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Opinion competition is a common phenomenon in real life,
such as with opinions on controversial issues or political
candidates; however, modelling this competition remains
largely unexplored. To bridge this gap, we propose a model
of competing opinion diffusion on social networks taking
into account degree-dependent fitness or persuasiveness. We
study the combined influence of social networks, individual
fitnesses and attributes, as well as mass media on people’s
opinions, and find that both social networks and mass media
act as amplifiers in opinion diffusion, the amplifying effect
of which can be quantitatively characterized. We analytically
obtain the probability that each opinion will ultimately pervade
the whole society when there are no committed people in
networks, and the final proportion of each opinion at the
steady state when there are committed people in networks.
The results of numerical simulations show good agreement
with those obtained through an analytical approach. This study
provides insight into the collective influence of individual
attributes, local social networks and global media on opinion
diffusion, and contributes to a comprehensive understanding
of competing diffusion behaviours in the real world.

1. Introduction
In real life, we usually have specific viewpoints on certain
topics, such as consumer products, life styles, celebrities, etc.
The opinions are generally formed based on certain private
information or personal life experience. By communicating with
friends, family and colleagues, our opinions can be influenced
and changed by social networks to which we are exposed. With
the rise of social networking sites like Facebook and social
media like Twitter, social networks have penetrated our lives
from multiple dimensions, and opinion diffusion and evolution,
or more broadly, the evolution of social dynamics on networks
has also attracted the attention of researchers from diverse
disciplines [1–3].

In recent years, opinion diffusion on networks has been
intensely investigated from many different perspectives using
the approaches of network science and statistical physics. An
individual opinion can be defined by a finite number of integers,
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and such discrete-opinion models include voter model [4–6], Axelrod model [7], Sznajd model [8],
majority rule models [9–11] and the model based on social impact theory [12]. The Axelrod model can be
viewed as multiple coupled voter models because it features the main ingredients of a voter model [13].
In these models, people are influenced by their neighbours and update their opinions, often according to
some version of a majority rule or imitation. Opinions can also be represented by real numbers, and such
continuous-opinion models include the DeGroot model [14,15], Friedkin model [16,17], Deffuant model
[18] and Hegselmann–Krause model [19]. The latter two models involve bounded confidence between
people [20], which means that if the opinions of two people are too far apart, they do not influence each
other. These two models typically result into a clusterization of opinions [21,22].

The dynamical process of opinion diffusion can have a natural absorbing state or consensus at the
steady state, in which all people share the same opinion. However, coexistence of diverse opinions is
also possible. Opinion or product diffusion on networks has also been extensively studied in economics
literature in which dynamic behaviours are commonly termed social learning [23]. For example,
essentially the voter model and the DeGroot model are non-Bayesian models of social learning [24].

In fact, opinions not only diffuse on social networks, but they also compete for share when the
opinions are related to certain interests, for instance opinions on controversial issues or consumer
products. The supporters of some opinions or fans of some brands will try to influence or persuade
other people with different opinions or different brand preferences. Recently, theoretical models have
been proposed to study competing memes, products or viruses spreading on networks. For example,
Prakash et al. studied a competing diffusion model, Susceptible–Infected1–Infected2–Susceptible (SI1I2S),
based on the traditional virus propagation model [25]. They found that under realistic conditions,
the stronger virus will completely wipe out the weaker one, which explains the ‘winner takes all’
phenomenon in the real world, such as Facebook versus Myspace and Blu-ray versus HD-DVD. The
model assumes that there is perfect competition; however, this is not always true, for example, a user
could use both Firefox and Google Chrome as browsers. For this situation, Beutel et al. proposed a model,
Susceptible–Infected1 or 2–Susceptible (SI1|2S), and studied the scenarios between full competition and
no competition. They found that there is a phase transition: if the competition is harsher than a critical
level, then ‘winner takes all’; otherwise, the weaker virus survives [26]. Based on classical compartmental
models, Ribeiro and Faloutsos also proposed a competitive model which mimics website popularity
competition and explains the rise of Facebook and the decline of Myspace [27]. Some other competitive
diffusion models based on a branching process [28], Susceptible–Infected–Susceptible (SIS) [29] or
Susceptible–Infected–Recovered (SIR) [30] epidemic spreading model have also been studied.

