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FOREWORD
JOME twenty years ago, the writer, being impressed by the inco-

herence of modern design and convinced that there must exist in

nature some correlating principle which could give artists a con-

trol of areas, undertook a comparative study of the bases of all

design, both in nature and in art. This labor resulted in the de-

termination of two types of symmetry or proportion, one of which possessed

qualities of activity, the other of passivity. For convenience, the active type

was termed dynamic symmetry, the other, static symmetry. It was found that

the passive was the type which was employed most naturally by artists, either

consciously or unconsciously; in fact, no design which would be recognized as

such—unless, indeed, it were dynamic—would be possible without the use, in

some degree, of this passive or static type. It is apparent in nature in certain

crystal forms, radiolaria, diatopis, flowers and seed pods, and has been used

consciously in art at several periods.

The principle of dynamic symmetry is manifest in shell growth and in leaf

distribution in plants. A study of the basis of design in art shows that this active

symmetry was known to but two peoples, the Egyptians and the Greeks; the

latter only having developed its full possibilities for purposes of art. The writer

believes that he has now recovered, through study of natural form and shapes

in Greek and Egyptian art, this principle for the proportioning of areas.

As static symmetry is more or less known and its principles easily under-

stood, its explanation will be reserved for a chapter at the end of this book. Dy-

namic symmetry, on the contrary, is entirely unrecognized in modern times. It is

more subtle and more vital than static symmetry and is pre-eminently the form

to be employed by the artist, architect and craftsman. After an explanation of

the fundamental principles of this method of proportioning spaces, the writer

will attempt a complete exposition of its application in art through analyses of

specific examples of Greek design. He believes that nothing better can be found

for this purpose than Greek pottery, inasmuch as it is the only pottery which

is absolutely architectural in all its elements. There is no essential difference

between the plan of a Greek vase and the plan of a Greek temple or theater,

either in general aspect, or in detail. The curves found in Greek pottery are

identical with the curves of mouldings found in Greek temples. There are com-

paratively few temples and theaters, while there are many thousands of vases,

many of these being perfectly preserved. Other reliable material for study is

furnished by the bas-reliefs of Egypt, many of which, like the vases of Greece,

are still intact.

The history of dynamic symmetry may be given in a few words: at a very
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early date, possibly three or four thousand years B. C, the Egyptians devel-

oped an empirical scheme for surveying land. This primitive scheme was born

of necessity, because the annual overflow of the Nile destroyed property bound-

aries. To avoid disputes and to insure an equitable taxation, these had to be re-

established; and of necessity, also, the method of surveying had to be practica-

ble and simple. It required but two men and a knotted rope.

When temple and tomb building began, it became necessary to establish a

right angle and lay out a full sized plan on the ground. The right angle was

determined by marking off twelve units on the rope, four of these units forming

one side, three the other, and five the hypotenuse of the triangle, a method

which has persisted to our day. This was the origin of the historic "cording of

the temple.'"" From this the step to the formation of rectangular plans was

simple. From the larger operation of surveying, and fixing the ground plans of

buildings by the power which the right angle gave toward the defining of ratio-

relationship, it was a simple matter to extend and adapt this method to the

elevation plan and the detail of ornament, in short, to design in general, to the

end that the architect, the artist or the craftsman might be able to control the

proportioning and the spacing problems involved in the construction of build-

ings as well as those of pictorial composition, hieroglyphic writing and decora-

tion. At some time during the Sixth or Seventh Century B. C. the Greeks ob-

tained from Egypt knowledge of this manner of correlating elements of design.
'

In their hands it was highly perfected as a practical geometry, and for about

three hundred years it provided the basic principle of design for what the

writer considers the finest art of the Classic period. Euclidean geometry gives

us the Greek development of the idea in pure mathematics; but the secret of

its artistic application completely disappeared. Its recovery has given us dy-

namic symmetry—a method of establishing the relationship of areas in design-

composition.



VITRUVIUS ON GREEK SYMMETRY'

r "^HE several parts which constitute a temple ought to be sub-

ject to the laws of symmetry; the principles of which should

be familiar to all who profess the science of architecture.

Symmetry results from proportion, which, in the Greek lan-

guage, is termed analogy. Proportion is the commensuration

of the various constituent parts with the whole, in the existence of which

symmetry is found to consist. For no building can possess the attributes of

composition in which symmetry and proportion are disregarded; nor unless

there exists that perfect conformation of parts which may be observed in a

well-formed human being. . . . Since, therefore, the human frame

appears to have been formed with such propriety that the several members

are commensurate with the whole, the artists of antiquity must be allowed

to have followed the dictates of a judgment the most rational, when, trans-

.

ferring to the works of art, principles derived from nature, every part was so

regulated as to bear a just proportion to the whole. Now, although these

principles were universally acted upon, yet they were more particularly at-

tended to in the construction of temples and sacred edifices—the beauties or

defects of which were destined to remain as a perpetual testimony of their

skill or of their inability."



PREDICTION BY EDMOND POTTIER
IN 1906 RELATIVE TO GREEK
SYMMETRY
WILL add that the proportions of the vases, the relations of dimen-

sions between the different parts of the vessel, seem among the Greeks

to have been the object of minute and delicate researches. We know of

cups from the same factory, which, while similar in appearance, are

none the less different in slight, but appreciable, variations of structure

[cf., for example, Furtwangler and Reichhold, "Griechische Vasenmalerei"

p. 250). One might perhaps find in them, if one made a profound study of the.

subject, a system of measurement analogous to that of statuary. We have, in

fact, seen that at its origin the vase is not to be separated from the figurine

(p. 78); down to the classical period it retains points of similarity with the

structure of the human body (Salle H). As M^ Froehner has well shown in

an ingenious article {Revue des Deux Mondes 1873, ^- CIV, p. 223), we our-

selves speak of the foot, the neck, the body, the lip of a vase, assimilating the

pottery to the human figure. What, then, would be more natural than to sub-

mit it to a sort of plastic canon, which, while modified in the course of time,

would be based on simple and logical rules? I have remarked' ("Mo««»?<?«/j

Piot, IX," p. 138) that the maker of the vase of Cleomenes observed a rule

illustrated by many pieces of pottery of this class, when he made the height

of the object exactly equal to its width. M. Reichhold (1. c. p. 181) also notes

that in an amphora attributed to Euthymides the circumference of the body
is exactly double the height of the vase. I believe that a careful examination of

the subject would lead to interesting observations on what might be called

the "geometry of Greek ceramics." E. Pottier, Musee National du Louvre,

"Vases antiques III," p. 659.



CHAPTER ONE: THE BASIS OF
DESIGN IN NATURE

H
^OR the purpose of the present work, it will be sufficient to deal

only with the conclusions obtained by the study of the bases of

design in nature. There are so many fascinating aspects of natural

form, so many tempting by-paths, that it would be easy to wander

far from the subject now under consideration. Moreover, the mor-

phological field has received attention from many explorers more gifted and

better equipped to examine and interpret the phenomena of shape from a

scientific point of view than the writer, whose training has been, and disposi-

tion is, merely that of a practical artist." His working hypothesis, responsible

for the material here presented, was formulated upon the assumption that the

same curve persists in vegetable and shell growth. This curve is known mathe-

matically as the constant angle or logarithmic spiral. This curiously fascinating

curve has received much attention.^ As a curve form, its use for purposes of

design is limited, but it possesses a property by which it may readily be trans-

formed into a rectangular spiral. The spiral in nature is the result of a process

of continued proportional growth. This will be clear if we consider a series of

cells produced during a period of time, the first cell growing according to a defi-

nite ratio as new cells are added to the system. (See Figs, i and 2.) The shell

is but a cone rolled up. Fig. i represents the cone of such an aggregate, while

Fig. 2 shows the system coiled.

The curve of the coil is a logarithrnic spiral in which the law of proportion is

inherent. A distinctive feature of this curve is that when any three radii vectors

are drawn, equi-angular distance apart, the middle one is a mean proportional

between the other two; in other words, the three vectors, or the three lines

drawn from the center or pole to the circumference, equi-angular distance apart,

form three terms of a simple proportion; A is to B, as B is to C, and according

to the "rule of three" the product of the extremes, A and C, is equal to the

square of the mean. A multiplied by C equals B multiplied by itself. The early
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Greeks covered the point geometrically when they established the fact that

in a right triangle, a line drawn perpendicular to the hypotenuse to meet the

intersection of the legs, is the side of a square equal in area to the rectangle

formed by the two segments of the hypotenuse. (Fig. 3.)

1,

^'C-^'b

These three lines C, B, A, constitute three terms in a continued proportion.

When the three radii vectors are drawn from the center to the circumference

of the shell curve, as in Fig. 4,

and these points of intersection with the spiral are connected by two straight

lines, a right angle is created at C ajid a right triangle formed, ACB. (Fig. 5.)

If the mean proportional line of this right triangle, ACB, that is, if the line

CO be produced through the pole or center of the spiral to the opposite side of

the curve, obviously another right angle is created as at B, and by drawing

the line BD, the right triangle DBC is formed. (Fig. 6.)

Fig. 6.
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The process may be extended until the entire spiral curve has been trans-

formed into a right angle spiral, as shown by the lines AC, CB, BD, DE, EF,

etc., a form suggestive of the Greek fret. There now exists in the area bounded

by the spiral curve a double series of lines in continued proportion, each line

bearing the same relation to its predecessor as the one following bears to it.

As far as design is concerned, we may now dispense with the curve of the

spiral. There have been extracted from it all essentials for the present purpose

and there remains but the placing of the angular spiral within a rectangle. This

may be done in any rectangle by drawing a diagonal to the rectangle and from

one of the remaining corners a line to cut this diagonal at right angles. This

line, drawn from one corner of the rectangle to cut the diagonal at right angles,

is produced to the opposite side of the rectangle. (Fig. 7.)

Such a line we shall refer to as a perpendicular, and in all cases it is drawn from

a corner. It establishes proportion witliin a rectangle, and is the diagonal to the

reciprocal of the rectangle. In Fig. 8, AB is a reciprocal rectangle and conse-

quently is similar to the rectangle CD.^

Fig. 8.

There exists a series of rectangles whose sides are divided into equal parts

by the perpendicular to the diagonal. Take for example the rectangle in Fig. 9,

where the line AB bisects the line CD, at B. In such a rectangle a relationship

exists between the end and the side expressed numerically by i, or unity, and

1.4I42 (see Fig. 10) or the square root of two, and a square constructed on the

end is exactly one-half, in area, of the square constructed on the side. '
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Fig. 9. Fig- lo-

The student may draw all the rectangles of Dynamic Symmetry with'a

right angle and a decimally divided scale, preferably one divided into milli-

meters.

It will be noticed that the number 1.4I42 is an indeterminate fraction. In

other words, while the end and the side of this rectangle are incommensurable

in line, they are commensurable in square.* This rectangle we may call a root-

two rectangle. It is found to possess properties of great importance to design.

It is the rectangle whose reciprocal is equal to half the whole.^

\ r /
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tangle will be divided into similar shapes to the whole, with a ratio of three.

(See Fig. 12.) AB is one third of AC, while AD is one third of AE.

A rectangle whose side is divided into three equal parts by horizontal lines

drawn through the points of intersection of the perpendiculars and the sides of

the rectangle has a ratio between its end and its side of i, or unity, to 1.732 or

the square root of 3. This is a root-three rectangle and has characteristics simi-

lar to those of a root-two rectangle, except that it divides itself into similar

shapes to the whole with a ratio of 3. AB, BC and CD are equal. (Fig. 13.)

Lines drawn through the eyes of the spiral divide this rectangle into four equal

parts. The square on the end of this rectangle is one-third the area of the

square on the side.

r

A rectangle whose side is divided into four equal parts by a perpendicular

has a ratio between its end and its side of one to two, or unity to the square

root of four. This rectangle has properties similar to those of a root-two or a

root-three rectangle, except that it divides itself into similar rectangles by a

ratio of four, and the area of the square on the end is one-fourth the area of

Fig. i4«. Fig. 14^.
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the square on the side. This is a root-four rectangle. Lines drawn through the

eyes of the spirals of a root-four rectangle divide the area into five equal parts

similar to the whole. (Fig. 14^.)

A rectangle whose side is divided into five equal parts by a perpendicular

has a ratio between its end and its side of one to 2.236, or the square root of

five. This area is a root-five rectangle and it possesses properties sirnilar to those

of the other rectangles described, except that it divides itself into rectangles

similar to the whole with ratios of five and six. A square on the end is to a square

on the side as one is to five, that is, the smaller square is exactly one-fifth the

area of the larger square. There is an infinite succession of such rectangles, but

the Greeks seldom employed a root rectangle higher than the square-root of

five.

m
Fig. i5«. Fig. 153.

The root-five rectangle, moreover, possesses a curious and interesting prop-

erty which intimately connects it with another rectangle, perhaps the most ex-

traordinary of all. To understand this strange rectangle, we must consider the

phenomena of leaf distribution. This root-five rectangle may be regarded as

the base of dynamic symmetry.*

Closely linked with the scheme which nature appears to use in its construc-

tion of form in the plant world is a curious system of numbers known as a sum-

mation series. It is so called because the succeeding terms of the system are

obtained by the sum of two preceding terms, beginning with the lowest whole

number; thus, i, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, etc. This converging series

of numbers is also known as a Fibonacci series, because it was first noted by

Leonardo da Pisa, called Fibonacci. Leonardo was distinguished as an arith-

metician and also as the man who introduced in Europe the Arabic system of
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notation. Gerard, a Flemish mathematician of the 17th century, also drew
attention to this strange systerri of numbers because of its connection with a

celebrated problem of antiquity, namely, the eleventh proposition of the second

book of Euclid. Its relation to the phenomena of plant growth is admirably

brought out by Church,^ who uses a sunflower head to explain the phenomena.
What is called normal phyllotaxis or leaf distribution in plants is represented

or expressed by this summation series of numbers. The sunflower is generally

accepted as the most convenient illustration of this law of leaf distribution.

An average head of this flower possesses a phyllotaxis ratio of 34 x 55. These
numbers are two terms of the converging summation series.

The present inquiry is concerned with only two aspects of the phyllotaxis

phenomena: the character of the curve, and the summation series of numbers
which represents the growth fact approximately.' The actual' ratio can be ex-

pressed only by an indeterminate fraction. The plant, in the distribution of its

form elements, produces a certain ratio, 1.6 18, which is obtained by dividing

any one term of the summation series by its predecessor. This ratio of 1.6 18

is used with unity to form a rectangle which is divided by a diagonal and a

perpendicular to the diagonal, as in the root rectangles. (Fig. 19.)
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Thus, we may call this "the rectangle of the whirling squares," because its

continued reciprocals cut off squares. The line AB in Fig. 19 is a perpendicular

cutting the diagonal at a right angle at the point O, and BD is the square so

created. BC is the line which creates a similar figure to the whole. One or unity-

should be considered as meaning a square. The number 2 means two squares,

3, three squares, and so on. In Fig. 19 we have the defined square BD, which

is unity. The fraction .618 represents a shape similar to the original, or is its

reciprocal. Fig. 20 shows the reason for the name "rectangle of the whirling

squares." 1,2,3, 4, 5, 6, etc., are the squares whirling around the pole O.

.&IS

Fig. 21.

If the ratio 1.6 18 is subtracted from 2.236, the square root of 5, the remainder

will be the decimal fraction .618. This shows that the area of a root-five recT

tangle is equal to the area of a whirling square rectangle plus its reciprocal,

that is, it equals the area of a whirling square rectangle horizontal plus one

perpendicular, as in Fig. 21.

The writer believes that the rectangles above described form the basis of

Egyptian and Greek design. In the succeeding chapters will be explained the

technique or method of employment of these rectangles and their application

to specific examples of design analysis.



CHAPTER TWO: THE ROOT
RECTANGLES

r ""^HE determination of the root rectangles seems to have been

one of the earliest accomplishments of Greek geometers.' In

fact, geometry did not become a science until developed by

the Greeks from the Egyptian method of planning and sur-

veying. The development of the two branches of the same

idea went together. Greek artists, working upon this basis to elaborate and

perfect a scheme of design, labored side by side with Greek philosophers, who
examined the idea to the end that its basic principles might be understood and

applied to the solution of problems of science. How well this work was done,

Greek art and Greek geometry testify.

As early as the Sixth Century B. C. Greek geometers were able to "deter-

mine a square which would be any multiple' of a square on a linear unit." It is

evident that in order to construct such squares the root rectangle must be em-

ployed. We find the Greek point of view essentially different from ours, in con-

sidering areas of all kinds. We regard a rectangular area as a space inclosed by

lines, and the ends and sides of the majority of root rectangles, because these

lines are incommensurable, would now be called irrational. The Greeks, how-

ever, put them in the rational class, because these lines are commensurable in

square.* This conception leads directly to another Greek viewpoint which

resulted in the evolution of a. method employed by them for the solution of

geometric problems, to wit, "the application of areas."" Analysis of Greek

design shoWs a similar idea was used in art when rectangular areas were

exhausted by the application of other areas, for example, the exhaustion of a

rectangle by the application of the squares on the end and the side, in order

that the area receiving the application might be clearly understood and its pro-

portional parts used as elements of design. If the square on the end of a root-

two rectangle be applied to the area of the rectangle, it "falls short," is "elliptic,"

and the part left over is composed of a square and a root-two rectangle. (See

Fig. la.) If the same square be applied to the other end, so as to overlap the

first applied square, the area of the rectangle is divided into three squares and

three root-two rectangles. (See Fig. iL) And, if the square on the side of a root-

two rectangle be applied, it "exceeds," is "hyperbolic," and the excess is com-

posed of two squares and one root-two rectangle." (See Fig. ic.)

This idea is quite unknown to modern art, but that it is of the utmost im-

portance will be shown in this book by the analyses of the Greek vases.

Let us now consider various methods of construction of the root rectangles.
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and, of course, the whirling square rectangle. We will commence with the latter^

which is intimately connected with extreme and mean ratio, a geometrical con-

ception of great artistic and scientific interest to the early Greeks. Using dy-

namic symmetry, this problem of cutting a line in extreme and mean ratio may

be solved through subtracting unity from the diagonal of a root-four rectangle;

the Greek method was not essentially different. To the early geometers it was

the cutting of a line so that the rectangle formed by the whole line and the lesser

segment would equal the area of the square described on the greater segment.'

J
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the end, defines also a root-five rectangle, C being the square. Obviously this

may be done at either end and side, resulting in the determination of four

root-five rectangles overlapping each other within the major shape. In a whirl-

ing square rectangle (Fig. ^a), if lines be drawn through the eyes A, B, C, D
parallel to the ends, and A and B connected by another line, an area will be

Fig. 3- Fig.

defined, composed of the square E and the rectangle F. This shape, composed

of E and F, is numerically described as the rectangle 1.382. The square E is

unity. The rectangle F is the fraction .382, this being the reciprocal of 2.618,

1. e., it is a whirling square rectangle, 1.618 plus i. (Fig. 5^.) If this 1.382

rectangle is divided by 2, the shapes G, H (Fig. 5c), result and each is composed

of a square and a root-five rectangle. 1.382 divided by 2 equals .691, which,

divided into unity, proves to be the reciprocal of 1.4472, and .4472 is the recip-

rocal of root-five and is itself a root-five rectangle. Many Greek vases were

constructed according to the principles inherent in this 1.382 shape.

'VS
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placed in the center of the shape 1.382, the "defect" area on either side is com-

posed of a square and a whirling square rectangle.

5
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rectangle and DE is its diagonal. A diagonal to a root-two rectangle cuts the

quadrant arc at H. GD is a root-three rectangle, the diagonal of which cuts the

quadrant arc at J. DI is a root-four rectangle and its diagonal cuts the quad-

rant arc at L. DK is a root-five rectangle and so on. All the root rectangles may-

be thus obtained within a square.

Fig. 9.

The root ratios outside of a square are obtained from diagonals, Fig. 10.

AB, the diagonal of the unit form or square, determines the point C, the side

of a root-two rectangle. The diagonal of a root-two rectangle, as AD, becomes

the side of a root-three rectangle, as AE. AF, the diagonal of a root-three rec-

tangle, becomes the side of a root-four rectangle, as AG. AH, the diagonal of a

root-four rectangle, becomes the side of a root-five rectangle, as AI. AJ, the

diagonal of a root-five rectangle becomes the side of a root-six rectangle, and

so on to infinity. In any of these rectangles a square on the end is some even

multiple of a square on the side. The square constructed on the line AC is dou-

ble the square on AK; the square on AE is three times the area of the square on

AK; the square on AG is four times the square on AK; the square on AI is five

times the square on AK, etc. This was the Greek method of describing squares

which would be any multiple of a square on a given linear unit.^ The given linear

unit is the line AK. The rectangles inside the square are the reciprocals of the

rectangles outside the square. A root-two rectangle inside the square, for ex-

ample,is one-half the area of the root-two rectangle outside the same square;

a root-three inside, one-third of a root-three outside; a root-four inside, one-
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fourth of a root-four outside and a root-five inside, one-fifth of a root-five out-

side. And a reciprocal to any rectangle is obtained by drawing a perpendicular

from one corner.

The whirling square rectangle and the root-five rectangle are placed within

a square thus:
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constructed in the center of the square, see Fig. 12a. The area AB is this area,

and if these lines be made to terminate at their intersection with the diagonals

of the square, the whirling square rectangle CD, is defined as in Figs. 12^'

and 12c. That this construction was used by the Egyptians in design is shown

by the bas-relief in the form of a square herewith reproduced:

a

Wl

Fig. 11a. Fig. lib. Fig. lie.

When, as in Fig. 13, a whirling square rectangle is comprehended within a

square, CD, the small square, AB, has a common center with the large square,

CK, and if the sides of this small square, AB, are produced to the sides of the

large square, CK, four whirling square rectangles, overlapping each other to

the extent of the small square, AB, are comprehended in the major square.

They are HK, EF, CD, and CJ, and the major square becomes a nest of

squares and whirling square rectangles.

\ I
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the major square are carefully incised in the stone by four bars, two of which

have slight pointed projections on either end. The general construction was

that of a in Fig. 12. Spacing for additional elements of the design is shown

in c. Fig. 12, while b. Fig. 12, exhibits the grouping of the hieroglyphic writing.

Fig. 14.

Another bas-relief from Egypt shows also how a square which is defined by

bars cut in the stone at the top and bottom of the composition has its area

dynamically divided for a pictorial composition. In this example the designer
^

has used a root-five rectangle in the center of a square, Fig. 12a. The plan of

this arrangement is obvious, Fig. 15.

A simple theme in root-two is exhibited in Fig. 16. A goddess is pictured

supporting a formalized sky in the shape of a bar. The spaces between the bars

on either side of the figure were filled with hieroglyphic writing. These have

been omitted in this reproduction. The overall shape of this composition is a
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Fig. 15.

Fig. 16.
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root-two rectangle and the simple method of construction is shown in Fig. 17.

BC is a square and the side of the rectangle is equal in length to the diagonal

of this square:

c . o f

Fig. 17.

AB equals BC. DB and EF are root-two rectangles, the side of each being equal

to half the diagonal of the major square, or the line BG. Diagonals to the whole

intersect the side of the major square at the points D F.

Another theme in root-two is disclosed in Fig. 18. The general shape is a

square, carefully defined by incised lines, as in the other examples.

Fig. 18.
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CHAPTER THREE: THE LEAF

r "^HE rectangles of dynamic symmetry consist of the root rec-

^ tangles, the rectangle of the whirling squares, and compound

shapes derived from subdivision or multiplication of either

the square root forms or the rectangle of the whirling

squares.

In both Greek and Egyptian design the compound shapes derived from the

rectangle of the whirling squares and the root-five shape greatly preponderate.

The rectangle of the whirling squares, as a separate design shape, appears,

but seldom. This fact suggests that extreme and mean ratio, per se, has little

aesthetic significance. Its chief feature appears to be its power as a coordinating

faetor-when"usedTvitircertairrof the compound rectangles.

There is unquestionable documentary evidence that the use of the compound

rectangles, found so plentifully in Greek art, was not arbitrary. Their bases

exist in nature and it is historical that the Greeks thoroughly understood the

source from which they are derived. (See the Thirteenth Book of Euclid's

Elements.) Their discovery in nature by the writer resulted from examination

of the trussing of a maple leaf. The shape of this leaf strikingly resembles a

regular pentagon.

Fig. la. Fig. lb.

The leaf is shown above in Fig. la, and the resemblance of the shape itself

and of its trussing to the regular pentagon and its diagonals, is apparent in

Fig. ib.lm. regular pentagon inscribed in a circle the relation of the radius

of the escribed circle to the radius of the inscribed circle is i : .809. The fraction

.809 multiplied by 2 equals 1.618, or the ratio of the whirling square rectangle.

This means that if we escribe a square to the circle escribing a regular penta-

gon (Fig. 2), the area shown by the heavy lines is represented by the ratio

1.809. A is a square and B two whirling square rectangles. This is a ratio often

found in Greek design, among amphorae and skyphoi especially. The division

of the pentagon with its escribed square produces two such areas, as in Fig. 3.



DYNAMIC SYMMETRY 31

1

Fig. 2. Fig. 3.

In Fig. 4, the point B in reference to the center A, is eighteen degrees and the

natural sine of eighteen degrees or the line AC, is .309. This fraction multiplied

by 2 equals .618. The rectangle AB, therefore, is composed of two whirling

square rectangles, placed end to end, a common shape in Greek design. The

entire area shown by the heavy lines in Fig. 5, is composed of four whirling

square rectangles, two perpendicular side by side, and two horizontal end to

end.

Fig. 4. Fig. 5.

A root-five rectangle is composed of a whirling square rectangle, plus its

reciprocal, or 1.618 plus .618. Consequently the area shown by the heavy lines

in Fig. 6a is composed of two root-five rectangles, and the area in i, defined by

heavy lines, is equal to four root-five rectangles.

^
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The total distance AB in Fig. 7, is 1.809. BC is .809, CD is .309, AC is i or

unity, and AD is unity minus .309, or .691. This fraction .691, is the reciprocal

of 1.4472, or a square plus a root-five rectangle. ED is this shape, the key to the

Parthenon plan and many other Greek designs. It is a favorite shape for many

vases.

