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Recently, pharmaceutical pollutants in water have emerged as a
global concern as they give threat to human health and the
environment. In this study, graphene nanoplatelets (GNPs) were
used to efficiently remove antibiotics sulfamethoxazole (SMX)
and analgesic acetaminophen (ACM) as pharmaceutical
pollutants from water by an adsorption process. GNPs; C750,
C300, M15 and M5 were characterized by high-resolution
transmission electron microscopy, Raman spectroscopy, X-ray
diffraction and Brunauer–Emmett–Teller. The effects of several
parameters viz. solution pH, adsorbent amount, initial
concentration and contact time were studied. The parameters
were optimized by a batch adsorption process and the
maximum removal efficiency for both pharmaceuticals was
99%. The adsorption kinetics and isotherms models were
employed, and the experimental data were best analysed with
pseudo-second kinetic and Langmuir isotherm with maximum
adsorption capacity (Qm) of 210.08 mg g−1 for SMX and
56.21 mg g−1 for ACM. A regeneration study was applied using
different eluents; 5% ethanol-deionized water 0.005 M NaOH
and HCl. GNP C300 was able to remove most of both pollutants
from environmental water samples. Molecular docking was used
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to simulate the adsorption mechanism of GNP C300 towards SMX and ACM with a free binding

energy of −7.54 kcal mol−1 and −5.29 kcal mol−1, respectively, which revealed adsorption occurred
spontaneously.
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1. Introduction
Water pollutants found in the environment can be divided into several categories viz. heavy metals,
dyes, pesticides, pharmaceuticals and personal care products, phenolics, and others (hydrocarbons,
inorganic anions, etc.) [1]. The source of these noxious pollutants come from untreated discharges of
irresponsible textile, pharmaceutical, agricultural and mining factories. Pharmaceutical pollutants have
attracted interest among researchers to solve this problem which can cause serious health effects towards
humans and may harm the environment. Research on the fate of pharmaceuticals in water prove that
there are still traces found downstream [2]. Long-term exposure to low concentrations of pharmaceuticals
in water and the synergistic effects of mixtures may pose risks to human health, especially to sensitive
subpopulations [3–5]. It gains more concern as it is reported most pharmaceuticals are non-
biodegradable [6–8]. Sulfamethoxazole (SMX) is regularly prescribed as an antibiotic either as individual
medication or combined with other drugs such as trimethoprim, a combination commercially known as
Bactrim. Bactrim is used to treat several diseases, for instance, many types of bacterial infection namely
urinary tract infection including pneumonia. Known SMX contraindications cause allergy,
hypersensitivity to either component, hyperkalaemia, severe hepatic or renal dysfunction [9].
Acetaminophen (ACM) are used as an analgesic for mild to moderate pain and an anti-pyretic [10]. The
use of ACM is prevalent among surveyed consumers and has the highest consumption levels in
Malaysia [11]. To put it more simply, because the water also contains other unwanted drugs, the incident
of unconscious consummation of other drugs causes interaction with other drugs, thus leading to the
worst condition in a prolonged period. It is known that not all drugs are completely digested in the
human body which are then secreted as urine into wastewater and it is found that several amounts of
concentration of SMX are found in water bodies; approximately 15% of the unmetabolized fraction goes
into sewage after being ingested and subjected to human metabolism [12]. Table 1 shows the maximum
concentration of SMX and ACM in surface water in Asia-Pacific and globally.

There are various removal methods that are used to remove pollutants from water such as bioreactors
[14], degradation and photodegradation [15–18], filtration [19], photocatalysis [20,21], photo-Fenton and
Fenton-like [22,23], coagulation [24] and adsorption [25,26]. Among these methods, adsorption is a
widely used and most efficient method for wastewater treatment. This technique is superior and
considered as powerful alternatives to conventional methods [27] because of its low cost, ease of
operation, great efficiency, high capacity, simplicity, reliability and less energy consumption [28,29].
Graphene has gained interest as an adsorbent owing to its large surface area, accessible surface, high
hydrophobicity and high mechanical properties [30,31]. As such, many researchers have explored
graphene or graphite-based materials as an adsorbent for different pollutants [32–34] owing to its
enormous, delocalized π-π electron system that can form strong bonding with various pollutants [35]. In
previous research, graphene nanoplatelets (GNP) C750 have been studied as an adsorbent with good
adsorption capacity, yet are quite expensive and other types of GNPs with different surface areas are
unexplained [35,36]. In this study, the removal efficiency of SMX and ACM by the adsorption process
from water using GNPs was evaluated. Different types of GNPs: C750, C300, M15 and M5, were
screened to choose the best adsorbent and further optimized by several parameters: solution pH, GNP
amount, initial concentration and contact time. Langmuir and Freundlich isotherms were applied to
analyse the adsorption equilibrium. Pseudo-first order and pseudo-second order were also discussed
for the kinetic study of removal capacity and to identify the behaviour and mechanism of adsorption.
Molecular docking studies were also implemented to give interaction insight of GNPwith SMX and ACM.

