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PREFACE

THE Theory presented in the following pages was

first sketched by the author in a Paper* communi-

cated to the Royal Irish Academy on the i3th of

November, 1871. This Paper was followed by

others,f in which the subject was more fully 'de-

veloped. The entire Theory has been re-written,

and systematically arranged, in the present volume.

We owe to the geometrical ability of Poinsot

and Chasles the two fundamental theorems from

which this subject takes its rise. To the labours

of Pliicker, and his school, we are indebted for the

theory of linear geometry, which receives a physical

interpretation by the Theory of Screws.

References are made in the foot notes, and more

fully in the Appendix, to various authors whose

writings are connected with the subject discussed in

* Transactions of the Royal Irish Academy, Vol. xxv., pp.

157-217.

f Philosophical Transactions of the Royal Society of Lon-

don, Vol. clxiv., pp. 15-40. Transactions of the Royal Irish Aca-

demy, Vol. xxv., pp. 295-327.
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INTRODUCTION.

THE Theory of Screws is founded upon two well-known

theorems. One relates to a system of forces acting on

a rigid body; while the other relates to the displace-

ment of a rigid body. Although these two theorems

are to be found in many treatises on mechanics, yet
a discussion of them here, so far as they are necessary
for our purpose, may be useful.

I. ON THE REDUCTION OF A SYSTEM OF FORCES APPLIED

TO A RIGID BODY TO ITS CANONICAL FORM.

The Canonical Form. It has been discovered by Poin-

sot* that any system of forces which act upon a rigid

body can be replaced by a single force, 'and a couple in

a plane perpendicular to the force. Thus a force, and

a couple in a plane perpendicular to the force, constitute

what may be called the canonicalform of a system offorces

applied to a rigid body.

It is easily seen that all the forces acting upon a rigid

body may, by transference to an arbitrary origin, be com-

pounded into a force acting at the origin, and a couple.

Wherever the origin be taken, the magnitude and direc-

See Appendix I.

b



INTRODUCTION.

tion of the force are both manifestly invariable ; but this

is not the case either with the moment of the couple

or the aspect of its plane.

The origin, however, can be always so selected that

the plane of the couple shall be perpendicular to the

direction of the force. For at any origin the couple can

be resolved into two couples, one in a plane containing

the force, and the other in the plane perpendicular to

the force. The first component can be compounded with

the force, the effect being merely to transfer the force to

a parallel position; thus the entire system is reduced

to a force, and a couple in a plane perpendicular to it.

The Canonical Form is Unique. It is very important to

observe that there is only one straight line which possesses

the property that a force along this line, and a couple in a

plane perpendicular to the line, is equivalent to the given

system of forces. Suppose two lines possessed the pro-

perty, then if the force and couple belonging to one were

reversed, they must destroy the force and couple belong-

ing to the other. But the two straight lines must be

parallel, since each must be parallel to the resultant of all

the forces supposed to act at a point, and the forces act-

ing along these must be equal and opposite. The two

forces would therefore form a couple in a plane per-

pendicular to that of the couple which is found by com-

pounding the two original couples. We should then

have two couples in perpendicular planes destroying
each other, which is manifestly impossible.
We thus see that any system of forces applied to

a rigid body can be made to assume an extremely sim-

ple form, in which no arbitrary element is involved.
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II.- ONTHE REDUCTION OF THE DISPLACEMENT OF A RIGID

BODY TO ITS CANONICAL FORM.

Problem. Two positions of a rigid body being given,

there are an infinite variety of movements by which the

body can be transferred from one of these positions to

the other. It has been discovered by Chasles* that

among these movements there is one of unparalleled

simplicity. The demonstration of this theorem is the

object of the present section.

The Composition of Rotations about Intersecting Axes.

Suppose a body receive a small rotation through an

angle a about a certain axis, and another small rota-

tion through an angle j3 around a second axis inter-

secting the former one; then the position ultimately
attained could have been reached by a single rotation

from the initial position about an axis appropriately
chosen.

Let OA and OB (Fig. i) represent the directions of

the given axes, while their lengths are proportional to

the angles a and
|3,

the directions of the

rotations being such

that if an ordinary
screw were placed
with its head at O,

and its axis along

OA, then the direc-

tion of the rotation

which would make
the screw advance

from is the direc-

tion of the rotation

See Appendix I.
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indicated by OA, with a similar convention for OB.

Completing the parallelogram OACB, we shall prove
that a rotation around OCy through an angle propor-
tional to the length OC, will have precisely the same

effect as the two given rotations.

Consider any point P of the body which lies in

the plane of the axes. The rotation OA will depress

the point P below the plane of the paper along
the normal to a small distance which is propor-

tional to the product of OA, and the perpendicular

PQ ; that is, proportional to the area of the triangle

POA. In the same way the rotation around OB will

raise P above the plane of the paper to a distance

which is proportional to the area viPOB. The joint effect

will be to raise P to a distance above the paper propor-
tional to the difference between the areas of the triangle

POB and POA. that is, to the area ofPOC; but this is

precisely the same effect as would be produced by a rota-

tion around OC through an angle proportional to OC.

To prove that POC = POB - POA : draw PR
parallel to OA ; then OAR = GAP, and BRC^BPC,
whence POA + PBC = OBC ; also we have

POA + POB + PBC = POA + POC + OBC,

since each side represents the area of the figure

OAPBC ; therefore

POB = POA + POC.
or

POC = POB -POA.

The rotation around OC must, therefore, produce

precisely the same effect on every point in the plane as

is produced by the joint effect of the rotations around

OA and OB.
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and hence it follows, that the two rotations about OA and

OB can be replaced by the single one about OC.

The correspondence between the solution ofthis prob-
lem and the principle embodied in the parallelogram
of force should be noticed. We see that rotations about

intersecting axes are compounded by the same rules as in-

tersectingforces.

Composition of Rotations about Parallel Axes. We shall

now consider the case in which the two axes A and B,
about which the body receives small rotations a and j3, are

parallel. Divide the perpendicular distance ^between

the parallel axes A and B in the inverse proportion of

a and /3, and draw a line C parallel to A and B through
the point thus obtained. We shall show that a rotation

around C through an angle a + ]3 will be precisely

equivalent to the two given rotations. For consider any
point P in the plane at a perpendicular distance x from

C. Then the distances ofP from A and from B are

respectively

x + d-rt and x - d-^^
a + 3 a +

]3'

The effect of the rotations about A and B will, therefore,

be to raise P above the plane ofA and B to an amount

but rotation about C through an angle a + )3 would have

had precisely the same effect, and the same will be true

for every other point in the plane besides P.

We thus see that rotations about parallel axes are com-

pounded by exactly the same laws as parallelforces.

Translations* The rule for the composition ofparallel

rotations would not apply if the two rotations were
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equal and opposite. We proceed to consider this case.

Let the angle of rotation be a, the axes A and B, and

their distance d. Let x be the distance of any point P
from A

; then the rotation about A elevates P above

the plane of A and B to a distance ax. The rotation

around B depresses P below the plane ofA and B to a

distance a (x + d). The net result, therefore, is that P
is depressed below the plane ofA and B to a distance a</.

Now it is remarkable that this result is independent
of the position ofP in the plane of A and B ; con-

sequently all points in the plane are moved through

equal distances, and thus we have the important result

that a pair of equalparallel and opposite rotations are equi-

valent to a translation in the direction perpendicular to the

plane of the axes, and through an intervalproportional to

the distance between them.

The converse of this result is also of great import-

ance namely, that a translation can always be decom-

posed into a pair of equal parallel but opposite rotations,

in a plane perpendicular to the direction of the trans-

lation.

Composition of a Rotation with a Translation Perpendicu-

lar to the Axis of Rotation. The translation may be

resolved into a pair of equal parallel and opposite rota-

tions in a plane which contains the given axis of rota-

tion. This couple of rotations may be compounded with

the given rotation in precisely the same way as a couple

is compounded with a force in the same plane. It

follows that the result of compounding a rotation with a

translation perpendicular thereto is merely to transfer the

rotation to a parallel position, without altering its mag-
nitude.

Displacement of a Rigid Body about a Fixed Point.

A rigid body is supposed to be free to turn around a

fixed point in every way. If we fix our attention on
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any two adjacent positions of the body, we shall prove

that it is possible for the body to be moved from one of

these positions to the other by simple rotation round

one axis. Describe a sphere round O as centre, and let

P, Q be the positions of two points on the body of the

sphere in the first position, and P'
9 Q' the positions of

the same points (still on the sphere ofcourse) in the second

position ;
a plane can be drawn, which shall bisect the

angle POP", and also be perpendicular to the line PP.

By suitable rotation around any axis lying in this plane
and passing through O, P can be made to coincide with

P. The next step is to rotate the body around the axis

OP in its new position until Q is brought to (7, which is

always possible, since by hypothesis PQ = PQ[ ; thus

by two rotations the desired change has been accom-

plished. But the two rotations can be compounded
into one, and therefore the entire change may be pro-

duced by one rotation.

This proposition is also true, whatever be the magni-
tude of the displacements ; but the proof we have given

only applies to the small displacements with which we
are concerned.

Reduction of any Displacement of a Rigid Body to a Rota-

tion and a Translation. Let P, Qy R be three points of

the body in the first position, and P, (7, R the three

positions assumed by these points after the body has been

displaced. By a translation the body may be moved
so that P coincides with Py and then by a rotation the

points Q and R may be brought to coincide with Q and

R'. Thus by the combination of a rotation, and a

translation, the desired change can be effected.

The Canonical Form. In general the direction of the

translation will be inclined to the axis of the rotation ;

but an equivalent rotation and translation can be always
found in which this is not the case.
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Resolve the translation into two components one

parallel to the axis of rotation, and the other perpendi-

cular thereto. The component perpendicular to the axis

of rotation will have merely the effect of transferring the

rotation into a parallel position. Thus the canonical

form of the displacement of a rigid body consists of a rota-

tion about an axis combined with a translation parallel to

that axis*

The Canonical Form is Unique. It is easily seen that

there is only one axis by rotation about which, and

translation parallel to which, the rigid body can be

brought from one given position to another given posi-

tion ; for suppose there were two axes P and Q, which

possessed this property, then by the movement about P,

all the points of the body originally on the line P con-

tinue thereon ; but it cannot be true for any other line

that all the points of the body originally on that line

continue thereon after the displacement. Yet this would

have to be true for Q, ifby rotation around Q and transla-

tion parallel thereto, the desired change could be effected.

We thus see that the displacement of a rigid body can

be made to assume an extremely simple form, in which

no arbitrary element is involved.

*For another proof of Chasles' theorem by Professor Crofton, F. R. S.,

see Proceedings of the London Math, Soc., Vol. v,, p. 25.



THEORY OF SCREWS.

CHAPTER I.

TWISTS AND WRENCHES.

I. Definition of the word Screw. The direct problem
offered by the Dynamics of a Rigid Body may be thus

stated. To determine at any instant the position of a

rigid body subjected to certain constraints and acted

upon by certain forces. We may first inquire as to the

manner in which the solution of any such problem ought
to be presented. Adopting one position of the body as

a standard of reference, a complete solution of the pro-
blem must provide us with the means of deriving the

position at any subsequent epoch from the standard

position. We are thus led to inquire into the most na-

tural method of specifying one position of a body with

respect to another.

To make our course plain let us consider the case of

a mathematical point. To define the position of the point
P with reference to a standard point A, there can be no

more natural method than to indicate the straight line

along which it would be necessary for a particle to travel

from A in order to arrive at P, as well as the length of

the journey. Now, there is an analogous method of de-

fining the position of a rigid body with reference to a

B
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certain standard position. We can have a movement

prescribed by which the body can be brought from the

standard position to the sought position. We have seen,

in the Introduction, that there is one preeminently simple
movement which will always answer. A certain axis can

be found, such that if the body be rotated around this axis

through a certain angle, and translated parallel to the

axis for a certain distance, the desired movement will be

effected.

It will simplify the conception of the movement to

suppose, that at each epoch of the interval of time occu-

pied by the operations for producing the change of posi-

tion, the angle of rotation bears to the final angle of

rotation, the same ratio which the corresponding trans-

lation bears to the final translation. Under these cir-

cumstances the motion of the body is precisely the same
as if it were rigidly attached to the nut of a screw (in the

ordinary sense of the word), which had an appropriate

position in space, and an appropriate number of threads

to the inch.

In order to express, in a scientific manner, the rela-

tion between the rotation and the translation in the

movement of a nut upon a screw, we give to the word

pitch a special meaning. We define the pitch to be the

rectilinear distance which the nut moves along the screw

when the nut is rotated through the angular unit of cir-

cular measure. The pitch is thus a linear magnitude.
The advantage of this convention is, that thejrectilinear

distance through which the nut moves when rotated

through a given angle is simply the product of the pitch

of the screw, and the circular measure of the angle.

It will presently appear that screws have a dynamical

significance, which is of parallel importance to their

kinematical properties. For this reason we attach a

somewhat abstract sense to the word, by defining a screw
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to be a straight line in space with which a definite linear

magnitude, termed the pitch ,
ts associated.

We shall often denote a screw by a symbol, and then

usually by a small Greek letter. With reference to these

symbols, a caution maybe necessary. If, for example, a

screw be denoted by a, then a is not an algebraic quan-

tity, and cannot occur in an algebraic equation. It is a

symbol which denotes all that is included in the concep-
tion of a screw, and requires five quantities for its speci-

fication, because four quantities are required to determine

a straight line, and the pitch must be specified by a fifth.

It will often be convenient to denote the pitch by a sym-
bol, which is derived from the symbol employed to de-

note the screw to which the pitch belongs. The pitch of

a screw can be represented by appending to the letter/
a suffix denoting the screw; thus, pa is the pitch of a.

The symbol pa represents, in fact, a certain number of

millimetres, or inches.

2. Definition of the word Twist. We have now to de-

fine the very important use to be made of the word

twist. A body is said to receive a twist about a screw

when it is rotated about the screw, while it is at the same

time translated parallel to the screw, through a distance

equal to the product of the pitch and the circular measure

of the angle of rotation ; hence,

The canonicalform to which the displacement of a rigid

body can be reduced is a twist about a screw.

If a body receive several twists in succession, then the

position finally attained could have been reached in a

single twist, which is called the resultant twist.

Although we have described the twist as a compound
movement, yet in the present method of studying me-

chanics it is essential to consider the twist as one homo-

geneous quantity. Nor is there anything unnatural in

such a supposition. Everyone will admit that the rela-

B 2
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tion between two positions of a point is most simply

presented by associating the purely metric element of

length with the purely geometrical conception of a di-

rected straight line. In like manner the relation of two

positions of a rigid body can be most simply presented

by associating a purely metric element with the purely

geometrical conception of a screw, which is merely a

straight line, with direction, situation, andpitch*

3. Instantaneous Screws. Whatever be the move-

ment of a rigid body, it is at every instant twisting

about a screw. For the movement of the body when

passing from one position to another position indefi-

nitely adjacent, is indistinguishable from the twist about

an appropropriately chosen screw by which the same

displacement could be effected. The screw about which

the body is twisting at any instant is termed the instan-

taneous screw.

4. Definition of the word Wrench. It has been proved
in the Introduction, that the canonical form of a sys-

tem of forces acting upon a rigid body consists of a

force and a couple whose plane is perpendicular to the

force. We now introduce the word wrench, to denote a

force and a couple in a plane perpendicular to the force.

The quotient obtained by dividing the moment of the

couple by the force is a linear magnitude. Everything,

therefore, which could be specified about a wrench is de-

termined (if the force be given in magnitude), when the

position of a straight line is assigned as the direction of

the force, and a linear magnitude is assigned as the quo-

* Those acquainted with the language of the Quaternions, invented by the

late Sir W. R. Hamilton, will perceive that a twist bears the same relation to

a rigid body which a vector does to a point ; each just expresses what is

necessary to transfer the corresponding object from one given position to

another.
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tient just referred to. Remembering the definition of a

screw, ( i), we may use the phrase, wrench on a screw,

meaning thereby, a force directed along the screw and
a couple in a plane perpendicular to the screw, the mo-
ment of the couple being equal to the product of the force

and the pitch of the screw. Hence, we may state, that

The canonicalform to which all the forces acting on a

rigid body can be reduced is a wrench on a screw.

If a rigid body be acted upon by several wrenches,
then these wrenches could be replaced by one wrench

which is called the resultant wrench.

5. Notation for Twists, Wrenches, and Twisting Mo-

tions. A twist about a screw a requires six algebraic

quantities for its complete specification, and of these, five

are required to specify the screw a. The sixth, or metric

quantity, which is called the AMPLITUDE OF THE TWIST,
and is denoted by a', expresses the angle of that rotation

which, when united with a translation, constitutes the

entire twist.

The distance of the translation is the product of the

amplitude of the twist and the pitch of the screw, or in

symbols o'/a .

If the pitch be positive (tiegative}, the direction of the

translation portion of the twist bears the same relation

to the direction of the rotation portion of the twist as the

direction of the translation of a nut on an ordinary right-

handed (left-handed] screw bears to the direction of the

rotation of the nut.

If the pitch be zero, the twist reduces to a pure rota-

tion around a. If the pitch be infinite, then a finite

twist is not possible except the amplitude be zero, in

which case the twist reduces to a pure translation parallel

tO a.

A wrench on a screw a requires six algebraic quanti-

ties for its complete specification, and of these, five are
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required to specify the screw a. The sixth or metric

quantity, which is called the INTENSITY OF THE WRENCH,
and is denoted by a", expresses the magnitude of that

force which, when united with a couple, constitutes the

entire wrench.

The moment of the couple is the product of the inten-

sity of the wrench and the pitch of the screw, or in sym-

bols, a." pa..

If the pitch be positive (negative], the direction in which

the couple acts which forms one portion of the wrench

bears the same relation to the direction in which the force

acts which forms the other portion of the wrench as the

direction of a couple which would make a nut turn on an

ordinary right-handed [left-handed] screw bears to the

direction of the force parallel to the axis of the screw

which would give the nut the same motion if the screw

were frictionless.

If the pitch be zero, the wrench reduces to a pure

force along a. If the pitch be infinite, then a finite

wrench is not possible except the intensity be zero, in

which case the wrench reduces to a couple in a plane

perpendicular to a.

In the case of a twisting motion about a screw a the

rate at which the amplitude of the twist changes may be

called the TWIST VELOCITY and be denoted by a'.

The following illustration may be useful :

If the screw be conceived placed along the axis

around which the hands of a watch turn, and if the twist

be in the direction in which the hands of the watch move,

then, for positive pitch the translation will be from the

front of the watch to the back; for negative pitch the

translation will be from the back of the watch to the

front. If in this statement we interchange the words

positive and negative, we have the case where the direc-

tion of the twist is opposite to the motion of the hands.
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6. Restriction of the Forces. It is first necessary
to point out the restrictions which we shall impose

upon the forces. The rigid body My whose motion we
are considering, is presumed to be acted upon by the same

forces whenever it occupies the same position. This will

necessitate that the surrounding bodies are fixed whence

the forces acting onM emanate. Forces such as those

due to a resisting medium are excluded, because such

forces do not depend on the position of the body, but on

the manner in which the body is moving through that

position. The same consideration excludes friction which

depends on the direction in which the body is moving
through the position under consideration.

But the condition that the forces shall be defined, when
the position is given, is still not sufficiently precise. We
might include, in this restricted group, forces which could

have no existence in nature. We shall, therefore, add

the condition that the system is to be one in which the con-

tinual creation of energy is impossible.

7. The Energy of Position. An important con-

sequence of this restriction is stated as follows : The

quantity of energy necessary to compel the bodyM to

move from the position A to the position B, is indepen-
dent of the route by which the change has been effected.

Let L andM be ;two such routes, and suppose that

less energy was required to make the change from A to

B via L than via M. Make the change via Z, with the

expenditure of a certain quantity of energy, and then

allow the body to return via M. Now, since at every

stage of the routeM the forces acting on the body are the

same whichever way the body be moving, it follows, that

in returning from B to A via M, the forces will give out

exactly as much energy as would have been required to

compel the body to move from A to B viaM ;
but by

hypothesis this exceeds the energy necessary to make
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the change via Z, and hence, on the return of the body
to A, there is a clear gain of a quantity of energy,

while the position of the body and the forces are the

same as at first. By successive repetitions of the pro-

cess an indefinite quantity of energy could be created

from nothing. This being contrary to nature, compels
us to admit that the quantity of energy necessary to force

the body from A to B is independent of the route fol-

lowed.

8. Theorem. The sum of the works done in a

number of twists against a wrench is equal to the work

that would be done in the resultant twist.

For, by the last article, the work done in producing a

given change of position is independent of the route.

9. Theorem. We first define that by the work done in

a twist against a wrench is to be understood the sum of the

works done against the three forces which constitute the

wrench in the movements of their points of application
which are caused by the twist.

We shall assume the two lemmas ist. The wrork

done in the displacement of a rigid body against a force

is the same at whatever point in its line of application
the force acts. 2nd. The work done in the displacement
of a point against a number offerees acting at that point,

equals the work done in the same displacement against
the resultant force.

The theorem to be proved is as follows : The sum of

the works done in a given twist against a number of

wrenches, equals the work done in the same twist against
the resultant wrench.

Let n wrenches, which consist of $n forces acting at

A
} , &c., A 3n , compound into one wrench, of which the

three forces act at P, Q, jR. The force at each point A k

may be decomposed into three forces along PAk, QA^
RA k . By the 2nd lemma the sum of the works (W\
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done against the 3/2 original forces, equals the sum of the

works done against the gn components. It, therefore,

appears from the ist lemma, that Ww'ill still be the

sum of the works done against the gn components, ot

which 3/2 act at P, $n at Qy $n at R. Finally, by the

2nd lemma, Wwill also be the sum of the works done

by the original twist against the three resultants formed

by compounding each group at Py Q, R. But these re-

sultants constitute the resultant wrench, whence the

theorem has been proved.

10. Theorem. From a comparison of the two last

articles, we easily deduce the following theorem, which

we shall find of great service throughout the essay.

If a series of twists A ly &c., A m , would compound into

one twist^4, and a series of wrenches B^ &c., Bn ,
would

compound into one wrench JB
y then the energy that would

be expended or gained when the rigid body performs the

twist A, under the influence of the wrench B
y
is equal to

the algebraic sum of the mn quantities of energy that

would be expended or gained when the body performs

severally each twist A iy &c., under the influence of each

wrench J3
} , &c.

ii. Concluding Remarks. We have now explained
the conceptions, and the language in which the solu-

tion of any problem in the Dynamics of a rigid body

may be presented. A complete solution of such a pro-

blem must provide us, at each epoch, with a screw, by a

twist about which of an amplitude also to be specified, the

body can be brought from a standard position to the po-

sition occupied at the epoch in question. It will also be

of much interest to know the instantaneous screw about

which the body is twisting at each epoch, as well as its

twist velocity. Nor can we regard the solution as quite

complete, unless we also have a clear conception of the

screw on which all the forces acting on the body consti-
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tute a wrench of which we should also know the in-

tensity.

There is one special feature which characterises that

portion of the Dynamics of a rigid body which is dis-

cussed in the present essay. We shall impose no restric-

tions on the form of the rigid body, none on the character

of the constraints by which its movements are limited,

and but little on the forces to which the rigid body is

submitted. The restriction which we do make is that

the body, while the object of examination, remains in, or

indefinitely adjacent to, its originalposition.
As a consequence of this restriction, we here make

the remark that the amplitude of a twist is henceforth to be

regarded as a small quantity.

If it be objected, that with so great a restriction as

that just referred to, only a limited field of inquiry re-

mains, the answer is as follows : A perfectly general

investigation could yield but a slender harvest of inter-

esting or valuable results. All the problems of Physical

importance are special cases of the general question.

Thus, a special character in the constraints has pro-
duced the celebrated problem of the rotation of a rigid

body about a fixed point. To vindicate our particular
restriction it seems only necessary to remark, that the

restricted inquiry still includes the theory of Equilibrium,
of Impulsive Forces, and of Small Oscillations.

Whatever of novelty may be found in the following

pages will, it is believed, be due to the circumstance

that, with the important exception referred to, all the

conditions of each problem are of absolute generality.



CHAPTER II.

THE CYLINDROID.

12. Introduction. We shall now ascertain the laws

according to which twists (and wrenches) must be com-

pounded together, that is to say, we shall determine

the single screw, one twist (or wrench) about which will

produce the same effect on the body as two or more

given twists (or wrenches) about two or more given

screws. It will be found to be a fundamental point of the

present theory that the rules for the composition oftwists

and of wrenches are identical.*

13. On the Virtual Coefficient of a Pair of Screws.

Suppose a rigid body be acted upon by a wrench

on a screw )3,
of which the intensity is /3". Let the

body receive a twist of small amplitude a' around a

screw a. It is proposed to find an expression either for

the energy required to effect the displacement, or the

work done if the displacement be permitted.

Let d be the shortest distance between a and j3, and

let O be the anglef between a and )3. Take a as the axis

of x
y
the common perpendicular to a and /3 as the axis

* That the source of the analogy between the composition of forces and of

rotations lies in the general principles of virtual velocities, has been proved by

Rodrigues (Liouville's Journal, t. 5, 1840, p. 436).

f Perhaps the best convention to distinguish between O and its supplement

is the following : Suppose the common perpendicular to be an ordinary right-

handed screw, and that there is a nut on this screw to which a is attached.

If, then, the nut be turned so as to make a approach ft (that is, to make the

length of the common perpendicular diminish), the angle less than TT through

which a has turned when it has become parallel to ft is the angle O.
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of
jy,

and a line perpendicular to x and y for z. If we re-

solve the wrench on ]3 into forces JT, Y, Z, parallel to

the axes, and couples ofmoments Z, M,N, in planes per-

pendicular to the axes we shall have

X =
/3" cos O ; Y= /3" sin ; Z = o

L=" cos O - 3"<*sin O ; J/= 3"j sin O + 3"<J cos ;

We thus reduce the given wrench to four wrenches,

viz., two forces [and two couples, and we reduce the

given twist to two twists, viz., one rotation and one

translation. By the principle ofio the work done by
the given twist against the given wrench must equal the

sum of the eight quantities of work done by each of the

two component twists against each of the four compo-
nent wrenches. Six of these quantities are evanescent.

In fact a rotation through the angle a' around the axis

of x can only do work against Z, the amount being

The translation pa a' parallel to the axis of x can

only do work against X, the amount being

a'/3"/a cos O.

Thus, the total quantity of work done is

"' ft" \ [fa + fp] cosO-dsinO}.

The expression

[fa + fp) cos O - d sin O,

is of great importance in the present theory.* It is

* The theory of screws has many points of connexion with recent geome-

trical speculations on the linear complex, by the late Dr. Pliicker and Dr. Felix

Klein. Thus the latter has shown, (Mathematische Annalen, Band II., p. 368),
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called the virtual coefficient of the two screws a and /3,

and may be denoted by the symbol

14. Symmetry of the Virtual Coefficient. One property
of the virtual coefficient is of the utmost importance.

If the two screws a and j3 be interchanged, the virtual

coefficient remains unaltered. The identity of the laws

of composition of twists and wrenches can be deduced

from this property,* and also the Theory of Reciprocal

Screws.

15. Composition of Twists and Wrenches. Suppose
three twists about three screws a, ]3, 7, possess the

property that the body after the last twist has the same

position which it had before the first : then the ampli-
tudes of the twists, as well as the geometrical relations

of the screws, must satisfy certain conditions. The

particular nature of these conditions does not concern us

at present, although it will be fully developed hereafter.

We may at all events conceive the following method

of ascertaining these conditions :

It follows from i o, that the sum of the works done

in the twists about a, /3, 7, against a wrench, on any
screw i),

must be zero, whence

a'wan 4 /3V0n + 7'^,,
= O.

This equation is a type of an indefinite number (of

which six are independent) which may be obtained by

that if/tt
and ^3 be each the "hauptparameter" of a linear complex, and if

(Pa + Pp)
cosO d sin O o,

where d and O relate to the principal axes of the complexes, that then the two

complexes possess a special relation and are said to be in "involution."

* This remark, or what is equivalent thereto, is due to Dr. Felix Klein

(Math. Ann., vol. iv., p. 413).
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choosing different screws for rj. From each group of

three equations the amplitudes can be eliminated, and
four of the equations thus obtained will involve all the

purely geometrical conditions as to direction, situation,

and pitch, which must be fulfilled by the screws when
three twists can neutralize each other.

But now suppose that three wrenches equilibrate on

the three screws a, |3, 7. Then
( 10) the sum of the

works done in a twist about any screw T\ against the

three wrenches must be zero, whence

o"w
all

+ $"*fr + 7"w =
O,

and an indefinite number of similar equations must be

satisfied.

By comparing this system of equations with that pre-

viously obtained, it is obvious that the geometrical con-

ditions imposed on the screws a, /3, 7, in the two cases

are identical, and that the amplitudes of the three twists

which neutralise are, respectively, proportional to the in-

tensities of the three wrenches which equilibrate.

When three twists (or wrenches) neutralise, then a

twist (or wrench) equal and opposite to one of them must

be the resultant of the other two, and hence it follows

that the laws for the composition of twists and of wrenches

must be identical.

1 6. The Cylindroid. We now proceed to study the

composition of twists and wrenches, and we select twists

for this purpose, though wrenches would have been

equally convenient.

A body receives twists about three screws ; under

what conditions will the body, after the last twist, oc-

cupy the same position which it had before the first.

The problem may also be stated thus : It is required

to ascertain the single screw, a twist about which would

produce the same effect as any two given twists. We
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shall first examine a special case, and from it we shall

deduce the general solution.

Take, as axes of x and yy two screws a, )3, intersect-

ing at right angles, whose pitches are /a and pp. Let a

body receive twists about these screws of amplitudes
0' cos / and 0' sin /. The translations parallel to the axes

of x and y will then be paW cos / and p$' sin /. The re-

sultant of the two translations may be resolved into two

components, of which Q' (pa cos 2/ + pp sin 2

/) is parallel to

the direction of that axis, a rotation about which is equi-

valent to the two given rotations, while 0' sin / cos l(pa -pp)
is perpendicular to the same line. The latter component
has the effect of transferring the resultant axis of the

rotations to a distance sin / cos / (pa
-

pj^ y the axis

moving parallel to itself in a plane perpendicular to that

which contains a and
/3. The two original twists about

a and /3 are therefore compounded into a single twist of

amplitude Q' about a screw 9 whose pitch is

pa cos V + pft
sin V.

The position of the screw 9 is defined by the eq

/
z -

\fm -ft) sm * cos L

Eliminating / we have the equation

z (x* +y) -
(pa -pp] xy = o.

The conoidal cubic surface represented by this equa-

tion has been called the cylindroid.*

* This surface has been described by Pliicker (Neue Geometric des Raumes,

p. 97) ; he arrives at it as follows : Let Q = o, and Q' = o represent two linear

complexes of the first degree, then all the complexes formed by giving /i
dif-

ferent values in the expression Q + /zQ'
= O form a system of which the axes lie

on the surface z (x
9 + y*)

- (& - k*} xy = o. The parameter of any complex of
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Each generating line of the surface is conceived to

be the residence of a screw, the pitch of which is deter-

mined by the expression pa cos */ + pp sin V.

We shall now show that a cylindroid can be described

so as to contain any two screws. When a cylindroid is

said to contain a screw, it is not only meant that the

screw is one of the generators of the surface, but that

the pitch of the screw is identical with the pitch appro-

priate to the generator with which the screw coincides.

Let the two given screws be 9 and 0, the length of

their common perpendicular be 7z, and the angle between

the two screws be A ; we shall show that by a proper
choice of the origin, the axes, and the constants pa and p^
a cylindroid can be found which contains 9 and $.

If /, m be the angles which two screws on a cylin-

droid make with the axis of x, and if z,, zz be the corre-

sponding values of z, we have the equations

pe = pa cos *t + Pp sin% z i
= (A - AO sin / cos /,

A> - Pa cos *m +pp sin 2
;;/. z2 = (pa

~
Pi) sinm cosm -

A = / - m, h = Zi
- z2y

which the axis makes an angle w with the axis of x is k = #> cos !
at -f sin* w.

The writer was informed by Dr. Felix Klein that Pliicker had also constructed

a model of this surface.

Pliicker does not appear to have contemplated the mechanical and kinema-

tical properties of the cylindroid, with which alone we are concerned
; but it

is worthy of remark that the distribution of pitch which is presented by physi-

cal considerations is exactly the same as the distribution of parameter upon the

generators of the surface, which was fully discussed by Pliicker in connexion

with his theory of the linear complex.

The name cylindroid was suggested by Professor Cayley in reply to a re-

quest of the writer. The word originated in the following construction for

the surface, which was also communicated by Professor Cayley. Cut the

cylinder cc* +y* =
(pp pa }* in an ellipse by the plane z = x, and consider the

line x = o, y p$ pa . If any plane z = c cuts the ellipse in the points A, B
and the line in (7, then CA, CB are two generating lines of the surface.
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sin ,4

A +A =A +A ~ ^ cot

-A) cot A +

with similar values for / and 22- It is therefore obvious

that the cylindroid is determined, and that the solution

is unique.

It will often be convenient to denote by (0, 0) the

cylindroid drawn through the two screws and <.

17. General Property. The general property of

the cylindroid, which is of importance for our present

purpose, may be thus stated. If a body receive twists

about three screws on a cylindroid, and if the amplitude
of each twist be proportional to the sine of the angle
between the two non-corresponding screws, then the

body after the last twist will occupy the same position

wrhich it did before the first.

