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Resulting from the drastic increase of atmospheric CO2 con-

centration day by day, global warming has become a serious

environmental issue nowadays. The fixation of CO2 to obtain

desirable, economically competitive chemicals has recently

received considerable attention. This work investigates the fix-

ation of CO2 along with three bromopyridines via a facile

electrochemical method using a silver cathode to synthesize

picolinic acids, which are important industrial and fine chemi-

cals. Cyclic voltammetry is employed to investigate the cyclic

voltammetric behaviour of bromopyridines. In addition, sys-

tematic study is conducted to study the relationships between

the picolinic acids’ yield and the electrolysis conditions and

intrinsic parameters. The results show that the target picolinic

acids’ yields are strongly dependent on various conditions

such as solvent, supporting electrolyte, current density, cathode

material, charge passed, temperature and the nature of the sub-

strates. Moreover, in the studied electrode materials such as Ag,

Ni, Ti, Pt and GC, electrolysis and cyclic voltammetry show that

Ag has a good electrocatalytic effect on the reduction and car-

boxylation of bromopyridine. This facile electrochemical route

for fixation of CO2 provides an indispensable reference for the

conversion and utilization of CO2 under mild conditions.
1. Introduction
Nowadays, the sustainable development of society and its related

ecological environment, resources and economy have become the
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Scheme 1. The Schematic diagram of electrocarboxylation of bromopyridines.
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focus of the international community. But, global warming has been becoming a serious environmental

problem due to the increasing concentration of atmospheric CO2, and hence how to effectively convert

CO2 has become an urgent problem for chemists [1–5].

In contrast to toxic carbon monoxide and phosgene, CO2 is a renewable and environmentally friendly

C1-organic building block [6–9]. However, owing to the intrinsic high thermodynamic stability of CO2, the

facile reduction of CO2 has always been a challenge. Fortunately, electrochemical technology can reduce

CO2 at normal temperature and atmospheric pressure [10–13]. So far, a lot of attention has been drawn

to the study of the fixation of CO2 along with various substrates including epoxides [14], alcohols [15],

imines [16–19], ketones [16–19], alkenes [20,21], dienes [22–24], alkynes [25] and halides [26–29].

In addition, electroreduction of organic halides is an extremely facile method to generate active anions

which can readily activate CO2 to ensure that a carboxylic functional group is introduced into the organic

centre while leaving intact the original carbon skeleton. That is why much attention is drawn to the study of

the electrocarboxylation of organic halides [30–33]. Furthermore, some of these reaction pathways are

particularly important for producing fine chemicals such as anti-inflammatory drugs. Catalytic systems

based on transition-metal complexes, such as nickel [34], palladium [35] and cobalt complexes [36], have

been proposed to increase the yield of the corresponding carboxylic acid. Electrode material with excellent

catalytic properties can effectively improve the reaction, so mercury was once the preferred electrode

material. However, it is now abandoned for being unfriendly to the environment. At present, the silver

(Ag) electrode has been recognized as a useful catalyst for the electroreduction of organic halides

[27,28,37–39]. Moreover, although electrocarboxylation with regard to organic halides has gained popular-

ity in recent times, only a small number of reports involve the electrochemical reduction of heterocyclic

halides along with CO2 [40]. Electrochemical carboxylation of heterocyclic halides is one of the most

useful methods for obtaining heterocyclic carboxylic acids, which are a class of important compounds,

and some of them are of meaning to the industry of fine chemicals such as anti-inflammatory drugs [41–

43]. From the perspective of applications, high yields will greatly reduce production costs. To make the elec-

trosynthesis of heterocyclic carboxylic acid industrially and commercially feasible, it is necessary to develop

a low-cost, environmentally friendly, high-yield synthetic route.

