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ABSTRACT

The Naval Postgraduate School (NPS) has been developing real-time 3D visual simula-

tors on inexpensive commercially available graphics workstations. The effort to develop a

3D visual simulation system, NPSNET, is an exploration and experimentation virtual

worlds. Virtual world system have many goals including military training. This work is part

of NPSNET. The current NPSNET system is kinematically based. The objectives of this

work are motion dynamics and behavioral motion control for autonomous vehicles. Motion

control is difficult when using dynamics due to the internal and external forces, however it

enhances the realism as well as motion accuracy. We develop motion dynamics and behav-

ioral control for ground-based vehicles. Motion dynamics and behavioral motion are an es-

sential part of NPSNET for realistic battlefield simulation.
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I. INTRODUCTION

A. MOTIVATION FOR RESEARCH

Recently simulation technology has been adapted in many ways. The flight simulator

is used for training pilots and astronauts to safely control complex, expensive vehicles

through simulated environments [Deyo, 89]. The capability of graphics workstations drops

the relative cost of simulation, hence the technology has been moving gradually toward

lower cost simulation environments through which the operator is also able to control his

own viewpoint or motion.

An advanced ground vehicle simulator is made up of a few, expensive subsystems that

combine to create a complete virtual environment for the operator. Interactive real-time

ground vehicle simulation demands scene realism and accuracy of motion. Because of the

rapid development of computer technology, current computer hardware and software make

it possible to synthesize realistic images. However, the real-time physical simulation of

motion still remains a difficult task. It is now possible to use vehicle dynamics for

simulating real world motion on a general purpose workstation.

Dynamics can produce complex motion with minimal user inputs, but it is

problematic in the difficulty of motion control and it is computationally expensive. A more

automatic method of controlling motion can improve the control problem. Behavioral

simulation is a means of automatic motion control according to certain rules. We can use

behavioral control for autonomous moving vehicles in the simulation system. The research

of motion dynamics and autonomous motion planning of a vehicle simulator on a general

purpose workstation is a key component for the construction of a fully interactive virtual

world.



B. NPSNET

The Defense Advanced Research Projects Agency (DARPA) has been developing a

simulation system entitled Simulation Networking (SIMNET) [Thorpe, 87]. SIMNET is an

interactive battlefield simulation system designed for military training. SIMNET nodes

require visual displays and specific hardware of a particular vehicle. The effort to develop

a low-cost SIMNET type system based on commercially available graphic workstations has

been an ongoing project at the Naval Postgraduate School (NPS). The system, NPSNET, is

a real-time, 3D visual simulation system capable of displaying vehicle movement over the

ground or in the air. NPSNET runs on Silicon Graphics workstations attached to a local area

Ethernet and uses SIMNET databases and networking formats [Zyda, et al., 92].

In NPSNET, up to 500 of the vehicles can be driving in the world at one time. The user

can select any one of the active vehicles via mouse selection and control it with a six degree

of freedom SpaceBall or button and dialbox. The pick button on the SpaceBall fires a round

from the driven vehicle.Vehicles can be controlled by a prewritten script, driven

interactively from other workstations, or autonomously via computer control. Displays

show on-ground cultural features such as roads, buildings, and soil types. These vehicles

move around in the virtual environment that is based on the terrain at Fort Hunter-Liggett,

California.

Depending upon the model of IRIS being used, the user can select to use texturing,

and environmental effects such as fog and haze. A two dimensional (2D) map can be

displayed that shows the position and tracking of all the players. This map displays the

direction and viewing triangle of the driven vehicle as well as the position and movement

of the remaining vehicles. The statistics and data concerning the driven vehicle (speed,

pitch, roll, and so on) are displayed in an information window at the top of the screen.



C. OBJECTIVES OF THIS WORK

The current NPSNET system is kinematically-based. The motion description, from

user-input through actual frame rendering, consists of positions specified over time. The

goal of this work is to add motion dynamics to NPSNET. The aerodynamics model is being

developed concurrently for air vehicles [Cooke, 92]. This work concentrates on the

essential system issues for the implementation of virtual environments for real-time ground

based vehicle simulation.

1. Dynamics

Dynamics deals with the motion of bodies under the action of forces. Motion

occurs in the physical world as result of forces acting on objects. To achieve a degree of

realism in motion control, the motion of objects must be simulated by the physical

principles of dynamics. This work focuses on theoretical and numerical aspects of the

implementation of a dynamic motion simulation system.

2. Behavioral Control

The search for more automatic methods of controlling motion is a major area in

computer graphics. The problem of motion planning of autonomous vehicles consists of

selecting the geometric path and vehicle speeds so as to avoid obstacles and it should

minimize comp nationally expensive functions to keep the frame rate at an acceptable

level. Motion is planned at a task-level and computed using physical laws. Inverse

dynamics is the essence of the autonomous motion control. In higher level motion control,

behavioral mo ion in particular, evaluates the state of the environment and generates

motion accord ng to certain rules of behavior [Wilhelms, 90].

3. Vehicle Parameterization

The vehicles used in NPSNET are military vehicles such as tanks, APCs and

trucks. To get the realism and satisfy the simulation system users, the vehicles' motion



should match the real vehicle specification. These specifications are defined in the data

structure of the vehicles and incorporated with the dynamics equations.

D. THESIS ORGANIZATION

Chapter II covers basic dynamics in the vehicle simulation. Derived dynamics

equations are defined and an integration method is presented. Chapter III provides vehicle

modeling and motion control issues including dynamics as well as vehicle constraints.

Chapter IV presents the high-level motion control issues, especially behavioral motion with

inverse dynamics. Chapter V provides implementation details of the dynamic motion

control and data structures into the simulator. Chapter VI covers conclusions and

suggestions for further work in this area.
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II. DYNAMICS

A. INTRODUCTION

This chapter presents the rigid body dynamics and coordinate system that are used in

the simulation. A rigid body can be described as a fixed and unchanging extended mass.

The dynamics of general plane motion of a rigid body combines translation and rotation. In

the vehicle dynamics analysis, vehicles are treated as extended rigid bodies, and

information concerning their mass, centers of mass, and mass distribution is needed.

Previously, the dynamics equations of a vehicle model are derived [Meriam et.al., 86] .

Motion is produced by a simplified simulation of dynamics, that describes the linear and

angular accelerations of a rigid body in terms of the forces acting on them.

If a number of forces are acting on the body, their total translational effect can be

found by merely summing them. The center of mass of the body will move translationally

as if it were a particle mass influenced by one net force. The external forces acting on the

vehicle consist of the frictional forces between the vehicle and ground, the normal forces,

and the gravity force. A torque is similar to a force, except that it causes a rotational motion

about a particular axis. Torques can be represented as 3D vectors describing their

components about an x, y, and z-axis.

B. DYNAMICS OF RIGID BODY MOTION

The body coordinate system is used in the simulation. Since a rigid body is free to

rotate and translate, it is possible to describe the placement of a rigid body in world space

in terms of the location of the body's center of mass and the body's rotational orientation

in world space.

1 The mathematical dynamics equations we cover below are taken from this reference and

then implemented with vehicle constraints.



The basis vectors of this coordinate system are usually the principal axis of the object.

For body i, the center of mass is represented by the vector c(t), and its orientation is

represented by the 3x3 matrix R. The terms that are used in this chapter can be found in

the Table 2.1.

/ Inertia Tensor Matrix

/ force

fgrv Force due to gravity

Jext External applied force

X Torque

c Center of Mass

r Position Vector

R Orientation Matrix

V Linear velocity

a Linear acceleration

P Linear momentum

w Angular velocity

w Angular acceleration

I Angular momentum

m mass

M Time step between samples

lx >
ly> 'z Moments of inertia

'xy lyz' 'xz
Products of inertia

Table 2.1. Dynamics Terms

1. Center of Mass

A representative particle of mass, m
z
-, is located by its position vector, r,-, of the

reference axis. The center of mass of the system of particles is located by the position

vector, r, which, from the definition of the mass center as covered in statics, is given by



mr = Zm
i
r

i
(Eq. 2.1)

where the total mass M = Im^ [Meriam et. al., 86].

At time r, the center of mass is location in world space given by the weighted sum

-ST = -it- <P* 22)

If using the body coordinate system, the center of mass in body coordinate is at the origin.

This means that the body space is

M = (Eq. 2.3)

which means that ^m/^ = as well.

In the motion simulation, the body coordinate system is used for the following

relations. Let c(t) be the location of the center of mass in world space. Since the center of

the mass is located at c(t), the location of the i^ mass point in world space is

r,(0 = R(t)r0i
+ c(t) . At time f, since /J(*)Vm

f
r0i = R(t)0 = O, the Equation 2.2 is

Im
t
r

t
{t) Zmi (R(t)roi + c(t)) Lm

lS- =
M

= Cit)
~M

= Cit) ^ 2A)

^m^r^t) -c(0) - ^m
I
(i?(Or0( + c(0-c(0) = R(t)^m

t
r
0l

= (Eq. 2.5)

These relations enable us to consider linear translation separately from angular

orientation. Thus it is possible to combine a rotation followed by a translation without

changing the size or shape of the body. This can simplify the description of the laws of

motion.

