
Using AbuseFilter
extension to combat
vandalism on a wiki

[[User:Daimona Eaytoy]]
SWT Indic Workshop Series
6 December 2020

a.k.a.

How to fight vandalism
without lifting a finger

(almost)

a.k.a.

...

Font by Boba Fonts on fontmeme.com

A long time ago in a wiki far,
far away….

What are we going to need?

[[User:Snaily]], CC-BY-SA-3, via Commons

Except it’s this

No, it doesn’t have a logo ¯_(ツ)_/¯

*

* a.k.a. “edit filter” on enwiki

How does it work exactly?

● You write a rule in a simple scripting language, that
will be checked for each edit (1);

● You specify a set of actions (“consequences”) to be
taken if the rule matches;

● Rinse and repeat as many times as you want (2).

(1) and also other actions
(2) there’s a limit, but it’s hard to reach

You need some privileges to do this.
On most wikis this is restricted to
administrators, sometimes there's a
specific group of AbuseFilter editors

Rules

For that, see

Language

● Language is easy to learn and to read
● Quite powerful, but nowhere near a “full”

programming language (for the good and the bad parts)
● Pro tip: the language is not Turing-complete

What rules looks like

Ingredients
Like human languages have nouns, verbs, etc., programming
languages have some components:
● Literals (42, 'force', true, ...)
● Operators (+, -, &, |, ===, ==, !, …)
● Keywords (in, like, …)
● Functions (contains_any, count, substr, …)
● Built-in variables (new_wikitext, user_name, page_title, ...)

Data types

Some components of the language can have a type.
Intuitively, 42 has the type “number”, and “I am your father”
has the type “string”.

This is also true in programming languages, with some
additional types.

Data types
● Integers: 0, 1, -67, 42
● Floats (“decimals”): 0.1, 3.14, -51.798
● Strings: "foo", 'bar' (can use single or double quotes)
● null (means something is empty)
● Boolean: true and false (truth values)
● Array: ['foo', 3, false] (list of values of any type)

Casting

From left to right:
● [[User:Ab5602]], CC-BY-SA-3, via Commons
● [[User:Maplestrip]], CC-BY-SA-4, via Commons; writing added by myself
● Alison Martin of SimonCowellOnline.com, CC-BY-SA-2, via Commons

Casting

From left to right:
● [[User:Ab5602]], CC-BY-SA-3, via Commons
● [[User:Maplestrip]], CC-BY-SA-4, via Commons; writing added by myself
● Alison Martin of SimonCowellOnline.com, CC-BY-SA-2, via Commons

Casting
Transforming a type in another, in some “natural” way.
An example is worth 1000 words
● Integer to float: 3 → 3.0
● Integer to string: 3 → '3'
● String to integer: '3' → 3
● Boolean to integer: true → 1, false → 0
● String to boolean: 'foobar' → true, '' → false

Core idea

● You start with variables to get info about the edit
● Variables can be manipulated with functions
● You compare the value to some “expected” value
● Conditions like these can be joined together logically (i.e.

“A and B” vs “A or B”)

Variables
Variables is where the whole process begins: they're like
buckets, each one has a name and a (pre-filled) value.
Depending on your intentions, you’ll have to figure out what
variables to use. And to do that, you need to know what the
(main) variables are.

Variables
Variables can be broken down into four groups:
● About the page being edited
● About the user performing the edit
● About the edit itself
● Generic

Page-related variables

These variables offer generic information about the page.
Their names start with “page_”; in the past, it was
“article_” (keep this in mind if you're reading old guides).

Page-related variables

● page_title - The title of the page, without namespace
“Wikipedia:Five pillars” → “Five pillars”

● page_namespace - The (numeric) namespace of the page
“Wikipedia:Five pillars” → 4

● page_prefixedtitle - Title with namespace
“Wikipedia:Five pillars” → “Wikipedia:Five pillars”

Page-related variables

You’re not going to need these very often, but:
● page_id - Unique ID of the page, from action=info
● page_age - Number of seconds since page creation
● page_recent_contributors - List of usernames
● page_last_contributor - Single username

User-related variables

These variables offer generic information about the user
performing the edit. Their names start with “user_”.

User-related variables

● user_name
● user_editcount
● user_groups - All user groups, even “automatic” ones

Example: ["*", "user", "sysop"]
● user_rights - List of rights for those groups

Example: ["read", "edit", "createaccount"]

Edit-related variables

These variables offer generic information about the ongoing
edit. There's no fixed prefix for these.