Competitive diffusion processes not only occur on a single network, but also operate on multilayer
networks [31,32], for example simultaneously on Twitter, Facebook and offline social networks for
which each network constitutes a network layer. Usually these layers are not mutually independent,
and they are connected through common people. Some people have accounts of multiple websites;
they are called coupling nodes of multilayer networks and can influence people on different layers or
spread information on some layer to another layer. In recent years, researchers have also put forward
competitive memes or virus propagation models based on the SIS epidemic model on multilayer
networks [33], such as the SI1I2S [34,35] and SI1SI2S models [36].

In the real-world scenarios, for instance in Twitter, multiple tweets spread through the network
simultaneously, and during this process they interact and compete for users’ attention. Empirical
research found that the competing diffusion decreases each other’s probability of spreading [37].
Recently, the wide adoption of social media has increased the competition among ideas for our finite
attention. Weng et al. employed an agent-based model to study the competitive diffusion process, and
the predictions of the model are consistent with empirical data from Twitter [38]. The competition
for public attention on multiple topics promoted by various opinion leaders on social media has also
attracted the attention of the field of computer visualization, and visual analysis approaches, such as
timeline visualization [39,40], have also been proposed to study topic competition and cooperation on
social media.

Most competitive diffusion models study the interaction of different memes or viruses; however,
memes of diffusion are different from opinion dynamics. For the former, initially there are people who
do not know the memes while, for the latter, each person has an initial opinion. In memes of diffusion,
memes are propagated from the people who know them to those who do not know them, while in
opinion diffusion initially there exist several different opinions distributed in the networks and the
opinions interact with each other. Different from meme or information diffusion, it is difficult to obtain
empirical data of opinion competition in social networks. Research on competing opinion diffusion by
theoretical models is also largely missing. To fill this gap, in this paper, we will use an agent-based model
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derived from the voter model, a well-known opinion dynamics model, to investigate competing diffusion
in social networks.

In the original voter model, each person is endowed with a binary opinion. The elementary step
consists in choosing a first person and one of her/his nearest neighbours, both randomly. Then the
first person sets her/his new opinion to be the same as the neighbour [6]. Besides modelling opinion
evolution, the voter model is also valuable as a general framework for research on diffusion of products,
innovations or consumption decisions, and despite its simplicity, its ability to model and predict real
opinion diffusion and product adoption on both the individual and group levels has been validated by
empirical data [41–43]. In this paper, we will make a few extensions to the original voter model.

The main contribution of the paper is defining a model of competing opinion diffusion within social
networks to quantitatively evaluate the impact of various factors on people’s opinions. The proposed
model is generic and can be applied to different scenarios in the real world. We will study that under
the interaction of network topology, individual attributes and external influence, which opinion will
ultimately pervade the entire social networks, under what conditions the different opinions will coexist,
and what is the proportion of each opinion when coexisting.

2. Model
The previous research on the voter model usually focuses on binary opinions, supposes that each person
has the same persuasiveness, and studies the endogenous influence of social networks on opinion
evolution [6,44]. However, besides binary opinions, in the real world there exist many situations in
which the number of available opinions is more than two. Owing to the differences in social, economic
and cultural capital, different people may have different persuasiveness [45–47]. Mass media, such as
television, radio, Internet, and print, can also influence people’s opinions [48,49]. To study competing
opinion diffusion on networks, we make four extensions to the original voter model. The binary opinions
are extended to multiple opinions, and committed or stubborn people who are usually opinion leaders
or loyal fans in the real world are introduced into the model. In addition to social networks, the influence
of mass media on people’s opinions is also considered. Also, each person is endowed with a value which
indicates her/his persuasiveness or fitness.

Let G = (V, E) be a finite, undirected, unweighted and connected graph, where V is the set of vertices
and E is the set of edges. We assume that the graph is simple, i.e. no vertex is connected to itself and there
are no parallel edges. Many studies have found a positive association between a person’s degree and
that person’s goal achievement, including creativity, job attainment, professional advancement, political
influence and prestige [50,51]. Thus, a person’s degree can be a stand-in for her/his true fitness. Let
N be the number of vertices and fk > 0 be the fitness of people with degree k. We suppose that the
total number of different opinions is I ≥ 2, and the opinion which a person can take is a discrete value
i = 1, 2, . . . , I. These different opinions are equivalent and mutually exclusive. Initially each person is
randomly assigned an opinion. The basic update procedure is described as follows. At every time step,
we choose randomly a person who will update her/his opinion, then we choose one of the person’s
nearest neighbours with the probability proportional to the neighbour’s fitness, and finally we set the
person’s new opinion to be the same as the neighbour. This step is repeated until the dynamic process
reaches the steady state.

