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A game-theoretic setting provides a mathematical basis for
analysis of strategic interaction among competing agents and
provides insights into both classical and quantum decision
theory and questions of strategic choice. An outstanding
mathematical question is to understand the conditions under
which a classical game-theoretic setting can be transformed
to a quantum game, and under which conditions there is
an equivalence. In this paper, we consider quantum games
as those that allow non-factorizable probabilities. We discuss
two approaches for obtaining a non-factorizable game and
study the outcome of such games. We demonstrate how
the standard version of a quantum game can be analysed
as a non-factorizable game and determine the limitations of
our approach.

1. Introduction
The realization has now emerged [1–3] that the processing
of information cannot be separated from the underlying
fundamental physics and that the physical aspects of information
processing must be taken into consideration. This has led to a
new understanding of the information processing, cryptography,
and the methods and techniques used for communication that are
based on the rules of quantum theory [4].

A venue where information plays a central role is in the
established branch of mathematics called game theory [5–7] that
provides the necessary mathematical tools, methods and solution
concepts for the analysis of conflict. The understanding of games
is based on some fundamental assumptions relating to what
information is available to each participating player at a particular
stage of the game. The finding that physical aspects can have
a crucial role in information processing has natural implications
for player strategies, and the considerations of underlying
fundamental physics become important for game theory.
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Such questions have led to creation of the research area of quantum games [8–70]. What these studies
have shown is that quantum strategies can result in outcomes that often defy our classical intuition.

The emergent field of quantum game theory is rapidly growing [71]. Quantum game theory has two
branches: (i) games based on quantum coin tossing that explore the theory of quantum walks, and
(ii) strategic games, in the von Neumann sense, which explore quantum decision spaces in situations
of conflict. There are a number of directions that have motivated research in quantum game theory. First
and foremost, it must be recognized that the field is a fundamental exploration of scientific curiosity
and that it provides a glimpse into quantum dynamics. Quantum games provide mathematical settings
for exploring competing interactions, e.g. between classical and quantum agents [8,14,50], between
players in the Prisoners’ Dilemma game [9,10,40,46,72,73], multiplayer quantum games [12,19,28,29,38,
39,43,56,62,74,75], interactions on quantum networks [53,54,63], to name a few. Moreover, a number of
authors are using game-theoretic settings to explore the possibility of new quantum algorithms and
protocols [8,53,76–78]. The area of quantum auctions [79–81] is an example of this, providing new
motivation for quantum computational and quantum network hardware. Thus far, a number of simpler
quantum games have been implemented in hardware, demonstrating future promise [20,33,39,44,60,82].

The speed with which new quantum technologies are emerging suggests that soon it would be usual
to take full advantage of quantum theory and, using quantum strategies, to beat an opposing player at
some realistic game that uses quantum technology [50]. Also, there are suggestions that quantum games
can potentially provide new insights into the rise of complexity and self-organization at the molecular
level where the rules are dictated by quantum mechanics [9,48].

In game theory, some of the simplest games to analyse are the bimatrix games. In the area of quantum
games, a well-known quantization scheme for bimatrix games was proposed by Eisert et al. [9]. In this
scheme, the players’ strategies or actions are particular local unitary transformations performed on an
initial maximally entangled state |ψi〉 in 2 ⊗ 2 Hilbert space. After the players’ actions, the quantum state
passes through an unentangling gate and thereafter is called the final state |ψf〉. This state is subsequently
measured using Stern–Gerlach type detectors generating four quantum probabilities [4]. Players’ pay-off
relations are expressed in terms of the pay-off entries of the corresponding bimatrix and the obtained
quantum probabilities. Experimental realizations of quantum games are described elsewhere [20,44,60].
The measurement basis for the final state |ψf〉 is defined [9,10] by associating pure classical strategies
of the players with the four basis vectors of the two-qubit quantum state. Players’ pay-off relations
contain four quantum probabilities obtained by projecting the final quantum state onto the basis vectors
and are expressed in terms of players’ local unitary transformations and the projection postulate of
quantum mechanics.

The consideration of four quantum probabilities in the players’ pay-off relations leads one to
ask whether the pay-off relations in the quantum game can be described as mixed-strategy pay-off
relations in the classical game. This is the case when quantum probabilities are factorizable and then
one can express quantum probabilities in terms of players’ mixed strategies. The relations describing
factorizability of quantum probabilities are a set of equations that link players’ mixed strategies to a
probability distribution on players’ pay-offs.

A set of quantum probabilities can be non-factorizable and thus cannot be obtained from the players’
mixed strategies. A quantum game can then be described as the game in which non-factorizable
probabilities are permitted. Approaching a quantum game from this perspective, this paper presents two
approaches in obtaining games with non-factorizable probabilities. In our first approach, factorizability
is controlled by an external parameter k ∈ [0, 1] in the sense that assigning k = 0 results in the factorizable
game, whereas assigning k �= 0 leads to a non-factorizable game. We then ask whether a general quantum
probability distribution can be described in this way. In our second approach, we reexpress the players’
pay-off relations in a form that allows us to obtain a non-factorizble game directly from the factorizable
game by defining a function of players’ strategies that satisfies certain constraints.