2. Materials and methods
2.1. Chemicals and materials
GNPs C750, C300, M15 and M5 were purchased from XG Sciences, USA. SMX, 98% was obtained from
Alfa Aesar, USA and ACM (4-acetamidophenol), 98% purity was purchased from Acros Organic
(table 2). Deionized water was used as a solvent for a stock solution and further dilution. The
solution pH was measured using a HI-2002 Edge pH Meter, Hanna Instrument, USA.



Table 2. Physicochemical properties of pharmaceuticals.

pharmaceutical
chemical
formula CAS No

solubility in water
(mg l−1)

dissociation
constant, pKa

molecular weight
(g mol−1)

sulfamethoxazole C10H11N303S 723-46-6 610 1.6 and 5.7 253.28

acetaminophen C8H9NO2 103-90-2 14 000 9.5 151.16

Table 1. Maximum concentration of sulfamethoxazole and acetaminophen found in water [13].

pharmaceutical substance therapeutic group Asia-Pacific (μg l−1) global (μg l−1)a

sulfamethoxazole antibiotics 14.3 29.0

acetaminophen analgesics 9.17 230.0
aIncludes Asia-Pacific, Africa, Eastern Europe, Latin America and Caribbean, western Europe and others in United Nations regions.
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2.2. Characterization of adsorbents
The compositional and morphological properties of GNPs were determined using a high-resolution
transmission electron microscope (HRTEM) JEM-2100F operated at 200 kV (JEOL, Japan). Specimens
were prepared by dispersing the GNPs in 100% acetone and adding a drop of dispersed GNP on the
copper grid. Raman spectroscopy was performed using WITec Alpha 300R (WITec GmbH, Germany).
Brunner–Emmett–Teller (BET) and Barrett–Joyner–Halenda (BJH) for specific surface area, pore
volume, pore size and pore width distribution of GNPs were analysed using MicroActive for TriStar
II Plus 2.03 (Micromeritics, USA), the samples were degassed with nitrogen gas at about 150°C with
saturation pressure of approximately 756 mmHg overnight before analysis. X-ray diffraction analysis
used LabX XRD-6000 (Shimadzu, Japan) by scanning the GNPs at 2θ of 20°–80° at a speed angle of
2° min−1 with Cu Kα radiation. Zeta potential and average diameter were measured using Zetasizer
Nano (Malvern Panalytical Ltd, UK).

2.3. Preparation of solution
The stock solution of SMX was freshly prepared by dissolving 10 mg in a 100 ml volumetric flask to
produce 100 mg l−1 of the pharmaceutical solution then further diluted to lower concentration using
deionized water. The calibration curve of SMX was plotted by absorbance at 264 nm and ACM at
243 nm. The regression equation from EXCEL was used to calculate the concentration after the
adsorption process, Ce.

2.4. Preliminary adsorption study
Different types of GNPs with different surface areas were used towards the removal of SMX and ACM to
select the best adsorbent among four types of GNPs: C750, C300, M15 and M5. The study was carried out
by preparing a 10 ml of 20 mg l−1 SMX solution and using 20 mg of GNPs as adsorbent. The solution was
then sonicated for 20 min which was later centrifuged, and the supernatant was filtered by using a
0.22 µm cellulose acetate (CA) syringe filter. The concentration of the supernatant was obtained by
detecting absorbance using a UV-Vis spectrophotometer (Shimadzu UV-1650PC).

