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PREFACE
The object of this book is to present analytic geometry to

the student in as natural and simple a manner as possible

without losing mathematical rigor. The average student

thinks visually instead of abstractly, and it is for the average

student that this work has been written. It was prepared

primarily to meet the requirements in mathematics for the

second half of the first year at the Armour Institute of Tech-

nology. To make it adaptable to courses in other institutions

of learning certain topics not usually taught in an engineering

school have been added.

While it is useless to claim any great originality in treat-

ment or in the selection of subject matter, the methods and

illustrations have been thoroughly tested in the class room.

It is believed that the topics are so presented as to bring the

ideas within the grasp of students found in classes where

mathematics is a required subject. No attempt has been

made to be novel only; but the best ideas and treatment have

been used, no matter how often they have appeared in other

works on the subject.

The following points are to be especially noted:

(1) The great central idea is the passing from the geometric

to the analytic and vice versa. This idea is held consistently

throughout the book.

(2) In the beginning a broad foundation is laid in the

algebraic treatment of geometric ideas. Here the student

should acquire the analytic method if he is to make a success

of the course.

(3) Transformation of coordinates is given early and used

frequently throughout the book, not confined to a single

chapter as is so frequently the case. The same may be said

of polar coordinates.

V



VI PREFACE

(4) Fundamental concepts are dealt with in an informal

as well as in a formal manner. The informal often fixes

and clarifies the ideas where the formal does not.

(5) Numerous illustrative examples are worked out in

order that the student may get a clear idea of the methods
to be used in the solution of problems.

(6) The conic sections are treated from the starting point

of the focus and directrix definition.

(7) Because of its great importance in engineering practice

the empirical equation is dealt with more completely than is

usual. This treatment has been made as elementary as

possible, but sufficiently comprehensive to enable one to

solve the average problem in empirical equations.

(8) The fundamental concepts of the calculus are presented

in a very concrete manner, and a much greater use then is

usual is made of the differential. The ideas are thus more
readily visualized than is possible otherwise. The applications

are mainly to tangents, normals, areas, and the discussion of

equations.

(9) The concluding chapter gives an adequate and careful

treatment of solid geometry so necessary in the study of the

calculus.

(10) The exercises are numerous, carefully graded, and
include many practical applications.

(11) In the introductory chapter are found various short

tables and formulas, and at the end are given four place

tables of logarithms and trigonometric functions.

The authors take this opportunity to express their indebted-

ness to their colleagues. Professors D. F. Campbell, H. R.

Phalen, and W. L. Miser, for their assistance in the preparation

of the text.

The Authors.
Chicago, III.,

May, 1921.
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ANALYTIC GEOMETEY
CHAPTER I

INTRODUCTION

1. Introductory remarks.—Although it is not always possi-

ble for a student to appreciate at the outset the content of a
subject, it is well, however, to consider the object of the study,

and to understand as far as possible its fundamental aims.

2. Algebra and geometry united.—Analytic geometry, or

algebraic geometry, is a subject that unites algebra and geom-
etry in such a manner that each clarifies and helps the other.

Lagrange says: *'As long as algebra and geometry travelled

separate paths their advance was slow and their appUcations

limited. But when these two sciences joined company, they

drew from each other fresh vitality and thenceforward marched
on at a rapid pace towards perfection. It is to Descartes^

that we owe the application of algebra to geometry—an appli-

cation which has furnished the key to the greatest discoveries

in all branches of mathematics."

3. Fundamental questions.—The fundamental questions of

analytic geometry are three.

Firstj given a figure defined geometrically, to determine its

equation, or algebraic representation.

1 Rene Descartes (1596-1650) was one of the most distinguished philos-

ophers. It was in pure mathematics, however, that he achieved the

greatest and most lasting results, especially by his invention of analytic

geometry. In developing this branch he had in mind the elucidation of

algebra by means of geometric intuition and concepts. He introduced

the present plan of representing known and unknown quantities, gave

standing to the present system of exponents, and set forth the well

known Descartes' Rule of Signs. His invention of analytic geometry

may be said to constitute the point of departure of modern mathematics.

1



2 ANALYTIC GEOMETRY [§4

Secondj given numbers or equations, to determine the geo-

metric figure corresponding to them.

Third, to study the relations that exist between the geo-

metric properties of a figure and the algebraic, or analytic,

properties of the equation.

To pursue the subject of analytic geometry successfully the

student should be familiar with plane and solid geometry, and

should know algebra through quadratic equations and plane

trigonometry.

While parts of analytic geometry can be applied at once to

the solution of various interesting and practical problems,

much of it is studied because it is used in more advanced

subjects in mathematics.

Some of the more frequently used facts of algebra and trig-

onometry are given here for convenience of reference.

4. Algebra.—Quadratic equations,—The roots of the quad-

ratic equation ax^ + &a: + c = are

—b + \/&2 - 4ac , —b — Vb^ — ^ac
^^= -2a

^^^^'^=
2a

ri + r2 = J and rir^ = —
a a

These roots are

real and equal if 6^ — 4ac = 0,

real and unequal if 6^ — 4ac>0,

imaginary if 6^ — 4ac<0.

The expression 6^ — 4ac is called the discriminant of the

quadratic equation.

Logarithms.

{li log MN = log M + log N,

(2) log {M -^ N) = log M - log N,

(3) log N"" = n log N.
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(7)
a^osaN ^ ^^

(8) log ^= -log AT

(9) log,iV = loga N,

(10) logft a loga b = 1.

(11) logeiV = 2.302585 logioiV.

loga h
'^^" ^" (12) logio N = 0.43429 loge N.

The base 6 = 2.718281828459- • •. tt = 3.141592653589- • •.

6. Trigonometry.—Formulas.

27r radians = 360°, tt radians = 180°.

180°
(1

(2;

(3:

(4:

(5:

(6:

(7:

(8:

(9:

(lo:

(11

(12

(13

(14:

(is:

(16

(17:

1 radian = ^^^ = 57.29578° - = 57° 17' 44.8".

1° =
j|g

= 0.0174533 - radians.

sin^ e + cos2 (9 = 1.

1 + tan2 d = sec2 d.

1 + cot2 6 = csc2 e..1 1

sin 6 = -J and CSC ^ =

cos 6

CSC 6

1
, and sec 6

sin 6

1

sec 6^ cos 6

tan 6 = , and cot 6 =
cot (9'

sin 6

cos 6

cos^

tan^
sec 6

CSC 6

CSC 6

tan 6 =

cot <9 = . . _

sin 6 sec ^

sin (a + i3) = sin a cos S + cos a sin 0,

cos (or + |3) = cos a cos i3
— sin a sin /3.

sin (a — /3) = sin a cos ^ — cos a sin /3.

cos (a — jS) = cos Of cos i3 + sin a sin /3.

, . ... tan « + tan /?

tan {a + 8) =

tan (qj - jS)

1 — tan a tan |(3

tan a — tan /3

1 + tan a tan jS

(18) sin 2^ = 2 sin 6 cos d,

(19) cos 2(9 = cos2 (9 - sin ^ = 1 ~ 2 sin^ ^ = 2 cos^ ^ - L
/rt/^N X r^/. 2 tan d
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(21) sin ie
— cos 6

(23)

(24)

(25)

(26)

(27)

(28)

(29)

(30)

(31)

(32)

(33)

(34)

(35)

(36)

(37)

(38)

4

(22) cos id = ± yj-
+ cos 6

1 — cos ^ 1 — cos ^

1 + COS d

2

sinO
tan|0 = ± \1 + cos d

" sin7~ "
1 + cos 6

sin a + sin i3 = 2 sin ^{a + /8) cos J(aj — jS).

sin a — sin jS = 2 cos |(a + /3) sin |(qi — /3).

cos a + cos jS = 2 cos |(a + /?) cos J(a — fi).

cos Qj — cos i3 = —2 sin ^{a + 0) sin |(a — /3).

sin a cos
i(3
= I sin (a + (3) + ^ sin (a — jS).

cos a sin i3 = I sin (« + /S) — | sin (a — 0).

cos or cos /3 = J cos (a + jS) + | cos (a — jS).

sin a sin /? = — J cos (a + i^) + | cos {a — i3).

(Sine Law.)
sm a sm iS

a2 = 62 _^ ^2

sin

cos

tan

cot

sin

cos

tan

cot

sin

cos

tan

cot

sin

cos

tan

cot

sin

cos

tan

cot

iTT - d)

--6)
hir + 6)

h^ + e)

Itt + e)

TT - 6)

IT - e)

IT - 8)

^ + 0)

^ + 0)

7r.+ 6)

T + e)

h - e)

sin7
— 26c cos a.

= cos 6,

= sin 6.

= cot d.

= tan 9,

== cos 9,

= — sin 9.

= —cot 9.

= — tan 9,

= sin 9,

= — cos 9,

= — tan 9.

= -cot0.
= — sin 9.

= — cos 9.

= tan 9.

= cot 9.

= — cos 9.

= — sin 9.

= cot 9.

= tan ^.

(Cosine Law.)
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(39) sin (Itt + ^) = -cos^.
cos (fTT + ^) = sin d.

tan (fTT + 6) = — cot 0.

cot (Itt + ^) = -tan^.

(40) sin (2r - 6) = -sin^.

cos (2t — 6) = cos 0.

tan(27r — 6) = -tan^.
cot (27r - 6) = -cot^.

(41) sin ( - ^) = -sin^.

cos ( — 6) = cos ^.

tan ( — d) = — tan ^.

cot ( - 6) = -cot^.

6. Useful tables.

Values OF e* FROM X =0 TO X = 4.9

X 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

1.00 1.11 1.22 1.35 1.49 1.65 1.82 2.01 2.23 2.46

1 2.72 3.00 3.32 3.67 4.06 4.48 4.95 5.47 6.05 6.69

2 7.39 8.17 9.03 9.97 11.0 12.2 13.5 14.9 16.4 18.2

3 20.1 22.2 24.5 27.1 30.0 33.1 36.6 40.4 44.7 49.4

4 54.6 60.3 66.7 73.7 81.5 90.0 99.5 109.9 121.5 134.3

Values of e""* from o; = to a; = 4.9

X 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

1.00 0.90 0.82 0.74 0.67 0.61 0.55 0.50 0.45 0.41

1 0.37 0.33 0.30 0.27 0.25 0.22 0.20 0.18 0.17 0.15

2 0.14 0.12 0.11 0.10 0.09 0.08 0.07 0.07 0.06 0.06

3 0.05 0.05 0.04 0.04 0.03 0.03 0.03 0.02 0.02 0.02

4 0.02 0.02 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
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Table of Freqijently Used Trigonometric Functions

0° e in

radians
sin d cos d tan cot e sec ^ CSC e

0° 1 00 1 CO

SO""
TT 1

2

V3
2

V3
3

V3 2V3
3

2

45°
4

V2
2

V2
2

1 1 V2 V2

60° X V3 1
V3 V3 2 2V3

3 2 2 3 3

90°
TT

2
1 a. 00 1

120° 2x V3 1 -vs V3 -2 2\/3

3 2 2 3 3

135° 37r

4

V2
2

V2
2

-1 -1 -V2 V2

150°
6

1

2
V3
2

V3
3

-V3
2\/3

3
2

180° IT -1 oo -1 00

210°
6

1

2
V3
2

V3
3

V3
2\/3

3
-2

225° 57r

4

V2
2

V2
2

1 1 -V2 -V2

240° 4x

3

V3
2

1
~2 V3 V3

3
-2 2\/3

3

270°
Sir

2
-1 00 00 -1

300° 57r V3 1 -V3 V3 2
2\/3

3 2 2 3 3

315° 77r

4

V2
2

V2
2

-1 -1 \/2 -V2

330° IItt

6

1

"2
V3
2

V3
3

-V3
2^/3

3
-2

360° 2x 1 OO 1 00



CHAPTER II

GEOMETRIC FACTS EXPRESSED ANALYTICALLY, AND
CONVERSELY

7. General statement.—Geometry deals with points, lines,

and figures composed of points and lines. Algebra deals with

numbers and algebraic statements composed of numbers, such

as the equation.

In order to study geometric relations by means of algebra,

and conversely, it is necessary to be able to represent points,

lines, and geometric figures by means of numbers and equa-

tions, and conversely. That is, it is necessary to be able to

translate from the language of geometry to that of algebra, and

conversely.

8. Points as numbers, and conversely.—If a point moves
from A to 5 in a straight line, the point is said to generate

the line segment AB, that is, the line segment AB is the locus

of the point. If the point moves from 5 to A it generates

the line segment BA, It is con-

^ venient to consider AB and BA as

Pjq j
separate line segments having oppo-

site directions. The arrow is often

used to denote the positive direction.

Such line segments as AB and BA are called directed line

segments. The point from which the moving point starts is

called the initial point, and the point where it stops is called

the terminal point.

It is to be noted that a line segment is read by naming the

initial point first.

Let X^X be a straight line of indefinite length, and

choose: first, a unit of length; second, a direction of motion,

which we shall call positive if toward the right and negative

8
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if toward the left; third j a point called the origin from which

to start.

Then any poii^t P can be determined by a real nimiber—in-

tegral, fractional, or irrational—which shows the number of

units the. point has moved from the origin.

The number is positive or negative according as the motion

is in the positive or negative direction. The origin is desig-

nated by 0.

Conversely, any real number corresponds to a point which

is distant that number of units in the proper direction from

the origin.

Thus, in Fig. 2, +6 designates the point Pi and —2 the point Pj;

while R corresponds to —3J, and Q to \/3.

The line X^X is a directed straight line if it is thought of as

generated by a point moving in the direction from X' to X or

from X to X'.
Unit

^ ,
^
R Pi O Q P Pi

•*—I ( f—M 1
\

1 1 H 1 1 1 H>-X
-6 -5 -4 -3 -2-1 1 -/^2 3 4 5 6

Fig. 2

9. The line segment.

—

The magnitude of a line segment is

determined by the number of units in its length, that is, by
the number of units a point moves in generating it.

The value of a line segment is determined by its length and

direction, and is defined to be the number which would represent

the terminal point of the segment if the initial point were taken

as origin.

It follows from this definition that the value of a line seg-

ment read in one direction is the negative of the value if read

in the opposite direction.

Thus, AB = -BA, or AB + BA = 0.

By the numerical value of a line segment is meant the num-
ber of units of length in it without reference to its direction.

Two line segments are equal if they have the same direction

and the same length, that is, the same value.
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In Fig. 3, AB = +2, CD = +2, DAT = +6, EC = -4, FA = -8,
AB = CDj and AF = CN. AC and FD are equal in numerical value..A Be D E F N Unit

k K—

1

\- 1 h 1 1
\

1 1 1

—

>-
I 1

Fig. 3.

EXERCISES

1. Draw a line segment 5 in. long and take the origin at the center.

Choose as a unit of measure a line J in. long. What numbers designate

the ends of the line? Locate the points corresponding to the numbers 9,

7i -4, -3iy2, -V3,x.
2. Draw a line segment 20 units in length, with the origin, 0, at the

center. Locate the following points: A corresponding to 3, B corre-

sponding to 8, C corresponding to — 4, D corresponding to —10, E cor-

responding to 10. Give the values of the following line segments: ABj
DA, CE, BC, EA, AC.

3. In exercise 2, how are the numbers designating the points affected

if the origin is moved two units to the right? How are the values of the

line segments affected?

L A C B M N
1 1 1 1 1 1 H>-

Fig. 4.

10. Addition and subtraction of line segments.—In Fig. 4,

if A, 5, C, • • • M, iV are any arrangement of points on a

^ p p straight line, then

X i t ^B + BC+ — ' + MN + NA = 0,

-i i f>- _ - . .

Pj P2 o For the moving pomt generates m succes-
^ ^ ^ sion the line segments AB, BC, • • • MN,

NAy starting at A and returning to A. It

therefore generates as much in the negative direction as in the

positive. Hence the sum is zero.

A case of frequent occurrence is that of three points 0, Pi,

and p2 on a straight line, Fig. 5. If is taken as origin, then

[1] (1) OP2 = OPi + P1P2,

(2) P1P2 = OP2 - OPi.
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Proof, OPi + P1P2 + P2O = 0. Why?
Adding OP2 = OP2, gives OPi + P1P2 = OP2.

Adding OP2 + PiO = OP2 + PiO, gives P1P2 =[0P2 + PiO,
.'. P1P2 = OP2- OPi,

11. Line segment between two points.—To find the value

of the hne segment between two points on a straight line, when
the numbers determining these two points with reference to

an origin on the same line, are known.

In Fig. 5, is the origin and Xi and 0:2 are the numbers
determining the points Pi and P2 respectively. It is required

to find the value of the line segment P1P2, that is, the magni-

tude and direction of P1P2.

P,P, = OP2 - OPi. By [1].

But OPi = xi, OP2 = X2.

[2] .-. P1P2 = X2-X1.

This states that the value of the line segment between two points

on a straight line is equal to the number determining the terminal

point of the line segment minus the number determining its initial

pointy when a point on the straight line is taken as the origin.

P5 Pe O Pi Pi Pz P4

-I—I—I—I—I—I

—

\—I

—

\

—
\

—
\—I—I—1—I—I—I—I—I—

"

-U-10-9 -8-7-6 -5 -4-3-2 -1 0123456789 10 11 12 13

Fig. 6.

Thus, in Fig. 6, P1P2 = OP2 - OPi = 5 - 3 = 2.

P3P2 = OP2 - OP3 = 5 - 8 = -3.

P5P6 = OP, - OP, = -4 - (-8) = +4.

P6P2 = OP2 - OPe = 5 - (-4) = +9.

P^6 = OPb -OPz= -8 - 8 = -16.

12. Geometric addition and subtraction of line segments.

From the preceding article it readily follows that two line seg-

ments having the same or opposite directions can be added by

placing the initial point of the second upon the terminal point

of the first. The sum of the line segments is the line segment
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having
J
as initial point , the initial point of thefirstand , as terminal

pointy the terminal point of the second,

A line segment is subtracted from another by reversing its

direction and adding.

Thus, in Fig. 6, OPi + P1P3 = OP3 = 8.

P1P8+P3P5 = PiP6 = -11.

PtPz - P^Pz = PtPz + P3P2 = P6P2 = 9.

P2P4 - PeP4 = P2P4 + P4P6 = P2P6 = -9.

EXERCISES
1. On a line with origin at 0, locate the following points : A determined

by 2, B by 3, C by 8, D by -5, £7 by -8. By the method of article 10,

find the value of the line segments AB, BC, BD, AE, DE, EB, CE, CD,
2. On a hne with origin at 0, locate the points Pi, P2, P3, P4, determined

by the numbers Xij X2, Xzj x^ respectively. (1) Give the values of the

line segments P1P3, P3P4, P4P2, P4P1. (2) Give the hne segments that

have the following values: x^ — X3, Xi — 0^4, Xz — Xi. Do the relative

positions of the points make any difference in the answers?

13. Determination of a point in a plane.—It was shown in

article 8 that the position of a point on a straight line can be

determined by one number, which shows the direction and the

distance that the point is from a fixed point on the straight line.

Various methods may be given for locating a point in a plane.

For the purposes of analytic geometry, two of these will be

chosen. They correspond to the two methods ordinarily used

in locating a point on the surface of the earth.

Firstj a house in a city is located by giving its street and
number. That is, by stating its distance and direction from

each of two intersecting streets.

Secondj a city may be located by giving its distance and
direction from another city.

In analytic geometry, the two corresponding methods of

locating a point in a plane are (1) the method by cartesian

coordinates, and (2) the method by polar coordinates.

CARTESIAN COORDINATES

14. Coordinate axes.—(1) The lines of reference X'X and

Y'Yy Fig. 7, intersecting in the point 0, are chosen. These
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X-H-H
Mz

N^

N,-

Y

N2

Ml

lines are considered perpendicular to each other in this article,

and will always be so taken unless otherwise stated.

The Une X^X is called the axis of abscissas or the x-axis.

The line Y'Y is called the axis of ordinates or the y-axis. To-

gether they are called the coordinate axes.

When the coordinate axes are perpendicular to each other

they form a rectangular system.

The coordinate axes divide the plane into four quadrants,

numbered I, II, III, and IV as in trigonometry.

(2) A line segment of convenient length is chosen for a unit

of measure. This may be of any length whatever.

(3) The direction is chosen as positive when towards the

right parallel to the x-axis, or

upwards parallel to the ^-axis. p^

Hence the negative direction

is towards the left, or down-

wards.

15. Plotting a point.—

A

point Pi in the plane is de-

termined by the line segments

NiPi and MiPi, Fig. 7, drawn
parallel to X'X and Y'Y re-

spectively, for the values of

these line segments tell how far and in what direction Pi is

from the lines of reference.

Here the line segment iViPi = +5, and MiPi = +4.
The point P2 is determined by the line segments N2P2 =

M2P2 = +6.
The point P3 is determined by the line segments NzPt =

M3P8 = -4.

It is evident that any point in the plane is determined by

one pair of numbers, and only one; and, conversely, every pair

of real numbers determines one point in the plane, and only

one.

The two numbers that determine a point in a plane are

M^
'^r^X

N.
*A

Y'

Fig. 7.

—3, and

—6, and
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called the coordinates of the point. The number which is the

value of the line segment parallel to the a:-axis is called the

abscissa of the point, and is usually represented by x. The
number which is the value of the line segment parallel to the

2/-axis is called the ordinate of the point, and is usually repre-

sented hj y.

The coordinates are written, for brevity, within parentheses

and separated by a comma, the abscissa always being first, as

{x, y). The letter designating the point is often written just

before the parentheses.

Thus, the points in Fig. 7 are written: Pi(5, 4), P2(-3, 6), PaC-G, -4),

and P4(8, —3). The points Mi, M2, Ni, iVs, and are respectively the

points (5, 0), (-3, 0), (0, 4), (0, -4), and (0, 0).

It is evident that, in the first quadrant, both coordinates

are positive; in the second quadrant, the abscissa is negative

and the ordinate positive; in the third quadrant, both

coordinates are negative; and, in the fourth quadrant, the

abscissa is positive and the ordinate negative.

When a point is located in a plane by means of its coordi-

nates it is said to be plotted.

The locating of points is
^

greatly facilitated by using

paper that is ruled into small

squares. Such paper is called

coordinate paper.

Example.—Plot the points Pi (5,3),

P2(5, -3), P3(-2, -4), and P4(-4, 4).

The point Pi(5, 3) is plotted by
counting off from along X'X a num-
ber of divisions equal to the abscissa

5, and then from the point so de-

termined, a number of divisions on a

line parallel to the 2/-axis, equal to the ordinate 3.

The points (5,-3), (-2,-4), and (-4, 4) are located in a similar

manner.

i

> \

— r\ {-^ 4> P^i 5,3;)

•l

p..(-|-V
Po(5r'3)

1 I 1 1 !

Y
Fig. 8.
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16. Oblique cartesian coordinates.—In determining a point

in a plane, it is not necessary that the coordinate axes shall

be perpendicular to each other, but they may form an angle

03. Such a set of axes is called an oblique cartesian system.

In Fig. 9, the abscissa of Pi is NiPi = 3, and its ordinate is MiPi = 5.

The coordinates of P2 are N2P2 = ~4, and M2P2 = 3.

17. Notation.—To secure
clearness of statement, sub-

scripts will be used with the

letters designating points, and ^ P2

they will agree with the sub-

scripts used with the coordi- „f , ^, . ,

nates of the pomts.

Thus, the point Pi has coordi-

nates {xi, 2/1), the point P2 has

coordinates (x2, 2/2), and so on.

Points designated in this

manner will, in general, be fixed points, while a point that

may vary in position will be designated by a letter, as P,

without a subscript and have coordinates (x, y).

EXERCISES

1. Draw a pair of axes and plot the following points: (2, 3), (7, 9),

(-2, 4), (-7, -2), (4, -3), (-2, -8), (0, 0), (0, 5), (-6, 0).

2. Draw the triangle whose vertices are (0, 2), ( — 2, —3), and (3, —2).

3. Draw the quadrilateral whose vertices are (3, 0), (0, 2), ( — 6, 2),

and(0, -2).

4. If the ordinate of a point is 0, where is the point? Where if its

abscissa is 0? Using x for the abscissa and y for the ordinate, express

each as an equation.

5. What is the locus of all points that have abscissas equal to 5 ?

Of all points having ordinates equal to 10? Use x for the abscissas and

y for the ordinates and write these statements as equations.

6. The abscissas of two points are each a. How is the line joining

them situated with reference to the 2/-axis? The ordinates of two

points are each —6. How is the line joining them situated with reference

to the a;-axis? Write each of these lines as an equation.

7. Two points are placed so that the abscissa of each is equal to
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its ordinate. How is the line joining the points situated with reference

to the coordinate axes? In what two quadrants can the points lie?

Write the equation.

8. Two points are placed so that the abscissa of each is equal to

the negative of the ordinate. How is the line connecting them situated

with reference to the coordinate axes? In what two quadrants can the

points lie? Write the equation.

9. Draw a rectangle whose vertices are (—4, 2), (—4, —5), (7, —5),

and (7, 2). Find the length of its sides by differences of abscissas or

ordinates.

10. The vertex of a square is at the origin, and a diagonal lies on the

positive part of the a;-axis. Find the coordinates of the other vertices

if a side is 10.

11. What is the locus of a point which moves so that the ratio of

its ordinate to its abscissa is always 1 ? So that this ratio is always — 1 ?

Always 2? Write the equations.

12. An equilateral triangle of side a has a vertex at the origin and
one side on the x-axis at the right of the origin. Find the coordinates

of its vertices.

13. A regular hexagon of side 8 is placed so that its center is at the

origin and one diagonal is along the rc-axis. Find the coordinates of its

vertices.

18. Value of line segment parallel to an axis.—If the

segment of a line is parallel to one of the coordinate axes, ib

has a definite direction as well as a length, that is, it has a

value. If P\{xi, yi) and P<i{x2j 2/2) are any two points on a

line parallel to the x-axis, then

[2i] P1P2 = X2 - Xi.

This follows directly from article 11, for if P1P2 intersects

the 2/-axis in Ni, P1P2 = ^^1^2 — NiPi = X2 — Xi.

Likewise, if Pi(xi, 2/1) and P2(^2, 2/2) are any two points on

a line parallel to the y-axis, then

[22] P1P2 = y2 - yi.

The student should locate points in various positions and

satisfy himself that [2i] and [22] are true. Figure 10 shows

several positions of Pi and P2

These facts may be stated as follows:
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(1) The value of a line segment parallel to the x-axis equals

the abscissa of its terminal point minus the abscissa of its initial

point.

(2) The value of a line segment parallel to the y-axis equals

the ordinate of its terminal point minus the ordinate of its initial

point,

19. Distance between two points in rectangular coordi-

nates.—(1) The distance between two points is the numerical

value of the line segment connecting these points, that is, it is

the length of the line segment connecting the two points.

It follows that the distance between

two points, having abscissas Xi and

X2 on a line parallel to the ic-axis, is

either X2 — Xi or Xi — X2y the differ-

ence being taken positive when itsj^l

numerical value can be determined.

Likewise, when the two points

are on a line parallel to the iz-axis

the distance between them is 2/2
—

Fig. 10.

2/1 or 2/1 - 2/2.

(2) Ordinarily a line segment that is not parallel to one of the

coordinate axes does not have a direction assigned to it. We
do not then speak of its value. The length of such a line

segment is the distance between its end points.

The distance between two points Pi(a;i, 2/1) and P2(x2, ya)

is given by the formula

[3] d = V(xi-X2)2 + (yi-y2)^.

Proof.—Let Pi(xi, 2/1) and P2(a:2, 2/2) be the two points.

Through Pi and P2 draw lines parallel, respectively, to

the X-axis and 2/-axis to intersect in Q.

Then P1QP2 is a right triangle, and

d = P1P2 = yJPiQ^ + QPa^.

But PiQ = X2 - xi, and QP2 = 2/2 - 2/i- By [2i] and [22].

Hence d = '\/\x2 — Xi)^ + (2/2 — 2/1)^.

2

ATi
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Since {x2 — XiY = {xi - x^Y and (2/2 - 2/i)^ = (2/1 - 2/2)

^

d = V(xi - X2Y + (2/1 - y^Y-

It should be noted that the Une through Pi could as well

have been drawn parallel to the

2/-axis, and the line through P2

parallel to the x-axis.

It is to be noted that the above

proof is general and is made with-

out reference to a figure. The
student, however, should draw
several figures locating the points

in different positions and satisfy

. Figure 11 shows one position of

/A1* >r
1"^

^l(*l.»l)
a;2-«i Q(ir8,jri)

Fig. 11.

himself of the truth of [3]

the points.

EXERCISES

1. Find the distance between each of the following pairs of points:

(3) (-1, 0),(12, -2).

(4) (6, 7), (-5, -5).

^x

P'i<^^i.yii

M3
Mo

^4

i=\(«l.l/l)

ATa

M,

M,

Nz

Vx

(1) (3, 4), (-6, -8).

(2) (-10, 4), (3, -9).

2. In Fig. 12, express each of the fol-

lowing line segments as the difference

between two abscissas: MiMiy M4M3,
M2M1, MiMg.

3. Express each of the following line

segments as the difference between two
ordinates: N1N2, NsN2f NiNiy N2N4.

4. Derive the formula for the distance

betwep.n Pi(xij 2/1) and P2(x2y 2/2), (1)

when both Pi and P2 are in the first

quadrant, (2) when Pi is in the third

and P2 in the fourth quadrant, (3) when
Pi is in the fourth and P2 in the second quadrant.

5. Find the lengths of the sides of the following triangles:

(1) (2, 3), (-5, 8), (-2, -4). (2) (3, -6), (0, 5), (-4, -2).

6. Show that the points (9, 12), (-3, -4), and (5, 4 - 4\/6) lie on a

circle whose center is at the point (3, 4).

7. Find a point whose abscissa is 3 and whose distance from (—3, 6)

is 10.

^i(^i.Vi)

Fig. 12.
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Suggestion.—^Let y be the ordinate of the point.

Then V(3 + 3)^ + {y - 6)^ = 10. Solve for y,

8. Find the center of the circle passing through the three points

(6, 15), (13, 8), and (-4, -9).

Suggestion.—By the definition of a circle, if a circle passes through

these three points, there must be a point (Xj y) from which they are

equally distant. Write the distance of each point from the point (x, y)

and form two equations. Solve these equations for x and,!/.

9. Three vertices of a parallelogram are (—2, 4), (5, 2), and (6, 1).

Find a fourth vertex. How many are there?

Suggestion.—Use the fact that the opposite sides of a parallelogram

are equal.

10. Two vertices of an equilateral triangle are (2, 10) and (8, 2).

Find the third vertex.

11. Find the equation which states that the point (x, y) is 5 units from

the point (3, 4). What is the locus of the point (x, i/)? Draw the

locus.

12. Find the equation that expresses the fact that the point (x, y) is

equally distant from the points (2, 3) and (7, —4). What is the locus?

13. Show that the values of line segments parallel to either axes in

rectangular coordinates hold true when the axes are oblique.

14. If the axes are inclined to each other at an angle of «, and if

lines PiQ and QP2 of Fig. 11 are drawn parallel to the axes, then the

angle P1QP2 equals oj or 180° — o. By the cosine theorem of t igonom-

etry show that then the distance between the two points Pijxi, r/Q and

P2(X2, 2/2) is d = V{Xi - X2)2 + (2/1 - 2/2)2 + 2(Xi - X2)(yi - 2/2) COS W.

15. The angle between two oblique axes is 60°. Find the distance

between the points (—2, 3) and (6, —4).

DIVISION OF A LINE SEGMENT

20. Internal and external division of a line segment.—
If Pi and P2 are any two points on a straight line, then any

third point, Po, on the line is
^

,

said to divide the line seg- ^—$1-^2 ^ £l-

ment P1P2 into two parts. Fig. is.

The point Po is said to

divide the line segment P1P2 internally if Po lies between Pi

and P2; and externally if Po lies beyond P2 as at P'o, or be-

yond Pi as at Pj.
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When Po lies between Pi and P2 the two parts are PiPo and

P0P2. When Po hes at Pq beyond P2, the two parts are PiPq

and P0P2. When Po Hes at P'^ beyond Pi, the two parts are

PiPo and P0P2. The parts are always read as here, that is,

from the initial point to the division point and from the

division point to the terminal point.

When the line segment P1P2 is divided internally ^ both

PiPo and P0P2 are read in the same direction, and therefore
P P

the ratio „ p is positive, and has a small value when Po is
i^(>t 2

near Pi, and a large value when Po is near P2, that is, the

value of the ratio is between and + «» .

When the line segment P1P2 is divided externally the two
parts are read in opposite directions, and therefore the ratio

P P' P P'^

uTDj o^ n^trB^ y is negative. Further, when the point of
-^0^2 ^0^2
division lies beyond P2 the ratio is between —00 and —1,

and when the point of division lies beyond Pi the ratio is

between — 1 and 0.

It remains to express these geometric ideas analytically.

This is done in the next articles.

EXERCISES

1. Upon a straight line locate two points Pi and P2 6 units apart.

P P P P
Locate a third point Po such that -^-^ = |. Such that r^^ = — I-

Suggestion.—These may be determined by methods of plane geometry,

or may be computed by algebra.

2. Divide a line 4 in. long into two parts that are in the ratio 3:1.

In the ratio —5.

21. To find the coordinates of a point that divides a line

segment in a given ratio.

Example 1. Internal point.—Required the coordinates of the point

that divides the line segment from Pi( -2, -4) to P2(5, 6) in the ratio -|.

Solution.—Draw a pair of axes as in Fig. 14, and locate the points

Pi and P2. Let Po(xo, yo) be the required point. Draw lines through

these points parallel to the ?/-axis and cutting the a;-axis in Afi, M2,

and Mo respectively.
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Then, by plane geometry, -:rj^ = ^^PoP2*

P2(5.6)

Hence -

^X

P1C-2.-4)

M0M2
But MiMo = a^o — (— 2) and M0M2 = 5 — a:o, by [2i], for the abscissas

of Ml, Mo, and M2 are respectively —2, Xo, and 5.

And it is given that ^^ = h.

5 — Xo 2

Solving this equation, rco = 3.

Similarly, draw lines parallel to the

X-axis cutting the y-Sixis in Ni No, and
N2 respectively.

NiNo PiPo

But NiNo = 2/0 - (-4) and iVoiV2 =
6 - 2/0. I22I

yo-(-4) ^5
6-2/0 2*

Solving this equation, 2/0 = 3^^.

Therefore the point Po has as coordinates (3, 34^).

Example 2. External point.—Required the coordinates of the point

that divides the line segment from Pi ( —3, 5) toP2(2, —3) in the ratio — f

.

• Solution.—^Locate Pi and P2 as in Fig. 15.

Since the ratio is —
f, the point of

division, Po(xq, 2/0) must be farther from

Pi than from P2, and so is beyond P2 as

shown.

Draw the lines PiMi, P2M2, and PoAf

as in example 1.

MiMo ^ PiPo ^ _5
M0M2 P0P2 3*

But MiMo = Xo — (—3) and M0M2 =

2 -. Xo. f2i].

Xo - (^3) _ __5~ 3*

Fig. 14,

A (-3,5)

f^X

Then

Hence

-PoC^oVo)

2 - Xo

Solving this equation, Xo = 9^.

Similarly, draw PiATi, P2A^2, and PoiVo.

^^^''iVoA^2 "P0P2 " 3-

But NiNo =2/0-5 and N0N2 = -3 - 2/0. [22].

2/0-5 5
3'

-15.

Hence -3 -2/0
Solving this equation, 2/0

Therefore the point Po has as coordinates (9J, — 15).
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Example 3. External point—Required the coordinates of the

point that divides the line segment from Pi(5, —2) to P2(— 2, 4) in the

ratio — f.

Solution.—^Locate Pi and P2 as in Fig. 16.

Since the ratio is —f , the point of division Po(xo, 2/0) must lie nearer

to Pi than to P2, and so is beyond Pi as shown.

Draw the lines P\M\, P2M2, and PoMo as in example 1.

Thpn ^'^' - ^^ - _?"^^^ M0M2 P0P2 ~ 5-

But MiMo = Xo — 5 and
M0M2 = -2 - xo. [2i].

Xq — 5 _ 2
5-Hence -2 - Xo

Solving this equation, Xo = 9f

.

Similarly, draw PiA^i, P2A^2, and
PoiVo,

Po(^o.yo
Then

iViiVo ^ PiPo ^ _2
iVoiV2 P0P2 5-

But NiNo = 2/0 - (-2) and
N0N2 = 4-2/0. [22].

2/0+2 _ 2
5-Hence

4-2/0
Solving this equation, 2/0 = —6.

Therefore the point Po has as coordinates (9f , — 6).

22. Formulas for finding coordinates of point that divides

a line segment in a given ratio.—Required the coordinates

of the point that divides the line segment from Pi(xi, 2/1) to

^2(^2, 2/2) in the ratio ri:r2

Let Po{xoy 2/0) be the required point.

Draw lines through Pi, P2, and Po parallel to the 2/-axis and

intersecting the x-axis in Af 1, ikf2, and Mq respectively.

MiMo ^ PiPo „ n
^2

Then
M0M2 P0P2

But MiMo = Xo ~ a^i and MoAf2 = X2 — iCo.

a^o — ^1 _ n
""

r2

^1^2 + ^2^:1

[2,]

Hence
X2 — Xo

Solving for Xo, Xo =
,

ri + r2

Similarly, draw lines through Pi P2, and Po parallel to
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the X-axis and intersecting the 2/-axis in iVi, iV2, and
No respectively.

Then S# = &?-" = -'
N0N2 P0P2 r2

But NiNo = 2/0-2/1 and N0N2 = 2/2 - 2/o- [Sa]

Hence ^^^^^ = ^.
2/2 - 2/0 ^2

Solving for 2/0,
yo ^ rjy^±I^i

ri + rg

Therefore the coordinates of Pq are

m ^ _ riX2 + raXi Tiya + igyi

Ti -h r2 ri -h r2

Special case.—It is frequently required to find the coordi-

nates of the point bisecting a line segment. In this case the

two parts are equal, and the ratio — = 1. Formula [4]

then becomes

L^J Xo 2 > JO — 2

It is readily seen that the results of the last two articles are

true for oblique axes as well as for rectangular axes.

EXERCISES

In the first four exercises draw the figure, and solve without using

formulas [4] and [51.

1. Find the coordinates of the point which divides the line from

(-5, -8) to (-1, 4) in the ratio 3 : 1.

2. Find the coordinates of the point which divides the line from

(-1, 4) to (8, 1) in the ratio 1 : 3.

3. Find the coordinates of the point which bisects the line from (8, 6)

to (-2, -3).

4. Find the coordinates of the point which divides the line from

(-4, 8) to (2, 6) in the ratio -f.
6. Do each of the first four exercises by the formulas.

6. Find the coordinates of the point which divides the line from

(3, -9) to ( - 1, 5) in the ratio 5:3.

7. Find the coordinates of the point which divides the line from

("6, 8) to (3, -2) in the ratio 3:1. In the ratio -2:3.
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8. Draw a triangle the coordinates of whose vertices are (1, 1), (2, —3),

and (—4, —6), and find the coordinates of the middle points of its sides.

9. The coordinates of P are (2, 3) and of Q are (3, 4). Find the

coordinates of R so that PR : RQ =3:4.
10. Draw the triangle with vertices at (3, 5), (—5, —3), and (9, —7).

Find the lengths of its medians.

11. Show that the Une joining the middle points of two sides of the

triangle, having as vertices the points (8, 6), (1, 1), and (4, —5), is equal

to one-half the third side.

12. Prove that the diagonals of the parallelogram whose vertices are

(10, 4), (-3, 4), (-6, -6), and (7, -6) bisect each other.

13. The middle point of a line is at (4, 6) and one extremity is at

(—3, —2). Find the other extremity.

14. Find the coordinates of the points that trisect the line from (2, 2)

to (-7, -4).

15. Show that the median of the trapezoid whose vertices are (0, 0),

(a, 0), (6, c), and (d, c) equals one-half the sum of the parallel sides.

ANGLES FORMED BY LINES

23. The angle between two lines.—That one line forms

an angle with another is a geo-

metric idea, and does not neces-

sarily depend upon whether or

not the lines are considered as

having a positive or negative

sense, that is, direction. In

^ „ order to express the facts analyti-
FiG. 17. ,, . , , ^ 11 .

cally, we start with the ioliowing:

Definition,—The angle that a line h makes with a line U
is the angle, not greater than 180°, generated by revolving U
in a positive direction until it coincides with Zi.

In Fig. 17, both (a) and (6), the angle <p is the angle that li makes

with U.

It follows that the angle that U makes with Zi is tt — (p.

The definition still holds when the lines do not intersect,

that is, are not in the same plane, if it is understood that U
revolves in a plane parallel to Zi, until it is parallel to Zi.
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Vl

24. Inclination and slope of a line.—An important special

case of the angle that one line makes with another is the

angle that a line makes with the x-axis. This angle is called

the inclination of the line. It is always measured from the

positive part of the x-axis.

Thus, in Fig. 18, ai is the inclination of Zi

and a 2 the inclination of h.

Definition,—The tangent of the

inclination of a line is called the slope ^ | \ '—-^—^
' > x

of the line.

Thus, if m is the slope of a Une and a its yiq. 18.

inclination, then m = tan a.

Since the inclination may be any angle in the first or second

quadrant, the slope of a line may have any real value either

positive or negative, including and ± co

.

25. AnaljTtical expression for slope of a line

.

Example.—Required the slope and inclination of a line I passing

through the points Pi(2, 3) and P2(5, 6).

Solution.—^Locate the points Pi and P2

and draw the line I as in Fig. 19. Through

Pi draw a line parallel to the ar-axis, and

through P2 a line parallel to the y-axis.

These lines meet at Q, and the angle QP1P2

is the inclination of I. Thenm = tan QP1P2.

But tan QP1P2 = QP2 _6 -3
PiQ 5-2

Hence m = 1, and a = tan~4 =

= 1.

= 45°.

Fig. 19.
It should be noted that, whatever

the position of the points, the line

drawn parallel to the x-axis is so drawn that an angle equal to

the inclination is formed.

26. Formula for finding the slope of a line through two

points.—Required to find the slope of a line I in terms of the

coordinates of two points Pi{xi, 2/1) and P2(x2, 2/2) on the line.

Let the Hne be in either of the positions shown in Fig. 20.

In either case draw a line through Pi parallel to the x-axis,
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m = tan a =

forming an angle equal to a as shown; and through P2 draw
a line parallel to the y-Sixis meeting the first line in Q.

Then, whether the slope m of Z is positive or negative,

QP2 ^ y2 - 2/1

PiQ X2 — xi

If Pi and P2 are inter-

changed, the slope is
———,
X\ X2

which equals ^^ "" ^^
'

Xi — Xi

Therefore, in any case, the

formula is

P2(sr,,i/o)|5^

:sl

<Pi"(a;i.2/i)

Fig. 20.

PgC^^.i/s)

- J

\^X

[6j m = tan a - yi ~ y2

Xi - X2

27. The tangent of the angle that one line makes with another

in terms of their slopes.—Required the tangent of the angle that

line Zi, having a slope of mi, makes with Z2, having a slope of mi.

Let the inclinations of l\ and li be a\ and ai respectively.

^-s:

Fig. 21.

Then tan a\ = mi, and tan a^ = m2.

There are two cases: case I when ai>a2, Fig. 21 (a); and

case II when ai<a2, Fig. 21 (6).

In each case, let <p be the angle that h makes with h.'

Then, in case I, ai = a2 -\- (p, or (p = ai— a2.

And, in case II, 0:2 = «i + (180° — <p)y

or <p = 180° + (ai - 0:2).
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In either case,

tan ai — tan a2 mi — m^
tan (f

= tan (ai — 0:2) =

[7] tan =<^

1 + tan Qji tan a^ 1 + mim^

nil — vol2

1 + niim2

28. Parallel and perpendicular lines.—If two lines are

parallel, their slopes are equal, and conversely.

If two lines are perpendicular to each other, the slope of one

is the negative reciprocal of the slope of the other, and conversely.

If line h is parallel to line Z2, then ai = a2, and mi = m2.

Conversely, If mi = m2, ^, ~ — 0.
1 + mim2

Then tan <^ = 0, and hence <^ = 0.

Therefore h and h are parallel by Art. 23,

If Zi and U are perpendicular to each other, ai = a2 + 90°, or

ai = 0:2 - 90°.

Then tan ai = tan (^2 ± 90°) = — cot 0:2 = — i
tan a2

Therefore mi =
, and m2 =

m2 mi

Conversely, If mi =
, tan ai = — = — cot a^,^ m2 tan a^

But cot a 2 = tan (90° — a2) = —tan (a2 — 90°), or.

cot a2= —tan (90° + 0:2).

Then tan ai = tan (a2 — 90°), or tan ai = tan (90° + a2).

From this ai = ^2 - 90°, or ai = 90° + a2.

Hence either a2 — ol\= 90° or a^ — 0^2 = 90°.

Therefore ^ = 90°, and U and U are perpendicular to each

other.

The following are the important facts to remember:

[8] For parallel lines, mi = m2.

[9] For perpendicular lines, mi =
,
and m2 = — —-*

m2 mi

Example.—Find the angle that the line through (4, 5) and (—2, —4)

makes with the line through (0, 4) and (—6,-8).
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5 + 4 3

4 + 2 2*Solution.—The slope of Zi is mi

4+8
The slope of h is ma = ^ , ^ =2.

U + t)

1 — 2 1
Substituting in [4], tan <p = J_ ^

= — ^.
1 + 2^- J O

.-. ^ = tan-1 {-}) = 172° 52.4'.

EXERCISES
1. Find the slopes of the lines through the following pairs of points:

(1) (-4, -4) and (4, 4). (4) (- VS, V2) and (V2, V3).
(2) (-4, 3) and (-3, 2). (5) (-a, 6) and (c, d).

(3) (5, 0) and (6, V3). (6) (\/3, 2) and (\/2, 3).

2. Find the inclination of each of the lines of exercise 1.

3. Find the slope of a line that is perpendicular to the line through

the points (3, 4) and (-2,-3).
4. Show that the line through (4, 2) and (3, 7) is perpendicular to the

line through (8, 1) and (13, 2).

5. Find the value of y so that the line through (3, 7) and (4, y) shall

be perpendicular to the line through (9, 10) and (6, 8).

6. Prove by means of slopes that the three points (6, —3), (2, 3), and

(—2, 9) are on the same straight line.

7. Find the value of x so that the three points (x, 6), (2, 8), and (4, 7)

shall be on the same straight line.

8. Express by an equation the fact that a line passing through the

points (4, 5) and (x, y) has a slope of f.

9. A line passes through the point (—4, 6) and has a slope of — f.

Find the abscissa of the point on the line whose ordinate is —3.

10. Express by an equation the fact that a line passing through the

point ( — 3, —6) is perpendicular to the line through the points ( — 2, 7)

and (4, 6).

11. Express by an equation the fact that a line passing through the

point (7, 2) is parallel to the line through (—6, —2) and (4, —7). Find

the point on this line whose abscissa is —3.

12. Two lines U and h make tan'^J and tan-^ — f) respectively

with the X-axis. Find the angle that U makes with h.

13. Find the slope of the line that makes an angle of 47° with the line

having a slope of 0.3674.

Suggestion.—Substitute <p = 47° and mz = 0.3674 in [7] and solve

for mi.

14. Find the angle that the line through the points (—3, 6) and

(4, —2) makes with the line through the points (1, 1) and (—7, —7).
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16. A line passes through the point (4, 5) and is parallel to the line

through the points (3, -2) and (-2, 5). Find where the hnecuts the

2/-axis.

16. A Une I makes an angle of 30° with the line through the points

(2, 3) and (6, 7). Find the slope of I.

17. Show that the Hnes joining the middle points of the sides of a
quadrilateral whose vertices are the points (5, —4), (3, 6), (— 1, 4), and
(—3, —2) taken in order, form a parallelogram.

18. Prove by means of the slopes of the sides that the quadrilateral

whose vertices are the points (4, 2), (2, 6), (6, 8), and (8, 4) is a rectangle.

19. A point is equidistant from the points ( — 5, —2) and (2, —5), and
the line joining the point to (4, 2) has a slope of —J. Find the coordi-

nates of the point.

20. A line passes through the point (4, 5) and has a slope of 0.7236.

Find the ordinate of the point on this line having as abscissa —2.

21. Theverticesof atrianglearePi(3, 4),P2(~4, 3),andP3(-l, -4).

Find the angle of the triangle at the vertex Pz,

POLAR COORDINATES

29. Location of points in a plane by polar coordinates.—
Thus far only the first method mentioned in article 13 for

^x

Fig. 22.

locating points, has been used. The second method, that by

polar coordinates, has advantages over the cartesian system

in certain cases. This method will now be explained.

In polar coordinates we locate a point in a plane by giving

its distance and direction from a given fixed point in the

plane. Thus, in Fig. 22, given the fixed point in the fixed

directed line OX, then any point P in the plane may be located

by stating its distance OP = p from 0, and the angle d through

which OX must turn to coincide with OP.

Definitions.—The fixed point is called the pole or origin;
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the fixed line OX the initial line, or polar axis; the line segment
OP = p is called the radius vector of P; and the angle d the
vectorial or directional angle of P. Together, p and are the
polar coordinates of P, and are written (p, 6),

Pi(5.C0)

•^x

P2 (4.-30 )

Fig. 23.

)P2(-4,-H'r)

Pi (-3. 30)

Fig. 24.

In order to use both positive and negative numbers as

coordinates of points, the usual conventions of trigonometry

as to positive and negative angles of any size are accepted.

It is also agreed that the radius vector is positive if measured
from along the terminal side of the angle 6, and negative if

measured in the opposite direction.

Thus, Pi (5,60°) is located as shown in Fig. 23, the angle being mea-
sured counter-clockwise and the radius vector along the terminal side in

the positive direction.

To plot the point P2(4, —30°), the angle is measured clockwise and
the radius vector positive. (Fig. 23.)

The following points are plotted as shown in Fig. 24: Pi(— 3, 30°)

andP2(-4, -iw)-

(5,-300 )

Fig. 25

From the above illustrations it is clear that one pair of polar

coordinates determine one, and but one, point in the plane.
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On the other hand, for a single point there are an indefinite

number of pairs of polar coordinates.

Thus, if only values of e numerically less than 360** are taken, then

the four pairs of coordinates (5, 60°), (-5, 240°), (-5, -120°), and

(5, —300°) all determine the same point as shown in Fig. 25.

For convenience in plotting, polar coordinate paper ruled

with concentric circles and radial lines, as shown in Fig. 26,

can be obtained. The following points are shown plotted in

Fig. 26: P(5, 20°), Q(-6, 80°), R{S, ^tt), .S(--7, Itt), and

r(~8, -Itt).

EXERCISES

1. Plot the following points in polar coordinates:

(1) (3,30°). (6) (3, -Itt). (11) (3, 1).

(2) (7, 120°). (7) (-4,7r). (12) (-4, -2).

(3) (-2,40°). (8) (-2, -tt). (13) (5, -3).

(4) (-6, 150°). (9) (2, 0). (14) (-6, -5).

(5) (4, -75°). (10) (-6 W. (15) (ir, -x)

2. Give three other pairs of coordinates in which is numerically

less than 360° for each of the following points: (1) (7, 30°), (2) (-3, h)-
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3. The side of a square is 4 in. and the diagonal is taken as the polar

axis with the pole at a vertex. Find the polar coordinates of the vertices.

4. What is the locus of all points for which p = 5? For which = Jtt?

For which d = iw?

30. Relations between rectangular and polar coordi-

nates.—Let X'X and Y'Y, Fig. 27, be a set of rectangular

coordinate axes; and let the polar axis OX be taken on the

positive part of the x-axis with the pole at the origin.

Let P be any point in the plane. Draw OP, and QP per-

pendicular to Z'Z. Then by the definitions already given,

OQ = x,QP = y, OP = p, and Z XOP = 6.

By trigonometry and geometry
it follows that

[10]

^x

X = 9 cos 6,

y = 9 sin e,

X2 + y2 = p2^

By means of these formulas

polar coordinates can be ex-

pressed in rectangular coordi-

nates.

Also by trigonometry and geometry it follows that

[11] 9 = Vx2 + y2,

X
= tan"

By means of these formulas rectangular coordinates can be

expressed in polar coordinates.

EXERCISES

1. The origin in rectangular coordinates coincides with the pole in

the polar system, and the a:-axis falls upon the polar axis. Find the

rectangular coordinates of the following points: (6, Itt), (—2, Itt),

(-5, W, (6, h), (3, Itt), (8, Itt), (2, tt), (6, Itt).

2. Find the rectangular coordinates of the points whose polar coordi-

nates are: (2, 40°), (3, 70°), (6.5, -30°), (1.2, 130°), (-4.5, 155°).
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3. Find two pairs of polar coordinates for each of the following:

(4, 4V3), (-3, -3), (3, 5), (-V2 V6).
4. By means of [10] derive d = Vpi^ + P2^ — 2pip2 cos (Oi — ^2) from

[3]. Here (xi, 2/1) ^^^ (pu ^0 are the same point, as also are (xij y^)

and (p2, ^2).

5. Derive the formula for the distance between two points in polar

coordinates directly by means of the cosine theorem of trigonometry.

6. The polar coordinates of P are (5, 75°) and of Q are (4, 15°). Find

the distance PQ.

TRANSFORMATION OF RECTANGULAR COORDINATES

31. Changing from one system of axes to another.—From

the discussions already given, it is evident that the coordinate

axes may be chosen at pleasure. In any particular case it is

clear that they should be so chosen that they can be used to

the best advantage. In order to discuss certain problems that

occur in analytic geometry, it is necessary to express the

coordinates of points in the plane in another system of

coordinates than that in whifeh they are already expressed.

It is of advantage to deduce formulas for making these

transformations which are of two kinds.

(1) Transformation by trans-

lation of axes J
or changing to new

axes that are parallel to the

original axes.

. (2) Transformation by rotation'

of axes, or changing to new axes

that make a certain angle with

,

the original axes.

32. Translation of coordinate

axes.—Let OX and OY, Fig. 28, Fig. 28.

be any system of cartesian axes

;

and let O'X' and O'Y' be another set parallel to the original.

Let 0', the origin of the new system, have coordinates {h, k)

when referred to the original system.

Y
' N'

Y
P(x,v)

"i
(x',v)

B 0' (Kk) \M'

A M '
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Let P be any point in the plane, having coordinates (x, y)

when referred to the original system and (x', y') when referred

to the new system.

Draw a line through P parallel to the a:-axis, intersecting OY
in N and O'Y' in N\ Also draw a line through P parallel to

the 2/-axis, intersecting OX in M and O'X' in M',

Then NP = NN' + N'P, and MP = MM' + M'P. Arts.

10 and 18.

But NP = X, NN' = /i, iV'P = x\ MP = y, MM' = k,

M'P = 2/'.

Therefore the formulas for translating the axes are:

[12] X = x' + h,

y = y' + k.
^

Solving these formulas for x' and 2/',

[12i] x' = X - h,

y' = y - k.

In this article it is not implied that the axes are rectangular,

and therefore the formulas hold for transforming from any set

Qf cartesian coordinate axes to a parallel set.

33. Rotation of axes. Transformation to axes making

an angle (p with the original.—Let

^^\'^'l') OX and F, Fig. 29, be any system

x' of rectangular axes, and let OX'
and OY' be another set of rec-

tangular axes having the same origin

as the original, but making an angle

(p with OX and OY respectively.

Let P be any point in the plane,

having coordinates (a;, y) when re-

ferred to the original system, and

{x'j y') when referred to the new system of axes.

Join to P, draw MP perpendicular to OZ, draw M'P
perpendicular to OX'. Let IXOP = 0, and Z.X'OP = 6',

and OP = p.

^x

Fig. 29.
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Then x = p cos 6 = p cos (6^ + (p)

= p cos 6^ cos <^ — p sin d' sin (p. [10]

And y = p sin^ = p sin (^' + <^) =

p sin ^' cos (p + p cos ^' sin (p. [10]

But x' = p cos e^ and 2/' = p sin ^'. [10]

Substituting these values,

[13] X = x' cos <p — y' sin ^,

y = x' sin ^ + y' cos ^.

Solving these formulas for x' and y',

[13i] ;c' = X cos ^ + y sin ^,

y' = y cos ^ — X sin ^.

Example.—The point P has coordinates (\/2, 2-\/2) when referred to

a certain system of rectangular axes. Find the coordinates of P when
referred to a new set of rectangular axes having the same origin but

making an angle of 45° with the original.

Solution.—Here we are to find x' and y' when x, y, and <p are known,

and so we use formulas [13 1].

Substituting in these formulas,

x' = \/2 cos 45° + 2\/2 sin 45°

= V2 X iV2 + 2\/2 X iV2 = 1+2=3.
2/' = 2V2 cos 45° - \/2 sin 45°

= 2V2 X iV2 - V2 X i\/2 =2-1=1.
Check the values by a drawing.

EXERCISES

1. Find the coordinates of the following points when referred to axes

parallel to the original and with origin at the point (3, 4): (7, 8), (4, 3),

(0,0), (-2, 6), (-7, -5), (6, -8).

2. Find the coordinates of the following points when referred to

axes having the same origin as the original, but making an angle of 45°

with them: (2, 3), (-3, 4), (-5, -5), (7, -1).

3. The coordinates of the vertices of a triangle are Pi(— 3, —4),

P2(6, —2), and Pz(2, 7). Find the coordinates of the vertices when

referred to parallel axes with origin at Pi. Plot.

4. The coordinates of a point Pi are (3, 2). Find the coordinates

of the origin of a new set of axes parallel to the old so that the coordi-

nates of Pi shall be (—4, —6) when referred to the new axes.

6. The coordinates of the vertices of a triangle are Pi(0, 0), P2(2, 2\/3),
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and PsC— 2, 4). Find the angle through which the axes must be rotated

so that P2 shall he on the new x-axis. Find the coordinates of the

vertices of the triangle referred to the new axes.

6. Derive formulas [13 1] from Fig. 29 without solving [13]. •

AREAS OF POLYGONS

34. Area of a triangle in rectangular coordinates.—^Let

APiP^Pzj Fig. 30, be any triangle having vertices Piixi^yi),

P2{x2y 2/2), and Ps(x3, yd re-

ferred to the axes OX and OY.
Translate the axes to a new
system having as origin one

Pz(x2,v2)y^Y'^^^ of the triangle, say Pi

(^1, Z/i),

Then the coordinates of P2

and P3 referred to O'X' and

O'r are PsCa:/, ?//) and

Ps(x3y 2/3') respectively, where

2/2 - Vh

^x'

^x

Fig. 30.

X2 = X2 — Xij 2/2'

X3 = X3 — xij yz 2/3 - 2/1

by [12i].

Let AX'O'P^ = 6>2, and AX'O'Pz = ^3.

The area of AP1P2P3 = 4P1P2 times the altitude from P3

to P1P2.

Hence area AP1P2P3 = JP1P2 X P1P3 sin (^3 - ^2)

= iPiP2 X P1P3 (sin ^3 cos 62 - cos ^3 sin ^2)

= hiPiPi cos 62 X PiP3sin(93 -P1P3 cos dz X P1P2 sin 62).

ButPiP2 cos 62 = X2 = X2 — xi, P1P3 sin dz = 2/3' = ys — yu

P1P3 cos ^3 = xz = Xz — xi, P1P2 sin 62 = 2/2' = 2/2 - 2/i-

Substituting these values and putting A for area of AP1P2PZ9

A = i[(^2 - xi) {yz - 2/1) - {xz - xi) (2/2 ~ 2/1)]

•

Multiplying and arranging,

[14] A = iixiY2 - X2yi + X2y3 - X3y2 + X3yi - xiya).
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This may be written in the determinant form

xi 2/1

1

A = ix2y2l,
xz 2/3

1

by which it can be readily remembered. The formula can

also be remembered and the computation carried out by the

following:

Rule.—First, write down in a line the abscissas of the

vertices taken in counter-clockwise order, repeating the first

abscissa at the end; and under the abscissas write the cor-

responding ordinates.

Thus, Xi X2 Xz x\

2/1 2/2 2/3 2/1

Second, multiply each abscissa by the ordinate of the

following column, and add. This gives Xiy2 + 0:22/3 +Xzyi.

Third, multiply each ordinate by the abscissa of the follow-

ing column and add. This gives 2/1X2 + 2/2X3 + 2/3X1.

Fourth, subtract the third from the second and divide by 2.

This gives the area as in formula [14].

It is evident that the expression

\P1P2 X P1P3 sin (^3 - ^2) for the area

is positive or negative according as sin

(^3 — ^2) is positive or negative. In

order then to have the area positive,

sin (^3 — ^2) must be positive. Hence

^3 — O2 must be positive, and 6z>02.

That is, P1P2 is turned counter-

clockwise to coincide with P1P3. This

will be true only if, in passing around

the triangle in the order the vertices are taken, the area is

always at the left as shown in Fig. 31. That is, a point

moving around the triangle must move counter-clockwise.

Otherwise the area will be negative.

Thus, in Fig. 31, the area of the triangle, if the vertices are taken in

the order Pi, P2, P3, is

A = M3(-5) - 9(-2) + 9.4 - 10(-5) + 10(-2) - 3.4] = 28i.

PsUM)

^X

-Pa (9.-6)

Fig. 31.
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-^X

Fig. 32.

If, however, the vertices are taken in the order Pi, P3, P2, the area is

A = i[3.4 - 10(-2) + 10(-5) - 9.4 + 9(-2) - 3(-5)] = -28i
35. Area of any polygon.—^Any polygon having its vertices

given in rectangular coordinates can

be divided into triangles by diagonals

drawn from any vertex. Its area can

then be found. It can be readily

shown that the area of any polygon

can be found by the rule given for

finding the area of a triangle.

Thus, a polygon, Fig. 32, having

five vertices as follows, taken in order

counter-clockwise; Pi(xi, yi)jP2(x2, 2/2),

Pz(xsj 2/3) ^4(^4, 2/4), and PsC^s, 2/5), has its area represented

by the scheme,

Xi Xi Xz Xa X^ Xi

2/1 2/2 2/3 2/4 2/5 2/1

which evaluated by the rule gives

^ = M(^i2/2 + ^22/3 + ^32/4 + X4y5 + x^yi)

— (2/1^2 + 2/2^3 + 2/3^4 + 2/4^5 + 2/5^1)].

Example.—Find the area of the polygon

having the following vertices: (—3, 6),

(2,-4), (8, 1), and (4, 7).

Solution.—Arranging the abscissas and
ordinates,

-3 2-^4
6-417

A = i{[(-3)(-4) + 2-1 + 8.7 + 4-6] -
[6-2 + ( -4)8 + 1-4 + 7( -3)] } = 65^ square

units.

EXERCISES
1. Find the area of the triangles having the following points as vertices,

in each case draw the figure:

(1) (0,0), (10, 12), (-6, 8).

(2) (-4, 6), (-2, 9), (10, -4).

(3) (17, 2), (-3, 9), (-6, -10).

(4) (0,7), (10, -3), (-4,9).

-3
6

-( - 3 6 ) -
-^H,7-;

^
^ S

V ' 1_i_ ^_ ._

^.(ai '

Vi- "

P
V \~

i. /_

s^
?'> 4T

1

Fig. 33.
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2. Find the area of the quadrilateral with vertices (2, 5), (-7, 9),

(-10, -3), and (6, -9).

3. Find the area of the pentagon with vertices (1, -2), (3, 1),(6, 2),

(4, -4), and (2, -5).

4. Show that the area of the triangle with vertices (2, 4), (—6, —8),
'

and (1%, —4) is four times the area of the triangle formed by joining the

middle points of the sides.

6. Find the area of the isosceles triangle with vertices (4, 5), (10, 13),

and (4, 15). Find the altitude from the vertex at (4, 5), and find

the area as one-half the product of the base and altitude. Do the two
results agree?

6. Find the area of the triangle with vertices Pi(7, 9), P2(— 6, —8),
and Ps (4, —6). Find the point P4 dividing P2P3 in the ratio 2:3, and
show by areas that the triangle is divided into two triangles the areas

ef which are in the ratio 2:3.

7. If the vertices of a triangle in polar coordinates are Pi (pi, 5i),

P2(p2, #2), and P3(p3, ^3), derive a formula for its area.

Suggestion.—In [14] put Xi = pi cos ^1, 2/1 = Pi sin 61, and similarly

for P2 and P3. Arrange and apply the subtraction formula for sines.

8. Find the area of a triangle the vertices of which in polar coordinates

are (10, 30°), (-12, 120°), and (6, 135°).

APPLICATIONS

36. Analytic methods applied to the proofs of geometric

theorems.—One of the necessary conditions for the mastery

of a mathematical subject is a thorough understanding of

the fundamental ideas and methods. In the present chapter,

stress has been laid upon the expressing of geometric ideas

in an analytic form. Time will be well spent in reviewing

these methods until they are fully comprehended.

As will be repeatedly found in subsequent chapters, analytic

geometry gives a powerful method for treating a great variety

of geometric questions. As an illustration of this a few

elementary examples of the application of algebra to geometry

are given in this article.

One of the great advantages of the analytic method of

solving geometric problems lies in the fact that an analytic

result obtained by the simplest arrangement of the axes with
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PA«'z,Vi)

reference to the geometric figure holds equally well for all other

arrangements of the axes.

It is well then always to make use of the simplest relations

between the geometric figure and the coordinate axes.

Example 1.—Prove analytically that the

line segment joining the middle points of

two sides of a triangle is equal to one-half

the third side and is parallel to it.

Given any triangle OP1P2, and AB bisect-

ing OP2 and P1P2.

To prove AB = iOPi, and that AB is

parallel to OPi.

Proof.—Choose the coordinate axes with

origin at and the x-axis along OPi. Then
the coordinates of are (0, 0), and Pi and

P2 may be designated by (a^i, 0) and (x2, 2/2) respectively.

Coordinates of A and B are
( ^. ^) and (

^ "T—-, ^ ) respectively. [5]

Length of AB = ^(^^^^ -
|) % (|

-
|)

^ = f [3]

Fig. 34.

But OPi = xi - = xi.

. AB = JOPi.

[6]Also slope oi AB = 0, and slope of OPi = 0.

.*. AB is parallel to OPi.

To see the desirability of this choice of the axes, the student should

write out the proof when the ^
vertices of the triangle are (xi, 2/1),

-Ps/^s.J/a)

{X2, 2/2), and (xz, yz).

Example 2.—Derive a formula

for the center of gravity of a

triangle with vertices Pi{xi, 2/1),

P2fe, 2/2), and PaCxs, 2/3); it being

known that the center of gravity

of a triangle is at the intersection
""

of its medians, which is two-thirds

of the length of any median from

a vertex.

Solution,—Here no choice of axes can be made that will simplify the

work.

-PJ«2.yj

Pii^^.Vx)

-^X

Fig. 35.
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Choose any median as PiQ. Then it is required to find the coordinates

(xo, 2/0) of Po such that PiPo :PoQ =2:1.

Coordinates of Q are (^^^. ^^+H .

By [4] xo = ^^+^-+^^ and 2/0 = ^1±JL«.

EXERCISES

1. Use the formulas derived in example 2 and find the coordinates

of the center of gravity of a triangle with vertices (2, 6), (—8, 3),

and (-4, -3).

Prove the theorems in exercises 2-12.

2. The diagonals of a rectangle are equal.

3. The diagonals of a parallelogram bisect each other.

4. The medians of a triangle intersect in a point which is two-thirds

the length of any median from a vertex.

5. The middle point of the hypotenuse of a right triangle is equally

distant from the three vertices.

6. The diagonals of a square are perpendicular to each other.

7. If the diagonals of a parallelogram are equal, the figure is a

rectangle.

8. The distance between the middle points of the non-parallel sides

of a trapezoid is equal to half the sum of the parallel sides.

9. The lines joining the middle points of the successive sides of any

quadrilateral form a parallelogram.

10. The lines joining the middle points of the successive sides of any

rectangle form a rhombus.

11. In any quadrilateral, the lines joining the middle points of the

opposite sides, and the line joining the middle points of the diagonals

meet in a point and bisect each other.

12. The sum of the squares of the four sides of a parallelogram is

equal to the sum of the squares of its diagonals.

13. Given Pi any point in the plane of a rectangle, prove that the

sum of the squares of the distances from Pi to two opposite vertices

of the rectangle is equal to the sum of the squares of the distances from

Pi to the other two vertices.

GENERAL EXERCISES

1. If the points A, B, C, D, and E are any points on the same straight

line, show that:



42 ANALYTIC GEOMETRY [§36

(1) AB -\-CD - CB - ED = AE,
(2) AE -\-EB -{- DE -{- EC - DB = AC.
(3) AC - EB + CB - AE = 0.

2. If the coordinates of the vertices of a rectangle are (0, 0), (8, 0),

(8, 6), and (0, 6), what will be the obHque coordinates of its vertices if

the y-axis is the diagonal through the origin, the x-axis remaining as

before?

3. What are the oblique coordinates of the vertices of the rectangle

of exercise 2 if the y-axis is taken as the diagonal through the point

(0, 6)?

4. What are the coordinates of the vertices of a square if a side is

4-s/2i and its diagonals are taken as the coordinate axes?

6. A rhombus lies wholly in the first quadrant, and the angle between
two of its sides is 30°. If the coordinates of two of its vertices are (0, 0)

and (a, 0), find the coordinates of the remaining vertices.

6. Find the coordinates of the vertices of an equilateral triangle of

side a if its center is at the origin and the y-Sixis passes through one
vertex.

7. The angle between two oblique axes is 135°. Find the distance

between the points (1, 3) and ( — 1, —3).

8. What is the ratio in which the y-axis divides the line segment
joining (-2, 3) to (5, -1)?

9. Find the coordinates of two points which divide the line segment
from (2, 4) to (8, —8) internally and externally in the ratio whose
numerical value is 2.

10. Find the coordinates of Pi and P2 where Pi is on the positive

2/-axis, P2 on the positive x-axis, and the point (2, 3) divides P1P2 in

the ratio 2:1.

11. The point (-2, -2) divides the line P1P2 in the ratio -4 : 3. If

Pi has the coordinates (2, 6), find the coordinates of P2.

12. If Pi has the coordinates (1, 4) and P2 the coordinates (5, 1), find

a point P3 on P1P2 such that P1P2 will be a mean proportional between

P1P3 and 25.

13. Prove analytically that the diagonals of a rhombus intersect at

right angles.

14. The hypotenuse of a right triangle is the line joining ( — 1, —2)
to (6, 4). Find the coordinates of the third vertex if it lies on the a:-axis.

16. One end of the line whose length is 5 is at (4, 2). The abscissa

of the other end is 7, what is its ordinate?

16. The end points of a diagonal of a parallelogram are (2, —3)
and (3, 2). Find the coordinates of the remaining vertices if they are

on the X-axis and y-axis respectively. Why is there only one solution?
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17. The coordinates of the end points of one diagonal of a rhombus
are (0, 0) and (2, 4). If one side lies along the positive x-axis, find the

coordinates of the end points of the other diagonal.

18. Two points Pi and P2 are at the same distance from the origin.

If their polar coordinates are (p, ^1) and (p, ^2), show that the slope of

the line joining them is —cot

19. What does the slope of the hne joining ( — 1, 3) to (6, 7) become
if the axes are rotated through an angle <p = tan~^ f ?

20. What does the slope of the line joining (4, 3) to ( — 5, 6) become
if the axes are rotated through 30°?

21. What is the slope of the Une through the points the polar

coordinates of which are (6, 30°) and (4, 60°) ?

22. Find the area of a triangle the polar coordinates of the vertices of i

which are (^tt, Jit), (tt, Jtt), and (27r, iir).

23. Find the area of a triangle the polar coordinates of whose vertices

are (1, 60°), (3, 210°), and (2, 240°).

24. A rectangle of sides 5 and 12 lies entirely in the second quadrant,

with one vertex at the origin and the longest side on the negative x-axis.

Find the coordinates of its vertices if the axes are revolved so that the

2/-axis coincides with one diagonal.

25. The coordinates of the vertices of a parallelogram are (0, 0),

(4, —3), (5, 0), and (1, 3). What will be the coordinates of its vertices

if the axes are rotated so that the x-axis coincides with the longest side?



CHAPTER III

LOCI AND EQUATIONS

37. General statement.—In the present chapter will be

considered some of the more simple cases of the first two funda-

mental questions of analytic geometry as stated in article 3.

The locus of an equation will be considered first, and then the

equation of a locus. That is, the geometric interpretation of

an equation will be dealt with first.

38. Constants and variables.—A constant is a number that

never changes, or one that does not change in the course of a

discussion.

Constants that never change are definite numbers, as 2, f ,

\/2j log 3, and x. Numbers that are constant during a dis-

cussion, but may be different in another discussion are repre-

sented by the letters that are assumed to have known values.

A variable is a number whose value changes arbitrarily, or

according to some law.

The number expressing the speed of a train as it gains

headway is a variable. The price of a stock may change

from day to day, and is expressed by a variable. The velocity

of a falling body changes from instant to instant, and is

expressed by a variable.

If two variables are so related that for every value of one

there is a corresponding value of the other, then the one is

said to be a function of the other.

Thus in the formula for the area of a circle, A = Trr^, for

every value of r there is a value of A, Then A is a function of

r. This is written A = /(r) . Likewise r may be considered a

function of A.

44
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EXERCISES

1. Give various illustrations of variables and constants.

2. In the formula, A = ^r^y for the volume of a sphere, which are

constants and which variables? Is A a function of r? Is r a function

of A?
3. In the equation x + 2/ = 6, can either x or y he assigned values

arbitrarily? Can both be given arbitrary values at the same time?

