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We developed a time-dependent stochastic neutral model for
predicting diverse temporal trajectories of biodiversity change
in response to ecological disturbance (i.e. habitat destruction)
and dispersal dynamic (i.e. emigration and immigration). The
model is general and predicts how transition behaviours of
extinction may accumulate according to a different combination
of random drift, immigration rate, emigration rate and the
degree of habitat destruction. We show that immigration,
emigration, the areal size of the destroyed habitat and initial
species abundance distribution (SAD) can impact the total
biodiversity loss in an intact local area. Among these, the SAD
plays the most deterministic role, as it directly determines the
initial species richness in the local target area. By contrast,
immigration was found to slow down total biodiversity loss
and can drive the emergence of species credits (i.e. a gain of
species) over time. However, the emigration process would
increase the extinction risk of species and accelerate
biodiversity loss. Finally but notably, we found that a shift in
the emigration rate after a habitat destruction event may be a
new mechanism to generate species credits.
1. Introduction
Predicting biodiversity change because of climate forcing and
habitat loss is a cornerstone in the research of contemporary
community ecology and conservation biology. However, because
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species loss is a time-delayed process that is usually described as extinction debts [1–4], many profound

ecological problems are still poorly known and remain open for exploration, including: (i) How fast will
species go extinct due to abrupt habitat destruction? (ii) To which factors will the velocity of species
extinction be correlated? (iii) Can we accurately predict the temporal trajectory of species loss?
(iv) How will community patterns (e.g. species abundance distributions) be altered if species loss is
inevitable?

Many previous studies attempted to demystify extinction debts using a variety of approaches. For
example, several previous studies [5,6] used ‘static’ (i.e. time-irrelevant) approaches to model delayed
extinction patterns caused by habitat destruction. However, such methods are unable to characterize
the temporal trajectories of species extinctions, which are clearly time-dependent. In comparison,
inspired by the theory of island biogeography, some other papers developed dynamic models (mostly
related to species–area relationships) to predict the delayed loss of species richness [7–10]. However,
these methods typically require an estimation of a relaxation parameter, which is usually difficult to
fit [7] and has few empirical values to which one can refer [11]. Moreover, other than species richness,
community-level delayed consequences (e.g. compositional change: how abundant and rare species
will change) cannot be clearly demonstrated using these dynamic models.

Neutral theory and models can be powerful for quantifying delayed consequences of habitat loss on
biodiversity. By assuming the functional equivalence of different species subject to stochastic birth, death
and dispersal processes, neutral models are able to quantify how individual species and the entire
ecological community will respond to habitat destruction [12–14]. However, no previous studies have
systematically employed and developed neutral models to address the above-mentioned questions.

In this study, we developed a general neutral model that can predict the transitional behaviours of
species extinctions by incorporating multiple essential ecological mechanisms: emigration/immigration,
random drift and habitat destruction. More importantly, compared to previous studies, our model can
explicitly project how community patterns will shift from both spatial and temporal perspectives.
2. Material and methods
2.1. A stochastic dispersal–birth–death model
Here, we use the following stochastic dispersal–birth–death (SBD) model to describe the temporal
dynamics of a species’ population under random drift, immigration and emigration processes

dp0ðtÞ
dt

¼ p1ðtÞ � vp0ðtÞ
dp1ðtÞ
dt

¼ vp0ðtÞ þ 2p2ðtÞ � ð2� uÞp1ðtÞ
..
.

dpjðtÞ
dt

¼ ðjþ 1Þp jþ1ðtÞ þ ðj� 1Þð1� uÞp j�1ðtÞ � jð2� uÞpjðtÞ:

9>>>>>>>>>=
>>>>>>>>>;