2.5. Batch adsorption experiments
Batch adsorption experiments were performed by preparing 10 ml of the pharmaceutical solution to
investigate the effect of adsorption parameters: solution pH, GNP amount, initial concentration and
contact time. The stock solution was prepared then further diluted to set the initial concentration.
The solution pH was adjusted using 0.1 M NaOH and 0.1 M HCl and measured using a HI-2002
Edge pH Meter (Hanna Instrument, USA). GNPs were added into the solution and were sonicated
continuously for a certain time. Then, the solution was centrifuged to collect the supernatant and



Table 3. Linearized expressions for each adsorption isotherm and kinetic.

isotherms and kinetics expressions linear expression plot

Langmuir isotherm qe ¼ qm
KLCe

1þ KLCe

� �
1
qe
¼ 1

KLIIqm

� �
1
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� �
þ 1
qm

1
qe

Vs
1
Ce

Freundlich isotherm qe ¼ KFC
1=n
e lnqe ¼ lnKF þ 1

n
lnCe

lnqe Vs lnCe

pseudo-first-order kinetic qt ¼ q(1�e�k1 t )
e ln(qe− qt) =−K1t + lnqe ln(qe− qt)Vs t

pseudo-second-order kinetic
qt ¼ k2tqe

k2t þ 1
t
qt
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qe

� �
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t
qt
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intraparticle diffusion qt = Kidt
(0.5) qt = Kidt

(0.5) + C qt Vs t
(0.5)
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was filtered through a 0.22 µm CA syringe filter, to ensure there is no trace of GNP in the solution
before running the sample through the UV-Vis spectrophotometer to avoid ambiguous results.
The removal efficiency of the solution was acquired from the calculation by using the following
equation:

removal efficiency (%) ¼ (Ci � Ce)
Ci

� 100 , ð2:1Þ

where Ci is the initial concentration of the pharmaceutical solution (mg l−1) and Ce is the equilibrium
concentration of the solution retrieved after the removal process (mg l−1). The adsorption capacity was
calculated according to the equation:

qe ¼ (Ci � Ce) V
m

, ð2:2Þ

where qe is the amount of pharmaceutical adsorbed by the GNPs (mg g−1) or known as adsorption
capacity at equilibrium, V is the volume of pharmaceutical solution (l) and m is the mass of GNPs
used (g). The reported values were the means of triplicates. Isotherms and kinetics studies were
further studied to understand the adsorption mechanisms of SMX and ACM onto GNP C300. Table 3
exhibits the expressions of both isotherms and kinetics. For the adsorption isotherm, Langmuir type
and Freundlich models were chosen while pseudo-first-order, pseudo-second-order and intraparticle
diffusion model were applied to understand the kinetics.
2.6. Regeneration
A regeneration study was carried out using the optimized parameters for adsorption. The used adsorbent
was dispersed in 10 ml of different eluents: 0.005 M NaOH, 0.005 M HCl and 5% ethanol-deionized water
then sonicated for 30 min for desorption process. The washed adsorbent was then centrifuged, and the
supernatant was discarded. The adsorbent was dried in the oven around 55°C. The dried adsorbent was
reused for the adsorption process and the steps were repeated for several cycles.
2.7. Real water application
Three different real water samples: Langat river water, Kuyoh river water and laboratory tap water were
collected for environmental application. The samples were filtered using filter paper and kept at 4°C in
the dark. The properties of the three real water samples were analysed. Real water samples were spiked
with a concentrated solution of ACM and SMX (100 mg l−1) were added into the real water samples to
obtain a sample with final concentrations of 20 mg l−1. Twenty milligrams of GNPs was added to the
spiked samples and sonicated for 20 min for the removal process. The sample was centrifuged, and
the supernatant was filtered with a 0.22 µm CA syringe filter into a vial ready to be analysed.
Chemical oxygen demand (COD, mg l−1) and biochemical oxygen demand (BOD, mg l−1) were
measured following the APHA 5220 and APHA 5210 methods, respectively. Total soluble solids (TSS,
mg l−1) was analysed, a Hach DR 900 (Hach, USA) and a WTW Inolab meter (WTW GmbH,
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Figure 1. HRTEM images of (a) C750, (b) C300, (c) M15 and (d ) M5 at 10 000 times magnification.

Table 4. Analysis of the Langat river water, Kuyoh river water and tap water.