Is a: a function of 2/? Is y sl function of a;?

39. The locus.—If the location of a point is determined by
certain stated conditions, then the locus of the point is the

geometric figure such that, (1) all points of the figure satisfy

the given conditions, and (2) all points that satisfy the given

conditions are in the figure.

In proving that a certain figure is the required locus^ it is

sometimes more convenient, instead of (2) , to prove that any

point not in the figure does not satisfy the given conditions.

The conditions determining a locus may be stated in the

language of geometry, or may be stated by an equa;tion.

In the more simple cases the locus can be given immediately

from the conditions stated.

EXERCISES

1. What is the locus of a point that is equally distant from two fixed

points?

2. What is the locus of a point in a plane and at a constant distance

from a fixed point in that plane?

3. What is the locus of a point equally distant from two intersecting

straight lines and in the plane determined by those lines?

4. What is the locus of a point equally distant from three fixed points

and in the plane determined by the three points?

5. In rectangular coordinates, what is the locus of a point whose

abscissa is 0? Whose abscissa is 5? Whose ordinate is —6?
6. What is the locus of a point whose coordinates satisfy the equation

X = 4? Which satisfy the equation x = y? The equation x + y =0?

40. The locus of an equation.—If an equation is the analy-

tic statement of geometric conditions, then it follows from the

definition of a locus, Art. 39, that the locus of an equation is
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the locus of all points whose coordinates satisfy the equation;

and, conversely, the coordinates of all points on the locus must
satisfy the equation.

While the preceding statement is general, only rectangular

coordinates will be used in the present chapter.

The drawing of the locus is spoken of as plotting the equa-
tion, or plotting the locus of an equation. The locus is

called the graph of the equation.

41. Plotting an equation.—The steps in plotting an equation

are:

(1) Solve the equation for one, or each, variable in terms of the

other.

(2) Assign convenient values to

one variable and determine corres-

ponding values of the other vari-

able, and arrange in a table,

(3) Choose a suitable unit and

plot the pairs of values of the

variables,

(4) Connect these points by a

smooth curve.

The variable to which values are assigned arbitrarily is

called the independent variable. The other is then called the

dependent variable.

Example 1.—Plot the equation 2x + 3y = 13.

(1) Solving for y, V =
q

(2) Assign values to x as shown in the following table and determine

the corresponding values of y.

Fig. 36.

X -4 -2 -1 1 2 3 5 64 8 10

y 7 5f 5 4J 3f 3 n 1 -1 -2\

(3) Locate a pair of rectangular coordinate axes, choose a suitable

unit, and plot the points Pi(-4, 7), Pi{-2, 5|), PsC-l, 5), • • •

Fig. 36 RA. as shown in Fig. 36.
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(4) Draw a smooth curve through the points.

The curve is the locus of the equation and appears to be a straight

Hne.

Example 2.—Plot the locus of the equation x^ -\- y^ — 4:X = 21,

(1) Solving for y in terms of a; and for x in terms of y,

y = ± \/21 + 4a: -x% and a; = 2 ± \/25 - y^>

From the first it is readily seen that y is imaginary when x<S or

when x>7y for then 21 + 4x — x^<0 and the square root is imaginary.

Likewise, x is imaginary when 2/ < — 5 or when y>5.
It is evident then that we should not choose values of x less than

— 3 nor greater than 7. And should not choose values of y less than
— 5 nor greater than 5.

(2) Here it is convenient to assign arbitrarily some values to x and
some values to y, in each case computing the corresponding values of the

other variable.

Mm
Sip

X

Fig. 37.

X y y X

±4.6 7 or -3

2 ±5
\

±2 6.6 or -2.6

4 ±4.6
1

±4 5 or -1

6 ±3

-2 ±3

(3)" The points are plotted as shown in Fig. 37.

(4) A smooth curve is drawn connecting the points. This is the locus

of the equation and appears to be a circle.

42. The imaginary number in analytic geometry.—In the

plan for plotting numbers in analytic geometry no method is

provided for plotting imaginary numbers. It follows then

that if one, or both, of the values of the variables satisfying

an equation are imaginary or complex numbers, no point can-

be plotted having these as coordinates. Such numbers are

often said to locate imaginary points on a curve.
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Some equations, such as x^ + y^ = 0, are satisfied by only

one pair of real values for x and y. The locus of such an

equation is a single point.

Thus, x^ -}- y^ = is satisfied only by x = and y = 0.

Other equations, such as x^ + 2/^ + 4 = 0, are satisfied by
no real values for x and y. The locus of such an equation is

wholly imaginary.

EXERCISES

Plot the loci of the following equations:

1. 2/ = 2x + 4. 12. x^ + 32/2 = 0.

2. 2a; + 32/ = 8. 13. x^ + y^ -^ 12 = 0.

Z, X -2y - Q = 0. 14. a;2 4- 2y^ = 8.

4. 3x - 42/ - 5 = 0. 15. x^ +y^ -\-Qx = 7

5. 16a; - Sy = 42. 16. y^ = 4a;2.

6. a;2 + 2/2 = 25. 17. 9x^ - iy^ = 36.

7. a;2 + 2/' = 18. 18. 9x2 + 4^,2 = 35.

8. 2/^ = 4a;. 19. 4?/2 - 9a;2 = 36.

9. 2/* = 4a; + 3. 20. y = x^.

10. a;2 = 82/. 21. y = x^ +S.
11. a;2 - 2/2 = 4. 22. 2/ = x^ - 2a;2 + 6a; - 3.

23. Plot the following equations upon the same set of axes:

(1) x2 + 2/2 = 16, (2) x2 - 2/' = 16, (3) 2/2 - a;2 = 16, (4) -a;2 - 2/2 = 16.

24. Plot the following equations upon the same set of axes:

(l)x2 = 22/, (2) a;2 = -2y, (3) y^ = 2a;, (4) y^ = -2a;.

DISCUSSION OF EQUATION IN RECTANGULAR COORDINATES

43. Geometric facts from the equation.—Since it is

possible to plot but a few points of a curve, the method of

determining the curve by points is sufficiently accurate only

in the case of simple curves. In general, much help in learn-

ing the properties of a curve is gained by a study, or discussion,

of the equation. First, it gives exact information regarding

the curve; second, it furnishes a test of the accuracy of the

plotting; and, third, it usually lessens the labor of plotting.
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The properties of the locus of an equation that can be

studied to the best advantage by analytic geometry are the

following

:

(1) The intercepts of the curve.

(2) The symmetry of the curve,

(3) The extent of the curve.

Various other properties can be studied by methods of

the calculus.

44. Intercepts.

—

The x-intercepts of a curve are the abscis-

sas of the points where the curve intersects, or meets, the

X-axis. The y-intercepts are the ordinates of the points

where the curve intersects, or meets, the i/-axis. Together

the x-intercepts and the ^/-intercepts are called the intercepts

of the curve.

Evidently, the x-intercepts are- found by putting 2/ = in

the equation and solving for x. Likewise the ^/-intercepts are

found by putting x = and solving for y.

It follows that, if an equation contains no constant term,

the curve passes through the origin.

Example.—Find the intercepts for the equation IQx^ + 25y^ = 400

Putting 2/ = 0, 16x2 = 400, or x = +5.

Putting X = 0, 252/2 = 400, or y = ±4.
.'. the x-intercepts are +5 and —5, and the t/-intercepts are -f-4

and —4.
' EXERCISES

Find the intercepts for the following equations:

1. 2x - 3y = 10. 5. 5x^y - 15x -{- ^y = 0.

2.x2+,2=36. ^'^ = (x+2)7x-l)
'

3. 4x2 + y2 = 64, 7. 2/2 = (x + 2)(x - I)(x - 3).

4. 4x2 + 2/2 - 8x - 2t/ + 1 = 0. 8. xy = 6.

45. Symmetry, geometrical properties.—Two points are

said to be symmetrical with respect to a given point when the

given point bisects the line joining the two points. The given

point is called the center of symmetry.

Two points are said to be symmetrical with respect to a
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Q

given line when the given Une is the perpendicular bisector

of the Une joining the two points. The given Kne is called

the axis of symmetry.

Thus, in Fig. 38, if Q bisects P1P2, Pi and *"" ^

P2 are symmetrical with respect to Q. Also,

if AB is the perpendicular bisector of P1P2, PiA
and P2 are symmetrical with respect to AB.

If the points of a curve can be ar- 6p^

ranged in pairs which are symmetrical p^^ gg
with respect to a line or point, then

the curve itself is said to be symmetrical with respect to the

line or point.

Thus, in Fig. 39, the curve is symmetrical with respect to each of

the coordinate axes and with respect to the origin. Tell why.

EXERCISES

1. Has a square a center

of symmetry? Has a rec-

tangle? A circle? A par-

_^allelogram? A regular
hexagon?

2. How many axes of

symmetry has each of the

figures of exercise 1?

3. In rectangular coor-

dinates give the point that

with each of the following is

symmetrical with respect to the a;-axis: (2, 4), (—2, 5), (—4, —2),

(6, —8), {Xj y). With respect to the 2/-axis. With respect to the origin.

46. S3rmmetry, algebraic properties.—In the preceding article

symmetry has been considered from the side of geometry.

It remains to determine how symmetry can be seen by an

inspection of the equation.

If a curve is symmetrical with respect to the a;-axis, it

follows that every point {x, y) on the curve has a correspond-

ing point (a;, -—y) on the curve. Then the coordinates of the
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point (x, —y) must satisfy the equation; that is, if —y is

substituted for y, the equation reduces to the original form.

It is evident that this occurs in an algebraic equation when

only even powers of y appear in the equation, (See Art. 120.)

Likewise the curve is symmetrical with respect to the

2/-axis if, when —a; is substituted for x, the equation reduces

to the original form. This occurs in an algebraic equation

when only even powers of x appear in the equation.

Since the pair of points (x, y) and {— x, —y) are symmetrical

with respect to the origin, it follows that if, when —a; is sub-

stituted for X and —y for y, the equation reduces to its original

form, the curve is symmetrical with respect to the origin.

It is evident that this occurs in an algebraic equation if each

term is of even degree, or if each term is of odd degree, in x and

y. In applying this test a constant term is considered as of

even degree.

It also follows that if a curve is symmetrical to both coordi-

nate axes it is symmetrical with respect to the origin.

EXERCISES \

State for which of the following equations the curves are symnietrical

with respect to the a;-axis, the 2/-axis, and the origin.

7. a;3 + 2/ = 6.

8. x^ + 2xy +2/2=9.
9. 2/2 = (x -f l)(x - 2).

10. x22/2 4- 4x4 = 16,

11. x2 + 4x + 22/ 4- 3 = 0.

6. x22/2 = 16. 12. x^ - X = y.

47. Extent.—Under this heading we endeavor to find how
the curve lies with reference to the coordinate axes by finding,

first, for what values of either variable there are no points on

the curve; and, second, for what values of either variable the

curve extends to infinity.

To do this the equation is solved for each variable in terms

1. 3x -h 2/ + 6 = 0.

2. x2 + 2/' = 25.

3. 3X2 _ ^y2 = 12.

4. x2 + 2/2 + 2x = 16.

6. 2/3 = 4x.
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of the other. First, if a radical of even index involves a

variable, certain values of that variable may give imaginary

values for the other variable, in which case there are no points

on the curve. If no radicals of even index are involved,

there will be at least, one real value of either variable for a

real value of the other. In which case there are points on

the curve for every value of

either variable.

Second, if the solution for

either variable gives rise to a

fraction having the other vari-

able in the denominator, then

certain finite values of the second

variable may make the first in-

finite. If no such fraction occurs

both variables may become in-

finite at the same time.

40-

30

ao

.

X—

H

-40

Fig. 40.

Example 1.—Investigate 9x^ + 4?/2

=> 36 as to extent.

Solving for Xy x = ± f\/9 — y^-

Solving for 2/, y = ± f\/4 — x^.

Therefore x is imaginary when
9 — 2/^<0, that is, when ?/<~3, or

when y> +3.
And y is imaginary when 4 — a;^ < Q,

that is, when x<—2, or when x> +2.

The curve is then confined to the

portion of the plane in which the

abscissas do not exceed 2 in numerical value, and the ordinates do not

exceed 3 in numerical value.

Example 2.—Discuss the equation x^ — ax — y = and plot the

curve.

Discussion. Intercepts.—^Let x = then y = 0.

Let y = then x^ — ax = 0. Solving this for x, x = or ± Va

.

Hence the ^/-intercept is 0, and the a:-intercepts are and ± \^a .

Symmetry.—Since all terms are of odd degree in x and 2/, the curve

is symmetrical with respect to the origin.

Extent,—Solving for 2/, 2/ = ^^ — ox.
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The letter a represents an arbitrary constant and may have any
value assigned to it. But, in assigning a value, do not choose one that

would cause a term to disappear. For the purposes of this discussion

it is given the value 4.

Since no even root is involved, either variable has a real value for

any value of the other.

Since large positive values of x make x^ — ax large and positive, for

such values of x, y increases as x increases.

Likewise, for numerically large negative values of x, y decreases as

X decreases.

Plotting.—Tabulating coordinates for positive values of x, the curve

can be located in the first and fourth quadrants and, by symmetry,

in the second and third quadrants, and is as shown in Fig. 40. The
arbitrary value assigned to a is 4, and the unit on the 2/-axis is one-fifth

of that on the a^-axis.

X i 1 u 2 3 4

y -n -3 -21 15 48

1. x2 + 2/^ = 64.

2. x2 - 2/2 = 64.

3. 4a;2 + 92/2 = 36.

4. 4a;2 - 92/2 = 36.

5. y^ = Sx.

6. x2 = 8?/.

7. x2 = 82/ - 6.

8. a;2 + 2/2 - 4x -

EXERCISES

Discuss each of the following equations and plot their curves.

10. xy + 12 = 0.

11. y = x^ — 9x.

12. y(x^ + 1) - 8 = 0.

13. 9X3 = y2^

14. 2/2 = (x -2)(x + l){x +3).
15. 2/2 = (x - l)2(x - 2).

16. y{x - 1) = 1.

= 0. 17. 2/2 = ax^ + x2.

9. xy = 15. 18. x(x - 2a) 2 - ay^ = 0.

48. Composite loci.—Any function of the two variables

X and y may be denoted by /(a:, y). Then /(a:, y) = is a

compact way of writing any equation in these two variables.

Theorem.—// the expression f(x, y) can he factored into

variable factors, the locus of f{x, y) = consists of as many
distinct curves as there are variable factors of f(x, y).

Proof,—Suppose /(a;, y) can be factored into/i(a:, y),f2{x, y),
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Then/i(a;, y)h{x, y)iz{x, y) - - =0.
Now any values of x and 2/ that will make any one of these

factors equal zero will satisfy the original equation.

Hence all points on the separate loci of

fi(x,y) = 0, f2{x, y) = 0, fz{x, ?/) = 0, • • •

will also be points on the locus of

Kx, y) = 0.

Much time is often saved when
f{x, y) can be factored, by plotting

each of the equations fi{x, y) = 0,

f2{x, y) = 0, Mx, 2/) = 0, • • •

separately.

^x

Fig. 41.
Example.—Plot the locus of the equation

x^ + xy^ - 2x^ - 22/2 - IQx + 32 = 0.

The factors of x^ + xy^ — 2x^ — 2y^ — IQx + 32 are

(x - 2)(x2 +2/2 _ 16).

Equating each factor to zero, x = 2 and x^ -\- y^ = 16.

The first is a straight line and the second a circle as shown in Fig. 41

EXERCISES

Find a single equation whose locus is the combination of the loci

of the separate equations in each of the following and plot.

1. xy - Q = 0, xy + Q = 0.

2. X -2y +3 = 0,x -2y -3 =0,
3. re = 0, a; = 3, a; == 5.

4. X = 2/, ^ ^ + 2/^ = 16.

5. a;2 + 2/^ = 4, ^2/ = 6.

Plot the locus of each of the following by first factoring /(a;, 2/), and
then plotting each factor equated to zero.

6. x^y^ = 16. 8. a;2 4- 2x2/ + 2/' - 4 = 0.

7. x^ - y^ = 0. 9. x^ - 6x2 + n^ _ 6 = 0.

10. x^ + x^y - 4:X - ^y -{ xy^ -\- y^ = 0.

11. Plot the locus of (x2 - X - 6) (2/2 + 22/ - 8) =0, and show that

the lines enclose a rectangle.

49. Intersection of two curves.—The curves of two equa-

tions are, in general, distinct, and may or may not intersect.
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It follows from the definition of the locus of an equation that,

if a pair of values satisfy both equations, they are the coordi-

nates of a point of intersection. And, conversely, if the

curves intersect, the coordinates of a point of intersection

must satisfy both equations.

In order then to find the coordinates of the points of inter-

section, it is only necessary to solve the equations simultane-

ously. Or, in order to find values of x and y that satisfy the

equations simultaneously, the equations may be plotted and

the coordinates of the points of intersection determined from

the figure. This is useful when the equations are such as

cannot be solved simultaneously.

EXERCISES

Find the points of intersection of the curves of the following pairs of

equations by solving the equations. Check the results by plotting.

1. x2 + 2/2 = 16, a; + 2/ = 0.

2. a;2 + 2/2 = 16, a:2 - 2/2 = 9.

3. x^ - 42/2 + 7 = 0, 2x + 32/ ~ 12 = 0.

4. x2 + 2/' = 25, 9x2 + 492^2 ^ 441,

6. x^ + 2/2 == 25, 272/2 = \Q»x\
,

6. Find the distance between the points of intersection of

x2 + 2/^ = 12, and 2/2 = 4x.

7. Solve the following equations by plotting to find the coordinates

of the points of intersection: x'^ { y = 7, a; + 2/2 == 11.

EQUATIONS OF LOCI

50. So far in the present chapter the problem considered

has been the finding of the locus when the equation was given.

Here the second fundamental question is taken up, that of

finding the equation of a locus when the locus is known.

That is, the algebraic statement is to be found when the

geometric figure or description is known.

Definition.—The equation of a locus is an equation such

that (1) the coordinates of every point on the locus satisfy the

equation^ and (2) every 'pair of values which satisfy the equation

are the coordinates of a point on the locus.
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51. Derivation of the equation of a locus.—The process of

deriving the equation of a locus depends largely upon the

ingenuity of the individual. The following suggestions, how-

ever, will be helpful, but it is not intended that it is necessary

always to take these steps in order.

(1) From the description of the locus sketch a figure involving

all the data.

(2) Draw a pair oj coordinate axes and select P{Xj y) any

point on the locus.

Frequently the coordinate axes are determined by the data;

but if they are not, they should be located so as to make the

equation as simple as possible.

(3) Write an equation between geometric magnitudes , using

the conditions of the problem.

(4) Express the geometric magnitudes of this equation in terms

of the coordinates of P and the given constants^ and simplify the

resulting equation.

The final equation will, in general, contain the variables

X and 2/, and all the constants involved.

(5) Show that any point whose coordinates satisfy the equation,

is on the locus, and thus show that the second requirement of the

definition is fulfilled.

A discussion of the equation will

often give further facts concerning

the locus.

Example 1.—The locus of a point is a

straight Hne passing through Pi (—2, 3) and

having an inclination of 60°. Find its

equation.

Solution.—(1) Here the coordinate axes

are determined by the data. In Fig. 42, OX
and OY are the axes and PiP the locus.

(2) P(x, y) is any point on the locus.

(3) Slope PiP = tan 60°.

^x

Fig. 42.

(4) Slope PiP =

.2/ -3

- 3

X -\-2

= V3.

by [6].

' 'x +2
Simplifying, 3x - V^y + Q -\- 3\/3 = 0.
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-2,3)

(5) Any point P(x, y) whose coordinates satisfy the equation

3a: - ^/Zy + 6 + 3V3 = 0,

must also satisfy the preceding equation since this equation can be

reduced to that form by reversing the steps. But the equation

y -3 ^
simply says that the slope of a straight line through (x, y) and (

-

is equal to \/3) a-nd hence its inclination is 60°.

Therefore the equation of the locus is

3a: - y/Zy + 6 -f 3\/3 = 0.

Example 2.—Find the equation of the

locus of a point that moves at a dis-

tance 8 from the point (3, —5) and re-

mains in the plane of the coordinate axes.

Solution.—(1) In Fig. 43, the coordi-

nate axes are drawn and the data located.

(2) P(x, y) is any point on the locus.

(3) By the conditions of the problem,

PC = 8.

But PC = V(^^=^^TT^T5)2 by
[3].

(4) .*. V(a: - 3)2 + (2/ + 5)^ = 8.

Squaring, a:2 - 6a: + 9 + 2/2 + 10?/ + 25 = 64.

Simplifying, x^ + y"^ - Qx + lOy - 30 = 0.

This is the equation that is satisfied by the coordinates of any point

on the locus. The proof of the converse is left to the student.

' P{x,y)

^X

Fig. 43.

EXERCISES

Give orally the equations of the loci described in exercises 1—10.

1. A point moves parallel to the 2/-axis and 4 units to the right.

Parallel to the 2/-axis and 6 units to the left.

2. A point moves parallel to the x-axis and 7 units above. Parallel

to the a:-axis and 3 units below.

3. A point moves parallel to the a:-axis and 3 units above the point

(3, 6). Parallel to the x-axis and through the point (—6, 4). Parallel

to the X-axis and through the point (0, —7).

4. A point moves parallel to the line 2/ = 4 and 6 units above it.

5. A point moves parallel to the line x = — 3 and 8 units to the right

of it.
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6. A point moves so as to bisect the angle the 2/-axis makes with the

X-axis.

7. A point moves so as to bisect the angle the x-axis makes with the

y-axis.

8. A point moves so as to keep 6 units from the origin.

9. A point moves so as to keep 8 units from the point (2, —1).

10. A point moves so as to keep equidistant from the lines y = 8

and y = —2.

11. Find the equation of the locus of a point that is equidistant from
the points (5, 4) and (—6, —2).

12. Find the equation of the locus of a point that moves at a distance

10 from the point (-6, -8).

13. Find the equation of the circle having its center at the point

(3, 4), and passing through the point (7, 7).

14. Find the equation of the circle having the extremities of a diameter

at the points (—4, —6) and (2, 2).

15. Find the equation of the perpendicular bisector of the line joining

the points (—4, —8) and (5, 2).

16. Find the equations of the perpendicular bisectors of the sides

of the triangle whose vertices are the points (0, 0), (8, 6), and (—4, 10).

17. Find the equation of the locus of a point that moves so as to keep

four times as far from the x-axis as from the y-axis. Plot.

18. Find the equation of the locus of a point that moves so as to keep

three times as far from the point (2, 3) as from the point (—6, 2).

19. A point moves so that its ordinate always exceeds | of its abscissa

by 8. Find the equation of its locus and plot.

20. A point moves so that the sum of its distances from the points

(3, 0) and ( — 3, 0) is 8. Find the equation of its locus and plot.

21. A point moves so that the difference of its distances from the

points (3, 0) and (—3, 0) is 4. Find the equation of its locus and plot.

22. A point moves so that the difference of the squares of its distances

from the points (—3, —1) and (—2, —4) is 5. Find the equation of the

locus and plot.

23. A point moves so that the slope of the line joining it to the point

(—2, 3) equals twice the slope of the line joining it to the point (4, —2).

Find the equation of the locus.



CHAPTER IV

THE STRAIGHT LINE AND THE GENERAL EQUATION
OF THE FIRST DEGREE

52. Conditions determining a straight line.—In plane

geometry it is found that two independent conditions deter-

mine a straight line. Just so in analytic geometry any two
conditions that fix the line will determine its equation. Since

the same straight line can be determined in a number of

different ways, it may be expected that there will be several

forms of the equation for the same straight line.

Some of the conditions that de-

termine a straight line are the

following

:

(1) A point on the line and the

direction of the line.

(2) Two points on the line,

(3) The length and direction of

the perpendicular from the origin to

the line.

Each set of these conditions gives rise to a standard form

of the equation of a straight line.

53. Point slope form of equation of the straight line.—
Suppose the straight line Z, Fig. 44, passes through the

point Pi{xi, yi)f and that its direction is given by its slope

m = tan a. If P(x, y) is any point on Z, then the slope

of PPi must be constant and equal to m. By [6], the

slope m of PPi is m = ^•
^ X — Xi

Clearing this equation of fractions,

[15] y - yi = m(x - Xi).

59

Fig. 44.
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This is the point slope form of the equation of a straight line.

Since P(x, y) is any point on I it follows that every point

on 7 satisfies [15].

In order to prove that every point which satisfies [15] is

on Hne Z, let Pz{xz, 2/3), Fig. 45, be such a point, then

ys - yi = m{x3 - xi).

Dividing both sides of this equation by Xs — Xi,

0:3 — 0:1

This shows that the slope of the line P1P3 = rn. Therefore

P1P3 and I are parallel. Since P1P3

and I pass through the same point Pi,

the line P1P3 and I coincide. There-

fore P3 lies on Z.

.j^x In the discussion of other forms of

the equation of a straight line, the

proof that every point whose coordi-

nates satisfy the equation of the locus,

is on the locus, is so similar to the proof just given that it will

be omitted. Nevertheless this fact should not be lost sight

of, for it is one of the essential conditions in determining the

equation of a locus.

54. Lines parallel to the axes.—In article 53 it is tacitly

assumed that the line whose equation is to be found is not

parallel to the ?/-axis. If it is, a equals 90°, m is infinite, and

equation [15] is meaningless. If the line is parallel to the

2/-axis, it must cut the x-axis at some point (a, 0). Every

point on this line has its abscissa equal to a, hence the equation

of the line is

X = a.

Similarly every line parallel to the a:-axis cuts the 2/-axis

at some point, say (0, 6). Every point on this line has its

ordinate equal to 6 and hence the equation of the line is

y = b.
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Example l.^Find the equation of a line through (—2, 3) and with
an inclination of 135°.

Substituting a;i = — 2, yi = 3, and m = tan 135° = — 1 in [15],

t/-3 = (-l)(.r-f2),

or a; + 2/
— 1 = 0.

Example 2.—Find the equation of a line through the point (2, 6) and
parallel to the line joining the points (—3, 4) and (1, 5).

By [6] the slope of the line joining the two points is }.

Therefore the slope of the required line is also J

Substituting m = i, Xi = 2, and yi = 6 in [15],

the equation of the required line is ?/ — 6 = i(a; — 2),

or X -42/ +22 = 0.

EXERCISES

Find the equations of the lines determined by the following sets of

conditions:

1. Through (2, -3), slope J.

2. Through (-2, -4), inclination 135°.

3. Through (1, 5), inclination 120°.

4. Through ( — 1, 2), parallel to the line

joining (7, 6) to (2, 3).

5. Through ( — 1, 2), perpendicular to the

line joining (7, 6) to (2,3).

6. Through (3, 4), parallel to the 2/-axis.

7. Through (3, 4), parallel to the a:-axis.

8. Through ( — 1, 2), inchnation = tan~^ §.

9. Through (1, —2), inclination = sin"^ f

.

10. Through (3, 2), inclination = cos-^ ^%.
11. Find the equation of the tangent line to the curve y = x^ — x,

at the point whose abscissa is 2, if its slope equals 11.

Suggestion.—Find the ordinate of the point whose abscissa is 2 and

substitute in [15].

12. Find the equation of the tangent line to the curve y = 2x^ — a; -|- 3

at the point whose abscissa is 2, if its slope equals 7.

55. Slope intercept form.—In Fig. 46, let the intercept of

the line on the //-axis equal 6 and let the slope of the line

equal m. Since the ^/-intercept has the coordinates (0, 6)

this problem is a special case of the point slope form.

Putting Xi = and t/i = 6 in [15], then y — b = mx, or

[16] y = mx + b.

Fig. 46.
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This is the slope intercept form of the equation of a

straight line.

56. Two point form.—^Let the two points through which

the Hne passes be Pi{xiy yi) and Piix^, 2/2). Since Pi is a point

on the line and m is the slope of P1P2, this form can be derived

from [15] by substituting for m its value — ^. Equation
Xi — X2

[15] then becomes

[17] y - yi = ^^-^ (X - xO.
Xi — X2

Note that this equation is not valid if a^i — 0:2 = 0. The line

is then parallel to the ^/-axis and hence its equation is x = Xi.

This is the two point form of the equation of a straight line.

Since the three points P, Pi, and P2 on the straight line

through P1P2, always form a triangle whose area is zero, the

equation of the straight line can be written in the deter-

minant form by article 34, as follows:

X y 1

Xi yi 1

X2 2/2 1

EXERCISES
Find the equations of the lines given by the following sets of conditions:

1. The ^/-intercept = 3 and the slope = J.

2. The ^/-intercept = — 2 and the slope = 3.

2
3. The ^/-intercept = | and the inclination = sin"^ —-7=^-

Vl3
4. Passing through the points (1, 6) and (7, 2).

5. Passing through the points (—2, 1) and (3, —4).

6. Passing through the points ( — 1, —2) and (—4, —3).

7. What is the effect on line [16] if h is changed while m remains

unchanged? What is the effect if m is changed while b remains

unchanged?

57. Intercept form.—If the straight line cuts both axes,

let its x-intercept, Fig. 47, equal a and its ^/-intercept equal b.

Its equation can be derived from [17] by replacing (xi, 2/1)

by (a, 0) and {x2, j/2) by (0, 6).
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Equation [17] then becomes y = — (x — a).

Multiplying both sides of this equation by j-j and transpos-

ing the x-term to the left hand side, it becomes

[18,
"

, y _ ,

1 + ^1-

Fig. 47.

This is the intercept form of the

equation of a straight line.

Care must be used in employing

this form of the equation, since it is q
not vaHd if either or both intercepts

are zero.

58. Normal form.—A line is completely determined if the

length and direction of the perpendicular to it from the origin

are known.

^x

^x

Fig. 48.

Let C, Fig. 48, be the foot of the perpendicular drawn to the

line from the origin, and let (p, B) be the polar coordinates of C
Then OC = p and angle XOC = d.

Since the line AB is perpendicular to the line OC, its slope

is the negative reciprocal of the slope of OC and equals — cot d.
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Since the line AB passes through the point C, a point on AB
is known. The rectangular coordinates of this point are

(p cos Sy p sin 6),

Hence the equation oi AB can be found by substituting in

[15], m = —cot 6, Xi = p cos 6, and yi = p sin 6.

Making these substitutions, [15] becomes

y — p sin 6 = —cot 6 (x — p cos 6).

Multiplying both sides of the equation by sin 6 and transpos-

ing all terms to the left hand side, gives

X cos 6 + y sin 6 — p{sin^6 + cos^^) = 0.

[19] .*. X cos e + y sin e - p .= 0.

This is the normal form of the equation of a straight line.

If cot ^ = CO
, the line is parallel to the y-Sixis and its equa-

tion is X = p. But even in this case the normal form is valid,

for if cot 6 = 00 , ^ = 0° and the normal form would read

X cos 0° + y sin 0° — p = 0. Since cos 0° = 1 and sin

0° = this equation is equivalent to x = p.

Example.—Find the normal form of the equation of a straight line if

d = 30° and p = 6.

Substituting these in [19], x cos 30° + y sin 30° - 6 = 0.

Since the polar coordinates of C can be written either (6, 30°) or

(—6, 210°), the normal form of the equation of this line could also be

written x cos 210° + y sin 210° +6=0. That these equations are

equivalent can readily be seen if the trigonometric functions are

replaced by their numerical values.

EXERCISES

Find the equations of the following lines having given:

1. a = 3, 6 = -2. 6. ^ = 60°, p = -3.

2. a = -1, 6 = 6. 7. d = 135°, p = 2.

3. o = J, 6 = f

.

B. e = 210°, p = 1.

4. o = -i 6 = -i. 9. e = 330°, p = - 4.

5. e = 60°, p = 3. 10. e = 150°, p = - 2.

11. What is the effect on line [19] if p is changed while d remains un-

changed ? What is the effect if 6 is changed while p remains unchanged ?
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59. Linear equation. Theorem—Every equation ofa straight

line is of the first degree in one or two variables.

Conversely. Every equation of the first degree in one or

two variables is the equation of a straight line.

Proof.—Every straight line intersects, does not intersect, or

coincides with the y-Sixis,

In the first case by means of article 55 its equation can be

put in the form y = mx + 6, in the second case its equation

is X = a, and in the third case x = Q. Each of these equa-

tions is of the first degree in x and y.

Proof of converse,—Consider the most general equation of

the first degree in two variables. This is

[20] Ax + By + C = 0.

Assume that B 9^ and solve this equation for y, it becomes

Ax C
y = --B^B

Comparing this equation with the form y = mx + b shows

at once that it is the equation of a straight line whose
A . C

slope ^ = ~ "d> ^iid whose y-intercept ^ = "~
d'

C
If B = 0, [20] becomes Ax + C = 0, ox x = - j- This is

the equation of a straight line parallel to the y-axis.

Hence every equation of the first degree is the equation of a

straight line.

Ax + By + C = Oj the most general equation of the first

degree in two variables, is called the general equation of a

straight line.

60. Plotting linear equations.—Since every equation of the

first degree represents a straight line, it is sufficient in plotting

the graph of such an equation to find two points which satisfy

the equation and then join these points by a straight line.

Usually two such points that can be easily found are the inter-

cepts on the X and the 2/-axes.

5
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61. Comparison of standard forms.—In article 59 it was
seen how the general equation could be transformed into the

slope intercept form. This method of transforming one

form of an equation into another is of great use in analytic

geometry, since by comparing the constants in two forms of

an equation of a line or curve, much information can be

secured. In this particular case the transformation from the

general form to the slope intercept form, enables one to read

off by inspection the slope and ^/-intercept of the line.

For example, if the equation 3x + 4?/ = 12, be solved for y it becomes

y = -|x+3.
Comparing this equation with y = mx + &, shows that the slope of

the line is — J and its ^/-intercept is 3.

Take the same equation, 3x + 42/ = 12, and divide both sides of the

equation by 12, and 7 + 0=1.

Comparing this equation with - + t = 1 shows that the a;-intercept

is 4 and that the ^/-intercept is 3.

Here the x-intercept can be as easily found by putting 2/ = in the

original equation; and the ^/-intercept by putting x = 0,

62. Reduction of Ax + By + C = to the normal form.—
In general A and B will not be the cosine and sine respectively

of the same angle, and hence Ax + By + C = will not be in

the normal form. In order to transform it to the normal form

multiply both sides of the equation by an arbitrary constant

k, whose value is to be computed later.

This gives Akx + Bky + Ck = 0.

The quantity k is now assumed to be such a number that

Akx + Bky + Ck =

will be identical with

X cos $ + y sin 6 — p = 0.

Comparing coefficients gives Ak = cos 6, Bk = sin 6,

Ck = -p.
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To find the value of kj square both sides of the first two
equations and add. This gives

42^2 + ^2/^2 = cos2(9 + sin2(9 = 1.

1

Solving for k, k= ^^^,^^,
-

If k is replaced by its value, Akx + Bky -{- Ck = becomes

Ax By C
^^^^ +VA2 + B2 "^ ±\/A2 + B2

"^ ±\/A2 + B2
" ^'

This is the general equation of the straight line expressed

in the normal form. Either sign can be used with the radical,

but of course the same sign must be used throughout the

equation. Comparing this equation with the normal form

gives

A B
[221 cos = / -

, sin =
,L^^j w

+VA2 + B2' ±\/A2 + B2'

_ -c
^ ~ +VA2 + B2'

Hence, to transform the equation Ax -\- By + C = to

the normal form, divide both sides of the equation by

Example 1.—Change 3a; — 4?/ + 6 = into the normal form.

Here A = 3, B = -4, C = 6, and±VA? + 5' = ± \/9 + 16 = ±5.

Dividing the equation through by ±5, it becomes

±5 ±5 "^ ±5 "•

Either sign can be used since the two equations fa; — ^y + -f
= 0,

and — fX + f 2/
— f = are equivalent.

EXERCISES

Find the slope and ^/-intercept of the following equations by express-

ing them in the slope intercept form.

1, Sx -\- 2y - 4 = 0. 3. -5x + 2y - 6 = 0.

2. 2a; - 32/ + 2 = 0. 4. 2a; - 2?/ + 7 - 0.
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Change the following equations into normal form, and find the distance

of the line from the origin.

5. 3x - 42/ - 6 = 0. 9, X + 2y - S = 0.

6. -Sx 4- 42/ + 10 = 0. 10. -3x + 2/ - 6 = 0.

7. 5x - 12y + 26 = 0. 11. 2a; + 3 = 0.

8. -5x - 12y + 39 = 0. 12. 3?/ - 4 = 0.

Find the equations of the lines satisfying the following conditions:

13. Through the point (1, 2) and parallel to 3a; — 4?/ + 6 = 0.

14. Through the point (2, —3) and parallel to x -^ 2y — S =0.
15. Through the point (6, 2) and perpendicular to 2x -\- y -- S = 0.

16. Through the point (—3, 1) and perpendicular to x —
2/ + 6 = 0.

63. Distance from a point to a line.—The aistance from

the origin to the Hne x cos 6 -{- y sin 6 — p = Oy is the numeri-

cal value of p. Hence if rf' is the distance from the origin to

the line Ax + By + C =

where the sign of the radical is chosen so as to make d' positive.

In order to find the distance d

from the point Pi(xi, yi), Fig. 49,

to the line. 4a; + % + C = 0,

translate the axes to the new origin

Px(xiy 2/1). The equations of trans-

lation [12] are

X = X^ + Xly

Fig. 49.
?/
= ?/' + 2/i.

Making these substitutions, the equation

Ax + By + C =
becomes Ax' + By^ + Axi + Byi + = 0,

where the new constant term is

Axi + By, + €.

The distance d = PiR is the distance from the new origin to

the line. From equation (1)

Axi + Byi 4- C

±\/AM^B2 '[23] d =

where the sign of the radical is chosen to make d positive.
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Example 1.—Find the distance from the point (2, 1) to the Hne

3x - 4?/ + 6 = 0.

Solution.—Translate the axes so that the new origin is the point

(2, 1). The equations of translation are

X = x' + 2,

2/ = 2/' + 1.

The equation of the line 3x — 42/ + 6 =0, referred to the new origin is

3(0;' + 2) - 4(2/' + 1) + 6 = 0,

or 3x' - 41/' + 8 = 0.

Putting this equation into the normal form gives

3a;' - 42/' + 8

±5

Hence the distance from the new origin to the line is d = f

,

and this is the distance from the point (2, 1) to the line 3a; — 42/ + 6 = 0.

This distance could be found also by substituting directly in [23].

Putting A = 3, B = -4, C = 6, Xi = 2, 2/1 = 1,

_ 3-2 -4»1 +6 +8 _ 8

±5 ~ +5 ~ 5'

Example 2.—Find the distance from the point (3, —2) to the line

5x + 122/ - 4 = 0.

Putting A = 5, B = 12, C = -4, Xi = 3, and 2/1 = -2 in [23],

^ _ 5-3 + 12(-2) - 4 _ -13 _ .,

"^
~

±13 ~ -13 ~ ^•

This apparent Inconsistency ar'ses because both signs must first be

put down and then the correct sign selected.

EXERCISES

Find the distances from the points to the lines in the following exercises:

1. Point (2, 3) to line 4a; - 32/ + 4 = 0.

2. Point (-1, 2) to line 3a; + 42/ - 6 = 0.

3. Point (1, 3) to line x - y = 0.

4. Point (2, 3) to line x cos 30° + y sin 30° - 3 = 0.

6. Point (3, -1) to line x cos 135° + y sin 135° + 1=0.
6. Point (1, 6) to line y - 1 = S(x - 4).

7. Find the altitudes of the triangle whose sides have the equations

2/ = 1, 12a; + By - 27 = 0, and 3a; - 42/ + 9 = 0.

8. Find the altitudes of the triangle whose vertices have the coordi-

nates (4, 2), (-3, 1), (6, -3).
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64. The bisectors of an angle.—Let the sides of an angle be

formed by the Hnes ST and SR, Fig. 50, the equations of which
are Aix + Biy + Ci = and

^(x,y) A2X-\- B2y+ C2 = respectively

.

Let P (x, y) be any point on the

bisector SP of the angle formed

by these two lines.

From plane geometry it is

known that the bisector of an

angle is the locus of points equi-

distant from the sides.

Hence PT = PR,
Fig. 50.

Expressing this fact algebraically gives

Aix + Biy + Ci A2X + B2y + C2

±VAi2 + Bi2 ±\/A2

The four possible combinations of signs in this equation will

yield two different equations,

[24]
Aix + Biy + Ci

VAr2 + Bi2
+

A2X + Bay + C2

Va, 2 + B22

One of these is the equation of the bisector of the angle

RST, while the other is the equation of the bisector of the

supplementary angle TSR'.

In order to tell which equation belongs to the bisector

sought, draw the figure as accurately as possible and observe

whether the slope of the required bisector is positive or

negative. Since the two bisectors given by [24] are at right

angles to each other, one has a positive slope and the other

has a negative slope, so that in general it is easy to pick out

the required equation. The exceptional case occurs when one

bisector is very nearly parallel to the a:-axis, and it is diffi-

cult to tell the sign of its slope. In this case the numerical

value of its slope is small, whereas the numerical value of the

slope of the other bisector is large, so that again it is easy to

associate the equations with the correct bisectors.
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Example.—Find the equation of the bisector of the angle which the

Hne li = 3x -\- 4:y — 5 = makes with the line I2 = 5x — 12y + 6 = 0.

In Fig. 51, let Z3 be the required bisector.

By [24] the equations of the two bisec-

tors are

3x + 4y - 5 5x - 112y + 6

Fig. 51.

0.

5
-

13

Clearing of fractions and simplifying

gives the two equations

Ux + 1121/ - 95 = 0, (1)

64a; - 81/ - 35 = 0. (2)

The slope of (1) is small and negative,

whereas the slope of (2) is large and
positive. Since the slope of h is large

and positive, its equation is 64a; — 82/ — 35

EXERCISES

Find the equations of the bisectors of the angle which the first line

makes with the second in exercises 1-6.

1. 8x + 2/
- 6 = 0, 7x + 42/ - 3 = 0.

2. a; - 72/ + 6 = 0, 5a; + 52/ - 8 = 0.

3. 11a; - 22/ + 12 = 0, 2a; + 2/
- 6 = 0.

4. 13a; + 2/
- 15 = 0, 22a; - Uy - 21 = 0.

6. 12a; + Uy - 11 = 0, 9a; - 22/ + 10 = 0.

6. 9a; + 72/ - 6 = 0, 11a; + Sy - U = 0.

7. Find the equations of the bisectors of the angles of the triangle the

equations of whose sides are Sx — y -\- 1 = 0,

a; + 82/ + 1 = 0, and 7a; + 42/ - 43 = 0.

j>^ 8. Find the equations of the bisectors of

\^^ the angles of the triangle whose vertices

s^;^ are (Y, -^), (1, 1), and (12, -1).

65. Systems of straight lines.—
Sometimes the geometrical facts given

are not sufficient to determine a

straight line uniquely. In such a case

not all the constants entering into

the equation of the line will be determined. For instance, if

the problem is to find the equation of a line that is parallel to

dx + Ay — Q = 0, Fig. 52, it is evident that there are an un-
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limited number of lines in the plane which satisfy the condi-

tions of the problem. To find the equation of any one of these

hues, substitute m = — f, in [16], which becomes

U = — f^ + &, or 3aj + 4?/ — 46 = 0.

The quantity h can have any value whatsoever. If it is

given some arbitrary value the equation 3a; + 4^/ — 46 =
becomes the equation of some one of the lines that are parallel

to 3x + 4?/ — 6 = 0. All of these parallel lines taken together

are said to form a system of lines.

Another system of lines consists of all the Hues through a

given point. If the point has the coordinates (1, 2), the equa-

tion of this system of lines is ?/ — 1 = m(a; — 2), by [15].

EXERCISES

Find the equations of the following systems of lines:

1. All the lines passing through the point (—2, 3).

2. All the lines passing through the origin.

3. All the lines passing through the point (3, 4).

4. All the lines having their x-intercept equal to 3.

5. All the lines having their ^/-intercept equal to —4.

6. All the lines at a distance 3 from the origin.

7. All the lines at a distance 7 from the origin.

8. All the lines parallel to the line 2x -\- y — Z = 0.

9. All the lines perpendicular to the line a; — 3?/ + 6 =0.
10. All the lines such that the x-intercept of each is equal to its

2/-intercept.

66. Applications of systems of straight lines to prob-

lems.—Sometimes the facts determining a straight line are

not such that its equation can be written down immediately.

This happens if the slope m and the distance p of the line

from the origin are given. In such a case there are two

methods of procedure, one is to compute the constants which oc-

cur in some standard form of the equation of a straight line, by

drawing the figure and applying plane geometry or trigonome-

try. Another method is illustrated in the following example.



§66] EQUATION OF THE FIRST DEGREE 73

Example.—Find the equation of the straight hne given m = i, and
p = 3.

First method.—First write down the equation of the system of Hnes
whose slope is f. This is y = ^x -\- h.

Next transform this Hne into the normal form. Its equation becomes
4x - Sy + 36

±5
= 0.

The distance of this line from the origin is

±5'
but this is p and p = S.

Hence 3^
:5

37^ = 3, and h = ±5.

Substitute this value of 6 in 2/= fa; + 6,

and it becomes y — ^x ± 5j

or 4:X - 3y ± 15 = 0.

There are two lines which satisfy the

required conditions, and they are equally Fig. 53.

distant from the origin.

Second method.—Write down the equation of all lines distant 3 from
the origin. This equation is x cos + 2/ sin — 3 = 0. In order to

determine 6, note that the slope of this line is — cot 0.

Therefore — cot ^ = f , and 6 can be in either the second or the fourth

quadrants.

If d is in the second quadrant, then sin ^ = | and cos ^ = —
f

•

If 6 is in the fourth quadrant, then sin = —I
and cos = f

•

Substituting these values, the equation be-

comes + f a; + I?/
— 3 = 0.

Multiplying both sides by ±5, gives

4a; - 31/ ± 15 = 0.

Example 2.—Find the equation of a line

•^X through the point (1, 3) and making equal

intercepts on the axes.

First solution^ geometric method.—In Fig. 54,

Fig. 54. let AB be the line through Pi(l, 3) whose equa-

tion is to be found. Since the intercepts are

equal, angle BAO = angle OBA = 45°.

Hence a = OM + MA = OM + MPi = 1+3=4, and this is

also the value of 6.

X V
Therefore the required equation is 7+7 ~ 1, orx-fy = 4.

Unfortunately by using the geometric method parts of the solution are
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liable to be overlooked. This is illustrated very well in this problem,

since the line OPi passing through the origin and the point (1, 3), satisfies

all the conditions of the problem and is therefore also a solution.

Second solution^ algebraic method.—Since the line AB passes through

the point (1, 3) its equation is 2/
— 3 = m{x — 1). The x-intercept

of this line is > and the ^/-intercept is 3 — m.

Since these are equal, = 3 — m.

Solving this equation gives m = 3 or — 1.

If m = 3 the equation is 2/
— 3 = 3(x — 1) or 2/

— 3a; = 0.

If m = —1 the equation is 1/ — 3 = —(a; — 1) or x + 2/
— 4 = 0.

Third solution, algebraic method.—This differs from the preceding only

in that it starts from the intercept form of the equation of a straight

line, instead of from the point slope form.

Since the intercepts are equal, the intercept form of the equation is

- + - = 1. In order to make this line pass through the point (1, 3),

1 3
substitute these coordinates for x and y. This gives—h - = 1-

Solving,, gives a = 4 and the required equation is 7 + 7 = 1,

or re + 2/ = 4.

The question naturally arises, what happened to the solu-

tion 2/
— 3a; = 0? This is certainly a solution since the

intercepts a = and 6 = are equal and the line passes

through the point (1,3). This question can be answered by

noting as stated in article 57 that the intercept form is not

valid when either or both intercepts are 0. Hence the solution

?/ — 3x = cannot be secured from the intercept form.

Whenever this form of the equation of a straight line is used

the question as to whether either or both intercepts are zero

must be answered independent of the equation.

EXERCISES

Find the equations of the lines determined by the following conditions:

1. The slope of the line equals —J and it is distant li units from the

origin.

2. The Hne makes equal intercepts on the axes and passes through the

point (4, 2).
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3. The line passes through the point (-7, 4) and is tangent to a circle

whose center is the origin and radius equal to 1.

4. The line passes through the point (4, 2) and is tangent to a circle

whose center is the origin and radius equal to 2.

6. The slope of the line is 2 and its x-intercept equals 3.

6. The slope of the line is —2 and the sum of its intercepts is 9.

7. The slope of the line is —J and the sum of its intercepts is 5.

8. The line makes intercepts which are equal numerically but opposite

in sign, and passes through the point (6, 3).

9. The line passes through the point (1,3) and the sum of its intercepts

equals 8.

10. The line passes through the point (3, 1) and the portion in-

cluded between the axes is bisected by this point.

11. The Hne passes through the point (3, \/S) and the perpendicular

from the origin on the line has an inclination of 60°.

12. The line is perpendicular to the line 4x + 3?/ — 6 = and distant

2 units from the origin.

13. The line is distant 3 units from the origin and its ^/-intercept

equals 5.

14. The line is distant 2 imits from the origin and the product of its'

intercepts is ^/.

15. The line passes through the point (1, 2) and makes with the axes

a triangle in the first quadrant whose area equals 4.

16. The line passes through the point (1, 2) and makes with the axes

a triangle in the second or fourth quadrants whose area equals 4.

67. Loci through the mtersection of two loci,

—

Theorem.

Iffi^y 2/) = and g{x, y) = are

the equations of any two loci and

k is any constant not zero, then ff(x,vho^

f(^) y) + ^Q{^i 2/) = ^'s ih^ equa-

tion of a curve which passes

through all the points of inter-

section of f(Xy y) = and
q{^i y) = 0, hut does not intersect

these curves in any other point

Proof,—^Let P\{xi, yi), Fig. 55, be any point of intersection

of f{Xj ?/) = and g{x, y) = 0. Since Pi lies on both these

curves its coordinates must satisfy each equation, therefore

f{xi, yi) = and g{xi, yO = 0.

f(<x},y)'

^X

FiQ. 55.
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Substituting the coordinates of Pi in/(a;, y) + hg{x, y) = 0,

/(xi, yi) + kg(xi, t/i) = + kO = 0.

Therefore Pi Hes also on the curve /(a:, y) + kg(Xy y) = 0.

But Pi was any point of intersection of f{x, y) = and

di^j y) = 0, therefore every point of intersection of these

curves lies on f(x, y) + kg{x, y) = 0,

Furthermore the curve /(x, y) + kg{x^ 2/) = cannot meet

either /(x, y) = or g{x, y) = in any other point. For if it

did, suppose it meets /(a;, y) = at P^ix^, 2/2) , and that P2 is not

on g(Xj y) = 0. Then f(x2j 2/2) = 0, but g{x2, 2/2) = a where

a 9^ 0.

Substituting the coordinates of P2 in/(x, y) + kg{x, y) = 0,

f{x2y 2/2) + kg{x2, 2/2) = + /ba F^ 0.

In like manner it can be shown that /(x, y) + kg{x, y) =
will meet g(Xj y) = only at the points of intersection of

f(x, y) = and g{x, y) = 0.

If /(x, 2/) = is the straight line Ax + By -{- C = 0, and

g{x, 2/) = is the straight line A^x + B'y + C = 0, then

/(x, y) + kg{x, y) = 0,

or Ax + By + C + k{A'x + B'y + C) =

is the equation of a straight line through the point of in-

tersection of the straight lines, Ax + By + C = and

A'x + B'y + C = 0.

Example 1.—Find the equation of the straight line which passes

through the point (4, 3) and through the intersection of the two lines

2x +Sy - 5 = and Sx - ^y + 1 = 0.

It has just been shown that the equation of any hne passing through

the intersection of these two Hues is of the form

2x -\-Sy - 5 -\- k{Sx - 4y + 1) = 0.

Since this line passes through the point (4, 3), its equation is satisfied

when X = 4 and y = S. This gives

12 + /c(l) = 0,

Therefore k ^ —12, and the required equation is

2x + 32/ - 5 - 12(3x - 4?/ + 1) = 0,

or 2x - Sy + 1=0.
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EXERCISES

Find the equations of the lines satisfying the following conditions.

1. Passing through the point of intersection of 2x -\- Sy — 3 =
and Sx — y — 1 =0, and through the point (1, 1).

2. Passing through the point of intersection of 5x — 4y — 2 =
and 2x + iy — 15 = 0, and through the point (2, 3).

3. Passing through the point of intersection of Sx -\- 2y — Q —
and X + 2/ = 3, and perpendicular to 2x + t/ — 1 =0.

4. Passing through the point of intersection of x — Qy = S and
2x — y = 2, and perpendicular to x — 2y •{- 1 =0.

5. Passing through the intersection of y = 6 + a; and By = 4 — 2x,

and parallel to x -{- Sy — 4: = 0.

68. Plotting by factoring.—Since it is easy to plot a straight

line, the theorem of article 48 gives a simple method of plotting

equations which can be factored into linear factors.

Example.—Plot the equation 2x2 ^ 2x -\- 7y = xy -\- Sy^ + 4.

, First transpose all terms to the left hand side of the equation

2x2 + 2x + 72/ - xt/ - 31/2 - 4 = 0.

In order to find out if this equation y
can be factored, regard it as a quadratic ^ ' ^

in X or y, and solve for that variable. \
For the sake of convenience the variable

chosen this time will be x. Collecting y^^^
like powers of x,

, ^<ry!

2x2 4. (2 _ 2/)x - 4 + 72/ - 32/2 = 0.

Solving for x, by means of the formula,

Art. 4, where a = 2, b = 2 — y, and pj^ 5g
c = -4 + 72/ - 32/2,

X = - 2 + y ± V252/2 - 602/ +36 ^ -2+2/ ± (5y - Q)

4 4

Hence x = -^-^— or — 2/ + 1, and the left hand side can be factored

into2{x-^){x+y-l)-
The equation now becomes (2x — 32/ + 4) (x + 2/ — 1) =0.
Therefore the graph of 2x2 ^ 2x + 7y = •X2/ + 32/2 + 4 consists of

the two straight lines 2x — 32/ + 4 = and x + y — 1 — 0.

When an equation of the second degree in each of two

variables, is solved for one variable in terms of the other, an



78 ANALYTIC GEOMETRY [§69

expression is obtained under a radical sign. If this expression

is a perfect square, the graph of the equation consists of two

straight lines.

Thus, in the problem just solved, 252/^ •— QOy + 36 is a perfect square.

If it had not been a perfect square 2x^ -\- 2x -\- 7y = xy -{- Sy^ + 4 could

not have been plotted by this method.

Example 2.—Plot the curve x^y = y^.

Transposing all terms to the left hand side, x^y — y^ = 0.

' Factoring the left hand side, y(x — y)(x + y) = 0.

The graph consists of the line y = which is the x-axis, the line

X — y = and the line a; + 2/ = 0.

EXERCISES

1. Find the equation of the triangle whose sides are x = y, y = 0,

and X -\- y = 1.

2. Find the equation of the square whose bounding lines are x = 1,

X = 2, y = 1, and y = 2.

Plot the following curves by first factoring:

3. x^ - 2y^ - xy -{-^y - I = 0.

4. 22/2 = xy + x^.

5. a:2 + 2x + 1 = ^y\

6. 2a;2 + rc2/ + 4x + 2/ + 2 = y^.

69. Straight line in polar coordinates.—In general the

equations of straight lines in polar coordinates are not as

simple as those in rectangular co-

ordinates. The simplest case is the

one in which the known quantities

are the polar coordinates of the

.^x foot of the perpendicular from the

origin to the line. This is the same

data as was given for the normal

form of the equation of a straight Hne. If the end of the

perpendicular to the line from the origin has the coordinates

(pi, ^i), Fig. 57, let P{p, 6) be any point on the line.

Then '

^p
cos POPi = gp' or cos {e - ei) = ^.

.

H'^^^
P qos(^ - e,) = px. (1)
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This equation can also be obtained from the normal form

of the equation of a straight line by replacing p by pi, B by di,

X hy p cos 6, and yhyp sin 6.

In the special case where the line is perpendicular to the

polar axis, 6i = 0, and the polar form of the equation of the

straight line takes the form p cos B = pi. If the straight

line is parallel to the polar axis, ^i = 90° and the equation of

the straight line becomes p sin ^ = pi.

Example.—Find the polar form of the equation of a straight Hne if the

coordinates of the foot of the perpendicular drawn to it from the origin

are (3, 60°).

Substituting in equation (1), gives p cos {e — 60°) = 3.

EXERCISES

Write the equations of the following straight lines in polar coordinates,

if the coordinates of the end of the perpendicular from the origin to the

line are:

1. (3, 45°). 3. (7, 90°). 6. (-4, 135°).

2. (-2, 60°). 4. (4, 180°). 6. (3, 315°).

Change from rectangular to polar coordinates.

7. a; + 2/
- 1 = . 1 . a;\/3 + 2/ = 4.

8. a; = 3. 11. X - yVS +6 = 0.

9. 2/ = -7. 12. y -2x = 0.

Change from polar to rectangular coordinates.

13- P = 3 sec e. 18. p = 4,„,g%sin9
-

14. p = 4 CSC d. 19. 5 sin 6 = 3.

15. tan = 6. 20. 13 cos e =_— 5.

16. P = „-::r^l^.- 21. p- ^2
cos + sin d'

* '^ sin {$ - 45°)

3 (cos d — sin e)
22 = ?_

cos2(?
*

^ cos (0 +60°)'

70. Applications of the straight line.—Whenever two vari-

ables are related so that one varies directly as the other, or

so that a change in one varies directly as the corresponding

change in the other, the relation between the variables is

linear, and the graph showing the relation between the

variables is a straight line.

Since many of the relations in physics, mechanics, and
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engineering are of this nature, the straight line has a wide

field of application. Oftentimes the curves representing the

relation between physical quantities are within certain limits

so nearly straight lines that the more complicated equation

is replaced, on account of its simplicity, by the linear relation.

A few specific instances are the following.

(1) The increase in velocity of a body falling under the

action of gravity is proportional to the time. This is expressed

by the relation

V — Vo = k{t — to)j

where Vo is the velocity of the body at the time i^o and v is the

velocity of the body at any time t. If v and Vo are expressed

in feet per second, and t and U are expressed in seconds,

then ky the proportionality factor, is the familiar constant g.

This relation is often expressed

V = kt -{ Vqj

where Vq is the velocity when t = U = 0,

(2) Hookers Law,—The extension of an elastic string varies

directly as the tension. This is expressed by the relation

I = kt + lo,

where I is the length of the string under the tension t, and h is

the length of the string when ^ = 0.

(3) The expansion of a bar due to heat, is very nearly pro-

portional to its increase in temperature. This is expressed

by the relation

I — lo = k{t — to),

where lo is the length of the bar at some temperature ^o and

I is its' length at any temperature t.

(4) The weight of a column of mercury in a barometer

varies directly as its height. This is expressed by the relation

w = khj

where the weight w is taken as zero when h = 0.

In all four cases the graph representing the linear relation

between the variables is a straight line.
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For further applications of the straight line see Chapter X
on empirical equations.

GENERAL EXERCISES

1. Translate the following algebraic statements into words and draw
their loci:

(1) y = 4a:, (2) 2/ = 4x - 4,

(3) a; = 32/ + 2, (4) x = Si/ - 2.

2. Find the equation of the line (1) through the point (4, —3) and
parallel to 2a: — 3?/ = 4; (2) through the point (5, 7) and perpendicular to

2a: + 72/ = 14.

3. Find the equation of the line (1) through the point (—2, —5)
and parallel to a: — 7?/ = 3; (2) through the point {h, k) and parallel

to the line y = mx + 6.

4. Find the length of the following perpendiculars:

(1) From (3, 2) to 4a: - 32/ - 7 = 0.

(2) From (0, -3) to 5a: - 2/
- 6 = 0.

(3) From (2, 3) to 6a: - 82/ - 10 = 0.

5. Find the lengths of the three altitudes of the triangle whose-

vertices are (4, 5), ( — 2, 2), and (3, —4).

6. Find the distances from the line 2a: + 32/ — 12 = to each of the

points (4, 4), (2, -3), (0, 0), (-3, 5), and (-2, 8).

7. Given 4x + ^2/ — 5 =0; determine the value of k for which the

line will (1) pass through the point (—4, 3), and (2) be parallel to

3a: - 22/ + 7 = 0.

8. Find the equations of the lines through the intersection of the lines

2x + 2/ — 16 = and a: — 2/ + 2 = and also

(1) passing through the point (2, 7),

(2) parallel to the line 7a: - 2?/ + 6 = 0,

(3) perpendicular to the line 3a: — 42/ + 2 = 0,

(4) having the slope —|.

9. Given a triangle having as vertices the points (6, 2), (—3, 5),

and ( — 1, —3); find the equations of the perpendicular bisectors of the

three sides, and the coordinates of their point of intersection.

10. Show that Ibx^ - l^xy - Sy^ = is the equation of two straight

lines intersecting at the origin.

11. Prove that, if A, B, and C are real numbers, Ax^ + Bxy + Cy^ =
represents two straight lines passing through the origin, and that these

lines are real and distinct, real and coincident, or imaginary according

as B2 — 4AC is positive, zero, or negative.

6
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12. The perpendicular drawn from the origin to a line makes an angle

of 60° with the x-axis and its length is 2, find the equation of the line.

13. Write the equations of the following lines:

(1) Passing through the point (3, 5) and having an inclination of 45°.

(2) Passing through ( — 1, —3) and having a slope of 2.

(3) Passing through (—2, 8) and having an inclination of 120°.

14. Show that the following lines form a parallelogram:

(a) 2x -f 32/ = 10, (6) 2x + ^y = 20, (c) a; - 2?/ = 5,

{d) 2x - 4y = 17.

15. Write the equation of the line passing through the intersection

oi X — Sy -{- S = and Sx -\- 2y + 2 =0 and making an angle whose
tangent is 2 with the a;-axis.

16. Find the coordinates of the point in which the perpendicular to

the line 2x — y — 1 = and passing through (—2, 3) intersects that

line.

17. What does the equation Sx — 2y -{- 4 = become when the

coordinate axes are turned through an angle of 45°? Plot the locus of

the equation in both cases.

18. Plot each of the following lines, translate the axes so that the new
origin shall be at the point indicated and replot from the new equation.

(1) 2/ = 3x + 4, (2, 3). (3) 2/ = mx + 6, (c, d).

(2) 22/ - 3a; - 2 = 0, (-2, 3). (4) 2/
- 4x + 5 - 0, (|, -2).

19. The three vertices of a triangle are (8, 2), (4, 8), and (— 2,-6).

Find the equations of the lines each of which bisects two sides of the

triangle.

20. Given two straight lines each having an inclination of 45° and
having intercepts on the y-Sixis of 6 and —8 respectively; find the equa-

tion of the straight line that is equidistant from the two lines.

21. Find the equation of a straight line such that the perpendicular

from the origin to it equals 8 and makes an angle of 45° with the a:-axis.

22. Find the equation of the straight line which passes through the

intersection of the lines x — 2y — 4 = and x -\- Sy — S = and is

parallel to the line 3x + 42/ = 4.

23. Find the equation of the line through the point (2, 3) making an

angle tan"^ f with the line 2a; — 42/ + 7 = 0.

24. Find the equation of the line through the point ( — 1, 2) making

an angle sin~^ | with the line x -\- 3y — 4 = 0.

25. Find the equation of the line through the point (6, 4) making an

angle cos"^ (— f ) with the line 2x — y -\- Q = 0.

26. Find the equations of the two lines through the point ( — 1, —3),

which form an equilateral triangle with the line x + y — 2.
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27. Find the equation of the Une through the point (0, 6) which together

with the 2/-axis as the other equal side forms an isosceles triangle with

the line 2x — y -{- 4: = 0.

28. Find the equation of the line through the point (0, 6) which together

with the 2/-axis for the other leg forms an isosceles triangle with the line

2x + 2/
- 4 = 0.

29. The equations of the two equal sides of an isosceles triangle are

X — 2y -\- Q = and 2x — y — 2 = 0. Find the equation of the third

side if it passes through the point (9, 4).

30. Find the slope of the line 2a; + 3?/ — 4 = after the axes are

rotated through 30°.

31. Find the slope of the line x — Sy -\-6 = after the axes are rotated

through the angle 6, where cos = — | and is in the second quadrant.

32. Find the equations of the two lines through the point ( — 1, 3)

which trisect that part of the line 2x -\- y — 6 = which is intercepted

between the axes.

33. An equilateral triangle lies wholly in the first quadrant. If one

side has its extremities at (1, 6) and (6, 1), what are the equations of the

other two sides?

34. An isosceles right triangle is constructed with its hypotenuse along

the line 2x + y — Q = 0. If its vertex is the point (3, 4), find the

equations of its sides.

35. A circle is inscribed in the triangle the equations of whose sides

are x + 2y - U = 0, 2x - y + 3 = 0, and 2x -{- y - 7 = 0, Find

its radius and the coordinates of its center.

36. The base of an isosceles triangle is the line joining the points (1, 5)

and (4, 6), its vertex is on the line x + y — 7 = 0. Find the coordi-

nates of its vertex.

37. Find the locus of a point which moves so as to be always equi-

distant from the points (3, 5) and ( — 1, 7).

38. Find the equation of the locus of a point which moves so that

its distance from the line 7x + 4?/ — 6 = is twice its distance from

the line x - Sy -\- S = 0.

39. Find the equation of the locus of a point which moves so that

the difference of the squares of its distances from the points (—2, 3)

and (1, 6) shall be constant and equal to 2.

40. Find the equations of two lines through the point (1, 1) such that

the perpendiculars let fall from the .point (1, 3) on them are each of

length |.

41. Prove that the feet of the perpendiculars let fall from the point

(3, 1) on the sides of the triangle x = 0, y = 0, and 2x + y - i =
lie in a straight line.
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42. Find the equations of the straight lines through the point (3, 6)

and intersecting the line x -\r y — 2 =Oata distance 5 from this point.

43. Prove that the perpendicular bisectors of the sides of a triangle

meet in a point.

44. Find the equation of the locus of a point that is always twice as

far from the origin as from the a:-axis.

45. The coordinates of two points are (3, 5) and (4, 4). Find the

equation of a straight line which bisects the line segment connecting these

points and makes an angle of 45° with the x-axis.

46. A straight line inclined to the x-axis at an angle of 150° has an
x-intercept equal to 8. Find the equation of a straight line passing

through the origin and bisecting that portion of the line included between
the axes.

47. Find the equations of the four sides of a square two of whose
opposite vertices are (2, 3) and (3, 4).

48. A straight line moves so as to keep the sum of the reciprocals of

its intercepts on the axes a constant. Show that the moving line passes

through a fixed point.

49. Find the equation of the straight line passing through the point

(2, 6) and making an angle of 30° with the line x —2y =1.
60. Find the equation of a straight line passing through the point

(c, 0) and making an angle of 45° with the line bx — ay = ah.

51. The equation of a straight line is 3x -\- 5y = 15; find the equa-

'

tion of the same line referred to parallel axes whose origin is at (3, 2).

52. Find the equations of the straight lines bisecting the angles formed

by the lines 12a; -\- 5y = S and Sx — 4:y = 3.

53. Show that an angle of 45° is formed by the lines represented by
the equation x^ — xy — Qy^ -{- 2x — y -\- 1 =0.

54. Given the equation Ax + By -\- C = 0. Find the relation be-

tween Ay B and C, (1) so that the x- and ^/-intercepts shall be equal;

(2) so that the inclination of the line shall be 45°; (3) so that the line

shall pass through the point (1, 2).

55. Determine the angle that the first line of each of the following

pairs makes with the second:

(1) X + 2?/ = 5, 3x - 4!/ = 4.

(2) 3x + 42/ = 6, 2x - 2/ = 2.

(3) V3x + 2/ = 4, -yAx -
2/ + 4 = 0.

56. Determine the value of m in 2/ = f^x + 6, so that it shall make
an angle of 60° with x — 2y = Z.

57. Find the coordinates of the point through which the three lines

2/
— 4a: = 5, y — ^x — 4, and 2/

— 2x = 3 pass.
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68. Find the value of m so that y = mx -\- Z shall psiss through the

intersection oi y — x = 1 and y — 2x = 2.

59. Find the equation of the line perpendicular to 5a; -f 8?/ = 3 and

having a ^/-intercept equal to 6.

60. Find the angle which the line 4x —
2/ = 8 makes with the line

6x -
2/ = 9.

61. Find the equation of the locus of a point whose distance from

3x + 4?/ = 5 is one-half its distance from 12a; — 5y = 16.

62. Given the two fixed points Pi( — 2, 4) and P2(l, 3). Find the

equation of the locus of the variable point P{Xj y) which moves so that

the area of the triangle PP1P2 is always equal to 10.

63. Find the equation of the locus of a point which moves so that

the slope of the Hne joining it to the point (0, 2) is twice the slope of the

line joining it to the point (0, —2).

64. If the equations of ihe sides of a triangle are x -{- 2y — 15 = 0,

2a; — 2/ + 5 = 0, and 2a; — 11?/ + 15 = 0, find the coordinates of the

point of intersection of the bisectors of the interior angles of che

triangle.

65. Find the equation of a line passing at a distance \/2 from the

origin if the sum of its intercepts is 4.

66. If the three lines

Aix + Biy + Ci = 0,

A2X + B^y + C2 + 0,

Asx + Bzy + Cz = 0,

meet in a point, show that

Ai Bi Ci

A2 B2 C2 = 0.

Az Bz Cz



CHAPTER V

THE CIRCLE AND CERTAIN FORMS OF THE SECOND
DEGREE EQUATION

71. Introduction.—The circle affords other examples of the

ease and power obtained in analytic geometry by applying

algebra to geometry. Since the properties of the circle are

well known from plane geometry, atten-

tion can be confined to the methods
^(x,v) used in solving the various problems.

72. Equation of circle in terms of

center and radius.—A circle is defined

.j^x i^ plane geometry to be the locus of all

points in a plane equidistant from a

fixed point in the plane called the center

Fig. 58. ^^ ^^^ circle.

Let the center of the circle be the fixed

point, C{hj k)y Fig. 58, and let the constant distance, or

radius, be r.

Then if P(x, y) is any point on the circle, the distance

PC = r.

But by [3], PC = V{x - hy + {y- k)K

Then V(x - h)^ + (y - ky = r.

[25] .•.(x-h)2+ (y-k)2 = T\

Furthermore, comparison of this equation with [3] shows

that every equation of the form of [25] is the equation of a

circle.

If the center of the circle is the origin, this equation takes

the simple form

[26] x2 + y2 = r2.

86
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73. General equation of the circle.—Equation [25] when
expanded becomes

x^ + y^ - 2hx - 2ky + h^ + k^ - r^ = 0.

This is in the form

[27] x2 + y2 + Dx + Ey + F = 0. >^
This is called the general equation of the circle.

Conversely, every equation in the form of [27] is the equa-

tion of a circle, since after completing the squares in the x and
the y-terms, it can be written in the form

£>2 £'2 2)2 E^
x^ + Dx + -^ + y' + Ey + ^ = — + — _ f,

or {x + iZ))2 + (t/ + J^)2 - (WD^ + E^-APy.
Comparison of this equation with equation [25], shows that

h = -\D, k = -i£, and r = WD^ + E^ - 4F.

Therefore every equation in the form of [27] is the equation

of a circle.

li D^ + E^ ^ 4F>0y equation [27] represents the equation

of a real circle.

If D2 + E2 - 4F = 0, the radius of the circle equals 0, and

the locus becomes a point. Such a circle is called a null or

point circle.

li D^ + E^ — 4F <0y the radius of the circle is imaginary

and the circle is called an imaginary circle.

74. Special form of the general equation of the second

degree.—The equation of a circle is a special case of the most

general equation of the second degree in two variables

Ax^ + Bxy + Cy^ + Dx + Ey +F = 0.

In order that this shall be the equation of a circle comparison

with [27] shows that B = and A = Cj for then this equa-

tion becomes y

Ax^ + Ay^ + Dx + Ey+F = 0, At
which can be reduced to [27] by dividing by A. The quantity

A cannot be zero, since if it were, this equation would become

the equation of a straight line.
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Example.—Find the coordinates, of the center, and the radius of the

circle 5x^ + %2 + 2x - Sy - 4 = 0.

Solution.—Dividing by 5.

a:2 + 2/2 + |x - 12/ - f - 0.

Completing squares

X' + i^ + iz + y' - h + lU = i^ + -lU + 1
or (x + ir + {y- A)^ = I'A'

Comparing this equation with [25], shows that the center has the

coordinates (—5, -ro) and that the radius is equal to \/^ = -^\/9S.
This problem could also be solved by substituting the values D = f ,

E = -|, and F = -|, in the formulas of Art. 73.

EXERCISES

Find the coordinates of the centers and the radii of the following circles:

1. a;2 + 2/^ - 2x ~ 42/ - 4 = 0.

2. ic2 + 2/2 + 4x - 62/ + 12 = 0.

3. a;2 + 2/2 + 12a; + 62/ + 41 =0.
4. 0^2 + 2/2 - x - 42/ + 2 = 0.

5. 3x2 + 32^2 _ 2a; - 42/ + 1 = 0.

6. 2x2 + 22/2 + a; + 32/ - 5 = 0.

7. 2x2 + 22/2 + 2x + 62/ + 5 = 0.

8. x2 + 2/2 - 2ax - Qay + a2 = 0.

9. 2x2 + 22/2 + 12ax + lOay - a^ = 0.