The proposed model is different from linear threshold and independent cascade models [52,53]
although in these three models essentially people change their opinions or states due to the influence
of their neighbours. In linear threshold or independent cascade model, each person can be in an active
state or inactive state. For linear threshold model, an inactive person will become active if the fraction of
her/his neighbours in an active state or the sum of the weights of the edges with an active neighbours
exceeds her/his threshold. However, there are no thresholds in our model. In the independent cascade
model, any active person has only one chance to activate her/his inactive neighbours; whether successful
or not, the person will not influence her/his neighbours in the subsequent steps. By contrast, our model
has no restrictions on the number of activations. In linear threshold and independent cascade models, all
people in an active state will stay unchanged, but in our model except committed people, the states of all
others will be affected by their neighbours.

Our model supposes that a person’s fitness relates to her/his degree. There are several existing
works on the effects of degree-based social power on opinion evolution [54] and opinion formation
by informed people or leaders [55,56] which provide insight into the influence of important people
on opinion diffusion, although these works are based on bounded confidence model. For example, the
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model proposed by Jalili introduces leaders whose opinions are kept unchanged and centrality-based
social power which are also included in our model [56].

3. Social influence
We first consider the influence of social networks on people’s opinions, which is usually termed social
influence in social psychology. Assume that the degree distribution of the social network studied is pk,
the fraction of people with opinion i in all people with degree k is qi,k, and the conditional probability
that a person of degree k is connected to a person of degree k′ is P(k′ | k). At a time step, the probability
that a degree-k person changes her/his opinion from not i to i is

pī→i(k) = pk(1 − qi,k)
∑

k′ P(k′ | k)qi,k′ fk′∑
j
∑

k′ P(k′ | k)qj,k′ fk′
. (3.1)

Similarly, the probability that a degree-k person changes her/his opinion from i to not i is

pi→ī(k) = pkqi,k

[
1 −

∑
k′ P(k′ | k)qi,k′ fk′∑

j
∑

k′ P(k′ | k)qj,k′ fk′

]
. (3.2)

Let 〈k〉 be the average degree of the network, nk = Npk be the number of people with degree k, and
mi,k = nkqi,k be the number of people with degree k and opinion i. To obtain closed analytical solutions,
we assume that the social network is degree uncorrelated. In this case P(k′ | k) = k′pk′/

∑
k′ k′pk′ = k′pk′/〈k〉.

Thus, equations (3.1) and (3.2) can be rewritten as

pī→i(k) = pk(1 − qi,k)
∑

k′ k′fk′ mi,k′∑
j
∑

k′ k′fk′ mj,k′

and pi→ī(k) = pkqi,k

(
1 −

∑
k′ k′fk′ mi,k′∑

j
∑

k′ k′fk′ mj,k′

)
.

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(3.3)

We define

qf
i =

∑
k′ k′fk′ mi,k′∑

j
∑

k′ k′fk′ mj,k′
=
∑

k′ k′fk′ mi,k′∑
k′ k′fk′ nk′

=
∑

k′ k′fk′ pk′ qi,k′∑
k′ k′fk′ pk′

(3.4)

as the normalized weighted fraction of opinion i, and it is the fraction of the sum of product of degree
and fitness for people with opinion i. Thus, equation (3.3) can be rewritten more simply as

pī→i(k) = pk(1 − qi,k)qf
i

and pi→ī(k) = pkqi,k(1 − qf
i).

⎫⎬
⎭ (3.5)

The evolution equation of qi,k is [57]

dqi,k =
[

(pī→i(k) − pi→ī(k))
pk

]
dt

= (qf
i − qi,k) dt. (3.6)

At the steady state dqi,k/dt = 0, thus limt→∞ qi,k(t) = qf
i . Let qi =∑

k nkqi,k/N be the fraction of people
with opinion i, thus limt→∞ qi(t) = qf

i . In this case, finally there will be only one opinion in the network,
which means that all people’s opinions will reach a consensus. From equation (3.6) we note that qf

i is
a conserved quantity and its mean is a constant [6,57]. qf

i is also termed fixation probability [58,59]
in biology or exit probability in physics [6], which is the probability that opinion i will finally
occupy the whole network. Therefore, according to the model, the people with large degrees and high
persuasiveness or fitness will be more influential and competitive in the opinion diffusion process. The
preponderance of some opinion will be suppressed by the opinions with large kfk.

