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Solving the static equilibrium position is one of the most
important parts of dynamic coefficients calculation and further
coupled calculation of rotor system. The main contribution
of this study is testing the superlinear iteration convergence
method—twofold secant method, for the determination of the
static equilibrium position of journal bearing with finite length.
Essentially, the Reynolds equation for stable motion is solved
by the finite difference method and the inner pressure is
obtained by the successive over-relaxation iterative method
reinforced by the compound Simpson quadrature formula. The
accuracy and efficiency of the twofold secant method are higher
in comparison with the secant method and dichotomy. The
total number of iterative steps required for the twofold secant
method are about one-third of the secant method and less than
one-eighth of dichotomy for the same equilibrium position. The
calculations for equilibrium position and pressure distribution
for different bearing length, clearance and rotating speed were
done. In the results, the eccentricity presents linear inverse
proportional relationship to the attitude angle. The influence
of the bearing length, clearance and bearing radius on the load-
carrying capacity was also investigated. The results illustrate
that larger bearing length, larger radius and smaller clearance
are good for the load-carrying capacity of journal bearing.
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The application of the twofold secant method can greatly reduce the computational time for
calculation of the dynamic coefficients and dynamic characteristics of rotor-bearing system with a
journal bearing of finite length.

1. Introduction

A journal bearing is the main supporting component required for the stability and sustainable
dynamic characteristics of the rotor system [1-5]. Many researchers are devoted to analysing the
lubrication mechanism in a journal bearing. On the basis of fluids continuity equation and viscous
fluid motion equation, Reynolds [6] proposed his equation, which laid the theoretical basis of fluid
lubrication mechanism for journal bearing. The dynamic characteristics of journal bearing received
considerable attention when Newkirk and Taylor found the unstable vibration phenomenon in journal
bearing caused by the oil film [7,8]. They called this unstable phenomenon ‘oil whip’. Concurrently,
Stodola regarded the fluids oil film as a simple spring support, but the model could not have
explained the observed finite amplitude of oscillation of a shaft operating at a critical speed [9].
Hagg and Sankey [10,11] represented the dynamic characteristics of a journal bearing by means
of two positive stiffness and two positive damping coefficients. Subsequently, Lund and Sternlicht
[12-14] proposed the eight dynamic coefficients model, which improved the calculating model of a
journal bearing and widely adopted in the current calculations of the rotor’s dynamic characteristics
(table 1).

The introduction of the dynamic characteristic coefficients was greatly convenient for the coupled
solution of a rotor-bearing system. Considering the difficulty of direct solution of the analytical Reynolds
equation, the short theory was applied for the engineering calculations. Alnefaie [15] researched the start-
up and steady-state dynamics of a rotor supported by fluid film bearings. In this set-up, the bearing was
viewed as short-plain cylindrical bearing, for which different damping ratios caused super-harmonic
oscillations. Using the approximation for a short bearing, Chang-Jian and Chen [16,17] obtained the
nonlinear bearing force by direct integration, which was used to facilitate the dynamic vibration of
nonlinear suspension rotor. Li et al. [18] calculated the dynamical characteristic coefficients of a journal
bearing by adopting the theory of a narrow bearing and Giimbel boundary conditions. In this research,
the dynamic performance of multi-stage rotor system was also simulated for the varying dynamic
coefficients and geometric parameters of journal bearings. Adiletta et al. [19] proposed the nonlinear
dynamic model of short journal bearing under the hypothesis that the lubrication film was laminar
and isothermal. The model is commonly used for a rotor system because of its good convergence and
accuracy [4,20-23].

In fact, the short bearing theory was just suitable for the bearing with a small length-diameter
ratio. Muszynska and Bently [24,25] proposed a simplified nonlinear fluid dynamics model that
considered the circulating velocity as the key factor affecting the dynamic characteristics of a fluid film.
Although the model overcame the deficiency of a short bearing compared with other bearing models,
it could be adopted only for continuous fluid film, thus it is widely used to describe the nonlinear
sealing force in a rotor system [26-28]. The finite difference method (FDM) [29,30], partial derivative
method (PDM) [31,32] and finite element method (FEM) [33,34] are the common solving methods
for eight dynamic characteristics of a journal bearing with finite length. These dynamic coefficients
are important for testing the dynamic model of the rotor system with a journal bearing of finite
length.

