

DL'^i^h.Y VJ.iOX LIBRARY
NAVAL POoTG'vADUATS SCHOOL
MONTERITIY. CALIFORNIA 93943

NAVAL POSTGRADUATE SCHOOL

Monterey, California

THESIS
THE FORMAL SPECIFICATION OF AN ABSTRACT
DATABASE: DESIGN AND IMPLEMENTATION 1

by

Klaus-Harald Zang

December 1985

Thesis Advisor: Daniel L. Davis

Approved for public release; distribution is unlimited

i £«£» "w"

UNCLASSIFIED
[lURirv CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE

I REPORT SECURITY CLASSIFICATION

Unclassified
lb. RESTRICTIVE MARKINGS

;. SECURITY CLASSIFICATION AUTHORITY

DECLASSIFICATION / DOWNGRADING SCHEDULE

3 DISTRIBUTION /AVAILABILITY OF REPORT

Approved for public release
distribution is unlimited •

PERFORMING ORGANIZATION REPORT NUMBER{S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)

. NAME OF PERFORMING ORGANIZATION

aval Postgraduate School

6b OFFICE SYMBOL
(If applicable)

Code 52

7a. NAME OF MONITORING ORGANIZATION

Naval Postgraduate School

ADDRESS {City, State, and ZIP Code)

onterey, California 93943-5100

7b. ADDRESS (C/fy, State, and ZIP Code)

Monterey, California 93943-5100

NAME OF FUNDING /SPONSORING
ORGANIZATION

8b. OFFICE SYMBOL
(If applicable)

9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

ADDRESS (City, State, and ZIP Code) 10 SOURCE OF FUNDING NUMBERS

PROGRAM
ELEMENT NO

PROJECT
NO

TASK
NO

WORK UNIT
ACCESSION NO

TITLE (Include Secunty Classification)

THE FORMAL SPECIFICATION OF AN ABSTRACT DATABASE
IMPLEMENTATION

DESIGN AND

PERSONAL AUTHOR(S)
iZang, Klaus-Harald
3 TYPE OF REPORT
(aster's Thesis

13b TIME COVERED
FROM TO

14 DATE OF REPORT (Year, Month, Day)

19 8 5 , December
15 PAGE COUNT

364

SUPPLEMENTARY NOTATION

18 SUBJECT TERMS {Continue on reverse if necessary and identify by block nun^ber) |

Abstract Database; Formal Specification

COSATI COOES

FIELD GROUP SUB-GROUP

ABSTRACT {Continue on reverse if necessary and identify by block numt>er)

The technique of problem solving abstraction provides an appropriate

tool for specifying an interface between the layers of computer hardware

and software. Based on this methodology, the types of support and

function calls that should be provided to application programs running

on micro computers are described with respect to a database resource.

The database is integrated with an abstract processor called AM, a

DISTRIBUTION /AVAILABILITY OF ABSTRACT
E UNCLASSIFIED/UNLIMITED D SAME AS RPT Q DTIC USERS

21. ABSTRACT SECURITY CLASSIFICATION

Unclassif ed
a. NAME OF RESPONSIBLE INDIVIDUAL

rof. Daniel T,. Davis
22b TELEPHONE f/nc/ude Area Code)

(408) 646-3091
22c OFFICE SYMBOL

Code 5 2Vv
) FORM 1473. 84 MAR 83 APR edition may be used until exhausted

All other editions are obsolete

1

SECURITY CLASSIFICATION OF THIS PAGE

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (Whtn Dmm Bnt9r»4)

#19 - ABSTRACT - (CONTINUED)

machine which focuses on eliminating the problems

with portability and reusability of software, imposed

by insufficient resource abstraction.

S N 0102- LF- 014- 6601 «
2 UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE(T»7ien Datm Enfr»d)

Approved for public release; distribution is unlimited

The Formal Specification of an Abstract Database:
Design and Implementation

by

Klaus-Harald Zang
Kapitanleutnant, German Navy

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRA_DUATE SCHOOL
December 19 85

, ABSTRACT

The technique of problem solving abstraction provides an

appropriate tool for specifying an interface between the layers

of computer hardware and software. Based on this methodology,

the types of support and function calls that should be pro-

vided to application programs running on micro computers are

described with respect to a database resource. The database

is integrated with an abstract processor called AM, a machine

which focuses on eliminating the problems with portability

and reusability of software, imposed by insufficient resource

abstraction.

TABLE OF CONTENTS

I. INTRODUCTION 10

A. THE PORTABILITY PROBLEM 11

1. Abstraction 12

2. The Semantic Gap 14

B. THREE WAYS TO NARROW THE SEMANTIC GAP 15

1. Formalism 15

2. Representation Independence 16

3. Intent Expressive Resource Abstraction 18

C. METHODOLOGY 18

II. THEORY 20

A. ABSTPJ^CT DATA TYPES 22

B. STRUCTURES 24

C. ALGEBRAIC SPECIFICATIONS 27

1. Syntax Part 28

2. Axiom Part 30

3. Problems with Algebraic Specifications 32

4. Error Handling 38

III. DESIGN OF THE INTERFACE 45

A. BASIC DESIGN PRINCIPLES 45

1. Definition of the Problem 46

2. Informal Strategy 47

3. Formalization of the Strategy 47

B. BASIC DATABASE PRINCIPLES 50

C. THE ABSTRACT DATABASE RESOURCE 56

IV. SPECIFICATION METHODOLOGY 63

A. THE FUNDA:4ENTAL STRUCTURES 63

B. DEFINING OBJECTS AND THEIR PROPERTIES 67

C. OBJECTCLASSES 74

1. Generalization 77

2. Aggregation 78

D. THE SPECIFICATION LANGUAGE 79

1. Grammar 79

2. The Macro Preprocessor 83

V. THE DESIGN 87

A. THE DATABASE CONCEPT 88

B. ABSTRACT DATABASE DATA TYPES 91

1. Property-Identification and Value 92

2. Property and Propertyvalue 93

3. Object and Objectclass 97

4. Database 101

C. SPEC PARAMETERIZATION 108

D. THE LIST STRUCTURE APPLIED TO DATABASE
DESIGN 119

E. LIST RETRIEVAL 123

1. Background on the Processor Resource 123

2. The Queue 124

VI. IMPLEMENTATION 127

A. IMPLEMENTING DATA TYPES 128

B. MAPPING OPERATORS TO FUNCTIONS 134

C. ERROR HANDLING 136

D. EXECUTION - 137

E. DATABASE IMPLEMENTATION ISSUES 140

VII. CONCLUSIONS 145

APPENDIX A: A GRAMMAR FOR ALGEBRAIC SPECIFICATIONS 147

APPENDIX B: THE SPECIFICATION FOR AM (VERSION 3.0) 150

APPENDIX C: A SIMPLE ASSEMBLER FOR AM 270

LIST OF REFERENCES 361

INITIAL DISTRIBUTION LIST 363

LIST OF FIGURES

II. 1 Syntax Chart 29

II. 2 A Simple Specification for the Queue 34

II. 3 The Queue Principle 35

II. 4 Syntax Part for an Index Queue 35

11.

5

A Specification for the Queue Including the
State 37

11.

6

Illustration of Queue Operations 38

11.

7

The Problem with Undefined Operations 42

111.1 Tree Representation of an Object 46

111.

2

An Informal Strategy to Attack the Design
Problem 48

111.

3

Relational Diagram of the Formalized Strategy -- 49

III. 4a Traditional File Processing Approach 50

III. 4b Database Processing Approach 51

III. 5 Architecture of a Database 52

III.

6

Simplified Block Diagram of a Database System -- 55

III. 7a Block Diagram of Database on AM Resource 56

III. 7b Conventional Database System Operation 57

IV. 1 Example of an Instance Value 65

IV. 2 Creation of Properties 71

IV. 3. Creation of Objects 73

IV.

4

Objects Forming a Subclass 75

IV.

5

Subclasses Forming an Objectclass 76

IV. 6a An Example of Generalization 77

IV. 6b Creating a Class from Objects by Generalization - 78

IV. 7 Creating an Object from Pairs 78

•

IV. 8 General Structure of the Database 80

VI . 1 Type Definitions for Natural 130

VI . 2 Machine Values 132

VI . 3 The Physical Resource 133

VI .

4

Operator to Function Mapping for Type BOOL 135

VI .

5

Error Handling Routine for Property_id Type 137

VI .

6

Program Execution 138

VI . 7 The Semantics for mov m m 139

I. INTRODUCTION

Traditionally, computer software evolved in connection

with a particular hardware environment, and often assumed

features closely related to characteristics of the underlying

hardware. These so-called closed systems usually have a unique

set of resources in both hardware and software. However, as

systems became more general purpose, the requirement for porta-

bility and reusability of resources across systems increased

and, consequently, the need for creating greater resource

abstraction arose [Ref . 1]

.

The problem of formalizing the relationship between hardware

and software resources was first addressed by Yurchak [Ref. 2]

whose efforts resulted in the specification and implementation

of an abstract machine, called AM.

New data types necessary to represent the abstraction of a

bit-mapped display resource were added to AM by Hunter [Ref. 3]

thereby creating AM (version 2.0) as a derivation of version

1.0.

This present research again is an extension of the work

begun by Yurchak and Hunter with the goal to design and for-

mally specify a portable, reusable abstract database (version

3.0). Its two major objectives are:

- investigate an appropriate methodology to specify an
interface between the layers of computer hardware and
software;

10

- find a way for applying such a methodology in order to
describe the interface of a computing system, with
respect to a database.

The following is a modification of the introduction presented

by Yurchak [Ref. 2] and Hunter [Ref. 3], and contains some of

their ideas which contributes to a better understanding of the

background and motivation for this research.

A. THE PORTABILITY PROBLEM

It is well known that porting large programs from, one machine

to another is an expensive ordeal. It is also well known that

once the software lias been moved to the new machine, it is

anybody's guess whether or not it will be work as before. Even

if our program seems to work, we may find it consumes more re-

sources than we expected. Indeed, this may be just as bad as

if it did not work at all.

There are a number of -reasons why the portability problem

is getting worse, not better:

- most architectures, even those which profess to be
"language directed," reflect a bias toward making the
machine look like what the programmer wants, or toward
some engineering goal, such as maximizing the number of
devices;

- both languages and machines are related to the data they
manipulate in an implementation dependent way;

- language and hardware designers pursue their conflicting
goals to the detriment of the poor compiler writer, who,
with imprecise tools and methodologies is faced with
the job of implementing ambiguous semantics on an
informally designed resource.

Although these and other factors do adversely contribute to

the imperfect task of moving softv7are from one m.achine to

11

another, they add their weight to other difficult issues in

language design, computer architecture, and software engineer-

ing. This study confines itself to treating the issues surround-

ing the interaction between programmer's view of the world as

a problem, and the architect's view of the world as a resource.

The existing problem can widely be described as a matter

of unsufficient resource abstraction. And there are examples

that demonstrate the advantages brought along by consequently

applied resource abstraction. For instance, many operating

systems (OS) already provide a uniform and functional interface

to the file system, and combined with a high level language and

its associated runtime services, achieve a high degree of soft-

ware portability [Ref. 1]. Current research work in the area

of database machines indicates attempts to develop a system that

would, like the OS, provide a uniform interface, the first step

towards portability and reusability. And this trend should give

some reason to be a little more optimistic.

1 . Abstraction

"Abstraction" describes the separation of the defining

properties of an object from other, unnecessary details about

it. A programmer is primarily concerned with solving a prob-

lem. Appropriately, the tools at his disposal, programming

languages, development aids, the programming environment, form

a "problem solving abstraction." The hardware (and some of

the software) on which this problem solving abstraction is

implemented, however, is an abstraction of a different sort.

12

Addresses, registers, ports, most of the operating system

service routines, all provide more or less efficient ways to

manipulate the physical resources of the machine, they form a

"physical resource abstraction."

The fuzzy area between these two abstractions, sometimes

simplistically perceived as the boundary between hardware and

software, exposes a number of shortcomings in language design

and computer architecture collectively termed the "semantic

gap .
"

As mentioned before, proper resource abstraction plays

a major role in the attempt to resolve the portability problem.

In areas other than the operating systems, abstraction however,

seems to be rather difficult. Processors and visual displays

are examples. The inability to establish a meaningful abstrac-

tion has impeded the formation of standard functional inter-

faces to these resources. Operating systems generally do not

provide a functional interface to either the processor or the

display. Programs which access these resources directly,

simply are not portable. High level languages (HLL) partially

fill the gap left by OFs for the processor resource. Unfor-

tunately, the interface level is high enough to force many

applications to bypass the HLL for efficiency. Special graphics

packages that extend the OS provide similar services for the'

display resource. But despite these efforts, the problem is

Except in the most rudimentary way, OS function calls to
the display are usually limited to character and string
output.

13

still far from solved. The lack of formal means to specify the

interface that the operating systems, high level languages and

graphics packages attempt to provide is a serious shortcoming

that impedes portability.

The same applies for database systems, too, which al-

though more recently introduced in computer history not only

offer a whole set of different and incompatible database models

from which to choose, but also force the implementor to adopt

the corresponding query language. The latest development is

towards the so-called backend approach that reduces the workload

of the host computer in a very impressive way by separating

the database part from the mainframe and letting it run as

autonomously as possible; but the above described interface

problem remains unsolved. Thus, at present, the variety that

originally was created to optimize a data base to meet the

respective goals, strongly interferes with the idea of

reusability.

2 . The Semantic Gap

The semantic gap manifests itself anywhere a problem

solving abstraction touches a physical resource abstraction.

A detailed description may be found in Myers [Ref . 4] . He

observes that the semantic gap contributes to the cost of

software development, software unreliability, inefficiency,

complexity, and the distortion of programming languages. Cer-

tainly no single development or methodology will eliminate this

problem.

14

Narrowing the semantic gap requires significant changes

in the fundamentals of computer architecture and language design

We chose to concentrate on three factors which significantly

contribute to this problem:

- informally described semantics;

representation dependent data types;

arbitrarily designed instruction set architectures.

The implication, of course, is that through increased formalism,

the introduction of representation independent data, and a more

throughtful treatment of the instruction set, the sem.antic gap

can be narrowed. The balance of this thesis is devoted to

describing a methodology for doing just that.

B. THREE WAYS TO NARROW THE SEMANTIC GAP

1 . Formalism

The benefits of formalism in the design process have

been amply revealed in countless articles treating this issue

from the standpoint of software engineering. Our concern will

be limited to formalism as it applies to the specification of

an abstraction. Various specification methodologies exist,

many of which have been used with more or less success in pro-

jects of practical significance. But we caution the reader

that by "formal" we mean a mathematical rigor rooted in proven

theory. The idea of formalism as often applied to software

engineering will not do here. A "formal specification" is a

complete description of the meaning of an object. It forms the

15

basis for an abstraction and is ultimately a bridge over the

semantic gap.

The benefits of formalism in which we are most inter-

ested are:

it provides a firm basis for proving our assertions
about a specification and its implementation;

it encourages a discipline on the part of the designer
to be rigorously precise;

it compels us to find ways of describing things which
are (implementation) independent.

2 . Representation Independence

Conventional machines, in contrast to the AI4, force

us, as programmers, to develop our own abstractions of data.

At a time when we are most concerned with developing clean

algorithms the architecture obligates us to worry about status

registers and word length. Certainly someone m^ust ultimately

deal with these physical properties of the hardware, but this

should not fall as an "obligation" upon the programmer. The

programmer should be free to ignore unnecessary detail.

Displays are equally difficult. Often the programmer

is forced to deal with display data at a very low level. In

order to create his display, it may be necessary for him to

work at a level of poking bits out the processor port to the

terminal. By defining data types that include objects which

represent concepts appropriate to visual display processing,

the programmer will be freed to work at a higher conceptual

level.

16

Due to the common nature of this problem, with the

database we find ourselves in a situation not much simpler

than the one just described. Since a single database is usually

designed to fulfill only a very specific task, for instance,

running the passenger reservation system for an airline, first

of all the logical structure of the database to be created must

be developed. This can be done using a data structure diagram

which contains all the required entities including the relation-

ship among them. But while this step is achievable without

consideration of the later implementation, we have to give up

this kind of abstraction in the second phase when the diagram

is transformed into a design that conforms to the limitations

and peculiarities of a given database management system (DBMS).

The programs themselves which may be created in parallel with

the development of the logical database structure must apply

to the standards of the database type chosen, thus putting the

programmer in a similar situation as for all conventional

machines

.

We will attempt to minimize the dependence of data upon

its representation through the use of "abstract data types."

Our notion of data is very general. It ranges from integers,

to image and database objects, and to program instructions.

Data type representation will be hidden and abstract operations

will be provided in the same way as with traditional abstract

data types. If these data types can be kept representation

independent, then portability is aided.

17

3 . Intent Expressive Resource Abstraction

Conventional architectures do not permit us to unam-

biguously express our intent in a program. Artificial data

types, combined with typical resource models, force ambiguity

and the overloading of data structures. Stack frames are a

good example of this. The semantics of the frame combine those

of an array and those of a stack. Meanwhile, the whole thing

is implemented in memory, with the data types overlaid on an

array of fixed length cells.

We claim that applying methods similar to those used

to describe abstract data types, we can describe an abstraction

of the physical resource of a machine which benefits not only

from the formalism used to specify it, but also permits the

implementor to clearly interpret the intent of programs v/ritten

for it.

C. METHODOLOGY

The goal of the research done by Yurchak and Hunter, and

now of this thesis is to contribute something of practical

significance to the study of software portability by treating

an area which has been largely ignored, the design of a formal

abstraction for the computing machine itself. We have innumer-

able high level programming languages, prograraming environments,

graphics languages, database machines (backend processors),

query languages, file systems, operating system command inter-

preters, a whole host of different abstractions tailored to the

18

task of providing us with just enough information to do every-

thing we need to do, and nothing more. So why, then, have we

failed to develop abstractions for the hardware resources, upon

which we are so dependent, which are more than just a collection

of registers, opcodes and some arbitrary rules about how they

interact. A more difficult but certainly more important task

than actually defining the abstraction is developing a methodology

for producing other resource abstractions.

Our method has been to take a naive approach towards all

areas of the design and implementation process not directly

related to the specification itself. VJe do this for two

reasons. First, we can take for granted the large body of

research in programming languages and computer architecture,

we are designing neither a language nor a processor, even though

"ad hoc" examples were required to complete the implementation.

Second, the research is intended to benefit programmers. Since

it is unreasonable to expect those who may use this method to

understand the theory behind the specification, the key to

understanding the reasons for our design decisions lies in the

way we coded it. Thus, cleverness has been eschewed in favor

of clarity.

Our task in this thesis, then, is to examine a wide range

of issues which impinge on the process of designing and imple-

menting the specification of a database system, and then to

describe how we went about actually doing it.

19

II. THEORY

The formal specification method used to define the Abstract

Machine (AM) is based on algebraic semantics. This approach

was chosen because algebras, due to their hierarchical struc-

ture, enable us to deal with complex problems or to control

com.plex situations by decomposing them into simpler subproblems,

with clearly determined interfaces.

Clean interfaces, on the other hand, provide a sound basis

for modifying or combining existing programs, which is our in-

tention in advancing AM from version 2.0 to version 3.0. But

algebraic semantics also contribute to solve the portability

problem for software systems, since they represent a high level

of abstraction which is the only promising means to narrowing

the semantic gap.

Abstraction allows us to deal with concepts apart from

particular instances of those concepts and to concentrate on

the essentials only. Abstract data types are the fundamental

elements a formal specification is built upon. Guttag [Ref. 5]

states that to describe an abstract data type precisely, its

specification must comprise both the syntax and the semantics.

According to Guttag, a formal specification should meet

the following criteria, which were taken from Hunter [Ref. 3],

if it is to be useful:

20

it must be restrictive enough to ensure that nothing
unacceptable to the specifier will meet the require-
ments imposed by the specification;

it must be sufficiently general to ensure that few, if
any, acceptable entries are precluded;

it must be understandable, so people can work with
it.

From [Ref. 2], we note that to achieve true portability, we

must be able to demonstrate the following properties in our

implementation

:

the specified semantics actually implemented on the
source machine are completely unambiguous;

the implementation on the source machine is "correct."

Thus, our method of specifying must be formal enough to permit

proofs of correctness. Exhaustive testing, however, especially

when dealing with complex specifications, is usually not

feasible and so the only true statement we can make is that

our specification is correct at least with regard to those

tests actually performed.

Algebraic specifications meet the above criteria for achiev-

ing true portability. Here we find a significant body of re-

search already in place in the area of abstract data type

specification. Goguen [Ref. 6] and Guttag [Ref. 5] treat this

topic in great detail. VJe will not so here.- Instead we give

an overview of the important concepts of abstract data types,

and direct the reader to the original works for more in-depth

study of the underlying thoery. Davis [Ref. 7] provides the

theoretical basis for the resource specification method.

21

Davis [Ref. 1] also provides additional background but with

an emphasis on practical issues.

A. ABSTRACT DATA TYPES

The underlying principle that gives mathematics the power-

ful tool for generalization is its intention to specify the

fundamental nature of a system by stating only a few basic

properties. In order to describe an entire system by means

of a small number of its characteristics it is necessary to

find out what exactly these characteristics are and how to state

them in terms that define all the systems of this particular

category. This can be achieved effectively by applying the

technique of data abstraction, which is a synonym for the term

"abstract data type."

In general, abstract data types refer to the fact that

permissible operations on the data ejects are em^phasized,

while details about the representation of the data objects

are suppressed. Because data abstraction focuses mainly on

functional properties but ignores unimportant things like

representation details, only some of the many possible func-

tional properties have usually to be specified. This allows

us to define even complex systems by- means of abstract data

types, or in other words, via certain sets of data values to-

gether with the corresponding sets of primitive operations on

those values.

The properties of abstract data types again are specified

by algebraic axioms which define all mathematical systems and

22

provide the basis for deriving additional properties that are

implied by the axioms. This will be discussed in more detail

later in this chapter.

The stack, queue, or list serve as typical examples to

demonstrate how data abstraction works; all of them can be

characterized by simply defining the essential operations that

may be performed on each individual system. For example, a

list could be characterized by operations such as NIL that

creates an empty list, FIRST that returns the first member of

the list, PREFIX that adds a new member to the front of the

list, and NULL that tests for an empty list. Using this ap-

proach the programmer need not care about how the list and

its manipulating functions are actually implemented, which

allows him to concentrate on his programming job. And this

principle definition of the list can be used for all systems

of type "list" because the description has been kept very general

by means of abstraction.

Besides providing us with a very important mechanism for

writing well-structured programs, abstract data types make

program modifications easy. As long as the interfaces of the

manipulating functions remain unchanged, internal details may

be modified without affecting other programi components in an

unwanted way.

Thus, in applying the methodology of data abstraction we

are forced to clearly specify our intentions, which in many

situations is the stimulus to think intensively about what a

23

system really is or does, and then to describe the result in

an unambiguous manner. Due to its clear style and high level "

of abstraction, the so-defined system not only is independent

of its originator, but is also easier to understand.

B. STRUCTURES

So far we have discussed how to use the mechanism of abstrac-

tion in order to handle complex systems but we're primarily

concerned with the consideration of the permissible operations

on those systems, like the PREFIX operation for lists. In this

paragraph we will now examine the more systematic definition of

structures. Clocksin [Ref. 8] defines a structure as a single

object that consists of a collection of other objects, called

components. The components are grouped together to a single

structure for convenience in handling them. Thus, a structure

can be characterized by the kind of its components and the way

they are arranged. Structures are helpful . in organizing data

since they allow a group of related information to be considered

as a single object instead of different ones. The decomposition

of data into individual components depends solely on the pur-

pose which is to be achieved in solving the particular prob- .

lem; so it is up to the programmer to create the structures that

contribute most in reaching his intended goal.

To return to our former example, the list, which is a struc-

ture itself, what exactly are the kinds of components and their

allowable arrangements? For the list as an ordered sequence of

24

elements the order of the elements in the sequence matters, or

as stated in MacLennan [Ref. 9], the allowable arrangements are

finite linear orderings. The components of a list may be any

terms, including constants, variables, booleans, and lists

themselves. Due to these properties lists can represent prac-

tically any kind of structure that might be convenient for

symbolic computation.

So, for example, if one would like to describe a thing on

the basis of certain attributes corresponding to it, the enumer-

ation of these attributes could be considered as creating a

list by v/hich this thing can be defined:

thing: attribute,, attribute^ ,..., attribute^ 1 2 n

Bringing the attributes, or components of the list, then into

a particular oder and specifying the values they may take, enables

us to create classes of related lists. This can be very useful

in grouping things of the same type together, as it is the case

in all database systems:

class

:

thing, : <attribute ., , attribute, , . . . , attribute >

thing„ : <attribute^ , , attribute„^ , . . .
, attribute^ >^2 zl 22 2n

thing : <attribute ,, attribute „,..., attribute >
^m ml m2 mn

This simple example will be discussed in much more detail in

the following chapters.

In the previous paragraph we have already determined the

primitive operations performed on lists. There are three

classes of operations on structures in general

:

25

constructors which allow us to build a structure in
accordance with its predefined characteristics (like
PREFIX for lists)

;

selectors which allow us to obtain a component from
the structure (like FIRST)

;

predicates which allow us to determine the arrangement
of the components in a given structure and return a
boolean value (like NIL)

.

Depending on the kind of structure one wishes to describe,

there is a certain number of operations required; for lists

it turns out that just six operations (two for each construc-

tor, selector, and predicate) are sufficient, while, for

example, the description of a stack would require only five

operations (NEW and PUSH as constructors, POP and TOP as

selectors, EMPTY as predicate):

STACK CONSTRUCTORS SELECTORS PREDICATES

empty NEW - EMPTY

nonempty PUSH POP

TOP

But apart from the number of actual operations which is varia-

ble, the three fundamental classes of operations remain un-

changed for any structure. And there is one more point that

should be mentioned: Selectors and constructors invert each

other in some cases. For example, for the stack we have

POP (PUSH (stack, X)) = stack

which means that pushing an item X onto a stack and immediately

popping it off again leaves the stack unchanged. The same

26

would be true for

PUSH (POP (stack) ,Y) = stack

if the same item Y just popped off the stack was immediately

pushed back onto the stack again.

But as fine as the inversion of selectors and constructors

works for stacks (unrestricted in the case of POP (PUSH)) or

for lists, it would not work for queues because items are then

added to the rear end while always removed from the front.

Keeping these correlations in mind makes it easier to develop

our algebraic specification later.

C. ALGEBRAIC SPECIFICATIONS

Specifications are particular and detailed descriptions of

things; they contain essential information about the dimensions

and peculiarities of the described objects. They furthermore

represent a convenient way to describe the generally infinite

objects of initial algebras in finite terms if we want to build

our abstract data types on an algebraic basis.

Such a specification is also known as "operator signature"

and consists of two major components:

the syntax whose purpose is to define the constants and
operations as well as the axioms as intermediate step
in developing the semantics.

the semantics of the data type as part of the realization
which is mostly of concern for the implementation.

In mathematical notation a specification can be seen as a

triple <S,Z,£> where Z is a S-sorted signature (this means, it

27

is based on the operands of sort S) and e is a set of Z-equa-

tions. Here <S,Z,£> specifies an abstract data type by defin-

ing T^ which represents an isomorphism class of Z-algebras.

An algebraic specification represents something between our

intuitive sense of what we want and the actual computer code.

This characteristic feature facilitates the translation of our

ideas into working programs and narrows the scope of possible

interpretation by the application programmer. It also allows

us to augment an existing data type by introducing so-called

derived operators without the need for rewriting the initial

operations, or to extend existing specifications to make their

data types available to others, thus avoiding unnecessary

redundancy.

1. Syntax Part

The definition of an abstract data type itself should

tell us all we need to know for using it effectively. But

first of all, how can we be sure that we have selected the

correct level of abstraction to begin with? MacLennan [Ref

.

9] states that there is in fact no formula for calculating

such a correct level, it rather depends on our individual view

of the world and our needs at the moment. The chosen approach

should, however, guarantee that it really models our abstrac-

tion of the part of the world we want to describe.

So, in order to start we list the constants and the

primitive operations on the data types to be defined and, in

doing so, we create the legal ways in which expressions in-

volving these data types can be constructed.

28

For each primitive operation it is necessary to explicitly

state, the

name of the operation;

type(s) of its argument (s)

;

type of value returned;

thereby setting the domain of the arguments and value for

each operation:

operation: (argumenttype, ,argumenttype„, . . . ,argumenttype)
-^ valuetype;

As an example, the syntax for integer addition could be written

in the following way:

add (integer, integer) -> integer;

The syntax chart for the general case which is a modification

of the charts usually found in the ADA programming language is

shown in Figure II. 1.

operation value

Figure II. 1. Syntax Chart

In short, the purpose of specifying the syntax of an abstract

data type is to define

1) the legal forms of expressions, and

2) the way in which the constants and operators can be
combined into expressions.

29

Generally, it seems to be wise to build specifications in a

bottom-up way, which means starting with the most primitive

type of data and then proceeding in gradually reaching a higher

level of abstraction on the basis of the more elementary types

while hiding the details of the lower levels.

But in spite of this approach, each data type has to

be considered independently of its later implementation and

must be treated at any given level as if it were itself a

primitive one which, on the other hand, could lead to some

redundancy

.

2 . Axiom Part

Having defined the legal (or well-formed) expressions

and the types of values they return in a rather symbolic way,

we next consider the meaning of those primitive operations,

this means, answering the question of what values they in fact

compute when given legal inputs. This is done in the axiom or

property part of the specification which therefore can be re-

garded as a refinement of the preceding syntax definition.

Semantics, in general, deal with the actual realization

of our formal terms; here we are, in accordance with our inten-

tion to use an abstract terminology as far as possible, not yet

interested in any programming language that could do the job,

but prefer to give a set of mathematical equations, or axioms,

which define the meaning of the operations in a way entirely

independent of the final implementation. This approach of

applying mathematical techniques eases the reasoning about

well-formed expressions.

30

I

Trying to mathematically specify the axioms we face

the' problem of what it is that has to be specified and to

what extent. As for determining the correct level of abstrac-

tion to start with, there is no definite solution to this

problem. Basically, we want a set of equations which defines

the properties of all well-formed expressions. It is mainly

up to the creator of the specification to decide what kind of

meaningful interactions between the operators should be included,

as long as these equations are complete and define the result

of a function for all legal inputs.

For example, the properties for the operation 'integer

addition/subtraction

'

+,- : (integer , integer) --> integer;

could be described as follows:

a+b = b+a;
a+(b+c) = (a+b)+c;
a+0 = a;
a+(-a) = 0;
a-b = a+(-b)

;

/*commutative*/
/*associative*/

The final step then would be to find the minimum complete set

of equations, which means listing only those equations abso-

lutely necessary to define the properties of the primitive

operations, including implicit statements. But since it is

sometimes more convenient to directly state equations which,

thinking strictly mathematically, are already contained in other

statements, it is legitimate to introduce them as so-called

derived operators.

31

An example of such a derived operator is the boolean

function IMPLIES:

IMPLIES(X,Y) = OR(NOT X,Y);

which is equivalent to the combination of two simpler functions

containing NOT and OR. By this means we can add new operations

and their defining equations to a data type, whenever it is

useful within the specification.

3 . Problems with Algebraic Specifications
.

From the preceding paragraphs it should become clear

that there is no other way in creating a database for the Ab-

stract Machine except of defining a formal specification first.

This gives us the tool to concisely describe our intentions in

an unambiguous and rigorous manner. But it also forces us to

view the overall problemi of what a database actually represents

in a strictly mathematical way. This means, we first must

determine the primitive names that form the syntactic realm and

describe all legal operators. We then must specify the corres-

ponding universe of discourse, which contains our primitive

objects, and the functions that map each name from the syntac-

tic domain to its counterpart in the semantic domain.

Although this approach often does not harmonize with

our intuition, since the human mind tends to be more liberal

than rigorous, it has the distinct advantage of providing us

with a clear structure which is easier to understand and where

each defined operation can be proved correct. We consider

this basic type as the mathematical part of the specification.

32

This method furthermore has the advantage that, given

the operation presently performed and the current state of the

machine which corresponds, as Fairley [Ref. 10] states, with

". . . the information required to summarize the status of

system entities at any particular point in time, . . . the

next state can be determined."

During the research phase for this thesis, however, it

became obvious that it often is very difficult to translate

relatively simple models of the real world into terms of alge-

braic expressions. Besides avoiding unwanted inconsistencies

the problem centered on the formal requirements for being precise

and for specifying the fundamental parts of our database,

wherever possible, by stating only the absolutely indispensible

basic properties of the system from which all other operations

can be derived.

Thus, in the beginning of our work the syntactic speci-

fication of the stack operations was studied. But due to its

last-in first-out property which is not very helpful for data-

base operations, the stack did not provide the paradigm with

which to continue. As a more suitable example that manifested

the difficulties in writing an algebraic specification the

first-in first-out property of queues was then examined. The

specification shown in Figure II. 2 is built upon an example

given by Fairley [Ref. 10]. In this example (Figure II. 2),

CREATE and WRITE are serving as constructors that build up or

fill the queue. EMPTY and READFRONT describe its behavior.

33

Syntax:

Operation

CREATE

WRITE

READFRONT

DELETE

EMPTY

I

Domain

()

(queue, value)

(queue)

(queue)

(queue)

Range

— > queue

— > queue

--> value

— > queue

--> boolean

Axioms

:

EMPTY (CREATE) = true

EMPTY (V7RITE(queue, value))
= false

READFRONT (CREATE) = error

DELETE (CREATE) = error

DELETE (WRITE (queue, value))
=

READFRONT (WRITE (queue, value))
=

if EMPTY (queue) then CREATl
else
WRITE (DELETE (queue) , value)

if EMPTY (queue) then value
else
READFRONT (queue)

Figure IJ . 2 . A Simple Specification for the Queue

DELETE acts as a modifier to the queue. While READFRONT -always

returns a copy of the value sitting in the front position, the

operation DELETE actually removes this value from the queue,

thereby changing the state of the system.

The problem encountered here is that we are not able to

clearly define all of the axioms but instead are forced to make

some concessions in accordance with the prevailing state of

the queue. This is caused by the fact that the value presently

read from the queue is not necessarily the one entered last

(compare Figure II. 3).

34

n+1 n+2 n+1 n

front
value

Figure II. 3. The Queue Principle

To remain consistent it is therefore necessary to introduce the

conditional "if -else" statement for a part of the axioms which,

on the other hand, takes away some of the simplicity. Compared

with the stack operations where it is sufficient to increase

or decrease a counting device by a number of 1 with each item

added to or subtracted from the stack, the queue operations

require a more sophisticated mechanism to keep track of every

single item in the queue, if one really wants to be precise.

This precision could be achieved by indexing the items when

inserted into the queue. The syntax for these operations is

easily defined, as shown in in Figure II. 4.

Syntax:

Operation Domain Range

CREATE

WRITE

READFRONT

DELETE

EMPTY

(queue , value

.

(queue)

(queue)

(queue)

—

>

queue

--> queue

—

>

value

.

--> queue

--> boolean

Figure II. 4. Syntax Part for an Index Queue

35

But since we have introduced the index values "value." and

"value
.

, "we now must describe their particular properties in

the axiom part. This obviously is a complicated method of des-

cribing the relatively simple arrangement of a queue in terms

of an algebraic specification, and also proves to be a rather

difficult effort. But to our knowledge, there is no really

elegant solution to this problem available at the present time.

The previously mentioned indexing methodology can only

be simplified by reducing the queue to its basic operations in

a similar way as done with the abstract specifications for the

natural numbers or integers. Here, for example, the number 1

is expressed by the paraphrase "succnat (zeronat ())," and each

succeeding number can be described by adding just another

"succnat" in front of this fundamental expression. Applying

this technique to the queue problem allows us to keep track of

every single value written to the queue and read or deleted

from it.

So instead of introducing the extra indexing operation,

we could integrate the state of the queue (
'
quaddr ') and modify

the specification as demonstrated in Figure II. 5. On the

basis of these few axioms it becomes possible to describe each

state of the queue by an appropriate combination of the given

operations. The following is an example of this:

READFRONT(WRITE(VJRITE (INITIALIZE ,vl) ,v2)) =vl; /*v:value*

READFR0NT(DELETE(WRITE(V;RITE (INITIALIZE ,vl) ,v2)))
= v2 ;

READFRONT (DELETE (VJRITE (INITIALIZE () , v))) = undef;

READFRONT(WRITE(DELETE(WRITE(INITIALIZE() ,vl)) ,v2)

)

= v2

;

36

Syntax:

Operation Domain Ratige

INITIALIZE (qaddr, state) —

>

state

READFRONT (qaddr , state) —

>

value

WRITE (value,qaddr, state) —

>

state

DELETE (qaddr, state) —

>

state

Axioms

:

READFRONT (qaddr, INITIALIZE (qaddr, state)) = undef;

READFRONT (qaddr, WRITE (value, qaddr, INITIALIZE (qaddr , state))

)

= value;

DELETE (qaddr, INITIALIZE (qaddr, state)) = undef;

DELETE (qaddr, WRITE(value, qaddr,INITIALIZE())) = INITIALI ZE ()

;

DELETE (qaddr , WRITE (value, qaddr, state))
=

WRITE (value, qaddr , DELETE (qaddr, state))

;

if not (INITIALIZE ()

)

then READFRONT (qaddr , WRITE (value, qaddr , state))
=

READFRONT (qaddr, state)

;

end if

;

Figure II. 5. A Specification for the Queue Including
the State

From these examples, where we omitted the arguments "qaddr" and

"state" in favor of clearness, the importance of placing the

parentheses into the correct locations becomes obvious. The

previously defined operations are illustrated in Figure II. 5.

A value different from the one residing in the front position

can only be read from the queue after the front value has been

deleted, so a

READFRONT (READFRONT (WRITE (INITIALI ZE() ,v))

)

37

in (WRITE)

[.:

queue out (DELETE)

operation INITIALIZE

val (n) val(2) val(l)

READ

[=val(l)

]

momentary state

val (n+1)

val (n) val (3) val (2)

DELETE

[erase val (1)

]

change of state

Figure II. 6. Illustration of Queue Operations

would return two times the value "v" , which is similar to the

corresponding TOP operation for the stack. Although by this

method some of the axioms and the " if-then-else" statements

could be eliminated and furthermore, the requirements for an

abstract specification can be satisfied, it does not seem to

be an elegant solution to the queue problem either. The reason

for integrating this deviation into our research work was to

give the reader a better understanding of the problems that

had to be managed in writing a formal specification for a

database, which is not as simple as the queue.

4 . Error Handling

A major aspect in creating a specification is how to

deal with the situation should the user manipulate the defined

38

operations in a way that would result in an error. Because it

is part of the human nature to fail once in a while, vital

systems tend to be equipped with exception handling mechanisms

which prevent the overall system from breaking down and becoming

worthless, should a predefined type of error occur. This is

also known as fault tolerance or lenience, and represents the

opposite to the more mathematically sound term "strict," where

a function becomes undefined whenever one or more of its argu-

ments are undefined.

Error detection always causes a great deal of problems,

and once having, been successful it is a rather philosophical

question of how to proceed, as long as a collapse of the entire

system can be avoided and we get the information that a certain

error has occurred. In general, every attempt to handle this

problem should be based on the understanding that

- any operation which encounters an error is computationally
meaningless;

if an operation encounters an error, then any subsequent
operation which utilizes the erroneous result must also
return an error;

- errors must not be hidden, but must be known to the user.

These statements were directly taken from. Hunter [Ref. 3], since

he considerably modified the error handling routines for the

Abstract Machine (version 2.0), which will be discussed later

in this section.

One interesting but mathematically not indisputable

approach was introduced by Guttag [Ref. 5] with the term

39

"undefined" for equations whose values were not determinable,

for example, when attempting to read an item from the empty

stack

READ (CREATE) = UNDEFINED.

But since the operation READ can only return a value from the

stack, we either have to treat UNDEFINED itself as a value or

READ as an only partially defined function.

In the meantime, this problem was solved by Davis [Ref.

1] ; his method has been applied to the AM specification and

will be described below.

Another approach that was used by Yurchak [Ref. 2] for

the initial AM (version 1.0) is to modify the specification and

include an error message. However, it soon became obvious, that

in adding such an error message to the specification, care has

to be taken of all the possible combinations the newly created

error message could be involved in. This is in accordance with

the above listed understanding that, if we get an error, any

operation on it yields an error, too. But it also means that

the number of additionally needed error axioms quickly leads

to an extent which is no longer reasonable.

To get an idea what dimensions we easily reach in order

to remain consistent, we only have to consider the part of

the specification for natural numbers that deals with the special

error axioms:

40

PREDNAT(ZERONAT())

PREDNAT (NATERROR)
SUCCNAT (NATERROR)
SUMNAT (N , NATERROR)
SUMNAT (NATERROR , N

)

SUMNAT (SUCCNAT (M) , NATERROR)
SUBNAT(N, NATERROR)
SUBNAT (NATERROR , N

)

MLTNAT (NATERROR, X)

= NATERROR
= NATERROR
= NATERROR
= NATERROR
= NATERROR
= NATERROR
= NATERROR
= NATERROR
= NATERROR

where NATERROR would have to be specified as the extra operator

class

ERROR
OP

NATERROR: --> NAT.

Although these error axioms would reduce any term containing an

error to the error message of the appropriate sort, thus

eliminating unwanted elements of the carrier of sort NAT in

the above example, it is obviously not practical to follow this

approach. We therefore succeed with the concept of "undefined"

as introduced by Davis [Ref. 1] and described by Hunter [Ref.

3] , since this method allows us to keep the number of additional

axioms manageably low.

The underlying principle is just a different way of

viewing the mapping of elements from a given domain to their

images using a certain function. For example, if we let f be

a function from A to B and let A' be a subset of the domain A,

then f(A') denotes a subset of B, the im^age of A' under f. We

now consider A' as the domain of our constants and operations

41

defined in the syntax part of the specification. Furthermore,

we are interested only in the corresponding values they are

mapped to by the function f (see Figure II. 7), while ignoring

all the undefined operations in the set A-A', or in other words,

the attempt of mapping an element from the undefined set re-

sults in an undefined value.

B

partia
defined

Figure II. 7. The Problem with Undefined Operations

"Undefined" has the following properties:

undef is used to describe the illegal operations;

if t = undef then A (x-, ,x , . . . , t , . . . , Xj-j) = undef;

where "A" is any operator in the specification, and "x." is

an expression;

any equation containing undef is equivalent to undef;

in a realization, if undef is encountered, the processing
halts immediately and an appropriate error message is
given.

42

So, instead of listing every single possible NATERROR, all we

have to do is add the axiom

PREDNAT (ZERONAT ()) = undef

;

to our specification of the natural numbers, which served only

as an example for the general case, thereby solving the "prede-

cessor of zero" problem without the introduction of a special

error operator. The effect is to restrict the range of free

variables that apply to an axiom. This becomes clearer if we

look at the following construction, where we substitute

ZERONAT for the free variable n:

SUCCNAT (PREDNAT (n)) = n; /*axiom to start with*/
now replace n by ZERONAT ()

SUCCNAT (PREDNAT (ZERONAT)) = ZERONATO;

SUCCNAT (undef) = ZERONATO;

undef = ZERONAT ()

;

The evaluation of this axiom shows that substituting ZERONAT (

)

for n leads to an undefined result, which is quite correct,

but returns the appropriate value for all free variables

otherwise

.

Thus, PREDNAT (n) does not exactly belong to the set of

constants and operations defined in A' because for some cases,

or precisely when n is replaced by ZERONAT () , the value it maps

to becomes undefined. We therefore say PREDNAT (n) is only

partially defined and must be seen, similar to the POP operation

for stacks as a member of the overlapping set of partially

defined operations (Figure II. 7).

43

Analogously, we receive a similar result for all those

specified data types where a faulty user action may turn out

as something undefined, like trying to read a value from the

empty stack or queue. And since this method has already been

applied to the Abstract Machine (AM) by Hunter, this is one

more reason to continue with it.

44

III. DESIGN OF THE INTERFACE

Data that is stored more or less permanently to be manipu-

lated by a computer resource represents in some way a simple

database, where the software which uses or modifies these data

is known as the database management system (DBMS) . The differ-

ence that makes a database superior to file processing systems

which can be considered as predecessors of the database and

will be widely replaced by this newer technology, is their

capability to provide via the DBMS more information from a

given amount of data. The DBMS itself is a complex and usually

large program that acts as a data librarian. If we follow the

approach presented by Bjorner [Ref . 11] , we can view the DBMS

as the realization of a certain database model; this then

allows us to divide the further treatment into the two parts

abstraction and realization, which correspond to the database

model and the database management system.

A. BASIC DESIGN PRINCIPLES

In this part of our work we are not yet concerned about the

realization but rather concentrate on the problem of how to

formulate a useful abstraction of the database resource. As

seen, the desired state of abstraction can be reached by ex-

tracting the fundamental properties of the object of concern

on a level which suits our intentions best. A way to do this

45

is to look briefly at the design methodology described by Booch

[ref. 12] that works for the general case.

1. Definition of the Problem

To get started and to make the overall framework of a

database more understandable, models are helpful tools because

they enable us to express relatively complex things in a simpler

and more evident way. A tree is often used to represent the

data structure and the relationship between different members

of the database. One of the typical requirements for a data-

base system is to find a certain property among stored objects.

For example, an object with the properties A,B,C,D

could be described by a simple tree (Figure III.l) , where the

object is represented by the root and the properties by the

leaves of the tree.

A B C D

Figure III.l. Tree Representation of an Object

In combining different objects we can create-'very complicated

trees (also called a hierarchy) which represent the relation-

ship in a clear way that otherwise would be difficult to des-

cribe. Our goal now is to develop a system that checks the

46

leaves of the tree for a given condition which could be con-

sidered as a step towards the often applied function of search-

ing for a particular object in a database.

2

.

Informal Strategy

While still ignoring the question whether such a tree

will actually be represented as a sequential, linked, or in-

verted list in order to see if a certain condition is satisfied

by any of the objects, we can apply the following informal

strategy

:

Find all stored members that satisfy condition B.

Figure III. 2 gives an example how this informal strategy may

be used. Thus, having shown how the informal method works,

the next step is to find a way of formally expressing this

strategy.

3

.

Formalization of the Strategy

First we need to identify the objects and their proper-

ties. To do this we look one more time at the informal part:

Find all stored members that satisfy condition B. It is one

of the advantages of the English language that an object is

always represented by a noun, while adjectives describe the

properties of an object. In our simple example this gives us

right away 'member' as the object and 'condition B' as the

required property. Next we have to identify the operation

performed on the object which is not difficult either since

action is described by verbs. In the discussed exam.ple, 'find'

is the one looked for. Given the objects, properties, and the

47

comparand conparator indication storage

initially
2 n

/\ /IOO 0060 ooo
AC ABCD CDE

set corrparand to B
and take first tree
from storage

B

/\
o o

A C

T_...T
o2 Ho

//W /w
o o o o ooo
ABCD CDE

check for condition B

A C

T„ . . . T
o2 no

//W /W
o o o o ooo
ABCD CDE

since no match
get next tree
from storage

B
o*-

//w
o o o o

ABCD

..T
,n

ooo
CDE

check for condition B B T2

o o o o

ABCD

,n

CDE

since match
set indication

B

//w
o o o o

ABCD

^n

ooo
CDE

reset indication and
get next tree
fron storage

T
.n

/l\

CDE
since no match get next
tree B
since last tree halt

Figure III. 2. An Informal Strategy to Attack the
Design Problem

48

operations we may perforin on them, we now can describe the

sequence of single steps necessary to 'Find all stored members

that satisfy condition B' by the relational diagram shown in

Figure III. 3.

Given this design, we could continue and specify the

interface of each box presented in Figure III. 3. To complete

the formalization part this would, indeed, be necessary. But

we then would also find ourselves right in the middle of the

implementation which is not what we want at this time. We

therefore stop here short of coming up with a real formaliza-

tion. The general idea about the possibilities to start

abstracting the resource however should be a little more obvious

by now.

rCOMPARATOR
FIND MEMBER

initialize

COMPARAND

Figure III. 3. Relational Diagram of the Formalized Strategy

49

B. BASIC DATABASE PRINCIPLES

Before we can start specifying the database resource we

need some understanding of the fundamental principles every

database, in general, is built upon. Although over the recent

years there were various approaches in this area to make data-

base work more efficiently, such as the introduction of the

database machine (also known as 'backend'), or the continuing

research on the multi-backend database headed by Professor Hsiao

at the Naval Postgraduate School, we consider our database as

an integrated part of the abstract machine built by extending

the present AM. So, in order to formulate a useful abstraction

we have to keep it simple and therefore, are interested only

in the conventional, single user type of database.

