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Multicellular aggregate growth is regulated by nutrient
availability and removal of metabolites, but the specifics of
growth dynamics are dependent on cell type and environment.
Classical models of growth are based on differential equations.
While in some cases these classical models match experimental
observations, they can only predict growth of a limited number
of cell types and so can only be selectively applied. Currently, no
classical model provides a general mathematical representation
of growth for any cell type and environment. This discrepancy
limits their range of applications, which a general modelling
framework can enhance. In this work, a hybrid cellular Potts
model is used to explain the discrepancy between classical
models as emergent behaviours from the same mathematical
system. Intracellular processes are described using probability
distributions of local chemical conditions for proliferation and
death and simulated. By fitting simulation results to a
generalization of the classical models, their emergence is
demonstrated. Parameter variations elucidate how aggregate
growth may behave like one classical growth model or another.
Three classical growth model fits were tested, and emergence of
the Gompertz equation was demonstrated. Effects of shape
changes are demonstrated, which are significant for final
aggregate size and growth rate, and occur stochastically.
1. Background
The growth of cell spheroids and tumours exhibits similar
behaviours to ontogenetic growth of various animals [1,2],
where growth is regulated by competition for nutrient
availability provided by environmental conditions. As a
spheroid grows, nutrient levels within the spheroid decrease,
while waste products accumulate [3]. Without some
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intervention, the core of the spheroid experiences an ischaemic condition, which leads to a change in

spheroid behaviour, depending on the cell type of the spheroid [4]. For some cell types, like
mammary carcinoma cells, ischaemia leads to massive cell death and produces the so-called necrotic
core, an inner region with no oxygen [5], minimal living cells and mostly cellular debris [6]. In this
case, increased spheroid size and the onset of ischaemia are also believed to induce significant
outward diffusion of chemical species (e.g. lactate) that inhibit proliferation at the surface of the
spheroid, the total effects of which produce emergent spheroid growth that can be approximated by
classical growth models [3]. However, other cell phenotypes like mesenchymal stem cells avoid the
formation of a necrotic core altogether by adjusting their metabolism, packing density and secretion of
extracellular matrix in response to decreasing available nutrients [7].

The specificity of aggregate growth to cell phenotype and environmental conditions is probably no
more evident than in cancer progression, where in vivo rates of tumour growth can drastically vary, with
potential doubling times on scales as small as a few days to as large as months, depending on the cancer
type [8]. A number of classical growth models based on differential equations have been developed
to study these considerations and predict aggregate behaviours [9]. These classical models neglect
structural heterogeneity and the effects of individual cells, represent total growth as being determined by
dynamic relationships between spheroid size, growth rate and environmental conditions, and have been
successfully fitted to growth data of specific cell phenotypes [3,10]. Though it has been argued that
spheroid growth could follow a ‘universal’ law of this class, where the same mathematical expression,
when properly scaled, can describe the growth of solid spheroids [2], no known classical model can
successfully predict growth of all phenotypes. To this effect, some classical growth models, namely the
Bertalanffy, Gompertz and logistic models, were recently generalized as submodels of a general form,
called the unified Richards model, where each of the three submodels can be identified by a single shape
parameter of a general mathematical form [11]. The unified Richards model presents a form by which
growth data of interest for various cell type can be consistently compared, including maximum relative
growth rate, times at maximum growth rate, relative size at maximum growth rate, and initial size [12].

While the classical models, including the recently developed unified Richards model, can provide
insights into meaningful biological inquiries and medical considerations in certain scenarios (e.g. for
drug discovery) their general usefulness in biomedical applications is limited. Best-fit models of
growth data from mammography screenings predicted that in vivo tumour growth can be unbounded,
potentially compromising the applicability of many classical models like the Gompertz and logistic
models for diagnosis [13]. This has been further demonstrated when observing metastasis in mice,
where complex mathematical systems, rather than classical growth models, are required to predict the
behaviours of aggressive cancer cell types [14]. Furthermore, tumours of high eccentricity are more
likely to have aggressive characteristics, demonstrating the significance of shape changes when
predicting growth [15], which classical models do not consider. Predictions using limited availability
of screening data showed inconsistent accuracy among classical models, where breast and liver
cancers exhibited exponential growth, while two neurological cancers (neurinoma and meningioma)
followed predictions like those of the Bertalanffy model [16].

As such, mathematical modelling and simulation of aggregate growth have recently shifted attention
towards understanding growth dynamics as a complex process [17]. In this paradigm, aggregate
behaviour emerges from the interactions of multiple underlying cellular and subcellular mechanisms.
Modelling work now places emphasis on cellular-level and multiscale approaches [18], which can
capture the effects of intracellular processes and cell motility using computational methods [19]. Most
closely to classical models, analytic descriptions of chemical systems and dynamic cell populations
have been developed, with varying degrees of complex interactions and predictive capabilities.
Analytic models of oxygen diffusion-limited growth could be calibrated to growth data of cerebral
organoids when a necrotic core and aggregate shape were assumed [20]. Modelling nutrient diffusion
and cell motility as a system of partial differential equations enabled the testing of classical growth
models against imaging data of cancer metastasis in mice, and demonstrated the necessity for
modelling dynamic aggregate shape [14].

Cellular-level models have the capability to study the emergence of aggregate behaviours and
properties in terms of cellular and subcellular processes while considering shape changes and
stochasticity. A number of approaches have been developed to predict various aspects of growth
dynamics, including hybrid stochastic methods of systems limited by nutrient diffusion [21–25],
the utilization of Voronoi tesselations to simulate space-limited mitosis [26], and the effects of
metabolites and extracellular matrix production [27]. Among these, the cellular Potts model (CPM) is
a widely used discrete kinetic Monte Carlo method that treats individual cells as homogeneous,
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autonomous agents occupying multiple sites in a lattice and stochastically exchanging lattice

sites according to (virtual) energy minimization [28]. The CPM, which is the mathematical framework
of cellular dynamics in the commonly used and freely available Compucell3D simulation framework
[29], can be readily coupled to continuous systems in a hybrid modelling approach like
partial differential equations modelling nutrient diffusion and metabolic activity. The CPM is an
excellent choice to study how cellular behaviour affects emergent aggregate behaviour compared to
other cellular-level agent-based and cellular automata models, because it models deformable cell
shape and local cell adhesion, and because it broadly supports model development with suitable
hybridization [30].

