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ragged) fall of the atmospheric pressure, which reached its minimum about
4" 45™ p.m. There was then a very abrupt and nearly perpendicular rise
of about five hundredths of an inch of pressure, or rather less, after which
the rise still went on, but only more gradually.

Through the kindness of the Rev. R. Main, of the Radcliffe Observa-
tory, I have been favoured with a copy of the trace afforded by the Oxford
barograph during this squall, in which there appears a very sudden rise of
nearly the same extent as that at Kew, but which took place about four
o’clock, and therefore, as on the previous occasion, somewhat sooner than
at Kew. This change of pressure at Oxford was accompanied by a very
rapid fall of temperature of about 8° Fahr.

The minimum atmospheric pressure at Kew was 2952 inches, while at
Oxford it was 2928 inches.

It will be seen from the Plate that at Kew the electricity of the air fell
rapidly from positive to negative about 4" 30™ ».m., and afterwards fluctu-
ated a good deal, remaining, however, generally negative until 5" 22™ p.m.,
when it rose rapidly to positive.

‘We see also from the Plate that there was an increase in the average
velocity of the wind at Kew during the continuance of this squall. To
conclude, it would appear that in these two squalls there was in both
cases an exceedingly rapid rise of the barometer from its minimum both at
Oxford and at Kew, this taking place somewhat sooner at the former
place than at the latter ; and that in both cases the air at Kew remained
negatively electrified during the continuance of the squall, while the
average velocity of the wind was also somewhat increased.

The Society then adjourned over the Christmas recess to Thursday
January 7, 1864.

“QOn the Equations of Rotation of a Solid Body about a Fixed
Point.” By Wirriam Srorriswoonx, M.A., F.R.8., &c. Received
March 21, 1863.%

In treating the equations of rotation of a solid body about a fixed point,
it is usual to employ the principal axes of the body as the moving system
of coordinates. Cases, however, occur in which it is advisable to employ
other systems; and the object of the present paper is to develope the funda~
mental formulze of transformation and integration for any system. Adopt-
ing the usual notation in all respects, excepting a change of sign in the
quantities F, G, H, which will facilitate transformations hereafter to be
made, let

A=3m(y*+2*), B=3m(+2%), C=3Zm(2*+9*),
—F =Zmye, — G =3mzz, —H=Zmzy;
* Read April 16, 1863 : see abstract, vol. xii, p. 523.
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and if p, g, 7 represent the components of the angular velocity resolved
about the axes fixed in the body, then, as is well known, the equations of
motion take the form

~

+H +Gdt——F(q —")4+(B— C)qr+Hrp—-—qu,i
+H +B +th —G(r*—p") —Hgr+(C—A)rp+Fpg, (1)

+G +Cd,, —H(p*~¢") +Ggr—Frp+ (A—B)pg.

To obtain the two general integrals of this system : multiplying the equa-

tions (1) by p, ¢, 7, respectively adding and integrating, we have for the
first integral

Ap*+Bg*+Cr*+ 2(Fgr+Grp+-Hpg)=4, . . . . (2)
where 4 is an arbitrary constant. Again, multiplying (1) by
Ap +Hg +Gr,
Hp+Bg +Fr,
Gp +Fq +Cr,
respectively adding and integrating, we have for the second integral
(Ap+Hg+Gr)*+ (Hp+Bg+Fr)*+ (Gp+Fg+Cr)* =k, . (3)
where %* is another arbitrary constant. This equation may, however, be
transformed into a more convenient form as follows: writing, as usual,

A=BC—F, B=CA—G, C=AB—H, V=|AHG
F=GH—AF, G=HF—BG, §=FG—CH, HB F|. (4)
A+B+C =S8, GFC

and bearing in mind the inverse system, viz
VA=8BC—-F, VB=CA-&, VC=AB-%?
=&H—AF, Ve=HF-B& VI=F&—-C1, + - (
A+B+C=8,
we may transform (3) into the following form :—

(AS—B—-T)p*+2(FS +F)gr
+BS—~C—A)g"+2(GS + &)rp N (0]
+(C8—A —B)»*+2(HS+)pg=4#>,

which in virtue of (2) becomes ‘
(A—&)p'+B—8)¢+(C— )"+ 2(Fqr+ Grp+Hpg) =4 —Sh. (7)

This form of the integral is very closely allied with the inverse or reciprocal
form of the first integral (2), and is the one used below.