ð2:1Þ

Note that pj(t) in equation (2.1) is the probability that a given species has abundance j at time t. We treat v
as the immigration rate and u as the emigration rate. The immigration rate is necessary for the model;
otherwise, no species will exist in the study area, and community dynamics are not possible if the
area originally had no organisms in existence, and no individuals could disperse into the area from
the outside. A flowchart for showing the transition dynamic of neighbouring abundance states from
equation (2.1) is visually illustrated in electronic supplementary material, figure S1A of the appendix.
This model only allows the flow of immigration when there are no individuals inside the target area
(vp0(t)). This assumption seems a bit strong, but there are a variety of reasons for assuming so (details
are introduced in the Discussion section). To further demonstrate the usefulness of the proposed
model (equation (2.1) as to the evaluation of stochastic dispersal process in population dynamic and
extinction, we also introduce and compare a full immigration model [15,16], detail of which is shown
in the Additional Methods of the appendix (electronic supplementary material, figure S1B and
equation S1). In that full immigration model, immigration can take place as long as the population of
species changes in an increasing direction (electronic supplementary material, figure S1B).

By defining the probability generating function (PGF) as

Hðz, tÞ ¼
X1
n¼0

znpnðtÞ,
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equation (2.1) can be transferred to a first-order linear partial differential equation (PDE), as

@Hðz, tÞ
@t

¼ ð1� zÞð1� ð1� uÞzÞ @Hðz, tÞ
@z

þ vðz� 1ÞHð0, tÞ: ð2:2aÞ

When there is no immigration effect (i.e. v = 0), the above solution can be recovered to a
previously described one [17], and there is an analytical solution for the PGF H(z, t), which has a form
as follows [17]:

Hðz, tÞ ¼
1� ð1� uÞz� ð1� zÞe�ut

1� ð1� uÞðzþ ð1� zÞe�utÞ
� �j

, u . 0;

t� tzþ z
t� tzþ 1

� �j

, u ¼ 0,

8>>><
>>>:

ð2:2bÞ

for the specific initial condition pn(0) = δ(n− j ) ( j≥ 0), where δ(w) = 1 if w = 0; and δ(w) = 0 if w≠ 0. The
probability of observing n individuals at time t can be derived by taking the n-ordered derivatives of
the PGF as

pn(t) ¼ 1
n!
@nH(z,t)

@zn

����
z¼0

:

However, it becomes challenging to analytically solve the PDE (equation (2.2a)) using the traditional
method of characteristics when the immigration rate is not zero (i.e. v≠ 0), since the rightmost term of
equation (2.2a) still involves H(0, t). To this end, we use a matrix exponential method [18,19] when
conducting numerical analyses. Specifically, we use the following matrix to record the coefficients of
the ordinary differential equation (ODE) system in equation (2.1) as

Gm ¼

�v 1
v �(2� u) 2

(1� u) �2(2� u) 3
2(1� u) �3(2� u) 4

3(1� u) �4(2� u) 5
. . . . . . . . .

(m� 2)(1� u) �(m� 1)(2� u) m
(m� 1)(1� u) �m(2� u)

0
BBBBBBBBBB@

1
CCCCCCCCCCA
,

ð2:3Þ
and a column vector to record the time-dependent probability at each abundance state as

Xm(t) ¼ ( p0(t),p1(t),p2(t), . . . ,pm(t)):

For numerical computing purpose, we convert the infinite ODE system equation (2.1) into a finite
ODE system with m + 1 states (i.e. from 0 to a maximal abundance value denoted by m; integer m > 1).
Therefore, equation (2.1) can be re-formulated as the following finite matrix form

dXm(t)
dt

¼ GmXm(0): ð2:4Þ

Accordingly, we can numerically solve the time-dependent probabilities by using matrix exponential
method as

Xm(t) ¼ exp(Gmt)Xm(0): ð2:5Þ

With the result from equation (2.5), the time-dependent probability of extinction can be easily
extracted from Xm(t), i.e. its first element ( p0(t)). As a remark, because the original stochastic system
in equation (2.1) is infinite, it is necessary to check the convergence of the derived extinction
probability p0(t) for different matrix sizes (m) under the finite setting.
2.2. Total biodiversity loss at the metacommunity level
The probability that a species can still survive at time t given that its initial abundance, j, under the above
stochastic SBD process (equation (2.1)) is given by