2. Linear Momentum

The linear momentum p of a particle with mass m and velocity v is defined as

p = mv (Eq. 2.6)

Since the derivative of velocity is acceleration a, Newton's law of motion for a particle

mass can be expressed as



. dv d . ,
dp r~ <-> n\f=ma = m- = -(mv)=^ (Eq. 2.7)

This law says that the rate of change of the momentum p of a particle is equal to the force

/acting on the particle. Since/ = p for a single particle, it is obvious to expect that a similar

law holds for rigid bodies, comprised of collections of particles.

3. Angular Momentum

There should be a linear relation between the body's angular momentum and its

rotational velocity. The angular momentum depends on the choice of origin of coordinates.

The angular momentum lj(t) of the i
t^ particle of the rigid body is

l
t
(t) = (r

i
(t)-c(t))xm

i
(r

i
(t)-c(t)) (Eq. 2.8)

Thus, Itft) is the cross product of the i^ particle's displacement from the center of mass and

the momentum of the particle with respect to the center of mass. The total angular

momentum L(t) of the body is simply

L(t) = £/,(*) = £(r-U)-c(0) xm.^CO-cU)) (Eq. 2.9)

y

i i

. v velocity

/ r position

i i

^"^
}// ^J^y ^ y

z

Coc>rdinate Momentum

Figure 2.1 Cartesian Coordinate System And Momentum Of Particle



4. Inertia Tensor

The inertia tensor of a body is a 3 x 3 matrix that describes the distribution of mass

in the body. For symmetrical bodies, there are simple ways of calculating the moments of

inertia. For a box centered at the origin with width c in x, b in y and a in z, multiplying the

density by the volume gives the mass. In this case, the moment of inertia around the origin

of x-axis is

K= ^m(a 2 + 6
2
) (Eq.2.10)

Similarly for y and z-axis, I
y
= —m(a 2

+ c
2

) and I
z
= — m(b 2

+ c
2

) . The off-diagonal

terms, such as /^., are

X ^0 Z *0 ^0 z
o

2 2 2 2 2 2

and similarly for the others because the integrals are all symmetric. Thus for the

symmetrical block with width a in x, b in v and c in z, the inertia tensor matrix is

body -I o

6
2
+ c

2

a
2
+ c

2

a
2
+ b

2

(Eq.2.12)

[Baraff,91].

C. NEWTON-EULER EQUATIONS

1. Linear and Angular Acceleration

Two parts of Newton-Euler equations are the translational motion of its center of

mass and rotational motion about the center of mass. The linear momentum and angular

momentum are used in the simulation for the linear velocity and angular orientation each.

By Newton's law, the linear accelerations for* and z axis of the center of mass

are derived from Equation 2.7. If c is the vehicle's center of mass position and m is total

mass, the equation of motion for linear acceleration a is second derivative of position c.



fx = ma^ f2 = ma
z

(Eq. 2.13)

where a is in meter/second.

The torque, x, differs from a force in that the torque on a particle depends on the

location of the particle. The torque acts on the particle, i, is x = (r- (t) -c(t)) xF. By the

Equation 2.11, the products of inertia are zero. So, the rotational equations for motion about

the center of mass are,

i
x
= Ix(ax +(Iz -Iy)G>y(Ot (Eq. 2.14)

x
y
= I

y
ti>
y
+(Ix -I,)<ax(az (Eq.2.15)

x
2
= />2 +(/>

-/
I )o)jc

a)
>

(Eq.2.16)

where the vectors are expressed in the principal axis frame of the vehicle. In the simulation,

oo is in radians/second and oi in radians/second [Wilhelms, 87].

The dynamics equations are solved for new angular and linear accelerations.

These accelerations must then be integrated to find new velocities and integrated again to

find new positions.

2. Integration

The Euler method uses six equations shown in Equation 2.13, 2.14, 2.15, 2.16.

Because of real-time limitations, methods that require only a single updated evaluation of

/for each time step are currently used. The Euler method is used for the integration.

v t+&t
= v

t
+ a

t
bt (Eq. 2.17)

B
t + bt

= Q
t

+ a
t
At + 0.5(t)

t

At
2

(Eq. 2.18)

c
t + ht

= c
t
+ v

t
At + 0.5a

t
At

2
(Eq. 2.19)

where 9 and c are the orientation and position at time t and t + At

.

The Euler method has two advantages. It is simple to program and efficient. The

velocity is calculated once in a time step. Also it is efficient. This assumes acceleration is

constant over the time period. The disadvantage of the method is the assumption that the

10



velocity is varied slowly in a time step. The inaccuracy problem, discontinuity between the

current approximation speed and the next approximation speed, occurs when the time

period is large or accelerations are changing rapidly. However with reasonably small time

steps, the Euler method can produce appropriate result without too much trouble arising

[Wilhelms, 87].

In the simulation, the Euler method is used for this reason and the result is reasonable

for ground based vehicles. The other method is investigated and implemented for air

vehicles and both methods are compared in [Cooke, 92].

11



III. VEHICLE MODELING AND CONSTRAINTS

A. VEHICLE MODELING

In NPSNET, there are two types of ground vehicles: tracked and wheeled. All the

vehicles can be approximated as rectangular blocks with the same mass density. The center

of mass is assumed to be the center of the block. This assumption can reduce the dynamics

calculation without the consideration of the vehicle types. The reference and path

coordinates are shown at Figure 3.1.

Body coordinates in the simulation for the vehicle description are subject to

holonomic constraints . The direction of the wheeled vehicle is computed by its front wheel

angle, however the tracked vehicle's direction is changed by the difference between the left

and right track force. The motion of a vehicle is also limited by its constraints. In

translational motion, the maximum acceleration is not always positive, nor is the maximum

deceleration negative. This depends on the slope of the path. The engine forces of vehicles

moving on bumpy terrain need to be carefully selected in order to maintain continuous

contact with the ground as well as maintaining speed [Shiller et. al., 91].

Reference Frame Path Coordinates

Figure 3.1 Reference Frame And Path Coordinates

Holonomic constraints mean O(Cj) = (constraints in precisely this functional form

which can be used to eliminate dependent coordinates, c is body coordinates). Vehicles are

assumed to be block structures.

12



1. Tracked Vehicle

Result Motion
Result Motion

fr Applied Forces

Translation Rotation

Figure 3.2 Tracked Vehicle Acted On By Two Forces

Tracked vehicles have two internal forces to move the vehicle, the left track force

and the right track force. The two tracks of the tracked vehicle are assumed to be parallel.

The distances from the center of mass to each track are the same.

The internal forces,// and/
r , act on the vehicle at points other than the center of

mass and cause vehicle rotation as well as translation. In Figure 3.2, if left and right forces

are applied to the vehicle with the same direction and quantity, they produce translational

motion without torque. However, two equal opposite forces cause a torque without a linear

acceleration. The moments of inertia around the center of mass can be found from Equation

2.12.

The translational factor, velocity, is computed by Equation 2.17 and the vehicle

rotation about the center of mass is presented in Equation 2.15. From those equations, each

axis' velocities are

13



vx = ucosG, v2
= usinG (Eq. 3.1)

The x and z coordinates of new vehicle position can be obtained by Equation 2.19.

Rotational velocity is merely calculated by the sum of two internal forces,

ft
= fi+fr . The opposite direction force has negative value. Torque is computed by this one

force and angular orientation is obtained by Equation 2.18.

2. Wheeled Vehicle

The four-wheel vehicles with two fixed axles, such as the M-35 truck, are driven

by fixed rear wheels and steered by the front wheels. Since the vehicle is simplified as a

block structure, the motion of four wheels are neglected and the direction is computed as a

parameter of the front wheels. The moment of inertia of the wheels is neglected and the

wheels are making contact with the ground.

The wheeled vehicle model is similar to the tracked vehicle in translational

motion. But the steering angle and the vehicle orientation of the wheeled vehicle can be

derived by non-holonomic constraints [Shilleret. al., 91]. Choosing a center of mass as the

guiding point, and assuming no sliding, makes the vehicle's orientation non-holonomic

since only incremental changes for vehicle orientation and steering angle are possible.

The four tires are not treated as individual bodies, but those are considered for the

orientation of the vehicle. In Figure 3.1, the r vector is normal to the surface, t is tangent to

the path, and q is normal to both. A unit vector, n, in the rq plane is defined in the direction

of the center of path curvature. At a velocity, v, the front wheel angle moves the vehicle

along the path. In Figure 3.3, d is a distance from front axle to Center ofMass and the same

for a distance to the rear, since we assume that all vehicles' center of masses are located at

the center of vehicles.

Non-holonomic constraints mean non-integrable relations involving the coordinates.