Using Compucell3D or some other implementation, the hybrid CPM (or also the Graner–Glazier–
Hogeweg model) has been employed to study a number of factors affecting growth dynamics of
aggregates. Simulations of avascular tumours using the CPM and while assuming (but not
simulating) a single diffusive nutrient produced expected characteristics of diffusion-limited growth
curves, including early exponential, later linear and final asymptotic growth [31]. Simulation of
multiple chemical species regulating cell proliferation and viability produced growth curves that could
be fitted with a Gompertz equation [32]. In vivo scenarios have been constructed in virtual tissue
models to study factors affecting cancer behaviour and invasiveness, including environmental fibre
density and orientation of the extracellular matrix [33], the Wnt distribution of the colorectal crypt
[34], and interactions with a local vasculature [35]. More generally, individual cellular mechanisms
have been simulated to study their effects on emergent behaviour, including mechanisms affecting
aggregate interface morphology and the origin of global shape changes during growth [36], regulation
of cell proliferation during growth by cell compressibility and contact inhibition [37] or cell
deformation [38], and space-limited mitosis and resulting logistic model behaviour during monolayer
growth [39]. Simulations of scenarios in scaffold-free biofabrication have demonstrated the effects of
insufficient oxygenation on oversized spheroids and the potential for environmental control during
in vitro fabrication of tissue [40].

Among the aforementioned contributions, there remains a sufficient explanation of the seemingly
selective accuracy of the classical growth models when modelling diffusion-limited multicellular
aggregate growth. Plainly stated, why do some classical models work well for aggregate growth of
some cell types, and other models for other types? A hybrid CPM is well suited to interrogate this
phenomenon for several reasons: (i) it permits global shape changes, (ii) it allows modelling according
to cell phenotype specificity, (iii) it supports the simulation of an arbitrary number of diffusive
chemical species, (iv) it considers volume exclusion, and (v) it permits analysis of cellular and
intracellular mechanisms that are directly relatable to other modelling works and developed virtual
tissue simulations. A sufficient explanation of the disagreement among the classical models using a
robust framework like a hybrid CPM would provide a better understanding of the responsible
mechanisms, as well as enhanced modelling and predictive capabilities. Better simulation
environments could then be constructed concerning the interactions of diffusive chemicals and cell
viability, for medical applications like developing scalable production of tumour spheroids for drug
discovery [41] and computational tools to aid cancer prognosis using patient-specific imaging [42], to
the development and application of bioreactors in biofabrication [43,44].

In this work, a hybrid CPM was developed and employed to explain the disagreement among the
classical models of diffusion-limited growth in silico as emergent behaviours from the same multiscale
model system. This was accomplished by representing the intracellular processes associated with cell
proliferation and death as stochastic functions of internal chemical conditions using Gaussian
distributions [40] for a single diffusive nutrient provided by the environment. In this paradigm,
parameters of the stochastic functions represent phenotype-specific genetic regulation by which each
cell responds to its local oxygen such that a set of model parameter values is an identifier of a specific
cell phenotype. Emergence of classical growth models was demonstrated by fitting the unified
Richards model to two-dimensional simulation results, where also the Bertalanffy, Gompertz
and logistic growth models were tested. Parameter variations of the intracellular model were
performed to show that an emergent growth curve may behave more or less like a particular classical
growth model depending on the type-specific parameters of the same model system, which was
accomplished by comparing unified Richards model shape parameters of fitted results, as well as
goodness of fit to simulation results using the unified Richards and classical growth models. Shape
analysis demonstrated the necessity of considering shape changes when simulating multicellular
aggregate growth.
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2. Methods

Cellular dynamics is simulated using the CPM for a regular, two-dimensional lattice L of cells in a
medium, henceforth collectively referred to as agents. Each ith agent is initialized with a unique
identification integer si [ I , N such that, for the discrete coordinate r [ L, the virtual time k [ N

and s :L ! I , lattice sites occupied by the ith agent are denoted σ(r, k) = σi. L is mapped to a
physical, continuous domain P by a modelling coefficient a :L ! P such that x ¼ ar [ P is a physical
coordinate corresponding to the discrete coordinate r. Every agent is modelled with a set of modelling
descriptors according to its type ti ¼ t(si) [ T , N, where two cells of the same type are modelled
identically and the medium is assigned an integer value of zero for identification and type.

Cell motility is simulated by considering a set of randomly selected lattice events called copy
attempts, called a Monte Carlo step (MCS), where one MCS signifies having accomplished a number
of copy attempts equal to the number of lattice sites. For each copy attempt in a MCS, a source site
rs [ L and target site rt [ N 1(rs) in the von Neumann neighbourhood of range one N 1 , L of the
source site are both randomly selected. For the kth MCS, if the copy attempt is accepted then, at
virtual time k0 > k after the copy attempt (i.e. k < k0 ≤ k + 1), σ(rt, k0) = σ(rs, k). The probability of each
copy attempt is considered as the stochastic rule,

Pr (s(rt, k0) ¼ s(rs, k)) ¼ exp �max 0,
DH
H�

� �� �
, (2:1)

where DH is the change in the system effective energy H due to the copy attempt and H� ¼ 10 is the
intrinsic random motility. In this way, copy attempts are accepted such that the system effective
energy tends to decrease and the likelihood of an increase in effective energy decreases proportionally
to the magnitude of the increase. The system effective energy H consists of effective energies
independently associated with cell size and interface conditions. A spatial constraint vt [ Rþ is
imposed on each cell such that the space a2kLsik of the subdomain Lsi ¼ fr [ L :s(r, k) ¼ sig
occupied by cell σi tends towards vti . A modelling coefficient Jt,t0 ¼ Jt0 ,t [ Rþ describes the interface
condition between agent types τ and τ0. For both the spatial constraints and interface conditions,

H ¼
X
si

ltiv (kLsik � vti )2 þ
X
r

X
ri[N (r)

(1� ds(r,k),s(ri ,k)) Jt(s(r,k)),t(s(ri ,k)), (2:2)

where the spatial Lagrange multiplier ltv is a modelling coefficient for cell type τ and the medium has no
spatial constraint (i.e. l0v ¼ 0, ltv ¼ 2 otherwise), N (r) , L is the neighbourhood of r, δp,q is the Kronecker
delta. For all simulations in this work (but not necessarily in all CPM applications), N corresponds to the
Moore neighbourhood of range one. All simulations in this work are performed for a single, theoretical
phenotype of nominal diameter 20 μm (i.e. vti ¼ 314m2), and the length α of each site is 2.96 μm so that a
nominal cell occupied 36 lattice sites when initialized as a square, which is large enough to prevent
accidental cell death due to cells being too small during splitting. Interface coefficients are selected
such that the aggregate tended to stay round by minimization of contact energy, with cell–cell J1,1 = 6
and cell–medium J0,1 = 12. As such, adhesion parameters in the regime of J0,1 > J1,1 affect the tendency
of aggregate shape changes, but otherwise do not affect the dynamics of aggregate growth.