A database is in fact nothing more than an elegant combina-

tion of several file processing systems under the control of

the DBMS (Figure III. 4).

file
application

program A

reports

tile
application

program Z

reports

Figure III. 4a. Traditional File Processing Approach

50

<— >

DBMS

application

program A

reports

application

program Z

reports

Figure III. 4b. Database Processing Approach

For a general view of a database structure we refer to the

architectural description presented by Deen [Ref. 13]. It

is always a major question how to define and treat data that

has to be processed by a machine. In the case of a database

there are as many as five distinct levels data can be viewed

from, namely, in a bottom-up fashion, the

physical level

storage level

global level

local level

user level

The meaning of these levels (Figure III. 5) is easier to under-

stand if we start with the global level which represents the

center part. This level refers to the overall logical descrip-

tion of the entire database without considering its storage

representation. It shows the logical relationship among the

51

application

program

local level

(external view)

global level

(conceptual view)

storage level

physical

level

terminal

view

user

covered by DBMS

Figure III. 5. Architecture of a Database: The Five
Levels for Viewing Data

objects of the database and gives the conceptual view of the

system.

The local level provides us with a subset of the database

described at the global level. It was introduced with the

intention to save the application programmer the inconvenience

of invoking the whole global scheme while he usually is only

interested in a few specific data items, since his need is

local and his view is partial. So a subset is the application

programmer's view of the database. It is a logical description

52

of the part in which he is interested, and therefore represents

the external view of the system.

How the data should be organized for storage in the physi-

cal device is specified at the storage level which consists of

entries for overflows, physical block sizes, and data placement

techniques. Access paths can also be specified here.

Whereas global and local level are logical descriptions, the

physical level is the physical database itself. The database

is stored on physical devices in conformity v^ith the specifica-

tion of the particular method applied at the storage level,

where the purpose of this method is to optimize the overall

performance of the database whose logical description is given

at the global level. The fifth level is the view of the data-

base as seen by the end user from a remote terminal using a

special, high level query language.

Since the view of data at the user level as well as the

physical level are not of particular interest for our research,

we shall exclude it from subsequent discussions, concentrating

only on the application program, the storage, and the concep-

tual (global) and external (local) view. The application pro-

gram is stored permanently and is always available to the user.

It is usually written once, or maybe a few times, should the

database description be changed, and can be invoked by special

commands. To manipulate data in the database by the applica-

tion program a sublanguage, the so-called query or data manipu-

lation language (DML) is needed, one for each host language.

53

The DHL acts as an interface language with the database which

enables the application programmer to "navigate" through the

database with a search strategy defined by the logical rela-

tionships of his data at the local level. An application

program containing DML statements has to be compiled either by

an extended host language compiler or by a special DML proces-

sor followed by a host language compiler.

In contrast to a typical compiler however, this device, the

first of three major software pieces, also known as query

processor, does not generate machine language but rather a

sequence of commands that are passed to other parts of the

database management system. The query processor needs to know

about the structure of the database, so it can interpret special

terms in the context of the particular system. This information

about the database may already be built into the query processor

itself.

The output of the query processor is fed into the database

manager (Figure III. 6), where it is translated into terms the

third software component in our simplified database blockdiagram,

the file manager, can understand, which means, into operations

on files rather than on the more abstract data structures of

the database description (global level). The file manager may

be the general purpose file system provided by the underlying

operating system (OS) , or it may be a specialized file system

that knows about the particular way in which the data is stored

in the database.

54

application

database

model

<:—

>

application

program

query

processor

database

manager

file

manager

physical

database

DBMS Interface

abstract
level

machine

y depen-
dent

Hardware Interface

Figure III. 6. Simplified Block Diagram of a
Database System

The overall software that permits the use or modification

of the data stored is a DBMS which basically covers all the

software components we are mostly interested in. So this is

the point in the system where the abstract database resource

comes in.

55

C. THE ABSTRACT DATABASE RESOURCE

The AM database resource replaces two of the items shown

in Figure III. 6, namely the, database manager and the file

manager. Figure III. 7a shows the block diagram for a database

system using A^4, while Figure III. 7b presents a general view

of the AM arrangement within the database system operation.

application

database

model

< >

application

program

5'

query

processor

1 T

AM

i i

\ r

physical

database

DBMS Interface

AM Interface

Hardware
Interface

Figure III. 7a. Block Diagram of Database on
AT-l Resource

56

Appl.

Progr.

DBMS \

1

1
1

OS On-line

I/O

raw

< >

data

Storage

Device

Figure III. 7b, Conventional Database System Operation
(Compare Hsiao [Ref. 14])

So AM takes over right at the boundary where the system changes

from working on a more abstract basis to an operation depending

on the particular machine applied. Since AM does not include

the query processor, it can not be considered as a complete

replacement of the DBMS but instead covers only about two-

thirds of the functions carried out by the DBMS before (Figure

III. 7b). We further recognize that we did not mention another

specialized language, the data definition language (DDL),

which in conventional systems serves as the tool to describe

the entire database once the conceptual scheme is specified.

However, to keep it as simple and clear as possible we do not

want to introduce one m.ore high level language, and therefore

prefer to let this job be done by a special application pro-

gram, using the query processor as mediator. Since installing

the database is a one time matter this restriction seems feasible

57

AM's database primitives are more low level and cover less

2
aspects than, for example, the CODASYL model. But they con-

tain all the fundamental features for creating the database,

for updating a given value, for inserting new elements into

the database, and for retrieving special data. These operations

are considered appropriate for this abstract level, and will be

discussed in a later chapter.

In a similar way as for the conventional model, the database

manager as the AM interface, which in fact is just a collection

of routines, receives as its input the processed query primi-

tives in a still machine independent form. This, however, is

the only kind of input the database manager accepts because,

since the former DDL entries are now handled by a special

application program, there is no need for the manager to have

a second input line. It further should be noticed that the

security aspect, which means permitting access to certain infor-

mation stored in the database to authorized persons only, as a

task frequently carried out by the manager, has not been taken

into account. This step can be justified with the definition

of our database as a single user system. Thus, the general idea

is to model the database resource 'on top' of the existing AM

(version 2.0) by abandoning all of the usually required high

level languages like DML and DDL, in order to level the re-

sources with the AM operations, which is the major step for

2
Conference on Data Systems Languages

58

eliminating the semantic gap. But in contrast to the display

resource defined by Hunter, AM is not entirely able to oper-

ate on the machine independent parts created by a conventional

database system, as long as a separate DDL input is involved.

When dealing with the physical resource the question to be

asked first is what purpose it is supposed to fulfill. From

the programmer's point of view the database should enable him

to

:

create objects, characterized by particular properties;

connect the objects in a logical way to a file;

store the objects without consideration of the physical
storage method;

operate on any of the stored objects in an uncomplicated
manner.

In addition to the standard file system where the basic

operations 'open', 'close', 'read', and 'write' will do, a

database must also permit operations for retrieving a distinct

object from the storage, modifying it or checking if a particu-

lar object is stored at all. The details will be described in

the next chapter, but in general, the database represents the

state of all the data stored as files and can be considered as

'just another' resource for AM.

As mentioned before, the programmer has to start his work

with the creation of the logical concept tailored for the very

special kind of database he intends to build. By this logical

design, or model, he copies that certain portion of the real

world which describes his view of selected activities best.

59

But as with every model, its capacity is limited, not all

aspects can be covered. Thus, a careful selection of those

portions which allow the required logical operations is neces-

sary. The tool for compressing the parts of the real world in

such a way that they can be stored within the database is the

technique of Aggregation by forming a concept via abstracting

a relationship between other concepts, called components, and

Generalization by forming a concept via abstracting a class of

other concepts, called categories. These techniques will be

discussed in the next chapter.

Due to the compression however, some questions now become

unanswerable. It is the task of the database designer to make

sure that those questions which can no longer be answered are

of the kind that never will be asked.

The standard primitives in the real world are the objects

and certain properties, where objects as already stated, can

be represented by nouns while properties can be considered

as adjectives that characterize the objects. We will stick to

this notation concerning the primitives throughout this paper

because their meaning is more evident and they represent the

most abstract level. This is one of the major differences to

a conventional database where widely a different terminology

is used. The reason for this is that in a database we actually

can not work with the real world primitives since a model is

not the real world itself. But instead we are working with

representations of these primitives. So whenver a transaction

60

from the real world into the conceptual world takes place, the

notation is changed to indicate this step. In a conventional

design the objects are represented by the so-called entities .

which are, in contrast to their physical implementation, still

unrestricted by the constraints of the computer. Properties,

in a similar way, are represented by so-called attributes which

serve as a description for the entities and, while properties

are characteristics of an object, attributes are representations

of those characteristics. Thus, attributes are the character-

istics of the data types (objects) themselves and, in fact,

every entity has certain named attributes.

But as stated above, we do not follow this terminological

excursion for the sake of staying as abstract and representa-

tion independent as possible. The intention finally, is to

keep the structure simple, with emphasis on the permissible

operations and to prevent the programmer from leaving the

path of unambiguity.

In AM, database objects are abstract data types. Concep-

tually, database operation is accomplished in the following

way. Objects are initially brought in from the disk and stored

in main memory. To manipulate an object, it is first fetched

from its memory location. It is then used as an operand in

some database operation, and the resultant object is stored

back into memory. At any instance, the memory may contain

several objects, but the terminal is directed to view only

some selected object (s) in accordance with the operation just

61

being performed. When these operations finally are completed,

the objects temporarily residing in main memory are shifted

back onto the disk under control of the operating system,

which is not to be discussed here.

62

IV. SPECIFICATION METHODOLOGY

Because our database is considered as an extension of the

existing AM we continue the work originated by Yurchak [Ref.

2] using essentially the same specification language which will

be described later in this chapter. However, before we proceed

with this, first some understanding is required about the ap-

proach we took in adding the database to AM. The purpose of

the next section is therefore to make the reader familiar with

the special methodology applied in order to design this resource,

and the chronological steps that were done until finally the

specification could be developed.

A. THE FUNDAMENTAL STRUCTURES

To define the operations that legally can be performed on

the abstract data types for our database we need some tools to

describe our intentions and also to preserve the necessary level

of abstraction. Since the complexity of a database is not

easily understood, a data model usually is formed as the simpli-

fied representation of a particular aspect of reality. In doing

so, the questions that arise next are: what are the elements

our model will be based on, what actually is it that we would

like to represent in a database, or what are the specific as-

pects of the real world we are mostly interested in? Without

claiming to be absolutely correct in the philosophical view of

63

things, the point to begin with is the fundamental structure,

known as the primitives in the real world.

The first phenomenon here is the object, which may be a

thing, a person, an event, an instruction or, in general, some-

thing solid that can be seen or touched. When objects can be

put together under a common but more generalized notation,

they may form an object class. But it must be mentioned that

grouping distinct objects together is only achievable by ignor-

ing their differences at the price of losing some specific

information as a concession to the generalization.

The characteristic qualities owned by an object are its

properties. For the above given examples, it might be the size

of a thing, the name of a person, the date of an event, or the

statement contained in an instruction. All the possible

instances of a property again can be grouped together into a

set defining the domain of all the values this property legally

may take, which therefore will be called 'valueset' in our

specification. This domain represents not just a collection of

numbers or characters but instead has to be considered as the

set of all values a given property can have. For example, for

the object 'person' with the property 'name' the corresponding

valueset would be the collection of all the names that might

be found among people on earth.

An example of how objects and properties are related to

each other is given in Figure IV. 1, which is based on concept

developed by Kroenke [Ref. 15:p. 207].

64

object
class s object.

[

property
name.

property
naine^

property
naine^

•

•

• • •

1 94 points

John 15 years
,

90 points;

•

•

•

•

• 1 37 points

' 61 points

1 . 1

1

*
1

•

1

'

property-] property„ property _

property
name

X

property
X

valueset of property..

instance value

Figure IV.

1

Example of an Instance Value as the
Intersection Between an Object and
a Valueset

Following this approach we can view the abstract model as con-

sisting of objects and selected properties related to them,

where each single property is composed of a certain nam>e and a

specific value from the predefined domain. Although one

property may take different values, at any instance it can be

considered as a pair containing a single name and a single

value. This will be discussed in more detail in Section B of

this chapter. So in short, we can write as follows:

65

object . (pair., ,pair2 / . . . ,pair)

The basic operations performed on our simple database are:

create

insert

modify

retrieve

test for membership

where briefly described:

create--installs a new database;

insert--adds a new object to the database;

modify--changes a certain object by altering one of its
properties

;

retrieve--retrieves an object identified by its particular
properties from the database;

test for membership--returns a boolean value depending on
the fact that a particular object does or does not
belong to the database.

For futher information the reader is directed to the specifica-

tion part of this thesis where the entire operations are defined

in much more detail.

As already indicated in the previous chapter, we adopt the

following view: whenever talking about objects and their

properties we actually deal with primitives of the real world

which are neither easy to handle nor can they be stored in a

machine. To be more precise, in constructing a model we only

work with a representation of the objects and properties but

not with the primitives themselves. In doing so, the portion

66

of the real world our model tries to catch becomes manageable.

For example, although we can not put the object STUDENT into

a database, it is no problem to store the characterstring

'STUDENT' as a conceptual representation of this object. The

same is true for properties. Since there is no way to store,

for example, 15 YEARS, we instead extract the essential infor-

mation ('15' in this case) which is more convenient.

Furthermore, there are some restrictions to be taken into

consideration. For instance, the programmer should not be

allowed to insert data that does not belong to the valueset of

the specified property, nor modify a non present value. Such

cases have to be covered by a special error handling routine.

B. DEFINING OBJECTS AND THEIR PROPERTIES

One approach to defining an object in terms of mathematical

notation can be found in Hsiao [Ref. 14 :p. 67]. Although Hsiao

uses a different terminology, the proposed concept is as

simple as it is clear:

Let A be a set of 'attributes' and V be a set of 'values.'
Then a 'record' R is a subset of the Cartesian product
A X V in which each attribute has one and only one value.
R can therefore be considered as a set of ordered pairs,
or in short notation,

R =
[(attribute , value) -,,..., (attribute , value)] .

The meaning of this equation is evident, however it does not

necessarily ensure that a certain value v/ill only be attached

to an attribute for which it is explicitly defined in the

corresponding domain. Thus, because our methodology is supposed

to be strictly formal, the given equation can not simply be

67

translated by just changing terms. But we can adopt the basic

idea

.

The technique we apply must prevent us from mistakenly

combining terms that are not defined for each other, and the

way we described our properties supports this. Since a property

is composed of a pair containing its name and the appropriate

set of values which specifies all the legal values for this

particular property, only combinations between members of this

pair are possible. At each instance such a property identified

by a certain name, may take any single value from the corres-

ponding domain, thus representing one specific 'snapshot'

lying within the range of feasible combinations. The following

example illustrates our intentions.

property 1 :

name: 'age'

set of values (domain): ' 10
'

,
'
11

' ,
' 12 '

,
' 13 '

,
' 14 '

,

'15'
.

property 2 :

name: 'city'

set of values (domain): 'Monterey', 'San Diego',

'Los Angeles', 'San Jose'.

Legal combinations representing different instances of the

given properties would be:

'age' , '11'

'age' ,
' 14 '

'city' , 'Monterey'

' city' , ' San Diego'

68

however, combinations like:

'age', 'Los Angeles'

or 'city' ,
'
11

'

are not possible.

Thus, we have to attack the problem in two successive steps

We start with a particular property name N. out of the set of

all specified names N and with V. as the corresponding value-

set out of the set of given valuesets V. We then can define

a property in a similar way as described above as the Cartesian

product N- xV. where i>=l.

This ensures that a property won't have other values than

those explicitly stated in its domain, where at any instance

each property name has one and only one corresponding value.

Having generally defined the property P = N. XV., i>=l, we

now can easily describe an object. as a sequence of one or more

property instances P'

= (P'l P'm'-

Properties by themselves do not make much sense in a database,

since it is the object we are interested in. But on the other

hand, objects are made out of distinct property instances, and

so both the object and its describing property instances repre-

sent the prim.itives in our database. Following a top-down or

'from the simple towards the more complex' strategy in

developing a specification for the abstract database, the

procedure of creating an object is illustrated in the next

example.

69

property name valueset property ' snapshot

domain of
property-.

N-i X V-, domain of

p, p', = (N^,v.:

Vm

Np X V, domain of
property^

^2 ^'2 = <N2'^j

V
n

N X V, domain of
z property

V
P

P P' = (N ,V,)

z z z k

An instance of an object can then be described by a sequence

of properties P' which themselves contain a name and a particu-

lar value, or in other words, it represents several 'snapshots'

of the properties P. The previously given description of an

object should be clear by now:

Or = 'P'l'P'2 P'm'-

A property name will be mapped together with any of the values

assigned to the domain of the corresponding property, but will

be restricted to only one value at a time when defining a

certain object, although a single property name can take differ-

ent values for different objects.

70

This probably becomes more obvious when looking at a

graphical example, following in some sense the approach to a

formal development for data structured in accordance with the

different database models given by Hull [Ref. 16:pp. 518-528].

Notation: Let N be the distinguished set of property names

and let V be a set of valuesets such that N n V = (no common

elements)

.

Definition: Then P is the set of all properties, where F

maps to each subset P. of P a property name N. and a valueset

V. such that the following conditions apply (Figure IV. 2)

:

N (set of property names)

P (set of
properties)

Figure IV. 2. Creation of Properties

71

F(N^,V^)— >P^;

g: P^— >Vj;

h: P.— >N . ;

F(g(P^) ,h(P^)) = P^;

Restricting these mappings in such a way that values of a cer-

tain property can only be transferred from the valueset (domain)

which is defined for this property type, properties consisting

of different name/value pairs can be created.

Applying d = <P,F> then gives us the tool to describe the

first part of the primitives, the properties. Next we need to

define the remaining part, the objects. To achieve this, let

be a set of objects, where I maps certain pairs (N. ,V.) t P.

,

J / Jr' t' 1 IX 1

for l< =i,x, to elements of such that I(N.,) 7^ I(N.,) for

every two N.,N. belonging to the same object. Then s = <<P,F>,I^

= <d,I> can be used to describe any object by applying I

one or more times to different (N.,V.) 6 P.. The following
1 IX 1 ^

conditions are true for this mapping (Figure IV. 3)

:

^(^1 Pu^ = I[(N.,V..) (N^,V^j^)]->0^;

1: 0^->[P.,...P^ = ((N.^V.^) (\'V^)^'-
1(1(0^)) = 0^;

The restrictions added are indeed necessary in order to pre-

vent illegal operations on the sets, which otherwise would be

possible. Both methods discussed above lead to the same re-

sult, and it was the goal of this section to give the reader

an understanding of our strategy in defining objects and their

properties. Although this strategy may appear somewhat

72

(set of objects] P (set of properties)

Figure IV. 3. Creation of Objects

complex, it represents a serious attempt to handle the data-

base primitives in a consistent way while staying as formal as

possible. And before continuing with the next section which

deals with the creation of object classes, a final note has to

be attached: To distinguish between different objects it is

necessary to include at least one name/value pair that uniquely

identifies each object. This identifier is called the 'key.'

If there is no such key available then there might be the case

where it is impossible to distinguish one object from another.

Objects that are structured in a similar way, which means

they are defined by the same property names appearing in the

same order, can be grouped together to form a class. Such a

class may then be identified by the kind of its property names

73

and the order they are arranged in. However, this is a tedi-

ous method. It is therefore more realistic to introduce a

classname as identifier to distinguish between different classes

In either case, the kind of identifier is considered to be

an implementation issue and will be ignored at this point.

C. OBJECTCLASSES

A convenient way to handle a large number of objects is by

grouping them together. This can be done with all objects that

are related to each other in a logical sense. These sorted

objects then form a class or subclass of objects, where each

class has its own characteristics that distinguish it from

another. Since objects are composed of several name/value

pairs, the presence of those pairs and the order in which they

appear is the criterion for associating any given object with

a particular class. A graphical example of a subclass is pre-

sented in Figure IV. 4. The subclass can be considered as a

two-dimensional scheme with the objects arranged in horizontal

order and the properties as different columns. From this repre-

sentation it becomes obvious that, if a certain property is

not contained in the subclass, none of the objects of that sub-

class can have this property at any instance. In mathematical

notation this could be expressed as:

(object^ ^subclass)A(pair eobject) --> (pair tsubclass)

where pair represents an instance of property containing
^ z

name^ and one single value from the corresponding domain

defined for property .

74

property-, propertym

object
1

object
n

instance,

,

instance,
Im

•

•

•
.

•

•

instance ,

nl
instance

nm

Figure IV. 4. Objects Forming a Subclass

In the same way that objects can be grouped together to form a

subclass, several subclasses again can be arranged to form an

objectclass. Both are achieved by means of 'generalization,'

a technique discussed in the next section.

An objectclass can be considered as a three-dimensional

scheme consisting of 'layers' of subclasses as shown in Figure

IV. 4. To create this figure, turn the subclass in such a way

that it fits into the horizontal plane, and then install each

on top of the others. Using this method, the arrangem.ent be-

comes more evident (Figure IV. 5). So a subclass equals a cer-

tain level of this block whose shape depends on the number of

properties, objects, and subclasses being applied. The entirety

of all levels or subclasses forms the objectclass. Objects

which do not belong to one subclass but have to be present

because they are contained in another, are considered as just

being left blank in all the subclasses in which they are not

represented.

75

object.

object
n

subclass

subclass

property
-L

property^

Figure IV. 5. Subclasses Forming an Objectclass

If a certain property is not containted in the objectclass,

none of the objects belonging to that class can have this

property at any instance. In raathematical notation this can

be expressed as:

(pair ^object)n(object esubclass)^{suLclass eobjectclass)

> (pair, -^objectclass)

v/here, again pair represents an instance of property con-

taining name and a single value from the corresponding domain

of property . So in searching for a particular name/value

pair, first the objectclass can be checked for the matching

property name, then if positive, the subclasses have to be

76

checked, and finally the object that responds to the require-

ments will be localized. By this means a search can be limited

to those objects most likely to contain the requested name/

value pair.

1. Generalization

Generalization is defined as "
. . .an abstraction

which enables a class of individual objects to be thought of

generically as a single named object" [Ref. 17:p. 107]. Re-

placing the term 'named object' by the new term 'subclass' this

technique provides a way for conveniently describing how sub-

classes and objectclasses can be constructed. This is true

because, on the next higher level, subclasses themselves by

abstraction build a generalized new 'object,' too, the object-

class (Figure IV. 6a).

animals

dog cat blue black

bird

(ob jectclass^

(subclasses)

(objects)

Figure IV. 6a. An Example of Generalization

By generalization, which can be considered as a bottom-up

technique, it is possible to create the abstraction necessary

for the abstract database (Figure IV. 6b)

.

77

object

class

Figure IV. 6b. Creating a Class from Objects by Generalizatioi,

This bottom-up approach, if all the objects belonging to one

class are included, must then logically be reversible in such

a way that a given class would lead to every single object being

defined by that class. For example, the class 'mammals'

naturally contains also the object 'horse,' and horses belong

to the class of mammals.

2 . Aggregation

In order to define the instance properties of an

object, those properties must be determined for every object.

This can be achieved by the technique of 'aggregation' by which

different name/value pairs are grouped together so that they

can be used to describe an object (Figure IV. 7).

name/value pair-,

name/value pair„

aggregation object

name/value pair

Figure IV. 7. Creating an Object from 'pairs' by Aggregation

78

Although this method looks like a refinement of the object,

aggregation in fact works the opposite way (bottom-up) and

cannot be treated as an inversion of the generalization.

Furthermore, aggregation is not automatically reversible,

which means an object may have certain name/value pairs, how-

ever these pairs do not necessarily define this specific ob-

ject in an unique way. For example, although a person can be

described by the name/value pair (
' age '

,
'
10

') , this particular

pair need not necessarily refer to a person. So in contrast

to the generalization, where an exhaustive installation of

objects belonging to one class would guarantee reversibility,

with aggregation this depends on the way an object is viewed.

Using the method of generalization and aggregation we are

able to draw a picture of the general structure of the data-

base (Figure IV. 8). This drawing also clearly demonstrates

that each instance property of any object belonging to a cer-

tain class, must itself belong to that class:

[((name/value pair) tobject) ^subclass] tobjectclass

D. THE SPECIFICATION LANGUAGE

1 . Grammar

First developed by Yurchak (Ref. 2] and in a few parts

modified by Hunter [Ref. 3], the grammar used for the specifi-

cation language will be left unchanged to preserve the meaning

of 'Ml as the machine as originally designed. The grammar for

the specification language as found in Appendix A is exactly

79

objectclass

generalization

aggregation

. object-, — object

name/value pairs

subclass

object- . . .object

name/value pairs

Figure IV. 8. General Structure of the Database

the same as used by Hunter. The following description of the

grammar and, in the next section, the preprocessor, represents

an extract of Hunter's respectively Yurchak's work. It was

inserted to give the reader some understanding of the under-

lying fundamentals.

The selected grammar is similar to examples found in the

literature, but the specification language includes some features

usually reserved to programming languages. A specification

with modules called 'spec' is constructed first using this

language while by means of the 'extension' operator it is

possible to combine the specs in a hierarchical order. Each

spec may introduce zero or more new 'sorts,' 'operators' and/

or 'axioms.' A 'sort' can be considered as a data type and

forms an object set from which the operands are selected for

the operators. The elements in a sort are created from the

listed 'operations.' Whenever feasible, one or more constants

are declared in the beginning to provide a basis for other

80

elements. For example, the constant zeronat () would be such a

basis for generating other elements in spec natural.

Sorts introduced in a spec may also be added to an

existing spec through 'extension' of the spec(s) that will be

taken as the basis, or they may form the primitives for a new

'branch' of the hierarchy. Extension provides the only means

of relating the sorts and operators from different specs so

that the newly declarated operators refer to both the new sort

as well as to any sort from the extension.

Parameterized specifications are permitted but their

use is minimized, as their properties are not- well understood.

Spec string is one representative of this type of specification,

The semantics and the overall structure of the specifi-

cation must obey certain rules. All symbols must be unique.

No symbol may be used unless it has first appeared as the name

of a spec, in a sort definition, or to the left of a colon in

an operator declaration. Following this rule guarantees that

at no time the properties of the object inferred by the name

are ambiguous. Thus, the structure of the specification is

much like a Pascal program, but more restrictive. In short,

there are no self referential specs, and no use of a spec is

possible before it has been defined.

The specification language classifies all operators

into one of three categories: 'primitive,' 'derived,' and

' hidden.

'

'Primitive' operators are those which must be imple-
mented to provide a full instantiation of the spec
and form the basis of the resource description.

Although not every primitive operation needs to be
directly implemented, the full functionality of each
primitive operator must be present. It is up to the
implementor whether he likes to exclude some of
the primitives or some of the operators described
by those primitives, as long as full functionality
remains available from either set of operators.

- 'Derived' operators are those which can be derived
from the primitives. The implementor may ignore
these operations because their function always can
be performed by the composition of primitives. Their
inclusion is merely a matter of convenience. An
example would be the derived operators 'or' and
'implies' in the spec boolean, whose functions are
entirely covered by the primitive operators 'not'
and ' and.

'

- 'Hidden' operators are those to which the programmer
has no access. They represent abstractions of the
machine required to express a certain semantics. It
might be convenient to have them in one case, while
in another they may be essential to the semantic
description. A typical example for a hidden operator
is the READFRONT operation in the specification of a
queue, as discussed in Chapter II. Here, this
operator is required to build meaningful axioms.

The 'if-then' and ' if-then-else ' constructs are used to build

conditional axioms. Their function follows the same princi-

ples as it does in other languages, for instance, in Pascal.

This means, when the evaluated 'boolean expression' is true,

the 'then' part of the statement applies, otherwise the 'else'

part. The 'boolean expression,' finally is defined as

expression meta_relop expression

where the term 'meta_relop' stands for the metalanguage sym-

bols "=" (equality relation) or "i=" (inequality relation),

and is used to decide about the truth of the given boolean

expression.

82

So in some sense, the underlying grammar for our speci-

fication language is similar to the ones used for compiler

compilers. In general, the application of a metalanguage

provides an important tool to formulate various aspects of the

developing design, since it can be used as a description for

another language. Simple technical terms, such as 'if,' 'then,'

'else' or 'endif' were introduced to make our intentions more

clear in both the grammar and specification. In order to dis-

tinguish between the metalanguage terminology and the regular

language, metanames always are boldface. A typical represen-

tative for such a metalanguage is the BNF (Backus-Naur Form)

which serves as a notation for describing the syntax of pro-

gramming languages using ordinary technical English, supplemented

by conventional mathematics.

2. The Macro Preprocessor

The main purpose of the macro preprocessor is to con-

dense the amount of language wherever repetitions would swell

the volume of specifications. This technique also improves

readability because those parts of a specification sharing a

common macro definition, can easily be identified. And since

it is based on the same principle, understanding one m.acro

definition is the starting point for understanding all of them.

As with the grammar, the idea of the preprocessor was

originally introduced by Yurchak when he designed AM (version

1.0) . This convenient technique has been continued by Hunter

in developing AM (version 2.0) , and it will also be used for

83

the abstract database. The fundamental theory remains un-

changed. In the following section a description of the pre-

processor is given as it was defined by Yurchak [Ref. 2] and

adopted by Hunter [Ref. 3] .

The basic form of a macro definition is

replace "text ..." with "other text ..."

Since the grammar of our specification language does not re-

quire quotes, they are used as delimiters for definition and

equivalence strings. A macro with arguments appears like

replace (A,B,...,Z) "text ..." with "other text . .
.'

where the formal parameters must be capital letters. An upper-

case letter always denotes a formal parameter to a macro,

since there are no uppercase letters allowed within the spec

itself. Thus, for the definition

replace (S)

"typeof (S) ;

"

with

" types :— >type;

atomofS: val-->S;

valofS: S— >val;

then the string

typeof (bool)

;

would be replaced by

typebool : -->type

;

atomofbool: val-->bool;

valofbool :bool-->val

;

84

wherever it appeared. The utility of the macro becomes obvious

when we look, for example, at the fetch and store operators,

used to retrieve and store values of any type from/in primary

memory. All AM data types map into a common sort called 'val,'

which is returned from or passed to memory "by these operators.

In order to avoid the need for describing big numbers of vir-

tually identical mapping functions, by means of macro defini-

tions it is possible to describe the first data type and then

just list all the others. This feature clearly simplifies the

specification task.

Macro definitions are also excellent for expressing

certain properties of operators such as commutativity , trans-

itivity, etc., which are used throughout a specification.

Instead of writing out the associated axioms repeatedly, which

could prove to be tedious the definition of macros with appro-

priate parameters permits a more readable and explicit expres-

sion of these properties. The following example gives an

illustration

:

equint: int,int— >bool;

If the arguments are equivalent, then the operation should re-

turn true () , otherwise false () . In order to express eqint

as the equivalence relation on objects of type int, three

axioms are needed

:

equint (i,i) = true () ;

equint (i,j) = equint (j,i)

;

implies (and (equint (i , j) , equint
(j , k)) , equint (i ,k)

)

= true ()

;

85

This by itself would be no reason for concern, but there can

be a variety of relations like this within a specification,

and for each single case these three axioms have to be re-

peated in some way. Macros provide the adequate solution,

since a macro defined like

replace (X, S)

"equivrel (X,S) ;

"

with

"for i in S

X (i , i) = true () ;

for i
,
j in S

X (i , j) = X (j , i) ;

for i
, j ,k in S

implies (and (X(i,j) ,X(j ,-k)) ,X(i,k)) = true () ;

"

enables us to use this definition as a template in which equint

just has to be inserted

equivrel (equint , int)

;

thereby transforming equint into an equivalence relation on

int in one step. Note that we are not required to explicitly

specify the type of free variables, since this can normally

be determined by context. We do so in the interest of clarity

because there can be no doubt for which type 'equint' is an

equivalence relation.

86

V. THE DESIGN

Having an operating AM processor available that already

includes the control and primitive data type operations as

well as the visual display device, the next step towards the

goal of developing a fully operational machine was to add a

database resource which could do a far better job than a

conventional file handling system. With the design of the

abstract database, now a model had to be created that was

appropriate for manipulating data in a way to effectively sup-

port the programmer's requirements. Because a database is a

complicated and complex subject, our intentions were to model

a resource which includes only the fundamental operations as

stated in the earlier chapters. This restriction had to be

introduced in order to keep the time constraints given for this

thesis. The complete specification for AM is presented in

Appendix B.

However, one note of caution has to be added like the one

originated by Hunter [Ref. 3J in his description of the bit-

mapped display system: despite our best efforts to be thorough

and rigorous, this AM specification may still contain some

errors. This is not only so because extending a program written

by others most likely supports this possibility, but first of

all because it is a rather difficult matter to ensure that there

is no ambiguity in the axioms. It also can not be guaranteed

that every portion of the spec is complete so that legal but

undesirable implementations would not be permitted.

A. THE DATABASE CONCEPT

In contrast to the graphics part of AM, the database once

installed by the application programmer is fairly limited to

manipulating data in the predefined way. Creativity in the

sense of trying and improving is only possible during the con-

ceptual phase which always preceeds the actual installation.

This means the programmer must have a clear concept about what

to describe and how to arrange it in the most suitable way

before the implementation finally can take place. A database

represents a number of data being arranged in accordance with

certain characteristics or particular relations of interest to

the programmer. The main question to be answered is how to

abstract a database -to its fundamentals so that a programmer

can work with it. Once the basic elements were identified as

'objects' and the 'properties' defining them, the next step

was to develop the set of functions controlling the database

that would support a natural way of thinking about the intended

operations. In order to remain consistent, even the 'property'

as the basic component of an object had further to be split

into the subparts ' property_id ' and 'valueset.'

This approach is certainly different from other methodolo-

gies because it required eleven separate specifications just

to formally define the database and. its abstract elements.

88

Each specification must be considered as a mandatory step on

which succeeding specs are built. And each spec contributes

in an important way to defining the abstract database resource

and therefore can not be omitted. This number of specifications

naturally caused some problems when translating every single

function, in many cases required only for mathematical reasons

of rigor and without practical usefulness for the programmer,

into logical sets of operations. Although these operations had

to be built in and are now available, it is anticipated that

the application programmer will rather restrict himself to the

more useful operations typical for database manipulations.

From the programmer's point of view, it is not of interest

to retrieve all the values defined for a certain property once

the domain has been fixed. He more likely wants to determine

the name/value pairs associated with a particular object or

find out whether one or more objects meet a given condition.

Due to the underlying method objects are structured this can

be achieved on the basis of list functions that will be dis-

cussed in some detail in the following sections. In general,

we adopt the idea that a database can be considered as a big

list. This approach was finally chosen because it facilitates

our effort to describe the principles of the abstract database.

A standard database has to be created first in the mind of '

a programmer, then drawn on a piece of paper and, eventually,

installed on the computer. This sequence represents a typical

top-down approach, starting with the overall database.

89

partitioning it into different classes and subclasses and,

finally, assigning objects to them. This approach keeps the

programmer at a very low level of abstraction, where the com-

puter can not provide much assistance. Adding, for example,

a new object would require us to first specify the particular

class to which it belongs. It would definitely ease the pro-

grammer's effort when he could work on a higher level of

abstraction by using the power of the computing resource to

insert such an additional object without caring about the

specific class it refers to. But although this approach has

some fascinating aspects it was not developed since object-

classes are characterized by the kind of their property names,

and thus have to be specified carefully. The probability of

erroneous entries seemed too high to adopt this concept for

our research.

As stated in Chapter III, we also abandon the introduction

of a data definition language (DDL) and a query language since,

due to their high level , a great deal of the intended abstrac-

tion would be taken away. This becomes quite obvious just by

the fact that there are meanwhile several, non-compatible

query languages established. Because our goal is to specify

one particular part of a database, namely the interface be-

tween the conceptual level and the physical level, we confine

our work to the fundamental principles and focus exclusively

on the essential aspects of the database. For the interested

reader it should however be mentioned that, once AM is completed.

90

there are plans for the near future to develop a high-level

language for AM, too, which would naturally ease the workload

of the programmer.

We now take a more detailed look at the issues and design

of both the data abstractions and resource abstractions.

B. ABSTRACT DATABASE DATA TYPES

In this section we develop the abstraction of the database

in detail along with all the data types needed to support it.

In addition, we discuss issues concerning the design and

examine how the specification captures the properties of the

abstraction.

One of the problems encountered while writing the specs

for the database was, that in contrast to the previous speci-

fications which mostly operate on single data types called

3
'atoms,' it became necessary to refer to the set theory which

enables us to deal with single atoms as well as with strings

of atoms. Since a database generally contains composed ele-

ments rather than simple atoms, the 'set' seemed to be the

right means to tackle this problem. However, a set does not

allow the same element to be represented more than once, which

would restrict the operations in an unintended way. We there-

fore preferred to adopt the characteristics of a 'list,' where

no similar limitations exist. This required the installation

of an additional spec list that permits the more complicated

3An 'atom' represents a problem solving abstraction and
is discussed in Chapter VI-

91

operations on strings. The list will be described in detail

in Sections C and D of this chapter. But first of all, we

consider the basic steps of how to abstract the database.

1. Property-Identification and Value

Each instance property of an object consists of a name/

value pair which from now on will be referred to as 'property-

value,' containing a particular property-identification ('pid')

and a single value ('val'). Spec property_id expresses the

properties of the 'pid' data type. A 'pid' can be a string of

characters that qualifies as identifying notation for a data-

base property. Different, 'pids' are combined to a set forming

the 'pidset' data type which can be considered as the descrip-

tion of the domain for all legal names properties may take.

Spec property_idset models this domain. The operation natur-

ally performed on this data type is creating such a set, start-

ing with an initial 'pid' and then extending it by repeated

application of the union operator with the option of using the

empty set as well as the universe of all sets.

The values associated with a particular property are

covered by spec value. This spec and the combination of its

data type 'val' to a set, the new data type 'valset,' whose

properties are described in spec valueset, are constructed in

exactly the same way as the specs for 'pid' and 'pidset.'

All values which may be meaningful in any context with the

determined property names are permitted. For example, for

the 'pid' age this could be the set of natural numbers from 1

92

J

to 100, while the 'pid' address might require a set of charac-

terstrings. The joint operations 'unpidset' or 'unvalset'

ensure that there are no redundancies in the same domain.

But it is the programmer's responsibility to create the size

and type of valuesets that fit his intentions best. In this

stage it would be possible to build a domain containing dif-

ferent types of data which, if carelessly applied later, could

lead to an erroneous result.

Both the 'pidset' and 'valset' data types provide a

disjoint operation, and a test for membership and equivalence

(relational operators) . Regarding the intersection and union

operations, provision has been made for associativity and

commutativity

.

2 . Property and Propertyvalue

In order to specify a property in its entirety we need

two parts: a 'pid' that describes the name of the property,

and a correspondd.ng 'valset' which determines the domain of all

the values this particular property can legally have. A

property is represented by sort 'prop' and is always constructed

from the ordered pair 'pid' and 'valset'

prop = (pid , valset)

.

Spec property lists this data type and the possible operations.

To reduce a property to one of its two fundamental

elements, the operators 'getid' and 'getvalset' have been

introduced. While 'getid' returns the property name ('pid')

93

getid: prop --> pid,

'getvalset' returns the domain ('valset') of the property

getvalset: prop --> valset.

These two operators can be considered as reversion of the

create operator 'crprop.' In combination with the empty value-

set a property may be created just be defining a certain name,

leaving the final determination of the corresponding valueset

unspecified for the moment.

Spec propertyset provides the data type for different

properties associated to a set and has a similar structure as

spec property_idset or spec valueset. But since every property

consists of the ordered pair 'pid' and 'valset^' by the

•getidset' operator all the 'pids' involved and specified as

'pidset' can be retrieved

getidset: propset --> pidset.

Defining the properties for the database in this way was the

result of an analytic process which led to the understanding

that a property indeed is composed of a single element iden-

tifying its type, and a set of values for this type. Since

the sequence is important, we can treat a property as an

ordered pair of single elements. But following this definition,

now a certain property does not make much sense for describing

an object, because it can not be used as a characteristic

criterion. For example,

crprop: ' grade
' ,

(

'

A
'

,
'

B
'

,
'

C
'

,
'

D
'

,
'

E
'

,
'

F
')
— > prop;

94

would result in the property [
'
grade

' ,

(
' A' ,

'

B
'

,
'

C
'

,
'

D
'

,
'

E
'

,
'
F'

)

;

where 'grade' equals the 'pid' and ('A','B','C','D','E','F')

the 'valset.' Would it be meaningful to describe any object

by this property? It certainly would not, because this is a

general statement about the property 'grade' containing all the

defined values a grade can consist of. A specific object, how-

ever, should only contain a specific value that is character-

istic for it. In Chapter IV we called such a combination a

name/value pair or an instance property. Although we mentioned

this subject before, it is our concern to illustrate the basic

difference between a property and a particular propertyvaliae.

Sort 'pval' in spec propertyvalue defines the data type

to resolve the problem stated in the previous example. Opera-

tor 'crpval' enables us to create the required instance of a

property that itself serves as the basis for describing any

specific object. Referring to the above given example

crpval: 'grade', 'A' — > pval

would now result in the propertyvalue "
'
grade

'

,
'

A'
" which then

can be used for any object that would meet this condition.

Besides the relational operators for equality and membership,

as for all composed data types, there are operations available

which return either the first element of the ordered pair,

•getpid' retrieves the 'pid'

getpid: pval --> pid,-

or the second element which can be retrieved by the operator

' getval ' returning the corresponding value of data type 'pval'

95

getval : pval — > val.

Since objects usually are described by more than just

one propertyvalue, spec propertyvalueset was introduced. With

its data type 'pvalset' it is possible to combine different

propertyvalues into a set. This is the final step on our way

towards defining an object which will be discussed next. In

order to determine the different properties represented in

such a propertyvalueset, the property names, or 'pids,' are

of major interest. They can be retrieved by the operator

'getpidset' which accepts any 'pvalset' as input and returns

the matching ' pidset

'

getpidset: pvalset --> pidset.

Due to the fact that the data type 'pval' consists

of the ordered pair 'pid' and 'val,-' and that the combination

of distinguished 'pvals' forms a 'pvalset,' this new data type

is also composed of a set of ordered pairs itself, namely the

set of the ordered pairs 'pid' and 'val.' It therefore was

necessary to add two distinguished membership operations, one

for testing whether a given propertyvalue is contained in a

particular set of propertyvalues

mempvalset: pval, pvalset --> bool

and the other for checking if a given propertyvalueset belongs

to a certain propertyset which includes information about the

'pids' involved as well as the domains for the corresponding

values

96

mempset: pvalset ,propset — > bool.

Again, as for all sets, the union operator 'unpvalset'

ensures that there are no redundancies, while the disjoint

operator 'intpvalset' would retrieve propertyvalues contained

in both sets to be checked. Furthermore, the standard. opera-

tions for associativity and commutativity have been included

on principle in this more mathematical part of the specification,

3 . Object and Objectclass

As mentioned before, the essential element of the data-

base resource is the object. Each of the previously discussed

specifications represents an indispensable portion that finally

enables us to express the data type 'obj' by means of these

more elementary data types. Its properties are specified in

spec object. An object can be considered just as a particular

set of propertyvalues, each containing a distinct 'pid' and a

'val'

obj = pvalset =
[(pid, val) ,,,.., (pid, val)] =

The function that initiates this operation is called 'crobj.'

The kind or number of 'pvals' defining an object is of no

interest for us at this point,- although it will be later. So,

theoretically, any combination of 'pvals' could' be chosen to

build up an object, even such containing the same 'pid' or

•pval' more than one time which actually would be meaningless.

But since the installation of a database is always preceded

by a rather precise concept, the grouping of different objects

97

into classes then should eliminate the possibility of an inci-

dently induced redundancy on 'pids.'

The reverse operation to creating an object is

' getopvalset ' which returns the entire 'pvalset' defining the

object

getopvalset: obj — > pvalset

while the operator 'getopidset' retrieves only the correspond-

ing set of ' pids

'

getopidset: obj --> pidset.

In general, the type of properties is considered more important

for structuring purposes, as this criterion forms a good basis

for hierarchically combining related objects to classes (compare

Chapter IV, Section C) . We therefore did not, as the reader

might have expected, introduce an analogous operation which

would return all the values of a given object, but instead pro-

vided the operator 'getoval' that only retrieves one single

value associated with one particular 'pid' of the object

getoval: obj, pid --> val

.

Provisions are also made for an equality operator 'eqobj' and

a membership operator 'haspval' which checks if a given ' pval

'

is contained in a certain object.

'Class' is the data type that represents a number of

objects that are related in some kind to each other. This type

has been discussed in some detail in Chapter IV. Its properties

98

are now specified in spec objectclass. If we want to insert

an object into a particular class, this can be done by apply-

ing the operator ' insob j
' which takes a class and an object

and returns a class now including the nev; object. We must,

however, ensure that only appropriate objects, which means,

with matching 'pids,' will be inserted. This problem is solved

by defining an operator for retrieving the 'pidset' of a class

(
'
getcpidset ') which takes a class as input and returns the

corresponding 'pidset'

getcpidset: class — > pidset.

Together with the above specified operator 'getcpidset' that

accepts an object as input and returns its 'pidset,' the

following axiom takes care of this

i,f eqpidset (getcpidset (o) , getcpidset (c)) = true (

)

then

insob j (c,o) = c

;

else insobj(c,o) = undef;

endif

;

by determining whether the 'pidsets' of the object to be in-

serted and of the class both are equal. If they are, then

the object can be added, if not, the operation becomes unde-

fined and the object can not be added.

A similar approach was taken with the operator 'delobj'

for the deletion of a selected object from a given class. It

had to be ensured that any attempt to delete from a class some-

thing not contained in it was discovered. To solve this

99

problem the membership operator 'memclass' used in the

axiom

if memclass(o,c) = trueO

then

delobj (o,c) = c;

else delobj (o,c) = undef;

endif

;

to first check if the selected object is contained in the given

class. This certainly is not a very efficient way of doing

the deletion, but it avoids 'blowing-up' the machine by an

operation that can not be handled.

The situation where a class is itself contained in

another can be managed by the relational operator 'subclass.'

This provision may be useful when the hierarchical structure

is of importance. In connection with the intersection opera-

tor 'intclass' the boolean value of this relation can easily

be determined:

if intclass (c-j ,Cp) = c,

then

subclass (c, ,c) = true ()

;

endif;

As in most of the cases the 'if-then' part of this axiom could

be reversed and the axiom would still be meaningful. Here it

becomes obvious that the decision, what axioms to include and

which to omit is a rather difficult matter and depends widely

on the view of the designer. But si.nce there is no sound

recipe for how to proceed, this condition may be a source for

100

potential errors not discovered while the specification is

written.

4 . Database

The last data type, 'db,' defined in spec database

represents the highest level and operates on all the data types

previously discussed. So, we have now reached our goal of

combining every single data type from 'pid' up to 'class.' As

the reader might have expected, in order to constrcut a data-

base one or more objectclasses must be available. This is a

mandatory prerequisite since it would not make much sense to

treat a couple of non-related objects like a database that

always represents a particularly structured arrangement of data,

Operator 'crdb' allows us to create a database; it takes a

'class' as its only argument and returns a database. A 'class'

can be extended to any required size by the union operator

defined in spec objectclass. This method not only avoids

meaningless redundancies but also ensures that each 'pid' con-

tained in one of the subordinated classes will be contained in

the database, too.

Since ' db ' is the data type of most interest for the

application programmer, all the fundamental database operations

have been provided in this specification. For example, ' getdb-

pidset' returns the set of ' pids ' comprised in the database,

which cannot be different from those of the corresponding

classes

getdbpidset: db — > pidset.

101

This is expressed by the following axioms:

getdbpidset (insclass (crdb (c]_)) ,02) =

unpidset (getcpidset (c,) ,getcpidset (c^))

;

which states that, if a new class c^ is inserted into a data-

base consisting of the class c-, , operator 'getdbpidset' would

return the set of 'pids' equal to the joint 'pidsets' of c-,

and c. as determined in the right hand part of the equation.

Operator 'retclass' enables us to retrieve a given class

from the database, object by object

retclass: db, class — > pvalset.

This function is more difficult to express in axiomatic terms

if and

(

and (

(getopvalset (o) = pvs),

(memclass (o, c) = trueO)

) ,

{memdb(c,d) = true ()

)

) = true (

)

then

intpvalset (retclass (d ,c)
,
pvs) = pvs

;

endif

;

Here three conditions need to be fulfilled to activate the

final statement. First, a given object o must have a particu-

lar 'pvalset' pvs, second, this object must be contained in a

certain class c which itself has to be a member of the data-

base d. Then the 'pvalset' pvs must also be contained in the

database. So the intersect operation of all the 'pvalsets'

102

of this class c when retrieved from the database, and the

particular 'pvalset' pvs must finally return precisely this

pvs, since it is the only one contained in both the class and

the object.

Provision for another operator has been made that re-

trieves an object whose 'pvalset' is matched by a given 'pval':

'retobj' accepts a database and a particular 'pval,' and

searches the database for objects being defined by this 'pval.'

Corresponding objects are then returned

retobj: db,pval --> ob j

.

A queue mechanism operating in accordance with the 'first-in,

first-out' principle manages the case should more than a single

object be retrieved. The axiom

if and

(

and (

haspval (pv,o)

,

memo lass (o , c)

) ,

memdb (c,d)

) = trueO

then

retobj (d,pv) = o;

endif;

states that, when an object o with a certain 'pval' pv is

contained in a class c which itself is contained in the data-

base d, then, when objects having this 'pval' are searched for

by operator 'retobj,' these objects will be retrieved. If

103

there is only one object meeting condition pv, it will be

presented as soon as it is discovered; otherwise a n\.imber of

objects will be put on the queue and can then be retrieved

object by object. Although this principle is simple, it

ensures that each object with matching conditions can be

determined and is available to the programmer at the end of

one search.