10. 9x2 ^ 92^2 _ Qax + 15a2/ + 5a2 = 0.

75. Equation of a circle satisfying three conditions.—Since

both equations [25] and [27] involve three arbitrary constants,

the circle is determined if enough geometric or algebraic con-

ditions are given to determine the three constants uniquely.

There are two methods of procedure. One is to compute
the constants in [25] geometrically. That is to say, from the

given conditions compute the radius of the circle and the

coordinates of its center, then substitute these values in [25].

Another method is to set up three equations involving h, ky

and r, or three equations involving D, £/, and F, and solve

these equations simultaneously. This method is generally

more satisfactory, and is illustrated for both sets of con-

stants in the following example.
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Example 1.—Find the equation of a circle passing through the points

(3, 5), (4, 4), (1, 1).

First method, geometrical.—Find the equations of the perpendicular

bisectors of two of the sides of the triangle (3, 5), (4, 4), (1, 1).

Solve these equations simultaneously. This gives the coordinates of

the center of the circle.

Next find the distance from the center of the circle to any one of the

three vertices. This gives the radius of the circle. Substituting

the values of h, k and r thus found in [25] gives the desired equation.

It is obvious that this method is long and hence the actual computa-

tion is not given. A shorter method is the following.

Second method, algebraic.—Make the coordinates of each of the three

points satisfy the equation {x — h)^ -{- (y — ky == r*. This gives

(3 - hy + (5 - ky = r2,

(4 - hy + (4 - ky = r\

(1 - hy + (1 - /c)2 = r\

Simplifying each of these equations gives

h^ -{-k^ -Qh - 10k - r2 + 34 = 0,

h^ -\-k^ -Sh - 8fc - r2 + 32 = 0,

*

/i2 + /c2 - 2/t - 2/c - r2 + 2=0.
Solve these equations by subtracting the second from the first and

the third from the second. Then solving the two equations thus

obtained gives h = 2, k = S, r = \/5.

Hence the equation of the required circle is

ix - 2)2 4- (2/ ^ 3)2 = 5

Simplifying, this becomes

a;2 + 2/2 - 4a; ~ 62/ + 8 = 0.

Third method.—Make the coordinates of the three points satisfy

the equation x^ + y^ -^ Dx + Ey -i- F = 0, This gives

9 + 25 + 3Z) H- 5^ + F = 0,

16 + 16 + 4Z> + 4^ + /^ = 0,

1+ 1+ D -\- E +F =0.

Solving these equations simultaneously gives

D = -4, E = -6, F == 8.

Hence the equation of the circle is

a:2 + 2/^ - 4x - 62/ + 8 = 0.

Example 2.—Find the equation of a circle which passes through the

points ( — 1, 7) and (7, 1) and is tangent to the line x -{- y — 10 = 0.
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This problem illustrates how a combination of both algebraic and

geometric methods may sometimes be useful.

Solution.—Use the equation {x — h)^ -{- (y — ky = r^, and make the

circle go through the points ( — 1, 7) and (7, 1). This gives the two

equations (-1 - h)^ + (7 - k^ =- r^, (1)

and (7 - hy + (1 - /c)2 =r2. (2)

Since the line a;+2/~10=0is tangent to the circle, the distance

from the point (/i, k) to the line x + y — 10 = equals r, hence by [23]

Simplifying and combining like

terms in (1) and (2) gives

h^ -i-k^ -\- 2h - Uk + 50 = r2, (4)

/i2 4- /b2 - Uh - 2/c + 50 = r2. (5)

Subtracting (5) from (4) and divid-

ing both sides of the resulting equa-

tion by 4,

4/1 - 3/c = 0. (6)

Substituting the value of r from

equation (3) in (4) and simplifying,

h^ - 2hk -f- /c2 + 24/i - 8/c = 0. (7)

Substituting h = ^k from equation (6) in equation (7) and simplifying,

k^ + 160/c = 0.

Hence k = or k = -160.

Computing the value of h from equation (6), gives h = Oorh — —120.

Computing the value of r from equation (3), gives

r = 25\/2 or r = 145\/2.

Substituting the values of h, k, and r in the general equation of the

circle gives the two solutions x^ -\- y^ = 50,

Fig. 59.

and (x + 120)2 -f- (2/ + 160)2 = 42,050.

EXERCISES

Find the equations of the circles through the following points:

1. (5, 5), (1, 3), (2, 6).

2. (3, -2), (-1, -4), (2, -5).

3. (0,3), (-4,3), (-3,4).

4. (1,6), (4, 5), (-3, -2).

6. (-1,4), (-4, -5), (3,2).

6. (2,8), (-1, -1), (-2,6).
7. (2, 4), (2, -2), (3, 3).

8. (4,4), (5,3), (-3,3).

9. (3, 7), (1, 1), (5, 3).

10. (-1,1), (1,5), (-5,3).
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Find the equations of the circles fulfilling the following conditions:'

11. Passing through the origin, radius 5, and ordinate of center —3.

12. Passing through the origin, radius 13, and abscissa of center 12.

13. Center at origin and tangent to line x -\- 2y = 10.

14. Center at point (1, 2) and passing through the point (3, —1).

16. Center at ( — 1, 3) and tangent to line 3x + 2/
— 10 = 0.

16. Center on x-axis and passing through the points (3, 3) and (5, —1).

17. Radius 5 and passing through the points (5, 6) and (2, 7).

18. Radius 5 and tangent to the line 4x + 32/ ^ 16 = at the point

(1, 4).

19. Having the line joining (—3, 2) and (5, 6) as diameter.

20. Passing through the point (1, 1) and having the same center as

x2 -f 2/2 + 4x - 6?/ = 0.

21. Intercept on a;-axis equals 3, and passing through the points

(-1,2) and (2, 3).

22. Tangent t6 a:-axis, radius 4, and abscissa of center 3.

23. Tangent to 2/-axis, radius 2, and ordinate of center 4.

24. Center on the line x — y -\- 2 = Oy and passing through the points

(3, 7) and (1, 1).

25. Center on the line 2x — y — d = 0, tangent to both axes, and in the

first quadrant.

26. Center on the line 2x — y — 3 = 0, tangent to both axes, and in the

fourth quadrant.

27. Center on the line 3a; — 2/ + 8 = 0, tangent to both axes, and in

the. second quadrant.

28. Radius 3, tangent to both axes, and in the second quadrant.

29. Tangent to the line Sx + y -\- 2 = Si.t the point ( — 1, 1) and
passing through the point (3, 5)

30. Intercept on the 2/-axis 4, and tangent to the line x -\- 2y -\- 1 =0
at the point ( — 3, 1).

31. Tangent to both axes, in the second quadrant, and also tangent

to the line 3a; — 42/ + 30 = 0. (Two solutions.)

32. Tangent to both axes, in the first quadrant, and also tangent to

the line 3a; - 42/ + 30 = 0.

33. Tangent to both axes and passing through the point (8, 1). (Two
solutions.)

34. Find the equation of the diameter with slope 2 of the circle

a;2 - 4x + 2/2 + 62/ - 3 = 0.

35. The point (-1, 2) bisects a chord of the circle x^ + y^ = 10.

Find the equation and length of the chord.

36. A chord of the circle x^ + y^ -{- 2x -{ 4:y - 15 = is bisected by

the point (—2, 1). Find the equation and length of the chord.
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37. Find the equation of the circle inscribed in the triangle whose

sides are the lines Qx -{• 7y = 85, —7x-\-Qy = 85, and 2x — 9y = 85.

38. Find the equation of the circle inscribed in the triangle whose
sides are the lines 3a; + 4^/ = 18, —4x + Sy = 26, and i/ + 4 = 0.

39. Find the equation of the circle circupascribing the triangle whose

sides are the lines 7x -{- 9y = 65, Sx + y = 25, and x + 2y = 15.

40. Prove analytically that an angle inscribed in a semicircle is a

right angle.

41. Prove analytically that a line from the center of a circle bisecting

a chord is perpendicular to it.

Suggestion.—^Let the ends of the chord be (r, 0) and (6, c).

42. Prove analytically that the length of a perpendicular from any
point on the circumference of a circle to a diameter, is a mean propor-

tional between the segments into which it divides the diameter.

43. Prove that the length of the tangent from the point (xi, i/i) to the

circle x^ + y^ -\- Dx + Ey -\- F = Ois Xi^ + 2/i^ + Dxi + %i + F = 0.

76. Systems of circles.—If fi(Xj y) = and /2(a;, y) =
are the equations of any two circles, then by article 67

/i(^j y) + kf2{x, y) = is the equation of a curve through all

the points of intersection of fi{x, y) — and f^ix, y) = 0.

Furthermore in this case the curve will always be a circle or

a straight line.

To prove that this is so, Iet/i(a:, y) = stand for the equa-

tion Aix2 + Ai2/2 + Dix +
Eiy +Fi = 0, and let U{x, y)

= stand for A^x^ + A2y^ +
D2X + E2y + F2 = 0.

Then/i(x,2/) + kf2(x, y) =0
becomes Aix^ + Aiy^ + Dix +
Eiy + Fi + k(A2X^ + A2y' +
D2X + E2y + F2) = 0.

Collecting like powers of x

and y, this equation becomes

(4i + kA2)x^ + (Ai + M2)2/2 + (Di + kD2)x + {Ei + kE2)y

+ Fi + kF2 = 0.

Since the coefficient of x^ equals the coefficient of y'^ and the

coefficient of xy equals 0, this is the equation of a circle. The

Fig. 60.
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exception occurs when ^i + ^^2 = 0, in which case, this

equation is of the first degree and therefore is the equation of

a straight Hne.

Fig. 61.

Example 1.—Find the equation of a circle through the point (1, 2)

and the points of intersection of the circles 2x^ + 2y^ — 3a; — 4?/ — 1 =0
and 3x2 + 31/2 - 8x -

2/
- 4 = q.

Solution.—The equation of any circle through the points of intersection

of these two circles is

2x2 _^ 22/2 - 3x - 42/ - 1 + /b(3x2 + 3^2 _ ^^ - y - ^) =0.

Since the point (1, 2) is on this circle its coordinates must satisfy the

equation of the circle, therefore

2+8-3-8-1+^(3 + 12 --8-2- 4) =0.

Solving for fc, gives fc = 2.

Therefore the required equation is
*

2x2 _|. 22/2 - 3x - 42/ - 1 + 2(3x2 _[. 3^,2 _ g^. _ 2/
- 4) =0,

or 8x2 _^ 82^2 _ 19a; _ 62/ - 9 = 0.

Example 2.—Find the equation of the common chord of the circles,

2x2 + 22/2 - 6x - 42/ + 1 = and x2 + -2/2 - 2x -
2/ + 3 = 0.

Solution.—The equation of any circle through the points of inter-

section of these two circles is

2x2 _^ 22/2 - 6x - 42/ + 1 + A:(x2 + 2/^ - 2x -
2/ + 3) =0.

In order that this equation shall be the equation of a straight line, it is

necessary that the coefl&cient of x2 shall vanish, hence 2 + fc = 0. This

gives A; = —2.
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Making this substitution the equation becomes

2x2 _^ 22/2 - 6ic - 42/ + 1 - 2(^2 -^ y2 ^ 2x - y + S) =0,
or 2x + 2y + 5 = 0.

This is the equation of their common chord.

If the two circles intersect in real points, the straight line

thus obtained is their common chord, since it passes through

their two points of intersection. If the two circles do not

intersect visually, they are still said to intersect algebraically,

their points of intersection being imaginary, and the line

/i (^) y) + kf2 (Xj y) passes through their imaginary points

of intersection. The straight line which passes through the

real or imaginary points of intersection of two circles is called

their radical axis.

EXERCISES

Find the equation of the common chord or the radical axis of the

circles in exercises 1-6.

1. a;2 + 2/2 - 3a; + 2/ - 6 = 0, 4. 2x^ -\- 2y^ - Sx - Sy ]- 5 = 0,

a;2 + 2/2 - 5x - 32/ + 4 = 0. 3x^ -{- Sy^ - 2x - Sy + 4: = 0,

2. a;2 4- 2/2 - 6x - 82/ -f 3 = 0, 5. 4x2 + 42/2 - ^ ^ 2/ - 6 = 0,

x^ +y^ +4:x -\-2y -7 = 0. Sx^ -{- Sy^ - 2x - Sy -\- 4 = 0.

3. x2 + 2/2 - 3a; - 4y + 2 = 0, 6. 3a:2 + 3^/2 _ 2a; - 32/ + 6 = 0,

x^ + y^ - 2x - 2y -\- Q = 0. 2x2 + 22/2 + 3. _|_ 2/ - 2 = 0.

7. Find the equation of the circle through the point (1, 1) and through

the points of intersection of the circles

a;2 + 2/2 - 2a; - 32/ + 4 = 0,

a;2 + 2/2 - 4a; - 52/ + 6 - 0.

8. Find the equation of the circle through the point (3, 4) and through
the points of intersection of the circles

a;2 + 2/^ - 7a; - 32/ + 10 = 0,

a;2 + 2/^ - 8a; + 22/ - 6=0.
9. Prove that the common chords of the following circles, taken two at

a time, meet in a point:

x2 -1- 2/2 - 4a; - 32/ + 6 = 0,

a;2 + 2/2 - 2a; + 52/ - 2 = 0,

a;2 + 2/^ + a; + 22/ - 4 = 0.

77. Locus problems involving circles.—Although the ele-

ments dealt with in plane geometry are the point, straight
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,P(x.y)

^X

line and circle, nevertheless the locus problems that can

readily be handled by plane geometry are only of the simplest

kind. On the other hand analytic geometry lends itself

easily to the solution of locus

problems as is illustrated by

the following example.

Example.—Find the locus of the

point, which moves so that the sum
of the squares of ifcs distances from the

points (0, 1) and (2, 1) is constant

and equal to 20.

Solution.—^Let P(x, y) be any point

on the locus, then

PS^ + PT2 = 20, (1)

PS2 = X2 + (2/ - 1)2,

PT2 = (x - 22 + (y - 1)2.

Substituting these values in equa- Fig. 62.

tion (1)

x^ -\-{y - 1)2 + {x - 2)2 + (2/
- 1)2 = 20.

Simplifying, x^ + y^ - 2x - 2y = 7.

Completing the squares in the x and ^/-terms,

{x - 1)2 + (2/ - 1)2 = 32.

Hence the required locus is a circle whose center is the point (1, 1)

and whose radius is 3.

EXERCISES

1. Find the locus of a point which moves so that the sum of the squares

of its distances from (—2, 0) and (2, 0) is constant and equal to -26.

2. Find the locus of a point which moves so that the sum of the squares

of its distances from (— 1, 2) and (2, 1) is constant and equal to 10.

3. Find the locus of a point such that its distance from the point

(—2, 0) shall always be twice its distance from the point (2, 0).

4. Find the locus of a point moving so that its distance from the line

3x -f- 4!/ — 5 =0 shall equal the square of its distance from the point (1,0).

6. Find the locus of a point such that its distance from the 2/-axis shall

equal the square of its distance from the point (0, 2). (Two solutions.)

6. In an isosceles triangle of base 6 and equal sides of length 5, a point

moves so that the product of its distances from the equal sides equals the

square of its distance from the base. Prove one of the loci to be a circle

and find its radius.
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7. Find the locus of the vertex of a right angle if its two sides always

pass through the points (—2, —4) and (2, 6).

8. Find the locus of the vertex of an angle of 30°, whose sides pass

through the points (—2, 0) and (2, 0). (Two solutions.)

9. Find the locus of the vertex of a triangle, if the remaining two

vertices are at the points (—3, 0) and (3, 0) and the length of the median

from the vertex (—3, 0) is constant and equal to 5.

10. The ends of a straight line of length 6 rest on the axes, find the

locus of its middle point.

78. Equation of a circle in polar coordinates.—^Let the

radius of the circle be r, and let C(pi, ^i) be the coordinates of

its center, Fig. 63.

Then if P{pj 6) is any point on the

J^J^^^ circle, by trigonometry,

r2 = p2 + pj2 _ 2ppi cos COP,

Replacing angle COP by its value

(e - ^i),

r2 = p2 + pi2 - 2ppi cos (6 - 6>i).

"^
The forms of this equation which

Fig. 63. occur most frequently are those where

the center is the pole or where the

circle passes through the pole and the center of the circle is

either on the initial line or on the line 6 = 90°.

If the center is the pole, pi = 0, and the equation becomes

P = r.

If the circle passes through the pole and has its center on

the initial Hne, ^i = and pi = ±r. The equation of the

circle then becomes

p = 2r cos ^, or p = — 2r cos ^,

according as the center is on the initial line or the initial line

produced through the pole.

If the circle passes through the pole and its center is on the

line 6 = 90°, 6i = 90° and p = ±rj and the equation becomes

p = 2r sin ^, or p = — 2r sin 6,

according as the circle lies above or below the polar axis.



§78] THE CIRCLE AND CERTAIN FORMS 97

EXERCISES

Find the equations of the following circles in polar coordinates:

1. The center is at the pole and the radius equals 2.

2. The center is at the point (5, 0) and the radius equals 5.

3. The center is at the point (—4, 0) and the radius equals 4.

4. The center is at the point (3, Jtt) and the radius equals 3.

6. The center is at the point ( — 2, Jtt) and the radius equals 2.

6. The circle is tangent to the initial line at the pole and the radius

equals 6.

7. The circle is tangent to the line 6 = 90° at the pole and the radius

equals 6.

8. The center is at the point (3, ix) and the radius equals 3.

Change from rectangular to polar coordinates.

9. a;2 + 2/2 = 6. 11. 2x^ + 2y^ + 5a; = 0.

10. a;2 + -2/2 - 32/ = 0. 12. a;^ -|- 2/^ - 6x - 82/ = 0.

Change from polar to rectangular coordinates and find the center and

radius of each of the following circles.

13. p + 6 sin 0=0. 17. p + 2 cos + 3 sin = 0.

14. p - 4 cos = 0. 18. p2 + 3p cos + 4p sin - 6 = 0.

16. p = cos + sin 0. 19. p^ = 9 sec^^ - p2 tan^^.

16. p = 5. 20. p2 = 4 csc20 - p2 cot20.



CHAPTER VI

THE PARABOLA AND CERTAIN FORMS OF THE
SECOND DEGREE EQUATION

79. General statement.—It is an interesting and useful

fact that an equation of the second degree in two variables,

if plotted with reference to rectangular axes, gives a conic

sectioUy or simply a conic. That is, the graph is some plane

section of a right circular cone.

80. Conic sections.—When a plane intersects a circular

cone there may be formed a circle, a parabola, an ellipse, an

hyperbola, or, for cer-

tain positions of the

plane, a point, two in-

tersecting straight lines,

or two coincident lines.

In Fig. 64, plane C is

perpendicular to the axis

of the cone and forms a

circle; plane E is inclined

to the axis but intersects

only one nappe of the

cone and forms an

ellipse; plane P is par-

allel to an element of

the cone and forms a parabola; plane H intersects both

nappes of the cone and forms an hyperbola. The intersec-

tion is a point when a plane passes through the point V
only; two intersecting straight lines are formed when the

plane passes through V and intersects the nappes; and two

98

Fig. 64.



§81] THE PARABOLA AND CERTAIN FORMS 99

coincident lines are formed when the plane passes through V
and is tangent to the cone.

The conic sections were first studied by the Greeks, who
discovered and discussed their properties by methods of

geometry. The modern method of studying these figures is

by the help of algebra, which makes the treatment much
simpler. For the purposes of this method of treatment,

other definitions of the conic sections are given; but it can be

readily shown that these definitions agree with the definitions

mentioned above.

EXERCISES

1. Explain how a conic section could be two lines inclined to each

other at an angle of 45°. Could the two straight lines formed on the

same cone form different angles with each other?

2. If the vertex angle of a cone is 30°, what would be the angle between

the intersecting lines formed by the plane intersecting the cone?

3. In forming an hyperbola, does the plane have to be parallel to the

axis of the cone? Could hyperbolas of different shapes be formed on

the same cone?

4. Explain how a parabola of different widths could be formed on

the same cone.

5. Explain how ellipses of different widths could be formed on the

same cone. Explain the change in the shape of the ellipse formed by a

plane that revolved into a position parallel to an element of the cone.

81. Conies.—A definition of a conic section, and one that

can readily be translated into algebraic language, is the

following: A conic is the locus of a point that moves in the

plane of a fixed straight line and a fixed point not on the line,

in such a manner that its distance from the fixed point is in a

constant ratio to its distance from the fixed line.

The fixed point is called the focus of the conic, and the

fixed line is called the directrix. The constant ratio is called

the eccentricity and is usually represented by e.

The constant e is positive, and may be equal to 1, less than 1,

or greater than X,
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If e = 1, the conic is a parabola.

If e < 1, the conic is an ellipse.

If 6 > 1, the conic is an hjrperbola.

82. The equation of the parabola.—By the definition of

the preceding article, the parabola is the locus of a point

equidistant from the focus and the directrix.

In Fig. 65, let F be the focus and D^D the directrix. Choose

as X-axis the line X^X through

F and perpendicular to D^D
at R. The point on X'X
midway between R and F is

a point on the locus. Choose

this point as origin. Then
Y'Y parallel to D'D is the

2/-axis.

^ Let p represent the length

o and direction of RF. Then the

/ coordinates of F are (| p, 0),

and the equation of D'D is
Fig. 65.

X = -ip.

To derive the equation of the parabola, let P(x, y) be any

point on the locus, and draw FP, and NP perpendicular to D^D.

By definition FP = NP.

But FP = V{x - ip)2 + 2/2^ and NP = x + \p.

Then V(x - hvY + 2/' = x + Ip,

Squaring and simplifying, this becomes

[28] y2 = 2px.

The simple form of this equation is due to the choice of the

coordinate axes. If they had been chosen differently, the

equation would be more complicated; but the locus itself

would be unaltered.

Equation [28] is the required equation. For it has been

proved true for every point on the parabola; and it is not true
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for any point that is not on the parabola, for then FP is not

equal to iVP, and therefore y'^ is not equal to 2'px.

It should be remembered, that in the equation y^ = 2px,

p represents the length and direction of RF. Therefore, when
the focus lies to the right of the directrix, p is positive; but,

when the focus lies to the left of the directrix, p is negative.

83. Shape of the parabola.—The shape of the parabola and
its position relative to the coordinate axes can be readily

determined from the equation y^ = 2px. Solving for y gives

y = ±\/2px.

For any positive value of p we have

:

(1) When X = 0, 2/
= 0.

passes
(iP, 2J>Y7)

(2p,2p)

^(i4P,p)

^—I—I—I—I—I—I—1—I—I

—

h^X

Hence the curve

through the origin.

(2) For all positive values

of Xf y has two numerically

equal values but opposite in

sign. Hence the curve is

symmetrical with respect to

the X-axis.

(3) For any negative value

of X, y is imaginary. Hence
nci part of the curve is at the

left of the 2/-axis. As x in-

creases from 0, the positive

negative value decreases.

The curve can be located more precisely by the following

points

:

value of y increases and the

X hv V 2p 4p 8p 50p

y ±v ±pV2 + 2p + 2p\/2 ±4p ±lOp

The parabola has the shape shown in Fig. 66. It is evident

that all parabolas have the same shape, the appearance
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depending only upon the size of the unit chosen. For a

negative value of p, the parabola will be exactly the same

shape but opening toward the left.

84. Definitions.—The point of the parabola midway between

the focus and the directrix is called the vertex of the

parabola.

The line through the focus and perpendicular to the directrix

is called the axis of the parabola. As has been proved in the

preceding article, the axis bisects all the chords of the parabola

which are parallel to the directrix, since the axis of the para-

bola lies on the a:-axis.

The chord of the parabola through the focus and perpen-

dicular to the axis is called the latus rectum. The length of

>x

Fig. 67.

x^, 2 PI/ , P positive a;i 2 py, 2? negative

Fig. 68.

the latus rectum is the absolute value of 2p. For the ab-

scissa of the focus is |p, and, when x = Jp, y = ± p.

In Fig. 67, V is the vertex of the parabola, VX is the axis, and P'P
is the latus rectum.

A parabola can be readily sketched if the position of the

vertex V and focus F and the length of the latus rectum,

P'Py are known.

85. Parabola with axis on the y-axis.—The equation of

a parabola whose axis is on the y-Sixis and whose vertex is at

the origin is obviously obtained by interchanging x and y

in the work of article 82. The equation is

[29] = 2py.
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The focus is at the point (0, |p), and is on the positive or

the negative half of the i/-axis according as p is positive or

negative. If p is positive, the parabola, Fig. 68, is above

the X-axis; and, if negative, it is below the x-axis.

It is to be remembered that the origin is at the vertex of

every parabola whose equation is of the form [28] or [29].

These forms are called the standard forms of the equation of

the parabola.

EXERCISES

1. Plot the following parabolas: y'^ = 2x, y^ = — 2x, x^ = 2?/, and
x^ = -2y.

2. Give the coordinates of the foci of the parabolas in exercise 1.

Give the equations of their directrices. What are their latera recta?

3. Plot 2/^ = 4x, using successively yq in., J in., i in., \ in., 1 in.,

and 2 in. as a unit.

4. Plot 2/2 = \x using 4 in. as a unit. Plot y^ = \x using 1 in. as a

unit. Plot y"^ — X using \ in. as a unit. Plot y"^ = 4x using J in. as a

unit. Are all parabolas of the same shape?

5. Write the equation of a parabola whose vertex is at the origin and
focus at (1) (3, 0), (2) (0, 6), (3) (-4, 0), (4) (0, -2).

6. Find the equations of the following parabolas, and give the latus

rectum of each:

(1) Vertex at origin, axis on x-axis, and passing through the point

(2,4).

(2) Vertex at origin, axis on y-axis, and passing through the point

(2,4).

7. The cables of a suspension bridge hang in the form of a parabola.

Find the equation for such a cable in a bridge 1000 ft. between supports

if the distance from the lowest point of the cable to the level of the top

of the piers is 50 ft.

Suggestion.—Take the origin at the lowest point of the cable. Then
the point (500, 50) is on the parabola. Substitute these values in [29]

and solve for p,

8. Derive equation [29] from [28] by revolving the coordinate axes

through an angle <p = —90°.

86. Equation of parabola when axes are translated.—
Transform the equation y^ = 2px by translating the axes to

a. new origin at the point 0\— h, —k), Fig. 69.
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By [12], X = x^ — h and y = y' — k. Substituting these

values in y^ = 2px gives

(2/' - ky = 2p(x' - /i).

This is the equation of a parabola having its vertex at the

point (A, k) when referred to the

new coordinate axes, that is, the

x', ?/'-axes. If the primes are

dropped, this becomes

[30] (y - k)=' = 2p(x - h),

which is a convenient form for

writing the equation of a para-

bola with vertex at point (/i, k)

and axis parallel to the x-axis.

If p is positive, the parabola opens toward the right; and if

negative, it opens toward the left.

Similarly, when the axis of the parabola is parallel to th^

2/-axis, the equation is

Fig. 69.

[30i] (X - h)2 = 2p(y - k).

^x
(1) "\/^ (2)

p positive p negatfve

(y-&)2=2P(a;-A)

(3) / (4)

p positive p negative

Fig. 70.

The position of these parabolas with reference to the

coordinate axes is shown in Fig. 70.

Example 1.—Find the equation of a parabola with vertex at the point

(2, —3), axis parallel to the x-axis, and p = 2. Plot.

Substituting in [30], (i/ + 3)2 = 2 X 2{x - 2).

Simplifying, t/^ + 6i/ — 4x + 17 = 0.

The curve is plotted in Fig. 71.
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Fig. 71.

Example 2.—Find the equation of the parabola whose vertex is at

the point (3, —6), axis parallel to the y-axis, and which passes through

the point (-3, -10).

Solution.—The equation is of the form

[30i], in which /i = 3, A; = —6, and p is

to be found.

Substituting in [30i],

(-3 - 3)2 =2p(-10, +6).

Solving for p, p = — 4i.

Substituting values of /i, /b, and p in

[30i] gives

(x-3)2 =2(-4})(2/ + 6).

Simphfying, a;^ - 6a; + Oi/ + 63 = 0,

the required equation.

EXERCISES

1. Write the equations of the following parabolas:

(1) Vertex at (3, 4), p =4, and axis parallel to the a:-axis.

(2) Vertex at (2, 3), p = —4, and axis parallel to the x-axis.

(3) Vertex at ( — 6, 2), p = 6, and axis parallel to the 2/-axis.

(4) Vertex at (2, — 3), p = —3, and axis parallel to the 2/-axis.

2. In each part of exercise 1, give the coordinates of the focus, equa-

tion of the directrix, and plot the parabola.

3. Write the equations of the parabolas with vertex of each at

(—4, —2), latus rectum of each equal to 10, and axes parallel to a;-axis.

4. Write the equation of the parabola with vertex at (3, —2), origin

on the directrix, and axis parallel to ^/-axis.

6. Transform x^ + 8?/ = 12 to new axes parallel t« the old, with the

new origin at the point (2, 5).

6. Find the equations of the following parabolas, and sketch each

curve:

(1) Vertex at (4, 5) and the focus at (6, 5).

(2) Vertex at (—4, 2) and the focus at (—4, 4).

(3) Vertex at (-4, 2) and the focus at (-6, 2).

(4) Vertex at (3, -4) and the focus at (3, -6).

7. Find the equations of each of the following parabolas, and sketch

each curve:

(1) Vertex at (2, 3), axis parallel to x-axis, and passing through the

point (5, 6).

(2) Vertex at (3, —2), axis parallel to x-axis, and passing through the

point( — 1, 3).
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(3) Vertex at (2, 3), axis parallel to 2/-axis, and passing through the

point ( — 1, 1).

(4) Vertex at (3, —2), axis parallel to y-axis, and passing through the

point ( — 1, 3).

87. Equations of ^forms y^ + Dx + Ey + F = <and

x2 + Dx + Ey + F = '0.— (1) Every equation of the form
y^ + Dx + Ey + F = Oj where D ^ 0, represents a parabola

whose axis is parallel to the x-axis,
*

(2) Every equation of the form x^ + Dx + Ey + F = 0,

where E 9^ 0, represents a parabola whose axis is parallel to

the y-axis,
^ . /

Proof of (1).—Given y^ + Dx -^ Ey + F = 0, where D>* 0.

Completing square ia.y,y'^ -\- Ey -\- -r- = —Dx -\- -^— P.

Or (y + 2) = -D{x-~^^).
E^ — 4F E

This is in the form of [30], where h = —j^c—, k — —-^

D V\
and p = -^

^

Therefore the equation y^ + Dx + Ey + F =0 wher^ D 5^

represents a parabola whose axis is parallel to the x-axis.

The proof of (2) is similar to that of (1).

Y Example 1.—Transform the equation

2/2 4- 4!/ — 4a: + 8 = into the form of

[30], give the coordinates of the vertex

and focus, write the equations of the axis

and directrix, and sketch the parabola.

Solution.—Completing the square in y,

^2 + 41/ + 4 = 4a; - 8 + 4.

Or (2/ + 2)2 = 4(x - 1).

Hence the vertex is at the point

.

V a- 2).

Y' Since 2p = 4, p = 2, and the focus is

Fig. 72. one unit to the right of the vertex, or at

the point (2, -2).

The axis is parallel to the x-axis and two units below. Hence its

equation is 2/ = — 2.

^^
^"^

^^
° zvFf

^\
^^

^-^
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The directrix is perpendicular to the a:-axis and one unit to the left

of the vertex. Hence its equation is a; = 0.

The parabola is shown in Fig. 72.

Example 2.—Find the equation of the parabola with its axis parallel

to the X-axis, which passes through the points (0, 1), (2, 3), (5, 2).

Solution.—The equation is of the form y^ -}- Dx -\- Ey -{ F = 0.

Since the parabola passes through the point (0, 1), these coordinates

satisfy the equation. Substituting these coordinates gives

1 +E -^F -= 0,

Likewise (2, 3) give 9 + 2D + SE + F = 0.

And (5, 2) give

4 + 5D + 2^ + F = 0.

Solving these equations for D, E, and FyD=l,E = — V, and F = -*/.

Substituting these values in y^ -\- Dx -\- Ey -\- F = Oy gives

Or 4y2 -I- a: — 172/ + 13 = 0, the required equation.

88. The quadratic function ax^ + bx + c.—The locus of

the equation y = ax^ + bx + Cy where a, 6, and c are real

numbers and a ?^0, is a parabola with axis parallel to the

?/-axis.

To see this, reduce the equation to the standard form [30J.

Completing the square in Xj y = a(x + ^j j

This is in the form {x — hy = 2p{y — k), where h = —^

and k = j ; and is a parabola with vertex at the

point I
— 9- • T ) and axis on the line x + q- = 0.

Evidently the parabola opens upward if a > and downward
if a < 0.

89. Equation simplified by translation of coordinate

axes.—It is evident that y^ + Dx + Ey + F = and

x^ + Dx + Ey + F = can be transformed to the forms of
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[28] and [29], respectively, by a suitable translation of the

coordinate axes.

. In the first equation, the term in y and the constant term

can be made to vanish; and, in the second, the term in x and

the constant can be made to vanish.

Example.—Translate the coordinate axes so as to transform the

equation 2/^ + 6x — 4^/ + 10 = to the form of y^ = 2px.

Solution.—Using [12], put x = x' + /i and y = y' -\- k, then

iy' + ky + 6(x' +h) - 4(2/' + /c) + 10 = 0.

Or 2/'2 + 6x' + {2k - 4:)y' + {k^ - 4/c + 6/i + 10) = 0.

In order that the y' term and the con-

stant tetm shall vanish

2/b - 4 = and fc2 - 4fc + 6/i + 10 = 0.

Solving these equations, h = —\ and k =2.

Therefore the transformed equation is

The transformation can also be made by

completing the square in y, whence

2/2 - 42/ + 4 = -6a; - 6,

or (2/ - 2)2 = -Q{x + 1).

Put 2/
"- 2 =2/' and x \- I = x', and

obtain y'^ = —6a;', as before.

The curve is plotted in Fig. 73.

^X

Fig. 73.

EXERCISES

1. Transform the equations of the following parabolas to the form

of [30] or [30i]; and in each case give the coordinates of the vertex and

the focus, write the equations of the axis and directrix, and plot.

(1) 2/' - 4a: - 42/ + 16 = 0. (4) 2a;2 - 24x + 32/ + 78 = 0.

(2) 2/' + 2a; + 82/ + 6 = 0. (5) Zy^ + 15a; - 12y + 20 = 0.

(3) 4a;2 + 12a; - 202/ + 49 = 0. (6) 2a;2 - 18a; + Iby - 21 = 0.

2. Find the equation of the parabola with axis parallel to the

2/-axis, which passes through the points (2, 3), (1, 0), and (0, 2).

Find the coordinates of the focus and vertex of this parabola, and its

latus rectum.

3. Find the equation of the parabola which has the line 2/ = 4 as axis,

the line x = —2 as directrix, and p = 6.

4. Find the equation of the parabola which has its vertex at (2,-3),

its axis parallel to the a;-axis, and which passes through the point (5, 2).
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5. Translate the coordinate axes so as to transform the following

parabolas to the form of [28] or [29]. In each case plot showing both

sets of axes.

(1) y^ -4x -Qy + S = 0. (3) i/^ + 8x - 4?/ - 4 = 0.

(2) x^ -Sx + Uy = 0. (4) Sx^ + 5x -7y +8 = 0.

6. For each of the parabolas of exercise 5, find the equation of the

directrix with reference to both sets of axes. Give the coordinates of

the focus for both sets of axes, and the value of the latus rectum.

7. Plot the equation y = ax^ + 6a; + c discussed in article 88 for

(1) 62 _ 4ac > 0, (2) 62 - 4ac = 0, (3) 6^ - 4ac < 0, both when
a > and when a < 0.

90. Equation of a parabola when the coordinate axes are

rotated.—Transform the equation y^ + Dx + Ey + F = Ohy
rotating the coordinate axes through an angle (p, using the

formulas [13].

Putting X = x' coS(p — 2/' sin (p, and y = x' sm<p + y' cos (p^

in y'^ + Dx + Ey +F = Oj gives (x' sin <p + y' cos <py

+ D(x' cos (p — y' sin o) + E{x' sin ^ + f/' cos ^) + /^ = 0.

Collecting terms,

x'^ sin^ (p -\- 2 sin (p cos (p x'y' + y'^ cos^ cp

+ {D cos <p + E sin cp)x' + (E cos (p-D sin ip)y'+F = 0. (I)

A similar form is obtained from x^ + Dx + Ey + F = 0,

If the angle of rotation is some multiple of 90°, then

2 sin (p cos (p = 0, and the coefficient of o^'t/' is 0. Hence,

in this case, the x'/z'-term vanishes.

If the coordinate axes are rotated through an angle (^, such

that the axis of a parabola is not parallel to either coordinate

axis, the equation of a parabola is of the form

Ax^ + Bxy + Cy^ + Dx + Ey +F = 0, (II)

the most general form of an equation of the second degree

in X and y, \

It is readily seen that in equation (I), B*^ — AAC = 0. It

will be shown later. Art. 121, that the necessary and sufficient

condition that any equation of the form of (II) represents a

parabola is that B^ — 4AC = 0.
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Example 1.—Transform the equation x^ + 2x — Sy + 4 = by
rotating the coordinate axes through an angle of 45°. Plot.

Solution.—Substituting x = x' cos 45° — y' sin 45°

and y = x' sin 45° + y' cos 45°,

{x' cos 45° - y' sin 45°) 2 + 2{x' cos 45° - y' sin 45°)

- 3 (a;' sin 45° + y' cos 45°) + 4_ = 0.

Simplifying, x'^ - 2x'y' + 2/" - V^x' - 5 y/2y' +8 = 0.

Example 2.—By rotating the coordinate axes transform the equation

9x2 _ 24x1/ + 162/2 - 116x - lQ2y + 221 = 0, to a form which contains

no term in xy.

Solution.—Putting x = x' cos <p — y' sin <p, and y = x' sin (p -\-y' cos v?,

9(x' cos (p — y' sin <pY — 24 (x' cos (p ^ y' sin v')(2^' sin ^ + ?/' cos (p) +
16(x' sin <p -\- y' cos ^)2 — 116(x' cos <p — y' sin ^) —

162(x' sin <p -\- y' cos v?) + 221 = 0.

24 sin (p cos ^ + 16 sin2 ^)x'2 -|-

(14 sin <p cos ^ + 24 sin2 ^ — 24 cos2 (p)x'y' +
(9 sin2 ^ + 24 sin ^ cos v? + 16 cos2 <p) y'^ —
(162 sin <p -\- UQ cos ^)x' -f

(116 sin <p- 162 cos v?)?/' + 221 = 0.

Now, in order that the x^y' term shall

vanish, its coefficient must be 0. Hence
24 sin2 ^ — 24 cos2 ^ -j- 14 sin (p cos <p = Qt-

Or -24 cos 2(p + 7 sin 2<p = 0.

Dividing by cos 2(p, 7 tan 2<p = 24, or

Collecting terms, (9 cos2 ^

tan 2(p = -^.

Then

And

Fig. 74.

sm <p
- V?

From this by trigonometry, cos 2(p = -^^.

VI
— cos 2<p /l

2 = \-
+ cos 2^ _ ^ /I + ^^5 _ 4

Substituting these values for sin tp and cos <p in the above equation

and simplifying, 25y'2 _ 190^' - 60?/' +221 =0.

EXERCISES

1. Transform the equations y^ = 2px and x* = 2py by rotating the

coordinate axes through an angle of 90°.

2. Transform the following equations by rotating the coordinate

axes through the angle given in each case:

(1) 2/2 = 4x. <p = 45°.

(2) x2 + 3x - 22/ + 6 = 0. <p = 30°.
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(3) 4x2 -^xy + y^ +2x -6y -10 = 0. <p = siiT^ |\/6.

(4) 9x2 + i2xy + 42/2 + lOx - 541/ - 68 = 0. 2<p = tan-^ ^.
3. Derive the equation of the parabola whose directrix is the line

4x + 3?/ + 2 = 0, and whose focus is at the point (2, 3).

4. Simplify the following equations, and plot. First rotate the coordi-

nate axes to free of xy-term, then translate to change to the standard form.

(1) x2 - 2xy +ly^ - 6x - 6?/ + 9 = 0.

(2) 2x2 -f 8x1/ + 82/2 + a; + 2/ + 3 = 0.

(3) x2 + 2x2/ + 2/2 - 12x + 22/ - 3 = 0.

91. Equation of parabola in polar coordinates.—Starting

with the definition of article 81, the

equation of parabola in polar co-

ordinates can be easily derived.

In Fig. 75, let be the fixed point

(focus), and D'D the fixed line (direc-

trix). Choose as pole and OZ,
perpendicular to D^Dy as the polar

axis. Let P(p, 6) be any point on the

locus. Draw MP and NP perpen-

dicular to OX and D'D respectively.

By definition, OP = NP.
But OP = p, and NP = QM = p + p cos d.

Hence p = p + p cos 6.

Solving for p,

^x

This is the polar equation of a parabola referred to its focus

and axis.

EXERCISES

1. Given the equation p = j transform it to rectangular
1 — cos

coordinates and by translation of axes derive the equation y^ = 2px.

2. By taking the focus at the left of the directrix, derive the equation

P
of the parabola in the form p = -—; •

1 + cos

3. Change the following equation into polar coordinates with the



112 ANALYTIC GEOMETRY [§92

pole at the origin, and the polar axis on the positive part of the x-axis:

2/2 = 2'px + V^'

4. Show that if the vertex of the parabola is taken as pole and the axis

of the parabola as polar axis, the equation of the parabola in polar

2p cos d

sin^e * -^E
coordinates is p =

^X

Fig. 76.

CP,

92. Construction of a parabola.—First

method.—The directrix D'D and the

focus F are supposed known.

Place a right triangle, Fig. 76, with

one side GB on the directrix as shown.

Fasten one end of a string whose length

is CA, at the focus F and the other at

A, With a pencil at P, keep the string

taut and move the triangle along the directrix. Then FP =

and the point P will generate a parabola. Why?
Second method.—As before,

the directrix D'D and the

focus F are supposed known.

In Fig. 77, draw MX
through F and perpendicular

to D'D. Draw any number
of lines A'A, B'B, etc., par-

allel to the directrix, and

intersecting MX in ikfi, M2,

etc. With F as center and a

radius equal to MMi, strike

arcs intersecting A'A in Pi
and Qi. In like manner, with

MM2 as a radius, strike arcs

intersecting B'B. Continue

in like manner for the other
lines drawn. Then the points, thus determined, lie on the

parabola. Why? In this way the parabola can be located

as accurately as desired.

^x
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EXERCISES

1. Construct a parabola by. the second method, in which p = 1 in.

In which p = f in.

2. Construct a circle of radius 8 in., and a parabola with its vertex at

the center of the circle, and its focus on the positive a;-axis at the point

midway between the center and
circumference. Write the equa-

tion of each in the standard

forms, and compute the coordi-

nates of the points of inter-

section of the curves.

3. Explain how the con-

struction shown in Fig. 78,

determines a parabola.

APPLICATIONS

93. Parabolic arch.—
The cable of a suspension

bridge hangs in the form

of an inverted parabolic arch,

Fig. 78.

Arches for bridges, when the

weight is uniformly distributed, are properly constructed in

the form of a parabola. In metal-arch bridges the loading is

practically uniform on the horizontal, and so such bridge

structures are in the form of parabolic arches. The arches

of concrete bridges

are seldom if ever

built in the form of a

parabola, for, in such

structures, the load-

ing cannot be uni-

formly distributed on

the horizontal.

In the parabolic

arch, Fig. 79, AB = 2s is the span, and CO = his the height.

If the origin is taken at the vertex of the parabola, and the

axis along the ^/-axis, the equation is of the foi-m x^ — 2py.

To find the value of p, we know that the point B{Sj —h) is

^
x' ^ -e, X 5-^ ^ Y^ ^^^^^^ A ^^

r^<PC«.i/)

y^ ) \
i\

A/ c N \.
/ . ^ „ .N

v'
" '1

Fig. 79.
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on the parabola. Substituting these coordinates in x^ = 2'py^

gives §2 = —2'ph^ and P =
'~"oi' Hence the equation of

s hx^
the parabola is x^ = ^frV) and from this y = ^•

The height of the arch at any distance x from the center is

NP = NM + MP = h + y = h --—

EXERCISES

1. A parabolic arch has a span of 120 ft. and a height of 25 ft. Derive

the equation of the parabola, and compute the heights of the arch at

points 10 ft., 20 ft., and 40 ft. from the center.

2. A parabolic arch has a span of 40 ft. and a height of 15 ft. Find

the height of the arch at intervals of 5 ft. from the center.

3. The distance between the supports on the river span of the Brooklyn

suspension bridge is about 1600 ft., and the vertex of the curve of the

cables is 140 ft. below the suspension points. Find the equation of the

curve if the lowest point is taken as origin.

4. The towers supporting a suspension bridge are 320 ft. apart and rise

80 ft. above the roadbed. The lowest point of the parabola formed by
the cables is 20 ft. above the roadbed. Find the equation of the curve

of the cables using as origin the point in the roadbed below the vertex of

the parabola.

94. The path of a projectile.—A projectile starting at the

origin, Fig. 80, with an initial

velocity of v ft. per second,

and making an angle a with

the horizontal, would after t

seconds have the position x
= V cos at and y = v sin at,

if the action of gravity and

the resistance of the air were

not considered. If the action of gravity is considered, y is

decreased by ^gt^ ft. in t seconds. Then the coordinates of

the projectile at time t are

x = V cos at, and y = v mi at — ^gt^, (I)

i

Y V

V

A 1 \ ^
"o A H

Fig. 80.
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The equation of the path of the projectile in rectangular

coordinates is found by eliminating t between these equations

and is

2/ = tan a • x - ^ ,
^

,
x2. (II)^ 2y2 cos^ a ^ •

EXERCISES

1. Eliminate t between the equations (I) and derive equation (II).

2. Show that equation (II) is a parabola with its vertex at the point

(v^ sin 2a v'^ sin^ ol\ , v^ cos^ a
' —^ )'andp=

3. Find the a;-intercept of (II), and thus find the range on the horizontal

^ , v^ sin 2a
to be

9

4. Find the height of the projectile when at a horizontal distance

equal to one-fourth the range.

5. Find the horizontal range when v = 2000 ft. per second and (1)

a = 45°, (2) a = 30°, (3) a = 60°. Use 9 = 32.

6. Show that a projectile with a given velocity and at an angle of

60°, rises three times as high as it would if the angle were 30°.

7. What must be the initial velocity z; of a projectile, if with an

angle of elevation of 20°, it is to strike an object 80 ft. above the horizon-

tal plane of the starting point, and at a horizontal distance of 1000 yd.?

GENERAL EXERCISES

1. The formula for the height of a bullet shot vertically upward

with a velocity of 2000 ft. per second is s = 2000« - 16^^^ Find the

coordinates of the vertex, and plot the curve from which the height s

at any time t may be read.

2. When one variable varies directly as the square of another, the

equation connecting the two variables will represent a parabola. The

length of a pendulum varies as the square of the time of a beat. This

gives the formula t^ = -d, where t is time in seconds, 9 is 32, and I is

9

length in feet. Plot a curve from which can be read the time of a beat for

lengths up to 20 ft.

3. In a parabolic reflector, such as used for an automobile headlight,

the source of light is placed at the focus of the parabola that is a section

of the reflector. Find the position of the source of light in a reflector

10 in. in diameter and 5 in. deep.
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4. Find the coordinates of the points of intersection of the parabola

a;2 = Sy and the line Sx - 2y - S = 0.

6. Find the equation of the straight line passing through the focus

of the parabola y^ = Sx and making an angle of 45° with the axis of the

parabola.

• 6. What value must be given to k if the line Sx -^ 2y -\- k = is to

be tangent to the parabola x^ = —Qy? Plot.

Suggestion.—Eliminate y between the two equations. Since a tangent

meets the curve in two coincident points, the two values of x in the

resulting equation must be equal. Hence put the discriminant of this

quadratic equation equal to zero and solve for values of k.

7. Find the points of intersection of the following curves: x — Sy =
and y^ - Sx - Qy -\- U = 0.

8. For what values of m is the straight line y = mx + 2 tangent to

the parabola a;^ - 6a; + 8?/ + 41 = 0?

9. One end of a chord through the focus of a parabola is at the point

(10, 10). Find the coordinates of the other end if the parabola has its

vertex at the origin and its axis on the positive part of the a:-axis.

10. Transform the following equations in polar coordinates into

rectangular coordinates and simplify:

(1) p = ,-r^.- (2) P = . _ f „„„ . - (3) P = ^^
1 + COS ^ 5 — 5 COS 1 + cos ^

11. Plot the following curves given in polar coordinates and find the

coordinates of their points of intersection:

(1) p cos ^ = 4, p =
,

1—-. (2) p = 4,
^

1 - cos ' '
"^

' ^ 1 + cos (9

12. Show that the equation p = 8 sec^ \e is that of a parabola, and
sketch the curve.

13. Find the equation of the circle circumscribing the segment of

the parabola y'^ = 2px, cut off by the latus rectum.

14. An equilateral triangle having one vertex at the origin is inscribed

in the parabola i/^ = ^px. Find the length of a side of the triangle.

15. Show that x^ -\- y^ = ai is the equation of a parabola. Sketch

the curve.

16. Find the equation of the parabola with x + y = sls directrix, and
focus at (ia, ia). Express in the form given in the previous exercise.



CHAPTER VII

THE ELLIPSE AND CERTAIN FORMS OF THE SECOND
DEGREE EQUATION

95. The equation of the ellipse.—By the definition of

article 81, the ellipse is the locus of a point whose distance

from a fixed point, the focus, is to its distance from a fixed

straight hne, the directrix, in a constant ratio e, less than 1.

In Fig. 81, let F be the focus and D'D the directrix. Choose

as X-axis the line X'X through F and perpendicular to D'D
at R.

D .Y

N

V Fj/
T^'

Y

Fig. 81.

Since 6< 1, there are two points V and V on X'X such that

YF FY'
7JY7 = ^ and ^^77" = e. Hence the points Y and Y are on

the locus.

Choose 0, the point midway between Y and F', as origin,

and Y'Y through 0, parallel to D'D^ as 2/-axis.

Let the length of YY' = 2a.

Then YO = OY' = a.

117
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It is necessary first to find the equation of the directrix and
the coordinates of the focus.

From the definition of the eUipse,

VF = eRV, or a - FO = e{RO - a), (1)'

and FV = eRV, or a + FO = e{RO + a). (2)

Adding equations (1) and (2),

2a = 2eR0, or RO = --

'

a
/'

Then the equation of the directrix is a: = i/
e

Subtracting equation (1) from equation (2),

2F0 = 2ae, or FO = ae.

Then the coordinates of the focus F are ( — ae, 0).

Now to derive the equation, let P(x, y) be any point on the

locuS) and draw FP, and NP perpendicular to D'D,

By definition, FP = eNP.

But FP = V{x + aey + y^, and iVP = - + ic.

Then \/(x + ae)^ + ^/^ = e{^^ + xj.

Squaring and arranging, this becomes

- 4-
^^ ^ 1

a2
"^ a%l - 62) ^•

Since e < 1, a^(l — e^) is positive and less than a^. Let it

be represented by b^ and the equation of the ellipse is

This is a standard form of the equation of the eUipse, and is

the form in which the equation of the ellipse is usually written.

Its simple form is due to the choice of the coordinate axes. A
different choice of axes would give a less simple form of the

equation, but the locus itself would be unaltered.

Since 6^ = a^(l — e^), e =
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. Equation [32] is the required equation of the eUipse. For it

has been proved true for every point on the eUipse, and it

can be readily proved that it is not true for any point that is

not on the locus. The proof of this is left as an exercise.

96. Shape of the Ellipse.—The shape of the eUipse and its

position relative to the coordinate axes can be readily

determined from the equation -^ + t^-I- — = 1

Solving for x^x = ±T\/h^ — y^

Solving for. y, y = ±- y/a^ — x^.
a

(1) For all values of y such that h^ — y^ > 0, x has two real

values, numerically equal but opposite in sign. When y'^ = b^,

x = 0. For all values of x such that a^ — x^ > 0, y has two

real values, numerically equal but opposite in sign. When
x^ = d^,y = 0. Hence the curve is symmetrical with respect

to both coordinate axes and the origin, and its intercepts are

a and —a on the a:-axis, and 6 and —6 on the j/-axis.

(2) For all values of y such that 6^ — i/2<0, x is imaginary;

and for all values of x such \^

that a^ — x^<0, y is im-

aginary. Hence no part of

the curve lies outside of the

rectangle bounded by the

four lines x = ±a and

y = ±h,

(3) As X increases from

—a to 0, the positive value

of y increases from to 6,

and the negative value of

y decreases from to —6. As x increases from to a, the

positive value of y decreases from b to 0, and the negative

value of y increases from — 6 to 0.

The eUipse has the shape shown in Fig. 82.

(0.6)' B 2/=6

II

H

V
/ /
1 /

a
II

«

V.
(-a.O) F O (a,0

(0.-6) B' y=-b

Fig. 82.
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The formula b^ = a^{l — e^) can now be readily interpreted

geometrically. For in the right triangle FOB^ Fig. 82, FO = ae

and OB = 6.

Then FB'' = (aey+b\
But from ¥ = aHl - e^),a^ = (aey + b\

Hence a2 = FB^ or a = FB.

'^X

97. Definitions.—The center of symmetry of the ellipse is

called the center of the ellipse.

The chord through the focus and center of an ellipse is called

the major axis. Its length is 2a.

One-half of the major axis is

called the semimajor axis.

The chord through the center

of the ellipse and perpendicular

to the major axis is called the

minor axis. Its length is 26.

One-half of the minor axis is

called the semiminor axis.

The chord of the ellipse through the focus and perpendicular
262

to the major axis is called the latus rectum. Its length is
—

j

for the abscissa of the focus is — ae, and when x = —ae,
62

f/ = H
a

The points on the ellipse at the ends of the major axis are

the vertices of the ellipse.

In Fig. 83, VV is the major axis, B'B the minor axis, and P'P the

latus rectum.

An elHpse can be readily sketched if the position and lengths

of the axes are known.

98. Second focus and second directrix. Theorem.—An
ellipse has two foci and two directrices.

In Fig. 84, on OV take OF' = FO and OR' = RO. Draw
E'E parallel to D'D. Then F' is also a focus and E'E the

corresponding directrix of the ellipse.
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Proof,—^Let P be any point of the ellipse. Thrbugh P
draw PN parallel to the a;-axis and intersecting D^D in N.

Because of the symmetry of the ellipse, PN intersects the

eUipse at a second point P' and the line E'E at N', Draw PF
and P'F'.

From the symmetry of the figure, /^P = F'P', andiVP = P'N'.

FP F'P'
B^^ NP^ ^'

P'N'
= 6.

Then the ellipse is also the locus of a point P' whose distance

from P' divided by its distance from E^E is e.

Therefore P' is a focus and E^E is the corresponding

directrix of the ellipse, and the ellipse has two foci and two

directrices.

The coordinates of the foci are (±ae, 0), and the equations

of the directrices are x = +-•

D

^y^^^

r

/ \

B

N N'
/\

X^ vl f! \v' ^'vT

D'

\

o

Y'

J
fl'

Fig. 84.

99. Ellipse with major axis on the y-axis.—The equation

of an ellipse whose major axis is on the t/-axis, and whose

center is at the origin is obviously obtained by interchanging

X and y in the work of article 95. The equation then is

[33] + = 1.

Here the major axis is 2a as before; the minor axis is 26; the

coordinates of the vertices are (0, ±a); the coordinates of
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the foci are (0, ± ae) ; and the equations of the directrices are

^ e

EXERCISES

1. In each of the following ellipses find the semimajor axis, the semi-

minor axis, the eccentricity, the coordinates of the foci, and the equa-

tions of the directrices. Sketch each ellipse.

^^ 25 ^ 16 ^^ 16 ^ 9

ro^ ^'
.

2/' _ 1 r^^
^' 4. ^' - 1(2) 36 + 100-^- (^) 8 + S"-^-

(3) 4a;2 + 92/2 = 36. (6) 6x2 _f_ 92^2 = 54.

2. Find the distance from the foci to the ends of the minor axis in

the ellipse —9 + 7^ = 1.

3. Write the equation of an ellipse with center at the origin, and major

axis on the x-axis, having given:

(1) a = 6, 6 = 4. (4) Focus at (5, 0), e = f.

(2) a = 4, e = J\/3. (5) Directrix is a: =7, e = f.

(3) 6 = 3, e = f

.

(6) Latus rectum = 4, o = 8.

(7) Focus at {\/3j 0), directrix is x = 3\/3-

^2 y2
4. In the ellipse.— ~^ Ta ~ ^' ^^^ ^^® values of y when x = 2, when

X = 4, when x = 5, when x = 6.

x^ 2/2

5. Find the length of the latus rectum in the ellipse ~ + ~ = 1-

x^ V^
In the ellipse — +— = 1.

a2 62

6. Find the equation of the ellipse with center at the origin, axes

on the coordinate axes, and passing through the points (1, f a/3) ^-^d

(iVS, 1).

7. Derive equation [33] from [32] by rotating the coordinate axes

through an angle <p = 90°.

8. Find the semi-axes, eccentricity, and the latus rectum of each

of the following ellipses:

(1) 6^2 = 30 - 5^2.

(2) 2x2 + 2/2 = 2m, m>0.
(3) a;2 + qy^ = s, q>l, and s>0.

(4) px^ + 52/2 _ pq^ p>0, q>0, and q>p.
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9. Find the distances from the foci of the ellipse 1 =1 to a
25 16

point on the ellipse, whose abscissa is 2.

10. The minor axis of an ellipse is 24, and the foci and origin divide

the major axis into four equal parts. Find the equation of the ellipse.

11. Assume the equation of the ellipse, "« + 7" = 1, and show that

the sum of the distances of any point on it from its foci is 2a.

12. Regard the circle as an ellipse with a = by and find its foci, direc-

trices, and eccentricity.

13. Find the coordinates of the points of intersection of the ellipse

2x^ + 3y^ = 14 and the parabola y^ = 4:X.

14. Find the locus of the vertex of a triangle if the base is 2a, and

the product of the tangents of the angles at the base is —
Suggestion.—Take the a;-axis on the base and the origin at the center.

15. Find the locus of the vertex of a triangle if its base is 26 and the

sum of the other sides is 2a. Take the a;-axis on the base and the origin

at the midpoint.

X2 y2 ^2 y2
16. Discuss the equations —: + — =0, and — + ~ = —1- The first

62 62

of these is che equation of a point ellipse and the second is that of an

imaginary ellipse.

100. Equation of ellipse when axes are translated.

—

X^ 2/2

Transform the equation — + — = 1 by translating the coor-
a^ 0^

dinate axes to a new origin at a point 0'{— hy —k), using [12],

and we have

(x^ - hy {y' - hy _
a2 "^ 62

This is the equation of an ellipse

having its center at the point Qi, k)

referred to the new coordinate axes,

and having its axes parallel re-

spectively to the a;'-axis and the

?/'-axis, as shown in Fig. 86.

If the primes are dropped, this equation becomes
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[34] ^9 I" t_ O

which is a second standard form of the equation of the

elHpse, and is a convenient form for writing the equation of

an elHpse with center at the point (/i, k) and major axis

parallel to the o^-axis.

Similarly, the equation of an ellipse with center at (/i, fc)

and major axis parallel to the y-axis is of the form

[34i
(y - ky ^ (X - h)

a^
+ = 1

,

^-^ "^^

' ^^ y >
LP n/n o\ \

C\^^rz}

K 7
^v y^ __^^'

Example.—Find the equation of an ellipse with semimajor axis 5,

semiminor axis 4, center at point (3, —2), and major axis parallel to

the X-axis.

Substituting in [34],^— +^— = L

Y Simplifying,

16x2 + 252/2 - 96x + 1002/ - 156 =0.
The ellipse is shown in Fig. 87.

EXERCISES

1. Write the equations of the fol-

lowing ellipses, and plot:

(1) Center at (3, 4), a = 5, 6 = 3,

and major axis parallel to x-axis.

Y (2) Center at (-3, -7), a = 6,

jTiQ, g7, b = i\/3> and major axis parallel to

^-axis.

2. Find the equations of the two ellipses, each having its center

at (5, — 4), a = 6, and 6=4; one having its major axis parallel to

the X-axis and the other having its major axis parallel to the 2/-axis.

3. Find the coordinates of the foci and the equations of the directrices

of each elUpse of exercise 1.

4. Find the equation of the ellipse with center at (10, 2), one directrix

the line x = 2, and eccentricity |.

6. Find the equation of the ellipse with center at (3, 4), major axis

parallel to x-axis, and passing through the points ( — 2, 4) and (3, 0).

6. Find the equation of the ellipse having its center at (4, 2), major

axis parallel to the y-axis, semimajor axis 6, and passing through the

point (8, 4).
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101. Equation of the form Ax^ + Cy^ + Dx + Ey + F =0.

Every equation of the form Ax^ + Cy^ + Dx + Ey + F = 0^

where A and C have like signs but different values, represents

an ellipse with axes parallel to the coordinate axes.

Proof.—Given Ax'^ + Cy'^ + Dx + Ey + F = 0,

Completing the squares in x and in jy,

./ ,
2)\2 / E\^ CD^ + AE^ - 4:ACF

Dividing by the second member of this equation,

(^ + 2l)' .
(^ + J)

"«~ />7^2 I A T^'>. A Am? ~" *•CD^ + AE^ - 4:ACF ' CD^ + AE^ - 4ACF
4A^C 4:AC^

This is in the form of [34] if A<C where

D
,

E ^ CD^ + AE^-4ACF
^ " ^2A' ^ ^ ~2C' "" ^ ^AJC ' ^^^

CD^ -^ AE^ - 4.ACF
^ ~ 4^C2

and therefore represents an eUipse with axes parallel to the

coordinate axes if A and C have like signs so that 4A2(7 and
4AC^ have like signs. It is of the form of [341] if A <C.
From the preceding, it follows that the equation of an ellipse

in the form Ax^ + Cy^ + Dx + Ey + F = can be trans-

formed into one of the forms [32] or [33] by a suitable trans-

lation of the coordinate axes, the new origin being at the

point (-^,-^)-
Example 1.—Transform to the second standard form, the equation

of the ellipse 24x2 ^ 492^2 _ 95^ ^ 294?/ - 639 = 0, find the coordinates

of the center, foci, and vertices, the length of the semimajor and semi-

minor axes, and the equations of its directrices. Plot.

Solution.—Completing the squares in x and in y,

24(x2 - 4a; + 4) + 49(?/2 + Qy + 9) = 639 + 96 + 441,

or 24(a: - 2)^ + 49(2/ + 3)^ = 1176.

Dividing by 1176 and putting in the form of [34],

(x - 2)2 (y + 3)2 ^
49 "^ 24
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The eccentricity e

X-^ ^X

This is an ellipse (Fig. 88) with center at the point 0(2, —3) and
axes parallel to the coordinate axes. The semi axes are a = 7, and
h = 2\/6.

Va^ - 62 ^5
a

7*

The distance from the center to the foci is ae = 5, and the foci are

>(7, -3) andF'(-3, -3).

The vertices are 7(9, -3) and 7'(-5, -3).

The distance from the center to the directrices is - = -V> and the

equations of the directrices are x = %^-

and X = —^z"
The ellipse is as shown in the figure.

Example 2.—Find the equation of

the ellipse whose axes are parallel to

the coordinate axes and which passes

through the points (—2, 7), (2,4),

(-2, 1), and (-6, 4).

Solution.—The required equation

is of the form

Ax^ -^ Cy^ + Dx + Ey + F = 0.

If this is divided by A the equation is of the form

x2 -I- C'y^ + D'x + E'y -^ F' = 0,

and therefore contains only four arbitrary constants, which can be found

from four equations.

Dropping the primes and substituting the coordinates of the four

given points,

4 + 49C - 2D + 7J^ + F = 0,

4 + 16C + 2D + 4£^ + i^ = 0,

4+ C-2D+£'+/^=0,
36 + 16C - 6D + 4^ + i^ = 0.

Solving, C = V» D = 4, ^ = -^F^ F = H^--

The required equation is

x^ + ¥2/' + 4a; - ^%^y + H' = 0,

or 9a;2 + 16?/2 + 36x - 128?/ + 148 = 0.

Example 3.—Translate the coordinate axes so that the equation of the

eUipse 4x2 _j_ 92^2 _ 24x - 36?/ + 36 = is in the form [32].

Solution.—Completing the squares in x and in ?/,

4(^2 - 6x + 9) + 9(?/2 - 4?/ + 4) = -36 + 36 + 36.

Whence (^V^^^^ = l.
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Putting a; — 3 = a;', or a: = a;' + 3 and y — 2 = y', or 2/ = ?/' + 2,

9 + T = i-

—X

^x

This is of the form [32], and is an ellipse referred to coordinate axes
that are parallel to the old coordinate

axes, and with the new origin at the

point (3, 2).

The ellipse is as shown in Fig. 89.

The transformation could evi-

dently be made by substituting

X = x' + h and y = y^ + k, and

proceeding as in the example of

article 89.

EXERCISES

1. Express the equations of the following ellipses in the form [34] or

[34i], find the coordinates of the centers, foci, and vertices, the lengths

of the semimajor and semiminor axes, and the equations of the directrices.

Plot each.

(1) 7a;2 + 162/2 + 14a; - 64?/ - 41 = 0.

(2) ^x^ + 42/2 - 64x'~ 82/ + 68 = 0.

(3) 4x2 + 9^/2 - 8x + I82/ + 12 = 0.

(4) 8a;2 + 92/2 + 16a; - 542/ - 1 = 0.

2. Transform 6a;2 + 7y^ - 36a: + 142/ + 53 = to new axes parallel

respectively to the old axes, with the new origin at (3, —1).

3. Transform each of the ellipses of exercise 1 to the form [32] or

[33],. find the coordinates of the foci, and the equations of the directrices

referred to the new coordinate axes.

4. Find the equation of the ellipse with major axis parallel to the

X-axis, and center at the point ( — 3, 4), eccentricity ^> and passing

through the point (6, 9).

5. Find the equation of the ellipse with one focus at the point (6, 2),

corresponding directrix the line x = 12, and eccentricity §•

6. Transform the following equation to one in which there are no
X and 2/ terms, and plot: 9x2 _^ i2y2 _ jg^ _ ^2y + 9=0.

7. Find the equation of the ellipse with eccentricity i, a focus at

the point (2, 0), and the corresponding directrix the line x + 2 = 0.

102. Equation of ellipse when axes are rotated.—In article

90 it was seen that when the coordinate axes were rotated
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through an angle ip^ a term in xy appeared in the equation of

the parabola. Likewise if the equation of an ellipse with axes

parallel to the coordinate axes, Ax^ + Cy'^ + Dx + Ey +F = 0,

is transformed by using formulas [13], the equation takes the

form Ax^ + Bxy + Cy^ + Dx + Ey + F = 0. This is

the most general form of an equation of the second degree in

x and 2/, where S^ _ 4^c<0. (See Art. 122.)

Conversely, starting with an equation containing an xy-

term, rotation through a properly

chosen angle will cause the a:z/-term

to disappear by having its coeffi-

cient zero.

Example 1.—Transform the equation

9a;2 4- 162/2 - 36a; - 96?/ + 36 = 0, by ro-

tating the coordinate axes through an

angle of 30°. Sketch the elHpse.

Solution.—Using formulas [13],

X = x' cos 30° - y' sin 30° =
iV^x' - W = -hiV^x' -y),

and y = x' sin 30° + y' cos 30° = ix' + iVSy' = i(x' + V^y')-
Substituting these values in the given equation and simplifying,

43x'2+ 14V3xY+572/'2-24(3\/3+8)a^'-24(8V3-3)2/' + 144 = 0.

The ellipse and the two sets of coordinate axes are sketched in Fig. 90

+-^X

Fig. 90.

EXERCISES

1. Transform the following equations by rotating the coordinate axes

through the angle given in each case:

(1)^ + <p = 45°.

(2) 16x2 + 92/2 = 144. <p = 60°.

(3) 36x2 + 42/2 = 144. <p = 90°.

(4) 2x2 + 32/2 - 4x + 32/ - 10 = 0. <p = 30°.

(5) x2 + X2/ + 2/2 + 2x + 2/ + 2 = 0. <p = 45°.

(6) 6x2 ^. ^^y + 62/2 + 5x - 82/ = 0. <p = tan-i J.

2. Transform the following equation to the standard form by rotating

the axes: 29x2 + 16x2/ + 412/2 - 45 = 0. Sketch the ellipse with both

sets of axes.

3. Simplify the following equation by first translating the axes to

remove the x-term and the y-term., then by rotating through an angle
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that will remove the xy-term. Sketch the curve and the three sets of

coordinate axes: x^ -{- xy + y^ + 2x + Sy — S =0.

103. Equation of ellipse in polar coordinates.—In a manner
similar to that of article 91, the equation of the ellipse in

polar coordinates may be derived.

EXERCISES

1. Derive the equation of an ellipse with the pole at the focus to

the right of its corresponding directrix, and the polar axis perpendicular

to the directrix. Also derive the equation when the focus is taken at

the left of its corresponding directrix. Let p equal the distance from the

focus to the directrix.

2. Transform the results of exercise 1 to rectangular coordinates,

and change to the standard form by translation of axes.

3. Derive the polar equation of an eUipse, the pole being at a focus,

by starting with the equation
(x - cy y.

4- ~ = 1-t- 52 - A and then putting

(1 — e2)a2; finally solving theX ^ p cos Oj y = p sin 0, c = ae, and 6^

quadratic equation for p.

4. Derive the polar equation of an ellipse, the pole being at the center

and the polar axis along the major axis.

6. Show that pe in exercise 1 is one-half the latus rectum.

104. Construction of an
eUipse.—First method,— The
length of the major axis 2a and
the foci F and F' are supposed

to be known.

On a drawing board fasten

the ends of a string of length 2a

at F and F^ Fig. 91. Place a

pencil point, P, in the string

and move it about keeping the

string taut. Then the point P will generate an ellipse.

This construction depends upon the following:

Theorem.—The sum of the distances from any point on an
ellipse to its foci is constant and equal to the major axis.

This may be proved as follows: In Fig. 92, from the

definition of an ellipse,

Fig. 91.
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and

PF' = e-N'P = 6(^ + a:) = a +

PF = ePN = e(^- x)

ex.

a — ex.

Adding, PF' + PF = 2a = major axis.

Second method,—The major axis, 2a, and the minor axis,

26, are supposed to be known, as well as the position of the

center and direction of axes.

With the center of the ellipse as a center describe two

circles of radii a and h respectively, Fig. 93. Draw any radius

intersecting the inner circle in R and the outer circle in Q,

Through R draw a line parallel to the major axis, and through

Q a line parallel to the minor axis. Then the point P where

these lines intersect is a point on the ellipse. In this manner
any number of points on the eUipse can be determined.

That the point P is on the

ellipse with its major axis on

the X-axis can be proved as

follows

:

^x

^x

Fig. 92. Fig. 93.

Equation of ellipse is
a-

1.

If e is the angle XOQ, the coordinates of P are

x = OM = a cos e,

and y = MP = h sin (9,

Substituting in the equation of the elKpse,

a^ cos^ b^ sin2 d
cos2 6 + sin2 6 = 1,
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Hence the equation is satisfied and the point P is on the

ellipse.

EXERCISES

1. By the second method construct an ellipse having semiminor and
semimajor axes 1 in. and \\ in . respectively.

2. Prove that the projection of a circle upon a plane making an acute

angle with the plane of the circle is an ellipse.

APPLICATIONS

105. Uses of the ellipse.—The ellipse is involved in many
practical considerations, as well as being frequently used in

mathematics and its applications.

It was believed by tKe ancient Greeks that the sun was the

center of the universe in which we live. Kepler (1571-1630)

stated that the orbits of the planets are ellipses. Newton
(1642-1727) showed that the law of gravitation determines

the orbits to be elHpses.

In architecture, because of the beauty of its form, the

elliptic arch is frequently used. Some noted structures were

built in the form of an ellipse. The Colosseum at Rome was

of this form.

In bridge structures, many of the most noted stone-arch

bridges of the world are elliptical.

In machinery, elliptical gears are often used where change-

able rates of motion are desired, as in shapers, planers, and

Blotters where the cutting speed is less than the return motion.

In the study of electricity and mechanics, the ellipse is

frequently used.

EXERCISES

1. The Colosseum at Rome is in the form of an ellipse 615 ft. long

and 510 ft. wide. Find the equation of the ellipse and the position

of the foci.

2. A stone-arch of a bridge has a span of 200 ft. and a height of 42 ft.

The arch is in the form of a semi-ellipse. Find the equation of the

ellipse and the position of the foci.
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3. In exercise 2, find the heights of points 50 ft. and 25 ft. from one end

of the arch.

4. In considering equipotential surfaces in electricity, the equation

r- + r- = 1 is used. If a > 6 and X denotes an arbitrary con-
a^ + A 0^ + A

stant, such that X > — 6^ show that the equation represents a system

of eUipses having the same foci.

5. An arch is in the form of a semi-elhpse with major axis horizontal.

The span is 80 ft. and the height is 30 ft. Find the distance of the

arch below the level of its top for each 10 ft. of the span.

6. The earth's orbit is an ellipse with the sun at one focus. The
major axis is 185.8 million miles and the eccentricity is about /o"

Find the difference between the greatest and the least distance from the

earth to the sun.

7. Show that, if two equal elliptical gears turn on mountings at

corresponding foci, they are always in contact.