2. Two-player quantum games
Consider a symmetric bimatrix game [5–7]

Alice
S1
S2

Bob
S′

1 S′
2

(α,α) (β, γ )

(γ ,β) (δ, δ),
(2.1)
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where α, β, γ and δ are real numbers. Assume that Alice’s and Bob’s mixed strategies are p, q ∈ [0, 1],
respectively, at which their pay-offs can be written as

ΠA(p, q) = αpq + βp(1 − q) + γ (1 − p)q + δ(1 − p)(1 − q)

and ΠB(p, q) = αpq + γ p(1 − q) + β(1 − p)q + δ(1 − p)(1 − q).

}
(2.2)

A Nash equilibrium (NE) consists of the pair (p∗, q∗) of strategies such that no player has any motivation
to unilaterally deviate from it. The game’s Nash inequalities take the form

ΠA(p∗, q∗) −ΠA(p, q∗) ≥ 0 and ΠB(p∗, q∗) −ΠB(p∗, q) ≥ 0, (2.3)

which take the following form for the game defined by matrix (2.1):

[(α − β − γ + δ)q∗ + (β − δ)](p∗ − p) ≥ 0

and [(α − β − γ + δ)p∗ + (β − δ)](q∗ − q) ≥ 0,

}
(2.4)

that gives the classical mixed strategy description of the matrix game (2.1).
Now consider the game (2.1) when played in Eisert et al.’s quantization scheme [9,10]. The scheme

uses two qubits to play a quantum version of the game (2.1), whose quantum state is in 2 ⊗ 2-dimensional
Hilbert space. In view of the game (2.1), a measurement basis for quantum state of two qubits is chosen
as |S1S′

1〉, |S1S′
2〉, |S2S′

1〉, |S2S′
2〉. An entangled initial quantum state |ψi〉 is obtained by using a two-

qubit entangling gate Ĵ, i.e. |ψi〉 = Ĵ|S1S′
1〉, where Ĵ = exp{iγS2 ⊗ S′

2/2} and γ ∈ [0,π/2] is a measure of
the game’s entanglement. For a separable or product game γ = 0, whereas for a maximally entangled
game γ = π/2. The scheme considers the initial state being a maximally entangled state |ψi〉. Players
perform their local unitary transformations ÛA and ÛB from two sets of unitary transformations:

U(θ ) =

⎛
⎜⎜⎝

cos
(
θ

2

)
sin

(
θ

2

)

− sin
(
θ

2

)
cos

(
θ

2

)
⎞
⎟⎟⎠ (2.5)

and

U(θ ,φ) =

⎛
⎜⎜⎝

eiφ cos
(
θ

2

)
sin

(
θ

2

)

− sin
(
θ

2

)
e−iφ cos

(
θ

2

)
⎞
⎟⎟⎠ , (2.6)

where 0 ≤ θ ≤ π and 0 ≤ φ ≤ π/2. These actions change the initial maximally entangled state |ψi〉 to (ÛA ⊗
ÛB)Ĵ|S1S′

1〉 which then is passed through an untangling gate Ĵ† and the state of the game changes to the
final state, i.e. |ψf〉 = Ĵ†(ÛA ⊗ ÛB)Ĵ|S1S′

1〉. The state |ψf〉 is measured in the basis |S1S′
1〉, |S1S′

2〉, |S2S′
1〉,

|S2S′
2〉 and using the quantum probability rule, the players’ pay-offs are obtained as

ΠA(ÛA, ÛB) = α|〈S1S′
1 |ψf〉|2 + β|〈S1S′

2 |ψf〉|2 + γ |〈S2S′
1 |ψf〉|2 + δ|〈S2S′

2 |ψf〉|2

and ΠB(ÛA, ÛB) = α|〈S1S′
1 |ψf〉|2 + γ |〈S1S′

2 |ψf〉|2 + β|〈S2S′
1 |ψf〉|2 + δ|〈S2S′

2 |ψf〉|2.

⎫⎬
⎭ (2.7)

The NE for the quantum game consists of a pair (Û∗
A, Û∗

B) of local unitary transformations that are
obtained from the inequalities

ΠA(Û∗
A, Û∗

B) −ΠA(ÛA, Û∗
B) ≥ 0 and ΠB(Û∗

A, Û∗
B) −ΠB(Û∗

A, ÛB) ≥ 0. (2.8)

That is, the NE consists a pair of two-parameter unitary transformations (2.6), corresponding to the two
players, such that neither player is left with any motivation to deviate from it. For α = 3, β = 0, γ = 5 and
δ = 1, the matrix (2.1) gives the game of Prisoners’ Dilemma for which a Pareto-optimal NE is obtained
as Eisert et al. [9]

Q̂ = ÛA

(
0,
π

2

)
= ÛB

(
0,
π

2

)
(2.9)

at which the players’ pay-offs are ΠA(Q̂, Q̂) =ΠB(Q̂, Q̂) = 3. Thus, the quantum strategy Q̂ ∼ Û(0,π/2)
emerges as the new equilibrium, when both players have access to the two-parameter set (2.6) of unitary
2 ⊗ 2 operators.

