
MINICOMPUTER UTILIZATION FOR DATA

ACQUISITION AND PROCESSING

Phi lip Neal Hatfield

California 93940

NAVAL POSTGRADUATE SCHOOL

Monterey, California

THESIS
MINICOMPUTER UTILIZATION FOR DATA

ACQUISITION AND PROCESSING

by

Philip Neal Hatfield

Thesis Advisor: L. V. Schmidt

September 1972

App-wvzd faon ptibtlc idtzaia; distribution unlimited.

TH9345

Minicomputer Utilization for Data

Acquisition and Processing

by

Philip Neal Hatfield

Lieutenant Commander, United States Navy
B.S., Purdue University, 1962

Submitted in partial fulfillment of the

requirements for the degree of

MASTER OF SCIENCE IN AERONAUTICAL ENGINEERING

from the

NAVAL POSTGRADUATE SCHOOL
September 1972

)Q]

ABSTRACT

An investigation is conducted of minicomputer utilization for data

acquisition and/or processing functions. The study is directed primarily

toward the suitability of the on-board Data 620 minicomputer system for

performance of these functions. System configuration and a listing of

available software are included in addition to applicable system operating

procedures. Finally, illustrative I/O software routines required to

service a proposed data processing task are presented.

TABLE OF CONTENTS

I. INTRODUCTION 5

II. DATA 620 SYSTEM 7

A. CONFIGURATION 7

B. LIMITATIONS 9

1. Memory Capacity 9

2. I/O Device 10

3. Software Preparation 11

III. DATA 620 SYSTEM OPERATING PROCEDURES 12

A. BOOTSTRAP LOADER 12

B. BINARY LOAD/DUMP PROGRAM (BLD II) 14

1. Loading the Binary Load/Dump Program 14

2. Procedure to Load Program Tapes 15

3. Procedure to Punch Program Tapes 17

C. DAS 4A ASSEMBLER 18

1. Purpose and Description 19

2. Operation 20

D. TYPE B TELETYPE CONTROLLER 21

IV. USING INPUT/OUTPUT SUBROUTINES 23

A. GENERAL INFORMATION 23

B. SUBROUTINE DESCRIPTION 25

V. CONCLUSIONS 30

A. RESULTS 30

B. RECOMMENDATIONS 32

APPENDIX A SYSTEM SOFTWARE 33

APPENDIX B DAS 4A LISTING 38

APPENDIX C PROPOSED DATA PROCESSING
REQUIREMENT 40

APPENDIX D INPUT/OUTPUT DIRECTORY 41

BIBLIOGRAPHY 53

INITIAL DISTRIBUTION LIST 54

DD FORM 1473 55

I. INTRODUCTION

The purpose of this study is to investigate the feasibility of mini-

computer utilization for data collection and/or processing functions

applicable to the Aeronautics Department at the Naval Postgraduate

School. Since the Data 620 minicomputer system is on-board and not

being utilized, the study is directed primarily toward the suitability of

this system for performance of the above functions.

The Data 620 system was received in 1967 and has been inactive

for a considerable period of time (cf Section II). As a result, numerous

uncertainties existed relating to actual system configuration and avail-

able software compatibility. Initial efforts were therefore directed

toward the resolution of these uncertainties.

These efforts revealed that in many cases the software routines

were either inoperative or the documented operating procedures were

incorrect. Communication with Varian Data Machines representatives

resulted in the acquisition of a new set of system software. However,

initial system operations still required extensive trial-and-error

procedures and editing of similar system documentation. To preclude

repetition of these time consuming efforts, detailed operating procedures

applicable to the 620 system were documented and are contained in

Section III of this study.

Finally, to investigate programming efforts, requirements for a

representative data processing task were specified and input/output

software routines were prepared to comply with these specifications.

II. DATA 620 SYSTEM

The Data 620 was built by Data Machines, Inc. (now Varian Data

Machines) for the Fleet Numerical Weather Center (FNWC). Available

records indicate that negotiations for purchase of the system commenced

in 1965 with delivery to the FNWC occurring in 1967. In 1970, the

system was turned over to the Naval Postgraduate School and is

currently located in the Electrical Engineering Computer Laboratory.

There is little evidence to indicate that the system had been

operated extensively prior to this study. Furthermore, there has been

no formal preventive or corrective maintenance performed on the

system since its receipt by the school. It is interesting to note that

no computer malfunctions were detected during approximately 125 hours

of operation. On the other hand, numerous failures were encountered

with the ASR-33 teletype unit. In-house attempts to rectify the prob-

lems were only moderately successful. At any rate, this is obviously

an intolerable situation if the system is to be utilized effectively for

any purpose.

A. CONFIGURATION

The Data 620 system consists of the basic 620 minicomputer

interfaced to an ASR-33 teletype which serves as the sole 1/0 device.

The unit includes a paper tape reader and punch. Although numerous

options were available when the machine was purchased, there are no

records of the purchase or installation of any of these options. The

Data 620 is a general purpose, parallel, binary computer characterized

by:

Construction

Speed

Memory

Word length

Accessible registers

Arithmetic functions

Solid state, discrete components

1.8 microsecond memory cycle

4096 words

18 bits

A (Accumulation)

B (Low order accumulation)

I (Instruction)

P (Instruction Counter)

X (Index)

Single precision, fixed point

add/subtract

Software Complete package (Appendix C)

Although the 620 is physically large when compared to present

state-of-the art machines, it appears to be well built and is obviously

extremely reliable.

In addition, it has a memory protection feature which allows

complete shutdown of the system for considerable periods of time

without destruction of memory storage. This feature also proved to

be very reliable.

B. LIMITATIONS

It is anticipated that a minicomputer system would be used for

numerous relatively simple, repetitive data collection and/or process-

ing functions. Furthermore, the system would be utilized primarily

by personnel with limited experience in computer operation and

programming at the assembler level. As a result, system flexibility

and ease of operation are considered to be primary factors in the

determination of system suitability. From this viewpoint, limitations

of the Data 620 in its present configuration are related to its:

Memory Capacity

I/O Device

Software Preparation

1. Memory Capacity

Initially, the 4096 memory capacity was considered to be

adequate for performance of the desired functions. Further investiga-

tion proved this assumption to be erroneous. One difficulty arises

from the requirement of software routines to perform all arithmetic

operations with the exception of fixed point add/subtract. Although the

routines are available (Appendix C), their use requires excessive

memory allocation.