When all people have the same fitness, from equation (3.4) we obtain

qf
i =

∑
k′ k′pk′ qi,k′∑

k′ k′pk′
=
∑

k′ k′mi,k′

N〈k〉 , (3.7)

which is the fraction of the total degree of the people with opinion i in the total degree of the whole
network. The characteristics of the voter model itself make it advantageous for nodes with large degrees.
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Figure 1. Evolutions of 〈qi〉 and 〈qfi 〉. The unit of time T is N steps. (a) fk ∝ k0.5; (b) fk follows uniform distribution in (0, 1). For both
cases, 〈qfi 〉 is a constant, and as time goes on, 〈qi〉 gradually approaches 〈qfi 〉.

To suppress the advantages of these nodes, fk should be a decreasing function of k. For instance, when
fk ∝ 1/k, we obtain qf

i = qi and degree values no longer play a role.
We perform numerical simulations on a Barabási–Albert (BA) network [60] of N = 104 and 〈k〉 = 6 to

validate the analytical conclusions. Assume that initially the total number of different opinions is I = 5,
and the opinions are randomly assigned. We can obtain the mean values of qi and qf

i by averaging 100
independent realizations starting from the same initial condition. To distinguish qf

i from qi, we assume
that the 100 largest degree people hold opinion 5. First, we assume that fk ∝ k0.5 and the simulation results
are shown in figure 1a. The large-degree people and their high fitness make initial qf

5 much larger than q5.
As predicted, qf

i is a conserved quantity, and as time goes on, the mean values of qi approach mean values
of qf

i . Then we suppose that fk follows a uniform distribution in (0,1) and the simulation results are shown
in figure 1b which also validates the analytical conclusions.

According to equation (3.4), when fk ∝ k0.5, even though initially q5 is the smallest among qi, qf
5 is

the largest among qf
i due to the influence of large-degree people, which means that opinion 5 has the

largest probability to pervade the whole network. By contrast, when fk follows a uniform distribution,
the people with large degrees lose their advantage. Even though initially qf

5 is still much larger than q5,
however, opinion 1 replaces 5 and becomes the most likely to occupy the network.

In this paper, we focus on the spread of opinions on unweighted networks. However, we will
demonstrate that under certain conditions, opinion diffusion on weighted networks is a special case
of our model. On weighted networks, we still choose randomly the first person i, but choose one of i’s
neighbours j with probability proportional to the weight wij of the edge connecting i and j. Let ki and kj
be the degrees of i and j, respectively, and note that empirical studies have found that approximatively
the mean weight 〈wij〉 ∝ (kikj)θ , where θ is a small positive value and usually θ < 0.5 [61]. To obtain closed
analytical results we can neglect the fluctuations and assume that wij ∝ (kikj)θ . In this case, we can obtain

qf
i =

∑
k′ k′θ+1pk′ qi,k′∑

k′ k′θ+1pk′
. (3.8)
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Thus, the conclusion for weighted networks is a special case when fk ∝ kθ . It is noteworthy that, for large
θ , theoretical prediction by the mean-field approach will produce greater error [44]. Further on weighted
networks, if we choose one of i’s neighbours j with probability proportional to wijfkj , qf

i will become

qf
i =

∑
k′ k′θ+1fk′ pk′ qi,k′∑

k′ k′θ+1fk′ pk′
. (3.9)

Next, we introduce committed or stubborn people in the model [57,62–65], which can represent
opinion leaders in a social context. The committed people always stick to their original opinions and
do not change their opinions over time. They can influence their friends; however, their friends never
influence the committed people’s opinions. Empirical study has revealed that some people indeed show
committed behaviour [66]. In social networks, we let a fraction of the people be committed ones and let
the other people be non-committed or regular ones. Assume that the fraction of committed people with
opinion i in all degree-k people is si,k; in this case, equation (3.5) becomes

pī→i(k) = pk(1 − qi,k −
∑
j	=i

sj,k)qf
i

and pi→ī(k) = pk(qi,k − si,k)(1 − qf
i).