Benjamin & Hayden [13] observed that when their two-parameter set is extended to include all local
unitary operations (i.e. all of SU(2)), the strategy Q̂ does not remain an equilibrium. They showed that in
the full space of deterministic quantum strategies there exists no equilibrium for the quantum Prisoners’
Dilemma. Also, they observed that the set (2.6) of two-parameter quantum strategies is not closed under
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composition, although this closure is the necessary requirement for any set of quantum strategies. It can
be explained as follows. Eisert et al. [9,10] permitted both players the same strategy set but introduced
an arbitrary constraint into that set. This amounts to permitting a certain strategy while forbidding the
logical counter strategy which one would intuitively expect to be equally allowed. Benjamin & Hayden
showed [13] that Q̂ emerges as the ideal strategy only because of restricting the strategy set arbitrarily.

Notwithstanding the above observations, we note that in the two-player quantum game, pairs of
unitary transformations are players’ strategies that are mapped to a set of four quantum probabilities
that are normalized to 1 and in terms of which the players’ pay-off relations are expressed. This mapping
is achieved via the quantum probability rule [4] that obtains a quantum probability by squaring the
modulus of the projections of the final quantum state to a basis state in the Hilbert space. This mapping
re-expresses the four quantum probabilities in terms of the pair of players’ unitary transformations.
This re-expression opens up the route to finding Nash equilibria of the game as pairs of unitary
transformations. In the following, we revise quantization of a two-player game, discuss a factorizable
game and present the two approaches that lead to obtaining a non-factorizable game.

3. Factorizability of a set of quantum probabilities
We note that the pay-off relations (2.7) can be written as

ΠA(ÛA, ÛB) = αε1 + βε2 + γ ε3 + δε4

and ΠB(ÛA, ÛB) = αε1 + γ ε2 + βε3 + δε4,

⎫⎬
⎭ (3.1)

where
ε1 = |〈S1S′

1 |ψf 〉|2, ε2 = |〈S1S′
2 |ψf〉|2

and ε3 = |〈S2S′
1 |ψf〉|2, ε4 = |〈S2S′

2 |ψf〉|2

⎫⎬
⎭ (3.2)

are four quantum probabilities obtained using the quantum probability rule, i.e. projecting the final
quantum state |ψf〉 of the game to the four basis vectors |S1S′

1〉, |S1S′
2〉, |S2S′

1〉, |S2S′
2〉. The probabilities εi

are normalized, i.e.
4∑

i=1

εi = 1. (3.3)

Comparing the pay-off relations in the classical game (2.2) and in the quantum game (3.1), we note that
the pay-off relations in the quantum game can be reduced to the pay-off relations in the classical game
when probabilities εi are factorizable. Probabilities εi are factorizable when for a given set of values
assigned in range [0, 1] to probabilities εi, we can find two probabilities p, q ∈ [0, 1] such that εi can be
written in terms of p and q as

ε1 = pq, ε2 = p(1 − q), ε3 = (1 − p)q and ε4 = (1 − p)(1 − q). (3.4)

That is, in the classical mixed-strategy version of the two-player game, the four probabilities εi appearing
in the pay-off relations (2.2) are re-expressed in terms of players’ strategic variables p and q via the
factorizability conditions (3.4). If this is the case for the probabilities εi, then we can associate the
probabilities p and q to the players Alice and Bob, respectively, so that the pay-off relations in the
quantum game (3.1) are interpreted as corresponding to a mixed-strategy classical game, i.e.

ΠA(ÛA, ÛB) =ΠA(p, q) and ΠB(ÛA, ÛB) =ΠB(p, q), (3.5)

with p and q satisfying the factorizability relations (3.4). In (3.4), εi represent not just a specific set of four
numbers in [0, 1] that add up to 1, but the entirety of such four numbers that can be generated by the
quantum mechanical set-up used for playing a quantum game. As it can be seen from the equation (3.1),
in Eisert et al.’s scheme, the full range of the players’ pay-offs become accessible by giving players access
to unitary transformations. In other words, a pair of unitary transformations results in a normalized
set of four probabilities and Nash inequalities lead us to obtaining a pair of unitary transformations as
an NE.