14



The direction of the wheeled vehicle is

2d
tana =

Vp 2 -d 2

(Eq. 3.2)

where d is half the distance between the axles, and p is the distance to the Center of Turn

from the mass center. The x and z-axis of the vehicle, that are parallel to the terrain, are

determined based on the orientation and the steering angle at the previous point [Shiller et.

al.,91].

Center of Turn

Figure 3.3 Two Degree-Of-Freeedom Wheeled Vehicle Model

The angle is a function of the current vehicle position p and the desired direction

of motion t. Since p is the result of the previous motions, it can be solved for the incremental

changes in [Shiller et. al., 91].

Figure 3.4 shows the vehicle at two positions: before and after an incremental

move of As along the path from some point i. The mass center of vehicle at i+ 1 is located

at the end of the vector Ast
t
from the mass center of the vehicle at i. During movement, the

rear wheel moves along the p t
direction to a distance a from the mass center of vehicle at i.

The new location of mass center determines the orientation of the vehicle. Then /?; can be

defined as

15



p t

= cosG.^- sinG.Qj

The vehicle's new orientation at i+1 is

a As

where steering angle is

a = -As cos G
. + Jd

2 - As
2
asinG.

Consequently, the angle G.
+ 1

is

6
( + 1

= acos(pi+1 *i+1 )

The angle G.
+ 1

is used for the next computation as G.

Vehicle at i

Vehicle at /+1

(Eq. 3.3)

(Eq. 3.4)

(Eq. 3.5)

(Eq. 3.6)

Figure 3.4 Orientation Of Wheeled Vehicle By Two Positions

B. VEHICLE CONSTRAINTS

Several constraints between the vehicle and the environment are considered to ensure

vehicle dynamic stability along the path. Various forces such as friction, gravity, engine

and brake torque are included in the simulation.

The external forces acting on the vehicle consist of the friction forces between the

vehicle and ground, the normal forces and the gravity force. The total external forces are

the sum of those forces.

16



1. Engine And Brake Constraints

Engine torque produces frictional force and pushes the vehicle either forward or

backward. A positive engine torque produces a force in the direction of motion, while a

negative torque, or a braking force, produces a force in the opposite direction. This force is

bounded by the maximum equivalence engine force Fmax and maximum braking force Fmn .

Fmin <ft
<Fmax (Eq.3.7)

The force ft
is the internal force of the vehicle. The limitation of the forces is

validated by the real vehicle specification. The rpm value of the engine is changed by

internal force not the vehicle speed. The engine torque constraint limits only the

acceleration.

2. Friction

Friction is a complicated phenomenon and modeling it exactly is challenging. An

approximate treatment is good enough for most engineering purposes, and suffices to

produce visually reasonable effects on motion [Wilhelms, 88].

The tracks or wheels are making contact with the ground. At each contact point,

there are three unknown forces: two friction and one normal force. Friction forces act to

oppose tangential motion along the surface and are dependent upon the normal force

pressing into the ground.

Basically, each surface is assigned a stick angle. The intuitive meaning of this

angle is that an object will sit motionless on that surface as long as the tilt relative to gravity

is less than the stick angle. As soon as the tilt exceeds that limit, the vehicle starts to slide.

The total friction force, /ync , tangent to the xz plane, is represented in path

coordinates as
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FMc = ftt+fqQ (Eq.3.8)

where ft
and f are the components tangent and normal to the path, respectively. The

equation of motion of the vehicle can be written in terms of the tangential speed v and the

tangential acceleration a

.

ft
t+f

q
q-mgk = mknv +mta (Eq. 3.9)

where k is path curvature, g is gravitational acceleration and m is the vehicle mass. The

reaction force in the r direction when the vehicle moves along the bumpy terrain is

neglected. The projection of the external forces in the t, q, and r directions is obtained by

dot multiplying both sides of Equation 3.6 with the vector t, q and r.

ft
= mgk

t
+ ma (Eq. 3.10)

fq
= mgk

q
+ mkn

q
v
2

(Eq. 3.11)

In world coordinates, the friction forces in the xz coordinates are

Ffric-x =ft
cose-f

q
sinB (Eq. 3.12)

FfHc-z = /", sin 9 + /, cose (Eq. 3.13)

The friction force required by vehicle motion is >jFfnc _ x + F
2

fric _ z , that is divided

into dynamic friction and static friction. Dynamic friction is applied to moving vehicles and

static friction is applied to unmoving vehicles in the simulation.

3. Gravity

The effect of gravity is easily calculated given the gravitational acceleration

(about 9.81 m/sec on the earth's surface). For the center of mass on an inclined surface,

the applied gravity force is
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fgn = (0, -9.81,0) m (Eq. 3.14)

If the inclination angle is 9, then h = (-sin9,cos9,0) . That is the gravity force that applied

to the vehicle is

Fgrv = -h fgru = mg cos9 (Eq. 3.15)

If the gravity force Fgrav exceeds the friction force /ync of the unmoving vehicle on an

inclined surface, the vehicle should slide either forward or backward.

The torque due to this force acting in the body fixed coordinate frame is

Vu = cx f*r» (Eq.3.16)

while c is the center of mass and t is angular torque. This torque acts on the pitching and

rolling of the vehicle. The reaction force by this torque is neglected in the simulation.

Maximum pitching and rolling angles are determined by the slope of the terrain. Hence

during the simulation, vehicles continuously contact the ground. In Figure 3.5, 9 is

pitching angle a id 9
r

is rolling angle.

Figure 3.5 Gravity And Mass On An Inclined Surface
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IV. BEHAVIORAL CONTROL

A. ADAPTIVE MOTION CONTROL

The problem of motion planning of autonomous vehicles consists of selecting the

geometric path and keeping the appropriate vehicle speed so as to avoid obstacles. Adaptive

motion control means that the environment has an impact on the vehicle motion and vice

versa. Information about the environment and the vehicle such as location and orientation

of objects and vehicles must be available during the control process. Adaptive motion

makes possible goal-directed and constrained behavior, since it allows the user to describe

movement in terms of relations among objects and vehicles. The user only specifies the

broad outline of the motion, then the simulation system fills in the details [Zeltzer et. al.,

89].

Behavioral control is high-level control, however the motion is achieved by

dynamics. It evaluates the state of the environment and generates motion according to

certain rules of behavior [Wilhelms, 90]. In the simulation, obstacle avoidance is a basic

rule of behavioral motion. Obstacle avoidance is a simple model of adaptive motion control

and it is implemented for the autonomous vehicles in the simulation. The goals for

behavioral control are to develop effective techniques for planning and following routes

based on object information.

In NPSNET, the object locations and terrain elevations are maintained in a text format

file. Sensing detects the characteristics of obstacles in the environment and passes this

information to the vehicles and the motion control routine. Sensors have a fixed position

and orientation on the body. To save memory and improve the frame rate during the

execution, the scope of obstacle detection is limited. All fixed objects are attached to the

terrain, thus only the geometric data and object data in the field of view are used in obstacle

detection.
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B. IMPACT OF ENVIRONMENT AND VEHICLE MOTION

1. Searching Range And Detection

Obstacle avoidance motion is defined in two dimensions since all objects are

ground-based. The information available on objects is their center coordinates and radius.

We develop techniques necessary to detect obstacles with minimum delay between sensing

and acting. During the execution, the information concerning the objects is maintained as

an array. Only the objects in the field of view are kept in the array. There are more than

40,000 natural and man-made objects in the Fort Hunter-Liggett terrain database used in

NPSNET. Distance between an object and a vehicle can be obtained with a two

dimensional computation.

The field of view, as the angle in radians, about the present object heading is more than

enough. The searching angle is narrow than the field of view. The searching angle
r r

is

10 degrees. This angle gives the vehicle with speed 60 km/h approximately 12.9 meters

path corridor on the terrain.

Left

Search Triangle

Right

Search Triangle

Figure 4.1 Searching Area
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All objects are not displayed at one time. The objects which are located in the

current field of view, are shown and those are kept in the avoidance object array. The range

distance d, is determined by the speed of the vehicle.

d = dminlmum + dgpeed (Eq4.1)

where dm iminum is 20 meters and dspee(j is the vehicle speed in meters/second.

Our search heuristic is left triangle first. Only one object can be detected at one

time. The vehicle can change its path to avoid an object and then the vehicle starts the next

search.
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Determine Range Distance ();

Left_search_Angle = Vehicle Direction - HFOS;

Right_Search_Angle = Vehicle Direction + HFOS;

I* Sensing coordinates in x,z coordinates */

Sensing_position = Current_Vehicle Coordinates;

I* Determine left and right search area *l

Determine Boundary Left_Search_Area ()

;

Determine Boundary_Right_Search_Area ();

I* Lookingfor any obstacles in this area */

Left_Search ();

Righi_Search ();

if(LEFT && RIGHT) I* Detect obstacles in left and right area */

/* If the obstacles are the same one */

if'(Left Object == RightjObject)

DETECTION = LEFT;

else I* If the obstacles are different one */

/* Measure the distance between the vehicle to the obstacles *l

Left_Distance = DistanceJn_2D(Sensing_Position, Left_Object);

RightJDistance = DistanceJn_2D(Sensing_Position, RightjObject);

if (LeftJDistance >= Right_Distance)

Detection = RIGHT;

else I* Left obstacle is nearer than right one *l

Detection = LEFT;

else

if (Left)

Detection = LEFT; I* Obstacle in left area */

else if (Right)

Detection = RIGHT; I* Obstacle in right area */

else

Detection = FALSE; I* No avoidable obstacle */

Figure 4.2 Algorithm For Obstacle Detection
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2. Inverse Dynamics

The inverse dynamics problem of a moving vehicle consists of solving for vehicle

orientation and translation. Translation and orientation of the vehicle can be derived from

dynamics equations presented in Chapters II and HI.