Langat river water Kuyoh river water tap water

chemical oxygen demand, COD (mg l−1) 43.63 77.57 14.60

biochemical oxygen demand, BOD (mg l−1) 2.15 7.20 1.40

total soluble solids, TSS (mg l−1) 35.00 18.00 0

total dissolved solids, TDS (mg l−1) 171.00 282.00 150.00

sodium, Na (mg l−1) 5.50 10.00 7.58

magnesium, Mg (mg l−1) 1.25 1.84 1.27

calcium, Ca (mg l−1) 13.32 24.86 14.64
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Germany) was used to measure total dissolved solids (TDS, mg l−1). The concentration of sodium,
magnesium and calcium were analysed using inductively coupled plasma-optical emission
spectrometry by referring to the APHA 31110b method (table 4).
3. Results and discussion
3.1. Characterization of graphene nanoplatelets
By using an HRTEM at 10 000 times magnification, physical features of GNPs were analysed. Figure 1
displayed the structure of GNPs which possessed wrinkle flakes with multiple layers. C750 (figure 1a)
has an irregular shape which resembles more like platelets, more wrinkle features and smaller size with
greater aggregation compared to C300, M15 and M5. As shown in figure 1c,d, M5 and M15 exhibit
bigger flakes with a less overlapping layer.

The thickness of layer GNPs was evaluated at atomic resolution via Raman spectroscopy which
shows vibrational bands of D, G and 2D (figure 2). The D band, known as the disorder band appears
around 1350 cm−1 because of out of plane vibrations attributed to the presence of structural defects. The
presence of this band proved the GNPs have ragged edges [37,38]. This result is also confirmed in the
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Figure 2. Raman spectra of GNPs C750, C300, M15 and M5.

royalsocietypublishing.org/journal/rsos
R.Soc.Open

Sci.8:201076
6

HRTEM images. The G bandwhich is a sharp peak that exists around 1587 cm−1 resulted from the in-plane
vibration of sp2 hybridized carbon atoms. The 2D band is the second order of the D band, sometimes
denoted as the G’ band that appears around 2700 cm−1, resulted from a two-phonon lattice vibrational
process without defect. The shape of 2D bands was wide and low and the full width at half maximum
of the 2D bands for all GNPs greater than 90 cm−1 perfectly categorized as multilayer graphene [39].
Intensity ratio of 2D and G peaks were used to determine the number of graphene layers. The ratios
I2D/IG of four different GNPs are less than 1, thus confirming themultilayer properties of these adsorbents.

Figure 3 shows the X-ray diffraction patterns of GNP C750, C300, M15 and M5. Peaks shown in the
figure correspond with the characteristic peaks of pristine graphite which could be assigned to the (002),
(100), (004) and (110) hexagonal planes by referring to the JCPDS Card No (75-1621). C300 (figure 3b)
shows more distinct peaks with a higher intensity that resemble graphite compared with the X-ray
diffraction pattern of C750 (figure 3a) that only exhibits peaks of (002) and (100) with a broader peak.

Through BET and BJH analysis, the surface area, micropore area, pore size and pore volume of
adsorbent were analysed and summarized in table 5. The surface area C750 (738.44 m2 g−1) was found
to be the highest compared to others followed by C300 (390.30 m2 g−1), M15 (61.51 m2 g−1) and M5
(63.55 m2 g−1). The pore diameter of C750, C300, M15 and M5 can be categorized as mesopores as
they fall in the range of (2–50 nm) according to the International Union of Pure and Applied
Chemistry classification.

Figure 4 exhibits adsorption/desorption isotherm type IVwhich is similar to reported byAl-Khateeb et al.
[36] with an H3 type hysteresis loop that confirms there were aggregates (loose assemblages) of platelet
like particles forming slit-shaped mesopores [40]. The intermediate flat region in the isotherm corresponds
to monolayer formation at the lower pressure region of the graph then followed by multilayer [41].

Zeta potential measured the electrostatic repulsion between similarly charged particles and hence
indicates a degree of dispersion efficiency thus giving information tendency of agglomeration, and a
larger zeta potential may mean there is a better dispersion [42,43]. Table 6 exhibits the measured zeta
potential of GNP C300 (−50.80 mV) is the most stable compared to other three GNPs. GNP M5 has
the least absolute value with −20.87 mV, which considered its tendancy to aggregate since it is lower
than −30 mV [44]. Both GNP C750 and C300 possessed an average diameter of less than 2 µm, while
M5 and M15 with 4.21 µm and 6.79 µm, respectively.