8. If two equal elliptical gears have major axes and minor axes of

12 in. and 8 in. respectively, and revolve once in 10 seconds, find the

greatest and the least Hnear speed of a point on the driving elhpse.

Suggestion.—Use the greatest and the least radius on which a point

is turning.

The driving gear has uniform angular velocity, and the mountings

are at corresponding foci.

GENERAL EXERCISES

1. Find the equation of an ellipse in the form of [32] having the sum
of its axes 20, and the difference 4.

2. Find the equation of an ellipse in the form of [33] if its major axis

is 24, and its minor axis is equal to the distance between the foci.

3. Find the equation of an ellipse in the form of [32] if the minor

axis is 12, and the distance between the foci is 12.

4. Find the equation of the ellipse in the form of [33] in which a = 8,

and the foci bisect the semimajor axes.

Find the semi-axes, coordinates of foci, eccentricity, and the equa-

tions of the directrices of each of the following ellipses:

6. 16x2 + 91/2 = 144.

6. 24x2 -f 362/2 = 864.

7. 16x2 + 252/2 - 64x + lOOy = 236.

Transform each of the following equations to axes parallel respec-

tively to the old, the new origin being at the point given in each case.

Plot the curve and both sets of axes.
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8. 9x2 + 42,2 4. 36a; - 24y + 36 = 0. (^2, 3).

9. 25x2 4. 16^2 + 50a; + S2y - 359 =0. (-1, -1).

10. Derive an equation that will represent all ellipses having foci at

the points (3, 0) and (-3, 0).

11. Derive the equation of the ellipse with a focus at (3, 1), eccentricity-

equal to I, and with 3x — 41/ + 6 = as directrix.

12. Show that the latus rectum of an ellipse is a third proportional to

the two axes. Find the latus rectum of the ellipse r^ + ~ = 1 by
25 16

this method.



CHAPTER VIII

THE HYPERBOLA AND CERTAIN FORMS OF THE
SECOND DEGREE EQUATION

106. The equation of the hyperbola.—By the definition of

article 81, the hyperbola is the locus of a point whose distance

from a fixed point, the focus, is to its distance from a fixed

straight line, the directrix, in a constant ratio 6, greater than 1.

The method used in deriving the equation is exactly the

same as that for the elHpse, Art. 95. In Fig. 94, let F be the

focus and D'D the directrix. Choose as x-axis the line X'X
through F and perpendicular to D'D at R,

K(-a.O)

Y D

N—

a

Y
Fig. 94.

9P(x,y)

Via.oO -^X

Since e> 1 there are two points V and 7' on X'X such

Hence the points V and V are
VF V'F

that ^^ = 6 and ^^yj^ = 6.
rtV V K

on the locus.

Choose 0, the point midway between V and F', as origin,

and F'F, parallel to D'D, as ^/-axis.

Let the length of V'V = 2a. Then V'O = OV = a.

134
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As with the ellipse it is necessary to find the equation of

the directrix and the coordinates of the focus.

From the definition of the hyperbola,

VF = eRV, or OF - a = e{a - OR), (1)

and VF = eV'R, or OF + a = e{a + OR). (2)

Subtracting equation (1) from equation (2),

2a = 2e'0R, or OR = -•

e

Then the equation of the directrix is a; = —

Adding equations (1) and (2),

20F = 2ae, or OF = ae.

Then the coordinates of F are {ae, 0).

To derive the equation of the hyperbola, let P(x, y) be any

point on the locus, join F and P, and* draw NP perpendicular

to D'D.

By definition, FP = eNP.

But FP = V{x - ae)2 + y^, and NP = x - ^.

Then V{x - ae)^ + y^ = e{x -fj-

Squaring and arranging, this equation becomes

x^ __
y^ ^ .,

. - a^ a\e^ - 1)

Since e>l, a^(e^ — 1) is positive. Let it be represented by

b^ and the equation of the hyperbola is

[35] S-b-^1-
This is a standard form of the equation of the hyperbola,

and is the form in which the hyperbola is usually written.

Its simple form is due to the choice of the coordinate axes.

A different choice of axes would give a less simple form of the

equation, but the locus would be unaltered.

Since b^ = a'{e^ - I), e = y^^L.+Jl.
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Equation [35] is the required equation for it has been proved

true for every point on the hyperbola, and it can be readily

proved that it is not true for any point that is not on the locus.

107. Shape of the h3rperbola.—The shape of the hyperbola

and its position relative to the coordinate axes can be readily
/V.2 /iy2

determined from the equation —^ —r-g = 1.

y = ± -\/x^ — o}.

Solving for x,

Solving for y,

(1) For all values of y, x has two real values, numerically

equal but opposite in sign. For all values of x such that

(-a,0) o (a,0)\ (ae.O)
^X'

Fig. 95.

x^ — a^>0, y has two real values, numerically equal but

opposite in sign. When x^ = a^, y = 0. Hence the curve is

symmetrical with respect to both coordinate axes and the

origin, and its intercepts on the x-axis are a and — a.

(2) For all values of x such that x^ — a^<Oyy is imaginary,

but no value of y will make x imaginary.

(3) AsX increases from + a or decreases from — a, the positive

values of y increase and the negative values of y decrease.

The hyperbola has the shape shown in Fig 95.
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108. Definitions.—The center of symmetry of the hyperbola

is called the center of the hyperbola.

The Hne through the focus and perpendicular to the directrix

is called the principal axis of the hyperbola.

The points in which the hyperbola intersects the principal

axis are called the vertices of the hyperbola.

The portion of the principal axis lying between the

vertices is called the transverse axis of the hyperbola. Its

length is 2a.

The conjugate axis of the hyperbola has a length 26, is

perpendicular to the principal axis, is bisected by it, and

passes through the center.

The chord of the hyperbola through the focus and perpen-

dicular to the principal axis is called the latus rectum. Its
262

length is
—

j for the abscissa of the focus is ae, and when

62

a

perbola-2 ~p = 1 ^x

X — ae, y = ±

109. Second focus and
second directrix.—The hy-

2 y2
2 -"Th. = 1 has a

second focus at the point

{— ae, 0), and a second direc-

trix which is the line x= .

e

The proof is similar to that

of article 98 for the ellipse and is left as an exercise for the

student.

In Fig. 96, F and F' are the foci, and the lines D'D and E'E
are the directrices.

110. Hyperbola with transverse axis on the y-axis.—The
equation of an hyperbola whose transverse axis is on the

t/-axis and whose center is at the origin is obtained by inter-
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changing x and y in the work of article 106. The equation is

then

[36]
- — = 1

»x

Here the transverse axis is 2a; the conjugate axis is 26; the

tX ' \' coordinates of the vertices are

(0, ± a) ; the coordinates of the

foci are (0, ± ae) ; and the equa-

tions of the directrices are y = ±-'

(See Fig. 97.)

EXERCISES

1. In each of the following hyperbolas,

find the length of the transverse axis

and the conjugate axis, the coordinates

of the foci, and the equations of the

directrices. Sketch each hyperbola.

(4) ^ - 5! = 1.
.

^ ' 64 36

(5)f-f = l.

(6) 9i/2 - 25^2 = 225.

2. Write the equation of the hyperbola with center at the origin, and
transverse axis on the a;-axis, having given:

(1) ^ = 6, 6 = 4. (4) 6 = 3, tfe = 5.

(2) a = 4, e = 2. (5) a = 9, e = f • _
(3) h =S, ae = \W5- (6) 6 = 6, a6 - V85.

^2 y2
3. In the hyperbola -— — = 1, find the value of y when a; = 3,

when X = 5, when x = 2.

4. Find the length of the latus rectum of the hyperbola =1.
36 16

Fig. 97.

^^^ 25 16

1.^^ 36 100
(3) 16:c2 _ ^y2 = 144.

Of the hyperbola •

62
•1.

6. Find the equation of an hyperbola with transverse axis on the

X-axis, center at origin, and passing through the points (6, 4) and (—3, 1).

6. Find the equation of the locus of a point moving so that the differ-

ence of its distances from the points ( ±6, 0) is 8.
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7. Derive ecfuation [36] from [35] by rotating the coordinate axes

through an angle ^ = 90°.

8. Find the semi-axes, eccentricity, and the latus rectum of each of

the following hyperbolas:

t = 1. (4)
X'

2/2 = ,

(5)

(6) a:2 -
-qy'' -

qy^ =
pq.(2) 4x2 _ 32^2 = 24.

(3) IQx^ - 7/2 = 16.

9. Find the semi-axes, coordinates of foci, eccentricity, and equations

of directrices of each of the following hyperbolas:

(1) 16x2 - 92/2 = 144. (2) 24x2 - 361/2 = 854,

10. Find the equation of an hyperbola with transverse axis on the

y-SLxis, center at the origin, eccentricity equal to 2, and passing through

the point (3, 2).

^2 2/

11. Assume the equation —
a2 52

1 of the hyperbola, and show

that the difference of the distances of any point on it from the foci is 2a.

12. Show that the latus rectum of an hyperbola is a third proportional

to the two axes.

13. What does the equation x^ — y^ = 16 become when the coordinate

axes are rotated through an angle (p = —45°?

14. Find the equation of an hyperbola if its center is at the origin,

transverse axis is 24, and the distance between its foci is 32.

15. Find the equation of an hyper-

bola if its center is at the origin,

transverse axis is 24, and its con-

jugate axis equals one-half the dis-

tance between its foci.

111. Asymptotes.—In Fig. 98,

P^P is a line passing tlirougli tliex-

center of tlie tiyperbola and in-

tersecting tlie curve in P' and P.

If P is made to move off to

infinity along the curve, the line

P^P, continually passing through V^^

the center, will turn about and
will approach one of the two
lines A'A or B^B. These lines are called the asymptotes^ of

the hyperbola.

1 This is not the general definition for asymptotes, but is true for the

hyperbola.

^X
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The equation of any line P'P through the origin is ?/ = mx.

The coordinates of its intersection with the hyperbola

-^— r-2 = 1 are found by solving the equations as simultaneous

equations.

Solving for x,

X = ±
ah

\/h^ - aW
Now as P moves off to infinity along the curve x becomes

infinite. Therefore the denominator of the fraction must
approach 0.

This gives b^ — aP-w?- = 0, or m = + —

Hence the equations of the asymptotes are

[37] y = -X, and y = - ^x.

These equations can be

combined into the single

equation

^"-^ =
a2 fe2

^•

The conjugate axis B'B^

Fig. 99, can now be brought

into a closer relation to the

hyperbola. If through the

extremities of B'B lines are

drawn parallel to the transverse axis, and through the ex-

tremities of the transverse axis Y'Y lines are drawn parallel

to the conjugate axis, a rectangle is formed with its diagonals

on the asymptotes of the hyperbola.

It can readily be shown that if the transverse axis of the

hyperbola is on the ^/-axis, the equations of the asymptotes are

y
a

and y = — tX.
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By the help of the asymptotes, a simple and fairly accurate

method for sketching an hyperbola is as follows: Locate the

vertices and draw the asymptotes, then draw the hyperbola

so that the curve continually

approaches the asymptotes as it

moves off toward infinity.

Example.—Sketch the hyperbola

16^2 - 252/2 = 400.

First put 16x2 - 252/2 = 400 in the

f a:2 2/2

^^™ 25-16 =^-

Then a = 5, 6 = 4, the foci are at

the points (5, 0) and (—5, 0), and the

equations of the asymptotes are

y = Ixand y = -|x.
The curve is as shown in Fig. 100.

112. Conjugate hyperbolas.—Two hyperbolas that are so

related that the transverse axis of each is the conjugate axis

Y
^^- ~"ll M 1 1 1 1 1 II H

7 >

^N ^ 7-7^

-Sr^ y7
JI ^^\ ^ 7

/ 7
^y'Z

^ \
\fc^ A\j-

; ..y \/f 1 1 n 1 1 M Li 1

V yS^
"^

4- ^ '^^ 5
2 z. ^5 V

^^^ ^\
- ^7^

^aI _
<^^- _ -Jl V^ S

is

y'

Fig. 100.

of the other, both in magnitude and in position, are called

conjugate hyperbolas.

X^ V^ 1/2 X^
Thus, "1 — ?2 ~ ^ ^^^

h2 2 ~ ^» ^^8* ^^^» ^^® conjugate hyperbolas.
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From article 111, it is seen that the asymptotes of each are

y = ±-x. Therefore two conjugate hyperbolas have the same
a

asymptotes.

The formula h^ = a^{e^ — 1) can now be readily interpreted

geometrically. For in right triangle OVN^ Fig. 101, OV = a,

VN = 0B = 6, and ON = OF = ae,

113. Equilateral hyperbola.—If a = 6, the hyperbola
x^ y^
—^ — T^ = 1 becomes x^ — y^ = a^. This is called an

equilateral hyperbola.

The equations of its asymptotes are y = ±Xy and are

evidently perpendicular to each other and make angles of 45°

with the axes of the hyperbola.

An equilateral hyperbola is also called a rectangular

hjrperbola.

It may be noted that the equilateral hyperbola is the

simplest of hyperbolas, just as the circle is the simplest of

ellipses, being the ellipse in which the major axis and minor

axis are equal.

EXERCISES

1. Find the equations of the asymptotes and sketch the curve for each

of the following hyperbolas:

(1) ^ -M! = 1 (4) Ml -^ = 1^^ 18 12 ^^ 25 16
(2) 9x2 _ igy2 = 16. (5) x2 - 2/2 = 12.

(3) 9x2 _ 18^2 = _i6. (6) a;2 - 2/2 = -12.

2. One of two conjugate hyperbolas is 12x2 — IQy^ = 192, find the

other. Find the coordinates of the foci and the equations of the direc-

trices of each.

3. Show that the four foci of two conjugate hyperbolas, and the four

points of intersection of the tangents at their vertices, all lie on a circle

whose center is at the common center of the two hyperbolas.

4. Show that the eccentricity of an equilateral hyperbola is -\/2-

6. Transform the equation of the equilateral hyperbola x^ — y^ = o^,

by rotating the coordinate axes through an angle <p = —45°. This

refers the hyperbola to its asymptotes as axes.
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6. Find the equation of the hyperbola whose vertices are at ( ±4, 0)

and the angle between whose asymptotes is 60°.

7. If ei and 62 respectively . are the eccentricities of two conjugate

hyperbolas, show that aei = be2 and that —^ H ^ = 1-

8. Plot the equilateral hyperbolas x^ — y^ = a^ and y^ — x^ = a^

and locate their foci. With the same coordinate axes plot the circle

x2 -^ y2 = 2a^. Also plot x^ — y^ = on the same set of axes.

9. Prove that in any hyperbola the distance from a focus to an asym-

ptote equals the semi-conjugate axis.

10. Prove that in any hyperbola the distance from the center to the

foot of the perpendicular from a focus to an asymptote equals the semi-

transverse axis.

11. Find the value of b in order that the line y = 2x -\- h shall be

x^ 2/2

tangent to the hyperbola — = 1.

y Tc

12. Find the value of m in order that the line y = mx + 2 shall be

tangent to the hyperbola 7^ ~ "^ = 1-

114. Equation of hyperbola when axes are translated.—
By a method identical to that of article 100 for the elHpse,

the equation

138J ^2 b2 ~ ^

is found for the hyperbola with its center at the point (/i, k)y

and whose transverse axis is parallel to the a;-axis. This is

a second standard form of the equation of the hyperbola.

If the transverse axis is parallel to the ^/-axis the equation is

[38iJ
a2 b2 ~ ^•

EXERCISES

1. Write the equations of the following hyperbolas:

(1) Center at (4, —3), a = 5, 6 = 3, and transverse axis parallel to a;-axis.

(2) Center at ( — 6,-2), a =2, b =4, and transverse axis parallel

to y-sixis.

2. Find the coordinates of the vertices and the foci, and the equations

of the directrices of each hyperbola of exercise 1.

3. Find the equation of the hyperbola with center at (—2, 7), one

directrix the line 2/ = 5, and eccentricity equal to }.
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4. Find the equations of the hyperbolas that are conjugate hyperbolas

with those of exercise 1.

5. Find the equations of the asymptotes of the hyperbolas of exercise 1

.

115. Equation of the form Ax^ + Cy^ + Dx + Ey + F = 0.

Every equation of the form Ax^ + Cy^ + Dx + Ey + F = 0,

where A and C have unlike signSy represents an hyperbola with

axes parallel to the coordinate axes.

Proof.—In a manner identical to that of article 101 the

equation takes the form

(^ + ^)'
Jy + ^Y' _.

CD^ + AE^ - 4ACF ^ CD^ + AE^ - ^ACF
4:A^C 4:AC^

This is of the form of [38] or [38i] for the denominators

have unlike signs since A and C are unlike in sign and therefore

4:A^C and 4:AC^ are unlike in sign.

If the second denominator is negative, the transverse axis

is parallel to the a:-axis. If the first denominator is negative,

the transverse axis is parallel to the y-axis.

From the preceding proof it follows that the equation of an

hyperbola in the form Ax^ + Cy^ + Dx + Ey + F = can

be transformed into the standard forms, [35] or [36], by a

suitable translation of the coordinate axes, the new origin

Example.—Express the hyperbola SQx^ - 25y^ + 216a; + 1002/~676 =
in the form of [38]. What are the coordinates of its center, foci, and
vertices; the lengths of the semi-axes; and the equations of its directrices

and asymptotes? Plot. Finally, translate the coordinate axes so as to

change to the form [35] and answer the same questions with reference to

the new axes.

Solution.—Completing the squares in x and in ^,

36(a;2 + 6x + 9) - 25(1/2 _ 4^, + 4) = 676 + 324 - 100,

or 36(x + 3)2 - 25(1/ - 2)^ = 90C.

Dividimg by 900 and putting in the form [38],

• (^ + ^)' _ (y - 2)^ ^ .

25 36
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This is an hyperbola with its center at the point C(— 3, 2) and trans-

verse axis parallel to the x-axis.

The semi-axes are 5 and 6.

The eccentricity e = = —-—

•

a 5

The distance from the center to the foci is ae = \/61> and the foci are

F(-3 +\/61, 2) and F'{-Z - \/6T, 2).

^X

Fig. 102.

The vertices are 7(2, 2) and F'(-8, 2).

a 5
The distance from the center to the directrices is - = —7rr=:» and the

e V61
5 5

equations of the directrices are x = —S -\ -7=^, and x = — 3 -:=^-

vol V61
The asymptotes have slopes of f and —f respectively, and pass through

C(— 3, 2). Their equations are by [15],

2/
- 2 = |(x + 3). and 2/

- 2 = -|(a: +3),

or 6x - 5y + 28 = 0, and Qx + 5y -\- S = 0.

The hyperbola is as shown in Fig. 102.

To change to the form of [35], put x + 3 = x' and y
(X + 3)2 ^7/ - 9.^2 r/2

the equation
25

2 = y'. Then

(2/ - 2)2 x" ^= 1 becomes = 1, referred
36 25 36

to CX' and CF' as axes. The center is C(0, 0); foci are F(\/W[, 0)

and F'( — VBT, 0); vertices are F(5, 0) and F'(— 5, 0); equations of

5 5
directrices are x = —^=^ and x = ;==; and asymptotes are

Vei
Qx — 5y = and Qx -{- 5y == 0.

10

V6T'
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EXERCISES

1. Express the equations of the following hyperbolas in the form

of [38] or [38i]. Find the coordinates of the centers, foci, and vertices;

the lengths of the semi-axes; and the equations of the directrices and

asymptotes. Sketch each curve.

(1) 9x^ - 162/2 - 108a: + 9Qy + 36 = 0.

(2) 162/2 - x^ - Qx - SOy + 75 = 0.

(3) 8x2 _ 282/2 -Sx - 282/ - 61 = 0.

(4) 8^2 - 9^2 _ iQx + 542/ - 1 = 0.

(5) 32/2 - 4x2 _ iQ^ _ 242/ - 52 = 0.

2. Transform 9x2 _ 25y^ + 54x + lOOy + 206 = by translating to

new coordinate axes parallel respectively to the old axes, with new
origin at (—3, 2), and sketch the curve.

3. Transform each of the hyperbolas of exercise 1 to the form of

[35] or [36]. Find the coordinates of the foci, and the equations of the

directrices referred to the new coordinate axes.

4. Find the equation of the hyperbola with conjugate axis parallel

to the X-axis, center at the point ( — 3, 4), eccentricity f» and passing

through the point (9, 4 + 8\/3).

6. Find the equation of the hyperbola whose axes are parallel to

the coordinate axes and which passes through the points (3, 4), (—7, 4),

(8, 4 4- 4\/3), and (-12, 4 - 4\/3).

6. Find the equation of the hyperbola having a focus at (6, 2), a

directrix the line x — 12 = 0, and e = 2.

116. Equation of h3^erbola when axes are rotated.—In

like manner to that for the parabola (Art. 90) and the ellipse

(Art. 102), the equation Ax^ + Cy^ + Dx + Ey + F = 0,

which is that of an hyperbola with axes parallel to the coordi-

nate axes, is transformed by using equations [13] to the form

Ax^ + Bxy + Cy^ + Dx + Ey + F = 0. This is the most

general form of the second degree Equation in x and ?/, where

J52- 4AC>a (See Art. 121.)

Conversely y starting with an equation containing an xy-term,

rotation through a properly chosen angle will cause the

xy-term to disappear by having its coefficient zero.

EXERCISES

1. Transform the following equations by rotating the coordinate axes

through the angle given in each case:
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(1) a;2 - 2/2 = 16. <p = -45°. (2) \-\ = '^'
v> = 90^

(3) xy = %. <p = 45°. (4) ^y^ - IGx^ = 144. ip = 60^

(5) x2 - 4x2,' + 2/2 + 9 = 0. <P = 45°.

(6) a;2 - 4x2/ + 2/^ + 4\/2x - 2\/22/ + 11 = 0. ^ = tan-i 1.

2. Transform the following equations into the standard form rotating

the axes through a proper angle, and sketch the curve in each case:

(1) x^ + 4x2/ + 2/^ = 16.

(2) 9x2 + Uy/^xy - 52/2 - 48 = 0.

3. Simplify the following equation by first translating the axes

to remove the x-term and the 2/-term, then by rotating through an

angle that will remove the x2/-term. Sketch the curve and the three

sets of coordinate axes.

x2 + 2x2/ - 2/2 + 8x -h 42/ - 8 = 0.

Suggestion,—Y'md <p = 22J°. Then use sin 22^° = \ V2 - \/2 and

cos 22i° - \ \/2 4- Vi.
4. In the hyperbola of exercise 3 find the coordinates of the center

and the foci, and the equations of the transverse and conjugate axes,

and asymptotes, referred to the original axes.

117. Equation of hyperbola in polar coordinates.—Here

the procedure is similar to that for the parabola and ellipse,

and the equations of these three conies should be compared.

EXERCISES

1. Derive the equation in polar coordinates of the hyperbola with

the pole at the left hand focus and polar axis along the transverse axis.

Let 2? equal the distance from the focus to the directrix.

2. Plot the following hyperbolas and draw the asymptotes:

^^) ^ -
1 - e sin e

^^^ ^ -
1 + 6 sin ^

3. Transform x2 + 2/2 = e2(x + V^ ii^^o polar coordinates.

4. Show that in the equation of the hyperbola, p = -^ t>
A "— 6 cos V

the inclination of the asymptotes is cos~^ ( ±- )
•

5. Find the polar intercepts of the conic p =
:j

~ -, and show^ ^
1 — e cos 0'

that the transverse axis of the hyperbola is
^ ^ , and the major axis of

the ellipse is ^ ^-
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6. Transform the polar equation p2cos20 = o?- into rectangular coordi-

nates, having the origin at the pole and the x-axis along the polar axis.

52
7, Show that p^ = r— is an ellipse if e < 1; and that

-62
1 - e2 cos2 d

-is an hyperbola if e > 1.

if e

Sketch each curve.
"^ 1 - e2 cos2 d

118. Construction of an h3rperbola.

—

First method,—The

length of the transverse axis, 2a, and the foci F and F' are

supposed known. On a drawing board place two tacks at

F and F', respectively, Fig. 103. Tie a pencil firmly at point

P near the middle of a string. Pass one part of the string

r

Pix.y)

Fig. 103.

under the tack at F and over the tack at F', and the other

part over the tack at F'. Adjust the string so that

PF' — PF = 2a. Hold the parts of the string firmly together

at Q and pull downward. The point P will generate an arc

of an hyperbola. By arranging the string properly other

arcs of the hyperbola may be generated.

This construction depends upon the following.

Theorem.—The difference of the distances from any point on

an hyperbola to its two foci is constant and equal to the transverse

axis.

This may be proved as follows: In Fig. 104, from the

definition of an hyperbola,

PF' = e-NT = e(x + ^)
= ex + a,

and PF = e-NP = e{x -
-^

= ex - a.
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Subtracting, PF' — PF = 2a = transverse axis.

Second method,—A focus, the corresponding directrix, and
the value of e are supposed known.

In Fig. 105, let F be the focus, D'D the directrix, X'X the

axis through the focus and intersecting D^D in A, and let the

lines QR and TS be drawn through A with inclinations respec-

tively equal to tan~^ (+^)- Also draw a series of lines

parallel to D'Z).

Fig. 105.

Then the points P and P' of the curve, on any one of these

parallels, are found by striking arcs with the focus as center

intersecting the parallel lines and using as a radius the length

MN of that particular parallel. Show why this is so.

EXERCISES

1. Locate a directrix and a focus and construct an hyperbola with

e = |. With e = |. With e = \/3.

2. Construct a parabola by the same method.

3. Using the same method, construct an ellipse with (1) c ^ J,

(2) e = JV3, (3) e = |.
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4. The difference of the distances of a point on an hyperbola from

the foci is 4; and the foci are at the points (3, 0) and (—3, 0). Use

the theorem of Art. 118 and derive the equation of the hyperbola.

APPLICATIONS

119. Uses of the hyperbola.—Whenever the law connecting

two variables is an inverse variation it gives rise to the equa-

tion xy = ky where x and y are the variables and k is a constant.

This relation often occurs in physics, chemistry, and engi-

neering.

Boyle's Law which states that for a perfect gas the pressure

varies inversely as the volume, gives rise to the equation

pv = k.

This is not used so much in practical work as is some slight

variation of it. (See Art. 124.)

Then again, if the law governing the location of a point is

y such as to fulfill the conditions of

the theorem of article 118 the locus

is an hyperbola.

These and other applications are

best illustrated by examples.

Example 1.—Given 20 c.c. of air at 1

atmosphere pressure. If the volume v

varies inversely as the pressure p, derive

the equation showing the relation be-

p tween the volume and the pressure.

Plot the curve for values of p from 1

atmosphere to 20 atmospheres.

Solution.—Since v varies inversely as

the pressure, pv = k.

When p = 1, v = 20, hence 1-20 = fc, or fc = 20.

Therefore the equation showing the relation between p and v is

pv = 20.

This is the equation of an equilateral hyperbola referred to its asymp-

totes as axes, and can be plotted, as accurately as desired, by points.

It is plotted in the first quadrant only because both volume and pressure

must be positive. (See Fig. 106.)
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p 1 2 4 6 8 10 15 20

V 20 10 5 3.3 2.5 2 1.3 1

-^x

Example 2.—Instruments for recording sound are placed at two

points A and B 500 ft. apart, Fig. 107. The report of a cannon is

recorded 0.25 second earlier at A than at B.

Find the equation of the locus of the position

of the cannon, and plot. (Sound travels

1120 ft. per second.)

Solution.—Since sound travels 1120 ft. per

second, the cannon is 0.25 X 1120 ft. = 280 ft.

nearer A than B
Choose as origin the point midway between

A and 5, with x-axis through these points.

Let P(x, y) be any position of the cannon.

The coordinates of A and B are respectively

(250,0) and (-250, 0).

Then BP - AP = 280.

OvV~(
r.2 7/2

Fig. 107.

250 - x)^ + 2/' - V(250 - xy + y^ = 280.

Simplifying, y^
42,90019,600

This is an hyperbola with a = 140, and h = 207.1. The conditions

require, however, that the locus of the position of the cannon shall be
the branch of the hyperbola nearer to A.

Note.—The above example illustrates the principle made use of in

the most accurate instruments used by the Allies in the Great War
for locating hidden guns. Near the close of the war they were locating

guns 10 miles distant within a radius of 50 ft.

EXERCISES

1. Given 10 c.c. of air at atmospheric pressure. If the volume v

varies inversely as the pressure p derive the equation expressing the

relation between the volume and the pressure. Plot for pressures from

\ atmosphere to 10 atmospheres.

2. Given an oak beam 10 ft. long of such dimensions that it supports

2 tons at its midpoint when resting at each end upon a support. If

the weight w such a beam will support varies inversely as its length I

derive the equation expressing the relation between w and I. Plot for

values of I from 1 ft. to 20 ft.
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3. Find the locus of the center of a circle tangent externally to two
given circles.

4. Find the locus of the center of a circle having one of two given

circles tangent to it internally and the other tangent to it externally.

5. The base of a triangle is fixed, and the difference of the angles at

the base is §7r. Find the locus of the vertex opposite the base.

6. Three instruments for recording sound are located at three points,

A, B, and C, in a straight hne. From A to B is 300 ft. and from B to

C is 500 ft. A sound, such as the report of a cannon, is recorded at B
0.05 second after it is recorded at A, and at C 0.35 second after it is

recorded at B. Find the location of the source of the sound in distance

and direction from the point midway between A and B.

Suggestion.—Choose the origin of coordinates at the point midway
between A and B. Derive the equations of the hyperbolas and solve as

simultaneous equations. Note that only one branch of each hyperbola

is possible.

The equations of the hyperbolas will be found to be

27.7a;2 - y^ = 21716,

and {x - 400)2 - 1.6y2 = 38416.

The solution of these equations gives

a; = - 70 and y = 337.7.

GENERAL EXERCISES

1. Find the semi-axes, the eccentricity, and the coordinates of the

foci of the hyperbola 2x^ — 3y^ = 12. Also find the equation of the

hyperbola that is conjugate with this.

2. Find the coordinates of the points of intersection of the hyperbola

2x^ - 3?/2 = 12 and the circle x^ -{- y^ ^ 16.

3. Find the semi-axes, coordinates of foci, eccentricity, and equations

of directrices of the hyperbola 9^2 — 4^/2 — 54x + IQy + 209 = 0.

4. Show that the following equation represents two straight lines

parallel respectively to the coordinate axes: 12xy + 8x — 27y — 18 = 0.

Transform the following equations as indicated, illustrating each

by a drawing:

6. x2 - lOxy + y^+x+y + l =0to 32^2 - 481/2 ^ g,

6. x^ - 2xy - y^ - 2 = to x^ - y^ -{- \/2 = 0.

7. Find the equation of the locus of a point that moves so that the

difference of its distances from (—4, 2) and (4, 2) is always equal to 8.

X2 2/2

8. Given the hyperbola =1, find the coordinates of the^^
25 16

point on the hyperbola, with abscissa double the ordinate.
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9. Find the distances from the foci of the hyperbola = 1 to a
25 16

point on the hyperbola, with abscissa 10.

10. Find the equation of an hyperbola whose axes are parallel respec-

tively to the coordinate axes and which passes through the points (0, 0),

(1,1), (-2, -1), and (-2, 2).

11. The lines x — 2y = and x + 2y = are the asymptotes of an
hyperbola that passes through the point ( — 5, 3). Find its equation.

12. Prove that for all values of a the point (a sec a, b tan a) is on the

x^ 2/2

hyperbola --7-2 = 1-

13. Prove that sec a is the eccentricity of an hyperbola with asymp-
totes including an angle 2a.

14. Prove that the portion of an asymptote of an hyperbola, which
is intercepted between the directrices is equal to the transverse axis.



CHAPTER IX

OTHER LOCI AND EQUATIONS

120. General statement.—In the previous chapters, for

the most part, equations of the first and second degree in two
variables, and their loci are considered. In the present

chapter a consideration will be made of other equations also

and their loci, where they are of importance in the study of

more advanced mathematics, or are of use in immediate

applications to science and engineering.

Such equations and loci are of infinite variety and form.

They may be divided into two classes, (1) algebraic and

(2) transcendental.

Algebraic curves the degree of whose equations is higher than

the second, and all transcendental curves that lie wholly in a

plane, are often called higher plane curves.

In Cartesian coordinates an equation that can be expressed

in a finite number of terms of the form Qx'^y'^, in which the

variables are affected by constant exponents and Q is a con-

stant, is called algebraic, all others are called transcendental.

121. Summary for second degree equations.—The most

general equation of the second degree in two variables may be

written in the form

Ax2 + Bxy + Cy'' + Dx + Ey + F = 0,

Theorem.—In rectangular coordinates, the equation of the

second degree in two variables represents a conic section.

To prove this it is only necessary to show that, by a suitable

change of the coordinate axes, the equation reduces to a form

already discussed.

Given Ax"- + Bxy + Cy^ + Da; + % + F = 0.

154
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From [13] substituting x = x' cos (p ^ y' sin <pj

and 2/ = ^' sin (^ + y' cos ^,

A{x' cos ip— y' ^m(py+B{x' cos<^— 2/' sin<^) (x'sin^+2/'eosv?)+
C(x' sin ip + y' cos (^)2 + D(x' cos <^ — 2/' sin <;i>) +

iJ(a;' sin <^ + 2/' cos ^) + F = 0.

Expanding and collecting terms,

x'2(A cos^ (^ + 5 sin V? cos (p + C sin^ ^) +
xy(— 2A sin (pcoS(p + 2C sin <p cos tp — B sin^ (p + B cos^ (^) +

2/'^(A sin^ <p — B Bm (p cos (^ + C cos^ v?) +
a;'(D cos (^ + £/ sin <^) + y\E cos <p - D sin <^) + F = 0.

In this equation the x'y' term will vanish if

— 2A sin <p cos (^ + 2(7 sin y>cos (p — B sin^ <^ + S cos^ <p = 0,

Or if ^(cos^ (^ — sin^ (p) = (A — C)2 sin <^ cos (p.

By trigonometry, this becomes B cos 2<^ = (A — C) sin 2(p,

[39] .
•

. tan 2^ = ^-^.

Since the tangent of an angle may have any value from
— 00 to + °°

> it is always possible to rotate the coordinate

axes through such an angle that the x't/'-term will vanish.

Further, since the smallest positive value of 2(p is less than

180°, <p is an acute angle. This value of <p can always be

chosen for the rotation.

The general equation then reduces to the form

A'x2 + Cy + D'x + E'y + F' = 0.

From the considerations of the previous chapters, this

equation represents one of the conic sections as follows:

(1) A circle if A' = C\

(2) A parabola if A' 5^ 0, F' 5^ 0, and C = 0,

or if C ?£ 0, Z)' 5^ 0, and A' = 0.

(3) An ellipse if A' and C are of like signs and unequal.

(4) An hyperbola if A' and C have unlike signs.

Theorem.—The general equation of the second degree in x
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parabola, an ellipse, or an hyperbola according as B^ — 4:AC

equals zero, is less than zero, or is greater than zero.

Proof,—Using the values of A', 5', and C,

A' = A cos^ (p + B sin <p cos <p + C sin^ ^, (1)

B' = j5(cos2 cp - sin2 <p) - {A - C)2 sin ip cos <py (2)

C = A sin^ (^ — J5 sin (^ cos <p + C cos^ (p, (3)

Adding (1) and (3),

A' + C' = A +C. (4)

Subtracting (3) from (1),

A' - C = {A - C) cos 2^ + B sin 2<p. (5)

Squaring (2) and (5) and adding,,

J5'2 + (A' - Cy = B^ + {A - C)\ (6)

Squaring (4) and subtracting from (6),

B'2 _ 4A'C' = £2 _ 4AC. (7)

But, if <^ is chosen so that tan 2ip = -
. _ ^ ? -B' = 0.

Hence B^ - 4AC = -4A'C'.

From this it follows that t^U-
(a) £2 _ 4AC = if either A' = or C = 0, Vll^,'^^^-^

(6) ^2 - 4AC <0 if A' and C have like signs, '
'

'

'

''

(c) B2 _ 4^(7>o if A' and C have unlike signs.

These are respectively the conditions necessary for a parabola,

an ellipse, or an hyperbola.
.

Examvle.—GiYQu x" + 24x1/ - 62/^ + 4a; + 48?/ + 34 = 0. (1) Deter-

mine whether it represents a parabola, an eUipse, or an hyperbola; (2)

transform so as to free of the xtz-term; (3) reduce to the standard form;

(4) plot and show the three sets of axes.

Solution.—{\) B^ - 4AC = 242 - 4.1(-6) = 600.

Therefore the equation represents an hyperbola.

\ (2) tan 2<p = .
^

^ = V- cos 2<p = ^\.

\

sin <p = VKI - cos 2<p) = V^l - j^) = i-

cos <p = \/i(l + cos 2<p) = VKI + ^5) = i-

Then the formulas [13] become a; = fx' — ^y', and 2/ = fa;' + il/-
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Substituting in the equation, (fx' - f?/')^ + 24(|a;' - |2/')(fa;' + tv')
- 6(K + iy'y + 4{ix' - 12/0 +mW + iy') + 34 = 0.

Simplifying, lOx'^ - I5y'^ + 32x' + 36?/' + 34 = 0.

(3) Putting x' = x" + h and t/' = 2/" + k, and simplifying,

10x"2 ~ I5y"^ + (20/1 + 32)x" - (30/c - 36)2/" + lO/i^ - 15A;2 +
32/i + 36/c + 34 = 0.

Equating coefficients of x" and 2/" to 0, and solving,

20h + 32 = 0, 30/c - 36 = 0. .'. h = -f, and /c = j.

Substituting these values and simplifying,

r"2
2x"2 _ 3^"2 + 6 = 0, or

2/"
= 1.

2 3

This is an hyperbola with its center at the origin and its transverse

axis along the 2/"-axis.

(4) The three sets of coordi-

nate axes and the curve are as

shown in Fig. 108.

Remark,—The values of

h and k could have been

found by completing the

squares in x and y. In

the solution given above,

the rotation of axes was

made first; but the work

would have been shortened

somewhat if the axes had

been translated first.
Fig. 108.

122. Suggestions for simplifying second degree equa-

tions.—If the equation is that of an ellipse or hyperbola,

first translate the axes to remove the terms of the first degree,

and then rotate the axes to remove the xy-term.

If the equation is that of a parabola, first rotate the axes to

remove the xy-term. y and then translate to remove the constant

term and one of the terms of first degree.

It may be that the locus is a point, that it is composed of

straight lines, or is imaginary. These forms are often called

degenerate forms and are best discovered from the simpHfied

equation. -^
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EXERCISES

Test each of the following equations as to whether it is a parabola, an

ellipse, or an hyperbola. Simplify each and plot showing all sets of

coordinate axes.

1. 6x2 _|. 24:xy - 2/2 + 50y - 55 = 0. /jtr^

2. 25x2 _ i^xy + 252/2 + 142x - 17Sy + 121 = 0. , . l^ 4 t\

3. x2 + X2,' + 2/2 - 31/ + 6 = 0..^

4. 32x2 _ 48^^ _|_ isy2 _|- 35a; _ uOy + 200 = 0.

6. 13x2 - Q\/Sxy + 7y^ - 64 = 0. !> •

"^

6. x2 - 2\/3x2/ + 32/2 - 6\/3x - 62/ = 0.

7. 2x2 _|_ Q^y ^ iQy2 _ 2x - 62/ + 19 = 0.

8. 6x2 _^ 133.2^ 4. 6i/2 _ 8x - 72/ + 2 = 0.

9. 4x2 _|_ 43^2/ -f- 2/^ + 4x - 32/ + 4 = 0.

10. 9x2 _ i2xy + 42/2 - 20x - SOy - 50 = 0.

ALGEBRAIC EQUATIONS

123. Parabolic t3rpe.—Equations of the form y = ax"",

where a is a constant and n is positive, are said to be of the

parabolic type.

(1) When n = 2, y = ax^. The locus is the ordinary-

parabola with its axis on the t/-axis, and has

already been discussed.

(2) When n = 3, 2/ = ^^^- The locus is

called the cubical parabola. It has the form

shown in Fig. 109, for a — 1.

Discussion.—When x = Oj y = 0, and the curve

passes through the origin. It is not symmetrical

with respect to either coordinate axis, but is sym-

metrical with respect to the origin. Why?
For any positive value of x, y is positive; and for

any negative value of x, y is negative. Hence the

curve lies wholly in the first and third quadrants.

This information together with a few points makes

Fig. 109. it possible to sketch the curve with considerable

accuracy.

(3) When n = I, 2/ = cto;!. The locus is called the semi-

cubical parabola. It has the form shown in Fig. 110, for

a = 1.

^x
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Discussion.—When x = 0, 1/ = 0, and the curve passes through the

origin. Writing y = x^ in the form y^ = a:^, it is seen that the curve

is symmetrical with respect to the x-axis.

For any positive value of x, y has two values

numerically equal but opposite in sign. For any

negative value of x, y is imaginary. Hence the curve

lies wholly in the first and fourth quadrants.

124. Hyperbolic type.—Equations of the

form y = ax'*, where a is a constant and n is

negative, are said to be of the hyperbolic

type.

(1) When n = — 1, z/ = ax"^, or xy = a.

The locus is the ordinary equilateral hyperbola

lying in the first and third quadrants.

(2) When n = — 2, ?/ = ax'^^ or x^y ^ a.

The locus has the form shown in Fig. Ill, for

a = 1.

Discussion.-—No finite value of x will make y = 0, and no finite

value of y will make x = 0. Hence the curve does not meet either of

the coordinate axes.

Fig. 110.

^X

=>-X

Fig. 111. Fig. 112.

Since x is affected only by an even exponent and y only by an odd
exponent, the curve is symmetric only to the y-axis.

For all positive finite values of ?/, x has two finite values equal numeri-

cally but opposite in sign. For all negative values of 2/, x is imaginary.

As y becomes large positively, x approaches zero both from the positive
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and the negative side. As x becomes large either positively or negatively,

y approaches zero from the positive side.

The curve lies in the first and second quadrants, and is asymptotic

to both coordinate axes.

(3) When n = —f, y — ax~i, or xiy = a,

the form shown in Fig. 112, for a = 1.

The discussion is left as an exercise.

The locus has

EXERCISES

Plot each group of the following equations upon the same set of

coordinate axes, by first discussing the equation and then finding a

few points.

1. (1) y = x\
2. (1) y = x,

(1) 2/=iC*,

(1) y=x^,
(1) y = x-\

(1) y = x-\

(1) y = x-\

(1) y = x~^,

3.

4.

5.

6.

7.

8.

(3) y = x\

(3) y = xK

(3) y = xK

Fig. 113.

this value of the constant.

(2) y = x\

(2) y = x\

(2)2/=x^

(2) y = x^.

(2) y = x-\

(2) y = X-*,

(2) y = x-^.

(2) y = x-^.

9. If p is the pressure and t the absolute

^X temperature of a gas in adiabatic expan-
7

sion, p = W ~ ^, where A; is a constant and

7 = 1.41 for air. If p = 2700 when
t — 300, find fc, and plot the equation for

values of t from 200 to 400.

10. In a mixture in a gas engine expand-

ing without gain or loss of heat, it is found
that the law of expansion is given by the

equation 'pv^-^'^ = c. Given that p = 188.2

when V = 11, find the value of the constant

c, and plot the curve of the equation using

Consider values of v from 10 to 25.

125. The cissoid of Diodes.—In Fig. 113, OT is the

diameter of a fixed circle. At T a tangent is drawn, while

about a secant revolves meeting the tangent in Q and the

circle in R, The point P on the line OQ is taken so that

OP = RQ, The locus of the point P is the cissoid of Diodes,
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To derive the equation of the cissoid, choose as origin and

the X-axis along OT.

Draw MP and NR perpendicular to OT.

Denote the coordinates of P by (x, y).

Let the radius of the circle be a.

From the definition of the cissoid, OP = KQ.

And evidently OM = NT.
But OM = X, hence NT = x and ON = 2a — x.

Also NR is a mean proportional between ON and NT.
Hence NR = \/x{2a — x).

By similar triangles, OM : ON = MP : iVfi.

Substituting values, x :2a — x = y : \/x(2a — x).

From this ^/^ = ^ , the equation required.
^a X

The curve may be plotted from the definition given above,

or from the equation.

Note,—By means of the cissoid the problem of the dupli-

cation of the cube can be solved. This problem, to find a cube

that is double a given cube, was one of the famous problems of

antiquity.

126. Other algebraic equations.—An unlimited number of

definitions of loci could be given that would result in algebraic

equations. There are many such curves that are of more or

less historical importance as well as of value in mathematics

and other sciences. Also there are an unlimited number of

algebraic equations that may be discussed and their curves

plotted. It should be remembered that an algebraic equation

as truly defines a locus in terms of rectangular coordinates,

as does the definition of the preceding article define the

cissoid.

Example 1.—Discuss and plot the equation y =
^

•

Intercepts.—When x = 0, y = 2a. The curve does not meet the

X-axis, since no finite value of x will make y = 0.

Symmetry.—Since only an even power of x occurs the curve is sym-

metrical with respect to the y-axis.

11
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Extent.—If a is a positive number, y is positive for all real values of

Xy and the largest value of y is 2a when x = 0. As x becomes very

large in absolute value, y becomes very small but always positive.

Hence the curve is asymptotic to the a:-axis in both directions.

Or, solving for x, x = ±2a -\/ '

Hence x is imaginary when <0.

This is true when y<0 or when y>2a.
Hence the curve lies in the first and second quadrants, is symmetrical

with respect to the 2/-axis, and lies between the x-axis and the line y = 2a.

Points on the curve and in the first quadrant can be found by choosing

positive values for x.

x a 2a 3a 4o 6a

y 2a l« a Aa fa \a

The curve is as shown in Fig. 114, and is known as the witch of Agnesi.

^X

Fig. 114.

EXERCISES
Discuss the equations and plot the curves in exercises 1—16.

9. xy = (2/ + 2)2(16 - 2/2).

(Example of Conchoid of Niche

medes).

10. xy^ = {x - ay(2a - x).

11. 92/2 = (x -\-7)(x +4)2.

12. y = x^ -^ X - S.

13. y = a;3+ 6x2 + iq^ _ 2.

14. y = X* - 10x2 - 4x + 8.

15. X = -^—

j

:•

2/2 + a2

16. (ix)2 + (iy)l = 1.

1. y-x^2
2. '•m
3. y = x{x - \){x - 2).

4. V^ = {x- l)(x - 4)(x

5. V- =^+3
^ (x - 2)(x + 1)

6
(x - 4)(x + 3)

7.

8.

^ (X + l)(x - 2)
Xh +yi = oJ.

xl + 2/3 = ai.

6).
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17. Two fixed points F' and F are 2a units apart. Choose the

origin at the center of the Hne joining F' and F, and the x-axis along this

line. Find the equations of the loci of the point P(a:, y) when
FP

(1) Evp = 3, constant not unity,

(2) FP + F'P = a constant,

(3) FP - FT = Si, constant,

(4) FP XF'P -= a constant, k.

In (4) the locus is called a Cassinian oval, and its equation is

(a;2 + 2/2)2 _ 2a2(x2 - y^) = k^ - a*.

18. Sketch the loci of (4) of the preceding exercise when a = 1, and
k has successively the values 0, 1, and 2.

19. Write the equation of (4) of exercise 17 when k — a^, and plot

the curve. This curve is called a lemniscate.

20. Express the lemniscate in polar coordinates, using the positive

part of the x-axis as polar axis.

21. A uniform beam of length I, fixed in position by being held at

one end, supports a weight at the other end. The deflection y at any
distance x from the fixed end is given by the equation y = k(ilx^ ^ix^)-

Find k for a beam 12 ft. long if the weight deflects the outer end 18

in., and plot a curve showing the shape of the beam for its entire length.

Choose the fixed end as the origin and consider y positive when measured
downward.

TRANSCENDENTAL EQUATIONS

127. Exponential equations.—An equation of the form

y = b"", where b is any positive constant, is called an expo-

nential equation. If the exponent is fractional and involves

even roots of 6, only the positive values of these roots are

used.

Example 1.—Discuss the equation y = h' when 6>1. Plot the curve

when h = 1.5.

Intercepts.—When x = 0, y = ¥ = 1. This shows that the curve

passes through the point (0, 1) for any value of b.

If 2/ = 0, 6* = 0, which is impossible for any finite value of x. This

shows that the curve neither meets nor crosses the a:-axis. However,

for sufficiently large negative values of x, the value of 6* can be made
to become as near zero as desired. The curve is then asymptotic to

the X-axis in the negative direction.

Symmetry.—Since changing a; to —x or 2/ to —y changes the equation,

the curve is not symmetrical with respect to either coordinate axis.
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Extent.—Since no integral value of x can make y negative, and since

only positive values of b' are to be
taken when a; is a fraction, the curve is

wholly above the a;-axis.

Further, since y is not imaginary for

any value of x, and increases as x in-

creases, the curve lies in the first and
second quadrants, exists for all values

of X, and continually rises from left to

right.

^ Plotting.—The curve of y = 1.5* can

be plotted as accurately as desired by
finding points. Taking logarithms of

Fig. 115. both sides of the equation,

logy = X log 1.5 = 0.1761a;.

The following points are readily found, and the curve is as shown
in (1) of Fig. 115.

1 r~ "/

/

1 \

/ (1

(2>\ i-
/

\ //
s ^'Y

\—

t

U-

^

y^K ^

X -3 -2 -1 1 2 3 4 5

log 2/ 1.4717 T.6478 T.8239 0.1761 0.3522 0.5283 0.7044 0.8805

y 0.296 0.444 0.667 1 1.5 2.25 3.375 5.063 7.595

Example 2.—Discuss the equation y = b' when 5<1. Plot the curve

when b = i'

The discussion is similar to that of example 1. It is to be noted

that y decreases as x increases, and the curve is asymptotic to the a;-axis

in the positive direction.

Plotting.—Points for plotting y = (J)* are found and the curve is

as shown in (2) of Fig. 115.

X -5 -4 -3 -2 -1 1 2 3 4

y 32 16 8 4 2 1 0.5 0.25 0.125 0.0625

128. Applications.—The most important case of the expo-

nential equation is the case where the base is 6, which is

the base of the natural system of logarithms and equals

2.71828 • • '
, It usually occurs in the form 2/

= ae'^^, where
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a and k are constants. that may be determined in particular

applications. This function is often called the ^4aw of organic

growth/' or the ''compound interest law/' and is a function

where the rate of increase or decrease at any instant is directly

proportional to the value of the function at that instant.

Just what the applications are cannot well be shown here,

but the following uses are suggestive

:

(1) To express the pressure of the atmosphere at any height.

(2) In physics and electricity, it is used in considering

damped vibrations.

(3) In medicine and surgery, to express the progress of the

healing of a wound.

(4) In biology, to determine the number of bacteria in a

culture at any given time.

(5) In chemistry, to express the progress of a chemical action.

(6) In mechanics, in connection with the slipping of a belt

on a pulley.

Numerous applications will be discovered by the student

as he progresses in his studies.

Because of its frequent occurrence in problems involving

conditions in nature, the base e is sometimes called
'

' a constant

of nature."

129. Logarithmic equations.—The logarithmic equation is of

the form y = logb x, where 6 is a positive number different from 1.

By the definition of the logarithm of a number, the equation

y = logb X can be written in the exponential form x = 6^.

This is the same as the equation of article 127 with x and y
interchanged.

It is evident then that the discussion of the logarithmic

equation y = log6 x follows that of the exponential equation

x = by, and gives the following when 6 > 1

:

The a;-intercept is at the point (1, 0).

There is no ^/-intercept for as x approaches 0, y becomes
— 00 , that is, the curve is asymptotic to the 2/-axis in the

negative direction.
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The curve is not symmetrical with respect to either axis.

When X > Ij y >0, and as x becomes «»
^ y becomes «» also.

When X <l,y <0, and there is no value of y which will make
X negative.

Example 1.—Plot the curve oi y = logio x.

The following points are found, and the curve is (1) of Fig. 116. The
unit on the y-axis is taken twice that on the a;-axis.

X 0.001 0.01 0.1 0.5 1 2 3 4 5 7 10 15 50 100

y -3 -2 -1 -0.301 0.301 0.477 0.602 0.699 0.845 1 1.176 1.699 2

Fig. 116.

Example 2.—Plot the curve oi y = log2a;.

The points can be readily found from the relation

log2 X = .

logio 2

The curve is (2) of Fig. 116.

X logio X = 3.322 logio X.

X 0.001 0.01 0.1 0.5 1 2 3 4 5 7 10 15 100

y -9.97 -6.64 -3.32 -1 1 1.58 2 2.32 2.81 3.32 3.91 6.64

EXERCISES

1. Plot the following exponential equations:

(1) y = 2*. (2) y = 3*. (3) y = e', where e = 2.718.

(4) y = (0.75)-. (5) y = (0.4)-.

2. Discuss the effect upon the curve oi y = h' when 6< 1 and increases

to 1.
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3. Discuss the effect upon the curve of i/ = 6* when &> 1 and increases

from 1.

4. Plot the curves of the following:

(1) y = 1-'. (2) y = 2-'. (3) y = x*, x>0. (4) y = e'',

6. Plot the curves of the following:

(1) y = loge X, where e = 2.718. (2) y = log4a:. (3) y = 2 logs a;.

6. Discuss and plot the curve oi y = ^

Suggestion.—First plot 2/1 = \e' and 2/2 = \e~'. Then plot

2/ = —X— by adding the ordinates 2/1 and 2/2 to find y for the

dfferent values of x.

- — ?
7. Discuss and plot the curve oi y = ^a{ea -\- e a). This is the

equation of the catenary, the curve assumed by a flexible cord sus-

pended between two points.

8. A wire, weighing 0.2 lb. per foot, is suspended from two points in

a horizontal line 50 ft. apart. The horizontal tension at each end

is 10 lb. Plot the catenary formed by the wire. The constant a
X X

in the formula, y = ia(ea -f e~ o), is found by dividing the horizontal

tension by the weight per unit length of the wire.

9. Plot the curve oil — 6e~<»*, where i and t are the variables. Choose

h = 1.5 and a = 0.4.

10. If a body is heated to a temperature Ti above the surrounding

bodies, and suspended in air, its excess of temperature T above the

surrounding bodies at any time, t seconds thereafter, is given by Newton^s

law of cooling expressed by the equation T = Tie""', where a is a

constant that can be determined by experiment. Given Ti = 20 and

a = 0.014, plot a curve showing the temperature at any time t up to

100 seconds.

11. The dying away of the current on the sudden removal of the

electro-motive force from a circuit containing resistance and self-induc-

_ ?*
tion, is expressed by the equation, i = le L^ where i is the current

at any time, t seconds, after the e.m.f. is removed, R is the resistance,

and L the coefficient of self-induction. Plot a curve to show the current

at any time from ^ = to ^ = 0.2, if / = 10 amperes, 12= 0.1 ohm,

and L = 0.01 henry.

TRIGONOMETRIC EQUATIONS

130. The sine curve.-—Discuss the equation y = sin x,

and plot the curve.
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Intercepts,—When a; = 0, 2/ = 0. Hence the curve passes

through the origin. When 1/ = 0, sin a; = 0, and x = rnr

radians, where n is any integer either positive or negative.

Symmetry,—Putting —y for y ov —x for x, changes the

equation. Hence the curve is not symmetrical with respect

to either axis. But putting —yiory and —x for x, does not

change the equation. Hence the curve is symmetrical with

respect to the origin.

Extent.—Since there is a sine of any angle, the curve extends

indefinitely in both the positive and negative directions.

Since the sine of an angle is not greater than 1 nor less than

— 1, the curve does not extend above the line y = 1 nor below

the line y = —1,

Plotting.—Any length can be chosen as a unit on the coordi-

nate axes. What may be called the proper sine curve is

Fig. 117.

plotted by choosing as a unit on the y-Sixis the same length

that is chosen to represent one radian on the x-axis. The
curve is shown in Fig. 117.

X

.5 .707

i^ i^ s- |x I. X i^ Jtt i^ f^ f^ iw -v-^ 27r

y .866 1 .866 .707 .5 -.5 -.707 -.866 -1 -.866 -.707 -.5

From 27r radians to At radians or from —2ir radians to 0,

these values repeat. They also repeat for each interval of

27r radians in both directions.

131. Periodic functions.—A curve that repeats in form as

illustrated by the sine curve is called a periodic curve. The
function that gives rise to a periodic curve is tailed a periodic

function. The least repeating part of a periodic curve is
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^x

Fig. 118.

called a cycle of the curve. The change in the value of the

variable necessary for a cycle is called the period of the func-

tion. The greatest absolute value of the ordinates of a periodic

function is called the amplitude of the function.

In engineering and other practical applications of mathe-

matics, there are many phe-

nomena that repeat. It is for

this reason that the periodic

functions are of great import-

ance. By a suitable choice of

periodic functions almost any

periodic phenomenon can be

represented by a function.

132. Period and amplitude of a function.

Example 1.—Find the period of sin nx, and plot y = sin 2x.

Since, in finding the value of sin nx, the angle x is multiplied by n

before finding the sine, the period is— .

The curve for y = sin 2x is shown in Fig. 118. The period of the

function is x radians, and there are two cycles of the curve in 27r radians.

Definition,—The number n

in sin nx is called the period-

icity factor.

Example 2.—Find the amplitude

of b sin X, and plot y = 2 sin x.

Since, in finding the value of

h sin Xf sin x is found and then

multiplied by h, the amplitude of

the function is 5, for the greatest

value of sin x is 1.

Fig. 119. The curve for y = 2 sin x is shown

in Fig. 119. The ampUtude is 2.

Definition,—The number 6 in 6 sin x is sometimes called

the amplitude factor.

By a proper choice of a periodicity factor and an amplitude

factor a function of any amplitude and any period desired can

be found.

-1-

-^-
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133. Projection of a point having uniform circular motion.

Simple harmonic motion.

Example 1.—A point P, Fig. 120, moves around a vertical circle of

radius 3 inches in a counter-clockwise direction. It starts with the

point at A and moves with an angular velocity of 1 revolution in 10

seconds. Plot a curve showing the distance the projection of P on the

vertical diameter is from at any time t, and find its equation.

Plotting.—^Let OP be any position of the radius drawn to the moving

point. OP starts from the position OA and at the end of 1 second

Pz ^2 Pg

Fig. 120.

is in the position OPi, having turned through an angle of 36° = 0.6283

radians. At the end of 2 seconds it has turned to OP2, through an

angle of 72° = 1.2566 radians, and so on to the positions OP3, OPi, • • •,

OPio.

The points iVi, N2, • • • are the projections of Pi, P2, • • • respect-

ively, on the vertical diameter.

Produce the horizontal diameter OA through A, and lay off the seconds

on this to some scale, taking the origin at A.

For each second plot a point whose ordinate is the corresponding

distance of N from 0. These points determine a curve of which any

ordinate y is the distance from the center of the projection of P
upon the vertical diameter at the time t represented by the abscissa

of the point.

It is evident that for the second and each successive revolution, the

curve repeats, that is, it is a periodic curve.

Since the radius OP turns through 0.6283 radians per second, angle

AOP = 0.6283^ radians, and ON = OP^ sin 0.6283^ Or 2/ = 3 sin 0.6283^,

the equation of the curve.
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In general, then, it is readily seen that if a straight line of

length r starts in a horizontal position when time, ^ = 0, and

revolves in a vertical plane around one end at a uniform

angular velocity cu per unit of time, the projection y of the

moving end upon a vertical straight line has a motion

represented by the equation

2/ = r sin cot

Similarly, the projection of the moving point upon the hori-

zontal is given by the ordinates of the curve whose equation is

y = r cos o)L

The motion of the point iV is a simple harmonic motion.

If the time is counted from some other instant than that

from which the above is counted, then the motion is

represented by

2/ = r sin {oit + a),

where a is the angle that OP makes with the line OA at the

instant from which t is counted. As an illustration of this

consider the following:

Fig. 121.

Example 2.—A crank OPy Fig. 121, of length 2 ft. starts from a posi-

tion making an angle « = 40° = ^tt radians with the horizontal line

OA when t = 0. It rotates in the positive direction at the rate of 2

revolutions per second. Plot the curve showing the projection of P
upon a vertical diameter, and write the equation.

Plotting.—The axes are chosen as before, and points are found iot each

0.05 second. The curve is as shown in Fig. 121.

The equation is 2/ = 2 sin {^irt + fir).
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Definitions.—The number of cycles of a periodic curve in a

unit of time is called the frequency.

It is evident that

J - ji'

where / is the frequency and T is the period.

In . y = r sin (o^t + a), / = ^r- and T = —

•

Ztt CO

The angle a is called the angle of lag.

134. Other applications of periodic functions.—The illustra-

tions already given are by no means the only uses of periodic

functions. Many uses occur in connection with sound, light,

and electricity. Periodic curves are traced mechanically on

smoked glass in experiments in sound and electricity. Such

curves are also traced by instruments for recording heartbeats,

breathing movements, and tides.

Any periodic motion can be represented exactly, or can be

closely approximated, by functions involving sines and cosines.

135. Exponential and periodic functions combined.—The
curve represented by the equation, y = he'''' sin {nx + a), is

important in the theory of alternating currents, in representing

the oscillations of a stiff spring, the damped oscillations of a

galvanometer needle, or the oscillations of a disk suspended in

a liquid, such as is used to compare the viscosities of different

liquids.

The curve is most readily plotted by first plotting the curves

represented by the exponential function and the periodic

function separately on the same set of axes, and then finding

the ordinates for various values of x by multiplying together

the ordinates for these values of x in the exponential and
periodic functions.

It will be noted that the curve is periodic, and that the

amplitude of the successive waves gets less and less while the

wave length remains the same.
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Example,—Plot the curve showing the values of y for any value of x
from X = — Jtt to a? = 27r for the equation, y = e-o.5« sin {2x + Jtt).

The curve is readily plotted by first plotting 2/1 = e"0-06* and
2/2 = sin {2x + Jtt), and then finding various values of y from the

relation y = i/ii/2. In Fig. 122, (1) is the exponential curve, (2) the

sine curve, and (3) the final curve. Note that (3) and (2) intersect

the X-axis at the same points.

Fig. 122,

EXERCISES

1. Plot y = sin x, using several different lengths on the x-axis as units.

2. Discuss and plot y = cos x. Give its period.

3. Discuss, and plot y = tan x, and y = cot x on the same set of

axes. Give the period of each.

4. Plot y = sin re + cos x.

Suggestion.—Plot 2/1 = sin x and 2/2 = cos x on the same set of axes.

Then find y from 2/ = 2/i + 2/2, by adding the ordinates for various

values of X.

5. Plot 2/ = sin2 X and y = cos^ x on the same set of axes.

6. Plot 2/ = sin~i X and 2/ = cos"^ x.

7. Plot y — sec X and y = esc x, and give the period of each.

8. Plot y = sin Jx, 2/ = sin x, 2/ = sin 2x, and y = sin fx on the same
set of axes.

9. Plot 2/ = J sin X, 2/ = sin X, 2/ = 2 sin x, and y = f sin x on the

same set of axes.
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10. Plot 2/ = sin 2x + 2 cos x, and give the period.

11. Plot y = sin X + X. Is this periodic?

12. A crank 18 in. long starts from a horizontal position and rotates

in the positive direction in a vertical plane at the rate of Jx radians

per second. The projection of the moving end of the crank upon a

vertical line oscillates with a simple harmonic motion. Construct a

curve that represents this motion, and write its equation.

13. A crank 8 in. long starts from a position making an angle of 55°

with the horizontal, and rotates in a vertical plane in the positive direc-

tion at the rate of one revolution in 3 seconds. Construct a curve showing

the projection of the moving end of the crank in a vertical line. Write

the equation of the curve and give the period and the frequency.

14. Plot the curves that represent the following motions:

(1) y = 12sin(1.88< +0.44), (2) y = 2.5sin(i7r< + 'iM- Give the

period and frequency of each.

15. Plot y = r sin ^wt and y = r sin {\irt + }7r) ' on the same set

of axes. Notice that the highest points on each are separated by the

constant angle Jtt. Such curves are said to be out of phase. The
difference in phase is stated in time or as an angle. In the latter case

it is called the phase angle.

16. Plot y — r sin Jxi, i/ = r sin (Jtt^ — ix), and y = r cos lirt all on
the same set of axes. What is the difference in phase between these ?

17. What is the difference in phase between the curves oi y = sin x

and y = cos x? Between y = cos x and y = sin (x + Jtt)?

18. Plot the curve y = e~* sin x for values of x from to 2%.

19. Plot the curve i = e~l* sin (2t + Jtt) for values of t from —2
to 8.

20. In an oscillatory discharge of a condenser under certain con-

ditions, the charge q at any time t is represented by the equation,

q = 0.002246-4000' sin {SOOOt + tan-i 2), where q is in coulombs and t

in seconds. Plot the curve showing values of q for values of t from to

0.0012 second. What is the period?

Suggestion.—Choose 0.0001 second as a unit on the ^axis, and 0.001

coulomb as a unit on the g'-axis; and let the length representing a unit

on the g-axis be about twice that for the unit on the <-axis. Plot the

exponential curve first, and then the sine curve choosing as a unit on
the q-aids the length representing 0.001 coulomb.

EQUATIONS IN POLAR COORDINATES

136. Discussion of the equation.—As in the case of equa-

tions in rectangular coordinates, in polar coordinates the dis-
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cussion of an equation helps greatly in learning the properties

of the curve. The discussion is exactly similar to that in

rectangular coordinates.

(1) Intercepts.—(a) The intercepts on the polar axis are

found by putting 6 = 0°, 180°, 360°, ••. nl80°. (b) The
intercepts on the 90°-line are found by putting 6 = 90°, 270°,

etc. (c) Putting p = and solving for 6^ gives the values of 6

for which the curve passes through the pole.

(2) Symmetry,—(a) If the form of the equation does not

change when — p is substituted for p, the curve is symmetrical

with respect to the pole, (b) If it does not change when — ^

is substituted for dj the curve is symmetrical with respect to

the polar axis, (c) If it does not change when tt — ^ is

substituted for 6, the curve is symmetrical with respect to

the 90°-line.

Show why each of these is true. Are their converses true?

(See Art. 138.)

(3) Extent—If the equation is solved for p in terms of dj the

following can be determined : (a) Values of 6 for which p has

maximum or minimum values. In general this can be done

readily when trigonometric functions are involved. (6)

Values of 6 for which p becomes infinite. These values

determine the direction in which the curve extends to infinity,

(c) Values of 6 for which p is imaginary, that is, for which there

is no curve.

137. Loci of polar equations.—Since some of the conditions

of the previous article are sufficient but not necessary, care

must be taken in determining symmetry and extent of curves.

On the whole, however, the plotting is very similar to that in

rectangular coordinates, and is best illustrated by examples.

It will be found convenient to use polar coordinate paper.

Example 1.—Discuss and plot p = 1 + 2 sin ^.

Discussion.—(1) Intercepts on polar axis, ^=0, p = l; = 180°,

p = 1. Intercepts on 90°-line, B = 90°, p = 3; = 270^ p = -1.

When p = 0, sin ^ = -i, and 6 = 210° or 330°.
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(2) Condition for symmetry with respect to the polar axis does not

hold; but the curve is symmetrical with respect to the 90° -line since

sin (tt - 0) = sin e.

(3) Since p = 1 + 2 sin 0, the maximum value of p will occur when

sin = 1, or = 90°; and the minimum value of p will occur when sin

^ = _1, = 270°. No value of 6 makes p imaginary.

Plotting.—On account of the symmetry it is only necessary to find

points for values of 6 from 0° to 90° and from 270° to 360°. The curve

is shown in Fig. 123.

Fig. 123.

e sin e p

0° 0.0 1.00

30° 0.50 2.00
45° 0.707 2.41
60° 0.87 2.73
90° 1.00 3.00

270° -1.00 -1.00
300° -0.87 -0.73
315° -0.707 -0.41
330° -0.50 0.0

345° -0.26 0.48
360° 0.0 1.00

Example 2.—Discuss and plot p = a cos 2d. The four-leafed rose.

Discussion.—(1) Intercepts on polar axis, ^ = 0, p = a; = 180°,

p = a. Intercepts on 90°-line, 6 = 90°, p = -a; 6 = 270°, p = -a.

When p = 0, ^ = 45°, 135°, 225°, 315°.

(2) Symmetrical with respect to the polar axis, and the 90°-line.

(3) Since p = a cos 2d, the maximum values of p occur when cos 20 = 1,

or when 6=0° and 180°. The minimum values occur when d = 90°

and 270°.

Plotting.—On account of symmetry find points for values of in

the first quadrant. The curve is as shown in Fig. 124. The arrow

heads indicate direction in which the curve is traced as 6 increases from
0° to 360°.
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e cos 2d

0° 1.0

10° 0.94
20° 0.77
30° 0.50
40° 0.17
45° 0.0
50° -0.17
60° -0.50
70° -0.77
80° -0.94
90° -1.0

a

0.94a

0.77a

0.50a

0.17a

0.0

-0.17a
-0.50a
-0.77a
-0.94a

138. Remarks on loci of polar equations.—By definition,

the locus of an equation requires that, (1) if the coordinates of

any point satisfy the equation, the point is on the locus;

(2) if any point is on the locus, the coordinates of this point

satisfy the equation.

In rectangular coordinates, there is no trouble in seeing that

these conditions are fulfilled. This is because, in rectangular

coordinates, there is one and only one point for every pair of

coordinates; and, conversely, to every point there is just one

pair of coordinates.

In polar coordinates, trouble may arise since there is an

ambiguity because a point has an indefinite number of pairs of

coordinates determining it.

Thus, in example 2 of the preceding article, it is seen that

the point determined by the pairs of coordinates (^a, 60°),

(-Ja, 240°), (-ia, -120°), and (|a, -300°) is on the locus;

but only (— |a, 240°) and (— ia, — 120°) satisfy the equation.

For a like reason a curve may be symmetrical with respect

to the polar axis even though (p, —6) when substituted for

(p, 6) changes the equation. In this case, some of the other

pairs of coordinates of the point (p, — 6) would not change the

equation.
12
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^X

139. Spirals.—Definition.—The locus of a point that

revolves about a fixed point, and, at the same time, recedes

from or approaches this point according to some law, is called

a spiral. The fixed point is

called the center of the spiral.

When an angle is used in an
equation and is not involved in

a trigonometric function it is

considered to be expressed in

radians.

Example.—Discuss and plot the

equation p =a\p = a> 1. This is the

logarithmic spiral.

Discussion.— (1) When ^=0, p = l.

(2) There is no symmetry.

, p increases toward + c» . As ^ de-

FiG. 125.

(3) As e increases toward + <

creases toward — co^ p approaches 0.

Plotting.—The curve is readily plotted from a series of points.

a = 1.5 it is as shown in Fig. 125.

For

-3 -2 -1 1 2 3 4 5 6

p 0.296 0.444 0.667 1 1.5 2.25 3.38 5.06 7.59 11.39

140. Polar equation of a locus.—The
equation of a locus may often be found with

greater ease in polar than in rectangular

coordinates. The method is similar to

that for finding the equation in rectangular

coordinates, and has already been applied

to the straight line and the conic sections.
^

(See Arts. 69, 78, 91, 103, 117.)

Example.—In Fig. 126, OT is the diameter of

a fixed circle. At T a tangent is drawn, while

about a secant revolves meeting the tangent in

Q and the circle in R. The point P on the line

OQ is taken so that OP = RQ. Find the equa-
tion of the locus of P. Fig. 126.
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Solution.—Choose as pole, OT as polar axis, and let OT = 2a. Let

the polar coordinates of P be (p, 0).

Then since ORT is a right angle, PQ = OR = 2a cos 0.

2a
Since OTQ is & right angle, OQ = —-^•

^x^ ^^ T^^ 2a ^ ^ 2a sin^
Hencep = OP =OQ-PQ = 3^ -2a cos 9. or P - -^^^.
This may be transformed to rectangular coordinates and obtain

2/2
=

J the equation of the cissoid of Diodes derived in article 125.
Za — X

Compare the derivations of the equation by the two methods.

EXERCISES

Discuss and plot the following equations:

1. p =
:,

:;• A parabola.
'^

1 - cos
^

2. p sin tan = 4a. A parabola.

3. p2 cos 20 = a^. An equilateral hyperbola.

4. p = 3 cos -\- 2. Transform to rectangular coordinates.

6. p = a tan^ sec 0. Semi-cubical parabola.

6. p = a cot^ CSC 0. Semi-cubical parabola.

7. Transform equations of exercises 5 and 6 to rectangular coordinates

and compare with article 123.

8. p = a — 6 sin ^ when a<6, when a = 6, and when a>h. Limagons

of Pascal.

9. p2 = a^ cos 30. Is the curve symmetrical with respect to the

90Mine? Does the test apply?

Sketch the following roses by first drawing the radial lines corre-

sponding to values of which make p = 0, and for values of which

make p maximum in numerical value; and then determining the changes

in the values of p between these successive values of 0.

10. p = a sin 20. 11. p = a sin 3^. 12. p = a sin 40.

13. p = a cos 3^. 14. p = a cos 40. 15. p = a cos 5^.

In plotting the curves of the following equations, it should be noted

that in polar coordinates it is sometimes necessary to carry the angle

beyond 360° in order to secure the complete locus.

16. p = a sin3 ^0. 17. p = a sin i0. 18. p^ cos = a^ sin 30.

19. p = a(sin 20 + cos 20). 20. p^ = a* sin i0.

21. p = a(l ± cos 0). The cardioids.

Discuss and plot the following spirals:

22. p0 = a. Hyperbolic or reciprocal spiral.