In this paper, we study the electrosynthesis of picolinic acids (2) from three bromopyridines (1a, 1b,

1c) and CO2 on Ag electrodes (scheme 1). To optimize the yield of 2, on the one hand, the influence of a

series of synthesis conditions on the electrocarboxylation of 1a is investigated; on the other hand, the

influence of the position of C–Br bond on the pyridine ring on the electrocarboxylation of 1, which

has not been reported previously, is the other major focus of our research. This study is to establish a

facile electrochemical method for introducing CO2 into 1 using Ag as a cathode to yield 2 under mild

conditions, providing a more effective and environmentally friendly method for the fixation of CO2.
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2. Experimental

2.1. Chemicals
Ortho-bromopyridine (1a) and meta-bromopyridine (1b) are commercially obtained from J&K. para-

bromopyridine (1c) is commercially available from Shanghai Lanke Medical Technology. Acetonitrile

(MeCN) and N,N-dimethylformamide (DMF), which are kept over 4 Å molecular sieves, are commercially

obtained from Sinopharm Chemical. All other reagents are used without extra processing.

2.2. Product measurement
Cyclic voltammograms are recorded using a CHI 760E. Galvanostatic electrolysis is carried out using a

DC-regulated power supply HY5003M equipped with a one-compartment electrochemical cell. The elec-

trocarboxylation product yields based on the starting substrate are determined by high-performance

liquid chromatography (HPLC) (Waters 505 pump) connected to a UV detector (Waters 2489) and a

CenturySIL C18-EPS column.

2.3. Typical electroanalytical procedure
A typical electroanalytical experiment is carried out in 10 ml DMF with 0.1 M tetraethylammonium tetra-

fluoroborate (TEABF4) at 258C in a one-compartment three-electrode electrochemical cell, along with glassy

carbon (GC, diameter ¼ 2 mm) or Ag (diameter ¼ 2 mm) as a working electrode, Ag/AgI/0.1 M TBAI in

DMF as a reference electrode and platinum spiral as an auxiliary electrode. All experiments are carried out at

atmospheric pressure.

2.4. Typical electrosynthesis procedure
A typical galvanostatic electrolysis is performed in 10 ml of MeCN or DMF solution with 0.1 M support-

ing electrolyte and 0.1 M 1 in a one-compartment electrochemical cell, along with a sacrificial magnesium

rod (Mg) anode and one of these cathodes: Ag (8 cm2) or Pt (4 cm2), Ni (8 cm2), GC (4 cm2), Ti (8 cm2).

The system is always saturated with CO2 during the electrolysis process. After a certain amount of charge

is passed through the cell, the current is switched off. At the end of the electrolysis, the solvent is distilled

off in vacuo. The residue is hydrolysed in a mixture (24/76, v/v) of MeCN and a NaH2PO4/Na2HPO4

buffer at pH 6. Then the yields of 2 are determined by HPLC after appropriate dilution with the detection

wavelength of 265 nm, and the eluent is a mixture (12/88, v/v) of MeCN and a NaH2PO4/Na2HPO4

buffer at pH 6.
3. Results and discussion
3.1. Electroanalytical measurements of ortho-bromopyridine
Cyclic voltammograms recorded for reduction of ortho-bromopyridine (1a) on a GC electrode in DMF

with 0.1 M TEABF4 are depicted in figure 1. As shown in curve a of Figure 1, electroreduction of 1a

causes a single irreversible cathodic peak at 21.55 V in the region of 20.5 to 22.0 V under a N2 atmos-

phere with a scan rate of 0.1 V s21, which corresponds to a two-electron reduction of the C–Br bond. The

synthesis of pyridine, which is detected by gas chromatography–mass spectrometry (GC–MS), via

potentiostatic electrolysis at 21.55 V under a N2 atmosphere, also confirms the result. In addition, the

reduction peak currents are proportional to v1/2 (electronic supplementary material, figure S1), indicating

that the electroreduction process is diffusion-controlled. When the CO2 is piped into the system (0.2 M)

[44], different behaviour is observed (figure 1, curve b). The reduction peak potential moves more

positively and the current increases, indicating that there is a rapid chemical reaction between the

electroreduced intermediate and CO2.

