INVESTLGATIONS OF A TUNABLE
RADIO FRFQUENCY RC BANDPASS FILTER
WHLHAM M. GHAVER
U.S. NAVAL POSTGRADUATE SCHOOL

MONTEREY CALI:ORNIA

INVESTIGATIONS OF A TUNABLE
 RADIO FREQUENCY
 RC BANDPASS FILTER

WILLIAM M。 SHAVER

INVESTIGATIONS UF A TUNABLE
 RADIO FREQUENGY

RC BANDPASS FILTER

by
William M. Shaver
//
Lieutenant Commander, United States Navy

Submitted in partial fulfillment of
the requiremente for the degree of
MASTER OF SCIENCE
IN
ENGINEERING ELECTRONICS

United States Naval Postgraduate School
Monterey, California
1963

$$
103
$$

nas)er, ul.INVESTIGATIONS OF A TUNABLERADIO FREQUENCYRC BANDPASS FILTER
by
William M. Shaver
This work is accepted as fulfilling
the thesis requirements for the degree of
MASTER OF SCIENCE
IN
ENGINEERING ELECTRONICS
from the
United States Naval Postgraduate School

ABSTRACT

The principles of operation of commutated filters have been known for sometime, however, very little work has been done in the development of these devices, particularly at radio frequencies. It would appear that this device might be useful in the current industry trend toward micro-miniaturization. The theory of operation of a commutated RC bandpass filter is discussed and a complete mathematical derivation is presented. Operating data on a completes solid state radio frequency filter is given and extensively discussed. Finally a new and different type of commutated filter employing the recently developed madistor is proposed.

The writer wishes to express his appreciation for the assistance and encouragement given him by Professors Clarence F. Klamm, Jros Paul E. Cooper and William M. Bauer, of the United States Naval Postgraduate School and to Mr. Robert Anderson of the Office of Naval Research at the United States Naval Postgraduate School.

TABLE OF CONTENTS

Section Title Page

1. Introduction 1
2. The Sampled Data Bandpass Filter 3
2-1 Low Pass Filter 3
2-2 Synthesis of the Bandpass Filter 4
203 General Coments on the Filter Characteristics 7
3. A Practical Solid State RC Filter 10
3-1 Switch Considerations 10
3-2 Operation of the Digital Switch 10
3-3 Discussion of Results Obtained from Operation of the Digital Switch 13
4. An Alternate Approach with the Madistor 23
401 The Madistor 23
4-2 Employing the Madistor as a Stepping Switch 25
403 Discussion and Sumary of Madistor-Filter 27
5. General Discussion Conclusion and Recommendations 28
6. Bibliography 30
7. Appendix A 31
8. Appendix B 39

LIST OF ILLUSTRATIONS

Figure2-1 Low Pass Filter3
2-2 Frequency Response 3
203 Translation of Low Pass Response 4
$2-4$ Schematic of Switching Commatator 5
2-5 Depiction of Sampling Pulses 6
2-6 Sketch of Transfer Function $H\left(f_{c}\right)$ 8
3-1 Block Diagram for Digital Switch 11
3-2 Relationship of Switching Waveforms along with Schematic of One of Four Identical Bridgee 11
303 Switching Sequence of Bridges 13
3-4 Switching Sequence Showing Defective Switching Action 24
3-5 Filter Response 19
3-6 Filter Response 20
$3-7$ Filter Response 21
$3=8$ Filter Response 22
4-1 Schematic of the Madistor Stepping Switch 23
$4-2$ Proposed Method of Operating Madistor as a Bandpass Filter 25
403 AC Equivalent Circuit of Madistor - Bandpass Filter 26
A-1 Commutated Filter 3chematic 31
$A=2$ RC Charging Circuit 32
A-3 Time Quantized Sine Wave 34
A -4 Transfer Function Plot 38

LIST OF ILLUSTRATIONS (Cont。 ${ }^{\circ} \mathrm{d}_{\circ}$)

Figure Page
B-1 Schmitt Trigger 40
$\mathrm{B}-2 \quad \mathrm{Flip}-\mathrm{Fl}$ op \#1 40
B-3 "AND" Gate 42
B-4 Flip-Flop \#2 41
$B=5 \quad$ Typical Isolation Amplifier with Switch 42
$\mathrm{B}=6 \quad$ Overall Connection Procedure for All Bridgea 42
B-7 Mixer Circuit Used to Measure Frequency Responses in the Vicinity of Resonant Beaks 43
B $\propto 8$ Scope Photos of Various Circuit Waveforms 44
Bo9 Scope Shotos of Various Circuit Waveforme 45

1．Introduction．
A current trend in electronic circuitry ia toward smaller and smaller components．New developments in microccircuitry are being continually announced．Just about every type of circuit component can be packaged in a very small spacs．In fact，one of the real problems at present seems to be the attachment of sxternal leada to these micro－circuite．

However，there is one important circuit component which so fas has escaped all attempts at microminiaturization and that is the inc ductor．Without the inductor，circuits auch as bandpass filters axe exceedingly difficult to designo

The theory of commutated filters is well understood and a number of people have investigated commutated filter characteristica at audio frequencies $/ 4 / / 6 /$ and one team $/ 2 /$ has reported on results at a center frequency of about 100 KC 。 RASER $\mathrm{R}^{/ 1 /}$ has suggested the possibility of employing the comutated filter in the radio frequency range for IF filters etc。

The purpose of this paper is to report on inve日tigations made with the RC sampled＝data filter in the 10 and medium radio frequency range．Recommendations are made concerning the feasibility of this filter for $r \times f$ applications and the possibilities of adapting it for micro－miniature circuits。

The next section lays the basis for the theory of commutated filters and the mathematical derivation is completed in Appendix A。 Following this，the design of a practical solid state filter is set forth．The circuit details appear in Appendix Bo

The fourth section describes a proposed circuit for a commutated filter employing a new solid state switching devices the MADISTOR/5/. Finally, recommendations and conclusions are made concerning the \mathfrak{y} - \mathbf{I}^{\prime} applications of the sampled-data filtes.

2. The Sampled-Data Bandpass Filter.

This section develops the theory of the ampled-data bandpass filter. The low pass filter is briefly discussed and this is logically evolved into the bandpass filter. The complete mathematical developmont, largely as set forth by LePage et al /3/ is contained in Appendix Ad

$2-1$ A Low Pass Filter.

The first step in the synthesis of the bandpass filter is to start with the well known RC low pass filter as in Fig. ($2-1$).