In order to find the third integral, we must find two of the variables in
terms of the third by means of (2) and (7), and substitute in the corre-
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sponding equation of motion. The most elegant method of effecting this
is to transform (2) and (7) simultaneously into their canonical forms. If

@« By
a Py
@, B, v,
be the coefficients of transformation, and if [] be the determinant formed

by them, the terms involving the products of the variables will be destroyed
by the conditions

(A ... F.LYBBAYYv7.)=0)
A .. F.XynvYeea)=0,
(A .. T..Yaaa)BRB)=0,
(B—& ... . XBB.BY 7y vv.) =05
(A—& .. F. Yy vy @ ae)=0,
(@—&.. 4. Y aqa,)BB6,)=0, )
from the last two of which we have
Byva—Buy : By —Bv,: Bri+Byy
=Ac+Ha, + Ga,=(A—H)a+Ra, + Ga, j .. (9]

Foe e o ®

J—

: Ha4Ba, +Fa,: B+ (B —S)a, +Jfa,
: Ge+Ta, +Ca,: GatFo, +(L—H)a,;
whence, 0 being a quantity to be determined,
A-H5—A0, B —Ho, & —Go | _g.
% —Hs, W—5-B6, F —F9 } . (10)
& —Go, F -TF9, €—% —Co
Proceeding to develope this expression, we have the term independent of 0
=V'—~-BC+CA+AB)S+ S —&°
- +& +8)S
=V:-82YV.
The coefficient of —0
=A{VA-B+O)5+ S} +H(VH+8S) +G(VG+ &S)
4+ e
=V(A*+H*+G)4+-VS
+V 2 4+B*+CH+VS
+V(G+F+C)+VSH
=V{A*+B*+C*+3(BC+CA+AB)~F*—G—H?*}
=V (§*'+9).
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The coefficient of —6°
=v.
Hence (dividing throughout by ¥7) (10) becomes
0°+2.86°+ (S + £)0+8—V =0;
or, what is the same thing,
0+8)*—S(0+8S)*+H0+8)—-V=0; . . (11)

or, as it may also be written,

A—(0+8), T, G =0.
H, B—(948), F
G, F, C—(0+9)

It will be seen by reference to (9) that the values of 6 determined by this
equation are equal to the ratios of the coefficients of the squares of the new
variables respectively in the equivalents of (2) and (7). The coefficients of
transformation are nine in number ; if therefore to the six equations of
condition (8) we add three more, the system will be determinate,

Let three new conditions be

(A...F...Ia&alrxz)’=l,
(ALFLYBBBY=L 5 o o o . . (12)

(A...F...I'y y172)2=1,

then the variable terms of (2) will take the form of the sum of three squares,
and the roots of (11) will be the coefficients of the transformed expression
for (7). Or, if 6, 0,, 0, be the roots of (11), (2) and (7) take the forms

»° +¢* + =k,
@;+@%Hw¢:=ﬁ—8h} ce e (19)
In order to determine the values of the coefficients of transformation
a, a,, @, we have from (9),
(A—&—Afa+ () —H)a+ (i — G2, =0, |
BH—-HO)a+ (B—S—Boa+ (F—F0)a,=0, e (14
(&—GO)a+ (F—TFoe+(C—H—Coa,=0;
from the last two of which ‘
a: BE—(B+&)H+ S~ (BC+EB—-B+CH)+BCe*
—JF ; —24FF0 —F%0?
=a : VA+8$+(BF CA+BE +CC +2F )0+ A0*
=a:VA+AH+(2V —-HHY -GG — AR+ SA) 0+ A6°
=a: VA+AS+(V +83)+ Q6"
=a:V(A+0)+A(SH45046%);
or, writing for brevity
&+59+6*=T,
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the expression becomes
a:V(A+6)+TH
=a : F&—(F&+GH)0+FGo
—~CHF+HS+(CH+HS)s—CHE®
=a: VH+3S 4+ SHo+ 36"
=a,: VH+T%H
=a,: VG+ T,
whence the system
aa, a,

:VH  +TH : V(B+0)+TB : VF  +TdF

=V(A+0)+TAd=VH +TH=VG +TOE}
. (15)

: VG +T& : VF +TdF : V(C+0)+TE,

with similar expressions for 8, B,, 8,5 ¥ ¥1» Y2 Obtained by writing 8,, T, 5

6,, T, respectively for 6, T.

