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2 Introduction

CALCULUS1

2.1 What is calculus?

Calculus is the branch of mathematics dealing with instantaneous rates of change of continu-
ously varying quantities. For example, consider a moving car. It is possible to create a function
describing the displacement of the car (where it is located in relation to a reference point) at any
point in time as well as a function describing the velocity (speed and direction of movement) of
the car at any point in time. If the car were traveling at a constant velocity, then algebra would
be sufficient to determine the position of the car at any time; if the velocity is unknown but still
constant, the position of the car could be used (along with the time) to find the velocity.

However, the velocity of a car cannot jump from zero to 35 miles per hour at the beginning of
a trip, stay constant throughout, and then jump back to zero at the end. As the accelerator is
pressed down, the velocity rises gradually, and usually not at a constant rate (i.e., the driver may
push on the gas pedal harder at the beginning, in order to speed up). Describing such motion
and finding velocities and distances at particular times cannot be done using methods taught in
pre-calculus, but it is not only possible but straightforward with calculus.

Calculus has two basic applications: differential calculus2 and integral calculus3. The simplest
introduction to differential calculus involves an explicit series of numbers. Given the series (42,
43, 3, 18, 34), the differential of this series would be (1, -40, 15, 16). The new series is derived from
the difference of successive numbers which gives rise to its name "differential". Rarely, if ever,
are differentials used on an explicit series of numbers as done here. Instead, they are derived
from a series of numbers defined by a continuous function which are described later.

Integral calculus, like differential calculus, can also be introduced via series of numbers. Notice
that in the previous example, the original series can almost be derived solely from its differen-
tial. Instead of taking the difference, however, integration involves taking the sum. Given the
first number of the original series, 42 in this case, the rest of the original series can be derived by
adding each successive number in its differential (42+1, 43-40, 3+15, 18+16). Note that knowl-
edge of the first number in the original series is crucial in deriving the integral. As with differ-
entials, integration is performed on continuous functions rather than explicit series of numbers,
but the concept is still the same. Integral calculus allows us to calculate the area under a curve of
almost any shape; in the car example, this enables you to find the displacement of the car based

1 HTTP://EN.WIKIPEDIA.ORG/WIKI/CALCULUS
2 HTTP://EN.WIKIBOOKS.ORG/WIKI/CALCULUS%2FDIFFERENTIATION%2FCONTENTS
3 HTTP://EN.WIKIBOOKS.ORG/WIKI/CALCULUS%2FINTEGRATION%2FCONTENTS
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on the velocity curve. This is because the area under the curve is the total distance moved, as we
will soon see.

2.2 Why learn calculus?

Calculus is essential for many areas of science and engineering. Both make heavy use of math-
ematical functions to describe and predict physical phenomena that are subject to continual
change, and this requires the use of calculus. Take our car example: if you want to design cars,
you need to know how to calculate forces, velocities, accelerations, and positions. All require
calculus. Calculus is also necessary to study the motion of gases and particles, the interaction of
forces, and the transfer of energy. It is also useful in business whenever rates are involved. For ex-
ample, equations involving interest or supply and demand curves are grounded in the language
of calculus.

Calculus also provides important tools in understanding functions and has led to the devel-
opment of new areas of mathematics including real and complex analysis, topology, and non-
euclidean geometry.

Notwithstanding calculus’ functional utility (pun intended), many non-scientists and non-
engineers have chosen to study calculus just for the challenge of doing so. A smaller number
of persons undertake such a challenge and then discover that calculus is beautiful in and of it-
self.

2.3 What is involved in learning calculus?

Learning calculus, like much of mathematics, involves two parts:

• Understanding the concepts: You must be able to explain what it means when you take a
DERIVATIVE4 rather than merely apply the formulas for finding a derivative. Otherwise, you
will have no idea whether or not your solution is correct. Drawing diagrams, for example, can
help clarify abstract concepts.

• Symbolic manipulation: Like other branches of mathematics, calculus is written in symbols
that represent concepts. You will learn what these symbols mean and how to use them. A good
working knowledge of TRIGONOMETRY5 and ALGEBRA6 is a must, especially in integral calculus.
Sometimes you will need to manipulate expressions into a usable form before it is possible to
perform operations in calculus.

2.4 What you should know before using this text

There are some basic skills that you need before you can use this text. Continuing with our
example of a moving car:

4 HTTP://EN.WIKIPEDIA.ORG/WIKI/DERIVATIVE
5 HTTP://EN.WIKIBOOKS.ORG/WIKI/TRIGONOMETRY
6 HTTP://EN.WIKIBOOKS.ORG/WIKI/ALGEBRA
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• You will need to describe the motion of the car in symbols. This involves understanding func-
tions.

• You need to manipulate these functions. This involves algebra.
• You need to translate symbols into graphs and vice verse. This involves understanding the

graphing of functions.
• It also helps (although it isn’t necessarily essential) if you understand the functions used in

trigonometry since these functions appear frequently in science.

2.5 Scope

The first four chapters of this textbook cover the topics taught in a typical high school or first year
college course. The first chapter, ../PRECALCULUS/7, reviews those aspects of functions most es-
sential to the mastery of Calculus, the second, ../LIMITS/8, introduces the concept of the limit
process. It also discusses some applications of limits and proposes using limits to examine slope
and area of functions. The next two chapters, ../DIFFERENTIATION/9 and ../INTEGRATION/10,
apply limits to calculate derivatives and integrals. The Fundamental Theorem of Calculus is
used, as are the essential formulae for computation of derivatives and integrals without resort-
ing to the limit process. The third and fourth chapters include articles that apply the concepts
previously learned to calculating volumes, and so on as well as other important formulae.

The remainder of the central Calculus chapters cover topics taught in higher level Calculus top-
ics: multivariable calculus, vectors, and series (Taylor, convergent, divergent).

Finally, the other chapters cover the same material, using formal notation. They introduce the
material at a much faster pace, and cover many more theorems than the other two sections. They
assume knowledge of some set theory and set notation.

7 HTTP://EN.WIKIBOOKS.ORG/WIKI/..%2FPRECALCULUS%2F
8 HTTP://EN.WIKIBOOKS.ORG/WIKI/..%2FLIMITS%2F
9 HTTP://EN.WIKIBOOKS.ORG/WIKI/..%2FDIFFERENTIATION%2F
10 HTTP://EN.WIKIBOOKS.ORG/WIKI/..%2FINTEGRATION%2F
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4 Algebra

This section is intended to review algebraic manipulation. It is important to understand algebra
in order to do calculus. If you have a good knowledge of algebra, you should probably just skim
this section to be sure you are familiar with the ideas.

4.1 Rules of arithmetic and algebra

The following rules are always true.

4.1.1 Addition

• Commutative Law: a +b = b +a .
• Associative Law: (a +b)+ c = a + (b + c) .
• Additive Identity: a +0 = a .
• Additive Inverse: a + (−a) = 0.

4.1.2 Subtraction

• Definition: a −b = a + (−b) .

4.1.3 Multiplication

• Commutative law: a ×b = b ×a .
• Associative law: (a ×b)× c = a × (b × c) .
• Multiplicative identity: a ×1 = a .
• Multiplicative inverse: a × 1

a = 1, whenever a 6= 0
• Distributive law: a × (b + c) = (a ×b)+ (a × c) .

4.1.4 Division

• Definition: a
b = a × 1

b , whenever b 6= 0.

The above laws are true for all a, b, and c, whether a, b, and c are numbers, variables, functions,
or other expressions. For instance,

(x+2)(x+3)
x+3 = [(x +2)× (x +3)]× ( 1

x+3

)
= (x +2)× [

(x +3)× ( 1
x+3

)]
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= ((x +2)× (1)), x 6= −3
= x +2, x 6= −3.

Of course, the above is much longer than simply cancelling x + 3 out in both the numerator
and denominator. But, when you are cancelling, you are really just doing the above steps, so it is
important to know what the rules are so as to know when you are allowed to cancel. Occasionally
people do the following, for instance, which is incorrect:

2× (x +2)

2
= 2

2
× x +2

2
= x +2

2
.

The correct simplification is

2× (x +2)

2
= 2

2
× x +2

1
= 1× x +2

1
= x +2

,

where the number 2 cancels out in both the numerator and the denominator.

4.2 Interval notation

There are a few different ways that one can express with symbols a specific interval (all the num-
bers between two numbers). One way is with inequalities. If we wanted to denote the set of all
numbers between, say, 2 and 4, we could write "all x satisfying 2<x<4." This excludes the end-
points 2 and 4 because we use < instead of ≤. If we wanted to include the endpoints, we would
write "all x satisfying 2 ≤ x ≤ 4." This includes the endpoints.

Another way to write these intervals would be with interval notation. If we wished to convey
"all x satisfying 2<x<4" we would write (2,4). This does not include the endpoints 2 and 4. If we
wanted to include the endpoints we would write [2,4]. If we wanted to include 2 and not 4 we
would write [2,4); if we wanted to exclude 2 and include 4, we would write (2,4].

Thus, we have the following table:

Endpoint conditions Inequality notation Interval notation
Including both 2 and 4 all x satisfying 2 ≤ x ≤ 4

[2,4]

Not including 2 nor 4 all x satisfying 2 < x < 4

(2,4)
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Endpoint conditions Inequality notation Interval notation
Including 2 not 4 all x satisfying 2 ≤ x < 4

[2,4)

Including 4 not 2 all x satisfying 2 < x ≤ 4

(2,4]

In general, we have the following table:

Meaning Interval Notation Set Notation
All values greater than or
equal to a and less than or
equal to b

[a,b] {x : a ≤ x ≤ b}

All values greater than a
and less than b

(a,b) {x : a < x < b}

All values greater than or
equal to a and less than b

[a,b) {x : a ≤ x < b}

All values greater than a
and less than or equal to b

(a,b] {x : a < x ≤ b}

All values greater than or
equal to a.

[a,∞) {x : x ≥ a}

All values greater than a. (a,∞) {x : x > a}
All values less than or equal
to a.

(−∞, a] {x : x ≤ a}

All values less than a. (−∞, a) {x : x < a}
All values. (−∞,∞) {x : x ∈R}

Note that ∞ and −∞ must always have an exclusive parenthesis rather than an inclusive bracket.
This is because ∞ is not a number, and therefore cannot be in our set. ∞ is really just a symbol
that makes things easier to write, like the intervals above.

The interval (a,b) is called an open interval, and the interval [a,b] is called a closed interval.

4.3 Exponents and radicals

There are a few rules and properties involving exponents and radicals that you’d do well to re-
member. As a definition we have that if n is a positive integer then an denotes n factors of a. That
is,
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an = a ·a ·a · · ·a (n times).

If a 6= 0 then we say that a0 = 1. If n is a positive integer we say that a−n = 1
an . If we have an

exponent that’s a fraction we say that am/n = n
p

am = ( n
p

a)m .

These definitions yield the following table of properties:

Rule Example
an ·am = an+m 36 ·39 = 315

an

am = an−m x3

x2 = x1 = x
(an)m = an·m (x4)5 = x20

(ab)n = anbn (3x)5 = 35x5(
a
b

)n
= an

bn

(
7
3

)3
= 73

33 .

4.4 Factoring and roots

Given the expression x2+3x+2, one may ask "what are the values of x that make this expression
0?" If we factor we obtain

x2 +3x +2 = (x +2)(x +1).

If x=-1 or -2, then one of the factors on the right becomes zero. Therefore, the whole must be
zero. So, by factoring we have discovered the values of x that render the expression zero. These
values are termed "roots." In general, given a quadratic polynomial px2 +qx + r that factors as

px2 +qx + r = (ax + c)(bx +d)

then we have that x = -c/a and x = -d/b are roots of the original polynomial.

A special case to be on the look out for is the difference of two squares, a2 −b2. In this case, we
are always able to factor as

a2 −b2 = (a +b)(a −b).

For example, consider 4x2−9. On initial inspection we would see that both 4x2 and 9 are squares
((2x)2 = 4x2 and 32 = 9). Applying the previous rule we have

4x2 −9 = (2x +3)(2x −3).
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4.5 Simplifying rational expressions

Consider the two polynomials

p(x) = an xn +an−1xn−1 +·· ·+a1x +a0

and

q(x) = bm xm +bm−1xm−1 +·· ·+b1x +b0.

When we take the quotient of the two we obtain

p(x)

q(x)
= an xn +an−1xn−1 +·· ·+a1x +a0

bm xm +bm−1xm−1 +·· ·+b1x +b0
.

The ratio of two polynomials is called a rational expression. Many times we would like to sim-
plify such a beast. For example, say we are given x2−1

x+1 . We may simplify this in the following
way:

x2 −1

x +1
= (x +1)(x −1)

x +1
= x −1

This is nice because we have obtained something we understand quite well, x −1, from some-
thing we didn’t.

4.6 Formulas of multiplication of polynomials

Here are some formulas that can be quite useful for solving polynomial problems:

(a +b)2 = a2 +2ab +b2

(a −b)2 = a2 −2ab +b2

(a −b)(a +b) = a2 −b2

(a ±b)3 = a3 ±3a2b +3ab2 ±b3

a3 ±b3 = (a ±b)(a2 ∓ab +b2)
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5.1 Classical understanding of functions

To provide the classical understanding of functions, think of a function as a kind of machine.
You feed the machine raw materials, and the machine changes the raw materials into a finished
product based on a specific set of instructions. The kinds of functions we consider here, for
the most part, take in a real number, change it in a formulaic way, and give out a real number
(possibly the same as the one it took in). Think of this as an input-output machine; you give the
function an input, and it gives you an output. For example, the squaring function takes the input
4 and gives the output value 16. The same squaring function takes the input −1 and gives the
output value 1.

A function is usually written as f , g , or something similar - although it doesn’t have to be. A
function is always defined as "of a variable" which tells us what to replace in the formula for the
function.

For example, f (x) = 3x +2 tells us:

• The function f is a function of x.
• To evaluate the function at a certain number, replace the x with that number.
• Replacing x with that number in the right side of the function will produce the function’s out-

put for that certain input.
• In English, the definition of f is interpreted, "Given a number, f will return two more than the

triple of that number."

Thus, if we want to know the value (or output) of the function at 3:

f (x) = 3x +2

f (3) = 3(3)+2

We evaluate the function at
x = 3

.

f (3) = 9+2 = 11

The value of
f

at 3 is 11.
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See? It’s easy!

Note that f (3) means the value of the dependent variable when x takes on the value of 3. So
we see that the number 11 is the output of the function when we give the number 3 as the input.
We refer to the input as the argument of the function (or the independent variable), and to
the output as the value of the function at the given argument (or the dependent variable). A
good way to think of it is the dependent variable f (x) ’depends’ on the value of the independent
variable x . This is read as "the value of f at three is eleven", or simply " f of three equals eleven".

5.2 Notation

Functions are used so much that there is a special notation for them. The notation is somewhat
ambiguous, so familiarity with it is important in order to understand the intention of an equation
or formula.

Though there are no strict rules for naming a function, it is standard practice to use the letters f ,
g , and h to denote functions, and the variable x to denote an independent variable. y is used for
both dependent and independent variables.

When discussing or working with a function f , it’s important to know not only the function, but
also its independent variable x. Thus, when referring to a function f , you usually do not write
f , but instead f (x). The function is now referred to as " f of x". The name of the function is
adjacent to the independent variable (in parentheses). This is useful for indicating the value of
the function at a particular value of the independent variable. For instance, if

f (x) = 7x +1

,

and if we want to use the value of f for x equal to 2, then we would substitute 2 for x on both
sides of the definition above and write

f (2) = 7(2)+1 = 14+1 = 15

This notation is more informative than leaving off the independent variable and writing simply
’ f ’, but can be ambiguous since the parentheses can be misinterpreted as multiplication.

5.3 Modern understanding of functions

The formal definition of a function states that a function is actually a rule that associates ele-
ments of one set called the domain of the function, with the elements of another set called the
range of the function. For each value we select from the domain of the function, there exists ex-
actly one corresponding element in the range of the function. The definition of the function tells
us which element in the range corresponds to the element we picked from the domain. Classi-
cally, the element picked from the domain is pictured as something that is fed into the function
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and the corresponding element in the range is pictured as the output. Since we "pick" the ele-
ment in the domain whose corresponding element in the range we want to find, we have control
over what element we pick and hence this element is also known as the "independent variable".
The element mapped in the range is beyond our control and is "mapped to" by the function. This
element is hence also known as the "dependent variable", for it depends on which independent
variable we pick. Since the elementary idea of functions is better understood from the classi-
cal viewpoint, we shall use it hereafter. However, it is still important to remember the correct
definition of functions at all times.

To make it simple, for the function f (x), all of the possible x values constitute the domain, and
all of the values f (x) (y on the x-y plane) constitute the range.

5.4 Remarks

The following arise as a direct consequence of the definition of functions:

1. By definition, for each "input" a function returns only one "output", corresponding to that
input. While the same output may correspond to more than one input, one input cannot
correspond to more than one output. This is expressed graphically as the vertical line test:
a line drawn parallel to the axis of the dependent variable (normally vertical) will inter-
sect the graph of a function only once. However, a line drawn parallel to the axis of the
independent variable (normally horizontal) may intersect the graph of a function as many
times as it likes. Equivalently, this has an algebraic (or formula-based) interpretation. We
can always say if a = b, then f (a) = f (b), but if we only know that f (a) = f (b) then we can’t
be sure that a = b.

2. Each function has a set of values, the function’s domain, which it can accept as input.
Perhaps this set is all positive real numbers; perhaps it is the set {pork, mutton, beef}. This
set must be implicitly/explicitly defined in the definition of the function. You cannot feed
the function an element that isn’t in the domain, as the function is not defined for that
input element.

3. Each function has a set of values, the function’s range, which it can output. This may be
the set of real numbers. It may be the set of positive integers or even the set {0,1}. This set,
too, must be implicitly/explicitly defined in the definition of the function.
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Figure 7: This is an example of an expression which fails the vertical line test.

5.5 The vertical line test

The vertical line test, mentioned in the preceding paragraph, is a systematic test to find out if an
equation involving x and y can serve as a function (with x the independent variable and y the
dependent variable). Simply graph the equation and draw a vertical line through each point of
the x-axis. If any vertical line ever touches the graph at more than one point, then the equation
is not a function; if the line always touches at most one point of the graph, then the equation is a
function.
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(There are a lot of useful curves, like circles, that aren’t functions (see picture). Some people call
these graphs with multiple intercepts, like our circle, "multi-valued functions"; they would refer
to our "functions" as "single-valued functions".)

5.6 Important functions

Constant function f (x) = c It disregards the
input and always outputs
the constant c, and is a
polynomial of the zeroth
degree where f(x) = cx0=
c(1) = c. Its graph is a hori-
zontal line.

Linear function f (x) = mx + c Takes an
input, multiplies by m and
adds c. It is a polynomial of
the first degree. Its graph
is a line (slanted, except
m = 0).

Identity function f (x) = x Takes an input
and outputs it unchanged.
A polynomial of the first
degree, f(x) = x1 = x. Special
case of a linear function.

Quadratic function f (x) = ax2 + bx + c A
polynomial of the sec-
ond degree. Its graph is
a parabola, unless a = 0.
(Don’t worry if you don’t
know what this is.)

Polynomial function f (x) = an xn + an−1xn−1 +
·· · + a2x2 + a1x + a0 The
number n is called the de-
gree.

Signum function sgn(x) =

−1 : x < 0
0 : x = 0
1 : x > 0.

Determines the sign of the
argument x.

5.7 Example functions

Some more simple examples of functions have been listed below.
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h(x) =
{

1, if x > 0
−1, if x < 0

Gives 1 if input is positive, -1 if input is negative. Note that the function only accepts neg-
ative and positive numbers, not

0

. Mathematics describes this condition by saying

0

is not in the domain of the function.

g (y) = y2

Takes an input and squares it.

g (z) = z2

Exactly the same function, rewritten with a different independent variable. This is per-
fectly legal and sometimes done to prevent confusion (e.g. when there are already too
many uses of

x

or
y

in the same paragraph.)

f (x) =
{

5x2
, if x > 0

0, if x ≤ 0

Note that we can define a function by a totally arbitrary rule. Such functions are called
piecewise functions.

It is possible to replace the independent variable with any mathematical expression, not just a
number. For instance, if the independent variable is itself a function of another variable, then it
could be replaced with that function. This is called composition, and is discussed later.

5.8 Manipulating functions

Functions can be manipulated in the same ways as variables; they can be added, multiplied,
raised to powers, etc. For instance, let

f (x) = 3x +2

and

g (x) = x2

.
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Then

f + g = ( f + g )(x)

= f (x)+ g (x)

= (3x +2)+ (x2)

= x2 +3x +2
,

f − g = ( f − g )(x)

= f (x)− g (x)

= (3x +2)− (x2)

=−x2 +3x +2
,

f × g = ( f × g )(x)

= f (x)× g (x)

= (3x +2)× (x2)

= 3x3 +2x2

,

f

g
=

(
f

g

)
(x)

= f (x)

g (x)

= 3x +2

x2

= 3

x
+ 2

x2

.

5.8.1 Composition of functions

However, there is one particular way to combine functions which cannot be done with variables.
The value of a function f depends upon the value of another variable x; however, that variable
could be equal to another function g , so its value depends on the value of a third variable. If this
is the case, then the first variable is a function h of the third variable; this function (h) is called
the composition of the other two functions ( f and g ). Composition is denoted by

f ◦ g = ( f ◦ g )(x) = f (g (x))

.
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This can be read as either "f composed with g" or "f of g of x."

For instance, let

f (x) = 3x +2

and

g (x) = x2

.

Then

h(x) = f (g (x))

= f (x2)

= 3(x2)+2

= 3x2 +2
.

Here, h is the composition of f and g and we write h = f ◦ g . Note that composition is not
commutative:

f (g (x)) = 3x2 +2

, and

g ( f (x)) = g (3x +2)

= (3x +2)2

= 9x2 +12x +4

so
f (g (x)) 6= g ( f (x))

.

Composition of functions is very common, mainly because functions themselves are common.
For instance, squaring and sine are both functions:

square(x) = x2

,

sine(x) = sin x

Thus, the expression sin2 x is a composition of functions:

{|
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|- |sin2 x | = square(sin x) |- | | = square(sine(x)). |}

(Note that this is not the same as sine(square(x)) = sin x2.) Since the function sine equals 1/2 if
x =π/6,

square(sine(π/6)) = square(1/2)

.

Since the function square equals 1/4 if x = 1/2,

sin2π/6 = square(sine(π/6)) = square(1/2) = 1/4

.

5.8.2 Transformations

Transformations are a type of function manipulation that are very common. They consist of
multiplying, dividing, adding or subtracting constants to either the input or the output. Multi-
plying by a constant is called dilation and adding a constant is called translation. Here are a few
examples:

f (2×x)

Dilation

f (x +2)

Translation

2× f (x)

Dilation

2+ f (x)

Translation
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Figure 8: Examples of horizontal and vertical translations

Figure 9: Examples of horizontal and vertical dilations

Translations and dilations can be either horizontal or vertical. Examples of both vertical and
horizontal translations can be seen at right. The red graphs represent functions in their ’original’
state, the solid blue graphs have been translated (shifted) horizontally, and the dashed graphs
have been translated vertically.

Dilations are demonstrated in a similar fashion. The function

f (2×x)

has had its input doubled. One way to think about this is that now any change in the input will
be doubled. If I add one to x, I add two to the input of f , so it will now change twice as quickly.
Thus, this is a horizontal dilation by 1

2 because the distance to the y-axis has been halved. A
vertical dilation, such as
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2× f (x)

is slightly more straightforward. In this case, you double the output of the function. The output
represents the distance from the x-axis, so in effect, you have made the graph of the function
’taller’. Here are a few basic examples where a is any positive constant:

Original graph f (x) Rotation about ori-
gin

− f (−x)

Horizontal trans-
lation by a units
left

f (x +a) Horizontal trans-
lation by a units
right

f (x −a)

Horizontal dilation
by a factor of a

f (x × 1
a ) Vertical dilation by

a factor of a
a × f (x)

Vertical translation
by a units down

f (x)−a Vertical translation
by a units up

f (x)+a

Reflection about
x-axis

− f (x) Reflection about
y-axis

f (−x)
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5.9 Domain and Range

5.9.1 Domain

Figure 10: The domain of the function is the interval from -1 to 1

The domain of a function is the set of all points over which it is defined. More simply, it repre-
sents the set of x-values which the function can accept as input. For instance, if

f (x) =
√

1−x2
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then f (x) is only defined for values of x between −1 and 1, because the square root function
is not defined (in real numbers) for negative values. Thus, the domain, in interval notation, is
[−1,1]. In other words,

f (x)is defined for x ∈ [−1,1],or{x : −1 ≤ x ≤ 1}

.

Figure 11: The range of the function is the interval from 0 to 1

5.9.2 Range

The range of a function is the set of all values which it attains (i.e. the y-values). For instance, if:
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f (x) =
√

1−x2

,

then f (x) can only equal values in the interval from 0 to 1. Thus, the range of f is [0,1].

5.9.3 One-to-one Functions

A function f (x) is one-to-one (or less commonly injective) if, for every value of f , there is only
one value of x that corresponds to that value of f . For instance, the function f (x) =

p
1−x2 is not

one-to-one, because both x = 1 and x =−1 result in f (x) = 0. However, the function f (x) = x +2
is one-to-one, because, for every possible value of f (x), there is exactly one corresponding value
of x. Other examples of one-to-one functions are f (x) = x3 + ax, where a ∈ [0,∞). Note that if
you have a one-to-one function and translate or dilate it, it remains one-to-one. (Of course you
can’t multiply x or f by a zero factor).

Horizontal Line Test

If you know what the graph of a function looks like, it is easy to determine whether or not the
function is one-to-one. If every horizontal line intersects the graph in at most one point, then
the function is one-to-one. This is known as the Horizontal Line Test.

Algebraic 1-1 Test

If you don’t know what the graph of the function looks like, it is also easy to determine whether
or not the function is one-to-one. The rule f (a) = f (b) applies.

e.g. Is f (x) = 1−2x
1+x a 1-1 function?

f (a) = f (b)

1−2a

1+a
= 1−2b

1+b

(1+b)(1−2a) = (1+a)(1−2b)
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1−2a +b −2ab = 1−2b +a −2ab

1−2a +b = 1−2b +a

1−2a +3b = 1+a

1+3b = 1+3a

a = b

Therefore by the algebraic 1-1 test, the function f (x) is 1-1

5.9.4 Inverse functions

We call g (x) the inverse function of f (x) if, for all x:

g ( f (x)) = f (g (x)) = x

.

A function f (x) has an inverse function if and only if f (x) is one-to-one. For example, the inverse
of f (x) = x +2 is g (x) = x −2. The function f (x) =

p
1−x2 has no inverse.
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Notation

The inverse function of f is denoted as f −1(x). Thus, f −1(x) is defined as the function that
follows this rule

f ( f −1(x)) = f −1( f (x)) = x:

To determine f −1(x) when given a function f , substitute f −1(x) for x and substitute x for f (x).
Then solve for f −1(x), provided that it is also a function.

Example: Given f (x) = 2x −7, find f −1(x).

Substitute f −1(x) for x and substitute x for f (x). Then solve for f −1(x):

f (x) = 2x −7

x = 2[ f −1(x)]−7

x +7 = 2[ f −1(x)]

x +7

2
= f −1(x)

To check your work, confirm that f −1( f (x)) = x:

f −1( f (x)) =
f −1(2x −7) =
2x−7+7

2 = 2x
2 = x

If f isn’t one-to-one, then, as we said before, it doesn’t have an inverse. Then this method will
fail.

Example: Given f (x) = x2, find f −1(x).

Substitute f −1(x) for x and substitute x for f (x). Then solve for f −1(x):

f (x) = x2

x = ( f −1(x))2

f −1(x) =±px

Since there are two possibilities for f −1(x), it’s not a function. Thus f (x) = x2 doesn’t have an
inverse. Of course, we could also have found this out from the graph by applying the Horizontal
Line Test. It’s useful, though, to have lots of ways to solve a problem, since in a specific case some
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of them might be very difficult while others might be easy. For example, we might only know an
algebraic expression for f (x) but not a graph.

NL:ANALYSE/FUNCTIES1

1 HTTP://NL.WIKIBOOKS.ORG/WIKI/ANALYSE%2FFUNCTIES
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6 Graphing linear functions

Figure 12: Graph of y=2x

It is sometimes difficult to understand the behavior of a function given only its definition; a
visual representation or graph can be very helpful. A graph is a set of points in the Cartesian
plane, where each point (x,y) indicates that f (x) = y . In other words, a graph uses the position
of a point in one direction (the vertical-axis or y-axis) to indicate the value of f for a position of
the point in the other direction (the horizontal-axis or x-axis).

Functions may be graphed by finding the value of f for various x and plotting the points (x, f (x))
in a Cartesian plane. For the functions that you will deal with, the parts of the function between
the points can generally be approximated by drawing a line or curve between the points. Extend-
ing the function beyond the set of points is also possible, but becomes increasingly inaccurate.
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6.1 Example

Plotting points like this is laborious. Fortunately, many functions’ graphs fall into general pat-
terns. For a simple case, consider functions of the form

f (x) = 3x +2

The graph of f is a single line, passing through the point (0,2) with slope 3. Thus, after plotting
the point, a straightedge may be used to draw the graph. This type of function is called linear
and there are a few different ways to present a function of this type.

6.2 Slope-intercept form

When we see a function presented as

y = mx +b

we call this presentation the slope-intercept form. This is because, not surprisingly, this way of
writing a linear function involves the slope, m, and the y-intercept, b.

x+y=7 y-x=7

6.3 Point-slope form

If someone walks up to you and gives you one point and a slope, you can draw one line and only
one line that goes through that point and has that slope. Said differently, a point and a slope
uniquely determine a line. So, if given a point (x0, y0) and a slope m, we present the graph as

y − y0 = m(x −x0).

We call this presentation the point-slope form. The point-slope and slope-intercept form are
essentially the same. In the point-slope form we can use any point the graph passes through.
Where as, in the slope-intercept form, we use the y-intercept, that is the point (0,b).

6.4 Calculating slope

If given two points, (x1, y1) and (x2, y2), we may then compute the slope of the line that passes
through these two points. Remember, the slope is determined as "rise over run." That is, the
slope is the change in y-values divided by the change in x-values. In symbols,
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slope = change in y

change in x
= ∆y

∆x
.

So now the question is, "what’s ∆y and ∆x?" We have that ∆y = y2 − y1 and ∆x = x2 −x1. Thus,

slope = y2 − y1

x2 −x1
.

6.5 Two-point form

Two points also uniquely determine a line. Given points (x1, y1) and (x2, y2), we have the equa-
tion

y − y1 = y2 − y1

x2 −x1
(x −x1).

This presentation is in the two-point form. It is essentially the same as the point-slope form
except we substitute the expression y2−y1

x2−x1
for m.

NL:ANALYSE/FUNCTIES1

6.6 Exercises

6.7 Algebra

6.7.1 Convert to interval notation

1. −4 < x < 2
2. −7/3 ≤ x ≤−1/3
3. −π≤ x <π
4. x ≤ 17/9
5. 5 ≤ x +1 ≤ 6
6. x −1/4 < 1
7. 3 > 3x
8. 0 ≤ 2x +1 < 3
9. 5 < x and x < 6

10. 5 < x or x < 6

1 HTTP://NL.WIKIBOOKS.ORG/WIKI/ANALYSE%2FFUNCTIES
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6.7.2 State the following intervals using inequalities

1. [3,4]
2. [3,4)
3. (3,∞)
4. (−1/3,1/3)
5. (−π,15/16)
6. (−∞,∞)

6.7.3 Which one of the following is a true statement?

Hint: the true statement is often referred to as the triangle inequality. Give examples where the
other two are false.

1. |x + y | = |x|+ |y |
2. |x + y | ≥ |x|+ |y |
3. |x + y | ≤ |x|+ |y |

6.7.4 Evaluate the following expressions

1. 81/3

2. (−8)1/3

3.
(

1
8

)1/3

4. (82/3)(83/2)(80)

5.
((

1
8

)1/3)7

6. 3
√

27
8

7. 45·4−2

43

8.
(p

27
)2/3

9.
p

27
3p9

6.7.5 Simplify the following

1. x3 +3x3

2. x3+3x3

x2

3. (x3 +3x3)3

4. x15+x3

x
5. (2x2)(3x−2)
6. x2 y−3

x3 y2

7.
√

x2 y4

8.
(

8x6

y4

)1/3
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6.7.6 Factor the following expressions

For 1-8, determine what values of x make the expression 0 (i.e. determine the roots).

1. x2 −1
2. x2 +2x +1
3. x2 +7x +12
4. 3x2 −5x −2
5. x2 +5/6x +1/6
6. 4x3 +4x2 +x
7. x4 −1
8. x3 +2x2 −4x −8
9. 4a2 −ab −3b2

10. (c +d)2 −4
11. 4x2 −9y2

6.7.7 Simplify the following

1. x2−1
x+1

2. 3x2+4x+1
x+1

3. 4x2−9
4x2+12x+9

4. x2+y2+2x y
x(x+y)

6.8 Functions

1. Let f (x) = x2.
a) Compute f (0) and f (2).
b) What are the domain and range of f ?
c) Does f have an inverse? If so, find a formula for it.

2. Let f (x) = x +2, g (x) = 1/x.
a) Give formulae for

i. f + g ,
ii. f − g ,

iii. g − f ,
iv. f × g ,
v. f /g ,

vi. g / f ,
vii. f ◦ g and
viii. g ◦ f .

b) Compute f (g (2)) and g ( f (2)).
c) Do f and g have inverses? If so, find formulae for them.

3. Does this graph represent a function?
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Figure 13

4. Consider the following function

f (x) =


−1

9 if x <−1

2 if −1 ≤ x ≤ 0

x +3 if x > 0.

a) What is the domain?
b) What is the range?
c) Where is f continuous?

5. Consider the following function

f (x) =
{

x2 if x > 0

−1 if x ≤ 0.

a) What is the domain?
b) What is the range?
c) Where is f continuous?

6. Consider the following function
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f (x) =
p

2x −3

x −10

a) What is the domain?
b) What is the range?
c) Where is f continuous?

7. Consider the following function

f (x) = x −7

x2 −49

a) What is the domain?
b) What is the range?
c) Where is f continuous?

6.8.1 Decomposition of functions

For each of the following functions, h, find functions f and g such that ( f (g (x)) = h(x)

1. h(x) = x3 +4x +5+
p

x2 +3x +2
2. h(x) = 1

(x+1)2

3. h(x) =
√

1
x2 +3

6.9 Graphing

1. Find the equation of the line that passes through the point (1,-1) and has slope 3.
2. Find the equation of the line that passes through the origin and the point (2,3).

SOLUTIONS2

2 Chapter 62.0.2 on page 407
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7 Limits

7.1 Intuitive Look

A limit looks at what happens to a function when the input approaches a certain value. The
general notation for a limit is as follows:

lim
x→a

f (x)

This is read as "The limit of f of x as x approaches a". We’ll take up later the question of how we
can determine whether a limit exists for f (x) at a and, if so, what it is. For now, we’ll look at it
from an intuitive standpoint.

Let’s say that the function that we’re interested in is f (x) = x2, and that we’re interested in its
limit as x approaches 2. Using the above notation, we can write the limit that we’re interested in
as follows:

lim
x→2

x2

One way to try to evaluate what this limit is would be to choose values near 2, compute f (x) for
each, and see what happens as they get closer to 2. This is implemented as follows:

x 1.7 1.8 1.9 1.95 1.99 1.999
f (x) =

x2
2.89 3.24 3.61 3.8025 3.9601 3.996001

Here we chose numbers smaller than 2, and approached 2 from below. We can also choose num-
bers larger than 2, and approach 2 from above:

x 2.3 2.2 2.1 2.05 2.01 2.001
f (x) =

x2
5.29 4.84 4.41 4.2025 4.0401 4.004001

We can see from the tables that as x grows closer and closer to 2, f (x) seems to get closer and
closer to 4, regardless of whether x approaches 2 from above or from below. For this reason, we
feel reasonably confident that the limit of x2 as x approaches 2 is 4, or, written in limit notation,

lim
x→2

x2 = 4.
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Now let’s look at another example. Suppose we’re interested in the behavior of the function
f (x) = 1

x−2 as x approaches 2. Here’s the limit in limit notation:

lim
x→2

1

x −2

Just as before, we can compute function values as x approaches 2 from below and from above.
Here’s a table, approaching from below:

x 1.7 1.8 1.9 1.95 1.99 1.999
f (x) =
1

x−2

-3.333 -5 -10 -20 -100 -1000

And here from above:

x 2.3 2.2 2.1 2.05 2.01 2.001
f (x) =
1

x−2

3.333 5 10 20 100 1000

In this case, the function doesn’t seem to be approaching any value as x approaches 2. In this
case we would say that the limit doesn’t exist.

Both of these examples may seem trivial, but consider the following function:

f (x) = x2(x −2)

x −2

This function is the same as

f (x) =
{

x2 if x 6= 2
undefined if x = 2

Note that these functions are really completely identical; not just "almost the same," but actually,
in terms of the definition of a function, completely the same; they give exactly the same output
for every input.

In algebra, we would simply say that we can cancel the term (x−2), and then we have the function
f (x) = x2. This, however, would be a bit dishonest; the function that we have now is not really the
same as the one we started with, because it is defined when x = 2, and our original function was
specifically not defined when x = 2. In algebra we were willing to ignore this difficulty because
we had no better way of dealing with this type of function. Now, however, in calculus, we can
introduce a better, more correct way of looking at this type of function. What we want is to be
able to say that, although the function doesn’t exist when x = 2, it works almost as though it
does. It may not get there, but it gets really, really close. That is, f (1.99999) = 3.99996. The only
question that we have is: what do we mean by "close"?
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7.2 Informal definition of a limit

As the precise definition of a limit is a bit technical, it is easier to start with an informal definition;
we’ll explain the formal definition later.

We suppose that a function f is defined for x near c (but we do not require that it be defined
when x = c).

Definition: (Informal definition of a limit)
We call L the limit of f (x) as x approaches c if f (x) becomes close to L when x is close (but not
equal) to c.
When this holds we write

lim
x→c

f (x) = L

or

f (x) → L as x → c.

Notice that the definition of a limit is not concerned with the value of f (x) when x = c (which
may exist or may not). All we care about are the values of f (x) when x is close to c, on either the
left or the right (i.e. less or greater).

7.3 Limit rules

Now that we have defined, informally, what a limit is, we will list some rules that are useful for
working with and computing limits. You will be able to prove all these once we formally define
the fundamental concept of the limit of a function.

First, the constant rule states that if f (x) = b (that is, f is constant for all x) then the limit as x
approaches c must be equal to b. In other words

{{Calculus/Def|text= Constant Rule for Limits

If b and c are constants then
lim
x→c

b = b

.}}

Second, the identity rule states that if f (x) = x (that is, f just gives back whatever number you
put in) then the limit of f as x approaches c is equal to c. That is,

{{Calculus/Def|text= Identity Rule for Limits
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If c is a constant then
lim
x→c

x = c

.}}

The next few rules tell us how, given the values of some limits, to compute others.

Operational Identities for Limits

Suppose that limx→c f (x) = L and limx→c g (x) = M and that k is constant. Then
• limx→c k f (x) = k · limx→c f (x) = kL
• limx→c [ f (x)+ g (x)] = limx→c f (x)+ limx→c g (x) = L+M
• limx→c [ f (x)− g (x)] = limx→c f (x)− limx→c g (x) = L−M
• limx→c [ f (x)g (x)] = limx→c f (x) limx→c g (x) = LM

• limx→c
f (x)
g (x) =

limx→c f (x)
limx→c g (x) = L

M provided M 6= 0

Notice that in the last rule we need to require that M is not equal to zero (otherwise we would be
dividing by zero which is an undefined operation).

These rules are known as identities; they are the scalar product, sum, difference, product, and
quotient rules for limits. (A scalar is a constant, and, when you multiply a function by a constant,
we say that you are performing scalar multiplication.)

Using these rules we can deduce another. Namely, using the rule for products many times we get
that

lim
x→c

f (x)n =
(

lim
x→c

f (x)
)n

for a positive integer
n

.

This is called the power rule.

7.3.1 Examples

Example 1

Find the limit limx→2 4x3.

We need to simplify the problem, since we have no rules about this expression by itself. We know
from the identity rule above that limx→2 x = 2. By the power rule, limx→2 x3 = (limx→2 x)3 = 23 =
8. Lastly, by the scalar multiplication rule, we get limx→2 4x3 = 4limx→2 x3 = 4 ·8 = 32.

Example 2

Find the limit limx→2[4x3 +5x +7].

To do this informally, we split up the expression, once again, into its components. As
above,limx→2 4x3 = 32.
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Also limx→2 5x = 5 · limx→2 x = 5 ·2 = 10 and limx→2 7 = 7. Adding these together gives

lim
x→2

4x3 +5x +7 = lim
x→2

4x3 + lim
x→2

5x + lim
x→2

7 = 32+10+7 = 49

.

Example 3

Find the limit limx→2
4x3+5x+7

(x−4)(x+10) .

From the previous example the limit of the numerator is limx→2 4x3+5x+7 = 49. The limit of the
denominator is

lim
x→2

(x −4)(x +10) = lim
x→2

(x −4) · lim
x→2

(x +10) = (2−4) · (2+10) =−24.

As the limit of the denominator is not equal to zero we can divide. This gives

lim
x→2

4x3 +5x +7

(x −4)(x +10)
=−49

24
.

Example 4

Find the limit limx→4
x4−16x+7

4x−5 .

We apply the same process here as we did in the previous set of examples;

lim
x→4

x4 −16x +7

4x −5
= limx→4(x4 −16x +7)

limx→4(4x −5)
= limx→4(x4)− limx→4(16x)+ limx→4(7)

limx→4(4x)− limx→4 5

.

We can evaluate each of these; limx→4(x4) = 256, limx→4(16x) = 64, limx→4(7) = 7, limx→4(4x) =
16 and limx→4(5) = 5. Thus, the answer is 199

11 .

Example 5

Find the limit limx→0
1−cos x

x .

To evaluate this seemingly complex limit, we will need to recall some sine and cosine identities.
We will also have to use two new facts. First, if f (x) is a trigonometric function (that is, one of
sine, cosine, tangent, cotangent, secant or cosecant) and is defined at a, then limx→a f (x) = f (a).
Second, limx→0

sin x
x = 1.

To evaluate the limit, recognize that 1−cos x can be multiplied by 1+cos x to obtain (1−cos2 x)
which, by our trig identities, is sin2 x. So, multiply the top and bottom by 1+ cos x. (This is
allowed because it is identical to multiplying by one.) This is a standard trick for evaluating
limits of fractions; multiply the numerator and the denominator by a carefully chosen expression
which will make the expression simplify somehow. In this case, we should end up with:
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lim
x→0

1−cos x

x
= lim

x→0

(
1−cos x

x
· 1

1

)
= lim

x→0

(
1−cos x

x
· 1+cos x

1+cos x

)
= lim

x→0

(1−cos x) ·1+ (1−cos x) ·cos x

x · (1+cos x)

= lim
x→0

1−cos x +cos x −cos2 x

x · (1+cos x)

= lim
x→0

1−cos2 x

x · (1+cos x)

= lim
x→0

sin2 x

x · (1+cos x)

= lim
x→0

(
sin x

x
· sin x

1+cos x

)

.

Our next step should be to break this up into limx→0
sin x

x · limx→0
sin x

1+cos x by the product rule. As
mentioned above, limx→0

sin x
x = 1.

Next, limx→0
sin x

1+cos x = limx→0 sin x
limx→0(1+cos x) = 0

1+cos0 = 0.

Thus, by multiplying these two results, we obtain 0.

We will now present an amazingly useful result, even though we cannot prove it yet. We can find
the limit at c of any polynomial or rational function, as long as that rational function is defined
at c (so we are not dividing by zero). That is, c must be in the domain of the function.

{{Calculus/Def |title=Limits of Polynomials and Rational functions |text= If f is a polynomial or
rational function that is defined at c then

lim
x→c

f (x) = f (c)

</center>}}

We already learned this for trigonometric functions, so we see that it is easy to find limits of
polynomial, rational or trigonometric functions wherever they are defined. In fact, this is true
even for combinations of these functions; thus, for example, limx→1(sin x2 + 4cos3(3x − 1)) =
sin12 +4cos3(3(1)−1).
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7.3.2 The Squeeze Theorem

Figure 14: Graph showing f being squeezed between g and h

The Squeeze Theorem is very important in calculus, where it is typically used to find the limit of
a function by comparison with two other functions whose limits are known.

It is called the Squeeze Theorem because it refers to a function f whose values are squeezed
between the values of two other functions g and h, both of which have the same limit L. If the
value of f is trapped between the values of the two functions g and h, the values of f must also
approach L.

Expressed more precisely:

Theorem: (Squeeze Theorem)
Suppose that g (x) ≤ f (x) ≤ h(x) holds for all x in some open interval containing a, except possi-
bly at x = a itself. Suppose also that limx→a g (x) = limx→a h(x) = L. Then limx→a f (x) = L also.
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Figure 15: Plot of x*sin(1/x) for -0.5 < x <0.5

Example: Compute limx→0 x sin(1/x). Note that the sine of anything is in the interval [−1,1].
That is, −1 ≤ sin x ≤ 1 for all x. If x is positive, we can multiply these inequalities by x and get
−x ≤ x sin(1/x) ≤ x. If x is negative, we can similarly multiply the inequalities by the positive
number −x and get x ≤ x sin(1/x) ≤ −x. Putting these together, we can see that, for all nonzero
x, −|x| ≤ x sin(1/x) ≤ |x|. But it’s easy to see that limx→0−|x| = limx→0 |x| = 0. So, by the Squeeze
Theorem, limx→0 x sin(1/x) = 0.

7.4 Finding limits

Now, we will discuss how, in practice, to find limits. First, if the function can be built out of ratio-
nal, trigonometric, logarithmic and exponential functions, then if a number c is in the domain
of the function, then the limit at c is simply the value of the function at c.

If c is not in the domain of the function, then in many cases (as with rational functions) the
domain of the function includes all the points near c, but not c itself. An example would be if we
wanted to find limx→0

x
x , where the domain includes all numbers besides 0.

In that case, in order to find limx→c f (x) we want to find a function g (x) similar to f (x), except
with the hole at c filled in. The limits of f and g will be the same, as can be seen from the
definition of a limit. By definition, the limit depends on f (x) only at the points where x is close to
c but not equal to it, so the limit at c does not depend on the value of the function at c. Therefore,
if limx→c g (x) = L, limx→c f (x) = L also. And since the domain of our new function g includes c,
we can now (assuming g is still built out of rational, trigonometric, logarithmic and exponential
functions) just evaluate it at c as before. Thus we have limx→c f (x) = g (c).

In our example, this is easy; canceling the x’s gives g (x) = 1, which equals f (x) = x/x at all points
except 0. Thus, we have limx→0

x
x = limx→0 1 = 1. In general, when computing limits of rational

functions, it’s a good idea to look for common factors in the numerator and denominator.

Lastly, note that the limit might not exist at all. There are a number of ways in which this can
occur:
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Figure 16: f (x) =
p

x2 −16

"Gap": There is a gap (not just a single point) where the function is not defined. As an example,
in

f (x) =
√

x2 −16

lim
x→c

f (x)

does not exist when
−4 ≤ c ≤ 4

. There is no way to "approach" the middle of the graph. Note that the function also
has no limit at the endpoints of the two curves generated (at

c =−4

and
c = 4

). For the limit to exist, the point must be approachable from both the left and the
right. Note also that there is no limit at a totally isolated point on the graph.

"Jump": If the graph suddenly jumps to a different level, there is no limit. For example, let f (x)
be the greatest integer ≤ x. Then, if c is an integer, when x approaches c from the right
f (x) = c, while when x approaches c from the left f (x) = c −1. Thus limx→c f (x) will not
exist.
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Figure 17: A graph of 1/(x2) on the interval [-2,2].

Vertical asymptote: In

f (x) = 1

x2

the graph gets arbitrarily high as it approaches 0, so there is no limit. (In this case we
sometimes say the limit is infinite; see the next section.)
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Figure 18: A graph of sin(1/x) on the interval (0,1/].

Infinite oscillation: These next two can be tricky to visualize. In this one, we mean that a graph
continually rises above and falls below a horizontal line. In fact, it does this infinitely often
as you approach a certain x-value. This often means that there is no limit, as the graph
never approaches a particular value. However, if the height (and depth) of each oscilla-
tion diminishes as the graph approaches the x-value, so that the oscillations get arbitrarily
smaller, then there might actually be a limit.

The use of oscillation naturally calls to mind the trigonometric functions. An exam-
ple of a trigonometric function that does not have a limit as

x

approaches 0 is

f (x) = sin
1

x
.

As
x

gets closer to 0 the function keeps oscillating between

−1

and 1. In fact,
sin(1/x)
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oscillates an infinite number of times on the interval between 0 and any positive
value of

x

. The sine function is equal to zero whenever

x = kπ

, where
k

is a positive integer. Between every two integers

k

,
sin x

goes back and forth between 0 and
−1

or 0 and 1. Hence,
sin(1/x) = 0

for every
x = 1/(kπ)

. In between consecutive pairs of these values,

1/(kπ)

and
1/[(k +1)π]

,
sin(1/x)

goes back and forth from 0, to either

−1

or 1 and back to 0. We may also observe that there are an infinite number of such
pairs, and they are all between 0 and

1/π

. There are a finite number of such pairs between any positive value of

x

and
1/π

, so there must be infinitely many between any positive value of

x
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and 0. From our reasoning we may conclude that, as

x

approaches 0 from the right, the function

sin(1/x)

does not approach any specific value. Thus,

lim
x→0

sin(1/x)

does not exist.

7.5 Using limit notation to describe asymptotes

Now consider the function

g (x) = 1

x2 .

What is the limit as x approaches zero? The value of g (0) does not exist; it is not defined.

g (0) = 1

02

Notice, also, that we can make g (x) as large as we like, by choosing a small x, as long as x 6= 0. For
example, to make g (x) equal to one trillion, we choose x to be 10−6. Thus, limx→0 1/x2 does not
exist.

However, we do know something about what happens to g (x) when x gets close to 0 without
reaching it. We want to say we can make g (x) arbitrarily large (as large as we like) by taking x to
be sufficiently close to zero, but not equal to zero. We express this symbolically as follows:

lim
x→0

g (x) = lim
x→0

1

x2 =∞

Note that the limit does not exist at 0; for a limit, being ∞ is a special kind of not existing. In
general, we make the following definition.
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Definition: Informal definition of a limit being ±∞
We say the limit of f (x) as x approaches c is infinity if f (x) becomes very big (as big as we like)
when x is close (but not equal) to c.
In this case we write

lim
x→c

f (x) =∞

or

f (x) →∞ as x → c

.

Similarly, we say the limit of f (x) as x approaches c is negative infinity if f (x) becomes very
negative when x is close (but not equal) to c.
In this case we write

lim
x→c

f (x) =−∞

or

f (x) →−∞ as x → c

.

An example of the second half of the definition would be that limx→0−1/x2 =−∞.

7.6 Key application of limits

To see the power of the concept of the limit, let’s consider a moving car. Suppose we have a car
whose position is linear with respect to time (that is, a graph plotting the position with respect
to time will show a straight line). We want to find the velocity. This is easy to do from algebra; we
just take the slope, and that’s our velocity.

But unfortunately, things in the real world don’t always travel in nice straight lines. Cars speed
up, slow down, and generally behave in ways that make it difficult to calculate their velocities.

Now what we really want to do is to find the velocity at a given moment (the instantaneous ve-
locity). The trouble is that in order to find the velocity we need two points, while at any given
time, we only have one point. We can, of course, always find the average speed of the car, given
two points in time, but we want to find the speed of the car at one precise moment.

This is the basic trick of differential calculus, the first of the two main subjects of this book. We
take the average speed at two moments in time, and then make those two moments in time
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closer and closer together. We then see what the limit of the slope is as these two moments in
time are closer and closer, and say that this limit is the slope at a single instant.

We will study this process in much greater depth later in the book. First, however, we will need
to study limits more carefully.

7.7 External links

• ONLINE INTERACTIVE EXERCISES ON LIMITS1

• TUTORIALS FOR THE CALCULUS PHOBE2

NL:ANALYSE/LIMIETEN3

1 HTTP://WIMS.UNICE.FR/WIMS/WIMS.CGI?MODULE=HOME&SEARCH_KEYWORDS=LIMIT&SEARCH_
CATEGORY=X

2 HTTP://WWW.CALCULUS-HELP.COM/FUNSTUFF/PHOBE.HTML
3 HTTP://NL.WIKIBOOKS.ORG/WIKI/ANALYSE%2FLIMIETEN

65

http://wims.unice.fr/wims/wims.cgi?module=home&search_keywords=limit&search_category=X
http://wims.unice.fr/wims/wims.cgi?module=home&search_keywords=limit&search_category=X
http://www.calculus-help.com/funstuff/phobe.html
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8 Finite Limits

8.1 Informal Finite Limits

Now, we will try to more carefully restate the ideas of the last chapter. We said then that the
equation limx→2 f (x) = 4 meant that, when x gets close to 2, f (x) gets close to 4. What exactly
does this mean? How close is "close"? The first way we can approach the problem is to say that,
at x = 1.99, f (x) = 3.9601, which is pretty close to 4.

