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Below the Arctic sea ice, under the right conditions, a flux of icy
brine flows down into the sea. The icy brine has a much lower
fusion point and is denser than normal seawater. As a result,
it sinks while freezing everything around it, forming an ice
channel called a brinicle (also known as ice stalactite). In this
paper, we develop a mathematical model for this
phenomenon, assuming cylindrical symmetry. The fluid is
considered to be viscous and quasi-stationary. The heat and
salt transport are weakly coupled to the fluid motion and are
modelled with the corresponding conservation equations,
accounting for diffusive and convective effects. Finite-element
discretization is employed to solve the coupled system of
partial differential equations. We find that the model can
capture the general behaviour of the physical system and
generate brinicle-like structures while also recovering dendrite
composition, which is a physically expected feature aligned
with previous experimental results. This represents, to our
knowledge, the first complete model proposed that captures
the global structure of the physical phenomenon even though
it has some discrepancies, such as brine accumulation.
1. Introduction
Brinicles are naturally occurring inverse chemical gardens in the
form of ice channels that freeze owing to a low-temperature brine
flux from the surface ice [1]. They usually grow from a few
centimetres to a metre and only appear in winter in the polar
regions. During this season, the temperature above the ice drops
from �10�C to �40�C, while below the ice, the temperature
remains at �2�C [1]. Hence, a temperature gradient appears
going from the sea to the atmosphere. As the seawater loses heat,
ice crystals nucleate beneath the ice. These crystals arrange
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Figure 1. Diagram of a brinicle formation, the outside air (white) is at �40�C while the ocean (blue) is at �2�C and at a salinity
of 3.5% wt. From the thick layer of ice (grey), a hollow chuck of ice, called a brinicle, grows downwards because of the cold brine
flow inside it. The figure is inspired by [1,4].
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themselves in horizontal bi-dimensional sheets called platelets [2]. Then, these platelets start to float,
trapping seawater between layers of ice [3]. Part of the trapped seawater incorporates into the ice
leaving behind the salt. As a result, the remaining seawater becomes extremely cold and salty forming
cold brine. Eventually, the brine flows down the cracks of the ice into the sea. Seawater is nearly at its
fusion point, and the denser brine sinks, freezing the water around it and forming a stalactite of ice
called a brinicle. A diagram of a brinicle can be seen in figure 1.

There is a good amount of research on brinicles and related phenomena. For example, these forms are
often studied to determine whether some ice-covered worlds, such as Jupiter’s moon Europa, are suitable
for life [5,6]. The work [7] shows experimental studies analysing the brinicle formation process in a
controlled laboratory environment. Furthermore, the effects of brine rejection and salt redistribution
on polar regions, for example, anchor ice, can be found in [8]. A model for a similar physical
phenomenon, the so-called black smoker, is shown in [9]. However, a complete model together with a
numerical study of brinicle formation has yet to be proposed. Hence, the present work represents
a first step into the simulation of these types of systems, which is also relevant to a wide range of
applications resembling closely the partial differential equations (PDEs) used for a brinicle formation.
Among others [10], these include phase-changing liquids in industrial processes [11], molten metals
[12], thermal energy storage [13–16], smart textiles [17], and data storage [18,19]. Furthermore, the
brinicle formation phenomenon also plays an important role in climate models [20].

In this article, we propose a model, described by a system of PDEs, to describe the formation of a
brinicle in the Arctic sea. We consider a three-dimensional case with angular symmetry, which allows
us to reduce the computational model to a two-dimensional computational domain. The decrease in
computational cost enables us to account for different physical aspects, such as heat transfer, water flow
and salt transport, with phase change included in each field. For the fluid motion, we used the stream
function-vorticity formulation in the Stokes equation, including the Brinkman penalization [21,22] that
zeros velocity in solid regions. The latter is computationally cheaper and much easier to implement
than the boundary tracking method, which is usually used in some industrial-oriented numerical
methods for simulating phase-changing fluids [23]. Moreover, we consider properties like phase-
dependent diffusion while other parameters like viscosity are kept constant. We used the enthalpy
formulation [24,25] to account for the energy required to perform the phase change, which includes the
latent heat as an effective heat capacity. The numerical discretization is performed with the Galerkin
finite-element method (FEM) [26] for the spatial discretization of the coupled PDE describing the
physics of the problem. The evolution of the state fields is obtained with an implicit fourth-order
Runge–Kutta method with an adaptive time step [27]. The numerical studies were performed with the
help of the MFEM (https://mfem.org/) finite-element discretization library [28,29].
2. Physical problem
Our study is focussed on an experimental setting created by S. Martin and reported in [7], where the ice
formation is reproduced by injecting cold brine through a hose into a cylindrical tank full of seawater.
Following the experiment closely, we run the simulations in a cylindrical domain as shown in figure 2
with radius R and height H that is initially filled with seawater at temperature T0 and salinity S0.