The operator 'modobj' allows for changing a 'pval' of

a given object, modifying it thereby. Three arguments are re-

quired: the database, the object itself and the new property-

value. The database could have been omitted as an argument,

but it guarantees that there actually is a certain structure

available. The hard part is to defect any case for which the

operation might not be defined, for example, if the given

object does not belong to the indicated database, or if the

replacing 'pval* is of a different type than the original

or its value not defined in the domain of the associated

property. To check whether all these premises are met, five

conditions had to be added that must be satisfied in order to

legally carry out the operation. The following axiom deals

with these problems:

if and

(

and (

and (

and (

memprop
(
pv , crprop

(
pd , vs)) ,

mempidset (pd,getidset (prs))

),

104

(getopidset (o) = getidset (prs)

)

) ,

memclass (o,c)

) ,

memdb(c,d)

) = trueO

then

modob j (d,o,pv) = d;

else modob j (d,o, pv) = unde;

endif

;

Going line by line through this axiom, it is stated that

1. the new 'pval' pv to replace the present one has to
be contained in the property created from the 'pid' pd
and the 'valset' vs , or in other words, since a 'pval'
consists of a certain 'pid' and a single 'val,' the
'pids' will be identical while the 'val' of pv is
contained in the corresponding 'valset';

2. 'pid' pd must be a member of 'propset' prs;

3. the ' pidset ' of object o to be modified must be
identical with the 'pidset' contained in 'propset' prs;

4. object o must be contained in class c;

5. class c must be a member of database d.

If all these conditions are met, ' modobj (d ,o
,
pv) ' is defined

and the operation can be executed; otherwise it would be

illegal and can not be carried out. In short, this axiom

ensures before the operator can be applied ;. that the new

propertyvalue may be inserted because the entered property_id

is actually present in the object to be modified, and the new

value is defined within the domain of the associated property.

Thus, one instance of this property will be replaced by another

instance also defined for the particular object.

105

The remaining operators for type ' db ' are similar to

the ones discussed for spec objectclass and are the relational

operator for membership 'memdb' and the operator 'insclass'

for the insertion of a class, respectively 'delclass' for its

deletion. As analogously described before, a class can only

be deleted if it is contained in the database; this is expressed

in the axiom

if memdb (c,d) = true (

)

then

delclass (d,c)" = d;

else delclass (d , c) = undef;

end if

;

If a given class is not contained in the database, it can not

be deleted and the operation is undefined. With the insertion

of a new class this is not quite as simple:

if and

(

or (

memdb (c -, ,- d) ,

memdb (c^ ,d)

) ,

eqpidset (getcpidset (c-.) ,getcpidset (c„))

) = true (

)

then

insclass (d , c,) = undef;

insclass (d , c^) = undef;

else if and

(

and (

memdb (c, ,d) ,

not (memdb (c„ ,d))

) ,

106

not (eqpidset (getcpidset (c,) ,getcpidset (c„))

)

) = trueO

then and)

(insclass (d, c„) = d)

,

(getdbpidset (d) = unpidset (getcpidset (c,)

,

getcpidset (c^)

)

);

endif

;

Here the axiom defines that if either one of two objectclasses

c, rC^ is already a part of the database d and both have the

same set of property_ids ' eqpidset (getcpidset (c,), getcpidset (c^)),

'

then there is no way of inserting any of these classes since

they are already represented. If one of the classes c, is part

of the database while the other (c^) is not and they do not have

the same set of property_ids , which means they must be differ-

ent then it would be a legal operation to insert the one not

yet contained. The property_idset of the database must then

be extended by the newly added 'pids'; thi.s is done by the

joint operator 'unpidset.'

These operations define spec database and thereby the

fundamental part of all the individual specifications required

4
for mathematically describing the database. The remaining

portion of Appendix B represents the transition towards corres-

ponding operations that finally can be translated into machine

instructions

.

4Algebraic semantics describes what has to be done rather
than how to do it.

107

C. SPEC PARAMETERIZATION

The characteristic properties of a list allow us to des-

cribe the essential database operations of retrieve, insert,

modify, and delete in a convenient way. Lists not only provide

a clearly structured method for treating strings of variable

length but also support recursive operations, which proves to

be very useful for searching the database. It is the purpose

of this section to show how these basic operations can be

managed by application of the list theory, while in the next

section we describe its usefulness for our particular data-

base design.

This, however, should not be seen as the attempt to narrow

the spectrum of possibilities for the implementor or to guide

his attention into one specific direction, since our methodology

focuses on representation independence. The only reason for

choosing this approach is that it provides an evident way to

express our intentions.

Since the contents of our database can be considered as

strings rather than as single atoms, it was necessary to make

provision for this by introducing the additional spec list with

data type 'elm.' This spec is a representative of the earlier

mentioned parameterized specifications. It was used to define

the special list operations including the recursions which

offer a convenient way to carry out searches. Spec list allows

the treatment of all previously described specif icati.ons as if

they were of type 'elm,' simply by using a combination of spec

108

i

list with each of the former specs. For example, by applica-

tion of the first discussed spec property_id using 'list

(property_id) ,
' now the new spec pidlist can be created which

enables us to treat the initial data type 'pid' as 'elm' and

the operator 'eqpid' as 'eqelm.' This procedure has the advan-

tage that we can stay within or continue with the logical

structure of AM specifications as they were developed by Yurchak

[Ref. 2] and Hunter [Ref. 3]. It furthermore is a contribution

to the clarity and simplicity of our work since we can adopt an

available technique.

The typical list operators are 'nullst' which returns an

empty list, 'firstelm' which returns the first element of a

given list, 'firstlst' which retrieves the first list of a

given list of lists, and 'restlst' which returns either the

remaining elements or lists of a given list, except the first

one. The meaning of these operators is expressed in several

axioms

firstelm (makelst (k)) = k;

restlst (makelst (k)) = nullst;

where 'makelst' is itself an operator which takes a single

element and returns a list containing this element as its

only member

makelst: elm — > list.

Should a given list be empty, so that there is no first

element or any rest, the application of these operators leads

to an undefined result by the corresponding axioms,

109

In contrast to 'makelst, ' the operator 'makenewlst ' re-

quires a list as an input and returns a list again. By this

operator it then is possible to express the operation 'firstlst'

in the following axiom:

firstlst (makenewlst (1)) = 1;

thus operator 'makenewlst' has an important function in order

to indisputably describe the meaning of operator 'firstlst.'

In fact, it sometimes is necessary to define an additional

operator just for the purpose of expressing an already

developed operation in an unamJoiguous way.

Operator 'catlst' allows us to concatenate two lists into

one and also serves as a significant tool for illustrating the

meaning of the previous operations. The following axioms give

an example:

firstelm (catlst (makelst (k) , 1)) = k;

firstlst (catlst (l-j^, I2)) = 1-,;

restlst (catlst (1,, I2))
= I2;

These are just a fev/ representative axioms dealing with the

fundamental list operations. Many more are required to actually

express our intentions. They can be found in Appendix B.

Again, we face the initially encountered problem of how to en-

sure that we did not miss any axiom of importance which possibly

could result in an unwanted operation. So there is indeed no

guarantee that our perception of the specified resource is

precisely what the specification describes.

110

Some other, not necessarily typical list operations also

had to be introduced for the particular purpose of handling

all the recently defined, database operations. Because these

operators are more complicated they will be discussed in some

detail in the following. Each of them requires searching the

database first before it can be applied or successfully ter-

minated. Consequently an iterating process was needed that

could do the job. Due to its simplicity the recursive ap-

proach was chosen, which in general requires a termination

condition and a certain pattern that reduces the overall prob-

lem to smaller, solvable subcases. So, what we actually

created was an archetype for each of the functions, containing

its syntax and semantics, where the recursive definit-ion can

be considered as the prototype (compare [Ref. 9])

.

Operator 'deist' is a function that accepts two lists as

an input and returns a list. The first list is the one to be

deleted from the list of lists entered as the second argument

e.g., delstld.) , (1^,1, ,1^)] ~> (1,1^) /*!• list */
'-•' a D c a c 1

Two conditions have to be met before this operator can legally

be applied: The list from which we delete must not be empty,

and the one being deleted must be contained in it, otherwise

'deist' becomes undefined. The axiom

Other approaches, like repeatedly applied function calls,
could also do the job.

Ill

if or (

eqlst (I2 ,nullst ())

,

not (memblst (1-, / 12 ^ ^

) = trueO

then

deist (l-,,l2) = undef;

else if eqlst(l^,firstlst (1^)) = falseO

then

makenewlst (catlst(firstlst(l2) ,delst(l, ,restlst(l))))

;

else makenewlst (restlst dp))

;

endif;

takes care of these cases. The next step then is to find the

particular list 1, which shall be erased. The only way to do

this is by testing list after list of 1^ for identity with 1,

.

If the one being examined (
' f irstlst (1„)

') is not identical

with the one to be deleted d-i) / it can not be thrown away but

instead has to be saved, and the operation must be repeated

with the rest of list 1^. This is achieved by the 'else-if part

of the axiom, until the identity is finally reached. By the

'else' part, only the rest of list 1^ is then concatenated to

the previous portions of 1, , while the list searched for will

be eliminated.

Example

:

if or (

eqlst[(l^, 1,^,1^) , ()] ,

not (memblst [(1,), (1 , 1, , 1)]b a b c

) = trueO

then

delst[(Ij^) , (1^,1^,1^)] = undef;

112

since this condition does not hold in this example, the

'else-if* part will be checked:

else if eqlst [(1,) , (1)] = falseO
ID a

then

makenewlst [catlst ((1), deist ((1,) , (1,, 1)))];a D o c
where 'deist' initializes the repeated application of the

operation. During the second run the 'else-if condition

becomes true

eqlst [(Ij^) , (Ij^)] = trueO

and the 'else' part therefore is activated

makenewlst (1);
c

this leads to the concatenation

catlst(l^,l^)

;

a c

which is the final result in this case.

This operation still retains the necessary leve]. of abstraction

since it would work for every data of type list. The structure

of the database, as described in the eleven specifications at

the begining of this chapter, supports the application of the

list theory. This issue will be discussed in the next section.

Operator 'getlst' takes a list 1, of lists and a particular

list I2 as input and returns the list corresponding to 1„

It is expressed in the axiom

if or (

eqlst (1-, ,nullst ()) ,

eqlst (l^/nullstO)

) = true (

)

then

getlst (1, , 1.,) = undef;

else if eqlst (firstlst (1-,), 1„) = true (

)

113

then

getlst (lj_,l2) = firstlst (restlst (1-j^)) ;

else if eqlst (firstlst (restlst (Ij^)) ,12) = true ()

then

getlst (1^,12) = firstlst (1^)

;

else getlst (restlst (restlst (1-,)) , I2) ;

endif

;

The meaning may not be obvious at the first glance, so we will

explain it. The underlying principle is that we consider a

list of this type as a combination of several pairs of lists.

Thus, entering a list of lists (1 ,,1 o ' "^bl ' "'"b2
^ ^^^ °"^ part

(1, ,) of such a pair shall result in retrieving the matching

second part of the corresponding pair from the listd -I'l^o'

1 'Ivo^ • Again, precaution has to be taken for cases where

this operation can not be performed. For example, when either

of the lists is empty, then 'getlst' becomes undefined. The

axiom is constructed in such a way that always a pair of lists

from the first list is checked against the second list which

itself represents only one half of a pair. Should the first

part of the list (
' f irstlst (1 , , 1 „ , 1, ^ , 1, „) '

) be identical with^ ala2blb2
the second list (Il-^-i) / then the matching part of the pair

(' firstlst (restlst (1 ,,1 ^ , 1, , , 1, „))
'

) will be returned as the
al a2 bl b2

result. Should the second part of such a pair ('firstlst

(restlstd -,,1 ^,1 ,1 .))') be identical with list (1 ,),

then the first part of the corresponding pair will be retrieved.

If no match occurs the 'else' condition applies, the recursion

is activated and the remaining pairs from the first list will

114

be checked against the second list. So in case 1„ was not

contained at all in 1,, list 1, will eventually become empty

and, since it is not possible to retrieve a part of a pair that

does not exist in the given environment, the operation must

become undefined at that time. This is exactly what will

happen by means of the termination condition for the recursion.

Example:

if or (

eqlst[(l^^,1^2'lbl'^b2^'()^'

eqlst[(l^^) , ()]

) = true (

)

then

getlst[(l^^,1^2'^bl'^b2-^'^^bl'^ = undef;

since this condition is not true, the 'else-if' part will be

checked:

else if eqlst[(l t) , (1, t)] = true (

)

^ al bl
which is not true either, so the next 'else-if' condition will

be checked

:

else if eqlst[(l o^'^^'^bl^-' ~ true (

)

since this- is false, the 'else' part is activated

else getlst [(1, , , 1, 2^ ' (^hl •] '

which initializes the repeated application of this operator.

In the second run, the first 'else-if' condition becomes true

else if eqlst [(Ij^-,) , (Ij^-^)] = true (

)

so the following statement will be executed:

then

getlst[(lj^^,.lj^2^,(lj^^)] = lj^2'

returning 1, ^ which is the list that corresponds with the

second argument 1, -, in the described example.

The next operator, 'sofirstlst' (set of first lists), takes a

list as input and returns a list or, more precisely, it requires

a list of lists and gives a set of lists back

115

sofirstlst[1^3.'la2'-^bl'^b2^ --> d^i^l^i)-

This special function was introduced to manage the operations

where a set of first lists shall be retrieved:

if Itnat (lenlst (1) , succnat (succnat (zeronat ()))) = true (

)

then

sof irstlst (1) = undef;

else if eqnat (lenlst (1) , succnat (succnat (zeronat ()))

)

= true (

)

then

sofirstlst (1) = firstlst(l);

else catlst(firstlst(l) , sofirstlst (re stlst (restlst(l)))) ;

endif

;

where the criterion for the operation to be defined is, that

the list must have at least two elements that themselves are

lists or lists of lists, which is stated in the 'if-then' part

of the axiom. This is so because it would not make sense to

apply 'sofirstlst' to anything else besides a list of lists.

The termination condition will be reached when the list has

been reduced to just two sublists ('else-if' part). In all

the other cases the first element of the first list ('firstlst

(f irstlst (1))
') wil]. be concatenated to the iterated operation

' sofirstlst ,' now applied to the remaining portion containing

all other lists except the first one. Thus, finally, this

operator returns every first list from the sublists of list 1.

Example

:

if [lenlsta^j_,1^2'^bl'-^b2^ " ^^ " true (

)

then

sofirstlst [1 -,,1 ^,1,,,1,„1 = undef;
ai az Di uz

116

since the length of list 1=4, this condition does not hold

and the 'else-if part is tested

else if [lenlstd ,,1 o '
"'"hi

'

''"h2
^ = 2] = true ()

which is not true either, so the 'else' part is applied:

else catlst[l , , sofirstlst (1, , 1, -^)] ;al bl i>2

thereby initializing the repeated application of the operation,

In the second run, the 'else if' condition becomes true,

since dui'-'-Ko) ^^^ ^^^ length = 2, so the 'then' statement

is applied:

sof irstlst (1, , , 1, T) = 1,,;bl b2 bl
which leads to

thereby returning the set of first lists from the given

list 1.

The last operator to be discussed is called ' retob j 1st ' ; it

takes two lists as an input and returns a list. It was intro-

duced with the intention to retrieve all the lists which meet

a particular condition

retobjlst[((l^,,1^2'la3'
' (^bl'lb2' ' ^^cl ' ^c2 ' ^cs' ' ' 'lb2> '

--' <^bl'lb2'-

So in some sense, this is the most useful operation because it

allows us to search a big list for certain sublists without

having to remember all the details about the sublists. The

axiom is short:

if eqlst(firstlst (1,) ,nullst ()) = true (

)

then

retobjlst (1, , I2) = nullstO;

else if intlst (l^^firstlst (1,)) = 1

then

catlst (first 1st (1^) , retob j 1st (res tlst (l-j_) ,12))
'*

117

else retobj 1st (restlst (1-.) , I2) ;

endif

;

and states that, if the overall list to be searched (1,) for a

sublist is empty, this list can not be contained in it. Thus,

the result is the empty list itself ('if-then' part), which

also serves as the termination condition for the recursion.

Should the intersection between the entered list 1^ and the

first list of 1-. be equivalent to 1„, the entire first list of

1, will be concatenated to the repeated operation now applied

to the remaining lists of 1, (
' else-if-then ' part). This en-

sures that the list will be completely scanned since more than

one of the contained sublists could m.eet the given condition

comprised in 1„- If 1„ does not occur in the particular list

being searched at the moment, the intersection of both can not

be equal to 1^, and the 'else' part is activated. In this

case the operation continues without saving the non-matching

portion of 1, . When finally terminated, a concatenated list

is available that comprises every single list of 1, meeting the

predefined requirement.

Example

:

if eqist[(l^-^,1^2'--a3^
' ^-^] = true (

)

since this first list of 11 is not empty, the condition does

not hold and the 'else-if part is tested

else if intlst[(1, „) , (1^^ ,1 „,1 _)] = 1, _
bz al a 2 a 3 b2

does not hold either,- so the 'else' part is applied:

retob:lst K (li,i,lj,2> ' ' ^cl '
^ = 2 ' ^cs' ' ' ^^2^ '

,which initializes the repeated application of 'retobjlst.' !

In the second run, the 'if condition is still not true, so

118

the 'else-if part is tested

else if intlst r (1, „) , (1, , , 1, ^)] = 1, ^b2 ' bl b2 b2
since the condition holds, the 'then' statement is executed

then

catlst[(Ij3i'li32^ ,retobjlst(d^l ' ^c2
'

-'"cS^ ' ^^b2^ ^ ^

*

which, again, initializes 'retobjlst.'

In the third run, this leads to the application of

retobjlst[() , (1^2^^

but now the 'if' condition is true and the entire operation

results in the concatenation of [(1, ,) , (1, ^)] with the

empty list, which gives us (1k-i'-'-k2^ ^-^ ^^^ final result.

As discussed earlier, the queue mechanism has to be used as

an intermediate storage process to ensure that none of the

retrieved lists will be lost. By means of parameterization

all the operators described in the mathematical part of the

specification (spec property_id through spec database) can he

applied using the adequate list operations. This is achieved

by short hybrid specifications (spec pidlist through spec

dblist) which combine the parameters defined in 'spec list'

with the corresponding operators of the original specifications,

giving access to all the operations of data type '1st.'

D. THE LIST STRUCTURE APPLIED TO DATABASE DESIGN

In this section we describe how the application of the list

theory supports the fundamental database operations. Since

the structure of the abstract database can be compared with a

large list, this concept will be discussed in more detail.

Starting with the basic elements ' property_id ' and 'value,'

each of the related data types may be considered as forming a

119

list containing just the single element <pid> or <val>, while

their sets are represented by lists consisting of as many sub-

lists as required, for example,

<<pidl> , <pid2>> or <<vall> , <val2> , <val3>>

.

Consequently, a 'property' which is defined by a 'pid' and a

'valset' can be expressed by means of a list containing these

two major sublists as elements, where the second list is itself

composed of a number of single lists:

< <pid>,< <vall>, <val2> , , . .
, <valn> > >.

Adding another '
<

' at the beginning and one ' >
' at the end

combines several properties into a ' propertyset .

' Applying

this technique to ' propertyvalue ' which represents an instance

of a property, the resultant looks like the following:

< <pid>,<val> >

and the corresponding set can be created by combining the

necessary number of adequate ordered pairs

< < <pidl> . <va] 1> >,< <pid2> , <val2> >,..-,< <pidi> , <vali>

To construct an 'object' is nov/ straightforward si.nce the ob-

ject is nothing more than a particular ' propertyvalueset ' it-

self. The ' ob jectclass ' then can be considered as a num.ber of

different objects put into the same list. But caution has to

be taken that we do not violate our definition of a class.

Since objects can only be grouped together if they are struc-

tured in a sim.ilar way, it is mandatory that they contain exactly!

the same number of corresponding 'pids.'

120

A 'class' can be expressed by a list of the form:

< < < <pidl> , <valll> >,...,< <pidi> , <valil> > >,
*

< < <pidl> , <vall2> >,...,< <pidi> , <vali2> > >,

< < <pidl>, <vallj> >,...,< <pidi> , <vali j> > > >;

where the kind and number of 'pids' is the only criterion for

associating a given object to a certain class, while any 'value'

necessary for describing an object can legally be attached to

a 'pid' as long as it is defined in the appropriate domain.

Finally, the database can be treated like a big list con-

taining several lists of the class type just described, where

the same criteria must be met. on a higher level. To see how

an operation on this list structure works, let's consider the

disjoint operator for 'pidsets':

intpidset (pidsetl ,pidset2) --> pidset3;

where, for example,

pidsetl = < <pidl> , <pid2> >;

pidset2 = < <pidl> , <pid3> >.

Invoking the parameterized spec pidsetlist gives us access to

both spec list and spec property_idset . 'Intpidset' is then

replaced by 'intlst' which by substitution leads to the

operat ion

intlst(< <pidl> , <pid2> >,< <pidl > , <pid3> >).

Since operator 'intlst' is handled by the recursive axiom

121

if or (

(eqlst(ll,nullst) = true ())

,

(eqls1^(12,nullst)
= true ())

)
= trueO

then

intlstlfirstlst(ll) ,12) = nullstC);

else if memblst (f irstlst (11) , 12) = trueO

then

catlst(firstlst (11) ,intlst (restlst (11) ,12))

;

endif

;

first the termination condition is checked, which means, if

either of the two lists is empty then the intersection must

be equal to the null-list ('if-then' part). In our particular

case they are not empty, so the 'else-if ' part will be tested.

Since the first list ('<pidl>') of 11 (' <<pidl> , <pid2>> ') is

contained in 12 (' <<pidl> , <pid3>> ') , this condition holds and

the concatenated list (
' catlst [<pidl> , intlst (

(<pid2 >) ,
(<pidl>

,

<pid3>))]') is created where 'intlst' invokes a recursive opera-

tion on the rest of 11 ('<pid2>') and 12 (' <pidl > , <pid3> ')

.

This time, since neither the 'if' nor the 'else-if' part is

true, the 'else' condition is applied which leads to a repeated

operation on the rest of 11 and on 12:

intlst[<>, (<pidl>,<pid3>)]

.

Now the 'if part of the axiom becomes true which returns the

empty list. This results in the concatenation

catlst (<pidl> , <>)

and gives '<pidl>' as the intersection of 11 with 12.

122

E. LIST RETRIEVAL

In the previous sections we developed the abstractions of

the database resource and discussed the set of operators that

apply to database programming. In AM (version 2=0) the 'state'

of the machine consists of the aggregation of the memory,

register, stack cell contents, display register and monitor.

We will now extend the 'state' to include the new entity 'queue.'

1. Background on the Processor Resource

For a better understanding of the applied extension,

in the following paragraph a brief description of AM, taken

from Hunter [Ref. 3], will be presented.

In AM (version 1.0) the five primitive data types,

boolean, natural, integer, character, and string, form the

atomic data types and are referred to as 'atoms.' Yurchak

[Ref. 2] as the implementor of A-M discussed the impact of the

relationship between the data and a conventional machine on

portability issues in detail, and identified the following

properties of AM which were used to reduce the "semantic gap"

and give AM its uniqueness:

in the organization of primary storage, the next
logical data item is in the next logical address;

- except as formally specified, no data type may be
accessed in any way, as another data type;

given any arbitrary logical address, the value stored
there and its type can always be determined.

The processor portion of AM is an abstraction of a conventional

"Von Neumann" machine with some unconventional properties.

The only machine element is called a 'value. ' All data

123

primitives (atoms) map into values. Spec typing, as introduced

by Hunter, describes the relationship of 'values' and 'atoms.'

As an illustration of this relationship consider the inter-

sect operation on two 'pidsets.' We fetch the value represen-

tation of the first 'pid' of each set from two registers, and

convert each value to its 'pidset' atom with the ' atomofpidset

'

operator. The 'pids' are intersected in accordance with the

'pidset' data type, and the resulting 'pid' is converted back

into a value with ' valofpidset ' for storage into a register.

The operation will be continued recursively until both 'pidsets'

are completely intersected.

Primary storage is an array of one or more memory seg-

ments, each of which may contain an arbitrary number of cells.

Each cell is capable of "containing" any legal data value.

Both programs and data may reside together in a single segment.

For high speed storage, there are one or more register seg-

ments, each of which contains an arbitrary number of registers.

AM also has one or more stacks, a heap, a crude file system,

and now a queue. Again, every register, stack and queue cell

is capable of containing any type of data.

The basic atomic data types are augmented by several

others needed for the execution of programs. These are in-

structions and memory, register, stack, file addresses, and

the queue

.

2 . The Queue

The value representation of the new data types 'pid,'

•pidset,' 'val,' 'valset,' 'prop,' 'propset,' 'pval,' 'pvalset,'

124

'obj,' 'class, 'and ' db ,
' may be placed in any memory, register,

or stack cells with one exception: whenever a set of 'pids,'

'vals,' 'pvals' or 'objs' will be retrieved, they can not be

displayed until they are first placed in the queue. The con-

cept of the queue is similar to a stack. Since we do not v/ant

the programmer to have access to the "inside" of the queue nor

want to provide facilities for altering the queue in any way,

we make its use only available for the very special purpose

of acting as a buffer for the data retrieved from the database

so it can be returned to the programmer when a search is com-

plete. The reason for introducing the queue is that the order

always matters in a database. Thus, a stack which reverses the

sequence between inputs and outputs would not work for this

case. The queue preserves the order in which data is entered,

and although queue operations are more difficult to specify

than the stack operations, it finally was adopted.

To make the queue mechanism operational in a similar

way as the stack, instructions were installed for opening/

closing and reading/writing ('spec instructions'), while the

operations for defining the state of the queue and their meaning

were added to 'spec amstate.' The program portion is described

in 'spec am' which makes the queue an integrated part of AM.

The database resource can be invoked by the operator

' opendb ' which requires a characterstring as identifier, a

database, a state, and returns a state. Provision for closing

125

the database is made by the operator 'closedb' which requires

a database and a state as input and returns a state, thereby

terminating the access.

i

126

VI. IMPLEMENTATION

At present, only the original AM, version 1.0, is imple-

mented and operates as a finite state machine interpreter. It

comprises approximately 12,000 lines of C code, including the

assembler. Developed by Yurchak, the overall concept for the

assembler is as simple as it is effective. A text file repre-

senting an assembly language program is translated by the

assembler into a relocatable object module. A loader, part of

the AM interpreter,- then loads this object module into the

appropriate cells, and AM executes it. The reader is referred

to Appendix C for more details about the assembler.

Since Yurchak [Ref. 2] as the originator provides a complete

description of the AJVI implementation, we wi].l repeat major

portions of his work but also consider points of interest found

in Hunter's [Ref.3J description of the version 2.0 extension

while finally adding some examples and discussion of our latest

modification towards AM, version 3=0.

For time reasons, neither the bit-mapped display nor the

database resource have actually been implemented. Rehosting the

original AM, version 1.0-Unix from a VAX 780 to a Zenith ZIOO

microcomputer by Hunter m.anifested once again all the typical-

difficulties known as "the portability problem." This rehost-

ing required approximately 350 functions to be renamed

throughout the 12,000 lines of code, since the compiler and

127

linker now used operate on shorter character names only.

Another problem Hunter faced during the re-implementation of

version 1.0 was that, although the Unix C compiler allowed

passing of structures by value, the Lattice C compiler for the

Zenith version does not, so the entire program had to be

converted to passing structures by pointer. Thus major parts

of the initial AM had to be modified or rewritten by Hunter.

But despite these problems usually encountered when porting

software, the number of test programs developed for the Unix

version run on the Zenith ZIOO with the same results. So far

the assembler has been revised to handle the full extension

for both versions 2.0 and 3.0, including all new data types,

the resource extensions, plus some additional operators for the

original data types, as mentioned before. The machine itself

however, has not yet been extended to handle the new data types

introduced by the gradual modification. This remains for

some future work.

After this description of the present state of the AM

development, we will now continue with the overview of the

implementation. There are four main areas: the representation

of data types, the mapping of operators i.n the specification to
I

functions in the interpreter, the handling of errors, and

the execution of a program.

A, IMPLEMENTING DATA TYPES

Since it provided an easy translation from the specifica-

tion, C was adopted by Yurchak as the corresponding programming

128

language for AM. But as he states in his work, another

language, like LISP might have done the job as well.

AM is a tagged architecture. Each data element or value

must be self-descriptive. As Hunter points out, it is impor-

tant to realize the distinction between an atom which corres-

ponds with a data type, and a value. In contrast to an atom

that is referred to as sort in our specifications and repre-

sents a problem solving abstraction like 'pid' or 'obj' for

the database, a value embodies a machine element. Furthermore,

an atom is representation independent and keeps its level of

abstraction, while a value is the specific representation of

such an atom. Representation independence is achieved by cer-

tain conversion functions (Appendix B) that map all atoms into

appropriate values and vice versa. This translation technique

enables us to determine the type of a value solely from the

value itself, which is one of the distinct properties of AM

and gives the machine its tagged architecture, introduced to

ease the "portabili.ty problem." The most likely construct to

provide this feature is a structure (record)

.

Each atom is represented in C-language as a structure con-

sisting of a 16-bit tag field, and a value field. The size of

the value field varies with the type. Each sort in the speci-

fication, as the equivalent to an atom, is assigned a 15-bit

code. Whenever an atom is created, or copied, it is tagged

with the appropriate code. Figure VI . 1 lists some fragments

from the header files used by our interpreter and represents

129

the 'natural' data type which has a simple value field.

Hunter [Ref. 3] compressed the initial term 'NAT_TYPE' to the

handier 'T NAT' for the reasons given above.

#define T_NAT 0x0002 /*natural type tag*/

typedef unsigned intnat;

typedef struct {

short type;
nat val;

} NAT;

Figure VI . 1 . Type Definitions for Natural

By using a fixed size tag field as the first field in each

record, we build in some additional robustness since, even

in the event of a mistyped structure being copied into the

formal parameter of a function, we can rely upon the first

word to be a valid code (the type)

.

The next step is to describe the structure for machine

values that must be capable of containing any atom. To manage

this problem, Yurchak introduced the union operation which

involves every single sort defined in the specifications so

that any atom can be represented by the value structure. Due

to the "ZIOO" characteristics, the value structure is divided

into portions of two bytes for the tag field and four bytes

for a pointer; the data type's value will be represented

either directly in such a value field or, if it can not be

expressed within the space of the four bytes available,

130

a pointer to its real location is used. String and list struc-

tures are examples that use pointers since their size is varia-

ble and usually large. *

Figure VI . 2 shows the concept of the union structure for

machine values VAL. Because the number of data types increased

very much in the latest modification of AM, only a sample of

the values actually present is given- Hunter [Ref. 3] also

notices that INSTR itself represents a VAL pointing to another

VAL which contains the instruction's opcode. By this tech-

nique it becomes possible to fetch and store instructions,

thereby allowing us to put a program into memory and to execute

it.

The primary physical resources are also defined as struc-

tures. A sample of these resources is presented in Figure VI .

3

Registers, display registers, memory and stacks are represented

as arrays of arrays of pointers to values . The reader should

note that a simple change to the constants in the header files

can completely alter the configuration of the machine. We

can specify an arbitrary number of arbitrary long memory,

register and display register segments, as well as different

sizes for an arbitrary number of stacks and the queue. Data-

base and file are represented as an array of structures, with

the files containing an input/output buffer in addition to the

status information contained in both. The number of separate

databases or the number and type of files can be changed by

recompiling the corresponding module of the interpreter.

131

typedef short opcode;

typedef struct {

short type;
union value *val;

} INSTR

typedef union value {

short type;
opcode opcdval

;

BOOL
INT

boolval

;

intval

;

/*this is the compressed version
of the initially used term
' opcodeval ' */

/*starting here the data types
are listed*/

FONT
LIST

fontval

;

listval;

MAD
QADDR

madva 1

;

qaddrval;
/*memory address*/
/*queue address*/

} VAL;

INSTR instrval

;

MOP mopval

;

DOP dopval

;

/*monadic operator*/
/*dyadic operator*/

Figure VI . 2 . Machine Values

13 2

typedef struct {

int size;
VAL **val;

} memseg;

typedef struct {

int size;
int sp;
VAL **val;

} stkseg;

typedef struct {

int size;
VAL **val;

} qseg;

typedef struct (

int Stat;
int mode;
int type

;

int val;
} fileseg;

typedef struct {

int Stat;
int val;

} dbseg;

#define_NUMMEMSEG
#define_NUMSTKSEG
#define_NUMQSEG
#define_NUMFILES
#define NUMDB

1024
1

1

16
1

/*memory segment*/

/*stack segment*/

/*queue segment*/

/*file segment*/

/*database segment*/

/*defined for 1 database*/

memseg_mem[_NUMMEMSEG] = {

1024,0
1024,0 } ;

stkseg_stk [_NUMSTKSEG] = {

512,512,0 } ;

qseg_q [_NUMQSEG] = {

512,512,0 } ;

Figure VI . 3 . The Physical Resource

133

with respect to the characteristic requirements for re-

trieving selected contents from the database, the queue was

provided to act as a buffer. Since this is the primary reason

for the queue, its accessibility has been limited to serve just

this purpose. There are in fact only three ways of accessing

the queue, either directly or via main memory and register

operations that directly lead to the physical address of the

data. The database must be opened similar to a file in order

to perform the desired operatJ.ons, and must be closed again

when the operations are terminated.

B, fl?\PPING OPERATORS TO FUNCTIONS

It seems natural, although incorrect, to look at the

operators in a spec as functions. However, in the implementa-

tion, this makes perfect sense. Figure VI . 4 lists the code

for the AM module which implements the boolean type. The

header files which provide the constant definitions are omitted

here. Notice that, where possible, we rely upon the operations

provided by the C language, rather than slow down an already

slow interpreter with axiomatic implementations of the

operators

.

As the implementation proceeds to more complex specifica-

tions, the program relies less upon C and more upon the opera-

tors which we have defined. In fact, the more complex operators

are implemented as calls to previously defined functions which

almost directly mimic the axioms from which they are derived.

134

BOOLtrue = { T_B00L,1 }; /*the initially used BOOL
TYPE was replaced by the
more complex term T_BOOL*/

BQOLfalse { T_BOOL,0 };

BOOL *not(a)
BOOL a;

{

BOOL *tmp; /*'tmp' was installed by
Hunter*/

tmp = (BOOL*) tmalloc (sizeof (BOOL))

;

tmp->type = T_BOOL;
tmp->val!= a->val;
return (tmp)

;

}

BOOL *and(a,b)
BOOL *a,*b;
{

BOOL *tmp;

tmp = (BOOL*) tmalloc (sizeof (BOOL))

;

tmp- > type = T_BOOL;
tmp->val = (a->val&&b->val)

;

return (tmp)

;

}

BOOL *eqbool(a,b)
BOOL *a,*b;
{

BOOL *tmp;

tmp = (BOOL*) tmalloc (sizeof (BOOL))

;

tmp- > type = T_BOOL;
tmp->val = (a->val == b->val)

;

return (tmp)

;

}

BOOL *nebool(a,b)
BOOL *a,*b;
}

BOOL *tmp;

tmp = (BOOL*) tmalloc (sizeof (BOOL))

;

tmp- > type = T_BOOL;
tmp->val = (a->val != b->val);
return (tmp)

;

}

BOOL *or(a,b)
BOOL *a,*b;
{

BOOL *tmp;

Figure VI . 4 Operator to Function Mapping for Type BOOL

135

tmp = (BOOL*) tmalloc (sizeof (BOOL))

;

tinp->type = T_BOOL;
tmp->val = (a->val 1 b->val)

;

return (tmp)

;

}

Figure VI . 4 (CONTINUED)

C. ERROR HANDLING

The TPethod of treating errors was entirely revised by

Hunter. All errors in the specifications are now described with

the 'undef operator. By definition, that makes all errors

fatal, but they need not be. Those errors which are not, must

then be defined explicitly in the specification. As remarked

earlier, a more detailed treatment of errors would be an area

for further study.

AM flags most errors m the operators which perform, data

conversions. This is a natural place for this to occur, since

it is difficult to see how the type of a data element may be

changed at any other time. Figure VI . 5 shows a fragment which

implements the ' property_id ' conversion routines. The routine

'error' does not return, but terminates execution after writing

the error message to 'stderr.' Notice that, even if a much

larger structure was passed to 'atomofpi.d' or 'valofpid,' the

error would be detected and handled gracefully.

This type of error checking is also performed in the func-

tions which implement data operations.

136

PID *atpid(v) /*short form for atomofpid*/
VAL *v;
{

PID *b;

if(v->type 1= V_PID) /*reduced term for PID_VAL*/
errorC'value not of type PID -%x", v->type) ;

b = (PID*) tmalloc (sizeof (PID))

;

b->type = T_PID; /*reduced term for PID_TYPE*/
b->val = v->pidval . val

;

return (b)

;

}

VAL *vlpid(b) /*short form for valofpid*/
PID *b;
{

VAL *v;

if(b->type 1= T_PID)
errorC'atom not of type PID -%x" , b->type)

;

v= (VAL*) tmalloc (sizeof (VAL))

;

v->pidval. type = V_PID;
v->pidval . val = b->val;
return (v)

;

}

Figure VI . 5 . Error Handling Routine for Property_id Type

D. EXECUTION

The final point of interest involves actually executing a

program. The method is also illustrative of the way in which

the program mimics the axioms of the specification. Here,

too,- we resort to subterfuge to implement in a finite way a

specification which could require the expenditure of an infinite

resource (an implied stack in this case) , The problem is the

corecursive relationship between the functions ' xeq ' and

'prog.' We eliminate this problem by never actually returning

from 'xeq.' We rely on a dangerous but effective C idiom,

'setjmp' and 'longjmp,' Figure VI . 6 illustrates this.

137

main (argc ,argv)
char *argv []

;

{

int ap; /*check for toggles*/
for (ap=l;ap<argc;ap++)

{

if (*argv[ap] == '-'){

if (* (argv[ap]+l) == 'x')!
traceflag = 1; /*added by Hunter*/
xtraceflag = 1;

}

if (*(argv[ap]+l) == 'f)
traceflag = 1;

}

}

initiamO; /*main body*/
amload ()

;

setjinp(_context) ;

Q = prog(&_pc,Q)

;

exit (0)

;

}

STATE prog(m,q) /*program for prog*/
MAD *ni;

STATE q;

q = xeq (atinstr (fetchm (m,q)) ,in,q) ;

/*short term for atomof instr*/

STATE xeq(i,m,q) /*program for xeq*/
INSTR *i;
MAD *m

;

STATE q;
{

opnd *p;
if (i->typeI=T_INSTR) /*short term for INSTR_TYPE*/

error ("attempt to execute non-instruction -%x" , i->type)
p = i->val;
switch (getopcode (p [] . opcodeval))

{

/*a case and semantics for each valid opcode goes
here*/

default

:

error ("attempt to execute an illegal instruction -%x"

,

p [0] . opcodeval) ;

}

longjmp(context, 1);

Figure VI , 6 . Program Execution

138

In 'main,' 'initam' configures AM and invokes all of the

initialization operators. 'Amload' loads a program from secon-

dary storage into the appropriate cells as directed by the

linker directives in the object module. 'Setjmp' then saves

the state of the "real" machine. The variable '_pc' is the

program counter v;hich is set inside 'amload.' Now everything

is set. The program is loaded and ready to run.

'Prog' is now called. Notice that 'prog' simply invokes

'xeq.' Recall now the axiom which defines the semantics of

execution

:

prog(m,q) = xeq (atomof instr (fetchm (m, q))
,m,q)

;

The value of a language which permits usefully long names is

obvious in this case. Within 'xeq' a large case statement

decodes the instruction and executes it according to the

semantics provided for that case. This semantics is very closely

modeled on the axioms in the specification. Figure VI . 7 shows

one such case and its accompnaying semantic action.

case IM_M_M;
q = storem(

fetchm

(

Sp [1] .madval ,
/*val of memaddr pointed to
by p[l]

V

/*q: state*/

Sip [2] .madval

,

q

_pc.A7al = nxtmad (m) ->val ;

break

Figure VI . 7 . The Semantics for 'mov m m'

139

Now compare Figure VI . 7 to the axiom for mov_m_m.

xeq (mov_m_m (ml ,m2) ,m,q) =

prog (

nxtmad (m)

,

storem(
fetchm(ml,q) ,

m2 ,

q
)

);

The similarities are not accidental. This should make the

point that it is beneficial for the implementation language

to permit such a close modeling of the specification. Obviously,

this made the implementation easier to write, debug and

understand.

E. DATABASE IMPLEMENTATION ISSUES

Similar to a file system, the database consists of two

major parts: the information contained in it and the program

that allows the user to manipulate this implementation. Once

implemented, both program and content of the databases are

rather fixed, although the information part can gradually be

changed by iterated application of the appropriate commands.

Thus in general the user is limited to retrieving or modifying

the stored information, but this is the main purpose of a data-

base. Should a conceptual change of the contents become neces-

sary after a while, it is more convenient to revise the kind

and arrangement of the data, and let the entire database then

be re-implemented by an application programmer.

14

Theoretically, there exist no boundaries for the size of

our abstract database, which means objects can be defined by

any number of propertyvalues , and classes may contain any

number of objects. But in reality we cannot ignore the capa-

bility of the available physical resources. Since databases

tend to increase rapidly, the capacity of the attached storage

device will set the natural limit.

Practically speaking, a user would need a DDL tool to

effectively create a database, just as a compiler would be

needed to effectively write programs for AM. The purpose of

this thesis however, is to give a precise specification of the

low level resources needed for a database.

The particular commands accessible by the user will be

fully integrated into the AM instruction set. They mainly

consist of the operations described in spec objectclass and

spec database and are considered sufficient to perform all the

necessary data manipulations. The operators provided permit

the insertion and deletion of an object into/from a given class,

the update of an object by modification of its contents, and

the selection of one or more objects in accordance with a

predefined conditj.on. As soon as the database part of AM is

invoked (instruction 'opendb') these commands can be applied

to the contents representing this database after they are

brought into main memory first. For any change, data are ,

fetched from their memory location, loaded into a register,

and stored back when the operation is completed. After

141

termination of the desired activities the database must be

closed (instruction 'closedb') and the data will be transferred

back to secondary storage. This procedure ensures that the

data residing in secondary storage at the end of the operation

always represent the actual state of the database. A presorting

of data outside main memory is not feasible, since we do not

presume the existence of an additional processor which is usually

known as back-end computer.

To select an object on the basis of a certain entity by

which it is defined, called ' propertyvalue '
(

'
pv ') in our

terminology, the characterizing 'pv' will be loaded into a

register as a comparand. Identified by the corresponding

' property_id ' of this 'pv,' the class possibly containing the

required object is then localized and the entire 'pv' set of

its first object will be loaded into a separate set of registers.

If a match occurs between the comparand and the register con-

taining the adequate ' pv ' of the object, the total 'pv' set is

copied into the queue and the next object will be loaded. If

no match takes place the procedure will be continued without

storing the object m the queue. When the entire class has

been searched, the 'select' operation terminates and the resul-

tant object (s) can be read from the queue. The state of the

database will not be changed by this operation since only a

partial copy is taken. But it can not be excluded that none of

the objects would meet the criterion searched for. In this

case no copy will reside in the queue and the returned ' pv

'

set is empty.

142

In contrast to the 'select' operation, which can be con-

sidered as a read function, insertion, deletion, and modifi-

cation actually do change the given state of the database, so

these operations are a little more complicated. Inserting

a new object requires, besides the 'pv' set that defines it,

the class to which it is inserted. This technique ensures that

no object accidentally will be inserted which is not attached

to a certain class. Without this restriction, the structure

of the database could be changed in an unacceptable way. When

the class has been identified by comparison of the correspond-

ing 'property_ids ' the new object will be added at the end of

that class. An error handling routine is invoked should the

required class not exist.

At this point the question must be answered where the special

identifier or 'key,' mentioned in a previous chapter, would

best fit. Such a device is necessary to distinguish between

' pv ' sets which inci.dentally are identical, although they may

represent different objects, or to detect an unwanted redun-

dancy. Only an identifier that is unique to every single ob-

ject can meet this requirement. However, the simple arrangement

of the objects in a numerical order would not work, since by

mistake the same object could be listed under different numbers

without the means of recognizing the error. The only way to

solve this problem is by introducing a key value that can only

be applied in connection with the particular object it defines,

like a social securitv number or a similar characteristic

143

attribute. We adopt this technique but leave the selection

of the proper criterion up to the application programmer.

However, it is considered advantageous always to define the

first ' property_id ' of a class as the key element. This would

allow the arrangement of the objects in a numerical or alpha-

betical order with regard to their identifiers.

Deletion and modification have one thing in common. The
I

particular object must be retrieved first before the operation

can be applied. This will be achieved in a similar way as for

the 'selection' operator. The 'pv' set of the object in ques-

tion is loaded into a set of registers and the appropriate

class is identified. Then the ' pv ' set representing the first

object of the class is loaded into a separate set of registers

and checked for identity. As soon as a match occurs the search

stops. In the case of a modification the up-dated 'pv' set

will be stored in memory and the pointers are adapted to the

new location. For a deletion operation the pointers are advanced

and the "erased" object will be by-passed. If the indicated ob-

ject cannot be found in the appropriate class, an error handling

routine is activated and the state of the database will not

be changed.

144

VII. CONCLUSIONS

Interface standards that are precise, understandable and

enforceable can provide a way to improve efforts toward porta-

ble software. With the abstraction of a database, we not only

extended AM by adding another basic resource to the processor

and the visual display device, but also showed a way to reduce

the database to its fundamental properties. Rather than being

concerned with a specific data definition or query language,

our abstraction of a database is intended to provide a uni-

form, abstract, and functional interface to the computing system,

By this concept the application programmer retains all the

freedom he needs to actually implement the database resource

in a way that fits his purpose best. And although it may turn

out that the .AM machine becomes even slower as the result of

the additional data types we introduced, the specified axioms

fully describe the operations in a precise, u.nambiguous and

easily understandable manner, thus leaving no room for any

different interpretation by the programmer.

Based on the principle of resource abstraction, the AM

specification intensively supports a strong typing such that

objects of a given type can not take other values than the ones

appropriate to the type, and no operations can legally be

applied to an object which are not defined for its type. All

these decisions naturally reduce efficiency, but this loss

will be compensated by gains in clearness and accuracy.

145

It is difficult to foresee how much AM can be modified for

efficiency without compromising the level of abstraction pre-

sently achieved. To test for resource equivalence or to prove

the correctness of implementations of resource specifications

is a nontrivial matter, and this problem certainly will in-

crease with every change attempted. So, for the near future,

it seems that we have to pay the price for implementing in

a strictly formal way, since no promising theory is yet known

to reduce the large number of necessary function calls within

the specification.

Further basic resources that could be taken into consider-

ation for a possible AM extension are a so-called mouse device

with properties similar to the joy stick cursor, and a

keyboard.