LOW PASS FILTER
Fig (2-1)

FREQUENCY RESPONSE
Fig. (2-2)

The transfer function of this low pass filter $G(j \omega)$ iss

$$
G(j \omega)=\frac{V_{2}}{V_{1}}=1 \frac{2}{R / R_{L} j \omega R C}
$$

If $R_{L} \gg R_{\circ} G(j \omega) \cong \frac{1}{1+j \omega R C}$
Then $G(0)=1$ and $G(\infty)=0$. The curve is sketched in Fig。 (2-2).
The bandpass limit of this low pass filter may be defined wheres

$$
|G(j \omega)|=\frac{G(j \omega)_{\max }}{\sqrt{2}}
$$

Now, $G(j \omega)=\frac{1}{R C} \times\left[\frac{1}{\left(\frac{1}{R C} j \omega\right)}\right]$ so, $\omega_{2}=\frac{1}{R C}$ at the upper

limit of the pasaband or $\mathfrak{f}_{2} \approx \frac{1}{2 \pi R C}$. The upper frequency limat ory as is common the turn-over frequency, can be establishod at any value desired by appropriate selection of R and C 。

2-2 Syntheris Of a Bandpass Filtet.
It is not difficult to show that sampling an appropriate low pass RC filter at a certain sampling rate (f_{C}) sesults in transo lation in frequency of the filter response to a higher frequency. See Appendix A and /8/2 /2/, 13/2 /4/ and /6/0

Another way of stating this is to consider the low pass filter a. a bandpass filter whose center frequency ia at zero Copo. This center frequency may then be translated to any higher frequency which is determined solely by the sampling rate $\left(f_{C}\right)$ See Fig. (2-3).

TRANSLATION OF LOW PASS RESPONSE
Fig. (2-3)
This type filter is variously called a synchronous, sampled-data, or digital filter, and may be depicted schematically as a synchronous rotating commutator, as in Fig。 (2-4).

SOHEMATIC OF SWITCHING COMMUTATOR
Fig. (2-4)
Thu*s the commatar rotates at synchronous apeed, grounding in turn each of the capacitors momentarily. If the commutator revolves at frequency f_{c} then the center frequency of the pass band is continuously variable from zero cycles per second up to the highest practicable apeed of rotation of the mechanism.

One way of approaching the problem/4/ is to consider the unit impulse response of the seriea RC circuit. If $G(j \omega)=\frac{1}{R C} \frac{1}{\left(j \omega+\frac{1}{R C}\right)}$ then the unit impulse response is $g(t)=\frac{1}{R C} e^{-t / R C}$ The rotating commutator can be thought of as a rectangular sampling pulse applied to the RC circuit every time the moring contact of the commutator touchea each individual egment. If we assume each segment is pery close to ite neighbcr and that there are N auch eegments equally distributed around the circumferences then one complste revolution of the mowing "brush" would produce exactly N contiguous rectangular pulses. Each of theae will be referred to as $\varepsilon_{1}(t)_{9} s_{2}(t) \ldots s_{N}\left(t_{0}\right)$. So $S(t)=\sum_{n=1}^{N} s_{n}(t)$, where $g_{1}(t)=e(t)$

$$
s_{2}(t) \approx s(t-\tau)
$$

$$
\begin{gathered}
s_{3}(t)=g(t-2 \tau) \\
0 \\
\vdots \\
s_{N}(t)=s(t-(N-1) \tau)
\end{gathered}
$$

See Fig (2-5).
Where = width of each pulse,

$$
\text { and } \begin{aligned}
g(t)=\frac{\pi}{T}\left[1+2 \sum_{n=1}^{\infty} \frac{\sin \frac{n \pi z}{T}}{\frac{n \pi \tau}{T}}\right. & \left.\cos \left(\omega_{n} t\right)\right] \\
\omega_{n} & =n \omega_{1} \\
\omega_{1} & =\frac{3 \pi}{T} \\
T & =\text { period of rotation }
\end{aligned}
$$

\tilde{c}_{8} the pulse width e is the time required for the moving arm to tran verse each segment.

$$
\text { So } T=N r=\frac{d}{f_{C}} \text { (no gaps between pulses). }
$$

DEPICTION OF SAMPLING PULSES

$$
\text { Fig. }(2.5)
$$

The overall impulse response g $h(t)$ is:

$$
\begin{aligned}
& h(t)=g(t) S(t) \\
& \quad=\frac{e^{-t / R C}}{2 R C} \frac{\tau}{T} \sum_{m=1}^{N}\left[1+2 \sum_{n=1}^{\infty} \frac{\sin \frac{R \pi}{T}}{\frac{n \pi \tau}{T}} \cos \omega_{n}\{t-\tau(m-1)\}\right]
\end{aligned}
$$

From Appendix A_{9} the transfer function $H(\omega T)$ da

$$
\left\lvert\, H\left(\omega t \left\lvert\,=\frac{1}{\left.\sqrt{1+\left(\frac{2 e^{-\gamma / 2 R C}}{1-e^{-2 / R C}}\left(\frac{\omega T}{2}\right)\right.}\right)^{2}}\right.\right.\right.
$$

Now in any conceivable practical rolf filter: RO》20. With this assumption:

$$
|H(\omega T)| \cong \frac{1}{\sqrt{1+\left(\frac{2 R C}{\tau} \sin \left(\frac{\omega T}{2}\right)\right)^{2}}}
$$

2-3 General Comments on Filter Characteristics.

The transfer function is accurately plotted as a function of frequency in Fig. (A-4) and is reaketched as a function of f_{C} in Fig. (2-6). Note that theoretically the response of the filter is periodic with f_{C} and the magnitude of the response is lat all integer g multiples of f_{c}

The band width of each resonant peak is identical and independent of the resonant frequency. It is a function only of the number of capacitors and the product of R and C 。

$$
B=\frac{1}{\pi N R O}
$$

The skirt selectivity is a function of the bandpass and the reasonnat frequency. The minimum response (in the rejection band) iss

$$
\left|H_{\min }\right|=\frac{x}{2 N R C}=\frac{\pi}{2} \frac{B}{f_{C}}
$$

It is significant that $\mathrm{H}_{\min }$ is associated with the narrowest pass bands and contrary wises a broad pass band results in very little rejection of unwanted frequencies between the resonant peaks.

In practice, the magnitude of higher harmonics of f_{C} may be appreciably reduced for reasons which will be discussed in a later section. If for any reason they should be troublesome, it would be no problem to attenuate them through a simple low pass filter across the output.