https://mfem.org/
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Figure 2. The domain of the study corresponds to a cylinder of radius R and height H. The cylinder is filled with liquid seawater
(T0, S0). Cold brine with, temperature Tin and salinity Sin, enters from the inlet of radius Rin, located at the top centre of the domain.
Q denotes the brine flux.
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The cylinder axis goes through the middle of a circular inlet with radius Rin from where a flux Q of brine
with temperature Tin and salinity Sin enters the tank. The bottom of the domain is assumed as an outlet
that is located far from the inlet. The rest of the cylinder walls are assumed as insulated boundaries.

Our goal is to study the formation of the ice structure. Depending on the temperature, at every time
instance, part of the domain is occupied with fluid and the other part with solid. The domain is
occupied with a fluid phase for all points, where T≥ Tf, where the fusion temperature Tf is a function of
salinity. The temperature and the salinity are time-dependent fields with evolution depending mainly on
diffusive and convective effects and the latent heat in the energy transport. Furthermore, the diffusivity
rates are different in each phasewith functional forms and numerical values shown in detail in appendix A.

To model the phase change, we consider the domain like a porous medium where the permeability
lets the fluid flow freely in the liquid regions and slows it down in the solid parts. Moreover, the liquid
part of the domain is considered viscous and incompressible, where we include a buoyant force to
account for movement caused by density differences produced by temperature and salinity gradients.
As the phase change process usually occurs at long intervals, we assume the flow to be steady,
neglecting the transient effects. Therefore, we calculate the steady-state velocity field V for a given set
of temperature and salinity.

We aim to simplify the problem and propose a model in which all variables are dimensionless by
scaling each quantity and equation with the corresponding reference factors. Specifically, for length
and time, the scale factors are Rin and 2pR3

in=Q, respectively. The main reason is that the inlet flux
and the radius govern the characteristic time and length behaviour of the model. The time scale is
selected in such a way that Q/2π is equal to one. The latter simplifies the boundary conditions of the
flow equations. Regarding the temperature and salinity, we consider the following linear mapping:

f ðXÞ ¼ Xin � X
Xin � X0

, ð2:1Þ

where X represents either the temperature or salinity. The idea is to apply the above function to each field
instead of a reference factor to set the inflow conditions to zero, simplifying the numerical analysis.
Moreover, the initial conditions are set to one, and a scale factor for both variables is given by |Xin−X0|.
3. Governing equations
Our computational domain is defined as V ¼ ½0, R� � ½0, 2p� � ½0, H�, and the state equation are
defined in cylindrical coordinates ðr, u, zÞ [ V. The physical problem has angular symmetry allowing
the angular coordinate θ to be removed from the equations. Thus, the original problem is defined
entirely in the two-dimensional domain given by V0 ¼ ½0, R� � ½0, H� with coordinates ðr, zÞ [ V0.

Inside the two-dimensional computational domain, we consider the usual gradient, divergence and
curl operators, modified to account for the angular symmetry as

r0f ðr, zÞ ¼ @f
@r

êr þ @f
@z

êz ð3:1Þ
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and

r0 � fðr, zÞ ¼ @fr
@r

þ @fz
@z

, ð3:2Þ

where êr and êz are unit vectors. The operators in the r− z plane are defined as

rf ðr, zÞ ¼ r0f , ð3:3Þ
r � fðr, zÞ ¼ 1

r
r0 � (rf) ð3:4Þ

and r� fðr, zÞ ¼ 1
r
Rp

2
r0(rfu)þr0 � Rp

2

fr
fz

� �� �
êu, ð3:5Þ

where Rp=2 ¼ 0 �1
1 0

� �
is a rotation matrix by 90�, êi are unit vectors in their corresponding directions,

e.g. the angular direction, and fu ¼ f � êu. With the help of equation (3.5), an identity regarding a double
curl operator can be written as

r� (gðr, zÞr � (f ðr, zÞêu)) ¼ �r0 � g
r
r0ðrfÞ

� �
êu, ð3:6Þ

which will be used later for further simplifications. In the following subsections, we define the equations
for thermal transport, salt transport and fluid motion in the two-dimensional domain with the
corresponding boundary conditions.