^-
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The radius of a circle escribing a pentagon is i, and the radius of the inscribed

circle is .809. Therefore the area AB, in Fig. 10, is composed of two whirling

square rectangles. The area BC plus AD is composed of eight squares and

Fig. 10.

eight whirling square rectangles. If these areas BC, AD, are placed one over

the other, the area is then expressed as 5.236, /. e., 1.236 plus four squares.

The reciprocal of 5.236 is .191. (Fig. 11.)

+
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which consists of a square and two whirling square rectangles or the ratio

1.309.
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A line drawn through the intersection of two diagonals of a pentagon divides

the area of the major square as in Fig. i6, into three shapes, two of which are

rectangles of the whirling squares and one is composed of a square and a root-

five rectangle.

4
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The area AB in Fig. 2'2a is a whirling square rectangle, 1.809 on the side and

I.I 1 8 on the end. CB is the major square of this rectangle. The shape DE is

the ratio 1.2764, i. e., .691 divided into .882. Of this area .691 by .691 makes a

square, and .191, the difference between .691 and .882, divided into .691 fur-

nishes 3.618, i. e., a whirling square rectangle plus two squares. The area BD,

.882 by 1. 118, supplies the ratio 1.267. This ratio is more easily recognized if

we consider its reciprocal .7888. Four root-five rectangle reciprocals equal the

ratio 1.7888, .4472 multiplied by four. .7888, therefore, is four root-five rectan-

gles minus one.

It is .a beautiful shape and may be obtained readily from the whirling square

rectangle. This particular ratio was discovered independently by Wm. Sergeant

Kendall, in the form of overlapping whirling square rectangles creating a root-

five rectangle by their union as in Fig. 22^^.

The area AB in Fig. 23 is composed of two squares and two root-five rec-

tangles, or the ratio 2.8944, i. e., 1.4472 multiplied by two; .691 divided into

2.000. The fraction is not quite .691, but this number is sufficiently close for all

practical purposes. BC and CD are two equal areas each composed of a square

and two whirling square rectangles, i. e., each has a ratio of 1.309.

Fig. 23.
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In Fig. 24 the area AB, unity on the end and 1. 191 on the side, is a square

plus .191 and this fraction represents two squares and two whirling square

rectangles. The area BC represents four whirling square rectangles; .618 mul-

tiplied by four, 2.472 minus one or 1.472. DE is a root-five rectangle.*

, ^^
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Fig. ay. Fig. 28.

In the thirteenth book of the Elements, Euclid proves the relationship of

the end, side and diagonal of the whirling square rectangle. Proposition 8 is

devoted to proving that diagonals to a pentagon cut each other in the propor-

tion of the whirling square rectangle. The fact enunciated in this proposition

suggests the reason why the Pythagoreans of the Sixth Century B. C. used

the Pentagram as a symbol of their school.

Fig. 29.

The Pythagorean Pentagram Symbol.

Fig. 30.

Diagram from Euclid XIII,

The first six propositions of the 13th book are devoted to the consideration of

the relationships of areas described on lines connected with the whirling square

rectangle. In the first proposition the geometrical construction brings out the

fact that a rectangle, the end of which is .809 and the side 1.809, is a root-five

rectangle. In the 9th proposition proof is furnished that the side of a hexagon

and the side of a decagon added, form a line which is cut in extreme and mean

ratio, and the side of the hexagon is the greater segment. (Fig. 31.) Proposi-

tion 10 furnishes the proof that the square on the side of a pentagon inscribed

in a circle is equal in area to the squares on the sides of a hexagon and a decagon

inscribed in the same circle. Fig. 31a shows this relationship. This figure is of

necessity a right-angled triangle.
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Fig. 31.

Fig. 31a.

Later, in XIII, 18, the rectangular relationship is more clearly shown in a

root-five rectangle. The Euclidean diagram of the i8th proposition is peculiarly

interesting in the light of dynamic symmetry because it suggests what may
have been the Greek method of constructing the dynamic rectangles in a

square.

The writer's method of describing a root-five rectangle in a square is shown

in Fig. 32.

Fig. 32.

In the square AB, Fig. 32, draw the line CD, dividing the square into two

equal parts. Draw ED, the diagonal to two squares. On DG describe a semi-

circle. The arc of this cuts the line ED at F. Through the point F draw the

line HI parallel to GB. The area HB is a root-five rectangle within the area

of the square AB.
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In the 1 8th proposition of the thirteenth book a diagram is furnished which

illustrates the setting out of the "five figures" for the purpose of comparison.

The "five figures," of course, mean the five regular solids. These solids were of

much interest to the Greeks of the Sixth Century B. C, because it was then

thought that the atoms of the elements, which made up the universe, were

shaped like the tetrahedron, the octahedron, the cube and the icosahedron.

The dodecahedron was regarded as the shape which encompassed all the

others.

The basis of the diagram In the i8th proposition of the 13th book is a semi-

circle on a given line. In brief the operation is this

:

Fig- 33-

AB is the given line and ABE is the semicircle. (See Fig. 23-) Euclid in sub-

stance says: at A draw a line equal to AB at right angles to that line

and call its point of termination G. The point C is midway between A and B.

Connect C and G. In Euclid's diagram the point H Is the intersection of the

line GC with the arc of the semicircle AEB. From H a line Is drawn parallel

Fig. 34-

to AG to meet AB at K, BL is made equal to AK. From the point L a line is

drawn, parallel to AG to meet the arc of the semicircle at M. It is obvious that

HLKM is a square and that HA and MB are rectangles of the whirling squares.

In other words, Euclid has here constructed a root-five rectangle and defined

the square In the center, as is often necessary in the analysis of Greek design.
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Euclid further shows in this proposition that the comprehension of the icosahe-

dron in the same sphere with the other four regular solids involves the side of

the hexagon, the side of the decagon and the side of a pentagon inscribed

in the same circle. AK, BL are two sides of the decagon and KL, KH, LM or

HM the side of the hexagon, and MB is the side of a pentagon.

The geometrical constructions used by Euclid for the comprehension of the

five regular solids in the same sphere, suggest another method of determining

the root rectangles of dynamic symmetry in a square. This method is based

upon the fact that an angle in a semicircle is necessarily a right angle.

,. - ./.. %.
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The geometrical fact established by Euclid that if a circle is described with

a side of a whirling square rectangle as radius, this line equals the side of a

hexagon, the end of the rectangle, the side of a decagon and the diagonal of

the rectangle, the side of a pentagon, all inscribed in this same circle, suggests

the construction of Figs. 39 and 40.

1
''''' p
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CHAPTER FOUR: ROOT RECTANGLES
AND SOME VASE FORMS

NALYSES of Greek and Egyptian compositions show that the artist

always worked within predetermined areas. The enclosing

rectangle was considered the factor which controlled and de-

termined the units of the form. A work-of art thus correlated

.became an entity, comparable to an organism in nature. It

possessed an individual character, instinct with the life of design.

Only such rectangles, simple or compound, were used, whose areas and sub-

multiple parts were clearly understood. If the design for a vase shape were being t

planned the artist would consider the full height of the vessel as the end or side

of a certain rectangle, while the full width would be the other end or side. The

choice of a rectangle depended upon its suitability for a purpose, both in shape :

and property of propo'rtional subdivision. A rough sketch was probably made
;

as a preliminary and this formalized by the rectangle. Most Greek pottery

shapes, however, were traditional, being slowly developed through a long period

of time; consequently, rough sketches of ideas must have been rare. From gener-

ation to generation, from father to son, craft ideas were passed along, acquiring

refinement gradually.

Modern art, as a rule, aims at freshness of idea and individuality in tech

nique of handling; Greek art aimed at the perfection of proportion and work-

manship in the treatment of old, well-understood and established motifs. That

this is true is not only proven by the standardized shapes of Amphora, Kylix,

Kalpis, Hydria, Skyphos, Oinochoe and Lekythos, but by the accepted forms

of temples, theaters, units of decoration, treatment of drapery, grouping of

sculpture forms and even the proportions of the figure. The opportunity for

individual expression existed only in superlative workmanship, in refinement,

precision and subtlety. To win distinction as an artist it was necessary for the

Greek to be a veritable master. The danger of overrefinement is feared by

the modern artist, for it has become a tradition that this leads to sweetness

and loss of virility, because it invariably ends in overwork of surfaces. But this

peril was almost unknown to the ancient Greek, his care and energy were

devoted largely to the refinement of the structure of his creations.

Analysis of any fine Greek design is sure to disclose an arrangement of area

which produces the quality of inevitableness, so conspicuously absent in mod-

ern art. An example of such a theme is furnished by a handsome red-figured

amphora of the Nolan type, in the Fogg Museum in Boston. Its greatest width

divided into its height produces the ratio of 1.7071. This ratio shows that, as
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Fig. I . Nolan Amphora in the Fogg Museum at Harvard.

an area, it is composed of a square plus the reciprocal of a root-two rectangle,

/. (?., I. plus .7071, the fraction being the square root of two divided by two.

The amphora is contained within the area of a root-two rectangle plus a

square on its side. The width of the lip, in relation to the overall form, shows

that it is a side of a square comprehended in the center of the root-two rectan-

gle. When this square is drawn and its sides produced through the major

square, an interesting situation exists in area manipulation. The projection of

the sides of this square through the major square produces in the center of that

square a root-two rectangle so that the shape as defined by the lip is a square

plus a root-two rectangle. Fig. 3a, but the square is on the end of the rectangle

instead of on the side as it is in the major shape. The method of simple con-
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struction by which the figures so far described were created is the drawing of a

square and its diagonals. (Fig. 2^.)

Fig. 2.

The shaded area shows the rectangle of the Amphora design.

The side of the root-two rectangle is equal to half the diagonal of the square.

The method of construction by which the secondary square and root two are

placed within the major shape, is shown in Fig.. 4, a, b and c.
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"defect" and the area left over is composed of two squares and one "root-two

rectangle, as shown in b. Fig. 4. The same construction is used, working from

the other end of the major shape, as shown in Fig. \c.

Fig- 5-

Through the centers of the small squares on each corner, lines are drawn paral-

lel to the sides of the major figure. These lines determine the secondary square

and root-two rectangle, shown in Fig. 5. A diagonal to this secondary shape

determines the angle pitch of the lip, and its thickness, also the width of its

base, and the width of the neck. (See Fig. i.) LK is this line.

The foot of the amphora is proportioned by the small root-two figure and two

squares at the base. DE is the root-two rectangle. A square is placed in the

center of this shape, being CB. The width of the ring above the foot is the side

of this square. The width of the top of the foot exhibits an interesting manipu-

lation of the square and root-two figures at the base of the design. The line AB
in Fig. I brings out the point. AB is a derived root-two rectangle, and its diag-

onal is cut at J by a line through the point I. The thickness of the foot and its

width at the bottom are determined by the diagonal and perpendicular of the

root-two shape DE. (Fig. i.)

The thickness of the ring above the foot is established by the line AB, in Fig.

6, a diagonal to a square and a root-two rectangle, intersecting the side of the

square at C.

I I—n ^^r 1

L__
Fig. 6.
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Two white pyxides, ladies' toilet boxes, one in the Museum of Fine Arts,,

Boston, and one in the Metropolitan Museum, New York, furnish examples of

Greek design for comparative study. These two examples of the ancient pot-

ter's craft are exactly of the same overall shape; the ratio in each case being

1.207 1. This is a compound shape composed of the reciprocals of root four or

half a square and root two, .5 plus .7071. The reciprocal of 1.2071 is .8284,

and this divided by two equals .4I42, or the difference between unity and the

square root of two, 1.4I42, /. e., the square root of two minus i. When a square

is subtracted from a root-two rectangle the excess area is composed of a square

and a root-two rectangle.

rz



A WHITE-GROUND PYXIS, MUSEUM OF FINE ARTS, BOSTON
{Compare with White-Ground Pyxisfrom New York)

A theme in root-two
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Fig. 9. Drawing by Dr. L. D. Caskey of the Pyxis in the Boston

Museum of Fine Arts.

R is the center of the two squares of the base. S is the center of the square MP.
A further refinement in the design is shown by the sinking of the handle below

the outer rim of the cover. The only variation from extraordinary exactitude

is at the juncture of the lid shown by the line EF. This is worn at the edges so

that it is difficult to determine this line precisely. The error, however, is so small

that it cannot be shown in the drawing.

This pyxis was measured and drawn by Dr. L. D. Caskey, of the Boston

Museum of Fine Arts.

The analysis of this vase shows a consistent Greek theme in area and it may
readily be seen that not only the content of the design itself but the excess area

not occupied by the design, may be expressed in terms of the whole and the two

composing shapes, namely, the root-four and root-two reciprocals. HQ is a
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square, HL two squares and a root-two rectangle. The application of this area

to the square HQ leaves the area CL, a root-two rectangle. HA is a root-two

rectangle. The application of the square HQ leaves the area CA, a square and a

root-two rectangle.



A WHITE-GROUND PYXIS, METROPOLITAN MUSEUM, NEW YORK
{Compare with the Boston White-Ground Pyxis)

A theme in root-two
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Fig. 12. Drawing of Pyxis in the Metropolitan Museum, New York.

(Measurements checked by member Museum Staff.)

The Fifth Century B. C. bronze oinochoe, Fig. 13, 99.485 in the Museum of

Fine Arts, Boston, in its plan scheme, is another admirable illustration of the

Greekmethod of arranging a theme in area. Thejug was measured and drawn by
Dr. Caskey, before an analysis of the shape was made. The containing rectangle

is a root-two shape, and all details are determined by a consistent arrange-

ment of the elements of this figure. The diagonals and perpendiculars are drawn

to the overall shape and a square described in the center of the* root-two figure

AB. This square is CD, the side of which is equal to the width of the lip of the

vase. The diagonals of the whole cut the sides of this square at E and F. This

determines the area CF,. equal to two squares, EG, FH, and the root-two figure

HI. A line drawn "from J to C cuts the side of the square GE at K. The line

KLM divides the area of this square into two squares, CL, LI, and two root-

two figures, GL and LE. The center of the square CL, fixes the top of the lip;
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Fig. 13. Bronze Oinochoe in the Boston Museum.

(Measured and drawn by L. D. Caskey.)

the base of this square, ML, establishes the bottom of the lip. Diagonals and

perpendiculars to the root-two figure HI, determine other proportions of the

lip and handle juncture. Aline drawn through the center of the root-two figure

BO, establishes the two root-two figures PO, PQ. The width of the vase, at the

base, is fixed by the centers of the two squares SO, RQ. The sides of these

squares produced, as from T to I, cut the diagonals of the whole and perpen-

diculars, as at T and U. This fixes the figure UV, of which TW is a square.

Diagonals to half the area of this square, as WX, determine the triangle in

which the goats' heads are drawn. The beard, of one of these heads is shorter

than that of the other, probably due to the molten bronze not entirely displac-

ing the wax in the casting. If a square is applied to the other end of the shape

occupied by the heads of the goats, other details are obtained. This design

may now be understood as a theme in root-two and square. The drawing was

made exactly the size of the original and no other analysis is possible.
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A black-figured kylix, 98.920 in the Boston Museum (Fig. 14), fills an area

composed of three root-two rectangles, and the width of the foot is the end of

one of these shapes. AB is a root-two rectangle, BC is a square applied to it, CE
is a diagonal to the excess area or to a square plus a root-two rectangle. AF
is a root-two rectangle and its diagonal intersects CE at D, and fixes the width

of the bowl. The depth of the bowl is determined by the point G, the intersec-

tion of a diagonal of the square BG with the diagonal of the root-two rectangle

AB. (Compare with Yale Skyphos, p. 62.)

Fig. 14.

(Measured, drawn and analyzed by L. D. Caskey.)

The ratio of a black-figured kylix from Yale, Fig. 15, is that of a square

plus a root-two figure or 1.4I42 plus i. In this case the square is drawn

in the center and a reciprocal root-two figure on either end. AB is the side of

the square. C and D are the intersections of diagonals of squares and root-two

rectangles. I and J are the intersections of diagonals to two figures, each com-

posed of a root-two rectangle plus the large square, with a line drawn through

the middle of the large square, and G and H are the intersections of these

same diagonals with the diagonals of the major square. The consistency of the

proportions of the foot in relation to the width- of the bowl is now apparent.

The point K is the intersection of the diagonal of the whole with the diag-

onal of a square.

An Attic black-figured hydria, 95.62 in the Boston Museum (Fig. 16), is a vase

form of unusual distinction. The plan is a theme in root-two. The vessel is a splen-
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Fig. 15. Black-figured Kylix in the Stoddard Collection at Yale.

did example of Greek craftsmanship. If the width of the bowl is taken as the

end and the total height as a side of a rectangle the ratio is i .207 1, the reciprocal

being .8284. This is the same rectangle as that of the pyxides in this chapter.

The overall' ratio obtained by including the handles, is 1.0356. This rectangle

is simply .8284 plus .2071, a rather ingenious manipulation of shapes. If the

fraction .2071 be divided by two .10356 is the result. This means that the area

of the overall. rectangle AB is the 1.2071 shape which is composed of the two

squares CD and DJ and the root-two rectangle is AJ. The lines IJ and IC

are diagonals to the reciprocals of AJ- These diagonals intersect the diagonals

of the 1.207 1 form as atH. The line OM is a side of the root-two rectangle MN.
The line ST bisects the areas of the two squares CD, DJ, and the root-two

diagonals, as MN, cut this bisecting line of the two squares at S and T. This

fixes the proportions of the foot. The width of the lip is the side of a square,

PQ, in the center of the root-two rectangle AJ. The handle extends above the

lip and the root-two rectangle XT, with its included square XZ, shows the pro-

portional relationship. The diagonal GF cuts the side of the square PQ at A'.

The area FA' is a 1.2071 shape and H' is its center. FF' equals two squares and

G' is the center. The square A'B' is described on the side of A'F; C is its

center. B'D' is a root-two rectangle with a square applied to the end to es-

tablish the point E'. The base of the pictorial composition is the line CJ, the

top of the two squares CD, DJ. The painted rays at the foot terminate at the

line L'M'. This line fixes the side of a square applied to AB, i. e., the line L'M'
is distant from the top of the containing shape an amount equal to GB. The
point K', which marks the line separating the two pictorial compositions, is

obtained by diagonal to the shapes PP' and O'N.
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Fig. i6. Boston Black-figured Hydria 95.62.

(Measured and drawn by L. D. Caskey.)

If the width of the foot is considered as the end, and the full height, AG, as

the side of a rectangle, it will be a 2.2071 shape, /. e., two squares plus .2071.

The area value of this fraction is two squares plus two root-two rectangles.

That the designer of this vase must have known something of this value is

evidenced by the fact that the rectangle J'U is a .2071 shape and the height

of the vase, minus the foot, is equal to twice the width of the foot.

If the width of the lip is considered as the end and the full height, AG, as the

side of a rectangle the ratio for the shape is 1.7071, the scheme of the Fogg

amphora of this chapter.

An early black-figured kylix in the Fogg Museum, at Harvard, has the same

ratio as the kylix from Yale (see Fig. 15), i. e., 2.4142, a square and a root-two

figure. The method of subdivision however is quite different. The square AB
is applied to the root-two figure AC and its base line produced to D. This

determines the root-two figure DE in the square EF. The excess area FB is
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Fig. 17. Black-figured Kylix from the Fogg Museum, Harvard.

composed of two squares and a root-two rectangle, the sides of which, added,

equal the width of the foot. The square CJ in the root-two rectangle AC de-

termines the area LA, a square and a root-two rectangle. The square EM
fixes the area NM, also a square and a root-two rectangle. The diagonal

NM is the angle-pitch of the lip and is a similar angle to the diagonal of the

^7

Fig. 18. A root-two Oinochoe from the Boston Museum.



A BLACK-FIGURED HYDRIA, MUSEUM OF FINE ARTS, BOSTON

A theme in root-two. There is no break in the sequence of the theme
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en4:ire figure. The area KD is composed of two squares. BO, OD are diagonals

to squares and root-two rectangles. OPOQ is a root-two rectangle. RS and

RT determine the angle pitch of the foot.

A red-figured oinochoe in the Boston Museum, Fig. i8, is a simple root-two

rectangle. A and B are poles or eyes of the two root-two figures MK and NL. U
and V are eyes to the major or overall shape. C and D are eyes to the two root-

two rectangles GQ and HR. GF is a square, JK is a square. The decorative band

at the base of the figure composition passes through the center of the square RS
while a side of the square GF passes through the compositional band at the

top of the figures.

A Nolan amphora in the Stoddard Collection at Yale, Fig. 19, duplicates the

ratio 1.7071 of the amphora of the Fogg Museum at Harvard. The division of

Fig. 19. Nolan Amphora from Yale.



58 DYNAMIC SYMMETRY

the area however is somewhat different. AB is the major square and AC the

root-two rectangle. CD is a square in the root-two rectangle and DE is the

excess area equal to a root-two shape and a square. EF is this square and EG
is a root-two rectangle within it. The center of the root-two area HG is the

point which fixes the proportions at the juncture of lip and neck. EI is a similar

shape to the whole. AX is a diagonal to a square and it cuts the diagonal of

the whole at J. EM is a root-two rectangle and the area MN is composed of

two squares and a root-two rectangle. The side of this root-two form is the

width of the foot at its top. OP is a diagonal of a shape similar to the whole,

i. e., a square, RN plus a root-two figure, OR. The point S is the eye of the area

OR. The relation of the point T to the foot is apparent. The angle pitch of

the foot is fixed by the lines KV and KW. The point L is the center of the

major square and a factor in the proportions of the meander band under the

picture.



r

CHAPTER FIVE: PLATO'S MOST
BEAUTIFUL SHAPE

""^^HE Nolan type amphora, here illustrated, 13.188 in the Mu-
seum of Fine Arts, Boston, is an example of a vase design cor-

related by a root-three rectangle. It is remarkable that this

shape is not more often met with in Greek design, for we

know that it was regarded as a beautiful shape. It is mentioned

by Plato, who makes the Pythagorean Timaeus explain: " 'Each straight lined

figure consists of triangles, but all t'tiangles can be dissected into rectangular

ones, which are either isosceles or scalene. Among the latter the most beautiful

is that out of the doubling of which an equilateral arises, or in which the square

of the greater perpendicular is three times that of the smaller, or in which the

smaller perpendicular is half the hypotenuse (in length). But two or four

right-angled isosceles triangles, properly put together, form the square; two

or six of the most beautiful* scalene right-angled triangles form the equi-

lateral triangle; and out of these two figures arise the solids which correspond

with the four elements of the real world, the tetrahedron, octahedron, icosahe-

dron and the cube.' " (Quoted by Allman, "History of Gr^ek Geometry from

Thales to Euclid," p. 38.) Classic art was practically over by Plato's time.

The relation of the square on the end to a square on the side of a root-three

figure is as one to three, while the end is one-half the length of the diagonal.

The Greek artists do not seem to have agreed with Plato concerning the beauty

of this rectangle, for we find it but seldom. It appears occasionally in vases;

and the double equilateral triangle or hexagon appears in important Greek archi-

tecture only in the Choragic Monument of Lysicrates. The equilateral triangle

is one of the two fundamentals of static symmetry and as a correlating form was

used lavishly in Saracenic and Gothic art. (See chapter on Static Symmetry.)

Certainly a root-three rectangle cannot be said to be more beautiful than

any of the other shapes of dynamic symmetry. In fact, there is little ground for

the assumption that any shape, per se, is more beautiful than- any 'other.

Beauty, perhaps, may be a matter of functional coord-inatibn.

In the analysis of the amphora i3.i&S-in-rhe'^ston Museum, Fig. i, per-

pendiculars to its diagonals indicate the divisions of a root-three rectangle

into three similar shapes to the whole. AB is a root-three rectangle and a

reciprocal of the major shape, as are also AC, CD, EF, and G is the center of

the rectangle CD.

H is the center of the rectangle AI. JK is a root-three rectangle and L and

* The "most beautiful" oblong, here referred to, is the root-three rectangle.
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'\k\— M Y.y-^
Fig. I. Nolan Amphora 13.188 in the Boston Museum.

(A theme in root-three.)

M are its eyes. The width of the lip is fixed by the points O and P, intersections

of the sides of the two squares, NK, with the diagonals of the root-three rec-

tangle JK. A very slight error exists at Q, the juncture of the neck and bowl.

Nolan Amphora 01.8109 in the Boston Museum, Fig. 2, picture by "the Pan

Master," is a root-three rectangle. AB is a root-three rectangle, as are alsoAC and

CD. The point E is the eye of the root-three rectangle AB. The point F is the

center of the root-three rectangle AE, and P is the center of the root-three

shape CD. In the root-three rectangle at the base of the overall shape the point

K is the eye. A line through this point parallel to the base line determines the

four root-three rectangles IJ. The area HM is a root-three rectangle, as is also
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Fig. 1. Nolan Amphora 01.8105 in the Boston Museum.
(Measured, drawn and analyzed by L. D. Caskey.)

HL. The point O is the intersection of the diagonal of a square on the base

line with the side of a root-three rectangle. N is the center of the root-three

rectangle at the base and fixes the base of the meander band.

A small cup in the Stoddard Collection at Yale is a simple root-three rec-

tangle divided dynamically, but use was made of the equilateral triangle in

the arrangement of the three feet. These feet, however, follow the diagonal

of the secondary root-three forms. The width of the base is the end of a root-

three rectangle and the proportions of the painted bands near the top of the

bowl are clearly shown in the diagram. (Fig. 3.)

Skyphos 160 in the Stoddard Collection at Yale, Fig. 4, is a root-three shape

and the detail is correlated by the application of squares on either end of the
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Fig. 3. Small Cup in the Stoddard Collection at Yale.

(A theme in root-three.)

rectangle. The width of the bowl is determined by the intersection of the side

of the square AB with a diagonal of the square CD, see point H. The width of

the foot is fixed by the intersection of diagonals to the squares AB and CD, as

at I. A line from I to C intersects a side of the squareCD atG to place the com-

positional line under the picture. The height of the foot is the intersection of a

diagonal to half the entire shape as FC intersecting the diagonal of a square.

