to inform the Department
springs in Rilda Canyon.

Of special concern at this point in time is Northwest Carbon's Hydrologic lonitoring Program. They want to drill a number of hollos be used to install
iezometers to monitor the direction of ground water flow. Some of the holes will be located very close to our collec

We have no firm knowledge of the direction of flow of the source of ground water supplying our springs. of an impermeable layer, drill holes could create a sieve collion pises. Northest Carbon Corporation wants to drill the water monitoring holes this fall to start gathering base wata. This creates an urgency for further study of the situation.

The entire mine development in Rilda Canyon needs to be studied as it relates to our springs and transmission lines.

We feel that the Health Department has the authority to investigate this matter. Ye would appreciate your help and advice in this matter as their drilling program.
North Emery Water Users Association, Elmo, Utah
प7!eวH to uo!s!ntc afezs yean信

 parts 816.41 thru 816.57 of the regulations are in both quantity and quality. Sub-part 816.54 will protect water

 sideration mating measures.

November 17, 1980

We have reviewed the Draft Uintah-Southwestern Utah,
Regional Coal Environmental Impact Statement and we submit
these comments. a. We agree that alternative two should be the
quality ranking coal tracts and appears to offer
water quality and wildife habitat.
b. However, we are concerned about the elk migra-
tion route off East Mountains and North Horn Mountain. E.lk migration could be restricted 40 years by the Also, we are concerned about the impact of a proposed mine mile long conveyor belt would have on elk migration from the summer range to the winter range. Fur
iher consideration should be given to solve the elk
migration problem on the North Horn Tract.
Sincerely,

Sheldon Eppich
President
John O. Wiener, Laramie, Wyoming
Response $4-1$
The National Environmental Policy Act requires that an EIS be prepared
prior to any major Federal action. The proposed exchange is considered to be
Anticipated environmental impacts are identified, analyzed and will be
considered in the decision making process. The DEIS includes an environmental considered in the decision making process. The DEIS includes an environmental
assessment of alternatives involving approval and denial of the proposed exchange. It has never been assumed that the exchange would be allowed. All produced could count against the regional leasing target.
dentified in the coal managent regulations were applied to the tracts, to determine which were suitable for further conthen delineated by the tract delineation team led by the Geological Survey for inclusion in this OEIS. Criteria used as delineating tracts were: (1)
expressions of interest by industry and others and (2) availability of sufficient coal data. Geological Survey determined that the Emery North tract met these criteria

[^6][^7]Dear Mr. Bolancier;

JOHN D. WIENER
ATTORNEY AT LAW 200 NORTH FOURTH
LARAMIE. WYOMING 82070 M2. Non BuLander
Team Leade:- Conl Leasing EIS
Buieau of Land Uonavenent
L36 East Soutin Temple
Salt Lake City, UT 34111 .

Salt Lake City, UT 34111 .
Dear Mr. Bolancier;


In the briefest possible way, then, three outstanding
characteinistics of the EIS are herewith noted.
the UPEL 1) Timing. Dy timing the EIS so as to write it before
 to process PRLAs until after political leasing is accomplished.
comments is not to naively hope to affect purrose in writing
Given BLw's new policy be established through rescarch and reasoning.
certainly DL: working at its best . is therection. Emery North is
 3) Mapping. The map sinowino location which is not critical winter iange. Impiessive a masterpiece of BIM infomativeness: only a crank an is certainly whe existing mines, leases, and PRLAs are in the rerld want to know Broad Canyon, Swis tracts. Especially amusing is fig. 2-1, which omits referred to on p. 17. Coal Co. and Valley Camp operations, which are
mistakes would have been found by a proofreader. misleading items and someone in the office to check for details ader; sugrest you get probaily was left off the map when you pasted two pieces of maps ogether, instead of starting with a fresh one.

John Wiener, Laramie, Wyoming
Response 5-1 The same
Colorado and or ado River s River-Hams F the Colorado Response 5-2
It has not been demonstrated that the $879 \mathrm{mg} / \mathrm{L}$ "standard" would in fact would be added to the Colorado River system as a result of leasing additional coal in the Uinta-Southwestern Utah Region. Combined with the Green River-
 stitute violation, it is believed that the total amount is small enough that a violation of salinity standards would not occur.
Response 5-3

[^8]

 м든든
$\stackrel{y}{\circ}$部
\[

$$
\begin{aligned}
& \text { Dirocicer } \\
& \text { Williomo Aur iov. P. } \\
& \text { Assiantont Direcor } \\
& \text { C.V. Andorson. PE. }
\end{aligned}
$$
\]

究竞离 fresented in the Oraft has been added to the Transportation Section for Alternatives

UTAH OEPARTMENT OF TRANSPORTATION

5
5
5
5
8


086 ＇＇st $^{2 a q u a 30} \mathrm{C}$

## Ir．Don Hook 3urean of Land Maragenent 136 East South Termle Salt Lake City，Utah 84111

This is in response to your telephone conversation with itr．Hen Ridele，
of my staff，on Decenber 3，1980．
The increased travel projected under the four alternatives would gener－
ate from s6，500 to sivi， 000 in increased fuel revenues annually．This revenue
would be sufficient to apply only a niniman surface renailitation treatenent to
one mile of higiway each year where many humdreds of niles are affected．


 pitate the deterioration of nany highways．Impediate attention woudane ins by a
just to retain a tolerable level of service．ithout acditional finand
factor sorewhere between fifty and one himdred tines he rrevious ly nentioned


If you should have any questions，please contact us．
2．R．voster，P．E．
1．R．Jester，P．E．
U．S．DEPARIMENT OF TRANSPORTATION
HBR－UT Mr．Ron Bolander，Team Leader
Bureau of Land Management
136 East South Temple
Salt Lake City，UT 84111
Dear Mr．Bolander：
December 4， 1980 feDERAL highwar admion eight region eight
Utah Division
P．O．Box 11563
Salt Lake City，UT 84147
sime conc oriy, or

$$
\begin{aligned}
& \text { Reference is made to the Uinta-Southwestern Utan Oraft } \\
& \text { Environmental Impact Statement which has been forwarded for } \\
& \text { review and comnent. }
\end{aligned}
$$

While only a cursory reviey has been made，it appears that the statement does not provide any indication result of the additional road user taxes that will accrue as a result of the company increased coar of the highway systen．It is suggested that a
wear and tear
section be added to address the economics of how the highway section be added to address will be maintained or improved．

We appreciate the opportunity to comment on this draft state－
ment．

Sincerely yours，
George W．Bohn
Division Administrator
 should accordingly be adjusted to afford an equal division of the reserves to optimize the recovery of the resource

Conclusions reached from your Draft Environmental Impact Statement suppor
maximizing the size of the Miller Creek tract to mitigate the overall impact of development of the Gordon Creek and Miller Creek tracts. The most sal ient feature in comparative development of the two tracts is the 2 direct loading of coal for shipment on rail facilities at the mine portal Development from the Gordon Creek (eastern) side requires truck transport alone for the Gordon Creek tract (eastern) deve oppuent is projected at ment. The ratio of mine production energy outout to petroleum energy
input for the Gordon Creek tract is indicated at 82.17 , while the ratio
of the Miller Creek tract is indicated at 85.01 . Considering the necess 3 highway truck transport of the Gordon Creek (eastern) production, we feel that these va ines are

Your Draft EIS does not appear to take account of new state highway construction from pleasant ay the connect ing with tata that planned for con4 Struction in 1981. This highway wil1 provide access of Sanpete residents
 the projected mining operations. Approximately $50 \%$ of present pleasant Valley mine employees reside in Sanpete and Utah Counties. With con-
struction of the new highway connection in 1981, the ratio of Sanpete 5 employees will be substantially increased as present Pleasant Valley min operations intend to shift recruitment activities alnost altogether to l.of Pleasant Valley, even with coportunity for local employment.
-Maximized developprent of the Gordon Creek-Miller Creek trasts from the Pleasant Valley side, with employment of Sanpete County residnnts,
viewed as mitigating adverse impact of development of these tracts, with a favorable reduction of employment and infrastructure demand on the Price-tel per, Carbon county area, and favorable expansion of
opportunity of employment, per capita incolie and infrastructure to Sanpete County. Your Draft EIS does not appear to properly reflect the Gordon Creek-Miller Creek tracts from Pleasant Valley.

[^9]
Dear Mr. Bolander:
RE: Draft Uinta-Southwestern Utah Regional
Coal Environmental Impact Statement Impact Statement, and have the following comments to offer
Valley Camp's area of interest in the proposed lease sale contemplated centers around the Gordon Creek and Miller Creek delineated tracts. Our previous comnents in regard to our interests have been included in our
1etters of October 25 1979, February 11, 1980, July 21, 1980, and in the record by our oral presentations at Leasing Teall meetings.

In our letter of July 21, 1980, we indicated our concerns in the delineation of boundaries of the Miller Creek and Gordon Creek tracts.
We reiterate that we feel strongly that the Miller Creek-Gordon Creek tracts, from an economic mining standpoint, must be considered as a mining either from the eastern Gordon Creek side, or the western Pleas Gordon Creek western boundary be extended to the west to afford opportunity of development from the west so that competitive bidding on the tract be inade available to operators with holdings on the west. The
Teail adonted this proposal, with certain conditions, at the April 3 . 1930 meeting. Mowever, instead of extens ion of the Gordon Creek wester boundary, a separate willer Creek tract was delineated for the area of
concern. In our letter of July 21, 1980, we expressed our concern that the inilier Creek tract could not be economically developed with the
 maximum economic recovery of both reserves. We proposed a boundary between the two tracts along the eastern boundary of the wa of sections
11,14 and 23 , T13S, K7E, SLM. With the drilling this past sumner by
 Gordon Creek tract. Also. we understand that drilling has resuited in
 petroleum used at Miller Creek as at Gordon Creek. consumption. Infrastruc-
 ture consumption includes al petroleum ourned workers, capital equipment and mine supply workers, and people who support workers, capital in comunities.

The fact that the Miller Creek tract has been enlarged should not sub-
stantially alter the ratios discussed above.
Response 7-4 New highway from Pleasant Valley to Sanpete Valley was taken The proposed new highway from Pleasant Valley to Sanpete
into account, and is keyed to Point 47 on the transportation base map, Fig. $3-11, \mathrm{p} .109$ of the DEIS. Projected ADT for the various and and $4-12,4-24$ and $4-25$, cremental and cumulative, and $4-50$ and $4-51$, of the DEIS. The actual proportion of pleasant val ey traftant of Transportation projections.

## Response 7-5

 mines has been considered through incorporation of data from the central

 One and Two of the Slaughterhouse Canyon, Tucker Canyon, and Miller Creek tracts based on the influence of the new highway fation increase in Utan employment of Utah County residents relation to current population growth and infrastructure capability.

Response $7-6$ Gordon Creek tract was not analyzed on the basis of pleasant Valley

 substant Miller Creek tract. The effects of development of the Mi previous comment
tire Mille
 ( $7-5$ of this lester)
development assumption. For further information see response $7-2$ of this
letter.

6u! fnuwo to bu!looduen uana do flodsuedz snq to alod le!tuat l-L asuodsay
 relating to the various alternative (o) include your example.

[^10]
## Yours very truly,

## 1250 Hrogues

W. H. Haynes, Jr.
uostain key antarzuasadday :Of Kdoy

## The Valley Camp Coal Company, Helper, Utah

Response 7-1 Moposed Gordon Creek and Miller Creek lease tracts, is a highly complex geologic area which has been confounded by considerable amount of faulting that affects the coal seams developed logical proposals for divisions of the tracts to permit the most efficient mining of the

 in the astment recommended.

Response 7-2 Coal resources on the tract also increased from 26.7 million tons to 43.3 rivion tons of The development scenario for Miller Creek was discussed on pages 17 and 18 of the DEIS. The enlargement of the tract would increase product in the FEIS.

Response 7-3 the Gordon tract of total energy produced to petroleum energy used in direct operations, as shown in the DE1S, is 20,150 billion Btu divided by 75.5 or 267.0 . The same figure for the shorter truck tract with product ion from a por for Gordon Creek is a ratio of 6,250 divided by 14.9, or 419 which haul than for shows considerably lower consumption. Direct operational petroleum consumption for both operations also includes fuel needed to transpont equipment,


 needed.
7 pasnpod

R FER.
I hope that these comnents will prove to be useful in the preparation
of the final statement．Thank you for the opportunity to provide commerits on
the draft ES．

Letter to Mr．Bolander
Finally，given that much of the socioeconomic assessment is driven
by changes in employment and／or population，the above discrepancies would
indicate that the socioeconomics section need to be reconsidered and
clarified to insure that the public and the various governmental agencies
are provided consistent and reliable data on which to base their decisions I hope that these comments will prove to be useful in the preparation $c c:$ Ar．R．Weaver，University of Utah，Burcau of Business and Economic
Research（UPED Model）

Response 8－1 Similar errors were found in relation to Alternatives one and wo，and are

Response
Between May 16， 1980 and the publication of the DEIS several changes were made in Alternatives results reported in the May 16， 1980 technical report（which were projected
using the UPEO Model）．However，we did find an error in the reported employment and population figures for Alternative One．The OEIS should have stated that Alternative One would have generated an additional 3,410 jobs，
resulting in a population increase of 8,115 persons．The errors have been corrected in the FEIS．Similar errors were found in relation to Alternatives
Two and Three，and are corrected in the FEIS． Response 8－3

The above mentioned inconsistencies have been corrected in the FEIS．See
also responses $8-1$ and $8-2$ above．

I have had an opportunity to review the Uinta－Southwestern Utah Draft
Environmental Impact Statement－coal，and the socioeconomic technical report
provided by the socioeconomic contractor．For the most part，I find that the
document is a concise and comprehensive statement dealing with the potential
impacts of increased energy development in the study region．
I am，however，concerned that there are a number of apparent incon－
sistencies in the sections of the document dealing with the employment
requirements and the associated socioeconomic impacts．I feel that it will
be difficult for the resource management agencies and the general public to
accurately consider and assess the various alternatives given these apparent
dataproblems．I have provided several examples of the types of problems
contained in the draft statement．
$\frac{\text { Example } ⿰ ⿰ 三 丨 ⿰ 丨 三 一 灬}{} 1: 1$ Table $2-25 . \operatorname{Pg}$ ． 54 shows that once all of the mines become operational （1987－End of Life）a maximum of 1,058 permanent employees would be
directly employed under alternat ive $\$ 3$ ．However，Table $4-33, \mathrm{Pg}$ ． 193 ， also described as representing alternat ive 非3，shows that a total of 1,541 additional employees would work in the mining sector as a result
of the propsed actions．Since population growth is typically considered to be a function of increased employment，this is a serious discrepancy． Please clarify．
$\frac{\text { Example }{ }^{\text {A }} \text { 2：}}{\text { review of }}$ the contractor＇s sociocconomic support document，dated May 16 ， 1980 ，shows several discrepancies with the data presented in the draft
statement．For example，for alternative $⿰ ⿰ 三 丨 ⿰ 丨 三 ⿻$ that 3,290 additional errployees would be expected in the repion by the
year 2000．The associat populat ion increase under the same scenar io would be 7,807 persons．The draft ES states that under alternative $\# 1$ ， 4，217 additional employees would be needed，resulting in a population changed？Also，how can the additional 927 employees estinated in the Both of these results are referenced to the UPED model．However，unless the alternatives were redefined，or the coefficients of the UPED model
were respecified，I do not believe that hoth results could have heen generated by the UPED model．

 RLC:mt



 this sale. No final information is availatle concerning the time frame for



[^11]

Mr. Ron of Land Management
Bureau of East South Temple
$13 \hbar$ Ealt Lake City Utah 84111
$\begin{aligned} & \text { Re: Uintah-Southwestern i)tah Regional Coal } \\ & \text { Draft Environmental Impact Statement }\end{aligned}$ Impact Statement Dear Mr. Bolander: We have reviewed the referenced DEIS and offer the
following comments:

1
tracts as "medium-low" apparently was without regard to tracts as "medium-low" apparently was without regard to
their potential as coal sources for our proposed plant to convert coal to synthetic fuels. Although the coal quality is lower than wasatch plateau coal; ioe. oontains more elemental form as a part of the overall proces. Furtherelemental form as a part of the overall proces. Further-
more, the plant is to be sited near these tracts so longdistance coal transportation would not be rejuired as Lindicated in your DEIS. We woulr rank these tracts "high"

[ 3-Both the proximity of the Emery tracts to our proposed plant and the fact that much of the coal could be surface-mined could contribute to lower synthetic fuel 3 production costs than we might otherwise incur if cofl were

> 4 - In connection with the ppsi exchange, we would ort the idea of issue bidding rights of egual value to support the idea of issue bidding rights of equal value to
the pRLA's, with these rights to be umb is script for bonus bids in competitive lease sales.
U.S.D.I., Water and Power Resources Service, Salt Lake City, Utah
Response lo-1
The exact tract boundaries are still subject to change as stated on page
S-6 of the DEIS; however, as shown in Figure $2-9$, the North Horn Mountain
tract does extend to within 1 mile of Joes Valley Reservoir. The subsidence
referred to would result from the extraction of underground coal, not the
draining of aquifers; however, subsidence could fracture and drain some
aquifers.
No impacts to Joes Valley Dam and Reservoir from subsidence were pre-
dicted because the distance from potential mining areas and the angle of sub-
sidence effect extending from coal extraction at up to 2 , o00-foot depths would
not result in any direct impacts. Also, the existing fault between the pro-
posed mining area and the reservoir would probably intercept or deflect any
subsidence-caused fracturing.
The protection of Joes Valley Dam and Reservoir would be addressed prior
to approval of a mining plan and actual mining, appropriate stipulations would
be complied with to assure that protection.
Response $10-2$
Accelerated deterioration of the regional highway system is noted on page
227 and is not consistently mentioned elsewhere because the accelerated de-
terioration would be a baseline condition, carrying across all the alterna-
tives. Additional incremental development would add to it, but only slightly.
Consideration could be given to upgrading the road around the west side of the
reservoir, but this option was beyond the scope of the Eis.
$\bigcirc$

United States Department of the Interior wat

P.O. BOX L1560
SALT LARE CITY, UTAII aHA7

State Director, Bureau of Land Management, 136 East South
Temple, Salt Lake City, Utah 84111 , Atrention: Mr. Ron Temple, Salt Lake City, Utah 84111, Atrention: Mr. Ron Bolander, Team Leader

## Regional Director <br> From:


$770 . / 120.1$
Memorandum To:

Subject: Review of the Draft Environmental Statement for the Uinta-
We have revieved the above document for the Water and Power Resources
Service, and find that the proposed coal development project could impact
Water and Power Resources Service lands in Carbon and Emery Counties.
The mining operation on North Horn Mountain appears to extend to within one mile of the southeastern shore of Joes Valley Reservoir. The draft environ-
mental statement refers to possible subsidence occurring because of changes in aquifers. We therefore feel that a seismic analysis related to the
potential impacts of how subsidence could affect the safety of Joes Valley
Dam should be included in the final environmental statement.
Tilighway 96, which crosses Scoficld Dam, would service the Slaughterhouse Canyon, Gordon Creek, Miller Creek, and Tucker Canyon areas creating increased coal production associated traffic. There is already existing heavy traffic the current deteriorating condition of the road and the Scofield Reservoir
spillway bridge.

## $\rightarrow$ Hecelistren $2 a$

 Comnissioner, Attention: 150

le!quazod meet potential would still be per year lower 22 million tons in-place coal based on the RCT's revised assumption as erity to select duration. Lastly, the Secretary of the Interion the tis.
an alternative internediate to those discussed in the
Response 11-2 Emery North and Central tracts and the Hollberg PRLA are located with that Roadless Inventory Unit UT-060-012. On page 124 the DEIS indicates that

 wilderness review.
Because mining development would impair wilderness suitability (as identified on pages 155 and 241 of the DEIS), leasing and surface disturbance

 ify its application to the Utah Cower and $\begin{aligned} & \text { tion to the Emery North and Central tracts and the Hollberg PRLA.) Other } \\ & \text { the "BLM Inten- }\end{aligned}$
 sive widerness
November 1980".
Impacts that would occur to all areas under wilderness review within the
Four-County region from coal-related population increases were addressed in
the DEIS on pages $155,182,200,221,230$ and 241 .

## $\Theta$

## is cemberw,1980

 Brouen of fand Managruent 136 East sonite Toruple did not selat the ulternative (\#1) for ई ै
David L. Schein, Mt. Prospect, Illinois
Response 12-1
Chapter 4 of the OEIS contains the evaluation of the impacts on the water
resource. Starting on page 129 the narrative and table explain the expected
impacts, including potential changes in water quality. These regulations in
regard to the water budget, quality and ownership require stringent protective
measures.
Response 12-2
A sentence in the section you refer to has been changed to read "A bene-
ficial impact of development would be the exposure of fossils for scientific
collection and examination if a paleontologist is present to do so". Reason-
able places to look for fossils would be in spoil piles and inactive portions
of the mine, not areas being actively mined (safety and economics). In the
areas being mined important fossils would undoubtedly be destroyed, but the
fossils are also expected to occur outside tract boundaries.
Response $12-3$
The text has been revised to allow for a "worst case" analysis assuming
that Federal agencies have limited funds with which to protect these lands.
Response $12-4$
The text has been revised to include mining hazards and accident rates
for all alternatives.
Response $12-5$
The definition has been corrected.
$\rightarrow$

5. In Chnpter IV undar Geology, Topogpaphy, it is stalcd Linl
Subcidenice woutd ranige from 90 thiso percane of che arean mined
and that the defth of subsidence wowld be 506090 percence of the conl seams. Considering the fact that utah fomen and light has oven 18,000 neres of corn larad, the tepogpaphy would be more than "'slightly alteped.'

15
$c$
The National Park Service monitoring network include visibility stations
at Dinotaur National Monument, Canyonlands National Park, Capitol Reef Nation-
al Park, and Bryce Canyon National Park, with data collected since 1973 . The
Bth study, with a data base beginning in 1976 , is sited at Cedar Mountain, in
Bthe center of the Castle Valley area addressed in Chapter 3 . The Cedar Moun-
tain data were considered to be more appropriate to use as a determination of
baseline visibility for the area.

Visibility data from the National Park Service network has been added for
the Capitol Reef and Canyonlands National Park (Chapter 3, Air Quality). In
 pacts to Capitol Reef and Canyonlands has been added to the FEIS (Chapter 4,
Air Quality). Response $13-4$

The statement you cite could not be located in Chapter 3 of the DEIS, and
there is no mention of chaining, reseeding, or crested wheatgrass in the
Vegetation section. Potential success of reclamation attempts in the Emery
coal field is discussed under the Reclamation Potential section, and is based
on research specific to those sites. on research specific to those sites.

Chapter 3 discusses the employment and income situation for Garfield
County in total. Chapter 4 identified a downward economic trend only in the communities of Tropic, Henrieville, Cannonville, and Escalante.

Response
Job opportunities resulting from coal development but not directly related to mining activities would be available in retail and wholesale trade,
professional services such as teaching, medicine, law, and government, finance and banking, construction, transportation, communications, and others. In the area of direct mine-related jobs, local people could work as mechanics,
maintenance people, secretaries, and surface equipment operators, as well as some miners.

Response 13-7 demands for funds (through increased infrastructure needs)
 not available to permit projections of the revenue. Unfortunately, data were local government entities in the EIS area. Specifically, projections of new capital investment by commercial and industrial firms moving into the area or
expanding present facilities could not be obtained. This new capital invest-


Another source of local revenue is Federal mineral royalty payments, 50 percent of which are distributed to the States where they originated and, two-thirds of this money goes into the Community. Impact account. This money is then allocated to counties and communities by the Community Impact Board
for specific projects. The other one-third of the mineral royalty monies are used primarily for water system improvements for impacted communities.
 dressed by tax laws, such as allowing companies the pre-payment of property
taxes in order to finance the needed infrastructure.


Ard ENAOLE BLM to MAKE docisions trat nre traely in the beSt
interest of ALL AmQRicans.
I Appreriate the opportunity to comment nind nope that my concerns
DRE Addressed in your Finsh ELS.

$$
\text { Sincerely, }
$$

Cl. 2, juing
284

## A.F. King, Dickinson, N.D.

Response 13-1 is limited to possible development of Utah Power and Light's PRLAs. The situation you refer to is discussed in the exchange agreement. which is located in the appendix of this document. If coal values favor the PRLAs, the possibilcould remain so that development of them would be possible. The DEIS analyzes development of the PRLAs on pages 231 through 244.
Response Unsuitability criterion number 7 was applied to the lands within the Kaiparowits Known Recoverable Coal Resource Area (which includes Utah Power ducted in 1977-78. On the basis of that survey and after consultation with the Utah State Historic Preservation Officer it was determined that no listed
A more detailed cultural resource inventory is scheduled for completion for inclusion to the list, requirements of 43 CFR Part 300 would be followed.
Gety
3 sents a continuation of the objectionable signed to resolve．It is not a desirable wexboxd antzeurafte

[^12] Alternative five is opposed because it will not lead rthermore，the estimates
The assumption that the
will satisfy a real dema
 －6utuooq oq prnom əutu Kıəuヨ 5,
 drive the price of coal upward．


 mit true competition between all interested companies，since



 the Federal Government could anticipate larger bonus bids and to additional ine EIS are in error． Hollberg PRL，if it is processed for coal is somewhat deceiving． a lower quality coal，such as that
,
Leasing Program．Competitive bidding is in the interest of
the public in that it would：
可
e
increase revenues to the state and federal
governments．
かч7 IT pantonut ysṭ ssat yonu sṭ axayt＇ttexano

The other resources will be protected also，because
of the environmentally sound manner in which today＇s mines
assures that only a minimum quantity of land is removed from
the pre－mining use regime． As a general principle we believe that more，rather
than fewer，coal leases should be issued subject always to state and national acreage limitations per each lessee．So minerals on the same lands，which rarely occurs，the coal leases bring revenue to the federal treasury where none would otherwise Moreover，the greater the number of leases issued in such manner， the greater the opportunity for competition among potential
Getty Oil Company opposes the adoption of alternatives
ur，and five for the following reasons： Alternative three is opposed because this
alternative does not provide for competitive bidding．In addition，the implementation would delay coal leasing programs by at leas
2．We oppose alternative four because this or example，th 171.3 mm tons in place is less than $1 / 2$ of the 422 mm leasing target． In addition，these tracts are of limited competitive interest．


 Interior's levels of desired leasing because the "resource"

 the "resource" figures lend a false impression.

Mandated government production targets, even on the broadest national scale, must remain flexible to accommodate free market forces. Oversupplies, or undersupplies, of a costly
commodity like coal must be avoided to stabilize prices, costs and demand. Coal producers depend for their success upon a demonstrated
conditions.

 on the EIS. Wa appreciate your consideratio
 Helge Laursen $\ddot{U}$
Mr. Ron Bolander
086 T '6 メəquəつəવ
In summary, Getty oil Company urges the adoption of either alternatives one or two. Both alternatives would assure the North Horn Mountain tract being placed on a competitive bid attract several bidders. Not only would these alternatives be fairer to all the coal producers, but it would also provide more jobs by private industry, and an increase in annual earnings which would benefit several areas within Emery County. That
would be of considerable help to the state of Utah.
We have additional comments on two subjects addressed
Processing of Preference Right Lease Applications
Getty oil Company has no pending PRLA's, but justice
and fairness demand that existing PRLA's be granted where pre-
 However, issuing qualifying PRLA's will not solve national goals for plentiful coal production in the coming decades.

$$
\text { 's. VTdd butpuad jo abuensst oyf of } X \text { Tdde } 70 u \text { səop } \forall d \exists N
$$

$$
\begin{aligned}
& \text { NERA does not apply to the issuance of pending pRLA } \\
& \text { since SMCRA and other federal acts mandate that no mining oper- } \\
& \text { ations can be initiated without approval of mining plans, etc. } \\
& \text { After ten years of delay, there is no valid reason for further } \\
& \text { delay in issuing PRLA's which meet the pre-l976 reguirements. } \\
& \text { The } 1976 \text { Act should not be applied retroactively to pending } \\
& \text { PRIA's. }
\end{aligned}
$$

The National Coal Production Goal and the D.O.F. Isevels of Leasing
The D.O. E. leasing target levels have always been too
low, mainly for the reason that the parameters used in determining low, mainly for the reason that the parameters used in determining
those levels are not realistic today. rhis is best indicated in the letter of Donald L. Flexnor, Deputy Assistant Attorney General Antitrust Division, United States Department of
to Mr. Edward F. Spang, Nevada State Director, B.L.M., Chairman of to Mr. Edward F. Spang, Nevada state Director,
the Regional Coal Team, which appears in APPENDIX 1 , pages Al-ll

[^13]
Getty Oil Company, Los Angeles, California
Response ${ }^{14-1}$ ald The OEIS makes no assumption as to whether or not the Hollberg PRLA will
satisfy a demand for coal. The OEIS merely considers the environmental consequences of this action. Before the PRLA is issued, the company will have to
make final showing that it will meet commercial quantities before the lease is issued. It is recognized that the economics of the coal in this area will dictate somewhat when or if development of the resource will take place, even
if the leases are issued.
 taken from the Final ES on Oevelopment of Coal Resources in Central Utat which assumes production romeses concludes "Coal reserves under lease by operating companies and under consideration in this statement are ample for $40-50$ years at the projected level
of 24 MIY." Failure to develop the coal as described in that ES would lead to of 24 MTY." Failure to develop the coal as described in that ES would lead to
a shortfall in production as you described. Response 14-2
The Code of Federal Regulations (CFR), Subpart 3430.3-2 states that after the authorized officer shall conduct an environmental analysis of the proposed preference right lease area and prepare an environmental assessment or en-
vironmental impact statement on the application.
 cessing of all preference right lease applications by Oecember 1, 1984.
Response 14-3 its estimates for each propuction region on detailed studies of future coal needs in 39 consumption districts. Preliminary estimates rece ived from
October 1980 are overall about 5 percent below those made in April 1979. However, in the Uinta-Southwestern Utah Coal Region they have increased more than production compared to the 17.3 million tons per year forecast in 1979. The OOI Secretarial Issue Oocument on the final leasing target for this region
will present an analysis of these goals and their relationship to coal dewill present an analysis of these goals and their relationship to coal de-
veloped by mines dependent on Federal leasing by the year 1990. Response 14-4
In calculating the leasing target, an assumption was made as to the aver-
age percent of recoverable coal. The calculation recognizes that only a certain percent of the in-place coal would be recovered. To realize the contribution potential lease tracts could make to the market, each tract is
listed in terms of both resources/recoverable reserves, and annual production in tons.
Rex Wells, Escalante, Utah
Response 15-1 has been deleted in the reference to fish-producing fributaries to the Escalate River.
Response 15-2
On page 238 the DEIS acknowledged that new elementary and secondary schools would be needed in Escalate and Tropic to accommodate the increased
The statement on page 123 has been clarified since it only pertains to
the high school in Escalante.
Response 15-3
 placed in the text with Kodachrome Basin State Reserve. The text has also yon National Recreation Area.
Response $15-5$ that the Escalate River is known nationally for its backpacking
The 1976 data used in Table $3-26$ were taken from the Southern Utah Re-
The 1976 data used in Table $3-26$ were taken from the Southern Utah Re-
gional Coal Environmental Statement prepared by GS in 1979 . That document has been used as a major source for baseline data in this EIS because of its tierreflect the most current data available. Although numbers used in the analysis have changed as a result of the table revision, actual impacts are the
same as identified in the DEIS.
Response 15-6 gional Coal EIS was initiated in 1978. The most current census data would be from the 1980 census, which has not been officially released.
Response 15-7 investments will be made to develop any significant service centers. A few
service facilities will develop but they should be insignificant. The major service facilities will devel to be Panguitch and Cedar City.



## Mr. Ron Bolander Team Leader <br> Team Leader Bureau of Land Management <br> 136 East SJuth Tanple 84111

## Dear Mr. Bolander:

Enslosed are copies of the Utah Chapter Sierra Club comments concerning the
Draft Environmental Statement for the Uinta Southwestern Utah Coal Kegion. The
comments were prepareci by Alan Miller, on Wehalf of the Utah. Chapter Sierra Club. comments were prepare direct future correspondence to:

Alan W. Miller
1272 Hárrison
Selt Jake City, Utah 94102
(801) 467-0544
 Power and Light preference lease rights application. we do not support this transier because of the discrepancy in coal values,

## Please feel free to contact either Alan or myself for details. <br> Znceren <br> Brian Seard <br> Utah Chapter Sierra Club

enclosure
with enclosure:
Anthony Ruckel
Brant Calkin
Response 16-1
 be considered in that review.
Response 16-2 the revised text in Chapter 1, the target is now being expressed in terms of select ing tracks to help meet the 00 E annual productions goals. The DOI leasing target for the EIS Study area, as expressed in terms of annual production,
is 5.5 million tons. Table $2-23$ in the OEIS shows that Alternative One would give an annual production exceeding this figure. Table 2-24 through 2-27 show that Alternative Two, with 4.5 million tons annually, along with the 0.5 mill-
ion tons annual production from the Hollberg PRLA, comes closest to the target. Note that other factors, such as the results of the Regional Coal Team's
tract ranking decisions, contributed to the selection of the preferred alternative.
Response $16-3$
If the UP\&L exchange is not consummated, these tracts would be available for competilive age leased would be decided before the final disposition of the Hollberg
PRLAs.

| November 3, 1980 |  |
| :---: | :---: |
| Mr. Ron Bolander, Team Leader <br> Bureau of Land Management <br> Salt Lake City, Utah 84111 <br> Division of | WELVINT SNITM DIRECTOA OOT WEST ZND SOUTM <br> Seit LaKe citr UTNT © 101 <br> TELEPMCOE OO1:S3357SS. |
| Dear Mr. Bolander: |  |
| As with the previous environmental impact statements Coal, the Uinta - Southwestern Utah Draft fails to de effectively with the area of Paleontological Sensiti | $\begin{aligned} & \text { son Utah } \\ & \text { deal } \\ & \text { ivity. } \end{aligned}$ |
| Paleontology is not a new word for the b.L.m. vocabu am disappointed to see this quantity repeatedly over the Bureau. | ary, so I ooked by |
| At considerable expense my office has made available Bureau and numerous other Federal and State agencies for dealing with paleontological values in Utah. State and Salt Lake District B.L.M. offices have sup ongoing paleontological inventories. | to the guidelines rther, the ported |

[^14]\[

$$
\begin{aligned}
& \text { Sincerely, } \\
& \text { Iames B. Madsen Jr. } \\
& \text { State Paleontologist }
\end{aligned}
$$
\]

James R. Madsen Jr.
State Paleontologist
JHM:rh


Mr. Ron Bolander, Team Leader
Bureau of Land Management
Bureau of Land Management
136 East South Temple
Salt Lake City, Utah 84111
Dear Mr. Bolander:
This letter and its attachments (3) constitute the response Draft Environmental Impact Statement (DEIS) for coal leasing. It is appropriate at this point to outline a portion of the quәшdotərap pue 8utseət โeos pazex so that its resultant impacts are not extreme to our environment, systems or other services to our population. On a statewide pasis, our
 alternative of this round of leasing during the preparation
of the EIS. The Coal Leasing Task Force has recommended of the EIS. The Coal Leasing Task Force has recommended since it is the

It is demonstrated through the analyses of the DEIS that leasing can be dealt with systematically and scientifically. Several state agencies have provided to the Task Force their technical comments with respect to their specific expertise this letter constitute the Utah position on the DEIS, Should you have questions or require further discussion on Coal Leasing Task Force.

## Attachments


stati: of utall


1) D:IVISION OF ENVIRONMENTAL HEALTH

|  |
| :---: |

October 28,
533-610
october 28
Team Leader
136 East South Temple

Dear Mr. Bolander:
The Bureau of Air Quality has the following comments concent (DEIS)
Uinta-southwestern apply throughout
Many of our comments
$4\left[\begin{array}{l}\text { 1. (Table 3-1, page 73) This table should include the source of } \\ \text { the data and indications of the time period over which the data was } \\ \text { collected. }\end{array}\right.$
L- collected.
2. (Page 128) it is stated unped haul roads. The State of
the NAQQS could occur near unpare of air quality standards and will
The committed to the maintenance of air quality sandar not exceeded.
Fugitive Dust Regu.
within $3-4$ months.
[. within 3 - mow were the impacts
0 derived? population
$7\left[\begin{array}{l}\text { 4. (Page 128) Secondary emissions caused by increasing population } \\ \text { activities are not subject to PSD and do not consume increment. }\end{array}\right.$

## state of uian



Mr. Ron Danitels $\left[\begin{array}{l}\text { Page } 96 \text {, Paragraph 4. The American peregrine falcon is a yearlong resident of } \\ \text { the impact area and the Arct1c peregrine falcon 1s a winter resident } \\ \text { (November } 15 \text { through March 15) pere }\end{array}\right.$ (November 15 through March 15). There is an active peregrine aerie in the
San Rafael Desert near the traditional aerie which is located along the San Rafal River. The new aerie produced and fledged two young birds during 1979. The traditional aerie has not been utilized since 1970 . It is bellieved that
the increase in outdor the increase in outdoor recreators exceeded the tolerance limit of birds on
the traditional aerie at that time resulting in abandonment of the site.

Page 96, Paragraph 5. The Division has maintained an active vigilance relative to bald eagle use of Carbon and Emery Counties up to the present. Bald eagles are a winter resident and not merely a visitor. High priority concentration
areas for wintering bald eagles exist in the Desert Lake area, Scofield area,
Joe's Valley area, Gordon Creek area, Hunting Joe's Valley area, Gordon Creek area, Huntington Lake area, Desolation-Grey Canyon area and Green River town area. There are two known roost trees that
have been ranked as being critical to bald eagles. Without doubt other such
roost trees exist, but to date they - roost trees exist, but to date they have not been inventoried

Page 118, Water Resources. We are concerned that while Rock Creek is an inter26 mittent stream, it is also a vital water source for the newly transplanted 26 (11/80) desert bighorn sheep that were placed in the lower part of the vital to this fledgling herd and must be protected.

Page 121, Wildlife. We note that while desert bighorn sheep were isolated on the east side of the colorado River, the Utah DWR has recently successfully National Recreation area and is currently doing the same in Cle Rock Creek rainage this winter.