4. Games with non-factorizable probabilities
Quantum probabilities εi, however, may not be factorizable in the sense described by equation (3.4).
That is, the measurement stage of a quantum game can result in such probabilities εi (0 ≤ εi ≤ 1) that
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one cannot find p, q ∈ [0, 1] so that equations (3.4) are satisfied. Viewing the pay-off relations (3.1) from
this probabilistic viewpoint, it then seems natural to ask whether we can obtain the pay-offs (3.1) by
simply removing the factorizability relations (3.4), and if this is the case then what are the possibly new
outcomes of the game. A quantum game allows obtaining sets of non-factorizable probabilities, and in
this paper we look at the role of non-factorizable probabilities on the outcome of a game. This can also
be stated as follows. Considering equations (3.1) and (3.5), we can describe the factorizable game as the
one for which

ΠA(p, q) = αε1 + βε2 + γ ε3 + δε4 and ΠB(p, q) = αε1 + γ ε2 + βε3 + δε4, (4.1)

where Σ4
i=1εi = 1 and the probabilities εi are related to players’s strategies p and q via the factorizability

relations (3.4). In the following, we consider two approaches in obtaining non-factorizable probabilities.

4.1. The first approach
Our first approach considers an external parameter k that determines whether the probabilities εi
(0 ≤ i ≤ 4) are factorizable or not. For this, we consider the following probability distribution

ε1 = (2k − 1)2pq, ε2 = (1 − k)p(1 − q) + kq(1 − p)

and ε3 = (1 − k)q(1 − p) + kp(1 − q), ε4 = 4k(1 − k)pq + (1 − p)(1 − q).

}
(4.2)

It can be confirmed that for k in the range [0, 1], we have 0 ≤ εi ≤ 1 and that probabilities εi are normalized
according to the equation (3.3). When k = 0, the distribution (4.2) reduces to the factorizable distribution
of the equations (3.4). However, when k is non-zero, the probability distribution (4.2) is not factorizable.
Using the pay-off relations (4.1), we now obtain the pay-offs for Alice and Bob for the distribution (4.2) as

ΠA(p, q, k) = α(2k − 1)2pq + β[(1 − k)p(1 − q) + kq(1 − p)]

+ γ [(1 − k)q(1 − p) + kp(1 − q)] + δ[4k(1 − k)pq + (1 − p)(1 − q)]

and ΠB(p, q, k) = α(2k − 1)2pq + γ [(1 − k)p(1 − q) + kq(1 − p)]

+ β[(1 − k)q(1 − p) + kp(1 − q)] + δ[4k(1 − k)pq + (1 − p)(1 − q)].

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(4.3)

The NE strategy pair (p∗, q∗) is then obtained from the inequalities

{[α(1 − 2k)2 − β − γ + δ{1 + 4k(1 − k)}]q∗ + (β − δ) − k(β − γ )}(p∗ − p) ≥ 0

and {[α(1 − 2k)2 − β − γ + δ{1 + 4k(1 − k)}]p∗ + (β − δ) − k(β − γ )}(q∗ − q) ≥ 0.

⎫⎬
⎭ (4.4)

Now, for the Prisoners’ Dilemma game considered above, we have α = 3, β = 0, γ = 5 and δ = 1 and these
reduce the above NE conditions to

{−1 − q + k[5 − 8q(1 − k)]}(p∗ − p) ≥ 0

and {−1 − p + k[5 − 8p(1 − k)]}(q∗ − q) ≥ 0.

}
(4.5)

For k = 0, these relations give the NE in the classical factorizable game, i.e. (p∗, q∗) = (0, 0) at which the
players pay-offs are obtained as ΠA,B(p∗, q∗, k) =ΠA,B(0, 0, 0) = 1.

Now consider the case when k = 1 for which we find the NE being (p∗, q∗) = (1, 1) and the players’ pay-
offs are obtained as ΠA,B(p, q, k) =ΠA,B(1, 1, 1) = 3. These pay-offs are same as obtained in the maximally
entangled quantum game in Eisert et al.’s scheme [9] with both players playing the quantum strategy Q̂
defined in equation (2.9).

However, we note that the probability distribution in equation (4.2) is not as general as a
quantum probability distribution can be within a quantum game. This is because for (4.2) to be
a quantum probability distribution, it is required to obey only the normalization constraint (3.3).
Although the probability distribution (4.2) is normalized, it also obeys other restrictions because of its
particular form and the way it is defined. This can also be stated as follows. Whereas the probability
distribution (4.2) is normalized, not every normalized quantum probability distribution will have this
form. That is, there can be quantum probability distributions that cannot be written in the same
form as the distribution (4.2). However, in spite of these limitations, the probability distribution (4.2)
demonstrates the effect of a non-factorizable probability distribution on the outcome of a game. It
also produces the classical game as a special case. In the following, we present a second approach
that defines a probability distribution using a function of players’ strategies p and q that is subject to
certain constraints.



6

rsos.royalsocietypublishing.org
R.Soc.opensci.3:150477

................................................
4.2. The second approach
At this stage, we note that when εi are factorizable in the sense described by equations (3.4) that gives the
relationship between p, q and εi. Using these relations, the players’ strategies p and q can be expressed in
terms of probabilities εi as

p = ε1 + ε2 and q = ε1 + ε3, (4.6)

and using equations (3.2), we can write equations (4.6) as

p = |〈S1S′
1 |ψf〉|2 + |〈S1S′

2 |ψf〉|2

and q = |〈S1S′
1 |ψf〉|2 + |〈S2S′

1 |ψf〉|2.