The proof of this theorem must, according to 15,

involve the proof of the following : If a body be acted

upon by wrenches about three screws on a cylindroid,

and if the intensity of each wrench be proportional

to the sine of the angle between the two non-corre-

sponding screws, then the three wrenches equilibrate.

The former of these properties of the cylindroid is

thus proved : Take any three screws 9, 0, i/>, upon the

surface wThich make angles /, m, n, with the axis of x,

and let the body receive twists about these screws of

amplitudes 0', $', ;//.
Each of these twists can be de-

composed into two twists about the screws a and )3

which lie along the axes of x and y. The entire effect

of the three twists is, therefore, reduced to two rotations

around the axes of x and y, and two translations parallel

to these axes.

c
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The rotations are through angles equal respectively

to
/ cos / + 0' cos m + i//

cos n
and

Q' sin / + 0' sin m + ;//
sin n.

The translations are through distances equal to

pa (&' cos / + 0' cos m + T//COS n)

and pft (0' sin / + $' sin ?;/ + $' sin 72).

These four quantities vanish if

& X V
sin (m -

n) sin
(/z

-
/) sin (/

-
m)

9

and hence the fundamental property of the cylindroid

lias been proved.
The cylindroid affords the means of compounding two

twists (or two wrenches) by a rule as simple as that

which the parallelogram of force provides for the com-

position of two intersecting forces. Draw the cylindroid

which contains the two screws ; select the screw on the

cylindroid which makes angles with the given screws

whose sines are in the inverse ratio of the amplitudes of

the twists (or the intensities of the wrenches) ; a twist (or

wrench) about the screw so determined is the required

resultant. The amplitude of the resultant twist (or the

intensity of the resultant wrench) is proportional to the

diagonal of a parallelogram of which the two sides are

parallel to the given screws, and of lengths proportional

to the given amplitudes (or intensities).

18. Particular Cases. If/a
= pp the cylindroid re-

duces to a plane, and the pitches of all the screws are

equal. If the pitches be all zero, then the general pro-

perty of the cylindroid reduces to the well known con-

struction for the resultant of two intersecting forces, or

of rotations about two intersecting axes. If the pitches
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be all infinite, the general property reduces to the con-

struction for the composition of two translations or of

two couples.

19. Form of the Cylindroid. The equation of the

surface only contains the single parameter pa. ppy

consequently all cylindroids are similar surfaces only

differing in absolute magnitude.
The curved portion of the surface is contained be-

tween the two parallel planes z = + (pa
-
pp} y but it is to

be observed that the nodal line x =
o, y = o, also lies upon

the surface.

The intersection of the nodal line with a plane is a

double point (connode) or a conjugate point (acnode)

upon the curve in which the plane is cut by the cylin-

droid according as the point does lie or does not lie

between the two bounding planes.

A model of a portion of the cylindroid is represented

in the frontispiece. In order to realize from the model

the actual form of the surface, the diameter of the central

cylinder must be conceived to be evanescent, and the

radiating wires must be extended to infinity.

20. The Pitch Conic. Besides being acquainted with

the form of the cylindroid, it is also very useful to

have a clear view of the distribution of pitch upon the

screws contained on the surface. The surface being

given, one arbitrary element must be further specified

before that distribution is known. If, however, two screws

be given, then both the surface and the distribution are

determined. Any constant quantity may be added to

all the pitches of a certain distribution, and the distribu-

tion thus modified is still a possible one.

Let pe be the pitch of a screw on the cylindroid

which makes an angle / with the axis of x\ then
(

1 1)

p9 = fa cos2 / + pft
sin'V.

C 2
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Draw in the plane #, y, the conic

where H is any constant ; and if r be the radius vector

which makes an angle / with the axis of x, we have

&*?:>

whence the pitch of each screw on a cylindroid is pro-

portional to the inverse square of the parallel diameter

of the pitch conic.

Being given the cylindroid, we require further to

know the eccentricity of the pitch conic, and then the

pitches of all the screws are determined.

21. Summary. It is one of the main objects of the

present essay to associate a geometrical conception with

the solution of each problem. To do this effectively we-

shall often have occasion to make use of the principle

demonstrated in this chapter, viz.,

That a cylindroid can be drawn so that not only shall

two of its generators coincide with any two given screws a

and j3, but that when all the generators ofthe surface become

screws by having pitches assigned to them according to the

law of distribution enunciated in 20, the pitches assigned
to the generators which coincide with a and ]3 shall be equal
to the given pitches of a and ]3.
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CHAPTER III.

RECIPROCAL SCREWS.

22. Reciprocal Screws. If a body only free to twist

about a screw a be in equilibrium, though acted upon
by a wrench on the screw /3, then conversely a body
only free to twist about the screw j3 will be in equili-

brium, though acted upon by a wrench on the screw a.

The principle of virtual velocities states, that if the

body be in equilibrium the work done in a small dis-

placement against the external forces must be zero ; but

the condition for this is, that the virtual coefficient should

vanish (13), or

(fa + fft)
cos O - d sin O = o.

The symmetry shows that precisely the same condi-

tion is required whether the body be free to twist about

, while the wrench act on j3, or vice versa. A pair

of screws are said to be reciprocal when their virtual coeffi-

cient is zero.

23. Particular Instances. Parallel or intersecting

screws are reciprocal when the sum of their pitches is

^ero. Screws at right angles are reciprocal either when

they intersect, or when one of the pitches is infinite.

Two screws of infinite pitch are reciprocal, because a

couple could not move a body which was only susceptible

of translation. A screw whose pitch is zero or infinite

is reciprocal to itself.*

* For other particular instances see Professor Everett " On a New Method

in Statics and Kinematics," 27 ;

"
Messenger of Mathematics," New Series,

JSTo. 39, 1874.
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24. Screw Reciprocal to Cylindroid. If a screw T? be-

reciprocal to two given screws 6 and 0, then rj is recipro-

cal to every screw on the cylindroid (0, 0).

For a body only free to twist about rj would be undis-

turbed by wrenches on 9 and ; but a wrench on any
screw

i//
of the cylindroid can be resolved into wrenches

on 9 and ; therefore a wrench on
i/>
cannot disturb a

body only free to twist about rj; therefore
i//

and rj are

reciprocal. We may say for brevity that rj
is reciprocal

to the cylindroid.

TJ cuts the cylindroid in three points,* and one screw

of the cylindroid passes through each of these three

points ; these three screws must, of course, be reciprocal

to 17. Now two intersecting screws can only be reciprocal

when they are at right angles, or when the sum of their

pitches is zero. The pitch of the screw upon the cylin-

droid which makes an angle / with the axis of x is

pa cos
2/ + pp sin2

/.

This is also the pitch of the screw TT
- I. There are,

therefore, two screws of any given pitch ; but there can-

not be more than two. It follows that TJ can at most in-

tersect two screws upon the cylindroid of pitch equal and

opposite to its own ; and, therefore, r\ must be perpendi-
cular to the third screw.f Hence any screw reciprocal

to a cylindroid must intersect one of the generators at

right angles. We easily infer, also, that a line intersect-

ing one screw of a cylindroid at right angles, must cut

the surface again in two points, the screws passing

through which have equal pitch.

25. Reciprocal Cone. From any point P perpen-

*
Every right line meets a surface of the third degree in three points..

Salmon, "Analytic Geometry of Three Dimensions," 2nd Ed., p. 14.

+ The writer may, perhaps, be excused for adding that it was the percep-

tion of this point which first gave him clear views on the subject of the present

volume.



RECIPROCAL SCREWS.

diculars can be let fall upon the generators of the

cylindroid, and if to these perpendiculars pitches are

assigned which are equal in magnitude and opposite
in sign to the pitches of the two remaining screws on

the cylindroid intersected by the perpendicular, then the

perpendiculars form a cone of reciprocal screws.

We shall now prove that this cone is of the second

order, and we shall show how it can be constructed.

Let O be the point from which the cone is to be

drawn, and through O let a line 07" be drawn which is

parallel to the nodal line, and, therefore, perpendicular

to all the generators. This line will cut the cylindroid

in one real point T (Fig. 2), the two other points of inter-

section coalescing into the infinitely distant point in

which OT intersects the nodal line.

Draw a plane through T and through the screw LM
which, lying on the cylin-

droid, has the same pitch

as the screw through T.

Now this plane must cut

the cylindroid in a conic

section, for the line LM
and the conic will then

make up the curve of the

third degree, in which the

plane must cut the sur-

face.* Also since the entire

cylindroid (or at least its

curved portion) is included

between two parallel planes,

19, it follows, that this

conic must be an ellipse.

We shall now prove that
Fig. 2.

Salmon, "Analytic Geometry of Three Dimensions," 2nd Ed., p. 14.
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this ellipse is the locus of the feet of the perpendiculars

let fall from O on the generators of the cylindroid.

Draw in the plane of the ellipse any line TUV through

T; then, since this line intersects two screws of equal

pitch in T and U, it must be perpendicular to that gene-

rator of the cylindroid which it meets at V. This generator

is, therefore, perpendicular to the plane of OT and VTy

and, therefore, to the line O V. It follows that V must

be the foot of the perpendicular from O on the generator

through Vy
and that, therefore, the cone drawn from

O to the ellipse TL VM is the cone required.

We hence deduce the following construction for the

cone of reciprocal screws which can be drawn to a cylin-

droid from any point O.

Draw through O a line parallel to the nodal line of

the cylindroid, and let T be the one real point in which

this line cuts the surface. Find the second screw LM
on the cylindroid which has a pitch equal to the pitch

of the screw which passes through T. A plane drawn

through the point T and the straight line LM will cut

the cylindroid in an ellipse, the various points of which

joined to O give the cone required.

We may further remark that as the plane TLM
passes through a generator it must be a tangent plane to

the cylindroid at the point Z, while at the pointM the

line LM must intersect another generator.* It follows

that L must be the foot ofthe perpendicular from Tupon
LMy and thatM must be a point upon the nodal line.

26. Locus of a Screw Reciprocal to Four Screws.

Since a screw is determined by five quantities, it is

clear that when the four conditions of .reciprocity are

fulfilled the screw must be confined to a certain ruled

surface. Now this surface can be no other than a cylin-

*
Salmon, "Analytic Geometry of Three Dimensions," 2nd Ed., p. 348.
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droid. For, suppose that three screws A, ju, v, which were

reciprocal to the four given screws did not lie on the same

cylindroid, then any screw on the cylindroid (A, ju), and

any screw
i//
on the cylindroid (A, v) must also fulfil the

conditions, and so must also every screw on the cylindroid

(0, \/,) ( 4). We should thus have the screws reciprocal

to four given screws, limited not to one surface, but to a

family of surfaces, which is impossible. The construction

of the cylindroid which is the locus of all the screws re-

ciprocal to four given screws, may be effected in the fol-

lowing manner :

Let a, |3, 7, S be the four screws, of which the pitches
are in descending order of magnitude. Draw the cylin-
droids (a, 7) and Q3, ).

If or be a linear magnitude inter-

mediate between pft
and /7 ,

it will be possible to choose

two screws of pitch <r on (a, 7), and also two screws of

pitch a on Q3, ).
Draw the two transversals which in-

tersect the four screws thus selected ;* attribute to each

of these transversals the pitch
-

<r, and denote the screws

thus produced by 0, 0. Since intersecting screws are

reciprocal when the sum of their pitches is zero, it fol-

lows that 9 and must be reciprocal to the cylindroids

(a, 7) and
(|3, S). Hence all the screws on the cylindroid

(0, 0) 'must be reciprocal to a, /3, 7, S, and thus the pro-
blem has been solved.

27. Screw Reciprocal to Five Screws. The problem
>of the determination of a screw reciprocal to five given
screws must admit of a finite number of solutions,

because the number of conditions to be fulfilled is the

same as the number of disposable constants. Now it is

very important to observe that that number must be one.

For if two screws could be found which fulfilled the neces-

* Two lines can be drawn which will intersect four non-intersecting lines.

-Salmon, "Analytic Geometry of Three Dimensions," 2nd Ed., page 426.
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sary conditions, then these conditions would be equally
fulfilled by every screw on the cylindroid determined by
those screws

( 24), and therefore the number of solutions

of the problem would not be finite.

The construction of the screw whose existence is thus

demonstrated, can be effected by the results of the last

article. Take any four of the five screws, and draw the

reciprocal cylindroid which must contain the required
screw. Any other set of four will give a different cylin-

droid, which also contains the required screw. These

cylindroids must therefore intersect in the single screw,,

which is reciprocal to the five given screws.

28. Screw upon a Cylindroid Reciprocal to a Given

Screw. Let e be the given screw, and let X, ju, v, p be any
four screws reciprocal to the cylindroid ; then the single
screw TJ, which is reciprocal to the five screws t, A, /i, i, p y

must lie on the cylindroid because it is reciprocal to

A, ju, vy p, and therefore r\ is the screw required.
The solution must be unique, for if a second screw

were reciprocal to f, then the whole cylindroid would be-

reciprocal to c ; but this is not the case unless i fulfil cer-

tain conditions (24).

29. Properties of the Cylindroid. We add here a few

properties of the cylindroid for which the writer is prin-

cipally indebted to his friend Dr. Casey.
The ellipse in which a tangent plane cuts the cylin-

droid has a circle for its projection on a plane perpendi-
cular to the nodal line, and the radius of the circle is

the minor axis of the ellipse.

The difference of the squares of the axes of the ellipse

is constant 'wherever the tangent plane be situated.

The minor axes of all the ellipses lie in the same

plane.

The line joining the points in which the ellipse is cut

by two screws of equal pitch on the cylindroid is parallel
to the major axis.
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The line joining, the points in which the ellipse is

cut by two intersecting screws on the cylindroid, is pa-
rallel to the minor axis.

All the screws which lie in a plane and are reciprocal
to a cylindroid envelope a conic. The relation of this

conic to the cubic in which the plane cuts the cylindroid

might have some geometrical interest.

As we have no physical applications to make of these

theorems, the demonstrations are not given.



CHAPTER IV.

SCREW CO-ORDINATES.

30. Introduction. We are accustomed, in ordinary sta-

tics, to resolve the forces acting on a rigid body into

three forces acting along given directions at a point

and three couples in three given planes. In the present

theory we are, however, led to regard a force as a wrench

on a screw, of which the pitch is zero, and a couple as a

wrench on a screw of which the pitch is infinite. The
familiar process just referred to is, therefore, only a

special case of the more general method of resolution by
which the intensities of the six wrenches on six given
screws can be determined, so that, when these wrenches

are compounded together, they shall constitute a wrench

of given intensity on a given screw.*

The problem which has to be solved may be stated in

a more symmetrical manner as follows :

To determine the intensities of the seven wrenches on

seven given screws, such that, when these wrenches are

applied to a rigid body, which is entirely free to move in

any way, they shall equilibrate.

The solution of this problem is identical (15) with

that which may be enunciated as follows :

To determine the amplitudes of seven small twists

about seven given screws, such that, if these twists be

* If all the pitches be zero, the problem stated above reduces to the deter-

mination of the six forces along six given lines which shall be equivalent to a

given force. If further, the six lines of reference form the edges of a tetrahe-

dron, we have a problem which has been solved by Mobius, Crelle's Journal,

t. xviii., p. 207.
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applied to a rigid body in succession, the body after the

last twist shall occupy the same position which it had

before the first.

The problem w
re have last stated has been limited as

usual to the case where the amplitudes of the twists

are small quantities, so that the motion of each particle

produced by each twist is sensibly rectilinear. Were it

not for this condition a distinct solution would be re-

quired for every variation of the order in which the suc-

cessive twists were imparted.
If the number of screws were greater than seven,

then both problems would be indeterminate ; if the num-
ber were less than seven, then both problems would be

impossible (unless the screws were specially related) ;

the number of screws being seven, the problem of the

determination of the ratios of the seven intensities (or

amplitudes) has, in general, one solution. We shall

solve this for the case of wrenches.

Let the seven screws be a, /3, 7, S, e, , rj. Find the

screw \p which is reciprocal to y, 3, e, , rj. Let the seven

wrenches act upon a body only free to twist about
i//.

The reaction of the constraints which limit the motion

of the body will neutralize every wrench on a screw re-

ciprocal to ^ ( 22). We may, therefore, so far as a body
thus circumstanced is concerned, discard all the wrenches

except those on a and /3. Draw the cylindroid (a, /3),

and determine thereon the screw p which is reciprocal to

i//.
The body will not be in equilibrium unless the

wrenches about a and
j3 constitute a wrench on

/o,
and

hence the ratio of the intensities a." and $" is determined.

By a similar process the ratio of the intensities of the

wrenches on any other pair of the seven screws may be

determined, and thus the problem has been solved.

31. Intensities of the Components. Let the six screws

of reference be w,, &c. w 6 ,
and let p be a given screw
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on which is a wrench of given intensity /o". Let the

intensities of the components be p/', &c. p 6
/x

,
and let i\

be any screw. By the principle of 10, a twist about rj

must do the same quantity ofwork acting directly against

the wrench on p as the sum of the six quantities of work

which would be done by the same twist against each of

the six components of the wrench on p. We, therefore,

have the equation (using the notation of p. 13)

P
//

^np= P"*^ + &C. + pe'X-.-

By taking five other screws in place of 77, five more

equations are obtained, and from the six equations thus

found p/', &c. p6
" can be determined. This process will

be greatly simplified by judicious choice of the six

screws of which r/ is the type. Let j/ be reciprocal to w-2 ,

&c. w 6, then *r
nua

= o &c. ^-
na)6

=
o, and we have

f>//^P
=

p/'w,,^.

From this equation pi" is at once determined, and by five

similar equations the intensities of the five remaining

components may be likewise found.

Precisely similar is the investigation which deter-

mines the amplitudes of the six twists about the six

screws of reference into which any given twist may be

decomposed.

32. The Intensity of the Resultant may be expressed
in terms of the intensities of its components on the six

screws of reference.

Let p be any screw of pitch /p, and let p l9 &c. pQ be

the pitches of the six screws of reference wb &c. w 6 ; then

taking for i\
in

( 26), each of the screws of reference in

succession, and remembering that the virtual coefficient

of two coincident screws is simply double the pitch, we
have the following equations :

P
// ^

pWi
= p/^j + p 2

// ^
ft, i(02

-f &C. + p 6"a--
a 6

&C. = &C.
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But taking the screw p in place of 17 we have

Substituting for sr
p(0i

&c.
TOpWo from the former equa-

tions, we deduce

A p"

This result may recall the well-known expression for

the square of a force acting at a point in terms of its

components along three axes passing through the point.

This expression is greatly simplified when the three axes

are rectangular, and we shall now show that by a special

disposition of the screws of reference, a corresponding

simplification can be made in the formula just written.

33- Co-Reciprocal Screws. We have hitherto chosen

the six screws of reference quite arbitrarily; we now

proceed in a different manner. Take for o>,, any screw ;

for w 2 any screw reciprocal to wi ; for a>3, any screw

reciprocal to ui and w2 ; for wiy any screw reciprocal to w,,

<i> 2 , w 3 ;
for w 5, any screw reciprocal to wi, w 2, w3, w4 ; for <u 6,

the screw reciprocal to wi, w 2, w 3 , j4 , w 5 .

A group constructed in this way possesses the pro-

perty that each pair of screws is reciprocal. Any set of

screws not exceeding six, of which each pair is recipro-

cal, may be called for brevity a set of co-reciprocals.*

Thirty constants determine a group of six screws. If

the group be co-reciprocal, fifteen conditions must be

fulfilled ; we have, therefore, fifteen elements still dis-

posable, so that we are always enabled to select a co-

reciprocal group with special appropriateness to the

problem under consideration.

* Dr. Klein has discussed (Math. Ann. Band n. p. 204), six linear com-

plexes, of which each pair are in involution. If the axes of these complexes be

regarded as screws, of which the "
auptparameters

"
are the pitches, then

these six screws will be co-reciprocal.
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The facilities presented by rectangular axes for

questions connected with the dynamics of a particle have

perhaps their analogues in the conveniences which arise

from the use of co-reciprocal groups of screws in the

present theory.

If the six screws of reference be co-reciprocal, then

the formula of the last section assumes the very simple
form

34. Co-ordinates of a Wrench. We shall henceforth

usually suppose that the screws of reference are co-reci-

procal. We may also speak of the co-ordinates of a

wrench,* meaning thereby the intensities of its six com-

ponents on the six screws of reference. So also we may
speak of the co-ordinates of a twist, meaning thereby
the amplitudes of its six components about the six screws of

reference.

The co-ordinates of a wrench of intensity p" on the

screw p are denoted by p/
7

, &c. p 6

x/
. The co-ordinates of

a twist of amplitude p' about p are denoted by pi', &c.

P.'.

35. The Work done in a twist of amplitude a' about

a screw a, against a wrench of intensity j3
7/ on the screw

/3,
can be expressed in terms of the co-ordinates.

Replace the twist and the wrench by their respective

components about the co-reciprocals. Then the total

work done will be equal to the sum of the thirty-six

quantities of work done by each component twist against
each component wrench (10). Since the screws are co-

* Pliicker has introduced the conception of the six co-ordinates of a system
offerees Phil. Trans., vol. 156, p. 362. See also Battaglini,

" Sulle dinami

ip. involuzione,"
Atti di Napoli IV., 1869; Zeuthen, Math. Ann., Band I.,

p. 432.
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reciprocal, thirty of these quantities disappear, and the

remainder have for their sum*

2/ l n 1'/3i"+&C. +

36. Screw Co-ordinates. A wrench on the screw a,

of which the intensity is one unity has for its compo-
nents, on six co-reciprocal screws, wrenches of which

the intensities may be said to constitute the co-ordinates

of the screw a. These co-ordinates may be denoted by
eti, &c., a 6 .

When the co-ordinates of a screw are given, the screw

itself may be thus determined. Let i be any small

quantity. Take a body in the position A, and impart to

it successively twists about each of the screws of refe-

rence of amplitudes mi, ia zy &c., ia 6 . Let the position thus

attained be B ; then the twist which would bring the

body directly from A to B is about the required screw a.

37. Identical Relation. The six co-ordinates of a

screw are not independent quantities, they fulfil one

relation, the nature ofwhich is suggested by the relation

between three direction cosines.

When two twists are compounded by the cylindroid

(
1 7), it will be observed that the amplitude ofthe result-

ant twist, as well as the direction of its screw, depend

solely on the amplitudes of the given twists, and the

directions of the given screws, and not at all upon either

their pitches or their absolute situations. So also when

any number of twists are compounded, the amplitude and

direction of the resultant depend only on the amplitudes

and directions of the components. We may, therefore,

state the following general principle. If n twists neu-

tralize (or n wrenches equilibrate) then a closed polygon

* That the work done can be represented by an expression of this kind was

stated by Dr. Klein, Math. Ann., Band iv., p. 413.

D
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of n sides can be drawn, each of the sides of which is

proportional to the amplitude of one of the twists (or in-

tensity of one of the wrenches), and parallel to the cor-

responding screw.

Let #, #, ,
be the direction cosines of aline parallel

to any screw of reference w n ,
and drawn through a

point through which pass three rectangular axes.

Then since a wrench of one unit on a has components
of intensities ai, &c. a6, we must have

(#idi + &C. + <26a 6)

2 + (b\u }
+ &C. ^6e)

2 + (^iai &

whence
Sa!

2 + 22ai a2 COS (ai!^)
=

I,

if we denote by cos (wi wg) the cosine of the angle between

two intersecting lines parallel to on and w 2 .

38. Calculation of Co-ordinates. We must conceive

the formation of a table of triple entry from which the

virtual coefficient of any pair of screws may be ascer-

tained. The three arguments will be the angle be-

tween the two screws, the perpendicular distance, and

the sum of the pitches. These arguments having been

ascertained by ordinary measurement of lines and

angles, the virtual coefficient can be extracted from the

tables.

Let a be a screw, of which the co-ordinates are to be

determined. The work done against the unit wrench on

a by a twist of amplitude w/ about the screw wi is

but this must equal the work done by the same twist

against a wrench of intensity ai on the screw wj,

whence

-7A



SCREW CO-ORDINATES. 35

Thus, to compute each co-ordinate a n , it is only ne-

cessary to ascertain from the tables half the virtual co-

efficient between a and wn and to divide this quantity by

A-
39. The Virtual Coefficient between two screws may

be expressed with great simplicity by the aid of screw

co-ordinates.

The components of a twist of amplitude a' are of

amplitudes a'cti, &c. a'a 6 .

The components of a wrench of intensity fi" are of

intensities /3" ft &c. /3"ft.

Comparing these expressions with 34, we see that

t ' /3 // /Q// fta n = a a n , p = p Pi

and the expression for the work done by the twist about

a, against the wrench on /3, is

a'j3" [2/ lfllft H-, &C., + 2/fl
a 6ft].

The quantity inside the bracket is the virtual coefficient,

whence we deduce the important expression

^a/3
=

S/ia,ft.

Since a and /3 enter symmetrically into this
1

sion, we are again reminded of the reciprocal character

of the virtual coefficient.

40. The Pitch of a screw is at once expressed
'

terms of its co-ordinates, for the virtual coefficient of two

coincident screws being double the pitch, we have

41. Screw Reciprocal to five Screws. We can deter-

mine the co-ordinates of the single screw py which is

reciprocal to five given screws, a, j3, 7, S, c.
( 27).

The quantities p,, &c., p 6, must satisfy the condition

=
o,

D 2
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and four similar equations; hence /npn is proportional

to the determinant obtained by omitting the nth column

from the matrix.

05)

ft, ft, ft, ft, ft, ft,

7i> 72, 73> 74, 75* 76>

The relative values of pi, &c., p 6, being thus found, the

absolute values are given by 37.

The condition that six screws have a common recipro-

cal screw is expressed by the evanescence of a deter-

minant, which may be compared with the condition that

three straight lines be coplanar, of which the direction

cosines are given.

42. Co-ordinates of a Screw on a Cylindroid. We
may define the screw on the cylindroid by the angle

/, which it makes with the screw a on the axis of x.

Since a wrench of unit intensity on has components of

intensities cos / and sin / on a and
j3 (

1 7), and since each

of these components may be resolved into six wrenches

on any six co-reciprocal screws, we must have
( 36)

On = a n COS / + j3n sin /.

From this expression we can find the pitch of 6 :

for we have

pe
= S/i (ai cos / + ]3i sin If

whence expanding and observing that as a and ]3 are re-

ciprocal 2^Taij3i
= and also that ^p la^=p a and

S^t j3i
2 =

pp, we have the expression already given ( 20)

viz.

= COS
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If two screws, 6 and 0, upon the cylindroid, are reci-

procal, then (m being the defining angle of 0),

2/i (ai cos / + j3i sin
/) (<n cos m + /3j sin m) = o,

or, pa cos / cos m + p$ sin / sin m = o.

Comparing this with 20, we have the following useful

theorem :

Any two reciprocal screws on a cylindroid are parallel

to conjugate diameters* of the pitch conic.

Since the sum or difference ofthe squares of two con-

jugate diameters is constant f according as the pitch conic

is an Ellipse or a Hyperbola, we see that the sum or

difference of the reciprocals of the pitches of two reci-

procal screws on a cylindroid is constant according
as the pitch conic is an Ellipse or a Hyperbola.

*
Salmon, Conic Sections, 3rd Ed., page 129.

t Do. page 153.



CHAPTER V.

GENERAL CONSIDERATIONS ON THE EQUILIBRIUM OF A
RIGID BODY.

43. The Screw Complex. To specify with precision the

nature of the freedom enjoyed by a rigid body, it is

necessary to ascertain all the screws about which the

constraints will permit the body to be twisted. When the

attempt has been made for every screw in space, the re-

sults will give us all the information conceivable with

reference to the freedom of the body, and also with re-

ference to the constraints by which the movement may
be hampered.

Suppose that n screws ^4 b &c., A n have been found by
these trials, about each ofwhich thebodycan receive a twist.
It is evident, without further trial, that twisting about an

infinite number of other screws must also be possible

(n > i) : for suppose the body receive any n twists about

A i, &c., A n the position attained could have been reached

by a twist about some single screw A . It follows that

the body must be free to twist about A . Now since the

amplitudes of the n twists may have any magnitude (each
not exceeding an infinitely small quantity), A is merely
one of an infinite number of screws, about which twist-

ing must be possible. All these screws, together with

A &c., A , we call a screw complex of the nih order.

If it be found that the body cannot be twisted about

any screw which does not belong to the screw complex
of the nth

order, then the body is said to have freedom of

the nth order. It may be necessary to remark thatA &c.,

A ny must not be themselves members of a screw complex
of order lower than n. If this were the case, the screws
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about which the body could be twisted would only con-

sist of the members of that lower screw complex.
Since the amplitudes of the n twists about A . . . A n

are [arbitrary, it might be thought that there are n dis-

posable quantities in the selection of a screw S from a

screw complex of the nth order. It is, however, obvious

from 1 7 that the determination of the position and pitch

ofS depends onlyupon the ratios of the amplitudes of the

twists about A lf . . . A n and hence in the selection of a

screw from the screw complex ofthe n
th

order, we have n - i

disposable quantities.

44. Constraints. An essential feature of a system
of constraints consists in the number of independent

quantities which are necessary to specify the position of

the body when displaced in conformity with the require-

ments of the constraints. That number which cannot be

less than one, nor greater than six, is the order of the

freedom. To each of the six orders of freedom a certain

type of screw complex is appropriate.

The study of the six types of screw complex as here

defined is a problem of kinematics, but the statical and

kinematical properties of screws are so interwoven that

we derive great advantages by not attempting to rele-

gate the statics and kinematics to different chapters.

We shall not require any further mention of the con-

straints. Every conceivable condition ofconstraintsmust

have been included when the six screw complexes are

discussed in their most general form. Nor does it come

within our scope, except on rare occasions, to specialize

the enunciation of any problem, further than by men-

tioning the order of the freedom permitted to the body.

45. Screw Reciprocal to a Complex. If a screw X
be reciprocal to n screws, A l9 &c., A, belonging to a

screw complex of order n, then X is reciprocal to every

other screw A which belongs to the same screw com-
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plex. For, by the definition of the screw complex, it ap-

pears that twists of appropriate amplitudes about A ,, &c.,

A n,
would compound into a twist about A. It fol-

lows
( 43) that wrenches on AU &c., A n, of appropriate

intensities (32) compound into a wrench on A . Suppose
these wrenches on A\y &c., A n,

were applied to a body

only free to twist about X, then since X is reciprocal to

A i, &c., A n,
the equilibrium of the body would be un-

disturbed. The resultant wrench on A must therefore

be incapable ofmoving the body, therefore^ andX must

be reciprocal.

46. The Reciprocal Screw Complex. All the screws

which are reciprocal to a screw complex P of order k

constitute a screw complex Q of order 6 - k. This im-

portant theorem is thus proved :

Since only one condition is necessary for a pair of

screws to be reciprocal, it follows, from the last section,

that if a screw X be reciprocal to P it will fulfil k con-

ditions. The screwX has, therefore, 5
- k elements still

disposable, and consequently (k < 5) an infinite number
of screws Q can be found which are reciprocal to the

screw complex P. The theory of reciprocal screws will

now prove that Q must really be a screw complex of

order 6 - k. In the first place it is manifest that Q must
be a screw complex of some order, for, in general, if a

body be capable of twisting about even six screws, it

must be perfectly free. Here, however, if a body were

able to twist about the infinite number of screws em-
bodied in Qy it would still not be free, because it would
remain in equilibrium, though acted upon by a wrench
about any screw of P. If follows that Q can only denote

the collection of screws about which a body can twist

which has some definite order of freedom. It is easily
seen that that number must be 6 -

k, for the number of

constants disposable in the selection of a screw belong-
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ing to a screw complex is one less than the order of the

complex (38). But.we have seen that the constants dis-

posable in the selection ofX are 5
-

k, and, therefore, Q
must be a screw complex of order 6 - k.

We thus see, that to any screw complexP of orderk be-

longs a reciprocal screw complex Q of order 6 - k. Every
screw ofP is reciprocal to all the screws of Q, and vice

versa. This theorem provides us with a definite test as

to whether any given screw a. is a member of the screw

complex P. Construct any 6 - k screws of the reciprocal

system. If then a be reciprocal to these 6 - k screws, a

must belong to P. We thus have 6 - k conditions to be

satisfied by any screw when a member of a screw com-

plex of order k.

47. Equilibrium. If the screw complex P expresses

the freedom of a rigid body, then the body will remain

in equilibrium though acted upon by a wrench on

any screw of the reciprocal screw complex Q. This

is, perhaps, the most general theorem which can be

enunciated with respect to the equilibrium of a rigid

body. This theorem is thus proved : Suppose a wrench
to act on a screw rj belonging to Q. If the body does

not continue at rest, let it commence to twist about a.

We thus have a wrench about TJ disturbing a body which

twists about a, but this is impossible, because a and j are

reciprocal.

In the same manner it may be shown that a body
which is free to twist about all the screws of Q will not

be disturbed by a wrench about any screw of P. Thus,
of two reciprocal screw complexes, each expresses the

locus of a wrench which is unable to disturb a body free

to twist about any screw of the other.

48. Reaction of Constraints. It also follows that the

reactions of the constraints by which the movements

of a body are confined to twists about the screws of



42 EQUILIBRIUM OF A RIGID BODY.

a complex P can only be wrenches on the reciprocal

screw complex Q, for the reactions of the constraints ar&

only manifested by the success with which they resist

the efforts of certain wrenches to disturb the equilibrium
of the body.

49. Parameters of a Screw Complex. We next con-

sider the question as to how many parameters are

required in order to specify completely a screw com-

plex of the nth order. Since the complex is defined

when n screws are given, and since five data are required

for each screw, it might be thought that $n parameters
would be necessary. It must be observed, however, that

the given $n data suffice not only for the purpose of de-

fining the screw complex but also for pointing out n

special screws upon the screw complex, and as the point-

ing out of each screw on the complex requires n i

quantities ( 38), it follows that the number of parameters,

actually required to define the complex is only

$n- n(n- i)
= n (6

-
n).