Fig. 4. Skyphos 160 in the Stoddard Collection at Yale.

An early black-figured hydria, 108 of the Stoddard Collection at Yale, Fig. 5,

is a theme in root-three and squares. The overall plan is composed of two root-

three rectangles, one on top of the other, AB and BC. Squares, as CD, AD, BO
and FE, are applied to the two root-three shapes from either end. They overlap

in the center to the extent of FD. The overlapping of these squares has the
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Fig. 5. Black-figured Hydria 108, Stoddard Collection at Yale.

(Theme in root-three with the application of squares.)

effect of dividing the entire area into a rectangular pattern or mesh propor-

tioned by root-three rectangles. This is a remarkable pattern form and it is

strange that no attempt was made to use the equilateral triangles which are

inherent in the root-three shapes. The center, L, of the square AD fixes the

width of the foot. The side of the square AG cuts the diagonal of the square

AD at N. This establishes the width of the bowl and also the height of the foot,

as is apparent at M. The area of the foot elevation is composed of two squares

and two root-three rectangles, and the width of the lip at its base is fixed by a

line drawn from Q, the center of the base of the foot, to the point P. It seems to

have been intended that the angle pitch of the lip should fall outside the point

P because the full width of the lip at its base is equal to one-half the height of

the vase, that is, it is the side of a square placed in the center of the root-three

rectangle BC. The point K is the center of the square IJ. This point has two

functions; it establishes the line which separates the two pictures and is im-

portant in fixing the lip proportions.

If the width of the foot is considered as an end and the full height as the side
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of a rectangle, the ratio is 2.732, i. e., a root-three rectangle, 1.7321, plus i.

The area made by the width of the bowl and the full height has the ratio 1.366.

The fraction .2,66 is equal to .732 divided by two. The point U, through which

passes the juncture of neck and bowl, is the center of the rectangle ST. The
lip thickness is fixed by a line from C to U and the width of the neck at its

juncture with the bowl by a line from C to S.



CHAPTER SIX: A BRYGOS KANTHAROS
AND OTHER POTTERY EXAMPLES OF
SIMILAR RECTANGLE SHAPES
<A STRIKINGLY beautiful kantharos of the Fifth Century B. C, now

/ \ \ in the Museum of Fine Arts at Boston, furnishes an admirable

/ \ \ example of the use of a compound shape derived from a root-

/ \\ five rectangle. The area of the enclosing shape has an end to

A ) V side relationship of i: 1.118. The ratio 1.118 multiplied by two

equals 2.236, the square root of five. The ratio may be stated as root-five divided

by two. A root-five rectangle divided by two, or cut in half, is composed of two

root-five rectangles one over or one beside the other. The heavy lines of the

diagram define this shape. The area AB is the overall rectangle of the kantharos.
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This element is the side of one of the squares, which is employed to establish

the strongly emphasized line AB. (See Fig. 3.)

Fig- 3-

The arrangement of the area which constitutes the selected theme, depends

upon the application of four whirling square rectangles constructed upon the

four sides of the rectangle. These applied rectangles overlap and produce the

pattern shown in Fig. 4.

[_ J c

I l£ a

Fig. 4.

The whirling square rectangles are AB, CD, DE and BF. The areas AC, FE,

are the important features of the design. The area AC determines the width

of the bowl and FE the width of the stem at its juncture with the bowl.

Fig. 5-
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In Fig. 5, AD is the containing rectangle of the kantharos. The lines AB and

BC, at the points of their intersection with the side of a whirling square rec-

tangle, fix the width of the bowl. These lines are the diagonals to the two halves

of the major shape, consequently the elevation of the kantharos, either with or

without its handles, is a double root-five rectangle.

AD is a double root-five rectangle, as is also FE. And either of these shapes

will furnish an analysis of the design. When a whirling square rectangle is ap-

plied to the side of a double root-five rectangle, the area on the line AB, as in

Fig. 6, is composed of two squares and a whirling square rectangle. The recipro-

cal of 1. 118 is .8944; this is the line CB. CA equals .618 and AB, .2764. AB is

the difference between .618 and .8944 or .2764; this fraction .2764 divided into

unity equals 3.618. AB is the reciprocal of two squares plus a whirling square

rectangle, 2 plus 1.6 18. Within the major rectangle, therefore, the excess area,

at both the top and the bottom of the bowl, is composed of two squares and a

whirling square rectangle (see Fig. 7), and AB is a whirling square rectangle

and C is its eye.

Fig. 7-

This point C fixes the width of the foot. The analysis is now complete, or

is carried as far as is necessary.

Dr. Caskey shows in his drawing of the kantharos. Fig. 8, the exact error

in the handle adjustment. The adjustment of these delicate handles must have

been a problem because, even if the vase left the potter's hand perfectly fixed,
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Fig. 8. Kantharos in the Boston Museum.

(Measured and drawn by L. D. Caskey.)

he could never tell how much shrinkage in baking would disorganize his plans.

In this case, however, the error of the handles makes no difference because the

bowl is a similar shape to the whole. The writer has found that the small errors

found in Greek pottery, except in few cases, are practically negligible. This is

true for the reason that a part of a design which has been dynamically pro-

portioned is always some recognizable, submultiple of some recognizable rec-

tangle. Therefore it is really better to make the small corrections necessary to

true up an example. In his drawing of this kantharos, the actual discrepancy

,

appears at the top of the drawing. The width of the handles is correct, and

when the double root-five rectangle is drawn, its side is the mean between the

handle heights. The writer's drawing of this vase is shown in Fig. 9 with the

handle discrepancy corrected.

When two whirling square rectangles are applied to the sides of a double

root-five rectangle, as in the case of this Brygos kantharos, they overlap. The

area of the "overlap" is determined thus. If the side of this shape is used as

unity then the end is .8944, the reciprocal of 1.118. The reciprocal of a whirling

square rectangle is .618. This, subtracted from .8944, leaves .2764 which, again,

is the reciprocal of 3.618 and is the area on either side of the "overlap." The

reciprocal .2764 subtracted from ,618 equals .3416. This represents the overlap



IN THE WRITER'S OPINION THIS KANTHAROS IS ONE
OF THE FINEST OF GREEK CUPS

A theme in double root-five
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Fig. 9. Drawing of the Boston Kantharos with Handles Corrected.

and is the reciprocal of 2.927. This ratio is compound and consists of two rec-

tangles, as I.I 18 plus 1.809. It is now clear that this overlap area consists of a

double root-five rectangle and a square plus two whirling square rectangles.

The ratio 1.809 ^^ °^^ °^ ^^^ basic shapes of the pentagonal form and consists

of a square plus a whirling square rectangle divided by two.

Again, this "overlap" area may be considered as 1.6 18 plus 1.309, i. <?., a

whirling square rectangle plus a square and two reciprocals of such a shape,

.618 divided by two equalling .309.

s
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Fig. 12. Kalpis G. R. 591, Metropolitan Museum, New York.

(A double root-five theme.)

the two whirling square rectangles AH and CH. The point G, fixing the width of

the foot, is the intersection of a diagonal to the whirling square rectangle HE
with the diagonal of the root-five rectangle. The angle pitch of the lip is a line

drawn from I to B. The angle pitch of the foot is shown at K, which- is found by

a line drawn to one corner of the square BC. It will be noticed in this example

that the lines showing the subdivisions of the foot and lip are projected until

they meet diagonals to certain shapes drawn from the corners A and E. This

procedure is one which enables the eye to grasp quickly the proportional re-

lationship which exists in the composing units of a Greek design. The projec-

tion of the first subdivision of the lip intersects the diagonal of a whirling square

rectangle drawn from the corner A. From this intersection the line turns at

right angles and is carried downward until it intersects the diagonal of a square

drawn from the corner E. Here it meets the projection of the first division of

the foot. This tells us that the first division of the lip is related to the first divi-

sion of the foot on the proportion of a whirling square rectangle, to a square, a

fact which is not immediately obvious by construction. Again, the base of the



DYNAMIC SYMMETRY 71

lip is projected until it meets the diagonal of a square drawn from A. From this

point, at right angles, it is carried until it intersects the diagonal of a square

drawn from the corner E, where it meets the projection of the top of the foot.

We may see by this that the lip and foot are the same thickness because their

projections both meet the diagonal of a square. Also it is apparent that the

width of the bowl is related to both foot and neck on the proportion of a square.

The two bands at the base of the pictorial composition are determined by

the points L and M. The diagonal of the square BC meets the diagonal of the

whole at L. The diagonal of the square BC meets the diagonal of two squares

atM.
This kalpis shows, unmistakably, that the picture is secondary. The shape

of the vessel is determined with great care while the picture is ordinary. Even

the height of the male figure is miscalculated, as he is not standing on the same

level with the female figure. The hands of the female figure and the right arm

and hand of the male figure are badly drawn.

Two root-five rectangles furnish the overall shape for Kalpis 08.417 in the

Boston Museum, Fig. 13. The width of the bowl as an end and the height of the

Fig. 13. Kalpis, 08.417, Boston Museum.
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vase as a side supplies a i .309 rectangle, i. e., a square and two whirling square

rectangles. AB, CE are squares and AD, BL are double w,hirling square rec-

tangles. When the .309 shape as AD is applied to the square AB the excess

area BE is a square plus a root-five rectangle or the ratio .691. EF is the square

and F.D is the root-five rectangle. The relation of the double root-five shape to

the 1 .309 rectangle is shown by the lines CH and GK, which are diagonals to

the whole. The points H and J show this connection. The point J is connected

with an important element of the foot of the vase.

When a whirling square rectangle is applied to the end of a double root-five

rectangle the excess area consists of the reciprocal of a root-four rectangle,

i. e., .5 or two squares, .618 plus .5 equals 1.118.

Whirling square rectangles applied to both ends of a double root-five rec-

tangle, overlap. The area of this "overlap" is the difference between .5 and

.618 or .118 plus. This fraction will be recognizable as an area if we consider

it as .i^fy divided by two. .236 is the difference between root-four and root-five,

Fig. 14.
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/. e.y 2.236 minus 2. It is the reciprocal of 4.236 or two whirling square rec-

tangles plus a square, 1.6 18 multiplied by two plus one. .118 is the reciprocal

of two such shapes lying end to end or 8.472 or four whirling square rectangles

plus two squares.

It must be stressed repeatedly that these curious areas which are found so

abundantly in nature and in Greek art, cannot be too carefully studied. And

for that purpose it is necessary to have recourse to arithmetic. We must re-

member that we are dealing with forms of design used by the best artists and

craftsmen the world has known, who worked without stint of labor for gener-

ations. If we followed the steps of the Greeks and acquired our knowledge of

these shapes entirely by geometrical construction, the labor would be too great

for an ordinary lifetime. By using .arithmetic in conjunction with geometrical

construction, an ordinary student may acquire a working use of dynamic

symmetry in a few months.

The double root-five rectangle is found in two kalpides in the Boston Mu-
seum, Nos. ^1.224 and 91.225. The plah scheme of the first, 91.224, Fig. 14, is

simple. AB is a whirling square rectangle applied to the end of the shape and

CD, CE are two squares. AJ and HI are two whirling square rectangles which

overlap to the extent of the width of the foot. The lip width is clear. FG is a line

Fig. 15. Drawing of large Volute Krater in the Boston Museum.

(Measured, drawn and analyzed by L. D. Caskey.).
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through the center of the overall shape. The points K and L lie on the diagonals

to the two squares CD and CE. The points M and N are intersections of the

diagonals of the whole with the diagonals of the whirling square- rectangle.

The arrangement and proportioning of detail in kalpis 91.225 differs but

little from that of 91.224 except in size, the latter being slightly larger.

A large volute krater in the Boston Museum, 90.
1 53, is composed in a double

root-five rectangle. AB, BC are the two root-five shapes and GE is a square. A
slight error is shown at the top where the handle volutes exceed the containing

area. The large square, however, and the complete theme in the arrangement of

detail, justify the analysis. The width of the foot as end and the height of the

bowl furnish another root-five rectangle of which SU is the square and QS, UR
are two whirling square rectangles.



LARGE BRONZE HYDRIA, METROPOLITAN MUSEUM, NEW YORK
One of the most carefully worked designs in existence





Fig. I . Bronze Hydria, Metropolitan Museum, New York.

(Measured and drawn by the Museum Staff.)

CHAPTER SEVEN: A HYDRIA,
A STAMNOS, A PYXIS AND
OTHER VASE FORMS
A BRONZE hydria, 06.1078 in the New York Museum, Fig. i, supplies

/\\ a ratio of 1.045. 1"he ratio 2.045 appears in a handsoine bronze

I \\ oinochoe in the Boston Museum. The 1.045 ^''^^ occurs fre-

I \ \ quently in Greek pottery. It is composed of a whirling square

A ) V rectangle, .618 plus .427. The fraction .427 appears in the pen-

tagon form (see Chapter III as .854, i. e., .427 multiplied bytwo). .809 plus .236

also equals 1.045. ^^ ^^^^ example it is clear that the designer had this sub-

division in view because the area BD is this ratio, /. e., two whirling square rec-

tangles. BC is asquare and JM isaroot-fiverectanglein the centerof this square;

that is, the vase without the lip is a square. The end of this root-five rectangle
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is the width of lip and foot. The area AG is .236. This fraction is the reciprocal

of 4.236, i. e., a root-five rectangle plus two squares, 2.236 plus two. The area

EF is composedof the two squares. AE and FG are together equal to a root-five

rectangle. IP is a whirling square rectangle and the construction for the width

of the bowl is shown at the point O in, the whirling square rectangle IN.

This vase and the root-two themed oinochoe of Chapter IV are the only

bronze examples of Greek design used in this book. The percentage of error is

much smaller in the bronzes than in the pottery. In this example the error is

astonishingly small.

r

Fig. Large Stamnos 10.210.15 in the Metropolitan Museum.
(Measured and drawn by the Museum Staff.)

A beautiful large stamnos, 10.210.15, Metropolitan Museum,NewYork,Fig. 2,

has a ratio of 1.1826. This is a shape which is not uncommon. It is a. compound
form of two elements, each of which is .5913, this ratio being the reciprocal of

1.69 1. AB is a square, the side of which is equal to half the overall shape. BC
is a square and CD is a root-five rectangle. 'AE is a root-five rectangle. The

relation of the details of the foot to the whirling square rectangle in AE is ap-

parent. The square CG is divided into the root-five GH and the whirling square

rectangle CI. KD is a whirling square rectangle in the square JD. In the double

whirling square rectangle CL the sides of the two squares ML produced

through K determine the whirling square rectangle in the square JD. This line

fixes the width of the bowl.

Thearea.382plus two whirling square rectangles (.809), that is, 1. 191, is found



A LARGE STAMNOS, METROPOLITAN MUSEUM, NEW YORK
A vase showing unusual design power
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in a pyxis 92.108 in the Boston Museum. AB, or the vase without its cover, is the

.809 ratio. AC, or the area of the cover, is the .382 shape. The point H is the eye

of the whirling square rectangle AJ. Consequently, the area of half the foot is a

root-five rectangle and the whole area of the foot is equal to two such shapes

or a root-twenty rectangle. F is the eye of the whirling square rectangle KE.
DE is a whirling square rectangle. AM is a whirling square and Nis its center.

Dr. Caskey's small drawing shows clearly the composing units of the area.

J. ilC
'; ^ .-

w

Fig. 3a. Fig. 3^.

R. F. Pyxis in the Boston Museum.

(Measured, drawn and analyzed by L. D. Caskey.)

Nolan amphora 10.184, Boston Museum, has an area ratio 1.691, Fig. 4.

This is a shape which appears in the angle column adjustment of the Parthenon.

AB and AC are squares. CD is a root-five rectangle. CO is a whirling square

rectangle in the root-five shape CD. EB and GF are two root-five rectangles.

FI is a 1.809 shape and HI is its major square. GK is a 2.618 shape. The line

which marks the juncture of neck and bowl is equal in length to the width of the

foot. The diagonal to the square AC is used to fix the length of this line. Its

relation to the root-five shape GF is shown at U.

Nolan amphora 136 in the Stoddard Collection at Yale, Fig. 5, has an overall
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Fig. 4. Nolan Amphora 10.184, Boston Museum.

shape of 1.809 and the bowl width is exactly one half the height. The meander at

the base of the composition is placed on the half division of the square AB. The

foot is exactly one-half the width of the square AB. The whirling square rec-

tangle intersection of the diagonal of-AH with the diagonal ofLM determines

the juncture of neck and body. The rectangle NO, which encloses the foot, is

composed of two root-five shapes. IJ is equal to the width of the foot.

Nolan amphora 01.18 in the Boston Museum apparently has the same ratio

as 01.16, Fig. 6, a and b. The paintings seem to be by the same hand. In this

example, however, there is a slight error as shown by the handles. The two vases

have exactly the same height but the bowl of 01.18 is wider than 01.16. Other-

wise the proportions are nearly the same.

The ratio 1.809 appears in amphora 01.16. This area is composed of a square
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plus two whirling square rectangles. FD is a square and DE two whirling

square rectangles. AB is a whirling square rectangle, as is also HL. The subdivi-

sion of HL and its relation to the proportions of the lip and neck are clear. The

point C is on the diagonal to the area DE. The point M is on the diagonal to

the square LB. The proportions of the foot in relation to the whirling square

area PQ are also clear. The width of the bowl in this example is just half the

height of the vase, /. e., minus the handles the area of the vessel is exactly two

squares. Compare the Nolan amphora, Metropolitan Museum, New York,

Fig. 8, in this chapter.

Fig. 5. Nolan Amphora 136 at Yale.

Nolan Amphora 12.236.2, Metropolitan Museum, New York, Fig. 7, has an

overall shape of 1.764. The fraction .764 is thereciprocal of 1.309. In the arrange-

ment of the units of the compositionAB is a square, DC is a square, and BC is
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n

Fig. da. Fig. Sb.

Two Nolan Amphorae in the Boston Museum, 01.16 and 01.18.

(Measured, drawn and analyzed by L. D. Caskey.)

.309 or two rectangles of the whirling squares. EI is 4.236, or two rectangles

of the whirling squares plus a square. The bowl juncture with the foot is a side

of this small square. The area GH equals the area BC. The proportions of the

neck and lip are apparent. The width of the bowl, with the total height is the

ratio 1.927, the fraction .927 being .309 multiplied by 3. The ratio 1.764 may
also be considered as .882 multiplied by two, and also as the ratio 2.764 minus

one. The ratio 2.764 is equal to a square plus root-five multiplied by four, /. <?.,

.691 X 4.

Nolan Amphora 1 2.236. 1, Metropolitan Museum,New York, on page 82, Fig.

8, is the rectangle 1.854 (see various skyphoi). This ratio is obtained by mul-

tiplying .618 by 3. The proportional details are so clear that explanation is
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unnecessary. The point A Is the intersection of a diagonal of the whole with the

diagonal of a whirling square rectangle. The line DE cuts a rectangle of the

whirling squares from the square BC.

The width of the bowl divides the total height into two squares, /. e., the

width of the bowl is half the height of the vase. The point F, the base of the

meander band under the composition, is the center of one of these squares.

The error, due to distortion, is shown by the lip at the top of the rectangle.

The scheme of the large dinos and stand, page 83, is a square plus a root-five

rectangle, the ratio being 1.4472, the reciprocal .691. This is a monumental piece

of pottery and the theme of the design is worth careful study. The general shape

appears repeatedly in both archaic and classic Greek art and is the basic motif in

Fig. 7. Nolan Amphora 12.236.2 Metropolitan Museum, New York.

(Measured and drawn by the Museum Staff.)
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the plan of the Parthenon. The general theme in this case is a division of 1.447a

by four. One-fourth of 1.4472 is .3618. This ratio of .3618 is the reciprocal of

2.764. One-fourth of 2.764 is .691, which is the reciprocal of 1.4472, i.e., a square

and a root-five rectangle. If the area of 1.4472 is divided by four, both side and

end, sixteen squares and sixteen root-five rectangles result. Ifthe width ofthe foot

is considered as the end of the rectangle AB, this rectangle is composed of four

Fig. 8. Amphora 1 2.236.1 Metropolitan Museum, New York.
(Drawn and measured by the Museum Staff.)

root-five rectangles, AE, EF, FG and GH, or the ratio 1.7888, i. e., .4472 multi-

plied by four, and each root-five rectangle is constructed in the center of a 2.764

rectangle. If the width of the lip is considered as the end of the rectangle CD,
this shape is composed of four root-four rectangles. A root-four rectangle is

composed of two squares, and each root-four rectangle is constructed in the

center of a root-five rectangle and a 2.764 rectangle. If the bowl of the dinos is
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A DINOS AND STAND, MUSEUM OF FINE ARTS, BOSTON
A design theme in square and root-five
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Fig. 9. Large Dinos and Stand in the Boston Museum.
(Measured and drawn by L. D. Caskey.)

considered as a rectangle, apart from the pedestal, this shape is composed of

two whirling square rectangles. If the pedestal is considered as an area it is

the rectangle 1.045, ^ fairly common shape in classic art. The combinations of

proportions in this vase might be amplified to cover the entire fabric of Greek

design. This is also a good example of the free use of ornament within the

severe limits of a general shape. The decorated bands on the bowl and pedestal

are loosely rendered.

A ratio which frequently appears directly or indirectly in Greek vase designs is

1.472, as in this example of an amphora from the Boston Museum, Fig. 11.
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Fig. lo. Development of the plan theme of the Boston Dinos.

This area may be subdivided in various ways but the method employed by

Dr. Caskey in his analysis is, in all probability, the right one. It is .618 plus

.618 plus .236. AB is one .618 shape, CD is the other, while the area AD rep-

resents .236. The width of the lip as the end and the total height of the vase as

side is a 2.382 rectangle. By the same method, using the width of the foot as

an end, the rectangle is 2.944 or 1.472 multiplied by two. The width of the lip

Fig. II. Amphora from the Boston Museum.

(Drawn, measured and analyzed by L. D. Caskey.)



A BLACK-FIGURED AMPHORA FROM THE BOSTON MUSEUM

These early black-figured vases rank among the best designs the Greeks ever

made. The adjustment of the human motif to the shape theme is superb
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Fig. 12. A Perfume Vase in the Boston Museum.

(Measured and drawn by L. D. Caskey.)

is also the side of a square constructed in the whirling square rectangle CD.

This is shown by the point F, the center of the whirling square rectangle DE.

The effect upon the proportions of the top of the vase of the diagonal to this

square QR is shown by the points S and T. The whirling square rectangle LP,

by construction, establishes the proportions of the foot.

The shape of a perfume vase. Fig. 12, is interesting because it shows that

the design of the bowl and lid was planned by two separate, but proportional,

rectangles. The area occupied by the bowl and foot is shown by the rectangle

RO, and consists of the square NO, plus the square RM and the rectangle

MP, which is composed of two root-five rectangles. The ratio is 1.472. The

fraction .472 equals .236 x 2 and "is the reciprocal of 2.1 18 or root-five divided

by two plus one. The shape of the rectangle of the lid and handle is 4.236,

the reciprocal of which is .236 or two squares plus a root-five rectangle. This

shape equals half of the area NP. A, C, B, E, D are squares. NO is a square

and PQ is a square. G,Hand I are areas represented by root-five, 2.236 divided

by two. JK is a root-five rectangle. LM is a whirling square rectangle in the

square RM. Every detail of the vase may be expressed in terms of the major

shape.

An early black-figured krater, 07.286.76, Fig. 13, in the MetropoHtan Museum,

New York, is an illustration of extreme distortion in a classic shape. One side of
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the lip is much higher than the other and this irregularity exists also in the neck

and top of the bowl. Otherwise the vase is normal. This distortion, probably,

Fig- 13-

happened in baking. The widths at all points are true with a center line. If the

width of the bowl be taken as the side of a square, this square is shown in the

drawing as DE, and if the sides of the. square be produced to the extremities

of the handles, as A and C, then the areas AB, BC, become two whirling

square rectangles. The analysis need not be further extended as here exists

evidence that the design is dynamic and the general distortion is shown at G,

where one side of the lip extends outside the encompassing rectangle. The

other side of the lip is correct and the overall shape is 1.1382. Without the lip

it is 1.236. The lip therefore represents the difference between these two ratios.

The decimal fraction .1382 appears in the Parthenon, where the overall rec-

tangle of the ground plan is 2.1382.

The area of Kalpis 90.156, Fig. 14, a, b, c, Boston Museum, is composed of

a whirling square rectangle and a root-five rectangle. Dr. Caskey's two small

diagrams, 141^ and 14c, show the general proportions.

Greek symmetry, as has been pointed out, is connected with the geometrical

properties of the five regular solids (see Chapter V), and the proportions of

these solids are associated with the phenomena of leaf distribution in Nature,

therefore it is not unreasonable to expect to find in examples of that sym-
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metry, such as are furnished by temple plans, decoration, bronzes and pottery,

areas and subdivisions of areas which echo and re-echo the shapes derivable

from the regular solids and the summation series of phyllotaxis. That this is

so the pottery designs alone abundantly show. The area of the elevation of a

Greek vase of the first class, that is, the area obtained by the full height and

width of such a vessel, and the secondary areas obtained by subdivision of de-

tails, such as width of foot, neck, lip and bowl and the height of such members,

produce a series of shapes which could not be obtained accidentally. This is

clearly disclosed by the analysis of a large krater, 10.185 i"^ '^e Boston Museum

Fig. 14a. Kalpis in the Boston Museum, showing a theme in whirling

square and root-five.

(Measured, drawn and analyzed by L. D. Caskey.)
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Fig. 15. Large Bell Krater 10.185 with lug handles in the Boston Museum.
(Drawn, measured and analyzed by L. D. Caskey.)

(Fig. 15). The height of this krater divided into its width, produces the ratio

.882. The ratio .882 is composed of two squares on top of a .382 rectangle.

The .382 ratio may have its composing elements arranged in various ways.

For example, a square may be placed in the center and double whirling

square rectangles on either side as in No. 3 of the group of small diagrams

of the vase made by Dr. Caskey. The plan scheme of this krater shows that

its maker possessed a high order of design knowledge, particulajrly in de-

termining and .arranging similar figures. The lines AB, BC are diagonals

to half the overall shape; at D and E they cut the sides of the square FG, this

square being obtained in the analysis by the width of the bowl. The rectangle

DG, that is, the vessel without its lip, is a similar shape to the whole. At H and

I these two diagonals cut a line drawn through the center of the major shape.

