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ABSTRACT

Alternative methods to first threshold crossing techniques for acoustic emission

(AE) source location in dispersive media are presented. The accuracy of source

location in dispersive media can be improved by locating frequency components in

the transducer outputs to determine the difference in arrival times. Two methods

were developed in this study for the arrival time determination. The first involved

crosscorrelating the transducer outputs with a cosine wave modulated by a Gaussian

pulse to locate a single frequency in the outputs. The second method narrowband

filtered the transducer outputs and then crosscorrelated the filtered signals to

determine the difference in arrival times. The techniques were experimentally

verified by performing lead breaks on the surface of aluminum and graphite/epoxy

plates. The results indicate that accurate source location can be attained in

dispersive media by taking the wave propagation into account.
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I. INTRODUCTION

A. NEED FOR NONDESTRUCTIVE EVALUATION

In recent years there have been two highly publicized incidents which involved the

catastrophic failure of transport systems. The first of these involved the space shuttle

Challenger. In this case, the solid rocket booster (SRB) seals failed and allowed hot

gases to escape from the SRB joints. This eventually caused the ignition of the

oxygen and hydrogen in the external propellant tank, resulting in seven fatalities and

the suspension of the space shuttle program [Ref. 1]. The second was the Aloha

Airlines incident in which a portion of the fuselage of a Boeing 737-200 tore away

from the airframe in flight, resulting in one fatality and injuries to 69 passengers

[Ref. 2]. These two incidents are dramatic examples of the need for the monitoring

of structures for defect growth. And, while these are two highly visible examples of

the failure of engineering structures, there are many more less publicized, but just

as critical, examples of the need for defect monitoring. These include cracking in the

main wing beam in the E2-C Hawkeye [Ref. 3], the monitoring of defect locations

in nuclear reactor pressure vessels [Ref. 4] and the detection of defects in high

pressure storage tanks [Ref. 5]. It is the main goal of non-destructive evaluation

(NDE) to locate and monitor defect growth in structures so that preventive actions

can be taken before the defects reach a critical size and failure occurs.



Toward this end, many non-destructive test (NDT) methods have been employed,

and a short list of these includes x-ray, radiography, ultrasonics, magnetic resonance,

dye penetrant and eddy current. A common trait of all these techniques is that the

energy to be used to detect the defects must by propagated into the structure, and

that this energy must then interact with the defect. If the orientation or the size of

the defect is such that the energy fails to interact with or be modulated by the defect,

the defect will go undetected. Additionally, the methods listed above are, at best,

difficult to apply to a structure while it is in service, and thus, flaw growth while the

structure is under load is difficult to monitor. A method not yet mentioned which

can detect flaw growth while the structure is in service is acoustic emission (AE).

AE is defined as the elastic waves which are generated by rapid local

redistributions of stresses which accompany the operation of damage mechanisms.

Thus, the defect growth itself supplies the detectable energy. In Figure 1.1 a typical

application of the acoustic emission method in a structure is shown. Due to the

applied stress a, a defect begins to grow and releases energy in the form of a stress

wave or stress pulse. To detect this stress wave a transducer is attached to the

structure and the output from the transducer is captured. This signal is then

analyzed to determine the nature of the event.

While current AE techniques are very adept at flaw growth detection, their use for

the determination of source location can lead to large errors. The work presented

in this study details crosscorrelation methods which were developed to correct these

errors by incorporating the wave propagation in a given medium into the source



location algorithm. Before the crosscorrelation techniques are discussed however,

a review of the current AE methods will be presented to illuminate the shortcomings

of the current methods and to illustrate the need for the new techniques.

Applied Stress, <7

Signal Out

figure 1.1. Example of acoustic emission technique.

B. BACKGROUND ON ACOUSTIC EMISSION SOURCE LOCATION

If the location of a source is to be determined, then at least two transducers are

attached to the structure. By noting the difference in arrival time(s) (A/('s)) of the

stress wave at the transducers and knowing the velocity of propagation of the stress

wave, the location of the source can be determined through the use of triangulation.

In commercial AE analyzers, these arrival time differences are determined using

first threshold crossing techniques. For example, first threshold crossing could be

defined as the time at which the envelope of the AE signal crosses a preset

threshold.



AE instrumentation of the type described above was used in the testing of flat,

plate-like graphite/epoxy coupons, and it was found that errors of up to 5 cm (2 in)

occurred in specimens having a 20 cm (8 in) gage length between the AE sensors

[Ref. 6]. These errors led to a study of the propagation of acoustic emission waves

in plates [Ref. 7], and it was discovered that due to the frequency content of the

source (0-1 MHz) and the plate thicknesses (<2.5 mm (0.1 in)) of interest in these

tests, only two types of waves propagated in the plate. These two waves were the

extensional and flexural plate waves, or modes, and the displacements of these two

modes are shown in Figure 1.2. This observation, that only two modes were present,

was important since up to this point researchers in AE had assumed that the wave

propagation in solid media, such as plates, was too complex to be accounted for in

the AE analysis. But with this new understanding, AE measurement could now begin

to be based on qualitative rather than quantitative considerations.

The above findings were used by Gorman and Ziola [Ref. 8] to increase the

location resolution of conventional AE instrumentation during the testing of tensile

graphite/epoxy coupons. From experimental data [Ref. 7] it was found that the

extensional mode propagated nearly nondispersively (velocity was independent of

frequency) and contained higher frequency components than the flexural mode,

which was found to be highly dispersive. By using broadband transducers the two

modes could be distinguished and the dispersive, lower frequency flexural mode

eliminated by highpass filtering. High amplifier gain was selected and the

instrumentation parameters were set so that triggering of the location clocks occurred



figure 1.2. Schematic representation of plate wave
displacements, (a) extensional plate wave, (b) flexural

plate wave (after Beattie [Ref. 9]).

on the first positive going signal due to the nondispersive extensional mode. It was

shown that source location accuracy was increased by an order of magnitude using

this technique.

While this method worked well on small test coupons, it would not be as effective

if the extensional mode was highly attenuated. This would be the case for larger

structures, especially those made of composites. Due to the attenuation, the timing

clocks would now be triggered by the dispersive flexural wave, leading to timing

errors since the AE pulse shape changes as it propagates. An example of the effect



of dispersion on an AE pulse is shown in Figure 1.3. In this figure a flexural wave

was excited in an aluminum plate (thickness - 1.42 mm (0.056 in)) by breaking a

Pental 2H 0.5 mm lead on the surface of the plate. The resulting wave was then

captured at 50.8 mm (2 in) and 304.8 mm (12 in) from the source using broadband

sensors and filters. From this it is obvious that the timing clocks would not be

triggered on the same frequency point of the waveforms if first threshold crossing

techniques were used. This is the main problem with using threshold crossing

techniques to locate sources in dispersive media.

Figure 1.3. Example of dispersion.



C. NEW TECHNIQUES FOR SOURCE LOCATION

The focus of this investigation therefore, was to devise a method which would

allow accurate source location by detection of specific frequencies in the waveforms.

By using such a method, not only would the problem of first threshold crossing be

eliminated, but location measurements could then be performed using the dispersive

flexural portion of the waveform. Again, this is of importance in larger structures

where, due to attenuation, only the lower frequencies contained in the flexural wave

will be able to propagate any great distance, and also in impact studies, such as

micrometeriod impacts on space vehicles, where the source motion produces a large

flexural wave with little or no extensional component.

A method which does not rely on threshold crossing to determine A/'s is that of

crosscorrelation. In this work, crosscorrelation is defined as the time average of the

product of two functions, where one function has been delayed relative to the other

V^-f^oo ^zf*(t)yit^)dt. (1.1)

In Section II literature is reviewed in which crosscorrelation was used for time-of-

flight determination.

For this study, two crosscorrelation methods were formulated which allowed the

use of the dispersive flexural wave (wave propagation theory for thin plates is

presented in Section III) for the determination of arrival times at the transducers.

The first crosscorrelated the output signals from the transducers with a single

frequency cosine wave modulated by a Gaussian pulse. By doing this a single



frequency in the output signals could be isolated, and from this the A/'s needed for

the source location could be determined. The second method first narrowband

filtered the output signals and then crosscorrelated these filtered signals to determine

the arrival times. These methods are detailed in Section IV.

To experimentally verify the above techniques, lead breaks were performed on the

surface of both aluminum and graphite/epoxy plates to excite plate waves. Although

both the extensional and flexural modes were observed, the lowest order flexural

mode was by far the larger wave due to the out-of-plane nature of the lead break.

The source location results of the crosscorrelation techniques are compared with

conventional AE instrumentation techniques (narrowband filtering and resonant

transducers) and also the high gain/broadband technique outlined earlier. The

results indicate that the resolution of the crosscorrelation techniques is comparable

to that of the high gain methods, thereby allowing accurate source location in

structures where, due to attenuation, only the dispersive flexural wave is available.

The experimental results are given in Sections V and VI.



II. LITERATURE REVIEW

The ability to locate defects in materials is one of the major attractions of the

acoustic emission technique. However, the resolution of the source location is

dependent on how accurately the differences in arrival times of the stress wave at the

transducers can be measured. As was discussed in the previous section, the method

in use in current AE instrumentation, that of threshold crossing, can lead to large

errors in location since the wave mechanics of the media are not incorporated into

the location analysis. This has lead to the use of crosscorrelation techniques for the

determination of arrival times.

Crosscorrelation has been used for many years in acoustics for the determination

of propagation paths [Ref. 10]. Typically this is done by sending a known signal, by

use of a microphone, into the media, and then having a receiving microphone capture

the propagated signal. The known input signal and the captured propagated signal

are then crosscorrelated and the peaks in the crosscorrelation will then correspond

to the direct propagation path and any paths due to reflections. An example of this

is shown in Figure 2.1, where the peaks in the crosscorrelation at 2, 4 and 5 msec

correspond to the direct path, the reflection off of the side wall, and the reflection

from the back wall, respectively. For the interested reader, Reference 11 contains

papers on signal processing and time delay estimation in nondispersive systems.