This result has a very significant meaning in con-

nexion with the theory of reciprocal screw complexes P
and Q. Assuming that the order ofP is n, the order of

Q is 6 - n ; but the expression n (6 -n )
is unaltered by

changing n into 6 - n. It follows that the number of

parameters necessary to specify a screw complex is

identical with the number necessary to specify its reci-

procal screw complex. This remark is chiefly of impor-
tance in connexion with the complexes of the fourth and

fifth orders, which are respectively the reciprocal com-

plexes of a cylindroid and a single screw. We are now
assured that a collection of all the screws which are re-

ciprocal to an arbitrary cylindroid can be nothing less

than a screw complex of the fourth order in its most

general type, and also, that all the screws in space which
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are reciprocal to a single screw must form the most

general type of a screw complex of the fifth order.

50. Applications of Co-ordinates. If the co-ordinates

of a screw satisfy n linear equations, the screw must

belong to a screw complex of the order 6 - n. Let t\ be

the screw, and let one of the equations be

AM +, &c., + A MS = o,

whence ?? must be reciprocal to the screw whose co-ordi-

nates are proportional to

It follows that TJ must be reciprocal to n screws, and

therefore belong to a screw complex of order 6 - n.

Let cr, j3, 7, be four screws about which a body re-

ceives twists of amplitudes a, /3
X

, y', S'. It is required to

find the co-ordinates of the screw p and the amplitude p'

ofa twist about pwhich will produce the same effect as the

four given twists. Wehaveseen (39) that the twist about

any screw a, may be resolved in one way into six

twists of amplitudes a'cti, . . . a'ae, on the six screws of

reference ; we must therefore have

p'pi
= of en + |3' )3i + y ji +

'

Si

&c., &c.

p'.pe
= a a6 + j3' j3 6 + y' 7e + 8' S6

whence p' and p l9 . . . p B can be found (37).
A similar process will determine the co-ordinates of

the resultant ofany number of twists, and it follows from

1 5 that the resultant of any number of wrenches is

to be found by equations of the same form. In ordinary

mechanics, the conditions ofequilibrium of any number of

forces are six, viz., that each of the three forces, and each

of the three couples to which the system is equivalent

shall vanish. In the present theory the conditions are
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likewise six, viz., that the intensity of each of the six

wrenches on the screws of reference to which the given

system is equivalent shall be zero.

Any screw will belong to a complex of the nth order

if it be reciprocal to 6 - n independent screws ;
it follows

that 6 - n conditions must be fulfilled when n -t- i screws

belong to a screw complex of the nth order.

To determine these conditions we take the case of

n =
3, though the process is obviously general. Let a, /3,

7, S be the four screws, then since twists of amplitudes

'> j3'> 7', $' neutralise, we must have p' zero and hence

the six equations

7
/

7l + S'& = o,

&c.

from any four of these equations the quantities a'y /3', 7',

$ can be eliminated, and the result will be one of the

required conditions.

It is noticeable that the 6 - n conditions are often

presented in the evanescence of a single function, just as

the evanescence of the sine of an angle between a pair

of straight lines embodies the two conditions necessary
that the direction cosines of the lines coincide. The
function is suggested by the following considerations :

If n + 2 screws belong to a screw complex of the (n + i)
th

order, twists of appropriate amplitudes about the screws

neutralise. The amplitude of the twist about any one

screw must be proportional to a function of the co-ordi-

nates of all the other screws ; this is evident, because if

one amplitude were ascertained to be zero, the remaining
screws must belong to a complex of the nth order. We
thus see that the evanescence of one function must afford

all that is necessary for n + i screws to belong to a screw

complex of the n1h order.
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CHAPTER VI.

THE PRINCIPAL SCREWS OF INERTIA.

51. Introduction. If a rigid body be free to rotate about

a fixed point, then it is well known that an impulsive

couple in a plane perpendicular to one of the principal

axes which can be drawn through the point will make
the body commence to rotate about that axis. Suppose
that on one of the principal axes lay a screw rj with a

very small pitch, then a twisting motion about rj would

closely resemble a simple rotation about the correspond-

ing axis. An impulsive wrench on ij will, when united

with the reaction of the fixed point, reduce to a couple
in a plane perpendicular to the axis. If we now sup-

pose the pitch of TJ to be evanescent, we may still

assert that an impulsive wrench on TJ of very great in-

tensity will cause the body, if previously quiescent, to

commence to twist about rj.

We have stated a familiar property of the principal

axes in this indirect manner, for the purpose of showing
that it is merely an extreme case fora body with freedom

of the third order of the following general theorem :

If a quiescent rigid body havefreedom of the nth
order,

then n screws can always befound (butnotmore than n\ such

that if the body receive an impulsive wrench on any one of
these screws, the body will commence to twist about the same

screw.

These n screws are of great significance in the pre-

sent method of studying Dynamics, and they may be

termed the principal screws of inertia. In the present

chapter we shall prove the general theorem just stated,
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while in the chapters on the special orders of freedom we
shall show how the principal screws of inertia are to be

determined for each case.

52. Screws of Reference. We have now to define the

group of six co-reciprocal screws
(

2 8) which are pecu-

liarly adapted to serve as the screws of reference in

Kinetic investigations. Let O be the centre of inertia of

the rigid body, and let OA, OB, OC be the three prin-

cipal axes through O, while a, b, c are the corresponding
radii of gyration. Then two screws along OA, viz. : w : ,

W2, with pitches + a,
- a ; two screws along OB, viz. : o> 3 ,

<>4, with pitches + b,
-

b, and two along OC, viz. : o> 5, W G ,

with pitches + c,
-

c, are the co-reciprocal groupwhich we
shall employ. For convenience in writing the formulae,

we shall often use / &c. pQ, to denote the pitches as

before.

We shall now prove that the six screws thus defined

are the principal screws of inertia of a free rigid body.
Let the mass of the body be M, and let an impulsive
wrench on wi act for a short time /. The intensity of

this wrench is tui", and the moment of the couple is a^1
.

We now consider the effect of the two portions of the

wrench separately. The effect of the force wi" is to give
the body a velocity of translation parallel to OA and

equal to
-^.

wi ". By the property of the principal axes

the effect of the couple will be to impart an angular ve-

locity w/ about the axis OA. This angular velocity
is easily determined. The effective force which must
have acted upon a particle dm at a perpendicular dis-

tance r from OA is -~ dm. The sum of the moments

of all these forces is Ma? ^ . This quantity must equal
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the moment of the given couple or

/
whence i)\

= ^ i .aM
The effect of an impulsive wrench on wi is, therefore,

to give the body a velocity of translation parallel to OA,

and equal to -r-
f w/', and also a velocity ofrotation about

OA equal to ^-, to/'. These movements unite to form aaM
twisting motion about a screw on OA, ofwhich the pitch

is found by dividing the velocity of translation by the

velocity of rotation to be equal to a, this being the pitch

of wi, proves that an impulsive wrench on wi will make
the body commence to twist about wi, and that, therefore,

wi is a principal screw of inertia. Similar reasoning

applies to the remaining five screws.

53. Impulsive Screws and Instantaneous Screws. If a

free quiescent rigid body receive an impulsive wrench

on a screw rj, the body will immediately commence to

twist about an instantaneous screw a. The co-ordinates

of a being given, it is required to determine the co-

ordinates of jj.

The impulsive wrench on ?> of intensity r\" is to be

decomposed into components of intensities r\

f/

in, &c.

V'lje on wi, &c w6 . The component on w will generate

a twist velocity about w amounting to

but if 'a! be the twist velocity about a which is finally

produced, the expression just written must be equal to

'
an,

and hence we have the following useful result :

If the co-ordinates of the instantaneous screw be proper-
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tional to ai, &c. a 6, then the co-ordinates of the correspond-

ing impulsive screw are proportional to p l ai, &c. /6 a 6 .

54. Conjugate Screws of Inertia. If a and j3 be two

instantaneous screws, and if
r\
and be the correspond-

ing impulsive screws, then when a is reciprocal to % we
must have /3 reciprocal to rj. We shall first suppose the

body to be perfectly free.

The co-ordinates of S are proportional to/i/3i, &c./6 j3 6,

hence the condition that a and are reciprocal ( 34) is

/i
2
ai |3i + &c. + /6

2 a6 /36
= o.

But this is precisely the equation which we should

have found by expressing the condition that ]3
and rj were

reciprocal.

When this relation is fulfilled, the screws a and ]3 are

said to be conjugate screws of inertia.

We shall now show that this theorem will still remain

true even if the body be only partially free. When the

body receives an impulsive wrench on there is an im-

pulsive reaction of the constraints on a screw ju
. The

effect on the body is, therefore, the same as if it had been

free, but had received an impulsive wrench of which the

component on o>i had the intensity
/x

i + ju"/^ ; hence,

h being a constant, we have

&c. &c.

", + juV

multiplying the first of these equations by p l a\, the

second by/2 2, &c., adding the six products, and re-

membering that a and are reciprocal by hypothesis,

while a and
/it

are reciprocal, by the nature of the re-

actions of the constraints
( 43), we have, as before
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Precisely the same condition must be satisfied when ]3 and

ij are reciprocal, and hence the general property of con-

jugate screws of inertia is true, whether the body be free

or constrained in any way.

55. The Determination of the Impulsive Screw, corres-

ponding to a given instantaneous screw, is a definite

problem when the body is perfectly free. If, however,
the body be constrained, we shall show that any screw

selected from a certain screw complex will fulfil the re-

quired condition.

Let Bl9 &c. jB6 _ n be 6 - n screws selected from the

screw complex which is reciprocal to that corresponding
to the freedom of the nth order possessed by the rigid

body. Let S be the screw about which the body is to

twist. Let X be any screw, an impulsive wrench about

which would make the body twist about S; then any
screw Y belonging to the screw-complex of the (7

-
n}

th

order, specified by the screws, X, Bly &c. -Z?6 . n is an im-

pulsive screw, corresponding to S as an instantaneous

screw. For the wrench on Y may be resolved into 7-72
wrenches on X, B\ y &c. -#6 -n ; of these, all but the first are

instantly destroyed by the reaction of the constraints, so

that the wrench on Kis practically equivalent to the

wrench on X, which, by hypothesis, will make the body
twist about S.

For example, if the body had freedom of the fifth

order, then an impulsive wrench on any screw on a cer-

tain cylindroid will make the body commence to twist

about a given screw.

If a body have freedom of the third order, then the

"locus" of an impulsive wrench which would make the

body twist about a given screw consists of all the screws

in space which are reciprocal to a certain cylindroid.

56. System of Conjugate Screws of Inertia. We shall

now show that from the screw-complex of the nth orderP,

E
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which expresses the freedom of the rigid body, n "screws

can be selected so that every pair of them are conjugate

screws of inertia (54). Let Bly &c. 7?6 _ n be (6
-

n)

screws defining the reciprocal screw-complex. LetA i be

any screw belonging to P. Then in the choice ofA A l we
have n - i arbitrary quantities. Let /i be any impulsive

screw corresponding to A v as an instantaneous screw.

Choose A z reciprocal to /i, Bly &c. 7?6 _ n,
then AI and A 2

are conjugate screws, and in the choice of the latter we
have n- 2 arbitrary quantities. Let 72 be any impulsive

screw corresponding to A 2 as an instantaneous screw.

Choose A 3 reciprocal to Il9 72,
Bl9 &c. 7?6 _ M,

and proceed
thus until A n has been attained, then each pair of the

group AU &c. A n are conjugate screws of inertia. The

number ofquantities which remain arbitrary in the choice

of such a group amount to

n (n -
i)n 1+72 2 + &C. + I =
',

2

or exactly half the total number of arbitrary constants in

the selection of any n screws from a complex of the nth

order.

57. Principal Screws of Inertia. It is the object of

this section to show that it is always possible to select

from the screw-complex of the nth order expressing the

freedom of a rigid body, one group of n screws, ofwhich

every pair are both conjugate and reciprocal, and that

these constitute the principal screws of inertia
( 51).

To prove this, it is sufficient to show that when the

remaining half of the arbitrary constants
( 56) have

been suitably disposed, then the group of n screws be-

sides being conjugate will be co-reciprocal. Choose A\

reciprocal to B\ y
&c. 7?6 _ n,

with n - i arbitrary quantities ;

A 2 reciprocal to Ai 9 Bly &c. Bn -\, with n - 2 arbitrary

quantities, and so on, then the total number of arbitrary
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quantities in the choice of n co-reciprocal screws from a

complex of the nlh order is

n(n- i)n i+n z...+ i=
2

Hence, by suitable disposition of the n(n -
i) constants

we can find one group of n screws which are both con-

jugate and co-reciprocal.

We have now to show that these n screws are really

the principal screws of inertia (51). yWe shall state the

argument for the freedom of the third order, the argu-
ment for any other order being precisely similar.

Let A i, A 2, A z , be the three conjugate and co-reci-

procal screws which can be selected from a complex of

the third order. Let B^B^ Bj, be any three screws belong-

ing to the reciprocal screw-complex. Let Rl9 jR2, R*
be any three impulsive screws corresponding respectively

to A l9 A 2, A 3 as instantaneous screws.

An impulsive wrench on any screw belonging to the

screw-complex of the 4* order defined by Ri 9
Bl9 B2, B*

will make the body twist about A\ (55), but the screws

of such a complex are reciprocal to A z and A 3 ; for since

A i and A z are conjugate, ^ must be reciprocal to A z

( 54), and also to A 3, since AI and Az are conjugate. It

follows from this that an impulsive wrench on any screw

reciprocal to A z and A 3 will make the body commence
to twist aboutA 19 but A 1 is itself reciprocal to A z and A 3,

and hence an impulsive wrench on AI will make the

body commence to twist about AI. Hence AI and also

At and A 3 are principal screws of inertia.

We shall now show that with the exception of the n
screws here determined, no other screw possesses the

property in question. Suppose another screw S were to

possess this property. Decompose the wrench on S into

n wrenches of intensities Si", &c. Sn"onA lf &c. A, this

must be possible, because if the body is to be capable of

E 2
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twisting about S this screw must belong to the complex

specified by A Jy &c. A n . The n impulsive wrenches on

AI, &c. A n will produce twisting motions about the same

screws, but these twisting motions are to compound into

a twisting motion on S. It follows that the component
twist velocities Si, &c. Sn

' must be proportional to the

intensities Si", &c. Sn". But if this were the case, then

every screw of the complex would be a principal screw

of inertia ; for let X be any impulsive screw, and suppose
that Y is the corresponding instantaneous screw, the

components ofJTon AI, &c. A n, have intensities JT/
7

, &c.

Xn", these will generate twist velocities equal to

o / c /

X " &c X "
g // i > ^ S '

and these quantities must equal the components of the

twist velocity about Y. But the ratios

are all equal, and hence the twist velocities of the com-

ponents on the screws of reference of the twisting motion

about Fmust be proportional to the intensities of the

components on the same screws of reference of the

wrench on X. Remembering that twisting motions and

wrenches are compounded by the same rules, it follows

that Y and X must be identical.

As it is not generally true that all the screws of the

complex defining the freedom possess the property

enjoyed by a principal screw of inertia, it follows that the

number of principal screws of inertia must be generally

equal to the order of the freedom.

58. Kinetic Energy. The twisting motion of a rigid

body with freedom of the nth order may be completely

specified by the twist velocities of the components of the
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twisting motion on any n screws of the complex defining
the freedom. If the screws of reference be a set of con-

jugate screws of inertia, the expression for the kinetic

energy of the body consists ofn square terms. This will

now be proved.

If a free or constrained rigid body be at rest in a po-
sition A, and if the body receive an impulsive wrench,
the body will commence to twist about a screw a with a

kinetic energy Ea . Let us now suppose that a second

impulsive wrench acts upon the body on a screw
ju,

and
that if the body had been at rest in the position A, it

would have commenced to twist about a screw
/3,

with a

kinetic energy E$.
We are now to consider how the amount of energy

acquired by the second impulse is affected by the circum-

stance tjiat the body is then not at rest in A, but is

moving through A in consequence of the former im-

pulse. The amount will in general differ from E
ft,

for

the movement of the body may cause it to do work

against the wrench on ^ during the short time that it

acts, so that not only will the body thus expend some
of the kinetic energy which it previously possessed, but

the efficiency of the impulsive wrench on
ju

will be dimi-

nished. Under other circumstances the motion through
A might be ofsuch a character that the impulsive wrench
on

[i actingfor a given time would impart to the body a

larger amount of kinetic energy than if the body were at

rest. Between these two cases must lie the intermediate

one in which the kinetic energy imparted is precisely

the same as if the body had been at rest. It is obvious

that this will happen if each point of the body at which

the forces of the impulsive wrench are applied be moving
in a direction perpendicular to the corresponding force,

or more generally if the screw a about which the body
is twisting be reciprocal to p. When this is the case
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a and /3
must be conjugate screws of inertia

( 54), and

hence we infer the following theorem :

If the kinetic energy of a body twisting about a screw

a with a certain twist velocity be Eay and if the kinetic

energy of the same body twisting about a screw j3 with a

certain twist velocity be E
ft,

then when the body has a

motion compounded of the two twisting movements, its

kinetic energy will amount to Ea + E$ provided that a and

j3 are conjugate screws of inertia.

Since this result may be extended to any number of

conjugate screws of inertia, and since the terms E^ &c.,

are essentially positive, the required theorem has been

proved.

59. Expression for Kinetic Energy. If a rigid body
have a twisting motion about a screw a, with a twist

velocity d', what is the expression of its kinetic energy
in terms of the co-ordinates of a r

We adopt as the unit of force that force which acting

upon the unit of mass for the unit of time will give the

body a velocity which would carry it over the unit of

distance in the unit of time. The unit of energy is the

work done by the unit force in moving over the unit dis-

tance. If, therefore, a body of mass w have a movement

of translation with a velocity v its kinetic energy ex-

pressed in these units is ^wvz
.

The movement is to be decomposed into twisting

motions about the screws of reference wi, &c. we, the

twist velocity of the component on wm being d'am .

One constituent of the twisting motion about wm con-

sists of a velocity of translation equal to apm am,
and on

this account the body has a kinetic energy equal to

^Ma*pmz am~. On account of the rotation around the

axis with an angular velocity aam the body has a kinetic

energy equal to
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where r denotes the perpendicular from the element dM
on wm . Remembering that pm is the radius of gyration
this expression also reduces to J Md^p^m am2

, and hence

the total kinetic energy of the twisting motion about wm
is M&pJaJ.
We see, therefore (58), that the kinetic energy due

to the twisting motion about a is

Ma z (/xW + &c. + /.W).

The quantity inside the bracket is the square of a

certain linear magnitude which is determined by the dis-

tribution of the material of the body with respect to the

screw a. It will facilitate the kinetic applications of the

present theory to employ the symbol ua to denote this quan-

tity. It is then to be understood that the kinetic energy
of a body of mass M, animated by a twisting motion

about the screw a with a twist velocity a is represented by

60. Twist Velocity acquired by an Impulse. A body of

mass My which is only free to twist about a screw o, is

acted upon for a short time e by a wrench of intensity tj"

on a screw r\. It is required to find the twist velocity a

which is acquired.

Let the initial reaction of the constraints consist of a

wrench of intensity X" on a screw X. Then the body
moves as if it were free, but had been acted upon by a

wrench of which the component on wm had the intensity

"n"i\m + X^Xm. This component would generate a velocity

of translation parallel to wm and equal to
-^>(j/

/

7 + X //Am).

The twist velocity about wm produced by this component
is found by dividing the velocity of translation by pm .

On the other hand, since the co-ordinates of the screw



56 THE PRINCIPAL SCREWS OF INERTIA.

a are fll , &c., a 6, the twist velocity about u)m may also be

represented by d'am ( 36), whence

If we multiply this equation by/m2am,
add the six equa-

tions found by giving m all values from i to 6, and re-

member that a and X are reciprocal, we have
( 39,)

whence a 7
is determined.

This expression shows that the twist velocity pro-

duced by an impulsive wrench on a given rigid body
constrained to twist about a given screw, varies directly

as the product of the virtual coefficient of the two screws

and the intensity of the impulsive wrench, and inversely

as the square of ^ .

6 1 . The Kinetic Energy acquired by an Impulse can be

easily found by 59 ; for, from the last equation,

hence the kinetic energy produced by the action of an

impulsive wrench on a body constrained to twist about

a given screw varies directly as the product of the square
of the virtual coefficient ofthe two screws and the square
of the intensity of the impulsive wrench, and inversely

as* the square of ua .

62. Free Body. We shall now express the kinetic

energy communicated by the impulsive wrench on rj to

the body when perfectly free. The component on u)m of

intensity rj'j\m imparts a kinetic energy equal to
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whence the total kinetic energy is found by adding these

six terms.

The difference between the kinetic energy acquired
when the body is perfectly free, and when the body is

constrained to twist about a, is equal to

The quantity inside the bracket reduces to the sum of 1 5

square terms, of which (p\airii
-
/2z?i)

2 is a specimen.
The entire expression being therefore essentially posi-

tive shows that a given impulse imparts greater energy
to a quiescent body when free than to the same quiescent

body when constrained to twist about a certain screw.

63. Lemma. If a group of instantaneous screws be-

long to a complex of the nth
order, then the correspond-

ing group of impulsive screws also belong to a complex
of the nih

order; for, suppose that n + i twisting motions

about n + i screws neutralise, then the corresponding
n + i impulsive wrenches must equilibrate, but this would

not be possible unless all the impulsive screws belonged
to a screw complex of the nth order.

64. Euler's Theorem. If a free or constrained rigid

body receives an impulsive wrench, the body will com-

mence to move with a larger kinetic energy when it is

permitted to select its own instantaneous screw from the

screw complex P defining the freedom, than it would

have acquired, had it been arbitrarily restricted to any
other screw of the complex.

Let Q be the reciprocal complex of the (6
- nth

) order,

and let P' be the screw complex of the nth
order, con-

sisting of those impulsive screws which, if the body
were free, would correspond to the screws ofP as instan-

taneous screws.



58 THE PRINCIPAL SCREWS OF INERTIA.

Let ri be any screw on which the body receives an

impulsive wrench. Decompose this wrench into com-

ponents on a system of six screws consisting of any n

screws from Pf

y
and any 6 - n screws from Q. The latter

are neutralised by the reactions of the constraints, and

may be omitted, while the former compound into one

wrench on a screw belonging to P '; we may therefore

replace the given wrench by a wrench on . Now, if

the body were perfectly free, an impulsive wrench on

must make the body twist about some screw a on P. In

the present case, although the body is not perfectly free,

yet it is free so far as twisting about a is concerned, and

we may therefore, with reference to this particular im-

pulse about ,
consider the body as being perfectly free.

It follows from 62 that there would be a loss of energy
if the body were compelled to twist about any other

screw than a, which is the one it naturally chooses.

This theorem is due to Euler.*

65. Co-ordinates of a Screw belonging to a Screw com-

plex. It will now be necessary to make some extensions

of the conceptions of screw co-ordinates. Suppose that

a body have freedom of the nth
order, we have shown that

it is always possible to choose n screws from the screw

complex expressing that freedom, such that each screw

is reciprocal to all the rest. As an example we shall give

the proof for the screw complex of the third order. Let

B^ B^ Bz be three screws of the reciprocal screw com-

plex; then, if any screw A l be taken which is reciprocal

to BI, BZ, .Z?3, any screw A% which is reciprocal to

Bly BV, BZ, A ly and the screw A 3, which is reciprocal to

J5i 9 Bo, Bz , A ly
A 2 ; then the group A ly A 2, A 3 possess

the required property, and may be termed co-recipro-

cals.

* Thomson & Tait : Natural Philosophy, vol. i. p. 216.
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The co-ordinates of a scrciv belonging to a given screw

complex are simplified by taking n co-reciprocal screws

belonging" to the given screw complex as a portion of

the six screws of reference. In this case, out of the six

co ordinates ai, . . . . a 6 of a screw a, which belongs to

the complex, 6-n are actually zero. Thus we are en-

abled to give a more general definition of screw co-

ordinates, which will apply to a screw-complex of every

order from i to 6, both inclusive.

If a wrench, of which the intensity is one unit on a

screw a, which belongs to a certain screw complex of the

nth
order, be decomposed into n wrenches of intensities

ai, . . . . a* on n co-reciprocal screws belonging to the

same screw complex, then the n quantities a
t ,

.... a,,

are said to be the co-ordinates of the screw a. Thus the

pitch of a will be represented by / t a? + . . . + /nan
2

. The

virtual coefficient of a and |3 will be 2 (/iaj3i + . . . +/Baj3n)

We may here remark that one screw can always be

found upon a screw complex of the nth order reciprocal

to n - i screws of the same complex. For, take 6
%

- n

screws of the reciprocal screw complex, then the required

screw is reciprocal to 6 - n + n - i = 5 known screws, and

is therefore determined
( 27).

66. The Reduced Wrench. A wrench which acts upon
a constrained rigid body may always be replaced by a

wrench on a screw belonging to the screw complex,

which defines the freedom of the body.
Take n screws from the screw complex of the nth

order which defines the freedom, and 6 - n screws from

the reciprocal complex. Decompose the given wrench

into components on these six screws. The component
wrenches on the reciprocal complex are neutralized by
the reactions of the constraints, and may be discarded,

while the remainder must compound into a wrench on

the given screw complex.
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Whenever a given external wrench is replaced by an

equivalent wrench upon a screw of the complex which

.defines the freedom of the body, the latter may be termed,

for convenience, the reduced wrench.

It will be observed, that although the reduced wrench

can always be determined from the given wrench, that

the converse problem is indeterminate (n < 6).

We may state this result in a somewhat different

manner. A given wrench can always be resolved into

two wrenches one on a screw of any given complex,
and the other on a screw of the reciprocal screw com-

plex. The former of these is what we denote by the

reduced wrench.

67. Co-ordinates of Impulsive and Instantaneous

Screws. Taking as screws of reference the n principal
screws of inertia

( 57), we require to ascertain the rela-

tion between the co-ordinates of a reduced impulsive
wrench and the co-ordinates of the corresponding instan-

taneous screw. If the co-ordinates of the reduced wrench

are n/', . . ., rjn
x/

, and those of the corresponding twisting
motion are a/,. . , a,/, then, remembering the property
of a principal screw of inertia

( 57), and denoting by
MI, . . ., u n ,

the values of the magnitude u
( 59) for the

principal screws of inertia, we have, from 60,

whence we deduce the following theorem, which, in the

particular case of n =
6, reduces to that of 53.

If a quiescent rigid body, which has freedom of the

nth
order, commence to twist about a screw a, of which

the co-ordinates, with respect to the principal screws of

inertia, are ai, . . . an and if/i, ...,/ be the pitches,

and uly . . ., un the constants defined, in 59, of the
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principal screws of inertia, then the co-ordinates of the

reduced impulsive wrench are proportional to
"

''*/,.< ?

Let T1

denote the kinetic energy of the body of mass

M when animated by a twisting motion about the screw

a, with a twist velocity a. Let the twist velocities of the

components on any n conjugate screws of inertia be de-

noted by di', . . . d B'. (These screws will not be co-reci-

procal unless in the special case where they are the

principal screws of inertia.) It follows
( 58) that the

kinetic energy will be the sum of the n several kinetic

energies due to each component twisting motion. Hence
we have

( 59)

and also

u* = Ufa? + . . . + wnW.
Let Q! ,

. . . a ra and
]3i ,

. .
, j3 ra be the co-ordinates of

any two screws belonging to a screw complex of the nth

order, referred to any n conjugate screws of inertia, whe-

ther co-reciprocal or not, belonging to the same screw

complex, then the condition that a and /3 should be con-

jugate screws of inertia is

To prove this, take the case of n =
4, and let A, By Cy D

be the four screws of reference, and let A\, , A 6 be

the co-ordinates ofA with respect to the six principal

screws of inertia of the body when free
( 52). The unit

wrench on a is to be resolved into four wrenches of in-

tensities ai, . . .
, a4 on A, By Cy D: each of these compon

nents is again to be resolved into six wrenches on the
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screws of reference. The six co-ordinates of a, with re

spect to the same screws, are therefore

&C.

We can now express the condition that a and ]3 are con

jugate screws of inertia. This condition is
( 54)

o.

Denoting p?A? + . . . + p&A &
*

by uS, and observing that

2/iVl i^ t
and similar expressions are zero, we deduce



CHAPTER VII.

THE POTENTIAL ENERGY OF A DISPLACEMENT.

68. The Potential Energy of a Displacement. Suppose a

rigid body which possesses freedom of the nth order be

submitted to the influence of any system of forces in-

cluded within the restriction of 6. Let the symbol O
define a position of the body from which the forces would

be unable to disturb it. By a twist of amplitude 0' about

a screw belonging to the screw complex of the nth

order, which expresses the nature of the freedom, the

body may be displaced from O to an adjacent position P,

while the energyconsumed in making the twist is denoted

by V. It appears from 7 that the same amount of energy
would be required, whatever be the route by which the

movement is made from O to P. It follows that Kcan

only depend on certain constants and on the position of

P with respect to O. The most natural co-ordinates by
which the position P can be specified with respect to O
are the co-ordinates of the twist

( 34) by which the

movement from O to P could be effected. In general
these co-ordinates will be six in number ; but if n of the

screws of reference be selected from the screw complex

defining the freedom of the body, then
( 65) there will

be only n co-ordinates required, and these may be de-

noted by 0/, , 0/.

The Potential V must therefore depend only upon
certain constants relating to the forces and upon the n

quantities 0/, . . . .
, n

'

; and since these quantities are

small, it follows that V must be capable of development
in a series of ascending powers and products of the

co-ordinates, whence we may write
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+ terms of the second and higher orders,

where Hy
Hl9 ...,Hn are constants, in so far as different

displacements are concerned.

In the first place, it is manifest that H= o ; because

if no displacement be made, no energy is consumed. In

the second place, Hlf ---- ,
Hn must also be each zero,

because the position O is one of equilibrium ; and there-

fore, by the principle of virtual velocities, the work done

by small twists about the screws ofreference must be zero,

as far as the first power of small quantities is concerned.

Finally, neglecting all terms above the second order, on

account of their minuteness, we see that the function V,

which expresses the potential energy of a small displacement

from a position of equilibrium, is a homogeneousfunction

of the second degree of the n co-ordinates, by which the dis-

placement is defined:

69. The Wrench evoked by Displacement. When the

body has been displaced to P, the forces no longer equi-

librate, for a certain wrench has been evoked. We now

propose to determine, by the aid of the function V, the

co-ordinates of this wrench, or, more strictly, the co-

ordinates of the equivalent reduced wrench
( 66) upon a

screw of the complex, by which the freedom of the body
is defined.

If, in making the displacement, work has been done by
the agent which moved the body, then the equilibrium

of the body was stable when in the position O, so far as

this displacement was concerned. Let the displacement
screw be 0, and let a reduced wrench be evoked on a

screw rj of the complex, while the intensities of the com-

ponents on the screws of reference are i^", . . . . , ijn".

Suppose the body be displaced from P to an excessively

close position P, the co-ordinates of P, with respect to
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O, being 0/ + S0/, . . . . n
' + S0n

'

( 65). The potential V
of the position P is

it being understood that S0/, . . .
, n

' are infinitely small

magnitudes of a higher order than 0/, 0n'.

The work done in forcing the body to move from Pto
P' is V - V. This must be equal to the work done in

the twists about the screws of reference whose am-

plitudes are S0/, . . . . , S0n', by the wrenches on the

screws of reference whose intensities are i^", . . . . , Tjn
x/

.

As the screws of reference are co-reciprocal, this work
will be equal to

( 35)

Since the expression just written must be equal to

V - Vfor every position P in the immediate vicinity of

P, we must have the coefficients of S0/, . . .
, S0B

'

equal in

the two expressions, whence we have n equations, of

which the first is

Hence, we deduce the following useful theorem :

If a free or constrained rigid body be displaced from

a position of equilibrium by twists of small amplitudes,

0J
7

, ----
, n

7

, about n co-reciprocal screws of reference,

and if V denote the work done in producing this move-

ment, then the reduced wrench has, for components on the

screws of reference, wrenches ofwhich the intensities are

found by dividing twice the pitch of the corresponding
reference screw into the differential coefficient of V

F
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with respect to the corresponding amplitude, and chang-

ing the sign of the quotient.

It is here interesting to notice that the co-ordinates of

the reduced impulsive wrench referred to the principal

screws of inertia, which would give the body a kinetic

energy T on the screw 6, are proportional to

(67)
2pl d'0l

''
'

2pn dtin
'

| 70. Conjugate Screws of the Potential. Suppose that

a twist about a screw 9 evokes a wrench on a screw 77,

while a twist about a screw evokes a wrench on a

screw . If 9 be reciprocal to
,
then must be reciprocal

to r\. This will now be proved.
The condition that 9 and are reciprocal is

but the intensities (or amplitudes) of the components of

a wrench (or twist) are proportional to the co-ordinates

of the screw on which the wrench (or twist) acts, whence

the last equation may be written

UW +....+ pn9n'Zn" = o ;

but we have seen
( 69) that

whence the condition that 9 and are reciprocal is

0>
dV* * ^>dV*01 -rf + + Vn -= = O.

4f^ a^,'

Now, as V$ is an homogeneous function of the second

order of the quantities $\, . . . , n
x

, we may write
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in which AM *= AI&.

Hence we obtain

-^~
= 2 f Aufi + Anfa' + ---- 4 A ln$*

Introducing these expressions we find, for the condition

that and should be reciprocal.