Continuing on this page, we read that mountain lions are mentioned but not the extremely important cougar predation 12 -year study which is being conducted study. terf

27

## $\infty$

age 135, Paragraph 6. The loss of 198 acres of cropland would not cause 110 the local pheasant population by an average of that number of birds. Croplands are of critical value to pheasants and other wildife forms dependent
upon agricultural habitats, thus any loss of croplands L. direct reduction in the carrying capacity of croplands will result in a

Due to the arid nature of the local area, the maximal use of irrigable lands
and previous losses of pheasant habitat due to demands on the available irrigation water, local agricultural habitats have tural habitat may, in themselves, Aditional losses of snall tracts of agriculthey are addative to past losses and are significant.
tural uses due to change of use for water, the number retired from agricullost will nearly double the 110 pheasants identified for conversion of cropno longer irrigated they soon take on a vegetative character similar in are makeup to the surrounding native vegetation of the cold desert ecological [. $\begin{aligned} & \text { association. Even weeds will not grow unless they are watered due to the } \\ & \text { nature of the soil and climatological characteristics of the area. }\end{aligned}$
$\qquad$
$\infty$


32 Also on page i21, in the right column, paragraph 1. We note in the second
At the end of the section on wildlife, we feel that the statement on

reservoirs and lakes is $r$ ather incomplete. Nunerous water sources exist approximately 1 acre in 11 ze, they are vital for life to the may mal smat Page 123, Tren planning for coal developnent. $\stackrel{\Gamma}{\infty}$ 34 Kalparowitz Plateau. <br> $$
\begin{aligned}
& \text { Mr. Ron Daniels } \\
& \text { December 1, } 1980 \\
& \text { Page 4 } \\
& 31 \begin{array}{l}
\text { Also on page 121, we note the reference to per egrine falcons but virtually no } \\
\text { detail on the numerous bald eagle sightings, not just from Carfleld county } \\
\text { but from the Escalante area itself. Bald eagles migrate into this area } \\
\text { around November each year and leave around Ap11. Roost trees have not been } \\
\text { adequately identified nor have hunting aroas }
\end{array}
\end{aligned}
$$ <br> \section*{1so on page 121, we note the reference to peregrine falcons but virtually no <br> \section*{1so on page 121, we note the reference to peregrine falcons but virtually no but from the Escalante area eagle sightings, not Just from Garfield county but from the Escalante area eagle sightings, not Just from Garfield county around November each year and leave around April. Roost trees have not been around November each year and leave around April. Roost trees have not been <br> <br> ๓} <br> <br> ๓}

> Chapter 4-Environmental Consequences (Note that these comments. where needed. must be carried from alternative to alternative and into the nunavoidable ${ }^{n}$. " short a long term". "irretrievable-irreversible" sections) Alternative 1
$34 \begin{aligned} & \text { that the Boulder/Grover highway is paved. This road is currently under } \\ & \text { contrats and proposals to grade and gravel it but paving will probably not } \\ & \text { be finished for at least five years. }\end{aligned}$

Response 17-19 $\begin{aligned} & \text { Bighorn sheep use areas were deleted from map because no impacts were }\end{aligned}$ predicted. planned transplants would not involve anticipated heavy impact areas and therefore would not be impacted by development associated with the
proposed leasing action.
Response $17-20$
The text has been revised to incorporate this revised estimate.
 additional easing, namely the North morn mountan, locations is not deemed necessary.
Response $17-22$ visited by BLM, U.S. Fish and Wildiffe Service, and Corps of Engineers personnel on a joint field trip. After examining the area it was the trip is on file at BLMs Utah State Office. Other similar habitats in the area were not analyzed because they also would not be affected.
Response $17-23$
The text has been revised to incorporate this information.
Response $17-24$
The text has been revised to include this information.
Response $17-25$
$V$ isitors are defined as species that nest elsewhere. The word "re-

 impacted by the proposed action. Therefore, they were not further identified
in the description of the environment.

Hour concern for water resources in the Rock Creek area are appreciated.
However, no impacts to springs and seeps associated with the Rock Creek drain-
age were identified. Response 17-27
The text has been revised to include this information.
Response 17-28
The text has ben revised to include references to this study.
The Aquarious plateau has the only meaningful and permanent waterfowl use. However, the text has been changed to include a sentence on waterfowl on the Escalante River, its drainages, other intermittent streams, stock ponds,
Response $17-4$
The data source and time period information have been added to the
appropriate tables in the FEIS.
Response 17-5 position of the State of Utah Air Quality Bureau.
Response 17-6 on page 128 of the DEIS the impacts were predicted based on the analysis made of similar mine type, production level, acres of disturbed surface, wind speed, etc. done by Pedco, Radis analysis was considered as a first
 analyses done for BLM by Radian Corporation. These analyses are shown in the
FEIS.

> Response $17-7$ The text has been corrected.
The text has been corrected.
Response $17-8$
The TSP value is taken from a study by Aerovironment (1977) for the De-
velopment of Coal Resources in Central Utah (DOI 1979) and considered existing pollutant sources in addition to new projected scenario sources which the EIS considered. Alternative Five considered this scenario as the no action baseline.
Response 17-9 that would be significantly impacted. This follows CEQ Regulations to refrain
from using encyclopedic descriptions. Therefore, it is not deemed necessary to expand the discussion to include a larger geographic area. OWR's qualitative ranking of wildlife use areas was indirectly used in the development of
information on wildife in projected heavy impact areas.
Response $17-10$ bas been revised to incorporate the use of life zones.
Response $17-11$ The text has been revised to include reference to presence of 25 species
of fish in the region. Response $17-12$
The text has been revised to include herd unit numbers. Response 17-13
Response $17-14$ has been revised to clarify this statement.
The text has been revised to incorporate this conment. Response 17-15
Over obligation of forage for domestic livestock in the area has not been
documented. Some over use may have occurred where drought has limited forage
production.
Response 17-16 identified only for the Manti and Fishlake herds; con-
Impacts are identified only for the Manti and Fishlake herds; con-
sequently only those areas were described.
Response $17-17$ Aspen Aspen-Conifer types as described in this EIS represent the
vegetation types in the Montane ecological association.
The text has been revised to better describe elk winter range in this area.

Response 17-30
Respon
Our reference to Hoffman's report does not state the study was all encompassing, only some of his conclusions were used in the FEIS. The text has been revised to include a reference to the Escalante River drainage as a wintering area for bald eagles

## Response 17-31 <br> Response See respon

Response $17-32$
This change has been made in the text. Response 17-33

The statement referred to addresses fisheries; therefore, other waters on
the Kaiparowits Plateau were not included. A general discussion of water the Kaiparowits Plateau were not included. A general discussion of water
sources on the Plateau is included in the Water Resources section. Response 17-34

The text has been revised to correct this statement.
Response $17-35$
The importance of this habitat and the irreversible loss of it is
noted in the paragraph referred to. If other land is cleared and developed for agriculture "displaced" pheasants may not be permanently lost. The number loss to number of birds that would be affected. It does not account for annual reproduction or total loss that could occur during the life of the
mines. Response

Respons is a good point; however, in this EIS only the cumulative impacts of alternative leasing programs are analyzed. Cumulative impacts of major
actions in the area could be roughly calculated by adding the losses of habitat as described in all EISs that include this area. Non-federal de-
velopment in the area and existing federal leases are considered in the baseline of the FEIS.

Response $17-37$
After further investigation this statement was verified. The paragraph has been deleted and acreage and pheasant loss figures adjusted. Response 17-38
Response paragraph as contained in the DEIS was re-examined and we believe it
The
adequately explains the possible loss or reduced utilization (reduced carrying adequately explains the possible loss or reduced utilization (reduced carrying
capacity) of the habitat.

alysis of proposals is not possible. Upon submission of mining plans for approval, detailed analysis will occur and site specific mitigating measures
stipulated. Response 17-42

A definition of the term "fished out" has been added to the Glossary.

The text has been revised, where appropriate, to include these comments.
Response $17-44$
water. The possible loss of riparian vegetation (17 acres) is and quality of
stated in Table s-56 of the DEIS. The importance of these watering areas to wildlife is Response 17-45
ley FEis would require substantially field as discussed in the Allen-Warner ValNearly 50 acre-feet of water would be required daily to develop the Alton coal field (BLM, 1980) while about 1.2 acre-feet daily would be necessary to de-
velop the PRLAs. As a result, the cone of depression would not be expected to reach 12 feet at 12 miles. Studies in the area have not been completed which draw conclusions regarding long-term impacts of this increased water use.
Therefore only general statenents and conclusions are discussed in the EIS. However, prior to development of the PRLAS, Utah Power and Light would be re-
quired to sufficiently analyze the water resource and mitigate any water loss.

These are standard procedures that would be stipulated in approved mine plans.

Site specific mitigation for any bighorn sheep populations that could
affected would be included as part of an approved mining plan for the area.
Response 17-48
The intent of this regional coal EIS is to identify cumulative regiona
impacts. Since mining plans have not been prepared or submitted detailed
Southern California Edison Company, Rosemead, California at its December 16 , 1980 meeting. The RCT voted to retain the alternatives as described in the DEIS.
Your comment has been noted and will be considered in the decision making
process. As stated on page 9 of the DEIS, the Secretary of the Interior has
the option to select an alternative intermediate to any of the specific alternatives discussed in the EIS.

5

Southern California Edison Company
2244 walnut grove avenue
Rosemead california gitio
December 5,1980

$$
\begin{aligned}
& \text { Mr. Ron Bolander, Team Leader } \\
& \text { Bureau of Land Management }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Bureau of Land Management } \\
& 136 \text { East South Temple } \\
& \text { Salt Lake City, Utah } 84111
\end{aligned}
$$

$$
\begin{array}{ll}
\text { Subject: } & \text { Oraft Uintah - Southwestern Utah Region } \\
\text { Coal Draft Environmental Impact Statement }
\end{array}
$$

Dear Mr. Bolander:

$$
\begin{aligned}
& \text { We have reviewed the subject document as it relates to } \\
& \text { our involvement in the development of a coal based synthetic fuel } \\
& \text { plant in the Emery Utah area. As such, we would like to have the } \\
& \text { Emery North and the Emery Central tracts included within the pre- } \\
& \text { ferred alternative. The reasoning for including these tracts is } \\
& \text { that: } \\
& \text { 1. This coal, while containing higher amounts of sulfur, is } \\
& \text { well suited as a feedstock for a coal conversion process } \\
& \text { which can readily recover and reduce, to elemental form, } \\
& \text { the sulfur contained within the coal. } \\
& \text { 2. These coal sources are in the immediate area of the pro- } \\
& \text { posed conversion facility which would lessen the environ- } \\
& \text { mental impact and cost of transporting other coal feed- } \\
& \text { stock from additional sources. } \\
& \text { Much of the coal from the Emery North Tract (l3, 560, 000 } \\
& \text { tons) could be recovered by surface mining techniques which } \\
& \text { would provide coal to meet the future feedstock demand at } \\
& \text { a lower cost. }
\end{aligned}
$$


Table of Contents - somewhat confusing.

L Lhis point the INTRODUCTION starts again.
$5\left[\begin{array}{l}\text { On page xii all page numbers should have a nrefix. "List of preparers" } \\ \text { is listed as page } 1 \text {; it should be } L P-1 \text {, etc. }\end{array}\right.$ - Pages S1 and S2
Description of alternatives are not consistent with later description.
Example - Alternative 1 should state that UP\&l e\%change is approved and
3 tracts are not available for leasing.
Alternative 2 should state that UP\&L exchange is not approved.
These tracts would not be affected for conpetitive sale until they have
been eliminated from consideration for exchange. Does this statement hold true only for this alternative or for all alternatives? This is not our understanding or our agreement. We agreed to go forth with competitive Lleasing, but not to withdraw these tracts.

8 Statement (2) says our objective of alternative 3 is to lease sufficient



LUP\&L to receive bidding rights of equal value. is this something new? - Page 50
$9\left[\begin{array}{l}\text { Page } 59 \\ \text { Does not }\end{array}\right.$
9 Does not consider traffic increase on llighway 30 in alternatives 1 and 2. $10\left[\begin{array}{l}\text { Page } 61 \\ \text { Mitigation Measures } \\ \text { in - The people who do archeology work on Forest Lands for private } \\ \text { industry have to be on a list approved by Forest Service (all Forest } \\ \text { Service tracts). } \\ \text { \#5 and \#6 - The lessee on Forest Land is required to have a subsidence } \\ \text { and hydrologic monitoring plan approved by the Forest Service. Wildife } \\ \text { needs to bed to \#S (all Forest Service tracts). } \\ \text { "17 - What is the relationship of coal fires to road location and stream } \\ \text { pollion? }\end{array}\right.$ $10\left[\begin{array}{l}\text { Page } 61 \\ \text { Mitigation Measures } \\ \text { in - The people who do archeology work on Forest Lands for private } \\ \text { industry have to be on a list approved by Forest Service (all Forest } \\ \text { Service tracts). } \\ \text { \#5 and \#6 - The lessee on Forest Land is required to have a subsidence } \\ \text { and hydrologic monitoring plan approved by the Forest Service. Wildife } \\ \text { needs to bed to \#S (all Forest Service tracts). } \\ \text { "17 - What is the relationship of coal fires to road location and stream } \\ \text { pollion? }\end{array}\right.$ $10\left[\begin{array}{l}\text { Page } 61 \\ \text { Mitigation Measures } \\ \text { in - The people who do archeology work on Forest Lands for private } \\ \text { industry have to be on a list approved by Forest Service (all Forest } \\ \text { Service tracts). } \\ \text { \#5 and \#6 - The lessee on Forest Land is required to have a subsidence } \\ \text { and hydrologic monitoring plan approved by the Forest Service. Wildife } \\ \text { needs to bed to \#S (all Forest Service tracts). } \\ \text { "17 - What is the relationship of coal fires to road location and stream } \\ \text { pollion? }\end{array}\right.$ $10\left[\begin{array}{l}\text { Page } 61 \\ \text { Mitigation Measures } \\ \text { in - The people who do archeology work on Forest Lands for private } \\ \text { industry have to be on a list approved by Forest Service (all Forest } \\ \text { Service tracts). } \\ \text { \#5 and \#6 - The lessee on Forest Land is required to have a subsidence } \\ \text { and hydrologic monitoring plan approved by the Forest Service. Wildife } \\ \text { needs to bed to \#S (all Forest Service tracts). } \\ \text { "17 - What is the relationship of coal fires to road location and stream } \\ \text { pollion? }\end{array}\right.$ $10\left[\begin{array}{l}\text { Page } 61 \\ \text { Mitigation Measures } \\ \text { in - The people who do archeology work on Forest Lands for private } \\ \text { industry have to be on a list approved by Forest Service (all Forest } \\ \text { Service tracts). } \\ \text { \#5 and \#6 - The lessee on Forest Land is required to have a subsidence } \\ \text { and hydrologic monitoring plan approved by the Forest Service. Wildife } \\ \text { needs to bed to \#S (all Forest Service tracts). } \\ \text { "17 - What is the relationship of coal fires to road location and stream } \\ \text { pollion? }\end{array}\right.$ $10\left[\begin{array}{l}\text { Page } 61 \\ \text { Mitigation Measures } \\ \text { in - The people who do archeology work on Forest Lands for private } \\ \text { industry have to be on a list approved by Forest Service (all Forest } \\ \text { Service tracts). } \\ \text { \#5 and \#6 - The lessee on Forest Land is required to have a subsidence } \\ \text { and hydrologic monitoring plan approved by the Forest Service. Wildife } \\ \text { needs to bed to \#S (all Forest Service tracts). } \\ \text { "17 - What is the relationship of coal fires to road location and stream } \\ \text { pollion? }\end{array}\right.$

( $)$



17. Visual Mality objectlves will be considered lif the selection and
$\sim$

where adequate soil exists, provide natural protection from erosion on
these slopes, however, if these sites are disturbed, the potential for
erosion and sediment production is high. Assuming that soil losses would
be low because the natural sediment production is moderately low is an
inadequate analysis. The cover factor is of prime inportance for these
interpretations. interpretations.

22 "Significant plant fossils... could be destroyed" - change to... probably also occur. Page 134

The use of native species for reclamation has the highest potentinl for
reclamation success?
Studies on Manti-LaSal National Forest showed an increase in production
of air dry forage of $403 \mathrm{lbs} / \mathrm{ac}$ following chaining and seeding of
Pinvould Pinyou-Juniper sites.

These sites were not secded with native grasses. However, native grasses dominate the sites or make up the major purtion of the forage produced. The primary objective should be stabilization and rehabilitation, as the native species will eventually return.

Page 134 (and other places where vegetation is discussed)



[^15]but critical to 40 percent of the wildlife.
Tage 151 Rut critical to 40 percent of the wildlife.
? age 151

~
 erosion on

|  | $\left[\begin{array}{l}\text { Page } 246 \\ \text { Under "MLETINGHOUSE" and "RILDA" reference is made to "National Forest } \\ \text { Service land." This should be either National Forest Jand, National } \\ \text { Forest land administered by the Forest Service, or public land administered } \\ \text { by the Forest Service. }\end{array}\right.$ |
| :---: | :---: |
|  | $\left[\begin{array}{l}\underline{A B B-1} \\ \text { EMRIA should be, Energy Minerals Rehabilitation Inventory and Analysis. }\end{array}\right.$ |
|  | 1. Public comments indicate that the socio-economic sections should be reconsidered and reevaluated. Southeastern Utah Coal Develops 1980 prepared by the Southeastern Utah Association of Covernments should be luoked at. |
| 35 | 2. There are several major problems associated with leasing the North Horn Tract. <br> A. Time of leasing - Due to the failure of the Ceological Survey to complete the drilling program during the past two years, a large portion of the area cannot be defined as required. In sifite of the high priority assigned to this area, only three of the 13 holes were completed. The fact insisted upon by the Forest Service is to consider the North Horn area in total. We feel it is essential to complete the drilling, estimate the mineable coal amount and area, and determine logical mining unit(s) and conceptual mine plan(s) which fully consider and include environmental, economic, and other necessary factors. Completing this total process is even more essential because we now recognize that mineable coal exists in the South llorn area. There will be some delay from the projected lease date of 1981 , it could be from one to several years from now. When the above mentioned requirements are met, the North Horn area will be available for leasing. be it one. The Forest Service requests that this be incorporated into the DE1S. It will also affect Alternative 1,2 and 3. |
| 36 | B. Utah Power and Light Exchange - There is recent information which suggests that the proposed exchange will most likely not take place. This would eliminate Alternative 3 which was specifically set up to handle the exchange. In light of this recent development, Alternative 3 should be reevaluated to determine if it should be included in the DEIS. |

> Iraffic increases due to additional leasing will redace the level of
service afforded by the existing Forest highway system. In most cases the service aftorded by the existing Forest highway system. In most cases the percentage of truck traffic and limited passing opportunities. The leve of service will approach unstable flow or forced flow at decrease speed with the additional at grade intersection and increased congestion.

> The service level on Highway 31 would be the first to be impacted. The The service level on Highway 31 would be the first to be inpacted.
sectinn below the Forest boundary is carrying the design or desirable traffic flow now. The design and desirable service level is 1100 vehicles
per dav, while the 1978 traffic count was 1130 vehicles per dav, Under the alternatives recommended, traffic could increase 2668 vehicles per day or approximately $58 \%$ of the maximam capacity of 5500 velicles per

> Additional developinent of existing lease and additional leasing, within
the Forest houndary served by Highway 31 , is expected. The percentage of the Forest houndary served is expected to increase as is overall traffic from this development. The total traffic could reach or exceed the maximum
capacity of the existing road.

Wisual resources has the same problem as page 156.
~

## rage 205

 "The loss of productivity on 127 acres would be permanent due to occupationhy housing and support factlities for future populations in the region."

This is a typical statement on soil impacts related to housing and support This is a typical statenent on soil impacts related to housing and support
facilities. This does not compare with the statement on page 224 which says that ". . about 650 acres, half of the community development, may lose productivity permanently because of occupation by structures or hard
surface"? Is one-half of the area needed for community development? This is based on the promise that lawns, gardens, trees, and shrubs will be
established on some of the lands disturbed for comnunity development. Page 225
®
"lf a paleontologist is present to do so," should be added to paragraph
four.

The possibility of satisfying the exchange through coal lease bidding
rights is mentioned as one of three possible scenarios for implementation of
the exchange. This is mentioned on page 67 of the DEIS.
EI-6I asuodsay

 for plant growth.

As stated in paragraph 4, page 129 of the DEIS "Soil loss through erosion is dependent on the soil's physical characteristics, degree of slope, length
of slope, climatic conditions during soil exposure and the effectiveness of
 might be implemented.

Portals may have to be placed on steep, rocky slopes but the major sur-
face facilities could be placed on more level areas.
 SI-6I asuodsay

The text has been revised as suggested.
Response 19-17
 Environment.

Response 19-18 Response 19-19
These campgr
These campgrounds were inadvertently omitted. The text has been revised
to include them.
Response ${ }^{19-2 D}$ Kaiparowits Plateau area were compiled from a general soils map of Utah and a Bureau of Land Management watershed inventory. This general permit prediction of impacts to soil components or associations. Therefore, a description of soil differences as you suggested is not warranted.
 The Manti-LaSal Forest Supervisor's Office supplied the BLM with Site
Specific EAs for the tracts located on the Forest. The soils data in these

 the Forest Soil Scient ist was not contacted, but again this was due to the
data that were found in the site specific EAs.

 ity locations are not known.
 sediment production is moderately ow
comment and the text has been changed.

Response $19-22$.
The text has been revised as suggested


U.S.D.A., Forest Service, Ogden, Utah

Response 19-1
The surface ownership is identified in the narrative discussion for each
tract instead of being dupl icated in Table 1-1. The assignment of tracts to
alternatives is shown in Table 2-22.
Response 19-2
The current status of the UP\&L exchange is included in this FEIS; how-
ever. no final decision has been made by the Department of the Interior on
this exchange at the time of printing. (The recomnendation mentioned is that
of GS, based on the evaluation of the offered and selected lands.) A decision
on the proposed exchange will be made by December 1, 1981.
Response ${ }^{19-3}$. The past situation of the impacted communities and counties is discussed
in Chapter 3 of the DEIS. Positive benefits of additional leasing such as in-
creased employment, annual earnings, and services are discussed in Chapter 4 .
Response 19-4 Kaiparowits Plateau introduces the section on the affected environment for the Kaiparowits Plateau. The Introduction was purposely
placed to provide needed introductory material before describing the affected placed to provide needed introductory material before describing the affected
environment. Text and Table of Contents have been revised to indicate a subheading for the Wasatch Plateau.

The intent on page xii is to show the total number of pages for each set
of documents in the appendix.
Response 19-6 the coal leasing alternatives (Alternatives Dne through Four) is not dependent upon approval or denial of the proposed UP\&L exchange. The leasing until the exchange issue has been decided.

Response 19-7 of three possible scenarios available for implementing the proposed exchange as provided for in 43 CFR 3435.1.

Response 19-8 page 5D. Alternative Three was structured to satisfy two basic objectives: (1) to consider those tracts that have been identified for the proposed UP\&L exchange, and (2) to lease sufficient tonnages of coal to
meet the 322 million ton leasing target. As stated on page $\mathrm{S}-2$ this alternative considers impacts associated with the tracts included in the exchange. towever, it is assumed that impacts associated with omplementation be similiar whether or not it is considered as part of the exchange.

Response 19-9 This reference is not clear. No U.S. or State Highway
the text. Current highway mafs of the area do not show a Highway 30 .

Response $19-10$ mere revised, where appropriate, to correct the mitigation Response 19-10
The text
measures.

Response 19-11 where appropriate to the proposed acThe suggested mitigating measures, where appropriate to The mitigating
tion, have been added to the Mitigating Measures section. The miteral measures listed were not intended to include those general items covered by
law, regulations, or standard operating procedures. Response 19-12
esponse The UP\&L exchange agreement provides for processing of the exchange in various phases. Phase 1 is to consider the potential for an exchange of
if rights involving three tracts on the Wasatch Plateau. If for some reason the coal in these tracts did not satisfy the rights and the vald be considered. The information on values (that we are aware of to this point in time) indicates


Response $19-24$
The loss of riparian vegetation on-and off-tract as shown in Table 4-2 of
The loss of riparian vegetation on-and off-tract as shown in Table 4-2 of
the DEIS is related to disturbance for mining facilities, roads, and urban devarian vegetation, are not well doculiented; therefore, no loss of riparian vegetation due to subsidence was predicted. The importance of riparian habitat to wildlife is recognized in the DEIS.

## Response 19-25

 addresses impacts resulting from increased traffic on a regional basis.
Tables $4-12$ and $4-25$ in the DEIS also depict anticipated annual average daily Tables $4-12$ and $4-25$ in the DEIS also depict ant icipated annual average daily
traffic that would result from implementation of Alternatives Dne and Two
which contain the Rilda Canyon tract.
mid facilary facilities within the A-5 portion of Huntington Canyon (Unit A-5 is a visual corHighway 31). Therefore, the analysis given in the DEIS that development of the Rilda Canyon tract would not significantly impact visual resource values

Response The text has been revised to indicate long-term effects on paleontological resources.

Response 19-28
Response
Paragraphs one and three of this comment have been edited and placed in the text. The figures used in the DE15 regarding travel on highway 31 west of eration with the Utah Department of Transportation. These figures while
different than the ones you use can be documented and are used in the FEIS. Response 19-29

See Response 19-26 above.
Response 19-30
Response 19-30
The analys
The analysis on page 205 of the DEIS assumes loss of natural or agricul-
tural productivity for lands ofcupied for housing or support faciilities. The statement on page 224 is part of a summary of impacts from the EIS prepared by
GS for coal development in the Central Region of Utah. Their assumption was that half of all lands used for community development would be occupied by structures or hard surface.

Response
The text

## Response $19-33$ The text has been revised.

 Response 19-34A meeting was held on December 11, 198D with representatives of the
Southeastern Utah ADG and the Emery County Commission to consider their com ments and determine ways to improve the socioeconomic analysis their comther socioeconomic comments have been submitted and responded to. Text Response 19-35

Due to various problems associated with the GS drilling program on the season of 1980 as was previously planned. The progress that was made will lend itself considerably towards completing the program in the 1981 field sea-
son. The Regional Coal Team in their meeting of December 16,1980 , recognized this problem and took steps in preliminary lease sale scheduling to delay tract offering until February, 1982. The tract offered for lease will be we do not anticipate any need to adjust the ranking of the North Horn tract or Response 19-36

No decision had been made relative to the proposed UP\&L exchange at the in Alternative Three. This alternative describes a potential level of development which could be satisfied either through competitive leasing or by
 Ldepict existing, undeveloped leases.
Chapter 2:
$4\left[\begin{array}{l}\text { Page } 13 \text { - How do the alternatives relate to existing production in terms of } \\ \text { meeting production gonls? }\end{array}\right.$ Chapter 3

Page 77 - A statement addressing possible alluvial valley floor (AVF) status



6 Page 77 - The serious deficiency in spring and secp data on the Wasateh 6 Plateau decrenses the accuracy of impact assessment not only for wnter resources but for other resources, such as wildlife, as well.
-Page 85 - Does the Blackhawk fornation in the Slaughterhouse Canyon trnct
contain known significant palcontological resources? What is the datn base contain known significant palcontological resources? What is the dath base
for fossils; i.e., literature, percentage inventory?

Page 89 - The restricted threatened and endangered plants section should have some discussion of Astrngalus subcincreus var. basalticus, A.
and possibly Sclerocactus wrightii to indicate that these species
have been and possibly Sclerocactus wrightii to indicate that these species have been
considered.

Pages $94,95,97$ - The maps on these pages are very hard to decipher. Certain Limportant ranges are for particular species.

Page 99 - The lack of reference to native fisheries should be corrected. 10 Game fish do not occupy a higher or more important slot than native fish. In native fisheries.

Unitud States Department of the Interior

Vemoranduin
Director, Bureau of Lnnd Manngement
Director, Office of Surface Mining
Subject: $\begin{aligned} & \text { Review of Draft Uinta-Southwestern Utah Regional Coal Environmental } \\ & \text { lmpact Statcment }\end{aligned}$
The Office of Surface bining has reviewed the above docuinent and we have the
altached specific comments for trnnsmittal to your Salt Lake City office for
considerntion in preparing the final environmental statement.

Enclosures


 coverable by surface methods and 2977.62 million tons are rencoverable by

 million tons by underground methods (USDI, 1979). This information has been
The need for leasing was based on the leasing target developed by the Regional Coal Team. The basis for and methodology used to develop the target is
presented in Appendix 1. The specific figures suggested for inclusion are found on page Al-7 of the DEIS.
Response new base map has been prepared and included in the FEIS. It depicts
A nexisting leases, PRLAs, proposed lease tracts, and existing mines.
Response $20-J$ map has been added in the FEIS that shows existing Federal leases, PRLAs and proposed lease tracts. The relation of proposed lease tracts to ex-
isting operations is discussed in the description of the alternatives. Response 20-4
Most of the required production increase is expected to come from ex-
isting leases and fee land. The preferred alternative, if adopted, would meet
 could be met by future lease sales including tracts outside the area included
in this EIS.
Response 20-5 Cree was evaluated by BM for both alluvial valley floor and
 loodplain has been ident that and appropriate protective stipulations de-
veloped. It was determined that no alluvial valley floors exist in the area
 Response 20-6
East Mountain area by GS and Utah Power and Light personnel in 1979. One
 the Wasatch Plateau has been inventoried in a much more general manner. This
information is available at the Forest Service office in Price, Utah. It is

Response 20-7
There has not been a thorough and extensive paleontological survey con-
ducted on the Blackhawk Formation; however, there have been some indepen-
dent studies which indicate what type and kind of fossils are expected to be
found in the BBackhawk Formation. References were included on paee 85 of the
DEIS. There is no reason to believe the fossil content of this formation in
the Slaughterhouse Canyon tract is different from the rest of the Blackhawk
Formation on the other tracts.




The text makes these points: (1) less than 1 percent of irrigated crop-
land would be lost; (2) this would be mainly high quality cropland; (3) high
quality cropland is only a small percentage of total cropland. This builds a
case for the small amount of lost land to be a significant loss because of its quality and scarcity.
Cumulative impacts of coal leasing plus baseline development may be ob-
tained by combining the impacts of the alternative being considered to the impacts identified in Alternative Five which is a projected baseline without retired) Table 4-5 shows for the year 2000 a baseline loss of 577 acres in Carbon and Emery Counties and an additional loss from the high level leasing
alternative (Alternative One) of 302 acres for a "cumulative" total of 879 acres or about 1.3 percent of the two-county total irrigated cropland.
Response 20-20 All is as is stated on 83 of the DEIS. The willingness of people to sell or lease their water rights to the coal industry water is in the area to accommodate the anticipated increased consumptive use.
Response $20-21$
For analysis purposes assumptions were made (page 127 of DEIS) to facilitate prediction of impacts. Since impacts beyond the life of the mine are not tial for additional mining and industrial growth in the region, the population growth associated with this proposal would not be reversed.
Response 20-22 Service has proposed mitigation measures to protect elk winter
 those leases where the Forest Service is the surface manager. The Utah Division of Wildlife Resources has adjusted their figures on
moose range (reduced from 983,000 acres to 981,130 acres) and potential pop-
ulation for the area $(2,000$ to 487$)$. In the light of these changes, the disulation for the area $(2,000$ to 487$)$. In the light of these changes, the dis-
placement of moose predicted in this EIS may not be significant in the near
 habitat utilized by moose.
247 pue dial $\varepsilon$ \&Z-02 asuodsay
 tion in Huntington. This would translate to an annual growth rate of 1 pertion in Huntington. This

## Response $20-9$ refred to have been revised to make them more legible.

Response $20-10$
The text has been revised to include native fish. Response 20-11
The FEIS has been revised to incorporate the November 1980 decision on
Wilderness Study Areas (WSAs) in Utah. It should be noted, however, that the
actual number of WSAs in the Four-County region and in Garfield County will
not be final until all official protests and appeals have been resolved.

Response 20-12 Existing Environment includes mines currently in
production. Chapter 4. Environmental Consequences, Alternative Five, discusses impacts of current mining operations and those planned on existing through the year 1990 .

## $\begin{aligned} & \text { Response } 20-13 \\ & \text { See response } 20-12 \text { above. }\end{aligned}$

Response $20-14$
PSD permit
PSD permits for major emitting facilities are presently issued on first
come-first served basis by EPA. Suspended particulates from fugitive dusts come-first served basis by EPA. Suspended particulates from fugitive fallions. It is doubtful that $\mathrm{SO}_{2}$ and TSP emissions from underground mine operations
would be sufficient to fall into a major emitting category. Construction permits are also issued by the State Air Quality Bureau on a first come-first served basis. The construction permit would require best available control technology and insure that secondary NAAQS are complied with. Therefore, it
does not appear that either of these processes would affect the probability of new mining.

Response $20-15$, the leases discussed is low when compared to water demands that would result from increased populations the amount of water used by these mines would affect the regional water table because of the low use of water anticipated to support new mine dearea.

Response 20-16 the DEIS, co-mingling of water is referenced by the statement "perched water would probably drain through the rubble down to the working level of the mine."

Response 20-17 The 282.9 (not 288.3) million tons of unrecoverable coal in the wasatch Plateau represents approximately 60 percent of the total occur on tracts located in the Wasatch Plateau KRCRA.

Coal tonnages listed for the three Emery tracts have been reevaluated and adjusted. The definitions are listed in the Glossary.

Response 20-18
Response The sentence has been changed from "would most likely not occur" to
"could also occur".
U.S.D.A., Soil Conservation Service, Salt Lake City, Utah
Response 21-1
The text has been revised to state that some prime farmland could be in-
cluded in the retired and converted acreage. Where and how much prime land
could be included cannot be identified since it would be possible to avoid
such acreage with wise planning.
Response 21-2
Concerning agriculture lands retired due to lack of water the text has
been revised to include: Acreage retired for lack of irrigation water could be
retained as productive agricultural land by using a rest-rotation pattern that
would grow irrigated crops on a bi-yearly basis, alternating with acreage for
which water is available.
Since these are private lands the future use and care of the affected
lands would be at the discretion of the individual landowners.
Response 21-3 migating measures that would become stipulations for granting of leases
Mitigat
include measures to control erosion during disturbance (see Mitigating Meas-
ures 7 , lo, and 18). See also Erosion and Sediment section page 132 of the
DEIS for regulations pertaining to erosion on disturbed areas. Specific
erosion control methods would be part of the mine plan submitted prior to mine
development and will be in accordance with all applicable State and Federal
regulations.


$$
\begin{aligned}
& \text { This conflicts with the original premise of the Regional coal } \\
& \text { to restrict the } 1981 \text { leasing to the Wasatch Plateau-Emery area. }
\end{aligned}
$$

[^16]We appreciate having the opportunity to review and comment on this document.
 6i/Richard A. Strait

$$
6
$$ 1', Richard A. Stralt

consequences

This conflicts with the original premise of the Regional coal Teain, which was
to restrict the 1981 leasing to the Wasatch Plateau-Einery area.
$7 \begin{aligned} & \text { Page 67, right-hand column - Decision on Utah Power and Light exchange must b } \\ & \text { made by December } 1,1981 \text {. This will iapact the leasing process which is to b } \\ & \text { initiated in July, } 1981 \text {. }\end{aligned}$

$$
-
$$

- 

ะ

United States Department of the Interior
L7621 (ROR)PC



## Team Leader, Utah State Office, Bureau of Land Management,

Memorandum

$$
\begin{aligned}
& \text { From: } \begin{array}{l}
\text { issociate Reglonal Director, Planning and Resource Preservation, } \\
\text { Rocky Nountain Region }
\end{array} \\
& \text { Subject: Review of Draft Uinta-Southwestern Utah Coal Environmental Impact } \\
& \text { Statement (DEiS) }
\end{aligned}
$$

$$
2\left[\begin{array}{l}
\text { prupused lease tracts and the detailed maps (Eigures } 1-4,2-1,2-6,2-9 \text { and } \\
2 \rightarrow 12 \text { ) do not provide a basis for locating the tracts on the regional map. }
\end{array}\right.
$$

$$
2 \text { [thp presentation is weak. The only regional map (page 5) does not show the }
$$

$$
\begin{aligned}
& \text { The air quality impact section is also weak. As the report states, no } \\
& \text { modeling was performed to estimate impacts. Riather, approximations from }
\end{aligned}
$$

$$
\begin{aligned}
& \text { modeling was performed to estimate impacts. Rather, approximations from } \\
& \text { me }
\end{aligned}
$$

$$
\begin{aligned}
& \text { other studies were used (page 128). However, the DEIS does not present the } \\
& \text { ots it }
\end{aligned}
$$

$$
\begin{aligned}
& \text { numbers which were estinated using these approximations. } \\
& \text { tu use only data from previous scudies without an explanation of why those }
\end{aligned}
$$

$$
\begin{aligned}
& \text { tu use only data from previous studies without an expranacion } \\
& \text { stuclies are applicable here. This section deserves more detailed analysis }
\end{aligned}
$$

$$
\left[\begin{array}{l}
\text { sculles are appi } \\
\text { and discussion. }
\end{array}\right.
$$

$4 \begin{aligned} & \text { No real analysis of the impact on visibility in Class I areas such as } \\ & \text { Capitol Reef National Park or Canyonlands iNational Park has been performed. } \\ & \text { We recommend a more detailed discussion of the regional air quality effects }\end{aligned}$ We recomend a more detailed discussion of the regional air quality effects
of this proposal with the existing and future proposals for mine and coal Lreatment/use in the area.

The inclusion of the Utah Power and Light Company preferential rights exchange complicates the environmental statement. Two alternatives on the Utah Power
and Light PRLA allow for either exchange or no exchange which requires a
Response 22-8


 perce Bryce Point to Navajo Mountain Vista with no effect on other vistas in the study area. It is not certain what contribution the PRLA would have to this
total impact but it was assumed to be small. The text has been modified to reflect this uncertainty.
Response 22-9 ignated scenic corridor along Interstate-70. Surface mining operations would visual conflicts within the corridor, the Geological survey determined that the coal could be economically mined from the tract by underground methods, although the amount of coal recovered would be approximately 5 million tons
less.
U.S.D.1., National Park Service, Denver, Colorado
Response 22-1
As discussed on page 50, of the DEIS, Alternative Two is preferred be-
cause it would allow flexibility in meeting the established leasing target.
It also offers clearly competitive potential leases as well as tracts that
would benefit existing operations. The text in Chapter 1 has been expanded to fully discuss the target and its relationship to the alternatives.
Response 22-2 depicts existing Federal leases, PRLAs and the proposed lease tracts in Utah. Response 22-3
Response 22-3
As indicated on page 128, the DE1S related the analysis made of similar
mine type, product ion levels, areas of disturbed surface, wind speeds, etc. in
 Hams Fork EIS (DOI 1980). It is true that this type of analysis is less than
desirable and was considered as a first approximation. The FEIS has refined desirable and was considered as a first approximation. The FEIS has refined
and strengthened the analysis by addition of specific analyses done for $8 L \mathrm{M}$ by Radian Corp.
Response 22-4 ailed discussion of regional air quality effects on air quality and visibility impacts to Canyonlands and Capitol Reef National Park has been included in the FEIS using analyses that have been completed since the
The vistas studied were selected after consultation with the NP air quality group in Denver.
Response ${ }^{22-5}$ This statement is generally true; however, the intent of the Federal Coal Management Program is concerned with the competitive leasing of coal whereas the processing and issuance of PRLAs is just one part of the overall program competitive coal leasing. The Federal Coal Regulations state that as a matter of policy, the Department of the Interior shall complete processing of all
preference right lease applications by December 1, 1984. Furthermore, failure preferense right lease appolications by December 1, 1984 . Furthermore, failure approval of Utah Power and Light's PRLAs on the Kaiparowits Plateau. Pro-
cessing of the PRLAs would be conducted in accordance with existing laws and regulations.
Response 22-6
The text has been changed to include the office of Surface Mining (OSM)
as being represented on the team as an ex-officio member. Response 22-7
The decision on the UP\&L exchange must be made by December 1, 1981 ac-
cording to the agreement signed by the parties involved (Appendix 2). It is hoped that a decision on the exchange can be made before that time to allow
the lease sales, if any, to proceed on the three tracts involved if the exthe lease sales, if any,
change is not consummated.
United States Department of the Interior $\qquad$

December 11,1980
HETMORAIIDUM $\begin{array}{ll}\text { T0: } & \begin{array}{l}\text { Director, Bureau of Land Managenent } \\ \text { Salt Lake City, Utah } \\ \text { Attention: Ron Bolander, Team Leader }\end{array} \\ \text { FRCM: } \quad \begin{array}{l}\text { Area Manager, Fish and Wildlife Service } \\ \\ \text { Salt Lake City, Utah }\end{array} \\ \text { SUBJECT: } \begin{array}{l}\text { Oraft Uinta-Southwestern Utah Regional Coal Environmental Inpact } \\ \\ \\ \text { Statement--Fish and Wildife Service Review and Conunents }\end{array}\end{array}$
Since the Fish and Wildife Service was a direct participant in the preparation of this statement, the presentation of infomation and evaluation of potential inpacts by the proposed action have beell addressed to our satisfaction.
greatest concerns is the base wildife resource. It is dificicult to extract from the
general public and decision-lliakers should be well and in an impact grouping
desired human utilization.