Smith and Lambert [Ref. 12] used the crosscorrelation technique to measure the
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Figure 2.1. Example of propagation path determination using crosscorrelation

(after Bendat and Piersol [Ref. 10]).

propagation times of band limited noise in a plane wave tube where the propagation

media was air, a nondispersive media. They determined theoretically that the

crosscorrelation of band limited noise should result in a cosine wave with a frequency

equal to that of the center frequency of the band limited noise modulated by a sinr/r

term which is dependent on the bandwidth of the noise. To experimentally verify the

10



theory, they propagated band limited noise (1 octave) in a plane wave tube and

captured the resulting waves using condenser microphones placed a known distance

apart. The crosscorrelation of these signals were seen to agree with the theory within

experimental error.

Winter and Bies [Ref. 13] used the same approach to measure velocities in a

dispersive medium. They attached a shaker to one end of an aluminum bar and

placed two transducers a known distance apart near the center of the bar. Damping

material was placed at both ends of the bar to eliminate reflections. A flexural wave

was then excited in the bar using broadbanded noise (10 octave width) applied to the

shaker and the outputs from the two transducers were crosscorrelated. They found

that peaks in the crosscorrelations did not seem to correlate to any possible

propagation velocities in the bar. It can be seen from Figure 1.3, Section I-B, that

crosscorrelation of broadbanded signals in dispersive media will generally lead to

inconclusive results.

White [Ref. 14] also studied the problem of the measurement of time delays in

dispersive media (Novikov [Ref. 15], has performed a similar analysis). The same

experimental set-up as Winter and Bies was used, however, instead of using

broadbanded noise to excite the bar, White used band limited noise of one octave

or less. The theoretical evaluation of the crosscorrelation of band limited noise in

a dispersive media given in White's paper resulted in an equation much like that of

Smith and Lambert's, where a cosine wave with a frequency equal to that of the

center frequency of the bandwidth was modulated by a sin*/* term dependent on the

11



bandwidth of the noise. For a dispersive media however, White found that the

cosine term propagated at the phase velocity, and that this term had a phase shift

which was dependent on the distance the pulse had traveled, while the sinx/x

envelope propagated with the group velocity. If the peak of the cosine term was

chosen, rather than the peak of the envelope, White determined that an error of up

to 1/4 of a cycle at the bandwidth center frequency could be made in the At

measurement. Thus, White was able to measure group velocities accurately in the

bar by choosing the peak of the envelope to determine the arrival time differences.

Time of flight measurements are important not only for source location

measurements, but by measuring stress wave velocities in a sample, material

constants can be determined. Castagnede, Roux and Hosten [Ref. 16] used

ultrasonic transducers, resonant at 1 and 5 MHz, to excite quasi-longitudinal and

quasi-transverse waves in a unidirectional fiberglass reinforced sample for the

determination of as manufactured material constants. They were then able to

determine the time of propagation of the waves through the sample by

crosscorrelating the captured waveforms from the sample with a reference waveform

from the ultrasonic transducers. In their work however, no correction was made for

dispersion, which resulted in a simplification of the problem. The high resolution of

the data presented could likely be attributed to frequencies at which the pulses were

propagated at, since any errors in the crosscorrelation due to phase shifts would be

small.

12



Also for material evaluation purposes, Aussel and Monchalin [Ref. 17] used a

pulsed Nd:YAG laser to generate an acoustic displacement in Al
; 3

-Al-SiC. This

excited longitudinal and shear waves which were then detected on the opposite face

of the sample using a laser-interferometer. The time delay measurements were

based on crosscorrelation of the resulting echoes in the sample. The phase velocity

dispersion was measured by Fourier transforming the crosscorrelation and using the

phase data from the crosscorrelation to calculate the dispersion curve for the

material. Using this method they found that the phase velocities varied by

approximately 2% in the frequency region studied (10-40 MHz) due to dispersion.

Crosscorrelation techniques have also been used for source location in downhole

acoustic emission measurements to monitor subsurface crack extensions in geological

studies. Nagano, Niitsuma and Chubachi [Ref. 18] used crosscorrelation of

waveforms captured from three orthogonal directions to determine the arrival of the

bulk longitudinal or P-wave and the shear horizontal or SH-wave. By knowing the

propagation velocity of these two nondispersive modes and the difference in arrival

times, the location of the source could be determined.

There has been little work done in the analysis of crosscorrelation techniques in

dispersive media due to complexities encountered in the wave propagation. With the

exception of White's work, all of the crosscorrelation techniques presented here are

based on modes which are nondispersive (bulk longitudinal and bulk shear) or

performed at frequencies were the dispersion is insignificant. For acoustic emission

however, if crosscorrelation techniques are to be implemented for the use of arrival

13



time determination, then the wave propagation in highly dispersive media must be

understood. Hence, a discussion of the wave propagation in thin plates is presented

in the next section.

14



III. WAVE THEORY FOR THIN PLATES

In order to gain insight into acoustic emission (AE) and how improvements can

be made in source location, an understanding of the wave mechanics in thin plates

must first be arrived at. While this statement may seem obvious, in many AE studies

it is largely ignored. This can be attributed to the instrumentation that is used to

acquire AE data. In typical AE studies resonant transducers are used to increase the

system sensitivity while narrowband filters are used to remove extraneous noise from

the AE signals. To illustrate how this can affect the acquired signal an AE source

was simulated using a lead break (Pental 2H, 0.5 mm) [Ref. 19] on the surface of an

aluminum plate of thickness 1.42 mm. Figure 3.1 (a) shows the wave captured using

a resonant transducer (resonant frequency - 150 kHz) and narrowband filtering (100 -

300 kHz) in the preamplifiers. Figure 3.1 (b) shows the same wave, but captured

with a broadband transducer and broadband filters in the preamplifiers. The

narrowband system has distorted the wave beyond recognition, and much of the

information pertaining to the source has been lost. Subsequently, much of the

research and theory in AE has been based on these distorted waveforms, [Refs. 20-

23], and not on the true wave propagation. Thus, the theory and measurement of

waves in thin plates must be thoroughly understood before advances in AE can be

made.

15
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Figure 3.1. Captured waveforms.
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While many types of waves can propagate in platex for the purpose of this study

only two waves will be considered. These are the extensional plate wave, or an in-

plane disturbance, and the flexural plate wave, or an out-of-plane disturbance. The

focus of this work will be on the flexural mode since the AE source used for the

experiments in this thesis was a lead break on the surface of the plates. This

produced an out-of-plane motion, which resulted in exciting primarily the flexural

plate wave. Therefore, in this section only the theory of the propagation of flexural

waves in thin plates, both isotropic and orthotropic, will be presented. For interested

readers analyses for the extensional mode are contained in Graff [Ref. 24], for both

the classical plate and exact theory (Rayleigh-Lamb), while Mindlin and Medick

[Ref. 25] present an approximate theory in their paper.

A. WAVE THEORY FOR ISOTROPIC PLATES

We will begin the study of the propagation of flexural waves in thin plates using

classical plate theory. Consider a plate of thickness h and of infinite extent in the

x-y plane as shown in Figure 3.2.

Due to applied stresses, a differential element hdxdy in the plate will have the

various shear forces, bending and twisting moments and external forces acting on it

as shown. Summing forces in the z-direction gives

*l.*l.q . ph
*»

(3.1)

dx dy dt
2

17



where w{x,y,t) measures the displacement of the mid-plane of the plate. Summing

moments leaves

dM dM

dy dx
Vy (3.2)

dM
x

dhf
x
+—^-Q

x
-0. (3.3)

dx dy

If equations (3.2) and (3.3) are solved for Q
y
and Qx

and substituted into equation

qd.xdy

'y z

\ Aix + —r— OX
x dx

dM, 7h
ax

dx

Figure 3.2. Plate element (after Graff [Ref. 24]).

(3.1), a single equation in terms of the various moments is arrived at,

$M_ &M &M &M..
y* *y

dx
2 dxdy dydx dy

:

q-ph
w

at'

(3.4)

Now the relationships between the moments and deflections must be established.

As in Bernoulli-Euler theory, it will be assumed that plane sections remain plane

and perpendicular to the mid-plane. Shown in Figure 3.3 (a), (b) and (c) is a

differential element and the deformations of the element in the x-z and x-y planes.

18



From the figures it follows that the normal strains in the lamina abed are given by

«,-^. e
y
-z/r

y
,

(3.5)

where r
x
and r are the radii of curvature in the x-z and y-z planes. If small

deflections and slopes are assumed, the curvatures may be approximated by -d
2w/dx2

and -d
2w/dy 2

. The strains can then be expressed in terms of the z displacement

e x
—

*

'dx
1 e

y
~z aV

dx,2
(3.6)

The shear strain in the lamina is given by

du dv
Yx>

'~dy
+

ax
(3.7)

From Figure 3.3 (b) it can be seen that the displacement component u is given by

u=-zdwjdx. Similarly, v = -zdw/dy, thus

v --2?
d~w

dxdy

The stresses from Hooke's law are given as

(3.8)

°*-
Ez

1-v

> \

+v
dx

2
dy

2
)

(3.9)

°y— Ez

1-v ,ay
2+v

dx 2

,

(3.10)

x--2Gz
*>

dxdy
(3.11)

19



Figure 3.3. Deformation of differential element (after Graff [Ref. 24]).

The expressions for the bending and twisting moments can now be evaluated. The

bending moment due to a
x
on the face of the element in Figure 3.2 (a) defined by

hdy is

A/2

M
x
dy-

J
zo

x
dydz (3.12)

or

20



A/2

Mr f za xdz.
(3.13)

-h/2

Substituting equation (3.9) into (3.12) and carrying out the integration gives

{ dx
1

dy
2

,

(3.14)

where D = EJi
3
/12(\-v

2
). For M

y
we obtain

M
y
—D + v

{ dy
1

dx
:

(3.15)

For M the integral is

/
-A/2

M^-fzx^dz. (3.16)

Substituting equation (3.11) into (3.16) and performing the required integration gives

M -D(l-v)-^-*
a*a><

(3.17)

Also, we have that M =-M . Substituting the expressions for M
x , M and M^. into

equation (3.4) we obtain the governing equation in terms of the displacement

D\ +2- -q—ph
"at*""

(3.18)

\dx 4
dx

2
dy

2
dy

A
)

We can now investigate the conditions under which harmonic plane waves may

propagate. Assume a plane wave travelling in the x-direction of the form

21



w-Ae**** (3 - 19 )

where A is the amplitude of the wave, 7 is the wavenumber (units of 1/length), and

c in the velocity of propagation. If we let the external load q be zero, and substitute

equation (3.19) into (3.18) we obtain

Df 2
-f>hc

2
-0, c-

t

D_
w (3.20)

N p*

We can now obtain the relationship between velocity and frequency, knowing that

the velocity is defined as c = w/7, where u is the circular frequency,

4

c- °-J. (3-2D

N ?h

For long wavelength, low frequency conditions, this theory predicts the correct

response, but for short wavelength, high frequency conditions, unbounded wave

velocities are predicted. This physically unacceptable situation is the result of

imperfections in the model due to rotary inertia and shear effects.