3.1. Heat and salt transport
According to §2, for the heat and salinity transport, we consider diffusive and convective effects, which
can be modelled with the following equation [30]:

l1
@f

@t
þ V � rf

� �
�r � (l2rf) ¼ 0, ð3:7Þ

where ϕ is the temperature or salinity field, V is the velocity field. The coefficients λ1 and λ2 correspond to
the volumetric heat capacity and thermal conductivity in the heat problem. For the salinity transport,
these coefficients correspond to unity and mass diffusivity.

Multiplying equation equation (3.7) with the Jacobian r and using the pseudo-cartesian operators
from equations (3.3) and (3.4) results in

rl1
@f

@t
þ V � r0f

� �
�r0 � (rl2r0f) ¼ 0, ð3:8Þ

which defines the governing transport equation model in the cylindrical coordinate system.
Written explicitly the transport equations for the temperature and salinity are given as

r 1þ 1
Ste

dðT � Tf Þ
� �

@T
@t

þ V � r0T
� �

�r0 � r
PeT

r0T
� �

¼ 0 ð3:9Þ

and

r
@S
@t

þ V � r0S
� �

�r0 � r
PeS

r0S
� �

¼ 0, ð3:10Þ

where PeT and PeS are the Péclet numbers that refer to the ratios of diffusion and convective rates for each
equation [31] with the following functional form:

PeðT, SÞ ¼ Peliquid T . Tf ðSÞ,
Pesolid T , Tf ðSÞ,

(
ð3:11Þ

where Peliquid and Pesolid are the constant Péclet numbers from each phase.
The constant Ste is called the Stefan number and represents the ratio of the sensible and latent heat [23]. It is

important to denote that the contribution in the form of aDirac delta function in equation (3.9) results from the
discontinuityon the enthalpyacross thephase transitioncharacterizedby the fusion temperatureTf. The term is
associated with the energy needed to complete this process, namely the latent heat. Including it directly in the
heat equation is often referred to as the enthalpymethod [32]. The discussion regarding the construction of the
Stefan numberandeachPéclet numberwith respect to the physical parameters and their corresponding values
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canbe found inappendixA. It canbe seen fromthe coefficients of equations (3.9) and (3.10) that thesearehighly

nonlinear, which represents the principal difficulty of their solution.

3.2. Flow equations
Following the discussion in §2, the velocity field used in the transport equations for salinity and
temperature is modelled with the help of the Stokes equations [33]:

r � V ¼ 0 ð3:12Þ
and

1
Da

V �r2V þrp ¼ �Ar
Re

êz, ð3:13Þ

where p is the pressure, Re is the constant Reynolds number representing the ratio between inertial
and viscous forces, and Ar is the Archimedes number which is the ratio between buoyant forces and
viscosity stresses [31]. The last number is proportional to density differences, i.e. it is a function of
both temperature and salinity and is specified in appendix A, along with the construction and the
value of the Reynolds number.

In addition, we include a Brinkman penalization [21] associated with the Darcy number Da , which in
the limit is given by

DaðT, SÞ ¼ 1 T . Tf ðSÞ,
0 T , Tf ðSÞ:

(
ð3:14Þ

The penalization is large, ideally approaching infinity, in the solid regions and is zero in liquid
ones. However, numerical evaluation of the penalization requires that the Darcy number is strictly
larger than zero. Therefore, Da is chosen to be very small to prevent flow in the solid regions and, at
the same time, sufficiently large to avoid issues with the discretization and the numerical solution of
the resulting algebraic equations. In connection to the above penalization model, we want to point out
that in an actual physical scenario, any solid ice formed during solidification can be immobile only if
connected to the upper ice sheet. The rest of the ice floats freely and is advected by the fluid. On the
other hand, the proposed model does not allow the formed ice to move freely with the flow. The
above limitation may result in non-physical fluid blockage during the brinicle growth process,
discussed in detail in the results section.