-2-

EPA commends
located at least one quarter mile from perenniaf sect EPA suggests this
from accidental spills, fugitive dust or coal fires. EP
requirement incluce ephemeral streams and that any variance to this only be
granted where such separation can not be achieved due to the topography. If
smaller buffer zone is allowed, best management practices such as berms shoul
be constructed. Due to the lower quality coal at cimery iorth and Central, difficult Mudy
surface mine reclanation, disruption of the hydrology and floodplain of Muddy surface mine reclanation, disruption of the coal seams and other
Creek, the presence of Mancos Shale above the environnental consequences, EPA agrees with BLM that the Ener is such a small
are not desirable lease areas. Because Slaughterhouse Canyon are not desirable possible mountaintop removal is both aesthetically displeasing and 4 might create sedimentation problems within the Scotfield riso suggests that agree with BLM that this area sholding lease approval at this time for the consideration be given to withholding ease pecreational development and
 in any event.
 the selection of Alternative 3 in Category LO-2. Due terred Alternative 2 in category ER-2. This means EPA has no objection to the selection of Alternative 3 and requests some additional information the EPA maintains studies as requested.

Please contact Weston Wilson of my staff
arrange a meeting to discuss these matters.


## SENVIRONMENTAL PROTECTION AGETNCY REGION VIII 186O LINCOLNSTREET DENVER. COLORADO 80295 DET 2 : 1980



## 8N-EE

## Team Leader, <br> 136 East South Temple 84111 <br> Dear Mr. Bolander:

Mr. Region VIII Office of the Environmental Protection Agency has reviewed The Region draft Uinta-Southwestern Utah Regional Coal Environmental Impact Stat Alternative 3 and offers the following comments. EPA Na to lease three nitional analysis is necessary to verify whether possible loss of water
supplies and effects of toxic heavy metals will be as minimal as BLM now
spa predicts. EPA recommends that other leasing
the EIS to thoroughly evaluate these issues.

Adverse effects and disruption of water supplies may result from underground mining in this area of fault-contring and should be developed during spec mining plan stage, EPA believes a more thorough investigation act the mining plan stage, boundaries are still subject to change based on adde lease major fault areas, such detailed work at this point could avoid future problems by avoiding for leasing where water supply conf, Gordon Creek, Miller Creek. Tucker Canyon and the proposed Cotton lease tracts. EPA is also concerned about poss

Current water quality along the Wasatch Mountains shows high levels of
toxic metals, particularly mercury, selenium and arsenic. EPA has recently toxic metal criteria recommending permissible pollutant concentratic life and
published and other toxic substances to protect freshwater aquat
elements and onser human health. (See "Publication of Criteria Sumnaries for
Toxic Pollutants", Federal Register, November 28, 1980, copy enclosed).

Sone segments of these streams contain toxic concentrations in excess of these recormendations. Because past, current and future min public health risk
possible sources of such metal toxics, an evaluation of any is warranted. An evaluation of possible mining effects on water quatritive tests in an effort to predict the fate of the general state of the art field, therefore an analysis of potential
regulations under 40 CFR Part 1502.22 would suffice.

$\stackrel{(8)}{ }$


 from coal developnent in the Uinta-Southwestern Utah area should not be considered in isolation, and every effort to avoid all adverse
impacts should be rade.
 for cultural resources. This evaluation has shown a high potential for
cultural resources in some areas being considered for development. Based on the low percentage of area currently evaluated and the high potential
 ance with the National Historic Preservation Act of 1966, as anended.
 and evaluation of cultural resources should be completed prior to a decision on an alternative.

## Rolelf Oterme

## U.S.O.I., Heritage Conservation and Recreation Service, Mid-Continent Region, Denver, Colorado

Response The identification and evaluation of all cultural resources prior to a
 sites test excavated. Therefore, to insure compliance with pertinent laws, a
Coal Programmatic Memorandum of Agreement was developed between the President's Advisory Council on Historic Preservation, OSM, BLM and the State

 resources.
U.S. Environmental Protection Agency, Region VIII, Oenver, Colorado

PLnOM Uo!
A basic assumption in the evaluation of impacts is that the action would
comply with existing laws and regulations. SMCRA of 1977 part 817 Permanent Program Performance Standards require surface and ground water monitoring
$(\$ 817.52)$ and water right replacement $(\$ 817.54)$. Compliance with the existing laws and regulations would avoid or mitigate any problems that develop. However, BLM and GS recognize the need to avoid possible conflicts and have
initiated a proposal for ground water modeling in the area. If funded, the intudy will require over $\$ 500,000$ in funding and 3 to 4 years to complete.

The Hollberg PRLA would be an underground mine, therefore, surface disturbance of the Mancos Shale would be much less than if the area were surface mined. Thirty-two acres would be permanently occupied by surface facilities. claimed as stipulated in a mining plan. It is not believed that measurable
amounts of salt would enter any streams. amounts of salt would enter any streams.

## Response 24-2

8ecause water quality analyses were performed during the summer of 1979, the new Water Quality Criteria you mention were not available. The subject SMCRA and subsequent regulations requiring monitoring and studies would be complied with and water quality in the area would remain at acceptable levels.
These requirements would be a part of the mining plan for a given lease.

Assuming that all laws and regulations associated with water quality are adhered to, it has been concluded in the FEIS that trace elements would not clean up and monitoring as stipulated by State of Utah regulations. A parasequences section of the text.
dәр 10 \&-ヤ乙 asuodsay streams at the heads of watersheds. Ephemeral side drainages in the area are
of such small nature that they could be considered overland flow. Berms could be required, if needed, based on mining plan review.

Response 24-4
Information obtained from GS subsequent to the OEIS has resulted in
increased demonstrated in-place reserves on the Slaughterhouse canyon tract from $2,190,000$ tons of coal to $5,550,000$ tons. The tract is now identified as best suited for underground mining. This would eliminate nearly all visual impact and sedimentation concerns that existed with formerly proposed surface
mining. EPA's suggestion that Tucker Canyon tract be withheld from lease approval at this time will be included in the Secretarial Issue Document (SIO) submitted to the Secretary of Interior. EPA's opinion that Emery North and the SIO.

## PUBLIC HEARING COMMENTS AND RESPONSES

Public hearings were held during the Draft EIS comment period as follows: Escalante, Utah (November 18, 1980); Castle Dale, Utah (November 19, 1980); Price, Utah (November 20, 1980); Salt Lake City, Utah (November 21, 1980). Speakers at the public hearings are listed in order of appearance. Verbatim transcripts were made at each hearing and are available for review at the BLM Utah State Office. The transcripts are not reproduced here in their entirety, but substantive comments are excerpted and BLM responses are adjacent.

Some speakers presented typed copies of their oral comments or letters during the hearings. These copies and letters are included as exhibits associated with the public hearings. The exhibits are located after the respective oral comments from each hearing. Where letters were received that reiterated oral testimony, the reader is referred to the preceding Letter Comments and $\mathrm{Re}-$ sponses section for the BLM response.

1. Woolsey, Escalante Testimony
EH Comment 1 l-1 EH Response 1-1
Your comment has been noted and will be considered in the decision making
process.

[^17]Now, I specifically call your attention to about three items. Number
one, it would be, in my opinion, incompetent for a group of people to allow
leases to be moved from an area that is not overpopulated into an area that is Si peyf eade ue oful parpindodano tou st peyt ease ue wo it panow aq of saseal se leases to 90 into the Emery County area, Castle Dale and that area up think it's ridiculous that this should be allowed to happen.
EH Response 1-2

| The socio-economic impacts associated with development of the three |
| :--- |
| tracts were identified in the proposed UP\&L exchange discussed on pages 185 | through 205 of the DEIS. These impacts will be considered in future decisions EH Comment 1-3

Number two, in this area, in the Escalante area, these leases would re-
present to us an increase of population. For instance, in our school -- this is about to be closed for lack of pupils -- we could accommodate probably several hundred in our school without even any
community situation. So, it could be improved.

## EH Response 1-3

The current situation with Escalante High School was noted on page 123 of the DEIS. The impacts on the Garfield Conty area were discussed on page 231
of the DEIS. The impacts on the local school system and community if the PRLAs were developed were discussed on pages 236 through 238. EH Comment 1-4

[^18] EH Response 1-4
Consideration of the proposed exchange was made possible in October of
1978 when Congress amended the Mineral Leasing Act of 1920. Following this an agreement between UP\&L, BLM, and FS was prepared on how to proceed with consideration of the exchange. A copy of that agreement is located in the
appendix of both the DEIS and the FEIS.


I'm mayor of Escalante and I would like to say that the majority of the people are opposed to any transfers of the Utah Power \& Light coal leases out and to further develop the communities that are surrounding; because this coal development will not only improve our communities, but there are also about
five or six communities close enough that it would also utilize employment and have things that would better their conditions also. 6u!finsad saz!unumos bu!punodans pue aquelejs of sqoedu! aut essajoud bu from development of the PRLAs have been analyzed. This analysis is found on
pages 236 through 238 in the DEIS. EH Comment 3-2

I would like to point out some of the things that could happen in our
socioeconomics that would improve the conditions, that would point out the way
that we are ready for any type or goals that would come to our area.
Water: The Town of Escalante has been approved by the FHA for a loan to
upgrade the current culinary water system. We have just completed taking in
new springs, new houses; but now we have a loan to entirely upgrade the entire
town's water system where we could handle any current growth in population.
Water: The Town of Escalante has been approved by the FHA for a loan to
upgrade the current culinary water system. We have just completed taking in
new springs, new houses; but now we have a loan to entirely upgrade the entire
town's water system where we could handle any current growth in population.
Water: The Town of Escalante has been approved by the FHA for a loan to
upgrade the current culinary water system. We have just completed taking in
new springs, new houses; but now we have a loan to entirely upgrade the entire
town's water system where we could handle any current growth in population.
We also have plans that are already under way, and the engineering com-
panies have already established the plans for a new sewer.
The New Escalante Irrigation Company is currently under negotiation with
 use. This surplus water could, then, be put to other uses.

The Pine Creek Irrigation Company, with the help of Water Resources, is currently seeking to develop their entire system from the source to maximum

EH Response $3-2$
On page 123 of the DEIS it was pointed out that all communities in Gar-
field County either have or are constructing an adequate water system. The
need for a centralized sewage treatment facility was discussed on page 238 of
the DEIS.
EH Response $3-2$
On page 123 of the DEIS it was pointed out that all communities in Gar-
field County either have or are constructing an adequate water system. The
need for a centralized sewage treatment facility was discussed on page 238 of
the OEIS.
The text has been revised to identify the FMA loan, the Escalante Ir-
rigation Company negotiations and the Pine Creek Irrigation Company proposal.

## E <br> EH Comment 3-1

 people are opposed to any transfers of the Utah Power \& EH Response 3-1 EH Comment 3-2 0 use they're looking forward to.

EH Response $3-2$
On page 123 of the DEIS it was pointed out that all communities in Gar-
field County either have or are constructing an adequate water system. The
need for a centralized sewage treatment facility was discussed on page 238 of
the DEIS. rigation company negotiations and the pine creek irrigation company proposal.

Goulding, Escalante Testimony
EH Comment 2-1 $\quad$ That is reiterate something that Mr . Woolsey indicated earlier, that
 school, over the next couple of years due to the imbalance of retired folks in

I am for anything that we can do to help develop our Escalante area and
bring some industry, some development, any type of work that would help us build the population in our area. We could, as Mr. Woolsey indicated, use anwere to have more than a hundred students, obviously the population would have


We have a little bit of background information regarding the student population here. Two years ago we had a student population of 104 . I'm talking exactly 75 in the seventh through twelfth grades. I have a projected enrollment for the year 1972 of 60 students, seventh through twelfth.

District (par-
Declining school enrollments in the Garfield School District (par-
ticularly in Escalante) were pointed out in the DEIS on page 123. Mr. Henry Jolley, Superintendent of Schools for Garfield County, in a personal communication on August 18,1980 , estimated that the District has been losing
pupils at the rate of 2 to 3 percent per year.

So, as you can see we're losing students at a rather rapid rate. With losses of students, obviously we lose teachers. With the loss of teachers, you lose quality of education; you lose the experiences that the students from able to give with five teachers or four teachers, or whatever the case may be.
At the end of this school year we will automatically lose one teacher, one full-time teacher. I don't know how many of you are aware of that, but that's due to the loss of students.

Our State funds the students for the teachers by the number of students you have in the school, and when you lose the students you lose a teacher. EH Response 2-2

The text on page 123 was expanded to recognize that student enrollment
decline causes reduction in school funds appropriations.
4. Lafever, Escalante Testimony
EH Comnent 4-1
Garfield County Commission is definitely against trading coal leases.
Reason number one would be that once these coal leases were traded, we're
afraid that will be the end of it, and we're desperate for some kind of de-
velopment in Garfield County.
EH Response $4-1$
Your comment has been noted and will be considered in the decision making
process. The current economic status of Garfield is discussed on page 123 of
the OEIS.

## 5. Wayne H. Banks, Escalante Test imony

EH Comment 5-1 B. Banks, and represent the Escalante Community Council, and I'm Wayne H. Banks, and I represent the Escalante Community have said,
I just want to reiterate what Mr. Woolsey and what Mr. Goulding have that the community council itself
coal leases for the reasons stated. EH Response 5-1 process.

EH Comment 3-3 Town of Escalante city limits. This acreage has never been used for agricmet without any land now being used for agriculture.

EH Response ${ }^{3-3}$ The DEIS portrays a "worst case" situation for use of agricultural land based on the following:

1. It is assumed that one-half of community growth would occur on non-
agricultural lands such as those described above;
2. Whether limited or plentiful, agricultural lands tend to be desirable lands for housing development;
3. There are no legal constraints that assure that agricultural lands
would not be converted to community use.

EH Comment 3-4 schools are suffering from lack of enrollment.

EH Response 3-4
See comment 2-1 above for the Escalante public hearing.
Concerned Citizens of Escalante, Exhibit
Comment E1-1 Escalante Irrigation Company is currently under nego-
 water use. This surplus water could then be put to other uses.
Comment E1-2 Town of Escalante city limits. This acreage has never been used for agriculwithout using any land now being used for agriculture.
Response E1-2 Escalante Hearing Response EH 3-3 above.
Comment El-3 it is a knoll fact that lochools are suffering
from lack of enrollment. Our high school alone could handle 100 new students immediately without increasing class room space.
Response El-3 discussed on page 123 of the DEIS.

Yr. Ronald Bolander
i:o East South Temple
Salt Lake City, Utain 84111
Sear Sirs: The citize:s of tre Town of Escalante have solutions to the oroolems pointed out by your stuciy. 1. Nater: (a) The Town of Escaiante has been approved by E. ...i. for a (o) The !ew Escalante Irrigation Jompary is currentiy under negotiation witn the Vater Resources to put the ontire irrigation a 50 conservation of the water use. Ihis surplus water could ther
(c) The Pine Creek Irrigation Compary with the help of Water Resources is currently seeking to develope thier entire system from the source to maximum effiency, thus generating hydro-electric power.
2. Land: (a) Several hundred acres of land now exist with-in and adjacent to the Tom of Escalante city limits. This acreage has never been used for agriculture purposes. Ideally it could be used being used for agriculture.
$3\left[\begin{array}{l}\text { 3. Schools: (a) It is a well known fact that our local schools are suf- } \\ \text { fering from lack of enrollment. Our high scoal alone could handie } 100 \\ \text { new students, wi thout immodiately increasing class room space. }\end{array}\right.$ To conclude, The Jown of Escalante has been denied any of the normal advantages that have been
ment are occurring.

Cur citizens need and want adeouate medical and dental facilities; ade-
quate shopping; adeouate cultural developement; adecuate employment; adeouate recreational facilities; but most important an adequate future oppor-

Concerned Citizens of Iscalante, Utah.
SPEAKER

1. E.S. Crawford
2. Richard E. Walker, Southeastern Utah Assn. of Local Governments
3. Rue P. Ware, Emery County Commission
4. Dan S. Hunter. Emery County Commission
Exhibit 1 - Southeastern Utah Association of Local Governments

(Response attached) $\quad$| Exhibit 2-Emery County Board of Commissioners |
| ---: |
| (Response attached) |
| Comments and Responses follow |

1. E. S. Crawford, Castle Dale Hearing Testimony

CDH Comnent $1-1$
1 have requested as you know, in the past that any leasing that's done
in this area, we would like to have you lease other areas in lieu of those that you have underneath us at the present time.

CDH Response 1-1
It is assumed that this comment is referring to the East Mountain area on posing any leasing in the East Mountain area where the private surface is underlain by Federal coal. The tracts in the vicinity that are being proposed
for lease include cottonwood Canyon and Meetinghouse Canyon and involve all Federal surface within the Manti National Forest or on public lands managed by the BLM.

CDH Comment $1-2$ the case, 1 would just like to say again that 1 would object to any additional leasing that is taking place until all these provisions protecting property rights and water rice so the public and private property owners can be properly protected.

> Response 1-2 See Response to Castle Dale hearing comment $1-1$.

CDH Comment $1-3$, is already ticularly concerned about the Cottonwood Canyon Portal. As you know, when you held hearings just a little over a year ago on Units 3 and 4 , many of the peo-
ple here tonight and myself testified to the fact that we were very concerned about access through that canyon and future use of the road itself. However, not three months after that hearing an illegal entry was made into
wood Canyon and is being maintained illegally at the present time.

[^19]
## 2. Richard E. Walker, Castle Dale Hearing Testimony

> CDH Comment 2-1 $\quad$ The major comment which we are concerned with is the repeated use of $1977-178$ data to support major recomnendations. The data used as population
est imates, attitude surveys, status of infrastructure assessments, et cetera, is outdated and as a result it gives false representations of the situation. It appears that much of the informat
Environmental Impact Statement of 1978 , which is outdated.

[^20]Obviously the preparers should have defined the needs in 1980 terms for planning purposes. Helper. Price and Wellington do not manage waste water trict, which in 1980 terms is still several years away from upgrading their plant. The Emery town and Scofield areas are left out of the assessment and
will need definite upgrading of their facilities.
CDH Response 2-4

 not expected as a result of new leasing of coal.
COH Comment 2-5
Another important outdated assessment appears on Page 115. Residents are
dissatisfied with their recreation facilities. A recent Southeastern Utah Ass-
 56 percent of the residents said that recreation facilities should be either










CDH Response $2-6$
See the response to comment 2-1, Castle Dale Hearing, concerning data


 face and ground waters. In the Hunt ington, Cottonwood, Scof ield/Price, Ferron and Muddy Creek watershed the water has extremely important downstream uses,
mainly culinary, which must be protected at a higher level than most other waters. As an added factor the mining will occur high in the water shed and
will be difficult to control, especially if the consequences have not been adequately defined.

CDH Response 2-7
It has not been assumed that all impacts of coal mining on watersheds and
aquifers have been fully investigated. However, we have attempted to utilize
all arailable data to make the necessary predictions of what the results of
leasing would be.



$$
\begin{aligned}
& \text { CDH Comment 2-2 } \\
& \text { The population projections are fundamental in the planning efforts sur- }
\end{aligned}
$$ The population projections are fundamental in the planning efforts sur-

rounding these proposals. It is our conclusion, after reviewing the population projections in the document, that the numbers used for the base numbers are quite conservative The Utah State Planning Coordinators Office under special contract with EPA has produced numbers for waste water treatment planning, and the in-
tent is to standardize numbers for all state and federal planning needs. tent is to standardize numbers for all state and federal planning needs.
These numbers are based on the UPED Model with some economic data from the local level built in. Even these numbers are conservative, but they are consistently higher than the EIS' baseline. There is a new "high-development
scenario" being computerized recently. A copy of the original numbers is
 these developments will be more substantial if these new numbers are plugged CDH Response 2-2

CDH Response $2-2$ population projections contained in the DEIS and the baseline population projections developed by the Utah State Planning Coordinators Office are not directly comparable. Whie beoth base areas. The baseline es-
the UPED model, they were for different geographic are timates developed by the Office of the State Planning Coordinator were de-
velo
for the entire Southeastern Multi-County Planning District (Carbon, Emery, Grand, and San Juan Counties). The basel ine was projected for the entire MCD and then disaggregated to the four counties by the office of the
State Planning Coordinator. The disaggregations were based on how each of the four counties grew relative to each other during the years 1970 through 1979. MCD projections to the four counties.

The baseline population projections used in the DEIS were developed by
 ing force behind the baseline was assumed employment changes expected to occur baseline was developed with the assistance of the Southeastern and Six-County Association of Governments. It should be emphasized that Grand and San Juan
Counties were not included in the baseline developed for the DEIS. The disaggregation from the 16 sub-areas to individual communities was done by the Southeastern Association of Governments for Carbon and Emery
ties, and the Six-County Association of Governments for Sanpete and Sevier
Counties. It should be emphasized that a baseline estimate is not a prediction of the future but an attempt to depict the direction current trends are likely to
take with no new major events or changes included.

While a baseline estimate is needed to determine the relative significance of projected impacts, any baseline is somewhat outdated shortly after it continuously. The text notes that uncertainties exist in projecting baseline needs the actual impacts of a particular alternative are more important because these are the figures that can be added to an updated baseline in the
future.

 munities except Castle Dale. However, in 1980 Castle Dale disbanded its
police force and depends upon the county sheriff just like the other communipolice force and depends upon the county sheriff just like the other communi-
ties. Response ${ }^{2-3}$ The text has been revised to delete the reference to Castle Dale. The following statement appears verbatim on Page 102: "By 1978,
additional waste water treatment capacity was or shortly would be required in
Melper, Price, Wellington, Ferron, Huntington and Salina."

 mining operation on ground water and surface waters before leasing, during
mining and after mining during subsidence. The effect of subsidence should be COH Response 2-11

 COH Coment 2-12

Also on S -2. How do sewage flows affect salinity? Mine discharge gener-
ally is not classified as sewage. CDH Response 2-12

Sewage flows and mine discharge have been combined so that the cumulative


COH Comment 2-13
Page S-3. The temporary deterioration of services would also be felt in
Scofield and Wellington. Scofield seems to be neglected extensively in this docurnent. Even if just 25 or 30 miners moved into Scofield, the impact will be devastating. There are five other mines which are going to be established
in Pleasant Valley. COH Response 2-13

Population growth in Wellington is discussed in the Environmental Con-
sequences section of Chapter 4 . General impacts predicted for Carbon County apply to Garfield and Wellington. See response to Comment 2-4 above con-
cerning Scofield. COH Comnent 2-14
 the effects of this coal mining on the values of a recreational subdivision. COH Response 2-14
Impacts that would occur to the Mountain Home subdivision from mining of
the adjacent Tucker
 182). Generalized measures to reduce these impacts have been identified (see
DEIS, page 62 , Mitigating Measures $7,8,9,10,13$, and 18), and would be applied should the tract be leased.

Prior to approval by OSM of any mining plan for the tract, an en-

 plan would be considered in the environmental assessment.

 tracts only considered in Alternative No. 1? If the Mountain Fuel gasCOH Response 2-15 for developint of the leasing alternatives were discussed


 gasification plant. COH Comment 2-16
Page 74 . Soils often have been implicated with limiting reclamation.
The Emery tracts especially will be influenced by Mancos Shale. Range
improvement efforts have been generally unsuccessful due to the low organic
content of the soils, especially when compounded by low precipitation levels.

COH Comment 2-8
Waste water is classified as sewage from mining efforts. Some sewath water affected by mining either discharged or interrupted by the mining
operation and should be dealt with separately in the document. COH Response 2-8

Mining effluent, sewage from mining facilities and increased municipal
sewage due to increased population, have been totaled together to obtain the sewage due to increased population, have been totaled together to obtain the
cumulative impacts to water quality resulting from the implementation of any
of the coal leasing alterriatives.

CDH Comment 2-9 general comment is the repeated use of the statement that agricultural land would be permanently lost due to water conversion. This pears, according to our information, that there is enough water available to have communities, agriculture and industry if ail users will participate in
operating water use and require land use planning practices all to preserve the resources of this area. It can be documented that approximately 60 perin canals or through inefficient on-farm irrigation practices. Some of the 60 percent is rediverted; however, it appears that significant savings could re-
sult if canals were lined and alternative irrigation were developed. This
 farm lands. The lining of canals should have water quality improvements as
well.
 agricultural land may be available. However, the analysis has not been
changed because:
(1) It presents the "worst case" situation where there are no as-
surances that the worst case would not occur;
(2) All water is appropriated and holders cannot be forced to employ
methods of conservation;
(3) Carbon and Emery County planners cited in the OEIS concur that
good quality agricultural land is being subdivided and retired and this action is expected to continue.

COH Comment $2-10$, the assessment of Air Quality relates decreases of air quality to increased population.
 coal burning in associated power plants, et cetera.

COH Response 2-10
It is true that decreases in air quality from mining of coal and related
increased population activities would be compounded by whatever coal conversion activities (powerplants, gasification plants, etc.) would occur. The
OEIS considered Utah Coal EIS (001 1979) as a baseline. The emission sources included Hunthe Castle Valley Railroad.

CDH Conment 2-22
Scofield is completely left out of this infrastructure assessment. It water system. The septic tank system is marginal with essentially no increased potential. CDH Response 2-22 COH Comment 2-23

COH Response 2-23
The text was revised to omit reference to a Castle Dale police force.
COH Comment $2-24$ Emery County needs to get involved with comprehensive planning more than Emery county needs to get involved with comprehensive planning more than
simply controlling the pace of growth. What was the source of the "local re-
sidents" subjective responses" interviews in 1979? sidents' subjective responses" interviews in 1979?
COH Response 2-24

Ouring the fall of 1979 a series of unstructured key-informant interviews were conducted and analyzed by Ors. Bruce Chadwick, Stanley Albrecht, and Associates (Centaur, 1980). Respondents were asked to identify those aspects of their environment they liked best, as a basis for rating their subjective
sense of well-being.

CDH Comnent 2-25 citizens are not satisfied with recreation facilities. We refer back to the previous comments made on the assumption, the series of assumptions. COH Response 2-25

The OEIS states that "The region provides adequately for presently occurring off-road vehicle activity". The statement infers that needs of off-
road vehicle users in the Four-county Region are being met because of adequate roads, trails and use areas as identified in the 1978 Draft Utah SCORP. Bedropped from the text. For response to the comment that most Emery County citizens are not satisfied with recreation facilities, refer to Castle Dale COH Comment 2-26

Page 127, Assumption No. 5. It should not be assumed that agricultural lands retired would not be reclaimed after having been retired to provide comAssumption No. 6. With wise planning, agriculture lands would be de-
veloped last.

Assumption No. 7. Water needs should be attained from irrigation water saved through wise management. COH Response 2-26
COH Response 2-26
See response to comment number 2-9 above.
COH Response 2-27
See comment/response 19-13 and 19-21 of Forest Service letter. Al so text
has been changed to read: No attempt was made to quantify soil losses on the
Wasatch plateau because information was not available as to where mine or sup-
port facilities might be located. Soil losses are expected to be low if rea-
sonale care in site selection is taken and erosion control measures are im-
plemented.

Page 12 g . What is the justification for the statement on soil wash due
to runoff? Sediment is of extreme importance in the Muddy. Ferron and Price
drainages.
Page 129 . What is the justification for the statement on soil wash due
to runoff? Sediment is of extreme importance in the Muddy. Ferron and Price
drainages.
drainages.
COH Response $2-27$


COH Response
Oifficulties in reclaiming areas of the Emery tracts are noted on page 74, Table 3-2, and page 91 of the DE1S. Research conducted on the Emery trails can be restored to their predisturbance productivity or improved upon.

COH Comment 2-17
Page 77. Water quality in the area have not really been quantified deThe effect of high and low flows should not be important in the discussion.
What is important is the effect of coal mining on low flows. Most planning should be done on the seven-day, ten-year low flows, and resultant waste load allocations for industry determined on these flows. CDH Response 2-17
It is true low flows should be used because they generally give the worst case situat important to have the whole spectrum of flows to give an overall indication of impacts. The effects of high flows are therefore important. In
the case of the analysis presented in the EIS, data on high flows are presented because that data are available and are included to give a complete presentation.

COH Comment 2-18 Forest service monitoring data. The time frame for monitoring needs to be addressed. The 208 occurred in $75-76$, a dry period. If the Forest Service
data was collected in $77-79$, these years were generally wetter and the effect of mining less pronounced. The Wilberg Mine also may not be representa-
tive for mining throughout the district. tive for mining throughout the district. COH Response $2-18$
There is a dis
There is a discrepancy between the 208 and Forest Service monitoring data
on trace elements. We have used the Forest Service data because they appear to be more in line with other observations in the area. The time frame was

The Wilberg Mine is considered to be representative of the Rilda, Meet-
house, Cottonwood, and North Horn Mountain tracts because they involve the inghouse, Cottonwood, and North Horn Mountain tracts because they involve the
81 ind Canyon and Hiawatha coal seams the same as the Wilberg Mine. The geologic formation sandwiching the coal seams are the same and essentially have the same water-holding characteristics. The quality of coal is similar, as
are the anticipated mining methods. CDH Comment 2-19 Page 83 . The effect of mining on ground water within the plateau is
generally undocumented. generally undocumented.
COH Response 2-19
 included in the EIS COH Comment 2-20 CDH Response $2-20$

On page 84 of the OEIS, figure 3-3, the water-bearing properties of the
geologic formations and their effect on water movement are shown. COH Comment 2-21

Page 102. In Castle Oale mobile homes make up 33 percent of the housing
stock in 1980.
In Huntington the mobile home count is 51 percent in 1980.
COH Response 2-21 rear 1978 data have been consistently used in the OEIS since it is
most recent year for which complete data are available. Some 1980 data are
dita becoming available, but 1978 data
consistent comparable data year.

Dn Page 28 reference is made to the Cottonwood tract. If you would look
 If the tract is mined by UP\&L from the Wilberg mine, additional surface facilities will be limited to ventilation openings. Are we assuming that CDH Response 3-1 located in Grimes Wash or the coal would be removed through UP\&L's existing tonwood Canyon.

CDH Comnent 3-2
 given some serious early thought.

COH Response 3-2 $\quad$ This point was a matter of concern, as indicated by accompanying tables 1

 and the rest used internally (Huntington and Hunter power plants). These $4-50$, and $4-55$. In addition to traffic increases and additional road upgrading and maintenance, there would be substantially increased capital
investment in trucks, an increase in the amount of fuel used, and additional employment of persons to drive and maintain the trucks.

However, in establishing the premises on which this EIS was based, it was
隹 - fa u! s say
 in order to keep the delivered price of the Wasatch Plateau and Emery coals
withing a competitive range. CDH Comnent 3-3

We hereby request that the local officials be provided with all other
available information and that this information be passed on to the local officials as early as possible.

$$
\text { COH Response } 3-3
$$

Information used in the preparation of the EIS has been referenced as to source and is available for public use. Additional opportunity for public

 and need to be current, if possible.

## CDH Response $3-4$ See response to comment $2-2$.

CDH Comment 3-5
 creation associated with the out-of-doors, hunting, fishing, et cetera -- it states the area provides adequately for these activities.

CDH Comment 2-28
Page 13D. Data from Wilberg Mine is not necessarily representative.
Each mine should be evaluated separately. The data for 1979 is from a wet
Based on available data the following statement is premature: "It seems
unlikely, therefore that mine discharge would require special treatment. CDH Response 2-28

See response to comment 2-18 above. OSM regulations require monitoring of each tract so each tract will it it is true that 1979 was a wet year but it is valuable in
evaluated. It is porable data, and secondly because of the wetness we now know what to expect in a "flushing action" of a high water year. Based on the information listed quirinq special treatment.

CDH Comment 2-29 Page 133. The brief statement on water quality is certainly untrue gased
on data in the EIS and other associated data. The effect of mining on ground water has never been adequately evaluated.

CDH Response 2-29 mentioned in response to comment $2-7$ above, we believe the statement remains the analysis or reports. In that situation, requirements of monitoring would provide the opportunity for gathering additional information and implementing further mitigation

CDH Comment ${ }^{2-3 D}$ that the conversion of agricultural land is unavoidable should not be a foregone conclusion. We should be able to minimize this situation by planning with this objective in mind. Areal master plans in Emery County and
Carbon County still say agricultural lands should be preserved. Carbon County still say agricultural Areal

CDH Response $\begin{aligned} & \text { 2-3D } \\ & \text { See response to comment number 2-9 above. }\end{aligned}$ CDH Comment 2-31
Subsidence isn't the only way that water quality is effected, and I seem to sense that in the discussion of water quality that it was intimated that
subsidence was the only way that water quality would be effected.

CDH Response $2-31$, that subsidence is not the only water quality would be affected. Chapter 3 (Description of the Environment) and Chapter 4 (EnThe biggest effect on water quantity would be increased municipal sewage due to population increases (page 13D of DEIS).

CDH Comment 2-32 tion of Governments every year is just right off the press now, and it gives production levels, anticipated production levels, from all the mines in the believe, 15 or $2 D$ years. CDH Response
The subject
The subject plan was provided to BLM and was used for some of the
information presented in the FEIS.

|  |  | ำจ |  |  | 幺幺\％）． | 玉シ̃̊ั~~ | ํ ะ รํํํ | える | 玉゙さまま | －玉ฐき |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 三 |  | シアざ気気 |  |  |  |  |  |  |  |  |
|  | 玉®ã゙き |  |  | ずづベシさ |  |  |  | ิิฐ | 〇ャ゚ロ̊ | 2ヵ玉 |
|  |  ジロ |  |  |  |  |  | ช |  |  |  |
|  | 玉ํㅜํ |  |  | จีิละ | ลิว̊ | － |  | 우ํ \％${ }^{\text {\％}}$ | ごさå̊ | こちょ゙ |
|  |  | ～ロ゙ゴ⿹\zh26灬 |  |  | \％）${ }^{\text {® }}$ |  |  | 89\％8\％ | －${ }_{\text {－}}^{\text {¢ }}$ |  |
|  |  | อี |  | ¢ัごこごこ | － | － | ぎき | กัะジャ | すこちこき | ズった |
| 三 |  | －25s \％ |  | ¢ |  | －899 | シ̊ิ | ジ\％ |  | ミస̉ja |
|  |  | จる | ごき̧すき | ฐัฐัลิร | ． | －－ |  |  | コニ\＆゚る | ニจงะ |
| \％ |  | ละส゙จ゙う | คํํํํํํํํ |  |  | －ํำの |  |  | 令？ | ํå9\％ |
|  |  | 8 |  |  |  |  |  | ！ |  | \％ |
|  | ¢ | ¢88 | ¢ |  |  |  |  | 䟓 |  | 辰 |
|  |  |  |  |  |  |  | $\stackrel{\circ}{3}$ |  | 号管 | 运 |
|  | $\stackrel{\text { ¢ }}{ }$ |  |  | 8\％¢ \％ | \％ | 边 | ex ex |  |  | 5 |
| ¢ |  | cex | \％ |  |  | 起 |  |  |  | 运 |
|  | － | い㲵忥 | ว\％ธ゙¢ | \％ちら\％ |  |  |  |  | \％\％\％\％ | й |
|  | い |  | こん |  | － | \％ | － | －${ }^{\text {20 }}$ | 崖 |  |
|  |  |  |  |  |  |  | 动言ざ边 |  |  | 哏閏 |
|  | $\sim$ | －60\％ | ニニゴํ | －ัニロ～ | べสลス | ลจกัํ | － | がら⁄ | ： |  |

：－30n

|  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  |  |  | $0 \approx 0000$ | 00000 00000 |
|  |  |  | $\underset{\omega}{\alpha}=0000$ | 00000 |
|  |  |  |  | $000 \div \vec{J}$ |
|  |  |  | $\underset{\omega}{\omega}$ | $0$ <br> ジがべか |
| ¢ ¢ ¢ S |  |  |  |  |
| 咢 | －inifivi |  |  |  |








|  <br>  <br>  <br>  <br>  <br>  <br>  <br>  $6-\varepsilon$ วsuodsay haכ <br> lint $47!\mathrm{m}$ pue alq!ssod se uoos se sa!fin! <br>  <br>  6-£ тианиоэ hos <br>  <br>  <br>  <br>  <br>  2! $8^{-\varepsilon}$ วsuodsay H0כ <br>  <br>  |
| :---: |
|  |  |
|  |  |
|  |  |
|  |  |

4. Dan S. Hunter, Castle Dale Hearing Testimony CDH Comment 4-1

An example of the deemphasis of population is shown in that the 1987
 less than the nondevelopment alternatives for the DEIS. Surely the Team is ferenced herein which would indicate a seven-year growth over the 713 indivi-

 I-b asuodsay H0〕

## See hearing response 2-2 above.

## CDH Comment 4-2






 CDH Response 4-2



Item 4. I reference Page 115, second paragraph. Emery and Carbon Coun-
have a limited number of picnicking facilities and camp ground faciliCDH Comment 3-6
Analysis of the impacts to dispersed outdoor recreation that would occur
result of the coal-related population increase can be found in the DEIS as pages 156, 157, 182, 200, 204, 221 and 241. Where applicable, the analys is includes measures that could be taken to expand recreation opportunities and
identified limitations to those measures such as was done in the following statement taken from page 157 of the DEIS: "The additional competition for
available game and fish would lead to less maintain present hunting success it would be necessary to restrict animal harvests, thereby reducing hunting opportunities. To maintain present fishing
success, stocking activities would have to be increased by the Utah Division of Wildife Resource, which has no foreseeable increases in funds for this 19

CDH Response $3-7$, ler
1 recomend that the Draft Statement be extended to include a recommendation
for recreation facilities. necessities first, but that is not to say that they do not deserve or need
adequate recreation facilities as proposed by the state standards. Therefore, necessities first, but that is of Emet to say that they do not deserve or the for recreation facilities.
CDH Response 3-7 -

See Castle Dale Hearing, Response 2-5 above.
That is a quote from a Centaur Associates' study made in 1980. 1 submit to you that that is not so. Sure, right now the people are
happy in Emery County if they drive to work, if the roads are passable, and if
they have enough they have enough water to drink.