146

APPENDIX A

A GRAMMAR FOR ALGEBRAIC SPECIFICATIONS

abstraction

:

(abstraction spec)?

spec

:

(spechead
I

parmhead) specbody specend

spechead:
nameblk ' is

'

parmhead:
nameblk ' parm ' specbody 'is'

specend:
'end' specname '

:

'

nameblk
'spec' specname

specbody

:

extension? specblk

extension:
extendblk specblk 'end' 'extend' ';'

extendblk

:

'extend' specnames 'with'

specnames

:

specname
I
specnames '

,
' specname

specblk

:

useblk
I

sortblk? opblk axiomblk?

useblk

:

'use' specname ' (' specname ')
' mapping? specblk

' enduse

'

mapping:
'where' eqivlist

equivlist

:

equivalence '
;

'

I
equivlist equivalence '

;

'

14 7

equivalence:
sortname 'is' sortname

I

opname ' is ' opname

sortblk

:

' sort ' sortnames

sortnames

:

sortname '
;

'

I
sortnames sortname '

;

'

opblk:
primblk? dervblk? hiddenblk?

primblk

:

'primitive' 'op' ops

op '
;

'

ops

:

I

ops op ' ;
'

op

:

opname ';' arglist? '->' sortname

arglist

:

sortname
I
arglist ',' sortname

dervblk

:

dervops dervdef

dervops

:

'derived' 'op' ops

dervdef

:

'derived' 'def ' axioms

hiddenblk

:

'hidden' 'op' ops

axiomblk

:

'axiom' axioms

axioms

:

axiom '
;

'

I

axioms axiom ' ;
'

axiom:
conditional

I
('for' varlist 'in' sortname)? termexpr '=' termexpr

14 8

termexpr

:

facto'r

I

multiplier? opname ' (
' factors ')

'

factors

:

factor
I

factors '
,

' factor

factor:
multiplier? opname ' (' ') '

I
freevar

varlist

:

freevar
1 varlist '

,
' freevar

multiplier:
'

[
' positive_number '

]
'

conditional

:

'if' termexpr meta_relop termexpr then else? 'endif'

meta relop:
1 _ 1

'
! = '

then:
'then' axioms

else:
•else' axioms

149

APPENDIX B

THE SPECIFICATION FOR AM (VERSION 3.0}

replace (

)

"NUMINTENS"
with

"199"

replace (

)

"DISPLAYSIZE"
with

"9999"

replace (X,S)
"equivrel (X,S) ;

"

with
"X(i,i) = trueO ;

X(i,j) = X(j,i)

;

implies(and(X(i, j) ,X(j ,k)) ,X(i,k)) = true ()
;

"

replace (X,S)
"reflexive (X,S) ;

"

with
"X(i,i) = trueO ;"

replace (X,S)
"commutative (X,S) ;"

with
"X(i,j) = X(j,i) ;"

replace (X,S)
"transitive (X,S) ;

"

with
"implies (and (X(i,j) ,X(j ,k)) ,X(i,k)) = true ()

;

"

replace(X,S)
"associative (X,S) ;

"

with
"X(i,X(j,k)) = X(X(i,j) ,k) ;"

150

replace (X,S)
"irreflexive(X,S) ;

"

with
"X(i,i) = false ;"

replace (X, S)
"symmetric (X,S) ;

"

with
"implies (X(i, j) ,X(j ,i)) = trueO;"

replace (X, S)
"antisymmetric (X, S)

;

"

with
"implies(and(X(i, j) ,X(j ,i)) , (i == j)) = true ()

;

"

replace (S,T)
"idopers(S,T) ;

"

with
"startT: -> S;
nextT : S ^ S

;

prevT:S -^ S;
eqS :S,S ^ bool;

"

replace (S,T)
"idaxioms(S,T) ;"

with
"prevS (startT) = undef;
prevS (nextS (i)) = i;

if i != StartT then
nextS (prevS (i)) = i;

endif

;

equivrel (eqS , S)

;

"

replace (S)

"typingopers (S) ;

"

with
"types : ^ type

;

atomofS: val -^ S;
valofS : S -^ val; "

replace (S

)

"typingaxioms (S)
;

"

with
"whattype(valofS (t)) = typeS ()

;

atomofS (valofS (t)) = t;

151

if whattype(v) = typeS (

)

then valof S (atomof S (v)) = v;
else atomof S (v) = undef;

endif ;

"

replace(S,T)
"relop(S,T) ;"

with
"applyrop(ST ,vl,v2) = valofbool (TS (atomof S (vl)

,

atomofS(v2)))

;

"

replace (S)

"isops(S) ;"

with
"if whattype(v) = typeS ()

then applybop (isS () ,V) = valofbool (true ())

;

else applybop (isS () ,v) = valofbool (false ()) ;

endif;"

replace (S,T)
"stateaxioms (S ,T) ;"

with
"fetchS (a, initam()) = undef;
stores (fetchS (a, q) ,a ,q) = q;
implies

(

eqT(al,a2)

,

fetchS (al , stores (v,a2 ,q)) = v
) = true ()

;

implies

(

not (eqT (al ,a2))

,

fetchS (al , stores (v,a2 ,q)) = fetch(al,q)
) = true ()

;

"

replace /* database part */
"crpidset"

with
"pidsetlist .makelst"

replace
"unpidset"

with
"pidsetlist .unlst"

replace
"intpidset"

with
"pidsetlist. intlst"

1 52

replace
"mempidset"

with
" pidsetlist .memb 1st"

replace
"crvalset"

with
"valsetlist .makelst"

replace
"unvalset"

with
"valsetlist. unlst"

replace
"intvalset"

with
"valsetlist.intlst"

replace
"memvalset"

with
"valsetlist .memblst"

replace
"getid"

with
"proplist . firstlst"

replace
"getvalset"

with
"proplist. restlst"

replace
"crprop"

with
"proplist - cat 1st"

replace
crp]

propsetlist .makenewlst"

"crpropset

"

with

153

replace
"unpropset"

with
" props et list .unlst"

replace
"intpropset"

with
"propsetlist. intlst"

replace
"getidset"

with
"propsetlist .sofirstlst"

replace
"mempropset"

with
" props et 1 i s t . memb 1 s

t

"

replace
"crpropval"

with
"pvallist.catlst"

replace
"getpid"

with
"pvallist.firstlst"

replace
"getval"

with
"pval list. res tlst"

replace
"memprop"

with
"pval list .memblst"

replace
"crpvalset"

with
"pvalsetlist .makenewlst"

154

replace
"unpvalset"

with
"pvalsetlist .unlst"

replace
"intpvalset"

with
"pvalsetlist. intlst"

replace
"mempvalset"

with
" pva 1 se 1 1 i s t . memb 1 s t

"

replace
"mempset"

with
"pvalsetlist .memb 1st"

replace
"getpidset"

with
"pvalsetlist. sof irstlst"

replace
"crobj"

with
"ob j list .makenewlst

"

replace
"readob j

"

with
"ob j list .makenewlst"

replace
"haspval"

with
"ob j list .memblst"

replace
"getopidset"

with
"objlist.sofirstlst"

155

replace
"getoval"

with
"objlist.getlst"

replace
"crclass"

with
"classlist .makenewlst"

replace
"unclass"

with
"classlist. unlst"

replace
"intclass"

with
"classlist. intlst"

replace
"memclass"

with
"classlist .memblst"

replace
"subclass"

with
"classlist .memblst"

replace
"getcpidset"

with
" classlist. sofirs tlst"

replace
"insobj"

with
"classlist. cat 1st"

replace
"delobj"

with
"classlist. deist"

156

replace
"crdb"

with
"dblist.makenewlst"

replace
"memdb"

with
"dblist.memblst"

replace
"insclass"

with
"dblist.catlst"

replace
"delclass"

with
"dblist. deist"

replace
"retclass"

with
"dblist. intlst"

replace
"retobj

"

with
"dblist. retobj 1st"

replace
"getbdbidset"

with
"dblist. sofirstlst"

replace
"modob j

"

with •»

"dblist. modlst" /* database part */

157

spec boolean
is

sort
bool ;

primitive
op

true: -^ bool;
false: ^ bool;
not: bool ^ bool;
and: bool, bool -^ bool;

derived
op

or: bool, bool -^ bool;
implies: bool, bool -^ bool;

derived
def

or(bl,b2) = not (and(not(bl) ,not(b2)

)

implies (bl ,b2) = not (and (bl , not (b2)

)

axiom
false = not(true());
not (not (b)) = b

;

and (true () ,b) = b

;

and (false () ,b) = falseO;
commutative (and, bool)

;

end boolean;

) ;

) ;

spec natural
is

extenti
boolean

with
sort

nat;
primitive
op

zeronat: ^ nat;
prednat : nat -> nat;
succnat: nat ^ nat;
sumnat: nat , nat ^ nat;
subnat: nat, nat -^ nat;
mltnat: nat, nat -^ nat;
divnat : nat, nat -^ nat;

rf eqnat : nat, nat -^ bool;
gtnat: nat, nat ^ bool;

de rived"
op

Itnat: nat, nat ^ bool;
genat: nat, nat -> bool;
lenat: nat, nat -" bool;
nenat: nat, nat ^ bool;

/*
/*
/*
/*
/*
/*
/*
/*
/*

/zero
predecessor */
successor */
addition */
subtraction */
multiplication */
division */
equal */
greater than */

/* less than */
/* greater or equal */
/* less or equal */
/* not equal */

158

not (or (gtnat (n,m) ,eqnat (n ,m)

)

not (Itnat (n,m)

)

not (gtnat (n,m)

)

not (eqnat (n,in) I

)

prednat (subnat (.n,m)

undef

;

derived"
def

Itnat (n,m)
genat (n,m)
lenat (n,in)

nenat (n,m)
axiom

prednat (zeronat (.)) = undef;
prednat Csuccnat (n)) = n;
succnat (prednat (n)) = n;
sumnat (n, zeronat) = n;
sumnat (n, succnat (m)) = succnat (sumnat (n,m))

;

subnat (n, zeronat ()) = n;
if gtnat (n,in) = true (

)

then
subnat (n , succnat (m))

=

else
subnat (n, succnat (m))

=

endif

;

mltnat (x, zeronat) = zeronatO;
ml tnat (x, succnat (zeronat ())) = x;
mltnat(x,Y) = sumnat (x, mltnat (x, prednat (y)))

if y = zeronat (

)

then
divnat(x,y) = undef;

else if ltnat(x,y) = true (

)

then
divnat(x,y) = zeronat ()

;

else
divnat(x,y) = sumnat

(

succnat (zeronat ())

,

divnat (subnat (x,y) ,y)

) ;

endif;
endif;
eqnat(n,m) = eqnat (succnat (n) , succnat (m.)) ;

gtnat (succnat (n) ,n) = true ()

;

equivrel (eqnat ,nat)

;

irreflexive (gtnat ,nat)

;

irreflexive (Itnat ,nat)

;

transitive (gtnat ,nat)

;

transitive (Itnat ,nat)

;

transitive (genat , nat)

;

transitive (lenat , nat)

;

antisymmetric (genat , nat)

;

antisymmetric (lenat , nat)

;

symmetric (nenat , nat)

;

commutative (sumnat , nat)
commutative (mltnat , nat)
associative (sumnat , nat)
associative (mltnat , nat)

end extend;
end natural;

159

spec integer
is

extend •

boolean,
nat

with
sort

int;
primitive
op

zeroint: ^ int;
ntoi: nat -> int ;

iton: int ^ nat;
absint: int ^ int;
predint: int -^ int;
succint: int ^ int;
sumint

.

int, int ^ int
subint

;

int, int -> int
mltint

:

int, int -> int
divint

:

int, int ^ int
modint

:

int, int -^ int
eqint

:

int, int -^ bool
gtint: int, int ^ bool

derived
op

Itint: int, int ^ bool
geint

:

int, int ^ bool
leint

:

int, int ^ bool
neint

:

int, int -^ bool

/* nat to int
/* int to nat
/* absolute value */

V
V

/* modulo */

= not (or (gtint (n ,m) , eqint (n ,m)

= not (Itint (n,m)

)

= not (gtint (n ,m)

)

= not (eqint (n ,m)

)

derived
def

Itint (n ,m)

geint (n,m)
leint (n,m)
neint (n,m)

axiom
predint (succint (n)) = n;
succint (predint (x)) = x;
ntoi (zeronat ()) = zeroint ();
ntoi (succnat (n)) = sumint (succint (zeroint

ntoi (n))

;

iton (zeroint) = zeronat ();
if Itint (x, zeroint) = true (

)

then
iton(x) - undef;

else
iton (succint (x))

= sumnat (succnat (zeronat)
iton (x))

;

endif

;

160

if Itint (x, zeroint ()) = true (.)

then
absint(.x) = subint (zeroint () ,x) ;

else
absint(x) = x;

endif

;

sumint (n, zeroint) = n;
sumint (.n,succint (m)) = succint (sumint (n,m)) ;

subint (x, zeronat) = x;
subint (x,succnat (y)) = predint (subint (x,y))

;

mltint (x, zeroint)
= zerointO;

mltint (x, succint (zeroint)) = x;
mltint(x,y) = sumint (x, mltint (x, predint (y)J_);
if y = zeroint ()

then
divint(x,y) = undef;

else if Itint (absint (x) ,absint (y)) - true (

)

then
divint(x,y) = zerointO;

else if or(
and(

gtint (x, zeroint ())

,

gtint (y, zeroint ()

)

) ,

and(
Itint (x, zeroint)

,

Itint (y , zeroint ()

)

)

) = trueO
then

divint(x,y) = sumint(
succint (zeroint ())

,

divint (subint (x,y) ,y)

) ;

else
divint(x,y) = sumint(

predint (zeroint ())

,

divint (sumint (x ,y) ,y)

) ;

endif;
endif;
endif;
if gtint (m, zeroint ()) = true (

)

then
if Itint (n , zeroint)

= true (

)

then
modint(n,m) = modint (sumint (n ,m) ,m)

;

else
modint(n,m) = subnat (n , ml tnat (m, divint (n ,m)

)

endif;
else

modint (n,m) = undef;
endif;

161

eqint(x,y) = eqint (succint (x) , succint (y)

)

gtint (succint (n) ,n) = true ()

;

equivrel (eqint , int)

;

irreflexive (gtint , int)

;

irreflexive (Iting, int)

;

transitive (gtint , int)
transitive (Itint , int)
transitive (geint , int)
transitive (leint , int)
antisymmetric (geint , int)

;

antisymmetric (leint , int)

;

symmetric (neint, int)

;

commutative (sumint , int)
commutative (mltint , int)
associative (sumint , int)
associative (mltint, int)

end extend;
end integer;

) ;

spec character
is

extend
boolean

with
sort

char
primitive
op

'A' , B', 'C',..., •z :
->- char;

'a' , b', 'c', ' z •
-> char;

' 1
'

• / @', •#', •$'
,
'%

/

1 ^ 1 1 j- 1 • *
,

•
(,

•)
'

: ^ char;
1 _ 1 I III 1 _ 1

r ^ r ~ f /

1 / ',•{•, •} ,'
[,'] •

: ^ char

;

t 1 1 II 1 t . 1 I.I
A • / / / r r

1 '.'<•, •>
1 ,

'/•
: ^ char;

1 1 1
•

: ^ Char;
'1'

!
2'

,
'3'

,
'4'

,
'5

1
•6

, 'V, •8
,
'9

,
'0'

:
-^ char;

NUL: ^ char;
SOH: -> char;
STX: -* char;
ETX: ^ char;
EOT: ^ char;
ENQ: -> char;
ACK: ^ char;
BEL: -> char

;

BS: - char;
HT: H- char;
LF: -> char;
VT: - char;
FF: -

- char;
CR: - char;
SO: - char;
SI: -- char;
DLE: -^ char

;

162

. DCl;
DC2;
DCS;
DC4:
NAK;
SYN:
ETB:
CAN:
EM:
SUB;
ESC:
FS:
GS:
RS:
US:
SP:
DEL: ^

eqchar
gtchar

derived
op

Itchar
gechar
lechar
nechar

derived
def

Itchar
gechar
lechar
nechar

axiom
gtchar
gtchar
gtchar
gtchar
gtchar
gtchar
gtchar
gtchar
gtchar
gtchar
gtchar
gtchar
gtchar
gtchar
gtchar
gtchar
gtchar
gtchar
gtchar
gtchar

char ;

char;
char ;

char;
char;
char;
char;
char;

char;
char;
char

;

char;
char;
char;
char;
char;
char;
char,
char,

char,
char,
char,
char.

char ^ bool;
char ->- bool;

char ^ bool;
char -> bool;
char ^ bool;
char -*- bool;

n,m)
n,m)
n,m)
n,m)

DEL

= not (or (gtchar (n ,m) , eqchar (n,in)

= not (Itchar (n,m)

)

= not (gtchar (n,m)

)

= not (eqchar (n ,m)

)

,

' ^
•) = true ()

;

}
') = true (

)

I

'
) = trueO

{ •) = trueO
z ') = true (

)

. .

, 'a ') = true (

)

') = trueO
_') = trueO
"

') = trueO
]

') = trueO
'

)
= true () ;

•
) = true () ;

Z ') = true () ;

. . , 'A') = trueO
') = trueO
') = trueO

true (

)

') = trueO
•) = trueO
•

) = trueO

@

?•)
>•)

163

gtchar
gtchar
gtchar
gtchar
gtchar
gtchar
gtchar
gtchar
gtchar
gtchar
gtchar
gtchar
gtchar
gtchar
gtchar
gtchar
gtchar
gtchar
gtchar
gtchar
gtchar
gtchar
gtchar
gtchar
gtchar
gtchar
gtchar
gtchar
gtchar
gtchar
gtchar
gtchar
gtchar
gtchar
gtchar
gtchar
gtchar
gtchar
gtchar
gtchar
gtchar
gtchar
gtchar
gtchar
gtchar
gtchar
gtchar
gtchar
gtchar
gtchar
gtchar
equivr

1

SP
US

/

I

+
*

SP)
US) =

RS) =

RS,GS) =

GS,FS) =

FS,ESC)
ESC, SUB)
SUB, EM)
EM, CAN)
CAN,ETB)
ETB,SYN)
SYN,NAK)
NAK,DC4)
DC4,DC3)
DC3,DC2)
DC2,DC1)
DC1,DLE)
DLE,SI)
SI, SO) =

SO,CR) =

CR,FF) =

FF,VT) -

VT,LF) =

LF,HT) =

HT,BS) =

BS,BEL)
BEL,ACK)
ACK,ENQ)
ENQ,EOT)
EOT,ETX)
ETX,STX)
STX,SOH)
SOH,NUL)

el (eqchar

= true ()

;

= true () ;

•0 •) = trueO
= true (

)

= true (

)

= trueO
= true (

)

= true (

)

= trueO
= trueO
= trueO
= trueO
= true (

)

= true (

)

= true (

)

= true (

)

= true (

)

= true
= true ()

;

true ()

;

true ()

;

true ()

;

true ()

;

= true () ;

= true (

)

= true ()

;

= true ()

;

= true

(

= true

(

= true

(

= true

(

= true

(

= true

(

= true

(

= true

(

= true (

)

true (

true (

true (

true (

true (

true (

true (

= true (

)

= true

(

= true

(

= true

(

= true(
= true

(

= true

(

= true

(

, char)

;

164

irreflexive (gtchar,char)

;

irreflexive (Itchar , char)

;

transitive (gtchar , char)
transitive (Itchar , char)
transitive (gechar ,char)
transitive (lech ar, char)
antisymmetric (gechar , char)

;

antisymmetric (lechar, char)

;

symmetric (nechar, char)

;

end extend;
end character 7

spec string
parm

extend
boolean

with
sort

Im;
primitive
op

eqlm:
gtlm:

derived
op

Im, Im
Im, Im

bool ;

bool ;

IS

Itlm: lm,lm -> bool;
gelm: lm,lm -*- bool;
lelm: lm,lm ^ bool;
nelm: lm,lm -> bool;

derived
def

Itlm (n ,m)

gelm (n ,m)

lelm(n,m)
nelm(n ,m)

axiom
equivrel (eqlm, Im)

;

irref lexive (gtlm, Im)

;

irref lexive (Itlm, Im)

;

transitive (gtlm, Im)
transitive (Itlm, Im)
transitive (gelm, Im)
transitive (lelm, Im)
antisymmetric (gelm, Im)

;

antisymmetric (lelm, Im)

;

symmetric (nelm, Im)

;

end extend;

extend
natural
boolean

not (or (gtlm (n,m) ,eqlm(n,m)

)

not (Itlm (n ,m)

)

not (gtlm (n ,m)

)

not (eqlm (n ,m)

)

165

with
sort

str ;

primitive
op

nullstr

:

makestr

:

lenstr

:

headstr

:

tailstr

:

^ str;
Im -> str;

str ^ nat;
str -^ Im;
str ^ str;

/*
/*
/*
/*
/*
/*

null s

make *

string
string
string
concat

not (or (gtstr (n,m) ,eqstr (n,m)))

;

not (Itstr (n ,m)) ;

not (gtstr (n,m))

;

not (eqstr (n,m))

;

)) ;

(si) ,

catstr: str, str -> str
eqstr: str, str ^ bool
gtstr: str, str -> bool

derived
op

Itstr: str, str ^ bool
gestr: str, str ^ bool
lestr: str, str ^ bool
nestr: str, str -^ bool

derived
def

Itstr (n,m)
gestr (n ,m)

lestr (n ,m)

nestr (n ,m)

axiom
lenstr (nullstr) = zeronatC);
lenstr (makestr (1)) = succnat (zeronat

(

lenstr (catstr (si , s2)) = sumnat (lenstr
lenstr (s2))

;

headstr (makestr (1)) = 1;
tailstr (makestr (1)) = nullstr;
headstr (catstr (makestr (1) , s)) = 1;
tailstr (catstr (makestr (1) , s2)) = s2;
headstr (nullstr) = undef;
tailstr (nullstr) = nullstr;
catstr (catstr (si , s2) , s3) = catstr(sl,

catstr (s2

,

catstr (nullstr , s) = catstr (s , nullstr

)

implies (eqlm(11 , 12) , eqstr (makestr (11)
makestr (12)))

=

implies (gtlm(11 , 12) ,
gtstr (makestr (11)
makestr (12)))

=

gtnat (lenstr (makestr (1)) , lenstr (nulls
= true () ;

implies (gtnat (lenstr (si) ,lenstr(s2)) ,

gtstr (si , s2)) = t
if lenstr(sl)! = zeronat (

)

then
gtnat(lenstr(catstr(sl,s2) ,lenstr(

= true ()

;

tring */

/
length */
head */
tail */

enation */

s3)) ;

= s;

r

true ()

;

true ()

;

tr))

rue ()

;

s2;

166

else
eqnat (lenstr (catstr (si , s2) ,lenstr(s2)

)

= trueO ;

endif

;

equivrel(eqstr,str) ;

irreflexive (gtstr , str) ;

irreflexive (Itstr , str)

;

transitive (gtstr , str) ;

transitive (Itstr, str)

;

transitive (gestr, str)

;

transitive (lestr , str) ;

antisymmetric (gestr , str)

;

antisymmetric (lestr , str)

;

symmetric (nestr , str) ;

end extend;
end string;

spec str.chartype
is

extend
character

with
use

string (character)
where

char is Im;
eqchar is eqlm;
gtchar is gtlm;
Itchar is Itlm;
gechar is gelm;
lechar is lelm;
nechar is nelm;

end extend;
end str.chartype;

spec intensity
is

extend
boolean

with
sort

intens

;

primitive f

op
minintens

:

^ intens

;

/*
maxintens

:

-> intens; /*
nullintens> : ^ intens

;

/*
predintens) : intens -^ intens

;

/* display part */

minimum intensity */
maximum intensity */

null intensity */

16 7

succintens : intens ^ intens

;

suinintens: intens , intens -> intens;
intens , intens ^ intens;

intens , intens -> bool

;

intens , intens

intens , intens
intens , intens
intens , intens
intens , intens

bool;

bool

;

bool

;

bool

;

b oo 1

;

,n,m = not (or (gtintens (n,ml , eqintens (n,m)))

= not (Itintens (n,m)

)

= not (gtintens (n,m)

)

= not (eqintens (n ,m)

)

subintens
eqintens

:

gtintens

:

derived
op

Itintens

:

geintens

:

leintens

:

neintens

:

derived
def

Itintens
geintens (n ,in)

leintens (n ,in)

neintens (n,m)
axiom

predintens (minintens ()) = undef;
predintens (nullintens ()) = undef;
succintens (maxintens) = undef;
succintens (nullintens) = undef;
sumintens (i . nullintens) = undef;
subintens (i , nullintens ()) = undef;
maxintens = [NUMINTENS] succintens (minintens
sumintens (i ,minintens) = i;
subintens (i ,minintens) = i;
sumintens (i , succintens

(j)) = succintens
(sumintens (i , j))

;

if gtintens (i , j) = trueO
then

subintens (i , succintens
(j))

=

predintens (subintens (i
, j)

)

else
subintens (i ,succintens (j)) = undef;

endif

;

eqintens (i
, j) = eqintens (succintens (i)

,

succintens
(j))

;

eqintens (i
, j) = eqintens (predintens (i)

,

predintens
(j))

;

eqintens (i , succintens (predintens (i)

)

eqintens (i
,
predintens (succintens (i)

)

if or (

eqintens (i , nullintens ())

,

eqintens'(j , nullintens ())

) = trueO
then

gtintens (i
, j) = undef;

endif
gtintens (succintens (i) ,i
equivrel (eqintens , intens

())

= true
= true ;

= true ;

168

end

irreflexive (gtintens , intens)
irreflexive (Itintens , intens)
transitive (gtintens , intens)
transitive (Itintens , intens)
transitive (geintens , intens)
transitive (leintens , intens)
antisymmetric (geintens , intens)
antisymmetric (leintens , intens)
symmetric (neintens , intens) ;

commutative (sumintens , intens)

;

associative (sumintens , intens) ;

extend;
end intensity;

spec pointcolor
is

extend
boolean
intensity

with
sort

color;
primitive
op

nullcolor

:

redcompnt

:

grncompnt

:

blucompnt

:

-> color
color ^
color ->

color ->

eqcolor: color, color -> bool;
defcolor: intens , intens , intens

intens

;

intens

;

intens

;

/*
/*
/*

null color */
red component */
green component */
blue component */

equal color */
color;

/* define color */

nullintens (

)

nullintens (

)

nullintens (

)

axiom
redcompnt (nullcolor ()

)

grncompnt (nullcolor ()

)

blucompnt (nullcolor ()

)

if and(
or (

or (

eq intens (il , nullintens ()

)

eqintens (12 , nullintens ()

)

eq intens (13 , nullintens (

)

or (

or (

not (eqintens (il , nullintens ())),
not (eqintens (12 , nullintens))

) ,

not (eqintens (13 , nullintens ()))

) = trueO

169

then
defcolor (il , 12 , 13)) = undef;

else
redcompnt (defcolor (11 , 12 , 13)) = 11;
grncompnt (defcolor (11 , 12 , 13)) = 12;
blucompnt (defcolor (11 , 12 , 13)) = 13;

endlf

;

eqcolor (cl ,c2) = and(
and (

eqlntens (redcompnt (cl) , redcompnt (c2))

,

eqlntens (grncompnt (cl)
,
grncompnt (c2)

)

),
eqlntens (blucompnt (cl) , blucompnt (c2)

)

) ;

equivrel (eqcolor , color)

;

end extend;
end polntcolor;

spec point
Is

extend
boolean,
natural

,

Integer
with

sort
pnt;

primitive
op

xcord: pnt -> Int; /* x coordinate */
ycord: pnt ^ Int; /* y coordinate */
locpnt : Int, Int -^ pnt; /* point location */
eqpnt : pnt, pnt ^ bool; /* equal point */
gtpnt : pnt, pnt -^ bool; /* right & above */
Itpnt: pnt, pnt -^ bool; /* left & below */
gepnt : pnt

,
pnt ^ bool; /* right & above,

or right Inline or above
Inline */

lepnt: pnt, pnt ^ bool; /* left & below,
or left Inline or below
Inline */

offsetpnt: Int, Int, pnt -> pnt; /* point offset */
axiom

xcord (locpnt (11 , 12)) = 11;
ycord (locpnt (11 , 12)) = 12;
eqpnt(pl,p2) = and

(

eqlnt (xcord (pi) ,xcord(p2))

,

eqlnt (ycord (pi) ,ycord(p2))

17

gtpnt(pl,p2) = and

(

gtint (xcord (pi) ,xcord (p2))

,

atint (ycord (pi) ,ycord(p2)

)

) ;

ltpnt(pl,p2) = and

(

Itint (xcord (pi) , xcord (p2) }

,

Itint (vcord (pi) ,ycord(p2)

)

) ;

gepnt(pl,p2) = and

C

or (

gtint (xcord (pi) ,xcord(p2))

,

eqint (xcord (pi) ,xcord(p2)

)

) ,

or (

gtint (ycord (pi) ,ycord(p2))

,

eqint (ycord (pi) ,ycord(p2)

)

)

) ;

lepnt(pl,p2) = and(
or (

Itint (xcord (pi) ,xcord(p2))

,

eqint (xcord (pi) ,xcord(p2)

)

) ,

or (

itint (ycord (pi) ,ycord(p2))

,

eaint (ycord (pi)
,
ycord (p2)

)

)

)
,'

if X = zeroint(_)
then

xcord (offsetpnt (x,y ,p)) = xcord(p);
else if gtint (x , zeroint) = true (

)

then
xcord (of fsetpnt (x,y,p)) = succint (xcord

(offsetpnt (predint (x) ,y,p)))

;

else
xcord (offsetpnt (x,y,p)) = predint (xcord

(offsetpnt (succint (x) ,y,p)))

;

endif

;

endif

;

if y = zeroint ()

then
ycord (offsetpnt (x ,y ,p)) = ycord(p2);

else if gtint (y , zerint ()) = true (

)

then
ycord (offsetpnt (x ,y ,p)) = succint (ycord

(offsetpnt (x, predint (y) ,p)))

;

else
ycord (offsetpnt (x,y ,p)) = predint (ycord

(offsetpnt (x , succint (y) ,p)))

;

endif

;

endif

;

171

equivrel (eqpnt ,pnt)

;

reflexive (gepnt ,pnt)

;

reflexive (lepnt ,pnt)

;

irreflexive (gtpnt ,pnt)

;

irreflexive(ltpnt,pnt)

;

transitive (gtpnt ,pnt)

;

transitive (ltpnt,pnt)

;

transitive (gepnt ,pnt)

;

transitive (lepnt ,pnt)

;

end extend;
end point;

spec rectangle
is

extend
boolean,
integer,
point

with
sort

ret

;

primitve
op

origin: ret -> pnt

;

/* lower left
corner */

corner: ret -> pnt; /* upper right
corner */

xdimrct : ret -> int

;

/* x dimension */

ydimrct : ret ^ int; /* y dimension */
area: pnt, pnt -> ret; /* define ret */
inret: pnt , ret ^ bool; /* pnt inside ret

test */
disjret: ret , ret -> bool; /* disjoint rets */
intsctrct: ret, ret -> ret; /* ret intersection */
putret: pnt , ret ^ ret; /* put ret at

location */
shiftret: int, int, ret ^ ret; /* shift ret */

axiom
if Itint (xeord (p2) , xeord (pi)) = true (

)

then
xeord (origin (area (pi ,p2))) = xcord(p2);

else
xeord (origin (area (pi ,p2))) = xcord(pl);
endif

;

if Itint (ycord (p2) ,yeord (pi)) = true (

)

then
ycord (origin (area (pi ,p2))) = ycord(p2);

else
ycord (origin (area (pi ,p2))) = yeord(pl);

endif

;

172

if gtint (xcord (pi) ,xcord (p2)) = true ()^

then
xcord (corner (area(pl ,p2))) = xcord(pl)_;

else
xcord (corner (area (pi ,p2))) = xcord(p2);

endif

;

if gtint (ycord (pi) ,ycord (p2)),
= true (J,

then
ycord (corner (area(pl ,p2) 1) = ycord(_pl);

else
ycordCcorner (area (pi ,p2))) = ycord(p2);

endif;
inrct(p,r) = and(

gepnt (p,origin(r)) ,

lepnt (p , corner (r))

) ;

dis jrct (rl , r2) =

not (or

(

or (

inrct (origin (r2) ,rl)

,

inrct (corner (r2) ,rl)

) ,

or (

inrct

(

locpnt (xcord (origin (r2)) ,

ycord (corner (r2))),
rl

) ,

inrct C

locpnt (xcord (corner (r2))

,

ycord (oriain (r2))),
rl

)

)

)) ;

if dis jrct (rl , r2) = true (

)

then
intsctrct (rl , r2) = undef;

else
inrct (p, intsctrct (rl , r2) = and

(

inrct (p, rl)

,

inrct (p , r2)

) ;

endif;
shiftrct (x,y , r) = area(

offsetpnt (x,y, origin (r))

,

offsetpnt (x,y , corner (r)

)

) ;

putrct(p,r) = area(

offsetpnt (xdirarct (r) ,ydimrct(r) ,p)

) ;

173

xdimrct(r) = subint(
xcord (origin (r))

,

xcord (corner (r)

)

) ;

ydimrct(r) = subint(
ycord (origin (r))

,

ycord (corner (r)

)

) ;

end extend;
end rectangle;

spec imageform
is

extend
boolean,
pointcolor,
point

,

rectangle
with

sort
fOCTTl;

primitive
op

initform: ret ^ form; /* initialize form */

farea: form ^ ret; /* ret area of
form */

getcolor: pnt , form ^ color; /* get pnt color */
filiform: color, form ^ color; /* fill form */
setcolor: pnt , color , form ^ form;

/* set pnt color */

* invform - inverse form
* given color A, color B, form F
* map F foreground colors to A
* map F background to B
* /

invform: color , color , form ^ form;
axiom

farea (initform(r)) = r;
getcolor (p, initform(r)) = nullcolor();
if inret (p, farea (f)) = true (

)

then getcolor (p, setcolor (p ,c , f)) = c;
else getcolor (p , f) = nullcolor();

endif

;

if inret (p, farea (f)) = true () then
getcolor (p , filiform (e , f)) = c;

endif

;

if inret (p, farea(f)) = falseO then
setcolor (p , c , f) = undef;

endif

;

174

if inrct (p, farea (f)) = true () then
if getcolor (p, f) = nullcolorO
then

getcolor (p, invforin(cl ,c2 , f)) = c2;
else

getcolor (p, invfoinn(cl ,c2 , f)) = cl

;

endif;
endif

;

end extend;
end imageform;

spec iconfont
is

extend
boolean,
natural,
pointcolor,
rectangle

,

imageform,
pntblktrans

with
sort

font;
primitive
op

initfont: ret -> font; /* initialize font *,

rctfont: font -> ret; /* ret of font
icons */

lenfont: font ^ nat; /* number of icons
in font */

spmap: rct,pnt -^ pnt

;

/* map spot (font
loc) to pnt */

psmap: ret, pnt -> pnt; /* map pnt to spot
(font loc) */

infont: nat , font -> bool; /* for given index,
does font have icon */

delfont: nat , font -> font; /* delete icon
from font */

getfont: form, nat , font ^ font; /* put icon into
font */

offsetfont: int , int , font , pnt -^ pnt;
/* offset in

multiples of font rets */

axiom
rctfont (initfont (r)) = r;
lenfont (initfont (r)) = zeronat ()

;

spmap (r,p) = locpnt

(

mltint (xcord (p) ,xdimrct(r))

,

mltint (ycord (p) ,ydimrct(r)

)

) ;

175

psmap(r,p) = locpnt

(

divint (xcord (p) ,xdimrct (r))

,

divint (ycord (p) ,ydimrct (r)

)

) ;

infont (id, initfont (r)) = falseO;
infont (id,delfont (id , f t)) = falseO;
infont (id, setfont (f , id, ft)) = true ()

;

if and

(

eqint (xdimrct (rctfont (f t)) , xdimrct (farea (f 1))

,

eqint (ydimrct (rctfont (ft)) ,ydimrct (farea (_f)))

) = falseO
then

setfont (f , id, f t) = undef;
endif

;

if infont (id, ft) = true (

)

then
lenfont (setfont (f , id, ft)) = lenfont (f t)

;

else
lenfont (setfont (f , id , ft)) = succnat (lenfont (ft

)

endif;
if infont (id, ft) = true (

)

then
lenfont (delfont (id, ft)) = prednat (lenfont (ft))

;

else
lenfont (delfont (id, ft)) = lenfont (ft);

endif

;

if infont (id, ft) = falseO then
getfont (id, f t) = undef;

endif;
rctfont (ft) = farea (getfont (id, ft))

;

getfont (id, setfont (f , id , ft)) = f;
getfont (id, setfont (a , id, setfont (b , id , ft))) = a;
of fsetfont (x,y, ft ,p) = locpnt

(

sumint (xcord (p) ,mltint (x, xdimrct (rctfont (ft)))

sumint (ycord (p) , ml tint (y, ydimrct (rctfont (ft)))

end extend;
end iconfont;

spec pntblktrans
is

extend
natural

,

integer,
point,
rectangle

,

form
with

sort
ptblt;

176

primitive
op

initptblt: ^ ptblt; /* initialize ptblt */
getsrct: ptblt ^ ret; /* get source ret */
getdrct : ptblt ^ ret; /* get destination

ret */
geteret: ptblt -> ret; /* get clipping ret */
getrule: ptblt -^ nat

;

/* get eopy rule */
setsret: ret, ptblt -> ptblt; /* set source ret */
setdret: ret, ptblt -> ptblt; /* set destination

ret */
setcret: ret, ptblt ^ ptblt; /* set clipping ret */
setrule: nat, ptblt -> ptblt; /* set copy rule */

* copyblt - form eopy operation:
* given source, mask destination forms;
* call cpyreeur with origin of wksret
* ptblt controls operation;
*/

copyblt: ptblt , form, form, form -> form;

* drawline - draws line between two pnts

:

* given start pnt , stop pnt , brush, destination
mask;

* calls recursive h/v drawloop depending on
slope of line

* drawloop constructs line using repeated
* calls to copyblt using source form as a
brush

V
drawline: pnt , pnt ,

ptblt , form, form, form -> form;

* copyfont - copy icon from font to a given
point in the dest form

* the source and dest ret in ptblt are
automatically set

V
copyfont: pnt

,
ptblt , nat , font , form, form ^ form;

* invcopyfont - same as copyfont bit with
inverse coloring on the

* the font form source.
V

invcopyfont : color , color
,
pnt

,
ptblt , nat , font , form

,

form -> form;
hidden
op

* wksret - working source ret
* intersection of source form farea
* and the ptblt source ret
V

177

wksrct: form,ptblt -> ret;
/********************************•*******
* wkdrct - working destination ret
* intersection of destination form farea
* and the ptblt destination ret
V

wkdrct: form, ptblt -> ret;
/**************************************•*
* modpnt - pnt modulo (2D modulo):
* given pnt P, form F
* if P in F
* then P
* else (wrap P around into F)
* reduce coord of P
* by dim of F
* until P in F
*/

modpnt: pnt, form ^ pnt

;

* getmcolor - applies the masking rules
* given pnt P, source S, dest D, mask M,

ptblt B
* returns color MS (masked source color)
* based on:
* masking policy
* S color @ P
* M color (3 modpnt of
* matchpnt of P,S,D,B
*/

getmcolor: pnt
,
ptblt , form, form, form ^ color;

/********•****************************•**
* nextpnt - given pnt P, returns next pnt

in wksrct
* based on sequential ordering imposed on ret
* start at origin
* if right neighbor of P in ret
* then return right neighbor of P
* else
* move left to ret boundary
* return pnt above
*/

nextpnt: pnt , ptblt , form -> pnt;

* matchpnt - find corresponding pnt in dest
* given pnt P, source S, dest D, ptblt B

.* returns pnt that is offset XY from the
* origin of the wkdrct
* where XY is the offset from the
* origin of the wksrct
* that equals P

V
matchpnt: pnt

,
ptblt , form, form ^ pnt;

178

* copypnt - set color at pnt in dest
* given pnt P, source S, dest D, mask M,

ptblt B
* set color (a matchpnt of P,S,D,B
* based on:
* B copy rule
* MS color from getmcoloi; of P,S,M
* D color (§ matchpnt of P,S,D,B
V

copypnt: pnt , ptblt , fonn, form, form -^ form;

* cpyrecur - recursive function of copybit
* given pnt P
* if P in wksrct
* then
* call copypnt with P
* call cpyrecur with nextpnt of P
* else
* stop recursion

• V
cpyrecur: pnt , ptblt , form, form, form -^ form;

* hdrawloop - recursive function of drawline
* used when absolute value of slope is < 45

degrees
* walks line one horizontal point at a time
* moving vertically as required,
* at each step:
* sets ptblt destination ret
* calls copybit
V

hdrawloop: nat , int , int , int , int , int , form,
foirm, ptblt -^ form;

* vdrawloop - recursive function of drawline
* used when absolute value of slope is >= 45

degrees
* walks line one vertical point at a time
* moving horizontally as required
* at each step:
* sets ptblt destination ret
* calls copybit
V

vdrawloop : nat , int , int , int , int , int , form,
form, ptblt -> form;

axiom
getsrct (inicptblt ()) = area

(

locpnt (zeroint () , zeroint ()) ,

locpnt (zeroint () , zeroint ()

)

) ;

179

getdrct (initptblt ()) = area(
locpnt (zeroint () , zeroint ())

,

locpnt (zeroint () , zeroint ()

)

) ;

getcrct (initptblt) = area(*

locpnt (zeroint () , zeroint ())

,

locpnt (zeroint () , zeroint ()

)

) ;

getrule (initptblt) = zeronatO;
getsrct (setsrct (r ,pb)) = r;
getdrct (setdrct (r,pb)) = r;
getcrct (setcrct (r,pb)) = r;
getrule (setrule(n,pb)) = n;
wksrct(f,pb) = intsctrct (farea (f)

,
getsrct (pb))

;

wkdrct(f,pb) = intsctrct (farea (f)
,
getdrct (pb))

;

modpnt(p,f) = offsetpnt(
modint (xcord (p) ,xdimrct (farea (f)))

,

modint (ycord (p) ,ydiinrct (farea (f))) ,

origin (farea(f)

)

) ;

* matchpnt
* p: pnt in source
* pb: ptblt
* s : source
* d: dest

matchpnt (p,pb , s ,d) = offsetpnt(
subint

(

xcord (p)

,

xcord (origin (wksrct (s ,pb)))

) ,

subint

(

Ycord(p)

,

ycord (origin (wksrct (s
,
pb)))

) ,

origin (wkdrct (d,pb)

)

) ;

*getincolor
* p: pnt in source
* pb: ptblt
* s : source
* m : mask
* d: destination

if or (

eqcolor (getcolor (p , s) ,nullcolor())

,

eqcolor

(

getcolor (modpnt (matchpnt (p ,pb , s , d) ,m) ,m)

,

180

nullcolor (

)

)

) = trueO
then

getmcolor (p ,pb , s ,m,d) = getcolor (p , s)

;

else
getmcolor (p,pb , s ,m,d) = getcolor (modpnt

(matchpnt (p,pb ,s ,d) ,m) ,m)

;

endif

;

* nextpnt
* p: pnt in source
* pb: ptblt
* s : source

if ltint(
xcord (p)

,

xcord (corner (wksrct (s ,pb)))

) = trueO
then

nextpnt (p ,pb , s) = locpnt(
succint (xcord (p))

,

ycord (p)

);
else

nextpnt (p,pb , s) = locpnt(
xcord (origin (wksrct (s ,pb))),
succint (ycord (p))

) ;

endif;

* copYpnt
* p: pnt in source
* pt: ptblt
* s : source
* m: mask
* d: destination

if inrct

(

matchpnt (p ,
pb , s , d)

intsctrct

(

wkdrct (d,pb) ,

getcrct (pb)

)

) = true (

)

then
if getrule(pb) = zeronat (

)

then
copypnt (p ,pb , s ,m,d) = d

;

else if getrule(pb) = [IJ succnat (zeronat () ;

181

then
if and(

not (eqcolor (getmcolor (p ,pb , s ,m, d)

,

nullcolor ()))

,

not (eqcolor

(

getcolor

(

matchpnt (p,pb , s ,d)

,

d
) ,

nullcolor (

)

))

) = trueO
then

copypnt (p ,pb , s ,m,d) = setcolor(
matchpnt (p,pb , s ,d)

,

getmcolor (p,pb , s ,m,d)

,

d
) ;

else
copypnt (p,pb , s ,m,d) = d;

endif

;

else if getrule(pb) = [2 J succnat (zeronat ()

)

then
if and

(

not (eqcolor (getmcolor (p ,pb , s ,m,d)

,

nullcolor ()))

,

eqcolor

(

getcolor

(

matchpnt (p ,pb , s ,d)

,

d
) ,

nullcolor (

)

)

) = trueO
then

copypnt (p ,pb , s ,m,d) = setcolor(
matchpnt

(p ,
pb , s , d)

,

getmcolor (p ,
pb , s ,m,d)

,

d

) ;

else
copypnt (p ,pb , s ,m,d) = d

;

endif;
else if getrule(pb) =

[3] succnat (zeronat ()

)

then
if getmcolor (p,pb , s ,m,d) != nullcolorO
then

setcolor

(

matchpnt (p ,pb , s ,d)

,

getmcolor (p,pb , s ,m ,d)

,

d

182

else
copypnt (p,pb , s ,m,d) = d;

endif

;

else if getrule(pb) = [4] succnat (zeronat (.))

then
if and(

eqcolor (getmcolor (p,pb , s ,m,d) ,

nullcolor ())

,

not (eqcolor

(

getcolor

(

matchpnt
(p , pb , s , d)

,

d
) ,

nullcolor (

)

))

) = trueO
then

copypnt (p,pb , s ,m,d) = setcolor(
matchpnt (p,pb , s ,d)

,

nullcolor ()

,

d
) ;

endif

;

else if getrule(pb) = [5] succnat (zeronat ()

)

then
if getcolor

(

matchpnt
(p, pb, s, d)

,

d
)) != nullcolor (

)

then
copypnt (p, pb , s ,m,d) = setcolorC

matchpnt
(p ,

pb , s , d)

,

getmcolor (p,pb , s ,m,d)

,

d

) ;

else
copypnt (p,pb , s ,m, d) = d;

endif;
else if getrule(pb) = [6] succnat (zeronat ()

)

then
if and(

or (

eqcolor (getmcolor (p,pb ,s ,m,d)

,

nullcolor ())

,

not (eqcolor

(

getcolor

(

matchpnt (p ,
pb , s ,d)

,

d

) ,

nullcolor (

)

))

183

or(
not (eqcolor (getmcolor Cp,pb , s ,m,d) ,

nullcolor ())))

,

eqcolor

(

* getcolor(
matchpnt (p ,

pb , s , d)

,

d

nullcolor (

)

)

)

) = trueO
then

copypnt (p,pb ,s ,m,d) = setcolorC
matchpnt (.p,pb , s ,d) ,

getmcolor (p ,pb , s ,m,d)_ ,

d

else
copypnt (p ,pb , s ,m,d) = d;

endif

;

else if getrule(pb) = [7] succnat (zeronat ()

)

then
if or (

not (eqcolor (getmcolor (p,pb , s ,m,d)

,

nullcolor ()))

,

not (eqcolor

(

getcolor

(

matchpnt (p,pb ,s ,d)

,

d

) ,

nullcolor (

)

))

) = trueO
then

copypnt (p,pb ,sm,d) = setcolor(
matchpnt (p ,

pb , s , d)

,

getmcolor (p ,pb , s ,m,d) ,

d

) ;

else
copypnt (p, pb ,s ,m,d) = d

;

else
copypnt (p,pb ,s ,m,d) = d;

endif;
endif
endif
endif
endif
endif
endif

184

endif

;

endif

;

endif;
/*******************•********************
* cpyrecur
* p: pnt in source
* pb: ptblt
* s : source
* m: mask
* d: destination

if inrct (p,wksrct (s ,pb)) = true (

)

then
/* copy pnt and continue */
cpyrecur (p,pb, s ,m,d) = cpyrecur

(

nextpnt (p,pb , s) ,

pb
s,

m,
copypnt

(p ,
pb , s , m , d)

,

) ;

else
/* all source pnts visited */
cpyrecur (p ,pb , s ,m,d) = d;

endif

;

/****************************•**********
* copyblt
* pb: ptblt
* s: source
* m: mask
* d: destination
**

if or (

dis jrct (farea (s) ,getsrct(pb))

,

dis jrct (farea (d) ,getdrct (pb)

)

) = trueO
then

copyblt (pb , s ,m,d) = d

;

else
copyblt (pb , s ,m,d) =

cpyrecur

(

origin (wksrct (s ,pb))

,

pb
s,
m,
d,

) ;

endif;
/***************************************
* hdrawloop
* n: dist to go (major axis)

185

* p: minor axis move counter (vertical)
* dx: xDelta sign
* dy : yDelta sign
* px: yDelta abs
* py : xDelta abs
* s : source form
* d: dest form
* m: mask form
* pb: ptblt

/* is it the last step? */
if n = succnat (zeronat ()

)

then
/* time to move in minor direction? */
if Itint (subint (p,px) , zeroint ()) = true (

)

then
/* move minor */
hdrawloop (n , p , dx , dy ,

px
, py , s , d , m ,

pb =

copyblt

(

setdrct (shiftrct (dx,dy ,getdrct (pb)) ,pb)
s,

m,
d,

) ;

else
/* move major */
hdrawloop (n

, p ,dx,dy ,px ,py , s , d,m,pb) =

copyblt

(

setdrct (shiftrct (dx , zeroint ()

,

getdrct(pb)) ,pb)
s,
m,
d,

) ;

endif

;

else if Itint (subint (p ,px) , zeroint) = true (

)

then
/* move minor and continue */
hdrawloop (n ,p,dx ,dy ,px ,py , s , d ,m,pb) =

hdrawloop

(

/* reduce distance to go */
subnat (n, succnat (zeronat ())

,

/* reset counter for next minor move */
sumint (subint (p,px) ,py)

,

dx,
dy ,

px,

PY.
s,
/* move minor and major then copy brush */

186

copyblt

(

setdrct (shiftrct (dx,dy ,getdrct (pb) } ,pb)
s,
m,
d,

) ,

m,
setdrct (shiftrct (dx,dy ,getdrct (pb)) ,pb)

). ;

else
/* move major and continue */
hdrawloop (n , p , dx , dy ,

px
, py , s , d , m ,

pb) =

hdrawloop

(

/* reduce dist to go */
subnat (n , succnat (zeronat ())

,

/* reduce count till next minor move */
subint (p,px)

,

dx,
dy,
px,

PY/
s,
/* move major then copy brush */
copyblt

(

setdrct (shiftrct (dx, zeroint ()

,

getdrct(pb)) ,pb)
s,
m,
d,

) ,

m,
setdrct (shiftrct (dx, zeroint () ,getdrct (pb))

,

pb)

) ;

endif

;

endif

;

* vdrawloop
* n: dist to go (major axis)
* p: minor axis move counter (horizontal)
* dx: xDelta sign
* dy : yDelta sign
* px: yDelta abs
* py : xDelta abs
* s : source form
* d: dest form
* m: mask form
* pb: ptblt

