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PREFACH.

THe Theory presented in the following pages was
first sketched by the author in a Paper* communi-
cated to the Royal Irish Academy on the 13th of
November, 1871. This Paper was followed by
others,t in which the subject was more fully ‘de-
veloped. The entire Theory has been re-written,
and systematically arranged, in the present volume.

We owe to the geometrical ability of Poinsot
and Chasles the two fundamental theorems from
which this subject takes its rise. To the labours
of Pliicker, and his school, we are indebted for the
theory of linear geometry, which receives a physical
interpretation by the Theory of Screws.

References are made in the foot notes, and more
fully in the Appendix, to various authors whose
writings are connected with the subject discussed in

* Transactions of the Royal Irish Academy, Vol. xxv., pp.
157-217.

t Philosophical Transactions of the Royal Society of Lon-
don, Vol. clxiv., pp. 15—40. Transactions of the Royal Irish Aca-
demy, Vol. xxv., pp. 295-327.
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INTRODUCTION.

Aot v

THE Theory of Screws is founded upon two well-known
theorems. One relates to a system of forces acting on
a rigid body; while the other relates to the displace-
ment of a rigid body. Although these two theorems
are to be found in many treatises on mechanics, yet
a discussion of them here, so far as they are necessary
for our purpose, may be useful.

I,—ON THE REDUCTION OF A SYSTEM OF FORCES APPLIED
TO A RIGID BODY TO ITS CANONICAL FORM.

The Canonical Form.—It has been discovered by Poin-
sot* that any system of forces which act upon a rigid
body can be replaced by a single force, ‘and a couple in
a plane perpendicular to the force. Thus a force, and
a couple in a plane perpendicular to the force, constitute
what may be called the canonical form of a system of forces
applied to a rigid body.

It is easily seen that all the forces acting upon a rigid
body may, by transference to an arbitrary origin, be com-
pounded into a force acting at the origin, and a couple.
Wherever the origin be taken, the magnitude and direc-

* See Appendix I.

J ‘ : b
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tion of the force are both manifestly invariable ; but this
is not the case either with the moment of the couple
or the aspect of its plane.

The origin, however, can be always so selected that
the plane of the couple shall be perpendicular to the
direction of the force. For at any origin the couple can
be resolved into two couples, one in a plane containing
the force, and the other in the plane perpendicular to
the force. The first component can be compounded with
the force, the effect being merely to transfer the force to
a parallel position; thus the entire system is reduced
to a force, and a couple in a plane perpendicular to it.

The Canonical Form is Unique.—It is very important to
observe that there is 02/y one straight line which possesses
the property that a force along this line, anda coupleina
plane perpendicular to the line, is equivalent to the given
system of forces. Suppose two lines possessed the pro-
perty, then if the force and couple belonging to one were
reversed, they must destroy the force and couple belong-
ing to the other. But the two straight lines must be
parallel, since each must be parallel to the resultant of all
the forces supposed to act at a point, and the forces act-
ing along these must be equal and opposite. The two
forces would therefore form a couple in a plane per-
pendicular to that of the couple which is found by com-
pounding the two original couples. We should then
have two couples in perpendicular planes destroying
each other, which is manifestly impossible.

We thus see that any system of forces applied to
a rigid body can be made to assume an extremely sim-
ple form, in which #o arbitrary element is involved.
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II.—ONTHE REDUCTION OF THE DISPLACEMENT OF A RIGID
BODY TO ITS CANONICAL FORM.

Problem.—Two positions of a rigid body being given,
there are an infinite variety of movements by which the
body can be transferred from one of these positions to
the other. It has been discovered by Chasles* that
among these movements there is one of unparalleled
simplicity. The demonstration of this theorem is the
object of the present section.

The Composition of Rotations about Intersecting Axes.—
Suppose a body receive a small rotation through an
angle a about a certain axis, and another small rota-
tion through an angle 3 around a second axis inter-
secting the former one; then the position ultimately
attained could have been reached by a single rotation
from the initial position about an axis appropriately
chosen.

Let 04 and OB (Fig. 1) represent the directions of
the given axes, while their lengths are proportional to
the angles a and (3,
the directions of the
rotations being such
that if an ordinary
screw were placed
with its head at O,
and its axis along
0OA, then the direc-
tion of the rotation
which would make
the screw advance
from O is the direc-
tion of the rotation

* See Appendix 1.
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indicated by 04, with a similar convention for OB.
Completing the parallelogram OA4CB, we shall prove
that a rotation around OC, through an angle propor-
tional to the length OC, will have precisely the same
effect as the two given rotations.

Consider any point 2 of the body which lies in
the plane of the axes. The rotation O4 will depress
the point 2 below the plane of the paper along
the normal to a small distance which is propor-
tional to the product of OA4, and the perpendicular
PQ; that is, proportional to the area of the triangle
POA. In the same way the rotation around OB will
raise £ above the plane of the paper to a distance
which is proportional to the area of POB. The jointeffect
will be to raise 2 to a distance above the paper propor-
tional to the difference between the areas of the triangle
POB and POA.—that is, to the area of POC; but thisis
precisely the same effect as would be produced by a rota-
tion around OC through an angle proportional to OC.

To prove that POC = POB - POA: draw PR
parallel to O4; then OAR = OAP, and BRC = BPC,
whence POA + PBC = OBC; also we have

POA + POB + PBC = POA + POC + OBC,

since each side represents the area of the figure
OAPBC ; therefore

POB = POA + POC.
or
POC = POB ~ POA.

The rotation around OC must, therefore, produce
precisely the same effect on every point in the plane as
is produced by the joint effect of the rotations around
04 and OB.
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and henceit follows, that the two rotations about 04 and
OB can be replaced by the single one about OC.

The correspondence between the solution of this prob-
lem and the principle embodied in the parallelogram
of force should be noticed. We see that rofations about
inlersecting axes are compounded by the same rules as in-
lersecting forces.

Composition of Rotations about Parallel Axes.— We shall
now consider the case in which the two axes A and 5,
about which the body receives small rotations a and (3, are
parallel. Divide the perpendicular distance & between
the parallel axes 4 and B in the inverse proportion of
a and 3, and draw a line C parallel to 4 and B through
the point thus obtained. We shall show that a rotation
around C through an angle a + 3 will be precisely
equivalent to the two given rotations. For consider any
point 2 in the plane at a perpendicular distance x from
C. Then the distances of 2 from A and from B are
respectively

x+d and ¥ -d -2

B
a+f3 a+f3
The effect of the rotations about 4 and B will, therefore,
be to raise 2 above the plane of 4 and B to an amount

a<x+a’afﬁ>+{3(x-dﬁ):(a.pp)x;

but rotation about € through an angle a + 3 would have
had precisely the same effect, and the same will be true
for every other point in the plane besides 2.
We thus see that rofations about parallel axes are com-
pounded by exactly the same laws as parallel forces.
Translations,—The rule for the composition of parallel
fotations would not apply if the two Totations were
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equal and opposite. 'We proceed to consider this case.
Let the angle of rotation be «, the axes 4 and B, and
their distance 4. Let x be the distance of any point 2
from A ; then the rotation about A4 elevates 2 above
the plane of A4-and B to a distance ax.! The rotation
around B depresses £ below the plane of 4 and B to a
distance a (¥ + &). The net result, therefore, is that P
is depressed below the plane of 4 and B to a distance ad.
Now it is remarkable that this result is independent
of the position of Pin the plane of 4 and 5 ; con-
sequently all points in the plane are moved through
equal distances, and thus we have the important result
that @ pair of equal parallel and opposite rotations are equi-
valent to a translation in the divection perpendicular lo the
Plane of the axes, and through an inlerval proportional to
the distance between them.

The converse of this result is also of great import-
ance—namely, that a translation can always be decom-
posed into a pair of equal parallel but opposite rotations,
in a plane perpendicular to the direction of the trans-
lation.

Composition of a Rotation with a Translation Perpendicu-
lar to the Axis of Rotation.——The translation may be
resolved into a pair of equal parallel and opposite rota-
tions in a plane which contains the given axis of rota-
tion. This couple of rotations may be compounded with
the given rotation in precisely the same way as a couple
is compounded with a force in the same plane. It
follows that #he resuit of compounding a rofation with a
translation perpendicular thereto 1s merely to transfer the
rolation to o parallel position, without alfering its mag-
nitude.

Displacement of a Rigid Body about a Fixed Point.—
A rigid body is supposed to be free to turn around a
fixed point O in every way. If we fix our attention on
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any two adjacent positions of the body, we shall prove
that it is possible for the body to be moved from one of
these positions to the other by simple rotation round
one axis. Describe a sphere round O as centre, and let
P, Q be the positions of two points on the body of the
sphere in the first position, and #’, Q' the positions of
the same points (still on the sphere of course) in the second
position; a plane can be drawn, which shall bisect the
angle POZ, and also be perpendicular to the line 27,
By suitable rotation around any axis lying in this plane
and passing through O, 2 can be made to coincide with
P’. The next step is to rotate the body around the axis
OP in its new position until Qis brought to @', which is
always possible, since by hypothesis 2Q = 2Q'; thus
by two rotations the desired change has been accom-
plished. But the two rotations can be compounded
into one, and therefore the entire change may be pro-
duced by one rotation.

This proposition is also true, whatever be the magni-
tude of the displacements; but the proof we have given
only applies to the small displacements with which we
are concerned.

Reduction of any Displacement of a Rigid Body to a Rota-
tion and a Translation.—Let 72, Q, R be three points of
the body in the first position, and 7, ¢/, R’ the three
positions assumed by these points after the body has been
displaced. By a translation the body may be moved
so that 2 coincides with 7/, and then by a rotation the
points Q and R may be brought to coincide with ¢ and
K. Thus by the combination of a rotation, and a
translation, the desired change can be effected.

The Canonical Form.—In general the direction of the
translation will be inclined to the axis of the rotation ;
but an equivalent rotation and translation can be always
found in which this is not the case.
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Resolve the translation into two components—one
parallel to the axis of rotation, and the other perpendi-
cular thereto. The component perpendicular to the axis
of rotation will have merely the effect of transferring the
rotation into a parallel position. Zhus the canonical
Jorm of the displacement of a rigid body consists of a rota-
tion about an axis combined with a translation paraliel to
that axis* '

The Canonical Form is Unique.—It is easily seen that
there is only one axis by rotation about which, and
translation parallel to which, the rigid body can be
brought from one given position to another given posi-
tion; for suppose there were two axes 2 and @, which
possessed this property, then by the movement about 2,
all the points of the body originally on the line 2 con-
tinue thereon ; but it cannot be true for any other line
that all the points of the body originally on that line
continue thereon after the displacement. Yet this would
have to be true for Q, if by rotation around Qand transla-
tion parallel thereto, the desired change could be effected.
‘We thus see that the displacement of a rigid body can
be made to assume an extremely simple form, in which

no arbitrary element is involved.

* For another proof of Chasles’ theorem by Professor Crofton, F.R.S.,
see Proceedings of the London Math, Soc., Vol, v., p. 25.



THEORY "OF SCREWS3.

CHAPTER I
TWISTS AND WRENCHES.

§ 1. Definition of the word Screw.—The direct problem
offered by the Dynamics of a Rigid Body may be thus
stated. To determine at any instant the position of a
rigid body subjected to certain constraints and acted
upon by certain forces. 'We may first inquire as to the
manner in which the solution of any such problem ought
to be presented. Adopting one position of the body as
a standard of reference, a complete solution of the pro-
blem must provide us with the means of deriving the
position at any subsequent epoch from the standard
position. We are thus led to inquire into the most na-
tural method of specifying one position of a body with
respect to another.

To make our course plain let us consider the case of
a mathematical point. To define the position of the point
P with reference to a standard point A4, there can be no
more natural method than to indicate the straight line
along which it would be necessary for a particle to travel
from A in order to arrive at 7, as well as the length of
the journey. Now, there is an analogous method of de-
fining the position of a rigid body with reference to a

B



2 TWISTS AND WRENCHES.

certain standard position. We can have a movement
prescribed by which the body can be brought from the
standard position to the sought position. We have seen,
in the Introduction, that there is one preeminently simple
movement which will always answer. A certain axis can
be found, such that if the body be rotated around this axis
through a certain angle, and translated parallel to the
axis for a certain distance, the desired movement will be
effected.

It will simplify the conception of the movement to
suppose, that at each epoch of the interval of time occu-
pied by the operations for producing the change of posi-
tion, the angle of rotation bears to the final angle of
rotation, the same ratio which the corresponding trans-
lation bears to the final translation. Under these cir-
cumstances the motion of the body is precisely the same
as if it were rigidly attached to the nut of a screw (in the
ordinary sense of the word), which had an appropriate
position in space, and an appropriate number of threads
to the inch.

In order to express, in a scientific manner, the rela-
tion between the rotation and the translation in the
movement of a nut®upon a screw, we give to the word
prtck a special meaning. We define the pitch to be the
rectilinear distance which the nut moves along the screw
when the nut is rotated through the angular unit of cir-
cular measure. The pitch is thus a linear magnitude.
The advantage of this convention is, that the rectilinear
distance through which the nut moves when rotated
through a given angle is simply the product of the pitch
of the screw, and the circular measure of the angle.

It will presently appear that screws have a dynamical
significance, which is of parallel importance to their
kinematical properties. Tor this reason we attach a
somewhat abstract sense to the word, by defining a screw
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to be a straight line in space with which a definite hnear
magnitude, termed the pitch, s assocrated.

‘We shall often denote a screw by a symbol, and then
usually by a small Greek letter. With reference to these
symbols, a caution may be necessary. 1If, for example, a
screw be denoted by a, then a is not an algebraic quan-
tity, and cannot occur in an algebraic equation. Itisa
symbol which denotes all that is included in the concep-
tion of a screw, and requires five quantities for its speci-
fication, because four quantities are required to determine
a straight line, and the pitch must be specified by a fifth.
It will often be convenient to denote the pitch by a sym-
bol, which is derived from the symbol employed to de-
note the screw to which the pitch belongs. The pitch of
a screw can be represented by appending to the letter p
a suffix denoting the screw; thus, p, is the pitch of a.
The symbol g, represents, in fact, a certain number of
millimetres, or inches.

§ 2. Definition of the word Twist.—We have now to de-
fine the very important use to be made of the word
fwist, A body is said to receive a twist about a screw
when it is rotated about the screw, while itisat the same
time translated parallel to the screw, through a distance
equal to the product of the pitch and the circular measure
of the angle of rotation; hence,

The canonical form to which the displacement of a rigid
body can be reduced is a twist about a screw.

If a body receive several twists in succession, then the
position finally attained could have been reached in a
single twist, which is called the resuliant fwist.

Although we have described the twist as a compound
movement, yet in the present method of studying me-
chanics it is essential to consider the twist as one homo-
geneous quantity. Nor is there anything unnatural in
such a supposition. Everyone will admit that the rela-

B2



4 TWISTS AND WRENCHES.

tion between two positions of a point is most simply
presented by associating the purely metric element of
length with the purely geometrical conception of a di-
rected straight line. In like manner the relation of two
positions of a rigid body can be most simply presented
by associating a purely metric element with the purely
geometrical conception of a screw, which is merely a
straight line, with direction, stfuation, and pitch.*

§ 3. Instantaneous Screws.— Whatever be the move-
ment of a rigid body, it is at every instant twisting
about a screw. For the movement of the body when
passing from one position to another position indefi-
nitely adjacent, is indistinguishable from the twist about
an appropropriately chosen screw by which the same
displacement could be effected. The screw about which
the body is twisting at any instant is termed the z7sfaz-
Zaneous screw.

§ 4. Definition of the word Wrench.—It has been proved
in the Introduction, that the canonical form of a sys-
tem of forces acting upon a rigid body consists of a
force and a couple whose plane is perpendicular to the
force. We now introduce the word wrenc’, to denote a
force and a couple in a plane perpendicular to the force.
The quotient obtained by dividing the moment of the
couple by the force is a linear magnitude. Everything,
therefore, which could be specified about a wrench is de-
termined (if the force be given in magnitude), when the
position of a straight line is assigned as the direction of
the force, and a linear magnitude is assigned as the quo-

* Those acquainted with the language of the Quaternions, invented by the
late Sir W. R. Hamilton, will perceive that a twist bears the same relation to
a rigid body which a vector does to a point ; each just expresses what is
necessary to transfer the corresponding object from one given position to
another.
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tient just referred to. Remembering the definition of a
screw, (§ 1), we may use the phrase, wrench on a screw,
meaning thereby, a force directed along the screw and
a couple in a plane perpendicular to the screw, the mo-
ment of the couple being equal to the product of the force
and the pitch of the screw. Hence, we may state, that

The canonical form to which all the forces acting on a
rigid body can be reduced is a wrench on a screw.

If a rigid body be acted upon by several wrenches,
then these wrenches could be replaced by one wrench
which is called the resultant wrench.

§5. Notation for Twists, Wrenches, and Twisting Mo~
tions.—A fwist about a screw a requires six algebraic
quantities for its complete specification, and of these, five
are required to specify the screw a. The sixth, or mefric
quantity, which is called the AMPLITUDE OF THE TWIST,
and is denoted by a’, expresses the angle of that rotation
which, when united with a translation, constitutes the
entire twist.

The distance of the franslation is the product of the
amplitude of the twist and the pitch of the screw, or in
symbols a’p,.

If the pitch be positive (negative), the direction of the
translation portion of the twist bears the same relation
to the di7ection of the rotation portion of the twist as the
direction of the translation of a nut on an ordinary rzgks-
handed (left-handed) screw bears to the a’zrea‘zon of the
rotation of the nut.

If the pitch be zero, the twist reduces to a pure rota-
tion around . If the pitch be infinite, then a finite
twist is not possible except the amplitude be zero, in
which case the twist reduces to a pure translation parallel

to a. :
A wrench on a screw a requires six algebraic quanti-

ties for its complete specification, and of these, five are
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required to specify the screw a. The sixth or metric
quantity, which is called the INTENSITY OF THE WRENCH,
and is denoted by a”, expresses the magnitude of that
force which, when united with a couple, constitutes the
entire wrench.

The moment of the couple is the product of the inten-
sity of the wrench and the pitch of the screw, or in sym-
bols, a” pe.

If the pitch be positive (negative), the divection in which
the couple acts which forms one portion of the wrench
bears the same relation to the dzzection in which the force
acts which forms the other portion of the wrench as the
direction of a couple which would make a nut turn on an
ordinary rzght-handed (left-handed) screw bears to the
direction of the force parallel to the axis of the screw
which would give the nut the same motion if the screw
were frictionless.

If the pitch be zero, the wrench reduces to a pure
force along a. If the pitch be infinite, then a finite
wrench is not possible except the intensity be zero, in
which case the wrench reduces to a couple in a plane
perpendicular to a.

In the case of a fwesting motion about a screw a the
rate at which the amplitude of the twist changes may be
called the TWIST VELOCITY and be denoted by &'.

The following illustration may be useful :—

If the screw be conceived placed along the axis
around which the hands of a watch turn, and if the twist
be in the direction in which the hands of the watch move,
then, for positive pitch the translation will be from the
front of the watch to the back; for negative pitch the
translation will be from the back of the watch to the
front. If in this statement we interchange the words
positive and negative, we have the case where the direc-
tion of the twist is opposite to the motion of the hands.
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§ 6. Restriction of the Forces.—It is first necessary
to point out the restrictions which we shall impose
upon the forces. The rigid body A7, whose motion we
are considering, is presumed # &¢ acted upon by the same
forces whenever it occupies the same position. This will
necessitate that the surrounding bodies are fixed whence
the forces acting on A/ emanate. Forces such as those
due to a resisting medium are excluded, because such
forces do not depend on the position of the body, but on
the manner in which the body is moving through that
position. The same consideration excludes friction which
depends on the direction in which the body is moving
through the position under consideration.

But the condition that the forces shall be defined, when
the position is given, is still not sufficiently precise. We
might include, in this restricted group, forces which could
have no existence in nature. We shall, therefore, add
the condition that ke system is to be one in which the con-
tinual creation of energy s impossible.

§ 7. The Energy of Position.—An important con-
sequence of this restriction is stated as follows :—The
quantity of energy necessary to compel the body 4/ to
move from the position A to the position B, is indepen-
dent of the route by which the change has been effected.

Let L and A/ be two such routes, and suppose that
less energy was required to make the change from A to
B via L than via J/. Make the change via Z, with the
expenditure of a certain quantity of energy, and then
allow the body to return viA J7. Now, since at every
stage of the route A7 the forces acting on the body are the
same whichever way the body be moving, it follows, that
in returning from B to A4 via A, the forces will give out
exactly as much energy as would have been required to
compel the body to move from A to B vid A/ ; but by
hypothesis this exceeds the energy necessary to make



8 TWISTS AND WRENCHES.

the change vid Z; and hence, on the return of the body
to A, there is a clear gain of a quantity of energy,
while the position of the body and the forces are the
same as at first. By successive repetitions of the pro-
cess an indefinite quantity of energy could be created
from nothing. - This being contrary to nature, compels
us to admit that the quantity of energy necessary to force
the body from A4 to B is independent of the route fol-
lowed. ]

§ 8. Theorem.—The sum of the works done in a
number of twists against a wrench is equal to the work
that would be done in the resultant twist.

For, by the last article, the work done in producing a
given change of position is independent of the route.

§ 9. Theorem.—We first define that by #2¢ work done i1
a twist against @ wrenck is to be understood the sum of the
works done against the three forces which constitute the
wrench in the movements of their points of application
which are caused by the twist.

We shall assume the two lemmas—ist. The work
done in the displacement of a rigid body against a force
is the same at whatever point in its line of application
the force acts. 2nd. The work done in the displacement
of a point against a number of forces acting at that point,
equals the work done in the same displacement against
the resultant force.

The theorem to be proved is as follows :—The sum of
the works done in a given twist against a number of
wrenches, equalsthe work done in the same twist against.
the resultant wrench.

Let # wrenches, which consist of 37 forces acting at
Ay, &c., Agns compound into one wrench, of which the
three forces act at 7, (), R. The force at each point Ay
may be decomposed into three forces along PA;, QA;,
RA By the 2nd lemma the sum of the works (W)
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done against the 37 original forces, equals the sum of the
works done against the g9z components. It, therefore,
appears from the 1st lemma, that I will still be the
sum of the works done against the gz components, ot
which 372 act at P, 32 at Q, 32 at R. Finally, by the
2nd lemma, ¥ will also be the sum of the works done
by the original twist against the three resultants formed
by compounding each group at 72, ¢, R. DBut these re-
sultants constitute the resultant wrench, whence the
theorem has been proved.

§ 10. Theorem.—From a comparison of the two last
articles, we easily deduce the following theorem, which
we shall find of great service throughout the essay.

If a series of twists A4,, &c., An, would compound into
one twist.4, and a series of wrenches 5,, &c., B,, would
compound into one wrench 7, then the energy that would
be expended or gained when the rigid body performs the
twist 4, under the influence of the wrench 25, is equal to
the algebraic sum of the 7. quantities of energy that
would be expended or gained when the body performs
severally each twist 4,, &c., under the influence of each
wrench B, &c.

§ 11. Concluding Remarks.—We have now explained
the conceptions, and the language in which the solu-
tion of any problem in the Dynamics of a rigid body
may be presented. A complete solution of such a pro-
blem must provide us, at each epoch, with a screw, by a
twist about which of an amplitude also to be specified, the
body can be brought from a standard position to the po-
sition occupied at the epoch in question. It will also be
of much interest to know the instantaneous screw about
which the body is twisting at each epoch, as well as its
twist velocity. Nor can we regard the solution as quite
complete, unless we also have a clear conception of the
screw on which all the forces acting on the body consti-
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tute a wrench of which we should also know the in-
tensity.

There is one special feature which characterises that
portion of the Dynamics of a rigid body which is dis-
cussed in the present essay. 'We shall impose no restric-
tions on the form of the rigid body, none on the character
of the constraints by which its movements are limited,
and but little on the forces to which the rigid body is’
submitted. The restriction which we do make is that
the body, while the object of examination, remains in, or
indefinitely adjacent to, tfs original position.

As a consequence of this restriction, we here make
the remark that #e amplitude of a twist is henceforth to be
regarded as a small quantity.

If it be objected, that with so great a restriction as
that just referred to, only a limited field of inquiry re-
mains, the answer is as follows :—A perfectly general
investigation could yield but a slender harvest of inter-
esting or valuable results. All the problems of Physical
importance are speczal cases of the general question.
Thus, a special character in the constraints has pro-
duced the celebrated problem of the rotation of a rigid
body about a fixed point. To vindicate our particular
restriction it seems only necessary to remark, that the
restricted inquiry still includes the theory of Equilibrium,
of Impulsive Forces, and of Small Oscillations.

‘Whatever of novelty may be found in the following
pages will, it is believed, be due to the circumstance
that, with the important exception referred to, all the
conditions of each problem are of absolute generality.



CHAPTER LI
THE CYLINDROID.

§ 12. Introduction.—We shall now ascertain the laws
according to which twists (and wrenches) must be com-
pounded together, that is to say, we shall determine
the single screw, one twist (or wrench) about which will
produce the same effect on the body as two or more
given twists (or wrenches) about two or more given
screws. It will be found to be a fundamental point of the
present theory that the rules for the composition of twists
and of wrenches are identical.*

§ 13. On the Virtual Coefficient of a Pair of Screws.—
Suppose a rigid body be acted upon by a wrench
on a screw f3, of which the intensity is (3. Let the
body receive a twist of small amplitude o’ around a
screw a. It is proposed to find an expression either for
the energy required to effect the displacement, or the
work done if the displacement be permitted.

Let & be the shortest distance between a« and 3, and
let O be the anglet between e and 3. Take a as the axis
of x, the common perpendicular to a and (3 as the axis

* That the source of the analogy between the composition of forces and of
Totations lies in the general principles of virtual velocities, has been proved by
Rodrigues (Liouville’s Journal, t. 5, 1840, p. 436).

+ Perhaps the best convention to distinguish between O and its supplement
is the following :—Suppose the common perpendicular to be an ordinary right-
handed screw, and that there is a nut on this screw to which a is attached.
If, then, the nut be turned so as to make a approack @ (that is, to make the
length of the common perpendicular diminish), the angle less than = through
which a has turned when it has become parallel to 8 is the angle O.
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of ¥, and a line perpendicular to x and y for z. If were-
solve the wrench on f3 into forces X, Y, Z, parallel to
the axes, and couples of moments Z, 47, IV, in planes per-
pendicular to the axes we shall have

X=f"cos0; Y=£"sin0; Z=o0
L=B”;§,g cos O - f3"dsinO; M=0"pgsin O+3"d cos O;
: N=o.

‘We thus reduce the given wrench to four wrenches,
viz., two forces Jand two couples, and we reduce the
given twist to two twists, viz., one rotation and one
translation. By the principle of § 10 the work done by
the given twist against the given wrench must equal the
sum of the eight quantities of work done by each of the
two component twists against each of the four compo-
nent wrenches. Six of these quantities are evanescent.

In fact a rotation through the angle o’ around the axis
of # can only do work against Z, the amount being

a’3"(ppcos O - d sin O).

The translation p.a’ parallel to the axis of ¥ can
only do work against X, the amount being

o' 3" pa cos O.
Thus, the total quantity of work done is
a’ 3" {(pa + £s) cos O — dsin O}.
The expression
(Bu+ 2p) cos 0 - dsin O,

is of great importance in the present theory.* It is

* The theory of screws has many points of connexion with recent geome-
trical speculations on the linear complex, by the late Dr. Pliicker and Dr. Felix
Klein. Thus the latter has shown, (Mathematische Annalen, Band IIL., p. 368),.
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called the virtual coefficient of the two screws a and 3,
and may be denoted by the symbol

2,4,

§ 14. Symmetry of the Virtual Coefficient.—One property
of the virtual coefficient is of the utmost importance.
If the two screws a and [3 be interchanged, the virtual
coefficient remains unaltered. The identity of the laws
of composition of twists and wrenches can be deduced
from this property,* and also the Theory of Reciprocal
Screws.

§15. Composition of Twists and Wrenches.—Suppose
three twists about three screws a, (3, y, possess the
property that the body after the last twist has the same
position which it had before the first: then the ampli-
tudes of the twists, as well as the geometrical relations
of the screws, must satisfy certain conditions. The
particular nature of these conditions does not concern us
at present, although it will be fully developed hereafter.

‘We may at all events conceive the following method
of ascertaining these conditions :—

It follows from § 10, that the sum of the works done
in the twists about a, 8, y, against a wrench, on any
screw 73, must be zero, whence

Q'Tan + 'wpn + Y@y, = 0.

This equation is a type of an indefinite number (of
which six are independent) which may be obtained by

that if g, and pg be each the hauptparameter” of a linear complex, and if
(2, +2g) cosO~dsin O=o0,

where & and Orelate to the principal axes of the complexes, that then the two
complexes possess a special relation and are said to be in *involution.”

#* This remark, or what is equivalent thereto, is due to Dr. Felix Klein
(Math. Ann., vol. iv., p. 413).
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.choosing different screws for 4. From each group of
three equations the amplitudes can be eliminated, and
four of the equations thus obtained will involve all the
purely geometrical conditions as to direction, situation,
and pitch, which must be fulfilled by the screws when
three twists can neutralize each other.

But now suppose that three wrenches equilibrate on
the three screws a, 8, v. Then (§ 10) the sum of the
works done in a twist about any screw n against the
three wrenches must be zero, whence

" @y + 370 + Y@y = 0,

and an indefinite number of similar equations must be
satisfied.

By comparing this system of equations with that pre-
viously obtained, it is obvious that the geometrical con-
ditions imposed on the screws a, [3, vy, in the two cases
are identical, and that the amplitudes of the three twists
which neutralise are, respectively, proportional to the in-
tensities of the three wrenches which equilibrate.

When three twists (or wrenches) neutralise, then a
twist (or wrench) equal and opposite to one of them must
be the resultant of the other two, and hence it follows
that the laws for the composition of twists and of wrenches
must be identical.

§ 16. The Cylindroid.—We now proceed to study the
composition of twists and wrenches, and we select twists
for this purpose, though wrenches would have been
equally convenient.

A body receives twists about three screws; under
what conditions will the body, after the last twist, oc-
cupy the same position which it had before the first.

The problem may also be stated thus :—1It is required
to ascertain the single screw, a twist about which would
produce the same effect as any two given twists. We
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shall first examine a special case, and from it we shall
deduce the general solution.

Take, as axes of ¥ and y, two screws a, (3, intersect-
ing at right angles, whose pitches are g, and gs. Leta
body receive twists about these screws of amplitudes
0’ cos /and 0’ sin /. The translations parallel to the axes
of x and y will then be p,0’ cos / and ps0’ sin /. The re-
sultant of the two translations may be resolved into two
components, of which 0’ (4, cos?/ + pg sin?/) is parallel to
the direction of that axis, a rotation about which is equi-
valent to the two given rotations, while §sin / cos Z(p.—2s)
is perpendicular to the same line. The latter component
has the effect of transferring the resultant axis of the
rotations to a distance sin / cos / (p, - ps), the axis
moving parallel to itself in a plane perpendicular to that
which contains « and 3. The two original twists about
a and (3 are therefore compounded into a single twist of
amplitude @’ about a screw 6 whose pitch is

Pa COS% + pg sin?l.
The position of the screw 0 is defined by the equations
oS

y=xtan/ &,
’ z=(ﬁa—Pﬁ) sin/ cos /. \O
03

\

Eliminating / we have the equation
2(#* +57) = (fa - ) 2y = O- R

The conoidal cubic surface represented by this equa-
tion has been called the cylindroid.*

* This surface has been described by Pliicker (Neue Geometrie des Raumes,
p- 97); he arrives at it as follows :—Let 2 = 0, and 9'=0 represent two linear
complexes of the first degree, then all the complexes formed by giving p dif-
ferent values in the expression 2 + uQ' = 0 form a system of which the axes lie
on the surface z (s + 1) — (% — %) ¥ = 0. The parameter of any complex of
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Each generating line of the surface is conceived to
be the residence of a screw, the pitch of which is deter-
mined by the expression p,cos?*/ + g5 sin?/.

We shall now show that a cylindroid can be described
so as to contain any two screws. When a cylindroid is
said to contain a screw, it is not only meant that the
screw is one of the generators of.the surface, but that
the pitch of the screw is identical with the pitch appro-
priate to the generator with which the screw coincides.

Let the two given screws be 0 and ¢, the length of
their common perpendicular be %, and the angle between
the two screws be A4 ; we shall show that by a proper
choice of the origin, the axes, and the constarts g, and #,,
a cylindroid can be found which contains 0 and ¢.

If /, m be the angles which two screws on a cylin-
droid make with the axis of », and if z,, z, be the corre-
sponding values of 2, we have the equations

Do = Pa cOS™ + pg sin?, 2, = (pa — pp) sin/ cos/,
Po=paCOS*m+ pgsinm. 2z, =(p, — pg) sinm cosm.

A =17-m, h=2— 2,

which the axis makes an angle w with the axis of x is 2 = #9 cos? w + %psin? w.
The writer was informed by Dr. Felix Klein that Pliicker had also constructed
a model of this surface.

Pliicker does not appear to have contemplated the mechanical and kinema-
tical properties of the cylindroid, with which alone we are concerned; but it
is worthy of remark that the distribution of pitch which is presented by physi-
cal considerations is exactly the same as the distribution of parameter upon the
generators of the surface, which was fully discussed by Pliicker in connexion
with his theory of the linear complex.

The name cylindroid was suggested by Professor Cayley in reply to a re-
quest of the writer. ‘The word originated in the following construction for
the surface, which was also communicated by Professor Cayley. Cut the
cylinder #? + 33 = (pg — Pa)? in an ellipse by the plane z = x, and consider the
line x = 0, y = pg — Po. 1f any plane z =c cuts the ellipse in the points 4, B
and the line in C, then CA4, CB are two generating lines of the surface.



THE CYLINDROID. 17

Tt (o= P}
bo-ti= Y s?n(ﬁ e

Dot Pe=1o+ ps— 1 cot A.
l=%(A +tan-‘£3;l—‘ﬁ‘”). 21=%(ps- pa) cot A + é,

with similar values for 7 and z;. It is therefore obvious
that the cylindroid is determined, and that the solution
is unique.

It will often be convenient to denote by (6, ¢) the
cylindroid drawn through the two screws 6 and ¢.

§ 17. General Property.— The general property of
the cylindroid, which is of importance for our present
purpose, may be thus stated. If a body receive twists
about three screws on a cylindroid, and if the amplitude
of each twist be proportional to the sine of the angle
between the two non-corresponding screws, then the
body after the last twist will occupy the same position
which it did before the first.

The proof of this theorem must, according to § 13,
involve the proof of the following :—If a body be acted
upon by wrenches about three screws on a cylindroid,
and if the intensity of each wrench be proportional
to the sine of the angle between the two non-corre-
sponding screws, then the three wrenches equilibrate.