⎫⎪⎪⎬
⎪⎪⎭ (3.10)

Let s be the fraction of committed people and si be the fraction of committed people with opinion i.
According to equation (3.6),

dqi,k =
⎡
⎣
⎛
⎝1 −

∑
j

sj,k

⎞
⎠ qf

i − qi,k + si,k

⎤
⎦dt. (3.11)

At the steady state

lim
t→∞

qi,k(t) =
⎛
⎝1 −

∑
j

sj,k

⎞
⎠ qf

i + si,k, (3.12)

thus,
lim

t→∞
qi(t) = (1 − s)qf

i + si. (3.13)

According to equations (3.4) and (3.11), we obtain

dqf
i

dt
= sf

i − qf
i

∑
j

sf
j . (3.14)

At the steady state,

lim
t→∞

qf
i(t) = sf

i∑
j sf

j

. (3.15)

According to equations (3.13) and (3.15), we obtain

lim
t→∞

qi(t) = si + (1 − s)
sf

i∑
j sf

j

. (3.16)

It is obvious that only the opinions that committed people hold will survive. Equation (3.16) is a
general conclusion. The final people holding opinion i are composed of two parts, one is from the
committed ones and the other is from the people who are induced by the committed ones by social
influence. In the model, social networks amplify the opinions of committed people and, from the
right-hand side of equation (3.16), we find that the amplification factor is just sf

i/
∑

j sf
j .

If all committed people stick to opinion i, all non-i opinions will die out. Therefore, in the context of
our model, to ensure that some opinion has the greatest influence in the whole society, there must be
a lot of faithful people who have large degree values and have a strong persuasiveness that can affect
many others.

Similarly, we perform numerical simulations on the BA network of N = 104 and 〈k〉 = 6. We suppose
that initially the people, both with opinions 1 and 2, are a mix of committed and regular ones, while all
the other people holding opinions 3, 4 and 5 are regular ones. In networks, a large number of committed
people with large degrees will accelerate the convergence of the dynamic process. Thus, we assume that
the 100 largest degree people are the committed ones with opinion 1, s1 = 0.3, s2 = 0.2 and s = 0.5. The
corresponding numerical simulation results are shown in figure 2, which are in good agreement with
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Figure 2. Evolutions of 〈qi〉 and 〈qfi 〉. The unit of time T is N/(1 − s) steps. The dashed lines indicate limt→∞ qfi (t) and limt→∞ qi(t)
obtained from equations (3.15) and (3.16). Error bars with±1 standard deviation are also shown. (a) fk ∝ k0.5; (b) fk follows a uniform
distribution in (0, 1). For both cases, at steady state both 〈qi〉 and 〈qfi 〉 are in good agreement with theoretical predictions.

the analytical predictions. We note that at steady state, compared with figure 2b, in figure 2a qf
1 is much

larger than q1 due to the impact of fk.

4. Media effect
In the real world, apart from social networks, people are also influenced by mass media. A mass media
outlet is a global source of information, and individual opinions can be influenced by the information
they obtain via both local social networks and global media outlets [67]. We define a weight parameter
P ∈ [0, 1] that measures the relative intensity of the mass media with respect to the local social network.
Thus, in the model, the individual opinion update rule can be revised as follows. At each time step, we
choose randomly a person. If the person is committed, nothing happens; if the person is regular, her/his
opinion will be affected by both mass media and social networks. When a regular person updates her/his
opinion, she/he chooses the media opinion as her/his new opinion with probability P, and selects one of
her/his friends and sets her/his new opinion to be the same as that of a friend’s with probability 1 − P.
The probability of choosing a friend is still proportional to the friend’s fitness. We assume that the media
opinion is m (1 ≤ m ≤ I). In this case, when i 	= m, we obtain

pī→i(k) = pk

⎛
⎝1 − qi,k −

∑
j	=i

sj,k

⎞
⎠ (1 − P)qf

i

and pi→ī(k) = pk(qi,k − si,k)[(1 − P)(1 − qf
i) + P].