The translational inverse dynamics problem is defined as an autocruise control in

the simulation. The vehicle velocity is fixed when autocruise mode is selected. To get an

appropriate engine force, we need the information of variance of external forces. The

engine force must change due to the change of external forces. The summation of new

internal forces of the vehicle and total external forces remains constant through the

computation. Autocruise speed is computed by this constant force, hence the vehicle

velocity is kept fixed. Autocruise speed control helps interactive user control during driving

too.

The direction of the wheeled vehicle is presented in Chapter EI. Referring to

Figure 3.4, the new locations of the mass center and the rear axle define the new vehicle

orientation [Shiller et. al., 91]. From Equation 3.4, it is possible to solve the steering angle

a that moves the mass center along path in terms of current vehicle's direction . The next

steering angle a is obtained from the Equation 3.2 and Figure 3.3.

a = atan(2tan6) (Eq. 4.2)

For the tracked vehicle, total engine force is derived from the autocruise control

routine. Then the left and right forces of the vehicle are changed until the vehicle's new

orientation matches the desired orientation. Figure 4.3 shows the algorithm for inverse

dynamics of the vehicle direction problem.
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/* For the tracked vehicle *l

if (DetectJDbject) {

Compute DesiredjDrientation();

do while (New Orientation != Desired_Orientation) {

if (Object_In_Left_Search_Tri)

Left Track Force = Left_Track_Force - Delta;

Right Track Force = Right Track_Force + Delta;

else /* Object in right search tri */

Left_Track_Force = Left_Track_Force+ Delta;

Right Track Force = Right_Track_Force- Delta;

Compute_New_Orientation();

J

}

I* For the wheeled vehicle */

if (DetectJDbject) {

Compute_Desired_Orientation();

do while (New_Orientation != Desired_Orientation) {

Compute_New Orientation(); /* Equation 4.1 */

;

j

Figure 4.3 Algorithm For Orientation And Desired Path

3. Path Determination

The desired path of the vehicle is simple. The behaviors are grouped into two

activities for the set of path determination. The first activity is to travel when the vehicle is

in a clear area, and the second is to control the vehicle when obstacles are present. When

the vehicle detects an object in the left search triangle, 7/, it changes its direction to the

right. The other case, when it detects any object in the right search triangle, it changes its

direction to the left. In the case when obstacles are presented in both the left and right

triangles, the vehicle avoids the nearest obstacle. The distance is computed two-

dimensionally. The new orientation of the vehicle is

Desired = Dcurrent ±0.25n (Eq.4.3)

where all the values are radians.
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Obstacle A

Obstacle B

Vehicle

Figure 4.4 Obstacle Avoidance Path

C. FLOW OF BEHAVIORAL MOTION

The behavioral motion control routine is shown in Figure 4.5. First, the vehicle

determines the searching distance and checks the object list whether any objects are in the

search area or not. When the vehicle detects an object in the left search triangle, it changes

its direction to the right. When it detects any objects in right search triangle, it changes its

path to the left to avoid the object. The desired direction is matched to the current vehicle

orientation, then the vehicle resumes searching again.

Motion is produced by the simplified simulation of dynamics presented in Chapter II

and III. Object avoidance control must avoid the nearest imminent obstacle. This method
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cause the vehicle to turn and collide with the neighbor obstacle, since we do not make path

planning for behavioral motion.

*

Determine Range

Sensing Object

Determine Path

yf x. ves \X Detect N, Compute

Orientation

wrong

c

no JF

^ right ^CompareV

J* <C Path .>

Figure 4.5 Behavioral Motion Control Flow
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V. IMPLEMENTATION ISSUES

A. SYSTEM OVERVIEW

Dynamic simulation has been implemented on Silicon Graphics IRIS graphics

workstations. The units of the metric system that we use in this work are found in Table 5.1.

For that reason, we convert those terms in the simulation then display in the Information

Window as user friendly terms such as degrees and km/h.

When the system is initialized, the main window displays the field of view from the

vehicle as a default. Vehicle parameters and information are shown in the upper window as

text. The flow of control of the system is illustrated in Figure 5.1.

The approach to implementing motion dynamics is pre-processing control. In pre-

processing control, two sequential steps are involved. First appropriate forces and torques

are found. All forces and torques are summed to produce a net force and torque acting on

a vehicle, and these are used in the second step, dynamic analysis. The advantage of pre-

processing is the dynamics control routines can be added and removed easily.

Display Unit Computation Unit

Acceleration kg m /sec
*->

kg m /sec

Speed Kilometers / hour meters /second

Angle Degree Radian

Mass tons kg

Length meter meter

Table 5.1 Parameter Unit Table
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Figure 5.1 System Flow Overview

B. VEHICLE PARAMETERS

The 3D vehicle objects use text based NPSOFF file format [Zyda, 91]. Since NPSOFF

is an application independent description of graphical objects, objects can be designed and

maintained by general purpose tools [Zyda et.al., 92]. To explore the motion dynamics and

behavioral simulation, the vehicle object data structure contains both graphics rendering

and motion control variables shown as the following. We use structure type for vehicle

parameters shown at Figure 5.2. Figure 5.2 shows variables and their descriptions.
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float limit_speed maximum vehicle speed

limit_rpm maximum engine rpm rate

max_power maximum engine power

min_power maximum brake power

float pos[3] position coordinates in 3-D

eye[3] view position coodinates

lookatpt[3] viewing coordinates

lookfmpt[3] viewing position coordinates

direction vehicle direction

viewdirection viewing direction

wheel_angle front wheel angle for wheeled vehicle

elev elevation data

gas remained gas amount

rpm throttle value

length vehicle length

height vehicle height

width vehicle width

cruise_speed cruise speed when the cruise control is on

float vel[3] velocity value x, y, z

scalvel speed of the vehicle

acc[3] acceleration value x, y, z

scalacc acceleration of the vehicle

force total external force to the vehicle

lforce left track force

rforce right track force

surge_force total engine force of the vehicle

drag_force total drag external forces to the vehicle

g_force external force by the gravity

net_torque net torque to the vehicle

torque total torque to the vehicle

roll rolling moment

pitch pitching moment

mass net weight of the vehicle

Figure 5.2 Ground Vehicle Structure
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C. VEHICLE MOTION CONTROL

1. Integration Of Forces

The external forces and internal forces are integrated to find new velocity and

orientation. All considered forces are defined in Chapter III. Depends on the user selection,

the integrated forces are applied to the vehicle's velocity and direction. All applied forces

are defined in Chapter III. Figure 5.3 shows the algorithm of the summation of total forces.

These forces result the accelerations using first-order equation f(t, p) described in Chapter

II. Because of real-time limitations, we use only a single updated evaluation of/ in each

time step.

2. Vehicle Speed And Direction

The vehicle speed is computed by linear acceleration using Newton-Euler

equations. Newton-Euler equation is a first order equation in the translational and angular

velocities. To compute the vehicle position and direction, we use improved Newton-Euler

equations defined in Chapter II. In kinematically based NPSNET, users can change the

vehicle speed using SpaceBall or keyboard directly. And the vehicle speed is kept as a

constant unless users do not change the vehicle speed. However in dynamic motion control,

the vehicle speed is continuously changed by external forces. This makes the user use

dynamic motion control difficult. Figure 5.4 shows the algorithm for vehicle's acceleration

and velocity. The maximum velocity is limited by the vehicle specification independently

from the variance of forces.

Figure 5.5 shows the algorithm for the computation of vehicle direction. As we

mentioned in Chapter III, the vehicle's direction is achieved by two methods, depending on

vehicle type Users can drive the vehicle using either the keyboard or SpaceBall.

