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The quark rearrangement model for baryon-antibaryon annihilation and reproduction (BB̄ ↔ 3M)—
incorporated in the Parton-Hadron-String Dynamics (PHSD) transport approach—is extended to the strangeness
sector. A derivation of the transition probabilities for the three-body processes is presented and a strangeness
suppression factor for the invariant matrix element squared is introduced to account for the higher mass of the
strange quark compared to the light up and down quarks. In simulations of the baryon-antibaryon annihilation and
reformation in a box with periodic boundary conditions, we demonstrate that our numerical implementation fulfills
detailed balance on a channel-by-channel basis for more than 2000 individual 2 ↔ 3 channels. Furthermore, we
study central Pb+Pb collisions within PHSD from 11.7A GeV to 158A GeV and investigate the impact of the
additionally implemented reaction channels in the strangeness sector. We find that the new reaction channels have
a visible impact essentially only on the rapidity spectra of antibaryons. The spectra with the additional channels
in the strangeness sector are closer to the experimental data than without for all antihyperons. Due to the chemical
redistribution between baryons-antibaryons and mesons we find a slightly larger production of antiprotons thus
moderately overestimating the available experimental data. We additionally address the question if the antibaryon
spectra (with strangeness) from central heavy-ion reactions at these energies provide further information on
the issue of chiral symmetry restoration and deconfinement. However, by comparing transport results with and
without partonic phase as well as including and excluding effects from chiral symmetry restoration we find no
convincing signals in the strange antibaryon sector for either transition due to the strong final-state interactions.
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I. INTRODUCTION

Lattice quantum-chromo-dynamics (lQCD) calculations
suggest that at vanishing baryon chemical potential (μB =
0) there is a crossover phase transition from hadronic to
partonic degrees of freedom [1–6] for the deconfinement phase
transition as well as for the restoration of chiral symmetry. This
leaves the open question whether or not a first-order phase
transition might occur at finite baryon chemical potential im-
plying a critical endpoint in the QCD phase diagram [7]. Since
lattice calculations so far suffer from the fermion-sign problem,
model-independent information on the QCD phase diagram
can presently only be obtained from experimental data. It is
thus expected that a thorough study of this issue with relativistic
heavy-ion collisions (HIC) of different system sizes and at
various bombarding energies will provide further information.
However, the problem here is the model dependence in the
interpretation of the measured particle yields and their relation
to the properties of the fireball created in the collision [8].

Among the many observables suggested, the strangeness
enhancement was already proposed in the 1980s [9] as a probe
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of the quark-gluon-plasma (QGP). Particularly hyperons and
antihyperons should provide an ideal sample for QGP fireballs
since in the initial colliding nuclei no net strange quarks are
present and a major part of the produced ss̄ pairs should be
produced by gluon fusion processes in the QGP [10]. However,
due to a partial restoration of chiral symmetry close to the
hadron-parton transition the ss̄ production threshold is lowered
in a dense hadronic medium and strangeness enhancement
might also signal chiral symmetry restoration rather than de-
confinement as suggested in Refs. [11–14]. We note that quark
confinement and chiral symmetry breaking are not intimately
connected at finite μB [15]. The multistrange baryons and
antibaryons are expected to be more sensitive to the QGP than
single-strange baryons or mesons since multistrange baryons,
and particularly multistrange antibaryons, are suppressed by
high hadronic energy thresholds as well as by long timescales
for multi-step processes in a purely hadronic phase [11,16,17].
This, however, holds only for two-body production channels
whereas three-body channels (e.g., by three vector mesons)
do not suffer from severe energy thresholds. Accordingly, the
reaction dynamics for baryon-antibaryon (BB̄) annihilation
and recreation in the hadronic phase have to be under control
before solid conclusions can be drawn on the boundary in the
QCD phase diagram or on freeze-out conditions in relativistic
heavy-ion reactions. Furthermore, all strangeness exchange
channels in the hadronic phase have to be taken into account
as pointed out in Refs. [18,19].

A first step in this direction has been taken in Ref. [20]
where the three-body fusion of nonstrange pseudoscalar and
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vector mesons to BB̄ pairs has been incorporated in the
Hadron-String Dynamics (HSD) transport approach [21] that
preferentially describes the hadronic phase. Here the matrix
element squared has been extracted from the experimental data
on pp̄ annihilation and the three-body meson channels have
been determined on the basis of detailed balance. It was found
that in central collisions of heavy nuclei the annihilation of
antinucleons is almost compensated by the inverse recreation
channels. If this holds true also in the strangeness sector is
presently unknown. Furthermore, the former HSD calculations
did not incorporate a deconfinement phase transition to the
QGP nor effects from chiral symmetry restoration and thus
did not allow to draw any conclusions on the phase boundary
of QCD.

On the other hand, the HSD transport approach has been
further extended in the last 15 years (a) to the formation of
an initial partonic phase with quark and gluon quasiparticle
properties that are fitted to lattice QCD results in thermody-
namic equilibrium, (b) to a dynamical hadronization scheme
on the basis of covariant transition rates, (c) to incorporate
further hadronic reactions in the strangeness sector with full
baryon-antibaryon symmetry, and (d) to employ essential
aspects of chiral symmetry restoration in the hadronic phase
[14]. Whereas the latter developments are important for the
lower Super Proton Synchrotron (SPS) energy regime to
account for the strangeness enhancement seen experimentally
in heavy-ion collisions, the formation of a partonic phase is
mandatory to understand the physics at higher SPS, Relativistic
Heavy-Ion Collider (RHIC) and Large Hadron Collider (LHC)
energies. Since multistrange baryons and antibaryons at top
SPS energies no longer stem from string fragmentation (as
in HSD [20]) but preferentially from hadronization at energy
densities around 0.5 GeV/fm3 the issue of three-meson fusion
reactions for the formation of baryon-antibaryon (BB̄) pairs
and the annihilation of BB̄ pairs to multiple mesons has to be
reexamined.