SKETCH OF TRANSFER FUNCTION $H\left(f_{c}\right)$
Fig。 (2-6)
It is possible a higher harmonic of f_{C} might be desired. In such a case, a very broad band pass filter in series with the output would select the desired resonant response。

As an example of reasonable numbers which might be expecteds
If $\mathrm{N}=8$
$R=100 K \quad B=\frac{1}{8 \pi \times 105 \times 10^{-9}}=\frac{10 \mathrm{kc}}{8 \pi} \cong 400 \mathrm{cps}$.
$C \neq 1000 \mathrm{pf}$
Now if $f_{C} \cong 400 \mathrm{kc}, Q_{\text {eff }}-\frac{400 \mathrm{kc}}{400 \mathrm{cps}}=1000$,
a fairly large value. In practice, Q could be made almost as large ag desired.

While this device is shown as a rotating mechanical commutators the sampling method will, of necessity, be by electronic means in order to obtain a filter useful in the rof apectrum. One method which has been tried at audio frequencies $/ 4 / / 6 /$ and at low $r \sim f$ frew quencies $/ 2 /$ is to employ diode bridges as sampling devices to awitch from one capacitor to another. Such a device was designed and built by the author, following a block diagram and the general procedurs described
by FRANKs and WITT $/ 2 /$. This is the subject of the next section. An alternate solid state sampling method (untested by the authos)
is then proposed in section 4.

3. A Practical Solid State RC Filtex.

3-1 Switch Considerations.

In order to make direct measurements of an operating RC filtes in the radio frequency spectrume complete solid atate commating awitch was built. For reasons which will becae epparent latex, certain parts of the switch could better be built with consentional electron tubes. However transistors and semi-conductor diodes were utilized with the expectation that these circuita could eventually be miniaturized and integrated on to one common substrate. Thus, it might be possible to reduce an entire tunable band pasa filter to a very emall size. Such a circuit would have no inductors and no tuning capacitora. The assembly could be poltage tuned or synchsonized to an external frequency source.

3-2 Operation of the Digital Switch.
Franks et al $/ 2 / 6 /$ have operated digital switches in the high audio and low rof range. The set up of the author s switch follows a block diagram published by Franks ${ }^{/ 2 /}$. Fig. (3-1) presents this arsangeo ment and is taken directly from the referenced article. The circuit operates from any periodic waveform which will fire the schmitt trigger. The square wave output then driven two filpoficpes one of them through a gate so that only alternate pulses trigger the second flipoflop. Thus, the output waveforms are symmetrical equare waves at one half and one quarter of the original input frequency. The relationskip of these switching waves is shown in Fig. $(3-2)^{/ 2 /}$ also shown is how the wave forms combine in one of the four bridges to form a pseudo-rotating switch or sampling function.

BLOGK DIAGRAM FOR DIGITAL SWITCH /2/

RELATIONSHIP OF SWITCHING WAVEFORM ALONG WITH SCHEMATIC OF ONE OF FOUR: IDENTICAL BRIDGES

From inspection of Fig. (3-2), it is obvious the bridge forms a balanced diode modulator. With no inpute on any of the terminals, the two bias batteries ${ }_{9}+V_{1}$ and $-V_{2}$ will force current through the bridge, causing all four diodes $(1,2,3,4)$ to conduct and appear as a few ohms of resistance. Thus, the bridge can be replaced by a amall resiator of less than 100 ohms, effectively grounding the capacitor connected at the top. When either of the switching waveform is negative on the left side and positive on the right aides the series connecting diodes (5 or 6 and 7 or 8) act as " $O R^{\prime \prime}$ gates and current flow through the gate diodes instead of the bridge diodes. Dicdes (2 and 3) and (1 and 4) disconnect and the bridge "zwiteh" is turned off. Examination of the waveforms in Fig。 (3-2) reveals A or B are negative three out of the four periods of the cycle. Similarly, A^{0} or B^{0} are concurrently positive for the same three out of four in tervals of the cycle. So, it is evident the batteries are permitted to turn "on" the switch one pulse out of every four periods.

By making connections as shown in Appendix B_{8} different combic nations of the waves A, B, A^{\prime} and B^{0} are applied to the terminals of the four bridges. Thus, each bridge conducts at a different tine ins 2 sequence. This sequence is ahown in Fig. (3-3) which is also the same as in Fig. (2 ω) . So all of the conditions are satiafied for a cormutating switch as described in section 2. This switch is slightly defective in that the "ON" resistance is a little less than 100 ohms, but this has only a very slight effect on the total operation of the device.

A more serious defect with this switch is the problem of synchsoo nizing the four switching waveforms precisely so that the leading and trailing edges of the waves in Fig. $(3-2)$ are exactly aligned.

Fig. (3-3)
$3-3$ Discussion of Results Obtained from Operation of the Digital switcho
The most serious operating problem with the filter is in supplying the driving power to the diode bridges. These bridges reflect a very heary load back through the isolation amplifier to the flipoflop circuits. gate and schmitt trigger. To supply power, the flipoflope were operated in a saturated condition. In addition to causing wapeform distortiong. the problem of transistor turn off or storage time was encountered. Fig. (3-4), taken from scope photos, shows how a spurious "ON" pulse appears in the output. This spurious. "ON" pulse appeare in the output as noise. Additionally, all of the various diodes contribute to the overall noise level in the output.

As can be seen from the output curves, probably the most serious defect of the digital switch at radio frequencies is the high noise level. The output noise represente approximately a constant 70-90 millivolts yms of voltage, almost entirely of a pulse natures as can be seen from the pictures in Appendix B, Fig. $(B-8)$ and ($B-9$).

Waveform＂B＂ applied to diode bridge．Note trans＂＂B＂ istor storage time ＂t_{g}＂。

> Waveform "A" applied to diode "A" bridge．

Switching waveform at output of diode bridge．Compare with desired $s_{1}(t)$ in Fig。（3－3）。

SWITCHING SEQUENCE SHOWING DEFECTIVE SWITCHING ACTION Fig．（3－4）

The only solution to the noise problem appeara to be to provide more isolation between the flip－flops and the switch bridgee．The flipaflops must operate at low level and be nonasaturated in order to maintain precise pulse alignment．

The price for doing this is probably to double the number of transistors．At this point it becomes apparent that the ultimate goal of reducing the circuit size is being traded off in order to achieve reasonable noise figures．

Of course this type of noise problem is of very minor importance at audio or very low radio frequencies．Only as one increases f_{C} to the low and medium radio frequency band，does the noise problem get serious．The digital filter just deacribed was operated at frequencies up to 250 KC with meter－measured tranafer response out to 2 MC and ob－ servable oscilloscope response out to 10 MC ．