To simplify the equation, we define stream ψ and the vorticity functions ω as follows:

V ¼ r� c and v ¼ r� V : ð3:15Þ
Substituting them into the Stokes equations and taking the curl results in the following system:

v�r�r� c ¼ 0 ð3:16Þ
and

r�r�vþr� 1
Da

r� c

� �
¼ r� �Ar

Re
êz

� �
: ð3:17Þ

Owing to the axial symmetry of the problem, the stream and the vorticity have non-zero components
only in the êu direction. Thus we can model them with scalar fields ψ and ω as follows:

c ¼ �c

r
êu and v ¼ v

r
êu: ð3:18Þ

Instead of solving for a two-dimensional velocity field V and a scalar pressure field p, we can solve for
two scalar fields, ψ and ω, reducing significantly the computational cost.

Equations (3.16) and (3.17) are simplified to

v� rr0 � 1
r
r0c

� �
¼ 0 ð3:19Þ

and

� rr0 � 1
r
r0v

� �
þ rr0 � 1

Da
1
r
r0c

� �
¼ r

Re
@Ar
@r

: ð3:20Þ



T = S = 0
ψ = r2 (2 – r2)

�ψ
�n = 0

�T
�n = �S

�n = 0
ψ = 1
�ψ
�n = 0

�T
�n = �S

�n = 0
ψ = ω = 0

�T
�n = �S

�n = 0
�ψ
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Figure 3. Initial and boundary conditions after simplification of the model owing to symmetry for the principal evolution equations.
Centre: initial conditions; top: inlet boundary; left: symmetric boundary; right: closed boundary; bottom: outlet boundary. The
parameters are set to simulate Martin’s [7] experimental set-up.
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It is important to denote that the symmetric pattern of these equations is a consequence of the addition of
a negative sign in the stream function equation (3.18). Solving equations (3.19) and (3.20) allows us to
obtain both fields ω and ψ, and the velocity field V is calculated as

V ¼ � 1
r
Rp

2
r0c: ð3:21Þ

3.3. Initial and boundary conditions
Equations (3.9) and (3.10) require the definition of initial and boundary conditions. On the other hand,
equations (3.19) and (3.20) are non-time-dependent and only require boundary conditions. Based on the
discussion in the beginning of §2, we use the following boundary and initial conditions (figure 3):

— initial conditions: constant value for temperature and salinity on liquid seawater values (T0, S0), which
is (1, 1) in dimensionless form;

— symmetric boundary: this boundary corresponds to the centre of the cylinder, and there can be no radial
transport since the direction is not defined. Thus, we set a zero Neumann condition on both
temperature and salinity. As the stream function and vorticity are the angular components of a vector,
the same argument applies, therefore both of them have a zero Dirichlet condition on this boundary;

— inlet boundary: the temperature and salinity have the value of the inflow brine (Tin, Sin). For the
velocity field, we assume a vertical Poiseuille flow [33] typical in cylindrical pipes:

V in ¼ � 2Q
pR2

in
1� r

Rin

� �2
 !

êz: ð3:22Þ

Based on the velocity profile and integrating equation (3.21) while preserving continuity on the
stream function with the symmetric boundary, we derive a Dirichlet condition for the stream
function given as

c ¼ Q
2p

r
Rin

� �2

2� r
Rin

� �2
 !