Returning to the equations of motion (1), and transforming by the

formule
p=a p,+B g, +yr,
9=“1p1+16191+717‘1’ e+ e e s (16)
r=a,p,+0,4,+ 7.7

we have

(Aa+Hea, + Gr:.'.,“)jo'1 =[—~F(z,*—a’)+(B—C)aa,+Ha,u—Gaa ] p* {
+(AB+HB,+GA)YY +[—F(B,—B,) + (B~C)B,8,+1B,6—GAG,1g,"
A (Ay+ Ay Gy ) + [ —F(0" = %) + B~ C)y,7,+ Hyy—Gyy,Ir?

+[—2F(B,7,—B.y2) + B—C) By, +BLavy)
+H(B,y+By.) — G(ﬁ')’l +ﬂ17)] 0
+[—2F(r,2,—7,2,) + (B~ C) (1 +7,2)
+H(y04ya,) — G(ya,+y,a)]mp,
+[—2F(a,8,—a,8,) +(B—C) (a8, +2,0,)
+H(a,f+afb,) —G(af,+a,8)]p.q
=[a(Ha+Ba,+Fa,) —a (Ga+Fa +Ca)lp?
+[B,(HB+ BB, +FB,)—B,(GL+TFL,+CB)]e.*
+[v(Hy+By +Fy,)—v(Gy+Fry,+Cy,)]r?
+ [ﬁz(HY +By,+ F')'a) "‘oaz(G"Y +Fy+Cy,)
+ ')’s(Hﬁ + Bﬂl + F:Ga) - Yx(GAB +FB+ Cﬁx)]gzrl
+[y.(Ha+Ba, +Fa,) —~v,(Ga -+ Fa, +Cz,)
+a,(Hy+By,+Fy,) —a,(Gy+Fy,+Cy,)]r p,
+ [“B(Hﬁ + 3161 + Fﬁn) ""'“J.(Glg+ ngx + Cﬂz)
+ ﬁz(H“ + B“z + F“ﬁ) "ﬁx (G“ + Fax + C“z)]?ﬂv J

>(17)
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with similar expressions for the two other equations. Multiplying the
system so formed by vy, v,, v, respectively and adding, the coefficients of
p', ¢, will vanish, and that of o/, will =1 in virtue of (12); and as regards
the right-hand side of the equation, the coefficient of p,*

Aa+Ha, +Gay, a, y
Ha+Bea,+Fa, a, v,
Ga+Fa,+Ca, a, v,
which, omitting common factors,

(S+0)A+A+(8+0)0, VA+TA+VE  VA+T,E+V6,

(S +0)H +%, VH +Th, VH+T%

(S+6)G + &, VG +T& VG +T,&

={(8+6)0 |[VH+TH VH4+T,® | +V0| VHE+TH(S+6)H+#
VG+T& VG+T,8& VG +T,8(S +6) G+ &

+Ve6,| (S+6)H+H VH+TH
(8+0)G+& VG+T&

={(S+0)0V(T,—T)+Vo(V~T,(S+0)) +Vo,(T(S +0)— V) } (H&—FG)

But =V (6,-0){T(S+)6—VI(H&—-HG).

T(S+6)—V =(8+0)(0*+80+H)—V=(8+6){(S+06)'—(8+0) +H}—V
=(8+40)°*—8(S+0)’+S(8+0)—V
=0.