There are other variables for actions other than edits, but
we're not going to cover those.

Edit-related variables

● summary - Note: it doesn't include the auto-generated part
Example: "/*XYZ*/ new section" → "XYZ"

● old_wikitext, new_wikitext
● old_size, new_size - Numeric, in bytes
● edit_delta - Integer (can be negative), difference of the above

Edit-related variables
● added_lines, removed_lines - These are very useful,

but very confusing at first. They represent things that are
highlighted in the diff view. Each of these is a list of added
[removed] lines, but can be thought of as a string of
everything that was added [removed].

added_lines / removed_lines

Caveats:
● Not everything in added_lines [removed_] was really

added [removed];
● Text in these variables is not transformed (signatures aren't

expanded, nor are pipe tricks, subst, etc.)

added_lines / removed_lines

removed_lines:
● "Second line of txt"
● ""
● "Sixth line of text"

added_lines:
● "Second line of text"
● ""
● "Third line of text"

Removed

Added

Edit-related variables
● added_links, removed_links - Same format and

similar caveats as added_/removed_lines (if you change a
link, it will be in both added_ and removed_). Links are
taken from the wikitext parser, so it won't be tricked e.g. by

“<nowiki>https://example.org</nowiki>”.
● old_links, all_links - Where “all” means “new version

only”.

Generic variables

Anything that doesn't fit the previous categories :-)

Generic variables
● action - What action is being performed. One of:

'edit', 'move', 'createaccount', 'delete',
'autocreateaccount', 'upload', 'stashupload'

● timestamp - UNIX timestamp of the edit, = number of
seconds since Jan 1 1970 (you can find converters online)

Example: 15 Jan 2001 00:00 → '979516800'

Functions
Functions let you manipulate “expressions” in various ways.
Think of a function as a black box, you put something in
(“arguments”), and it spits something else out, depending on
what you gave it. Somehow similar to math functions, if you're
familiar with calculus.

An “expression” can be a variable, the result of calling another
function, etc.

Functions
There's a lot of built-in functions to cover most use cases.

We're only going to examine a selection of commonly-used
functions.

Functions
● lcase(x), ucase(x) - Convert x to lowercase [upper]

lcase('DARTH Vader') → 'darth vader'
ucase('DARTH Vader') → 'DARTH VADER'

● length(x) - Length of a string, or number of items in a list
length('Leia') → 4
length(['Luke', 'Anakin']) → 2

Functions
● ccnorm(x) (l33t killer) - Replaces confusable

characters in x (and capitalizes it)
ccnorm('I h4x0r u n00b') → 'I HAXOR U NOOB'

● norm(x) - Like ccnorm, but also removes doubles,
special characters, and whitespace. Truly a sledgehammer.
norm('!ω.ɨƙ ɩ. Ɛ.Ɖ@1%α!')ᑭᑭ → 'WIKIPEDIA'
norm('http://000.op') → 'HTPOOP' (!)

Functions
● count(x,y) - How many times x is found in y

count('a', 'I are a lolcat') → 3
● rcount(x,y) - Same as count, but x is a regexp

rcount('[a-z]', '123baz') → 3

Spoiler: r means
“regexp alert”

Functions
● contains_any(x,a,b,c,...) - Whether x contains

any of a, b, c, ...
contains_any('foobar', 'goat', 'cat', 'bar') → true
contains_any('foobar', 'goat', 'cat') → false

● contains_all(x,a,b,c,...) - What is says on the tin
contains_all('foobar', 'cat', 'bar') → false
contains_all('foobar', 'foo', 'bar') → true

Functions
● equals_to_any(x,a,b,c,...) - Whether x is the

same of any among a, b, c, ...
equals_to_any('foo', 'bar', 'baz', 'foo') → true
equals_to_any('foo', 'bar', 'baz') → false

Variadic
=

The sky's the limit

Variadic
=

The sky's the limit
PHP process memory

Functions
● strpos(haystack,needle)

[[User:Sad loser]], CC-BY-SA-4, via Commons

??