⎫⎬
⎭ (4.7)

Knowing that p and q are the players’ strategies, and each player has the freedom to play whatever
she/he likes, the strategies p and q are considered to be independent of each other.

When quantum probabilities εi are factorizable in the sense described by equations (3.4), the pay-off
relations (3.1) can also be interpreted in terms of playing a game that involves tossing a pair of coins as
follows. Consider a pair of biased coins that are tossed together. Either coin can land in the head (H) or
the tail (T) state and for the pair we can define

ε1 = Pr(H, H), ε2 = Pr(H, T), ε3 = Pr(T, H) and ε4 = Pr(T, T) (4.8)

as being the probabilities of the coins landing in the (H, H), (H, T), (T, H), (T, T) states, respectively. Here,
for instance, ε2 = Pr(H, T) is the probability that the first coin (or Alice’s coin) lands in the H state whereas
the second coin (or Bob’s coin) lands in the T state. Now, referring to the equation (4.6), p can then be
interpreted as being the probability, in the joint toss of two coins, that the first coin lands in the H state
and, likewise, q can be interpreted as being the probability that the second coin lands in the H state.

However, we are interpreting p and q as being the players’ strategies which means that a player plays
his/her strategy by changing the bias of the coin to which he/she is given access to. Also, we note that,
for factorizable quantum probabilities, using equations (3.4) and (4.6), we can write

ε1 = (ε1 + ε2)(ε1 + ε3), ε2 = (ε1 + ε2)(1 − ε1 − ε3)

and ε3 = (1 − ε1 − ε2)(ε1 + ε3), ε4 = (1 − ε1 − ε2)(1 − ε1 − ε3).

}
(4.9)

We now suggest another approach in considering the players’ pay-offs (3.1) in the quantum game.
In view of the relations p = ε1 + ε2 and q = ε1 + ε3, and the normalization constraint Σ4

i=1εi = 1, we can
rewrite the pay-offs (3.1) as

ΠA(ÛA, ÛB) = αε1 + βε2 + γ ε3 + δε4

= ε1(α − β − γ + δ) + (β − δ)(ε1 + ε2) + (γ − δ)(ε1 + ε3) + δ

= ε1(α − β − γ + δ) + (β − δ)p + (γ − δ)q + δ

and ΠB(ÛA, ÛB) = αε1 + γ ε2 + βε3 + δε4

= ε1(α − β − γ + δ) + (γ − δ)p + (β − δ)q + δ.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(4.10)

We also note that the players’ pay-offs (2.2) in the factorizable game can be expressed as

ΠA(p, q) = αpq + βp(1 − q) + γ (1 − p)q + δ(1 − p)(1 − q)

= pq(α − β − γ + δ) + (β − δ)p + (γ − δ)q + δ

and ΠB(p, q) = αpq + γ p(1 − q) + β(1 − p)q + δ(1 − p)(1 − q)

= pq(α − β − γ + δ) + (γ − δ)p + (β − δ)q + δ.

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(4.11)

Comparing equations (4.11) and (4.10), we note that taking ε1 = pq makes the pay-offs (4.10)
equivalent to the pay-offs (4.11) in the factorizable game. That is, with players’ strategic variables
being p = ε1 + ε2 and q = ε1 + ε3 and ε1 = pq, the players’ pay-offs in the quantum game are reduced
to their pay-offs in the factorizable game. Also, the product ε1 = pq takes the pair (p, q) to the interval
[0, 1] and is responsible for reducing the right-hand sides of equations (4.10) to the right-hand sides of
equations (4.11).

This motivates considering ε1 as a function of the players’ independent strategic variables p and q,
i.e. ε1 = ε1(p, q). It is a function of the players’ strategic variables p and q that maps the pair (p, q) to the
interval [0, 1]. Taking ε1 = ε1(p, q) allows us to consider forms of the function ε1(p, q) that are different
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from the product pq. In turn, this permits departing from the factorizability relations (3.4) and thus from
the factorizable game.

We also note from equations (4.10) that the function ε1 connects the two players’ pay-offs together
and reminds us of the term γ representing the measure of entanglement in the players’ pay-off relations
within the quantum game that is played in Eisert et al.’s scheme. We write the pay-off relations (4.10) for
a non-factorizable game as

ΠA(p, q) = ε1(p, q)(α − β − γ + δ) + (β − δ)p + (γ − δ)q + δ

and ΠB(p, q) = ε1(p, q)(α − β − γ + δ) + (γ − δ)p + (β − δ)q + δ

}
(4.12)

and consider it being the defining pay-off relations for the non-factorizable game. Note that for the
quantum game the players’ strategies are unitary transformations ÛA and ÛB, whereas for the new game
defined by pay-off relations (4.12) the players’ strategies are p, q ∈ [0, 1]. Also, the two players’ pay-offs
are linked together via the function ε1 = ε1(p, q). The game defined by the pay-off relations (4.12) makes
no reference to the quantum operations and can thus simply be called a non-factorizable game or a game
that permits non-factorizable probabilities.