The equilibrium position is the key for solving the dynamic coefficients of a journal bearing with finite
length. In order to obtain the dynamic coefficients of this bearing, the equilibrium position has to be
found first [35]. Unfortunately, there are various degrees of calculation efficiency problem in the current
numerical methods that determine the static equilibrium position. Therefore, in order to improve the
computational efficiency of the dynamic coefficients for journal bearings of finite length and the dynamic
characteristics of rotor system, in the present study, effort was made to numerically determine the
equilibrium position of a journal bearing by the twofold secant method. Moreover, comparative study is
done among the results of convergent iteration steps solved by the twofold secant method, secant method
and dichotomy to reveal the high efficiency of the proposed superlinear iteration method. The effects
of journal length, clearance and rotating speed on equilibrium position and pressure distribution were
researched by the twofold secant method. Finally, analysis of the load-carrying capacity of journal
bearings with different geometric parameters is also studied.
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Table 1. Nomenclature. n
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2. Forces in the fluids film of the journal bearing

2.1. The dimensionless Reynolds equation

Figure 1 shows the geometry of a journal bearing and the coordinate system. A journal and a bearing
rotate at an angular velocity of 2; and §2}, respectively. The motion of the journal’s centre point o; is
determined by the external vertical load and the pressure in a lubricant film.

The flow of lubricant medium between the journal and the bearing obeys the generalized Reynolds
equation. In cylindrical coordinates, for cylindrical journal bearing under turbulent conditions, it reads
as [36]:

0z

—— == = . 2.1
R% dp \ 1210 d¢ 12 0z + @1)

19 (phs 8p)+ 3 (ph38p>_(v]‘+vb)8(ph) 3(oh)
2R, d¢ at

The hypothesis of iso-viscous and incompressible Newtonian lubricating liquid in a journal bearing is
assumed. Considering the bearing is always fixed on a base, that is v, =R}, §2p, =0. Then, equation (2.1)
can be simplified according to [34,37,38]:

19 (1P 9 G 2 9h ok
A ) [E T QR [ B (22)
R{ dp \ 12u d¢ 0z \ 12u 0z 2 dp ot
Introducing the following dimensionless parameters:
_ 2z -~ h
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the dimensionless Reynolds equation can be obtained by substituting equation (2.3) in equation (2.2):
3 (-5 0p 3 (h®op , . de de
— (P E )+ = (5= )=- 2 —= +2cosp—. 24
o9 ( B(p)+82 <A2 e esing + ssm(pdt + COS(pdt (2.4)

As shown in figure 1, the first two items on the right-hand side of equation (2.4) represent the rotating
effects of the angular velocity £2j and d6/df; the last term represents the squeezing effect of de/dt. For
the stable motion, d9/dt = de/dt = 0, then equation (2.4) can be simplified into:

3 [50p a (h®op _

— (= —\l5=]=- . 2.5

8(/)( a¢>+ai <A2 oz esme 25)
The boundary condition (2.6a) and periodic characteristic (2.6b) for the cylindrical journal bearing of
finite length can be concluded as:

o
pz=11=0, i 0 (2.6a)
and
ple,2) =plp + 27, 2). (2.6b)

2.2. Forces in the lubricant film

The FDM is applied to solve the dimensionless steady-state Reynolds equation. The discretization of
the film domain is usually done in two-dimensional problems [39,40]. The difference grid is shown in
figure 2, where the middle point of the adjacent points is the half-integer point.

The first- and second-order derivatives and equation (2.5) are both discretized by the second-order
central difference scheme. Then, equation (2.5) takes the following difference form [36]:

h?+1/2(7_’i+1rk — Pik) — h?—uz(f_’bk — Pi-14) . @ Pik+1 — 2Pik + Pik-1

Ag 2 A = —¢sing;, (2.7)
where
2 _ 2 . - _
Ap="Z, AZ=Z, g=(i-1Ag, Z=(k—1)AZ
m n
i=1,2,...,m+1, k=1,2,...,n+1. (2.8)
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Figure 2. Finite difference grid.
The resulting discretized form of dimensionless Reynolds equation takes the form:
Pik — AiPiv1k — Bibi-1k — CilPik+1 + pik—1]1=Dj, (2.9)
where
1.3 1.3 7
A L) ), B
1 7 1 [
E:A@? E:A@? A2E:A 2
ing ) iRng z (2.10)

. 3 73 -
esing . _ happ 1 a0 N 21}
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Analysis of equations suggest that the pressure at any grid point (i, j) is expressed in terms of pressure
of four adjacent points. In order to obtain the pressure values in every discretized point quickly and
accurately, equation (2.5) is solved using the successive over-relaxation iterative (SOR) method [29],

supplied with the boundary conditions (2.6a) and periodic characteristic (2.6b).