Hence, finally, the coefficient of p,* vanishes.
So likewise the coefficient of ¢,*

= Aﬂ+H131+Gl62 ﬁ Y =0.
Hﬁ“’Bﬁl'l"Fﬁz 61 Y1
GB+F ﬁ1+032 162 Y

Ay+Hy,+Gy, v v |=0.
Hy+Bv,+Fyv, v n

Gy+Fy+Cvs 72 7
Similarly the coefficients of ¢, »,, and r, p, will be found to vanish; and
lastly, the coefficient of p, ¢,

=a {A (ﬁl’)’a”'ﬁa'}ﬁ) + H(Ba?’_’ﬁ'}’n) + G(ﬁYI_ﬂIY)}
+ o, {H(By,— B.y) +B(By—Ly.)+ F(ﬂ'yf—ﬁl'}')}
+ “2{G (ﬁl‘}’2 - ﬁz'yl) +F (ﬁ:ﬂ"" lg')/z) +C(By,— ﬁl'}’)}
—p {A (71“2”’"72“1) + H('Yz“'— 7“2) + G(')’“l —7100}
—BAH(y,2,~v,2,) +B (v.0—ya,) +F(va—va)}
—BAG (v,2.— 7:2.) +F (v,@—ya)+C(ya,— 7:%)}

And that of 72,
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which, by reference to (9), may be transformed into
7 {(Ae+He, + Ga,)*+ (He + Be, + Fa,)’+ (Ga + Fa, + Ca,)?
—(AB+HB,+GE,) +(HB+ BB, +FB,)*+(GB+FB, +CB,)*}
=[] {(Aed’+Ba >+ Ca,® + 2Fa 2, + 2Ga,a + 2Haa, )S
—(AB+ BB+ CB 4+ 2FB,8, + 26, B+ 2HB5,)S
+(A=8)(@* =)+ (B - 8) (2’ —B,) +(C—S)(a,’—B,)
+ 23 (a0 —B13.) +2&(e,2— B,8) + 28 (az, — )} 5

in which the coefficient of S vanishes in virtue of (12); so that the coeffi-
cient of p,, ¢,

=0{@-5 B-5, €-5, F, & QY a, «,)
——(ﬁ—é, B-5, -5, T, &, ﬁlﬁs B ﬁa)g} 5
but, by (12),
(%-—-5, B-8, C-5, F & B ara,)=0,
(A9, B-5,C-5, & G, iﬁflﬁﬂlﬁg)?:f)l.
Hence the coefficient in question
=00-0), . . . . . « . . (18
and the equations of motion become
p/=0(6:—6,)q.7,
¢'=00,—0rp,+ . . . . . . (19
7' =[1(0 —0,)p,q,.
To find the value of [ in terms of A, B, C, F, G, II, we have from (12) -

Aa+Ha +Ga, =[] ~1(Brya=Bir)s

AB+HB, +GB,= - (ra,—v.2,),
Ay+Hy,+Gy,= ]~ Ne,8,—a,5,),

Ga+Ba +Fa, =]~ (By =L v.)
HB3+BB+FB,=0"(v.x —v a,),
Hy+ By, +Fy,=[1~%(¢,8 —af,),

Ha+ Fa, +Ca,= [1-1(8 v,~B7),
GB+Fp,+C,= O~ (ya,~7,2),
Gy+Fy,+Cy,=0] “1(ap—a,pB).

And forming the determinant of each side of this system, there results

vo=0-0o;
v = D—z; e s« s e s o o » (20)

or
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whence the equations of motion (19) become
P, =y-40,—0,)q, 7,
=00 rp . .. L. (2D)

r,l =V_-%(6 - 91) Y230

In order to compare these results with the ordinary known form, we must

make
F=0,

D= A% 4
which values reduce (13) to the following:
A%y + (Bh) "+ (Chry =1,
—(B+C)Ap*—(C+A)Bg’—(A+B)Cr*=4"—8k;

G=0, H=0,

¢ =B, r=Ch;

which last is equivalent to
(A—S)(AYp)+ (B—S(BYg) + (C—8)(CH)*=/—Sh,
or
A(Ap) + BB+ C(CHr)=7

Also, on the same supposition,

V=ABC, 6=—(B+C), 6,=—(C+4), 6,=—(A+B),
which, when substituted in the above, give
ApP=(ABC) ¥(B—0O)BiClyr, Blg=.., Cl=..,

or v
Ap'=(B—C)gr, Bg'=(C—A)rp, Cr'=(A—B)pqg,
as usual.
It remains ouly to determine the absolute values of the coefficients of
transformation, the ratios of which are given in (15). For this purpose let

V(A+eo)+T0%=gos VF.'{”Toj}:ﬂo’ ]
V(B+6)+TB=8, VG+T&=& . . . . (22)
V(C+0)+T,C=C€, VH+TH=H,.