In this work we will present, furthermore, the exten-
sion of the quark rearrangement model (QRM) for baryon-
antibaryon annihilation and recreation to the strangeness and
antistrangeness sector [briefly denoted by SU(3)]. We will
show the impact of these additional reaction channels for
heavy-ion collisions using the Parton-Hadron-String Dynam-
ics (PHSD) transport approach to simulate central Pb+Pb
collisions in the bombarding energy regime from 11.7A GeV to
158A GeV. The PHSD [22–24], which incorporates in addition
to HSD a transition to the partonic phase as well as dynamical
hadronization, reproduces many observables for p+p, p+A,
and A+A collisions ranging from SPS up to Large Hadron
Collider (LHC) energies [14,25–27]. Since PHSD is found to
also well describe the spectra of strange mesons and baryons
from heavy-ion collisions from 2A GeV up to RHIC and
LHC energies when incorporating aspects of chiral symmetry
restoration in the hadronic phase [14], its performance in the
strange antibaryon sector will be tested using the extended
QRM and also lead to predictions for rare multistrange baryons
and antibaryons in the lower energy regime where experimental
data are scarce or lacking at all.

This work is organized as follows: In Sec. II we recapit-
ulate shortly the ingredients of PHSD, while in Sec. III we

briefly recall and motivate the quark rearrangement model for
baryon-antibaryon annihilation and recreation (BB̄ ↔ 3M).
We extend the QRM to the strangeness sector and introduce
a strange quark suppression factor for the transition matrix
element squared in the strangeness sector. After deriving the
transition probabilities on the basis of detailed balance, we
present in Sec. IV the validity of our numerical implemen-
tation for detailed balance in case of BB̄ ↔ 3M reactions,
including the strangeness sector within simulations in a finite
box with periodic boundary conditions. In Sec. V we present
results for antibaryons and multistrange baryons from PHSD
simulations for central Pb+Pb collisions in the SPS energy
regime and study the impact of chiral symmetry restoration
and deconfinement. We will compare simulations using the
baryon-antibaryon annihilation and formation with and with-
out the strangeness sector with each other and to available
experimental data for rapidity and transverse mass spectra.
Furthermore, we compare the PHSD results for central Pb+Pb
reactions at 40A GeV with those from the Ultra-relativistic
Quantum Molecular Dynamics model (UrQMD) [28] and the
three-fluid dynamics model (3FD) using a two-phase equation
of state [29]. We conclude our study with a summary in Sec. VI
while more technical details are described in the appendices.

II. THE PHSD TRANSPORT APPROACH

The PHSD is a microscopic covariant transport approach for
strongly interacting systems which is based on Kadanoff-Baym
equations [30–33] for the Green’s functions in phase-space rep-
resentation in first-order gradient expansion [34,35]. Due to its
basis on the Kadanoff-Baym equations it can describe systems
in and out of equilibrium and goes beyond the quasiparticle
approximation by incorporating dynamical spectral functions
for the partons. It is capable of describing the equilibration
process of systems which are far out of equilibrium to the
correct equilibrium state [36]. The PHSD incorporates a
partonic as well as a hadronic phase to describe all stages of a
relativistic heavy-ion collision with transitions from strings to
dynamical partons as well as dynamical hadronization. In the
hadronic phase high-energy resonance decays are described
by multiparticle string decays. PHSD is capable of simulating
the full-time evolution of a relativistic heavy-ion collision—
from impinging nuclei in their “ground states” to the final
hadronic particles—ranging from SchwerIonen-Synchroton
(SIS), Alternating Gradient Synchrotron (AGS) over Facility
for Antiproton and Ion Research (FAIR)/Nuclotron-based Ion
Collider fAcility (NICA) up to Relativistic Heavy-Ion Collider
(RHIC) and Large Hadron Collider (LHC) energies and is able
to reproduce a large number of observables in these energy
regimes for p+p, p+A, and A+A reactions [14,25].

The properties of the off-shell partonic degrees-of-freedom
are determined by the Dynamical Quasi-Particle Model
(DQPM) [37,38] which provides the masses, widths, and spec-
tral functions of the dynamical gluons and quarks/antiquarks
[39,40]. The (essentially three) parameters of the DQPM are
chosen to reproduce the lQCD equation-of-state at vanishing
baryon chemical potential. It has been shown that using PHSD
in a box with periodic boundary conditions reproduces the
lQCD results for transport coefficients, such as the shear and
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bulk viscosity as well as the electric conductivity for the
partonic phase [41–43].

In the PHSD simulation of a nucleus-nucleus collision the
primary hard nucleon-nucleon scatterings produce strings that
are color-singlet states described by the FRITIOF Lund model
[44]. As the strings decay they produce “pre-hadrons” that
have a formation time of τf ≈ 0.8 fm while “leading hadrons”,
which originate from the string ends, may interact instantly
without formation time but with reduced cross-sections in line
with the constituent quark model [21].

If the local energy density ε is above the critical value
of εc ≈ 0.5 GeV/fm3, as provided by lQCD calculations,
the unformed hadrons dissolve into dynamical quarks with
properties defined by the DQPM at given energy density.
In the partonic phase these partons propagate in the scalar
self-generated mean-field potential and scatter with each other
with cross sections extracted from the dynamical widths of
partons. The expanding system then leads to a decreasing local
energy density until it is close to or below the critical value
εc. At this point the partonic degrees-of-freedom hadronize to
colorless off-shell mesons and baryons by the fusion of massive
quark-antiquark pairs or the fusion of three quarks (antiquarks)
conserving energy, three-momentum and quantum numbers in
each event [22]. In the hadronic phase—as found in the corona
and at late reaction times—the hadrons interact with each other
in elastic and inelastic collisions with cross sections taken from
experimental data or evaluated within effective hadronic La-
grangian models. The detailed balance relation for each reac-
tion channel is incorporated and ensures the correct backward
reaction rates. In particular the strangeness exchange reactions
are included in meson-baryon/antibaryon, baryon-baryon, and
antibaryon-antibaryon collisions following Refs. [45–47]. Fur-
thermore, retarded electromagnetic fields as generated by the
electric charge currents (from charged hadrons and quarks) are
incorporated [48].