The former of these properties of the cylindroid is
thus proved:—Take any three screws 6, ¢, ¥, upon the
surface which make angles /, 7, », with the axis of x,
and let the body receive twists about these screws of
amplitudes 6, ¢/, ¢’. Each of these twists can be de-
composed into two twists about the screws a and (3
which lie along the axes of x and y. The entire effect
of the three twists is, therefore, reduced to two rotations
around the axes of x and », and two translations parallel

to these axes.
€



18 THE CYLINDROID.

The rotations are through angles equal respectively

to

0’ cos ! + ¢’ cos m + Y’ cos n
and

0'sin/ + ¢’ sin m + 3/ sinn.

The translations are through distances equal to
' 2a(0/ cos { + ¢’ cos m + Y/cosn)
and 24(0'sin 2 + ¢ sin 2 + ' sinz).
These four quantities vanish if
o ¢’ ¥

sin(m-n) sin(n-2) sin(l-m)

and hence the fundamental property of the cylindroid
has been proved.

The cylindroid affords the means of compounding two
twists (or two wrenches) by a rule as simple as that
which the parallelogram of force provides for the com-
position of two intersecting forces. Draw the cylindroid
which contains the two screws ; select the screw on the
cylindroid which makes angles with the given screws
whose sines are in the inverse ratio of the amplitudes of
the twists (or the intensities of the wrenches) ; a twist (or
wrench) about the screw so determined is the required
resultant. The amplitude of the resultant twist (or the
intensity of the resultant wrench) is proportional to the
diagonal of a parallelogram of which the two sides are
parallel to the given screws, and of lengths proportional
to the given amplitudes (or intensities).

§18. Particular Cases.—If p, = p; the cylindroid re-
duces to a plane, and the pitches of all the screws are
equal. If the pitches be all zero, then the general pro-
perty of the cylindroid reduces to the well known con-
struction for the resultant of two intersecting forces, or
of rotations about two intersecting axes. If the pitches
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be all infinite, the general property reduces to the con-
struction for the composition of two translations or of
two couples. 7

§ 19. Form of the Cylindroid.—The equation of the
surface only contains the single parameter pa - p,
consequently all cylindroids are similar surfaces only
differing in absolute magnitude.

The curved portion of the surface is contained be-
tween the two parallel planes z = + (p, - #4), but it is to
be observed that the nodal line x = o, y =0, also lies upon
the surface.

The intersection of the nodal line with a plane is a
double point (connode) or a conjugate point (acnode)
upon the curve in which the plane is cut by the cylin-
droid according as the point does lie or does not lie
between the two bounding planes.

A model of a portion of the cylindroid is represented
in the frontispiece. In order to realize from the model
the actual form of the surface, the diameter of the central
cylinder must be conceived to be evanescent, and the
radiating wires must be extended to infinity.

§20. The Pitch Conic.—Besides being acquainted with
the form of the cylindroid, it is also very useful to
have a clear view of the distribution of pitch upon the
screws contained on the surface. The surface being
given, one arbitrary element must be further specified
before that distribution is known. If, however, two screws
be given, then both the surface and the distribution are
determined. Any constant quantity may be added to
all the pitches of a certain distribution, and the distribu-
tion thus modified is still a possible one.

Let py be the pitch of a screw 0 on the cylindroid
which makes an angle / with the axis of x; then (§ 11)

Do = PaCOSP. + Py sin’l.
G2
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Draw in the plane x, y, the conic

2. x* +Ibﬁy2 = H,
where Z is any constant ; and if » be the radius vector
which makes an angle / with the axis of x, we have

H
pd 5 '772')

whence the pitch of each screw on a cylindroid is pro-
portional to the inverse square of the parallel diameter
of the pitch conic.

Being given the cylindroid, we require further to
know the eccentricity of the pitch conic, and then the
pitches of all the screws are determined.

§ 21. Summary.—It is one of the main objects of the
present essay to associate a geometrical conception with
the solution of each problem. To do this effectively we
shall often have occasion to make use of the principle
demonstrated in this chapter, viz.,

That a cylindroid can be drawn so that not only shall
two of its generalors corncide with any two given screws a
and [3, but that when all the generators of the surface become
screws by having pitches assigned fo them according to the
law of distribution enunciated in § 20, the pitches assigned
to the generators which coincide with a and (3 shall be equal
2o the given pitches of a and 3.
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CHAPTER III.
RECIPROCAL SCREWS.

§22. Reciprocal Screws.—If a body only free to twist
about a screw a be in equilibrium, though acted upon
by a wrench on the screw (3, then conversely a body
only free to twist about the screw (3 will be in equili-
brium, though-acted upon by a wrench on the screw a.

The principle of virtual velocities states, that if.the
body be in equilibrium the work done in a small dis-
placement against the external forces must be zero ; but
the condition for this is, that the virtual coefficient should
vanish (§13), or

(Pa + pg) cos O - d sin O = o.

The symmetry shows that precisely the same condi-
tion is required whether the body be free to twist about
a, while the wrench act on [3, or vice versi. A pair
of screws are said lo be reciprocal when their virtual coeffi-
cient 1s zero. .

§ 23. Particular Instances.—Parallel or intersecting
screws are reciprocal when the sum of their pitches is
zero. Screws at right angles are reciprocal either when
they intersect, or when one of the pitches is infinite.
Two screws of infinite pitch are reciprocal, because. a
couple could not move a body which was only susceptible
of translation, A screw whose pitch is zero or infinite
is reciprocal to itself.*

* For other particular instances see Professor Everett *“On a New Method
in Statics and Kinematics,” § 27; * Messenger of Mathematics,”” New Series,
No. 39, 1874.
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§24. Screw Reciprocal to Cylindroid.—If a screw n be
reciprocal to two given screws 6 and ¢, then n is recipro-
cal to every screw on the cylindroid (6, ¢).

For a body only free to twist about 4 would be undis-
turbed by wrenches on § and ¢; but a wrench on any
screw i of the cylindroid can be resolved into wrenches
on 0 and ¢ ; therefore a wrench on i cannot disturb a
body only free to twist about 5; therefore y and 5 are
reciprocal. 'We may say for brevity that » is reciprocal
to the cylindroid.

n cuts the cylindroid in three points,* and one screw
of the cylindroid passes through each of these three
points ; these three screws must, of course, be reciprocal
to n. Now two intersecting screws can only be reciprocal
when they are at right angles, or when the sum of their
pitches is zero. The pitch of the screw upon the cylin-
droid which makes an angle / with the axis of x is

Pa COSY + pgsin®l.

This is also the pitch of the screw = - /. There are,
therefore, two screws of any given pitch ; but there can-
not be more than two. It follows that n can at most in-
tersect two screws upon the cylindroid of pitch equal and
opposite to its own; and, therefore, n must be perpendi-
cular to the third screw.t Hence any screw reciprocal
to a cylindroid must intersect one of the generators at
right angles. We easily infer, also, thataline intersect-
ing one screw of a cylindroid at right angles, must cut
the surface again in two points, the screws passing
through which have equal pitch.

§ 25. Reciprocal Cone.—From any point 2 perpen-

* Every right line meets a surface of the third degree in three points.
Salmon, “Analytic Geometry of Three Dimensions,” 2nd Ed., p. 14.

+ The writer may, perhaps, be excused for adding that it was the percep-
tion of this point which first gave him clear views on the subject of the present
volume.
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diculars can be let fall upon the generators of the
cylindroid, and if to these perpendiculars pitches are
assigned which are equal in magnitude and opposite
in sign to the pitches of the two remaining screws on
the cylindroid intersected by the perpendicular, then the
perpendiculars form a cone of reciprocal screws.

‘We shall now prove that this cone is of the second
order, and we shall show how it can be constructed.

Let O be the point from which the cone is to be
drawn, and through O let a line O7 be drawn which is
parallel to the nodal line, and, therefore, perpendicular
to all the generators. This line will cut the cylindroid
in one real point 7" (Fig. 2), the two other points of inter-
section coalescing into the infinitely distant point in
which OZ intersects the nodal line.

Draw a plane through 7 and through the screw LA/
which, lying on the cylin-
droid, has the same pitch
as the screw through Z7. T
Now this plane must cut
the cylindroid in a conic
section, for the line LA/
and the conic will then
make up the curve of the
third degree, in which the
plane must cut the sur-
face.* Also since the entire
cylindroid (or at least its
curved portion) is included v
between two parallel planes,
§19, it follows. that this
conic must be an ellipse.

‘We shall now prove that

M

I8N

Fig. 2.

* Salmon,  Analytic Geometry of Three Dimensions,” 2nd Ed., p. 14
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this ellipse is the locus of the feet of the perpendiculars
let fall from O on the generators of the cylindroid.
Draw in the plane of the ellipse any line 77UV through
T'; then, since this line intersects two screws of equal
pitch in 7 and U, it must be perpendicular to that gene-
rator of the cylindroid which it meetsat V. This generator
is, therefore, perpendicular to the plane of O7 and V7,
and, therefore, to the line OV. It follows that J” must
be the foot of the perpendicular from O on the generator
through V, and that, therefore, the cone drawn from
O to the ellipse 7/Z VA{ is the cone required.

‘We hence deduce the following construction for the
cone of reciprocal screws which can be drawn to a cylin-
droid from any point O.

Draw through O a line parallel to the nodal line of
the cylindroid, and let 7" be the one real point in which
this line cuts the surface. Find the second screw LA/
on the cylindroid which has a pitch equal to the pitch
of the screw which passes through 7. A plane drawn
through the point 7" and the straight line ZA/ will cut
the cylindroid in an ellipse, the various points of which
joined to O give the cone required.

We may further remark that as the plane 7ZAM
passes through a generator it must be a tangent plane to
the cylindroid at the point Z, while at the point 4/ the
line ZM must intersect another generator.* It follows
that Z mustbe the foot ofthe perpendicular from 7 upon
LA, and that A/ must be a point upon the nodal line.

§ 26. Locus of a Screw Reciprocal to Four Screws.—
Since a screw is determined by five quantities, it is
clear that when the four conditions of. reciprocity are
fulfilled the screw must be confined to a certain ruled
surface. Now this surface can be no other than a cylin-

* Salmon, ““Analytic Geometry of Three Dimensions,” 2nd Ed., p. 348.
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droid. TFor, suppose that three screws A, u, v, which were
reciprocal to the four given screws did not lie on the same
cylindroid, then any screw ¢ on the cylindroid (A, u), and
any screw Y on the cylindroid (A, v) must also fulfil the
conditions, and so must also every screw on the cylindroid
(¢, ¢) (§ 4). We should thus have the screws reciprocal
to four given screws, limited not to one surface, but to a
family of surfaces, which is impossible. The construction
of the cylindroid which is the locus of all the screws re-
ciprocal to four given screws, may be effected in the fol-
lowing manner :—

Let a, 3, v, & be the four screws, of which the pitches
are in descending order of magnitude. Draw the cylin-
droids (a, y) and (3, ). If ¢ be a linear magnitude inter-
mediate between g, and p,, it will be possible to choose
two screws of pitch ¢ on (a, 7), and also two screws of
pitch o on (3, ). Draw the two transversals which in-
tersect the four screws thus selected;* attribute to each
-of these transversals the pitch — ¢, and denote the screws
thus produced by 0, ¢. Since intersecting screws are
reciprocal when the sum of their pitches is zero, it fol-
lows that @ and ¢ must be reciprocal to the cylindroids
{a, y) and (3, 3). Hence all the screws on the cylindroid
{0, ¢) 'must be reciprocal to a, 3, y, 3, and thus the pro-
blem has been solved.

§ 27. Screw Reciprocal to Five Screws.—TLhe problem
of the determination of a screw reciprocal to five given
screws must admit of a finite number of solutions,
because the number of conditions to be fulfilled is the
same as the number of disposable constants. Now it is
very important to observe that that number must be one.
For if fwo screws could be found which fulfilled the neces-

* Two lines can be drawn which will intersect four non-intersecting lines.
Salmon, “Analytic Geometry of Three Dimensions,” 2nd Ed., page 426.
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sary conditions, then these conditions would be equally
fulfilled by every screw on the cylindroid determined by
those screws (§ 24), and therefore the number of solutions.
of the problem would not be finite.

The construction of the screw whose existence is thus.
demonstrated, can be effected by the results of the last
article. Take any four of the five screws, and draw the
reciprocal cylindroid which must contain the required
screw. Any other set of four will give a different cylin-
droid, which also contains the required screw. These:
cylindroids must therefore intersect in the single screw,,
which is reciprocal to the five given screws. -

§ 28. Screw upon a Cylindroid Reciprocal to a Given
Screw.—Let ¢ be the given screw, and let A, u, v, p be any
four screws reciprocal to the cylindroid; then the single
screw n, which is reciprocal to the five screws ¢, A, u, v, p,
must lie on the cylindroid because it is reciprocal to-
A, u, v, o, and therefore 5 is the screw required.

The solution must be unique, for if a second screw
were reciprocal to ¢ then the whole cylindroid would be
reciprocal to ¢; but this is not the case unless ¢ fulfil cer--
tain conditions (§ 24).

§ 29.. Properties of the Cylindroid.—We add here a few
properties of the cylindroid for which the writer is prin-
cipally indebted to his friend Dr. Casey.

The ellipse in which a tangent plane cuts the cylin-
droid has a circle for its projection on a plane perpendi-
cular to the nodal line, and the radius of the circle is
the minor axis of the ellipse.

The difference of the squares of the axes of the ellipse
is constant ‘wherever the tangent plane be situated.

The minor axes of all the ellipses lie in the same
plane.

The line joining the points in which the ellipse is cut
by two screws of equal pitch on the cylindroid is parallel
to the major axis.
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CHAPTER 1IV.
SCREW CO-ORDINATES.

§30. Introduction.—We are accustomed, in ordinary sta-
tics, to resolve the forces acting on a rigid body into
three forces acting along given directions at a point
and three couples in three given planes. In the present
theory we are, however, led to regard a force as a wrench
on a screw, of which the pitch is zero, and a couple as a
wrench on a screw of which the pitch is infinite. The
familiar process just referred to is, therefore, only a
special case of the more general method of resolution by
which the intensities of the six wrenches on six given
screws can be determined, so that, when these wrenches
are compounded together, they shall constitute a wrench
of given intensity on a given screw.*

The problem which has to be solved may be stated in
a more symmetrical manner as follows :—

To determine the intensities of the seven wrenches on
seven given screws, such that, when these wrenches are
applied to a rigid body, which is entirely free to move in
any way, they shall equilibrate.

The solution of this problem is identical (§15) with
that which may be enunciated as follows :—

To determine the amplitudes of seven small twists
about seven given screws, such that, if these twists be

* If all the pitches be zero, the problem stated above reduces to the deter-
mination of the six forces along six given lines which shall be equivalent to a
given force. If further, the six lines of reference form the edges of a tetrahe-
dron, we have a problem which has been solved by Mébius, Crelle’s Journal,
t. xviil., p. 207.
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applied to a rigid body in succession, the body after the
last twist shall occupy the same position which it had
before the first. ;

The problem we have last stated has been limited as
usual to the case where the amplitudes of the twists
are small quantities, so that the motion of each particle
produced by each twist is sensibly rectilinear. Were it
not for this condition a distinct solution would be re-
quired for every variation of the order in which the suc-
cessive twists were imparted.

If the number of screws were greater than seven,
then both problems would be indeterminate ; if the num-
ber were less than seven, then both problems would be
impossible (unless the screws were specially related);
the number of screws being seven, the problem of the
determination of the ratios of the seven intensities (or
amplitudes) has, in general, one solution. We shall
solve this for the case of wrenches.

Let the seven screws be a, 8, v, &, & &, n. Find the
screw y which is reciprocal toy, &, ¢ £, n. Let the seven
wrenches act upon a body only free to twist about .
The reaction of the constraints which limit the motion
of the body will neutralize every wrench on a screw re-
ciprocal to ¢ (§22). We may, therefore, so far as a body
thus circumstanced is concerned, discard all the wrenches
except those on a and 3. Draw the cylindroid (a, f3),
and determine thereon the screw p which is reciprocal to
Y. The body will not be in equilibrium unless the
wrenches about a« and (3 constitute a wrench on p, and
hence the ratio of the intensities «”” and (3" is determined.
By a similar process the ratio of the intensities of the
wrenches on any other pair of the seven screws may be
determined, and thus the problem has been solved.

§ 31. Intensities of the Components.—Let the six screws
of reference be w,, &c. ws, and let p be a given screw
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on which is a wrench of given intensity p”. Let the

intensities of the components be p,”, &c. ps”, and let g
be any screw. By the principle of § 10, a twist about 5
must do the same quantity of work acting directly against
the wrench on p as the sum of the six quantities of work
which would be done by the same twist against each of
the six components of the wrench on p. We, therefore,
have the equation (using the notation of p. 13)
P’ = pi”’ Ty, + &C 4 o Ty
By taking five other screws in place of 4, five more
equations are obtained, and from the six equations thus
found p,”, &c. ps’/ can be determined. This process will
be greatly simplified by judicious choice of the six
screws of which » is the type. Let 5 be reciprocal to w,,
&c. we, then =, = o &c. =,,, =0, and we have

p// Ty = Plllwnal'
From this equation p,”’ is at once determined, and by five
similar equations the intensities of the five remaining
components may be likewise found.

Precisely similar is the investigation which deter-
mines the amplitudes of the six twists about the six
screws of reference into which any given twist may be
decomposed.

§32. The Intensity of the Resultant may be expressed
in terms of the intensities of its ‘components on the six
screws of reference.

Let p be any screw of pitch g, and let p,, &c. ps be
the pilches of the six screws of reference wy, &c. we; then
taking for 5 in (§ 26), each of the screws . of reference in
succession, and remembering that the virtual coefficient
of two coincident screws is simply double the pitch, we
have the following equations :—

p//_J_”! = 0}”?1 % 92”‘“’.,1.0, + &c. + Ps”ﬁ'u,«,
&c. = &c.

s e AL 14 1"
PR SR b &ec. + 05 Fugwy + P ﬁs-
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But taking the screw p in place of y we have

P Do =01"%p, + &C. + o4/ Ty,

Substituting for =,, &c. @,,, from the former equa-
tions, we deduce

2o 0" = 2(Pi0™) + 22 (01" 01 Tu0,)-

This result may recall the well-known expression for
the square of a force acting at a point in terms of its
components along three axes passing through the point.
This expression is greatly simplified when the three axes
are rectangular, and we shall now show that by a special
disposition of the screws of reference, a corresponding
simplification can be made in the formula just written.

§33. Co-Reciprocal Screws.—We have hitherto chosen
the six screws of reference quite arbitrarily; we now
proceed in a different manner. Take for w, any screw ;
for w,, any screw reciprocal to w;; for ws any screw
reciprocal to w; and w,; for wy, any screw reciprocal to wy,
‘wsz, wy 3 fOr w;, any screw reciprocal to w,, w;, ws, w, ; for we,
the screw reciprocal to w;, Wz, w;, wi, ws.

A group constructed in this way possesses the pro-
perty that each pair of screws is reciprocal. Any set of
screws not exceeding six, of which each pair is recipro-
cal, may be called for brevity a set of co-reciprocals.*

Thirty constants determine a group of six screws. If
the group be co-reciprocal, fifteen conditions must be
fulfilled ; we have, therefore, fifteen elements still dis-
posable, so that we are always enabled to select a co-
reciprocal group with special appropriateness to the
problem under consideration.

* Dr. Klein has discussed (Math. Ann. Band 11. p. 204), six linear com-
plexes, of which each pair are in involution. If the axes of these complexes be
regarded as screws, of which the ¢ auptparameters’ are the pitches, then
these six screws will be co-reciprocal.
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The facilities presented by rectangular axes for
questions connected with the dynamics of a particle have
perhaps their analogues in the conveniences which arise
from the use of co-reciprocal groups of screws in the
present theory.

If the six screws of reference be co-reciprocal, then
the formula of the last section assumes the very simple
form

P puz =P1P1//2 + &c. +_?695//2-

§34. Co-ordinates of a Wrench.—We shall henceforth
usually suppose that the screws of reference are co-reci-
procal. ‘We may also speak of the co-ordinates of a
wrench,* meaning thereby the znfensities of its six com-
ponents on the six screws of reference. So also we may
speak of the co-ordinates of a twist, meaning thereby
the amplitudes of tfs six components about the six screws of
reference.

The co-ordinates of a wrench of intensity p” on the
screw p are denoted by p,”, &c. p;”. The co-ordinates of
a twist of amplitude p’ about ¢ are denoted by g1/, &c.

)

Qs
§35. The Work done in a twist of amplitude o’ about

a screw a, against a wrench of intensity (3 on the screw
3, can be expressed in terms of the co-ordinates.
Replace the twist and the wrench by their respective
components about the co-reciprocals., Then the total
work done will be equal to the sum of the thirty-six
quantities of work done by each component twist against
each component wrench (§10). Since the screws are co-

# Pliicker has introduced the conception of the six co-ordinates of a system
of forces—Phil. Trans., vol. 156, p. 362. See also Battaglini, ¢ Sulle dinami
in involuzione,” Atti di Napoli IV., 1869; Zeuthen, Math. Ann., Band I.,

P. 432.
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reciprocal, thirty of these quantities disappear, and the
remainder have for their sum*

zplallﬁlﬂ i &C- o zﬁaaalﬁsu.

§36. Screw Co-ordinates.—A wrench on the screw a,
of which the intensity is ome unif, has for its compo-
nents, on six co-reciprocal screws, wrenches of which
the intensities may be said to constitute Ze co-ordinates
of the screw a. These co-ordinates may be denoted by
ai, &c., a;.

‘When the co-ordinates of a screw are given, the screw
itself may be thus determined. Let : be any small
quantity. Take a body in the position A4, and impart to
it successively twists about each of the screws of refe-
rence of amplitudes tay, ta;, &c., ta;. Let the position thus
attained be B ; then the twist which would bring the
body directly from A to B is about the required screw a.

§37. Identical Relation.——The six co-ordinates of a
screw are not independent quantities, they fulfil one
relation, the nature of which is suggested by the relation
between three direction cosines.

‘When two twists are compounded by the cylindroid
(§17), it will be observed that the amplitude of the result-
ant twist, as well as the direction of its screw, depend
solely on the amplitudes of the given twists, and the
directions of the given screws, and not at all upon either
their pitches or their absolute situations. So also when
any number of twists are compounded, the amplitude and
direction of the resultant depend only on the amplitudes
and directions of the components. We may, therefore,
state the following general principle. If 7 twists neu-
tralize (or z wrenches equilibrate) then a closed polygon

* That the work done can be represented by an expression of this kind was
stated by Dr. Klein, Math. Ann., Band 1v., p. 413.
D



34 SCREW CO-ORDINATES.

of 72 sides can be drawn, each of the sides of which is
proportional to the amplitude of one of the twists (or in-
tensity of one of the wrenches), and parallel to the cor-
responding screw.

Let a,, bn, ca, be the direction cosines of a line parallel
to any screw of reference w,, and drawn through a
point through which pass three rectangular axes.

Then since a wrench of one unit on a has components
of intensities a;, &cC. a5, we must have

(@ay + &C. + ete)? + (bray + &C. boats)? + (Cra) &C. + Coatg)t = 1,
whence
Sa;® + 22a; a; COS (m‘wg) Y
if we denote by cos (w,ws) the cosine of the angle between
two intersecting lines parallel to w; and w,. :

§ 38. Calculation of Co-ordinates.—We must conceive
the formation of a table of triple entry from which the
virtual coefficient of any pair of screws may be ascer-
tained. The three arguments will be the angle be-
tween the two screws, the perpendicular distance, and
the sum of the pitches. These arguments having been
ascertained by ordinary measurement of lines and
angles, the virtual coefficient can be extracted from the
tables.

Let a be a screw, of which the co-ordinates are to be
determined. The work done against the unit wrench on
a by a twist of amplitude w,” about the screw w, is

2wllwwl
but this must equal the work done by the same twist
against a wrench of intensity «, on the screw w,,
whence
2]51 aw’' = 20’1’wa

or P aw,

a =——

e
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Thus, to compute each co-ordinate an, it is only ne-
cessary to ascertain from the tables half the virtual co-
efficient between a and w, and to divide this quantity by
D

§ 39. The Virtual Coefficient between two screws may
be expressed with great simplicity by the aid of screw
co-ordinates.

The components of a twist of amplitude a’ are of
amplitudes a’a1, &c. a’as.

The components of a wrench of intensity 3" are of
intensities 3” (3, &c. 3" 3.

Comparing these expressions with § 34, we see that

an’ = a’ an, B"” = B”B"’

and the expression for the work done by the twist about
a, against the wrench on f3, is

a’B” [Zﬁlalﬁl +, &C., G Zﬁeaeﬁgj.
The quantity inside the bracket is the virtual coefficient,
whence we deduce the important expression

Tag = Epmﬁx /:.RF:

Smce a and 3 enter symmetrically into this expres-
sion, we are again reminded of the reciprocal ch r‘é.(;ter
of the virtual coefficient. €

§ 40. The Pitch of a screw is at once expressed in
terms of its co-ordinates, for the virtual coefficient of two
coincident screws being double the pitch, we have

Do = Zphias’.

§ 41. Screw Reciprocal to five Screws.—We can deter-
mine the co-ordinates of the single screw p, which is
reciprocal to five given screws, a, 3, v, &, & (§ 27)-

The quantities p,, &c., ps, must satisfy the condition

Epl?lal =0,
D2
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and four similar equations; hence pnp. is proportional
to the determinant obtained by omitting the #™ column
from the matrix. -

a, az A3y Qi A5 Qg
ﬁl) 132) BS) Bb 652 BG)

71) 72) 73) 74’ Y5 75’
8]; 82; 337 84) 85) 86)

&1y &2, €3y &4 €5 €1y

The relative values of g,, &c., gs, being thus found, the
absolute values are given by § 37.

The condition that six screws have a common recipro-
cal screw is expressed by the evanescence of a deter-
minant, which may be compared with the condition that
three straight lines be coplanar, of which the direction
cosines are given.

§ 42. Co-ordinates of a Screw on a Cylindroid.— We
may define the screw 8 on the cylindroid by the angle
/,’which it makes with the screw o on the axis of x.
Since a wrench of unit intensity on 6 has components of
intensities cos / and sin / on a and 3 (§ 17), and since each
of these components may be resolved into six wrenches
" on any six co-reciprocal screws, we must have (§ 36)

0n = ancosZ+ 3, sinl.

From this expression we can find the pitch of 0:
for we have
Po=Zp (ay .cos 7+ [3, sin /)?

whence expanding and observing that as a and (3 are re-
ciprocal Zpmf3; = 0 and also that Zpe®=p, and
4. B: = fp we have the expression already given (§ 20)
viz.

Do =P. cos¥ + pg sin?l.
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If two screws, 6 and ¢, upon the cylindroid, are reci-

procal, then (7 being the defining angle of ¢),

Zpr (ay cos £ + 3y sinl) (a; cos 2 + B3, sinm) = o,
or, Pa coslcosm + pg sinl sinm = o.
Comparing this with § 20, we have the following useful
theorem :—

Any two reciprocal screws on a cylindroid are parallel
to conjugate diameters* of the pitch conic.

Since the sum or difference of the squares of two con-
jugate diametersis constantt according asthe pitch conic
is an Ellipse or a Hyperbola, we see that the sum or
difference of the reciprocals of the pitches of two reci-
procal screws on a cylindroid is constant according
as the pitch conic is an Ellipse or'a Hyperbola.

* Salmon, Conic Sections, 3rd Ed., page 129.
1 Do. page 153.
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CHAPTER V.

GENERAL CONSIDERATIONS ON THE EQUILIBRIUM OF A
< RIGID BODY.

§ 43. The Screw Complex.—To specify with precision the
nature of the freedom enjoyed by a rigid body, it is
necessary to ascertain all the screws about which the
constraints will permit the body to be twisted. When the
attempt has been made for every screw in space, the re-
sults will give us all the information conceivable with
reference to the freedom of the body, and also with re-
ference to the constraints by which the movement may
be hampered.

Suppose that 7 screws A4,, &c., 4, have been found by
thesetrials, about each of whichthe body canreceiveatwist.
It is evident, without further trial, that twisting about an
infinite number of other screws must also be possible
(> 1) : for suppose the body receive any 7 twists about
A,, &c., A, the position attained could have been reached
by a twist about some single screw 4. It follows that
the body must be free to twist about 4. Now since the
amplitudes of the 7 twists may have any magnitude (each
not exceeding an infinitely small quantity), 4 is merely
one of an infinite number of screws, about which twist-
ing must be possible. A/l these screws, fogether with
A,y &c., A, we call a screw complex of the 1™ order.

If it be found that the body cannot be twisted about
any screw which does not belong to the screw complex
of the #™ order, then the body is said to have freedom of
the 72 order. Itmay be necessary to remark that 4,, &c.,
A4, must not be themselves members of a screw complex
of order lower than #. If this were the case, the screws
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about which the body could be twisted would only con-
sist of the members of that lower screw complex.

Since the amplitudes of the 7 twistsabout 4,, . .. A,
are [arbitrary, it might be thought that there are 7 dis-
posable quantities in the selectior: of a screw .S from a
screw complex of the # order. It is, however, obvious
from § 17 that the determination of the position and pitch
of .S dependsonlyupon the 7afios of the amplitudes of the
twists about 4,, ... .4, and hence iz the selection of a
screw from the screw complex of the n order, we have n— 1
disposable quaniities.

§ 44. Constraints.— An essential feature of a system
of constraints consists in the number of independent
quantities which are necessary to specify the position of
the body when displaced in conformity with the require-
ments of the constraints. That number which cannot be
less than one, nor greater than six, is the order of the
freedom. To each of the six orders of freedom a certain
type of screw complex is appropriate.

The study of the six types of screw complex as here
defined is a problem of kinematics, but the statical and
kinematical properties of screws are so interwoven that
we derive great advantages by not attempting to rele-
gate the statics and kinematics to different chapters.
We shall not require any further mention of the con-
straints. Every conceivable condition of constraintsmust
have been included when the six screw complexes are
discussed in their most general form. Nor does it come
within our scope, except on rare occasions, to specialize
the enunciation of any problem, further than by men-
tioning the order of the freedom permitted to the body.

§ 45. Screw Reciprocal to a Complex.—If a screw X
be reciprocal to 7z screws, A, &c., Aa, belonging to a
screw complex of order #, then X is reciprocal to every
other screw A which belongs to the same screw com-
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plex. For, by the definition of the screw complex, it ap-
pears that twists of appropriate amplitudes about 4,, &c.,
An, would compound into a twist about 4. It fol-
lows (§ 43) that wrenches on 4, &c., 4., of appropriate
intensities (§ 32) compound intoawrench on 4. Suppose
these wrenches on A4, &c., A,, were applied to a body
only free to twist about X, then since X is reciprocal to
A,, &c., A, the equilibrium of the body would be un-
disturbed. The resultant wrench on 4 must therefore
be incapable of moving the body, therefore 4 and X must
be reciprocal.

§46. The Reciprocal Screw Complex.—All the screws
which are reciprocal to a screw complex P of order 4
constitute a screw complex Q of order 6 — £ This im-
portant theorem is thus proved :—

Since only one condition is necessary for a pair of
screws to be reciprocal, it follows, from the last section,
that if a screw X be reciprocal to 2 it will fulfil 2 con-
ditions. The screw X has, therefore, 5 — £ elements still
disposable, and consequently (Z < 5) an infinite number
of screws ) can be found which are reciprocal to the
screw complex . The theory of reciprocal screws will
now prove that Q must really be a screw complex of
order 6 - 2. In the first place it is manifest that Q must
be a screw complex of some order, for, 27z general, if a
body be capable of twisting about even six screws, it
must be perfectly free. Here, however, if a body were
able to twist about the infinite number of screws em-
bodied in @, it would still not be free, because it would
remain in equilibrium, though acted upon by a wrench
about any screw of 2. If follows that Q can only denote
the collection of screws about which a body can twist
which has some definite order of freedom. It is easily
seen that that number must be 6 — £, for the number of
constants disposable in the selection of a screw belong-
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ing to a screw complex is one less than the order of the
complex (§38). But we have seen that the constants dis-
posable in the selection of X are 5 — %, and, therefore, Q
must be a screw complex of order 6 - 4.

We thus see, that # any screw complex P of orderk be-
dongs a reciprocal screw complex Q of order 6 — k. Every
screw of P is reciprocal to all the screws of Q, and vice
versd. This theorem provides us with a definite test as
to whether any given screw a is a member of the screw
complex 2. Construct any 6 — £ screws of the reciprocal
system. If then a be reciprocal to these 6 — £ screws, a
must belong to 2. We thus have 6 — Z conditions to be
satisfied by any screw when a member of a screw com-
plex of order 4.

§47. Equilibrium.—If the screw complex 2 expresses
the freedom of a rigid body, then the body will remain
in equilibrium though acted upon by a wrench on
any screw of the reciprocal screw complex Q. This
is, perhaps, the most general theorem which can be
enunciated with respect to the equilibrium of a rigid
body. This theorem is thus proved :—Suppose a wrench
to act on a screw 5 belonging to Q. If the body does
not continue at rest, let it commence to twist about a.
‘We thus have a wrench about 5 disturbing a body which
twists about a, but this is impossible, because a and 5 are
reciprocal.

In the same manner it may be shown that a body
which is free to twist about all the screws of Q will not
be disturbed by a wrench about any screw of 2. Thus,
of two reciprocal screw complexes, each expresses the
locus of a wrench which is unable to disturb a body free
to twist about any screw of the other.

§48. Reaction of Constraints.—It also follows that the
reactions of the constraints by which the movements
of a body are confined to twists about the screws of
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a complex 2 can only be wrenches on the reciprocal
screw complex Q, for the reactions of the constraints are-
only manifested by the success with which they resist
the efforts of certain wrenches to disturb the equilibrium
of the body.

§ 49. Parameters of a Screw Complex.—We next con-
sider the question as to how many parameters are
required in order to specify completely a screw com-
plex of the 7" order. Since the complex is defined
when 72 screws are given, and since five data are required
for each screw, it might be thought that 52 parameters.
would be necessary. It must be observed, however, that
the given 52 data suffice not only for the purpose of de-
fining the screw complex but also for pointing out 7
special screws upon the screw complex, and as the point-
ing out of each screw on the complex requires 7 — 1
quantities.(§ 38), it follows that the number of parameters.
actually required to define the complex is only

5172 —n(n-1)=n(6-mn).

This result has a very significant meaning in con-
nexion with the theory of reciprocal screw complexes />
and (. Assuming that the order of 2 is 7, the order of
Q is 6 — 2z; but the expression 7 (6 -7 ) is unaltered by
changing 7 into 6 — 2. It follows that the number of
parameters necessary to specify a screw complex is
identical with the number necessary to specify its reci-
procal screw complex. This remark is chiefly of impor-
tance in connexion with the complexes of the fourth and.
fifth orders, which are respectively the reciprocal com-
plexes of a cylindroid and a single screw. We are now
 assured that a collection of all the screws which are re--
ciprocal to an arbitrary cylindroid can be nothing less
than a screw complex of the fourth order in its most
general type, and also, that all the screws in space which
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are reciprocal to a single screw must form the most
general type of a screw complex of the fifth order.