pn.0ðtÞ ¼ 1� p0ðtÞ: ð2:6Þ
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Therefore, without both emigration and immigration effects (u = v = 0), equation (2.6) characterizes the

effect of random shift on extinction and survival dynamic [12], which can be derived using equation
(2.6) as pn.0ðtÞ ¼ 1� (t=ð1þ tÞ)j. If the emigration rate of a species is not zero, but immigration is
absent (i.e. u > 0 and v = 0), equation (2.6) returns to pn.0ðtÞ ¼ 1� ð1� e�utÞ=ð 1� ð1� uÞe�utÞð Þj.
Finally, if both emigration and immigration rates are not zero, we employ the matrix exponential
method (equation (2.5)) to numerically evaluate its temporal patterns.

At the metacommunity level, suppose that there are S(0|A) species in the region with size A at the
initial time t = 0. Moreover, let Sj(0|A) denote the number of species with abundance j at the initial time;
then with no emigration or immigration effects (u = 0 and v = 0; under the pure random drift scenario),
the expected species number at any time t is given by

Sðt jAÞ ¼
X1
j¼1

Sjð0 jAÞð1� p0ðtÞÞ: ð2:7Þ

Therefore, the expected number of individuals at time t is

Nðt jAÞ ¼
X1
j¼1

jSjðt jAÞ,

where Sj(t|A) = Sj(0|A)(1− p0(t)) and represents the number of species with abundance j in the region
with size A at time t. The expected total biodiversity loss at time t at the metacommunity level, under
either random drift or emigration processes, can be estimated as

Eðt jAÞ ¼ Sð0 jAÞ � Sðt jAÞ: ð2:8Þ
When the immigration rate does not exist (i.e. v = 0), we can express E(t|A) by

Eðt jAÞ ¼

P1
j¼1

Sjð0 jAÞ t
1þ t

� �j

, u ¼ 0;

P1
j¼1

Sjð0 jAÞ 1� e�ut

1� ð1� uÞe�ut

� �j

, u . 0:

8>>>><
>>>>:

ð2:9Þ

This time-dependent solution for the total species loss at the metacommunity level is a concave
function with respect to time t when u = 0; however, the curvilinear pattern of E(t|A) for the case u > 0
is indeterministic; one can refer to Additional Methods of the appendix in electronic supplementary
material for a proof. By contrast, the species richness dynamic model presented in equation (2.4) of
Sgardeli et al.’s [20] paper is a convex function in most cases when studying extinction debt
[1,7,10,21]. A proof is also presented in electronic supplementary material, appendix. Accordingly, the
derived biodiversity loss model in Sgardeli et al.’s [20] paper would become a concave function again
when applying equation (2.8). Moreover, by properly assigning model parameters, both equation (2.8)
and the model in Sgardeli et al.’s [20] paper will have similar prediction of temporal trajectory
of species loss pattern (electronic supplementary material, figure S4). However, we have to mention
here, when the immigration rate is not zero, the expected total biodiversity loss in our model
(equation (2.8)) has to be solved out numerically.

2.3. Total biodiversity loss at the local community level
Suppose in the initial stage, there is a local area of size a that is part of the region (a, A), and the local
species abundance distribution (SAD) is given by Sj(0|a), which represents the number of species with
abundance j at the initial time in local area a. Accordingly, the expected total biodiversity loss at time t at
the local level, under random drift, immigration and emigration processes, can be estimated as

Eðt j aÞ ¼ Sð0 j aÞ � Sðt j aÞ, ð2:10Þ
where S(0 j a) ¼ P1

j¼1 Sjð0 j aÞ; S(t|a) represents the expected species number of the local area at any time t
and is estimated as

Sðt j aÞ ¼
X1
j¼1

Sjð0 j aÞpn.0ðtÞ: ð2:11Þ

Note that this time-dependent solution of species loss at a local area (equation (2.10)) has a similar
curvilinear pattern as remarked as to E(t|A) in equation (2.9); one can refer to Additional Methods of
the appendix in electronic supplementary material, for a proof.
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2.4. An area-based Fisher’s logseries model

To better incorporate instant habitat destruction on the transition behaviour of the species richness with
Fisher’s explicit statistical background, and accordingly, estimate the expected species loss over time, we
assume there are Sð0 jAÞ ¼ 1000 species at the initial time point t = 0 at the regional scale; and the SAD at
either the regional or local scale follows an area-based logseries abundance model [22]. To be specific, the
area-based model is given as follows.