3.2. Preliminary adsorption study
Figure 5 presents the preliminary adsorption study of four different types of GNPs C750, C300, M15 andM5
towards SMX. Based on the characterization, C750 possessed the advantage of a higher surface area of the
four materials tested. However, it is found that C300 has the highest removal efficiency compared to other
types of GNPs despite the fact C750 has a higher surface area. Furthermore, C300 has the highest stability
based on the zeta potential. This finding was contrary to expectations that a higher surface area will have



Table 5. Summary of BET and BJH analysis for GNP C750, C300, M15 and M5.

GNP

BET surface
area
(m2 g−1)

micropore area
(m2 g−1)

total pore
volume
(cm3 g−1)

external surface
area
(m2 g−1)

BJH pore
width
(nm)

C750 738.44 218.71 0.78 519.73 4.96

C300 390.30 83.65 0.41 306.65 4.66

M15 61.51 10.00 0.10 51.51 5.38

M5 63.55 17.96 0.08 45.59 4.94
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Figure 3. X-ray diffraction spectra for GNPs (a) C750, (b) C300, (c) M15 and (d ) M5.
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better adsorption efficiency [45], though the result of removal efficiency is similar to what has been reported
by Al-Khateeb [35]. Thus, other factors must be taken into consideration to achieve a higher percentage of
adsorption. This might be owing to clumping or aggregation of C750 because of its high surface area
which causes lower yet good adsorption of SMX. After centrifugation and filtration, some GNPs may have
not filtered thoroughly owing to the small size of C750 able to go through 0.22 µm CA syringe filter.
Because the objective of this preliminary study was to choose the best adsorbent, C300 was chosen. On top
of that, C300 has a lower manufacturing cost compared to C750 which reduces the total cost for the overall
process [46,47]. Thus, C300 was further used for the batch adsorption study with different parameters:
solution pH, GNP amount, initial concentration of SMX and contact time.

3.3. Evaluation of adsorption behaviours of graphene nanoplatelets C300 towards
sulfamethoxazole and acetaminophen

3.3.1. Effect of solution pH

To assess the adsorption behaviours of GNP C300, a batch adsorption study was performed to remove
SMX and ACM by using GNP C300 as adsorbent. Solution pH is an important factor in the adsorption of
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Table 6. Zeta potential and average diameter of different types of graphene nanoplatelets using dynamic light scattering.

GNP average diameter (nm) zeta potential (mV)

C750 933.67 −44.63
C300 1010.00 −50.80
M15 6794.67 −33.90
M5 4205.33 −20.87
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pharmaceuticals. The effect of solution pH on the adsorption of pharmaceuticals was studied from pH 2
to 10 in a 10 ml solution volume of 20 mg l−1 concentration using 20 mg GNP C300 for 20 min. As
displayed in figure 6, the adsorption ability of GNP C300 towards both SMX and ACM was affected
by the pH value of the solution. As the initial pH of the solution increased from 2 to 4, the adsorption
capacity of SMX onto GNP C300 gradually increased (figure 6a). On the other hand, the adsorption
capacity and removal efficiency for ACM increased gradually from acid to neutral then decreased as it
further increased (figure 6b). Maximum adsorption was detected at pH 4 (99.27%) for SMX and ACM
at pH 8 (98.38%). The lowest removal for SMX was detected at pH 10 with 85.65% and for ACM at
76.8% at pH 2. The increasing solution pH was unfavourable for the removal of SMX molecules and
resulted in a low adsorption capacity at higher pH. Because SMX is known as an acidic organic
compound with dissociation constant (pKa) of 1.6 and 5.7, the removal of the targeted compound
was better under acidic conditions (pH < pKa) than at basic pH (pH > pKa). In other words, when
solution pH is less than their pKa values, they are present in aqueous solution as a protonated form
and these observations are in agreement with the results in the previous works [33,48].