An illustrative example is that to perform the function of

raising a floating point number to a fixed point power requires approx-

imately 1200 words of memory. This is in excess of 25 a
o of the total

memory capacity.

A second difficulty arises when using the DAS 4A assembler

program. The function of this program is to convert a source program

tape into a loadable object program tape which allows preparation of

software routines using assembly language. When loaded, the assem-

bler program occupies in excess of 80% of the total memory capacity.

The design and operation of the assembler is such that this does not

preclude the assembly of large programs. However, if the object

program requires more than 20% of the memory capacity, loading of

the program will destroy a portion of the assembler program. Thus, if

a given program requires reassembly due to improper operation or

additional requirements, the DAS 4A assembler program must first be

reloaded. Furthermore, the DAS 4A assembler is a two pass assembler

which requires that the source program tape be read two times to com-

plete assembly.

2. I/O Device

As previously indicated, the ASR-33 teletype is the sole I/O

device. Although the print function of the unit is adequate for the

system's intended use, the paper tape reader severely limits effective

utilization of the Data 620 system. The rate of input is 10 characters

per second (cps) which is extremely slow when compared to the

computer capabilities. This results in a 15 minute loading time for

the DAS 4A assembler. Program assembly is even more time consum-

ing because of the "two pass" requirement.

10

3. Software Preparation

The DAS 4A assembler program allows programming of the

system in assembler language. Although programming at this level

is not difficult, it is tedious and time consuming particularly when

compared to the compiler (FORTRAN) level. Once the program has

been written and punched on paper tape, it still must be assembled

prior to actual use.

11

III. DATA 620 SYSTEM OPERATING PROCEDURES

This section is intended to provide the relatively inexperienced

operator with sufficient information to operate the system using stand

ard system software. The section is divided into the following areas:

Bootstrap Loader
Binary Load/Dump Program
DAS 4A Assembler
Type B Teletype Controller

Procedures presented in this section have been obtained through

trial-and- error methods in conjunction with applicable information

contained in Refs. 1 and 2. Information relating to software capabil-

ities has been edited to comply with the system configuration.

A. BOOTSTRAP LOADER

The bootstrap loader provides the means by which the binary

load/dump program is loaded into memory. It must be loaded man-

ually and is intended to remain in memory during system operation.

As a result, the program need be loaded only when a new system is

being initialized or the contents of memory are unknown.

To load the bootstrap loader:

1. Turn power on, press computer RESET and clear all

registers by depressing register RESET for each register.

2. Set computer OPERATION to STEP mode and computer

CONTROL to REPEAT mode.

12

3. Load instruction 054000 in the I (instruction) register. This

instruction stores the contents of the A register relative to the P

(Instruction counter) register.

4. Load the starting memory address (007756) of the bootstrap

loader into the P register.

5. Load the following instruction codes in the A register, press

ing step after loading each instruction. The computer loads the con-

tents of the A register into the address specified by the P register

which is incremented by one after each instruction is loaded.

ADDRESS INSTRUCTION MNEMONIC

007756
007757
007760
007761
007762
007763
007764
007765
007766
007767
007770
007771
007772
007773
007774
007775

102601

004013
004041
004446
001020
007772
055000
001010
007600
005144
005101
102601
101201

007756
001000
007772

CIB
AS LB
LRLB
LLRL
JBZ
MEMORY ADDRESS
STA
JAZ
MEMORY ADDRESS
IXR
INCR
CIB
SEN
MEMORY ADDRESS
JMP
MEMORY ADDRESS

To determine that the bootstrap loader has been properly loaded,

perform the following steps.

1. Initialize CPU by pressing computer RESET.
2. Clear all registers.

3. Load instruction 014000 (load A relative to P) in the

I register.

13

4. Load the starting memory address (007756) in the P register.

5. Set computer OPERATION to STEP mode and computer
CONTROL to REPEAT mode.

6. Press STEP. The contents of each memory address is

sequentially displayed in A register each time STEP is

pressed.

7. If an error is found, reload erroneous instruction codes

into memory. Note that the P register contains the error
address plus one.

The above procedures can be used to manually load and check any

program by loading the appropriate starting memory address in the

P register.

B. BINARY LOAD/DUMP PROGRAM (BLD 1 1
)

The binary load/dump object program, which is loaded by the

bootstrap loader, allows the user to load object programs from the

teletype paper tape reader. An object program is produced by the

DAS 4A assembler. BLD II also allows the user to punch the spec-

ified contents of memory on paper tape in a reloadable format. Once

loaded, BLD I I occupies addresses 07400 to 07755. It is recommended

that the program remain resident in core and ; therefore, need be

loaded only when initializing a new system or if the program has been

inadvertently destroyed. The procedures that follow assume that the

computer has been energized and the bootstrap loader is resident in

core.

1. Loading the Binary Load/Dump Program

a. Place teletype in Off-Line mode and press

(1) CNTRL and 'D' (Print suppress)

14

(2) CNTRL and *T' (Punch off)

(3) CNTRL and 'Q' (Reader on)

b. Set teletype On-line.

c. Set the teletype reader control lever in the LOAD position

and insert the BLD II program tape in the reader with the first binary

frame in the read position.

d. Set Computer controls as follows:

(1) Sense switch 1, 2 and 3 to OFF.

(2) REPEAT to OFF.

(3) STEP/RUN to STEP.

(4) Clean all registers.

(5) Manually enter 007770 in P register.

(6) Manually enter 007600 in X register.

(7) Press SYSTEM RESET and RUN.

e. To initiate loading, set teletype reader control lever to

RUN position.

f. A successful load of the BLD II program is indicated by:

(1) Computer in STEP mode.

(2) Teletype reader halted.

(3) P register = 007600.

(4) B register = 000000.

2. Procedure to load program tapes

Once the BLD II program is resident in core, the system is

ready to load standard or locally assembled object program tapes. The

- 15

procedures that follow assume the computer has been energized:

a. Place teletype in Off-line mode and press

(1) CNTRL and 'D* (Print Suppress)

(2) CNTRL and 'T' (Punch OFF)

(3) CNTRL and 'Q' (Reader On)

b. Set teletype on-line.

c. Place the program tape in the reader with first binary

frame in the read position and set reader control lever to RUN.

d. Set computer controls:

(1) Sense switch 1, 2 and 3 to OFF.

(2) REPEAT to OFF.

(3) STEP/RUN to STEP.

(4) Clear all registers.