§ 50. Applications of Co-ordinates.—If the co-ordinates
of a screw satisfy 7 linear equations, the screw must
belong to a screw complex of the order 6 — 2. Let 5 be
the screw, and let one of the equations be

Ay +, &c., + Agys = 0,

whence 5 must be reciprocal to the screw whose co-ordi-

nates are proportional to
%‘, &e., %’% § 39)-

It follows that n must be reciprocal to # screws, and

therefore belong to a screw complex of order 6 — 7.

Let a, 3, v, O be four screws about which a body re-
ceives twists of amplitudes o, 3, ¥/, &, It is required to
find the co-ordinates of the screw p and the amplitude p’
ofatwistabout pwhich will producethe same effect as the
four giventwists. Wehaveseen (§ 39) that the twist about
any screw ¢, may be resolved in one way into six
twists of amplitudes da, . .. da, on the six screws of
reference; we must therefore have

ppri=da+f Pi+y nn+dd
&c., &c.
plps=ad+ B Bty yet+ 8
whence p’ and p, . . . ps can be found (§ 37).

A similar process will determine the co-ordinates of
the resultant ofany number of twists, and it follows from
§15 that ‘the resultant of any number of wrenches is
to be found by equations of the same form. In ordinary
mechanics, the conditionsofequilibrium of any number of
forcesare six,viz., that each of the three forces, and each
of the three couples to which the system is equivalent
shall vanish. In the present theory the conditions are
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likewise six, viz., that the intensity of each of the six
wrenches on the screws of reference to which the given
system isequivalent shall be zero.

Any screw will belong to a complex of the #* order
if it be reciprocalto 6 — zindependent screws; it follows
that 6 — # conditions must be fulfilled when # + 1 screws
belong to a screw complex of the % order.

To determine these conditions we take the case of
n = 3, though the process is obviously general. Let a, (3,
v, © be the four screws, then since twists of amplitudes
o, 3/, v, & neutralise, we must have p’ zero and hence
the six equations

a'al P B,Bl Sr ’y/'y; o5 8/81 B O,
&ec.
a’as + Blﬁs -7 7’76 + 8’85 = 0;

from any four of these equations the quantities o/, 3, 7/,
& can be eliminated, and the result will be one of the
required conditions.

It is noticeable that the 6 — 7 conditions are often
presented in theevanescence of a single function,justas
the evanescence of the sine of an angle between a pair
of straight lines embodies the two conditions necessary
that the direction cosines of the lines coincide. The
function is suggested by the following considerations :—
If # + 2 screws belong toa screw complex of the (7 + 1)
order, twists of appropriate amplitudes about the screws
neutralise. The amplitude of the twist about any one
screw must be proportional to a function of the co-ordi-
nates of all the other screws ; this is evident, because if
one amplitude were ascertained to be zero, the remaining
screws must belong to a complex of the #* order. We
thus see that the evanescence of one function must afford
all that is necessary for 7+ 1 screws to belong to a screw
complex of the 7" order.



CHAPTER VL
THE PRINCIPAL SCREWS OF INERTIA.

§51. Introduction.—If a rigid body be free to rotate about
a fixed point, then it is well known that an impulsive
couple in a plane perpendicular to one of the principal
axes which can be drawn through the point will make
the body commence to rotate about that axis. Suppose
that on one of the principal axes lay a screw 5 with a
very small pitch, then a twisting motion about 5 would
closely resemble a simple rotation about the correspond-
ing axis. An impulsive wrench on 5 will, when united
with the reaction of the fixed point, reduce to a couple
in a plane perpendicular to the axis. If we now sup-
pose the pitch of 75 to be evanescent, we may still
assert that an impulsive wrench on 5 of very great in-
tensity will cause the body, if previously quiescent, to
commence to twist about 7.

‘We have stated a familiar property of the principal
axes in this indirect manner, for the purpose of showing
that it is merely an extreme case fora body with freedom
of the third order of the following general theorem :—

If a quiescent rigid body have freedom of the n' order,
then n screws can always be found (but not more than n), such
that tf the body recetve an impulsive wrench on any one of
these screws, the body will commence to twist about the same
screw.

These 7 screws are of great significance in the pre-
sent method of studying Dynamics, and they may be
termed the principal screws of inertia. In the present
chapter we shall prove the general theorem just stated,
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while in the chapters on the special orders of freedom we
shall show how the principal screws of inertia are to be
determined for each case.

§ 52. Screws of Reference.— We have now to define the
group of six co-reciprocal screws (§ 28) which are pecu-
liarly adapted to serve as the screws of reference in
Kinetic investigations. Let O be the centre of inertia of
the rigid body, and let 04, OB, OC be the three prin-
cipal axes through O, while g, 4, ¢ are the corresponding
radii of gyration. Then two screws along 04, viz.: w,
w2, with pitches + @, ~ @ ; two screws along OB, viz.: ws,
oy, with pitches + 4, — 4, and two along OC, viz.: ws; ws,
with pitches + ¢, — ¢, are the co-reciprocal groupwhich we
shall employ. For convenience in writing the formule,
we shall often use p;, &c. g, to denote the pitches as
before.-

'We shall now prove that the six screws thus defined
are the principal screws of inertia of a free rigid body.
Let the mass of the body be A7, and let an impulsive
wrench on w, act for a short time Z The intensity of
this wrench is 1”, and the moment of the couple is aw,”.
‘We now consider the effect of the two portions of the
wrench separately. The effect of the force w,” is to give
the body a velocity of translation parallel to OA4 and
equal to IT{[ e1”. By the property of the principal axes
the effect of the couple will be to impart an angular ve-
locity @, about the axis OA4. This angular velocity
is easily determined. The effective force which must
have acted upon a particle &7 at a perpendicular dis-

. 7w
tance 7 from OA4 is —‘;—'-dm. The sum of the moments

Sxud
of all these forces is Ma? %‘- This quantity must equal
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the moment of the given couple or

(01
]l[a’ — = awl

whence ) =—— .
WTIRFS

The effect of an impulsive wrench on ), is, therefore,
to give the body a velocity of translation parallel to 04,

and equal to = ", and also a velocity ofrotation about

jl[

0A equal to —; jl 7Y w,”. These movements unite to form a

twisting motion about a screw on OA, of which the pitch
is found by dividing the velocity of translation by the
velocity of rotation to be equal to «, this being the pitch
-of w;, proves that an impulsive wrench on w, will make
the body commence to twist about w;, and that, therefore,
w, is a principal screw of inertia. Similar reasoning
-applies to the remaining five screws.

§53. Impulsive Screws and Instantaneous Screws.—If a
free quiescent rigid body receive an impulsive wrench
on a screw n, the body will immediately commence to
twist about an instantaneous screw a. The co-ordinates
of a being given, it is required to determine the co-
-ordinates of 4.

The impulsive wrench on » of intensity " is to be
decomposed into components of intensities 5" n1, &c.
7"/ 75 on w1, & we. The component on w, will generate
a twist velocity about w, amounting to

n _"_" 4,
"

but if a’ be the twist velocity about a which is finally

produced, the expression just written must be equal to

a’ an, and hence we have the following useful result :—
If the co-ordinates of the instantaneous screw be propor-
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tional to ay, &'c. ag, then the co-ordinales of the correspond-
ing tmpulsive screw are proportional to pray, &c. peas.

§54. Conjugate Screws of Inertia.—Ifa and 3 be two
instantaneous screws, and if » and & be the correspond-
ing impulsive screws, then when a is reciprocal to & we
must have (3 reciprocal to 5. We shall first suppose the:
body to be perfectly free.

The co-ordinates of & are proportional to 2,3;, &c. s [3s,
hence the condition that a and & are reciprocal (§ 34) is

plz a ﬁl + &c. +}552 GSBG o

But this is precisely the equation which we should
have found by expressing the condition that 3 and ywere
reciprocal.

‘When this relation is fulfilled, the screws a and B are
said to be conyugate screws of inertia.

‘We shall now show that this theorem will still remain
true even if the body be only partially free. When the
body receives an impulsive wrench on £ there is an im-
pulsive reaction of the constraints on a screw u. The
effect on the body is, therefore, the same as if it had been
free, but had received an impulsive wrench of which the
component on w; had the intensity &”&; + u”u ; hence,
% being a constant, we have

E'E + mop = ;lplﬁl
&ec. &ec.
E"Es + 1 pe = /lﬁaﬁs;

multiplying the first of these equations by #; a;, the
second by p,a,, &c., adding the six products, and re-
membering that a and & are reciprocal by hypothesis,
while a and u are reciprocal, by the nature of the re-
actions of the constraints (§ 43), we have, asbefore

p.’a,ﬁl + &c. +?520663 =0



THE PRINCIPAL SCREWS OF INERTIA. 49

Precisely the same condition must be satisfied when 8 and
y are reciprocal, and hence the general property of con-
jugate screws of inertia is true, whether the body be free
or constrained in any way.

§ 55. The Determination of the Impulsive Screw, corres-
ponding to a given instantaneous screw, is a definite
problem when the body is perfectly free. If, however,
the body be constrained, we shall show that any screw
selected from a certain screw complex will fulfil the re-
quired condition.

Let B, &c. Bs., be 6 - n screws selected from the
screw complex which is reciprocal to that corresponding
to the freedom of the 7™ order possessed by the rigid
body. Let.S be the screw about which the body is to
twist. Let X be any screw, an impulsive wrench about
which would make the body twist about .S’; then any
screw Y belonging to the screw-complex of the (7 — 7)%
order, specified by the screws, X, 5, &c. Bs., is an im-
pulsive screw, corresponding to .S as an instantaneous
screw. For the wrench on ¥ may be resolved into 7 — »
wrenches on X, B, &c. B_,; of these, all but the first are
instantly destroyed by the reaction of the constraints, so
that the wrench on Y is practically equivalent to the
wrench on X, which, by hypothesis, will make the body
twist about .S.

For example, if the body had freedom of the fifth
order, then an impulsive wrench on azy screw on a cer-
tain cylindroid will make the body commence to twist
about a given screw.

If a body have freedom of the third order, then the
“locus” of an -impulsive wrench which would make the
body twist about a given screw consists of all the screws
in space which are reciprocal to a certain cylindroid.

§56. System of Conjugate Screws of Inertia.—We shall
now showthat from the screw-complex of the 7 order 7,

E
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which expresses the freedom of the rigid body, 72 screws
can be selected so that every pair of them are conjugate
screws of inertia (§54). Let B, &c. Bs., be (6 - 7)
screws defining the reciprocal screw-complex. Let 4, be
any screw belonging to . Then in the choice of 4 4, we
have 7 — 1 arbitrary quantities. Let /; be any impulsive
screw corresponding to 4; as an instantaneous screw.
Choose A4, reciprocal to 7, By, &c. Bs.n, then 4, and A4,
are conjugate screws, and in the choice of the latter we
have 7 - 2 arbitrary quantities. Let Z, be any impulsive
screw corresponding to .4, as an instantaneous screw.
Choose A, reciprocal to 7,, 1;, B, &c. Bs.,, and proceed
thus until A4, has been attained, then each pair of the
group A,, &c. 4, are conjugate screws of inertia. The
number of quantities which remain arbitrary in the choice
of such a group amount to

n(n - 1)

n-1+n-2+&c.+1= y

or exactly half the total number of arbitrary constants in
the selection of any 7 screws from a complex of the 7™
order.

§57. Principal Screws of Inertia.—It is the object of
this section to show that it is always possible to select
from the screw-complex of the 7% order expressing the
freedom of a rigid body, one group of # screws, of which
every pair are both conjugate and reciprocal, and that
these constitute the principal screws of inertia (§ 51).

To prove this, it is sufficient to show that when the
remaining half of the arbitrary constants (§ 56) have
been suitably disposed, then the group of 7z screws be-
sides being conjugate will be co-reciprocal. Choose 4,
reciprocal to B, &c. Bs.», with # — 1 arbitrary quantities ;
A, reciprocal to A4,, B, &c. B,.;, with 72 - 2 arbitrary
quantities, and so on, then the total number of arbitrary
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quantities in the choice of 22 co-reciprocal screws from a
complex of the 7" order is
n(n - 1)
AL M 4D S St
Hence, by suitable disposition of the 7 (7 — 1) constants
we can find one group of 72 screws which are both con-
jugate and co-reciprocal.

‘We have now to show that these 72 screws are really
the principal screws of inertia (§ 51). jWe shall state the
argument for the freedom of the third order, the argu-
ment for any other order being precisely similar.

Let 4,, A,, A,, be the three conjugate and co-reci-
procal screws which can be selected from a complex of
the third order. Let B,,5,, B;be any three screws belong-
ing to the reciprocal screw-complex. Let R, R,;, R;
be any three impulsive screws corresponding respectively
to A,, A,, A; as instantaneous screws.

An impulsive wrench on any screw belonging to the
screw-complex of the 4™ order defined by R, B, B:, B,
will make the body twist about 4, (§55), but the screws
of such a complex are reciprocal to 4, and A;; for since
A, and A, are conjugate, R, must be reciprocal to A4,
{8 54), and also to A, since 4, and A3 are conjugate. It
follows from this that an impulsive wrench on any screw
reciprocal to A4, and 4; will make the body commence
to twist about 4,, but A4, is itself reciprocal to 4, and A,
and hence an impulsive wrench on A, will make the
body commence to twist about 4,. Hence 4, and also
A, and A4, are principal screws of inertia.

‘We shall now show that with the exception of the 7
screws here determined, no other screw possesses the
property in question. Suppose another screw .S were to
possess this property. Decompose the wrench on .S into
7 wrenches of intensities .5}/, &c. .S, on A4,, &c. A,, this
must be possible, because if the body is to be capable of

E2



52 THE PRINCIPAL SCREWS OF INERTIA.

twisting about .S this screw must belong to the complex
specified by 4,, &c. A,.. The 2 impulsive wrenches on
A, &c. A, will produce twisting motions about the same
screws, but these twisting motions are to compound into
a twisting motion on.S. It follows that the component
twist velocities .Sy, &c. .S, must be proportional to the
intensities .Sy, &c. .S,”. But if this were the case, then
every screw of the complex would be a principal screw
of inertia; for let X be any impulsive screw, and suppose
that ¥ is the corresponding instantaneous screw, the
components of X on 4,, &c. A,, have intensities X,”, &c.
X", these will generate twist velocities equal to

Sl aSih
Sl// Xlﬂ’ &e. S 7"

and these quantities must equal the components of the
twist velocity about ¥. But the ratios
Sy po

;STH, &c. Sn”

Xn//’

are all equal, and hence the twist velocities of the com-
ponents on the screws of reference of the twisting motion
about ¥ must be proportional to the intensities of the
components on the same screws of reference of the
wrench on X. Remembering that twisting motions and
wrenches are compounded by the same rules, it follows
that ¥ and X must be identical.

As it is not generally true that all the screws of the
complex defining the freedom possess the property
enjoyed by a principal screw of inertia, it follows that the
number of principal screws of inertia must be generally
equal to the order of the freedom.

§ 58. Kinetic Energy.—The twisting motion of a rigid
body with freedom of the 7™ order may be completely
specified by the twist velocities of the components of the
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twisting motion on any 7 screws of the complex defining
the freedom. If the screws of reference be a set of con-
jugate screws of inertia, the expression for the kinetic
energy of the body consists of z square terms. This will
now be proved.

If a free or constrained rigid body be at rest in a po-
sition 4, and if the body receive an impulsive wrench,
the body will commence to twist about a screw a with a
kinetic energy Z.. Let us now suppose that a second
impulsive wrench acts upon the body on a screw yu, and
that if the body had been at rest in the position 4, it
would have commenced to twist about a screw (3, with a_
kinetic energy Zj.

We are now to consider how the amount of energy
acquired by the second impulse is affected by the circum-
stance that the body is then not at rest in 4, butis
moving through A in consequence of the former im-
pulse. The amount will in general differ from £, for
the movement of the body may cause it to do work
against the wrench on u during the short time that it
acts, so that not only will the body thus expend some
of the kinetic energy which it previously possessed, but
the efficiency of the impulsive wrench on u will be dimi-
nished. Under other circumstances the motion through
A might be ofsuch a character that the impulsive wrench
on u acting for a given fime would impart to the body a
larger amount of kinetic energy than if the body were at
rest. Between these two cases must lie the intermediate
one in which the kinetic energy imparted is precisely
the same as if the body had been at rest. It is obvious
that this will happen if each point of the body at which
the forces of the impulsive wrench are applied be moving
in a direction perpendicular to the corresponding force,
or more generally if the screw a about which the body
is twisting be reciprocal to u. When this is the case
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a and 8 must be conjugate screws of inertia (§ 54), and
hence we infer the following theorem :—

If the kinetic energy of a body twisting about a screw
a with a certain twist velocity be £., and if the kinetic
energy of the same body twisting about a screw (3 with a
certain twist velocity be E,, then when the body has a
motion compounded of the two twisting movements, its
kinetic energy will amount to £, + £ provided that e and
{3 are conjugate screws of inertia.

Since this result may be extended to any number of
conjugate screws of inertia, and since the terms %, &c.,
are essentially positive, the required theorem has been
proved.

§ 59. Expression for Kinetic Energy.—If a rigid body
have a twisting motion about a screw a, with a twist
velocity «’, what is the expression of its kinetic energy
in terms of the co-ordinates of «?

‘We adopt as the unit of force that force which acting
upon the unit of mass for the unit of time will give the
body a velocity which would carry it over the unit of
distance in the unit of time. The unit of energy is the
work done by the unit force in moving over the unit dis-
tance. If, therefore, a body of mass @ have a movement
of translation with a velocity v its kinetic energy ex-
pressed in these units is w22,

The movement is to be decomposed into twisting
motions about the screws of reference w;,, &c. ws the
twist velocity of the component on w, being d'an.
One constituent of the twisting motion about wn con-
sists of a velocity of translation equal to a’pmam, and on
this account the body has a kinetic energy equal to
3 Mad"* puant. On account of the rotation around the
axis with an angular velocity d’as the body has a kinetic
energy equal to

1d*a [*dM
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where 7 denotes the perpendicular from the element dAf
on w,. Remembering that g, is the radius of gyration
this expression also reduces to } Ma"p%, ax?, and hence
the total kinetic energy of the twisting motion about wy,
is Ma" P’ am®.

We see, therefore (§58), that the kinetic energy due
to the twisting motion about a is

Ma"™ (pPa’® + &c. + peagd).

The quantity inside the bracket is the square of a
certain Jznear magnitude which is determined by the dis-
tribution of the material of the body with respect to the
screw a. It will facilitate the kinetic applications of the
present theory to employ ¢ke symbol u, to denote this quan-
fity. Itis then to be understood that the kinetic energy
of a body of mass A7, animated by a twisting motion
about the screw a with a twist velocity a’is represented by

Mau.’.

§ 60. Twist Velocity acquired by an Impulse.—A body of
mass A/, which is only free to twist about a screw a, is
acted upon for a skor¢ time ¢ by a wrench of intensity »”
on a screw 5. It is required to find the twist velocity a’
which is acquired.

Let the initial reaction of the constraints consist of a
wrench of intensity A on a screw A. Then the body
moves as if it were free, but had been acted upon by a
wrench of which the component on w, had the intensity
%'nm + A’Am.  This component would generate a velocity
of translation parallel to w, and equal to 1—%(11”17,,.+A”/\m).
The twist vélocity about w, produced by this component
is found by dividing the velocity of translation by Aum.
On the other hand, since the co-ordinates of the screw
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a are a;, &c., as, the twist velocity about w, may also be
represented by d’an (§ 36), whence

4 nllnm il >\”Am
a'am=—7 T
m

If we multiply this equation by pn%am, add the six equa-
tions found by giving # all values from 1 to 6, and re-
member that « and X are reciprocal, we have (§ 39,)

. €
a'u,t = 'j_l]n”wna. 5

whence o’ is determined.

This expression shows that the twist velocity pro-
duced by an impulsive wrench on a given rigid body
constrained to twist about a given screw, varies directly
as the product of the virtual coefficient of the two screws
and the intensity of the impulsive wrench, and inversely
as the square of z,.

§ 61. The Kinetic Energy acquired by an Impulse can be
easily found by § 59 ; for, from the last equation,

"3

4 2

62
Mdnp=—— z 2;
SN Dol 58T

hence the kinetic energy produced by the action of an
impulsive wrench on a body constrained to twist about
a given screw varies directly as the product of the square
of the virtual coefficient ofthe two screws and the square
of the intensity of the impulsive wrench, and inversely
as the square of #,.

§ 62. Free Body.—We shall now express the kinetic
energy communicated by the impulsive wrench on 5 to
the body when perfectly free. The component on wm of
intensity »"y» imparts a kinetic energy equal to

ez 17
7" "N’ 5
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whence the total kinetic energy is found by adding these
six terms.

The difference between the kinetic energy acquired
when the body is perfectly free, and when the body is
constrained to twist about a, is equal to

j; :'///:[ ( ( )) ( (plulﬂl))z}.

The quantity inside the bracket reduces to the sum of 15
square terms, of which (piams — prasm)? is a specimen.
The entire expression being therefore essentially posi-
tive shows that a given impulse imparts greater energy
to a quiescent body when free than to the same quiescent
body when constrained to twist about a certain screw.

§ 63. Lemma.—If a group of instantaneous screws be-
long to a complex of the 7% order, then the correspond-
ing group of impulsive screws also belong to a complex
of the z order; for, suppose that 7 + 1 twisting motions
about 7 + 1 screws neutralise, then the corresponding
7+ 1 impulsive wrenches must equilibrate, but this would
not be possible unless all the impulsive screws belonged
to a screw complex of the #* order.

§ 64. Euler’s Theorem.—If a free or constrained rigid
body receives an impulsive wrench, the body will com-
mence to move with a larger kinetic energy when it is
permitted to select its own instantaneous screw from the
screw complex P defining the freedom, than it would
have acquired, had it been arbitrarily restricted to any
other screw of the complex.

Let Q be the reciprocal complex of the (6 - 7") order,
and-let 7 be the screw complex of the »* order, con-
sisting of those impulsive screws which, if the body
were free, would correspond to the screws of /> as instan-
taneous screws.
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Let n be any screw on which the body receives an
impulsive wrench. Decompose this wrench into com-
ponents on a system of six screws consisting of any 7
screws from 7, and any 6 — 7 screws from (. The latter
are neutralised by the reactions of the constraints, and
may be omitted, while the former compound into one
wrench on a screw & belonging to 7’; we may therefore
replace the given wrench by a wrench on Z. Now, if
the body were perfectly free, an impulsive wrench on &
must make the body twist about some screw a on ~. In
the present case, although the body is not perfectly free,
yet it is free so far as twisting about a is concerned, and
we may therefore, with reference to this particular im-
pulse about Z, consider the body as being perfectly free.
It follows from § 62 that there would be a loss of energy
if the body were compelled to twist about any other
screw than ¢, which is the one it naturally chooses.
This theorem is due to Euler.*

§ 65. Co-ordinates of a Screw belonging to a Screw com-
plex.—It will now be necessary to make some extensions
of the conceptions of screw co-ordinates. Suppose that
abody have freedom of the #* order, we have shown that
it is always possible to choose » screws from the screw
complex expressing that freedom, such that each screw
is reciprocal to all the rest. As an example we shall give
the proof for the screw complex of the third order. Let
B, B,, B; be three screws of the reciprocal screw com-
plex; then, if any screw 4, be taken which is reciprocal
to B, B, B, any screw A, which is reciprocal to
B\, B,, B;, A, and the screw A, which is reciprocal to
B\, B, By, A, A,; then the group 4, A, A; possess
the required property, and may be termed co-recipro-
cals.

* Thomson & Tait : Natural Philosophy, vol. i. p. 216.



THE PRINCIPAL SCREWS OF INERTIA. 59

The co-ordinales of a screw belonging fo a grven screw
complex are simplified by taking 2 co-reciprocal screws
belonging to the given screw complex as a portion of
the six screws of reference. In this case, out of the six
co ordinates ai, ....as of a screw a, which belongs to
the complex, 6-7 are actually zero. Thus we are en-
abled to give a more general definition of screw co-
ordinates, which will apply to a screw-complex of every
order from 1 to 6, both inclusive.

If a wrench, of whick the intensity is one unit on a
screw a, which belongs to a certain screw complex of the
nh order, be decomposed tnto n wrenches of infensilies
ay, . . .. an on n co-reciprocal screws belonging fo the
same screw complex, then the n quanitities a;, .... ay
are said to be the co-ordinates of the screw a. Thus the
pitch of a will be represented by #, a,®+. . . + paas®. The
virtual coefficient of a and 3 willbe 2 (pia,3; +. . . + pnauBn)-

‘We may here remark that one screw can always be
found upon a screw complex of the z* order reciprocal
to 72— 1 screws of the same complex. For, take 6 -7
screws of the reciprocal screw complex, then the required
screw is reciprocal to 6 — 7+ 7 — 1 = 5 known screws, and
is therefore determined (§ 27).

§ 66. The Reduced Wrench.—A wrench which acts upon
a constrained rigid body may always be replaced by a
wrench on a screw belonging to the screw complex,
which defines the freedom of the body.

Take 7 screws from the screw complex of the n#
order which defines the freedom, and 6 — 7 screws from
the reciprocal complex. Decompose the given wrench
into components on these six screws. The component
wrenches on the reciprocal complex are neutralized by
the reactions of the constraints, and may be discarded,
while the remainder must compound into a wrench on
the given screw complex.
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‘Whenever a given external wrench is replaced by an
equivalent wrench upon a screw of the complex which
.defines the freedom of the body, the latter may be termed,
for convenience, the reduced wrench.

It will be observed, that although the reduced wrench
can always be determined from the given wrench, that
the converse problem is indeterminate (7 < 6).

‘We may state this result in a somewhat different
manner. A given wrench can always be resolved into
two wrenches—one on a screw of any given complex,
and the other on a screw of the reciprocal screw com-
plex. The former of these is what we denote by the
reduced wrench.

§ 67. Co-ordinates of Impulsive and Instantaneous
Screws.—Taking as screws of reference the 7 principal
screws of inertia (§ 57), we require to ascertain the rela-
tion between the co-ordinates of a reduced impulsive
wrench and the co-ordinates of the corresponding instan-
taneous screw. Ifthe co-ordinates of the reduced wrench
are ., ..., na”/, and those of the corresponding twisting
motion are a/,. ., d./, then, remembering the property
of a principal screw of inertia (§ 57), and denoting by
%y, - . ., Uy, the values of the magnitude « (§ 59) for the
principal screws of inertia, we have, from § 60,

= u? € e
a; ﬁ—l = 117111 3
whence we deduce the following theorem, which, in the
particular case of z = 6, reduces to that of § 53.

If a quiescent rigid body, which has freedom of the
7' order, commence to twist about a screw a, of which
the co-ordinates, with respect to the principal screws of
inertia, are a;, ...as, and if 4, ..., p, be the pitches,
and #,, ..., #, the constants defined, in § 59, of the
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principal screws of inertia, then the co-ordinates of the
reduced impulsive wrench are proportional to = -

(¢

2

<y
%2 u,? G
— An. (

¥
Let .7 denote the kinetic energy of the body of mass

A when animated by a twisting motion about the screw

a, with a twist velocity o’. Let the twist velocities of the
components on azy 72 conjugate screws of inertia be de-
noted by ay,...d.. (These screws will not be co-reci-
procal unless in the special case where they are the
principal screws of inertia.) It follows (§58) that the
kinetic energy will be the sum of the 7 several kinetic
energies due to each component twisting motion. Hence
we have (§ 59)

T=Mulra)? + ...+ Mu?dn*,
and also
U2 =tral® + . ..+ %2a,%

Let aj,...an and 3, .., 3, be the co-ordinates of
any two screws belonging to a screw complex of the 7™
order, referred to any 7 conjugate screws of inertia, w/e-
ther co-reciprocal or nof, belonging to the same screw
complex, then the condition that a and 8 should be con-
jugate screws of inertia is

wrarfBi+ ...+ Ultanf3n =

To prove this; take the case of 2 = 4, and let 4, B, C, D
be the four screws of reference, and let 4, ...., A be
‘the co-ordinates of 4 with respect to the six principal
screws of inertia of the body when free (§ 52). The unit
wrench on a is to be resolved into four wrenches of in-
tensities aj, ..., aqo 0n A, B, C, D: each of these compo-
nents is again to be resolved into six wrenches on the
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screws of reference. The six co-ordinates of @, with re-
spect to the same screws, are therefore

Alal =P .B[az + Clas + _Dﬂu,
&c.
A6a1 cip Bsaz q= Csll;; o3 _Dsa4.

‘We can now express the condition that a and 3 are con-
jugate screws of inertia. This condition is (§ 54)

E_?m(Ala[ =p .Blaz “p C1a3 =r Dﬂh) (AIBI + B[Bz AP Clﬁa
H DlB‘) = 0.

Denoting p24.2 + ... + ped by 2,2, and observing that
Sp2A B, and similar expressions are zero, we deduce

ulzalﬁl Skt Zﬂz(uBg, = 0.
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CHAPTER VIIL
THE POTENTIAL ENERGY OF A DISPLACEMENT.

§ 68. The Potential Energy of a Displacement.—Suppose a
rigid body which possesses freedom of the 7* order be
submitted to the influence of any system of forces in-
cluded within the restriction of § 6. Let the symbol O
define a position of the body from which the forces would
be unable to disturb it. By a twist of amplitude 6’ about
a screw 0 belonging to the screw complex of the 7!
order, which expresses the nature of the freedom, the
body may be displaced from O to an adjacent position 2,
while the energyconsumed in making the twist is denoted
by V. Itappears from § 7 that the same amount of energy
would be required, whatever be the route by which the
movement is made from O to 2. 1t follows that 7" can
only depend on certain constants and on the position of
P with respect to O. The most natural co-ordinates by
which the position 2 can be specified with respect to O
are the co-ordinates of the twist (§ 34) by which the
movement from O to P could be effected. In general
these co-ordinates will be six in number; but if 7z of the
screws of reference be selected from the screw complex
defining the freedom of the body, then (§ 65) there will
be only 7 co-ordinates required, and these may be de-
noted by 6/, ...., 0.

The Potential V" must therefore depend only upon
certain constants relating to the forces and upon the 7
quantities 6/, ....,0,’; and since these quantities are
small, it follows that 7 must be capable of development
in a series of ascending powers and products of the
co-ordinates, whence we may write
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V=H+HBb +....+ H0:

+ terms of the second and higher orders,

where H, H,, ..., H, are constants, in so far as different
displacements are concerned.

In the first place, it is manifest that //=o0; because
if no displacement be made, no energy is consumed. In
the second place, 4, . ..., H, must also be each zero,
because the position O is one of equilibrium; and there-
fore, by the principle of virtual velocities, the work done
by small twists about the screws of reference must be zero,
as far as the first power of small quantities is concerned.
Finally, neglecting all terms above the second order, on
account of their minuteness, we see that #ie function V,
whick expresses the potential energy of a small displacement
Jrom a position of equiltbrium, 1s a homogeneous function
of the second degree of the n co-ordinates, by whiclk the dis-
placement is defined:

§ 69. The Wrench evoked by Displacement.—When the
body has been displaced to 7, the forces no longer equi-
librate, for a certain wrench has been evoked. We now
propose to determine, by the aid of the function V, the
co-ordinates of this wrench, or, more strictly, the co-
ordinates of the equivalent reduced wrench (§ 66) upon a
screw of the complex, by which the freedom of the body
is defined.

If, in making the displacement, work fas been done by
the agent which moved the body, then the equilibrium
of the body was stable when in the position O, so far as
this displacement was concerned. Let the displacement
screw be 0, and let a reduced wrench be evoked on a
screw n of the complex, while the intensities of the com-
ponents on the screws of reference are n/,....,n."
Suppose the body be displaced from 2 to an excessively
close position 7, the-co-ordinates of 7/, with respect to
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O, being 6/ + 30/, . ... 0, + 30, (§ 65). The potential 1”7
of the position /' is

al < av
+20—l"36|+....+m

V 30,
it being understood that 86/, ..., 80, are infinitely small
magnitudes of a higher order than 6/,...60,".

The work done in forcing the body to move from Pto
P is V7 - V. This must be equal to the work done in
the twists about. the screws of reference whose am-
plitudes are 80/, ...., 36, by the wrenches on the
screws of reference whose intensities are »,”,...., 7."-
As the screws of reference are co-reciprocal, this work

will be equal to (§ 35)
= 2171//?1301’ + 0o = Znn”?ﬂson.

Since the expression just written must be equal to
V'~ V for every position 7’ in the immediate vicinity of
£, we must have the coefficients of 86/, ..., 80, equal in
the two expressions, whence we have 7 equations, of
which the first is

na_ L&V
i Zpl a’(){‘ .

Hence, we deduce the following useful theorem :—

If a free or constrained rigid body be displaced from
a position of equilibrium by twists of small amplitudes,
0/, ....,0,/, about 7 co-reciprocal screws of reference,
and if J” denote the work done in producing this move-
ment, then the reduced wrench has, for components on the
screws of reference, wrenches of which the intensities are
found by dividing twice the pitch of the corresponding
reference screw into the differential coefficient of I~

F
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with respect to the corresponding amplitude, and chang-
ing the sign of the quotient.

It is here interesting to notice that the co-ordinates of
the reduced impulsive wrench referred to the principal
screws of inertia, which would give the body a kinetic
energy 7 on the screw 0, are proportional to

1 dT 1 4T
— o 25 6),
25, 0 2, d0y

§ 70. Conjugate Screws of the Potential.—Suppose that
a twist about a screw 0 evokes a wrench on a screw g,
while a twist about a screw ¢ evokes a wrench on a
screw Z. If 0 be reciprocal to &, then must ¢ be reciprocal
to . This will now be proved.

The condition that @ and & are reciprocal is

Plelzl + ... ..+ ?,.Onz,, =0,

but the intensities (or amplitudes) of the components of
a wrench (or twist) are proportional to the co-ordinates
of the screw on which the wrench (or twist) acts, whence
the last equation may be written

]5191 5+ . +]5n0n/Zn” =0;
but we have seen (§ 69) that

Zl/l=__l_% ..anl__l dVd’.
26 dai 2n g
whence the condition that  and § are reciprocal is
HI‘CZ—VI:‘: ....+0n/%=0
g dpn

Now, as VP, is an homogeneous function of the second
order of the quantities ¢1/, ..., ¢, we may write
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Vée= _A11¢1,z L ISP .A'm(pn/z-i- 2A|3§b11¢2’ + 2Au¢)'¢;’+ W
in which Ay = A

Hence we obtain—

Vs

d¢1’ =2 {A"¢)" + A12¢2, +....% Am¢"l. }

Introducing these expressions we find, for the condition
that ¢ and ¢ should be reciprocal.