With equations (4.12) being the defining pay-off relations for our non-factorizable game, an immediate
question would be what are the restrictions on the type of functions ε1(p, q). To determine this, we note
that the permissible ranges of the players’ pay-offs in equations (4.12) and (3.1) must be identical. In view
of the right-hand sides of equations (3.1), we put equations (4.12) in the following form

ΠA(p, q) = αε1(p, q) + β[p − ε1(p, q)] + γ [q − ε1(p, q)] + δ[ε1(p, q) − (p + q) + 1]

and ΠB(p, q) = αε1(p, q) + γ [p − ε1(p, q)] + β[q − ε1(p, q)] + δ[ε1(p, q) − (p + q) + 1]

}
(4.13)

and for the right-hand sides of these equations to be identical to the right-hand sides of equations (3.1),
we require

ε1(p, q) ≤ p, ε1(p, q) ≤ q and ε1(p, q) ≤ p + q. (4.14)

Note that the right-hand sides of the pay-off relations (4.13) are equivalent to the right-hand sides
of the pay-off relations (3.1) in the quantum game. This can be confirmed as follows. Referring to
equations (4.12), we note that for given p, q ∈ [0, 1] as players’ independent strategies, the function ε1(p, q)
gives a value in [0, 1], the functions ε2(p, q) and ε3(p, q) can then be defined as

ε2(p, q) = p − ε1(p, q), ε3(p, q) = q − ε1(p, q)

and ε4(p, q) = 1 − [(p + q) − ε1(p, q)].

}
(4.15)

When the restrictions (4.14) hold, the functions ε2(p, q), ε3(p, q) and ε4(p, q) produce values within the
range [0, 1]. Of course, the function ε1(p, q) = pq, which results in the factorizable game, satisfies these
requirements. In view of the restrictions (4.14), and a non-factorizable game for which ε1(p, q) �= pq, we
require the function ε1(p, q) to be restricted by the following condition:

ε1(p, q) ≤ pq. (4.16)

Examples of the functions that satisfy this requirement include ε1(p, q) = (pq)2 and ε1(p, q) = p2q3, among
others.

Note that, in view of (4.14), the range of function ε1(p, q) and the values assigned to p and q, as being
players’ strategies, are in the interval [0, 1]. In this case, equations (4.15) generate values for ε2(p, q),
ε3(p, q) and ε4(p, q) in the range [0, 1]. Also, equations (4.15) show that

∑4
i=1 εi(p, q) = 1, and thus εi(p, q)

are probabilities for 1 ≤ i ≤ 4. The converse is also true. That is, for given values for four normalized
probabilities εi (1 ≤ i ≤ 4), using equation (4.6) we can determine values for p and q as being p = ε1 + ε2
and q = ε1 + ε3.

4.2.1. Nash equilibria for the game with non-factorizable probabilities

The pair of strategies (p∗, q∗) defining Nash equilibria are obtained from the inequalities

ΠA(p∗, q∗) −ΠA(p, q∗) ≥ 0 and ΠB(p∗, q∗) −ΠB(p∗, q) ≥ 0, (4.17)

which, for the game (4.12), can be written as

ΠA(p∗, q∗) −ΠA(p, q∗) = [ε1(p∗, q∗) − ε1(p, q∗)](α − β − γ + δ) + (p∗ − p)(β − δ) ≥ 0

and ΠB(p∗, q∗) −ΠB(p∗, q) = [ε1(p∗, q∗) − ε1(p∗, q)](α − β − γ + δ) + (q∗ − q)(β − δ) ≥ 0.

}
(4.18)
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For ε1(p, q) = pq these equations are reduced to equations (2.4). For ε1(p, q) = p2q2, the inequalities (4.18)
give

ΠA(p∗, q∗) −ΠA(p, q∗) = (p∗ − p)[q∗2(p∗ + p)(α − β − γ + δ) + (β − δ)] ≥ 0

and ΠB(p∗, q∗) −ΠB(p∗, q) = (q∗ − q)[p∗2(q∗ + q)(α − β − γ + δ) + (β − δ)] ≥ 0,

and, likewise, for ε1(p, q) = p2q3 the inequalities (4.18) give

ΠA(p∗, q∗) −ΠA(p, q∗) = (p∗ − p)[q∗3(p∗ + p)(α − β − γ + δ) + (β − δ)] ≥ 0

and ΠB(p∗, q∗) −ΠB(p∗, q) = (q∗ − q)[p∗2(q∗2 + qq∗ + q2)(α − β − γ + δ) + (β − δ)] ≥ 0.