The modelling of diffusive oxygen in P is performed by solving a parabolic partial differential
equation. For oxygen concentration c = c(x, t), homogeneous diffusivity D = 2500 μm2 [20] and source
field s = s(x, t) =−0.5 fmol/cell s−1 [20],

@c
@t

¼
X
j

D
@2c
@x2j

þ s, (2:3)

where xi∈ x is along the ith dimension of P, s maps respiration in L onto the rate of oxygen and t = βk is
the physical time related to simulation step k by the modelling coefficient β = 0.1 s/MCS [40], which was
chosen to be sufficiently large so that chemical diffusion occurred much faster than cellular motility. The
system is solved using a second-order central difference scheme of P, forward Euler explicit integration of
time and a prescribed boundary condition that all medium sites remain at an environmental
concentration of 0.2 mM [20,32]. A sufficiently high, but otherwise arbitrary, value was selected for the
time correlation β such that transient effects of cell motility were negligible.

The phenotypic responses of proliferation and death for cell σi are modelled as stochastic functions of
the mean concentration field �csi (t) in its physical subdomain Psi ¼ fx [ P :s(a�1x, b�1t) ¼ sig (i.e.
Psi ¼ aLsi ). The probability of a jth phenotypic response ti ! ttij due to oxygen is then considered
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once every time step for each cell according to a normal distribution,

Pr (ti ! ttij ) ¼ bptij exp �
�csi � ctij

gtij

 !2
0
@

1
A, (2:4)

where the probability rate ptij , standard deviation gtij and target ctij are modelling coefficients for the cell
type τi. For every τ, there is a corresponding dead τ-type, where metabolic activity ceases and a spatial
constraint of zero is assigned so that, over time, dead cells tend to be removed from the simulation.
For cell splitting, a cell is divided along its minor axis, from which a new agent is initialized and
added to the simulation.

Aggregate area was measured in intervals of 1k MCS (denoted ‘kMCS’) and fitted to the unified
Richards (or U-Richards) model form [11,12],

W(k) ¼ A 1þ W0

A

� �1�S

� 1

 !
exp � Gk

SS=(1�S)

� � !1=(1�S)

, (2:5)

where A is the upper asymptote of the curve, W0 =W(0), G is the growth rate and S is a shape parameter.
Note that the Bertalanffy, Gompertz and logistic models can all be derived by S = 2/3, S→ 1 and S = 2,
respectively. In the case of the Gompertz model, equation (2.5) takes the form

lim
S!1

W(k) ¼ A
W0

A

� �exp (�eGk)

: (2:6)

For all experimental fits, results were fitted by normalizing simulation time to the interval [0, 1], and fitted
growth rates were scaled to units of 100 kMCSs−1. Results were fitted to the unified Richards, Bertalanffy,
Gompertz and logistic models, the results of which were compared.

To generalize the effects of various intracellular response profiles for proliferation and death in a
biologically meaningful way, the probability rate and standard deviation in equation (2.4) were cast in
terms of specified concentration response widths and population multipliers according to exponential
growth. Response width wj is measured as the absolute difference in target and cut-off concentrations
ctij and cti ,oj , respectively, of the jth response. For each jth response, the corresponding probability rate
ptij was calculated according to a population multiplier nj with respect to 10 kMCSs, where for N(k)
cells at virtual time k, population multiplier n and rate p, a general form was employed,

n(k) ¼ N(k)
N(0)

¼ (1þ p)k: (2:7)

A probability rate pti ,oj at the cut-off concentration was set to occur with a probability of once in one
million MCSs. Then for cut-off concentration cti ,oj and corresponding probability rate pti ,oj , all profiles
of interest where calculated according to parametrizations of equation (2.4) using equation (2.7),

ptij ¼ n10 000
�1

j � 1 (2:8)

and

gtij ¼ wffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ln ptij � ln pti ,oj

q : (2:9)

Variations in the intracellular modelling coefficients were considered for both proliferation and death
with respect to an initial total profile, labelled ‘Control’. Variations were performed for the target
concentration of proliferation, and the response width and rate of both proliferation and death.
Control was selected such that, for the experimental set-up of five initial cells, aggregate growth
converged to a final size that could be contained within a square domain of 600 μm width, and well
before 100 kMCSs. To simplify computational experiments, all variations were selected to reduce
aggregate final size. All profiles were simulated until a U-Richards fit well captured aggregate final
size, and for at least 100 kMCSs. Profiles were named according to their corresponding variation,
which are designed to characterize the ways in which two cell types may differ in their response to
local oxygen according to the parameters of the model. They are, Decrease, for a decrease in
proliferation rate (a cell type that proliferates less aggressively); Shift, for an upward shift in
proliferation target (a cell type that nominally proliferates in a higher oxygen concentration); Shrink,
for a decrease in proliferation response width (a cell type that proliferates more selectively according
to local oxygen); Increase, for an increase in death rate (a cell type that dies more rapidly when
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Figure 1. Summary of growth dynamics simulation and analysis. (a) Discrete domain of cells (left) and corresponding continuous
domain of oxygen (right). (b) detected aggregate domain (blue) and best-fit ellipse (green). (c) Intracellular model profiles for the
first set of variations. Red and green curves correspond to probability rates of cell death and proliferation, respectively, as a function
of the mean oxygen concentration.
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hypoxic); and Expand, for an increase in death response width (a cell type that dies over a greater range
of low oxygen concentrations, figure 1). Two sets of these variations were performed and fitted to
equation (2.5). The first set was plotted to show the effects of individual intracellular parameters on
emergent growth curves, while emergent coefficients from the Control profile and two variations of
an intracellular coefficients were tested for linearity. All simulations, data and shape analysis, and
curve fitting were performed in Matlab (The MathWorks, Inc., Natick, MA, USA). Simulations
consisting of 100 kMCSs typically required approximately 12 h to complete. Measurements of
eccentricity were made using Matlab Image Processing Toolbox.
3. Results
Three trials of the Control and Decrease 1 parameter sets were simulated and fitted to the U-Richards
model, to interrogate the variation of growth dynamics metrics for a given intracellular parameter set
(figure 2). Trials using the Control parameter set were simulated for 100 kMCSs, while trails for the
Decrease 1 parameter set were simulated for 150 kMCSs to ensure a steady-state final size. All six
trials were observed to well fit the U-Richards model, though growth dynamics metrics did show
some variation among the trials of each intracellular parameter set when fitted to a U-Richards model
with an initial cell number of five. This is probably due to a non-negligible degree of variation
presented by sampling the probability of proliferation for only five cells at a time, which, though
approximately constant due to minimal oxygen gradients generated by so few cells, can exhibit
significant variations in the amount of time required to observe a significant number of proliferative
events. However, analysis of results showed that this effect could be mitigated by adjusting the
simulation time at which the U-Richards model considers a result to be an initial measurement (i.e.
the parameter W0 of equation (2.5)) while still considering significant aggregate growth. In the present
case, an initial measurement of 15 cells was found to generate very similar growth dynamics metrics
among each trial of both parameter sets (at kMCS 8, 11 and 7 for Control trials, and at kMCS 9, 8 and
9 for Decrease 1 trials). Because of this, an adjusted simulation time was calculated from the first
observed result with 15 cells and used for fitting results to all growth models of interest (note the
horizontal shift in results of figures 2, 3 and 5 such that very early results are considered as negative
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adjusted simulation time). The simulation at which the adjusted simulation time is zero (i.e. Initial time)