Fig. (3-5) show a typical filter reaponse. For this plot, $R=10 \mathrm{~K}, C \equiv .01 \mu \mathrm{f}$. All harmonics of $\mathrm{f}_{\mathrm{C}}(250 \mathrm{KC})$ were detectable out to the 40th harronic (IOMC) although above 2 MC the response was very slight. It was not measurable on the meter, but was seadily detected on the oscilloscope. The theory predicts all responses to be of equal magnitude, however, as can be seen from the figure, in general each harmonic is diminished from the previous one Thas anomaly is accounted for with the following reasoning:

1. The mathematical derivation is only approximate in that it assumes N large. In this case $\mathrm{N}=4$, a very small number.
2. RC was continually assumed to be much larger than the saraple period. In this case $\frac{R C}{\tau}=25$. The range of $\frac{R C}{\tau^{\circ}}$ sor the circuita atudied varied from a low of 2.5 to a high of 1250 . In the case of the formero the circuit worked so poorly that the fundamental frequency ($f_{c}=250 \mathrm{kC}$) was barely detectable in the output. In the case of the latter, a very sharp response was observed. Values of RC employed weres

10, 20, 100, 200, 500, 1000 and 5000 microeseconda.
In all cases except the one mentioned above, the response at 250 KCs was prominent and would be quite usable.
3. The bridge diodes are not ideal switches since they represent about 100Ω in series with the capacitor being switched, and ground. At frequencies greater than about $16 \mathrm{KC}_{3}$ the residual resistance of the bridge is equal to or greater than the reactance of a $0.2 \mu f$ capacitor

Note in Fig. (3.5) that alternate harmonics of f_{c} are lazger than the intermediate ones. $(f=.5,1,1.5,2,2.5=-$ MCS) . The reason for this is the following:

Due to the extremely narrow nature of all the pass bands, a amall
amount of the signal frequency was coupled into the input of the ewitch oscillator，thus in effect synchronizing it with the signal．This procedure was necessary due to the poor stability of the oscillators and signal generators employed initially．The switch oscillator synched easier to ．5，1， $1.5-$ MCS than it did to $.75,1.25,1.75=$ MCS。 The signal rejection between resonant reaponses was not nearly as good as expected．A maximum of 20 db rejection waa observed when the theoretical rejection should be 46 db （for RC © 。lms）．Again，the defective switching waveform accounts for most of this．It was easily observable on the oscilloscope．The input signal was permitted to ＂leak＂through the filter because of the spurious＂on＂pulae：as shown in Figs．$(3-4)$ and $(B-9)$ ．This pulse permitted a constant amount （about 20 db ）of input voltage to pass through the filter，thua limito ing the maximum rejection attainable。

Notice that the high noise level at about -20 db also tended to mask low level signal measurements．This noise is a combination of apurious switching and diode noise。（see photographs in Fig．（9－B）no45）。

Due to the extremely narrow nature of the pass bandas a method had to be devised to measure deviations of as few as 2 or 3 cyclea away from f_{c} ．This was accomplished by synchronizing the switch filter to the PoG．School 100 KC high stability frequency standard and applying a signal generated from a General Radio 1330 A bridge oscillator，These two frequencies were then mixed in a transistor chopper and the differo ence frequencies were eparated and measured with a Hewlet Packard $5008 R$ frequency meter．Using this method the sides and peake of a frequency reaponee were examined in great detail．See Figs．$(3-6),(3-7)$ and（3－8）．

Fig．（3－6）shows a response for $R C=100$ micro－seconds．（The same

time constant as in Fig。 (3-5).)
Fig. (3-7) shows a response for RC $=1000$ micromeconds. The response is shown both expanded and compressed.

Fig. (3-8) shows the same ($R C=1000$ microseconds) time constant. This figure is normalized with respect to $Q_{0} \delta$ as is commonly done. ${ }^{1}$ In this case Q_{0} was assumed to be $\frac{f_{0}}{B}=\frac{100 \mathrm{KC}}{540}=185$. On the same graph is plotted a portion of a universal resonance curve from GRAY。 It is noted the RC filter is very slightly narrower at the peak and has more rejection for values of $Q_{0} \delta>1.0$, at least out to $Q_{0} \delta=4.0$. The initial slope of the sides of the RC filter sense are very nearly linear.

Another difference detected between theory and practice is the measured band widths. Again, this is accounted for by the approxic mately 20 db of spurious signal which was "leaking through" the filter. A comparison of observed and predicted band widthe followa:

$\mathrm{RC}(\mu \mathrm{sec})$	$\mathrm{B}(\mathrm{pred})$	$\mathrm{B}(\mathrm{obs})$
20	4 KC	18 KC
100	800	2 KC
1000	80	540
5000	16	Too narrow to measure

In suxamary, the greatest defects of the solid state commutated filter are the spurious signals and the high noise level.

The spurious signals are a result of the delayed switching aignals from operating the flipoflops saturated. The noise comes from both this source and also the diode noise. The correction for the defect is to operate the flipoflops at very low level and provide maximum isolation
${ }^{1}$ For instance, see: GRAY, Applied Electronics, 2nd Edition, John Wiley \& Sona, 1954, page. 551.

between the load and the flipoflops. (Ideally, by a unilateral device such as a cathode follower.) Simple transistor circuits do not appear to be readily capable of providing the required isolation. One very practical solution would be to use computer circuits and also computer cards for the circuite. This bringe up another point. The circuite herein described were all bread-boarded on "Vector" type boards and there was doubtless considerable stray capacitance, series lead inductance and undesirable inter-circuit coupling of the signal at the radio frequencies employed.

Another partial solution of the problem would be to provide low noise type diodes for each of the 32 diodes in the fous bridgea.
FILTER RESPONSE
VRRSUS
FREQUENCY
$f_{c}=250 \mathrm{KC}$
$R=10 \mathrm{~K} \quad$ RC $=.1 \mathrm{~ms}$
$C=.01 \mu \mathrm{H}$
$B=800 \mathrm{cps}$.

4. An alternate Approach with the MADISTOR.

4-1 The Madistor.
The madiator is a magnetically controlled semiconductor plama device. Various configurations of the madistor are described by MELNGAILIS and REDIKER/5/, but the one pertinent to this discusaion is the multiple based or stepping switch type madistor. See Fig. (401).