Suppose a truncated negative binomial model is best fitted to the abundance distribution of all
species necessarily present in target region A, and its probability mass function (PMF) is

PðNA ¼ n jA,k,vÞ ¼ C
Gðk þ nÞ

GðkÞGðnþ 1Þ
v

vþ A

� �k A
vþ A

� �n

, n ¼ 1,2 . . . , ð2:12Þ

where C ¼ (1� (v=ðvþ AÞ)k)�1; NA is a random variate to depict the abundance of each species in the
entire region A; k and ω are two positive parameters of the PMF. Using this model with k→ 0, the
limiting distribution can be derived by

fðn jA,vÞ ¼ lim
k!0

PðNA ¼ n jA,k,vÞ ¼ ln 1þ A
v

� �� ��1 1
n

� �
A

vþ A

� �n

, n ¼ 1,2, . . . , ð2:13Þ

where xA =A/(ω +A) and αA = [ln(1 +A/ω)]−1. This model can be further simplified to contain only one
unknown parameter, αA, resulting in the following form:

fðn jaAÞ ¼ aA

n
(1� e�1=aA )n: ð2:14Þ

Suppose we only sample a local area of size a from the entire region A. To do this, we define the number
of individuals of each species observed in the local sampled area a as Na; then the PMF of Na is given by

f(n jaa,aA) ¼ lim
k!0

PðNa ¼ n j a,A,k,vÞ ¼ aA

n
(1� e�1=aa )n, n ¼ 1,2, . . . : ð2:15Þ

Detailed derivation of equation (2.15) can be found in our previous paper [22] and is thus omitted
here. Therefore, the expected species richness with abundance j in the local ecological community a in
the entire region A, given the parameter value αA, is given by

Sjð0 j a,aaÞ ¼ Sð0 jAÞ � f( j jaa,aA):

As a result, the time-dependent and area-dependent total biodiversity loss of local sample a, before
habitat destruction point τ, can be computed as

Eaðt j t , tÞ ¼ Sað0Þ � SaðtÞ ¼
X
j�1

Sjð0 j a,aaÞp0ðtÞ: ð2:16Þ

Suppose at some time point, τ, a local area of size b of region A is instantly destroyed; then the
number of extinct endemic species found in local area b can be estimated by

Eb ¼ Sð0 jAÞ � f(0 jaA�b,aA):

Accordingly, the number of species found in the remaining habitat (A− b) is given by

Sb ¼ Sð0 jAÞ � Eb ¼ Sð0 jAÞ � (1� f(0 jaA�b,aA)):

Then, the expected species richness with abundance j in an intact local area, given the instantaneous
destruction of another local area b at time τ, is given by

Sjðt j a,aaÞ ¼ Sb � f( j jaa,aA) ¼ Sð0 jAÞ(1� f(0 jaA�b,aA))f( j jaa,aA):

Therefore, the total biodiversity loss at local sample a, after the habitat destruction point τ, becomes