is listed for each trial in table 2.
Having accounted for initial effects, simulation results for trials using each parameter set were

noticeably similar when measured by adjusted simulation time (figure 2). Among U-Richards fits
for trials of each parameter set, the mean and standard deviation of U-Richards coefficients were
calculated, and all standard deviations were less than 13% of their respective mean (from equation
(2.5), Control: A = 123.1 ± 0.7472 μm2, W0 = 5.143 ± 0.7472 μm2, G = 2.687 ± 0.05094/100 kMCSs,
S = 1.393 ± 0.03815; Decrease 1: A = 119.8 ± 0.8452 μm2, W0 = 4.758 ± 0.3434 μm2, G = 2.127 ± 0.03741/
100 kMCSs, S = 1.504 ± 0.08467). U-Richards curves were generated and compared to simulation
results, where the mean U-Richards coefficients generated curves that matched very well with results
(i.e. the curves shown as solid lines in figure 2), and rightmost and leftmost curves were generated
from coefficients three standard deviations greater than and less than their respective means (i.e. the
curves shown as dashed lines in figure 2). By inspection, these rightmost and leftmost curves enclosed
nearly all deviations of simulation results from their respective mean U-Richards curves, which were
observed to occur most significantly before an adjusted simulation time of 20 kMCSs. Given the
similarity of measured U-Richards coefficients among all trials of each parameter set and neglecting
significant aggregate shape changes, results for individual trials are then probably representative of
the emergent dynamics of a parameter set, despite all of the underlying stochasticity.

For both parameter sets, the mean shape parameter S from equation (2.5) implied no classical growth
model (from table 2, mean S = 1.393 for the Control set, and mean S = 1.504 for the Decrease 1 set), but
was instead well between the Gompertz (i.e. S→ 1, equation (2.6)) and logistic (i.e. S = 2) growth models.
Results from the Control set were closer to a Gompertz model curve than those of Decrease 1, the mean
shape parameter of which was approximately equidistant from those of the Gompertz and logistic
models. The decrease in proliferation rate from the Control set to Decrease 1 did not significantly
decrease the upper asymptotic aggregate size (2.702% decrease in mean U-Richards upper asymptote),
while the effect was clearly observed by a 20.83% decrease in the fitted U-Richards growth rate. The
results then imply that, using the intracellular model (equation (2.4)), a decrease in the probability rate
of proliferation alone more significantly decreases the rate at which an aggregate will reach its final
size, rather than its final size per se. Considering final size as the equilibration of cell proliferation and
death rates, one would expect that, along with a decrease in aggregate growth rate, a significant
decrease in proliferation rate would result in a significant decrease in final size. Results do not
support this paradigm for the tested decrease in proliferation rate. Quantitatively, the tested decrease
in proliferation rate constitutes a 33% decrease in population at nominal oxygen values and 10 kMCSs
according to exponential growth (by equation (2.8)), and yet only a mean decrease in final aggregate
size of less than 3%, and a 3.693% decrease among the extrema (table 2).

The remaining first set of variations in intracellular parameters was then simulated and fitted to the
U-Richards model for all aforementioned variations of interest (figure 3). For comparison of the effects of
variations in individual intracellular parameters, the trial with the best fit to the U-Richards model was
selected from each set of trials (Trial 3 from figure 2 for both Control and Decrease, with R2 values of
0.9961 and 0.9976, respectively). Growth model fits of results from various intracellular parameters
were henceforth compared to this selected Control trial. Like Decrease 1, the intracellular parameters
for Shift 1 and Shrink 1 were also simulated to 150 kMCSs, while the simulation for the Decrease 1
parameters reached its final size at nearly the same simulation time as that of the Control parameters,
and as such was simulated for 100 kMCSs.

For all simulated intracellular parameter sets in this first set of variations in model parameters of
equation (2.4), the worst coefficient of determination R2 for a U-Richards model fit was 0.9940
(Increase 1, table 2). All trials were also fitted to the classical growth models. As expected, the
U-Richards model produced the best fit for each trial, due to its additional degree of freedom (i.e. it
has one more coefficient to fit than the classical models). The coefficient of determination for each
classical growth model fit showed a clear correlation with the U-Richards model shape parameter (e.g.
a shape parameter near 1 correlated with a best fit to the Gompertz model among the three classical
growth models that were tested, while a shape parameter farther from 2 showed a coefficient of
determination farther from 1 for the logistic model, table 2). As such, the tendency of a phenotype to
behave collectively like a particular classical model (or like no particular classical model) can be
measured by the U-Richards model shape parameter. Upper asymptote was marginally affected by an
increase in death rate (Increase 1, 2.459% decrease in A from equation (2.5)), and most affected by an
expansion of the death response width (Expand 1, 10.17% decrease in A), while an upward shift in
proliferation target most significantly decreased the fitted U-Richards growth rate (Shift 1, 37.20%