When the lubricant film pressure distribution is calculated, components (Ft, I_—"r) of the
dimensionless forces in the lubricant film, shown in figure 3, can be calculated using the compound
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Figure 3. Forces induced by the lubricant film and external load.

Simpson quadrature formula:

1 2 >
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k=1 k=1
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Furthermore, the forces in the lubricant film and acting angle ¢ can be obtained [36]:

F=\F2+F2 (2.15)

E _
T — arcsin (g) , F.>0

¢= i . (2.16)
arcsin (Iit) , L <0
F

The F, and l_fy can be calculated by transformation of the coordinates according to equation (2.11):
] 0 sind
X T = cos sim
- = . 2.17
|:Fyi| [Ft Fr] |:sin9 — cos 9i| @17)

3. Static equilibrium position

In the equilibrium state, the journal bearing of finite length must satisfy the following equilibrium

condition:
Fy,=0
* . (3.1)
Fy—Fy=0

and

In other words, the equilibrium position can be determined by finding the attitude angle 6 and
eccentricity ¢ satisfying equation (3.1). According to the theory of fluid hydraulic lubrication, the only
pressure distribution of the lubricant film can be obtained if the geometric parameters and eccentricity &
of ajournal bearing used in equation (2.5) are given. The attitude angle 6 adjusts the pressure distribution
in the circumferential direction. Therefore, one must find 0 and ¢ for the known external vertical load and
rotating speed.

In the present work, the twofold secant method for solving nonlinear equation is applied to efficiently
and accurately obtain the attitude angle 6 and eccentricity . Compared to the secant method and
bisection method, it has higher computational efficiency. If the initial values (6, 6p) and (g9, &o)are given,
the iterative format of twofold secant method [41] for the static equilibrium position reads as follows:

(Prediction): 0; 1 = 6; — m
o : i=0,1,2,... (3.20)
(Correction) : ;11 =0; — w
f(Biy1) — f(6)
and
(Prediction) : &1 =¢; — 7(8j — gj)g(fj)
8(ep) —8(&) ,
j=0,1,2,--- (3.20)

(Ejr1 — £)8(e))

(Correction) : gj11 =& — ———————
T g — 8(e)

The convergence criteria of equation (3.2a) [42] and equation (3.2b) give:

f(0)= <1073 (3.34)

Fy
Ey
and

F,—F
24"l -1075. (3.3b)

s)=|
w

There are two independent variables in the iterative process; therefore, it is impossible to acquire the
attitude angle and eccentricity simultaneously. Thus, the iterative process of attitude angle is embedded
in the iterative process for eccentricity. Moreover, the equilibrium position depends on the rotating speed
[15], i.e. it changes for the different rotating speed. Therefore, the equilibrium position can be determined
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Figure 4. Algorithm of solution for the equilibrium position.

for certain rotating speed and geometric parameters. The specific iterative process for static equilibrium
position for the different rotating speed is shown in figure 4.

4, Results and discussion

The static equilibrium position of a journal bearing was obtained by the twofold secant method. The
used calculating parameters of the journal bearing are shown in table 2 (figure 1 for reference). The
convergence process, the inner pressure distribution and the load-carrying capacity were presented using
the superlinear iteration method. The influence of the geometric parameters and the working conditions
on the characteristics of journal bearing were also analysed.

4.1. Comparison of three convergence methods

In this section, in order to present the advantage of the twofold secant method for identification of the
static equilibrium position, the convergence process and iterative steps of three methods are shown for
different length Ly, radial clearance c and rotating speed §2;. Considering the accuracy and efficiency of
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Figure 5. Convergence for the equilibrium position, L, = 0.1m.

Table 2. Calculating parameters of the journal bearing.

parameters geometric parameters physical parameters grid parameters

the dichotomy and the scant method for nonlinear equations [42—44], these two methods were selected
for calculation of the equilibrium position, and the results were compared with the results obtained by
the twofold secant method.