The area HQ is a similar shape to the whole. HI is also the width of the foot.

The area Q] is a shape similar to double the shape of the whole, and the width

of the foot is one half the width of the whole, that is, the area QJ is expressed

by the ratio 1.764, this being .882 multiplied by two. The square FG bears a

ratio relationship to the width of the vase of 1.1708, the reciprocal of this being

.854. The line KQ, divided into the height, also produces the ratio 1.1708 and

LQ is the square on the end of this shape. If two squares are defined in the
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.882 shape HQ, the base of the meander^band MN is fixed and the area NQ is a

.382 rectangle. The points O and P are intersections of the diagonals of the

square FG with the sides of the rectangle QJ. This rectangle is also connected

'; s
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plus .7071. In the root-two rectangle, AB, DC are squares; AC, DB, are rec-

tangles, each consisting of a square plus a root-two rectangle. The two small

squares and their subdivisions which fix the proportions of both foot and neck,

and the dotted line which shows the relationship of the foot to the neck, do

not need explanation.

I

Fig. 17. A Bell Krater 07.286.81 in the Metropolitan Museum, New York.

(Measured and drawn by the Museum Staff.)



Fig. I. Black-figured Amphora in the Boston Museum.
(Measured and drawn by L. D. Caskey.)

CHAPTER EIGHT: FURTHER
ANALYSES OF VASE FORMS
<A HANDSOME black-figured amphora, 13.76 in the Boston Mu-
/\\ seum, Fig. i, has a ratio of 1.528 (compare Lekythos G. R. 589
I \\ New York Museum, page 137). The fraction .528 equals a square

I
A\ plus two root-five rectangles. AC is the .528 shape. This fraction

A ) V is the reciprocal of i .8944. The square is DE.GD and CF are two

root-five shapes. The diagonals to a square and a root-five shape intersect at

L and M. The area OQ is a whirling square rectangle and KN, PC are two

squares. The centers of these squares fix the width of the lip. The area KC is

a .382 shape and GK is one-fourth of CB. AB is the major square. HB is a

similar shape to KC. The areas HI, JB are two whirling square rectangles and
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T'l

Fig. 2. Pelike 03.793, Boston Museum.

IJ is a 1.382 shape. HR is a 1.309 shape or a square plus two whirling square

rectangles. The area JD has the ratio .472.

A red-figured pelike, 03.793 in the Boston Museum, Fig. 2, furnishes a ratio

of 1.309. AB is a major square. CD and HI are whirling square rectangles. The

points of construction in these shapes are clear. The width of the foot in rela-

tion to the height is i : 1.854. .618 x 3 = 1.854. The relation of this foot to the

lip is shown by the line NO.

Attic red-figured pelike, G. R. 580, Metropolitan Museum, New York, Fig.3.

This vase furnishes a ratio of 1.309, a square plus two whirling square rec-

tangles, .309 being .618 divided by 2. The design is unusually simple and it

supplies an excellent example for detailed inspection.

The 1.309 shape is subdivided by two whirling square rectangles overlapping,

as AE, GD, so as to produce an area in the center of the major form the side of

which is equal to the width of the lip of the vase. The relation of the width of

the foot to the lip is apparent. This area in the center of the 1.309 shape is ex-

pressed by the ratio 2. 11 8, a fairly common form in Greek design. Arithmeti-

cally, this ratio may be written 2.236, or root-five, divided by 2, or 1.118; to

this ratio a square or unity is added, making 2.1 18. This area may also be

described as two squares, or 2 plus .118. In the analysis of the vase it will be

observed that this arrangement of two squares plus a small fraction was
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Fig. 3. Red-figured Pelike G. R. 580, Metropolitan Museum, New York.

actually used because the fraction .118 expresses the area of the elevation of

the foot; the area FE in the analysis being root-four or two squares.

Consider the rectangle 1.309, divided as described, and without reference to

the vase. Draw a rectangle of the whirling squares as in Fig. 4.

AB is the reciprocal of the shape. AC is a square in this reciprocal and a

diagonal of this square cuts the diagonal of the whole at D, this being the

point which determines the overlap of the whirling square rectangles, as in

the analysis. See Fig. 5.

3
1

-7 »

/ c N B M

Fig. 4. Fig. 5-
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AB is a whirling square rectangle, as is also CD, and AE is a 1.309 shape,

Fig. 5-
,_ _

This construction furnishes a remarkable arrangement in proportion as will

be seen in Fig. 7, where the proportional subdivisions are briefly indicated.

This vase also furnishes a good example for arithmetical analysis. In Fig. 6,

the length AB equals 1.618, BC i, DC .382, BD .618.

By geometrical construction a line through the point G cuts the whirling

square rectangle EF from the square BF; consequently there are two rec-

tangles of the whirling squares, side by side, EF and FC. But the length DC
equals .382, therefore ED equals .382 and .382 multiplied by two equals .764

and this fraction divided into 1.6 18 equals 2.118, the area of the shape CE in

the analysis of the vase. This arithmetic method may be readily applied to any

construction or analysis, provided the larger units are known, as, of course, they

aways are in dynamic symmetry.

.q
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Fig. 8. Pelike 06.1021. 191, Metropolitan Museum, New York.

A large simple pelike, 06.1021. 191 in the Metropolitan Museum, New York,

Fig. 8, is a theme in the often occurring rectangle 1.382. This vase supplies

material which sheds considerable light on Greek design practice.

The width of the lip considered as the end. of a rectangle, of which the full

height of the vessel is the side, defines the area of a root-five shape. The end of

this rectangle is also the width of the bottom of the foot of the vase. At some

stage of development the design probably looked like the diagram in Fig. 9.

AB is a 1.382 rectangle, CD is a root-five rectangle in the center of the major

shape. The short curved lines inside this latter rectangle at the top and outside

at the bottom, suggest respectively the lip and foot.

The direct subdivision of a 1.382 rectangle is shown in Fig. 10 where AB and

CD are the two squares described on the ends of the shape. AD and CB are

two .382 shapes and AE is a rectangle of the whirling squares.

When a root-five rectangle is applied to the center of this containing shape,

as in Fig. 11, the major area is subdivided in an interesting manner. AB, CD
are two whirling square rectangles, AE, BF, CG and DH are each composed
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r

Fig. 9.

iJ. I

^
\

Fig. 10. Fig. II.

of two squares, while EI, and the similar shape on the other side of the

square BI are each double whirling square rectangles. BI is a square in the

center of the whirling square rectangle AE, Fig. 10. Considered arithmetically

the major area, as affected by the root-five shape, is as follows:

The reciprocal of 1.382 is .7236. If the side FH, Fig. 11, represents unity,

then the end HJ represents .7236. In relation to this fraction, the end of the

root-five rectangle CK is expressed by .4472, and this fraction subtracted from

.7236 leaves .2764. Dividing this by 2 the fraction .1382 is obtained. Thus the

areas AJ and KF are each composed of ten similar shapes to the whole, or ten

1.382 rectangles. The ratio of the ground plan of the Parthenon is 2.1382, /. e.,

it is composed of two squares plus a rectangle similar to AJ or KF of this pelike

design. The fraction .1382 may be further identified as the diflFerence between

.309 and .4472 or a root-five shape minus two whirling square rectangles. The

diagram. Fig. 1 2, shows this relationship.

^- |'

.1^-:

T-^

J.
Fig. 12.

AB is a root-five rectangle with the square FG in the center. AF, ED are two

whirling square rectangles, as are alsoAE, FD. The shape CB is a .1382 rec-
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tangle and represents the difference between the root-five rectangle AB and

the double whirling square area AH. The meander bands, which define the

limits of the pictorial composition, are related to the general proportion of the

1.382 rectangle.

7^

.^;
Fig- 13- Fig. 14.

When a 1.382 rectangle is divided into two parts, as in Fig. 14, each half is

composed of a sguare plus a root-five figure. The bottom of the meander band

at the base of the figure composition passes through the center of this square.

The .382 area of a 1.382 rectangle is composed of a square plus a whirling

square rectangle, see Fig. 13.

AB is the whirling square rectangle. AC is its major square and D is the inter-

section of diagonals to these two shapes. This point marks the top of the mean-

r

/

~7\ F
\
.M_

\

\/
^i

^"

Fig. 15.
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der band above the figure composition. Fig. 15 shows the geometrical method

for constructing a root-five shape in the center of a 1.382 rectangle. AB is a

.382 figure and C and D are the centers of the two squares. EF is a root-five

rectangle.

Black-figured Amphora 06.1021.69 in the Metropolitan Museum, New York,

Fig. 16, has a ratio, with the handles, of 1.3455 ^"^ without the handles, 1.382.

The fraction .3455 is one-fourth of 1.382. The width of the lip is the end of a

root-five rectangle of which the height of the vase is the side. The end of a root-

five rectangle, of which the side is 1.382, is represented numerically by .618.

The width of the foot is the end of a 2.472 rectangle described in the center

of the 1.382 shape. This rectangle is composed of four whirling square rec-

tangles; .618 multiplied by 4 equals 2.472. CG is one of these .618 rectangles.

The compositional band at the base of the panelled picture, GH, is midway
between the top and bottom of the vase. The line EF is one-fourth the total

height. The angle pitch of the lip is determined by a line drawn to the center

of the foot, or the diagonal of a root-twenty rectangle.

Fig. 16. Black-figured Amphora 06.1021.69, Metropolitan Museum, New York.

(Measured and drawn by the Museum Staff.)
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d.£;_._ Cl -.JXU-- !) si

Fig. 17. Psykter in the Boston Museum.
(Measured, drawn and analyzed by L. D. Caskey.)

A psykter in the Boston Museum, Fig. 17, has a i .2764 shape. (See kalpis in this

chapter.) The fraction .2764 is the reciprocal of 3.618. In Dr. Caskey's analysis

AB and CD are whirling square rectangles. AE is also one and CF is the 3.618

and AF a square.

r-l-

V-..yL_ _::!_]
Fig. 18. Black-figured Kalpis 06.1021.69 in the Metropolitan Museum, New York.

(Measured and drawn by the Museum Staff.)
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The ratio of 1.0225 appears in an early black-figured kalpis, 06.1021.69 in the

New York Museum, Fig. 18. This shape is composed of .6 18 plus .4045, the latter

fraction being the reciprocal of 2.472 or .618 multiplied by four. The rectangle

contains a whirling square rectangle plus four such shapes standing on top of it.

The width of the bowl, however, with the height of the vase is a 1.309 rec-

tangle, i. e., a square AB plus two whirling square rectangles, AC. It will be

noticed that the side of the square AB coincides with the neck and bowl junc-

ture. T, QN and L are points which fix compositional divisions in the painting.

SR, RC are two whirling square rectangles. The diagonal SR cuts GF produced

at T. The diagonals of the two whirling square rectangles AC proportion the

lip and neck at F and G. The whirling square rectangle IJ fixes foot propor-

tions at K. The line NO relates the foot to the painted band under the pic-

ture. AD is a square.

r

Fig. 19. Kalpis in the Metropolitan Museum, New York.

(Drawn and measured by the Museum Staff.)

The red-figured kalpis, 06. 102 1 .
1
90, Fig. 1 9, Metropolitan Museum, NewYork

City, has a major shape of an exact square. The width of the bowl divided into a

side of the major form produces, exactly, a 1.309 rectangle. The simple geomet-

rical constructions incident to the comprehension of a 1.309 figure in the cen-



A RED-FIGURED KALPIS IN THE METROPOLITAN MUSEUM,
NEW YORK

A handsome design within a square
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ter of a square and the resultant combinations of form are shown in the small

diagrams. It is significant that the angle pitch of the lip is the diagonal of a

.309 rectangle, /. e-., ML, Fig. 19, is a .309 rectangle. The width of the lip as

shown by NL is one-half the width of the bowl. The width of the neck at its

narrowest point is equal to the width of the juncture of the foot with the body.

r~t 7^.

.... ijT. ,4

£ I
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true of Greek designs. The first step is -the approximate determination of the

containing rectangle. This is done arithmetically from direct measurement.

The rectangle thus obtained may, frequently, be verified arithmetically

by measurement of details. If a root-two rectangle be obtained, for example,

/. ^., a rectangle whose ratio is some recognizable one connected with the root-

two series, and the width of the foot, hp or neck either divided into, added to

or subtracted from this ratio, or divided into the width or height of the whole,

produces other ratios recognizable as belonging to the root-two series, a theme

in root-two is almost sure to be found. Usually root-two and root-three are

easier to recognize than themes in the compound forms. This is due to the fact

that root-two and root-three do not modulate or unite with other shapes. Com-

paratively, the synthetic use of symmetry is simple; the artist, however, must

understand basic principles and be familiar with simple geometrical construc-

tion or the use of a scale. The scale to use is one with units divided into tenths

because the ratios may be read off directly as numbers. The technique of area

or figure dissection is based upon the diagonal not only to the major shape

but to its composing elements. The relation of the foot and lip of a stamnos of

Stamnos 06.1 021. 176, Metropolitan Museum, New York.

(Measured and drawn by the Museum Staff.)
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this chapter, Fig. 21, shows clearly the employment of two sub-diagonals. A
well-trained designer who understands his symmetry will work rapidly, use a

simple machinery and his key-plan will be unintelligible to any inferior in sym-

metry knowledge to himself. In most cases his working plan will not show more

than a few diagonals. Dynamic symmetry produces in a design the correlation

of part to whole observable in either animal or vegetable growth. It is a satis-

fying harmony of functioning parts which suggests a thing ahve or a thing

which has the possibility of life. Design without an understood symmetry is

the negation of this.

Stamnos 06.1021. 176, Metropolitan Museum, New York, Fig. 21, is a simple

square and the elements of the vase are proportioned by the dynamic sub-

division of the containing shape.

AB is a rectangle of the whirling squares. AC is a diagonal to one-half this

shape. It cuts the diagonal of the whole at D, which point determines the

width of the foot. This foot width is equal to one-third of a side of the en-

compassing square. AP is a .382 rectangle and AF is the diagonal of half this

shape and it intersects the diagonal of the whirling square rectangle AE at G. It

Fig. 22. Kalpis 06.1021.192, Metropolitan Museum, New York.

(Measured and drawn by the Museum Staff.)
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also cuts the diagonal of the square HI at J. The line GM cuts the diagonal of

the whirling square rectangle KL to determine the line NO, which fixes the

width of the bowl. The hne NO meets the diagonal of the whirling square rec-

tangle AB at O and the diagonal of the .382 shape at N. This shows that the

lip and the foot of the vessel are proportioned respectively in terms of the

two main divisions of the overall shape, i. e., .618 and .382, and that both foot

'and lip are directly proportioned to the width of the bowl. The theme is an

arrangement in diagonals of the two main subdivisions of the containing square

and diagonals of half these shapes.

Kalpis 06.1021. 192 in the New York Museum, Fig. 22, is contained in a

square. A small error is shown at the points where the handles do not quite

touch the. sides of this square. The width of the bowl and the height define a

1.2764 rectangle. The fraction .2764 is the reciprocal of 3.618, /. e., two

squares plus a whirling square rectangle. The area of the lip and neck is com-

posed of these two squares, while AC and DE, added, form the whirling square

rectangle. AB is a square. The width of the foot is the side of the 2.618 shape

FG. FH is a square, andHKis 1.618. FI is a whirling square rectangle. The area

of the foot elevation is composed of two whirling square rectangles plus a square

or the ratio 4.236.
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CHAPTER NINE: SKYPHOI
URING the entire classical period, Greek designers seem to have

been searching for certain ideal shapes for certain purposes.

The large drinking bowls, which we recognize under the general

name of Skyphoi, in their general proportions, illustrate this.

The overall shape scheme of these vases approximates a ratio

of one and three-quarters. Modern designers would frankly accept this ratio

and not trouble themselves about subtle refinements on either the plus or minus

side of so obvious, and consequently commonplace, an area.

The employment of ratios either a little less or a little more, than one to one

and three- quarters, suggests conscious effort to get away from an ordinary rec-

tangle. Again, the skyphoi shapes curiously parallel the Nolan amphorae

forms, the difference of the outstanding or containing rectangle in most cases

being simply that of position. The sides of the skyphoi rectangles rest horizon-

tal, the sides of the amphorae shapes, perpendicular. Also, Greek classic

artists wasted little design material. This is shown by their use of curves.

Practically all convex curves of one design are repeated as concave curves in

other creations. For example, the convex curve of the pelike is the concave

curve of the pyxis. The convex curves of the lekythos are the concave curves

of the calyx krater.

Convex cups have their concave counterparts, a sort of reverse echo in forms

which may be termed an inversion of a theme.

Fig. I . Black-figured Skyphos in the Metropolitan Museum, New York.

(Measured and drawn by the Museum Staff.)
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The two skyphol, Figs, i and 4 of this chapter, should be compared. The ele-

vation of each shows the same rectangle. One vase is in the Metropolitan

Museum, New York, the other in the Museum of Fine Arts, Boston. The rec-

tangle was a favorite as it appears repeatedly.

^,5.
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five areas. The width of the foot is determined by the point R and SL is a

square. OP and OA are squares. Thus the vase without its foot would be a

root-four area. HB is composed of two whirling square rectangles plus a square.

A black-figured skyphos loaned to the Boston Museum by the late Henry

Adams, Fig. 4, has the same shape as No. 06.1021.49 in the Metropolitan

Museum, New York. The overall ratio of 1.854 (.618 multiplied by three) is

divided in exactly the same manner as is the one from New York. The Adams

vase has a slightly narrower foot as shown by the point A, the center of the

small square BC. The bowl is 1.382 and the vase minus the foot equals two

squares as shown by the line DE, the diagonal to a square. FE and GH are

two whirling square rectangles overlapping to the extent of GI, the 1.382

shape. Dr. Caskey has suggested the sequence of subdivision in the three small

diagrams, Figs. 5, 6 and 7. The picture on this vase shows clearly that the

Greek artist at the time was incomparably better as a designer than as a figure

draughtsman. The figures of the men riding the dolphins are crudely suggested,

but the picture as a design composition is superb.
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Fig. 8. Black-glaze Skyphos at Yale.

(Measured and curves traced by Prof. P. V. C. Baur.)

Fig. 9. Skyphos 76.49, Boston.

(Drawn, measured and analyzed by L. D. Caskey.)

Red-figured Skyphos 76.49, Boston, Fig. 9, furnishes an overall rectangle

with a ratio of 1.8944. This is a square plus two root-five rectangles. The eleva-

tion of the bowl however is i .236, or two whirling square rectangles, and the

logical subdivision of one of these determines the proportionate relation of the

details of foot and decorative bands. The points C, D and E in the rectangle AB
are clear.
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Fig. 10. Boston Skyphos 13.186.

Skyphos 13.186 in the Boston Museum, Fig. 10, has a bowl ratio of 1.309

and an overall area of 1.809. The whirling square rectangle AB is derived

from the overall shape. The center of the square DE fixes the width of the

bowl. The relation of the bowl to the meander band beneath the picture is

shown by C and F. The points G H show that the meander band at the top

of the picture is related to the foot.

IA.F. A- oi«"7ft

Fig. II. Boston Skyphos 01.8076.

(Measured, drawn and analyzed by L. D. Caskey.)
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Skyphos 01.8076 in the Boston Museum, Fig. 11, has a bowl ratio of 1.236

and an overall area of 1.764. This latter ratio frequently appears in Greek

design.

Fig. 12. Boston Skyphos 01.8032.

Skyphos 01.8032 in the Boston Museum, Fig. 12, has a bowl ratio of 1.236,

and, apparently, an overall area which is a root-three rectangle. This is the

only case in over four hundred examples of Greek design where a root-three

figure was apparently used in connection with a whirling square rectangle.

Fig. 13. Yale Skyphos 398

Black-glaze Skyphos 398, at Yale, Fig. 13, has a bowl ratio of 1.236 and

an overall area of 1.809. ^-^ is a whirling square rectangle from the 1.809 ^^e^-

GB is the diagonal to a square and the point H shows that without its foot

the vase is a root-four area.
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1

Fig. 14. Skyphos 06.1079, Metropolitan Museum, New York.

A skyphos from the New York Museum, Fig. 14, has a bowl ratio of 1.236

and an overall area of 1.809. ^^ i^ ^ whirling square shape from the bowl

while EC is a similar figure from the 1.809 ratio.

\
1

'
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-^^
Fig. 1 6. Yale Skyphos 397.

Black-glaze Skyphos 397 in the Stoddard Collection at Yale, Fig. 16,

has a 1.854 ratio. As AB is the diago;n-al to a square the area of this vase with-

out the foot is equal to a root-four rectangle. The bowl, as shown by E, has a

1.236 ratio or two whirling square rectangles. G is the center of the square

DC. (See Figs, i and 4, this chapter.)

Fig. 17. Yale Skyphos 399.

Yale black-glaze Skyphos 399, Fig. 17, has an overall ratio of 1.854 while

the bowl is 1.236, and the vase without the foot is a root-four rectangle.
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Fig. 18. Yale Skyphos.

A black-glaze skyphos in the Stoddard Collection at Yale, 400, Fig. 18, has

a ratio of 1.854 or three whirling square rectangles. The bowl ratio is 1.236 or

two whirling square rectangles. AC, CG are two squares. The point H is the

intersection of the diagonals of the square HJ and the two whirling square

rectangles AI.



CHAPTER TEN: KYLIKES

^ n ^HE adjustment of the handles on a kylix to maintain a pro-

portional relationship with the bowl and minor elements of the

design seems to have been a difficult technical problem to the

Greek potter. The great width of the bowl compared to its

height and the delicacy of both stem and bowl supplies an

uncertain foundation for the attachment of the two, comparatively, heavy

handles. When the kyhx was first submitted to analysis the varying height of

the handles suggested that the pottery designers had frankly met the difficulty

of adjustment by making allowance for an error. This was found to be true

because, while the handles were sometimes high and sometimes low, there was

one feature of this arrangement which was practically stable. This was their

width in relation to the bowl. The makers of the kylix, therefore, must have

raised or lowered the handles, after they were attached and while the clay

was still workable, so the width should remain true.

Of course, the handles of the kylix may be ignored, as they may also be in the

skyphoi, and the analysis confined to the bowl, foot and other details; but

the Greek, apparently, did not ignore the handle adjustment in any type of

pottery when they extended beyond the rectangle of the bowl, a fact clearly

shown by the amphorae. In this vase class there are many examples with han-

dles both inside and outside the bowl rectangle; when outside they are almost

invariably finely worked and highly finished, when inside the reverse occurs.

The Greek pottery collection in the Boston Museum of Fine Arts is unusually

rich in kylikes and Dr. Caskey has given them careful attention, as the table

in this chapter shows. This table contains seventeen examples of red-figured

kylikes completely examined. The complete list comprises fifty-four examples.

This table is interesting. First it shows that five out of the seventeen are

themes in root-two while the other twelve are design arrangements in the com-

pound figures derived from the proportions found in the dodecahedron or the

icosahedron. The relation of the details, to the overall shape as shown in the

classification is striking. Of the seventeen there are six where the width of the

foot is equal to the height of the bowl, or one side of a square in the overall

shape. The reader will recognize the tabled ratios as representing dynamic

areas which have appeared frequently in the vases so far described.

Ip every example the details, as sub-ratios, show a recognizable theme in terms

of the overall shape. Of the root-two shapes there are three overall ratios of

3.4142, or two squares plus a root-two rectangle.
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Fig. I. Black-figured Kylix 03.784 in the Boston Museum.

(Measured, drawn and analyzed by L. D. Caskey.)

Fig. 1. Boston Eye Kylix 13.83.

(Measured, drawn and analyzed by L. D. Caskey.)

A large Boston eye kylix. Fig. 2, is a theme in root-two. The overall area ratio is

3.0606. The bowl area is 2.3535. The two handle areas, added, represent .7071,

the reciprocal of root-two, and therefore a root-two shape. Each handle area

must then be composed of two root-two areas. The bowl area, 2.3535 ^^ com-
posed of two squares plus .7071 divided by two, or two plus .3535. BE, FC are

the squares and FG is the area composed of two root-two figures. The areas

HI and JK are each a root-two rectangle and JF is the difference between .7071

and unity or .2929.
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Fig. 3. Yale Kylix 167.

A heavy red-figured kylix at Yale, Fig. 3, has an overall area ratio of 2.618.

The bowl ratio is 1.927, the fraction being. .618 plus .309. The width of the foot

is the end of an .809 shape. The major area is divided curiously. The total area

of the handles gives a .691 shape,one-half of which is .3455. The areaAO, there-

fore, is a square and a root-five; AP is also such a figure, consequently it is the

reciprocal of AO, and the diagonals to both shapes meet at right angles at Q.

EF is composed of four root-five rectangles. FG equals two whirling square

rectangles; AH and ID are square plus root-five shapes. The points J, K, L, M,
N are clear.

Fig. 4. Kylix 92.2654, Boston.

(Measured, drawn and analyzed by L. D. Caskey.)
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Kylix 92.2654 at Boston, Fig. 4, has an overall ratio of 1.882, the bowl

1.382. This leaves for the handles .5 or two squares. When .5 is divided by

two it will be noticed that the space on each end in excess of the bowl is

composed of four squares. The 1.382 rectangle divided by two furnishes two

.691 rectangles, each of which is composed of a square plus a root-five rec-

tangle. The relation of the foot to the bowl is shown by the intersection of diago-

nals to two squares and the two .691 forms.

The area AB, which is determined by the line formed by the juncture of the

lip with the bowl, supplies the ratio 1.7236, i. e., a square plus a 1.382 shape,

.7236 being the reciprocal of 1.382. CB is this form and it is divided into two

.691 shapes by the line DE.

Fig. 5. New York Kylix by Nikosthenes.

(Measured and drawn by the Museum Staff.)