* 23. p = a0. Spiral of Archimedes.

24. p2 = a0. Parabolic spiral.



180 ANALYTIC GEOMETRY [§141

25. p^6 =» a. The lituus or trumpet. »

26. Derive the equation of the locus of a point such that:

(1) Its radius vector is inversely proportional to its vectorial angle.

Ans. The hyperbolic spiral.

(2) Its radius vector is directly proportional to its vectorial angle.

Ans. The spiral of Archimedes.

(3) The square of its radius vector is directly proportional to its

vectorial angle. Ans. The parabolic spiral.

(4) The square of its radius vector is inversely proportional to its

vectorial angle. Ans. The lituus.

(5) The logarithm of its radius vector is directly proportional to its

vectorial angle. Ans. The logarithmic spiral.

27. Find the equation of the locus of the midpoints of the chords of

the circle p = 2r cos 6, and passing through the pole.

28. Chords of the circle p = 2r cos and passing through the pole

are extended a distance 25. Find the equation of the locus of the

extremities.

PARAMETRIC EQUATIONS OF LOCI

141. Parametric equations.—When the coordinates of

points on a locus are expressed separately as functions of a

third variable, these equations are called the parametric

equations of the locus.

The new variable introduced in finding the parametric

equations is called a parameter.

The parameter may be introduced either for convenience or

as a necessity, since in some cases it is easier to obtain the

coordinates of points on a locus as functions of a third variable

than it is to obtain a single equation connecting the coordi-

nates of the points; and frequently two equations using the

parameter can be obtained where it is not possible to obtain

a single equation connecting the two variables.

As will be seen, the parameter can be chosen in a great

variety of ways, but it is usually chosen because of some
simple geometric relation, or it is the time during which the

point tracing the curve has been in motion.

Example 1.—The parametric equations x = Xi -{• nt and y = yi -{ mi
represent the straight line which passes through the point (xi, yi) and

has the slope — .

n
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That this is so can be seen by assigning values to t and plotting the

values of x and y, or by eliminating i and obtaining the equation

2/ - 2/1 = - (^ - ^i),

P{x,v)

^X

Fig. 127.

which is the equation of a straight line.

Example 2.—Consider a circle with center

at the origin and radius r as generated by a

point P starting on the a;-axis and moving
counter-clockwise. Then it is evident from

Fig. 127 and the definitions of the sine and

cosine, that the parametric equations

X = r cos and y = r sin 0,

where is the angle generated by the radius to the point P, represent the

circle.

Also, squaring and adding the equations, x^ -\- y^ = r^.

Example 3.—The equations x = t^ and y = 2t are parametric equa-

tions of the parabola y^ = 4x, as can be seen by eliminating t from the

two equations. The curve can be plotted by assigning values to t and

computing the corresponding values of x and y.

t - 4 -3 -2 -1 -i i 1 2 3 4

X 16 9 4 1 i i 1 4 9 16

y - 8 -6 -4 -2 -i 1 2 4 6 8

Fig. 128.

The values of x and y are plotted, and
the curve is as shown in Fig. 128. It is

observed that as t varies from — oo to

+ oo the corresponding point will trace

out the curve, coming from oo on the

lower half and going to oo on the upper

haK of the parabola.

Example 4.—The equationsx=a cos

and y = b sin are parametric equa-

tions of the ellipse as is shown in

article 104.

Example 5.—The equations a; ==a sec ^

and y = h tan are parametric equa-

tions of the hyperbola; for dividing



182 ANALYTIC GEOMETRY [§142

the first by a, the second by 6, squaring, and subtracting the second

from the first gives

-i - ^ = sec2 e - tan2 6 = 1.

Example 6.—Equations (1) given in article 94, x = v cos at and

y = V sin at — igt^, are parametric equations of a parabola. Here

t is the number of seconds the point has been moving.

EXERCISES

1. Write parametric equations of the straight line through (—3, 2)

and having a slope of 2. Plot the line from these equations.

2. Write parametric equations of the circle with center at (2, 3) and
radius 5.

3. Represent the parabola y^ = 4a; by several pairs of parametric

equations.

Suggestion.—Either x or y can be represented at pleasure, but the

other must be determined in accordance with this. For instance, if

X = t^+l,y = 2 Vt^ + 1.

Plot the following parametric equations. In each case eliminate

the parameter and find a single equation representing the same curve.

4. a; = 4 - fS 2/ = ^ - 1-

6. a; = 5 cos 6, y = 3 sin 0.

6. a; ~ 2 + sin 0, 2/ = 2 cos 0.

7. X -= t + t^, y = t - tK

8. a; = 5 + 2 cos ^, 2/ = 4 + 3 sin 0.

9. a; = 1 — cos 0, y = i sin i0.

10. a; = cos 0, y = cos 20.

11. X = a sin ^ + 6 cos 0, y = a cos — 6 sin ^.

12. X = a cos^ 0, y = h sin^ 0.

142. The cycloid.—The plane curve traced by a fixed point

on a circle as the circle rolls along a fixed straight line is

called a cycloid. The rolling circle is called the generator

circle and the fixed straight line the base.

The parametric equations of the cycloid can be derived as

follows

:

In Fig. 129, let OX be the fixed straight line, C the generator

circle of radius a, and P(Xy y) the tracing point. Also suppose

the circle is rolling towards the right. -

Choose OX as the x-axis and the origin where the tracing
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point is in contact with the fixed line. Also choose as para-

meter the angle dj through which the radius to the tracing

point turns. Draw the lines shown in the figure.

Then x = ON = OM - NM = OM - PQ,

and y = NP = MC - QC.

ON M
Fig. 129.

[40]

But OM = arc MP = aSj PQ = a sin By MC = a, and

QC = a cos d.

Substituting these values gives

X = a(6 — sin 0),

y = a(l — cos 0).

These are the forms of the equations most frequently used

in dealing with the cycloid. If 6 is eliminated the equation

in X and y is

X = a vers"^ - — \^2ay — y^,

a form that is seldom used.

EXERCISES

1. Plot the cycloid from the parametric equations. Is the curve

periodic?

2. Construct a figure in which 90°<^<180°, and derive the equation

of the cycloid from it.

3. Derive parametric equations for the locus traced by a point on a

fixed radius and at a distance b from the center of the circle rolling as

in generating the cycloid. First, suppose h<a; second, suppose b>a.

4. Plot the curves of exercise 3. Such curves are called trochoids.

143. The hypocycloid.—The plane curve traced by a fixed

point on a circle as the circle rolls along a fixed circle internally

is called an hypocycloid.
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The derivation of the parametric equations is as follows:

In Fig. 130, let be the fixed circle with radius a, and C the

generator circle with radius 6.

Let P(x, y) be the tracing

point.

Choose as origin and OX
as a;-axis. Also let the trac-

ing point start at A where

the X-axis intersects the fixed

circle. Choose as parameters

the angle d, through which

the line of centers of the two
circles turns, and the angle (p,

through which the radius of

the generator circle turns.
Fig. 130.

Draw the lines shown in the figure.

Then x = OM =^ OB -\- BM = 0B,+ NP,
and y = MP = BN = BC - NC.

But OB = OC cos 6 = {a -b) cos 6,

and NP = CP sin PCN = b cos {ip - 6).

Also BC = OC sin 6 = {a - b) sin d,

and NC = CP cos PCN = b sin {<p - $).

Substituting these values gives

X = (a — b) cos 6 + b cos {(p — 6)^

and y = {a — b) sin e — b sin {cp — 6).

To eliminate the parameter <py notice that

a(f
arc AQ = arc PQ, or ad = b(p, and hence <p = -r

Substituting the value of (p in the above equations,

/a — b\
X = (^a — d; cos o -|- d cos

[41]

X = (a - b) cos e + b cos \^^— j 8,
b

a - b\
y = (a - b) sin 8 - b sin (^ ) 8.
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The hypocycloid is a closed curve only when the diameters

of the two circles are commensurable.

If a = 26, equations [41] become x = a cos 6 and y = 0.

Therefore when the radius of the generator circle is one-

half the radius of the fixed circle, the tracing point moves in

a straight line.

The most important special case of the hypocycloid is the

four-cusped hypocycloid, in which a = 46. The curve is

shown in Fig. 131. Here the parameter

can be eliminated and a single equation

in X and y obtained.

Putting 6 = ia in equations [41],

X = ja cos 6 + la cos 36,

and y = la sinO — ja sin 30.

But from trigonometry

cos 30 = 4 cos^ 0—3 cos 0,

and sin 30 = 3 sin — 4 sin^0.

Substituting and simplifying, x = a cos^ and y = a sin^ 0.

Affecting by the exponent f and adding, gives the equation

in X and y,

[42] + y^ = siK

144. The epicycloid.—The plane curve traced by a fixed

point on a circle as the circle rolls along a fixed circle externally

is called an epicycloid.

Using a and 6 as the radii of the fixed circle and the generator

circle respectively, and and <p as shown in Fig. 132, the

equations of the epicycloid are

[43]

X = (a + b) cos e - b cos
(̂ t ) 0,

y = (a + b) sin e - b sin (^^) e.

An important special case of the epicycloid is the cardioid, in
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which a = 6. The curve is as shown in Fig. 133. The

equations here become

X = 2a cos 6 — a cos 20,

and y = 2a sin 6 — a sin 26.

P(x,V)

Fig. 132. Fig. 133.

P(^»y)

^X

145. The involute of a circle.—If a string is wound around

a circle, the curve in the plane of the circle, traced by a point

on the string as it is unwound
and kept taut, is called the

involute of the circle.

The parametric equations

may be derived as follows:

Choose the x-axis through the

point where the tracing point is

in contact with the circle, and

the origin at its center. The
parameter 6, Fig. 134, is the

angle through which the radius

to the point of tangency of the string has turned.

Then from the figure,

X = OM = OB + BM = OB + LP,

and y = MP = BL = BT - LT
But OB = a cos (9, LP = TP sin 6 = ad sin 6,

and BT = a sin 0, LT = TP cos d =^ aS cos d.

Fig. 134.
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Si

[44]

Substituting these values gives

X = a cos + ae sin

y = a sin 6 — a6 cos 0.

EXERCISES

1. Derive the equation of the four-cusped hypocycloid.

2. Derive the equation of the epicycloid.

3. Derive the polar form of the equation of the cardioid from the

parametric equations given in article 144.

Suggestion.—In the polar form of the equation the pole is at A, Fig.

133. Notice that Z XAP = Z XOC, and hence the parameter 6 is

equal to the polar coordinate e.

First, square and add the equations of Article 144, then translate to

new origin at A {a, 0), finally, transform to polar coordinates and de-

rive the equation p = 2a (1 — cos d).



CHAPTER X

EMPIRICAL LOCI AND EQUATIONS

146. General statement.—In common every day affairs, in

business, in the sciences as physics, chemistry, and biology,

and in engineering, questions often arise involving the relations

of variables. Values of these variables can be plotted accord-

ing to some system of coordinates, and, in this manner, curves

obtained that give valuable information. Often the desired

facts can be discovered directly from the curve; but frequently,

especially in the sciences and in engineering, it is of the utmost

importance to find a mathematical equation representing the

curve more or less accurately.

The determination of the equation may be a comparatively

simple matter, but often it is very laborious and involves

methods beyond the scope of this text.

A curve that is plotted from observed values of the related

variables is called an empirical curve or locus.

The equation of an empirical curve is an empirical equation.

Usually the empirical equation represents a curve that only

approximates the empirical curve more or less accurately.

147. Empirical curves.—Innumerable examples of empiri-

cal curves could be given. For many of these there may be no

necessity nor reason for finding equations representing them.

The rise and fall in the price of a certain stock may be

represented graphically by using the price each day as the

ordinate of a point of which the date is the abscissa. The
curve drawn through these points will show at a glance the

fluctuations of this particular stock.

If the weight of a child is taken from month to month, a

curve can be plotted by using the weights as ordinates and

the corresponding dates as abscissas of points.

188
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Empirical curves are often traced mechanically by instru-

ments designed for that particular purpose. In this manner,

at a weather bureau station, a curve is traced showing the

relation between the temperature and the time. In Fig. 135,

is a similar curve that shows the per cent of carbon dioxide

ilaiMSTfTM

Fig. 135.

in the flue gas from a power plant. The variables are the

time and the per cent of carbon dioxide. The system of

coordinates is apparent.

In Fig. 136, are plotted several curves showing the changes

in the cost of living from July, 1914 to November, 1919. The
data was taken from the Research Report issued by the

National Industrial Conference Board.
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In such curves as these the information desired is gained

directly from the curve, and no attempt would be made to

derive an equation.

150

135

120

105

90

75

60

45

SO

15

(6)/*

-

A
/(5)

—

/ y /°-

-

yC^.|5
-

^^^A^ -^

1914 1915 Year 1916 1917 1918 1919

Change in prices from 1914 to 1919.

(1) Shelter; (2) Heat and Ught; (3) Sundries; (4) Cost of living; (5) Food; (6) Clothing.

Fig. 136.

148. Experimental data.—In laboratory experiments and

practical tests, pairs of simultaneous values of two varying

quantities are measured. When these pairs of values are

plotted, a curve is determined from which useful information

may be obtained. The problem of finding the empirical

equations representing such curves will now be considered.

All data that is a result of measurements must be assumed
to be subject to some degree of error, hence the endeavor will

always be to approximate as closely as possible, both in the

curve and in the equation.

Sometimes in a problem of this kind the general form of

the equation of the curve is known beforehand, and sometimes

nothing at all is known but the coordinates measured in the
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experiment. If the general form of the equation is known, the

computations for finding the definite equation can be made at

once; but, if the general form of the equation is not known, the

points are plotted so as to discover the general form if possible.

149. General forms of equations.—The forms of equations

frequently used are the following. Most of these have been

studied in previous chapters, and should be reviewed, if

necessary, so that their forms may be clearly in mind.

(1) y = mx + 6, straight line.

(2) y = cx^'j n>0, parabolic type.

(3) y = cx^'y n < 0, hyperbolic type.

(4) y = a6^ or y = ae*^, exponential type.

(5) y = a + hx + cx^ + dx^ + • * * + qx'^.

For the parabolic type it is often necessary to use

y — k = c(x — hy, n > 0,

where the vertex is at the point (/i, h) ; and for the hyperbolic

type

y — k = c(x — hYj n < 0.

150. Straight line, y = mx + b.—This is the form of the

empirical equation when it is known that the relation between

the variables is that of a direct variation. Since in the

equation y = mx + h there are but two arbitrary constants,

two pairs of measured values would be sufficient to deter-

mine the equation completely provided the values could be

measured accurately. Since this is not possible, a larger

nimiber of pairs of values are measured, and from these an

equation is determined that represents the straight line lying

most nearly to all the points. The method used in the follow-

ing example for securing the equation ij called the method of

least squares. The theory underlying the method is too

difficult to be given here.

Example.—Find the equation of the straight hne that is in the form

y = mx -\- 6, lying most nearly to the points determined by the follow-

ing measured values of x and y:
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X 40 50 62.4 70 80.5 90 97

y 8.7 7.5 6.5 5.85 5.05 4.25 3.75

Solution.—Here the type of the equation is given so there is no need

of plotting the points.

Substituting each pair of values successively in the equation

y = mx + h gives the seven equations:

8.7 = 40m +6,
7.5 = 50m +6,
6.5 = 62.4m +6,
5.85 = 70m + &,

5.05 = 80.5m +6,
4.25 = 90m +6,
3.75 = 97m + 6.

Multiplying each of these by the coefficient of m in that equation

and adding the seven resulting equations, gives

2690.875 = 36883.01m + 489.96. (1)

Y
15

20 80 40 50 60 70 80 90 IGO

Fig. 137.

Multiplying each of the seven equations by the coefficient of h in

that equation and adding the results, gives

41.6 = 489.9m + 76. (2)

Solving (1) and (2) for m and 6, gives

m = -0.085, and h = 11.89.

Substituting these values in y = mx + 6, gives

y = -0.085a: + 11.89. (3)

This is taken as the equation of the straight line lying most nearly

to all the points.

In Fig. 137 are plotted equation (3) and the points whose
coordinates are the observed values of x and y.
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151. Method of least squares.—The method of least

squares given in the previous article becomes tedious when
there are many observations and the numbers are large. A
sufficie-ntly accurate result may be obtained by plotting the

points, and obtaining the arbitrary constants of the equation

by using two points that lie on the straight line that appears

to be the best. If none of the plotted points lie on this line,

use coordinates of points that do lie on the line.

The method of least squares is quite mechanical, while the

best straight line if determined by plotting is a matter of

judgment and a good eye.

The method by least squares for finding the empirical

equation is stated in the following:

Rule.—First y substitute each pair of observed values of the

variables in the general equation,

Secondj if there are just as many equations as there are con-

stants to be found, solve these equations for the constants. If

there are more equations than there are constants, multiply each

equation by the coefficient of the first constant in that equation,

and add the resulting equations to form one equation. Proceed

likewise for each other constant, and thus find as many equations

as there are constants.

Third, solve these equations for the constants.

Fourth, substitute the constants, thus found, in the general

equation and obtain the required empirical equation,

EXERCISES

1. A wire under tension is found by experiment to stretch an amount Z,

in inches, under a tension T, in pounds, as given in the following table.

Assume the relation I = kT (Hooke's law) and find the equation which
best represents the relation between I and T.

T 5 10 20 30 40 50

I 0.003 0.009 0.019 0.030 0.040 0.053

13
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2. Find the empirical equation in the form oi y = mx + h best

representing the relations between the values given in the following

table

:

X 12 15.3 17.8 19

y 24.4 29 32.6 34.2

3. Find the equation of the straight line lying most nearly to the

points determined by the following pairs of measured values:

X 12 15 18 21 24

y 24.4 28.6 32.7 37.1 41.2

4. Find the -empirical equation connecting R and t from the following

table of experimental values. R is in ohms and t in degrees centigrade.

The equation is assumed to be in the form R = mt -\- h.

t 10.1 15 21 26.8 33.1 40.4

R 9.907 9.923 9.940 9.959 9.979 10.002

5. Find the empirical equation giving H in terms of t, from the data

of the following table. H is the total heat in a pound of saturated

steam at t degrees centigrade. The general form is ^ = m^ + 6.

i 65 85 100 110 120

H 626.3 632.4 637 640.9 643.1

6. In an experiment with a Weston differential pulley block, the

effort E, in pounds, required to lift a weight W, in pounds, was found

to be as follows:

w 10 20 30 40 50 70 90 100

E 3.25 4.875 6.25 7.5 9 12.25 15 16.5

Find the empirical equation in the form E = mW + h.
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7. Plot the data given in exercise 6, and draw a line that, in your

judgment, lies most nearly to all the points. Select two points that

lie as nearly on the line as any, and determine the equation from the

coordinates of these points. Compare the result with that of exercise 6.

8. In the following table, W is the weight of potassium bromide which

will dissolve in 100 grams of water at t degrees centigrade. Find the

empirical formula in the form W = mt -}- h, connecting W and t.

t 20 40 60 80

w 53.4 64.6 74.6 84.7 93.5

152. Parabolic type, y = cx"^, n > 0.—If it is not known
that the general form of the equation is of some particular

type, it is well to plot the data on rectangular coordinate paper

and judge the type from the curve. After the general form is

selected, it is often difficult to determine whether or not it

actually represents the observed values with sufficient accuracy

for the purposes of the problem. A device that is of great

assistance in determining whether to retain or reject the type

selected is to transform the general equation into a linear

equation, and see if the data plots as a straight line. This is

done as follows when the eiquation is of the parabolic type:

Given equation, y = ex'*.

Taking logarithms of both sides,

log y = log c + n log x,

which is a linear equation in log x and log y. If the points

with coordinates (log x, log y)j where x and y for each point

are a pair of observed values, are plotted, and these points

are found to lie approximately on a straight line, then the

general form of the equation is suitable to the problem.

The values of the constants, log c and n, can be determined

by the method of least squares as in article 151.

Of course, if the general form of the equation to be used is

known to be of the parabolic type, the plotting is not necessary.
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Example.—Q is the quantity of water, in cubic feet per second, that

flows through a right isosceles triangular notch when the surface of the

still water is at a height H feet above the bottom of the notch. The
values of H and Q in the following table are measured. Find the equa-

tion connecting H and Q.

H 1 1.5 2 2.5 3 4

Q 2.63 7.25 15 26 41 84.4

Solution.—The values of H and Q are plotted in Fig. 138, and con-

nected with the curve, which appears to be of the parabolic type.

Assume the general form Q = cH''. (1)

Taking logarithms, log Q = log c + n log H. (2)

Put log H = X, log Q = y and log c = 6, and the equation becomes

y = nx -{- h.

75
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Fig. 138.

.4 .6 .8 1

Fig. 139.

The values of x and y are found and plotted in Fig. 139. The points

lie approximately in a straight line.

logi^ 0.1761 0.3010 0.3979 0.4771 0.6021

logQ 0.4200 0.8603 1 . 1761 1.4150 1.6128 1.9263
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Substituting the values for x and y in the equation y = nx + h^ the

following equations are obtained:

0.4200 = On +6,
0.8603 = 0.1761n + fc,

1.1761 = 0.3010n +6,
1.4150 = 0.3979n + 6,

1.6128 = 0.4771n + b,

1.9263 = 0.6021n + h.

Solving these equations by the method of least squares,

n = 2.5 and b = 0.4208.

Substituting in equation (2), log Q = 0.4208 + 2.5 log H.

Then log Q = log 2.635 + log H^K

Or log Q = log (2.635^2.5).

/. Q = 2.635/^2.5^ the required equation.

The equation can be tested by computing values of Q for the several

observed values of H, and comparing with the observed values of Q.

153. Hyperbolic type y = cx^, n < 0.—Data that are

known to give an equation of this type can be handled in

precisely the same manner as the parabolic type. The only

difference that will arise will be that the value of n is

negative.

154. Exponential type, y = ab^ or y = ae^"^.—The data

from certain experiments, such as those involving friction,

give rise to exponential equations. As with the other types

the data can be plotted on rectangular coordinate paper and

the general form of the equation determined. If it is thought

to be of the exponential type, it can be tested by taking the

logarithms of both sides of the equation and plotting on

rectangular coordinate paper. If the points lie on a straight

line, the assumed equation is correct.

In order to express the form y = ah'' in the form y = oe*^ it is

only necessary to put b = 6^, whence log h = k log 6, or

k = I^^ = 2.3026 log b.
log 6
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Example.—From the following data determine the relation between

W and 0.

e 1.57 3.14 4.71 6.28 7.85 9.42 11

w 5.35 7.15 9.55 12.8 17.12 22.9 30.8

Solution.—First, plot the data given and determine the form of the

equation to be used. The plotting is shown in Fig. 140, and the equation

assumed is

W = abt - (1)

Second, to test this, take the logarithms of both sides of TT = ah^.

This gives log W = log a -{- 6 log b.

Put log W = y, log a = B, and log b = m.

This gives y = md -{- B. (2)

W
30

20 y
r

//
e

O 5 10

Fig. 140.

O 5 10

Fig. 141.

Arranging these values in a table and plotting, gives approximately

a straight line as shown in Fig. 141.

1.57 3.14 4.71 6.28 7.85 9.42 11

0.728 0.854 0.980 1.107 1.234 1.360 1.489
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Substituting the pairs of values of d and y in equation (2),

0.728 = 1.57m + J5,

0.854 = 3.14m + B,

0.980 = 4.71m + B,

1.107 = 6.28m + B,

1.234 = 7.85m + B,

1.360 = 9.42m + B,

1.489 = 11m +B.

Solving these by the method of least squares, gives

m = 0.0807 and B = 0.6005.

Then a = 3.985 and h = 1.204.

.*. W = 3.985 X 1.204^, the required equation.

This expressed in the form W = ae^^ gives,

W = 3.985e0-i858^.

155. Probability Curve, y = ae~^^'.—The curve that is

perhaps the most widely used of any in dealing with experi-

mental data is one variously called 'Hhe probability curve/'

'Hhe error curve/' and "the normal distribution curve."

It is represented by the equation

y = ae-^^',

where a and h are constants to be determined from the data.

It is evidently symmetrical with respect to the 2/-axis. While

definite uses of this curve are beyond the scope of this chapter,

it may be stated that it is used wherever a most probable

correct value is to be determined from a large number of

independent measurements or observations. It is used in
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the study of statistics, in astronomy, biology, and chemistry,

and in the study of theory of measurements.

The form of the curve is shown in Fig. 142.

166, Logarithmic paper.—Because of the frequent occur-

rence of formulas of the parabolic and hyperbolic types, con-

siderable use is made in

engineering practice of

logarithmic paper, that is,

paper that is ruled in lines

whose distances, horizon-

tally and vertically, are

proportional to the loga-

rithms of the numbers 1,

2, 3, etc.

Logarithmic paper can

be used instead of actually

looking up the logarithms

of the numbers as was
done in the example of

article 152. For if the

values of H and Q are

plotted as shown in Fig.

143, a straight line is de-

termined just as when the

logarithms of H and Q
were plotted on rectangu-

lar coordinate paper.

Semi-logarithmic paper

is ruled uniformly the

same as ordinary coordi-

nate paper in one direction,

and in lines spaced as on logarithmic paper in the other direc-

tion. Semi-logarithmic paper may be used to advantage when
testing an exponential type. In Fig. 144, the values of 6 and
W of the example of article 154 are plotted into a straight Une.
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EXERCISES

1. Solve the equations of article 152 by the method of least squares

and check the results given.

2. Determine the equation of the hyperbolic type connecting x and

y from the following pairs of values:

X 1.5 2.8 5.6 8.3

y 0.573 0.243 0.094 0.055

100
90
80
70

60

CO

40

30

20

W

^
_^
^^

^^
^

^
^

n^^ •

^^

5 6 7

Fig. 144.

10 11 12

3. In propelling a ship of a certain class at 10 knots, the following

pairs of values of D and H are measured, where D is the displacement

in tons and U is the indicated horse-power. Find a formula of the

parabolic type connecting D and H,
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D 1100 1530 1820 2500 3130

H 440 550 620 770 890

Compute H when D = 2000.

4. For different heights, h in feet above the surface of the earth,

the reading, p in inches, of the barometer are taken as given in the

following table. Determine a formula of the form p = ae^^ connecting

p and h.

h 886 2753 4763 6942

V 30 29 27 25 23

6. The data of the example of article 154 was taken in an experiment

to determine the coefficient of friction ju, when a cord is wrapped around

a cylindrical shaft, Fig. 145. In performing the

experiment, the cord has a weight of 2 pounds
attached to one end, and a pull of W pounds at

the other end induces slipping when the arc of

contact is radians. Determine the value of ii

for the equation W = ae^^. fi = k oi Art. 154.

6. In testing the lubrication of certain oils in

a bearing, 4J inches in diameter and 8 inches

long with 250 revolutions per minute, the follow-

ing pairs of values were measured, where p is the pressure in pounds
per square inch and fi is the coefficient of friction. Determine a formula

of the fprm ^ = ap~ connecting p and /*.

1

p ' 65 115 215 315 465

M 0090 0.0056 0.0036 .0.0028 0.0025

Plot the values showing that the curve is of the hyperbolic type.

7. In the same experiment as in exercise 6, but using another oil, the

following values were obtained. Determine a formula connecting p and m-

P 65 115 215 315 415 515

M 0.00788 0.00528 0.00338 0.00267 0.00235 0.00215
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8. In the following table are given the measurements taken in an

experiment on friction, where /* is the coefficient of friction in a certain

bearing running at a velocity of V feet per minute. Determine a formula

of the form fx = aV'' connecting V and ix.

V 105 157 209 262 314 366 419 471

M 0.0018 0.0021 0.0025 0.0028 0.003 0.0033 0.0036 0.004

9. In a mixture in a cylinder of a gas-engine, under adiabatic expan-

sion, the following pairs of values are measured. Determine a formula

in the form pV" = C connecting v and p.

V 0.8 2 4 6 9

V 200 57 22 12.6 7.2

157. Empirical formulas of the tjrpe y = a + bx + cx^ +
dx^ + • • • + qx"^.—When a given set of corresponding

pairs of values will not satisfy, in a satisfactory manner, any

of the type equations already considered, the general equation

y = a -\- hx + cx^ -\- dx^ + • • • + qx^

may be assumed. By substituting pairs of values in this

equation, enough equations can be obtained to determine the

constants a, 6, c, • • • .

Since there must be, at least, as many equations as con-

stants, no more terms can be assumed than the number of

pairs of values measured. If there are more pairs of values

than the number of terms assumed, the equations can be

solved by the method of least squares. A less accurate

method, but one more easily carried out, is to select as many
of the equations as there are constants, and solve these for

the constants. The equation thus found can be tested by
substituting the pairs of values not used in the equations

that are solved for the constants.

If the points when plotted suggest a parabola, only three
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terms need be used. If the arrangement of the points is

more irregular, more terms must be assumed.

Example.—The following measurements at different depths were made
to determine the rate of flow in a river, where x is the fractional part

of the depth from the surface and y is the rate of flow. Determine

a formula of the form y = a -\- bx -\- cx^ connecting x and y.

X 0.2 0.3 0.4 0.6 0.8 0.9

y 3.195 3.253 3.261 3.252 3.181 3.059 2.976

Solution.—Substituting the pairs of values in y = a -{- hx -\- cx^,

3.195 = a + 06 + Oc,

3.253 = a +0.26 + 0.04c,

3.261 = a +0.36 + 0.09c,

3.252 = a +0.46 + 0.16c,

3.181 = a +0.66 + 0.36c,

3.059 = a +0.86 + 0.64c,

2.976 = a +0.96 + 0.81c.

These are solved by the method of least squares as follows:

Multiplying each by its coefficient of a and adding the seven resulting

equations, gives

22.177 = 7a + 3.26 + 2.1c. (1)

Multiplying each by its coefficient of 6 and adding, gives

9.9639 = 3.2a + 2.16 + 1.556c. (2)

Multiplying each by its coefficient of c and adding, gives

6.45741 = 2.1a + 1.5566 + 1.2306c. (3)

Solving equations (1), (2), and (3) for a, 6, and c,

a = 3.196, 6 = 0.438, c = -0.7608.

Substituting these values in y = a + hx -\- cx^, gives

y = 3.196 -L 0.438a: - 0.7608^2,

which is the required equation.

EXERCISES

1. Plot the corresponding pairs of values of x and y given in the

example of article 157, and draw a smooth curve lying as near as possible
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to all the points. Select the three points lying most nearly on the curve,

and use the coordinates of these to find the values of a, 6, and c. Com-
pare with the result given in the solution by the method of least squares.

2. Determine an equation of the form y = a { hx -{ cx^ -\- dx^ from

the following experimental values. Solve both by the method of least

squares and by using the coordinates of four points.

x

1

0.4 0.6 0.8 1.0 1.2 1.4 1.6

y 0.89 1.35 1.96 2.72 3.62 4.63 5.76

3. The melting point of an alloy of lead and tin containing x per cent

of lead is t degrees centigrade. From the following table of measured
values, find a formula in the form t = a -{-hx -\- cx^, giving the melting

point of an alloy containing any known per cent of lead from 90 per

cent to 35 per cent.

X 87.5 84 77.8 63.7 46.7 36.9

t 292 283 270 235 197 181

For a further discussion of the subject of this chapter, the following

works may be consulted: Merriman, Method of Least Squares; Weld,

Theory of Errors and Leo^t Squares; Johnson, Theory of Errors and
Method of Least Squares; Palmer, Theory of Measurements; Steinmetz,

Engineering Mathematics; Running, Empirical Formulas; Lipka, Graph--

ical and Mechanical Computation.



CHAPTER XI

POLES, POLARS, AND DIAMETERS

158. Harmonic ratio.—If two points A and B divide a

line segment MN externally and internally in ratios that

have the same numerical values, then A and B are said to

divide MN harmonically. A and B are called harmonic

conjugates with respect to the line segment MN.
Theorem.—If the points A and B, divide the line segment

MN harmonically
J
then the points M and N divide the line seg-

ment AB harmonically.

M A N B

Fig. 146.

Proo/.—By hypothesis,j^= - ^^•

Taking this proportion by alternation, ^rr^ ~
~~d]\j'

Multiplying both sides of this equation by — 1, and replacing

^MA by AM and —BN by NB gives the required proportion

AM ^ _AN
MB NB'

159. Poles and polars.—Definition,—If a line drawn through

some point Pi is allowed to rotate about Pi while cutting a

conic in the variable points M and iV, then the locus of all

points harmonically conjugate to Pi with respect to M and iVis

called the polar of Pi with respect to the conic, and Pi is

called the pole of the locus.

206
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To find the equation of the polar of Pi with respect to an

ellipse, suppose the ellipse in Fig. 147 is given in the standard

form,

^ , ^ = 1

a2
"^ 62 ^•

If P2 is the conjugate of Pi with respect to the ellipse and
P1P2 is any line cutting the

ellipse in the points M and iV,

then M and N are harmonic

conjugates with respect to the

line P1P2.

If the coordinates of Pi are

(xiy 2/1) aiid the coordinates

of P2 are (^2, 2/2) ; then by [4] the

coordinates of M are

/r2a;i + riX2

^x

Fig. 147.

/r2Xi_

\ Ti

and of N are

+ r2

(r2Xi — r\X2

ri - r2

^22/1 + ri2/2+ riy2\

Mi_r_M2\.
ri - r2 J

Since M and N are points on the ellipse, their coordinates

must satisfy the equation of the ellipse, therefore

/r2Xi + riX2\ ^

\ ri-\- r2 I
+

/r-22/i + riy2\
^

\ ri + r2 /

and
{r2Xi - riX2\ 2 /r22/i - ri2/2\

\ Ti — r2 /
,

\ ri — r2 /

^9 "r* 70

= 1,

= 1.

Clearing each equation of fractions and subtracting the

second from the first gives the equation

46Vir2X1X2 + 4aVir2?/i2/2 = 4:rir2a%^.

Dividing both sides of the equation by 4rir2 and dropping



208 ANALYTIC GEOMETRY (§159

the subscripts for the coordinates of the point P2 gives the

equation of the polar of Pi

' ^j^-L-U^y = 1

* • a2
"^ 62

This shows that the polar of a point with respect to an

ellipse is a straight line. If the point Pi is outside the ellipse

the Une drawn through Pi will not always intersect the eUipse.

Algebraically the points of intersection of such a line and

the ellipse have imaginary coordinates, but the coordinates

of the point conjugate to Pi with respect to these points

with imaginary coordinates are real. Hence that part of the

locus obtained outside of the ellipse is also included as part

of the locus.

In like manner it can be shown that the polar of a point

Pi with respect to the hyperbola

5^ _ ^ = 1

a" 62

is

Xix yiy ^
a2 62

Also the polar of Pi with respect to the parabola

2/2 = 2px
is

yiy .= px + pxi.

Likewise the polar of a point Pi with respect to the general

conic Ax"- + Bxy -\- Cy^ + Dx + Ey -\- F = is

•p ¥> DDE
[45] Axix+ 2^17 + 2^1 + ^yiy + 2^+ 2^^'"^ 2^

"•"

|yi + F = 0.

The similarity should be noticed between this equation

and the general equation of the conic written

Axx^—^xy + -^xy+Cyy+-^x + 2"^ + 2"2/ + 2"2/+^ = 0.
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These equations show that the polar of a point Pi with

respect to any conic is a straight Hne.

160. Properties of poles and polars.

—

Theorem 1.—// two

points are so situated that one lies on the polar of the second^

the second lies on the polar of the first.

Suppose the conic is the elUpse i + p = 1, and the point

isPi(xi, 2/i).

Then the polar of Pi is ^ +^ = 1.

If P2 lies on the polar of Pi its coordinates will satisfy that

equation, hence

a?iX2
, 2/1^2 ^ .

a'
"^

62

But this is precisely the condition that Pi shall satisfy the

equation

^ , M = 1

a2
"^

62

which is the equation of the polar of P2.

This proof can easily be extended to the general equation

of the second degree.

Theorem 2.

—

If tangents can be drawn from a point to a

conic, the polar of this point passes through the points of contact

of the tangents.

In Fig. 147, the tangent PiR meets the conic in two co-

incident points at R. Since the conjugate to Pi lies between

these two coincident points, it must coincide v/ith P. Likewise

the polar must pass through S.

Theorem 3.

—

Tangenis to a conic at the points where a line

cuts the conic pass through the pole of the line.

This follows at once from theorem 2 in conjunction with

the assumption that only one tangent line can be drawn to

a conic at a given point.

Example.—Find the pole of the line x + 2y = 1 with respect to the

conic Sx^ + 42/2 = 6.

14
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The polar of the point (xi, yi) with respect to the elHpse 3x^ -j- ^y^ = 6

is So^ix + 4yiy = 6.

Since this equation and x -{- 2y = 1 are equations of the same line the

coefficients of x, y, and the constant term must be proportional, then

Sxi 6 , 42/1 6- =
j, and —=-.

Hence Xi = 2, 2/1 = 3, and the required pole is the point (2, 3).

EXERCISES

Find the equations of the polars of the points in exercises 1-8 with

respect to the conies following.

1. (2, 3) 3x2 4. 42^2 = 6.

2. (-1,6) 2x^ +2/2 = -3.

3. (-1,2) 3x2 _ 22/2 = 1.

4. (1, -3) 2x2 _ 42^2 = «5.

6. (1, 2) 2/2 = 6x.

6. (-3, -2) x2 =42/.

7. (1, 2) x^ - xy + y^ - 6x - Sy + 2 = 0.

8. (3, -4) X2/ + 32/2 + 3x + 72/ + 1 = 0.

Find the coordinates of the poles of the lines in exercises ^16 with

respect to the conies following.

9. 2x + 42/ = 1, 6x2 _|_ 42^2 ^ 3,

10. 2x + 22/ - 1 = 0, 2x2 4. 52,2 = 5.

11. 2x - 32/ - 6 = 0, 4x2 _ 32,2 = 12.

12. X - 22/ + 4 = 0, 2/^ - 2x = 0.

13. X + 2/ + 1 = 0, x2 + 62/ = 0.

14. 4x + 52/ = 2, x2 + a;2/ + 2/2 = 3.

15. 3x + 52/ + 2 = 0, x2 + 22/2 + X + 2/ = 0.

16. 2x + 1 = 0, x2 + 2x2/ + 22/ - 2 = 0.

17. Find a point which with' (2, 4) divides the line joining (1, 1) to

(4, 10) harmonically.

18. Prove that in any conic, the polar of the focus is the directrix.

161. Diameters of an ellipse.—Definition.—The locus of the

middle points of a set of parallel chords of a conic is called a

diameter of the conic.

To find the diameter of an ellipse, let its equation be given

in the form of [32] and suppose that the slope of the parallel

chords is mi. Unless mi is infinite, the equations of these

chords have the form y = mio; + c, where mi is constant for
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any one system of parallel chords, but c will have different

values for different chords of the system.

Suppose MNj Fig. 148, is one of these chords, the coordi-

nates of M and N can be found by

solving simultaneously the equations

y = m\X + c

and +?=i.
^x

Eliminating y between these equa-

tions gives Fig. 148.

(62 + a^mi^)x^ + 2a^cmix + a^c^ - a^h^ = 0.

The two roots of this equation are the abscissas of the

points M and N. Half their sum is the abscissa of P2(x2,y2)y

the middle point of MN.
By a well-known theorem, Art. 4, the sum of the roots of

the quadratic equation r'

Ax^ + Bx + C =

is equal to — ^•

Hence ^ ^ a^cmi

To find t/2, substitute this value of X2 in the equation

y = niix + c.

Then 2/2
b^ + a^mi^

The relation between X2 and 2/2 for any one, and therefore

for every one, of these parallel chords must be independent

of c. Hence eliminate c by dividing 2/2 by X2. This gives

X2 a^iui

Dropping the subscripts for P2 gives the following equation

of the diameter which bisects all chords of slope mi

:
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This is the equation of a straight Hne passing through the

center of the eUipse.

If mi is infinite, the parallel chords are all parallel to the

2/-axis and the symmetry of the ellipse shows the a;-axis to be

the diameter.

If nil = 0, the parallel chords are all parallel to the x-axis,

and the symmetry of the ellipse shows the y-Sixis to be the

diameter.

Since mi can have any value, any line passing through

the center of the ellipse is a diameter.

The length of a diameter of an eUipse is the distance be-

tween the points where the diameter cuts the elHpse.

162. Conjugate diameters of an ellipse.—The slope of the

diameter bisecting all chords parallel to the diameter

y = -7;^.^ (1)

IS

mi.

Va^mi/

and its equation is

y = miX (2)

But the diameter (2) is the diameter of the ellipse parallel

to the set of parallel chords of article 161. Hence the diameter

(1) bisects all chords parallel to diameter (2), and the diam-

eter (2) bisects all chords parallel to diameter (1).

Two diameters such that each bisects all chords parallel

to the other are called conjugate diameters. Hence diam-

eters (1) and (2) are conjugate diameters.

If m2 is the slope of (1)

a^mi
or

62
Wim2 = ~-^-
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163. Diameters and conjugate diameters of an hyper-

bola.—Methods exactly similar to those in articles 161

and 162 show that all diameters of an hyperbola pass through

its center. The diameter of -^ — f^ = 1, which bisects all

chords of slope mi, Fig. 149, is

y =

mim2 = -^•
Fig. 149.

The slopes of two conjugate

diameters of an hyperbola are

connected by the relations

a

The length of a diameter of an hyperbola when the

diameter meets the hyperbola is the distance between the

points where the diameter cuts the hyperbola. If the di-

ameter does not cut the hyperbola, its length is defined as the

distance between the points where it

cuts the conjugate hyperbola.

164. Diameters and conjugate

diameters of a parabola.—^Let the

slope of the parallel chords be mi,

Fig. 150, and let their equations be

y = niix + c, where c will have

different values for different chords.

The ordinates of the points of in-

tersection of the parabola y^ = 2pXj

and these parallel chords are given by the equation

niiy^ — 2py + 2pc = 0.

If 2/2 is the ordinate of any one of their middle points

P

Fig. 150.

2/2
=

mi

Since this equation is independent of c, it is the condition
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that all points on the diameter must satisfy. Hence dropping

subscripts, the equation of the diameter of a parabola is

^ mi

This shows that the diameter of a parabola is a straight

line parallel to its axis. Since mi may have any value except

0, any line parallel to the axis of a parabola is a diameter.

As mi approaches 0, the system of parallel chords approaches

parallelism to the axis of the parabola, and y increases without

limit. Hence the diameter bisecting chords parallel to the

axis of a parabola does not lie in the finite part of the plane.

165. Diameters and conjugate diameters of the general

conic.—Since the slope of a line remains unchanged by trans-

lation of axes, all the results obtained so far hold good after

translation for conies whose axes are parallel to the coordinate

axes, providing that in the ellipse and hyperbola the major

and the transverse axis respectively, and in the parabola the

axis of the parabola are parallel to the x-axis.

Formulas obtained for conjugate diameters, and equations

of diameters do not hold true for rotation of axes unless

account is taken in mi and m2 of the change made by the

rotation.

EXERCISES

1. Find the equation of the diameter of the ellipse Sx^ + 4y^ = 6,

which bisects chords of slope 3. Chords of slope —
i.

2. Find the equation of the diameter of the hyperbola 2x^ — Ay^ = 1,

which bisects chords of slope 3. Chords of slope — ^.

3. Find the equation of the diameter of the parabola y^ = 4x, which

bisects chords of slope 3. Chords of slope — J.

4. Find the equation of the diameter which bisects chords of slope 3,

for the elHpse 2x^ + Sy^ - 4x - 12y -\- 2 = 0.

Suggestion.—Translate axes to center of conic, and then translate

back to the original axes.

5. Find the equation of the diameter which bisects chords of slope 3,

for the hyperbola 2x2 _ ^y2 - 4^; + I2y - 22 = 0.
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6. If (2, 1) is one extremity of a diameter of the ellipse Ax^ + 9y^ = 25,

find the coordinates of the extremities of the conjugate diameter.

7. If the point (1, 2) is one extremity of a diameter of the hyper-

bola 25x2 _ 41^2 — 9^ gjj(j ^hg coordinates of the extremities of the con-

jugate diameter.

x^ y^
8. If {xi, 2/i) is an extremity of a diameter of the ellipse ~^ + f^

= 1,

what are the coordinates of the extremities of the conjugate diameter?

9. Prove that the sum of the squares of any two semi-conjugate

diameters of an ellipse is constant and equal to a^ + b^.

10. If (a;i, 2/i) is an extremity of a diameter of the hyperbola -^ — 1^ = 1,

what are the coordinates of the extremities of the conjugate diameter?

11. Prove that the difference of the squares of any two semi-conjugate

diameters of an hyperbola is constant and equal to a^ — b^.

12. Find the equation of the chord of the hyperbola 2x^ — Zy^ = 6,

through the point (4, 1) which is bisected by the diameter y = 4x.

13. Find the equation of the chord of the ellipse A^ + 2y^ = 4, through

the point (6, 3) which is bisected by the diameter Sy -\- x = 0.

14. Find the equation of the chord of the parabola y^ = 4x through

the point (1, 6) which is bisected by the diameter y = S.

15. Prove that the polar of any point Pi{xi, yi) on a diameter of an

ellipse is parallel to the conjugate diameter.

16. Two lines connecting a point on an ellipse with the ends of a

diameter are called supplemental chords. Prove that supplemental

chords are always parallel to a pair of conjugate diameters.

17. Prove that if a parallelogram is inscribed in an ellipse its sides are

parallel to conjugate diameters.

18. Find the locus of the middle points of chords which connect the

ends of pairs of conjugate diameters of a fixed ellipse.



CHAPTER XII

ELEMENTS OF CALCULUS

166. Introductory remarks.—As has been stated, the

discovery of the methods of analytic geometry during the

first half of the seventeenth century gave the first great start

in the development of modern mathematics. During the

latter half of the same century Newton and Leibniz, building

upon the writing and teaching of Isaac Barrow and others,

discovered the method of the infinitesimal calculus. In this

subject are studied very powerful methods of investigating

functions and problems concerning variables. It is in the

calculus that we find the greatest development of mathe-

matical analysis and its applications in almost every field of

science and engineering. Some of these methods and

applications will now be considered.

Here, as is always the case in the study of mathematics, it

is necessary to understand clearly what is under consideration

and how it is represented in mathematical symbols.

167. Functions, variables, increments.—Example 1.—If a

suspended coiled wire spring has a weight attached to its

lower end, the spring will be stretched. The amount of

stretching will depend upon the weight, the greater the weight

the greater the elongation. The elongation is then a function

of the weight. If the weight is not so great that the elastic,

limit of the spring is exceeded, the elongation varies directly

05 the weight The law connecting the variables is then stated

by the linear equation

y = kx,

where y is the elongation, x the weight, and h a constant.

216,
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That is, 2/ is a function of a;, and a change in the variable x

produces a corresponding change in y.

A change in the weight is called an increment of the weighty

or an increment of Xj and is represented by the symbol Ax
(read ^^ncrement of a;" or ^^delta x^^). A corresponding

change in the elongation is called an increment of the

elongation, or an increment of ?/, and is represented by Ay.

Here x represents the independent variable and y the de-

pendent variable.

It is evident that for every Ax there is a A^. Their relation

may be shown as follows:

For any particular value of x as Xi, yi = kxi. (1)

If X = Xi + AXj yi + Ay = k{xi + Ax), (2)

Subtracting (1) from (2), Ay = kAx,

That is, Ay varies directly as Ax,

and is independent of the value of x.

This is shown graphically in Fig.

151. The locus oi y = kx is a,

straight line with slope k. Pi is a

point on the line with coordinates

(xi, 2/i). MN = PiQ = Ax
J
and ^iq. 151.

QR = Ay.

No matter what the magnitude of Ax,

Ay = Ax tan QPiR = kAx.

Example 2.—The distance s that a heavy body near the

earth^s surface falls from rest in time t is given by the formula

^ s = ht'.

If t = ti, si = hgtl
, (1)

Ift = ti + At, si+ As = y(ti+ Aty. (2)

Subtracting (1) from (2), As = ^gi2tiAt + At^).

That is, the value of As depends upon both t and At.

This is shown graphically in Fig. 152. The locus of s = ^gt^

is a parabola. The point Pi has coordinates (^i, Si), and

^x
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ti M At N

Fig. 152.

A^ and As are as shown in the figure. It is evident from the

figure that As depends upon both t and A^.

Definitions and notation.—If y is a. function of x it may be

written y = fix), which is to be read ^'y equals a function

oi x'^ or '^y equals/ of x." For convenience other symbols

may be used for functions, as F{x),

<pix), fix), etc.
^ ^

In the equation y = fix), that is,

when the equation expresses y explicitly

in terms of x, y is an explicit function of x.

If two variables are involved in an

-^t equation in such a manner that it is

necessary to solve the equation in order

to express either explicitly in terms of the

other, then either variable is said to be an implicit function

of the other.

Thus, in x^ + y^ = r^, y is an implicit function of x and x is an implicit

function of y.

If this is solved for y, y = ± \/r^ — x^, in which y is an explicit func-

tion of x.

If solved for x, x = db\/r2 — y^j in which x is an explicit function

of 2/.

Implicit functions of x and y may be written /(x, y), Fix, y),

ipix, y), etc.

In the same discussion or problem the same functional symbol

is used to represent the same function.

Thus, if /(x) = 2x2 _|. 3a. + 1^

then /(a) = 2a2 + 3a + 1,

and /(3) = 232 +33 + 1= 28.

If }{x, y) = 3x2 _|. 4^2/ - 2/,

then /(2, 3) = 3-22 + 4.2-3 - 3 = 33,

and /(2/, x) = Zy^ + 4x1/ - x.

EXERCISES

1. If 2/ = lOx and Xi is any particular value of x, find Ay when x
takes the increment Ax. Find Ay when xi = 4 and Ax = 2. Find Ay
for any other value of X and Ax = 2. Plot so as to show these graphically.
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2. If y = 2x^ + 1 and Xi = 2, find Ay when Ax = 0.5. Find Ay when
Ax = 0.01. Plot.

3. Express the area A of a square as a function of its side x. Find

AA for X = 6 and Ax = 1. Illustrate by means of a square.

4. Express the area A of a circle as a function of its radius x. Find

AA for X = 10 and Ax = 0.5. Illustrate by means of a circle.

6. Express the area of a square as a function of its diagonal. Express

its diagonal as a function of its area.

6. Express the circumference of a circle as a function of its area.

Express the surface of a sphere as a function of its volume.

7. Express the volume of a right circular cylinder as a function of

its radius and altitude. Express the altitude as a function of its volume
and radius. Express its lateral area as a function of its volume and
diameter.

8. If/(x) = x3 + 3x^ - 2x - 4, find/(0),/(3),/(-4).

9. If Fix) = V^mHI, find F(0), Fi-S), FiWS)-
10. If <p(x) = logio X, find v^(lOO), ^(47.62), <p{0.012),

11. If/(x) = cos X, find /(30°),/(i7r),/(240°).

12. If/(x,2/) = Sx^y + 4x1/2 __ 2y^findf(-x,y),f{x', -y)J(-x, -y).

13. lifiy) = 3^ prove /(x)-/(2/) = /(x + 2/).

14. If/(x) = sinxandF(x) = cos x, prove that

/(a: +2/) = f(x)F(y) + F{x)f(y),

15. If 2/ = sin X, express x explicitly in terms of y. li y = 2', express

X explicitly in terms of y.

In each of the following equations express each variable explicitly in

terms of the other, if it can be done by methods previously studied.

23. • ,J . 1 ^ = «"*'•
sm (21 + Jx)

24. v?2 cos 26 = a2.

25. <p sin e tan d = 4a.

19. x(x - 2a)2 - a?/2 = 0. 26. (p^ cos = a^ gi^ 3(9.

20. xV + 4x4 = 16, 27. Iogiox-logio2/+ 31ogioa= 0.

21. 4x2 + 2/2 - 8x - 22/ + 1 = q. 28. sin-i x - sin-i y = 45°.

22
^'y' - 0. 4- 2^2 29

^'^' - ^ " ^
.

As
30. If s = 16^2 and <i = 2, find As and— when At = 1; when A< = 0.1;

As
when A^ = 0.01: when At = 0.001. What value does -ri seem to be

' A^

approaching as At becomes smaller?
Aw

3L If 2/ = x^ and Xi = 1, find Ay and — when Ax = 10; when Ax =1;

16.
a2 ^ b2 ^•

17. xi + 2/* = oi
18. xi + 2/^ = al
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when Aa; = 0.1; when ^x = 0.01; when Ax = 0.001. What value does

— approach? What then is the slope of the tangent at the point where

X = 1 of the curve of y = x^? Plot.

LIMITS

168. Illustrations and definitions.—Considerable use has

been made of limits in elementary geometry, trigonometry,

and algebra, but much greater use is necessary in the study

of calculus. The following are simple examples of Hmits:

(1) The variable which takes the successive values 1.3, 1.33,

1.333, • • • has as a limit l\. That is, the more figures

there are taken, the more nearly the number approaches \\,

(2) The number \/2 is the limit of the successive values

1.4, 1.41, 1.414, 1.4142, • • • . The diagonal of a unit

square is the limit of the line lengths represented by this

series of numbers.

(3) If a point starts at the end A of the Hne AB, Fig. 153,

and during the first second moves half the length of the line

to C; during the next second, half

j
I I

|_LL| of the remaining distance to D;

continuing in this way to move
half the remaining distance dur-

ing each successive second, then the distance that the point

is from A is a variable of which AB is the limit.

12
(4) If t/ = —-T—^ and x is a variable approaching 2 as a limit,

then evidently 2/ is a variable approaching 3 as a limit.

Definitions.—When a variable changes in such a manner

that its successive values approach a constant so nearly that

the difference between the constant and the variable becomes

and remains less, in absolute value, than any assigned posi-

tive number, however small, the constant is the limit of the

variable.

The variable is also said to approach the constant as a limit

If the variable is represented by x and the constant by a, then
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the statement ^^ x approaches a as a limit" is written thus,

X = a.

The form ^ [/W] = ^ is read ''the limit of f{x) as x

approaches a as a limit is -4."

When a variable changes in such a manner that it becomes

and remains greater than any assigned positive number,

however great, it is said to increase without limit or to become

infinite.

The notation to represent this is x = oo, which is read

^^x increases without limit '^ or ^^ x becomes infinite."

The form __ [f(x)] = A is read "the limit of f(x) as
X — ^^

X becomes infinite is A."

169. Elementary theorems of limits.—The following theo-

rems will be found useful in dealing with limits. They are

given here without proof.

• ( 1) If two variables that approach limits are equal for all their

successive values, their limits are equal,

(2) The limit of the sum of a constant and a variable that

approaches a limit is the sum of the constant and the limit of

the variable,

(3) The limit of the product of a constant and a variable that

approaches a limit is the product of the constant and the limit of

the variable,

(4) If each of a finite number of variables approaches a limit,

the limit of their sum is the sum of their respective limits.

(5) // each of a finite number of variables approaches a limits

the limit of their product is the product of their respective limits,

(6) If each of two variables approaches a limit, the limit of

their quotient is the quotient of their limits, except when the

limit of the divisor is zero.

If the limit of the divisor is zero the limit of the quotient

may have a definite finite value or the quotient may become

infinite, but it is not determined by finding the quotient of
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the limits of the two variables. The calculus determines such

limits as these exceptional cases.

170. Derivatives.—The fundamental conception of differ-

ential calculus, and one that is of the greatest importance in

mathematics, is the derivative of a function. Using the

notation of this chapter the derivative is defined to be the

limit approached by the quotient -7- as Ax approaches zero.

If the curve. Fig. 154, represents the function y = /(x).

At/
the quotient t- is the slope of the secant line PiP.

If Pi remains fixed and Ax approaches zero as a limit,

the point P moves along the curve

and approaches Pi as a limit, and

the secant PiP turns about Pi to

the limiting position QR, which is

defined to be the tangent to the

curve at the point Pi.

Hence, the slope of the tangent is

precisely the quantity called the

derivative.

It is evident that the value of the derivative depends upon
the position of Pi on the curve.

Definition.—The slope of a curve at any point is the slope of

the tangent to the curve at that point.

dv
The notation for the derivative is -r^ read ''the derivative

dx
of y with respect to x.^^ Then by definition

dy _ lim

dx Ax =

Of course, the independent variable and the function may

be represented by other letters. Thus, ^ = ^^^ [^]-

Fig. 154.

im rAy"|

:= LAxJ"

The notation —-
dx

dv
is used to indicate the value of 3- for

x = xi dx
the particular value xi of x.
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Example.—Given y = x^, find j-l _ ^ and thus find the slope of the

tangent to the parabola at the point (2, 4). Also find the equation of

this tangent and plot.

Solution.—(1) Given y = x^,

. (2) When a: = 2, 2/
= 4. _

(3) If X takes an increment Ax, y -\- Ay = {2 -\- Ax)^ = 4 + 4Ax + Ax^'

(4) Subtracting (2) from (3), Ay = 4Ax + Ax^.
Ay
Ax

dy\

dx\x = 2

(5) Dividing by Ax,

(6) Letting Ax = 0,

Hence the slope of the tangent to the para-

bola at the point (2, 4) is 4.

The equation of this tangent by [15] is

2/
— 4 = 4(x — 2), or 4x — 2/ = 4.

The plotting is shown in Fig. 155.

171. Tangents and normals.—It fol-

lows from the preceding article and [15]

that the equation of the tangent to the

curve y = f(x) at the point (a^i, 2/1) is

= 4 + Ax.

= 4.

[46] y - yi ==
dy

dx X = Xi
(x - Xi).

^x

Fig. 155.

Definition.—The normal to a curve at any point is the line

perpendicular to the tangent to the curve at that point.

Then by [9] and [15] the equation of the normal to the curve

y = f{x) at the- point (xi, 2/1) is

[47] y -yi =

dx

(x - Xi)-

:x=xi

Example.—Find the equations of the tangent and normal to the ellipse

4x2 _|_ 92^2 = 36 at the point (xi, yi). Also find these equations when

xi = 2. Plot.

Solution.—(1) Given 4x2 + 92^2 = 35.

(2) Let X = xi and 2/ = 2/1. 4x1^ + 9yi^ = 36.

If X takes the increment Ax, y will have the increment Ay, and
' (3) 4(xi + Axy + 9(2/1 + Ayr = 36, _

or 4xi2 + 8xiAx + 4Ax2 + 9yi^ + ISyiAy + 9Ay^ = 36.
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(4) Subtracting (2) from (3), 8xiAx + 4:Ax^ + ISyiAy + 9Ay^ = 0.

, Ay 8xi + 4:Ax

(5) Transposing and arranging,^ = -
ig^/i + 9Ay

Passing to the limits and noticing that Ay = as Ax = 0,

dy\ to.
dx\x=xi 92/1

Substituting in [46], the equation of the tangent is

4xi . .

or 4xia: + 9yiy = ^Xi^ + 92/i^-

Since by (2) ixi^ + 92/1^ = 36 the equation of the tangent is

^xix + 92/1?/ = 36.

Similarly the equation of the normal is

^ - ^^ = £ ^"^ "" '^^^•

When a: = 2, 2/ = ±i V^-

P,(2y3\[l)

^X

Pi'(2-2/3\r5)

Fig. 156.

Substituting these values for Xi and 2/1 in the equation of the tangent,

the equation of the tangent at (2, |\/5) is

4.2x + 9'i\/5y = 36, or 4a; + W5y = 18.

And the equation of the tangent at the point (2, — f's/s) is

4.2x+9(- fV5)2/ =36,

or 4a; - SVly = 18.

Likewise the equations of the normals are, by [47] :

at the point (2, |V5), 9\/5x - 12y = 10\/5;
and at the point (2, -fVs), 9\/^x + 12y = 10\/5.

The plotting is shown in Fig. 156.
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EXERCISES

At/
1. Given y = x^, compute the values of A?/ and -r- when x — 0.5 and

Ax = 1, 0.1, 0.01, and 0.001 respectively.

2. Find the slope of the tangent and normal to ^ = 4x* at the point

where x = 0.5.

d'u\

3. Given y = x^ +2, find^l ^ and write the equation of the tan-

gent and normal at this point. Check the result by plotting.

Find -T- at the point (xi, ^i) for each of the following:

4. y = 3x2 _ 1. 10. 2/ = x3 4- 2x2 4- 5.

6. 2/ = x3 + 4. 11. y = Sx^ - 4x2 ^ Qy.^

6. 2/ = 2x + 5. 12. x2 + 22/2 = 16.

7. xy = 4. 13. 4x2 _ 92^2 = 3^.

8. y^ = 2px. 14. 2/2 = 4x + 8.

9.
2/ =^31- ^^-^^J^l*

16. Given the parabola y^ = 2px, find the equations of the lines tangent

to the parabola at the extremities of the latus rectum, and show that

they meet on the directrix.

17. Find the slope of the circle x2 -f 2/2 = 25 where x = 2, (a) when
the point is in the first quadrant, and (6) when the point is in the fourth

quadrant.

18. Find the angle that the line 3x — 42/ + 7 == makes with the

circle x^ + y^ = 25 at their point of intersection in the first quadrant.

19. At what angle does the circle x^ -\- y^ = 16 intersect the circle

x2 -f. 2/^ = 8x at their point of intersection in the first quadrant?

ALGEBRAIC FUNCTIONS

172. Differentiation by rules.—The process of finding the

derivative of a function is called differentiation.

The method used in the preceding articles in finding the

derivative is' called the fundamental method since it is based

directly upon the definition of a derivative. The derivative

of any function can be found by this method, but the work
can be greatly shortened by using rules or formulas which
can be established by' fundamental methods or otherwise.

The rules needed in differentiating algebraic functions will be
15
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considered first, and later some of those necessary to

differentiate trigonometric, exponential, and logarithmic

functions.

In the formulas, x, y, u, and v denote variables, which, of

course, may be functions of variables, and a, c, and n denote

constants.

173. The derivative when f(x) is x.—Since the equation

y = X represents a straight line with slope equal to 1, and by
dv

article 170, -^ is the slope of the curve at any point, it follows

that

I ^ = 1^-
dx ^•

In general, the derivative of a variable with respect to itself is

unity.

174. The derivative when f (x) is c.—Since y = cis the equa-

tion of a straight line with slope equal to 0, it follows that

II. ^ = 0.
dx

In general, the derivative of a constant is zero.

175. The derivative of the sum of functions.—Given

y = u + V, where u and v are functions of x, and let At/, Au,

and Ay be the increments of ?/, u, and Vj respectively, corre-

sponding to the increment Ax,

Let x = Xi, then yi = Ui + vi.

Let X = Xi + Ax, then yi + Ay = Ui + Au + vi + Av.

Subtracting, Ay = Au + Av.

T^' -J- u A
Ay Au Av

Dividing by Ax,
a^

=
aS + ^-

Let Ax = 0, then
x=xi dx

dy _ du
dx x=xi dx x=xi ax x=xi

It is evident that any number of functions can be treated

in a similar manner, then

ITT
<^(u + V + w + • • •) _ du

,
dv dw

dx " dx ^ dx "^ dx
"^
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Or, the derivative of the sum of any number of functions is

equal to the sum of their derivatives.

Example.—U 2/ = x^ + Sx^ - 4a; + 3,

dy ^ d{x^) _ d{Zx^) __ d(4x) _ ^(3)

dx dx dx dx dx

176. The Derivative of the product of two functions.—
With the notation as in the previous article, given y = uv.

Let X — a^i, then y\ = U\Vx,

Let X = Xi + Ax, then ?/i + A?/ = (u\ + t^u){vx + Ay).

Subtracting, t^y = UiAv + ViAu + AwAv.

Dividing by Ax,
Ax

= ^^ aS + "^ A^ + ^^
Ai*

Av
Let Ax = and notice that Au^ also approaches zero as

a limit,

then ci^

dx x=xi ax x=xi ax x=xi

dv= Ui-j-
x=xi ax

du

x=xi dx

T17 . d(uv) dv
,

du
dx dx dx

Or, the derivative of the product of two functions is equal

to the first times the derivative of the second plus the second

times the derivative of the first.

Example,—li y = (x - 2)(x^ + 1),

177. The derivative of the product of a constant and a

function.—Given y = cuy where c is a constant. By the

previous article

By II.

dy du , dc

dx dx dx

But
dc

dx

V,
d(cu) du
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Or, the derivative of the product of a constant and a function

is equal to the constant times the derivative of the function.

Examples.—If 2/ = 4(x - 2), ^ = ^ ~^^
_ w ^ = 1 ^.

^ ~ a dx adx'

178. The derivative of the quotient of two functions.

—

Given

u
y = --

Let X = Xiy then 1/1 = —'

.
, , ui + Au

Let X = xi + AXy then yi + Ay = J~Tr^'

^ , , ,. ^ ui + Au Ui ViAu — UiAv
Subtracting, Ay =

^^^^-^^^^
- - = -^^^—^-j^'

Au Av

Au Ax Ax
Dividing by Ax, - =

^^(,^ ^ ^,)
•

di/

1

_ ^dx
Let Ax = 0, then ^ ,ax a;=a:i

dv\— Ul-T-
x=xi ax\x=xi

du dv

„ XT, dx dx^0
* * dx v^

Or, the derivative of the quotient of two functions is equal to

the denominator times the derivative of the numerator minus

the numerator times the derivative of the denominator, all divided

by the square of the denominator.

Example.—If y

179. The derivative of the power of a function.—Given

y = u\
(a) When n is a positive integer.

Writing as a product y = u-U^'^,

Then _ = „n-x_ + „^_J. By IV.

X - 1
, 2x'^^-'^ (X-
dy dx

,
,d(2x)

^^ dx

2x ' dx 4^2
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Writing u^"^ as the product U'U^~'^,

ax ax L dx ax J

dx dx

When this process is performed n times the last term will

d(u^~^^
contain —-i y which is zero by II.

VIL .-. -^ = nu'^-^ -^—
dx dx

P
(b) When n is a fraction^ — , where p and q are positive integers.

Given y = u^

Raising both sides of the equation to the ^h power,

yl = t^P.

dii du
Then

qy^~^~f^
= V^^'^-j- ' By (a) of this article.

^ , . - dy dy _ pu'^~^ du
dx dx qy^~^ dx

— P^^~^ du _ p --1 du

P(g_i) dx q dx
qu^

.
d(u<i) ^ pj--i du

' ' dx q dx

(c) When n is negative, either integral or fractional.

Let n = — m.

Then y = u~^ = —
Clearing of fractions, yu"^ = 1.

Then myu^-^ 5^^ + ^"S " ^- ^^ ^^' ^^^' and II.
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^ , . , dy dy myu""-^ du
Solving for 5^^ ^ = " —^ J^

.du « 1 ^^= — myu~^-j— = — mu~^~^
-^

—
d(u~'^) , du-^—- = — mu-'^-^ ^—.
dx dx

Therefore formula VII is established when the exponent is

a positive or negative integer or fraction. It is expressed in

the following rule:

The derivative of a function affected by an exponent n is equal

to n times the function affected by the exponent n — 1, times the

derivative of the function.

Examples.—U y = (x^ -{- x + 1)S ^ = 4(x2 +x + l)3^(?!+£±il.
ax ax

If. = (. + !)! g = «. + !)-* ^i^-

If, = (.-l)-3,g=-3(x-l)-^(^.

180. Summary of formulas for algebraic functions.—
The formulas here summarized enable one to differentiate

algebraic functions.

I - = i

II. ^ = 0.
dx

TTT
d(u + V + w + • • ) _ du dv dw

,

dx "di^ + di + dS^+ •••

--- d(uv) dv
,

du
IV. \ = u^j- + v^—

dx dx dx
d(cu) du

V. —i— = C x~*dx dx

VI.
'31
dx

du dv

dx dx

VII. -~-^ = nu"-i:s

—

dx dx
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181. Examples of Differentiation.—If the formulas and

rules of differentiation are well learned, their application is

one of the easiest processes in mathematics.

Example 1.—Given y = 7x\ find ^.

^ =^ = 7^ = 7-30;^ P = 21x^ By V, VII, and I.

dx dx dx dx

Example 2.—Given y = x^ -\-2x^ - bx + 6, find ^.

dy ^ d(x') d{2x') d{5x) djQ) By IIL
dx dx dx dx dx

= 3x2 + 4a; __ 5. By VII, V, II, and I.

Example 3.—Given y = (x^ -\. 2x)(3x - 2), find ^.

= (x2 + 2x)d + (3a; - 2)(2a: + 2) = 9x^ + 8a; - 4.

By I, II, III, V, VII.

Example 4.—Given y = 5—^^» ^^^dx'

dx {Sx - 1)2

_ (3x - l)(2a;) - (x^ + 2)3 ^ 3a;2 - 2x - 6

(3a; - 1)2 (3x - 1)2

Example 5.—Given y = \^x^ + 3a;, find ^.

di/ _ d>yx2 + 3a; _ d(a;2 + 3x)^ _ 1/ 2 . q ^-§ ^(^^^ + 3a;)

di dx di ^^"^ "^^ "^^ 5i

= i(a;2 + 3a;)-^(2a; + 3) = 3,^"" "^ ^
.

3v^7SM^3a;)2

EXERCISES

In the following find the derivative of the function with respect to

the independent variable.

1. y = 3x2. 6. 2/ = 4Vx. 11. y = -17yx"3.

2. y = 5x4. 7. 2/ = 3^. 12. 2/ = -2^x*-
Z. y = 7xK S. y = ^x'. 13. s = igtK

4. 2/ = ax^. 9. 2/ = 3x-^. 14. s = 4A
6. 2/ = ix^. 10. y = -4x1 15. s = ^tK

16. 2/ = a;4 + 3x2 + 2. 17. ^ = 3x2 - 2x + (5.

ByVL
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18. y = x3 - x5 + 3a;. 22. y = (Sx^ + 2)* - 2x.

19. y = x* - x-i + 4. 23. y = (2a; + 3)^ - 3x.

20. y = X* - 3x-3 +2. 24. 2/ = \/2x2 - 7x.

21. 2/ = (2x + 1)3 - 3. 25. y = v^a;^ + 7x - 2.

26.y=i- 29.,=^-^. 32., =1^;.

27.,=.i. 30., = ^^. 33.,=^^.

28. y = ~ 31. 2/ = , . _ ,., ' 34. 2/
=

35. 2/ = 3x7 _ 4a; 6+ Sx^ - 3. 43. s = vT+1 + V^2i - 3.

36. 2/ = V^TT - VJ"=^. 44. s = ^^ + 2ri + St\

37. 2/ = V3x3 ^ 7a;2 - 3a; + 2. 45. 2/ = (x^ + l)(x3 - 2x + 1).

38. y = Vox2 + 6x +_c - Vx + d- 46. 2/ = (a^ + ^H^ - &)"*•

39. 2/ = xHx' + 5)^. 47. y = (x + l)K2x - 1)».

2x - 1
^

-^ ^^
2x'^ - 1

*^- ^ =
(i-^:no"«'

*®- ^ = (^"=T)^
•

/^^. • 49. . - -^
Jx + 1

*2. y = -7===,- 60. s

2/ = ^^̂ -+-1 '-
(1 + 1)-

x

y/x^ - a2

fe^ - 1

\<2 + 1*

51. Find the slope of the tangent line to the curve y = x^ at the point

where x = 0. At the point where x = 1. Where x = 2.

52. In exercise 51, what is the slope of the curve at each of the points?

How many times faster is y increasing than x at each of the points?

53. If a point is moving from the origin along the curve y — 2x^

in the first quadrant, what is the relative rate of increase of x and y
when X = 1, 2, and 4, respectively?

54. Find the equations of the tangent and the normal to the curve

2/ = x3 + 4x2 4- X - 6 at the point (0, - 6). At the point (2, 20).

55. In the curve of exercise 54, where is the tangent line parallel

to the X-axis?

56. Find the equations of the tangent and the normal to the curve

y = X -\—^ at the point (xi, 2/1).

57. Find the point on the curve 2/ = x^ + 3x2 — 4x — 12 at which the

tangent has a slope of —7. What is the equation of the tangent at this

point? Plot the curve.

58. At what angle does the line 2/ = x — 1 intersect the parabola
2/2 + 4x = 4?
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69. Show that the parabola y^ = 4ax and the cissoid y = ^
—

^CL — X

intersect at right angles at the origin.

60. The heat H, required to raise a unit weight of water from 0°C.

to a temperature t°, is given by the formula

H -= t + 0.00002^2 ^ 0.0000003^3.

Find -^r and compute the value of -3- where t° = 35°C.
at at

182. Dififerentiation of implicit functions.—In the previous

exercises, the dependent variable in each was expressed as an

explicit function of the independent variable. Often it is

either not convenient or not possible to express one variable

as an explicit function of the other. In such a case the usual

rules for finding the derivative can be applied and the desired

derivative found as an implicit function of the variables

involved. The method can be best illustrated by examples.

Example 1.—Given x^ -\- y^ = 25, find -r- as an implicit function of

X and y.

Since 1/ is a function of x, the left hand member is the sum of two
functions of x.

Differentiating, 2x + 2y -^ = 0.

dy_ __ X
' ' dx y

Example 2.—Find the equation of the tangent line to the curve
xs — yb -^ x^ — y = at the point (1, 1).

ASoZw^ion.—Differentiating, 5x* - by^j- + Bx^ - -^ =0.

a ^ • e dy dy 5x* -\- Sx^

When X = 1 and y - If ^ = t^
ax o.

Then the slope of the tangent at (1, 1) is |.

Hence the equation of the tangent is 1/ — 1 = }(a; — 1),

01 4x — 32/ — 1 = 0.
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EXERCISES

In the following find the derivatives as implicit functions.