Sometimes however, the function might do something completely different. For instance, sup-
pose f (x) = x4 −2x2 −3.77, so f (1.99) = 3.99219201. Next, if you take a value even closer to 2,
f (1.999) = 4.20602, in this case you actually move further from 4. As you can see here, the prob-
lem with some functions is that, no matter how close we get, we can never be sure what they
do.

The solution is to find out what happens arbitrarily close to the point. In particular, we want to
say that, no matter how close we want the function to get to 4, if we make x close enough to 2
then it will get there. In this case, we will write

lim
x→2

f (x) = 4

and say "The limit of f (x), as x approaches 2, equals 4" or "As x approaches 2, f (x) approaches
4." In general:

Definition: (New definition of a limit)
We call L the limit of f (x) as x approaches c if f (x) becomes arbitrarily close to L whenever x
is sufficiently close (and not equal) to c.
When this holds we write

lim
x→c

f (x) = L

or

f (x) → L as x → c.
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8.2 One-Sided Limits

Sometimes, it is necessary to consider what happens when we approach an x value from one
particular direction. To account for this, we have one-sided limits. In a left-handed limit, x
approaches a from the left-hand side. Likewise, in a right-handed limit, x approaches a from
the right-hand side.

For example, if we consider limx→2
p

x −2, there is a problem because there is no way for x to
approach 2 from the left hand side (the function is undefined here). But, if x approaches 2 only
from the right-hand side, we want to say that

p
x −2 approaches 0.

Definition: (Informal definition of a one-sided limit)
We call L the limit of f (x) as x approaches c from the right if f (x) becomes arbitrarily close to
L whenever x is sufficiently close to and greater than c.
When this holds we write

lim
x→c+ f (x) = L.

Similarly, we call L the limit of f (x) as x approaches c from the left if f (x) becomes arbitrarily
close to L whenever x is sufficiently close to and less than c.
When this holds we write

lim
x→c− f (x) = L.

In our example, the left-handed limit limx→2−
p

x −2 does not exist.

The right-handed limit, however, limx→2+
p

x −2 = 0.

It is a fact that limx→c f (x) exists if and only if limx→c+ f (x) and limx→c− f (x) exist and are equal
to each other. In this case, limx→c f (x) will be equal to the same number.

In our example, one limit does not even exist. Thus limx→2
p

x −2 does not exist either.
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9.1 Informal infinite limits

Another kind of limit involves looking at what happens to f (x) as x gets very big. For example,
consider the function f (x) = 1/x. As x gets very big, 1/x gets very small. In fact, 1/x gets closer
and closer to zero the bigger x gets. Without limits it is very difficult to talk about this fact, be-
cause x can keep getting bigger and bigger and 1/x never actually gets to zero; but the language
of limits exists precisely to let us talk about the behavior of a function as it approaches something
- without caring about the fact that it will never get there. In this case, however, we have the same
problem as before: how big does x have to be to be sure that f (x) is really going towards 0?

In this case, we want to say that, however close we want f (x) to get to 0, for x big enough f (x) is
guaranteed to get that close. So we have yet another definition.

Definition: (Definition of a limit at infinity)
We call L the limit of f (x) as x approaches infinity if f (x) becomes arbitrarily close to L when-
ever x is sufficiently large.
When this holds we write

lim
x→∞ f (x) = L

or

f (x) → L as x →∞.

Similarly, we call L the limit of f (x) as x approaches negative infinity if f (x) becomes arbitrarily
close to L whenever x is sufficiently negative.
When this holds we write

lim
x→−∞ f (x) = L

or

f (x) → L as x →−∞.

So, in this case, we write:
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lim
x→

1

x
= 0

and say "The limit, as x approaches infinity, equals 0," or "as x approaches infinity, the function
approaches 0".

We can also write:

lim
x→−

1

x
= 0,

because making x very negative also forces 1/x to be close to 0.

Notice, however, that INFINITY IS NOT A NUMBER1; it’s just shorthand for saying "no matter how
big." Thus, this is not the same as the regular limits we learned about in the last two chapters.

9.2 Limits at infinity of rational functions

One special case that comes up frequently is when we want to find the limit at ∞ (or −∞) of
a rational function. A rational function is just one made by dividing two polynomials by each
other. For example, f (x) = (x3 + x −6)/(x2 −4x +3) is a rational function. Also, any polynomial
is a rational function, since 1 is just a (very simple) polynomial, so we can write the function
f (x) = x2 −3 as f (x) = (x2 −3)/1, the quotient of two polynomials.

There is a simple rule for determining a limit of a rational function as the variable approaches
infinity. Look for the term with the highest exponent in the numerator. Look for the same in the
denominator. This rule is based on that information.

• If the exponent of the highest term in the numerator matches the exponent of the highest term
in the denominator, the limit (at both ∞ and −∞) is the ratio of the coefficients of the highest
terms.

• If the numerator has the highest term, then the fraction is called "top-heavy" and neither limit
(at ∞ or at −∞) exists.

• If the denominator has the highest term, then the fraction is called "bottom-heavy" and the
limit (at both ∞ and −∞) is zero.

Note that, if the numerator or denominator is a constant (including 1, as above), then this is the
same as x0. Also, a straight power of x, like x3, has coefficient 1, since it is the same as 1x3.

9.2.1 Example

Find limx→ x−5
x−3 .

The function f (x) = (x − 5)/(x − 3) is the quotient of two polynomials, x − 5 and x − 3. By our
rule we look for the term with highest exponent in the numerator; it’s x. The term with highest

1 HTTP://EN.WIKIBOOKS.ORG/WIKI/%2FINFINITY%20IS%20NOT%20A%20NUMBER
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exponent in the denominator is also x. So, the limit is the ratio of their coefficients. Since x = 1x,
both coefficients are 1, so limx→∞(x −5)/(x −3) = 1/1 = 1.
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10 Continuity

10.1 Defining Continuity

We are now ready to define the concept of a function being continuous. The idea is that we want
to say that a function is continuous if you can draw its graph without taking your pencil off the
page. But sometimes this will be true for some parts of a graph but not for others. Therefore,
we want to start by defining what it means for a function to be continuous at one point. The
definition is simple, now that we have the concept of limits:

Definition: (continuity at a point)
If f (x) is defined on an open interval containing c, then f (x) is said to be continuous at c if and
only if limx→c f (x) = f (c).

Note that for f to be continuous at c, the definition in effect requires three conditions:

1. that f is defined at c, so f (c) exists,
2. the limit as x approaches c exists, and
3. the limit and f (c) are equal.

If any of these do not hold then f is not continuous at c.

The idea of the definition is that the point of the graph corresponding to c will be close to the
points of the graph corresponding to nearby x-values. Now we can define what it means for a
function to be continuous in general, not just at one point.

Definition: (continuity)
A function is said to be continuous on (a,b) if it is continuous at every point of the interval (a,b).

We often use the phrase "the function is continuous" to mean that the function is continu-
ous at every real number. This would be the same as saying the function was continuous on
(&minus;∞, ∞), but it is a bit more convenient to simply say "continuous".

Note that, by what we already know, the limit of a rational, exponential, trigonometric or loga-
rithmic function at a point is just its value at that point, so long as it’s defined there. So, all such
functions are continuous wherever they’re defined. (Of course, they can’t be continuous where
they’re not defined!)
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10.2 Discontinuities

A discontinuity is a point where a function is not continuous. There are lots of possible ways this
could happen, of course. Here we’ll just discuss two simple ways.

10.2.1 Removable Discontinuities

The function f (x) = x2−9
x−3 is not continuous at x = 3. It is discontinuous at that point because the

fraction then becomes 0
0 , which is undefined. Therefore the function fails the first of our three

conditions for continuity at the point 3; 3 is just not in its domain.

However, we say that this discontinuity is removable. This is because, if we modify the function
at that point, we can eliminate the discontinuity and make the function continuous. To see how
to make the function f (x) continuous, we have to simplify f (x), getting f (x) = x2−9

x−3 = (x+3)(x−3)
(x−3) =

x+3
1 · x−3

x−3 . We can define a new function g (x) where g (x) = x+3. Note that the function g (x) is not
the same as the original function f (x), because g (x) is defined at x = 3, while f (x) is not. Thus,
g (x) is continuous at x = 3, since limx→3(x +3) = 6 = g (3). However, whenever x 6= 3, f (x) = g (x);
all we did to f to get g was to make it defined at x = 3.

In fact, this kind of simplification is often possible with a discontinuity in a rational function.
We can divide the numerator and the denominator by a common factor (in our example x −3)
to get a function which is the same except where that common factor was 0 (in our example at
x = 3). This new function will be identical to the old except for being defined at new points where
previously we had division by 0.

Unfortunately this is not possible in every case. For example, the function f (x) = x−3
x2−6x+9 has

a common factor of x −3 in both the numerator and denominator, but when you simplify you
are left with g (x) = 1

x−3 . Which is still not defined at x = 3. In this case the domain of f (x) and
g (x) are the same, and they are equal everywhere they are defined, so they are in fact the same
function. The reason that g (x) differed from f (x) in the first example was because we could take
it to have a larger domain and not simply that the formulas defining f (x) and g (x) were different.
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10.2.2 Jump Discontinuities

Figure 19: Illustration of jump discontinuity

Unfortunately, not all discontinuities can be removed from a function. Consider this function:

k(x) =
{

1, if x > 0
−1, if x ≤ 0

Since limx→0 k(x) does not exist, there is no way to redefine k at one point so that it will be
continuous at 0. These sorts of discontinuities are called nonremovable discontinuities.

Note, however, that both one-sided limits exist; limx→0− k(x) = −1 and limx→0+ k(x) = 1. The
problem is that they are not equal, so the graph "jumps" from one side of 0 to the other. In such
a case, we say the function has a jump discontinuity. (Note that a jump discontinuity is a kind of
nonremovable discontinuity.)

10.3 One-Sided Continuity

Just as a function can have a one-sided limit, a function can be continuous from a particular
side. For a function to be continuous at a point from a given side, we need the following three
conditions:
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1. the function is defined at the point,
2. the function has a limit from that side at that point and
3. the one-sided limit equals the value of the function at the point.

A function will be continuous at a point if and only if it is continuous from both sides at that
point. Now we can define what it means for a function to be continuous on a closed interval.

Definition: (continuity on a closed interval)
A function is said to be continuous on [a,b] if and only if

1. it is continuous on (a,b),
2. it is continuous from the right at a and
3. it is continuous from the left at b.

Notice that, if a function is continuous, then it is continuous on every closed interval contained
in its domain.

10.4 Intermediate Value Theorem

The definition of continuity we’ve given might not seem to have much to do with the intuitive
notion we started with of being able to draw the graph without lifting one’s pencil. Fortunately,
there is a connection, given by the so-called intermediate value theorem, which says, informally,
that if a function is continuous then its graph can be drawn without ever picking up one’s pencil.
More precisely:

Intermediate Value Theorem
If a function f is continuous on a closed interval [a,b], then for every value k between f (a) and
f (b) there is a value c between a and b such that f (c) = k.
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10.4.1 Application: bisection method

Figure 20: A few steps of the bisection method applied over the starting range [a1;b1]. The
bigger red dot is the root of the function.

The bisection method is the simplest and most reliable algorithm to find zeros of a continuous
function.

Suppose we want to solve the equation f (x) = 0. Given two points a and b such that f (a) and
f (b) have opposite signs, the intermediate value theorem tells us that f must have at least one
root between a and b as long as f is continuous on the interval [a,b]. If we know f is continuous
in general (say, because it’s made out of rational, trigonometric, exponential and logarithmic
functions), then this will work so long as f is defined at all points between a and b. So, let’s
divide the interval [a,b] in two by computing c = (a +b)/2. There are now three possibilities:

1. f (c) = 0,
2. f (a) and f (c) have opposite signs, or
3. f (c) and f (b) have opposite signs.

In the first case, we’re done. In the second and third cases, we can repeat the process on the sub-
interval where the sign change occurs. In this way we home in to a small sub-interval containing
the zero. The midpoint of that small sub-interval is usually taken as a good approximation to the
zero.
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Note that, unlike the methods you may have learned in algebra, this works for any continuous
function that you (or your calculator) know how to compute.
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11 Formal Definition of the Limit

In preliminary calculus, the concept of a limit is probably the most difficult one to grasp (if noth-
ing else, it took some of the most brilliant mathematicians 150 years to arrive at it); it is also the
most important and most useful.

The intuitive definition of a limit is inadequate to prove anything rigorously about it. The prob-
lem lies in the vague term "arbitrarily close". We discussed earlier that the meaning of this term
is that the closer x gets to the specified value, the closer the function must get to the limit, so that
however close we want the function to the limit, we can accomplish this by making x sufficiently
close to our value. We can express this requirement technically as follows:

Definition: (Formal definition of a limit)
Let f (x) be a function defined on an open interval D that contains c, except possibly at x = c. Let
L be a number. Then we say that

lim
x→c

f (x) = L

if, for every ε> 0, there exists a δ> 0 such that for all x ∈ D with

0 < |x − c| < δ,

we have

∣∣ f (x)−L
∣∣< ε

.

To further explain, earlier we said that "however close we want the function to the limit, we can
find a corresponding x close to our value." Using our new notation of epsilon (ε) and delta (δ),
we mean that if we want to make f (x) within ε of L, the limit, then we know that making x within
δ of c puts it there.

Again, since this is tricky, let’s resume our example from before: f (x) = x2, at x = 2. To start, let’s
say we want f (x) to be within .01 of the limit. We know by now that the limit should be 4, so we
say: for ε= .01, there is some δ so that as long as 0 < |x − c| < δ, then

∣∣ f (x)−L
∣∣< ε.

To show this, we can pick any δ that is bigger than 0, so long as it works. For example, you might
pick .00000000000001, because you are absolutely sure that if x is within .00000000000001 of 2,
then f (x) will be within .01 of 4. This δ works for ε = .01. But we can’t just pick a specific value
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for ε, like .01, because we said in our definition "for every ε> 0." This means that we need to be
able to show an infinite number of δs, one for each ε. We can’t list an infinite number of δs!

Of course, we know of a very good way to do this; we simply create a function, so that for every ε,

it can give us a δ. In this case, one definition of δ that works is δ(ε) =
{

2
p

2−2, if ε≥ 4p
(ε+4)−2, if ε< 4

(see

example 5 in CHOOSING DELTA1 for an explanation of how this delta was chosen)

So, in general, how do you show that f (x) tends to L as x tends to c? Well imagine somebody gave
you a small number ε (e.g., say ε= 0.03). Then you have to find a δ> 0 and show that whenever
0 < |x − c| < δ we have | f (x)−L| < 0.03. Now if that person gave you a smaller ε (say ε = 0.002)
then you would have to find another δ, but this time with 0.03 replaced by 0.002. If you can do
this for any choice of ε then you have shown that f (x) tends to L as x tends to c. Of course, the
way you would do this in general would be to create a function giving you a δ for every ε, just as
in the example above.

1 Chapter 61.0.1 on page 403
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11.1 Formal Definition of the Limit at Infinity

Definition: (Limit of a function at infinity)
We call L the limit of f (x) as x approaches ∞ if for every number ε> 0 there exists a δ such that
whenever x > δ we have

∣∣ f (x)−L
∣∣< ε

When this holds we write

lim
x→∞ f (x) = L

or

f (x) → L

as
x →∞.

Similarly, we call L the limit of f (x) as x approaches −∞ if for every number ε> 0, there exists a
number δ such that whenever x < δ we have

∣∣ f (x)−L
∣∣< ε

When this holds we write

lim
x→−∞ f (x) = L

or

f (x) → L

as
x →−∞.

Notice the difference in these two definitions. For the limit of f (x) as x approaches ∞ we are
interested in those x such that x > δ. For the limit of f (x) as x approaches −∞ we are interested
in those x such that x < δ.

11.2 Examples

Here are some examples of the formal definition.
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Example 1

We know from earlier in the chapter that

lim
x→8

x

4
= 2

.

What is δ when ε= 0.01 for this limit?

We start with the desired conclusion and substitute the given values for f (x) and ε:

∣∣∣ x

4
−2

∣∣∣< 0.01

.

Then we solve the inequality for x:

7.96 < x < 8.04

This is the same as saying

−0.04 < x −8 < 0.04

.

(We want the thing in the middle of the inequality to be x −8 because that’s where we’re taking
the limit.) We normally choose the smaller of |−0.04| and 0.04 for δ, so δ= 0.04, but any smaller
number will also work.

Example 2

What is the limit of f (x) = x +7 as x approaches 4?

There are two steps to answering such a question; first we must determine the answer — this is
where intuition and guessing is useful, as well as the informal definition of a limit — and then
we must prove that the answer is right.

In this case, 11 is the limit because we know f (x) = x +7 is a continuous function whose domain
is all real numbers. Thus, we can find the limit by just substituting 4 in for x, so the answer is
4+7 = 11.

We’re not done, though, because we never proved any of the limit laws rigorously; we just stated
them. In fact, we couldn’t have proved them, because we didn’t have the formal definition of
the limit yet, Therefore, in order to be sure that 11 is the right answer, we need to prove that no
matter what value of ε is given to us, we can find a value of δ such that

∣∣ f (x)−11
∣∣< ε

whenever
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|x −4| < δ.

For this particular problem, letting δ = ε works (see CHOOSING DELTA2 for help in determining
the value of δ to use in other problems). Now, we have to prove

∣∣ f (x)−11
∣∣< ε

given that

|x −4| < δ= ε
.

Since |x −4| < ε, we know

∣∣ f (x)−11
∣∣= |x +7−11| = |x −4| < ε

which is what we wished to prove.

Example 3

What is the limit of f (x) = x2 as x approaches 4?

As before, we use what we learned earlier in this chapter to guess that the limit is 42 = 16. Also as
before, we pull out of thin air that

δ=p
ε+16−4

.

Note that, since ε is always positive, so is δ, as required. Now, we have to prove

∣∣x2 −16
∣∣< ε

given that

|x −4| < δ=p
ε+16−4

.

We know that

|x +4| = |(x −4)+8| ≤ |x −4|+8 < δ+8

2 Chapter 61.0.1 on page 403
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(because of the triangle inequality), so

∣∣x2 −16
∣∣ = |x −4| · |x +4|

< δ · (δ+8)

< (
p

16+ε−4) · (
p

16+ε+4)

< (
p

16+ε)2 −42

= ε+16−16

< ε.

Example 4

Show that the limit of sin(1/x) as x approaches 0 does not exist.

We will proceed by contradiction. Suppose the limit exists; call it L. For simplicity, we’ll assume
that L 6= 1; the case for L = 1 is similar. Choose ε= |1−L|. Then if the limit were L there would be
some δ > 0 such that |sin(1/x)−L| < ε = |1−L| for every x with 0 < |x| < δ. But, for every δ > 0,
there exists some (possibly very large) n such that 0 < x0 = 1

π/2+2πn < δ, but |sin(1/x0)−L| = |1−L|,
a contradiction.

Example 5

What is the limit of x sin(1/x) as x approaches 0?

By the Squeeze Theorem, we know the answer should be 0. To prove this, we let δ= ε. Then for
all x, if 0 < |x| < δ, then |x sin(1/x)−0| ≤ |x| < ε as required.

Example 6

Suppose that limx→a f (x) = L and limx→a g (x) = M . What is limx→a( f (x)+ g (x))?

Of course, we know the answer should be L + M , but now we can prove this rigorously. Given
some ε, we know there’s a δ1 such that, for any x with 0 < |x −a| < δ1,

∣∣ f (x)−L
∣∣< ε/2 (since the

definition of limit says "for any ε", so it must be true for ε/2 as well). Similarly, there’s a δ2 such
that, for any x with 0 < |x −a| < δ2,

∣∣g (x)−M
∣∣ < ε/2. We can set δ to be the lesser of δ1 and δ2.

Then, for any x with 0 < |x −a| < δ,
∣∣( f (x)+ g (x))− (L+M)

∣∣≤ ∣∣ f (x)−L
∣∣+∣∣g (x)−M

∣∣< ε/2+ε/2 =
ε, as required.

If you like, you can prove the other limit rules too using the new definition. Mathematicians
have already done this, which is how we know the rules work. Therefore, when computing a
limit from now on, we can go back to just using the rules and still be confident that our limit is
correct according to the rigorous definition.
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11.3 Formal Definition of a Limit Being Infinity

Definition: (Formal definition of a limit being infinity)
Let f (x) be a function defined on an open interval D that contains c, except possibly at x = c.
Then we say that

lim
x→c

f (x) =∞

if, for every ε, there exists a δ> 0 such that for all x ∈ D with

0 < |x − c| < δ,

we have

f (x) > ε
.

When this holds we write

lim
x→c

f (x) =∞

or

f (x) →∞
as

x → c

.

Similarly, we say that

lim
x→c

f (x) =−∞

if, for every ε, there exists a δ> 0 such that for all x ∈ D with

0 < |x − c| < δ,

we have

f (x) < ε
.

When this holds we write

lim
x→c

f (x) =−∞

or

f (x) →−∞
as

x → c

.
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11.4 Exercises

11.5 Limits with Graphs

Given the following graph, evaluate the succeeding limits

11.6 Basic Limit Exercises

1. limx→2(4x2 −3x +1)
2. limx→5(x2)

SOLUTIONS3

11.7 One Sided Limits

Evaluate the following limits or state that the limit does not exist.

1. limx→0− x3+x2

x3+2x2

2. limx→7− |x2 +x|−x
3. limx→−1−

p
1−x2

4. limx→−1+
p

1−x2

11.8 Two Sided Limits

Evaluate the following limits or state that the limit does not exist.

1. limx→−1
1

x−1
2. limx→4

1
x−4

3. limx→2
1

x−2

4. limx→−3
x2−9
x+3

5. limx→3
x2−9
x−3

6. limx→−1
x2+2x+1

x+1

7. limx→−1
x3+1
x+1

8. limx→4
x2+5x−36

x2−16
9. limx→25

x−25p
x−5

10. limx→0
|x|
x

11. limx→2
1

(x−2)2

12. limx→3

p
x2+16
x−3

13. limx→−2
3x2−8x−3

2x2−18

14. limx→2
x2+2x+1
x2−2x+1

3 Chapter 62.2 on page 408
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15. limx→3
x+3
x2−9

16. limx→−1
x+1

x2+x
17. limx→1

1
x2+1

18. limx→1 x3 +5x − 1
2−x

19. limx→1
x2−1

x2+2x−3
20. limx→1

5x
x2+2x−3

SOLUTIONS4

11.9 Limits to Infinity

Evaluate the following limits or state that the limit does not exist.

1. limx→∞ −x+π
x2+3x+2

2. limx→−∞ x2+2x+1
3x2+1

3. limx→−∞ 3x2+x
2x2−15

4. limx→∞ 2x2−32
x3−64

5. limx→∞ 3x2+4x
x4+2

6. limx→−∞ 3x2+2x+3
2x2+3

7. limx→∞ x2+2
x3−2

11.10 Limits of Piece Functions

Evaluate the following limits or state that the limit does not exist.

1. Consider the function

f (x) =
{

(x −2)2 if x < 2

x −3 if x ≥ 2.

a) limx→2− f (x)
b) limx→2+ f (x)
c) limx→2 f (x)

2. Consider the function

f (x) =


−2x +1 if x ≤ 0

x +1 if 0 < x < 4

x2 +2 if x ≥ 4.

a) limx→4+ f (x)
b) limx→4− f (x)

4 HTTP://EN.WIKIBOOKS.ORG/WIKI/CALCULUS%2FLIMITS%2FSOLUTIONS%23HARDER%20LIMIT%
20EXERCISES
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Limits using L’Hôpital’s rule

c) limx→0+ f (x)
d) limx→0− f (x)
e) limx→0 f (x)
f) limx→1 f (x)

3. Consider the function

f (x) =


2x −3 if x < 2

8 if x = 2

−x +3 if x > 2.

a) limx→0 f (x)
b) limx→2− f (x)
c) limx→2+ f (x)
d) limx→2 f (x)

11.11 Limits using L’Hôpital’s rule

1. limx→0
x+tan x

sin x
2. limx→π

x−π
sin x

3. limx→0
sin3x
sin4x

4. limx→∞ x5

e5x

5. limx→0
tan x−x
sin x−x

SOLUTIONS5

5 Chapter 62.5 on page 409
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12 Differentiation

12.1 What is differentiation?

Differentiation is an operation that allows us to find a function that outputs the rate of change
of one variable with respect to another variable.

Informally, we may suppose that we’re tracking the position of a car on a two-lane road with
no passing lanes. Assuming the car never pulls off the road, we can abstractly study the car’s
position by assigning it a variable, x. Since the car’s position changes as the time changes, we
say that x is dependent on time, or x = x(t ). This tells where the car is at each specific time.
Differentiation gives us a function d x/d t which represents the car’s speed, that is the rate of
change of its position with respect to time.

Equivalently, differentiation gives us the slope at any point of the graph of a non-linear function.
For a linear function, of form f (x) = ax + b, a is the slope. For non-linear functions, such as
f (x) = 3x2, the slope can depend on x; differentiation gives us a function which represents this
slope.

12.2 The Definition of Slope

Historically, the primary motivation for the study of differentiation was the tangent line prob-
lem: for a given curve, find the slope of the straight line that is tangent to the curve at a given
point. The word tangent comes from the Latin word tangens, which means touching. Thus, to
solve the tangent line problem, we need to find the slope of a line that is "touching" a given curve
at a given point, or, in modern language, that has the same slope. But what exactly do we mean
by "slope" for a curve?

The solution is obvious in some cases: for example, a line y = mx+c is its own tangent; the slope
at any point is m. For the parabola y = x2, the slope at the point (0,0) is 0; the tangent line is
horizontal.

But how can you find the slope of, say, y = sin x + x2 at x = 1.5? This is in general a nontrivial
question, but first we will deal carefully with the slope of lines.
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12.2.1 Of a Line

Figure 21: Three lines with different slopes

The slope of a line, also called the gradient of the line, is a measure of its inclination. A line that
is horizontal has slope 0, a line from the bottom left to the top right has a positive slope and a
line from the top left to the bottom right has a negative slope.

The slope can be defined in two (equivalent) ways. The first way is to express it as how much the
line climbs for a given motion horizontally. We denote a change in a quantity using the symbol∆
(pronounced "delta"). Thus, a change in x is written as∆x. We can therefore write this definition
of slope as:

Slope = ∆y

∆x

An example may make this definition clearer. If we have two points on a line, P
(
x1, y1

)
and

Q
(
x2, y2

)
, the change in x from P to Q is given by:

∆x = x2 −x1
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Likewise, the change in y from P to Q is given by:

∆y = y2 − y1

This leads to the very important result below.

The slope of the line between the points (x1, y1) and (x2, y2) is

∆y

∆x
= y2 − y1

x2 −x1

.

Alternatively, we can define slope trigonometrically, using the tangent function:

Slope = tan(α) ,

where α is the angle from the line to the rightward-pointing horizontal (measured clockwise).
If you recall that the tangent of an angle in a right triangle is defined as the length of the side
opposite the angle over the length of the leg adjacent to the angle, you should be able to spot the
equivalence here.

12.2.2 Of a Graph of a Function

The graphs of most functions we are interested in are not straight lines (although they can be)
but rather curves. We cannot define the slope of a curve in the same way as we can for a line. In
order for us to understand how to find the slope of a curve at a point, we will first have to cover
the idea of tangency. Intuitively, a tangent is a line which just touches a curve at a point, such
that the angle between them at that point is zero. Consider the following four curves and lines:

(i) (ii)

Figure 22 Figure 23

(iii) (iv)
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Figure 24 Figure 25

<ol style="list-style-type:lower-roman">

The line L crosses, but is not tangent to C at P.
The line L crosses, and is tangent to C at P.
The line L crosses C at two points, but is tangent to C only at P.
There are many lines that cross C at P, but none are tangent. In fact, this curve has no tangent

at P.

</ol>

A secant is a line drawn through two points on a curve. We can construct a definition of a tangent
as the limit of a secant of the curve taken as the separation between the points tends to zero.
Consider the diagram below.
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Figure 26

As the distance h tends to zero, the secant line becomes the tangent at the point x0. The two
points we draw our line through are:

P
(
x0, f (x0)

)
and

Q
(
x0 +h, f (x0 +h)

)
As a secant line is simply a line and we know two points on it, we can find its slope, mh , using the
formula from before:

m = y2 − y1

x2 −x1
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(We will refer to the slope as mh because it may, and generally will, depend on h.) Substituting
in the points on the line,

mh = f (x0 +h)− f (x0)

(x0 +h)−x0
.

This simplifies to

mh = f (x0 +h)− f (x0)

h
.

This expression is called the difference quotient. Note that h can be positive or negative — it is
perfectly valid to take a secant through any two points on the curve — but cannot be 0.

The definition of the tangent line we gave was not rigorous, since we’ve only defined limits of
numbers — or, more precisely, of functions that output numbers — not of lines. But we can
define the slope of the tangent line at a point rigorously, by taking the limit of the slopes of the
secant lines from the last paragraph. Having done so, we can then define the tangent line as well.
Note that we cannot simply set h to zero as this would imply division of zero by zero which would
yield an undefined result. Instead we must find the limit1 of the above expression as h tends to
zero:

Definition: (Slope of the graph of a function)
The slope of the graph of f (x) at the point (x0, f (x0)) is

lim
h→0

[
f (x0 +h)− f (x0)

h

]
If this limit does not exist, then we say the slope is undefined.
If the slope is defined, say m, then the tangent line to the graph of f (x) at the point (x0, f (x0)) is
the line with equation

y − f (x0) = m · (x −x0)

This last equation is just the point-slope form for the line through (x0, f (x0)) with slope m.

12.2.3 Exercises

1. Find the slope of the tangent to the curve y = x2 at (1,1).

Answer: The definition of the slope of f at x0 is limh→0

[
f (x0+h)− f (x0)

h

]
Substituting in f (x) = x2 and x0 = 1 gives:

1 Chapter 1.1 on page 1
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lim
h→0

[
(1+h)2 −1

h

]
= lim

h→0

[
h2 +2h

h

]
= lim

h→0

[
h(h +2)

h

]
= lim

h→0
h +2

= 2

12.3 The Rate of Change of a Function at a Point

Consider the formula for average velocity in the x-direction, ∆x
∆t , where∆x is the change in x over

the time interval ∆t . This formula gives the average velocity over a period of time, but suppose
we want to define the instantaneous velocity. To this end we look at the change in position as the
change in time approaches 0. Mathematically this is written as: lim∆t→0

∆x
∆t , which we abbrevi-

ate by the symbol d x
d t . (The idea of this notation is that the letter d denotes change.) Compare the

symbol d with∆. The (entirely non-rigorous) idea is that both indicate a difference between two
numbers, but ∆ denotes a finite difference while d denotes an infinitesimal difference. Please
note that the symbols d x and d t have no rigorous meaning on their own, since lim∆t→0∆t = 0,
and we can’t divide by 0.

(Note that the letter s is often used to denote distance, which would yield d s
d t . The letter d is often

avoided in denoting distance due to the potential confusion resulting from the expression dd
d t .)

12.4 The Definition of the Derivative

You may have noticed that the two operations we’ve discussed — computing the slope of the tan-
gent to the graph of a function and computing the instantaneous rate of change of the function

— involved exactly the same limit. That is, the slope of the tangent to the graph of y = f (x) is d y
d x .

Of course, d y
d x can, and generally will, depend on x, so we should really think of it as a function

of x. We call this process (of computing d y
d x ) differentiation. Differentiation results in another

function whose value for any value x is the slope of the original function at x. This function is
known as the derivative of the original function.

Since lots of different sorts of people use derivatives, there are lots of different mathematical
notations for them. Here are some:

• f ′(x) (read "f prime of x") for the derivative of f (x),
• Dx [ f (x)],
• D f (x),

• d y
d x for the derivative of y as a function of x or

• d
d x

[
y
]
, which is more useful in some cases.

Most of the time the brackets are not needed, but are useful for clarity if we are dealing with
something like D( f g ), where we want to differentiate the product of two functions, f and g .

The first notation has the advantage that it makes clear that the derivative is a function. That is,
if we want to talk about the derivative of f (x) at x = 2, we can just write f ′(2).

97



Differentiation

In any event, here is the formal definition:

Definition: (derivative)
Let f (x) be a function. Then f ′(x) = lim∆x→0

f (x+∆x)− f (x)
∆x wherever this limit exists. In this case

we say that f is differentiable at x and its derivative at x is f ′(x).

12.4.1 Examples

Example 1

The derivative of f (x) = x/2 is

f ′(x) = lim
∆x→0

(
x+∆x

2 − x
2

∆x

)
= lim
∆x→0

(
1

2

)
= 1

2
,

no matter what x is. This is consistent with the definition of the derivative as the slope of a
function.

Example 2

What is the slope of the graph of y = 3x2 at (4,48)? We can do it "the hard (and imprecise) way",
without using differentiation, as follows, using a calculator and using small differences below
and above the given point:

When x = 3.999, y = 47.976003.

When x = 4.001, y = 48.024003.

Then the difference between the two values of x is ∆x = 0.002.

Then the difference between the two values of y is ∆y = 0.048.

Thus, the slope = ∆y
∆x = 24 at the point of the graph at which x = 4.

But, to solve the problem precisely, we compute

{|

|lim∆x→0
3(4+∆x)2−48

∆x | = 3lim∆x→0
(4+∆x)2−16

∆x |- | | = 3lim∆x→0
16+8∆x+(∆x)2−16

∆x |- | | =

3lim∆x→0
8∆x+(∆x)2

∆x |- | | = 3lim∆x→0(8 +∆x) |- | | = 3(8) |- | | = 24. |} We were lucky this time;
the approximation we got above turned out to be exactly right. But this won’t always be so, and,
anyway, this way we didn’t need a calculator.

In general, the derivative of f (x) = 3x2 is

{|

| f ′(x) | = lim∆x→0
3(x+∆x)2−3x2

∆x |- | | = 3lim∆x→0
(x+∆x)2−x2

∆x |- | | = 3lim∆x→0
x2+2x∆x+(∆x)2−x2

∆x |- | | =

3lim∆x→0
2x∆x+(∆x)2

∆x |- | | = 3lim∆x→0(2x +∆x) |- | | = 3(2x) |- | | = 6x. |}

Example 3
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If f (x) = |x| (the absolute value function) then f ′(x) =


−1, x < 0
undefined, x = 0

1, x > 0
.

Here, f (x) is not smooth (though it is continuous) at x = 0 and so the limits limx→0+ f ′(x) and
limx→0− f ′(x) (the limits as 0 is approached from the right and left respectively) are not equal.
From the definition, f ′(0) = lim∆x→0

|∆x|
∆x , which does not exist. Thus, f ′(0)is undefined, and so

f ′(x) has a discontinuity at 0. This sort of point of non-differentiability is called a cusp. Func-
tions may also not be differentiable because they go to infinity at a point, or oscillate infinitely
frequently.

12.4.2 Understanding the Derivative Notation

NOTATION FOR DIFFERENTIATION2 The derivative notation is special and unique in mathematics.
The most common notation for derivatives you’ll run into when first starting out with differenti-

ating is the Leibniz notation, expressed as d y
d x . You may think of this as "rate of change in y with

respect to x". You may also think of it as "infinitesimal value of y divided by infinitesimal value
of x". Either way is a good way of thinking, although you should remember that the precise defi-
nition is the one we gave above. Often, in an equation, you will see just d

d x , which literally means
"derivative with respect to x". This means we should take the derivative of whatever is written to
the right; that is, d

d x (x +2) means d y
d x where y = x +2.

As you advance through your studies, you will see that we sometimes pretend that d y and d x are
separate entities that can be multiplied and divided, by writing things like d y = x4 d x. Eventually
you will see derivatives such as d x

d y , which just means that the input variable of our function is

called y and our output variable is called x; sometimes, we will write d
d y , to mean the derivative

with respect to y of whatever is written on the right. In general, the variables could be anything,
say dθ

dr .

All of the following are equivalent for expressing the derivative of y = x2

• d y
d x = 2x

• d
d x x2 = 2x

• d y = 2xd x
• f ′(x) = 2x
• D( f (x)) = 2x

12.4.3 Exercises

1. Using the definition of the derivative find the derivative of the function f (x) = 2x +3.

2. Using the definition of the derivative find the derivative of the function f (x) = x3. Now try
f (x) = x4. Can you see a pattern? In the next section we will find the derivative of f (x) = xn for
all n.

3. The text states that the derivative of |x| is not defined at x = 0. Use the definition of the
derivative to show this.

2 HTTP://EN.WIKIPEDIA.ORG/WIKI/NOTATION%20FOR%20DIFFERENTIATION

99

http://en.wikipedia.org/wiki/Notation%20for%20differentiation


Differentiation

4. Graph the derivative to y = 4x2 on a piece of graph paper without solving for d y/d x. Then,
solve for d y/d x and graph that; compare the two graphs.

5. Use the definition of the derivative to show that the derivative of sin x is cos x. Hint: Use a
suitable sum to product formula and the fact that limt→0

sin t
t = 1.

12.5 Differentiation rules

The process of differentiation is tedious for complicated functions. Therefore, rules for differ-
entiating general functions have been developed, and can be proved with a little effort. Once
sufficient rules have been proved, it will be fairly easy to differentiate a wide variety of functions.
Some of the simplest rules involve the derivative of linear functions.

12.5.1 Derivative of a Constant Function

For any fixed real number c,

d

d x
[c] = 0.

Intuition

The graph of the function f (x) = c is a horizontal line, which has a constant slope of zero. There-
fore, it should be expected that the derivative of this function is zero, regardless of the values of
x and c.

Proof

The definition of a derivative is

lim
∆x→0

f (x +∆x)− f (x)

∆x
.

Let f (x) = c for all x. (That is, f is a constant function.) Then f (x +∆x) = c. Therefore

d

d x
[c] = lim

∆x→0

c − c

∆x
= 0.

Examples

1. d
d x [3] = 0

2. d
d x [z] = 0

Note that, in the second example, z is just a constant.
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12.5.2 Derivative of a Linear Function

For any fixed real numbers m and c,

d
d x [mx + c] = m

The special case d x
d x = 1 shows the advantage of the d

d x notation -- rules are intuitive by basic
algebra, though this does not constitute a proof, and can lead to misconceptions to what exactly
d x and d y actually are.

Intuition

The graph of y = mx + c is a line with constant slope m.

Proof

If f (x) = mx + c, then f (x +∆x) = m(x +∆x)+ c. So,

{|

| f ′(x) | = lim∆x→0
m(x+∆x)+c−mx−c

∆x | = lim∆x→0
m(x+∆x)−mx

∆x |- | | = lim∆x→0
mx+m∆x−mx

∆x | =
lim∆x→0

m∆x
∆x |- | | = m. |}

12.5.3 Constant multiple and addition rules

Since we already know the rules for some very basic functions, we would like to be able to take
the derivative of more complex functions by breaking them up into simpler functions. Two tools
that let us do this are the constant multiple rule and the addition rule.

The Constant Rule

For any fixed real number c, d
d x

[
c f (x)

]= c d
d x

[
f (x)

]
The reason, of course, is that one can factor c out of the numerator, and then of the entire limit,
in the definition.

Example

We already know that

d

d x

[
x2]= 2x

.

Suppose we want to find the derivative of 3x2

{|
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|- | d
d x

[
3x2

]
| = 3 d

d x

[
x2

]
|- | | = 3×2x |- | | = 6x |- |}

Another simple rule for breaking up functions is the addition rule.

The Addition and Subtraction Rules

d
d x

[
f (x)± g (x)

]= d
d x

[
f (x)

]± d
d x

[
g (x)

]
Proof

From the definition:

lim∆x→0

[
[ f (x+∆x)±g (x+∆x)]−[ f (x)±g (x)]

∆x

]
= lim∆x→0

[
[ f (x+∆x)− f (x)]±[g (x+∆x)−g (x)]

∆x

]
= lim∆x→0

[
[ f (x+∆x)− f (x)]

∆x

]
± lim∆x→0

[
[g (x+∆x)−g (x)]

∆x

]
By definition then, this last term is d

d x

[
f (x)

]± d
d x

[
g (x)

]
Example

What is:

{|

|- | d
d x

[
3x2 +5x

]
| = d

d x

[
3x2 +5x

]
|- | | = d

d x

[
3x2

]+ d
d x [5x] |- | | = 6x + d

d x [5x] |- | | = 6x +5 |- |}

The fact that both of these rules work is extremely significant mathematically because it means
that differentiation is linear. You can take an equation, break it up into terms, figure out the
derivative individually and build the answer back up, and nothing odd will happen.

We now need only one more piece of information before we can take the derivatives of any poly-
nomial.

12.5.4 The Power Rule

d
d x [xn] = nxn−1 For example, in the case of x2 the derivative is 2x1 = 2x as was established earlier.
A special case of this rule is that d x/d x = d x1/d x = 1x0 = 1.

Since polynomials are sums of monomials, using this rule and the addition rule lets you dif-
ferentiate any polynomial. A relatively simple proof for this can be derived from the binomial
expansion theorem.

This rule also applies to fractional and negative powers. Therefore

{|

|- | d
d x

[p
x
]

| = d
d x

[
x1/2

]
|- | | = 1

2 x−1/2 |- | | = 1
2
p

x
|}
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12.5.5 Derivatives of polynomials

With these rules in hand, you can now find the derivative of any polynomial you come across.
Rather than write the general formula, let’s go step by step through the process.

d

d x

[
6x5 +3x2 +3x +1

]
The first thing we can do is to use the addition rule to split the equation up into terms:

d

d x

[
6x5]+ d

d x

[
3x2]+ d

d x
[3x]+ d

d x
[1] .

We can immediately use the linear and constant rules to get rid of some terms:

d

d x

[
6x5]+ d

d x

[
3x2]+3+0.

Now you may use the constant multiplier rule to move the constants outside the derivatives:

6
d

d x

[
x5]+3

d

d x

[
x2]+3.

Then use the power rule to work with the individual monomials:

6
(
5x4)+3(2x)+3.

And then do some algebra to get the final answer:

30x4 +6x +3.

These are not the only differentiation rules. There are other, more advanced, DIFFERENTIATION

RULES3, which will be described in a later chapter.

12.5.6 Exercises

• Find the derivatives of the following equations:

f (x) = 42

f (x) = 6x +10

3 HTTP://EN.WIKIBOOKS.ORG/WIKI/CALCULUS%2FMORE_DIFFERENTIATION_RULES
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Differentiation

f (x) = 2x2 +12x +3

• Use the definition of a derivative to prove the derivative of a constant function, of a linear
function, and the constant rule and addition or subtraction rules.

• Answers:

f ′(x) = 0

f ′(x) = 6

f ′(x) = 4x +12
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13 Product and Quotient Rules

13.1 Product Rule

When we wish to differentiate a more complicated expression such as:

h(x) = (x2 +5x +7) · (x3 +2x −4)

our only way (up to this point) to differentiate the expression is to expand it and get a polynomial,
and then differentiate that polynomial. This method becomes very complicated and is particu-
larly error prone when doing calculations by hand. A beginner might guess that the derivative of
a product is the product of the derivatives, similar to the sum and difference rules, but this is not
true. To take the derivative of a product, we use the product rule.

Derivatives of products (Product rule)

d

d x

[
f (x) · g (x)

]= f (x) · g ′(x)+ f ′(x) · g (x)

13.1.1 Proof

Proving this rule is relatively straightforward, first let us state the equation for the derivative:

d

d x

[
f (x) · g (x)

]= lim
h→0

f (x +h) · g (x +h)− f (x) · g (x)

h

We will then apply one of the oldest tricks in the book—adding a term that cancels itself out to
the middle:

d

d x

[
f (x) · g (x)

]= lim
h→0

f (x +h) · g (x +h)−f(x+h) ·g(x)+ f(x+h) ·g(x)− f (x) · g (x)

h

Notice that those terms sum to zero, and so all we have done is add 0 to the equation. Now we
can split the equation up into forms that we already know how to solve:

d

d x

[
f (x) · g (x)

]= lim
h→0

[
f (x +h) · g (x +h)− f (x +h) · g (x)

h
+ f (x +h) · g (x)− f (x) · g (x)

h

]
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Looking at this, we see that we can separate the common terms out of the numerators to get:

d

d x

[
f (x) · g (x)

]= lim
h→0

[
f (x +h)

g (x +h)− g (x)

h
+ g (x)

f (x +h)− f (x)

h

]
Which, when we take the limit, becomes:

d

d x

[
f (x) · g (x)

]= f (x) · g ′(x)+ g (x) · f ′(x)

, or the mnemonic "one D-two plus two D-one"

This can be extended to 3 functions:

d

d x
[ f g h] = f (x)g (x)h′(x)+ f (x)g ′(x)h(x)+ f ′(x)g (x)h(x)

For any number of functions, the derivative of their product is the sum, for each function, of its
derivative times each other function.

Back to our original example of a product, h(x) = (x2+5x+7) ·(x3+2x−4), we find the derivative
by the product rule is

h′(x) = (x2 +5x +7)(3x2 +2)+ (2x +5)(x3 +2x −4) = 5x4 +20x3 +27x2 +12x −6

Note, its derivative would not be

(2x +5) · (3x2 +2) = 6x3 +15x2 +4x +10

which is what you would get if you assumed the derivative of a product is the product of the
derivatives.

To apply the product rule we multiply the first function by the derivative of the second and add
to that the derivative of first function multiply by the second function. Sometimes it helps to
remember the memorize the phrase "First times the derivative of the second plus the second
times the derivative of the first."

13.2 Application, proof of the power rule

The product rule can be used to give a proof of the power rule for whole numbers. The proof
proceeds by MATHEMATICAL INDUCTION1. We begin with the base case n = 1. If f1(x) = x then
from the definition is easy to see that

1 HTTP://EN.WIKIPEDIA.ORG/WIKI/MATHEMATICAL_INDUCTION
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Examples

f ′
1(x) = lim

h→0

x +h −x

h
= 1

Next we suppose that for fixed value of N , we know that for fN (x) = xN , f ′
N (x) = N xN−1. Consider

the derivative of fN+1(x) = xN+1,

f ′
N+1(x) = (x · xN )′ = (x)′xN +x · (xN )′ = xN +x ·N · xN−1 = (N +1)xN .

We have shown that the statement f ′
n(x) = n ·xn−1 is true for n = 1 and that if this statement holds

for n = N , then it also holds for n = N +1. Thus by the principle of mathematical induction, the
statement must hold for n = 1,2, . . . .

13.3 Quotient rule

There is a similar rule for quotients. To prove it, we go to the definition of the derivative:

d

d x

f (x)

g (x)
= lim

h→0

f (x+h)
g (x+h) −

f (x)
g (x)

h

= lim
h→0

f (x +h)g (x)− f (x)g (x +h)

hg (x)g (x +h)

= lim
h→0

f (x +h)g (x)− f (x)g (x)+ f (x)g (x)− f (x)g (x +h)

hg (x)g (x +h)

= lim
h→0

g (x) f (x+h)− f (x)
h − f (x) g (x+h)−g (x)

h

g (x)g (x +h)

= g (x) f ′(x)− f (x)g ′(x)

g (x)2

This leads us to the so-called "quotient rule":

Derivatives of quotients (Quotient Rule)

d

d x

[
f (x)

g (x)

]
= g (x) f ′(x)− f (x)g ′(x)

g (x)2

Which some people remember with the mnemonic "low D-high minus high D-low (over) square
the low and away we go!"

13.4 Examples

The derivative of (4x −2)/(x2 +1) is:
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d

d x

[
(4x −2)

x2 +1

]
= (x2 +1)(4)− (4x −2)(2x)

(x2 +1)2

= (4x2 +4)− (8x2 −4x)

(x2 +1)2

= −4x2 +4x +4

(x2 +1)2

Remember: the derivative of a product/quotient is not the product/quotient of the derivatives.
(That is, differentiation does not distribute over multiplication or division.) However one can
distribute before taking the derivative. That is d

d x ((a +b)× (c +d)) = d
d x (ac +ad +bc +bd)
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14 Derivatives of Trigonometric Functions

Sine, Cosine, Tangent, Cosecant, Secant, Cotangent. These are functions that crop up continu-
ously in mathematics and engineering and have a lot of practical applications. They also appear
in more advanced mathematics, particularly when dealing with things such as line integrals with
complex numbers and alternate representations of space like spherical and cylindrical coordi-
nate systems.

We use the definition of the derivative, i.e.,

f ′(x) = lim
h→0

f (x +h)− f (x)

h
,

to work these first two out.

Let us find the derivative of sin x, using the above definition.

f (x) = sin x
f ′(x) = limh→0

sin(x+h)−sin x
h Definition of derivative

= limh→0
cos(x)sin(h)+cos(h)sin(x)−si n(x)

h trigonometric identity

= limh→0
cos(x)sin(h)+(cos(h)−1)sin(x)

h factoring

= limh→0
cos(x)sin(h)

h + limh→0
(cos(h)−1)sin(x)

h separation of terms
= cos x ×1+ sin x ×0 application of limit
= cos x solution

Now for the case of cos x

f (x) = cos x
f ′(x) = limh→0

cos(x+h)−cos x
h Definition of derivative

= limh→0
cos(x)cos(h)−sin(h)sin(x)−cos(x)

h trigonometric identity

= limh→0
cos(x)(cos(h)−1)−sin(x)sin(h)

h factoring

= limh→0
cos(x)(cos(h)−1)

h − limh→0
sin(x)sin(h)

h separation of terms
= cos x ×0− sin x ×1 application of limit
=−sin x solution

Therefore we have established
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Derivatives of Trigonometric Functions

Derivative of Sine and Cosine

d

d x
sin(x) = cos(x)

d

d x
cos(x) =−sin(x)

To find the derivative of the tangent, we just remember that:

tan(x) = sin(x)
cos(x)

which is a quotient. Applying the quotient rule, we get:

d
d x tan(x) = cos2(x)+sin2(x)

cos2(x)

Then, remembering that cos2(x)+ sin2(x) = 1, we simplify:

cos2(x)+sin2(x)
cos2(x) = 1

cos2(x)
= sec2(x)

Derivative of the Tangent

d

d x
tan(x) = sec2(x)

For secants, we just need to apply the chain rule to the derivations we have already determined.

sec(x) = 1

cos(x)

So for the secant, we state the equation as:

sec(x) = 1

u

u(x) = cos(x)

Take the derivative of both equations, we find:

d

d x
sec(x) = −1

u2 · du

d x
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du

d x
=−sin(x)

Leaving us with:

d

d x
sec(x) = sin(x)

cos2(x)

Simplifying, we get:

Derivative of the Secant

d

d x
sec(x) = sec(x) tan(x)

Using the same procedure on cosecants:

csc(x) = 1

sin(x)

We get:

Derivative of the Cosecant

d

d x
csc(x) =−csc(x)cot(x)

Using the same procedure for the cotangent that we used for the tangent, we get:

Derivative of the Cotangent

d

d x
cot(x) =−csc2(x)
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15 Chain Rule

The chain rule is a method to compute the derivative of the functional composition of two or
more functions.

If a function, f, depends on a variable, u, which in turn depends on another variable, x, that is f =
y(u(x)) , then the rate of change of f with respect to x can be computed as the rate of change of y
with respect to u multiplied by the rate of change of u with respect to x.

Chain Rule
If a function f is composed to two differentiable functions y(x) and u(x), so that f(x) =

y(u(x)), then f(x) is differentiable and,

d f

d x
= d y

du
· du

d x

The method is called the "chain rule" because it can be applied sequentially to as many functions
as are nested inside one another.1 For example, if f is a function of g which is in turn a function
of h, which is in turn a function of x, that is

f (g (h(x))),

the derivative of f with respect to x is given by

d f
d x = d f

d g · d g
dh · dh

d x and so on.

The chain rule has broad applications in Physics, Chemistry, and Engineering, as well as being
used to study related rates in many disciplines. For example, if a skydiver is falling at 60 miles per
hour and the barometric pressure increases at 3 psi per mile fallen, then the skydiver experiences
an increasing pressure at a rate of 60 mi/hr * 3 psi/mi = 180 psi per hour. The chain rule can also
be generalized to multiple variables in cases where the nested functions depend on more than
one variable.

15.1 Examples

15.1.1 Example I

Suppose that a mountain climber ascends at a rate of 0.5 kilometer per hour. The temperature
is lower at higher elevations; suppose the rate by which it decreases is 6 °C per kilometer. To

1 http://www.math.brown.edu/help/derivtips.html
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calculate the decrease in air temperature per hour that the climber experiences, one multiplies
6 °C per kilometer by 0.5 kilometer per hour, to obtain 3 °C per hour. This calculation is a typical
chain rule application.