A large eye kylix in the New York Museum, 14.136, Fig. 5, signed by Ni-

kosthenes, has an overall area of three squares. The bowl area however is

2.4472, i. e., two squares plus root-five. The width of the foot in relation to the

height is .9472, which is root-five, .4472 plus .5 or two squares, or i .4472, a square

plus root-five, minus .5 or two squares. The foot area AB is composed of two
squares, and CD is one square. The areas EF, BG are each one and one-third.

The areas EH and GI are each composed of two squares plus a whirling

square rectangle. There is much evidence in this vase that the designer had
been trained in static symmetry. The method of arranging the units of form
have a distinct static flavor.

A large red-figured kylix, 06.1021. 167 in the New York Museum, Fig. 6,

supplies an overall ratio of three squares. The width of the bowl in relation to

the height however is 2.4I42, i. e., a root-two rectangle plus a square. The
two root-two rectangles AB,CD have ends equal in length to half the diagonal

of one of the major squares.
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Fig. 6. Kylix 06.1021. 167, Metropolitan Museum, New York.

(Measured and drawn by the Museum Staff.)

^
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Fig. 8. Black-figured Kylix 06.1097, Metropolitan Museum, New York.

(Measured and drawn by the Museum Staff.)

Ring-foot Kylix 01.8089, Museum of Fine Arts, Boston, Figs, ga and 9^.

Overall ratio 3.854, bowl, 2.854. Three whirling square rectangle reciprocals,

.618, multiplied by three, equal 1.854, a common shape in Greek design, espe-

cially among the skyphoi. The ratios 3.854 and 2.854 are apparent. In one case

it is 1.854 plus two squares, the other 1.854 plus one square.

f 7!^. '*'
I
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The width of the foot is the side of a rectangle composed of two whirling

square rectangles and a half. .618 multiplied by two and a half equals 1.545.

The area between the handles and bowl, on each side, equals two squares or .5.

The area between the foot and the bowl, on each side, is composed of a square

plus two whirHng square rectangles divided by two, 1.309 divided by two

equals .6545 and 1.545 plus 1.309 equals 2.854. Another arrangement, as in b,

makes clear the relationship of detail in the design.

M.F.A. 01.8022

Sha»c 3 236 .
|
w | w |

Bawl 2 SIS -
I
S Iwl 5

I

Fig. 10.

(Measured, drawn and analyzed by L. D. Caskey.)

Kyhx 01.8022, Museum of Fine Arts, Boston, Fig. 10, has an overall shape

of two whirling square rectangles or 3.236, while the bowl proportion is a whirl-

ing square rectangle plus a square, or 2.618.

M.F A, 01.8057

Alt.'. l.l«H.Fn«r,d <j\U fl,K,; 3.131

Fig. II.

(Measured, drawn and analyzed by L. D. Caskey.)
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AB is a whirling square rectangle as are also AC and DE and EF and FG and

GH, the detail proportions being simply that of continued reciprocals. The

areas of the handles are each two whirling square rectangles.

Black-figured Eye Kylix 01.8057 in the Boston Museum, Fig. 11, has an

overall areaof3.236, two whirling square rectangles. The bowl area is 2.618. The

difference between 2.618 and 3.236 is.618, therefore the handle areas, AB and

CD, are each composed of two whirling square rectangles. The ratio 2.618 is a

whirling square rectangle, 1.618, plus a square. The width of the foot is the side

of this square, i. e., the width of the foot is equal to the height of the bowl.

Yale Kylix 165, Fig. 12, has an overall ratio of 3.236. AB, CD are whirling

square rectangles. E is the intersection of a whirling square diagonal with a

diagonal of the whole. The points F, G, H and I are clear.

Fig. 12.



Fig. I. Kantharos in the Boston Museum.

(Measured and drawn by L. D. Caskey.)

CHAPTER ELEVEN: VASE
ANALYSES, CONTINUED
«A BLACK-GLAZE Kantharos at Boston, Fig. i, has an overallratio of a

/\\ square plus a root-five rectangle or the ratio 1.4472. AB and

I \\ CD are the squares applied to either end of the rectangle and

/ \\ their diagonals intersect at E; consequently, the area AF is com-

A J V posed of two squares. GH, the rectangle of the bowl, is a 1.309

. area, GI is one-fourth of this, therefore a similar shape composed of a square

GO and two whirling square rectangles IN. The square GO is divided into the

squares JN, KN, LN and MN. The point R is the center of the square PQ.

The Greek Olpe or Jug 07.286.34, Metropolitan Museum, New York, Fig. 2,

is a design within the rectangle 1.9045. The fraction .9045 multjpHed by two

equals 1.809. The relation of this ratio to the whirling square rectangle and the

subdivisions of the square made by the pentagon, is apparent (see Chapter

III). The handle of the olpe extends beyond the rectangle made by the bowl

far enough to produce an overall ratio of 1.691. The width of the lip with the

full height of the jug supplies a 2.618 shape. The width of the foot with the

height supplies 2.8944, i. e., two squares and two root-five rectangles. The area

AB is .691, a square and root-five shape. The relations of the subdivisions

of the whirling square rectangle AC are obvious. The width of the bowl at its

juncture with the foot, in relation to the full height, is 3.090 or five whirling

square shapes. The rectangle obtained by the full height and the width of the

neck at its narrowest point, is 4.618. AD is 1.236.
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Fig. 1. Olpe from the Metropolitan Museum, New York.

(Measured and drawn by the Museum Staff.)

A theme of root-two and two squares appears in a Sixth Century B. C. leky-

thos, III in the Stoddard collection at Yale University, Fig. 3. The vase shape

is two squares, AB and BC in the drawing. AD, the height of the bowl, is a

root-two rectangle. The area CD is composed of the square DS and the root-

two rectangle SN. A side of a square, ES, produced from E to J, determines the

root-tworectangleJSandfixesthejunctureof theneckwith the body. A diagonal

to the whole cuts a side of a square at G to fix the proportion of the lip. It also

intersects the end of a root-two rectangle at L to determine the width of the



AN EARLY BLACK-FIGURED LEKYTHOS,
STODDARD COLLECTION AT YALE

A theme in root-two within two squares
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Fig. 3. Lekythos iii at Yale.

(Measured by Prof. P. V. C. Baur of Yale University.)

foot at its juncture with the bowl. The line VI is the center of the root-two rec-

tangle AD. This is the line on which the figures of the picture stand. O is the

intersection of a diagonal of the whole with the diagonal to the two squares

AP. The point U is the intersection of the diagonal to two squares with the

diagonal to the root-two rectangle NS. The points H andW are fixed by a line

from C to I. The point K is on the diagonal to the area CJ.

The ratio of a small white lekythos, 06.1021. 125 in the Metropolitan Mu-
seum, New York, Fig. 4, is 2.7071, which is .7071, the reciprocal of root-two,
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plus two squares. The coordination of detail to the whole shape is entirely by

diagonals of square and root-two.

An early black-figured dinos, 13.205 in the Boston Museum, Fig. 5, is a static

example. The curve of this vase, however, is interesting because it shows clearly

what, in the writer's opinion, was the Greek method of relating curves to the

straight line and area proportion in a work of art. The dinOs area is four

squares high and five wide. The width of the lip is fixed by the point D, the

Fig. 4. Lekythos 06.1021. 125, Metropolitan Museum, New York.

(Measured and drawn by the Museum Staff.)
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intersection of the diagonal to two and one-half squares, AS, with the diagonal

of the square GH. EH and FG are diagonals to two squares, F and E being

midway between AH and AG. In the large square IM the lines ML and IK are

each diagonals to two squares. The point T is the center of the vase at its base

and J the middle of the side of the square IC. The curve touches FG at Q, HE
at P, the point J, IK at O, LM at N and the point T. Artists will appreciate

the quahty possessed by a curve of this character, where it is perfectly related

to the composing elements of a theme in design and is not in any way mathe-

Fig. 5. Dinos 13.205, Boston Museum.

(Measured and drawn by L. D. Caskey.)

matical. Curves were, apparently, drawn by tangents in this manner all through

the Greek classical period. Hardly a vase, among the hundreds so far examined,

fails to disclose this method of relating curve to angle, area and line. The con-

structions necessary to show this have been kept out purposely in other

examples to avoid confusion. No mathematical curves have, so far, been found

in Greek art.

The shape of a black-glaze oinochoe in the Stoddard collection at Yale Univer-

sity,Fig. 6, is a 1.4472 rectangle, a square plus root-five. AB, CD are eachsquares

and CB, AD are each root-five rectangles. A 1.4472 rectangle divided into two

parts produces two 1.382 rectangles. 1.4472 divided by 2 equals .7236 and this

fraction is a reciprocal of 1.382. The lines GM and FL pass through the center

of the two 1.382 shapes. These lines intersect diagonals to the two root-five rec-

tangles at M and L, determining the width of the lip and foot, also the height of

the neck as shown by the square HI. The line JKshows that the height of the
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Fig. 6. A Black Oinochoe at Yale.

(Measured by Prof. P. V. C. Baur of Yale University.)

Fig. 7. Olpe from the Boston Museum.
(Measured, drawn and analyzed by L. D. Caskey.)



A BLACK GLAZE OINOCHOE FROM THE STODDARD
COLLECTION AT YALE

A theme in square and root-five
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vase without the handle is proportioned to the thickness of the foot by the diag-

onal to a 1.382 shape, as CE, and the diagonal to a root-five rectangle, as AD.
The area of the jug. Fig. 7, is a perfect whirling square rectangle. The details

are correlated by reciprocals of the major shape.

Fig. 8. Amphora 01.8059, Boston Museum.

(Measured, drawn and analyzed by L. D. Caskey.)

An early black-figured amphora, 01 .8059 in the Boston Museum, Fig. 8 , in area,

is a whirling square rectangle. The width of the lip is the side of a square in the

whirling square rectangle AB. In the whirling square rectangle CD, the line

EF is a diagonal to half that shape. G is the intersection of EF with the diag-

onal of the square HI. The remainder of the analysis is clear.

Boston Amphora 10.178, Fig. 9, is a perfect whirling square rectangle and all

its details are consistently correlated.
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Fig. 9. Boston Amphora 10.178.

Lekythos 13.195 in the Boston Museum,Fig. 10, hasanoverallratiooftwoand

a half and the area is divided in terms of this shape, consequently it is a static

example. AB is a diagonal of the whole. It intersects the halfway division of

the square 10 at H and the side of two squares AC at D. The line DT cuts the

diagonal of the square SL at M. A line parallel with the base meets the diagonal

of the whole at U. This fixes the foot width. The line FHQ is clear. The width

of the lip is the side of the square FG and the entire lip is composed of two

squares. The point N is clear, the intersection of diagonals of the half and

whole. The three squares LW fix the proportions of the foot. The essential

design idea in this example is the use of a series of correlated elements obtained

by the diagonal of a rectangle made by two and a half squares cutting the sides

of two squares. These two squares are placed at both top and bottom of the

rectangle.

An early black-figured lekythos, 95.15, Fig. 11, has an overall ratio of two

squares and the method of subdivision shows that this is a static shape. About

five per cent, even less, of classic Greek design is static. The Greek designers
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Fig. 10. Lekythos 13.195, Boston Museum.

(Measured, drawn and analyzed by L. D. Caskey.)

who used static symmetry possibly were uninitiated in the craft guilds. In the

squareAB the square CD is equal to one-fourth theAB area, andCE is composed

of three squares. O is the intersection of the diagonals of one and two squares. F
is the intersection of the diagonals of one and two squares. The area IJ with

its diagonal and its influence at KLM is apparent. N is the intersection of the

diagonals of one and two squares.

An early black-figured lekythos, 06.1021.60, Metropolitan Museum, New
York, Fig. 12, is a simple root-five rectangle. There is a slight error in the

width as shown where the containing rectangle does not touch the sides of the
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vase. As all the details of the vessel are simple parts of a root-five figure there

can scarcely be a doubt but that this rectangle was intended. A is the center

of the square BC. F is the intersection of the diagonal of the square BC with

the diagonal of the whirling square rectangle BD. E is the intersection of the

line FE with the diagonal of the whole. H is the center of a small square and

Fig. II. Boston Lekythos 95.15.

(Measured, drawn and analyzed by L. D. Caskey.)

IJ is an area composed of two squares. G is an intersection of the diagonal of

the whole with the diagonal of a square.

The large white lekythos, 12.229.10, Metropolitan Museum, New York, Fig.

13, exhibits the rectangle 3.2764. The fraction .2764 is the reciprocal of 3.618.

The general area of this rectangle will be understood if two squares are sub-

tracted. 3.2764 minus 2 equals 1.2764, and this remainder equals .8944 plus

.382. This latter fraction, which is composed of two squares and a whirling

square rectangle, furnishes the proportional area which defines the details of the

lip. The fraction .8944 equals two root-five reciprocals, .4472 multiplied by 2.
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One of these root-five shapes fixes the details of the foot. Many other arrange-

ments of the encompassing area could be made. For example; 1.2764 is com-

posed of .7236 plus .5528. .7236 is the reciprocal of 1.382, .5528 is the reciprocal

of 1.809, 1.2764 plus .7236 equals 2. 1.2764 multipHed by 2 equals 2.5528, .7236

plus 2.5528 equals3.2764. Such combinations of area units as this should prove

Fig. 12. Black-figured Lekythos 06.1021.60, Metropolitan Museum, New York.

(Measured and drawn by the Museum Staff.)

of the greatest value to designers. All of these areas may be readily determined

with a scale, and after the forms are studied, fixed by construction.

Lekythos G. R. 540 in the New York Museum, Fig. 14, has a ratio of root-

eight, i. e., root-two multiplied by two. The proportional correlation of foot and

neck is by root-two rectangles, diagonals of squares and diagonals of the whole.
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Fig. 13. Lekythos 12.229.10, Metropolitan Museum, New York.

(Measured and drawn by the Museum Staff.)

Red-figured Lekythos 08.258.23, Metropolitan Museum, New York, Fig. 15,

supplies a ratio of 3.236 or two whirling square rectangles, 1.6 18 multiplied

by 2. The subdivisions of the whirling square reciprocals at the top and bot-
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torn of the enclosing rectangle, which proportion the details of the foot and the

lip, do not need explanation, beyond mention that AB is a square in the center

of CD, this area being a whirling square rectangle.

The red-figured lekythos, G. R. 589, Metropolitan Museum, New York, Fig.

16, supplies the ratio 1.528 (compare Amphora, Fig. i, page 91, Chapter VIII).

This form may be subdivided into two 1.309 shapes, 1.528 divided by two

Fig. 1 4. Lekythos G. R. 540, Metropolitan Museum, New York.

(Measured and drawn by the Museum Staff.)
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'1

Fig. 15. Red-figured Lekythos 08.258.23, Metropolitan Museum, New York.

(Measured and drawn by the Museum Staff.)

equals .764, the reciprocal of 1.309, or it may be treated as a square plus .528.

This fraction is the reciprocal of 1.8944, /. e., a square plus two root-five rec-

tangles. Analysis shows that the second was the method of subdivision used

by the Greek designer.

AB is the major square and BC the rectangle consisting of a square and two

root-five rectangles. DE is this secondary square and DC, EB the two root-five

shapes. GH are two points obtained by the intersection of the diagonal of the

whole with the side of the major square. The general construction of the lip
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and neck follow proportional subdivisions of the secondary square and the two

root-five figures by diagonals to the square, diagonals to the whole and diago-

nals to a square plus a. root-five shape. The diagonals of the whole cut the

diagonals of the secondary square and a root-five figure at I and J. These

points fix the width of the lip. The points K and L are intersections of the diag-

onals of the secondary square with diagonals of a square plus a root-five figure.

M and N, two points directly connected with the proportions of the foot, are

centers of the two root-five shapes.

Fig. 16. Red-figured Lekythos G. R. 589, Metropolitan Museum, New York.

(Measured and drawn by the Museum Staff.)



CHAPTER TWELVE: STATIC SYMMETRY

F' ^^HE basic idea in static symmetry, particularly as it is found

applied in Saracenic and in mediaeval art, was stated by the

writer in a paper read before the Society for the Promotion

of Hellenic Study in London in the autumn of 1902. At that

time dynamic symmetry had not been formulated and it was

the writer's belief then that the static type would be found in Greek art. Further

research proved, however, that this was true only to a small extent.

Static symmetry, as found in both nature and art, often, is radial. In this

respect it is a symmetry ofJpcu,s, an orderly distribution of shapes or com-

posing units of form about a center. Almost invariably these units of form are

parts or logical subdivisions of the regular figures, the equilateral triangle, the

square and the regular pentagon. The two former predominate. The latter was

used generally as a pattern. Many Gothic rose windows furnish examples of

pentagonal pattern. Static symmetry of a radial character is regulated by a

binary or doubling ratio, which is inherent in the equilateral triangle and the

square. These two regular figures in nature may result from cell packing. If a

Fig. I. .

series of circles is considered, as in Fig. i, and the centers joined, a network

of squares is produced. An aggregate of circles, which may be considered as

representing spheres, can be placed in contact in but two ways, either as in

Fig. I or as in Fig. 1.

Fig. 2.

In this arrangement lines drawn through the centers of the circles produce a

network of equilateral triangles.

The relation of the diameter of an inscribed to the diameter of an escribed

circle of an equilateral triangle, is one to two.
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Fig- 3- Fig.

AB in Fig. 3 is one-half CD, and if a series of equilateral triangles be arranged

as in Fig. 4 the ratio of the diameters of the circles is binary or doubling. The
side of an equilateral triangle compared to the radius of the escribing circle is

as one is to the square root of three. Very often both in nature and in art

forms, the spaces between the expanding circles in an equilateral triangle pat-

tern, will be occupied by zones of form which are root-three distances from

the center of the system; i. e., the radius of a circle represented by such a

zone of form units would be equal to the side of an equilateral triangle in-

scribed in one of the preceding binary circles. But the basic ratio in an

expanding system of this type is binary.

The relation between the diameters of circles inscribing and escribing a

square is as one is to the square root of two.

This relationship is shown in Fig. 5. CD is to AB as a side is to a diagonal of a

square, or unity to root two. But GD is to EF as one is to two.

Fig- 5-

In a system of squares expanding from a center, as in Fig. 6, the relationship

of any three consecutive circles, by radius or diameter, is as i 14/2: 1. The

equilateral triangle produces the relationship i 14/3: 1. The square produces

the relationship i : 4/2 : 2. In each case the basic ratio is binary. There i^ no

record that this binary ratio was ever understood though there is abundant

evidence that equilateral triangles and squares were used consciously in art

for the purpose of maintaining definite relationship between the parts and the

whole of a composition. These simple figures form the base of 'most of the
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"systems" of proportion which have been produced. Indeed, so many of these

"systems" have appeared during the past fifty or seventy-five years that a list

of even their names would be wearisome.*

Fig. 6.

The discovery of the design value of the regular figures of area is spontaneous.

These shapes appear in the decoration, and often in the building construction,

of many peoples. Apparently continued use of these elementary forms inevi-

tably produces a system that is eventually recognizable as a definite art product

of a people or an age. This is true of Saracenic, Byzantine, Norman or Gothic

art. In decoration, especially, the themes are recognizable by inspection. The

student of symmetry can hardly make a mistake in following out the pattern

theme in any style of art where the regularfigures are used. In many styles of

architecture and decoration, other than the Greek and the Egyptian, root-two

and root-three rectangles often may be found but they are always used in the

static manner. In Greece or in Egypt they were used in the dynamic manner.

In static symmetry these two rectangles are produced as logical divisions of

some regular figure. The central area of a hexagon, as in Fig. 7, is a root-three

rectangle.

The heavy line part of Fig. 8 is a root-two rectangle.

Either of these rectangles would be obtained in a multiplicity of ways from

the simple pattern forms made by squares and equilateral triangles.

That squares and equilateral triangles are not found oftener in Greek and

Egyptian design is indeed remarkable. The Choragic Monument of Lysicrates

is a Greek example of a building in which an equilateral triangle appears and

*The reader is referred to Gwilt's "Encyclopedia of Architecture," section on Propor-

tion, for a fairly complete list, with some detailed explanation, of these "systems."

Also Leonardo da Vinci's sketch books, the Note Book of Villars de Honecourt, a

Twelfth Century French architect, and the published works of VioUet le Due.
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Fig- 7- Fig. 8.

the Tower of the Winds is an example of a square used in a static manner to

obtain an octagon. Both of these structures are, however, comparatively late.

The equilateral triangle appears often in tripod forms and In chariot wheels

of six spokes, but the square, as a proportioning factor in decoration or

construction, is strangely rare. The Greek and Egyptian methods of using

static symmetry are quite different from those of other ages and peoples. In

the art of the former it is almost invariably employed as an area in rectangle

form, which is subdivided into multiple squares. For example, a Greek design

whose greatest width is some even multiple of its greatest length, as i : 2, i :

i^, I : I . I /3, I : lyi, I : 2. 2/3, etc., is almost sure to have its details expressi-

ble in logical subdivisions of the containing shape. Any of the static examples

of Greek pottery shapes in this book exemplify the idea. The Greeks, however,

seem always to have been fond of subtleties. They seemed to enjoy finding

hidden squares. In a shape composed of two squares, as in Fig. 9, they would

' ^

Fig. 9.

use the diagonals of the whole and the diagonals of the half to obtain the

smaller square. Without the construction lines the relation of the small to the

two larger squares is not obvious. The early black-figured dinos, page 127, is an

example of the subtle use of squares to obtain, not only structural but also

curve relationship. Greek practice in static symmetry was not essentially
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different from what it was in dynamic. The latter type was simply a more

powerful and flexible instrument.

The modern designer is much at fault in failing to realize that unless some

type of symmetry is employed in art, design does not exist. Indeed, it is ex-

traordinary that the modern architect almost invariably fails to recognize the

part played by the regular figures in Gothic art. For example, he seems to feel

that these pattern forms, which are so manifest, are arbitrary and were used

because they facilitated tracery and diaper arrangement. As a matter of fact

they are invariably the logical outgrowth of a fundamental plan scheme-wh-ich

permeatgs^a structure qr_desigrL.throughout, thus producing that unity and

interrelationship of parts and whole wKich may be compared to a like con-

dition in a snow crystal. The modern designer also fails to realize that formal-

ized art is impossible unless it is schematic. That even realistic representa-

tion will lack integrity and force, and become little better than a photograph,

j unless it is planned in area, /. e., in two dimensions. It is because of this lack

\of understanding of schematic design that no formalized animals, for example,

appear in art today, which can in any way be compared to those of Egypt,

Greece or the Middle Ages. Indeed, this is the lesson that modern artists must

learn; that the backbone of art is formalization and not realism. Art means

exactly what the term implies. It is not nature, but it must be based" on

nature, not upon the superficial skin, but upon structure. Man cannot other-

wise be creative, be free. As long as he copies nature's superficialities he is an

-Artistic slave. No craftsmen ever so thoroughly understood this as the Greeks.

When they used a flower or a plant as a design motive the superficial or acci-

dental aspect of the thing was eliminated. They saw that nature was tending

toward an ideal, that the principles at work underneath the surface of natural

i phenomena were perfect, but that material manifestations of the operation

,

of these principles, as exemplified by animal and vegetable growth, owing to

vicissitudes of circumstance and the length of time necessary for development,

were seldom or never perfect. Realization of nature's ideal, however, and

understanding of the significance of structural form should enable the artist to

anticipate nature, to attain the ideal toward which she is tending, but which she

can never reach. The Greek artist was always virile in his creations,. because

he adopted nature's ideal. The modern conception of art leads toward an

overstress of personality and loss of vigor.



APPENDIX: NOTES
NOTE I.

"^HE idea that so much care should have been taken to proportion such a commonplace
article as a clay pot, will probably strike the average reader as fanciful. And it would
be so if ordinary pottery were under consideration. The vases considered here, however,

are Greek, and the Greek vase is unique. Nothing like it was made before or has been made since

the classic period. Moreover, in spite of the fact that Greek ceramics have received the en-

thusiastic attention of archaeological and other writers during the past one hundred years,

little is known of the subject. Volumes have been written about the pictures found on Greek

pottery, but the shape or form of the vase, which is of much greater importance, has been al-

most entirely neglected. In the light of dynamic symmetry, in the close analytical inspection

of the shape which this symmetry makes possible, it is clear that the classic vase has survived,

not because of its decoration and picture, admirable as these often are, but because of the ex-

traordinary beauty of its form. Scholars, since the discovery of classic pottery in the Seventeenth

Century, have advanced many strange, and sometimes amusing, theories to explain this curious

and fascinatirtg product of Greek design. The present situation in regard to the subject is summed
up by H. B. Walters, Assistant Curator of Greek and Roman antiquities in the British Museum,
who has written a history of pottery: "Any day may bring forth a new discovery which will

completely revolutionize all preconceived theories; hence there is the constant necessity for

'being up to date,' and for the adjustment of old beliefs to new." In his introduction to the cata-

logue of the Rebecca Darlington Stoddard Collection of Greek and Italian vases at Yale Uni-

versity, P. V. C. Baur says: "To the ancient Greek the form of the vase was of vital importance,

the vase painting was usually of secondary importance, a fact made clear by the great prepon-

derance of signatures of potters over those of painters."

As a matter of fact, Greek pottery is one of the greatest design fabrics ever created. It is an

arctic miracle.

NOTE II.

~^HE "cording of the temple" was a recognized process among the Egyptians, carried

out by professional rope-stretchers and attended with ceremonies somewhat like those

,_L seen at our laying of the corner stone.'- L,ockyer quotes several significant descriptions

of the process taken from wall inscriptions at Karnak, Denderah and Edfu. The Pharaoh him-

self was the chief actor and he was supposed to be assisted by a goddess called Sesheta, "the

mistress of the laying of the foundation stone." These inscriptions also confirm the importance

attached to careful orientation.