0/ (Augs'+... Ainga) + oo .. + 0/ (Amd) + .. ..+ Apan) =0.
This may be written in the form :—
A1101'¢1’ + ey Arm On’ ¢n’ + 4;2(0.'¢,' + 03’([)1,) + 000 = 0,

But this equation is pezfectly symmetrical with respect
to 0 and ¢, and therefore we should have been led to
the same result by expressing the condition that ¢ was
reciprocal to n. '

‘When 0 and ¢ possess this property, they are said to
be conjugate screws of the pofential, and the condition that
they should be so related, expressed in terms of their
co-ordinates, is obtained by omitting the accents from
the last equation.

If a screw ¢ be reciprocal to u, then ¢ is a conjugate
screw of the potential to 6. If we consider the screw 0
to be given, we may regard the screw complex of the
fifth order, which embraces all the [screws reciprocal to
7, asin a certain sense the locus of ¢. All the screws
conjugate to 0, and which, at the same time, belong to
the screw complex C by which the freedom of the body
is defined, must constitute in themselves a screw com-
plex of the (z— 1)* order. For, besides fulfilling the 67
conditions which define the screw complex C, they must
also fulfil the condition of being reciprocal to 5 ; but all

F2
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the screws reciprocal to 7 — 7 screws constitute a screw
complex of the (7 - 1)* order (§ 46).

The reader will be careful to observe the distinction
between two conjugate screws of ¢nertia (§ 54), and two
conjugate screws of the pofential. Though these pairs
possess some useful analogies, yet it should be borne in
mind that the former are purely intrinsic to the rigid
body, inasmuch as they only depend on the distribu-
tion of its material, while the latter involve ex#rinsic
considerations, arising from the forces to which the
body is submitted. '

§ 71. Principal Screws of the Potential.—We are now
going to prove that 7 screws can be found such that when
the body is displaced by a twist about any one of these
screws, a reduced wrench is evoked about the same
screw. The screws which possess this property are called
the principal screws of the potential. .1Let a be a principal
screw of the potential, then we must have, § 6g:—

1 dV,
2 da)’
and (# - 1) similar equations.

Introducing the value of 7, and remembering (§36)
that «,” = a”’a, and a," = a’a;, we have the following 7
equations :—

”
a =-—

{4
a
a (All + a—,pl> + a.n,A12+ o To) o031 aﬂAln =0,
&c., &c.
al/
A + apns + .. + a,,(_A,m + —p )= o.
a

From these linear equations a, . ..., a, can be elimi-
nated, and we obtain an equation of the #* degree* in

Art* All the roots of this equation are real. See Salmon’s Higher Algebra,
.44. 4
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I4 ”

:—, . The values of a—, substituted successively in the linear
a

equations just written will determine the co-ordinates
of the # principal screws of the potential.

‘We can now show that these 7 screws are co-reci-
procal. It is evident, in the first place, that if .S be
a principal screw of the potential, and if § be a displace-
ment screw which evokes a wrench on 5, the principle
of § 70 asserts that, when 0 is reciprocal to .S, then must
also n be reciprocal to .S. Now, let the 7 principal
screws of the potential be denoted by .53, . .., Sa, and let
7 be that screw of the screw complex which is recipro-
cal to .Sy, ..., , Sa.1 (§ 65), then if the body be displaced
by a twist about 7}, the wrench evoked must be on a
screw reciprocal to .Sy, ... ., Sa.1; but 75, is the only
screw of the screw complex possessing this property;
therefore a twist about 7, must evoke a wrench on 7,
and therefore 7, must be a principal screw of the poten-
tial. But there are only 7 principal screws of the
potential, therefore 7, must coincide with .S,, and there-
fore .S, must be reciprocal to .Sy, . ... Sa .1

§ 72. Co-ordinates of the Wrench evoked by a Twist.—
The work done in giving the body a twist of small am-
plitude o’ about a screw a, may be denoted by—

J Fo,2a?,

Infact,remembering that a’a;=a/, . . ., and substituting
these values fora,"in ¥ (§ 70), we deduce the expression :—

Fo?=Anal’+ ...+ Apnan? + 2400, + 24 a5 + o+ -

where Fis a certain constant, whose dimensions are a
mass divided by the square of a time, and where 7, 5 @
lincar magnitude specially appropriate to cack screw a, and
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depending upon the co-ordinales of a, and the constants in
the function V (§ 68).

The parameter v, may be constrasted with the para-
meter #, considered in § 59. Each is a linear magni-
tude, but the latter depends only upon the co-ordi-
nates of a, and the distribution of the material of the
rigid body. Both quantities may be contrasted with
the pitch #,, which is also a linear magnitude, but
depends solely on the screw, and is therefore purely
geometrical.

If a body receive a twist of small amplitude «’ about
one of the principal screws of the potential, then the in-
tensity of the wrench evoked on the same screw is (§ 69) :—

Teo N4
e~ S T
but we have just seen that V= Fz24? whence we have
the following theorem :—

If a body which has freedom of the 7% order be
displaced from a position of equilibrium by a twist
about a screw a, of which the co-ordinates with respect
to the principal screws of the potential are ay, . . . ., a,
. then a wrench (§66) is evoked on a screw of which
the co-ordinates are proportional to —;;—zax, <oy ;—"z

i n
where 7, &c., p;, &c., are the values of the quantity o,
and the pitch p, for the principal screws of the potential.

‘We can now express with great simplicity the con-
dition that two screws 0 and ¢ shall be conjugate screws
of the potential. For, if 0 be reciprocal to the screw
whose co-ordinates are proportional to—

Any

7/12 '47,;2 x
ﬁn ¢1: Jo ¢ ?n Pn,
we have :—

220191 + . . . . + 02000 = 0.
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The expression for the potential assumes the simple
form—

Fﬂ]zal’z + ot Fﬂ,.’a,.'z.

If the function 7 be proportional to the product of
the pitch of the displacement screw and the square
of the amplitude, then every displacement screw will
coincide with the screw about which the wrench is
evoked.

§ 73. Form of the Potential.—The 7 principal screws of
the potential form a unique group, inasmuch as they
are co-reciprocal, as well as being conjugate screws of
the potential. They therefore fulfil 15 + 15 = 30 conditions,
being the total number available in the selection of six
SCrews.

We are now going to show that the expression of
the potential will consist of the sum of # square terms,
whenever it is referred to any set of 2z conjugate screws
of the potential.

The energy consumed in giving a body a twist of
amplitude ¢ from the position of equilibrum O to a new
position A, is equal to /740 (§ 72), and 5 is the screw on
which the wrench is evoked. Suppose that now from the
position P the body receive a twist of amplitude ¢’ about
a screw ¢, it would generally not be correct to assert
that the energy consumed in the second twist was pro-
portional to the square of its amplitude. For, during
the second twist, either a portion of the energy will
be consumed in doing work against the wrench on 3, or
the energy expended in the second twist will be ren-
dered less, in consequence of the assistance afforded by the
wrench on n. If, however, 5 be reciprocal to ¢, then the
quantity of energy consumed in the twist about ¢ will be
unaffected by the presence of a wrench on 4. Hence
if @ and ¢ be two conjugate screws of the potential,
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CHAPTER VIIIL
HARMONIC SCREWS.

§ 74. Definition of an Harmonic Screw.— We have seen
in § 67 that to each screw 6 of a screw complex of the
7 order corresponds a screw A, belonging to the same
screw complex. The relation between 0 and A is deter-
mined when the rigid body, and also the screw complex
which defines its freedom, are completely known. The
physical connexion between the two screws 6 ‘and X
may be thus stated. If a wrench act on the screw X for
a short time, the body, if previously quiescent, will com-
mence to move by twisting about 6 (§ 67).

‘We have also seen (§ 72) that to each screw 0 of a
screw complex of the #® order corresponds a certain
screw 5 belonging to the same screw complex. The
relation between 6 and 4 is determined when the rigid
body, the forces, and the screw complex which defines
thefreedom, is known. The physical connexion between
the two screws 0 and n may be thus stated. If the body
be displaced from a position of equilibrium by a twist
about 6, the evoked wrench, when reduced (§ 66) to the
screw complex, acts on 1.

The rigid body being given in a position of equili-
brium, and the forces which act on the body being
known, and also the screw complex by which the freedom
of the body is prescribed, we then have corresponding to
each screw 0 of the given screw complex, two other
screws A and n, which also belong to the same screw
complex.

Considering the very different physical character of



74 HARMONIC SCREWS.

the two systems of correspondence,itwillof course usually
happen that the two screws X and 5 are not identical.
But a little reflection will enable us to foresee what we
shall afterwards prove, viz., that when 8 has been appro-
priately chosen, then A and 5 may coincide. For since
7 — 1 arbitrary quantities are disposable in the selection
of a screw from a screw complex of the 7% order (§ 43), it
follows that for any two screws (for example A and ») to
coincide, 7 — 1 conditions must be fulfilled; but this is
precisely the number of arbitrary elements available in
the selection of §. 'We can thus conceive that for one or
more particular screws 6, the two corresponding screws
A and y are identical ; and we shall now prove the fol-
lowing important theorem :— ° .

If a rigid body be displaced from a position of equili-
brium by a twist about a screw 0, and if the cvoked wrenclh
lend to make the body commence lo twisi about the same
screw O, then O may be called an harmonic screw, and the
number of harmonic screws is the same as the order of the
screw complex which defines the freedom of the rigid body.

‘We shall adopt as the screws of reference the 7 prin-
cipal screws of inertia. The impulsive screw, which
corresponds to 6 as an instantaneous screw, will have
for co-ordinates— '

2, ..., 20, §67)
pl ) b pn )
where % is a certain constant which is determined by
making the co-ordinates satisfy the condition (§ 37). If
0 be a harmonic screw, then, remembering that the
screws of reference are co-reciprocal (§ 57), we must have
n equations, of which the first is (§ 72) :—

rA Ll
2p, "db”

2N 0/ =
- JIEH
1

y/
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4

£
Assuming ;,ic— AMs*, where M is the mass of the body,

and s an unknown quantity, and substituting for Vits
value, we deduce the 7z equations :—

01( 1 - Mszulz) + BzAu + . ot 0,;/1,,. = 0,

&c., &c.
0. Am + 0,40 + ...+ 0,(Anw — Ms*uz?) = 0.
Eliminating @,, . . . ., 6,, we have an equation of the

7™ degree for s?.. The 7 roots of this equation are all
real, and each one substituted in the set of 2 equations
will determine, by a system of 7 linear equations, the
ratios of the 7 co-ordinates of one of the harmonic screws.

It is a remarkable property of the 2 harmonic screws
that each pair of them are conjugate screws of inertia,
and also conjugate screws of the potential. Let 77, ...,
H,_,, be 2-1 of the harmonic screws, to which corres-
pond the impulsive screws .Sy, . ..., Sa.1. Also sup-
pose 7 to be that one screw of the given screw complex
which is reciprocal to .Sy, . . . ., Sa-. (§ 65), then 7" must
form with each one of the screws #,, ...., H, ., a pair of
conjugate screws of inertia (§ 54). Also, since.S;, . ...,
Sa.1 are the screws on which wrenches are evoked by
twists about A, . ..., H,., respectively, it is evident
that 7 must form with each one of these screws /4, ... .,
H, ., a pair of conjugate screws of the potential (§ 70).
It follows that the impulsive screw, corresponding to 7°
asthe instantaneous screw, must be reciprocal to /;,. ...
H, _,; and also that a twist about 7'must evoke a wrench
on a screw reciprocal to /4y, . ... H, .. Butas we can
only have one screw of the screw complex reciprocal to
H, ... H,., it follows that the impulsive screw, which
corresponds to 7" as an instantaneous screw, must also be
the screw on which a wrench is evoked by a twist about
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7. Hence, 7 must be a harmonic screw, and as there
are only 2 harmonic screws, it is plain that 7 must
coincide with /7,, and that therefore A, is a conjugate
screw of inertia, as well as a conjugate screw of the
potential, to each one of the remaining 2—1 harmonic
screws. Similar reasoning will, of course, apply to
each of the harmonic screws taken in succession.

§ 75. Equations of Motion.— We now consider the kine-
tical problem, which may be thus stated. A free or
constrained rigid body, which is acted upon by a system.
of forces, is displaced by an initial twist of small ampli-
tude, from a position of equilibrium. The body also
receives an initial twisting motion, with a small twist
velocity, and is then abandoned to the influence of the
forces. It is required to ascertain the nature of its sub-
sequent movements.

Let 7' represent the kinetic energy of the body, in
the position of which the co-ordinates, referred fo the
principal screws of inertia, are 6/, ...,0,’. Then we
have (§ 67) :—

, (@0 a0,/ \?
T=ﬂ[[ul (w‘) +.--.+u"2<dt) ]
while the potential energy which, as before, we denote
by V, is an homogeneous function of the second order
of the quantities 6/, . ..., @, .
By the use of Lagrange’s method of generalized co-

ordinates* we are enabled to write down at once the 7
equations of motion in the form :—

d dT\ av
‘dt(da,'e{. SO
@

* Mécanique Analytique, vol. i., p. 304. See also Thomson and Tait’s
Natural Philosophy, vol. i., p. 253.
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Substituting for 7" we have :—

a0 dvV
20Mu? At

with (7-1) similar equations. Finally, introducing the
expression for V7 (§ 70), we obtain # linear differential
equations of the second order.

The reader who is not acquainted with Lagrange’s
magnificent equations of motion in generalized co-ordi-
nates will perhaps welcome reasoning by which the
equations which we require can be otherwise demon-
strated.

Suppose the body to be in motion under the influ-
ence of the forces, and that at any epoch # the co-ordi-

an/ a6,

nates of the twisting motion are T T when

referred to the principal screws of inertia. Let &,”,....,Z,”
be the co-ordinates of a wrench which, had it acted
upon the body at rest for the small time ¢, would have
communicated to the body a twisting motion identical
with that which the body actually has at the epoch Z
The co-ordinates of the impulsive wrench which would,
in the time ¢, have produced from rest the motion which
the body actually has at the epoch # + ¢, are :—

Zl”+e‘%}, I &, ed—j;—’

On the other hand , the motion at the epoch #+ ¢
may be considered to arise from the influence of the
wrench &, .. .. &~ for the time ¢, followed by the in-
fluence of the evoked wrench for the time ¢. The final
effect of the two wrenches must, by the second law
of motion, be the same as if they acted simultaneously
for the time ¢ upon the body initially at rest.

The co-ordinates of the evoked wrench being:—
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o RV gl
200 307 """ T 2pn dO
we therefore have the equation:—
A o MG S AN i
gk dt &i 2, db,)
or— :
oty B S 0

and 7z—-1 similar equations; but we see from § 67 that—

* do/

B =M Pn o

Differentiating this equation with respect to the time,
and regarding ¢ as constant, we have :—

e u? 0,
e -EZ- = ﬂlﬁ] a’ﬁ
whence—
41,79(9l a’ Vv
2Mu? —— d@ —= = 0,

the same equation as that already found by Lagrange’s
method.
To integrate the equations we assume :—

0 =/£Q,...0/=,£0;
where fi, ... fa are certain constants, which will be
determined, and where Q is an unknown function of the
time: introducing also the value of ¥, given in § 7o,
we find for the equations of motion :—

O | (dfiv 4
Mulﬁ—dz;-'-( lJ]+ .nﬁ‘l"..-‘*'.A]nn)Q:O,
&c.

Mu,.gf,%% S Anfi s Ao+ .. | ¥ AL B,
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If the quantity s, and the ratios of the = quantities
S -« . . fa, be determined by the 7 equations :—

fl(-All v .A’[ulzjz) +_f;A12 +... +_/”Aﬂl =0,
&c., &c.
JSrdp + foAm+ ... +f,,(Aa” —ﬂ[u,,’s’) =0;

then the 7 equations of motion will reduce to the sin-
gle equation :(—

2
%7? + 5?Q =o0.
By eliminating £, ..... ,J» from the 7 equations,

we obtain precisely the same equation for s* as that
which arose (§ 74) in the determination of the 7 harmonic
screws. The values of £, . . . ., f,, which correspond to
any value of s?, are therefore proportional to the co-ordi-
nates of a harmonic screw.

The equation for Q gives :—

Q = A sin (st + ¢).

Let A, ...Hy 6y . ..¢u be 272 arbitrary constants.
Let f;, denote the value of /;,, when the root s,? has been
substituted in the linear equations. Then by the known
theory of linear differential equations,*

0/ = fulisin (st +a) = . ...+ fuld,sin (Saf + cn)y
” &c., &c.
0 = funisin (st + &) + .« o o +_fandn Sin (Sal + ).

In proof of this solution itis sufficient to observe, that
the values of 8/, ... 0, satisfy the given differential
equations of motion, while they also contain the requi-
site number of arbitrary constants.

* Lagrange’s Mécanique Analytique, vol. i., p. 353.
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§ 76. Discussion of the Results.—For the position of
the body before its displacement to have been one of
stable equilibrium, it is manifest that the co-ordinates
must not increase indefinitely with the time, and there-
fore all the values of s* must be essentially positive, since
otherwise the values of ), . . . 6, would contain expo-
nential terms.

The 27z arbitrary constants are to be determined by
the initial circumstances. The initial displacement is.
to be resolved into 7 twists about the 7 screws of refer-
ence (§ 65). This will provide 2 equations, by making
¢=o0, and substituting for 6/, ... 6., in the equations just
mentioned, the amplitudes of the initial twists. The
initial twisting motion is also to be resolved into twist-
ing motions about the 7 screws of reference. The twist
velocities of these components will be the values of

’ (2
%, &ec., d—‘g;l, when # = 0; whence we have 7 more

equations to complete the determination of the arbitrary
constants.

If the initial circumstances be such that the con-
stants /., . . ., H, are all zero, then the equations as-
sume a very simple form :—

0. = fuf, sin (si¢ + ¢),
&c.
0,.’ =ﬁnH1 Sin (Slé + C).

The interpretation of this result is very remarkable.
‘We see that the co-ordinates of the body are always
proportional to fi,...., fin; hence the body can al-
ways be brought from the initial position to the position
at any time by twisting it about that screw, whose
co-ordinates are proportional to fy,...., fin; but, as
we have already pointed out, the screw thus defined
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is an harmonic screw, and hence we have the follow-
ing theorem :—

If a rigid body occupy a position of stable equili-
brium under the influence of a system of forces, as
restricted in § 6, then 7z harmonic screws can be selected
from the screw complex of the #® order, which defines
the freedom of the body, and if the body be displaced
from its position of equilibrium by a twist about a har-
monic screw, and if it also receive a small initial twist
velocity about the same screw, then the body will continue
for ever to perform twist oscillations about that harmonic
screw, and the amplitude of the twist will be always
equal to the arc of a certain circular pendulum, which has
an appropriate length, and was appropriately started.

The integrals in their general form prove the follow-
ing theorem :—

A rigid body is slightly displaced by a twist from
a position of stable equilibrium under the influence of a
system of forces, and the body receives a small initial
twisting motion. The twist, and the twisting motion,
may each be resolved into their components on the
2 harmonic screws: 7 circular pendulums are to be con-
structed, each of which is isochronous with one of the
harmonic screws. All these pendulums are to be started
at the same instant as the rigid body, each with an arc,
and an angular velocity equal to the initial amplitude of
the twist, and the twist velocity, which has been assigned
to the corresponding harmonic screw, as its share of the
initial circumstances. To ascertain where the body
would be at any future epoch, it will only be necessary
to calculate the arcs of the 7 pendulums for that epoch,
and then give the body twists from its position of equili-
brium about the harmonic screws, whose amplitudes are
equal to these arcs.

The reader will observe that the solution to which

G
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we have been conducted possesses the features which we
have pointed out in § 11, as characterising a complete
discussion of a problem in the dynamics of a rigid body.

§ 77. Remarks on Harmonic Screws.—We may to a
certain extent see the actual reason why the body, when
once oscillating upon a harmonic screw, will never de-
part therefrom. The body, when displaced from the
position of equilibrium by a twist upon a harmonic
screw 0, and then released, is acted upon by the wrench
upon a certain screw n, which is evoked by the twist.
But the actual effect of an impulsive wrench on » would
be to make the body twist about the harmonic screw,
and as the continued action of the wrench on y is indis-
tinguishable from an infinite succession ofinfinitely small
impulses, we can find in the influence of the forces no
cause adequate to change the motion of the body from
twisting about the harmonic screw 6.
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CHAPTER IX.

THE DYNAMICS OF A RIGID BODY, WHICH HAS FREEDOM
OF THE FIRST ORDER.

§ 78. Introduction.—In the present chapter we shall
apply the principles developed in the preceding chapters
to the examination of the Dynamics of a rigid body which
has freedom of the first order. The ensuing chapters
will be similarly devoted to the other orders of freedom.
‘We shall in each chapter first ascertain what can
be learned as to the kinematics of a rigid body, so
far as small displacements are concerned, from merely
knowing the order of the freedom which is permitted by
the constraints. This will conduct us to a knowledge of
the screw complex which exactly defines the freedom
enjoyed by the body. We shall then be enabled to
-determine the reciprocal screw complex, which involves
the theory of equilibrium. The next group of questions
will be those which relate to the effect of an impulse
upon a quiescent rigid body, free to twist about all the
screws of the screw complex. - Finally, we shall discuss
the small oscillations of a rigid body in the vicinity of a
position of stable equilibrium, under the influence of a
given system of forces, the movements of the body being
limited as before to the screws of the screw complex.

§ 79. Screw Complex of the First Order.—A body
which has freedom of the first order can execute no
movement which is not a twist about one definite screw.
The position of a body so circumstanced is to be specified
by a single datum, viz., the amplitude of the twist about
the given screw, by which the body can be brought

G 2
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from a standard position to any other position which it
is capable of attaining. As examples of a body which
has freedom of the first order, we may refer to the case of
a body free to rotate about a fixed axis, but not to slide
along it, or of a body free to slide along a fixed axis, but
not to rotate around it. In the former case the screw com-
plex consists of one screw, whose pitch is zero; in the
latter case the screw complex comnsists of one screw,
whose pitch is infinite.

§ 80. The Reciprocal Screw Complex.—The integer which
denotes the order of a screw complex, and the integer
which denotes the order of the reciprocal screw complex,
will, in all cases, have the number six for ‘their sum
(§ 46). Hence a screw complex of the first order will
have as its reciprocal a screw complex of the fifth order.

We shall, therefore, be obliged to discuss in the pre-
sent chapter some properties of the screw complex of
the fifth order, and so far to anticipate what would more
naturally fall under Chapter XIII.

For a screw 0 to belong to a screw complex of the
fifth order, the necessary and sufficient condition is,
that 0 be reciprocal to one given screw a. This con-
dition is thus expressed :—

(Pa + po) cos O — dsin O = o,

where O is the angle,"and & the perpendicular distance
between the screws 6 and a.

‘We can now show that every straight line in space,
when it receives an appropriate pitch, constitutes a
screw of'a given screw complex of the fifth order. For
the straight line and « being given, & and O are de-
termined, and hence the pitch g, can be determined
by the linear equation just written. '

Consider now ‘a point A, and the screw a. Every
straight line through A4, when furnished with the proper-
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pitch, will be reciprocal to a. Since the number of lines
through A is doubly infinite, it follows that a singly in-
finite number of screws of given pitch can be drawn
through 4, so as to be reciprocal to a.. 'We shall now
prove that all the screws of the same pitch which pass
through A, and are reciprocal to a, lie tn a plane. This
we shall first show to be the case for all the screws
of zero pitch,* and then we 'shall deduce the more
general theorem.

By a twist of small amplitude about a the point 4 is
moved to an adjacent point B. To effect this movement
against a force at 4 which is perpendicular to A28, no
work will be required; hence every line through A4, per-
pendicular to 45, may be regarded as a screw of zero
pitch, reciprocal to a.

‘We must now enunciate a principle which applies to
a screw complex of any order. We have already re-
ferred to it with respect to the cylindroid (§ 20). If all
the screws of a screw complex be modified by the ad-
dition of the same linear magnitude (positive or nega-
tive) to the pitch of every screw, then the collection of
screws thus modified still form a screw complex of the
same order. The proof is obvious, for since the virtual
co-efficient depends on the sum of the pitches, it follows
that, ifall the pitches of a complex be increased by a cer-
tain quantity, and all the pitches of the reciprocal com-
plex be diminished by the same quantity, then all the
first group of screws thus modified are reciprocal to all
the second group as modified. Hence, since a screw

* This theorem is due to Mébius, who has shown, that, if small rotations
about six axes can neutralise, and if five of the axes be given, and a point on
the sixth axis, then the sixth axis is limited to a4 plane. = (Ueber die Zusam-

mensetzung unendlich kleiner Drehungen Crelle’s Journal, t. xviii., pp. 189~
212).
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complex of the #* order consists of all the screws reci-
procal to 6 - 7 screws, it follows that the modified group
must still be a screw complex.

‘We shall now apply this principle to prove that all
the screws A of anzy given pitch £, which can be drawn
through A4, to be reciprocal to a, lie in a plane. Take a
screw g, of pitch p, + £, on the same line as a, then we
have just shown that all the screws pu, of zero pitch,
which can be drawn through the point 4, so as to be
reciprocal to 4, lie in a plane. Since u and 5 are reci-
procal, the screws on the same straight lines as u and g
will be reciprocal, provided the sum of their pitches is
the pitch of 5 ; therefore, a screw A, of pitch %, on the same
straight line as u, will be reciprocal to the screw a, of
pitch p,; but all the lines yu lie in a plane, therefore all
the screws A lie in the same plane.

Conversely, given a plane and a pitch 4, a point A
can be determined in that plane, such that all the screws.
drawn through A in the plane, and possessing the pitch
%, are reciprocal to a. To each pitch &, &, ...., will
correspond a point .4, 4, ....; and it is worthy of re-
mark, that all the points 4,, 4, must lie on a right
line which intersects a at right angles; for join A,
A;, then a screw on the line 4, A4,, which has for pitch
either % or 4, must be reciprocal to «; but this is.
impossible unless 4, A4, intersect a at a right angle.

§ 81. Equilibrium.—If a body which has freedom of
the first order be in equilibrium, then the necessary
and sufficient condition is, that the forces which act.
upon the body shall constitute a wrench on a screw of
the screw complex of the fifth order, which is reciprocal
to the screw which defines the freedom. We thus see
that every straight line in space may be the residence
of a screw, a wrench on which is consistent with the:
equilibrium of the body.
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If two wrenches act upon the body, then the condi-
tion of equilibrium is, that, when the two wrenches are
compounded by the aid of the cylindroid, the single
wrench which replaces them shall lie upon that one
screw of the cylindroid, which is reciprocal to a (§ 28).

‘We can express with great facility, by the aid of
screw co-ordinates, the condition that wrenches of in-
tensities €, ¢”, on two screws 0, ¢, shall equilibrate,
when applied to a body only free to twist about a.

Adopting any six co-reciprocals as screws of refer-
ence, and resolving each of the wrenches on 0 and ¢
into its six components on the six screws of reference,
we shall have for the intensity of the component of the
resultant wrench on w,—

0”0n+¢”¢n-

Hence the co-ordinates of the resultant wrench are pro-
portional to—

00, + ¢ i 00+ '

For equilibrium this screw must be reciprocal to a,
whence we have—

£a:(070, + ¢"¢1) + &c. + peas(070s + ¢”¢s) = 0,
or,
0”7,3 + ¢,’W,¢ = 0.

This equation merely expresses that the sum of the
works done in a small twist about a against the wrenches
on @ and ¢ is zero.

‘We also perceive that a given wrench may be always
replaced by a wrench of appropriate intensity on any
other screw, in so far as the effect on a body only free to
twist about « is concerned.

It may not be out of place to notice the analogy
which the equation just written bears to the simple prob-
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lem of the determination of the condition that two forces
should be unable to disturb the equilibrium of a particle
only free to move on a straight line. If 2, Q be the
twa forces, and if /, 7 be the angles which the forces
make with the direction in which the particle can move,
then the condition is—

Pcosl+ Qcosm=o.

This suggests what it will be well for the reader con-
stantly to bear in mind, and that is, the analogy which
subsists between the virtual co-efficient of two screws,
and the cosine of the angle between two lines.

§ 82. Particular Case.—If a body having freedom of
the first order be in equilibrium under the action of
gravity, then the vertical through the centre of inertia
must lie in the plane of reciprocal screws of zero pitch,
drawn through the centre of inertia.

§ 83. Impulsive Forces.—If a wrench of great intensity
n” act for a short time on the screw 75, while the body
is only permitted to twist about «, then we have seen
in § 60 how the twist velocity produced can be found.
We shall now determine the impulsive reaction of the
constraints. This reaction is a wrench of intensity A”
on a screw A, which is reciprocal to a. The determina-
tion of A may be effected geometrically in the following
manner :—Let p be the screw, an impulsive wrench on
which would, if the body were perfectly free, cause an
instantaneous twisting motion about a (§ 53). Draw the
cylindroid (y, u). Then A must be that screw on the
cylindroid which is reciprocal to a, for a wrench on A,
and the given wrench on s, must compound into a wrench
on p, whence the three screws must be co-cylindroidal ;*

# We shall often for convenience speak of three screws on the same cylin-
droid as co-cylindroidal. ¢
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also XA must be reciprocal to a, so that its position on
the cylindroid is known (§ 28). Finally, as the inten-
sity n” is given, and as the three screws 5, A, u are all
known, the intensity A” becomes determined (§ 17).

§ 84. Small Oscillations.—We shall now suppose that a
rigid body which has freedom of the first order occu-
pies a position of stable equilibrium under the influence
of a system of forces, as restricted in § 6. If the body
be displaced by a small twist about the screw « which
prescribes the freedom, and if it further receive a small
initial twist velocity about the same screw, the body
will continue for ever to perform small twist oscillations
about the screw a. We propose to determine the time
of one oscillation.

The kinetic energy of the body, when animated by a

dt dt
energy due to the position attained by giving the body a
twist of amplitude o’ away from its position of equili-
brium, is Fo,%a” (§ 72). But the sum of the potential and
kinetic energies must be constant (§ 6), whence—

twist velocity % is Mu. <da )2 (§ 59). The potential

N2
Mu (g;—) + F,%* = const.

Differentiating we have—

&d TR

"#T'*' ]l[uﬁa k-

Integrating this equation we have—

Fog ol
£ . (3 -—-——f
o = A sin 3 [u:t + B cos J W

where A and B are arbitrary constants. The time of
one oscillation is therefore—
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uJM
WZ ;,—.

Regarding the rigid body and the forces as con-
stant, and comparing zzfer se the periods about different
screws a, on which the body might have been constrained
to twist, we see from the result just arrived at that the

time for each screw a is proportional to —%,
v,

§ 85. Property of Harmonic Screws.—As the time of
vibration is affected by the position of the screw to
which the motion is limited, it becomes of interest to
consider how a screw is to be chosen so that the time
of vibration shall be a maximum or minimum. With
slightly increased generality we may state the problem
as follows :—

Given a rigid body, and the forces which act upon it,
it is required to select from all the screws of a given
screw complex the particular screw or screws on which,
if the body be constrained to twist, the time of vibra-
tion will be a maximum or minimum, relatively to the
time of vibration on the neighbouring screws of the same
screw complex. 3

Take the 7 principal screws of inertia belonging
to the screw complex, as screws of reference, then we
have to determine the 7 co-ordinates of a screw a by

e " Uq 48
the condition that the function = shall be a maximum

or a minimum.

Introducing the value of #, (§ 67), and of v, (§ 72),
in terms of the co-ordinates, we have to determine the
maximum and minimum of the function—

A11a12 +.00 4 A,maz,. + ZAua;ag + 2A13a1a, e voie
220, + ...+ Upiapd.

=x’

Multiplying this equation by the denominator of the
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left-hand side, differentiating with respect to each co-
ordinate successively, and observing thit the differen-
tial co-efficients of x must be zero, we have the » equa-
tions :—

(A” = Zﬁ’x) a + Algaz Y + Ama,. = Q.
&c., &c.
Amal + A"gag cood (Am; — un‘x) an = O.

‘We hence see that there are 7 screws belonging to
each screw complex of the #® order on which the time
of vibration is a maximum or minimum, and by com-
parison with § 74 we deduce the very interesting result
that these 72 screws are also the harmonic screws.

Taking the screw complex of the sixth order, which
of course includes every screw in space, we see that
if the body be permitted to twist about one of the six har-
monic screws the time of vibration will be a maximum
or minimum, as compared with the time of vibration on
any adjacent screw.

If the six harmonic screws were taken as the screws
of reference, then #,2and #,2would each consist of the sum
of six square terms (§§ 59, 72). If the co-efficients in
thesetwo expressions were proportional, so that «.? only
differed from 2, by a numerical factor, we should then
find that every screw in space was an harmonic screw,
and that the times of vibrations about all these screws
were equal.



CHAPTER X.

THE DYNAMICS OF A RIGID BODY WHICH HAS FREEDOM
OF THE SECOND ORDER.

§ 86. The Screw Complex of the Second Order.—When a
rigid body is capable of being twisted about two screws
0 and ¢, it is capable of being twisted about every screw
on the cylindroid (0, ¢). Ifit also appear that the body
cannot be twisted about any screw which does not lie
on the cylindroid, then the body is said to have freedom
of the second order, and the cylindroid is the screw com-
plex of the second order by which the freedom is de-
fined.

Eight numerical data are required for the determina-
tion of a cylindroid. 'We must have four for the specifi-
cation of the nodal line, two more are required to define
the extreme points in which the surface cuts the nodal
line, one to assign the direction of one generator, and
one to give the pitch of one screw, or the eccentricity of
the pitch conic.

Although only eight constants are required to define
the cylindroid, yet ten constants must be used in de-
fining two screws 0, ¢, from which the cylindroid could
be constructed. The ten constants not only define the
cylindroid, but also point out two special screws upon
the surface.

§ 87. Applications of Screw Co-ordinates.—We have
shown (§ 42) that if a, 3 be the two screws of a cylin-
droid, which intersect at right angles, that then the
co-ordinates of any screw 6, which makes an angle /
with the screw a, are :—
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a; cos /+ 3isin/, ..., ascos  + Bssin /,

reference being made as usual to any set of six co-
reciprocals.

In addition to the examples of the use of these co-
ordinates already given (§ 42), we may apply them to
the determination of that single screw 6 upon the cylin-
droid (a, [3), which is reciprocal to a given screw 1.

From the condition of reciprocity we must have :—

Pm(acosZ+ Bisinl) +.... 4 pme(agcosZ + Besin ) = o,
or,

@oy COS I + mpy sin /= o.

From this tan /is deduced, and therefore the screw
6 becomes known (§ 28).

In general if 2@,y be the virtual co-efficient between
any screw n and a screw 0 on the cylindroid, we have :—

Ty = Fay COS [ + wp, sin /;

whence if on each screw @ a distance be set off from the
nodal line equal to half the virtual co-efficient between
n and 0, the points thus found will lie on a right circular
cylinder, of which the equation is;—

X+ 9t = T X+ T

Thus the screw which has the greatest virtual co-
efficient with 5 is at right angles to the screw reciprocal
to n, and in general two screws can be found upon the
cylindroid which have a given virtual co-efficient with
an external screw.