: ð3:23Þ

To enforce a null tangential velocity, we also apply a zero Neumann boundary to the stream function
according to equation (3.21). In the dimensionless form, the Dirichlet conditions transform to (0, 0) for
temperature and salinity and r2(2− r2) for the stream function;

— closed boundary: there can be no transport in the normal direction of the boundary, therefore a zero
Neumann condition for temperature and salinity is set. On the other hand, zero Neumann and
constant Dirichlet conditions for the stream function enforce that the normal and tangent velocities
are zero according to equation (3.21). To preserve the stream function continuity, the Dirichlet
boundary is set to Q/2π, which equals one in dimensionless form; and
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— outlet boundary: we assume far-field conditions where all gradients normal to the boundary are set to

zero. In the case of the stream function, this enforces a zero tangent velocity.
oyalsocietypublishing.org/journal/rsos
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4. Finite-element discretization
We used an unstructured mesh with triangular elements for discretizing the computational domain. The
dimensions of the domain before scaling with the reference factors are R = 7mm and H = 45mm, with an
average element size of 0.1mm. The coupled set of PDEs (3.9) and (3.10), and (3.19) and (3.20) are
discretized with the help of the FEM [26]. The fields T, S, ψ and ω are approximated as follows:

Xðr, z, tÞ ¼
XN
i

aiðr, zÞ � uðXÞi ðtÞ, ð4:1Þ

where X [ fT, S, c, vg, N is the total number of degrees of freedom (d.f.) in the domain, αi are the basis
functions, in this case, first-order polynomials, and uðXÞi [ fuðTÞ, uðSÞ, uðcÞ, uðvÞg are the d.f. of the
temperature, salinity, stream function and vorticity, respectively. Introducing the approximation (4.1) in
the governing equations (3.9) and (3.10), and (3.19) and (3.20), multiplying with test functions and
integrating by parts [34], and taking into account the boundary conditions from §3.3, leads to the
following discrete systems of equations:

MðTÞ _uðTÞ þ KðTÞuðTÞ ¼ 0, ð4:2Þ
MðSÞ _uðSÞ þ KðSÞuðSÞ ¼ 0 ð4:3Þ

and A B
Bt �C

� �
uðvÞ

uðcÞ

� �
¼ 0

F

� �
, ð4:4Þ

where the individual entries of the matrices and vectors are given as

MðTÞ
i,j ¼

ð
V0
r 1þ 1

Ste
de(T � Tf )

� �
aiaj drdz, ð4:5Þ

MðSÞ
i,j ¼

ð
V0
raiaj drdz, ð4:6Þ

KðTÞ
i,j ¼

ð
V0

r 1þ 1
Ste

de(T � Tf )
� �

aiV � r0aj þ r
PeT

r0ai � r0aj

� �
drdz, ð4:7Þ

KðSÞ
i,j ¼

ð
V0

raiV � r0aj þ r
PeS

r0ai � r0aj

� �
drdz, ð4:8Þ

Ai,j ¼
ð
V0
aiaj drdz, ð4:9Þ

Bi,j ¼
ð
V0

r0ai � r0aj þ ai
r̂
r
� r0aj

� �
drdz, ð4:10Þ

Ci,j ¼
ð
V0

1
Da

r0aj � r0ai þ 1
Da

r̂
r
� r0ajai

� �
drdz ð4:11Þ

and Fi ¼
ð
V0

r
Re

@Ar
@r

ai drdz: ð4:12Þ

In the above equations, αi denotes the Lagrangian basis function associated with the ith d.f. Since we only
impose Dirichlet and zero Neumann boundary conditions, there are no boundary terms contributions to
the right-hand side of equations (4.2)–(4.4). The integrals, given by (4.5)–(4.12), are evaluated numerically
using Gaussian quadrature rules. The quadratures integrate exactly the resulting polynomial
approximations.

Tracking the interface between solid and fluid requires the utilization of immersed techniques or re-
meshing the model at every step. We avoid these complexities in the implementation by employing the
following smoothed-step function:

QðT � Tf Þ ¼ 1
2

1þ tanh
5
DT

ðT � Tf Þ
� �� �

, ð4:13Þ

where Tf is the fusion temperature of the fluid and ΔT is a free small parameter. The function will
approximate a unit step function when ΔT is small.
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With the help of equation (4.13), we construct the phase-dependent parameters such as the Péclet

numbers and model both the Dirac delta function and the Darcy number as follows:

de(T � Tf ) ¼
r0ðT � Tf Þ � r0QðT � Tf Þ

kr0ðT � Tf Þk2 þ e
ð4:14Þ

and

1
Da

¼ eþ ð1�QðT � Tf ÞÞ2
QðT � Tf Þ3 þ e

, ð4:15Þ

where e is a small parameter introduced to avoid numerical instabilities. Equation (4.14) is obtained using
the fact that the Dirac delta function is the derivative of the jump function, while equation (4.15) is
inspired by the work of Carman in porous flow [35]. The regularized delta function de as well as the
matrices M (T ) and K (T ) depend on the current solution, i.e. the temperature, salinity, vorticity and the
stream function, which is taken from the last converged solution during the time integration process.