(5) Manually enter 007600 in the P register.

e. Manually set the A register to desired load mode

(1) A < to verify program tape which performs only

check-sum error-checking to ensure that an object tape contains no

errors before loading into core memory.

(2) A = to load program tape and halt.

(3) A > to load program tape and execute the program.

f. Press SYSTEM RESET and RUN

g. A successful load is indicated by:

(1) Computer in STEP mode.

(2) Reader halted.

16

(3) P register = 007600

(4) A register = load mode

(5) X register = execution address

.

h. A checksum on format error is indicated by

(1) Computer in STEP mode.

(2) Reader halted.

(3) P register = 007600.

(4) B register = 777777.

(5) X register = load address of last record read.

i. To restart, position the program tape at the previous

record mark and press RUN. The standard object program contains

numerous record marks which consist of a series of 8 level punches.

3. Procedure to Punch Program Tapes

The BLD II program allows areas of memory to be punched

on paper tape in an object-tape-loadable format. That is, a selected

program or data can be punched from memory which may be reloaded

by use of BLD II. The procedure that follows assumes the computer

has been energized.

a. Place teletype in off-line mode and press:

(1) CNTRL and *0' (Print suppress).

(2) CNTRL and »R' (Punch on).

b. Set teletype on-line

c. Set computer controls

(1) Sense switch 1, 2 and 3 to off.

17

(2) REPEAT to off.

(3) STEP/RUN to STEP.

(4) Clear all registers.

(5) Set A register = first address of area to be punched.

(6) Set B register = last address of area to be punched.

(7) Set X register = address of first instructions to be

executed (at load time) or to 777777 if noncontiguous memory areas

are to be punched.

(8) Set P register = 007404.

d. Press SYSTEM RESET and RUN

e. Tape will be punched and the computer will go to STEP

mode with registers unaltered. If noncontiguous areas are to be

punched, perform steps c through d above, entering the new areas to

be punched in the A and B registers. Prior to punching the last area,

set the X register to the address of the first instruction to be executed

(at load time).

C. DAS 4A ASSEMBLER

The DAS 4A assembler language (DAS) allows the replacement of

numerical codes with instruction mnemonics. This provides for

memory addresses to be referenced symbolically and for constants

to be used with automatic conversion to binary values. Additionally,

comments can be added between symbolic statements or appended to

the statements to facilitate program checkout and documentation. The

18

DAS mnemonics and corresponding functions are described in ref-

erences 3 and 4.

1. Purpose and Description

The function of the DAS 4A program is to translate symbol-

ically coded instructions and data (Source program) into binary

instructions and data (Object program). The object program is output

on punched paper tape in a format which can be loaded by use of BLD II.

Also, the source and object program can be listed side by side on the

teletype printer. An example of such a listing is contained in

Appendix B.

The DAS 4A program tape is an object program and is loaded

using the procedure in Section III B 2. It is recommended that the

"load and execute" mode be used when loading the assembler. Actually,

the assembler program tape is comprised of two sections; the I/O

section and the Assembler section. During loading of the program,

the teletype will make the following three requests for definitions of

I/O devices

:

ENTER DEVICE NAME FOR SI (source input)

ENTER DEVICE NAME FOR BO (binary output)

ENTER DEVICE NAME FOR LO (list output)

Respond to each request in turn with a carriage return which is a

default assignment specifying the teletype as the I/O device. After

response to the third request, loading will continue. Upon completion

of a successful load the system is ready for program assembly.

19

2. Operation

It is important to note that DAS 4A is a two pass assembly-

system, which means that the source program must be read two times

for complete assembly. During the first pass, values are assigned to

all labels appearing in the location field and placed in the label table.

During the second pass, the appropriate values for the instruction

field and the variable field are assembled into the object instruction.

Output occurs during the second pass and is controlled by the operator

as described in the procedures that follow,

a . Pa s s 1

(1) Place teletype off line and press.

CNTRL and 'D' (Print suppress)

CNTRL and 'T* (Punch off)

CNTRL and 'Q' (Reader on)

(2) Set teletype on-line and place source program in

reader.

^3) Set computer controls:

Sense switch 1 to On

Sense switches 2, 3 to Off

REPEAT to OFF

STEP/RUN to STEP

Clear all registers

!4) Press RESET, STEP and RUN

20

b. Pass 2

(1) Reposition source tape to beginning in reader.

(2) Set sense switch 1 to OFF.

(3) Set sense switch 2:

ON-for program listing.

OFF-to suppress program listing.

(4) Set sense switch 3:

ON-to output punched object program tape.

OFF_to suppress punched output.

(5) Clear all registers.

(6) Press SYSTEM RESET, STEP and RUN.

(7) To obtain extra copies of the program, repeat pass 2

as desired.

An END statement in the source program terminates both passes 1 and

2. A MORE directive in the source program causes the computer to

stop and wait until the inputs are prepared and RUN is pressed.

D. TYPE B TELETYPE CONTROLLER

The applicable I/O instructions for the system in its current

configuration are presented to assist the operator in program

preparations. The instructions are presented in DAS 4A assembler

language followed by the corresponding six digit machine language code.

21

1. Transfer

,INA
, CIA
,INB
, CIB
,IME
, OAR
, OBR
, OME

Sense

,01

,01

,01

,01

,01

,01

,01

,01

102101 Read read reg to A
102501 Read read reg to cleared A
102201 Read read reg to B
102601 Read read reg to cleared B
102001 Read read reg to Memory
103101 Load write reg from A
103201 Load write reg from B
103001 Load write reg from Memory

,SEN ,101 101101 Write reg ready
,SEN ,201 101201 Read reg ready

It is important to note that the Read and Write buffer registers are

8 bits in length. They transfer to and from the lowest order 8 bits

in the A and B registers on the specified memory locations.

22

IV. USING INPUT/OUTPUT SUBROUTINES

This section contains the necessary information for use of the

I/O subroutines prepared by the author. The routines were prepared

to determine and illustrate the software requirements to I/O a block of

data in accordance with Appendix C. They are written in DAS 4A

language and contained in Appendix D. Once assembled, the routines

are intended to remain resident in core (439 words) and used in con-

junction with locally prepared data processing routines for specific

problems

.

A. GENERAL INFORMATION

To input a block of data, the data must be preceded by a line of

data identifying storage location and size of the data block. The

initial line of data must also contain data block processing parameters

for the given problems.

1. Terminology

Terms used in the presentation of material in this section

are defined as follows:

a. Valid Data

(1) Decimal Digits (0 through 9).