§ 88. Relation between Two Cylindroids.—We may here
notice a curious reciprocal relation between two cylin-
droids, which is manifested when one condition is satis-
fied. If a screw can be found on one cylindroid, which
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is reciprocal to a second cylindroid, then conversely a
screw can be found on the latter, which is reciprocal
to the former. Let the cylindroids be (a,3), and (A u).
If a screw can be found on the former, which is recipro-
cal to the latter, then we have:—

Ph(acosZ+ Bisind) + ...+ pada(ancos I + Basin /) = o.
plf;l(a; cos /+ fBisind) + ... + pupa(an cos Z + Basin/) = o.
‘Whence eliminating /, we find :—
FoaBpu — WpATay = O.

As this relation is symmetrical with regard to the
two cylindroids, the theorem has been proved.

§ 89. Co-ordinates of Three Screws on a Cylindroid.—The
co-ordinates of three screws upon a cylindroid are con-
nected by four independent relations. In fact, two screws
define the cylindroid, and the third screw must then
satisfy four equations of the form (§ 22). These rela-
tions can be expressed most symmetrically in the form
of six equations, which also involve three other quan-
tities.

Let A, u, v be three screws upon a cylindroid, and let
A, B, C denote the angles between u, v, between v A,
and between A pu, respectively. If wrenches of inten-
sities X7, u”, v”, on A, u, v, respectively, are in equili-
brium, we must have (§ 17) :—

AI’ rr vll .

sind sinB sinC

But we have also as a necessary condition that if
each wrench be resolved into six component wrenches
on six screws of reference, the sum of the intensities of
the three components on each screw of reference is zero;
whence :—
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AsinAd + y;sin B+ sin C = o,
&c., &c,

A¢sin A + pgsin B + vesin C =o.

From these equations we deduce the following corol-
laries :—

The screw of which the co-ordinates are proportional -
to @\, + duy, ..., @Xs + us, lies on the cylindroid (A, u),
and makes angles with the screws A, u, of which the
sines are inversely proportional to  and 4.

The two screws, of which the co-ordinates are pro-
portional to @A, + du, ..., @Xs + bus, and the two screws
A, u are respectively parallel to the four rays of a plane
harmonic pencil.

§ 90. Screw Complex of the Fifth Order and Second De-
gree.—We have now occasion to make a slight digres-
sion from the subject of the present chapter. We have
hitherto spoken of the order of a screw complex, and we
shall now explain what is to be understood in the use of
the word degree. It will be remembered that a screw
complex of the 5% order consists of all those screws about
which a body having freedom of the 5% order can twist.
‘We may, however, give an analytical definition of such a
complex. It appears from § 50 that the six co-ordinates
of a screw 0 belonging to a screw complex of the 5
order satisfy that one equation of the first degree
which expresses the condition that @ is reciprocal to the
one screw to which the entire complex is reciprocal

(§ 49). Hence we might with perfect generality define
a screw complex of the fifth order and first degree to
consist of all those screws whose six co-ordinates satisfy
one homogeneous equation of the first degree.

The reflective reader may be tempted to inquire
into the physical or geometrical meaning of that collec-
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tion of screws whose co-ordinates satisfy one homoge-
neous equation of the second degree, and which may be
defined to be a screw complex of the fifth order and second
degree. 'We shall develop a few propositions on this
subject, which will be useful in what is to follow ; but
the general discussion of this species of complex, though
apparently of great interest, lies beyond the scope of the
present volume.

§ 91. Polar Screws.—Let us denote a screw complex
of the fifth order and second degree by the equation
Us =0, where U, is an homogeneous function of the
second degree in the six quantities 0, ..., 6,.

Let n and ¢ derote any two screws. If then (to
adopt the fertile principle used by Dr. Salmon*) we sub-
stitute in U =ofor 0, 0,, &c., the expressions /y, + m&,,
In, + m&,, &c., we obtain the equation :—

LU+ nUy + m*Us = 0;
where U,, denotes the expression :—

au aUu
Z1B;1—+ PR Zs(-Z;:'

Solving the quadratic equation for /: #2, we obtain
two values of this ratio, and hence (§ 89) we see that
fwo screws belonging to the screw complex Up =0 can
be found on any cylindroid (n, ).

If the relation between » and { be such, that—

Uy =0,

the two roots of the equation will be equal in magni-
tude, and opposite in sign, and hence we deduce the fol-
lowing theorem :—

* Conic Sections, 3rd Edition, p. 134. -
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If the condition U,;=o be fulfilled, then the two
screws n, §, and the two screws on the cylindroid (v, &),
which belong to the complex Uy = o, are parallel to the
four rays of an harmonic pencil (§ 89).

‘We can now deduce a result of some importance. If
we regard the screw 5 as being given, then the screw {
must belong to a screw complex of the fifth order and
first degree, which is defined by :—

Un; = 0.

This complex may be constructed in the following
manner :—Draw any cylindroid through 5, find on this
the two screws which belong to Uj= o, then a fourth
screw ‘¢ can be determined by the condition that the set
shall be parallel to the rays of an harmonic pencil.
The same process repeated for four other cylindroids
through 5, will give five screws, by which the screw
complex to which & belongs is determined.

It will be observed that in the determination of the
screw complex U,, =0, where nis given, no occasion
has arisen for making mention of the screws of reference
to which the co-ordinates are referred. If, further, it be
observed, that all the screws of the complex ¢ =0 are
reciprocal to that one screw of which the co-ordinates
are proportional to—

1 /dUn .8 t_iE,,)
wm) - ala)
we have the following theorem :—

If Up = o0 denote a screw complex of the fifth order
and second degree, then % every screw n corresponds with
respect lo the screw complex, a polar screw, whose co-ordi-
nates are proportional to—

@) al@)

H
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the relation between 5 and its polar being completely
independent of the group of co-reciprocal screws, which
have been chosen as the screws of reference.

§ 92. Properties of Screws and their Polars.—We add
here a few properties which are, however, not demon-
‘strated, as we shall have no occasion to make use
of them. If ¢ and 3 be two screws, and if 4 and & be
their polars, with respect to a screw complex of the fifth
order and second degree, then, when « is reciprocal to &,
we shall find that 3 is reciprocal to 5. We may term «
and (3 conjugate screws of the complex.

If the discriminant of Us = o vanish, there is then a
¢“central” screw of the complex, to which the polars of
all other screws are reciprocal.

The equation of the screw complex will reduce to the
sum of six square terms when referred to six screws of
which each pair are conjugate.

Six screws can be found which coincide with their
polars, and these six screws are both conjugate and co-
reciprocal.

Six screws can be found, every pair of which are
conjugate with respect to each of two given screw com-
plexes of the fifth order and second degree.

§ 93. Pitch Complex.—All the screws in space of given
pitch /% belong to a screw complex of the fifth order and
second degree, of which the equation may be written :—

P02+ .. P02 = 02+ ...+ 02+ 20,0, cos (wis) +...]

where the quantity inside the bracket is really equal to
unity, but is introduced for the sake of making the equa-
tion homogeneous (§ 37). This quantity is denoted
by R.

This complex is, from the nature of the case, com
pletely independent of the screws of reference. The
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polar of a screw 7, with respect to this complex, must be
also completely independent of the screws of reference.
It is, therefore, obvious that the polar of » must be a
screw which lies in the same straight line as », for sym-
metry will not permit any reason to be assigned in
favour of any other position. The co-ordinates, there-
fore, of a screw g, which lies in the same straight line
as u, but which has a different pitch p;, must be equal

to :—
2 dR L dR
A( hdcdlos )A( 6-_-_),
# Pl d’h d ﬁsd'ls

where A and / are constants to be determined.

‘We sacrifice no generality by making the pitch of
n zero. We shall now write two identical equations.
Of these the first expresses that the pitch of ¢ is g, and
the second expresses that the virtual co-efficient of &
and g is p¢ :—

5 I dR \: 2 i dR \2

Apl(ﬂl—}?.%-)+...+Aﬁs<m—ﬁ..;’n_ﬁ) = .
k dR R

A]ﬁml(m—}—l dT)+-.-+APeﬂs(ﬂs_;;‘d_ﬂ)~>_§ﬁ.

Remembering that gin? + . .. + pae® = 0, and also that
R is an homogeneous function of the second order, and
that, therefore, by Euler’s theorem* :—

_d_R + + 4R =2R=2
"‘dm nsm— S
we have :—
dR \? 1 (dRY
~ 4. A2k + Al L(_—>+...+_(_‘)= .
4 < - <}51 dm ﬁs d’lo / P{
-4 Al = £

* Williamson’s Differential Calculus, 2nd Ed., p. 113.
H2
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‘Whence we deduce A% = —‘Z ¢ and since when p; = o

the screw must reduce to n, we find 4 = 1.

‘We, therefore, deduce the following theorem :—If
M1, - - - - s b€ the co-ordinates of a screw of zero pitch,
-then the co-ordinates of a screw &, of pitch g, upon
the same straight line as the screw n are equal to the
six quantities :—

dR dR
n1+£§--—, ....,ns—i—.ig___)
4 dm 4ps dns
in which
R=nlt+.... + 5+ 2nm2 COS (w1wz) + 213 COS (wyig) + . . . = I.

‘We may remark that the co-ordinates of a screw of
infinite pitch, parallel to &, are proportional to :—

1 dR | 1dR
ﬁldfll’“. Psdﬂs‘
We can also prove that —21 A5 is the cosine of the
m

angle between the screw », and the screw of reference w,.
Let O be this angle, and let & be the shortest distance
between n and &;. Then we have (§ 35) :—

Fa e B 3
25, (m - e ) ($r + p¢) cos O - dsin O,
and as this must be true whatever may be the value
of p¢, it follows that :—

e §=0050.

2 am
We also have the identity :—

%<§§)=+....+;_/M§=O.
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From this we see that three of the pitches of a set of
six co-reciprocals must be +, and three must be -* For,
suppose that the pitches of four of the co-reciprocals had
the same sign, and let 5 be a screw perpendicular to the
two remaining co-reciprocals, then the identity just writ-
ten would reduce to the sum of four positive terms equal
zero, which is absurd.

§ 04. Screws on One Line.—There is one case in which
a body has freedom of the second order that demands
special attention. Suppose the two given screws 6, ¢,
about which the body can be twisted, happen to lie on
the same straight line, then the cylindroid becomes illu-~
sory. If the amplitudes of the two twists be &, ¢/, then
the body will have received a rotation ¢ + ¢, accom-
panied by a translation 0’4 + ¢#3. This movement is
really identical with a twist on a screw of which the
pitch is:—

0po + ¢Ps
0+ ¢

Since ¢, ¢’ may have any ratio, we see that, under these
circumstances, the screw complex which defines the
freedom consists of all the screws with pitches ranging
from - o to + o, which lie along the given line. It fol-
lows (§ 93), that the co-ordinates of all the screws about
which the body can be twisted are to be found by giving
#¢ all the values from — « to + « in the expressions :—

-25: ﬁ ....,175+-‘?£- ‘i@_
44 dm 8 4ps dne -

*Thisinteresting theorem was communicated to me by Dr. Klein, who had
proved it as a property of the parameters of ¢ six fundamental complexes in in-
volution” (Math. Ann. Band. ii., p. 204).
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§ 95. Displacement of a Point.—Let 2 be a point, and
let a, 3 be any two screws upon a cylindroid. If a body
to which P is attached receive a small twist about a, the
point 2 will be moved to 7. If the body receive a
small twist about (3, the point 2 would be moved to 2.
Then whatever be the screw y on the cylindroid about
which the body be twisted, the point 2 will still be dis-
placed in the plane PP P”.

For the twist about v can be resolved into two twists
about a« and 3, and therefore every displacement of 2
must be capable of being resolved along P27 and PP”.

Thus through every point 2 in space a plane
can be drawn to which the small movements of 2,
arising from twists about the screws on a given cylin-
droid are confined. The simplest construction for this
plane is as follows :—Draw through the point 2 two
planes, each containing one of the screws of zero pitch;
the intersection of these planes is normal to the required
plane through 2.

The construction just given would fail if 2 lay upon
one of the screws of zero pitch. The movements of 7
must then be limited, not to a plane, but to a line. The
line is found by drawing a normal to the plane passing
through 2, and through the other screw of zero pitch.

‘We thus have the following curious property of the:
lines of zero pitch, viz., that a point in the rigid body on
the line of zero pitch will commence to move in the
same direction whatever be the screw on the cylindroid
about which the twist is imparted.

This easily appears otherwise. Appropriate twists
about any two screws, a and 3, can compound into a twist
about the screw of zero pitch A, but the twist about A
cannot disturb a point on A. Therefore a twist about 3
must be capable of moving a point originally on A back
to its position before it was disturbed by a. Therefore the
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twists about 3 and a must move the point in the same
direction.

§ 96. Properties of the Pitch Conic.—Since the pitch of
a screw on a cylindroid is proportional to the inverse
square of the parallel diameter of the pitch conic (§ 20),
the asymptotes must be parallel to the screws of zero
pitch; also since a pair of reciprocal screws are paral-
lel to a pair of conjugate diameters (§ 42), it follows that
the two screws of zero pitch, and any pair of reciprocal
screws, are parallel to the rays of an harmonic pencil.*
If the pitch conic be an ellipse, there are no real screws
of zero pitch. If the pitch conic be a parabola, there is
but one screw Jof zero pitch, and this must be one of
the two screws which intersect at right angles. Since
this screw is reciprocal to itself, as well as to the screw
it intersects, it must be reciprocal to every screw on the
cylindroid (§ 24). This is the only case in which a screw
on the cylindroid is reciprocal to the cylindroid.

§ 97. Equilibrium of a Body with Freedom of the Second
Order.—We shall now consider more fully the conditions
under which a body which has freedom of the second
order is in equilibrium. The necessary and sufficient
condition is, that the forces which act upon the body
shall constitute a wrench upon a screw which is reci-
procal to the cylindroid which defines the freedom of the
body.

It has been shown (§ 25), that the screws which are
reciprocal to a cylindroid exist in such profusion, that
through every point in space a cone of the second order
can be drawn, of which the entire superficies is made up
of such screws. 'We shall now examine the distribution
of pitch upon such a cone.

* Salmon’s Conic Sections, 3rd Edition, p. 273.
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The pitch of each reciprocal screw is equal in magni-
tude, and opposite in sign, to the pitches of the two
serews of equal pitch, in which it intersects the cylin-
droid (§ 24). Now, the greatest and least pitches of the
screws on the cylindroid are p and g (§ 20). For the
quantity g, cos ¥ + g4 sin 2/ is always intermediate be-
tween , cos */ + p, sin ?/ and gg cos 2/ + p sin 2. Hence
it follows that the generators of the cone which meet the
cylindroid in #iree real points must have pitches inter-
mediate between g, and pg. It is alsotobe observed that,
as only one line can be drawn through the vertex of the
cone to intersect any two given screws on the cylin-
droid, so only one screw of any given pitch can be found
on the reciprocal cone.

One screw can be found upon the reciprocal cone
of every pitch from — o to + «. The line drawn through
the vertex parallel to the nodal line is a generator of
the cone to which infinite pitch must be assigned. Set-
ting out from.this line around the cone the pitch gra-
dually decreases to zero, then becomes negative, and
increases to negative infinity, when we reach the line
from which we started. 'We may here notice that when
a screw has infinite pitch, we may regard the infinity as
either + or - indifferently. If we conceive distances
marked upon each generator of the cone from the
vertex, equal to the pitch of that generator, then the
parallel to the nodal line drawn from the vertex forms
an asymptote to the curve so traced upon the cone: It
is manifest that we must admit the cylindroid to possess
imaginary screws, whose pitch is nevertheless real.

The reciprocal cone drawn from a point to a cylin-
droid, is decomposed into two planes, when the point
lies upon the cylindroid. The first plane is normal
to the generator passing through the point. Every line
in this plane must, when it receives the proper pitch, be
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a reciprocal screw. The second plane is that drawn
through the point, and through the other screw of equal
pitch on the cylindroid, to that which passes through
the point.

‘We have, therefore, solved in the most general manner
the problem of the equilibrium of a rigid body with two
degrees of freedom. We have shown that the necessary
and sufficient condition is, that the resultant wrench be
about a screw reciprocal to the cylindroid expressing
the freedom, and we have seen the manner in which the
reciprocal screws are distributed through space. We
now add a few particular cases.

§ 98. Particular Cases.—A body which has two degrees
of freedom is in equilibrium under the action of a force,
whenever the line of action of the force intersects both
the screws of zero pitch upon the cylindroid.

If a body acted upon by gravity have freedom of the
second order, the necessary and sufficient condition of
equilibrium is, that the vertical through the centre of
inertia shall intersect both of the screws of zero pitch.

A body which has freedom of the second order will
be in equilibrium, notwithstanding the action of a couple,
provided the axis of the couple be parallel to the nodal
line of the cylindroid.

A body which has freedom of the second order will
remain in equilibrium, notwithstanding the action of a
wrench about a screw of azzy pitch on the nodal line of
the cylindroid.

§ 99. The Impulsive Cylindroid and the Instantaneous
Cylindroid.—A rigid body A/ is at rest in a position 2,
from which it is either partially or entirely free to move.
If A7 receive an impulsive wrench about a screw X, it
will commence to twist about an instantaneous screw A4,
if, however, the impulsive wrench had been about X, or
X, (M being in either case at rest in the position £)
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the instantaneous screw would have been 4,, or A;. Then
we have the following theorem :—

If X, X,, X, lie upon a cylindroid .S (which we may
call the impulsive cylindroid), then 4,, 4,, A;lie on a
cylindroid .S” (which we may call the instantaneous
cylindroid).

For if the three wrenches have suitable intensities
they may equilibrate, since they are cocylindroidal:
when this is the case the three instantaneous twist velo-
cities must, of course, neutralize; but this is only possi-
ble if the instantaneous screws be cocylindroidal (§ 63).

If we draw a pencil of four lines through a point
parallel to four generators of a cylindroid, the lines
forming the pencil will lie in a plane. 'We may define
the ankarmonic ratio of four generators on a cylindroid to
be the anharmonic ratio of the parallel gencsl. We shall
now prove the following theorem* :—

The anharmonic ratio of four screws on the impul-
sive cylindroid is equal to the anharmonic ratio of the
four corresponding screws on the instantaneous cylin-
droid.

Before commencing the proof we remark that,

If an impulsive wrench of intensity / acting on the
screw X be capable of producing the unit of twist
velocity about A4, then a wrench of intensity Fw on X
will produce a twist velocity w about 4.

Let X;, X;, X;, X, be four screws on the impulsive
cylindroid, the intensities of the wrenches appropriate to
which are Fw,, Fuw, Fuws, Fuws. Let the four corres-
ponding instantaneous screws be A,, A, A; A, and
the twist velocities be e, ws, w3, wi. Let ¢, be the angle

* This theorem is an illustration of the important bearings of the Theory
of Correspondenee on the Theory of Screws.
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on the impulsive cylindroid defining Xa, and let 0, be
the angle on the instantaneous cylindroid defining 4.

If three impulsive wrenches equilibrate, the corres-
ponding twist velocities neutralise : hence (§ 17) it must be
possible for certain values of @i, ws, ws, wy to satisfy the
following equations :—

W w2 . w3
sin (0,-0,) ~ sin (6;~ 0,) sin (0,~0.)’
Euh P -szz Ews
sin (g2~ ¢s)  sin (pa—¢)  sin (g~ g2’
w2 N w3 - 1.04
sin (;-0,) sin(0,-0,) sin(6,-0,)
sz Esﬁ)a EUJL

SIn (ga—gs) SN (Pi—s) SN (pa— o)’
whence

sin (6, - 0) sin (6, 0,) _ sin (¢, ~¢.) sin (s — ¢.)
sin (0, 0,) sin (0,— 0,)  sin (gs~ ¢1) Sin (¢s— ¢s)’

which proves the theorem.

If, therefore, we are given three screws on the impul-
sive cylindroid, and the corresponding three screws on
the instantaneous cylindroid, the connexion between
every other corresponding pair is geometrically, deter-
mined.

§ 100. Reaction of Constraints.— Whatever the con-
straints may be, their reaction produces an impulsive
wrench &, upon the body at the moment when the
impulsive wrench X, acts. The two wrenches X, and
R, compound into a third wrench ¥;. If the body were
free, ¥, is the impulsive wrench to which the instanta-
neous screw 4, would correspond. Since X,, X, X;
are cocylindroidal, 4,, 4,, A; must be cocylindroidal,
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and therefore also mustbe ¥3, Y3, 5. The nine wrenches
X, X, X,y Ry, Roy Ry — V3, — ¥, — Y3 must equilibrate ;
but if Xi, X;, X, equilibrate, then the twist velocities
about A4, A, A, must neutralize, and therefore the
wrenches about Y3, Y, Y, must equilibrate. Hence
Ry, R, R, equilibrate, and are therefore cocylindroidal.

Following the same line of proof used in the last
section, we can show that

If impulsive wrenches on any four cocylindroidal
screws act upon a partially free rigid body, the four
corresponding initial reactions of the constraints also
constitute wrenches about four cocylindroidal screws ;
and, further, the anharmonic ratios of the two groups of
four screws are equal.

§ 101. Principal Screws of Inertia.—If a quiescent body
with freedom of the second order receive impulsive
wrenchesonthreescrews X, X;, X;onthe cylindroid which
expresses the freedom, and if the corresponding instan-
taneous screws on thesame cylindroid be A,,4,,4;, then
the relation between any other impulsive screw X on
the cylindroid and the corresponding instantaneous
screw A is completely defined by the condition that the
anharmonic ratio of X, X;, X,, X; is equal to the anhar-
monic ratio of 4, A,, A, A,.

Now, if three rays parallel to X, X, X; be drawn
from a point, and also three rays parallel to 4,, 4,, 4,
then it is well known* that the problem to determine a
ray Z such that the anharmonic ratio of Z, 4,, 4,, 4, is
equal to that of Z, X,, X,, X,, admits of two solutions.
There are, therefore, two screws on a cylindroid which
possess the property that an impulsive wrench on one of
these screws will cause the body to commence to twist
about the same screw.

* Chasles, passim. See also Townsend’s Modern Geometry, vol. ii., p. 246,
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‘We have thus arrived by a special process at the two
principal screws of inertia posssesed by a body which
has freedom of the second order. This is, of course,
a particular case of the general theorem of § 51. We
shall show in the next section how these screws can
be determined in another manner.

§ 102. The Ellipse of Inertia.—We have seen (§ 59)
that a linear parameter #, may be conceived appropriate
to each screw a of a complex, so that when the body is
twisting about the screw a with the unit of twist velocity,
the kinetic energy is found by multiplying the mass of
the body into the square of the line #%,.

‘We are now going to consider the distribution of this
magnitude on %, the screws of a cylindroid. If we denote
by #,, #, the values of #, for any pair of conjugate screws
of inertia on the cylindroid (§ 54), and if by a;, a; we
denote the intensities of the components on the two con-
jugate screws of a wrench of unit intensity on a, we have
§67)—

Ul = Ufa)® + Ulag’

From the centre of the cylindroid draw two lines
parallel to the pair of conjugate screws of inertia, and
with these lines as axes of x and y construct the ellipse
of which the equation is

ulr + Uty = H,

where A is any constant. If 7 be the radius vector in
this ellipse, we have

%
— =aq and}—'=a,;
i 72
whence by substitution we deduce
uaz = -

7’
which proves the following theorem:—
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The linear parameter #, on any screw of the cylin-
droid is inversely proportional to the parallel diameter
of a certain ellipse, and a pair of conjugate screws of
inertia on the cylindroid are parallel to a pair of conju-
gate diameters of the same ellipse. This ellipse may
be called the ellzpse of tnertra.

The major and minor axes of the ellipse of inertia are
parallel to screwsupon the cylindroid, which for a given
twist velocity correspond to a maximum and minimum
kinetic energy.

An impulsive wrench on a screw 5 acts upon a quies-
cent rigid body which has freedom of the second order.
It is required to determine the screw 6 on the cylin-
droid expressing the freedom about which the body will
commence to twist.

The ellipse of inertia enablesus to solve this problem
with great facility. Determine that one screw ¢ on the
cylindroid which is reciprocal to 5 (§ 28). Draw a
diameter D of the ellipse of inertia parallel to ¢. Then
the required screw 0 is simply that screw on the cylin-
droid which is parallel to the diameter conjugate to D
in the ellipse of inertia.

The converse problem, viz.,'to determine the screw g,
an impulsive wrench on which would make the body
commence to twist about 6 is indeterminate. Any screw
in space which is reczprocal fo ¢ would fulfil the required
condition (§ 54).

‘We have seen in § 66 that an impulsive wrench on
any screw in space may always be replaced by a pre-
cisely equivalent wrench upon the cylindroid which
expresses the freedom. We are now going to deter-
mine the screw 5, on the cylindroid of freedom, an impul-
sive wrench on which would make the body twist about
a given screw 0 on the same cylindroid. This can be
easily determined with the help of the pitch conic; for
we have seen (§ 42) that a pair of reciprocal screws on



DYNAMICS OF A RIGID BODY. ‘ 111

the cylindroid of freedom are parallel to a pair of conju-
gate diameters of the pitch conic. The construction is
therefore, as follows :—Find the diameter 4 which is
conjugate, with respect to the ellipse of inertia to the
diameter parallel to the given screw §. Next find the
diameter B which is conjugate to the diameter 4 with
respect to the pitck conic. The screw on the cylindroid
parallel to the line B thus determined is the required
SCrew 7.

Two concentric ellipses have one pair of common
conjugate diameters. In fact, the four points of inter-
section form a parallelogram, to the sides of which
the pair of common conjugate diameters are parallel.
‘We can now interpret physically the common conjugate
diameters of the pitch conic, and the ellipse of inertia.
The two screws on the cylindroid parallel to these
diameters are conjugate screws of inertia, and they are
also reciprocal ; they are, therefore, the principal screws of
inertia, to which we have been already conducted (§ 101).

If the distribution of the material of the body bear
certain relations to the arrangement of the constraints,
we can easily conceive that the pitch conic and the
ellipse of inertia might be both similar and similarly
situated. Under these exceptional circumstances it
appears that every screw of the cylindroid would possess
the property of a principal screw of inertia.

§ 103. The Ellipse of the Potential.—We are now to
consider another ellipse, which, though possessing many
useful mathematical analogies to the ellipse of inertia, is
yet widely different from a physical point of view. We
have introduced (§ 72) the conception of the linear mag-
nitude 7,, the square of which is proportional to the
work done in effecting a twist of given amplitude about
a screw a from a position of stable equilibrium under
the influence of a system of forces. We now propose
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to consider the distribution of the parameter z, upon
the screws of a cylindroid. It appears from (§ 72)
that if 2, 7 denote the values of the quantity v, for
each of two conjugate screws of the potential, and if
a, @, denote the intensities of the components on the two
conjugate screws of a wrench of unit intensity on a screw
a, which lies upon the cylindroid, that then—

7.2 = 0fa? + Uil

From the centre of the cylindroid draw two straight.

lines parallel to the pair of conjugate screws of the
potential, and with these lines as axes of x and y con-
struct the ellipse, of which the equation is—

V2x° +.”22}’2 s _H;
where A is any constant. If # be the radius vector in
this ellipse, we have—

x
'—=01and—‘=az;
7 7

whence by substitution we deduce—
I
Ve = —W
72
which proves the following theorem :—

The linear parameter 7, on any screw of the cylin-
droid is inversely proportional to the parallel diameter
of a certain ellipse, and a pair of conjugate screws of
the potential are parallel to a pair of conjugate diameters
of the same ellipse.

This ellipse may be called the el/zpse of the potential.

The major and minor axes of the ellipse of the poten-
tial are parallel to screws upon the cylindroid, which, for
a twist of given amplitude, correspond to a maximum
and minimum potential energy.

When the body is slightly displaced from its posi-
tion of equilibrium by the action of a wrench of given
small intensity on a given screw 7, the twist which
the body executes in assuming its new position is per-
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formed about a screw 6, which can very simply be con-
structed by the ellipse of the potential. Determine the
screw ¢ (on the cylindroid of freedom) which is recipro-
cal to n (§ 28), then ¢, and the required screw 0, are
parallel to a pair of conjugate diameters of the ellipse
of the potential. ]

The common conjugate diameters of the pitch conic,
and the ellipse of the potential, are parallel to the two
screws on the cylindroid, which we have designated the
principal screws of the potential (§ 71).

‘When a body is displaced from its position of equili-
brium by a small wrench upon a principal screw of the
potential, then the body moves to the new position
which is required in its altered circumstances by a small
twist about the same screw.

§ 104. Harmonic Screws.—The common conjugate
diameters of the ellipse of inertia, and the ellipse of
the potential, are parallel to the two harmonic screws
on the cylindroid (§ 74). This is evident, because the
pair of screws thus determined are conjugate screws
both of inertia and of the potential.

If the body be displaced by a twist about one of the
harmonic screws, and be then abandoned to the influ-
ence of the forces, the body will continue for ever to
perform twist oscillations about that screw.

If the ellipse of inertia, and the ellipse of the poten-
tial, be similar, and similarly situated, then every screwon
the cylindroid of freedom will be an harmonic screw.

§ 105. Exceptional Case.—We have now to consider
the modifications which the results we have arrived at
undergo when the cylindroid becomes illusory in the
case considered (§ 94).

Suppose that & and £ were a pair of conjugate screws
of inertia on the straight line about which the body was

free to rotate and slide independently. Then taking
1
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the six absolute principal screws of inertia* as screws ot
reference, we must have (§ 66)—

where n denotes the screw of zero pitch on the same

straight line.
Expanding this equation, and reducing, we find—

R

This result can be much simplified. By comparing
§ 37 and § 52, it appears that—

R=(m+ 712)2 o (773 + '14)2 o ("15 + n6)%

and therefore—
dR
Zpm Far. =23pm? = 2p=0.

Hence we can prove that the product of the pitches oftwo
conjugate screws of inertia is constant, and is equal to
minus the square of the radius of gyration about the
common axis of the screws.

§ 106. Reaction of Constraints.—We shall now con-
sider the following problem :—A body which is free to
twist about all the screws of a cylindroid C receives
an impulsive wrench on a certain screw 5. It is re-
quired to find the screw A, a wrench on which con-
stitutes the impulsive reaction of the constraints. Let
C’ represent the cylindroid which, if the body were per-
fectly free, would form the locus of those screws, impul-

* We shall often find it convenient to designate the six principal screws of

inertia of a free rigid body (§ 52) by the phrase adolute prmczfal screws of
inertia,
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sive wrenches on which correspond to all the screws
of C as instantaneous screws. Since a wrench on g,
and one on A, make the body twist about some screw on
C, it follows that the cylindroid (», A) must have a screw
p in common with C’. The wrench on A might be re-
solved into two, one on 5, and the other on p, and the
latter might be again resolved into two wrenches on any
two screws of C'. It therefore follows that A must be-
long to the screw complex of the third order, which may
be defined by 5, and by any two screws from C’. Take
any three screws reciprocal to this complex, and any
two screws on C. 'We have then five screws to which A
is reciprocal, and it is therefore geometrically deter-
mined (§ 28).

‘When A is found, the cylindroid (3 A) can be drawn,
and thus p is determined. The position of p on €’ will
point out the screw on C, about which the body will
commence to twist, while the position of p on (s, A), and
the known intensity of the wrench on 5, will determine
the intensity of the wrench on A.
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CHAPTER XI.

THE DYNAMICS OF A RIGID BODY, WHICH HAS FREEDOM
OF THE THIRD ORDER.

§ 107. Introduction.—The dynamics of a rigid body
which has freedom of the third order, possesses a special
claim to attention, for, included as a particular case, we
have the celebrated problem of the rotation of a rigid
body about a fixed point. In the theory of screws the
screw complex of the third order is characterised by the
feature that the reciprocal screw complex is also of the
third order, and this is a fertile source of interesting
theorems.

‘We shall first study the screw complex of the third
order, and its reciprocal. We shall then show how the
instantaneous screw, corresponding to a given impulsive
screw, can be determined for a rigid body whose move-
ments are prescribed by any screw complex of the third
order. We shall also point out the three principal screws
of inertia, of which the three principal axes are only
special cases, and we shall determine the kinetic
energy acquired by a given impulse. Finally, we shall
determine the three harmonic screws, and we shall
apply these principles to the discussion of the small
oscillations of a rigid body about a fixed point under the
influence of gravity.

A screw complex of the first order consists of course
of one screw. A screw complex of the second order con-
sists of all the screws on a certain ruled surface (the
cylindroid). Ascending one step higher, we find that in
a screw complex of the third order the screws are so
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numerous that a finite number (three) can be drawn
through every point in space. In the screw complex of
the fourth order a cone of screws can be drawn through
every point, while to a screw complex of the fifth order
belongs a screw of suitable pitch on every straight line
in space.

§ 108. Screw Complex of the Third Order.—We shall
now consider the collocation of the screws in space
which constitute a screw complex of the third order. A
free rigid body can receive six independent displace-
ments. Its position is, therefore, to be specified by six
co-ordinates. If, however, the body be so constrained
that its six co-ordinates must always satisfy three equa-
tions of condition, there are then only three really inde-
pendent co-ordinates, and any position possible for a
body so circumstanced may be attained by twists about
three fixed screws, provided that twists about these
screws are permitted by the constraints.

Let A4 be an initial position of a rigid body 47. Let
A1 be moved from A to a closely adjacent position,
and let ¥ be the screw by twisting about which this
movement has been effected; similarly let ¥ and z be
the two screws, twists about which would have brought
the body from A4 to two other adjacent positions.
We thus have three screws #, ¥, z, which completely
specify the circumstances of the body so far as its capacity
for movement is considered.

Since A/ can be twisted about each and all of x, ¥, 3,
it must be capable of twisting about a doubly infinite
number of other screws. For suppose that by twists of
amplitude «/, ¥, Z, the final position V is attained.
‘This position could have been reached by twisting
about 7, so as to come from A to V by a single
twist. As the ratios of #’ to ¥/, and Z, are arbitrary,
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and as a change in either of these ratios changes 7, the
number of 7 screws is doubly infinite.

All the screws of which 7 is a type form what we
call a screw complex of the thirvd order. We shall often
denote this screw complex by the symbol .S.

§ 109. The Reciprocal Screw Complex.—A wrench which
acts on a screw y will not be able to disturb the equili-
brium of M, provided n be reciprocal to x, 9, z. If,
therefore, n be reciprocal to three screws of the complex
.S, it will be reciprocal to every screw of .S. Since 5 has
thus only three conditions to satisfy in order that it may
be reciprocal to .S, and since five quantities determine a
screw, it followsthat  may be anyone of a doubly infinite
number of screws which we may term the reciprocal
screw complex S’. Remembering the property of recipro-
cal screws (§ 22) we have the following theorem (§ 47).