In order to accurately predict the propagation of waves in plates at high

frequencies both Lord Rayleigh and H. Lamb in 1899 independently obtained the

frequency equation for a plate using the exact equations of elasticity. Their work,

now known as the Rayleigh-Lamb theory, pertains to the propagation of continuous,

straight crested waves in a plate, which is infinite in extent and has traction-free

surfaces. The coordinate system is shown in Figure 3.4, with the x-z plane coinciding

with the mid-plane of the plate. To obtain the equation of motion for this case, they
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began with the governing equations for a homogeneous isotropic elastic solid

T...+ p/.-ptf
tjj ' J i

r i

(3.22)

>J 2' lJ J -'>

(3.23)

V* G"V2^

Figure 3.4. Coordinate system, thickness - 2b, (after Graff

[Ref. 24]).

(3.24)

where t
V]

is the stress tensor at a point and u
t

is the displacement vector of a material

point. The mass density per unit volume of the material is p and/j is the body force

per unit mass of material. The strain tensor is given by e
r

. The elastic constants are

A and /x, also known as the Lame constants.

From this the governing equations in terms of the displacements were obtained by

substituting the expressions for strain into the stress-strain relation and that result

into the stress equations of motion, which gave

(X+Hfy,+l*ww+p/r pff
r

(3.25)
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Solving this equation gave the displacements, and for the flexural mode in a plate

these were

ur i(yAsmay-VDsu\$y)e i{l"- u,) (3.26)

u -(aAcosay-yDcos{iy)e Kyx' at)

where A and D are amplitudes of the waves and a and (3 are defined as

(3.27)

2 0) 2« —-"Y.
c

i

(3.28)

where Cj and c 2
are the bulk longitudinal and shear velocities. Figure 3.5 shows the

Antisymmetric r Antisymmetric

an -^ V

rl , /) /f , D

Figure 3.5. Flexural mode displacements (after Graff [Ref. 24]).

general form of these displacements. The boundary conditions for a plate with stress

free surfaces are

yy xy zy » J (3.29)
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where t is identically zero. Substituting the equations (3.26) and (3.27) into the

expressions for t and r and setting these equations equal to zero gave the

Rayleigh-Lamb frequency equation for flexural waves in a plate

JgaM- (Y
2
-P

2
)
2

, (3.30)
tanab 4apy 2

Thus, given the frequency, w, the wavenumbers, 7, are determined which satisfy

equation (3.30) and from the relationship c = u/7, the velocity of propagation of the

wave can be calculated. Shown in Figure 3.6 is a plot of nondimensionalized phase

velocity (c/c
2 )

versus nondimensionalized wavenumber (Iby/n). In the bottom half

of the graph is plotted the lowest order flexural mode which corresponds to the

velocities predicted by the classical plate theory. However, it can be seen that in the

Rayleigh-Lamb theory the velocity no longer goes to infinity at high frequencies. In

fact, the velocity approaches the Rayleigh, or surface wave velocity at high

frequencies (short wave lengths), as would be expected. The curves in the upper half

of the plot are higher modes predicted by equation (3.30), and illustrate that a single

frequency (or wavenumber) can propagate at more than one velocity. For the

experiments in this study however, y is in the range of 0-1, and therefore these

higher modes are not excited.

R. Mindlin [Ref. 26] in 1951 developed an approximate theory for flexural wave

propagation in plates which included corrections for both rotary inertia and shear

effects. The mathematical formulation will not be presented here, since a similar

theory will be presented in the next section for orthotropic plates. The shear
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Figure 3.6. Rayleigh-Lamb dispersion theory' for the flexural mode
(after Graff [Ref. 24]).

correction in Mindlin's theory was obtained by using a correction factor similar to

that in Timoshenko beam theory, in which the variations in shear stress across the

section are accounted for by inclusion of an adjustment coefficient. The results using

these corrections are nearly identical to that of the lowest order mode in the

Rayleigh-Lamb theory, but the resulting equation has a closed form solution, making

the numerical evaluation of the dispersion curve easier. The dispersion equation

from Mindlin's theory is
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2

V
r
2

K + •

12k 2

h
2

y
2

<c*nc^-O, (3.31)

\^

where

cp-

\1
2

Pd-v 2
)

(3.32)

which is the plate velocity and h is the plate thickness. As in the Rayleigh-Lamb

theory, values for the wavenumber are assumed and the equation is solved for the

velocity, c. To find the shear adjustment coefficient, K, the behavior of equation

(3.31) as 7-*« (high frequency) is examined. In this case two roots for c
2
are found,

c
2 = k

2
c
2

2
, and c

2 = c
2

. Since c should approach the surface, or Rayleigh velocity, cR ,

as 7->a\ then k = cr/c 2
.

Figure 3.7 shows a comparison several dispersion theories for the lowest flexural

mode. The theories presented here were II, classical plate theory, I, exact solution

of three dimensional equations and IV, classical plate theory + rotary inertia and

shear corrections. Marked on the graph is the point at which classical plate theory

begins to deviate from the exact theory. It should also be noted that I and IV are

practically identical in the lowest mode.

B. WAVE THEORY FOR ORTHOTROPIC PLATES

The dispersion theory presented for the orthotropic plates [Ref. 27] is an extension

of the work that Mindlin performed on isotropic plates, which included both rotary

inertia and shear corrections. For a graphite/epoxy laminate, because of the
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relatively low transverse shear modulus, the effects of transverse shear deformation

are large even at low frequencies, and thus classical plate theory is inaccurate even

in this region. Therefore, classical plate theory will not be discussed in this section.

Also, no exact solutions, such as the Rayleigh-Lamb theory for isotropic plates, will

be presented since only the lowest order flexural mode is of interest. If higher order

theory should be needed though, the work of Noiret and Roget [Ref. 28] and Datta
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et. al. [Ref 29] both contain solutions for multilayered plates which predict the higher

modes.

To begin the analysis, consider a laminated composite plate of thickness h, with

the same coordinate system as shown in Figure 3.2. The following displacement

fields are assumed.

u-u (x,y,f)+zq
x
(x,y,t) (3.33)

v-v (x,y,t)+zi\i
y
(x,y,t) (3.34)

w-w(x,y,r), (3.35)

where u, v and w are the displacement components in the x, y and z directions, u and

v are midplane displacement components, and ip
x

and
\J)
y

are the rotation

components along the x and >' axes, respectively. From the strain-displacement

relations

du
Q dty

e x"
dx

+Z
dx

e >-
*>0

dy
+z
^y
dy

e
z-
0

(3.36)

(3.37)

(3.38)

du dv
v + +:

dy dx

(dq
x 8$ )
- + i-

{ dy dx j

(3.39)
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cHv
(3.40)

v -\|j -

ay'

The stress-strain relations for a given lamina are

(3.41)

>-

<?11 <?12

<?12 Ql2

o Q„ Q.

o <?45

<?16 <?26

<?16" C
x'

Qie e

?45 Yyz

?55 YK

<?66..V

(3.42)

where Q- for i, j = l, 2 and 6 are plane-stress reduced stiffnesses, and Q- for i, j = 4

and 5 are transverse shear stiffnesses. The force and moment resultants per unit

length acting on the laminate are obtained by integration of the stresses in each

layer,

ha

/
-A/2

V^-/(",° y^ (3.43)

A/2

/
-A/2

«W- / (v%>*
(3.44)

A/2

/'
-A/2

(M^y-/(o^o,,T^. (3.45)
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We now substitute equations (3.36-41) and (3.43-45) into equation (3.42) to obtain

K
N

>

Qy

Qx

N*
M

x

M
y

M
*>.

An A n A
16

Bn Bn B
l6

An An A
26

Bn B
22

B
26

^ i4
45

A
45

A
55

L

16 ^26 ° ^66 B
ie

B
26

B'66

£„ £,, B^ D,, D„ D
11 "12 16 11 "12 "16

B„ B„ £,< £>,„ /)„„ £>
'12 "22 26 "12 "22 26

dujdx

dx'Jdy

dujdy+dvjdx

dqjdx

(3.46)

B
16 *26 ° ° *66 ^16 ^26 ^P*Jty+^J*

where the extensional stiffnesses, A
(J

, coupling stiffnesses, B
tJ

, and bending stiffnesses,

D- are given by

A/2

/
(A^B^p- [ {Q^d^dz, V-1,2,6 (3.47)

and

A/2

fVK
.
K
; / «?#)A z>4,5. (3.48)

The shear correction factors k,k, are included to account for the fact that the
1

j

transverse shear strain distributions are not uniform across the thickness of the

plates.

Summing forces and moments on a differential element and neglecting body forces,

the equations of motion are obtained
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"> -1?M* ™*y .^0 ?*-p'l^+R^JL (3.49)

dx dy dt
2

dt

^ +^i. p
^ +R^ly (3.50)

dx dy dt
2

dt''

+—--p
dx dy dt

2

(3.51)

dM
r
dMn a2^ 62

i|;
r no ,

£+ *-Q -7?
°
+7—li (3.52)

ax a>-
x

a?
2

ar
2

Ea+lOl-Q .R*o +I
**2

(3.53)

a^ a>< > ar
2 & 2

where p is the mass density and

A/2

(p\£/)- / p(l^Vc (3 -54 )

-A/2

Substituting equation (3.46) into equations (3.49-53) the equations of motion in terms

of the displacements are obtained. For this work, only symmetric laminates will be

considered, and for symmetric laminates the coupling stiffnesses, B-, and the coupling

normal-rotary inertia coefficient, R, are identically zero. For the flexural mode, the

governing equations of motion are

a*, av .
d$

x ^ #w di\> #w n #w
55

dx a* 2 45
dy dx dxdy'

u
dy dy

2
dt

2
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a2
;!/ a2* a2^ a

2* a2

^
16

dx
2 n 66

a*a>-
26

ay? « a*
2 * axay

(3 56)

a>'
2 3a- a>< ar

2

a2
*!/ a2^ a2* a2

^
^i—r +2Z)i6-r^ +Z)i6—r^n^

a*
2

1C
a*ay

10

a*2 "
DP &ay

(3.57)

For wave propagation, we consider plane waves of the type

w_WeW?+W-<*ti (3.58)

^ _T f
''WV^v)-,i] (3.59)

«/,^)-cf] (3.60)
y

y >

where A: is the wavenumber, /j and l
2
are the direction cosines of the wave vector in

the x and y directions, w is the circular frequency, and W, *
x
and *

y
are the

amplitudes of the plane harmonic waves. Substituting equations (3.58-60) into

equations (3.55-57), the determinant of the resulting set of equations gives the

dispersion relation for flexural wave propagation. If we further exclude ourselves to

symmetric quasi-isotropic laminates, then A
16
=A^ =

A

45
= and D

16
= D^. This results

in the following set of equations
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2
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iA„kl55~1
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l6
k^(Dn*D^k%l2 D^+WJJ "*A
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r2j2^ A t2;2A
55
k l

x
+A

A4
k l

2
- p * <*>'

.0 ^61)

Again, a value of A: is chosen, and equation (3.61) is then solved for w, however, only

one root approaches zero circular frequency as the wavenumber approaches zero,

and this is the root corresponding to the lowest flexural branch of the frequency

spectrum for plate waves.