(2) Sign (+,-)•

(3) Space (terminates data word).

(4) Carriage return (terminates data block and data word

23

b. Data Word

Sign followed by 1 to 4 decimal digits.

c. Data Line

A set of data words terminated by a carriage return.

d. Data Block

Block of data to be processed. It is comprised of a set

of data lines but does not include initial data line described above.

2. Memory Allocations

Computer locations 500 through 515 octal are reserved for

storage of the initial data line required prior to input of the data

block. The information will be stored as follows:

Location Content

0501 Desired storage address of first data

word in data block.

0502 Number of data lines in data block.

0503-0514 Data processing parameters stored

sequentially in order of input.

After input of data block, location 0500 will contain address of last

data word in the data block.

Locations 0515 through 1024 octal are reserved for storage

of the data block.

3. Data Format

a. Input

The input routine is designed to allow loading of an initial

data line, followed by a data block utilizing the teletype keyboard or

24

paper tape reader. The format of the data must be in accordance with

the following:

(1) All non-valid data will be ignored.

(2) A data word containing more than 4 digits and/or

non-valid data will be ignored.

(3) Absence of sign indicates positive data word.

(4) Data words, with exception of last data word in

a data line, must be separated by a minimum of one space.

(5) Data words are right adjusted, e. g. , an input

of one digit, X, will be processed as 000X.

b. Output

The output routine is designed to output a data block after

it has been processed. The data will be printed on a new page with

10 data words; each separated by a single space, per line. Each line

will be single spaced.

B. SUBROUTINE DESCRIPTION

The following information is provided to assist in the use of the

input/output subroutines. The supporting subroutines in addition to

the main routines are included to allow individual use if applicable.

1. Data Block Input and Print Routine (DATB)

Subroutine DATB is designed to input a block of data to be

processed. The input device is the teletype keyboard or paper tape

reader. Actuation of the computer sense switch one will allow input

25

via the keyboard; otherwise, input is from the paper tape reader. Use

of subroutine DATB requires an initial data line containing the data

block storage, size and processing parameters. Computer storage is

allocated for a maximum of 10 data processing parameters and a

maximum of 200 data words to be processed.

The subroutine will accept and store one data line in BCD,

sign magnitude format. Input is then suspended while the data line

is echo printed. Upon completion of print each data word is converted

to binary and restored in its initial location. This sequence is repeated

until the specified number of data lines has been input.

The call sequence and storage requirements are as follows:

CALL SEQUENCE , JMPM ,01025
DATB 34 WORDS
SUPPORTING SUBROUTINES 255 WORDS
TOTAL STORAGE 289 WORDS

2. Data Line Input and Print Routine (DATL)

Subroutine DATL is the main supporting routine for subroutine

DATB. It will accept and store one data line in BCD, sign magnitude

format. Input is then suspended while the data line is echo printed.

Upon completion of print each data word is converted to binary and

restored in its initial location. The input device is the teletype keyboard

or paper tape reader. Actuation of the computer sense switch one will

allow input via the keyboard; otherwise, input is from the paper tape

reader.

26

Individual use of the routine requires entry with the desired

storage address, of the first data word in the data line, in the X

register. The routine exits with the X register increased by the

number of data words in the data line.

The call sequence and storage requirements are as follows:

CALL SEQUENCE , JMPM , DATL
DATL 42 WORDS
SUPPORTING SUBROUTINES 213 WORDS
TOTAL STORAGE 255 WORDS

3. Data Line Input and Store Routine (DASS)

Subroutine DASS is the basic building block for the input

routines DATB and DATL. It is designed to accept and store one data

line with the format criterion previously described. It will activate

the input device, teletype keyboard or paper tape reader, in accordance

with the condition of computer sense switch one. Actuation of sense

switch one energizes the keyboard; otherwise, the paper tape reader is

energized. Upon receipt of a carriage return which signals termination

of a data line, the input device is deenergized. The data words are

stored relative to the X register in BCD, sign magnitude format.

Individual use of the routine requires entry with desired storage origin

of first data word in the X register. The routine exits, upon receipt of

carriage return, with the X register increased by the number of data

words in the data line.

The call sequence and storage requirements are as follows:

27

CALL SEQUENCE
DASS
SUPPORTING ROUTINES
TOTAL STORAGE

, JMPM , DASS
100 WORDS

8 WORDS
108 WORDS

4. ODE - BCD Output

Subroutine ODE will output one data word via the teletype

printer. The data word must be in the A register in BCD, sign

magnitude format. The output format is one space followed by the

sign (+, -) and then 4 decimal digits. The X register is unchanged.

The call sequence and storage requirements are as follows:

CALL SEQUENCE
ODE
SUPPORTING SUBROUTINES
TOTAL STORAGE

5. Output Single Character (BO)

, JMPM , ODE
34 WORDS
8 WORDS

42 WORDS

Subroutine BO will output an 8 bit binary word from the

B register via the teletype printer. The word must be right adjusted.

The call sequence and storage requirements are as follows:

CALL SEQUENCE , JMPM , BO
BO 8 WORDS
SUPPORTING SUBROUTINES WORDS
TOTAL STORAGE 8 WORDS

6. Data Block Output (DABO)

Subroutine DABO is used to output a block of data after it has

been processed. The output is via the teletype printer in a format

previously described. Use of the routine requires entry with the

address of the first data word in the data block to be stored in 0501

octal and the address of the last data word in the data block to be stored

28

in 0500 octal. The routine exits with the X register unchanged. The

call sequence and storage requirements are as follows:

CALL SEQUENCE , JMPM , DABO
DABO 41 WORDS
SUPPORTING SUBROUTINES 109 WORDS
TOTAL STORAGE 150 WORDS

7. Standard Software Routines

Subroutines DATB, DATL and DABO utilize four standard

software supporting routines. The use and description of these

routines are contained in reference 5. Storage requirements are

indicated below:

a. XMUL Standard Software Multiply

XMUL 40 WORDS
SUPPORTING ROUTINES WORDS
TOTAL STORAGE 40 WORDS

b. XDTB Eixed Point Integer Decimal to Binary Conversion

XDTB 31 WORDS
SUPPORTING ROUTINES 40 WORDS

71 WORDS

c. XDIV Standard Software Divide

XDIV 77 WORDS
SUPPORTING ROUTINES
TOTAL 77 WORDS

d. XBTD Fixed Point Integer BIN to DEC Conversion

XBTD 34 WORDS
SUPPORTING ROUTINES 77

TOTAL 101 WORDS

29

V. CONCLUSIONS

A. RESULTS

The results of this study raise a question in the author's mind as

to the definition of a minicomputer. Use of memory storage capacity

alone to classify modern computer systems would be extremely mis-

leading due to the development of microprogramming techniques. For

example, the 1200-word memory requirement for the Data 620 to raise

a floating point number to a fixed point power causes one to ponder the

equivalent memory capacities of some of the small electronic desk

calculators. The microprogramming of arithmetic functions obviously

greatly reduces the memory storage capacity requirements of a

computer system.