The integration of all forces and vehicle speed is shown in Figure 5.6. The new

vehicle's linear and angular velocity determine the next position and direction of the

vehicle. This parameters render the next frame of the simulation.
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integration

)

{

I* compute inertia tensor *l

calc_inertia(); I* compute inertia tensor of the vehicle */

angle_momentum(); I* compute maximum roll and pitch */

sumjinearJorces(); I* compute surgeforce and dragforcefor the vehicle */

sum_angularJorces(); I* compute vehicle orientation forces */

if('.behavior) I* user interactive control *l

{

if( !cruiseJlag) I* when cruise mode off *l

{

I* compute linear and angular velocities */

calc_acceleration();

calc_velocity();

calc_torque();

calc_direction( ,);

}

else I* when cruise mode on *l

{

cruise_on(); /* cruise speed computation */

velocity = cruise speed;

calc_torque();

calc_direction();

J

}

else /* behavioral control *l

{

I* compute all the internal and externalforces */

cruise_on();

velocity = cruise_speed;

behavior_moiion();

calcjnverse_direction();

calc_torque();

calc_direction();

}

Figure 5.3 Algorithm For Integration Of All Forces
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/* compute the linear acceleration of the vehicle */

calc_acceleration()

{

/* compute acceleration by the Newton's second law F = ma* I

acceleration = force I mass;

I* divide the acceleration to x axis and z axis */

acceleration[XJ = acceleration * fcos(vehicle_direction);

acceleration[Z] = acceleration * fsin(vehicle_direction);

}

I* compute the linear velocity of the vehicle */

calc_velocity()

{

I* compute the speedfrom the acceleration in mlsec unit *l

velocity += deltatime * acceleration;

I* limit the max speed between minimum and the maximum vehicle speed *l

if(velocity <= MINSPEED) velocity = MINSPEED;

if(velocity >= MAXSPEED) velocity = MAXSPEED;

velocity[X] = velocity * fcos(vehicle_direction);

velocity[Z] = velocity * fsin(vehicle_direction);

J

Figure 5.4 Algorithm For Vehicle Acceleration And Velocity
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/* compute angular acceleration and angular velocity by Euler method w = w * dt*/

calc_direction()

{

if(vehicle_type == TRACKED)

{

I* omega = torque I inertia tensor *l

rotation = (netjorque I inertia[Y]);

dtjrot - rotation * deltatime;

direction += dtrot;

}

else I* Wheeled vehicle */

{

I* compute the difference between the wheel angle and direction */

tangle = ftan(wheel_angle);

rotation =fatan(0.5 * tangle);

I* if there are difference between the left and right forces

it should be added to the vehicle direction value */

if(left_force != rightJorce)

{

deltajrotation = (netjorque I inertia[Y]);

rotation += deltajotalion;

}

I* wheeled vehicle cannot rotate without translation */

if( velocity != 0.0)

{

dtjot = rotation * deltatime;

direction + = dtrot;

}

J

Figure 5.5 Algorithm For Vehicle Direction Computation
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D. BEHAVIORAL CONTROL

An autonomous vehicle requires perception, planning and control to act intelligently.

Behavioral control is designed to explore use of dynamics both for interactive simulation

and automatically controlled simulation. The goal of behavioral control in this simulation

is to build a vehicle that can drive autonomously in the cultural and non- cultural objects

environment. The behavior rule is avoidance of all obstacles.

The method of obstacle avoidance in this simulation is simple. Figure 5.7 shows the

process for obstacle avoidance. A vehicle's behavioral motion is assembled in sensing,

planning and control. Function details are attached in Appendix B. The flow of behavioral

motion is

Sensing: Obstacle detection, Figure 4.2

Planning: Path determination, Figure 4.3

Control: Inverse dynamics computation for vehicle movement

behavior

{

motion()

search distance =fabs( velocity * 3.6);

detect bounds(); 1* determine seraching boundary */

search object(); 1* obstacle detection */

if(detect) i* path determination */

{

ifiwhichside == LEFT)

dir value += FINE PI; 1* turn the vehicle right *l

else /* the object is on the right side *l

dir value -= FINE PI; 1* turn the vehicle left *l

}

else 1* no avoidable objects */

dir_value = 0.0;

}

inverse dynamicsf); 1* compute inverse dynamicsfor vehicle motion */

Figure 5.7 Algorithm For Obstacle Avoidance
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E. USER INTERFACES AND PERFORMANCE

User interfaces have been developed to show the current status and vehicle

information. The upper window in NPSNET displays current status of the system. The

Main Window displays the view from the vehicle as a default.

The vehicle dynamics model needs to know what the user is doing. Data acquisition

is performed on the steering, brake, and other controls that are available to maneuver the

vehicle. User input devices are shown in Appendix A.

This simulation is done in real-time. The performance of NPSNET is not affected by

dynamics. Performance of the current simulation system is approximately ten frames per

second without texturing, and six frames per second with texturing. We find the effects of

dynamic motion control are more realistic than kinematics-based control on bumpy terrain.
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IV. CONCLUSIONS AND FURTHER WORK

Current graphics workstations support visual realism and high-performance

computing. In this work, we investigate motion accuracy based on the physical laws to

improve the NPSNET vehicle simulation. We have used the dynamics of rigid bodies and

Euler equations for solving their equations of motion and a behavioral motion based on

these dynamics.

The simulation methods presented in this paper are implemented and run in real-time.

Constraint dynamics results in reasonable vehicle motion as we expected. The application

of dynamics for high-level motion control is working correctly and we can certify dynamics

for low-level motion control in the next extension of the simulation.

At present, we assume that vehicles are simple block structures to decrease the

computational complexity and the Euler equation is selected for the same reason. We have

not thoroughly explored all the possibilities for supporting the vehicle model. We do not

consider complex natural parameters for this computation such as surface characteristics of

the ground, tip-over forces and rebounding forces. For avoidnace motion, since vehicles do

not save their past paths, current behavioral motion is not quite intelligent to select optimal

path.

This work suggests a number of topics for further research. Dynamics can be used for

the low-level motion control and this can provide for many high-level control issues. The

vehicle simulation should handle multi-body vehicles. The higher performance of the

graphics workstations and dynamics can lead the vehicle simulation realistic. As hardware

performance improves, the vehicle dynamics can take advantage of the faster throughput.

And more intelligent behavioral motion is a future avenue of work.
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APPENDIX A

USER INPUT DEVICES LAYOUT

Dial Box

Gun Elevation View Direction

View Tilt

Speed

Direction

X Dial

Y Dial

Z Dial

Button Box

Drive 12 3

a
Drive 4 5 6 7 8 9nana a
Drive 10 11 12 13 14 15

D nana a
Drive 16 17 18 19 20 21anna a
Drive 22 23 24 25 26 27

Drive P Q P
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APPENDIX B

Source Code For Dynamic Motion Control

/*

* Dynamic motion control by the physics laws

* Use Eulerian method for the velocities and positions

*/

#include "vehsim.h"

#include "vehcle.h"

/* External dynamics forces variables in static */

float friction; /* Friction between the vehicle and the terrain */

float air_resist; /* Air resistance to the vehicle */

/* compute the dynamics of the vehicle the tilt and roll */

angle_momentum(vehobj)

struct vehicle *vehobj;

{

float fp[3],sp[3];

float xpos,ypos,zpos; /* x,y,z position of center of mass */

/* The pitch and roll are computed by taking a point 2 meters

in front to get the pitch and 2 meters to the right sideto get the roll */

frontpoint[X] = fp[X] = vehobj->pos[X] + fcos(vehobj->direction) * 2.0;

frontpoint[Z] = fp[Z] = vehobj->pos[Z] + fsin(vehobj->direction) * 2.0;

frontpoint[Y] = fp[Y] = gnd_level(fp[X],fp[Z]);

sidepoint[X] = sp[X] = vehobj->pos[X] + fcos(vehobj->direction+HALFPI) * 2.0;

sidepoint[Z] = sp[Z] = vehobj->pos[Z] + fsin(vehobj->direction+HALFPI) * 2.0;

sidepointfY] = sp[Y] = gnd_level(sp[X],sp[Z]);

/* get the Y position of the vehicle */

xpos = vehobj->pos[X];

zpos = vehobj->pos[Z];

ypos = gnd_level(xpos,zpos);
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/* positive pitch is when the nose goes up */

vehobj->pitch = fatan((fp[Y] - ypos)/2.0) / DEGTORAD;

if (vehobj->pitch < 0.0) vehobj->pitch += 360.0;

I* positive roll is when the right side goes down */

vehobj->roll = fatan((ypos - sp[Y])/2.0) / DEGTORAD;

if (vehobj->roll < 0.0) vehobj->roll += 360.0;

}

/*

/* compute gravity force on an inclined surface

*/

calc_gforce(vehobj)

struct vehicle *vehobj;

float pitch_angle;

float rad_angle;

pitch_angle = vehobj->pitch;

/* compute the sliding value from the pitching angle of the vehicle */

if(pitch_angle == 0.0) {

rad_angle = 0.0;

)

/* sliding force is the SIN value of the grade */

else

{

if(pitch_angle > 0.0 && pitch_angle < 90.0) /* the vehicle nose up */

rad_angle = fsin(pitch_angle * DEGTORAD);

if(pitch_angle < 360.0 && pitch_angle > 270.0) /* the vehicle nose down*/

rad_angle = fsin((360.0 - pitch_angle) * DEGTORAD);

/* f = mg x sinO in case of g=9.81 and ground elevation */

if(vehobj->scalvel != 0.0)