SCHEMATIC OF THE MADISTOR STEPPING SWITCH (FRQM /5/)
Fig. (4-1)
Briefly, this device (which operates at a temperature of about $77^{\circ} \mathrm{K}$) consists of an n^{+}contact alloyed to the center of a disk of petype Insb (Indium Antimonide) and any convenient number (N) of p^{+}ohmic contacts around the periphery of the disk. When sufficient current is impressed upon the conter contact (about 2 or 3 ma) an electron injection plasma forms and terminates at one of the output terminals. This injection plasma is atable and will remain indefinateo ly at some one output terminal unless it is moved by aome external force. Such a force can conveniently be applied to the plasma by a perpendicular magnetic field of very moderate magnitude.

The plasma may be stepped in discrete steps from one terminal to another by a pulsing magnetic field perpendicular to the diak, or if a stronger steady atate field is applied, the plasa will rotare continuously about the center contact. Minimur field atrengtha of the order of 0.5 gauss were required to switch the plasma from one output terminal to the adjacent one. (For comparison, the magnetic field of the Earth is about 0.6 gauss.) Field strengths stronger than the minimum switching field cause the plasma to rotate continuously, the rate of rotation being proportional to the magnitude of the magnetic field. Rotation speeds up to a maximum of about 170000 revolutions per second were reported with a developmental model of the madistor having $N=10$ ohmic contacts around the circumference. While 17 KC is definitely in the audio frequency range, it is felt this device is capable of development and consequent improvement of switching apeed into the radio frequency operating range.

The ontire madistor (including the coil required to produce the perpendicular magnetic field) is quite amall and is capable of being entirely mounted on a TO 5 transistor header. (0.25 inches in diameter).

Presumably it would be possible to place consecutive circuits in tandem (stack them) so that one magnetic field would penotrate all of the Insb substrates simultaneously. Concoivably the electron plasmas in each of the madistors could be made to rotate synchronouslys thus perhaps forming a series of identical band pass filters. This would have application as a radio receiver IF strip, or even as the front ond of a tuned rf receiver.

4-2 Employing the Madistor as a Stepping Switch.
The madistor requires a certain minimum current to establish the injection plasma. Therofore, in operation, the device should be biased with a steady dc current supplied by a high impedance constant current source. Such a device might be a pentode vacure tube or a transistor in the common base configuration.

One possible way of biasing the madistor, while at the same time superimposing the AC signal on it, might be as shown in Figo (4-2).

PROPOSED METHOD OF OPERATING MADISTOR AS A BANDPASS FILTER

$$
\text { Fig. }(4-2)
$$

Each of the $R_{B}^{\prime} s$ is large compared with X_{C} of its parallel capacitor and is adjusted to limit the bias plasma current through the madistos to 2 or 3 ma. Also, C_{C} is large compared with C so that $X_{C} \ll X_{C}$ at the signal frequency. R is part of the $R C$ required by the low pass filter which will determine the bandpass of the filter. $\left(B=\frac{1}{\text { NNRC }}\right)$.

Note that the C referred to here is not the same C as in the original.
low pass case. Recall that $f_{2}=B_{(l \text { ow pass })} \frac{1}{2 \pi R C}$
But ${ }^{B}$ (commutated) ${ }^{=}{ }^{\text {NC }}$ (commutated), So ${ }^{\text {Cow pass) }}{ }^{\text {(low }}$ (commutated)
or ${ }^{C}($ commutated $)=\frac{C(1 \text { ow pass) }}{N}$.
From the example on page $8,{ }^{C}$ (commutated) $=1000 \mathrm{pf}_{8} \mathrm{~N}=8$;
$\therefore{ }^{C}($ low pass $)={ }^{N C}($ commutated $)=8 * 1000 \mathrm{pf}=.008 \mu \mathrm{f}$ 。
So $f_{\text {(low pass) }} \cong 200 \mathrm{cps}$.
This corresponds to a pass band of 400 cps (200 cps either side of zero).
For a practical circuit, the output impedance of the transistor might be about $2 M \Omega$ and $R_{B} \tilde{E} 40 \mathrm{~K} \gg X_{C} \tilde{=} 400 \Omega$ at $f_{C}=400 \mathrm{KC}$
$\left.C_{C} \approx 0_{0} 1 \mu f\right\rangle \subset \approx .001 \mu f_{9}$ thus $X_{C} \ll X_{C}{ }^{\circ}$
So the approximate AC equivalent circuit would be as in Fig. ($4-3$) 。

AC EQUIVALENT CIRCUIT OF MADISTOR - BANDPASS FILTER
Fig. (4-3)
Thus, we have an Nesection electronic commutator. This then could be
the synchronous rotating device described earliere in Section $2 \mathrm{c} 2_{5}$ and would complete the tunable bandpas filter.

4-3 Discussion and Summery of Madistor-Filter.
Although presently limited to a maximum awitching frequency ins the high audio frequency spectrum, it is felt the madistor offers considerable promise in the field of commutated filtering. It should be possible in the course of normal development to increase the upper frequency limit of the device by one and peasibly by two orders of magnitude. If this could be accomplished, the broad field of radio frequency filters would be wide open for a really significant reduction in size of componentry.

Some features of the madistor operated RC filter ares

1. All parts of the circuit could be diffused on to a suitable substrate using rapid, accurate photographic techniques.
2. All components are compatible with current microminiatuxio zation techniques.
3. Although an external coil of wire is required, it is very small and possibly could be used to simultaneously commitate severag cascaded, identical bandpase filters.
4. The filter is tunable over a wide sange with no movable parts. Only the current through the small coil of wire need be varied. Thus, the selected frequency is voltage tunable.
5. Very high Q filters with resultant narrow pass bands are attainable。

5. General Discussion, Conclusion and Recommendationa.

Although there are a few difficult problems associated with the tunable RC bandpass filter, it has been demonetrated to be workable and useful in the radio frequency range. Situations in which this filter could be useful are:

1. Applications requiring a very narrow pass band at high frequencies (high effective Q).
2. Applications requiring a comb filter as in cortain corrslation filters.
3. Applications where an easily variable pass band is desired. (Replace the fixed R by a potentimetero)
4. Applications where an inductor is not desired or can not be tolerated.
5. Applications requiring voltage tuning.
6. Potentially this circuit can be very greatly reduced in sizes especially if the madistor filter described in Section 4 is utilized. (See summary of advantages of madistor filter at end of Section 4.)
7. It is conceivable this filter might bs applicable in the field of intermediate frequency amplifiers.

The disadvantages, while few in number, are very serioua:

1. Poor inter-band aignal rejection (caused by spurious awitching signal).
2. High diode noise level.
3. Complexity of balancing the diode balanced rodulators for minimum noise.
4. In the case of transistor digital switching ciscuite, very poor isolation between the output and the switching elementes also inexact alighent of the switching pulses, causing spuxious responses.