C. PHASE AND GROUP VELOCITY

In the previous sections it was stated that the velocity of propagation was defined

as

c
k

(3.62)

for continuous harmonic plane waves of the form in equation (3.19). An acoustic

emission pulse however, consists of many frequencies, and in a dispersive medium,

such as a plate, they propagate at differing velocities. Therefore, how pulses

propagate must also be understood if improvements are to be made in source

location using AE.

An illustration [Ref. 30] of the behavior of the propagation of pulses in dispersive

media can be shown by considering two propagating harmonic waves of equal
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amplitude but slightly different frequency u
1
and cj

2 , given by

y-Acosik^-^
l

t)+Acos(k
2
x-<x>

2
t), (3.63)

where ^
i
=k

]
c

]
and u

2
=k£

2
. This can be rewritten as

y-2Acos[—(k^-k^x-—(oj-o^rjxcost—(k^kjx—(oj+o
2
)r]. (3.64)

Since the frequencies are only slightly different, the wavenumbers will also differ only

slightly, and these can be written as

g^-gOj-Ao, k^-k^Ak. (3.65)

The average frequency and wavenumber are defined as

g)--(u>j + u
2),

k--(^+y, (3 -66)

and the resulting average velocity by c = w/A:. Thus (3.63) can be rewritten as

y-2Acos(-Akx— Aor)cos(/fcc-G)f). (3.67)

The cosine term containing the difference terms hk and Au is a low frequency term

since Aw is a small number. It will have a propagation velocity c
g
where

c-^. (3.68)
* Ak

The cosine term containing the average wavenumber and frequency k and w will be

a high frequency term, propagating at the average velocity c. The effect of the low

frequency term will be to act as a modulation on the high frequency carrier. The
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appearance of the motion is shown if Figure 3.8. It is the overall wave group that

propagates at the velocity c in the figure. The velocity of the high frequency carrier

may be greater than, equal to, or less than the velocity c .

7igure 3.8. Simple wave group (after Graff [Ref. 24])

If we wish to generalize to a pulse consisting of many frequencies, we consider a

superposition of a number of waves

y-'E Aposikpe-u !+<$>), (3.69)

i-i

where k
t
and o>, differ only slightly. The phase angle of a given frequency is <p

t
.

Assume that at some time /=/„ and location x =jt , the phases of the various wave

trains are approximately the same so that a wave group has been formed. At a time

r=r +d/ and location x=x +dx, the change in phase dPj of any individual components

is

dPr [k{x +dx)-<* ,(f
o+d0+4>fH*<Vu .V**]

-kdx-u dt.
(3.70)
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In order for the wave group to be maintained, the change in phase for all of the

terms must be approximately the same. This restriction is enforced by requiring that

dP-dP^O, which gives

(k
j
-k

i

)dx-(cij-^)dt-0. (3.71)

Since A:,, k, and u„ u, differ onlv slightlv, we let 6k -krk, and dw-w.-u,. Therefore1J IJ J O Jl j 1 jl

equation (3.71) becomes

dkdx-dudt~0. (3 -72 )

The velocity of the group is then given by

dx da
Cg

dt dk

This expression is taken as the definition of group velocity.

(3.73)
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IV. SOURCE LOCATION THEORY FOR THIN PLATES

A. SOURCE LOCATION

Once the wave propagation in the media has been established, there are two other

issues that must be given consideration for source location. The first if these deals

with the determination of the arrival times of the wave at the transducers, and the

second is, given the arrival times, how is the source located? We will begin by

analyzing the second of these two problems.

A simple example of source location is given by the testing of narrow tensile

coupons, where one of the specimen dimensions is on the order of the diameter of

the transducers used to detect the wave, as shown in Figure 4.1. If this is the case,

then the defect growth, or AE source, can be assumed to be constrained to lie

between the two transducers. This assumption results in the simple location

algorithm of x = c(t
2
-t

l
)/2, where c is the velocity of propagation of the wave and t

l

and t
2
are the arrival times of the wave at sensors Sj and S2

respectively. However,

in this work we would like to extend source location from one-dimensional, or linear

location, to planar, or two-dimensional location. The next two sections will discuss

this extension for isotropic and orthotropic plates.

1. Planar Source Location in Isotropic Plates

For isotropic materials, the location of the emission source calculated form the

time difference from a pair of transducers can be shown to lie on a hyperbola with

the two sensors as foci. For planar location, to uniquely locate the source at least
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Figure 4.1. Linear location.
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three transducers must be used. Tobias [Ref. 31], considered an arbitrary three-

transducer array with transducers located at point S (0,0), Si(x ltVj), S2
(x2ly2) as shown

in Figure 4.2. The acoustic emission source at P(x\y) is located at the point of

intersection of the circles about S , Sj and S
2
as centers with radii r, r+ S

x
and r+ <5

2 .

6^ and <5
2
are defined by 6

]
=ct

1
and S

2
= ct

2
where c is the velocity of propagation

and /j and t
2
are the difference in arrival times measured for transducers Sj-S and

S 2-S respectively. The equations of the three circles are

x 2
+y

2 -r
2

C4 - 1 )

(x-xf+iy-yf-ir+SJ
2 (4-2)

(x-x
2
)
2 + (y-y

2)
2
-(r + 6

2)
2

. (43)

Subtracting the first equation from the other two gives

2xx
1
+2yy

1
-(x

2
+y

1

2 -5 2
)-2r6

]

(4 -4)

2xx2+2>?2 -(x
2
+y

2-6 2
)-2r6

2
. (4 -5)

Changing to polar coordinates gives

2r(x
1
cosQ+y

1
smQ + b

1
)-A

1
(4.6)

2r(A
2
cose+y

2
sin6 + 6

2
)-j4

2
(4.7)

where

A 2 2 *2 A 2 2 5 2
Arx

i
+
yi-?>i, A

2
-x

2 +y2
-&

2
.
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Figure 4.2. Source and transducer locations (after Tobias [Ref. 31]).

Solving for r results in the following equations

r-
\

(4.9)

2(jc
1

cos6 +yjSin0 + 6 j) 2(x
2
cos8 +)>

2
sin0 + 6

2)

from which it follows that (Apf
2
-A2r 1

)cos5 + (A
1y2-A2v ]

)sin^=A2<5
1
-A

1
<S2. Normalizing

this equation yields
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(y4
1
x
2
-i4

2
x

1
)cos6 (A

ly2
-A

2y 1
)sinQ

[(Afr-Arf+QiM-AM)
2
}

112
[(A

1
x
2
-A

2
x

l )

2 +(A
1y2

-A
2y 1

)
2
]

1 '2

(4.10)

A
2
brA 1

b
2

[(Afr-A^f+iA^-AjW2

Since, in this form, the coefficients of the cos# and sin0 terms are less than unity, the

equation can be rewritten in the form

cos(8-4>)-# (4 -n )

where

(A.b.-A.b?)
K —2-J—L_*! (4.12)

[(Afr-A^f+iAfa-A^??12

and

tand,^^'^, (4.13)

( 1*2 2*1

'

Since both the numerator and denominator in the term for tan<£ can be determined

exactly from the known positions of the transducers and the measured arrival time

differences t
x
and t2

and the propagation velocity c, the angle <p can also be

determined. This result is substituted into equation (4.11) to determine 6, which in

turn is used to determine r, from equation (4.9).

2. Planar Location in Anisotropic Plates

In the previous section an exact analytical solution for the location of sources

based on the difference in arrival times of the wave at the transducers was discussed.
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The solution in this case was made possible due to the fact that in isotropic

materials, the velocity curve is circular. This allowed equations (4.1-3) to be written

and solved in terms of the source location. In anisotropic media however, the

velocity is dependent on the direction of propagation in the material, c(6). Figure

4.3 shows the velocity curves for a [02/902 ] s
graphite/epoxy plate based on

calculations for the flexural mode at several frequencies. Since these curves are

calculated using equation (3.61) evaluating an exact analytical expression for the

source location is no longer just a matter of solving geometric equations.

V)

o>

C7>
0>O
o
en

<D

^000

Velocity, Degrees

40, 50, 60, 80, 100 kHz

Figure 4.3. Velocity curves for [02/902 ] s
graphite/epoxy plate, m/s.
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Castagnede, Sachse and Kim [Ref. 32] used an overdetermined system to locate

sources in anisotropic media. By using more than three transducers an

overdetermined system of equations could be written in terms of the source

coordinates. To solve the overdetermined system a Euclidian functional was defined

and then minimized using a modified Newton-Raphson algorithm. However, the

wavespeeds used for this analysis were based on the quasi-longitudinal mode which

has a deterministic solution, unlike the flexural plate mode, thus allowing the above

analysis to be performed. A similar approach was used by Buttle and Scruby [Ref.

33], however they experimentally measured the velocity curves in the composite

plates used in their work. They then used a cubic spline or polynomial fit to

mathematically describe these curves, and then used these fits in the minimization

of the set of equations containing the location coordinates.

A new anisotropic source location algorithm developed in this work, based on

an iterative scheme using the velocity curves calculated from equation (3.61), will

now be discussed.