{

if(vehobj->scalvel > 0.0) /* if the vehicle moves forward */

{
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if(pitch_angle > 0.0 && pitch_angle < 90.0)

vehobj->g_force = (vehobj->mass * GRAVITY * rad_angle);

else

vehobj->g_force = -(vehobj->mass * GRAVITY * rad_angle);

}

else /* the vehicle moves backward */

{

if(pitch_angle > 0.0 && pitch_angle < 90.0)

vehobj->g_force = -(vehobj->mass * GRAVITY * rad_angle);

else

vehobj->g_force = (vehobj->mass * GRAVITY * rad_angle);

}

}

else /* the vehicle speed = */

{

if(vehobj->pitch > 0.0 && vehobj->pitch < 90.0)

vehobj->g_force = -(vehobj->mass * GRAVITY * rad_angle);

else

vehobj->g_force = (vehobj->mass * GRAVITY * rad_angle);

}

)
/* end g_force */

I*

I* compute the drag forces to the vehicle, friction specifically

*/

calc_drag_force(vehobj)

struct vehicle *vehobj;

(

float vel;

/* compute the air resistance to the vehicle */

/* approximate the value to the function of square of velocity */

if(vehobj->scalvel > 0.0)

air_resist = vehobj->scalvel * vehobj->scalvel * 10;

else

{

if(vehobj->scalvel != 0.0)

air_resist = -(vehobj->scalvel * vehobj->scalvel * 10);

else /* the speed is */

air_resist = 0.0;

)
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/* compute the friction between the ground and the vehicle */

/* approximation coefficient between the velocity and friction */

vel = fabs(vehobj->scalvel);

if(!SIDE_BREAK)

{

if(vehobj->scalvel == 0.0 && vehobj->scalacc = 0.0)

/* The vehicle is stalled */

friction = 0.0;

else if(vehobj->scalvel == 0.0 && vehobj->scalacc != 0.0)

/* static friction */

friction = SFRICTION + 1000.0 + (vehobj->mass);

else if(vehobj->scalvel > 0.0 && vehobj->scalacc != 0.0)

/* dynamic friction */

friction = DFRICTION + (vehobj->mass);

else if(vehobj->scalvel < 0.0 && vehobj->scalacc != 0.0)

friction = -(DFRICTION + vehobj->mass);

}

vehobj->drag_force = -(friction + air_resist);

}
/* emd drag_dorce */

/*

/* compute the engine force to the vehicle and breaking force

*/

calc_engine_force(vehobj)

struct vehicle *vehobj;

{

if(Stop_Engine == FALSE)

{

/* compute the linear translation surge force by the summation of the left and right forces */

vehobj->surge_force = vehobj->rforce + vehobj->lforce;

if(vehobj->scalvel > 0.0)

{

if(vehobj->surge_force >= MAXPOWER)

vehobj->surge_force = MAXPOWER;

if(vehobj->surge_force <= MINBREAK)

vehobj->surge_force = MINBREAK;
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}

if(vehobj->scalvel < 0.0)

{

if(vehobj->surge_force <= MINPOWER) vehobj->surge_force = MINPOWER;

if(vehobj->surge_force >= MAXBREAK) vehobj->surge_force = MAXBREAK;

}

)

else

vehobj->surge_force = 0.0;

vehobj->torque = 0.0;

}

}
/* end engine force */

/*

/* compute inertia tensor for each axis

*/

calc_inertia(vehobj,inerua,inertia_matrix)

struct vehicle *vehobj;

float inertia[6];

float inertia_matnx[3][3]:

{

/* assume that the vehicle is block wih the same mass density */

/* principal axes inertia */

inertia[X] = (vehobj->mass * (vehobj->length * vehobj->height)) / 12.0;

inertiafY] = (vehobj->mass * (vehobj->width * vehobj->length)) / 12.0;

inertia[Z] = (vehobj->mass * (vehobj->width * vehobj->height)) / 12.0;

/* secondary axes inertia in block structure */

inertia[XY] = (vehobj->mass * (vehobj->width * vehobj->height)) / 2.0;

inertia[XZ] = (vehobj->mass * (vehobj->width * vehobj->length)) / 2.0;

inertia[YZ] = (vehobj->mass * (vehobj->length * vehobj->height)) / 2.0;

* make an inertia tensor matrix */

inertia_matrix[X][X] = inertia[X];

inertia_matrix[X][Y] = -inertia[XY];

inertia_matrix[X][Z] = -inertia[XZ];

inertia_matrix[Y][X] = - inertiafXY];

inertia_matrix[Y][Y] = inenia[Y];

inertia_matrix[Y][Z] = inertia[YZ];
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inertia_matrix[Z][X] = -inertia[XZ];

inertia_matrix[Z][Y] = -inertia[YZ];

inertia_matrix[Z][Z] = inertia[Z];

}
/* end calc_inertia */

/*

* b is the determinant of 3x3 matrix a

*/

det(a,b)

float a[3][3];

float *b;

{

*b = a[X][X] * (a[Y][Y] * a[Z][Z] - a[Y][Z] * a[Z][Y])

+ a[X][Y] * (a[Y][Z] * a[Z][X] - a[Y][X] * a[Z][Z])

+ a[X][Z] * (a[Y][X] * a[Z][Y] - a[Y][Y] * a[Z][X]);

}

/*

* compute inverse matrixof 3X3 inertia matrix

*/

calc_inverse_inertia(inertia_matrix,inv_inertia_matrix)

float inertia_matrix[3][3];

float inv_inertia_mairix[3][3];

{

float d;

det(inertia_matrix,&d):

inv_inertia_matrix[X][X] = (inertia_matrix[l][l] * inertia_matrix[2][2]

- inertia_matrix[l][2] * inertia_matrix[2][l])/d;

inv_inertia_matrix[Y][X] = (inertia_matrix[Y][Z] * inertia_matrix[Z][X]

- inertia_matrix[Y][X] * inertia_matrix[Z][Z])/d;

inv_inertia_matrix[Z][X] = (inertia_matrix[Y][X] * inertia_matrix[Z][Y]

- inertia_matrix[Y][Y] * inertia_matrix[Z][X])/d;

inv_inertia_matrix[X][Y] = (inertia_matrix[Z][Y] * inertia_matrix[X][Z]

- inertia_matrix[Z][Z] * inertia_matrix[X][Y])/d;

inv_inertia_matrix[Y][Y] = (inertia_matrix[Z][Z] * inertia_matrix[X][X]

- inertia_matrix[Z][X] * inertia_matrix[X][Z])/d;

inv_inertia_matrix[Z][Y] = (inertia_matrix[Z][X] * inertia_matrix[X][Y]

- inertia_matrix[Z][Y] * inertia_matrix[X][X])/d;

inv_inertia_matrix[X][Z] = (inertia_matrix[X][Y] * inertia_matrix[Y][Z]
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- inertia_matrix[X][Z] * inertia_matrix[Y][Y])/d;

inv_inerua_matrix[Y][Z] = (inertia_matrix[X][Z] * inertia_matrix[Y][X]

- inertia_matrix[X][X] * inertia_matrix[Y][Z])/d;

inv_inertia_matrix[Z][Z] = (inertia_matrix[X][X] * inertia_matnx[Y][Y]

- inerlia_matrix[X][Y] * inertia_matrix[Y][X])/d;

)

I*

* compute torque value for rotation

*/

calc_torque(vehobj

)

struct vehicle *vehobj;

{

if(vehobj->lforce == vehobj ->rforce)

vehobj->net._torque = 0.0;

else

{

if(vehobj->scalvel == 0.0)

{

vehobj->net_torque = vehobj ->torque * 0.6;

)

else

{

vehobj->net_torque = vehobj->torque * 0.8;

}

}

if(vehobj->type == WHEELED && vehobj->scalvel == 0.0)

vehobj->net_torque = 0.0;

f*

* compute the total linear forces to the vehicle

*/

sum_linear_forces(vehobj, deltatime)

struct vehicle *vehobj:

float deltatime;

{

struct vehicle tvehpos;

tvehpos = * vehobj;
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if(Stop_Engine == FALSE)

{

calc_drag_force(&tvehpos); /* compute friction and air resistance */

calc_gforce(&tvehpos); f* compute gravity force */

calc_engine_force(&tvehpos); /* compute engine force */

)

/* compute the total forces

each forces are scalar values, so those values can be summed linearly */

tvehpos.force = tvehpos.drag_force+tvehpos.surge_force+tvehpos.g_force;

if(tvehpos.force > MAXFORCE) tvehpos.force = MAXFORCE;

if(tvehpos.force < MINFORCE) tvehpos.force = MINFORCE;

*vehobj = tvehpos;

/*

/* compute the total angular forces to the vehicle

*/

sum_angular_forces(vehobj)

struct vehicle *vehobj;

(

float abstorque;

/* compute the angular force to the vehicle by the right hand rule */

vehobj->torque = vehobj->lforce - vehobj->rforce;

/* absolute value of torque */

abstorque = fabs(vehobj->torque);