To solve the system of ordinary differential equations (ODE) (4.2) and (4.3), we use an implicit Runge–
Kutta method of fourth-order provided by the SUNDIALS library [36,37]. In particular, we employ the
ARKODE time integrator [38], which allows us to use an adaptive time stepping with third-order
embedding. The nonlinear matrices are updated at every time step. However, they are kept constant inside
the Runge–Kutta iterations. Every time step, we solve the system (4.4) by using the LU factorization
method implemented in the SuperLU_DIST library [39–41]. Inside the ODE integration iteration, it is
required to solve two types of linear systems: MX =B and (M+ γK)X =B where M [ fMðTÞ, MðSÞg,
K [ fKðTÞ, KðSÞg and γ is a scaled time step size. As M (T ), M (S) are mass matrices with positive weight
functions, they are symmetric and positive definite. Thus for the first type of system, we use the conjugate
gradient method preconditioned with an algebraic multi-grid method. For the second problem, the system
loses the symmetry owing to the convection terms in K (T ), K (S), and we employ the generalized minimal
residual method preconditioned with an algebraic multi-grid method. All linear iterative solvers are
provided by the HYPRE library [42] within the MFEM library [29].
5. Results
Using the FEMdiscretization discussed in §4, we performed simulationswith a set of parameters inspired by
thework of Martin [7]. We set the radius and height of the container at 7mm and 45mm, respectively, while
the inflow radius is 2mm.Also,we set the initial values of the seawater at a temperature of�2�C and salinity
of 3:5%wt. The injected brine is set at 22:5%wt salinity while its temperature is varied between �10�C,
�15�C, �16�C and �18�C. Moreover, the inflow rates are set from 100 mm3 s−1 to 500 mm3 s−1 in steps of
100 mm3 s−1, resulting in Reynolds numbers Re ¼ Q=2pRinn varying from Re � 2:27 to Re � 11:35. We
also use the numerical values of the physical properties explained in appendix A. All of the simulations
ran for 70 s. The link to a compilation of animations for each simulation can be found in appendix B.

As the formation of a brinicle is an evolutionary process, first, we analyse the beginning of the
simulations. In figure 4, the first 3 s of a run with inflow rate 300 mm3 s−1 and inflow temperature �10�C
are shown. The main feature of these figures is the ice branching structure shown in figure 4b. These
structures are part of the phenomenon and can be seen clearly in a video from the British Broadcasting
Corporation [4] where the camera operator provides a close-up of the tip of the brinicle. Thus, the
proposed simulation procedure reproduces closely this phenomenon. Furthermore, analysing figure 4c
closely we can see that the high-velocity regions correspond to the inner part of the narrow ice channels
while the velocity at the ice walls is zero, demonstrating that the Brinkman term successfully models the
lack of permeability of the ice structures. After some period of time, the brine breaks through the ice
(figure 4d ), and another dendrite structure can appear in the simulations (figure 4e). When the brine
breaks through the last dendrite structure, the characteristic ice channel of the brinicle forms.

There is another important aspect regarding the symmetry boundary (r = 0). The ice fragments tend
to attach to the boundary, as shown in figure 4c, producing not physically expected obstacles to the flow.
This phenomenon is a result of the axisymmetric assumption made at the beginning of the analysis. The
imposed Neuman conditions imply that local maxima or minima, along the normal to the boundary,
could appear in the region, leading to this unexpected behaviour. A straightforward way to address
this limitation is to eliminate the symmetry boundary with a three-dimensional cartesian formulation,
although at the cost of a significantly more expensive simulation. Nevertheless, to approach this with
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our current model, we increased the diffusivity rate of the salt in the liquid phase by one order of
magnitude, as shown in appendix A. Thus, it is easier for the brine flux to melt the ice near the
boundary by balancing the salt concentration, hence removing the unexpected effect.