A body only free to twist about all the screws of S
cannot be disturbed by a wrench on any screw of .5";
and, conversely, a body only free to twist about the
screws of .§” cannot be disturbed by a wrench on any
screw of .S.

The reaction of the constraints by which the freedom
is prescribed constitutes a wrench on a screw of .§".

§ 110. Distribution of the Screws.—To present a clear
picture of all the movements which the body is com-
petent to execute, it will be necessary to examine the
mutual connexion of the doubly infinite number of
screws which form the screw complex. It will be most
convenient in the first place to classify the screws in the
complex according to their pitches; the first theorem to
be proved is that a/ the screws of grven prtch + k lie upon
a hyperboloid of which they form one system of generators,
while the other system of gemeralors with the pitch -k
belong o the recifrocal screw complex S'.
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This is proved as follows :—Draw three screws 2, ¢, 7,
of pitch + % belonging to .S. Draw three screws /, », 7,
each of which intersects the three screws 2, ¢, », and
attribute to each of /, #, 7, a pitch - £. Since two inter-
secting screws of equal and opposite pitches are recipro-
cal, it follows that p, ¢, », must all be reciprocal to /, #, 7.
Hence, since the former belong to .S, the latter must be-
long to .§". Every other screw of pitch + £ intersecting
l, m, n, must be reciprocal to .5, and must therefore be-
long to .S.

But the locus of a straight line which intersects three
given straight lines is an hyperboloid of one sheet,* and
hence the required theorem has been proved.

§ 111. The Pitch Quadric.—There is one member of
this family of hyperboloids which is of exceptional in
terest. We allude to that which is #ke locus of the
screws' of zero pitch belonging to the screw complex.
As the quadric under consideration possesses a very
important property (§ 112) besides that of being the locus
of the screws of zero pitch, it is desirable to denote it
by the special phrase pi&ck quadric.

‘We shall now determine the equation of the pitch
quadric. Let one of the principal axes of the pitch
quadric be denoted by x, this will intersect the surface
in two points through each of which a pair of generators
can be drawn. One generator of each pair will belong
to .S, and the other to.S”. Each pair of generators will
be parallelt to the asymptotes of the section of the pitch
quadric made by the plane containing the remaining
principal axes y and z. Let yu, v be the two generators

* Salmon’s Analytic Geometry of Three Dimensions, p. 77.
+ Salmon, Zoc. cit., p. 72. ;
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belonging to .5, then lines bisecting internally and ex-
ternally the angle between  two lines in the plane of
g and z, parallel to p, v will be two of the principal
axes of the pitch quadric. Draw the cylindroid (u v)
Now the two screws of zero pitch on the cylindroid are
equidistant from the centre of the cylindroid, and the
two rectangular screws of the cylindroid bisect inter-
nally and externally the angle between the lines parallel
to the screws of zero pitch. Hence it follows that
the two rectangular screws of the cylindroid (u v) must
be on the axes of y and z of the pitch quadric. We
shall denote these screws by [3 and v, and their pitches
ps and p,. From the properties of the cylindroid (§ 15)
it appears that @, the semiaxis of the pitch quadric, must
be determined from the equations—

a = (pg - p,) sin / cos [,
ppcos + p,sin?=0;

whence eliminating /, we deduce—

a=v"=pgp,.

If 4, ¢ be the remaining semiaxes of the pitch quadric,
then we must have—

cos?/ sin 2/

b R

because the screws u, v are parallel to the asymptotes of

y?
52 2 x L
whence we find—
aber 4o
pr=- S i ppe -
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By taking the tangent planes to the pitch quadric at
the extremities of ¥, we should similarly find—

abc abc
ek perataes oy s

hence we deduce the very important result which may
be thus stated :—

The three principal axes of the pitch quadric, when fur-
nished with suitable priches pay Poy Py, constitule screws be-
donging to the screw complex of the third order, and the
equation of the pitch quadric has the form—

DXt + Py + Py + Papepy, = 0.

We can also show conversely that every screw 6 of
zero pitch, which belongs to the screw complex of the
third order, must be one of the generators of the pitch
quadric. For 6 must be reciprocal to a// the screws
of zero pitch on the reciprocal system of generators of
the pitch quadric; and since two screws of zero pitch
cannot be reciprocal unless they intersect either at a
finite or infinite distance, it follows that 6 must inter-
sect the pitch quadric in an infinite number of points,
and must therefore be entirely contained thereon.

Let now .S denote a screw complex of the third order,
where a, 3, v are the three screws of the system on
the principal axes of the pitch quadric. Diminish the
pitches of all the screws of .S by any magnitude 2. Then
the quadric—

(Be-R)2+ (e -R) '+ (5 -R)Z
+ (b= BB~ B) (By=B) =0 evinn

must be the locus of screws of zero pitch in the altered
system, and therefore of pitch + £ in the original system

(§ 80).
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Regarding % as a variable parameter, the equation just
written represents ¢ _family of quadrics which constitute
the screw complex .S’ and the reciprocal screw complex
.S”.  Thus all the generators of one system on each qua-
drie, with pitch + 4, constitute screws about which the
body, with three degrees of freedom, can be twisted;
while all the generators of the other system, with pitch
— %, constitute screws, wrenches about which would be
neutralized by the reaction of the constraints.

For the quadric to be a real surface it is plain that £
must be greater than the least, and less than the greatest
of the three quantities p,, #g, ,. Hence the pitches of
all the real screws of the screw complex .S are inter-
mediate between the greatest and least of the three
quantities ., £g 2y

§ 112. Screws through a Given Point.—We shall now
show that three screws belonging to .S, and also three
screws belonging to ., can be drawn through any point
%, 9, 7. Substitute &/, ¥/, 2/, in the equation of the last
article, and we find a cubic for 2. This shows that three
quadrics of the system can be drawn through each point
of space. The three tangent planes at the point each
contain two generators, one belonging to .S, and the
other to .§". It'may be noticed that these three tangent
planes intersect in a straight line.

Two intersecting screws can only be reciprocal if
they be at right angles, or if the sum of their pitches be
zero. It is hence easy to see that, if a sphere be de-
scribed around any point as centre, the three screws
belonging to .S, which pass through the point, intersect
the sphere in the vertices of a spherical triangle which
is the polar of the triangle similarly formed by the
lines belonging to .5". '

‘We shall now show that oze screw belonging to .S
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can be found parallel to any given direction. All the
generators of the quadric are parallel to the cone

(=B 22+ (Pa—FK)y*+ (py - k)22 =0,

and % can be determined so that this cone shall have one
generator parallel to the given direction; the quadric
can then be drawn, on which two generators will be
found parallel to the given direction ; one ofthese belongs
to .S, while the other belongs to .5".

It remains to be proved that ecack screw of S has
a pitch whick is proportional to the inverse square of the
parallel diameler of the pitch quadric*

Let 7 be the intercept on a generator of the cone—-

(- R+ (fe-K)p* + (- B2 =0;
by the pitch quadric—

DX+ P+ P+ P, =05
then £ = — 220y,
Iz

but % is the pitch of the screw of .S, which is parallel
to the line 7.

Nine constants (§ 49) are required for the determina-
tion of a screw complex of the third order. This is the
same number as that required for the specification of a
quadric surface.t 'We hence infer, what is indeed other-

* This theorem is connected with some purely geometrical theorems of
Plucher, who has shown (Neue Geometrie des Raumes, p. 130) that Zx?
+ &* + B2 + Bikyks =0, is the locus of lines common to three linear com-
plexes of the first degree. The axes of the three complexes are directed along
the co-ordinate axes, and the parameters of the complexes are %, &, %;; the
same author has also proved that the parameter of any complex belonging
to the (¢ dreigliedrigen Gruppe’’) is proportional to the inverse square of the
parallel diameter of the hyperboloid.

1 Salmon’s Analytic Geometry of Three Dimensions, p. 35.
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wise manifest, viz., that when the pitch quadric is
known the entire screw complex of the third order is
determined.

Another very interesting property of the pitch qua-
dric is thus enunciated. Any Zhree co-reciprocal screws
of a given screw complex of the third order are parallel to'a
triad of conjugate diamelers of its pitch quadric.

Take any three co-reciprocal screws of the complex
as screws of reference, and let £y, #,, #; be their pitches.
If then the co-ordinates of any screw p belonging to the
complex be denoted by p,, ps; p;, we shall have for the
pitch of p (§ 65)—

Do = 2r0s® + Pupi® + Popd®.

If a parallelopiped be constructed, of which the three
lines parallel to the reciprocal screws, drawn through the
centre of the pitch quadric, are conterminous edges, and
of which the line parallel to p is the diagonal, and if
%, 9, 2z be the lengths of the edges, and 7 the length
of the diagonal, then we have (§ 37)—

X 2
;=91’5=P2:;=P3-

It follows that p, must be proportional to the inverse
square of the parallel diameter of the quadric surface—

L+ Pyt + put = M.

But g, must be proportional to the inverse square of
the parallel diameter of the pitch quadric, and hence the
equation last written must actually be the equation of
the pitch quadric, when /A is properly chosen. But the
equation is obviously referred to three conjugate diame-
ters, and hence three conjugate diameters of the pitch
quadric are parallel to three co-reciprocal screws of the
screw complex.

‘We see from this that ke sum of the reciprocals of
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the pitches of three co-reciprocal screws is constant. This
theorem will be subsequently generalised (§ 136).

§ 113. Screws of the Complex parallel to a Plane.—Up to
the present we have been analysing the screw complex
by classifying the screws into groups of constant pitch.
Some interesting features will be presented by adopting
a new method of classification. We shall now divide
the general system into groups of screws which are
parallel to the same plane.

We shall first prove that each of these groups con-
stitutes a cylindroid. For suppose a screw of infinite pitch
normal to the plane, ‘then all the screws of the group
parallel to the plane are reciprocal to this screw of
infinite pitch. But they are also reciprocal to any three
screws of the original reciprocal system ; they, therefore,
form a screw complex of the second order (§ 46)—that is,
they constitute a cylindroid.

‘We shall prove this in another manner.

A quadric containing a line must touch every plane
passing through the line.* The number of screws of the
complex which can lie in a given plane is, therefore,
equal to the number of the quadrics of the complex
which can be drawn to touch that plane.

The quadric surface whose equation is—

(BB 22+ (pe- k) y +(pv— A2
+(2=R) (2= B) (5~ &) = 0,

touches the plane Px + Qy + Rz +.5 = o, when the fol-
lowing condition is satisfied :t—

P (pg— k) (pr— &) + Q*(£. - £) ($y - &)
+R(p, - B ps- R+ St =0;

* Salmon’s Analytic Geometry of Three Dimensions, p. 74.
+ Salmon, Ze. cit., p. 49.
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whence it follows that two values of 2 can be found, or
that two quadrics can be made to touch the plane, and
that, therefore, two screws of the complex, and, of course,
two reciprocal screws, lie in the plane.

From this it follows that all the screws of the com-
plex parallel to a plane must lie upon a cylindroid.
For, take any two screws parallel to the plane, and
draw a cylindroid through these screws. Now, this
cylindroid will be cut by any plane parallel to the given
plane in two screws, which must belong to the complex ;
but this plane cannot contain any other screws ; there-
fore, all the screws parallel to a given plane must lie
upon the same cylindroid.

§ 114. Determination of the Cylindroid.—We now pro-
pose to solve the following problem :—Given a plane,
determine the cylindroid which contains all the screws,
selected from a screw complex of the third order, which
are parallel to that plane.

Draw through O the centre of the pitch quadric a
plane A parallel to the given plane. We shall first
show that the centre of the cylindroid required lies in A.

To R

Fig. 3. \

Let 7, 7, (Fig. 3) be two points in which the two
quadrics of constant pitch touch the plane of the paper,
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which may be regarded as any plane parallel to A4 ;
then 2 is the intersection of the pair of screws be-
longing to the complex PT,, P7,, which lie in that
plane, and #’is the intersection of the pair of reciprocal
screws P’R,, PR, belonging to the reciprocal complex.
Since #’R, is to be reciprocal to PT;, it is essential that
R, be a right angle, similarly R, is a right angle. The
reciprocal cylindroid, whose axis passes through 7,
will be identically the same as the cylindroid belonging
to the complex whose axis passes through 2; but the
two will be differently posited. If the angle at 2 be
a right angle, the points 7; and 7; are at infinity;
therefore, the plane touches the quadric at infinity; it
must, therefore, touch the asymptotic cone, and must,
therefore, pass through the centre of the pitch quadric O;
but 2 is the centre of the cylindroid in this case, and,
therefore, the centre of the cylindroid must lie in the
plane 4.

The position of the centre of the cylindroid in the
plane A4 is to be found by the following constructlon —
Draw through the centre O a diameter
conjugate in the pitch quadric to the
plane A. Let this line intersect the
pitch quadric in the points 2, 72, and
let .S, .S (Fig. 4) bethe feet of the per- T
pendiculars let fall from 2, 2, upon
the plane 4. Draw the asymptotes OZ,
OM to the section of the pitch quad-
ric, made by the plane 4. Through
S and .S" draw lines in the plane 4,
S7, ST, ST, ST, parallel to the Fig. 4.
asymptotes, then 7" and 7 are the centres of the
two required cylindroids which belong to the two reci-
procal screw complexes.

This construction is thus demonstrated :—

M




128 DYNAMICS OF A RIGID BODY.

The tangent planes at £, /2, each intersect the sur-
face in lines parallel to OL, OM. Letus call these lines
PL, 1,M, through the point A2, and P,L, P, M,
through the point 2. Then AL, P,IM, are screws
belonging to the complex, and P,M,, P,L, are reciprocal
screws.

Since OL is a tangent to the pitch quadric, it there~
fore must be intersected by two rectilinear generators,.
one of each system. These two generators lie in a
plane which contains OL ; but since OL touches the
hyperboloid at infinity, the lines on the surface must be
parallel to OZ, and therefore their projections on the-
plane of 4 must be S7, S’7". Similarly for S7, S'7";
hence .S7” and S’7” are the projections of two screws
belonging to the complex, and therefore the centre of"
the cylindroid is at 7". In a similar way it is proved
that the centre of the reciprocal cylindroid is at 7.

Having thus determined the centre of the cylindroid,
the remainder of the construction is easy. The pitches.
of two screws on the surface must be proportional “ to-
the inverse square of the parallel diameters of the sec-
tion of the pitch quadric made by 4. Therefore, the
greatest and least pitches will be on screws parallel
to the principal axes of the section. Hence, lines drawn
through 7” parallel to the external and internal bisectors
of the angle between the asymptotes are the two rectan-
gular screws of the cylindroid. Thus the problem of
finding the cylindroid is completely solved.

It is easily seen that each cylindroid touches each of
the quadrics in two points.

§ 115. Miscellaneous Remarks.—It follows from the last
article that any plane which contains a pair of screws
belonging to the complex which intersect at right angles.
must pass through the centre of the pitch quadric.

‘We are now in a position to determine the actual
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situation of a screw § belonging to a screw complex of
the third order of which the direction is given. The con-
struction is as follows :—Draw through O the centre of
the pitch quadric a radius vector OR parallel to the
given direction of 8, and cutting the pitch quadric in R.
Draw a tangent plane to the pitch quadric in R. Then
the plane A4 through OR, of which the intersection with
the tangent plane is perpendicular to OR, is the plane
which contains §. For the section in which A cuts the
pitch quadric has for a tangent at R a line perpendicu-
lar to OR; hence the line OR is a principal axis of
the section, and hence (§ 114) one of the two screws of
the complex in the plane 4 must be parallel to OR.
It remains to find the actual situation of 6 in the
plane 4.

Since the direction of @ is known, its pitch is deter-
minate, because it is inversely proportional to the square
of OR. Hence the quadric can be constructed, which is
the locus of all the screws which have the same pitch as
0. This quadric must be intersected by the plane A4 in
two parallel lines. One of these lines is the required resi-
dence of the screw 0, while the other line, with a pitch
equal in magnitude to that of 6, but opposite in sign,
belonging, as it does, to one of the other system of
generators, is a screw reciprocal to the system.

A family of quadric surfaces of constant pitch have
the same planes of circular section, and therefore every
plane through the centre cuts the quadrics in a system
of conics having the same directions of axes.

The cylindroid which contains all the screws of the
screw complex parallel to one of the planes of circu-
lar section must be composed of screws of equal pitch.
A cylindroid in this case reduces to a plane pencil
of rays passing through a point. We thus have two
points situated upon the primary axis of the pitch quadric,

K
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through each of which a plane pencil of screws can be
drawn, which belong to the screw complex. All the
screws passing through either of these points have equal
pitch. The pitches of the two pencils are equal in mag-
nitude, but opposite in sign. The magnitude is that of
the pitch of the screw situated on the primary axis of
the pitch quadric.*

§ 116. Virtual Co-efficients.—Let p be a screw of the
screw complex which makes angles whose cosines are
/> & &, with the three screws of reference a, 3, y upon
the axes of the pitch quadric. Then, reference being
made to any six co-reciprocals, we have for the co-
ordinates of p,

p1 = far + gBh + Ay,
&c., &c.,
ps = Jas + &Bs + hrye.

Let 4 be any given screw. The virtual co-efficient of
o and n is—

2fway + 28mp, + 2hw,,.
Draw from the centre of the pitch quadric a radius vec-
tor # parallel to p, and equal to the virtual coefficient

just written ; then the locus of the extremity of # is the
sphere—

X+ Y+ 2 = 2[Xwan + Yag, + 2a77].

The tangent plane to the sphere obtained by equating
the right-hand side of this equation to zero is the prin-

* If a, b, ¢ be the three semiaxes of the pitch quadric, and + & the distances
from the centre, on @, of the two. points in question, it appears from § 114 that
a%d? =(a® — b?) (a®-c*), which shows that & is the fourth proportional to the
primary semiaxis of the surface, and of its focal ellipse and hyperbola.
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cipal plane of that cylindroid which contains all the
screws of the screw complex which are reciprocal to 3.

§ 117. Four Screws of the Screw Complex.—Take any
four screws a, (3, v, ¢ of the screw complex of the third
order. Then we shall prove that the cylindroid (a, f3)
must have a screw in common with the cylindroid (y, §)
For twists of appropriate amplitudes about a, (3, v, 8 must
neutralise, and hence the twists about «, 3 must be coun-
teracted by those about 4, 8; but this cannot be the
case unless there is some screw common to (a, 3) and
(v, ©)-

This theorem provides a convenient test as to whe-
ther four screws belong to a screw complex of the third
order.

§ 118. Equilibrium of Four Forces applied to a Rigid Body.—
If the body be free, the four forces must be four wrenches
on screws of zero pitch which are members of a screw
complex of the third order. The forces must therefore
be generators of an hyperboloid, and all belonging to
the same system (§ 106).

Three of theforces, P, Q, R, being given in position, .S
must then be a generator of the hyperboloid determined
by P, Q, R. This proof of a well-known theorem (due to
Mobius) is given to show the facility with which such
results flow from the Theory of Screws.

Suppose, however, that the body have only freedom
of the fifth order, we shall find that somewhat more
latitude exists with reference to the choice of S. Let X
be the screw reciprocal to the screw complex by which
the freedom is defined. Then for equilibrium it will
only be necessary that .S belong to the complex of the
fourth order defined by the four screws

Byo@, 1 X.

A cone of screws can be drawn through eevry point
K 2



132 DYNAMICS OF A RIGID BODY.

in space belonging to this complex, and on that cone
one screw of zero pitch can always be found. Hence one
line can be drawn through every point in space along
which .S might act.

If the body have freedom of the fourth order, the lati-
tude in the choice of .S is still greater. Let X;, X, be
two screws reciprocal to the complex, then .S is only
restrained by the condition that it belong to the screw
complex of the fifth order defined by the screws

P, Q, R, X, X,.

Any line in space when it receives the proper pitch
is a screw of this complex. Through any point in space
a plane can be drawn such that every line in the plane
passing through the point with zero pitch is a screw of
the complex (§ 80).

Finally, if the body has only freedom of the third
order, the four equilibrating forces 7, Q, R, .S may be si-
tuated anywhere.

* The positions of the forces being given, their magni-
tudes are determined; for draw three screws X;, X,, X,
reciprocal to the complex, and find (§ 30) the intensities
of the seven equilibrating wrenches on

P, Q, R, S, X, X, X

. The last three are neutralised by the reactions of the
constraints, and the four former must therefore equili-
brate. : :

Given any four screws in space, it is possible for four
wrenches of proper intensities on these screws to hold
a body having freedom of the third order in equilibrium.
For, take the four given screws, and three reciprocal
screws. Wrenches of proper intensities on these seven
screws will equilibrate; but those on the reciprocal screws
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are destroyed by the reactions, and, therefore, the four
wrenches on the four screws equilibrate. ' It is mani-
fest that this theorem may be generalised into the fol-
lowing :—If a body have freedom of the %% order, then
properly selected wrenches about any £ +'1 screws (not
reciprocal to the screw complex) will hold the body in
equilibrium.

That a rigid body with freedom of the third order
may be in equilibrium under the action of gravity, we
have the necessary and sufficient condition, which is
thus stated :—

The vertical through the centre of inertia must be
-one of the reciprocal system of generators on the pitch
quadric.

We see that the centre of inertia must, therefore, lie
upon a screw of zero pitch which belongs to the screw
complex ; whence we have the following theorem :—
The restraints which are necessary for the equilibrium
©of a body which has freedom of the third order under
the action of gravity, would permit rotation of the body
round one definite line through the centre of inertia.

§ 119. The Ellipsoid of Inertia.—The momental ellip-
soid, which is of such significance in the theory of the
rotation of a rigid body about a fixed point, is presented
in the Theory of Screws as a particular case of another
-ellipsoid called the ellipsoid of inertia, which is of great
importance in connexion with the general screw com-
plex of the third order.

If we take three conjugate screws of inertia from the
screw complex, as screws of reference, then we have
seen (§ 67) that, if 6,, 0,, 0;, be the co-ordinates of a screw
0, we have— | bi
ug = 16202 + 2207 + uf0,
where u,, 2,, 1, are the values of %, with reference to the
three conjugate screws of inertia.’
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Draw from any point lines parallel to 6, and to
the three conjugate screws of inertia. If then a pa-
rallelopiped . be constructed of which the diagonal
is the line parallel to 0, and of which the three
lines parallel to the conjugate screws are contermi-
nous edges, and if 7 be the length of the diagonal, and
%, ¥, z the lengths of the edges, then we have—

% il el O
7 , 7

We see, therefore, that the parameter # appropriate
to any screw 0 is inversely proportional to the parallel
diameter of the ellipsoid

w2 + U + w2 = M,

where /7 is a certain constant.

Hence we have the following theorem :— The kinetic
energy of a rigid body, when twisting with a given twist
velocity about any screw of a complex of the third order,
is proportional to the inverse square of the parallel dia-
meter of a certain ellipsoid, which may be called the
ellipsord of inertia ; and a set of three conjugate diame-
ters of the ellipsoid are parallel to a set of three conjugate
screws of inertia which belong to the screw complex.

‘We might also enunciate the property in the follow-
ing manner :—Any diameter of the ellipsoid of inertia is
proportional to the twist velocity with which the body
should twist about the parallel screw of the screw com-
plex, so that its kinetic energy shall be constant.

§ 120. The Principal Screws of Inertia.—It will simplify
matters to consider that the ellipsoid of inertia is con-
centric with the pitch quadric. It will then be possible
to find a triad of common conjugate diameters to the
two ellipsoids. We can then determine three screws
of the complex parallel to these diameters (§ 115),
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and these three screws will be co-reciprocal, and also
conjugate screws of inertia. They will, therefore (§ 57),
form what we have termed the principal screws of
inertia. When the screw complex reduces to a pencil
of screws of zero pitch passing through a point, then the
principal screws of inertia reduce to the well-known
principal axes.

§ 121. Lemma.—If from a screw complex of the %
order we select 2 screws A,, ..., Ay which are conju-
gate screws of inertia (§ 57), and if .S\ be any screw
which is reciprocal to A, ..., A then an impulsive
wrench on S, will cause the body, when only free to twist
about the screws of the complex, to commence to twist
about 4;. Let R, be the screw which, if the body were
perfectly free, would be the impulsive screw correspond-
ing to A, as the instantaneous screw. &, must be reci-
procal to 4,, ..., A, (§ 54). Take also 6 - 2 screws of
the reciprocal system By, ..., Bs.n. Then the 8 -7
screws Ry, .Sy, By, ..., Bs.n must be reciprocal to the
7 — 1 screws Ay ... A, and therefore the 8 — 7 screws
must belong to a screw complex of the (7 - 7)* order.
Hence an impulsive wrench upon the screw .S; can be
resolved into components on Ry, By, ... Bs_n Of
these all but the first are neutralised by the reactions of
the constraints, and by hypothesis the effect of an im-
pulsive wrench upon R, is to make the body commence
to twist about A4,, and therefore an impulsive wrench
on .S; would make the body twist about 4.

§ 122. Relation between the Impulsive Screw and the In-
stantaneous Screw.—A quiescent rigid body which pos-
sesses freedom of the third order is acted upon by an
impulsive wrench about a given screw 5. It is required
to determine the instantaneous screw 6, about which the
body will commence to twist.

The screws which belong to the complex, and are at
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the 'same time reciprocal to , must all lie upon a cylin-
droid, as they each fulfil the condition of being recipro-
cal to four screws. All the screws on the cylindroid
are parallel to a certain plane drawn through the centre
of the pitch quadric, which may be termed the reczprocal
plane with respect to the screw n. The reciprocal plane
having been found, the diameter conjugate to this plane
in ‘the ellipsoid of inertia is parallel to the required
screw 0.

“For let u and v denote two screws of the complex
parallel to a pair of conjugate diameters of the ellipsoid
of inertia in the reciprocal plane. Then 0, u, v are
a triad of conjugate screws of inertia; but 5 is reciprocal
to u and v, and, therefore, by the lemma of the last
article, an impulsive wrench upon 5 will make the body
commence to twist about .

§ 123. Kinetic acqEnergy uired by an Impulse.—We
shall now consider the following problem :—A quies-
cent rigid body of mass A/ receives an impulsive wrench
of 'intensity »” on a screw n for a short time e. De-
termine the locus of a screw 0 belonging to a screw
complex of the third order, such that, if the body be con-
strained to twist about 0, it shall acquire a given kinetic
energy X, in consequence of the impulsive wrench.

‘We have from § 61 the equation—

Ilz

&
& el Bl by
Mugzw"a

We can assign a geometrical interpretation to this
equation, which will lead to some interesting results.

Through the centre O of the pitch quadric the plane
A reciprocal to n is to be drawn. A sphere (§116) is
to be described touching the plane A at the origin O,
the diameter of the sphere being 'so chosén that the
intercept OP made by the sphere on a radius vector
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parallel to any screw 0 is edual to =y (§ 116). The quan-
tity #, is inversely proportional to the radius vector OQ
of the ellipsoid of inertia, which is parallelto 8 (§ 119).
Hence for all the screws of the screw complex which
acquire a given kinetic energy in consequence of a
given impulse, we must have the product OF. OQ con-
stant.

From a well-known property of the sphere, it follows
that all the points Q must lie upon a plane A4’, parallel
to A. This plane cuts the ellipsoid of inertia in an
ellipse, and all the screws required must be parallel
to the generators of the cone of the second degree,
formed by joining the points of this ellipse to the
origin, O.

Since we have already shown how, when the direc-
tion of a screw belonging to a screw complex of the
third order is given, the actual situation of that screw is
determined (§ 115), we are now enabled to ascertain all
the screws 6 on which the body acted upon by a given
impulse would acquire a given kinetic energy.

The distance between the planes 4 and A’ is pro-
portional to O2. OQ, and therefore to the square root of
K. Hence, when the impulse is given, the kinetic energy
acquired on a screw determined by this construction is
greatest when A4 and A’ are as remote as possible. For
this to happen, it is obvious that A4’ will just touch
the ellipsoid of inertia. = The group of screws will, there-
fore, degenerate to the single screw parallel to the dia-
meter of the ellipsoid of inertia conjugate to 4. But we
have seen (§ 122) that the screw so determined is the
screw which the body will naturally select if permitted
to make a choice from all the screws of the complex of
the third order. We thus see again what Euler’s theorem
(§ 64) would have also told us, viz., that when a quies-
cent rigid body which has freedom of the third order is
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set in motion by the action of an impulsive wrench, the
kinetic energy which the body acquires is greater than
it would have been had the body been restricted to any
other screw of the complex than that one which it natu-
rally chooses.

§ 124. Reaction of the Constraints.—An impulsive
wrench on a screw 5 acts upon a body with freedom
of the third order, and the body commences to move by
twisting upon a screw 0. It is required to find the screw
A, a wrench on which constitutes the initial reaction of
the constraints. Let ¢ denote the impulsive screw which,
if the body were free, would correspond to 6 as the in-
stantaneous screw. Then A must lie upon the cylin-
droid (¢, ), and may be determined by choosing on
(¢ m) a screw reciprocal to any screw of the given screw
complex.

§ 125. Impulsive Screw is Indeterminate.—Being given
the instantaneous screw 0 in a complex of the third
order, the corresponding impulsive screw 5 is indeter-
minate, because the impulsive wrench may be com-
pounded with any reactions of the constraints. In fact
n may be any screw selected from a screw complex of
the fourth order, which is thus found. Draw the diame-
tral plane conjugate to a line parallel to § in the ellipsoid
of inertia, and construct the cylindroid which consists
of screws belonging to the screw complex parallel to
this diametral plane. Then any screw which is reci-
procal to this cylindroid will be an impulsive screw cor-
responding to 6 as an instantaneous screw.

Thus we see that through any point in space a whole
cone of screws can be drawn, an impulsive wrench on
any one of which would make the body commence to
twist about the same screw.

One impulsive couple can always be found which
would make the body commence to twist about any
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given screw of the screw complex. For a couple in
a plane perpendicular to the nodal line of a cylindroid
may be regarded as a wrench upon a screw recipro-
cal to the cylindroid; and hence a couple in a diame-
tral plane of the ellipsoid of inertia, conjugate to the
diameter parallel to the screw 60, will make the body
commence to twist about the screw 6.

It is somewhat remarkable that a force directed along
the nodal line of the cylindroid must make the body
commence to twist about precisely the same screw as
the couple in a plane perpendicular to the nodal line.

If a cylindroid be drawn through two of the principal
screws of inertia, then an impulsive wrench on any screw
of this cylindroid will make the body commence to twist
about a screw on the same cylindroid. For the impul-
sive wrench may be resolved into wrenches on the two
principal screws. Each of these will produce a twisting
motion about the same screw, which will, of course,
compound into a twisting motion about a screw on the
same cylindroid.

§ 126. Ellipsoid of the Potential.—A body which has
freedom of the third order is in equilibrium under the
influence of a system of forces in conformity with the
restrictions of § 6. The body receives a twist of small
amplitude 6 about a screw 0 of the screw complex. It
is required to determine a geometrical representation
for the quantity of work which has been done in effect-
ing the displacement. We have seen that to each screw
0 corresponds a certain linear parameter 7, (§ 72), and
that the work done is represented by—

Fue0.

‘We have also seen that the quantity v may be repre-
sented by—
2200 + 220 + v,03;
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where 0, 0., 0; are the co-ordinates of the screw 0 referred
to three conjugate screws of the potential, and #,, #,, z;,
denote the values of 7 for each of the three screws of
reference (§ 72).

Drawing through the centre of the pitch quadric three
axes parallel to the three screws of reference, we can
then construct the ellipsoid of which the equation is—

V2R + VY + 0P = [

which proves the following theorem.

The work done in giving the body a twist of given
amplitude from a position of equilibrium about any
screw of a complex of the third order, is proportional to
the inverse square of the parallel diameter of a certain
ellipsoid which we may call the ellzpsoid of the potential,
and three conjugate diameters of this ellipsoid are paral-
1el to three conjugate screws of the potential in the screw
complex. '

§ 127. The Principal Screws of the Potential.—The three
common conjugate diameters of the pitch hyperboloid,
and the ellipsoid of the potential, are parallel to three
screws of the complex which are what we call the prin-
cipal screws of the potential. If the body be displaced
by a twist about a principal screw of the potential from
a position of stable equilibrium, then the reduced wrench
which is evoked is upon the same screw.

The three principal screws of the potential must not
be confounded with the three screws of the complex
which are parallel to the principal axes of the ellipsoid of
the potential. The latter are the screws on which a
twist of given amplitude requires a maximum or mini-
mum consumption of energy, and they are rectangular,
which, of course, is not in general the case W1th the
prmmpal screws of the potential.

§ 128. Wrench evoked by Displacement.—By the aid of
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the ellipsoid of the potential we shall be able to solve
the problem of the determination of the screw on which
a wrench is evoked by a twist about a given screw 0 of
the complex. The construction which will now be given
will enable us to determine the screw of the complex on
which the reduced wrench acts.

Draw through the centre of the pitch quadric a
line parallel to §. Construct the diametral plane 4 of
the ellipsoid of the potential conjugate to this line, and
let A, n be any two screws of the complex parallel to a
pair of conjugate diameters of the ellipsoid of the poten-
tial which lie in the plane 4. Then the required screw
¢ is parallel to that diameter of the pitch quadric which
is conjugate to the plane 4.

For ¢ will then be reciprocal to both A and u; and
as A, u, 0 are conjugate screws of the potential, it fol-
lows that a twist about § must evoke a reduced wrench
on ¢.

§ 129. Harmonic Screws.— When a rigid body has free
dom of the third order, it musthave (§ 74) three harmonic
screws, or screws which are conjugate screws of inertia,
as well as conjugate screws of the potential. We are
now enabled to construct these screws with facility, for
they must be those screws of the screw complex which
are parallel to the triad of common conjugate diameters
of the ellipsoid of inertia, and the ellipsoid of the poten-
tial.

‘We have thus a complete geometrical conception of
the small oscillations of a rigid body which has free-
dom of the third order. Ifthe body be once set twisting
about one of the harmonic screws, it will continue to
twist thereon for ever, and in general its motion will be
compounded of twisting motions upon the three har-
monic screws.
~ If the displacement of the body from its position of
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equilibrium has been effected by a small twist about a
screw on the cylindroid which contains two of the har-
monic screws, then the twist can be decomposed into
components on the harmonic screws, and the instanta-
neous screw about which the body is twisting at any
epoch will oscillate backwards and forwards upon the
cylindroid, from which it will never depart.

If the periods of the twist oscillations on two of
the harmonic screws coincided, then every screw on
the cylindroid which contains those harmonic screws
would also be a harmonic screw.

If the periods of the three harmonic screws were
equal, then every screw of the complex would be a har-
monic screw.

§ 130. Oscillations of a Rigid Body about a Fixed Point.—
‘We shall conclude the present Chapter by applying
the principles which it contains to the development
of a geometrical solution of the following important
problem :—

A rigid body, free to rofate in every direction around
a fixed point, is at rest under the influence of gravity. The
body s slightly disturbed : it is requived fo defermine the
nature of its small osctllations.