0/(^n0i'+ . A ln<t>n') +....+ 0n
f

(A nAf + ....+ ^nn0) = O.

This may be written in the form :

-4 aftV + . , A nn On
'

ft

'
+ -4 M(0iV + 0/00 + ....- o.

But this equation \s perfectly symmetrical vntih respect
to 9 and 0, and therefore we should have been led to

the same result by expressing the condition that was

reciprocal to j.

When and possess this property, they are said to

be conjugate screws of the potential, and the condition that

they should be so related, expressed in terms of their

co-ordinates, is obtained by omitting the accents from

the last equation.

If a screw be reciprocal to 77, then is a conjugate
screw of the potential to 0. If we consider the screw

to be given, we may regard the screw complex of the

fifth order, which embraces all the [screws reciprocal to

aj, as in a certain sense the locus of 0. All the screws

conjugate to 0, and which, at the same time, belong to

the screw complex C by which the freedom of the body
is defined, must constitute in themselves a screw com-

plex of the (n
- i

)

th order. For, besides fulfilling the 6-n
conditions which define the screw complex C, they must

also fulfil the condition of being reciprocal to ij ; but all

F 2
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the screws reciprocal to 7
- n screws constitute a screw

complex of the (n- i)
th order

( 46).

The reader will be careful to observe the distinction

between two conjugate screws of inertia
( 54), and two

conjugate screws of the potential. Though these pairs

possess some useful analogies, yet it should be borne in

mind that the former are purely intrinsic to the rigid

body, inasmuch as they only depend on the distribu-

tion of its material, while the latter involve extrinsic

considerations, arising from the forces to which the

body is submitted.

71. Principal Screws of the Potential. We are now

going to prove that n screws can be found such that when
the body is displaced by a twist about any one of these

screws, a reduced wrench is evoked about the same
screw. The screws which possess this property are called

the principal screws of the potential. Let a be a principal

screw of the potential, then we must have, 69 :

01 ' -

and (n -
i) similar equations.

Introducing the value of Va> and remembering (36)
that a/' =

a"cti and a/ =
a'ai, we have the following n

equations :

/ " \

qifAu + -7^1
j
+ a 2A lz + . . . +anAm =

o,

&c., &c.

A (A
"

\+ azA nz + . . + an
(
Ann + p = O.

\ o /

From these linear equations Ql , an can be elimi-

nated, and we obtain an equation of the nth
degree* in

* All the roots of this equation are real. See Salmon's Higher Algebra,
Art. dd.
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// //

. The values of r substituted successively in the linear
a a

equations just written will determine the co-ordinates

of the n principal screws of the potential.

We can now show that these n screws are co-reci-

procal. It is evident, in the first place, that if S be

a principal screw of the potential, and if be a displace-

ment screw which evokes a wrench on ?j, the principle

of 70 asserts that, when is reciprocal to S, then must

also rj be reciprocal to S. Now, let the n principal

screws of the potential be denoted by Si, . . . , Sn,
and let

Tn be that screw of the screw complex which is recipro-

cal to Sly . . .
, , Sn . i ( 65), then if the body be displaced

by a twist about Tn, the wrench evoked must be on a

screw reciprocal to Si, . . . .
, Sn . i ; but Tn is the only

screw of the screw complex possessing this property;

therefore a twist about Tn must evoke a wrench on Tn,

and therefore Tn must be a principal screw of the poten-

tial. But there are only n principal screws of the

potential, therefore Tn must coincide with Sn, and there-

fore Sn must be reciprocal to Si, . . . . Sn - 1-

72. Co-ordinates of the "Wrench evoked by a Twist.

The work done in giving the body a twist of small am-

plitude a about a screw a, may be denoted by

In fact, remembering that Q'OI = a/, . . .
,
and substituting

these values for a/ in F( 70),we deduce the expression :

f . . . + A nnan
z + 2A lza la2 + 2A 13a!a3 + . . .

where F is a certain constant, whose dimensions are a

mass divided by the square of a time, and where va is a

linear magnitude specially appropriate to each screw a, and
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depending upon the co-ordinates of a, and the constants in

thefunction F( 68).

The parameter z>a may be constrasted with the para-
meter ua considered in 59. Each is a linear magni-
tude, but the latter depends only upon the co-ordi-

nates of a, and the distribution of the material of the

rigid body. Both quantities may be contrasted with

the pitch /a, which is also a linear magnitude, but

depends solely on the screw, and is therefore purely

geometrical.
If a body receive a twist of small amplitude a' about

one of the principal screws of the potential, then the in-

tensity of the wrench evoked on the same screw is
( 69) :

I
* J / J

2pa aa.

but we have just seen that F= Fv^a*, whence we have

the following theorem :

If a body which has freedom of the" nth order be

displaced from a position of equilibrium by a twist

about a screw a, of which the co-ordinates with respect

to the principal screws of the potential are ai, . . . .
, any

then a wrench
( 66) is evoked on a screw of which

the co-ordinates are proportional to ^-QI, . . . , an ,

/l pn
where vl9 &c., ply &c., are the values of the quantity v,

and the pitch p, for the principal screws of the potential.

We can now express with great simplicity the con-

dition that two screws 9 and shall be conjugate screws

of the potential. For, if 9 be reciprocal to the screw

whose co-ordinates are proportional to

^i
2

Vn
Z

fr
we have :

- O.
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The expression for the potential assumes the simple
form

va + ...+

If the function Vbe proportional to the product of

the pitch of the displacement screw and the square
of the amplitude, then every displacement screw will

coincide with the screw about which the wrench is

evoked.

73. Form of the Potential. The n principal screws of

the potential form a unique group, inasmuch as they
are co-reciprocal, as well as being conjugate screws of

the potential. They therefore fulfil 15 -f 15 = 30 conditions,

being the total number available in the selection of six

screws.

We are now going to show that the expression of

the potential will consist of the sum of n square terms,

whenever it is referred to any set of n conjugate screws

of the potential.

The energy consumed in giving a body a twist of

amplitude & from the position of equilibrum O to a new

position P, is equal to FvfW* (72), and TJ is the screw on

which the wrench is evoked. Suppose that now from the

position P the body receive a twist of amplitude $' about

a screw 0, it would generally not be correct to assert

that the energy consumed in the second twist was pro-

portional to the square of its amplitude. For, during
the second twist, either a portion of the energy will

be consumed in doing work against the wrench on TJ, or

the energy expended in the second twist will be ren-

dered less, in consequence ofthe assistance afforded by the

wrench on /. If, however, TJ be reciprocal to 0, then the

quantity of energy consumed in the twist about will be

unaffected by the presence of a wrench on ?j. Hence

if 9 and be two conjugate screws of the potential,
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the energy expended in giving the body first a twist

of amplitude 6' about 9, and then a twist of amplitude ^'

about 0, is to be represented by

Fofff* + Fv^.
By taking a third screw, conjugate to both 9 and

<p,

and then a fourth screw conjugate to the remaining three,

and so on, we see finally that the potential reduces to

the sum of n square terms, when each pair of the screws

of reference are conjugate screws of the potential.
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CHAPTER VIII.

HARMONIC SCREWS.

74. Definition of an Harmonic Screw. We have seen

in 67 that to each screw of a screw complex of the

nth order corresponds a screw X, belonging to the same
screw complex. The relation between and X is deter-

mined when the rigid body, and also the screw complex
which defines its freedom, are completely known. The

physical connexion between the two screws 9 and X

may be thus stated. If a wrench act on the screw X for

a short time, the body, if previously quiescent, will com-

mence to move by twisting about
( 67).

We have also seen (72) that to each screw 9 of a

screw complex of the nth order corresponds a certain

screw rj belonging to the same screw complex. The
relation between and n is determined when the rigid

body, the forces, and the screw complex which defines

the freedom, is known. The physical connexion between

the two screws and
rj may be thus stated. If the body

be displaced from a position of equilibrium by a twist

about 0, the evoked wrench, when reduced
( 66) to the

screw complex, acts on r\.

The rigid body being given in a position of equili-

brium, and the forces which act on the body being

known, and also the screw complex by which the freedom

of the body is prescribed, we then have corresponding to

each screw 9 of the given screw complex, two other

screws X and TJ, which also belong to the same screw

complex.

Considering the very different physical character of
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the two systems of correspondence, it will of course usually

happen that the two screws X and TJ are not identical,

But a little reflection will enable us to foresee what we
shall afterwards prove, viz., that when has been appro-

priately chosen, then A and 17 may coincide. For since

n - i arbitrary quantities are disposable in the selection

of a screw from a screw complex of the n th order
( 43], it

follows that for any two screws (for example X and
j)
to

coincide, n - i conditions must be fulfilled ; but this is

precisely the number of arbitrary elements available in

the selection of 6. We can thus conceive that for one or

more particular screws 0, the two corresponding screws

X and jj are identical ; and we shall now prove the fol-

lowing important theorem :

If a rigid body be displacedfrom a position of eqtiili-

brium by a twist about a screw 0, and if the evoked wrench

tend to make the body commence to twist about the same

screw 9, then may be called an harmonic screw, and the

number of harmonic screws is the same as the order of the

screw complex which defines thefreedom of the rigid body.

We shall adopt as the screws of reference the n prin-

cipal screws of inertia. The impulsive screw, which

corresponds to as an instantaneous screw, will have

for co-ordinates

where h is a certain constant which is determined by
making the co-ordinates satisfy the condition

( 37). If

6 be a harmonic screw, then, remembering that the

screws of reference are co-reciprocal ( 57), we must have

n equations, of which the first is
( 72) :
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Art"

Assuming = - Ms1

, whereM is the mass of the body,

and s an unknown quantity, and substituting for Fits

value, we deduce the n equations :

+ Mu + . . . + OnA ln = o,

&c., &c.

. . . + 6n(A nn ~ Ms*Un*)
= O.

Eliminating Qly . . . . , On , we have an equation of the

nth
degree for s2

. The n roots of this equation are all

real, and each one substituted in the set of n equations

will determine, by a system of n linear equations, the

ratios of the n co-ordinates of one of the harmonic screws.

It is a remarkable property of the n harmonic screws

that each pair of them are conjugate screws of inertia,

and also conjugate screws of the potential. Let HI, ...,

Hn -\, be n- i of the harmonic screws, to which corres-

pond the impulsive screws ,5*1, . . . . , Sn . i. Also sup-

pose Tto be that one screw of the given screw complex
which is reciprocal to Si, . . . . , Sn - 1 ( 65), then T must

form with each one of the screws HI, . . . . , Hn . \ a pair of

conjugate screws of inertia
( 54). Also, since Si, .... 9

Sn ^ are the screws on which wrenches are evoked by
twists about Hl9 . . . . , Hn . \ respectively, it is evident

that Tmust form with each one of these screws//!, . . . .,

Hn . i a pair of conjugate screws of the potential ( 70).

It follows that the impulsive screw, corresponding to T
as the instantaneous screw, must be reciprocal to Hi, ....

Hn .i', and also that a twist about Jmust evoke a wrench

on a screw reciprocal toHly .... Hn . i. But as we can

only have one screw of the screw complex reciprocal to

HI, . . . Hn . it follows that the impulsive screw, which

corresponds to T as an instantaneous screw, must also be

the screw on which a wrench is evoked by a twist about
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T. Hence, T must be a harmonic screw, and as there

are only n harmonic screws, it is plain that T must

coincide with Hn,
and that therefore Hn is a conjugate

screw of inertia, as well as a conjugate screw of the

potential, to each one of the remaining n i harmonic

screws. Similar reasoning will, of course, apply to

each of the harmonic screws taken in succession.

75. Equations of Motion. We now consider the kine-

tical problem, which may be thus stated. A free or

constrained rigid body, which is acted upon by a system,
of forces, is displaced by an initial twist of small ampli-

tude, from a position of equilibrium. The body also

receives an initial twisting motion, with a small twist

velocity, and is then abandoned to the influence of the

forces. It is required to ascertain the nature of its sub-

sequent movements.

Let T represent the kinetic energy of the body, in

the position of which the co-ordinates, referred to the

principal screws of inertia, are 0,', . . .
, n'. Then we

have
( 67) :

/^0/Yl^
\-dT) _

while the potential energy which, as before, we denote

by V, is an homogeneous function of the second order

of the quantities 0/, . . . . , ft/.

By the use of Lagrange's method of generalized co-

ordinates* we are enabled to write down at once the n

equations of motion in the form :

dt

*
M<?canique Analytique, vol. i., p. 304. See also Thomson and Tait's

Natural Philosophy, vol. i., p. 253.
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Substituting for T we have :

< dV

with (n-i) similar equations. Finally, introducing the

expression for V
( 70), we obtain n linear differential

equations of the second order.

The reader who is not acquainted with Lagrange's

magnificent equations of motion in generalized co-ordi-

nates will perhaps welcome reasoning by which the

equations which we require can be otherwise demon-

strated.

Suppose the body to be in motion under the influ-

ence of the forces, and that at any epoch t the co-ordi-
j/\ r 7/1 /

nates of the twisting motion are -y)-, . . , . -= .
, when

it i- dt

referred to the principal screws of inertia. Let ?/',...., n
"

be the co-ordinates of a wrench which, had it acted

upon the body at rest for the small time e, would have

communicated to the body a twisting motion identical

with that which the body actually has at the epoch /.

The co-ordinates of the impulsive wrench which would,

in the time e, have produced from rest the motion which

the body actually has at the epoch t + e, are :

, w,....,n ,

On the other hand , the motion at the epoch t + c

may be considered to arise from the influence of the

wrench /', ....
"

for the time e
y followed by the in-

fluence of the evoked wrench for the time e. The final

effect of the two wrenches must, by the second law

of motion, be the same as if they acted simultaneously

for the time e upon the body initially at rest.

The co-ordinates of the evoked wrench being :
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J_dV_ _l_ dV
~1 Wf 2pn dW

we therefore have the equation :

tp+ffsL-v-
* dv

e
~dt'

"
^T^T;

or

and 72-i similar equations ; but we see from 67 that

Differentiating this equation with respect to the time,

and regarding e as constant, we have :

_
'

'dt
'

J^~d
whence

JOS dV

the same equation as that already found by Lagrange's
method.

To integrate the equations we assume :

where /i, . . .fn are certain constants, which will be

determined, and where Q is an unknown function of the

time: introducing also the value of F", given in 70,

we find for the equations ofmotion :

= o,

&c.

nti +'...'+ wQ = O.
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If the quantity s, and the ratios of the n quantities

/i, . . . ./n ,
be determined by the n equations :

fi(A u -
Afufs*) +/+AU + . . . +SnA nl =

o,

&c., &c.

fiAm t/2^ 2n + . . . +fn(A an ~ Mun*S*)
= O;

then the n equations of motion will reduce to the sin-

gle equation :

By eliminating / ..... ,/n from the n equations,
we obtain precisely the same equation for s* as that

which arose
( 74) in the determination of the n harmonic

screws. The values of/,, ....,/, which correspond to

any value of sz
, are therefore proportional to the co-ordi-

nates of a harmonic screw.

The equation for Q gives :

O = ffsm (st + c}.

Let Hi, . . . Hny d, . . . cn be 2n arbitrary constants.

~Let/pq denote the value of/?, when the root sp
* has been

substituted in the linear equations. Then by the known

theory of linear differential equations,*

0/ =/n/7i sin fat + d)
-

. . . . +/mHn sin (snt + cn],

&c., &c.

On =finHi sin (sit + d) + . . . . +/nnHn sin (s*t + cn).

In proof of this solution it is sufficient to observe, that

the values of Of, . . . satisfy the given differential

equations of motion, while they also contain the requi-

site number of arbitrary constants.

*
Lagrange's Mecanique Analytique, vol. i., p. 353-
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76. Discussion of the Results. For the position of

the body before its displacement to have been one of

stable equilibrium, it is manifest that the co-ordinates

must not increase indefinitely with the time, and there-

fore all the values of sz must be essentially positive, since

otherwise the values of 0'j, . . . 0' would contain expo-
nential terms.

The 2n arbitrary constants are to be determined by
the initial circumstances. The initial displacement is

to be resolved into n twists about the n screws of refer-

ence
( 65). This will provide n equations, by making

t = o, and substituting for 0/, #', in the equations just

mentioned, the amplitudes of the initial twists. The
initial twisting motion is also to be .resolved into twist-

ing motions about the n screws of reference. The twist

velocities of these components will be the values of
jf\ r jf\ /

aui - ctun 1,1 i

, &c., =7-, when / = o ; whence we have n more
at at

equations to complete the determination of the arbitrary

constants.

If the initial circumstances be such that the con-

stants JJ2, >
Hn are all zero, then the equations as-

sume a very simple form .:

ft' /!!/?! -sin (ri/+i),

&c.

On
'

The interpretation of this result is very remarkable.

We see that the co-ordinates of the body are always

proportional to fuy . . . . ,/in ; hence the body can al-

ways be brought from the initial position to the position

at any time by twisting it about that screw, whose

co-ordinates are proportional to flly . . . .,/!; but, as

we have already pointed out, the screw thus defined
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is an harmonic screw, and hence we have the follow-

ing theorem :

If a rigid body occupy a position of stable equili-

brium under the influence of a system of forces, as

restricted in 6, then n harmonic screws can be selected

from the screw complex of the nth
order, which defines

the freedom of the body, and if the body be displaced
from its position of equilibrium by a twist about a har-

monic screw, and if it also receive a small initial twist

velocity about the same screw, then the body will continue

for ever to perform twist oscillations about that harmonic

screw, and the amplitude of the twist will be always

equal to the arc of a certain circular pendulum, which has

an appropriate length, and was appropriately started.

The integrals in their general form prove the follow-

ing theorem :

A rigid body is slightly displaced by a twist from

a position of stable equilibrium under the influence of a

system of forces, and the body receives a small initial

twisting motion. The twist, and the twisting motion,

may each be resolved into their components on the

n harmonic screws : n circular pendulums are to be con-

structed, each of which is isochronous with one of the

harmonic screws. All these pendulums are to be started

at the same instant as the rigid body, each with an arc,

and an angular velocity equal to the initial amplitude of

the twist, and the twist velocity, which has been assigned
to the corresponding harmonic screw, as its share of the

initial circumstances. To ascertain where the body
would be at any future epoch, it will only be necessary

to calculate the arcs of the n pendulums for that epoch,

and then give the body twists from its position of equili-

brium about the harmonic screws, whose amplitudes are

equal to these arcs.

The reader will observe that the solution to which

G
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we have been conducted possesses the features which we
have pointed out in n, as characterising a complete

discussion of a problem in the dynamics of a rigid body.

77. Remarks on Harmonic Screws. We may to a

certain extent see the actual reason why the body, when

once oscillating upon a harmonic screw, will never de-

part therefrom. The body, when displaced from the

position of equilibrium by a twist upon a harmonic

screw 0, and then released, is acted upon by the wrench

upon a certain screw ij, which is evoked by the twist.

But the actual effect of an impulsive wrench on rj would

be to make the body twist about the harmonic screw,

and as the continued action of the wrench on
i/ is indis-

tinguishable from an infinite succession ofinfinitely small

impulses, we can find in the influence of the forces no

cause adequate to change the motion of the body from

twisting about the harmonic screw 0.



CHAPTER IX.

THE DYNAMICS OF A RIGID BODY, WHICH HAS FREEDOM
OF THE FIRST ORDER.

78. Introduction. In the present chapter we shall

apply the principles developed in the preceding chapters

to the examination of theDynamics of a rigid body which

has freedom of the first order. The ensuing chapters

will be similarly devoted to the other orders of freedom.

We shall in each chapter first ascertain what can

be learned as to the kinematics of a rigid body, so

far as small displacements are concerned, from merely

knowing the order of the freedom which is permitted by
the constraints. This will conduct us to a knowledge of

the screw complex which exactly defines the freedom

enjoyed by the body. We shall then be enabled to

determine the reciprocal screw complex, which involves

the theory of equilibrium. The next group of questions

will be those which relate to the effect of an impulse

upon a quiescent rigid body, free to twist about all the

screws of the screw complex. Finally, we shall discuss

the small oscillations of a rigid body in the vicinity of a

position of stable equilibrium, under the influence of a

given system offerees, the movements of the body being
limited as before to the screws of the screw complex.

79. Screw Complex of the First Order. A body
which has freedom of the first order can execute no

movement which is not a twist about one definite screw.

The position of a body so circumstanced is to be specified

by a single datum, viz., the amplitude of the twist about

the given screw, by which the body can be brought
G 2
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from a standard position to any other position which it

is capable of attaining. As examples of a body which

has freedom of the first order, we may refer to the case of

a body free to rotate about a fixed axis, but not to slide

along it, or of a body free to slide along a fixed axis, but

not to rotate around it. In the former case the screw com-

plex consists of one screw, whose pitch is zero ; in the

latter case the screw complex consists of one screw,

whose pitch is infinite.

80. The Reciprocal Screw Complex. The integer which

denotes the order of a screw complex, and the
(integer

which denotes the order of the reciprocal screw complex,

will, in all cases, have the number six for their sum

( 46). Hence a screw complex of the first order will

have as its reciprocal a screw complex of the fifth order.

We shall, therefore, be obliged to discuss in the pre-

sent chapter some properties of the screw complex of

the fifth order, and so far to anticipate what would more

naturally fall under Chapter XIII.

For a screw 9 to belong to a screw complex of the

fifth order, the necessary and sufficient condition is,

that 6 be reciprocal to one given screw a. This con-

dition is thus expressed :

(fa +fo) cos O - d'sin O = o,

where O is the angle, and d the perpendicular distance

between the screws 6 and a.

We can now show that every straight line in space,

when it receives an appropriate pitch, constitutes a

screw of a given screw complex of the fifth order. For

the straight line and a being given, d and O are de-

termined, and hence the pitch p e can be determined

by the linear equation just written.

Consider now a point A y and the screw a. Every

straight line through A> when furnished with the proper
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pitch, will be reciprocal to a. Since the number oflines

through A is doubly infinite, it follows that a singly in-

finite number of screws of given pitch can be drawn

through A, so as to be reciprocal to a. We shall now
prove that all the screws of the same pitch which pass

through A y and are reciprocal to a, lie in a plane. This
we shall first show to be the case for all the screws

of zero pitch,* and then we shall deduce the more

general theorem.

By a twist of small amplitude about a the point A is

moved to an adjacent point B. To effect this movement

against a force at A which is perpendicular to AJB, no
work will be required; hence every line through ^4, per-

pendicular to A By may be regarded as a screw of zero

pitch, reciprocal to a.

We must now enunciate a principle which applies to

a screw complex of any order. We have already re-

ferred to it with respect to the cylindroid (20). If all

the screws of a screw complex be modified by the ad-

dition of the same linear magnitude (positive or nega-

tive) to the pitch of every screw, then the collection of

screws thus modified still form a screw complex of the

same order. The proof is obvious, for since the virtual

co-efficient depends on the sum of the pitches, it follows

that, if all the pitches of a complex be increased by a cer-

tain quantity, and all the pitches of the reciprocal com-

plex be diminished by the same quantity, then all the

first group of screws thus modified are reciprocal to all

the second group as modified. Hence, since a screw

* This theorem is due to Mobius, who has shown, that, if small rotations

about six axes can neutralise, and if five of the axes be given, and a point on

the sixth axis, then the sixth axis is limited to a plane. (Ueber die Zusam-

mensetzung unendlich kleiner Drehungen Crelle's Journal, t. xviii., pp. 189-
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complex of the nth order consists of all the screws reci-

procal to 6 - n screws, it follows that the modified group
must still be a screw complex.
We shall now apply this principle to prove that all

the screws X of any given pitch k, which can be drawn

through A, to be reciprocal to a, lie in a plane. Take a

screw 17, of pitch pa + k, on the same line as a, then we
have just shown that all the screws

/*,
of zero pitch,

which can be drawn through the point A, so as to be

reciprocal to r/, lie in a plane. Since
fj,
and 7j are reci-

procal, the screws on the same straight lines as
^t
and rj

will be reciprocal, provided the sum of their pitches is

the pitch of ij ; therefore, a screw X, of pitch , on the same

straight line as
ju, will be reciprocal to the screw a, of

pitch /a ; but all the lines
ju

lie in a plane, therefore all

the screws X lie in the same plane.

Conversely, given a plane and a pitch k, a point A
can be determined in that plane, such that all the screws

drawn through A in the plane, and possessing the pitch

k, are reciprocal to a. To each pitch k^ 2, . . . . , will

correspond a point A ly A z . . . . ; and it is worthy of re-

mark, that all the points A ly A^ must lie on a right

line which intersects a at right angles ; for join A ly

A Zy then a screw on the line A^A^ which has for pitch
either k or / 2, must be reciprocal to a ; but this is.

impossible unless A A 2 intersect a at a right angle.

81. Equilibrium. If a body which has freedom of

the first order be in equilibrium, then the necessary
and sufficient condition is, that the forces which act

upon the body shall constitute a wrench on a screw of

the screw complex of the fifth order, which is reciprocal

to the screw which defines the freedom. We thus see

that every straight line in space may be the residence

of a screw, a wrench on which is consistent with the

equilibrium of the body.
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If two wrenches act upon the body, then the condi-

tion of equilibrium is, that, when the two wrenches are

compounded by the aid of the cylindroid, the single
wrench which replaces them shall lie upon that one

screw of the cylindroid, which is reciprocal to a
( 28).

We can express with great facility, by the aid of

screw co-ordinates, the condition that wrenches of in-

tensities 0", 0", on two screws 0, 0, shall equilibrate,

when applied to a body only free to twist about a.

Adopting any six co-reciprocals as screws of refer-

ence, and resolving each of the wrenches on 9 and
<p

into its six components on the six screws of reference,

we shall have for the intensity of the component of the

resultant wrench on wn

Hence the co-ordinates of the resultant wrench are pro-

portional to

V 0i + 01, ... 06 + 06

For equilibrium this screw must be reciprocal to a,

whence we have

0"0,) + &C. + /6a6(0"06 + 0"0 6)
= O,

or,

0X, + 0X* = o.

This equation merely expresses that the sum of the

works done in a small twist about a against the wrenches

on and is zero.

We also perceive that a given wrench may be always

replaced by a wrench of appropriate intensity on any
other screw, in so far as the effect on a body only free to

twist about a is concerned.

It may not be out of place to notice the analogy

which the equation just written bears to the simple prob-
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lem of the determination of the condition that two forces

should be unable to disturb the equilibrium of a particle

only free to move on a straight line. If P, Q be the

two forces, and if /, m be the angles which the forces

make with the direction in which the particle can move,
then the condition is

P cos / + Q cos m = o.

This suggests what it will be well for the reader con-

stantly to bear in mind, and that is, the analogy which

subsists between the virtual co-efficient of two screws,

and the cosine of the angle between two lines.

82. Particular Case. If a body having freedom of

the first order be in equilibrium under the action of

gravity, then the vertical through the centre of inertia

must lie in the plane of reciprocal screws of zero pitch,

drawn through the centre of inertia.

83. Impulsive Forces. If a wrench of great intensity

TJ" act for a short time on the screw j, while the body
is only permitted to twist about a, then we have seen

in 60 how the twist velocity produced can be found.

We shall now determine the impulsive reaction of the

constraints. This reaction is a wrench of intensity X"

on a screw X, which is reciprocal to a. The determina-

tion of X may be effected geometrically in the following

manner : Let
/u be the screw, an impulsive wrench on

which would, if the body were perfectly free, cause an

instantaneous twisting motion about a
( 53). Draw the

cylindroid (rj, /ui).
Then X must be that screw on the

cylindroid which is reciprocal to a, for a wrench on X,

and the given wrench on i\ y
must compound into a wrench

on
ju,
whence the three screws must be co-cylindroidal ;*

* We shall often for convenience speak of three screws on the same cylin-

as cO'Cylindroidal.
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also A must be reciprocal to a, so that its position on
the cylindroid is known

( 28). Finally, as the inten-

sity f\

f

is given, and as the three screws ?/, A, /u are all

known, the intensity A" becomes determined
( 17).

84. Small Oscillations. We shall now suppose that a

rigid body which has freedom of the first order occu-

pies a position of stable equilibrium under the influence

of a system of forces, as restricted in 6. If the body
be displaced by a small twist about the screw a which

prescribes the freedom, and if it further receive a small

initial twist velocity about the same screw, the body
will continue for ever to perform small twist oscillations

about the screw a. We propose to determine the time

of one oscillation.

The kinetic energy of the body, when animated by a

twist velocity
-- is Mu^i-^} ( 59). The potential

energy due to the position attained by giving the body a

twist of amplitude a away from its position of equili-

brium, is Fv^a* (72). But the sum of the potential and

kinetic energies must be constant
( 6), whence

- + Fvja'* = const.
\dt J

Differentiating we have

Integrating this equation we have

/ Fv
'

z

a = A sin \-^-t + B cos
<jMu*

where A and B are arbitrary constants. The time of

one oscillation is therefore
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u \M

Regarding the rigid body and the forces as con-

stant, and comparing inter se the periods about different

screws a, on which the body might have been constrained

to twist, we see from the result just arrived at that the

time for each screw a is proportional to -.

85. Property of Harmonic Screws. As the time of

vibration is affected by the position of the screw to

which the motion is limited, it becomes of interest to-

consider how a screw is to be chosen so that the time

of vibration shall be a maximum or minimum. With

slightly increased generality we may state the problem
as follows :

Given a rigid body, and the forces which act upon it,

it is required to select from all the screws of a given
screw complex the particular screw or screws on which,
if the body be constrained to twist, the time of vibra-

tion will be a maximum or minimum, relatively to the

time of vibration on the neighbouring screws of the same

screw complex.
Take the n principal screws of inertia belonging

to the screw complex, as screws of reference, then we
have to determine the n co-ordinates of a screw a by

the condition that the function ^ shall be a maximum
Va.

or a minimum.

Introducing the value of ua ( 67), and of va (72),
in terms of the co-ordinates, we have to determine the

maximum and minimum of the function

U T**\ + â *

:-LL- = x,

Multiplying this equation by the denominator of the
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left-hand side, differentiating with respect to each co-

ordinate successively, and observing that the differen-

tial co-efficients of x must be zero, we have the n equa-
tions :

(A n -
U?X) ai + Ana* . . , + A lna n = O.

&c., &c.

A nlai + A nza z ---- (A nn
-
ujx) an = o.

We hence see that there are n screws belonging to

each screw complex of the nth order on which the time

of vibration is a maximum or minimum, and by com-

parison with 74 we deduce the very interesting result

that these n screws are also the harmonic screws.

Taking the screw complex of the sixth order, which

of course includes every screw in space, we see that

if the body be permitted to twist about one of the six har-

monic screws the time of vibration will be a maximum
or minimum, as compared with the time of vibration on

any adjacent screw.

If the six harmonic screws were taken as the screws

ofreference, then u* and v* would each consist of the sum

of six square terms ( 59, 72). If the co-efficients in

these two expressions were proportional, so that ua
z
only

differed from z'a
2

by a numerical factor, we should then

find that every screw in space was an harmonic screw,.

and that the times of vibrations about all these screws

were equal.



CHAPTER X.

THE DYNAMICS OF A RIGID BODY WHICH HAS FREEDOM
OF THE SECOND ORDER.

86. The Screw Complex of the Second Order. When a

rigid body is capable of being twisted about two screws

and 0, it is capable of being twisted about every screw

on the cylindroid (0, 0). If it also appear that the body
cannot be twisted about any screw which does not lie

on the cylindroid, then the body is said to have freedom

of the second order, and the cylindroid is the screw com-

plex of the second order by which the freedom is de-

fined.

Eight numerical data are required for the determina-

tion of a cylindroid. We must have four for the specifi-

cation of the nodal line, two more are required to define

the extreme points in which the surface cuts the nodal

line, one to assign the direction of one generator, and

one to give the pitch of one screw, or the eccentricity of

the pitch conic.

Although only eight constants are required to define

the cylindroid, yet ten constants must be used in de-

fining two screws 0, 0, from which the cylindroid could

be constructed. The ten constants not only define the

cylindroid, but also point out two special screws upon
the surface.

87. Applications of Screw Co-ordinates. We have

shown (42) that if a, )3 be the two screws of a cylin-

droid, which intersect at right angles, that then the

co-ordinates of any screw 0, which makes an angle /

with the screw a, are :
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ai cos / + /3i sin /,..., a 6 cos / + j3 6 sin /,

reference being made as usual to any set of six co-

reciprocals.

In addition to the examples of the use of these co-

ordinates already given ( 42), we may apply them to

the determination of that single screw 9 upon the cylin-
droid (a, /3), which is reciprocal to a given screw TJ.

From the condition of reciprocity we must have :

/i?/(ai cos / f )3i sin /) + + /6i?6(a 6 cos / + j3 6 sin /)
=

o,

or,

nr
a7?
cos / + w^ sin / = o.

From this tan / is deduced, and therefore the screw

becomes known
( 28).

In general if 2^0 be the virtual co-efficient between

any screw ij and a screw on the cylindroid, we have :

cty
=

-<, cos / + TTfa sin /;

whence if on each screw 9 a distance be set off from the

nodal line equal to half the virtual co-efficient between

TJ and 0, the points thus found will lie on a right circular

cylinder, of which the equation is ;

x* + y
2 = w^x + v

ftlly.

Thus the screw which has the greatest virtual co-

efficient with ij is at right angles to the screw reciprocal

to TJ, and in general two screws can be found upon the

cylindroid which have a given virtual co-efficient with

an external screw.

88. Relation between Two Cylindroids. We may here

notice a curious reciprocal relation between two cylin-

droids, which is manifested when one condition is satis-

fied. If a screw can be found on one cylindroid, which
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is reciprocal to a second cylindroid, then conversely a

screw can be found on the latter, which is reciprocal

to the former. Let the cylindroids be (a, j3), and (Xyu).