/* is it the last step? */
if n = succnat (zeronat ()

)

1R7

then
/* last step */
if Itint (subint (p,py) , zeroint (.)) = true (

)

then
/* move minor */
vdrawloop (n , p , dx , dy ,

px
, py , s , d , m ,

pb) =

copyblt

(

setdrct (sh iftret (dx,dy ,getdrct (pb)) ,pb)
s,
m,
d,

) ;

else
/* move major */
vdrawloop (n ,p,dx,dy ,pz ,py , s ,d ,m,pb)_ =

copyblt (.

setdrct (shiftret (zeroint () ,dy,
getdrct(pb)) ,pb)

s,

m,
d,

) ;

endif

;

else if Itint (subint (p,py) ,aeroint ()) = true (

)

then
/* move minor and continue walk */
vdrawloop (n, p,dx , dy ,px ,py , s ,d ,m,pb) =

vdrawloop

(

/* reduce dist to go */
subnat (n , succnat (zeronat ())) ,

/* set counter for next minor move */
sumint (subint (p,py) ,px)

,

dx,
dy,
px,

PYr
s,
/* move minor and major then copy brush */
copyblt

(

setdrct (shif tret (dx ,dy ,getdrct (pb)) ,pb)
s,
m,
d,

)/
m, ,

setdrct (shiftret (dx,dy ,getdret (pb)) ,pb)
) ;

else
/* move major and continue walk */
vdrawloop (n , p , dx , dy ,

px
, py , s , d , m ,

pb)
=

vdrawloop

(

1R8

/* reduce dist to go */
subnat (n, succnat (zeronat (.))),
/* reduce count till minor move */
subint (p,py)

,

dx,
dy,
px,

PY/
s,
/* move major and copy brush */
copyblt C

setdrct (shiftret (zeroint (J ,dy

,

getdrct (.pb)) ,pb)
s,
m,
d,

),
m,
setdrct (shiftret (zeroint () ,dy, getdrct (pb!

pb)
) ;

endif

;

endif

;

* drawline
* Pl : start pnt
* P2 : end pnt
* pb : ptblk
* s : brush form
* m: mask form
* d: dest form

if and(
subint (ycord (p2) ,ycord(pl))

,

siabint (xcord (p2) ,xcord(pl))

) = trueO
then
/* line is a single pnt */

drawline (pl
, p2 ,pb , s ,m,d) = copyblt (pb , s ,m,d)

;

else if ltint(
absint (subint (ycord (p2 ,

ycord (pl)))

,

absint (subint (xcord (p2) ,xcord(pl)))

) = trueO
then

/* line is horizontal */
drawline (pl ,p2 ,pb , s ,m,d) =

hdrawloop

(

/* distance to go */
iton (absint (subint (xcord (p2) ,xcord(pl)

)

/* dist till minor move counter */

189

divint

(

absint (subint (xcord (p2) ,xcord (pi))))

,

[2] succint (zeroint ()

)

) ,

/* dx */
divint

(

subint (xcord (p2) , xcord (pi))

,

absint (subint (xcord (p2) , xcord (pi)))

) ,

/* dy */
divint

(

subint (.ycord(p2) ,ycordCpl)) /

absint (subint (ycord (p2) ,ycord(pl)))

) ,

/* px */
absint (subint (ycord (p2) ,ycord(pl))) ,

/* PY */
absint (subint (xcord (p2) ,xcord(pl))) ,

s,
copyblt (pb,s ,m,d)

,

m,
pb

) ;

else
/* line is vertical */
drawline (pi ,p2 ,pb ,s ,m,d) =

vdrawloop

(

/* dist to go */
iton (absint (subint (ycord (p2) ,

ycord (pi)))) ,

/* dist till minor move counter */
divint

(

absint (subint (ycord (p2) ,ycord(pl)))

,

[2] succint (zeroint ()

)

) ,

/* dx */
divint

(

subint (xcord (p2) , xcord (pi))

,

absint (subint (xcord (p2) ,xcord(pl)))

) ,

/* dy */
divint

(

subint (ycord (p2) ,ycord(pl))

,

absint (subint (ycord (p2) ,ycord(pl)))

) ,

/* px */
absint (subint (ycord (p2) ,

ycord (pi))) ,

/* py */
absint (subint (xcord (p2) ,xcord(pl))) ,

s,

copyblt (pb , s ,m, d)

,

190

m,
pb

) ;

endif

;

endif

;

* copyfont
* p: position in destination for lower left

corner of source form
* pb: ptblt
* id: index number
* ft : font with source form
* m: mask
* d: destination form
**************•**************************/

copyfont (p,pb , id, ft ,m,d) = copyblt(
setdrct

(

putrct (p,rctfont (f t))

,

setsrct (rctfont (ft) ,pb)
)

getfont (id, ft)

,

m,
d,

) ;

* invcopyfont
* cl: foreground color
* c2 : background color
* p: position in destination for lower left

corner of source form
* pb: ptblt
* id: index number
* ft : font with source form
* m: mask
* d: destination form

invcopyfont (cl , c2 ,p ,
pb , id , ft ,m, d) = copyblt(

setdrct

(

putdrct (p, rctfont (ft))

,

setsrct (rctfont (ft) ,pb)

)

invform(cl,c2,getfont(id,ft))

,

m,
d,

) ;

end extend;
end pntblktrans

;

191

spec identifiers
is

extend
boolean

with
sort

memid,

•

regid;
stkid;
dregid;
fid;
qid; /*
dbid; /*

primitive
op

idopers (memid, memseg)

;

/*
idopers (regid, regseg)

;

/*
idopers (stkid, stkseg)

;

/*
idopers (dregicl,dregseg) ; /*

queue ID */
database ID */

memory seg id */
register seg id */
stack seg id */
display register
seg id */

idopers (qid, qseg)

;

/* queue segment ID */
axiom

idaxioms (memid, memseg)

;

idaxioms (regid, regseg)

;

idaxioms (stkid, stkseg)

;

idaxioms (dregid, dregseg)

;

idaxioms (qid, qseg)

;

end extend;
end identifiers;

spec memaddress
is

extend
identifiers

,

boolean
with

sort
memaddr;

primitive
op

startmemaddr : memid -^ memaddr;
nextmemaddr : memaddr ^ memaddr;
prevmemaddr : memaddr ^ memaddr

;

getmemid : memaddr ^ memid;
offset: int, memaddr ^ memaddr; /* offset from

memaddr */
eqmemaddr : memaddr , memaddr -* bool;

axiom
prevmemaddr (startmemaddr (i)) = undef;
prevmemaddr (nextmemaddr (m)) = m;

^

192

nextmemaddr (prevmemaddr (m) 1 = m;
of f set (succint (n) ,m) = nextmemaddr (of f set (n ,in)) ;

if offset (n,m) = startmemaddr (

)

then
of fset (predint (n) ,m) = undef;

else
of fset (predint (n) ,m) = prevmemaddr (offset (n ,m))

;

endif

;

eqmemid (i,getmemid (offset (n, startmemaddr (i)))) =

true ()

;

eqmemaddr (startmem.addr (il> , startmemaddr (i2))
=

eqmemid (il , i2) ;

eqmemaddr (startmemaddr (i) , nextmemaddr (a))
=

false ()

;

eqmemaddr (nextmemaddr (al) , nextmemaddr (a2)) =

eqmemaddr (al , a2)

;

of fset (zeroint () ,m) = m;
equivrel (eqmemaddr ,memaddr)

;

end extend;
end memaddress

;

spec regaddress
is

extend
identifiers

,

boolean
with

sort
regaddr

;

primitive
op

startregaddr : regid -^ regaddr;
nextregaddr: regaddr ^ regaddr;
prevregaddr : regaddr -^ regaddr;
getregid: regaddr ^ regid;
eqregaddr : regaddr , regaddr -^ bool;

axiom
prevregaddr (startregaddr (i)) = undef;
prevregaddr (nextregaddr (m)) = m;
nextregaddr (prevregaddr (m)) = m;
eqregaddr (startregaddr (il) , startregaddr (12))

=

eqregid (11 , 12)

;

eqregaddr (startregaddr (1) , nextregaddr (a))
=

false () ;

eqregaddr (nextregaddr (al) , nextregaddr (a2))
=

eqregaddr (al , a2)

;

equivrel (eqregaddr , regaddr)

;

end extend;
end regaddress;

193

spec stkaddress
is

extend
identifiers

,

boolean
with

sort
stkaddr

;

primitive
op

getstkid: stkaddr -> stkid;
eqstkaddr: stkaddr , stkaddr -> bool;

axiom
eqstkaddr (nextstkaddr (al) ,nextstkaddr (a2)) =

eqstkaddr (al ,a2)

;

equivrel (eqstkaddr , stkaddr) ;

end extend;
end stkaddress;

spec qaddress /* database part */
is

extend
identifiers

,

boolean
with

sort
qaddr

;

primitive
op

getqid: qaddr ^ qid;
eqqaddr : qaddr, qaddr ^ bool;

axiom
eqqaddr (nextqaddr (al) , nextqaddr (a2))

=

eqqaddr (al ,a2)

;

equivrel (eqqaddr
,
qaddr) ;

end extend;
end qaddress; /* database part */

spec dregaddress /* display part */
is

extend
identifiers

,

boolean
with

sort
dregaddr

;

primitive
op

startdregaddr : dregid -^ dregaddr;

194

nextdregaddr : dregaddr -> dregaddr

;

prevdregaddr : dregaddr -> dregaddr;
getdregid: dregaddr ->- dregid;
eqdregaddr : dregaddr , dregaddr ^ bool;

axiom
prevdregaddr (startdregaddr (i)) = undef;
prevdregaddr (nextdregaddr (m)) = m;
nextdregaddr (prevdregaddr (m)) = m;
eqdregaddr (startdregaddr (il) , startdregaddr (12)

;

eqdregid(il,i2)

;

eqdregaddr (startdregaddr (i) , nextdregaddr (a))
=

false ()

;

eqdregaddr (nextdregaddr (al) , nextdregaddr (a2))
=

eqdregaddr (al ,a2)

;

equlvrel (eqdregaddr , dregaddr)

;

end extend;
end dregaddress;

spec monltorattrlbute
Is

extend
boolean

with
sort

mattribute

;

primitive
op

xpixels: -> mattribute;
Ypixels: -> mattribute;
hscrnsize: ^ mattribute;
vscrnsize: ^ mattribute;
intenscapbl : ^ mattribute;
colorcapbl: -^ mattribute;
backgnd: ^ mattribute;
dselect: ^ mattribute;
eqmattribute : mattribute , mattribute -> bool;

axiom
equlvrel (eqmattribute , mattribute)

;

end extend;
end monltorattrlbute; /* display part */

spec files
is

extend
identifiers

,

boolean
with

sort
file;

195

primitive
op

getfile: fid ^ file;
eqfile: file, file -> bool;

axiom
eqfile (getfile (il) ,getfile(i2)

)

equivrel (eqfile, file)

;

end extend;
end files;

= eqf id (il ,12)

;

spec operatorclasses
is

sort
mop;
dop;
top;
qop

;

sop;
oop

;

rop;
bop;

end operatorclasses;

spec instructiontype
is

sort
instr

;

end instructiontype;

spec property_id
is

extend
boolean

with
sort

pid;
primitive
op

pidl : -^ pid;
pid2 : -^ pid;

/* database part */

/* 1st property_id */
/* 2nd property_id */

pidn: ^ pid;
eqpid: pid, pid -> bool;

axiom
equivrel (eqpid

,
pid)

;

end extend;
end property id;

/* nth property_id */
/* equal property_id */

196

spec property_idset
is

extend
boolean

,

property_id
with

sort
pidset

;

primitive
op

0: -^ pidset; /* empty set */
u: -> pidset; /* universe */
crpidset: pid -^ pidset; /* create */
unpidset: pidset

,
pidset -> pidset;

/* union */
intpidset: pidset

,
pidset ^ pidset;

/* intersection */
mempidset; pid, pidset ^ bool; /* member */
eqpidset: pidset

,
pidset -*- bool;

/* equal */
axiom

eqpidset (0 , 0) = true () ; /* empty pidset */

if eqpidset (psl ,ps2) = true (

)

then
(eqpidset (unpidset (psl , crpidset (pdl))

,

unpidset (ps2 , crpidset (pd2))) =

eqpid(pdl,pd2))

;

endif; /* ps : 'pidset' */
/* pd: 'pid' */

mempidset (pdl , crpidset (pdl)) = true ()

;

if mempidset (pd2 , crpidset (pdl)) = true (

)

then
eqpid(pdl ,pd2) = true ()

;

endif

;

if and

(

eqpidset (psl ,ps2) ,

eqpidset (ps2 ,ps3)
) = true (

)

then
eqpidset (unpidset (psl ,ps2) ,ps3) = true ()

;

eqpidset (intpidset (psl ,ps2) ,ps3) = true ()

;

endif;
if and

(

eqpidset (psl ,ps2) ,

eqpidset (ps2 ,ps3)
) = trueO

then
unpidset (psl ,ps2) = unpidset (ps2 ,ps3)

;

intpidset (psl ,ps2) = intpidset (ps2 ,ps3)

;

else unpidset

(

unpidset (psl ,ps2)

,

197

unpidset (ps2 ,ps3)
) = unpidset

(

unpidset (psl ,ps2) ,

ps3
) ;

intpidset

(

intpidset (psl ,ps2) ,

intpidset (ps2 ,ps3
) = intpidset

(

intpidset(psl,ps2)

,

ps3
) ;

endif

;

mempidset (pdl , unpidset (psl ,ps2)

)

= or (

mempidset (pdl, psl)

,

mempidset (pdl ,ps2)
) ;

mempidset (pdl , intpidset (psl ,ps2)

)

= and (

mempidset (pdl
,
psl)

,

mempidset (pdl ,ps2)
) ;

if eqpidset (unpidset (psl ,ps2) , intpidset (psl ,ps2^
= true (

)

then
eqpidset (psl ,ps2) = true ()

;

endif;
if and(

and (

not (eqpid (pdl ,pd3))

,

not (eqpid (pd2 ,pd3)

)

) ,

eqpidset (unpidset (crpidset (pdl)

,

crpidset(pd2)) ,ps3)
) = trueO

then
mempidset (pd3 ,ps3) = false();

endif;
associative (unpidset ,pidset)

;

associative (intpidset ,pidset)

;

commutative (unpidset ,pidset)

;

commutative (intpidset ,pidset)

;

equivrel (eqpidset
,
pidset)

;

end extend;
end property_idset

;

spec value
is

extend
boolean

198

with
sort

val ;

primitive
op

vail: -> val;
val 2: -^ val;

/* 1st value */
/* 2nd value */

vain: -> val;
eqval: val, val -> bool;

axiom
equivrel (eqval , val) ;

end extend;
end value;

/* nth value */
/* equal value */

spec valueset
is

extend
boolean,
value

with
sort

val set

;

primitive
op

:
-> val set;

u: -> valset;
crvalset: val ^ valset;
unvalset: valset , valset ^ valset;

/* union */
intvalset: valset , valset -> valset;

/* intersection */
memvalset: val, valset ^ bool; /* member */
eqvalset: valset , valset -^ bool;

/* equal */
axiom

eqvalset (0 , 0) = true (); /* empty valset */
if eqvalset (vsl ,vs2) = true () /* vs : 'valset' */
then

(eqvalset (unvalset (vsl , crvalset (vl)) ,

unvalset (vs2 , crvalset (v2))) =

/* empty set */
/* universe */
/* create */

/' Veqval (vl , v2))

;

endif

;

memvalset (v, crvalset (v)) = true ()

;

if memvalset (v2 , crvalset (vl)) = true (

)

then
eqval(vl,v2) = true();

endif;

'val' */

199

if and(
eqvalset Cvsl ,vs3) ,

eqvalset (.vs2 , vs3)
) = trueO

then
eqvalset (unvalset (vsl ,vs2) ,vs3) = true (.) ;

eqvalset (intvalset (vsl ,vs2) ,vs3) = true ()

;

endif

;

if and

(

eqvalset (vsl ,vs2)

,

eqvalset (vs2 , vs3)
) = trueO

then
unvalset (vsl ,vs2) = unvalset (vs2 ,vs3) ,

•

intvalset (vsl ,vs2) = intvalset Cvs2 ,vs3)

;

else unvalset

(

unvalset(vsl,vs2)

,

unvalset (vs2 , vs3)
) = unvalset

(

unvalset (vsl ,vs2)

,

vs3
) ;

intvalset

(

intvalset (vsl ,vs2) ,

intvalset (vs2 ,vs3)
) = intvalset

(

intvalset (vsl ,vs2)

,

vs3
) ;

endif;
memvalset (vl , unvalset (vsl , vs2))

= or (

memvalset (vl , vsl)

,

memvalset (vl , vs2)
) ;

memvalset (vl , intvalset (vsl , vs2)

)

= and (

memvalset (vl , vsl)

,

memvalset (vl ,vs2)
) ;

if eqvalset (unvalset (vsl ,vs2) , intvalset (vsl ,vs2)

)

= true (

)

then
eqvalset (vsl ,vs2) = trueO;

endif

;

if and

(

and (

not (eqval (vl , v3))

,

not (eqval (v2 , v3)

)

200

eqvalset (unvalset (crvalset (vl

,

crvalset (.v2)) ,vs3)
) = trueO

then
memvalset (v3 , vs3) = falseO;

endif

;

associative (unvalset ,valset) ;

associative (intvalset ,valsetl

;

commutative (unvalset ,valset)

;

commutative (intvalset,valset)

;

equivrel (eqvalset ,valset). ;

end extend;
end valuset;

spec property
is

extend
boolean,
property_id,
property_idset

,

value,
valueset

with
sort

prop;
primitive
op

crprop : pid,valset -> prop; /* create */
eqprop : prop, prop ->- bool ; /* equal */
getid: prop -> pid; /* get property_id */
getvalset: prop ^ valset; /* get valueset */

axiom
if and(

eqpid (getid (prl) ,getid(pr2)) ,

eqvalset (getvalset (prl)
,
getvalset (pr2)

)

) = trueO
then /* pr : property */

eqprop (prl ,pr2) = true () ; /* pd : property_id */
endif

;

getid (crprop (pdl ,vsl)) = pdl

;

getvalset (crprop (pdl ,vsl)) = vsl

;

equivrel (eqprop, prop)

;

end extend;
end property;

spec propertyset
is

extend
boolean,
property_id

,

201

property_idset

,

value,
valueset

,

property
with

sort
propset

;

primitive
op

0: -> propset; /* empty set */
u: ^ propset; /* universe */
crpropset: prop ^ propset; /* create */
unpropset: propset

,
propset -> propset;

/* union */
intpropset: propset

,
propset ^ propset;

/* intersection */
mempropset : prop, propset ^ bool;

/* member */
getidset: propset -> pidset; /* get pidset */
eqpropset: propset

,
propset ^ bool;

/* equal propset */
axiom

eqpropset (0 , 0) = true () ; /* empty propset */
if eqpropset (prsl ,prs2) = true (

)

/* prs : 'propset' */
then

(eqpropset (unpropset (prsl , crpropset (prl))

,

unpropset (prs2 , crpropset (pr2)))
=

eqprop(.prl,pr2)) ;

endif; /* pr : 'prop' */
mempropset (pr, crpropset (pr)) = true ()

;

if mempropset (pr2 , crpropset (prl)) = true (

)

then
eqprop (prl ,pr2) = true ()

;

endif;
if and

(

eqpropset (prsl ,prs3)

,

eqpropset (prs2
,
prs3)

) = trueO
then

eqpropset (unpropset (prsl ,prs2) ,prs3) = true ()

;

eqpropset (intpropset (prsl ,prs2) ,prs3) = true ()

;

endif;
if and

(

eqpropset (prsl ,prs2)

,

eqpropset (prs2 ,prs3)
) = trueO

then
unpropset (prsl

,
prs2) = unpropset (prs2

,
prs3)

;

intpropset (prsl
,
prs2) = intpropset (prs2

,
prs3)

;

202

else unpropset(
unpropset (prsl ,prs2). ,

unpropset (prs2 ,prs3I
) = unpropset

(

unpropset(prsl/prs2)

,

prs3
) ;

intpropset

(

intpropset(prsl,prs2)

,

intpropset (prs2 ,prs3)
) = intpropset

(

intpropset (prsl ,prs2) ,

prs3
) ;

endif

;

mempropset (pr, unpropset (prsl ,prs2))_

= or (

mempropset(pr,prsl)

,

mempropset (pr
,
prs2

)

) ;

mempropset (pr , intpropset (prsl ,prs2)

)

= and (

mempropset (pr, prsl)

,

mempropset (pr ,prs2)
) ;

if eqpropset (unpropset (prsl ,prs2)

,

intpropset (prsl ,prs2)) = true (

)

then
eqpropset (prsl ,prs2) = true ()

;

endif

;

if and

(

and (

not (eqprop (prl ,pr3))

,

not (eqprop (pr2 ,pr3)

)

) ,

eqpropset (unpropset (crpropset (prl)

,

, ^ ,, crpropset (pr2)) ,prs3)) = true (

)

theA = trueO

mempropset (pr3 ,prs3) = falseO;
endif;
if mempropset (crprop (pd,vs) ,prs) = true (

)

/* pd: 'pid' */
then /* vs: 'valset' */

mempidset (pd,getidset (prs)) = true ()

;

endif;
associative (unpropset ,propset) ;

associative (intpropset ,propset)

;

commutative (unpropset ,propset)

;

commutative (intpropset
,
propset)

;

equivrel (eqpropset ,propset)

;

end extend;
end propertyset;

203

spec propertyvalue /*pr
:
property*/

is
extend

boolean,
property_id,
property_idset

,

value

,

valueset

,

property
with

sort
pval ;

primitive
op

crpval: pid,val -> pval; /* create */
getpid: pval ^ pid; /* get property_id */
getval : pval ^ val

;

/* get
propertyvalue */

eqpval: pval, pval ^ bool

;

memprop : pval
,
prop ^ bool;

axiom
getpid (crpval (pd,va)) = pd; /* pd : property_id */
getval (crpval (pd,va)) = va; /* va : value */
if and(

eqpid (getpid (pv) ,getid(pr))

,

memvalset (getval (pv)
,
getval set (pr)

)

) = true (

)

/* pv:
propertyvalue */

then
memprop (pv,pr) = true ()

;

endif

;

if and

(

memprop (pvl
,
pr)

,

memprop
(
pv2

,
pr

)

) = true (

)

then
eqpid (getpid (pvl)

,
getpid (pv2)) = true ()

;

endif

;

if eqpval (crpval (pdl , val) , crpval (pd2 ,va2)

)

= true (

)

then and

(

eqpid (pdl ,pd2) ,

eqval (val , va2)
) = true ()

;

endif;
equivrel (eqpval

,
pval)

;

end extend;
end propertyvalue;

204

spec propertyvalueset
is

extend
boolean,
property_id,
property_idset

,

value,
valueset

,

property

,

propertyvalue
with

sort
pvalset

;

primitive
op

0: ^ pvalset; /* empty set */
u: ^ pvalset; /* universe */
crpvalset: pval ^ pvalset; /* create */
unpvalset: pvalset

,
pvalset ^ pvalset;

/* union */
intpvalset: pvalset

,
pvalset ^ pvalset;

/* intersection */
mempvalset: pval, pvalset -> bool;

/* member */
mempset: pvalset ,propset -> bool;

/* member propset */
getpidset: pvalset -^ pidset; /* get pidset */
eqpvalset: pvalset

,
pvalset ^ bool;

/* equal */
axiom

eqpvalset (,) = true () ; /* empty pvalset */
if eqpvalset (pvsl ,pvs2) = true (

)

/* pvs : 'pvalset' */
then

(eqpvalset (unpvalset (pvsl , crpvalset
(crpval (pdl,vl)))

,

unpvalset (pvs2 , crpvalset
(crpval (pd2 ,v2)))) =

eqpval (crpval (pdl , vl) , crpval (pd2 , v2)))

;

endif; /* pd : 'pid' */
/* v: 'val' */

mempvalset (pv, crpvalset (pv)) = true();
/* pv: 'pval' */

if mempvalset (pv2 , crpvalset (pvl)) = true (

)

then
eqpval (pvl ,pv2) = true ()

;

endif;
if and(

eqpvalset (pvsl
,
pvs3)

,

eqpvalset (pvs 2 ,
pvs 3

)

) = trueO

205

then
eqpvalset (.unpvalset (pvsl ,pvs2) ,pvs3) = true () ;

eqpvalset (intpvalset (,pvsl,pvs2) ,pvs3) = true();
endif

;

if and(
eqpvalset (pvsl ,pvs 2)

,

eqpvalset (pvs2 ,pvs3)
) = trueO

then
unpvalset (pvsl ,pvs2) = unpvalset (pvs2 ,pvs3)

;

intpvalset (pvsl ,pvs2) = intpvalset (pvs2
,
pvs3)

;

else unpvalset

(

unpvalset (pvsl ,pvs2)

,

unpvalset (pvs2
,
pvs3)

) = unpvalset

(

unpvalset (pvsl ,pvs2)

,

pvs3
) ;

intpvalset

(

intpvalset (pvsl ,pvs2)

,

intpvalset (pvs2 ,pvs3)
) = intpvalset

(

intpvalset (pvsl ,pvs2)

,

pvs3
) ;

endif;
mempvalset (pv, unpvalset (pvsl ,pvs2)

)

= or (

mempvalset (pv, pvsl)

,

mempvalset (pv,pvs2)
) ;

mempvalset (pv, intpvalset (pvsl ,pvs2)

)

= and (

mempvalset (pv
,
pvsl

)

mempvalset (pv,pvs2)
) ;

if eqpvalset (unpvalset (pvsl ,pvs2)

,

, ^ ,, intpvalset (pvsl ,pvs2)) = true (

)

theil= trueO ^

eqpvalset (pvsl ,pvs2) = true (

)

endif

;

if and(
and (

not (eqpval (pvl
,
pv3))

,

not (eqpval (pv2
,
pv3)

)

) ,

eqpvalset (unpvalset (crpvalset (pvl)

,

crpvalset (pv2)) ,pvs3)) = true (

)

then
mempvalset (pv3 ,pvs3) = false();

endif

;

if mempvalset (crpval (pd,v) ,pvs) = true (

)

then
mempidset (pd,getpidset (pvs)) = true ()

;

endif;

206

if eqpidset (getpidset (pvs) ,getidset (prs)) = true (

)

then /* prs: 'propset' */
mempset (pvs ,prs) = true ()

;

endif

;

associative (unpvalset ,pvalset) ;

associative (intpvalset ,pvalset) ;

cummutative (unpvalset ,pvalset)

;

commutative (intpvalset
,
pvalset) ;

equivrel (eqpvalset ,pvalset) ;

end extend;
end propertyvalueset

;

spec object
is

extend
boolean
property_id
property_idset

,

value

,

propertyvalue

,

propertyvalueset
with

sort
obj ;

primitive
op

crobj : pvalset ^ obj

;

/* create */
getopvalset: obj ^ pvalset; /* get

propertyvalueset */
getopidset: obj ^ pidset; /*get

property_idset */
getoval: obj,pid -> val ; /* get value */
haspval: pval,obj ^ bool; /* has

propertyvalue */
eqobj : obj , obj -> bool; /* equal */

axiom
getopvalset (crobj (pvs)) = pvs; /* pvs: 'pvalset' */
if mempvalset (pv,pvs) = true (

)

/* /pv: 'pval' */
then

haspval (pv , crobj (pvs)) = true ()

;

endif

;

getopidset (crobj (pvs)) = getpidset (pvs)

;

if and

(

(crpval (pd, v) = pv) , /* pd : 'pid' */
mempvalset (pv, pvs) /* v: 'val' */

) = trueO
then

getoval (crobj (pvs) ,pd) = v;
endif

;

207

if eqpvalset (pvsl ,pvs2) = true C)

then
eqobj (crob j (pvsl) ,crob j (pvs2)) = true()_;

endif

;

eqobj (ol,o2) = /* o: 'obj' */
eqpvalset (getopvalset (ol) ,getopvalset (o2)_) ;

equivrel (eqobj, obj)

;

end extend;
end object;

spec objectclass
is

extend
boolean,
property_id,
property_idset

,

obj ect
with

sort
class

;

primitive
op

: ^ class;
u: -> class;
crclass: obj -^ c
unclass : class,

c

intclass: class,
subclass: class,
memclass: obj,cl
getcpidset; class

lass

;

lass ^ class;
class -> class
class ^ bool;
ass ^ bool;

pidset

;

/* empty class */
/* universe */

create *//*
/*
/*
/*
/*
/*

ij -^ class;
;s -> class;

b oo 1

;

:rue () ;

= true (

)

/*

union */
intersection
subclass */
member */
get pidset
of class */
insert */
delete */
equal */

V

/* empty class */
/* c: 'class' */

insob j : class, ob;
delobj : obj,clas;
eqclass: class, class

axiom
eqclass (0,0) = t]

if eqclass (cl , c2
then

eqclass (uncla:
uncla;

eqpvalset (pvsl ,pvs2)

;

endif

;

if and(
eqobj (ol ,o;

eqclass (cl
) = trueO

then
eqclass (insob j (ol ,cl) , insobj (o2 ,c2)) = true ()

;

endif

;

Lss (cl, crclass (crob j (pvsl))) ,

lss (c2 , crclass (crob j (pvs2)))

)

/* pvs : 'pvalset' */

•2) ,

,c2)

/• o •obj' */

208

memclass (o , crclass (o)) = true ()

;

if memclass (o2 ,crclass Col)) = true ()_

then
eqobj(ol,o2) = true ()

;

endif

;

if and(
eqclass (cl ,c3) ,

eqclass (c2 ,c3)
) = true (

)

then
eqclass (unclass (cl, c2). ,c3) = true () ;

eqclass (intclass (cl ,c2) ,c3) = true ()

;

endif

;

if and

(

eqclass (cl ,c2) ,

eqclass (c2 ,c3)
) = trueO

then
unclass (cl , c2) = unclass (c2 ,c3)

;

intclass (cl ,c2) = intclass (c2 ,c3)

;

else unclass

(

unclass (cl , c2)

,

unclass (c2 ,c3)

) = unclass

(

unclass (cl , c2)

,

c3
) ;

intclass

(

intclass (cl , c2) ,

intclass (c2 , c3)
) = intclass

(

intclass (cl ,c2)
c3

) ;

endif;
memclass (o , unclass (cl , c2))

= or (

memclass(o,cl)

,

memclass (o , c2)

) ;

memclass (o , intclass (cl , c2)

)

= and (

memclass (o , cl)

,

memclass (o , c2)

J ;

if and(
and(

not(eqobj (ol,o2)
)

,

not (eqobj (o2 ,o3)

)

) ,

eqclass (unclass (crclass (ol) , crclass (o2)

)

,c3)

) = trueO

209

then
memclass (o3 ,c3) = falseC);

endif

;

if and

(

memclass (ol , c) ,

memclass (o2 , c)

) = trueO
then

eqpidset (getopidset (ol) ,getopidset (o2).) = true () ;

endif;
if eqclass (unclass (cl ,c2) ,cl) = true ()

then
subclass (c2 , unclass (cl , c2)) = true ()

;

else if eqclass (unclass (cl ,c2) ,c2) = true (

)

then
subclass (cl , unclass (cl , c2)) = true ()

;

else and

(

subclass (cl , unclass (cl ,c2))

,

subclass (c2 , unclass (cl ,c2)

)

) = true ()

;

endif

7

delobj (o , insob j (c ,o)) = c;
getcpidset (crclass (o)) = getopidset (o)

;

if not (memclass (ol , c)) = true (

)

then
delobj(ol,c) = undef;

else de lob j(ol, unclass (crclass (ol) , crclass (o2))

)

= crclass (o2)

;

endif;
if not (eqpidset (getopidset (ol)

,
getcpidset (c))

)

= true (

)

then
insobj(c,ol) = undef;

else insobj (crclass (o2) ,ol) = unclass (crclass (o2)

,

crclass (ol))

;

endif;
if eqclass (intclass (cl , c2) , cl) = true (

)

then
subclass (cl , c2) = true ()

;

endif

;

associative (unclass , class)

;

associative(intclass, class)

;

commutative (unclass , class)

;

commutative (intclass , class)

;

equivrel (eqclass, class)

;

end extend;
end objectclass;

210

spec database
is

extend
property_id,
property_idset

,

value

,

valueset,
property,
propertyset

,

propertyvalue

,

propertyvalueset

,

object

,

ob jectclass,
identifiers

with
sort

db ;

primitive
op

crdb : dbid, class -^ db

;

/* create */
insclass: db, class ^ db ; /* insert new class */
delclass: class, db ^ db ; /* delete class */
retclass: db, class -> pvalset; /* retrieve pvalset

of class */
retob j : db,pval -> obj ;

/* retrieve obj by
pval */

getdbpidset: db -> pidset; /* get pidset */
modobj : db, obj, pval ^ db ; /* modify obj */
getdb: dbid -^ db

;

/* get db by ID */
getdbid: db ^ dbid; /* get ID of db */
memdb : class, db ^ bool ; /* member */
eqdb : db,db ^ bool; /* equal db */
eqdbid: dbid, dbid ^ bool; /* equal ID */

axiom
if eqdb(dl,d2) = true () /* d: 'db' */
then

eqdb (insclass (dl ,cl) , insclass (d2 ,c2))
=

eqclass (cl , c2)

;

endif

;

memdb (c , crdb (i ,c)) = true () ; /* c: 'class' */
memdb (c , insclass (d ,c)) = true ()

;

/* i: ID */
delclass (c , insclass (d, c)) = d;

if and

(

and (

eqpvalset (getopvalset (o) ,pvs)

,

/* o: 'obj ' */
memclass (o , c) /* pvs : 'pvalset' */

) ,

memdb (c , d

)

) = trueO

211

then
intpvalset (retclass (d ,c) ,pvs) = pvs

;

endif

;

if and(
and C

haspval (pv,o) , /* pv: 'pval' */
memclass (o ,c)

) ,

memdb (c ,d)

) = trueO
then

retobj (d,pv) = o;
endif;
if not (memdb (cl ,d)) = trued
then

delclass (cl ,d) = undef;
else delclass (cl , crdb (i /Unclass (cl , c2)))

=

crdb (i ,c2)

;

endif

;

if memdb (cl,d) = true()
then

insclass (d, cl) = undef;
else if and

(

and(
not (memdb (c 1 , d))

,

memdb (c2 ,d)

) ,

not (eqpidset (getcpidset (cl)

,

getcpidset (c2))

)

) = trueO
then and(

eqclass (insclass (crdb (i ,c2) ,cl)

,

crdb (i , unclass (cl , c2)))

,

eqpidset (getdbpidset (d) ,unpidset
(getcpidset (cl)

,
getcpidset (c2))

)

) = true ()

;

endif

;

if and(
and (

memclass (o , c) ,

haspval (pv,o)
) ,

memdb (c ,d)

) = trueO
then

mempvalset (pv, retclass (d , c)) = true ()

;

endif

;

212

if and

(

and (.

and(
and(/* pv: 'pval' */

memprop
(
pv , crprop

(
pd , vs))

,

/* pd: 'pid' */
mempidset (pd ,getidset (prs)

)

/* vs : 'valset' */

), /* prs : 'propset' */
eqpidset (getopidset (o) ,getidset (prs)

)

) , /* o: 'obj ' */
memclass (o ,c) /* d: ' db ' */

) ,

memdb (c ,d)

) = trueO
then and

(

haspval (pv,o) ,

memdb (crclass (o) ,modob j (d ,o ,pv)

)

) = true () ;

else modobj (d,o ,pv) = undef;
endif

;

getdbid (crdb (i , c)) = i;

if eqdb(getdb(il) ,getdb(i2)) = true (

)

then
eqdbid (il , i2) = true ()

;

endif;
equivrel (eqdb ,db)

;

equivrel (eqdbid, dbid)

;

end extend;
end database;

spec list
parm

extend
boolean

,

string
with

sort
elm;

primitive
op

eqelm: elm, elm ^ bool; /* equal */

axiom
equivrel (eqelm, elm)

;

end extend;
IS

extend
natural

,

boolean

213

with
sort

1st;
primitive
op

nullst: -> 1st;
makelst: elm -^ 1st;

makenewlst: 1st -> 1st;

firstelm: 1st elm;

firstlst: 1st ^ 1st;

restlst: 1st ^ 1st;
catlst: 1st, 1st -^ 1st;

catelm: elm, 1st ^ 1st;

memelm: elm, 1st -^ bool;

memblst: 1st, 1st -^ bool;

lenlst: 1st ^ nat;
unlst: 1st, 1st ^ 1st;
intlst : 1st, 1st ^ 1st;
insist: 1st, 1st ^ 1st;
deist: 1st, 1st ^ 1st;
getlst: 1st, 1st -> 1st;
sofirstlst: 1st 1st;

retobjlst: 1st, 1st ^ 1st;
modlst: 1st, 1st -> 1st;
eqlst: 1st, 1st -^ bool;

axiom
firstelm(makelst (k)) = k;
firstelm (catlst (makelst (k

firstelm(nullst ()) = unde
firstelm (makenewlst (makel
restlst (catlst (makelst (k)

restlst (nullst) = undef
restlst (makelst (k)) = nul
restlst (catlstdl, 12))

=

firstlst(catlst(ll,12)) =

if makelst(k) = 1

then
firstlst (makelst (k))

=

endif

;

lenlst (nullst ()) = zerona
lenlst (makelst (k)) = succ

) ,1)
f

;

st(k
,1))

ist(
12;
11;

/* empty list */
/* make list from

elm */
make list from
list */
first elm of
list */
first 1st of
list */
rest of list */
concatenate two
1st */
concatenate elm
to 1st */
elm member of
1st */
1st member of
1st */
length of 1st */

/*

/*

/*

/*
/*

/*

/*

/*

/*
/*
/*
/*
/*
/*

/*
/*

union */
intersection */
insert */
delete */
get list */
set of first
lists */
retrieve objlst */
modify */
equal */

) = k;

))) = k ;

= 1;

) ;

1;

to ;

nat (zeronat (

)

214

lenlst (restlst (1)) = subnat (lenlst (1)

,

succnat (zeronat ()))

;

lenlst (catlst (11,12)) = sumnat (lenlst (11) , lenlst (12))

;

if and

(

(1 != nullstO) ,

(restlstCl) = nullstO)
) = trueO

then
lenlst(l) = succnat (zeronat)

;

endif

;

catlst(catlst(ll,12) ,13) = catlst (11 , catlst (12 , 13))

;

catlst (nullstO ,1) = catlst (1 ,nullst ()) = 1;
implies (eqelin(kl ,k2) ,eqlst (makelst (kl) ,

makelst (k2))) = true ()

;

gtnat (lenlst (makelst (k)), lenlst (nullst ()) = true ()

;

if (lenlst(ll) != zeronat ()

)

then
gtnat (lenlst (catlst (11, 12) , lenlst (12))) = true ()

;

else eqnat (lenlst (catlst (11, 12) , lenlst (12))

)

= true ()

;

endif;
if and

(

(11 = nullstO) ,

(12 = nullstO)

) = trueO
then

eqlst(ll,12) = trueO ;

else if (firstelm(ll) 1= firstelm(12)

)

then
eqlst(ll,12) = falseO ;

else eqlst (restlst (11) ,restlst(12))

;

endif

;

if (1 = nullstO)

then
catelm(k,l) = makelst(k);

else if (makelst(k) = nullst())
then

catelm(k,l) = 1

;

else firstelm(l) = k

;

endif

;

if (11 = nullstO)

then
unlst(ll,12) = 12;

else if memelm(firstelm(11) , 12) = true ()_

then
unlst(restlst(ll) ,12)

;

else catelm(firstelm(11) , unlst (restlst (11) ,12))

;

endif;
memelm(firstelm(1) , 1) = true ()

;

memelm(k , makelst (k)) = true ()

;

eqlst (1 ,makenewlst (restlst (1))) = false();
equivrel (eqlst, 1st)

;

215

if eqlst(firstlst(l.l) ,nullst(.)) = true ().

/* recursion for
memblst */

then
memblst (11 , 12) = true ()

;

else if and(
not (eqlst (firstlst (11) ,nullst) = true ())

,

(eqlst(firstlst(12) ,nullst()) = true ()

)

) = trueO
then

memblst (11 , 12) = false();
else if eqlst (firstlst(ll) ,firstlst(12)) = true (

)

then
memblst (restlst(ll) ,restlst(12))

;

else memblst (firstlst (11) ,restlst(12))

;

endif

;

if or(/* recursion for
intlst */

(eqlst(ll,nullst()) = true ())

,

(eqlst(12,nullst()) = true ()

)

) = trueO
then

intlst (firstlst(ll) ,12) = nullstO;
else if memblst (firstlst (11) , 12) = true (

)

then
catlst(firstlst(ll) , intlst (restlst (11) ,12))

;

else intlst (restlst (11) , 12)

;

endif

;

if or

(

/* recursion for
getlst */

(eqlst(ll,nullst) = true ())

,

(eqlst (12,nullst()) = true ()

)

) = trueO
then

getlst (11 , 12) = undef;
else if eqlst(firstlst(ll) ,12) = true (

)

then
getlst(ll,12) = firstlst ((restlst(ll))

;

else if eqlst (firstlst(restlst (11)) ,12) = true (

)

then
getlst(ll,12) = firstlst(ll)

;

else getlst (restlst (restlst (11)) ,12)

;

endif;
if or

(

/* recursion for
deist */

(eqlst (12, nullst) = true ())

,

(not (memblst (11,12)) = true ()

)

) = trueO
then

delst(ll,12) = undef;
else if not (eqlst (11, firstlst(12))) = true (

)

216

then
makenewlst (catlst (firstlst C12) , deist (11

,

restlst(12))))

;

else makenewlst (restlst (12).) ;

endif

;

if /* recursion for
sofirstlst */

Itnat (lenlst (1) , succnat (succnat (zeronat ()))

)

= true (

)

then
sofirstlst (1) = undef;

else if eqnat (lenlst (1) , succnat (succnat (zeronat ()))

)

= true (.)

then
sofirstlst(l) = firstlst(l)

;

else catlst (firstlst (1) , sofirstlst (restlst
(restlst(l)))

;

endif;
if /* recursion for

retobjlst */
eqlst (firstlst (11) ,nullst) = true (

)

then
retobjlst(ll,12) = nullstO;

else if intlst(12, firstlst (11)) = 12
then

catlst(firstlst (11) ,retobjlst (restlst (11) ,12))

;

else retobj 1st (restlst (11) , 12) ;

endif;
if and

(

and(
and (

and (.

memblst (11 , makenewlst (unlst (12,13)))

,

memblst (12,sofirstlst(14)

)

) ,

(sofirstlst(15) = sofirstlst(14)

)

) ,

memblst (15,16)
) ,

memblst (16, 17)
) = trueO

then
memblst (makenewlst (15) ,modlst (17 , 15 , 11)

)

= true ()

;

else modlst (17 , 15 , 11) = undef;
endif

;

end extend;
end list;

217

spec pidlist
is

use
list (property_id)

where
pid is elm;
eqpid is eqelm;

end pidlist;

spec pidsetlist
is

use
list (property_idset)

where
pidset is elm;
eqpidset is eqelm;

end pidsetlist;

spec vallist
is

use
list (valued

where
val is elm;
eqval is eqelm;

end vallist;

spec valsetlist
is

use
list (valueset)

where
valset is elm;
eqvalset is eqelm;

end valsetlist;

spec proplist
is

use
list (property)

where
prop is elm;
eqpropis eqelm;

end proplist

•

218

spec propsetlist
is

use
list (propertyset)

where
propset is elm;
eqpropset is eqelm;

end propsetlist

7

spec pvallist
is

use
list (propertyvalue)

where
pval is elm;
eqpval is eqelm;

end pvallist;

spec pvalsetlist
is

use
list (propertyvalueset)

where
pvalset is elm;
eqpvalset is eqelm;

end pvalsetlist;

spec objlist
is

use
list (object)

where
obj is elm;
eqobj is eqelm;

end objlist;

spec classlist
is

use
list(objectclass)

where
class is elm;
eqclass is eqelm;

end classlist,

219

spec dblist
is

use
list (database)

where
db is elm;
eqdb is eqelm;

end dblist; /* database part */

spec typing
is

extend
boolean,
natural

,

integer,
character,
str . chartype

,

intensity,
pointcolor

,

point

,

rectangle

,

imageform,
pntblktrans,
iconfont

,

identifiers,
memaddress

,

regaddress

,

stkaddress

,

dregaddress

,

monitorattribute

,

files

,

operatorclasses

,

instructiontype

,

pidlist

,

pidsetlist

,

vallist

,

valsetlist

,

proplist

,

propsetlist

,

pvallist

,

pvalsetlist

,

objlist

,

classlist
dblist

with
sort

type

;

val

;

/* database part */

/* database part */

2 20

primitive
op

typingopers
typingopers
typingopers
typingopers
typingopers
typingopers
typingopers
typingopers
typingopers
typingopers
typingopers
typingopers
typingopers
typingopers
typingopers
typingopers
typingopers
typingopers
typingopers
typingopers
typingopers
typingopers
typingopers
typingopers
typingopers
typingopers
typingopers
typingopers
typingopers
typingopers
typingopers
typingopers
typingopers
typingopers
typingopers
typingopers
typingopers
typingopers
typingopers
typingopers
typingopers
typingopers
typingopers

hidden
op

whattype : val ^ type;
eqtype : type, type -> bool;

bool)

;

nat) ;

int) ;

char)

;

str . char)

;

in tens)

;

color)

;

pnt) ;

ret) ;

form)

;

ptblt)

;

font)

;

memid)

;

regid)

;

stkid)

;

dregid)

;

fid) ;

memaddr)

;

regaddr)

;

stkaddr)

;

dregaddr)

;

mattribute)

;

file)

;

mop)
dop)
top)
qop)
sop)
oop)
rop)
bop)
instr)

;

pidlist . 1st)

;

pidsetlist . 1st)

;

val list .1st)

;

valsetlist . 1st)

;

proplist .1st)

;

propsetlist . 1st)

;

pvallist .1st)

;

pvalsetlist . 1st)

;

objlist.lst)

;

classlist . 1st)

;

dblist.lst)

;

/* database part */

/* database part */

2 21

axiom
typingaxioms
typingaxioms
typingaxioms
typingaxioms
typingaxioms
typingaxioms
typingaxioms
typingaxioms
typingaxioms
typingaxioms
typingaxioms
typingaxioms
typingaxioms
typingaxioms
typingaxioms
typingaxioms
typingaxioms
typingaxioms
typingaxioms
typingaxioms
typingaxioms
typingaxioms
typingaxioms
typingaxioms
typingaxioms
typingaxioms
typingaxioms
typingaxioms
typingaxioms
typingaxioms
typingaxioms
typingaxioms
typingaxioms
typingaxioms
typingaxioms
typingaxioms
typingaxioms
typingaxioms
typingaxioms
typingaxioms
typingaxioms
typingaxioms
typingaxioms
equivrel (eqtype , type)

;

end extend;
end typing

;

bool)

;

nat) ;

int) ;

char)

;

str . char)

;

intens)

;

color) 7

pnt) ;

ret) ;

form)

;

ptblt) ;

font)

;

memid)

;

regid)

;

stkid)

;

dregid)

;

fid) ;

memaddr)

;

regaddr)

;

stkaddr)

;

dregaddr) ;

mattribute)
file) ;

mop)
dop)
top)
qop)
sop)
oop)
rop)
bop)
instr)

;

pidlist . 1st) ;

pidsetlist . 1st) ;

vallist . 1st) ;

valsetlist .1st) ;

proplist . 1st)

;

propsetlist . 1st)

;

pvallist . 1st)

;

pvalsetlist . 1st)

;

obj list . 1st)

;

classlist . 1st)

;

dblist . 1st)

;

/* database part */

/* database part */

222

spec operators
is

extend
operatorclasses

,

typing
with

primitive
op

boolnot: -^ mop;
booland
boolor

:

natpred
natsucc
natsum:
natsub

:

nateq: -

natgt: -

natlt: -

intpred
intsucc
intabs :

intntoi
intiton
intsum
intsub
intmlt
intdiv
intmod
inteq

:

intgt

:

intlt

:

chareq
chargt
charstrlen: ->

charmakestr

:

^ dop

;

^ dop;
-> mop

;

^ mop

;

->- dop

;

^ dop

;

rop;
rop;
rop;
-> mop;
-> mop;

^ mop

;

^ mop

;

-^ mop

;

-> dop

;

^ dop;
-> dop

;

-y dop;
-> dop

;

rop;
rop;
rop;

-y rop;
^ rop;

mop;
> mop

;

charheadstr
chartailstr
charcatstr

:

str -chareq

:

str . chargt:
intenspred

:

intenssucc

:

intenssum: -

intenssub: -

intenseq : ^
intensgt: ->

-^ mop;
-^ mop

;

-> dop;
-^ rop;
-y rop;
^ mop

;

-> mop

;

• dop

;

dop

;

rop;
rop;

colorredcompnt : -^ mop;
colorgrncompnt : -^ mop;
colorblucompnt : ^ mop;
colordef: -> top;
coloreq: ^ rop;