3.2. Preparative scale electrolysis
1a as a model molecule is first chosen to study the electrocarboxylation of 1 with a one-compartment

electrochemical cell (scheme 2). A series of electrolytic reactions have been carried out to study the
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Scheme 2. Electrocarboxylation of bromopyridines.
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Figure 1. Cyclic voltammograms of 10 mM o-bromopyridine obtained in DMF þ 0.1 M TEABF4 on a GC electrode in the (a) absence
and (b) presence of CO2 with the scan rate of 0.1 V s21.
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effect of different electrosynthetic conditions, such as solvent, supporting electrolyte, current density,

cathode material, charge passed and temperature on the yield of carboxylation product 2.
3.2.1. Effect of solvent, supporting electrolyte and current density

Electrosynthesis is often influenced by the solvents [45]. In this paper, we investigate the electrocarbox-

ylation of 1a in a solvent of MeCN or DMF in order to study the effect of the solvents. As shown in table 1

(entries 1–4), 2a’s yield in DMF is much higher than that in MeCN, despite the higher solubility of CO2 in

MeCN [44]. Generally speaking, the electroreduction of aromatic bromides in protic media is likely to go

through a reductive hydrogenation pathway [46]. The result that pyridine is detected by GC–MS via

potentiostatic electrolysis at 21.55 V under a N2 atmosphere (in §3.1) indicates that the intermediate

that resulted from two-electron reduction of 1a would go through a hydrogenation step described in

scheme 3 in the process of the reduction of 1a just as the electroreduction of aromatic bromides in

protic solvent, and yet scheme 3 is the competitive reaction of the carboxylation reaction described in

scheme 2. When compared with DMF, MeCN is a more powerful proton donor [18,41], so it is more ben-

eficial to the formation of the corresponding hydrogenated product than DMF during the reaction

according to scheme 3. Besides, to further investigate the effect of a proton donor on the electrocarbox-

ylation reaction, a certain amount of water is deliberately added into the system (entry 5). As shown in

table 1 (entry 2 and entry 5), 2a’s yield decreases from 55.0% to 20.6% when 0.1 M water is added into the

system, which indicates that a proton donor has a greater impact on the reaction. In addition, DMF is a

better solvent than acetonitrile, and it facilitates the dissolution of the products. In the electrolysis pro-

cess, we observe that the DMF electrolyte is generally a transparent and clear liquid, while the MeCN

electrolyte is turbid. In general, turbid electrolytes can affect the mass transfer process of the system,

and then affect the electrocarboxylation reaction here. Moreover, we also observe that some undissolved

substances are attached to the electrode surface in the electrolysis process and the electrolysis voltage is

higher when MeCN is used as a solvent in the experiment, and these two phenomena are either detri-

mental to the reaction or are detrimental to energy use. Therefore, combining the electrolysis results

and the solubility limit of reagent or product, the most suitable solvent in this study is DMF.

Next, we study the effect of the supporting electrolyte on the reaction. The results are summarized in

table 1 (entries 2, 4, 6–10). The best supporting electrolyte is tetrabutylammonium bromide (TBABr)

with 55.0% electrocarboxylation yield. It is notable that with the same anion of Cl2, Br2, I2, respectively,



Table 1. Effect of solvent, supporting electrolyte and current density on the fixation of CO2 along with o-bromopyridine.a

entry solvent supporting electrolyte current density (mA cm22) yieldc of 2a (%)

1 MeCN TBABr 8 16.4

2 DMF TBABr 8 55.0

3 MeCN TEABr 8 13.6

4 DMF TEABr 8 46.2

5 DMFb TBABr 8 20.6

6 DMF TBACl 8 49.6

7 DMF TBAI 8 50.8

8 DMF TEACl 8 36.6

9 DMF TEAI 8 38.6

10 DMF TEABF4 8 41.4

11 DMF TBABr 4 49.0

12 DMF TBABr 6 50.6

13 DMF TBABr 9 59.0

14 DMF TBABr 10 55.6

15 DMF TBABr 12 48.2

16 DMF TBABr 16 42.6
aElectrolytic conditions: 10 ml of solvent, 0.1 M supporting electrolyte concentration, 0.1 M o-bromopyridine, Ag cathode,
Mg anode, 08C, 2 F mol21 charge passed, 1 atm CO2.
b0.1 M water is added to the system.
cThe yield calculated with respect to the starting substrate is determined by HPLC.
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Scheme 3. Electroreduction of o-bromopyridine with a hydrogen source.
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the electrolysis concerning the TBAþ cation gives higher carboxylation yield than that involved with TEAþ