If a screw can be found on the former, which is recipro-

cal to the latter, then we have :

cos / +
J3i

sin /) + ...+ pr^n(an cos / + j3 sin /)
= o.

/ifti(ai COS /+ /3i
Sin

/) + ...+ pn^n(cLn COS / + ]3n SHI
/)

= O.

Whence eliminating /, we find :

= O.

As this relation is symmetrical with regard to the

two cylindroids, the theorem has been proved.

89. Co-ordinates of Three Screws on a Cylindroid. The
co-ordinates of three screws upon a cylindroid are con-

nected by four independent relations. In fact, two screws

define the cylindroid, and the third screw must then

satisfy four equations of the form
( 22). These rela-

tions can be expressed most symmetrically in the form

of six equations, which also involve three other quan-
tities.

Let X, ^y v be three screws upon a cylindroid, and let

Ay ByC denote the angles between
ju, vy between v X,

and between X
^u, respectively. If wrenches of inten-

sities X", ju", v"y on X, ju, Vy respectively, are in equili-

brium, we must have
(

1 7) :

Xrr
rr rr

UL V

sin A sin B sin C

But we have also as a necessary condition that if

each wrench be resolved into six component wrenches
-on six screws of reference, the sum of the intensities of

the three components on each screw ofreference is zero;
whence :
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Xi sinA + pi sin B + v\ sin C = o,

&c., &c,

A 6 sin A + fa sin B + i/6 sin C = o.

From these equations we deduce the following corol-

laries :

The screw of which the co-ordinates are proportional

to 0Ai + bfjL ly . . .
, a\ + fyc 6, lies on the cylindroid (A, ju),

and makes angles with the screws A, ^u, of which the

sines are inversely proportional to a and b.

The two screws, of which the co-ordinates are pro-

portional to a\i bfjiiy
. . . , tfA 6 d/j.6,

and the two screws

A, fj.
are respectively parallel to the four rays of a plane

harmonic pencil.

90. Screw Complex of the Fifth. Order and Second De-

gree. We have now occasion to make a slight digres-

sion from the subject of the present chapter. We have

hitherto spoken of the order of a screw complex, and we
shall now explain what is to be understood in the use of

the word degree. It will be remembered that a screw

complex of the $
th order consists of all those screws about

which a body having freedom of the 5
th order can twist.

We may, however, give an analytical definition of such a

complex. It appears from 50 that the six co-ordinates

of a screw 9 belonging to a screw complex of the $
th

order satisfy that one equation of the first degree
which expresses the condition that 6 is reciprocal to the

one screw to which the entire complex is reciprocal

( 49). Hence we might with perfect generality define

a screw complex of the fifth order and first degree to

consist of all those screws whose six co-ordinates satisfy

one homogeneous equation of the first degree.

The reflective reader may be tempted to inquire

i into the physical or geometrical meaning of that collec-
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tion of screws whose co-ordinates satisfy one homoge-
neous equation of the second degree, and which may be

defined to be a screw complex of thefifth order and second

degree. We shall develop a few propositions on this

subject, which will be useful in what is to follow ; but

the general discussion of this species of complex, though

apparently of great interest, lies beyond the scope of the

present volume.

91. Polar Screws. Let us denote a screw complex
of the fifth order and second degree by the equation

Ue = o, where UQ is an homogeneous function of the

second degree in the six quantities ft, . . .
, ft.

Let rj and denote any two screws. If then (to

adopt the fertile principle used by Dr. Salmon*) we sub-

stitute in U = o for ft, ft, &c., the expressions /^ + m%i,

,<i-> &c., we obtain the equation :

lm UT& + mz
U$ = o

where U^ denotes the expression :

-dU

Solving the quadratic equation for / : m
y we obtain

two values of this ratio, and hence
( 89) we see that

two screws belonging to the screw complex UQ = o can

be found on any cylindroid (rj, ).

If the relation between rj and be such, that

the two roots of the equation will be equal in magni-

tude, and opposite in sign, and hence we deduce the fol-

lowing theorem :

* Conic Sections, 3rd Edition, p. 134.
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If the condition U^ = o be fulfilled, then the two

screws TJ, ,
and the two screws on the cylindroid (TJ, ),

which belong to the complex UQ = o, are parallel to the

four rays of an harmonic pencil ( 89).

We can now deduce a result of some importance. If

we regard the screw r\ as being given, then the screw

must belong to a screw complex of the fifth order and

first degree, which is defined by :

This complex may be constructed in the following
manner : Draw any cylindroid through TJ, find on this

the two screws which belong to Ue
=

o, then a fourth

screw ? can be determined by the condition that the set

shall be parallel to the rays of an harmonic pencil.

The same process repeated for four other cylindroids

through 77, will give five screws, by which the screw

complex to which belongs is determined.

It will be observed that in the determination of the

screw complex U^ = o, where TJ [is given, no occasion

has arisen for making mention of the screws of reference

to which the co-ordinates are referred. If, further, it be

observed, that all the screws of the complex 6^ = are

reciprocal to that one screw of which the co-ordinates

are proportional to

p\ \ dkji /
' '

A ^

we have the following theorem :

If Ue - o denote a screw complex of the fifth order

and second degree, then to every screw r\ corresponds with

respect to the screw complex, a polar screw, whose co-ordi-

nates are proportional to

r "/.
H
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the relation between r\ and its polar being completely

independent of the group of co-reciprocal screws, which

have been chosen as the screws of reference.

92. Properties of Screws and their Polars. We add

here a few properties which are, however, not demon-

strated, as we shall have no occasion to make use

of them. If a and /3 be two screws, and if r\ and be

their polars, with respect to a screw complex of the fifth

order and second degree, then, when a is reciprocal to ,

we shall find that j3 is reciprocal to r\. We may term a

and |3 conjugate screws of the complex.
If the discriminant of Ue = o vanish, there is then a

"central" screw of the complex, to which the polars of

all other screws are reciprocal.

The equation of the screw complex will reduce to the

sum of six square terms when referred to six screws of

which each pair are conjugate.

Six screws can be found which coincide with their

polars, and these six screws are both conjugate and co-

reciprocal.

Six screws can be found, every pair of which are

conjugate with respect to each of two given screw com-

plexes of the fifth order and second degree.

93. Pitch Complex. All the screws in space of given

pitch h belong to a screw complex of the fifth order and

second degree, of which the equation may be written :

p$? + . . . + p$<? = h [0i
2 + . . . + 6

2 + 20A cos
(Wl *fc) +....]

where the quantity inside the bracket is really equal to

unity, but is introduced for the sake of making the equa-

tion homogeneous ( 37). This quantity is denoted

by^.
This complex is, from the nature of the case, com

pletely independent of the screws of reference. The
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polar of a screw 17, with respect to this complex, must be

also completely independent of the screws of reference.

It is, therefore, obvious that the polar of r\ must be a

screw which lies in the same straight line as j, for sym-

metry will not permit any reason to be assigned in

favour of any other position. The co-ordinates, there-

fore, of a screw ?, which lies in the same straight line

as rj, but which has a different pitch p$y must be equal
to:

h dR \ ./ h dR \

~7~7T ' --> A
(

1 -rv )
pi arii J \ A driQ J

where A and h are constants to be determined.

We sacrifice no generality by making the pitch of

n zero. We shall now write two identical equations.

Of these the first expresses that the pitch of is p^ and

the second expresses that the virtual co-efficient of %

and TJ is p$ :

h

*
h dR\ I h dR\~

Remembering that pw
* + . . . +/6r? 8

2 = o, and also that

R is an homogeneous function of the second order, and

that, therefore, by Euler's theorem* :

dR dR
j +....+

7/6
= 2R =

2,
dr\\ arje

we have :

* Williamson's Differential Calculus, 2nd Ed., p. 1 13.

H 2
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Whence we deduce Ah = -*% and since when p$ = o
4

the screw must reduce to TJ, we find A = i .

We, therefore, deduce the following theorem : If

rj!, .... *?6 be the co-ordinates of a screw of zero pitch,

then the co-ordinates of a screw ?, of pitch /^, upon
the same straight line as the screw j] are equal to the

six quantities :

^_ ^

4-A d"n\ 4/6 dris

in which

R =
rji

z + . . . . + r} + 2rjiTj2 COS (cui(i>2)
+ 2i7 1 rj3 COS fth6 + . . .

= I.

We may remark that the co-ordinates of a screw of

infinite pitch, parallel to ?, are proportional to :

i dJR i dR

We can also prove that -- is the cosine of the
2 tflft

angle between the screw r;,
and the screw of reference Wl .

Let O be this angle, and let d be the shortest distance

between 17 and e^. Then we have
( 35) :

and as this must be true whatever may be the value

ofps, it follows that :

1 dR- = cos O.
2 drji

We also have the identity :

J./'^.Y- -i^-o.'
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From this we see that three of the pitches of a set of

six co-reciprocals must be +, and three must be -.* For,

suppose that the pitches of four of the co-reciprocals had
the same sign, and let ij be a screw perpendicular to the

two remaining co-reciprocals, then the identity just writ-

ten would reduce to the sum of four positive terms equal

zero, which is absurd.

94. Screws on One Line. There is one case in which

a body has freedom of the second order that demands

special attention. Suppose the two given screws 0, <p,

about which the body can be twisted, happen to lie on

the same straight line, then the cylindroid becomes illu-

sory. If the amplitudes of the two twists be &, 0', then

the body will have received a rotation & + 0', accom-

panied by a translation Q
f

p9 + fy'p$. This movement is

really identical with a twist on a screw of which the

pitch is :

Since ^, 0' may have any ratio, we see that, under these

circumstances, the screw complex which defines the

freedom consists of all the screws with pitches ranging
from - co to + oo, which lie along the given line. It fol-

lows
( 93), that the co-ordinates of all the screws about

which the body can be twisted are to be found by giving

p.$
all the values from - oo to + oo in the expressions :

4/6

*This interesting theorem was communicated to me by Dr. Klein, who had

proved it as a property of the parameters of " six fundamental complexes in in-

volution" (Math. Ann. Band, ii., p. 204).
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95. Displacement of a Point. Let P be a point, and

let a, |3 be any two screws upon a cylindroid. If a body
to which P is attached receive a small twist about a, the

point P will be moved to Pf
. If the body receive a

small twist about
)3, the point P would be moved to P '..

Then whatever be the screw y on the cylindroid about

which the body be twisted, the point P will still be dis-

placed in the plane PP'P".

For the twist about y can be resolved into two twists

about a and
j3, and therefore every displacement of P

must be capable of being resolved along PP' and PP
'

.

Thus through every point P in space a plane
can be drawn to which the small movements of P,

arising from twists about the screws on a given cylin-

droid are confined. The simplest construction for this

plane is as follows : Draw through the point P two

planes, each containing one of the screws of zero pitch ;

the intersection of these planes is normal to the required

plane through P.

The construction just given would fail if P lay upon
one of the screws of zero pitch. The movements of P
must then be limited, not to a plane, but to a line. The
line is found by drawing a normal to the plane passing

through P, and through the other screw of zero pitch.

We thus have the following curious property of the

lines of zero pitch, viz., that a point in the rigid body on

the line of zero pitch will commence to move in the

same direction whatever be the screw on the cylindroid

about which the twist is imparted.
This easily appears otherwise. Appropriate twists

about any two screws, a and ]3, can compound into a twist

about the screw of zero pitch A, but the twist about X

cannot disturb a point on X. Therefore a twist about )3

must be capable of moving a point originally on X back

to its position before it was disturbed by a. Therefore the
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twists about /3 and a must move the point in the same

direction.

96. Properties of the Pitch Conic. Since the pitch of

a screw on a cylindroid is proportional to the inverse

square of the parallel diameter of the pitch conic
( 20),

the asymptotes must be parallel to the screws of zero

pitch ; also since a pair of reciprocal screws are paral-

lel to a pair of conjugate diameters
( 42), it follows that

the two screws of zero pitch, and any pair of reciprocal

screws, are parallel to the rays of an harmonic pencil.*

If the pitch conic be an ellipse, there are no real screws

of zero pitch. If the pitch conic be a parabola, there is

but one screw [of zero pitch, and this must be one of

the two screws which intersect at right angles. Since

this screw is reciprocal to itself, as well as to the screw

it intersects, it must be reciprocal to every screw on the

cylindroid ( 24). This is the only case in which a screw

on the cylindroid is reciprocal to the cylindroid.

97. Equilibrium of a Body with Freedom of the Second

Order. We shall now consider more fully the conditions

under which a body which has freedom of the second

order is in equilibrium. The necessary and sufficient

condition is, that the forces which act upon the body
shall constitute a wrench upon a screw which is reci-

procal to the cylindroid which defines the freedom of the

body.
It has been shown

( 25), that the screws which are

reciprocal to a cylindroid exist in such profusion, that

through every point in space a cone of the second order

can be drawn, of which the entire superficies is made up
of such screws. We shall now examine the distribution

of pitch upon such a cone.

* Salmon's Conic Sections, 3rd Edition, p. 273.
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The pitch of each reciprocal screw is equal in magni-

tude, and opposite in sign, to the pitches of the two

screws of equal pitch, in which it intersects the cylin-

droid
( 24). Now, the greatest and least pitches of the

screws on the cylindroid are/ and pp ( 20). For the

quantity pa cos 2l + p$ sin *l is always intermediate be-

tween /a cos 2/+/a sin
2/ and pp cos zl + p sin 2

/. Hence

it follows that the generators of the cone which meet the

cylindroid in three real points must have pitches inter-

mediate between pa and pp. It is also to be observed that,

as only one line can be drawn through the vertex of the

cone to intersect any two given screws on the cylin-

droid, so only one screw of any given pitch can be found

on the reciprocal cone.

One screw can be found upon the reciprocal cone

of every pitch from - oo to + oo . The line drawn through
the vertex parallel to the nodal line is a generator of

the cone to which infinite pitch must be assigned. Set-

ting out from* this line around the cone the pitch gra-

dually decreases to zero, then becomes negative, and

increases to negative infinity, when we reach the line

from which we started. We may here notice that when
a screw has infinite pitch, we may regard the infinity as

either + or -
indifferently. If we conceive distances

marked upon each generator of the cone from the

vertex, equal to the pitch of that generator, then the

parallel to the nodal line drawn from the vertex forms

an asymptote to the curve so traced upon the cone. It

is manifest that we must admit the cylindroid to possess

imaginary screws, whose pitch is nevertheless real.

The reciprocal cone drawn from a point to a cylin-

droid, is decomposed into two planes, when the point
lies upon the cylindroid. The first plane is normal
to the generator passing through the point. Every line

in this plane must, when it receives the proper pitch, be



DYNAMICS OF A RIGID BODY. 1 05

a, reciprocal screw. The second plane is that drawn

through the point, and through the other screw of equal

pitch on the cylindroid, to that which passes through
the point.

We have, therefore, solved in the most general manner
the problem of the equilibrium of a rigid body with two

degrees of freedom.- We have shown that the necessary
and sufficient condition is, that the resultant wrench be

about a screw reciprocal to the cylindroid expressing
the freedom, and we have seen the manner in which the

reciprocal screws are distributed through space. We
now add a few particular cases.

98. Particular Cases. A body which has two degrees
of freedom is in equilibrium under the action of a force,

whenever the line of action of the force intersects both

the screws of zero pitch upon the cylindroid.

If a body acted upon by gravity have freedom of the

second order, the necessary and sufficient condition of

equilibrium is, that the vertical through the centre of

inertia shall intersect both of the screws of zero pitch.

A body w
rhich has freedom of the second order will

be in equilibrium, notwithstanding the action of a couple,

provided the axis of the couple be parallel to the nodal

line of the cylindroid.

A body which has freedom of the second order will

remain in equilibrium, notwithstanding the action of a

wrench about a screw of any pitch on the nodal line of

the cylindroid.

99. The Impulsive Cylindroid and the Instantaneous

Cylindroid. A rigid bodyM is at rest in a position P,

from which it is either partially or entirely free to move.

IfM receive an impulsive wrench about a screw Ji, it

will commence to twist about an instantaneous screw A iy

if, however, the impulsive wrench had been about Xz or

JT3 (M being in either case at rest in the position P)
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the instantaneous screw would have beenA 2 , or A$. Then
we have the following theorem :

IfXly XZy X* lie upon a cylindroid S (which we may
call the impulsive cylindroid), then A l9 A 2y A* lie on a

cylindroid S' (which we may call the instantaneous

cylindroid).

For if the three wrenches have suitable intensities

they may equilibrate, since they are cocylindroidal :

when this is the case the three instantaneous twist velo-

cities must, of course, neutralize ; but this is only possi-

ble if the instantaneous screws be cocylindroidal ( 63).

If we draw a pencil of four lines through a point

parallel to four generators of a cylindroid, the lines

forming the pencil will lie in a plane. We may define

the anharmonic ratio offour generators on a cylindroid to

be the anharmonic ratio of the parallel pencil. We shall

now prove the following theorem* :

The anharmonic ratio of four screws on the impul-
sive cylindroid is equal to the anharmonic ratio of the

four corresponding screws on the instantaneous cylin-

droid.

Before commencing the proof we remark that,

If an impulsive wrench of intensity F acting on the

screw X be capable of producing the unit of twist

velocity about A y then a wrench of intensity F<a on X
will produce a twist velocity w about A .

Let Jfi, X^ X^X be four screws on the impulsive

cylindroid, the intensities of the wrenches appropriate to-

which are FXO\, F^, -F3eo3, Fu. Let the four corres-

ponding instantaneous screws be A l9 A 2y A-^ A^ and

the twist velocities be ai, w2, w3 > ^i- Let
<pm be the angle

* This theorem is an illustration of the important bearings of the Theory
of Correspondence on the Theory of Screws.
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on the impulsive cylindroid defining Xmy and let 6m be

the angle on the instantaneous cylindroid defining A m .

If three impulsive wrenches equilibrate, the corres-

ponding twist velocities neutralise : hence
(

1 7) it must be

possible for certain values of on, o>2 , w3, 014 to satisfy the

following equations :

(jt}\ fiJ*> &^3

sin (ft
-

ft) sin (03
-
00 sin (ft

-
ft)'

sin
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and therefore also must be Yly Yz , Y3 . The nine wrenches

Xly X2y X3y Rly Rzy Rz,
- Yly

- Yzy
- Y, must equilibrate ;

but if Xly Xtj Xz equilibrate, then the twist velocities

about A i,
A 2,

A 3 must neutralize, and therefore the

wrenches about Yly Yz, Y^ must equilibrate. Hence

RI, Rty R3 equilibrate, and are therefore cocylindroidal.

Following the same line of proof used in the last

section, we can show that

If impulsive wrenches on any four cocylindroidal

screws act upon a partially free rigid body, the four

corresponding initial reactions of the constraints also

constitute wrenches about four cocylindroidal screws ;

and, further, the anharmonic ratios of the two groups of

four screws are equal.

10 1. Principal Screws of Inertia. If a quiescent body
with freedom of the second order receive impulsive
wrenches on three screwsXly

X2yXzon the cylindroidwhich

expresses the freedom, and if the corresponding instan-

taneous screws on the same cylindroid be A l9
A

Z)A^ then

the relation between any other impulsive screw X on

the cylindroid and the corresponding instantaneous

screw A is completely defined by the condition that the

anharmonic ratio of X, Xly XZy Xz is equal to the anhar-

monic ratio of A, A ly A z A s .

Now, if three rays parallel to Xly X-2y X3 be drawn

from a point, and also three rays parallel to A ly
A 2y A z,

then it is well known* that the problem to determine a

ray Z such that the anharmonic ratio of Z, A ly A 2, A z is

equal to that of Z, Xly X2y X3y admits of two solutions.

There are, therefore, two screws on a cylindroid which

possess the property that an impulsive wrench on one of

these screws will cause the body to commence to twist

about the same screw.

*
Chasles, passim. See alsoTownsend's Modern Geometry, vol. ii., p. 246,
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We have thus arrived by a special process at the two

principal screws of inertia posssesed by a body which

has freedom of the second order. This is, of course,

a particular case of the general theorem of 5 1 . We
shall show in the next section how these screws can

be determined in another manner.

102. The Ellipse of Inertia. We have seen
( 59)

that a linear parameter u^ may be conceived appropriate
to each screw a of a complex, so that when the body is

twisting about the screw a with the unit of twist velocity,

the kinetic energy is found by multiplying the mass of

the body into the square of the line u^
We are now going to consider the distribution of this

magnitude on ua the screws of a cylindroid. If we denote

by Ui, u<i the values of ua for any pair of conjugate screws

of inertia on the cylindroid ( 54), and if by <n, a2 we
denote the intensities of the components on the two con-

jugate screws of a wrench of unit intensity on a, we have

From the centre of the cylindroid draw two lines

parallel to the pair of conjugate screws of inertia, and

with these lines as axes of x and y construct the ellipse

of which the equation is

u\X" 4" u<^y
= j. ,

where H is any constant. If r be the radius vector in

this ellipse, we have

y /y

=
cti and = a 2 ;

r r

whence by substitution we deduce

2 _H

which proves the following theorem :
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The linear parameter ua on any screw of the cylin-

droid is inversely proportional to the parallel diameter

of a certain ellipse, and a pair of conjugate screws of

inertia on the cylindroid are parallel to a pair of conju-

gate diameters of the same ellipse. This ellipse may
be called the ellipse of inertia.

The major and minor axes of the ellipse of inertia are

parallel to screws upon the cylindroid, which for a given
twist velocity correspond to a maximum and minimum
kinetic energy.

An impulsive wrench on a screw j acts upon a quies-

cent rigid body which has freedom of the second order.

It is required to determine the screw 9 on the cylin-

droid expressing the freedom about which the body will

commence to twist.

The ellipse of inertia enables us to solve this problem
with great facility. Determine that one screw on the

cylindroid which is reciprocal to TJ ( -8). Draw a

diameter D of the ellipse of inertia parallel to 0. Then
the required screw 9 is simply that screw on the cylin-

droid which is parallel to the diameter conjugate to D
in the ellipse of inertia.

The converse problem, viz., to determine the screw rj,

an impulsive wrench on which would make the body
commence to twist about 9 is indeterminate. Any screw

in space which is reciprocal to would fulfil the required
condition (54).
We have seen in 66 that an impulsive wrench on

any screw in space may always be replaced by a pre-

cisely equivalent wrench upon the cylindroid which

expresses the freedom. We are now going to deter-

mine the screw j, on the cylindroid offreedom, an impul-
sive wrench on which would make the body twist about

a given screw 9 on the same cylindroid. This can be

easily determined with the help of the pitch conic ; for

we have seen
( 42) that a pair of reciprocal screws on



DYNAMICS OF A RIGID BODY. 1 1 1

the cylindroid of freedom are parallel to a pair of conju-

gate diameters of the pitch conic. The construction is

therefore, as follows : Find the diameter A which is

conjugate, with respect to the ellipse of inertia to the

diameter parallel to the given screw 0. Next find the

diameter B which is conjugate to the diameter A with

respect to the pitch conic. The screw on the cylindroid

parallel to the line B thus determined is the required
screw rj.

Two concentric ellipses have one pair of common

conjugate diameters. In fact, the four points of inter-

section form a parallelogram, to the sides of which
the pair of common conjugate diameters are parallel.

We can now interpret physically the common conjugate
diameters of the pitch conic, and the ellipse of inertia.

The two screws on the cylindroid parallel to these

diameters are conjugate screws of inertia, and they are

also reciprocal ; they are, therefore, the principal screws of
inertia, to which we have been already conducted

( 101).

If the distribution of the material of the body bear

certain relations to the arrangement of the constraints,

we can easily conceive that the pitch conic and the

ellipse of inertia might be both similar and similarly
situated. Under these exceptional circumstances it

appears that every screw of the cylindroid would possess
the property of a principal screw of inertia.

103. The Ellipse of the Potential. We are now to

consider another ellipse, which, though possessing many
useful mathematical analogies to the ellipse of inertia, is

yet widely different from a physical point of view. We
have introduced

( 72) the conception of the linear mag-
nitude #a, the square of which is proportional to the

work done in effecting a twist of given amplitude about

a screw a from a position of stable equilibrium under

the influence of a system of forces. We now propose
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to consider the distribution of the parameter va upon

the screws of a cylindroid. It appears from
( 72)

that if vly
v-2 denote the values of the quantity va for

each of two conjugate screws of the potential, and if

01, a2 denote the intensities of the components on the two

conjugate screws of a wrench of unit intensity on a screw

a, which lies upon the cylindroid, that then

From the centre of the cylindroid draw two straight

lines parallel to the pair of conjugate screws of the

potential, and with these lines as axes of x and y con-

struct the ellipse, of which the equation is

where H is any constant. If r be the radius vector in

this ellipse, we have

x j y= cti and = as ;

whence by substitution we deduce

2 _#
which proves the following theorem :

The linear parameter va on any screw of the cylin-

droid is inversely proportional to the parallel diameter

of a certain ellipse, and a pair of conjugate screws of

the potential are parallel to a pair of conjugate diameters

of the same ellipse.

This ellipse maybe called the ellipse ofthe potential.
The major and minor axes of the ellipse of the poten-

tial are parallel to screws upon the cylindroid, which, for

a twist of given amplitude, correspond to a maximum
and minimum potential energy.

When the body is slightly displaced from its posi-

tion of equilibrium by the action of a wrench of given
small intensity on a given screw 17, the twist which

the body executes in assuming its new position is per-
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formed about a screw 0, which can very simply be con-

structed by the ellipse of the potential. Determine the

screw ^ (on the cylindroid of freedom) which is recipro-
cal to 7j ( 28), then 0, and the required screw 0, are

parallel to a pair of conjugate diameters of the ellipse

of the potential.

The common conjugate diameters of the pitch conic,

and the ellipse of the potential, are parallel to the two
screws on the cylindroid, which we have designated the

principal screws of the potential ( 71).

When a body is displaced from its position of equili-

brium by a small wrench upon a principal screw of the

potential, then the body moves to the new position

which is required in its altered circumstances by a small

twist about the same screw.

104. Harmonic Screws. The common conjugate
diameters of the ellipse of inertia, and the ellipse of

the potential, are parallel to the two harmonic screws

on the cylindroid ( 74). This is evident, because the

pair of screws thus determined are conjugate screws

both of inertia and of the potential.

If the body be displaced by a twist about one of the

harmonic screws, and be then abandoned to the influ-

ence of the forces, the body will continue for ever to

perform twist oscillations about that screw.

If the ellipse of inertia, and the ellipse of the poten-

tial, be similar, and similarly situated, then every screw on

the cylindroid of freedom will be an harmonic screw.

105. Exceptional Case. We have now to consider

the modifications which the results we have arrived at

undergo when the cylindroid becomes illusory in the

case considered
( 94).

Suppose that 4 and were a pair of conjugate screws

of inertia on the straight line about which the body was

free to rotate and slide independently. Then taking
I



1 14 DYNAMICS OF A RIGID BODY.

the six absolute principal screws of inertia* as screws of

reference, we must have ( 66)

dR
'

where 17
denotes the screw of zero pitch on the same

straight line.

Expanding this equation, and reducing, we find

This result can be much simplified. By comparing

| 37 and 52, it appears that

R =
(t|i

+ J?2)

2 +
(i?s

+ i?0* + (?5 + le)
2

-

and therefore

dR .

S/ilJi -T =
22/irji

2 =
2/rj

= O.

Hence we can prove that the product ofthe pitches oftwo

conjugate screws of inertia is constant, and is equal to

minus the square of the radius of gyration about the

common axis of the screws.

1 06. Reaction of Constraints. We shall now con-

sider the following problem : A body which is free to

twist about all the screws of a cylindroid C receives

an impulsive wrench on a certain screw tj. It is re-

quired to find the screw X, a wrench on which con-

stitutes the impulsive reaction of the constraints. Let

C represent the cylindroid which, if the body were per-

fectly free, would form the locus of those screws, impul-

* We shall often find it convenient to designate the six principal screws of

inertia of a free rigid body ( 52) by the phrase dbolute principal screws of
inertia.
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sive wrenches on which correspond to all the screws

of C as instantaneous screws. Since a wrench on TJ,

and one on X, make the body twist about some screw on

C, it follows that the cylindroid (r;, X) must have a screw

p in common with Cf
. The wrench on X might be re^

solved into two. one on TJ, and the other on
/o,

and the

latter might be again resolved into two wrenches on any
two screws of C. It therefore follows that X must be-

long to the screw complex of the third order, which may
be defined by 77, and by any two screws from Cf

. Take

any three screws reciprocal to this complex, and an^
two screws on C. We have then five screws to which X

is reciprocal, and it is therefore geometrically deter-

mined
( 28).

When X is found, the cylindroid (TJ X) can be drawn,
and thus p is determined. The position of p on C' will

point out the screw on C, about which the body will

commence to twist, while the position of p on (rj, X), and

the known intensity of the wrench on ?;, will determine

the intensity of the wrench on X.

t 2



CHAPTER XI.

THE DYNAMICS OF A RIGID BODY, WHICH HAS FREEDOM
OF THE THIRD ORDER.

107. Introduction. The dynamics of a rigid body
which has freedom of the third order, possesses a special

claim to attention, for, included as a particular case, we
have the celebrated problem of the rotation of a rigid

body about a fixed point. In the theory of screws the

screw complex of the third order is characterised by the

feature that the reciprocal screw complex is also of the

third order, and this is a fertile source of interesting

theorems.

We shall first study the screw complex of the third

order, and its reciprocal. We shall then show how the

instantaneous screw, corresponding to a given impulsive

screw, can be determined for a rigid body whose move-

ments are prescribed by any screw complex of the third

order. We shall also point out the three principal screws

of inertia, of which the three principal axes are only

special cases, and we shall determine the kinetic

energy acquired by a given impulse. Finally, we shall

determine the three harmonic screws, and we shall

apply these principles to the discussion of the small

oscillations of a rigid body about a fixed point under the

influence of gravity.

A screw complex of the first order consists of course

of one screw. A screw complex of the second order con-

sists of all the screws on a certain ruled surface (the

cylindroid). Ascending one step higher, we find that in

a screw complex of the third order the screws are so
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numerous that a finite number (three) can be drawn

through every point in space. In the screw complex of

the fourth order a cone of screws can be drawn through

every point, while to a screw complex of the fifth order

belongs a screw of suitable pitch on every straight line

in space.

1 08. Screw Complex of the Third Order. We shall

now consider the collocation of the screws in space

which constitute a screw complex of the third order. A
free rigid body can receive six independent displace-

ments. Its position is, therefore, to be specified by six

co-ordinates. If, however, the body be so constrained

that its six co-ordinates must always satisfy three equa-
tions of condition, there are then only three really inde-

pendent co-ordinates, and any position possible for a

body so circumstanced may be attained by twists about

three fixed screws, provided that twists about these

screws are permitted by the constraints.

Let A be an initial position of a rigid body M. Let

M be moved from A to a closely adjacent position,

and let x be the screw by twisting about which this

movement has been effected ; similarly let y and z be

the two screws, twists about which would have brought
the body from A to two other adjacent positions.

We thus have three screws x, y, z, which completely

specify the circumstances ofthe body so far as its capacity

for movement is considered.

SinceM can be twisted about each and all of x, y, s,

it must be capable of twisting about a doubly infinite

number of other screws. For suppose that by twists of

amplitude ^, y, z', the final position V is attained.

This position could have been reached by twisting

about vy so as to come from A to V by a single

twist. As the ratios of xf

to y, and 2', are arbitrary,
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and as a change in either of these ratios changes v
y the-

number of v screws is doubly infinite.

All the screws of which v is a type form what we
call a screw complex of the third order. We shall often

denote this screw complex by the symbol S.

109. The Reciprocal Screw Complex. A wrench which

acts on a screw i\ will not be able to disturb the equili-

brium of My provided ?j be reciprocal to xy y, z. If,

therefore, r\ be reciprocal to three screws of the complex
S9 it will be reciprocal to every screw of S. Since i? has

thus only three conditions to satisfy in order that it may
be reciprocal to ,5*, and since five quantities determine a

screw, it follows that r\ may be anyone of a doubly infinite

number of screws which we may term the reciprocal

screw complex S'. Remembering the property of recipro-

cal screws (22) we have the following theorem (47).
A body only free to twist about all the screws of S

cannot be disturbed by a wrench on any screw of S' ;

and, conversely, a body only free to twist about the

screws of S' cannot be disturbed by a wrench on any
screw of S.

The reaction of the constraints by which the freedom

is prescribed constitutes a wrench on a screw of S'.

no. Distribution of the Screws. To present a clear

picture of all the movements which the body is com-

petent to execute, it will be necessary to examine the

mutual connexion of the doubly infinite number of

screws which form the screw complex. It will be most

convenient in the first place to classify the screws in the

complex according to their pitches; the first theorem to

be proved is that all the screws ofgiven pitch + k lie upon
a hyperboloid of which theyform one system ofgeneratorsy

while the other system of generators with the pitch
- k

belong to the reciprocal screw complex S'.



DYNAMICS OF A RIGID BODY. 1 1 9

This is proved as follows : Draw three screws/, qy ry

of pitch + k belonging to S. Draw three screws /, my n y

each of which intersects the three screws py qy r, and
attribute to each of /, my ny

a pitch - k. Since two inter-

secting screws of equal and opposite pitches are recipro-

cal, it follows that/, qy ry must all be reciprocal to /, m y
n.

Hence, since the former belong to Sy the latter must be-

long to S'. Every other screw of pitch + k intersecting

/, my ny must be reciprocal to S'y and must therefore be-

long to S.