Since the Data 620 requires that all arithmetic functions, with the

exception of fixed point add/subtract, be performed by software, its

present memory capacity is considered inadequate to perform the

functions described in Section II B. Furthermore, the time and effort

involved in software design and assembly is considered to be excessive

as evidenced by the information presented in Section IV and Appendix D

of this study.

Based on the material presented in this study and experience in

operating the Data 620 system, it is concluded that:

30

1. The Data 620, in its present configuration, is not suitable

to perform the desired data collection and/or processing functions.

2. The minimum requirements to upgrade the system would

include the addition of 4096 words of memory, a magnetic tape deck

and a high speed paper tape reader which would involve a significant

expenditure.

3. The Data 620 system is suitable for performing control

and/or monitoring functions in situations where software requirements

remain essentially constant for a considerable period of time. It is

also very well suited for utilization in a basic computer course such

as EE 2810.

4. A suitable system for use by the Aeronautics Department

for data collection and/or processing should possess the following

attributes:

a. Easily and conveniently programmable, preferably

from a keyboard incorporating the common arithmetic functions.

b. I/O including cassette magnetic tape, paper tape

and teletype. The format of the I/O should also be easily and con-

veniently programmable.

c. Facility for conveniently interfacing with devices

supplying ASCII coded data.

31

B. RECOMMENDATIONS

Based on the preceding material and with consideration of the age

and corresponding obsolescence of the Data 620 system, the following

recommendations are offered:

1. There should be no expenditures toward upgrading the

Data 620 system.

2. Provisions for adequate maintenance of the Data 620

system should be established and efforts to utilize the system in

courses of instruction similar to EE 2 810 should be initiated.

3. Prior to the purchase of any future systems, a thorough

investigation should be conducted to insure the system in question

will effectively perform the desired functions without excessive

expenditures for "accessories".

32

APPENDIX A

SYSTEM SOFTWARE

A complete directory of all standard software program tapes

currently on-hand is contained herein. The directory is divided into

the following areas:

MAINTENANCE/ TEST
OPERATIONAL

MATH

Program format (Source or Object) is also indicated for each program.

This is important to note since a source program must be assembled

into an object program prior to use. The DAS 4A assembler performs

this function. The BL.D II program contains the load routine for all

object programs.

A. MAINTENANCE/TEST

1. Maintain II Test Executive (Object)

92U0107-001C

06-02.71

2. 620 Instruction Test Part I (Object)

92U0107-002C

12.19-70

3. 620 Instruction Test Part II (Object)

92U0107-003C

3-12-71

33

4. 620 Memory Test Part I (Object)

92U0107-0200

07-06-71

5. 620 Memory Test Part II (Object)

92U0107-0ZIA

05-25-71

6. 620 Teletype Test (Object)

92U0107-0050

02-18-71

B. OPERATIONAL

1. DAS 4A Assembler and 1/0 (Object)

92U0304-098D

11-08-71

2. Debug Utility (Aid II) (Object)

92U0207-001A

11-15-71

3. Source Tape Correction (Cor) (Source)

Version B

4. Source Tape Correction (Cor) (Object)

Version B

5. Binary Load/Dump (BLD II) (Object)

Version 4. 1

34

C. MATH

The available mathematical functions are contained on two program

source tapes. Each of the tapes, FIXED POINT MATH and FLOATING

POINT MATH, contain a series of subroutines separated by a blank

section. The subroutines are terminated by a MORE, END combination

to allow assembly of only the required routines for problem solution.

The subroutines are listed below in the order they appear in the tapes.

1. Fixed Point Math (Source)

XCOS _ Single Precision Cosine

XEXN _ Single Precision Negative Exponential

XATN _ Single Precision Arctangent

XLOG _ Single Precision Logarithm

POLY _ Single Precision Polynomial Evaluation

XSIN _ Single Precision Sine

XEXP _ Single Precision Positive Exponential

XSQT _ Single Precision Square Root

XMUL _ Standard Software Multiply

XBTD _ Integer Binary to Decimal Conversion

XDTB _ Integer Decimal to Binary Conversion

XDIV _ Standard Software Divide

XDAD _ Fixed Point Routine

XDCO _ Double Precision Two's Complement

XDMU _ Double Precision Multiply

35

XDSU - Double Precision Subtract

XDDI - Double Precision Divide

2. Floating Point Math

$HE _ I**

J

(Fixed Point Numbers)

$PE - A :::::
'I (A floating point, I fixed point)

$QE - A**B (Floating point numbers)

ALOG - Natural Log

EXP - Computes E ;:::;X, ARG, X is floating point

COS _ Cosine

SIN Sine

ATAN . Arctangent

SQRT - Square Root

$QM . Multiply

$QN Divide

$QK - Add

$QL Subtract

$FAS - Add/Subtract

$FSM - Separate mantissa

$NML - Normalize routine

$IS _ Fixed point integer to floating point

$PS - Floating point to integer

IABS - Absolute value of fixed point number

ABS - Absolute value of floating point number

36

ISIG - Sets sign of fixed point number

SIGN - Sets sign of input parameter

$HM _ Integer Multiply

$HN _ Integer Divide

$SE - Subprogram entry control

$ER _ Error Subroutine

37

APPENDIX B

DAS 4A LISTING

FIXED POINT MATH 18 BIT, NO MUL/DIV

* XMUL
-A.