(table 1, entries 2, 4, 6–9), showing that the cations may impact the synthesis. It is known that protonation of

o-bromopyridine described in scheme 3 is the competitive reaction of the carboxylation of o-bromopyridine

described in scheme 2. In fact, the tetraalkylammonium cation (TRAþ) can act as a proton donor strongly

depending on the length of the alkyl chain via Hoffman elimination [47,48], and the TEAþ cation is a

much better proton donor than the TBAþ cation [49]. So, when tetraethylammonium (TEAþ) salt acts as

a supporting electrolyte, it is more beneficial to the formation of the corresponding hydrogenated product

than tetrabutylammonium (TBAþ) salt during the reaction. For that reason, the electrocarboxylation process

reported here gives higher picolinic acid yields in the presence of the TBAþ cation than the TEAþ cation

(table 1, entries 2, 4, 6–9). In addition, in the same TRAþ cases, the carboxylation yield decreases in the fol-

lowing sequence: Br2 . I2 . Cl2 (table 1, entries 2, 4, 6–9).

The current density affects the reaction. Higher or lower current densities lead to lower electrocarbox-

ylation yield owing to the significant contribution from the undesired Faradaic process. As shown from

the results summarized in entry 2 and entries 11–16 of table 1, with the increase of current density from 4

to 9 mA cm22, the yield is increased from 49.0% to 59.0%; but the electrocarboxylation yield declines

when the current density is raised over 9 mA cm22.

3.2.2. Effect of cathode material, charge passed and temperature

The nature of cathode material also strongly affects the reaction. As shown from the results in table 2

(entries 1–5), the best cathode material is Ag with 59.0% electrocarboxylation yield (table 2, entry 1).

Table 2 (entries 1–5) also shows that the yields decrease according to the cathode materials in the



Table 2. Effect of cathode material, charge passed and temperature on the fixation of CO2 along with o-bromopyridine.a

entry cathode material charge passed (F mol21) temperature (8C) yieldb of 2a (%)

1 Ag 2.0 0 59.0

2 Ni 2.0 0 30.4

3 Ti 2.0 0 10.2

4 Pt 2.0 0 36.2

5 GC 2.0 0 18.6

6 Ag 1.0 0 15.6

7 Ag 1.5 0 31.4

8 Ag 2.5 0 44.2

9 Ag 3.5 0 35.8

10 Ag 2.0 25 35.8

11 Ag 2.0 5 32.0

12 Ag 2.0 25 21.6
aElectrolytic conditions: 10 ml DMF, 0.1 M TBABr, 0.1 M o-bromopyridine, Mg anode, 9 mA cm22 current density, 1 atm CO2.
bThe yield calculated with respect to the starting substrate is determined by HPLC.
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Figure 2. Cyclic voltammograms of 10 mM o-bromopyridine obtained in DMF þ 0.1 M TEABF4 with the scan rate of 0.1 V s21 on
different electrodes: (a) Ag; (b) Pt; (c) Ni; (d) GC; (e) Ti.

rsos.royalsocietypublishing.org
R.Soc.open

sci.5:180897
6

following sequence: Ag (59.0%) . Pt (36.2%) . Ni (30.4%) . GC (18.6%) . Ti (10.2%). The yields are

related to the reduction potentials of 1a on the electrodes used: Ag (21.19 V, curve a of figure 2) . Pt

(21.29 V, curve b of figure 2) . Ni (21.45 V, curve c of figure 2) . GC (21.55 V, curve d of figure 2) .

Ti (21.84 V, curve e of figure 2). Both electrolysis and cyclic voltammetry indicate that Ag displays out-

standing electrocatalytic activities with regard to the reduction and carboxylation of 1a.

Then the effect of the charge passed is discussed. The results are presented in table 2 (entries 1, 6–9).

When the charge passed is increased from 1.0 to 2.0 F mol21, the electrocarboxylation yield increases lin-

early; however, the yield decreases when the charge passed is raised over 2.0 F mol21. Therefore, the best

choice is 2.0 F mol21 of 1a.