Eaðt j t � tÞ ¼ SaðtÞ � SaðtÞ ¼
X
j�1

Sjðt j a,aaÞp0ðtÞ: ð2:17Þ
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Figure 1. Relationship between biodiversity level and the size of the destroyed habitat. The local intact area of interest has a size of
a = 1, while the total region has an area with a size of A = 100 and the initial species richness of S(A|0) = 1000. In subplot (a), the
grey vertical dashed line indicates the time point at which the habitat destruction event takes place. Imminent extinction occurs at
that time point, and accordingly, the biodiversity loss shows a sharp change at that point. Parameter ω in Fisher’s logseries model is
set to 0.001, the immigration rate v is 0.02 while the emigration parameter u is 0.01. Dashed curves are computed using a full
immigration model (equation S1 of the appendix in electronic supplementary material). The y-axis denotes the difference of the
number of species at the initial time and that at a specific time point afterwards. In subplot (b), y-axis denotes the number of
species expected of the local intact area at a specific time point.
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3. Results
By solving equation (2.4) numerically using equation (2.5), we can quantitatively evaluate the statistical
behaviours of the infinite stochastic model presented in equation (2.1). To be specific, we found that
starting with a higher state for initial abundance can slow down the rate of population extinction
(electronic supplementary material, figure S2 of the appendix). Moreover, the immigration rate would
retard the risk of species extinction, while the emigration rate would accelerate the extinction risk, as
demonstrated from the diverse curve shape patterns of different combinations of immigration and
emigration rates (electronic supplementary material, figure S3 of the appendix).

In the absence of habitat destruction, the total biodiversity loss dynamic tends to present a concave
trend over time (figure 1). When an immediate habitat destruction event takes place, because of
imminent extinction (i.e. loss of endemic species that are only found in the destroyed habitat), the
curve is discontinuous (i.e. has an abrupt change) at the time point of habitat destruction (figure 1).
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Figure 2. Joint impacts of the original species abundance distribution (SAD) and the degree of habitat destruction on the total
biodiversity loss dynamic. Parameter ω controls the SAD curve shape in area-based logseries model. The grey vertical dashed line
indicates the time point when the habitat destruction event takes place. The entire region has a total areal size of A = 100. The size
of the area of the destroyed habitat was set to b = 50, while the local intact area of interest was set to a size of a = 10. The
immigration rate is v = 0.02 while the emigration parameter is u = 0.01. Dashed curves are computed using a full immigration
model (electronic supplementary material, equation S1 of the appendix). The y-axis denotes the difference of the number of
species at the initial time and that at a specific time point afterwards.
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After that, biodiversity loss continually accumulates and becomes smooth again, but the debt magnitude
is always smaller than the original dynamic without habitat destruction (figure 1). The curve shape
patterns were actually very similar between the proposed model (equation (2.1)) and the full
immigration model (electronic supplementary material, equation S1).

High imminent extinction is expected when the areal size of the destroyed local habitat is great
(figure 1). However, when the areal size of the destroyed habitat is higher, the expected total
biodiversity loss after habitat destruction is lower (figure 1). This is because imminent extinction is
paid off at the point in time when habitat destruction occurs.

The shape of the curve of the original SAD influences the shape of the curve of the total biodiversity
loss dynamic (figure 2). When parameter ω in Fisher’s logseries model is lower, the expected number of
species in the local target area will be larger (electronic supplementary material, figure S5). In such a
situation, total biodiversity loss over time will tend to be higher, and it takes a longer time to reach
asymptotic values (figure 2). By contrast, when parameter ω in Fisher’s logseries model is higher, the
corresponding total biodiversity loss quickly becomes asymptotically stable because of low species
richness in the target area (figure 2 and electronic supplementary material, figure S5). Note that the
curvilinear trends were very similar between the proposed model (equation (2.1)) and the full
immigration model (electronic supplementary material, equation S1).

When the emigration rate of a species is high, the expected total biodiversity loss is also high
(figure 3). Moreover, for large emigration rates, 0.1 and 0.2, the time to equilibrium is very short as
their expected total biodiversity losses keep unchanged after habitat destruction. However, the
expected total biodiversity loss can increase first then decrease for the small emigration rate cases (u =
0 and 0.01). By contrast, increasing the immigration rate (v) can remarkably retard biodiversity loss in
both the proposed (equation (2.1)) and the full stochastic immigration (electronic supplementary
material, equation S1) models (figure 4). More interestingly, when looking at the temporal trajectory of
species loss curve in figure 4, potential immigration credits can be observed (blue and green solid
curves when v = 0.1 and 0.2, respectively). Analogous immigration credits were also observed for the
full immigration model (blue and green dashed curves when v = 0.1 and 0.2, respectively, in figure 4).