Table 1. Parameters of all simulated intracellular model profiles according to the biological parametrizations in equations (2.8)
and (2.9), from which the model parameters in equation (2.4) were generated. Units of response target and width are
micromolar concentration (μM). Variations from Control are italicized.

proliferation death

profile target (μM) width (μM) multiplier target (μM) width (μM) multiplier

Control 200 100 6 0 50 6

Decrease 1 200 100 4 0 50 6

Shift 1 210 100 6 0 50 6

Shrink 1 200 80 6 0 50 6

Increase 1 200 100 6 0 50 8

Expand 1 200 100 6 0 100 6

Decrease 2 200 100 2 0 50 6

Shift 2 205 100 6 0 50 6

Shrink 2 200 90 6 0 50 6

Increase 2 200 100 6 0 50 7

Expand 2 200 100 6 0 75 6
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decrease in G from equation (2.5)). Marginal decrease in upper asymptote for Decrease 1 could at least be
partially explained by an observed eccentricity in aggregate shape at 100 kMCSs, which was also
observed in results for Shift 1 at 100 kMCSs, since fewer cells in the interior of the aggregate are
exposed to hypoxic conditions (consider if the morphology were instead a plane). Interestingly, an
expansion of the death response width slightly increased the fitted U-Richards growth rate (Expand 1,
6.799% increase in G), which was probably at least partially a consequence of the stochasticity of the
system, since the U-Richards fit R2 was 0.9969. The U-Richards shape parameter was nearly
unaffected for an increase in death rate (Decrease 1, 0.5673% decrease in S from equation (2.5)) and
marginally affected by a decrease in proliferation response width (Shrink 1, 6.541% increase in S),
while a shift towards a Gompertz growth model was observed for an expansion of the death response
width (Expand 1, 11.25% decrease in S). Probably most significantly from these simulation results, a
positive shift in proliferation response nearly produced results that fit a U-Richards model (Shift 1,
25.68% decrease in S, R2 = 0.9959) with a shape parameter 95% confidence interval (S = 1.063 ±
0.06899) containing the limit for which the fit is that of the Gompertz growth model (i.e. S→ 1).

To test the predictability of U-Richards growth model parameters with respect to intracellular model
parameters, a second set of variations in model parameters of equation (2.4) was simulated to
convergence of aggregate size and fitted to the U-Richards growth model, according to table 1. For all
intracellular parameters except Decrease 2, a linear variation of parameters was designed by selecting
each second variation as the midpoint between the corresponding Control parameter and that of the
first set of variations (e.g. the expansion of death response width using equation (2.4) from Control in
Expand 2 is half of that of Expand 1). For the case of Decrease 2, the first variation in proliferation
rate was designed to be the midpoint, since final aggregate size did not significantly decrease from
that of the Control set and final shape did not exhibit significant eccentricity. On the other hand,
while final aggregate size from Increase 1 also did not significantly decrease from that of the Control
set, it did exhibit significant eccentricity, and so Increase 2 was designed to be a midpoint. According
to this scheme, variations are henceforth referred to as midpoint and endpoint variations (figure 4).
Like in the first set of parameter variations, Shrink 2 and Shift 2 were simulated for 150 kMCSs, while
Decrease 2 was simulated for 250 kMCSs.

For all simulated intracellular parameter sets in this second set of variations, the worst coefficient of
determination R2 for a U-Richards model fit was 0.9920 (Shrink 2, table 2). The fitted U-Richards model
upper asymptote behaved fairly predictably for all variations, where all upper asymptotes resulting from
midpoint variations were less than that of the Control set, and greater than those of corresponding
endpoint variations. Variations in intracellular model parameters listed in table 1 and resulting U-
Richards fit coefficients listed in table 2 were tested for linearity by examining goodness of fit when
modelling U-Richards fit coefficients as linear functions of individual intracellular model parameters.



Table 2. Fit coefficients and metrics of fitted emergent growth curves. Top: coefficients of the unified Richards growth model
(equation (2.5)) for all intracellular response profiles, according to table 1. ± values indicate 95% confidence interval half-widths.
Bottom: coefficient of determination of fitted growth models of interest.

unified Richards fit coefficients

upper asymptote initial area growth rate G shape initial

trial A (mm2) W0 (mm
2) (100 kMCSs)−1 parameter S time (MCSs)