I suggest that we center our desires at present, our desires and interests on our absolute needs. First, we need water to drink. We need sewer
systems and we need roads. If these things are in question, then recreation
is not so important. systems and we need roads. If these things are in question, then
is not so important. The actual number of additional developed recreation sites necessary to
meet demand is not presently available and will be determined by various meencies in their land use planning processes. That determination is not within the scope of this EIS.

Item 5, reference Page 115. Top of the second column on the first para-
 of the towns appear satisfied with the existing situation." veloped recreation site is now receiving. It presented the amount of data
necessary for analyzing current and future in sites. Expanded usage data on each site can be obtained from the Central Regional Coal Environmental Statement or from the managing agency.
 level as recommended by the State of Utah, and, then, to extend that figure to include the number of sites that would be required to provide for the increase
in the population as estimated by the study. Let this study show what will be
needed. CDH Response 3-6
 number of additional sites required to bring the use figure to the 40 -per
veloped recreation site is now receiving. It it present of overuse that each denites. Expanded usage data on earent and future impacts on existing developed -  of the towns appear satisfied with the existing situation." " but residents sut a quote from a Centaur Associates study made in 1980.
CASTLE DALE HEARING EXHIbIT NO. 1
SOUTHEASTERN UTAH ASSCGATHONOLLOCAL GOVERNMENTS

Ron Bolander, Team Leader 136 East South Temple
Salt Lake City, Utah 84111

Oear Mr. Bolander:
The large scale development of coal resources in southeast
Utah will provide a complex series of problems for
governments to dea winh. ified in the Uintah-Southwestern Utah Oraft Environmental Impact Statement, of which this letter and attached statement refers.

Our initial reaction to the document is that it is very
Ond planning efforts. Some of the conclusions, based on available
data, cannot be made conclusively and some of the assumptions
on which the study is based require more documentation.
Our review is based on a community planning and environmental approach.

We appiate the opportunity to comment and hope you will


REGIONAL CLEARINGHOUSE

COH Comment 4-3 potential impact of coal development in either Cleveland or Elmo. It is this Commissioner's opinion that both of those communities will development and should be considered in projections.
 required by the UPEO Model. Cleveland and Elmo were included in allocation of population to "other incorporated and unincorporated areas" of Emery County Specific projected population growth was made for each community
only little change due to their limited support infrastructure.

## CDH Comment 4-4

The document also refers to off-road vehicle activity, and that area pre-
sently provides adequately for these needs. With the high growth which we contend will occur, coupled with recent limitations of public land accessibilStudy areas, we feel that off-road vehicle activities will be restricted and study areas, we feel that localized damage will occur on the areas adjacent to existing county roads.
reg sufficient roads trails and areas to meet the present needs of off-road vehicle users was identified in the 1978 Oraft Utah SCORP. Impacts that would occur to resource values as a out the OEIS (see impact analysis for Recreation, Special Oesignation Areas, Wildife and Cultural Resources).

It is not anticipated that restriction of $O R V$ use areas in the four-
County region resulting from the wilderness inventory would significantly
. While the lands are under wilderness review there are few reand trails would continue. Vehicular use off roads and trails could be allowed when authorized by the managing agency if it is det

Lands that receive the greatest ORV use and therefore the greatest impact to other resource values are those lands that best meet the needs not affect the popularity of other lands, since such popularity is largely based on the suitability for ORV use.
3. Off-road vehicle activity is already restricted by steep
topography in many of the areas under wilderness review, and managerial restrictions resulting from wilderness designation would have little actual
effect on ORV use of those areas. COH Comment 4-5

The Commission strongly objects to the allegation inferred in the document on Page 115, Paragraph 4, that Emery County residents do not feel a need ganized recreational activities. Research conducted by the SEUALG in the Community Attitude Survey of 1980 wherein 586 residents were polled indicated
that 86 percent of the respondents rated local recreational facilities as poor and as a priority for local spending for their improvement. Furthermore, 36 percent of the respondents indicated that this was their highest priority for priority for local tax expenditures. The respondents, furthermore, indicated hat 62 percent placed playground as a first or second priority. Other needs identified as a first priority need recreation centers, 37 percent.

CDH Response 4-5

SEUAoLG attitudes survey (1980) indicates that a full $86 \%$ of the citizens feel that areal recreation facilities are poor.

 of tax dollars.

stock is not representative of the 1980-81 situation. In a recently completed (1980) housing study by the AOG mobile homes constituted 33\% of the housing stock in Castle Dale and 50\%
in Huntington relative to the 51.7 and 58.3 in the study.
 from the associated coal mining. Many of the statements assume that the impacts from coal mining have been fully investigated. This is a dangerous assumption in that many questions rema in concerning the effect of coal mining on interupted watersheds both surface and ground waters. In the Huntington, Cottonwood, Scofield/Price, Ferron and Muddy Creek watershed the water has extremely important downstream uses, mainly cul inary, which must be protected at a higher level than most other waters. As an added factor the mining will occur high in the watershed and will be difficult to control especially if the consequences have not been adequately defined. Waste water is classified


General Commentr
Page 3
by mining, however, it is negl ibable when compared with water affected by mining either discharged or interrupted by the mining operation and should be dealt with separately in the document.

We (SEUAOLG Mining and Sal inity Study) are finding out that

 is critical if water quality is to be preserved in the region which we permit the level of coal development described within the document.

One other general comment is the repeated use of the statement that agricultural land would be permanently lost due to water conversion. This should not be the case if the water sources
 that there is enough water available to have communities, agricu and industry if all users will participate in up-grading water use and require land use planning practices all to preserve

## GENERAL COMMENTS

 The major corment which we are concerned with is the repeated use of 1977-78 data to support major recormendations. The data used such as population estimates, attitude surveys, statis of infrastructure assessments, etc., is outdated and as a result it gives false representations of the situation. It appears that much of the information was derived from the Central Utah Coal Environmental Impact Statement of 1978, which is outdated. The population projections are fundamental in the planning efforts surrounding these proposals. It is our conclusion after reviewing the population projections in the document that the numbers used for the base numbers are quite conservative relative to the latest numbers which the AOG is using. The Utah State Planning Coordinators office under special contract with EPA has produced numbers for waste water treatment planning and the intent is to standardize numbers for all state and federal planning needs. These numbers are based on the UPED model with sone economic data from the local level built in. Even these numbers are conservative, but they are consistantly higher than the EIS's baseline. There is, a new "high development scenerio" being computerized currently. A copy of the original numbers is included for referencing. Disaggregations are by the AOG. The impacts from these developments will be more substantial if these new numbers are plugged into the models.
## Examples of problems with infrastructure statis can be seen

 is insufficient in all communities except Castle Dale. However, in 1980 Castle Dale disbanded its police force and depends upon the County sheriff just like the other communities. The following statement appers verbatim on page 102. General Comment
Page 2
"By 1978, additional waste water treatment capacity was or shortly would be required in Helper, Price, Wellington, Ferron, Huntington and Salina." Obviously the preparers should have defined the needs in 1980 terms for planning purposes. Helper, Price and Wellington do not manage waste water treatment systems, it is managed by the Price River Water Improvement District which in 1980 terms is still several years away from upgrading their plant. The Emery Town and Scofield areas were left out of the assessment and will need definite upgrading of their facilities. Another imporant outd a recent
Specific Comments
Page 2
들 day, 10 year low flows and resultant waste load allocations
for industry determined on these flows.
mining on low flows. Most planning should be done on the seven-
day, 10 year low flows and resultant waste load allocations
The discussion on trace elements shows a discrepancy between
208 and Forest Service monitoring data. The time frame the 208 and Forest $\begin{aligned} & \text { for monitoring needs to be addressed. The } 208 \text { occurred in } 75-10\end{aligned}$ 76 , a dry period. If the Forest Service data was collected
in $77-79$, these years were generally wetter and the effect of mining less pronounced. The Wilberg Mine also may not be representiv
for mining throughout the district.
P. 83 The effect of mining on ground water within the plateau
The effect of mining on ground water within the plateau
is generally undocumented.
P. 85 What effect does this geologic make-up have on water movement.

P. 102 In Castle Dale mobile homes make-up 33\% of the housing
stock in 1980 .
In Huntington the mobile home count is $51 \%$ in 1980 .
Scofield is completely left out of this infrastructur
 marginal with essentially no increase potential.
P. 107 in land use planning the pace of growth is only one aspect. in land use planning the pace of growth is only one aspect
Emery County needs to get involved with comprehensive planning more than simply controling the pace of growth.
What was the source of the "local residents subjective
responses" interviews in 1979?
 County citizens are not satisfied with recreation facilities.

[^21]the resources of this area. It can be documented that approximately
$60 \%$ of the water diverted for agriculture is lost either from
excess seepage in canals or through"efficient on-farm irrigation
practices. Some of the $60 \%$ is rediverted, however, it appears
that significant savings could result if canals were lined and
alternative irrigation were developed. This problem should
be addressed in the EIS instead of just accepting the loss of
farm lands. The lining of canals would have water quality improvements
as well. Emery and Ferron both have unnaturally high water
tables due to excessive canal seepage above town.

## SPECIFIC COMMENTS

The assessment of Air Quality relates decreases in air
quality to increased population. This increase will be complicated
when related to increased industrial coal burning in associated power plants, etc.
P.S-2 The change in water quality can occur in ways other than simply subsidence. It will be necessary to evaluate the effect before leasing, during mining and after mining during subsidence.

## P.S-2 <br> P.S-2 How do sewage flows affect salinity? Mine discharge generally is not classified as sewage.

## P.S-3

The temporary deterioration of services would al so be felt
in Scofield and Wellington. Scofield seems to be neglected extensively in this document. Even if just 25 or 30 miners
move into Scofield the impact will be devistating. There are
five (5) other mines which are going to be established in Pleasant Valley.
P. 1 The Tucker canyon Tract is very close to the expanding
 be necessary to evaluate the effects of this coal mining on
the values of a recreational subdivision. the values of a recreational subdivision.

Chapter 2 would be of great interest to the AOG and everyone else to know of the criteria used to determine the al ternatives. one? If the Mountain Fuel gasification plant goes in shouldn't these coal sources be utilized?
P. 74 Soils of ten have been implicated with limiting reclaimation. The Emery Tracts especially will be influenced by mancos shale.
Range improvement efforts have been generally unsucessful due to the low organic content of the soils especially when compounded by low precipitation levels.
P. 77 water in qually ben quantified despite the 208 program and associated federal and state monitoring
efforts. The effect of high and low flows should not be important in the discussion. What is important is the effect of coal
Specific Comments
Page 3
SOUTHEASTERN UTAH ASSOCIATION OF GOVERNMENTS POPULATION PROJECTIONS

|  | 1978 | 1980 | 1985 | 1990 | 1995 | 2000 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Southeastern Utah | 52,500 | 58,200 | 73,500 | 80,500 | 83,900 | 84,350 |
| Carbon County | 20,900 | 23,500 | 29,100 | 31,400 | 32,350 | 32,250 |
| Price City | 8,360 | 9,400 | 11,640 | 12,560 | 12,940 | 12,900 |
| Helper | 2,926 | 3,290 | 4.074 | 4,396 | 4.529 | 4,515 |
| Well ington | 1,254 | 1,410 | 2,328 | 2,512 | 2,588 | 2,580 |
| East Carbon/Sunnyside | 2,717 | 3,055 | 3,201 | 3,297 | 3,396 | 3,386 |
| Pleasant Valley | 209 | 235 | 582 | 628 | 628 | 628 |
| Hiawatha <br>  Unincorporated | 209 | 235 | 291 | 314 | 314 | 314 |
|  | 5,225 | 5,875 | 6,984 | 7,693 | 7,955 | 7,927 |


| Emery County | 9,900 | 11,400 | 15,750 | 18,400 | 20,100 | 20,900 |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: |
| $\quad$ Emery Town | 396 | 456 | 630 | 736 | 804 | 836 |
| Ferron | 1,287 | 1,482 | 2,362 | 2,760 | 3,015 | 3,135 |
| Castle Oale | 1,782 | 2,052 | 2,835 | 3,312 | 3,618 | 3,762 |
| Orangeville | 990 | 1,140 | 1,890 | 2,208 | 2,412 | 2,508 |
| Huntington | 2,277 | 2,622 | 3,150 | 3,312 | 3,618 | 3,762 |
| Cleveland | 594 | 684 | 945 | 1,110 | 1,206 | 1,254 |
| Elmo | 297 | 342 | 472 | 552 | 603 | 627 |
| Green River | 990 | 1,140 | 1,575 | 1,840 | 2,010 | 2,090 |
| $\quad$ Unincorporated | 1,287 | 1,482 | 1,898 | 2,570 | 2,818 | 2,926 |
|  |  |  |  |  |  |  |
| Grand County | 7,850 | 8,150 | 9,700 | 10,100 | 10,100 | 9,850 |
| Moab | 5,809 | 6,031 | 6,984 | 7,171 | 7,171 | 6,993 |
| Spanish Valley | 1,805 | 1,874 | 2,425 | 2,626 | 2,626 | 2,561 |
| Other Unincorporated | 235 | 245 | 291 | 303 | 303 | 296 |

[^22]
The housing figures shown in your housing projections are similarly lower than present housing count data available to the Commission. Figures compiled by
the Southeastern Utah Associated Local Governments indicate that the following total housina count disparities exist. For your consideration, we
also are including 1980 census figures for your review. Tahle 2 1977 ELM Team Fiqures 1980 SEUALG Team Figures 1980 Census Count䓪

| referenced. Such a shallow look at population trends tend to force one to de-emohasize the total socioeconomic arena addressed herein. For comparison to the Bureau of Land Management numbers, we are indicating the Utah Process and Economic and Demographic Impact Mode1, 1979. |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Table 1 | 1978 | 1980 | 1985 | 1990 | $\underline{1995}$ | 2000 |
| Emery County | 9,900 | 11,400 | 15,750 | 18,400 | 20,100 | 20,900 |
| Emery Town | 396 | 456 | 630 | 736 | 804 | 836 |
| Ferron | 1,287 | 1,482 | 2,362 | 2,760 | 3,015 | 3,135 |
| Castle Dale | 1,782 | 2,052 | 2,835 | 3,312 | 3,618 | 3,762 |
| Orangeville | 990 | 1,140 | 1,890 | 2,208 | 2,412 | 2,508 |
| Huntinaton | 2,277 | 2,622 | 3,150 | 3,312 | 3,618 | 3,762 |
| Cleveland | 594 | 684 | 945 | 1,110 | 1,206 | 1,254 |
| Elmo | 297 | 342 | 472 | 552 | 603 | 627 |
| Green River | 990 | 1,140 | 1,575 | 1,840 | 2,010 | 2,090 |
| Unincorporated | 1,287 | 1,482 | 1,898 | 2,570 | 2,818 | 2,926 |

Paqe 2
Mr. Ron Bolander
Movember 19, 1980


Total District 1,487

* System capacity as rated by the Utah State Health Department
** $\begin{aligned} & \text { Assumes } 3.25 \text { people per water connection and uses the "Utah Process Ecomonic and } \\ & \text { Demographic Projections", for population. }\end{aligned} \quad-1,141$
SEWAGE DISPOSAL SYSTEIS

| Community | $\begin{gathered} 1970 \\ \text { Population } \end{gathered}$ | Present Population | Present Sewer System Capacity |  | 1990 Capacity Excess (+) Shortage (-> |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Emery | 216 | 445 | 1,300 | 736 | + 564 |
| Ferron | 308 | 1,400 | 800 | 2,760 | - 1,960 |
| Castle Dale | 252 | 2,135 | $\int 7,000$ | 3,312 | $(+1,480$ |
| Orangeville | 238 | 1,020 |  | 2,208 |  |
| Huntington | 407 | 3,300 | 3,000 | 3,312 | - 312 |
| Cleveland | 111 | 600 | (2,025 | 1,108 | $r+363$ |
| Elmo | 71 | 400 |  | 554 | - |

.990

14,125
Estimates from Southeastern Utah Associarion of Governments
** Estimates from "Utah Process Economic and Demographic Projections"

Page 3
Mr. Ron Rolander
Table 3 herein developed indicates that the figures represented as accurate in the BLM survey are $21.51 \%$ below the 1980 census figures available furthermore, that they are actually below Southeastern
Government's figures in all categories and communities.

On dage 102 of the DEIS, the Team refers to available water supplies. The text does not break down by communities the present levels of shortfand the systems. Usino the Utah Process Economic and availabilities of water and sewer service
Castle Vallev Special Service District.

> The Team's assessment of water treatment facilities in Emery County is incorrect. According to the Castle Valley Special Service District, Ferron, Emerv, Castle Dale, and Huntinoton all need to upgrade their water treatment facilities. The communities are all oversubscribed with the local canal companies, and are in essence using more canal water for water treatment than their ownership of water stock dictates. This situation could cause rationing of water should annual rainfall in the Wasatch Plateau decrease, or if the surface flows or groundwater supplies should be reduced or reduced in auality as a result of mining activity.

The document has nowhere to our knowledge addressed the existence or potential impact of coal development on either Cleveland or chation share in the

On pase 115 of the document, the Team refers to the Utah SCORP which we concur with in substance. The document also refers to off-road vehicle activity and that the area presently provides adequa hinh arowth which we contend will occur, coupled with recent limitations of public land accessihility through the inclusion of 397,000 acres of Emery County in the Wilderness Study areas, we feel that off-road occur on the areas adjacent to existing county roads.

The Cormission observes that the Team has indicated that there is a shortage The Cormission observes that the Team has indicated that there is a shortage
of camoino and oicnicing sites in Emery County. We strongly recommend that any action by the Bureau to increase development in the county could be and the Forest Service.

The Commission strongly objects to the allegation inferred in the document recreational facilities which allow our residents to participate in organized recreational activities. Research conducted by the SEUALG in the
PRICE PUBLIC HEARING
$\frac{\text { SPEAKER }}{\text { 1. Robert Greenberg, Four-County Community Health Center }}$
No Exhibits presented at this hearing.
Comments and Responses follow

$$
\begin{aligned}
& \text { Pane } 4 \\
& \text { Mr. Ron Bolander } \\
& \text { November } 19,1980 \\
& \text { Cormunity Attitude Survey of } 1980 \text { wherein } 587 \text { residents were polled indicated } \\
& \text { that } 86 \% \text { of the resoondents rated local recreation facilities as poor and } \\
& \text { as a priority for local spending for their improvement. Furthermore, } 36 \% \\
& \text { of the respondents indicated that this was their highest priority for local } \\
& \text { soending. Twenty percent more indicated that this was their second priority } \\
& \text { for local tax expenditures. The respondents, furthermore, indicated that } \\
& \text { 62\% placed playgroundsas a first or second priority, and 59\% placed swirming } \\
& \text { pools as a first or second priority. Other needs identified as a first } \\
& \text { priority need by citizens were a sports program (31\%) and community } \\
& \text { recreation centers ( } 37 \% \text { ). } \\
& \text { If the Rureau is able to assimilate the above referenced material, and } \\
& \text { the local planning research, we feel that the working documents which are } \\
& \text { forthcoming will be much more realistic and will serve as a much more } \\
& \text { accurate criteria with which to evaluate localized impacts and the con- } \\
& \text { current mitigations reouired to facilitate an orderly development of the } \\
& \text { coal resources being studied here. }
\end{aligned}
$$



CDHE Response $2-1$
This letter was presented orally during the public meeting and has been This letter
responded to. Se
responded to. See comments 4-1 through 4-5 of the Castle Dale hearing above.
 alludes to projected disintegration of small rural communities as more coal
production comes on line. You will find that reference in Leighton's study, Sterling County, 1957.
We know that in boom towns we find a great deal more depression, particu-
 social maladjustment.
G-I asuodsay hid
 services.
PH Comment 1-6
In Emery County, incidentally, the 1980 projection by the Research Group,
Incorporated projects 192 marriages; also projects 89 divorces. And the ratio
 that Emery County is already experiencing from the growth of the last few
years. PH Response 1-6
 services.
 there were 102 referrals for family violence in Enery County. And we know psychiatric patients than areas where there is less marital disruption.
H Response 1-7 meeting future baseline and proposed action population requirements for those services.
8-โ ฉuәшшणつ H

 crease of population over this period.
 is between 12 and 28 percent, and that they estimate 75 percent of that absenteeism is alcohol-related.

[^23]1. Greenberg, Price Hearing Testimony

PH Comment l-1 The socioeconomic impact study, the projected impact on the in part to centaur
infrastructure analysis was left to outside consultants, in Associates of Washington, D.C. of whom I know nothi
pH Response I-I
Centaur employed professional sociologists from BYU and the Six County Association of Governments to provide more local and Demographic Model was used economic analysis. The Utah Process Economic and lion. This model was developed by the University of Utah and the State of Utah.

PH Comments 1-2 study, as ! understand it, was done by some subcontractors out of BYU who happened to use what they called an "informally structured interview format do that,
viewed.

PH Response 1-2 fidential. The validity of the survey is based on the representative crosssection of the population interviewed; the names of those interviewed are irrelevant.
 and it's projected on the median scenario of the Utah population group to inanease by another 83 percent by the year 2000, and this is not including the .

PH Response $1-3$. Text revisions were made to identify shortfall of social services
meeting future baseline and proposed action population requirements for those services.

PH Comment 1-4 In Gillette, Wyoming where we scaument four years, we also saw and documented increase in admissions to the local mental health center, a 600 percent increase in admissions to the State Mental Hospital, and extremely high average life-stress
will find this reported in Robert Weisz article in Davenport and Davenport. PH Response 1-4

[^24]Finally, we know from the work of Hans Selye and a number of other psywe think is caused by failures of people to keep pace, to adapt to change. People who remain healthy in periods of change are those people who are able cannot. They lose their equilibrium and are not able to maintain the same rate of change as the society around them.
We know that the young people, elderly people and minorities are all
significantly more at risk for these kinds of problems than are other people.
Hestere made to identify shortfall of social services in meeting future baseline and proposed action population requirements for those岂
PH Comment lowing a lot of statistics out. What I really mean to say is that in an otherwise rather comprehensive document the lack of this kind of analysis is a major failing.
Text revisions were made to identify shortfall of social services in

PH Comment l-14 discussed whether there are enough social workers, psychia-

 meeting future baseline and proposed action population requirements for those
PH Comment 1-9
We know that in January of this year 43 percent of the sample of Emery
County residents agreed that alcohol and drug problems in the community had increased as a result of growth. We know that from the survey conducted by our local association of governments.
PH Response 1-g
Text revisions were made to identify shortfall of social services in
meeting future baseline and proposed action population requirements for those services.
PH Comment $1-10$ in 1978 there were almost 300 referrals to the Juvenile Court in Emery County. And when I speak of referrals, we're only talking about the tip of the iceberg, because we all know that in rural areas where know of each other. And many, many -- in fact, I would guess the vast majority of social problems are handled informally and never appear on our statist-

[^25]Almost 600 referrals of family violence in that same fourteenth-monthbased period, three suicides. Carbon county iquor sales alation
1975 , again increasing at a rate much faster than the population.
Since 1970 Carbon County has experienced a 49 -percent population growth, and 52 percent of the Carbon County population agrees that crime and drugs
have increased due to that growth.
In ' 79 there were four arrests for rape in the county. In the first three-quarters of 1980 there were five arrests for rape, one sexual assault,
and one for incest. and one for incest.
In 1979 "there were almost 700 referrals to the Jevenile Court in this
county. county.
meeting future baseline and proposed action population requirements for those services.

Matheson, Salt Lake City Testimony
SLCH Comment 1-1
 the economic impacts on the citizens that live in those areas and the people of the State of Utah.
 tensive and intensive effort to address socioeconomic impacts to the citizens
 ditional information.

## SLCH Comment 1-2

Comment l-2
There are coal reserves in the area down there, which is a matter of con-
 sold, and that would be in any way detrimental to the values that exist there. SLCH Response 1-2

 on the development of those areas. Some mining plans for existing leases on

This EIS does not preclude development of coal mining in the southern Utah serves of coal that are presently under lease in that area. Under present plans additional leasing in the southern Utah coal fields will be considered SLCH Comment 1-3

[^26]-T quaumoj HOTS
 triment as it travels over these highways.

 they have been a benefit to the economic well-being. SLCH Response 1-4
Existing highw
Existing highways are adequate to carry present traffic; however, the
traffic projected for some portions of the present highay system would be enough to substantially increase the maintenance, rebuilding, and improvements needed to the highways.

SLCH Comnent l-5
We think that adverse impact statements such as this one that would render
the area unsuitable for mining in many instances are a detriment to that pro-
cess which was initially set out by the Federal Government when Utah became a the area unsuitable for mining in many instances are a detriment to that pro-
cess which was initially set out by the Federal Government when Utah became a
state. state.

SLCH Response $1-5$
This EIS only considers leasing of coal in the Uinta-Southwestern Utah re-
gion and in no way precludes consideration of further leasing of coal in the
southern Utah coal fields or development of existing leases in the GarfieldKane County area.


SPEAKER Comments and Responses follow

1. Ivan Matheson, State Senator
2. A. L. Foster 3. Joseph Ronan, Getty $0 i 1$ Company 5. Edward S. Crawford

Exhibit 1 - Taxpayer Citizens of Garfield County (Responses attached)

Exhibit 2 - Public Comment of Getty
Exhibit 3 - Affidavit - Edward S. Cra
SLCH Comment $2-4$
Did you read in there where our communities, they state that we don't even
have a police force? I have raised three fine children. We don't have dope
problems. We don't have all the problems in our county that you do up here in
the nore populated areas, but we do have a police force. We do use septic
tanks.
SLCH Response $2-4$
The town of Escalante has one part-time police officer. The communities
of Cannonville, Henrieville and Tropic rely upon the Garfield County Sheriff's
office for law enforcement.
SLCH Comment $2-5$
Now, we oppose that report because it has completely left us out. I think
in our county there's 3,300 people. You got more on one city block up here,
but we still want to develop the resources.
We all live in the State of Utah. section 36 and 32 down there will make
this statement a lot of money, if we could mine it. That would help our
schools.
SLCH Response $2-5$
See hearing response $2-1$ above.
SLCH Comment $2-6$
We haul logs on the highway. We haul oil, cattle, sheep; all kinds of
traffic. We don't have many problems on Highway l2. Thank you.
SLCH Response $2-6$
At the present time Utah Highway l2 can accept a moderate increase in
traffic; however, at a higher level of use the mixing of coal trucks and re-
creational vehicles on the same road (Red Canyon) would cause inconvenience
and an increased accident rate. Also, at a higher level of usage, the pound-
ing of heavy traffic becomes proportionately more severe than the effects of
weathering on the asphalt pavement. Increased maintenance and more frequent
resurfacing would become necessary.
 the underground mining and the resultan subsidence that is occurring thew ba-
cause of the removal of large areas of coal beneath the surface. These
 where these are discussed in the statent.
not adequately covered in the statement.

SLCH Comment 1-6
SLCH Comment 1-6
Ivan Matheson:
that each one has
t each one has had a little impact, as you dealt with the problems.
The Hearing Officer: So, what you are saying --
 for the area to live with.

Ron Bolander: So, what you are saying is the statement only deals with one litle area, but when you add on another area and another area that other

Ivan Matheson: That's it exactly. Tremendous adverse impact that cannot SLCH Response 1-6

Actions that may be interrelated with any of the alternatives discussed in
this DEIS were identified on page 12. This EIS discusses only different levels of coal leasing and the impacts associated with either allowing or denying the proposed UP\&L exchange.

## 2. Foster, Salt Lake City Testimony

SLCH Comment 2-1
We don't like this report. I'd like to read this for the public record: The following taxpayers and citizens of Garfield County hereby violently proFederal Coal Mining Program as outlined in the OEIS report.

SLCH Response 2-1 region primarily involves the leasing of coal in an area in which planning was accomplished on the Wasatch Plateau and Emery coal fields. The only exception either consummation or denial and issuance of the preference right lease applications held by UP\&L in the Kaiparowits Plateau. In subsequent future Federal coal leasing efforts, the Kaion will be considered for further leasing. It is anticipated that the process will begin in 1982 with potential leasing in early 1984. Also see hearing response 1-2 above.

SLCH Comment 2-2 such time as Utah Power \& Light and other major corporations find it more to their interest to financially develop coal resources in our area.

The report further excludes our area from development of the three sinaller in payroll. These three mines, namely the Pollack-Davies Mine, Shakespeare Mine, and the Francine Mine could and would derive economical benefits from
our county on a level that we can live with in our environment. SLCH Response 2-2

See hearing response $1-2$ above. The three existing mines are presently tive mining development once mining plans are approved by the Office of Surface Mining or the State of Utah.

SLCH Comment 2-3 in Garfield County to a minimum level of production of coal to five million SLCH Response fields including the Kaiparowits, Alton, and Kolob areas presently have 97 Federal leases involving 4,700 acres and almost 2 bil-
lion tons of coal already under existing Federal lease. At this time, no mining of this Federal resource is taking place, although various proposals have



SLCH Response 4-1
Subsidence caused by coal mining is addressed on pages 130 and 132 of the
DEIS, where it is recognized that fractures and/or fissures intersecting sur-
face waters would dewater them to some extent. However, the state of the art
of predicting where the fractures would occur and the extent of impact by them
is limited to generalities. 8ecause of this we are forced to be practical in
our surveys and monitoring of possible subsidence. On page 83 of the DEIS it
is mentioned that GS personnel along with Utah Power and Light Company did an
intensive survey of springs on East Mountain. This survey along with mon-
itoring as required by the Surface Mining Control and Reclamation Act of 1977
should detect changes in the hydrologic balance. Also if changes do occur,
water rights would be protected. We also recommended in the Mitigation Sec-
tion of the DEIS (page 62 , Number 6 ) that the lessees do the monitoring of the
Rilda Canyon tract.

 aquifers that feed surface water is significant. It is not adequately addressed in this statement. SLCH Response 4-2
See response to Salt Lake Hearing comment 4-1
SLCH Comment 4-3 If you lose the water that flows naturally, it seems highly impossible that the grazing that has been done there since the time that country was SLCH Response 4-3

This is in agreement with the analysis on page 142 of the
SLCH Comment $4-4$
SLCH Comment $4-4$
We would like to be on record as insisting that the prior rights of ingress and egress and free movement of livestock for the ranches of Horn Mountain SLCH Response 4-4

Growth and development, with or without new coal leases, will add con-
Gesponse $4-4$
 be moved may diminish. In cases where moving animals on the hoof becomes too
hazardous they may have to be trucked.

SLCH Comment 4-5 area of ingress-egress is the cottonwood Canyon area. That would also be impacted by the area that is generally referred to as Cottonwood
Canyon. It's my understanding that the leases up in Cottonwood Canyon have Canyon. It's my understanding that the leases up in cottonwood canyon have
been withdrawn and are no longer a part of this, and only the top of East
Mountain, south end of East Mountain is being considered. Mountain, south end of East Mountain is being considered.

SLCH Response $4-5$
No leases were considered within the confines of cottonwood Canyon itself. The proposed Cottonwood tract is located north of the canyon and the proposed
North Horn Mountain tract is located south of the canyon. Also no surface North Horn Mountain tract is located south of the canyon. Also no surface
facilities are assumed for Cottonwood Canyon. SLCH Comment 4-6

If this is the case on either the coal specifically referred to here or in
general in the area, we will repeat again that anytime you impact a narrow entrance canyon with the number of vehicles and truck traffic that is associated with a mining operation the size of these components mentioned here,

Now, those of you who have been in the area know cottonwood Canyon is a narrow, steep canyon. It is utilized by the cattle that enter on the trail to
Joe's Valley and part of East Mountain. We already have significant interruption into this area. SLCH Response 4-6

8ased on the conceptual mining plans used in this EIS, none of the tracts
analyzed would be located in Cottonwood Canyon or use it for access to mining

NOVEMBER 20,1980
Mr. Ron Solander, Team Leader 136 East South Temple

Salt Lake City, Utah 84111

## SUBJECT: Uinta-Southwestern Utah Coal Region Draft

The following Taxpayer citizens of GARFIELD COUNTY hereby,
 as outlined in the DEIS report!
$\left[\begin{array}{l}\text { We are opposed, and have severe concerns regarding the } \\ \text { proposed exchange of PRLAs covering Federal coal on the }\end{array}\right.$ proposed exchange of PRLAs covering Federal coal on the by Utah Power \& Light Company, for Federal coal in the
Wasatch Plateau coal field!

In effect, the DEIS report locks from development our entire find it more to their interests, to financially developer coal
resources in our area. The report further excludes our area
 our area, in where, our county could derive some $\$ 10,000,000$ in payroll. These three mines, namely the 'Pollock-Davies mine economical benefit to our county on a level that we can live
with in our environment, and the DEIS report has completely with in our environment, and the DEIS report has completely -detriment of GARFIELD COUNTY!

We ask that the DEIS report be adjudicated to include the coal development in GARFIELD COUNTY to a minimum level of production
of coal to 5 million TPY. NS: "
 Sheri Hatch PO Bor 583 Porivitch, utah 34759
suomi M-ctostir, Stor Rout Panguitch, utah 84759

8475


## SALT LAKE HEARING EXHIBIT NO. 1

SLCH Comment 4-12 and I wish to make them here. I mentioned the egress and ingress of cottonwood Canyon is a Marrow canyon. It should be known to this group that the utah power \& in e the or not one of the successful bidders are holders of these tracts, did have prior negotiations to the extent that if the Cottonwood Canyon is used extensively for some type of mining operation, be it production or just a man trip type of entrance, it necessity to develop fenced driveways away from the roads for the intrance and exit of the cattle on those ranges.

$$
\begin{gathered}
\text { SLCH Response } 4-12 \\
\text { No new develop }
\end{gathered}
$$

 leasing additional coal under any of the alternatives covered in this EIS.
The impacts occurring in Cottonwood Canyon are from existing activity as stated on page 100 of the DEIS.
in whether or not Highway 29 from We have also a very significant interest in whether or not highway 29 from
the Grimes Wash area where the Wilber road now comes down and goes out to the plant, whether or not from there on up to the confluence of Cottonwood and Strait Canyon, whether or not
about a four-mile area there.

SLCH Response 4-13 existing and future situation without new coal leasing. No direct coal-related development or traffic would be added to alternatives. Some increased general traffic on the road would result from population growth associated increase that will occur over the next several years.

SLCH Comment 4-14 Canyon, has greatly increased its product ion in the past couple years. There has been a significant amount of interference by the it is e a steep canyon.
down that canyon. There is still a graveled road. It is down that know how much tonnage they are hauling out of there.

I do only know that the Forest Service fence and cattle guard has been used for virtually decades to gather cattle in the fall and push them down
against there can no longer be used because of the road being there and the against there can no anger be used because of there has been a significant amount of increase of traffic interference with the normal driving cattle up and down that canyon.

SLCH Response $4-14$
The text has been changed to include this information.
5. Crawford, Salt Lake City Testimony
mining under streams, springs or aqua
SLCH Comment 5-1 Act and the regulations, it so states that there will be no mining under streams, springs or aquifers. We have all three of these LCH Response $5-1$
All tracts being considered for leasing in the EIS have been evaluated according to unsuitability criteria set forth in the regulations pertaining to Coal Management, Federally with water, watersheds, etc. As a result of this screening process, no significant adverse impacts involving water resources are anticipated as a re-
sult of additional leasing.






| L.7. Nouston Panguith, nit |  |
| :---: | :---: |
| Matm Monclan "-... |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
| Mella lo Smeer Herverills, letah |  |
|  |  |
| Maxrainne Cults <br>  Farguman |  |
|  |  |
|  |  |
| vingh Erickoc qulnider |  |
|  |  |
| arsurgland - II |  |
|  |  |
| acilonster Panamibh |  |
| Perogutct |  |
|  |  |
|  |  |
|  |  |
| , 3 |  |
|  |  |
|  |  |
|  |  |
| Neworah ann tatch Panquitch il |  |
|  |  |
| rgeyrom |  |
|  |  |
|  |  |
|  |  |


SALT LAKE HEARING EXHIBIT NO. 2
PUBLIC COAMENT OF GETTY OIL COMPANY
TO
UINTA-SOUTHWESTERN UTAH DRAFT ENVIRONMENTAL
IMPACT STATEMENT AND PROPOSED COAL LEASING PROGRAM good EVENING:
 ROOM 1732, 3810 WILSHIRE BLVD., LOS ANGELES, CALIFORNIA 90010.

ON THE UINTAH SOUTHWESTERN UTAH COAL LEASING PROGRAM, INITIALLY WE
 in the preparation of the report which they prepared in a very short
 7
 It is long overdue and it comes at a time when the country is faced ' $\wedge$ า ddans ג9y
 the country to meet its national emergy goals.


Garfield County Protest, Salt Lake Hearing, Exhibit I
Comnent E1-1
The following Taxpayer citizens of Garfield County hereby, vehenently,
protest the over-all exclusion of our area in coal development, in the new protest the over-all exclusion of our area in coal development, in the new
Response E1-1
See hearing
See hearing response 1-2 above.
Comment E1-2
We are opposed, and have severe concerns regarding the proposed exchange
of PRLAs covering Federal coal on the Kaiparowits Plateau in Garfield and Kane Counties, owned by Utah Power \& Light Company, for Federal Coal in the Wasatch
Response E1-2
Comment E1-3
In effect, the DEIS report locks from development our entire area, until
such time as UP\& and other major Corporations find it more to their interests, to financially develop coal resources in our area. The report further excludes our area from development of the thre smaller coad mines we have in These three mines, namely the "Pollock-Davies mine", Shakespear mine" and the level that we can live with in our environment, and the DEIS report has completely excluded these three mine developments, to the economical detriment of
Garfield County!
We ask that the DEIS report be adjudicated to include the coal development
in Garfield County to a minimum level of production of coal to 5 million TPY.


ONE OR Alternative tivo, he support the adoption of these alternatives
ONE OR ALTERNATIVE TWO, HE SUPPORT THE ADOPTION OF THESE ALIERNATIVES
FOR BASICALLY TWO REASONS.
3) ALTERNATIVE 5 IS TOTALLY UNACCEPTABLE BECAUSE NO COAL WOULD BE LEASED, CONSEQUENTLY THE FEDERAL LEASING PROGRAM WOULD NOT GET OFF THE GROUND. DEPARTMENT OF ENERGY LEVELS WOULD NOT BE MET. THUS, THERE WOULD BE NO TRACTS AVAILABLE FOR COAL PRODUCERS TO BID ON.
 LEASE APPLICATIONS (PRLA) AND WE WOULD LIKE TO TAKE THIS OPPORTUNITY
 PENDING PRLAs, WE FEEL THAT JUSTICE AND FAIRNESS DEMANDS THAT EXISTING PRLAs BE GRANTED WHERE PRE-1976 REOUIREMENTS HAVE BEEN MET.
 OF THE INTERIOR HAS RECOGNIZED THE NEED TO GREATLY INCREASE LEASED
 AN AWARENESS OF REALISTIC DEVELOPMENTAL TIME SCHEDULES.