III. QUARK REARRANGEMENT MODEL FOR B + B̄
PRODUCTION AND ANNIHILATION

In this section we present the quark rearrangement model
and the most relevant equations for the two- and three-body
scattering rates. An extensive description for the invariant
reaction rates for general particle number changing processes
as well as the motivation for the quark rearrangement model is
given in Ref. [20].

A. Concept

As discussed in Ref. [20] one experimentally finds a
dominant annihilation of pp̄ into 5 pions at invariant energies
2.3 GeV � √

s � 4 GeV; see Fig. 1. The final number of 5
pions may be interpreted as an initial annihilation into πρρ
with the ρ mesons decaying subsequently into two pions each.
The channel ππρ then leads to 4 final pions, the channel
πωρ to 6 final pions, the channel ρωρ to 7 final pions,
etc. Accordingly, the baryon-antibaryon annihilation in the
first step is a two-to-three reaction with a conserved number
of quarks and antiquarks. This is the basic assumption of
the quark rearrangement model which is also illustrated in

FIG. 1. Distribution in the final number of pions P (Nπ ) for pp̄

annihilation at invariant energies 2.3 GeV � √
s � 4 GeV from the

QRP (short lines). The solid line is a Gaussian parametrization fitted
to the experimental data. The figure is taken from Ref. [20].

Fig. 2. The annihilation reaction pp̄ → πρρ is the dominant
process in pp̄ annihilation for invariant masses below 4 GeV,
typical for the hadronic phase of a heavy-ion collision. By
allowing the mesons Mi to be any member of the 0− or 1−
nonets one can describe an arbitrary BB̄ annihilation and
recreation by rearranging the quark and antiquark content.
An implementation of baryon-antibaryon annihilation in such
a manner misses the annihilation into one or two mesons,
however, higher numbers of final mesons are implemented
through the subsequent decay channels. This approach gives a
realistic description for pp̄ annihilation and we assume that for
other baryon-antibaryon pairs than pp̄ a similar annihilation
pattern holds. Since there are no measurements of annihilation
cross sections other than pn̄ and pp̄ this is our best guess which
might be falsified by experiment.

B. Covariant transition rates

The quark rearrangement model only contains reactions of
the kind 2 ↔ 3. The detailed balance based Lorentz invariant
on-shell collision rate for the reaction BB̄ → 3M in a volume

FIG. 2. Illustration of the quark rearrangement model for a gen-
eral baryon antibaryon pair BB̄ annihilating into three mesons M and
vice versa. Here the meson Mi may be any of the 0− or 1− nonets.
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element of size dV and time-step size dt is written as [20]

dNcoll[BB̄ → 3mesons]

dt dV

=
∑

c

∑
c′

1

(2π )6

∫
d3p1

2E1

d3p2

2E2
W2,3(

√
s)

×R3(p1 + p2; c)Nc
finf1(x,p1)f2(x,p2). (1)

In Eq. (1) c′ denotes all BB̄ pairs with the properties c′ =
(mc′

1 ,mc′
2 ; νc′

); c are all the possible meson channels with
c = (mc

3,m
c
4,m

c
5; λc), with m being the masses of the respective

particles, and ν and λ the quantum numbers signifying the
channel (charge, parity, spin, and strangeness). We assume
that the transition matrix element squared W2,3 does not
significantly depend on the outgoing momenta and just on the
invariant mass of the reaction, which holds approximately true
for pp̄ as we will see later. A formulation based on the matrix
element will ensure detailed balance. The on-shell n-body
phase-space integral is defined by

Rn(P ; m1, . . . ,mn) =
(

1

(2π )3

)n ∫ n∏
k=1

d3pk

2Ek

(2π )4

× δ4

⎛
⎝P −

n∑
j=1

pj

⎞
⎠ (2)

and in the case of a constant transition matrix element dom-
inates the interaction rate of the system. The factor Nc

fin is
the multiplicity of the meson triple c and results from the
summation over the spin s and possible isospin projections Fiso

compatible with charge conservation of the meson channel c:

Nc
fin = (2s3 + 1)(2s4 + 1)(2s5 + 1)

Fiso

Nid!
. (3)

The division by Nid!, with Nid denoting the number of iden-
tical mesons, ensures that each charge configuration is only
considered once for a given meson triple. The functions f are
the distribution functions of the BB̄ pair in momentum and
coordinate space. When looking at a specific BB̄ pair one has
to make sure that only meson channels are considered which
conserve charge, energy and parity. The probability of this
specific BB̄ pair c′ to annihilate into any of these possible
meson channels c is related to the total annihilation cross
section of the BB̄-pair σ c′

ann [49]:

P c′
totdV

dt
= 1

4E1E2

∑
c

W2,3(
√

s)R3(p1 + p2; c)Nc
fin

= vrelσ
c′
ann(

√
s), (4)

vrel =
√

λ
(
s,m2

1,m
2
2

)
2E1E2

; λ(a,b,c) = (a − b − c)2 − 4bc,

(5)

where dV and dt are taken finite. The probability for a specific
final state P̃ c′→c in case of an annihilation is then given by the
available phase space and the multiplicity of all possible meson
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FIG. 3. pp̄ annihilation cross section as a function of momentum
in the laboratory Plab. The data points are taken from Ref. [51] and
the solid line is a fit by the function 50 mb/vrel with vrel denoting the
relative velocity in the laboratory system Eq. (5).