15.1.2 Example II

Consider the function f(x) = (x2 + 1)3. It follows from the chain rule that

f (x) = (x2 +1)3 Function to differentiate
u(x) = x2 +1 Define u(x) as inside function
f (x) = [u(x)]3 Express f(x) in terms of u(x)
d f
d x = d f

du · du
d x Express chain rule applicable here

d f
d x = d

du u3 · d
d x (x2 +1) Substitute in f(u) and u(x)

d f
d x = 3u2 ·2x Compute derivatives with power rule
d f
d x = 3(x2 +1)2 ·2x Substitute u(x) back in terms of x
d f
d x = 6x(x2 +1)2 Simplify.
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Examples

Figure 27: Top: Inside function with du/dx = 2 at x = 1. Middle: Outside function with df/du = 12
at u(1) = 2. Bottom: Composite function with df/dx = 2*12 = 24 at x = 1.

15.1.3 Example III

In order to differentiate the trigonometric function

f (x) = sin(x2),
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one can write:

f (x) = sin(x2) Function to differentiate
u(x) = x2 Define u(x) as inside function
f (x) = sin(u) Express f(x) in terms of u(x)
d f
d x = d f

du · du
d x Express chain rule applicable here

d f
d x = d

du sin(u) · d
d x (x2) Substitute in f(u) and u(x)

d f
d x = cos(u) ·2x Evaluate derivatives
d f
d x = cos(x2)(2x) Substitute u in terms of x.

15.1.4 Example IV Three Nested Functions

The method is called the "chain rule" because it can be applied sequentially to as many functions
as are nested inside one another. For example, if f (g (h(x))) = esin(x2), sequential application of
the chain rule yields the derivative as follows:

f (x) = esin(x2) = eg Original (outermost) function
h(x) = x2 Define h(x) as innermost function
g (x) = sin(h) = sin(x2) g(h) = sin(h) as middle function
d f
d x = d f

d g · d g
dh · dh

d x Express chain rule applicable here
d f
d g = eg = esin(x2) Differentiate f(g)
d g
dh = cos(h) = cos(x2) Differentiate g(h)
dh
d x = 2x Differentiate h(x)
d

d x esin(x2) = esin(x2) ·cos(x2) ·2x Substitute into chain rule.

15.2 Chain rule in Physics

Because one physical quantity often depends on another, which, in turn depends on others,
the chain rule has broad applications in physics. This section presents examples of the chain
rule in kinematics and simple harmonic motion, the chain rule is also useful in electromagnetic
induction.
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15.2.1 Physics Example I: Relative Kinematics of Two Vehicles

Figure 28: One vehicle is headed North and currently located at (0,3); the other vehicle is
headed West and currently located at (4,0). The chain rule can be used to find whether they are
getting closer or further apart.

For example, one can consider the kinematics problem where one vehicle is heading West toward
an intersection at 80 miles per hour while another is heading North away from the intersection
at 60 miles per hour. One can ask whether the vehicles are getting closer or further apart and at
what rate at the moment when the North bound vehicle is 3 miles North of the intersection and
the West bound vehicle is 4 miles East of the intersection.

Big idea: use chain rule to compute rate of change of distance between two vehicles.

Plan:

1. Choose coordinate system
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2. Identify variables
3. Draw picture
4. Big idea: use chain rule to compute rate of change of distance between two vehicles
5. Express c in terms of x and y via Pythagorean theorem
6. Express dc/dt using chain rule in terms of dx/dt and dy/dt
7. Substitute in x, y, dx/dt, dy/dt
8. Simplify.

Choose coordinate system: Let the y-axis point North and the x-axis point East.

Identify variables: Define y(t) to be the distance of the vehicle heading North from the origin
and x(t) to be the distance of the vehicle heading West from the origin.

Express c in terms of x and y via Pythagorean theorem:

c = (x2 + y2)1/2

Express dc/dt using chain rule in terms of dx/dt and dy/dt:

dc
d t = d

d t (x2 + y2)1/2 Apply derivative operator to entire function
= 1

2 (x2 + y2)−1/2 d
d t (x2 + y2) Sum of squares is inside function

= 1
2 (x2 + y2)−1/2

[
d

d t (x2)+ d
d t (y2)

]
Distribute differentiation operator

= 1
2 (x2 + y2)−1/2

[
2x d x

d t +2y d y
d t

]
Apply chain rule to x(t) and y(t)}

= x d x
d t +y d y

d tp
x2+y2

Simplify.

Substitute in x = 4 mi, y = 3 mi, dx/dt = -80 mi/hr, dy/dt = 60 mi/hr and Simplify

dc

d t
= 4mi · (−80mi /hr )+3mi · (60)mi /hr√

(4mi )2 + (3mi )2

= −320mi 2/hr +180mi 2/hr

5mi

= −140mi 2/hr

5mi
=−28mi /hr

Consequently, the two vehicles are getting closer together at a rate of 28 mi/hr.
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15.2.2 Physics Example II: Harmonic Oscillator

Figure 29: An undamped spring-mass system is a simple harmonic oscillator.

If the displacement of a simple harmonic oscillator from equilibrium is given by x, and it is re-
leased from its maximum displacement A at time t = 0, then the position at later times is given
by

x(t ) = A cos(ωt ),

where = 2 /T is the angular frequency and T is the period of oscillation. The velocity, v, being the
first time derivative of the position can be computed with the chain rule:
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v(t ) = d x
d t Definition of velocity in one dimension

= d
d t A cos(ωt ) Substitute x(t)

= A d
d t cos(ωt ) Bring constant A outside of derivative

= A(−sin(ωt )) d
d t (ωt ) Differentiate outside function (cosine)

=−A sin(ωt ) d
d t (ωt ) Bring negative sign in front

=−A sin(ωt )ω Evaluate remaining derivative
v(t ) =−ωA sin(ωt ). Simplify.

The acceleration is then the second time derivative of position, or simply dv/dt.

a(t ) = d v
d t Definition of acceleration in one dimension

= d
d t (−ωA sin(ωt )) Substitute v(t)

=−ωA d
d t sin(ωt ) Bring constant term outside of derivative

=−ωA cos(ωt ) d
d t (ωt ) Differentiate outside function (sine)

=−ωA cos(ωt )ω Evaluate remaining derivative
a(t ) =−ω2 A cos(ωt ). Simplify.

From Newton’s second law, F = ma, where F is the net force and m is the object’s mass.

F = ma Newton’s second law
= m(−ω2 A cos(ωt )) Substitute a(t)
=−mω2 A cos(ωt ) Simplify
F =−mω2x(t ). Substitute original x(t).

Thus it can be seen that these results are consistent with the observation that the force on a simple
harmonic oscillator is a negative constant times the displacement.

15.3 Chain rule in Chemistry

The chain rule has many applications in Chemistry because many equations in Chemistry describe
how one physical quantity depends on another, which in turn depends on another. For example,
the ideal gas law describes the relationship between pressure, volume, temperature, and number of
moles, all of which can also depend on time.
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15.3.1 Chemistry Example I: Ideal Gas Law

Figure 30: Isotherms of an ideal gas. The curved lines represent the relationship between pressure
and volume for an ideal gas at different temperatures: lines which are further away from the origin
(that is, lines that are nearer to the top right-hand corner of the diagram) represent higher
temperatures.

Suppose a sample of n moles of an ideal gas is held in an isothermal (constant temperature, T)
chamber with initial volume V0. The ideal gas is compressed by a piston so that its volume changes
at a constant rate so that V(t) = V0 - kt, where t is the time. The chain rule can be employed to find
the time rate of change of the pressure.2 The ideal gas law can be solved for the pressure, P to give:

P (t ) = nRT
V (t ) ,

where P(t) and V(t) have been written as explicit functions of time and the other symbols are con-
stant. Differentiating both sides yields

dP (t )
d t = nRT d

d t

(
1

V (t )

)
,

where the constant terms, n, R, and T, have been moved to the left of the derivative operator. Ap-
plying the chain rule gives

2 University of British Columbia, UBC Calculus Online Course Notes, Applications of the Chain Rule,
http://www.ugrad.math.ubc.ca/coursedoc/math100/notes/derivative/chainap.html Accessed 11/15/2010.
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Chain Rule

dP
d t = nRT d

dV

(
1

V (t )

)
dV
d t = nRT (− 1

V 2 ) dV
d t ,

where the power rule has been used to differentiate 1/V, Since V(t) = V0 - kt, dV/dt = -k. Substituting
in for V and dV/dt yields dP/dt.

dP
d t ==−nRT k

(
1

(V0−kt )2

)
To find P(t), one would integrate dP/dt.

15.3.2 Chemistry Example II: Kinetic Theory of Gases

Figure 31: The temperature of an ideal monatomic gas is a measure of the average kinetic energy
of its atoms. The size of helium atoms relative to their spacing is shown to scale under 1950
atmospheres of pressure. The atoms have a certain, average speed, slowed down here two trillion
fold from room temperature.

A second application of the chain rule in Chemistry is finding the rate of change of the average
molecular speed, v, in an ideal gas as the absolute temperature T, increases at a constant rate so that
T = T0 + at, where T0 is the initial temperature and t is the time.3 The kinetic theory of gases relates
the ROOT MEAN SQUARE4 of the molecular speed to the temperature, so that if v(t) and T(t) are
functions of time,

3 University of British Columbia, UBC Calculus Online Course Notes, Applications of the Chain Rule,
http://www.ugrad.math.ubc.ca/coursedoc/math100/notes/derivative/chainap.html Accessed 11/15/2010.

4 HTTP://EN.WIKIBOOKS.ORG/WIKI/ROOT%20MEAN%20SQUARE
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Polynomials

v(t ) =
(

3RT (t )
M

) 1
2

,

where R is the ideal gas constant, and M is the molecular weight.

Differentiating both sides with respect to time yields:

d
d t v(t ) = d

d t

(
3RT (t )

M

) 1
2

.

Using the chain rule to express the right side in terms of the with respect to temperature, T, and
time, t, respectively gives

d v
d t = d

dT

(3RT
M

) 1
2 dT

d t .

Evaluating the derivative with respect to temperature, T, yields

d v
d t = 1

2

(3RT
M

)− 1
2 d

dT

(3RT
M

) dT
d t .

Evaluating the remaining derivative with respect to T, taking the reciprocal of the negative power,
and substituting T = T0 + at, produces

d v
d t = 1

2

(
M

3R(T0+at )

) 1
2 3R

M
d

d t (T0 +at ) .

Evaluating the derivative with respect to t yields

d v
d t = 1

2

(
M

3R(T0+at )

) 1
2 3R

M a.

which simplifies to

d v
d t = a

2

(
3R

M(T0+at )

) 1
2

.

This can be integrated to find v(t), the rms molecular speed as a function of time.

15.4 Polynomials

We know how to differentiate regular polynomial functions. For example:

d

d x
(3x3 −6x2 +x) = 9x2 −12x +1

f (x) = (x2 +5)2

f (x) = x4 +10x2 +25

f ′(x) = 4x3 +20x
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Chain Rule

However, there is a useful rule known as the chain method rule. The function above ( f (x) =
(x2+5)2) can be consolidated into two nested parts f (x) = u2, where u = m(x) = (x2+5). Therefore:

if

g (u) = u2

and

u = m(x) = x2 +5

Then:

f (x) = g (m(x))

Then

f ′(x) = g ′(m(x))m′(x)

The chain rule states that if we have a function of the form y(u(x)) (i.e. y can be written as a
function of u and u can be written as a function of x) then:

d y

d x
= d y

du
· du

d x

Chain Rule
If a function F(x) is composed to two differentiable functions g(x) and m(x), so that

F(x)=g(m(x)), then F(x) is differentiable and,

F ′(x) = g ′(m(x))m′(x)

We can now investigate the original function:

d y

du
= 2u

du

d x
= 2x

Therefore
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d y

d x
= d y

du
· du

d x
= 2u ·2x = 2(x2 +5)(2x) = 4x3 +20x

This can be performed for more complicated equations. If we consider:

d

d x

√
1+x2

and let y =p
u and u=1+x2, so that d y

du = 1
2
p

u
and du

d x = 2x, then, by applying the chain rule, we find
that

d

d x

√
1+x2 = 1

2
p

1+x2
·2x = x

p1+x2

So, in just plain words, for the chain rule you take the normal derivative of the whole thing (make
the exponent the coefficient, then multiply by original function but decrease the exponent by 1) then
multiply by the derivative of the inside.

15.5 References

15.6 External links

• http://calculusapplets.com/chainrule.html
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16 High Order Derivatives

The second derivative, or second order derivative, is the derivative of the derivative of a function.
The derivative of the function f (x) may be denoted by f ′(x), and its double (or "second") derivative
is denoted by f ′′(x). This is read as "f double prime of x," or "The second derivative of f(x)."
Because the derivative of function f is defined as a function representing the slope of function f ,
the double derivative is the function representing the slope of the first derivative function.

Furthermore, the third derivative is the derivative of the derivative of the derivative of a function,
which can be represented by f ′′′(x). This is read as "f triple prime of x", or "The third derivative
of f(x)". This can continue as long as the resulting derivative is itself differentiable, with the fourth
derivative, the fifth derivative, and so on. Any derivative beyond the first derivative can be referred
to as a higher order derivative.

16.1 Notation

Let f (x) be a function in terms of x. The following are notations for higher order derivatives.

2nd Deriva-
tive

3rd Derivative 4th Derivative nth Derivative Notes

f ′′(x) f ′′′(x) f (4)(x) f (n)(x) Probably the
most common
notation.

d 2 f
d x2

d 3 f
d x3

d 4 f
d x4

d n f
d xn Leibniz nota-

tion.
d 2

d x2

[
f (x)

] d 3

d x3

[
f (x)

] d 4

d x4

[
f (x)

] d n

d xn

[
f (x)

]
Another form
of Leibniz no-
tation.

D2 f D3 f D4 f Dn f Euler’s nota-
tion.

Warning: You should not write f n(x) to indicate the nth derivative, as this is easily confused with
the quantity f (x) all raised to the nth power.

The Leibniz notation, which is useful because of its precision, follows from

d

d x

(
d f

d x

)
= d 2 f

d x2

.
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High Order Derivatives

Newton’s dot notation extends to the second derivative, ÿ , but typically no further in the applications
where this notation is common.

16.2 Examples

Example 1:

Find the third derivative of f (x) = 4x5 +6x3 +2x +1 with respect to x.

Repeatedly apply the POWER RULE1 to find the derivatives.

• f ′(x) = 20x4 +18x2 +2
• f ′′(x) = 80x3 +36x
• f ′′′(x) = 240x2 +36

Example 2:

Find the third derivative of f (x) = 12sin x + ln(x +2)+2x with respect to x.

Use the differentiation rules for EXPONENTIAL EXPRESSIONS2, LOGARITHMIC EXPRESSIONS3

and POLYNOMIALS4.

• f ′(x) = 12cos x + 1
x+2 +2

• f ′′(x) =−12sin x − 1
(x+2)2

• f ′′′(x) =−12cos x + 2
(x+2)3

Applications:

For applications of the second derivative in finding a curve’s concavity and points of inflection, see
"EXTREMA AND POINTS OF INFLECTION5" and "EXTREME VALUE THEOREM6". For applica-
tions of higher order derivatives in physics, see the "KINEMATICS7" section.

1 Chapter 12.5.4 on page 102
2 HTTP://EN.WIKIBOOKS.ORG/WIKI/CALCULUS%2FMORE_DIFFERENTATION_RULES%23EXPONENTS
3 HTTP://EN.WIKIBOOKS.ORG/WIKI/CALCULUS%2FMORE_DIFFERENTATION_RULES%

23LOGARITHMS
4 Chapter 12.5.4 on page 102
5 Chapter 20 on page 149
6 Chapter 25 on page 171
7 Chapter 23 on page 165
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17 Implicit Differentiation

Implicit differentiation takes a relation and turns it into a rectangular regular equation.

17.1 Explicit differentiation

For example, to differentiate a function explicitly,

x2 + y2 = 1

First we can separate variables to get

y2 = 1−x2

Taking the square root of both sides we get a function of y:

y =±
√

1−x2

We can rewrite this as a fractional power as

y =±(1−x2)
1
2

Using the chain rule and simplifying we get,

y ′ =−x

y

17.2 Implicit differentiation

Using the same equation

x2 + y2 = 1

First, differentiate the individual terms of the equation:

2x +2y y ′ = 0
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Implicit Differentiation

Separate the variables:

2y y ′ =−2x

Divide both sides by 2y , and simplify to get the same result as above:

y ′ =−2x

2y

y ′ =−x

y

17.3 Uses

Implicit differentiation is useful when differentiating an equation that cannot be explicitly differen-
tiated because it is impossible to isolate variables.

For example, consider the equation,

x2 +x y + y2 = 16

Differentiate both sides of the equation (remember to use the product rule on the term xy) :

2x + y +x y ′+2y y ′ = 0

Isolate terms with y’:

x y ′+2y y ′ =−2x − y

Factor out a y’ and divide both sides by the other term:

y ′ = −2x − y

x +2y

17.4 Implicit Differentiation

Generally, one will encounter functions expressed in explicit form, that is, y = f (x) form. You might
encounter a function that contains a mixture of different variables. Many times it is inconvenient or
even impossible to solve for y. A good example is the function y2 +2y x +3 = 5x . It is too cum-
bersome to isolate y in this function. One can utilize implicit differentiation to find the derivative.
To do so, consider y to be a nested function that is defined implicitly by x. You need to employ the
chain rule whenever you take the derivative of a variable with respect to a different variable: i.e., d

d x

(the derivative with respect to x) of x is 1; d
d x of y is d y

d x .
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Implicit Differentiation

Remember:

d y

d x
= d y

du
· du

d x

Therefore:

d

d x
(y3) = d

d y
(y3)

d y

d x
= 3y2 · d y

d x

17.4.1 Examples

Example 1

x y = 1

can be solved as:

y = 1

x

then differentiated:

d y

d x
=− 1

x2

However, using implicit differentiation it can also be differentiated like this:

d

d x
[x y] = d

d x
[1]

use the product rule:

x
d y

d x
+ y = 0

solve for d y
d x :

d y

d x
=− y

x

Note that, if we substitute y = 1
x into d y

d x =− y
x , we end up with d y

d x =− 1
x2 again.

Example 2
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Implicit Differentiation

Find the derivative of y2 +x2 = 25 with respect to x.

You are seeking d y
d x .

Take the derivative of each side of the equation with respect to x.

d(y2 +x2)

d x
= d(25)

d x

2y · d y

d x
+2x = 0

2y · d y

d x
=−2x

d y

d x
=−x

y

17.5 Inverse Trigonometric Functions

Arcsine, arccosine, arctangent. These are the functions that allow you to determine the angle given
the sine, cosine, or tangent of that angle.

First, let us start with the arcsine such that:

y = arcsin(x)

To find dy/dx we first need to break this down into a form we can work with:

x = sin(y)

Then we can take the derivative of that:

1 = cos(y) · d y

d x

...and solve for dy / dx:

d y

d x
= 1

cos(y)

At this point we need to go back to the unit triangle. Since y is the angle and the opposite side is
sin(y) (which is equal to x), the adjacent side is cos(y) (which is equal to the square root of 1 minus
x2, based on the Pythagorean theorem), and the hypotenuse is 1. Since we have determined the
value of cos(y) based on the unit triangle, we can substitute it back in to the above equation and get:
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Inverse Trigonometric Functions

Derivative of the Arcsine

d

d x
arcsin(x) = 1p

1−x2

We can use an identical procedure for the arccosine and arctangent:

Derivative of the Arccosine

d

d x
arccos(x) = −1p

1−x2

Derivative of the Arctangent

d

d x
arctan(x) = 1

1+x2
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18 Derivatives of Exponential and Logarithm
Functions

18.1 Exponential Function

First, we determine the derivative of ex using the definition of the derivative:

d

d x
ex = lim

h→0

ex+h −ex

h

Then we apply some basic algebra with powers (specifically that ab + c = ab ac):

d

d x
ex = lim

h→0

ex eh −ex

h

Since ex does not depend on h, it is constant as h goes to 0. Thus, we can use the limit rules to move
it to the outside, leaving us with:

d

d x
ex = ex · lim

h→0

eh −1

h

Now, the limit can be calculated by techniques we will learn later, for example
CALCULUS/IMPROPER_INTEGRALS#DEFINITION L’HOPITAL’S RULE1, and we will see that

lim
h→0

eh −1

h
= 1

so that we have proved the following rule:

Derivative of the exponential function

d

d x
ex = ex

1 HTTP://EN.WIKIBOOKS.ORG/WIKI/CALCULUS%2FIMPROPER_INTEGRALS%23DEFINITION%20L%
27HOPITAL%27S%20RULE
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Derivatives of Exponential and Logarithm Functions

Now that we have derived a specific case, let us extend things to the general case. Assuming that a
is a positive real constant, we wish to calculate:

d

d x
ax

One of the oldest tricks in mathematics is to break a problem down into a form that we already know
we can handle. Since we have already determined the derivative of ex, we will attempt to rewrite ax

in that form.

Using that eln(c) = c and that ln(ab) = b · ln(a), we find that:

ax = ex·ln(a)

Thus, we simply apply the chain rule:

d

d x
ex·ln(a) = d

d x
[x · ln(a)]ex·ln(a) = ln(a)ax

Derivative of the exponential function

d

d x
ax = ln(a) ax

18.2 Logarithm Function

Closely related to the exponentiation is the logarithm. Just as with exponents, we will derive the
equation for a specific case first (the natural log, where the base is e), and then work to generalize it
for any logarithm.

First let us create a variable y such that:

y = ln(x)

It should be noted that what we want to find is the derivative of y or d y
d x .

Next we will put both sides to the power of e in an attempt to remove the logarithm from the right
hand side:

e y = x

Now, applying the chain rule and the property of exponents we derived earlier, we take the derivative
of both sides:
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Logarithmic differentiation

d y

d x
·e y = 1

This leaves us with the derivative:

d y

d x
= 1

e y

Substituting back our original equation of x = ey, we find that:

Derivative of the Natural Logarithm

d

d x
ln(x) = 1

x

If we wanted, we could go through that same process again for a generalized base, but it is easier
just to use properties of logs and realize that:

logb(x) = ln(x)

ln(b)

Since 1 / ln(b) is a constant, we can just take it outside of the derivative:

d

d x
logb(x) = 1

ln(b)
· d

d x
ln(x)

Which leaves us with the generalized form of:

Derivative of the Logarithm

d

d x
logb (x) = 1

x ln(b)

18.3 Logarithmic differentiation

We can use the properties of the logarithm, particularly the natural log, to differentiate more dif-
ficult functions, such a products with many terms, quotients of composed functions, or functions
with variable or function exponents. We do this by taking the natural logarithm of both sides,
re-arranging terms using the logarithm laws below, and then differentiating both sides implicitly,
before multiplying through by y.
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Derivatives of Exponential and Logarithm Functions

log
( a

b

) =
log(a)− log(b)

log(an) =
n log(a)

log(a) +
log(b) =
log(ab)

See the examples below.

Example 1

Suppose we wished to differentiate

y = (6x2 +9)2

p
3x3 −2

We take the natural logarithm of both sides

ln(y) = ln

(
(6x2 +9)2

p
3x3 −2

)
= ln(6x2 +9)2 − ln(3x3 −2)

1
2

= 2ln(6x2 +9)− 1

2
ln(3x3 −2)

Differentiating implicitly

1

y

d y

d x
= 2× 12x

6x2 +9
− 1

2
× 9x2

3x3 −2

= 24x

6x2 +9
−

9
2 x2

3x3 −2

= 24x(3x3 −2)− 9
2 x2(6x2 +9)

(6x2 +9)(3x3 −2)

Multiplying by y

d y

d x
= (6x2 +9)2

p
3x3 −2

× 24x(3x3 −2)− 9
2 x2(6x2 +9)

(6x2 +9)(3x3 −2)

Example 2
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Logarithmic differentiation

Let us differentiate a function

y = xx

Taking the natural logarithm of left and right

ln y = ln(xx )

= x ln(x)

We then differentiate both sides, recalling the product rule

1

y

d y

d x
= ln(x)+x

1

x

= ln(x)+1

Multiplying by the original function y

d y

d x
= xx (ln(x)+1)

Example 3

Take a function

y = x6cos(x)

Then

ln y = ln(x6cos(x))

= 6cos(x) ln(x)

We then differentiate

1

y

d y

d x
=−6sin(x) ln(x)+ 6cos(x)

x

And finally multiply by y

d y

d x
= y

(
−6sin(x) ln(x)+ 6cos(x)

x

)
= x6cos(x)

(
−6sin(x) ln(x)+ 6cos(x)

x

)
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Derivatives of Exponential and Logarithm Functions

18.4 Exercises

18.5 Find The Derivative By Definition

Find the derivative of the following functions using the limit definition of the derivative.

1. f (x) = x2

2. f (x) = 2x +2
3. f (x) = 1

2 x2

4. f (x) = 2x2 +4x +4
5. f (x) =p

x +2
6. f (x) = 1

x
7. f (x) = 3

x+1
8. f (x) = 1p

x+1
9. f (x) = x

x+2

SOLUTIONS2

18.6 Prove Differentiation Rules

Use the definition of the derivative to prove the following general rules:

1. For any fixed real number c, d
d x [c] = 0.

2. For any fixed real numbers m and c, d
d x [mx + c] = m

3. For any fixed real number c, d
d x

[
c f (x)

]= c d
d x

[
f (x)

]
</div>

4. d
d x

[
f (x)± g (x)

]= d
d x

[
f (x)

]± d
d x

[
g (x)

]
SOLUTIONS3

18.7 Find The Derivative By Rules

Find the derivative of the following functions:

18.7.1 Power Rule

1. f (x) = 2x2 +4
2. f (x) = 3 3

p
x

3. f (x) = 2x5 +8x2 +x −78
4. f (x) = 7x7 +8x5 +x3 +x2 −x
5. f (x) = 1

x2 +3x
1
3

6. f (x) = 3x15 + 1
17 x2 + 2p

x

2 Chapter 62.5.1 on page 409
3 Chapter 62.7 on page 410
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Find The Derivative By Rules

7. f (x) = 3
x4 − 4

p
x +x

8. f (x) = 6x1/3 −x0.4 + 9
x2

9. f (x) = 1
3px

+p
x

18.7.2 Product Rule

1. f (x) = (x4 +4x +2)(2x +3)
2. h(x) = (2x −1)(3x2 +2)
3. f (x) = (x3 −12x)(3x2 +2x)
4. f (x) = (2x5 −x)(3x +1)

18.7.3 Quotient Rule

1. f (x) = 2x+1
x+5

2. f (x) = 3x4+2x+2
3x2+1

3. f (x) = x
3
2 +1

x+2

4. d(u) = u3+2
u3

5. f (x) = x2+x
2x−1

6. f (x) = x+1
2x2+2x+3

7. f (x) = 16x4+2x2

x

18.7.4 Chain Rule

1. f (x) = (x +5)2

2. g (x) = (x3 −2x +5)2

3. f (x) =
p

1−x2

4. f (x) = (2x+4)3

4x3+1
5. f (x) = (2x +1)

p
2x +2

6. f (x) = 2x+1p
2x+2

7. f (x) =
p

2x2 +1(3x4 +2x)2

8. f (x) = 2x+3
(x4+4x+2)2

9. f (x) =
p

x3 +1(x2 −1)
10. f (x) = ((2x +3)4 +4(2x +3)+2)2

11. f (x) =
p

1+x2

18.7.5 Exponentials

1. f (x) = (3x2 +e)e2x

2. f (x) = e2x2+3x

3. f (x) = ee2x2+1

4. f (x) = 4x
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Derivatives of Exponential and Logarithm Functions

18.7.6 Logarithms

1. f (x) = 2x−3 ·3
p

x3 −2+ ln x
2. f (x) = ln x −2ex +p

x
3. f (x) = ln(ln(x3(x +1)))
4. f (x) = ln(2x2 +3x)
5. f (x) = log4 x +2ln x

18.7.7 Trig Functions

1. f (x) = 3ex −4cos(x)− 1
4 ln x

2. f (x) = sin(x)+cos(x)

SOLUTIONS4

18.8 More Differentiation

Given the above rules, practice differentiation on the following.

1. d
d x [(x3 +5)10]

2. d
d x [x3 +3x]

3. d
d x [(x +4) · (x +2) · (x −3)]

4. d
d x [ x+1

3x2 ]

5. d
d x [3 · x3]

6. d
d x [sin x · x4]

7. d
d x [2x ]

8. d
d x [ex2

]

9. d
d x [e2x

]

10. d
d x [(6x)cos(x)+1]

18.8.1 Answers

1. 30x2(x3 +5)9

2. 3x2 +3
3. (x −3)(x +2)+ (x +4)(x +2)+ (x −3)(x +4)
4. − x+2

3x3

5. 9x2

6. cos(x)x4 + sin(x) ·4x3

7. ln(2) ·2x

8. 2xex2

9. ln(2) ·2x e2x

10. 6xcos(x)+1 · [−sin(x) ln(x)+ cos(x)+1
x ]

4 Chapter 62.8 on page 411
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Implicit Differentiation

18.9 Implicit Differentiation

Use implicit differentiation to find y’

1. x2 + y2 = 1
2. x3 + y3 = x y
3. (2x + y)4 +3x2 +3y2 = x

y +1

SOLUTIONS5

18.10 Logarithmic Differentiation

Use logarithmic differentiation to find d y
d x :

1. y = x(
4
p

1−x3 )

2. y =
√

x+1
1−x

3. y = (2x)2x

4. y = (x3 +4x)3x+1

SOLUTIONS6

18.11 Equation of Tangent Line

For each function, f , (a) determine for what values of x the tangent line to f is horizontal and (b)
find an equation of the tangent line to f at the given point.

1. f (x) = x3

3 +x2 +5, (3,23)
2. f (x) = x3 −3x +1, (1,−1)
3. f (x) = 2

3 x3 +x2 −12x +6, (0,6)
4. f (x) = 2x + 1p

x
, (1,3)

5. f (x) = (x2 +1)(2−x), (2,0)
6. f (x) = 2

3 x3 + 5
2 x2 +2x +1, (3, f (3))

7. Find an equation of the tangent line to the graph defined by (x−y−1)3 = x at the point (1,-1).
8. Find an equation of the tangent line to the graph defined by ex y +x2 = y2 at the point (1,0).

18.12 Higher Order Derivatives

1. What is the second derivative of 3x4 +3x2 +2x?

SOLUTIONS7

5 Chapter 62.10 on page 412
6 Chapter 62.9 on page 412
7 Chapter 62.11 on page 412
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18.13 Relative Extrema

Find the relative maximum(s) and minimum(s), if any, of the following functions.

1. f (x) = x
x+1

2. f (x) = (x −1)2/3

3. f (x) = x2 + 2
x

4. f (s) = s
1+s2

5. f (x) = x2 −4x +9
6. f (x) = x2+x+1

x2−x+1

18.14 Range of Function

1. Show that the expression x +1/x cannot take on any value strictly between 2 and -2.

18.15 Absolute Extrema

Determine the absolute maximum and minimum of the following functions on the given domain

1. f (x) = 1
3 x3 − 1

2 x2 +1 on [0,3]
2. f (x) = x

p
1−x2 on [-1,1]

3. f (x) = ( 4
3 x2 −1)x on [-1/2,2]

18.16 Determine Intervals of Change

Note: There are currently no answers given for these exercises.

Find the intervals where the following functions are increasing or decreasing

1. 10-6x-2x2

2. 2x3-12x2+18x+15
3. 5+36x+3x2-2x3

4. 8+36x+3x2-2x3

5. 5x3-15x2-120x+3
6. x3-6x2-36x+2

18.17 Determine Intervals of Concavity

Find the intervals where the following functions are concave up or concave down

1. 10-6x-2x2

2. 2x3-12x2+18x+15
3. 5+36x+3x2-2x3

4. 8+36x+3x2-2x3
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5. 5x3-15x2-120x+3
6. x3-6x2-36x+2

18.18 Word Problems

1. You peer around a corner. A velociraptor 64 meters away spots you. You run away at a speed
of 6 meters per second. The raptor chases, running towards the corner you just left at a speed
of 4t meters per second (time t measured in seconds after spotting). After you have run 4
seconds the raptor is 32 meters from the corner. At this time, how fast is death approaching
your soon to be mangled flesh? That is, what is the rate of change in the distance between
you and the raptor?

2. Two goldcarts leave an intersection at the same time. One heads north going 12 mph and the
other heads east going 5 mph. How fast are the cars getting away from each other after one
hour?

3. You’re making a can of volume 200 m3 with a gold side and silver top/bottom. Say gold costs
10 dollars per m2 and silver costs 1 dollar per m2. What’s the minimum costs of such a can?

18.19 Graphing Functions

For each of the following, graph a function that abides by the provided characteristics

1. f (1) = f (−2) = 0, limx→∞ f (x) = limx→−∞ f (x) = 0, vertical asymptote at x = −3, f ′(x) >
0 on (0,2), f ′(x) < 0 on (−∞,−3) ∪ (−3,0) ∪ (2,∞), f ′′(x) > 0 on (−3,1) ∪ (3,∞), f ′′(x) <
0 on (−∞,−3)∪ (1,3).

2. f has domain [−1,1], f (−1) =−1, f (−1
2 ) =−2, f ′(−1

2 ) = 0, f ′′(x) > 0 on (−1,1)
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20 Extrema and Points of Inflection

Figure 32: The four types of extrema.

Maxima and minima are points where a function reaches a highest or lowest value, respectively.
There are two kinds of extrema (a word meaning maximum or minimum): global and local, some-
times referred to as "absolute" and "relative", respectively. A global maximum is a point that takes
the largest value on the entire range of the function, while a global minimum is the point that takes
the smallest value on the range of the function. On the other hand, local extrema are the largest or
smallest values of the function in the immediate vicinity.

All extrema look like the crest of a hill or the bottom of a bowl on a graph of the function. A global
extremum is always a local extremum too, because it is the largest or smallest value on the entire
range of the function, and therefore also its vicinity. It is also possible to have a function with no
extrema, global or local: y=x is a simple example.

At any extremum, the slope of the graph is necessarily zero, as the graph must stop rising or falling
at an extremum, and begin to head in the opposite direction. Because of this, extrema are also
commonly called stationary points or turning points. Therefore, the first derivative of a function
is equal to zero at extrema. If the graph has one or more of these STATIONARY POINTS1, these may
be found by setting the first derivative equal to zero and finding the roots of the resulting equation.

1 HTTP://EN.WIKIPEDIA.ORG/WIKI/STATIONARY%20POINT

149

http://en.wikipedia.org/wiki/stationary%20point


Extrema and Points of Inflection

Figure 33: The function f(x)=x3, which contains a point of inflexion at the point (0,0).

However, a slope of zero does not guarantee a maximum or minimum: there is a third class of
stationary point called a POINT OF INFLEXION2 (also spelled point of inflection). Consider the
function

f (x) = x3

.

The derivative is

f ′ (x) = 3x2

The slope at x=0 is 0. We have a slope of zero, but while this makes it a stationary point, this doesn’t
mean that it is a maximum or minimum. Looking at the graph of the function you will see that x=0
is neither, it’s just a spot at which the function flattens out. True extrema require the a sign change in
the first derivative. This makes sense - you have to rise (positive slope) to and fall (negative slope)
from a maximum. In between rising and falling, on a smooth curve, there will be a point of zero
slope - the maximum. A minimum would exhibit similar properties, just in reverse.

2 HTTP://EN.WIKIPEDIA.ORG/WIKI/POINT%20OF%20INFLEXION
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Figure 34: Good (B and C, green) and bad (D and E, blue) points to check in order to classify the
extremum (A, black). The bad points lead to an incorrect classification of A as a minimum.

This leads to a simple method to classify a stationary point - plug x values slightly left and right into
the derivative of the function. If the results have opposite signs then it is a true maximum/minimum.
You can also use these slopes to figure out if it is a maximum or a minimum: the left side slope will
be positive for a maximum and negative for a minimum. However, you must exercise caution with
this method, as, if you pick a point too far from the extremum, you could take it on the far side of
another extremum and incorrectly classify the point.

20.1 The Extremum Test

A more rigorous method to classify a stationary point is called the extremum test, or 2nd Deriva-
tive Test. As we mentioned before, the sign of the first derivative must change for a stationary point
to be a true extremum. Now, the second derivative of the function tells us the rate of change of the
first derivative. It therefore follows that if the second derivative is positive at the stationary point,
then the gradient is increasing. The fact that it is a stationary point in the first place means that this
can only be a minimum. Conversely, if the second derivative is negative at that point, then it is a
maximum.

Now, if the second derivative is zero, we have a problem. It could be a point of inflexion, or it could
still be an extremum. Examples of each of these cases are below - all have a second derivative equal
to zero at the stationary point in question:

• y = x3 has a point of inflexion at x = 0
• y = x4 has a minimum at x = 0
• y =−x4 has a maximum at x = 0

However, this is not an insoluble problem. What we must do is continue to differentiate until we
get, at the (n+1)th derivative, a non-zero result at the stationary point:

f ′ (x) = 0, f ′′ (x) = 0, . . . , f (n) (x) = 0, f (n+1) (x) 6= 0

151



Extrema and Points of Inflection

If n is odd, then the stationary point is a true extremum. If the (n+1)th derivative is positive, it is
a minimum; if the (n+1)th derivative is negative, it is a maximum. If n is even, then the stationary
point is a point of inflexion.

As an example, let us consider the function

f (x) =−x4

We now differentiate until we get a non-zero result at the stationary point at x=0 (assume we have
already found this point as usual):

f ′ (x) =−4x3

f ′′ (x) =−12x2

f ′′′ (x) =−24x

f (4) (x) =−24

Therefore, (n+1) is 4, so n is 3. This is odd, and the fourth derivative is negative, so we have a
maximum. Note that none of the methods given can tell you if this is a global extremum or just a
local one. To do this, you would have to set the function equal to the height of the extremum and
look for other roots.

See "OPTIMIZATION3" for a common application of these principles.

3 Chapter 24 on page 167
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21 Newton’s Method

Newton’s Method (also called the Newton-Raphson method) is a recursive algorithm for approx-
imating the root of a differentiable function. We know simple formulas for finding the roots of
linear and quadratic equations, and there are also more complicated formulae for cubic and quartic
equations. At one time it was hoped that there would be formulas found for equations of quintic and
higher-degree, though it was later shown by NEILS HENRIK ABEL1 that no such equations exist.
The Newton-Raphson method is a method for approximating the roots of polynomial equations of
any order. In fact the method works for any equation, polynomial or not, as long as the function is
differentiable in a desired interval.

<tr><td style="background-color: #FFFFFF; border: solid 1px #D6D6FF; padding: 1em; margin:
0px auto;" valign=top>

Newton’s Method

Let f (x) be a differentiable function. Select a point x1 based on a first approximation to the root,
arbitrarily close to the function’s root. To approximate the root you then recursively calculate using:

xn+1 = xn − f (xn)

f ′(xn)

As you recursively calculate, the xn’s become increasingly better approximations of the function’s
root.

For n number of approximations,

xn = x0 −
n∑

i=0

f (xi )

f ′(xi )

In order to explain Newton’s method, imagine that x0 is already very close to a zero of f (x). We
know that if we only look at points very close to x0 then f (x) looks like it’s tangent line. If x0 was
already close to the place where f (x) was zero, and near x0 we know that f (x) looks like its tangent
line, then we hope the zero of the tangent line at x0 is a better approximation then x0 itself.

The equation for the tangent line to f (x) at x0 is given by

y = f ′(x0)(x −x0)+ f (x0).

1 HTTP://EN.WIKIPEDIA.ORG/WIKI/NIELS%20HENRIK%20ABEL
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Now we set y = 0 and solve for x.

0 = f ′(x0)(x −x0)+ f (x0)

− f (x0) = f ′(x0)(x −x0)

− f (x0)

f ′(x0)
= (x −x0)

x = − f (x0)

f ′(x0)
+x0

This value of x we feel should be a better guess for the value of x where f (x) = 0. We choose to call
this value of x1, and a little algebra we have

x1 = x0 − f (x0)

f ′(x0)
.

If our intuition was correct and x1 is in fact a better approximation for the root of f (x), then our
logic should apply equally well at x1. We could look to the place where the tangent line at x1 is
zero. We call x2, following the algebra above we arrive at the formula

x2 = x1 − f (x1)

f ′(x1)
.

And we can continue in this way as long as we wish. At each step, if your current approximation is
xn our new approximation will be xn+1 = xn − f (xn )

f ′(xn ) .

21.1 Examples

Find the root of the function f (x) = x2 .

x1 = f (2) = 4

x2 = x1 − f (x1)

f ′(x1)
= 2

x3 = x2 − f (x2)

f ′(x2)
= 1

x4 = x3 − f (x3)

f ′(x3)
= 1

2
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x5 = x4 − f (x4)

f ′(x4)
= 1

4

x6 = x5 − f (x5)

f ′(x5)
= 1

8

x7 = x6 − f (x6)

f ′(x6)
= 1

16

x8 = x7 − f (x7)

f ′(x7)
= 1

32

As you can see xn is gradually approaching zero (which we know is the root of f(x)). One can
approach the function’s root with arbitrary accuracy.

Answer: f (x) = x2 has a root at x = 0 .

21.2 Notes

This method fails when f ′(x) = 0. In that case, one should choose a new starting place. Occasionally
it may happen that f (x) = 0 and f ′(x) = 0 have a common root. To detect whether this is true, we
should first find the solutions of f ′(x) = 0, and then check the value of f (x) at these places.

Newton’s method also may not converge for every function, take as an example:

f (x) =
{p

x − r , forx ≥ r

−pr −x, forx ≤ r

For this function choosing any x1 = r −h then x2 = r +h would cause successive approximations to
alternate back and forth, so no amount of iteration would get us any closer to the root than our first
guess.

21.3 See Also

• WIKIPEDIA:NEWTON’S METHOD2

• WIKIPEDIA:ABEL–RUFFINI THEOREM3

CATEGORY:NEWTON METHOD4

2 HTTP://EN.WIKIPEDIA.ORG/WIKI/NEWTON%27S%20METHOD
3 HTTP://EN.WIKIPEDIA.ORG/WIKI/ABEL%20%13RUFFINI%20THEOREM
4 HTTP://COMMONS.WIKIMEDIA.ORG/WIKI/CATEGORY:NEWTONMETHOD
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22 Related Rates

22.1 Introduction

Process for solving related rates problems:

• Write out any relevant formulas and information.
• Take the derivative of the primary equation with respect to time.
• Solve for the desired variable.
• Plug-in known information and simplify.

22.2 Related Rates

As stated in the introduction, when doing related rates, you generate a function which compares
the rate of change of one value with respect to change in time. For example, velocity is the rate
of change of distance over time. Likewise, acceleration is the rate of change of velocity over time.
Therefore, for the variables for distance, velocity, and acceleration, respectively x, v, and a, and
time, t:

v = d x

d t

a = d v

d t

Using derivatives, you can find the functions for velocity and acceleration from the distance func-
tion. This is the basic idea behind related rates: the rate of change of a function is the derivative of
that function with respect to time.

22.3 Common Applications

22.3.1 Filling Tank

This is the easiest variant of the most common textbook related rates problem: the filling water tank.

• The tank is a cube, with volume 1000L.
• You have to fill the tank in ten minutes or you die.
• You want to escape with your life and as much money as possible, so you want to find the smallest

pump that can finish the task.
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We need a pump that will fill the tank 1000L in ten minutes. So, for pump rate p, volume of water
pumped v, and minutes t:

p = d v

d t

22.4 Examples

Related rates can get complicated very easily.

Example 1:

A cone with a circular base is being filled with water. Find a formula which will find the rate with
which water is pumped.

• Write out any relevant formulas or pieces of information.

V = 1

3
πr 2h

• Take the derivative of the equation above with respect to time. Remember to use the CHAIN

RULE1 and the PRODUCT RULE2.

V = 1

3
πr 2h

dV

d t
= π

3

(
r 2 · dh

d t
+2r h · dr

d t

)

Answer: dV
d t = π

3

(
r 2 · dh

d t +2r h · dr
d t

)
Example 2:

A spherical hot air balloon is being filled with air. The volume is changing at a rate of 2 cubic feet
per minute.

How is the radius changing with respect to time when the radius is equal to 2 feet?

• Write out any relevant formulas and pieces of information.

Vspher e =
4

3
πr 3

dV

d t
= 2

1 HTTP://EN.WIKIBOOKS.ORG/WIKI/CALCULUS%2FMORE_DIFFERENTATION_RULES%23CHAIN%
20RULE

2 HTTP://EN.WIKIBOOKS.ORG/WIKI/CALCULUS%2FMORE_DIFFERENTIATION_RULES%23PRODUCT%
20RULE

158

http://en.wikibooks.org/wiki/Calculus%2FMore_Differentation_Rules%23Chain%20Rule
http://en.wikibooks.org/wiki/Calculus%2FMore_Differentation_Rules%23Chain%20Rule
http://en.wikibooks.org/wiki/Calculus%2FMore_Differentiation_Rules%23Product%20Rule
http://en.wikibooks.org/wiki/Calculus%2FMore_Differentiation_Rules%23Product%20Rule


Examples

r = 2

• Take the derivative of both sides of the volume equation with respect to time.

V = 4

3
πr 3

{|

| dV
d t |= | 4

3 ·3 ·πr 2 · dr
d t |- | |= |4πr 2 · dr

d t |- | |}

• Solve for dr
d t .

dr

d t
= 1

4πr 2 · dV

d t

• Plug-in known information.

dr

d t
= 1

16π
·2

Answer: dr
d t = 1

8π ft/min.

Example 3:

An airplane is attempting to drop a box onto a house. The house is 300 feet away in horizontal
distance and 400 feet in vertical distance. The rate of change of the horizontal distance with respect
to time is the same as the rate of change of the vertical distance with respect to time. How is the
distance between the box and the house changing with respect to time at the moment? The rate of
change in the horizontal direction with respect to time is -50 feet per second.

Note: Because the vertical distance is downward in nature, the rate of change of y is negative. Sim-
ilarly, the horizontal distance is decreasing, therefore it is negative (it is getting closer and closer).

The easiest way to describe the horizontal and vertical relationships of the plane’s motion is the
Pythagorean Theorem.

• Write out any relevant formulas and pieces of information.

x2 + y2 = s2

(where s is the distance between the plane and the house)

x = 300

y = 400

159



Related Rates

s =
√

x2 + y2 =
√

3002 +4002 = 500

d x

d t
= d y

d t
=−50

• Take the derivative of both sides of the distance formula with respect to time.

x2 + y2 = s2

2x · d x

d t
+2y · d y

d t
= 2s · d s

d t

• Solve for d s
d t .

d s

d t
= 1

2s

(
2x · d x

d t
+2y · d y

d t

)
• Plug-in known information

{|

| d s
d t |= | 1

2(500) [2(300) · (−50)+2(400) · (−50)] |- | |= | 1
1000 (−70000) |- | |= |−70 ft/s |- | |}

Answer: d s
d t =−70 ft/sec.

Example 4:

Sand falls onto a cone shaped pile at a rate of 10 cubic feet per minute. The radius of the pile’s base
is always 1/2 of its altitude. When the pile is 5 ft deep, how fast is the altitude of the pile increasing?

• Write down any relevant formulas and information.

V = 1

3
πr 2h

dV

d t
= 10

r = 1

2
h

h = 5

Substitute r = 1
2 h into the volume equation.
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{|

|V |= | 1
3πr 2h |- | |= | 1

3πh ·
(

h2

4

)
|- | |= | 1

12πh3 |- | |}

• Take the derivative of the volume equation with respect to time.

V = 1

12
πh3

dV

d t
= 1

4
πh2 · dh

d t

• Solve for dh
d t .

dh

d t
= 4

πh2 · dV

d t

• Plug-in known information and simplify.

{|

| dh
d t |= | 4

π(5)2 ·10 |- | |= | 8
5π ft/min |- | |}

Answer: dh
d t = 8

5π ft/min.

Example 5:

A 10 ft long ladder is leaning against a vertical wall. The foot of the ladder is being pulled away
from the wall at a constant rate of 2 ft/sec. When the ladder is exactly 8 ft from the wall, how fast is
the top of the ladder sliding down the wall?

• Write out any relevant formulas and information.

Use the Pythagorean Theorem to describe the motion of the ladder.

x2 + y2 = l 2

(where l is the length of the ladder)

l = 10

d x

d t
= 2

x = 8

y =
√

l 2 −x2 =p
100−64 =p

36 = 6
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• Take the derivative of the equation with respect to time.

2x · d x

d t
+2y · d y

d t
= 0

(
l 2

so
dl

d t
= 0

.)

• Solve for d y
d t .

2x · d x

d t
+2y · d y

d t
= 0

2y · d y

d t
=−2x · d x

d t

d y

d t
=−x

y
· d x

d t

• Plug-in known information and simplify.

{|

| d y
d t |= |

(−8
6

)
(2) |- | |= |−8

3 ft/sec |- | |}

Answer: d y
d t =−8

3 ft/sec.

22.5 Exercises

22.5.1 Problem Set

Here’s a few problems for you to try:

1. A spherical balloon is inflated at a rate of 100 f t 3/min. Assuming the rate of inflation remains
constant, how fast is the radius of the balloon increasing at the instant the radius is 4 ft?

2. Water is pumped from a cone shaped reservoir (the vertex is pointed down) 10 ft in diameter
and 10 ft deep at a constant rate of 3 f t 3/min. How fast is the water level falling when the
depth of the water is 6 ft?

3. A boat is pulled into a dock via a rope with one end attached to the bow of a boat and the
other end held by a man standing 6 ft above the bow of the boat. If the man pulls the rope at
a constant rate of 2 ft/sec, how fast is the boat moving toward the dock when 10 ft of rope is
out?
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22.5.2 Solution Set

1. 25
16π

f t
mi n

2. 1
3π

f t
mi n

3. 5
2

f t
sec
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23 Kinematics

23.1 Introduction

Kinematics or the study of motion is a very relevant topic in calculus.

If x is the position of some moving object, and t is time, this section uses the following conventions:

• x(t ) is its position function
• v(t ) = x ′(t ) is its VELOCITY1 function
• a(t ) = x ′′(t ) is its ACCELERATION2 function

23.2 Differentiation

23.2.1 Average Velocity and Acceleration

Average velocity and acceleration problems use the algebraic definitions of velocity and accelera-
tion.

• vav g = ∆x
∆t

• aav g = ∆v
∆t

Examples

Example 1:

A particle’s position is defined by the equation x(t ) = t 3 −2t 2 + t . Find the
average velocity over the interval [2,7].

• Find the average velocity over the interval [2,7]:

{|

|vav g |= | x(7)−x(2)
7−2 |- | |= | 252−2

5 |- | |= |50 |- | |}

Answer: vav g = 50 .

1 HTTP://EN.WIKIPEDIA.ORG/WIKI/VELOCITY
2 HTTP://EN.WIKIPEDIA.ORG/WIKI/ACCELERATION
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23.2.2 Instantaneous Velocity and Acceleration

Instantaneous velocity and acceleration problems use the derivative definitions of velocity and ac-
celeration.

• v(t ) = d x
d t

• a(t ) = d v
d t

Examples

Example 2:

A particle moves along a path with a position that can be determined
by the function x(t ) = 4t 3 +e t .
Determine the acceleration when t = 3.

• Find v(t ) = d s
d t .

d s

d t
= 12t 2 +e t

• Find a(t ) = d v
d t = d 2s

d t 2 .

d 2s

d t 2 = 24t +e t

• Find a(3) = d 2s
d t 2 |t=3

{|

| d 2s
d t 2 |t=3 |= |24(3)+e3 |- | |= |72+e3 |- | |= |92.08553692... |- | |}

Answer: a(3) = 92.08553692...

23.3 Integration

• x2 −x1 =
∫ t2

t1
v(t )d t

• v2 − v1 =
∫ t2

t1
a(t )d t
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24 Optimization

24.1 Introduction

Optimization is one of the uses of Calculus in the real world. Let us assume we are a pizza parlor
and wish to maximize profit. Perhaps we have a flat piece of cardboard and we need to make a box
with the greatest volume. How does one go about this process?

Obviously, this requires the use of maximums and minimums. We know that we find maximums
and minimums via derivatives. Therefore, one can conclude that Calculus will be a useful tool for
maximizing or minimizing (also known as "Optimizing") a situation.

24.2 Examples

24.2.1 Volume Example

A box manufacturer desires to create a box with a surface area of 100 inches squared. What is the
maximum size volume that can be formed by bending this material into a box? The box is to be
closed. The box is to have a square base, square top, and rectangular sides.

• Write out known formulas and information

Abase = x2

Asi de = x ·h

Atot al = 2x2 +4x ·h = 100

V = l ·w ·h = x2 ·h

• Eliminate the variable h in the volume equation

2x2 +4xh = 100

x2 +2xh = 50
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2xh = 50−x2

h = 50−x2

2x

{|

|V |= |(x2)
(

50−x2

2x

)
|- | |= | 1

2 (50x −x3) |- | |}

• Find the derivative of the volume equation in order to maximize the volume

dV

d x
= 1

2
(50−3x2)

• Set dV
d x = 0 and solve for x

1

2
(50−3x2) = 0

50−3x2 = 0

3x2 = 50

x =±
p

50p
3

• Plug-in the x value into the volume equation and simplify

{|

|V |= | 1
2

[
50 ·

√
50
3 −

(√
50
3

)3
]

|- | |= |68.04138174.. |- | |}

Answer: Vmax = 68.04138174..
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24.2.2 Sales Example

Figure 35

A small retailer can sell n units of a product for a revenue of r (n) = 8.1n and at a cost of c(n) =
n3 −7n2 +18n, with all amounts in thousands. How many units does it sell to maximize its profit?