⎫⎬
⎭ (4.19)

Now consider the situation when the strategy pair (p∗, q∗) = (1, 1) exists as an NE. As it is apparent from
equations (2.4) that for ε1(p, q) = pq, the pair (p∗, q∗) = (1, 1) exists as NE when (α − γ ) ≥ 0. For ε1(p, q) =
p2q2 and the pair (p∗, q∗) = (1, 1), we obtain

ΠA(1, 1) −ΠA(p, 1) = (1 − p)[(α − γ )(1 + p) + p(−β + δ)] ≥ 0

and ΠB(1, 1) −ΠB(1, q) = (1 − q)[(α − γ )(1 + q) + q(−β + δ)] ≥ 0

}
(4.20)

and thus (p∗, q∗) = (1, 1) exists as an NE when, in addition to (α − γ ) ≥ 0, we also have (δ − β) ≥ 0. For
ε1(p, q) = p2q3 and the same pair (p∗, q∗) = (1, 1), we obtain

ΠA(1, 1) −ΠA(p, 1) = (1 − p)[(α − γ ) + p(α − β − γ + δ)] ≥ 0

and ΠB(1, 1) −ΠB(1, q) = (1 − q)[(α − γ ) + (q + q2)(α − β − γ + δ)] ≥ 0.

⎫⎬
⎭ (4.21)

That is, when both (α − γ ) ≥ 0 and (δ − β) ≥ 0 are true, we have the strategy pair (p∗, q∗) = (1, 1) existing
as an NE for both the cases, i.e. when ε1(p, q) = p2q2 and p2q3.

In this approach in extending a game from its classical mixed-strategy version to a non-classical
version, the players’ strategies involve one parameter for each, i.e. p and q ∈ [0, 1]. We now refer to Eisert
et al.’s quantum version of the same game [9,10] in which players’ pay-off relations in the quantized
version of the game involve one- and two-parameter strategy sets (2.5) and (2.6). As in our non-classical
extension of a classical game the players have one-parameter strategy sets, it is appropriate to compare
our non-classical extension above to the quantum version of Eisert et al. [9,10], when it involves one-
parameter strategy sets. To achieve this, and with reference to the game (2.1), we recast the quantum
game of Eisert et al. with one-parameter strategy set in the form of the non-classical game above. From
Eisert et al. [10], we note that the players’ pay-offs for one-parameter strategy set are

ΠA(θA, θB) = α

∣∣∣∣cos
(
θA

2

)
cos

(
θB

2

)∣∣∣∣2 + β

∣∣∣∣sin
(
θB

2

)
cos

(
θA

2

)∣∣∣∣2 + γ

∣∣∣∣cos
(
θB

2

)
sin

(
θA

2

)∣∣∣∣2

+ δ

∣∣∣∣sin
(
θA

2

)
sin

(
θB

2

)∣∣∣∣2 (4.22)

and

ΠA(θA, θB) = α

∣∣∣∣cos
(
θA

2

)
cos

(
θB

2

)∣∣∣∣
2

+ γ

∣∣∣∣sin
(
θB

2

)
cos

(
θA

2

)∣∣∣∣
2

+ β

∣∣∣∣cos
(
θB

2

)
sin

(
θA

2

)∣∣∣∣
2

+ δ

∣∣∣∣sin
(
θA

2

)
sin

(
θB

2

)∣∣∣∣
2

. (4.23)

Comparing equations (4.13) with equations (4.22), (4.23) and noting that 0 ≤ θ ≤ π , whereas p, q ∈ [0, 1],
we define p = θA/π , q = θB/π and

ε1(p, q) =
∣∣∣∣cos

(
θA

2

)
cos

(
θB

2

)∣∣∣∣2 , p − ε1(p, q) =
∣∣∣∣sin

(
θB

2

)
cos

(
θA

2

)∣∣∣∣2 ,

q − ε1(p, q) =
∣∣∣∣cos

(
θB

2

)
sin

(
θA

2

)∣∣∣∣2 , ε1(p, q) − (p + q) + 1 =
∣∣∣∣sin

(
θA

2

)
sin

(
θB

2

)∣∣∣∣2 ,

from which one obtains

p = cos2
(
θA

2

)
, q = cos2

(
θB

2

)
, ε1(p, q) = pq (4.24)

and that gives us the factorizable game as discussed just before the equation (4.12). This shows that Eisert
et al.’s quantum game with one-parameter strategy set is identical to the classical factorizable game.
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For the same quantum game with two-parameter strategy set (2.6), the players’ pay-offs are obtained as

ΠA(θA,φA; θB,φB) = α

∣∣∣∣cos(φA + φB) cos
(
θA

2

)
cos

(
θB

2

)∣∣∣∣2

+ β

∣∣∣∣cos(φA) cos
(
θA

2

)
sin

(
θB

2

)
− sin(φB) sin

(
θA

2

)
cos

(
θB

2

)∣∣∣∣2

+ γ

∣∣∣∣sin(φA) cos
(
θA

2

)
sin

(
θB

2

)
− cos(φB) sin

(
θA

2

)
cos

(
θB

2

)∣∣∣∣2

+ δ

∣∣∣∣sin(φA + φB) cos
(
θA

2

)
cos

(
θB

2

)
+ sin

(
θA

2

)
sin

(
θB

2

)∣∣∣∣2 . (4.25)