/* for the smooth motion for the wheeled vehicle */

if(vehobj->type == WHEELED && abstorque <= 100.0)

vehobj->torque = 0.0;

if(vehobj->torque >= MAXPOWER) vehobj->torque = MAXPOWER;

if(vehobj->torque <= MINPOWER) vehobj->torque = MINPOWER;

compute the linear acceleration of the vehicle
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*/

calc_acceleraiion(vehobj)

struct vehicle *vehobj;

{

/* compute acceleration by the Newton's second law F = ma */

vehobj->scalacc = vehobj->force / vehobj->mass;

/* divide the accleration to x axis and z axis */

vehobj->acc[X] = vehobj->scalacc * fcos(vehobj->direction);

vehobj->acc[Z] = vehobj->scalacc * fsin(vehobj->direction);

* compute the linear velocity of the vehicle

*/

calc_velocity(vehobj,deltatirne)

struct vehicle *vehobj;

float deltatime:

(

/* compute the speed from the acceleration in m/sec unit */

vehobj->scalvel += deltatime * vehobj->scalacc;

/* to avoid the numerical instability near speed */

if(vehobj->scalvel <= 0.3 && vehobj->scalvel >=-0.3)

vehobj->scalvel = 0.0;

/* limit the max speed between minimum and the maximum vehicle speed */

if(vehobj->scalvel <= MINSPEED) vehobj->scalvel = MINSPEED;

if(vehobj->scalvel >= MAXSPEED) vehobj->scalvel = MAXSPEED;

vehobj->vel[X] = vehobj->scalvel * fcos(vehobj->direction);

vehobj->vel[Z] = vehobj->scalvel * fsin(vehobj->direction);

}

/*

* compute angular acceleration and angular velocity by Euler method w = w * dt

*/

calc_direction(vehobj,inertia,deltaume)

struct vehicle *vehobj;

float inertia[6];

float del tadme;
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float rotation; /* rotation value by the torque */

float dt_rot; /* rotation times deltaume */

float ext_rot; I* another rotation value for wheeled vehicle */

float tangle; I* tangent angle for wheeled vehicle */

if(vehobj->type == TRACKED)

{

/* omega = torque / inertia tensor */

rotation = (vehobj->net_torque / inertiafY]);

dt_rot = rotation * deltaume;

if(dt_rot < 0.0)

dt_rot = dt_rot + DPI;

else if(dt_rot > DPI)

dt_rot = dt_rot - DPI;

vehobj->direction += dt_roU

if(vehobj->direction < 0)

vehobj->direction += DPI;

else if (vehobj->direction > DPI)

vehobj->direction -= DPI;

}

else /* Wheeled vehicle */

{

/* compute the difference between the wheel angle and direction */

tangle = ftan(vehobj->wheel_angle);

rotation = fatan(0.5 * tangle);

/* if there are difference between the left and right forces

it should be added to the vehicle direction value */

if(vehobj->lforce != vehobj->rforce)

{

ext_rot = (vehobj->net_torque / inertia[Y]);

rotation += ext_rot;

)

/* wheeled vehicle cannot rotate without translation */

if(vehobj->scalvel !=0.0)

{
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dt_rot = rotation * deltatime;

if(dt_rot < 0.0)

dt_rot = dt_rot + DPI;

else if(dt_rot > DPI)

dt_rot = dt_rot - DPI;

vehobj->direction += dt_rot;

if(vehobj->direction < 0)

vehobj->direction += DPI;

else if (vehobj->direction > DPI)

vehobj->direction -= DPI;

/*

* compute the wheel angle to direct to the desired direction

*/

calc_inverse_direction(vehobj,des_direction,deltatime)

struct vehicle *vehobj:

float *des_direction;

float deltatime;

{

float rad_direction;

float del_angle;

rad_direction = *des_direction;

if(vehobj->type == WHEELED)

{

if(vehobj->direction != rad_direction)

{

del_angle = fatan(2.0 * ftan(rad_direction));

vehobj->wheel_angle = deltatime * del_angle;

if(vehobj->wheel_angle >= 45.0)

vehobj->wheel_angle = 45.0;

if(vehobj->wheel_angle <= -45.0)

vehobj->wheel_angle = -45.0;
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else

{

rad_direction = 0.0;

)

}

else /* tracked vehicle */

{

if(vehobj->direction != rad_direction)

{

if(rad_direction > 0.0)

}

else

vehobj->lforce += (rad_direction * 10.0) * (vehobj->mass/l 000.0);

vehobj->rforce -= (rad_direcuon * 10.0) * (vehobj->mass /1000.0);

)

else /* desired direction is less than */

{

vehobj->lforce -= (rad_direction * 10.0) * (vehobj->mass /1000.0);

vehobj->rforce += (rad_direction * 10.0) * (vehobj->mass /1000.0);

}

rad_direction = 0.0;

*des_direction = rad_direction;

/*

* integrate all forces

*/

integration(vehob),cruise,behavior,deltatime)

struct vehicle *vehobj;

int *cruise;

int *behavior;

float deltatime;

{

struct vehicle tvehpos;

float inertia_body[6];

float path_direcuon;

float inertia_matrix[3][3];

int cruise_flag;
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tvehpos = *vehobj;

path_direction = tvehpos.direction; /* current vehicle direction */

cruise_flag = *cruise;

if(!*behavior)

{

if(SIDE_BREAK == FALSE)

{

I* compute inertia tensor */

calc_inertia(&tvehpos,inertia_body,inertia_rnatrix);

angle_momentum(&tvehpos); /* compute roll and pitch */

if(!cruise_flag)

{

/* compute all the internal and external forces */

sum_linear_forces(&tvehjx»s,deltatime);

sum_angular_forces(&tvehpos);

/* compute linear and angular velocities */

calc_acceleration(&tvehpos);

calc_velocity(&tvehpos,deltatime);

calc_torque(&tvehpos)

;

calc_direction(&tvehpos,inertia_body,deltatime);

)

else /* cruise on */

{

sum_linear_forces(&tvehpos,deltatime);

sum_angular_forces(&tvehpos);

cruise_on(&tvehpos);

tvehpos.scalvel = tvehpos.cruise_speed;

tvehpos.vel[X] = tvehpos.scalvel * fcos(tvehpos. direction);

tvehpos.vel[Z] = tvehpos.scalvel * fsin(tvehpos.direction);

calc_torque(&tvehpos)

;

calc_direction(&tvehpos,inertia_body,deltatime);

}

}

else /* when the side break is locked */
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tvehpos.rforce = 0.0;

tvehpos.lforce = 0.0;

tvehpos.g_force = 0.0;

tvehpos.drag_force = 0.0;

tvehpos.scalvel = 0.0;

}

}

else /* behavioral function */

{

/* compute inertia tensor */

calc_inerua(&tvehpos,inertia_body,inertia_matrix);

angle_momentum(&tvehpos); I* compute roll and pitch */

/* compute all the internal and external forces */

sum_linear_forces(&tvehpos,deltatime);

sum_angular_forces(&tvehpos);

cruise_on(&tvehpos);

tvehpos.scalvel = tvehpos.cruise_speed;

tvehpos.vel[X] = tvehpos.scalvel * fcos(tvehpos.direction);

tvehpos.vel[Z] = tvehpos.scalvel * fsin(tvehpos.direction);

behavior_mouon(&tvehpos,&path_direction);

caJc_inverse_direction(&tvehpos,&path_direction,deltatime);

calc_torque(& tvehpos);

calc_direction(&tvehpos,inertia_body,deltatime);

/* inverse dynamics for the vehicle direction */

!

I* compute miscelaneous factors of the vehicle */

calc_gas(&tvehpos,deltatime);

caJc_rpm(&tvehpos);

*vehobj = tvehpos;

)

/*

* compute the new x and z position by the linear and angular velocity

*/

new_position(vehobj,cruise,behavior,deltatime)
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struct vehicle *vehobj;

int *cruise;

int *behavior;

float deltatime;

{

struct vehicle tvehpos;

int behavior_flag;

int cruise_flag;

tvehpos = *vehobj;

behavior_flag = * behavior;

cruise_flag = *cruise;

/* compute acceleration and velocity */

integration &tvehpos,&cruise_flag,&behavior_flag,deltatirne);

/* Euler Intergration, Pn = Pn-1 + (Vt * dT) + (ACC * dT * dT / 2) */

tvehpos.pos[X] += (tvehpos.vel[X] * deltatime) + (tvehpos .ace [X] * deltatime * deltatime / 2.0);

tvehpos .pos[Z] += (tvehpos. vel[Z] * deltatime) + (tvehpos.ace [Z] * deltatime * deltatime/ 2.0);

tvehpos.pos[Y] = gnd_level(tvehpos.pos[X],tvehpos.pos[Z]);

*vvehobj = tvehpos:
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APPENDIX C

Source Code For Behavioral Motion

/*

* determine the search tri and find any objects in there

*/

#include "vehsim.h"

#include "vehcle.h"