223

pntxcord :
-> mop

pntycord : ^ mop

;

pntloc: ->• dop;
pntoffset: ^ top;
pnteq: -> rop;
pntgt: ^ rop;
pntlt: ^ rop;
pntge: -^ rop;
pntle: ^ rop;
rctorigin: -> mop;
rctcorner: ^ mop;
rctxdim: -> mop

;

rctydim: ^ mop

;

rctarea: ^ dop

;

rctin: -> dop;
rctdis j

:

^ dop;
rctint: -> dop;
rctput: -> dop;
rctshift: ^ top;
forminit: -^ mop;
formfarea: ^ mop;
formgetcolor : -> dop;
formfill: ^ dop;
formsetcolor : -> top;
forminv: ^ top;
fontinit: ^ mop;
fontrct: ^ mop;
fontlen: -> mop;
fontspmap: ^ dop;
fontpsmap: ^ dop;
fontin: ^ dop;
fontdel : ^ dop;
fontget: ^ dop;
fontset: ^ top;
fontoffset: ^ qop;
ptbltgetsrct : h- mop;
ptbltgetdrct : ^ mop;
ptbltgetcrct : ^ mop;
ptbltgetrule : -> mop;
ptbltsetsrct : ->- dop;
ptbltsetdrct : ^ dop;
ptbltsetcrct : -> dop;
ptbltsetrule : ^ dop;
ptbltcopy: -> qop;
ptbltdrawline : -^ sop;
ptbltfont: ^- sop;
ptbltfontinv : ^ oop

;

pidlist . eqlst : ^ rop;
pidsetlist .makenewlst : ^ mop;
pidsetlist . unlst : ^ dop;
pidsetlist . intlst : ^ dop;
pidsetlist .memblst : ^ rop;

/* database part */

224

pidsetlist .eqlst : -> rop;
vallist .eqlst : -> rop;
valsetlist .makenewlst : ^ mop;
valsetlist .unlst :

-*- dop;
valsetlist . intlst : ^ dop;
valsetlist .memblst : ^ rop;
valsetlist . eqlst : ^ rop;
proplist . firstlst : -> mop;
proplist .restlst :

->- mop;
proplist . catlst: -> dop;
proplist . eqlst : ^ rop;
propsetlist .makenewlst : -> mop;
propsetlist . sof irstlst : ^ mop;
propsetlist .unlst : -> dop;
propsetlist . intlst : -> dop;
propsetlist .memblst : ^ rop;
propsetlist . eqlst : ^ rop;
pvallist. firstlst : ->- mop;
pvallist .restlst :

->- mop;
pvallist . catlst : ^- dop;
pvallist .memblst : -^ rop;
pvallist . eqlst : ^ rop;
pvalsetlist .makenewlst : -> mop;
pvalsetlist . sofirstlst : ^ mop;
pvalsetlist . unlst ; -> dop;
pvalsetlist . intlst : -^ dop;
pvalsetlist .memblst : ^ rop;
pvalsetlist . eqlst : ^ rop;
ob j list .makenewlst : ^ mop;
obj list . sofirstlst : -> mop;
ob j list

.
getlst : ^ dop;

obj list . eqlst : ^ rop;
obj list .memblst : ^ rop;
classlist .makenewlst : -^ mop;
classlist. sofirstlst : -^ mop;
classlist .unlst : ^ dop;
classlist . intlst : -> dop;
classlist .catlst : -*- dop;
classlist . deist : -> dop;
classlist .memblst : ^ rop;
classlist . eqlst : ^ rop;
dblist .makenewlst : -> mop;
dblist . sofirstlst : ^ mop;
dblist . catlst : -> dop;
dblist .deist : ^ dop;
dblist . intlst : ^ dop;
dblist .modlst : -^ top;
dblist .memblst : -> rop; /* database part */
isbool: -> bop;
isnat: ^ bop;

225

isint: ^ bop;
ischar: ^ bop;
isstr.char: -> bop;
isintens: -> bop;
iscolor: ^ bop;
ispnt: ^ bop;
isrct: ^ bop;
isform: -> bop;
isptblt: -> bop;
isfont: ^^ bop;
ismemid: ^ bop;
isregid: ->- bop;
isstkid: ^ bop;
isdregid: -> bop;
isfid: -» bop;
ismemaddr: ^ bop;
isregaddr: ^ bop;
isstkaddr: ^ bop;
isdregaddr: -> bop;
isfile: -> bop;
ismop: ^ bop;
isdop: ^- bop;
istop
isqop:
issop:
isoop
isrop
isbop
isinstr

bop;
bop;
bop;
bop;
bop;
bop;
-> bop;

ispidlist . 1st :
->

ispidsetlist . 1st
isvallist . 1st ;

-*

isvalsetlist. 1st

:

isproplist . 1st :
->

ispropsetlist . 1st

bop;
^ bop;

bop;
^ bop

;

bop;
- bop;

/* database part */

ispvallist .1st :
-> bop;

ispvalsetlist . 1st : ^ bop;
isobj list . 1st : -> bop;
isclasslist . 1st : -> bop;
isdblist . 1st : ^ bop;

hidden
/* database part */

op
applymop
applydop
applytop
applyqop
applysop
applyoop
applyrop
applybop

mop,val -> val

;

dop,val,val ^- val;
top , val , val , val ^ val;
qop, val , val , val , val -^ val;
sop , val , val , val , val , val , val -> val;
oop, val , val , val , val ,val,val ,val , val ^ val;
rop, val, val -> val;
bop, val ^ val;

226

axiom
applymop

applydop

applydop

applymop

applymop

applydop

applydop

applymop

applymop

applymop

applymop

applymop

applydop

applydop

applydop

applydop

applydop

applymop

applymop

applymop

applymop

applydop

));
applymop

applymop

boolnot(),v) = valofbool (not

(

atomofbool (v)))

;

booland () ,vl , v2) = valofbool (and (.

atomofbool (vl) , atomofbool (v2)))

boolor () , vl , v2) = valofbool (or

(

atomofbool (vl) , atomofbool (v2)))

natpred(),v) = valofnat (prednat

(

atomofnat (v)))

;

natsucc(),v) = valofnat (succnat

(

atomofnat (v)))

;

natsum(
) , vl , v2) = valofnat (sumnat

(

atomofnat (vl) , atomofnat (v2)))

;

natsub () , vl , v2) = valofnat (subnat

(

atomofnat (vl) , atomofnat (v2)));
intpred(),v) = valof int (predint

(

atomof int (v)

;

intsucc(),v) = valofint (succint (

atomofint (v)

;

intabs(),v) = valof int (absint

(

atomof int (v)

;

intntoi(),v) = valof int (ntoi

(

atomofnat (v)))

;

intiton(),v) = valofnat (iton

(

atomof int (v)))

;

intsum , vl , v2) = valof int (sumint

(

atomofint (vl) , atomof int (v2)))

intsub () , vl , v2) = valof int (subint
atomof int (vl) , atomof int (v2)))

intmlt() ,vl,v2) = valof int (mltint
atomof int (vl) , atomof int (v2)))

intdiv () ,vl,v2) = valof int (divint
atomof int (vl) , atomof int (v2)))

intmod () , vl , v2) = valofint (modint

(

atomofint (vl) , atomof int (v2))).

charstrlen () , v) = valofnat (lenstr . char

(

atomof str .char (v)))

;

charmakestr () , v) = valof str . char

(

makestr .char (atomof char (v)));

charheadstr () , v) = valofchar (headstr . char
atomof str . char (v)))

;

chartailstr () , v) = valof str . char

(

tailstr .char (atomof str .char (v)))

;

charcatstr () , vl , v2) = valof str . char

(

catstr . char (atomof str . char (vl)

,

atomof str . char (v2)

intenspred () , v) = valofintens

(

predintens (atomofintens (v)

;

intenssucc () , v) = valof intens

(

succintens (atomof intens (v)

;

227

applydop

)) ;

applydop

)) ;

applymop

applymop

applymop

applytop

applymop

applymop

applydop

applytop

)) ;

applymop

applymop

applymop

applymop

applydop

applydop

applydop

applydop

applydop

applytop

));

intenssum() , vl , v2) = valofintens

(

sumintens (atomofintens (vl)

,

atomofintens (v2

)

intenssub () , vl , v2) = valofintens

(

subintens (atomofintens (vl)

,

atomofintens (v2).

colorredcompnt () ,v) = valof intens (.

redcompnt (atomofcolor (v)))

;

colorgrncompnt () , v) = valof intens

(

grncompnt (atomofcolor (v)))

;

colorblucompnt () , v) = valofintens

(

blucompnt (atomofcolor (v)));
colordef () , vl, v2 , v3) = valofcolor(
defcolor (atomofintens (vl)

,

atomofintens (v2)

,

atomofintens (v3.)

pntxcord ,v) = valof int (xcord

(

atomofpnt(v)))

;

pntycord () , v) = valof int (ycord

(

atomofpnt (v)))

;

pntloc () , vl , v2) = valofpnt (locpnt

(

atomof int (vl) , atomofint (v2)))

;

pntof f set () , vl , v2 , v3) = valofpnt

(

offsetpnt (atomofint (vl)

,

atomofpnt (v2)

,

atomofpnt (v3)

rctorigin () , v) = valofpnt (origin

(

atomofret (v)))

;

rctcorner () , v) = valofpnt (corner

(

atomofret (v)))

;

rctxdim(),v) = valof int (xdimrct

(

atomofret (v)))

;

rctydim(),v) = valof int (ydimrct

(

atomofret (v)))

;

retarea () , vl , v2) = valofret (area

(

atomofpnt (vl) , atomofpnt (v2)))

;

retin () , vl , v2) = valofbool (inret

(

atomofpnt (vl) ,atomofret (v2)))

;

retdis j () , vl , v2) = valofbool (disjret

(

atomofret (vl) ,atomofret (v2)))

;

retint () , vl , v2) = valofret (intsctret

(

atomofret (vl) , atomofret (v2)));

retput () , vl, v2) = valofret (putret

(

atomofpnt (vl) ,atomof ret (v2)))

;

retshif t , vl , v2 ,v3) = valofret (shiftret

(

atomof int (vl)

,

atomof int (v2)

,

atomof int (v3)

,

228

applymop

applymop

applydop

applydop

applytop

)) ;

applytop

)) ;

applymop

applymop

applymop

applydop

applydop

applydop

applydop

applydop

applytop

));
applyqop

) I ;

applymop

(forminit () , v) = valof form (initform(
atomofret (v)))

;

Cformfarea () , v) = valofret (farea

(

atomofform (v)))

;

(formgetcolor () , vl , v2) = valofeolor

(

getcolor (atomofpnt (vl) , atomofform (v2)

)

(formf ill () , vl ,v2) = valof form(filiform

(

atomofeolor (vl) ,atomof form(v2))),•

(formseteolor () ,vl,v2 ,v3) = valofform(
seteolor (atomofpnt (vl)

,

atomofpnt (v2)

,

atomofpnt (v3)

(forminv() , vl , v2 , v3) = valof form

(

invform (atomofeolor (vl)

,

atomofeolor (v2)

,

atomofeolor (v3)

(fontinit () ,

v

atomofret (v)

(fontret () , v)
atomoffont (

v

(fontlen () , v) =

atomof font (v)

)

(fontspmap() ,vl
atomofret (vl

(fontpsmap () , vl
atomofret (vl
(fontin () , vl , v2
atomofnat (vl

(fontdel , vl ,

v

atomofnat (vl
(fontgetfont

(

atomofnat (vl
(fontset () , vl ,

V

atomofform (vl)
atomofnat (v2)

,

atomof font (,v3

)

(fontof f set () , vl , v2 , v3 , v4) = valofpnt

(

of fsetfont (atomof int (vl)

,

atomof int (v2)

,

atomof font (v3)

,

atomofpnt (v4)

= valoffont (initfont

(

) ;

valofret (rctfont

(

) ;

valofnat (lenfont

(

) ;

,v2) = valofpnt (spmap

(

atomofpnt (v2)))

;

,v2) = valofpnt (psmap

(

atomofpnt (v2)))

;

) = valofbool (infont

(

atomof font (v2)));

2) = valof font (delfont

(

atomoffont (v2)))

;

vl,v2) = valofform(getfont

(

atomof font (v2)))

;

2,v3) = valoffont (setfont

(

(ptbltgetsrct () , v) =

atomofptblt (v)))

;

applymop (ptbltgetdret ,v) =

atomofptblt (v)))

;

valofret (getsrct

(

valofret (getdret

(

229

applymop (ptbltgetcrct () , v) = valofret (getcrct

(

atomofptblt (v)))

;

applymop (ptbltgetrule () ,v) = valofnat (getrule

(

atomofptblt (v)))

= valofptbltC
, atomofptblt (v2)

)

= valofptbltC
, atomofptblt (v2)

)

= valofptblt(
, atomofptblt (v2)

)

= valofptblt(
, atomofptblt (v2)

)

applydop (ptbltsetsrct () ,vl,v2
setsrct (atomofret (vl

applydop (ptbltsetdret ,vl,v2
setdret (atomofret (vl

applydop (ptbltseteret (_) ,vl,v2
seterct (atomofret (vl

applydop (ptbltsetrule () ,vl,v2
setrule (atomofnat (vl. , , . .

applyqop (ptbltcopy () ,vl ,v2 ,v3 ,v4) = valofform(
eopyblt (atomofptblt (vl)

,

atomofform (v2)

,

atomof form(v3)

,

atomofform (v4

)

)) ;

applysop (ptbltdrawline () , vl , v2 , v3 , v4 , v5 , v6) =

valofform (drawline (atomofpnt (vl)

,

atomofpnt (v2)

,

atomofblt (v3)

,

atomofform (v4)

,

atomofform (v5)

,

atomof form (v6)

)) ;

applysop (ptbltfont () , vl , v2 , v3 , v4 , v5 , v6)
=

valofform (eopyfont (atomofpnt (vl)

,

atomofptblt (v2)

,

atomofnat (v3)

,

atomoffont(v4)

,

atomof form (v5)

,

atomofform(v6)

,

)) ;

applyoop (ptbltfontinv () , vl , v2 , v3 , v4 , v5 , v6 , v7 , v8) =

valofform (invcopyfont (atomofeolor (vl)

,

atomofcolor (v2)

,

atomofpnt (v3)

,

atomofptblt (v4)

,

atomofnat (v5)

,

atomof font (v6)

,

atomof form (v7)

,

atomofform (v8)

)) ;

applymop (pidsetlist .makenewlst () ,v) =

valofpidset list (pidsetlist .makenewlst

(

atomofpidlist (v)

)) ;
/* database part */

applydop (pidsetlist . unlst () ,vl,v2) =

valofpidsetlist (pidsetlist. un 1st

(

atomofpidsetlist (vl)

,

atomofpidsetlist (v2)

)) ;

230

applydop (pidsetlist .intlst () ,vl,v2) =

valofpidsetlist (pidsetlist. intlst

(

atomofpidsetlist (vl)

,

atomofpidsetlist (v2)

)) ;

applymop (valsetlist .makenewlst ,v) =

valofvalsetlist (valsetlist .makenewlst

(

atomofvallist (v)));
applydop (valsetlist .unlst () ,vl,v2) =

valofvalsetlist (valsetlist .unlst C

atomofvalsetlist (vl)

,

atomofvalsetlist (v2)

)) ;

applydop (valsetlist . intlst () ,vl,v2) =

atomofvalsetlist (valsetlist. intlst

(

atomofvalsetlist (vl)

,

atomofvalsetlist (v2)

)) ;

applymop (proplist. firstlst ,v) = valofpidlist

(

proplist. firstlst (atomofproplist (v)))

;

applymop (proplist .restlst ,v) = valofvalsetlist

(

proplist . restlst (atomofproplist (v)))

;

applydop (proplist . catlst () ,vl ,v2) = valofproplist

(

proplist . cat 1st (atomofpidlist (vl)

,

atomofvalsetlist (v2

)

1) ;

applymop (propsetlist. makenewlst () ,v) =

valofpropsetlist (propsetlist. makenewlst

(

atomofproplist (v)))

;

applymop (propsetlist . sofirstlst ,v) =

valofpidsetlist (propsetlist. sofirstlst

(

atomofpropsetlist (v)))

;

applydop (propsetlist . unlst () ,vl,v2) =

valofpropsetlist (propsetlist .unlst

(

atomofpropsetlist (vl)

,

atomofpropsetlist (v2

)

)) ;

applydop (propsetlist . intlst () ,vl,v2) =

valofpropsetlist (propsetlist , intlst

(

atomofpropsetlist (vl)

,

atomofpropsetlist (v2)

)) ;

applymop (pvallist. firstlst () ,v) = valofpidlist

(

pvallist . firstlst (atomofpvallist (v)))

;

applymop (pvallist . restlst ,v) = valofvallist

(

pvallist .restlst (atomofpvallist (v)))

;

applydop (pvallist .catlst () ,vl ,v2) = valofpvallist

(

pvallist . catlst (atomofpidlist (vl)

,

atomofvallist (v2)

)J.;

231

applymop(pvalsetlist .makenewlst () ,v) =

pvalsetlist .makenewlst (atomofpvallist (v)))

;

applymop (pvalsetlist . sofirstlst () ,v) =

valofpidsetlist (pvalsetlist. sofirstlst (.

atomofpvalsetlist (v)))

;

applydop (pvalsetlist .unlst () ,vl,v2) =

valofpval set list (pvalsetlist , unlst

(

atomofpvalsetlist (vl)

,

atomofpvalsetlist (v2)

)) ;

applydop (pvalsetlist . intlst ,vl,v2) =

valofpval set list (pvalsetlist . intlst

(

atomofpvalsetlist (vl)

,

atomofpvalsetlist (v2

)

)) ;

applymop (obj list .makenewlst ,v) = valofobj list

(

obj list .makenewlst (atomofpvalsetlist (v)))

;

applymop (objlist. makenewlst ,v) = valofpvalsetlist

(

obj list .makenewlst (atomofobj list (v)))

;

applymop (obj list , sofirstlst () ,v) = valofpidsetlist

(

obj list. sofirstlst (atomofobj list (v)))

;

applydop (obj list. getlst ,vl,v2) = valofvallist

(

obj list .getlst (atomofobj list (vl)

,

atomofpidlist (v2)

,

));
applymop (classlist. makenewlst (J ,v) =

valofclasslist (classlist .makenewlst

(

atomofpidsetlist (v))) ;

applymop (classlist . sofirst . 1st () ,v) =

valofpidset list (classlist. sofirstlst(
atomofclasslist (v)));

applydop (classlist .unlst () ,vl ,v2) = valofclasslist

(

classlist. unlst (atomofclasslist (vl)

,

atomofclasslist (v2)

)) ;

applydop (classlist . intlst () ,vl,v2) =

valofclasslist(classlist. intlst

(

atomofclasslist (vl)

,

atomofclasslist (v2)
)) ;

applydop (classlist . catlst () ,vl,v2) =

valofclasslist (classlist. catlst

(

atomofclasslist (vl)

,

atomofobj list (v2)

)) ;

applydop (classlist . deist () ,vl,v2) =

valofclasslist(classlist.delst(
atomofobj list (vl)

,

atomofclasslist (v2

)

)) ;

232

applymop (dblist .raakenewlst ()_ ,v) =

valofdblist (dblist .makenewlst (_

atomofclasslist (v)))

;

applymop (dblist . sofirstlst () ,v) =

valofpidsetli St (dblist. sofirstlst

(

atomofdblist (v)))

;

applydop (dblist . catlst ,vl,v2) = valofdblist(
dblist . catlst (atomofdblist (vl)

,

atomofclasslist (v2)

)) ;

applydop (dblist .deist ,vl ,v2) = valofdblist(
dblist. deist (atomofclasslist (vl)

,

atomofdblist (v2)

)) ;

applydop (dblist . intlst 0, vl ,v2) =

valofpval setlist (dblist. intlst

(

atomofdblist (vl)

,

atomofclasslist (v2)

)1;
applydop (dblist . retobjlst () ,vl,v2) =

valofobj list (dblist. retobj 1st

(

atomofdblist (vl)

,

atomofpvallist (v2)

)) ;

applytop (dblist .modlst () ,vl,v2,v3) =

valofdblist (dblist , modlst

(

atomofdblist (vl)

,

atomofobjlist(v2)

,

atomofpvallist (v3)
/* database part

!nat ,eq)
)) ;

relop
relop
relop
relop
relop
relop
relop
relop
relop
relop
relop
relop
relop
relop
relop
relop
relop
relop
relop

/

nat ,gt)
nat ,lt)
int ,eq)
int ,gt)
int, It)
char , eq)

;

char, gt)

;

str . char ,eq)

str . char ,gt)
intens , eq)

;

intens
,
gt)

;

intens , It)

;

colorkeq)

;

pnt ,eq)
pnt ,gt)
pnt, It)

pnt ,ge)
pnt , le)

233

relop [pidlist ,eqlst)

;

relop ipidsetlist ,eqlst)_ ;

relop [vallist ,eqlst)

;

relop [valsetlist , eqlst)

;

relop ;.proplist,eqlst) ;

relop [propsetlist ,eqlst>

;

relop

<

pvallist, eqlst)

;

relop

(

pvalsetlist, eqlst)

;

relop Job jlist, eqlst)

;

relop 'classlist, eqlst)

;

relop < dblist, eqlst)

;

relop

(

pidsetlist ,meiTiblst) ;

relop

(

valsetlist ,meinblst)_ ;

relop

(

propsetlist ,memblst)

;

relop

(

pvallist ,memblst)

;

relop

(

pvalsetlist ,meinblst) ;

relop

(

classlist ,meinblst) ;

relop

(

dblist ,memblst)

;

isops

(

bool) ;

isops

(

nat) ;

isops

(

int) ;

isops

(

char)

;

isops

(

str .char) ;

isops

(

intens)

;

isops

(

color)

;

isops

(

pnt) ;

isops

(

ret) ;

isops

(

form)

;

isops

(

ptblt)

;

isops

(

font) ;

isops

(

memid)

;

isops

(

regid)

;

isops

(

stkid)

;

isops

(

dregid)

;

isops

(

fid) ;

isops

(

memaddr)

;

isops

(

regaddr)

;

isops

(

stkaddr)

;

isops

(

dregaddr)

;

isops

(

file)

;

isops

(

mop) ;

isops

(

dop) ;

isops

(

top) ;

isops

(

qop) ;

isops

(

sop) ;

isops

(

oop) ;

isops

(

rop) ;

isops

(

bop) ;

isops

(

instr)

;

/* database part */

/* database part */

234

isops (pidlist. 1st)

;

isops (pidsetlist . lst)_ ;

isops (vallist. 1st)

;

isops (valsetlist. 1st)

;

isops (proplist. 1st)

;

isops (propsetlist . 1st)

;

isops(pvallist.lst)

;

isops (pvalsetlist. 1st)

;

isops (objlist. 1st)

;

isops (classlist. 1st)

;

isops (dblist. 1st)

;

end extend;
end operators;

/* database part */

/* database part */

spec instructions
is

extend
natural

,

integer,
memaddress

,

regaddress,
stkaddress

,

dregaddress

,

operatorclasses

,

instructiontype,
typing,
qaddress

with
primitive
op

org: -> instr;
extern: ^ instr;
globl: -> instr;
mbegin : -> instr;
mend: -> instr;
offst: int,regaddr ^ instr;
link: regaddr,nat -> instr;
unlink: regaddr,nat -> instr;
getdwin: dregaddr , regaddr ^ instr;
setdwin: regaddr , dregaddr ^ instr;
getmtr: mattribute , regaddr ^ instr;
setmtr : mattribute , regaddr -> instr;
modads : mop, regaddr ->- instr;
monad: mop, regaddr , regaddr -> instr;
monadi : mop, val , regaddr ^ instr;
dyads: dop, regaddr , regaddr -> instr;
dyadsi: dop, val , regaddr ^ instr;
dyad: dop, regaddr , regaddr , regaddr -> instr;
dyadi : dop, val , regaddr , regaddr ^ instr;

235

triads: top , regaddr , regaddr , regaddr ^ instr;
triads!: top, val , regaddr , regaddr -> instr;
triad: top , regaddr , regaddr , regaddr , regaddr ^ instr;
triadi: top ,val , regaddr , regaddr , regaddr ->- instr;
quads: qop, regaddr , regaddr , regaddr , regaddr -^ instr;
quad : qop , regaddr , regaddr , regaddr , regaddr

,

regaddr ^ instr;
sexads : sop , regaddr , regaddr , regaddr , regaddr

,

regaddr , regaddr ->- instr;
sexad : sop , regaddr , regaddr , regaddr , regaddr

,

regaddr , regaddr , regaddr -^ instr;
octads : sop , regaddr , regaddr , regaddr , regaddr

,

regaddr , regaddr , regaddr , regaddr -> instr;
octad : sop , regaddr , regaddr , regaddr , regaddr , regaddr

,

regaddr , regaddr , regaddr , regaddr ^ instr;
movi_m: val ,memaddr ^ instr;
movi_pcr: val , int -> instr;
movi_r: val, regaddr ^ instr;
movi_ri: val, regaddr ^ instr;
movi_rid: val , regaddr , int ^ instr;
movi_ridn: val , regaddr ,nat , int -> instr; •

mov_m_in: memaddr ,memaddr ^ instr;
mov_m_r : memaddr , regaddr -> instr;
mov_m_ri : memaddr , regaddr ^ instr;
mov_m_rid: memaddr , regaddr , int -> instr;
mov_m_ridn: memaddr , regaddr ,nat , int -> instr;
mov_m_d: memaddr , dregaddr ^ instr;
mov_pcr_pcr: int, int -> instr;
mov_pcr_r : int , regaddr ^ instr;
mov_pcr_ri : int, regaddr -^ instr;
mov_pcr_rid: int , regaddr , int ^ instr;
mov_pcr_ridn: int , regaddr ,nat , int -> instr;
mov_pcr_d: int, dregaddr ^ instr;
mov_r_m: regaddr , memaddr -^ instr;
mov_r_pcr: regaddr, int ^ instr;
mov_r_r : regaddr , regaddr ^ instr;
mov_r_ri: regaddr , regaddr -> instr;
mov_r_rid: regaddr , regaddr , int ^ instr;
mov_r_ridn: regaddr , regaddr , nat , int ^ instr;
mov_r_d: regaddr , dregaddr ^ instr;
mov_ri_m: regaddr , memaddr ^ instr;
mov_ri_pcr: regaddr, int ^ instr;
mov_ri_r: regaddr , regaddr -> instr;
mov_ri_ri: regaddr , regaddr ^ instr;
mov_ri_rid: regaddr , regaddr , int ^ instr;
mov_ri_ridn: regaddr , regaddr , nat , int -> instr;
mov_ri_d: regaddr , dregaddr -> instr;
mov_rid_m: regaddr , int , memaddr -*- instr;
mov_rid_pcr: regaddr , int , int -> instr;
mov_rid_r: regaddr , int , regaddr -> instr;
mov rid ri : regaddr , int , regaddr -^ instr;

2 36

mov_rid_rid: regaddr , int ,regaddr , int ->• instr;
mov_rid_ridn : regaddr , int , regaddr ,nat, int ->- instr;
mov_rid_d: regaddr , int ,dregaddr -^ instr;
inov_ridn_m: regaddr ,nat , int ,memaddr -> instr;
mov_ridn_pcr : regaddr ,nat , int , int -^ instr;
mov_ridn_r: regaddr ,nat , int , regaddr -> instr;
mov_ridn_ri: regaddr , nat , int , regaddr ^ instr;
mov_ridn_rid: regaddr , nat , int , regaddr , int -> instr;
mov_ridn_ridn: regaddr , nat , int , regaddr , int , int ^

instr;
mov_ridn_d: regaddr , nat , int ,dregaddr -> instr;
mov_d_m: dregaddr ,memaddr ->- instr;
mov_d_pcr: dregaddr , int -^ instr;
mov_d_r : dregaddr , regaddr -y instr;
mov_d_ri : dregaddr , regaddr ^ instr;
mov_d_rid: dregaddr , regaddr , int ->- instr;
mov_d_ridn: dregaddr , regaddr , nat , int ^ instr;
mov_d_d: dregaddr , dregaddr ^ instr;
push_i : val,stkaddr ^ instr;
push_m: memaddr , stkaddr -> instr;
push_pcr: int, stkaddr -> instr;
push_r: regaddr ,, stkaddr ^ instr;
push_ri : regaddr , stkaddr ^ instr;
push_rid: regaddr , int , stkaddr -^ instr;
push_ridn: regaddr , nat , int , stkaddr ^ instr;
push_d: dregaddr , stkaddr -> instr;
pop_x: stkaddr -> instr;
pop_m: stkaddr , memaddr ^ instr;
pop_pcr : stkaddr, int ^ instr;
pop_r: stkaddr , regaddr ^ instr;
pop_ri : stkaddr , regaddr ^ instr;
pop_rid: stkaddr , regaddr , int ^ instr;
pop_ridn: stkaddr , regaddr , nat , int ^ instr;
pop_d: stkaddr , dregaddr ^ instr;
nop: -^ instr;
stop: ^ instr;
jmp: memaddr ^ instr;
jmp_i: memaddr ^ instr;
jmp_r: regaddr -^ instr;
bra: int -^ instr;
bra_r: regaddr ^ instr;
if: relop, regaddr , regaddr , memaddr ^ instr;
ifi: relop, regaddr ,val , memaddr ^ instr;
ifte: relop, regaddr , regaddr , memaddr , memaddr -> instr;
iftei: relop, regaddr ,val , memaddr , memaddr ^ instr;
if_pcr: relop , regaddr , regaddr , int ^ instr;
ifi_pcr: relop, regaddr ,val , int ^ instr;
ifte_pcr: relop , regaddr , regaddr , int , int ^ instr;
iftei_pcr: relop, regaddr ,val , int , int -> instr;
test: bop, regaddr , memaddr ^ instr;
testm: bop, memaddr , memaddr -> instr;

237

teste: bop,regaddr ,meinaddr ,meinaddr ->- instr;
testme: bop,memaddr ,memaddr ,meinaddr -> instr;
test_pcr: bop , regaddr , int ->- instr;
testm_pcr: bop,memaddr , int -> instr;
teste_pcr: bop, regaddr , int , int -> instr;
testme_pcr: bop,memaddr , int , int -> instr;
jsr; memaddr , stkaddr ^ instr;
jsr_i: memaddr , stkaddr ^ instr;
jsr_r: regaddr , stkaddr ^ instr;
bsr: int, stkaddr ^ instr;
bsr_r: regaddr , stkaddr ^ instr;
rts : stkaddr -^ instr;
open: stkaddr ^ instr;
close: stkaddr -> instr;
read: stkaddr ^ instr;
write: stkaddr -> instr;

/* database part */
write_i: val,qaddr -> instr; /* write to queue */
write_m: memaddr ,qaddr ^ instr;
write_r: regaddr ,qaddr ^ instr;
delete_x: qaddr ^ instr; /* delete value

from queue */
delete_m: qaddr -> instr;
delete_r: qaddr ^ instr;
read_m: qaddr , memaddr ^ instr; /* read value from

queue */
read_r: qaddr , regaddr ^ instr;
open: val -^ instr; /* open database */
close: val -> instr; /* close database */

/* database part */
end extend;

end instructions;

spec amstate
is

extend
boolean,
natural

,

integer,
str . chartype

,

memaddress

,

regaddress

,

stkaddress

,

dregaddress

,

files

,

identifiers

,

typing,
qaddr,
db

238

with
sort

state;
primitive

fetchm
fetchr
fetchd

memaddr , state ^

regaddr, state -

dregaddr , state
fetchdwin: dregaddr , state -

fetchmtr: mattribute , state

val; /*
val; /*
val; /*

val

;

/*
val

;

/*
storem: val , memaddr , state ^ state;
storer: val , regaddr , state -^ state;
stored: val , dregaddr , state -> state;
storedwin: val , dregaddr , state -> state;
storedmtr: val , mattribute , state ^ state;

memory */
register */
display register */

display window */

monitor attribute */

mitam: ^ state;

initstk: stkaddr , state

/* initialize
machine */

state

topstk: stkaddr , state -+ val;

pushstk: val , stkaddr , state ^

popstk: stkaddr , state -> state
lalloc; nat, state ^ memid;

Ifree: memid, state ^ state;
indir: nat, memaddr ^ memaddr;

/*

/*
/*

/*
/*

initialize stack */
get top val of
stack */

state

;

/* push stack */
pop stack */
get memory block
from heap */
free memroy block */
memaddr for n
levels of
indirection */
read from fileinfile: file, state ^ val; /

outfile: val , file , state -> state;
/* write to file

openfile: str . char , file , int , int, state ^ state;
/* open file */

closefile: file, state ^ state; /*
rmode :

-> int;
wmode : ^ int

;

rwmode : -> int;
openerr : ^ int;
openok : ->int;
valdata: -> int;

V
V

/*
/*
/*
/*
/*
/*

chardata int

;

initq: qaddr, state ^ state
read: qaddr, state -> val;

/*

/*
/*

close file */
read mode */
write mode */
read/write mode */
open error */
open ok */
file ops w/ A^?

sort val data */
file ops w/
character data */
database part */
initialize queue *^

read front value
from queue */

2 39

write: val ,qaddr, state ^ state;
/* write to queue */

delete: qaddr, state -^ state; /* delete front value
from queue */

open: db , str. char , state -> state;
/* open database */

close: db, str .char , state ^ state;
/* close database */
/* data base part */

hidden
op

* active - lalloc flag
* true when memory block is allocated w/ lalloc
* false initially and after memory block
released with Ifree

* used to prevent offsetting into non-
allocated memory

V
active: memid, state bool

;

axiom
if whattype(v) != formtype () then

stored (v, a ,q) = undef;
endif

;

if whattype(v) != pnttype () then
storedwin (v,a ,q) = undef;

endif;
if whattype(v) != nattype (

)

then
storemtr (v,xpixels () ,q) = undef;
storemtr (v,ypixels () ,q) = undef;
storemtr (v,hscrnsize () ,q) = undef;
storemtr (v,vscrnsize ,q) = undef;
storemtr (v, intenscapbl () ,q) = undef;
storemtr (v, colorcapbl ,q) = undef;

endif

;

if whattype(v) != colortype() then
storemtr (v,backgnd () ,q) = undef;

endif

;

if whattype(v) != dregaddr () then
storemtr (v,dselect () ,q) = undef;

endif

;

topstk (s , initstk (s)) = undef;
popstk (s , initstk (s)) = undef;
popstk (s , initam()) = undef;
stateaxioms (m,memaddr)

;

stateaxioms (r , regaddr)

;

stateaxioms (d , dregaddr)

;

stateaxioms (dwin, dregaddr)

;

stateaxioms (mtr ,mattribute)

;

240

topstk (s ,pushstk (v, s,q)) = v;
popstk (s ,pushstk (v, s ,q)) = q;
active (m, initam()) = false;
active (lalloc (n,q)_ ,q) = true ;

active (m, Ifree (m,q)) = false;
active (m, storer (v, a ,q)) = active (m,q)

;

active (m, storem(v, a, q)) = active (m,q)

;

active (m, stored (v, a, q)) = active (m,q)

;

active (m, storedwin (v, a, q)) = active (m,q)

;

active (m, storexscrnsize (v, a ,q)) = active(m,q);
active (m, storeyscrnsize (v, a, q)) = active (in,q) ;

active (m, storeintenscapbl (v, a, q)) = active(m,q);
active (m, storecolorcapbl (v, a ,q)) = active(m,q);
active (m, storebackgnd(v, a ,q)) = active (m,q)

;

active (m, storedregaddr (v, a, q)) = active (m,q);
active (m, initstk (a ,q)) = active (m,q)

;

active (m,pushstk (v, a, q)) = active (m,q)

;

active (m, popstk (a, q)) = active (m,q)

;

active (m,outfile (v, f ,q)) = active (m,q)

;

active (m,openfile (s , f,x,y,q)) = active (m,q)

;

active (m, closefile (f ,q)) = active(m,q);
if active (m,q) = falseO then

fetchm(of fset (n,m) ,q) = undef;
endif

;

if active(m,q) = false() then
storein(of fset (n ,m) ,q) = undef;

endif

;

if Itint (n,ntoi (n2)) = true (

)

then
offset (n, offset (nl, startmemaddr

(

lalloc(n2,q)))) =

offset

(

sumint (n ,nl)

,

startmemaddr (lalloc (n2 ,q)

)

) ;

else
offset (n, offset (nl, startmemaddr (lalloc(n2,q))

undef;
indir (zeronat () ,m) = m;
if whattype (fetchm(indir (n,m) ,q)) = typememaddr

(

then
indir (succnat (n) ,m) = atomofmemaddr

(

fetchm(indir (n,m) ,q))

;

else
indir (succnat (n) ,m) = undef;

endif

;

openf ile (s , f ,n ,openf ile (s , f ,m,x,q)) = undef;
closef ile (f ,openf ile (s,f ,n,x,q)) = q;
infile (f ,initam()) = undef;
infile (f ,close(d,q)) = undef;
infile (f , openf ile (s , f ,wmode ,x,q)) = undef;

))

241

outfile (v, f , initam) = undef;
outfile (v, f, close (f,q)) = undef;
outfile (v, f ,openf ile (s , f ,rmode () ,x,q)) = undef;
outfile (f,openfile (s , f,m, chardata ,q)) = undef;

/* database part */
read (qu, initq (qu,q)) = undef; /* qu : queue */
delete (qu, initam) = undef;

/* q: state */
delete (qu, write (v,qu, initq (qu,q))) = v;

/* v: value */
read (qu, write (v,qu, initq (qu,q))) = v;
delete (write (v,qu, initq)) = initq ();
delete (write (v,qu,q)) = write (v ,qu, delete (qu,q))

;

if not (initqO) = true (

)

then
read (qu , write (v,qu,q)) = read(qu,q);

endif

;

active (m, initq (a ,q)) = active(m,q);
active (m, write (v, a, q)) = active (in,q) ;

active (m, delete (a, q)) = active (m,q)

;

active (m, open (s ,d ,q)) = active (m,q)

;

/* s: string char */
active (m, close (s , d,q)) = active (m,q)

;

/* d: database */
/* database part */

end extend;
end amstate;

spec displaywindow
is

extend
rectangle
dregaddress

with
primitive
op

dwin: dregaddr -> ret;
axiom

xdimrct (dwin (a)) = [DISPLAYSIZE] succint (zeroint (

)

ydimrct (dwin (a)) = [DISPLAYSIZE] succint (zeroint (

)

origin (dwin (a)) = atomofpnt (fetchdwin (a ,q))

;

end extend;
end displaywindow;

242

spec am
is

extend
memaddress

,

instructiontype, •

typing,
amstate

with
primitive
op

/************•************************•**
* prog - AM execution
* corecursive - calls xeq
V

prog: memaddr , state ^ state;
hidden
op

* cond - implements conditionals
* returns one of two input memaddrs
* based on bool value
*/

cond: val , memaddr , memaddr -^ memaddr;
/**•*************************************
* xeq - corecursive function
* calls prog
* used for AM execution
V

xeq: instr , memaddr , state ^ state;
axiom

prog(a,q) = xeq (atomofinstr (fetchm (a ,q) ,a ,q))

;

cond (valofbool (true ()) ,al ,a2) = al;
cond (valofbool (false ()) ,al ,a2) = a2;
xeq (of f St (i ,r) ,m,q) =

prog(
nextmemaddr(m)

,

storer(
valofmemaddr (offset (i , atomofmemaddr

(

fetchr (r,q)))) ,

r,

q

xeq (link (r,n) ,m,q) =

prog (

nextmemaddr (m)

,

storer

(

valofmemaddr (startmemaddr (lalloc (n ,q)))

,

r,

storem(
fetchr (r ,q)

,

243

startmemaddr (lalloc (n ,q) ,q)
)

)

);
xeq (unlink (r) ,m,q) =

prog(
nextmemaddr (m)

,

lfree(
getmemid (atomofmemaddr (fetchr (r ,q)))

,

storer

(

fetchm (atomofmemaddr (fetchr (.r,q)) ,q) ,

q
)

)

) ;

xeq (getdwin (d,r) ,m,q) =

prog (

nextmemaddr (m)

,

storer

(

fetchdwin(d,q)

,

r,

q

xeq (setdwin (r ,d) ,m,q) =

prog (

nextmemaddr (m)

,

storedwin

(

fetchr (r ,q)

,

d,

q
)

) ;

xeq (getmtr (t , r) ,m,q) =

prog(
nextmemaddr (m)

,

storer

(

fetchmtr (t ,q)

,

r,

q
)

) ;

xeq (setmtr (r , t) ,m,q) =

prog (

nextmemaddr (m)

,

storemtr

(

fetchr (r ,q)

,

t, •

q
)

);

244

xeq (monads (o,rl) ,m,q) =

prog (

nextmemaddr (m)

,

storer

(

applymop

(

o,
fetchr (rl ,q).

) ,

rl,

q
)

) ;

xeq (monad (o,rl , r2) ,in,q)_ =

prog (

nextmemaddr (m)

,

storer

(

applymop

(

o,
fetchr (rl ,q)

) ,

r2,

q
)

) ;

xeq (monadi (o, V, rl) ,m,q) =

prog (

nextmemaddr (m)

,

storer

(

applymop Co, v) ,

rl,

q
)

) ;

xeq (dyads (o , rl ,r2) ,m,q) =

prog (

(nextmemaddr (m)

,

storer

(

applydop

(

o,
fetchr (rl ,q)

,

fetchr (r2 ,q)

). /

r2,

q
)

) ;

xeq (dyadsi (p, V, rl) ,m,q) =

prog(
nextmemaddr (m)

,

storer

(

245

applydop(
o.
V,
fetchr Crl .q)

q
)

) ;

xeq(dyad(o,rl,r2,r3) ,m,q) =

prog(
nextmemaddr (.m) ,

storer

(

applydop

(

o,
fetchr (rl,^q) /

fetchr (r2 .q)

) 1

r3,

q
)

) ;

xeq (dyadi (o , V, rl , r2) ,m,q) =

prog(
nextmemaddr (m)

,

storer

(

applydop

(

o.
V,
fetchr (rl,^q)

) ,

r2.

q
)

) ;

xeq (triads (o, rl , r2 ,re) ,m,q)
prog (

nextmemaddr (m)

,

storer

(

applytop

(

o,
fetchr (rl,-q) ,

fetchr (r2,,q) ,

fetchr (r3,-q)
) 1

.
r3,

q
)

246

xeq (triads! (0 ,v,rl,r2) ,m,q)=
prog (

nextmemaddr (m)

,

storer

(

applytop(
o,
V,
fetchr (rl ,q) ,

fetchr (r2,q)
) ,

r2,

q
)

) ;

xeq(triad (0 ,rl ,r2, r3,r4) ,m,q)
prog (

nextmemaddr (m)

,

storer

(

applytop

(

o,
fetchr (rl ,q)

,

fetchr (r2 ,q) ,

fetchr (r3 ,q)

) ,

r4,

q
)

) ;

xeq (triadi (o, V, rl , r2 ,r3) ,m,q)
prog(

nextmemaddr (m)

,

storer

(

applytop

(

o,

fetchr (rl ,q)

,

fetchr (r2 ,q)

) ,

r3,

q
)

) ;

xeq (quads (o , rl ,r2 , r3 , r4) ,m,q)
prog (

nextmemaddr (m)

,

storer

(

applyqop(
o,
fetchr (rl ,q)

,

fetchr (r2 ,q)

,

fetchr (r3,q)

,

247

fetchr (r4 ,q)
) ,

r4,

q
)

) ;

xeq (quad (o,rl,r2,r3,r4,r5) ,in,q) =

prog (

nextmemaddr (m)

,

storer

(

appiyqopC
o,
fetchr (rl ,q)

,

fetchr (r2 ,q). ,

fetchr (r3 ,q)

,

fetchr (r4 ,q)

) ,

r5,

q
)

) ;

xeq (sexads) o,rl,r2,r3,r4,r5,r6) ,m,q)=
prog(

nextmemaddr (m)

,

storer

(

applysop

(

o,
fetchr (rl ,q)

,

fetchr (r2 ,q)

,

fetchr (r3 ,q)

,

fetchr (r4 ,q)

,

fetchr (r5 ,q)

,

fetchr (r6 ,q)
) ,

r6,

q
)

) ;

xeq (sexad (o,rl,r2,r3,r4,r5,r6,r7) ,m,q)
prog (

nextmemaddr (m)

,

storer

(

applysop

(

o,
fetchr (rl , q") ,

fetchr (r2 ,q)

,

fetchr (r3 ,q)

,

fetchr (r4 ,q)

,

fetchr (r5 ,q)

,

fetchr (r6 ,q)

248

)

)

,

r7,

q

) ;

xeq (octads (o,rl,r2,r3,r4,r5,r6,r7,r8),m,q)=
prog (

nextmemaddr (m)

,

storer

(

applyoop

(

o,
fetchr (rl ,q)
fetchr (r2 ,q)
fetchr (r3 ,q)
fetchr (r4 ,q)
fetchr (r5 ,q)
fetchr (r6 ,q)
fetchr (r7 ,q)
fetchr (r8 ,q)

)

r8,

q

xeq (octad (o,rl,r2,r3,r4,r5,r6,r7,r8,r9
prog(

nextmemaddr (m)

,

storer

(

applyoop

(

o,
fetchr (rl ,q)
fetchr (r2 ,q)
fetchr (r3 ,q)
fetchr (r4,q)
fetchr (r5 ,q)
fetchr (r6 ,q)
fetchr (r7 ,q)
fetchr (r8 ,q)

/m,q)

=

)

) ,

r9

q

)

xeq (movi_m(v,ml) ,m,q)=
prog (

nextmemaddr (m)

,

storem(v,ml ,q)

(;

xeq (movi_pcr (v, i) ,m,q) =

prog (

nextmemaddr (m)

,

storem(

249

offset (i ,m)

,

q
)

) ;

xeq (movi_r (v , r) , m , q)

=

prog (

nextmemaddr (m)

,

storem(
V,
offset (i ,m)

,

q
)

);
xeq (movi_r (v, r) ,m,q) =

prog (nextmemaddr (m) , storer (v, r ,q))

;

xeq (movi_ri (v, r) ,m,q)=
prog (

nextmemaddr (m)

,

storem(
V,
atomofmemaddr (fetchr (r ,q))

,

q
)

) ;

xeq (movi_rid(v, r ,n) ,m,q) =

prog(
nextmemaddr (m)

,

storem(
V,
offset

(

n,
atomofmemaddr (fetchr (r,q))

) ,

q
)

) ;

xeq (movi_ridn (v,r , il , 12) ,m,q)=
prog (

nextmemaddr (m)

,

storem(
V,
offset

(

12,
indir

(

il,
atomofmemaddr (fetchr (r ,a)

)

2 50

xeq (movi_d(v,r) ,in,q) =

prog (nextmemaddr (m) , stored (v, r ,q))

;

xeq (mov_m_in (ml , m2) ,in , q) =

prog(
nextmemaddr (m)

,

storem(
fetchm (ml ,q), ,

m2,

q
)

) ;

xeq (mov_m_r (ml , r) , m , q)

=

prog (nextmemaddr (m) , storer (fetchm (ml ,q) , r ,q))

;

xeq (mov_m_r i (ml , r) , m , q) =

prog (

nextmemaddr (m)

,

storem

(

fetchm (ml ,q)

,

atomofmemaddr (fetchr (r ,ql

)

)

) ;

xeq (mov_m_rid (m,l,r,n)_ ,m,q) =

prog(
nextmemaddr (m)

,

storem

(

fetchm (ml ,q)

,

offset

(

n,
atomofmemaddr (fetchr (r , q)

)

) .

q
)

) ;

xeq (mov_m_ridn (ml, r, 11, 12) ,m,q)=
prog (

nextmemaddr (m)

,

storem

(

fetchm(ml ,q) ,

offset(
ie,
indir

(

11,
atomofmemaddr (fetchr (r ,q)

)

)

) ,

q
)

) ;

xeq (mov_pcr_pcr (11 , 12) ,m,q)=
prog(

2 51

nextmemaddr (m) ,

storem(
fetchm(of fset (il ,m) ,q)

,

offset (i2 ,ml

,

q
)

))

xeq (mov_pcr_r (i , r) , m , q)

=

prog (

nextmemaddr (m)

,

storer

(

fetchm(of fset (i ,m) ,q)

,

r,

q
)

) ;

xeq(mov_pcr_ri(i,r) ,m,q)=
prog)

nextmemaddr (m)

,

storem(
fetchm(of f set (i ,m) ,q)

,

atomofmemaddr (fetchr (r ,q))

,

q
)

) ;

xeq (mov_pcr_rid (il , r , 12) ,m,q)=
prog(

nextmemaddr (m)

,

storem(
fetchm(of f set (il ,m) ,q)

,

offset

(

12,
atomofmemaddr (fetchr (r ,q)

)

) ,

q
)

) ;

xeq (mov_pcr_rldn (ll,r,n,12) ,m,q)=
prog(

nextmemaddr (m)

,

storem

(

fetchm (of f set (11 ,m) ,q)

,

offset(
12,
Indlr

(

n,
atomofmemaddr (fetchr (r ,q)

)

)

) ,

q

);

252

xeq (mov_m_d (ml , r) ,m, q)

=

prog (nextmemaddr (m) , stored (fetchm (ml ,q) ,r,q))

;

xeq (mov_r_m(r ,ml) ,m,q)=
prog (nextmemaddr (m) , storemCfetchr (r ,q) ,ml,q))

;

xeq (mov_r_pcr (r, i) ,m,q)=
prog (

nextmemaddr (m) ,

storem(
fetchr (r,q)

,

offset (i ,m)

,

q
)

1;
xeq (mov_r_r (rl , rj) ,m,q) =

prog (nextmemaddr (m) ,storer (fetchr (rl ,q) , r2 ,q))

;

xeq (mov_r_ri (rl , r2) ,m,q)=
prog(

nextmemaddr (jn) ,

storem

(

fetchr (rl ,q)

,

atomofmemaddr (fetchr (r2 ,q)) ,

q

xeq (mov_r_rid (rl , r2 ,n) ,m,q)=
prog(

nextmemaddr (m)

,

storem

(

fetchr (rl ,q)

,

offset

(

n,
atomofmemaddr (fetchr (r2

, q)

)

) ,

q
)

) ;

xeq (mov_r_ridn (rl , r2 , 11 , 12) ,m,q)

=

prog(
nextmemaddr (m)

,

storem

(

fetchr (rl ,q)

,

offset

(

12,
indri

(

atomofmemaddr (fetchr (r2 ,q)

)

).