The retailer’s profit is defined by the equation p(n) = r (n)− c(n), which is the revenue generated
less the cost. The question asks for the maximum amount of profit which is the maximum of the
above equation. As previously discussed, the maxima and minima of a graph are found when the
slope of said graph is equal to zero. To find the slope one finds the derivative of p(n). By using the
subtraction rule p ′(n) = r ′(n)− c ′(n):

p(n) = r (n)− c(n)
p ′(n) = d

dn [8.1n]− d
dn

[
n3 −7n2 +18n

]
= −3n2 +14n −9.9
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Therefore, when −3n2 + 14n − 9.9 = 0 the profit will be maximized or minimized. Use the
QUADRATIC FORMULA1 to find the roots, giving {3.798,0.869}. To find which of these is the
maximum and minimum the function can be tested:

p(0.869) =−3.97321, p(3.798) = 8.58802

Because we only consider the functions for all n ≥ 0 (i.e., you can’t have n = −5 units), the only
points that can be minima or maxima are those two listed above. To show that 3.798 is in fact a
maximum (and that the function doesn’t remain constant past this point) check if the sign of p ′(n)
changes at this point. It does, and for n greater than 3.798 P ′(n) the value will remain decreasing.
Finally, this shows that for this retailer selling 3.798 units would return a profit of $8,588.02.

1 HTTP://EN.WIKIPEDIA.ORG/WIKI/QUADRATIC%20FORMULA
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25 Extreme Value Theorem

Extreme Value Theorem
If f is a continuous function and closed on the interval [a,b], then f has both a minimum and a
maximum.

This introduces us to the aspect of global extrema and local extrema. (Also known as absolute
extrema or relative extrema respectively.)

How is this so? Let us use an example.

f (x) = x2 and is closed on the interval [-1,2]. Find all extrema.

d y

d x
= 2x

A critical point (a point where the derivative is zero) exists at (0,0). Just for practice, let us use the
second derivative test to evaluate whether or not it is a minimum or maximum. (You should know
it is a minimum from looking at the graph.)

d 2 y

d x2 = 2

f ′′(c) > 0, thus it must be a minimum.

As mentioned before, one can find global extrema on a closed interval. How? Evaluate the y
coordinate at the endpoints of the interval and compare it to the y coordinates of the critical point.
When you are finding extrema on a closed interval it is called a local extremum and when it’s for
the whole graph it’s called a global extremum.

1: Critical Point: (0,0) This is the lowest value in the interval. Therefore, it is a local minimum
which also happens to be the global minimum.

2: Left Endpoint (-1, 1) This point is not a critical point nor is it the highest/lowest value, therefore
it qualifies as nothing.

3: Right Endpoint (2, 4) This is the highest value in the interval, and thus it is a local maximum.

This example was to show you the extreme value theorem. The quintessential point is this: on a
closed interval, the function will have both minima and maxima. However, if that interval was an
open interval of all real numbers, (0,0) would have been a local minimum. On a closed interval,
always remember to evaluate endpoints to obtain global extrema.
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Extreme Value Theorem

25.1 First Derivative Test

Recall that the first derivative of a function describes the slope of the graph of the function at every
point along the graph for which the function is defined and differentiable.

Increasing/Decreasing:
• If f ′(x) < 0 , then f (x) is decreasing.
• If f ′(x) > 0 , then f (x) is increasing.
Local Extrema:
• If d y

d x |x=c = f ′(c) = 0 and f ′(x) changes signs at x = c , then there exists a local extremum at
x = c .

• If f ′(x) < 0 for x < c and f ′(x) > 0 for x > c , then f (c) is a local minimum.
• If f ′(x) > 0 for x < c and f ′(x) < 0 x > c , then f (c) is a local maximum.

Example 1:

Let f (x) = 3x2 +4x −5 . Find all local extrema.

• Find d y
d x

f (x) = 3x2 +4x −5

f ′(x) = 6x +4

• Set d y
d x = 0 to find local extrema.

6x +4 = 0

6x =−4

x =−2

3

• Determine whether there is a local minimum or maximum at x =−2
3 .

Choose an x value smaller than
−2

3
:

f ′(−1) = 6(−1)+4 =−2 < 0
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Second Derivative Test

Choose an x value larger than

−2

3
:

f ′(1) = 6(1)+4 = 10 > 0

Therefore, there is a local minimum at x = −2
3 because f ′(−2

3 ) = 0 and f ′(x) changes signs at
x =−2

3 .

Answer: local minimum: x =− 2
3.

25.2 Second Derivative Test

Recall that the second derivative of a function describes the concavity of the graph of that function.

• If d 2 y
d x2 |x=c = f ′′(c) = 0 and f ′′(c) changes signs at x = c , then there is a point of inflection (change

in concavity) at x = c .
• If f ′′(x) < 0 , then the graph of f (x) is concave down.
• If f ′′(x) > 0 , then the graph of f (x) is concave up.

Example 2:

Let f (x) = x3 +2x +7 . Find any points of inflection on the graph of f (x) .

• Find d 2 y
d x2 .

f (x) = x3 +2x +7

f ′(x) = 3x2 +2

f ′′(x) = 6x

• Set d 2 y
d x2 = 0.

6x = 0

x = 0
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• Determine whether f ′′(x) changes signs at x = 0 .

Choose an x value that is smaller than 0:

f ′′(−1) = 6(−1) =−6 < 0

Choose an x value that is larger than 0:

f ′′(1) = 6(1) = 6 > 0

Therefore, there exists a point of inflection at x = 0 because f ′′(0) = 0 and f ′′(x) changes signs at
x = 0 .

Answer: point of inflection: x = 0 .

EXTREME VALUE THEOREM1

1 HTTP://EN.WIKIPEDIA.ORG/WIKI/EXTREME%20VALUE%20THEOREM
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26 Rolle’s Theorem

Rolle’s Theorem
If a function, f (x) , is continuous on the closed interval [a,b] , is differentiable on the open interval
(a,b) , and f (a) = f (b) , then there exists at least one number c, in the interval (a,b) such that
f ′(c) = 0 .

Rolle’s Theorem is important in proving the MEAN VALUE THEOREM1.

26.1 Examples

Figure 36

Example:

f (x) = x2 −3x. Show that Rolle’s Theorem holds true somewhere within this function. To do so,
evaluate the x-intercepts and use those points as your interval.

1 Chapter 27 on page 177
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Rolle’s Theorem

Solution:

1: The question wishes for us to use the x-intercepts as the endpoints of our interval.

Factor the expression to obtain x(x −3) = 0. x = 0 and x = 3 are our two endpoints. We know that
f(0) and f(3) are the same, thus that satisfies the first part of Rolle’s theorem (f(a) = f(b)).

2: Now by Rolle’s Theorem, we know that somewhere between these points, the slope will be zero.
Where? Easy: Take the derivative.

d y

d x
= 2x −3

Thus, at x = 3/2, we have a spot with a slope of zero. We know that 3/2 (or 1.5) is between 0 and 3.
Thus, Rolle’s Theorem is true for this (as it is for all cases). This was merely a demonstration.
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27 Mean Value Theorem

1. REDIRECT CALCULUS/MEAN VALUE THEOREM1

27.1 Exercises

See the exercises for Differentiation.

1 HTTP://EN.WIKIBOOKS.ORG/WIKI/CALCULUS%2FMEAN%20VALUE%20THEOREM
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28 Integration

28.1 INTEGRATION1

Figure 37

28.1.1 Basics of Integration

• DEFINITE INTEGRAL2

• INDEFINITE INTEGRAL3

• NOTES ON INTEGRATION TECHNIQUES4

1 Chapter 28 on page 179
2 HTTP://EN.WIKIBOOKS.ORG/WIKI/CALCULUS%2FDEFINITE%20INTEGRAL
3 HTTP://EN.WIKIBOOKS.ORG/WIKI/CALCULUS%2FINDEFINITE_INTEGRAL
4 HTTP://EN.WIKIBOOKS.ORG/WIKI/CALCULUS%2FTECHNIQUES_OF_INTEGRATION
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Integration

• FUNDAMENTAL THEOREM OF CALCULUS5

28.1.2 Integration techniques

• INFINITE SUMS6

• DERIVATIVE RULES AND THE SUBSTITUTION RULE7

• INTEGRATION BY PARTS8

• COMPLEXIFYING9

• RATIONAL FUNCTIONS BY PARTIAL FRACTION DECOMPOSITION10

• TRIGONOMETRIC SUBSTITUTIONS11

• TANGENT HALF ANGLE SUBSTITUTION12

• TRIGONOMETRIC INTEGRALS13

• REDUCTION FORMULA14

• IRRATIONAL FUNCTIONS15

• NUMERICAL APPROXIMATIONS16

• INTEGRATION TECHNIQUES17

• IMPROPER INTEGRALS18

• EXERCISES19

5 HTTP://EN.WIKIBOOKS.ORG/WIKI/CALCULUS%2FFUNDAMENTAL%20THEOREM%20OF%20CALCULUS
6 Chapter 28.2 on page 182
7 Chapter 28.4 on page 183
8 Chapter 28.7 on page 187
9 Chapter 28.9 on page 190
10 Chapter 28.10 on page 191
11 Chapter 28.11 on page 193
12 HTTP://EN.WIKIBOOKS.ORG/WIKI/CALCULUS%2FINTEGRATION%20TECHNIQUES%2FTANGENT%

20HALF%20ANGLE
13 Chapter 28.12 on page 200
14 Chapter 28.13 on page 204
15 Chapter 28.14 on page 205
16 Chapter 28.15 on page 207
17 HTTP://EN.WIKIBOOKS.ORG/WIKI/CALCULUS%2FINTEGRATION_TECHNIQUES
18 Chapter 29 on page 209
19 Chapter 29.1 on page 209
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INTEGRATION24

Figure 38

28.1.3 Applications of Integration

• AREA20

• VOLUME21

• VOLUME OF SOLIDS OF REVOLUTION22

20 Chapter 31 on page 213
21 Chapter 32 on page 215
22 Chapter 33 on page 221
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Integration

• ARC LENGTH23

• SURFACE AREA25

• WORK26

• CENTRE OF MASS27

• PRESSURE AND FORCE28

• PROBABILITY29

28.2 Infinite Sums

The most basic, and arguably the most difficult, type of evaluation is to use the formal definition of
a Riemann integral.

28.3 Exact Integrals as Limits of Sums

Using the definition of an integral, we can evaluate the limit as n goes to infinity. This technique
requires a fairly high degree of familiarity with summation IDENTITIES30. This technique is often
referred to as evaluation "by definition," and can be used to find definite integrals, as long as the
integrands are fairly simple. We start with definition of the integral:

{|

|
∫ b

a f (x) d x |= limn→∞ b−a
n

∑n
i=1 f (x∗

i ) |Then picking x∗
i to be xi = a + i b−a

n we get, |- | |=
limn→∞ b−a

n

∑n
i=1 f (a + i b−a

n ). |} In some simple cases, this expression can be reduced to a real
number, which can be interpreted as the area under the curve if f(x) is positive on [a,b].

28.3.1 Example 1

Find
∫ 2

0 x2 d x by writing the integral as a limit of Riemann sums.

{|

|
∫ 2

0 x2 d x |= limn→∞ b−a
n

∑n
i=1 f (x∗

i ) |- | |= limn→∞ 2
n

∑n
i=1 f ( 2i

n ) |- | |= limn→∞ 2
n

∑n
i=1

(2i
n

)2
|- | |=

limn→∞ 2
n

∑n
i=1

4i 2

n2 |- | |= limn→∞ 8
n3

∑n
i=1 i 2 |- | |= limn→∞ 8

n3
n(n+1)(2n+1)

6 |- | |= limn→∞ 4
3

2n2+3n+1
n2

|- | |= limn→∞ 8
3 + 4

n + 4
3n2 |- | |= 8

3 |}

In other cases, it is even possible to evaluate indefinite integrals using the formal definition. We can
define the indefinite integral as follows:

{|

23 Chapter 34 on page 223
25 Chapter 35 on page 227
26 Chapter 36 on page 229
27 Chapter 37 on page 231
28 HTTP://EN.WIKIBOOKS.ORG/WIKI/CALCULUS%2FPRESSURE%20AND%20FORCE
29 HTTP://EN.WIKIBOOKS.ORG/WIKI/CALCULUS%2FPROBABILITY
30 HTTP://EN.WIKIPEDIA.ORG/WIKI/SIGMA_NOTATION%23IDENTITIES
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Derivative Rules and the Substitution Rule

|
∫

f (x) d x |= ∫ x
0 f (t ) d t = limn→∞ x−0

n

∑n
i=1 f (t∗i ) |- | |= limn→∞ x

n

∑n
i=1 f

(
0+ (x−0)·i

n

)
|- | |=

limn→∞ x
n

∑n
i=1 f

( x·i
n

)
|}

28.3.2 Example 2

Suppose f (x) = x2, then we can evaluate the indefinite integral as follows.

{|

|
∫ x

0 f (t ) d t = |limn→∞ x
n

∑n
i=1 f

( x·i
n

)
|- | |limn→∞ x

n

∑n
i=1

( x·i
n

)2
|- | |limn→∞ x

n

∑n
i=1

x2·i 2

n2 |- |
|limn→∞ x3

n3

∑n
i=1 i 2 |- | |limn→∞ x3

n3

∑n
i=1 i 2 |- | |limn→∞ x3

n3
n(n+1)(2n+1)

6 |- | |limn→∞ x3

n3
n(n+1)(2n+1)

6

|- | |limn→∞ x3

n3
2n3+3n2+n

6 |- | |x3 limn→∞
(

2n3

6n3 + 3n2

6n3 + n
6n3

)
|- | |x3 limn→∞

(1
3 + 1

2n + 1
6n2

)
|- | |x3 · (1

3

)
|-

| | x3

3 |}
31

28.4 Derivative Rules and the Substitution Rule

After learning a simple list of antiderivatives, it is time to move on to more complex integrands,
which are not at first readily integrable. In these first steps, we notice certain special case integrands
which can be easily integrated in a few steps.

28.5 Recognizing Derivatives and Reversing Derivative Rules

If we recognize a function g (x) as being the derivative of a function f (x), then we can easily express
the antiderivative of g (x):∫

g (x)d x = f (x)+C .

For example, since
d

d x sin x = cos x

we can conclude that∫
cos x d x = sin x +C .

Similarly, since we know ex is its own derivative,∫
ex d x = ex +C .

The power rule for derivatives can be reversed to give us a way to handle integrals of powers of x.
Since

d
d x xn = nxn−1,

we can conclude that

31 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3ACALCULUS%20%28BOOK%29
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Integration

∫
nxn−1 d x = xn +C ,

or, a little more usefully,∫
xn d x = xn+1

n+1 +C .

28.6 Integration by Substitution

Figure 39: INTEGRATION BY SUBSTITUTION32

For many integrals, a substitution can be used to transform the integrand and make possible the
finding of an antiderivative. There are a variety of such substitutions, each depending on the form
of the integrand.

28.6.1 Integrating with the derivative present

If a component of the integrand can be viewed as the derivative of another component of the inte-
grand, a substitution can be made to simplify the integrand.

For example, in the integral

∫
3x2(x3 +1)5 d x

we see that 3x2 is the derivative of x3 +1. Letting

u = x3 +1

we have

du

d x
= 3x2

or, in order to apply it to the integral,

32 HTTP://EN.WIKIVERSITY.ORG/WIKI/INTEGRATION%20BY%20SUBSTITUTION
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Integration by Substitution

du = 3x2d x

.

With this we may write
∫

3x2(x3 +1)5 d x = ∫
u5 du = 1

6 u6 +C = 1
6 (x3 +1)6 +C .

Note that it was not necessary that we had exactly the derivative of u in our integrand. It would have
been sufficient to have any constant multiple of the derivative.

For instance, to treat the integral

∫
x4 sin(x5)d x

we may let u = x5. Then

du = 5x4 d x

and so

1

5
du = x4 d x

the right-hand side of which is a factor of our integrand. Thus,

∫
x4 sin(x5)d x =

∫
1

5
sinu du =−1

5
cosu +C =−1

5
cos x5 +C .

In general, the integral of a power of a function times that function’s derivative may be integrated
in this way. Since d [g (x)]

d x = g ′(x),

we have d x = d [g (x)]
g ′(x) .

Therefore,
∫

g ′(x)[g (x)]n = ∫
g ′(x)[g (x)]n d [g (x)]

g ′(x)

= ∫
[g (x)]nd [g (x)]

= [g (x)]n+1

n+1

There is a similar rule for definite integrals, but we have to change the endpoints.

Substitution rule for definite integrals Assume u is differentiable with continuous derivative and
that f is continuous on the range of u. Suppose c = u(a) and d = u(b). Then

∫ b
a f (u(x)) du

d x d x =∫ d
c f (u)du.

28.6.2 Examples

Consider the integral
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Integration

∫ 2

0
x cos(x2 +1)d x

By using the substitution u = x2 + 1, we obtain du = 2x dx and

{|

|- |
∫ 2

0 x cos(x2 +1)d x |= 1
2

∫ 2
0 cos(x2 +1)2x d x |- | |= 1

2

∫ 5
1 cos(u)du |- | |= 1

2 (sin(5)− sin(1)). |}

Note how the lower limit x = 0 was transformed into u = 02 + 1 = 1 and the upper limit x = 2 into u
= 22 + 1 = 5.

28.6.3 Proof of the substitution rule

We will now prove the substitution rule for definite integrals. Let F be an anti derivative of f so

F ′(x) = f (x)

. By the Fundamental Theorem of Calculus∫ d
c f (u)du = F (d)−F (c).

Next we define a function G by the rule

G(x) = F (u(x)) .

Then by the Chain rule G is differentiable with derivative

G ′(x) = F ′(u(x))u′(x) = f (u(x))u′(x) .

Integrating both sides with respect to x and using the Fundamental Theorem of Calculus we get

∫ b

a
f (u(x))u′(x)d x =

∫ b

a
G ′(x)d x =G(b)−G(a).

But by the definition of F this equals

G(b)−G(a) = F (u(b))−F (u(a)) = F (d)−F (c) =
∫ d

c
f (u)du.

Hence

∫ b

a
f (u(x))u′(x)d x =

∫ d

c
f (u)du.
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Integration by Parts

which is the substitution rule for definite integrals.
33

28.7 Integration by Parts

Continuing on the path of reversing derivative rules in order to make them useful for integration, we
reverse the product rule.

28.8 Integration by Parts

If y = uv where u and v are functions of x,

Then y ′ = (uv)′ = v ′u +u′v

Rearranging, uv ′ = (uv)′− vu′

Therefore,
∫

uv ′d x = ∫
(uv)′d x −∫

vu′d x

Therefore,
∫

uv ′d x = uv −∫
vu′d x, or

∫
u d v = uv −

∫
v du

.

This is the integration by parts formula. It is very useful in many integrals involving products of
functions, as well as others.

For instance, to treat

∫
x sin x d x

we choose u = x and d v = sin x d x. With these choices, we have du = d x and v =−cos x, and we
have

∫
x sin x d x =−x cos x −

∫
(−cos x)d x =−x cos x +

∫
cos x d x =−x cos x + sin x +C .

Note that the choice of u and d v was critical. Had we chosen the reverse, so that u = sin x and
d v = x d x, the result would have been

1

2
x2 sin x −

∫
1

2
x2 cos x d x.

33 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3ACALCULUS%20%28BOOK%29
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Integration

The resulting integral is no easier to work with than the original; we might say that this application
of integration by parts took us in the wrong direction.

So the choice is important. One general guideline to help us make that choice is, if possible, to
choose u to be the factor of the integrand which becomes simpler when we differentiate it. In the
last example, we see that sin x does not become simpler when we differentiate it: cos x is no simpler
than sin x.

An important feature of the integration by parts method is that we often need to apply it more than
once. For instance, to integrate

∫
x2ex d x

,

we start by choosing u = x2 and d v = ex to get

∫
x2ex d x = x2ex −2

∫
xex d x.

Note that we still have an integral to take care of, and we do this by applying integration by parts
again, with u = x and d v = ex d x, which gives us

∫
x2ex d x = x2ex −2

∫
xex d x = x2ex −2(xex −ex )+C = x2ex −2xex +2ex +C .

So, two applications of integration by parts were necessary, owing to the power of x2 in the inte-
grand.

Note that any power of x does become simpler when we differentiate it, so when we see an integral
of the form

∫
xn f (x)d x

one of our first thoughts ought to be to consider using integration by parts with u = xn . Of course,
in order for it to work, we need to be able to write down an antiderivative for d v .

28.8.1 Example

Use integration by parts to evaluate the integral

∫
sin(x)ex d x

Solution: If we let u = si n(x) and v ′ = ex , then we have u′ = cos(x) and v = ex . Using our rule for
integration by parts gives
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Integration by Parts

∫
sin(x)ex d x = ex sin(x)−

∫
cos(x)ex d x

We do not seem to have made much progress. But if we integrate by parts again with u = cos(x)
and v ′ = ex and hence u′ =−sin(x) and v = ex , we obtain

∫
sin(x)ex d x = ex sin(x)−ex cos(x)−

∫
ex sin(x)d x

We may solve this identity to find the anti-derivative of ex sin(x) and obtain

∫
sin(x)ex d x = 1

2
ex (sin(x)−cos(x))+C

28.8.2 With definite integral

For definite integrals the rule is essentially the same, as long as we keep the endpoints.

<blockquote style="background: white; border: 1px solid black; padding: 1em;"> Integration by
parts for definite integrals Suppose f and g are differentiable and their derivatives are continuous.
Then

∫ b

a
f (x)g ′(x)d x =

[
f (x)g (x)

]b

a
−

∫ b

a
f ′(x)g (x)d x

= f (b)g (b)− f (a)g (a)−
∫ b

a
f ′(x)g (x)d x

.

</blockquote>

This can also be expressed in Leibniz notation. <blockquote style="background: white; border: 1px
solid black; padding: 1em;">

∫ b

a
ud v =

[
uv

]b

a
−

∫ b

a
vdu.

</blockquote>

INTEGRATION BY PARTS34

34 HTTP://EN.WIKIPEDIA.ORG/WIKI/INTEGRATION%20BY%20PARTS
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28.9 Integration by Complexifying

This technique requires an understanding and recognition of complex numbers. Specifically Euler’s
formula:

cosθ+ i · sinθ = e i ·θ

Recognize, for example, that the real portion:

Re{e i ·θ} = cosθ

Given an integral of the general form:∫
ex cos2x d x

We can complexify it:∫
Re{ex (cos2x + i · sin2x)} d x∫
Re{ex (e i 2x )} d x

With basic rules of exponents:∫
Re{ex+i 2x } d x

It can be proven that the "real portion" operator can be moved outside the integral:

Re{
∫

ex(1+2i ) d x}

The integral easily evaluates:

Re{ ex(1+2i )

1+2i }

Multiplying and dividing by (1-2i):

Re{ 1−2i
5 ex(1+2i )}

Which can be rewritten as:

Re{ 1−2i
5 ex e i 2x }

Applying Euler’s forumula:

Re{ 1−2i
5 ex (cos2x + i · sin2x)}

Expanding:

Re{ ex

5 (cos2x +2sin2x)+ i · ex

5 (sin2x −2cos2x)}

Taking the Real part of this expression:
ex

5 (cos2x +2sin2x)

So:∫
ex cos2x d x = ex

5 (cos2x +2sin2x)+C

35
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28.10 Rational Functions by Partial Fractional Decomposition

Suppose we want to find
∫ 3x+1

x2+x d x. One way to do this is to simplify the integrand by finding
constants A and B so that

3x +1

x2 +x
= 3x +1

x(x +1)
= A

x
+ B

x +1
.

This can be done by cross multiplying the fraction which gives 3x+1
x(x+1) = A(x+1)+B x

x(x+1) . As both sides
have the same denominator we must have 3x +1 = A(x +1)+B x. This is an equation for x so must
hold whatever value x is. If we put in x = 0 we get 1 = A and putting x = −1 gives −2 = −B so
B = 2. So we see that

3x +1

x2 +x
= 1

x
+ 2

x +1

Returning to the original integral

{|

|
∫ 3x+1

x2+x d x |= |
∫ d x

x +∫ 2
x+1 d x |- | |= |ln |x|+2ln |x +1|+C |- | |}

Rewriting the integrand as a sum of simpler fractions has allowed us to reduce the initial integral to
a sum of simpler integrals. In fact this method works to integrate any rational function.

Method of Partial Fractions:

<blockquote style="background: white; border: 1px solid black; padding: 1em;">

• Step 1 Use long division to ensure that the degree of P (x) less than the degree of Q(x).
• Step 2 Factor Q(x) as far as possible.
• Step 3 Write down the correct form for the partial fraction decomposition (see below) and solve

for the constants.

</blockquote>

To factor Q(x) we have to write it as a product of linear factors (of the form ax +b) and irreducible
quadratic factors (of the form ax2 +bx + c with b2 −4ac < 0).

Some of the factors could be repeated. For instance if Q(x) = x3 −6x2 +9x we factor Q(x) as

Q(x) = x(x2 −6x +9) = x(x −3)(x −3) = x(x −3)2.

It is important that in each quadratic factor we have b2 −4ac < 0, otherwise it is possible to factor
that quadratic piece further. For example if Q(x) = x3 −3x2 −2x then we can write

Q(x) = x(x2 −3x +2) = x(x −1)(x +2)

We will now show how to write P (x)/Q(x) as a sum of terms of the form
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A

(ax +b)k

and
Ax +B

(ax2 +bx + c)k
.

Exactly how to do this depends on the factorization of Q(x) and we now give four cases that can
occur.

<blockquote style="background: white; border: 1px solid black; padding: 1em;"> Case (a) Q(x) is
a product of linear factors with no repeats. </blockquote>

This means that Q(x) = (a1x +b1)(a2x +b2)...(an x +bn) where no factor is repeated and no factor
is a multiple of another.

For each linear term we write down something of the form A
(ax+b) , so in total we write

P (x)

Q(x)
= A1

(a1x +b1)
+ A2

(a2x +b2)
+·· ·+ An

(an x +bn)

28.10.1 Example 1

Find
∫ 1+x2

(x+3)(x+5)(x+7) d x

Here we have P (x) = 1+ x2,Q(x) = (x +3)(x +5)(x +7) and Q(x) is a product of linear factors. So
we write

1+x2

(x+3)(x+5)(x+7) = A
x+3 + B

x+5 + C
x+7

Multiply both sides by the denominator

1+x2 = A(x +5)(x +7)+B(x +3)(x +7)+C (x +3)(x +5)

Substitute in three values of x to get three equations for the unknown constants,

x =−3 1+32 = 2 ·4A
x =−5 1+52 =−2 ·2B
x =−7 1+72 = (−4) · (−2)C

so A = 5/4,B =−13/2,C = 25/4, and
1+x2

(x+3)(x+5)(x+7) = 5
4x+12 − 13

2x+10 + 25
4x+28

We can now integrate the left hand side.∫ 1+x2 d x
(x+3)(x+5)(x+7) = 5

4 ln |x +3|− 13
2 ln |x +5|+ 25

4 ln |x +7|+C

<blockquote style="background: white; border: 1px solid black;
padding: 1em;">

Case (b) Q(x) is a product of linear factors some of which are repeated. </blockquote>

If (ax +b) appears in the factorisation of Q(x) k-times. Then instead of writing the piece A
(ax+b) we

use the more complicated expression
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A1
ax+b + A2

(ax+b)2 + A3

(ax+b)3 +·· ·+ Ak

(ax+b)k

28.10.2 Example 2

Find
∫ 1

(x+1)(x+2)2 d x

Here P(x)=1" and "Q(x)=(x+1)(x+2)2 We write
1

(x+1)(x+2)2 = A
x+1 + B

x+2 + C
(x+2)2

Multiply both sides by the denominator 1 = A(x +2)2 +B(x +1)(x +2)+C (x +1)

Substitute in three values of x to get 3 equations for the unknown constants,

x = 0 1 = 22 A+2B +C
x =−1 1 = A
x =−2 1 =−C

so A=1, B=-1, C=-1, and
1

(x+1)(x+2)2 = 1
x+1 − 1

x+2 − 1
(x+2)2

We can now integrate the left hand side.
∫ 1

(x+1)(x+2)2 d x = ln x+1
x+2 + 1

x+2 +C

<blockquote style="background: white; border: 1px solid black; padding: 1em;"> Case (c) Q(x)
contains some quadratic pieces which are not repeated. </blockquote>

If (ax2 +bx + c) appears we use Ax+B
(ax2+bx+c) .

<blockquote style="background: white; border: 1px solid black; padding: 1em;"> Case (d) Q(x)
contains some repeated quadratic factors. </blockquote>

If (ax2 +bx + c) appears k-times then use

A1x +B1

(ax2 +bx + c)
+ A2x +B2

(ax2 +bx + c)2 + A3x +B3

(ax2 +bx + c)3 +·· ·+ Ak x +Bk

(ax2 +bx + c)k

36

28.11 Trigonometric Substitutions

The idea behind the trigonometric substitution is quite simple: to replace expressions involving
square roots with expressions that involve standard trigonometric functions, but no square roots.
Integrals involving trigonometric functions are often easier to solve then integrals involving square
roots.

Let us demonstrate this idea in practice. Consider the expression
p

1−x2. Probably the most basic
trigonometric identity is sin2(θ) + cos2(θ) = 1 for an arbitrary angle θ. If we replace x in this
expression by sin(θ), with the help of this trigonometric identity we see

36 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3ACALCULUS%20%28BOOK%29
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√
1−x2 =

√
1− sin2(θ) =

√
cos2(θ) = cos(θ)

Note that we could write θ = arcsin(x) since we replaced x2 with sin2(θ).

We would like to mention that technically one should write the absolute value of cos(θ), in other
words |cos(θ)| as our final answer since

√
A2 = |A| for all possible A. But as long as we are careful

about the domain of all possible x and how cos(θ) is used in the final computation, omitting the
absolute value signs does not constitute a problem. However, we cannot directly interchange the
simple expression cos(θ) with the complicated

√
1−x2 wherever it may appear, we must remember

when integrating by substation we need to take the derivative into account. That is we need to
remember that d x = cos(θ)dθ, and to get a integral that only involves θ we need to also replace d x
by something in terms of dθ. Thus, if we see an integral of the form

∫ √
1−x2d x

we can rewrite it as

∫
cos(θ)cosθdθ =

∫
cos2θdθ.

Notice in the expression on the left that the first cosθ comes from replacing the
√

1−x2 and the
cosθdθ comes from substituting for the d x.

Since cos2(θ) = 1
2 (1+cos(2θ)) our original integral reduces to:

1
2

∫
dθ+ 1

2

∫
cos(2θ)dθ

.

These last two integrals are easily handled. For the first integral we get

1
2

∫
dθ = 1

2θ

For the second integral we do a substitution, namely u = 2θ (and du = 2dθ) to get:

1
2

∫
cos(2θ)dθ = 1

2

∫
cosu 1

2 du = 1
4 sinu = 1

4 sin(2θ)

Finally we see that:

∫
cos2θdθ = 1

2θ+ 1
4 sin(2θ) = 1

2θ+ 1
2 sin(θ)cos(θ)

However, this is in terms of θ and not in terms of x, so we must substitute back in order to rewrite
the answer in terms of x.

That is we worked out that:
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sin(θ) = x cos(θ) =
√

1−x2 and θ = arcsin(x)

So we arrive at our final answer

∫ √
1−x2d x = 1

2 arcsin(x)+ 1
2 x

√
1−x2

As you can see, even for a fairly harmless looking integral this technique can involve quite a lot of
calculation. Often it is helpful to see if a simpler method will suffice before turning to trigonometric
substitution. On the other hand, frequently in the case of integrands involving square roots, this is
the most tractable way to solve the problem. We begin with giving some rules of thumb to help you
decide which trigonometric substitutions might be helpful.

If the integrand contains a single factor of one of the forms
p

a2 −x2 or
p

a2 +x2 or
p

x2 −a2 we
can try a trigonometric substitution.

<blockquote style="background: white; border: 1px solid black; padding: 1em;">

• If the integrand contains
p

a2 −x2 let x = a sinθ and use the IDENTITY37 1− sin2θ = cos2θ.
• If the integrand contains

p
a2 +x2 let x = a tanθ and use the identity 1+ tan2θ = sec2θ.

• If the integrand contains
p

x2 −a2 let x = a secθ and use the identity sec2θ−1 = tan2θ.

</blockquote>

Figure 40: TRIGONOMETRIC SUBSTITUTIONS38

../tmp/41.png

Figure 41: TRIGONOMETRIC SUBSTITUTIONS39

37 Chapter 64 on page 417
38 HTTP://EN.WIKIVERSITY.ORG/WIKI/TRIGONOMETRIC%20SUBSTITUTIONS
39 HTTP://EN.WIKIPEDIA.ORG/WIKI/TRIGONOMETRIC%20SUBSTITUTION
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28.11.1 Sine substitution

Figure 42: This substitution is easily derived from a triangle, using the PYTHAGOREAN

THEOREM40.

If the integrand contains a piece of the form
p

a2 −x2 we use the substitution

x = a sinθ d x = a cosθdθ

This will transform the integrand to a trigonometric function. If the new integrand can’t be inte-
grated on sight then the tan-half-angle substitution described below will generally transform it into
a more tractable algebraic integrand.

E.g., if the integrand is &radic;(1-x2),

∫ 1
0

p
1−x2d x = ∫ π/2

0

√
1− sin2θcosθdθ

= ∫ π/2
0 cos2θdθ

= 1
2

∫ π/2
0 1+cos2θdθ

= π
4

If the integrand is &radic;(1+x)/&radic;(1-x), we can rewrite it as

√
1+x

1−x
=

√
1+x

1+x

1+x

1−x
= 1+xp

1−x2

Then we can make the substitution

40 HTTP://EN.WIKIPEDIA.ORG/WIKI/PYTHAGOREAN_THEOREM
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∫ a
0

1+xp
1−x2

d x = ∫ α
0

1+sinθ
cosθ cosθdθ 0 < a < 1

= ∫ α
0 1+ sinθdθ α= sin−1 a

= α+ [−cosθ]α0
= α+1−cosα

= 1+ sin−1 a −
p

1−a2

28.11.2 Tangent substitution

Figure 43: This substitution is easily derived from a triangle, using the PYTHAGOREAN

THEOREM41.

When the integrand contains a piece of the form
p

a2 +x2 we use the substitution

x = a tanθ
√

x2 +a2 = a secθ d x = a sec2θdθ

E.g., if the integrand is (x2+a2)-3/2 then on making this substitution we find

∫ z
0

(
x2 +a2

)− 3
2 d x = a−2

∫ α
0 cosθdθ z > 0

= a−2 [sinθ]α0 α= tan−1(z/a)
= a−2 sinα
= a−2 z/ap

1+z2/a2
= 1

a2
zp

a2+z2

If the integral is

I =
∫ z

0

√
x2 +a2 z > 0

41 HTTP://EN.WIKIPEDIA.ORG/WIKI/PYTHAGOREAN_THEOREM
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then on making this substitution we find

I = a2
∫ α

0 sec3θdθ α= tan−1(z/a)
= a2

∫ α
0 secθd tanθ

= a2[secθ tanθ]α0 − a2
∫ α

0 secθ tan2θdθ
= a2 secα tanα − a2

∫ α
0 sec3θdθ +a2

∫ α
0 secθdθ

= a2 secα tanα − I +a2
∫ α

0 secθdθ

After integrating by parts, and using trigonometric identities, we’ve ended up with an expression
involving the original integral. In cases like this we must now rearrange the equation so that the
original integral is on one side only

I = 1
2 a2 secα tanα + 1

2 a2
∫ α

0 secθdθ
= 1

2 a2 secα tanα + 1
2 a2 [ln(secθ+ tanθ)]α0

= 1
2 a2 secα tanα + 1

2 a2 ln(secα+ tanα)

= 1
2 a2

(√
1+ z2

a2

)
z
a + 1

2 a2 ln
(√

1+ z2

a2 + z
a

)
= 1

2 z
p

z2 +a2 + 1
2 a2 ln

(
z
a +

√
1+ z2

a2

)
As we would expect from the integrand, this is approximately z2/2 for large z.

In some cases it is possible to do trigonometric substitution in cases when there is no p appearing
in the integral.

Example

∫
1

x2 +1
d x

The denominator of this function is equal to (
√

1+x2)2. This suggests that we try to substitute x =
tanu and use the identity 1+ tan2 u = sec2 u . With this substitution, we obtain that d x = sec2 u du
and thus

∫
1

x2 +1
d x =

∫
1

tan2 u +1
sec2 u du

=
∫

1

sec2 u
sec2 u du

=
∫

du

= u + c

Using the initial substitution u = arctan x gives
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∫
1

x2 +1
d x = arctan x +C

28.11.3 Secant substitution

Figure 44: This substitution is easily derived from a triangle, using the PYTHAGOREAN

THEOREM42.

If the integrand contains a factor of the form
√

x2 −a2 we use the substitution

x = a secθ d x = a secθ tanθdθ
√

x2 −a2 = a tanθ.

Example 1

Find
∫ z

1

p
x2 −1

x
d x.

∫ z
1

p
x2−1
x d x = ∫ α

1
tanθ
secθ secθ tanθdθ z > 1

= ∫ α
0 tan2θdθ α= sec−1 z

= [tanθ−θ]α0 tanα=
p

sec2α−1

= tanα−α tanα=
p

z2 −1

=
p

z2 −1− sec−1 z

Example 2

Find
∫ z

1

p
x2 −1

x2 d x.

42 HTTP://EN.WIKIPEDIA.ORG/WIKI/PYTHAGOREAN_THEOREM
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∫ z
1

p
x2−1
x2 d x = ∫ α

1
tanθ
sec2 θ

secθ tanθdθ z > 1

= ∫ α
0

sin2 θ
cosθ dθ α= sec−1 z

We can now integrate by parts∫ z
1

p
x2−1
x2 d x = − [tanθcosθ]α0 +∫ α

0 secθdθ
= −sinα+ [ln(secθ+ tanθ)]α0
= ln(secα+ tanα)− sinα

= ln(z +
p

z2 −1)−
p

z2−1
z

43

28.12 Trigonometric Integrals

When the integrand is primarily or exclusively based on trigonometric functions, the following
techniques are useful.

28.12.1 Powers of Sine and Cosine

We will give a general method to solve generally integrands of the form cosm (x)sinn(x). First let
us work through an example.

∫
(cos3 x)(sin2 x)d x

Notice that the integrand contains an odd power of cos. So rewrite it as

∫
(cos2 x)(sin2 x)cos x d x

We can solve this by making the substitution u = sin(x) so du = cos(x) dx. Then we can write the
whole integrand in terms of u by using the identity

cos(x)2 = 1 - sin2(x)=1-u2.

So

∫
(cos3 x)(sin2 x)d x = ∫

(cos2 x)(sin2 x)cos x d x
= ∫

(1−u2)u2 du
= ∫

u2 du −∫
u4 du

= 1
3 u3 + 1

5 u5 +C
= 1

3 sin3 x − 1
5 sin5 x +C

.

43 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3ACALCULUS%20%28BOOK%29

200

http://en.wikibooks.org/wiki/Category%3ACalculus%20%28book%29


Trigonometric Integrals

This method works whenever there is an odd power of sine or cosine.

<blockquote style="background: white; border: 1px solid black; padding: 1em;"> To evaluate∫
(cosm x)(sinn x)d x when either m or n is odd.

• If m is odd substitute u=sin x and use the identity cos2x = 1 - sin2x=1-u2.
• If n is odd substitute u=cos x and use the identity sin2x = 1 - cos2x=1-u2.

</blockquote>

Example

Find
∫ π/2

0 cos40(x)sin3(x)d x.

As there is an odd power of sin we let u = cos x so du = - sin(x)dx. Notice that when x=0 we have
u=cos(0)=1 and when x =π/2 we have u = cos(π/2) = 0.∫ π/2

0 cos40(x)sin3(x)d x = ∫ π/2
0 cos40(x)sin2(x)sin(x)d x

= −∫ 0
1 u40(1−u2)du

= ∫ 1
0 u40(1−u2)du

= ∫ 1
0 u40 −u42du

= [ 1
41 u41 − 1

43 u43]1
0

= 1
41 − 1

43 .

When both m and n are even things get a little more complicated.

<blockquote style="background: white; border: 1px solid black; padding: 1em;"> To evaluate∫
(cosm x)(sinn x)d x when both m and n are even.

Use the IDENTITIES44 sin2x = 1/2 (1- cos 2x) and cos2x = 1/2 (1+ cos 2x). </blockquote>

Example

Find
∫

sin2 x cos4 x d x.

As sin2x = 1/2 (1- cos 2x) and cos2x = 1/2 (1+ cos 2x) we have

∫
sin2 x cos4 x d x =

∫ (
1

2
(1−cos2x)

)(
1

2
(1+cos2x)

)2

d x,

and expanding, the integrand becomes

1

8

∫ (
1−cos2 2x +cos2x −cos3 2x

)
d x.

Using the multiple angle identities

44 Chapter 64 on page 417
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I = 1
8

(∫
1d x −∫

cos2 2x d x +∫
cos2x d x −∫

cos3 2x d x
)

= 1
8

(
x − 1

2

∫
(1+cos4x)d x + 1

2 sin2x −∫
cos2 2x cos2x d x

)
= 1

16

(
x + sin2x +∫

cos4x d x −2
∫

(1− sin2 2x)cos2x d x
)

then we obtain on evaluating

I = x

16
− sin4x

64
+ sin3 2x

48
+C

28.12.2 Powers of Tan and Secant

<blockquote style="background: white; border: 1px solid black; padding: 1em;"> To evaluate∫
(tanm x)(secn x)d x.

1. If n is even and n ≥ 2 then substitute u=tan x and use the IDENTITY45 sec2x = 1 + tan2x.
2. If n and m are both odd then substitute u=sec x and use the IDENTITY46 tan2x = sec2x-1.
3. If n is odd and m is even then use the IDENTITY47 tan2x = sec2x-1 and apply a reduction

formula to integrate sec j xd x .

</blockquote>

Example 1

Find
∫

sec2 xd x.

There is an even power of sec x. Substituting u = tan x gives du = sec2 xd x so∫
sec2 xd x = ∫

du = u +C = tan x +C .

Example 2

Find
∫

tan xd x.

Let u = cos x so du =−sin xd x. Then∫
tan xd x = ∫ sin x

cos x d x
= ∫ −1

u du
= − ln |u|+C
= − ln |cos x|+C
= ln |sec x|+C .

45 Chapter 64 on page 417
46 Chapter 64 on page 417
47 Chapter 64 on page 417
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Example 3

Find
∫

sec xd x.

The trick to do this is to multiply and divide by the same thing like this:∫
sec xd x = ∫

sec x sec x+tan x
sec x+tan x d x

= ∫ sec2 x+sec x tan x
sec x+tan x

.

Making the substitution u = sec x + tan x so du = sec x tan x + sec2 xd x,∫
sec xd x = ∫ 1

u du
= ln |u|+C
= ln |sec x + tan x|+C

.

28.12.3 More trigonometric combinations

<blockquote style="background: white; border: 1px solid black; padding: 1em;"> For the integrals∫
sinnx cosmx d x or

∫
sinnx sinmx d x or

∫
cosnx cosmx d x use the IDENTITIES48

• sin a cosb = 1
2 (sin(a +b)+ sin(a −b))

• sin a sinb = 1
2 (cos(a −b)−cos(a +b))

• cos a cosb = 1
2 (cos(a −b)+cos(a +b))

</blockquote>

Example 1

Find
∫

sin3x cos5x d x.

We can use the fact that sin a cos b=(1/2)(sin(a+b)+sin(a-b)), so

sin3x cos5x = (sin8x + sin(−2x))/2

Now use the oddness property of sin(x) to simplify

sin3x cos5x = (sin8x − sin2x)/2

And now we can integrate

∫
sin3x cos5x d x = 1

2

∫
sin8x − sin2xd x

= 1
2 (−1

8 cos8x + 1
2 cos2x)+C

48 Chapter 64 on page 417
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Example 2

Find:
∫

sin x sin2x d x.

Using the identities

sin x sin2x = 1

2
(cos(−x)−cos(3x)) = 1

2
(cos x −cos3x).

Then

∫
sin x sin2x d x = 1

2

∫
(cos x −cos3x)d x

= 1
2 (sin x − 1

3 sin3x)+C

49

28.13 Reduction Formula

A reduction formula is one that enables us to solve an integral problem by reducing it to a problem
of solving an easier integral problem, and then reducing that to the problem of solving an easier
problem, and so on.

For example, if we let

In =
∫

xnex d x

Integration by parts allows us to simplify this to

In = xnex −n
∫

xn−1ex d x =

In = xnex −nIn−1

which is our desired reduction formula. Note that we stop at

I0 = ex

.

Similarly, if we let

In =
∫ α

0
secn θdθ

49 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3ACALCULUS%20%28BOOK%29
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then integration by parts lets us simplify this to

In = secn−2α tanα− (n −2)
∫ α

0
secn−2θ tan2θdθ

Using the trigonometric identity, tan2=sec2-1, we can now write

In = secn−2α tanα +(n −2)
(∫ α

0 secn−2θdθ−∫ α
0 secn θdθ

)
= secn−2α tanα +(n −2)(In−2 − In)

Rearranging, we get

In = 1

n −1
secn−2α tanα+ n −2

n −1
In−2

Note that we stop at n=1 or 2 if n is odd or even respectively.

As in these two examples, integrating by parts when the integrand contains a power often results in
a reduction formula.
50

28.14 Irrational Functions

Integration of irrational functions is more difficult than rational functions, and many cannot be
done. However, there are some particular types that can be reduced to rational forms by suitable
substitutions.

28.14.1 Type 1

Integrand contains n
√

ax+b
cx+d

Use the substitution u = n
√

ax+b
cx+d .

Example

Find
∫ 1

x

√
1−x

x d x.∫ x
3pax+b

d x

50 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3ACALCULUS%20%28BOOK%29
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28.14.2 Type 2

Integral is of the form
∫ P x+Qp

ax2+bx+c
d x

Write P x +Q as P x +Q = p d
d x (ax2 +bx + c)+q .

Example

Find
∫ 4x−1p

5−4x−x2
d x.

28.14.3 Type 3

Integrand contains
p

a2 −x2,
p

a2 +x2 or
p

x2 −a2

This was discussed in "trigonometric substitutions above". Here is a summary:

1. For
p

a2 −x2, use x = a sinθ.
2. For

p
a2 +x2, use x = a tanθ.

3. For
p

x2 −a2, use x = a secθ.

28.14.4 Type 4

Integral is of the form
∫ 1

(px+q)
p

ax2+bx+c
d x

Use the substitution u = 1
px+q .

Example

Find
∫ 1

(1+x)
p

3+6x+x2
d x.

28.14.5 Type 5

Other rational expressions with the irrational function
p

ax2 +bx + c

1. If a > 0, we can use u =
p

ax2 +bx + c ±p
ax.

2. If c > 0, we can use u =
p

ax2+bx+c±pc
x .

3. If ax2 +bx + c can be factored as a(x −α)(x −β), we can use u =
√

a(x−α)
x−β .

4. If a < 0 and ax2 + bx + c can be factored as −a(α− x)(x −β), we can use x = αcos2θ+
βsin2θ,/thet a +β.

51

51 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3ACALCULUS%20%28BOOK%29
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28.15 Numerical Approximations

It is often the case, when evaluating definite integrals, that an antiderivative for the integrand cannot
be found, or is extremely difficult to find. In some instances, a numerical approximation to the value
of the definite value will suffice. The following techniques can be used, and are listed in rough order
of ascending complexity.

28.16 Riemann Sum

This comes from the definition of an integral. If we pick n to be finite, then we have:∫ b
a f (x) d x ≈∑n

i=1 f (x∗
i )∆x

where x∗
i is any point in the i-th sub-interval [xi−1, xi ] on [a,b].

28.16.1 Right Rectangle

A special case of the Riemann sum, where we let x∗
i = xi , in other words the point on the far

right-side of each sub-interval on, [a,b]. Again if we pick n to be finite, then we have:∫ b
a f (x) d x ≈∑n

i=1 f (xi )∆x

28.16.2 Left Rectangle

Another special case of the Riemann sum, this time we let x∗
i = xi−1, which is the point on the far

left side of each sub-interval on [a,b]. As always, this is an approximation when n is finite. Thus,
we have:∫ b

a f (x) d x ≈∑n
i=1 f (xi−1)∆x

28.17 Trapezoidal Rule

∫ b
a f (x) d x ≈ b−a

2n

[
f (x0)+2

∑n−1
i=1 ( f (xi ))+ f (xn)

] = b−a
2n ( f (x0)+2 f (x1)+2 f (x2)+·· ·+2 f (xn−1)+

f (xn))

28.18 Simpson’s Rule

Remember, n must be even,

{|

|- |
∫ b

a f (x) d x |≈ b−a
3n

[
f (x0)+∑n−1

i=1

(
(3− (−1)i ) f (xi )

)+ f (xn)
]

|- | |=
b−a
3n

[
f (x0)+4 f (x1)+2 f (x2)+4 f (x3)+·· ·+4 f (xn−1)+ f (xn)

]
|}
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28.19 Further reading

• NUMERICAL METHODS/NUMERICAL INTEGRATION52

53

52 HTTP://EN.WIKIBOOKS.ORG/WIKI/NUMERICAL%20METHODS%2FNUMERICAL%20INTEGRATION
53 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3ACALCULUS%20%28BOOK%29
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29 Improper Integrals

1. REDIRECT CALCULUS/IMPROPER INTEGRALS1

29.1 Exercises

29.2 Set One: Sums

[Insert Numbered Problems Here]

SOLUTIONS TO SET ONE2

29.3 Set Two: Integration of Polynomials

Given the above rules, practice indefinite integration on the following:

1.
∫

(x2 −2)2 d x
2.

∫
8x3 d x

3.
∫

4x2 +11x3 d x
4.

∫
31x32 +4x3 −9x4 d x

5.
∫

5x−2 d x

SOLUTIONS TO SET TWO3

29.4 Indefinite Integration

Antiderivatives

1.
∫

cos x + sin x d x
2.

∫
3sin x d x

3.
∫

1+ tan2 x d x
4.

∫
3x − sec2 x d x

5.
∫ −ex d x

6.
∫

8ex d x
7.

∫ 1
7x d x

1 HTTP://EN.WIKIBOOKS.ORG/WIKI/CALCULUS%2FIMPROPER%20INTEGRALS
2 Chapter 62.11.1 on page 413
3 Chapter 62.13 on page 413
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8.
∫ 1

x2+a2 d x

29.5 Integration by parts

1. Consider the integral
∫

sin(x)cos(x)d x. Find the integral in two different ways. (a) Integrate
by parts with u = sin(x) and v ′ = cos(x). (b) Integrate by parts with u = cos(x) and v ′ =
sin(x).

Compare your answers. Are they the same?

SOLUTIONS TO SET THREE4

4 Chapter 62.14 on page 413
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31 Area

31.1 Introduction

Finding the area between two curves, usually given by two explicit functions, is often useful in
calculus.

In general the rule for finding the area between two curves is

A = Atop − Abot tom or

If f(x) is the upper function and g(x) is the lower function

A = ∫ b
a [ f (x)− g (x)]d x

This is true whether the functions are in the first quadrant or not.

31.2 Area between two curves

Suppose we are given two functions y1=f(x) and y2=g(x) and we want to find the area between them
on the interval [a,b]. Also assume that f(x)≥ g(x) for all x on the interval [a,b]. Begin by partitioning
the interval [a,b] into n equal subintervals each having a length of ∆x=(b-a)/n. Next choose any
point in each subinterval, xi*. Now we can ’create’ rectangles on each interval. At the point xi*,
the height of each rectangle is f(xi*)-g(xi*) and the width is ∆x. Thus the area of each rectangle is
[f(xi*)-g(xi*)]∆x. An approximation of the area, A, between the two curves is

A :=
n∑

i=1
[ f (x∗

i )− g (x∗
i )]∆x

.