In Figure 4.4 is shown the transducers, S , Sj and S2
and the source location,

P(x,y), relative to the transducers. For now, only transducers S and S
2
will be

considered. The distance between the two sensors is /01 , and the distances and times

of propagation from the source to sensors S and S
1
are / , /j and / , tv respectively.

The difference of the arrival times of a wave at sensors S and Sj is

tQ-tr-—> <4 - 14 >
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Figure 4.4. Source and transducer locations.

where c and c
l
are the propagation velocities in the 6 and 0, directions. From

geometric considerations, y01
=/ sin^ = /

1
sin^

1
, so we can write

'i-'o

fsmB \

^sin0
iy

(4.15)

Furthermore, /qCOS^o-ZjCos^^/oj, and solving for l
{

Wc*
fcosQA

cos6

*oi

W COS0,

(4.16)
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We now set equation (4.15) equal to (4.16) and solve for / .

l ^
•

(4-17)
cos8

o
-sin0

o
cotan0

j

Substituting equation (4.17) into (4.15) gives

L ^°
. (4.18)

cosBoSinej-cosejSinBQ

Equations (4.17) and (4.18) can then be substituted into equation (4.14) to calculate

the time difference. Values of 6 and 6^ are then iterated through and calculated

values of t - 1
1
are found which equal the measured value of t - tv As before, using

only two sensors will give ambiguous location results, so the procedure must also be

repeated for the sensor pair S -S2 . Each of these two sets of transducers will produce

a loci of possible location points, and it will be the intersection of these loci that

determines where the source is located.

B. ARRIVAL TIME DETERMINATION

In conventional AE instrumentation, the signals from the transducers are

enveloped and when this envelope crosses a preset voltage threshold, as shown in

Figure 4.5, the timing clocks are triggered, which then allows the determination of

the arrival time differences between the transducers. As was seen in Figure 1.3, in

dispersive media this is no longer an acceptable method due to the change in shape

of the wave as it propagates. Also, even in nondispersive media, if attenuation is

present triggering of the location clocks can still occur on different points of the

waveforms, leading to incorrect location results. Therefore we would like to be able

46



to measure arrival times independent of triggering voltage threshold or signal gain

settings. Toward this end, two methods of arrival time determination were developed

based on crosscorrelation techniques. The crosscorrelation methods have the

advantage over first threshold crossing techniques of gain and voltage threshold

independence. Also, the use of a point transducer to eliminate phase cancellation

is no longer needed because if the crosscorrelation is done at frequencies where the

wavelength is greater than the diameter of the transducer, phase cancellation of the

wave due to the finite area of the transducer is no longer a consideration. The two

crosscorrelation methods will now be discussed.

SIGNAL

THRESHOLD

VOLTS

Figure 4.5. Schematic of threshold crossing.

1. Gaussian Crosscorrelation

The Gaussian crosscorrelation method can be thought of as a narrowband filter

in time space. The idea behind this was that if a single frequency in the output

waveform from each transducer could be isolated, than the time differences due to

the propagation of that frequency component could be used for the location analysis.

The velocity of this frequency component could be either calculated from theory or

experimentally determined. To locate a single frequency in the transducer output,
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the output was crosscorrelated with an input pulse consisting of a cosine wave

modulated by a Gaussian pulse. The Gaussian pulse was chosen since it allowed a

gradual tapering of the cosine, thereby narrowing the frequency content of the input

signal.

To determine if the crosscorrelation technique could accurately determine time

differences, the response of a thin plate to an impulse loading was calculated. From

Medick [Ref. 34] the displacement is,

/

w(r,t)-2 Si
r
2

l\

Abt

(4.19)

v2

where b
2 = Eh 2/l2p(l-v 2

), r is the distance from source to transducer, and t is the

time. If the argument of the sine integral is large, then Si(z) can be approximated

by [Ref. 35],

5z(z)-iL-E25«. (4.20)

2 z

Substituting equation (4.20) into (4.19) gives

w(r,f)-2
COs(r2/4*r)

(4.21)

r
2
/4bt

for the displacement of the flexural mode. Figure 4.6 (a) shows the calculated

response of the flexural mode using equation (4.21) for sources at 305 and 610 mm

from the receiver. For the calculation the plate thickness used was 1.42 mm and the

material properties were, E = 70 GPa, p = 2750 kg/m3 and v = 0.33. The

modulated cosine
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*(rW-
('-'')V

cos(ay) <4 -22 >

used for the crosscorrelation is shown in Figure 4.6 (b). For this particular

simulation, u
x
= 6.283x10s

rad/s (fj = 100 kHz), tj =100 *xs and a = 40 jzs. The

two functions were then digitally crosscorrelated using

where x is defined in equation (4.22) and y in equation (4.21), N is the number of

digital samples and r is the lag number, r = 0, 1, 2,..., m, where m is the maximum

lag number and m < N [Ref. 36]. For the crosscorrelation, the total number of

points was 2500, and the time step, Ar, was 0.2 jus. These values were chosen to

correspond with the experimental data, presented later in Section VI. The

crosscorrelations are shown in Figure 4.6 (c). The cursors mark the peaks in the

crosscorrelations and the measured time difference between the cursors was 131.0

/us. Using equation (4.21), the time at which the 100 kHz component occurs in each

of the waveforms in Figure 4.6 (a) can be determined, and from this the actual time

difference can be calculated. This was found to be 130.6 /lis, the crosscorrelation

being in error by 0.3%. From this simulation it would seem that the resolution of

this technique is well within any experimental errors which may be encountered.
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Figure 4.6. Crosscorrelation analysis.
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2. Crosscorrelation Using Narrowband Filtering

The second method used for arrival time determination is again a

crosscorrelation method, based on theory developed by White [Ref. 14]. The

experimental work has been discussed in Section II.

We begin the analysis by using the result for the phase velocity obtained from

classical plate theory, equation (3.21),

V
fl i/2 (4.24)

From this the phase shift of a sinusoidal wave propagating through a path / is,

<|>(G>)—^- (4.25)

where u is the circular frequency. The cross spectrum of the input and output of this

path is

G r(o)-G
T
(o))G

v(G)M(w)e"
,<,>(" )

(4 -26 )

where G
x
(w) and G

y
((j) are Fourier transformed transducer signals, and A(u) is the

attenuation factor for the path. The crosscorrelation is given by

RJt)- /*G
r
((o)Gv(6)>l(o))cos[a)f-4)(G))]Jo). (4 -27 )

Equation (4.27) gives the exact crosscorrelation function for the process, but

generally this cannot be evaluated, except for special cases of Gx
(w) and G

y
(w).

Consider a random excitation of suitable spectrum shape such that Gx
(w) and
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G
y
(u) are ideally band limited, i.e.,

G
x
,G

y
-B, w (l-A/2)<G)<G) (l+A/2)

(4>28)
-0, otherwise,

where B is the amplitude of the frequency spectrum, and will assumed to be 1, and

u is the center frequency of the bandwidth. Substituting equation (4.28) into (4.27)

gives

u (l + A/2)

**>(')" / COS(G)f-tfG)
1/2

>/G> (4 -29 )

u (l-A/2)

where a=//(D/p/z) 1/4
. This can be evaluated exactly, but the result is cumbersome

and leads to no intuitive results. If the bandwidth is restricted to an octave or less

(A< 1), then w can be written as

W-G) (l+€). (4.30)

Using this relation in equation (4.29) gives

A/2

/
-A/2

/yr)-co I cos[o f(l+e)-acoJ
/2
(l+e) 1/2

]Je. (4 -31 )

By expanding (1 + e)
1/2

in a Taylor series

(l +e)i/M +!-il+ ... (4-32)

2 8

and taking only the first two terms, equation (4.31) can be rewritten as
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A/2

^(O-Wo / cos

-A/2

1/2
o) f-ao) +

aco
1/2

(o„f-- e Je.
(4.33)

Expanding the cosine of the sum of two arguments and integrating results in

sin

/yr)-cos wJf-
to,

1/2

Ac/
f--

c

2<o
1/2

/J (4.34)

r--

2(0
1/2

To understand the results of equation (4.34), we must now return to equations (3.20-

21). If we solve equations (3.20) and (3.21) for u in terms of y we get

(0-

\

D 2 (4.35)

Using equation (3.12) we can obtain the group velocity from equation (4.35)

V2
\

D_

ph

(4.36)

Rewriting equation (4.36) in terms of w gives

V2 '

D_

N p*
(0

1/2 (4.37)

Thus, the group velocity is twice the phase velocity, and equation (4.34) can be

rewritten as
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/yo-flcos w,

SID

(4.38)

*/

This function is shown in Figure 4.7.

3in[^ (t4
t
)]

Rxj(t)

/ f 1

' I I

* II

/ 1 (t- i )

ii %
ii x

J 1 / \ v

I 1 / \ v

1 1 1 I *

Ill/ -/%
*•**

\\ / 1

\ \ 1 \

\ i i

/ VA-'t

\

/ coi[« (t-I)]

rigure 4.7. Crosscorrelation of dispersive waves

(after White [Ref. 14]).

There are several features to be noted about this function. The first is that the

modulated cosine travels at the phase velocity of the center frequency, w . The

second is that the envelope, or the sinr/x term, travels at the group velocity of the

center frequency, w . Thus, the cosine term has a phase lag which is dependent on

the phase velocity, but the maximum amplitude of the modulating function sinr/x

occurs at a time delay appropriate to the group velocity.

To apply this theory to AE source location however, the signal from the

transducers must first be modified. AE from defect growth can typically be modeled
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as a delta function [Ref. 37], which by definition is broadbanded. If the signals from

the transducers due to the defect growth are narrowband filtered first, then the

narrowband pulse needed for the analysis can be obtained. Shown in Figure 4.8 are

the flexural waves predicted by equation (4.21), using a time step of 0.5 ms, at

distances of 305 and 610 mm. The time step was imposed due to memory limitations

of the computer. To simulate the analysis, these waveforms were then narrowband

filtered, with a center frequency u of 100 kHz and a bandwidth of 1/2 octave (80-

120 kHz). Figure 4.9 shows the filtered signals. The two signals were crosscorrelated

and the crosscorrelation then enveloped, using a Hilbert transform (Appendix A) as

shown in Figure 4.10. The peak of the crosscorrelation was located at 132.5 /is,

slightly off from the calculated value of 130.6 /is. Figure 4.11 shows the

crosscorrelation as predicted by White's theory, and the peak was found to be at

131.0 us.