Figure 5 presents the process of identification of the journal’s equilibrium position when journal
length was set to 0.1 m. The other parameters of the journal bearing are listed in table 2. It can be seen that
the convergence curve of the secant method is most twisty and its iterative range is also largest compared
with those of twofold secant and dichotomy methods. There is only one fold point for the twofold secant
method and the dichotomy method in the seeking process. Thus, these two methods effectively reduce
the seeking scope at the beginning of the iteration process. However, for the dichotomy approach, the
high density of the points shows poor convergence performance near the equilibrium position. Moreover,
all three curves converged to the same equilibrium position point (¢ =0.489, 0 =59°). As this figure
shows, the calculating efficiency of the twofold secant method is superior to the secant method and
dichotomy.

Figure 6 represents the convergence process of attitude angle corresponding to the different iterative
number of eccentricity shown in figure 5. It can be seen from figure 6a— that the iterative steps of
attitude angle, i.e. the number of iterations in bottom loop, increase from the twofold secant method to
dichotomy. The maximum numbers of iterative steps of the twofold secant method, secant method and
dichotomy are 2, 3 10, respectively. Therefore, the convergence efficiency for attitude angle decreases
from the twofold secant method to dichotomy. Also, compared with the iterative process of middle loop
and bottom loop using the secant method, the numbers of iterations for attitude angle are much less than
those for eccentricity. This is because the convergence efficiency for the secant method is mainly affected
by the monotonicity of iterative results.

The convergence process for the equilibrium position when the clearance is 0.8 mm and the rotating
speed is 2000 rmin~! is plotted in figures 7 and 8, respectively. From the two figures, it is clearly shown
that the convergence trajectory for all three methods is nearly the same. The convergence curve of the
secant method has more folds than the other two curves, and the convergence efficiency of the twofold
secant method is also higher than that of the secant method and dichotomy. Besides, for the dichotomy,
when the iterative values approach the point of convergence, the convergence speed becomes slow
sharply. This accounts for the low convergence efficiency of the dichotomy for equilibrium position
compared with the other two methods.

Table 3 shows the iterative steps of bottom loop and middle loop for different bearing length, clearance
and rotating speed. As indicated in table 3, there are less iterative steps for the twofold secant method
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than those for the secant method and dichotomy. The final equilibrium positions obtained by each
iterative method for each set of conditions are nearly the same. The tiny discrepancy can be attributed to
the different values of convergence condition (equations (3.3a) and (3.30)).

The computational time of three different methods for different calculating parameters is listed in
table 4. The computation time of the twofold secant method is significantly less than that of the secant
method and dichotomy. However, there are no obvious advantages and disadvantages to the secant
method and dichotomy. The comparative results, obtained from tables 3 and 4, clearly show that the
computational efficiency of the twofold secant method is obviously higher than that of the two traditional
iteration methods.
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Table 3. Iterative steps of bottom loop and middle loop.

maximum iterative steps for & (middle loop) maximum iterative steps for & (bottom loop)

method Lb=01m ¢=08mm  £;=2000rmin~" L[,=0Im ¢=08mm  £2;=2000rmin""’
twofold secant 5 6 4 2 2 2

Table 4. The computational time of three different methods.

computational time 102 s

method initial parameters [,=01m £2;=2000rmin~"
twofold secant 0.131363 0.218753 0.231381 0.184579
s v Do men T S
d|chotomy0294895 .................................... e G e

4.2. The effects of Ly, c and £2; on the equilibrium position

The numerical results calculated by the twofold secant method are compared with those of previous
reference [45]. The comparative results are listed in table 5. It is evident through this table that the
equilibrium position and lubrication film force calculated by the superlinear iteration method are
consistent with those of previous reference. The maximum relative error and minimum relative error
are 3.14% and 0.06%, respectively. The small difference of the numerical results implies that the twofold
secant method proposed in the paper is accurate and feasible.

In addition, in order to investigate the influence of geometric parameters and working condition on
the equilibrium position, the bearing length Ly, clearance ¢ and rotating speed £2; were selected as the
independent variables to be used in further calculations by the twofold secant method.
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Table 5. Comparison of the numerical results.

results of the twofold relative
results of ref. [45] secant method error (%)

The parameters used in the calculation of different equilibrium positions, shown in figure 9a, are
listed in table 2 without the bearing length Lj,. It can be seen that the equilibrium position gradually
approaches the geometric centre of the bearing when the length increases from 0.1 to 0.2 m. This reflects
on the eccentricity and attitude angle—e decreases from 0.489 to 0.124, while 6 increases from 58.95° to
83.43°. This phenomenon illustrates that higher bearing length facilitates the load-carrying capacity of
the journal bearing. This fact is consistent with the results of Gengyuan et al. [46].