Now we take the limit as n approaches infinity and get

A = lim
n→∞

n∑
i=1

[ f (x∗
i )− g (x∗

i )]∆x

which gives the exact area. Recalling the definition of the definite integral we notice that

A =
∫ b

a
[ f (x)− g (x)]d x

.
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This formula of finding the area between two curves is sometimes known as applying integration
with respect to the x-axis since the rectangles used to approximate the area have their bases lying
parallel to the x-axis. It will be most useful when the two functions are of the form y1=f(x) and
y2=g(x). Sometimes however, one may find it simpler to integrate with respect to the y-axis. This
occurs when integrating with respect to the x-axis would result in more than one integral to be
evaluated. These functions take the form x1=f(y) and x2=g(y) on the interval [c,d]. Note that [c,d]
are values of y. The derivation of this case is completely identical. Similar to before, we will assume
that f(y)≥ g(y) for all y on [c,d]. Now, as before we can divide the interval into n subintervals and
create rectangles to approximate the area between f(y) and g(y). It may be useful to picture each
rectangle having their ’width’, ∆y, parallel to the y-axis and ’height’, f(yi*)-g(yi*) at the point yi*,
parallel to the x-axis. Following from the work above we may reason that an approximation of the
area, A, between the two curves is

A :=
n∑

i=1
[ f (y∗

i )− g (y∗
i )]∆y

.

As before, we take the limit as n approaches infinity to arrive at

A = lim
n→∞

n∑
i=1

[ f (y∗
i )− g (y∗

i )]∆y

,

which is nothing more than a definite integral, so

A =
∫ d

c
[ f (y)− g (y)]d y

.

Regardless of the form of the functions, we basically use the same formula.
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32 Volume

When we think about volume from an intuitive point of view, we typically think of it as the amount
of "space" an item occupies. Unfortunately assigning a number that measures this amount of space
can prove difficult for all but the simplest geometric shapes. Calculus provides a new tool for
calculating volume that can greatly extend our ability to calculate volume. In order to understand
the ideas involved it helps to think about the volume of a cylinder. The volume of a cylinder is
calculated using the formula V = πr 2h. The base of the cylinder is a circle whose area is given
by A = πr 2. Notice that the volume of a cylinder is derived by taking the area of its base and
multiplying by the height h. For more complicated shapes, we could think of approximating the
volume by taking the area of some cross section at some height x and multiplying by some small
change in height ∆x then adding up the heights of all of these approximations from the bottom to the
top of the object. This would appear to be a Riemann sum. Keeping this in mind, we can develop a
more general formula for the volume of solids in R3 (3 dimensional space).

32.1 Formal Definition

Formally the ideas above suggest that we can calculate the volume of a solid by calculating the
integral of the cross-sectional area along some dimension. In the above example of a cylinder, the
every cross section was given by the same circle, so the cross-sectional area is therefore a constant
function, and the dimension of integration was vertical (although it could have been any one we
desired). Generally, if S is a solid that lies in R3 between x = a and x = b, let A(x) denote the area
of a cross section taken in the plane perpendicular to the x direction, and passing through the point
x. If the function A(x) is continuous on [a,b], then the volume VS of the solid S is given by:

VS =
∫ b

a
A(x)d x.
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32.2 Examples

32.2.1 Example 1: A right cylinder

Figure 45

Now we will calculate the volume of a right cylinder using our new ideas about how to calculate
volume. Since we already know the formula for the volume of a cylinder this will give us a "sanity
check" that our formulas make sense. First, we choose a dimension along which to integrate. In
this case, it will greatly simplify the calculations to integrate along the height of the cylinder, so
this is the direction we will choose. Thus we will call the vertical direction (see diagram) x. Now
we find the function, A(x), which will describe the cross-sectional area of our cylinder at a height
of x. The cross-sectional area of a cylinder is simply a circle. Now simply recall that the area of a
circle is πr 2, and so A(x) = πr 2. Before performing the computation, we must choose our bounds
of integration. In this case, we simply define x = 0 to be the base of the cylinder, and so we will
integrate from x = 0 to x = h, where h is the height of the cylinder. Finally, we integrate:

{|

|Vcylinder |= ∫ b
a A(x)d x |- | |= ∫ h

0 πr 2 d x |- | |=πr 2
∫ h

0 d x |- | |= πr 2x
∣∣h

x=0 |- | |=πr 2(h−0) |- | |=πr 2h.
|} This is exactly the familiar formula for the volume of a cylinder.
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32.2.2 Example 2: A right circular cone

Figure 46

For our next example we will look at an example where the cross sectional area is not constant.
Consider a right circular cone. Once again the cross sections are simply circles. But now the radius
varies from the base of the cone to the tip. Once again we choose x to be the vertical direction, with
the base at x = 0 and the tip at x = h, and we will let R denote the radius of the base. While we
know the cross sections are just circles we cannot calculate the area of the cross sections unless we
find some way to determine the radius of the circle at height x.

Figure 47
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Luckily in this case it is possible to use some of what we know from geometry. We can imagine
cutting the cone perpendicular to the base through some diameter of the circle all the way to the tip
of the cone. If we then look at the flat side we just created, we will see simply a triangle, whose
geometry we understand well. The right triangle from the tip the base at height x is similar to the
right triangle with from the tip with height h triangle. This tells us that r

h−x = R
h . So that we see that

the radius of the circle at height x is r (x) = R
h (h−x). Now using the familiar formula for the area of

a circle we see that A(x) =πR2

h2 (h −x)2.

Now we are ready to integrate.

{|

|Vcone |= ∫ b
a A(x)d x |- | |= ∫ h

0 πR2

h2 (h −x)2 d x |- | |=πR2

h2

∫ h
0 (h −x)2 d x |- | |By u-substitution we may

let u = h −x, then du =−d x and our integral becomes |- | |=πR2

h2

(
−∫ 0

h u2 du
)

|- | |=πR2

h2

(
−u3

3

∣∣∣h

0

)
|- | |=πR2

h2 (−0+ h3

3 ) |- | |= 1
3πR2h. |}

32.2.3 Example 3: A sphere

Figure 48

In a similar fashion, we can use our definition to prove the well known formula for the volume of a
sphere. First, we must find our cross-sectional area function, A(x). Consider a sphere of radius R
which is centered at the origin in R3. If we again integrate vertically then x will vary from −R to R.
In order to find the area of a particular cross section it helps to draw a right triangle whose between
the center of the sphere, the center of the circular cross section, and a point along the circumference
of the cross section. As shown in the diagram the side lengths of this triangle will be R, |x|, and r .
Where r is the radius of the circular cross section. Then by the Pythagorean theorem r =

√
R2 −|x|2
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and find that A(x) = π(R2 −|x|2). It is slightly helpful to notice that |x|2 = x2 so we do not need to
keep the absolute value.

So we have that

{|

|Vsphere |= ∫ b
a A(x)d x |- | |= ∫ R

−R π(R2 − x2)d x |- | |= π
∫ R
−R R2 d x −π∫ R

−R x2 d x |- | |= πR2x
∣∣R

x=−R −
π x3

3

∣∣∣R

x=−R
|- | |=πR2(R − (−R))−π

(
R3

3 − (−R)3

3

)
|- | |= 2πR3 − 2

3πR3 = 4
3πR3. |}

32.3 Extension to Non-trivial Solids

Now that we have shown our definition agrees with our prior knowledge, we will see how it can
help us extend our horizons to solids whose volumes are not possible to calculate using elementary
geometry.
1

1 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3ACALCULUS%20%28BOOK%29
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33 Volume of solids of revolution

33.1 Revolution solids

A solid is said to be of revolution when it is formed by rotating a given curve against an axis.
For example, rotating a circle positioned at (0,0) against the y-axis would create a revolution solid,
namely, a sphere.

33.1.1 Calculating the volume

Calculating the volume of this kind of solid is very similar to calculating any VOLUME1: we calcu-
late the basal area, and then we integrate through the height of the volume.

Say we want to calculate the volume of the shape formed rotating over the x-axis the area contained
between the curves f (x) and g (x) in the range [a,b]. First calculate the basal area:

|π f (x)2 −πg (x)2|

And then integrate in the range [a,b]:

∫ b

a
|π f (x)2 −πg (x)2|d x =π

∫ b

a
| f (x)2 − g (x)2|d x

Alternatively, if we want to rotate in the y-axis instead, f and g must be invertible in the range [a,b],
and, following the same logic as before:

π

∫ b

a
| f −1(x)

2 − g−1(x)
2|d x

SOLID OF REVOLUTION2

3

1 Chapter 32 on page 215
2 HTTP://EN.WIKIPEDIA.ORG/WIKI/SOLID%20OF%20REVOLUTION
3 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3ACALCULUS%20%28BOOK%29
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34 Arc length

Suppose that we are given a function f and we want to calculate the length of the curve drawn out
by the graph of f. If the graph were a straight line this would be easy — the formula for the length
of the line is given by Pythagoras’ theorem. And if the graph were a polygon we can calculate the
length by adding up the length of each piece.

The problem is that most graphs are not polygons. Nevertheless we can estimate the length of the
curve by approximating it with straight lines. Suppose the curve C is given by the formula y = f (x)
for a ≤ x ≤ b. We divide the interval [a,b] into n subintervals with equal width ∆x and endpoints
x0, x1, . . . , xn . Now let yi = f (xi ) so Pi = (xi , yi ) is the point on the curve above xi . The length of
the straight line between Pi and Pi+1 is

|Pi Pi+1| =
√

(yi+1 − yi )2 + (xi+1 −xi )2.

So an estimate of the length of the curve C is the sum

n−1∑
i=0

|Pi Pi+1|

As we divide the interval [a,b] into more pieces this gives a better estimate for the length of C. In
fact we make that a definition.

34.1 Definition (Length of a Curve)

The length of the curve y = f (x) for a ≤ x ≤ b is defined to be L = limn→∞
∑n−1

i=0 |Pi+1Pi |.

34.2 The Arclength Formula

Suppose that f ′ is continuous on [a,b]. Then the length of the curve given by y = f (x) between a
and b is given by

L =
∫ b

a

√
1+ ( f ′(x))2d x

And in Leibniz notation
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L =
∫ b

a

√
1+

(
d y

d x

)2

d x

Proof: Consider yi+1 − yi = f (xi+1)− f (xi ). By the MEAN VALUE THEOREM1 there is a point zi

in (xi+1, xi ) such that

yi+1 − yi = f (xi+1)− f (xi ) = f ′(zi )(xi+1 −xi )

.

So

{|

||Pi Pi+1| |= |
√

(yi+1 − yi )2 + (xi+1 −xi )2 |- | |= |
√

( f ′(zi ))2(xi+1 −xi )2 + (xi+1 −xi )2 |- | |=
|
√

(1+ ( f ′(zi ))2)(xi+1 −xi )2 |- | |= |
√

(1+ ( f ′(zi ))2)∆x. |}

Putting this into the definiton of the length of C gives

L = lim
n→∞

n−1∑
i=0

√
(1+ ( f ′(zi ))2)∆x.

Now this is the definition of the integral of the function g (x) =
√

1+ ( f ′(x))2 between a and b (notice
that g is continuous because we are assuming that f ′ is continuous). Hence

L =
∫ b

a

√
1+ ( f ′(x))2d x

as claimed.

34.3 Arclength of a parametric curve

For a parametric curve, that is, a curve defined by x = f (t ) and y = g (t ), the formula is slightly
different:

L =
∫ b

a

√
( f ′(t ))2 + (g ′(t ))2 d t

Proof: The proof is analogous to the previous one: Consider yi+1 − yi = g (ti+1)− g (ti ) and xi+1 −
xi = f (ti+1)− f (ti ). By the Mean Value Theorem there are points ci and di in (ti+1, ti ) such that

1 Chapter 27 on page 177
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yi+1 − yi = g (ti+1)− g (ti ) = g ′(ci )(ti+1 − ti )

and

xi+1 −xi = f (ti+1)− f (ti ) = f ′(di )(ti+1 − ti )

.

So

{|

||Pi Pi+1| |= |
√

(yi+1 − yi )2 + (xi+1 −xi )2 |- | |= |
√

(g ′(ci ))2(ti+1 − ti )2 + ( f ′(di ))2(ti+1 − ti )2 |- | |=
|
√

( f ′(di ))2)+ (g ′(ci ))2)(ti+1 − ti )2 |- | |= |
√

( f ′(di ))2 + (g ′(ci ))2∆t . |}

Putting this into the definiton of the length of the curve gives

L = lim
n→∞

n−1∑
i=0

√
( f ′(di ))2 + (g ′(ci ))2∆t .

This is equivalent to:

L =
∫ b

a

√
( f ′(t ))2 + (g ′(t ))2 d t

ARC LENGTH2

3

2 HTTP://EN.WIKIPEDIA.ORG/WIKI/ARC%20LENGTH
3 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3ACALCULUS%20%28BOOK%29
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35 Surface area

SURFACE_OF_REVOLUTION1

Suppose we are given a function f and we want to calculate the surface area of the function f ro-
tated around a given line. The calculation of surface area of revolution is related to the arc length
calculation.

If the function f is a straight line, other methods such as surface area formulas for cylinders and
conical frustra can be used. However, if f is not linear, an integration technique must be used.

Recall the formula for the lateral surface area of a conical frustum:

A = 2πr l

where r is the average radius and l is the slant height of the frustum.

For y=f(x) and a ≤ x ≤ b, we divide [a,b] into subintervals with equal width x and endpoints
x0, x1, . . . , xn . We map each point yi = f (xi ) to a conical frustum of width x and lateral surface
area Ai .

We can estimate the surface area of revolution with the sum

A =
n∑

i=0
Ai

As we divide [a,b] into smaller and smaller pieces, the estimate gives a better value for the surface
area.

35.1 Definition (Surface of Revolution)

The surface area of revolution of the curve y=f(x) about a line for a ≤ x ≤ b is defined to be

A = limn→∞
∑n

i=0 Ai

35.2 The Surface Area Formula

Suppose f is a continuous function on the interval [a,b] and r(x) represents the distance from f(x) to
the axis of rotation. Then the lateral surface area of revolution about a line is given by

1 HTTP://EN.WIKIPEDIA.ORG/WIKI/SURFACE_OF_REVOLUTION
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Surface area

A = 2π
∫ b

a
r (x)

√
1+ ( f ′(x))2d x

And in Leibniz notation

A = 2π
∫ b

a
r (x)

√
1+

(
d y

d x

)2

d x

Proof:

{|

|A |= |limn→∞
∑n

i=1 Ai |- | |= |limn→∞
∑n

i=1 2πri li |- | |= |2π limn→∞
∑n

i=1 ri li |- | |}

As n →∞ and ∆x → 0, we know two things:

1. the average radius of each conical frustum ri approaches a single value

2. the slant height of each conical frustum li equals an infitesmal segment of arc length

From the arc length formula discussed in the previous section, we know that

li =
√

1+ ( f ′(xi ))2

Therefore

{|

|A |= |2π limn→∞
∑n

i=1 ri li |- | |= |2π limn→∞
∑n

i=1 ri
√

1+ ( f ′(xi ))2∆x |- | |}

Because of the definition of an integral
∫ b

a f (x)d x = limn→∞
∑n

i=1 f (ci )∆xi , we can simplify the
sigma operation to an integral.

A = 2π
∫ b

a
r (x)

√
1+ ( f ′(x))2d x

Or if f is in terms of y on the interval [c,d]

A = 2π
∫ d

c
r (y)

√
1+ ( f ′(y))2d y

2

2 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3ACALCULUS%20%28BOOK%29
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36 Work

W = ∫
F dr = ∫

ma dr = ∫
m d v

d t dr = m
∫ dr

d t d v = m
∫

vd v = 1
2 mv2 =∆Ek

1
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37 Centre of mass

~rG =
∑n

i=1~ri mi∑n
i=1 mi

1

37.1 Exercises

See the exercises for Integration

1 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3ACALCULUS%20%28BOOK%29
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39 Introduction

39.1 Introduction

Parametric equations are typically definied by two equations that specify both the x and y coordi-
nates of a graph using a parameter. They are graphed using the parameter (usually t) to figure out
both the x and y coordinates.

Example 1:

x = t

y = t 2

Note: This parametric equation is equivalent to the rectangular equation y = x2 .

Example 2:

x = cos t

y = sin t

Note: This parametric equation is equivalent to the rectangular equation x2 + y2 = 1 and the polar
equation r = 1 .

Parametric equations can be plotted by using a t-table to show values of x and y for each value of t.
They can also be plotted by eliminating the parameter though this method removes the parameter’s
importance.

39.2 Forms of Parametric Equations

Parametric equations can be described in three ways:

• Parametric form
• Vector form
• An equality

The first two forms are used far more often, as they allow us to find the value of the component at
the given value of the parameter. The final form is used less often; it allows us to verify a solution
to the equation, or find the parameter (or some constant multiple thereof).

39.2.1 Parametric Form

A parametric equation can be shown in parametric form by describing it with a system of equations.
For instance:
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x = t

y = t 2 −1

39.2.2 Vector Form

Vector form can be used to describe a parametric equation in a similar manner to parametric form.
In this case, a position vector is given: [x, y] = [t , t 2 −1]

39.2.3 Equalities

A parametric equation can also be described with a set of equalities. This is done by solving for the
parameter, and equating the components. For example:

x = t

y = t 2 −1

From here, we can solve for t:

t = x

t =±√
1+ y

And hence equate the two right-hand sides:

x =±√
1+ y

39.3 Converting Parametric Equations

There are a few common place methods used to change a parametric equation to rectangular form.
The first involves solving for t in one of the two equations and then replacing the new expression
for t with the variable found in the second equation.

Example 1:

x = t −3

y = t 2

x = t −3 becomes x +3 = t

y = (x +3)2

Example 2:

Given

x = 3cosθ

y = 4sinθ

Isolate the trigonometric functions

236



Converting Parametric Equations

cosθ = x
3

sinθ = y
4

Use the "Beloved Identity"

cos2θ+ si n2θ = 1

x2

9 + y2

16 = 1
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40 Differentiation

40.1 Taking Derivatives of Parametric Systems

Just as we are able to differentiate functions of x, we are able to differentiate x and y, which are
functions of t. Consider:

x = sin t

y = t

We would find the derivative of x with respect to t, and the derivative of y with respect to t:

x ′ = cos t

y ′ = 1

In general, we say that if

x = f (t ) and y = g (t ) then:

x ′ = f ′(t ) and y ′ = g ′(t )

It’s that simple.

This process works for any amount of variables.

40.2 Slope of Parametric Equations

In the above process, x’ has told us only the rate at which x is changing, not the rate for y, and vice
versa. Neither is the slope.

In order to find the slope, we need something of the form d y
d x .

We can discover a way to do this by simple algebraic manipulation:

y ′
x ′ =

d y
d t
d x
d t

= d y
d x

So, for the example in section 1, the slope at any time t:
1

cos t = sec t

In order to find a vertical tangent line, set the horizontal change, or x’, equal to 0 and solve.

In order to find a horizontal tangent line, set the vertical change, or y’, equal to 0 and solve.

If there is a time when both x’ and y’ are 0, that point is called a singular point.
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40.3 Concavity of Parametric Equations

Solving for the second derivative of a parametric equation can be more complex that it may seem at

first glance. When you have take the derivative of d y
d x in terms of t, you are left with

d2 y
d x
d t :

d
d t [ d y

d x ] =
d2 y
d x
d t .

By multiplying this expression by d t
d x , we are able to solve for the second derivative of the parametric

equation:
d2 y
d x
d t × d t

d x = d 2 y
d x2 .

Thus, the concavity of a parametric equation can be described as:

d
d t [ d y

d x ]× d t
d x

So for the example in sections 1 and 2, the concavity at any time t:
d

d t [csc t ]×cos t =−csc2 t ×cos t

1
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41 Integration

41.1 Introduction

Because most parametric equations are given in explicit form, they can be integrated like many other
equations. Integration has a variety of applications with respect to parametric equations, especially
in kinematics and vector calculus.

x = ∫
x ′(t )d t

y = ∫
y ′(t )d t

1
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42 Polar Equations

=Introduction

Figure 49: A polar grid with several angles labeled in degrees

The polar coordinate system is a two-dimensional coordinate system in which each point on a
plane is determined by an angle and a distance. The polar coordinate system is especially useful in
situations where the relationship between two points is most easily expressed in terms of angles and
distance; in the more familiar Cartesian coordinate system or rectangular coordinate system, such a
relationship can only be found through trigonometric formulae.

As the coordinate system is two-dimensional, each point is determined by two polar coordinates: the
radial coordinate and the angular coordinate. The radial coordinate (usually denoted as r ) denotes
the point’s distance from a central point known as the pole (equivalent to the origin in the Cartesian
system). The angular coordinate (also known as the polar angle or the azimuth angle, and usually
denoted by or t) denotes the positive or anticlockwise (counterclockwise) angle required to reach
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the point from the 0° ray or polar axis (which is equivalent to the positive x-axis in the Cartesian
coordinate plane).

42.1 Plotting points with polar coordinates

Figure 50: The points (3,60°) and (4,210°) on a polar coordinate system

Each point in the polar coordinate system can be described with the two polar coordinates, which are
usually called r (the radial coordinate) and (the angular coordinate, polar angle, or azimuth angle,
sometimes represented as or t). The r coordinate represents the radial distance from the pole, and
the coordinate represents the anticlockwise (counterclockwise) angle from the 0° ray (sometimes
called the polar axis), known as the positive x-axis on the Cartesian coordinate plane.

For example, the polar coordinates (3, 60°) would be plotted as a point 3 units from the pole on the
60° ray. The coordinates (&minus;3, 240°) would also be plotted at this point because a negative
radial distance is measured as a positive distance on the opposite ray (the ray reflected about the
origin, which differs from the original ray by 180°).

One important aspect of the polar coordinate system, not present in the Cartesian coordinate system,
is that a single point can be expressed with an infinite number of different coordinates. This is
because any number of multiple revolutions can be made around the central pole without affecting
the actual location of the point plotted. In general, the point (r , ) can be represented as (r , ± n×360°)
or (r , ± (2n + 1)180°), where n is any integer.

The arbitrary coordinates (0, ) are conventionally used to represent the pole, as regardless of the
coordinate, a point with radius 0 will always be on the pole. To get a unique representation of a
point, it is usual to limit r to negative and non-negative numbers r 0 and to the interval [0, 360°)
or (180°, 180°] (or, in radian measure, [0, 2) or (, ]).
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Angles in polar notation are generally expressed in either degrees or radians, using the conversion 2
rad = 360°. The choice depends largely on the context. Navigation applications use degree measure,
while some physics applications (specifically rotational mechanics) and almost all mathematical
literature on calculus use radian measure.

42.1.1 Converting between polar and Cartesian coordinates

Figure 51: A diagram illustrating the conversion formulae

The two polar coordinates r and can be converted to the Cartesian coordinates x and y by using the
trigonometric functions sine and cosine:

x = r cosθ

y = r sinθ,

while the two Cartesian coordinates x and y can be converted to polar coordinate r by

r =
√

x2 + y2

(by a simple application of the Pythagorean theorem).

To determine the angular coordinate , the following two ideas must be considered:
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• For r = 0, can be set to any real value.
• For r 0, to get a unique representation for , it must be limited to an interval of size 2. Conventional

choices for such an interval are [0, 2) and (&minus;, ].

To obtain in the interval [0, 2), the following may be used (arctan denotes the inverse of the tangent
function):

θ =



arctan( y
x ) if x > 0 and y ≥ 0

arctan( y
x )+2π if x > 0 and y < 0

arctan( y
x )+π if x < 0

π
2 if x = 0 and y > 0
3π
2 if x = 0 and y < 0

To obtain in the interval (&minus;, ], the following may be used:

θ =



arctan( y
x ) if x > 0

arctan( y
x )+π if x < 0 and y ≥ 0

arctan( y
x )−π if x < 0 and y < 0

π
2 if x = 0 and y > 0

−π
2 if x = 0 and y < 0

One may avoid having to keep track of the numerator and denominator signs by use of the atan2
function, which has separate arguments for the numerator and the denominator.

42.2 Polar equations

The equation defining an algebraic curve expressed in polar coordinates is known as a polar equa-
tion. In many cases, such an equation can simply be specified by defining r as a function of . The
resulting curve then consists of points of the form (r (), ) and can be regarded as the graph of the
polar function r .

Different forms of symmetry can be deduced from the equation of a polar function r . If r () = r () the
curve will be symmetrical about the horizontal (0°/180°) ray, if r () = r () it will be symmetric about
the vertical (90°/270°) ray, and if r (°) = r () it will be rotationally symmetric ° counterclockwise
about the pole.

Because of the circular nature of the polar coordinate system, many curves can be described by a
rather simple polar equation, whereas their Cartesian form is much more intricate. Among the best
known of these curves are the polar rose, Archimedean spiral, lemniscate, limaçon, and cardioid.

For the circle, line, and polar rose below, it is understood that there are no restrictions on the domain
and range of the curve.
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42.2.1 Circle

Figure 52: A circle with equation r () = 1

The general equation for a circle with a center at (r 0, ) and radius a is

r 2 −2r r0 cos(θ−ϕ)+ r 2
0 = a2.

This can be simplified in various ways, to conform to more specific cases, such as the equation

r (θ) = a
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for a circle with a center at the pole and radius a.

42.2.2 Line

Radial lines (those running through the pole) are represented by the equation

θ =ϕ
,

where is the angle of elevation of the line; that is, = arctan m where m is the slope of the line in
the Cartesian coordinate system. The non-radial line that crosses the radial line = perpendicularly
at the point (r 0, ) has the equation

r (θ) = r0 sec(θ−ϕ).
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42.2.3 Polar rose

Figure 53: A polar rose with equation r () = 2 sin 4

A polar rose is a famous mathematical curve that looks like a petaled flower, and that can be ex-
pressed as a simple polar equation,

r (θ) = a cos(kθ+φ0)

for any constant φ0 (including 0). If k is an integer, these equations will produce a k-petaled rose if
k is odd, or a 2k-petaled rose if k is even. If k is rational but not an integer, a rose-like shape may
form but with overlapping petals. Note that these equations never define a rose with 2, 6, 10, 14,
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etc. petals. The variable a represents the length of the petals of the rose.

42.2.4 Archimedean spiral

Figure 54: One arm of an Archimedean spiral with equation r() = for 0 < < 6

The Archimedean spiral is a famous spiral that was discovered by Archimedes, which also can be
expressed as a simple polar equation. It is represented by the equation

r (θ) = a +bθ.
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Changing the parameter a will turn the spiral, while b controls the distance between the arms,
which for a given spiral is always constant. The Archimedean spiral has two arms, one for > 0
and one for < 0. The two arms are smoothly connected at the pole. Taking the mirror image of
one arm across the 90°/270° line will yield the other arm. This curve is notable as one of the first
curves, after the CONIC SECTIONS1, to be described in a mathematical treatise, and as being a
prime example of a curve that is best defined by a polar equation.

42.2.5 Conic sections

Figure 55: Ellipse, showing semi-latus rectum

A conic section with one focus on the pole and the other somewhere on the 0° ray (so that the conic’s
semi-major axis lies along the polar axis) is given by:

r = `

1+e cosθ

where e is the eccentricity and ` is the semi-latus rectum (the perpendicular distance at a focus from
the major axis to the curve). If e > 1, this equation defines a hyperbola; if e = 1, it defines a parabola;
and if e < 1, it defines an ellipse. The special case e = 0 of the latter results in a circle of radius `.

1 HTTP://EN.WIKIBOOKS.ORG/WIKI/CONIC%20SECTIONS
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43 Differentiation

43.0.6 Differential calculus

We have the following formulas:

r ∂
∂r = x ∂

∂x + y ∂
∂y

∂
∂θ =−y ∂

∂x +x ∂
∂y .

To find the Cartesian slope of the tangent line to a polar curve r() at any given point, the curve is
first expressed as a system of parametric equations.

x = r (θ)cosθ

y = r (θ)sinθ

Differentiating both equations with respect to yields

∂x
∂θ = r ′(θ)cosθ− r (θ)sinθ

∂y
∂θ = r ′(θ)sinθ+ r (θ)cosθ

Dividing the second equation by the first yields the Cartesian slope of the tangent line to the curve
at the point (r, r()):

d y

d x
= r ′(θ)sinθ+ r (θ)cosθ

r ′(θ)cosθ− r (θ)sinθ

1

1 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3ACALCULUS%20%28BOOK%29

253

http://en.wikibooks.org/wiki/Category%3ACalculus%20%28book%29


Differentiation

254



44 Integration

44.1 Introduction

Integrating a polar equation requires a different approach than integration under the Cartesian sys-
tem, hence yielding a different formula, which is not as straightforward as integrating the function
f (x).

44.2 Proof

In creating the concept of integration, we used Riemann sums of rectangles to approximate the area
under the curve. However, with polar graphs, one can use sectors of circles with radius r and angle
measure d. The area of each sector is then (r²)(d/2) and the sum of all the infinitesimally small
sectors’ areas is : 1

2

∫ b
a r 2 dθ, </u></u> This is the form to use to integrate a polar expression of the

form r = f (θ) where (a, f (a)) and (b, f (b)) are the ends of the curve that you wish to integrate.

44.2.1 Integral calculus

Figure 56: The integration region R is bounded by the curve r = f (θ) and the rays θ = a and θ = b.
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Let R denote the region enclosed by a curve r = f (θ) and the rays θ = a and θ = b, where 0 < b−a <
2π. Then, the area of R is

1

2

∫ b

a
r 2 dθ.

Figure 57: The region R is approximated by n sectors (here, n = 5).

This result can be found as follows. First, the interval [a,b] is divided into n subintervals, where
n is an arbitrary positive integer. Thus θ, the length of each subinterval, is equal to b −a (the total
length of the interval), divided by n, the number of subintervals. For each subinterval i = 1,2, . . . ,n,
let θi be the midpoint of the subinterval, and construct a circular sector with the center at the origin,
radius ri = f (θi ), central angle δθ, and arc length riδθ. The area of each constructed sector is
therefore equal to 1

2 r 2
i δθ. Hence, the total area of all of the sectors is

n∑
i=1

1
2 r 2

i δθ.

As the number of subintervals n is increased, the approximation of the area continues to improve.
In the limit as n →∞, the sum becomes the Riemann integral.

Generalization

Using Cartesian coordinates, an infinitesimal area element can be calculated as d A = d x d y . The
substitution rule for multiple integrals states that, when using other coordinates, the Jacobian deter-
minant of the coordinate conversion formula has to be considered:
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J = det
∂(x, y)

∂(r,θ)
=

∣∣∣∣∣∂x
∂r

∂x
∂θ

∂y
∂r

∂y
∂θ

∣∣∣∣∣=
∣∣∣∣cosθ −r sinθ
sinθ r cosθ

∣∣∣∣= r cos2θ+ r sin2θ = r.

Hence, an area element in polar coordinates can be written as

d A = J dr dθ = r dr dθ.

Now, a function that is given in polar coordinates can be integrated as follows:

Ï
R

g (r,θ)d A =
∫ b

a

∫ r (θ)

0
g (r,θ)r dr dθ.

Here, R is the same region as above, namely, the region enclosed by a curve r = f (θ) and the rays
θ = a and θ = b.

The formula for the area of R mentioned above is retrieved by taking g identically equal to 1.

44.3 Applications

Polar integration is often useful when the corresponding integral is either difficult or impossible to
do with the Cartesian coordinates. For example, let’s try to find the area of the closed unit circle.
That is, the area of the region enclosed by x2 + y2 = 1.

In Cartesian

∫ 1

−1

∫ p
1−x2

−
p

1−x2
d y d x = 2

∫ 1

−1

√
1−x2 d x

In order to evaluate this, one usually uses trigonometric substitution. By setting sinθ = x, we get
both cosθ =

p
1−x2 and cosθdθ = d x.

∫ √
1−x2 d x =

∫
cos2θdθ

=
∫

1

2
+ 1

2
cos2θdθ

= θ

2
+ 1

4
sin2θ+ c = θ

2
+ 1

2
sinθcosθ+ c

= arcsin x

2
+ x

p
1−x2

2
+ c

Putting this back into the equation, we get

2
∫ 1

−1

√
1−x2 d x = 2

[
arcsin x

2
+ x

p
1−x2

2

]1

−1

= arcsin1−arcsin(−1) =π
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In Polar

To integrate in polar coordinates, we first realize r =
√

x2 + y2 =p
1 = 1 and in order to include the

whole circle, a = 0 and b = 2π.

∫ 2π

0

∫ 1

0
r dr dθ =

∫ 2π

0

[
r 2

2

]1

0
dθ =

∫ 2π

0

1

2
dθ =

[
θ

2

]2π

0
= 2π

2
=π

44.3.1 An interesting example

A less intuitive application of polar integration yields the Gaussian integral

∫ ∞

−∞
e−x2

d x =p
π.

Try it! (Hint: multiply
∫ ∞
−∞ e−x2

d x and
∫ ∞
−∞ e−y2

d y .)
1
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46 Sequences

A sequence is an ordered list of objects (or events). Like a set, it contains members (also called
elements or terms), and the number of terms (possibly infinite) is called the length of the sequence.
Unlike a set, order matters, and exactly the same elements can appear multiple times at different
positions in the sequence.

For example, (C, R, Y) is a sequence of letters that differs from (Y, C, R), as the ordering matters.
Sequences can be finite, as in this example, or infinite, such as the sequence of all even positive
integers (2, 4, 6,...).

Figure 58: An infinite sequence of real numbers (in blue). This sequence is neither increasing, nor
decreasing, nor convergent. It is however bounded.

46.1 Examples and notation

There are various and quite different notions of sequences in mathematics, some of which (e.g.,
exact sequence) are not covered by the notations introduced below.

A sequence may be denoted (a1, a2, ...). For shortness, the notation (an) is also used.

A more formal definition of a finite sequence with terms in a set S is a function from {1, 2, ...,
n} to S for some n 0. An infinite sequence in S is a function from {1, 2, ...} (the set of natural
numbers without 0) to S.

Sequences may also start from 0, so the first term in the sequence is then a0.
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A finite sequence is also called an n-tuple. Finite sequences include the empty sequence ( ) that has
no elements.

A function from all integers into a set is sometimes called a bi-infinite sequence, since it may be
thought of as a sequence indexed by negative integers grafted onto a sequence indexed by positive
integers.

46.2 Types and properties of sequences

A subsequence of a given sequence is a sequence formed from the given sequence by deleting some
of the elements (which, as stated in the introduction, can also be called "terms") without disturbing
the relative positions of the remaining elements.

If the terms of the sequence are a subset of an ordered set, then a monotonically increasing sequence
is one for which each term is greater than or equal to the term before it; if each term is strictly greater
than the one preceding it, the sequence is called strictly monotonically increasing. A monotonically
decreasing sequence is defined similarly. Any sequence fulfilling the monotonicity property is called
monotonic or monotone. This is a special case of the more general notion of monotonic function.

The terms non-decreasing and non-increasing are used in order to avoid any possible confusion
with strictly increasing and strictly decreasing, respectively. If the terms of a sequence are integers,
then the sequence is an integer sequence. If the terms of a sequence are polynomials, then the
sequence is a polynomial sequence.

If S is endowed with a topology, then it becomes possible to consider convergence of an infinite
sequence in S. Such considerations involve the concept of the limit of a sequence.

46.3 Sequences in analysis

In analysis, when talking about sequences, one will generally consider sequences of the form

(x1, x2, x3, ...)

or
(x0, x1, x2, ...)

which is to say, infinite sequences of elements indexed by natural numbers. (It may be convenient
to have the sequence start with an index different from 1 or 0. For example, the sequence defined
by xn = 1/log(n) would be defined only for n ≥ 2. When talking about such infinite sequences, it is
usually sufficient (and does not change much for most considerations) to assume that the members
of the sequence are defined at least for all indices large enough, that is, greater than some given N.)

The most elementary type of sequences are numerical ones, that is, sequences of real or complex
numbers.
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47.1 Introduction

A series is the sum of a sequence of terms. An infinite series is the sum of an infinite number of
terms (the actual sum of the series need not be infinite, as we will see below).

An arithmetic series is the sum of a sequence of terms with a common difference (the difference
between consecutive terms). For example:

1+4+7+10+13+ . . .

is an arithmetic series with common difference 3, since a2 −a1 = 3, a3 −a2 = 3, and so forth.

A geometric series is the sum of terms with a common ratio. For example, an interesting series
which appears in many practical problems in science, engineering, and mathematics is the geometric
series r + r 2 + r 3 + r 4 + ... where the ... indicates that the series continues indefinitely. A common
way to study a particular series (following Cauchy) is to define a sequence consisting of the sum of
the first n terms. For example, to study the geometric series we can consider the sequence which
adds together the first n terms:

Sn(r ) =
n∑

i=1
r i .

Generally by studying the sequence of partial sums we can understand the behavior of the entire
infinite series.

Two of the most important questions about a series are

• Does it converge?
• If so, what does it converge to?

For example, it is fairly easy to see that for r > 1, the geometric series Sn(r ) will not converge to
a finite number (i.e., it will diverge to infinity). To see this, note that each time we increase the
number of terms in the series, Sn(r ) increases by r n+1, since r n+1 > 1 for all r > 1 (as we defined),
Sn(r ) must increase by a number greater than one every term. When increasing the sum by more
than one for every term, it will diverge.

Perhaps a more surprising and interesting fact is that for |r | < 1, Sn(r ) will converge to a finite value.
Specifically, it is possible to show that

lim
n→∞Sn(r ) = r

1− r
.
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Indeed, consider the quantity

(1− r )Sn(r ) = (1− r )
n∑

i=1
r n =

n∑
i=1

r n −
n+1∑
i=2

r n = r − r n+1

Since r n+1 → 0 as n →∞ for |r | < 1, this shows that (1− r )Sn(r ) → r as n →∞. The quantity 1− r
is non-zero and doesn’t depend on n so we can divide by it and arrive at the formula we want.

We’d like to be able to draw similar conclusions about any series.

Unfortunately, there is no simple way to sum a series. The most we will be able to do in most cases
is determine if it converges. The geometric and the telescoping series are the only types of series in
which we can easily find the sum of.

47.2 Convergence

It is obvious that for a series to converge, the an must tend to zero (because sum of any infinite
terms is infinity, except when the sequence approaches 0), but even if the limit of the sequence is 0,
is not sufficient to say it converges.

Consider the harmonic series, the sum of 1/n, and group terms

∑2m

1
1
n = 1+ 1

2+ 1
3 + 1

4 + 1
5 + 1

6 + 1
7 + 1

8+ . . . +∑2n

1+2n−1
1
p

> 3
2+ 1

4 2+ 1
8 4+ . . . + 1

2n 2n−1

= 3
2+ 1

2+ 1
2+ . . . +1

2 (m terms)

As m tends to infinity, so does this final sum, hence the series diverges.

We can also deduce something about how quickly it diverges. Using the same grouping of terms,
we can get an upper limit on the sum of the first so many terms, the partial sums.

1+ m

2
≤

2m∑
1

1

n
≤ 1+m

or

1+ ln2 m

2
≤

m∑
1

1

n
≤ 1+ ln2 m

and the partial sums increase like log m, very slowly.

Notice that to discover this, we compared the terms of the harmonic series with a series we knew
diverged.

This is a convergence test (also known as the direct comparison test) we can apply to any pair of
series.

• If bn converges and |an|≤|bn| then an converges.
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• If bn diverges and |an|≥|bn| then an diverges.

There are many such tests, the most important of which we’ll describe in this chapter.

47.2.1 Absolute convergence

Theorem: If the series of absolute values,
∑∞

n=1 |an |, converges, then so does the series
∑∞

n=1 an

We say such a series converges absolutely.

Proof:

Let ε> 0

According to the Cauchy criterion for series convergence, exists N so that for all N < m,n:∑m
k=n |ak | < ε

We know that:

|∑m
k=n ak | ≤

∑m
k=n |ak |

And then we get:

|∑m
k=n ak | ≤

∑m
k=n |ak | < ε

Now we get:

|∑m
k=n ak | < ε

Which is exactly the Cauchy criterion for series convergence.

Q.E .D

The converse does not hold. The series 1-1/2+1/3-1/4 ... converges, even though the series of its
absolute values diverges.

A series like this that converges, but not absolutely, is said to converge conditionally.

If a series converges absolutely, we can add terms in any order we like. The limit will still be the
same.

If a series converges conditionally, rearranging the terms changes the limit. In fact, we can make
the series converge to any limit we like by choosing a suitable rearrangement.

E.g., in the series 1-1/2+1/3-1/4 ..., we can add only positive terms until the partial sum exceeds
100, subtract 1/2, add only positive terms until the partial sum exceeds 100, subtract 1/4, and so on,
getting a sequence with the same terms that converges to 100.

This makes absolutely convergent series easier to work with. Thus, all but one of convergence tests
in this chapter will be for series all of whose terms are positive, which must be absolutely convergent
or divergent series. Other series will be studied by considering the corresponding series of absolute
values.
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47.2.2 Ratio test

For a series with terms an, if

lim
n→∞

∣∣∣∣ an+1

an

∣∣∣∣= r

then

• the series converges (absolutely) if r<1
• the series diverges if r>1 (or if r is infinity)
• the series could do either if r=1, so the test is not conclusive in this case.

E.g., suppose

an = n!n!

(2n)!

then

an+1

an
= (n +1)2

(2n +1)(2n +2)
= n +1

4n +2
→ 1

4

so this series converges.

47.2.3 Integral test

If f(x) is a monotonically decreasing, always positive function, then the series

∞∑
n=1

f (n)

converges if and only if the integral

∫ ∞

1
f (x)d x

converges.

E.g., consider f(x)=1/xp, for a fixed p.

• If p=1 this is the harmonic series, which diverges.
• If p<1 each term is larger than the harmonic series, so it diverges.
• If p>1 then

∫ ∞
1 x−p d x = lims→∞

∫ s
1 x−p d x

= lims→∞ −1
(p−1)xp−1

∣∣∣s

1

= lims→∞
(

1
p−1 − 1

(p−1)sp−1

)
= 1

p−1
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The integral converges, for p>1, so the series converges.

We can prove this test works by writing the integral as

∫ ∞

1
f (x)d x =

∞∑
n=1

∫ n+1

n
f (x)d x

and comparing each of the integrals with rectangles, giving the inequalities

f (n) ≥
∫ n+1

n
f (x)d x ≥ f (n +1)

Applying these to the sum then shows convergence.

47.2.4 Limit comparison test

Given an infinite series
∑

an with positive terms only, if one can find another infinite series
∑

bn

with positive terms for which

lim
n→∞

an

bn
= L

for a positive and finite L (i.e., the limit exists and is not zero), then the two series either both
converge or both diverge. That is,

•
∑

an converges if
∑

bn converges, and
•

∑
an diverges if

∑
bn diverges.

Example:

an = n− n+1
n

For large n, the terms of this series are similar to, but smaller than, those of the harmonic series. We
compare the limits.

lim
an

bn
= lim

n− n+1
n

1/n
= lim

n

n
n+1

n

= lim
1

n
1
n

= 1 > 0

so this series diverges.

47.2.5 Alternating series

Given an infinite series
∑

an , if the signs of the an alternate, that is if

an = (−1)n |an |
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for all n or

an = (−1)n+1|an |

for all n, then we call it an alternating series.

The alternating series test states that such a series converges if

lim
n→∞an = 0

and

|an+1| < |an |

(that is, the magnitude of the terms is decreasing).

Note that this test cannot lead to the conclusion that the series diverges; if one cannot conclude that
the series converges, this test is inconclusive, although other tests may, of course, be used to give a
conclusion.

Estimating the sum of an alternating series

The absolute error that results in using a partial sum of an alternating series to estimate the final
sum of the infinite series is smaller than the magnitude of the first omitted term.

∣∣∣∣ ∞∑
n=1

an −
m∑

n=1
an

∣∣∣∣< |am+1|

47.3 Geometric series

The geometric series can take either of the following forms

∞∑
n=0

ar n

or ∞∑
n=1

ar n−1

As you have seen at the start, the sum of the geometric series is

Sn = a

1− r
for |r | < 1

.
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47.4 Telescoping series

∞∑
n=0

(bn −bn+1)

Expanding (or "telescoping") this type of series is informative. If we expand this series, we get:

k∑
n=0

(bn −bn+1) = (b0 −b1)+ (b1 −b2)+ ...+ (bk−1 −bk )

Additive cancellation leaves:

k∑
n=0

(bn −bn+1) = b0 −bk

Thus,

∞∑
n=0

(bn −bn+1) = lim
k→∞

k∑
n=0

(bn −bn+1) = lim
k→∞

(b0 −bk ) = b0 − lim
k→∞

bk

and all that remains is to evaluate the limit.

There are other tests that can be used, but these tests are sufficient for all commonly encountered
series.
1

1 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3ACALCULUS%20%28BOOK%29
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49 Taylor Series

49.1 Taylor Series

Figure 59

sin(x) and Taylor approximations, polynomials of degree 1, 3, 5, 7, 9, 11 and 13.

The Taylor series of an infinitely often DIFFERENTIABLE1 real (or complex) FUNCTION2 f defined
on an OPEN INTERVAL3 (a-r, a+r) is the POWER SERIES4 ∑

n=0
f (n)(a)

n! (x −a)n

Here, n! is the FACTORIAL5 of n and f (n)(a) denotes the nth DERIVATIVE6 of f at the point a. If this
series converges for every x in the interval (a-r, a+r) and the sum is equal to f(x), then the function
f(x) is called analytic. To check whether the series converges towards f(x), one normally uses
estimates for the remainder term of TAYLOR’S THEOREM7. A function is analytic if and only if a

1 HTTP://EN.WIKIPEDIA.ORG/WIKI/DIFFERENTIABLE
2 HTTP://EN.WIKIPEDIA.ORG/WIKI/FUNCTION%20%28MATHEMATICS%29
3 HTTP://EN.WIKIPEDIA.ORG/WIKI/INTERVAL%20%28MATHEMATICS%29
4 HTTP://EN.WIKIPEDIA.ORG/WIKI/POWER%20SERIES
5 HTTP://EN.WIKIPEDIA.ORG/WIKI/FACTORIAL
6 HTTP://EN.WIKIPEDIA.ORG/WIKI/DERIVATIVE
7 HTTP://EN.WIKIPEDIA.ORG/WIKI/TAYLOR%27S_THEOREM
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POWER SERIES8 converges to the function; the coefficients in that power series are then necessarily
the ones given in the above Taylor series formula.

If a = 0, the series is also called a Maclaurin series.

The importance of such a power series representation is threefold. First, differentiation and inte-
gration of power series can be performed term by term and is hence particularly easy. Second,
an analytic function can be uniquely extended to a HOLOMORPHIC FUNCTION9 defined on an open
disk in the COMPLEX PLANE10, which makes the whole machinery of COMPLEX ANALYSIS11 avail-
able. Third, the (truncated) series can be used to approximate values of the function near the point
of expansion.

Figure 60

The function e-1/x2
is not analytic: the Taylor series is 0, although the function is not.

Note that there are examples of INFINITELY OFTEN DIFFERENTIABLE FUNCTION12s f(x) whose
Taylor series converge, but are not equal to f(x). For instance, for the function defined piecewise by
saying that f(x) = exp(&minus;1/x2) if x 6= 0 and f(0) = 0, all the derivatives are zero at x = 0, so
the Taylor series of f(x) is zero, and its RADIUS OF CONVERGENCE13 is infinite, even though the
function most definitely is not zero. This particular pathology does not afflict COMPLEX14-valued
functions of a complex variable. Notice that exp(&minus;1/z2) does not approach 0 as z approaches
0 along the imaginary axis.

Some functions cannot be written as Taylor series because they have a SINGULARITY15; in these
cases, one can often still achieve a series expansion if one allows also negative powers of the variable
x; see LAURENT SERIES16. For example, f(x) = exp(&minus;1/x2) can be written as a Laurent series.

8 HTTP://EN.WIKIPEDIA.ORG/WIKI/POWER_SERIES
9 HTTP://EN.WIKIPEDIA.ORG/WIKI/HOLOMORPHIC%20FUNCTION
10 HTTP://EN.WIKIPEDIA.ORG/WIKI/COMPLEX_NUMBER
11 HTTP://EN.WIKIPEDIA.ORG/WIKI/COMPLEX%20ANALYSIS
12 HTTP://EN.WIKIPEDIA.ORG/WIKI/INFINITELY_OFTEN_DIFFERENTIABLE_FUNCTION
13 HTTP://EN.WIKIPEDIA.ORG/WIKI/RADIUS_OF_CONVERGENCE
14 HTTP://EN.WIKIPEDIA.ORG/WIKI/COMPLEX_NUMBER
15 HTTP://EN.WIKIPEDIA.ORG/WIKI/SINGULARITY_%28MATHEMATICS%29
16 HTTP://EN.WIKIPEDIA.ORG/WIKI/LAURENT_SERIES
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The PARKER-SOCKACKI THEOREM17 is a recent advance in finding Taylor series which are solu-
tions to DIFFERENTIAL EQUATIONS18. This theorem is an expansion on the PICARD ITERATION19.

49.1.1 Derivation/why this works

If a function f(x) is written as a infinite power series, it will look like this:

f(x)=c0(x-a)0+c1(x-a)1+c2(x-a)2+c3(x-a)3+c4(x-a)4+c5(x-a)5+c6(x-a)6+c7(x-a)7+...

where a is half the radius of convergence and c0,c1,c2,c3,c4... are coefficients. If we substitute a for
x:

f(a)=c0

If we differentiate:

f´(x)=1c1(x-a)0+2c2(x-a)1+3c3(x-a)2+4c4(x-a)3+5c5(x-a)4+6c6(x-a)5+7c7(x-a)6+...

If we substitute a for x:

f´(a)=1c1

If we differentiate:

f´´(x)=2c2+3*2*c3(x-a)1+4*3*c4(x-a)2+5*4*c5(x-a)3+6*5*c6(x-a)4+7*6*c7(x-a)5+...

If we substitute a for x:

f´´(a)=2c2

Extrapolating:

n!cn=fn(a)

where f0(x)=f(x) and f1(x)=f´(x) and so on.We can actually go ahead and say that the power approx-
imation of f(x) is:

f(x)=Sn=0
&#165;((fn(a)/n!)*(x-a)n)

<this needs to be improved>

49.1.2 List of Taylor series

Several important Taylor series expansions follow. All these expansions are also valid for complex
arguments x.

EXPONENTIAL FUNCTION20 and NATURAL LOGARITHM21:

17 HTTP://WWW.MATH.JMU.EDU/~{}JIM/PICARD.HTML
18 HTTP://EN.WIKIPEDIA.ORG/WIKI/DIFFERENTIAL_EQUATIONS
19 HTTP://EN.WIKIPEDIA.ORG/WIKI/PICARD_ITERATION
20 HTTP://EN.WIKIPEDIA.ORG/WIKI/EXPONENTIAL_FUNCTION
21 HTTP://EN.WIKIPEDIA.ORG/WIKI/NATURAL_LOGARITHM
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ex = ∑
n=0

xn

n!
for all x

ln(1+x) = ∑
n=1

(−1)n+1

n
xn for |x| < 1

GEOMETRIC SERIES22:

1

1−x
= ∑

n=0
xn for |x| < 1

BINOMIAL SERIES23:

(1+x)α = ∑
n=0

C (α,n)xn for all |x| < 1 and all complex α

TRIGONOMETRIC FUNCTION24s:

sin x = ∑
n=0

(−1)n

(2n +1)!
x2n+1 for all x

cos x = ∑
n=0

(−1)n

(2n)!
x2n for all x

tan x = ∑
n=1

B2n(−4)n(1−4n)

(2n)!
x2n−1 for |x| < π

2

sec x = ∑
n=0

(−1)nE2n

(2n)!
x2n for |x| < π

2

arcsin x = ∑
n=0

(2n)!

4n(n!)2(2n +1)
x2n+1 for |x| < 1

arctan x = ∑
n=0

(−1)n

2n +1
x2n+1 for |x| < 1

HYPERBOLIC FUNCTION25s:

sinh x = ∑
n=0

1

(2n +1)!
x2n+1 for all x

22 HTTP://EN.WIKIPEDIA.ORG/WIKI/GEOMETRIC_SERIES
23 HTTP://EN.WIKIPEDIA.ORG/WIKI/BINOMIAL_THEOREM
24 HTTP://EN.WIKIPEDIA.ORG/WIKI/TRIGONOMETRIC_FUNCTION
25 HTTP://EN.WIKIPEDIA.ORG/WIKI/HYPERBOLIC_FUNCTION
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cosh x = ∑
n=0

1

(2n)!
x2n for all x

tanh x = ∑
n=1

B2n4n(4n −1)

(2n)!
x2n−1 for |x| < π

2

sinh−1 x = ∑
n=0

(−1)n(2n)!

4n(n!)2(2n +1)
x2n+1 for |x| < 1

tanh−1 x = ∑
n=0

1

2n +1
x2n+1 for |x| < 1

<P>

LAMBERT’S W FUNCTION26:

W0(x) = ∑
n=1

(−n)n−1

n!
xn for |x| < 1

e

The numbers Bk appearing in the expansions of tan(x) and tanh(x) are the BERNOULLI NUMBERS27.
The C(α,n) in the binomial expansion are the BINOMIAL COEFFICIENTS28. The Ek in the expansion
of sec(x) are EULER NUMBERS29.

49.1.3 Multiple dimensions

The Taylor series may be generalized to functions of more than one variable with

∑
n1=0

· · · ∑
nd=0

∂n1

∂xn1
· · · ∂

nd

∂xnd

f (a1, · · · , ad )

n1! · · ·nd !
(x1 −a1)n1 · · · (xd −ad )nd

49.1.4 History

The Taylor series is named for mathematician BROOK TAYLOR30, who first published the power
series formula in 1715.