Figure 5 demonstrates the behaviour of a simulation with inflow rate 100 mm3 s−1 and inflow
temperature �10�C. The latter portrays that the evolution of the ice structure stabilizes around the brine
channel resembling the cross-section of a brinicle in the sense of a hollow stalactite. It is important to
denote that the ice tends to attach itself to the closed boundaries, which are the insulated ones according
to §3.3. Hence, these act as nucleation points for the phase change. The latter is the principal mechanism
from which thick ice structures appear. However, it has additional unexpected side effects. For example,
some layers of ice appear in the middle of the channel attached to the lateral boundaries, preventing brine
from flowing freely, as can be seen in figure 5c. Since the outflow boundary has the same conditions on
the salinity and temperature as the closed boundary, ice also tends to appear near that part of the domain.
This effect is shown in figure 5e, as a thin layer of ice at the bottom causes the brine to accumulate on the
domain. Hence, the brine excess prevents further growth of the final ice structure.

In figure 6, we show the comparison between all the test cases for a time period of 1 min. It can be
seen on these figures that ice walls appear for all inflow temperatures with inflow rates of 100 mm3 s−1
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and 200 mm3 s−1, while for 300 mm3 s−1 and 400 mm3 s−1, the ice layer only forms at low temperatures
(�16 �C and �18 �C). Note that with an inflow of 500 mm3 s−1, the ice is too thin to form the expected
structures. Therefore, the lower the inflow rate and temperature, the better the chance to form
structures similar to a brinicle. The latter corresponds closely to the experimental observations in [7]
where colder inflow temperatures tend to produce better-defined brinicle structures. However,
brinicles with high inflow rates such as 500 mm3 s−1 have been observed in [7]. We can relate this
discrepancy to the brine accumulation because of the freezing of the outflow boundary since this
effect is more pronounced for higher inflow rates, as can be seen in figure 6. The ice formation is
damped owing to this effect. One way to avoid it is to increase the mesh size, which decreases the
salt accumulation effect but raises the computational cost. Another approach would be to consider a
different type of boundary condition for the outflow such as a Robin condition. The above possibility
together with a full three-dimensional model of the process deserves further detailed study in the future.
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6. Conclusion

Weconstructed a general theoreticalmodel that accounts for phase changephenomena associatedwith heat
and mass transfer throughout the domain for simulating the evolution of brinicles. The proposed model is
highly nonlinear with many constituents at play. The numerical solution is obtained with the help of the
FEM. The used Brinkman penalization removed the need for re-meshing or for the employment of
immersed techniques, and we were able to capture the phase change geometry. A smoothed Dirac delta
term can account for the latent heat, which is a crucial feature of the model, as shown in figures 6 and 5.
The proposed methodology is able to generate structures with the shape of a brinicle. Furthermore, as
shown in figure 4, the model reproduced the dendrite structure that forms on the brinicle [4]. We also
found that with inflow rates of 100 mm3 s−1 and 200 mm3 s−1, the brinicle growth is captured in all
cases. However, for faster flows of 300 mm3 s−1 and 400 mm3 s−1 it is only formed at low inflow
temperatures (�16�C and �18�C). The latter suggests that for lower temperatures, the structure should
appear with a higher probability as observed experimentally in [7]. Our model was unable to recreate
brinicles with high inflows. The reason behind such behaviour is the brine accumulation caused by the
freezing of the outflow boundary. The brine accumulation and the ice that forms near the symmetry and
insulated boundaries are a consequence of the boundary conditions. Imposing Neumann conditions
means that the field value on the boundary must be local maxima or minima, which can result in
numerical artefacts and the unexpected behaviour discussed in §5. These conditions result from the
assumption that the insulating boundaries are perfect insulators and the outflow is far from the inlet.
Therefore, additional research is necessary to find more appropriate conditions that approximate better
the experimental behaviour. Another source of numerical artefacts is the symmetry boundary. We
resolved these problems with indirect methods like increasing the diffusivity rate. However, a full three-
dimensional simulation must be considered to avoid adding an artificial boundary.