Control 0.1222 ± 0.001195 0.005093 2.703 ± 0.1046 1.394 ± 0.1143 8000

0.1234 ± 0.001371 0.005766 2.630 ± 0.1075 1.354 ± 0.1245 11 000

0.1236 ± 0.001030 0.004569 2.728 ± 0.09293 1.430 ± 0.09631 7000

Decrease 1 0.1195 ± 0.0009811 0.004543 2.095 ± 0.08017 1.421 ± 0.1137 9000

0.1207 ± 0.0007499 0.004578 2.119 ± 0.06377 1.501 ± 0.09068 8000

0.1191 ± 0.0004992 0.005154 2.168 ± 0.04557 1.591 ± 0.06837 9000

Expand 1 0.1111 ± 0.0007707 0.004447 2.913 ± 0.08141 1.269 ± 0.08180 9000

Increase 1 0.1206 ± 0.001385 0.005067 2.484 ± 0.1061 1.422 ± 0.1238 7000

Shrink 1 0.1177 ± 0.0005813 0.004648 2.262 ± 0.05806 1.523 ± 0.08008 6000

Shift 1 0.1154 ± 0.0008110 0.004744 1.713 ± 0.04079 1.063 ± 0.06899 8000

Decrease 2 0.1116 ± 0.0005863 0.005163 1.107 ± 0.02593 1.730 ± 0.07835 16 000

Expand 2 0.1170 ± 0.0009594 0.005425 2.817 ± 0.1014 1.687 ± 0.1190 9000

Increase 2 0.1225 ± 0.001329 0.004866 2.562 ± 0.1018 1.410 ± 0.1116 11 000

Shrink 2 0.1174 ± 0.0009199 0.004578 2.065 ± 0.07872 1.555 ± 0.1171 6000

Shift 2 0.1221 ± 0.0004837 0.004630 2.325 ± 0.04654 1.409 ± 0.06052 9000

coefficients of determination R2

trial unified Richards Bertalanffy Gompertz logistic

Control 0.9947 0.9830 0.9915 0.9896

0.9942 0.9848 0.9918 0.9889

0.9961 0.9828 0.9922 0.9917

Decrease 1 0.9915 0.9782 0.9876 0.9868

0.9949 0.9798 0.9899 0.9918

0.9976 0.9798 0.9909 0.9956

Expand 1 0.9969 0.9883 0.9953 0.9891

Increase 1 0.9940 0.9830 0.9907 0.9899

Shrink 1 0.9962 0.9803 0.9908 0.9934

Shift 1 0.9959 0.9920 0.9958 0.9817

Decrease 2 0.9955 0.9765 0.9872 0.9948

Expand 2 0.9961 0.9766 0.9879 0.9950

Increase 2 0.9953 0.9840 0.9921 0.9909

Shrink 2 0.9920 0.9750 0.9859 0.9895

Shift 2 0.9976 0.9846 0.9940 0.9930
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The response of upper asymptote to a linear increase in death response width was remarkably linear,
where a line fit measured upper asymptote to simulated death response widths with R2 = 0.9986,
while all other responses were not especially linear. Likewise, a linear variation in death response
width also demonstrated a nearly perfect linear response in U-Richards model growth rate (a line fit
measured growth rates to simulated death response widths with R2 of 0.9995), with all other linear fit
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R2 values less than 0.9697. However, the linear variations in death response width exhibited a notably
nonlinear response in U-Richards shape parameter, where the midpoint result was much greater than
those of Control and endpoint. This contrasts with a strong linear response in U-Richards shape
parameter for a linear variation in proliferation rate, which fit to a line with R2 = 0.9983 (all linear fit
R2 values were less than 0.5867 when fitting shape parameter to all other intracellular model parameters).

The second set of simulated variations also produced the two greatest fitted U-Richards shape
parameters (from equation (2.5), Decrease 2 S = 1.730, and Expand 2 S = 1.687, table 2), which was
closest to a logistic growth model, i.e. S = 2. Considering Decrease 2 as producing the most logistic
model-like results and, as previously discussed, Shift 1 as producing the most Gompertz model-like
results (S→ 1), simulation results then produced U-Richards model shape parameters that were as
near 13.50% to a logistic growth model, and 6.300% to a Gompertz growth model, by using different
parameters of the same intracellular model (equation (2.4)). Figure 5 shows fits to these trials and
Control 3 using the U-Richards and classical models, where, most notably, the U-Richards and
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Gompertz model fits are indistinguishable by inspection for Shift 1, and the same is nearly so for the U-
Richards and logistic models when applied to Decrease 2.

This was also demonstrated by fitting the Bertalanffy, Gompertz and logistic growth models to all
simulation results, the coefficients of determination of which showed the same observation (table 2):
results from the Shift 1 parameters best fit the Gompertz model among the three (R2 = 0.9920, 0.9958,
0.9817 using the Bertalanffy, Gompertz and logistic models, respectively), results from the Decrease 2
parameters best fit the logistic model among the three (R2 = 0.9765, 0.9872, 0.9948 using the
Bertalanffy, Gompertz and logistic models, respectively), and results from the Control parameters
produced a U-Richards shape parameter near the midpoint of those of the Gompertz and logistic
growth models (R2 = 0.9828, 0.9922, 0.9917 using the Bertalanffy, Gompertz and logistic models,
respectively). Of course, in the case of the Control parameters, the Gompertz and logistic models both
would be considered useful by these measures of their fits to results. This, however, is besides the
point in that they are both submodels of the U-Richards model, which showed an even better
measure of being able to fit to results (R2 = 0.9961), and in that both submodels may or may not
emerge from the intracellular model of the present work (equation (2.4)), depending on the
responsiveness of the particular cell phenotype to local chemical conditions.

To interrogate the possible causes and effects on growth dynamics of aggregate shape, the eccentricity
of aggregate configurations for the Control parameter set and all midpoint and endpoint variations was
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measured every 1 kMCS using a best-fit ellipse (as demonstrated in figure 1b), beginning with MCS 1k

(figure 6). The distribution of eccentricity during simulation was approximated by calculating a
normalized histogram of all eccentricity measurements with bin intervals of 0.1. The effects of
eccentricity on final size was characterized by calculating the mean and standard deviation
of eccentricity for the final 25 kMCSs of simulation time. By these measures, aggregates with a
consistently eccentric final shape could be identified by measurements with a high mean eccentricity
and a low standard deviation, while inconsistent eccentricity could be identified by measurements
with a high standard deviation of eccentricity. For the present case, a low eccentricity standard
deviation was in the range of 0.02 to 0.04. For reference, the mean of all mean measurements of
eccentricity of all trials was 0.3875, and the mean of all standard deviations was 0.1081.

As alluded to by the mean of all mean measurements, the peak of most eccentricity distributions was
near 0.4, while only three measurements were as low as near 0.1 (endpoint variations for Shift, Shrink
and Increase, figure 6), and two measurements were as high as near 0.8 (midpoint variations for
Shrink and Increase). With the exception of variations for Expand, upward shifts in eccentricity
distribution were observed for all parameter variations, and especially for the midpoint decrease in
proliferation response width and endpoint increase in death rate using equation (2.4). For the case of
variations in proliferation response width, i.e. Shrink, the increase in eccentricity for the midpoint
variation demonstrated a degree of randomness with which an aggregate can become eccentric, which
particularly occurred during the asymptotic stage of aggregate growth (figure 6a, top left). This seems
to reflect an increase in the corresponding fitted U-Richards upper asymptote (figure 4), where the
midpoint variation deviated upward from a linear fit. Eccentricity during the same stage of growth
was observed to increase with increasing death rate (i.e. Increase), especially for the endpoint
variation, probably then mitigating some of the effects of the variation on fitted U-Richards upper
asymptote (supposing that, without the effects of eccentricity, the upper asymptote of figure 4 would
have decreased for Increase variations much more than what was observed). No observed behaviour
from shape analysis explained the seemingly erratic behaviour of the fitted U-Richards shape
parameter shown in figure 4 for variations in proliferation response target and width, suggesting that
the fitted shape parameter and growth rate exhibit some coupled response with respect to these
intracellular model parameters that could not be detected with the method of this work.