In general, the transistor switch appears to be somewhat limited in the rof range, but very suitable in the audio to low rof spectrum. The madistor seems to offer some hope in the future for development as a tunable bandpass filter.

There is still much work that can be done in this subject, particularly refinement of circuit details and packaging of componenta to reduce stray capacitance, series lead inductance and cross coupling between circuits.

It is hoped that this effort will be of assistance in further development of the RC bandpass filter.
Nent
(

BIBLIOGRAPHY

1．J．A．A。RAPER，Circuit Techniques and Microelectronics Syatema． Electronic Products，September 1962.

2．L。E．FRANKS and FoJ。WITT，Solid State Sampled－Data Bandpase Filters．Digest of Technical Papers， 1960 Solid State Circuite Conference，pp 70－71．

3．WoR。LePAGE，C。R。COHN and J．S．BROWN，Analysis of a Comb Filter Using Synchronously Comatated Capacitors．AIEE Trans． Part I，Vol．72，1953，pp 63－68．

4．BoD．SMITH，Analysis of Comutated Networks，IRE Trans．PGAE－10， pp $21-26$ 。

5．I。MELNGAILIS and RoH。 REDIKER，＂The Madistor－a Magnetically Controlled Semiconductor Plasma Devicel。 Proceedings of the IRE Vol．50，pp 2428－35，December 1962．

6．L．E．FRANKS and IoW．SANDBERG，An Alternative Approach to the Realization of Network Transfer Functions：The $N=$ Path Filter． Bell System Technical Journal，September 1960，pp 1321－50．

7．Mo SCHWARTZ，Information Transmission，Modulation，and Noiss． Chap．IV，McGraw－Hill Book CO．，New York，1959．

8．General Electric Transistor Manual，Sixth Edition 1962.
(

APPENDIX A

COMMUTATED FILTER THEORY

The development in this Appendix, including most of the notations largely follows that of LePAGE, COHN and BRONN/3/.

Definition of terms:
N \quad Number of capacitors.
τ \& Length of time brush is in contact with any one segment of the comutator.

T = Seriod of revolution of the brush around the comratator. $T=N \tau$ (segments are assumed to be contiguous).
$f_{C}=$ Frequency of commutation $\quad f_{C}=\frac{1}{T}$
p = Identifying index for each segment around the periphery of the commutator.
$k=$ Index for counting the number of revolutions from a reference time.

COMMUTATED FILTER SCHEMATIC
Fig. ($A-1$)
When the switch is placed in operation, all of the capacitors are assumed initially uncharged. At $t=O_{\text {a }}$ rotation etarta and, as each capacitor is grounded in turn, a small ourrent flows on to the plates, depositing a small charge. As k becomes large, the charge on the
capacitors approaches a steady value and thus the voltage on each capacitor approaches a constant valued (This assumes the applied voltage is a steady sinusoidal function.)

Now the charge on each capacitor will change by only a very small amount during each revolution (assuming $R C \gg$)。

Let $\theta_{p}(k)=$ voltage on capacitor (p) during revolution (k).
$\Delta \theta_{\mathrm{p}} \quad$ = change in capacitor voltage during the time τ in any one revolution.

So, $\theta_{p}($ final $)=\theta_{p}$ (initial) $\Delta \theta_{p}$ during the time $\overbrace{0}$

$$
\begin{aligned}
& \theta_{p}(\text { initial }) \triangleq \theta_{p}(k-1) \\
& \Theta_{p}(f i n a l) \triangleq \theta_{p}(k)
\end{aligned}
$$

From Fig. (A-2):

$$
\begin{array}{rlrl}
\Delta \theta_{p} & =E\left(1-\theta^{-t / A C}\right) & \text { Figs }(A-2) \\
& =E\left(1-\theta^{-\tau / R C}\right) \text { if the switch is closed for } \% \text { seconds. }
\end{array}
$$

Where $E=\left[e(p+k N) z-\theta_{p}(k-1)\right]$
E represents the change in applied voltage from the end of the previous ($k-1$) gt revolution to the beginning of current (k th) revoo lotion. Substituting:

$$
\begin{aligned}
\theta_{p}(k) & =\theta_{p}(k-1)+\Delta \theta_{p} \\
& =\theta_{p}(k-1)+\left[\theta(p+k N)^{r}-\theta_{p}(k-1)\right]\left(1-\theta^{-\tau / \Delta C}\right) \\
& =\theta[(p+k N) \tau]\left(1-\theta^{-\tau / \pi c}\right)+\theta_{p}(k-1) \theta^{-\tau / \nabla c}
\end{aligned}
$$

Similarly, for previous revolutions of the brush, $\theta_{p}(k-1)=e[(p+(k-1) N) \tau]\left[1-e^{-\tau / \pi c}\right]+\theta_{p}(k-2) e^{-\tau / x c}$ and $\theta_{\mathrm{p}}(\mathrm{k}-3)=\theta\left[(\mathrm{p}+(\mathrm{k}-2 N) \tau]\left[1-\theta^{-\gamma / R C}\right]+\theta_{\mathrm{p}}(\mathrm{k}-3) e^{-\tau / \theta_{0} C_{0}} \ldots\right.$

$$
\therefore \theta_{p}(k)=\theta[(p+k N) \tau]\left[1-\theta^{-\tau / R c}\right]+\theta^{-\tau / \Delta c}\left\{\theta \left[(p+(k-1) N z][1-\theta=\tau / R c]+\theta^{-\tau / R C} x\right.\right.
$$

$$
\{\theta[(p+(k-2) N) z](1-\theta \pi / r c) \circ \circ 0\}\}\} \cdots \cdots\}
$$

$$
=\sum_{r=0}^{k} e[(p+(k-r) N) \varepsilon] e^{-1 v z / R Q}(1-\theta-\tau / B C
$$

$$
=\left(1-e^{-\tau / r c}\right) \sum_{r=0}^{k} e[(p+(k-r) N) z] e^{-r \xi / g c}
$$

If the input is a sine wave; $\theta(t)=E$ init $=E e^{j \omega t}$
$\theta_{p}(k)=\left(1-e^{-\tau / R c}\right) \sum_{r=0}^{k} E e^{j \omega[(p t(k-r) N) r]} e^{\sim r r / R c}$
Now $(p \phi(k-r) N) \tau=N \tau\left[\frac{p}{N}+(k-r)\right] ;$ but $N \tau=\frac{1}{\sum c}$

$$
=T\left[\frac{p}{N}+(k-r)\right]: \quad \operatorname{let} \frac{p}{N}=\gamma
$$