Aside from the boundaries, the model can be significantly improved by removing the assumption for
creeping flow and replacing the Stokes model with the full Navier–Stokes equations. The current fluid
flow model is selected mainly owing to its low computational cost. However, the full Navier–Stokes
equations represent better the physical behaviour for the considered cases with Reynolds numbers varying
from Re � 2:27 to Re � 11:35. The resulting flow regime is laminar with relatively small convective effects.
Improving the model will mainly impact the initial stages of the brinicle formation, i.e. during the
branching process, the flow changes direction, and the inertial effects will lead to differences in the
velocity distribution of the fluid. On the other hand, once an ice structure is stabilized around the brine
channel, the flow will be similar to a pipe flow, also known as Poiseuille flow, and the difference between
the Stokes and the Navier–Stokes models is negligible. Other functional forms for the parameters shown
in appendix A could be considered as some of the constant properties might also depend on salinity and
temperature. Consequently, there is substantial work to be done in the numerical simulation of these
phase-changing systems that we hope can be studied more thoroughly in the future.

Finally, it is important to note that this approach represents an advance in modelling these types of
complex systems since it shows, to our knowledge, for the first time that the mentioned fully coupled
system of equations can reproduce many aspects of the physical evolution of brinicle formation.
Hence we believe our contribution will be useful to the simulation of ice structures which are
important in climate studies [20] and to similar phenomena in the industry, like the modelling of
phase-changing materials [10].
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Appendix A. Physical parameters
The appendix describes in detail the physical properties of themodel and the dimensionless numbers used in
the scaling process explained in §2. First, we discuss the fusion temperature. The fusion temperature of the
seawater is a function of salinity that, according to Hall et al. [45], can be represented as

Tf ðSÞ ¼ aSþ bS3,
a ¼ �0:6037

and b ¼ �0:00058123,

9>=
>; ðA1Þ

where Tf is in degrees Celsius (�C) and S in weight percentage (%wt). The dimensionless fusion temperature
is found by applying the linear map (2.1) to both Tf and S.

From equations (3.9) and (3.10), we derive the following dimensionless parameters:

— Péclet number: Pe = 2πRinα/Q—ratio between diffusive and convective rates; and
— Stefan number: Ste = (cmean|Tin− T0|)/L—ratio between sensible and latent heat.

In the above, we introduce the latent heat L, the mean specific heat capacity cmean between both phases
and the diffusivity constant α which refers to the salinity and temperature equations in the liquid and
solid phases.

A close inspection of equations (3.19) and (3.20) reveals the next set of dimensionless numbers:

— Reynolds number: Re =Q/2πRinν—ratio between viscous and inertial forces;
— Archimedes number: Ar ¼ gR3

inr=n
2—ratio between viscous and buoyant forces; and

— Darcy number: Da ¼ R2
in=h—permeability penalization number.

The Reynolds number is constant since the viscosity ν and the other equation parameters are assumed
time-independent. The construction of the Darcy number follows equation (4.15). While the
Archimedes number depends on the gravity g and other constant parameters, it is also linked with
the relative density ρ which is a function of both temperature and salinity. Even if density variations
between phases are neglected, as they are too complex to model, we do account for these changes in
the density inside the liquid phase to produce buoyant forces. We evaluate the relative density of the
liquid phase as a function of concentration and temperature with the equation of state for seawater
proposed by Millero & Huang [46]:

rðT, SÞ ¼ AðTÞSþ BðTÞS1:5 þ CðTÞS2,
AðTÞ ¼ a0 þ a1T þ a2T2 þ a3T3 þ a4T4,

BðTÞ ¼ b0 þ b1T þ b2T2

and CðTÞ ¼ c0,

9>>>>>=
>>>>>;

ðA2Þ

where T is given in degrees Celsius (�C), S in weight percentage (%wt) and ai, bj, ck are constants that can
be seen in table 1.

Finally, table 2 contains the values of the remaining constants of the system.
Table 1. Empirical constants of seawater equation of state from equation (A 2).

number a b c

0 8.25 × 10−3 −1.83 × 10−4 4.89 × 10−5

1 −4.11 × 10−5 3.33 × 10−6

2 7.73 × 10−7 −5.60 × 10−8

3 −8.32 × 10−9

4 5.52 × 10−11
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Appendix B. Electronic supplementary material

The animations corresponding to the simulations shown in figures 4, 5 and 6 are available at https://
github.com/fegomezl/Brinicle. Please also see the electronic supplementary material.
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