STANDARD SOFTWARE MULTIPLY

A, B>[B*PAR]<A
*

:X IS UNCHANGED 40 WORDS
007100 ORG 07100

000022 NBIT
,
EQU 18

007100 124025 ADD
,
DATA 0124025 ADD MCND

007101 134023 ERA DATA 0134023 ERA SIGN
007102 124013 SOF DATA 0124013 ADD SIGN
007103 144007 SUB

,
DATA 0144007 SUB CND

007104 007400 BGN , ROF RESET OF
007105 074037 ,STX XMXR SAVE XR
007106 034033 , LDX XMUL GET ADDRESS OF CALL SEQ
007107 035000 ,

LDX 0, 1 GET ADDR OF MCND
007110 035000 ,

LDX 0, 1 GET MCND
007111 074034 STX MCND AND SAVE
007112 034035 LDX ,K15 SET BIT COUNT
007113 004462 RPT LLRL 18

007114 004461 LLRL 17 A SIGN > LSB OF MPLR
007115 124031 ADD XSIG SET OF IF LSB>1
007116 004441

,
LLRL 1 ALIGN PARTIAL PRODUCT

007117 003001 XOF ADD ADD MCND IF LSB>1
007120 007100
007121 004501 LASR 1 AND SHIFT RIGHT
007122 003001 ,

XOF ERA INVERT SIGN IF OF
007123 007101
007124 005344 DXR COUNT BITS DEVELOPED
007125 001040 JXZ *+4 JMP IF DONE
007126 007131
007127 001000 JMP RPT ELSE REPEAT
007130 007113
007131 004462 LLRL NBIT A SIGN>MPLR SIGN
007132 003004 XAN ,SOF SET OF IF NEG MPLR
007133 007102
007134 004462 LLRL NBIT RESET PRODUCT
007135 003001

,
XOF SUB SUB MCND IF NEG MPLR

007136 007103

38

007137
007140
007141
007142
007142
007143
007144
007145

044002
034004
001000
107142

001000
007104

XMUL

XMXR , BSS

INR ,XMUL SET RETURN
LDX , XMXR RESTORE XR
JMP* , XMUL A, B B*M A

BES ,0 ENTRY
JMP , BGN

1 TEMPORARY STORAGE
@@%@9ToJ UK SJ KL G@ @G C[C@C(@G C]@$2@$1J YES !@XA@9@@@8fc
007147 400000 XSIG .DATA ,0400000
007150 K15 DATA

END

94POINTERS

000021
000000

LITERALS
@@B@9" (2(2(5(50

@@@@@@@@(SSYMBOLS
007100 ADD 007104 BGN
000022 NBIT
00/113 RPT 007102 SOF
XMXR 007147 XSIG

ERRORS

17

007101 ERA 007150 K15 007146 MCND

00 103 SUB 007142 XMUL 007145

39

APPENDIX C

i

PROPOSED DATA PROCESSING REQUIREMENT

A. PROBLEM DEFINITION

A requirement exists to process a block of data contained on paper

tape in ASCII code. It is desired to prepare software routines to allow

utilization of the Data 620 system to perform the following functions.

1. Input and echo print the block of data.

2. Convert the data to binary format for processing and store in

memory.

3. After processing, print the results.

4. Provide for input of parameters, required to process the data,

from either paper tape or the teletype keyboard.

B. FORMAT DEFINITION

The software I/O routines must be compatible with the format

specifications listed below:

1. A line of data is terminated by a Carriage Return, X-OFF

and Line Feed in that order.

2. A line of data may contain from 1 to 10 data words.

3. A data word consists of a Space, Sign (+ , -) and 1 to 4 decimal

digits in that order.

4. Storage must be allocated for a minimum of 50 data words

and 5 data processing parameters.

40

APPENDIX D

INPUT/OUTPUT DIRECTORY

The directory lists subroutines required to input/output a block of

data. The main input (DATB)/output (DATO) routines contain numerous

supporting subroutines which may be used individually if applicable to

a given problem. Each listing delineates the required supporting sub-

routine calls in order that all programs may be assembled.

All programs are terminated with a MORE, END, combination to

facilitate preparation and allow assembly of only those desired

programs.

Only the following subroutines have been tested:

ODE
BO
XMUL
XDIV
XDTB
XBTB

1. Data Block Input and Print Routine (DATB)

Supporting subroutines: DATL
DASS
ODE
BO
XMUL
XDTB

, ORG ,01025
DATB , ENTR

, LDB ,NP
, JMPM , BO

41

NLIN

,
LDB

, JMPM
,
LDB

,
JMPM

,
LDX

,
JMPM

,
LDB

,
JMPM

,
LDX

,
STX

,
LDA
,STA
. JMPM

, LDA
, DAR
, JAZ

,STA
, JMP

FIN ,STX

, JMP*
TEP , DATA
NP , DATA
LF , DATA
CR , DATA

, MORE
, END

, CR
,B0
, CR
, BO
, =0501 Storage origin

parameters
, DATL Get parameters
, LF
, BO

, 0501 Get storage origin

for data block

, TEP
, 0502 Get # data lines

, TEP+1
, DATL Read, store, print

, TEP+1
t

, FIN

, TEP+1
, NLIN
, 0500

DATB
0,

0214
0212
0215

convert to binary
and restore one

data line

Check for end of

data, YES, exit

NO, get next line

Stores location of

final data word in

0500

2. Data Line Input and Print Routine (DATL)

Supporting Subroutines: DASS
ODE
BO
XMUL
XDTB

42

DATL ENTR
STX

JMPM
STX
LDX

NXWD LDA
JMPM
LDA
JAP
LRLA
LSRA
JMPM
CPA
IAR
JMP

DB JMPM
STB

IX R
TXA
SUB

JAZ
JMP

DED
,
LDB

,
JMPM
LDB

,
JMPM

, JMP*
NWD DATA
DLO DATA
CR , DATA
LF ,DATA

, MORE
,
END

, DLO Save data origin,

location

, DASS Get one line data

, NWD
, DLO
,0, 1

, ODE Output one word
,0,1

, DB BCD--BINARY
, 1

, 1 Remove sign bit

, XDTB

Two's compliment
, DB+1 Store neg number
, XDTB
,0, 1 Store binary

number

, NWD Check end data

line

, DED Yes, exit

, NXWD No, get next word
, CR
, BO
, LF
, BO
, DATL Return

, o

, o

, 0215

, 0212

3. Data Line Inout and Store Routine (DASS)

Supporting subroutines: B0

DASS , ENTR
, ROF
, STX
, JSSI

»
Reset ov'flow

, TEM+2 Save X
, KIN Jump, keyboard

input

43

KIN

RCH

SAV

VCH

LND

LDB

JMPM
LDB
JMPM
JMP
LDB
JMPM
LDB
JMPM
LDB
JMPM
LDB
JMPM
LDX
TZB
SEN

JMP
CIA
STA
SUB
JAZ
JMP
LDB
STB
LDA
SUB

JAN

LDA
SUB

JAN

JMP

LDA
SUB
XAZ
JAZ
JMP

, =0204 No, tape input,

print off, read on

, BO
, =0221

, BO
,RCH
, =0223 Keyboard input

, BO Reader off

, =0215 CR
, BO
, =0212 LF
, BO
, =0201 Printer on

, BO
, = 4 Set max 4 digits

,0201, *4 Input character
A reg

, *_2

, 1

, TEM Save character

,
=0255 Test neg
,SAV Save sign

,SAV+1 Pos Num
, =0400000

, TEM+1 Store sign, + or -

, TEM
, =0260 Lower limit, valid

data

, LND Test end of data

line

, TEM
, =0372 Upper limit, valid

data

, NCH Count digits, max
of 4

, RCH Invalid data,

clear out

,TEM
, =0215 Test end data line

, SOF Set flag

, GSN Get sign

, RCH Invalid data,

clear

44

NCH

AZ

GSN

EDL

TEM
DMAX

DXR
LDA
LRLA

LLRL
SEN
JMP
CIA
STA
SUB
JAZ

JMP
TXA

SUB
JAZ
JAN
TBA
ADD
LDX
STA
JOF
IXR
STX

JMP
LDB
JMPM
ROF
IXR
JMP*
DATA
DATA
MORE
END

TEM
14

4

0201. A2
*_2

1

TEM
=0240
GSN

VCH

DMAX
RCH
RCH

TEM+1
TEM+2
0, 1

EDL

TEM+2

RCH
=0223

BO

DASS
0,0,

4

Reduce digit count

Adjust digit, BCD,
B reg

Get digit

Save
Test end of word
Yes, get sign; no,

test valid input

Test for min of 1,

max of 4

Digit/WRD
No, start over

Yes, get word
Add sign

Set storage loc

End of data line

Not end data line,

Set next storage

loc

Get next data wrd
Turn reader off

Reset ov'flow

Return
Temp storage

ODE-BCD Output

Supporting subroutines: BO

45

ODE

LPI

RESX

TO
KI

ENTR
LDB
JMPM
LDB
JMPM
TZB
LLSR
ADD

JMPM
STX
LDXI
TZB
LLSR

ORA
LLRL
JMPM
DXR
JXZ
JMP

LDX
JMP*
DATA
DATA

MORE
END

KI
BO
KI+3

BO

7

KI+1

BO
TO
4

Output space

Print enable

Output sign:

+ ,

-

Save X
4 digits

Assemble digit

for output

KI+2

8

BO Output 1 digit

RESX 4 digits, exit

LPI No, get next

digit

TO Restore X reg

ODE Return

0255,0253000,
054000, 0201

5. Output Single Character B0)

Supporting subroutines: None

B0

B01

,
ENTR
,SEN
,
JMP

,
OBR

,
JMP*

,
MORE

,
END

0101, B01
B0 + 1

01

B0

46

6. Data Block Output (DABO)

DABO

NL

NWRD

SG

OP

EX

TEM
NEG
WPL

Supporting subroutines: ODE
BO
XDIV
XBTB

, ENTR
, STX TEM Save X
, LDX 0501 Data start loc

, LDB , =0214 New page

, JMPM BO
, LDB = 0215 CR
, JMPM BO

, LDB =0212 LF
, JMPM B0
, LDA 0, 1

, JAN SG
, JMPM XBTD BIN to BCD +

num
, JMP OP
, JMPM XBTD BIN TO BCD. -

num
, ORA NEG
, JMPM ODE Output 1 word
, IXR
,
TXA
,SUB 0500 Chk end data

block

, JAZ EX Yes, exit

, TXA
,SUB WPL No, chk end data

line

, JAZ NL Yes, start new
line

, JMP NWRD No, get next

word
, LDX , TEM Restore X
, JMP* DABO
, DATA ,

o

, DATA 0400000
, DATA 10

, MORE
, END

47

Standard Software Multiply (XMUL)

Supporting subroutines: None

NBIT
,
EQU

ADD
,
DATA

ERA , DATA
SOF , DATA
SUB DATA
BGN

,
ROF
STX

, LDX

LDX
,
LDX

P
STX
,LDX

RPT LLRL
LLRL

,
ADD
LLRL

XMUL

XMXR
MCND
XSIG
K15

XOF

LASR
XOF
DXR
JXZ
JMP
LLRL
XAN
LLRL
XOF

INR
LDX
JMP*
BES
JMP
BSS
BSS
DATA
DATA
MORE
END

18

0124025 Add mend
0134023 Era sign

0124013 Add sign

0144007 SUB CND
Reset OF

XMXR Save XR
XMUL Get address of

call seq

0,1 Get addr of MCND
0,1 Get MCND
MCND And save
K15 Set bit count

18

17 A sign LSB of

MPLR
XSIG Set of IF LSB 1

1 Align partial

ADD

1

ERA

*+4

RPT
NBIT
SOF
NBIT
SUB

XMUL
XMXR
XMUL

BGN
1

1

0400000
17

product
Add MCND if

LSB 1

And shift right

Invert sign if of

Count bits developed
JMP if done
Else repeat

A sign MPLR sign

Set OF if NEG MPLR
Reset product
Sub MCND if neg

MPLR
Set return

Restore XR
A,B B*M A
Entry-

Temporary storage

48

XDTB

BA
AB

TOP

Fixed Point Integer Decimal to Binary Conversion (XDTB)

Supporting subroutines: XMUL

AB
AB + 1

ENTR
STA
STX
TAB
LDXI
TZA
STA
LLRL

LLRL
STB
LDB
CALL
JXZ
DXR
STB

LDB

JMP

LDA
LDX
JMP*
DATA
DATA
MORE
END

Standard Software Divide (XDIV)