"Arose the king," says one, "attired in his necklace and feathered crown; and all the world

followed him, and the majesty of Amenemhat. The ker-heb, chief priest, read the sacred text

during the stretching of the measuring cord and the laying of the foundation stone on the piece

of ground selected for this temple. Then withdrew his majesty Amenemhat; and King Userte-

sen wrote it down before the people." Another inscription represents Sesheta as addressing

the king: "The hammer in my hand was of gold, as I struck the peg with it, and thou wast with

me in thy capacity of Harpedonapt. Thy hand held the spade during the fixing of its four corners

with accuracy by the four supports of heaven." Two more inscriptions directly describe orienta-

tion: "The living God, the magnificent son of Asti, nourished by the sublime goddess in the

temple, the sovereign of the country, stretches the rope in joy^ with his glance toward the ak

of the Bull's Thigh Constellation, he establishes the temple-house of the mistress of Denderah,

as took place there before" and the king says, "Looking to the sky at the course of the rising

stars and recognizing the ak of the Bull's Thigh Constellation, I establish the corners of the

temple of her majesty." Finally, regarding the building of the temple at Edfu, Lockyer remarks;

"the king is represented as speaking thus:^-'I have grasped the wooden peg and the handle

of the club; I hold the rope with Sesheta; my glance follows the course of the stars; my eye is on

Meschet; .... I establish the corners of thy house of God.' And in another place:

'Sir Norman Lockyer, "The Dawn of Astronomy."
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.... 'I have grasped the wooden peg; I hold the handle of the club; I grasp the cord with

Sesheta; I cast my face toward the course of the rising constellations; I let my glance enter

the constellation of the Great Bear; .... I establish the four corners of thy temple.'

"

This laying out of the plan was called by the Egyptians Put-ser, which means literally "to

stretch a cord." Having obtained a North and South line, says Ball,i the rope fasteners found

an East and West one by an immemorial geometrical method still in use among engineers and

carpenters. It was known that a triangle of which the sides were respectively 3, 4 and 5 units

long, was necessarily a right triangle. The Harpedonapt, therefore, took a rope AD with knots

tied at B and C so that AB was equal to 4, BC to 3 and CD to 5. Fastening BC with peg along

the north and south line, he then rotated BC and CD about B and C until the points A and D
coincided to form the vertex of a triangle. BA was then necessarily at right angles to BC.

Clement of Alexandria quotes Democritus as saying: "I have wandered over a lafger portion

of the earth than any man ofmy time, inquiring about things most remote; I have observed very

many climates and lands, and have listened to very many learned men; but no one has yet sur-

passed me in the construction of lines with demonstration; no, not even the Egyptian Harpedo-
naptae, as they are called, with whom I lived five years in all, in a foreign land." Allman, p. 80.

It is worthy of note that about the same time that Greek artists were creating their stu-

pendous masterpieces, and using root rectangles to correlate the elements of their designs,

in far India designers of another race were using the same idea in architecture. The Hindus
actually worked out the root rectangles up to root six. This is as far as the record goes. There
is no indication that they knew anything of the connection between root five and extreme and
mean' ratio. The Hindu phraseology is suggestive. The record of the fact is contained in the

Sulvasutras and is published in a book on Indian Mathematics by George Rusby Kaye (Cal-

cutta and Simla). Mr. Kaye says:

"The term Suhasutra means 'the rules of the cord' and is the name given to the supplements
of the Kalpasutras which treat of the construction of sacrificial altars. The period in which the

Sulvasutras were composed has been variously fixed by various authors. Max Miiller gives the

period as lying between 500 and 200 B. C: R. C. Dutt gave 800 B. C: Buhler places the origin

of the Apastamba school as probably somewhere within the last four centuries before the Chris-

tian era, and Budhayana, somewhat earlier: Macdonnell gives the limits as 500 B. C.
and A. D. 200, and so on. As a matter of fact, the dates are not known and those suggested by
the different authorities must be used with the greatest circumspection. It must also be borne
in mind that the contents of the Sulvasutras, as known to us, are taken from quite modern
manuscripts; and that in matters of detail they have probably been extensively edited. The
editions of Apastamba, Budhayana and Katyayana, which have been used for the following

notes, indeed differ from each other to a very considerable extent."

Reference to the root rectangles are:

" 'The chord stretched across a square produces an area of twice the size.'
"

The reference here is to the diagonal of a square, probably as the operation would be done by
a "rope stretcher," and, of course, would be the first step necessary for the determination of a

root-two rectangle. The square on the diagonal of a square is twice the area of a square on the
side.

" 'Take the measure for the breadth, the diagonal of its square for the length; the diagonal
of that oblong is the side of a square the area of which is three times the area of the square.'

"

Here is described the construction of a root-two rectangle and the use of its diagonal to ob-
tain the side of a root-three rectangle. The square described on the side of a root-three rec-

tangle is three times the area of the unit square. And so on.
" 'The diagonal of an oblong produces by itself both the areas which the two sides of the

oblong produce separately.

" 'This is seen in those oblongs whose sides are three and four, twelve and five, fifteen and eight,

seven and twenty-four, twelve and thirty-five, fifteen and thirty-six.' " Budhayana edition.

Translated by Dr. Thibaut.

'"Short History of Mathematics."
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This last description refers to a geometrical construction which would be equivalent to the

forty-seventh proposition of the first book of Euclid. That is, that the square on the hypotenuse

is equal to the squares on the two legs of a right-angled triangle. It is noteworthy that here the

hypotenuse is called the diagonal of an oblong. This would be an artist's statement of the fact

enimciated in the forty-seventh proposition. A right-angled triangle doesn't mean as much to

an artist as does a rectangle. The former suggests incompleteness, the latter means finish, an

ensemble.

The second part of the last statement refers to the right-angled triangles obtained by the

"rope stretchers" when they used the knotted rope to construct a right-angled triangle on the

ground. In Egypt, as Cantor says, this operation of rope stretching, as is proven by the bas-

reliefs, dates back to a very early period, possibly the first dynasty. This means that rope stretch-

ing was an established profession thousands of years before there is an historical reference to

the same thing in either India or Greece.

The oblong whose sides are three and four means the celebrated 3, 4, 5 right-angled triangle

used for temple cording for ages. Three and four units on a knotted rope represent the two sides

of a triangle; the hypotenuse is five units, the squares on the two sides being three times three

equalling nine, and four times four being sixteen; and nine plus sixteen being twenty-five, the

square of five.

The sides of a triangle which are composed of twelve and five units will have an hypotenuse

of thirteen units. 12x12 =144, 5 X5 =25, 144 plus 25 =169, 13 X13 =169.

Fifteen and eight units have an hypotenuse of seventeen units, the sum of the squares of

fifteen and eight being two hundred and eighty-nine, the square of seventeen, and so on.

Pythagoras, one of the Greek philosophers who brought the knowledge of geometry from

Egypt to Greece, has left us a rule for obtaining these right-angled triangles arithmetically,

beginning with odd numbers. Later Plato supplied a rule beginning with even numbers. See

Allman.

The early development of science in India was apparently slow and was soon tainted with

looseness and inaccuracy. See T. L. Heath's "Element's of Euclid," particularly his notes on

the forty-seventh proposition of the first book. This element of inaccuracy flavors all Hindu

art; indeed, degree of precision and clearness of expression are hall marks for the art of any

nation. Hindu art, for example, is much what Hindu science is; the same may be said of Greek

art and science.

NOTE III.

"^HIS quotation from Vitruvius, the Roman writer on architecture, was used by David
Ramsey Hay, a Scotch artist and author of the early part of the nineteenth century,

J

1

who wrote several books upon the subject of symmetry and proportion. Hay's work is

noteworthy as he is the only one of the many who have contributed theories to this subject

who was attracted to the root rectangles. The idea was suggested to him by a mathematical

friend who was conversant with the history of Greek geometry. Hay, however, knew little of

the properties of these area figures and missed entirely the rectangle of the whirling squares. It

is remarkable, however, that he tried to obtain the design themes of Greek pottery, in spite of

the fact that in his day little was known about the vase and he did not have the benefit of first-

hand observation. This writer, however, made the mistake of trying to bring design into the

domain of music. In this attempt he not only failed utterly, but became so confused that his

contribution, except for its historical interest, is valueless.

Modern research has entirely discredited Vitruvius. Not a single Greek example has been

found which bears out the Roman writer's theory. As a matter of fact, now that we have dynamic

symmetry as a guide, it is clearly to be seen that this writer gives us nothing but the echo of a

tradition and his elaborate instructions for constructing buildings in the Greek style constitute

nothing more than the Roman method of using static symmetry. The Romans were either in-

tentionally misled by the Greek artists and craftsmen, or, blinded by conceit, they jumped at

the conclusion that what was meant by the Greek tradition that the "members of the human
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body were commensurate with the whole'' was that the length measurements were commen-
surate. Dynamic symmetry now shows us that not only are the members of a Greek statue of

the best period commensurate with the whole, but that the same is true of the human figure.

But commensurate means commensurate in area, not in line. If a statue is made wherein the

members are commensurate in line a static condition necessarily results. See Note No. 6.

NOTE IV.

~^HOSE interested in the latest contribution' to Morphology should read "Growth and

Form" by D'Arcy W. Thompson, Cambridge, 1917. This is an extraordinarily well-

written book and the author's treatment of the logarithmic spiral in relation to uniform

growth is most able. It may be said in passing, however, that this author has overstressed the

value of the "gnomon" in some respects, and understressed it in others. Professor Thompson,
however, gives the best general explanation of the proportion or logarithmic spiral in relation

to growth phenomena that has yet appeared.

NOTE V.

~^HE following notes and bibliography are by Professor R. C. Archibald of Brown University

.

'The writer feels that Professor Archibald's contribution is both valuable and timely and that

J

I

it will do much to clear away the mystic, sentimental and impracticable notions now prevalent

among artists and others in relation to the terms "Golden Section" and"Divine Section."

NOTES ON THE LOGARITHMIC SPIRAL, GOLDEN SECTION
AND THE FIBONACCI SERIES'

I. The Logarithmic Spiral.'^

"NHE first discussions of this spiral occur in letters written by Descartes to Mersenne in

1638, and are' based upon the consideration of a curve cutting radii vectores (drawn

from a certain fixed point 0), under a constant angle, <i>.^ Descartes made the very re-

markable discovery that if B and C are two points on the curve its length from to £ is to the

radius vector OB as the length of the curve from to C is to OCf whence s = ap,^ where s is

the length measured along the curve from the pole to the point (p,^), and a = sec </>.* This leads

to the polar equation (i) p = ke'^, where ^ is a constant and c = cot 4>. The pole is an asymp-
totic point. The pole and any two points on the spiral determine the curve; for the bisector of

1 Most of the following notes appeared in The American Mathematical Monthly, April and May, 1918,
but extensive additions, and some corrections, are here introduced.

^ Historical sketches and some of the properties of the curve are given in F. Gomes Teixeira, Traite des

courbes speciales remarquables, tome a, Co'imbre, Imprimerie de I'universite, 1909, pp. 76-86, 396-399, etc.;

in G. Loria, Spezielle algebraische und transzendente ebene Kurven, Band 2, 2. Auflage, Leipzig, Teubner,
1911, pp. 60 ff.; in Mathematisches Worterbuch . . . angefangen von G. S. Klijgel . . . fortgesetzt von C. B.
MoUweide, Leipzig, Band 41, 1823, pp. 429-440.

^ The curve arises in the discussion of a problem in dynamics. For references see the next footnote.
' Oeuwes de Descartes, tome 2, publi^es par C. Adam et P. Tannery. Paris, Cerf, 1898, p. 360; also pp.

232-234; (see Montucla, Histoire des Mathlmatiques, nouvelle Edition, tome 2, Paris, 1799, p. 45). Cf. L
Barrow, Lectiones Geometricae, Londini, 1670, p. 124; or English edition by J. M. Child, London, Open
Court, 1916, pp. 136-9, 198. From the discussion and figure of Descartes it seems certain that he had no
conception of O as an asymptotic point of the spiral. This property of the point was remarked in a letter,

dated July 6, 1646, from Toricelli to Robervall {LTntermSdiaire des mathematiciens, 1900, vol. 7, p. 95).
See also G. Loria, Atti delta accademia del Lincei, 1897, p. 318.

' The intrinsic equation s^R = K represents a logarithmic spiral when m = — i , a clotho'ide when m = i

,

a circle when m = o, the involute of a circle when m = — i and a straight line when m = 00 . Haton de la

Goupilli^re remarked, and AUegret proved [Nouvelles annates de mathimatigues, tome n (2), 1872, p. 163,)
that the logarithmic spiral may be regarded also as a particular case of the spiral sinusoid.

' That is, the length of the arc measured from the pole is equal to the length of the tangent drawn at the
extremity of the arc and terminated by the line drawn through the pole perpendicular to the radius vector,

that is, "the polar tangent." The logarithmic spiral was the first transcendental curve to be rectified.



DYNAMIC SYMMETRY - 147

the angle made by the radii vectores of the points is a mean proportional between the radii. If

c = I the ratio of two radii vectores corresponds to a number, and the angle between them to its

logarithm; whence the name of the curve.

The name logarithmic spiral is due to Jacques Bernoulli.' The spiral has been called also the

geometrical spiral,^ and the proportional spiral;^ but more commonly, because of the property

observed by Descartes, the equiangular spiral.''

Bernoulli (and Collins at an earlier date) npted the analogous generation of the spiral and loxo-

drome ("loxodromica"), the spherical curve which cuts all meridians under a constant angle.

Credit for the first discovery that the loxodrome is the stereographic projection of a loga-

rithmic spiral seems to be due to Collins.'

As the result of Descartes's letters distributed by Mersenne, Torricelli also studied the

logarithmic spiral. He gave a definition which may be immediately translated into equation

(l), and from it he obtained expressions for areas, and lengths of arcs. These results were

rediscovered by John Wallis^ and published in 1659.'' Wallis states in this connection that Sir

Christopher Wren had written about the logarithmic spiral and arrived at similar results.

During 1691-93 Jacques Bernoulli gave the following theorems among others: {a) Logarithmic

spirals defined by equations (i) for different values of k are equal and have the same asymptotic

point; (i) the evolute of a logarithmic spiral is another equal logarithmic spiral having the same

asymptotic point;^ (c) the pedal of a logarithmic spiral with respect to its pole is an equal log-

' "Specimen alteram calculi difFerentialis in dimetienda Spiral! Logarithmica Loxodromiis Nautarum
. ," "per J.B.," Jcta eruditorum, 1691, pp. 282-283; Opera, tome i, Genevae, 1744, pp. 442-443.

Loria's references (/. c, p. 61) to Varignon and Bernoulli are distinctly misleading. In 1675 John Collins

used, in this connection, the expression "the spiral line is a logarithmic curve," Correspondence of Scientific

Men of the Seventeenth Century, vol. i, 1841, p. 219; [Quoted in full in a later footnote, page 150].

In more than one place Bernoulli refers to the logarithmic spiral as the 'Spira' roirabilis," e. g. Opera, tome

I, pp. 491, 497, 5S4; also Acta eruditorum, 1692 and 1693.
2 P. Nicolas, De Novis Spiralibus, Exercitationes Duae . . In posteriori autem agitur de alia quadam

spirali a prioribus longe diversa, de qua Vvallisius &f Vvrenius insignes Geometrae scripserunt; iS quae illi non

attigere circa tangentem hujus spiralis, spatiorum ilia contentorum, &? curvae ipsius dimensionem absohuntur.

Tolosae, 1693. "Exercitatio II. De spiralibus geometricis" pp. 27-44.. Appendix, pp. 45-51. The following

quotation from page 27 may be given: "Esto curva BCDEF cujis sit talis proprietas, ut omnes radii AB,
AC, AD, AE, AF constituentes angulos aequales in centro A sint inter se in continua proportione Geometrica.

Propter hanc insignen proprietatam curvam BCDEF vocamus Spiralem Geometricamat distinguatur a Spirali

communi & Archimedea, cujus proprietas est ut radii aequales angulos ad centrum sive principium Spiralis

constituentes sese aequaliter excedant, ac proinde servent proportionem Arithmeticam."
^ E. Halley, Philosophical transactions, 1696. The lengths of segments cut off from a radius vector between

successive whorls of the spiral form a geometric progression.
* A term originating with R. Cotes, Philosophical transactions, 1714; reprinted after the death of Cotes

in his Harmonia Mensurarum, Cantabrigiae, 1722 ("Aequiangula spiralis," p. 19). The term was revived

more recently by Whitworth in Messenger of Mathematics, 1862.

' See two letters of Collins, one undated and the other dated Sept. 30, 1675, in Correspondence of Scientific

Men of the Seventeenth Century Vol. i, Oxford, University Press, 1841, pp. 144, 218-19. The result was

first given in print by E. Halley, in Philosophical transactions, 1696.

Cf. F. G. M., Exercices de Giomitrie Descriptive, 4e ed., Paris, Mame, 1909, pp. 824-6. Chasles showed

(Aper(U historique, etc., . . . 2e 6d., Paris, 1875, p. 299) that if the logarithmic curve generates a surface by

revolving about its asymptote, and if this asymptote is the axis of a helicoidal surface, the two surfaces cut

in a skew curve whose orthogonal projection on a plane perpendicular to the asymptote is a logarithmic

spiral. See also H. Molins, MSmoires de I'acadlmie des sciences inscriptions et belles-lettres de Toulouse, tome

7 (sem. 2), 1885, p. 293 f.; tome 8, 1886, pp. 426. That the logarithmic spiral is a projection of a certain

"elliptic logarithmic spiral" was shown in W. R. Hamilton, Elements of Quaternions, London, 1866, pp.

382-3. For other quaternion discussion of the logarithmic spiral see H. W. L. Hime, The Outlines of Sjta-

ternions, London, 1894, pp. 171-3. ..,.„,
" Cf. Turquan, "Demonstrations ^lementaires de plusieurs propri6t6s de la spiral loganthmique," Nomelles

annales de mathematiques, tome 5, 1846, pp. 88-97. "Note" by Terquem on page 97.

'
J. Wallis, tractatus Duo, 1659, pp. 106-107; also Opera, tome i, 1695, pp. 559-561.

' Paragraph 9 of an article in Acta eruditorum. May, 1692, entitled "Lineae cycloidales, evolutae, ante-

volutae, causticae, anti-causticae, peri-causticae. Earum usus et simplex relatio ad se invicem. Spira mira-

bilis. Aliaque per'I.B." Cf. Oeuvres Completes de Christian Huygens. Tome 10. La Haye, 1905, p. 119.

The center of curvature at a point on a logarithmic spiral is the extremity of the polar subnormal of the

point.
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arithmic spiral;' {d) the caustics by reflection and refraction of a logarithmic spiral for rays

emanating from the pole as a luminous point are equal logarithmic spirals.

The discovery of such "perpetual renascence" of the spiral delighted Bernoulli. "Warmed
with the enthusiasm of genius he desired, in imitation of Archiniedes, to have the logarithmic

spiral engraved on his tomb, and directed, in allusion to the sublime tenet of the resurrection

of the body, this emphatic inscription to be affixed—Eadem mutata resurgo."^ The engraved

spiral (very inaccurately executed) and inscription, in accordance with Bernoulli's desire, may
be seen to-day on his tomb in the cloister of the cathedral at Basel.^

The logarithmic spiral appears in three propositions of Newton's "Principia" (1687).^ From
the first there develops that if the force of gravity had been inversely as the cube, instead of

the square, of the distance, the planets would have all shot oiF from the sun in "diffusive log-

arithmic spirals."* In the second proposition Newton showed that the logarithmic spiral would
also be described by a particle attracted to the pole by a force proportional to the square of the

density of the medium in which it moves, while this density is at each point inversely propor-

tional to its distance from the pole. In the third proposition the second was generalized by
the substitution of "inversely proportional to any power of its distance" for "inversely pro-

portional to its distance"—a result which has been attributed to Jacques Bernoulli (for exam-
ple, by Gomes Teixeira, /. c).

There is also considerable discussion of the logarithmic spiral by Guido Grandi in various

parts of his Geometria Demonstratio T'heorematum Hugenianorum circa Logisticam seu Log-
arithmicam Lineam . . . , Florentiae, 1701.^ A section in the first chapter deals with

"spiralio logarithmicae per duos motus descriptio," and points are found (page 8) "in Spirali

Logistica, aliis Spiralis Logarithmicae, quibusdam Spiralis Geometricae nomine appellata"

(evidently referring to P. Nicolas, /. c). In a letter to Ceva, printed at the end of the vol-

ume, the gauche spiral cutting the generators of a right circular cone under a constant angle

was studied for the first time, and it was shown, by purely geometric methods, that this spiral

may be projected into a logarithmic spiral.

In a memoir read by Pierre Varignon before the French Academy in 1704' he discussed a

transformation equivalent to x = p, y = I m, where p and <•> are the polar coordinates of the

point corresponding to {x, y), and / is a constant. Varignon found, in particular, that from the
— i-tij

logarithmic curve x = e^ \s derived the logarithmic spiral p = e .So also, if / = i, the

' The «th positive pedal of the spiral p = ke<:S with respect to the pole is

p = .fsin»<^./<? -*)./"

(J. Edwards, Elementary Treatise on the Differential Calculus, 3d edition, London, Macmilkn, 1896, p. 167).
2 Acta eruditorum, 1706, p. 44.. CJ. Acta eruditorum, 1692, p. 212; also Opera, tome i, Genevae, 1744, p.

502, and p. 30 of "Vita."
' CJ. L. Isely, "Epigraphes tumulaires de math^maticiens," Bull, de la sociStS des sciences naturelles de

Neuchatel, tome 27, 1899, p. 171. See also W. W. Rupert, Famous Geometrical Theorems and Problems (Heath's
Mathematical Monographs, part 4), Boston, 1901, p. 99.

* Book I, proposition 9, and book II, propositions 15 and 16.

' The hodograph of an equiangular spiral is an equiangular spiral (W. Walton, Collection of Problems in
Illustration of the Principles of Theoretical Mechanics, 3d ed., Cambridge, 1876, p. 296). In a chapter on elec-

tromagnetic observations in J. C. Maxwell's Treatise on Electricity and Magnetism (vol. 2, Oxford, Claren-
don Press, 1873, pp. 336-8) the discussion calls for the investigation of the motion of a body subject to an
attraction varying as the distance and to a resistance varying as the velocity. This leads to the reproduction
of Tait's application {Proc. Royal Society of Edinburgh, vol. 6, 1867, p. 221 f.) of the principle of the hodo-
graph to investigate this kind of motion by means of the logarithmic spiral.

. "If a particle be describing a logarithmic spiral under the action of a force to the pole, and simultaneously
the law of force be altered to the inverse biquadrate and the velocity to Vf X its previous value, the particle

will proceed to describe a cardioide." Purkiss, Messenger of Mathematics, vol. 2, 1864. For other results of
this type, involving the spiral, see Newton's Principia, first book, sections I-III, with notes and illustra-

tions by P. Frost, London, 1880, p. 203.

'Also in Christiani Hugenii Zuelechemi . . . Opera Reliqua, tome i, Amstelodami, 1728, pp. 136-288.
' "Nouvelle formation de spirales," Histoire de Pacadlmie royale des science, ann6e 1704, Paris, 1706, pp.

69-131; see especially pp. n3f
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sine curve x = smy becomes a circle. In recent times this latter transformation has been em-

ployed in plotting alternating voltage and current curves.^

In 1892 I. Stringham showed'' that if the logarithmic spiral is properly defined as a geometric

locus it may be used for defining the logarithm and demonstrating its properties, which lead to

a classification of logarithmic systems. This classification was somewhat modified by M. W.
Haskell and I. Stringham.'

Cremona's discussion of the logarithmic spiral, and how it may serve, when drawn, for the

solution of problems involving extraction of roots^ (higher than the second) should not be for-

gotten. Then there is A. Steinhauser's Die Elememe des graphischen Rechnens mit hesonderer

Berucksichtigung der logarithmischen Spirale. Eine Einleitung zur Construction algebraischer und
transcendenter Ausdriicke fiir Bau- und Maschinen-Techniker'—Equiangular spirals appear

as "tie-lines" and "strutt-lines" in a problem of W. J. Ibbetson's Elementary Treatise on the

Mathematical Theory of Perfectly Elastic Solids^—There is also the little known but notable

paper, published by James Clerk Maxwell when only eighteen years of age,' which contains

several properties of logarithmic spirals. Some quotations follow:

"The involute of the curve traced by the pole of a logarithmic spiral which rolls upon any

curve is the curve traced by the pole of the same logarithmic spiral when rolled on the involute

of the primary curve." (Page 524 [10].)

"The method of finding the curve which must be rolled on a circle to trace a given curve is

mentioned here because it generally leads to a double result, for the normal to the traced curve

cuts the circle in two points, either of which may be a point in the rolled curve.

"Thus, if the traced curve be the involute of a circle concentric with the given circle, the rolled

curve is one of two similar logarithmic spirals." (Page 529 [16].) (Often attributed to Haton de

la Goupilliere.)

"If any curve be rolled on itself, and the operation repeated an infinite number of times, the

resulting curve is the logarithmic spiral." The curve which being "rolled on itself traces itself

is the logarithmic spiral." (Page 532 [19].)

"When a logarithmic spiral rolls on a straight line the pole traces a straight line which cuts

the first line at the same angle as the spiral cuts the radius vector." (Page 535 [23].) (Often at-

tributed to Catalan.)

Among many other results the following may be noted: Haton de la Goupilliere proved* that

the logarithmic spiral is the only curve whose pedal with respect to a given pole is an equal

curve which can be brought into coincidence with the first by a rotation about the pole—Cesaro

^ For example: D. C. Jackson and J. P. Jackson, Alternating Currents and Alternating Current Machinery,

New edition, New York, 1917, pp. 13-15. The discussion in this connection seems to have originated with

C. P. Steinmetz, Trans. Amer. Inst. Electrical Engs., vol. 10, p. 527; Elektrotechnische Zeitschrijt, June 20,

1890.
* I. Stringham, "A classification of logarithmic systems," American 'Journal of Mathematics, vol. 14, pp.

187-194.
' Bulletin of the New York Mathematical Society, vo\. 2, pp. 164-170, 1893. See also I. Stringham, Uniplanar

Algebra, San Francisco, 1893.
* L. Cremona, Graphical Statics. Translated by T. H. Beare, Oxford, Clarendon Press, 1890, pp. S9-64.