26 HTTP://EN.WIKIPEDIA.ORG/WIKI/LAMBERT%27S_W_FUNCTION
27 HTTP://EN.WIKIPEDIA.ORG/WIKI/BERNOULLI_NUMBERS
28 HTTP://EN.WIKIPEDIA.ORG/WIKI/BINOMIAL_COEFFICIENT
29 HTTP://EN.WIKIPEDIA.ORG/WIKI/EULER_NUMBERS
30 HTTP://EN.WIKIPEDIA.ORG/WIKI/BROOK%20TAYLOR
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49.1.5 Constructing a Taylor Series

Several methods exist for the calculation of Taylor series of a large number of functions. One can
attempt to use the Taylor series as-is and generalize the form of the coefficients, or one can use
manipulations such as substitution, multiplication or division, addition or subtraction of standard
Taylor series (such as those above) to construct the Taylor series of a function, by virtue of Taylor
series being power series. In some cases, one can also derive the Taylor series by repeatedly apply-
ing INTEGRATION BY PARTS31. The use of COMPUTER ALGEBRA SYSTEMS32 to calculate Taylor
series is common, since it eliminates tedious substitution and manipulation.

Example 1

Consider the function

f (x) = ln(1+cos x) ,

for which we want a Taylor series at 0.

We have for the natural logarithm

ln(1+x) = ∑
n=1

(−1)n+1

n
xn = x − x2

2
+ x3

3
− x4

4
+·· · for |x| < 1

and for the cosine function

cos x = ∑
n=0

(−1)n

(2n)!
x2n = 1− x2

2!
+ x4

4!
−·· · for all x ∈C.

We can simply substitute the second series into the first. Doing so gives

(
1− x2

2!
+ x4

4!
−·· ·

)
− 1

2

(
1− x2

2!
+ x4

4!
−·· ·

)2

+ 1

3

(
1− x2

2!
+ x4

4!
−·· ·

)3

−·· ·

Expanding by using MULTINOMIAL COEFFICIENT33s gives the required Taylor series. Note that
cosine and therefore f are even functions, meaning that f (x) = f (−x), hence the coefficients of the
odd powers x, x3, x5, x7 and so on have to be zero and don’t need to be calculated. The first few
terms of the series are

ln(1+cos x) = ln2− x2

4
− x4

96
− x6

1440
− 17x8

322560
− 31x10

7257600
−·· ·

The general coefficient can be represented using FAÀ DI BRUNO’S FORMULA34. However, this
representation does not seem to be particularly illuminating and is therefore omitted here.

31 HTTP://EN.WIKIPEDIA.ORG/WIKI/INTEGRATION_BY_PARTS
32 HTTP://EN.WIKIPEDIA.ORG/WIKI/COMPUTER_ALGEBRA_SYSTEM
33 HTTP://EN.WIKIPEDIA.ORG/WIKI/MULTINOMIAL_COEFFICIENT
34 HTTP://EN.WIKIPEDIA.ORG/WIKI/FA%E0_DI_BRUNO%27S_FORMULA
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Example 2

Suppose we want the Taylor series at 0 of the function

g (x) = ex

cos x
.

We have for the exponential function

ex =
∞∑

n=0

xn

n!
= 1+x + x2

2!
+ x3

3!
+ x4

4!
+·· ·

and, as in the first example,

cos x = 1− x2

2!
+ x4

4!
−·· ·

Assume the power series is

ex

cos x
= c0 + c1x + c2x2 + c3x3 +·· ·

Then multiplication with the denominator and substitution of the series of the cosine yields

ex = (c0 + c1x + c2x2 + c3x3 +·· · )cos x

= (
c0 + c1x + c2x2 + c3x3 + c4x4 +·· ·)(1− x2

2!
+ x4

4!
−·· ·

)
= c0 − c0

2
x2 + c0

4!
x4 + c1x − c1

2
x3 + c1

4!
x5 + c2x2 − c2

2
x4 + c2

4!
x6 + c3x3 − c3

2
x5 + c3

4!
x7 +·· ·

Collecting the terms up to fourth order yields

= c0 + c1x +
(
c2 − c0

2

)
x2 +

(
c3 − c1

2

)
x3 +

(
c4 + c0

4!
− c2

2

)
x4 +·· ·

Comparing coefficients with the above series of the exponential function yields the desired Taylor
series

ex

cos x
= 1+x +x2 + 2x3

3
+ x4

2
+·· ·
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49.2 Convergence

49.3 Generalized Mean Value Theorem

35

35 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3ACALCULUS%20%28BOOK%29
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50 Power Series

The study of power series is aimed at investigating series which can approximate some function
over a certain interval.

50.1 Motivations

Elementary calculus (DIFFERENTIATION1) is used to obtain information on a line which touches a
curve at one point (i.e. a tangent). This is done by calculating the gradient, or slope of the curve,
at a single point. However, this does not provide us with reliable information on the curve’s actual
value at given points in a wider interval. This is where the concept of power series becomes useful.

50.1.1 An example

Consider the curve of y = cos(x), about the point x = 0. A naïve approximation would be the line y =
1. However, for a more accurate approximation, observe that cos(x) looks like an inverted parabola
around x = 0 - therefore, we might think about which parabola could approximate the shape of
cos(x) near this point. This curve might well come to mind:

y = 1−x2

2

In fact, this is the best estimate for cos(x) which uses polynomials of degree 2 (i.e. a highest
term of x2) - but how do we know this is true? This is the study of power series: finding optimal
approximations to functions using polynomials.

50.2 Definition

A power series is a SERIES2 of the form

a0x0 + a1x1 + ... + anxn

or, equivalently,

n∑
j=0

a j x j

1 Chapter 1.2 on page 2
2 Chapter 47 on page 263

281



Power Series

50.3 Radius of convergence

When using a power series as an alternative method of calculating a function’s value, the equation

f (x) =
n∑

j=0
a j x j

can only be used to study f(x) where the power series converges - this may happen for a finite range,
or for all REAL NUMBERS3.

The size of the interval (around its center) in which the power series converges to the function is
known as the radius of convergence.

50.3.1 An example

1

1−x
=

∞∑
n=0

xn

(a geometric series)

this converges when | x | < 1, the range -1 < x < +1, so the radius of convergence - centered at 0 - is
1. It should also be observed that at the extremities of the radius, that is where x = 1 and x = -1, the
power series does not converge.

50.3.2 Another example

ex =
∞∑

n=0

xn

n!

Using the RATIO TEST4, this series converges when the ratio of successive terms is less than one:

lim
n→∞

∣∣∣∣ x(n+1)

(n +1)!

n!

xn

∣∣∣∣< 1

lim
n→∞

∣∣∣∣ xn x1

n! (n +1)

n!

xn

∣∣∣∣< 1

or
lim

n→∞

∣∣∣ x

n +1

∣∣∣< 1

which is always true - therefore, this power series has an infinite radius of convergence. In effect,
this means that the power series can always be used as a valid alternative to the original function,
ex.

3 HTTP://EN.WIKIPEDIA.ORG/WIKI/REAL_NUMBER
4 Chapter 47.2.2 on page 266
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50.3.3 Abstraction

If we use the ratio test on an arbitrary power series, we find it converges when

lim
|an+1x|
|an |

< 1

and diverges when

lim
|an+1x|
|an |

> 1

The radius of convergence is therefore

r = lim
|an |
|an+1|

If this limit diverges to infinity, the series has an infinite radius of convergence.

50.4 Differentiation and Integration

Within its radius of convergence, a power series can be differentiated and integrated term by term.

d

d x

∞∑
j=0

a j x j =
∞∑

j=0
( j +1)a j+1x j

∫ ∞∑
j=0

a j z j d z =
∞∑

j=1

a j−1

j
x j

Both the differential and the integral have the same radius of convergence as the original series.

This allows us to sum exactly suitable power series. For example,

1

1+x
= 1−x +x2 −x3 + . . .

This is a geometric series, which converges for | x | < 1. Integrating both sides, we get

ln(1+x) = x − x2

2
+ x3

3
. . .

which will also converge for | x | < 1. When x = -1 this is the harmonic series, which diverges’; when
x= 1 this is an alternating series with diminishing terms, which convergesto ln 2 - this is testing the
extremities.

It also lets us write power series for integrals we cannot do exactly such as the error function:
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e−x2 =∑
(−1)n x2n

n!

The left hand side can not be integrated exactly, but the right hand side can be.

∫ z

0
e−x2

d x =∑ (−1)n z2n+1

(2n +1)n!

This gives us a power series for the sum, which has an infinite radius of convergence, letting us
approximate the integral as closely as we like.

50.5 Further reading

• "DECODING THE ROSETTA STONE"5 article by Jack W. Crenshaw 2005-10-12
6

50.6 Exercises

1. Assume that the nth partial sum of a SERIES7 is given by sn = 2− 1
3n .

a) Does the series converge? If so, to what value?
b) What is the formula for the nth term of the series?

Find the value to which each the following series converges:

a)
∞∑

n=0

3

4n

b)
∞∑

n=1

(
2

e

)n

c)
∞∑

n=2

1

n2 −n

d)
∞∑

n=1

(−1)n2n−1

3n

Determine whether each the following series converges or diverges:

5 HTTP://EMBEDDED.COM/SHOWARTICLE.JHTML?ARTICLEID=172300631
6 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3ACALCULUS%20%28BOOK%29
7 HTTP://EN.WIKIBOOKS.ORG/WIKI/CALCULUS%2FINFINITE%20SERIES

284

http://embedded.com/showArticle.jhtml?articleID=172300631
http://en.wikibooks.org/wiki/Category%3ACalculus%20%28book%29
http://en.wikibooks.org/wiki/Calculus%2FInfinite%20series


Exercises

a)
∞∑

n=1

1

n2

b)
∞∑

n=0

1

2n

c)
∞∑

n=1

n

n2 +1

d)
∞∑

n=2

1

lnn

e)
∞∑

n=0

n!

2n

f)
∞∑

n=1

cosπn

n

g)
∞∑

n=2

(−1)n

n lnn −1

Determine whether each the following series converges conditionally, converges absolutely,
or diverges:

a)
∞∑

n=1

(−1)n

p
n

b)
∞∑

n=2

(−1)n lnn

n

c)
∞∑

n=2

(−1)nn

(lnn)2

d)
∞∑

n=1

(−1)n2n

en −1

e)
∞∑

n=1

(−1)n

sinn
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f)
∞∑

n=1

(−1)nn!

(2n)!

g)
∞∑

n=1

(−1)ne1/n

arctann

50.7 Hints

1.

a) take a limit
b)

sn = sn−1 +an

a) sum of an infinite geometric series
b) sum of an infinite geometric series
c) telescoping series
d) rewrite so that all exponents are n

a) p-series
b) geometric series
c) limit comparison test
d) direct comparison test
e) divergence test
f) alternating series test
g) alternating series test

a) alternating series test; direct comparison test or integral test
b) alternating series test; integral test or direct comparison test
c) divergence test
d) alternating series test (optional); limit comparison test with geometric series
e) divergence test
f) ratio test
g) divergence test

50.8 Answers only

1.
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Full solutions

a) The series converges to 2.
b)

an = 2

3n

a) 4
b)

2

e −2

c) 1
d) &minus;1/5

a) converges
b) converges
c) diverges
d) diverges
e) diverges
f) converges
g) diverges

a) converges conditionally
b) converges conditionally
c) diverges
d) converges absolutely
e) diverges
f) converges absolutely
g) diverges

50.9 Full solutions

1.

a) The series converges to 2 since:

s = lim
n→∞ sn = lim

n→∞

(
2− 1

3n

)
= 2

b)

an = sn − sn−1 =
(
2− 1

3n

)
−

(
2− 1

3n−1

)
= 1

3n−1 − 1

3n = 3

3n − 1

3n = 2

3n
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a) The series is

∞∑
n=0

3

(
1

4

)n

and so is geometric with first term a = 3 and common ratio r = 1/4. So

s = a

1− r
= 3

1−1/4
= 4.

b)

s = 2/e

1−2/e
= 2

e −2

c) Note that

∞∑
n=2

1

n2 −n
=

∞∑
n=2

1

n(n −1)
=

∞∑
n=2

(
1

n −1
− 1

n

)

by PARTIAL FRACTIONS8. So

s = lim
N→∞

sN = lim
N→∞

(
1− 1

2

)
+

(
1

2
− 1

3

)
+

(
1

3
− 1

4

)
+. . .+

(
1

N −1
− 1

N

)
.

All but the first and last terms cancel out, so

s = lim
N→∞

(
1− 1

N

)
= 1.

d) The series simplifies to

∞∑
n=1

(−1)n2n

3n ·2
=

∞∑
n=1

1

2

(−2

3

)n

,

and so is geometric with common ratio

r =−2/3

and first term
−1/3

. Thus

s = −1/3

1− (−2/3)
=−1/5.

8 HTTP://EN.WIKIBOOKS.ORG/WIKI/HSE%20PARTIAL%20FRACTIONS
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Full solutions

a) This is a p-series with
p = 2

. Since p > 1, the series converges.
b) This is a geometric series with common ratio r = 1/2, and so converges since
| r | < 1.
c) This series can be compared to a p-series:

∞∑
n=1

n

n2 +1
∼

∞∑
n=1

n

n2 =
∞∑

n=1

1

n

The
∼

symbol means the two series are "asymptotically equivalent"—that is,
they either both converge or both diverge because their terms behave so
similarly when summed as n gets very large. This can be shown by the
LIMIT COMPARISON TEST9:

lim
n→∞

(
n

n2 +1
÷ 1

n

)
= lim

n→∞

( n

n2 +1
· n

1

)
= lim

n→∞
n2

n2 +1
= 1

Since the limit is positive and finite, the two series either both converge
or both diverge. The simpler series diverges because it is a p-series with

p = 1

(harmonic series), and so the original series diverges by the limit com-
parison test.

d) This series can be compared to a smaller p-series:

∞∑
n=2

1

lnn
≥

∞∑
n=2

1

n

The p-series diverges since
p = 1

(harmonic series), so the larger series diverges by the appropriate DIRECT

COMPARISON TEST10.

e) The terms of this series do not have a limit of zero. Note that when

n > 1

,

9 Chapter 47.2.4 on page 267
10 HTTP://EN.WIKIBOOKS.ORG/WIKI/CALCULUS%2FSERIES%23DIRECT%20COMPARISON%20TESTS
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Power Series

n!

2n = n

2
·
[

n −1

2
· n −2

2
. . .

2

2

]
· 1

2
≥ n

2
· (1) · 1

2
= n

4

To see why the inequality holds, consider that when

n = 2

none of the fractions in the square brackets above are actually there; when

n = 3

only 2/2 (which is the same as

[n −1]/2

) is in the brackets; when
n = 4

only 3/2 (equal to
[n −1]/2

) and 2/2 (equal to
[n −2]/2

) are there; when
n = 5

, only 4/2, 3/2, and 2/2 are there; and so forth. Clearly none of these
fractions are less than 1 and they never will be, no matter what

n > 1

is used. Thus

lim
n→∞

n!

2n =∞

Therefore the series diverges by the divergence test.

f) This is an alternating series:

∞∑
n=1

cosπn

n
=

∞∑
n=1

(−1)n

n

Since the sequence

|an | = 1

n

decreases to 0, the series converges by the alternating series test.
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g) Since the terms alternate, consider the sequence

|an | = 1

n lnn −1

This sequence is clearly decreasing (since both n and ln n are increas-
ing — one may also show that the derivative [with respect to n] of the
expression is negative for

n ≥ 2

) and has limit zero (the denominator goes to infinity), so the series con-
verges by the alternating series test.

a) This series alternates, so consider the sequence

|an | = 1p
n

Since this sequence is clearly decreasing to zero, the original series is
convergent by the alternating series test. Now, consider the series formed
by taking the absolute value of the terms of the original series:

∑ |an | =
∞∑

n=1

1p
n

This new series can be compared to a p-series:

∞∑
n=1

1p
n
≥

∞∑
n=1

1

n

Since the smaller series diverges, the larger one diverges. But this means
the original (alternating) series was not absolutely convergent. Thus, the
original series is only conditionally convergent.

b) solution to come
c) solution to come
d) solution to come
e) solution to come
f) solution to come
g) solution to come

11

PT:CÁLCULO (VOLUME 3)/SEQUÊNCIAS E SÉRIES: EXERCÍCIOS12

11 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3ACALCULUS%20%28BOOK%29
12 HTTP://PT.WIKIBOOKS.ORG/WIKI/C%E1LCULO%20%28VOLUME%203%29%2FSEQU%EANCIAS%20E%

20S%E9RIES%3A%20EXERC%EDCIOS
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52 Vectors

52.1 Two-Dimensional Vectors

52.1.1 Introduction

In most mathematics courses up until this point, we deal with scalars. These are quantities which
only need one number to express. For instance, the amount of gasoline used to drive to the grocery
store is a scalar quantity because it only needs one number: 2 gallons.

In this unit, we deal with vectors. A vector is a directed line segment -- that is, a line segment that
points one direction or the other. As such, it has an initial point and a terminal point. The vector
starts at the initial point and ends at the terminal point, and the vector points towards the terminal
point. A vector is drawn as a line segment with an arrow at the terminal point:

Figure 61: A single vector without coordinate axes.

The same vector can be placed anywhere on the coordinate plane and still be the same vector --
the only two bits of information a vector represents are the magnitude and the direction. The
magnitude is simply the length of the vector, and the direction is the angle at which it points. Since
neither of these specify a starting or ending location, the same vector can be placed anywhere. To
illustrate, all of the line segments below can be defined as the vector with magnitude 4

p
2 and angle

45 degrees:
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Figure 62: Multiple locations for the same vector.

It is customary, however, to place the vector with the initial point at the origin as indicated by the
black vector. This is called the standard position.

52.1.2 Component Form

In standard practice, we don’t express vectors by listing the length and the direction. We instead
use component form, which lists the height (rise) and width (run) of the vectors. It is written as
follows:

(
run
rise

)

Figure 63: Vector with rise and run measurements.
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Other ways of denoting a vector in component form include:

(ux,uy)

and〈
ux,uy

〉
From the diagram we can now see the benefits of the standard position: the two numbers for the
terminal point’s coordinates are the same numbers for the vector’s rise and run. Note that we named
this vector u. Just as you can assign numbers to variables in algebra (usually x, y, and z), you can
assign vectors to variables in calculus. The letters u, v, and w are usually used, and either boldface
or an arrow over the letter is used to identify it as a vector.

When expressing a vector in component form, it is no longer obvious what the magnitude and
direction are. Therefore, we have to perform some calculations to find the magnitude and direction.

52.1.3 Magnitude

|u| =
√

u2
x +u2

y

where ux is the width, or run, of the vector; uy is the height, or rise, of the vector. You should
recognize this formula as the Pythagorean theorem. It is -- the magnitude is the distance between
the initial point and the terminal point.

The magnitude of a vector can also be called the norm.

52.1.4 Direction

tanθ = uy

ux
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Figure 64: Vector triangle with ux and uy labeled.

where θ is the direction of the vector. This formula is simply the tangent formula for right triangles.

52.1.5 Vector Operations

For these definitions, assume:

u =
(
ux

uy

)

v =
(

vx

vy

)

Vector Addition

Vector Addition is often called tip-to-tail addition, because this makes it easier to remember.

The sum of the vectors you are adding is called the resultant vector, and is the vector drawn from the
initial point (tip) of the first vector to the terminal point (tail) of the second vector. Although they
look like the arrows, the pointy bit is the tail, not the tip. (Imagine you were walking the direction
the vector was pointing... you would start at the flat end (tip) and walk toward the pointy end.)

It looks like this:
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Figure 65: Tip-to-tail addition

(Notice, the black lined vector is the sum of the two dotted line vectors!)

Numerically:

(
4
6

)
+

(
1
−3

)
=

(
5
3

)

Or more generally:

u+v =
(

ux + vx

uy + vy

)

Scalar Multiplication

Graphically, multiplying a vector by a scalar changes only the magnitude of the vector by that same
scalar. That is, multiplying a vector by 2 will "stretch" the vector to twice its original magnitude,
keeping the direction the same.
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Figure 66: Multiplication of a vector with a scalar

2 ·
(
3
3

)
=

(
6
6

)

Numerically, you calculate the resultant vector with this formula:

cu =
(
cux

cuy

)
, where c is a constant scalar.

As previously stated, the magnitude is changed by the same constant:

|cu| = c|u|

Since multiplying a vector by a constant results in a vector in the same direction, we can reason that
two vectors are parallel if one is a constant multiple of the other -- that is, that u||v if u = cv for
some constant c.

We can also divide by a non-zero scalar by instead multiplying by the reciprocal, as with dividing
regular numbers:

u

c
= 1

c
u,c 6= 0
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Dot Product

The dot product, sometimes confusingly called the scalar product, of two vectors is given by:

u ·v = ux vx +uy vy

or which is equivalent to:

u ·v = |u||v|cosθ

where θ is the angle difference between the two vectors. This provides a convenient way of finding
the angle between two vectors:

cosθ = u ·v

|u||v|

52.1.6 Applications of Scalar Multiplication and Dot Product

Unit Vectors

A unit vector is a vector with a magnitude of 1. The unit vector of u is a vector in the same
direction as u, but with a magnitude of 1:

Figure 67: Unit vector
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The process of finding the unit vector of u is called normalization. As mentioned in scalar mul-
tiplication, multiplying a vector by constant C will result in the magnitude being multiplied by C.
We know how to calculate the magnitude of u. We know that dividing a vector by a constant will
divide the magnitude by that constant. Therefore, if that constant is the magnitude, dividing the
vector by the magnitude will result in a unit vector in the same direction as u:

w = u

|u|
, where

w

is the unit vector of

u

Standard Unit Vectors

A special case of Unit Vectors are the Standard Unit Vectors i and j: i points one unit directly right
in the x direction, and j points one unit directly up in the y direction:

i =
(
1
0

)

j =
(
0
1

)

Using the scalar multiplication and vector addition rules, we can then express vectors in a different
way:

(
x
y

)
= xi+ yj

If we work that equation out, it makes sense. Multiplying x by i will result in the vector
(

x
0

)
.

Multiplying y by j will result in the vector
(

0
y

)
. Adding these two together will give us our original

vector,
(

x
y

)
. Expressing vectors using i and j is called standard form.
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Projection and Decomposition of Vectors

Sometimes it is necessary to decompose a vector u into two components: one component parallel
to a vector v, which we will call u∥; and one component perpendicular to it, u⊥.

Figure 68: Projection of a vector

Since the length of u∥ is (|u| ·cosθ), it is straightforward to write down the formulas for u⊥ and u∥ :

u∥ = |u|∗ (u ·v)

(|u||v|) ∗
v

|v| = (u ·v)/(|v|2)v

and

u⊥ = u−u∥

Length of a vector

The length of a vector is given by the dot product of a vector with itself, and θ = 0deg :

u ·u = |u||u|cosθ = |u|2

Perpendicular vectors

If the angle θ between two vectors is 90 degrees or π
2 (if the two vectors are orthogonal to each

other), that is the vectors are perpendicular, then the dot product is 0. This provides us with an easy

way to find a perpendicular vector: if you have a vector u =
(
ux

uy

)
, a perpendicular vector can easily

be found by either
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v =
(−uy

ux

)
=−

(
uy

−ux

)

52.1.7 Polar coordinates

Polar coordinates are an alternative two-dimensional coordinate system, which is often useful when
rotations are important. Instead of specifying the position along the x and y axes, we specify the
distance from the origin, r, and the direction, an angle θ.

Figure 69: Polar coordinates
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Looking at this diagram, we can see that the values of x and y are related to those of r and θ by the
equations

x = r cosθ r =
√

x2 + y2

y = r sinθ tanθ = y
x

Because tan-1 is multivalued, care must be taken to select the right value.

Just as for Cartesian coordinates the unit vectors that point in the x and y directions are special, so
in polar coordinates the unit vectors that point in the r and θ directions are also special.

We will call these vectors r̂ and θ̂, pronounced r-hat and theta-hat. Putting a circumflex over a vector
this way is often used to mean the unit vector in that direction.

Again, on looking at the diagram we see,

i = r̂cosθ− θ̂ sinθ r̂ = x
r i+ y

r j
j = r̂sinθ+ θ̂cosθ θ̂ =− y

r i+ x
r j

52.2 Three-Dimensional Coordinates and Vectors

52.2.1 Basic definition

Two-dimensional Cartesian coordinates as we’ve discussed so far can be easily extended to three-
dimensions by adding one more value: ’z’. If the standard (x,y) coordinate axes are drawn on a
sheet of paper, the ’z’ axis would extend upwards off of the paper.
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Figure 70: 3D coordinate axes.

Similar to the two coordinate axes in two-dimensional coordinates, there are three coordinate
planes in space. These are the xy-plane, the yz-plane, and the xz-plane. Each plane is the "sheet
of paper" that contains both axes the name mentions. For instance, the yz-plane contains both the y
and z axes and is perpendicular to the x axis.

306
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Figure 71: Coordinate planes in space.

Therefore, vectors can be extended to three dimensions by simply adding the ’z’ value.

u =
x

y
z


To facilitate standard form notation, we add another standard unit vector:
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k =
0

0
1


Again, both forms (component and standard) are equivalent.

1
2
3

= 1i+2j+3k

Magnitude: Magnitude in three dimensions is the same as in two dimensions, with the addition of
a ’z’ term in the radicand.

|u| =
√

u2
x +u2

y +u2
z

52.3 Three dimensions

The polar coordinate system is extended into three dimensions with two different coordinate sys-
tems, the cylindrical and spherical coordinate systems, both of which include two-dimensional or
planar polar coordinates as a subset. In essence, the cylindrical coordinate system extends polar
coordinates by adding an additional distance coordinate, while the spherical system instead adds an
additional angular coordinate.
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52.3.1 Cylindrical coordinates

Figure 72: a point plotted with cylindrical coordinates

The cylindrical coordinate system is a coordinate system that essentially extends the two-
dimensional polar coordinate system by adding a third coordinate measuring the height of a point
above the plane, similar to the way in which the Cartesian coordinate system is extended into three
dimensions. The third coordinate is usually denoted h, making the three cylindrical coordinates (r,
, h).

The three cylindrical coordinates can be converted to Cartesian coordinates by

x = r cosθ

y = r sinθ

z = h.
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52.3.2 Spherical coordinates

Figure 73: A point plotted using spherical coordinates

Polar coordinates can also be extended into three dimensions using the coordinates (, , ), where
is the distance from the origin, is the angle from the z-axis (called the colatitude or zenith and
measured from 0 to 180°) and is the angle from the x-axis (as in the polar coordinates). This
coordinate system, called the spherical coordinate system, is similar to the latitude and longitude
system used for Earth, with the origin in the centre of Earth, the latitude being the complement of ,
determined by = 90° , and the longitude l being measured by l = 180°.

The three spherical coordinates are converted to Cartesian coordinates by

x = ρ sinφ cosθ

y = ρ sinφ sinθ

z = ρ cosφ.

r =
√

x2 + y2 + z2,

θ = arctan
y

x
,

φ = arccos
z

r
,
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52.3.3 Cross Product

The cross product of two vectors is a DETERMINANT1:

u×v =
∣∣∣∣∣∣

i j k
ux uy uz

vx vy vz

∣∣∣∣∣∣
and is also a PSEUDOVECTOR2.

The cross product of two vectors is orthogonal to both vectors. The magnitude of the cross product
is the product of the magnitude of the vectors and the sin of the angle between them.

|u×v| = |u||v|sinθ

This magnitude is the area of the parallelogram defined by the two vectors.

The cross product is linear and anticommutative. For any numbers a and b,

u× (av+bw) = au×v+bu×w u×v =−v×u

If both vectors point in the same direction, their cross product is zero.

52.3.4 Triple Products

If we have three vectors we can combine them in two ways, a triple scalar product,

u · (v×w)

and a triple vector product

u× (v×w)

The triple scalar product is a determinant

u · (v×w) =
∣∣∣∣∣∣
ux uy uz

vx vy vz

wx wy wz

∣∣∣∣∣∣

1 HTTP://EN.WIKIPEDIA.ORG/WIKI/DETERMINANT
2 HTTP://EN.WIKIPEDIA.ORG/WIKI/PSEUDOVECTOR
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If the three vectors are listed clockwise, looking from the origin, the sign of this product is positive.
If they are listed anticlockwise the sign is negative.

The order of the cross and dot products doesn’t matter.

u · (v×w) = (u×v) ·w

Either way, the absolute value of this product is the volume of the parallelepiped defined by the
three vectors, u, v, and w

The triple vector product can be simplified

u× (v×w) = (u ·w)v− (u ·v)w

This form is easier to do calculations with.

The triple vector product is not associative.

u× (v×w) 6= (u×v)×w

There are special cases where the two sides are equal, but in general the brackets matter. They must
not be omitted.

52.3.5 Three-Dimensional Lines and Planes

We will use r to denote the position of a point.

The multiples of a vector, a all lie on a line through the origin. Adding a constant vector b will shift
the line, but leave it straight, so the equation of a line is,

r = as +b

This is a parametric equation. The position is specified in terms of the parameter s.

Any linear combination of two vectors, a and b lies on a single plane through the origin, provided
the two vectors are not colinear. We can shift this plane by a constant vector again and write

r = as +bt +c

If we choose a and b to be orthonormal vectors in the plane (i.e. unit vectors at right angles) then
s and t are Cartesian coordinates for points in the plane.

These parametric equations can be extended to higher dimensions.

Instead of giving parametric equations for the line and plane, we could use constraints. E.g., for any
point in the xy plane z=0
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For a plane through the origin, the single vector normal to the plane, n, is at right angle with every
vector in the plane, by definition, so

r ·n = 0

is a plane through the origin, normal to n.

For planes not through the origin we get

(r−a) ·n = 0 r ·n = a

A line lies on the intersection of two planes, so it must obey the constraint for both planes, i.e.

r ·n = a r ·m = b

These constraint equations con also be extended to higher dimensions.

52.4 Vector-Valued Functions

Vector-Valued Functions are functions that instead of giving a resultant scalar value, give a resultant
vector value. These aid in the create of direction and vector fields, and are therefore used in physics
to aid with visualizations of electric, magnetic, and many other fields. They are of the following
form:

F(t) =



a1(t)
a2(t)
a3(t)

.

.
an(t)



52.4.1 Introduction

52.4.2 Limits, Derivatives, and Integrals

Put simply, the limit of a vector-valued function is the limit of its parts.

Proof:

Suppose limt→c F(t ) = L =



a1

a2

a3

.

.
an


Therefore for any ε> 0 there is a φ> 0 such that
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0 < |t − c| <φ =⇒ |F(t )−L| < ε
But by the triangle inequality |a1| ≤ |F| ≤ |a1|+ |a2|+ |a3|+ ...+|an | |a1(t )−a1| ≤ |F(t )−L|
So

0 < |t − c| <φ =⇒ |a1(t )−a1| < ε
Therefore limt→c a1(t ) = a1 A similar argument can be used through parts a_n(t)

Now let limt→c F(t ) = L =



a1

a2

a3

.

.
an

 again, and that for any ε>0 there is a corresponding φ>0 such

0<|t-c|<φ implies

|an(t )−an | < ε
n

Then

0 < |t − c| <φ =⇒ |F(t )−L| ≤ ε1
n + ...+ εn

n = ε
therefore!:

limt→c F(t ) = L =



a1

a2

a3

.

.
an

=



limt→c a1(t)
limt→c a2(t)
limt→c a3(t)

.

.
limt→c an(t)


From this we can then create an accurate definition of a derivative of a vector-valued function:

F′(t ) = limh→0
F(t+h)−F(t )

h =



a1(t)
a2(t)
a3(t)

.

.
an(t)



= lim
h→0



a1(t+h)
a2(t+h)
a3(t+h)

.

.
an(t+h)

−



a1(t)
a2(t)
a3(t)

.

.
an(t)


h
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=



limh→0
a1(t+h)−a1(t )

h

limh→0
a2(t+h)−a2(t )

h

limh→0
a3(t+h)−a3(t )

h
.
.

limh→0
an (t+h)−an (t )

h


The final step was accomplished by taking what we just did with limits.

By the Fundamental Theorem of Calculus integrals can be applied to the vector’s components.

In other words: the limit of a vector function is the limit of its parts, the derivative of a vector
function is the derivative of its parts, and the integration of a vector function is the integration of it
parts.

52.4.3 Velocity, Acceleration, Curvature, and a brief mention of the Binormal

Assume we have a vector-valued function which starts at the origin and as its independent variables
changes the points that the vectors point at trace a path.

We will call this vector r(t ), which is commonly known as the position vector.

If r then represents a position and t represents time, then in model with Physics we know the
following:

r(t +h)− r(t ) is displacement. r′(t ) = v(t ) where v(t ) is the velocity vector. |v(t )| is the speed.
r′′(t ) = v′(t ) = a(t ) where a(t ) is the acceleration vector.

The only other vector that comes in use at times is known as the curvature vector.

The vector T(t ) used to find it is known as the unit tangent vector, which is defined as v(t )
|v(t )| or

shorthand v̂.

The vector normal N to this then is T′(t )
|v(t )| .

We can verify this by taking the dot product

T ·N = 0

Also note that |v(t )| = d s
d t

and

T(t ) = v
|v | =

dr
d t
d s
d t

= dr
d s

and

N = T′(t )
|v(t )| =

dT
d t
d s
d t

= dT
d s

Then we can actually verify:
d

d s (T ·T) = d
d s (1)

dT
d s ·T+T · dT

d s = 0
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2∗T · dT
d s = 0

T · dT
d s = 0

T ·N = 0

Therefore N is perpendicular to T

What this gives rise to is the Unit Normal Vector
dT
d s

| dT
d s |

of which the top-most vector is the Normal

vector, but the bottom half (|dT
d s |)−1 is known as the curvature. Since the Normal vector points

toward the inside of a curve, the sharper a turn, the Normal vector has a large magnitude, therefore
the curvature has a small value, and is used as an index in civil engineering to reflect the sharpness
of a curve (clover-leaf highways, for instance).

The only other thing not mentioned is the Binormal that occurs in 3-d curves T×N = B, which is
useful in creating planes parallel to the curve.
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53 Lines and Planes in Space

53.1 Introduction

For many practical applications, for example for describing forces in physics and mechanics, you
have to work with the mathematical descriptions of lines and planes in 3-dimensional space.

53.2 Parametric Equations

53.2.1 Line in Space

A line in space is defined by two points in space, which I will call P1 and P2. Let x1 be the vector
from the origin to P1, and x2 the vector from the origin to P2. Given these two points, every other
point P on the line can be reached by

x = x1 +λa

where a is the vector from P1 and P2:

a = x2 −x1

Figure 74: Line in 3D Space.
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53.2.2 Plane in Space

The same idea can be used to describe a plane in 3-dimensional space, which is uniquely defined by
three points (which do not lie on a line) in space (P1,P2,P3). Let xi be the vectors from the origin
to Pi . Then

x = x1 +λa+µb

with:

a = x2 −x1 and b = x3 −x1

Note that the starting point does not have to be x1, but can be any point in the plane. Similarly,
the only requirement on the vectors a and b is that they have to be two non-collinear vectors in our
plane.

53.3 Vector Equation (of a Plane in Space, or of a Line in a Plane)

An alternative representation of a Plane in Space is obtained by observing that a plane is defined by
a point P1 in that plane and a direction perpendicular to the plane, which we denote with the vector
n. As above, let x1 describe the vector from the origin to P1, and x the vector from the origin to
another point P in the plane. Since any vector that lies in the plane is perpendicular to n, the vector
equation of the plane is given by

n · (x−x1) = 0

In 2 dimensions, the same equation uniquely describes a Line.

53.4 Scalar Equation (of a Plane in Space, or of a Line in a Plane)

If we express n and x through their components

n =
 a

b
c

 , and x =
 x

y
z

 ,

writing out the scalar product for n · (x−x1) = 0 provides us with the scalar equation for a plane in
space:
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ax +by + cz = d

where d = n ·x1.

In 2d space, the equivalent steps lead to the scalar equation for a line in a plane:

ax +by = c

1

1 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3ACALCULUS%20%28BOOK%29
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54 Multivariable & Differential Calculus

In your previous study of calculus, we have looked at functions and their behavior. Most of these
functions we have examined have been all in the form

f(x) : R → R,

and only occasional examination of functions of two variables. However, the study of functions of
several variables is quite rich in itself, and has applications in several fields.

We write functions of vectors - many variables - as follows:

f : Rm → Rn

and f(x) for the function that maps a vector in Rm to a vector in Rn.

Before we can do calculus in Rn, we must familiarize ourselves with the structure of Rn. We need
to know which properties of R can be extended to Rn

54.1 Topology in Rn

We are already familiar with the nature of the regular real number line, which is the set R, and the
two-dimensional plane, R2. This examination of topology in Rn attempts to look at a generalization
of the nature of n-dimensional spaces - R, or R23, or Rn.

54.1.1 Lengths and distances

If we have a vector in R2, we can calculate its length using the Pythagorean theorem. For instance,
the length of the vector (2, 3) is

√
32 +22 =p

13

We can generalize this to Rn. We define a vector’s length, written |x|, as the square root of the sum
of the squares of each of its components. That is, if we have a vector x=(x1,...,xn),

|x| =
√

x2
1 +x2

2 +·· ·+x2
n

Now that we have established some concept of length, we can establish the distance between two
vectors. We define this distance to be the length of the two vectors’ difference. We write this
distance d(x, y), and it is
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d(x,y) = |x−y| =
√∑

(xi − yi )2

This distance function is sometimes referred to as a metric. Other metrics arise in different circum-
stances. The metric we have just defined is known as the Euclidean metric.

54.1.2 Open and closed balls

In R, we have the concept of an interval, in that we choose a certain number of other points about
some central point. For example, the interval [-1, 1] is centered about the point 0, and includes
points to the left and right of zero.

In R2 and up, the idea is a little more difficult to carry on. For R2, we need to consider points to the
left, right, above, and below a certain point. This may be fine, but for R3 we need to include points
in more directions.

We generalize the idea of the interval by considering all the points that are a given, fixed distance
from a certain point - now we know how to calculate distances in Rn, we can make our generalization
as follows, by introducing the concept of an open ball and a closed ball respectively, which are
analogous to the open and closed interval respectively.

an open ball

B(a,r )

is a set in the form { x &isin; Rn|d(x, a) < r}
a closed ball

B(a,r )

is a set in the form { x &isin; Rn|d(x, a) ≤ r}

In R, we have seen that the open ball is simply an open interval centered about the point x=a. In R2

this is a circle with no boundary, and in R3 it is a sphere with no outer surface. (What would the
closed ball be?)

if every point in it is within a finite distance of the origin, i.e there exists some r>0 such that x is in
S implies |x|<r.

54.2 Curves and parameterizations

If we have a function f : R → Rn, we say that f’s image (the set {f(t) | t &isin; R} - or some subset
of R) is a curve in Rn and f is its parametrization.
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Parameterizations are not necessarily unique - for example, f(t) = (cos t, sin t) such that t &isin; [0,
2π) is one parametrization of the unit circle, and g(t) = (cos at, sin at) such that t &isin; [0, 2π/a) is
a whole family of parameterizations of that circle.

54.2.1 Collision and intersection points

Say we have two different curves. It may be important to consider

• points the two curves share - where they intersect
• intersections which occur for the same value of t - where they collide.

Intersection points

Firstly, we have two parameterizations f(t) and g(t), and we want to find out when they intersect,
this means that we want to know when the function values of each parametrization are the same.
This means that we need to solve

f(t) = g(s)

because we’re seeking the function values independent of the times they intersect.

For example, if we have f(t) = (t, 3t) and g(t) = (t, t2), and we want to find intersection points:

f(t) = g(s)
(t, 3t) = (s, s2)
t = s and 3t = s2

with solutions (t, s) = (0, 0) and (3, 3)

So, the two curves intersect at the points (0, 0) and (3, 3).

Collision points

However, if we want to know when the points "collide", with f(t) and g(t), we need to know when
both the function values and the times are the same, so we need to solve instead

f(t) = g(t)

For example, using the same functions as before, f(t) = (t, 3t) and g(t) = (t, t2), and we want to find
collision points:

f(t) = g(t)
(t, 3t) = (t, t2)
t = t and 3t = t2

which gives solutions t = 0, 3 So the collision points are (0, 0) and (3, 3).

We may want to do this to actually model physical problems, such as in ballistics.

323



Multivariable & Differential Calculus

54.2.2 Continuity and differentiability

If we have a parametrization f : R → Rn, which is built up out of component functions in the form
f(t) = (f1(t),...,fn(t)), f is continuous if and only if each component function is also.

In this case the derivative of f(t) is

ai = (f1&prime;(t),...,fn&prime;(t)). This is actually a specific consequence of a more
general fact we will see later.

54.2.3 Tangent vectors

Recall in single-variable calculus that on a curve, at a certain point, we can draw a line that is tangent
to that curve at exactly at that point. This line is called a tangent. In the several variable case, we
can do something similar.

We can expect the tangent vector to depend on f&prime;(t) and we know that a line is its own
tangent, so looking at a parametrised line will show us precisely how to define the tangent vector
for a curve.

An arbitrary line is f(t)=at+b, with :fi(t)=ait+bi, so

fi&prime;(t)=ai and
f&prime;(t)=a, which is the direction of the line, its tangent vector.

Similarly, for any curve, the tangent vector is f&prime;(t).
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Angle between curves

Figure 75

We can then formulate the concept of the angle between two curves by considering the angle be-
tween the two tangent vectors. If two curves, parametrized by f1 and f2 intersect at some point,
which means that

f1(s)=f2(t)=c,

the angle between these two curves at c is the angle between the tangent vectors f1&prime;(s) and
f2&prime;(t) is given by

arccos
f′1(s) · f′2(t )

|f′1(s)||f′2(t )|
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Tangent lines

With the concept of the tangent vector as being analogous to being the gradient of the line in the
one variable case, we can form the idea of the tangent line. Recall that we need a point on the line
and its direction.

If we want to form the tangent line to a point on the curve, say p, we have the direction of the line
f&prime;(p), so we can form the tangent line

x(t)=p+t f&prime;(p)

54.2.4 Different parameterizations

One such parametrization of a curve is not necessarily unique. Curves can have several different
parametrizations. For example, we already saw that the unit circle can be parametrized by g(t) =
(cos at, sin at) such that t &isin; [0, 2π/a).

Generally, if f is one parametrization of a curve, and g is another, with

f(t0) = g(s0)

there is a function u(t) such that u(t0)=s0, and g(u(t)) = f(t) near t0.

This means, in a sense, the function u(t) "speeds up" the curve, but keeps the curve’s shape.

54.2.5 Surfaces

A surface in space can be described by the image of a function f’ : R2 → Rn. fis said to be the
parametrization of that surface.

For example, consider the function

f(α, β) = α(2,1,3)+β(-1,2,0)

This describes an infinite plane in R3. If we restrict α and β to some domain, we get a parallelogram-
shaped surface in R3.

Surfaces can also be described explicitly, as the graph of a function z = f(x, y) which has a standard
parametrization as f(x,y)=(x, y, f(x,y)), or implictly, in the form f(x, y, z)=c.

Level sets

The concept of the level set (or contour) is an important one. If you have a function f(x, y, z), a level
set in R3 is a set of the form {(x,y,z)|f(x,y,z)=c}. Each of these level sets is a surface.

Level sets can be similarly defined in any Rn

Level sets in two dimensions may be familiar from maps, or weather charts. Each line represents
a level set. For example, on a map, each contour represents all the points where the height is the
same. On a weather chart, the contours represent all the points where the air pressure is the same.
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54.3 Limits and continuity

Before we can look at derivatives of multivariate functions, we need to look at how limits work with
functions of several variables first, just like in the single variable case.

If we have a function f : Rm → Rn, we say that f(x) approaches b (in Rn) as x approaches a (in Rm)
if, for all positive ε, there is a corresponding positive number δ, |f(x)-b| < ε whenever |x-a| < δ, with
x 6= a.

This means that by making the difference between x and a smaller, we can make the difference
between f(x) and b as small as we want.

If the above is true, we say

• f(x) has limit b at a
• limx→a f(x) = b
• f(x) approaches b as x approaches a
• f(x) → b as x → a

These four statements are all equivalent.

54.3.1 Rules

Since this is an almost identical formulation of limits in the single variable case, many of the limit
rules in the one variable case are the same as in the multivariate case.

For f and g, mapping Rm to Rn, and h(x) a scalar function mapping Rm to R, with

• f(x) → b as x → a’
• g(x) → c as x → a’
• h(x) → H as x → a

then:

• limx→a(f+g) = b+c
• limx→a(hf) = Hb

and consequently

• limx→a(f ·g) = b ·c
• limx→a(f×g) = b×c

when H6=0

• limx→a( f
h ) = b

H

54.3.2 Continuity

Again, we can use a similar definition to the one variable case to formulate a definition of continuity
for multiple variables.

If f : Rm → Rn, f is continuous at a point a in Rm if f(a) is defined and
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lim
x→a

f(x) = f(a)

Just as for functions of one dimension, if f, g are both continuous at p, f+g, λf (for a scalar λ), f·g,
and f&times;g are continuous also. If φ : Rm → R is continus at p, φf, f/φ are too if φ is never zero.

From these facts we also have that if A is some matrix which is n&times;m in size, with x in Rm,
a function f(x)=A x is continuous in that the function can be expanded in the form x1a1+...+xmam,
which can be easily verified from the points above.

If f : Rm → Rn which is in the form f(x) = (f1(x),...,fn(x) is continuous if and only if each of its
component functions are a polynomial or rational function, whenever they are defined.

Finally, if f is continuous at p, g is continuous at f(p), g(f(x)) is continuous at p.

54.3.3 Special note about limits

It is important to note that we can approach a point in more than one direction, and thus, the
direction that we approach that point counts in our evaluation of the limit. It may be the case that a
limit may exist moving in one direction, but not in another.

54.4 Differentiable functions

We will start from the one-variable definition of the derivative at a point p, namely

lim
x→p

f (x)− f (p)

x −p
= f ′(p)

Let’s change above to equivalent form of

lim
x→p

f (x)− f (p)− f ′(p)(x −p)

x −p
= 0

which achieved after pulling f’(p) inside and putting it over a common denominator.

We can’t divide by vectors, so this definition can’t be immediately extended to the multiple variable
case. Nonetheless, we don’t have to: the thing we took interest in was the quotient of two small
distances (magnitudes), not their other properties (like sign). It’s worth noting that ’other’ property
of vector neglected is its direction. Now we can divide by the absolute value of a vector, so lets
rewrite this definition in terms of absolute values

lim
x→p

∣∣ f (x)− f (p)− f ′(p)(x −p)
∣∣∣∣x −p

∣∣ = 0

Another form of formula above is obtained by letting h = x −p we have x = p +h and if x → p, the
h = x −p → 0, so
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lim
h→0

∣∣ f (p +h)− f (p)− f ′(p)h
∣∣

|h| = 0

,

where h can be thought of as a ’small change’.

So, how can we use this for the several-variable case?

If we switch all the variables over to vectors and replace the constant (which performs a linear map
in one dimension) with a matrix (which denotes also a linear map), we have

lim
x→p

|f(x)− f(p)−A(x−p)|
|x−p| = 0

or

lim
h→0

|f(p+h)− f(p)−Ah|
|h| = 0

If this limit exists for some f : Rm → Rn, and there is a linear map A : Rm → Rn (denoted by matrix
A which is m&times;n), we refer to this map as being the derivative and we write it as Dp f.

A point on terminology - in referring to the action of taking the derivative (giving the linear map A),
we write Dp f, but in referring to the matrix A itself, it is known as the Jacobian matrix and is also
written Jp f. More on the Jacobian later.

54.4.1 Properties

There are a number of important properties of this formulation of the derivative.

Affine approximations

If f is differentiable at p for x close to p, |f(x)-(f(p)+A(x-p))| is small compared to |x-p|, which means
that f(x) is approximately equal to f(p)+A(x-p).

We call an expression of the form g(x)+c affine, when g(x) is linear and c is a constant. f(p)+A(x-p)
is an affine approximation to f(x).

Jacobian matrix and partial derivatives

The Jacobian matrix of a function is in the form

(
Jpf

)
i j =

∂ fi

∂x j

∣∣∣∣
p
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for a f : Rm → Rn, Jp fis a n&times;mmatrix.

The consequence of this is that if f is differentiable at p, all the partial derivatives of f exist at p.

However, it is possible that all the partial derivatives of a function exist at some point yet that
function is not differentiable there, so it’s very important not to mix derivative (linear map) with the
Jacobian (matrix) especially when cited situation arose.

Continuity and differentiability

Furthermore, if all the partial derivatives exist, and are continuous in some neighbourhood of a
point p, then f is differentiable at p. This has the consequence that for a function f which has
its component functions built from continuous functions (such as rational functions, differentiable
functions or otherwise), f is differentiable everywhere f is defined.

We use the terminology continuously differentiable for a function differentiable at p which has all
its partial derivatives existing and are continuous in some neighbourhood at p.

54.4.2 Rules of taking Jacobians

If f : Rm → Rn, and h(x) : Rm → R are differentiable at ’p’:

• Jp(f+g) = Jpf+ Jpg
• Jp(hf) = h Jpf+ f(p)Jph
• Jp(f ·g) = gT Jpf+ fT Jpg

Important: make sure the order is right - matrix multiplication is not commutative!

Chain rule

The chain rule for functions of several variables is as follows. For f : Rm → Rn and g : Rn → Rp,
and g o f differentiable at p, then the Jacobian is given by

(
Jf(p)g

)(
Jpf

)
Again, we have matrix multiplication, so one must preserve this exact order. Compositions in one
order may be defined, but not necessarily in the other way.

54.4.3 Alternate notations

For simplicity, we will often use various standard abbreviations, so we can write most of the formu-
lae on one line. This can make it easier to see the important details.

We can abbreviate partial differentials with a subscript, e.g.,

∂x h(x, y) = ∂h

∂x
∂x∂y h = ∂y∂x h
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When we are using a subscript this way we will generally use the Heaviside D rather than &part;,

Dx h(x, y) = ∂h

∂x
Dx D y h = D y Dx h

Mostly, to make the formulae even more compact, we will put the subscript on the function itself.

Dx h = hx hx y = hy x

If we are using subscripts to label the axes, x1, x2 &hellip;, then, rather than having two layers of
subscripts, we will use the number as the subscript.

h1 = D1h = ∂1h = ∂x1 h = ∂h

∂x1

We can also use subscripts for the components of a vector function, u=(ux, uy, uy) or
u=(u1,u2&hellip;un)

If we are using subscripts for both the components of a vector and for partial derivatives we will
separate them with a comma.

ux,y = ∂ux

∂y

The most widely used notation is hx. Both h1 and &part;1h are also quite widely used whenever the
axes are numbered. The notation &part;xh is used least frequently.

We will use whichever notation best suits the equation we are working with.

54.4.4 Directional derivatives

Normally, a partial derivative of a function with respect to one of its variables, say, xj, takes the
derivative of that "slice" of that function parallel to the xj’th axis.

More precisely, we can think of cutting a function f(x1,...,xn) in space along the xj’th axis, with
keeping everything but the xj variable constant.

From the definition, we have the partial derivative at a point p of the function along this slice as

∂f

∂x j
= lim

t→0

f(p+ te j )− f(p)

t

provided this limit exists.

Instead of the basis vector, which corresponds to taking the derivative along that axis, we can pick
a vector in any direction (which we usually take as being a unit vector), and we take the directional
derivative of a function as
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∂f

∂d
= lim

t→0

f(p+ td)− f(p)

t

where d is the direction vector.

If we want to calculate directional derivatives, calculating them from the limit definition is rather
painful, but, we have the following: if f : R<Sup>n</sup> → R is differentiable at a point p, |p|=1,

∂f

∂d
= Dpf(d)

There is a closely related formulation which we’ll look at in the next section.

54.4.5 Gradient vectors

The partial derivatives of a scalar tell us how much it changes if we move along one of the axes.
What if we move in a different direction?

We’ll call the scalar f, and consider what happens if we move an infintesimal direction
dr=(dx,dy,dz), using the chain rule.

df = d x
∂ f

∂x
+d y

∂ f

∂y
+d z

∂ f

∂z

This is the dot product of dr with a vector whose components are the partial derivatives of f, called
the gradient of f

grad f =∇f =
(
∂f(p)
∂x1

, · · · , ∂f(p)
∂xn

)
We can form directional derivatives at a point p, in the direction d then by taking the dot product of
the gradient with d

∂f(p)

∂d
= d ·∇f(p)

.

Notice that grad f looks like a vector multiplied by a scalar. This particular combination of partial
derivatives is commonplace, so we abbreviate it to

∇=
(
∂

∂x
,
∂

∂y
,
∂

∂z

)
We can write the action of taking the gradient vector by writing this as an operator. Recall that in
the one-variable case we can write d/dx for the action of taking the derivative with respect to x. This
case is similar, but &nabla; acts like a vector.