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(4.1)

Applying the preceding approach, we obtain

lim
t→∞

qf
i(t) = sf

i

P + (1 − P)
∑

j sf
j

(4.2)
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and

lim
t→∞

qi(t) = si + (1 − s)(1 − P)
sf

i

P + (1 − P)
∑

j sf
j

. (4.3)

When P = 0, equations (4.2) and (4.3) are reduced to equations (3.15) and (3.16), respectively. Social
networks amplify the influence of committed people with an amplification factor related to limt→∞ qf

i(t).
When i = m, similarly we can obtain

pī→i(k) = pk

⎛
⎝1 − qi,k −

∑
j	=i

sj,k

⎞
⎠ [(1 − P)qf

i + P]

and pi→ī(k) = pk(qi,k − si,k)(1 − P)(1 − qf
i)

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(4.4)

and finally,

lim
t→∞

qf
i(t) =

sf
i + P(1 −∑

j sf
j)

P + (1 − P)
∑

j sf
j

(4.5)

and

lim
t→∞

qi(t) = si + (1 − s)(1 − P)
sf

i

P + (1 − P)
∑

j sf
j

+ (1 − s)

⎡
⎣P + (1 − P)

P(1 −∑
j sf

j)

P + (1 − P)
∑

j sf
j

⎤
⎦ . (4.6)

Equation (4.6) can be written in a simplified form. The reason we write it in this way is to show that
the final people with the media opinion are composed of three parts, which correspond to the three
terms of the right-hand side of equation (4.6): committed people, the amplification effect of networks
on the opinions of committed people and the external influence of media. Further we find that the
third term is composed of two parts, one is from the media effect when there are only people but no
social influence between people, and the other is from the influence of mass media on people’s opinions
through social connections. In other words, mass media can influence people’s opinions not only directly
by global broadcasting but also indirectly by social interactions among people. The indirect influence of
mass media on people’s opinions through interpersonal communication has been observed in empirical
researches, such as the impact of a popular radio station on Rwandan genocide [68] and advertising’s
effect on adolescents’ materialistic values [69]. From equations (4.3) and (4.6), we find that the final
proportion of each opinion is related only to the media strength and the initial distribution of committed
people. Ultimately, only the media opinion and the opinion(s) held by the committed people can survive.

We perform numerical simulations on the BA network of N = 104 and 〈k〉 = 6. We suppose that the
initial network settings are the same as those in figure 2 and P = 0.7. When fk ∝ k0.5, the corresponding
numerical simulation results for m = 2 and m = 3 are shown in figure 3a,b, respectively. We find that the
analytical predictions are still in good agreement with the numerical simulation results, and mass media
outlets have significant influence on final opinion distribution.

Mass media makes both 〈qm〉 and 〈qf
m〉 increase with time while 〈qi〉 and 〈qf

i〉 (i 	= m) decrease with time.
In figure 3a although initially compared with q1 and qf

1, both q2 and qf
2 are smaller; at steady state q2 is

larger than q1 and opinion 2 finally dominates the whole network due to the media effect. In figure 3b,
media opinion 3 also ultimately wins although in the network there are no committed people holding
the opinion.

When fk follows a uniform distribution in (0, 1), the corresponding numerical simulation results
for m = 2 and m = 3 are shown in figure 4a,b, respectively. The analytical predictions are also in good
agreement with the numerical simulation results, and mass media outlets still have significant influence
on the final opinion distribution. Similarly, media opinion eventually wins in the competing opinion
diffusion. Because fk reduces the impact of people with large degrees, compared with figure 3, in figure 4
at steady state 〈qf

2〉 > 〈qf
1〉 when m = 2 and 〈qf

3〉 > 〈q1〉 when m = 3.
We note that, for the degree-uncorrelated networks, at steady state 〈qi〉 and 〈qf

i〉 accord well with the
theoretical limits qi(∞) and qf

i(∞), respectively; thus given the initial conditions and using equations
(4.3) and (4.6), we can present the competition between different opinions under the combined influence
of social networks and mass media. From figures 3 and 4, we find that when media strength P is large
enough, despite the initial disadvantage, media opinion will still win. While when P is small enough,
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Figure 3. Evolutions of 〈qi〉 and 〈qfi 〉 when fk ∝ k0.5. The unit of time T is N/(1 − s) steps. The dashed lines indicate limt→∞ qfi (t)
and limt→∞ qi(t) obtained from equations (4.2), (4.3), (4.5) and (4.6). Error bars with±1 standard deviation are shown. (a)m= 2 and
(b) m= 3. At steady state both 〈qi〉 and 〈qfi 〉 achieve good agreement with theoretical predictions. For both cases, the media opinion
eventually wins.

another non-media opinion can win. Thus, there exists a ‘critical point’ for P which can be calculated
from equations (4.3) and (4.6).