channels c:

P̃ c′→c = N3(c,c′,
√

s)R3(p1 + p2; c)Nc
fin, (6)

with N−1
3 (c,c′,

√
s) =

∑
c

R3(p1 + p2; c)Nc
fin. (7)

In a similar manner one finds for the probability of a specific
meson channel c fusing together and forming a specific BB̄
pair c′,

P c→c′
dV 2

dt
= 1

4E3E4E5
σ c′

ann(
√

s)N3(c,c′,
√

s)

× λ
(
s,m2

1,m
2
2

)
8πs

Nc′
B , (8)

with Nc′
B = (2s1 + 1)(2s2 + 1) denoting the multiplicity of the

BB̄ pair. A more detailed derivation of these formulas is given
in Appendix A.

C. Annihilation cross sections

For the calculation of actual collision probabilities, Eqs. (4)
and (8), we are still missing the cross sections. As already
mentioned above we assume the cross sections to depend
only on the invariant energy, not the outgoing momenta.
This assumption is approximately fulfilled for pp̄ and pn̄
annihilation, see Fig. 3. Other channels have not been measured
so far. Since there are no experimental data available we assume
a similar behavior for different spin combinations like p�̄.

In this work we investigate in particular the strangeness sec-
tor. We model the cross sections of particles with strangeness
by

σ c′
ann(

√
s) = σpp̄

annλ
ς+ς̄ , (9)

where ς and ς̄ are the number of strange and antistrange
quarks in the BB̄ pair c′ and λ ∈ [0,1] is a factor suppressing
the transition matrix element for particles taking part in the
quark rearrangement model and effectively suppressing the
cross section. This parametrization is motivated by PYTHIA
[50] simulations where one sees a similar suppression for
particles with strangeness compared to non-strange particles at
the same energy above threshold. In the final implementation in
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PHSD the suppression factor has the value λ = 0.5, which is in
rough agreement with the PYTHIA simulations embedded in
PHSD. We choose a dependence on not just the net strangeness
S but the sum of strange and antistrange quarks ς̄ + ς due
to their higher mass and a subsequent suppression of the
rearrangement. The implementation with the strangeness |S| =
|ς̄ − ς | instead of ς̄ + ς has no practical influence on the
final results in case of relativistic heavy-ion collisions (cf.
Appendix E).

IV. SIMULATIONS IN A FINITE BOX

This section addresses the implementation of the 2 ↔ 3
reactions formulated above in PHSD and checks the con-
sistency of the numerical implementation. We use transport
simulations in a box with periodic boundary conditions to
investigate the behavior of the quark rearrangement model
in equilibrium. We recall that in equilibrium—according to
detailed balance—the reaction rate for BB̄ → 3M should be
the same as for 3M → BB̄. Furthermore, for a consistent
implementation detailed balance should not only be fulfilled
for the sum of all reaction channels but on a channel by channel
basis. In the box simulations only the BB̄ ↔ 3M reactions
are considered now and all particles are taken as stable such
that no decays occur. The particles incorporated are the 0−,1−
meson nonets, the 1/2+ baryon octet, and the 3/2+ baryon
decuplet. Additionally, we consider N(1440) and N(1535)
baryonic resonances. Furthermore, we take into account the
strangeness content of η and φ with 50% and 83.1% ss̄ content,
respectively. With this the number of possible mass channels
amounts to more than 2000. Hence, an initialization with every
possible channel is not feasible. Therefore, we look at systems
which are initialized by a single type of baryon and antibaryon
adding up to 100 systems for the consistency check. The box
simulations have the following initial conditions:

(i) Box volume lies around 18000 fm3 with periodic
boundary conditions

(ii) All simulations have the same energy density ε =
0.4 GeV/fm3 with 10% of the energy distributed to
kinetic energy

(iii) The ratio between baryons and antibaryons is set to 2:1
and the net baryon density amounts to ρB ≈ 0.2 fm−3

(iv) The initial momentum distribution is of Boltzmann-
shape

(v) For the box simulations a suppression of channels
including strangeness is neglected.

Before the actual calculations the three-body phase-space
integrals R3 have been calculated and fitted by proper func-
tionals to save enormous CPU time. In detail, the three-body
phase-space integrals R3, depending on invariant energy and
three masses mi ,

R3(
√

s; m1,m2,m3) =
∫ (

√
s−m3)2

(m1+m2)2

dM2
2

2π
R2(

√
s; m3,M2)

×R2(M2; m1,m2), (10)

with R2 defined in Eq. (B10) are fitted by

R3(t,m1,m2,m3) = a1t
a2

(
1 − 1

a3t + 1 + a4

)
, (11)

with t = √
s − m1 − m2 − m3 and ai > 0. The fit parameters

ai have been evaluated for each combination of meson masses
m1,m2,m3 and stored on file. For further details on the phase-
space integrals we refer the reader to Appendix B.

We recall that the fusion of three mesons cannot be de-
scribed in a Lorentz invariant way by geometrical collision
criteria between the particles due to the three inertial systems.
To find a solution we employ the in-cell method introduced
by Lang et al. [52] and adopted in Ref. [20]. This method
is also employed for 2 ↔ 3 reactions in partonic cascade
calculations [53]. The in-cell method can be used for any
number of colliding particles since there is no problem with
time ordering due to the locality of the formulation. In the
in-cell method space-time is divided into four dimensional
cells with widths �x,�y,�z,�t and only particles inside
the same cell may collide with each other. One calculates
the reaction probabilities of each particle with every other
one inside the same cell. The actual collision and the final
state is chosen via Monte Carlo. The possible final states and
multiplicities in Eqs. (4) and (8) are precalculated to save
computational time during the transport simulation. The cell
size and the time step �t are optimized for the problem under
investigation such that the total probability of a transition in a
local cell does not exceed unity but is also not too small. For
the actual calculations shown below we use dt = 4 fm/c and
dV = 40 fm3, which ensures that the transition probabilities
are always below unity.