) ;

q

253

xeq (mov_r_d (rl , r2) ,m,q) =

prog (nextmemaddr (m) , stored (fetchr (rl ,q) ,r2,q))

;

xeq (inov_ri_m) r ,ml) ,m,q) =

prog (

nextmemaddr (m)

,

s to rem

(

fetchm(atomofmemaddr (fetchr (r ,q)) ,q)

,

ml

,

q
).

) ;

xeq (mov_ri_pcr (r , i) ,m,q)=
prog(

nextmemaddr (m)

,

storem

(

fetchm(atomofmemaddr (fetchr (r,q)) ,q) ,

offset (i ,m)

,

q
).

) ;

xeq (mov_ri , r (rl , rq)^m,q) =

prog i

nextmemaddr (m)

,

storer

(

fetchm(atomofmemaddr (fetchr (rl ,q)))

,

r2,

q
)

) ;

xeq (mov_ri_ri (rl , r2) ,m,q) =

prog (

nextmemaddr (m)

,

storem

(

fetchm(atomofmemaddr (fetchr (rl ,q)) ,q)

,

atom.ofmemaddr (

fetchr (r2 ,q)

q
)

) ;

xeq (mov_ri_rid) rl , r2 ,n) ,m.,q) =

prog(
nextm.emaddr (m) ,

storem

(

fetchm(atomofmemaddr (fetchr (rl ,q)) ,q)

,

offset

(

n,
atomofmemaddr (fetchr (r2 ,q)

)

q
)

) ;
'

254

xeq (mov_ri_ridn (rl , r2 , il , i2) m,q) =

prog(
nextmemaddr (m)

,

storem(
fetchm (atomofmemaddr (fetchr (rl ,q)) ,q)

,

of fset

(

i2,
indir

(

atomo"fmemaddr (fetchr (r2 ,q))

)

) ,

q
)

) ;

xeq (mov_ri_d (rl , r2) ,m,q) =

prog (

nextmemaddr (m)

,

stored

(

fetchm (atomofmemaddr (fetchr (rl ,q)))

,

r2,

q
)

) ;

xeq(mov_rid_m(r,i,ml) ,m,q)=
prog (

nextmemaddr (m)

,

storem

(

fetchm

(

offset

(

i/
atomofmemaddr (fetchr (r,q)

)

) /

q
) ,

ml

,

q

);
'

xeq (mov_rid_pcr) r , 11 , 12) ,m,q)=
prog(

nextmemaddr (m)

,

storem

(

fetchm

(

offset

(

11,
atomofmemaddr (fetchr (r,q)

)

) ,

q
) ,

offset (12 ,m)

,

q

255

)

) ;

xeq (mov_rid_r (rl ,n, r2) ,m,q)=
prog(

nextmemaddr (m)

,

storer

(

fetchm(
off set

(

n,
atomofmemaddr(fetchr(rl,q)

)

) ,

q
)

,

r2,

q
)

) ;

xeq (mov_rid_ri (rl , i , r2) ,in,q) =

prog(
nextmemaddr (m)

,

storem(
fetchm

(

offset

(

i/
atomofmemaddr (fetchr (r 1 , J))

). ,

q
) ,

atomo fmemaddrCfetchr (r2, q))

,

q
)

) ;

xeq (mov_rid_rid (rl,il,r2,i2) ,m,q)=
prog (

nextmemaddr (m)

,

storem(
fetchm

(

offset

(

il,
atomofmemaddr (fetchr (rl

, q)

)

) ,

q
) ,

offset

(

12,
atomofmemaddr (fetchr (r2 ,q)

)

) ,

q
)

) ;

xeq (mov_rid_ridn (rl,il,r2,i,2,i3) ,m,q)=
prog (

256

nextmemaddr (m)

,

storem(
fetchm(

offset

(

il,
atomofmemaddr (fetchr (rl ,q)

)

) ,

q
)

,

offset

(

13,
indir

(

12,
atomofmemaddr (fetchr (r2 ,q)

)

).

q
)

) ;

xeq (mov_rld_d (rl ,n ,r2) ,m,q)=
prog (

nextmemaddr (m)

,

stored

(

fetchm(
offset

(

n,
atomofmemaddr (fetchr (rl ,q)

)

) ,

q

r2,

q
)

) ;

xeq (mov_rldn_m (r ,n , i ,ml) ,m,q)=
prog (

nextmemaddr (m)

,

storem(
fetchm(

of fset

(

1/
indlr

(

n, atomofmemaddr (fetchr (r ,qi

)

I,

q
)

,

q
)

) ;

xeq (mov_ridn_pcr (r ,n , il , 12) ,m,q)

=

prog (

257

nextmemaddr (m)

,

storem(
fetchmC

offset

(

il,
indir

(

n,
atomofmemaddr (fetchr (r ,q)

)

)

) ,

q
) ,

offset (i2m,)

,

q
)

) ;

xeq (mov_ridn_r (rl , il , 12 , r2) ,m,q) =

prog (

nextmemaddr (m)

,

storer

(

fetchm(
offset

(

12,
Indlr

(

11,
atomofmemaddr(fetchr(rl,q))

)

) ,

q
) ,

r2,

) q
) ;

xeq (mov_rldn_r (rl,ll,12,r2) ,m,q)=
prog(

nextmemaddr (m)

,

storem

(

fetchm

(

offset(
12,
Indlr

(

11,
atomofmemaddr (fetchr (rl

, q)

)

)

) ,

q
) ,

atomofmemaddr

(

fetchr (r2 ,q)

) ,

q

) ;

258

I

xeq (mov_ridn_rid (rl,il,i2,r2,i3) ,m,q)
prog(

nextmemaddr (m) ,

storem(
fetchm(

offset(
12,
indir

(

atomofmemaddr (fetchr (rl ,q)

)

q
)

,

offset(
i3,
atomofmemaddr (fetchr (r 2 ,q)

)

) ,

q
)

) ;

xeq (mov_ridn_ridn (rl,il,i2,r,i3,i4) ,m,q)=
prog (

nextmemaddr (m)

,

storem

(

f etchra(
offset(

12,
indir

(

il,
atomofmemaddr (fetchr (rl ,q;

)

) ,

q
) ,

offset

(

i4,
indir

(

13,
atomofmemaddr (fetchr (r2 ,q)

)

)

) ,

q
)

) ;

xeq (mov_ridn_d (rl,il,ir,r2) ,m,q)=
prog(

nextmemaddr (m)

,

stored

(

fetchm(

259

offset

(

12,
indir

(

il,
atomofmemaddr (fetchr

).

(rl ,q))

) ,

q
) ,

r2,

q
)

) ;

xeq (mov d m (r ,ml) ,m,q)

=

prog (nextmemaddr (m) , storem (fetchd (r ,q)

,

ml , (g)) ;

xeq(mov d per (r , i) ,m,q)

=

progC
nextmemaddr (m)

,

storem

(

fetchd (r ,q)

,

offset (i ,m)

,

q
)

) ;

xeq(mov d r (rl , r2) ,m,q)

=

prog (nextmemaddr (m) , store r (fetchd (rl ,q) ,r2 ,q)) ;

xeq(mov d ri (rl , r]) ,m,q)

=

prog(
nextmemaddr (m)

,

storem

(

fetchd (rl ,q)

,

atomofmemaddr (fetchr (r2 ,q))

,

q
)

xeq (mov_d_rid (rl , r2 , n) ,m,q)=
prog(

nextmemaddr (m)

,

stroem

(

fetchd (rl ,q)

,

offset

(

n,
atomo fmemaddr (fetchr (r 2 , q))

) ,

q
)

) ;

xeq (mov_d_ridn (rl,r2,il,i2) ,m,q)=
prog (

nextmemaddr (m)

,

storem

(

fetchd (rl ,q)

,

260

offset(
i2,
indir

(

atomofmemaddr (fetchr (r 2 , q)

)

) ,

q

xeq (inov_d_d (rl ,r2) ,m,q) =

prog (nextmemaddr (m) , stored (fetchd (rl ,q) ,r2,q))

;

xeq (push_i (v, s) ,m,q) =

prog (nextmemaddr (m)
,
pushstk (v, s ,q))

;

xeq (push_pcr (i , s) ,m,q)=
prog (

nextmemaddr (m)

,

pushstk

(

fetchm (of fset (i ,m) ,q)

,

s,

q
)

) ;

xeq (push_r (r , s) ,m,q)=
prog (nextmemaddr (m)

,
pushstk (fetchr (r ,q) s ,q))

;

xeq (push_ri (r , s) ,m,q)=
prog (

nextmemaddr (m)

,

pushstk

(

fetchm (atomofmemaddr (fetchr (r,q)) ,q)

,

s,

q
)

) ;

xeq (push_rid (r ,n, s) ,m,q)=
prog (

nextmemaddr (m)

,

pushstk

(

fetchm

(

offset

(

) ,

q

atom.ofmemaddr (fetchr (r , q))

) ,

q

) ;

xeq (push_ridn (r , il , 12 , s) ,m,q;
prog (

nextmemaddr (m)

,

261

pushstk

(

fetchm

(

offset

(

12,
indir

(

atomofmemaddr (fetchr (r ,q)

)

)

q
)

,

s,

q
)

) ;

xeq (push_d (r , s) ,m,q)=
prog (nextmemaddr (m)

,
pushstk (fetchd (r ,q) ,s,q))

;

xeq
(
pop_x (s) , m , q)

=

prog (nextmemaddr (m)
,
popstk (s ,q)) ;

xeq
(
pop_m (s , ml) , m , q)

=

prog(
nextmemaddr (m)

,

popstk

(

s,
storem(

topstk (s ,q)

,

ml

,

q
)

)

) ;

xeq (pop_pcr (s,i) ,m,q)=
prog(

nextmemaddr (m)

,

popstk

(

s,
storem

(

topstk (p,q)

,

offset (i ,m)

,

q
)

)

) ;

xeq
(
pop_r (s , r) , m , q)

=

prog(
nextmemaddr (m)

,

popstk

(

s,
storer

(

topstk (s ,q) ,

r

,

q

262

)

)

) ;

xeq(pop_ri (s,r) ,m,q)=
prog(

nextmemaddr (m)

,

popstk

(

s,
storem(

topstk (s ,q)

,

atomofmemaddr (fetchr (r ,q))

,

q
)

)

);
xeq (pop_rid (s , r ,n) ,m,q)=

prog (

nextmemaddr (m)

,

popstk

(

s,
storem

(

topstk (s ,q)

,

offset

(

n,
atomofmemaddr (fetchr (r ,q)

xeq (pop ridn(s,r, il, 12) ,m,-q) =

prog(
nextmemaddr (m) 1

popstk

(

s.
storem

(

tops;tk(S,q) ,

offset(
i2,
ind ir(

il,

)

atomo fmemaddr (fe;tchr (r .q

) ,

q
)

)

) ;

xeq (pop_d(s,r) ,m, q) =

prog(
nextmemaddr (m) /

popstk

(

263

s,

stored

(

topstk (s ,q)

,

r,

q
)

)

);
xeq (nop,m,q) = prog (nextmemaddr (m) ,q)

;

xeq (stop,m,q) = prog(m,q) = q;
xeq(jmp(ml) ,m,q) = prog(ml,q);
xeq

(
jmp_i (ml) ,m,q) = prog (atomofmemaddr (fetchm (ml ,q)) ,q)

xeq
(
jmp_r (r) ,m,q) = prog (atomofmemaddr (fetchr (r ,q)) ,q)

;

xeq (bra (n) ,m,q) = prog (of f set (n , nextmemaddr (m)) ,q) ,

•

xeq (bra_r , r ,m,q) = prog (of f set (atomofint (fetchr (r , q))

,

nextmemaddr (m)) ,q)

;

xeqdf (o,rl,r2,ml) ,m,q) =

prog (

cond (

applyrop

(

o,
fetchr (rl ,q)

,

fetchr (r2 ,q)

,

) ,

ml

,

nextmemaddr (m)

) ,

q
) ;

xeq(ifi(o,r,v,ml) ,m,q)=
prog(

cond (

applyrop

(

o,
fetchr (r ,q)

,

V
) ,

ml

,

nextmemaddr (m)

) ,

q
) ;

xeq ((ifte (o , rl , r2 ,ml ,m2) ,m,q) =

prog(
cond (

applyrop

(

fetchr (rl ,q)

,

fetchr (r2 ,q)

) ,

ml ,

m2

264

q
) ;

xeq (iftei (o,r , v,ml ,m2) ,m,q)=
prog(

cond C

applyrop(
o,
fetchr (r ,q)

,

V
) ,

ml

,

m2
) ,

q
) ;

xeq (if_pcr) o, rl ,r2 ,n) ,in,q) =

prog(
cond (

applyrop C

o,
fetchr (rl ,q)
fetchr (r2 ,q)

) ,

of fset (n,nextmemaddr (m))

,

nextmemaddr (m)

).,

q
) ;

xeq (ifi_pcr (o , r , v,n) ,m,q)=
prog (

cond (

applyrop

(

o,
fetchr (r ,q)

,

V
) ,

of fset (n, nextmemaddr (m))

,

nrxtmemaddr (m)

q
) ;

xeq (ifte_pcr (o,rl,r2,il,i2) ,m,q)=
prog (

cond (

applyrop

(

o,
fetchr (rl ,q) ,

fetchr (r2 ,q)

) ,

of fset (il , nextmemaddr (m))

,

265

offset (12 , nextmemaddr (m)

)

) ,

q
) ;

xeq (iftei_pcr (o,r,v,il,i2) ,m,q)=
prog (

cond (

applyrop

(

o,
fetchr (r ,ql

,

V
) r

of f set (il , nextmemaddr (m))

,

of f set (12 , nextmemaddr (m)

)

) ,

q
) ;

xeq (test (o , rl ,ml) ,m,q)=
prog (

cond (

applybop (o , fetchr (rl ,q))

,

ml

,

nextmemaddr (m)

) ,

q
) ;

xeq(testm(o,m2,ml) ,m,q)=
prog (

cond (

applybop (o , fetchm(m2 ,q))

,

ml

,

nextmemaddr (m)

) ,

q
) ;

xeq (teste (o ,rl , ml ,m2) ,m,q)=
prog (cond (applybop (o , fetch (rl ,q))

,ml,m2) ,q)

;

xeq (testme (o ,m3 ,ml ,m2) ,m,q)=
prog (cond (applybop (o , fetchm(m3 ,q)) ,ml,m2) ,q)

;

xeq (test_pcr (o , rl ,n) ,m,q)=
prog(

cond (

applybop (o, fetchr (rl ,q))

,

of fset (n , nextmemaddr (m))

,

nextmemaddr (m)

;

) ,

q
) ;

xeq (tesm_pcr (o,m2 ,n) ,m,q)=
prog (

cond (

266

applybop (o , fetchm (m2
, q))

,

offset (n , nextmemaddr (ml

)

,

nextmemaddr (m)

) ,

q
) ;

xeq (teste_pcr (o,rl,il,i2)m,q)=
prog(

cond (

applybop (o , fetchr Crl ,q))

,

of f set (il , nextmemaddr (m))

,

offset (i2 , nextmemaddr (m)

)

) ,

q
) ;

xeq (testme_pcr (o,m2,il,i2) ,m,q)=
prog (

cond (

applybop (o , fetchm (m3
, q))

,

of f set (il , nextmemaddr (m))

,

offset (12 , nextmemaddr (m)

)

) ,

q
) ;

xeq
(
jsr (ml , s) ,m,q)=

prog (ml ,pushstk (valofmemaddr (nextmemaddr (m)) , s ,q;
xeq

(
j sr_i (ml , s) ,m,q)=

prog (

atomofmemaddr (fetchm (ml ,q))

,

pushstk (valofmemaddr (nextmemaddr (m)) ,s,q)
) ;

xeq
(
j s r_r (r , s) , m , q)

=

prog(
atomofmemaddr (fetchr (r,q))

,

pushstk (valofmemaddr (nextmemaddr (m)
) , s ,q)

) ;

xeq(bsr(n,s) ,m,q)=
prog (

of fset (n , nextmemaddr (m))

,

pushstk (valofmemaddr (nextmemaddr (m)) ,s,q)
) ;

xeq (bsr_r (r , s) ,m,q)=
prog (

offset

(

atomof int (fetchr (r ,q)) ,

nextmemaddr (m)

) ,

pushstk (valofmemaddr (nextmemaddr (m)) ,s,q)

) ;

xeq (rts s ,m,q)

=

prog (atmoofmemaddr (topstk (s ,q)) ,popstk (s ,q)) ;

xeq(open(s) ,m,q)=
prog(

267

nextmemaddr (m)

,

openfile

(

atomofstr , char (topstk (s ,
popstk (s ,

popstk
(s,popstk (s,q))))) ,

atomof file (topstk (s ,
popstk (s

,
popstk (s ,q))))

,

atomofint (topstk (s
,
popstk (s ,q)))

,

atomof int (topstk (s ,q)) ,

popstk (s ,q)

)

) ;

xeq(close(s) ,m,q)=
prog (

nextmemaddr (m)

,

closef ile

(

atomoffile (topstk (s ,q)) ,

popstk(s,q)
)

) ;

xeq(read(s) ,m,q)=
prog (

nextmemaddr (m)

,

storem(
inf ile

(

atomof file (topstk (s ,popstk (s ,q)))

,

popstk (s ,q)

). ,

atomofmemaddr (topstk (s ,q))

,

popstk (s ,q)
)

) ;

xeq(write(s) ,m,q)=
prog(

nextmemaddr (m)

,

outf ile

(

fetchm(
atomofmemaddr (topstk (s ,

popstk (s , q)))

,

popstk (s ,q)

) ,

atomoffile (topstk (s ,q))

,

popstk (s ,q)
)

) ;

xeq (write_i (v,qu) ,m,q) = /* database part */
prog (nextmemaddr (m) , write (v,qu ,q))

;

xeq (write_m (ml ,qu) ,m,q)=
prog (nextmemaddr (m) , write (fetchm (ml ,q) ,qu,q))

;

xeq (write_r (r ,qu) ,m,q)=
prog (nextmemaddr (m) , write (fetchr (r ,q) ,qu,q))

;

xeq (delete_x (qu) ,m,q)=
prog (nextmemaddr (m) , delete (qu,q)

)

;

268

xeq (delete_m(qu,ml) ,m,q)=
prog (

nextmemaddr Cm)

,

delete

(

qu,
storemC

read(qu,q) ,

ml

,

q
)

) ;)

xeq(delete_r(qu,r) ,m,q)=
prog (

nextmemaddr (m)

,

delete

(

qu,
storer

(

read(qu,q)

,

r,

q
)

)

) ;

xeq(open(s) ,m,q)=
prog(

nextmemaddr (m)

,

open (

atomofstr . char (vl)

,

atomofdb (v2)

)

) 7

xeq(close(s) ,m,q)=
prog(

nextmemaddr (m)

,

close

(

atomofstr . char (vl)

,

atomofdb (v2)
)

)

;

/* database part */
end extend;

end am

;

269

APPENDIX C

A SIMPLE ASSEMBLER FOR AM

1. Introduction

This document is adapted from Yurchak [Ref . 2] . Appendix
C, and constitutes the reference manual for both version 2.0-
ZIOO/ developed by Hunter [Ref. 3], and the latest modification
towards version 3.0, It provides a comprehensive description
of the syntax and semantics of the assembler as well as a
description of the salient features of the AM machine and a
definition of the opcodes executed by AM.

AMASM is an assembler which generates a relocatable load
module for the abstract machine interpreter AM. It is to the
extent possible written in portable C. The parser and scanner
were produced using the Unix YACC and LEX utilities. The
output from these utilities require several patches to allow
compilation on the ZIOO using Lattice 'C' Readers desiring
to port the code to other machines may have to make slight
changes to "defines." In this implementation, longs are
assumed to occupy 32 bits, both int and short - 16 bits, and
char - 8 unsigned bits. NOte : if the int size changes, then
the infile and outfile functions in amstate.c must be changed.

The input syntax of AMASM is similar to that of other
assemblers. It supports symbolic addresses and constants and
a typical set of directives, but has no macro capabilities.
The assembler accepts an ASCII source file created on a con-
ventional text editor and produces an output file containing
relocation information and AM opcodes. Invoking AM causes the
output file "a. am" to be loaded and executed.

2. Differences from Version 1.0

Since it was our intention to primarily specify and des-
cribe the abstraction of a database resource, the assembler
part for AM was considered to be of less importance for this
thesis. Due to the limited time the adaption of AMASM to the
database requirements is still incomplete, only some examples
are given which indicate a way of how to integrate this latest
resource. Thus, for instance, although the read/'write com-
m.ands for the queue were developed, the method of actually
retrieving objects from the queue has not yet been defined.
The same is true for the database itself, where the only
commands described are those for opening and closing the

270

database, v/hile the other operations were left undefined for
the above reasons. So, in fact, AM (version 3.0) represents
only a partial extension of AM (version 2.0-ZlOO).

3. Usage

AMASM is invoked with the following command line syntax:

amasm [-t] [-x] [-s] [-1] file . .

.

AMASM produces a single load module "a. am," which forms the
input to the AM loader. The optional "-t" switch sends a de-
bugging trace to "stdout," the "-x" switch proAT-ides an extended
version of the trace, and the "-s" switch provides trace of
the recognized scanner tokens. The optional "-1" switch gener-
ates the listing and cross-reference file "a.x." Appended to
this file is a hex dump of "a. am."

4. Lexical Conventions

Assembler tokens include identifiers (alternatively,
"symbols" or "names"), literal constants, operators and delimiters

4.1. Identifiers

Legal identifiers are described by the following regular
expression:

[A-Za-z] [A-Za-zO-9]*

Identifiers consist of a letter or underline "_" followed by a

string of zero or more letters, decimal digits and underlines.
Upper and lower case are distinct. Identifiers may represent
symbolic constants, instruction mnemonics, labels, addresses
and type names.

4.2. Operators

The following are considered to be operators:

+ -*/%&
I

The meaning of the above symbols varies with context.

4.3. Litera] Constants

Decimal and hexadecimal constants are described by the
following regular expressions respectively:

[- +] [0-9] +
!

[0-9] +

$ [0-9A-Fa-f]+

271

Decimal constants consist of an optional sign followed immedi-
ately by one or more decimal digits. Hexadecimal constants
consist of the character "$" followed immediately by a string
of one or more decimal digits and upper or lower case letters
"A"through "F." Numeric constants may represent addresses,
integer and natural numbers, boolean and character values.

II II

Character constants consist of a single quote '
, followed

either by an ASCII character, that is not a carriage return/
linefeed or a numeric constant, followed by a closing single
quote

.

String constants consist of a string of zero or more ASCII
characters (except carriage return/linefeed) enclosed in double
quotes

.

4.4. Blanks

Blanks and tabs are ignored by the assembler except where
required to separate adjacent constants or identifiers.

4 . 5. Comments

The character ";" produces a comment. The assembler ignores
all further characters on the line up to the terminating
carriage return/linefeed.

4.6. Delimiters

All other characters found in the input stream are treated
as delimiters.

5- Statements

A source program is composed of a sequence of statements,
one statement per line. There are 3 kinds of statements:
directives, instructions and null.

Instructions and null statements may be preceded by a label.
Directives may (in some cases, must) he preceded by an
identifier

,

5.1. Labe],s & Identifiers

A label consists of an identifier followed by a colon ":".

When the assembler encounters a label, the effect is to assign
the current value nf the location, counter to the name.

An identifier preceding a directive is assigned a value
whose type depends upon the directive. For instance, the equate

272

directive assigns a typed value to an Identifier, while the
define storage directive assigns the current value of the
location counter.

Neither labels nor identifiers may be redefined within
a single source file.

5.2. Null Statements

A null statement is an empty statement. Although ignored
the assembler, null statements may be preceded by a label.

5.3. Directive Statements

A directive is a command to the assembler to perform some
sort of operation which does not involve, emitting an executable
instruction. Typical directives (also known as "pseudo ops"
or "pseudo instructions") allocate storage for variables,- make
names within the current module visible to other modules and
set the location counter. Directives also produce instructions
for the AM linker and loader.

Directives consist of a keyword followed by zero or more
arguments, depending upon the context. Directives and their
syntax are described in more detail in Section 12.

5.4. Instruction Statements

Instruction statements produce the code which is ultimately
executed by AM. An instruction may be preceded by a label,
and consists of a keyword followed by zero or more arguments,
depending upon context

-

The AM instruction set and its syntax will be described in
detail in Section 14.

6. The Machine

Because AM differs from conventional machines in a number
of important ways, some discussion is necessary before intro-
ducing the instruction set. Outwardly similar to a number of
well-known examples, AM instructions form an unconventional
set of primitive operations which implement a formally speci-
fied semantics. The reasons for this are described below.

AM uses a tagged architecture. Thus, each data element
contains, within it, information which uniquely identifies a
finite set of legal operations which may be performed upon it,

as well as a range of legal values it may take on. This set
of operations and values is known formally as a data type,
AM supports a number of data types. An element of a particular
data type will be referred to throughout the rest of this manual
as an atom.

273

AM physical resources are partitioned into segments. There
are several types of segments, and these together form a con-
ventional overall model of the familiar stored program computer.
There are memory segments (primary storage) , register seg-
ments (high-speed memory) , display register segments (bit-
mapped display memory), stacks, a queue, a monitor (display
terminal attributes) and file segments (secondary storage).
Segments are further partitioned into discrete, address'able
elements (alternatively, "cells") which will contain atoms
during the execution of a program. These elements will be
referred to repeatedly as typed values. The reason for the
distinction between atoms and values will become more clear
shortly.

AM is the finite implementation of a formal specification.
As such, data elements and the operations which can be applied
to them must reflect a mathematical consistency not required
by conventional architectures. Since all operations which
affect the state of the machine must be able to "communicate"
with each other during the execution of a AM program, they must
do so using a common object. This object is a value. The
memory, registers, display registers, stack, queue, and files
ail hold values. Store, fetch, execute, read, write--any
operations which change the state of the machine--all operate
on values (i . e. , storage cells). All other operations, such as
"ad(^," "multiply',' "and," and "or," work on atoms. Atomic
operations in AM correspond to those which take place in the
temporary registers of the arithmetic and logic unit of a con-
ventional processor.

6.1 Configuration

A unique feature of AM is the ease with which it is possible
to reconfigure the machine by partitioning the physical resources
in different ways. A typical configuration would be something
like this:

2 memory segments
1 register segment (with a useful number of registers)
1 display register segment (with one or two registers)
1 stack
1 queue
1 monitor (only one is permitted)
1 database (one or more are possible)

16 files

The configuration chosen should provide a good indication of
the types of programs AM is intended to execute.

Note that, in conventional machines, stacks are implemented-
in primary storage. This constitutes an overloading of data
structures which obscures the intent of the user of these
structures. It also creates a semantic niahtmare for the

274

specification writer. In AM, stacks and queue take their
rightful places as separate entities with easy to understand
properties

.

In addition to the resources listed above, AM has a con-
ventional program counter.

6.1.1. Memory

AM memory is partitioned into segments which may be of un-
equal but fixed length. A program and its data will reside
in memory segments. It is not necessary that code and data
share the same segment, nor is it required that code and data
be contiguous. The loader will determine from the origin
directive where to load code and data values.

The AM heap is implemented as a set of operations which
allocate and deallocate memory segments.

AM has a rich set of addressing modes which interact with
a powerful move instruction which allows the programmer to
move a value from "anywhere to anywhere."

61.2. Registers

AM registers form the high-speed storage into which oper-
ands are placed.

All atomic operations, such as add, divide and poffst,
require operands to be in registers. Form operations are an
exception. Their operands may be in either a register or a
display register.

6.1,3. Display Registers

The form is the atomic data type that represents an image.
Like any other atomic data type, it may be placed in any memory,
register, stack or file cell. A form can not be "viewed" by
the monitor unless it is in a display register.

Display registers may only contain form values. Each dis-
play register has its own window which is fixed in size but
with a variable origin. The display window determines what part
of the form is "viewed" by the monitor.

In general, display registers may be partitioned into mul ti-
ple segments. However, the hardware on most machines will only
support one segment of one or two registers. A segment of
two display registers is equivalent to the idea of a "front"
and "back" plane.

6.1.4. Monitor

The monitor represents a set of terminal attributes which
are part of the "state of the machine," The attributes:
vertical and horizontal number of pixels, vertical and hori-
zontal screen dimensions, intensity capability and color planes
are fixed for any terminal. The background color and display
register selection attributes are programmable.

6.1.5. Stack

The AM stack is conventional in every respect except that
it is impossible to access any value except the top. Thus,
frames are implemented on the heap, not the stack.

AM has a typical set of push and pop instructions for
operating on stacks.

6.1.6. Files

Input/output is implemented rather arbitrarily along the
lines of system calls to an operating system and should not be
considered part of AM itself.

Instructions are provided to open, close, read to and write
from a file.

6 . 1. 7 . Queue

Primarily, the queue acts as a buffer for 'objects' being
retrieved from the database during a select operation. It is
implemented in the same way as the stack to prevent the access-
ing of any value except the one residing in the front position.
This method ensures that the order of the values defining an
object will be kept,

A set of write and read instructions is provided for
operating on the queue,

6-1,8, Database

The database consists of two major parts: the data repre-
senting the information and a set of commands to perform the
defined operations on it. These commands can only be applied
to data that have explicitly been specified as a database and
meet its structural requirements. In principle, the data need
to be arranged as ordered pairs of lists. For database opera-
tions all resources of AM may be used, with exception of the
display registers and the monitor.

Instructions are provided to open and close the database.

276

7 . Atoms

An atom is a component of a data type. The assembler
recognizes the following type of atoms:

•

file address
pidlist
pidsetlist
vallist
valsetlist
proplist
propsetlist
pvallist
pvalsetlist
ob j 1 i s t
classlist
dblist
qaddress

As operands to instruction mnemonics, these atoms form the
familiar set of literal and symbolic constants found in typi-
cal assembly language programs.

With certain exceptions, atoms may appear in the form of
literal constants:

100
$dOfl
'a'

"this is a string atom"

They may also appear as symbols which take on the value of the
atom in some other part of the source program. VJith few excep-
tions, anywhere a literal constant may be used, a symbolic
constant of the appropriate type may also be used.

The assembler distinguishes between types of atoms using
syntax and context. The syntax is described below.

7.1. Boolean

A boolean atom has only two values, true and false. These
values are represented to the assembler by the decimal or
hexadecimal constants for 1 and 0, respectively.

1

$1
$0

are legal boolean atoms.

7.2. Natural

This type represents as the name implies, the natural (un-
signed) numbers. Legal values range from zero to positive

277

infinity. Natural numbers are represented to the assembler as
decimal or hexadecimal constants whose values are greater than
or equal to zero.

$2f5
240

are legal natural atoms.

7.3. Integer

Integers range from negative to positive infinity, and are
specified as hexadecimal or signed or unsigned decimal constants,

-250

$ed67f
+ 10

are legal integer atoms.

7.4. Character

Character atoms may take values defined by the ASCII
character set. They are represented to the assembler as literal
character constants.

are legal character atoms.

7.5. String

String atoms are composed of zero or more concatenated ACIII
characters. They are specified as literal strings.

"this is a legal string atom"
It II

are both legal string atoms.

7.6. Intensity

An intensity atom ranges from to 199 decimal. It is
represented as a unsigned decimal or hexadecimal constant pre-
ceded with the character "&." "&" represents the null inten-^^ity
which is used to construct the null color.

&0
Sc89

&199

are legal intensity atoms.

278

7.7. Color

A color atom is a composite of a red, green and blue inten-
sity. It is represented as an ordered triple of unsigned
decimal or hexadecimal constants separated by commas ",",

enclosed within parenthese "("••)" and preceded with "&". The
nullcolor provides the concept of background and transparency.
It is represented as the "(3" enclosed within parentheses and
preceded with "&".

&(0,0,0)
&(70, 0,190)
&@

are legal color atoms.

7.8. Point

Points are composed of integer pairs. The x and y coor-
dinates correspond to the first and second integers respec-
tively. Increasing integer values represents positions
shifted right and up. A point is represented as an ordered
pair of decimal or hexadecimal constants separated by a
comma ","and enclosed within parentheses "("")".

(0,0)
(4,1047)
(-8,25)
(-50677,-293399)

are legal point atoms.

7.9. Rectangles

Rectangles are composed of a pair of points which repre-
sent the opposing corners. A rectangle is represented as an
unordered pair of points separated by a colon ":" and enclosed
within square brackets ••[""]".

[(0,0) : (0,0)]
[(0,0) : (50,45)]
[(50,45) : (0,0)]
[(-20,-20000) : (30,59)

]

are legal rectangle atoms,

7.10. Form

A form atom is a composite structure. It has a two dimen-
sional size and a color map which is an array of colors with
each color corresponding to a point in its area. The form
atom has no literal constant representation. It is created
using the operator, newfrm, and modified using other operators

279

7.11. Font

A font atom is an array of forms. The font atom has no
literal constant representation. It is constructed from the
operator, newfnt, and modified using other operators.

7.12. Ptblt

A ptblt atom is a composite of three rectangles and a

natural which represents a copy rule. The ptblt atom has no
literal constant representation. It is constructed from the
operator, newblt, and is modified using other operators.

7.13. Memory Address

Memory address atoms consist of two components: a segment
address, and an element address. Memory addresses are repre-
sented as an ordered pair of unsigned decimaJ„ or hexadecimal
constants, separated by a colon ":" and enclosed within
parentheses " ("")".

(0:100)

represents memory segment 0, element 100.

(2:510)

represents segment 2, element 16.

Segment and element addresses start at 0. The number and
size of available memory segments depends upon the current
configuration of AM.

Labels are considered memory address atoms, as are names
which appear to the left of the define storage and define
constant directives.

7.14. Register Address

Register address atoms have a syntax identical to that of
memory addresses except that a lower case "r" is prepended to
the address.

r (: 3

)

refers to register segment 0, register 3.

Segment and eJement a"°ddresses start, as with memory addresses,
at 0. The number of register segments, and the number of
registers within each segment, varies as determined by the
current AM configuration.

7. J 5. Display Register Address

Display register address atoms ha^^e a syntax identical to
that of register addresses except that the lower case "r" is
replaced with a lower case "d"

.

280

d(0:l)

refers to display register segment 0, register 1.

Segment and element addresses start at 0. The number of
display register segments, and the number of display registers
within each segment, varies as determined by the current AM
configuration

.

7.16. Monitor Attribute

The monitor consists of eight attributes values which are:

x--represents number of horizontal pixels (natural)
y--represents number of vertical pixels (natural)
V—represents screen height in inches (natural)
h—represents screen width in inches (natural)
i— represents intensity capability (natural)
c—represents number of color planes (natural)
b—current background color (color)
d--selected display register to view

(display register address)

A monitor attribute is represented by a dash "-" followed by
one of the above characters for the indicated attribute.

-X
-y
-b

are all legal monitor attribute atoms.

7.17. Stack Address

A stack address has only one component: the segment address
Stack addresses are specified by prepending a lower case "s"
to an unsigned decimal or hexadecimal constant enclosed within
parentheses.

s(2)

refers to stack segment 2.

Stack addresses begin at 0. The number of stacks depends
upon AM's configuration.

7.18. File Addresses

File address atoms may not appear in a program except within
typed values. File address atoms are represented as unsigned
integer or hexadecimal constants.

File addresses start at 0. The number of files which may
be open at one time is determined by the current AM configura-
tion. The first three file addresses (0,1,2) are normally
opened automatically by AM when a program is loaded.

281

7.19. Pidlist

Pidlist atoms are composed of one or more concatenated
ASCII characters and form single strings that must not be
empty. They are surrounded by angle brackets.

<name>
<id>
<grade_l>

are all legal pidlist atoms.

7.20. Pidsetlist

This type represents a number of zero or more pidlists,
separated by commas " ,

" and enclosed within a set of angle
brackets

.

<name , age
,
grade>

<>

are both legal pidsetlist atoms.

7.21. Vallist

Vallists are represented like pidlists as strings of one
or more concatenated ASCII characters. Type distinction is
made in accordance with the context in which they appear.
Arithmetic operations on vallist atoms are not possible since
they are treated as characters.

<123>
<A>

are legal vallist atoms.

7.22. Valsetlist

Analogous to the pidsetlist, valsetlist atoms are composed
of zero or more vallists, separated by commas "," and enclosed
within a set of angle brackets. Since a valsetlist atom is
actually used to define a certain domain of values, it most
likely will be of the following form:

<1,2,3,4,17,123>
<A,B,C,D,E,F>
<Monterey , San_Diego>
<>

but

<John , Cindy , Monterey

>

would also be a legal vaJ setlist atom.

282

7.23. Proplist

Proplists are composed of ordered pairs that consist of a
pidlist and a valsetlist, additionally enclosed within angle
brackets and separated by a comma " ,

"

.

< <name> ,<John, Cindy ,Mark> >

< <grade> , <A,A-,B+> >

are legal proplist atoms.

7.24. Propsetlist

Propsetlist atoms are represented by zero or more prop-
lists, additionally enclosed within angle brackets and separated
by commas " ,-

" . Since a proplist consists of the ordered pair
pidlist and valsetlist, a propsetlist atom also contains a
number of ordered pairs.

< < <name> , <John, Cindy ,Mary> >,
< <age>,<20,10,30,17,65> > >

is a legal propsetlist atom.

7.25. Pvallist

This type is composed of the ordered pair pidlist and
vallist separated by a comma "," and additionally enclosed
within angle brackets.

< <name> , <John> >

< <name> , <Cindy> >

< <age>,<17> >

are legal pvallist atoms.

7.26. Pvalsetlist

A pvalsetlist atom consists of zero or more pvallists,-
separated by commas "," and additionally enclosed within angle
brackets. It is arranged as a number of ordered pairs.

< < <name> , <John> >,< <age>,<25> >, < <city> <Monterey> > >

are both legal pvalsetlist atoms.

7.27. Objlist

Objlists are composed of zero or more different pvallists
and can be considered as particular pvalsetlists . An objlist
consists of a number of ordered pairs that] ike a pvalsetlist,
are enclosed within an additional set of angle brackets and
separated by commas ",". It can be empty, although this would
not be meaningful.

283

< < <name> , <John> > >

< < <name> , <Cindy> >,< <sex> , <female> >,< <age>,<20> > >

are legal objlist atoms.

7.28. Classlist

This type is represented by zero or more obj lists, addi-
tionally enclosed within angle brackets and separated by commas
",". It is mandatory that all obj lists belonging to the same
classlist are equally structured. That is, their pidlist
atoms must be identical.

< < < <name>,<John > >,< <age>,<25> > >,
< < <name> , <Cindy> >,< <age>,<19> > >,
< < <name>,<Paul > >,< <age>,<20> > > >

is a legal classlist atom.

7-29. Dblist

The dblist is composed of zero or more classlists which
are additionally enclosed within angle brackets and separated
by commas ",". An objlist atom can only be contained in the
dblist if it is part of a classlist that itself must be contained
in the dblist. Since the structure is top-down, a pidlist not
included in any classlist may be comprised in the dblist, but
never the reverse.

The following shows a legal dblist atom:

< < < < <name> , <John> >,< <score>

,

<375> > >,
< < <name> , <Mary> >,< <score>

,

<380> > > >,

< < < <course> , <CS4600> >,< <room>,<13> >,< <hours> , <4 . 0> >

< < <course> , <OR3333> >,< <room>,<42> >,< <hours> , <4 , 5> >

< < < <ID>,<ab> >,< <est>,<rl9> > >,
< < <ID>,<xy> >,< <est>,<o23> > >

,

< < <ID>,<vw> >,< <est>,<a95> > > > >

The database structure is simple and can easily be disclosed.
The first list of this structure always corresponds to the
first object class, while the first list of an object class is
equivalent to its first object. Then the first list of an
object represents its first property value wliich itself contains
the property_id as first element and the corresponding value as
its second.

7.30. Qaddress

The only component of a queue address is the segment address.
Queue addresses are specified by prepending a lower case "q" to

2R4

an unsigned decimal or hexadecimal constant enclosed within
parentheses

.

q(l)

refers to queue segment 1.

8. Typed Values

Some of the atomic types may also appear as typed ^^alues
in certain instructions and directives. A typed (immediate)
value is represented as an ordered pair consisting of a key-
word representing the type, and the atom itself, separated by
a comma " ,- '' and enclosed within curly braces "{"••}",

(int. 100}

represents the integer value 100.

{addr. (1:100) }

represents memory address value (1:100).

A list of the types which may be used as immediate values
alongside the corresponding keywords appears below:

bool—boolean
nat--natural
int--integer
char—character
string--character string
intens --intensity
color--color
pnt--point
ret- -rectangle
addr--memory address
file--file address
pidlist--property id list
pidsetlist--property_idset list
vallist--value "list

val setlist--valueset list
proplist--property list
propsetlist--propertyset list
pvallist—propertyvalue list
pvalsetlist—propertyvalue set list
ob jlist--ob ject list
classlist objectclass list
dblist--database list

Immediate values are used, as in conventional assembly languages,
for loading constants into cells, initializing storage, pusliing
parameters to subroutines on the stack, and so on.

A special syntax may be applied when expressing typed values
for the define storage and define directives. The type

285

keyword may be followed by a list of atoms of the appropriate
type, separated by commas.

{ int ,1,2,3,4,5,6,7,8}

shows an example of this.

9. Expressions

An expression may be substituted anywhere an integer or
natural atom is called for. The expression must be a sequence
of integer/natural atoms (and symbolic constants equated to
integer/natural atoms) separated by operators and grouping
symbols which evaluates to an atom of the type called for
where the expression is used.

9,1. Expression Operators

Legal operators are (in order of increasing precedence)

:

I

- or
& - and
+- - addition and subtraction
*/% - multiplication, division, and modulus
- - unary minus

Expressions may be grouped using parentheses "("")".

10. Notation

Throughout the rest of this manual, the following notational
conventions will be used to describe the syntax of directives
and instructions.

A - atom
V - typed value
N - natural atom
I - integer atom
IM - memory address atom
R - register address atom
D - display register address atom
C - either a display or a high speed register address atom
T - monitor attribute atom
S - stack address atom
< > - items enclosed within angle brackets are arguments
[]

' - items enclosed in square brackets are optional
<ea> - effective address
<ev> - effective value
Q - queue address atom

286

11, Data Format

AMASM emits object code and directives using AM I/O
modules. The object module is, thus, directly readable by At-I.

A linker and loader may be written either in a high level
language, or AT'l assembler.

The data and object module formats described below are a
direct reflection of AM's tagged architecture. The following
conventions will apply:

- All numbers shown are in hexadecimal.

is a place holder signifying any 4-bit value.

place holder signifying any 32-bit value

place holder signifying a 32-bit pointer

The general form of a typed value is

The letter "H"

The letter "D"

The letter rip II

is a

is a

tag val

"val" is either anwhere "tag" is a 16-bit type field, and
8 to 32-bit value or a 32-bit pointer.

Note the following:

- Character string atoms and values have a 16-bit size field
inserted after the type field which indicates the number
of characters in the value field (including the ter-
minating null) . This size field is omitted in memory
(since it is not needed) and replaced by a pointer to
the string.

- Instruction values have a 32-bit pointer following the
type field, which points to an array of values. The
first value is the opcode followed by the operands.
The number of operands is encoded in the opcode.

- Form values ha"^^e a 32-bit pointer to a form header.
The header contains the form's rectangle and a pointer
to the cmap which is an array of colors. The length
of the cmap is determined from the form's rectangle.

- Font values have a 32-bit pointer to a font header.
The header contains the font' rectangle and a 128 member
array of cmap pointers.

- All list atoms and values with the exception of the
dblist type have a 16-bit size field that is inserted
after the type field and indicates the number of charac-
ters contained in the value field. Similar to the
string type, this size field is replaced in memory by
a pointer to the corresponding list.

- Dblist atoms and values have a 32-bit size field in-
serted after the type field which indicates the number

287

of characters in the value field and represents the total
number of characters contained in the database. In
memory the size field is replaced by a 32-bit pointer to
the dblist.

A number of the formats listed below are not described else-
where in this manual since they are either not accessible to
the programmer, or are implied by context.

11.1 Atom Formats

boolean -

natural -

0001 HH

0002 HHHH

integer -
I 0003 HHHH

character - 0004 HH

character string -
j
0005

|

|

T]
j

HH 00

intensity -
I 0006

color -

HH

0007 HH HH HH

point -
I

0008
I

[¥]
I

DP

rectangle -'
I 0009 DDDD

form -
I
OOOA

font -

ptblt -

P]
I

DP DP
I 1^ I

-cmap array-

OOOB -128 P's-

OOOC

Pj I PD PP

jT]
i

PPPP PPPP PPPP HH

0030
I !^

0031

memory address -

register address -

display register address -

monitor attribute - |0033

stack address -
|
0034

file address -

m
0032 H
HH

P

0035 HHHH

monadic operator -

dyadic operator -

triadic operator -

0040 HHHH

0041 HHHH

0042 HHHH

0043quadadic operator -

sexadic operator -
|

0044

octadic operator -
i 0045

HHHH

HHHH

HHHH

relational operator -
I 0046 I HHHH

boolean comparator -

pidlist - OOOP

pidsetlist - OOOE

0047
1

HHHH

HH. . . 00

HH • . .00

288

vallist -
I

OQOF[|T] |HH. 00

valsetlist -

proplist -

0010

0011

|T]
J

HH. . .00

FT Iee 00

propsetlist -

pvallist -
I

013

pvalsetlist -

objlist -

0012
I |

Tj
|

HH. . .00

HH. . . 00

0014
I |

T]
[

HH 00

classlist -

dblist -
~

0015
I

[¥]
|

HH

10016
I

IT

00

HH 00

0017 D. 00

qaddress -
|

0036
|

|"d]

11.2. Value Formats

boolean -

natural -

integer -

0201 HH

0202 HHHH

0203 HHHH

0204character -

character string -

intensity -
\
0^2 6

color -

HH

0205 HH. . .00

HH

0207 HH HH HH

point - 0208
i

|T]
!

"dd]

rectangle -
|

0209
j

|TJ I DDDD

form -
I

020A|
\

T]
|

DP DP

font -
! 020B

I

[P

ptblt -
I

020C1

cmap array-

PP PP 128P's-

PPPP PPPP PPPP HH

memory address -
|

0230
| !]p]

register address -
|
0231

| |^
display register address -

|
0232

|
|3]

monitor attribute -
j
0233

|

stack address -
|

0234
| j^

file address -
[

0235
\ [

HHHH

instruction -
|

0250

[

|

T] '~

pidlist -
I

020P| [V] [HIT

HH

HHHH zero or more operand atoms

00

020Epidsetlist -

vallist -
I

020F
|

[p]

HH. . .00

HH 00

valsetlist -
|

0210

|

|

T]
|

HH 00

289

proplist -
I

0211
1

|T| HH, 00

propsetlist - 0212

|

H0213

0214

pvallist -

pvalsetlist -

Ob j list -
I

0215
I j

"p]

classlist -

dblist -

p HH. . .00

HH . . .00

!p HH. . .00

HH. . .00 I

0216 HH 00

0217
I

\T} 00

11

qaddress -
|

0236

[

|g

3. Object Module Format

The structure of an object module is very simple. The
only object always found is a leading org directive. Next, if
any symbols were declared global or external in the source
module, a pseudo instruction will be emitted for each such
symbol. The rest of the file contains executable and pseudo
instructions emitted as they occur in the source.

12. Assembler Directives

AMASM recognizes the following directives:

equ - equate
org - absolute origin
rorg - relative origin
extern - external symbol
globl - global symbol
trace - trace execution
ds - define stroage
dc - define constant

Directives do not produce code which will be executed by AM,
but they may cause linker/loader instructions to be emitted.
The meaning and syntax of each directive is described in the
following pages.

290

EQU Equate EQU

Syntax:

<name> equ <equivalence>

where

:

<name> is any legal identifier
<equivalence> is any atom or typed value

Description

:

The symbol <name> is assigned the value of <equivalence>

.