Functions
● strpos(haystack,needle) - Get the position in which
needle is found inside haystack, starting from 0
strpos('Join the dark side', 'force') → false
strpos("It's a trap", 'trap') → 7

It's a trap
012345678910

Functions
● substr(str,start,len) - Extract from str the

substring starting at position start and of length len
substr('Dark side', 5, 4) → 'side'

Dark side
012345678

side

Keywords

Think of them as functions…

...but without parentheses.

And they only take two arguments, one on the
left of the keyword, and one on the right.

Keywords
● X in Y - Whether the string X is contained in the string Y

'bi' in 'Obi-Wan' → true
'Luke' in 'Darth Vader' → false

Essentially equivalent to manipulating the result of
strpos(Y, X)

but more readable, isn't it?

Keywords
Caveat: For lists, it doesn't work as you might expect!

'Han' in ['Han', 'Chewie'] → true
'n\nC' in ['Han', 'Chewie'] → true (!)

What is happening is: the elements in the list are “glued”
together with line breaks ('\n'), so internally what it does is:

'n\nC' in 'Han\nChewie' → true

Keywords
● Y contains X - Same as in, but in reverse order

● 'Obi-Wan' contains 'bi' → true
'Darth Vader' contains 'Luke' → false

The order is really the only difference, so everything still
applies here.

Keywords
● X rlike Y - Whether the string X matches the regular

expression Y
'The answer is 42' rlike 'The answer is (not)? \d+' → true
'And the question?' rlike 'The answer is \d+' → false

Caveat: It is case-sensitive
'YODA' rlike 'yoda' → false

Spoiler!

Keywords
● X irlike Y - Like rlike, but case-insensitive

'The answer is 42' rlike 'The answer is (not)? \d+' → true

'YODA' irlike 'yoda' → true

"it's a trap" irlike 'a TRAP' → true

Spoiler: i means
“case-insensitive”

Keywords

Medical disclaimer: Once you'll be writing filters daily, you'll
start seeing irlike's everywhere.

And for a good reason: it's darn useful.

I aM vANdaLizIng ThE WikI

irlike 'i am vandalizing the wiki' → true

Avoiding non-free images

Warning: this slide contains Comic Sans elements

sO VerSaTIlE, aS I sAId

Now we have the ingredients.
Enter the mixer:

Operators
Operators act as glue for expressions.
There are 3 main types of operators, depending on how they
glue things together:

● Arithmetic operators (+, -, *, /, %, **)
● Comparison operators (<, <=, >, >=, =, ==, ===, !=, !==)
● Logical operators (!, &, |, ^)

Arithmetic operators
Allow manipulating numeric (integer or float) values. As you
would probably expect.

● Addition: +, subtraction: -, multiplication: *, division: /
● Power: ** → 2 ** 4 = 2 * 2 * 2 * 2 = 16
● Modulo: % → “remainder of Euclidean division”

Remind... of what??

Modulo

“X (mod m)”, a.k.a. “X % m” means: divide X by m with
remainder. The remainder is the result of the modulo.

● 87 % 14 = ? → 87 = 14 * 6 + 3 → 87 % 14 = 3
● 84 % 14 = ? → 84 = 14 * 6 + 0 → 87 % 14 = 0

How mathematicians
write it How computer

scientists write it

The maximum possible to
have a non-negative remainder

Modulo (properties)
Assuming “X (mod m) = Y”:
● Y is always between 0 and m-1
● Y is 0 iff m is a divisor of X
● Examples: tell if a number is even, extract hour from timestamp

(idea: if you add 24 hours to now, the hour remains the same)
● A lot of beautiful other properties, but they don't fit in this slide

Gauss and Galois be praised

Approved

… and Fermat, too

Comparison operators
Allow testing whether two values are equal/different.

● Inequalities: <, <=, >, >= - What you expect
● Equality: (=,) ==, ===, !=, !==

● The “!” means “different”, graphic representation of ≠
● Why keep adding =s? What about ============ ?

Comparison operators
== is a “loose comparison”. === is a “strict comparison”. The
latter checks not only the values, but also the types.

In fact, the former casts its operands to strings before doing the
comparison. You should almost never use it.

Comparison operators
● 'Luke' == 'Luke' → true
● 1 == '1' → true
● 3.14 == 3.14 → true
● true == 1 → true
● null == false → true

● 'Luke' === 'Luke' → true
● 1 === '1' → false
● 3.14 === 3.14 → true
● true === 1 → false
● null === false → false

Logical operators
What really allows gluing expressions together.