1. a;3 -h 2/3 = a\ find £;

2, y^ + y = x^ -\- X, find

4. p. = c, find J and g.

6. X* - ixH/' + 2/' = 0, find ^ and ^.

6.xi+.»=at,find|and|.

7. xi+y^= a\ find g.

8. (x + y)i +(x- y)i = a, find g.

9. (p +!)(.- 6) =fc,find^andg.

10. Find the equations of the tangent and the normal to the circle

x8 + y2 = 25 at the point (3, 4).

11. Find the equations of the tangent and the normal to the circle

a;« + 2/* - 4a; + 62/ - 24 = at the point (1, 3).

12. Find the equations of the tangent and normal to the ellipse

16x2 + 252/2 = 144 at the point in the first quadrant where x = 2.

Show that the tangents to the following curves at the point (xi, 2/1)

are as given.

Equation of curve Equation o^ tangent

13. x2 + ^2 = ^2. a^ix + yiy = r\

14. y^ = 2px. 2/12/ = p(x + xi).

15. x2 = 2py, xix = p(y + 2/1).

16. ^' + ^' = 1 ^ . M = 1

a2 62 ^- a2 62 - ^•

18. xy = c. a:i2/ + 2/1^; = 2c.

19. Find the equations of the tangent and normal to the parabola

x^ -\- yi = a* at Ihe point (xi, 2/1).



§183] ELEMENTS OF CALCULUS

FURTHER USES OF THE DERIVATIVE
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183. Discussion.—By methods of analytic geometry the

properties of the locus that are most conveniently discussed

are the intercepts j symmetry , and extent (See Art. 43). By
means of the derivative other properties may be discussed.

Some of these will be considered in the following articles.

The discussion will be confined to equations (1) whose

curves have no break, at least in the part of the curve con-

sidered; and (2) where for each value of the independent

variable there is but one point on the curve. Such curves,

as well as the functions giving rise to them, are said to be

continuous and single-valued.

184. Properties of a curve and its function.—If the curve,

Fig. 157, is thought of as traced by a moving point passing

from left to right, the following properties may be noted:

(1) The curve is falling from A to 5, from D to F, and from

H to J; and the corresponding function is decreasing,

(2) The curve is rising from B to D, from F to H, and from

J to K; and the corresponding function is increasing.

(3) If the curve rises to a certain position and then falls,

such a position is called a maximum point of the curve. D
and H are such points. The ordinate, that is, the value of

the function, at such a point is called a maximum ordinate

or maximum value of the function.

(4) If the curve falls to a certain position and then rises, such

a position is called a minimum point of the curve. B, F, and
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/ are such points. The ordinate, that is, the value of the

function, at such a point is called a minimum ordinate or a

minimum value of the function.

(5) The curve is concave upward between A and C, E and G,

and / and K. It is concave downward between C and Ey and

G and L
(6) Points C, Ey G, and I where the concavity changes, are

called points of inflection.

Curves may have other peculiarities, but these will not be

considered here.

185. Curves rising or falling, functions increasing or

decreasing.—Since by definition, Art. 170, the slope of a curve

at any point is the same as the slope of the tangent at that

point, it follows that when the slope is positive the curve is

rising, and when the slope is negative the curve is falling.

This is, of course, when passing from left to right.

Stated with reference to the function this becomes the

following very useful principle:

When the derivative of a function is positive, the function

increases as the independent variable increases; when the deriva-

tive is negative, the function decreases as the independent variable

increases.

It also follows that the ratio of the change of the function

at any point to that of the variable is equal to the value of

the derivative of the function with respect to the variable, for

that point.

Example 1.—For what values of x is the curve y = x^ rising and
for what values falling?

Solution.—Given y = x^.

Then ^ = 2x,
ax

Now 2x is positive when x is positive, and negative when x is negative.
Hence the curve is rising when x>0, and falling when x<0.
Example 2.—For what values of x is the function y = x^ increasing

and for what values decreasing?
dy

Here ^ = Sx^, which is not negative for any value of x.
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Hence the function is never decreasing.

Is it always increasing?

Example 3.—For what values of x is the curve y — Jx'— Jx^ — 6a;

rising and for what values falHng? For what values oi x is y increasing

6 times as fast as x?

Solution,—Given y — fx^— Jx^— Qx.

Then ^ = x^ - x - 6.
ax

Factoring, ^ = {x + 2)(x - S),

dv
Then -^ is positive when x<—2 and when a;>3, and negative when

-2<x<3.
Hence the curve is rising when x<—2 and when x> 3, and falHng when

-2<x<S.
The values of x for which y is increasing 6 times as fast as x can be

found by putting x^ — x — 6 = 6, and solving for x.

This gives x = 4 or —3.

EXERCISES

Passing from left to right, for what values of x are the loci of the

following equations rising and for what values falling?

1. 2/ = 3x - 6. 8. 2/ = x3 - x2 - 2x.

2. y = 4x2J- 16x - 7. 9. y = x^ - 2x^ + x - 3,

Z. y = Vix. 10. 2/(1 + x2) = X.

4. y^ = 8x2. 11^ ^(^.2 _ 1)2 = a;3.

5. 2/ = x3 + 3. 12. Qy = 2x3 _ 32^2 _ 12a; - 6.

6. xy = 15. 13. 2/ = x* - 6x2 + 8x + q

7. 2/ = x3 - 9x. 14. 2/ = (x2 - 1)4.

16. In exercise 8, how many times as rapidly as x is 2/ increasing

when X = 10? When x = 3? When x = -1? When x = 0?

16. In exercise 9, for what values of x is 2/ increasing 7 times as rapidly

as X? For what values of x is 2/ decreasing 4 times as rapidly as x is

increasing?

186. Maximum and minimum.—From the definitions of

article 184, it is clear that if a curve is plotted in rectangular

coordinates, the curve is rising at ne&,rby points on the left of

a maximum point, and falling at nearby points on the right.

For a minimum point the curve is falling for nearby, points on
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the left and rising on the right. The student can readily

state this with reference to the function.

It is evident that at a maximum point or a minimum point

like those shown in Fig. 157, the tangent line is parallel to

the X-axis, that is, its slope is zero.

It follows that these points can be determined from the

fujiction as follows

:

(1) Equate -^ to zero and solve for x,

dv
(2) Determine whether -r- is positive or negative for nearby

points on the left and right.

da dt/

A point where -r- = is a maximum point if -r- >0 for

du
nearby points on the left and -r- < for nearby points on the

right.

dv dv
A point where -i- = is a minimum point if -j- < for

dv
nearby points on the left and -r- > for nearby points on the

right.

It is distinctly understood that these

tests determine only such points as are

illustrated in Fig. 157. For cusp maxi-

mum and minimum points as shown in

Fig. 158, the tangent is perpendicular

^^«- ^^^-
to the X-axis and hence ^ = oo

.

dx

Example.—Determine the maximum and minimum points of the func-

tion y = x^ —3x2 _|_ 4 an(j piQ^ ^j^g curve.

Solution.—Given y = x^ — Sx^ +4.

^ = 3x2 - 6a; = 3^.(3. _ 2).

.
•

. ^ = for X = 0, and x = 2.

When X < but near 0,^ > .0 and the curve is rising.
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When X > but near 0, -^^ < and the curve is falling.

.
*

. the curve has a maximum point when a; = 0.

dv
When X < 2 but near 2, -^ < and the curve is falling.

dv
When X > 2 but near 2, -~ > and the curve is rising.

.
•

. the curve has a minimum point when x = 2.

Plotting.—When x = 0, y = 4:. .
*

. (0, 4) is

a maximum point.

When x= 2, y — 0. .
*

. (2, 0) is a minimum
point.

Factoring, y = (x -{- l){x — 2){x — 2).

.
*

. the x-intercepts are — 1, 2, and 2.

A few other points will make the plotting

fairly accurate. See Fig. 159.

X 1 3 4 - 2

y 2 4 20 -16
Fig. 159.

EXERCISES

Determine the maximum and minimum points of the following curves

and plot.

1. 2/ = a;*. 5. 2/ = (a; + 4)(x - 2){x - 4).

2. 21/ = a;2 - 4x + 6. 6. ?/ = x^ - 7x2 _j_ 35

3. 2/ = 6a; - x2 + 4. 7. I62/ = x2 - 32a;.

4. 4x2 _^ 92^2 = 36, 3, 2/ = a;4 - 4a;3.

9. By finding the maximum point of the curve, find the coordinates

of the vertex of the parabola 2a;2 — 18a; + 15?/ — 21 = 0.

10. The equation of the path of a projectile is

y = tan ax 9
c2. (See Art. 94.)

2^2 cos2 a
Find the maximum height to which the projectile rises.

187. Concavity and points of inflection.—It is evident

from an inspection of a curve that is concave upward that the

tangent line turns counter-clockwise in passing along a curve

from left to right, that is, the slope of the tangent increases.

Likewise, if the curve is concave downward^ the tangent line

turns clockwise^ that is, the slope of the tangent is decreasing.
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Thus, in Fig. 160, the tangent line turns counter-clockwise in passing

from A to D, and the slope increases from a negative value at A to a

positive value at D.

Likewise, in Fig. 161, the tangent turns clockwise in passing from

A to D, and the slope decreases from a positive, value at A to a negative

value at D.

Fig. 160. Fig. 161.

It remains to determine how the concavity of a curve can be

determined from its function.

Since the derivative of a function of x is itself a function

of X, it is evident that the derivative of this first derivative

may be found. It is called the second derivative of y with

respect to x.

If y = f{x)y the second derivative is j~(j~) and is

represented by the symbol -r-g*

Thus, if 2/ = a;3 — 6a;2 + 12x - 3.

I = 3^^ - 12x + 12,

and g = 6x - 12.

From the foregoing, it is evident that when -t-| is positive,

dy
. , . 1 1 ^^2/ . ^' dy ' ,^ IS mcreasmg; and when -j-^ is negative, -r- is decreasing.

Or, a y = f(x) is the equation of a curve, the slope of the

tangent is increasing when passing from left to right and the

d^v
curve IS concave upward for the values of x that make -i-|

positive.
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Likewise, the curve is concave downward when -r^ is

negative.

From (6) of article 184, it is evident that a point of inflection

is a point on a curve at which the concavity changes from

upward to downward or vice versa, A point of inflection can

be determined by finding the values of x for which -r^ changes

sign, providing the function is finite for that value of x.

Example.—Investigate y = x^ -' 3x^ -\- x -\- 2 for concavity and
points of inflection.

Solution.—Given y = x^ — Sx^ + x -f 2.

ax

^ = Ox - 6 = 6(x - 1).
ax^

Since when x<l, 6(x — 1) is negative; and when x>l, Q(x — 1) is

positive, the curve is concave downward at the left oi x = 1, and concave

upward at the right of a; = 1. Therefore, it has a point of inflection

at the point (1, 1).

EXERCISES

In exercises 1-10 investigate for concavity and points of inflection.

1. y = x\ 6. 2/ = (x + 2)(a: - 2)(x - 3).

2. 2/ = x^- 7. y = 3x^ — 4:X^ — 1.

3. y '— x^. S, y = x^ — 4:X^ + 4x — 1.

4. 2/ = 3a; — xK 9, y = x^ - 2x^ + 40.

6. 2/ = x^ - 6a;2. 10. y = Sx^ - IQx^ - Gx^ + 48x + 17.

11. In the example. Art. 187, find the slope of the tangent to the

curve at the point of inflection, find the maximum and minimum points,

and plot the curve.

12. In the example referred to in exercise 11, if the curve is being

traced by a point moving from left to right, for what values of x does

y increase at the same rate as x? How rapidly is the curve rising when
X = 3 if X is increasing at the rate of 2 inches per second?

13. Investigate the greatest possible number of points of inflection

of the curves of

(1) y = ax^ + bx -\- c,

(2) 2/ = ax3 + 6x2 _|. crc + d,

(3) y = ax* + 6x3 4. cx^ + dx + e.

16
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In exercises 14-19 plot the curves showing the values of y, j-i and

-T^i using the same set of axes for the three curves of each. What

facts can be read from these curves?

14. y = 4x3. 17. y = {x + 2)(x - 2)(x - 3).

16. y = 3x*. 18. y = x^ -12x +7.
16. y = 3x - x3. 19. y =tc4 _ 2x^ - 8.

DIFFERENTIALS

188. Relations between increments.—When two variables

are so related that the ratio of their corresponding increments

is constant^ either variable is said to change uniformly with

respect to the other.

When the variables are related by an equation of the first

Ay
degree, as y = mx + by where Ay = mAx, then — = m.

That is, either variable changes uniformly with respect to the

other.

N

^X

1

.

AA

C AxM

Fig. 162. Fig. 163.

This is also evident from Fig. 162, in which y = mx + b is

the equation of the line PPi with slope m. P is any point op
Ay

this line and t-^ = m.
Ax

In Fig. 163, BCDE is a rectangle having a constant altitude

a and a variable base x. When x takes an increment Ax,

the area A will take an increment aAx.

.'. AA = aAx

When two variables are so related that the ratio of their

AA
or -— = a.

Ax
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corresponding increments is variable, either variable is said to

change non-uniformly with respect to the other.

If the variables s and t are related by the equation s = ^gt^,

then As = igr(2^A« + A^^)^ g^e Art. 167, example 2.

.-. ^ = i^(2^ + A0.

As .

Here ^ is a variable for it varies with t, that is, differ-

As
ent values of t give different values of -t-t, and the change is

non-uniform.

189. Differentials.—If two variables are so related that

one is dependent and the other is independent, then for

corresponding values of the variables

:

(1) The differential of the independent variable is the value

of its increment.

(2) The differential of the dependent variable is what would

be its increment, if at the corresponding values considered,

its change became and remained uniform with respect to the

independent variable.

The differential of a variable is denoted by writing d before

it.

Thus, differential x is denoted by dx. Also dy, d{x^),

d{x^ + 2x + 1), and df{x) denote the differentials of y, x^,

x^ + 2x -\- 1, and/(x), respectively.

190. Illustrations.—It follows from the definitions that the

differentials of variables that change uniformly with respect

to each other, are their corresponding increments.

Thus, if ^ = mx + b, dx = Ax and dy = Ay, for y changes

uniformly with respect to x.

It should be noted that dy = Ay when, and only when, the

graph oi y = f{x) is a straight line.

If the rectangle of constant altitude, Fig. 163, is increased in

area by increasing the base by the length CM, the area is

increased by the rectangle CMND, Here evidently the ar^a,
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il, is a function of the base x. Since A and x change uniformly

with respect to each other, CM = dx and the rectangle

CMND = dA.

Consider the curve y == f{x)j Fig. 164, as being traced by
a point starting from the origin and moving to the right and
upward. The direction that the tracing point is moving at

any point is along the tangent line

at that point.

Let (x, y) be the coordinates of

the moving point.

Evidently, y is changing non-

uniformly with respect to x.

Suppose the moving point has

reached Pi. Here y is evidently

changing at the same rate it would

if the point were moving along the

tangent line at Pi. If then the change in y is to become and
remxiin uniform with respect to x, the point must move
along the tangent.

It follows that at the point Pi, if the increment of x is

Ao; = MiM, dx = Ax, and dy = QT,
It is to be noted that the corresponding increment of y is

Ay = QP.
du

Further, if the slope of the tangent, -r-y that is, the deriva-

tive, is represented by/'(x),

dy = f (x)dx.

Since dy and dx are finite quantities, dividing by dXj

This is an extremely important and useful relation, for it

states that the derivative and the ratio of the differentials can

be used interchangeably.

Again, referring to Fig. 164, if s is the length of the curve
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traced, then corresponding to dx and dy^ the change in s, if

this change becomes and remains uniform, is ds = PiT, and

ds2 = dx2 + dy2.

The triangle PiQT is called the differential triangle.

Example.—A point is moving along the parabola y = Sx^. When it

has reached the point whose abscissa is 2, find dy and ds corresponding

to dx = 0.1.

Solution.—First find the derivative of y with respect to x.

Given equation y = Sx^.

dx
.*. dy = Qx'dXy for any value of x.

When X = 2 and dx = 0.1, dy = 6-20.1 = 1.2.

And ds = \/rfx2 + dy^ = VO.V -j- 1.22 = 1.2042-.

EXERCISES

1. The right triangle, Fig. 165, is being generated by the altitude

moving uniformly to the right. If the variable base is x and the area

A, show that dA corresponding to dx is the rectangle MiMQPi.
2. The area of the upper half of the area of

the parabola y^ = 4x is being generated by the

ordinate moving toward the right. If A is the

variable area, show that dA = 2\/x dx for any

value of X. Draw the figure.

3. If the upper half of the area of the circle

3.2 _^ 2/2 = r^ is being generated by the ordinate
^

x m^cIxm

moving uniformly toward the right, show that

dA = Vr^ — x^ dx.

4. The area above the x-axis between y — sin x and the x-axis is being

generated by its ordinate. Show that dA = sin x dx. For the part

below the x-axis show that dA = —sin x dx.

6. A point is moving on the circle x^ + y^ = 25. Find dy and ds

corresponding to a change in x oi dx = 0.2 at the point in the first

quadrant where x = 3.

x^ v^
6. A point is moving on the ellipse o^ +^ = 1- Find dy correspond-

ing to dx =0.4 at the point in the first quadrant where x = 2. In the

second quadrant where x = — 2.
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In the following find dy for any x.
_____

7. 2/
= 3x2 + 2x - 1. 11. y ^

= y/x"^ + 4.

8. y = x3 + 4x + 2. 12. re' + 2/^ = 4.

9. y = at* - 3x3 4. 2x2. la. x^ + 2/^ = 2.

^"'
16 9 \/x2+5

15. The distance s that a body will fall in t seconds is given by

the formula s = ^gt^. Find ds for any value of t. Find ds when t = 2

and corresponding to dt = 1. (Use g =32.)

INTEGRATION

191. The inverse of differentiation.—Just as division is

the operation that is the inverse of multiplication, and the

extraction of a root is the inverse of raising to a power, so

differentiation has its inverse operation. Here, as usual, the

inverse operation is the more difficult. In fact, it is frequently

impossible to do the inverse of a differentiation except

approximately.

The process of doing the inverse of a differentiation is

called integration. The result obtained is called an integral.

The methods of integrating can be dealt with here to only a

very limited extent. In general, an integral is found by

knowledge acquired from differentiation, by reversing the

rules of differentiation, or by reference to a table of integrals.

Integration has very many applications to problems arising

in the sciences and in engineering as well as to problems in

mathematics.

The symbol, y, indicates that the differential before which

it is written is to be integrated.

Thus, S2xdx indicates that a function of x is to be found whose
differential is 2xdx. The function is evidently x2 + 0, where C is any
constant, for

d{x^ + C) = ^^^'^^ ^^
dx = 2x dx.

Since the differential of any constant is zero, the function

sought when integrating may contain a constant no indication

of which appears in the given differential. For this reason
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the integral of a different al is, in general, indefinite, and is

called an indefinite integral.

The constant C that is supplied when integrating is called

the constant of integration.

192. Determination of the constant of integration.—The
constant of integration is determined by

having some fact about the function

given besides its differential. This can

be best illustrated by examples.

Example 1.—Find the equation of a curve

such that the slope of its tangent Hne at any

point shall equal to the abscissa of the point

if, further, it is given that the curve passes

through the point (2, 4).

dy
Solution.—Since — = slope of tangent, and

dx

X — abscissa of point of tangency,

dy— = X.
dx

dy
Considering — as the ratio of dy to dx, and multiplying by dXy

dx

dy = xdx

Then Sdy = fxdx, and y = ix^ + C.

Here C is any constant, and the equation represents all parabolas

having their axes on the 2/-axis and opening upward. Some of these are

represented in Fig. 166.

It is evident that one such parabola can pass through any particular

point of the plane. The one sought passes through (2, 4), and there-

fore these values must satisfy the equation y = \x^ + C.

Substituting (2, 4) in this equation,

4 = i.22 + C. .'. C = 2.

The equation of the curve satisfying both conditions is then

2/ = ia;2 + 2.

Example 2.—Find the area enclosed by the parabola y^ = 4a; and

the double ordinate corresponding to x = 8.

Solution.—The parabola y^ = 4x is shown in Fig. 167, and is sym-

metrical with respect to the a;-axis. Then one-half of the area is above

the X-axis and is the area OMC,

Fig. 166.
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+-^x

Consider the area A as generated by an ordinate moving from the

origin toward the right. When it has advanced any distance x

dA = y dx.

But y = +2\/x since y is positive.

Then dA = 2Vi dx.

Integrating, A = fx^ -f- C. (1)

A further fact about the area A is that A = 0. when x =
Substituting these values in (1) gives

= + C. .-.0 = 0.

Hence for any value o( x, A =_ fx^ + 0.

Andforx = 8, A = fg^ =-VV2 =30.17-.

.*
. the total area = 2A = 60.34- square

units.

193. Methods of integrating.—
While a knowledge of differentiation

enables one to write at once the in-

tegrals of many differentials, the

following formulas will help in inte-

FiG. 167. grating forms that occur frequently.

(1) /uMu = ^^ + C.

Here u may be any function of which du is the differential,

and n is not equal to —1.

That (1) is true can be readily proved by finding the differ-

ential of —r^ + C.
n + 1

Example 1.—Find J*x*dx.

Here x = u, dx = du, and n = 4:.

.
•

. fx^dx = ix^ + C,

Example 2.—Find f{x^ + x^) 2(3x2 + 2x)dx.

Here x« + a;* = u, (Sx^ + 2x)dx = du, and n = 2.

.
•

. f(x^ + a:2)2(3a:2 + 2x)dx = fuHu = A^^3^. c = \{x^ -f x^Y + C.

Example 3.—Find f^/x^ - 1 2xdx.

Here x^ — \ — u, 2xdx = du, and n = |.

.
*

. y\/i^^=n 2a;dx = fu^du = fw? + C = §(x2 - 1) i + C.

(2) fcdu = c/du.
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This states that a constant can be written either before or

after a sign of integration.

Proof,—Since d{cu) = cdu. By differentiation.

Then cu = J^cdu. By definition of an integral.

But Sdu = u. By (1) where n = 0.

And cj'du = cu. Equating values of cu

.*. J'cdu = cj'du.

Example.— f^xHx = Qfx^dx = 6 • ix^ + C = fx* + C.

(3) f{dn + dv) = fdn + fdv.

Proof.— d{u + v) = du + dv. By differentiation.

Then J*{du + dv) = u + v. By definition of an integral.

But u = J*du and v = J*dv. By (1).

.
' . J*{du + dv) = J*du + J*dv.

This can readily be extended to the integral of the sum of

any number of differentials.

Example.—f(x^ + 3.x^ - x + l)dx

= fx^dx 4- fSx^dx - fxdx + fdx By (3).

= \x^ + a:3 - ia;2 + X + C. By (1) and (2).

Here C is the sum of the several constants of integration.

EXERCISES

Find the indefinite integrals in exercises 1-10, and check by differ-

entiation.

1. dy = ^xdx. 6. dy = (2x + l)dx.

2. dy = xHx. 7. dy = {2x^ -\- x -\- 2)dx.

3. dy = ^xHx. 8. dy = {x - l){x + l)dx.

4. dy = x^dx. 9. dy = (x -\- l)^dx.

5. dy = x^dx. 10. dy = {x -\- l)^dx.

11. Find the equation of the curve whose slope at any point is equal

to three times the abscissa of that point, and which passes through the

point (2, 6).

12. Find the equation of the curve whose slope at any point is equal

to the square of its abscissa at that point, and which passes thr9ugh

the point (1, 1).

13. Find the equation of the curve whose slope at any point is equal

to the square root of its abscissa at that point, and which passes through

the point (2, 4).
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14. Find the area enclosed by the parabola i/^ = 2a: and the double

ordinate corresponding to a; = 4.

15. Find the area enclosed by the parabola y^ = 3x, the a:-axis, and
the ordinates corresponding to a; = 2 and x = 8.

16. Find the area between the curve y = 2x and the x-axis from

the origin to the ordinate corresponding to a; = 10. Check by finding

the area considered as a triangle.

17. Find the area between the curve y = x^ and the x-axis from the

origin to the ordinate corresponding to x = 4.

18. Find the area between the curve y = x^ and the x-axis from the

ordinate corresponding to x = —3 to the origin.

19. Find the area enclosed by the semi-cubical parabola y = x^ and
the double ordinate corresponding to x = 4.

20. Find the area enclosed by the curve y = x~^, the x-axis, and
the ordinates corresponding to x = J and x = 8.

21. Find the area that is below the x-axis and is enclosed by the

parabola y = x^ — 4x -h 3 and the x-axis.

22. Find the area that is below the x-axis and is enclosed by the

curve 2/ = x3 — 4^2 -}- 3^ and the x-axis.

TRIGONOMETRIC FUNCTIONS

194. So far in the calculus a study has been made of alge-

braic functions only. The trigonometric functions will now
be considered to a limited ex-

tent. The sine and cosine will

receive the chief attention, the

formulas of the others will be

given for completeness only.

195. Derivatives of sin u and
cos u.—^Let be a unit circle

generated by the point P (x, y)

moving in the positive direction,

Fig. 168.

Let u be the measure of the

and let s be the measure of the arc

Fig. 168.

angle XOP in radians,

XP in linear units.

Then u = s, x = cos u, and y = sin u.

Differentiating, du = ds, dx = d(cos u), and dy = d(sin u).
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In the differential triangle PQTj

dx = PQ, dy = QT, and ds = PT.

Also the angle at T through which the tangent has turned

is equal to u.

Now dy = ds* cosw, cosu and dy having the same sign.

But dy = d(sm u) and ds = du,

,' . d{smu) = cos u du.

Dividing by dx gives the derivative formula:

TTTTT <i(sin u) du
VIII. -^ = cos u 37—

dx ^^
.

Also dx = —ds sin Uy sin u and dx having opposite signs.

But dx = d{cos u) and ds = du,

.*. d(cos 1/) = —smudu.
Dividing by dx gives the derivative formula:

^^ d(cos ti) . du
IX. -^ = - sm u -7—

dx dx

It is to be noted that the derivation of VIII and IX requires

that the angle shall be in radians.

dy
Example 1.—Given y = sin {3x^ + 4a; — 1), find -p-

^ , ,. dy d sin (3x2 + 4^; _ i)
Solution.— -r- = i

=
ax ax

= cos (3x2 _|_ 4^. _ 1) _^ '_. By VIII.
ax

But
^(3x2 -f- 4x - 1) ^ <j(3x2) <^(4x) _ ^ ^ g^ , 4

rfx dx dx dx

^ = (6x + 4) cos (3x2 + 4a; - 1).

Example 2.—Find the maximum and minimum points of the curve

y = cos X.

Solution. r^ = — sin x.
ax

Putting -r^ = gives — sin x = 0.

X = riTT, where n = 0, ±1, ±2, • • •.

For values of x near an even number of times w but less than ir, —sin x
is positive; and for values of x near an even number of times ir, but
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greater than tt, —sin x is negative. Hence the curve is rising before and
falling after x = 2mr.

.

'

. maximum points are the points for which x = 2mr.

Likewise minimum points are the points for which x = (2n + l)7r.

Example 3.—Find the area enclosed by an arch of the curve y = sin x

and the a:-axis.

Solution.—The curve y = sin x is shown
in Fig. 169. The area sought extends from

J-.^ :7 r-^X X = to X = TT.

Consider this area A as being generated
^^' by an ordinate moving toward the right.

Then dA = ydx = sin x dx.

And J*dA = J^sin x dx.

.'
. A = — cos X + C. By the inverse of differentiation.

When X = 0, A = 0.

.*. = -cos + C, or C = 1.

When X = IT, A = —cos tt + 1 = 2 = nuinber of square units in area.

196. Derivatives of other trigonometric functions.—The
following formulas are stated for completeness. Their deriva-

tion is not difficult and may be performed as exercises.

dx dx

XI. ^(^ = -csc^u^.
dx dx

_-_^ d(sec u) ^ du
XIL —^-^ = sec u tan u 3—

dx dx

--„_ d(csc u) , du
XIII. ^ = —CSC u cot u 3—

dx dx

---.- d(vers u) . du
XIV. . = sm u 3—

dx dx

XV.

XVI.

du
d(sin~^ u) dx

dx "" vr-~u2*
du

d (cos-^ u
)

dx^

dx ~ vr^
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XVII.

XVIII.

XIX.

XX.

XXI.

d(tan-' u)

dx

d(cot-' «).
dx

d(sec-' u).

dx

d(csc~' u).

dx

d(vers--lu)

du
dx

1 +U2
(du

dx

du
dx

dx V2u -"u^

197. ysin u du and ycos u du.—Many integrals involv-

ing trigonometric functions occur in the applications of cal-

culus, but here attention will be confined to ysin u du and

y^cos u du,

y sin u du = — cos u + C.

This is readily proved, for

d{— cos u + C) = d( — cos u) = sin u du.

ycos u du = sin u + C

For d(sin u + C) = d(sin u) = cos udu.

Example.—Find J*sm{2x + l)dx.

If 2x -\- 1 = u, du = 2 dx.

Then v^rite y*sin (2x + l)dx in the form iysin(2x + l)2dx and it is

in the form of J* sin u du.

.-. /sin i2x + l)dx = hf sin {2x + l)2dx = -Jcos {2x -f 1) +C

EXERCISES

In exercises 1-20 find the derivatives.

1. y = sin 3x. 6. 2/ = sin 3x cos 2x,

2. 2/ = sin^x. 6. 2/ = tan Sx.

3. 2/ = cos (2a; H- 1). _ sin a;

4. y = sin a; cos ic.
• 2/ -^

^.Qg ^j*
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12. y = cos2 {^x + 2). 18. p

13. y = Vsin 3a:. 19. p

14. y = smH cos^x. 20. y

21. Given x = a(e — sin 0) and 2/ = a(l

8. 2/ = tan 3 5x. 15. y = sin^ o^Vsec^
9. 2/ = 3; sin x. 16. y — m cot^qx.

10. 2/ = sin (a:^ + x"^). 17 _ 1 ~ ^Qs a;

11. 2/ = sin (a;2 + 3x - 4).
* ^ ~

1 + cos x

= tan 30 + sec 36.

= ^ tan3 - tan + 0.

= 3 sin a: — 4 sin^ a;.

— cos e), find dx and dy, then

by division find -t-»

22. Find the area enclosed by one arch of the curve y = cos x and the

a:-axis.

23. Find the slope of the tangent to the curve y = sinx at the point

where x = iw. Where a; = 2.

24. Find the slope of the tangent to the cycloid x = a{e — sin 6),

2/
= a(l — cos 6) Sit the point where 6 = iw. Where 6 = ir. Where

0=0.
25. Find the maximum and minimum points, and the points of inflec-

tion of the curve y = sin x.

Find the indefinite integrals in exercises 26-33.

26. y sin 3a; dx. 30. J* sin x cos x dx.

27. J* sin (3a: — l)dx. 31. J* sin^ x cos x dx.

28. y cos 4a: dx. Z2, f cos^ x sin a: dx.

29. y cos (4x — 2)(ix. 33. S sin^ x cos x dx.

34. Find the equation of the curve passing through the point (tt, 0),

if the slope of the tangent at any point is equal to the cosine of the

abscissa of that point.

EXPONENTIAL AND LOGARITHMIC FUNCTIONS

198. Derivative of loggU.—We will first find -j- when

y = logeX.*

Let P{xi, yi) be a point on the curve.

Then yi = logeO^i or Xi = e^K

Let X = Xi + AXy and a^i + Ao; = e^i + Ai/.

Subtracting, Ax = e^/i + Aj/ _ gi/i = e^i(eA2/ _ 1).

* In logeX, e = 2.71828 * •
• , the base of the natural system of

logarithms.
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^. .,, . ^ Ax e^y - 1 e^y - 1
Dividing by A?/, -— = • i «9— = Xi •

Ay Ay Ay

Ay 1 Ay
Or

Ax Xi e^y — 1

Then "^ J^l = ^ ^'^^
^ [^^1, since Aj, =

when Ax = 0.

Or ^_ 1 lim r ^y 1

dx Xi Av = L 6^^ — 1

J

But it can be shown that }^^ ^ f ^^1 = 1.
Ay = Le^y — lA

Then, dropping the subscripts, ~ = -^ or dy =- dx.
U/X X X

Evidently, ii y = logeW, then dy = - du.
u

^, . ,. . T dy 1 du
Dividing by dx,^=^^.

XXII •
d(logeu) ^ 1 du

dx u dx'

199. Derivative of logaU.—^Let a be any base. Since by
a theorem of logarithms, logat6 = logewloga^.

Then '^a»|fi) _ !«!g!!f) ,„g.,. By V.

If, in XXIII, a = 10, logioi* expresses the common logarithm

of u, and

djlogiou) _ 1 du ,^

dx ~~ u dx '

where M = logioe = 0.4343— .

200. Derivative of a" and e".—^Let y = a"*.

Then loge?/ = t^ log^a.



XXV.
d(e»;

)=e^
.d"

dx dx

201. Derivative of u^--Let y =

functions of x.

Then logeV = V lo
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Taking the derivative of each side of this equation by
XXII and V,

1 dy _ du ,

y dx" dx ^^
'

^ dy du
,

^^^- • • -d^=^ di^^Sea.

If a is put equal to e, and noting that log^e = 1, XXIV
becomes

where u and v are

Taking the derivative of each side of this equation by XXII
and IV,

1 dy _ V du dv
^

y dx u dx dx

dy V du
,

dv ,

Tx^y-udx+y-dx^''^'''
V du

,
dv ,= W^- -^ + U'" -Y~ logeU.

u dx dx

XXVI .
•

. -^^ = vu^-1 T- + u^ :r- logeU.
dx dx dx ^

The appUcation of formulas VII, XXIV, and XXVI should

be carefully distinguished. Formula VII is used when a

variable is affected by a constant exponent; XXIV is used

when a constant is affected by a variable exponent; and XXVI
is used when a variable is affected by a variable exponent.

It is customary in calculus to omit the base when writing

logarithms to the base e, and to express the base when it is

not 6.

Thus, log 5 means loggS.
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202. Illustrative Examples.

dy
Example 1.—Given y = log {x'^ + 3x), find -7--

dy ^ 1 d{x^ + 3x)
^

dx x^ + 3a; dx

1

By XXII.

-x^+3x(2x+3). By III, VII, V, L

dy ^ 2x -f 3
' ' dx~ x^ +3x

Example 2.—Given y == logio(l + 3x), find ^-

%_ 1 dd+Mi By XXIII.

3 logioe. By III, V, I.

dx 1 +Zx

1

1 + 3a;

'

dy 3

Example 3.—Given 2/ = e^'"*"* , find -p-

dx dx

= e"'^' (2x + 1). By III, VII, I.

dv
Example 4.—Given y = log sin^x, find ~

d^^ld(sm'x)^ By XXII.

^ 2 sin a; cos x. By VII, VIII, I.
sin^a;

.•.^ = 2cota;.
ax

Example 5 —Given the catenary 2/ == Ja(e® + e "), (see exercise 8,

page 167), find the slope of the curve at the point whose abscissa is 0.

17
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Solution.—Given y = ia{e^ + e "').

\ o a/

By III, XXV.

By V, I.

' dx
i(e" - e «).

dy\
^-^ ilx = o = *(*"-^") = o-

.
*

. the slope of the catenary at the point where a; = is 0.

203.
I
— ) ye"du, and ya^du.—These integrals are readily

evaluated and occur frequently.

= lOgeVL + C.

For d{logeU + C) By XXII.

Fig. 170.

yeMu = e" + C.

For d(6" + C) = e^'du.

ya"du = a"

For d(r^ + c) = a-du.
Mog a I

log a
+ C.

By XXV.

By XXIV.
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Example.—Find the area bounded by the equilateral hyperbola

xy = 4, the x-axis, and the ordinates corresponding to x = 1 and x = 8.

Solution.—The hyperbola is shown in Fig. 170, and the area sought

is MNQR.
Consider the area A as generated by the ordinate moving toward

the right.

Then dA = ydx.

And SdA — Sy dx =
J -dx =

4
J — •

A = 4 log x + C.

When re = 1, A = 0. .
*

. = 4 log 1 + C, or C = -4 log 1.

When X = S,A = 4 log 8 - 4 log 1.

A = 4 X 2.079 -4X0 = 8.316.

Therefore the area sought is 8.316 square units.

EXERCISES

In exercises 1-20 find the derivatives of the dependent variables

with respect to the independent variables, and the differentials of the

dependent variables.

1. y = log (x^ + 7x). 7. 2/ = e3«'+4,

2. 2/ = logio x^. S, y — e' sin x.

3. 2/ = log -• 9. 2/ = a^'.

4. 2/ = logio x-K 10. y = a:-102*+^

5. 2/ = e^"". 11. 2/ = (3a; - 2)'.

6. 2/ = e'\ 12. 2/ = i(e' + e"*).

13. i = 6e-«'. (See Ex. 9, page 167.)
_Rt

14. i = le L. (See Ex. 11, page 167.)

15. 2/ = e-' sin x. (See Ex. 18, page 174.)

16. i = e-^^ sin {2t + §7r). (See Ex. 19, page 174.)

17. y = X + log (1 + x2). 19. 2/ = (3x + 2)e-'^.

18. 2/ = (2a; + log x)2. 20. y = (x^ + l)^'+K

21. Find the slope of the tangent to the curve y = e' at the point

where x = 0. Where x = 2.

22. Find the slope of the tangent to the curve y = logio x at the point

where x = 1. Where x = 10.

23. Find the minimum point of the curve y = log (x^ — 2a: + 3).

24. Find the maximum and minimum points of the curve whose equa-

tion is 2/ = 2x^ — log X.

25. Show that the rate of change of y with respect to x for any point

on the curve y = ae** is proportional to y. (See Art. 128.)
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26. Find the area bounded by the equilateral hyperbola xy = 1, the

X-axis, and the ordinates corresponding to x = 1 and x = 10.

27. Find the area bounded by the curve y = x -\- -i the x-axis, and

the ordinates corresponding - x = 2 and x = 4.

Find the indefinite integrals in exercises 28 to 37.

28. f-^- 33. r-^ + ^
^x.

29.

30.

\-dx, 34. f{l - x-i)(l - x-2)dx.
J X

r^^^dx. 35. fa^^dx.
•/ X

g^^
Tco^xdx^

gg^ 4)e--(ix.
J sin X

32. /e2^(ix. 37. /(e^^+i + x)dx.

38. Find the equation of the curve passing through the point (0, 1)

if the slope of any point of the curve is proportional to the ordinate

of the of that point.

dy ^ dy , ^

Suggestion.^ -^ = ky. .'. — = kdx.

39. Find the equation of the curve passing through the point (0, 1)

if the slope of any point of the curve is equal to xy.

Suggestion.— -^ = xy, .* . — = xdx.



CHAPTER XIII

SOLID ANALYTIC GEOMETRY

204. Introduction.—In plane analytic geometry, all the

points and lines are confined to one plane. In solid analytic

geometry this restriction 'is removed, points and lines are

considered as anywhere in space. In addition a new element

is introduced, a surface of which the plane is a particular

instance.

Since plane analytic geometry is a special case of solid

analytic geometry, it is expected that the formulas obtained

for plane analytic geometry can be

obtained as special cases of the

formulas for solid analytic geometry.

Such reductions and resemblances

should be constantly sought.

205. Rectangular coordinates in

space.—If at the origin of the coor-

dinate system in plane analytic

geometry a line is erected perpendic-

ular to the plane of the axes, this

line will serve as a third axis for a

space coordinate system, and is called

the 25-axis. It is customary in a space

depiction to draw the x-axis. Fig. 171, horizontal, the 5J-axis

vertical and the y-Sixis as coming toward the observer. In

order to give space perspective to the figure, the positive

^-axis is drawn so as to make an angle of 135° with the posi-

tive 2J-axis, and the unit on the y-Sixis is taken equal to haK

the diagonal of a square whose side is a unit on the x-axis.

The three axes determine three coordinate planes, the

261

--s:

Fig. 171.
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xy-plane, xz-plane and yz-plane. These three coordinate

planes are mutually perpendicular to each other and all

pass through the origin 0.

If through a point P in space, Fig. 171, planes are drawn
perpendicular to the Xj y, and 2;-axes, respectively, these three

planes will form with the coordinate planes a rectangular

parallelepiped. The edge RP perpendicular to the ^/^^-plane

and parallel to the x-axis is called the x coordinate of P. It is

considered positive if measured to the right, and negative if

measured to the left.

The edge NP perpendicular to the a;2;-plane and parallel

to the 2/-axis is called the y coordinate of P. It is considered

positive if measured toward the observer, and negative if

measured away from the observer.

The edge KP perpendicular to the a:?/-plane and parallel

to the 2J-axis is called the z coordinate of P. It is considered

positive if measured upward and negative if measured

downward.

These three coordinate lines uniquely determine a point P,

since they determine three mutually perpendicular planes,

MP, HP, and LP which intersect in one point P.

In place of drawing a rectangular parallelepiped to rep-

resent a point in space it is customary to draw a broken line

consisting of three of its edges.

Thus, the point P, Fig. 171, would be represented by the broken line

OHKP.

The three coordinates of a point are written {x, y, z.)

Thus if P, Fig. 171, is the point (2, 3, 4), its coordinates are

X = OH = 2, y = HK = S, amd z = KP = 4,

The three coordinate planes divide all space into eight

octants. The octant in which the point lies is denoted by

the sequence of signs for the three coordinates.

Thus, the (+, +, — ) octant is the octant to the right of the

yz-plane, in front of the xz-plane, and below the xy-plane.
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EXERCISES

1. If P, in Fig. 171, has the coordinates (2, 3, 4) what are the coordi-

nates of H, Kj M, R, L and A^^?

2. Plot the points (1, 1, 1), (-1, 2, 3), (2, ~3, 1), (-2, -1, -3).

3. Draw the triangle whose vertices have the coordinates (2, 1, 4),

(-1,3, 2), (2, -1, -3).

4. Where are all the points for which a;=0? y = 01 2=0?
6. Where are all the points for which x = —21 y = S? 2=— 2?

6. From the point (xi, yi, Zi), perpendiculars are drawn to the coordir

nate planes. Find the coordinates of the feet of these perpendiculars.

206. Geometrical methods of finding the coordinates of a

point in space.—Since any point P in space can be regarded

as the vertex of a rectangular parallelepiped which has the

opposite vertex at the origin, the coordinates of P can be

found geometrically in a number of dififerent ways of which

the following are the most useful.

(1) From P draw a Hne, Fig. 171, perpendicular to the

x^-plane and meeting it in K. From K draw a line perpendic-

ular to the X-axis and meeting it in ff.

Then OH = x, HK = y, and KP = z.

(2) From P draw planes perpendicular to the x, y, and

2;-axes, respectively, and let the axes intersect these planes in

the points H, M, and L, respectively.

Then OH = x, OM = y, and OL = z.

(3) From P draw lines perpendicular to the x, y, and 2-axes

meeting them in the points H, M, and L respectively.

Then OH = x, OM = y, and OL = z.

207. Distance between two points.—The distance between

two points Pi{xiy yiy z^ and P2(x2, ^2, Z2) is found by con-

structing a rectangular parallelepiped, Fig. 172, having as

opposite vertices Pi and P2, and whose edges are parallel to

the coordinate axes.

Then P1P2 is the length of a diagonal of this rectangular

parallelepiped.
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Since P1SP2 is a right triangle, P1P2' = PiS^ + /SP2'.

Since PiRS is a right triangle, P^^ = P^^ + RS\
Therefore P^^ = p^2 + ^2 _,. ^^2^

Substituting P1P2 = dj PiR = X2 — Xi, RS = 2/2 — 2/1, and

SP2 = Z2 — Zij and extracting the square root of both sides

of the equation, gives the distance formula

[48] d = V(Xi - X2)2 + (yi - y2)2 + (zi - 12)'.

i P^

/ y^^
Pi

/

^
^ s

y^^^^

r
^ Y

/ / y>X

/ / /
^-X

Fig. 172. Fig. 173.

208. Coordinates of a point dividing a line segment in

the ratio ri to r2.—As in plane analytic geometry, the ratio

— = ^^ will be considered positive for internal division
^2 Po^2

and negative for external division. Let Pi and Pi^ Fig. 173,

be the end points of the segment and let Po be the point of

division. Through Pi, P2, and Po draw planes perpendicular

to the X-axis meeting it in the points iVi, iV2, and iVo respectively.

By a familiar theorem in solid geometry,

PiPo ^ iViTV

P0P2 iVoiVa*

But iViiVo = OiVo - ONuONo = Xo, and OiVi = xi, Art. 206.

Hence iViiVo = Xq — Xi.

Similarly iVoiV2 = X2 — xq.



Xo
—

Xi

X2 — Xo

riX2 + r^xi
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P P T
Substituting these values and replacing p p by -

,
gives

Solving for xo,

Xo =
,

r\ + r2

By drawing planes • perpendicular to the t/-axis and the

2;-axis similar formulas are obtained for ^o and z^-

Therefore the coordinates of Po dividing the line P1P2 in

the ratio r\ to ti are

FAQi ^ ^1X2 + 12X1 ^^ riya + r2yi ^ _ riZs + rgZi

X\ + r2 Ti -r r2 fi -j- 12

EXERCISES

1. Find the distance between the points ( — 1, 3, 7) and (1, 9, 16).

2. Find the distance between the points (3, —2, 4) and (6, —6, —8).

3. Show that the points (1, -2, 3), (7, 0, 6), (4, 6, 8) form a right

triangle.

4. Show that the points (3, -1, 4), (4, 1, 7), (1, 4, 6) form a right

triangle.

5. Show that the points (1, 7, 6), (2, 2, 11), (2, 8, 13) form an isosceles

triangle.

6. Show that the points (-4, 2, 5), (-1, 5, 2), (-3, 3, 0) form an

isosceles triangle.

7. Show that the points (7, -1, 2), (4, 2, 2), (4, -1, 5), (3, --2, 1)

are the vertices of a regular tetrahedron.

8. Find the lengths of the medians of the triangle whose vertices are

(-1. 7,4)r, (3, -5, -2), (-5, 1,6).

9. Find the coordinates of the point which divides the line joining

(7, 2, 6) to ( -3, 7, -9) in the ratio of 2 :3.

10. Find the coordinates of the point which divides the line joining

(7, -6, 2) to (-3, 4, -5) in the ratio -3 :4.

11. In what ratio is the line joining (2, -6, 3) to (4, -3, -6) divided

by the x^-plane?

12. The beginning of the line segment which is divided in the ratio

4:3 by the point (1, 2, -6) is the point (-1, 6, -2). Find the

coordinates of the other extremity.
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13. Prove analytically that the straight lines joining the mid-points

of the 'Opposite edges of a tetrahedron pass through a common point and

are bisected by it.

14. Prove analytically that the straight lines joining the mid-points

of the opposite sides of any space quadrilateral pass through a common
point, and are bisected by it.

209. Orthogonal projections, of line segments.—In general

two lines in space will not intersect. If parallels to these lines

are drawn through any point, the angle made by these inter-

secting lines is defined as the angle

made by the non-intersecting lines.

If through a point P in space a

plane is constructed perpendicular to

a given line, the point P' where the

^ plane meets the line is defined as the

orthogonal projection of the point P
on the line.

If the orthogonal projection of the

end points Pi and P2 of a line seg-

ment, Fig. 174, on a line I are P/ and P2', then the line

segment P/P2' is said to be the orthogonal projection of the

line segment P1P2 on I,

With these definitions it is easy to derive formulas for the

projection of a line segment on a given line.

Let P1P2, Fig. 174, be a fine segment of length d, let Pi'P2'

be its projection on the line Z, and let 6 be the angle between

P1P2 and P/P2'.

Through Pi draw a line parallel to I and meeting the plane

passing through P2, perpendicular to line I in the point P2".

Join P2P2", P2"P2', and PiP/. Then 6 is the angle P2"PiP2,

and
p^^p^^ = pj>^" = P1P2 QO^e = d cos e.

This gives:

Theorem 1.

—

The projection of a directed line segment on

a given line is equal to its length multiplied by the cosine of the

angle between the lines.
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Another theorem which is useful in soHd analytic geometry

is the following:

Theorem 2.

—

The projection on any line of the straight

line joining any two points is equal to the algebraic sum of

the projection of any broken line

joining these points.

Proof,—Let P1P2, Fig. 175, be

the straight line joining Pi and

P2, let I be the line on which

P1P2 is to be projected, and let

P1P3P4P5P2 be any broken line

joining Pi to P2. If the points

P/, P3', P/, P5', P2 are the pro-

jections of the points Pi, P3, P^,y^

P5, P2, respectively, then Fig. 175.

Proj. P1P3 + proj. P3P4 + proj. P4P5 + proj. P5P2 =
Pi'Pa' + P^'P,' + P,'P,' + P5T2' = Pi'Pa'.

But proj. P1P2 = Pi'P2'.

This proves the theorem.

210. Direction cosines of a line.—^Let the angles which

any line in space makes with the

positive X, y, and 2;-axes be re-

spectively, a, 13, and 7. These

angles are called the direction

angles of the line. Their cosines,

cos a , cos jS, cos 7 are called the

direction cosines of the line.

If Pi and P2, Fig. 176, are any

two points on a line and d is the

distance P1P2, the direction cosines

are given by the formulas

^x

Fig. 176.

[50] cos a
X2 — X

-» cos /3
= y2 yi Z2

-^> cos 7 = Zi
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To prove this, let the projection of PJP^ on the x-axis be

Pi'Ps', then

Pi'Pg' = d cos a.

But P1T2' = OP2' - OPi' and OP2' = 0:2 and OP/ = Xi.

Art. 206.

Therefore
X2 — Xi = d cos a,

or X2 — Xi
cos OL = —,

a

The remaining two formulas are found by projecting P1P2

on the 2/-axis and the ai-axis respectively.

These three direction cosines are not independent, for squar-

ing each equation and adding gives

cos^q: + COS^jS + cos27 =

(X2 - x^y + {y.2 - yiY + {Z2 - ziY ^ d' ^
d' d'

Therefore

[51] COS^a + COS^iS + COS^Y = 1.

Example.—Find the direction cosines of a line if they are proportional

to the numbers 2, —9, 6.

Solution.—Since cos a : cos /3 : cos 7 = 2 : —9:6,

cos <x = 2k,

cos /3 = —9k,

cos y — 6A;.

But by [51], the sum of the squares of these cosines equals unity,

therefore

4A:2 + 81/c2 + 36/c2 = 1.

Substituting, cos a = ^1 cos/3 = -~ tt' cos 7 = tt*

r. 2^9 6
Or cos a = — ~i cos /3 = y^ ' cos t = — tt*
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EXERCISES

Find the direction cosines of the Hnes joining the points in exercise

1-3, and the projections of these hnes on the three axes.

1. (4, 2, 3) to (5, 3, 4). 3. (-5, 1, 4) to (-3, 4, -2).

2. (-2, 1,7) to (5, -3,2).

Find the direction cosines which are proportional to the numbers in

exercises 4-7.

4. -6, 2, -3. 6. 4, 3, -12.

5. 6, -7, 6. 7. -10, -6, 15.

8. Find the orthogonal projection of the line joining (7, 6, —2) to

(5, —3, 4) on the x-axis; on the 2/-axis; on the z-axis.

9. What are the direction cosines of the x-axis? Of the 2/-axis? Of the

z-axis?

10. What are the direction cosines of a line parallel to the x-axis?

Perpendicular to the a:-axis?

11. Where do all the lines lie for which (a) cos a — i, (6) cos /3 = i,

(c) cos a = i and cos /3 = i, (d) cos a = 0, (e) cos a = 1?

12. A line makes an angle of 60° with both the x and the 2/-axis, what

angle does it make with the z-axis?

13. A hne makes an angle of 75° with the a:-axis, and 45° with the

2/-axis, wJiat angle does it make with the 2-axis?

14. The equal acute angles which a line makes with the x-axis and

the y-axis, are each one-half the angle which it makes with the z-axis.

Find the direction cosines of the hne.

15. The angles not greater than 90° which

a line makes with the x, 2/, and z-axes are

proportional to 1, 2, and 3. Find the direc-

tion cosines of the line.

N-^

211. Polar coordinates of a point.

—If the distance OP, Fig. 177, of a

point P from the origin is called p,

and if the direction angles of OP are

a, fiy and 7, then (p, a, P, 7) are called

the polar coordinates of P. The re-

lations between the polar coordinates of P and its rectangular

coordinates are obtained by replacing (o^i, 2/1, Zi) of article 210

by (0, 0, 0) and (^2, 2/2, Z2) by (x, y, z).

Fig. 177.
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Since d = Vx^+^rHh"^, formula [50] gives the

coordinates in terms of the rectangular coordinates.

polar

[62]

COS a =

cos 5 =

cos Y =

+ Vx2 + y2

X

+ zh

+ Vi^ + y2

y

+ %"

+ Vx2 + y^ + Z2

z

+ Vx^ + y2 + z2

Note that the radicals must be taken either all positive or all

negative.

Replacing y/x^ + y^ + z^ by its value p, and clearing of

fractions gives the rectangular coordinates in terms of the

polar coordinates.

X = 9 cos a,

[53] y = 9 cos g,

z = 9 cos y.

Note that the direction cosines are not independent but are

connected by the equation cos^a + cos^/? + cos^y = 1.

212. Spherical coordinates.—Another method of locating a

point in space is by means of spherical

coordinates. From P, Fig. 178, drop

a line perpendicular to the xy-plsme

meeting it in M. Join 0, called the

pole, to P, and to M, Then the

spherical coordinates of P are p, 6j

and </), which are written (p, By 0),

where p = OP is the distance of P
from the origin; 6 = angle NOM is

the angle through which the positive

a:-axis would have to rotate to coincide with OM; and

(j) = angle ZOP is the angle which OP makes with the positive

g-axis.

The quantity p is taken positive if measured along the radius
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vector, and negative if measured along the radius vector

produced through the origin. The angle 6 can have any

value from 0° to 360°. The angle (/> is restricted to values

from 0° to 180°.

The relations between spherical and rectangular coordinates

are then

X = 9 sin ^ cos 8,

Y = Q sm (p sin dj

Z = Q COS <p

9 = ±\/x2 + y2+z2,

y

[54]

[54d

V= tan-^ - = sm-
±\/x2 + y2

<p= cos
±Vx2 + y2 + z2

The convention with regard to signs is that either all the

upper signs must be used, or else all the lower.

If the pole of a spherical coordinate system were taken

at the center of the earth, the z-axis passing through the

north pole, and the a;;2-plane passing through the meridian of

Greenwich, then the spherical coordinates of a point in the

northern hemisphere can be so

chosen that p will give the distance

of the point from the center of the

earth, 6 its longitude and <p its co-

latitude.

213. Angle between two lines.—
Let the two lines be h and h Fig.

179, with direction angles ai, /3i, 71,

and a2, i82, 72, respectively, and let

B be the angle between h and Z2.

In order to find 6, draw two Unes OPi and OP2 through

parallel to h and h respectively, also draw ON, NM, MPi,
the coordinates of Pi, and let 0P\ = pi.

By article 209, the angle between OPi and OP2 equals 6,

Fig 179.



272 ANALYTIC GEOMETRY [§213

Project OPi and the broken line ONMPi on OP2.

By theorem 2, Art. 209,

proj. OPi = proj. ON + proj. NM + proj. MPi,

By theorem 1, Art. 209,

proj. OPi on OP2 = Pi cos 6,

proj. ON on OP2 = Xi cos ^2,

proj. NM on OP2 = 2/1 cos 182,

proj. MPi on OP2 = i^i cos 72.

Therefore picos ^ = o^icos 0^2 + 2/iCOs i32 + Zicos 72.

Replacing Xi, 2/1, ^i by their equivalents, [53], and dividing

both sides of the equation by pi, gives the required expression

for 6,

[55] cos 6 = cos ai cos a2 + cos gi cos ^2 + cos y^ cos 72.

If the two lines are perpendicular to each other,

cos ai cos ^2 + cos /3i cos ^2 + cos 7i cos 72 = 0.

If the two lines are parallel to each other, it is evident that

either ai = a2, Pi = P2, and 71 = 72, or ai = 180° — a2,

Pi = 180° - p2, and 71 = 180° - 72.

Example 1.—Find the polar coordinates of the point (1, — 1,— \/2).

From [52], p = Vi = 2, cos a = J, cos j8 = — J, cos 7 = — 2\/2

.
•

. a = 60°, i3
= 120°, 7 = 135°.

Then the polar coordinates of (1, -1, -\/2) are (2, 60°, 120°, 135°).

If the negative sign is taken with p the polar coordinates are

(-2, 120°, 60°, 45°).

Example 2.—Find the spherical coordinates of (1, —1, — \/2).

From [54], p = ^4 = 2,

e = tan-i (- 1) = sin-i -^ = 315°, and ^ = cos"!-^!^ = 135°.

Then the spherical coordinates of (1, —1, —
-\/2) are (2, 315°, 135°).

If the negative sign is taken with each of the radicals the spherical

coordinates are (—2, 135°, 45°).

Example 3.—Find the direction cosines of a line which is perpendicular

to two lines having direction cosines proportional to —1, 2, 6 and

1, 4, 3 respectively.
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If cos a, COS jS, cos 7 are the required direction cosines, [55] and [51]

give the three equations:

—cos a + 2 cos /3 + 6 cos y — 0,

cos a + 4 cos /3 + 3 cos 7=0,
COS2 ^ _j_ (;Qg2 ^ _j_ (,Qs2 y — \

Solving these equations, gives cos a = f , cos ^ = — f, cos 7 =|, or

COS a = — f, cos /3 = f , cos 7 = — f.

Exam'ple 4.—Find the projection of the Hne segment li joining the

points ( — 1, 3, 6) and (3, 7, —1) on the Hne U joining the points (3, 1, —2)
and (6, 7, 0).

From [50] the direction cosines of Zi are |, f, — | and of I2 are
8 6 8
r^ 7j *•

If d is the angle between the two lines, by [55],

12 + 24 - 14 22
cos e

63 63

The length of h by [48] is cZ = 9, and the projection of U on U by
9 X 22 22

theorem 1, Art. 209, is equal to d cos d = —wo— = "7"*

EXERCISES

Find the polar coordinates of the points in exercises 1-3, if their

rectangular coordinates are:

I. (1, V2, -1). 2. (4, -4, W2). 3. (1, 1, 1).

4. If the polar coordinates of a point are (3, 60°, 60°, 7), find 7.

Find the spherical coordinates of the points in exercises 5-7, if

their rectangular coordinates are:

5. (2, 2V3, 4V3). 6. (-3, -VS, -2). 7. (-v/6, \/6, 2).

8. Find the acute angle between the two lines having direction cosines

proportional to 11, —10, 2 and —5, 2, 14.

9. Find the direction cosines of a line which is perpendicular to two
lines having direction cosines proportional to 2, 4, —3 and —1, 4, 3,

respectively.

10. Find the projection of the line segment joining (3, —1, 4) to

(4, 1, 6) on'the line joining (4, 2, -5) to (-2, 4, -2).

II. Find the projection of the line segment joining (7, 2, —3) to

(2, 4, 3) on the line joining (1, -4, 3) to (7, -11, -3).

12. Find the projection of the line segment joining (2, 1, —3) to

(-2, 3, 1) on the line joining (3, -10, 4) .to (12, 8, -2).

13. Verify the conventions used with regard tp signs in article 212.

18
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SURFACES

214. Locus in space.—If an equation in two variables is

given in plane analytic geometry, values can be assigned at

pleasure to one of these variables, and then the other is

determined. The locus of all points satisfying such an

equation is found in general to be a curve.

On the other hand, in solid analytic geometry, if an equation

in three variables is given, values can be assigned at pleasure

to two of the variables and then the third variable is deter-

mined. For instance, in the equation z = x^ + y^j to every

pair of values of x and y there corresponds a value of z. Hence

for every point in the x^-plane there will be a corresponding

point in space for the locus of 2; = a;^ + y^. If these points

are thought of as a whole, it is obvious that they all lie on a

surface. In general then the locus of a single equation in

space is a surface. Sometimes one or even two variables may
be missing in an equation, in which case such an equation

will give rise to a special surface.

215. Equations in one variable. Planes parallel to the

axes.—The equation x = a, is satisfied by all values of y and

Zy since these variables can be regarded as entering into the

equation x = a with zero coefficents.

Hence all the points satisfying x = a will lie in a plane

parallel to the yz-plsme and cutting the a:-axis at the point

X = a.

If the equation has the form f(x) = 0, the locus will consist

of a series of planes, all parallel to the yz-plsme and cutting

the X-axis at points whose abscissas are the roots of f{x) = 0.

Like considerations hold for equations which contain only

the coordinate !/, or only the coordinate z,

216. Equations in two variables. Cylindrical surfaces.—
A cylindrical surface is generated by a straight line which

moves so as to be always parallel to some fixed line, while

intersecting a fixed curve. The fixed curve is called the

directrix of the cylindrical surface, and the moving line in
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^x

Fig. 180.

any one of its positions on the surface is called an element of

the cylindrical surface.

A plane can be regarded as a particular case of a cylindrical

surface whose directrix is a straight line.

Consider the equation x^ + y^ = 25, Fig. 180. In two

dimensional space this is the equation of a circle with center

at the origin and radius equal to 5. In

three dimensional space, the coordinate

z can be regarded as entering the equa-

tion with a zero coefficient. Hence with

any value of x and y which satisfies the

equation, say x = 3 and y = 4, there can

be associated any value of z. Thus, the

points (3, 4, -1), (3, 4, 0), (3, 4, 2), and,

in general, (3,4,2) where z has any value,

will all be points on the surface. These

particular points all lie on a line per-

pendicular to the OJ^-plane and passing through the point

a; = 3, ^ = 4 in the x2/-plane.

In like manner through every point on the circle x'^ + y^ — 25

in the a:?/-plane there passes a line perpendicular to the xy-

plane, and every point of this line satisfies the equation

x^ + y^ = 25. Hence the locus of the equation x^ + y^ = 25

is a cylindrical surface with elements perpendicular to the xy-

plane, in other words parallel to the 2;-axis, and having the

circle x^ -\- y^ = 25 as directrix.

Another illustration is the surface z^ = x. Its elements are

parallel to the y-Sixis and its directrix is the parabola z^ ^ x

in the xz-plsme. This is called a parabolic cylindrical surface.

In general an equation /(x, y) = represents in space a

cylindrical surface whose elements are parallel to the 2:-axis,

and whose directrix is the curve /(x, y) = in the xy-plsme.

The equations /(y, z) = and /(x, z) = represent cylin-

drical surfaces similarly situated with reference to the x and

the 2/-axes, respectively.
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217. Spheres.—^Let C(/i, fc, I) be the center of a sphere of

radius r. Since every point P on the sphere is at the constant

distance r from its center

CP = r.

Or \/(x - hy + (2/ - ^y + (2 - ly = r.

[66] .-. (x - hy + (y - k)2 + (z - l)^ = r\

This is the equation of the sphere with center at C and
radius r.

218. Surfaces of revolution.—A surface formed by revolv-

ing a curve about a line in its plane is called a surface of

revolution. The simplest

cases are those where the

curve is revolved about one

of the coordinate axes. Sup-

pose it is desired to revolve

the parabola y"^ = x about the

a;-axis. Let P, Fig. 181, be

any point on the parabola.

As the curve revolves about

the X-axis, P describes a circle of radius NP, When P is in

the xi/-plane, NP^ = x.

When P takes another position, say P^ then A^P^ = iVPand

therefore NP'"" = x, but A^P' = A/JVM' + MF^ = yjy^ + z\

Replacing NP' by its value gives {-s/
y^

-\- z'^y = x, or

7/2 _|_ 2;2 = ^.

Since P' can be any point on the surface, this is the equation

of the surface of revolution.

This equation was obtained by replacing y by -x/y^ + z^.

If f(x, y) = is the equation of any curve in the xy-plane

which is to be revolved about the x-axis, the same method of

reasoning shows that f{x, -y/y^ + z^) = is the equation of

the surface of revolution. In like manner the equation of the

surface of revolution obtained by revolving f{Xj y) = about

the t/-axis i^f(\/x^ + 2^, y) = 0.

Fig. 181.
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Thus ii y^ = X is revolved about the ^/-axis, the equation

of the surface of revolution is y^ = ^/x^ + z^, or y^- = x^ + z^.

Similar formulas hold true if the curve is given in one of the

other coordinate planes and revolved about the corresponding

coordinate axes. For instance if the curve /(?/, 2;) = is

revolved about the 2-axis, the equation of the surface of

revolution is f(\/x^ + y^j ^) = 0.

If a circle and a line are in the same plane, and the line

does not intersect the circle, the surface formed when the

circle revolves about the line is called an anchor ring or torus.

EXERCISES

1. What is the equation of the plane parallel to the xy-p\sine and 3

units above it? 4 units below it?

2. What is the equation of the x^z-plane? Of the x^-plane? Of the

^/z-plane?

3. What is the equation of the locus of a point distant 3 units from
the X-axis? 4 units from the z-axis?

Find the equation of the locus of a point determined by the conditions

in exercises 4-9.

4. Equidistant from the points ( — 1, 2, 3) and (3, 4, —2).

5. Equidistant from the X2/-plane and the xz-plane.

6. Equidistant from the x-axis and the 2/-axis.

7. Equidistant from the x-axis and the yz-plane.

8. Equidistant from the point (2, —4, 3) and the x-axis.

9. The sum of the squares of its distances from the point (1, 1, 1)

and (2, —1, 3) is constant and equal to 17.

10. Find the equation of a sphere with center on the x-axis, radius

equal to 9, and which passes through the point (2, 4, —8).

11. Find the equation of a sphere with center in the xy-plane, radius

equal to 7, and which passes through the points (3, 4, 6) and (7, 3, 3).

12. Find the equation of a sphere passing through the points (2, 3,-6),

(5, 3, -5), (5, -2, 10), and (-3, 6, 6).

Find the equations of the surfaces of revolution obtained by revolving

the curves in exercises 13-24 about the axes as indicated.

13. 2/ = X, about the x-axis.

14. y — Zf about the iz-axis.

15. y — x2, about the x-axis.

16. z^ = Xf about the x-axis.

17. a;2 = ^Zy about the x-axis.
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18. x^ — 2z, about the 2-axis.

19. x"^ — 2z -\- z^ — 0, about the x-axis.

20. x^ — 2z -{• z^ = 0, about the 2-axis.

21. y = sin Zy about the 2;-axis.

22. y = sin 2, about the 2/-axis.

x^ V^
23. The eUipse —g + r^ = 1, about its major axis. This surface is

called a prolate spheroid.

x^ y^
24. The ellipse —« + ?^ = 1, about its minor axis. This surface is

called an oblate spheroid.

25. What is the equation of the anchor ring obtained by revolving

the circle lying in the xy-planej with center at the point (0, 4) and

radius 2, about the a;-axis.

Skeich and describe the following surfaces.

26. a: - 2/ = 0. 31. x^ + 4:Z^ = 4.

27. x2 + 2/2 = 4. 32. x^ - 4:z^ = 4.

28. x^ - 2x +y^ = 0. 33. x^ + y^ + z^ - 2x - 2y - 2z - 6 = 0.

29. 2/2 - 22/ + 2^ == 0. 34. x^ - Sx + 2 = 0,

30. 2/2 - 22 = 0. 35. 2/2-1=0.

CURVES IN SPACE

219. Equations of curves.—Since a single equation in three

dimensional space is the equation of a surface, two equations

will be satisfied simultaneously by all the points lying on the

intersections of the two surfaces. In other words, it takes two

equations in solid analytics to define a curve.

Thus, y = is not sufficient to define the equation of the

a;-axis, for every point in the x2;-plane satisfies this equation.

Neither is 2: = sufficient, for this is satisfied by every point

in the xy-plsme, but y = and z = are satisfied only by
those points common to the x2;-plane and the xy-plane, namely,

the X-axis. Therefore, y = and ;$; = are the equations of

the X-axis.

Similarly x = and y = are the equations of the 2;-axis;

and X = and z = are the equations of the y-axis.

Since it is evident geometrically that an unlimited number
of surfaces can be passed through any curve, and that any

two of these surfaces will be sufficient to define the curve, any
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space curve can be represented by an unlimited number of

pairs of equations. Thus a circle in space has for its pair of

equations, the equations of any two spheres passing through

it, or the equation of any sphere and the equation of the

plane in which the circle lies. Even this does not exhaust all

the possibilities of representing a circle, since any two surfaces

passing through the circle will define it.

220. Sections of a surface by planes parallel to the coordi-

nate planes.—The curve in which a surface is cut by a coordi-

nate plane is called the trace of the surface in the coordinate

plane. Thus, the sphere x^ + y^ -{- z^ = 25 and the plane

z = define a curve, the circle formed by the intersection of

the sphere and the x^z-plane. If z is put equal to zero in the

equation of the sphere, it becomes x^ + y^ = 25. This is the

equation of the trace of the sphere in the o^^z-plane.

By putting 2/
= or a; = the

trace of the sphere in the xz-ipleme

or the yz-pleme is obtained.

Consider the two equations

x^ + y^ + z^ = 25 and z = S.

The curve AB, Fig. 182, com-

mon to these two surfaces is

known from solid geometry to

be a circle. If 2;= 3 is substi-

tuted in x^ + y^ + z^ = 25, it

becomes x^ + y^ = 16. This

is the equation of a circular cylinder.^ Since every point

satisfying the equation of the sphere and the plane satisfies

the equation of the cylinder, this cylinder must pass through

the circle AB, Hence substituting z = S in the equation of

the sphere x^ + y^ + z^ = 25, gives the equation of a cjdinder

passing through the intersection of the plane z = S and the

sphere x^ -{- y^ + z^ = 25.

^ For brevity the words cylindrical surface are often replaced by the

word cylinder.

^X

Fig. 182.
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The meaning of this substitution can be regarded from
another standpoint. The equation x^ + y^ = 16 is the

equation of the circle CD in which the cyHnder cuts the

a^y-plane. All the elements of the cylinder are perpendicular

to the xy-plsine and pass through the circle AB, Hence the

circle CD is the projection of the circle AB in the o^^z-plane.

In other words, substituting z = 3 in the equation of the

sphere x^ + y'^ + z^ = 25, gives the equation of the projection

on the xy-plane of the curve common to the plane z = Z and
the sphere x^ + y^ + z^ = 25.

In general, the substitution z = c, where c is some constant,

in the equation of a surface can be regarded either as giving

the equation of a cylinder passing through the intersection

of z = c and the surface or as giving the equation of the

projection on the xy-plsme, of the curve of intersection of the

plane z = c and the surface.

By giving c different values, the shape of different cross

sections of the surface in planes parallel to the xy-plsine are

obtained.

Like considerations hold for the substitution of a; = a or

y = b in the equation of a surface.

221. Projections of curves on the coordinate planes.—
When a curve is defined in space by two equations, it is

desirable sometimes to know what are the equations of its

projections in the three coordinate planes.

Consider the curve defined by the equations

x^ + y^ + z^ = 49, (1)

x2 + 32/2 - z^ = 39. (2)

If z is eliminated between these two equations, the resulting

equation

2x2 _|_ 4^2 = 88^

or x^ + 2^/2 = 44 (3)

represents an elliptical cylinder. Furthermore any point

whose coordinates satisfy equation (1) and (2) will also
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satisfy equation (3), therefore the cyHnder (3) passes through

the curve defined by the equations (1) and (2).

From another standpoint x^ + 2yi^ = 44 is the equation of

the directrix of the cyUnder x^ + 2?/^ = 44, and since the

elements of this cyhnder are perpendicular to the xy-plane,

the equation x^ + 2vf^ = 44 is the equation of the projection

on the a:2/-plane of the curve defined by equations (1) and (2).

In general, to find the eqitation of the projection on the xy-

plane of the curve defined by the equation fi{x, y, z) =0 and

f^ixjy, z) — 0, elminate z between these two equations. The

resulting equation g{xj y) = is the equation of the projection

on the xy-plane of the curve that is defined by the equations

fi{x, yyz) = and /2(x, y, z) = 0.

Proof.—Every point which satisfies simultaneously the

equations /i(a:, t/, 2;) = and /2(x, y^z) = will also satisfy

g{x, y)=0 and therefore g(x, y) =0 will pass through the inter-

sections of these two surfaces. But g(x, y) = is the equation

of a cylinder whose elements are perpendicular to the xy-plsme.

At the same time g{Xy y) = is the equation of the trace

of this cylinder in the o^^z-plane. Therefore, g{x, y) = is

the equation of the projection on the xy-plane of the curve

defined by the equations /i(x, yj z) = and/2(x, ?/, z) = 0.

In like manner it can be shown that to find the equation

of the projection on the a:2;-plane of a curve defined by the

equations fi(Xy i/, z) = and /2(x, y, z) = 0, eliminate y
between these two equations; and to find the projection on
the ^2;-plane eliminate x.

For example, the projection on the xy-plane of the curve defined by
equations (l) and (2) is the ellipse x^ + 2z^ = 54, and projection on the

yz-pl&ne is the equilateral hyperbola z'^ — y^ = 5.

EXERCISES

Discuss and draw the traces on the three coordinate planes of the

surfaces in exercises 1-3.

1. x^ + 22/2 ^ 32-2 =6, 2. x^ +xy +z =0. Z. x^ ^- y^ - z ^ I.
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Find the equations of the projections on each of the three coordinate

planes of the curves in problems 4-9.

4. x2 - i/2 + z2 = 4^ 7. x2 + ?/2 = a2,

2x2 + 2/' - 3^2 = 6. a:2 + 22 = ^2.