We now discuss results for a few selected systems. We
present randomly picked ensembles that cover the qualitative
range of possible systems, i.e., systems consisting of only
initial light, only initial strange as well as a variety of combi-
nations of light and strange quarks and antiquarks. In Fig. 4 the
time evolution of the particle densities for a system initialized
with protons and antiprotons is shown to demonstrate the
production and annihilation of different particle species in a
system consisting initially only of protons and antiprotons.
After the first timestep of the simulation a lot of new mesons
like pions, ρ and ω mesons are formed. At later times also
strange mesons and baryons are formed because of the partial
ss̄ content of φ and η. In equilibrium the system has a
significant amount of mesons and baryons with strange and
antistrange quarks. However, the generation of strange quarks
even for the meson sector takes a long time (≈60 fm/c) to
produce significantly high strange particle densities; thus the
generation via φ and η should have negligible influence on
actual heavy-ion collisions since large densities are needed
for a significant contribution from the meson fusion. In a 5%
central Pb+Pb collision at 158A GeV the meson fusion dies
out at ∼13 fm/c, which is insufficient for having a major
influence on the strangeness sector, see Fig. 7 (discussed in
Sec. V below).

We show in Fig. 5 the total reaction rate as a function of time
for two exemplary initializations which were initialized with
p + p̄ and �0 + �̄, respectively. Both systems share a similar
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FIG. 4. Particle densities of a pp̄ initialized system as a function
of time. The particle species correspond to the following lines:
the red solid line corresponds to nucleons, the blue dashed line to
antinucleons, the green short-dashed line to pions, the violet dotted
line to ρ mesons, the black dashed-dotted line to φ mesons, the gray
dashed-doubly-dotted line to �s, the brown doubly dashed line to
kaons and the beige short-dashed-dotted line to the vector kaons K∗.
The different charge states of the particles have been summed over
and K denotes the sum of K+,K−,K0, and K̄0.

evolution of the total reaction rate. All systems reach detailed
balance much faster (≈ 40 fm) than they reach equilibrium (≈
1000 fm).

Detailed balance should also be valid for the total reaction
rate as function of the invariant mass. For this we show in Fig. 6
the total reaction rate as a function of the invariant mass

√
s

in the plateau region of Fig. 5, which is associated with the
equilibrium state. From Fig. 6 we see that detailed balance is
also fulfilled for this quantity. Note that the maximum achiev-
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FIG. 5. Total reaction rate (per volume dV ) as a function of time
for two different initializations. The solid (slightly transparent) red
lines correspond to the baryon-antibaryon annihilation and the red
dotted lines to the formation. The systems are initialized in (a) with
only p + p̄ and in (b) with only �0 + �̄.
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FIG. 6. Total reaction rate as a function of the invariant mass
√

s in
equilibrium for five different initializations. The solid (slightly trans-
parent) red line corresponds to the baryon-antibaryon annihilation and
the red dotted line to the formation. The systems are initialized in (a)
with only � + �̄0 and in (b) with only �− + �̄+.

able invariant mass of particles participating in annihaltion or
recreation (in equilibrium) is lower in systems initialized with
lighter baryons than for systems initialized with heavier ones.

The last most crucial check for detailed balance is the
fulfillment on a channel by channel basis. To this end we define
the deviation from detailed balance for each channel by

δ = 1 −
dN
dt

(BB̄ → 3M)
dN
dt

(3M → BB̄)
. (12)

We calculate δ for each of the more than 2000 channels and
look at the channels with the largest reaction rates in all 100
investigated systems. In Table I the 10 most important channels
with the largest reaction rates are shown from highest to lowest
for 3 of the exemplary systems as well as the average for all
100 investigated systems and the average over all channels. The
average over all 100 investigated systems shows that detailed
balance is fulfilled better than 97% on a channel-by-channel
basis for the 100 most dominant channels. This verifies the
correct implementation of the baryon-antibaryon annihilation
and recreation within the quark rearrangement model in the
PHSD transport approach. Some channels of a system may
deviate by more than 5% from detailed balance, however, this is
a relict of too low statistics. We found only few channels (≈ 20
for the 10 most dominant channels) that had a deviation of up to
9%. In general these deviations may be neglected as can be seen
in the averaged values and the dominant number of channels
being very close to detailed balance which gives a proof for
the working principle of the implementation presented.
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TABLE I. Deviation from detailed balance δ (12) for selected systems and as the average over all 100 investigated systems 〈δ〉.

Rank p + p̄ �0 + �̄ � + �̄0 〈δ〉 [%]

channel δ [%] channel δ [%] channel δ [%]