#include "externs.h"

/* Need a variable to hold the radius of the vehicles' turning that appropriate value to avoid the object */

float RADIUS = 5.0;

int distbetween2(); /* This function finds the distance between 2 points */

int seq_search(); /* search obstacle table array */

I*

* detect non-moving obstacles

*/

detect_nonmoving_objects(vehobj)

struct vehicle *vehobj; /* actual object being checked for avoidance */

{

float radius_of_vehicle_and_object;

int xgrid, zgrid; /* gridsquare indices */

xgrid = (int)(vehobj->pos[X]/GRIDSIZE);

zgrid = (int)(vehobj->pos[Z]/GRIDSIZE);

/*

*this function constructs the search triangle given the at look at point

*/

detect_bounds(vehobj,vehdir,searchtri.advance)

struct vehicle *vehobj;

float *vehdir;

float searchtri[4][3];
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float advance;

float segdir;

float langle, rangle;

segdir = *vehdir;

/* determine the angles of the view bounds */

rangle = segdir - HFOS;

langle = segdir + HFOS;

if(rangle < 0.0) rangle = DPI + rangle;

if(langle > DPI) langle = langle - DPI;

/* compute the center vertex of the triagnle */

searchtri[2][X] = vehobj->pos[X];

searchtri[2][Z] = vehobj->pos[Z];

//* compute the left vertex of the triagnle */

searchtri[0][X] = searchtri[2][X] + fcos(langle) * (SEARCHOFFSET+advance);

searchtri[0][Z] = search tri [2] [Z] + fsin(langle) * (SEARCHOFFSET+advance);

/* compute the right vertex of the triagnle */

searchtri[l][X] = searched [2] [X] + fcos(rangle) * (SEARCHOFFSET+advance);

searchtri[l][Z] = searchtri[2][Z] + fsin(rangle) * (SEARCHOFFSET+advance);

I* compute the center vertex between the left and right vertices */

searchtri[3][X] = (searchtri[0][X] + searchtri[l][X]) / 2.0;

searchtri[3][Z] = (searchtri[0][Z] + searchtri[l][Z]) / 2.0;

}

/*

* serach obstacle array for avoidance

*/

search_object(searchtri,find_object,lrvalue,vehicle_dir)

float searchtri[4][3];

int *find_object;

int *lrvalue;

float vehicle dir;
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float leftminx/ightmmx,leftminz,rightminz;

float leftmaxx/ightmaxxJeftmaxz,rightmaxz;

float lobjx, lobjz, robjx, robjz;

int left_search,right_search,overlapped;

int intdir;

float inverse_dir, tempx, tempz;

int ldistance /distance;

I* reinitialize the flags */

*find_object = FALSE;

left_search = FALSE;

right_search = FALSE;

boundary(&searchtri[2][X],&searchtri[0][X],&searchtri[3][X],&leftrninx,&leftrnaxx);

rx)undai7(&searchtri[2][X],&searchtri[l]pC],&searchtri[3][X],&rightminx,&rightrnaxx);

boundary(&searchtxi[2][Z],&searchtri[0][Z],&searchtji[3][Z],&leftminz,&leftmaxz);

boundary(&searchtTi[2][Z],&searchtri[l][Z],&searchtri[3][Z],&rightminz,&rightrnaxz);

left_search = seq_search(&leftminx,&leftmaxx,&leftminz,&leftmaxz,&lobjx,&lobjz);

right_search = seq_search(&righUTiinx,&rightmaxx,&rightrninz,&rightmaxz,&robjx,&robjz);

/* check if the object is in between the left tri and right tri */

if((lobjx == robjx) && (lobjz= robjz)) {

overlapped = TRUE;

}

else {

overlapped = FALSE;

)

if(vehicle_dir < 0.0)

vehicle_dir += DPI;

if(vehicle_dir == 0.0 II vehicle_dir == 360.0)

intdir = 1;

> 0.0 && vehicle_dir < QTR_PI)else if(vehicle_dir

intdir = 2

else if(vehicle_dir

intdir = 3

else if(vehicle_dir

intdir = 4

else if(vehicle_dir == HALFPI)

== QTR_PI)

> QTR_PI && vehicle_dir < HALFPI)
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intdir = 5;

else if(vehicle_dir > HALFPI && vehicle_dir < THREE_QTR_PI)

intdir = 6;

else if(vehicle_dir == THREE_QTR_PI)

intdir = 7;

else if(vehicle_dir > THREE_QTR_PI && vehicle_dir < DPI)

intdir = 8;

if(overlapped)

{

switch(intdir)

{

case 1 : /* direction = or 2pi */

if(searchtri[2][X] >= lobjx)

*lrvalue = LEFT;

else

lrvalue = RIGHT;

break;

case 2: /* < direction < 0.5pi */

inverse_dir = QTR_PI - vehicle_dir;

tempx = fabs(lobjx - searchtri[2][X]);

tempz = ftan(inverse_dir) * tempx;

tempz = searchtri[2][Z] - tempz;

if(lobjz >= tempz)

*lrvalue = RIGHT;

else

*lrvalue = LEFT;

break;

case 3: /* direction = 0.5pi*/

if(searchtri[2][Z] >= lobjz)

*lrvalue = LEFT;

else

*lrvalue = RIGHT;

break;

case 4: /* 0.5pi < direction < pi */

inverse_dir = vehicle_dir;

tempz = fabs(lobjz - searchtri[2][Z]);

tempx = fabs(ftan(inverse_dir) * tempz);
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tempx = searchtri[2][X] + tempx;

if(lobjx >= tempx)

*lrvalue = LEFT;

else

*lrvalue = RIGHT;

break;

case 5: /* direction = pi */

if(searchtri[2][X] <= lobjx)

*lrvalue = LEFT;

else

*lrvalue = RIGHT;

break;

case 6: /* pi < direction < 1.5pi */

inverse_dir = vehicle_dir - PI;

tempz = fabs(lobjz - searchtri[2][Z]);

tempx = fabs(ftan(inverse_dir) * tempz);

tempx = searchtri[2][X] - tempx;

if(lobjx >= tempx)

*lrvalue = LEFT;

else

*lrvalue = RIGHT;

break;

case 7: /* direction = 1.5pi*/

if(searchtri[2][Z] <= lobjz)

*lrvalue = LEFT;

else

*lrvalue = RIGHT;

break;

case 8: /* 1.5pi < direction <= 2pi */

inverse_dir = vehicle_dir - THREE_QTR_PI;

tempx = fabs(lobjx - searchtri[2][X]);

tempz = fabs(ftan(inverse_dir) * tempx);

tempz = searchtri[2][Z] - tempz;

if(lobjz >= tempz)

*lrvalue = LEFT;

else
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*lrvalue = RIGHT;

break;

}

*find_object = TRUE;

)

else /* the object is in left tri or right tri */

{

if(left_search && right_search)

{

ldistance = dist_in_2d(lobjx, lobjz, searchtri[2][X], searchtri[2][Z]);

rdistance = dist_in_2d(robjx, robjz, searchtri[2][X], searchtri[2][Z]);

if(ldistance >= rdistance)

*lrvalue = LEFT;

else

*lrvalue = RIGHT;

}

else /* among right, left or none object */

{

if(left_search)

{

*find_object = TRUE;

*lrvalue = LEFT;

}

else

(

if(right_search)

{

*find_object = TRUE;

*lrvalue = RIGHT;

}

else /* !left_search && !right_search */

{

*find_object = FALSE;

}

}

}
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I* the outer else */

seq_search(minx,maxx,minz,maxz,objx,objz)

float *minx, *maxx, *minz, *maxz, *objx, *objz;

{

int ix;

float tempobjx, tempobjz;

for(ix=0;ix<= 100;ix++)

{

tempobjx = avoidlist[ix].center[X];

tempobjz = avoidlist[ix].center[Z];

f(tempobjx >= *minx && tempobjx <= *maxx &&
tempobjz >= *minz && tempobjz <= *maxz)

*objx = tempobjx;

*objz = tempobjz;

i

return(TRUE);

}

retun

)

n(FALSE0;

I*

* determine the minimum and maximum number among the three floating point numbers

*/

boundary(x 1 ,x2,x3 ,minno,maxno)

float *xl,*x2,*x3;

float *minno,*maxno;

{

float ix,jx,kx;

ix = *xl;

jx = *x2;

kx = *x3;

*minno = ix;

*maxno = ix;
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if (jx < *minno) *minno = jx;

if (jx > *maxno) *maxno = jx;

if (kx < *minno) *minno = kx;

if (kx > *maxno) *maxno = kx;

/*Lhis function computes the 3D distance between two points, it returns an interger*/

dist_in_2d(subjectx,subjectz,objectx,objectz)

float subjectx,subjectz,objectx,objectz;

(

float distx.distz;

int dist;

distx = subjectx - objectx;

distx = distx * distx;

distz = subjectz - objectz;

distz = distz * distz;

dist = (int)fsqrt((distx+distz));

return(dist);
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