5. a;2 _ 2/
= 0, 8. 0^2 4_ 2,2 = a\

2^2 + 2/
- 2J2 = 0. z = mx.

6. a;2 + 2/2 + 22 == ^2^ 9. 2/2 + ^2 = 4cta;^

x2 + 2/^ = «^' 2/^ = a^-

X2 2/2

10. Show that sections of —g — t^ = z are hyperbolas if perpendicular

to the 2-axis, but parabolas if perpendicular to the x-axis or 2/-axis.

DISCUSSION OF EQUATIONS OF SURFACES

222. Surfaces in space.—It is much more difficult to vis-

ualize a surface in solid analytic geometry from its equation

than to visualize a curve in plane analytic geometry from its

equation. The following discussion similar to the one in the

plane case is helpful.

(1) Symmetry,

(2) Intercepts on the axes,

(3) Traces on the coordinate planes,

(4) Sections of the surface by planes parallel to the coordi-

naie planes. See Art. 220.

(1) Symmetry,—To test the symmetry of a surface with

respect to the coordinate planes,

(a) replace x by — ic,

(6) replace y hy -y,
(c) replace zhy —z.

If the equation of the surface remains unchanged in case

(a) it is symmetrical with respect to the ^2;-plane, in case

(6) with respect to the x2;-plane, in case (c) with respect to

the a:2/-plane.

To test for symmetry with respect to the axes

(a) replace yhy—y and 2; by —z,

(6) replace zhy —z and x by —x,
(c) replace x by — x and yhy—y.
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If its equation remains unchanged in case (a) it is symmetri-

cal with respect to the a;-axis, in case (b) with respect to the

r/-axis, in case (c) with respect to the 2;-axis.

To test for symmetry with respect to the origin replace

X by -X, y by -y, z by -z.

If its equation remains unchanged, ita surface is symmetrical

with respect to the origin.

(2) Intercepts on the axes.—To get the intercepts on the

X-axis, set both y and z equal to zero in the equation of the

surface and solve the resulting equation for x. The solutions

of this equation are the intercepts on the x-axis. Similar

considerations hold true for the y-Sixis and the 2-axis.

(3) Traces on the coordinate planes,—To get the trace of a

surface in the xy-plane set z = 0. The resulting equation is

the equation of the trace of the surface in the xy-plane. Similar

considerations hold true for the traces in the x^-plane and

the yz-plane. See Art. 220.

Example.—Discuss and draw the locus of the

equation x^ + 2y^ = z.

(1) This surface is symmetrical to the yz-plane,

the x2;-plane and the z-axis.

(2) Its intercepts on the three axes are 0.

(3) Its traces are as follows:

In the x?/-plane, the point ellipse x^ + 2y^ = 0.

In the xz-plane, the parabola x^ = z. ^J^^ ^x
In the yz-p\sine, the parabola 2y^ = z.

(4) Taking sections by planes z = c shows the

projections of these sections to be the ellipses

x^ y^ _ Fig. 183.

c + ic
" •^•

If c<0, these ellipses are all imaginary, hence no part of the surface

lies below the xy-plsme.

If c = 0, the equation x^ + 2y^ = 0, shows the section to be a point

ellipse.

As c increases from without limit, the ellipses increase in sizejwithout

limit, the semimajor axis being Vc and the semiminor axis iV2c, hence

the surface is as pictured in Fig. 183. In this case it is not necessary

to take sections parallel to the other coordinate planes.
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QUADRIC SURFACES OR CONICOIDS

223. General equation of second degree.—The locus of

the general equation of the second degree,

Ax^ + By^ + Cz'' + Dxy + Eyz +Fxz+Gx+ Hy + Kz+L = 0,

is called a quadric surface. It is also called a conicoid because

every section of a quadric surface by a plane is a conic. By
rotation and translation of axes it can be shown that this

equation has for its real locus, five distinct types of surfaces

besides cylinders, cones and degenerate forms like planes,

lines and points. These five types will now be considered.

224. Ellipsoid. + + ^ = 1-

^x

Fig. 184.

In the xy-pla,ne, the ellipse

In the X2;-plane, the ellipse

In the yz-p\a.ne, the ellipse

(1) This surface, Fig. 184,

is symmetrical to all the

coordinate planes, all the

coordinate axes, and the

origin.

(2) Its intercepts on the

axes are x = ±a, y = ±b,

z = ±c,

(3) Its traces are as follows:

a'
"^

62 ^•

x^

y'

+ 72 = 1-

+ - = 1.

(4) Sections of the ellipsoid by the planes z = k are the

ellipses

x^,1
n2 "T"

or

62

+

1 - fc2

p2y

^(C2 ^ k^) ^(c^ /c^)

z =k,

= 1, z = k.



§225] SOLID ANALYTIC GEOMETRY 285

These ellipses have their centers on the z-a,xi8. semimajor

axes equal to -\c^ — A;^, and semiminor axes equal to
c

- Vc^ — k^. Here it is assumed that a > b. If a < 6, the axes
c

are interchanged.

As k increases numerically from to c, the axes decrease

from a to 0, and from b to 0, respectively. When k is numeri-

cally greater than c, the ellipses become imaginary. Hence
the ellipsoid is contained between the planes z = —c and

z = c,

A similar discussion for the other axes shows that sections

parallel to the other coordinate planes are ellipses, and that

the ellipsoid is contained between the planes y = — 6 and

y = bj and between the planes x = —a and x = a.

The surface can be thought of as generated by a variable

ellipse moving parallel to the a;^-plane, with its center always on

the z-Sixis, and the end points of its axes always on the ellipses

-2 + -2= l,and^ + -,= 1.

Special forms of the ellipsoid are the prolate spheroid when

b = c and a>6, and the oblate spheroid when b = c and

a<b.
^2 y2 2^

225. The hyperboloid of one sheet. —^ + (-<> ; = 1-
a^ D^ c^

(1) This surface, Fig. 185, is symmetrical to all the coordi-

nate planes, all the coordinate axes and the origin.

(2) Its intercepts on the axes are x — ±a, y = ±b.

(3) Its traces are as follows

:

In the xy-p\a>ne, the ellipse "1 + fi"
~ -^ •

x^ z^
In the x2-plane, the hyperbola -^ ^ = 1.

v^ z^
In the i/2-plane, the hyperbola ^ 2 = ^'
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(4) Sections of the surface by the planes z = k are the

ellipses

y fc2

or X'
+.

y'

C c

1, z = k,

^x

These ellipses are real for all values of A:, increasing in

magnitude as k increases numerically from to oo. The
smallest ellipse is the one for which

/c = 0, and this is the trace in the

xy-plsme. The intersections in

planes parallel to the other axes

are hyperbolas.

This surface can be thought of

as generated by a variable ellipse

moving parallel to the x^z-plane,

with its center on the 2;-axis, and

the end points of its axes on the

hyperbolas

x^ z'^ . J y^ z^-,--,= 1, and p---, = l.

The hyperboloid of one sheet

Fig. 185. has the property that through

every point on its surface there

can be drawn two lines which lie wholly in the surface. The

surface can be covered with a net work of two sets of lines.

No two lines of the same set intersect each other, but any

line of either set intersects every line of the other set. This

surface can be generated by a line moving in such a way that

it always intersects three other non-intersecting lines in space.

It is called a ruled surface, because through every point on

its surface, there can be drawn at least one line which lies

wholly on the surface.
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226. The hjrperboloid of two sheets. -^ — f^ 2 ^ ^*

(1) This surface, Fig. 186, is symmetrical to all the coordi-

nate planes, all the coordinate axes, and the origin.

(2) Its intercepts on the a;-axis are ±a. The intercepts on

the ^-axis and the e-axis are imaginary.

(3) Its traces are as follows:

-2

In the xy-plane, the hyperbola

In the x2;-plane, the hyperbola

r

= 1.

y2 ^2

In the 2/i2-plane, the imaginary ellipse ^^ H—^ = —1.
c

^x

Fig. 186.

(4) Although the trace in the yz-plsme is imaginary the

form of the equation suggests that sections parallel to the

2/2-plane might be ellipses. Since it is easy to picture a surface

in terms of increasing or decreasing ellipses, sections will be

taken parallel to the ^2;-plane. Section^ of this surface by such

planes parallel to the yz-plsme as a; = fc, are the ellipses

/c2

V^'^ c^" a^
1, a: ~ fc,

or y = 1, X = k.
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These ellipses are imaginary if —a<k<a. Hence there is

no surface between the planes x = —a and x = a. As k

increases numerically from a to oo, the ellipses increase

indefinitely in magnitude.

Sections by planes parallel to the other axes are hyperbolas.

The surface can be thought of as generated by a variable

ellipse moving parallel to the yz-pleme, with its center always

on the a:-axis, and the end points of its axes on the hyperbolas

^2 52 - i,ana^2

72

= 1.

227. Elliptic paraboloid, —^ + = z.

(1) This surface, Fig. 187, is symmetrical to the ?/2;-plane,

the x2;-plane, and the 2;-axis.

(2) Its intercepts are x = 0, 2/
= 0, and 2 = 0.

(3) Its traces are as follows

:

X v
In the xy-plane, the point ellipse -^ + p
In the xz-plsiue, the parabola x^ = aH,

In the i/2;-plane, the parabola 2/^ = V^^-

= 0.

(4) The trace in the o^y-plane sug-

gests that sections parallel to this plane

might be ellipses, in fact, the sections

of this surface by the planes, z = k are

the ellipses

^x or

5: 4_ ^
a2 "^fe2

— iCj Z '~~ IV

J

z = k.

Fig. 187.
If fc < 0, the ellipses have an im-

aginary locus, hence no part of the

surface lies below the a:y-plane. As k increases from

to 00, the ellipses increase in size indefinitely. The sur-

face can be thought of as generated by a variable eUipse
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moving parallel to the xy-plame whose center is on the 2-axis

and the end points of whose major and minor axes are on the

parabolas x^ = a^z and y^ = h^z,
yr2 y2

228. Hjrperbolic paraboloid. -^ — ^ = z*

(1) This surface, Fig. 188, is symmetrical to the 2/2-plane,

the x2;-plane, and the 2;-axis.

(2) Its intercepts are x = 0, 2/ = 0, and 2 = 0.

(3) Its traces are as follows

:

y'
= 0.In the X2/-plane, the two lines -

(ju yj

In the a:2;-plane, the parabola x^ = aP'Z,

In the 2/2;-plane, the parabola y'^ = —hh.

Fig. 188.

(4) Since no trace suggests an ellipse, and since it is easier to

think in terms of moving parabolas instead of moving hyper-

bolas, sections are taken by planes parallel to the yz-pla^ne.

Sections of the surface by the planes x = k are the parabolas

These are parabolas, symmetrical to the a:25-plane, opening

downward, and with vertices (A;, 0, —^j lying on the trace

x^ = a^z of the hyperbolic paraboloid in the a;2-plane. All

of these parabolas are congruent. Hence the hyperbolic
19
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paraboloid may be thought of as generated by a parabola

opening downward of latus rectum b^, moving with its vertex

on x^ = a'^z so that its plane is always parallel to the yz-plsme.

Sections parallel to the a;2:-plane are parabolas opening

upward, and sections parallel to the x^-plane are hyperbolas.

This hyperbolic paraboloid has the property that through

every point on its surface there can be drawn two lines which

lie wholly in the surface. The surface can be covered with a

network of two sets of lines. No two lines of the same set

intersect each other, but any line of either set meets every

z line of the other set. Hence the

hyperbolic paraboloid is also a ruled

surface.

This surface can be generated by a

line moving always parallel to a fixed

plane, while always intersecting two

non-intersecting lines in space.

y2 tt2 ^2
229. Cone. -, + ?,- ^^

= q.

(1) This surface, Fig. 189, is sym-

metrical to the three coordinate

planes, the three coordinate axes,

and the origin.

Its intercepts on the axes are x = 0, y = 0, and z = 0.

^x

Fig. 189.

(2)

(3) Its traces are as follows

:

In the xy-p\2ine, the point ellipse = 0.

In the x2J-plane, the two lines —^ 2 ~ ^*

yZ
- -. = 0.In the 2/iS-plane, the two lines ^ .^

(4) Sections of the cone by the planes 2; = A; are the ellipses

a%^ "^
b^k'

= 1.
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As the numerical value of k increases from to oo, the

ellipses increase in magnitude indefinitely. Hence the surface

can be thought of as generated by an eUipse moving parallel to

the X2/-plane, with the ends of its axes in the lines -^ ^ = 0,

and the lines p 2 = ^- ^^^^^ ^^^^ ^^ ^1^^ ^ ruled surface,

but it is covered by a single set only of lines, all of which pass

through the origin.

EXERCISES

Discuss and draw the surfaces in exercises 1-15.

1.

2. x^ - 41/2 + 4^2 =
9.

9.

8. a;2 + 2/2 = 42.

9. a:2 - 2/2 = 42.

3.

4.

X^ - 42/2 - 4^2 =
^2 ^2^
9 ^ 4 ^ 16

^*

9. 10. x2 + 2/' - 2' = 0.

11. a;?/ + X2 + 2/2 = 0.

12. cos a = 0.

6.
X2 2/2 22

9
"^

4 16 13. cos /3 = |.

6.
x2 y^ ^2

9 4 16 14. cos ^ =
J-

7.
a;2 2/2 ^2 _
9 4 16 " "• 16. cos <f>

= ^'

Discuss and draw the curves or straight lines in exercises 16-20.

16. a; = 3, 2/ = -2. 19. X = y = z.

17. cos a = cos jS = 0. 20. cos ^ = ^, cos = J.

18. 2/ = a;, a;2 + 2/2 = 4.

21. Find the equation of the locus of a point which moves so that

the sum of the squares of its distances from the x and the 2/-axis equals 4.

Discuss and draw the locus.

22. A point moves so that the sum of the squares of its distances from
two fixed points is constant. Prove the locus to be an ellipsoid.

Suggestion.—Take the line through the two points to be the a;-axis,

and a point midway between them as the origin.

23. A point moves so that the difference of its distances from two
fixed points is constant. Prove the locus to be an hyperboloid.

24. Find the locus of a point equidistant from the point (p, 0, 0)

and the xz-plane.
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THE PLANE IN SPACE

230. Equation of a plane.—Some of the conditions that

determine a plane in solid geometry are three points in the

plane, or a point and a line in the plane. Unlike the straight

line in two dimensional space, these simple conditions do not

lend themselves readily to deriving the equation of a plane in

three dimensional space.* Rather, one of the simplest ways of

deriving the equation of a plane is by using the length of

the perpendicular from the origin to the plane and the direc-

tion cosines of this perpendicular. This perpendicular is called

the normal to the plane.

231. General equation of a plane.—Every equation of the

first degree in x, y, and z as

[57] Ax + By + Cz + D =

represents a plane.

Let Pi{xij 2/1, Zi) and P2{x2, yi, z^ be any two points whose

coordinates satisfy [57].

Then Axx + %i + C^i + D = 0, (1)

and Ax<, + J52/2 + 0^2 + £> = 0. (2)

Take any two constants Vx and r^, multiply equation (1) by

To 7*1—
-j_
— ; multiply equation (2) by —-^— ? and add,

. TxXi + ^23^1
, ^ riy2 + r^yi

, ^ riz^ -\- r^zi
i £) ^ q

Ti + ^2 ^1 + ^2 ri + ^2

This shows that any point on the line joining P1P2 also

satisfies equation [57]. Since Pi and P2 are any two points

on the surface [57], this shows that every Hne joining two

* The equation of a plane through three points can be expressed in

determinant form. If the three points are Pi, P2, and P3, the equation is

X y z 1

xi yiZi 1 ^ Q
Xi 2/2 22 1

X3 yz zz 1



§232] SOLID ANALYTIC GEOMETRY 293

points on the surface lies wholly in the surface, and since

this property is characteristic of the plane alone

Ax + By + Cz + D =

is the equation of a plane.

232. Normal form of the equation of a plane.—^Let the

length of the perpendicular ORj Fig. 190, from the origin to

the plane be p, and let its direction angles be a, jS, 7. If P is

any point in the plane, the projection of OP on OR will be

constant and equal to p. By theorem 2, Art. 209, the projection

of OP equals the sum of the projections of the broken line

ONMP on OR.

Therefore proj. ON + proj. NM + proj. MP = p.

But proj- ON on OR = x cos a,

proj . NM on OR = y cos jS,

proj. MP on OR = z cos 7.

Substituting these gives

[58] X cos a + y cos g + z cos y = P«

This is called the normal

form of the equation of a

plane.

In article 231, it was shown
that every equation of the

first degree in x, y and z is

the equation of a plane. This

article proves the converse of

that theorem, namely, that

every equation of a plane is

of the first degree in x, y,

and z.

233. Reduction of the

equation of a plane to the normal form.—The equations

Ax + By + Cz + D = and

X cos a + 2/ cos fi + z cos 7 — p =

Fig. 190.
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will be the equations of the same plane if they differ only by

a constant factor. Suppose that k is such a factor, then

kAx + kBy + kCz + kD = 0. (1)

And therefore kA = cos a,

kB = cos /3,

kC = cos 7.

Squaring each equation and adding gives

fc2(^2 + B^ + C2) = 1.

1
Or k = -^

—
.

Substituting this value of k in equation (1), gives

Ax + By + Cz + D
±\/A^ + B^ + C^

= 0,

where A
cos a =

±\/A2 +B2 + C2

59 ^ B
^ ^ cos 5 =

, —

—

>

±VA2 + B2+ C2

C
cos Y =

/
>

-D
,

234. Intercept form of the equation of a plane.—^Let the

plane cut the x-axis in the point where x = a, the ?/-axis in the

point where y = h, and the 2;-axis in the point where z = c.

These three quantities are called the intercepts of the plane

on the axes. If they are given and none of them is zero, the

plane is uniquely determined, for this is equivalent to giving

the three points on the plane (a, 0, 0), (0, 6, 0), (0, 0, c). To
find the equation of the plane, substitute these three coordi-

nates in succession in the general equation

Ax-\-By + Cz + D = 0. (1)
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This gives the three equations

:

Aa + D = 0,

Bb + D = 0,

Cc + D = 0.

From which

A = _D
a
--?

Substituting these values in (1),

_Dx
a

Dy Dz
,

b c ^

Dividing by --D,

5]
X

a
+y+? -1

c

(2)

This is called the intercept form of the equation of a plane.

Note that this form is not valid if any of the intercepts

are 0, that is if the plane passes through the origin.

235. Equation of a plane determined by three conditions.

The general equation of a plane,

Ax + By + Cz + D = 0,

involves four constants, A, B, C, and D. Any three con-

ditions that determine a plane give three relations between

these four constants. These three equations can be solved

for three of the constants in terms of the fourth providing that

the fourth is not zero. Then after substitution the equa-

tions can be divided through by the fourth constant as in

equation (2), Art. 234.

If the fourth constant should be zero, the three equations

will turn out to be inconsistent. In such a case solve the

equations in terms of another constant.

236. Angle between two planes.—^Let the two planes be

A^x + B^y + C^z + Di = 0,

and A2X + B^y + C2Z + D2 = 0.
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The angle B between these two planes is the angle between
their normals. Hence by [55] and [59],

[61] cos e = _ A1A2 + B1B2
+_CiC2 ^^^

±\/Ai2 + Bi2 + Ci2 VA22 + B22 + C22

The two planes are perpendicular to each other if

A1A2 + 51^2 + C1C2 = 0.

The two planes are parallel if their- normals have the same

direction cosines, that is, if -r- = '^ = tt'A2 L>2 ^2

237, Distance from a point to a plane.—^Let Pi(xi, 2/1? ^1)

be the given point and Ax -^ By -\- Cz -\- D = he the given

plane. Pass a plane through Pi parallel to the given plane,

and find the difference between the normals to the planes.

It is then found that the distance d is given by the formula

[62]
H=Axx + Byi + Czi + D

where the sign is chosen to make c? positive.

Example 1.—Find the equation of a plane passing through the points

(2, 1, 7) and (4, —1,-2) at a distance 2 from the origin.

Use the normal equation of a plane,

X cos a 4- 2/ cos /3 + 2 cos 7 — p = 0»

Since the distance of the plane from the origin equals 2,

p =2.

Since the plane passes through the points (2, 1, 7) and (4, —1, —2).

2 cos a + cos /8 + 7 cos 7—2=0,
4 cos OL — cos /3 — 2 cos 7—2=0.

Solving these equations with the identity

cos^ OL + cos2 ^ _^ (jos2 7 = 1,

gives cos o£ = I, cos jS = — f, cos 7 = ?,

or cos a = H, cos /3 = iif , cos 7 = -tI^.

Therefore, there are two solutions to this problem and they are

3x - 6?/ + 20 - 14 = 0,

and 105x + lUij - 2z - 310 = 0.
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Example 2.—Find the equation of the plane bisecting the angle between

the planes Sx — y + 2z = 4, and 2x -\- Sy — z = 4.

If P{Xy y) is any point on the bisecting plane, its distance from each of

the two planes is the same. Equating these distances gives

Sx - y -{-2z - 4: _ 2a: + 3y - 2 - 4

±\/l4
^

±\/l4

This gives the two planes

X - 42/ 4- 32 = 0,

and 5x + 2i/ + 2 - 8 = 0.

EXERCISES

Write the equations of the planes in exercises 1-4 in the normal

form and the intercept form.

1. X -2y -2z = 4. 3. 4x + 7i/ - 42 + 3 = 0.

2. 2x +y -2z =9. ^. 12x - y + 12z = 18.

Find the equations of the planes which satisfy the conditions of the

exercises 5 to 16.

5. Passing through the points (1, 1, 1), (-3, 3, 8), (-2, -3, -2).

6. Passing through the points (2, -1, 0), (4, -2, 4), (-1, 3, -1).

7. p = 5, cos a = J, cos /3 = — f

.

8. a = J, 6 = -f, c = 2.

9. Passing through the points (4, 0, —1), (6, 3, 3) at a distance 2

from the origin.

10. Passing through the point (1, —2, 1) and parallel to the plane

2/- 3x +42 - 5 = 0.

11. Passing through the points (1, 1, 1), (2, —1, 2) and perpendicular

to the plane 3x + 4?/ - 72 + 10 = 0.

12. Passing through the point (—2, —1, 3) and perpendicular to each

of the planes 2x - 2y - 7z + 3 = 0, and 4x + y - 42 - 1 = 0.

13. Passing through the point (1, 1, 2) and perpendicular to the line

joining (3, -4, 2) to (4, -6, 3).

14. Perpendicular to the line joining (7, —6, 3) to (1, 2, —5) at its

middle point.

15. Parallel to the x-axis and passing through the points (2, 1, 2) and

(-3,5,5).
16. Having the foot of the normal from the origin at the point

(-3,4,-2).
17. Find the distance from the point (3, —4, 2) to the plane

5x -2y - Uz + 15 = 0.
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Find the angles between the planes in exercises 18-20.

IS. X — y -{- z = 7 and x + y -{• 5z = 3.

19. 2x -\- y - z = 5 and 4x - 2i/ - 2z = 3.

20. x + 21/ - 2 = 7 and 2x - 2/ + 72 = 10.

Find the equations of the planes bisecting the angle between the
planes in exercises 21-23.

21. 2x +y - 2z = 1 and 3x + Qy - 2z = 7.

22. X -\- y -{- z = 4 and 5x — y — z = 2.

23. 2x - y - z = 3 and 5x - 5y + 2z = 4.

24. Determine k so that kx -\- Qy — 7z — 22 = shall be two units

from the origin.

26. Find the point of intersection of the planes

3x + 2/ - 2 = 3,

X + 5y -\-7z = 11,

4x + lOy -3z= -8.

26. At what acute angle does the plane 2x -{- 3y -\- Qz = 3 cut each
of the coordinate planes?

27. At what acute angle does the plane 2x -\- 3y -{- Qz = 3 cut each
coordinate axis?

28. Prove that the planes

2x - 2/ + 32 = 4,

X + 62/ — 62 = 5,

Sx -\-9y - 3z = 22,

have a line in common.

THE LINE IN SPACE

238. Two plane equation of a straight line.—In article

219, it was seen that it takes two equations in three dimen-

sional space to define a curve. Hence the two equations

Aix + Biy + Ciz + Di = 0, (1)

A2X + B^y + C2Z + Z)2 = 0, (2)

are

are

the equations of a straight line. Equations (1) and (2)

^ the equations of any two planes through the line.

239. Projection form of the equation of a straight line.—
By eliminating in turn z^ y^ and x between equations (1) and

(2), Art. 238, the equations of the projections of the straight
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line on the x//, xz, and ^/^J-planes are obtained. If these

equations are

lix + Uy + ^3 = 0,

miX + m2Z + mz =0,
uiy + n^z + ns =0,

any two of these equations are the equations of the straight

line, and any two of these equations are called the projection

form of the equations of a straight line.

240. Point direction form of the equation of a straight

line. Symmetric form.

Case I.

—

The line is not parallel to any coordinate plane.

Let Pi(xiy yi, Zi) be the point and let the direction of the

straight line be given by its direction cosines, cos a, cos ^
and cos 7. Then, if P{Xj 1/, z) is any point on the straight line,

and d is the distance from Pi to P, by [50]

X - Xi _ 2/ - 2/1 z - Zi ...
cos a = ^ ; cos )3 = :—-) cos J = -, (1)

d d d ^

Solving each equation for d and equating the results,

cos a cos g cos Y
If cos a, cos jS and cos 7 are replaced by any quantities

Ij m, n proportional to them, the equation can be written

[63,] ^^ = y^y^ = "—^K
\ ^ 1 m n

Case II.

—

The line is parallel to one or two coordinate planes.

Suppose the line is parallel to one of the coordinate planes,

say the yz-plsme, but is not parallel to one of the coordinate

axes, then cos a = 0, cos jS f^ 0, cos 7 ?^ 0. Equations [63i] and

[682] are not valid, but equation (1) can be written

= ^^, cos/3 = y^, COST = '-^>.
a a a

giving the equations of the line to be

X — 0^1 = 0,

and y^ = '-^^-
COS jS cos 7
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If the line is parallel to two coordinate planes, it is parallel

to one of the coordinate axes. If this is the ;2-axis, then

cos oj = cos jS = 0, cos 7 = 1. Equation (1) can then be

written

U = 1 ; U = ^ ; COS 7 = ^ ;

d d d

giving the equations of the line to be

x — 0^1 = 0,

y - yi = 0.

Like considerations hold if the line is parallel to any of

the other coordinate axes or planes.

241. Two point form of the equation of a straight line.

Case I.

—

The straight line is not parallel to any coordinate

plane. Let the two points through which the line passes

be Pi{xij yij Zi) and P2(x2, 2/2, 2:2). Since the direction cosines

of this line are proportional to X2 — Xi, 2/2 — 2/1, and Z2 — Z\,

the quantities Z, m, and n of [682] can be so chosen that

I -= X2- xij m = y2 - yiy n = Z2 - 21,

which gives

[64]
x-xi ^ y - yi ^ z - zi

X2 - xi y2 - yi Z2 - Zi'

Case II.

—

The line is parallel to one or two coordinate planes.

The discussion is similar to that given in article 240.

Example 1.—Reduce the equations that define the straight Hne,

Sx -\- 2y — 2z -{ 2 = 0, and Qx -}- 7y — Qz — S = to the symmetric

form.

Solution.—Reduce these equations to the projection form by first

eHminating x and then z giving

Sy - 2z - 7 = 0,

Sx - y + 9 = 0.

Solving each for y and equating,

This can be written in the form

X -\-S z + i
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In order that the denominators shall be direction cosines, multiply-

each equation by Vi + 1 + i = V» ^^^ *^^ equation becomes

X + 3 _y__ g +

j

t\
" a ~ fT *

This shows that the line passes through the point (—3, 0, — i)

with direction cosines ti, A, A- If desired, the point (—3, 0, —1)

can be replaced by any other point on the line, say ( — 2, 3, 1), in which

case the equation of the line takes the form

X -\-2 _ y - S _ z - 1

A " A " A
*

Example 2.—Find the equation of a plane passing through the line

2x -3 y -Q g + 2 . ., • w i i A^—
J
— = ^—z— = —^^ and the pomt ( — 1, —1, —6).

Solution.—This equation is equivalent to the two equations

2x-3 2/-6 ,2/-6 z + 2

Simplifying

lOx - 4?/ + 9 = 0, and 3?/ - 5z - 28 = 0.

These are the equations of two planes passing through the given

line. The equation of any plane through the line of intersection of these

two planes, and hence through the given line, is evidently

lOx - 4y + 9 + k(3y - 5z - 28) = 0.

To make this plane pass through the point ( — 1, —1, —6), substitute

these coordinates and solve for k. The result is

/c = 3.

Hence the required plane is

lOx - 4y -f 9 + 3(32/ - 52 - 28) = 0,

or 2x + 2/
- 3z - 15 = 0.

EXERCISES

Find where the lines in exercises 1-5 intersect the three coordinate

planes.

1. 4x+2/+z-5=0, 2x -2/4-2-1=0.
2. X - ^ + z = 5, 5x - 62/ + 4z = 28.

3. 4x + 2/
- 62 =10, 7x + 32/ - 8z - 15 = 0.

4. 4x + 32/ + 2z = 2, -3x + 42/ + z - 6 = 0.

_ a; -4 y + 1 z -3
^- -2~ = ^T" - ~2~'
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6. Reduce the equations in exercises 1 and 2 to the projection form,

the projecting planes being perpendicular to the xy and a;2-planes.

7. Reduce the equations in exercises 3 and 4 to the projection form,

the projecting planes being perpendicular to the xy and 2/2;-planes.

8. Reduce the equations in exercises 1-4 to the symmetric form.

Find the equations in projection form of the straight lines in exercises

9-18. The projecting planes are to be taken perpendicular to the xy
and a;2-planes whenever possible.

9. Passing through the points (3, —6, 4) and ( — 2, 5, 1).

10. Passing through the points (—2, 1, 2) and (3, —1, 4).

11. Passing through the points (2, 1, —3) and (2, 3,-4).
12. Passing through the points (2, 5, 6) and (2, 5, 7).

13. Passing through the point (1, —3, 4) with direction cosines in

the ratio 3 : — 1 : 2.

14. Passing through the point (3, —1, 2) and parallel to the z-axis.

15. Passing through the point (3, —1, 2) and perpendicular to the

z-axis.

16. Passing through the point (3, —1, 2) and parallel to the line of

exercise 1.

17. Passing through the point (3, —1, 2) and making right angles

with the plane x — 2y -{- z = Z.

18. Passing through the origin and perpendicular to the lines

x-l= y^^ = '-±^, and^^^ = ^^ti = ^_^^.XI
2

. _2 ' ana _^^ ^ ^

19. Find the cosine of the acute angle between the lines

x-3 2/ + 2 2-6 .X - 2 y - 5 z

20. Find the cosine of the angle between the line 2x — 7y — 7z = —8,

X - 2y - z = 5, and the line 12x - 15y - 2z = 70, 5x - 5y - z = 24.

21. Prove that the two hues x -\- y + z = 0, 2x — y + Sz = 7, and

Zx + ^y -\-2z = —3, —6a: -{- 2y -\- lOz = meet in a point.

22. Prove that the planes 2x -^ 2y -\- z -\- 4: = 0, 4:X-\- y - z - 7 = 0,

and 2x -^ Sy + 2z -\- 9 = 0, meet in a straight line and find its direction

cosines.

Find the equations of the planes that satisfy the conditions of exercises

23-26.

23. Passing through the point (2, 1, 3) and the line

3x + 5i/ - 6z + 9 = 0,

2x -{-2y -2z + 1 =0.

24. Passing through the point (-1, -2, -3) and the line

X — 1 _y -\- 1 _ z + 5
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25. Passing through the parallel lines

a; - 1 2/ - 3 + 1 .x-4: 2/ - 2 z+3
-n- = -^=7- =-6-' ^^^-1- =^T- =-6-

26. Passing through the intersecting lines

X 2/4-5 2 + 4 J —7x — 1 y 7z — 9—l=-^r-=-Q-'and = j
= -j^.

27. Find the equation of a plane through the line

x+y-2z+2=0,
3x +8y -6z+i = 0,

and perpendicular to the plane 7x + 2y + 2z — 10 = 0.

28. Find the equation of a line lying in the plane 2x — 2y + z + 11 =0,
passing through the point (—3, 2,-1), and parallel to the plane

2x +2y - iz +5 =0.

[1

[2:

[2

[3:

[4:

[s:

[6:

[7:

[8

[9:

[lo:

[11

[12;

[12

[13

SUMMARY OF FORMULAS

(1) OPi = OFi + P1P2. (2) P1P2 = OP2 - OPi.

P1P2 = Xi — Xi.

] PiPi = Xi - Xi. [22] P1P2 = yi - 2/1.

d = ^/{xi — XiY + {yi - y^y.

nxj + TiXi nyi + rtyi
Xe = j ) 2/0

=
i

ri + r2 " ri + r^

Xi -^ Xi yi + yi
Xo = —2—

'

2/0 = —2

mi — m2
tan (p = -1—;

1 + mim2
For parallel lines, mi = m2.

For perpendicular lines, mi = ——y and m2 = -
^ ^ m2 mi

X = p cos 6, y = p sin 6, x^ + y^ = p^,

P = Vx^ + y^ e = tan-i|-
X

X = x' + hy y = y' + k,

] x' = X — h, y^ = y — k.

X = x' cos (p — y' sin ^, y — x' sin <^ + y' cos <p.

[13i] x' — X cos (;c> + 2/ sin <^, y' = y cos (^ — a; sin (;^.
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[14] A = ^{xiy2 - X2yi + X22/3 - 0:32/2 + Xsyi - Xiyz).

[15] y - yi = m{x - Xi).

[16] y = mx + b.

[17] y-y, = ^l^'(x-X^).

tl«'
a + l = l-

[19] X cos 6 + y sin d — p =0.

[20] Aa; + % + C = 0.

Ax By
[21] + +±\/A^+ B^ ±VA^ + B^ ±y/A^ + B-

A . B
[22] cos 6 = ^

—

/. „ . „„ > sm
'

= 0.

±VA^ + B^

V
-C

±Va^ + b^'

±-VA-'-\- B^

[23] d = ^^4JML+£.

^ ^ VAi^ + Si^ - y/A.-' + Bi^

[25] (a; - /i)^ + (y - A;)^ = r^

[26] x^ + j/2 = r2.

[27] a;2 + j/2 + £)a; + £y + 7? = 0.

[28] j/2 = 2px.

[29] a;2 = 2py.

[30] {y -ky = 2p{x - h).

[30i] (a; - /i)2 = 2p{y - k).

V
[31] p =

1 — cos B

[33]g + f-;=l.
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(y - ky ^ (x - hy

305

+
6''

= 1.

[36] g - g = 1.

[37]2/ = ^x, y=^-\x.

[38]
(x - hY _ (y - ky ^

(2/
- kr jx - hY _

[39] tan 2<p = j-^-^'

[40] X = a(0 — sin 6), y = a{l — cos 9).

{a-b) ,

[41]

a; = (a — 6) cos ^ + 6 cos

?/ = {a — b) smd — b sin
''"

,
"''

9.

y = (a + b) sin d — b sin
''"'

'

"'
$.

(a

6 •

-6)

(a

6

+ b)
)

(a

b

+ b)

[42] a;^ + 2/^ = a^

X = (a +b) cos ^ — 6 cos

[43]

[44] 1

I 2/ = ^ sin — a ^ cos ^.

[45] Axix + |5xi2/ + ^Bxyi + C^/i?/ + jDo: + iDxi +
hEy + i%i + /^ = 0.

[47] 2/ - 2/1 = - x: (^ - ^i)-

I
a: = a cos ^ + a ^ sin ^,

do: X=^Xi

[48] d = V(a;i- x^Y + (j/i - j/^)^+ {z, - z^Y-
20
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149J Xo =
i

; 2/0 = , ' ^0 =
i

[50] cos a = —^^— ; cos P = J ^ cos 7 = —^

—

[51] cos^ Qj + cos2/3 + cos^Y = 1.

[52] p = ±Vx2 + 2/^ + ^2^ cos a = ——=^===,
± Vic^ + 2/ + 2^

2/
^

cos /3 = -—7======^, cos 7 =
± Vx^ + y^ + z^ ± Vx^ + y^ + z^

[53] X = p cos a, y = p COS /3, z = p COS 7.

[54] a; = p sin ^ cos ^, y = p sin (p sin 6, z = p cos <^.

[54i] p = ±V^^+-2/T+y2, ^ = tan-i|'

w z
6 = sin-i -

—

^, . ,
^ <i5

= cos-^
^2 + 2/2 ±\/:c^ + 2/^ + 22

[55] cos ^ = cos a\ cos 0:2 + cos jSi cos ^32 + cos 71 cos 72.

[56] {x - hy + (2/
- /c)2 + (2 - Z)2 = r2.

[57] Ax -{- By -^ Cz + D =^ 0,

[58] x cos q: + 2/ COS i3 + 2; cos 7 = p.

[59] cosa = , - J cosjS = / . ^^—::::
^

±VA2 + jB2 + (72
^

±\/A2 + 52+C2
C -D

COS 'V =^ ^ nry = - •

.„^, , AxAi + B1B2 + C1C2
LblJ cos - ^^______ ^_____^^.

[62] d = ^^i±a^ia^^.
iVa^ + s^ + c^

[63,]
^^^^ = y-^ = ?^^^
COS a cos i3 cos 7

^ ^ I m n

[641
^"^^ = ^-^^ = ^ZA^

^ X2 — a;i 2/2 - 2/1 2:2 — 2i



TABLES

I. Four-place Table of Logarithms.

II. Table of Natural and Logarithmic Sines,

Cosines, Tangents, and Cotangents of Angles

Differing by Ten Minutes.
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TABLE I.—COMMON LOGARITHMS

IT. 1 2 3 4 5 6 7 8 9

10 0000 0043 0086 0128 0170 0212 0253 0294 0334 0374
11 0414 0453 0492 0531 0569 0607 0645 0682 0719 0755
12 0792 0828 0864 0899 0934 0969 1004 1038 1072 1106
13 1139 1173 1206 1239 1271 1303 1335 1367 1399 1430
14 1461 1492 1523 1553 1584 1614 1644 1673 1703 1732

15 1761 1790 1818 1847 1875 1903 1931 1959 1987 2014
16 2041 2068 2095 2122 2148 2175 2201 2227 2253 2279
17 2304 2330 2355 2380 2405 2430 2455 2480 2504 2529
18 2553 2577 2601 2625 2648 2672 2695 2718 2742 2765
19 2788 2810 2833 2856 2878 2900 2923 2945 2967 2989

20 3010 3032 3054 3075 3096 3118 3139 3160 3181 3201
21 3222 3243 3263 3284 3304 3324 3345 3365 3385 3404
22 3424 3444 3464 3483 3502 3522 3541 3560 3579 3598
23 3617 3636 3655 3674 3692 3711 3729 3747 3766 3784
21 3802 3820 3838 3856 3874 3892 3909 3927 3945 3962

25 3979 3997 4014 4031 4048 4065 4082 4099 4116 4133
26 4150 4166 4183 4200 4216 4232 4249 4265 4281 4298
27 4314 4330 4346 4362 4378 4393 4409 4425 4440 4456
28 4472 4487 4502 4518 4533 4548 4564 4579 4594 4609
29 4624 4639 4654 4669 4683 4698 4713 4728 4742 4757

30 4771 4786 4800 4814 4829 4843 4857 4871 4886 4900
31 4914 4928 4942 4955 4969 4983 4997 6011 5024 6038
32 6051 5065 5079 6092 5105 5119 6132 5145 6159 5172
33 6185 5198 5211 6224 6237 5250 6263 5276 5289 6302
34 6315 5328 5340 6353 6366 6378 6391 6403 6416 5428

35 6441 5453 6465 5478 5490 6502 5514 5527 5539 5551
36 6563 6575 6587 6599 6611 5623 6635 6647 5658 6670
37 5682 6694 5705 5717 6729 5740 6752 6763 6775 6786
38 6798 5809 5821 6832 6843 6855 5866 6877 5888 5899
39 5911 6922 5933 6944 5955 6966 6977 6988 5999 6010

40 6021 6031 6042 6053 6064 6075 6085 6096 6107 6117
41 6128 6138 6149 6160 6170 6180 6191 6201 6212 6222
42 6232 6243 6253 6263 6274 6284 6294 6304 6314 6325
43 6335 6345 6355 6365 6375 6385 6395 6405 6415 6425
44 6435 6444 6454 6464 6474 6484 6493 6503 6513 6522

45 6532 6542 6551 6561 6571 6580 6590 6599 6609 6618
46 6628 6637 6646 6656 6665 6675 6684 6693 6702 6712
47 6721 6730 6739 6749 6758 6767 6776 6785 6794 6803
48 6812 6821 6830 6839 6848 6857 6866 6875 6884 6893
49 6902 6911 6920 6928 6937 6946 6955 6964 6972 6981

50 6990 6998 7007 7016 7024 7033 7042 7050 7059 7067
61 7076 7084 7093 7101 7110 7118 7126 7135 7143 7152
52 7160 7168 7177 7185 7193 7202 7210 7218 7226 7235
53 7243 7251 7259 7267 7275 7284 7292 7300 7308 7316
54 7324 7332 7340 7348 7356 7364 7372 7380 7388 7396

K. I 2 3 4 5 G 7 8 9



TABLES

TABLE I.—COMMON LOGARITHMS.—^on<tnu«f

309

If. 1 2 3 4 5 6 7 8 9

65 7404 7412 7419 7427 7435 7443 7451 7459 7466 7474
56 7482 7490 7497 7505 7513 7520 7528 7536 7543 7551
57 7569 7566 7574 7582 7589 7597 7604 7612 7619 7627
58 7634 7642 7649 7657 7664 7672 7679 7686 7694 7701
59 7709 7716 7723 7731 7738 7745 7752 7760 7767 7774

60 7782 7789 7796 7803 7810 7818 7825 7832 7839 7846
61 7853 7860 7868 7875 7882 7889 7896 7903 7910 7917
62 7924 7931 7938 7945 7952 7959 7966 7973 7980 7987
63 7993 8000 8007 8014 8021 8028 8035 8041 8048 8055
64 8062 8069 8075 8082 8089 8096 8102 8109 8116 8122

65 8129 8136 8142 8149 8156 8162 8169 8176 8182 8189
66 8195 8202 8209 8215 8222 8228 8235 8241 8248 8254
67 8261 8267 8274 8280 8287 8293 8299 8306 8312 8319
68 8325 8331 8338 8344 8351 8357 8363 8370 8376 8382
69 8388 8395 8401 8407 8414 8420 8426 8432 8439 8445

70 8451 8457 8463 8470 8476 8482 8488 8494 8500 8506
71 8513 8519 8525 8531 8537 8543 8549 8555 8561 8567
72 8573 8579 8585 8591 8597 8603 8609 8615 8621 8627
73 8633 8639 8645 8651 8657 8663 8069 8675 8681 8686
74 8692 8698 8704 8710 8716 8722 8727 8733 8739 8745

75 8751 8756 8762 8768 8774 8779 8785 8791 8797 8802
76 8808 8814 8820 8825 8831 8837 8842 8848 8854 8859
77 8865 8871 8876 8882 8887 8893 8899 8904 8910 8915
78 8921 8927 8932 8938 8943 8949 8954 8960 8965 8971
79 8976 8982 8987 8993 8998 9004 9009 9015 9020 9025

80 9031 9036 9042 9047 9053 9058 9063 9069 9074 9079
81 9085 9090 9096 9101 9106 9112 9117 9122 9128 9133
82 9138 9143 9149 9154 9159 9165 9170 9175 9180 9186
83 9191 9196 9201 9206 9212 9217 9222 9227 9232 9238
84 9243 9248 9253 9258 9263 9269 9274 9279 9284 9289

85 9294 9299 9304 9309 9315 9320 9325 9330 9335 9340
86 9345 9350 9355 9360 9365 9370 9375 9380 9385 9390
87 9395 9400 9405 9410 9415 9420 9425 9430 9435 9440
88 9445 9450 9455 9460 9465 9469 9474 9479 9484 9489
89 9494 9499 9504 9509 9513 9518 9523 9528 9533 9538

90 9542 9547 9552 9557 9562 9566 9571 9576 9581 9586
91 9590 9595 9600. 9605 9609 9614 9619 9624 9628 9633
92 9638 9643 9647 9652 9657 9661 9666 9671 9675 9680
93 9685 9689 9694 9699 9703 9708 9713 9717 9722 9727
94 9731 9736 9741 9745 9750 9754 9759 9763 9768 9773

95 9777 9782 9786 9791 9795 9800 9805 9809 9814 9818
96 9823 9827 9832 9836 9841 9845 9850 9854 9859 9863
97 9868 9872 9877 9881 9886 9890 9894 9899 9903 9908
98 9912 9917 9921 9926 9930 9934 9939 9943 9948 9952
99 9956 9961 9965 9969 9974 9978 9983 9987 9991 9996

H. 1 3 4 5 6 7 8 9



310 ANALYTIC GEOMETRY

TABLE II.—TRIGONOMETRIC I'lINCTIONS

Angks Sines Cosines Tangents Cotangents Angles

Nat. Log. Nat. Log. Nat. Log. Nat. Log.
0*»00' .0000 00 1 0000 0.0000

1.0000 0000
.0000 00 OO 00 90** 00'

10 .0029 7.4637 .0029 7.4637 343.77 2.5363 60
20 .0058 7648 1.0000 0000 .0058 7648 171.89 2352 40
30 .0087 9408 1.0000 0000 .0087 9409 114.59 0591 30
40 .0116 8.0658 .9999 0000 .0116 8.0658 85.940 1.9342 20
60 .0145 1627 .9999 0000 .0145 1627 68.750 8373 10

roo' .0175 8.2419 .9998 9.9999 .0175 8.2419 57.290 1.7581 89° 00'

10 .0204 3088 .9998 9999 .0204 3089 49.104 6911 50
20 .0233 3668 .9997 9999 .0233 3669 42.964 6331 40
30 .0262 4179 .9997 9999 .0262 4181 38.188 5819 30
40 .0291 4637 .9996 9998 .0291 4638 34.368 5362 20
50 .0320 6050 .9995 9998 .0320 6053 31.242 4947 10

2*00' .0349 8.5428 .9994 9.9997 .0349 8.5431 28.636 1.4569 88° 00'

10 .0378 5776 .9993 9997 .0378 5779 26.432 4221 50
20 .0407 6097 .9992 9996 .0407 6101 24.542 3899 40
30 .0436 6397 .9990 9996 .0437 6401 22.904 3599 30
40 .0465 6677 .9989 9995 .0466 6682 21.470 3318 20
60 .0494 6940 .9988 9995 .0495 6945 20.206 3055 10

S'^OO' .0523 8.7188 .9986 9.9994 .0524 8.7194 19.081 1.2806 87° 00'

10 .0552 7423 .9985 9993 .0553 7429 18.075 2571 60
20 .0581 7645 .9983 9993 .0582 7652 17.169 2348 40
30 .0610 7857 .9981 9992 .0612 7865 16.350 2135 30
40 .0640 8059 .9980 9991 .0641 8067 15.605 1933 20
60 .0669 8251 .9978 9990 .0670 8261 14.924 1739 10

4*00' .0698 8.8436 .9976 9.9989 .0699 8.8446 14.301 1.1554 86° 00'

10 .0727 8613 .9974 9989 .0729 8624 13.727 1376 60
20 .0756 8783 .9971 9988 .0758 8795 13.197 1205 40
30 .0785 8946 .9969 9987 .0787 8960 12.706 1040 30
40 .0814 9104 .9967 9986 .0816 9118 12.251 0882 20
60 .0843 9256 .9964 9985 .0846 9272 11.826 0728 10

S'^OO' .0872 8.9403 .9962 9.9983 .0875 8.9420 11.430 1.0580 85° 00*

10 .0901 9545 .9959 9982 .0904 9563 11.059 0437 60
20 .0929 9682 .9957 9981 .0934 9701 10.712 0299 40
30 .0958 9816 .9954 9980 .0963 9836 10.385 0164 30
40 .0987 9945 .9951 9979 .0992 9966 10.078 0034 20
60 .1016 9.0070 .9948 9977 .1022 9.0093 9.7882 0.S907 10

6° 00' .1045 9.0192 .9945 9.9976 .1051 9.0216 9.5144 0.9784 84° 00'

10 .1074 0311 .9942 9975 .1080 0336 9.2553 9664 60
20 .1103 0426 .9939 9973 .1110 0453 9.0C98 9547 40
30 .1132 0539 .9936 9972 .1139 0567 8.7769 9433 30
40 .1161 0648 .9932 9971 .1169 0678 8.5555 9322 20
60 .1190 0755 .9929 9969 .1198 0786 8.3450 9214 10

roo' .1219 9.0859 .9925 9.9968 .1228 9.0891 8.1443 0.9109 83° 00'

10 .1248 0961 .9922 9966 . 1257 0995 7.9530 9005 60
20 .1276 1060 .9918 9964 .1287 1096 7.7704 8904 40
30 .1305 1157 .9914 9963 .1317 1194 7.5958 8806 30
40 .1334 1252 .9911 9961 .1346 1291 7.4287 8709 20
60 .1363 1345 .9907 9959 .1376 1385 7.2687 8615 10

8*»00, .1392 9.1436 .9903 9.9958 .1405 9.1478 7.1154 0.8522 82° 00*

10 .1421 1525 .9899 9956 .1435 1569 6.9682 8431 50
20 .1449 1612 .9894 9954 .1465 1658 6.8269 8342 40
30 .1478 1697 .9890 9952 .1495 1745 6.6912 8255 30
40 .1507 1781 .9886 9950 .1524 1831 6.5606 8169 20
60 .1536 1863 .9881 9948 .1554 1915 6.4348 8085 10

9<»00' .1564 9.1943 .9877 9.9946 .1584 9.1997 6.3138 0.8003 81° 00'

Nat. Log. Nat. Log. Nat. Log. Nat. Log.

Angles Cosines Sines Cotangents Tangents Angles
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TABLE II.—TRIGONOMETRIC FUNCTIONS—C<mltni*«rf

Aagles Sines Cosines Tangents Cotangents Angbs
Nat. Log. Nat. Log. Nat. Log. Nat. Log.

9" 00' .1564 9.1943 .9877 9.9946 .1584 9.1997 6.3138 0.8003 81* OO'
10 .1593 2022 .9872 9944 .1614 2078 6.1970 7922 60
20 .1622 2100 .9868 9942 .1644 2158 6.0844 7842 40
30 .1650 2176 .9863 9940 .1673 22b6 5.9758 7764 30
40 .1679 2251 .9858 9938 .1703 2313 5.8708 7687 20
60 .1708 2324 .9853 9936 .1733 2389 5.7694 7611 10

10*» 00' .1736 9.2397 .9848 9.9934 .1763 9.2463 5.6713 0.7537 80*00'
10 .1765 2468 .9843 9931 .1793 2536 5.5764 7464 50

§8
.1794 2538 .9838 9929 . 1823 2609 5.4845 7391 40
. 1822 2606 .9833 9927 .1853 2680 5.3955 7320 30

40 . 1851 2674 . 9827 9924 . 1883 2750 5.3093 7250 20
60 .1880 2740 .9822 9922 .1914 2819 5.2257 7181 10

11*>00' .1908 9.2806 .9816 9.9919 .1944 9.2887 5.1446 0.7113 79*00'
10 .1937 2870 .9811 9917 . 1974 2953 5.0658 7047 50
20 .1965 2934 .9805 9914 .2004 3020 4.9894 6980 40
30 .1994 2997 .9799 9912 .2035 3085 4.9152 6915 30
40 .2022 3058 .9793 9909 .2065 3149 4.8430 6851 20
60 .2051 3119 .9787 9907 .2095 3212 4.7729 6788 10

12<»00' .2079 9.3179 .9781 9.9904 .2126 9.3275 4.7046 0.6725 78*00*
10 .2108 3238 .9775 9901 .2156 3336 4.6382 6664 50
20 .2136 3296 .9769 9899 .2186 3397 4.5736 6603 40
30 .2164 3353 .9763 9896 .2217 3458 4.5107 6542 30
40 .2193 3410 .9757 9893 .2247 3517 4.4494 6483 20m .2221 .3^6 .9750 9890 ^278 3576 4.3897 6424 10

13*»00' .2250 9.3521 .9744 9.9887 .2309 9.3634 4.3315 0.6366 77* 00'

10 .2278 3575 .9737 9884 .2339 3691 4.2747 6309 50
20 .2306 3629 .9730 9881 .2370 3748 4.2193 6252 40
30 .2334 3682 .9724 9878 .2401 3804 4 . 1653 6196 30
40 .2363 3734 .9717 9875 .2432 3859 4.1126 6141 20
60 .2391 3786 .9710 9872 .2462 3914 4.0611 6Q86 10

14*' 00' .2419 9.3837 .9703 9.9869 .2493 9.3968 4.0108 0.6032 76*00*
10 .2447 3887 .9690 9866 .2524 4021 3.9617 5979 50
20 .2476 3937 .9689 9863 .2555 4074 3.9136 5926 40
30 .2504 3986 .9681 9859 .2586 4127 3.8667 5873 30
40 .2532 4035 .9674 9856 .2617 4178 3.8208 5822 20
60 .2560 4083 .9667 9853 .2648 4230 3.7760 5770 10

15** 00' .2588 9.4130 .9659 9.9849 .2679 9.4281 3.7321 0.5719 75*00'
10 .2616 4177 .9652 9846 .2711 4331 3.6891 5669 50
20 .2644 4223 .9644 9843 .2742 4381 3.6470 5619 40
30 .2672 4269 .9636 9839 .2773 4430 3.6059 5570 30
40 .2700 4314 .9628 9836 .2805 4479 3.5656 5521 20
60 .2728 4359 .9621 9832 .2836 4527 3.5261 5473 10

16*00' .2756 9.4403 .9613 9.9828 .2867 9.4575 3.4874 0.5425 74*00'
10 .2784 4447 .9605 9825 .2899 4622 3.4495. 5378 50
20 .2812 4491 .9596 9821 .2931 4669 3.4124 5331 40
30 .2*40 4533 .9588 9817 .2962 4716 3.3759 5284 30
40 .2868 4576 .9580 9814 .2994 4762 3.3402 5238 20
60 .2896 4618 .9572 9810 .3026 4808 3.3052 6192 10

17*00' .2924 9.4659 .9563 9.9806 .3057 9.4853 3.2709 0.5147 73*00'
10 .2952 4700 .9555 9802 .3089 4898 3.2371 5102 50
20 .2979 4741 .9546 9798 .3121 4943 3.2041 5057 40

V 30 .3007 4781 .9537 9794 .3153 4987 3.1716 5013 30
40 .3035 4821 .9528 9790 .3185 5031 3 . 1397 4969 20
60 .3062 4861 .9520 9786 .3217 5075 3.1084 4925 10

18*00' .3090 0.4900 .9511 9.9782 .3249 9.5118 3.0777 0.4882 72*00f
Nat. Log. Nat. Log. Nat. Log. Nat. Log.

Angles Cosines Sines Cotangents Tangents AnglM
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TABLE II.-TRIGONOMETRIO FUNC3TIONS~Con/iniW

Angles Sines Cosines Tangents Cotangents Angles

Nat. Log. Nat. Log. Nat. Log. Nat. Log.
18»00' .3090 9.4900 .9511 9.9782 .3249 9.5118 3.0777 0.4882 72* oa

10 .3118 4939 .9502 9778 .3281 5161 3.0475 4839 50
20 .3145 4977 .9492 9774 .3314 5203 3.0178 4797 40
30 .3173 6015 .9483 9770 .3346 5245 2.9887 4755 30
40 .3201 5052 .9474 9765 .3378 5287 2.9600 4713 20
60 .3228 6090 .9465 9761 .3411 6329 2.9319 4671 10

19° 00' .3256 9.5126 .9455 9.9757 .3443 9.5370 2.9042 0.4630 71*00'
10 .3283 5163 .9446 9752 .3476 5411 2.8770 4589 50
20 .3311 5199 .9436 9748 .3508 5451 2.8502 4549 40
30 .3338 5235 .9426 9743 .3541 5491 2.8239 4509 30
40 .3365 5270 .9417 9739 .3574 5531 2.7980 4469 20
60 .3393 6306 .9407 9734 .3607 6571 2.7725 4429 10

20*00' .3420 9.5341 .9397 9.9730 .3640 9.5611 2.7475 0.4389 70° 00'
10 .3448 6375 .9387 9725 .3673 565012.7228 4350 50
20 .3475 5409 .9377 9721 .3706 568912.6985 4311 40
30 .3502 5443 .9367 9716 .3739 5727 2.6746 4273 30
40 .3529 5477 .9356 9711 .3772 5766 2.6511 4234 20
60 .3557 6510 .9346 9706 .3805 6804 2.6279 4196 10

21*00' .3584 9.5543 .9336 9.9702 .3839 9.5842 2.6051 0.4158 69*00'
10 .3611 5576 .9325 9697 .3872 5879 2.5826 4121 50
20 .3638 5609 .9315 9692 .3906 5917 2.5605 4083 40
30 .3665 5641 .9304 9687 .3939 5954 2.5386 4046 30
40 .3692 5673 .9293 9682 .3973 5991 2.5172 4009 20
60 .3719 5704 .9283 9677 .4006 6028 2.4960 3972 10

22*00' .3746 9.5736 .9272 9.9672 .4040 9.6064 2.4751 0.3936 68*00'
10 .3773 5767 .9261 9667 .4074 6100 2.4545 3900 50
20 .3800 5798 .9250 9661 .4108 6136 2 . 4342 3864 40
30 .3827 5828 .9239 9656 .4142 6172 2.4142 3828 30
40 .3854 5859 .9228 9651 .4176 6208 2.3945 3792 20
60 .3881 5889 .9216 9646 .4210 6243 2.3750 3757 10

23* 00' .3907 9.5919 .9205 9.9640 .4245 9.6279 2.3559 0.3721 67° 00'
10 .3934 5948 .9194 9635 .4279 6314 2.3369 3686 50
20 .3961 5978 .9182 9629 .4314 6348 2.3183 3652 40
30 .3987 6007 .9171 9624 .4348 6383 2.2998 3617 30
40 .4014 6036 .9159 9618 .4383 6417 2.2817 3583 20
60 .4041 6065 .9147 9613 .4417 6452 2.2637 3548 10

24*00' .4067 9.6093 .9135 9.9607 .4452 9.6486 2.2460 0.3514 66*00'
10 .4094 6121 .9124 9602 .4487 6520 2.2286 3480 50
20 I .4120 6149 .9112 9596 .4522 6553 2.2113 3447 40
30 .4147 6177 .9100 9590 .4557 6587 2.1943 3413 30
40 .4173 6205 .9088 9584 .4592 6620 2.1775 3380 20
60 .4200 6232 .9075 9579 .4628 6654 2.1609 3346 10

25*00' .4226 9.6259 .9063 9.9573 .4663 9.6687 2.1445 0.3313 65° OO'
10 .4253 6286 .9051 9567 .4699 6720 2 . 1283 3280 50
20 .4279 6313 .9038 9561 .4734 6752 2.1123 3248 40
30 .4305 6340 .9026 9555 .4770 6785 2.0965 3215 30
40 .4331 6366 .9013 9549 .4806 6817 2.0809 3183 20
60 .4358 6392 .9001 9543 .4841 6850 2.0655 3150 10

2e*oo' .4384 9.6418 .8988 9.9537 .4877 9.6882 2.0503 0.3118 64*00'
10 .4410 6444 .8975 9530 .4913 6914 2.0353 3086 50
20 .4436 6470 .8962 9524 .4950 6946 2.0204 3054 40
30 .4462 6495 .8949 9518 . 4986 6977 2.0057 3023 30'

40 .4488 6521 .8936 9512 .5022 7009 1.9912 2991 20
60 .4514 6546 .8923 9505 .5059 7040 1.9768 2960 10

27*00' .4540 9.6570 .8910 9.9499 .5095 9.7072 1.9626 0.2928 63*00'
Nat. Log. Nat. Log. Nat. Log. Nat. Log.

Angles Cosines Sines Cotangents Tangents Angles
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TABLE II.—TRIGONOMETRIC FUNCTIONS—(7on<{nu«df

Amiks Sines Cosines Tangents Cotangents Angles

Nat. Log. Nat. Log. Nat. Log. Nat. Log.
27'* 00' .4540 9.6570 .8910 9.9499 .5095 9.7072 1.9626 0.2928 63*00'

10 .4566 6595 .8897 9492 .5132 7103 1.9486 2897 60
20 .4592 6620 .8884 9486 .5169 7134 1.9347 2866 40
30 .4617 6644 .8870 9479 .5206 7165 1.9210 2835 30
40 .4643 6668 .8857 9473 .5243 7196 1.9074 2804 20
60 .4669 6692 .8843 9466 .5280 7226 1.8940 2774 10

as'oy .4695 9.6716 .8829 9.9459 .5317 9.7257 1.8807 0.2743 62*00'
10 .4720 6740 .8816 9453 .5354 7287 1.8676 2713 50
20 .4746 6763 .8802 9446 .5392 7317 1.8546 2683 40
30 .4772 6787 .8788 9439 ,.5430 7348 1.8418 2652 30
40 .4797 6810 .8774 9432 .5467 7378 1.8291 2622 20
60 .4823 6833 .8760 9425 .6505 7408 1.8165 2592 10

89*00' .4848 9.6856 .8746 9.9418 .6543 9.7438 1.8040 0.2562 61*00'
10 .4874 6878 .8732 9411 .5581 746711.7917 2533 50
20 .4899 6901 .8718 9404 .5619 7497 1.7796 2503 40
30 .4924 6923 .8704 9397 .5658 7526 1.7675 2474 30
40 .4950 6946 .8689 9390 .5696 7556 1.7556 2444 20
60 .4975 6968 .8675 9383 .6735 7585 1.7437 2415 10

30*00' .5000 9.6990 .8660 9.9375 .5774 9.7614 1.7321 0.2386 60*00'
10 .5025 7012 .8646 9368 .5812 7644 11.7205 2356 50
20 .5050 7033 .8631 9361 .5851 7673 1.7090 2327 40
30 .5075 7055 .8616 9353 .5890 77011.6977 2299 30
40 .5100 7076 .8601 9346 .5930 773011.6864 2270 20
60 .6125 7097 .8587 9338 .5969 7759

j

1.6753 2241 10

81*00' .5150 9.7118 .8572 9.9331 .6009 9.7788 1.6643 0.2212 59* 00'
10 .5175 7139 .8557 9323 .6048 7816 1.6534 2184 50
20 .5200 7160 .8542 9315 .6088 7845 1.6426 2155 40
30 .5225 7181 .8526 9308 .6128 7873 1.6319 2127 30
40 .5250 7201 .8511 9300 .6168 7902 1.6212 2098 20
60 .5275 7222 .8496 9292 .6208 7930 1.6107 2070 10

32*00' .5299 9.7242 .8480 9.9284 .6249 9.7958 1.6003 0.2042 58*00'
10 .5324 7262 .8465 9276 .6289 7986 1.5900 2014 50
20 .5348 7282 .8450 9268 .6330 8014 1.5798 1986 40
30 .5373 7302 .8434 9260 .6371 8042 1.5697 1958 30
40 .5398 7322 .8418 9252 .6412 8070 1.5597 1930 20
60 .5422 7342 .8403 9244 .6453 8097 1.6497 1903 10

83*00' .5446 9.7361 .8387 9.9236 .6494 9.8125 1.5399 0.1875 57* CO'
10 .5471 7380 .8371 9228 6536 8153 1.5301 1847 50
20 .5495 7400 .8355 9219 .6577 8180 1.5204 1820 40
30 .5519 7419 .8339 9211 .6619 8208 1.5108 1792 30
40 .5544 7438 .8323 9203 .6661 8235 1.5013 1765 20
60 .5568 7457 .8307 9194 .6703 8263 1.4919 1737 10

34*00' .5592 9.7476 .8290 9.9186 .6745 9.8290 1.4826 0.1710 56° 00'
10 .5616 7494 .8274 9177 .6787 8317 1.4733 1683 50
20 .5640 7513 .8258 9169 .6830 8344 1.4641 1656 40
30 .5664 7531 .8241 9160 .6873 8371 1.4550 1629 30
40 .5688 7550 .8225 9151 .6916 8398 1.4460 1602 20
60 .5712 7668 .8208 9142 .6959 8425 1.4370 1575 10

35*00' .6736 9.7586 .8192 9.9134 .7002 9.8452 1.4281 0.1548 55*00'
10 .5760 7604 .8175 9125 .7046 8479 1.4193 1521 60
20 .5783 7622 .8158 9116 .7089 8506 1.4106 1494 40
30 .5807 7640 .8141 9107 .7133 8533 1.4019 1467 30
40 .5831 7657 .8124 9098 .7177 8559 1.3934 1441 20
60 .5854 7675 .8107 9089 .7221 8586 1.3848 1414 10

36*00' .5878 9.7692 .8090 9.9080 .7265 9.8613 1.3764 0.1387 64*00*
Nat. Log. Nat. Log. Nat. Log. Nat. Log.

Angle- Cosines Sines Cotangents Tangents Angles
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TABLE II.-TRIGONOMETRIC FTTNCTIONS—Con^inwad

Angles Sines Cosines Tangents Cotangents Angles

Nat. Log. Nat. Log. Nat. Log. Nat. Log.
36° GO' .t878 9.7692 .8090 9.9080 .7265 9.8613 1.3764 0.1387 54° 00'

10 .5ipi 7710 .8073 9070 .7310 8639 1.3680 1361 60
20 .6^5 7727 .8056 9061 .7355 8666 1.3597 1334 40
30 .5948 7744 .8039 9052 .7400 8692 1.3514 1308 30
40 .5972 7761 .8021 9042 .7445 8718 1.3432 1282 20
60 .6995 7778 .8004 9033 .7490 8745 1.3351 1255 10

37" 00' .6018 9.7795 .7986 9.9023 .7536 9.8771 1.3270 0.1229 53° 00'
10 .6041 7811 .7969 9014 .7581 8797 1.3190 1203 60
20 .6065 7828 .7951 9004 .7627 8824 1.3111 1176 40
30 .6088 7844 .7934 8995 .7673 8850 1.3032 1150 30
40 .6111 7861 .7916 8985 .7720 8876 1.2954 1124 20
60 .6134 7877 .7898 8975 .7766 8902 1.2876 1098 10

38»00' .6157 9.7893 .7880 9.8965 .7813 9.8928 1.2799 0.1072 52° 00'

10 .6180 7910 .7862 8955 .7860 8954 1.2723 1046 60
20 .6202 7926 .7844 8945 .7907 8980 1.2647 1020 40
30 .6225 7941 .7826 8935 .7954 9006 1 2572 0994 30
40 .6248 7957 .7808 8925 .8002 9032 1.2497 0968 20
60 .6271 7973 .7790 8915 .8050 9058 1.2423 0942 10

39«»00' .6293 9.7989 .7771 9.8905 .8098 9.9084 1.2349 0.0916 51° DO'
10 .6316 8004 .7753 8895 .8146 9110 1.2276 0890 60
20 .6338 802.0 .7735 8884 .8195 9135 1.2203 0865 40
30 .6361 8035 .7716 8874 .8243 9161 1.2131 0839 30
40 .6383 8050 .7698 8864 .8292 9187 1.2059 0813 20
60 .6406 8066 .7679 8853 .8342 9212 1.1988 0788 10

40»00' .6428 9.8081 .7660 9.8843 .8391 9.9238 1.1918 0.0762 50° 00'

10 .6450 8096 .7642 8832 .8441 9264 1.1847 0736 60
20 .6472 8111 .7623 8821 .8491 9289 1.1778 0711 40
30 .6494 8125 .7604 8810 .8541 9315 1.1708 0685 30
40 .6517 8140 .7585 8800 .8591 9341 1.1640 0659 20
60 .6539 8155 .7566 8789 .8642 9366 1.1571 0634 10

41** 00' .6561 9.8169 .7547 9.8778 .8693 9.9392 1.1504 0.0608 49° 00'

10 .6583 8184 .7528 8767 .8744 9417 1.1436 0583 50
20 .6604 8198 .7509 8756 .8796 9443 1 . 1369 0557 40
30 .6626 8213 .7490 8745 .8847 9468 1.1303 0532 30
40 .6648 8227 .7470 8733 .8899 9494 1.1237 0506 20
60 .6670 8241 .7451 8722 .8952 9519 1.1171 0481 10

42** 00' .6691 9.8255 .7431 9.8711 .9004 9.9544 1.1106 0.0456 48° 00'

10 .6713 8269 .7412 8699 .9057 9570 1.1041 0430 50
20 .6734 8283 .7392 8688 .9110 9595 1.0977 0405 40
30 .6756 8297 .7373 8676 .9163 9621 1.0913 0379 30
40 .6777 8311 .7353 8665 .9217 9646 1.0850 0354 20
60 .6799 8324 .7333 8653 .9271 9671 1.0786 0329 10

43° 00' .6820 9.8338 .7314 9.8641 .9325 9.9697 1.0724 0.0303 47° 00'

10 .6841 8351 .7294 8629 .9380 9722 1.0661 0278 50
20 .6862 8365 .7274 8618 .9435 9747 1.0599 0253 40
30 .6884 8378 .7254 8606 .9490 9772 1.0538 0228 30
40 .6905 8391 .7234 8594 .9545 9798 1.0477 0202 20
60 .6926 8405 .7214 8582 .9601 9823 1.0416 0177 10

44*00' .6947 9.8418 .7193 9.8569 .9657 9.9848 1.0355 0.0152 46° OO'

10 .6967 8431 .7173 8557 .9713 9874 1.0295 0126 50
20 .6988 8444 .7153 8545 .9770 9899 1.0235 0101 40
30 .7009 8457 .7133 8532 .9827 9924 1.0176 0076 30
40 .7030 8469 .7112 8520 .9884 9949 1.0117 0051 20
60 .7050 8482 .7092 8507 .9942 9975 1 .0058 0025 10

•'45*>00' .7071 9.8495 .7071 9.8495 1.0000 0.0000 1.0000 0.0000 45° 00'

Nat. Log. Nat. Log. Nat. Log. Nat. Log.

Angles Cosines ' Sines Cotangents Tangents Anglos
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Page 12. Art. 12.

I. 1, 5, -8, -10, -3, 11, -16, -13.

Pages lfi^ 16. Art. 17.

10. (5\/2, 5\/2), (IOV2, 0), (5\/2, - 5\/2).

II, X - tj = 0, X -hy = 0,2x - y = 0.

12. (0, 0), (a, 0), (ia, ±iaVs)'
13. (8, 0), (4, 4V3), (-4,4V3„ (- 8, 0), (- 4,-4V3), (4, -4\/3).

Pages 18, 19. Art. 19.

1. (1) 15, (2) 18.385-, (3) 13.153-, (4) 16.279-.

5. (1) 8.602+, 8.062+, 12.369+ . (2) 11.402-, 8.062+, 8.062+.

7. (3, -2) or (3, 14). 8. (1, 3). 9. (-1, 3), (-3, 5), or (13, -1).

10. (5 + 4V3, 6 + SVS) or (5 - 4V^, 6 - 3\/3).

11. x^ + y^ - Qx - Sy = 0.

12. 5x - 7y - 26 = 0. 15. 7.550 -.

Page 20. Art. 20.

1. 2| units to the right of Pi. 12 units to the left of Pi.

2. Division point between two points and 3 in. from first. Division

point beyond second point, 5 in. from first.

Pages 23, 24. Art. 22.

1. (-2, 1). 2. (li, 3i). 3. (3, U). 4. (-22, 14). 6. (i, -}).

7. (i i), (-24, 28). 8. (li, -1), (-li, -2i;, (-1, -4i;.
9. (2f, 39. 10. 10.050-, 11.180+, 12.806+ . 13. (11, 14).

14. (-1,0), (-4, -2).

Pages 28, 29. Art. 28.

1. (1) 1, (2) -1, (3) 1.732, (4) 0.1010, (5) ^^, (6) -3.1463.

2. (1) 45°, (2) 135^ (3) 60°, (4) 5° 46', (5) tan"! ^-^, (6)107° 38'.

3. -f . 6. 5i. 7. 6. S. Sx -2y -2 = 0. 9. If.

315



316 ANALYTIC GEOMETRY

10. Qx -y + 12 =0. 11. X + 21/ - 11 = 0, (-3, 7). 12. 60° 15'.

13. 2.375. 14. 86° 11'. 15. lOf. 16. 3.732.

19. (ItV, 3-^). 20. 0.6584. 21. 74° 56'.

Pages 32, 33. Art. 30.

1. (3V2, 3V\) (-V2,- V2), (-1, -|\/3), (3V3,3),
(- i, IV3),(-4V2, 4V2;,(- 2, 0), (0,-6).

2. (1.532, 1.286), (1.026, 2.819), (5.629, -3.250), (-0.7714, 0.9192).
(4.078, -1.902).

'

3. (8^60°), (-8, 240°); (3\/2, 225°)^ (-3\/ 2, 45°); (Vsi, 59° 2'),

(- \/34, 239° 20; (2V2, 120°), (-2\/2, 300°). 6. 4.58.

Pages 35, 36. Art. 33.

2. (f\/2, i\/2),(iV2, J\/2), (-5V2, 0),(3V2,-4V2).
3. (0, 0), (9, 2), (5, 11). 4. (7, 8)^
6. 60°; (0, 0), (4, 0), (2\/3-l, \/3 + 2).

Pages 38, 39. Art. 36.

1. (1) 76, (2) 31, (3) 200i, (4) 10. 2. 160. 3. 18. 6. 72.