We can also write the action of taking the gradient vector as:

∇=
(
∂

∂x1
,
∂

∂x2
, · · · ∂

∂xn

)
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Properties of the gradient vector

Geometry

• Grad f(p) is a vector pointing in the direction of steepest slope of f. |grad f(p)| is the rate of change
of that slope at that point.

For example, if we consider h(x, y)=x2+y2. The level sets of h are concentric circles, centred on the
origin, and

∇h = (hx ,hy ) = 2(x, y) = 2r

grad h points directly away from the origin, at right angles to the contours.

• Along a level set, (&nabla;f)(p) is perpendicular to the level set {x|f(x)=f(p) at x=p}.

If dr points along the contours of f, where the function is constant, then df will be zero. Since df is a
dot product, that means that the two vectors, df and grad f, must be at right angles, i.e. the gradient
is at right angles to the contours.

Algebraic properties
Like d/dx, &nabla; is linear. For any pair of constants, a and b, and any pair of scalar functions, f

and g

d

d x
(a f +bg ) = a

d

d x
f +b

d

d x
g ∇(a f +bg ) = a∇ f +b∇g

Since it’s a vector, we can try taking its dot and cross product with other vectors, and with itself.

54.4.6 Divergence

If the vector function u maps Rn to itself, then we can take the dot product of u and &nabla;. This
dot product is called the divergence.

div u =∇·u = ∂u1

∂x1
+ ∂u2

∂x2
+·· · ∂un

∂xn

If we look at a vector function like v=(1+x2,xy) we can see that to the left of the origin all the v
vectors are converging towards the origin, but on the right they are diverging away from it.

Div u tells us how much u is converging or diverging. It is positive when the vector is diverging
from some point, and negative when the vector is converging on that point.

Example:
For v=(1+x2, xy), div v=3x, which is positive to the right of the origin, where v is
diverging, and negative to the left of the origin, where v is converging.

Like grad, div is linear.
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∇· (au+bv) = a∇·u+b∇·v

Later in this chapter we will see how the divergence of a vector function can be integrated to tell us
more about the behaviour of that function.

To find the divergence we took the dot product of &nabla; and a vector with &nabla; on the left. If
we reverse the order we get

u ·∇ = ux Dx +uy D y +uz Dz

To see what this means consider i·&nabla; This is Dx, the partial differential in the i direction.
Similarly, u·&nabla; is the partial differential in the u direction, multiplied by |u|

54.4.7 Curl

If u is a three-dimensional vector function on R3 then we can take its cross product with &nabla;.
This cross product is called the curl.

curl u =∇×u =
∣∣∣∣∣∣

i j k
Dx D y Dz

ux uy uz

∣∣∣∣∣∣
Curl u tells us if the vector u is rotating round a point. The direction of curl u is the axis of rotation.

We can treat vectors in two dimensions as a special case of three dimensions, with uz=0 and Dzu=0.
We can then extend the definition of curl u to two-dimensional vectors

curl u = D y ux −Dx uy

This two dimensional curl is a scalar. In four, or more, dimensions there is no vector equivalent to
the curl.

Example:

Consider u=(-y, x). These vectors are tangent to circles centred on the origin, so appear to be rotating
around it anticlockwise.

curl u = D y (−y)−Dx x =−2

Example

Consider u=(-y, x-z, y), which is similar to the previous example.
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curl u =
∣∣∣∣∣∣

i j k
Dx D y Dz

−y x − z y

∣∣∣∣∣∣= 2i+2k

This u is rotating round the axis i+k

Later in this chapter we will see how the curl of a vector function can be integrated to tell us more
about the behaviour of that function.

54.4.8 Product and chain rules

Just as with ordinary differentiation, there are product rules for grad, div and curl.

• If g is a scalar and v is a vector, then

the divergence of gv is

∇· (g v) = g∇·v+ (v ·∇)g

the curl of gv is

∇× (g v) = g (∇×v)+ (∇g )×v

• If u and v are both vectors then

the gradient of their dot product is

∇(u ·v) = u× (∇×v)+v× (∇×u)+ (u ·∇)v+ (v ·∇)u

the divergence of their cross product is

∇· (u×v) = v · (∇×u)−u · (∇×v)

the curl of their cross product is

∇× (u×v) = (v ·∇)u− (u ·∇)v+u(∇·v)−v(∇·u)

We can also write chain rules. In the general case, when both functions are vectors and the compo-
sition is defined, we can use the Jacobian defined earlier.

∇u(v)|r = Jv ∇v|r
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where Ju is the Jacobian of u at the point v.

Normally J is a matrix but if either the range or the domain of u is R1 then it becomes a vector. In
these special cases we can compactly write the chain rule using only vector notation.

• If g is a scalar function of a vector and h is a scalar function of g then

∇h(g ) = dh

d g
∇g

• If g is a scalar function of a vector then

∇= (∇g )
d

d g

This substitution can be made in any of the equations containing &nabla;

54.4.9 Second order differentials

We can also consider dot and cross products of &nabla; with itself, whenever they can be defined.
Once we know how to simplify products of two &nabla;’s we’ll know out to simplify products with
three or more.

The divergence of the gradient of a scalar f is

∇2 f (x1, x2, . . . xn) = ∂2 f

∂x2
1

+ ∂2 f

∂x2
2

+ . . .+ ∂2 f

∂x2
n

This combination of derivatives is the Laplacian of f. It is commmonplace in physics and multidi-
mensional calculus because of its simplicity and symmetry.

We can also take the Laplacian of a vector,

∇2u(x1, x2, . . . xn) = ∂2u

∂x2
1

+ ∂2u

∂x2
2

+ . . .+ ∂2u

∂x2
n

The Laplacian of a vector is not the same as the divergence of its gradient

∇(∇·u)−∇2u =∇× (∇×u)

Both the curl of the gradient and the divergence of the curl are always zero.

∇×∇ f = 0 ∇· (∇×u) = 0

This pair of rules will prove useful.
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54.5 Integration

We have already considered differentiation of functions of more than one variable, which leads us
to consider how we can meaningfully look at integration.

In the single variable case, we interpret the definite integral of a function to mean the area under the
function. There is a similar interpretation in the multiple variable case: for example, if we have a
paraboloid in R3, we may want to look at the integral of that paraboloid over some region of the xy
plane, which will be the volume under that curve and inside that region.

54.5.1 Riemann sums

When looking at these forms of integrals, we look at the Riemann sum. Recall in the one-variable
case we divide the interval we are integrating over into rectangles and summing the areas of these
rectangles as their widths get smaller and smaller. For the multiple-variable case, we need to do
something similar, but the problem arises how to split up R2, or R3, for instance.

To do this, we extend the concept of the interval, and consider what we call a n-interval. An
n-interval is a set of points in some rectangular region with sides of some fixed width in each
dimension, that is, a set in the form {x&isin;Rn|ai ≤ xi ≤ bi with i = 0,...,n}, and its area/size/volume
(which we simply call its measure to avoid confusion) is the product of the lengths of all its sides.

So, an n-interval in R2 could be some rectangular partition of the plane, such as {(x,y) | x &isin;
[0,1] and y &isin; [0, 2]|}. Its measure is 2.

If we are to consider the Riemann sum now in terms of sub-n-intervals of a region Ω, it is

∑
i ;Si⊂Ω

f (x∗
i )m(Si )

where m(Si) is the measure of the division of Ω into k sub-n-intervals Si, and x*
i is a point in Si.

The index is important - we only perform the sum where Si falls completely within Ω - any Si that
is not completely contained in Ω we ignore.

As we take the limit as k goes to infinity, that is, we divide up Ω into finer and finer sub-n-intervals,
and this sum is the same no matter how we divide up Ω, we get the integral of f over Ω which we
write

∫
Ω

f

For two dimensions, we may write

∫ ∫
Ω

f

and likewise for n dimensions.
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54.5.2 Iterated integrals

Thankfully, we need not always work with Riemann sums every time we want to calculate an
integral in more than one variable. There are some results that make life a bit easier for us.

For R2, if we have some region bounded between two functions of the other variable (so two func-
tions in the form f(x) = y, or f(y) = x), between a constant boundary (so, between x = a and x =b or
y = a and y = b), we have

∫ b

a

∫ g (x)

f (x)
h(x, y)d yd x

An important theorem (called Fubini’s theorem) assures us that this integral is the same as

∫ ∫
Ω

f

.

54.5.3 Order of integration

In some cases the first integral of the entire iterated integral is difficult or impossible to solve,
therefore, it can be to our advantage to change the order of integration.∫ b

a

∫ g (x)
f (x) h(x, y)d xd y∫ d

c

∫ f (y)
e(y) h(x, y)d yd x

As of the writing of this, there is no set method to change an order of integration from dxdy to dydx
or some other variable. Although, it is possible to change the order of integration in an x and y
simple integration by simply switching the limits of integration around also, in non-simple x and y
integrations the best method as of yet is to recreate the limits of the integration from the graph of
the limits of integration.

In higher order integration that can’t be graphed, the process can be very tedious. For example,
dxdydz can be written into dzdydx, but first dxdydz must be switched to dydxdz and then to dydzdx
and then to dzdydx (but since 3-dimensional cases can be graphed, doing this would be seemingly
idiotic).

54.5.4 Parametric integrals

If we have a vector function, u, of a scalar parameter, s, we can integrate with respect to s simply
by integrating each component of u separately.

v(s) =
∫

u(s)d s ⇒ vi (s) =
∫

ui (s)d s

Similarly, if u is given a function of vector of parameters, s, lying in Rn, integration with respect to
the parameters reduces to a multiple integral of each component.

338



Integration

54.5.5 Line integrals

Figure 76

In one dimension, saying we are integrating from a to b uniquely specifies the integral.

In higher dimensions, saying we are integrating from a to b is not sufficient. In general, we must
also specify the path taken between a and b.

We can then write the integrand as a function of the arclength along the curve, and integrate by
components.

E.g., given a scalar function h(r) we write
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∫
C

h(r)dr =
∫

C
h(r)

dr

d s
d s =

∫
C

h(r(s))t(s)d s

where C is the curve being integrated along, and t is the unit vector tangent to the curve.

There are some particularly natural ways to integrate a vector function, u, along a curve,

∫
C

ud s
∫

C
u ·dr

∫
C

u×dr
∫

C
u · nd s

where the third possibility only applies in 3 dimensions.

Again, these integrals can all be written as integrals with respect to the arclength, s.

∫
C

u ·dr =
∫

C
u · td s

∫
C

u×dr =
∫

C
u× td s

If the curve is planar and u a vector lieing in the same plane, the second integral can be usefully
rewritten. Say,

u = ut t+unn+ubb

where t, n, and b are the tangent, normal, and binormal vectors uniquely defined by the curve.

Then

u× t =−bun +nub

For the 2-d curves specified b is the constant unit vector normal to their plane, and ub is always
zero.

Therefore, for such curves,

∫
C

u×dr =
∫

C
u · nd s
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Green’s Theorem

Figure 77

Let C be a piecewise smooth, simple closed curve that bounds a region S on the Cartesian plane. If
two function M(x,y) and N(x,y) are continuous and their partial derivatives are continuous, then∫ ∫

S(∂N
∂x − ∂M

∂y )d A = ∮
C Md x +N d y = ∮

C F ·dr

In order for Green’s theorem to work there must be no singularities in the vector field within the
boundaries of the curve.

Green’s theorem works by summing the circulation in each infinitesimal segment of area enclosed
within the curve.

Inverting differentials

We can use line integrals to calculate functions with specified divergence, gradient, or curl.

• If grad V = u
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V (p) =
∫ p

p0

u ·dr+h(p)

where h is any function of zero gradient and curl u must be zero.

• If div u = V

u(p) =
∫ p

p0

V dr+w(p)

where w is any function of zero divergence.

• If curl u = v

u(p) = 1

2

∫ p

p0

v×dr+w(p)

where w is any function of zero curl.

For example, if V=r2 then

gradV = 2(x, y, z) = 2r

and

∫ r
0 2u ·du = ∫ r

0 2(udu + vd v +wd w)
= [

u2
]r

0 +
[
v2

]r
0 +

[
w2

]r
0

= x2 + y2 + z2 = r 2

so this line integral of the gradient gives the original function.

Similarly, if v=k then

u(p) =
∫ p

p0

k×dr

Consider any curve from 0 to p=(x, y’, z), given by r=r(s) with r(0)=0 and r(S)=p for some S, and
do the above integral along that curve.

u(p) = ∫ S
0 k× dr

d s d s

= ∫ S
0

(
drx
d s j− dry

d s i
)

d s

= j
∫ S

0
drx
d s d s − i

∫ S
0

dry

d s d s
= j[rx (s)]S

0 − i[ry (s)]S
0

= px j−py i = xj− yi

and curl u is
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1

2

∣∣∣∣∣∣
i j k

Dx D y Dz

−y x 0

∣∣∣∣∣∣= k = v

as expected.

We will soon see that these three integrals do not depend on the path, apart from a constant.

54.5.6 Surface and Volume Integrals

Just as with curves, it is possible to parameterise surfaces then integrate over those parameters
without regard to geometry of the surface.

That is, to integrate a scalar function V over a surface A parameterised by r and s we calculate

∫
A

V (x, y, z)dS =
∫ ∫

A
V (r, s)det J dr d s

where J is the Jacobian of the transformation to the parameters.

To integrate a vector this way, we integrate each component separately.

However, in three dimensions, every surface has an associated normal vector n, which can be used
in integration. We write dS=ndS.

For a scalar function, V, and a vector function, v, this gives us the integrals

∫
A

V dS
∫

A
v ·dS

∫
A

v×dS

These integrals can be reduced to parametric integrals but, written this way, it is clear that they
reflect more of the geometry of the surface.

When working in three dimensions, dV is a scalar, so there is only one option for integrals over
volumes.
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54.5.7 Gauss’s divergence theorem

Figure 78

We know that, in one dimension,

∫ b

a
D f d x = f |ba

Integration is the inverse of differentiation, so integrating the differential of a function returns the
original function.

This can be extended to two or more dimensions in a natural way, drawing on the analogies between
single variable and multivariable calculus.

The analog of D is &nabla;, so we should consider cases where the integrand is a divergence.

Instead of integrating over a one-dimensional interval, we need to integrate over a n-dimensional
volume.

In one dimension, the integral depends on the values at the edges of the interval, so we expect the
result to be connected with values on the boundary.

This suggests a theorem of the form,

∫
V
∇·udV =

∫
∂V

n ·udS
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This is indeed true, for vector fields in any number of dimensions.

This is called Gauss’s theorem.

There are two other, closely related, theorems for grad and curl:

•
∫

V ∇u dV = ∫
∂V undS,

•
∫

V ∇×udV = ∫
∂V n×udS,

with the last theorem only being valid where curl is defined.

54.5.8 Stokes’ curl theorem

Figure 79

These theorems also hold in two dimensions, where they relate surface and line integrals. Gauss’s
divergence theorem becomes

∫
S
∇·udS =

∮
∂S

n ·ud s

where s is arclength along the boundary curve and the vector n is the unit normal to the curve that
lies in the surface S, i.e. in the tangent plane of the surface at its boundary, which is not necessarily
the same as the unit normal associated with the boundary curve itself.

Similarly, we get

∫
S
∇×udS =

∫
C

n×ud s (1)
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,

where C is the boundary of S

In this case the integral does not depend on the surface S.

To see this, suppose we have different surfaces, S1 and S2, spanning the same curve C, then by
switching the direction of the normal on one of the surfaces we can write

∫
S1+S2

∇×udS =
∫

S
∇×udS −

∫
S
∇×udS (2)

The left hand side is an integral over a closed surface bounding some volume V so we can use
Gauss’s divergence theorem.

∫
S1+S2

∇×udS =
∫

V
∇·∇×udV

but we know this integrand is always zero so the right hand side of (2) must always be zero, i.e. the
integral is independent of the surface.

This means we can choose the surface so that the normal to the curve lying in the surface is the
same as the curves intrinsic normal.

Then, if u itself lies in the surface, we can write

u = (u ·n)n+ (u · t)t

just as we did for line integrals in the plane earlier, and substitute this into (1) to get

∫
S
∇×udS =

∫
C

u ·dr

This is Stokes’ curl theorem

1

1 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3ACALCULUS%20%28BOOK%29
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55 Ordinary Differential Equations

Ordinary differential equations involve equations containing:

• variables
• functions
• their derivatives

and their solutions.

In studying integration, you already have considered solutions to very simple differential equations.
For example, when you look to solving

∫
f (x)d x = g (x)

for g(x), you are really solving the differential equation

g ′(x) = f (x)

55.1 Notations and terminology

The notations we use for solving differential equations will be crucial in the ease of solubility for
these equations.

This document will be using three notations primarily:

• f’ to denote the derivative of f
• D f to denote the derivative of f

• d f
d x to denote the derivative of f (for separable equations).

55.1.1 Terminology

Consider the differential equation

3 f ′′(x)+5x f (x) = 11

Since the equation’s highest derivative is 2, we say that the differential equation is of order 2.
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55.2 Some simple differential equations

A key idea in solving differential equations will be that of INTEGRATION1.

Let us consider the second order differential equation (remember that a function acts on a value).

f ′′(x) = 2

How would we go about solving this? It tells us that on differentiating twice, we obtain the constant
2 so, if we integrate twice, we should obtain our result.

Integrating once first of all:

∫
f ′′(x)d x =

∫
2d x

f ′(x) = 2x +C1

We have transformed the apparently difficult second order differential equation into a rather simpler
one, viz.

f ′(x) = 2x +C1

This equation tells us that if we differentiate a function once, we get 2x +C1. If we integrate once
more, we should find the solution.

∫
f ′(x)d x =

∫
2x +C1 d x

f (x) = x2 +C1x +C2

This is the solution to the differential equation. We will get f ′′ = 2 for all values of C1 and C2.

The values C1 and C2 are related to quantities known as initial conditions.

Why are initial conditions useful? ODEs (ordinary differential equations) are useful in modeling
physical conditions. We may wish to model a certain physical system which is initially at rest
(so one initial condition may be zero), or wound up to some point (so an initial condition may be
nonzero, say 5 for instance) and we may wish to see how the system reacts under such an initial
condition.

When we solve a system with given initial conditions, we substitute them after our process of
integration.

1 HTTP://EN.WIKIBOOKS.ORG/WIKI/CALCULUS%2FDEFINITE%20INTEGRAL

348

http://en.wikibooks.org/wiki/Calculus%2FDefinite%20integral


Basic first order DEs

55.2.1 Example

When we solved f ′′(x) = 2 say we had the initial conditions f ′(0) = 3 and f (0) = 2 . (Note, initial
conditions need not occur at f(0)).

After we integrate we make substitutions:

f ′(0) = 2(0)+C1

3 =C1

∫
f ′(x)d x =

∫
2x +3d x

f (x) = x2 +3x +C2

f (0) = 02 +3(0)+C2

2 =C2

f (x) = x2 +3x +2

Without initial conditions, the answer we obtain is known as the general solution or the solution to
the family of equations. With them, our solution is known as a specific solution.

55.3 Basic first order DEs

In this section we will consider four main types of differential equations:

• separable
• homogeneous
• linear
• exact

There are many other forms of differential equation, however, and these will be dealt with in the
next section
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55.3.1 Separable equations

A separable equation is in the form (using dy/dx notation which will serve us greatly here)

d y

d x
= f (x)/g (y)

Previously we have only dealt with simple differential equations with g(y)=1. How do we solve
such a separable equation as above?

We group x and dx terms together, and y and dy terms together as well.

g (y) d y = f (x) d x

Integrating both sides with respect to y on the left hand side and x on the right hand side:

∫
g (y)d y =

∫
f (x)d x +C

we will obtain the solution.

Worked example

Here is a worked example illustrating the process.

We are asked to solve

d y

d x
= 3x2 y

Separating

d y

y
= (3x2)d x

Integrating

∫
d y

y
=

∫
3x2 d x

ln y = x3 +C

y = ex3+C

Letting k = eC where k is a constant we obtain
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y = kex3

which is the general solution.

Verification

This step does not need to be part of your work, but if you want to check your solution, you can
verify your answer by differentiation.

We obtained

y = kex3

as the solution to

d y

d x
= 3x2 y

Differentiating our solution with respect to x,

d y

d x
= 3kx2ex3

And since y = kex3
, we can write

d y

d x
= 3x2 y

We see that we obtain our original differential equation, thus our work must be correct.

55.3.2 Homogeneous equations

A homogeneous equation is in the form

d y

d x
= f (y/x)

This looks difficult as it stands, however we can utilize the substitution

v = y

x

so that we are now dealing with F(v) rather than F(y/x).

Now we can express y in terms of v, as y=xv and use the product rule.

The equation above then becomes, using the product rule
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d y

d x
= v +x

d v

d x

Then

v +x
d v

d x
= f (v)

x
d v

d x
= f (v)− v

d v

d x
= f (v)− v

x

which is a separable equation and can be solved as above.

However let’s look at a worked equation to see how homogeneous equations are solved.

Worked example

We have the equation

d y

d x
= y2 +x2

y x

This does not appear to be immediately separable, but let us expand to get

d y

d x
= y2

y x
+ x2

y x

d y

d x
= x

y
+ y

x

Substituting y=xv which is the same as substituting v=y/x:

d y

d x
= 1/v + v

Now

v +x
d v

d x
= 1/v + v

Canceling v from both sides
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x
d v

d x
= 1/v

Separating

v d v = d x/x

Integrating both sides

1

2
v2 +C = ln(x)

1

2

( y

x

)2
= ln(x)−C

y2 = 2x2 ln(x)−2C x2

y = x
√

2ln(x)−2C

which is our desired solution.

55.3.3 Linear equations

A linear first order differential equation is a differential equation in the form

a(x)
d y

d x
+b(x)y = c(x)

Multiplying or dividing this equation by any non-zero function of x makes no difference to its
solutions so we could always divide by a(x) to make the coefficient of the differential 1, but writing
the equation in this more general form may offer insights.

At first glance, it is not possible to integrate the left hand side, but there is one special case. If b
happens to be the differential of a then we can write

a(x)
d y

d x
+b(x)y = a(x)

d y

d x
+ y

d a

d x
= d

d x
a(x)y

and integration is now straightforward.

Since we can freely multiply by any function, lets see if we can use this freedom to write the left
hand side in this special form.

We multiply the entire equation by an arbitrary, I(x), getting
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aI
d y

d x
+bI y = cI

then impose the condition

d

d x
aI = bI

If this is satisfied the new left hand side will have the special form. Note that multiplying I by any
constant will leave this condition still satisfied.

Rearranging this condition gives

1

I

d I

d x
= b − d a

d x

a

We can integrate this to get

ln I (x) =
∫

b(z)

a(z)
d z − ln a(x)+ c I (x) = k

a(x)
e

∫ b(z)
a(z) d z

We can set the constant k to be 1, since this makes no difference.

Next we use I on the original differential equation, getting

e
∫ b(z)

a(z) d z d y

d x
+e

∫ b(z)
a(z) d z b(x)

a(x)
y = e

∫ b(z)
a(z) d z c(x)

a(x)

Because we’ve chosen I to put the left hand side in the special form we can rewrite this as

d

d x
(ye

∫ b(z)
a(z) d z ) = e

∫ b(z)
a(z) d z c(x)

a(x)

Integrating both sides and dividing by I we obtain the final result

y = e−
∫ b(z)

a(z) d z
(∫

e
∫ b(z)

a(z) d z c(x)

a(x)
d x +C

)
We call I an integrating factor. Similar techniques can be used on some other calclulus problems.

Example

Consider

d y

d x
+ y tan x = 1 y(0) = 0
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First we calculate the integrating factor.

I = e
∫

tan xd x = e lnsec x = sec x

Multiplying the equation by this gives

sec x
d y

d x
+ y sec x tan x = sec x

or

d

d x
y sec x = sec x

We can now integrate

y = cos x
∫ x

0
sec z d z = cos x ln(sec x + tan x)

55.3.4 Exact equations

An exact equation is in the form

f(x, y) dx + g(x, y) dy = 0

and, has the property that

Dx f = Dy g

(If the differential equation does not have this property then we can’t proceed any further).

As a result of this, if we have an exact equation then there exists a function h(x, y) such that

Dy h = f and Dx h = g

So then the solutions are in the form

h(x, y) = c

by using the fact of the total differential. We can find then h(x, y) by integration

55.4 Basic second and higher order ODE’s

The generic solution of a nth order ODE will contain n constants of integration. To calculate them
we need n more equations. Most often, we have either

boundary conditions, the values of y and its derivatives take for two different values of
x

or
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initial conditions, the values of y and its first n-1 derivatives take for one particular
value of x.

55.4.1 Reducible ODE’s

1. If the independent variable, x, does not occur in the differential equation then its order can be
lowered by one. This will reduce a second order ODE to first order.

Consider the equation:

F

(
y,

d y

d x
,

d 2 y

d x2

)
= 0

Define

u = d y

d x

Then

d 2 y

d x2 = du

d x
= du

d y
· d y

d x
= du

d y
·u

Substitute these two expression into the equation and we get

F

(
y,u,

du

d y
·u

)
=0

which is a first order ODE

Example

Solve

1+2y2 D2 y = 0

if at x=0, y=Dy=1

First, we make the substitution, getting

1+2y2u
du

d y
= 0

This is a first order ODE. By rearranging terms we can separate the variables
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udu =− d y

2y2

Integrating this gives

u2/2 = c +1/2y

We know the values of y and u when x=0 so we can find c

c = u2/2−1/2y = 12/2−1/(2 ·1) = 1/2−1/2 = 0

Next, we reverse the substitution

d y

d x

2

= u2 = 1

y

and take the square root

d y

d x
=± 1p

y

To find out which sign of the square root to keep, we use the initial condition, Dy=1 at x=0, again,
and rule out the negative square root. We now have another separable first order ODE,

d y

d x
= 1p

y

Its solution is

2

3
y

3
2 = x +d

Since y=1 when x=0, d=2/3, and

y =
(
1+ 3x

2

) 2
3

2. If the dependent variable, y, does not occur in the differential equation then it may also be reduced
to a first order equation.

Consider the equation:

F

(
x,

d y

d x
,

d 2 y

d x2

)
= 0

Define
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u = d y

d x

Then

d 2 y

d x2 = du

d x

Substitute these two expressions into the first equation and we get

F

(
x,u,

du

d x

)
=0

which is a first order ODE

55.4.2 Linear ODEs

An ODE of the form

d n y

d xn +a1(x)
d n−1 y

d xn−1 + ...+an y = F (x)

is called linear. Such equations are much simpler to solve than typical non-linear ODEs. Though
only a few special cases can be solved exactly in terms of elementary functions, there is much that
can be said about the solution of a generic linear ODE. A full account would be beyond the scope
of this book

If F(x)=0 for all x the ODE is called homogeneous

Two useful properties of generic linear equations are

1. Any linear combination of solutions of an homogeneous linear equation is also a solution.
2. If we have a solution of a nonhomogeneous linear equation and we add any solution of the

corresponding homogenous linear equation we get another solution of the nonhomogeneous
linear equation

Variation of constants

Suppose we have a linear ODE,

d n y

d xn +a1(x)
d n−1 y

d xn−1 + ...+an y = 0

and we know one solution, y=w(x)

The other solutions can always be written as y=wz. This substitution in the ODE will give us terms
involving every differential of z upto the nth, no higher, so we’ll end up with an nth order linear
ODE for z.
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Basic second and higher order ODE’s

We know that z is constant is one solution, so the ODE for z must not contain a z term, which means
it will effectively be an n-1th order linear ODE. We will have reduced the order by one.

Lets see how this works in practice.

Example

Consider

d 2 y

d x2 + 2

x

d y

d x
− 6

x2 y = 0

One solution of this is y=x2, so substitute y=zx2 into this equation.

(
x2 d 2z

d x2 +2x
d z

d x
+2z

)
+ 2

x

(
x2 d z

d x
+2xz

)
− 6

x2 x2z = 0

Rearrange and simplify.

x2D2z +6xDz = 0

This is first order for Dz. We can solve it to get

z = Ax−5 y = Ax−3

Since the equation is linear we can add this to any multiple of the other solution to get the general
solution,

y = Ax−3 +B x2

Linear homogeneous ODE’s with constant coefficients

Suppose we have a ODE

(Dn +a1Dn−1 + ...+an−1D +a0)y = 0

we can take an inspired guess at a solution (motivate this)

y = epx

For this function Dny=pny so the ODE becomes

(pn +a1pn−1 + ...+an−1p +a0)y = 0
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y=0 is a trivial solution of the ODE so we can discard it. We are then left with the equation

pn +a1pn−1 + ...+an−1p +a0) = 0

This is called the characteristic equation of the ODE.

It can have up to n roots, p1, p2 &hellip; pn, each root giving us a different solution of the ODE.

Because the ODE is linear, we can add all those solution together in any linear combination to get a
general solution

y = A1ep1x + A2ep2x + ...+ Anepn x

To see how this works in practice we will look at the second order case. Solving equations like this
of higher order uses exactly the same principles; only the algebra is more complex.

Second order

If the ODE is second order,

D2 y +bD y + c y = 0

then the characteristic equation is a quadratic,

p2 +bp + c = 0

with roots

p± = −b ±
p

b2 −4c

2

What these roots are like depends on the sign of b2-4c, so we have three cases to consider.

1) b2 > 4c

In this case we have two different real roots, so we can write down the solution straight away.

y = A+ep+ + A−ep−

2) b2 < 4c

In this case, both roots are imaginary. We could just put them directly in the formula, but if we are
interested in real solutions it is more useful to write them another way.

Defining k2=4c-b2, then the solution is

y = A+e i kx− bx
2 + A−e−i kx− bx

2
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For this to be real, the A’s must be complex conjugates

A± = Ae±i a

Make this substitution and we can write,

y = Ae−bx/2 cos(kx +a)

If b is positive, this is a damped oscillation.

3) b2 = 4c

In this case the characteristic equation only gives us one root, p=-b/2. We must use another method
to find the other solution.

We’ll use the method of variation of constants. The ODE we need to solve is,

D2 y −2pD y +p2 y = 0

rewriting b and c in terms of the root. From the characteristic equation we know one solution is
y = epx so we make the substitution y = zepx , giving

(epx D2z +2pepx Dz +p2epx z)−2p(epx Dz +pepx z)+p2epx z = 0

This simplifies to D2z=0, which is easily solved. We get

z = Ax +B y = (Ax +B)epx

so the second solution is the first multiplied by x.

Higher order linear constant coefficient ODE’s behave similarly: an exponential for every real root
of the characteristic and a exponent multiplied by a trig factor for every complex conjugate pair,
both being multiplied by a polynomial if the root is repeated.

E.g., if the characteristic equation factors to

(p −1)4(p −3)(p2 +1)2 = 0

the general solution of the ODE will be

y = (A+B x +C x2 +Dx3)ex +Ee3x +F cos(x +a)+Gx cos(x +b)

The most difficult part is finding the roots of the characteristic equation.
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Linear nonhomogeneous ODEs with constant coefficients

First, let’s consider the ODE

D y − y = x

a nonhomogeneous first order ODE which we know how to solve.

Using the integrating factor e-x we find

y = ce−x +1−x

This is the sum of a solution of the corresponding homogeneous equation, and a polynomial.

Nonhomogeneous ODE’s of higher order behave similarly.

If we have a single solution, yp of the nonhomogeneous ODE, called a particular solution,

(Dn +a1Dn−1 +·· ·+an)y = F (x)

then the general solution is y=yp+yh, where yh is the general solution of the homogeneous ODE.

Find yp for an arbitrary F(x) requires methods beyond the scope of this chapter, but there are some
special cases where finding yp is straightforward.

Remember that in the first order problem yp for a polynomial F(x) was itself a polynomial of the
same order. We can extend this to higher orders.

Example:

D2 y + y = x3 −x +1

Consider a particular solution

yp = b0 +b1x +b2x2 +x3

Substitute for y and collect coefficients

x3 +b2x2 + (6+b1)x + (2b2 +b0) = x3 −x +1

So b2=0, b1=-7, b0=1, and the general solution is

y = a sin x +b cos x +1−7x +x3

This works because all the derivatives of a polynomial are themselves polynomials.

Two other special cases are
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F (x) = Pnekx yp (x) =Qnekx

F (x) = An sinkx +Bn coskx yp (x) = Pn sinkx +Qn coskx

where Pn,Qn,An, and Bn are all polynomials of degree n.

Making these substitutions will give a set of simultaneous linear equations for the coefficients of the
polynomials.
2

2 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3ACALCULUS%20%28BOOK%29
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56 Partial Differential Equations

56.1 Introduction

56.2 First order

Any partial differential equation of the form

h1
∂u

∂x1
+h2

∂u

∂x2
· · ·+hn

∂u

∂xn
= b

where h1, h2 &hellip; hn, and b are all functions of both u and Rn can be reduced to a set of ordinary
differential equations.

To see how to do this, we will first consider some simpler problems.

56.2.1 Special cases

We will start with the simple PDE

uz (x, y, z) = u(x, y, z) (1)

Because u is only differentiated with respect to z, for any fixed x and y we can treat this like the
ODE, du/dz=u. The solution of that ODE is cez, where c is the value of u when z=0, for the fixed x
and y

Therefore, the solution of the PDE is

u(x, y, z) = u(x, y,0)ez

Instead of just having a constant of integration, we have an arbitrary function. This will be true for
any PDE.

Notice the shape of the solution, an arbitrary function of points in the xy, plane, which is normal to
the ’z’ axis, and the solution of an ODE in the ’z’ direction.

Now consider the slightly more complex PDE

ax ux +ay uy +az uz = h(u) (2)
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where h can be any function, and each a is a real constant.

We recognize the left hand side as being a·&nabla;, so this equation says that the differential of u
in the a direction is h(u). Comparing this with the first equation suggests that the solution can be
written as an arbitrary function on the plane normal to a combined with the solution of an ODE.

Remembering from CALCULUS/VECTORS1 that any vector r can be split up into components par-
allel and perpendicular to a,

r = r⊥+ r‖ =
(

r− (r ·a)a

|a|2
)
+ (r ·a)a

|a|2

we will use this to split the components of r in a way suggested by the analogy with (1).

Let’s write

r = (x, y, z) = r⊥+ sa s = r ·a

a ·a

and substitute this into (2), using the chain rule. Because we are only differentiating in the a direc-
tion, adding any function of the perpendicular vector to s will make no difference.

First we calculate grad s, for use in the chain rule,

∇s = a

a2

On making the substitution into (2), we get,

h(u) = a ·∇s
d

d s
u(s) = a ·a

a ·a

d

d s
u(s) = du

d s

which is an ordinary differential equation with the solution

s = c(r⊥)+
∫ u d t

h(t )

The constant c can depend on the perpendicular components, but not upon the parallel coordinate.
Replacing s with a monotonic scalar function of s multiplies the ODE by a function of s, which
doesn’t affect the solution.

Example:

u(x, t )x = u(x, t )t

For this equation, a is (1, -1), s=x-t, and the perpendicular vector is (x+t)(1, 1). The reduced ODE
is du/ds=0 so the solution is

u=f(x+t)

1 Chapter 52 on page 295
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To find f we need initial conditions on u. Are there any constraints on what initial conditions are
suitable?

Consider, if we are given

• u(x,0), this is exactly f(x),
• u(3t,t), this is f(4t) and f(t) follows immediately
• u(t3+2t,t), this is f(t3+3t) and f(t) follows, on solving the cubic.
• u(-t,t), then this is f(0), so if the given function isn’t constant we have a inconsistency, and if it is

the solution isn’t specified off the initial line.

Similarly, if we are given u on any curve which the lines x+t=c intersect only once, and to which
they are not tangent, we can deduce f.

For any first order PDE with constant coefficients, the same will be true. We will have a set of lines,
parallel to r=at, along which the solution is gained by integrating an ODE with initial conditions
specified on some surface to which the lines aren’t tangent.

If we look at how this works, we’ll see we haven’t actually used the constancy of a, so let’s drop
that assumption and look for a similar solution.

The important point was that the solution was of the form u=f(x(s),y(s)), where (x(s),y(s)) is the
curve we integrated along -- a straight line in the previous case. We can add constant functions of
integration to s without changing this form.

Consider a PDE,

a(x, y)ux +b(x, y)uy = c(x, y,u)

For the suggested solution, u=f(x(s),y(s)), the chain rule gives

du

d s
= d x

d s
ux + d y

d s
uy

Comparing coefficients then gives

d x

d s
= a(x, y)

d y

d s
= b(x, y)

du

d s
= c(x, y,u)

so we’ve reduced our original PDE to a set of simultaneous ODE’s. This procedure can be reversed.

The curves (x(s),y(s)) are called characteristics of the equation.

Example: Solve yux = xuy given u=f(x) for x≥0 The ODE’s are

d x

d s
= y

d y

d s
=−x

du

d s
= 0

subject to the initial conditions at s=0,

x(0) = r y(0) = 0 u(0) = f (r ) r ≥ 0
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This ODE is easily solved, giving

x(s) = r cos s y(s) = r sin s u(s) = f (r )

so the characteristics are concentric circles round the origin, and in polar coordinates u(r,θ)=f(r)

Considering the logic of this method, we see that the independence of a and b from u has not been
used either, so that assumption too can be dropped, giving the general method for equations of this
quasilinear form.

56.2.2 Quasilinear

Summarising the conclusions of the last section, to solve a PDE

a1(u,x)
∂u

∂x1
+a2(u,x)

∂u

∂x2
· · ·+an(u,x)

∂u

∂xn
= b(u,x)

subject to the initial condition that on the surface, (x1(r1,&hellip;,rn-1, &hellip;xn(r1,&hellip;,rn-1),
u=f(r1,&hellip;,rn-1) --this being an arbitrary paremetrisation of the initial surface--

• we transform the equation to the equivalent set of ODEs,

d x1

d s
= a1 . . .

d xn

d s
= an

du

d s
= b

subject to the initial conditions

xi (0) = f (r1, . . . ,rn−1) u = f (r1,r2, . . .rn−1)

• Solve the ODE’s, giving xi as a function of s and the ri.
• Invert this to get s and the ri as functions of the xi.
• Substitute these inverse functions into the expression for u as a function of s and the ri obtained

in the second step.

Both the second and third steps may be troublesome.

The set of ODEs is generally non-linear and without analytical solution. It may even be easier to
work with the PDE than with the ODEs.

In the third step, the ri together with s form a coordinate system adapted for the PDE. We can only
make the inversion at all if the Jacobian of the transformation to Cartesian coordinates is not zero,

∣∣∣∣∣∣∣∣
∂x1
∂r1

· · · ∂x1
∂rn−1

a1
...

. . .
...

∂xn
∂r1

· · · ∂xn
∂rn−1

an

∣∣∣∣∣∣∣∣ 6= 0
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This is equivalent to saying that the vector (a1, &hellip:, an) is never in the tangent plane to a surface
of constant s.

If this condition is not false when s=0 it may become so as the equations are integrated. We will
soon consider ways of dealing with the problems this can cause.

Even when it is technically possible to invert the algebraic equations it is obviously inconvenient to
do so.

Example

To see how this works in practice, we will

a/ consider the PDE,

uux +uy +ut = 0

with generic initial condition,

u = f (x, y) on t = 0

Naming variables for future convenience, the corresponding ODE’s are

d x

dτ
= u

d y

dτ
= 1

d t

dτ
= 1

du

dτ
= 0

subject to the initial conditions at τ=0

x = r y = s t = 0 u = f (r, s)

These ODE’s are easily solved to give

x = r + f (r, s)τ y = s +τ t = τ u = f (r, s)

These are the parametric equations of a set of straight lines, the characteristics.

The determinant of the Jacobian of this coordinate transformation is

∣∣∣∣∣∣∣
1+τ∂ f

∂r τ
∂ f
∂s f

0 1 1
0 0 1

∣∣∣∣∣∣∣= 1+τ∂ f

∂r

This determinant is 1 when t=0, but if fr is anywhere negative this determinant will eventually be
zero, and this solution fails.

In this case, the failure is because the surface s fr =−1 is an envelope of the characteristics.

For arbitrary f we can invert the transformation and obtain an implicit expression for u

369



Partial Differential Equations

u = f (x − tu, y −x)

If f is given this can be solved for u.

1/ f (x, y) = ax, The implicit solution is

u = a(x − tu) ⇒ u = ax

1+at

This is a line in the u-x plane, rotating clockwise as t increases. If a is negative, this line eventually
become vertical. If a is positive, this line tends towards u=0, and the solution is valid for all t.

2/ f(x,y)=x2, The implicit solution is

u = (x − tu)2 ⇒ u = 1+2t x −p
1+4t x

2t 2

This solution clearly fails when 1+4t x < 0, which is just when s fr =−1 . For any t>0 this happens
somewhere. As t increases this point of failure moves toward the origin.

Notice that the point where u=0 stays fixed. This is true for any solution of this equation, whatever
f is.

We will see later that we can find a solution after this time, if we consider discontinuous solutions.
We can think of this as a shockwave.

3/ f (x, y) = sin(x y)

The implicit solution is

u(x, y, t ) = sin
(
(x − tu)(y −x)

)
and we can not solve this explitely for u. The best we can manage is a numerical solution of this
equation.

b/We can also consider the closely related PDE

uux +uy +ut = y

The corresponding ODE’s are

d x

dτ
= u

d y

dτ
= 1

d z

dτ
= 1

du

dτ
= y

subject to the initial conditions at τ=0

x = r y = s t = 0 u = f (r, s)
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These ODE’s are easily solved to give

x = r +τ f + 1

2
sτ2 + 1

6
τ3 y = s +τ t = τ u = f + sτ+ 1

2
τ2

Writing f in terms of u, s, and τ, then substituting into the equation for x gives an implicit solution

u(x, y, t ) = f (x −ut + 1

2
y t 2 − 1

6
t 3, y − t )+ y t − 1

2
t 2

It is possible to solve this for u in some special cases, but in general we can only solve this equation
numerically. However, we can learn much about the global properties of the solution from further
analysis

Characteristic initial value problems

What if initial conditions are given on a characteristic, on an envelope of characteristics, on a surface
with characteristic tangents at isolated points?

Discontinuous solutions

So far, we’ve only considered smooth solutions of the PDE, but this is too restrictive. We may
encounter initial conditions which aren’t smooth, e.g.

ut = cux u(x,0) =
{

1, x ≥ 0
0, x < 0

If we were to simply use the general solution of this equation for smooth initial conditions,

u(x, t ) = u(x + ct ,0)

we would get

u(x, t ) =
{

1, x + ct ≥ 0
0, x + ct < 0

which appears to be a solution to the original equation. However, since the partial differentials are
undefined on the characteristic x+ct=0, so it becomes unclear what it means to say that the equation
is true at that point.

We need to investigate further, starting by considering the possible types of discontinuities.

If we look at the derivations above, we see we’ve never use any second or higher order derivatives
so it doesn’t matter if they aren’t continuous, the results above will still apply.

The next simplest case is when the function is continuous, but the first derivative is not, e.g. |x|.
We’ll initially restrict ourselves to the two-dimensional case, u(x, t) for the generic equation.
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a(x, t )ux +b(x, t )ut = c(u, x, t ) (1)

Typically, the discontinuity is not confined to a single point, but is shared by all points on some
curve, (x0(s), t0(s) )

Then we have

x > x0 limxx0 = u+
x < x0 limxx0 = u−

We can then compare u and its derivatives on both sides of this curve.

It will prove useful to name the jumps across the discontinuity. We say

[u] = u+−u− [ux ] = ux+−ux− [ut ] = ut+−ut−

Now, since the equation (1) is true on both sides of the discontinuity, we can see that both u+ and
u-, being the limits of solutions, must themselves satisfy the equation. That is,

a(x, t )u+x +b(x, t )u+t = c(u+, x, t )
a(x, t )u−x +b(x, t )u−t = c(u−, x, t )

where
x = x0(s)
t = t0(s)

Subtracting then gives us an equation for the jumps in the differentials

a(x, t )[ux ]+b(x, t )[ut ] = 0

We are considering the case where u itself is continuous so we know that [u]=0. Differentiating this
with respect to s will give us a second equation in the differential jumps.

d x0

d s
[ux ]+ d x0

d t
[ut ] = 0

The last two equations can only be both true if one is a multiple of the other, but multiplying s
by a constant also multiplies the second equation by that same constant while leaving the curve of
discontinuity unchanged, hence we can without loss of generality define s to be such that

d x0

d s
= a

d t0

d s
= b

But these are the equations for a characteristic, i.e. discontinuities propagate along characteris-
tics. We could use this property as an alternative definition of characteristics.

We can deal similarly with discontinuous functions by first writing the equation in conservation
form, so called because conservation laws can always be written this way.

(au)x + (bu)t = ax u +bt u + c (1)
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Notice that the left hand side can be regarded as the divergence of (au, bu). Writing the equation
this way allows us to use the theorems of vector calculus.

Consider a narrow strip with sides parallel to the discontinuity and width h

We can integrate both sides of (1) over R, giving

∫
R

(au)x + (bu)t d xd t =
∫

R
(ax +bt )u + c d xd t

Next we use Green’s theorem to convert the left hand side into a line integral.

∮
∂R

aud t −bud x =
∫

R
(ax +bt )u + c d xd t

Now we let the width of the strip fall to zero. The right hand side also tends to zero but the left hand
side reduces to the difference between two integrals along the part of the boundary of R parallel to
the curve.

∫
au+d t −bu+d x −

∫
au−d t −bu−d x = 0

The integrals along the opposite sides of R have different signs because they are in opposite direc-
tions.

For the last equation to always be true, the integrand must always be zero, i.e.

(
a

d t0

d s
−b

d x0

d s

)
[u] = 0

Since, by assumption [u] isn’t zero, the other factor must be, which immediately implies the curve
of discontinuity is a characteristic.

Once again, discontinuities propagate along characteristics.

Above, we only considered functions of two variables, but it is straightforward to extend this to
functions of n variables.

The initial condition is given on an n-1 dimensional surface, which evolves along the characteristics.
Typical discontinuities in the initial condition will lie on a n-2 dimensional surface embedded within
the initial surface. This surface of discontinuity will propagate along the characteristics that pass
through the initial discontinuity.

The jumps themselves obey ordinary differential equations, much as u itself does on a characteristic.
In the two dimensional case, for u continuous but not smooth, a little algebra shows that

d [ux ]

d s
= [ux ]

(
∂c

∂u
+a

bx

b
−ax

)
while u obeys the same equation as before,
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du

d s
= c

We can integrate these equations to see how the discontinuity evolves as we move along the charac-
teristic.

We may find that, for some future s, [ux] passes through zero. At such points, the discontinuity has
vanished, and we can treat the function as smooth at that characteristic from then on.

Conversely, we can expect that smooth functions may, under the righr circumstances, become dis-
continuous.

To see how all this works in practice we’ll consider the solutions of the equation

ut +uux = 0 u(x,0) = f (x)

for three different initial conditions.

The general solution, using the techniques outlined earlier, is

u = f (x − tu)

u is constant on the characteristics, which are straight lines with slope dependent on u.

First consider f such that

f (x) =


1 x > a
x
a a ≥ x > 0
0 x ≤ 0

a > 0

While u is continuous its derivative is discontinuous at x=0, where u=0, and at x=a, where u=1. The
characteristics through these points divide the solution into three regions.

All the characteristics to the right of the characteristic through x=a, t=0 intersect the x-axis to the
right of x=1, where u=1 so u is 1 on all those characteristics, i.e whenever x-t>a.

Similarly the characteristic through the origin is the line x=0, to the left of which u remains zero.

We could find the value of u at a point in between those two characteristics either by finding which
intermediate characteristic it lies on and tracing it back to the initial line, or via the general solution.

Either way, we get

f (x) =


1 x − t > a
x

a+t a + t ≥ x > 0
0 x ≤ 0
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At larger t the solution u is more spread out than at t=0 but still the same shape.

We can also consider what happens when a tends to 0, so that u itself is discontinuous at x=0.

If we write the PDE in conservation form then use Green’s theorem, as we did above for the linear
case, we get

[u]
d x0

d s
= 1

2
[u2]

d t0

d s

[u2] is the difference of two squares, so if we take s=t we get

d x0

d t
= 1

2
(u−+u+)

In this case the discontinuity behaves as if the value of u on it were the average of the limiting values
on either side.

However, there is a caveat.

Since the limiting value to the left is u- the discontinuity must lie on that characteristic, and similarly
for u+; i.e the jump discontinuity must be on an intersection of characteristics, at a point where u
would otherwise be multivalued.

For this PDE the characteristic can only intersect on the discontinuity if

u− > u+

If this is not true the discontinuity can not propagate. Something else must happen.

The limit a=0 is an example of a jump discontinuity for which this condition is false, so we can see
what happens in such cases by studying it.

Taking the limit of the solution derived above gives

f (x) =


1 x > t
x
t t ≥ x > 0
0 x ≤ 0

If we had taken the limit of any other sequence of initials conditions tending to the same limit we
would have obtained a trivially equivalent result.

Looking at the characteristics of this solution, we see that at the jump discontinuity characteristics
on which u takes every value betweeen 0 and 1 all intersect.

At later times, there are two slope discontinuities, at x=0 and x=t, but no jump discontinuity.

This behaviour is typical in such cases. The jump discontinuity becomes a pair of slope discontinu-
ities between which the solution takes all appropriate values.

Now, lets consider the same equation with the initial condition
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f (x) =


1 x ≤ 0
1− x

a a ≥ x > 0
0 x > a

a > 0

This has slope discontinuities at x=0 and x=a, dividing the solution into three regions.

The boundaries between these regions are given by the characteristics through these initial points,
namely the two lines

x = t x = a

These characteristics intersect at t=a, so the nature of the solution must change then.

In between these two discontinuities, the characteristic through x=b at t=0 is clearly

x =
(
1− b

a

)
t +b 0 ≤ b ≤ a

All these characteristics intersect at the same point, (x,t)=(a,a).

We can use these characteristics, or the general solution, to write u for t<a

u(x, t ) =


1 x ≤ t
a−x
a−t a ≥ x > t
0 x > a

a > t ≥ 0

As t tends to a, this becomes a step function. Since u is greater to the left than the right of the
discontinuity, it meets the condition for propagation deduced above, so for t>a u is a step function
moving at the average speed of the two sides.

u(x, t ) =
{

1 x ≤ a+t
2

0 x > a+t
2

t ≥ a ≥ 0

This is the reverse of what we saw for the initial condition previously considered, two slope discon-
tinuities merging into a step discontinuity rather than vice versa. Which actually happens depends
entirely on the initial conditions. Indeed, examples could be given for which both processes happen.

In the two examples above, we started with a discontinuity and investigated how it evolved. It is
also possible for solutions which are initially smooth to become discontinuous.

For example, we saw earlier for this particular PDE that the solution with the initial condition u=x2

breaks down when 2xt+1=0. At these points the solution becomes discontinuous.

Typically, discontinuities in the solution of any partial differential equation, not merely ones of first
order, arise when solutions break down in this way and propagate similarly, merging and splitting
in the same fashion.
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56.2.3 Fully non-linear PDEs

It is possible to extend the approach of the previous sections to reduce any equation of the form

F (x1, x2, . . . , xn ,u,ux1 ,ux2 , . . . ,uxn ) = 0

to a set of ODE’s, for any function, F.

We will not prove this here, but the corresponding ODE’s are

d xi

dτ
= ∂F

∂ui

dui

dτ
=−

(
∂F

∂xi
+ui

∂F

∂u

)
du

dτ
=

n∑
i=1

ui
∂F

∂ui

If u is given on a surface parameterized by r1&hellip;rn then we have, as before, n initial conditions
on the n, xi

τ= 0 xi = fi (r1,r2, . . . ,rn−1)

given by the parameterization and one initial condition on u itself,

τ= 0 u = f (r1,r2, . . . ,rn−1)

but, because we have an extra n ODEs for the ui’s, we need an extra n initial conditions.

These are, n-1 consistency conditions,

τ= 0
∂ f

∂ri
=

n−1∑
j=1

ui
∂ fi

∂r j

which state that the ui’s are the partial derivatives of u on the initial surface, and one initial condition

τ= 0 F (x1, x2, . . . , xn ,u,u1,u2, . . . ,un) = 0

stating that the PDE itself holds on the initial surface.

These n initial conditions for the ui will be a set of algebraic equations, which may have multiple
solutions. Each solution will give a different solution of the PDE.

Example

Consider

ut = u2
x +u2

y , u(x, y,0) = x2 + y2

The initial conditions at τ=0 are
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x = r y = s t = 0 u = r 2 + s2

ux = 2r uy = 2s ut = 4(r 2 + s2)

and the ODE’s are

d x
dτ =−2ux

d y
dτ =−2uy

d t
dτ = 1 du

dτ = ut −2(u2
x +u2

y )
dux
dτ = 0

duy

dτ = 0 dut
dτ = 0

Note that the partial derivatives are constant on the characteristics. This always happen when the
PDE contains only partial derivatives, simplifying the procedure.