It should be noted that the amplitudes predicted by equation (4.21) increase

linearly with time, t. Thus, in the above example, the filtered pulse is no longer

square, as in equation (4.28). To see if the shape of the crosscorrelation changes due

to the linear increase in amplitude, A{u) in equation (4.27) was set equal to 1/w to

account for this, and the resulting integral was obtained

u (l + A/2)

R (t)- f -Lcos(G>f-flCD 1/2
>fG>. (439 )

CO
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7igure 4.8. Theoretical waveforms.
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Figure 4.9. Filtered waveforms.
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rigure 4.10. Crosscorrelation of filtered signals.

Substituting equation (4.30) into equation (4.39) gives

A/2

*<,(')- / -!-cos[G) f(l + G)-aa)
/2
(l + G)

, /2)}ie. (4.40)

-A/2
1+C

Expanding 1/(1 + e) gives

(l+e)- 1 -l-e+e2 -. (4.41)
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The first two terms are then substituted into equation (4.40) and the resulting

equation is evaluated as before. The crosscorrelation including the attenuation term

is

lyO-COSIUo

T
t—

sin
W

r_j 1

v
czn

CO

+SU1

i-i\ p )

'

.
f

Aw
o

sin, ,~0 f

Au
o(,

COS t

(4.42)

w o( /

where the first term is White's solution for the narrowband pulse, and the second

term is due to the attenuation. Numerically evaluating this expression, it was found

that the two terms in the brackets in the attenuation term canceled one another, and

thus the attenuation had no affect on the shape of the crosscorrelation.

From this it can be concluded that the error in the determination of the At was

most likely due to the step size of 0.5 /us that was used in the numerical analysis, and

any errors that could occur in the calculation of the envelope of the crosscorrelation.
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V. DISPERSION MEASUREMENTS

While there have been many papers presented on the measurement of the higher

modes in plates for applications in ultrasonic NDT [Refs. 38-40], there are few

experimental results for the lowest mode which was discussed in Section III. Stiffler

and Henneke [Ref. 41] and Tang, Henneke and Stiffler [Ref. 27] have presented

experimental results for the lowest plate modes in aluminum and graphite/epoxy

plates, for use in the determination of material constants. In these papers however,

only the phase velocities were measured, and there was little discussion of the

measurement technique used to determine these velocities. To illuminate some of

the subtleties associated with the measurement of phase and group velocities in

plates, and to verify the theory discussed in Section III, measurements were

performed on both isotropic and orthotropic plates. We will begin this section with

the experimental set-up used for wave propagation velocity measurements, and then

present the results for the isotropic and orthotropic cases.

A. INSTRUMENTATION AND EXPERIMENTAL PROCEDURE

Shown in Figure 5.1 is a schematic of the instrumentation used for the phase

velocity measurements. A LeCroy 9100 arbitrary function generator (AFG) was used

to generate a 20 volt peak-to-peak gated seven cycle sine wave tone burst, shown in

Figure 5.2. The repetition rate of the tone burst was controlled by a Wavetek model

145, 20 MHz pulse generator. The tone burst from the AFG was then amplified (if

61



Computer

GPIB Trigger

t

DSO

li Receiver

HI a—

i

* i

i i

L '

{GPIB

AFG

Amp.

Pulser

Plate

Figure 5.1. Instrumentation set-up.
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Figure 5.2. Input pulse.

needed) using a Krohn-Hite model DCA-50 direct coupled amplifier (frequency

range of 0-500 kHz), which in turn was input into a Krohn-Hite model MT-55

matching transformer. The amplified signal was then input into a Harisonic model

HC-483 piezoelectric transducer, which was resonant at 2.25 MHz and had a

diameter of 12.7 mm (0.5 in). The receiving transducer was a Harisonic G0504

piezoelectric transducer resonant at 5 MHz and with a diameter of 6.35 mm (0.25

in). Both transducers were coupled to the plate using vacuum grease. The signal

from the receiving transducer was then amplified 60 dB using a Physical Acoustics

Corporation (PAC) preamplifier, model 1220A, in which the filter had been modified

for broadband operation. The toneburst from the AFG was used to trigger a LeCroy
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9400A digital storage oscilloscope (DSO) which was then used to capture the

waveform detected by the receiving transducer.

To determine the phase velocity, the receiving transducer was moved a known

distance, /, and the time difference of a phase point on the waveform was noted.

Figures 5.3-5 show the flexural wave (100 kHz) at a reference point, and after being

moved 40 and 80 mm, and the cursor marks the same phase point at each location.

It can be seen that the phase point seems to shifting as the sensor is moved. Because

of the abrupt cutoff of the sine wave, additional frequencies are introduced, and the

wave propagates as a narrowband pulse. As was noted in Section III-C, because of

this there will be a group velocity, as well as a phase velocity and, from equation

(4.25), there will be a phase shift which is dependent on the distance the transducer

has been moved. Thus, if the time difference is measured by using what looks to be

the same phase point, say by always choosing the center cycle of the waveform, in

actuality the group velocity will be measured. Therefore, from the above figures it

can be seen that one must be careful when measuring the phase velocity so as to pick

the correct phase point on the wave.

To measure the group velocity, a different technique was used. Instead of using a

tone burst and trying to measure the group velocity from a point on the envelope,

the crosscorrelation technique discussed in Section IV-B.2 was used to determine the

group velocity. A flexural wave was excited by breaking a lead on the surface of the

plate and detecting it using a broadband conical point transducer. This transducer

was chosen since it had a better lower frequency response than the Harisonic
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Figure 5.4. Distance moved, 40 mm.
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piezoelectric transducers. This was important in the graphite/epoxy plate due to the

attenuation of the higher frequencies. The signal was then amplified using a

broadband PAC amplifier with 40 dB gain, and digitized using the LeCroy DSO.

>
<DD -r-
=3

4-H «-M- fW^'m

Time, T/Div - 20 ^s

Figure 5.5. Distance moved, 80 mm.

The transducer was then moved a known distance and the above procedure repeated.

The waveforms were then narrowband filtered and crosscorrelated to determine the

propagation times at the various frequencies.

Figures 5.6 and 5.7 show the waveforms at 120 and 220 mm from a lead break on

the surface of an aluminum plate (7178-T6) with a thickness of 1.42 mm (0.056 in).

The basic shape of the waveform can be seen to agree with Medick's solution,

equation (4.21). The distortion in the latter portions of the waves are due to

reflections and the response of the transducer. Also, it should be noted that because

of the frequency content of the pulse created by the lead break (0-1 MHz), and the
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thickness of the plate, only the lowest order flexural mode is excited. This simplifies

the analysis since none of the higher modes predicted by the Rayleigh-Lamb theory,

Figure 3.6, are present. For thicker plates, the analysis would need to include a

method for determination of which modes are propagating.

B. EXPERIMENTAL RESULTS

Shown in Figure 5.8 is the theoretical dispersion curve for the phase velocity in an

aluminum plate calculated using Mindlin's theory. The material constants used are

given in Section IV-B.l, and k = 0.926. The group velocity curve in Figure 5.8 was

calculated by numerically differentiating the theoretical phase velocity data from

Mindlin's theory. Also shown are the dispersion measurements made on the

aluminum plate described in the preceding paragraph. A small discrepancy is seen

between the phase velocity theory and data, and likely can be attributed to the

material constants used in the calculation of the theoretical curves. The scatter in

the group velocity data is most likely due to errors in the calculation of the envelope

of the crosscorrelation caused by the time step of 0.5 /is used in the analysis.

In Figures 5.9, 5.10 and 5.11 are shown the theoretical curves based on Tang,

Henneke and Stiffler's higher order plate theory, Section III-B, and the phase and

group velocity measurements for a [02/902 ] s
AS4/3501-6 graphite/epoxy plate. The

figures are for the 0°, 45° and 90° directions in the plate respectively, where 0° is

taken as along the outer fibers. The material constants for the plate are as follows;

En = 142.3 GPa, £22 = 9.31 GPa, G
12
=4.90 GPa, G^.45 GPa, i/

12
= 0.29, ^=0.34

and p = 1583 kg/m3
. The value used for k

x
and Kj, the shear correction factors, was
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5/6, based on Tang, Henneke and Stiffler's results. Again, a slight difference is seen

between the phase velocity measurements and theory, and there is some scatter in

the group velocity data, with the same conclusions regarding these errors as in the

isotropic case.

From the above data it was felt that the velocity measurements were sufficiently

understood to be applied to source location. The results of the source location will

be discussed in the following section.
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VI. EXPERIMENTAL SOURCE LOCATION RESULTS

Presented first in this section is the experimental set-up and the results from the

source location experiments using an aluminum plate. The results for the aluminum

plate include both crosscorrelation techniques along with conventional AE

instrumentation and methods (resonant transducers and narrowband filtering) and

the high gain/broadband filtering method discussed in Section I. The first threshold

crossing techniques were included so that the crosscorrelation techniques could be

compared with the methods currently in use. For the graphite/epoxy plate, only the

crosscorrelation method using the narrowband filtering was used because it was

discovered to be a more accurate method than the gaussian crosscorrelation method

was used to determine the source location in the aluminum plate. Also, the first

threshold crossing methods were not used for the graphite/epoxy plates because of

the high attenuation which eliminated the extensional mode. Location data is

presented in Appendix B.

A. ISOTROPIC PLATE

1. Experimental Set-up and Plate Material

For this case, an aluminum plate of 7178-T6 was used, with dimensions of 122

cm x 183 cm (4 ft x 6 ft), with a thickness of 0.142 cm (0.056 in). The AE source

was a lead break, Pental 2H, 0.5 mm. Shown in Figure 6.1 is a schematic of the

sensor arrangement and the locations of the lead breaks relative to the transducers.
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Figure 6.1. Lead break locations.

The values of a were 0°, 22.5°, 45°, 67.5° and 90°. Three lead breaks were performed

at each of the locations to confirm the repeatability of the breaks. To acquire the

waveforms for the crosscorrelation analysis a broadband system was used to capture

the waveforms. Figure 6.2 shows a schematic of the instrumentation used for the
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source location experiments. The transducers used to detect the wave in the plate

were Harisonic G0504 ultrasonic transducers. These were coupled to the plate using

Petro Wax (PCB Piezotronics, Inc.). The outputs from the transducers were

amplified 60 dB using the broadband PAC preamplifiers. The signal was then

digitized using the LeCroy DSO at a sampling rate of 20 nanoseconds/point, with

25,000 points being stored.