,
7. i[piP2 sin (^2 — ^1) + P2P3 sin (^3 — ^2) + P3Pi sin (^1 — ^3)].

8. 98.29.

Page 41. Art. 36.

1. (-3i 2).

Pages 41-43. General Exercises.

2. (0, 0), (8, 0), (0, 10), (-8, 10). 3. (-8, 0), (0,0), (8, 10), (0, 10).

4. (4, 0), (0, 4^, (-4, 0), (0, -4). 5. (a + iaV S, Ja)_, (ia\/3,ia).

6. (0, -iaVs)y iia, faVs), (-Ja, iaVS) or (0, Ja\/3),

(ia,-i«V3), (-ia, -JaVs). 7. 4.799. 8. 2:5.

9. (6, -4), (14, -20). 10. (0, 9), (3, 0). 11. (1, 4).

12. (I, V). 14. (7, 0) or (-2, 0). 16. 6 or -2.

16. (5, 0), (0, -1). 17. (5, 0), (-3, 4). 19. -i. 20. -1.128.

21. -0.145. 22. 1.2337. 23. 2.25. 24. (0, 0), (4rV, lif), (0, 13),

(-4A, IItV). 26. (0, 0), (5,0), (4, 3), (-1, 3).

Page 49. Art. 44.

1. 5, -3i 2. ±6, ±6. 3. ±4, ±8. 4. 1 ± jVS, 1. 6. 0, 0.

6. 0, 2 and 0. 7. -2, 1, 3 and ±\/6. 8. None.
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Page 64. Art. 48.

1. x^y^ - 36 = 0. 2. a;2— 4:Xy + 4^/2 - 9 = 0.

3. x^ - 8x2 ^ 15a; = 0. 4. x^ - x^y + xy^ - y^ - 16a: -f 16y = 0.

5. x^y - 6a;2 - ^xy + xy^ - Qy^ + 24 = 0.

Page 55. Art. 49.

I. (2\/2,— 2V2),(—2v^,2V2).2. (f\/2, iVii), (JV2, -iVl4).

(~|V2ayi4),(-|\/2, H/14). 3. (24f, -12?), (3, 2).

4. aVio, fVis;, (fVio, - fVis), (- jVio, fVIS),

(-fVlO, -f\/l5).
5. (3, 4), (3, -4). 6. 4\/2.

Pages 57, 58. Art. 51.

II. 22a; + 12i/ - 1 = 0. 12. x^ -{- y^ + 12a; + IQy =0.

13. a;2 4- t/2 - 6a; - 8?/ = 0. 14. x^ -{- y^ + 2x + 4y - 20 = 0.

16. 18a; + 20y + 51 = 0.

16. 4a; + 32/ - 25 = 0, 2a; - 5?/ + 29 = 0, 3a; - 2/ + 2 = 0.

17. 4a; - 2/ = 0. 18. 8a;2 + Sy^ + 112a; - 30y + 347 = 0.

19. 2a; - 32/ + 24 = 0. 20. 7a;2 + 16y^ - 112 = 0.

21. 5a;2 - 42/2 - 20 = 0. 22. 2x - 62/ - 5 = 0, 2a; - 62/ - 15 = 0.

23. a;2/ + 7x 4- 8y - 4 = 0.

Page 61. Art. 54.

1. X - 22/ - 8 = 0. 2. a; + 2/ + 6 = 0.

3. VZx + 2/
- V3 - 5 = 0. 4. 3x - 52/ + 13 = 0.

5. 5a; + 32/ - 1 = 0. 6. a; - 3 = 0.

7. 2/
- 4 = 0. 8. a; - 2y + 5 = 0.

9. 3a; - 42/ - 11 = 0; 3a; + 42/ + 5 = 0. 10. 12a; - 52/ - 26 = 0.

11. 11a; - 2/
- 16 = 0. 12. 7a; - 2/

- 5 = 0.

Page 62. Art. 66.

1. a; - 22/ + 6 = 0. 2. 3x -
2/
- 2 = 0.

3. 2a; - 32/ + 1 = 0; 2a; -h 32/ - 1 = 0. 4. 2a; + 32/ - 20 = 0.

6. a; + 2/ + 1 = 0. 6. a; - 3?/ - 5 = 0.

Page 64. Art. 58.

1. 2x - 32/ - 6 = 0. 2. 6a; - 2/ + 6 ^ 0.

3. 4a; + 32/ - 2 = 0. 4. 3a; + 4y + 1 = 0.

5. a; + V32/ -6=0. 6. a; + \/Zy + 6=0.
7. X -

2/ + 2V2 = 0. 8. \/3x + 2/ + 2 = 0.

9. VZx -
2/ + 8 = 0. 10. V3x -

2/
- 4 =^ 0.
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Pages 67, 68. Art. 62.

1. -f, 2. 2. I 1.3. I, 3. 4. 1, I. 5. f. 6. 2. 7. 2. 8. 3.'

9. ?-^. 10. ^^^. 11. X cos 0° + 2/ sin 0^ + i
= 0, f

.

5 5

12. X cos 90° + 2/ sin 90° - J = 0, f . 13. Sx - ^y + 5 = 0.

14. a; + 22/ + 4 = 0. 15. a; - 22/ - 2 = 0. 16. a: + 2/ + 2 = 0.

Page 69. Art. 63.

1. |. 2. i. 3. 1.4142. 4. 0.232. 6. 1.828. 6. 4.427.

7. 2, tf, H- 8. 5.233, 6.871, 3.757.

Page 71. Art. 64.

1. X - Sy - S == 0. 2. 2a; 4- 62/ - 7 = 0.

3. X - 72/ + 42 = 0. 4. 16a; - 42/ - 17 = 0.

5. 30a; + IO2/ + 9 = 0. 6. 2a; + 2/
- 2 = 0.

7. 7a; - 92/ = 0, 4a; + 62/ - 21 = 0, 5a; + 2/
- 14 = 0.

8. a; -f- 32/ - 4 = 0, a; - 72/ - 19 = 0, 2a; - 17 = 0.

Page 72. Art. 66.

I. ma; — 2/ + 2m + 3 = 0. 2, y — mx = 0,

3. ma; - 2/
- 3m + 4 = 0. 4. f + | = 1.

6. ma; — 2/
— 4 = 0. 6. a; cos 9 -{- y sin 6 — S = 0,

7. a; cos ^ + 2/ sin - 7 = 0. 8. 2a; + 2/
- 6 = 0.

9. 3x + y — 6 = 0. 10. a; + 2/
— 6 = or 2/ = ma;.

Pages 74, 75. Art. 66.

1. 3a; + 42/ ± 6 = 0. 2. a; - 22/ = 0, a; + 2/
- 6 = 0.

3. 3a; + 42/ + 5 = 0, 5a; + 122/ - 13 = 0.

4. 2/ - 2 = 0, 4x - 32/ - 10 = 0. 5. 2a; - 2/
- 6 = 0.

6. 2a; + 2/
- 6 = 0. 7. a; + 42/ - 4 = 0. 8. a; - 2/

- 3 = 0.

9. a; + 2/
- 4 = 0, 3a; + 2/

- 6 = 0. 10. a; + 32/ - 6 = 0.

II. X + \/32/ -6 = 0. 12. 3a; - 42/ ± 10 = 0.

13. 4a; - 32/ + 15 = 0, 4a; + 32/ - 15 = 0.

14. 3a; + 42/ ± 10 = 0, 4a; + 32/ ± 10 = 0.

16. 2a; + 2/
- 4 = 0.

16. 2a; - (3 - 2V2)y + 4 - 4\/2 = 0,

2a; - (3 + 2V2)y + 4 + 4^/2 = 0.
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Page 77. Art. 67.

1. 4a; - % + 1 = 0. 2. 13x + 12?/ - 62 = 0. 3. a; - 2?/ + 6 = 0.

4. 22a; + lly - 14 = 0. 5. 5a: + 15y - 34 = 0.

Page 78. Art. 68.

1. x^y — y^ — xy -\- y^ = 0.

2. a;2?/2 _ SrJy - 3xy^ + 2x^ + 9xy + 2^/2 - 6a; - 61/ + 4 = 0.

Page 79. Art. 69.

1. p cos (e - 45°) =3. 2. p cos (e - 60°) = -2.

3. p sin ^ = 7. 4. p cos = —4.

5. p cos (^ - 135°) = -4. 6. p cos (d - 315°) = 3.

7. p cos ((9 - 45°) = i\/2. 8. p cos ^ = 3.

9. p sin (9 = -7. 10. p cos (0 - 30°) = 2.

11. p cos (6 - 300°) = -3. 12. tan 0=2.
13. a; - 3 = 0. 14. ?/ - 4 = 0.

15. y - Qx = 0. 16. a; + 2/
- 2 = 0.

17. a; + 1/ - 3 = 0. 18. 4a; - 62/ - 3 = 0.

19. 3a; ± 4i/ = 0. 20. 12a; ± 5y = 0.

21. a; - 2/ + 2 = 0. 22. a; - Vs?/ -6=0.

Pages 81-85. General Exercises.

2. (1) 2x - 3y - 17 = 0. 3. (1) x - 7y - SS = 0,

(2) 7a; - 2?/ - 21 = 0. (2) ?/ = mx + /c - m^.

4. (1) i.

(2) 0.5883.

(3) V^
5. iWs2, tiVei, vV5. _ -

6. tVV13. HV13, if\/13, Aa/13^ A\/13.
7. (1) 7. 8. (1) a; + 82/ - 58 = 0.

(2) -|. (2) 21a; - 62/ - 58 = 0.

(3) 12a; + 9y - 116 = 0.

(4) 15a; + 62/ - 110 = 0.

9. 3a; - 2/- 1 = 0, 7a; + 52/ - 15 = 0, a: - 42/ + 6 = 0, (H, H).

12. a; + VSy -4=0. 13. (1) a; - 2/ + 2 = 0.

(2) 2a; - y - 1 = 0.

(3) •\/3a; + 2/
- 8 + 2\/3 = 0.

15. 2a; - 2/ + 6 = 0. 16. (f, f). 17. a;' - 5y'+ 4\/2 = 0.

19. 4a; - 52/ + 1 = 0, 7a; - 3?/ - 27 = 0, 3x + 2?/ - 5 = 0.



320 ANALYTIC GEOMETRY

20. X - y - 1 = 0. 21. X -h y - 8V2= 0.

22. Sx + ^y -20 = 0. 23. 7x - 4:y - 2 = 0,

24. X - 32/ + 7 = 0, 13a; + 9y - 5 = 0. 2b. x - 2y -\- 2 ^ 0.

26. X- {2- Vs)y -l+\/3=0,a;-(2 + Vs)y - 1 —y/S = 0.

27. Sx - 4y -{-24: = 0. 28. 3a; + 4?/ - 24 = 0.

29. a; - 2/ - 5 = 0, a; + 2/
- 13 = 0. 30. -2.0225.

31. 3. 32. a; - 2?/ + 7 = 0, a; + 31/ - 8 = 0.

33. a;-(2+ v^3)i/+ ll+6A/3=0, x-i2-Vs)y-4- Vs = 0.

Z4L. X -{- 3y - 15 = 0, 3x - y - 5 = 0.

35. W5, (1, -^f ). 36. (3, 4). 37. 2a; - 2/ + 4 = 0.

38. 3a; - 4y = 0. 39. 3a; + 3?/ - 13 = 0, Sx + 3y - U = 0.

40. 3a; - 42/ + 1 = 0, 3a; + 42/ - 7 = 0.

42. 4a; - 32/ + 6 = 0, 3a; - 42/ + 15 = 0.

44. X- V32/ = 0, a; + \/32/ =0. 45. a; - 2/ + 1 = 0.

46. a; - VSy = 0. 47. 2/ = 4, 2/ = 3, a; = 2, a; = 3.

48. (^, Ij
• 49. a; + (8 - 5 \/3)2/ - 50 + 30 Vs = 0.

50. (a + &)a; — (a — 6)2/ — 6c — ac = 0.

51. 3a;' + 52/' + 4 = 0.

52. 21a; + 772/ - 1 = 0, 99a; - 27y - 79 = 0.

64. (1) A = S or C = 0. 55. (1) 116° 34'.

(2) A = -B, ' (2) 79° 42'.

(3) A + 2B + C = 0. (3) 60°.

56. 8 + 5\/3. 57. (-1, 1). 58. 3.

59. 8a; - 52/ + 30 = 0. 60. 175° 26'.

61. 18a; + 1292/ - 50 = 0, 138a; + 70y - 210 = 0.

62. a; + 32/ - 30 = 0, a; + 32/ + 10 = 0. 63. 2/ + 6 = 0.

64. (2, 4). 65. a; + ^ - 2 = 0, a; - (2 + Vs)y - 2 - 2\/3 = 0,

a; - (2 - \/S)y -2 + 2Vs = 0.

Page 88. Art. 74.

1. (1, 2); 3. _ 2. (-2, 3); 1. 3. (-6, -3); 2. 4. (J, 2); |.

5. a!);iV2. 6. (-}, -f);f\/2.
7. (-i, - |);0. 8. (a, 3a); 3a.

9. (-3a, -%a);iV7a. 10. (Ja, -fa); Ja.

Pages 90-92. Art. 75.

1. a;2 + 2/2 - 6a; - 82/ + 20 = 0. 2. a;2 -f 2/2 - 2a; + 62/ -f 5 = 0.

3. a;2 + 2/^ + 4a; - 42/ -f- 3 = 0. 4. a;2 -j- 2^2 _ 2a; - 22/ - 23 = 0.
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6. x^ + y^ -\-2x + 2y -23 = 0. 6. x^ + y^ - 'ix - Qy - 12 ^ 0.

7. a;2 + 2/^ - 22/ - 12 = 0. 8. x^ + y^ - 2x - 24: == 0.

9. x2 + 2/2 - 4a; - 82/ + 10 = 0. 10. x^ + y^ + 4x - Sy + 10 = 0.

11. a;2 + 2/2 ± 8a; + 62/ = 0. 12. a;2 + 2/2 - 24x ± IO2/ = 0.

13. a;2 + 2/^ = 20. 14. x^ + 2/2 - 2a; - 4?/ - 8 = 0.

15. a;2 + 2/^ + 2a; - 62/ = 0. 16. a;2 + 2/2 - 4a; - 6 = 0.

17. a;2 + 2/2 - 4a; - 42/ - 17 = 0, x^ + y^ - 10a; - 22y + 121 = 0.

18. a;2 + 2/2 + 6a; - 2y - 15 = 0, a;2 + y^- 10a; - Uy + 49 = 0.

19. a;2 + 2/2 - 2a; - 8y - 3 = 0. 20. x^ + y^ + 4x - Qy = 0.

21. a;2 + 2/2 - 2a; - 22/ - 3 = 0. 22. a;* + 2/^ - 6a; ± 82/ + 9 = 0.

23. a;2 + 2/2 ± 4a; - 82/ + 16 = 0. 24. a;2 + 2/» - 4a; - 82/ + 10 = 0.

26. a;2 + 2/2 - 6a; - 62/ + 9 = 0. 26. a;* + 2/* - 2a; + 22/ + 1 = 0.

27. a;2 + 2/2 + 4a; - 4?/ + 4 = 0. 28. a;2 + 2/^ + 6a; - 62/ + 9 = 0.

29. a;2 + 2/^ - 4a; - 42/ - 2 = 0. 30. a;2 + ^2 .j. 4^; _ 62/ + 8 = 0.

31. 4a;2 + 4y^ + 20a; - 20y + 25 = 0,

a;2 + 2/2 + 30a; - SOy + 225 = 0.

32. a;2 + 2/2 - 10a; - lOy + 25 = 0.

33. a;2 + 2/2 - 10a; - lOy + 25 = 0,

a;2 + 2/* - 26a; - 2Qy + 169 = 0.

34. 2a; - 2/
- 7 = 0. Z5. x - 2y + 5 = 0; 2\/5.

36. a; - 32/ + 5 = 0; 2\/l0. 37. a;2 + 2/2 - 85 = 0.

38. 36a;2 + 362/2 + 84a; - 122/ ~ 575 = 0.

39. a;2 + 2/2 = 65.

Page 94. Art. 76.

1. a; + 22/ - 5 = 0. 2. a; +2/ - 1 = 0. 3. x + 2y + 4 = 0.

4. 5a; + 32/ - 7 = 0. 6. 5a; + 15y - 34 = 0. 6. 7x + 9?/ -18 = 0.

7. a;2 + 2/^ - 3a; - 42/ + 5 = 0. 8. x^ + y^ - 5x - ISy + 42 = 0.

Pages 96, 96. Art. 77.

1. Circle, center at origin, r = 3.

2. Circle, center (J, |), r = J\^-
3. Circle, center (V, 0), r = f

.

4. Circle, center (yV, — I), ^ = 3^\/65.

6. Two circles, centers {±i, 2), r = J. 6. -y^.

7. Circle, center (0, 1), r = \/29.

8. Two circles, centers (0, ±2\/3), r = 4.

9. Circle, center (-9, 0), r = 10.

10. Circle, center at origin, r — 3.

21
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Page 97. Art. 78.

1 p = 2. 2. p = 10 cos d. 3. p = -8 cos d. 4. p = 6 sin 0,

6. p = — 4 sin d. 6. p = ±12 sin 6. 7. p = ± 12 cos 0.

8. p = 6 cos (^ - p • 9. p = Ve. 10. p = 3 sin 0.

11. p = — I cos 0.

12. p = 6 cos ^ + 8 sin B.

13. 0:2 + 2/2 + 6?/ = 0; (0, -3); 3.

14. a;2 + 2/2 - 4a; = 0; (2, 0); 2.

15. a;2 + 2/2 - re - 2/ = 0; (i, J); i\/2.
16. 0^2 + 2/2 = 25; (0,0); 5.

17. a;2 + 2/2 + 2a; + 32/ = 0; (-1, - j); |\/l3.

18. x2 + 2/2 + 3a; + 42/ -6 = 0; (-f, -2);^.
19. a;2 + 2/2 - 9 = 0; (0, 0); 3.

20. a:2 + 2/2 - 4 = 0; (0, 0); 2.

Page 103. Art. 85.

2. (i, 0), (-i, 0), (0, i), (0, -i); 2x + 1, = 0, 2x - 1 = 0, 22/ + 1 = 0,

22/ - 1 = 0; 2. 5. (1) 2/' = 12a;; (2) a;2 = 24y; (3) y^ = -16x; (4)

a;2 = -82/. 6. (1) 2/2 = 8a;; (2) a;2 = y. 7. a;2 = 5000y.

Pages 105, 106. Art. 86.

1. (1) 2/2 - 8a; - 82/ + 40 = 0; (2) y^ -{- Sx - 6y - 7 = 0;

(3) a;2 + 12a; - 12y + 60 = 0; (4) a;2 - 4a; + 62/ + 22 = 0.

2. (1) (5, 4), a; - 1 = 0; (2) (0, 3), a; - 4 = 0; (3) (-6, 5), 2/ + 1 = 0;

(4) (2, -4i), 22/+3 =0.
3. 2/2 - 10a; + 42/ - 36 = 0, 2/^ + 10a; + 42/ + 44 = 0.

4. a;2 - 6a; + 82/ + 25 = 0. 6. a;'2 + 4a;' + 82/' + 32 = 0.

6. (1) 2/2 - 8a; - lOy + 57 = 0; (2) a;2 + 8a; - 82/ + 32 = 0;

(3) 2/2 + 8a; - 42/ + 36 = 0; (4) a;2 - 6a; + 82/ + 41 = 0.

7. (1) 2/2 - 3a; - 62/ + 15 = 0; (2) 42/2 + 25a; - I62/ - 59 = 0;

(3) 2a;2 - 8a; + 92/ - 19 = 0; (4) 5a;2 - 30a; - IQy + 13 = 0.

Pages 108, 109. Art. 89.

1. (1) (3, 2), (4, 2), 2/
- 2 = 0, a; - 2 = 0; (2) (5, -4), (4i, -4),

2/ + 4=0, 2x-ll=0; (3) (-1J, 2), (-IJ, 3i), 2a; + 3 = 0,

42/ - 3 = 0; (4) (6, -2), (6, -2|), a; - 6 = 0, 82/ + 13 = 0;

(5) (-A, 2), (-1H, 2), 2/
- 2 = 0, 6a; - 43 = 0; (6) (|, H), (f, ||),

2a; - 9 = 0, 402/ - 239 =0.
2. 5a;2 _- 9a; - 22/ + 4 = 0, (A, ?U (,A "A), f

•
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3. 2/2 - 12a; - 8y + 28 = 0. 4. Sy^ - 2bx + l^y + 77 = 0.

5. (1) 2/'2 = 4a;'; (2) x'^ = -16?/'; (3) y'^ = -Sx'; (4) x'^ =
f,/'.

6. (1) 4a; - 3 = 0, a;' + 1 = 0, (f,3), (1, 0), 4;

(2) 2/ - 5 = 0, 2/' - 4 = 0, (4, -3), (0, -4), 16;

(3) a; - 3 = 0, x' - 2 = 0, (-1, 2), (-2, 0), 8;

(4) 422/ - 11 = 0, 122/' + 7 = 0, (-1, V), (0, A), J.

Pages 110, 111. Art. 90.

1. a;'2 = -2p2/', 2/'^ = 2pa;'.

2. (1) a;'2 + 2a;'2/' + 2/'' - 4\/2a;' + 4\/22/' = 0;

(2) 3a;'2 - 2\/SxY+y'^ + (6\/3-4)a:'-(4\/3 + 6)2/' + 24=0;

(3) 52/'2 - 2V5a;' - 2V5y' - 10 = 0;

(4) 13a;'2 - 6Vl3a;' - iWlSy' - 68 = 0.

3. 9a;2 - 24xy + I62/2 - 116a; - lQ2y + 321 = 0.

4. (1) 2/"2 = sV2x"; (2) a;"2 = iW^v") (3) x"^ = - jVV'.

Pages 111, 112. Art. 91.

3.
•^^'

.

1 ± cos

Page 113. Art. 92.

2. (3. 31, ±7.28).

Page 114. Art. 93.

1. a;2 = - 144 2/, 24.31 ft., 22.22 ft., 13.89 ft.

2. 14' I", 11' 3", 6' 6|". 3. a;2 = ^^^^y,

4. a;2 = H~(2/ - 20).

Page 115. Art. 94.
. 3^2 sin 2 OL

6. (1) 23.67 mi.; (2) 20.50 mi.; (3) 20.50 mi.

7. 401.5 ft. per sec.

Page 116, 116. General Exercises.

1. (62i, 62500). 3. IJ in. from back of reflector.

4. (4, 2), (8, 8). 5. a; --
2/ - 2 = 0. 6. - Of. 7. (3, 1), (42, 14).

8. ?-±-V^. 9. (f, -2i). 10. (1) 2/2 + 4a; - 4 = 0;
4

(2) 25i/2 - 60a; - 36 = 0; (3) y^ + 24a; - 144 = 0.

11. (1) (12, 70° 32'), (12, 289° 28'); (2) (4, 90°), (4, 270°).

13. 2a;2 + 2y^ - bpx = 0. 14. 4\/3p.
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Pages 122, 123. Art. 99.

1. (1) 5,4,1, (±3,0), Sx ± 25 = 0;

(2) 10, 6, t, (0,± 8),_22/ ±25 =0;

(3) 3, 2, i\/5, (±\/5, 0), 5x ± 9\/5 = 0;

(4) 4, 3,_iV7, ( ± \/7, 0),_7a; ± 16\/7 =_0;

(5) 2V2, V5, iVe, (±\/3, 0), 3x ± sVs = 0.

(6) 3, Ve, jVS, (±\/3, 0), a; ± 3\/3 = 0.

2. a. 3. (1) 4a;2 + 92/2 = 144; (2) x^ + 4?/2 = 16;

(3) 5x2 + 9^2 = 81- (4) 20a;2 + 36?/2 = 1125; (5) 112x2 ^ 256^/2 = 3087;

(6) x2 + 4?/2 = 64; (7) 2^2 + Sy^ = 18.

4. ± fV2I, ±_2f, 0, ± I V'^n. 6. 2x2 4^ 32,2 = 6.

8. (Ij Ve, v^5, i V6, |\/6;(2) \/2m; Vm, i \/2, \/2m; (3) Vs,

-\/^, - V^Cg - 1), - Vs; (4) Vg, Vp, - Vq{q-p)y -^ Vq.

9. 3.8, 6.2. 10. 3x2 _|. 4^2 = 575, 12. (o, 0), x = ± «, 0.

13. (1, ± 2). 14. 62a;2 + c2y2 = ^^252.

16. (a2 - 62)x2 + a2?/2 = a^(a^ - b^).

Page 124. Art. 100.

1. (1) 9x2 _|. 25?/2 - 54x - 200y + 256 = 0.

(2) 48x2 + 2/2 + 288x + Uy + 445 = 0.

2. 4x2 + 9^/2 _ 40a; + 72y + 100 = 0,

9x2 _j_ 42^2 _ 90a; + S2y + 145 = 0.

3. (1) (-1, 4), (7, 4), 4x + 13 = 0, 4x - 37

(2) (-3, -7 ± i VUI), 2/ = - 7 ± i^

4. 7x2 _|_ iQy2 _ 140a; _ 641/ + 512 = 0.

5. 16x2 + 252/2 - 96x - 200y + 144 = 0.

6. 2x2 + 2/^ - 16x - 42/ = 0.

1. (l)(^iLlIV^

Page 127. Art. 101,

-2)

Ig
. 7 =1; (-1, 2); (-4, 2), (2, 2); (-5, 2),

(3, 2); a = 4, 6 = VT; 3a; + 19 = 0, 3a; - 13 = 0.

(2) i5_zJI'+iL^'=l; (4, i;; (4, 1 +2V2); (4, -3),

(4, 5); a = 4, b = 2\/2; ^ - 1 ± 4\/2 = 0.

(3) ^T-^V^M^^ = i;(i-i);(i±iV5,
i • i

(i, -1}; a = i, 6 = J; a; - 1 ± A V5 = 0.

1); (i -1),
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(4) (^'^ (^^ = l; (-1, 3); (-a ± i V5, 3);

(-1 ± f a/5, 3); a = iVs, b = VlO; x + 1 ± |\/5 = 0.

2. 6a;'2 + 7y'^ = 8.

3. (1) 1J + 7-' = 1, (±3, 0), 3a:' ± 16 = 0.

(2) YQ-^i'
= 1' (^' ±2 V2), 2/' ± 4 V2 = 0.

(3) ^' + T-' = 1, (± i V5, 0), lOx' ± 3 V5 = 0. '

(4) ^' +
f^'

= 1, (± i V5, 0), 2x' ± 9\/5 = 0.

4. 9x2 + 25^2 + 54x - 200y - 873 = 0:

6. 3x2 + 42^2 _ 24a: - IQy + 16 = 0.

6. 3a:'2 4. 42^/2 = 35, 7. 33^2 _^ 4^2 _ 20a: + 12 = 0.

Pages 128, 129. Art. 102.

1. (1) (a2 + 62)a;'2 ^ 2(a2 - h^)x'y' + (a2+62)2/'2 _ 20252 = 0,

(2) 43a:'2 - uVlx'y' + b7y'^ - 576 = 0;

(3) a:'2 + 92/'2 ~ 36 = 0;

(4) 9a:'2 + 2V'3a:y + lly'^ + (6- 8\/3)a:'+ (6\/3 + 8)2/'- 40 = 0;

(5) 3a:'2 + y'2 4. 3\/2a:' - V22/' + 4 = 0;

(6) 38a:'2 + i2a;y + 22y'^ + 2\/5a:' - 21 Vly' = 0.

2- ^ +V = 1- 3. 9x''2 + 32/"2 - 32 = 0.

Page 129. Art. 103.

1 = ep _ ep>
4 2 = «H1 - g^)

'^
1 - e cos 0' '^

1 + e cos (? * ^ 1-62 cos2 B

Pages 131, 132. Art. 105.

^•($y2+2& = l. (±171.8,0). 2. yg^ + il^'^l. (±90.75,0).

3. 36.37 ft., 27.78 ft. 5. 0.95+ ft., 4.02- ft., 10.16- ft.

6. 13,000 mi.

8. 45.1 in. per sec. 0.14 in. per sec.

. Pages 132, 133. General Exercises.

1^4.^-1 0^4.-^ = 1 ^^4.^-1
36

"^
16 72

"^ 144 *
"*'

72 "^ 36 *

4. ~+g = l. 5. 4,3;(0, ± V7); J V'7; 2/ ± V-V7 = 0.
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6. 6, 2\/6; ( + 2V3, 0); fVS; x ± qVs = 0.

7. 5, 4; (-1, -2), (5, -2); |; 3x + 19 = 0, Sx - 31 = 0.

8. 9a;'2 -I- 42/'2 = 36. 9. 25:r'2 + IQy'^ = 400.

10.^' + -/^ = 1. a>3.
a-^ a-^ — 9

11. 189a;2 + 9Qxy + I6I2/2 - 1494a; - 258?/ + 2106 = 0.

12. 6.4.

Pages 138, 139. Art. 110.

1. (1) 10, 8, (±\/4i, 0), 41a; ± 25V4i = 0; (2) 12, 20, (±2\/34, 0),

17x ± 9\/34 = 0; (3) 6, 8, (±5, 0), 5x ±'9 = 0; (4) 16, 12, (0, ±10),

5y ±32 = 0; (5) 2\/2, 2^/3, (0, ±V5), 5y ± 2y/l = 0; (6) 10, 6,

(0, ±\/34), 342/ ± 25\/34 = 0.

X 2 ,y2

3. 0, ±5i ±|\/-5. 4. 5i—

•

6. 5x2 _ 92^2 = 36/ 6. 5^2 - ^y^ ^ 80.

8. (1) 4, 3, J, I; (2) \/6, 2^2, 4\/2i, f \/6; (3) 1, 4, VTT, 32;

(4) \/2m, Vm^ iVe, \/2?w; (5) Vg, Vp, - Vpq~+~q^, —V^J.

(6)\/s, -V^, -Vq^ + g, —-^•
9. (1) 3, 4; (± 5^0); |; 5a; ±_9 =0. _

(2) 6, 2\/6; (± 2V15, 0); (i ViS; 5x ± 6\/l5 = 0.

10. a;2 - 3?/2 + 3 = 0. 13. x'y' = 8. 14. 7a;2 - 9y^ = 1008.

15. a;2 - 32/2 = 144.

Pages 142, 143. Art. 113.

1. (1) 2a; ±VQy = 0; (2) x ±V2y = 0; (3) x ±V2y = 0;

(4) 5a; ± 42/ = 0; (5) a; ± 2/ = 0; (6) a; ± 2/ = 0.

2. 3a;2 _ 42/2 + 48 = 0, (± 2V7, 0), (0, ±2\/7), 7a; ± 8\/7 = 0,

72/±6\/7=0.
5. 2a;'2/' = a^. 6. a;2 - 32/2 = 16.

11. ±4\/2. 12. ±0.9014.
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Pages 143, 144. Art 114.

1. (1) 9x^ - 252/2 - 72x - 150?/ - 306 = 0;

(2) x^ - 4.y^ + 12a; - 16?/ + 36 = 0.

2. (1) (-1, -3), (9, -3); (4 ± Vsi, -3);

S4x - 136 ± 25\/34 = 0.

(2) (-6, -4), (-6^0); (-6, -2 ± 2\/5);

5y + 10 ± 2\/5 = 0.

3. 64x2 _ sQy^ + 256x + 504^/ - 1283 =0.
4. (1) 9^2 - 252/2 - 72x - 150y + 144 = 0;

P (2) x2 - 4?/2 + 12a: - 16?/ + 4 = 0.

5. (1) 3x - 5?/ - 27 = 0, 3x + 5?/ + 3 = 0;

(2) re - 2?/ + 2 = 0, X + 2?/ + 10 = 0.

Page 146. Art. 115.

1. (1) ^^^' - -^^~^' = 1; (6, 3); (1, 3), (11, 3); (2, 3), (10,3)

a = 4, 6 = 3; 5x - 30 ± 16 = 0; 3a; - 4?/ - 6 = 0, 3a: + 4?/ - 30 = 0,

(2) k^)^_i^_+3)^ = l. (_3^ 5). (_3^ 5 + Vl7); (-3, f)

(-3, f); a = 1, b = 4; 34?/ - 85 ± 2\/i7 =0; a: - 4?/ + 13 ^ 0,

X+4?/-7=0. (3) (?_^'_i^^' = l; (i_ 1); (_5^ _1)

Q, -i); (i ± V7, -i);a =V7, b =\/2; 6a: - 17 = 0, 6a; + 11 =

14y + 7 = ± 2Vl4a: + Vu. (4)^^-^^'- i^-Zll)' = j. (i^ 3).

(1, 3 ± \/l7); (1, 3 ± 2V2);a = 2V2, 6=3; 17?/ - 51 ± 8VT7 =

4a: - 3\/2?/ - 4 + 9'n/2 =0, 4a: + W2y - 4 - 9\/2 = 0.

(^^ ^S^^'~^^2r^^'=^^("^^^)^("^^-^)^(~2'^^)'(-^

a = 2\/7, 6 = \/21; ?/ = 0, ?/ - 8 = 0; 2a: - \/3?/ + 4 + 4\/3 = 0,

2a: + VS?/ + 4 - 4\/3 =0.
2. 9x'2 - 25?/'2 + 225 = 0.

3. (1) 3^' - ^' = 1, (±5, 0), 5a:' ±16 = 0;

(2) y - 1^' = 1, (0, ± Vl7), 17?/' ±^/T7 =0;
'

(3) y-^' = 1, (±3, 0), 3a:'±7= 0;
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(4) ^'-^' = 1, (0, ±\/l7), 172/' ±SVT7 = 0.

(5) 2-|| = 1, (0, ±7), 2/ ±4 =0.

4. 9x2 _ 162/J + 54a; + 12Sy + 1601 = 0.

6. 16a;2 - 251/2 + 64a; + 200y - 736 = 0.

6. 3x2 - 2/2 - 84a; + 4y + 536 = 0.

Pages 146, 147. Art. 116.
1. (1) xy = 8;

(2)

yr2

a2

a;'2

62
= 1;

(3) a;'2 -y'' = 16;

(4) lla;'2 + 50V3a;y --392/' 2 = 576;

(5)
a;'2

9

yr2

3
= 1;

(6) a;'2 -32/''2 - 2a;' + 62/' - 11 = 0.

2. (1) <p
=:45^

a;'2 2/'=^

Y- 16
= 1;

(2) <p
=

= 30°,
a;'2 2/'^

3 4
= 1.

3. a;"2 - y
//2 = ll\/2.

4. (-3, -1); (2.15, 1.13), (-8.15, -3.13); a; - (1 + V2)y + 2 -

\/2 = 0, a; + (V2 - 1)2/ + 2 + \/2 = 0; a; - (\/2 - 1)2/ + 4 -

\/2 = 0, a; + (\/2 + 1)2/ + 4 + \/2 = 0.

Pages 147, 148. Art. 117.

1- P =
^i , n

' 3. p =

5.

1 + e cos d 1 + e cos ^

(T^e'«°)'(rf-e'^«°°)-
^-'-y' = -'-

Pages 149, 150. Art. 118.

4. 5x2 __ 42^2 = 20.

Pages 151, 152. Art. 119.

1. pv = 10. 2. wl — 20. 3. One branch of an hyperbola with foci

at centers of circles and transverse axis equal to the difference of radii.

4. Hyperbola with foci at centers of circles and transverse axis equal

to the sum of radii. 6. An equilateral hyperbola with the ends of the

base as vertices. 6. 345 ft. at an angle of 11° 43' with the perpendicular

to AB,
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Pages 162, 153. General Exercises.

1. a = \/6, 6 = 2; jVTS; (±->/lO, 0); Sz/^ - 2x^ = 12.

2. (±2\/3, 2),(± 2^/3, - 2). _
3. a = 6, 6 = 4; (3, 2 ± 2\/l3); J\/l3; 13i/ - 26 ± ISVIS = 0.

7. {y -2)2 = 0._ _
8. (nV39, f§\/39), (-M\/39, -|S\/39).
9. 7.806+, 17.806+.

10. a;2 - 31/2 - X + 3y = 0.

11. 41/2 - a:2 = 11.

Page 158. Art. 122.

1. Hyperbola, ^x"^ - 2y"^ = 6. 2. Ellipse, 9a:"2 4. i^yn^ = 144,

3. Ellipse, 3a;"2 + y"2 + 6=0. 4. Parabola, 2y"^ = Zx".

5. Ellipse, x'2 + 4!/'2 = I6. 6. Parabola, y'^ = 3x'.

7. Imaginary ellipse, 121a;"2 4. ny'^i 4. 199 = q.

8. Two lines, 25x"2 _ y"^ = 0. 9. Parabola, x"^ = iVly".

10. Parabola, y"^ = ifVl3a:".

Page 160. Art. 124.

9. A; = 0.0000082, p = 0.0000082^3.439, 10. c = 5028, pv^-^'' = 5028.

Page 162, 163. Art. 126.

17. (1) x2 + 2/2 - 2a^^'x + a2 = 0;

(2) iF2"^i(A;2 -4a2) " ^'

^3) ^ _ r = 1^^^
ifc2 i(4a2 - fc2) ^•

20. p2 = 2a2 cos 2^.

21. Tir, 2/ ^4 2304*

Pages 173, 174. Art. 135.

10. 2x. 11. No. 12. 1/ = 18 sin ix^. 13. 2/ = 8 sin(M20'' + 55**), 3, J.

14. (1) 3.34, 0.299; (2) 16, A- 16. ^tt, ^ or 1 sec, 2 sec. 17. K 0.

20. 0.0007854.

Pages 179, 180. Art. 140.

27. p = r cos e, 28. p = 2(6 + r cos e).
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Page 182. Art. 141.

1. X = -3 + t, y = 2 + 2L 2. a; - 2 = 5 cos (9, 2/
- 3 = 5 sin 0.

4. 2/2 + ^ + 22/ - 3 = 0. ^- £ + f = 1-

6. 4x2 + 2/2 - 16x + 12 = 0. 7. x^ + 2xy -\- y^ - 2x -\- 2y = 0.

8. 9x2 4. 42^2 _ 90a: - 32y + 253 = 0.

9. 2/2 = ix. 10. x2 = i(2/ + 1).

11. x2 + 2/2 = a2 + fe2. 12. (^ i ^(^y =1,

Page 183. Art. 142.

3. X = ad — b sin e, y = a — h cos ^. .

Pages 193-195. Art. 151.

1. I = 0.00102^. 2. 2/ = lA05x + 7.527.

3. 2/ = 1.403X + 7.54. 4. i? = 0.00313^ + 9.8753.
5. F = 031191 + 606.00. 6. ^ = 0.1470TF + 1.7957.
8. T^^ = 0.5015^ + 54.10.

Pages 201-203. Art. 166.

2. 2/ = 0.9975x~^-^^ or, very nearly, y = a:"^-^^.

3. H = 3.867Do.676^ 659. 4. p = SOe-o-oooo^sA.

6. M = 0.1374p-o-667. 8. M = 0.00014F0.54.

9. pyi-37 = 147.

Pages 204, 205. Art. 157.

2. y = 0.5 + 0.02x + 2.5x2 - 0.3x3.

3. « = 132 + 0.875X + 0.01125x2.

Page 210. Art. 160.

1. X + 22/ - 1 = 0. 2. 2x - 62/ - 3 - 0.

3. 3x + 42/ + 1 = 0. 4. 2x + 122/ -h 5 = 0.

5. 3x - 22/ + 6 = 0. 6. 3x + 22/ - 4 = 0.

7. 3x + 4 = 0. 8. X + 142/ + 17 = 0.

9. (1, 3). 10. (5, 2). 11. (1, 2). 12. (4, 2). 13. (3, 1).

14. (3, 6). 16. (1, 1). 16. (-1, 3). 17. (-2, -8).

Pages 214, 215. Art. 166.

1. X + 42/ = 0, 3x - 22/ = 0. 2, x + y = 0, x - Qy = 0.

3. 32/ - 2 = 0, 2/ + 4 = 0. 4. 2x + 92/ - 20 = 0.
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6. 2a: -9^ + 16 =0. 6. (|, -f), (-f, |).

13. 3x - 22/ - 12 = 0. 14. 2x - Sy + IQ = 0.

18. Ellipse concentric with original ellipse, major axis = \/2a, minor

axis = \/2b.

Pages 218-220. Art. 167.

2. 4.5, 0.0802. 3. A = x^, 13. 4. A = tx^ 10.25t.

6. A = id2, c^ = ^/2A. 6. C = 2\/^, >Sf = v^SGxT^.

7. 7 = ^r2^, ^ = ^,, >S = ^. 8. -4, 44, -12.

9. 1, Vlb, 7. 10. 2, 1.6778, -1.9208. 11. iVs, 0, -J.
12. 3x2?/ _ 4a;2/2 - 22/2, 4x2/2 - 3^22/ - 22/2, -22/2 - 3x2?/ - 4x2/2.

log ?/

15. X = sm-i
2/, ^ = i^-

16. X = ± ?\/62 - 2/2, 2/ = ± ^Va2 - x2.

17. X = (a^ - 2/^)2, 2/ = (a* - x^)2. .

• 18. X = (a^ - 2/^)% 2/ = (a^ - x^)K

, X — 2a /—
19. 2/ = ± V ax.

20. X = ± iV -22/2 ±2V2/* + 256, 2/ = ± -\/4 - x*.
X

21. X = 1 ± iA/3 + 22/ - 2/^ 2/ = 1 ± 2\/2x - x2.

22. X = ±^-±^Vl6 - 2/2. 23. i = e-^' cos 2^

24. ^ = ± / ,g = J cos-i -'.

Vcos 2B <P^

^_ 4a cos ^ . /-2a + \/4a2 + ^2\
25. <p = —;;

—

7r~;r^
"

^
. sin2 d

= cos~^ (

-

<f>

26. <p =± aVtan ^(3 - 4 sin 2 $), 27. x = ^> 2/ = «^^'

28. X = iV2(2/ + Vl - 2/'), 2/ = hV2(x - Vl - x^).

Page 225. Art. 171.

2. 4, -}. 3. 2, 2x - 2/ + 1 = 0, X + 22/ - 7 = 0.

4.6X..5.3X.2. 6.2. 7. - A. sX, 9. -^j^,
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Xi ^ _
22/1* **" 92/1* "•

2/1

10. Sxi^ + 4a;i. 11. Oo^i^ - 8xi +6. 12. - ^. 13. ^^ 14. - . 16.

-
(xi - 1)2

^^' 2:c - 22/ + p = 0, 2a; + 22/ + p = 0. 17. -0.4364,

0.4364. 18. 73° 44.4'. 19. 120°.

Pages 231-233. Art. 181.

g^ ^ ^ 28 ^i^ ^dy^ 2a
^

' dx Z '
' dx 3x^'

dy 9 g. dy 2

da; 16a;* rfa; a;i

7. ^ =1. 8 ^ = —

.

*

c^a; a;^
* dx 5a;*

dx X? dx 3a;*

U ^ - ^^a:i 12 ^ - _ ^
dx 2 dx 6a;'

A0» ds ^ ^. ds 12
13. ;yT = gt 14. — = —

.

15. ^^ = |<^. 16. ^ = 4a;3 + 6a;.
dt dx

17. ^ = 6a; - 2. 18. ^ = 3a;2 - fa;^ + 3.
c^a; dx 2 .

19.^^ = 5^1. 20.^=fa;^+^,
(ia; 2a;^ dx x*

21. ^ = 6(2a; + 1)2. 22. ^ = 24x(3a;2 + 2)^ - 2.

23 ^ = ^ _ 3 24 ^ = ^^ - ^^- .

*
(ia; y/2x + 3 '

' dx 2\/2x2 - 7x

26. ^ = 2^ + ^
. . 26. ^ = - 2 .

rfa; 3v^(a;2 + 7a; - 2)2 dx x^

27. ^ = - \ 28. ^ = - 5-3. .

rfa; a;* aa; a;^

29. ^ = - . ^ . . 30.^^ ^ '

dx {x + 1)2 • dx 2\/(x 4- 1)«

^ = _ 20a;
32 ^ = ^

dx (a; - ly' dx (x + 1)**
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^^' dx {X - 3)2' **•
rfx (X2 + 1)2*

36. ^ = 21a:6 _ 24^5 + 12aJ«. 36. ^ = —-L= -L=r-
<^^ cix 2\/a; 4- 1 ^Vx - 1

dy _ 9x^ + 14x - 3

dx 2\/Sx^ + 7x2 - 3x + 2

3g ^ _ 2aa; + h _
cix 2Vax^ + hx + c 2\/x + d

39 ^ = 4^;^ + lOx
40 ^ = - ^^

• dx ^x^ + 5
*

* <^^ (^ ~ 1)^

• (ix {x -^ l)\/a;2 - l'
* <i« \/(x2 - a2)»

43. ^^ = —)= +^- 44. 1^ - iv -- i -^ I2t\

45. ^= 5x< - 3x2 _^ 2x- 2.

d^

dx'

47. ^= (x +l)^(2x - l)2(16x + 1).
ax

48 ^ = ^ - ^^
. 49 — =

^^''^'

50.

rfx (X - 1)3 *"
dt (1 + O'^+l

ds 2t

dt (^2 4. 1) y^^TTTl

51. 0, 3, 12. 53. 1:4, 1:8, 1:16.

54. x-2/-6=0, x + yH-6=0;
29x -

2/ - 38 = 0, X + 29?/ - 582 = 0.

55. At the points whose abscissas are — *

56.
xi2 - :1/ X Xi* ,

X,).\x Xi), y -
2/1 —

J _ ^ 2 ^^

57. (-1, -6), 7x + 2/ + 13 = 0.

58.

60.

At (1, 0) at 135**,

1.0025026.

,
at (-3, -4) at 18^26'.

Page 234. Art. 182.

1.
dy _ _^\
dx 2/2*

2 dy 3x2 + 1

• dx 3y2 + 1'

8.
dy ^ _b^
dx ahj'

M dp _ p dv

dv V dp
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gdy^ 4:X^ - 8xy% dx _ 8x^y - 3y2
• dx 8x^y - 32/2 ' dy ~ 4^3 - Sxy^'

dx x^^ dy ~
y\ ' dx ~ ~ yh

dy X -\-.\/x^ — y^

' dx ~ "
y

9.
dp _ av — 2ab — pv^ dv _ v^(v — b)

dv
~

v^{v — h) dp av — 2ab — pv^

10. 3x + 42/ - 25 = 0, 4x - 32/ = 0.

11. a; - 62/ + 17 = 0, 6x + 2/
- 9 = 0.

12. 8a; + 5V5y - 36 = 0, 25a; - sV^y - 18 = 0.

19. xVyi + yVxi — Vaxiyi = 0,

x\/xi - y Vyi — xx\/xx + 2/1V2/1 =0.

Page 237. Art. 186.

1. Rising for all values of x. 2. Rising for a;> — 2, falling for a;< — 2,

3. Rising for a;>0, never falling. 4. Rising for a;>0, falling for a;<0.

5. Rising for all values of a;, except a; = 0. 6. Falling for all values of x

except a; = 0. 7. Rising for x > Vs, and x < — \/3, falling for

- VS < X < Vs. 8. Rising for x >
"^

and x <
""

,

falling for 5— < x < 5 • 9. Rising for a; > 1 and a; < J, falling

for J < a; < 1. 10. Rising for — 1 < a; < 1, falling for a; > 1 and a; < — 1.

11. Rising for — 1 < a; < 1, falling for a; > 1 anda;< —1. 12. Rising for

a;>2 and a;<— 1, falling for — l<a:<2. 13. Rising for a;>— 2, falling

for a;<— 2. 14. Rising for a;>l and — l<a;<0, falling for a;<— 1 and

0<a;<l. 15. 278, 19, 3, y decreasing twice as rapidly as x is increasing.

16. —^=—x no real values of x,
o

Page 239. Art. 186.

1. Min. at a; = 0. 2. Min. at x = 2. 3. Max. at a; = 3. 4. Max-

at (0, 2), Min. at (0, -2). 5. Max. at a; = f(l - VlS), Min. at

X = 1(1 +Vl3). 6. Max. at a; = 0, Min. at x = 4f. 7. Min. at

X = 16. 8. Min. at a; =3. 9. (4.5, 4.1). 10. ^1^^.

Pages 241, 242. Art. 187.

1. Upward a:>0, downward x<0, Infl. at a; = 0. 2. Upward for all

values. 3. Upward a:>0, downward a;<0, Infl. at x = 0. 4. Upward
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x<0, downward x>Oj Infl. at a; = 0. 5. Upward a; > 1 and x< — l, down-
ward — l<a;<l, Infl. at a; = ±1. 6. Upward x>l, downward a;<l,

Infl. at X = 1. 7. Upward x>i and x<0, downward 0<x<f, Infl.

at a; = and x = |. 8. Upward x>f, downward a:<|, Infl. at a; = |.

9. Upward x>i\/3 and a; < -^Vs, downward -iVs <x <iVSf

Infl. at X ±i Vs. 10. Upward x> ^ ~^^^^ and x < ^^
downward l:zv:i?< x < i±^, Infl. at x = 1^_^9 ^^

-2, Max. at a; = 1 - jVg, Min. at a; = 1 + Ja/G. 12. 0, 2, 20 in.

per sec. 13. No points, 1, 2.

Pages 245, 246. Art. 190.

5. -0.15, 0.25. 6. -0.09428, 0.09428. 7. (6a: + 2)dx.

8. (3a;2 + 4:)dx, 9. (4a;3 - 9a;2 + 4x)dx, 10.
9xdx

11.
xdx

12. -'> -y^dx
Vx^ + 4: xh '

14.
xdx

/-.—r
: :— 16. gtdL 64.

{x^ + 5)3

11. x^ = ly.

13. 2a;^ - 3?/ + 4(3 - y/2)

16. ^/\/6 square units.

18. 20i square units.

20. 3a/2 square units.

22. 2| square units.

Pages 249, 260. Art. 193.

12. a;3 - 32/ + 2 = 0.

0. 14. -^/\/2 square units.

17. 64 square units.

19. 2of square units.

21. I square units.

1. ^- ^ 3 cos 3a;.
dx

dy

Pages 263, 264. Art. 197.

2. 3^ = sin 2a;.
dx

4. 37^ = cos 2a;.
dx

Z.-g= -2 sin (2a; + 1).

6. 3r = 3 cos 3a; cos 2a; — 2 sin 3a; sin 2a;.
dx

6. ^ = 3 sec2 3a:.
dx

8. ^ = 15 tan2 5a; sec^ 5a;.
dx

7. ^ = sec2 X.
dx

^ dy . .

9. -y- = X cos X + sm X,
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10. ^ = (Sx^ + 2x) cos (x3 + x2). .

11. ^ = (2x + 3) cos {x^ + Sx- 4).

12. ^ = -3 sin (6x + 4). 13. ^ = f cot aa^VSTsS.

14. -j^ = J sin 4x. 16. -j^ = J tan a;\/sec a;(3 cos^ a; + 1).

dv
16. -7^ = — mn^Ccof'+i qx + cof^'^ ^x).

^„ dy _ 2 sin a;.

'
c^a; (1 + cos x) ^

18. ^^ =
^

^. ^ . 19. ^, = tan^ ^.
c^^ 1 — sm 30 6/0

20. ^ = 3 cos x(l - 4 sin2 x). 21. ^ = cot ie.
dx dx

22. 2 square units. 23. 0.7071, -0.4161.

24. 1, 0, 00.

25. Max. at a; = (4n + 1) ^^ Min. at x = (4a; + 3) ^' Infl. at x = mr.

26. -\ cos 3a; + C. 27. -J cos (3a; - 1) + C.

28. i sin 4a; + C. 29. i sin (4a- - 2) + C. 30. i sin^ a; + C.

31. i sin^ a; + C. 32. -J cos^ a; + C.

33. ——7sin"+ia; + C. 34. y = sin x.
n + 1

Pages 259, 260. Art. 203.

. dy ^ 2a; -f 7 , ^ (2a; + 7)dx

dx a;2 4- 7a;'
^

a;^ + 7a; '

« di/ 0.8686 J 0.8686(/a;

aa; a; x

3. # = _1, ^^ = ->^.
*

c^a; a; a;

. dy _ 0.8686
^

, ^ 0.8686cga;

*
c^a; X X

5. ^ = 2e2^, (/?/ = 2e2^da;.

6. ^ = 2a;e*', rf?/ = 2xe''^dx,

7. ^ = 6a;e3^'+4 ^^ = ^xe^^'^'^'^dx.
dx
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8.

9.

10,

11.

12.

13.

14.

15.

16.

17,

18.

19.

20.

21.

24.

26.

27.

29.

31.

dv
-^ = e*(sin X + cos x)^ dy = e^(sin x + cos x)dx.

dy

dx
= 2a2« loge a, dy = 2a2« loge adx.

^ = 4.6052a;-102*+3^ dy = 4.6052a;- 102*+3da;.

^ = Zx&x - 2)«-i + (3a; - 2)' log (3a; - 2),

dy = [3a;(3a; - 2)*-i + (3a; - 2)« log (3a; - 2)]dx.

^ = i(ex _ g-x)^ dy = J(e* - e-«)(ia;.

di

— a6e-«<, di = ^abe-<^^dt.

RI -^ ^. —^ e L dt.

dy

dx

di

dt

di = -ie-lt{6 sin 2i + cos 2t)dt.

dy ^ (x + 1)2 ^ (a; + l)Hx
dx x^ + l '^ x^ + l '

g = (4 + ?) (2a; + log x\ dy = {4. + ?) (2a; + log x)dx.

dy

dx

= e-*(cos X — sin a;), cZ?/ = e-*(cos x — sin a;)cte.

= - Je-4<(6 sin 2^ + cos 20,

= (3 - 4a; - 6x^)e-'\ dy = (S - ^x - Qx^)e-''dx,

dy

dx
2(a;2 + 1)20^+3

dy = 2(a;2 + 1)2^+3

2a;2 -f 3a;

.
a;2 + 1

2a;2 + 3a;

a;2 + 1

+ log (a;2 + 1)

+ log (a;2 + 1) dx.

1, 7.39. 22. 0.4343, 0.0434.

No Max. point, Min. (J, 1.193).

2.3026 square units.

6.693 square units.

3 log Cx,

log C sin X.

23. (1, 0.6931).

33. ia;2 - 2a; + log Cx.

36.

37.

+ C.
3 log a
i(e2x+i +aj2) ^c.

22

28. log C(x - 1).

30. X + log Cx.

32. ie^' + C.

34.a;-logC.+J-2j-^.

36. a; - 4e-« + C.

38. 2/ = e*«.
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Pages 265, 266. Art. 208.

1. 11. 2. 13. 8. Vei, \/85, Vl66.
9. (3,4,0). 10. (37, -36,23). 11. 2:-l.

12. (i, -1, -9).

Page 269. Art. 210

1. J V3,J^ Vs, i \/3,_or - WSy - J Vs, - J Vs;^ 1, 1.

2^3V Vio, - j% Vio, - i VlO, or - /o VlO, j% Vio
i Vio; 7,-4,-5.

3 2 3 6 f^-r 2 3 6.0 Q A
• 7j 7j 7) or — y, — y, Yj -^^ O, — O.

4. - f , I, - f, or f , - I, f

.

6. TT, - A, TT, or - t\, /x, - r\.

6. A, i\, - if, or

7. H,A, -«,or
8. - 2, -9, 6. 9. (1, 0, 0), (0, 1, 0), (0, 0, 1).

10. (1, 0, 0,) (0, cos ^, cos t). 12. 45° or 135°.

13. 48° 51' or 131° 9'. 14. iV2, h\/2y 0.

15. h Vs, i, 0.

Page 273. Art. 213.

1. (2, 60°, 45°, 120°) or (-2, 120°, 135°, 60°).

2. (8, 60°, 120°, 45°) or (-8, 120°, 60°, 135°).

3. (V3, 54° 44', 54° 44', 54° 44') or

(- V3, 125° 16', 125° 16', 125° 16').

4. 45° or 135°. 6. (8, 60°, 30°) or (-8, 240°, 150°).

6. (4, 210°, 120°) or (-4, 30°, 60°).

7. (4, 135°, 60°) or (-4, 315°, 120°).

8. 77° 56.6'. 9. f , - i, f , or - f , J,
- f

.

10. f

.

11. - ff

.

12. - f

.

Pages 277, 278. Art. 218.

1. 2 = 3. 2 = -4. 2. 2 = 0. 2/ = 0. a; = 0.

3. 2/2 + 22 = 9. a;2 ^ 2/2 = 16. 4. 8x + 4?/ - IO2 - 15 = 0,

6. 2/
- 2 = 0. 6. a;2 - 2/2 = 0.

7. x2 - 2/2 - 22 = 0. 8. a;2 - 4x + 82/ - 62 + 29 = 0.

9. x2 + 2/2 + 22 - 3a; - 42 = 0.

10. a;2 + 2/2 H- 22 - 6x - 72 = 0, ^2 + 2/2 + 22 - 2a; - 80 = 0.

11. 17x2 + 172/2 + 1722 - 90a; - 2582/ + 265 = 0.

a;2 + 2/2 + ^2 - 2a; - 22/ - 47 = 0.

12. a;2 + 2/2 + 22 - 2a; + 22/ - 42 - 75 = 0.

13. a;2 - 2/2 - z^ = 0. 14. a;2 - ^2 + ^2 = q.

22
^
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15. x^ - y^ - z^ = 0. 16. X - 2/2 - 22 = 0.

17. x^ - 42/2 - 4^2 = 0. 18. x2 + 2/2 - 22 = 0.

19. a;4 + 2/^ + 2' + 2x22/2 + 2x2^2 + 22/2^2 - 42/2 - 4^2 = 0.

20. x2 + 2/2 + 22 - 22 = 0. 21. x2 + 2/2 - sin22 = 0.

22. x2 - (sin-i2/)2 + ^2 = 0.

23 £.' + ^' + 1' - 1 24 ^V^V^' = 123. ^2 + 52 + 52
- 1- 24. ^^ + ^^ + ^^ - 1.

25. (x2 + 2/2 + 22 + 12)2 _ 64(2/2 + 22) = 0.

Pages 281, 282. Art. 221.

4. 32/2 - 5^2 + 2 = 0, 3x2 _ 222 - 10 = 0, 5x2 _ 2y^ - 18 = 0.

5. 32/ - 22 = 0, 3x2 - 22 = 0, x2 - 2/ = 0.

6. 2^ + a22/2 - a222 = 0, z^ -h ax - a^ = 0, x^ -{- y^ - ax = 0.

7. y^ - z^ = 0, x2 + 22 - a2 = 0, x2 + 2/2 - a^ =0.

8. m22/2 + 22 - a2^2 = 0, 2 - wx = 0, x2 + 2/2 - a2 = q.

9. z2 _ 32/2 = 0, 22 - 3ax = 0, 2/^ - aa; = 0.

Pages 291. Art. 229.

21. x2 + 2/2 + 222 = 4. 24. x2 + 22 - 2px + p2 = q.

Page 297, 298. Art. 237.

^1 2 2 4^x,2/,2
i^•3^"-3^-3^-3 = ^'4 +—2+—2= ^•

2.|. + i2/-|.-3=o,|+| + -:^,=i. •

3.|.4--j2/-^ + |=o,-:^^ + ^^ + | = i.

.12 1 , 12 18 ^ X
, 2/ , 2 1

4 . ^ X - -^ 2/ + y-7 . - 17
= 0, 3 + ^3 + 3 = 1

.

6. 2x - 32/ + 22 - 1 = 0. 6. 3x + 22/ - 2 - 4 = 0.

7. X - 22/ ± 22 - 15 = 0. 8. 6x - 32/ + 2 - 2 = 0.

9. X + 22/ - 22 - 6 = 0, 91x - 1222/ + 462 - 318 = 0.

10. 3x -
2/
- 42 - 1 = 0. 11. X + 2/ + 2 - 3 = 0.

12. 3x - 42/ + 22 - 4 = 0. 13. x - 22/ + 2 - 1 = 0.

14. 3x - 42/ + 42 - 16 = 0. 15. 32/ - 42 + 5 = 0.

16. 3x - 42/ + 22 + 29 = 0. 17. f

.

18. 56^ 15' or 123° 45'. 19. 48° 11' or 131° 49'.

20. 67° 7' or 112° 53'.

21. 5x - 112/ - 82 + 14 = 0, 23x + 25y - 20z - 28 = 0.

22. X - 22/ - 22 + 5 = 0, 4x + 2/ + 2 - 7 = 0.

23. X + 22/ - 52 - 5 = 0, llx - 82/ - 2 - 13 = 0.

24. ±6. 25. (2, -1, 2). 26. 31° 1', 64° 37', 73° 24'.

27. 16° 36', 25° 23', 58° 59'.



340 ANALYTIC GEOMETRY

Pages 301-303. Art 241.

1. (1, 1, 0), (2, 0, -3), (0, 2, 3).

2. (2, -3, 0), (8, 0, -3), (0, -4, 1).

3. (3, -2,0), (1,0, -1), (0,1, -f).
4. (-f,l, 0), (-1,0,3), (0,2, -2).

6. (1, i, 0), (2,0,1), (0,1, -1).

6. (1) x + y -2 =0,Sx + z ~3 = 0.

(2) X -2y - S = 0,x j-2z - 2 = 0,

7. (3) re + y - 1 = 0, 2/ + 22 + 2 = 0.

(4) 2x - 2/ + 2 = 0, 51/ + 22 - 6 = 0.

8 m ^ _ y -2 _ z-S

^^^2""~i =n'

^^^ "2" ~^ ~ "T~'

^^ 1 2 -5
*

9. 11a; + 52/ - 3 = 0, 3x - 52 + 11 = 0.

10. 2x + 52/ - 1 = 0, 2x - 52 + 14 = 0.

11. X - 2 = 0, 2/ + 22 + 5 = 0.

12. X - 2 = 0, 2/
- 5 = 0.

13. a; + 32/ + 8 = 0, 2a: - 32 + 10 = 0.

14. a; - 3 = 0, 2/ + 1 = 0. 16. 2 - 2 = 0, x + 3?/ = 0.

16. a: + 2/
- 2 = 0, 3a; + 2 - 11 = 0.

17. 2a; + 2/
- 5 = 0, a; - 2 - 1 = 0.

18. 3a; - 22/ = 0, 2a; - 2 = 0. 19. J. 20. 0. 22. i -f, f.

23. a; - 2/ + 22 - 7 = 0. 24. 7x - 12y + z - U = 0.

25. a; + 2/ + 2 - 3 = 0. 26. 2a; - 2/ + 2 - 1 = 0.

27. 2a; -32/ -42 + 6=0. 28. "-±^ = ^' = ^^
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Abscissa, 13, 14

Algebra, formulas of, 2

Algebraic, equations, 154

hyperbolic type, 159, 197

parabolic type, 158, 195

Algebraic functions, 225

Amplitude, of function, 169

factor, 169

Analytic, geometry, 1

methods, 39

Anchor ring, 277

Angle of lag, 172

Angles, bisectors of, 70, 297

definition, 24

direction, 267

formed by lines, 24, 271

formed by planes, 295

tangent of, 27

vectorial, 30

Applications, of ellipse, 131

exponential functions, 164

hyperbola, 150

parabola, 113

straight line, 79

Arch, parabolic, 113

elliptic, 131

Areas, by integration, 247, 252,

254, 259

of polygon, 38

of triangle, 36

Asymptotes, 139

Axes, coordinate, 12, 261

polar, 30

rotation of, 34

translation of, 33

Axis, conjugate of hyperbola, 137

major, of ellipse, 120

minor, of ellipse, 120

of parabola, 102

of symmetry, 50

transverse, of hyperbola, 137

B

Bisector, of angles formed by lines,

70

of angles formed by planes,

297

Boyle's law, 150

Cardioid, 185, 187

Cassinian oval, 163

Catenary, 167

Circle, equation, 86, 87, 96, 279
imaginary, 87

locus problems, 94

point or null, 87

radical axis, 94

satisfying three conditions, 88

systems, 92

Cissoid of Diodes, 160

Concavity, 236, 239

Conchoid of Nicomedes, 162

Condition second degree equation

represents two straight

lines, 77

Conditions for locus, 45

Cone, 290

Confocal ellipses, 132

341
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Conic sections, 98

Conicoids, 284

Conies, definition of, 99

degenerate, 157

diameters of, 210, 214

directrix of, 99

eccentricity of, 99

focus of, 99

Conjugate, axis of hyperbola, 137

diameters, 212, 213

hyperbolas, 141

Continuous functions, 235

Coordinates, axes of, 12

cartesian, 12

oblique cartesian, 15

origin of, 9

polar, 12, 29, 269

rectangular in plane, 13

rectangular in space, 261

relation between, 32

spherical, 270

transformation of, 33

Constants, 44

arbitrary, 53

Construction of, ellipse, 129

hyperbola, 148

parabola, 112

Curves, concavity of, 236, 239

cycle of, 169

empirical, 188

falling, 236

in space, 278

maximum point of, 235, 237

minimum point of, 235, 237

normal to, 223

periodic, 168

points of inflection, 236, 239

probability, 199

projection of, 280

proper sine, 168

properties of, 235

rising, 236

Curves, sine, 167

slope of, 222

tangent to, 222

Cycle of curve, 169

Cycloid, 182

Cylindrical surfaces, 274

D

Degenerate forms of conies, 157

Derivatives, 222

of algebraic functions, 226

of exponential functions, 254

of logarithmic functions, 254

of trigonometric functions,

250

Descartes, 1

Diameters, conjugate, 212, 213

length, 212, 213

of conic, 210

of ellipse, 210

of hyperbola, 213

of parabola, 213

Differential triangle, 245

Differentials, 242

definition of, 243

Differentiation, 225

fundamental method, 225

of implicit functions, 233

Direction angles, 267

cosines, 267

Directrices of, conic, 99

ellipse, 117, 120

hyperbola, 134, 137

parabola, 100

Discriminant, 2

Discussion of equations, 48, 174,

282

Distance, between two points, 17,

19, 263

from point to line, 68

from point to plane, 296
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Division, external, 19

internal, 19

of line segment, 19, 23, 264

Eccentricity of, conic, 99

ellipse, 100, 118

hyperbola, 100, 135

parabola, 100

Ellipse, applications, 131

center, 120

conjugate diameters, 212

definition, 100, 117

diameters, 210

directrix, 117, 120

eccentricity, 100, 118

equation, 118, 121, 124, 129

equation of tangent to, 234

focus, 117, 120

general equation, 128, 155

imaginary, 123

latus rectum, 120

major axis, 120

minor axis, 120

point, 123

sum of focal distances con-

stant, 130

vertices, 120

Ellipsoid, 284

Elliptic paraboloid, 288

Empirical curves, 188

Epicycloid, 185

Equations, algebraic, 154

discussion of, 48, 174, 282

exponential, 163

exponential type, 197

general, of second degree, 87,

106, 124, 144, 154

graph of, 46

hyperbolic type, 159, 197

linear, 65, 19)

Equations, locus of, 45

logarithmic, 165

of circle, 86, 87. 96

of curves in space, 278

of ellipse, 118, 121, 124, 129

of hyperbola, 135, 138, 142,

143, 144, 147

of line, 59, 62, 63, 64, 65, 78

of parabola, 100, 102, 104, 111

parabolic type, 158, 195

parametric, 180

plotting, 46

polar, 175

transcendental, 154, 163

trigonometric, 167

Exponential, equations, 163

type, 197

Extent, 51

Focus of, conic, 99

ellipse, 117, 120

hyperbola, 134, 137

parabola, 100

Formulas, algebraic, 2

differentiation, 230, 252, 255

integration, 248, 253, 258

logarithmic, 2

summary of, 303

-trigonometric, 3

Frequency, 172

Functions, 216

algebraic, 225

amplitude of, 169

continuous, 235

decreasing, 236

explicit, 218

implicit, 218

increasing, 236

maximum value, 235

minimum value, 236
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Functions, of variables, 44

period of, 169

periodic, 168

quadratic, 107

single-valued, 235

trigonometric, 7

G

Graph of equation, 46

H

Harmonic, conjugates, 206

motion, 170

ratio, 206

Higher plane curves, 154

Hooke's law, 80, 193

Hyperbola, applications, 150

asymptotes, 139

, center, 137

conjugate, 141

conjugate axis, 137

conjugate diameters, 213

definition, 100, 134

difference between focal dis-

tances constant, 148

directrix, 134, 137

eccentricity, 100, 135

equation, 135, 138, 143, 147

equation of tangent to, 234

equilateral, 142, 150

focus, 134, 137

general equation, 146, 155

latus rectum, 137

principal axis, 137

rectangular, 142

transverse axis, 137

vertices, 137

Hyperbolic, paraboloid, 289

type, 159, 197

Hyperboloids, 285

Hypocycloid, 183

Imaginary, circle, 87
ellipse, 123

number, 47

Inclination of line, 25

Increments, 216

Infinite, variable becomes, 221

Initial line, 30

Integral, indefinite, 247

Integration, 246

constant of, 247

formulas, 248, 253, 258

methods of, 248

Intercepts, 49, 283

Involute of circle, 186

Latus rectum of, ellipse, 120

hyperbola, 137

parabola, 102

Least squares, 193

Lemniscate, 163

Limagons of Pascal, 179

Limits, 220

theorems of, 221

Linear equations, 65, 191

Lines, applications, 79

directed, 8

direction cosines, 267

general equation, 65

inclination, 25

initial, 30

in polar coordinates, 78

in space, 298

intercept equation, 63

normal equation, 64

parallel, 27

perpendicular, 27

point direction equation, 299

point slope equation, 59
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Lines, polar equation, 78

projection equation, 298

slope, 25, 65

slope intercept equation, 61

systems, 71

two point equation, 62, 300

Line segment, 9

addition and subtraction of,

10, 11

division of, 19, 23, 264

magnitude of, 9

numerical value of, 9

projection of, 266

value of, 9, 16

Lituus, 180

Loci, algebraic, 154

composite, 53, 77

in space, 274

of equations, 45, 55

of points, 45

of polar equations, 175

through intersection of loci,

75

transcendental, 154

Logarithmic, equations, 165

paper, 200

Logarithms, formulas of, 2

M

Major axis of ellipse, 120

Maximum, 235, 237

test of, 238

Method of least squares, 193

Minimum, 235, 237

test of, 238

Minor axis of ellipse, 120

N

Newton's law of cooling, 167

Normals, 223, 292

Null circle, 87

Number, imaginary, 47

O

Oblate spheroid, 285

Oblique coordinates, 15

Ordinate, 13, 14

Origin of coordinates, 9, 29

Orthogonal projection, 266

Parabola, applications, 113

axis, 102

construction, 112

cubical, 158

definition, 100

diameters, 213

directrix, 100

eccentricity, 100

equation, 100, 102, 104, 111

equation of tangent to, 234

focus, 100

general equation, 109, 155

latus rectum, 102

semi cubical, 158

vertex, 102

Parabolic type, 158, 195

Paraboloids, 288

Parameter, 180

Period of function, 169

Periodic, curve, 168

function, 168

Periodicity factor, 169

Phase angle, 174

Planes, angle between, 295

determinant equation , 292

equations, 292

general equation, 292

in space, 292

intercept equation, 294
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Planes, normal equation, 293

normal to, 292

parallel to axes, 274

Point, circle, 87

ellipse, 123

imaginary, 47
initial, 8

locus of, 45

of inflection, 239

polar coordinates of, 12, 29,

269

rectangular coordinates of, 12,

261

spherical coordinates of, 270

terminal, 8

Polar, coordinates, 12, 29, 174^ 269

equation of circle, 96

equation of ellipse, 129

equation of hyperbola, 147

equation of line, 78

equation of parabola. 111

Pole, definition, 29

Poles and polars, 206

properties of, 209

Powers of e, 5

Probability curve, 199

Projectile, path of, 114

Projection, orthogonal, 266

of curves, 280

Prolate spheroid, 285

Proper sine curve, 168

Quadratic function, 107

Quadric surfaces, 284

R

Radical axis, 94

Radius vector, 30

Rectangular system, 13

Reflector, 115

Revolution, surfaces of, 276

Rotation of axes, 34, 109, 127, 156

formula for, 155

Ruled surfaces, 286, 290, 291

Simple harmonic motion, 170

Sine curve, 168

Slope, definition, 25

formula for, 25

Spheres, 276

Spherical coordinates, 270

Spheroids, 285

Spirals, 178

Archimedes, 179

center of, 178

hyperbolic, 179

logarithmic, 178

parabolic, 179

Supplemental chords, 215

Surfaces, 274

cylindrical, 274

equations of, 274

of revolution, 276

quadric, 284

ruled, 286, 290, 291

sections of, 279

trace, 279

Symmetry, 49, 175, 177, 282

algebraic properties, 50

axis of, 50

center of, 49

Tables, e* and e~*, 5

of logarithms, 308

of trigonometric functions,310

Tangents, 223

equations of, to conies, 234

Torus, 277
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Trace of surfaces, 279, 283

Transcendental equations, 154, 163

Transformation of coordinates, 33

Translation of axes, 33, 107, 123,

143, 157

Transverse axis of hyperbola, 137

• Triangle, area of, 36, 39

center of gravity, 40

Trigonometric equations, 167

Trigonometry, formulas of, 3

functions of, 7

Trocoids, 183

Trumpet, 180

U

Value of line segment, 9, 16

Variables, 44, 216

become infinite, 221

dependant, 46

functions of, 44

independant, 46

Vectorial angles, 30

Vertices of, ellipse, 120

hyperbola, 137

parabola, 102

W

Uniform circular motion, 170 Witch of Agnesi, 162
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