1 NN̄ ↔ ππρ 0.17 N�̄ ↔ πKK∗ 1.45 NN̄ ↔ ππρ 0.13 1.24
2 NN̄ ↔ πρρ 3.06 N�̄ ↔ KK∗K∗ 3.59 N�̄ ↔ πρρ 1.70 1.82
3 N�̄ ↔ ππρ 1.58 ��̄ ↔ πKK∗ 1.32 N�̄ ↔ ππρ 2.04 1.70
4 N�̄ ↔ πρρ 0.84 ��̄ ↔ KK∗ρ 0.64 NN̄ ↔ πρρ 3.31 1.54
5 �N̄ ↔ ππρ 2.43 ��̄ ↔ KK∗K∗ 1.08 �N̄ ↔ πρρ 1.33 1.49
6 �N̄ ↔ πρρ 0.73 N�̄ ↔ πK∗ρ 3.58 �N̄ ↔ ππρ 2.71 1.97
7 NN̄ ↔ ππa1 6.52 ��̄ ↔ πK∗ρ 2.00 ��̄ ↔ ππρ 2.69 2.04
8 NN̄ ↔ πππ 5.10 NN̄ ↔ ππρ 0.23 N�̄ ↔ πK∗ρ 2.04 2.03
9 N�̄ ↔ πKρ 0.31 N�̄ ↔ πKρ 0.42 ��̄ ↔ ππρ 2.12 2.11
10 N�̄ ↔ πK∗ρ 0.96 N�̄ ↔ KKK 0.35 N�̄ ↔ πKρ 0.35 2.11

V. PHSD SIMULATIONS FOR HEAVY-ION COLLISIONS

In this section, we show the influence of the additional
channels in the strangeness sector for BB̄ ↔ 3M reactions on
heavy-ion collisions in the energy regime of 11.7–158A GeV.

Before coming to the actual results we compare in Fig. 7 the
reaction rate for the total baryon-antibaryon annihilation (solid
line) and formation (dashed line) from PHSD in 5% central
Pb+Pb collisions at 158A GeV. Whereas the meson-fusion
rate dominates at early times (<13 fm/c) the annihilation
takes over for larger times during the final expansion of the
system. Although the time integrals of both rates are about the
same there is no appreciable time interval in which both rates
are identical. This indicates a strong nonequilibrium dynamics
of baryon-antibaryon annihilation and reproduction in actual
heavy-ion reactions.

We note that a similar analysis has been performed in the
earlier study in Ref. [20] (Fig. 7) on the basis of the HSD
transport model (version 2.3) for the same system, however,
without averaging over the ensembles. The earlier rates differ
substantially from the present results from PHSD (version
4.0) due to the different degrees of freedom in the initial
phase of the collision. To quantify the differences we have
recalculated the rates within HSD2.3 (from the year 2002) and
compared the numbers with those from PHSD4.0, which is
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FIG. 7. The reaction rate of the BB̄ ↔ 3M reactions (solid line)
as a function of time in 5% central Pb+Pb collisions at 158A GeV in
comparison to the total three-meson fusion rate (dashed line).

the most recent version including also the effects from chiral
symmetry restoration [14] (PHSD3.3) and nonperturbative
charm dynamics as well as extended 2 ↔ 3 reactions. We
found that both rates (from HSD2.3 and PHSD4.0) differ
only slightly for times �6 fm/c (after contact of Pb+Pb at
b = 2 fm) but the huge rates (from HSD2.3) at the first few
fm/c are essentially missing in PHSD4.0. This is due to the
fact that at the top SPS energy the initial energy conversion
goes to interacting partons in PHSD4.0 and not to strings
decaying to hadrons (and partly to BB̄ pairs) in HSD2.3.
Thus in PHSD4.0 (at the top SPS energy) there are initially
no BB̄ pairs that might annihilate nor mesons that might
fuse! Due to the very high hadron densities in HSD2.3 (after
string decay) both the annihilation and reproduction rates are
very high and about equal whereas in the hadronic expansion
phase the densities are sizeably lower. In this dilute regime the
three-body channels first dominate and decrease fast in time
whereas the two-body annihilation reactions still continue for
some time. As addressed in the Introduction we thus expect also
differences in the antibaryon rapidity spectra as compared to
the early results from HSD2.3 [20]. However, in both transport
calculations—incorporating the 2 ↔ 3 reactions—the time
integrated rates for annihilation and reproduction turn out to
be about equal.

The actual PHSD calculations for relativistic nucleus-
nucleus collisions are carried out in the parallel ensemble
method, i.e. in case of the cascade mode a typical number
of 100–300 ensembles are propagated in time fully indepen-
dent from each other. However, the calculation of net-baryon
densities, scalar densities and energy densities—needed for
the full PHSD dynamics—is carried out by averaging over
all ensembles. This results in a crosstalk between ensembles
due to the propagation of particles in the self-generated mean
fields (for partons and baryons/antibaryons) as well as in the
baryon/antibaryon formation in the hadronization. A system-
atic study of all particle spectra in rapidity and transverse mass
shows that the results for mesons and baryons well scale with
the number of ensembles whereas the antibaryon sector shows
small variations with the number of ensembles. This scaling
violation is essentially due to the numerical approximations
that have to be presently introduced to keep the huge number

024913-7



E. SEIFERT AND W. CASSING PHYSICAL REVIEW C 97, 024913 (2018)

 0

 0.02

 0.04

 0.06

 0.08

 0.1

E917
w/o

SU(2)
SU(3)

Pb+Pb @ 11.7A GeV
12% central

—p

(a)

 0

 0.02

 0.04

 0.06

 0.08
—Λ + —Σ 0

(b)

 0

 0.1

 0.2

 0.3

 0.4

dN
/d

y

Ξ-

(c)

 0

 0.005

 0.01

 0.015

—Ξ +

(d)

 0

 0.001

 0.002

 0.003

 0.004

-4 -3 -2 -1 0 1 2 3 4y

Ω- + —Ω+

(e)

 0
 0.05
 0.1

 0.15
 0.2

 0.25
 0.3

 0.35

NA49
w/o

SU(2)
SU(3)

Pb+Pb @ 20A GeV
7.2% central

—p

(f)

 0
 0.05
 0.1

 0.15
 0.2

 0.25
—Λ + —Σ 0

(g)

 0
 0.2
 0.4
 0.6
 0.8

 1
dN

/d
y

Ξ-

(h)

 0
 0.01
 0.02
 0.03
 0.04
 0.05

—Ξ+

(i)