Since three co-ordinates are required to specify the
position of a body when rotating about a point, it fol-
lows that the body has freedom of the third order. The
screw complex, however, assumes a very extreme type,
for the pitch quadric has become illusory, and the
screw complex reduces to a pencil of screws ofzero pitch
radiating in all directions from the fixed point.

The quantity e appropriate to a screw 6 reduces to
the radius of gyration when the pitch of the screw is
zero; hence the ellipsoid of inertia reduces in the pre-
sent case to the well-known momental ellipsoid.

The ellipsoid of the potential (§ 126) assumes a
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remarkable form in the present case. The work done
in giving the body a small twist is proportional to the
vertical distance through which the centre of inertia is
elevated. Now, as in the position of equilibrium the
centre of inertia is vertically beneath the point of sus-
pension, it is obvious from symmetry that the ellipsoid
of the potential must be a surface of revolution about a
vertical axis. It is further evident that the vertical
radius vector of the ellipsoid must be infinite, because
no work is done in rotating the body around a vertical
axis.

Let O be the centre of suspension, and 7 the cen-
tre of inertia, and let OP be a radius vector of, the
ellipsoid of the potential. Let fall 7Q perpendicular
on 0P, and PT perpendicular upon OZ. It is extremely
easy to show that the vertical height through which 7 is
raised is proportional to /7Q? x OF*; whence the area
of the triangle OPF/ is constant, and therefore the locus
-of 2 must be a right circular cylinder of which O/ is the
axis.

‘We have now to find the triad of common conjugate
diameters of the momental ellipsoid, and the circular
cylinder just described. A group of three conjugate dia-
meters of the cylinder must consist of the vertical axis,
and any two other lines through the origin, which
are conjugate diameters of the ellipse in which their
plane cutsthe cylinder. It follows that the triad required
will consist of the vertical axis, and of the pair of
common conjugate diameters of the two ellipses in
which the plane conjugate to the vertical axis in the
momental ellipsoid cuts the momental ellipsoid and
the cylinder. These three lines are the three harmonic
axes.

‘With reference to the vertical axis which appears to
be one of the harmonic axes, the time of vibration would



144 DYNAMICS OF A RIGID BODY.

be infinite, so we reject it. The'three harmonic screws
which are usually found in the small oscillations ofa body
with freedom of the third order are therefore reduced
in the present case to two, and we have the following
theorem :—

A rigid body which ts free lo rotale about a fixed
point ts at rest under the action of gravity. If a plane
S be drawn through the point of suspension O, con-
gate to the vertical diameler OI of the momental ellip-
soid, then the common conjugate diameters of the two
ellipses tn whick S culs the momental ellipsoid, and
a circular cylinder whose axis @s OI, are the two har-
monic axes. If the body be displaced by a small rota-
tion about ome of these axes, the body will continue
Sor ever to oscillate fo and fro upon this axis, just as
if the body had been actually constrained to move about
this axis.

To complete the solution for any initial circum-
stances of the rigid body, a few additional remarks are
necessary.

Assuming the body in any given position of equili-
brium, it is first to be displaced by a small rotation about
an axis OX. Draw the plane containing O7 and OX,
and let it cut the plane .S in the line OY. The small
rotation around OX may be produced by a small rota-
tion about O/, followed by a small rotation about OY.
The effect of the small rotation about O/ is merely to alter
the azimuth of the position, but not to disturb the equili-
brium. Had we chosen this altered position as that
position of equilibrium from which we started, the ini-
tial displacement will be communicated by a rotation
around OY. We may, therefore, without any sacrifice
of generality, assume that the axis about which the
initial displacement is imparted lies in the plane.S. We
shall now suppose the body to receive a small angular
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velocity about any other axis. This axis must be in the
plane .S, if small oscillations are to exist at all, for
the initial angular velocity, if not capable of being
resolved completely on the two harmonic axes, will have
component around the vertical axis OZ. The effect of
an initial rotation about O7 will be to give the body
a continuous slow rotation around the vertical axis, which
is, of course, not admissible when small oscillations only
are considered.

If, therefore, the body performs small oscillations only,
we may regard the initial axzs of displacement as lying
in the plane .S, while we musf have the initial znsfan-
faneous axis in that plane. The initial displacement
may be resolved into two displacements, one on each of
the harmonic axes, and the initial angular velocity may
also be resolved into two angular velocities on the two
harmonic axes. The entire motion will, therefore, be
found by compounding the vibrations about the two
harmonic axes. Also the instantaneous axis will at
every instant be found in the plane of the harmonic
axes, and will oscillate to and fro in their plane.

Since conjugate diameters of an ellipse are always
projected into conjugate diameters of the projected
ellipse, it follows that the harmonic axes must pro-
ject into two conjugate diameters of a circle on any
horizontal plane. Hence we see that two vertical planes,
each containing one of the harmonic axes, are at right
angles to each other.

We have thus obtained a complete solution of the
problem of the small oscillations of a body about a
fixed point under the influence of gravity.
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CHAPTER XII.

THE DYNAMICS OF A RIGID BODY WHICH HAS FREEDOM
OF THE FOURTH ORDER.

§ 131. Screw Complex of the Fourth Order.—The most
general type of a screw complex of the fourth order is
merely a group of screws which are reciprocal to an
arbitrary cylindroid (§ 49). To obtain a clear idea of
this screw complex it is, therefore, only required to
re-state a few results already obtained.

All the screws belonging to a screw complex of the
fourth order which can be drawn through a given point
lie on a cone of the second degree (§ 23).

All the screws of given pitch belonging to a screw
complex of the fourth order must intersect two_fixed
lines, viz., the two screws on the reciprocal cylindroid of
pitch equal in magnitude, and opposite in sign, to the
given pitch (§ 24).

One screw of given pitch belonging to a screw com-
plex of the fourth order can be drawn through each point
in space (§ 97).

§ 132. Screws Parallel to a Given Line.—It is required to
determine the locus of the screws parallel to a given
straight line Z, which belong to a screw complex of the
fourth order. This easily appears from the principle
that each screw of the screw complex must intersect one
screw of the reciprocal cylindroid at right angles (§ 24).
Take, therefore, that one screw 6 on the cylindroid
which is perpendicular to Z. Then a plane through 6
parallel to L is the required locus.

§ 133. Screws in a Plane.—As we have already seen that
two screws belonging to a screw complex of the tzrd
order can be found in any plane (§ 113), so we might
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expect to find that a singly infinite number of screws
belonging to a screw complex of the fourtk order can be
found in any plane. We shall now prove that a// these
screws envelope a parabola.

Take any point 2 in the plane, then the screws
through Preciprocal to the cylindroid form a cone of the
second order, which is cut by the plane in two lines.
Thus two screws belonging to a given screw complex
of the fourth order can be drawn in a given plane through
a given point. From the last article it follows that only
one screw of the complex parallel to a given line can be
found in the plane. Therefore, the envelope must be a
parabola.

§ 134. Property of the Pitches of Six Co-reciprocals.—
‘We may here introduce an important property of the
pitches of a set of co-reciprocal screws selected from a
screw complex.

There is one screw on a cylindroid of which the pitch
is a maximum, and another screw of which the pitch is
-2 minimum. These screws are parallel to the principal
-axes of the pitch conic (§ 20). Belonging to a screw
complex of the third order we have, in like manner, three
screws of maximum or miminum pitch, which lie along
the three principal axes of the pitch quadric (§ 111). The
general question, therefore, arises, as to whether it is
always possible to select from a screw complex of the
2% order a certain number of screws of maximum or
minimum pitch.

Let @, ....0, be the z co-ordinates of a screw re
ferred to 7 co-reciprocal screws belonging to the given
screw complex. Then the function #, or

ﬁlglz + o0 +?n0n1,

is to be a maximum, while, at the same time, the co-ordi-
nates satisfy the condition (§ 37)—
i 75
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=0 + 220,60, cos (v, wy) = 1,
which for brevity we denote as heretofore by—
R=1.

Applying the ordinary rules* for maxima and minima,
we deduce the z equations—

dR
2?191 —pod—ol =0,

&ec. &c.,

IR
zﬁnOn —pg E = 0.

From these 7 linear equations it would seem that
0, ..., 0, can be eliminated, and that an algebraic equa-
tion of the 7" degree would remain for g,. The analysis.
would, therefore, appear to have proved that 7 screws
of maximum or minimum pitch can alwéys be selected
from a screw complex of the 7t order.

A moment’s reflection will, however, show that this
statement needs modification. Take the case of 2=6:"
the screw complex of the sixth order is simply another
name for every screw in space. In this case, therefore,
all the values of , must be infinite, which implies that
each co-efficient of the equation for p, must vanish,
except the absolute term.

‘We are thus presented with no fewer than six for-
mulee involving the pitches and angles of inclination of
the six screws of a co-reciprocal system. Of these for-
mulz we shall in this place only consider one. If the
co-efficient of p, be equated to zero it appears that—

I+I+I+I+I'+I—
P P P

H D B

o,

* Williamson’s Differential Calculus, 2nd iidition, p. 189.
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or, the sum of the reciprocals of the pitches of the six screws
of a co-rectprocal system s equal lo zero.

§ 135. Another Proof.—The following elegant proof
of the theorem of the last section was communicated
to me by my friend Professor Everett. Divide the
six co-reciprocals into any two groups A and B of
three each, then it appears from § r11 that the pitch qua-
dric of each of these groups is identical. The three screws
of A are parallel to a triad of conjugate diameters of the
pitch quadric, and the sum of the reciprocals of the
pitches is proportional to the sum of the squares of the
conjugate diameters (§ 112). The three screws of B are
parallel to another triad of conjugate diameters of the
pitch quadric, and the sum.of the reciprocals of the
pitches, with their signs changed, is proportional to the
sum of the squares of the conjugate diameters. Remem-
bering that the sum of the squares of the two sets of
conjugate diameters is equal, the required theorem is
at once evident.

§ 136. Property of the Pitches of 72 Co-reciprocals. —The
theorem just proved can be extended to show that #ze
sum of the reciprocals of the pitches of n co-reciprocal
screws, selected from a screw complex of the n* order, is a
constant for each screw complex.

Let A be the given screw complex, and B the reci-
procal screw complex. Take 6 — 7 co-reciprocal screws
on B, and any n co-reciprocal screw on 4. The sum of
the reciprocals of the pitches of these six screws must
be always zero; but the screws on B may be constant,
while those on A are changed, whence the sum of the
reciprocals of the pitches of the 7 co-reciprocal screws on
A must be constant.

Thus, as we have already seen from geometrical con-
siderations, that the sum of the reciprocals of the pitches
of co-reciprocals is constant for the screw complex of
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the second and third order (§§ 42, 112), S0 now we see:
that the same must be likewise true for the fourth, fifth,
and sixth orders.

The actual value of this constant for any given screw
complex is evidently a characteristic feature of that
serew complex.

§ 137. Special Screw of the Complex.—In general there
is one line in each csrew complex of the fourth order,
which forms a screw belonging to the screw complex,.
whatever be the pitch assigned to it. The line in ques-
tion is the nodal line of the reciprocal cylindroid. The
kinematical statemernt is as follows :—

‘When a rigid body has freedom of the fourth order,.
there is in general one straight line, about which the body
can be rotated, and parallel to which it can be translated..

§ 138. Particular Case.—A body which has freedom of
the fourth order may be illustrated by the case of a rigid
body, one point 2 of which is constrained to a certain
curve. The position of the body will then be specified
by four quantities, viz., the arc of the curve from a fixed
origin up to 7, and three rotations about three axes
intersecting in 2. The reciprocal cylindroid will in
this case assume an extreme form; it consists of screws.
of zero pitch on all the normals to the curve at 2.

§ 139. Statics.—When a rigid body has freedom of
the fourth order, the necessary and sufficient condition
for equilibrium is, that the forces shall constitute a
wrench upon a screw of the cylindroid reciprocal to the
given screw complex. Thus, if one force can act on the
body without disturbing equilibrium, then this force
must lie on one of the two screws of zero pitch on the
cylindroid. If there were no real screws of zero pitch
on the cylindroid—that is, if the pitch conic were an
ellipse, then it is impossible for equilibrium to subsist
when a force acts. It is, however, worthy of remark,
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that if one force can act without disturbing the equili-
brium, then another force (on the other screw of zero
pitch) will be in the same predicament.

A couple which is in a plane perpendicular to the
nodal line can be neutralized by the reaction of the
constraints, and is, therefore, consistent with equili-
brium. In no other case, however, can a body which
has freedom of the fourth order be in equilibrium under
the influence of a couple.

§ 140. Equilibrium of Five Forces.—The five forces must,
if the body be free, belong to a screw complex of the
fourth order. Draw the cylindroid reciprocal to the com-
plex. The five forces must, therefore, intersect both the
screws of zero pitch on the cylindroid. We, therefore,
have the well-known condition that two straight lines
can be drawn which intersect all the five forces. Four
.of the forces will determine the two lines, and therefore
the fifth force may enjoy any liberty consistent with the
requirement that it also intersects the two lines. This
condition is also a sufficient one, so far as the positions
of the forces are concerned.

If 4,, ... A; be the five forces, the ratio of A4, : 4. is
thus determined.

Let 2, Q be the two screws of zero pitch upon the
cylindroid.

Let X, ¥ be two screws reciprocal to"4,, 4..

Let Z be a screw reciprocal to A,, A,, A..

Construct the screw 7 reciprocal to the five screws

Xy Y, P 00 2.

Now, the four screws X, ¥, P, Q are reciprocal to
the cylindroid 4,, A4,; therefore Z, which is reciprocal
to X, ¥, R, P, Q, must lie upon the cylindroid (A4, ).

Since P, Q, Z are all reciprocal to 4;, A, 4, it fol-
lows that 7 being reciprocal to 7, Q, Z must belong to
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the screw complex A, A, As. Hence .7 belongs to
(A4, A4,), and also to (As, As As). If, therefore, forces
along A, ... A, equilibrate, then the forces along
A,, A, must compound into a wrench on Z. This condi-
tion determines the forces on A4,, 4, (§ 17).

§ 141. Problem.—A free rigid body is acted upon by
five forces: show how to move the body so that it shall
not do work against nor receive energy from any one of
the forces.

Let A4,, ... A; be the five forces. Draw two trans-
versals L, A/ intersecting A,, ... A, Construct the
cylindroid of which Z, A/ are the screws of zero pitch ;
find, upon this cylindroid, the screw X reciprocal to 4.
Then the only movement which the body can receive,
so as to fulfil the prescribed conditions, is a twist about
the screw X. For X is then reciprocal to 4,, ... 4,
and therefore a body only free to twist about X will be
unacted upon by any forces directed along A, ... A,

From the theory of reciprocal screws it follows that
a body rotated around any of the lines 4, ... .4, will
not do work against nor receive energy from a wrench
on X.

As a particular case, if 4,, ... A; have a common
transversal, then X is that transversal, and its pitch is
zero. In this case it is sufficiently obvious that 4,, ... 4,
cannot disturb the equilibrium of a body only free to
rotate about X.

§ 142. Impulsive Screws and Instantaneous Screws.—A.
body which is free to twist about all the screws of a
screw complex of the fourth order receives an impulsive
wrench on the screw 5. It is required to calculate the
co-ordinates of the screw 6 about which the body will
commence to twist, and also the initial reactions of the
constraints.

Let X and u be any two screws on the reciprocal
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cylindroid, then the reaction of the constraints may be
considered to consist of wrenches on A, u of intensities
A”, u”. If we adopt the six absolute principal screws of
inertia as the screws of reference, then the body will
commence to move as if it were free, but had been acted
upon by a wrench of which the co-ordinates are propor-
tional to .0, ..., pfs. It follows that the given impul-
sive wrench, when compounded with the reactions of the
.constraints, must constitute the wrench of which the co-
ordinates have been just written; whence if 4 be a cer-
tain constant, we have the six equations—

/prol =n"m + XAy + 0y
&ec., &c.

hfeos =1"ns + A"Ns + Il”[ls-

Multiply the first of these equations by A,, the second
by X;, &c.: adding the six equations thus obtained, and
observing that @ is reciprocal to A, we have—

7' ZmA; + N2N? + S = o,
and similarly—
7]”2']1[11 +A”2‘U.1A1 + ’4”2#12 =0

From these two equations the unknown quantities
A’ u” can be found, and thus the initial reaction of the
constraints is known, substituting the values of X”, u” in
the six original equations, the co-ordinates of the required
screw 0 are known.

§ 143. Principal Screws of Inertia.— We shall now show
how the co-ordinates of the four principal screwsof inertia
belonging to the screw complex of the fourth order are
to be computed. All the co-ordinates are, as before,
referred to the six absolute principal screws of inerdia of

the body (§ 103).
| Let ¢, 3 v, 8 be any four co-reciprocal screws of the
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given screw complex. Then the co-ordinates of any
other screw  of the complex may be determined by—

070, = a"as + B"B1 + Yy + 878,
&ec., &c.
070s = a”ac + 3B + y"ys + 8"Ce.
‘We shall, as before, denote two screws on the reci-

procal cy11ndro1d by A, u. If 0 be a principal screw of
inertia, then—

By (o BB+ s + 878) = oy + BBu + o' + 878,
+ A”Al o 'u””l’
&c., &c.
;lﬁs (a”as iz ﬁ” ¢ + '}'”")’s + 8”86) = a”as + ﬁ”ﬁs + ’}'”"}’6 + 8”86
N + 1t

Multiplying the first of these equations by a;, the next
by a;, &c., adding the products, observing that a is reci-
procal to B, v, &, A, u, and repeating the operations for
B, v, 6, we have the four equations—

a” (2012—';{?1) +B"2a;f31 + ’}'”Ea;')’l + 3’,20181 — O,
a” EBlal Fﬂ"(zﬁf‘—/lﬁﬁ) +‘Y”EB{Y‘ ap 8”25131 3 0,
" Zya + 37" 2y +y (Zyr-lpr) + 8" Zyd =0,

o’ S +B723,8, +9"28y  +¥(2dp-4py) =o.

From these four linear equations a”, 37, y”, ¢” can be
eliminated, and we obtain an equation of the fourth de-
gree for 2. When Z% is known, then o7, 37, y”, &’ are
known, and thus the co-ordinates of the four prmc1pa.1
screws of inertia are determined.

§ 144. Application of Euler’s Theorem.—It may be of
interest to show how the instantaneous screw corres-

ponding to a given impulsive sc~w can be deduced
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from Euler’s theorem (§ 64). If a body receive an im-
pulsive wrench on a screw 5 while the body is con-
strained to twist about a screw 0, then we have seen in

§ 61 that the kinetic energy acquired is proportional to—

oo
uY

If 0, 6,, 0,, 0, be the co-ordinates of @ referred to the
four principal screws of inertia belonging to the screw
complex of the fourth order, then (§§ 65, 67)—

wa' = @1"101 4 ﬁ:ﬂhoz it ﬁansoa + fﬂho;) e
Zloz - 1512012 + u22022 + u32u32 o= tho.ﬁ.
Hence we have to determine the four independent varia-

bles 0, 8,, 0,, 0,, so that—

(15171101 5k }5271202 + pambs + pan.0.)?,

220 + 220 + 405 + %2072,

shall be a maximum. This is easily seen to be the case
when 0, 0,, 0,, 0, are respectively proportional to—

R e Do Pi
ulz"lu uzzﬂh u32’73’ Z‘lm-

This method might be applied to any order of free-
dom, and of course gives the same result as § 67.

§ 145. General Remarks.— We shall here introduce
some general reflections upon the problem of the deter-
mination of the instantaneous screw corresponding to a
given impulsive screw. These reflections are called forth
by the circumstance that for the freedom of the fourth order
a different method of proceeding is required from that
which has been used for the second ang third orders.

It has been shown in § 53 how the co-ordinates of
the instantaneous screw corres
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pulsive screw can be determined when the rigid body
is perfectly free. It will be observed that the connexion
between the two screws depends only upon the three
principal axes through the centre of inertia, and the
radii of gyration about these axes. We may express
this result more compactly by the familiar concep-
tion of the momental ellipsoid. The centre of the mo-
mental ellipsoid is at the centre of inertia of the rigid
body, the directions of the principal axes of the ellipsoid
are the same as the principal axes of inertia, and the
lengths of the axes of the ellipsoid are inversely propor-
tional to the corresponding radii of gyration. When,
therefore, the impulsive screw is given, the momental
ellipsoid alone must be capable of determining the cor-
responding instantaneous screw.

A family of rigid bodies may be conceived which
have a common momental ellipsoid, every rigid body
which fulfils nine conditions will belong to this family.
If an impulsive wrench applied to a member of this
family cause it to twist about a screw 0, then the same
impulsive wrench applied to any other member of the
same family will cause it likewise to twist about 0. If
we added the further condition that the masses of all the
members of the family were equal, then it would be found
that the twist velocity, and the kinetic energy acquired
in consequence of a given impulse, would be the same
to whatever member of the family the impulse were
applied (§§ 6o, 61).

§ 146. The Screw Complex of the (72—1)" Order and Se-
cond Degree.—We shall denote a screw complex of the.
7% order and first degree by 4, and 6,,... 0, are the
co-ordinates of a screw 0 belonging to A4, and referred to
7 co-reciprocal screws chosen from A.

Let us first consider the interpretation of the linear
equation between the 7 co-ordinates of 0 :—
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4191 + a302 + &C. + anon = 0.

All the screws whose co-ordinates satisfy this equa-
tion must be reciprocal to the screw & belonging to A4, of
which the co-ordinates are proportional to—

@ Qn

p—l,...ﬁ-;

hence all the screws whose co-ordinates satisfy the
linear equation must be reciprocal to 7 — 7z independent
screws, viz., & and 6 — 7 screws from the screw complex
reciprocal to 4. Hence we have the following theorem
(§ 46).

If from a screw complex (A4) of the z* order and first
degree, we select all the screws whose 72 co-ordinates
(when referred to 7 screws of reference belonging to A4)
satisfy one linear equation, then the group of screws so
selected constitute a screw complex of the (7 — 1) order
and first degree.

We shall now define a screw complex of the (n - 1)%
order and second degeee.

If from a screw complex A4 of the #® order and
first degree, we select all the screws whose 7 co-ordi-
nates (when referred to 7 screws of reference belonging
to A) satisfy one homogeneous equation of the second
degree, then the group of screws so selected constitute a
screw complex of the (12 - 1) order and second degree.

§ 147. Polar Screws.—Let U = o denote a screw com-
plex of the (= - 1)* order and second degree, embraced
within the screw complex of the #®* order and first
degree, which is denoted by 4, then we define the polar
of the screw 0 with respect to U, =0 to be the screw
belonging to A, of which the # co-ordinates are propor-
tional to— *
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1 dU, 1 dUs

Z E, S ﬁ 6'70:’
it being understood that the z screws of reference are co-
reciprocal.

If 7 = 6, then A consists of every screw in space, and
the polar of 0 is what we have already considered in
§or.

§ 148. Kinetic Complex.—We have seen (§ 67) that the
kinetic energy of a body twisting about a screw @ be-
longing to a screw complex of the #% order and first

/

: { . di .
degree, with a twist velocity 7 s

0
M< d ) (@303 + . . . +2a702),

the screws of reference being the principal screws of
inertia.

If we make 220+ ...+ 220> = 0, then @ must be-
long to a screw complex of the (2 - 1) order and
second degree. This complex is, of course, imaginary,
for the kinetic energy of the body when twisting about
any screw which belongs to it is zero. 'We may for
convenience term this the kznetic screw complex.®

The polar n of the screw 0, with respect to the
kinetic complex, has co-ordinates proportional to—

u‘ﬂ u,,o
1o e

H " Bn
Comparing this with § 67, we deduce the following im-

portant theorem :—
A quiescent rigid body ts free to twist about all the srews

of a screw complex A. If the body recetve an impulsive

* Dr. Klein has, in a letter to the writer, pointed out the importance of
the kinetic complex. Dr. Klein was led to this complex by expressing the
condition that the 1mpu151ve screw should be reciprocal to the corresponding
instantaneous screw.
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wrench on a screw w belonging fo A, then the body will com-
mence to twist about the screw 0, of which y is the polar with
respect to the kinetic complex.

The screw 5 is, of course, only one of a screw com-
plex .S of the (7 — #)* order, an impulsive wrench on
any one of which would make a body commence to twist
about 0 (§ 55); # is, however, the only screw belonging
to .S which also belongs 'to 4 ; a wrench on 5 is the
reduced wrench on 4, appropriate to a wrench on any
other screw belonging to .S (§ 66).

§ 149 The Potential Complex.—If a rigid body which
has freedom of the 7% order be displaced from a position
of stable equilibrium by a twist of given amplitude about
a screw 0, of which the co-ordinates referred to the 2
principal screws of the potential are 6, ... 0,, then the
potential energy of the new position is proportional to—

2:20:* + &c. + v,20,2.

If this expression be equated to zero, it denotes a
screw complex of the (7 — 1)* order and second degree,
which may be termed the pofential complex.

The potential complex possesses a physical import-
ance in every respect analogous to that of the kinetic
complex ; by reference to (§ 72) the following theorem
can be deduced.

If a rigid body be displaced from a position of equi-
librium by a twist about a screw 6, then a wrench acts
upon the body in its new position on a screw which is
the polar of § with respect to the potential complex.

§ 150 Harmonic Screws.—Ilhe constructions by which
the harmonic screws were determined in the case of the
second and the third orders have no analogies in the
fourth order. We shall, therefore, here state a general
algebraical method by which they can be determined.

Let U=o0 be the kinetic complex, and V'=o0 the
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potential complex, then it is well-known that one set of
axes of reference can be found which will reduce both
U and V to the sum of 7z squares. These axes of refer-
ence are the harmonic screws.

‘We may here also make the remark, that any screw
complex U = o of the (z — 1)* order and second degree
can always be transformed in one way to the sum of 2
square terms wzth co-reciprocal screws of reference ; for if
U, and py = 0 be transformed so that each consists of
the sum of 7z square terms, then the form of the expres-
sion of g, (§ 40) shows that the screws are co-reciprocal.
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CHAPTER XIII.

THE DYNAMICS OF A RIGID BODY WHICH HAS FREEDOM
OF THE FIFTH ORDER.

§ 151. Screw Reciprocal to Five Screws. — There is no
fnore important theorem inthe Theory of Screws than that
which asserts the existence of one screw reciprocal to
five given screws. At the commencement, therefore, of
the Chapter of which this theorem is the foundation, it
may be well to give a demonstration founded on elemen-
tary principles.

Let one of the five given screws be typified by

X —Xr 3 _y—yk=z—zk
ax B Vi
while the desired screw is defined by

(pitch = pg),

The condition of reciprocity (§ 22) produces five equa-
tions of the following type :—

af (o + px)ar + vk — Baza] + Bllo + pr)Bx + arzi — yas]
+ 9l (o + pr)yi + Baxi — awi] + ar(yy — B2)) + Bila?’ - v¥)
+ Y& (Bx’ = ay') = 0.
From these five equations the relative values of the
six quantities

a, ﬁ, v 7}/-6?/, az’—'yx’, Bx’—a}/

can be determined by linear solution. Introducing these
values into the identity
M
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a(yy — B7) + BlaZ - y) + v(Bx - ay) = o,

gives the equation which determines p.

To express this equation concisely we introduce two
classes of subsidiary magnitudes. 'We write one magni-
tude of each class as a determinant.

o131 + 2 — Xy, o1 + 451 = Yudyy ay, By m =P
9261 + Za; — Xpysy P22t xzﬁz =Yy, az 32’ Y2
P:;Ba + Z3a3 — Xyys, QsYs + xaﬁs — Ysasy asy Ba, s
PIBA + 2404 = Xyysy Pgys t x;ﬁ.z =Yy, ay B4, Y4
pﬁﬁs + 25a5 — X5Ys Os5Ys + %535 ~ JYsasy as, Bs, vs

By cyclical interchange the two analogous functions
Q and R are defined.

pa+ i -2By pBitse -2y, pryn+@Bi—non, B i )= L.
P20z + Vaya — 232 Pz,Bz + 2202 — Y Payat xzﬁz = V20z ,32; Y2
P33+ Vsys— 23,3:” Pa,Ba + 2303 ~Z3Y3 PaYst+ z'aﬁ:s = V303, ﬁs, s
Pa0y A+J’4‘}'4 — 284 pufs+2uos = Zoys peys+aiBi— iy Bo Vi
P505 + V5ys— 2535 psfs + %505 — Z5Ys Psyst+ 2505 — y595 B Vs

By cyclical interchange the two analogous functions
M and NV are defined.
The equation for p reduces to

(P4 O+ R)p + PL + QM + RN =o.

The reduction of this equation to the first degree is
an independent proof of the principle, that one screw,
and only one, can be determined which is reciprocal
to five given screws; p being known, a, (3, v can be
found, and also two. linear equations between #/, ¥/, ¢/,
whence the reciprocal screw is completely determined.
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§ 152. Definition of the Sexiant.—When six screws,
A,, &c., A,, are reciprocal to a single screw 7, a certain
relation must subsist between the six screws. This
relation may be expressed by equating the determinant
of § 41 to zero. The determinant (called the sexzant
may be otherwise expressed as follows :—

The equations of the screw A; are

ol =}’ () = ek, (pitch p];).
Yk

ar B

‘We shall presently show that we are justified in
assuming for 7 the equations

PR W
— =% = — (pitch = p).
. ﬁ y (P ‘ P)

The condition that 4 and 7 be reciprocal is

(0 + or) (aax + BPx + yya) + 2e(vBr — Byr) + ya(ays — yar)
& Zk(Bak = aﬁk) = 0.
Writing the six equations of this type, found by
giving % the values 1 to 6, and eliminating the six
quantities

pa, Pﬁ’ 07, @ BJ e
we obtain the result :—

ap; + i — Bz, ﬂxpl + o2 — X, Yipr + ,Bxxl =0, o ,81, 71 |=o0.
P2 + Y2 V2 — ,3222, ,3sz + W2 — YaX2y Yops t Bzxz - a3 02y o b
aps + 33 ~ Bszaa ,Bsps + 0323 — Y3X3, Ysps + Bsxs — az 13, ag, ,33, s
apy + Vs Vs — B2y Bips + ayzy — YsXs Yaps + Bixs— agys, ap B Y
asps + s Vs — BsZs Psps + 5% — YsX5 Y505 + Bsxs — as ys, a5 Bs, Ys
? OgPs + Yo Ve — Bszs, BsPs + 0% — YeXss YePs T ﬂsxs — Og Ye Qg ﬁo, Ye

By transformation to any parallel axes the value of
this determinant is wnalfered. The evanescence of the de-
terminant is therefore a necessary condition w/enever the
six screws are reciprocal to a single screw. Hence we

M2
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sacrificed no generality in the assumption that 7 passed
through the origin.

Since the sexiant is linear in %, 31, 25, it appears that
all parallel screws of given pitch reciprocal to one screw
lie in a plane. Since the sexiant is linear in a;, 3i, 71,
we have Mobius’ theorem (§ 80).

The property possessed by six screws when their
sexiant vanishes may be enunciated in different ways,
which are precisely equivalent.

(@). The six screws are all reciprocal to one screw.

(6). The six screws are members of a screw complex
of the fifth order and first degree.

(¢). Wrenches of appropriate intensities on the six
screws equilibrate, when applied to a free rigid body.

(d). Properly selected twist velocities about the six
screws neutralize, when applied to a rigid body.

(¢). A body might receive six small twists about the
six scrga\'rvs, so that after the last twist the body would
occupy the same position which it had before the first.

If seven wrenches equilibrate (or twists neutralize),
then the intensity of each wrench (or the amplitude of
each twist) is proportional to the sexiant of the six non-
corresponding screws.

§ 153. Equilibrium.—For a rigid body which has free-
dom of the fifth order to be in equilibrium, the necessary
and sufficient condition is that the forces which act upon
the body constitute a wirench upon that one screw to
which the freedom is reciprocal. We thus see that it is
not possible for a body which has freedom of the fifth
order to be in equilibrium under the action of gravity
unless the screw reciprocal to the freedom have zero
pitch, and coincide in position with the vertical through
the centre of inertia.

Professor Sylvester has shown* that when six lines,

# Comptes Rendus, tome 52, p. 816. See also p. 74I.
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P, 0, R, S, T, U, are so situated that forces acting
along them equilibrate when applied to a free rigid body,
a certain determinant vanishes, and the six lines are
nvolution *

Using the ideas and language of the Theory of
Screws, this determinant is the sexiant of the six screws,
the pitches of course being zero.

If %y Ymy 2m, be a point on one of the lines, the direc-
tion cosines of the same line being am, 3m, ym, the condi-
tion is
ai, Bl) Yy Niy1— 31{31, Zia1 — X1y xlBl ~%a | =0.
az Bz, Y2 Yy2— 208  Za: = X2y Zaf32 - 5-qa:
as, ﬁs, Y3y Vsys— Zsﬁa, Z3a3 = X3y xaﬁa = Ysa3
as, /34, Yo Yiys— 3434, 2404 — XyYsy x4B4 =0y
asy Ba: Vsy  VsYs — Z5)95  Z5@s — XsYsy x5f35 = Ysas
as  [3s Yor VeYe — 260065  ZeQs — XeYe xsﬁe = Ysas

A single screw X must be capable of being found
which is reciprocal to all the six screws 2, Q, R, .S, 7, U.
Suppose the rigid body were only free to twist about X,
then the six forces would not only collectively be in
-equilibrium, but severally would be unable to stir the
body only free to twist about X.

In gemeral a body able to twist about six screws
(of any pitch) would have perfect freedom; but the
body capable of rotating about each of the six lines,
P, Q, R, S, T, U, which are in involution, is not ne-
cessarily perfectly free (Mobius).

* In the language of Pliicker (Neue Geometrie des Raumes) a system of
lines in involution forms a Zinear complex. In our language a system of lines
in involution consists of the screws of equal pitch belonging to a screw complex
of the fifth order and first degree. See also Salmon’s Geometry of Three
Dimensions, third edition, p. 456, note. It may save the reader some trouble
to observe here that the word #zzolution has been employed in 2 more gene-
ralised sense by Battaglini, and in quite a different sense by Klein.
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If a rigid body were perfectly free, then a wrench
about any screw could move the body; if the body be
only free to rotate about the six lines in involution, then
a wrench about every screw (except X) can move it.

The conjugate axes of Professor Sylvester (p. 743) are
presented in the present system as follows :—Draw azzy
cylindroid which contains the reciprocal screw X, then
the two screws of zero pitch on this cylindroid are a pair
of conjugate axes. For a force on any transversal inter-
secting this pair of screws is reciprocal to the cylindroid,
and is therefore in involution with the original system.

Draw any two cylindroids, each containing the re-
ciprocal screw, then all the screws of the cylindroids
form a screw complex of the third order. Therefore the
two pairs of conjugate axes, being four screws of zero
pitch, must lie upon the same quadric. This theorem is
due to Professor Sylvester.