Because only two channels were available on the DSO, the signal from S was

input into channel 1, while the signals from Sj and S2
were input into the same

preamplifier and then into channel 2. For measurements made at a = 45°, this could

no longer be done, since the wave arrived at S! and S2
nearly simultaneously. For

these measurements separate lead breaks were used for the time difference

determination for Sj and S2
. Both the gaussian and narrowband filtering

crosscorrelation techniques were used to determine the arrival time differences

between Sq-Sj and S -S
2

.

The velocity used in the location analysis was determined by use of pulser-

receiver method, which is detailed in Reference 42. For 100 kHz, the velocity

measured was 2.001 mm//is.

An Acoustic Emission Technology (AET) 4-channel 5500B AE analyzer was

used for the conventional AE instrumentation location analysis. The preamplifiers

used were AET model 160B, with 60 dB of amplification. For the high

gain/broadband test the Harisonic G0504 piezoelectric transducers were used to

detect the wave and the preamplifier filtering was 125 kHz - 1 MHz. For the
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figure 6.2. Schematic of instrumentation for location experiments,

conventional AE approach, PAC R-15 resonant transducers (150 kHz) and the AET

160B preamplifiers with narrowband filtering of 125 - 250 kHz were used. For the

broadband location tests, 80 dB of total system gain was used. At higher gains the

analyzer would continue to trigger on the reflections for some time, an undesirable

situation during an actual test. For the narrowband tests, both 80 and 60 dB of gain

were used for comparison with the high gain/broadband method and the

77



crosscorrelation methods.

The velocity measurements for the conventional AE instrumentation methods

were made by placing the transducers a known distance apart, breaking the lead near

one of the transducers, and then measuring the time of propagation using the AE

analyzer. Three breaks were used and an average velocity calculated. For the high

gain/narrowband test, c- 5.339 mm/Vs, and for the low gain/narrowband test,

c = 5.041 mm/jis.

The locations of the lead breaks for the aluminum plate were calculated using

Tobias's location algorithm, Section IV-A.l.

2. First Threshold Crossing Methods

Shown in Figures 6.3, 6.4 and 6.5 are the data for the first threshold crossing

techniques using conventional AE instrumentation. The three lead breaks at each

position are plotted ( + ) along with the measured location (x).

Figures 6.3 and 6.4 show the high gain/broadband and high gain/narrowband

data, respectively. These methods displayed the highest resolution with the least

amount of scatter. This was expected since the high gain allowed the measurements

to be based on the nondispersive extensional mode. The errors in the data can be

attributed to an observed small amount of anisotropy in the plate, measurement

errors in the placement of the transducers and location of the lead breaks. The

limitations with this method would be the amount of gain available, the digitization

rate of the system, the noise level and attenuation of the extensional mode.
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Figure 6.5 shows the 60 dB system gain data for the narrowband conventional

AE instrumentation test. Location resolution in this case is reduced significantly, and

at locations 6, 7 and 8 none of the lead breaks were located. Figure 6.6 shows a

waveform captured using the broadband system. In this figure, both an extensional

and flexural mode component are labeled, with the flexural mode being much larger,

due to the out-of-plane nature of the source (lead break). For the gain setting used

for this test the location clocks were no longer triggered by the extensional wave, but

by the flexural wave, and from the previous discussions it is known that this leads to

large source location errors, as evidenced by the data.

Extensional Flexural Reflection

x»

"a.

E<

100 200

Time (fis)

300 400

Figure 6.6. Waveform from a lead break.

3. Gaussian Crosscorrelation Method

Figure 6.7 shows typical waveforms from a lead break (location 1, Figure 6.1)

and their crosscorrelations using the gaussian crosscorrelation method. Due to

memory limitations of the computer and the amount of time needed to crosscorrelate

25,000 points, only every tenth point was used in the crosscorrelation (an effective

sampling rate of 5 MHz). For the waveforms, the extensional and flexural portions
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7igure 6.7. Gaussian crosscorrelation analysis for location 1, Figure 6.1.

have been labeled for each sensor, along with any reflections. For the

crosscorrelations the frequency used for the modulated cosine was 100 kHz, chosen

since a spectral analysis showed that this was a predominant frequency in the

waveforms from the lead break. Also given on the crosscorrelation plot are the times
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at which the positive peaks of the crosscorrelations occurred.

Figure 6.8 shows the results of the location analysis using this method.

Comparing Figures 6.5 and 6.8 the difference between using the first threshold

crossing technique and locating known phase points using the gaussian

crosscorrelation technique on the flexural wave becomes evident. In Figure 6.8 the

data show good agreement with the measured values, except for two points at

location 1, and all points at locations 6 and 7. The cause of this was found to be a

phase shift of the frequency components, equation (4.25), as the AE pulse from the

lead break propagated in the plate. This phase shift cannot be accounted for when

using the gaussian crosscorrelation method since the initial phase and the length of

the path that the wave has travelled are unknown. However, this error can be

minimized by crosscorrelating at higher frequencies, if they are present in the

waveform. Because of this phase shift, an arrival time determination method which

is phase independent is needed, and leads use to the narrowband filtering and

crosscorrelation method.

4. Narrowband Filtering and Crosscorrelation Method

By using this method, the phase shift of the frequency components in the pulse

is no longer of concern. As long as the same point is chosen on the envelope of the

crosscorrelation, the correct arrival times, based on the group velocity, can be

determined. To verify that the resolution of the source location could be increased

by the use of this method, the waveforms form the gaussian crosscorrelation

experiment at locations 6, 7 and 8 were narrowband filtered at a center frequency of

84



OO

-o
<L>
I—

o
=3

•4—

»

13

o
O <D

<c ZE r^
1 i +
X +

CO

X

ID

CO

X
ro

CN

CM

CO
o

CO
+

o
LO

CD
LO

CD

CD
CD

CD
CNI

C3

CZ)
LO

CD

LO

1^

CD
LO

CD
—r
CD
cr>
CNl

1^

CD
CN

f-«?
CD
ro

CD
LO

CD
ro

I

ijuiju 'uojpajjQ-x

E
E

CD

• ——

IX

T3
o

0>

E
e
.2w
cs

o
t/5

8

e
.2

a
a
O

a
n
«

e
JO

_©

o
2
3
O

85



100 kHz and a bandwidth of 1/2 octave (80-120 kHz), and then crosscorrelated. The

arrival times were then determined by choosing the peak of the envelope of the

crosscorrelation. The 1/2 octave bandwidth was chosen since it provided a well

defined crosscorrelation. As the bandwidth of the filter is narrowed, the

crosscorrelation begins to "spread" and the peak becomes less defined, thereby

making peak detection difficult. The source location results are shown in Figure 6.9.

It can be seen that by using this method the location resolution can be increased.

While this method is computationally more intensive that the gaussian

crosscorrelation technique, it resulted in the highest resolution overall.

B. ORTHOTROPIC PLATE

For the orthotropic plate, only the narrowband filtering and crosscorrelation

method was used for the arrival time determination. Because of the response of the

broadband conical point transducer, the extensional portion of the wave was virtually

nonexistent, Figures 5.6 and 5.7, so the first threshold crossing techniques could not

be employed. Furthermore, the higher frequency components in the flexural wave

were also attenuated, and thus the gaussian crosscorrelation technique could not be

employed with any degree of accuracy.

1. Experimental Set-up and Plate Material

For the orthotropic location experiment, a [02/902] s plate was used, with

dimensions of 51 cm x 76 cm (20 in x 30 in) by 0.1143 cm (0.045 in) thick. The

material constants are given in Section V-B. The same sensor configuration and lead

break locations were used as for the isotropic case, Figure 6.1, but the distance
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between the sensors was 200 mm, and the lead breaks were performed on arcs of 100

and 200 mm. Because of the high degree of attenuation in the plate, a broadband

conical point transducer was used in place of the Harisonic G0504 ultrasonic

transducers employed for the aluminum plate. This was done since the point

transducer had a better low frequency response that the Harisonic transducer. The

signal from the transducer was then amplified using the PAC broadband preamplifier

with 60 dB of gain, and then captured using the LeCroy DSO. Since only one point

transducer was available, in order to obtain the three waveforms necessary to

perform the crosscorrelation analysis, a trigger sensor was placed near the position

of the lead break, and the point transducer at transducer location 0. The lead was

then broken, and the signal from the point transducer was captured. This procedure

was then repeated for transducer locations 1 and 2. Thus, to obtain one location

point, three lead breaks had to be performed.

2. Narrowband Filtering and Crosscorrelation Method

For each location, the signal from the point transducer was narrowband filtered

at center frequencies of 40, 50, 60, 80 and 100 kHz, with a bandwidth of 1/2 octave

at each frequency. The A/'s determined by the crosscorrelation method were then

input into a computer program which calculated the source location. Values for Bq,

8
l
and 8

2 , Figure 4.4, were incremented in steps of 0.25°. Shown in Figure 6.10 is

a plot of the loci of points which are determined using equation (4.14). The

intersection of the these loci is the location of the source. The locations determined

at each frequency are shown in Figure 6.11. While some large errors are apparent,
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these again are likely due to errors in the enveloping of the crosscorrelation,

transducer and source positioning since only one transducer was available and the

step size of 0.25° used in the location program.

C. DISCUSSION

Several methods for determination of arrival times have been presented. For the

first threshold crossing techniques, as long as the location clocks were triggered by

the nondispersive extensional portion of the plate wave, the location of the lead

breaks was determined quite accurately. However, if the gain cannot be set high

enough (for example, high noise levels) the location clocks for transducers remote

from the source are triggered by the flexural portion of the wave. Triggering on

different wave modes leads to large errors in the determination of the location of the

lead break, even in the case of an aluminum plate. This was corrected by the use

of crosscorrelation techniques. While the gaussian crosscorrelation method can be

in error by up to one cycle of the crosscorrelation frequency due to phase shifts as

the AE pulse propagates, if the crosscorrelation frequency is high enough, this error

can be made negligible. This however is dependent on the frequency content of the

signal. The narrowband filter crosscorrelation, while computationally more intense,

provides a way to determine arrival times accurately without having to account for

the problem of the unknown phase.
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VII. CONCLUSIONS

The ability to detect the growth of defects is important if catastrophic failures of

engineering structures are to be prevented. One method for detection of these

defects is acoustic emission (AE). AE has the benefits of being able to be applied

to the structure while it is in service, and the energy used for defect detection is

supplied by the defect in the form of a stress wave propagating through the structure.