 0

 0.005

 0.01

 0.015

 0.02

-4 -3 -2 -1 0 1 2 3 4y

Ω- + —Ω+

(j)

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6

NA49
w/o

SU(2)
SU(3)

Pb+Pb @ 30A GeV
7.2% central

—p

(k)

 0

 0.1

 0.2

 0.3

 0.4
—Λ + —Σ 0

(l)

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2

dN
/d

y

Ξ-

(m)

 0

 0.02

 0.04

 0.06

 0.08
—Ξ +

(n)

 0

 0.01

 0.02

 0.03

-4 -3 -2 -1 0 1 2 3 4y

Ω- + —Ω+

(o)

FIG. 8. Rapidity spectra of p̄,�̄ + �̄0,�−,�̄+,�− + �̄+ in (12%) 7.2% central Pb+Pb collisions at 11.7, 20 and 30A GeV. The solid lines
show the results when including all light and strange quark channels [denoted by SU(3)] while the dashed lines results from discarding strange
or antistrange quarks in the reaction channels [denoted by SU(2)]. The error bands indicate the systematic uncertainty of the calculations due to a
different ensemble size. The dotted lines show the results with BB̄ ↔ 3M reactions switched off. The data points are taken from Refs. [54–56].

of reaction channels manageable. This introduces a systematic
error in our calculations for the antibaryon sector which is
accounted for by hatched bands in the following figures. The
solid or dashed lines correspond to the standard ensemble
number of 150 used as default in PHSD calculations in the
energy range of interest.

A. Rapidity and transverse mass spectra

We now discuss the influence of the BB̄ ↔ 3M reactions
on observables measured in actual experiments from 11.7–
158A GeV. We first focus on rapidity spectra and mention
that the BB̄ ↔ 3M reactions have practically no influence on
baryon and meson spectra [14] and, hence, we only show the
results for the relevant antibaryons and �− to demonstrate that
the influence on baryons is barely visible. For results on meson
and baryon spectra we refer the reader to Refs. [25] and [14].
As mentioned above the full, dashed, and dotted lines show
the results for 150 ensembles; the blue and red hatched areas

result when employing different ensemble numbers in a wide
range.

We first focus on the influence of the newly incorporated
strangeness sector. In the following, we compare the imple-
mentation with only light quark channels [SU(2)] with the new
one including also the strangeness sector [SU(3)]. The rapidity
spectra of p̄,�̄ + �̄0,�−,�̄+,�− + �̄+ for central Pb+Pb
collisions from 11.7 to 158A GeV are shown in Figs. 8 and 9.
The rapidity spectra of the antihyperons are overall closer to
the experimental data when taking into account the strangeness
sector for the BB̄ ↔ 3M reactions. However, the antiproton
spectra are faintly influenced by the incorporated sector and
describe the data only moderately well. In general the in-
vestigations suggest that the BB̄ ↔ 3M reactions have the
largest impact at energies below 80A GeV. This result shows
that the consideration of the strange quarks helps improving
the description of a heavy-ion collision in the framework of
PHSD. For particles like �̄+,�−, and �̄− at lower energies,
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FIG. 9. Rapidity spectra p̄,�̄ + �̄0,�−,�̄+,�− + �̄+ in central Pb+Pb collisions at 40, 80 and 158A GeV for BB̄ ↔ 3M with only light
quarks (dashed lines) and including strange quarks (solid lines) compared to experimental measurements. The error bands indicate the systematic
uncertainty of the calculations due to a different ensemble size. The data points are taken from Refs. [55–58].

where currently no experimental data are available, our results
should be taken as predictions.

In Fig. 8 we, furthermore, show results from calculations
neglecting the BB̄ ↔ 3M reactions. We find that the ra-
pidity distribution for p̄ has a higher peak and is narrower
compared to calculations with BB̄ ↔ 3M , while the total
number of antiprotons is about the same. The results for
the antihyperons—starting from 20A GeV—lie on top of the
SU(2) simulations. At 11.7A GeV the hyperon spectra are
closer to the SU(3) calculations and for �− + �̄+ lie even
below those. This comes about as follows: When neglecting
the BB̄ → 3M reactions (dotted lines in Fig. 8) all antibaryon
annihilation channels are discarded as well as BB̄ production
channels by mesons. A decrease in the antiproton yield relative
to the calculations with BB̄ → 3M reactions included (dashed
and solid lines) implies that the p̄ annihilation rate (integrated
in time) is larger than the reproduction rate (integrated in
time) for the system considered. Vice versa a relative increase
of the yield (e.g., for �̄ at 11.7A GeV) means that the new

production channels by three mesons are more efficient than
the inverse annihilation channels. As a genuine effect at the
FAIR energies considered in Fig. 8 we find a net absorption
of antibaryons without or only a single strange antiquark
when including all channels considered (full lines). We recall
that at these energies the net-baryon (rapidity) densities are
of the same order as the meson (rapidity) densities which,
however, changes substantially with increasing bombarding
energy.