Then $\theta_{p}(k)=\left(1-e^{-\tau / R C}\right) \sum_{r=0}^{k} E_{e}^{j \omega T(\gamma+k-r)} e^{-r \tau / B C}$

$$
\begin{aligned}
& =\left(1-\theta^{-\tau / R C}\right) E_{\theta}^{j \omega T(\gamma+k)} \sum_{\gamma=0}^{k} e^{-x(j \omega T+\tau / R C)} \\
& =E\left(1-\theta^{-\tau / R C}\right) e^{j \omega T(\gamma+k)} \sum_{Y=0}^{k} e^{-(\gamma / 8 C-j \omega t) r}
\end{aligned}
$$

But $\sum_{r=0}^{k} e^{-a r}=\frac{1-e^{-a(k+1)}}{1-\theta^{-a}}$ for k terms of a geometric series. So $\theta_{p}(k)=\frac{E\left(1-\theta^{-\tau / R C}\right) \theta^{j \omega T(\gamma+k)}\left(1-\theta^{-(\tau / B C \psi j \omega T)(k s 1)}\right)}{1-\theta^{-(\tau / R C+j \omega T)}}$, this
is the voltage on any capacitor (p) after the kith revolution.

Now in a practical filter $R C \geqslant$ ？by a factor of one to two ordera of magnitude，but as k gets very large：$\left[(k+1) \frac{\tau}{R C}\right]$
grows large。 As this term grows very large，$e^{-(\pi / \pi c+j \omega T)(k i)}$ approachss
zero，since the term $\left|\theta^{-j \omega T(k+1)}\right|=1$ 。
So，$\epsilon_{p}(k)=\frac{E\left(1-\theta^{-z / R C}\right) \theta^{j \omega T}(\gamma+k)}{1-\theta^{-(\tau / R C+j \omega T)}}=\frac{E\left(1-e^{-\xi / R C}\right) \sin [\omega T(\gamma+k)]}{1-\theta^{-(\gamma / R C+j \omega T)}}$
If $E_{0} \triangleq \frac{E\left(1-\theta^{-\tau / R c}\right)}{1-\theta^{-(\tau / B C+j \omega T)}}$ ，thens

$$
\theta_{p}(k)=E_{0} \sin \omega T(\gamma+k)=E_{0} \sin \omega \gamma(p \nsim N k)
$$

Now（ $p \& N k$ ）represents a discrete time function which advances in increments of \boldsymbol{z}_{9} the time between centers of the commutator segments． For example，if $N=4 ;(p+N k)=(p+4 k)$ starts at an initial position and advances one unit at a time $i e_{0},(p+4 k)=1,2,3,4,(1+4)_{9}$ $(2+4),(3+4),(4+4),(1+8)$ ，etco That is，p rangee from 1 to 4 and then k advances by one and p again ranges from 1 to 4 etc．As far as the output is concerned，the function can be replaced by：$\sum_{i=1}^{\infty} \omega$（j）。

$$
\text { So } e_{p}(k)=E_{0} \sin \left(\sum_{i=1}^{\infty} \omega \tau i\right) \text {; thus a sine wave input will } \operatorname{com} \theta \text { out }
$$

as a quantized sine wave。

TIME QUANTIZED SINE WAVE
Fig．$(A-3)$
approximation to the input sine wave. Alternately, passing the output wave through a low pass filter will eesentially restore the oritinal sine wave shape。

Therefore, the argument $\left(\sum_{i=1}^{00} \omega z i\right)$ approaches (wt)。
So $\theta_{0}(t) \cong E_{0} \sin (\omega t)_{,}$which is the same as the input with E replaced by $E_{0}{ }^{\circ}$
$\frac{\theta_{0}(t)}{\theta_{i n}(t)}=\frac{E_{0} \sin (\omega t)}{E \sin (\omega t)}=\frac{E_{0}}{E}=\frac{E\left(1-\theta^{-\tau / R c)}\right.}{\theta\left(1-e^{-(\tau / E c \leftrightarrow j \omega T)}\right)}$
the transfer function $H(\omega T)=\frac{\theta_{0}(t)}{\theta_{i n}(t)} \frac{1-\theta^{-\tau / R C}}{\left.1-\theta^{-(\gamma / B C+j} \omega T\right)}$.
How $H(\omega T)$ is a periodic function of frequency and is equal to:

$$
H(\omega T)=H / \theta
$$

where $H=|H(\omega T)| \& \theta=\overline{H(\omega T)}$ let $e^{-\mathcal{\chi} / R 0} \Delta$

$$
\begin{aligned}
H & =1-h \\
M & =\sqrt{(1-h \theta j \omega T} \frac{1-h}{1-h[\cos (\omega t)-j \sin (\omega T)]} \\
& =\sqrt{1-2 h \cos (\omega T)+h^{2} \cos ^{2}(\omega T)+h^{2} \sin ^{2}(\omega T)} \\
& =\sqrt{1-2 h \cos (\omega T)+h^{2}}=\sqrt{\left(1+h^{2}-2 h\right)+2 h-h \cos \sin ^{2} \omega T} \\
& =\sqrt{(1-h)^{2}+2 h(1-\cos \omega T)}=(1-h) \sqrt{1+\frac{2 h(1-\cos \omega T)}{(1-h)^{2}}}
\end{aligned}
$$

$$
\theta=\tan ^{-1}\left(\frac{h \sin (\omega T)}{1-h \cos (\omega T)}\right)=\tan ^{-1}\left(\frac{e^{-\tau / \beta c_{\sin }(\omega T)}}{1-\theta / 2 C \cos (\omega T)}\right)
$$

So $H=\frac{1-h}{M \angle \theta}=\frac{L \theta}{\sqrt{1+\frac{1 h(1-\cos \omega T)}{(1-h)^{2}}}}$
The most interesting characteristic of this transfer function is the periodicity of the magnitude of H.
$|H(\omega T)|=\sqrt{1+\left(\frac{2 e^{-\tau / R C} \sin \left(\frac{\omega T}{R}\right)}{1-e^{-z / R c}}\right)^{2}} \quad ;$ this function is
plotted in Fig. (A-4).
Maximum response:
Now $1-e^{-\tau / R C}=1-1+\frac{\tau}{R C}-\frac{\tau^{2}}{2(R C)^{2}}+\cdots \approx \frac{\tau}{R C}$ and $e^{-\tau / 2 R C} \cong 1$ if $R C \gg \tau$

So

$$
|H(\omega T)| \cong \frac{1}{\sqrt{1+\left(\frac{2 R C}{\tau} \sin \left(\frac{\omega T}{2}\right)\right)^{2}}}=\frac{\tau}{2 R C} \frac{1}{\sqrt{\left(\frac{\tau}{2 R C}\right)^{2}+\sin ^{2}\left(\frac{\omega T}{2}\right)}}
$$