[^27] PROVIDE THESE COMMENTS, GOC WILL BE PROVIDING ADDITIONAL COMMENTS IN WRITING PRIOR TO DECEMBER 9, 1980 DEADLINE.

1) THESE ALTERNATIVES GIVE THE GREATEST RECOGNITION TO INCREASED PRODUCTION REQUIRED TO MEET ENERGY SELF-SUFFICIENCY. TO ILLUSTRATE THIS POINT, YOUR ATTENTION IS DIRECTED TO THE 1990 COAL PRODUCTION GOALS WHICH ARE SET FORTH IN THE LETTER OF MARCH 14 1980 FROM THE DIRECTOR, BUREAU OF LAND MANAGEMENT TO THE SECRETARY OF THE INTERIOR APPEARING IN THE APPENDIX \#1 OF THE EIS.

 COAL LEASING PROGRAM. COMPETITIVE BIDDING IS IN THE INTEREST OF THE PUBLIC IN THAT IT WOULD: A) LOWER MARKET PRICES FOR COAL B) INCREASE REVENUES TO THE STATE AND FEDERAL GOVEPNMENTS.

## 

 THE FOLLOHING REASONS:1) ALTERNATIVE 3 IS OPPOSED BECAUSE THIS ALTERNATIVE DOES NOT PROVIDE FOR COMPETITIVE BIDDING. IN ADDITION, THE IMPLEMENTATION WOULD DELAY COAL LEASING PROGRAMS BY AT LEAST SIX MONTHS.
2) WE OPPOSE ALTERNATIVE 4 BECAUSE THIS ALTERNATIVE HILL NOT PROVIDE SUFFICIENT RESERVES TO MEET STATED PRODUCTION TARGETS. FOR EXAMPLE, THE 171.3MM TONS IN PLACE RESERVES INDICATED FOR ALTERNATIVE \#\# IS

LESS THAN $1 / 2$ OF THE 422MM LEASING TARGET. IN
flow in that portion of Crimcs wash which crosscs our property orginates as the dischayge of groundwater from four springs on our property, from the Burnt Tree Spring and llead Cove Spring, and other unnamed springs on the southern portion of Section 21 uhich flow northuard into the channcl of Grimes kish. Bascd upon first-
 other persons. Crimes wash at this high elevation is a "perennial strean". as that term is defined at 30 C.F.R. 701.5. The U.S.
 Department of Natural Resources. Division of kater Rights establishing that we are entitied to use 30 acre-fcet of water per six-month period of use on Section 21. A truc and correct copy of said adjudication is actached hereto. incorporated herein, and marked Exhibit "ESC-4"
4. The Blind Canyon coal seam underlying Section 21 is included in the area to be mined as part of the Deer Creek Mine operated by Utah Power 6 Light. The mining plan for the Deer Creek Mine was approved by the U.S. Ceological Survey on January 20, 1978. prior to the effective date of the initial resulatory program under the Surface Mining Control and Reclamation Act of 1977 (SMCRA). New mining plans approved prior to Fcbruary 3. 1978. did not have

 May 3. 1978. 30 C.F.R. 710.1(a)(3). A true and correct copy of the Deer Creek Mine approval is attached hereto and marked Exhibit "EsC-S".
5. The approved Deer Creek Nine plan provides for the
development of entry shafts under the northern one-half of Section 21, and the extraction of coal by longwill methods under lands adjacent to the northern one-half of Section 21. The area to be undermined contains springs tributary to frimes Wash, and includes
SALT LAKE HEARING EXHIBIT NO. 3
in the united states district court


[^28] depose and say:

1. I reside at 1809 Yalecrest Avcnuc, Salt Lake City, Utah
B4108. I am co-owner, along with my brother Clay E. Crawford and my sister, Annette Jensen (hereinafter referred to as "we" and "our" of the surface and minerals, except coal, in the northern one-half of Section 21, Townhip 17 S., Range 7 E., S.L.M. in Emery County, Utah. Section 21 overlies federally oumed coal which has been leased for mining by the Bureau of Land Management. Lease No. U-040151 includes the coal in the Blind Canyon and Hiawatha coal seams underA true and correct copy of pages $4-6$ and Figure 1 of the "Exploration Permit Application" filed by Utah Power of Light which describes the lease and fee interests in surface 1ands and minerals associated with the wilberg Mine are attached hereto, incorporated herein, and marked Exhibit "ESC-1". A true and correct copy of "Coal Lease, Utah $040151^{\prime \prime}$ is also attached hereto, incorporated herein, and marked Exhibit "ESC-2".
2. The portion of Section 21 which we own is traversed by Grimes wash. The elevation of our property ranges from 9400 feet near the northern boundary which adjoins the Manti-LaSal Mational Forest, and descends to about 8600 fect at the point where Grimes Wash flows across the eastern boundary into adjoining Hational Forest land at the southeast comer of our property. Most of the
5.8. and 5.h. Appendices 6.a and B.b. nre attached to the Wilberg Mine Environmental Analy:is as Appendices $2(\mathrm{~d})$ and 3 (c), respectively, and are not repeated here. (c) Baker, Dan R., "Subsillence Projections, East Mountain Area, Emery County, Utall" (Utah Power \& Light Company, submitted to U.S.C.s. December 30, 1977). A true and correct copy is attached hereto and marked Exhibit "Esc-9".
(d) "Final Environmental Stactencrit, Emery Power Plane" (Bureau of Land Management, U.S. DOI, undated). A true and correct copy is attached hercto and marked Exhibit "ESC-10" (e), "Final Environmental Statement: Emery Power Plant Units $384^{\prime \prime}$ (Bureau of Land Manargsacment. U.S. DoI, undated) A true and correct copy is actaticd hereto and marked
 Factors controliing coal Minc Suhsidence in Utah and colorado". Geological Survey Profussional Paper 969 (U.S. G.P.O. Washington: 1976). A true and enrrect copy is attached hereto and marked as Exhibit "ESC-12".
3. To the best of ny knowledge. the studies and analyses referenced in paragraph 8 and attached hercto contain all of the published expert opinions regarding the affects of the Dect Creek
 waters on East Mountain, Emcry Councy. Utill, including the springs to which we hold adjudicated water rights.
4. The waters to which we hold adjudicated rights may be used for either stock grazing or domestic consumption. It is our intention to develop this property for recicational homes. The water adjudications authorize the consumption of water by nine domestic users (see Exhibit "LSC-3"). One homesite has been
developed. Eight more are planned. diverted from the surface as a result of subsidence, the present


 1978, one appraisal of the property was for $\$ 850,000.00$.

the sources of waters for whichue holld .wjwiticited rights. Entry shaft "Third West" underlies the nortliern onc-half of Section 21. and has already been driven.
5. The Riawatha coal scam. which lies about 200 feet dceper
than the Blind Canyon seam, also underifics Section 21 and is included
in the area to be mined as part of the Wilberg Mine. The mining plan for the Wilberg Mine was approved hy the U.S. Geological Susvey on January 23. 1978, New mining plans approved prior to February 3, 1978, did not have to denonstrate complianco with the initial regulatory requirements under the SMCRA, ind did not become subject to those standards until May 3. 1978. 30 C.F.R. 710.11(a)(3). true and correct copy of the Wilberg Minc aporoval is attached hereto and marked Exhibit "ESC-6".
6. The approved Wilberg Mine plan includes the development
of entry shafts under the northern onu-lialf of Section 21, and the of entry shafts under the northern onu-lialf of Section 21, and the also under lands adjacent to Section 21. The area to be undermined contains springs tributary to Crimes wash, and includes the sources of waters for whichwe hold adjudicated rights.
7. Environmental analyses and scientific studies of the
Deer Creck Mine plan and wilberg Mine plimn and the area to be affected by those mines have becn conducted by or on behalf of the U.S. Ceological Survey and Utah Power \& Light. These studies and analyses all predict that subsidence will occur as a result of each mining operation. Said studies and annlyses show that the subsidence will or may cause fracturing of the overburden which result in the diversion of groundwater from shallow aquifers and surface waters from stream channels intn the mine workings or other underground channels, Such diversions will diminish or disrupt the flows in styeams and springs above the mine workings, These studies and environmental anilyses include:

 Power and Light Company, Lessec" (United States Ccoiogical Survey. U.S. DoI, September 9, 1977). A true and correct copy of those portions of said Environmental Analysis which address hydrology. geology and subsidence is attached hereto and marked Exhibit ESC-7. In adurtion to relevant -ert Environme 1(a), 1(b), 2(c), 2(d), 6(a), and 8(c).
(b) "Environmental Analysis for Mining and Reclamation Plan Deer Creek Mine, Emery County, Utah, Utah Power \& Light Company, Lessee, American Conl Cnmpany, Operator" (United States Geological Survey, U.S. Dor. December 1. 1977). A true and correct copy of those portions of said Environmental Analysis which address hydrology, fcology and subsidence is



# United States Department of the Interior 

blreau of land management<br>WASHINGTON, D.C. 20240

TO: Secretary of the Interior
THROUGH: Executive Secretariat
DGFHi:Assistant Secretary - Land and Water Resources
FROM: Director, Bureau of Land Management

SUBJECT: Transmittal of Uinta-Southwestern Utah Regional Coal Team's Suggested Leasing Target

This memorandum is to request your concurrence in the leasing target votec oy the Uinta-Soutnwestern Utan kegional Coal Team (RCT). Tne Eean also selected for your approval five levels of coal leasing to be assessed by the regional Environmental Impact Statement (EIS) for ㄴㄷㄷ -egion.

Backaround
The tentative leasing target for the Uinta-Southwestern Utah Region of 109 million (M) tons included in the Secretary's decision of June 4, 1979, was calculated to achieve 1985 through 1990 production levels, with no excess capacity assumed. Since that date, several events have occurred winich have altered our perception of regional production goals, targets, and capacity.

Approval of the Intermountain Power Project (IPP) was a critical factor requiring review of the tentative target. The IPP demand for 9.M tons per year was not included in the Department of Energy (DOE) 1990 mid -level froduction goal of 17.3 MM tons of annual production. Inis is clear from the enclosed analysis (enclosure 2) and has been verified by persons from both DOE and the Department at the working staff level. Consequently, the original DOE goal had to be revised upward and the new demand resulting from the IPP was assumed to impact only the Utah portion of the region.

The Utan Power and Lignt (UPL) proposed preference right lease application (PRLA) exchange adds another dimension to development of the target. The three most likely tracts for the exchange are also the three tracts most highly ranked by the RCT. If the exchange takes place, approximately 280 MM tons of in-place coal would become available and should, in our opinion, be counted against the target as new coal under lease.

The RCT, at a meeting held February 5 and 6, 1980, recommended a leasing target of 322 MM tons based on the referenced analysis (see enclosure 2). At that same meeting, however, the team members from Colorado questioned the assumption that existing Colorado mines would increase production by only ten percent between now and 1990 and requested the Geological Survey (GS) make a mine-by-mine assessment of existing operations. This assessment has been made. In the judgment of GS, existing mines could produce 1.0 MM tons more per year than was assumed in the analysis. We have updated the analysis by the addition of Appendix $C$, which provides a sub-regional (State) disaggregation of the regional demand figures. According to this refinement there could be sufficient demand for Colorado production to absorb the 1 MM ton increase. Consequently, the mechanics of the sub-regional analysis suggests a reduction from 322 to 264 MM tons of in-place coal in the target recommended by the RCT.

Notwithstanding the sub-regional analysis, we favor maintaining a target of 322 MM tons which places the major portion of Uinta regional coal production between 1985 and 1990 in the Utah portion of the region. The UPL exchange, if approved, would more than meet a 264 Mi ton target and we feel that not to have additional leasing would adversely affect the competitive production of new coal in the region. The 322 MM ton target, on the other hand, would allow for at least one additional tract to be offered to promote competition. A policy to promote a competitive coal industry, in our opinion, should be the paramount factor in establishing the target for this lease sale.

## Conclusions

I request that you concur with the Regional Coal Team's suggested leasing target for the 1981 Uinta-Southwestern Utah lease sale. The amount of in-place Federal coal made available would be 322 million tons. For purposes of impact analysis, the EIS team will consider the following leasing levels in the regional EIS:

1. No new leasing, assuming half or more of the leases with mine plans pending, and wich could go into production by 1986, will actually attain production to meet all demand without regard to sub-regional location of source for new IPP demand.
2. Leasing $109 \mathbb{M}$ tons to meet DOE 1990 mid-level goal as originally calculated in the tentative target.
3. Leasing target of 322 mM tons noted by the Regional Coal Team, which assumes the same conditions as level 2, plus new IPP demand in Utah and at least one additional tract to promote competition.
4. Leasing 410 MM tons to meet DOE 1990 mid-level goal plus new IPP demand in Utah, assuming no production from outstanding leases with approved mine plans.
5. Leasing 515 million tons, to meet high level DOE demand.

$$
\leq \operatorname{Lissociato}_{\text {Harte }}
$$

3 Enclosures
Enclosure 1. Final Coal Leasing Target
Enclosure 2. Uinta Leasing Target Analysis
Enclosure 3. Uinta-Southwestern Utah Coal Project

I concur:


Date: $3-28-80$

1. Alternative 1 -- Mid-level

322 MM ton, excluding UPL proposed exchange

| 1990 | Mid level DOE production goal | 17.3 |
| :--- | :--- | ---: |
| (plus) | IPP potential demand | 9.0 |
| (less) | adjusted goal | 26.3 |
| (less) | Planned production from existing mines | 18.3 |
|  | with mine plans pending |  |
|  | potential supply deficit | 2.5 |
| (times) | Federal coal ratio | 5.5 |
| vided by) | Recovery ratio | .82 |
| (times) | Mine life | .42 |
|  | Mid-level target | $\frac{30}{322}$ |

Reference: Uinta Leasing target analysis prepared by Allen Dickerman
2. Alternative 2 -- Mid-level

322 M ton, including UPL proposed exchange
3. Alternative 3 -- High level

| I990 | High level DOE production goal | 20.6 |
| :---: | :--- | ---: |
| (plus) | IPP potential | 9.0 |
| adjusted goal | 29.6 |  |
| (less) | Planned production | 18.3 |
| (less) | l/2 planned production, etc. | 2.5 |
|  | potential supply deficit | 8.8 |
| (times) | Federal coal ratio | .82 |
| (divided by) | Recovery | .42 |
| (times) | Mine life | $\underline{50}$ |
|  | High level target |  |

Reference: Uinta Leasing target analysis prepared by Allen Dickerman
4. Alternative 4 -- Lesser level

109 M ton
Reference: DOE tentative leasing target announced on June 4, 1979, under the Federal Coal Management Program.
5. Aiternative 5-- No new leasing

# United States Department of the Interior 

BUREAU OF LAND MANAGEMENT<br>Nevada State Office<br>Room 3008 Federal Building<br>300 Booth Street<br>Reno，Nevada 89509

IEMORANDUM
FEB

To：Director（100）
Through：Assistant Director，Office of Coal Nanagement（141）
From：Chairman，Uinta－Southwestern Utah Regional Coal Team
Subject：Final Coal Leasing Target
We completeá our coal leasing target hearings December 3 through 6， 1979 and set the final leasing target on February 5 and 6，1980．We hać 181 attendees at the coal leasing target hearings，but only one substantive coment which was made by the Friends of the Earth．The Friends of the Earth coments related primarily to the DOE model for production goals． Copies of the hearines transcripts have been transmitted to your office． We received 12 written comments on the coal leasing target，copies of which have been transmitted to your office．An analysis of the comments was con tained in the Uinta Leasing Target Analysis，prepared by Alan Dickerman，an the Summary of Coments on Leasing Targets，prepared by John Lovell，botn from the Office of Coal Management（WO－141）．

After review of the sumaries of the hearings and comment letters and the analysis presented by staff members of the OCN，the Regional Coal Team recommended a leasing target of 322 million tons．The analysis was con－ tained in the revised target analysis prepared by Alan Dickerman，which was based on the DOE production goals．

The FCT members from Colorado expressed a concern that the production from existing mines in Colorado was not included in the Dickerman analysis．Mr． Dicierman is to contact Mr．Moffitt of U．S．G．S．to get these figures．Hor－ ever，we might assume the target of 322 million ton aiong with the alterna－ tive target ievels in the EIS will adequately aāaress the CoIoracio portion． We will look at the Colorado figure for final determination in the effects on the 322 million ton target．


A1－5
Encl．1－

Save Energy and You Serve America！

Another issue which wis raised urine the EO refetine and vico ounce considerable discussion has the mine life (ie., 30 years vs. 40 years). Evidently there is an inconsistency within the Eureau on the term of the mine life, which has a significant impact on computation of leasing targets. The RCT did not make a recomenàation but referred it to the managing agencies to discuss and determine the appropriate "life span" for the EIS process. However, I believe it would be advisable for the Bureau to establish a uniform and consistent mine life term for calculadion of leasing targets.

In determining groupings of tracts for alternatives in the EIS, there will be at least four other target levels discussed, ranging from 515 million ton for the high level and 109 million tons for the low level. One of the levels represents the target level of 322 million tons. Other factors that may impact the leasing target levels are the UPL exchange, the PRLA's, tract delineation and SSA and will be dealt with in the analytical process of the BIS.


## Backeround

The announced Federal coal management program of June 4, 1979, also included a tentative leasing target for the Uinta region of 109 Mi tons of in-place coal. this tentative target was based on Department of Energy (DOE) production goals for 1987 and the assumption there would be no excess capacity from that year forward (details of these calculations are contained in the memo attached as Appendix A).

The DOE production goals considered were:

$$
\begin{array}{ll}
1985 \text { mid-level demand } & 14.5 \mathrm{MM} \text { tons (annual production) } \\
1990 \text { mid-level demand } & 17.3 \\
1990 \text { high level demand } & 20.6
\end{array}
$$

Regional production from all sources in 1976 amounted to 10.1 M tons and has been estimated at 11.6 M tons for 1979. All leases which currently have approved mine plans are associated with the 14 mines currently in production. There are 69 leases in this catagory with a potential capacity of 32.2 M tons per year. Current mine plans, however, indicate a total production rate of only 18.3 M tons from these mines in the year 1990. Therefore any remaining capacity from approved leases cannot be relied upon to go into production, although the potential remains (see Fact Sheet, Appendix B).

It is clear that the present DOE mid-level production goals could be met from existing leases. It is equally clear, however, that the Intermountain Power Project (IPP), which would require approximately 9 M tons of coal annually, was not included in the production goal for the Uinta region. This is so because one could add 9 M tons to present production of 11.6 and exceed the mid-level production goal. DOE is currently in the process of reassessing the models and assumptions which generate production gocls as a first step in the preparation of a new set of regional goals. A preliminary set of goals should be available for review by July 1980. The final set of goals are not expected until Fall of 1980.

## Public Comment on Targets

written comments on the announced tentative target indicated general dissatisfaction with the small size of the number. Gne commentor pointed out that in this region, an average new mine could be expected to produce 2 ? tons per year for 30 years, and therefore, each new tract should contain 100 to 120 MM tons of in-place coal. Two commentors thought the
tentative target too low because of the underlying assumptions used in model to generate the DOE production goals. Tnree comentors specifically stated the target should be between 200 and 400 MM tons. Three commentors thought the assumed 4 year lead time used in the tentative target calculations was too short and that 6 years was more appropriate, i.e. lease to meet 1989 or 1990 goals, rather than 1987 goals.

Two commentors felt that the proposed Preference Right Lease Application (PRLA) exchange should not be counted against a leasing target. An additional comment was made that neither maintenance nor bypass leases should be counted against a leasing target. Three commentors felt that any accurate projection of demand was impossible and that a conscious effort should be made to over lease. Department of Justice (DOJ) commented that coking coal should be separately identified and that the target should reflect sub-catagories of 3 volatility classes. Only one commentor felt that no further leasing was needed because present leases, responding to diligence requirements, would meet DOE production goals.

Oral comments received at the public hearing on December 6, 1979 , were of the same general nature as the written comments, except more questions were raised regarding assumptions used in the DOE models and in the calculations of the targets themselves.

Response to Comments
An average annual production rate of 2 M tons per mine appears high; of the 14 mines currently producing, only 5 plan to produce at this rate or higher by 1990. As discussed in the background section, the tentative target probably is too low and, as shown below, the revised target is within the suggested range. We agree that within this region the production goal for 1990 should be given more consideration.

In general, application leases are not counted against targets except to the extent they permit continued production at present or future planned levels. However, if the exchange takes place the resulting production would be "new" coal and should properly be charged against any target. Projections of the nature required for setting leasing targets should never be viewed as predictions, but only as "targets" toward which to aim. Revision to meet changing conditions is provided for by the biannual target revieh.

As to components of the target, DOE did not provide the original target b $\because$ any sub-classification. Disaggregating the target into seperate "mini-targets" does not seem justified, given the level of accuracy such a disaggregation implies. The need for further leasing is addressed in the following section.

Revised Target Analvsis
Given that the IPP potential need for 9 M tons of coal per year was not included within the 1990 regional goal of 17.3 MM tons and assuming such a contingency should be provided for, if possible, an adjusted goal of 26.3 is taken as a point of departure. Subtracting the 1990 planned production of existing mines of 18.3 (recogrizing this may be a low estimate) results in an estimated shortfall from existing mines of 8.0 M tons. From the Fact Sheet, it can be seen that considerable planned production capacity may still exist from outstanding leases. However, much of this capacity is questionable since current expectations are that many of these leases will not go into production by mid 1986 and therefore not meet due diligence requirements. Assuming that half the capacity of leases with pending mine plans (for which diligence requirements are expected to be met) goes into production, the 8.0 shortfall reduces to 5.5 as a potential supply deficit. Using a Federal coal to total coal ratio of 82 percent (based on estimated production ratio), an average recovery ratio of 42 percent (based on recoverable reserve ratio of delineated tracts), and an average mine life of 30 years, a revised tentative target of 322 nit tons of in-place coal is suggested. The computations are as follows:

| 1090 | Mid level DOE production goal | 17.3 |
| :---: | :---: | :---: |
| (plus) | IPP potential demand | 9.0 |
|  | adjusted goal | $\overline{26.3}$ |
| (less) | Planned production from existing mines | 18.3 |
| (less) | 1/2 planned production from mines |  |
|  | with mine plans pending | 2.5 |
|  | potential supply deficit | 5.5 |
| (times) | Federal coal ratio | . 82 |
| (divided by) | Recovery ratio | . 42 |
| (times) | Mine life | 30 |
|  | Revised tentative target | 322 |

1979 Production from Federal leases
Estimated lato production from non-Feceral sources

## Leases

```
1000 capacity of leases currently in production 19.2
```



```
13.2
1990 capacity of leases with plans pending 50
37.9
Estirated 1090 capacity of leases without plans
143
64.9
```

Mines

```
1990 planned production of mines currently producing 14(mines)
    18.3
(all approved mine plans are associated with these mines)
1090 planned production of mines with plans pending
    and dilicence expected
    2
    4.9
1900 planned production of mines with plans pending
    no dilicence
    0
    19.0
1090 capacity of other mines which could produce
3
2.6
```

Deineated Tracts
Proposed PRIA exchance
Other tracts (site anaiysis complete)
Uther tracts (site analysis not complete)
TOTAL

In-Place Res.
278.9
14. 5
342.0
762.4
10.6

```
WDE estimates 60% of total production is from Federal leases; VESCAR, Inc.
    submitted comments estimateing total production at ll.6 implying 32% Federal coal.
```

United Enates Department of Justice
WASHINGTON, D.C. 20530

## 11 DEC 1979

Mr. Edward F. Spang
Nevada State Director
Bureau of Land Management
Chairman, Regional Coal Team
Federal Building
Room 3008
300 Booth Street
Reno, Nevada 89509

Dear Mr. Spang:
The Secretary of the Interior ("Secretary") is required to consult with and give due consideration to the views and advice of the Attorney General at each stage in the issuance, renenal ari readjustment of coal leases. $1 /$ one such stage is the revision of leasing targets for federal coal leasing. This letter sets forth the views and advice of the Attorney General concerning the leasing target for the uinta-Southwestern Utah Coal Production Region. 2/

The preliminary leasing target for the uinta-Southwestern Utan Coal Production Region was set in the Secretarial Issue Document ("SID") at 109 million tons. The 109 million ton leasing target was derived from the Department of Energy's ("DOE") medium coal production goals for 1985 and 1990. The preliminary leasing target is based on the difference between expected 1986 production of 15.1 million tons and the 1990 DOE medium demand production goal of 17.3 million tons.

The Department of Justice ("Department") has previously stated and continues to believe that this attempt to match leasing with predicted future demand is inaduisable. predictions will sometimes underestimate demand, and when they do, substantially increased coal prices would result. Even if these predictions are substantially correct, the efficient resource allocation

[^29]decisions of the marketplace would be supplanted by less efficient government decisions. To minimize these problems, the Department has advised that the leasing target be set two or three times higher than would be indicated by the DOE's production goals.

In addition, the Federal Register notice states that production within four years is assumed for some leases. This assumption is overly optimistic in light of the Department of Interior's own estimate of $6-7$ years and industry estimates of more than 10 years. Accordingly, leasing should be geared not to 1986 , but to 1990 demand.

Moreover, the DOE demand goals utilized as the basis for the preliminary leasing target of 17.3 million tons are based on assumptions that are no longer appropriate. For example, the leasing target contained in the SID is derived from assumptions that delivered 1985 oil prices would be $\$ 15$ a barrel and that nuclear power plants with construction permits would be built expeditiously. The SID also made no allowance for synthetic fuels. Since those goals were developed, future coal demand has been greatly stimulated. Oil prices have almost doubled; it seems unlikely that nuclear plants will be expeditiously constructed; and the president has initiated a massive synthetic fuels program that relies in substantial part on coal-based fuels. Consequently, the Department advises that the leasing target for the Uinta-Southwestern utah Coal Region should be revised substantially upward to reflect these changes.

Finally, the Department is concerned about the leasing of coking coal. The Department's recent report to Congress identified "prime coking coal" (identified by its coking properties and levels of impurities) as a distinct product market for competitive analysis. 3/ The Department has also identified three distinct product markets based on volatility within the broader product market for prime coking coal. These are low, low and medium together, and high volatile prime coking coal. $4 /$

[^30]4/ Id. at 44-56.

The preliminary leasing target for the Uinta-Southwestern Utah Coal Region and the DOE production goals upon which it is based make no special provision for leasing coking coal. Significant federal reserves of prime coking coal exist within the Uinta-Southwestern Utah Region in Pitkin and Gunnison Counties in Colorado and in Carbon County, Utah. Leasing of these reserves will be required to fill the needs of western steel plants. Separate leasing targets should be set for low and medium together, and high volatile prime coking coal. Failure to do so may erect or maintain significant barriers to new competition in those markets.

In conclusion, I reiterate the Department's conviction that increased leasing is necessary to assure dequate competition in coal markets, and recommend that the leasing target for the Uinta-Southwestern Utah Coal Region be reconsidered in light of these competitive concerns.

Sincerely yours,


Donald L. Flexner
Deputy Assistant Attorney General Antitrust Division

## APPENDIX 2

AGREEMENT

This Agreement is between the United States Departenent of the Interior, United States Forest Service and Utan Power \& Light Company.

The palties agree that evaluation and a full exarination of the need for and the possible merits and benefits which might flciv from issuance of coal leases elsewhere on feejeral lands in Utan (leass exchange area) in exchange for Utah Fower \& Light Consany's coal leas三 apoiicミtion numbers U-1362, U-1363, U-1375, U-5233, U-5234, U-5235, U-5236 and U-5237 (PRLA's) as contemplated by Public Law 95-554, 92 Stat. 2072, are advantageous and in the oublic interest.
l(a). The parties agree to proceed with reasonable diligence so that by December 31, 1981, the Department will in accordance with this Ägreement, be able to issue a lease or group of leases in the lease excrange area to Utah Power \& Light Company in exchange for relinguishment of the PRLA's or a portion of those PRLA's of equal value to the lease or group of leases issued by the Department.
(b) The Department will not issue a lease or leases under this Agreement unless the Department and Utah Power \& Light Company agree that an exchange should take place.
(c) The lease exchange area (sometimes referred to as Phase 1) consists of $25,342.48$ acres from the wasatch Plateau region identified as "Cottonwood" (2,400 acres), "Meetingnouse Canyon" (690.2 acres) and "North forn Mountain" (22,252.28 acres). A detailed land description is attacned as Exhibit 1.
2. Utah Power \& Light Company represents that it is necessary for it to acquire coal from which proauction can obtained by 1985 to meet its planned needs at the Hunter Power Plant Unit No. 4 in Enery County and at the Intemountain Power Froject in Millard County. Utah Power's maximum annual fuel requirements for these power plants will be aoout 3.5 million tons per year. The parties recognize that Utah Power in pursuing this exchange for the above purpose will forego the opportunity for an early judicial determination concerning its PRLA's.

3(a). Utah Power \& Light Company agrees to submit to the Degartmant by August 15, 1979, all available geological data, incluaing drill logs, isopachous maps, an analysis of the chemical properties of the coal, the sulphur content and all other availきole relevant information needed to deternine the amount of dimnnstrated reserves in the aree covered by the PRTA's in accordance with USGS Bulletin l45C-B.
(b) Uiah porer \& Light Company snall submit to the Department by Septcmber 1, 1979, a provosed mining gian for the PRIA's based upon the information provided in paragraph $3(a)$. The mining plan shall comply with all applicable feaeral, state and local laws and shall contain at least the following infomation:
(i) a description of the type and method of coal mining operation that is proposed, the engineering techniques proposed and the equigment proposed to be used;
(ii) the anticipated time required to complete each phase of the mining operation;
(iii) cross-section maps or plans of land depicting all known coal seans and the strike and dip of the coal t. a mined, the location and extent of known workings of any underground mines, the known hydrology of the coal bearing strata, the location of spoil, waste, and refuse areas and of water treatment facilities;
(iv) the location of all portals, mine openings and coal transportion systems; and
(v) detailec estimate of the cost of all phases and aspects of mining and removing the coal, and reclamation.

Utah Power \& Light Company shall also submit by September 1, 1979, a copy of all transportation cost studies made by or prepared for Utah Power \& Lignt Company relating to the PRIA area.

4(a). The Department, through the U.S. Ceological Survey (USGS), shall complete all drilling and logging necessary to establish the amount of the reserves in the lease exchange area by :Jovertioer 15, 2979. This drilling will require approximataly 23 holes to be arilice at or fear the sites specified in attachment 2 to the Contract Schedule anc Fechrical Specifications Utah Power \& Light Exchange attached to the Agreerent as Exhibit 2. The Department, acting through the USGS, shall direct that the drilling and logging of these holes, using best efforts, conform to the following technical specifications:
(i) all drill holes are to be bottomad at least 100 feet below th:e basal coal seam;
(ii) drilling activities are to be concucted 24 hours per day on a continuous basis for the completion of each arill hole except when operations on a continuous basis are prevented or interrupted by unforeseen or uncontrollable conditions. Each hole shall be geophysically probed promptly upon completion of its drilling;
(iii) drill holes are to be filled with fluid to the highest level that fluid will stand in the drill hole prior to geophysically probing; and
(iv) drill holes are to be geophysically probed in the following manner:
(1) natural gamma, s.p., gamma garma (density), resistivity (wet and dry) and caliper logs are to be run on all holes.
(2) holes are to be logged at a speed of no greater than 5 feet per minute in the coal interval.
(3) logs are to be recorded at a scale of $1^{\prime \prime}-5$ '.

~4~
(b) The U.S. Forest Service agrees to complete all environmental assessments needed for the drilling and lagging to be finished by Noveriver 15 , 1979. This date will be adjusted accoräingly if the assessments lead to the requirement of one or more environ-ental impact statements.
(c) The Degartment, acting througn the USGS, siall, in accoriance with the usual open file practices, make the information obtained as a result of the drilling in the excriange area available to the public and provide a copy to the U.S. Forest Service and Uiah Power a Light Company and any other person who requests a copy. Any person who conplies with subparagraph (c)(1) and (2) of this section may nave an observer present on site throughout the drilling program.
(1) Any person who wishes to ooserve all or portions of the drilling and logging may do so by filing and obtaining the approval by the USGS of an observation plan. Each plan shall acknowledge that the observing party shall be responsible for transportation to and from the drilling site, and shall expressly include a waiver of any right to hold the United States, its employees or agents liable in any way for damages as the result of injuries or accidents that may occur during the observation of the drilling and logging program.
(2) No observer shall have any right to direct the Geological Survey or its agents on the conduct of any.phase of the drilling program and an observer may not interfere with any phase of the drilling and logging program.
(d) Utah Power \& Light Company shall submit to the Department by March 1, 1980, reports on the exchange area in the same form, scope and substance as those required for the PRLA's in Paragraph 3(b) of this Agreement.
5(a). The Department, acting through the USGS, shall make an estimate by May l, 1980, based on the information available as a result of

Paragraphs 3 and 4 of this Agreenent and other relevant information, whether the coal in the Phase 1 of the lease excnange area is of greater, lesser or erual value to the caal in the PRLA area.
(b) This estimate shall use the Lepatument of the Interior's "coal resource economic evaluation mociel" and shall take into consideration for each area:
(i) the anount of recoverable reserves calculated in accordance with USGS Bulletin 1450-B;
(ii) the rank and the sulphur, $B T U$, moisture and ash content of the coal;
(iii) the likely cost of mining the coal and the likely market price for the coal $F O B$ the mine, assuming use by Utah Power \& Light Combany of coal from the lease exchange area at its Emery/Carbon County and Juab/Millard County sites and coal from the area of the PRLA's at Juab/Millard County sites; and
(iv) any other necessary information and assumptions.
(c) In estimating these costs and prices, the Department, acting through the USGS, shall assume: that all lease terms, including those affecting rent, royalty, diligent development and all federal, state and local taxes will be the same for both mines; that all necessary transportation to the areas involved will be available for both the coal in the PRLA area and the coal in the lease exchange area; that construction costs of mainline rail transportation will not be directly allocated to either property, although construction costs of rail spur lines will be directly allocated, that applicable transportation rates will reflect construction costs of mainline railroad transportation from each area to the assumed markets; total coal tonnages located in each region and prices which will be paid by all producers from the region; and that these transportation rates will be used to establish FOB mine prices.
(d) The assumed market for the coal involved in these estimates is Emery/Carbon County and Juab/Millard County for coal from the lease exchznge area and Juab/Millard County for coal from the PRLA area.
(e) This estimate shall not be binding and is expressly subject to major modification or revision prior to a final decision whether the coal in the lease exchange area is of ecual value to the coal in the PRLA area.
(f) The Department shall promptly inform the U.S. Forest Service and Utan Power \& Light Company of the estirate made in Paragraph 5 of this Agreement.
$6(a)$. If the estimate of the value of the coal in the lease exchange area exceeds or equals the value of the coal in the PRLA area, the Department shall have no further obligation to iadentify, drill or study any additional lands in the lease exchange area to satisfy this Agreement, unless such estimate is modified pursuant to Paragraph $5(e)$ above, provided that:
(i) if the estimate of the value of the coal in the lease exchange area exceeds the estimate of value of the coal in the PRLA area by more than 25 percent, after consultation with Utah Power \& Light Company, the Department may delete lands from the lease exchange area;
(ii) if, according to the estimates, the value of the coal in lease exchange area is less than 50 percent of the value of the coal in the PRLA area, the Department shall immediately notify the U.S. Forest Service and Utah Power \& Light Company that it will identify additional lands necessary to constitute a lease exchange area containing at least 50 percent of the value of the coal in the PRLA area. In such event, the Department, after consultation
with the U.S. Forsst Service, shall select ajaitional lands from the area available for leasing which is contiguous to the lease exchange area or contiguous to existing utan power \& Light Company leases, within 30 days after the Department identifies the adjitional lançs. The Department and the U.S. Forest Service shall adopt a schedule that provides for conoletion of any drilling in the ajded lands by :ovember 15 , 1980; and the Department shall adope a schedule for completion of other necessary studies and reports, incluäing revisions of mining plans prepared by Uiah Pover a Light Company by Eebruary 1, 1981;
(iii) if from the estimare it is determined that the value of the coal in the lease exchange area is equal to 50 percent of the value of the coal in the PRLA area, the Department will have no further obligation to adjust the lease exchange area.

7(a). The Department shall hold a scoping meeting on the environmental impact statement on the proposed exchange by June 1, 1980.
(b) The Department shall begin preparation of an environmental impact statement on the proposed exchange by June 1, 1980, and prepare and publish a final environmental impact statement by June 1, 1981.
(c) The U.S. Forest Service shall participate fully in the environmental impact statement process and shall take, by September 15 , 1981, whatever steps are necessary to evaluate whether the exchange would be consistent with the land use plans for the affected portions of the national forest system.
8. The Department shall notify Utan Power \& Light Company by December 31, 1981, whether and uncer what conditions it will issue leases for all or part of the lands in the lease exchange area in excnange for relinguishtent of all or part of the PRLA's. Prior to notifving Utah Power \& Light Company, the Department shall consult with the U.S. Forest Service and the Govemor of the State of Utah.
9. If the Department and Utah Power \& Light Company complete the exchange described in paragrapis l-8 of this Agreement and if the value of the remaining recoverable reserves in the area of the PRLA's equals or exceeds the value of the coal in the lease excr.ange, the parties snall zroceed with reasonable diligence to complete a similar process to consider whether to exchange one-half of tiose remaining reserves in the area of the PRiA's for additional, available lanos containing reserves of equal value contiguous to the Phase I lease excrange area or contiguous to existing Utah Power \& Light Company leases or elsewhere in Utah. The reraining one-half of those reserves in the area of the PRLA's shall not be considered for exchange and shall be processed in accordance with applicable laws and regulations. If, following the exchange under Phase I, the value of the remaining recoverable reserves in the area of the PRLA's is less than the value of the coal in the lease exchange, all of those remaining applications shall be processed in accordance with applicable laws and regulations.
10. This additional exchange shall be considered after December 31, 1981, in accordance with a schedule mututally agreeable to the parties.
11. If the Department and Utah Power \& Light Company agree that progress toward consummating an exchange is no longer possible or desirable or if the Department has failed to comply with any of the completion dates set forth in this Agreement and its failure is not caused directly or indirectly by Utah Power \& Light Company's failure to meet any of the completion dates set forth in this Agreement, Utah Power \& Light Company may, after giving the Department 21 days written notice, institute an action seeking a writ of mandamus in the District Court for the District of Utah for the immediate issuance of leases for lands covered by the PRLA's. The Department agrees that upon institution of such action, it will join with Utah Power \& Light Company in a joint motion to have the matter heard by the court on an expedited hearing schedule, and that
should any appeal be filed from the decision of the District Court, the parties will join in a similar motion for an expedited briefing and hearing of any appeal. Utah Power \& Light Company will not institute an action for mandamus for the issuance of the PRLA's prior to the time set forth in this paragraph.
12. The Department further agrees that if Utah Power a Light Company files the action discussed in Paragraph 11 above, it will not assert that the matter is not ripe for judicial determination.
13. The Regional forester, Intermountain Region, United States Forest Service, is responsible for implementation of this Agreement on behalf of the United States Forest Service.
14. This Agreerrent will take effect immediately upon execution by the President of Utah Power \& Light Company, by the Secretary of the Department of Interior and by the Chief, United States Forest Service and will supersede the previous agreement which was signed by the Secretary on March 1, 1979, and by the President on March 5, 1979, after dismissal, without prejudice, of Utah Power \& Light Co. v. Andrus, Civil No. C-76-136, March 5, 1979.