Supporting subroutines: None

,STX
,DECR
, JAP
, CPX
, CPB

, IBR
, LRLB
, LSRB
, CPA

XR
4

POSU

Initial IZE count

AB+2
2 Shift BR, 18 bit

word only-

4 Get next digit

AB+3
AB+2
XMUL, BA
*+7 Jump if complete

Else count digits

*+ll Save partial

product
*+ll Get remaining

digits

*_11 Go get next

product
*+5 Restore AR
*+5 Restore XR
XDTB Return
10

0, 0, 0, Temp storage

Save XR
Set sign indicator

Set dividend pos

Set DSIN neg
L0 order two, S

compl

Sign

Hi order two, S

compl

49

POSU

NEGU

TEST

ADJ

JBZ
JMP
IAR
STX
STA
LDX

LDX
LDA
LDX
JAP
CPX
CPA
IAR
STA
LDA
STX
LDX
LRLB

SUB
SOF
JAP

ROF
LLRL

ADD

JXZ
DXR
JAN

LLRL
SUB
JMP
LRLB

JAP
IBR
ADD
LDX
JXZ

*+4

*+3

DSIN Save DIVDN sign

DVDN Save DIVDN
XDIV Get addr of call

seq

0,1 Get addr of PARAM
0,1 Get divisor

DSIN Get DIVDN sign

*+5 Set divisor POS
Set quotient sign

Two, S compl

DVSR Save divisor

DVDN Get DIVDN
QSIN Save QUOT sign

K14 Set cycle count

1 Adjust LO order

DVSR
(delete sign)

SUB divsor

,XERR JMP if overflow

error

, 1 Develop 14

quotient bits

, DVSR (Non restoring

algorithm)

, ADJ JMP if complete
Count bits

, NEGU Jump if neg
remainder

, 1 Shift quotorem
, DVSR Subtract DIVSR
, TEST Go test

, 1 Get last quotient

bit

, *+4 JMP if OR
Else set LOB

,DVSR Restore remainder

, QSIN Get true quotient

, *+4 JMP if negative

quot

50

CPB
,DBR
,
IBR

, LDX
,
JXZ

JMP
,
CPA

P
IAR

XERR ,INR
,
LDX

,
JMP*

XDIV BES
JMP

K14
,
DATA

XR BSS
DVSR BSS
DVDN BSS
DSIN ,BSS
QSIN BSS

MORE
END

,DSIN GET TRUE REMAINDER
, *+4 JMP if remainder

neg

, *+4 Else leave pos

, XDIV Set return

, XR
, XDIV A, BOM B QUOT

A REM
, o Entry-

, TOP
, 16

, 1 Temp storage

, 1

,
1

, 1

,
1

10. Fixed Point Integer BIN to DEC Conversion (XBTD)

Supporting subroutines: XDIV

XBTD ENTR
STA
STX
JAP
CPA
IAR
TAB
LDXI
TZA
CALL
STB
LDB

LLSR

JXZ
DXR
STB
LDB

AC
AC + 1

*+4

XDIV, BC
*+17
*+17

*+7

*+12

*+10

Jump if positive

Else complement
And add one

Initialize count

Save BIN VAL
Get previous
digits

Attach digit to

result

Jump if complete
Else count digits

Save digits assembled
Get binary VAL

. 51

AC
BC

, JMP
, LSRB

, LDA
, LDX
, JMP*
, DATA
, DATA
, MORE
. END

-11

*+4

*+4

XBTD
0, 0, 0,

10

Go get next digit

Position to low
order 18 bit only

Restore AR
Restore XR
Return
Temp storage
Constant

52

BIBLIOGRAPHY

1. Varian 620/f Computer Handbook, Varian Data Machines, 1970.

2. Varian 620/L Computer Handbook, Varian Data Machines, 1971.

3. DATA 620 SYSTEM REFERENCE MANUAL , Data Machines, Inc.,

Pub. No. S_2002_0866, August 1966.

4. DATA 620 PROGRAMMER REFERENCE MANUAL , Data Machines,
Inc., Pub. No. S-2000-0866, August, 1966.

5. DATA 620 SUBROUTINE MANUAL , Data Machines, Inc., Pub. No.

F-2002.366, October 1966.

53

INITIAL DISTRIBUTION LIST

No. Copies

1. Defense Documentation Center 2

Cameron Station

Alexandria, Virginia 22314

2. Library, Code 0212 2

Naval Postgraduate School

Monterey, California 93940

3. Chairman, Department of Aeronautics 1

Naval Postgraduate School

Monterey, California 93940

4. Professor L. V. Schmidt, Code 57Sx 1

Department of Aeronautics
Naval Postgraduate School
Monterey, California 93940

5. Asst Professor V. M. Powers, Code 52Pw 1

Department of Electrical Engineering
Naval Postgraduate School
Monterey, California 93940

6. LCDR Philip N. Hatfield, USN 1

626 S. Second Street

West Memphis, Arkansas 72301

54

Unclassified
Security Classification

DOCUMENT CONTROL DATA -R&D
Security classification ol title, body ol abstract and indexing annotation muxt be entered w/ien the overall report is classified)

2*. REPORT SECURITY CLASSIFICATIONOriginating ACTIVITY (Corporate author)

Naval Postgraduate School

Monterey, California 93940

Unclassified
2b. GROUP

3 REPORT TITLE

Minicomputer Utilization for Data Acquisition and Processing

4 OESCRiptivE NOTES (Type ol report and,inclusive dates)

Master's Thesis; September 1972
S au t mo R S i fFirs t name, middle initial, last name)

Philip N. Hatfield

8 REPOR t DATE

Seotember 1972

7«. TOTAL NO. OF PAGES

56

7fc. NO. OF REFS

5

ta CONTRACT OR GRANT NO

b. PROjEC t no

9a. ORIGINATOR'S REPORT NUMBER(S)

9b. OTHER REPORT NO(S) (Any other number* that may be a» signed
thit report)

10 DISTRIBUTION STATEMENT

Approved for public release; distribution unlimited

II Supplementary notes 12- SPONSO RING Ml LI T AR Y ACftVITY

Naval Postgraduate School

Monterey, California 93 9i

13 ABSTRACT

An investigation is conducted of minicomputer utilization for data

acquisition and/or processing functions. The study is directed primarily
toward the suitability of the on-board Data 620 minicomputer system for

performance of these functions. System configuration and a listing of

available software are included in addition to applicable system operating
procedures. Finally, illustrative I/O software routines required to service
a proposed data processing task are presented.

DD,?oR
;.,1473 IP4GE "

S/N 01 01 -607-681 1 55
Unclassified

Security Classification
1-31408

Unclassified
Security Classification

key wo R o $

Minicomputer

Data 620

DD, F

.r.,147:
" - 6 3 2 I

BACK)
56 Unclassifi ed

Security Classification A - 3 1

Thesis

H318
c.l

137118
Hatfield

Minicomputer uti liza*

tion for data acquisi-

tion and processing.

Thesis
H318
c.l

Hatfield
Minicomputer utiliza-

tion for data acquisi-
tion and processing.

•137118

thesH318

Minicomputer utilization for data acquis

3 2768 002 08592
DUDLEY KNOX LIBRARY