The cylindroid also presents in a clear manner the
solution of the problem of finding two rotations which
shall bring a body from one position to any other given
position. Find the twist which would effect the desired
change. Draw any cylindroid through the corresponding
screw, then the two screws of zero pitch on the cylindroid
are a pair of axes that fulfil the required conditions. If
one of these axes were given the cylindroid would be
defined and the other axis would be determinate.

§ 154. Impulsive Screws and Instantaneous Screws.—We
can determine the instantaneous screw corresponding to-
a given impulsive screw in the case of freedom of the
fifth order by geometrical considerations. Let A, as
before, represent the screw reciprocal to the freedom, and
let p'be the instantaneous screw which would correspond
to A as an impulsive screw, if the body were perfectly
free; let n be the screw on which the body receives an
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impulsive wrench, and let £ be the screw about which the
body would commence to twist in consequence of this
impulse if it had been perfectly free.

The body when limited to the screw complex of the
fifth order will commence to move as if it had been free,
but had been acted upon by a certain unknown wrench
on A, together with the given wrench on 5. The move-
ment which the body actually acquires is a twisting
motion about a screw § which must lie on the cylindroid
(& p). We therefore determine @ to be that one screw on
the known cylindroid (&, p) which is reciprocal to the
given screw A. The twist velocity of the initial twisting
motion about 6, as well as the intensity of the impulsive
wrench on the screw A produced by the reaction of the
constraints, are also determined by the same construc-
tion. For by § 17 the relative twist velocities about 6, &,
and p areknown; but since o” is known, the twist velocity
about £ is known (§ 60); and therefore, the twist velo-
city about § is known; finally, from the twist velocity
about p, the intensity A” is determined.

§ 155. Analytical Investigation.—A quiescent rigid body
which has freedom of the fifth order receives an impul-
sive wrench on a screw p: it is required to determine the
instantaneous screw @, about which the body will com-
mence to twist. y

Let A be the screw reciprocal to the freedom, and let
the co-ordinates be referred to the absolute principal
screws of inertia. The given wrench compounded with
a certain wrench on A must constitute the wrench which,
if the body were free, would make it twist about §, whence
we deduce the six equations (%# being an unknown
quantity).

/zpla, =n"m + A"\
&c., &c.,
Fpils =7 it AAs.
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Multiplying the first of these equations by A, the second
by X;, &c., adding the six equations thus produced, and
remembering that 6 and X are reciprocal, we deduce

n”E'n)\; ar k”lez = 0.

This equation determines X” the intensity of the im-
pulsive reaction of the constraints. The co-ordinates of
the required screw 0 are, therefore, proportional to the
six quantities

MmEAZ — A Sy & n62>\12 0 DS TR
—_—, &c., —/————————.
b bs

§ 156. Principal Screws of Inertia.—We are now ena-

bled to determine the co-ordinates of the five principal

screws of inertia; for if & be a principal screw of inertia,
then

ﬁﬁxéx =88 + A\

! A”Ax
‘T hp-E

whence

3

with similar values for &, &c., & Substituting these
values in the equation

]51)\151 +]§2>\2£2 i fakaga +f4.>\4g4 + }55>\5E5 st ?skegs = 0,
and makingg—= x, we have for x the equation

Y/

DA v DA DA DA D& .
A R R TR e R e T e

This equation is of the fifth degree, corresponding to
the five principal screws of inertia. If #” denote one of
the roots of the equation, then the corresponding prin-
cipal screw of inertia has co-ordinates proportional to

Al Az Aa A4 Aa Al
H=2 po—& p-2" p-X p-X -z
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CHAPTER XIV.

THE DYNAMICS OF A RIGID BODY WHICH HAS FREEDOM
OF THE SIXTH ORDER.

§ 157. Introduction.——When a rigid body has freedom
of the sixth order, it is perfectly free. The screw com-
plex of the sixth order includes every screw in space.
That there is no reciprocal screw to such a complex
is merely a different way of asserting the obvious pro-
position that when a body is perfectly free it cannot
remain in equilibrium, if the forces which act upon it
have a resultant.

§ 158. Impulsive Screws.—Let A4,, A, &c., denote a
series of instantaneous screws which correspond re-
spectively to the impulsive screws R,, R,, &c., the body
being perfectly free. Corresponding to each pair 4,, &,
is a certain specific parameter. This parameter may be
conveniently defined to be the twist velocity produced
about 4, by an impulsive wrench on R,, of which
the intensity is one unit. If six pairs, 4R, 4.R,
&c., be known, and also the corresponding speci-
fic parameters, then the impulsive wrench on any
other screw R can be resolved into six impulsive
wrenches on R, &c., R,, these will produce six known
twist velocities on A,, &c., A, which being compounded
together determine 4, the twist velocity about 4, and
therefore the specific parameter of R and 4. We thus see
that it is only necessary to be given six corresponding
pairs, and their specific parameters, in order to de-
termine completely the effect of any other impulsive
wrench.

‘We are now going to show that zf seven pazrs o
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corresponding instantaneous and impulsive screws be given,
then the relation between every other pair is absolutely
defermined. It appears from § 3o that appropriate
twist velocities about A4,, &c., 4, can neutralise.
‘When this is the case, the corresponding impulsive
wrenches on R,, &c., R;, must equilibrate, and therefore
the relative values of the intensities are known. It
follows that the specific parameter of each pair 4,, R, is
proportional to the quotient obtained by dividing the
sexiant of 4., &c., 4, by the sexiant of R,, &c., K, With,
therefore, the exception of a constant factor, tbe spe-
cific parameter of every pair of screws is known, when
seven corresponding screws are known.

‘When therefore seven instantaneous screws are known,
and the corresponding seven impulsive screws, we are
enabled by geometrical construction alone to deduce
the instantaneous screw corresponding to any eighth
impulsive screw, and zice versd.

A precisely similar similar method of proof will give
us the following theorem:—

If a rigid bddy be in position of stable equilibrium
under the influence of a sytem of forces which have
a potential, and if the twists abont seven given screws
evoke wrenches about seven other given screws, then,
without knowing any further about the forces, we shall
be able to determine the screw on which a wrench is
evoked by a twist about any eighth screw.

‘We shall state the results of the present section in
a form, which may, perhaps, interest the student of mo-
dern geometry. We must conceive two corresponding
systems of screws, of which the correspondence is com-
pletely established, when, to any seven screws regarded
as belonging to one system, the seven corresponding
screws in the other system are known. To every screw
in space viewed as belonging to one system will corres-
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pond another screw viewed as belonging to the other
system. Six screws can be found, each of which coin-
cides with its correspondent. To a screw complex of
the 7t order and ' degree in one system will corres-
pond a screw complex of the #% order and #% degree
in the other system.

‘We add here a few examples to illustrate the use
which may be made of screw co-ordinates.

§ 159. Theorem.—When an impulsive force acts upon
a free quiescent rigid body, the directions of the force
and of the instantaneous screw are parallel to a pair
of conjugate diameters in the momental ellipsoid.

Let 5, ... 95 be the co-ordinates of the force referred
to the absolute principal screws of inertia, then (§ 37)

(m + m)? + ("ls e 714)2 it ("75 + nﬁ)z =1

and from (§ 93) it follows that the direction cosines of 5
with respect to the principal axes through the centre of
inertia are

('h i 112); (Tls &5 1’]4), (175 - 1]6).

If a, 4, ¢ be the radii of gyration, then the instan-
taneous screw corresponding to 5 has for co-ordinates

m N2 03 yn L §-1¢

B e SH B s

The condition that 5 and its instantaneous screw shall
be parallel to a pair of conjugate diameters of the mo-
mental ellipsoid is

- N N5 — Ne

c

+ Bfns + 1) T ™+ (s = o)

dz(m + ﬂz)m =0;

or
Spmt = p, = o.

But if the impulsive wrench on 5 be a force, then the
pitch of 5 is zero, whence the theorem is proved.
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§ 160. Theorem.—When an impulsive wrench acting
on a free rigid body produces an instantaneous rotation,
the axis of the rotation must be perpendicular to the im-
pulsive screw.

Let gy, ... ns be the axis of the rotation, then

2}517)12 =0,
or

a(m = m2) (e + m2) + 8(ns — my) (ns + ns) + ¢(ns — ue) (05 + m6) = 0,

whence the screw of which the co-ordinates are + ay,
- an,, + by, &c., is perpendicular to g, and the theorem is
proved.

From this theorem, and the last, we infer that, when
an impulsive force acting on a rigid body produces
an instantaneous 7ofafzon, the direction of the force, and
the axis of the rotation, are parallel to the principal
axes of a section of the momental ellipsoid.

§ 161. Principal Axis.—If 4 be a principal axis of a
rigid body, it is required to prove that

Spin? = o,

reference being made to the absolute principal screws of
inertia.

For in this case a force along a line 6 intersecting »,
compounded with a couple in a plane perpendicular to 5,
must constitute an impulsive wrench to which » corres-
ponds as an instantaneous screw, whence we deduce
(§ 93), % and % being arbitrary constants. '

n dR
01 =—’% "7"—; + kpﬂ)l,

&ec.,

k dR
Qs 8 b
(] p. dns ﬁs')s

Expressing the condition that pe¢ = o, we have
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dR 1/dR\,
kzzﬁnamz TR thzplrh %: Eis }122-];1(71‘—1> =0;
but we have already seen (§§ 93, 105) that the two last
terms of this equation are zero, whence the required
theorem is demonstrated.
The formula we have just proved may be written in

the form

2p . - prm= 0.
This shows that if the body were free, then an impulsive
Jforce suitably placed would make the body commence
to rotate about n. Whence we have the following
theorem :—

A rigid body previously in unconstrained equilibrium
in free space is supposed to be set in motion by a single
impulsive force; if the initial axis of twist velocity be a
principal axis of the body, the initial motion is a pure
rotation, and conversely. (Mr. Townsend, Educational
Times, reprint, Vol. xxi., p. 107.)

It may also be asked what is the point of the body
one of the three principal axes through which coincides
with 5 ? This point is the intersection of § and 3. To
determine the co-ordinates of 0 it is only necessary to
find the relation between Z and %, and this is obtained
by expressing the condition that @ is reciprocal to 7,
whence we deduce

2 + ki = 0.

Thus 6 is known, and the required point is determined.
If the body be fixed at this point, and then receive the
impulsive couple perpendicular to u, the instantaneous
reaction of the point will be directed along 6.

§ 162. Harmonic Screws.— We shall conclude by stating
for the sixth order the results which are included as par-
ticular cases of the general theorems in Chapter VIII.
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That this theorem is really due to Chasles there can be little
doubt. He explicitly claims it in note 34 to the Apergu Histo-
rique. Three or four years laterthan the paper we have cited,
Poinsot published his celebrated ¢ Théorie Nouvelle de la Rota-
tion des Corps” (Paris, 1834). In this he enunciates the same
theorem. As Poinsot does not refer to Chasles, I had been led,
in ignorance of Chasles’ previous paper, to attribute the theorem
to Poinsot (Transactions of Royal Irish Academy, Vol. xxv.,
p- 160); but I corrected the mistake in Phil. Trans., 1874,
p- 16.

Moésius (A. F.)—Lekhrbuch der Statik (Leipzig, 1837).

This book is, we learn from the preface, one of the numerous
productions to which the labours of Poinsot has given rise.
The first part, pp. 1-355, discusses the laws of equilibrium
of forces, which act upon a single rigid body. The second
part, pp. 1-313, discusses the equilibrium of forces acting
upon several rigid bodies connected together. The charac-
teristic feature of the book is its great generality. I here
enunciate some of the principal theorems.

If a number of forces acting upon a free rigid body be
in equilibrium, and if a straight line of arbitrary length and
position be assumed, then the algebraic sum of the tetrahedra,
of which the straight line and each of the forces in succession
are pairs of opposite edges, is equal to zero (p. 94).

If four forces are in equilibrium they must be generators of
the same hyperboloid (p. 177).

If five forces be in equilibrium they must intersect two
common straight lines (p. 179).

If the Zines of action of five forces be given, then a certain
plane S through any point 2is determined. If the five forces
can be equilibrated by one force through 2, then this one force
must lie in S (p. 180).

To adopt the notation of Professor Cayley, we denote by
12 the perpendicular distance between two lines 1, 2, multiplied
into the sine of the angle between them (Comptes Rendus,
t. Ixi., pp. 829-830). Mobius shows (p. 189) that if forces
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along four lines 1, 2, 3, 4 equilibrate, the intensities of these
forces are proportional to

-\/23.24.14, \/13.14..34, \/12.14..24, \/12.13.23.

It is also shown that the product of the for¢es on 1 and 2,
multiplied by 12, equals the product of the forces on 3 and 4
multiplied by 34. He hence deduces Chasles’ theorem (Liou-
ville’s Journal, t. xii., p.222), that the volume of the tetrahe-
dron formed by two of the forces is equal to that formed by the
remaining two.

Mosius (A. F.)—Ucber die Zusammenselzung unendlich kleiner
Drehungen. Crelle’s Journal ; t. 18, pp. 18g~212 (Berlin,
1838).

This memoir contains many very interesting theorems, of
which the following are the principal :—Any given displace-
ment of arigid body can be effected by two rotations. Two equal
parallel and opposite rotations compound into a translation.
Rotations about intersecting axes are compounded like forces,
If a number of forces acting upon a free body make equilibrium,
then the final effect of a number of rotations (proportional to
the forces) on the same axes will be zero. If a body can be
rotated about six independent axes, it can have any movement
whatever.

RODRIGUES (O.)—2Des lois géoméiriques que régissent les déplacements
D un-systéme solide dans lespace et de la variation des co-ordon-
nées, provenant de ces déplacements considérés indépendamment
des causes qut pewvent les produire. Liouville’s Journal; t. s,
Pp- 380-440 (5th Dec., 1840).

This paper consists mainly of elaborate formulz relating to
displacements of finite magnitude. It has been already cited
for an important remark (§ 12).
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CHASLES (M.)—Propriétés gloméiriques rélatives au mouvement in-
Sfiniment petit dun corps solide libre dans I'espace. Comptes

Rendus; t. xvi., pp. 1420-1432 (1843).

A pair of “droites conjuguées” are two lines by rotations
about which a given displacement can be communicated to a
rigid body. Two pairs of * droites conjuguées” are always.
generators of the same hyperboloid.

Poinsor (L.)—Théorie nouvelle de la rotation des corps. Liouville’s
Journal ; t. xvi., pp. 9—129, 289-336 (March, 1851).

This is Poinsot’s classical memoir, which contains his beau-
tiful geometrical theory of the rofation of a rigid body about a
Jfixed pornt. In a less developed form the Theory had been pre-
viously published in Paris in 1834, as already mentioned.

CAYLEY (A.)—On a new analytical representation of curves in space
Quarterly Mathematical Journal; Vol. iii., pp.225-236
(1860)." Vol. v., pp. 81-86.

In this paper the conception of the six co-ordinates of a line is
introduced for the first time.

SYLVESTER (J. J.)—Sur linvolution des lignes drottes dans Tespace,
considérées comme des axes de rotation. Comptes Rendus;
t. lii., pp. 741-746 (April, 1861).

Any small displacement of a rigid body can generally be
represented by rotations about six axes (Mdobius). But this is
not the case if forces can be found which equilibrate when
acting along the six axes on a rigid body. The six axes in
this case are in zmvolution. The paper discusses the geometrical
features of such a system, and shows, when five axes are given,
how the locus of the sixth is to be found. Md&bius had shown
that through any point a plane of lines can be drawn in involu-
tion with five given lines. The present paper shows how the plane
can be constructed. All the transversals intersecting a pair of
conjugate axes are in involution with five given lines. Any
two pairs of conjugate axes lie on the same hyperboloid.
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A, =o0and A, = o, the five lines 1, 2, 3, 4, 5 are in involution.
If all the other minors are zero, the six lines will intersect a
single transversal. If A;=o0, without any other condition,
the five lines 1, 2, 3, 4, 5 intersect a single transversal. If
A, = o without any other condition, the lines 1, 2, 3, 4 have but
one common transversal (Cayley). A determinant can be found
which is equal to the square root of A,. This square root is
the determinant given in § 153.

GRASSMANN (H.)—Die Ausdehnungslehre. Berlin (1862).

A system of 7, numerically equal, ““ Grdssen erster Stufe,” of
which each pair are ¢ normal,” is discussed on p. 113. A set of
co-reciprocal screws is a particular case of this very general
conception.

The *inneren Produkte” of two * Grgssen” divided by the
product of their numerical values, is the cosine of the angle
between the two *Grdssen.” Ifaq, §, ¢, ...be normal, and if
%, I be any two other “ Gréssen,” then

cos Lkl = cos Lak cos Lal + cos L bk. cos L b, + &c. (p. 139).

Here we have a very general theory, which includes screw
co-ordinates as a particular case.

In a note on p. 222 the author states that the displacement of
a body in space, or a general system of forces, form an *allge-
meine rdumliche Grdsse zweiter Stufe.”

The ‘kombinatorische Produkt” (p. 41) of # screws will
contain as a factor that single function whose evanescence
would express that the # screws belonged to a screw com-
plex of the (#—1)* order.

PLUCKER (].)—On a new geometry of space. Phil. Trans., 1865.
Vol. 155, pp. 725-791.

In this paper the /inear complex is defined (p. 733). Some
applications to optics are made (p. 760); the six co-ordinates
of a line are considered (p. 774); and the applications to the
geometry of forces (p. 786).
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PLUCKER (].)— Fundamental views regarding mechanics.  Phil.
Trans. (1866), Vol. 156, pp. 361-380.

The object of this paper is to ‘‘ connect, in mechanics,
translatory and rotatory movements with each other by a princi-
ple in geometry analogous to that of reciprocity.” One of the
principal theorems is thus enunciated :—* Any number of rota-
tory forces acting simultaneously, the co-ordinates of the result-
ing rotatory force, if there is such a force, if there is not,
the co-ordinates of the resulting rotatory dyname, are obtained
by adding the co-ordinates of the given rotatory forces. In the
case of equilibrium the six sums obtained are equal to zero.”

MANNHEIM (A.)—Sur le déplacement d’un corps solide. Journal
de Mathématiques, 2° Series, t. x1. (1866).

To M. Mannheim belongs the credit of having been the
first to study geometrically the kinematics of a constrained rigid
body from a perfectly general point of view. This paper con-
tains the following theorem :—

When a rigid body has freedom of the second order, any
point of the body must be displaced on a certain surface, and at
any instant all the normals to these surfaces will intersect two
straight lines.

This is easily seen from the Theory of Screws, because any
Jorce reciprocal to the cylindroid expressing this freedom must
be a normal to all the surfaces belonging to the points on it.

SPOTTISWOODE (W.)—Note sur Iéquilibre des forces dans Pespace.
Comptes Rendus; t. Ixvi., pp. 97-103 (January, 1868).
- If P, &c., P,_; be n forces in equilibrium, and if (o, 1)
denote the moment of 2,, Py, then the author proves* that
Py(o, 1)+ (o, 2) + &c. =0,
P(1,0)+ + P, (1, 2) + &c. = o,
P(2,0)+ Pi(2, 1)+ 9% jooy o1 OF

¢ We may remark that since the moment of two lines is the virtual co-effi-
cient of two screws of zero pitch, these equations are given at once by virtual
velocities, if we rotate the body round each of the forces in succession.
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As we have thus #» equations to determine only the relative values
of 7 quantities, the redundancy is taken advantage of to prove
that

Blit B

[o,oo] % 3017 )

where [o, o]; [1, 1], &c., are the coefficients of (o, o), (1, 1),
&c., in the determinant

(O o) (TR
(T G ) ik

When the number of forces is less than seven, it i3 shown
how the formulee admit of a special transformation, which
expresses the conditions to be fulfilled.

This very elegant result may receive an extended interpreta-
tion. If P, P, P, &c., denote the intensities of wrenches on the
screws o, I, 2, &c. ; and if (12) denote the virtual co-efficient of
1 and 2, then, when the formule of Mr. Spottiswoode are satis-
fied, the 7z wrenches equilibrate, provided that the screws belong
to a screw complex of the (» — 1)* order and first degree.

PLUCKER (].)—WNewe Geometrie des Raumes gegriindet auf die
Betrachtung der geraden Linie als Raumelement. Leipzig
(B. G. Triibner, 1868-69), pp. 1-374-

This elaborate work is the principal authority on the theory
of the linear complex. The subject is essentially geometrical,
but there are a few remarks on mechanics; thus the author, on
P. 24, introduces the word “ Dyname :”—* Durch den Ausdruck
‘Dyname,” habe ich die Ursache einer beliebigen Bewegung
eines starren Systems, oder, da sich die Natur dieser Ursache,
wie die Natur einer Kraft iiberhaupt, unserem Erkennungsver-
mogen entzieht, die Bewegung selbst: statt der Ursache die
Wirkung, bezeichnet.” Although it is not very easy to see the
precise meaning of this passage, yet it appears that a ¢ Dyname’
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may be either a twist or a wrench (to use the language of the
Theory of Screws.)

On p. 25 we read:— ‘“ Dann entschwindet das specifisch
Mechanische, und, um mich auf eine kurze Andeutung zu be-
schrinken : es treten geometrische Gebilde auf, welche zu Dyna-
men in derselben Beziehung stehen, wie gerade Linien zu
Kriften und Rotationen.” There can be little doubt that the
« geometrische Gebilde,” to which Pliicker refers, are what we
have called screws.

As we have already stated (§ 16), it is in this book that we
find the first mention of the surface which we call the ¢cylindroid.

Through any point a cone of the second degree can be drawn,
the generators of which are lines belonging to a linear complex
of the second degree. If the point be limited to a-certain sur-
face the cone breaks up into two planes. This surface is of the
fourth class and fourth degree, and is known as Kummer’s sur-
face, or as the surface of singularities appropriate to the given
linear complex. (See Kummer, Abhandl. der Berl. Akad., 1866).
This theory is of interest for our purpose, because the locus
of screws reciprocal to a cylindroid is a very special linear
complex of the second degree, of which the cylindroid itself
is the surface of singularities.

KiLEIN (Felix).—Zur Theorie der Linien-Complexe des ersten und
zweiten Grades. Math. Ann., II. Band, pp. 198-226
(14th June, 1869).

The “simultaneous invariant” of two linear complexes is
discussed. In our language this function is the virtual co-
efficient of the two screws reciprocal to the complexes. The
six fundamental complexes are considered at length, and
many remarkable geometrical properties proved. It is a
matter of no little interest that these purely geometrical re-
searches have a physical signifiéance attached to them by the
Theory of Screws.

This paper also contains the following proposition:— If
&y, ..., X be the co-ordinates of a line, and 4, ... & be con-
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stants, then the family of linear complexes denoted by

X X
k.—)t+&c'+ks—)»=o’

have a common surface of singularities where A is a variable
parameter. If the roots A,, &c. be known, we have a set of
quasi elliptical co-ordinates for the line x. (Compare with
§ 156).

It is in this memoir that we find the enunciation of the
remarkable geometrical principle which, when transformed into
the language and conceptions of the Theory of Screws, asserts
the existence of one screw reciprocal to five given screws.

KiEIN (F.)—Dse alligemeine lineare Transformation der Linien-
Co-ordinaten. Math. Ann., Vol. ii., p. 366-371 (August 4,
1869).

Let 7, . . U, denote six linear complexes. The moments of a
straight line, with its conjugate polars with respect to &, ... T,
are, when multiplied by certain constants, the homogeneous
co-ordinates of the straight line, and are denoted by x3, . . . .
Arbitrary values of x,, &c., do not denote a straight line, unless a
homogeneous function of the second degree vanishes.* If this
condition be not satisfied, then a linear complex is defined by
the co-ordinates, and the function is called the /#zariant of the
linear complex. The simultaneous invariant of two linear com-
plexes is a function of the co-ordinates, or is equal to A sin ¢
- (K + K') cos ¢, where X and KX are the parameters of the
linear complexes, A the perpendicular distance, and ¢ the angle
between their principal axes. If this quantity be zero, the
two linear complexes are in involution. (The reader will observe
that the word smwolution is here employed in a very different
sense to that in which the same word is used by Professor
Sylvester.)

The co-ordinates of a linear complex are the simultaneous

* This equation expreéses that the pitch of the screw denoted by the
co-ordinates is zero.
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invariants of the linear complex with each of six given linear
complexes multiplied by certain constants. The six linear com-
plexes can be chosen so that each one is in involution with the
remaining five. The reader will easily perceive the equivalent
theorems in the Theory of Screws;

ZeutHEN (H. G.)—WVoles sur un systéme de co-ordonnées linfaire
dans lespace. Math. Ann., Vol. i., pp. 432-454 (1869).

The co-ordinates of a line are the components of an unit force
on the line decomposed along the six edges of a tetrahedron.
These co-ordinates must satisfy one condition, which expresses
that six forces along the edges of a tetrahedron have a single
resultant force. The author makes applications to the theory
of the linear complex.

Regarding the six edges as screws of zero pitch, they are
not co-reciprocal. It may, however, be of interest to show how
these co-ordinates may be used for a different purpose from
that for which the author now quoted has used them. Call the
virtual co-efficients of the opposite pairs of edges Z, M, N. If
the co-ordinates of a screw with respect to this system be
6,...0, then the pitch is

3 ( L6,0, + M6,6, + N,6,,)

and the virtual co-efficient of the two screws ¢, 8 is
L (6,: + 0:,) + M (Oys + 0,3 }+ IV (Osspe + Ouchs)-

BATTAGLINI (G.)—Memoria sulle dinami in involuzione. Atti di
Napoli IV. (1869).

The co-ordinates of a dyname are the six forces which
acting along the edges of a tetrahedron, are equivalent to the
dyname. This memoir investigates the properties of dynames
of which the co-ordinates satisfy one or more linear equations.
The author shows analytically the existence of two associated
systems of dynames such that all the dynames of the first
order are correlated to all the dynames of the second. These
correspond to what we would call two reciprocal screw com-
plexes.
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BATTAGLINI (G.)—Sul movimento geometrico infinitesimo di un
sistemo rigido.

Estratto dal Rendiconto della R. Accademia delle Seiense fisiche
e Matematiche. (Fascicolo, May s, 1870).

This paper and the last belong to a series by the same
author, in which the tetrahedron co-ordinates are employed in
the analytical development of the statics of a rigid body, as
well as the theory of small displacements.

MANNHEIM (A.)—Etude sur le déplacement & une figure de_forme in-
variable. Recueil des Memoires.des Savanits étrangers ; t.xx.
Journal de I'école Polytechnique, cah. 43, pp. 57-122

(1870).

This paper discusses the trajectories of the different points of
a body when its movement takes place under prescribed condi-
tions. Had I been sooner acquainted with this paper, I should
have attributed to M. Mannheim the theorem about the screws
of zero pitch on a cylindroid given in § 9g5. Another theorem of
the same class is also given by M. Mannheim. When a rigid
body has freedom of the third order, then for any point on the
surface of a certain quadric®* the possible displacements are
limited to a plane.

BaLr (R. S.)—On the small oscillations of a Rigid Body about a
Jiwed point under the action of any forces, and, more particu-
larly, when gravity is the only force acting. Transactions
of the Royal Irish Academy, Vol. xxiv., pp. 593—6i7

(January 24, 1870.)

The principal theorems contained in this paper are demon-
strated in § 130 of the present volume.

* The reader will easily see that this is the pitch quadric.
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KLEIN (Felix).—Notiz betreffend den Zusammenhang der Linien-
Geomeirie mit der Mechanik starrer Kirper. Math. Ann.,
Vol. iv., pp. 403-415 (June, 1871).

Among many interesting matters this paper contains the germ
of the physical conception of reciprocal screws. We thus read on
p- 413:—“Es ldsst sich nun in der That ein physikalischer
Zusammenhang zwischen Kriftesystemen und unendlich kleinen
Bewegungen angeben, welcher es erklirt, wie so die beiden
Dinge mathematisch co-ordinirt auftreten. Diese Beziehung ist
nicht von der Art, dass sie jedem Kriftesystem eine einzelne
unendlich kleine Bewegung zuordnet, sondern sie ist von anderer
Art, sie ist eine dualistische.

““ Es sei ein Kriftesystem mit ded Coordinaten E, X, Z, A,
M, NV, und eine unendlich kleine Bewegung mit den Coordi-
naten &, H', Z', A', M, IV gegeben, wobei man die Co-ordinaten
in derim § 2 besprochenen Weise absolut bestimmt haben mag.
Dann reprisentirt, wie hier nicht weiter nachgewiesen werden
soll, der Ausdruck

ANE+MN+NZ+EA+ HM+ Z'N

das Quantum von Arbeit, welches das gegebene Kriftesystem bei
Eintritt der gegebenen unendlich kleinen Bewegung leistet. Ist
insbesondere

NE+MH+NZ+EA+ HM+ Z'N=o,

so leistet das gegebene Kriftesystem bei Eintritt der gegebenen
unendlich kleinen Bewegung keine Arbeit. Diese Gleichung
nun reprisentirt uns, indem wir einmal &, &, Z, A, M, N, das
andere E, H', Z', A/, M', N’ als verdnderlich betrachten, den
Zusammenhang zwischen Kriftesystemen und unendlich kleinen
Bewegungen.”

KreiN (Felix).—Ueber gewisse in der Linien-Geomelrie aufirelende
Differential-Gleichungen. Math. Ann., V. Band, pp. 278

-303 (November, 1871).
There is a remarkable invariant of » linear complexes 0 =o,
U,=o0,...U,=0. For let Ay, ...\, be arbitrary multipliers,
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then Ui + ...+ AU, = 0 also denotes a linear complex, pro-
vided that a certain condition is satisfied. This condition is
presented as a homogeneous function of the second degree in
Ay, ... A, equated to zero. The discriminant of the function is
the invariant in question.

Barr (R. S.)—Thke Theory of Screws—a geometrical study of the
kinematics, equilibrium, and small oscillations of a Rigid
Body. Transactions of the Royal Irish Academy, Vol.
xxv., pp. 137-217 (November 13, 1871).

This is the original paper on the Theory of Screws. In
estimating how far the contents of this paper are novel, it is to
be remembered that the cylindroid had been discussed by
Pliicker two or three years previously, while the conception of
reciprocal screws had been announced by Klein a few months
before. Both these authors would, of course, have been re-
ferred to in this paper had I been acquainted with their works at
the time the paper was written.

Cr1rrORD (W. K.)—On Biguaternions. Proceedings of the Lon-
don Mathematical Society, Nos. 64, 65, p. 382 (12th

June, 1873).

A Biquaternion is defined to be the ratio of two ‘“ motors.”
A ‘““motor” may be said to bear the same relation to the dyname
of Pliicker which a vector bears to a linear magnitude. The
Biquaternions are shown to be intimately associated with the
speculations of the geometry of elliptic space. See Klein’s
wonderful paper, ‘“ Ueber die nicht Euclidische Geometrie.”
Math. Ann., Band IV., pp. 573-625.

BarL (R. S.)—Researches in the Dynamics of a Rigid Body by the
aid of the Theory of Screws (June 19, 1873). Philosophical
Transactions, pp. 15—40 (1874).

The » principal screws of inertia belonging to a rigid body
which has freedom of the 7™ order are here discussed.
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LINDEMANN (F.)—Utber unendlich kleine Bewegungen und diber
Kriflesysteme bes allgemeiner projectivischer Massbestimmung.
Math. Ann., 7th Vol,, pp. 56-143 (July, 1873).

This is a memoir upon the statics and kinematics of a rigid
body in elliptic or hyperbolic space. Among several results
closely related to the Theory of Screws, we find that the cylin-
droid is only the degraded form in parabolic or common space
of a surface of the fourth order, with two double lines.

WEILER (A.)—Utber die verschiedenen Gattungen der Complexe
zweiten Grades. Math. Ann., Vol. vii.,, pp. 145-207 (July,
1873).

In this elaborate memoir the author enumerates fifty-eight
different species of linear complex of the second order. The
classification is based upon Kummer’s surface, which defines
the singularities of the screw complex.

Bary, (R. 8.)—Screw Co-ordinates and their applications to pro-
blems in the Dynamics of @ Rigid Body. Transactions of
the Royal Irish Academy, Vol. xxv., pp. 259—327 (January
12, 1874).

To trace a satisfactory connexion between an impulsive
screwand the corresponding instantaneous screw is the principal
object of this paper. It is here shown that to the instantaneous
screw, whose co-ordinates are @, ..., s, corresponds an impul-
sive screw, whose co-ordinates are proportional to g0, . . ., pefs,
reference being made to the absolute principal screws of inertia.

EvVERETT (J. D.)—On a new method in Statics and Kinemalics.
! (Part 1.) Messenger of Mathematics. New Series.
No. 39 (1874).

This paper contains applications of quaternions. The opera-
torw+ Vo () is a “ motor,” = and o being vectors, the former
denoting a translation or couple, the latter a rotation or force.

The pitch is SE. The equation to the central axis is p= =
[+

— x0. The work done in a small motion is — Sw0; = Sw,0,
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The existence of % equations of the first degree between s
motors is the condition of their belonging to a screw complex
of the first degree, and of order 7~ — &.

EvERETT (J. D.)—O0n a new method in Statics and Kinematics.
(Part II.) Messenger of Mathematics. New Series.
No. 45 (1875).

This paper contains further developments of the theory of
linear relations between motors. Several of the leading theorems
in screws are directly deduced from motor equations by the
ordinary rules of determinants.

EvERerT (J. D.)—On a new method in Statics and Kinematics.
(Part III.) Messenger of Mathematics. New Series.
No. 53 (1875).

This paper is devoted to the operation of motors upon
motors. The interpretation of such operations is given, the
laws of operation are laid down, and some applications are made,
involving the use of a special symbol called a * motor de-
terminant.”
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For example, when the slide has been moved 34'2 parts
from the centre of the cylinder, the dividing plate is to be set
successively to 10°, 80°, 190°, 260° and a hole is to be drilled in
at each of these positions. The slide rest is then to be moved
on to 5o parts, and holes are to be drilled in at 15° 75°, 195°,
255°. Steel wires, each about 0”3 long, are to be forced into
the holes thus made, and half the surface is formed. The
remaining half can be similarly constructed : a length of 0”066
cos 2/ is to be coloured upon each wire to show the pitch. The
sign of the pitch is indicated by using one colour for positive,
and another colour for negative pitches.

THE END.

5 8606












e lase date Stamped below,
1€ t0 which Ienewed. Renewals only:
Tel, No, 642-3405
Renewals May he Mmade 4 days Priod ¢o date due,
Reneweq books are subjecy to immediare reca]],

REC, Ol . 05038
INTERL]

UC U

UNIV. OF CALIF., BERK ]
LD2 A-60 -8,"70 ‘Gen_era.l Libt?ry y






> 0

pag $ P T T ey

N R e b
e

- .'Ju..n-u»v%
i s it s
P N s 41\.“.!;(" e il
B o Fue! -
oo e —_.
g

SO s e
v
\ Pk
—
2

s l...uwl)-l.v..

.

X =
R L e S
“I.O v~ - A
“ “"

s A

o
i - e P I 3
e

R T