Then, from (15),

_ a, m &

CALEL ARG T (A BBE) T (AL ESE)
3520 o %o . :B:o

“=(A . H.  a8&) A 885 A.J&FC)

&

€

ST CHL Y ARG T (A

VOL, XIII.

;EO == 2 i 20
I ®BE)T (AL JERC)



60 Mr. Spottiswoode—Equations of Rotation [1863.

From these relations it follows that
aBoar’o"'"lflr'o?:o’ &0%0—%05'.0:0’
‘ﬂ:ogo'”' QE02=0’ %oyo—%o@‘):q } .
g0380'—590%"_‘0’ Kwo&o'—@o o=0’
which relations may be also verified as follows :—
6, — 8= (VG- TG (VAT H) — (V A+ TE+V0) (VE+T,5)
= ViF+VT,(6H +H6 — AF—TFA) + T VF—VO,(VF+T.F)
VIVF-T,SF +SF)+T2F-VF-VF+STFE};

(23)

Since
G +FB +Cof=0,
H&+BF +FC=0,
and
(6+8)T—V =0,
or
0T=V —S8T.
Hence ‘
@&0330—-%0;1}’0=VF{T02—T0§ -V}
= VF{TGO(S + 60)“V90}
=0,

From these relations it follows that the first denominator, viz.

(A, B, G, T, G, Y4 H8,&,)
=AA 4 B8+ C& 2+ (¥, &, + GG A, + HAR,)
=% {A%,+BB, +CC,+2(FF,+G&,+HA,}
=4, V{A?+ B>+ C*+2(1 4 G*+ H?) + 3T, + 56, }
=@, V{8*—2% 43T, +86,}
=4,V 307+486,+H+ S}
=A,V{(S+6,)(S+30,)+S}.
Hence, writing (S+ 0,)(S+30,) +S=T,, we have, finally,
B, &

: [
O== ==y G =y G =y ar e
T, AT, a,T,

From this we may obtain the following system :

o ® &
“=g, “Tag T ag,
B, _ &
=5e “RE o (24)
Qfo @o
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with similar expressions for 3, 8, 8,5 v, v.» v, obtained by writing the
suffixes 1 and 2 respectively for 0. By means of these we may write the
equations connecting the variables as follow :—

P S |
p y 2 @l q1+ @:&0

B, &,
p1+mql+ém-;rp e e (25)

Il
S/

(]

8,
_ & F €
=Tt Re T ET

bnd

q=

]

Lastly, to complete the transformations, the values of p,, ¢, 7, should be
determined in terms of p, ¢, ». Now

a8, +8,8, + &F=(VA+TA+V6,)(VH+T,H)
+(VH+T$#)(VB+T,B+T6,)
+(VG+T,&) (VF+T.39)
=V*{(A+B)H+FG}+T T, {(A+B)H+F&} + VH(6,+6.)
+V#H(6,T,+6,T,)
=V(SH+19)+ T T($%+ VH)+V?H(6,+6,) + VIH(,T,+6,T)
=V{V(8+6,+6)+T T, }H+(V6,T,+V6,T,+ST,T,+V?)
=TT {[—(8+06,)(8+6,)(3+6,)+ VIH+[6,(S+0,)+06,(S+6,)
+8+(8+6,)(S+6,)18},
smee
V=T,(S+6)=T,(S+0)=T,(S+6,).
Moreover by (11) we have
(B+6,)(8+6)(8+6,)=V,

and consequently the coefficient of H vanishes. And it may be noticed, as
a useful formula for verification, that, from the relations last above written,
we may at once deduce the following :

T,T,T,=V>
Again, the coefficient of B may be thus written :
(846,+6,)(S+6,)+ (S+6,+06,)(S+6,)+8+ (S+6,)(S+6,)
—  (8+46,)(8+6,)— (8+6,)(8+6,)

== (8+0,)(8+0.)—(8+6,)(8+0,)—(8+06,)(S+06,)+8
=0,
F.2
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in virtue of (11). Hence the whole expression vanishes, or
a4%,+88, +&F=0; . . . . . (26)
A&, +31,5,+ &L, =0.
Moreover, in virtue of (23), we have
A’ +B,+&S=3,D,.
Hence multiplying (25) first by @, %), &, respectively and adding,

and similarly

secondly by 1, B, F.,

thirdly by &, ¥ €,

we shall obtain the inverse system
20 = FGp, |
@;1’1_* op+g‘aog o'
2 =1,p+% 27
'@"1 91'“3"?120'*", ,IQ'I":D:J" > L ( )
, r=0,p+F,q+Cr
@:2 1 2P 29 20 J

Returning to the integrals (13), we derive
(0,—0)q,* +(0,—0)r*=k—(S+6 )2,
(0,—0)r>+(0 =0)p*=%—(S+0)k,
(0 =0.)p+(6,~0,)¢," =1~ (S +0,)k.