Dated:


Dated:

R. Max Peterson, Chief United States Forest Service

United States Department of the Interior
OFFICE OF THE SECRETARY
Building 67, Room 688
Demer Federal Center
Demier, Colorado 80225

November 12, 1980

Mr. William D. Reese
Utah Power \& Light Co.
1407 West Temple Street
P. O. Box 889

Salt Lake City, Utah 84110
Dear Bill:
The Geological Survey (GS) has completed its final evaluation of the lands involved in the proposed Garfield-Central Utah exchange.

The points you raised in your letter of August 14, 1980, in relation to the preliminary evaluation, were taken into consideration by the GS to the extent specified in my letter to you dated October 3, 1980. The GS secalculated the demonstrared reserve base and developed a new conceptual mine plan for the Gariletc lands as a part of its final economic evaluation. The mine plan so developed includes both demonstrated reserves and a certain anount of inferred reserves with are contained within the larger areas of demonstrated reserves. In the view of the GS, the development of a conceptual mine plan based upon only demonstrated reserves, as the exchange agreement might be interpreted to require, is illogical when the excessive costs required to mine around areas containing any inferred reserves is considered.

The results of the GS's final evaluation show that the Garfield properties could not be developed economically based on the value thereof as determined in accordance with the parameters specified in the exchange agreement. On the other hand, the value of the Central Utah lands, when evaluated likewise in accordance with the exchange agreement, indicates that it would be economic to develop these properties.

In view of the foregoing, there is no economic justification on which to base an exchange, and the GS has so recomended to the Bureau of Land Management (BLM). You may expect to receive official notification of this finding from the BLM in the near future.

## R. J. Bruning,

Special Asst, to the Secretary
cc: Deputy Division Chief, Onshore Minerals Regulation Conservation Manager, Central Region State Director, Utah Bureau of Land Management

# United States Department of the Interior 

OFFICE OF THE SECRETARY WASHINGTON, D.C. 20240

December 2, 1980

Mr. Harry Blundell, President<br>Utah Power \& Light Company<br>P. O. Box 899<br>Salt Lake City, Utah 84110

Dear Mr. Blundell:
As you have already been informed, the U. S. Geological Survey has completed its analysis of the proposed coal exchange which Utah Power and Light Company and the Department agreed to consider.

The Bureau of Land Management and the Department have not had an opportunity to review the U.S.G.S. evaluation and determine how that evaluation affects the agreement signed between your company and the Department. An exchange of such magnitude poses numerous questions, some of which may not be sufficiently considered within the rigorous procedural limitations incorporated in the agreement.

It is my belief that the matter will best be resolved through an evaluation of the agreement, and a review of the procedures used to attempt to carry out the agreement. Because of the complexity of the issues involved, there is not time for the Department to conduct an adequate review in the few weeks remaining of our Administration. I have, therefore, directed that the Bureau of Land Management's review of the U.S.G.S. evaluation await the beginning of the new Administration, so the Department can give the issues the attention they deserve. I would encourage you to contact my successor at the earliest possible opportunity to develop a timetable for completing the review.


## APPENDIX 3

## MAJOR PLANT COMMUNITIES AND TYPICAL SPECIES OCCURRING IN CENTRAL UTAH

| Vegetation Type | Major Vegetation Species |  |
| :---: | :---: | :---: |
| Riparian | Fremont poplar | Populus fremontii |
|  | Sandbar willow | Salix exiqua |
|  | Kentucky bluegrass | Poa pratensis |
|  | Greasewood | Sarcobatus vermiculatus |
|  | Sal tcedar | Tamarix pentandra |
| Grassland | Squirreltail grass | Sitanion hystrix |
|  | Sandberg bluegrass | Poa secunda |
|  | Sticky rabbitbrush | Chrysothamnus viscidiflorus |
| Desert Shrub | Mat saltbush | Atriplex corrugata |
|  | Castle Valley clover | Atriplex cuneata |
|  | Buckwheat | Eriogonum gordonii |
|  | Shadscale | Atriplex confertifolia |
|  | Galleta grass | Hilaria jamesii |
| Sagebrush-Grass | Big sagebrush | Artemisia tridentata |
|  | Indian ricegrass | Oryzopsis hymenoides |
|  | Cheatgrass | Bromus tectorum |
| Pinyon-Juniper | Gambel oak | Quercus gambelii |
|  | Utah juniper | Juniperus osteosperma |
|  | Pinyon pine | Pinus edulis |
|  | Big sage | Artemisia tridentata |
| Mountain Brush | Mountain snowberry | Symphoricarpos oreophilus |
|  | Gambel oak | Quercus gambelii |
|  | Yarrow | Achillea millefolium |
|  | Mountain mahogany | Cercocarpus montanus |
| Ponderosa Pine | Ponderosa pine | Pinus ponderosa |
|  | Douglas fir | Pseudotsuga menziesii |
|  | Bitterbrush | Purshia tridentata |
|  | Serviceberry | Amel anchier utahensis |
| Aspen-Conifer | Quaking aspen | Populus tremuloides |
|  | Douglas fir | Pseudotsuga menziesii |
|  | Mountain juniper | Juniperus scopulorum |
|  | Alpine fir | Abies lasiocarpa |
|  | Engelmann spruce | Picea engelmannii |
| Aspen | Quaking aspen | Populus tremuloides |
|  | Tailcup lupine | Lupinus caudatus |
|  | Nodding brome | Bromus anomalus |
|  | Big sage | Antemisia tridentata |
|  | Dandelion | Taraxacum officinale |

APPENDIX 3 (concluded)

| Mountain Meadow | Slender wheatgrass | Agropyron trachycaulum |
| :--- | :--- | :--- |
| Bluegrass | Poa spp. |  |
|  | Needlegrass | Stipa lettemannii |
|  | Larkspur | Delphinium nel sonii |
|  | Cinquefoil | Potentilla fruiticosa |

AREAS WITH POTENTIAL FOR SPECIAL DESIGNATION

| AGENCY | NAME | POTENTIAL | DESIGNATIN |
| :--- | :--- | :--- | :--- |

a Numbers in parenthesis are designation numbers used in the reference
brecommended to Congress for wilderness designation
$\mathrm{C}_{\mathrm{A}}$ portion of the unit was determined to contain wilderness values and was designated as a a WSA, and the remainder of the unit was released from further wilderness review. The inventory findings and the subsequent decision were protested/appealed. The entire unit is currently subject to further wilderness review and interim management protection until a decision concerning management of the unit is again reached (timeframe unknown)
dThe unit was determined to lack wilderness character and was released from further wilderness review. The inventory findings and the subsequent decision were protested/appealed. The entire unit is currently subject to further wilderness review and interim management protection until a decision concerning management of the unit is again reached (timeframe unknown)


OBJECTIVES OF VISUAL RESOURCE MANAGEMENT CLASSIFICATIONS

The BLM and Forest Servce use scenic quality, sensitivity and visual distance criteria to determine visual management objectives for public lands under their respective jurisdictions. Visual management terminology differs between the two agencies, but management objectives are similar as outlined below:

| FOREST SERVICE <br> TERMINOLOGY | BLM <br> Preservation |
| :--- | :--- |
|  |  |
| TERMINOLOGY |  |

## MANAGEMENT

OBJECTIVE
This class provides for natural ecological changes only. (There are no Class I areas within the planning area.)

Changes in any of the basic landscape elements should not be evident in the management activity.

Changes in the basic elements may be evident in the management activity. However, modifications should remain subordinate to the landscape character.

Changes may subordinate the landscape character, but must reflect what could be natural occurrence in the characteristic area.

Change is required. The area has been disturbed to a point where rehabilitation is needed to bring it back into character with the surrounding landscape.

## APPENDIX 6

AREAS WITH POTENTIAL FOR SPECIAL DESIGNATION IN GARFIELD COUNTY

|  | Agency | Name | Potential Designation | Reference |
| :---: | :---: | :---: | :---: | :---: |
| 1. | HCRS | Escalante River | Wild and Scenic River | HCRS Nationwide River Inventory, 1980 |
| 2. | HCRS | Paria River | Wild and Scenic River | HCRS Nationwide River Inventory, 1980 |
| 3. | HCRS | Colorado River | Wild and Scenic River | HCRS Nationwide River Inventory, 1980 |
| 4. | HCRS | Dirty Devil River | Wild and Scenic River | HCRS Nationwide River Inventory, 1980 |
| 5. | FS | 4-254a | Wilderness ${ }^{\text {b }}$ | RARE II Final EIS, 1979 |
| 6. | FS | 4-259 | Wilderness ${ }^{\text {c }}$ | RARE II Final EIS, 1979 |
| 7. | FS | 4-260 | Wilderness ${ }^{\text {b }}$ | RARE II Final EIS, 1979 |
| 8. | BLM | Phipps-Death Hollow \& contiguous lands | Wilderness (WSA) | FLPMA, 1976 and Utah BLM Intensive Wilderness Inventory, Wilderness Study Areas, 1980 |
| 9. | BLM | The Gulch \& contiguous lands | Wilderness (WSA) | FLPMA, 1976 and Utah BLM Intensive Wilderness Inventory, Wilderness Study Areas, 1980 |
| 10. | BLM | North Escalante Canyon \& contiguous lands | Wilderness (WSA) | FLPMA, 1976 and Utah BLM Intensive Wilderness Inventory, Wilderness Study Areas, 1980 |
| 11. | BLM | Escalante Canyon \& contiguous lands | Wilderness (WSA) | FLPMA, 1976 and Utah BLM Intensive Wilderness Inventory, Wilderness Study Areas, 1980 |
| 12. | BLM | Devil's Garden | Wilderness | FLPMA, 1976 and Utah BLM Intensive Wilderness Inventory, Wilderness Study Areas, 1980 |
| 13. | BLM | UT-050-238 | Wilderness ${ }^{\text {d }}$ | Utah BLM Intensive Wilderness Inventory, Wilderness Study Areas, 1980 |
| 14. | BLM | UT-050-242 (WSA) | Wilderness | Utah BLM Intensive <br> Wilderness Inventory, <br> Wilderness Study Areas, 1980 |
| 15. | BLM | UT-050-248 | Wilderness ${ }^{\text {d }}$ | Utah BLM Intensive Wilderness Inventory, Wilderness Study Areas, 1980 |
| 16. | BLM | UT-050-249 (WSA) | Wilderness | Utah BLM Intensive Wilderness Inventory, Wilderness Study Areas, 1980 |
| 17. | BLM | UT-050-241 | Wilderness ${ }^{\text {d }}$ | Utah BLM Intensive Wilderness Inventory, Wilderness Study Areas, 1980 |


|  | Agency | Name | Potential Designation | Reference |
| :---: | :---: | :---: | :---: | :---: |
| 18. | BLM | UT-050-247 (WSA) | Wilderness | Utah BLM Intensive Wilderness Inventory, Wilderness Study Areas, 1980 |
| 19. | BLM | UT-040-075 | Wilderness ${ }^{\text {e }}$ | Utah BLM Intensive Wilderness Inventory, Wilderness Study Areas, 1980 |
| 20. | BLM | UT-040-076 | Wilderness ${ }^{\text {e }}$ | Utah BLM Intensive Wilderness Inventory, Wilderness Study Areas, 1980 |
| 21. | BLM | UT-040-078 | Wilderness ${ }^{\text {e }}$ | Utah BLM Intensive Wilderness Inventory, Wilderness Study Areas, 1980 |
| 22. | BLM | UT-040-268 (WSA) | Wilderness | Utah BLM Intensive Wilderness Inventory, Wilderness Study Areas, 1980 |
| 23. | BLM | UT-040-077 | Wilderness ${ }^{\text {d }}$ | Utah BLM Intensive Wilderness Inventory, Wilderness Study Areas, 1980 |
| 24. | BLM | UT-040-082 | Wilderness ${ }^{\text {d }}$ | Utah BLM Intensive Wilderness Inventory, Wilderness Study Areas, 1980 |
| 25. | BLM | UT-040-061 (WSA) | Wilderness | Utah BLM Intensive Wilderness Inventory, <br> Wilderness Study Areas, 1980 |
| 26. | NPS | Bryce Canyon National Park | Wilderness | Bryce Canyon N.P. <br> Wilderness Proposal, 1974 |
| 27. | NPS | Glen Canyon National Recreation Area | Wilderness | Glen Canyon National Park Wilderness Proposal, 1976 |
| 28. | NPS | Capital Reef National Park | Wilderness | Capital Reef National Park Wilderness Proposal, 1974 |

adesignation numbers used in reference
brecommended to Congress for wilderness designation
CRecommended to Congress for further planning
dA portion of the unit was determined to contain wilderness values and was designated as a WSA. The remainder of the unit was determined to lack wilderness values and was released from wilderness review. The inventory findings and the subsequent decision were protested (December, 1980). The entire unit is currently subject to further wilderness review and interim management protection until a decision concerning management of the unit is again reached (timeframe unknown)
eThe unit was determined to lack wilderness character and was released from further wilderness review. The inventory proceedings and subsequent decision were protested (December, 1980). The entire unit is currently subject to further wilderness review and interim management protection until a decision concerning management of the unit is again reached (timeframe unknown)

## APPENDIX 7

## AIR QUALITY MODELING

Air quality modeling was performed by Radian Corporation, Austin, Texas (Radian, 1981) under contract to BLM. Annual average concentrations of TSP, $\mathrm{SO}_{2}$, and $\mathrm{NO}_{2}$ were computed using a Gaussian-based model almost identical to the EPA Climatological Dispersion Model. Emissions were calculated from coal mines (existing and proposed), towns, roads, and major industrial sources. Particulate emissions from surface mining operations were calculated for topsoil removal, overburden removal, drilling, blasting, product removal, truck dumping product storage, haul and access roads, and exposed areas. Emissions from underground mining operations were calculated for conveying, transfering, processing, product loadout, product storage, haul and access roads, and exposed areas. Emission factors were obtained from EPA reports (EPA 1979a and 1979b) and are shown in Tables 1 and 2.

Particulate and $\mathrm{NO}_{2}$ emissions from vehicles traveling on roadways with over 5,000 annual average daily traffic in the impact area were estimated. Exhaust emissions of $\mathrm{SO}_{2}$ from mobile sources were insignificant and not modeled. The emission factors for $\mathrm{NO}_{2}$ were determined using procedures outlined in Mobile Source Emission Factors (EPA 1978) and its attendant computer program MOBILE 1. Emission factors used for roadway emissions are shown in Table 3.

Emissions from towns and cities whose growth would be affected by the proposed action were calculated using population projections. Emissions of TSP, $\mathrm{NO}_{2}$, and $\mathrm{SO}_{2}$ for Carbon, Emery, Sevier, and Sanpete Counties were taken from the Utah Bureau of Air Quality emission inventory for 1976. Emissions of each pollutant
for the towns for 1976 were determined using 1976 population estimates. The emissions for the towns for 1976 were determined using 1976 population estimates. The emissions were calculated as the ratio of the town population to the county-wide population multiplied by the total area source emissions of each pollutant for the county, excluding inappropriate source categories such as forest emissions. Future emissions were then estimated by multiplying of the projected town population for the study years to the 1976 population.

Major industrial point sources near the proposed lease tracts and affected cities and roads were included in the analysis and consisted of

- Huntington Powerplant, Units 1 and 2
- Hunter (Emery) Powerplant, Units 1, 2, 3, 4
- Carbon Powerplant, Units 1 and 2
- Two coal dryers
- One coal preparation facility

The joint frequency distribution of stabilities, windspeeds and wind directions for Grand Junction, Colorado for the years 1959 through 1968 calculated from National Weather Service data was used for the annual modeling. The Grand Junction joint frequency distribution show a strong upslope-downslope valley flow influence. This meteorological regime is representative of valley locations within the study area. The alignment of the valley around the Grand Junction site is different from that of valleys in the coal region. Therefore, the Grand Junction joint frequency distribution was shifted in direction to compensate for differences in orientation of the dominant terrain between the Grand Junction area and the subareas modeled.

Deposition velocities for a typical particle ( 22 microns and density of 1 gram per cubic centimeter) is 3 centimeters per second (Pedco 1978). The actual deposition velocity may be greater because deposition mechanisms include (in addition to gravity), surface impaction, electrostatic attraction, adsorption, and chemical interaction. Therefore 5 centimeters per second was used as the deposition velocity in the modeling (Pedco 1978).

Studies performed by Radian Corporation (1976) in which annual average particulate concentrations from ground-level area sources were predicted and compared to measured levels, show that under the conditions studied the model was accurate within a factor of 1.8 .

In this study, Larsen statistics were applied to the annual average modeling results to estimate maximum short-term pollution levels (Larsen 1971).

Three computer models were used to predict worst-case visibility impacts in the Uinta-Southwestern Utah coal region resulting from the proposed federal lease alternatives. VISMOD is a visibility screening model designed to predict those conditions under which emissions from a point source may result in a significant visual impact upon an observer looking horizontally through the center of the point source plumes. Visibility reducing sulfate, nitrate, and particulate aerosols are considered. MULTIMOD is a visibility screening model similar to VISMOD. The primary difference is that MULTIMOD can calculate the combined visual impact of multiple point and area sources. BOXVIS is a visibility screening model designed to predict those conditions under which regional emissions from point, area, or line sources lying within a valley may result in a significant visual
impact upon an observer looking horizontally through the region. Ambient concentrations of $\mathrm{NO}_{2}$ and of visibility-reducing sulfate, nitrate, and particulate aerosols are predicted using the VISMOD atmospheric chemistry sub-model. The resulting optical effects are calculated using the VISMOD atmospheric optics sub-model.

At this time, no visibility model has been fully validated. Preliminary validation studies of a Gaussian point source visibility model (Bergstrom, et al., 1980) for a coal-fired powerplant indicate that the primary source of error in visibility models is the dispersion component, which can err by a factor of two in predicting pollutant concentrations. Simple box models may be expected to predict pollutant concentrations with even greater uncertainty. The atmospheric optics submodel in the validation study, which is very similar to the atmospheric optics submodel in the VISMOD, BOXVIS, and MULTIMOD models, predicted radiance values to within an accuracy of ten percent.

The results of the application of the models to the six scenarios selected are summarized in Table 4.

Detailed discussion of Basic models used

Emission source terms
Mines
Transportation
Towns
Major industrial sources

```
    Meteorological parameters
    Mixing height
    Ambient temperature
    Joint frequency of occurrence distribution
        Wind speed
        Wind direction
        Stability class
    Source inputs
    Dispersion model outputs
    Model validation and confidence limits
    Annual model application
    Short-term statistical model application
    Visibility modeling methodology
are given in the Radian (1981) report and its supporting appendices A through C.
```


## TABLE 1

PARTICULATE EMISSION FACTORS FOR SURFACE MINING OPERATIONS

| Process Operation | Emission Factor | Units |
| :---: | :---: | :---: |
| Topsoil Removal | 0.38 | 1b/yd |
| Overburden Removal |  |  |
| Shovel/Truck | 0.037 | $1 \mathrm{l} / \mathrm{yd}$ |
| Dragline | 0.053 | lb/yd |
| Drilling |  |  |
| Coal | 0.22 | 1b/hole |
| Overburden | 1.50 | lb/hole |
| Blasting |  |  |
| Coal | 78.1 | lb/blast |
| Overburden | 85.3 | lb/blast |
| Product Removal | 0.014 | lb/ton |
| Truck Dumping (Storage) | 0.007 |  |
| Product Storage | 1.6 x wind speed | lb/acre-hr |
| Haul and Access Roads | d(0.81s) $\left(\frac{S}{30}\right)\left(\frac{365-W}{365}\right) \mathrm{F}$ : | lb/miles traveled |
| Exposed Areas | Soil loss, equation* | lb/acre-hr |

Source: Interim Policy Paper on Air Quality Review of Surface Mining Operations
*Cowherd, et al., 1974

TABLE 2
PARTICULATE EMISSION FACTORS FOR UNDERGROUND MINING OPERATIONS


## TABLE 3

EMISSION FACTORS FOR VEHICLE EMISSIONS (GS/VEHICLE MILE)

| Year of Interest | Total Suspended ParticulateMatter | Nitrogen <br> Oxides |
| :---: | :---: | :---: |
| 1987 | 3.50 | 3.57 |
| 1990 | 3.50 | 3.19 |
| 2000 | 3.50 | 3.05 |

[^31]



Bergstrom, R.W., C. Seigneur, B.L. Babson, H.Y. Holman, M.A. Wojcik, 1980: "Comparison of the Observed and Predicted Visual Effects Caused by Power Plant Plumes." Symposium on Visibility, Measurements and Model Components, Grand Canyon, Arizona.

Cowherd, Chatten, Kenneth Axetell, Jr., et al., 1974: Development of Emission Factors for Fugitive Dust Sources, Publication No. EPA-450/3-74-037, U.S. Environmental Protection Agency, Office of Air and Waste Management, Research Triangle Park, North Carolina.

Larsen, Ralph I., 1971: A Mathematical Model for Relating Air Quality Standards, Environmental Protection Agency, Research Triangle Park, North Carolina.

PEDCO-Environmental, Inc., 1978: "Survey of Fugitive Dust from Coal Mines," Contract No. 68-01-4489, Project No. 3311, Cincinnati, Ohio.

Radian Corporation, 1976: Final Report: Arkansas Air Quality Maintenance Plan Development, U.S. Environmental Protection Agency, Region IV, Dallas, Texas.
U.S. Environmental Protection Agency, 1978. Mobile Source Emission Factors, EPA-400/9-78-006, Washington, D.C., March 1978.
U.S. Environmental Protection Agency, 1979. Compilation of Air Pollution Emission Factors, AP 42 , Third Edition, Research Triangle Park, North Carolina.
U.S. Environmental Protection Agency, 1979. Region VIII Interim Policy Paper on the Air Quality Review of Surface Mining Operations, Denver, Colorado.

## APPENDIX 8

# United States Departinent of the Interior FISH AND WIIDLIfe SERVICE 

MAILIVG ADDRESS
Pout Office Bos 25486 Dencer Federal Center Denver. Colurado 80225

## STREET LOCATION:

134 Union Blud.
Lokewood, Cobrado 80228

FA/SE/BLM--Uinta Utah SW
Coal Sites ( $6-5-80-\mathrm{F}-169$ )
JUN: $: 6: 980$

## MEMORANDUM

TO: State Director Bureau of Land Management, Salt Lake City, Utah

FROM: Regional Director, Region 6
U.S. Fish and Wildlife Service, Denver, Colorado

SUBJECT: Section 7 Consultation, Uinta S.W. Utah Preliminary Coal Tracts, Utah

This biological opinion was prepared pursuant to Section 7 of the Endangered Species Act (ESA) and in response to your memorandum of February $1,1980$. Your memorandum requested consultation on the expected impacts of coal development on candidate and listed plants.

## Biological Opinion

The proposed project is likely to jeopardize the continued existence of the Wright fishhook cactus (Sclerocactus wrightiae) unless an alternative program recommended in this opinion is successfully implemented by the Bureau of Land Management (BLM) in consultation with the Fish and Wildife Service (FWS).

Your February 1 memorandum included candidate plants in the request for consultation. Last chance townsendia (Townsendia aprica) was found on the coal lease tracts, and probably will be proposed by the FWS this calendar. year for listing as endangered. The proposed coal leasing project is likely to jeopardize the existence of this species also; however, the alternatives for the fishhook cactus will work for townsendia as well.

## Project Description

A regional coal-leasing target was set by the Secretary of the Interior in 1979 with the coal-leasing goal for the Uinta Southwest Utah Coal Program being 322 million tons. In order to meet this goal, the proposed action involves mining coal at three leasing tracts in Emery County, Utah. Approximately 2,201 acres would be leased for coal extraction at the Emery North

Tract. Forty percent would be surface mined; the remainder would be mined below ground. Surface mining is expected to span 24 years whereas underground mining would last 19. Coal would be extracted through surface mining from 2,968 acres at the Emery Central Tract. This mine is expected to last 40 years. The Emery South Tract is expected to yield coal for 11 years from surface mining of 748 acres.

Basis For Opinion
The Wright fishhook cactus was officially listed as endangered on October 11, 1979. This uncommon cactus inhabits all three coal tracts. It occurs between 3,000 and 5,000 feet on clay soils within sandstone habitats on Mancos Shale Formations in Emery and Wayne Counties. This cactus is seriously threatened by collectors and by energy and mineral exploration and other development which alters its habitat. Five populations are known at two localities in these counties.

Last chance townsendia is not a federally listed species nor is it proposed for listing. However, it will be proposed in the near future due to its precarious status. Only three populations are known, including this one. A gypsum mining operation destroyed one population and the second is threatened by livestock. Normally, FWS does not include candidate species in biological opinions because their inclusion is not a requirement of the ESA and because candidate species sometimes are found to be relatively secure once status surveys are done. In this case, we are offering you counsel on a candidate plant because you requested our advice and provided data on tomnsendia. Also, both BLM and FWS recognize that this plant could easily become extinct without precautionary measures. Moreover, as implied earlier, this plant may be listed before coal is mined from the Emery tracts. In fact, your concern for this species helps to make unlikely the need for it to be listed under emergency provisions of the ESA.

Townsendia was found in the Emery South Tract during your recent inventory of threatened and endangered plants. It inhabits clay soil covered with sandstone, basalt cobble, and pebbles which form a pavement-like surface. It covers several acres of habitat in the south area. We commend you for your foresight in locating this plant in the coal impact area and plotting its habitat for protection from coal mining.

Coal mining activities which remove land from production of native plants may adversely impact imperilled plants such as the Wright fishhook cactus and last chance townsendia. In particular, strip mining devastates vegetation of all kinds. The fishhook cactus and townsendia have strict habitat requirements and can be eradicated by mining activities. Construction of haul roads, pipelines, power lines, and other activities associated with mining are serious threats. Both plants evolved through progressive changes to occupy specific sites. Strip mining would alter species composition, soil types, temperatures, and water availability.

Underground mining disturbs less surface than strip mining; consequently, impacts are less extensive from subsurface mines.

## Reasonable and Prudent Alternatives

Section 7 of the ESA requires FWS to recommend reasonable and prudent alternatives for any proposed project likely to jeopardize continued existence of a listed species. The purpose is to avoid jeopardy to such species while allowing implementation of the proposed project or an alternative that would accomplish the desired objective.

Section 7 requires the consulting Federal agency (in this case BLM) to insure that its actions will not jeopardize a listed species. We are concerned that coal mining could destroy the listed Wright fishhook cactus and the last chance townsendia in areas of conflict. Consequently, we are recommending two alternatives. You may prevent jeopardy to these two plants by executing either alternative. The first alternative consists of the following five recommendations which would allow coal development in a manner least damaging to the plants.

1. Plot plant distributions on overlays of proposed coal operations.
2. Determine appropriate buffer zones. We will be pleased to consult again with you on the sizes and configurations of buffer zones.
3. Limit size of construction activities to a minimum.
4. Construct mines, coal haul roads, portals, loading stations, and other activities so as to avoid habitats of the two plants.
5. Monitor the plant populations during mining to insure they are not damaged inadvertently.

Sclerocactus spp. were collected at 10 locations in the Emery North, Central, and South Tracts. We recognize it is difficult or impossible to differentiate between Whipple's cactus ( $\underline{S}$. whipplii) and Wright fishhook cactus (S. wrightiae) without flowers. Your supplemental data gave no indication of the acreage that support both Sclerocactus spp. and coal reserves. Thus, we assigned 1 acre as being needed for each individual plant or small group of plants located, and we allowed up to 10 acres to be set aside in the case where the population/habitat data sheet stated plants were "scattered over several acres." By this means of approximation, we estimate that 19 acres would have to be preserved for the Wright fishhook cactus. The BLM data sheet also stated that townsendia was scattered over several acres. Again, we allowed 10 acres to be set aside. This brings the land
to be preserved for both plant species to a total of 29 acres. We recognize this is a rough estimate, but no specific acreages were measured during the BLM survey. Regardless, we believe the acreage estimate to be accurate enough for this stage of project planning. Again, we will be pleased to help you establish appropriate buffer zones if you select this alternative. The economic impact of setting aside these acres will depend on the configuration and distribution of the lands to be protected.

The second alternative features experimentation with propagation and another Section 7 consultation when results of the experiments are known. The intent would be to establish at least one new population each of the fishhook cactus and townsendia in the wild. This alternative involves the determination of the practicality of cultivating numerous plants in habitats strongly similar to those on the Emery coal tracts where the plants are growing. Because coal will not be mined from the Emery tracts for an estimated 4 to 5 years, BLM has time to determine whether either of the two plants of concern can be grown in large numbers (approximately the number that would be lost through mining). Transplanting or propagation by seeds or tissue culture are possibilities. Through further consultation, the FWS and BLM could determine the number of plants that BLM could use from the Emery tracts for experimentation. Whipple's cactus occupies some of the same habitat as Wright's fishhook cactus and could be used for some of the experimental work. Section 7 requires insurance that Federal actions do not jeopardize the existence of listed species, thus success of establishing and protecting new populations in the wild cannot be in doubt when the experiments end and before mining begins. However, if this alternative cannot offer such insurance after experimentation, the first alternative can still be implemented. We request that you inform us in writing as to which alternative you select so that further consultation can be arranged if needed.

If new information is revealed that was not considered during this consultation, or a new species is listed in the project area, Section 7 consultation must be reinitiated. Moreover, BLM should not make any irreversible or irretrievable commitment of resources which could alter implementation of the above recommendations.

We appreciate your strong interest in conserving imperilled species. If we can be of further assistance, please advise us.


DON T:. .antiviI

## United States Department of the Interior

FISH AND WILDLIFE SERVICE AREA OFFICE COIORADO UTAH

1311FEI)ERAL KLILDING
125 SOUTH STAJE STREET SALTIAKE CITY, UTAH \&4138

October 21, 1980
MEMOPANDUM
\(\left.\begin{array}{ll}TO: \& State Director <br>
\& Utah State Office <br>
\& Bureau of Land Management <br>

\& Salt Lake City, Utah\end{array}\right\}\)| FROM: | Area Manager |
| :--- | :--- |
|  | Area 5 |
|  | Fish and Wildlife Service |
|  | Salt Lake City, Utah |

This memorandum amends our June 26, 1980 biological opinion on the Uinta Southwest Utah Preliminary Coal Tracts. That biological opinion discussed the expected impacts of coal development on the endangered Wright fishhook cactus (Sclerocactus wrightiae).

In a memorandum dated August 11, 1980, you asked us to revise the conclusions we had reached for the fishhook cactus. We are amending our biological opinion because of the information that you provided with your August request for a new consultation. Your memorandum explained that our biological opinion was based on inaccurate information concerning the identity of the cactus of concern that was found on the coal lease tracts. The botanist who did the original field surveys for your agency mistook Sclerocactus parviflorus for S. wrightiae. The significance is that $\underline{S}$. parviflorus is a much more common plant and is not imperilled in any way. The presence of $\underline{S}$. parviflorus and the absence of $\underline{S}$. wrightiae was determined through additional field surveys and through forcing the specimens in question to bloom in greenhouses. The presence of flowers was necessary for the botanists to distinguish between the two species of cactus.

We hereby change our biological opinion because of the additional information that you obtained by re-assessing the identification of the cactus of concern. Our opinion of course is that the proposed coal development is not likely to jeopardize the continued existence of the Wright fishhook cactus.

We ask that you continue to consider the comments we made in our biological opinion on the last chance townsendia (Townsendia aprica), a species expected to be proposed for listing within a few months. Thank you for your interest in conserving imperilled species.


## APPENDIX 9

## PHEASANT POPULATION ESTIMATE FORMULA

| Cock Harvest: | from Harvest Survey in annual report |
| :---: | :---: |
| Post-Season Hens/Cocks: | from Winter Sex-Ratio Counts in the annual report |
| Percent Cocks Harvested: | calculated by change in ratio from pre-season to post-season = |
| Post Cocks/Hens | pre cocks/hens |
| (from Winter Sex Ratio counts)-(assumed 1.2 hens/cocks |  |
| Post | Cocks/Hens |
| Pre-Season Population: | Cock Harvest: percent harvested = |
|  | Pre-season Cocks: pre-season cocks |
|  | x 1.2 (assumed hens/cocks pre-season)= |
|  | pre-season hens; then combine cocks and hens for |
|  | total |
| Pheasants per acre in the fall = estimated cocks, hens or total $\div$ acres of |  |
| cropland in county. |  |

The accompanying "net energy analyses" estimate the amount of energy in the coal produced on the Preliminary Coal Lease Tracts, the energy expended in its production, and the energy in the coal left in the ground as not being economically recoverable.

The energy input shown as required for "production and transportation" includes all energy required to produce the coal and transport it to a rail shipping point. This comprises fuel used directly or as electricity for mine production, truck transportation of coal, and transportation of personnel and supplies, and also the energy used for manufacturing or constructing the mining and transportation equipment and facilities needed and for manufacturing supplies. Also included is the petroleum used in hydraulic fluids, lubricants, and explosives and the hydrocarbons in feedstocks used in supply manufacture.

The energy input shown as required for "infrastructure" includes the energy consumed as electricity, natural gas, heating oil, and gasoline by mine employees and families, by a similar number of service employees in the production area who support them and by a porportionate number of commercial establishments. Also included is the energy consumed by workers producing the equipment and supplies used for coal production and by the service employees and commercial establishments that support them.

Estimates of electricity, fuel and mining supply consumption and of mine equipment and facility depreciation are based on mine models published by the Bureau of Mines, mainly Information Circulars 8682, 8703, and 8761. The models were modified as needed to reflect conditions at individual tracts. Direct mine operating and construction employment was estimated by the Geological Survey and shown in the "Economic Recovery Potential" reports for the tracts. Truck transportation fuel consumption is estimated using data obtained for the Central and Southern Utah Coal Resource Environmental Statements and for the Kaiparowits transportation study.

Nationwide and statewide averages of energy minerals used per dollar-added-in-manufacturing were used to estimate the energy consumed in manufacturing equipment and supplies for which only a dollar measure of quantity is reported in statistical abstracts. Similar National and State averages of electricity, natural gas, and gasoline used per household were used for estimating infrastructure consumption.

Energy consumption is considered as beginning for electricity with deliveries of coal or other fuels to the generating station, for petroleum products with deliveries to area suppliers, and for natural gas with deliveries to consumers. The analysis ends with the coal loaded in rail cars for shipment. Rail shipment of coal requires about 600 Btu's per ton mile in the form of direct energy and a similar amount is estimated as being consumed indirectly and by associated infrastructure. About one-half percent of the energy in coal is required to transport it 100 miles by rail.

## BLM NET ENERGY ANALYSIS: COAL LEASING

## NET ENERGY SUMMARY SHEET

SITE: Rilda Canyon (Section 32) Preliminary Tract with 195,000 ton annual production from tract portion of proposed large mining unit.
All Numbers: Billion Btu

1. Energy Output, Btu
2. Energy Input, (direct \& indirect), Btu
2.1 Production/Transportation Direct Operations

Petroleum Natural Gas Coal
Hydro Power
Nuclear
Other

Total
Ratio Output/Input

Equipment, Facilities, \& Supplies
Petroleum
Natural Gas
Coal
Hydro Power
Nuclear
Other
Total
Ratio Output/Input
Total Production/Transportation Ratio Output/Input
2.2 Infrastructure

Production Area
Petroleum
Natural Gas
Coal
Hydro Power
Nuclear
Other
Total
736.0
18.4
832.0
15.
604.0


Equipment and Supplies

Petroleum
Natural Gas
Coal
Hydro Power
Nuclear
Other
Total
Ratio Output/Input
Total Infrastructure
Ratio Output/Input
2.3 Total $2.1+2.2$

Petroleum
Natural Gas
Coal
Hydro Power
Nuclear
Other
Tota 1
Ratio Output/Input
Unrecovered Resource, Btu
13.9
12.1
3.8
1.3
1.1
--
32.2
86.5
556.0
484.0
152.0
52.0

$$
44.0
$$

$$
\underline{\underline{--}}
$$

153.7
1.288 .0
$\underline{57.2}^{3.460 .0}$ in

$$
60.5
$$

44.3
58.4 2.9
2.6
--
168.7 7,430 297,200

## BLM NET ENERGY ANALYSIS: COAL LEASING

## NET ENERGY SUMMARY SHEET

SITE: Cottonwood Preliminary Tract
All Numbers: Billion Btu

1. Energy Output, Btu
2. Energy Input, (direct \& indirect), Btu
2.1 Production/Transportation Direct Operations
Petroleum
Natural Gas
Coal
Hydro Power
Nuclear
Other

Total
Ratio Output/Input

Equipment, Facilities, \& Supplies
Petroleum
Natural Gas
Coal
Hydro Power
Nuclear
Other
Total
Ratio Output/Input
Total Production/Transportation
Ratio Output/Input


Annual Life of Mine (40)
$14,490 \quad 579,600$


Equipment and Supplies

| Petroleum | 41.0 |  | 1,640.0 |
| :---: | :---: | :---: | :---: |
| Natural Gas | 37.1 |  | 1,484.0 |
| Coal | 11.5 |  | 460.0 |
| Hydro Power | 3.5 |  | 140.0 |
| Nuclear | 3.2 |  | 128.0 |
| Other | -- |  | -- |
| Total | 96.3 |  | 3,852.0 |
| Ratio Output/Input |  | 150.5 |  |
| Total Infrastructure | 272.2 |  | 11,088.0 |
| Ratio Output/Input |  | 52.3 |  |
| 2.3 Total $2.1+2.2$ |  |  |  |
| Petroleum | 176.2 |  | 7,048.0 |
| Natural Gas | 121.9 |  | 4,876.0 |
| Coal | 184.8 |  | 7,392.0 |
| Hydro Power | 8.0 |  | 320.0 |
| Nuclear | 7.6 |  | 304.0 |
| Other | -- |  | -- |
| Total | 498.5 |  | 19,940 |
| Ratio Output/Input |  | 29.1 |  |
| Unrecovered Resource, Btu | ,730 |  | 869,200 |

## NET ENERGY SUMMARY SHEET

SITE: Emery Central Preliminary Tract with shipping by Proposed Castle Valley RR, and with 40 year production period for Federal Coal Annual ${ }^{\text {life of Mine ( } 40 \text { ) }}$

## All Numbers: Billion Btu

1. Energy Output, Btu
2. Energy Input, (direct \& indirect), Btu
2.1 Production/Transportation

Direct Operations

Petroleum
Natural Gas
Coal
Hydro Power
Nuclear
Other

Total
Ratio Output/Input

Equipment, Facilities, \& Supplies
Petroleum
Natural Gas
Coal
Hydro Power
Nuclear
Other
Total
Ratio Output/Input
Total Production/Transportation Ratio Output/Input


$445.6{ }^{48.2}-17,824.0$
$21,470.0 \quad 858,800.0$

| 90.5 | $3,620.0$ |
| :---: | :---: |
| -- | -- |
| 355.1 | $14,204.0$ |
| -- | -- |
| -- | - |
| - |  |

2.2 Infrastructure

Production Area

| Petrol eum | 40.8 | $1,632.0$ |
| :--- | :---: | :---: |
| Natural Gas | 17.2 | 688.0 |
| Coal | 22.4 | 896.0 |
| Hydro Power | -- | -- |
| Nuclear | -- | -- |
| Other | - | - |
| Total | -80.4 | $3,216.0$ |
| Ratio Output/Input |  |  |

Equipment and Supplies
Petroleum
Natural Gas
Coal
Hydro Power
Nuclear
Other
Total
Ratio Output/Input
Total Infrastructure
Ratio Output/Input

| 67.6 | $2,704.0$ |
| ---: | ---: |
| 76.6 | $3,064.0$ |
| 27.6 | 984.0 |
| 7.0 | 280.0 |
| 7.0 | 280.0 |
| -- | $-\quad-$ |
| 182.8 | $7,312.0$ |

$$
\underline{263.2}_{81.6^{10,528.0}}
$$

2.3 Total $2.1+2.2$
Petroleum
Natural Gas
Coal
Hydro Power
Nuclear
Other
Total
Ratio Output/Input
Unrecovered Resource, Btu

| 219.5 | $8,780.0$ |
| ---: | ---: |
| 168.0 | $6,720.0$ |
| 441.5 | $17,660.0$ |
| 18.3 | 732.0 |
| 18.4 | 736.0 |
| -- | -- |
| 865.7 | $34,628.0$ |

Unrecovered Resource, Btu
2,380.0 95,200.0

WET ENERGY SUHWARY SHEET
SITE: Emery North Preliminary Tract, with spur of proposed Castle Valley R.R. adjacent to mine.