These equations are readily solved to give

x = r (1−4τ) y = s(1−4τ) t = τ u = (r 2 + s2)(1−4τ)

On eliminating the parameters we get the solution,

u = x2 + y2

1−4t

which can easily be checked. abc

56.3 Second order

Suppose we are given a second order linear PDE to solve

a(x, y)uxx +b(x, y)ux y + c(x, y)uy y = d(x, y)ux +e(x, y)uy +p(x, y)u +q(x, y) (1)

The natural approach, after our experience with ordinary differential equations and with simple
algebraic equations, is attempt a factorisation. Let’s see how for this takes us.

We would expect factoring the left hand of (1) to give us an equivalent equation of the form

a(x, y)(Dx +α+(x, y)D y )(Dx +α−(x, y)D y )u

and we can immediately divide through by a. This suggests that those particular combinations of
first order derivatives will play a special role.

Now, when studying first order PDE’s we saw that such combinations were equivalent to the deriva-
tives along characteristic curves. Effectively, we changed to a coordinate system defined by the
characteristic curve and the initial curve.

Here, we have two combinations of first order derivatives each of which may define a different
characteristic curve. If so, the two sets of characteristics will define a natural coordinate system for
the problem, much as in the first order case.

In the new coordinates we will have
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Dx +α+(x, y)D y = Dr Dx +α−(x, y)D y = Ds

with each of the factors having become a differentiation along its respective characteristic curve,
and the left hand side will become simply urs giving us an equation of the form

ur s = A(r, s)ur +B(r, s)us +C (r, s)u +D(r, s)

If A, B, and C all happen to be zero, the solution is obvious. If not, we can hope that the simpler
form of the left hand side will enable us to make progress.

However, before we can do all this, we must see if (1) can actually be factored.

Multiplying out the factors gives

uxx + b(x,y)
a(x,y) ux y + c(x,y)

a(x,y) uy y = uxx + (α++α−)ux y +α+α−uy y

On comparing coefficients, and solving for the α’s we see that they are the roots of

a(x, y)α2 +b(x, y)α+ c(x, y) = 0

Since we are discussing real functions, we are only interested in real roots, so the existence of the
desired factorization will depend on the discriminant of this quadratic equation.

• If b(x, y)2 > 4a(x, y)c(x, y)

then we have two factors, and can follow the procedure outlined above. Equations like
this are called hyperbolic

• If b(x, y)2 = 4a(x, y)c(x, y)

then we have only factor, giving us a single characteristic curve. It will be natural to
use distance along these curves as one coordinate, but the second must be determined
by other considerations.
The same line of argument as before shows that use the characteristic curve this way
gives a second order term of the form urr, where we’ve only taken the second derivative
with respect to one of the two coordinates. Equations like this are called parabolic

• If b(x, y)2 < 4a(x, y)c(x, y)

then we have no real factors. In this case the best we can do is reduce the second order
terms to the simplest possible form satisfying this inequality, i.e urr+uss

It can be shown that this reduction is always possible. Equations like this are called
elliptic

It can be shown that, just as for first order PDEs, discontinuities propagate along characteristics.
Since elliptic equations have no real characteristics, this implies that any discontinuities they may
have will be restricted to isolated points; i.e., that the solution is almost everywhere smooth.

This is not true for hyperbolic equations. Their behavior is largely controlled by the shape of their
characteristic curves.
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These differences mean different methods are required to study the three types of second equation.
Fortunately, changing variables as indicated by the factorisation above lets us reduce any second
order PDE to one in which the coefficients of the second order terms are constant, which means it
is sufficient to consider only three standard equations.

uxx +uy y = 0 uxx −uy y = 0 uxx −uy = 0

We could also consider the cases where the right hand side of these equations is a given function, or
proportional to u or to one of its first order derivatives, but all the essential properties of hyperbolic,
parabolic, and elliptic equations are demonstrated by these three standard forms.

While we’ve only demonstrated the reduction in two dimensions, a similar reduction applies in
higher dimensions, leading to a similar classification. We get, as the reduced form of the second
order terms,

a1
∂2u

∂x2
1

+a2
∂2u

∂x2
2

+·· ·+an
∂2u

∂x2
n

where each of the ais is equal to either 0, +1, or -1.

If all the ais have the same sign the equation is elliptic

If any of the ais are zero the equation is parabolic

If exactly one of the ais has the opposite sign to the rest the equation is hyperbolic

In 2 or 3 dimensions these are the only possibilities, but in 4 or more dimensions there is a fourth
possibility: at least two of the ais are positive, and at least two of the ais are negative.

Such equations are called ultrahyperbolic. They are less commonly encountered than the other
three types, so will not be studied here.

When the coefficients are not constant, an equation can be hyperbolic in some regions of the xy
plane, and elliptic in others. If so, different methods must be used for the solutions in the two
regions.

56.3.1 Elliptic

Standard form, Laplace’s equation:

∇2h = 0

Quote equation in spherical and cylindrical coordinates, and give full solution for cartesian and
cylindrical coordinates. Note averaging property Comment on physical significance, rotation in-
variance of laplacian.

380



Second order

56.3.2 Hyperbolic

Standard form, wave equation:

∇2h = c2ht t

Solution, any sum of functions of the form

h = f (k ·x−ωt ) ω= |k|c

These are waves. Compare with solution from separating variables. Domain of dependence, etc.

56.3.3 Parabolic

The canonical parabolic equation is the diffusion equation:

∇2h = ht

Here, we will consider some simple solutions of the one-dimensional case.

The properties of this equation are in many respects intermediate between those of hyperbolic and
elliptic equation.

As with hyperbolic equations but not elliptic, the solution is well behaved if the value is given on
the initial surface t=0.

However, the characteristic surfaces of this equation are the surfaces of constant t, thus there is no
way for discontinuities to propagate to positive t.

Therefore, as with elliptic equations but not hyberbolic, the solutions are typically smooth, even
when the initial conditions aren’t.

Furthermore, at a local maximum of h, its Laplacian is negative, so h is decreasing with t, while at
local minima, where the Laplacian will be positive, h will increase with t. Thus, initial variations in
h will be smoothed out as t increases.

In one dimension, we can learn more by integrating both sides,

∫ b
−a ht d t = ∫ b

−a hxx d x
d

d t

∫ b
−a h d t = [hx ]b

−a

Provided that hx tends to zero for large x, we can take the limit as a and b tend to infinity, deducing

d

d t

∫ ∞

−∞
h d t
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so the integral of h over all space is constant.

This means this PDE can be thought of as describing some conserved quantity, initially concentrated
but spreading out, or diffusing, over time.

This last result can be extended to two or more dimensions, using the theorems of vector calculus.

We can also differentiate any solution with respect to any coordinate to obtain another solution. E.g.
if h is a solution then

∇2hx = ∂x∇2h = ∂x∂t h = ∂t hx

so hx also satisfies the diffusion equation.

Similarity solution

Looking at this equation, we might notice that if we make the change of variables

r =αx τ=α2t

then the equation retains the same form. This suggests that the combination of variables x2/t, which
is unaffected by this variable change, may be significant.

We therefore assume this equation to have a solution of the special form

h(x, t ) = f (η) where η= x

t
1
2

then

hx = ηx fη = t−
1
2 fη ht = ηt fη =− η

2t
fη

and substituting into the diffusion equation eventually gives

fηη+ η

2
fη = 0

which is an ordinary differential equation.

Integrating once gives

fη = Ae−
η2

4

Reverting to h, we find
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hx = Ap
t

e−
η2

4

h = Ap
t

∫ x
−∞ e−s2/4t d s +B

= A
∫ x/2

p
t

−∞ e−z2
d z +B

This last integral can not be written in terms of elementary functions, but its values are well known.

In particular the limiting values of h at infinity are

h(−∞, t ) = B h(∞, t ) = B + A
p
π,

taking the limit as t tends to zero gives

h =
{

B x < 0
B + A

p
π x > 0

We see that the initial discontinuity is immediately smoothed out. The solution at later times retains
the same shape, but is more stretched out.

The derivative of this solution with respect to x

hx = Ap
t

e−x2/4t

is itself a solution, with h spreading out from its initial peak, and plays a significant role in the
further analysis of this equation.

The same similarity method can also be applied to some non-linear equations.

Separating variables

We can also obtain some solutions of this equation by separating variables.

h(x, t ) = X (x)T (t ) ⇒ X ′′T = X Ṫ

giving us the two ordinary differential equations

d 2X

d x2 +k2X = 0
dT

d t
=−kT

and solutions of the general form

h(x, t ) = Ae−kt sin(kx +α)

383



Partial Differential Equations

384



57 Extensions

385



Extensions

386



58 Systems of Ordinary Differential Equations

We have already examined cases where we have a single differential equation and found several
methods to aid us in finding solutions to these equations. But what happens if we have two or more
differential equations that depend on each other? For example, consider the case where

D t x(t ) = 3y(t )2 +x(t )t

and

D t y(t ) = x(t )+ y(t )

Such a set of differential equations is said to be coupled. Systems of ordinary differential equations
such as these are what we will look into in this section.

58.1 First order systems

A general system of differential equations can be written in the form

D t x = F(x, t )

Instead of writing the set of equations in a vector, we can write out each equation explicitly, in the
form:

D t x1 = F1(x1, . . . , xn , t )

...

D t xi = Fi (x1, . . . , xn , t )

If we have the system at the very beginning, we can write it as:

D t x = G(x, t )

where

387



Systems of Ordinary Differential Equations

x = (x(t ), y(t )) = (x, y)

and

G(x, t ) = (3y2 +xt , x + y)

or write each equation out as shown above.

Why are these forms important? Often, this arises as a single, higher order differential equation that
is changed into a simpler form in a system. For example, with the same example,

D t x(t ) = 3y(t )2 +x(t )t

D t y(t ) = x(t )+ y(t )

we can write this as a higher order differential equation by simple substitution.

D t y(t )− y(t ) = x(t )

then

D t x(t ) = 3y(t )2 + (D t y(t )− y(t ))t

D t x(t ) = 3y(t )2 + tD t y(t )− t y(t )

Notice now that the vector form of the system is dependent on t since

G(x, t ) = (3y2 +xt , x + y)

the first component is dependent on t. However, if instead we had

H(x) = (3y2 +x, x + y)

notice the vector field is no longer dependent on t. We call such systems autonomous. They appear
in the form

D t x = H(x)

We can convert between an autonomous system and a non-autonomous one by simply making a
substitution that involves t, such as y=(x, t), to get a system:
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D t y = (F(y),1) = (F(x, t ),1)

In vector form, we may be able to separate F in a linear fashion to get something that looks like:

F(x, t ) = A(t )x+b(t )

where A(t) is a matrix and b is a vector. The matrix could contain functions or constants, clearly,
depending on whether the matrix depends on t or not.
1

1 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3ACALCULUS%20%28BOOK%29
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59 Real numbers

59.1 Fields

You are probably already familiar with many different sets of numbers from your past experience.
Some of the commonly used sets of numbers are

• Natural numbers, usually denoted with an N, are the numbers 0,1,2,3,...
• Integers, usually denoted with a Z, are the positive and negative natural numbers: ...-3,-2,-

1,0,1,2,3...
• Rational numbers, denoted with a Q, are fractions of integers (excluding division by zero): -1/3,

5/1, 0, 2/7. etc.
• Real numbers, denoted with a R, are constructed and discussed below.

Note that different sets of numbers have different properties. In the set integers for example, any
number always has an additive inverse: for any integer x, there is another integer t such that x+t = 0
This should not be terribly surprising: from basic arithmetic we know that t =−x. Try to prove to
yourself that not all natural numbers have an additive inverse.

In mathematics, it is useful to note the important properties of each of these sets of numbers. The
rational numbers, which will be of primary concern in constructing the real numbers, have the
following properties:

There exists a number 0 such that for any other number a, 0+a=a+0=a
For any two numbers a and b, a+b is another number
For any three numbers a,b, and c, a+(b+c)=(a+b)+c
For any number a there is another number -a such that a+(-a)=0
For any two numbers a and b, a+b=b+a
For any two numbers a and b,a*b is another number
There is a number 1 such that for any number a, a*1=1*a=a
For any two numbers a and b, a*b=b*a
For any three numbers a,b and c, a(bc)=(ab)c
For any three numbers a,b and c, a(b+c)=ab+ac
For every number a there is another number a-1 such that aa-1=1

As presented above, these may seem quite intimidating. However, these properties are nothing
more than basic facts from arithmetic. Any collection of numbers (and operations + and * on those
numbers) which satisfies the above properties is called a field. The properties above are usually
called field axioms. As an exercise, determine if the integers form a field, and if not, which field
axiom(s) they violate.

Even though the list of field axioms is quite extensive, it does not fully explore the properties of
rational numbers. Rational numbers also have an ordering.’ A total ordering must satisfy several
properties: for any numbers a, b, and c
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if a ≤ b and b ≤ a then a = b (antisymmetry)
if a ≤ b and b ≤ c then a ≤ c (transitivity)
a ≤ b or b ≤ a (totality)

To familiarize yourself with these properties, try to show that (a) natural numbers, integers and ra-
tional numbers are all totally ordered and more generally (b) convince yourself that any collection of
rational numbers are totally ordered (note that the integers and natural numbers are both collections
of rational numbers).

Finally, it is useful to recognize one more characterization of the rational numbers: every rational
number has a decimal expansion which is either repeating or terminating. The proof of this fact
is omitted, however it follows from the definition of each rational number as a fraction. When
performing long division, the remainder at any stage can only take on positive integer values smaller
than the denominator, of which there are finitely many.

59.2 Constructing the Real Numbers

There are two additional tools which are needed for the construction of the real numbers: the upper
bound and the least upper bound. Definition A collection of numbers E is bounded above if there
exists a number m such that for all x in E x≤m. Any number m which satisfies this condition is
called an upper bound of the set E.

Definition If a collection of numbers E is bounded above with m as an upper bound of E, and all
other upper bounds of E are bigger than m, we call m the least upper bound or supremum of E,
denoted by sup E.

Many collections of rational numbers do not have a least upper bound which is also rational, al-
though some do. Suppose the numbers 5 and 10/3 are, together, taken to be E. The number 5 is not
only an upper bound of E, it is a least upper bound. In general, there are many upper bounds (12, for
instance, is an upper bound of the collection above), but there can be at most one least upper bound.

Consider the collection of numbers {3,3.1,3.14,3.141,3.1415, . . . }: You may recognize these deci-
mals as the first few digits of pi. Since each decimal terminates, each number in this collection is a
rational number. This collection has infinitely many upper bounds. The number 4, for instance, is
an upper bound. There is no least upper bound, at least not in the rational numbers. Try to convince
yourself of this fact by attempting to construct such a least upper bound: (a) why does pi not work
as a least upper bound (hint: pi does not have a repeating or terminating decimal expansion), (b)
what happens if the proposed supremum is equal to pi up to some decimal place, and zeros after (c)
if the proposed supremum is bigger than pi, can you find a smaller upper bound which will work?

In fact, there are infinitely many collections of rational numbers which do not have a rational least
upper bound. We define a real number to be any number that is the least upper bound of some
collection of rational numbers.

59.3 Properties of Real Numbers

The reals are totally ordered.
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For all reals; a, b, c
Either b>a, b=a, or b<a.
If a<b and b<c then a<c

Also

b>a implies b+c>a+c
b>a and c>0 implies bc>ac
b>a implies -a>-b

Upper bound axiom

Every non-empty set of real numbers which is bounded above has a supremum.

The upper bound axiom is necessary for calculus. It is not true for rational numbers.

We can also define lower bounds in the same way.

Definition A set E is bounded below if there exists a real M such that for all x&isin;E x≥M Any M
which satisfies this condition is called an lower bound of the set E

Definition If a set, E, is bounded below, M is an lower bound of E, and all other lower bounds of E
are less than M, we call M the greatest lower bound or inifimum of E, denoted by inf E

The supremum and infimum of finite sets are the same as their maximum and minimum.

Theorem

Every non-empty set of real numbers which is bounded below has an infimum.

Proof:

Let E be a non-empty set of of real numbers, bounded below
Let L be the set of all lower bounds of E
L is not empty, by definition of bounded below
Every element of E is an upper bound to the set L, by definition
Therefore, L is a non empty set which is bounded above
L has a supremum, by the upper bound axiom
1/ Every lower bound of E is ≤sup L, by definition of supremum
Suppose there were an e&isin;E such that e<sup L
Every element of L is ≤e, by definition
Therefore e is an upper bound of L and e<sup L
This contradicts the definition of supremum, so there can be no such e.
If e&isin;E then e≥sup L, proved by contradiction
2/ Therefore, sup L is a lower bound of E
inf E exists, and is equal to sup L, on comparing definition of infinum to lines 1 & 2

Bounds and inequalities, theorems: A ⊆ B ⇒ sup A ≤ supB A ⊆ B ⇒ inf A ≥ infB sup A ∪B =
max(sup A, supB) inf A∪B = min(inf A, infB)

Theorem: (The triangle inequality)

∀a,b,c ∈ \quad|a −b| ≤ |a − c|+ |c −b|

393



Real numbers

Proof by considering cases

If a≤b≤c then |a-c|+|c-b| = (c-a)+(c-b)= 2(c-b)+(b-a)>b-a= |b-a|

Exercise: Prove the other five cases.

This theorem is a special case of the triangle inequality theorem from geometry: The sum of two
sides of a triangle is greater than or equal to the third side. It is useful whenever we need to
manipulate inequalities and absolute values.
1

1 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3ACALCULUS%20%28BOOK%29
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60 Complex Numbers

../tmp/80.png

Figure 80: COMPLEX NUMBERS1

In mathematics, a complex number is a number of the form

a +bi

where a and b are real numbers, and i is the imaginary unit, with the property i 2 = &minus;1. The
real number a is called the real part of the complex number, and the real number b is the imaginary
part. Real numbers may be considered to be complex numbers with an imaginary part of zero; that
is, the real number a is equivalent to the complex number a+0i.

For example, 3 + 2i is a complex number, with real part 3 and imaginary part 2. If z = a + bi, the
real part (a) is denoted Re(z), or (z), and the imaginary part (b) is denoted Im(z), or (z).

Complex numbers can be added, subtracted, multiplied, and divided like real numbers and have
other elegant properties. For example, real numbers alone do not provide a solution for every poly-
nomial algebraic equation with real coefficients, while complex numbers do (this is the fundamental
theorem of algebra).

60.1 Equality

Two complex numbers are equal if and only if their real parts are equal and their imaginary parts
are equal. That is, a + bi = c + di if and only if a = c and b = d.

1 HTTP://EN.WIKIVERSITY.ORG/WIKI/COMPLEX%20NUMBERS
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60.2 Notation and operations

The set of all complex numbers is usually denoted by C, or in blackboard bold by C (Unicode ). The
real numbers, R, may be regarded as "lying in" C by considering every real number as a complex: a
= a + 0i.

Complex numbers are added, subtracted, and multiplied by formally applying the associative, com-
mutative and distributive laws of algebra, together with the equation i2 = &minus;1:

(a +bi )+ (c +di ) = (a + c)+ (b +d)i

(a +bi )− (c +di ) = (a − c)+ (b −d)i

(a +bi )(c +di ) = ac +bci +adi +bdi 2 = (ac −bd)+ (bc +ad)i

Division of complex numbers can also be defined (see below). Thus, the set of complex numbers
forms a field which, in contrast to the real numbers, is algebraically closed.

In mathematics, the adjective "complex" means that the field of complex numbers is the underlying
number field considered, for example complex analysis, complex matrix, complex polynomial and
complex Lie algebra.

60.3 The field of complex numbers

Formally, the complex numbers can be defined as ordered pairs of real numbers (a, b) together with
the operations:

(a,b)+ (c,d) = (a + c,b +d)

(a,b) · (c,d) = (ac −bd ,bc +ad).

So defined, the complex numbers form a field, the complex number field, denoted by C (a field is
an algebraic structure in which addition, subtraction, multiplication, and division are defined and
satisfy certain algebraic laws. For example, the real numbers form a field).

The real number a is identified with the complex number (a, 0), and in this way the field of real
numbers R becomes a subfield of C. The imaginary unit i can then be defined as the complex number
(0, 1), which verifies

(a,b) = a · (1,0)+b · (0,1) = a +bi and i 2 = (0,1) · (0,1) = (−1,0) =−1.

In C, we have:
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• additive identity ("zero"): (0, 0)
• multiplicative identity ("one"): (1, 0)
• additive inverse of (a,b): (&minus;a, &minus;b)
• multiplicative inverse (reciprocal) of non-zero (a, b):

(
a

a2+b2 , −b
a2+b2

)
.

Since a complex number a + bi is uniquely specified by an ordered pair (a, b) of real numbers,
the complex numbers are in one-to-one correspondence with points on a plane, called the complex
plane.

60.4 The complex plane

A complex number z can be viewed as a point or a position vector in a two-dimensional Cartesian
coordinate system called the complex plane or Argand diagram . The point and hence the complex
number z can be specified by Cartesian (rectangular) coordinates. The Cartesian coordinates of the
complex number are the real part x = Re(z) and the imaginary part y = Im(z). The representation of
a complex number by its Cartesian coordinates is called the Cartesian form or rectangular form or
algebraic form of that complex number.

60.4.1 Polar form

Alternatively, the complex number z can be specified by polar coordinates. The polar coordinates
are r = |z| 0, called the absolute value or modulus, and = arg(z), called the argument of z. For
r = 0 any value of describes the same number. To get a unique representation, a conventional choice
is to set arg(0) = 0. For r > 0 the argument is unique modulo 2; that is, if any two values of the
complex argument differ by an exact integer multiple of 2, they are considered equivalent. To get a
unique representation, a conventional choice is to limit to the interval (-,], i.e. &minus; < . The
representation of a complex number by its polar coordinates is called the polar form of the complex
number.

60.4.2 Conversion from the polar form to the Cartesian form

x = r cosϕ

y = r sinϕ

60.4.3 Conversion from the Cartesian form to the polar form

r =
√

x2 + y2
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ϕ=



arctan( y
x ) if x > 0

arctan( y
x )+π if x < 0 and y ≥ 0

arctan( y
x )−π if x < 0 and y < 0

+π
2 if x = 0 and y > 0

−π
2 if x = 0 and y < 0

undefined if x = 0 and y = 0.

The previous formula requires rather laborious case differentiations. However, many programming
languages provide a variant of the arctangent function. A formula that uses the arccos function
requires fewer case differentiations:

ϕ=


+arccos x

r if y ≥ 0 and r 6= 0

−arccos x
r if y < 0

undefined if r = 0.

60.4.4 Notation of the polar form

The notation of the polar form as

z = r (cosϕ+ i sinϕ)

is called trigonometric form. The notation cis is sometimes used as an abbreviation for cos + i sin
. Using EULER’S FORMULA2 it can also be written as

z = r eiϕ ,

which is called exponential form.

60.4.5 Multiplication, division, exponentiation, and root extraction in the polar
form

Multiplication, division, exponentiation, and root extraction are much easier in the polar form than
in the Cartesian form.

Using SUM AND DIFFERENCE IDENTITIES3 its possible to obtain that

r1 e iϕ1 · r2 e iϕ2 = r1 r2 e i (ϕ1+ϕ2)

and that

2 HTTP://EN.WIKIPEDIA.ORG/WIKI/EULER%27S%20FORMULA
3 HTTP://EN.WIKIPEDIA.ORG/WIKI/LIST%20OF%20TRIGONOMETRIC%20IDENTITIES%23ANGLE%

20SUM%20AND%20DIFFERENCE%20IDENTITIES
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Absolute value, conjugation and distance

r1 e iϕ1

r2 e iϕ2
= r1

r2
e i (ϕ1−ϕ2).

Exponentiation with integer exponents; according to DE MOIVRE’S FORMULA4,

(
r e iϕ)n = r n e i nϕ.

Exponentiation with arbitrary complex exponents is discussed in the article on EXPONENTIATION5.

The addition of two complex numbers is just the addition of two vectors, and multiplication by a
fixed complex number can be seen as a simultaneous rotation and stretching.

Multiplication by i corresponds to a counter-clockwise rotation by 90° (/2 radians). The geometric
content of the equation i 2 = &minus;1 is that a sequence of two 90 degree rotations results in a
180 degree ( radians) rotation. Even the fact (&minus;1) · (&minus;1) = +1 from arithmetic can be
understood geometrically as the combination of two 180 degree turns.

All the roots of any number, real or complex, may be found with a simple algorithm. The nth roots
are given by

n
√

r e iϕ = n
p

r e
i
(
ϕ+2kπ

n

)

for k = 0, 1, 2, . . . , n &minus; 1, where n
p

r represents the principal nth root of r.

60.5 Absolute value, conjugation and distance

The absolute value (or modulus or magnitude) of a complex number z = r ei is defined as |z| = r.
Algebraically, if z = a + bi, then |z| =

p
a2 +b2.

One can check readily that the absolute value has three important properties:

|z| = 0

if and only if
z = 0

|z +w | ≤ |z|+ |w |
(triangle inequality)

|z ·w | = |z| · |w |

4 HTTP://EN.WIKIPEDIA.ORG/WIKI/DE%20MOIVRE%27S%20FORMULA
5 HTTP://EN.WIKIBOOKS.ORG/WIKI/EXPONENTIATION
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for all complex numbers z and w. It then follows, for example, that |1| = 1 and |z/w | = |z|/|w |. By
defining the distance function d(z, w) = |z &minus; w| we turn the set of complex numbers into a
METRIC SPACE6 and we can therefore talk about limits and continuity.

The complex conjugate of the complex number z = a + bi is defined to be a &minus; bi, written
as z̄ or z∗ . As seen in the figure, z̄ is the "reflection" of z about the real axis. The following can be
checked:

z +w = z̄ + w̄

z ·w = z̄ · w̄

(z/w) = z̄/w̄

¯̄z = z

z̄ = z

if and only if z is real

|z| = |z̄|

|z|2 = z · z̄

z−1 = z̄ · |z|−2

if z is non-zero.

The latter formula is the method of choice to compute the inverse of a complex number if it is given
in rectangular coordinates.

That conjugation commutes with all the algebraic operations (and many functions; e.g. sin z̄ = sin z)
is rooted in the ambiguity in choice of i (&minus;1 has two square roots). It is important to note,
however, that the function f (z) = z̄ is not complex-differentiable.

60.6 Complex fractions

We can divide a complex number (a + bi) by another complex number (c + di) 0 in two ways. The
first way has already been implied: to convert both complex numbers into exponential form, from
which their quotient is easily derived. The second way is to express the division as a fraction, then
to multiply both numerator and denominator by the complex conjugate of the denominator. The
new denominator is a real number.

6 HTTP://EN.WIKIPEDIA.ORG/WIKI/METRIC%20SPACE
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a +bi

c +di
= (a +bi )(c −di )

(c +di )(c −di )
= (ac +bd)+ (bc −ad)i

c2 +d 2

=
(

ac +bd

c2 +d 2

)
+ i

(
bc −ad

c2 +d 2

)
.

60.7 Matrix representation of complex numbers

While usually not useful, alternative representations of the complex field can give some insight into
its nature. One particularly elegant representation interprets each complex number as a 2×2 matrix
with real entries which stretches and rotates the points of the plane. Every such matrix has the form

[
a −b
b a

]
where a and b are real numbers. The sum and product of two such matrices is again of this form.
Every non-zero matrix of this form is invertible, and its inverse is again of this form. Therefore, the
matrices of this form are a field. In fact, this is exactly the field of complex numbers. Every such
matrix can be written as

[
a −b
b a

]
= a

[
1 0
0 1

]
+b

[
0 −1
1 0

]
which suggests that we should identify the real number 1 with the identity matrix

[
1 0
0 1

]
,

and the imaginary unit i with

[
0 −1
1 0

]
,

a counter-clockwise rotation by 90 degrees. Note that the square of this latter matrix is indeed equal
to the 2×2 matrix that represents &minus;1.

The square of the absolute value of a complex number expressed as a matrix is equal to the deter-
minant of that matrix.

|z|2 =
∣∣∣∣a −b
b a

∣∣∣∣= (a2)− ((−b)(b)) = a2 +b2

If the matrix is viewed as a transformation of the plane, then the transformation rotates points
through an angle equal to the argument of the complex number and scales by a factor equal to
the complex number’s absolute value. The conjugate of the complex number z corresponds to the
transformation which rotates through the same angle as z but in the opposite direction, and scales in
the same manner as z; this can be represented by the transpose of the matrix corresponding to z.
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If the matrix elements are themselves complex numbers, the resulting algebra is that of the quater-
nions. In other words, this matrix representation is one way of expressing the Cayley-Dickson
construction of algebras.
7

7 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3ACALCULUS%20%28BOOK%29
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61 Appendix

61.0.1 Calculus/Choosing delta

This page is an addendum to CALCULUS/FORMAL DEFINITION OF THE LIMIT1.

Recall the definition of a limit:

A number L is the limit of a function f(x) as x approaches c if and only if for all numbers ε > 0 there
exists a number δ > 0 such that∣∣ f (x)−L

∣∣< ε
whenever

0 < |x − c| < δ.

In other words, given a number ε we must construct a number δ such that assuming

0 < |x − c| < δ

we can prove

∣∣ f (x)−L
∣∣< ε;

moreover, this proof must work for all values of ε > 0.

Note: this definition is not constructive -- it does not tell you how to find the limit L, only how to
check whether a particular value is indeed the limit. We use the informal definition of the limit,
experience with similar problems, or theorems (L’Hopital’s rule, for example), to determine the
value, and then can prove the correctness of this value using the formal definition.

Example 1: Suppose we want to find the limit of f(x) = x + 5 as x approaches c = 9. We know that
the limit L is 9+5=14, and desire to prove this.

We choose δ = ε (this will be explained later). Then, since we assume

|x −9| < δ

1 Chapter 11 on page 79
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we can show

|(x +5)−14| = |x −9|
< δ

= ε

,

which is what we wanted to prove.

We chose δ by working backwards from the formula we are trying to prove:

∣∣ f (x)−L
∣∣< ε.

In this case, we desire to prove

|x −9| < ε,

given

|x −9| < δ,

so the easiest way to prove it is by choosing δ = ε. This example, however, is too easy to adequately
explain how to choose δ in general. Lets try something harder:

Example 2: Prove that the limit of f(x) = x2 - 9 as x approaches 2 is L = -5.

We want to prove that

∣∣ f (x)−L
∣∣= ∣∣x2 −4

∣∣< ε
given

|x −2| < δ.

We choose δ by working backwards. First, we need to rewrite the equation we want to prove using
δ instead of x:∣∣x2 −4

∣∣ < ε

|x −2| · |x +2| < ε

(δ) · (δ+4) = ε

Note: we used the fact that |x + 2| < δ + 4, which can be proven with the triangle inequality.

Word of caution: the above series of equations is not a logical series of steps, and is not part of any
proof, but is an informal technique used to help write the proof. We will select a value of δ so that
the last equation is true, and then use the last equation to prove the equations above it in turn (which
is what was meant earlier by working backwards).
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Note: in the equations above, when δ was substituted for x, the sign < was replaced with =. This
can be done (but is not necessary) because we are not told that |x-2| = δ, but rather |x-2| < δ. The
justification for this becomes clear when the above equations are used in backwards order in the
proof.

We can solve this last equation for δ using the quadratic formula:

δ= −4+p16−4·1·(−ε)
2·1 =−2+p

4+ε
Note: δ is always in terms of ε. A constant value of δ (e.g., δ = 0.5) will never work.

Now, we have a value of δ, and we can do our proof:

given

|x −2| < δ,

∣∣ f (x)−L
∣∣ = ∣∣x2 −4

∣∣
= |x −2| · |x +2|
< (δ) · (δ+4)
< (

p
4+ε−2) · (

p
4+ε+2)

< (
p

4+ε)2 − (2)2

< ε

.

Here a few more examples of choosing δ; try to figure them out before reading the explanation.

Example 3: Prove that the limit of f(x) = sin(x)/x as x approaches 0 is L = 1.

Explanation:

Example 4: Prove that f(x) = 1/x has no limit as x approaches 0.

Example 5:

Prove that limx→2 x2 = 4

Solution: To do it, we’ll look at two cases: ε ≥ 4 and ε < 4. The ε ≥ 4 case is easy. First let’s
let ε = 4. That means we want the values chosen in the domain to map to (0,8) in the range. We
want a delta such that (2+δ)2 = 8 so let’s choose δ = 2

p
2−2. The chosen δ defines the interval

(4−2
p

2,2
p

2) u (1.1716,2.8284) in our domain. This gets mapped to (24−16
p

2,8) u (1.3726,8)
in our range, which is contained in (0,8). Notice that δ doesn’t depend on ε. So for ε> 4, we widen
the interval in the range that we are allowed to map onto, but our interval in the domain stays fixed
and always maps to the same sub-interval in the range. So δ= 2

p
2−2 works for any ε≥ 4.

Now suppose 0 < ε < 4. We want a δ such that 0 < |x2 −4| < ε whenever 0 < |x −2| < δ. So let’s
assume 0 < |x2 −4| < ε and work backwards to find a suitable δ:

0 < |x2 −4| < ε

−ε< x2 −4 < ε
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4−ε< x2 < ε+4

Since 0 < ε< 4, we have 4−ε> 0. Since both numbers above are positive, we can take the (positive)
square root of both extremes of the inequality:

√
(4−ε) < x <

√
(ε+4)

√
(4−ε)−2 < x −2 <

√
(ε+4)−2

The above equation represents the distance, either negative or positive, that x can vary from 2 and
still be within ε of 4. We want to choose the smaller of the two extremes to construct our interval.
It turns out that |p(ε+4)−2| ≤ |p(4− ε)−2| for 0 < ε < 4, so choose δ =p

(ε+4)−2. As a sanity
check, let’s try with ε= 0.002.

δ=
√

(ε+4)−2

δ=
√

(0.002+4)−2

which is approximately

δ= 0.0004999375

At the extreme right of the domain, this gives

x = 2.0004999375

and

x2 = 2.00049993752 = 4.00199999993750390625

which is within 0.002 of 4.
2

2 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3ACALCULUS%20%28BOOK%29
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62 Exercise Solutions

62.0.2 Precalculus Solutions

62.0.3 Convert to interval notation

1. −4 < x < 2 (-4,2)
2. −7/3 ≤ x ≤−1/3 [-7/3,-1/3]
3. −π≤ x <π [−π,π)
4. x ≤ 17/9 (-, 17/9]
5. 5 ≤ x +1 ≤ 6 [4, 5]
6. x −1/4 < 1 (-, 5/4)
7. 3 > 3x (-, 1)
8. 0 ≤ 2x +1 < 3 [-1/2, 1)
9. 5 < x and x < 6(-,5)

10. 5 < x or x < 6(-,6)

62.0.4 Simplify the following

1. x3 +3x3

4x3

2. x3+3x3

x2

4x

3. (x3 +3x3)3

64x9

4. x15+x3

x

x14 +x2

5. (2x2)(3x−2)

6
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6. x2 y−3

x3 y2

1

x y5

7.
√

x2 y4

x y2

8.
(

8x6

y4

)1/3

2x2

y
4
3

62.1 Functions

1. a) f (0) = 0, f (2) = 4
b) The domain is (−∞,∞); the range is [0,∞),
c) No, since f isn’t one-to-one; for example, f (−1) = f (1) = 1.

2. a) i. ( f + g )(x) = x +2+1/x = (x2 +2x +1)/x.
ii. ( f − g )(x) = x +2−1/x = (x2 +2x −1)/x.

iii. (g − f )(x) = 1/x −x −2 = (1−x2 −2x)/x.
iv. ( f × g )(x) = (x +2)/x.
v. ( f /g )(x) = x(x +2) provided x 6= 0. Note that 0 is not in the domain of f /g , since

it’s not in the domain of g , and you can’t divide by something that doesn’t exist!
vi. (g / f )(x) = 1/[x(x+2)]. Although 0 is still not in the domain, we don’t need to state

it now, since 0 isn’t in the domain of the expression 1/[x(x +2)] either.
vii. ( f ◦ g )(x) = 1/x +2 = (2x +1)/x.
viii. (g ◦ f )(x) = 1/(x +2).

b) f (g (2)) = 5/2; g ( f (2)) = 1/4.
c) Yes; f −1(x) = x −2 and g−1(x) = 1/x. Note that g and its inverse are the same.

3. As pictured, by the Vertical Line test, this graph represents a function.

62.1.1 Limits Solutions

62.2 Basic Limit Exercises

(1) limx→2(4x2 −3x +1)

Since this is a polynomial, two can simply be plugged in. This
results in 4(4)-2(3)+1=16-6+1=11
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(2) limx→5(x2)

25

62.3 One Sided Limits Exercises

1. limx→0− x3+x2

x3+2x2

Solution: Factor as x2

x2
x+1
x+2 . In this form we can see that there is a removable discontinuity at x=0

and that the limit is 1
2

62.4 Two Sided Limits Exercises

(3) limx→4− 1
x−4

−
limx→4+

1
x−4

+
(4)D.N.E.
(5)-6
(6)6
(7)3
(8)13/8
(9)10
(10)D.N.E.
(11)+infinity

62.5 L’Hôpital’s rule

1. 2
2. -1
3. 3

4
4. 0
5. -2

62.5.1 Differentiation Solutions

62.6 Find The Derivative By Definition

1. 2x

f (x) = x2

= lim∆x→0
(x+∆x)2−x2

∆x

= lim∆x→0
x2+2x∆x+∆x2−x2

∆x

= lim∆x→0
2x∆x+∆x2

∆x
= lim∆x→0 2x +∆x
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= 2x

2. 2

f (x) = 2x +2
f ′(x) = lim∆x→0

[2(x+∆x)+2]−(2x+2)
∆x

= lim∆x→0
2x+2∆x+2−2x−2

∆x
= lim∆x→0

2∆x
∆x

= 2

3. x

f (x) = 1
2 x2

f ′(x) = lim∆x→0

1
2 (x+∆x)2− 1

2 x2

∆x

= lim∆x→0

1
2 (x2+2x∆x+∆x2)− 1

2 x2

∆x

= lim∆x→0

x2

2 + 2x∆x
2 + ∆x2

2 − x2

2
∆x

= lim∆x→0
2x∆x+∆x2

2∆x
= lim∆x→0 x +∆x
= x

4. 4x + 4

f (x) = 2x2 +4x +4

f ′(x) = lim∆x→0
[2(x+∆x)2+4(x+∆x)+4]−(2x2+4x+4)

∆x

= lim∆x→0
2(x2+2x∆x+∆x2)+4x+4∆x+4−2x2−4x−4

∆x

= lim∆x→0
2x2+4x∆x+2∆x2+4∆x−2x2

∆x

= lim∆x→0
4x∆x+2∆x2+4∆x

∆x
= lim∆x→0 4x +2∆x +4
= 4x +4

62.7 Prove Differentiation Rules

62.7.1 Proof of the Derivative of a Constant Function

If c = f (x), then
d

d x [c] = f ′(x)

= lim∆x→0
f (x+∆x)− f (x)

∆x
= lim∆x→0

c−c
∆x

= lim∆x→0 0
= 0

62.7.2 Proof of the Derivative of a Linear Function
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Find The Derivative By Rules

If mx +b = f (x), then
d

d x (mx +b) = f ′(x)

= lim∆x→0
f (x+∆x)− f (x)

∆x
= lim∆x→0

[m(x+∆x)+b]−[mx+b]
∆x

= lim∆x→0
mx+m∆x+b−mx−b

∆x
= lim∆x→0

m∆x
∆x

= lim∆x→0 m
= m

62.7.3 Proof of the Constant Multiple Rule

d
d x

[
c f (x)

]
= lim∆x→0

c f (x+∆x)−c f (x)
∆x

= c lim∆x→0
f (x+∆x)− f (x)

∆x
= c d

d x

[
f (x)

]
62.7.4 Proof of the Addition and Subtraction Rules

d
d x

[
f (x)± g (x)

]
= lim∆x→0

[ f (x+∆x)+g (x+∆x)]−[ f (x)+g (x)]
∆x

= lim∆x→0
f (x+∆x)+g (x+∆x)− f (x)−g (x)

∆x

= lim∆x→0

[
f (x+∆x)− f (x)

∆x + g (x+∆x)−g (x)
∆x

]
= lim∆x→0

f (x+∆x)− f (x)
∆x +

lim∆x→0
g (x+∆x)−g (x)

∆x
= d

d x

[
f (x)

]+ d
d x

[
g (x)

]

62.8 Find The Derivative By Rules

1. 4x
2. 1

3p
x2

3. 1
3p

x2
− 2

x3

4. 1
x −2ex + 1

2
p

x
5. cos(x)− sin(x)
6. 2(x +5)
7. xp

1+x2

8. 2
p

2x2 +1(3x4 +2x)(12x3 +2)+ 2x(3x4+2x)2p
2x2+1

9. ln(4)4x

10. 2x−39x2

2
p

x3−2
+3ln(2)

p
x3 −2(2x−3)+ 1

x

11. 1
x ln4 + 2

x
12. 3ex +4sin(x)− 1

4x
13. 10x4 +16x +1
14. 49x6 +40x4 +3x2 +2x −1

411



Exercise Solutions

62.9 Logarithmic Differentiation

1. d y
d x = y

(
1
x − 3x2

4(1−x3)

)
2. d y

d x = y
2

( 1
1+x + 1

1−x

)
3. d y

d x = 2(ln(x)+ ln(2)+1)

4. d y
d x = (x3 +4x)3x (9x3 +3x3(ln(x3 +4x))+12x(ln(x3 +4x))+3x2 +12x +4)

62.10 Implicit Differentiation

Recall that d y
d x is the same as y ′.

1.
d

d x (x2 + y2 = 1)

2x +2y d y
d x = 0

solve for d y
d x

d y
d x =− x

y

2.
d

d x (x3 + y3 = x y)

3x2 +3y2 d y
d x = y +x d y

d x

solve for d y
d x

3x2 − y = d y
d x (x −3y2)

d y
d x = 3x2−y

x−3y2

62.11 Higher Order Derivatives

1. 36x2 +6
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Solutions to Set One

62.11.1 Integration Solutions

62.12 Solutions to Set One

62.13 Solutions to Set Two

1. x5

5 − 4x3

3 +4x +C
2. 2x4 +C
3. 4

3 x3 + 11
4 x4 +C

4. 31
33 x33 +x4 − 9

5 x5 +C
5. −5x−1 +C

62.14 Solutions to Set Three

1.
∫

(cos x + sin x)d x

=
∫

cos x d x +
∫

sin x d x

= sin x −cos x +C

2.
∫

3sin x d x

= 3×
∫

sin x d x

=−3cos x +C

3.
∫

1+ tan2 x d x

=
∫

sec2 x d x

= tan x +C

4. 3x2

2 − tan x +C

5. −ex + C

6. 8ex + C
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7. 1
7 ln |x|+ C

8. with the substitution x = a tanθ, we have d x = a sec2θdθ, and x2 +a2 = a2 sec2θ, so that

∫
1

x2 +a2 d x

=
∫

a sec2θdθ

a2 sec2θ

=
∫

1

a
dθ

= 1

a
θ+C

= 1

a
arctan

x

a
+C

1

1 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3ACALCULUS%20%28BOOK%29
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64 Table of Trigonometry

TRIGONOMETRIC_IDENTITY1

64.1 Definitions

• tan(x) = sin x
cos x

• sec(x) = 1
cos x

• cot(x) = cos x
sin x = 1

tan x
• csc(x) = 1

sin x

64.2 Pythagorean Identities

• sin2 x +cos2 x = 1
• 1+ tan2(x) = sec2 x
• 1+cot2(x) = csc2 x

64.3 Double Angle Identities

• sin(2x) = 2sin x cos x
• cos(2x) = cos2 x − sin2 x
• tan(2x) = 2tan(x)

1−tan2(x)

• cos2(x) = 1+cos(2x)
2

• sin2(x) = 1−cos(2x)
2

64.4 Angle Sum Identities

sin
(
x + y

)= sin x cos y +cos x sin y

sin
(
x − y

)= sin x cos y −cos x sin y

1 HTTP://EN.WIKIPEDIA.ORG/WIKI/TRIGONOMETRIC_IDENTITY
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cos
(
x + y

)= cos x cos y − sin x sin y

cos
(
x − y

)= cos x cos y + sin x sin y

sin x + sin y = 2sin
( x + y

2

)
cos

( x − y

2

)

sin x − sin y = 2cos
( x + y

2

)
sin

( x − y

2

)

cos x +cos y = 2cos
( x + y

2

)
cos

( x − y

2

)

cos x −cos y =−2sin
( x + y

2

)
sin

( x − y

2

)

tan x + tan y = sin
(
x + y

)
cos x cos y

tan x − tan y = sin
(
x − y

)
cos x cos y

cot x +cot y = sin
(
x + y

)
sin x sin y

cot x −cot y = −sin
(
x − y

)
sin x sin y

64.5 Product-to-sum identities

cos(x)cos
(
y
)= cos

(
x + y

)+cos
(
x − y

)
2

sin(x)sin
(
y
)= cos

(
x − y

)−cos
(
x + y

)
2

sin(x)cos
(
y
)= sin

(
x + y

)+ sin
(
x − y

)
2

cos(x)sin
(
y
)= sin

(
x + y

)− sin
(
x − y

)
2
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65 Summation notation

Summation notation allows an expression that contains a sum to be expressed in a simple, compact
manner. The uppercase Greek letter sigma, Σ, is used to denote the sum of a set of numbers.

Example

7∑
i=3

i 2 = 32 +42 +52 +62 +72

<blockquote style="background: white; border: 1px solid black; padding: 1em;"> Let f be a func-
tion and N,M are integers with N < M . Then

M∑
i=N

f (i ) = f (N )+ f (N +1)+ f (N +2)+·· ·+ f (M).

We say N is the lower limit and M is the upper limit of the sum. </blockquote>

We can replace the letter i with any other variable. For this reason i is referred to as a dummy
variable. So

4∑
i=1

i =
4∑

j=1
j =

4∑
α=1

α= 1+2+3+4

Conventionally we use the letters i, j, k, m for dummy variables.

Example

5∑
i=1

i = 1+2+3+4+5

Here, the dummy variable is i, the lower limit of summation is 1, and the upper limit is 5.

Example

Sometimes, you will see summation signs with no dummy variable specified, e.g.,

4∑
1

i 3 = 100

419



Summation notation

In such cases the correct dummy variable should be clear from the context.

You may also see cases where the limits are unspecified. Here too, they must be deduced from the
context.

65.0.1 Common summations

SUMMATION#CAPITAL-SIGMA NOTATION1∑n
i=1 c = c + c + ...+ c = nc,c ∈R∑n
i=1 i = 1+2+3+ ...+n = n(n+1)

2∑n
i=1 i 2 = 12 +22 +32 + ...+n2 = n(n+1)(2n+1)

6∑n
i=1 i 3 = 13 +23 +33 + ...+n3 = n2(n+1)2

4

2

1 HTTP://EN.WIKIPEDIA.ORG/WIKI/SUMMATION%23CAPITAL-SIGMA%20NOTATION
2 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3ACALCULUS%20%28BOOK%29
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66 Tables of Integrals

66.1 Rules

•
∫

c f (x)d x = c
∫

f (x)d x
•

∫
f (x)+ g (x)d x = ∫

f (x)d x +∫
g (x)d x

•
∫

f (x)− g (x)d x = ∫
f (x)d x −∫

g (x)d x
•

∫
u d v = uv −∫

v du

66.2 Powers

•
∫

d x = x +C
•

∫
a d x = ax +C

•
∫

xn d x = 1
n+1 xn+1 +C if n 6= −1

•
∫ 1

x d x = ln |x|+C
•

∫ 1
ax+b d x = 1

a ln |ax +b|+C if a 6= 0

66.3 Trigonometric Functions

66.3.1 Basic Trigonometric Functions

•
∫

sin x d x =−cos x +C
•

∫
cos x d x = sin x +C

•
∫

tan x d x = ln |sec x|+C
•

∫
sin2 x d x = 1

2 x − 1
4 sin2x +C

•
∫

cos2 x d x = 1
2 x + 1

4 sin2x +C
•

∫
tan2 x d x = tan(x)−x +C

•
∫

sinn x d x =− sinn−1 x cos x
n + n−1

n

∫
sinn−2 x d x +C (for n > 0)

•
∫

cosn x d x =− cosn−1 x sin x
n + n−1

n

∫
cosn−2 x d x +C (for n > 0)

•
∫

tann x d x = 1
(n−1) tann−1 x −∫

tann−2 x d x +C (for n 6= 1)

66.3.2 Reciprocal Trigonometric Functions

•
∫

sec x d x = ln |sec x + tan x|+C = ln
∣∣tan

(1
2 x + 1

4π
)∣∣+C

•
∫

csc x d x =− ln |csc x +cot x|+C = ln
∣∣tan

(1
2 x

)∣∣+C
•

∫
cot x d x = ln |sin x|+C
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•
∫

sec2 kx d x = 1
k tankx +C

•
∫

csc2 kx d x =− 1
k cotkx +C

•
∫

cot2 kx d x =−x − 1
k cotkx +C

•
∫

sec x tan x d x = sec x +C
•

∫
sec x csc x d x = ln |tan x|+C

•
∫

secn x d x = secn−1 x sin x
n−1 + n−2

n−1

∫
secn−2 x d x +C (for n 6= 1)

•
∫

cscn x d x =− cscn−1 x cos x
n−1 + n−2

n−1

∫
cscn−2 x d x +C (for n 6= 1)

•
∫

cotn x d x =− 1
n−1 cotn−1 x −∫

cotn−2 x d x +C (for n 6= 1)

66.3.3 Inverse Trigonometric Functions

•
∫ 1p

1−x2
d x = arcsin(x)+C

•
∫ 1p

a2−x2
d x = arcsin(x/a)+C if a 6= 0

•
∫ 1

1+x2 d x = arctan(x)+C

•
∫ 1

a2+x2 d x = 1
a arctan(x/a)+C if a 6= 0

66.4 Exponential and Logarithmic Functions

•
∫

ex d x = ex +C
•

∫
eax d x = 1

a eax +C if a 6= 0
•

∫
ax d x = 1

ln a ax +C if a > 0, a 6= 1
•

∫
ln x d x = x ln x −x +C

66.5 Inverse Trigonometric Functions

•
∫

arcsin(x)d x = x arcsin(x)+
p

1−x2 +C
•

∫
arccos(x)d x = x arccos(x)−

p
1−x2 +C

•
∫

arctan(x)d x = x arctan(x)− 1
2 ln(1+x2)+C

66.6 Further Resources

LISTS OF INTEGRALS1

1 HTTP://EN.WIKIPEDIA.ORG/WIKI/LISTS%20OF%20INTEGRALS
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67 Tables of Derivatives

TABLE_OF_DERIVATIVES1

67.1 General Rules

d
d x ( f + g ) = d f

d x + d g
d x

d
d x (c f ) = c d f

d x

d
d x ( f g ) = f d g

d x + g d f
d x

d
d x

(
f
g

)
= g d f

d x − f d g
d x

g 2

67.2 Powers and Polynomials

• d
d x (c) = 0

• d
d x x = 1

• d
d x xn = nxn−1

• d
d x

p
x = 1

2
p

x

• d
d x

1
x =− 1

x2

• d
d x (cn xn + cn−1xn−1 + cn−2xn−2 + ·· · + c2x2 + c1x + c0) = ncn xn−1 + (n − 1)cn−1xn−2 + (n −
2)cn−2xn−3 +·· ·+2c2x + c1

67.3 Trigonometric Functions

d
d x sin(x) = cos(x)

d
d x cos(x) =−sin(x)

d
d x tan(x) = sec2(x)

d
d x cot(x) =−csc2(x)

d
d x sec(x) = sec(x) tan(x)

d
d x csc(x) =−csc(x)cot(x)

1 HTTP://EN.WIKIPEDIA.ORG/WIKI/TABLE_OF_DERIVATIVES
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67.4 Exponential and Logarithmic Functions

• d
d x ex = ex

• d
d x ax = ax ln(a) if a > 0

• d
d x ln(x) = 1

x

• d
d x loga(x) = 1

x ln(a) if a > 0, a 6= 1

• ( f g )′ = (
eg ln f

)′ = f g
(

f ′ g
f + g ′ ln f

)
, f > 0

• (c f )′ = (
e f lnc

)′ = f ′c f lnc

67.5 Inverse Trigonometric Functions

• d
d x arcsin x= 1p

1−x2

• d
d x arccos x=− 1p

1−x2

• d
d x arctan x= 1

1+x2

• d
d x x = 1

|x|
p

x2−1

• d
d x x = −1

1+x2

• d
d x x = −1

|x|
p

x2−1

67.6 Hyperbolic and Inverse Hyperbolic Functions

d

d x
sinh x = cosh x

d

d x
cosh x = sinh x

d

d x
tanh x = sech2 x

d

d x
sech x =− tanh x sech x

d

d x
coth x =−csch2 x

d

d x
csch x =−coth x csch x

d

d x
sinh−1 x = 1p

x2 +1

d

d x
cosh−1 x = −1p

x2 −1
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d

d x
tanh−1 x = 1

1−x2

d

d x
sech−1 x = 1

x
p

1−x2

d

d x
coth−1 x = −1

1−x2

d

d x
csch−1 x = −1

|x|
p

1+x2
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