P —-\/'Ic ”(S+0)hcosx,

then
S
0= "\/ 9(-:9 Pinx;
and
P (S+0)h R
r= / —— LT 2
NV om0 NV T e (sTend
_ . [F=(ST0 0,—0 P (S+0% .
”“/ 0,—0 L= 5 =g, T (S 405 X

Substituting in the equations of motion (21) (e. g. the first of them)
and dividing throughout by sin yr/" i —(S+0,)k, we have
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1 Z)_c,,_ 1 '\//g—(s+e)hx/1 0,—0 F—(S+0)k .
A/0—0,dt ' /0,—0, Blv——f)slcz——(S—}-O)ksm X

or
dx | s \/lc“——(S—i—i)}/\/ 0—0, ¥ —(S+6,)k
2tV 0.0 8,-0, 1= 0=0 F=(SF0 )5 %
or
dy - T
\/1 0,—0 F—(S+0)k B VAR GRS
6,—6, F=(5+6)4 "™
then
x=an (\/ 9%5—»"1 VEZS +"e)ht+f),
and

= kz_ﬂ(_s__j(;_w cos am (\/ 0.=0, (S+0)ht +f),

¢,= \//f ‘—B(S_'f' )% Gin am (,\/ Ol NVg oy )y ——-(S+9)izt+f)
, \//&—(sw)h

These, then, are the integrals of the equatlons of motion when no exter-
nal forces are acting. The next step is to determine the variations of the
arbitrary constants, due to the action of disturbing forces, when, as in the
case of nature, those forces are small. With a view to this, it will be con
venient to change the arbitrary constants into the following,

VN E—S+0)h=m A/ F—(S+0)h=n,
(0—0)h=m*—n’,

(0—0,)F=(S+0)m*—(S+0,)n*;
also, for brevity, let

0,—0, _ ., G—=0m_.,
\/2V1_l am(lnt+1) ==y, 5.0, =k>

Then the equations of motion become

’4/ e — (S+6)M+f)

whence

m
= —— 7
» =0, cos am(Int+4-f),

g,= %%E sin am(Int+1),
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Now it is known by the theory of elliptic functions that

d cos ama

g = sin am xA am @,
dsinamx
— = COSamIAama,
dAamz a
— = —Fk," sin am @ cos am .

‘Whence P, Q, R, being the moments of the disturbing forces about the

present axes,
1 dm A }
_92{°°Sxdt —msinx X(”dt J)

P =—r
1 \/6
__,wl_._{ in o P ( dn }

Q= oo, sin x — +m cos xAx( It — +dt) ,

o1 dn dn df)}

R,= \/G::G{Ax dtnk‘ SmXCOS‘X(ltdt +)

From these we derive

A/0—0,P, cos x+1/0,—0, Q, sin x,

df — e
mAx(lt + _.—-\/e—ﬂ,Plsmx—l-«/Br—BgQ,cosx,

dn n , ,siny cos
Ax%=J62—6R1+%k2~)§—)({~M6 0.P,siny++/6,—0,Q, cosx }»

or

—0 msiny cosx — S,
T —\/ AX 6 Z6,n (Ax) 1= \/H—BzPlsmx—{—\/el—t%Qlcosx}

0,—0 lsm cos
=./0,— _._1_ 6.—0 (ﬁxfx{ A/ 0—0,P, siny+14/06,—0, ,Q, cosy}

JIV/60=0,P,cosx+4/6,—0,Q, siny} .
And lastly,

a_ . dn —\/6 6Psmx+\/6—6Qcosx
a="ltg A
xj{\/e —6,P, cos x++/0,—6,Q, sin x}dt