The corresponding fitting curve of the eccentricity and the attitude angle is plotted on figure 9b. The
straight line, fitted by the least square method, indicates that the relationship of ¢ and @ is linear to the
change of the bearing length.

Figure 10 presents the distribution curves of the dimensionless pressure for corresponding
equilibrium positions shown in figure 9 (z=0). Figure 10 obviously shows that the peak pressure
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Figure 11. Pressure distribution of whole flow field with different Ly,

decreases as bearing length increases and the maximum dimensionless pressure of 0.118 is achieved
when L, = 0.1 m. The reason for this result is certain equilibrium position. The smaller L}, with larger
eccentricity can decrease the minimum flow clearance, and this means that a bearing with smaller L, can
reduce pressure leakage and hold the pressure better than a bearing with larger L},. Moreover, the angular
position of the maximum pressure changes from 140° to 104° when L, increases from 0.1 to 0.2m. That
is, for smaller Ly, the equilibrium position of maximum pressure area is closer to the /iy, (figure 11).

The pressure distribution in the entire flow field clearly shows that the positive pressure emerges
in the convergent wedge (¢ =0° — 180°). Theoretically, once the lubrication fluid crosses the minimum
clearance and enters the divergence wedge (¢ =180° — 360°), the pressure quickly decreases and the
values change from positive to negative on account of the expansion effect.

In fact, the actual lubrication fluid cannot bear the tensile stress and the liquid film will fracture
in the divergence wedge, this is why half Sommerfeld boundary condition was widely applied in the
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calculations of Reynolds equation [38,47-49]. In addition, the pressure is distributed symmetrically on
the left and right side of central plane (z = 0) in the axial direction.

The changing trajectory of equilibrium positions obtained by the twofold secant method and the
corresponding fitting curve for different clearances and rotating speeds are shown in figures 12 and 13,
respectively. Similar to figure 94, the changing trajectory presents parabolic characteristics. The difference
in the three trajectory curves could be explained by the fact that the equilibrium position is more sensitive
for both bearing length and clearance, and less sensitive for rotating speed. This is shown in the changing
range of equilibrium positions: in figures 92 and 124 it is larger than that shown in figure 13a. It also can
be seen that with the increase of clearance, the eccentricity increases from 0.119 to 0.513. By contrast, the
eccentricity decreases from 0.472 to 0.279 as the rotating speed changes from 2000 to 4500 r min~!. The
calculated results imply that smaller clearance and higher rotating speed is beneficial to load-carrying
capacity.

Figures 12b and 13D, respectively, present the relationship between the eccentricity and the attitude
angle for different clearances and rotating speeds. Similarly, the negative slope of the two fitting curves
demonstrates that eccentricity and attitude angle are in the inverse proportional relationship. Whereas
compared with the slope of the fitting curve for bearing length shown in figure 9b, the slopes of clearance
and rotating speed change from —68.17 to —60.94 and —61.57, respectively. These findings mean that the
variation of attitude angle caused by the bearing length is greater than that of the clearance or the rotating
speed for the same variation of the eccentricity.

The pressure distribution curves corresponding to the equilibrium positions shown in figures 122 and
13a are obtained to describe the variation of pressure in axial direction on the central plane. According to
figures 14 and 15, the maximum pressure generates when ¢ =0.8 mm and £2;=2000r min~!. Combining
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these findings with the conclusion obtained from figure 10, it is clear that the larger eccentricity can cause
higher pressure under the same geometric parameters and working condition. The angular position
of the maximum pressure decreases with reduction of the clearance or rise of the rotating speed.
Moreover, the increments for the maximum pressure and angle position increase as the bearing length
decreases or the clearance increases, as shown in figures 10 and 14, respectively.

4.3. The effects of Ly, c and Ry, on the forces in lubricant film

The geometric parameters, including Ly, ¢ and Ry, play an important role in lubricant film force,
directly affect the load-carrying capacity and the equilibrium position of the journal bearing and finally
determine the calculated dynamic coefficients. In order to determine the equilibrium position using the
proposed model, the lubricant film force needs to be transformed into dimensionless form [47,50]. In this
section, the main geometric parameters Ly, c and Ry, are taken into consideration for investigation of the
lubricant film forces for different eccentricities.