Finally, when the intact area of interest has a larger areal size, the expected total biodiversity loss
tends to be higher after habitat destruction (figure 5). However, this positive relationship is nonlinear.
When the local intact area has a sufficiently large areal size, the total biodiversity loss tends to reach
the maximal asymptotic value and only slightly increases when the size of the local target area is
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Figure 3. Impacts of the emigration rate (u) on the total biodiversity loss dynamic. The grey vertical dashed line indicates the time
point when the habitat destruction event takes place. The entire region has a total areal size of A = 100. The areal size of the
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the number of species at the initial time and that at a specific time point afterwards.
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Figure 4. Impacts of the immigration rate (v) on the total biodiversity loss dynamic. The grey vertical dashed line indicates the time
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(electronic supplementary material, equation S1 of the appendix). The y-axis denotes the difference of the number of species at the
initial time and that at a specific time point afterwards.
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further increased. For the full immigration model, its curve shape patterns are very similar to those of our
proposed model when comparing the solid and dashed lines in figure 5.
4. Discussion
Modelling biodiversity change, because it involves the coupling of spatial and temporal ecological
factors, is an intriguing but challenging topic for global ecologists. Recent studies suggested that both
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equation S1 of the appendix). The y-axis denotes the difference of the number of species at the initial time and that at a specific
time point afterwards.
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ecological and evolutionary processes can take place on the same time scale [23,24]. To this end, our
present model serves as a bridge to disentangle how ecological and evolutionary processes jointly
explain the temporal complexity of the extinction of species.

In our study, we quantified temporal biodiversity loss pattern, which differs from previous studies
that examined extinction debts. However, both concepts are closely related and become
complementary to each other when discussing total extinction. That is, the sum of total biodiversity
loss and extinction debt is equal to the total expected extinction when species richness reaches
equilibrium after a sufficient time. As a consequence, our study actually already quantified temporal
behaviours of species loss or the probability of extinction over time (electronic supplementary
material, figure S3).

The parameter characterizing the immigration effect (v) can mitigate the potential biodiversity loss,
while, by contrast, the parameter characterizing the emigration effect (m) would accelerate biodiversity
loss (figures 3 versus 4). To this end, bidirectional dispersal processes (emigration versus immigration)
could have great but contradictory impacts on ecosystem stability by accelerating versus reducing
species extinctions, respectively (figures 3 and 4 and electronic supplementary material, figure S3).
From a perspective of conservation biology, it is expected that the immigration effect represents a
form of a rescue effect to maintain biodiversity in the studied local area by providing individuals of
extinct species from the outside to the local community of interest. In our model (equation (2.1)), we
assume that the arrival of a new immigrant is only possible when there are no individuals of the
same species in the target community. This means, we assume that strict competitive exclusion effect
exists between native individuals and immigrants, and the immigration event is possible when there
are no native conspecifics in the community. However, native conspecifics (i.e. those individuals that
are created by birth events) can coexist without exclusion.

This assumption seems a bit strong but realistic and a bit similar to the rescue effect in ecological
literature [25–30]. In our paper, the rescue effect takes place through immigration from other areas
only when the population size of a target species in a target area is sufficiently small. That is, the
rescue effect (v) is magnified at most when there are no individuals of the target species in the target
area. By contrast, the rescue effect (v) is ignored in our model (equation (2.1)) when there are some
individuals of the target species in the focused area. This is because the dynamic of population is
dominated by density-dependent growth and death rates (both rates = 1, see table 1 for details). The
density-independent immigration rescue effect is therefore negligible, as v is usually small (table 1).