But the locus of a straight line which intersects three

given straight lines is an hyperboloid of one sheet,* and
hence the required theorem has been proved.

in. The Pitch Quadric. There is one member of

this family of hyperboloids which is of exceptional in

terest. We allude to that which is the locus of the

screws' of zero pitch belonging to the screw complex.
As the quadric under consideration possesses a very

important property ( 112) besides that ofbeing the locus

of the screws of zero pitch, it is desirable to denote it

by the special phrase pitch quadric.

We shall now determine the equation of the pitch

quadric. Let one of the principal axes of the pitch

quadric be denoted by xy this will intersect the surface

in two points through each ofwhich a pair of generators

can be drawn. One generator of each pair will belong
to Sy and the other to Sr

. Each pair of generators will

be parallelf to the asymptotes of the section of the pitch

quadric made by the plane containing the remaining

principal axesy and z. Let
//, v be the two generators

Salmon's Analytic Geometry of Three Dimensions, p. 77.

t Salmon, loc. cit., p. 72.
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belonging to S, then lines bisecting internally and ex-

ternally the angle between two lines in the plane of

y and z, parallel to p, v will be two of the principal

axes of the pitch quadric. Draw the cylindroid (p v)

Now the two screws of zero pitch on the cylindroid are

equidistant from the centre of the cylindroid, and the

two rectangular screws of the cylindroid bisect inter-

nally and externally the angle between the lines parallel

to the screws of zero pitch. Hence it follows that

the two rectangular screws of the cylindroid (^ v) must
be on the axes of y and z of the pitch quadric. We
shall denote these screws by )3 and y, and their pitches

pft and/y. From the properties of the cylindroid ( 15)

it appears that a, the semiaxis of the pitch quadric, must
be determined from the equations

a =
(pft -/y) sin / cos /,

/p cos 2/ + /y sin 2/ = o ;

whence eliminating /, we deduce

If I, c be the remaining semiaxes of the pitch quadric,
then we must have

cos 2/ sin 2/
+ =

>

because the screws
fi, v are parallel to the asymptotes of

whence we find
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By taking the tangent planes to the pitch quadric at

the extremities ofyy we should similarly find

hence we deduce the very important result which may
be thus stated :

The three principal axes of the pitch quadric, when fur-
nished with suitable pitches /, p& py, constitute screws be-

longing to the screw complex of the third order, and the

equation of the pitch quadric has theform

A*2 + P$* +A22 +AAA = -

We can also show conversely that every screw of

zero pitch, which belongs to the screw complex of the

third order, must be one of the generators of the pitch

quadric. For 9 must be reciprocal to all the screws

of zero pitch on the reciprocal system of generators of

the pitch quadric; and since two screws of zero pitch
cannot be reciprocal unless they intersect either at a

finite or infinite distance, it follows that must inter-

sect the pitch quadric in an infinite number of points,

and must therefore be entirely contained thereon.

Let now S denote a screw complex of the third order,

where a, /3, y are the three screws of the system on
the principal axes of the pitch quadric. Diminish the

pitches of all the screws of ,5* by any magnitude k. Then
the quadric

must be the locus of screws of zero pitch in the altered

system, and therefore of pitch + k in the original system

( so).
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Regarding k as a variable parameter, the equation just

written represents thefamily of quadrics which constitute

the screw complex S and the reciprocal screw complex
S'. Thus all the generators of one system on each qua-

dric, with pitch + k, constitute screws about which the

body, with three degrees of freedom, can be twisted ;

while all the generators of the other system, with pitch
- ky constitute screws, wrenches about which would be

neutralized by the reaction of the constraints.

For the quadric to be a real surface it is plain that k

must be greater than the least, and less than the greatest

of the three quantities /a , p^ py . Hence the pitches of

all the real screws of the screw complex S are inter-

mediate between the greatest and least of the three

quantities pn p^pr
112. Screws through, a Given Point. We shall now

show that three screws belonging to S, and also three

screws belonging to S', can be drawn through any point

3/, y, z'. Substitute ^/, _/, 2', in the equation of the last

article, and we find a cubic for k. This shows that three

quadrics of the system can be drawn through each point

of space. The three tangent planes at the point each

contain two generators, one belonging to S, and the

other to S'. It'may be noticed that these three tangent

planes intersect in a straight line.

Two intersecting screws can only be reciprocal if

they be at right angles, or if the sum of their pitches be

zero. It is hence easy to see that, if a sphere be de-

scribed around any point as centre, the three screws

belonging to *$*, which pass through the point, intersect

the sphere in the vertices of a spherical triangle which

is the polar of the triangle similarly formed by the

lines belonging to S'.

We shall now show that one screw belonging to S
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can be found parallel to any given direction. All the

generators of the quadric are parallel to the cone

(A -k}* + (pft

- k}f + (A -
k] z- = o,

and k can be determined so that this cone shall have one

generator parallel to the given direction; the quadric
can then be drawn, on which two generators will be
found parallel to the given direction ; one ofthese belongs
to S, while the other belongs to S'.

It remains to be proved that each screw of S has

a pitch which is proportional to the inverse square of the

parallel diameter of thepitch quadric*
Let r be the intercept on a generator of the cone

(A -

by the pitch quadric

A*
2

then k = -

but k is the pitch of the screw of S, which is parallel

to the line r.

Nine constants ( 49) are required for the determina-

tion of a screw complex of the third order. This is the

same number as that required for the specification of a

quadric surface.f We hence infer, what is indeed other-

*This theorem is connected with some purely geometrical theorems of

Plucher, who has shown (Neue Geometric des Raumes, p. 130) that k^x*

+ k?y* + &z* + k\k<Jii = o, is the locus of lines common to three linear com-

plexes of the first degree. The axes of the three complexes are directed along

the co-ordinate axes, and the parameters of the complexes are k\ t 2 , 3 ; the

same author has also proved that the parameter of any complex belonging
to the (" dreigliedrigen Gruppe") is proportional to the inverse square of the

parallel diameter of the hyperboloid.

t Salmon's Analytic Geometry of Three Dimensions, p. 35.
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wise manifest, viz., that when the pitch quadric is

known the entire screw complex of the third order is

determined.

Another very interesting property of the pitch qua-
dric is thus enunciated. Any three co-reciprocal screws

of a given screw complex of the third order are parallel to'a

triad of conjugate diameters of its pitch quadric.

Take any three co-reciprocal screws of the complex
as screws of reference, and let/!, /2, /a be their pitches.

If then the co-ordinates of any screw p belonging to the

complex be denoted by p ly p2, p3, we shall have for the

pitch of p (65)

A>=/1P1
2
+AP2

2
+/3P3

2
.

If a parallelepiped be constructed, of which the three

lines parallel to the reciprocal screws, drawn through the

centre of the pitch quadric, are conterminous edges, and

of which the line parallel to p is the diagonal, and if

x,y, z be the lengths of the edges, and r the length
of the diagonal, then we have

( 37)

x y z~ =
PI, r

=
?2,

- = ? 3 .

It follows that pp must be proportional to the inverse

square of the parallel diameter of the quadric surface

But pp
must be proportional to the inverse square of

the parallel diameter of the pitch quadric, and hence the

equation last written must actually be the equation of

the pitch quadric, when H is properly chosen. But the

equation is obviously referred to three conjugate diame-

ters, and hence three conjugate diameters of the pitch

quadric are parallel to three co-reciprocal screws of the

screw complex.
We see from this that the sum of the reciprocals of
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the pitches of three co-reciprocal screws is constant. This

theorem will be subsequently generalised ( 136).

1 13. Screws of the Complex parallel to a Plane. Up to

the present we have been analysing the screw complex

by classifying the screws into groups of constant pitch.

Some interesting features will be presented by adopting
a new method of classification. We shall now divide

the general system into groups of screws which are

parallel to the same plane.

We shall first prove that each of these groups con-

stitutes a cylindroid. For suppose a screw of infinite pitch

normal to the plane, 'then all the screws of the group

parallel to the plane are reciprocal to this screw of

infinite pitch. But they are also reciprocal to any three

screws of the original reciprocal system ; they, therefore,

form a screw complex of the second order
( 46) that is,

they constitute a cylindroid.

We shall prove this in another manner.

A quadric containing a line must touch every plane

passing through the line.* The number of screws of the

complex which can lie in a given plane is, therefore,

equal to the number of the quadrics of the complex
which can be drawn to touch that plane.

The quadric surface whose equation is

touches the plane Px + Qy + Rz + S = o, when the fol-

lowing condition is satisfied :f

>
-

k] (A -*) + C(A -
*) (A -

* Salmon's Analytic Geometry of Three Dimensions, p. 74.

t Salmon, loc. cit., p. 49.
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whence it follows that two values of k can be found, or

that two quadrics can be made to touch the plane, and

that, therefore, two screws of the complex, and, of course,

two reciprocal screws, lie in the plane.

From this it follows that all the screws of the com-

plex parallel to a plane must lie upon a cylindroid.

For, take any two screws parallel to the plane, and

draw a cylindroid through these screws. Now, this

cylindroid will be cut by any plane parallel to the given

plane in two screws, which must belong to the complex ;

but this plane cannot contain any other screws ; there-

fore, all the screws parallel to a given plane must lie

upon the same cylindroid.

114. Determination of the Cylindroid. We now pro-

pose to solve the following problem : Given a plane,

determine the cylindroid which contains all the screws,

selected from a screw complex of the third order, which

are parallel to that plane.

Draw through O the centre of the pitch quadric a

plane A parallel to the given plane. We shall first

show that the centre of the cylindroid required lies in A.

Fig. 3-

Let TI, Tz (Fig. 3) be two points in which the two

quadrics of constant pitch touch the plane of the paper,
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which may be regarded as any plane parallel to A ;

then P is the intersection of the pair of screws be-

longing to the complex PTly PT2 , which lie in that

plane, and P is the intersection of the pair of reciprocal
screws P'R^ P'R* belonging to the reciprocal complex.
Since P'R^ is to be reciprocal to PT^ it is essential that

Ri be a right angle, similarly R2 is a right angle. The

reciprocal cylindroid, whose axis passes through P'y

will be identically the same as the cylindroid belonging
to the complex whose axis passes through P; but the

two will be differently posited. If the angle at P be

a right angle, the points 7i and T2 are at infinity;

therefore, the plane touches the quadric at infinity; it

must, therefore, touch the asymptotic cone, and must,

therefore, pass through the centre of the pitch quadric O;
but P is the centre of the cylindroid in this case, and,

therefore, the centre of the cylindroid must lie in the

plane A .

The position of the centre of the cylindroid in the

plane A is to be found by the following construction :

Draw through the centre O a diameter

conjugate in the pitch quadric to the

plane A. Let this line intersect the

pitch quadric in the points Ply P2, and

let S, S' (Fig. 4) be the feet of the per- T

pendiculars let fall from Piy P2 upon
the planeA . Draw the asymptotes OL,
OM to the section of the pitch quad-

ric, made by the plane A . Through
*$* and Sf draw lines in the plane A,
ST, ST'y S'Ty S'F, parallel to the

asymptotes, then T' and T are the

two required cylindroids which belong to the two reci-

procal screw complexes.
This construction is thus demonstrated :

Fig. 4.

centres of the
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The tangent planes at Ply P* each intersect the sur-

face in lines parallel to OL, OM. Let us call these lines

PII, 1 lyMl through the point Ply and PZL Z, P2M2

through the point jP2 . Then PiL ly PzM2y are screws

belonging to the complex, and PiMly P^L Z are reciprocal

screws.

Since OL is a tangent to the pitch quadric, it there-

fore must be intersected by two rectilinear generators,,

one of each system. These two generators lie in a

plane which contains OL ; but since OL touches the

hyperboloid at infinity, the lines on the surface must be

parallel to OL, and therefore their projections on the

plane ofA must be S'T, S'T'. Similarly for ST, S'T';

hence ST' and S'T' are the projections of two screws

belonging to the complex, and therefore the centre of

the cylindroid is at T'. In a similar way it is proved
that the centre of the reciprocal cylindroid is at T.

Having thus determined the centre of the cylindroid,

the remainder of the construction is easy. The pitches

of two screws on the surface must be proportional to

the inverse square of the parallel diameters of the ^sec-

tion of the pitch quadric made by A. Therefore, the

greatest and least pitches will be on screws parallel

to the principal axes of the section. Hence, lines drawn

through T' parallel to the external and internal bisectors

of the angle between the asymptotes are the two rectan-

gular screws of the cylindroid. Thus the problem of

finding the cylindroid is completely solved.

It is easily seen that each cylindroid touches each of
the quadrics in two points.

115. Miscellaneous Remarks. It follows from the last

article that any plane which contains a pair of screws

belonging to the complex which intersect at right angles
must pass through the centre of the pitch quadric.
We are now in a position to determine the actual
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situation of a screw 6 belonging to a screw complex of

the third order of which the direction is given. The con-

struction is as follows : Draw through O the centre of

the pitch quadric a radius vector OR parallel to the

given direction of 9, and cutting the pitch quadric in R.
Draw a tangent plane to the pitch quadric in R. Then
the plane A through OR, of which the intersection with

the tangent plane is perpendicular to OR, is the plane
which contains 6. For the section in which A cuts the

pitch quadric has for a tangent at R a line perpendicu-
lar to OR; hence the line OR is a principal axis of

the section, and hence
( 114) one of the two screws of

the complex in the plane A must be parallel to OR.
It remains to find the actual situation of in the

plane A .

Since the direction of is known, its pitch is deter-

minate, because it is inversely proportional to the square
of OR. Hence the quadric can be constructed, which is

the locus of all the screws which have the same pitch as

0. This quadric must be intersected by the plane A in

two parallel lines. One of these lines is the required resi-

dence of the screw 0, while the other line, with a pitch

equal in magnitude to that of 0, but opposite in sign,

belonging, as it does, to one of the other system of

generators, is a screw reciprocal to the system.

A family of quadric surfaces of constant pitch have

the same planes of circular section, and therefore every

plane through the centre cuts the quadrics in a system
of conies having the same directions of axes.

The cylindroid which contains all the screws of the

screw complex parallel to one of the planes of circu-

lar section must be composed of screws of equal pitch.

A cylindroid in this case reduces to a plane pencil

of rays passing through a point. We thus have two

points situated upon the primary axis of the pitch quadric,.

K
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through each of which a plane pencil of screws can be

drawn, which belong to the screw complex. All the

screws passing through either of these points have equal

pitch. The pitches of the two pencils are equal in mag-
nitude, but opposite in sign. The magnitude is that of

the pitch of the screw situated on the primary axis of

the pitch quadric.*

1 1 6. Virtual Co-efficients. Let p be a screw of the

screw complex which makes angles whose cosines are

f, g, h, with the three screws of reference a, /3, y upon
the axes of the pitch quadric. Then, reference being
made to any six co-reciprocals, we have for the co-

ordinates of
/o,

&c., &c.,

Let j be any given screw. The virtual co-efficient of

and i is

Draw from the centre of the pitch quadric a radius vec-

tor r parallel to
/o,

and equal to the virtual coefficient

just written ; then the locus of the extremity of r is the

sphere

= 2

The tangent plane to the sphere obtained by equating
the right-hand side of this equation to zero is the prin-

* If a, 5, c be the three semiaxes of the pitch quadric, and + d the distances

from the centre, on <z, of the two points in question, it appears from 114 that

2<# = (a?
-

2) (<z
2- 2

), which shows that d is the fourth proportional to the

primary semiaxis of the surface, and of its focal ellipse and hyperbola.
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cipal plane of that cylindroid which contains all the

screws of the screw complex which are reciprocal to rj.

117. Four Screws of the Screw Complex. Take any
four screws a, /3, y, S of the screw complex of the third

order. Then we shall prove that the cylindroid (a, j3)

must have a screw in common with the cylindroid (y, )

For twists of appropriate amplitudes about a, /3, y, S must

neutralise, and hence the twists about a, )3 must be coun-

teracted by those about y, S ; but this cannot be the

case unless there is some screw common to (a, /3) and

(7, *)

This theorem provides a convenient test as to whe-

ther four screws belong to a screw complex of the third

order.

1 1 8. Equilibrium ofFour Forces applied to a RigidBody.

If the body be free, the four forces must be four wrenches

on screws of zero pitch which are members of a screw

complex of the third order. The forces must therefore

be generators of an hyperboloid, and all belonging to

the same system ( 106).

Three of the forces, P, Q, R, being given in position, S
must then be a generator of the hyperboloid determined

by P, Qy
R. This proof ofa well-known theorem (due to

Mobius) is given to show the facility with which such

results flow from the Theory of Screws.

Suppose, however, that the body have only freedom

of the fifth order, we shall find that somewhat more

latitude exists with reference to the choice of S. LetX
be the screw reciprocal to the screw complex by which

the freedom is defined. Then for equilibrium it will

only be necessary that S belong to the complex of the

fourth order defined by the four screws

P, Q> R, x.

A cone of screws can be drawn through eevry point

K 2
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in space belonging to this complex, and on that cone

one screw of zero pitch can always be found. Hence one

line can be drawn through every point in space along
which S might act.

If the body have freedom of the fourth order, the lati-

tude in the choice of S is still greater. Let Xly Xz be

two screws reciprocal to the complex, then S is only
restrained by the condition that it belong to the screw

complex of the fifth order defined by the screws

P, Q, X, X19 X,.

Any line in space when it receives the proper pitch

is a screw of this complex. Through any point in space
a plane can be drawn such that every line in the plane

passing through the point with zero pitch is a screw of

the complex ( 80).

Finally, if the body has only freedom of the third

order, the four equilibrating forces P, Q, R, S may be si-

tuated anywhere.
The positions of the forces being given, their magni-

tudes are determined ; for draw three screws Xly Xz, X$
reciprocal to the complex, and find

( 30) the intensities

of the seven equilibrating wrenches on

The last three are neutralised by the reactions of the

constraints, and the four former must therefore equili-

brate.

Given any four screws in space, it is possible for four

wrenches of proper intensities on these screws to hold

a body having freedom of the third order in equilibrium.

For, take the four given screws, and three reciprocal
screws. Wrenches of proper intensities on these seven

screws will equilibrate ; but those on the reciprocal screws
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are destroyed by the reactions, and, therefore, the four

wrenches on the four screws equilibrate. It is mani-
fest that this theorem may be generalised into the fol-

lowing: If a body have freedom of the kth
order, then

properly selected wrenches about any k + i screws (not

reciprocal to the screw complex) will hold the body in

equilibrium.

That a rigid body with freedom of the third order

may be in equilibrium under the action of gravity, we
have the necessary and sufficient condition, which is

thus stated :

The vertical through the centre of inertia must be

one of the reciprocal system of generators on the pitch

quadric.

We see that the centre of inertia must, therefore, lie

upon a screw of zero pitch which belongs to the screw

complex ; whence we have the following theorem :

The restraints which are necessary for the equilibrium
of a body which has freedom of the third order under

the action of gravity, would permit rotation of the body
round one definite line through the centre of inertia.

119. The Ellipsoid of Inertia. The momental ellip-

soid, which is of such significance in the theory of the

rotation of a rigid body about a fixed point, is presented
in the Theory of Screws as a particular case of another

ellipsoid called the ellipsoid of inertia, which is of great

importance in connexion with the general screw com-

plex of the third order.

If we take three conjugate screws of inertia from the

screw complex, as screws of reference, then we have

seen (67) that, if ft, ft, ft, be the co-ordinates of a screw

$, we have

where u
ly u^ u3 are the values of ud with reference to the

three conjugate screws of inertia.
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Draw from any point lines parallel to 0, and to-

the three conjugate screws of inertia. If then a pa-

rallelepiped be constructed of which the diagonal

is the line parallel to 0, and of which the three

lines parallel to the conjugate screws are contermi-

nous edges, and if r be the length of the diagonal, and

xy y, z the lengths of the edges, then we have

x
fi
y

fi

z
a

r
=i

'r
=

'

r
=

3 *

We see, therefore! that the parameter u appropriate

to any screw 9 is inversely proportional to the parallel

diameter of the ellipsoid

where His & certain constant.

Hence we have the following theorem : The kinetic

energy of a rigid body, when twisting with a given twist

velocity about any screw of a complex of the third order,

is proportional to the inverse square of the parallel dia-

meter of a certain ellipsoid, which may be called the

ellipsoid of inertia ; and a set of three conjugate diame-

ters of the ellipsoid are parallel to a set of three conjugate
screws of inertia which belong to the screw complex.
We might also enunciate the property in the follow-

ing manner : Any diameter of the ellipsoid of inertia is

proportional to the twist velocity with which the body
should twist about the parallel screw of the screw com-

plex, so that its kinetic energy shall be constant.

1 20. The Principal Screws of Inertia. It will simplify

matters to consider that the ellipsoid of inertia is con-

centric with the pitch quadric. It will then be possible

to find a triad of common conjugate diameters to the

two ellipsoids. We can then determine three screws

of the complex parallel to these diameters
( H5)>
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and these three screws will be co-reciprocal, and also

conjugate screws of inertia. They will, therefore
( 57),

form what we have termed the principal screws of

inertia. When the screw complex reduces to a pencil
of screws ofzero pitch passing through a point, then the

principal screws of inertia reduce to the well-known

principal axes.

121. Lemma. If from a screw complex of the nih

order we select n screws A ly . . . , A n, which are conju-

gate screws of inertia
( 57), and if Si be any screw

which is reciprocal to A 2, ..., A ny then an impulsive
wrench on Si will cause the body, when only free to twist

about the screws of the complex, to commence to twist

about A i. Let RI be the screw which, if the body were

perfectly free, would be the impulsive screw correspond-

ing to A i as the instantaneous screw. jRi must be reci-

procal to A 2, . . . , A n ( 54). Take also 6 - n screws of

the reciprocal system Bl9 . . . , B6 _ . Then the 8 - n
screws Ri9 Slf ly . . . , 2?6 _ w must be reciprocal to the

n - i screws A z, . . . A n, and therefore the 8 - n screws

must belong to a screw complex of the (7
-

n)
th order.

Hence an impulsive wrench upon the screw ^i can be

resolved into components on Rl9 Bi9 . . . B* _ . Of
these all but the first are neutralised by the reactions of

the constraints, and by hypothesis the effect of an im-

pulsive wrench upon R is to make the body commence
to twist about AI, and therefore an impulsive wrench

on Si would make the body twist about A\.

122. Relation between the Impulsive Screw and the In-

stantaneous Screw. A quiescent rigid body which pos-

sesses freedom of the third order is acted upon by an

impulsive wrench about a given screw r\. It is required

to determine the instantaneous screw 0, about which the

body will commence to twist.

The screws which belong to the complex, and are at
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the same time reciprocal to TJ,
must all lie upon a cylin-

droid, as they each fulfil the condition of being recipro-

cal to four screws. All the screws on the cylindroid

are parallel to a certain plane drawn through the centre

of the pitch quadric, which may be termed the reciprocal

plane with respect to the screw TJ. The reciprocal plane

having been found, the diameter conjugate to this plane

in the ellipsoid of inertia is parallel to the required

screw 6.

For let
JJL

and v denote two screws of the complex

parallel to a pair of conjugate diameters of the ellipsoid

of inertia in the reciprocal plane. Then 0, p, v are

a triad of conjugate screws of inertia ; but r? is reciprocal

to
fj.

and v, and, therefore, by the lemma of the last

article, an impulsive wrench upon r\ will make the body
commence to twist about 0.

123. Kinetic acqEnergy uired by an Impulse. We
shall now consider the following problem : A quies-

cent rigid body of mass M receives an impulsive wrench

of intensity rj" on a screw TJ for a short time e. De-

termine the locus of a screw 8 belonging to a screw

complex of the third order, such that, if the body be con-

strained to twist about 0, it shall acquire a given kinetic

energy K, in consequence of the impulsive wrench.

We have from 6 1 the equation

& ri"2K = ^r -VM uf

We can assign a geometrical interpretation to this

equation, which will lead to some interesting results.

Through the centre O of the pitch quadric the plane
A reciprocal to t\ is to be drawn. A sphere (

1 1 6) is

to be described touching the plane A at the origin O,

the diameter of the sphere being so chosen that the

intercept OP made by the sphere on a radius vector
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parallel to any screw is equal to ^9 (
1 16). The quan-

tity u is inversely proportional to the radius vector OQ
of the ellipsoid of inertia, which is parallel to

( 119).

Hence for all the screws of the screw complex which

acquire a given kinetic energy in consequence of a

given impulse, we must have the product OP. OQ con-

stant.

From a well-known property of the sphere, it follows

that all the points Q must lie upon a plane A', parallel

to A. This plane cuts the ellipsoid of inertia in an

ellipse, and all the screws required must be parallel

to the generators of the cone of the second degree,

formed by joining the points of this ellipse to the

origin, O.

Since we have already shown how, when the direc-

tion of a screw belonging to a screw complex of the

third order is given, the actual situation of that screw is

determined
(

1 1 5), we are now enabled to ascertain all

the screws on which the body acted upon by a given

impulse would acquire a given kinetic energy.

The distance between the planes A and A' is pro-

portional to OP. OQ, and therefore to the square root of

K. Hence, when the impulse is given, the kinetic energy

acquired on a screw determined by this construction is

greatest when A and A' are as remote as possible. For

this to happen, it is obvious that A' will just touch

the ellipsoid of inertia. The group of screws will, there-

fore, degenerate to the single screw parallel to the dia-

meter of the ellipsoid of inertia conjugate to A. But we
have seen

( 122) that the screw so determined is the

screw which the body will naturally select if permitted
to make a choice from all the screws of the complex of

the third order. We thus see again what Euler's theorem

( 64) would have also told us, viz., that when a quies-

cent rigid body which has freedom of the third order is
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set in motion by the action of an impulsive wrench, the

kinetic energy which the body acquires is greater than

it would have been had the body been restricted to any
other screw of the complex than that one which it natu-

rally chooses.

124. Reaction of the Constraints. An impulsive

wrench on a screw r; acts upon a body with freedom

of the third order, and the body commences to move by

twisting upon a screw 0. It is required to find the screw

A, a wrench on which constitutes the initial reaction of

the constraints. Let ^ denote the impulsive screw which,

if the body were free, would correspond to 9 as the in-

stantaneous screw. Then A. must lie upon the cylin-

droid (0, ij),
and may be determined by choosing on

(0, r?)
a screw reciprocal to any screw of the given screw

complex.

125. Impulsive Screw is Indeterminate. Being given
the instantaneous screw 6 in a complex of the third

order, the corresponding impulsive screw rj
is indeter-

minate, because the impulsive wrench may be com-

pounded with any reactions of the constraints. In fact

TJ may be any screw selected from a screw complex of

the fourth order, which is thus found. Draw the diame-

tral plane conjugate to a line parallel to 9 in the ellipsoid

of inertia, and construct the cylindroid which consists

of screws belonging to the screw complex parallel to

this diametral plane. Then any screw which is reci-

procal to this cylindroid will be an impulsive screw cor-

responding to 9 as an instantaneous screw.

Thus we see that through any point in space a whole
cone of screws can be drawn, an impulsive wrench on

any one of which would make the body commence to

twist about the same screw.

One impulsive couple can always be found which

would make the body commence to twist about any
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given screw of the screw complex. For a couple in

a plane perpendicular to the nodal line of a cylindroid

may be regarded as a wrench upon a screw recipro-
cal to the cylindroid ; and hence a couple in a diame-

tral plane of the ellipsoid of inertia, conjugate to the

diameter parallel to the screw 0, will make the body
commence to twist about the screw 9.

It is somewhat remarkable that a force directed along
the nodal line of the cylindroid must make the body
commence to twist about precisely the same screw as

the couple in a plane perpendicular to the nodal line.

If a cylindroid be drawn through two of the principal

screws of inertia, then an impulsive wrench on any screw

of this cylindroid will make the body commence to twist

about a screw on the same cylindroid. For the impul-
sive wrench may be resolved into wrenches on the two

principal screws. Each of these will produce a twisting
motion about the same screw, which will, of course,

compound into a twisting motion about a screw on the

same cylindroid.

126. Ellipsoid of ihe Potential. A body which has

freedom of the third order is in equilibrium under the

influence of a system of forces in conformity with the

restrictions of 6. The body receives a twist of small

amplitude & about a screw 9 of the screw complex. It

is required to determine a geometrical representation

for the quantity of work which has been done in effect-

ing the displacement. We have seen that to each screw

9 corresponds a certain linear parameter v9 ( 72), and

that the work done is represented by

We have also seen that the quantity VQ- may be repre-

sented by
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where ft, ft, ft are the co-ordinates of the screw referred

to three conjugate screws of the potential, and vly v2y v3,

denote the values of ve for each of the three screws of

reference
( 72).

Drawing through the centre of the pitch quadric three

axes parallel to the three screws of reference, we can

then construct the ellipsoid of which the equation is

which proves the following theorem.

The work done in giving the body a twist of given

amplitude from a position of equilibrium about any
screw of a complex of the third order, is proportional to

the inverse square of the parallel diameter of a certain

ellipsoid which we may call the ellipsoid of the potential,

and three conjugate diameters of this ellipsoid are paral-

lel to three conjugate screws of the potential in the screw

complex.

127. The Principal Screws of the Potential. The three

common conjugate diameters of the pitch hyperboloid,
and the ellipsoid of the potential, are parallel to three

screws of the complex which are what we call the prin-

cipal screws of the potential. If the body be displaced

by a twist about a principal screw of the potential from

a position of stable equilibrium, then the reduced wrench

which is evoked is upon the same screw.

The three principal screws of the potential must not

be confounded with the three screws of the complex
which are parallel to the principal axes of the ellipsoid of

the potential. The latter are the screws on which a

twist of given amplitude requires a maximum or mini-

mum consumption of energy, and they are rectangular,

which, of course, is not in general the case with the

principal screws of the potential.

128. Wrench evoked by Displacement. By the aid of
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the ellipsoid of the potential we shall be able to solve

the problem of the determination of the screw on which
a wrench is evoked by a twist about a given screw 6 of

the complex. The construction which will now be given
will enable us to determine the screw of the complex on

which the reduced wrench acts.

Draw through the centre of the pitch quadric a

line parallel to 9. Construct the diametral plane A of

the ellipsoid of the potential conjugate to this line, and

let X, fj.
be any two screws of the complex parallel to a

pair of conjugate diameters of the ellipsoid of the poten-

tial which lie in the plane A. Then the required screw

is parallel to that diameter of the pitch quadric which

is conjugate to the plane A.

For will then be reciprocal to both X and
/* ; and

as X, //, 9 are conjugate screws of the potential, it fol-

lows that a twist about 9 must evoke a reduced wrench

on $.

129. Harmonic Screws. When a rigid body has free

dom of the third order, it must have
( 74) three harmonic

screws, or screws which are conjugate screws of inertia L

as well as conjugate screws of the potential. We are

now enabled to construct these screws with facility, for

they must be those screws of the screw complex which

are parallel to the triad of common conjugate diameters

of the ellipsoid of inertia, and the ellipsoid of the poten-

tial.

We have thus a complete geometrical conception of

the small oscillations of a rigid body which has free-

dom of the third order. If the body be once set twisting

about one of the harmonic screws, it will continue to

twist thereon for ever, and in general its motion will be

compounded of twisting motions upon the three har-

monic screws.

If the displacement of the body from its position of
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equilibrium has been effected by a small twist about a

screw on the cylindroid which contains two of the har-

monic screws, then the twist can be decomposed into

components on the harmonic screws, and the instanta-

neous screw about which the body is twisting at any

epoch will oscillate backwards and forwards upon the

cylindroid, from which it will never depart.

If the periods of the twist oscillations on two of

the harmonic screws coincided, then every screw on

the cylindroid which contains those harmonic screws

would also be a harmonic screw.

If the periods of the three harmonic screws were

equal, then every screw of the complex would be a har-

monic screw.

130. Oscillations of a Rigid Body about a Fixed Point.

We shall conclude the present Chapter by applying
the principles which it contains to the development
of a geometrical solution of the following important

problem :

A rigid body, free to rotate in every direction around

afixedpointy
is at rest under the influence ofgravity. The

body is slightly disturbed : it is required to determine the

nature of its small oscillations.

Since three co-ordinates are required to specify the

position of a body when rotating about a point, it fol-

lows that the body has freedom of the third order. The
screw complex, however, assumes a very extreme type,
for the pitch quadric has become illusory, and the

screw complex reduces to a pencil of screws ofzero pitch

radiating in all directions from the fixed point.
The quantity UQ appropriate to a screw reduces to

the radius of gyration when the pitch of the screw is

zero ; hence the ellipsoid of inertia reduces in the pre-
sent case to the well-known momental ellipsoid.

The ellipsoid of the potential ( 126) assumes a
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remarkable form in the present case. The work done
in giving the body a small twist is proportional to the

vertical distance through which the centre of inertia is

elevated. Now, as in the position of equilibrium the

centre of inertia is vertically beneath the point of sus-

pension, it is obvious from symmetry that the ellipsoid

of the potential must be a surface of revolution about a
vertical axis. It is further evident that the vertical

radius vector of the ellipsoid must be infinite, because

no work is done in rotating the body around a vertical

axis.

Let O be the centre of suspension, and / the cen-

tre of inertia, and let OP be a radius vector o the

ellipsoid of the potential. Let fall IQ perpendicular
on OPy and PT perpendicular upon OI. It is extremely

easy to show that the vertical height through which / is

raised is proportional to /(> x OP* ; whence the area

of the triangle OPI is constant, and therefore the locus

ofP must be a right circular cylinder of which Olis the

axis.