3.3.2. Effect of graphene nanoplatelets amounts

Different amounts of GNP C300 were used for adsorption towards a 10 ml of 20 mg l−1 adjusted to pH 4 in
20 min for SMX and pH 8 for ACM based on previous optimum conditions. From the results presented in
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figure 7, with the increase in GNP C300 amount from 5 mg to 60 mg, the removal efficiency increased;
however, the adsorption capacity for both pharmaceuticals decreased. At low adsorbent dosage, adsorption
sites were fully available, resulting in higher adsorption capacity. At a higher GNP C300 amount, the active
sites of the adsorbent which prepared to bind with the pharmaceutical molecules were not fully used in
comparison to lower adsorbent dosages. The increase in the amount of GNP C300 may cause aggregation
of adsorbent and possibility of collisions between solid particles [49,50], and consequently, the available
adsorption sites may decrease as well owing to the adsorption capacity of GNP C300 for SMX and ACM.

3.3.3. Effect of initial concentration

It is crucial to study the effect of initial concentration upon revealing any adsorption process. Thus, a set
of experiments was carried out at different initial concentrations of 10 to 100 mg l−1 using previously
optimized parameters. Figure 8 shows that the adsorption capacity of pharmaceutical increased as the
initial SMX and ACM concentration increased from 10 to 100 mg l−1 with an almost linear trend. The
higher the initial concentration, the more adsorbate molecules available for adsorption, resulting in a
higher adsorption capacity at higher pharmaceutical concentrations. However, as the initial
concentration increased more than 40 mg l−1, the removal efficiency slightly decreased. Nevertheless,
the range of removal efficiency is still more than 98%.

3.3.4. Effect of contact time

The contact time between both pharmaceuticals and C300 was studied with several sets of batch
adsorption experiments using the previously optimized condition at different times of 2 to 60 min,
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and the results are presented in figure 9. As shown in the figure, SMX and ACM adsorption by GNP
C300 occurred very fast initially and then the rate slowed down as the contact time increased. Both
adsorption capacity and removal efficiency have the same trend. During the initial period, the
adsorption capacity of the pharmaceuticals rapidly increased with time as many active sites were
available on the surface of GNP C300 for binding of pharmaceutical molecules [51]. These available
active sites were gradually occupied as time increased thus resulting in reducing adsorption rate [50].
3.3.5. Adsorption isotherm and kinetic

Langmuir and Freundlich isotherm models were applied to investigate the adsorption equilibrium
between the pharmaceuticals and GNP C300. As shown in table 7, the adsorption data fitted well
with both Langmuir and Freundlich isotherms and this finding was similarly reported in [52]. The R2

value obtained from the Langmuir isotherm model were 0.9952 for SMX and 0.9946 for ACM,
revealing that the Langmuir isotherm model slightly fit better and is more suitable for describing the
adsorption process of the pharmaceuticals onto GNP C300. This illustrated that adsorption of SMX
and ACM on GNP C300 was monolayer adsorption occurring on a homogenous surface without
interaction between the adsorbate.

Adsorption kinetic with a sample concentration of 20 mg l−1 was further studied, and the kinetic
parameters as well as the correlation coefficient, R2 were acquired by linear regression. According to
the data presented in the table, the pseudo-second-order model fitted better than the pseudo-first-
order kinetic models. Based on the pseudo-second-order model, the correlation coefficients (R2) value
was 0.9999 for both SMX and ACM which was greater than pseudo-first order. Thus, the pseudo-
second-order model was more suitable for describing the process of SMX and ACM adsorption on
GNP C300 in agreement with chemisorption being the rate-controlling step [53–55]. The intraparticle
diffusion model by Weber and Morris derived from Fick’s second law of diffusion was applied to
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Figure 9. The effect of contact time on (a) sulfamethoxazole and (b) acetaminophen using adsorption by GNP C300.

Table 7. Comparison of adsorption isotherm and kinetic for sulfamethoxazole and acetaminophen.

isotherm

Langmuir Freundlich

n KL2 R2 n KF R2

SMX 210.084 0.374 0.9952 1.193 52.034 0.9848

ACM 56.211 0.721 0.9946 1.435 21.230 0.9842

kinetic

pseudo-first order pseudo-second order

K1 Qe R2 K2 Qe R2

SMX 0.108 0.129 0.6743 7.059 6.653 0.9999

ACM 0.115 0.435 0.8218 1.815 6.667 0.9999
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explain further on the diffusion mechanism which includes three steps. The first two steps are transport
steps, and the last step is a reaction step [1]: (i) film diffusion (external diffusion), which is the transport of
adsorbate from the bulk phase to the external surface of the adsorbent; (ii) pore diffusion, which is the
transport of adsorbate from the external surface into the pores; and (iii) surface reaction, which the
adsorbate will attach to the internal surface of the adsorbent. The data show multilinearity (electronic
supplementary material, table S1) which indicates that the intraparticle diffusion controls the
adsorption process within the early stage, but was not the rate-determining step for the whole
adsorption process similarly found in previous research [35].