The influence of the temperature is also complicated. In general, the temperature affects the solubility

of CO2 in the solvent, as well as the nature of the thermodynamics and kinetics of carboxylation. On the

one hand, decreasing the temperature will increase the solubility of CO2 in the solvent [44]; on the other

hand, decreasing the temperature may decrease the activity of the reactants. To study the influence of

temperature, electrolysis is performed at diverse temperatures. The results are given in table 2 (entries

1, 10–12). When the temperature is raised from 258C to 08C, the yield increases (table 2, entries 1,

10), but the yield reduces when the temperature is further raised (table 2, entries 1, 11, 12). So, 08C is

the optimal temperature.



Table 3. Fixation of CO2 along with bromopyridines.a

entry substrate yieldb of 2 (%)

1 o-bromopyridine (1a) 59.0

2 m-bromopyridine (1b) 62.6

3 p-bromopyridine (1c) 65.8
aElectrolytic conditions: 10 ml DMF, 0.1 M TBABr, 0.1 M bromopyridine, Ag cathode, Mg anode, 9 mA cm22 current density, 08C,
2 F mol21 charge passed, 1 atm CO2.
bThe yield calculated with respect to the starting substrate is determined by HPLC.
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Figure 3. Cyclic voltammograms of 10 mM bromopyridine conducted on a Ag electrode in DMF þ 0.1 M TEABF4 with the scan rate
of 0.1 V s21: (a) o-bromopyridine; (b) m-bromopyridine; (c) p-bromopyridine.
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3.2.3. Influence of the nature of substrates

To test the validity and universality of the provided electrochemical route for fixation of CO2 and

investigate the influence of the position of the C–Br bond on the pyridine ring on the reaction, the inves-

tigation is expanded to m-bromopyridine (1b) and p-bromopyridine (1c) under the optimized electrolytic

conditions (table 2, entry 1). As shown from the results in table 3, CO2 incorporation into 1 obtaining the

corresponding carboxylation product 2 with good electrocarboxylation yields is successfully completed

in all cases and the yield of 2 increases from 59.0% to 65.8% in the following sequence: o-picolinic acid ,

m-picolinic acid , p-picolinic acid.

In addition, the cyclic voltammograms are also extended to m-bromopyridine and p-bromopyridine.

As revealed in figure 3, an irreversible reduction peak for the two-electron transfer process of the C–Br

bond is obtained for all the three bromopyridines on the Ag electrode. The reaction peak potential of

p-bromopyridine is significantly more positive than that of o-bromopyridine and m-bromopyridine,

showing that p-bromopyridine is more easily reduced than o-bromopyridine and m-bromopyridine. In

addition, the peak potentials of o-bromopyridine and m-bromopyridine are very close, except that the

peak current of m-bromopyridine is higher than that of o-bromopyridine, and this may be due to

the fact that the diffusion coefficient of m-bromopyridine in the system is larger than that of o-bromopyr-

idine. In combination with the previous electrolysis results (table 3) we can know that the electrochemical

route for the fixation of CO2 works well for all the 1, and p-bromopyridine with the most positive

reduction potential achieves optimal performance in CO2 fixation.
4. Conclusion
In conclusion, the important pharmaceutical intermediate picolinic acids (2) are synthesized by electro-

carboxylation from three bromopyridines (1) and CO2 using a Ag electrode. The electrolysis experiment

is conducted under mild conditions with a one-compartment electrochemical cell. The effect of various

electrolysis conditions and intrinsic properties on the fixation of CO2 along with 1 has been investigated
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to improve the yield. After optimizing the synthetic parameters, the target 2 with good yields (59.0–

65.8%) is achieved in the DMF-TBABr electrolyte with a current density of 9 mA cm22 and an electric

charge of 2 F mol21 on a Ag electrode at 08C. In addition, among the five materials of Ag, Ni, Ti, Pt

and GC, both electrolysis and cyclic voltammograms show that Ag has the best electrocatalytic perform-

ance for the reduction and carboxylation of 1. Moreover, the position of the C–Br bond on the pyridine

ring would affect the electrocarboxylation reaction. Among the 1 investigated, both cyclic voltammetry

and preparative electrolysis indicate para-bromopyridine achieves optimal performance in CO2 fixation.

This research is of significance for fundamental research and practical applications of CO2 fixation and

synthesis of pharmaceutical intermediates by a simple and efficient means.
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