Italian edition, Torino, 1874, pp. 39-42. The xylonite logarithmic spiral curve (eight inches in width) sold by
KeufFel & Esser Co., New York, furnishes the means for accurately and rapidly drawing the curve. The
curvature gradually changing it is peculiarly adapted for fitting to any part of a given curve. It assists in

the rapid determination of the center of curvature of a given part of the curve, and, hence, in drawing evo-

lutes and equidistant curves. An eight-page pamphlet by W. Cox {The logarithmic spiral curve and description

of its uses, 1 891) accompanies the instrument. Eugene Dietzgen & Co., Chicago, manufactured a similar

celluloid instrument and a ten-page pamphlet descriptive of its use was written by E. M. Scofield, and

entitled The logarithmic spiral curve (Chicago, 1892).

* Wien, 1885; especially pp. 40-75.
^ London, 1887, p. 322.
' "On the Theory of Rolling Curves," Transactions of the Royal Society of Edinburgh, vol. 16, part V,

1849, pp. 519-40. [The Scientific Papers of J. C. Maxwell, edited by W. D. Niven, vol. i, Cambridge, 1890,

pp. 4-29.] Loria, Gomes Teixeira, and Wieleitner seem to be equally ignorant of this paper.

* Journal de mathematique pures et appliquhs, tome 11 (2), 1866, pp. 329-336.
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discussed the tractrix and logarithmic spiral as correlative figures'—From logarithmic spirals

H. Dittrich derived'' (according to Loria, /. c.) sum and difference spirals which he used for

geometrical exposition . of hyperbolic functions—If a logarithmic spiral roll on a straight line

the locus of its center of curvature at the point of contact is another straight line (A. Mann-
heim, 1859)—The involutes of a logarithmic spiral are equal spirals (which is really the same as

Bernoulli's result for evolutes)—The inverse of a logarithmic spiral with respect to its pole is an

equal spiral with the same pole—Coplanar logarithmic spirals and their orthogonal trajectories,

which are again coplanar logarithmic spirals, come up (i) in the discussion of loxodromic

substitutions' and (2) in conformal representations.'' As a consequence of a general theory rela-

tive to linear transformations F. Klein and S. Lie obtained the following result:^ The loga-

rithmic spiral is its own polar reciprocal with respect to any equilateral hyperbola which has its

center at the pole and is tangent to the spiral.

In 1833 T. Olivier described to the Soci^te Philomathique, Paris, "un compass simple per-

mettant de traces toutes les spirales logarithmiques,"* and in a letter written by Collins for Tschirn-

haus, Sept. 30, 1675,^ reference is made to "an instrument invented by M. Tschirnhaus" and its

connection with the logarithmic spiral.

The most practical form of a ship's anchor was discussed in 1796 by F. H. Chapman, vice-

admiral in the Swedish Marine.' He found that the best form for each of the barbed arms would

be an arc of a logarithmic spiral cutting the shank of the anchor at an angle of 67° 30'.

1 Mathesis, tome 2, i88a, pp. 217-219.
^ H. Dittrich, Die logarithmische Spirale, Progr. Breslau, : 872.
' F. Klein and R. Fricke, Vorlesungen uber die Theorie der elliptischen Modulfunctionen, Band I, Leipzig,

Teubner, 1890, p. 168.
* G. Holzmiiller, Einfiihrung in die Theorie der isogonalen Vermandtschajten und der conformen Abbildung,

Leipzig, Teubner, 1882, pp. 65, 238-241; and "Ueber die logarithmische Abbildung und die aus ihr entspring-

enden Curvensysteme," Zeitschriftfiir Mathematik und Physik, Band 16, 1871, pp. 269-289.
* Mathematische Annalen, Band 4, 1871, p. 77. Cf. Encyklopddie der mathematischen Wissenschaften, Band

III3, Leipzig, 1903, pp. 210, 212; also Clebsch-Lindemann, Vorlesungen uber Geometrie, Band I, Leipzig,

Teubner, 1876, p. 995.
* This description may be found in T. Olivier, Complements de gSometrie descriptive, Paris, 1845, p. 445.

See also T. Olivier, Memoires de geometrie descriptive, Paris, 1851, p. 284.
' This letter is printed in Correspondence of Scientific Men of the Seventeenth Century, vol. i, Oxford, 1841.

The paragraphs of special interest in this connection are as follows: "As to the instrument invented by M.
Tschirnhaus for dividing an angle in ratione data, we suppose he gives an angle as geometers do, ready
drawn by accident or at pleasure, and then I conceive it an instrument worthy the author: whereas here

(so far as I know) we have nothing but the old mechanism, viz. to measure the angle in degrees first, by aid

of a sector or opening joint, and then set off the part proportional by aid of an arch or line of chords, which
one of the legs may draw after it, which part proportional may be attained by a sliding scale with log<^3'

lines upon it, which may be annexed to the other leg; but here I will a little enlarge on the use of M. Tschirn-
haus's invention.

"We have an instrument called the serpentine line, or, as Oughtred terms it the circles of proportion, in

the use whereof, in relation to compound interest, it is often required to divide an angle in ratione data, or an
angle being given to enlarge it in ratione data. Moreover, conceive the eye at the south pole, projecting the
loxodromia or rumb of a ship's course on the earth, on a plane touching the sphere at the north pole, the
projected curve will be a spiral line, in which, if the polar rays PE, PD, PC, P/E, [the figure of the letter is

omitted] make equal angles at the pole P, those rays will be in continual geometrical proportion; and con-
ceiving a circle described upon P as a centre, the equal segments of the arch in the circumference, made by
the polar rays, will be an arithmetical progression, suited to a geometrical one; consequently the spiral

line is a logarithmic curve and from hence the meridian line of the true sea chart may be demonstrated to

be a line of logarithmic tangents, and the spiral line with M. Tschirnhaus's angular instrument, makes the
mesolabe [an instrument for finding mean proportionals between two numbers], which our late learned
Oughtred said was hitherto tenebris obvolutum.
"To rectify or straighten this spiral, or part of it, as E^, is all one effect as to draw a touch-line to it,

or to find the rumb between two places whose latitudes and difference of longitude are given which to per-

form in lines is a proposition of great use, and hitherto wanting in navigation, and depends on the quadrature
of the hyperbola, as Dr. Barrow, at my instance, proved in his Geometrical Lectures. Moreover such a
spiral, being once well described, may serve to take away the use of compasses in Galileus or our Gunter's
sector or joint for proportions, all which I thought not impertinent to hint."

' "Om ratta Formen pa Skepps-Ankrar," Svensk. Fetensk. Academ. nya Hand!., 1796, Vol. 17, pp. 1-24.
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The distinctive properties of the logarithmic spiral which permit it to be used for lines of

pitch of cams and non-circular wheels' are: (a) that the difference of radii vectores of the ends

of equal arcs is constant; (b) the curve cuts radii vectores under a constant angle. For these

reasons two equal logarithmic spirals may roll together with fixed poles and a fixed distance

between the poles. Two arcs (not necessarily equal) of logarithmic are required for the complete

line of pitch of a wheel, but any even number of arcs may be used. A wheel with three lobes may
act on a wheel with two, which in turn may act on a unilobe wheel. Even with two reacting

wheels with the same number of lobes there are varying velocity ratios having maximum and

minimum values for the rates of rotation of the shafts.

The first definite suggestion connecting the logarithmic spiral with organic spirals seems to

have been made by Sir John Leslie in his Geometrical Analysis and Geometry of Curve Lines.'''

After proving that the involutes of a logarithmic spiral are logarithmic spirals he remarks:

"The figure thus produced by a succession of coalescent arcs described from a series of interior

centers exactly resembles the general form and the elegant septa of the Nautilus."^ The aptness

of this remark has been long since established. One of the earliest mathematical discussions of

organic logarithmic spirals was by Canon Moseley, "On the Geometrical Forms ofTurbinated and

Discoid Shells"''—a paper written more than eighty years ago which is one of the classics of natural

history. In "turbinate" shellswe are no longer dealing with a plane spiral as in the nautilus but with

a gauche spiral on a right circular cone cutting the generators at a constant angle and such that

along a generator the line-segments between successive whorls form a geometric progression.^

For mathematical and other details of Moseley's work as well as of that of many others, on

univalve and bivalve shells, Thompson's book, with its many exact references to the literature

of the subject, should be consulted. One notable work which Thompson appears to have over-

looked is Haton de la Goupilliere, "Surfaces Nautiloides."^

In the field of leaf arrangement or phyllotaxis discussion of the theories of A.'H. Church'

and Cook evolved from observations of arrangements in logarithmic spirals of florets of sun-

flowers, pine cones, and other growths, should be read in connection with Thompson's criticisms.

The fine sunflower photograph by H. Brocard* ought to be compared with those by Church.

Abridged and translated in Annalen der Physik (Gilbert), Band 6, Halle, 1800: "Von der richtigen Form der

SchifFsanker," pp. 81-95.
1 W. J. M. Rankine, Manual of Machinery and Millwork, London, 1869, pp. 99-ioa;
C. W. MacCord, Kinematics, New York, 1883, pp. 47-50;
F. Reuleaux, Lehrbuch der Kinematik, Band 2 : Die praktischen Beziehungen der Kinematik za Geometric

und Mechanik, Braunschweig, 1900, pp. 473, 542-544;
P. Schwamb and A. L. Merrill, Elements of Mechanism, New York, 1913, pp. 32-36;
R. F. McKay, The theory of Machines, London, 191 5, pp. 218-222.

F. DeR. Furman, "Cam design and construction," American Machinist, vol. 51, pp. 695-698, Oct. 9, 1919.
2 Edinburgh, 1821, p. 438.
' For pictures of the nautilus pompilius see pp. 494, 581, 582 of D. W. Thompson, On Growth and Form,

Cambridge University Press, 1917, and also pp. 57, 457 of T. A. Cook, the Curves of Life, London, Constable,

19I4. This latter work contains many beautiful illustrations and logarithmic spiral forms are specially dis-

cussed on pages 60-63, 4i3~4^ij another work by the same author. Spirals in Nature and Art, London,
Murray, 1 903, has some good illustrations.

* Philosophical Transactions of the Royal Society, London, Vol. 128, 1838, pp. 351-370.
* As early as 1701 Guido Grandi showed, /. c, as already noted, that the orthogonal projection of this

spiral on a plane perpendicular to the axis of the cone is a logarithmic spiral. The gauche spiral has been

studied by Th. Olivier (who called it the conical logarithmic spiral), Dheloppements de gSomStrie descrip-

tive, 1843, pp. 56-76; by P. Serret, Theorie nouvelle gSometrique et mecanique des lignes a double courbure,

i860, p. loi; etc. A number of results are collected by Gomes Teixiera, /. c, pp. 396-400.
For other surfaces involving the logarithmic spirals reference should be given to the very interesting pages

232-313 of G. Holzmiiller, Elemente der Stereometric, Dritter Teil, Leipzig, Goschen, 1902, on logarithmic

spiral tubular surfaces and their inverses.
' This occupies almost the whole of the third volume of Annaes scientificos da academia polytechnica do

Porto, Coimbra, 1908. Cf. VIntermediaire des mathematiciens, 1900, tome 7, p. 40; 1901, tome 8, pp. 167,

314; 1910, tome 17, p. 155.
' A. H. Church, On the Relation of Phyllotaxis to Mechanical Law, London, Williams and Norgate, 1904.
' In L'Intermidiaire des mathlmaticiens, 1909, and.in H. A. Naber, Das Theorem des Pythagoras, Haarlem,

Visser, 1908, opposite p. 80.
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II. Golden Section.

In the "Elements" of Euclid (who flourished about 300 B. C), the following propositions

occur: (i) "To cut a given straight line so that the rectangle contained by the whole and one

of the segments is equal to the square on the remaining segment" (Book II, proposition 11);

(2) "To cut a given finite line in extreme and mean ratio" (Book VI, proposition 30).' While

these propositions are equivalent in statement the methods of construction given by Euclid are

quite different. There can be little doubt that the construction in the second is due to Euclid

and in the first to the Pythagoreans (fifth century B. C). The result is used "To construct an

isosceles triangle having each of the angles at the base double of the remaining one" (Elements,

Book IV, 10) and this leads to the construction of a regular pentagon (Book IV, 11).

In the Elements, book XIII, the first five propositions, which are preliminary to the con-

struction and comparison of the five regular solids, and deal with properties of a line segment

divided in extreme and mean ratio, are usually attributed to Eudoxus, who flourished about

365 B. C. Proclus tells us that Eudoxus "greatly added to the number of the theorems which
Plato originated regarding the section"; scholars agree that "the section" refers to the division

in extreme and mean ratio.

The so-called book XIV of Euclid's Elements, written by Hypsicles of Alexandria between

200 and 100 B. C, contains some results concerning "the section."

In recent times the name golden section has been applied to the division of a line segment
as above^ in th& ratio (\/5 — i) : 2. Terquem believed that the expression "extreme and mean
ratio" (which is an exact translation of Euclid's Greek phrase) is "une reunion de mots ne pre-

sentant aucun sens,"^ and following J. F. Lorenz (1781) employed the term "continued section."

Terquem has also suggested:* "diviser une droite decagonalement." Leslie introduced the term

"medial section. "^ "Divine proportion" was used by Fra Luca Pacioli in 1509^ and possibly

earlier by Pier della Francesca;' "sectio divina" and "proportio divina" occur in the writings

of Kepler.

' These enunciations are taken from The Thirteen Books of Euclid's Elements translated with introduction
and commentary by T. L. Heath, 3 vols., Cambridge, at the University Press, 1908. For statements in con-
nection with our discussion see particularly, Vol. i, pp. 137, 403; Vol. 2, p. 99; Vol. 3, p. 441.

^ The earliest instances which I find of the use of the term golden section are in J. Helmes, "Eine einfachere,
auf einer neuen Analyse beruhende Auflosung der sectio aurea, nebst einer kritischen Beleuchtung der
gewohnlichen Auflosung und der Betrachtung ihres padagogischen Werthes." Archiv der Mathematik, Gru-
nert, Band 4, 1844, pp. 15-22; in A. Wiegand, Geometrische Lehrsatze und Aufgahen, Band 2, i. Abtheilung,
Halle, 1847, P- 142; and also in A. Wiegand, Tier allgemeine goldene Schnitt und sein Zusammenhang mit der
harmonischen Theilung. . . Halle, 1849.
Much negative evidence seems to indicate that the term 'golden section' was originated within the thirty

years 1815-1844. For example, it is not mentioned in Klugel-Mollweide's Mathematisches Worterbuch,
which contains so many references to the literature of different topics. We do, however, find the following
(Erste Abtheilung, vierter Theil, Leipzig, 1823, p. 363): "Die Aufgabe bey Eukleides II, 11, oder VI. 30,
ist sonst auch bisweilen sectio divina genannt."

' Nouvelles annates de mathimatiques, Paris, tome 12, 1853, p. 38.
* Journal de mathimatiques pures et appliquees, Paris, tome 3, 1838, p. 98.
' J. Leslie, Elements of Geometry, geometrical Analysis and plane Trigonometry, Edinburgh, 1 809, p. 66.
" Divina Proportione opera a tutti gli ingegni perspicaci e curiosi necessaria que ciaseum studioso di philoso-

phia: prospettiva, pictura, sculptura, architectura: musica: e altre matematice . . . Venetiis . . . 150^. Although
not printed till 1509 the manuscript of this work was completed in 1497. The geometrical drawings were
made by Leonardo da Vinci; cf. G. Lihri, Histoire des Sciences math, en Italic, tome 3, Paris, 1840, p. 144,
note 2. Another edition of the Latin text "herausgegeben, ubersetzt und erlautert von C. Winterberg"
appeared at Vienna (Graser) 1889. Another edition 1896, 6 -J- 367 pp. A full analysis of Pacioli's work is to

be found in A. G. Kastner, Geschichte der Mathematik . . . Band I, Gottingern, 1796, pp. 417-449. See also

M. Cantor, Vorlesungen uber Geschichte der Mathematik, Band 2, 2. Auflage, Leipzig, 1900, pp. 341 fF., 347.
' It has been shown by G. Mancini that parts of Pacioli's Divina Proportione were taken from a Vatican

manuscript by Pier della Francesca. See (i) G. Pittarelli, Atti del IV. congresso dei matematici, tomo 3,
Roma, 1909; (2) G. Mancini, "L'opera 'De Corporibus Regularibus' di Pietro Franceschi detto Francesca
usurpata da Fra Luca Pacioli" (con dodici tavole) Reale accademia dei Lincei, 191 5. See review by F. Cajori
in the American Mathematical Monthly , Vol. 23, 1916, p. 384. (3) G. B. de Toni, "Intorno al codice sforzesco
'De divina proportione' di Luca Pacioli e i disegni geometric! di qust' opera attributi a Leonardo da Vinci,"
Modena soc. dei naturalistic e matematici, atti, 134, 191 1, pp. 52-79.
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Pacioli's work was doubtless influential in inspiring a certain amount of mysticism in the

consideration of golden section by later writers. In a work published in 1569, P. Ramus asso-

ciates the Trinity with the three parts of golden section. A little later Clavius wrote of its "god-

like proportions." As noted above Kepler declared himself similarly. He said also: "Geometry

has two great treasures, one is the Theorem of Pythagoras, the other the division of a line into

extreme and mean ratio; the first we may compare to a measure of gold, the second we may
name a precious jewel."'

In the Thirteenth Century Campanus proved (in his edition of Euclid's Elements, bk. IX,

prop. r6) that golden section was irrational. His argument (by mathematical induction) was

reproduced in algebraic notation by Genocchi and by Cantor.^

There is an interesting passage on golden section by Albert Girard in his edition of Stevin's

works.' Girard gives a method of expressing the ratio of the segments of a line (cut in golden

section) in rational numbers that converge to the true ratio. For this purpose he takes the

sequence

(i) 0,1,1,2,3,5,8,13,21,...,

every term of which (after the second) is equal to the sum of the two terms that precede it,

and says, after Kepler, any number in this progression has to the following the same ratios

(nearly) that any other has to that which follows it. Thus 5 has to 8 nearly the same ratio that

8 has to 13; consequently any three consecutive numbers such as 8, 13, 21 nearly express the

segments of a line cut in golden section. Since the fractions

(2) 1, i, I, I, f , A, if,
•••

are the various convergents of the continued fraction

1 +
I

1 +
I ...

Maupin reasons with force (after taking into account all which follows in the note) that Girard

was probably familiar with the elements of continued fractions. Simson interprets Girard s

reasoning differently.

For mathematical treatment of problems in golden section, in ordinary or generalized form,

see also the papers by C. Thiry^ and R. E. Anderson,^ E. Catalan's "Theoremes et Problemes de

' Exact references to sources, and some quotations from originals, are given in (i) J. Tropik.e,Geschichte

der Elementar-Mathematik, Band 1, Leipzig, Veit, 1903; (2) F. Sonnenburg, Der goldne Schnitl. Beitrag

zur Geschichte der Mathematik und ihre Anwendung. (Progr.), Bonn, 1881. (Not always reliable.) Cf. ftn.

4, p. 155.
^ Annali di scienze matematkhe e fisiche (Tortolini), vol. 6, 1855, pp. 307-308; also M. Cantor, Vorle-

sungen iiber Geschichte der Mathematik, vol. 2, 2. ed., 1900, pp. 105-106; see also American Mathematical

Monthly, vol. 25, 1918, p. 197, and Bulletin 0} the American Mathematical Society, vol. 15, 1909, p. 408.

' Les ceuvres mathematiques de Simon Stevin . . . le tout revu, corrig^ et augmente par A. Girard. Leyde,

1 634, pp. 1 69-1 70. The passage in question is reprinted with commentary in G. Maupin, Opinions et Curiostes

touchantla MatMmatique (deuxieme s6rie), Paris, 1902, pp. 203-209. It has been discussed also by R. Simson,

Philosophical 'transactions, 1753, vol. 48, pp. 368-377; see "Reflexions sur la preface d'un m^moire de

Lagrange intitul^: 'Solution d'un probleme d'arithm^tique' " by J. Plana, Memoire della r. accademia d. sci-

enze di Torino, series 2, vol. 20, Torino, 1863, especially pp. 89-92.
* C. Thiry, "Quelques propriet^s d'une droite partagee en moyenne et extreme raison," Mathesis, 1894,

vol. 14, pp. 22-24.
^ "Extension of the medial section problem and derivation of a hyperbolic graph," Proceedings oj the

Edinburgh Mathematical Society, 1 897, Vol. 1 5, pp. 65-69.
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gSomStrie elementaire"^ and Emsmann's program^ containing more than 350 relations and prob-

lems.

In the nineteenth century the literature of golden section is by no means inconsiderable. It

includes at least a score of separate pamphlets and books and many times that number of papers.

In numerous, voluminous and rather unscientific writings A. Zeising' finds golden section the

key to all morphology and contends, among other things, that it dominates both archi-

tecture and music. A distinctly new line was set under way by Fechner who applied scientific

experimental methods to the study of aesthetic objects.'' He was led to the conclusion that the

rectangle of most pleasing proportions was one in which the adjacent sides are in the ratio of

parts of a line segment divided in golden section.* There are some paragraphs on "Golden Sec-

tion," by J. S. Ames in Dictionary of Philosophy and Psychology^ edited by J. M. Baldwin. In

his article on "The aesthetics of unequal division"' P. A. Angier discusses earlier contributions

to the aesthetics of golden section, including those by L. Witmer' (the chief investigator in the

aesthetics of simple forms after Fechner), W. Wundt,' and O. Kiilpe.'" The subject has been

treated still more recently by M. Dessoir" and J. Volkelt.'^

Sir Theodore Cook discusses" golden section from some new points of view in connection

with art and anatomy, and the writings of F. X. Pfeifer'^ remind one both in subject matter and

style of treatment of Zeising's publications.

Neikes defined the term golden section for different units (areas, volumes—not alone line-

segments) such that the smaller part is to the larger as the larger is to the whole. With Piazzi

Smyth's work as a basis he applied golden section to an unscientific study of the architecture of

the Cheops pyramid.'*

1 6e id., Paris, 1879, pp. 261-263. Some of these properties are given in the first edition of this work,

which was really written by H. C. de La Fr^moire, Paris, 1844.
^ D. H. Emsmann, Zur sectio aurea. Materialien zu etementaren namentlich durch die Sectio aurea loslichen

Constructions-aufgaben etc., Progr. Stettin, 1874 {Cf. Zeitschrift f. math, und naturw. Unterricht, vol. 5,

pp. 289-291).
' For example (i) Neue Lehre von den Proportionen des menschlichen Korpers aus einem bisher unerkannt

gebliehenen, die ganze Natur und Kunst durchdringenden morphologischen Grundgesetze entwickelt, Leipzig,

1854, 457 pp.; particularly pages 133-174; (2) Aesthetische Forschungen, Frankfort, 1855, pp. 179?. (3) Das
Normalverhdltnis der chemischen und morphologischen Proportionen, Leipzig, 1856, 114 pp. and the post-

humous work: (4) Dergoldene Schnitt, Leipzig, 1884, 28 pp. Cf. S. Gunther, "Adolph Zeising als Mathematik-
er," ZeitschriftfiirMathematik und Physik, Historisch-literarische Abtheilung, Band 21, 1876, pp. 157-165.

* G. T. Fechner, Zur experimentalen Aesthetik, Leipzig, 1871; also Vorschule der Aesthetik, Leipzig, 1876,

pp. i85f.

' C. L. A. Kunze speaks of "Rechteck der schonsten Form" in his Lehrbuch der Planimetrie, Weimar,
1839, p. 124. A reference may be given to a recent discussion of "printer's oblong" and "golden oblong"
in H. L. Koopman, "Printing page problems with geometric solutions," The Printing Art, Cambridge,
Mass., 191 1, vol. 16, pp. 353-356.

° New York, vol. i, 1901, p. 416.
' Harvard Psychological Studies, vol. i, 1903, pp. 541-561.
' L. Witmer, "Zur experimental Aesthetik einfacher raumlicher Forraverhaltnisse" Philosophische Studi-

en, Leipzig, vol. 9, 1893, pp. 96-144, 209-263.
' W. Wundt, Grundzuge der physiologischen Psychologic, Band 2, 4. Auflage, 1893, pp. 24of. (See also Band

3, 6. Auflage, 1911, pp. I36f.).
'" O. Kiilpe, Outlines of Psychology, translated into English by E. P. Titchener, London, 1895, pp. 253-255.
" M. Dessoir, Aesthetik und allgemeine Kunstuissenschaft in den Grundztigen dargestellt, Stuttgart, 1906,

pp. I24f, 176-177.
" J. Volkelt, System der Aesthetik, Band 2, Munchen, 1910, pp. 33f.
" T. A. Cook, The Curves 0/ Life, London, Constable, 1914.
" (a) "Die Proportion des goldenen Schnittes an den Slattern und Stengeln der Pflanzen," Zeitschrift

fur mathematischen und naturwissenschaftlichen Unterricht, 1885, vol. 15, pp. 325-338; {b) Der goldene
Schnitt und dessen Erscheinungsformen in Mathematik Natur und Kunst, Augsburg, [1885], 3 -|- 232 pp.
-|- 13 plates. A r^sum6 of this work given by O. Willman in Lehrproben und Lehrgange aus der Praxis der

Gymnasien und Realschulen, 1892 was the basis of E. C. Ackermann, "The Golden Section," American
Mathematical Monthly, 1895, vol. 2, pp. 260-264. Cf. Zeitschrift f. math, und naturwiss. Unterricht, 1887,
vol. 18, piJ. 44-47, 605-612.
" H. Neikes, Dergoldene Schnitt und ihre Geheimnisse der Cheops Pyramide, Coin, 1907; (reviewed in Jahr-

buch iiber die Fortschritte der Mathematik, 1907, p. 526). Pages 3-10: "der goldene Schnitt"; pages 11-20:
"die Geheimnisse der Cheops Pyramide." C. Piazzi Smyth, Life and Work at the great Pyramids, 1867.
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III. The Fibonacci Series.

Foremost among mathematicians of his time was Leonardo Pisano (also known as Fibonacci),

who flourished in the early part of the thirteenth century. His greatest work is Liber abbaci

"a Leonardo filio Bonacci compositus, anno 1202 et correctus ab eodem anno 1228." It was
first printed in 1857."