Table 1. Assumptions used in the stochastic birth–death–immigration–emigration model of the present study (equation (2.1)).

assumption parameter value used or logistic answer

single species dynamic yes

single location yes

intrinsic growth rate growth rate = 1 (this rate value is also used in Rosindell et al.’s [17] model)

intrinsic death rate death rate = 1 (this rate value is also used in Rosindell et al.‘s model)

density dependence yes, density dependence is reflected by the fact that the changing rate of probability at

abundance j is dependent on the probability at abundance j− 1, j + 1 and j; and the

associated magnitude ( j + 1), ( j− 1)(1− u) and j(2− u). Such a kind of modelling

density dependence in neutral models is also seen in previous studies [31,32]

interaction with other

species

no, the model assumes the dynamic of a single species irrespective of the dynamic of

other species

immigration rate v, which is a small value in comparison to the intrinsic growth or death rate

(which is equal to 1) in our model

emigration rate u, which is a small value in comparison to the intrinsic growth or death rate

(which is equal to 1) in our model
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Previous studies [27–30] working on the rescue effect also emphasized the importance of rescue effect
for species that are extinction-prone and in small population sizes, akin to our model structure and
assumption. However, the difference between theirs and ours is that we assume the rescue effect or
immigration only takes place when there are no individuals of the species in the target area.
Additionally, the model structure and assumption implemented in our paper are also a bit similar to
the one-migrant-per-generation rule in conservation biology and genetics [33–35]. In our study, one
migrant (vp0) is only allowed for initiating the dynamic of a target population of a species in the
studied area.

Finally but most importantly, even a more realistic immigration model is used (electronic
supplementary material, equation S1 and figure S1B of the appendix), one can see that its resultant
curve shape patterns were similar to those of our proposed model (figures 1, 2 and 4). Therefore, the
proposed model (equation (2.1)) is sufficient for us to explore the potential roles of immigration
versus emigration on biodiversity change over time. As summarized below, the present model reports
the temporal trajectory of species loss, showing the emergence of immigration credits after habitat loss
(figure 4) for the first time.

Previous studies extensively showed how spatial distributional patterns (particularly aggregation)
can affect species extinctions at both the local and regional scales; when the spatial distributions of
species vary from random to aggregated, either net losses or immigration credits are possible [6].
However, predictions of local or regional species losses or gains in those studies were debatable given
that a clear statistical sampling framework in those papers was lacking. To resolve this statistical issue,
the present study goes a step further to provide an area-based Fisher’s model in which the local-
regional sampling process is properly developed. Our numerical results showed that time-dependent
immigration credits could occur when there is a mass of migrants from neighbouring regions (i.e.
outside the targeted area; figure 4).

Furthermore, if species abundance distributions can be altered after habitat destruction, species gain
might possibly be observed, as found in a previous study [6]. For the time-dependent model studied
here, if the emigration rate of species is allowed to drop after habitat destruction, species gain is also
possible (electronic supplementary material, figure S6). This phenomenon has never been observed in
previous studies. To this end, we argue that a new process ‘emigration credit’, which differs from
previous studies reiterating ‘immigration credit’ [3,4,6], is useful in explaining species gains due to
historical habitat loss. That is, two independent dispersal processes, immigration and emigration, can
contribute to the process of species gain. Our model is the first one to show, because of abrupt habitat
destruction, how emigration can influence species loss and gain, and how immigration credit can
emerge in local habitats over time, further extending previous static findings on the emergence of
immigration credits in local habitats [6].
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As discussed above, our conceptual framework is flexible, and the trajectory of biodiversity changes

over time is directly relevant to the SAD (figure 2). This means that in addition to Fisher’s logseries
model studied in the present work, other ecologically interesting models of SAD (e.g. the Poisson
lognormal model) can be incorporated and compared to evaluate how biodiversity will change over
time. Furthermore, spatial aggregation patterns of species distributions might be incorporated as in
previous studies [5,6,36–40]. Because our central goals were to integrate both ecological and
evolutionary processes in modelling species extinction, we did not explicitly investigate how spatial
distributional aggregation would influence temporal biodiversity changes. However, spatial
aggregation is indeed an essential factor affecting the magnitude of extinction debt, because it is
closely related to habitat fragmentation. Through numerical simulations, previous studies [37–40] have
assessed the impacts of spatial percolation and scales on area-based estimation of species diversity
and extinction. Given that traditional species–area relationships usually fail to capture the difference
on the short- versus long-term species loss and the degree of habitat fragmentation [40,41], for future
research, it becomes interesting to assess how complex spatial structures influence the temporal
dynamic of species extinction.
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