As was the case for one-parameter strategy set, we now compare equations (4.13) with equations (4.25)
and (4.23). Recall that 0 ≤ θ ≤ π and 0 ≤ φ ≤ π/2, whereas p, q ∈ [0, 1] to obtain

ε1(p, q) =
∣∣∣∣cos(φA + φB) cos

(
θA

2

)
cos

(
θB

2

)∣∣∣∣2 ,

p − ε1(p, q) =
∣∣∣∣cos(φA) cos

(
θA

2

)
sin

(
θB

2

)
− sin(φB) sin

(
θA

2

)
cos

(
θB

2

)∣∣∣∣
2

,

q − ε1(p, q) =
∣∣∣∣sin(φA) cos

(
θA

2

)
sin

(
θB

2

)
− cos(φB) sin

(
θA

2

)
cos

(
θB

2

)∣∣∣∣
2

and ε1(p, q) − (p + q) + 1 =
∣∣∣∣sin(φA + φB) cos

(
θA

2

)
cos

(
θB

2

)
+ sin

(
θA

2

)
sin

(
θB

2

)∣∣∣∣2 ,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(4.26)

and using these equations, p and q can then be expressed in terms of θA,φA, θB,φB, i.e.

p = p(θA,φA; θB,φB) and q = q(θA,φA; θB,φB). (4.27)

That is, the two-parameter pay-off relations can be expressed in the form of (4.13) but this comes at the
price that the players’ strategic variables p and q are not local anymore. For the quantum game with a
one-parameter set of strategies, this is indeed the case as we have p = p(θA,φA) and q = q(θA,φA).

5. Conclusion
We suggest a direct route to obtaining a non-factorizable game from a classical factorizable game while
taking into consideration the quantum probabilities and the players’ strategic variables. We explore
how a quantum game can be considered as a non-factorizable game by considering the scheme of
Eisert et al. for quantization of a bimatrix game that involves four quantum probabilities. When these
probabilities are factorizable in a specific sense, as described by equations (3.4), the quantum game attains
the interpretation of a mixed-strategy classical game. This paper presents two approaches in obtaining
bimatrix games with non-factorizable probabilities. Our first approach discusses a non-factorizable
probability distribution in which the non-factorizability is controlled by an external parameter k.

We note that the relations p = ε1 + ε2 and q = ε1 + ε3 as obtained from the factorizability
constraints (3.4) are apparently the simplest expressions connecting the players’ strategies p and q to
the quantum probabilities εi (1 ≤ i ≤ 4). However, this does not mean that these are the only possible
expressions that are consistent with the factorizability constraints (3.4). There can be other possible cases,
for instance, when p = p(εi) and q = q(εi), i.e. both p and q are functions of all four quantum probabilities
εi (1 ≤ i ≤ 4). In such a case, the factorizability constraints will take the following form

ε1 = p(εi)q(εi), ε2 = p(εi)[1 − q(εi)], ε3 = [1 − p(εi)]q(εi)

and ε4 = [1 − p(εi)][1 − q(εi)]

}
(5.1)

and, depending on how the functions p = p(εi) and q = q(εi) are defined, the analysis will lead
to a different outcome of the quantum game. Essentially, in this paper we use the factorizability
constraints (3.4) to obtain such functions that express players’ strategies in terms of the probabilities
εi; there can be more than one possible way of doing that and each way has to respect the requirement
that when εi are factorizable, now in the sense of equations (5.1), the quantum game reduces itself to the
classical mixed-strategy game.
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This paper addresses several questions relevant to the quantization scheme proposed by Eisert

et al. in 1999. This scheme motivated other quantization schemes and has been the basis of a large
number of research articles that have followed since then along this line of research. By systematically
discussing the structure of the pay-off relations obtained in this scheme, and its relation to the
corresponding classical mixed-strategy factorizable game, this paper presents an understanding of the
role of quantum probabilities, factorizability of a probability distribution, and the nature of the players’
strategic variables. We provide a perspective by which a non-factorizble game is obtained directly from a
classical factorizable game by defining a function ε1(p, q) that satisfyies certain constraints. The quantum
game of Eisert et al. involving one parameter strategy set is explained as the classical factorizable game.
We then study functions ε1(p, q) = (pq)2 and ε1(p, q) = p2q3 that satisfy these constraints and lead to non-
factorizable games. We determine the corresponding Nash equlibria. We then ask whether the quantum
game with two-parameter set of strategies can be considered as a non-factorizable game for a particular
choice of the function ε1(p, q). We find that this can be achieved but it comes at a significant cost that the
players’ strategic variables p and q do not remain local anymore. This is indeed the case for the quantum
game with one-parameter set of strategies for which the players’ strategic variables p and q are definable
in terms of local variables, i.e. p = p(θA,φA) and q = q(θA,φA).
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