The maximum adsorption capacities for both ACM and SMX from this paper were compared with
other adsorption capacities reported in the literature. Table 8 summarizes the previous research using
graphene and activated carbon as adsorbent using the adsorption method.

3.4. After adsorption analysis
Table 9 compares the BET results before and after the adsorption of SMX and ACM. After the adsorption
process, one can see the surface area of adsorbent decreased to that before the adsorption
process, C300 (390.30 m2 g−1) while after the adsorption process, C300-SMX (325.62 m2 g−1) and C300-
ACM (291.70 m2 g−1). This shows adsorption had occurred as the SMX molecules adhered to
the surface of GNP C300 thus resulting in a notably lower surface area, micropore area and external
surface area.

Field emission scanning electron microscopy (FESEM)/energy dispersive X-ray (EDX) was used to
observe the adsorbent surface and elemental analysis (figure 10). After the adsorption process, other



Table 8. Previous research on sulfamethoxazole and acetaminophen.

adsorbents pollutant adsorption capacity (mg g−1) references

graphene nanoplatelet C300 SMX 210.08 this work

powder activated carbon SMX 86 [56]

mesoporous silica-magnetic graphene oxide nanocomposite SMX 15.46 [34]

multi-walled carbon nanotubes SMX 29 [57]

graphene nanoplatelet C300 ACM 56.21 this work

graphene nanoplatelets C750 ACM 18.07 [35]

graphene ACM 18.28 [58]

activated carbon from Quercus Brantii (oak) ACM 45.45 [59]

Table 9. Comparison before and after adsorption of SMX and ACM towards GNP C300 using BET analysis.

BET surface area
(m2 g−1)

micropore area
(m2 g−1)

total pore volume
(cm3 g−1)

external surface area
(m2 g−1)

C300 390.30 83.65 0.41 306.65

C300-SMX 325.62 38.33 0.37 287.29

C300-ACM 291.70 11.86 0.36 279.84
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elements were present on the surface of GNP C300 of other elements besides carbon. The elements of
oxygen and nitrogen were detected on the surface of GNP C300 after adsorption of SMX and ACM.
There was also the presence of sulfur found on the C300-SMX sample.

To get a better view of the adsorption mechanisms, molecular docking was applied, and the data are
detailed in table 10. Binding energy measures the affinity of the GNP-SMX complex and the sum of
energies of each molecule separately. The lower the energy value, the more stable it is. The binding
energies for both molecules were negative values; −7.54 kcal mol−1 and −5.29 kcal mol−1 for SMX and
ACM, respectively, which means the SMX and ACM were bound spontaneously to the surface of
GNP C300 without consuming energy. The ΔGbind obtained for GNP-SMX is higher 2.25 kcal mol−1

than GNP-ACM which is in good agreement with experimental. In the experimental results, GNP
shows high maximum adsorption capacity towards SMX (210.08 mg g−1) compared to ACM
(56.21 mg g−1). This different adsorption capacity of GNP towards pollutants can be explained by the
strength of the binding energy obtained from the docking results. Both pollutants preferred to bind at
the surface layer of GNPs. Van der Waals, hydrogen bonds and desolvation energy described energy
loss with the interaction between pharmaceuticals and GNP and solvent upon binding which revealed
the chemisorption occurred exothermically (electronic supplementary material, figure S2).

The adsorption mechanism of GNP towards the targeted pollutants can take place in the form of
electrostatic interactions (cation or anion attraction), π–π interaction, hydrophobic interaction and
hydrogen bonding [60,61]. Both SMX and ACM molecules contain an aromatic group or benzene ring
(electronic supplementary material, figure S3). The adsorption mechanism is mainly owing to
interaction of the electron-rich GNP surface and the protonated aniline ring of pharmaceutical
molecules. When the pH is near or equal to the pKa of pharmaceutical, the pharmaceutical molecules
exist in neutral form thus it favours hydrogen bonding and π–π interaction with GNPs. When the
solution pH drifted to more acid or basic conditions, electrostatic interactions will occur between the
GNP and pharmaceutical molecules.