Elsewhere in the source module, the symbol may be used in place
of a literal value of the same type as <equivalence> using the
following syntax:

- If the symbol represents a memory address atom, the symbol
may be used directly.

- If the symbol represents a typed (immediate) value, it
must be enclosed in curly braces "{""}".

- If the symbol represents an integer or natural atom, it
must be preceded by a pound sign "#".

Example

:

propseg equ (0:0)
dataseg equ (1:100)
offset equ 10
dataf ile equ file,

3

org progseg
move {addr ,data} ,r (0 : 0)

move {int,100} ,r (0:0) (a#offset

push {string, "test. dat" Is (0)

push {dataf ile} , s (0)

push {int,0},s(0)
push {int, 01,3(0)
open s ()

stop

org dataseg
data ds 100

"progseg" and "dataseg" are equated to memory address atoms

"offset" is equated to the integer atom 10.

"datafile" is eauated to the file address value (file, 3}.

291

Format:

equ does not cause an emission,

292

ORG Absolute Origin

Syntax:

org [M]

Description

:

The location counter is reset to M, if specified; other-
wise i-t remains unchanged. All memory addresses and labels
specified after an org directive up to the next org or rorg
directive not explicitly expressed as displacements are
treated as absolute addresses. Code generated after an org
directive up to the next org or rorg directive is not
relocatable

.

ORG

Example

:

data

Format:

org

move (0:0) ,r(0:0)

org (1:0)
ds {int,100} , {nat,0}

0250 1801 0230 D

293

RORG Relative Origin RORG

Syntax:

rorg [M[

Description

:

The location counter is reset to M, if specified; other-
wise it remains unchanged. All memory addresses and labels
specified after a rorg directive up to the next org or rorg
directive are computer as displacements. Code generated after
a rorg directive up to the next org or rorg directive is
relocatable (program counter independent)

.

Example

:

rorg

move { int, 100 }, data
jsr stuff
StOD

data ds 10

In the above example, the move would be emitted using
destination program counter relative addressing.

Format

:

02501
I

1801[
I

0230[1^1

H

294

EXTERN External Symbol EXTERN

Syntax:

extern <naine>...

where:
<name> is any legal identifier

Description

:

The list of symbols is made visible to the current module
and is assumed to be defined elsewhere. An error is flagged
if a symbol in the list is not referenced somewhere within
the current module. It is also an error for any symbol in
the list to be defined within the current module.

Example:

extern expon

push {int,100} ,s (0)

jsr expon, s (0)

Format

For each symbol decalred external, an extern pseudo op is
emitted, followed by a string containing the symbol.

0250 1802 0205 HH 00

295

GLOBL Global Symbol GLOBL

Syntax:

globl <name> . .

.

where

:

<name> is any legal identifier

Description

:

The list of symbols is made visible to external modiales
Each name in the list must be defined as a memory address
somewhere within the current module.

Example:

test

globl test, data

move (0:0) ,r(0:0)
stop

data ds 10

"test" and "data" are made visible to other modules.

Format

:

For each symbol declared global, a globl pseudo op is
emitted, followed by a string containing the symbol, followed
by a memory address representing the value of the symbol.

0250 1803 0005 HH. . .00 0230 D

296

TRACE Trace Execution TFACE

Syntax:

trace <f lag> , <toggle>

where

:

<flag> is "-t" for normal trace and "-x" is for extended
trace

<toggle> is "+" for on and "-" for off

Description

:

A trace of the programs execution is available in two
modes, normal and extended. The normal mode traces the main
function calls and the major paths through them. The extend
mode includes the normal trace plus memory allocation calls and
creation of temporary values. The trace directive may be
selected in the comraand line when Ml is invoked, or embedded
in the source code to enable trace over selected portions of
the program,.

Example:

progseg equ (0:0)
ora progseg
move {addr,data} ,r (0:0)
trace -t,+
move lint, 100}, r (0:0)

@

trace -t,-
push {int,0} ,s (0)

stop
data ds 100

Format

0250 3800
I I

0204 I HH| 0203

|

|

KHHH

297

DS Define Storage DS

Syntax:

[<name>] ds N[V. . .

J

[<name>] ds [N] V. .

.

where

:

<narae> is an optional identifier

ds permits a list of atoms to follow the type keyword of
each value.

Description

:

ds allocates storage for values starting at the current
value of the location counter.

- If N is specified and N is greater than or equal to the
number of values in the list, space for N values is
allocated and the location counter is incremented by N.

- If N is specified and N is less than the number of values
in the list, N is ignored.

- If N is not specified, the amount of storage allocated
is equal to the number of values in the list. The loca-
tion counter is incremented by this number.

- If a value list is specified, the allocated cells will
be initialized to those values, beginning with the first.

- Cells allocated but not initialized are considered to
hold undefined values. It is an error to attempt to
read an undefined value.

iple :

data 1 ds
data2 ds
data3 ds

ds

10
10{int,100} , {nat,0 ,20,40}
{char, 'a' , 'b'

}

{ string , "this is a string value"}

The first ds allocates 10 values and leaves them undefined,
"datal" may be used to index into those values.

The second also allocates 10 values, but initializes the
first to the integer 100, and the next 3 to the naturals
0, 20, and 40. The last 6 values are left undefined.

The third ds shown allocates 2 character values.

298

The fourth allocates a single string value. No identi-
fier was specified.

Format:

A typed value is emitted for each value in the list. In
addition, ds will emit an org pseudo op (see org) whenever
the number of values in the value list is less than N.

299

DC Define Constant DC

Syntax:

[<name>] dc V. .

.

where

:

<name> is an optional identifier

dc permits a list of atoms to follow the type keyword of
each value.

Description

:

dc allocates and initializes storage from a list of values
starting at the current value of the location counter.

Example

:

dataS dc (char ,
'

a
'

, 'b '

}

dc { string , "this is a string value"}

The first ds shown allocates 2 character values.

The second allocates a single string value. No identi-
fier was specified.'

Format

:

A typed value is emitted for each value in the list.

300

13. Addressing Modes

AM supports 11 addressing modes:

d - display register direct
r - register direct
ri - register indirect
rid - register indirect with displacement
ridn - n-level register indirect with displacement
m - memory absolute
mi - memory indirect
per - program counter relative
i - immediate value
a - immediate atom
s - stack direct
q - queue direct

Like other more familiar processors, not all AM instructions
can use all of the addressing modes.

In addition, AMASM supports address expressions, which
provides a rudimentary indexing capability.

13.1. Display Register Direct

The form operand is in the display register.

Syntax: D

Format

:

1 0232 |Dj

13.2. Register Direct

The operand is in a register.

Syntax: R

Format

:

|

0231 iJDj

13.3, Register Indirect

The address of the operand is in a register

Syntax: R@

R - holds the operand address

Format

:

2 3]. I
I'd]

301

13.4. Register Indirect with Displacement

The address of the operand is the sum of the address in a
register and an integer displacement.

Syntax: R(ai

R
I

Format

:

- holds a base address
- an integer displacement

0231 0203 HHHH

13.5. N-level Register Indirect with Displacement

The address of the operand is the sum of the address ob-
tained from the nth link in a chain of dynamic links and an
integer displacement.

Syntax: RNgI

R - holds the current frame pointer
N - a non-negative frame reference
I - an integer frame displacement

(RNiai) is equivelent to R(ai)

Format

:

0231 D 0202 HHHH 0203 HHHH

13,6. Memory Absolute

Syntax: M

M

Format

- the operand address

0230 D

13.7. Memory Indirect

The address of the operand is in a memory cell

Syntax

M

Format

M(a

- a pointer to the operand address

0230 D

302

13.8. Program Counter Relative

The address of the operand is the sum of the program counter
and an integer displacement.

Syntax

M

M

- the operand address

The specified address must be in the same module as the instruc-
tion. The assembler automatically computes the displacement.
Program counter relative is specified for a block by placing
a rorg directive at the top of the block.

Format

:

0203| |]dI

13.9. Immediate Value

The operand is an immediate value.

Syntax: V

V - any typed valu

Format

:

tag valu

13.11. Stack Direct

The operand is a stack

Syntax: S

Format

:

0234 D

13.12. Queue Direct

The operand is a queue.

Syntax: Q

Format

:

Q236| 1]d]

14 Instruction Set

The AM instruction set is simple but powerful. The rigid
data types make it meaningless to specify operations lik^ shift
and mask, thus removing some of the programmer's freedom to

303

muck with data in arbitrary ways. The tagged architecture will
detect errors like jumping to data, or accessing instructions
as data, as well as the more common bounds checking performed
by runtime libraries.

141. Machine Errors

The following errors are detected by AM during loading and
execution

:

- attempt to execute a non-instruction
- attempt to execute an illegal instruction
- memory segment not defined
- memory segment overflow
- memory segment underflow
- register segment not defined
- register segment underflow
- register segment underflow
- display register segment not defined
- stack segment not defined
- undefined monitor attribute
- <file> contains unresolved references
- attempt to convert negative int to nat
- no predecessor to zeronat
- no predecessor to minintens
- no successor to maxintens
- addition illegal with nullintens
- subtraction illegal with nullintens
- gtintens illegal with nullintens
- Itintens illegal with nullintens
- geintens illegal with nullintens
- leintens illegal with nullintens
- illegal color definition
- form is not correct size for font
- icon is undefined
- unknown operator to applymop
- unknown operator to applydop
- unknown operator to applytop
- unknown operator to applyqop
- unknown operator to applysop
- unknown operator to applyoop
- unknown operator to applyrop
- unknown operator to applybop
- type error - GT
- type error - GE
- type error - LT
- type error - LE
- no more segment available
- attempt to free invalid memory segment
- attempt to free non-allocated segment
- stack empty
- stack overflow
- stack underflow

304

file already open
unable to close file
unable to open <file>
file already closed
file not open
file not open for reading
file not open for writing
reading file, type not recognized
error reading file
writing file, type not recognized
invalid memory segment
memory segment not allocated
invalid memory address
invalid register segment
invalid register address
invalid stack segment
invalid file descriptor
attempt to return head of null string
value not of type bool
atom not of type bool
value not of type int
atom not of type int
value not of type nat
atom not of type nat
value not of type char
atom not of type char
value not of type string
atom not of type string
value not of type ilev
atom not of type ilev
value not of tyep coir
atom not of type coir
value not of type pnt
atom not of type pnt
value not of type ret
atom not of type ret
value not of type form
atom not of type form
value not of type font
atom not type font
value not of type ptblt
atom not of type ptblt
value not of type mad
atom not of type mad
value not of type rad
atom not of type rad
value not of type dad
atom not of type dad
value not of type mattribute
atom not of type mattribute
value not of type sad

305

- atom not of type sad
- value not of type file
- atom not of type file i

- value not of type mop
,

- atom not of type mop <*

- value not of type dop
- atom not of type dop
- value not of type top
- atom not of type top
- value not of type qop
- atom not of type qop
- value not of type sop
- atom not of type sop
- value not of type oop
- atom not of type oop
- value not of type rop
- atom not of type rop
- value not of type bop
- atom not of type bop
- value not of type instr
- atom not of type instr
- type error
- queue segment not defined
- queue empty
- queue overflow
- queue underflow
- db already open
- unable to close db
- unable to open <db>
- db already closed
- db not open
- illegal object insertion
- object not contained in class
- invalid queue segment
- atom not of type pid
- value not of type pid
- atom not of type val
- value not of type val
- atom not of type oval
- value not of type pval
- atom not of type obj
- value not of type obj
- atom not of type db
- value not of type db
- atom not of type 1st
- value not of type 1st

All machine errors are fatal.

306

14.2. Assembler Errors

AMASM will detect and report the following errors:

- symbol not an address
- symbol defined locally
- <symbol> does not match declared type
- relative memory indirect not permitted
- symbol not a value
- symbol not an integer
- intensity value exceeds range
- symbols declared but not referenced
- displacement from external addresses not permitted
- relative addressing not permitted between segments
- out of symbol space
- symbol declared external
- symbol already defined
- symbol not of same type
- impossible value for given type
- syntax error

Assembler errors are not fatal, but will prevent the crea-
tion of the object module and, usually, the cross-reference
file.

14.3. AM Operations

AM supports a useful set of monadic, dyadic, triadic,
quadadic, sexadic, octadic, relational and test operators.
These operators are to be used with the monad, dyad, triad,
quad,sexad, octad, if and test instructions. The mnemonics/
symbols for each operator along with the data types to which
each may be applied are described below.

14.3.1. Monadic Operators (MOP's)

not - boolean negation

not accepts a boolean argument and returns its negation

abs - absolute value

abs accepts an integer argument and returns is absolute
value

ntoi - natural to integer

ntoi accepts a natural argument and converts it to an
integer

iton - integer to natural

iton accepts an integer argument and converts it to a
natural

307

len - string length

len accepts a string argument and returns its length as
a natural number.

make - make a string

This operator accepts a character argument and returns a
string of length 1.

head - the head of a string

This operator accepts a string argument and returns the
character at its head. It is an error to take the head
of an empty string.

tail - the rest of a string

tail accepts a string argument and returns a string con-
taining all but the first character. The tail of an
empty string is the empty string.

remp, gcmp,bcmp - color components

remp, gcmp and bcmp accept a color argument and return
the respective red, green, or blue component of the
color.

xcord,ycord - point coordinate

xcord and ycord accept a point argument and return the
respective coordinate integer.

origin, corner - rectangle corner points

These operators accept a rectangle argument and return a
corner point. Origin returns tne lower left and corner
the upper right.

xdim,ydim - rectangle dimensions

xdim and ydim accept a rectangle argument and return the
respective dimension integer.

newfrm - new form

newfrm accepts a rectangle argument and returns a new blank
form whose rectangle is the same as the input rectangle.

farea - form area

farea accepts a form argument and returns its rectangle.

gblts ,gbltd,gbltc - get ptblt rectangles

These operators accept a ptblt argument and return the
specified rectangle. gblts returns the source, gbltd
returns the destination, and gbltc returns the clipping
rectangle.

30 8

gbltr - get ptblt rule

gbltr accepts a ptblt argument and returns the natural
that represents the copy rule.

newfnt - new font

newfnt accepts a rectangle argument and returns an empty
font whose icon rectangles are the same as the input
rectangle.

rctfnt - rectangle of font

rctfnt accepts a font argument and returns its rectangle.

lenfnt - length of font

lenfnt accepts a font argument and returns the number of
icons in it as a natural.

makenew - make a list

This operator accepts a list argument and returns a new
list.

first - the first list

first accepts a list argument and returns the first list
contained in it. It is an error to take the first of an
empty list.

rest - the rest of a list

rest accepts a list argument and returns a list containing
all but the first list. It is an error to apply this
operator to the empty list.

sofirst - set of first lists

This operator accepts a list and returns the set of all
first lists contained in it. Applying sofirst to a list
which does not contain at least two sublists results in
an error.

14.3.2. Dyadic Operators (OOP's)

and, or

and and or accept two boolean arguments and return a boolean
result.

add ,. sub ,mul ,div,mod - computational operators

These operators accept integer, natural or intensity argu-
ments (both of the same type) and return a result of that
type. Divide by zero returns an error. div discards any
remainder. mod returns the remainder. mul , div and mod
do not apply to intensity arguments.

309

cat - string concatenation

cat accepts two string arguments and returns the concaten-
ation of the first onto the second.

loc - point location

loc accepts two integer arguments and returns the defined
point.

Usage - loc(x,y) where x is the x coordinate integer and
y is the y coordinate integer.

area - rectangle definition

area accepts two unordered point arguments and returns the
defined rectangle.

inrct - point in rectangle

inrct accepts a point and a rectangle argument, checks if
the point is inside the area of the rectangle, and
returns the boolean result.

Usage - inrct (p,r) where p is a point and r is a rectangle.

intrct - rectangle intersection

intrct accepts two rectangle arguments and returns the
intersection rectangle.

putrct - put rectangle at

putrct accepts a point and a rectangle argument and returns
the rectangle with the same area as the input and its
origin at the point argument.

Usage - putrct (p,r) where p is a point and r is a rectangle

mapsp,mapps - conversion operators

These operators convert points between point coordinates
and font spot coordinates. They accept a point and a font
argument and return a point. mapsp takes a spot coordinate
and based on the font size returns its origin point, e.g.,
the origin point of spot (2,3) for a 10 by 10 font is
point (20,30). mapps takes a point and returns the font
spot that it falls inside, e.g., the point (21,31) for a

10 by 10 font is in spot (2,3)^.

Usage:

- mapsp (f,p) where f is a font and p is a point,

- mapps (f,p) where f is a font and p is a point.

310

gcolor - get color

gcolor accepts a point and a form argument and returns the
form's color at that point.

Usage - gcolor (p,f) where p is a point and f is a font.

fill - fill the form

fill accepts a color and a form and returns the from with
all its points set to the color argument.

Usage - fill(c,f) where c is a color and f is a font.

sblts , sbltd, sbltc - set ptblt rectangles

These operators accept a rectangle and a ptblt argument
and return the ptblt with the specified rectangle set to
the rectangle argument.

sblts sets the source, sbltd sets the detaintion, and
sbltc sets the clipping rectangle.

Usage - sblt_(r,b) where r is a rectangle and b is ptblt.

sbltr - set ptblt rule

sbltr accepts a natural and a ptblt argument and returns
the ptblt with copy rule set to the natural argument.

Usage - sbltr (n,b) where n is a natural and b is ptblt.

infnt - is icon in font

infnt accepts a natural and a font argument and returns
a boolean result based on whether the icon indexed by the
nautral argument is defined.

Usage - infnt (n,f) where n is a natural and f is a font.

dfnt - delete icon

dfnt accepts a natural and a font argument and returns the
font with the indexed icon deleted.

Usage - dfnt(n,f) where n is a natural and f is a font.

gfnt - get icon

gfnt accepts a natural and a font argument and returns
the form of the icon indexed.

Usage - gfnt(n,f) where n is a natural and f is a font.

un - union of lists

un accepts two lists as arguments and returns the union
of both.

311

int - intersection of lists

int accepts two list arguments and returns the intersec-
tion of both.

cat - list concatenation

This operator accepts two list arguments and returns the
concatenation of the first list onto the second.

get - get a list

get accepts two list arguments and returns the list from
the first argument that corresponds with the second. If
any of the two arguments is the empty list the operation
results in an error.

de - delete a list

This operator accepts two list arguments and returns a
list that is equal to the second argument but reduced by
the list indicated by the first argument. It is an error
to apply de to an empty list or to specify a first argu-
ment that is not contained in the second.

retobj - retrieve an object

retobj accepts two list arguments and returns the list
that corresponds to the second argument. If the second
argument is the empty list the result will also be the
empty list.

14.3.3. Triadic Operators (TOP's)

dcolor - define color

dcoior accepts three intensity arguments and returns the
defined color.

Usage - dcolor (r, g,b) where r is the red intensity, g is
the green intensity, and b is the blue intensity.

pof f St

poffst accepts a point and two integer arguments and
returns the point that is offset from the point argument
by the integer arguments.

Usage - pof f st (x ,y ,p) where x and y are the offset
integers and p is the reference point.

sftrct - shift rectangle

sftrct accepts a rectangle and two integer arguments and
returns the rectangle formed by offsettting its origin
by the integer arguments.

312

Usage - sftret (x,y , r) where x and y are the offset inte-
gers and r is the reference rectangle.

scolor - set color

scolor accepts a color, a point and a form argument and
returns the form with its point argument set to the color
argument

.

Usage - scolor (p,c, f) where p is the point, c is the
color, and f is the font.

invfrm - inverse form

invfrm accepts a form and two color arguments and returns
the form with its fore and background colors inversed
by the color arguments.

Usage - invfrm (fg,bg, frm) where fg is the new foreground
color, bg is the new background color, and frm is the form
to be inversed.

sfnt - set font

sfnt accepts a natural, a form, and a font and returns the
font with the new icon inserted that is defined by the
form and natural arguments.

Usage - sfnt (frm, n, fnt) where frm is the icon forin, n is
the index, and fnt is the font.

mod - modify list

mod accepts a dblist, an objlist, and a pvallist and
returns the dblist with the new pvallist inserted into
the appropriate position of the objlist identified by the
corresponding 'pid,' It is an error to apply a pvallist
to an object for which it is not defined.

14.3.4. Quadadic Operators (QOP's)

foff St - font offset

foffst accepts two integer arguments as an offset, a point
argument and a font argument. It reti.irns the spot origin
point based on the spot coordinate offset from the point
argument, e.g., a font size of 10 by 10 which is offset
2,3 from point (5,5) returns the spot origin point at
(25,35)

.

Usage - fof f st (x,y , fnt ,p) where x and y are the offset
integers, fnt is the basis font, and, p is the reference
point

-

313

cpfrm - form copyblt

cpfrm merges a source and a mask form with a destination
form using the parameters in ptblt. It accepts a ptblt
and three form arguments and returns the resultant form.

Usage - cpfrm(pb , s ,m,d) where pb is the governing ptblt,
s is the source form, m is the mask form, and d is the
destination form.

14.3.5. Sexadic Operators (SOP's)

drawln - draw line

drawln draws a line from point y to point z on the destina-
tion form, using the specified brush and mask forms. It
accepts two point arguments, three form arguments and a
ptblt argument and returns a form.

Usage - drawln (x,y,pb,b,m,d) where y is the start point,
z is the end point, pb is the ptblt, b is the brush form,
m is the mask form, and d is the destination form.

cpfnt - copy font

cpfnt copies a font icon to a designated point on the des-
tination form. It accepts a natural and a font argument
which defines the source form, a point argument for the
target location, two form arguments and a ptblt argument
and returns the resultant form.

Usage - cpfnt (p ,
pb ,n , fnt ,m, d) where p is the target location

pb is the ptblt, n is the font index; fnt is the font, m
is the mask form, and d is the destination form.

14.3.6. Octadic Operators (OOP's)

invfnt - inverse font

invfnt performs the same operation as cpfnt except that
the font icon is combined with inverse coloring. It
accepts the same arguments plus two color arguments and
returns the resultant form.

Usage - invfnt (fg ,bg
,
p,pb, n , fnt ,m,d) where fg is the new

foreground color, bg is the new background color, p is
the target location, pb is the ptblt, n is the font index,
fnt is the font, m is the mask form, and d is the destina-
tion form.

14.3.7. Relational Operators (ROP's)

The relational operators are:

== - equality
> - greater than

314

>= - greater than or equal to
< - less than
<= - less than or equal to
!= - not equal to

They may be applied to int, nat, char, string, intens, pnt,
and 1st.

If == or != are applied to arguments of different types,
== returns false, != returns true. This applies also to types
not listed above. >,>=,< and <= return an error if their
arguments are not of the same type.

Relational operators return a boolean result.

14.3.8. Test Operators (BOP's)

These operators permit the programmer to test a cell for
type before attempting to access it. These are necessary be-
cause AM considers it a fatal error to read from an undefined
cell or apply an operator of one type on data of another.
The test operators are the same as the type mnemonics., plus a
mnemonic for testing undefined values:

bool
nat
int
char
string
intens
color
pnt
ret
form
font
ptblt
instr
addr
file
undef
pid
val
pval
obj
db
1st

Test operators accept a typed value and return true if the
value is of the specified type, false otherwise. undef re-
turns true if a value is undefined, false otherwise.

315

OFFSET Offset an Address

Syntax:

offset I,R

R must contain a memory address value

Operation:

R + I — > R

Description

:

The sum of I and the address in R is stored in R.

Example:

offset 20,r(0:0)

Addressing Modes:

I: a

R: r

Format

:

OFFSET

0250
I

|p! 3810 [operands

316

LINK Link Frame and Allocate LINK

Syntax:

link R,N

Operation

:

R(a — > address^
address --> R

Description:

A segment of N cells is allocated from the heap. The
value stored in R is save at the base address of the segment.
The segment base address is returned in P.

This instruction is designed to create dynamic links for
local environments.

Example:

proc : link r(0:5),l
move r(0:5)2(a4,r(0:0)
add {int,100} ,r(0:0)
move r (0:0) ,r (0:5) 2(34

unlink r(0:5)
rts

Above is an example of uplevel addressing.

Addressing Modes:

R: r

N: a

Format

:

0250
I

\T]
!
3811

I

|operands~|

317

UNLINK Unlink and Free UNLINK

Syntax:

unlink R

Operation

:

R@ — > R

Description;

The value in the base address of the segment pointed to
by R is returned in R. The segment is freed.

Example

:

proc link r (0:5) ,1
move r(0:5)2@4,r(0:0)
add {int,100},r (0:0)
move r(0:0) ,r(0:5)2@4
unlink r(0:5)
rts

Addressing Modes:

R: r

Format:

0250 P] I 2 8 1 2
I

operand

318

GDWIN Get Display Window Location GDWIN

Syntax:

gdwin D,R

Operation

:

D — > R

Description:

The value of the display window origin point at D is
stored in R.

Example

gdwin d(0:0) ,r(0:0)

Addressing Modes:

R: r

Format

:

0250 1 P 13813 [operands

319

SDWIN Set Display Window Location SDWIN

Syntax:

sdwin R,D

R must contain a point value

Operation:

R — > D

Description:

The display window origin point at D is set to the point
value in R.

Example

:

sdwin r(0:0) ,d(0:0)

Addressing Modes:

R: r

Form.at:

I

0250
I |

TJ
I

3814
I [

operands

3 2

Get Monitor AttributeGMTR

Syntax:

gmtr T,R

Operation:

T — > R

Descriptj on:

The T value is stored in R.

Example:

gmtr -b,r(0:0)

Addressing Modes:

R: r

Format

:

02501 \T\ { 2815

GMTR

281C I } operand

321

SMTR Set Monitor Attribute SMTR

Syntax:

smtr R,T

R must contain a value appropriate for the selected
attribute.

Operation

:

R — > T

Description;

The T value is set to the value in R

Example

:

smtr r (0 :0) , -d

Addressing Modes:

R: r

Format

:

0250
I

I P] {
I

281D| . . . 2824 | } operand

322

MONADS Monadic Short MONADS

Syntax:

<inop> C

where

:

<inop> is a monadic operator

Operation

:

<mop> C — > C

Description:

The operator corresponding to mop is applied to C and
the result stored in C.

Example

not r(0:0)

Addressing Modes

C: r,d

Format

:

0250 P 3830 operand

323

MONADL Monadic Long MONADL

Syntax

:

<mop> Cx,Cy

where

:

<mop> is a monadic operator

Operation

:

<mop> Cx — > Cy

Description

:

The operator corresponding to <mop> is applied to Cx and
the result stored in Cy.

Example

:

not r.(:) , r (1 :)

farea d(0:0),r(0:0)

Addressing Modes:

Cx: r,d

Cy: r,d

Format

:

0250
I |

"p7
I

4 8 3 1
I [

operands

324

MONADLI Monadic Long Immediate MONADLI

Syntax:

<mop> V,C

where

:

<mop> is a monadic operator

Operation

:

<mop> V —> c

Description:

The operator corresponding to <raop> is applied to the
immediate value V and the result stored in C.

Example

:

not
newfrm

Addressirig Modes

:

V: i

C: r. d

Format

:

{addr,flag},r(l:0)
{addr , rctsize},d(0:0)

0250
I

P
I 4832 I operands

325

DYADS Dyadic Short DYADS

Syntax:

<dop> Cx,Cy

where

:

<dop> is a dyadic operator

Operation:

Cy <dop> Cs — > Cy

Description

:

The operation corresponding to <dop> is applied to the
operands and the result stored in Cy.

Example

and r (:) , r (: 1

)

fill r(0:0) ,d(0:0)

Addressing Modes:

Cx: r,d

Cy : r ,

d

Format:

Q250| [Pj
I

48331
[

operands"

326

DYADS

I

Dyadic Short Immediate DYADS

I

Syntax:

<dop> V,C

where

:

<dop> is a dyadic operator

Operation:

C <dop> V —^> C

Description:

The operation corresponding to <dop> is applied to the
operands and the result stored in C.

Example

:

sub {int,100} ,r (0:1)
fill {color,&(10,10,10) },d(0:0)

Addressing Modes:

V: i

C: r,d

Format

:

0250
I

[¥]
I

4834

|

[

operands

327

DYADL Dyadic Long DYADL

Syntax:

<dop> Cx,Cy,Cz

where

:

<dop> is a dyadic operator

Operation

:

Cy <dop> Cx — > Cz

Description

:

The operation corresponding to <dop> is applied to Cx and
Cy and the result stored in Cz.

Example

:

add r(0:0),r(0:l),r(0:3)
gcolor r(0:0),d(0:0),r(0:l)

<dop> Cx,Cy,Cy is equivalent to <dop> Cx,Cy

Addressing Modes:

Cx: r,d

Cy : r , d •

Cz : r ,d

Format

:

0250 P 4835 operands

328

DYADLI Dyadic Long Immediate DYADLI

Syntax:

<dop> V,Cx,Cy

where

:

<dop> is a dyadic operator

Operation:

Cx <dop> V — > Cy

Description

:

The operation corresponding to <dop> is applied to V and
Cx and the result stored in Cy.

Example:

add {int,100},r (0:0) ,r(0:l)
gcolor { pnt , (0,0) },d(0:0) ,r(0:0)

<dop> V;Cx,Cx is equivalent to <dop> V,-Cx

Addressing Modes:

V: i

Cx : r ,

d

Cy: r,d

Format

:

0250 P 4836 operands

329

TRIADS Triadic Short TRIADS

Syntax:

<top> Cx,Cy,Cz

where

:

<top> is a triadic operator

Operation:

<top> Cx,Cy,Cz — > Cz

Description:

The operation corresponding to <top> is applied to the
operands and the result stored in Cz

.

Example

:

sfnt r (0:0) ,r (0:1) ,r (0:2)

Addressing Modes

Cx: r,d

Cy : r ,

d

Cz: r,d

Format:

0250
I

P] 4837 | operands

330

TRIADL Triadic Long TRIADL

Syntax:

<top> Cw,Cx,Cy,Cz

where

:

<top> is a triadic operator

Operation:

<top> Cw,Cx,Cy — > Cz

Description

:

The operation corresponding to <top> is applied to the
operands and the result stored in Cz

.

Example

:

scolor r(0:0) ,r(0:l) ,d(0:2) ,r (0:3

Addressing Modes:

Cw : r , d

Cx : r ,

d

Cy : r ,

d

Cz : r,d

Format

:

0250 ! P] I 4838
|

[operands

331

QUADS Quadic Short QUADS

Syntax:

<qop> Cw,Cx,Cy,Cz

where:
<qop> is a quadadic operator

Operation:

<qop> Cw,Cx,Cy,Cz — > Cz

Description:

The operation corresponding to <qop> is applied to the
operands and the result stored in Cz.

Example

:

cpfrm r(0:0) ,d(0:0) ,r(0:l) ,d(0:l)

Addressing Modes;

Cw : r ,

d

Cx: r,d

Cy : r ,

d

Cz • r ,d

Format

:

0250
I

jT]
I

4 83 9
I

[operands"

332

QUADL Quadic Long QUADL

Syntax:

<qop> Cv,Cw,Cx,Cy,Cz

where

:

<qop> is a quadadic operator

Operation:

<qop> Cv,Cw,Cx,Cy — > Cz

Description

:

The operation corresponding to <qop> is applied to the
operands and the result stored in Cz.

Example

:

cpfrm r(0:0) ,r(0:l) ,r(0:2) ,r(0:3) ,d(0:0

Addressing Modes:

Cv : r ,

d

Cw : r ,

d

Cx : r ,- d

Cy: r,d

Cz : r,d

Format

:

j

0250
I

[¥]
I

483A| [operandT

333

SEXADS Sexadic Short SEXADS

Syntax:

<sop> Cu,Cv,Cw,Cx,Cy,Cz

where

:

<sop> is a sexadic operator

Operation:

<sop> Cu,Cv,Cw,Cx,Cy ,Cz — > Cz

Description

:

The operation corresponding to <sop> is applied to the
operands and the result stored in Cz.

Example

drawln r(0:0) ,r(0:l) ,r(0:2) ,r(0:3) ,r(0:4) ,d(0:0:

Addressing Modes:

Cu

:

r , d

Cv : r , d

Cw : r , d

Cx: r,d

Cy

:

r , d

Cz

:

r ,d

Format

:

I

0250
[

[¥] !

483B| [operands"

334

SEXADL Sexadic Long SEXADL

Syntax:

<sop> Ct,Cu,Cv,Cw,Cx,Cy,Cz

where

:

<sop> is a sexadic operator

Operation:

<sop> Ct,Cu,Cv,Cw,Cx,CY — > Cz

Description

:

The operation corresponding to <sop> is applied to the
operands and the result stored in Cz.

Example

cpfnt r(0:0),r(0:l),r(0:2),r(0:3),r(0:4),
d(0:0) ,d(0:l)

Addressing Modes

Ct: r,d

Cu: r,d

Cv

:

r ,

d

Cw

:

r , d .

Cx: r,d

Cy : r , d

Cz

:

r,d

Format

:

0250 P 483C operands

3 35

OCTADS Octadic Short OCTADS

Syntax:

<oop> Cs^t,Cu, Cv,Cw,Cx,Cy,Cz

where

:

<oop> is a octadic operator

Operation:

<oop> Cs,Ct,Cu,Cv,Cw,Cx,Cy ,Cz --> Cz

Description

:

The operation corresponding to <oop> is applied to the
operands and the result stored in Cz,

Example

invfnt r (:) , r (: 1) , r (: 2) , r (: 3) , r (: 4) , r (: 5) ,

r (0:6) ,d(0:l)

Addressing Modes:

Cs: r,d

Ct: r,d

Cu: r,d

Cv: r,d

Cw: r,d

Cx: r,d

Cy: r,d

Cz: r,d

Format:

0250] |PT 483D| I operands

336

OCTADL Octadic Long OCTADL

Syntax:

<oop> Cr , Cs , Ct , Cu , Cv , Cw , Cx , Cy , Cz

where

;

<oop> is a octadic operator

Operation

:

<oop> Cr,Cs,Ct,Cu,Cv,Cw,Cx,Cy — > Cz

Description:

The operation corresponding to <oop> is applied to the
operands and the result stored in Cz.

Example

invfnt r(0:0) ,r(0:l) ,r(0:2) ,r(0:3) ,r(0:4) ,r(0:5) ,

r(0:6),d(0:0),d(0:l)

Addressing Modes:

Cr r,d

Cs r,d

Ct • r,d

Cu r,d

Cv r,d

Cw : r,d

Cx r,d

Cy r,d

Cz r,d

Format

:

I

0250
I

|TT |T83ir]
|

operands

337

MOVE Move a Value MOVE

Syntax:

move <eal>,<ea2>

where

:

<ea> must be one of the addressing modes listed below

Operation:

source --> destination

Description

:

The value found at the source address is copied into
the destination address.

Example:

data

move r(0:0) ,d(0:0)
move d(0:l) ,r(0;4)
move r (0 : 0) ,data
move {addr ,data} , r (0 : 20)
m.ove {int, 100} ,r (0:20) @

move r (0:20) (§10, r (0:10)

ds 100

Addressing Modes:

<eal>: d , r , ri , rid , ridn ,m
,
per ,

i

<ea2>: d , r , ri , rid , ridn ,m, per

Format:

0250
I

jTJ {
|

h850 H884 } operands

338

PUSH Push a Value PUSH

Syntax:

push <ea>,S

where

:

<ea> is one of the addressing modes listed below

Operation:

source — > S

Description

:

The source value is pushed onto stack S. The programmer
has no access to the stack pointer.

Example

:

push {int,100} ,s(0)
push r(0:10) ,s(l)
push d(0:0),s(l)

Addressing Modes:

<ea> : d ,m, per , r , ri , rid , ridn,

i

S: s

Format

:

0250 P{H880!...H8 87|} operands

339

POP Pop a Value POP

Syntax:

pop S,<ea>

where:
<ea> is one of the addressing modes listed below

Operation:

S --> destination

Description

:

The source value is popped off stack S and stored at <ea>
The programmer has no access to the stack pointer.

It is an error to attempt to pop a value from an empty
stack.

Example

:

data:

pop s () ,- r (: 1

)

pop s (0) ,data
pop s (1) ,d(0 :0)

ds 1

Addressing Modes:

S: s

<ea> : d,m, per , r , ri ,- rid , ridn

Format

:

02501 ITT { H889 I .

.

H8 8f } I operands

340

POPX . 'Remove the Top of a Stack POPX

Syntax:

popx S

Operation

:

S -->

Description

;

The top value of stack S is removed.

It is an error to attempt to remove the top of an empty
stack.

Example:

popx s(0)

Addressing Modes:

S, s

Format

:

0250
I

1^1
I

2888
|

| operands]

341

MOP

Syntax:

nop

Operation

:

Description

:

Does nothing.

Addressing Modes:

No Operation NOP

Format

:

0250 P 18A0

342

STOP Halt Execution STOP

Syntax:

stop

Operation:

Description:

Execution is terminated

Addressing Modes:

Format

0250 P 18.A1

343

JMP Jump JMP

Syntax:

jmp <ea>

where
<ea> is one of the addressing modes listed below

Operation:

<ea> --> PC

Description:

Execution resumes at <ea>.

If jmp follows a rorg directive, a jump to m.emory abso-
lute is converted to a branch.

Example:

here

jmp here
j mp r (:)

jmp (l:150)(a

Addressing Modes:

<ea>: m,r,mi,pcr

Format:

0250
I I

Pi {| H8A2 . H8 5A4
!

} operands

344

BRA Branch BRA

Syntax:

bra <ev>

where:
<ev> is one of the addressing modes listed below

Operation:

PC + <ev> — > PC

Description:

Execution resumes at the sum of the program, counter and the
effective value.

Example

bra 100

Addressing Modes:

<ev> : a,

r

Format

:

0250
I

ITJ
I

H8A5

|

. . .
|

H8A6

|

}
|

operand¥

345

IF IF: Conditional Jump/Branch IF

Syntax:

if R <rop> <ev>,M
if <bop> <ea>,M

where:
<rop> is a relational operator
<bop> is a test operator
<ea> and <ev> are one of the addressing modes listed below

Operation

if R <rop> <ev> then
M — > PC

if <bop> <ea> then
M — > PC

Description

:

If the comparison is true, execution resumes at M; other-
wise, with the next instruction.

Example

:

loop

done

data

move {int,10} ,r (0:0)
if r(0:0) < {int,l},done
sub {int,l} ,r (0:0)
jmp loop
if int data, loop

ds 1

Addressing Modes

R: r

<ev> : r ,

i

<ea> : r ,m

M: m,pcr

Format

:

IS0250

{
!
58A7

I

,

I

58A8

|

,

|

5 8AB| , \
58AC[

,

|

48AF|
,

|

48B0

|

,

|

48B3

[

,

[

48B4

|

}

operands

346

IFTE If-Then-Else: Conditional Jump/Branch IFTE

Syntax:

if R <rop> <ev>,Mx,My
if <bop> <ea>,Mx,My

where:
<rop> is a relational operator
<bop> is a test operator
<ea> and <ev> are one of the addressing modes listed below

Operation

:

if R <rop> <ev> then
Mx — > PC

else

My — > PC

if <bop> <ea> then
Mx — > PC

else

My — > PC

Description

:

If the comparison is true, execution resumes at r4x;

otherwise, at My.

Example

:

if r(0:0) > r (: 1), easel , case2
stuff: move r(0:0),-data
easel: jsr first, s(0)

if int r(0:0), easel
stop

case2: jsr second, s(0)
stop

Addressing Modes

;

R: r

<ev>: r,i

<ea> : r ,m

Mx : m,pcr

My: m,pcr

347

Format

0250

{
I

6 8A9
i

,
I

68AA| , j

6 8AD[,
|

6 BAE
j

,
|

58B1
|

,
|

58B2

|

,
|

58B5

[

,
|

58B6

[

}

operands

348

JSR Juirip Subroutine JSR

Syntax:

jsr <ea>,S

where

:

<ea> is one of the addressing modes listed below

Operation:

PC — > S
<ea> — > PC

Description

:

The program counter is pushed onto stack S, and execu-
tion resumes at <ea>.

Following a rorg directive, memory absolute is converted
automatically to program counter relative.

Example:

jsr incr , s (0

)

Addressing Modes:

<ea> : m,mi , r ,
per , S : s

Format

:

0250
I

jTJ { [H8B7 | . . . | H8B9
| } [operands

349

BSR Branch Subroutine BSR

Syntax:

bsr <ev>,S

where

:

<ev> is one of the addressing modes listed below

Operation:

PC — > S

PC + <ev> —•> PC

Description

:

The program counter is pushed onto stack S, and execu-
tion resumes at the sum. of the program, counter and <ev>.

Example:

bsr r (1:0) ,s(0)

Addressing Modes:

<ev> : r , a S : s

Format

:

!

0250
I

|T] {
I

38BA| , |

3 8BB| } [operands
'

350

RTS Return from Subroutine RTS

Syntax

:

rts S

Operation

:

S — > PC

Description:

Execution resumes at the address popped from stack S

Example

:

add {int,l},r(0:0
rts s(0)

mere

:

Addressing Modes:

S: s

Format

:

02501 |TJ [
28BC| [operand

351

OPEN Open a File OPEN

Syntax:

open S

Operation

:

S -->

Description:

To open a file, four file parameters must be pushed on
the stack, in proper order, before the open instruction is
invoked. These attributes are: a string atom for the
filename, a file descriptor atom, an integer atom for the
access mode, and an integer atom, for the data type (raw or
AM typed values) . The open instruction pops these parameters
off the stack and opens the file. All future file operations
are referenced by the file descriptor.

Example

dataf ile equ {file, 3}
push { string, " filename"

}

push {datafile} ,s (0)

push {int,0},s(0)
push {int,0},s(0)
open s (0)

s(0

i
Addressing Modes:

S: s

Format

:

0250 "Fj
I

28C0
I

[operand

352

CLOSE Close a File CLOSE

Syntax:

close S

Operation:

S —

>

Description:

The file descriptor atom must first be pushed on the stack
The close instruction pops the stack and closes the file.

Example

:

datafile equ {file, 3}
push {dataf ile} , s (0

close s (0)

Addressing Modes

S: s

Format

:

!

0250 I
ITT

I

28C1
1

! operand

353

READ Read a File READ

Syntax:

read S

Operation

:

S —

>

Description

:

The file descriptor atom must first be pushed on the stack,
The memory address atom for the destination buffer cell is
pushed next. The read instruction pops these parameters off
the stack and puts the next file cell in the destination
buffer.

Example

:

dataf ile

data

Addressing Modes:

S: s

Format:

equ {file, 3}
push {datafile} ,s (0)

push {addr,data} ,s (0)

read s(0)
ds 100

0250] P |28C2 operand

354

WRITE V7rite to File WRITE

Syntax:

write S

Operation

:

S — >

Description:

The file descriptor atom must first be pushed on the stack,
The memory address atom for the source buffer cell is pushed
next. The write instruction pops these parameters off the
stack and puts the contents of the source buffer cell into
the next file cell.

Example

:

dataf ile

data

Addressing Modes

S: s

Format:

equ {file, 3}
push {dataf ile) , s (0)

push {addr ,data} , s (0

)

write s (0)

dc {string, "hello world"}

0250
I

|TT
I

28C3
|

j operand

355

WRITE Write a Value to the Queue WRITE

Syntax:

write<ea> ,Q

where

:

<ea> is one of the addressing modes listed below

Operation

:

Source --> Q

Description

:

The source value is written onto queue Q. The programmer
has no access to the queue pointer.

Example

:

write {nat . 17 } ,q (0)

write r (0 :10) , q(l)

Addressing Modes:

<ea> : m,r,i,q

Q: q

Format

:

i

0250' PT { H890 ... H897 } operands

3S6

pj:ad Read a Value from the Queue READ

Syntax:

read Q,<ea>

where
<ea> is one of the addressing modes listed below

Operation:

Q --> destination

Description

:

The source value is read from the queue Q and stored at
<ea>. The programmer has no access to the queue pointer.
It is an error to attempt to read a value from, an empty queue.

Example

:

data

read q(0) ,r (0:1)
read- q (0) ,data
dsl

Addressing Modes:

Q: q

<ea> : m,r

Format

:

0250
I

|T] { |h899 H89f I } [operands

357

DELETE Delete the Front Value of the Queue DELETE

Syntax:

delete Q

Operation

:

Q — >
*

Description:

The front value of queue Q is removed. It is an error
to attempt to remove the front value of an empty queue

»

Example

delete q(0)

Addressing Modes:

Q: q

Format:

0250
I

|Tj
1
2898

|

[operands"

3S8

OPEN Open the Database OPEN

Syntax:

open D

Operation:

D —

>

Description

:

A database identifier is required to open the databse.
All future operations are referenced by this identifier.

Example

:

Addressing Modes:

D: i

open {database ,databaseid}

Format

:

0250
I

jTj
I
28C4

I

[operand'

3 59

CLOSE Close the Database CLOSE

Syntax:

close D

Operation

:

D -->

Description

:

The database identifier is required to close the database

Example

:

c lo se (database, database i.d}

Addressing Modes:

D: i

Format

:

0250! P I28C5 [operand

360

LIST OF REFERENCES

1. Davis, D. , "Research on Portability and Reusability,"
in Bits 'n' Bytes , Vol. 3, No. 1, Naval Postgraduate
School, Monterey, California, 1985, pp. 13-15.

2. Yurchak, J., The Formal Specification of an Abstract
Machine: Design and Implementation , Master's Thesis,
Naval Postgraduate School, Monterey, California, December
1984.

3. Hunter, J.E., The Formal Specification of a Visual Display
Device: Design and Implementation , Master's Thesis, Naval
Postgraduate School, Monterey, California, June 1985.

4. Myers, G.J., Advances in Computer Architecture , Wiley,
New York, 1982.

5. Guttag, J.V., "Notes on Type Abstraction," IEEE Transactions
on Software Engineering , January 19 80.

6. Goguen , J. A., J.W. Thatcher, E.G. Wagner, "An Initial
Algebra Approach to the Specification, Correctness, and
Implem.entation of Abstract Data Types," Current Trends
in Programming Methodology IV, Data Structuring , R.T. Yeh
(ed .) , Prentice-Hall , Englewood Cliffs, New Jersey, 1978,
pp. 80-97.

7. Naval Postgraduate School, NPS52-84-002 , A Formal Method
for Specifying Computer Resources in an Implementation
Independent Manner , by D. Davis, Monterey, California,
November 19 84.

8. Clocksin, W.F., Mellish, C.S., Programming inProlog ,

Springer-Verlag, 1984.

9. MacLennan, B.J., Functional Programming Methodology ,

Naval Postgraduate School, Monterey, California, 1985.

10. Fairley, R. , Software Engineering Concepts, McGraw-Hill
Book Company, 1985.

11. Bjoerner, D., "Formalization of Data Base Models," in
Bjoerner, D. (ed.) : Abstract Software Specification ,

Lecture Notes in Computer Science , No. 86, Springer
Verlag, 19 80,

361

12. Booch, G. , Software Engineering with Ada ^ The Benjamin/
Cuiimiings Publishing Co., Inc., 1983.

13. Deen, S.M., Fundamentals of Database Systems , Hayden Book
Co., 1977, pp. 36-52, 80-88.

14. Hsiao, D.K., Database Com.puters—-A Tutorial and Review ,

Naval Postgraduate School, Monterey, California, April
1982.

15. Kroenke, D. , Database Processing: Fundamentals, Design,
Implementation , Science Research Associates, Inc., 1983.

16. Hull, R. , Yap, C.K., "The Formal Model: A Theory of
Database Organization," in Journal of the Association for
Computing Machinery , Vol. 31, No. 3, July 1984, pp. 518-536

17. Smith, J.M., Smith, D.C.P., "Database Abstractions:
Aggregation and Generalization," in ACM Transactions on
Database Systems, Vol. 2, No. 2, June 1977, pp. 105-133.

362

INITIAL DISTRIBUTION LIST

No. Copies

1. Defense Technical Information Center 2

Cameron Station
Alexandria, Virginia 22304-6145

2. Library, Code 0142 2

Naval Postgraduate School
Monterey, California 93943-5100

3. Chairman, Code 52 •• 1

Department of Computer Science
Naval Postgraduate School
Monterey, California 93943-5100

4. Computer Technology Programs, Code 37 1

Naval Postgraduate School
Monterey, California 93943-5100

5. Daniel L. Davis, Code 52Vv 5

Department of Computer Science
Naval Postgraduate School
Monterey, California 93943-5100

6. David K. Hsiao, Code 52Hq 1

Department of Computer Science
Naval Postgraduate School
Monterey, California 93943-5100

7. Komjnando Marinefuehrungssysteme 1

Heppenser Groden
2940 Wilhelmshaven
W. Germany

8. Harald Zang 5

Karl-Tuerk-Str. 20
8630 Coburg
W. Germany

363

-:Vitt,

\rj

111 ...- V--' -' ^ I

Thesis
Z2421
c.l

f

Zang
The formal specifica-

tion of an abstract

database: design and

implementation.

14 AUG 67 3 3 U 8

£. ..^ K/' \j \j

Thesis
Z2421

c.l

Zang
The formal specifica-

tion of an abstract
database: design and
implementation.

thesZ2421

The formal specification of an abstract

3 2768 000 69023 4
DUDLEY KNOX LIBRARY

,