● NOT: !
● AND: &
● OR: | (inclusive OR, Latin vel)
● XOR: ^ (eXclusive OR, Latin aut)

Logical operators
Truth table

X Y !X X & Y X | Y X ^ Y
false false true false false false

false true true false true true

true false false false true true

true true false true true false

One last word on ambiguity
When creating programming languages (which goes well
beyond the scope of this talk), you must pay attention to
ambiguity. You might wonder what could be ambiguous here.

Apparently trivial question: what does 1 + 2 + 3 means?
● Add 1 and 2, then add 3 to the result (LTR)
● Add 3 and 2, then add 1 to the result (RTL)

One last word on ambiguity
Wait. Isn't it the same? Well, yes, but actually no.
In this specific example, it is the same just because addition (of
[complex] numbers) is an associative (and commutative) operation:

(1 + 2) + 3 = 1 + (2 + 3)

Are there non-associative operations? That is, without digging
into exoteric abstract algebra?

One last word on ambiguity
Yes: what about

true | true & false ?
● true | true is true. And true & false is false
● true & false is false. And true | false is true
And it gets even worse if you mix up different operand types:

true | true === false

One last word on ambiguity
So how to resolve this?

People who create programming languages choose a predefined
order, that is usually LTR, plus an order in which operators are
checked (e.g. comparison first, then logic; think of arithmetic).

What if you want to change the order locally?

Parentheses to the rescue
It works exactly the same as for mathematical operations: you
add parentheses to specify the order you want. If you don't use
parentheses, the default ordering is used.

● true | (true & false) ← Forces RTL
● (true | true) === false ← Forces | before ===

Parentheses to the rescue

Pro tip: parentheses usually make the code more readable. Never
be afraid to use them, unless the operator precedence is obvious.
You also don't need to remember operator precedence, as long as
you use parentheses.

Now we have everything
that we need

Putting it all together
The “tools” presented so far will allow you to formally express a
set of conditions about a given edit. This is what we're going to
use when writing rules.

Time will teach you how to put things together in the best way
possible. Usually, you have multiple ways to do that.

Base logo via Commons in PD-logo
Completed with a font by Cyril Bourreau from fontmeme.com

What rules looks like
now that we know how to read them

Consequences

Consequences
Each filter has its own enabled consequences. When the
rules match an edit, all consequences are activated.

An “automatic” consequence (that cannot be disabled) is
logging the filter match in a dedicated log.

What consequences looks like

Warn
Throttle

Disallow
(Blockautopromote)
Block
Tag

Disallow
Prevents the edit from being saved, showing a custom message
to the user.

Disallow
The messages used must be in the MediaWiki namespace, and
should be named “MediaWiki:Abusefilter-disallowed-XYZ”,
where XYZ can be anything.

You can use custom formatting etc. inside messages.

Disallow

Warn
Prevents the first edit attempt, but allows saving if the user
clicks “Save” again.

Warn
Like for “disallow”, the messages used must be in the MediaWiki
namespace, but this time they should be named
“MediaWiki:Abusefilter-warning-XYZ”, where XYZ can be
anything.

You can use custom formatting etc. inside messages.

Warn
The user experience is also identical to “disallow” for the first
edit attempt. The second attempt depends on what other actions
are enabled for the filter. To put it simply, the result on the
second attempt is what you'd get if warn wasn't enabled at all.

Tag
Adds some change tags to the edit, if it can be saved. The user
won't get any warning.

This tag was already selected

Type here and hit Enter to add another tag

Block
Blocks the user with given expiry. Often useful, but use with
care! You don't want to abuse this.

Block
The block will be issued immediately, before saving the edit. It
will be logged as performed by a fake user, named e.g. “Abuse
filter” (localized).

Block

Throttle
By far the most complicated consequence, but very useful.
Using throttle, you “allow” a certain number of edits, until some
conditions are met (similar to “warn”). These conditions are
preserved between different edits. “Allow” means: any other
action of that filter is temporarily disabled.

Three parameters: count, period, and groups.

Throttle
Count

Period

Groups

Throttle
The options for “groups” are complicated. To explain, let's
suppose that you can only specify a single throttle group, “user”.

In reality, there are more options, and they can be combined
logically, but it's not hard to understand once you get the basic
idea.

High-quality graphics™

Throttle

Bucket by [[User:REisemann3937]], CC-BY-SA-3, via Commons

Buckets for filter X

Throttle

Bucket by [[User:REisemann3937]], CC-BY-SA-3, via Commons
(...)