Variations for Expand (i.e. increases in equation (2.4) model response width for cell death) instead
produced remarkably similar distributions of eccentricity over all simulation results, both of which
were similar to that from the Control parameter set, but slightly less dispersed (figure 6b). This helps
to explain the slight increase in U-Richard growth rate for increases in death response width
(figure 4), in that the more consistently eccentric shape of the aggregate during simulation increased
the perimeter where proliferation occurs. Considering this and that all simulated parameters produced
aggregates with appreciable eccentricity, the necessity of considering aggregate shape changes when
modelling diffusion-limited growth is clear. Similarly, the near linear behaviour of the corresponding
U-Richards fitted upper asymptote (figure 4) can be explained by that the mean of their measured
eccentricity during the final 25 kMCSs was nearly the same as that of the Control parameter set, and
that none of the three parameter sets during this simulation period generated a particularly low
eccentricity standard deviation (i.e. their final shapes were statistically similar).

While more advanced methods are required in future work to better understand the relationships
between the intracellular model parameters, aggregate shape changes, and emergent U-Richards
shape parameter and growth rate, a quantitative method was devised to show how the intracellular
model parameters and aggregate shape affect final size. This was accomplished by calculating a so-
called ‘probability area’ of the responses of proliferation and death, which, for each response, is the
area within the aggregate weighted by its corresponding probability (equation 2.4). For the jth
response, the corresponding probability area Aj was calculated by integrating this mathematical
characterization over an aggregate domain A,

Aj ¼
ð
A
bptij exp �

c� ctij
gtij

 !2
0
@

1
AdA, (3:1)

where a final size can be expected to occur when the probability area of proliferation is equal to that of
death (i.e. when total cell proliferation is equal to total cell death).

Analysis using equation (3.1) clearly showed the effects of intracellular parameters and aggregate
eccentricity on final aggregate size, as well as on the emergent growth dynamics of the simulated
system, in general (figure 7). For all simulated parameter sets, an approximately constant probability
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area of proliferation was calculated for an aggregate size less than 0.05 mm2, while the measured
probability area of death, after an initial, nonlinear increase, behaved as if linearly proportional to
aggregate area. Furthermore, the mean magnitude of the probability area of proliferation for aggregate
sizes greater 0.05 mm2 linearly decreased with decreasing proliferation rate (R2 = 1 when fitting this
metric to varying proliferation rate in equation (2.4) with a line), linearly decreased with decreasing
proliferation response width (R2 = 0.9992 when fitting this metric to varying proliferation response
width with a line), and linearly decreased with increasing proliferation response target (R2 = 0.9986
when fitting this metric to varying proliferation response target with a line). Variations in death
response parameters generally resulted in a leftward shift of the resulting line for probability area of
death when plotted against aggregate area.

The measured constant probability area of proliferation shown in figure 7 predicts that, in a spheroid
of appreciable size, the volume containing proliferating cells is approximately constant (consistently with
experimental observations [45]) and, without inhibition of aggregate growth, the emergent growth curve
is a straight line (consistently with assumptions used in similar modelling approaches [31,35]). This
stands in stark disagreement with classical formulations of growth models, where proliferation is
often considered to be proportional to aggregate surface area (where proliferation occurs [9]). In the
present case, simulation results show that the model may not directly support this assumption in any
appreciable way, given that the measured high eccentricity for later results from the midpoint
variation in proliferation response width (figure 6) was not demonstrated in the measured probability
area for proliferation.

However, this theoretical assumption of some classical growth models may be supported by
simulation results, but in a rather indirect way. Like the midpoint variation in proliferation response
width, the endpoint variation in death rate demonstrated a consistently high eccentricity in the later
stage of simulation (figure 6). For the case of the proliferation response width, measured probability
area for the response of death was expected to be unchanged among these variations, since the
probability distribution of death was unchanged. And yet, for the variation with notable late
eccentricity, there was also a notable upward shift in measured probability area of death (figure 7),
meaning that the intersection of the probability areas of proliferation and death shifted upwards. For
the case of increasing death rate, one would expect a continued upward shift in probability area of
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death, but this upward shift was not present for the endpoint variation, which was also highly eccentric.
This can be readily explained by that the minimum distance within a spheroidal aggregate to an
oxygenating interface generally decreases with increasing aggregate eccentricity. But with increasing
eccentricity, the surface area of the aggregate also increases, and so some dynamic relationship
between aggregate size and surface area is supported by the model. However, the model presented
here redirects the emphasis on the relationships between the underlying (cellular and subcellular)
mechanisms of the aggregate and the resultant emergent aggregate behaviours and properties, rather
than on the relationships between the emergent behaviours and properties per se, which may lack a
requisite level of information due to the underlying complexity. The measured linear response of final
aggregate size to a linear variation in proliferation response width (figure 4) may perhaps then be a
consequence of the eccentricity during simulation of the midpoint variation causing an upward
deviation from an otherwise nonlinear response, and this should be investigated in future work with
far more simulations using greater technological resources.

Considering all aforementioned observations from analysis, the qualitative effects of the parameters
of the intracellular response model on emergent growth dynamics as described by the unified Richards
model, though perhaps obvious from the model formulation but not readily apparent from simulation
results, were deduced for final size and growth rate (figure 8). The model predicts that aggregate
growth rate and final size increase with increasing rate at which a cell phenotype proliferates in
response to sufficient oxygen, with increasing range over which a phenotype considers oxygen
concentrations to be sufficient for proliferation, and with the nearness of local oxygen to sufficient
phenotype-specific levels for proliferation. Likewise, aggregate final size (but not growth rate) is
predicted to decrease with increasing rate at which a phenotype responds to hypoxic conditions, and
with increasing range over which a phenotype considers oxygen to be insufficient.
4. Discussion
Probably most obviously (and also most frustratingly), a description of the effects of the intracellular
model parameters on emergent U-Richards shape parameter could not be inferred from analysis of
simulation results. This is relevant since the primary goal of this work was to elucidate the
discrepancy between the growth models of interest (i.e. Bertalanffy, Gompertz and logistic) for various
cell phenotypes by means of the intracellular model, and the U-Richards shape parameter is clearly
the means by which each model can be identified. While the cause of their discrepancy could be
considered as demonstrated by the present models and method (at least for the Gompertz and logistic
models, see figure 5), a quantitative understanding of how the various phenotype parameters affect
the tendency of an aggregate to behave like a particular growth model would be particularly
insightful (and also useful). As such, the description of the characteristic features of an emergent
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curve as related to the parameters of the model presented here is incomplete, and should be regarded as

preliminary. The central thesis, however, is shown, in that type-specific variations of the same model
framework produced curves that behaved more or less like classical growth models, as observed for
type-specific responses in nature.