Next, we will numerically illustrate the influence of media on opinion competition. Assume that the
100 largest degree people are the committed ones with opinion 1, but s1 = s2 = 0.2 and s = 0.4. When
m = 2, we use qN

1 (∞) to denote the amplification effect of networks on opinion 1, qM
2 (∞) to denote the

external influence of media on opinion 2, and qN+M
2 (∞) to denote the combined influence of network

and media on opinion 2. In figure 5, we present the evolutions of qi(∞) with P when fk ∝ k0.5. From
figure 5a we find that when P is increased from 0 to 1, the internal impact of the network for both opinions
will be reduced to zero, while the influence of media on opinion 2 will increase to 1 − s = 0.6. When
P = 1, q1(∞) = s1 = 0.2 and q2(∞) = 1 − q1(∞) = qN+M

2 (∞) + s2 = 0.8. According to equations (4.3) and
(4.6), P ≈ 0.22 is a critical point. When P < 0.22 opinion 1 dominates, whereas when P > 0.22 opinion 2
dominates. When m = 3, the final proportion of each opinion is shown in figure 5b. When P increases from
0 to 1, both opinion 1 and 2 will decrease to s1 = s2 = 0.2, whereas opinion 3 will increase to 1 − s = 0.6.
When P < 0.48 opinion 1 dominates, whereas when P > 0.48 opinion 3 dominates.

When fk follows a uniform distribution in (0,1), the evolutions of qi(∞) with P are presented in figure 6
which is qualitatively like figure 5. Owing to the impact of people with large degrees on fk, when P = 0,
qN

1 (∞) and q1(∞) in figure 5 are larger than those in figure 6. Thus, compared with figure 5, the critical
point of P is smaller in figure 6: P ≈ 0.09 in figure 6a and P ≈ 0.38 in figure 6b.

5. Conclusion and discussion
In recent years, online social networks, such as Facebook, Twitter, Weibo (Chinese version of Twitter)
and WeChat (Chinese instant messaging app), have not only experienced significant developments, but
have also profoundly changed the way people communicate and access information [70,71]. The real-
world and online social networks, as well as mass media, collectively influence and change people’s
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Figure 5. Evolutions of qi(∞)with Pwhen fk ∝ k0.5. (a)m= 2 and (b)m= 3.With the increase inmedia strength, the internal impact
of social networks will weaken, whereas the external impact of media will strengthen.

ideas, opinions and attitudes. Opinions on certain topics are competitive, such as brand selection for
high-priced goods and candidate choice in political elections. In this paper, we propose an analysable
model to study competing opinion diffusion on social networks. When there are no committed people,
we get the probability that each opinion will eventually pervade the entire network. When there are
committed people in networks, we concurrently consider the combined effects of social networks,
individual attributes and media on opinion competition, and obtain the final proportion of each opinion
at the steady state. The proportions are related only to media strength and the initial distribution of
committed people in networks through which we can assess which opinion(s) will prevail.
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in media intensity reduces the impact of networks, while increasing media impact.

The results in this paper are potentially valuable to agent-based modelling of biological and social
systems where voter-like dynamics plays a decisive role, such as evolutionary games on networks [72–
76]. The agent-based model studied in this paper is based on the voter model which is also known as
the death–birth process in biology, and some other models such as birth–death process (Moran model or
invasion process) and other evolutionary dynamics models in biology [58,59,77–84] can also be applied
to the research on competitive opinion diffusion in social contexts. In competing diffusion, apart from
degree-dependent persuasiveness, we can also assume that persuasiveness is related to opinion. In
this case, each update would change the persuasiveness of an individual which can make the model
analytically less tractable. Not all opinion competition models can be studied by analytical approaches.
In many cases, it is difficult to get closed analytical solutions, and for some of the more complex models,
it is probable that we will have to resort to more numerical methods, which demonstrates the practical
limitation of approaches used in this paper. As pointed out earlier, opinion competition occurs not only
on a single network, but also occurs simultaneously on multilayer networks. With the rise of social
media software which can run on both PCs and mobile devices, massive data on human communication
and social influence have been recorded; thus data-driven modelling has also attracted the attention of
researchers. All of these give potential directions for further research.
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