Buckets for filter X
Buckets for other filters

Throttle

Bucket by [[User:REisemann3937]], CC-BY-SA-3, via Commons

Count

Throttle

Bucket by [[User:REisemann3937]], CC-BY-SA-3, via Commons
Stopwatch by Emoji One, CC-BY-SA-4, via Commons

Count

Period

Throttle

Bucket by [[User:REisemann3937]], CC-BY-SA-3, via Commons

User 1 User 2 User 3 User 4 User 5

Throttle

Bucket by [[User:REisemann3937]], CC-BY-SA-3, via Commons

User 1 User 2 User 3 User 4 User 5

Throttle

Bucket by [[User:REisemann3937]], CC-BY-SA-3, via Commons

User 1 User 2 User 3 User 4 User 5

Throttle

Bucket by [[User:REisemann3937]], CC-BY-SA-3, via Commons

User 1 User 2 User 3 User 4 User 5

Throttle

Bucket by [[User:REisemann3937]], CC-BY-SA-3, via Commons

User 1 User 2 User 3 User 4 User 5

Throttle
The limit was hit. If the user trips this filter another time, every
other action of that filter will be activated.

Note that throttle alone without other actions is not useful,
because you need to specify what should happen once the limit
is reached.

Throttle
Ideas for what's left:

● Add more types of buckets: “page”, “creationdate”, “site”
● Have a single bucket take more than one type: “user” + “page”,

so the same user must edit the same page for the level to
increase

● Have buckets of different types, but the limit is reached once
the first type reaches capacity (regardless of the others)

Now we know things in theory

But what about the practice?

Interface
AbuseFilter provides several special pages. Some are actually
subpages of a special page.

● Special:AbuseFilter (lists active filters)
● Special:AbuseFilter/42 (for editing filter 42)
● Special:AbuseFilter/test (test a filter against recent changes)
● Special:AbuseFilter/tools (evaluate a filter rule)
● Special:AbuseFilter/import (see links at the end of the presentation)

● Special:AbuseLog (“special” log of all filter hits)

Special:AbuseFilter

List of all active filters, in tabular format.

The list is searchable and sortable (useful there are many filters).

Handy navigation links

What it says on the tin

Search options

One filter per row

Special:AbuseFilter/1

Page for editing the filter number 1 (replace with ID of your
interest).

Special:AbuseFilter/new is for creating a new filter (same
interface).

...

Filter ID: unique (and reliable) identifier

Filter name: user-friendly identifier

Rules - the heart of the filter

Check rules
validity

Old-style editor, plain text box. Useful
for certain characters, or mobile web
interface.

...

...
Notes - to explain the intentions of the
filter, what changes you made, link to

examples, etc.

Filter flags. “Hidden” is vital for
many kinds of filters

...

Actions (already covered before)

Don't forget to save!

Special:AbuseFilter/test
Test a rule against 100 recent edits.
Always use it before creating a new filter, or modifying an
existing one!

Straightforward interface, 90% of the times it's just:
● Enter rules
● Hit “test”

Special:AbuseLog

List of every filter hit. “Special” log, not entirely publicly
viewable.

Lots of search options, by filter ID, by action taken, by target
user/page, etc.

Special:AbuseLog
Search options (click to expand)

Filter IDs Target page Filter names

Handy links

Tricks of the trade

Pitfalls

Some common mistakes that even the most experienced filter
editors might make.

For a good list, see https://w.wiki/oqs (help page on enwiki).

https://w.wiki/oqs

Pitfalls
One very common mistake is to use the edit_delta variable
without checking if the action is an edit. For if the action is not
an edit, edit_delta is null, and

edit_delta < -100000

is true, because null is “smaller” than every number.

Performance

Usually you should not worry about performance (see WP:PERF
on enwiki), but you should know that some variables require
quite a lot of time to be computed.

Fancy graphs are available at https://w.wiki/oqz

https://w.wiki/oqz

Performance

Some examples of slow variables are
page_recent_contributors and variables that contain the
links on the page (e.g. added_links). Think twice before using
them, but don't be scared, and do use them if you need to.

Performance

Another optimization is taking advantage of “short-circuiting” by
putting first the conditions that are less likely to be true (with the
AND operator), or more likely to be true (with the OR operator).