We have now to find the triad of common conjugate
diameters of the momental ellipsoid, and the circular

cylinder just described. A group of three conjugate dia-

meters of the cylinder must consist of the vertical axis,

and any two other lines through the origin, which

are conjugate diameters of the ellipse in which their

plane cuts the cylinder. It follows that the triad required
will consist of the vertical axis, and of the pair of

common conjugate diameters of the two ellipses in

which the plane conjugate to the vertical axis in the

momental ellipsoid cuts the momental ellipsoid and

the cylinder. These three lines are the three harmonic

axes.

With reference to the vertical axis which appears to

be one of the harmonic axes, the time of vibration would
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be infinite, so we reject it. The three harmonic screws

which are usually found in the small oscillations ofa body
with freedom of the third order are therefore reduced

in the present case to two, and we have the following'

theorem :

A rigid body which is free to rotate about a fixed

point is at rest under the action of gravity. If a plane
S be drawn through the point of suspension O, con-

gate to the vertical diameter OI of the momental ellip-

soid, then the common conjugate diameters of the two

ellipses in which S cuts the momental ellipsoid, and
a circular cylinder whose axis is OI, are the two har-

monic axes. If the body be displaced by a small rota-

tion about one of these axes, the body will continue

for ever to oscillate to and fro upon this axis, just as

if the body had been actually constrained to move about

this axis.

To complete the solution for any initial circum-

stances of the rigid body, a few additional remarks are

necessary.

Assuming the body in any given position of equili-

brium, it is first to be displaced by a small rotation about

an axis OX. Draw the plane containing OI and OX,
and let it cut the plane S in the line OY. The small

rotation around OX may be produced by a small rota-

tion about OI, followed by a small rotation about OY.
The effect of the small rotation about OI is merely to alter

the azimuth of the position, but not to disturb the equili-

brium. Had we chosen this altered position as that

position of equilibrium from which we started, the ini-

tial displacement will be communicated by a rotation

around OY. We may, therefore, without any sacrifice

of generality, assume that the axis about which the

initial displacement is imparted lies in the plane *$*. We
shall now suppose the body to receive a small angular



DYNAMICS OF A RIGID BODY. 145

velocity about any other axis. This axis must be in the

plane S, if small oscillations are to exist at all, for

the initial angular velocity, if not capable of being
resolved completely on the two harmonic axes, will have

component around the vertical axis OL The effect of

an initial rotation about OI will be to give the body
a continuous slow rotation around the vertical axis, which

is, of course, not admissible when small oscillations only
are considered.

If, therefore, the body performs small oscillations only,

we may regard the initial axis of displacement as lying
in the plane S, while we must have the initial instan-

taneous axis in that plane. The initial displacement

may be resolved into two displacements, one on each of

the harmonic axes, and the initial angular velocity may
also be resolved into two angular velocities on the two

harmonic axes. The entire motion will, therefore, be

found by compounding the vibrations about the two

harmonic axes. Also the instantaneous axis will at

every instant be found in the plane of the harmonic

axes, and will oscillate to and fro in their plane.

Since conjugate diameters of an ellipse are always

projected into conjugate diameters of the projected

ellipse, it follows that the harmonic axes must pro-

ject into two conjugate diameters of a circle on any
horizontal plane. Hence we see that two vertical planes,

each containing one of the harmonic axes, are at right

angles to each other.

We have thus obtained a complete solution of the

problem of the small oscillations of a body about a

fixed point under the influence of gravity.
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CHAPTER XII.

THE DYNAMICS OF A RIGID BODY WHICH HAS FREEDOM
OF THE FOURTH ORDER.

131. Screw Complex of the Fourth Order. The most

general type of a screw complex of the fourth order is

merely a group of screws which are reciprocal to an

arbitrary cylindroid ( 49). To obtain a clear idea of

this screw complex it is, therefore, only required to

re-state a few results already obtained.

All the screws belonging to a screw complex of the

fourth order which can be drawn through a given point

lie on a cone of the second degree ( 25).

All the screws of given pitch belonging to a screw

complex of the fourth order must intersect two fixed

lines, viz., the two screws on the reciprocal cylindroid of

pitch equal in magnitude, and opposite in sign, to the

given pitch ( 24).

One screw of given pitch belonging to a screw com-

plex of the fourth order can be drawn through each point
in space ( 97).

132. Screws Parallel to a Given Line. It is required to

determine the locus of the screws parallel to a given

straight line Z, which belong to a screw complex of the

fourth order. This easily appears from the principle

that each screw of the screw complex must intersect one

screw of the reciprocal cylindroid at right angles ( 24).

Take, therefore, that one screw on the cylindroid

which is perpendicular to L. Then a plane through

parallel to L is the required locus.

133. Screws in a Plane. As we have already seen that

two screws belonging to a screw complex of the third

order can be found in any plane ( 113), so we might
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expect to find that a singly infinite number of screws

belonging to a screw complex of thefourth order can be
found in any plane. We shall now prove that all these

-screws envelope a parabola.

Take any point P in the plane, then the screws

through P reciprocal to the cylindroid form a cone of the

second order, which is cut by the plane in two lines.

Thus two screws belonging to a given screw complex
of the fourth order can be drawn in a given plane through
a given point. From the last article it follows that only
one screw of the complex parallel to a given line can be
found in the plane. Therefore, the envelope must be a

parabola.

134. Property of the Pitches of Six Co-reciprocals.

We may here introduce an important property of the

pitches of a set of co-reciprocal screws selected from a

.screw complex.
There is one screw on a cylindroid of which the pitch

is a maximum, and another screw of which the pitch is

a minimum. These screws are parallel to the principal
axes of the pitch conic

( 20). Belonging to a screw

complex ofthe third order we have, in like manner, three

screws of maximum or miminum pitch, which lie along
the three principal axes of the pitch quadric ( 1 1

1). The

general question, therefore, arises, as to whether it is

always possible to select from a screw complex of the

nth order a certain number of screws of maximum or

minimum pitch.

Let 0j, . . . . On be the n co-ordinates of a screw re

ferred to n co-reciprocal screws belonging to the given
screw complex. Then the function p^ or

is to be a maximum, while, at the same time, the co-ordi-

nates satisfy the condition
( 37)

L 2
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2ft2 + 2S0ift COS (on, Wz)
=

I,

which for brevity we denote as heretofore by

I? -i,

Applying the ordinary rules* for maxima and minima,
we deduce the n equations

&c. &c.,

From these ?z linear equations it would seem that

ft, . . ., can be eliminated, and that an algebraic equa-
tion of the nth

degree would remain forpe
. The analysis

would, therefore, appear to have proved that n screws

of maximum or minimum pitch can always be selected

from a screw complex of the nth order.

A moment's reflection will, however, show that this

statement needs modification. Take the case of n = 6 :

the screw complex of the sixth order is simply another

name for every screw in space. In this case, therefore,

all the values ofpe
must be infinite, which implies that

each co-efficient of the equation for p9 must vanish,

except the absolute term.

We are thus presented with no fewer than six for-

mulae involving the pitches and angles of inclination of

the six screws of a co-reciprocal system. Of these for-

mulae we shall in this place only consider one. If the

co-efficient oipe be equated to zero it appears that

i i i i i i

h i + i + = o

Williamson's Differential Calculus, 2nd Edition, p. 189.
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or, the sum of the reciprocals of the pitches of the six screws

of a co-reciprocal system is equal to zero.

135. Another Proof. The following elegant proof
of the theorem of the last section was communicated

to me by my friend Professor Everett. Divide} the

six co-reciprocals into any two groups A and B of

three each, then it appears from 1 1 1 that the pitch qua-
dric of each of these groups is identical. The three screws

ofA are parallel to a triad of conjugate diameters of the

pitch quadric, and the sum of the reciprocals of the

pitches is proportional to the sum of the squares of the

conjugate diameters
( 112). The three screws ofB are

parallel to another triad of conjugate diameters of the

pitch quadric, and the sum of the reciprocals of the

pitches, with their signs changed, is proportional to the

sum of the squares of the conjugate diameters. Remem-

bering that the sum of the squares of the two sets of

conjugate diameters is equal, the required theorem is

at once evident.

136. Property of the Pitches of n Co-reciprocals. The

theorem just proved can be extended to show that the

sum of the reciprocals of the pitches of n co-reciprocal

screws, selected from a screw complex of the nth
order, is a

constantfor each screw complex.

Let A be the given screw complex, and B the reci-

procal screw complex. Take 6 - n co-reciprocal screws

on B, and any n co-reciprocal screw on A . The sum of

the reciprocals of the pitches of these six screws must

be always zero ; but the screws on B may be constant,

while those on A are changed, whence the sum of the

reciprocals of the pitches of the n co-reciprocal screws on

A must be constant.

Thus, as we have already seen from geometrical con-

siderations, that the sum of the reciprocals of the pitches

of co-reciprocals is constant for the screw complex of
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the second and third order
( 42, 112), so now we see-

that the same must be likewise true for the fourth, fifth,,

and sixth orders.

The actual value of this constant for any given screw-

complex is evidently a characteristic feature of that

screw complex.

137. Special Screw of the Complex. In general there-

is one line in each csrew complex of the fourth order,

which forms a screw belonging to the screw complex,
whatever be the pitch assigned to it. The line in ques-

tion is the nodal line of the reciprocal cylindroid. The
kinematical statement is as follows :

When a rigid body has freedom of the fourth order,

there is in general one straight line, about which the body
can be rotated, and parallel to which it can be translated.

138. Particular Case. A body which has freedom of

the fourth order may be illustrated by the case of a rigid

body, one point P of which is constrained to a certain

curve. The position of the body will then be specified

by four quantities, viz., the arc of the curve from a fixed

origin up to P, and three rotations about three axes

intersecting in P. The reciprocal cylindroid will in

this case assume an extreme form; it consists of screws

of zero pitch on all the normals to the curve at P.

139. Statics. When a rigid body has freedom of

the fourth order, the necessary and sufficient condition

for equilibrium is, that the forces shall constitute a

wrench upon a screw of the cylindroid reciprocal to the

given screw complex. Thus, if one force can act on the

body without disturbing equilibrium, then this force

must lie on one of the two screws of zero pitch on the

cylindroid. If there were no real screws of zero pitch
on the cylindroid that is, if the pitch conic were an

ellipse, then it is impossible for equilibrium to subsist

when a force acts. It is, however, worthy of remark,.
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that if one force can act without disturbing the equili-

brium, then another force (on the other screw of zero

pitch) will be in the same predicament.
A couple which is in a plane perpendicular to the

nodal line can be neutralized by the reaction of the

constraints, and is, therefore, consistent with equili-

brium. In no other case, however, can a body which

has freedom of the fourth order be in equilibrium under

the influence of a couple.

140. Equilibrium of Five Forces. The five forces must,

if the body be free, belong to a screw complex of the

fourth order. Draw the cylindroid reciprocal to the com-

plex. The five forces must, therefore, intersect both the

screws of zero pitch on the cylindroid. We, therefore,

have the well-known condition that two straight lines

can be drawn which intersect all the five forces. Four

of the forces will determine the two lines, and therefore

the fifth force may enjoy any liberty consistent with the

requirement that it also intersects the two lines. This

condition is also a sufficient one, so far as the positions

of the forces are concerned.

IfA j, ... A 5 be the five forces, the ratio ofA l : A* is

thus determined.

Let P, Q be the two screws of zero pitch upon the

cylindroid.

Let X, Ybe two screws reciprocal to'^, A z .

Let Z be a screw reciprocal to A 3, A^ A 5 .

Construct the screw / reciprocal to the five screws

X, Y, P, Q, Z.

Now, the four screws X, Y, P, Q are reciprocal to

the cylindroid A l9 A z ; therefore 7, which is reciprocal

to X, YyRyPy Q, must lie upon the cylindroid (Ai,A t).

Since P, Q, Z are all reciprocal to A z , A^ A s, it fol-

lows that / being reciprocal to P, Q, Z must belong to
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the screw complex As, A if A 5 . Hence / belongs to

(A i,
A z),

and also to (A 3, A^ A 6). If, therefore, forces

along A ly ... A 5 equilibrate, then the forces along
A i,

A 2 must compound into a wrench on /. This condi-

tion determines the forces on A i9 A 2 ( 17).

141. Problem. A free rigid body is acted upon by
five forces : show how to move the body so that it shall

not do work against nor receive energy from any one of

the forces.

Let A i, . . . A 5 be the five forces. Draw two trans-

versals Z, M intersecting A l9 ... A^. Construct the

cylindroid of which Z, Mare the screws of zero pitch;

find, upon this cylindroid, the screw X reciprocal to A 5 .

Then the only movement which the body can receive,

so as to fulfil the prescribed conditions, is a twist about

the screw X. For X is then reciprocal to A l9 . . . A 5,

and therefore a body only free to twist about X will be

Unacted upon by any forces directed along A^ . . . A 5 .

From the theory of reciprocal screws it follows that

a body rotated around any of the lines A ly . . . A s will

not do work against nor receive energy from a wrench
on X

As a particular case, if A ly . . . A 5 have a common
transversal, then X is that transversal, and its pitch is

zero. In this case it is sufficiently obvious that A ly . . . A 5

cannot disturb the equilibrium of a body only free to

rotate about X.

142. Impulsive Screws and Instantaneous Screws. A
body which is free to twist about all the screws of a
screw complex of the fourth order receives an impulsive
wrench on the screw q. It is required to calculate the

co-ordinates of the screw about which the body will

commence to twist, and also the initial reactions of the

constraints.

Let A and
/m

be any two screws on the reciprocal
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cylindroid, then the reaction of the constraints may be
considered to consist of wrenches on X, /u of intensities

X", fi". If we adopt the six absolute principal screws of

inertia as the screws of reference, then the body will

commence to move as if it were free, but had been acted

upon by a wrench of which the co-ordinates are propor-
tional to /A, . . ., /6 6 . It follows that the given impul-
sive wrench, when compounded with the reactions of the

constraints, must constitute the wrench of which the co-

ordinates have been just written ; whence if h be a cer-

tain constant, we have the six equations

7, A n /' \ ff \ "
npiVi

=
TI i]i + A Ai +

ILL /ii,

&C., &c.

7 A f) "
i "\ "\ "

np$* =
TJ rj6 + X A6 -I-

fj. ju 6
.

Multiply the first of these equations by Xi, the second

by X2, &c. : adding the six equations thus obtained, and

observing that is reciprocal to X, we have

=
o,

and similarly

= O.

From these two equations the unknown quantities

X", ju" can be found, and thus the initial reaction of the

constraints is known, substituting the values of X", ft" in

the six original equations, the co-ordinates of the required

screw are known.

143. Principal Screws of Inertia. We shall now show

how the co-ordinates of the four principal screws of inertia

belonging to the screw complex of the fourth order are

to be computed. All the co-ordinates are, as before,

referred to the six absolute principal screws of inercia of

the body ( 105).

Let c, j3 7, 8 be any four co-reciprocal screws of the
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given screw complex. Then the co-ordinates of any
other screw 6 of the complex may be determined by

= a, -f + y + i,

&c.,. &c.

0"06
= a"a G + |3"j3e + 7'V* + S"S6 .

We shall, as before, denote two screws on the reci-

procal cylindroid by X, /u.
If be a principal screw of

inertia, then

hp, ("ai + /3"j3i + 7'V + "'&)
= a a, + /Tft + 77,

+ X'% +
//'jui,

&c., &c.

A/. (a"a6 + ]3"j36 + y">y. + S"&) = a'ae + jS'jSs + 7
"
7 6

+ X"A6 + /> 6 .

Multiplying the first of these equations by ai, the next

by a2, &c., adding the products, observing that a is reci-

procal to
j3, 7, 3, X, ju,

and repeating the operations for

|3, 7, 8, we have the four equations

=o,

A = o,

-t- 7'
/S iyi

+

From these four linear equations a", )3

/r

, 7", 8" can be

eliminated, and we obtain an equation of the fourth de-

gree for h. When h is known, then a", j3", 7", 3" are

known, and thus the co-ordinates of the four principal
screws of inertia are determined.

144. Application of Euler's Theorem. It may be of

interest to show how the instantaneous screw corres-

ponding to a given impulsive s<r"w can be deduced
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from Euler's theorem
( 64). If a body receive an im-

pulsive wrench on a screw r/ while the body is con-

strained to twist about a screw 0, then we have seen in

6 1 that the kinetic energy acquired is proportional to

If 0i, 3, 3, 4 be the co-ordinates of referred to the

four principal screws of inertia belonging to the screw

complex of the fourth order, then
( 65, 67)

Hence we have to determine the four independent varia-

bles 0j, 2, 3, 4, so that

shall be a maximum. This is easily seen to be the case

when 0!, 2, 3, 4 are respectively proportional to

This method might be applied to any order of free-

dom, and of course gives the same result as 67.

145. General Remarks. We shall here introduce

some general reflections upon the problem of the deter-

mination of the instantaneous screw corresponding to a

given impulsive screw. These reflections are called forth

by the circumstance that for the freedom ofthe fourth order

a different method of proceeding is required from that

which has been used for the second an third orders.

It has been shown in 53 how the co-ordinates of

the instantaneous screw corres
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pulsive screw can be determined when the rigid body
is perfectly free. It will be observed that the connexion

between the two screws depends only upon the three

principal axes through the centre of inertia, and the

radii of gyration about these axes. We may express

this result more compactly by the familiar concep-

tion of the momental ellipsoid. The centre of the mo-

mental ellipsoid is at the centre of inertia of the rigid

body, the directions of the principal axes of the ellipsoid

are the same as the principal axes of inertia, and the

lengths of the axes of the ellipsoid are inversely propor-

tional to the corresponding radii of gyration. When,
therefore, the impulsive screw is given, the momental

ellipsoid alone must be capable of determining the cor-

responding instantaneous screw.

A family of rigid bodies may be conceived which

have a common momental ellipsoid, every rigid body
which fulfils nine conditions will belong to this family.

If an impulsive wrench applied to a member of this

family cause it to twist about a screw 0, then the same

impulsive wrench applied to any other member of the

same family will cause it likewise to twist about 6. If

we added the further condition that the masses of all the

members of the family were equal, then it would be found

that the twist velocity, and the kinetic energy acquired
in consequence of a given impulse, would be the same
to whatever member of the family the impulse were

applied ( 60, 61).

146. the Screw Complex of the (n l)
'* Order and Se-

cond Degree. We shall denote a screw complex of the.

nth order and first degree by A, and Oi, . . . On are the

co-ordinates of a screw 6 belonging to A, and referred to

n co-reciprocal screws chosen from A .

Let us first consider the interpretation of the linear

equation between the n co-ordinates of 6 :
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#i0i + #202 + &C. + anOn = O.

All the screws whose co-ordinates satisfy this equa-
tion must be reciprocal to the screw belonging to A, of

which the co-ordinates are proportional to

#! an
^

/l
'

pn*

hence all the screws whose co-ordinates satisfy the

linear equation must be reciprocal to 7
- n independent

screws, viz., % and 6 - n screws from the screw complex

reciprocal to A . Hence we have the following theorem

( 46).

If from a screw complex (A) of the nth order and first

degree, we select all the screws whose n co-ordinates

(when referred to n screws of reference belonging to A)
satisfy one linear equation, then the group of screws so

selected constitute a screw complex of the (n
-

i}
th order

and first degree.

We shall now define a screw complex of the (n- i)
th

order and second degeee.

If from a screw complex A of the nth order and

first degree, we select all the screws whose n co-ordi-

nates (when referred to n screws of reference belonging
to A) satisfy one homogeneous equation of the second

degree, then the group of screws so selected constitute a

screw complex of the (n
-

i)
th order and second degree.

147. Polar Screws. Let U = o denote a screw com-

plex of the (n
-

i)
th order and second degree, embraced

within the screw complex of the nth order and first

degree, which is denoted by A, then we define the polar

of the screw with respect to UQ
= o to be the screw

belonging to A, of which the n co-ordinates are propor-

tional to
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i dUe i dUe

J,WS
'"

pn dQn
*

it being understood that the n screws of reference are co-

reciprocal.

If n = 6, then A consists of every screw in space, and

the polar of is what we have already considered in

91-

148. Kinetic Complex. We have seen
( 67) that the

kinetic energy of a body twisting about a screw 6 be-

longing to a screw complex of the nth order and first

d&
degree, with a twist velocity -j- is

Cit

the screws of reference being the principal screws of

inertia.

If we make u^O^ + . . . + ujtit? = o, then must be-

long to a screw complex of the (n
-

i)
th order and

second degree. This complex is, of course, imaginary,
for the kinetic energy of the body when twisting about

any screw which belongs to it is zero. We may for

convenience term this the kinetic screw complex*
The polar 17 of the screw 9, with respect to the

kinetic complex, has co-ordinates proportional to

Comparing this with 67, we deduce the following im-

portant theorem :

A quiescent rigid body isfree to twist about all the srews

of a screw complex A. If the body receive an impulsive

* Dr. Klein has, in a letter to the writer, pointed out the importance of

the kinetic complex. Dr. Klein was led to this complex by expressing the

condition that the impulsive screw should be reciprocal to the corresponding
instantaneous screw.
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-wrench on a screw r\ belonging to A, then the body will com-

mence to twist about the screw 9, of which r\ is thepolar with

respect to the kinetic complex.

The screw TJ is, of course, only one of a screw com-

plex S of the (7
-
n)

th
order, an impulsive wrench on

any one of which would make a body commence to twist

about 9
( 55) ; r\ is, however, the only screw belonging

to S which also belongs to A ; a wrench on
i\ is the

reduced wrench on A, appropriate to a wrench on any
other screw belonging to ,5*

( 66).

1 49 The Potential Complex. If a rigid body which

has freedom of the nth order be displaced from a position

of stable equilibrium by a twist of given amplitude about

& screw 9, of which the co-ordinates referred to the n

principal screws of the potential are 1? . . . n, then the

potential energy of the new position is proportional to

Vtff + &C. + VnZ9n\

If this expression be equated to zero, it denotes a

screw complex of the (n
-

i)
th order and second degree,

which may be termed the potential complex.

The potential complex possesses a physical import-
ance in every respect analogous to that of the kinetic

complex ; by reference to
( 72) the following theorem

can be deduced.

If a rigid body be displaced from a position of equi-

librium by a twist about a screw 0, then a wrench acts

upon the body in its new position on a screw which is

the polar of 9 with respect to the potential complex.

150 Harmonic Screws. The constructions by which

the harmonic screws were determined in the case of the

second and the third orders have no analogies in the

fourth order. We shall, therefore, here state a general

algebraical method by which they can be determined.

Let /"=o be the kinetic complex, and V=o the
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potential complex, then it is well-known that one set of

axes of reference can be found which will reduce both

U and V to the sum of n squares. These axes of refer-

ence are the harmonic screws.

We may here also make the remark, that any screw

complex U* = o of the (n
-

i}
th order and second degree

can always be transformed in one way to the sum of n

square terms with co-reciprocal screws of reference ; for if

UQ and pQ
= o be transformed so that each consists of

the sum of n square terms, then the form of the expres-

sion ofp6 ( 40) shows that the screws are co-reciprocal.



CHAPTER XIII.

THE DYNAMICS OF A RIGID BODY WHICH HAS FREEDOM
OF THE FIFTH ORDER.

151. Screw Reciprocal to Five Screws. There is no
tnore important theorem in the Theory ofScrews than that

which asserts the existence of one screw reciprocal to

five given screws. At the commencement, therefore, of

the Chapter of which this theorem is the foundation, it

may be well to give a demonstration founded on elemen-

tary principles.

Let one of the five given screws be typified by

x-*k y-yk z-Zk, .= -r = - -
(pitch = pa),

while the desired screw is defined by

x -x\ y-V z- z'
,

-y
_

(pitch

The condition of reciprocity (22) produces five equa-
tions of the following type :

o[(p + pk)ak + ykyk
-

)3*z*] + /3[(p + pkjfik + akzk -

+ yf(p + pk)yk + fikXk
- akyk] + ak(yy'

-
j32

x

)
+ (3k(az'

-

+ yk (fix*
-
ay) - o.

From these five equations the relative values of the

six quantities

can be determined by linear solution. Introducing these

values into the identity

M
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-
)32') + j3(02'

- 7*0 + y(P* -
ay') o,

gives the equation which determines p.

To express this equation concisely we introduce two

classes of subsidiary magnitudes. We write one magni-
tude of each class as a determinant.

= P.i, i, 71

p2/3l + 22 2
-

-#272, P272 + #2/32
-

JV202, 2, j32, 72

~
#373, p373 + #3/33

-
JK303J 3, 03, 73

4, /34 , 74

5, /35, 75

By cyclical interchange the two analogous functions

Q and R are defined.

= z.

Pzy2 + Z2p2-J>za2> ft, 72

/>33 +JV/3
- zsft> Psft + 23a3 - ^373, ps73 + #3ft -J'sOs, ft, 73

ft, 7*

ft, 75

By cyclical interchange the two analogous functions

M and N are defined.

The equation for p reduces to

= o.

The reduction of this equation to the first degree is

an independent proof of the principle, that one screw,

and only one, can be determined which is reciprocal

to five given screws; p being known, a, /3, 7 can be

found, and also two linear equations between .A/, y, 2',

whence the reciprocal screw is completely determined.
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152. Definition of the Sexiant. When six screws,
A ly &c., At, are reciprocal to a single screw T, a certain

relation must subsist between the six screws. This
relation may be expressed by equating the determinant
of 41 to zero. The determinant (called the sextant

may be otherwise expressed as follows :

The equations of the screw A k are

a* /3* 7*

We shall presently show that we are justified in

assuming for T the equations

= ~ = (pitch = p).
o p 7

The condition that A k and T be reciprocal is

(p 4- p*) (aa* + /3/3* + 77*) 4 Xk(yfik
-

fiyk) 4 yk(ayk
-

yak)

+ 2*(|3a*
-

a/3*)
= O.

Writing the six equations of this type, found by
Iving k the values i to 6, and eliminating the six

quantities

pa, p/3, p7, a, /3, 7,

we obtain the result :

t 73^3
-

+ 75^5
~

+

ftp4 +

ftps +

ftpe +

-
73*3, 73P3 +

~
74^4, 74P4 +

~
7s^5> 75P5 +

,, , 72

, ft, 73

4> ft, 7*

s, ft, 7s

e, ft, 76

By transformation to any parallel axes the value of

this determinant is unaltered. The evanescence ofthe de-

terminant is therefore a necessary condition whenever the

six screws are reciprocal to a single screw. Hence we
M2
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sacrificed no generality in the assumption that 7"passed

through the origin.

Since the sexiant is linear in x^y^ zly it appears that

all parallel screws of given pitch reciprocal to one screw

lie in a plane. Since the sexiant is linear in a : , /3i, ji

we have Mobius' theorem
( 80).

The property possessed by six screws when their

sexiant vanishes may be enunciated in different ways,,

which are precisely equivalent.

(a). The six screws are all reciprocal to one screw.

(b}.
The six screws are members of a screw complex

of the fifth order and first degree.

(c}.
Wrenches of appropriate intensities on the six

screws equilibrate, when applied to a free rigid body.

(d). Properly selected twist velocities about the six

screws neutralize, when applied to a rigid body.

(e).
A body might receive six small twists about the-

six screws, so that after the last twist the body would

occupy the same position which it had before the first.

If seven wrenches equilibrate (or twists neutralize),

then the intensity of each wrench (or the amplitude of

each twist) is proportional to the sexiant of the six non-

corresponding screws.

153. Equilibrium. For a rigid body which has free-

dom of the fifth order to be in equilibrium, the necessary
and sufficient condition is that the forces which act upon
the body constitute a wrench upon that one screw ta

which the freedom is reciprocal. We thus see that it is

not possible for a body which has freedom of the fifth

order to be in equilibrium under the action of gravity

unless the screw reciprocal to the freedom have zero

pitch, and coincide in position with the vertical through
the centre of inertia.

Professor Sylvester has shown* that when six lines,

*
Comptes Rendus, tome 52, p. 816. See also p. 741.
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P, Q, R, S
y T, [7, are so situated that forces acting

along them equilibrate when applied to a, free rigid body,
a certain determinant vanishes, and the six lines are in

involution*

Using the ideas and language of the Theory of

Screws, this determinant is the sexiant of the six screws,

the pitches of course being zero.

If ,TMJ , ymy zm ,
be a point on one of the lines, the direc-

tion cosines of the same line being am , j3m, 7, the condi-

tion is

-
y\<*\ o.

02, p2, 72, J)Yy2-22D2 ,
22a3 -#27 2, *2p 2

tt4 , fii, 74, J)
;

474 24)84, 24a 4
-

-#474? #4J34

5> HO, 7 5 y^li^
~

^of^S? 25(15 X*TJ5) ^5f^a

A single screw JT must be capable of being found

which is reciprocal to all the six screws P, Q, R, S, Ty U.

Suppose the rigid body were only free to twist about X,
then the six forces would not only collectively be in

equilibrium, but severally would be unable to stir the

body only free to twist about X.

In general a body able to twist about six screws

(of any pitch) would have perfect freedom ;
but the

body capable of rotating about each of the six lines,

Py Qy Ry Sy Ty Uy which B.rQ in involution, is not ne-

cessarily perfectly free (Mobius).

* In the language of Pliicker (Neue Geometric des Raumes) a system of

lines in involution forms a linear complex. In our language a system of lines

in involution consists of the screws of equal pitch belonging to a screw complex

of the fifth orden andfirst degree. See also Salmon's Geometry of Three

Dimensions, third edition, p. 456, note. It may save the reader some trouble

to observe here that the word involution has been employed in a more gene-

ralised sense by Battaglini, and in quite a different sense by Klein.
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If a rigid body were perfectly free, then a wrench

about any screw could move the body ;
if the body be

only free to rotate about the six lines in involution, then

a wrench about every screw (except X) can move it.

The conjugate axes of Professor Sylvester (p. 743) are

presented in the present system as follows : Draw any

cylindroid which contains the reciprocal screw X, then

the two screws of zero pitch on this cylindroid are a pair

of conjugate axes. For a force on any transversal inter-

secting this pair of screws is reciprocal to the cylindroid,

and is therefore in involution with the original system.
Draw any two cylindroids, each containing the re-

ciprocal screw, then all the screws of the cylindroids

form a screw complex of the third order. Therefore the

two pairs of conjugate axes, being four screws of zero

pitch, must lie upon the same quadric. This theorem is

due to Professor Sylvester.

The cylindroid also presents in a clear manner the

solution of the problem of finding two rotations which

shall bring a body from one position to any other given

position. Find the twist which would effect the desired

change. Draw any cylindroid through the corresponding

screw, then the two screws of zero pitch on the cylindroid
are a pair of axes that fulfil the required conditions. If

one of these axes were given the cylindroid would be

defined and the other axis would be determinate.

154. Impulsive Screws and Instantaneous Screws. We
can determine the instantaneous screw corresponding to

a given impulsive screw in the case of freedom of the

fifth order by geometrical considerations. Let A, as

before, represent the screw reciprocal to the freedom, and

let p be the instantaneous screw which would correspond
to A as an impulsive screw, if the body were perfectly

free ; let r\ be the screw on which the body receives an
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impulsive wrench, and let be the screw about which the

body would commence to twist in consequence of this

impulse if it had been perfectly free.

The body when limited to the screw complex of the

fifth order will commence to move as if it had been free,

but had been acted upon by a certain unknown wrench

on X, together with the given wrench on t|. The move-
ment which the body actually acquires is a twisting
motion about a screw which must lie on the cylindroid

(, p). We therefore determine to be that one screw on

the known cylindroid (, p) which is reciprocal to the

given screw X. The twist velocity of the initial twisting
motion about 9, as well as the intensity of the impulsive
wrench on the screw X produced by the reaction of the

constraints, are also determined by the same construc-

tion. For by 17 the relative twist velocities about 0, ,

and p are known ; but since r/' is known, the twist velocity

about is known
( 60) ; and therefore, the twist velo-

city about is known ; finally, from the twist velocity

about p, the intensity X" is determined.

155. Analytical Investigation. A quiescent rigid body
which has freedom of the fifth order receives an impul-

sive wrench on a screw r\ : it is required to determine the

instantaneous screw 0, about which the body will com-

mence to twist.

Let X be the screw reciprocal to the freedom, and let

the co-ordinates be referred to the absolute principal

screws of inertia. The given wrench compounded with

a certain wrench on X must constitute the wrench which,

if the body were free, would make it twist about 0, whence

we deduce the six equations (h being an unknown

quantity).

hpiQi
=

rf'tji -f X"Xi

&c., &c.,

h$s = /V, + X"X C .
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Multiplying the first of these equations by Xi, the second

by X2, &c., adding the six equations thus produced, and

remembering that 6 and X are reciprocal, we deduce

2 = o.

This equation determines X" the intensity of the im-

pulsive reaction of the constraints. The co-ordinates of

the required screw 9 are, therefore, proportional to the

six quantities

rjiSXi
2 -

Xi2?hXi. c
' --

'
&c- A

156. Principal Screws of Inertia. We are now ena-

bled to determine the co-ordinates of the five principal

screws of inertia ; for if be a principal screw of inertia,

then

whence

with similar values for ?2, &c., 6 . Substituting these

values in the equation

and making = x
y
we have- for x the equation

p\- x pi- x pi- x pi
- x ps

- x ps-x

This equation is of the fifth d egree, corresponding to

the five principal screws of inertia. If x' denote one of

the roots of the equation, then the corresponding prin-

cipal screw of inertia has co-ordinates proportional to

AI Aj A3 A 4 AS A
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We may easily verify with these co-ordinates that

each pair of principal screws of inertia are recipro-
cal : for let xf, yd' be a pair of roots, then the differ-

ence between the two equations

= o and 2 - o is

but this is equally the condition that the two screws of

which the co-ordinates are

shall be reciprocal ( 57).