Among miscellaneous arithmetical problems of the twelfth section is one entitled "How
many pairs of rabbits can be produced from a single pair in a year."^ It is supposed (i) that

every month each pair begets a new pair which, from the second month on, becomes productive;

and (2) that deaths do not occur. From these data it is found that the number of pairs in suc-

cessive months would be as follows:

(3) I. 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377.

These numbers follow the law that every term after the second is equal to the sum of the two
preceding and form, according to Cantor, the first known recurring series in a mathematical
work. The doubtful accuracy of this latter statement has been pointed out by Giinther.'

The series (3) was well known to Kepler, who discusses and connects it with golden section

and growth, in a passage of his "De nive sexangula" i6i i.'' Commentaries of Girard and Simson,

and the relation of the series to a certain continued fraction, have been noted above. But the

literature of the subject is very extensive and reaches out in a number of directions. In what
follows Un. will be regarded as the {n + l)st term of what we shall call the Fibonacci series (i);

so that «o = o, «i = «2 = I, «3 = 2, . . , For reasons which shall appear later the names
Lam6 series, and Braun or Schimper-Braun series, have been also employed in this connection.

Girard observed, /. c, that the three numbers «„, «re+i, «n+i° niay be regarded as corresponding to

lengths which form an isosceles triangle of which the angle at the vertex is very nearly equal

to the angle at the center of the regular pentagon.

The relation «„_i«„-|.i — «»" = (— l)" was stated in 1753 by Simson (/. c). It was to this

relation, and hence to the Fibonacci series that Schlegel^ was led when he sought to generalize

the well-known geometrical paradox of dividing a square 8X8 into four parts which fitted to-

gether form a rectangle 5 X 13.' Catalan found (1879) ^^ more general relation' Un+i~pU,^.i+p —
a„+i'' = (— i)''~''(«p)^ from which may be derived Un+i' + "n" = «2n+i first given, along with

' II liber Abbaci di Leonardo Pisano pubblicato da Baldassare Boncompagni, Roma, MDCCCLVII.
For an analysis of this work see M. Cantor, Vorlesungen iiber Geschichte der Mathematik, Band II, 3. Auflage,

Leipzig, Teubner, 1900, pp. 5-35.
= Pages 283-284.
' S. Giinther, Geschichte der Mathematik, i. Teil, Leipzig, Goschen, 1908, p. 137.
*
J. Kepler, Opera, ed. Frisch, tome 7, pp. 722-3. After discussions of the form of the bees' cells and of the

rhombo-dodecahedral form of the seeds of the pomegranite (caused by equalizing pressure) he turns to the

structure of flowers whose peculiarities, especially in connection with quincuncial arrangement he looks

upon as an emanation of sense of form, and feelirig for beauty, from the soul of the plant. He then "unfolds

some other reflections" on two regular solids the dodecagon and icosahedron "the former of which is made
up entirely of pentagons, the latter of triangles arranged in pentagonal form. The structure of these solids

in a form so strikingly pentagonal could not come to pass apart from that proportion which geometers to-day

pronounce divine." In discussing this divine proportion he arrives at the series of numbers i, i, 2, 3, j, 8,

13, 21 and concludes: "For we will always have as J is to 8 so is 8 to 13, practically, and as 8 is to 13, so is

13 to 21 almost. I think that the seminal faculty is developed in a way analogous to this proportion which
perpetuates itseilf, and so in the flower is displayed a pentagonal standard, so to speak. I let pass all other

considerations which might be adduced by the most delightful study to establish this truth."
' There is a typographical error (13 for 21) in Girard's discussion in this connection.
' V. Schlegel, "Verallgemeinerung eines geometrischen Paradoxons," Zeitschrift fiir Mathematik und

PAysik, 24. Jahrgang, 1879, pp. 123-128.
,

' This paradox was given at least as early as 1868 in Zeitschrift fiir Mathematik und Physik, Vol. 13, p.

162. Cf. W. W. R. Ball, Mathematical Recreations and Essays, 5th edition, London, Macmillan, igii, p. 53;
and E. B. Escott, "Geometric Puzzles," Open Court Magazine, vol. 21, 1907, pp. 502-5.

' E. Catalan, Mllanges MathSmatiques, tome 2, [LiSge, 1887], p. 319.
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many other properties, by Lucas,^ ip a paper showing the relation between the Fibonacci series

and Pascal's arithmetical triangle. Daniel Bernoulli showed'' that

«n = M-i'^Jh''
from this a result given by Catalan readily follows:'

^"-1 _ ^ a- ,-
"(" - i) (" - 2) njn - i) (» - 2) (n - 3) (n - 4) .

.

2 Un —"1*5 ~r 5 ~r
I 1.2.3 1-2. 3.4-5

A very similar series occurs in a letter written by Euler in 1726.

Lucas showed the importance of the Fibonacci series in discussions of (a) the decomposition

of large numbers into factors and {l>) the law of distribution of prime numbers.* Binet was led to

the series in his memoir on linear difference equations (/. c), and Leger* and Finck^ (and later

Lame') indicated its application in determining an upper limit to the number of operations

made in seeking the greatest common divisor of two integers. Landau evaluated the series

S(i/«2n and S(i/«2n+i), and found that the first was related to Lambert's series and the second

to the theta series.*

The solution of the problem of determining the convex polyhedra, the number of whose

vertices, faces, and edges are in geometrical progression, leads to the Fibonacci series.'

For further references and mathematical discussions one may consult (i) L'Intermediaire

des mathSmaticiens, 1899, p. 242; 1900, pp. ill-"], 251; 1901, 92; 1902, p. 43; 1913, pp. 50, 51,

• E. Lucas, "Note sur la triangle arithm^tique de Pascal et sur la s^rie de Lam6," Nouvelle correspondance

mathSmatique, tome 2, 1876, p. 74.
• D. Bernoulli, "Observationes de seriebus quae formanfur ex additione vel subtractione quacunque

terminorum se mutus consequentium," Commentarii academiae scientiarum imperialis Petropolitanae, vol.

3, 1732, p. go. This memoir was read in September, 1728, but it appears that Bernoulli had the formula in

his possession as early as 1724 {Cf. Fuss, Correspondance mathSmatique et physique, St. Petersburg, 1843,
vol. 2, pp. 189, 193-4, 200-202, 209, 239, 251, 271, 277; see also p. 710). The formula was given also by
Euler in 1726 (in an unpublished letter to Daniel Bernoulli). For most of these facts I am indebted to Mr.
G. Enestrom. The formula seems to have been discovered independently by J. P. M. Binet, "M^moire sur

I'int^gration des equations lin^aires aux differences finies d'un ordre quelconque, a coefficients variables,"

Comptes rendus de Vacadimie des sciences de Paris, tome 17, 1843, P* 563-
^ Manuel des Candidats a I'Ecole Polytechnique, tome i, Paris, 1857, p. 86. •

' E. Lucas, (a) "Recherches sur plusieurs ouvrages de Leonard de Pise et sur divers es questions d'arith-

m6tique suplrieure. Chapter i. Sur les series recurrentes," BuUettino di biblio^afia e di storia delle scienze

matematiche efisiche, tome 10, pp. 129-170, Marzo, 1877; {b) Th&rie des fonctions num&-iques simplement
p^riodiques," American Journal of Mathematics, vol. i, 1878, pp. 184-229, 289-321 [on p. 299 are given the

first 61 terms of the Fibonacci series and the factors of every term]; (c) "Sur la th6orie des nombres premiers"
[dated mai 1876], Atti della r. accademia delle scienze di Torino, vol. 11, 1875-76, pp. 928-937; (1^) "Note
sur I'application des series recurrentes a la recherche de la loi de distribution des nombres premiers," Comptes
rendus de I'acadSmie des sciences, vol. 82, 1876, pp. 165-167. See also A. Aubry, "Sur divers proc^d^s de
factorisation," L'Enseignement mathSmatique, 1913, especially §§ 11, 16 and 17, pp. 219-223.

' "Note sur le partage d'une droite en moyenne et extreme, et sur un probleme d'arithmltique," Corre-

spondance mathSmatique et physique, vol. 9, 1 837, pp. 483-484.
• Traits ElSmentaire d'ArithmStique, Paris, 184I; also Nouvelles annales de mathSmatiques, vol. i, 1842, p.

354-
'

. .

' G. Lam^, "Note sur la limite du nombre des divisions dans la recherche du plus grand commun diviseur

entre deux nombres entiers." Comptes rendus de I'acadSmie des sciences, tome 19, 1844, pp. 867-870. See

also J. P. M. Binet, idem, pp. 939-941.
Because of results obtained in the above-mentioned memoir the Fibonacci series is frequently called the

Lam6 series. Thompson's statement {On Growth and Form, p. 643) that the series 2/3, 3/5, 5/8, 8/13, 13/21,
. . . "is called Lami's series by some, after Father Bernard Lami, a contemporary of Newton's, and one of

the co-discoverers of the parallelogram of forces," is incorrect.
' E. Landau, "Sur la sine des inverses des nombres de Fibonacci," Bulletin de la SociStS MathSmatique de

France, tome 27, 1899, pp. 298-300.
' Archiv der Mathematik und Physik Band 28, 1919, pp. 77-79.
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147; 1915, pp. 39-40 (see also question 4171, 1915, p. 277); (2) "Sur une generalisation des

progressions geom6triques," L'Education mathSmatique, 1914, pp. 149-151, 157-158; (3) V.

Schlegel, "S6ries da Lam,e sup6rieurs," El progreso matematico, 1894, aiio 4, pp. 171-174; (4)

T. H. Eagles, Constructive Geometry of Plane Curves, London, 1885, pp. 293-299, 303-304; and

(5) L. E. Dickson, History of the Theory of Numbers, vo\. i, Washington, 1919, Chapter XVII:
"Recurring series; Lucas' u„, v„."

As to growths it is' particularly in connection with older chapters on leaf arrangement or

phyllotaxis that the Fibonacci series comes up. Among the earliest and most important of these

are the memoirs of Braun (based on researches of Schimper and himself),' and L. et A. Bravais.''

Of later papers there are those by Ellis,' Dickson,'' Wright,^ Airy," Gunther,' and Ludwig.'

Much that was fanciful and mysterious was swept away by the publication of P. G. Tait's note

"On Phyllotaxis."' Of recent books on the subject the most notable are those by Church,'"

Cook,'' and Thompson.'^ The first two are beautifully illustrated. The third is a scholarly

work, written in an attractive style; it reproduces Tait's discussion in an appreciative manner.

NOTE VI.

"NHIS idea of commensurabili.ty or measurability in square is' geometrically explained

in the tenth book of Euclid's "Elements." The artistic use of this fact became lost. This

loss was a calamity. We must either blame the Romans for this catastrophe or ascribe

it to a general deterioration of intelligence. If this knowledge had not become lost artists today

would, undoubtedly, have been creating masterpieces of statuary, painting and architecture

equalling or surpassing the masterpieces of the Greek classic age.

Since the material for this book was obtained the writer has continued the work of analyses

of other phases of Greek design such as that furnished by the temples, bronzes, stele heads and

general decoration. To this has been added a close inspection of the architecture of man, both

in the skeleton and in the living example; and the human figure has been compared with Greek

statuary. The results of this more recent work show quite clearly that the symmetry of man, as

well as the symmetry of Greek statuary, is dynamic. The symmetry of the human figure in

art since the first century B. C. is undoubtedly static. From the fact that we do not find this type

' A. Braun, "Vergleichende Untersuchung uber die Ordnung der Schuppen an den Tannenzapfen als

Einleitung zur Untersuchung der Blatterstellung iiberhaupt," Nova acta acad. Caes Leopoldina, vol. 15,

1830, pp. 199-401.
^ L. et A. Bravais, (i) "Sur la disposition des feuilles curviseri^es," Ann. des sc. nat., 2e s6rie, vol. 7, 1837,

pp. 42-110; (2) Memoire sur la Disposition glometrique des Feuilles et des Inflorescenses, Paris, 1838.
' R. L. Ellis, Mathematical and Other Writings, Cambridge, 1863; "On the theory of vegetable spirals,"

PP- 358-372.
* A. Dickson, "On some abnormal cases of pinus pinaster," Transactions 0} the Royal Society of Edinburgh,

vol. 26, 1871, pp. 505-520.
' C. Wright, "The uses and origin of the arrangements of leaves in plants" (read 1871), Memoirs of th^

American Academy, vol. 9, part 2, Cambridge, Mass., p. 384f.
" H. Airy, "On leaf arrangement," Proceedings of the Royal Society of London, vol. 21, 1873, pp. 176-179.
' S. Gunther, "Das mathematische Grundgesetz im Bau des Pflanzenkorpers," Kosmos, II. Jahrgang,

Band 4, 1879, pp. 270-284.
' F. Ludwig, "Einige wichtige Abschnitte aus der mathematischen Botanik," Zeitschriftfiir mathematischen

und naturwiss. Unterricht, Band 14, 1883, p. i6if.

' P. G. Tait, Proc. Royal Society Edinburgh, vol. 7, 1872, pp. 391-4.
'° A. H. Church, On the Relation of Phyllotaxis to Mechanical Laws, London, Williams and Norgate, 1904.

On page 5 Church writes: "The properties of the Schimper-Braun series i, 2, 3, 5, 8, 13, . . ., had long been
recognized by mathematicians (Gerhardt, Lame). . .

." In Botanisches Centralblatt, Band 68, 1896, F. Lud-
wig writes (on p. 7) that the numbers of this series "werden vielfach von Botanikern als Braun'sche, von
Mathematikern als Gerhardt'sche oder Lam6'sche Reihe bezeichnet." I have not been able to verify that

any mathematician used the term Gerhardt series in this connection, or that anyone by the name of Ger-
hardt wrote about the Fibonacci series. From what has been indicated above it seems certain that "Ger-
hardt'sche" should be "Girard'sche."
" T. A. Cook, The Curves of Life, London, Constable, 1914.
'^ D'A. W. Thompson, On Growth and Form, Cambridge: at the University Press, 1917.
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of symmetry in the living example it seems fair to assume that static man could not function

and, therefore, the human figure in art of the past two thousand years is not true to nature.

Since the publication of Darwin's "Origin of Species," an enormous amount of human meas-

urement material or data has been produced. During the American Civil War measurements

were obtained of over a million recruits and drafted men. To add to this we have the results of

the activities of the anthropologists the world over during the past generation. All this data

confirms the dynamic hypothesis. Since the first century B. C. many treatises have been

written upon the proportions of the human figure by artists and others. Bertram Windle, an

English lecturer on art, has prepared a table of some eighty-eight names. To this we may add

the canons of proportion used in the continental studios during the past hundred years.. If

human figures • were made according to the principles enunciated in these treatises and
canons, the result would, automatically, be static. If artists made human figures in accordance

with the measurements obtained by anthropologists and by the different governments, of men
in the armies and navies, the result would also be static; though the latter would be truer to

nature than the figures made according to the artistic canons, because men of science have found

that the members of the human body are incommensurate; to meet this difficulty they use a

decimal system. This is nearer nature than the artists' schemes of commensurate length units

used by artists.

One reason why we seem to have failed to construct the human figure true to nature appears

to be due to Roman misinterpretation of a Greek tradition and the persistence of this misin-

terpretation through the ages since. The tradition, according to the Roman architectural writer

Vitruvius, was that the Greeks based the symmetry they were so careful to apply to works of

art, upon the commensurate relationship of the members of the human body to the structure as

a whole. The Romans assumed that this commensuration or measurableness was that of line.

The members of the body are, indeed, commensurable or measurable with the structure as a

whole, but in area, not in line.

Greek scientists clearly understood that lines incommensurable or unmeasurable, one by the

other, as lengths, were not necessarily irrational; they might be commensurable in square. Greek
design shows that Greek artists also understood this fact.

If a projection is made of the living model, or the skeleton, and the members, such as* the

hands, feet, arms, legs, head, trunk, etc., be compared with the whole in terms of area a theme
will be disclosed and this theme will be recognized as dynamic exactly as are the area themes we
obtain from a Greek temple or, indeed, from almost any example of good Greek design. And
such themes of area show also that the architecture of the plant and that of man are essentially

the same.

•NOTE VII.

~^HE reciprocal idea, especially in connection with design, is quite unknown to modern
artists. It was, however, well understood by the Greek masters as their design creations

JJL abundantly prove. The modern mathematician understands the value of the reciprocal

of a number and uses it to shorten certain mathematical operations. For example; if it is desired

to divide one number by another the same result is obtained if that number be multiplied by
the reciprocal of the other number. A reciprocal is obtained by dividing a number into unity.

.5 is the reciprocal of 2. and any number multiplied by .5 produces a result equivalent to dividing

that number- by 2. In this example simple numbers are employed, but it will be apparent
that a problem might involve a very complicated and unwieldy number and in that case the
operation would be much simplified if multiplication by a reciprocal were done instead of division

by the original number. This valuable property of the reciprocal forms part of the machinery
of dynamic symmetry, and its chief use is that of determining similar figures for purposes of
design. The rectangular shapes derived from animal or plant growth may all be expressed by a
ratio. This fact enables us to perform most extraordinary feats of design analysis by simple
arithmetic. If we measure a Greek design, for example, and find that it is contained in a rectangle

and that the short end of this rectangle divided into its long side produces, say, the ratio 2.236
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we know that we have found an example of Greek design in a root-five rectangle, because 2.236

is the square root of five. ,We also know that there is another number which expresses this same

fact and that number is the reciprocal of 2.236. To obtain this reciprocal we divide 2.236

into unity, the answer is .4472. Because a reciprocal shape is a similar shape to the whole we
know that .4472 also represents a root-five rectangle. In root rectangles the reciprocal is always

an even multiple of the whole. .4472 multiplied by 5 equals 2.2360. Consequently, the area of

a root-five rectangle is composed of five reciprocal areas. As a labor-saver the property of the

reciprocal is as great in design as it is in mathematics. Also, it should be remembered that

reciprocal ratios are always less than unity. Because of this we know that any ratio less than

unity is the reciprocal of some ratio greater than unity. Diagonals to reciprocals always cut the

diagonals of the whole at right angles.

NOTE VIII.

ROOT-TWO and root-three rectangles never appear in connection with root-five and the

rectangle of the whirling squares. For this reason it may be that the root-two and root-

three shapes constitute a type of symmetry intermediate between static and dynamic

or constitute a minor phase of the dynamic type. They are not found in the plant or the human
figure or in Greek statuary.

NOTE IX.

"^HE summation series of numbers represents an extreme and mean ratio series approx-

imately, or as nearly as may be by whole numbers. For an exact representation we must

use. a substitute series. A suggestion for such a substitute series is furnished by the

human figure and Greek design. Such a series would be: 118 . 191 .309 . 500 . 809 . 1309 . 21 18 .

3427 . 5545 . 6854 . 8972 . 14517., etc.
_

Any member of the series divided into any succeeding member produces the ratio 1.618.

Members divided into alternate members, as 5 into 1309 produce the ratio 2.618.

2.618 is the square of 1.618, that is 1.618 multiplied by itself. Also 1.618 plus i equals 1.618

squared. Every member divided into every fourth member produces the ratio 4.236. This ratio

equais 1.618 raised to the third power. Also, 2.618 plus 1.618 equals 4.236. Also 1.618 multiplied

by two and one added equals 4.236 and so on.

NOTE X.

"^HE root rectangles are constructed by a simple geometrical process. The instrument

for the purpose need not be more complicated than that of a string the ends of which

are held in the two hands. The constructions depend upon the Greek method of determin-

ing multiple squares. The ancient surveyor being called a "rope stretcher," the craftsman, using

the same method, might be termed a "string stretcher."

"In the determination of a square, which shall be any multiple of the square on the linear unit,

a problem which can be easily solved by successive applications of the 'theorem of Pythagoras'

—

the first right-angled triangle, in the construction, being isosceles, whose equal sides are the

linear unit; the second having for sides about the right angle the hypotenuse of the first (root 2)

and the linear unit; the third having for sides about the right angle (root 3) and i, and for hypot-

enuse 2, and so on." AUman, Greek Geometry, p. 24.

"Theaetetus relates how his master Theodorus, who was subsequently the mathematical

teacher of Plato, had been writing out for him and the younger Socrates something about

squares; about the squares whose areas are three feet and five feet (these squares would be

those on the sides of a root-three and a root-five rectangle), showing that in length they are

not commensurable with the square whose area is one foot (that the sides of the square whose

areas are three superficial feet and five superficial feet are incommensurable with the side of the

square whose area is the unit of surface, i. e., are incommensurable with the unit of length) and

that Theodorus had taken up separately each square as far as that whose area is seventeen
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square feet, and, somehow, stopped there/ Theaetetus continues:

—
'Then this sort of thing

occurred to us, since the squares appear to be infinite in number, to try and comprise them in

one term, by which to designate all these squares.'

"Socrates. 'Did you discover anything of the kind?'

"Theaetetus. 'In my opinion we did. Attend, and see whether you agree.'

"Socrates. 'Go on.'

"Theaetetus. 'We divided all number into two classes; comparing that number which can be
produced by the multiplication of equal numbers to a square in form, we called it quadrilateral

and equilateral.'

"Socrates. 'Very good.'

"Theaetetus. 'The numbers which lie between these, such as three and five, and every number
which cannot be produced by the multiplication of equal numbers, but becorries either a larger

number taken a lesser number of times, or a lesser taken a greater number of times (for a greater

factor and a less always compose its sides) ; this we likened to an oblong figure, and called it an
oblong number.'

"Socrates. 'Capital! What next?'

"Theaetetus. 'The lines which form as their squares an equilateral plane (square) number, we
defined as length, i. e., containing a certain number of linear units, and the lines which form as

their squares an obloog number, we defined as dunameis, inasmuch as they have no common
measure with the former in length, but in the surfaces of the squares, which are equivalent to

these oblong numbers. And in like manner with solid numbers.'

"Socrates. 'The best thing you could do, my boys; no one could do better.' " AUman, 201-210.

(These boys were working out root-rectangles, which seem to have been familiar to the elder

Socrates," who, before he became a philosopher, was a stone-cutter.

1

NOTE XI.

)EE the "Thirteen Books of Euclid's Elements" by Thomas L. Heath and his reference
to Proclus.

NOTE XII.

NHE terms "ellipse," "parabola" and "hyperbola" were first used in connection with
this process of the ''Application of Areas." They Were afterwards applied to conic

J

I

sections. See Heath.

NOTE XIII.

~^HE Parthenon at Athens has been analyzed by dynamic symmetry and the proportions
of the building determined to the minutest detail. The theme throughout is that of
square and root five. This building, and other Greek temples, are examined exhaustively

in monographs now in preparation.

NOTE XIV.

~^HE connection between the geometry of art and the geometry of science in Greece is

shown by the history of the "Duplication of the cube problem." In Greece, as in India,
the geometry of art was used in architecture very early. In the former it is the

Delian or duplication problem, in the latter "the rules of the chord," both ideas being involved
in altar ritual. The Greeks reduced the duplication problem to one of finding two mean propor-
tionals between two lines. The artist uses the inverse of this idea in dynamic symmetry; he is

constantly dealing with two mean proportionals between two lines. Allman's suggestion that
the problem arose in the needs of architecture is undoubtedly correct. The duplication of the
cube problem arose naturally from the duplication of the square.

"The Pythagoreans, as we have seen, had shown how to determine a square whose area was



DYNAMIC SYMMETRY 161

any multiple of a given square. The question now was to extend this to the cube, and, in par-

ticular, to solve the problem of the duplication of the cube." AUman, "History of Greek Geom-
etry from Thales to Euclid," pp. 83-84.

THE DUPLICATION OF THE CUBE
\\ROCLUS (after Eudemus) and Eratosthenes tell us that Hippocrates reduced this

-^ question ('the duplication of the cube') to one of plane geometry, namely, the finding

.J. of two mean proportionals between two given straight lines, the greater of which is

double the less. Hippocrates, therefore, must have Jknown that if four straight lines are in con-

tinued proportion, the first has the same ratio to the fourth that the cube described on the first,

as side, has to the cube described in like manner on the second. He must then have pursued the

following train of reasoning:—Suppose the problem solved, and that a cube is found which is

double the given cube; find a third proportional to the sides of the two cubes, and then find a

fourth proportional to these three lines; the fourth proportional must be double the side of the

given cube; if, then, two mean proportionals can be found between the side of the given cube and

a line whose length is double of that side, the problem will be solved. As the Pythagoreans had

already solved the problem of finding a mean proportional between two given lines,—or, which

comes to the same, to construct a square which shall be equal to a given- rectangle—it was not

unreasonable for Hippocrates to suppose that he had put the problem of the duplication of the

cube in a fair way of solution. Thus arose the famous problem of finding two mean proportionals

between two given lines—a problem which occupied the attention of geometers for many cen-

turies." Allman, p. 84.

We must not forget that conic sections were discovered while a great Greek geometer was
trying to solve this problem of two mean proportionals.

Plutarch, Life of Marcellus: " 'The first who gave an impulse to the study of mechanics, a

branch of knowledge so prepossessing and celebrated, were Eudoxus and Archytas, who em-
bellish geometry by means of an element of easy elegance, and underprop, by actual experiments

and the use of instruments, some problems which are not well supplied with proof by means of

abstract reasonings and diagrams; that problem, for-example, of two mean proportional lines,

which is also an indispensable element in many drawings.' " Allman p. 159.

"Eratosthenes, in his letter to Ptolemy III, relates that one of the old tragic poets introduced

Minos on the stage erecting a tomb for his son Glaucus; and then, deeming the structure too

mean for a royal tomb, he said; 'double it but preserve the cubical form.' Eratosthenes then

relates the part taken by Hippocrates of Chios towards the solution of this problem and
continues 'Later (in the time of Plato), so the story goes, the Delians, who were suffering from a
pestilence, being ordered by the oracle to double one of their altars, were thus placed in the same
difficulty. They sent, therefore, to the. geometers of the Academy, entreating them to solve the

question.' This problem of the duplication of the cube, henceforth known as the Delian Problem,
may have been originally suggested by the practical needs of architecture, as indicated in the

legend, and have arisen in Theocratic times; it may subsequently have engaged the attention

of the Pythagoreans as an object of theoretic interest and scientific enquiry, as suggested above."

Allman, p. 85.
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