When $\omega T=0,2 \pi, 4 \pi, \ldots 02 n \pi ; \sin (\omega T)=0$

$$
\therefore|H(2 n \pi)|=\frac{\tau}{2 R C} \frac{1}{\sqrt{\left(\frac{\tau}{2 R C}\right)^{2}}}=1 \text { (a.maximum response) }
$$

Similarly, when $\omega T=\pi, 3 \pi, 5 \pi, \cdots(2 n+1) \pi ; \sin \left(\frac{\omega T}{2}\right)=1$

$$
\text { Since } \frac{\tau}{R C} \gg 1, \quad|H[(2 n+1) \pi]|=\frac{\tau}{2 R C}=\frac{T}{2 N R C}
$$

So the magnitude of the minimum response $=\frac{T}{2 N R C}{ }^{\text {a }}$ the maximum is 1 and the peaks are seen to be periodic and occur when

$$
\text { WT }=2 \pi n \text { or } 2 \pi f / f_{c}=2 \pi n \text { so } f / f_{c}=n \quad(n=\text { integer })
$$

whenever f is equal to any integer multiple of f_{c}
Band width:
The band width of the output occurs when the magnitude of the output voltage drops to $\frac{1}{\sqrt{2}}$ peak value. or $|H(\omega T)|=\frac{1}{\sqrt{2}}=\frac{1}{\sqrt{1+\left(\frac{2 R C}{2} \sin \frac{\omega T}{2}\right)^{2}}}$ or $\frac{2 R C \sin \frac{\omega T}{2}}{2}=1$
so $\sin \left(\frac{\omega T}{2}\right)=\frac{\tau}{2 R C}$ since $\frac{\tau}{2 R C} \ll 1$
one can approximate sinai by the first term of the power series

$$
\sin \frac{\omega T}{2}=\frac{\omega T}{2}-\frac{\left(\frac{(\omega T)^{3}}{2}\right.}{3!}+\cdots \cong \frac{\omega T}{2} \quad \text { So, } \omega T=\frac{\pi}{R C}
$$

This is the first 3 db point. The second will occur at $2 \pi-\frac{\pi}{R c}$ the third at $2 \pi+\frac{\pi}{B C}$. In general, the half power points occur when:

$$
(\omega T)_{3 d b}=2 n \pi \pm \frac{\pi}{R C}
$$

the bandwidth then iss $\left(2 n \pi+\frac{r}{R C}\right)-\left(2 n \pi-\frac{\tau}{R C}\right)=\frac{2 \tau}{R C}$
$2 \pi f T=\frac{2 \tau}{R C}=\frac{2 T}{N R C}$
$80 B=\frac{1}{\pi N R C}$
where $B=$ bandwidth (cps).
PLOT CF. TRANSFER FUnCTION $(H / 4) I$ FOR
RC FILTER VERSUS FREQUENCY
Where $|H(f)|=\left[1+\left(\frac{2 R C}{2} \operatorname{Sin} \pi f T\right)^{2}\right]^{-\frac{1}{2}}$
-
— \# —
華
垏
|

$$
\begin{array}{|c||}
\hline, ~ \\
\hline-7 \mid
\end{array}
$$

$\xrightarrow{7}$ \#

,

Circuit Details of a Practical Bandpass Filter

The following circuit diagrams give the details of the circuits which were employed to obtain the data presented in section III. The circuits are grouped into the appropriate blocks as outiined on page 11, Fig8. $(3-1)$ and $(3-2)$.

A summary of diagrams follows:
Figure

Description

Bol Schmitt Trigger

B-2 Flip-Flop \#l
$B=3$ "AND" Gate
B-4 FlipoFlop \#2
B 5 5 Typical Isolation Amplifier with Switch
B-6 Overall Connection Procedure for all Bridgea
Bo7 Mixer Circuit used to Measure Frequency Responses iss the Vicinity of Resonant Peaks

B-8 \& B-9 Scope Photos of Various circuit Wapeforms

Unless otherwise stated, all resistors are K ohms and all capacitors are μf.

Most of the circuit calculations are bssed on data obtained from the GE Transistor Manual. $/ 8 /$

Fig. ($B-1$)

FLIP-FLOP \#1
Fig. ($B=2$)

Fig. ($\mathrm{B}-3$)

All diodes computer type

TYPICAL ISOLATION AMPLeR WITH SWITCH
Fig. (B-5)

OVERALL CONNECTION SCHEMATIC FOR BRIDGES
Fig. (B-6)

Square wave from B © 100 KC (exactly)

Output is approx. s sine waves is the diff. freq. between \#1 \& \#2.

Sine wave, input aignal
frequency, near 100 KC from GR bridge oacillator (GR1330A)

MIXER CIRCUIT USED TO MEASURE FREQUENCY RESPONSES NEAR RESONANT PEAKS Fig. $(B-7)$

All photos $=4$ volts per division
(a) and $(b)=\frac{1}{8}$ sec por division
(c), (d) and (o) $=1$ 日ec per division
(a) Top: SCHMITT trigger into gate Bottom: "A" into gate
(b) Top: SCHMITT trigger into gate Bottom: "AND" gate output into F.F.\#2
(c) Top: A^{\prime} at diode modulators Bottom: A at diode modulators

(c)
(d) Top: B at diode modulators Bottom: B^{\prime} at diode modulators
(e) Top: A at diode modulators Bottom: Switching wave form on modulator \#3, showing spurious "Turn-on" pulse.

(d)

(e)

Fig. ($\mathrm{B}-8$)

Photo Scales:
Time: (d) and (e) = 音 sec per divieion
(a) $=1$ sec per division
(b) and (c) $=2$ eec per divieion

Amplitude:
(b), (c) and $(e)=\frac{\frac{1}{2}}{8}$ volt per diviaion
(a) $\quad=1$ volt per diviaion
(d) $\quad 2$ volt per division
(a) Top: B at diode modulatore

Bottom: Switching wave form on modulator \#3 showing epurious "turn-on" pulee (compare with Fig. (B-9) (e).
(b) Adjuetment of diode modulator \#3 with poeitive battery () bottom of picture is ground potential.
(c) Adjustment of diode modulator \#3 with negative battery (-) top of picture is ground potential.
(d) View of 250 KC eignal output near resonant point, showing epurious noise puleө日.
(e) 250 KC eignal output with awitch exactly eynchronized with input eignal. Note noise pulses.

Fig. (B-9)