It is also easy to see that

* ~
'

Since each of the terms on the left-hand side of this

equation is zero, it follows that the right-hand side must

be zero ; but this is equivalent ( 54) to the statement that

the principal screws of inertia are conjugate screws of

inertia
( 57).
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CHAPTER XIV.

THE DYNAMICS OF A RIGID BODY WHICH HAS FREEDOM
OF THE SIXTH ORDER.

157. Introduction. When a rigid body has freedom

of the sixth order, it is perfectly free. The screw com-

plex of the sixth order includes every screw in space.

That there is no reciprocal screw to such a complex
is merely a different way of asserting the obvious pro-

position that when a body is perfectly free it cannot

remain in equilibrium, if the forces which act upon it

have a resultant.

158. Impulsive Screws. Let A l9 A 2, &c., denote a

series of instantaneous screws which correspond re-

spectively to the impulsive screws Rl9 R2, &c., the body

being perfectly free. Corresponding to each pair Ai 9 RI
is a certain specific parameter. This parameter may be

conveniently defined to be the twist velocity produced
about At by an impulsive wrench on R i9 of which

the intensity is one unit. If six pairs, AiRi, A ZRZ,

&c., be known, and also the corresponding speci-

fic parameters, then the impulsive wrench on any
other screw R can be resolved into six impulsive
wrenches on R19 &c., R6, these will produce six known
twist velocities on Ai9 &c., A 6, which being compounded

together determine A, the twist velocity about A, and

therefore the specific parameter ofR and A. We thus see

that it is only necessary to be given six corresponding

pairs, and their specific parameters, in order to de-

termine completely the effect of any other impulsive
wrench.

We are now going to show that z/ seven pairs a
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corresponding instantaneous and impulsive screws be given,
then the relation between every other pair is absolutely

determined. It appears from 30 that appropriate
twist velocities about A^ &c., A 1 can neutralise.

When this is the case, the corresponding impulsive
wrenches on JR l9 &c., Rly must equilibrate, and therefore

the relative values of the intensities are known. It

follows that the specific parameter of each pair A RI is

proportional to the quotient obtained by dividing the

sexiant ofA 2 , &c., A^ by the sexiant ofRz , &c., R6 . With,

therefore, the exception of a constant factor, the spe-

cific parameter of every pair of screws is known, when
seven corresponding screws are known.

When therefore seven instantaneous screws are known,
and the corresponding seven impulsive screws, we are

enabled by geometrical construction alone to deduce

the instantaneous screw corresponding to any eighth

impulsive screw, and vice versa.

A precisely similar similar method ofproof will give
us the following theorem :

If a rigid body be in position of stable equilibrium
under the influence of a sytem of forces which have

a potential, and if the twists abont seven given screws

evoke wrenches about seven other given screws, then,

without knowing any further about the forces, we shall

be able to determine the screw on which a wrench is

evoked by a twist about any eighth screw.

We shall state the results of the present section in

a form, which may, perhaps, interest the student ofmo-

dern geometry. We must conceive two corresponding

systems of screws, of which the correspondence is com-

pletely established, when, to any seven screws regarded
as belonging to one system, the seven corresponding

screws in the other system are known. To every screw

in space viewed as belonging to one system will corres-
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pond another screw viewed as belonging to the other

system. Six screws can be found, each of which coin-

cides with its correspondent. To a screw complex of

the nth order and mth
degree in one system will corres-

pond a screw complex of the nth order and mth
degree

in the other system.
We add here a few examples to illustrate the use

which may be made of screw co-ordinates.

159. Theorem. When an impulsive force acts upon
a free quiescent rigid body, the directions of the force

and of the instantaneous screw are parallel to a pair
of conjugate diameters in the momental ellipsoid.

Let 7i, ... i7s be the co-ordinates of the force referred

to the absolute principal screws of inertia, then (37)

(in + n)
2 +

(-773
+ m)

8 +
(r?5

+ r/6)
2 =

i,

and from
( 93) it follows that the direction cosines of 17

with respect to the principal axes through the centre of

inertia are

(h +
*?s)> (la

+ m), (i?5
+

fc).

If a, b
f c be the radii of gyration, then the instan-

taneous screw corresponding to 17 has for co-ordinates

The condition that 17 and its instantaneous screw shall

be parallel to a pair of conjugate diameters of the mo-

mental ellipsoid is

or

But if the impulsive wrench on 17 be a force, then the

pitch of
17 is zero, whence the theorem is proved.
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1 60. Theorem. When an impulsive wrench acting
on a free rigid body produces an instantaneous rotation,

the axis of the rotation must be perpendicular to the im-

pulsive screw.

Let ni, . . . rj6 be the axis of the rotation, then

or

whence the screw of which the co-ordinates are +
-

0rj>, + bv}Zy &c., is perpendicular to r/, and the theorem is

proved.
From this theorem, and the last, we infer that, when

an impulsive force acting on a rigid body produces
an instantaneous rotation, the direction of the force, and
the axis of the rotation, are parallel to the principal

axes of a section of the momental ellipsoid.

161. Principal Axis. If rj be a principal axis of a

rigid body, it is required to prove that

reference being made to the absolute principal screws of

inertia.

For in this case a force along a line 6 intersecting /,

compounded with a couple in a plane perpendicular to r\,

must constitute an impulsive wrench to which rj corres-

ponds as an instantaneous screw, whence we deduce

( 93)> ^ and k being arbitrary constants.

.

l -7- -T !!,
P\ am

&c.,

n h dR ^
06 = -r -T + kpwt.

pt dm

Expressing the condition that pe
=

o, we have
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-T- + A22 i -T- = o ;

but we have already seen
( 93, 105) that the two last

terms of this equation are zero, whence the required

theorem is demonstrated.

The formula we have just proved may be written in

the form

2/i . /irji . pirn
= O.

This shows that if the body were free, then an impulsive

force suitably placed would make the body commence
to rotate about ?j. Whence we have the following"

theorem :

A rigid body previously in unconstrained equilibrium
in free space is supposed to be set in motion by a single

impulsive force ;
if the initial axis of twist velocity be a

principal axis of the body, the initial motion is a pure

rotation, and conversely. (Mr. Townsend, Educational

Times, reprint, Vol. xxi., p. 107.)

It may also be asked what is the point of the body
one of the three principal axes through which coincides

with rj ? This point is the intersection of and rj. To
determine the co-ordinates of 9 it is only necessary to

find the relation between h and k, and this is obtained

by expressing the condition that is reciprocal to
rj,

whence we deduce

2h 4 kuj = o.

Thus 6 is known, and the required point is determined.

If the body be fixed at this point, and then receive the

impulsive couple perpendicular to 17, the instantaneous

reaction of the point will be directed along 9.

1 62. Harmonic Screws. We shall conclude by stating
vfor the sixth order the results which are included as par-
ticular cases of the general theorems in Chapter VIII.
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If a perfectly free rigid body be in equilibrium
under the influence of a system of forces as restricted

in 6, then six screws can be found such that each

pair are conjugate screws of inertia, as well as

conjugate screws of the potential, and these six

screws are called harmonic screws. If the body be

displaced from its position of equilibrium by a twist

of small amplitude about a harmonic screw, and if the

body further receive a small initial twisting motion

about the same screw, then the body will continue for

ever to perform small twist oscillations about that screw.

And, more generally, whatever be the initial circum-

stances, the movement of the body is compounded of

twist oscillations about the six harmonic screws.





APPENDIX,

No. I.

I HERE briefly describe the principal works known to

me which bear on the subject of the present volume.

POINSOT (L.) Sur la composition des moments et la composition des

aires (1804). Paris Journal de 1'Ecole Polytechnique ; t. vi.

13 cah., pp. 182-205 (1806).

In this paper the author of the conception of the couple, and

of the laws of composition of couples, has demonstrated the

important theorem that any system offorces applied to a rigid

body can be reduced to a single force, and a couple in a plane perpen-

dicular to theforce.

CHASLES (M.) Note sur les proprietes generales du systeme de deux

corps semblables entfeux et places d'une maniere quelconque

dans Vespace; et sur le deplacement fini ou infiniment petit

d?un corps solide libre. Bulletin des Sciences Mathe*ma-

tiques, par Ferussac. Vol. xiv., pp. 321-326 (Paris,

1830).

The author shows that there always exists one straight line,

about which it is only necessary to rotate one of the bodies

to place it similarly to the other. Whence (p. 324) he is led to

the following fundamental theorem :

Eon peut ioujours transporter un corps solide libre d'une position

dans une autre position quelconque, determime par le mouvement con-

tinu d'une vis a laquelle ce corps seraitfixk invariablement.

N
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That this theorem is really due to Chasles there can be little

doubt. He explicitly claims it in note 34 to the Aperqu Histo-

rique. Three or four years later'than the paper we have cited,

Poinsot published his celebrated " Theorie Nouvelle de la Rota-

tion des Corps" (Paris, 1834). In this he enunciates the same

theorem. As Poinsot does not refer to Chasles, I had been led,

in ignorance of Chasles' previous paper, to attribute the theorem

to Poinsot (Transactions of Royal Irish Academy, Vol. xxv.,

p. 1 60); but I corrected the mistake in Phil. Trans., 1874,

p. 16.

MOBIUS (A. F.) Lehrbuch der Statik (Leipzig, 1837).

This book is, we learn from the preface, one of the numerous

productions to which the labours of Poinsot has given rise.

The first part, pp. 1-355, discusses the laws of equilibrium

of forces, which act upon a single rigid body. The second

part, pp. 1-313, discusses the equilibrium of forces acting

upon several rigid bodies connected together. The charac-

teristic feature of the book is its great generality. I here

enunciate some of the principal theorems.

If a number of forces acting upon a free rigid body be

in equilibrium, and if a straight line of arbitrary length and

position be assumed, then the algebraic sum of the tetrahedra,

of which the straight line and each of the forces in succession

are pairs of opposite edges, is equal to zero (p. 94).

If four forces are in equilibrium they must be generators of

the same hyperboloid (p. 177).

If five forces be in equilibrium they must intersect two

common straight lines (p. 179).

If the lines of action of five forces be given, then a certain

plane S through any point P is determined. If the five forces

can be equilibrated by one force through P, then this one force

must lie in S (p. 180).

To adopt the notation of Professor Cayley, we denote by
12 the perpendicular distance between two lines i, 2, multiplied
into the sine of the angle between them (Comptes Rendus,
t. Ixi., pp. 829-830). Mobius shows (p. 189) that if forces
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along four lines i, 2, 3, 4 equilibrate, the intensities of these

forces are proportional to

^23.24.14, ^13.14.34, A/12. 14. 24, A/12. 13.23

It is also shown that the product of the forces on i and 2,

multiplied by 12, equals the product of the forces on 3 and 4

multiplied by 34. He hence deduces Chasles' theorem (Liou-

ville's Journal, t. xii., p. 222), that the volume of the tetrahe-

dron formed by two of the forces is equal to that formed by the

remaining two.

i

MoBlUS (A. F.) Ueber die Zusammensetzung unendlich kleiner

Drehungen. Crelle's Journal ; t. 18, pp. 189-212 (Berlin,

1838).

This memoir contains many very interesting theorems, of

which the following are the principal : Any given displace-

ment of a rigid body can be effected by two rotations. Two equal

parallel and opposite rotations compound into a translation.

Rotations about intersecting axes are compounded like forces,

If a number of forces acting upon a free body make equilibrium,

then the final effect of a number of rotations (proportional to

the forces) on the same axes will be zero. If a body can be

rotated about six independent axes, it can have any movement

whatever.

RODRIGUES (O.) Des lots geometriques quirtgissent les deplacements

d'unsysteme solide dans Fespace et de la variation des co-ordon-

nees, provenant de ces deplacements considers independamment

des causes quipeuvent les produire. Liouville's'Journal ; t. 5,

pp. 380-440 (5th Dec., 1840).

This paper consists mainly of elaborate formulae relating to

displacements of finite magnitude. It has been already cited

for an important remark ( 12).
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CHASLES (M.) Proprietes geometriques relatives au mouvement in-

finiment petit cTun corps solide libre dans. Vespace. Comptes

Rendus; t. xvi., pp. 1420-1432 (1843).

A pair of "
droites conjugue"es" are two lines by rotations

about which a given displacement can be communicated to a

rigid body. Two pairs of "
droites conjugue"es" are always

generators of the same hyperboloid.

POINSOT (L.) Th&orie nouvelle de la rotation des corps. Liouville's

Journal ; t. xvi., pp. 9-129, 289-336 (March, 1851).

This is Poinsot's classical memoir, which contains his beau-

tiful geometrical theory of the rotation of a rigid body about a

fixed point. In a less developed form the Theory had been pre-

viously published in Paris in 1834, as already mentioned.

CAYLEY (A.) On a new analytical representation of curves in space

Quarterly Mathematical Journal; Vol. iii., pp. 225-236

(1860). Vol. v., pp. 81-86.

In this paper the conception of the six co-ordinates of a line is

introduced for the first time.

SYLVESTER (J. J.) Sur T involution des ligneidroites dans Tespace*

considerees comme des axes de rotation. Comptes Rendus ;

t. Hi., pp. 741-746 (April, 1861).

Any small displacement of a rigid body can generally be

represented by rotations about six axes (Mobius). But this is

not the case if forces can be found which equilibrate when

acting along the six axes on a rigid body. The six axes in

this case are in involution. The paper discusses the geometrical

features of such a system, and shows, when five axes are given,

how the locus of the sixth is to be found. Mobius had shown

that through any point a plane of lines can be drawn in involu-

tion with five given lines. The present paper shows how the plane
can be constructed. All the transversals intersecting a pair of

conjugate axes are in involution with five given lines. Any
two pairs of conjugate axes lie on the same hyperboloid.



APPENDIX I. l8l

Two forces can be found on any pair of conjugate axes,

which are statically equivalent to two given forces on any
other given pair of conjugate axes. In presenting this paper
M. Chasles remarks that Mr. Sylvester's results lead to the

following construction : Conceive that a rigid body receives

any small displacement, then lines drawn tnrough any six

points of the body perpendicular to their trajectories are in

involution. M. Chasles takes occasion to mention also some

other properties of the conjugate axes.

SYLVESTER (J. J.) Note sur V involution de six lignes dans Vcspacf.

Comptes Rendus; t. Hi., pp. 815-817 (April, 1861).

The six lines are i, 2, 3, 4,5, 6. Let the line i be repre-

sented by the equations

+ c& + d-u = o,

o-iX + fry + y<z -i- SiU = o,

and let t,j represent the determinant

y, 5,

a
j A

Form now the determinant A 8
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A, = o and A, = o, the five lines i, 2, 3, 4, 5 are in involution.

If all the other minors are zero, the six lines will intersect a

single transversal. If A5 = o, without any other condition,

the five lines i, 2, 3, 4, 5 intersect a single transversal. If

A4
= o without any other condition, the lines i, 2, 3, 4 have but

one common transversal (Cayley). A determinant can be found

which is equal to the square root of A.. This square root is

the determinant given in 153.

GRASSMANN (H.) Die Ausdehnungskhre. Berlin (1862).

A system of n, numerically equal,
" Grossen erster Stufe," of

which each pair are "
normal," is discussed on p. 113. A set of

co-reciprocal screws is a particular case of this very general

conception.

The "inneren Produkte" of two "Grossen" divided by the

product of their numerical values, is the cosine of the angle
between the two " Grossen." If a, I, c, . . . be normal, and if

k, I be any two other "
Grossen," then

cos Lkl = cos Lak costal + cos Lbk. cosZ./, +&c. (p. 139).

Here we have a very general theory, which includes screw

co-ordinates as a particular case.

In a note on p. 222 the author states that the displacement of

a body in space, or a general system of forces, form an "
allge-

meine raumliche Grosse zweiter Stufe."

The " kombinatorische Produkt" (p. 41) of n screws will

contain as a factor that single function whose evanescence

would express that the n screws belonged to a screw com-

plex of the (n-ij
h
order.

PLUCKER (J.) On a new geometry of space. Phil. Trans., 1865.

Vol. 155, pp. 725-791.

In this paper the linear complex is defined (p. 733). Some

applications to optics are made (p. 760) ;
the six co-ordinates

of a line are considered (p. 774) ; and the applications to the

geometry offerees (p. 786).
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PLUCKKR (J.) Fundamental views regarding mechanics. Phil.

Trans. (1866), Vol. 156, pp. 361-380.

The object of this paper is to
"

connect, in mechanics,

translator/ and rotatory movements with each other by a princi-

ple in geometry analogous to that of reciprocity." One of the

principal theorems is thus enunciated: "
Any number of rota-

tory forces acting simultaneously, the co-ordinates of the result-

ing rotatory force, if there is such a force, if there is not,

the co-ordinates of the resulting rotatory dyname, are obtained

by adding the co-ordinates of the given rotatory forces. In the

case of equilibrium the six sums obtained are equal to zero."

MANNHEIM (A.) Sur le dlplacement cTun corps solide. Journal
de Mathe"matiques, 2" Series, t. xl. (1866).

To M. Mannheim belongs the credit of having been the

first to study geometrically the kinematics of a constrained rigid

body from a perfectly general point of view. This paper con-

tains the following theorem :

When a rigid body has freedom of the second order, any

point of the body must be displaced on a certain surface, and at

any instant all the normals to these surfaces will intersect two

straight lines.

This is easily seen from the Theory of Screws, because any

force reciprocal to the cylindroid expressing this freedom must

be a normal to all the surfaces belonging to the points on it.

SPOTTISWOODE (W.) Note sur Vequilibre des forces dans fespace.

Comptes Rendus; t. Ixvi., pp. 97-103 (January, 1868).

If P
, &c., Pn _i be n forces in equilibrium, and if (o, i)

denote the moment of P , PI, then the author proves* that

P^o, i) + P
f (o, 2) + &c. = o,

P(i, o) + + Pt (i, 2) + &c. = o,

P(2 t o) + Pl (2, l)+ +. ..-O.

* We may remark that since the moment of two lines is the virtual co-effi-

cient of two screws of zero pitch, these equations are given at once by virtual

velocities, if we rotate the body round each of the forces in succession.
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As we have thus n equations to determine only the relative values

of n quantities, the redundancy is taken advantage of to prove
that

z? z?t

= &C.,
[0,0] [i, i]

where [o, o], [i, i], &c., are the coefficients of (o, o), (i, i),

&c., in the determinant

(o, o) (o, i) . . .

(i, o) (i, i) ...

When the number of forces is less than seven, it is shown
how the formula? admit of a special transformation, which

expresses the conditions to be fulfilled.

This very elegant result may receive an extended interpreta-

tion. If P
,
/> P2 , &c., denote the intensities of wrenches on the

screws o, i, 2, &c.
; and if (12) denote the virtual co-efficient of

i and 2, then, when the formulae of Mr. Spottiswoode are satis-

fied, the n wrenches equilibrate, provided that the screws belong
to a screw complex of the (n

-
ij

h order and first degree.

PLUCKER (J.) Neue Geometric des Raumes gegriindet auf die

Betrachtung der geraden Linie ah Raumelement. Leipzig

(B. G. Triibner, 1868-69), PP- J ~374-

This elaborate work is the principal authority on the theory
of the linear complex. The subject is essentially geometrical,
but there are a few remarks on mechanics

;
thus the author, on

p. 24, introduces the word "
Dyname :"

" Durch den Ausdruck

'Dyname/ habe ich die Ursache einer beliebigen Bewegung
eines starren Systems, oder, da sich die Natur dieser Ursache,
wie die Natur einer Kraft iiberhaupt, unserem Erkennungsver-

mogen entzieht, die Bewegung selbst : statt der Ursache die

Wirkung, bezeichnet." Although it is not very easy to see the

precise meaning of this passage, yet it appears that a '

Dyname
J
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may be either a twist or a wrench (to use the language of the

Theory of Screws.)

On p. 25 we read :

" Dann entschwindet das specifisch

Mechanische, und, um mich auf eine kurze Andeutung zu be-

schranken : es treten geometrische Gebilde auf, welche zu Dyna-
men in derselben Beziehung stehen, wie gerade Linien zu

Kraften und Rotationen." There can be little doubt that the
"
geometrische Gebilde," to which Pliicker refers, are what we

have called screws.

As we have already stated ( 16), it is in this book that we
find the first mention of the surface which we call the cylindroid.

Through any point a cone of the second degree can be drawn,

the generators of which are lines belonging to a linear complex
of the second degree. If the point be limited to a certain sur-

face the cone breaks up into two planes. This surface is of the

fourth class and fourth degree, and is known as Rummer's sur-

face, or as the surface of singularities appropriate to the given

linear complex. (See Kummer, Abhandl. der Berl. Akad., 1866).

This theory is of interest for our purpose, because the locus

of screws reciprocal to a cylindroid is a very special linear

complex of the second degree, of which the cylindroid itself

is the surface of singularities.

KLEIN (Felix). Zur Theorie der Linien- Complexe des ersten und

zweiten Grades. Math. Ann., II. Band, pp. 198-226

( i4th June, 1869).

The "simultaneous invariant" of two linear complexes is

discussed. In our language this function is the virtual co-

efficient of the two screws reciprocal to the complexes. The

six fundamental complexes are considered at length, and

many remarkable geometrical properties proved. It is a

matter of no little interest that these purely geometrical re-

searches have a physical significance attached to them by the

Theory of Screws.

This paper also contains the following proposition: If

,* . . ., xt be the co-ordinates of a line, and kvt ... kt be con-
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stants, then the family of linear complexes denoted by

x? x*
r + &C. + j-i-r

= O,
RI
- A K6

- A

have a common surface of singularities where X is a variable

parameter. If the roots A,, &c. be known, we have a set of

quasi elliptical co-ordinates for the line x. (Compare with

156).

It is in this memoir that we find the enunciation of the

remarkable geometrical principle which, when transformed into

the language and conceptions of the Theory of Screws, asserts

the existence of one screw reciprocal to five given screws.

KLEIN (F.) Die allgemeine lineare Transformation der Linien-

Co-ordinaten. Math. Ann., Vol. ii., p. 366-371 (August 4,.

1869).

Let Uv , . . U, denote six linear complexes. The moments of a

straight line, with its conjugate polars with respect to U^ ... 7,,

are, when multiplied by certain constants, the homogeneous
co-ordinates of the straight line, and are denoted by xit . . . xt .

Arbitrary values ofxlt &c., do not denote a straight line, unless a

homogeneous function of the second degree vanishes.* If this

condition be not satisfied, then a linear complex is defined by
the co-ordinates, and the function is called the invariant of the

linear complex. The simultaneous invariant of two linear com-

plexes is a function of the co-ordinates, or is equal to A sin <f>

- (K + K1

) cos <, where K and K are the parameters of the

linear complexes, A the perpendicular distance, and </>
the angle

between their principal axes. If this quantity be zero, the

two linear complexes are in involution. (The reader will observe

that the word involution is here employed in a very different

sense to that in which the same word is used by Professor

Sylvester.)

The co-ordinates of a linear complex are the simultaneous

* This equation expresses that the pitch of the screw denoted by the

co-ordinates is zero.
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invariants of the linear complex with each of six given linear

complexes multiplied by certain constants. The six linear com-

plexes can be chosen so that each one is in involution with the

remaining five. The reader will easily perceive the equivalent
theorems in the Theory of Screws:

ZEUTHEN (H. G.} Notes sur un systems de co-ordonnees liniaire

dans fespace. Math. Ann., Vol. i., pp. 432-454 (1869).

The co-ordinates of a line are the components of an unit force

on the line decomposed along the six edges of a tetrahedron.

These co-ordinates must satisfy one condition, which expresses

that six forces along the edges of a tetrahedron have a single

resultant force. The author makes applications to the theory

of the linear complex.

Regarding the six edges as screws of zero pitch, they are

not co-reciprocal. It may, however, be of interest to show how

these co-ordinates may be used for a different purpose from

that for which the author now quoted has used them. Call the

virtual co-efficients of the opposite pairs of edges Z, M, N. If

the co-ordinates of a screw with respect to this system be

0! . . . a , then the pitch is

and the virtual co-efficient of the two screws <, 6 is

L

BATTAGLINI (G.) Memoria sulk dinami in involuzione. Atti di

Napoli IV. (1869).

The co-ordinates of a dyname are the six forces which

acting along the edges of a tetrahedron, are equivalent to the

dyname. This memoir investigates the properties of dynames

of which the co-ordinates satisfy one or more linear equations.

The author shows analytically the existence of two associated

systems of dynames such that all the dynames of the first

order are correlated to all the dynames of the second. These

correspond to what we would call two reciprocal screw com-

plexes.
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BATTAGLINI (G.) Sul movimento geometrico infinitesimo di un

sistemo rigido.

Estratto dal Rendiconto della JR. Accademia delle Seienze fisiche

e Matematiche. (Fascicolo, May 5, 1870).

This paper and the last belong to a series by the same

author, in which the tetrahedron co-ordinates are employed in

the analytical development of the statics of a rigid body, as

well as the theory of small displacements.

MANNHEIM (A.) Etude sur h deplacement dune figure deforme in-

variable. Recueil des Memoires des Savants etrangers ; t. xx.

Journal de l'6cole Polytechnique, cah. 43, pp. 57-122

(1870).

This paper discusses the trajectories of the different points of

a body when its movement takes place under prescribed condi-

tions. Had I been sooner acquainted with this paper, I should

have attributed to M. Mannheim the theorem about the screws

of zero pitch on a cylindroid given in 95. Another theorem of

the same class is also given by M. Mannheim. When a rigid

body has freedom of the third order, then for any point on the

surface of a certain quadric* the possible displacements are

limited to a plane.

BALL (R. S.) On the small oscillations of a Rigid Body about a

fixed point under the action of any forces, and, more particu-

larly, when gravity is the only force acting. Transactions

of the Royal Irish Academy, Vol. xxiv., pp. 593-627

(January 24, 1870.)

The principal theorems contained in this paper are demon-
strated in 130 of the present volume.

* The reader \rill easily see that this is the pitch quadric.
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KLEIN (Felix). Notiz bttreffend den Zusammenhang der Linien-

Geomdrie mit der Mechanik starrer Korper. Math. Ann.,
Vol. iv., pp. 403-415 (June, 1871).

Among many interesting matters this paper contains the germ
of t\iephysical conception of reciprocal screws. We thus read on

p. 413: "Es lasst sich nun in der That' ein physikalischer

Zusammenhang zwischen Kraftesystemen und unendlich kleinen

Bewegungen angeben, welcher es erklart, wie so die beiden

Dinge mathematisch co-ordinirt auftreten. Diese Beziehung ist

nicht von der Art, dass sie jedem Kraftesystem eine einzelne

unendlich kleineBewegungzuordnet, sondern sie ist von anderer

Art, sie ist eine dualistische.

" Es sei ein Kraftesystem mit de^i Coordinaten E, ff, Z, A,

M, N, und eine unendlich kleine Bewegung mit den Coordi-

naten ', H', Z'
y A', M7

, ^gegeben, wobei man die Co-ordinaten

in der im 2 besprochenen Weise absolut bestimmt haben mag.
Dann reprdsentirt, wie hier nicht weiter nachgewiesen werden

soil, der Ausdruck

A'E + M'N+ WZ + E'A + ITM+ Z'N

das Quantum von Arbeit, welches das gegebene Kraftesystem bei

Eintritt der gegebenen unendlich kleinen Bewegung leistet. Ist

insbesondere

A'E +MH + JSTZ + E'A + ITM+ Z'N= o,

so leistet das gegebene Kraftesystem bei Eintritt der gegebenen
unendlich kleinen Bewegung keine Arbeit. Diese Gleichung
nun reprasentirt uns, indem wir einmal E, H, Z, A, M, N, das

andere E', H', Z', A', M', N' als veranderlich betrachten, den

Zusammenhang zwischen Kraftesystemen und unendlich kleinen

Bewegungen."

KLEIN (Felix). Ueber gewtsse in der Linien-Geometrie auftretende

Differential- Gleichungen. Math. Ann., V. Band, pp. 278

-303 (November, 1871).

There is a remarkable invariant of n linear complexes #i * o,

U* = o, . . . Un = o. For let AI, . . . A,. be arbitrary multipliers,
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then \\U\ + . . . + An 7M = o also denotes a linear complex, pro-

vided that a certain condition is satisfied. This condition is

presented as a homogeneous function of the second degree in

A!, . . -. Aw equated to zero. The discriminant of the function is

the invariant in question.

BALL (R. S.) The Theory of Screws a geometrical study ofihe

kinematics, equilibrium, and small oscillations of a Rigid

Body. Transactions of the Royal Irish Academy, Vol.

xxv., pp. 137-217 (November 13, 1871).

This is the original paper on the Theory of Screws. In

estimating how far the contents of this paper are novel, it is to

be remembered that the cylindroid had been discussed by
Pliicker two or three years previously, while the conception of

reciprocal screws had been announced by Klein a few months

before. Both these authors would, of course, have been re-

ferred to in this paper had I been acquainted with their works at

the time the paper was written.

CLIFFORD (W. K.) On Biquaternions. Proceedings of the Lon-

don Mathematical Society, Nos. 64, 65, p. 382 (i2th

June, 1873).

A Biquaternion is defined to be the ratio of two " motors."

A "motor" may be said to bear the same relation to the dyname
of Pliicker which a vector bears to a linear magnitude. The

Biquaternions are shown to be intimately associated with the

speculations of the geometry of elliptic space. See Klein's

wonderful paper,
" Ueber die nicht Euclidische Geometric."

Math. Ann., Band IV., pp. 573-625.

BALL (R. S.) Researches in the Dynamics ofa Rigid Body by the

aid of the Theory of Screws (June 19, 1873). Philosophical

Transactions, pp. 15-40 (1874).

The n principal screws of inertia belonging to a rigid body
which has freedom of the nih order are here discussed.
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LINDEMANN (F.) Ueber unendlich kleine Bewegungen und uber

Krdftesysteme bet allgemeinerprojectivischer Massbestimmung.
Math. Ann., yth Vol., pp. 56-143 (July, 1873).

This is a memoir upon the statics and kinematics of a rigid

body in elliptic or hyperbolic space. Among several results

closely related to the Theory of Screws, we find that the cylin-

droid is only the degraded form in parabolic or common space

of a surface of the fourth order, with two double lines.

WEILER (A.) Ueber die verschiedenen Gattungen der Complex*

zweiten Grades. Math. Ann., Vol. vii., pp. 145-207 (July,

1873).

In this elaborate memoir the author enumerates fifty-eight

different species of linear complex of the second order. The
classification is based upon Rummer's surface, which defines

the singularities of the screw complex.

BALL, (R. S.) Screw Co-ordinates and their applications to pro-

blems in the Dynamics of a Rigid Body. Transactions of

the Royal Irish Academy, Vol. xxv., pp. 259-327 (January

12, 1874).

To trace a satisfactory connexion between an impulsive

screw and the corresponding instantaneous screw is the principal

object of this paper. It is here shown that to the instantaneous

screw, whose co-ordinates are Oi t . . .
, 6 , corresponds an impul-

sive screw, whose co-ordinates are proportional to /A, . . ., /80,

reference being made to the absolute principal screws of inertia.

EVERETT (J. D.) On a new method in Statics and Kinematic*.

(Part I.) Messenger of Mathematics. New Series.

No. 39 (1874).

This paper contains applications of quaternions. The opera-

tor v + Var ( ) is a "
motor," and o- being vectors, the former

denoting a translation or couple, the latter a rotation or force.

The pitch is S-. The equation to the central axis is p = P-
cr <r

x<r. The work done in a small motion is -
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The existence of k equations of the first degree between n
motors is the condition of their belonging to a screw complex
of the first degree, and of order n - k.

EVERETT (J. D.) On a new method in Statics and Kinematics.

(Part II.) Messenger of Mathematics. New Series..

No. 45 (1875).

This paper contains further developments of the theory of

linear relations between motors. Several of the leading theorems

in screws are directly deduced from motor equations by the

ordinary rules of determinants.

EVERETT (J. D.) On a new method in Statics and Kinematics.

(Part III.) Messenger of Mathematics. New Series.

No. 53 (i8?5).

This paper is devoted to the operation of motors upon
motors. The interpretation of such operations is given, the

laws of operation are laid down, and some applications are made,

involving the use of a special symbol called a " motor de-

terminant."
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'

No. II.

NOTE ON THE CYLINDROID.

As the study of surfaces is greatly facilitated by accurate

models, I here give the details of the construction of the

model of the cylindroid figured in the frontispiece. A box-

wood cylinder, 0^15 long and 0^05 diameter, is chucked to

the mandril of a lathe furnished with a dividing plate. A drill

is mounted on the slide rest, and driven by overhead gear. The

parameter />a
-
p$ (in the present case o?o66) is divided into one

hundred parts. By the screw, which moves the slide rest

parallel to the bed of the lathe, the drill can be moved to any
number z of these parts from its original position at the centre

of the length of the cylinder. Four holes are to be drilled for

each value of z. These consist of two pairs of diametrically

opposite holes. The directions of the holes intersect the axis

of the cylinder at right angles. The following table will enable

the work to be executed with facility. / is the angle of 15 :

z
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For example, when the slide has been moved 34-2 parts

from the centre of the cylinder, the dividing plate is to be set

successively to 10, 80, 190, 260, and a hole is to be drilled in

at each of these positions. The slide rest is then to be moved
on to 50 parts, and holes are to be drilled in at 15, 75, 195,

255. Steel wires, each about 0^3 long, are to be forced into

the holes thus made, and half the surface is formed. The

remaining half can be similarly constructed : a length of o?c>66

cos 2/ is to be coloured upon each wire to show the pitch. The

sign of the pitch is indicated by using one colour for positive,

and another colour for negative pitches.

THE END.

5 8606