However, if maximum use of the stress wave is to be made, the propagation of the

wave through the medium must be understood.

In this thesis, a study of the propagation of stress waves in thin plates was

presented, along with methods for determining the defect source location. In thin

plates, it was shown that dispersion can cause large errors if threshold crossing

techniques are used for source location, since the stress wave changes shape as it

propagates. By using broadband transducers and filtering and applying

crosscorrelation techniques, stress wave arrival times from the dispersive flexural

mode that were independent of voltage threshold or gain settings were determined.

This could be important in large structures where, due to attenuation, only the low

frequency components of the flexural plate wave can propagate any distance, and in

impact studies, where due to the source motion a large flexural wave is produced

with little or no extensional component.

The presence of reflections, and their effect on the ability of the crosscorrelation
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methods to correctly determine arrival times has not been examined. This problem

was avoided in this work by the use of large plates. To make these location methods

applicable in real engineering structures, accounting for the effect of reflections

would be a logical next step.
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APPENDIX A - HILBERT TRANSFORM

The Hilbert transform of a real-valued time domain signal x(t) is another real-

valued time domain signal, denoted by x(t), such that z(t) =x(t) +jx(t) is an analytical

signal. From z(t), one can define a magnitude function A(t) and a phase function

6(t), where A(t) describes the envelope of the original function x(t) versus time, and

6(t) describes the instantaneous phase of x(t) versus time [Ref. 36]. In this appendix,

the mathematical definition of the Hilbert transform will be given, along with the

computation of the transform.

We begin with an analytic signal z(t), defined by

z(t)-x(!)+jx(t). (R1)

This can also be written as

z(r)-^(r)e^
f)

(B -2)

where A(t) is called the envelope signal of x(t) and 6(t) is called the instantaneous

phase signal of x(t). In terms of x(t) and x(t), it is clear that

A(t)-[x
2
(t)+x

2
(t)]

lf2 (R3)

e(f)-tan-
1

[^l-27r/ r.
(B.4)
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The instantaneous frequency, / , is given by

/o-
271

j

46(0

<f?

Now let Z(f) be the Fourier transform of z{t),

B(f)-\
[0 /or/<0

(B.5)

Z(f)-f[z(t)]-&[x(t)+jx(t)]
(B 6)

The inverse Fourier transform of Z(f) yields

z(t)-^ ]

[Z(f)]-x(t)+jx(t) (B -7 )

where

f(f)-Im[z(f)] (B -8 )

which is the definition of the Hilbert transform.

It can be shown that [Ref. 36]

*(/)-(-; sgn/)X(/)

This result can be substituted into equation (B.6) to get

Z(f)-[U sgnf]X(f)-B(f)X(f) (B1 °)

where, as shown in Figure B.l, 5(0) = 1 and

'2 forf>0

(B.9)

(B.H)

95



To obtain Z(f) from X(f) compute X(f) for all/ and then define Z(f) by Z(0)=A
r

(0)

and

|2*(/) forf>0

I
/or/<0

(B.12)

The inverse Fourier transform of Z(f) then gives z{t) with x(t) =lm[z(t)].

Figure 1. Sketch of B(j).
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APPENDIX B - LOCATION DATA

A. SOURCE LOCATION DATA FOR ALUMINUM PLATE

Given in Table I are the actual locations of the lead breaks on the aluminum

plate. Shown in Tables II-IV are the location data points for each of the location

methods discussed in Section VI-A.2. In the tables, *'s refer to to arrival times which

resulted in mathematically intractable solutions in the isotropic location algorithm.

Table V shows the data for the Gaussian crosscorrelation method, Section VI-A.3.

Averages and standard deviations for the three lead breaks at each location have

been calculated, except for the low gain/narrowband data. In Table VI the data

points for the narrowband filtering and crosscorrelation method, Section VI-A.4, at

locations 6, 7 and 8 are presented. All measurements are in millimeters (mm).

Table I. ACTUAL LEAD BREAK
LOCATION, ALUMINUM PLATE

Location X y

1 305

2 117 282

3 216 216

4 282 117

5 305

6 233 564

7 431 431

8 564 224
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Table II. LOCATION DATA FOR HIGH GAIN/BROADBAND
INSTRUMENTATION, ALUMINUM PLATE.

Location X y AVE -x STD -x AVE-y STD -y

1

10.68 304.02

10.67 0.70 304.2 0.09.97 304.02

11.38 304.02

2

118.96 286.13

1175 1.29 283.4 2.39116.72 281.99

116.72 281.99

3

22056 218.64

2195 0.% 2195 0.77219.18 219.66

218.70 220.14

4

283.60 122.40

283.6 0.01 122.0 0.60283.62 121.36

283.60 122.40

5

303.70 6.63

3043 0.67 4.74 1.75304.67 3.18

305.00 4.42

6

226.27 560.10

226.0 0.41 560.2 0.1122555 560.29

226.27 560.10

7

431.32 430.82

432.6 1.79 4313 1.05434.69 432.69

431.94 430.94

8

557.47 224.48

557.9 0.36 2245 0.77558.15 225.79

558.00 224.42
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Table III. LOCATION DATA FOR HIGH GAIN/NARROWBAND
INSTRUMENTATION, ALUMINUM PLATE.

Location X y AVE -x STD-x AVE -y STU -y

1

-21.89 301.66

-19.21 3.70 301.2 1.39-20.74 302.32

-14.99 299.65

2

107.79 277.03

106.7 1.88 280.0 5.15104.53 285.95

107.79 277.03

3

208.69 210.17

210.2 1.99 212.3 3.12209.42 210.90

212.45 215.90

4

276.23 110.76

279.0 5.05 109.6 1.28275.90 109.80

284.81 108.22

5

302.00 232

301.8 1.02 8.41 930302.66 19.37

300.66 3.34

6

206.05 55731

206.3 0.39 557.6 0.20206.05 55731

206.72 557.86

7

421.21 430.86

430.0 7.65 433.2 2.10434.83 434.83

434.06 434.06

8

557.33 208.93

557.8 0.62 208.2 1.09
• •

558.21 207.39
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Table IV. LOCATION DATA FOR LOW GAIN/NARROWBAND
INSTRUMENTATION, ALUMINUM PLATE.

Location X y AVE-x STD -x AVE -y STD -y

1

• •

-2.08 279.8

15.8 294.9

2

• •

* •

• •

3

193.6 189.8

152.2 152.2

1893 212.1

4

286.2 111.9

5

6

7

120.9 362.1

168.3 176.1

168.3 176.1

8

• •

• •

• *
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Table V. LOCATION DATA FOR GAUSSIAN CROSSCORRELATION,
ALUMINUM PLATE.

Location X y AVE-x STD -x am: - y STD -y

1

-4.67 305.40

9.71 12.47 305.1 0.3117.59 304.80

16.21 305.00

2

121.24 284.97

121.32 0.29 285.3 0.33121.66 286.61

121.17 285.19

3

217.44 217.44

217.7 0.24 217.6 0.12217.66 217.66

217.92 217.63

4

282.38 121.46

282.4 0.96 121.6 0.36283.44 122.06

28132 121.43

5

303.40 -5.68

3033 0.61 -5.3 0.44303.00 -5.42

304.20 ^.82

6

24233 579.08

243.0 035 579.8 1.63243.62 581.63

243.00 57839

7

449.21 447.96

448.6 039 449.2 1.1244834 450.10

448.04 449.61

8

563.08 220.42

563.8 0.72 220.0 0.3256431 219.83

563.85 219.90
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Table VI. LOCATION DATA FOR NARROWBAND FILTERING AND
CROSSCORRELATION, ALUMINUM PLATE.

Location

Actual Gaussian X-Corr NBF X-Corr

X y X y X y

6 233 564 243 579 233 564

7 431 431 448 450 436 431

8 564 224 564 220 567 226

B. SOURCE LOCATION DATA FOR GRAPHITE/EPOXY PLATE

Table VII shows the actual leadbreak positions, while Table VIII gives the

calculated positions using the method outlined in Section VI-B.2. Again, all

measurements are in millimeters (mm).

Table VII. ACTUAL LOCATIONS OF
LEAD BREAKS, GR/EP PLATE.

Location X y

1 100

2 39.2 92.0

3 71.6 71.0

4 92.2 37.5

5 100

6 77.6 184

7 142 140.5

8 185 75.0
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Table VIII. LOCATION DATA FOR GRAPHITE/EPOXY PLATE.

Location 1 X y Location 2 X y

Actual 0.0 100.0 Actual 39.2 92.0

40 kHz -27.3 103.6 40 kHz 24.0 92.6

50 kHz -24.5 99.9 50 kHz 41.1 943

60 kHz -83 102.8 60 kHz 16.4 86.6

80 kHz -19.2 96.4 80 kHz 35.2 893

100 kHz -7.6 96.8 100 kHz 41.7 91.2

Location 3 X y Location 4 X y

Actual 71.6 71.0 Actual 92.2 373

40 kHz 643 73.6 40 kHz 91.7 39.4

50 kHz 76.4 70.6 50 yiz 91.2 40.1

60 kHz 68.9 68.9 60 kHz 87.6 40.4

80 kHz 59.9 65.3 80 kHz 89.7 383

100 kHz 68.2 70.1 100 kHz 92.3 38.7

Location 5 X y Location 6 X y

Actual 100.0 0.0 Actual 77.6 184.0

40 kHz 963 6.3 40 kHz 79.8 200.0

50 kHz 88.8 7.8 50 kHz 78.8 190.2

60 kHz 100.0 0.4 60 kHz 73.1 188.1

80 kHz 94.6 1.7 80 kHz 78.3 182.2

100 kHz 97.7 9.4 100 kHz 75.8 180.7

Location 7 X y Location 8 X y

Actual 142.2 1403 Actual 185.0 75.0

40 kHz 159.0 156.1 40 kHz 180.2 62.9

50 kHz 152.8 1473 50 kHz 199.7 72.2

60 kHz 1513 138.8 60 kHz 194.8 69.9

80 kHz 1373 134.0 80 kHz 185.4 74.9

100 kHz 138.9 143.9 100 kHz 183.4 75.0
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