All Numbers: Billion Btu

Years 1-20 Years 20-40 Surface Underground

13,120
Life of Mine Total 40 Years

1. Energy Output Btu

11,030
483,000
2. Energy Input, (direct \& indirect), Btu

### 2.1 Production/Transportation Direct Operations

| Petroleum | 41.4 | 27.7 | 1,382.0 |
| :---: | :---: | :---: | :---: |
| Natural Gas | --- | --- |  |
| Coal | 244.2 | 123.0 | 7,444.0 |
| Hydro Power | --- | --- | --- |
| Nuclear | --- | --- | --- |
| Other | --- | --- | --- |
| Total | 285.6 | 155.7 | 8,826.0 |
| Ratio Output/Input | 38.6 | 84.3 | 54.7 |
| Equipment, Facilities, \& Supplies |  |  |  |
| Petroleum | 10.0 | 7.7 | 354.0 |
| Natural Gas | 40.2 | 34.0 | 1,484.0 |
| Coal | 19.1 | 15.5 | 692.0 |
| Hydro Power | 5.5 | 4.6 | 202.0 |
| ivuclear | 5.3 | 4.3 | 192.0 |
| Other | --- | --- | --- |
| Total | 80.1 | 66.1 | 2,924.0 |
| Ratio Output/Inout | 137.7 | 198.5 | 165.2 |
| Total Production/Tr | 365.7 | 221.8 | 11,750.0 |
| Ratio Output/Input | 30.2 | 59.2 | 41.1 |

### 2.2 Infrastructure

Production Area

| Petroleum | 31.8 | 62.8 | 1,892.0 |
| :---: | :---: | :---: | :---: |
| Natural Gas | 13.4 | 26.4 | 796.0 |
| Coal | 17.6 | 34.6 | 1,044.0 |
| Hydro Power | --- | --- | --- |
| Nuclear | --- | --- | --- |
| Other | --- | --- | --- |
| Total | 62.8 | 123.8 | 3,732.0 |
| Ratio Output/Input | 175.6 | 106.0 | 129.4 |


| Annual | Production |  |
| :--- | ---: | :--- |
| Years 1-20 | Years 20-40 | Life of Mine |
| Surface | Underground | Total 40 Years |

Equipinent \& Supplies

2.3 Total $2.1+2 . ?$

Petroleum
Natural Gas
Coal
Hydro Power
Nuclear
Other
Total
Ratio Output/Input
Unrecovered Resource, Btu
132.1
96.9
295.4
9.7
9.3
---
543.4
20.3
$1,950.0$ $\qquad$
138.8
96.3
189.9
7.8
7.3

440.1 29.8

5,418.0
3,864.0
9,706.0
350.0
332.0


19,670.0
24.6 245,200.0

## NET ENERGY SUMMARY SHEET

SITE: Tucker Canyon Preliminary Tract (from Kimball mine area)
Including only 42,500 tpy production from federal land,
although additional private coal will alsp be qined ${ }^{\text {annual }}$ Bife of Mine
$1,070.0 \quad 21,400.0$
2. Energy Input, (direct \& indirect), Btu
2.1 Production/Transportation

Direct Operations
Petroleum
Natural Gas
Coal
Hydro Power
Nuclear
Other

Total
Ratio Output/Input

Equipment, Facilities, \& Supplies
Petroleum
Natural Gas
Coal
Hydro Power
Nuclear
Other
Total
Ratio Output/Input
Total Production/Transportation
Ratio Output/Input
2.2 Infrastructure

Production Area
Petroleum

Total
Ratio Output/Input

15.8
20.0
68.0
40.0
10.0
10.0
--
148.0
144.6
$22.2 \quad 444.0$
48.2
1.0


Natural Gas
Coal
Hydro Power
Nuclear
Other
14.8


1. Energy Output, Btu


Equipment and Supplies


## NET ENERGY SUMMARY SHEET

SITE: Miller Creek Preliminary Tract (from Broad Canyon access) with 433,000 tons annual production.
All Numbers: Billion Btu

1. Energy Output, Btu

Annual Life of Mine (40)
$10,390.0 \quad 415,600$
2. Energy Input, (direct \& indirect), Btu
2.1 Production/Transportation Direct Operations

Petroleum
Natural Gas
Coal
Hydro Power
Nuclear
Other

Total
Ratio Output/Input

125.5
$82.8^{5,020.0}$

Equipment, Facilities, \& Supplies
Petroleum

$$
\begin{array}{rr}
8.2 & 328.0 \\
29.3 & 1,172.0 \\
15.7 & 628.0 \\
4.9 & 196.0 \\
4.9 & 196.0 \\
-- & -- \\
\hline \hline 63.0 & \\
\hline & \\
\hline 184.9 & 2,520.0 \\
\hline & \\
\hline
\end{array}
$$

Natural Gas
Coal
Hydro Power
Nuclear
Other
Total
Ratio Output/Input
Total Production/Transportation
Ratio Output/Input
2.2 Infrastructure

Production Area

| Petroleum | 55.4 | $2,216.0$ |
| :--- | :---: | :---: |
| Natural Gas | 63.3 | $2,532.0$ |
| Coal | 45.6 | $1,824.0$ |
| Hydro Power | -- | -- |
| Nuclear | -- | -- |
| Other | -- | - |
| Total | $\underline{164.3}$ |  |
| Ratio Output/Input |  | $\underline{63.2}$ |

Equipment and Supplies


Total Infrastructure Ratio Output/Input
124.8

4,992.0
Coal
172.9

6,916.0
Hydro Power
7.8
312.0

Nuclear
Other
Total
Ratio Output/Input
Unrecovered Resource, Btu
15,590
$623,000.0$

## NET ENERGY SUMMARY SHEET

SITE: Emery South Preliminary Tract with Underground Production Methods and Truck Haulage to Nearby Shipping Point on Proposed Castle Valley R.R.

All Numbers: Billion Btu Annual

$$
3,300
$$

1. Energy Output, Btu

$$
132,000
$$

2. Energy Input, (direct \& indirect), Btu
2.1 Production/Transportation

Direct Operations
Petroleum
Natural Gas
Coal
Hydro Power
Nuclear
Other

Total
Ratio Output/Input

Equipment, Facilities, \& Supplies
Petroleum
Natural Gas
Coal
Hydro Power
Nuclear
Other
Total
Ratio Output/Input
Total Production/Transportation
Ratio Output/Input
2.2 Infrastructure

Production Area
Petroleum Natural Gas Coal
Hydro Power Nuclear
Other
Total
Ratio Output/Input
Ratio Output/Input


Equipment and Supplies

Petroleum
Natural Gas
Coal
Hydro Power
Nuclear
Other
Total
Ratio Output/Input
Total Infrastructure
Ratio Output/Input
2.3 Total $2.1+2.2$

Petroleum
Natural Gas
Coal
Hydro Power
Nuclear
Other
Total
Ratio Output/Input
Unrecovered Resource, Btu

| 10.2 | 408.0 |
| ---: | ---: |
| 9.3 | 372.0 |
| 2.6 | 104.0 |
| 0.7 | 28.0 |
| 0.6 | 24.0 |
| -- | -- |
| 23.4 |  |

67.5 $48.9^{2,700}$

| 47.8 | $1,912.0$ |
| ---: | ---: |
| 27.3 | $1,092.0$ |
| 45.5 | $1,820.0$ |
| 2.1 | 84.0 |
| 1.6 | 64.0 |
| -- | - |

124.3 $26.5^{4,972.0}$
$4,150.0 \quad 166,000.0$

BLM NET ENERGY ANALYSIS: COAL LEASING

## NET ENERGY SUMMARY SHEET

SITE: Gordon Creek Preliminary Tract with Annual Production Rate of 649,000 tons
All Numbers: Billion Btu

1. Energy Output, Btu
2. Energy Input, (direct \& indirect), Btu
2.1 Production/Transportation

Direct Operations
Petroleum
Natural Gas
Coal
Hydro Power
Nuclear
Other

Total
Ratio Output/Input

Equipment, Facilities, \& Supplies

Petroleum
Natural Gas
Coal
Hydro Power
Nuclear
Other
Total
Ratio Output/Input
Total Production/Transportation Ratio Output/Input
2.2 Infrastructure

Petroleum
Natural Gas
Coal
Hydro Power
Nuclear
Other
Total
Ratio Output/Input

## Production Area

Annual Life of Mine (40)
$16,100.0 \quad 644,000.0$

| 59.3 | $2,372.0$ |
| :---: | :---: |
| -- | -- |
| 123.4 | $4,936.0$ |
| -- | -- |
| -- | -- |
| - |  |

$182.78 \underbrace{7,308.0}$

| 10.4 | 416.0 |
| ---: | ---: |
| 37.3 | $1,492.0$ |
| 16.8 | 672.0 |
| 4.9 | 196.0 |
| 4.6 | 184.0 |
| -- | - |
| 74.0 | $2,960.0$ |
|  |  |

256.7 $62.7^{10,268.0}$

|  |  |  |
| :--- | :---: | :---: |
| Petroleum | 74.8 | $2,992.0$ |
| Natural Gas | 84.3 | $3,372.0$ |
| Coal | 61.3 | $2,452.0$ |
| Hydro Power | -- | -- |
| Nuclear | -- | -- |
| Other | - | - |
| Total | $\underline{220.4}$ | - |
| Ratio Output/Input |  | $\underline{73.0}$ |

Equipment and Supplies

| Petroleum | 45.1 |  | 1,804.0 |
| :---: | :---: | :---: | :---: |
| Natural Gas | 39.5 |  | 1,580.0 |
| Coal | 12.8 |  | 512.0 |
| Hydro Power | 3.8 |  | 152.0 |
| Nuclear | 3.5 |  | 140.0 |
| Other | -- |  | -- |
| Total | 104.7 |  | 4,188.0 |
| Ratio Output/Input |  | 153.8 |  |
| Total Infrastructure | 325.1 |  | 13,004.0 |
| Ratio Output/Input |  | 49.5 |  |
| 2.3 Total $2.1+2.2$ |  |  |  |
| Petroleum | 189.6 |  | 7,584.0 |
| Natural Gas | 167.1 |  | 6,444.0 |
| Coal | 214.3 |  | 8,572.0 |
| Hydro Power | 8.7 |  | 348.0 |
| Nuclear | 8.1 |  | 324.0 |
| Other | -- |  | -- |
| Total | 581.8 |  | 23,272.0 |
| Ratio Output/Input |  | 27.7 |  |
| Unrecovered Resource, Btu | 24,140 |  | 965,600.0 |

## NET ENERGY SUMMARY SHEET

SITE: Slaughterhouse Canyon Preliminary Tract with mining of both coal seams.by underground methods.

All Numbers: Billion Btu

1. Energy Output, Btu
2. Energy Input, (direct \& indirect), Btu
2.1 Production/Transportation Direct Operations

Petroleum Natural Gas
Coal
Hydro Power
Nuclear
Other

Total
Ratio Output/Input

Equipment, Facilities, \& Supplies
Petroleum
Natural G
Natural Gas
Coal
Hydro Power
Nuclear
Other
Total
Ratio Output/Input
Total Production/Transportation
Ratio Output/Input

| 4.5 | 36.0 |  |
| ---: | ---: | ---: |
| 15.6 | 125.0 |  |
| 7.1 | 57.0 |  |
| 2.0 | 16.0 |  |
| 1.8 | 14.0 |  |
| -- | -- |  |
| 31.0 |  | 248.0 |
|  | 167.1 |  |
| 99.8 |  | 798.0 |
|  | 51.9 |  |

2.2 Infrastructure

Production Area
Petroleum
Natural Gas
Coal
Hydro Power
Nuclear
Other
Total
Ratio Output/Input

Annual Life of Mine (8)
$5,180.0 \quad 41,440.0$

Annual Life of Mine (40)
Equipment and Supplies
Petroleum
Natural Gas

Coal
Hydro Power
Nuclear
Other
Total
Ratio Output/Input
Total Infrastructure Ratio Output/Input
2.3 Total $2.1+2.2$

Petroleum Natural Gas
Coal
Hydro Power
Nuclear
0ther
Total
Ratio Output/Input
Unrecovered Resource, Btu
56.3
55.6
86.8
3.4
3.1
-- $\quad-$
205.2

11,540.0 92,320.0

$$
\begin{aligned}
& 17.7 \quad 142.0 \\
& \stackrel{41.3}{125.4} \xrightarrow{331.0} 0^{-1} \\
& 105.4 \quad 893 \\
& 49.1
\end{aligned}
$$

## NET ENERGY SUMMARY SHEET

SITE: North Horn Mountain Preliminary Tract with Conveyor Transportation to Clawson and Annual production of $2,470,000$ tons. All Numbers: Billion Btu

1. Energy Output, Btu
2. Energy Input, (direct \& indirect), Btu
2.1 Production/Transportation Direct Operations

> Petroleum

Natural Gas
Coal
Hydro Power
Nuclear Other

Total
Ratio Output/Input

Equipment, Facilities, \& Supplies
Petroleum
Natural Gas
Coal
Hydro Power
Nuclear
Other
Total
Ratio Output/Input
Total Production/Transportation Ratio Output/Input

### 2.2 Infrastructure

Production Area
Petroleum
Natural Gas
Coal
Hydro Power
Nuclear
Other
Total


Equipment and Supplies


## NET ENERGY SUMMARY SHEET

SITE: Meetinghouse Canyon Preliminary Tract

All Numbers: Billion Btu

1. Energy Output, Btu
2. Energy Input, (direct \& indirect), Btu
2.1 Production/Transportation

Direct Operations
Petroleum
Natural Gas
Coal
Hydro Power
Nuclear
Other

Total
Ratio Output/Input

Equipment, Facilities, \& Supplies
Petroleum
Natural Gas
Coal
Hydro Power
Nuclear
Other

Total
Ratio Output/Input
Total Production/Transportation
Ratio Output/Input
2.2 Infrastructure

Production Area
Petroleum
Natural Gas
Coal
Hydro Power
Nuclear
Other
Total
Ratio. Output/Input

## Annual Life of Mine (40)

7,790 311,600

| 38.8 | $1,552.0$ |
| :---: | :---: |
| $\overline{--}$ | -- |
| 57.2 | $2,288.0$ |
| -- | -- |
| -- | -- |
| - |  |

$96.0 \quad \underline{3,840.0}$ 81.1
2.8
112.0
4.0
160.0
8.3
332.0
2.5
100.0
2.4
$\stackrel{-}{-}$
20.0
800.0
389.5
116.0
$4,640.0$
67.2
38.7

1,548.0
1,032.0
25.8
27.4

1,096.0

Equipment and Supplies

Petroleum
Natural Gas
Coal
Hydro Power
Nuclear
Other

Tota 1
Ratio Output/Input
Total Infrastructure Ratio Output/Input

### 2.3 Total $2.1+2.2$

Petroleum
Natural Gas
Coal
Hydro Power
Nuclear
Other

Total
Ratio Output/Input
Unrecovered Resource, Btu
23.0
2.3
6.1
1.5
1.1
--
34.0
125.9
103.3
32.1
99.0
4.0
3.5

241.9

11,690
229.1 1,360.0 61.9
920.0
92.0
244.0
60.0
44.0
--

5,036.0

4

$$
4,132.0
$$

$$
1,284.0
$$

3,960.0

$$
160.0
$$

$$
140.0
$$

$$
\begin{aligned}
& -- \\
& \hline
\end{aligned}
$$

9,676.0 32.2

467,600

## LIST OF PREPARERS

RONALD B. BOLANDER: Team Leader. Botany, Ecology. Bureau of Land Management 6 years.
DENNIS E. OAKS: Technical Coordinator and Land Use. Geography. Bureau of Land Management 3 years, Pacific Northwest River Basins Commission 4 years.
LARRY K. EYRE: Environmental Coordination and Vegetation. Botany, Zoology. Bureau of Land Management 5 years. Utah Division of Wildlife Resources 10 years.
DONALD R. CAIN: Special Assistance. Botany. Bureau of Land Management 17 years.
MICHAEL C. SIEG: Socio-economics. Natural Resource Economics. Bureau of Land Management 2 years, Colorado State University 2 years.
SAMUEL A. HOTCHKISS, JR: Geology and Mineral Resources. Geology. Forest Service 3 years, Industry 5 years.
BONNIE HOFFMANN: Word Processor and Editorial Assistant. Word Processing. U.S. Government 20 years.
HELENE FAIRCHILD: Editor. Writer-Editor, Printing Specialist. Bureau of Land Management 6 years, Industry 15 years.
MARGARET MATTHIES: Recreation, Visual Resources, and Special Designation Areas. Outdoor Recreation Planning. Bureau of Land Management 6 years.
DONALD W. HOOK: Transportation. Civil Engineer. Bureau of Land Management 5 years, Environmental Protection Agency 5 years, Federal Water Pollution Control and Federal Water Quality Commission 5 years, Indiana State Government 10 years.
WILLIAM W. WAGNER: Air Quality and Climate. Air Resource Specialist and Radiation Ecology. Bureau of Land Management 5 years, University of Utah 10 years.
MARK GREEN: Air Quality and Climate. Meteorology. Bureau of Land Management 3 years.
BOYD CHRISTENSON: Water Resources. Hydrology. Bureau of Land Management 3 years, Forest Service 10 years.
JAMES F. KOHLER: Mineral Resources. Geology. Geological Survey 3 years. Bureau of Land Management 4 years.
JOSEPH JARVIS: Wildlife and Threatened and Endangered Species. Wildlife Biology. Private Consultant 2 years, Bureau of Land Management 6 years, Fish and Wildlife Service 2 years, State Government 5 years.
MARK A. MACKIEWICZ: Soils. Soil Scientist. Bureau of Land Management 3 years, Soil Conservation Service 1 year.
HEIDI ROBERTS: Cultural Resources. Archaeology. Bureau of Land Management 2 years, Industry 1 year.
CHARLES STOUT: Graphics. Cartographic Technician. Bureau of Land Management 1 year.

## GLOSSARY

ACRE-FOOT. The quantity of water required to cover 1 acre to a depth of 1 foot; equal to 43,560 cubic feet or $325,851 \mathrm{gal}$ lons.
ALLUVIAL. Pertaining to deposits made by flowing water.
ANIMAL UNIT MONTH (AUM). The amount of forage required to graze one cow or five sheep for a one month period. A measure of range capacity.
ANNUAL AVERAGE DAILY TRAFFIC. Theoretically this would be a summation of all the vehicles passing one point divided by the number of days in the year. Practically, this figure is usually based on sample traffic counts adjusted on the basis of nearby permanent traffic count stations. Peak traffic counts would be substantially greater.
ANTICLINE. Applied to strata which dip in opposite directions from a common ridge or axis.
AQUIFER. A zone, stratum, or group of strata that can store and produce water and can yield water to wells in economically significant quantities.
BUTEO. The broad-winged, soaring buzzard hawks.
BUTTE. An isolated hill with steep sides and a top that is flat.
CE-1 ZONE, CE-2 ZONE. Lands within Carbon and Emery Counties determined by the counties to be critical environmental zones and are accordingly ascribed limited uses.
COAL FIELD. An area of country, the underlying rocks of which contain minable coal seams.
COLLUVIAL. Consisting of alluvium in part and containing angular fragments of the original rocks.
CONTINUOUS MINER. A mining machine designed to remove coal from the face and load the coal into cars or conveyors without the use of drills or explosives, employing instead a rotating head which cuts up and down the coal face.
CROWDED (TRANSPORTATION). Any two-lane State highway which is or would be carrying an equivalent of $5,000 \mathrm{vpd}$, counting each truck as five autos in rolling terrain.
DEMONSTRATED RESERVES. A collective term for the sum of measured and indicated coal reserves or resources in a given area.
DIP. The angle at which a bed or stratum is inclined from the horizontal.
DOME. A symmetrical structural uplift having approximate circular outline in plain view.
DRAGLINE. A type of excavating equipment which casts a ropehung bucket a considerable distance, collects the dug material by pulling the bucket toward itself on the ground with a second rope, elevates the bucket, and dumps the material on a spoil bank, in a hopper, or on a pile.
EYRIE. The nest of a bird of prey.
FAULT. A fracture or a fracture zone along which there has been displacement of the two sides relative to one another parallel to the fracture.
FISHEDOUT. A permanent reduction in expected or previously experienced fishing success on a particular water body to the point of abandonment of the effort by the majority of the participants.
FLOODPLAIN. The flat ground along a stream covered by water at the flood stage.
GLACIATION. In geology, pertaining to, characteristic of, produced, deposited, or derived from a glacier.
GRABEN. A depressed segment of the earth's crust bounded on at least two sides by faults.
INFERRED RESOURCE. A mineral (e.g., coal) for which quantitative estimates are based largely on broad knowledge of the geologic character of the deposit and for which there are few, if any, samples or measurements.
INFRASTRUCTURE. The basic equipment, utilities, productive enterprises, installation and service essential for the development, operation, and growth of an organization, a city, or a nation.

IN PLACE RESOURCE. The total amount of coal both inferred and demonstrated, estimated to be located in a given area.
INSTANT STUDY AREA. An area that was officially designated as a natural or primitive area prior to the 1976 passage of FLPMA.
JOINT. A divisional plane that divides a rock and along which there has been no visible movement parallel to the plane. KNOLL. A usually small rounded land eminence.
KNOWN GEOLOGIC STRUCTURE (KGS). A natural underground reservoir capable of holding oil and gas.
KNOWN RECOVERABLE COAL RESOURCE AREA (KRCRA). An area of country, including Federal lands, which meet minimum standards for recoverable coal deposits in accordance with accepted mining practices as determined by the Geological Survey.
LAND MANAGEMENT PLAN. A plan establishing the allocation of land resources and the decisions relating to the coordination of the various uses and activities within a planning unit.
LIMESTONE. A sedimentary rock which contains at least 50 percent calcium carbonate and magnesium carbonate.
LITHIC SCATTER. An archaeological site characterized by the presence of flaked tools, chips, cores, or flakes only.
LOGICAL MINING UNIT (LMU). An area of coal land that can be developed and mined in an efficient, economical, and orderly manner with due regard for the conservation of coal reserves and other resources.
LONGWALL MINING. A system of mining on straight coal faces in which the developing headings are driven to the boundary or limit line and then the coal seam is extracted by longwall faces retreating toward the entry.
MAXIMUM MODIFICATION. A Forest Service visual resource management classification that allows for management activities to dominate the landscape character in foreground, middleground, and background areas.
MINING PLAN. A complete mining and reclamation operation plan prepared in compliance with the Mineral Leasing Act of 1920, Surface Mining Control and Reclamation Act of 1977, and other applicable laws and regulations.
MITIGATING MEASURE. Methods used (often included as lease stipulations) to reduce the significance of or eliminate an anticipated environmental impact.
MODIFICATION. A Forest Service visual resource management classification that allows for management activities to dominate the landscape character in background areas.
MOLLUSCS. Invertebrate animals (such as oysters, snails, or clams) with a soft unsegmented body usually enclosed in a calcareous shell.
MONOCLINE. An abrupt downward flexure of nearly horizontal strata without any corresponding bend to form an anticline or syncline.
NATIONAL REGISTER PROPERTY. A site, structure, district, building, or object deemed significant in American history, architecture, archaeology, or culture which is identified on a list maintained by the Secretary of the Interior.
NATURAL AREA. Public land area, designated by the BLM as a Natural Area, to be in a manner that protects the area's unique or unusual natural values.
OVERBURDEN. Material of any nature, consolidated or unconsolidated, that overlies a deposit of useful material, ores, or coal.
PARTIAL RETENTION. A Forest Service visual resource management classification that allows for management activities to be visually evident but subordinate to the landscape character.
PERCHED AQUIFER. Unconfined ground water separated from an underlying body of ground water by an unsaturated zone.
PLANNING AREA. A group of planning units for which a single Land Management Plan has been prepared.

PLANNING UNIT. The basic management unit of BLM administered lands or National Forest lands. Land Management Plans are generally prepared for these units.
POTABLE WATER. Water suitable for human use and consumption.
PREFERENCE RIGHT LEASE APPLICATION (PRLA). Until the early 1970's, the Federal government issued prospecting permits to interested parties to explore coal in areas where economically valuable deposits were not known to exist. By demonstrating that the permit area contained commercially valuable coal, a prospecting permit holder could apply for, and obtain, a lease to mine the deposit. Such lease applications were called preference right lease applications (PRLAs) and leases were issued without competition. Under the Federal Coal Leasing Amendments Act of 1976, noncompetitive coal leases are no longer permitted, subject to valid existing rights.
PRESERVATION. A Forest Service visual resource management classification that allows for natural ecological changes only.
PRIMITIVE AREA. Public land area, designated by the BLM as a Primitive Area, to be managed in a manner that protects the area's primitive recreational values.
QUATERNARY. Comprises all geologic time from the end of the tertiary up to the present.
RAPTOR. Living on prey; a group of carnivorous birds consisting of hawks, eagles, falcons, vultures, and owls.
REGIONAL COAL TEAM. A specific coal production region's Federal/State team which pursuant to 43 CFR 3400.4(b) considers and suggests policy for regional leasing target setting, tract delineation, and site-specific analysis in the coal production region; guides and reviews tract ranking; and conducts the selection and sale scheduling process in order to recommend regional lease sale alternatives to be analyzed in the Regional Lease Sale Environmental Impact Statement and to be recommended to the Secretary of the Interior.
RETENTION. A Forest Service visual resource management classification that allows only for management activities that are not visually evident.
ROADLESS AREA REVIEW AND EVALUATION II. The Forest Service review and evaluation of public lands under its jurisdiction for Congressional wilderness designation.
ROADLESS INVENTORY UNIT. An area of public lands under jurisdiction of the BLM that is roadless, is at least 5,000 acres in size, or is contiguous to an area that is undergoing wilderness inventory.
ROCK SLOPE. An inclined passage (portal) driven through rock strata to obtain access to the coal.
ROOM AND PILLAR. A system of mining in which the coal is mined in rooms separated by narrow ribs or pillars. The rooms are driven parallel to each other. The pillars are usually pulled as mining operations retreat from the area.
SCOPING. Process used for determining the range of issues to be addressed, potential significant issues, and possible alternatives which should be considered in an EIS. Scoping also identifies insignificant issues which do not require analysis. Federal, State, and local agencies, and the public sector participate in the scoping process.
SEDIMENTARY. A descriptive term for rock formed of sediment, or rocks formed by precipitation from solution.
SEDIMENT YIELD. The amount of soil an area loses every year through natural processes, usually expressed in acre-feet per square mile per year. One acre- foot per square mile per year, reduced to simpler terms, means that a square mile of land loses about 0.01 inches of soil every year. This is a result of the normal and ongoing processes of water and wind erosion.
SHALE. A laminated sediment, in which the constituent particles are predominantly of the clay grade.
SITE SPECIFIC ANALYSIS. An environmental assessment prepared for a specific coal tract, detailing environmental impacts expected to result from the leasing and development of that tract.

STIPULATION. A condition or requirement attached to a lease, usually dealing with protection of the environment or recovery of the coal.
SUBSIDENCE. Surface sinking, caving, or distortion resulting from the collapse of underground mine workings.
SURFACE MINING. Mining at or near the surface where the overburden is removed to expose and extract the coal.
SYNCLINE. A fold in rocks in which the strata dip inward from both sides toward the axis.
TOPSOIL. The fertile, dark colored surface soil, or A horizon.
TRACT. A defined area of land which will logically be proposed as a single lease offering. At the preliminary tract stage, the exact boundaries of tracts are still subject to adjustment based on subsequent analysis and revised coal information.
UNACCEPTABLE MODIFICATION. A Forest Service visual resource management classification that identifies areas where manmade disturbance is excessive and rehabilitation is necessary.
UNDERGROUND MINING. A mining method used to extract coal where the overburden is not removed, as opposed to surface mining.
UNSUITABILITY CRITERIA. Criteria, specified in coal management regulations 43 CFR 3461 that identifies those lands which shall be considered unsuitable for all or certain stipulated methods of coal mining.
VRM (VISUAL RESOURCE MANAGEMENT). The system by which the Forest Service and BLM classify and manage the visual resource of public lands under their respective jurisdictions. Based on their scenic qualities, sensitivities, and the distances from which they are viewed, the lands are classified into management units.
VRM CLASS I. A BLM visual resource management classification that allows for natural ecological change only.
VRM CLASS II. A BLM visual resource management classification that allows for management activities that are not visually evident.
VRM CLASS III. A BLM visual resource management classification that allows for management activities to be visually evident but subordinate to the landscape character.
VRM CLASS IV. A BLM visual resource management classification that allows for management activities to subordinate the landscape character.
VRM CLASS V. A BLM visual resource management classification that identifies areas where manmade disturbance is excessive and rehabilitation is necessary.
WILD AND SCENIC RIVER. Rivers officially designated by Congress as part of the National, Wild, and Scenic River System to be managed in a manner that protects its wild, scenic, and/or recreational values.
WILDERNESS AREA. Public land area officially designated by Congress as part of the National Wilderness Preservation System, to be managed in a manner that protects the area's naturalness, solitude, and primitive and recreational values.
WILDERNESS STUDY AREA. An area of public lands under jurisdiction of BLM that has been determined and declared to have wilderness character through inventory and evaluation.

## ABBREVIATIONS

[^32]
## REFERENCES CITED

Aerovironment. 1977. Assemblage of Data on Air Quality in Central and Southern Utah and Assessing the Impact of Coal Development in This Region on the Air Quality. Contract No. 14-08-0001-16467. Geological Survey, Salt Lake City, UT.
Alton, E.F. 1973. "Revegetating Disturbed Areas in the Semiarid Southwest." Journal of Soil and Water Conservation. Volume 28, Number 5. pp. 223-225.
Aldon, E.F., and Springfield, H.W. 1975. "Techniques for Establishing Native Plants on Coal Mine Spoils in New Mexico." Prepared for the Third Symposium on Surface Mining and Reclamation. Volume 1.
Allee, Paul A., and Pueschel, Rudolph F. 1979. A Study of Visibility in Carbon and Emery Counties, Utah. Prepared for $\mathrm{Na}-$ tional Oceanic and Atmospheric Administration, Boulder, co.
Amstrup, S.C., and Beacham, J., 1976. "Activity Patterns of Radio-Collared Black Bears in Idaho. Journal of Wildlife Management. Volume 40, Number 2.
Bagley, J.M., et al. 1964. "Water Yields in Utah." Utah Agricultural Experiment Station Special Report No. 18. 65 p .
Barney, Milo A., and Frischknect, Neil F. 1974. "Vegetation Changes Following Fire in the Pinyon-Juniper Type of West Central Utah." Journal of Range Management. Volume 27. pp. 91-96.
Berg, W.A. 1975. "Use of Soil Laboratory Analyses in Revegetation of Mined Lands." Mining Congress Journal. January. pp. 33-35.
Bleak, A.T., et al. 1965. "Problems in Artificial and Natural Revegetation of the Arid Shadscale Zone of Utah and Nevada." Journal of Range Management. Volume 18, Number 2.
Boner, T.C., et al. 1977. "A Survey of Endangered, Threatened, and Unique Terrestrial and Aquatic Wildlife in Utah's Coal Planning Area." Utah Division of Wildlife Resources, Salt Lake City, UT. Prepared for U.S. Department of the Interior, Bureau of Land Management, Utah State Office, Salt Lake City, Utah. Contract Number YA-512-CT6-257. 62 p.
Burrus, J.S. 1980. Utah Cougar Harvest Book 1978-79. Publication Number 79-9. Utah Division of Wildlife Resources, Salt Lake City, UT.
Centaur Associates. 1980. Draft Statement Components, UintaSouthwest Utah Coal Region Environmental Impact Statement. Centaur Associates, Washington, D.C.
Chapman, A.G. 1967. "Effects of Spoil Grading on Tree Growth." Mining Congress Journal. August. pp. 93-100.
Cobban, W.A. 1976. "Ammonite Record From the Mancos Shale of the Castle Valley-Price-Woodside Area, East Central Utah." Brigham Young University Geology Studies. Volume 22, Part 3. Brigham Young University, Provo, UT. pp. 117. 126.

Colorado school of Mines Research Institute and Engineering Enterprises, Inc. 1976. "Mineralogy of Overburden as Related to Groundwater Degradation in the Strip Mining of Coal." Interim Progress Report. Colorado School of Mines, Golden, Colorado.
Cotter, E. 1976. "The Role of Deltas in the Evolution of the Ferron Sandstone and Its Coals, Castle Valley, Utah." Brigham Young University Geology Studies. Volume 22, Part 3. Brigham Young University, Provo, UT. pp. 15-42.

Cramer, H.E. et al. 1978. "Calculated Visibility Impacts of the Proposed Emery Power Plant Expansion" H.E. Cramer Co., TR-78-449-01, Salt Lake City, Utah.
Criddle, W.C., and Jensen, D.W. 1964. Water Laws of Utah and Interstate Compacts and Treaties. State of Utah, Salt Lake City, UT. 167 p.
Cross, A.T. 1976. "Some Algal Deposits and Their Significance in the Northwest Colorado Plateau." Brigham Young University Geology Studies. Volume 22, Part 3. Brigham Young University, Provo, UT. pp. 127-142.

Dalton, L.B., et al. 1977. Species List of Vertebrate Wildlife That Inhabits Southeastern Utah. Utah Division of Wildlife Resources, Salt Lake City, UT.
Dalton, L. 1979. "Unpublished Records and Data." Utah Division of Wildlife Resources, Price, UT.
Doelling, H.H. 1972. "Central Utah Coal Fields, Sevier-Sanpete Wasatch Plateau, Book Cliffs, and Emery." Utah Geological and Mineralogical Survey Monograph. Series No. 3. Salt Lake City, UT.
Dunrud, C.R. 1976. "Some Engineering Geologic Factors Controlling Coal Mine Subsidence in Utah and Colorado." U.S. Department of the Interior, Geological Survey Professional Paper No. 969.
Ellis, D.H., et al. 1969. "Studies on Raptor Mortality in Western Utah.‘ The Great Basin Naturalist. Volume 29, Number 3. Brigham Young University, Provo, UT. pp. 165-167.
Environmental Protection Agency. 1974. Surface Protection in the Surface Mining of Coal. Washington, D.C.
Environmental Protection Agency. 1976. Erosion and Sediment Control, Surface Mining in the Eastern U.S. Washington, D.C.

ERT. 1980. Kaiparowits Coal Development and Transportation Study. Fort Collins, CO.
Five County Association of Governments. 1978. Planning for Growth in Garfield County. St. George, UT. 45 p.
Five County Association of Governments. 1980. "Socio-Economic Technical Report Submitted to the Kaiparowits Steering Committee." St. George, UT. 53 p.
Foster, Robert H. 1968. "Distribution of the Major Plant Communities in Utah." PhD Dissertation. Department of Botany, Brigham Young University, Provo, UT.
Foster, Robert H. 1979. Utah Threatened and Endangered Plant Inventory, Final Report. Omniplan Corporation, Santa Monica, CA. Prepared for U.S. Department of the Interior, Bureau of Land Management, Utah State Office. Contract Number YA-512-CT9-223.
Frischknect, Neil C., and Ferguson, Robert B. 1980. 1979 Annual Progress Report, Revegetation Studies on Disturbed Overburden, Emery Coal Field. Interagency Agreements UT-910-1A9-0436 and Utah 6. Prepared for Intermountain Forest and Range Experiment Station, Shrub Sciences Laboratory, Provo, UT. 35 p.
Gazin, C.L. 1941. "The Mammalian Faunas of the Paleocene of Central Utah with Notes on the Geology." U.S. Natural History Museum Proceedings. Volume 91, Number 3121. pp. 153.

Geoscientific Systems and Consulting. 1979. EMRIA Report No. 16, Reclaimability Analysis of the Emery Coal Field, Emery County, Utah. Prepared for U.S. Department of the Interior, Bureau of Land Management, Utah State Office, Salt Lake City, UT.
Geyer, W.A., and Rogers, W.F. 1972. "Spoil Change and Tree Growth on Coal Mined Spoils in Kansas." Journal of Soil and Water Conservation. Volume 17. pp. 114-116.
Gilmore, C.W. 1946-1947. Reptilian Fauna of the North Horn Formation of Central Utah. U.S. Department of the Interior, Geological Survey, Professional Paper 210-c. pp. 29-53.
Graham, R.L. 1970. "Preliminary Geology of the Paradise Area." Unpublished Report. Utah Geological and Mineralogical Survey, Salt Lake City, UT.
Hagihara, J.S., et al. 1972. Interim Guide for Rating Soils According to Their Soil Suitability (for Rangeland) Seeding, Nevada. Prepared for U.S. Department of the Interior, Bureau of Land Management, Utah State Office, Salt Lake City, UT. Technical File Code 7312.3.
HCRS. 1980. Nationwide Rivers Inventory, Phase /. Denver, CO.