To generate a quantitative description of the effects of the type-specific parameters on emergent curve
characteristics in future work, many more simulation results should be generated and analysed to
characterize the stochastic nature of the model (especially concerning aggregate shape changes), which
may then present a better means of sensitivity analysis. Such results may also allow for characterization
of high sensitivity to stochastic outcomes for very low numbers of cells (as demonstrated by highly
varying initial time in table 2), which was mitigated in the present work by fitting to results with 15 or
more cells (like a minimum detectable size) but excludes better representative biological heterogeneity.
Generating such a description would then provide a means to translate measured aggregate growth data
into calibrated model parameters, which is necessary for modelling applications in medicine and
development, alike (a good test of such a description, thanks in part to a question from a reviewer of this
manuscript, would be the idealized inverse problem of determining the parameters of the model from
simulation results using the model). This is especially true when considering that the work presented
here considered an oxygen-driven system, without the additional complexity of multiple nutrients (e.g.
glucose), inhibitors (e.g. lactate), extracellular matrix consistency (as in [27]), and other possible
regulatory mechanisms of cell proliferation like cell shape (as in [38]). Of course, the intracellular model
has a natural extension to a multivariate form of the Guassian distribution to accommodate coupled
responses to multiple chemicals species. However, what is currently unclear is how to couple the
Gaussian probability model with other studied regulatory mechanisms of proliferation like cell
compressibility, contact inhibition and cell deformation, whether as independent or interdependent
regulators. These future theoretical developments are essential for accurate predictions of spatio-
temporal population dynamics in more diverse and dynamic in vivo microenvironments, as well as in
tumour spheroids, which are also structurally heterogeneous [6].

Quantifying the mechanisms that generate each of the classical models is relevant since all classical
growth models, when fitted to each trial, presented a coefficient of determination that would be
considered acceptable by many standards such that one could question the need for using the unified
Richards model (though it is employed here for quantifying emergence, rather than to prove its
necessity). However, choosing the wrong classical model could generate wildly wrong predictions
based on limited data, as is evident in figure 5 (consider if one modelled the early response of Shift 1
with the logistic model). Of course, employing more advanced metrics of goodness of fit than those
used in this work might provide better insight into which classical model is best suited to describe a
particular growth curve. The coefficient of determination was employed in this work for each classical
model (table 2), as is commonly performed when comparing the utility of possible classical models, to
show the relative goodness of fit with respect to its emergence (i.e. a better R2 for a classical model
correlates with a closer corresponding U-Richards shape parameter). More importantly, the classical
growth models cannot be generalized to an arbitrary environment or aggregate shape (due to their
implicit representation of underlying biological complexity), while the underlying mechanisms
responsible for producing the emergent behaviours that they sometimes predict can be generalized to
a set of cell–environment interactions, as was observed in this work for the Gompertz model (figure
5). Such a generalized description, with explicit representations of cell–cell and cell–environment
interactions like the model of this work, is then useful for predictions concerning an arbitrary
environment, whether in development, medical applications, or otherwise (at the expense of
additional computational cost). In this sense, the discrepancy between the classical growth models can
be explained when considering them as functions in the space of all U-Richards models, where
environmental conditions and a particular cell type determine the corresponding function that
describes the emergent growth characteristics of the aggregate. In this same sense, knowing the cell–
environment interactions from which the characteristics of the aggregate emerge is to then inform
about the mapping from environmental conditions and a cell type to collective behaviour in general.
This knowledge then reinforces the utility of the classical growth models, as well as promotes rational
selection of which model for a particular modelling application, by providing an explicit description
of the underlying biology that they implicitly represent.

To this end, the lack of growth inhibitors in the present work is probably responsible for no
simulation producing a growth curve resembling the Bertalanffy model, where growth begins to slow
much sooner than in the Gompertz model. In this case, a cell phenotype model could include the
secretion of a growth inhibitor (either in hypoxic conditions, like lactate, or when dying, like lysis),
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causing the inhibition proliferation by cells in distant, well-oxygenated conditions. Such a model
probably requires simulating aggregates with sizes that span multiple orders of magnitude before
these effects can be readily quantified, the overall computational cost of which may require high
performance computing technologies and advanced parallelization of the present model and methods.
This is also the case when scaling the present model and methods to three-dimensional simulations,
which is relevant because of both increased diffusion and the possibility of eccentric aggregate shape
when considering a third spatial dimension. Since results demonstrated that the onset of eccentricity is
stochastic (at least to some degree), a complete understanding of how phenotype-specific behaviours
affect the onset of aggregate eccentricity (and thus aggregate growth) requires both three-dimensional
simulations, and many trials thereof, for a particular intracellular model parameter set. This pursuit
also requires variations in CPM model parameters, probably most importantly the parameters
modelling adhesion, which govern the strength by which the model cells form and maintain contact
interfaces. These considerations for future development of the model, whether theoretical or
computational, are particularly relevant when considering the potential for performing parameter
estimation when fitting to experimental data. Such a combined computational and experimental work
could provide new opportunities for applying in vitro observations to simulations of in vivo scenarios,
and would require rigorous evaluation of predictive capabilities.
Sci.7:192148
5. Conclusion
In thiswork, a computationalmethodwas developed and employed to demonstrate that differingmodels of
growth dynamics emerge from a phenotype-specific, statistical description of intracellular processes
in response to local chemical conditions. This was accomplished by representing the subcellular
mechanisms responsible for cell proliferation and death in response to local oxygen conditions as
Gaussian probability distributions, which were incorporated into a hybrid cellular Potts model,
simulated for diffusion-limited aggregate growth in idealized environmental conditions, and analysed
according to the unified Richards model generalization of popular growth models. System stochasticity
and reliability of fits using the unified Richards model were interrogated by simulating multiple trials of
select sets of model parameters, and model parameters describing phenotype-specific behaviours were
varied to better understand and characterize their effects on the emergent dynamics of aggregates.

Analysis of simulation morphologies showed the significance of potential aggregate shape changes
concerning characterization and prediction of aggregate growth dynamics. Analysis of internal
aggregate conditions showed that the intracellular model well predicts experimental observations
concerning regions of cell proliferation within aggregates, which have been assumed in comparable
computational approaches. Evidence was provided to explain assumed dynamic relationships
employed in traditional mathematical formulations describing aggregate growth.
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