Figure 16a—c presents the changing trend for the radial film force F;, the tangential film force F; and
the total lubricant film force F, respectively, for the different bearing lengths and eccentricity changing
from 0.1 to 0.9. The negative values of F; illustrate that the actual acting direction of the radial film force
is opposite to the direction shown in figure 3. The rising curves given in figure 16a—c also demonstrate
that when the eccentricity is fixed, the values of film force with larger L}, are obviously greater than those
with smaller Ly,; the same results are also true for the fixed L}, and changing eccentricity. That is, larger
bearing length and eccentricity have a positive role in improving the load-carrying capacity of journal
bearing. In addition, the curves of the film’s forces can be roughly divided into nonlinear region and
linear region at L, =0.15m on the basis of the slope change. The relationship of the acting angle and the
bearing length with the different eccentricities is shown in figure 16d. Actually, the changing trend of
the acting angle reflects the Fi—F ratio according to the equation (2.16). As mentioned in figure 16d, the
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Figure 16. Lubricant film forces and the acting angles.

Table 6. Lubricant film force F (N) for different clearances and eccentricities.

lubricant film force F (N) for eccentricity &

radial clearance,
0.2 03 L 07

=01 14 380 31175 51607 78828 118533 182654 300 944 570322 1528820
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curve becomes more flat for smaller eccentricity; the values of acting angle with larger bearing length are
greater than those of smaller bearing length for the fixed eccentricity.

It can be seen in table 6 that the changing trend of lubricant film force with fixed eccentricity satisfies
the quadratic polynomial growth for clearance ranging from 1.0 to 0.1 mm. Also, the quadratic changing
trend can be found when the clearance is fixed, and the eccentricity increases from 0.1 to 0.9. The
phenomenon is ascribed to the quadratic term of eccentricity ¢ in dimensional conversion. Therefore,
decreasing the clearance or increasing the eccentricity is a good way of improving the load-carrying
capacity of a journal bearing. However, when the clearance is reduced to a certain degree, the rubbing
phenomenon emerges and seriously affects the stability of rotor-bearing system [26]. That is, the choice
of clearance needs to take the combined effect of various factors into consideration.
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Table 7. Lubricant film force F (N) for different bearing radii and eccentricities.

lubricant film force F (N) for eccentricity &

radius of bearing
Ry, m e=0.1 0.2 03 0.4

The aim of table 7 is to present the relationship between the bearing radius and the lubricant film force
under different eccentricities. In this case, the forces grow with fixed eccentricity when the bearing radius
increases from 0.05 to 0.15m. This fact means that the journal bearing with larger radius (R, =0.15m)
has better load-carrying capacity compared with those of smaller radius (R}, = 0.05m).

5. Conclusion

A novel superlinear iteration convergence method—twofold secant method, was applied for
identification of the equilibrium position of journal bearing of finite length. The Reynolds equation
for stable motion was solved numerically and effects of the geometric parameters and the operating
condition on equilibrium position, pressure distribution and load-carrying capacity were studied. Main
conclusions are as follows:

(1) The number of iterative steps of the proposed method—twofold secant method—required for
obtaining equilibrium position are obviously less than for the present methods: secant method
and dichotomy. The efficiency of calculation of dynamic coefficients and dynamic characteristics
of journal bearing with finite length using the twofold secant method is faster.

(2) The trajectory of equilibrium positions is parabolic and the relationship curves between attitude
angle 0 and eccentricity ¢ fitted by the least square method indicates that the attitude angle
linearly decreases when the eccentricity increases. In addition, a variation of the attitude angle
is more sensitive to the bearing length than to the clearance or the rotating speed.

(3) The inner pressure is distributed symmetrically in the axial direction on the left and right
side relative to the central plane (z=0). The large bearing length (L}, =0.2m), higher rotating
speed (£2;=3500r min~!) and small clearance (c = 0.3 mm) shift the angle position of maximum
pressure away from the position of minimum clearance between journal and bearing for the
same external vertical loads.

(4) The geometric parameters, including Ly, c and Ry, have a major impact on the load-carrying
capacity. The load-carrying capacity can be enhanced by enlarging the bearing length, its radius
or reducing the clearance. Besides, the curves of load-carrying capacity can be divided into
nonlinear region and linear region according to the slopes as the eccentricity increases from 0.1
to 0.9.
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