3.5. Regeneration
As depicted in figure 11, the removal efficiency for both SMX and ACM using GNP C300 through four
regeneration cycles by different eluents: 0.005 M NaOH, 0.005 M HCl and 5% ethanol-
deionized water is shown. By using chemical regeneration, interaction forces formed between the
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Figure 10. FESEM images of GNP C300 after adsorption of (a) SMX and (b) ACM. EDX analysis of GNP C300 after adsorption of
(c) SMX and (d) ACM.

Table 10. Molecular docking of GNP-SMX and GNP-ACM. (VDW, Van der Waals.)

binding energy, ΔGbind
(kcal mol−1)

VDW + H-bond + desolvation energy
(kcal mol−1)

electrostatic energy
(kcal mol−1)

GNP-SMX −7.54 −8.74 0.00

GNP-ACM −5.29 −5.89 0.00
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adsorbed pharmaceutical pollutants and the eluent molecules causing the SMX and ACM molecules
to leave the adsorption sites of the adsorbent and dissolve in the eluent [62]. Among the used eluents
for the adsorption of SMX, 0.005 M HCl and 5% ethanol-deionized water were able to regenerate
GNP C300 where high removal efficiencies could be achieved even after the fourth cycle with
98.79%–95.18% and 98.33%–95.95%, respectively. When washed with 0.005 M NaOH, graphene
efficiency was reduced from 99.28% to 78.8% in the second cycle, having the lowest percentage
after the fourth cycle (32.84%). GNP C300 was able to remove 95.58%–71.45% of ACM when
washed with 5% ethanol-deionized water which is the highest followed by 0.005 M NaOH and
0.005 M HCl, with removal efficiencies of 96.01%–64.35% and 97.23%–26.08%, respectively. The
surface of GNP was held by weak intermolecular interactions viz. Van der Waals forces and
dipole–dipole interaction [38]. After several cycles, the removal efficiency of GNP is reduced
because of the loss of GNP during the washing process as it was not fully separated by
centrifugation. Conclusively, regeneration of the GNP C300 by 5% ethanol-deionized water was
considered the suitable eluent for both pollutants, SMX and ACM with high removal efficiencies
after several adsorption–desorption cycles.
3.6. Real water application
Based on figure 12, it can be concluded that GNP C300 managed to remove most of the pharmaceutical
pollutants from the spiked real water samples. More than 98% of SMX were removed from all three real
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water samples: Langat river water, Kuyoh river water and tap water, while for ACM the removal
efficiency was somewhat lower than SMX yet more than 90%. As shown in the figure, GNP C300 able
to remove, respectively, 93.83%, 95.76% and 96.45% of ACM, as for SMX 98.10%, 98.79% and 99.88%
from Langat river water, Kuyoh river water and tap water. The results proved that GNP C300 is also
suitable for the real water application.
4. Conclusion
In conclusion, all four types of GNPs were able to remove SMX and ACM from water. GNP C300 shows
the highest adsorption capacity compared to GNP C750, M15 and M5. The unexplored potential of GNP
C300 and the rest has revealed the other types GNP that work better compared to C750, which is a bit
costly and faces an agglomeration problem. The removal of pharmaceuticals with different pKa values
was strongly affected by pH. It is proved that the adsorption of SMX and ACM using GNP C300 was
owing to chemisorption as the data were best fitted with pseudo-second order. The adsorption data
fitted well with both Langmuir and Freundlich isotherms. Owing to slightly higher R2, the Langmuir
model was more suitable for describing the adsorption process of GNP C300 towards both
pharmaceuticals. In addition, GNP C300 can remove up to 99% of SMX and ACM. On top of that, a
negative value of binding energy from docking showed that the adsorption was spontaneous and
exothermic. In addition, 5% ethanol-deionized water was found to be the best eluent for the
regeneration of GNP C300 as adsorbent for the removal of SMX and ACM. Real water application
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results showed that GNP C300 managed to remove most of the pharmaceutical pollutants from the
environmental samples. GNP C300 exhibits great potential as an excellent adsorbent with high
adsorption ability for the removal of SMX and ACM, and thus may also be used towards other
pharmaceutical pollutants.
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