Heib, Susan R., Editor. 1976. "Proceedings of the Elk-LoggingRoads Symposium, Publisher Forest." Wildlife and Range Experiment Station, University of Idaho, Moscow, ID
Hoffman, Stephen W. 1978. "Inventory of Nesting Raptors in the Escalante Resource Area." U.S. Department of the Interior, Bureau of Land Management, Cedar City District Office, Cedar City, UT
Hubbard, R.L. 1956. The Effects of Plant Competition Upon the Growth and Survival of Bitterbrush Seedlings. Research Note No. 109. Prepared for U.S. Department of Agriculture, Forest Service, California Forest and Range Experiment Station.
Jensen, J.A. 1966. "Dinosaur Eggs From the Upper Cretaceous North Horn Formation of Central Utah." Brigham Young University Geology Studies. Volume 13, Brigham Young University, Provo, UT. pp. 55-67.
Jewsa, G.K. 1978. 'Big Game Harvest Report." Unpublished Report. Utah Division of Wildlife Resources, Salt Lake City, UT.
Kaiser Engineers. 1976. Castle Valley Railroad Drawings 1-C to 7-C. U.S. Department of the Interior, Bureau of Land Management, Utah State Office, Salt Lake City, UT.
Kelly, Dennis. 1980. Hydrologic Review for the Cottonwood Tract. Prepared for U.S. Department of Agriculture, Forest Service, Manti LaSal National Forest. Forest Supervisor's Office, Price, UT.
Landis, E.R. 1959. Coal Resources of Colorado. U.S. Geological Survey Bulletin 1072C. U.S. Department of the Interior, Geological Survey, Denver, CO.
LaRocque, A. 1960. "Molluscan Faunas of the Flagstaff Formation of Central Utah." Geological Society of America. Memorandum 78.100 p .
Leatham, J.P., and Bunnell, D.S. 1978. Utah Upland Game Annual Report. Publication Number 79-12. Utah Division of Wildlife Resources, Salt Lake City, UT.
Lindzey, F.G., and Meslow, E.C. 1977. "Population Characteristics of Black Bears on an Island in Washington." Journal of Wildlife Management. Volume 41, Number 3.
Lyon, L. Jack. 1979. "Habitat Effectiveness for Elk as Influenced by Roads and Cover." Journal of Forestry. Volume 77, Number 10.
Lyons, Steven M. 1978. "The Impact of Surface Soil Removal on Plant Production, Transpiration Ratios, Nitrogen Mineralization Rates, Potential Sediment Losses, and Chemical Water Quality Within the Chained and Reseeded Pinyon-Juniper Types in Utah." MS Thesis. Utah State University, Logan, UT.
McAda, Charles, et al. 1977. A Survey of Threatened and Endangered Fish in Southeastern Utah Streams. Utah Cooperative Fish Resources Unit, Utah State University, Logan, UT. 245 p.
McNeese, D.C., and Hoag, A.L. 1957. Engineering and Technical Handbook. Prentice-Hall, New York, NY.
McWhorter, D.B. and Skogerboe, R.K. 1975. Surface and Subsurface Water Quality Hydrology in Mine Spoils. Second Quarterly Progress Report for EPA. Grant No. R 803175-0102. Colorado State University, Fort Collins, CO.

Malm, W.E. et al. 1980. "Visibility in the Southwestern United States from Summer 1978 through Spring 1979." Symposium on Plumes and Visibility, Grand Canyon, 10-14 November 1980 .
Merz, R.W., and Finn, R.W. 1951. Difference in Infiltration Rates on Graded and Ungraded Strip Mined Land. U.S. Department of Agriculture, Forest Service, Central States Experiment Station. Note 65. 2 p.
Mundorff, J.C. 1972. Reconnaissance of Chemical Quality of Surface Water and Fluvial Sediments in the Price River Basin, Utah. State of Utah Technical Publication. 55 p.
National Academy of Science and National Academy of Engineering. 1973. Water Quality Criteria, 1972. U.S. Environmental Protection Agency Report EPA-R3-73-033. 594 p.

Oxley, O.J. 1974. "The Effects of Roads on Population of Small Mammals." Journal of Applied Ecology. Volume 11, Number 1.

Parker, L.R. 1976. "The Paleoecology of the Fluvial Coal-Forming Swamps and Associated Floodplain Environments in the Blackhawk Formation (Upper Cretaceous) of Central Utah." Brigham Young University Geology Studies. Volume 22, Part 3. Brigham Young University, Provo, UT. pp. 99-116.

Pedco Environmental, Inc. 1979. Site Specific Analyses for Green River-Hams Fork Environmental Impact Statement. Prepared for U.S. Department of the Interior, Bureau of Land Management, Wyoming State Office, Cheyenne, WY. Contract Number YA-512-CT7-27.
Phillips, T.A. 1976. "An Analysis of USFS Pinyon-Juniper Chaining Projects in Region 4, 1954-1974." Unpublished Report U.S. Department of Agriculture, Forest Service, Ogden, UT 17 p.
Phillips, T.A. 1977. "An Analysis of Pinyon-Juniper Chaining Projects in the Intermountain Region, 1954-1975." Range Improvement Notes. Prepared for U.S. Department of Agriculture, Forest Service, Intermountain Region, Ogden, UT. 20 $p$.
Porter, R.D., and White, C.M. 1973. "The Peregrine Falcon in Utah, Emphasizing Ecology and Competition with the Prairie Falcon." Biological Series. Volume 18, Number 1. Brigham Young University, Provo, UT.
Price, Don, and Arnow, Ted. 1974. "Summary Appraisal of the Nation's Groundwater Resources-Upper Colorado Region." Geological Survey Professional Paper 813-C. 40 p.
Price, Don, and Waddell, K.M. 1973. "Selected Hydrologic Data in the Upper Colorado River Basin." Geological Survey Hydrologic Investigations Atlas HA-477.
Radian Corporation. 1980. Preliminary Environmental Assessment: Climate and Air Quality Imapcts, Green River-Hams Fork Regional Environmental Impact Statement. Prepared for U.S. Department of the Interior, Bureau of Land Management, Wyoming State Office, Cheyenne, WY. Contract Number YA-512-CT7-29.
Radian Corporation. 1981. Final Technical Report on Regional Air Quality and Visibility for the Uinta-Southwest Utah Coal Region. Radian Corp., Austin, Texas.
Rahn, P.H. 1975. "Potential of Coal Strip Mine Fills as Aquifers in the Powder River Basin." Quarterly Progress Report and Assessment and Evaluation of Work Completed to Date. Engineering and Mining Experiment Station, South Dakota School of Mines and Technology, Rapid City, SD.
Rector, John, and Amberson, Robert J. 1976. Technical Examination Input for Developing Environmental Analysis Reports for Coal Lease Continuances. Manti-LaSal National Forest, Price, Utah. 54 p.
Rich, H.V., and Collinson, S.W. 1973. "First Mammalian Fossil from the Flagstaff Limestone, Central Utah: Vulpauns australis (Carnivora: Miacidal)." Journal of Paleontology. Volume 45, Number 5. pp. 854-860
Richardson, E. Arlo. 1975. "Climatological Summary, Emery, Utah." USDC, NOAA, EDS, and Employment Division of the Utah Department of Employment Security, Climatology of the U.S
Robinson, S.F. 1977. "Paleontological Inventory of Existing Data for the Moab District." Unpublished Report. U.S. Department of the Interior, Bureau of Land Management Moab District Office, Moab, UT.
Sargeant, A.B., and Forbes, J.E. 1973. "Mortality Among Birds, Mammals and Certain Snakes on 17 Miles of Minnesota Roads." The Loon
SCORP. 1973. "State Comprehensive Outdoor Recreation Plan 1970-1985." Utah Outdoor Recreation Agency, Salt Lake City, UT.
SCORP. 1978. "Utah SCORP (State Comprehensive Outdoor Recreation Plan) Proposed Plan Outline." Utah Outdoor Recreation Agency, Salt Lake City, UT.

Scott, R.W., Boner, T.C., and Smith, R. 1977. "Ranking of Wildlife Values on Federal Coal Lands." Utah Division of Wildlife Resources, Salt Lake City, UT.
Seidensticker, J.C., Hornocker, Maurice, Wiles, Wilbur, and Messick, John. 1973. "Mountain Lion Social Organization in the Idaho Primitive Area." Wildlife Monographs Number 35. Wildlife Society, Washington, D.C.
Snow, Carol. 1972. Habitat Management Series for Endangered Species: Black-Footed Ferret. Report Number 2. U.S. Department of the Interior, Bureau of Land Management, Colorado State Office, Denver, CO
Southeastern Utah Association of Governments. 1977. Waste Water Quality Management Planning. Volume I, Appendix WQ-1 through WQ-11; Volume II, Appendixes WQ-12 through AQ-3. Salt Lake City, UT.
Southeastern Utah Association of Governments. 1980. "Community Attitude Survey." Compiled by Dr. T. J. Alsop. January, 1980. U.S. Department of the Interior, Bureau of Land Management, Utah State Office, Salt Lake City, UT.
Stahlecker, D.W. 1975. "Impacts of a $230-\mathrm{kV}$ Transmission Line on Great Plains Wildlife." Unpublished MS Thesis. Colorado State University, Fort Collins, CO. 59 p.
Stalmaster, M.V., and Newman, J.R. 1978. "Behavioral Responses of Wintering Bald Eagles to Human Activity." Journal of Wildlife Management. Volume 43, Number 3.
Stokes, W.L., and Balsley, J. 1968. "Supposed Coprolites from the Ferron Sandstone of Utah (Abstract)." Utah Academy of Sciences, Arts, and Letters, Proceedings. Volume 45, Part 1. p. 320.

Thames, J.L., Editor. 1977. "Reclamation and Use of Disturbed Land in the Southwest." University of Arizona Press, Tucson, AZ.
Thayne and Hudson. 1978. "Calculations for Increase in Deer, Elk, Uplands Game and Fishing Pressures in the State of Utah." Technical Report Prepared for Intermountain Power Project. U.S. Department of the Interior, Bureau of Land Management, Richfield District Office, Richfield, UT
U.S. Department of Agriculture, Soil Conservation Service. 1978. Soil Survey and Interpretations of the Coal Creek - Emery Portions of the Price River and Emery County Areas, Carbon and Emery County, Utah. Salt Lake City, UT.
U.S. Department of Agriculture, Soil Conservation Service. 1979. "The Uintah Basin Unit Colorado River Basin Salinity Control Study." Salt Lake City, UT.
U.S. Department of Agriculture, Forest Service. 1979. Land Management Plan, Ferron-Price Planning Unit, Manti-LaSal National Forest. Forest Supervisor's Office, Price, UT.
U.S. Department of the Interior. 1980. "Federal Coal Management Report, Fiscal Year 1979." Annual Report of the Secretary of the Interior under Section 8 of the Federal Coal Leasing Amendment Acts of 1976. Washington, D.C.
U.S. Department of the Interior, Bureau of Land Management. 1976. Final Environmental Impact Statement, Kaiparowits. Utah State Office, Salt Lake City, UT.
U.S. Department of the Interior, Bureau of Land Management. 1979. "Energy Minerals Rehabilitation Inventory and Analysis." EMRIA Report Number 16: Reclaimability Analysis of the Emery Coal Field, Emery County, Utah. Prepared by Geoscientific Systems and Consulting, Playa Del Ray, CA. Colorado State Office, Denver, CO.
U.S. Department of the Interior, Bureau of Land Management. 1979. "Environmental Assessment Report, Castle Valley Railroad Land Exchange." Moab District Office, Moab, UT.
U.S. Department of the Interior, Bureau of Land Management. 1979. Final Environmental Statement, Federal Coal Management Program. Utah State Office, Salt Lake City, UT
U.S. Department of the Interior, Bureau of Land Management. 1979. Intermountain Power Project: Accelerated Wilderness Inventory. Utah, Nevada, and Arizona State Offices.
U.S. Department of the Interior, Bureau of Land Management. 1980. Allen-Warner Valley Energy System Final Environmental Impact Statement. Utah State Office, Salt Lake City, UT.
U.S. Department of the Interior, Bureau of Land Management. 1980. "Kaiparowits Coal Development and Transportation Study." Unpublished Background Data. Utah State Office, Salt Lake City, UT
U.S. Department of the Interior, Bureau of Land Management. 1980. "Intensive Wilderness Inventory, Wilderness Study Areas." November, 1980. Utah State Office, Salt Lake City, UT.
U.S. Department of the Interior, Fish and Wildlife Service. 1976. Transaction of the Mountain Lion Workshop, Sparks, Nevada, January 13 and 14, 1976. Region 1, Portland, Oregon. 213 p
U.S. Department of the Interior, Geological Survey. 1976. "Water Resources Data for Utah." Water Resources Division, Salt Lake City, UT
U.S. Department of the Interior, Geological Survey. 1977. "Water Resources Data for Utah 1976." Water Data Report UT-761. Salt Lake City, UT. 617 p.
U.S. Department of the Interior, Geological Survey. 1978. "Utah Basic Data Release No. 31." Water Resources Division, Salt Lake City, UT.
U.S. Department of the Interior, Geological Survey. 1978. "Water Resources Data for Utah." Water Resources Division, Salt Lake City, UT.
U.S. Department of the Interior, Geological Survey. 1979. "Cottonwood Tract. Tract Summary and Geologic Report." Unpublished Report. Salt Lake City, UT
U.S. Department of the Interior, Geological Survey. 1979. Development of Coal Resources in Central Utah Final Environmental Impact Statement. Volumes I and II. Denver, CO.
U.S. Department of the Interior, Geological Survey. 1979. Development of Coal Resources in Southern Utah Final Environmental Impact Statement. Volumes I and II. Denver, CO.
U.S. Department of the Interior, Geological Survey. 1979. "Emery North Tract. Tract Summary and Geologic Report." Unpublished Report. Salt Lake City, UT.
U.S. Department of the Interior, Geological Survey. 1979. "Gordon Creek Tract. Tract Summary and Geologic Report." Unpublished Report. Salt Lake City, UT.
U.S. Department of the Interior, Geological Survey. 1979. "Meetinghouse Canyon Tract. Tract Summary and Geologic Report." Unpublished Report. Salt Lake City, UT.
U.S. Department of the Interior, Geological Survey. 1979. "Reconnaissance of the Wasatch Plateau Book Cliffs Coal Field Area, Utah." Open File Report 79-988. Salt Lake City, UT.
U.S. Department of the Interior, Geological Survey. 1979. "Slaughterhouse Canyon Tract. Tract Summary and Geologic Report." Unpublished Report. Salt Lake City, UT.
U.S. Department of the Interior, Geological Survey. 1979. "Utah Hydrologic Data Report No. 32." Water Resources Division, Salt Lake City, UT.
U.S. Department of the Interior, Geological Survey. 1980. "Emery Central Tract. Tract Summary and Geologic Report." Unpublished Report. Salt Lake City, UT.
U.S. Department of the Interior. Geological Survey. 1980. "Miller Creek Tract. Tract Summary and Geologic Report." Unpublished Report. Salt Lake City, UT
U.S. Department of the Interior, Geological Survey. 1980. "Hollberg PRLA. Summary and Geologic Report." Unpublished Report. Salt Lake City, UT.
U.S. Department of the Interior, Geological Survey. 1980. "North Horn Mountain Tract. Tract Summary and Geologic Report.' Unpublished Report. Salt Lake City, Ut.
U.S. Department of the Interior, Geological Survey. 1980. "Rilda Canyon Tract. Tract Summary and Geologic Report." Unpublished Report. Salt Lake City, UT.
U.S. Department of the Interior, Geological survey. 1980. "Tucker Canyon Tract. Tract Summary and Geologic Report." Unpublished Report. Salt Lake City, UT
Utah Department of Transportation. 1976. "Traffic on Utah Highways, 1975." Salt Lake City, UT
Utah Department of Transportation. 1979. "Traffic on Utah Highways, 1978." Salt Lake City, UT.

Utah Department of Transportation. 1980. Letter to Bureau of Land Management, Utah State Office, Salt Lake City, Utah. December 15. 1p.
Utah Division of Water Resources. 1975. "Hydrologic Inventory of the Price River Study Unit." Utah State Department of Natural Resources, Salt Lake City, UT. 63 p.
Utah Division of Water Resources. 1976. "The State of Utah Water, 1975." Utah Board of Water Resources, Salt Lake City, UT. 65 p.
Utah Division of Water Resources. 1977. "Hydrologic Inventory of the Dirty Devil Study Unit." State Capitol, Salt Lake City, UT.
Utah Division of Wildiife Resources. 1978. Statewide Fishery Management Survey, 1977. Publication $78-13$. Salt Lake City, UT.
Utah Division of Wildlife Resources. 1979. Utah Big Game Investigations and Management Recommendations. Publication 79-6. Salt Lake City, UT.
Utah Division of Wildlife Resources. 1979. Utah Upland Game Annual Report, 1979. Publication 80-7. Salt Lake City, UT.
Utah Division of Wildlife Resources. 1980. "The 1980 Utah Investigations and Management Recommendations Book." Salt Lake City, UT.
Utah Highway Department. 1978. "Average Daily Traffic on Utah Highways." Salt Lake City, UT.
Utah Power and Light Company. 1979. Resource Development Evaluation of the Garfield Coal Deposit, Garfield and Kane Counties, Utah (with Appendices). Salt Lake City, UT.
Jtah Power and Light Company. 1980. "Hydrologic Monitoring Program Annual Report for 1979." Hydrologic Section of the Power Operation Department, Mining and Exploration Department, Salt Lake City, UT.
Utah Transportation Commission. Official Highway Map, 1977-78 Edition. Salt Lake City, UT.
Utah Travel Council. Utah Multipurpose Map Series, 1:250,000 Scale. Salt Lake City, UT.
Vories, D.C., Editor. 1976. "Reclamation of Western Surface Mined Lands Workshop Proceedings." Ecology Consultants, Inc., Denver, CO. 152 p.
Van Voast, W.A., and Hedges, R.B. 1975. "Hydrologic Aspects of Existing and Proposed Strip Coal Mines Near Decker, Southeastern Montana." Montana Bureau of Mines and Geology Bulletin 97. Helena, MT.
Vaughn Hansen Associates. 1978. Preliminary 208 Water Quality Plan Prepared for Southeastern Utah Association of Governments, Salt Lake City, UT.
Weed, Carol S., and Altschul, Jeffrey H. 1980. The Central II Project: A Class II Sevier Counties, Utah. Unpublished Carbon, Emery, ment of the Interior, Bureau of Land Management, Utah State Office, Salt Lake City, UT. Contract Number YA-512-CT9-263.
Weir, R.D. 1976. Annotated Bibliography of Bird Kills at ManMade Obstacles, A Review of State of the Art and Solutions. Canada Wildlife Service, Ontario Region, Ottawa, Ontario, Canada. 85 p.
Welsh, S.L. 1977. Endangered and Threatened Plant Species of the Central Coal Lands, Utah. Brigham Young University, Provo, UT.
Welsh, Stanley, L., and Neese, Elizabeth. 1980. Inventory of Potentially Endangered or Threatened Plant Species of Selected Coal Lands of Emery County, Utah. Endangered Plant Studies, Inc. Prepared for U.S. Department of the interior, Bureau of Land Management, Utah State Office, Salt Lake City, UT. Contract Number UT-060-79-SOA-019.
Wentz, D.A. 1974. "Effects of Mine Drainage on the Quality of Streams in Colorado, 1971-1972." Colorado Water Resources Circular No. 21. Denver, CO. 117 p.
Wilson, L., et al. 1975. Soils of Utah. Agricultural Experimental Station Bulletin 492. Utah State University, Logan, UT. 94 p.

## Aesthetics: See Visual Resources

Air Quality: 6, 65, 67, 75, 121, 133, 134, 141, 171, 173, 174, 177, 178, 198, 199, 217, 219, $236,238,246,258$
Alternatives, Coal Leasing:
General: $2,6,10,12,13,17,75,133$
Alternative One: $49,55,58,134,178,179,180,181,182,196,198,199,200,201,217$, 219, 220, 221, 226, 236, 238
Alternative Two: 55, 178
Alternative Three: 55, 71, 199, 245
Alternative Four: 58, 219
Alternative Five: $58,133,238$
Analysis Guidelines: 133
Archaeological Resources: See Cultural Resources
Authorizing Actions: See Required Authorizations
Big Game: See Wildilife
Capitol Reef National Park: 78, 129, 174
Castle Valley Railroad Spur: $12,38,44,49,104,111,133,153,164,168,176,177$
Climate: 75, 121, 123
Coal Fields:
Emery: 2, 10, 12, 17, 78, 81, 86, 89, 91, 92, 93, 95, 116, 141, 146
Wasatch Plateau: 2, 10, 12, 17, 78, 89, 91, 95, 145, 179, 200, 220
Kaiparowits: 12, 15, 123, 134, 246
Coal Regions: 1, 2, 3
Coal Transportation: 6, 12, 17, 21, 26, 32, 38, 44, 49, 55, 58, 71, 104, 111, 121, 128, 133, $134,164,168,173,177,192,259$
Cottonwood Tract: 7, 17, 32, 49, 55, 58, 71, 78, 79, 81, 86, 89, 92, 103, 114, 115, 116, 134,
$144,153,170,178,196,199,214,219,236,260$
Cultural Resources: 6, 10, 63, 65, 114, 115, 128, 169, 173, 174, 177, 178, 196, 198, 214, 217,
232, 236, 242, 253, 256, 258, 261, 262
Emery Central Tract: $8,17,44,49,65,66,75,78,80,92,104,114,115,116,117,118,119$, $134,146,153,169,170,173,262$
Emery North Tract: 3, 6, 10, 17, 38, 49, 65, 66, 75, 79, 81, 91, 92, 95, 100, 103, 104, 114, $115,116,118,119,134,141,142,146,153,169,170,171,173,261$
Emery South Tract: 8, 17, 44, 49, 66, 75, 78, 91, 95, 115, 118, 119, 134, 141, 142, 146, 170, 262
Energy Balance: 168, 174, 196, 214, 232, 253
Fisheries: See Wildiife
Fossils: See Paleontology
Fugitive Dust: $134,141,170,174,178,198,199,217,221,232,239,246,248$
Geology: 9, 10, $81,89,90,123,145,175,179,200,220,239,248$
Gordon Creek Tract: $6,7,17,21,49,55,58,79,81,91,92,96,103,104,114,115,116,134$, 150, 153, 170, 178, 180, 196, 219, 221, 236, 259
Grazing, Grazing Allotments: 103, 104, 126, 153, 171, 174, 176, 178, 182, 198, 199, 204, 226, 240, 250, 251, 256, 258, 260, 261
Hollberg PRLA: $1,10,12,17,49,55,58,65,91,95,104,114,116,133,134,174,176,177$, 178, 199, 219, 238
Housing Development: $49,55,58,72,103,107,109,133,141,146,150,152,153,161,170$, $171,173,174,176,177,178,179,180,187,198,199,200,201,204,212,217,219,220$, $221,226,232,238,239,240,242,245,246,248,250,256,258,259,260,261,262$

Hunter Powerplant: 12, 13, 26, 32, 38, 75, 89, 103, 133, 192
Huntington Powerplant: 26, 103
Hydrology: See Water Resources
Interrelationships: 12, 13
Intermountain Power Project (IPP): 1, 12, 13, 71
Irreversible or Irretrievable Commitment of Resources: 173, 178, 199, 219, 238, 259, 260, 261
Irrigated Cropland: $86,95,103,126,133,146,150,152,153,171,173,174,175,176,178$ $179,180,182,198 ; 199,200,201,204,217,219,220,221,236,238,240,250,251,256$, 258, 261
Kaiparowits Plateau: $10,13,15,93,119,121,122,123,128,129,131,245,246,253$
Land Use: 10, 65, 103, 126, 152, 176, 182, 204, 221, 240, 250
Land Use Plans:
BLM and FS: 2, 13
State and Local: 12, 15
Leasing Target: $1,6,10,12,55$
Meetinghouse Canyon Tract: 7, 17, 26, 32, 49, 55, 58, 66, 71, 78, 79, 86, 89, 92, 103, 104, $114,115,116,118,119,134,144,153,170,171,178,182,196,199,214,219,236,260$
Miller Creek Tract: $6,8,17,21,49,55,79,92,96,103,104,114,115,116,118,134,150$, 153, 170, 178, 180, 196, 259
Mineral Resources: $10,61,89,91,123,145,146,175,179,200,220,239,248$
Mining Accidents: $145,180,200,220,240$
Mitigating Measures (Stipulations): 17, 65, 148, 152, 175, 221
Navajo Sandstone Aquifer: 72, 122, 247, 250
North Horn Mountain Tract: 7, 17, 32, 38, 49, 55, 67, 71, 79, 89, 92, 96, 103, 104, 114, 115, $116,133,134,141,142,144,153,169,170,178,196,199,201,214,217,261$
ORV Activities: $119,129,169,171,172,196,198,214,217,218,221,232,236,237,239,240$, 242, 245, 253, 256
Paleontology: 67, 89, 91, 123, 145, 146, 173, 175, 180, 200, 220, 240, 248
Preference Right Lease Applicatlons (PRLAs): 1, 10, 12, 13, 15, 17, 26, 38, 49, 65, 67, 71, 72, $i 19,122,123,125,128,129,133,134,177,178,196,200,2 i 4,220,239,240,248,253$, 256, 258, 262
Purpose and Need for Leasing: 1
Reclamation: $17,38,44,49,65,66,67,72,78,95,133,141,142,146,147,170,173,174$, $177,178,196,200,201,214,217,219,220,221,236,239,240,247,248,251,253,256$, 258, 262
Reclamation Potential:
Emery Coal Field: 6, 78, 95, 148, 176
Wasatch Plateau Coal Field: 6, 78, 95, 146, 148, 180
Kaiparowits Coal Field: 123, 248
Recreation: $6,64,119,129,133,169,170,171,173,177,178,196,198,214,217,236,239$, $245,246,250,253,256,258,259$
Regional Coal Team (RCT): $1,2,3,6,10,12,17,55$
Required Authorizations: 17, 58
Rilda Canyon Tract: 7, 9, 17, 26, 32, 49, 55, 66, 79, 89, 92, 103, 114, 116, 119, 134, 144, 170, 171, 178, 196, 260
Salinity: $78,81,122,142,144,171,173,174,175,179,198,199,200,217,219,220,236$, 238, 239, 246, 247
Scoping: 2, 10, 11, 13, 17
Short-Term Use and Long-Term Productivity: 173, 178, 198, 219, 238, 258

Slaughterhouse Canyon Tract: 6, 8, 17, 26, 49, 79, 89, 91, 92, 104, 114, 115, 116, 118, 119, $134,144,148,150,153,169,170,171,259$

## Socioeconomics:

General: $2,6,10,49,55,58,62,72,104,126,133,153,171,173,174,176,178,182$,
198, 199, 201, 204, 217, 219, 226, 236, 238, 240, 245, 251, 256, 258
Economic and Demographic: 104, 126, 156, 176, 182, 187, 204, 226, 242, 245, 251
Social: 107, 161, 164, 174, 182, 192, 212, 226, 242, 245, 251
Soils: $6,78,79,80,121,122,123,147,171,173,174,178,179,198,199,200,217,219$,
$220,236,238,239,246,256,258$
Special Designation Areas:
General: 63, 65, 116, 121, 129, 169, 177, 196, 214, 232, 242, 253
Wilderness: 65, 116, 129, 169, 177, 196, 214, 232, 242, 253
Roadless Inventory Units: 116, 129, 169, 177, 214, 242, 253
Wild and Scenic Rivers: 116, 129, 169
Subsidence: $44,65,66,141,145,146,150,153,171,173,174,175,178,179,180,182,198$,
199, 200, 201, 204, 217, 219, 220, 221, 226, 236, 238, 239, 246, 247, 256, 258, 259, 260
Surface Mine Reclamation: 38, 44, 49, 66, 67
Threatened and Endangered Species:
Plants: 6, 66, 95, 125, 148, 180, 201, 221, 240, 247, 260, 262
Animals: 6, 66, 100, 103, 240
Topography: $61,66,75,81,89,91,121,123,145,146,175,179,200,239,248$
Traffic Accidents: $114,115,168,171,173,174,177,192,198,199,212,214,219,232,236$, 238, 242, 253, 258
Traffic, Transportation: $10,12,13,63,104,111,128,133,150,152,164,168,171,173,177$,
$178,182,192,198,199,201,212,217,219,232,236,238,242,253,256,258,259,260$
Tucker Canyon Tract: 8, 17, 49, 55, 66, 79, 92, 104, 114, 115, 116, 119, 134, 150, 153, 168,
170, 171, 173, 178, 180, 182, 192, 196, 198, 199, 259
Unavoidable Adverse Impacts: 171, 178, 198, 217, 236, 256, 259
Unsuitability Criteria: 2, 6, 13, 65
Utah Power and Light (UP\&L) Exchange:
General: 1, 10, 13, 17, 26, 32, 55, 67, 71, 75, 133, 134, 199, 245
Alternative One: $13,71,245$
Alternative Two: $13,245,246$
Vegetation: $6,10,66,91,94,123,146,171,173,175,176,178,180,198,199,200,217,219$,
$220,236,238,240,248,256,258$
Visual Resources: $6,10,66,116,118,119,129,133,169,170,173,174,196,198,199,214$,
217, 236, 242, 253, 261, 262
Water Resources:
General: $6,10,12,61,65,66,78,81,86,122,128,141,142,153,171,173,174,175$, 177, 179, 182, 198, 199, 200, 217, 219, 220, 236, 238, 239, 246, 250, 256, 258
Water Quality: 66, 77, 81, 86, 122, 141, 142, 144, 152, 175, 179, 198, 200, 201, 220, 221, 247
Surface Water: $6,81,122,141,150,171,175,179,180,198,200,217,219,221,236$, 238, 246
Ground Water: 6, 72, 77, 81, 83, 86, 122, 144, 145, 173, 174, 179, 198, 199, 200, 217, 219, 236, 238, 239, 247, 256, 258
Consumptive Use: $21,26,32,38,44,49,55,58,72,86,141,171,175,178,179,198,199$, 200, 217, 219, 220, 236, 238, 246, 247, 256, 258
Trace Elements: 86, 145, 179
Sewage Effluent: 102, 107, 128, 133, 161, 171, 175, 177, 179, 198, 200, 217, 220, 236, 239, 247, 256
Water Rights: 86, 107, 133, 161, 175

Wilderness: See Special Designation Areas
Wildiife:
General: $6,10,12,13,62,65,67,96,119,125,148,152,170,171,173,174,176,178$, $180,198,199,201,217,219,221,232,236,238,240,248,256,258,260$
Mule Deer: $96,119,125,129,146,150,171,176,180,181,182,198,201,217,221,236$, 240, 250
Elk: $96,119,125,129,146,148,150,152,180,181,201,221,240$
Moose: 96, 146, 148, 150, 152, 180, 182, 201, 260
Antelope: 13, 96, 152, 181
Pheasants: 125, 150, 173, 174, 176, 180, 198, 201, 217, 221, 261
Raptors: 100, 125, 150, 176, 181, 201, 240, 248, 250
Fish, Fisheries: 100, 103, 119, 125, 126, 129, 152, 182, 201, 221, 240, 250
Zoning: 12, 15, 65, 103, 153, 161, 182, 204, 226

## UINTA-SOUTHWESTERN UTAH COAL STUDY REGION





BLM LIBRARY
RS 150A BLDG. 50 DENVER FEDERAL CENTER
P.O. BOX 25047

DENVER, CO 80225



[^0]:    (GS, 1979) $\overbrace{2}^{0}$
    FIGURE 3-5
    Sヨd

[^1]:    Source: U.S. Department of Commerce, Bureau of Economlc Analysis, Regional Economic Informatlon System, Table 25.00
    $a_{\text {Figures }}$ in parentheses represent sector wage and salary employment as a percentage of total wage and salary employment (D) Not shown to avold disclosure of confidential information. Data are included in totals (L) Less than 10 wage and salary jobs

[^2]:    Emissions attributable to population growth in the region would cause an irreversible deterioration in

[^3]:    Note: Castle Valley Railroad assumed built to Emery by 1990

[^4]:    The use or diversion of water from springs and seeps or from shallow wells on the site would have no effect on stream discharge because spring discharge currently is utilized by riparian vegetation or is evaporated. It never reaches the Escalante River

[^5]:    CC: Cleon Feight - D.O.G.M.
    Ur.ah State Health Department
    Bill Boley - Manti-LaSal National Forest Forest
    Red Christensen - Manti-LaSal National Forest訁े
    $\vdots$
    $\vdots$
    $\vdots$
    0
    0
    $\vdots$
    $\vdots$

[^6]:    Response $4-3$ has been corected to include Broad Canyon, Swisher Coal Company and the Valley Camp Corporation operations.

[^7]:    A regional map showing existing leases, PRLAs and tracts offered for new
    leasing in Utah has been added to the FEIS.

[^8]:    not be found. These EISs are circulated to EPA and the Water and Power
    Resources Service who are the regulatory agencies for Salinity Control on the
     to the Colorado River System.

[^9]:    A possible mitigating factor not considered in the Draft EIS for develop-
    ment of all tracts contemplated would be the voluntary economic analysis ment of all tracts contemplated would be the vo untary economic analys
    by mine operators and public authority of mass transit transportation of

[^10]:    With consideration of the above comments, we feel that the Draft EIS has been woll prepared and
    of the tracts considered.

[^11]:    Response 9-2
    
    Response 9-3

[^12]:    Our objections to alternatives four and five are
     and will not result in expanded production．The reserves in tract would only be of real interest to the contiguous land－ holders．

[^13]:    . We feel that this is an opportune time for Getty Oil Company to make a statement to the Department of Interior urging three times higher than D.O.E.'s present production goals.
    Leasing should also be geared to a ten year demand; i.e. 1990. TIəM se suotzoofoxd xtəy7 pue səotxd tio fsə7et əu7 uo pəseq əq be based on the latest oil prices and their projections as well $[$ making allowance for synthetic fuels.

[^14]:    The overall problem is succinctly stated on page 161 where it
    is writeon that, Due to the lack of data on location or
    educational value of fossils contained therein, the extent of
    the impact cannot be determined. A statement like this
    suggests very strongly that: (1) The areas of concern have
    been surveyed and (2) professional paleontologists have not
    

    2 The rest of the paleontological comments in the study can be
    I suggest in the strongest possible way that the matter of
     Lconsiderations.

[^15]:    > The statement about convevors and transmission lines concerning Rilda
    Canyon is false.

    The statement about convevors and transmission lines concerning Rilda
    Canyon is false.
     meet visual quality objectives; however, conveyor or coal slurry lines,
    if visually evident in Unit $A-5$, will not meet visual quality objectives
    Page 156
    ~ wind

[^16]:    Page 231, right-hand column - Challenge the statement that visibllity would
     visibility would definitely be affected in Class I areas.

    9 The Emery-South lease area was originally proposed for surface mining but now
    The Emery-South lease area was originally proposed for surface mining but now

[^17]:    H Comment $1-2$

[^18]:    I think that these two items alone should allow a basis for the exchange
    of these lease holds not to happen. I question the law that allows these to be moved in the first place.

[^19]:    EDH Response Existing impacts to Emery County in lieu of additional leasing are dis-
    
     possibility of an additional portal and associated facilities in Cottonwood
    Canyon because it appears that Grimes Wash is the most likely location. An-
    other reason is the access problem in Cottonwood Canyon.

    CDH Corment 1-4 We would hope that you would take our concerns and our expressions when
    

    CDH Response 1-4 resulted in text revisions in the FEIS. This corrected informat ion will be used in the decis.

[^20]:    CDH Response 2-1 complete data were available. Baseline population estimates and population
    and impacts were projected with the UPED model. The Southeastern and Six-County
    Association of Governments assisted in this effort. Most of the information Association
    on infrastructure assessments was obtained from local officials such as City
    Manager, City Recorders, Mayors, etc. Some information was obtained from Utah
     $\dot{y}$

[^21]:    Assumption \#5
    It should not be assumed that agricultural lands retired would not be reclaimed after having been retired to provide enough to go around.

    With wise planning agricultural lands would be developed last. Assumption \#7

    Assumption \#7
    Water needs should be obtained from irrigation water saved through wise management.

[^22]:    This letter was presented orally in its entirety during the public meet-
    ing and has been responded to. See comments $2-1$ through 2-31 of the Castle
    Oale hearing above.㟶 융ㅇㅇ

[^23]:    
     services.

[^24]:    Text revisions were made to identify shortfall of social services in services.

[^25]:    PH Response $1-10$
    Text revisions were made to identify shortfall of social services in
    meeting future baseline and proposed action population requirements for those services.

    PH Comment $1-11$ County this year we are expecting that there will be 260 marriages and about 124 divorces. People may be getting married quite a lat

[^26]:    We have some vital concern with regard to the EIS not relating to the ec-
    onomic problems of the area. (Garfield County) SLCH Response $1-3$
    On page 123 of

    On page 123 of the DEIS the economic conditions and problems of Garfield
    County are discussed. County are discussed.

[^27]:    

[^28]:    state of utah
    county of salt lake; ss.
    I, EDWARD S. CRANFORD, being duly sworn according to law,

[^29]:    I/ 30 U.S.C. $\S 184(1)(1)(1976)$.
    2! The Bureau of Land Management has published a notice in the federal Register reauesting public comments on that leasing target. 44 Eed. Reg. 66256 (1979).

[^30]:    3/ Department of Justice, Competition in the Coal Industry at 43 (May 1979).

[^31]:    Sources: aCompilation of Air Pollutant Emission Factors bMOBILE1

[^32]:    AADT: Annual Average Daily Traffic
    ADT: Average Daily Traffic
    AUM: Animal Unit Month
    BACT: Best Available Control Technology
    BLM: Bureau of Land Management
    Btu: British thermal unit
    CFR: Code of Federal Regulations
    cfs: Cubic feet per second
    DOE: Department of Energy
    DOI: Department of the Interior
    D\&RGW: Denver and Rio Grande Western Railway Company
    EIS (ES): Environmental Impact Statement
    EMRIA: Energy Minerals Rehabilitation Inventory and Analysis
    EPA: Environmental Protection Agency
    ERT: Environmental Research \& Technology, Inc.
    FCLAA: Federal Coal Leasing Amendments Act of 1976
    FLPMA: Federal Lands Policy and Management Act of 1976
    FS: Forest Service
    GS: Geological Survev
    HCRS: Heritage Conservation and Recreation Service
    1-70: Interstate Highway 70
    IPP: Intermountain Power Project
    ISA: Instant Study Area
    KGS: Known Geologic Structure
    KRCRA: Known Recoverable Coal Resource Area
    LMU: Logical Mining Unit
    MER: Maximum Economic Recovery
    mgd: Million gallons per day
    $\mathrm{mg} / \mathrm{L}$ : Micrograms per liter
    MTY: Million tons per year
    MW: Megawatt
    NAAQS: National Ambient Air Quality Standards
    NOAA: National Oceanic and Atmospheric Administration
    NPS: National Park Service
    ORV: Off-road vehicle
    OSM: Office of Surface Mining
    PRLA: Preference Right Lease Application
    ,PSD: Prevention of Significant Deterioration
    RARE II: Roadless Area Review and Evaluation II
    RCT: Regional Coal Team
    SBA: Small Business Administration
    SCORP: State Comprehensive Outdoor Recreation Plan
    SID: Secretarial Issue Document
    SMCRA: Surface Mining Control and Reclamation Act
    TDS: Total Dissolved Solids
    T\&E: Threatened and Endangered
    TSP: Total Suspended Particulates
    U-10: Utah State Highway 10
    UDOT: Utah Department of Transportation
    UDWR: Utah Division of Wildlife Resources
    UP\&L: Utah Power and Light Company
    U.S. 6: United States Primary Highway 6

    VPD: Vehicles per day
    VRM: Visual Resource Management
    WPRS: Water and Power Resources Service
    WSA: Wilderness Study Area