There's no time to discuss it, but keep this in mind if you read
these slides again after having learned some more syntax.

Tips and tricks
● Always check user_groups. Most filters are meant to address

vandalism of spam, which usually comes from non-confirmed
users. Check this with
!("confirmed" in user_groups)

This is also necessary to avoid false positives, i.e. blocking an
experienced user by mistake.

Tips and tricks
● To check whether some text was added, always check

added_lines AND removed_lines, to ensure that it wasn't
already present (remember that added_lines is not a faithful
representation of what was added). To see if “vader” was added:

added_lines contains "vader" &
!(removed_lines contains "vader")

Tips and tricks
● When you create a new filter, do not enable any action. Let it

run for a few days, monitor which edits it matches, and tweak it
if necessary. Enable “destructive” options (e.g. block, disallow)
only when you're confident that the filter will have close to 0
false positives.

Limitations
AbuseFilter is powerful, but it can't do everything. Notable
examples of things it can't do while filtering an edit:

● Get information about a past edit
● Get any information that is not stored in a built-in variable
● Completely replace manual intervention!
● But if you think a feature is missing, you can file a task on

Phabricator

Examples

Where can I test a filter?
Testing a filter for real would require using a real wiki, and then
checking the filter against recent changes (using /test).

We won't be doing this because:
● We'd need to set up privileged accounts on a wiki
● We'd need the recent changes of that wiki to match the filters

that we want to test

Where can I test a filter?

This would be too complicated, so take it as a mental exercise for
being able to understand a filter without trying it.

Most of the examples use syntax highlighting so it's easier to
recognize variables, functions etc.

Example 0
Fool me once: what does the following filter do?

!("confirmed" in user_groups &
page_namespace === 0

Example 0
Fool me once: what does the following filter do?

!("confirmed" in user_groups) &
page_namespace === 0

Nothing, there's a missing parentheses :-)
Always use that "check syntax" button. Some logic error won't be
detected, thus double-checking is always a good idea.

Example 1
Rewind: what does the following filter do? (Now with missing ")")

!("confirmed" in user_groups) &
page_namespace === 0

Example 1
Rewind: what does the following filter do? (Now with missing ")")

!("confirmed" in user_groups) &
page_namespace === 0

Answer: it finds edit by non-confirmed users on the mainspace.

Example 2
Play it again, Sam: what does the following filter do?

Example 2
Play it again, Sam: what does the following filter do?

● User is not confirmed;
● Page is in the mainspace;
● Page was big and is now

small, OR ratio of removed
content is high;

● The new content of the
page doesn't contain "cats"
nor "lolcats".

Example 3
Against all odds: what does the following filter do?

Example 3
Against all odds: what does the following filter do?

● User made less than 12 edits;
● Page is now short;
● Page is a talk (odd namespace);
● Page was not short;
● Page title doesn't contain the

current user's name;
● Page is not a user talk;
● Page wasn't made a redirect;

In short, new users blanking non-
user talk pages.

Example 4
Our time is running out: what does the following filter do?

Example 4

● User is not a sysop;
● Namespace is 0, 2, 3, or 10;
● (At least) one of:

● “poop” was added (normalizes
confusable characters);

● 3 or more links were “added”;
● 1000 or more bytes were removed
● Earlier than 7 a.m. UTC

Our time is running out: what does the following filter do?

Useful guides
● https://w.wiki/oy7 ([[:mw:Extension:AbuseFilter/Rules format]]), a

complete guide with all variables, functions, examples, tips, etc.
● https://w.wiki/oy8 ([[:mw:Extension:AbuseFilter/Actions]]),

describes actions, especially “throttle”.
● https://w.wiki/oyA ([[:meta:Small wiki toolkits/Starter

kit/AbuseFilter]]), quick tutorial

https://w.wiki/oy7
https://w.wiki/oy8
https://w.wiki/oyA

THANK YOU
And may the force be with you

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118
	Slide 119
	Slide 120
	Slide 121
	Slide 122
	Slide 123
	Slide 124
	Slide 125
	Slide 126
	Slide 127
	Slide 128
	Slide 129
	Slide 130
	Slide 131
	Slide 132
	Slide 133
	Slide 134
	Slide 135
	Slide 136
	Slide 137
	Slide 138
	Slide 139
	Slide 140
	Slide 141
	Slide 142
	Slide 143
	Slide 144