Another interesting observable measured in experiment
is the transverse mass (mt ) spectrum at midrapidity, i.e.,
dN/(mtdydmt ) as displayed in Fig. 10. Here the additional
strangeness sector has qualitatively the same impact as for the
rapidity spectra. Accordingly, we only show results for central
Pb+Pb collisions in the energy regime from 20 to 158A GeV
including the strangeness sector for the BB̄ ↔ 3M reactions.
For the �− we find that PHSD describes the low mt regime for
energies below 158A GeV rather well. However, for higher mt

the data points are missed due to a harder experimental slope of
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FIG. 10. Transverse mass spectra for central Pb+Pb collisions at
midrapidity. The centrality selection for the particles at the different
energies is the same as in Figs. 8 and 9. The particles in each panel
are from top to bottom �−,�̄ + �̄0,p̄,�̄+ and �− + �̄+, only at
158A GeV the lowest lying line corresponds to �−. The data points
are taken from Refs. [56–58].

the spectrum. At 158A GeV some �−’s are missed in the low
mt regime. The �̄ + �̄0 spectrum is close to the experimentally
measured data for all energies, however, at 158A GeV it falls
off too fast. The transverse mass spectra of the antiprotons
are overall in very good agreement with experiment, the only
drawback is the overproduction at midrapidity which is most
visible for 20 and 30A GeV. Also, the �̄+ are in close vicinity
to the experimental data for energies smaller than 158A GeV,
but fall off too quickly at 158A GeV. The production of �−
and �̄+ was underestimated already in the rapidity spectra, see
Fig. 9, but looking at the transverse mass spectra at 158A GeV
the results are in reasonable agreement with experiment for
mt < 0.8 GeV.

B. Impact of chiral symmetry restoration and deconfinement

We now address the question with respect to traces of chiral
symmetry restoration and deconfinement in the antibaryon and
multistrange baryon spectra from central Pb+Pb collisions at
SPS energies. We recall that clear signals have been found
before in the strange meson and baryon rapidity distributions
[12,14] and one might speculate if a similar signal can be seen
in the antibaryon sector. To this aim we perform transport
calculations—including the BB̄ ↔ 3M channels specified
above—with different settings:

(i) HSD calculations without chiral symmetry restoration
(CSR) and deconfinement since HSD does not include
a partonic phase

(ii) HSD calculations with chiral symmetry restoration
(CSR) in the hadronic phase but without deconfine-
ment

(iii) PHSD calculations without chiral symmetry restora-
tion (CSR) in the hadronic phase but with a deconfine-
ment transition

(iv) PHSD calculations with chiral symmetry restoration
(CSR) in the hadronic phase and with a deconfinement
transition.

The systems addressed are central Pb+Pb collisions at
30 and 158A GeV. The rapidity spectra for antibaryons and
�− are displayed in Fig. 11 and show that at 158A GeV
the impact of chiral symmetry restoration is very small in
the HSD calculations (without deconfinement) as well as
for PHSD (including deconfinement) except for the �̄ + �̄0

spectrum. When comparing HSD and PHSD results including
CSR we find a slight reduction of the p̄ spectra, a moderate
enhancement for the �̄ + �̄0 spectrum and only a small
enhancement for �± and �− + �̄+ when including a partonic
phase. Since the reproduction of the multistrange sector by
PHSD is very poor one cannot conclude on the presence of a
deconfinement transition on the basis of the rapidity spectra
shown in Fig. 11. Note, however, that a clear signal has been
found in the elliptic and triangular flow before in Ref. [27] at
this energy.

At 30A GeV the situation is not much better. The PHSD
calculations with CSR perform best for �− and �̄+, how-
ever, overestimate the p̄ and �̄ + �̄0 yield. The HSD cal-
culations are too low in the strange antibaryon sector in-
cluding/excluding CSR providing some hint that a partonic
phase should be present in a moderate space-time volume at
this energy. Accordingly, the antibaryons and in particular
the multi-strange sector do not give additional information
on chiral symmetry restoration or deconfinement within the
framework of PHSD calculations.

C. Comparison to other dynamical models

In this subsection we compare our current PHSD results to
those from other dynamical models which have been employed
for heavy-ion reactions in the SPS energy regime, in particular
from the Ultra-relativistic Quantum Molecular Dynamics
model (UrQMD) [59,60] and the three-fluid dynamics model
(3FD) [61]. The UrQMD is a hadronic transport model
including a multitude of hadronic resonances as well as strings
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FIG. 11. Rapidity spectra for a central Pb+Pb collision at 30 and 158A GeV; comparison between simulations with (PHSD) and without
(HSD) the deconfinement transition and with activated and deactivated chiral symmetry restoration (CSR). The data points are taken from
Refs. [55–58].

that are responsible for multi-particle production. The 3FD is
a fluid dynamical model describing—within the framework of
hydrodynamics—the transition from the initial baryonic fluids
(projectile and target) to the newly produced fluid (around
midrapidity). For details we refer the reader to the original
literature [59–61]. We show in Fig. 12 our actual results in case
of the rapidity spectra for a central Pb+Pb collision at 40A GeV
with the BB̄ ↔ 3M reactions including the strangeness sector
in comparison to results from the UrQMD [28] and the 3FD
using a two-phase equation of state [29]. The 3FD model,
like PHSD, overshoots the antiproton yield whereas UrQMD
is close to the experimental data. The �̄ + �̄0 spectrum is

described by PHSD and the 3FD model similarly close to the
experimental data whereas UrQMD produces too few. For
the �− all models show different behaviors; whereas the 3FD
model overpredicts the production, PHSD produces slightly
too few �− at midrapidity but describes otherwise the shape
well. UrQMD predicts (just like for �̄ + �̄0 and �̄+) too few
antibaryons since BB̄ annihilation is incorporated, however,
not the backward channels thus violating detailed balance.
PHSD and the 3FD model are close to the experimental data
for �̄+, with the 3FD slightly underpredicting the yield. De-
pending on the particle species of interest one model describes
some yield better than the other at higher SPS energies. In

024913-11



E. SEIFERT AND W. CASSING PHYSICAL REVIEW C 97, 024913 (2018)

 0

 0.2

 0.4

 0.6

 0.8

 1
NA49

UrQMD2.3
3FD

SU(3)

Pb+Pb @ 40A GeV
7.2% central

—p

(a)

 0

 0.1

 0.2

 0.3

 0.4
—Λ + —Σ0

(b)

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4dN

/d
y

Ξ-

(c)

 0

 0.02

 0.04

 0.06

 0.08

-4 -3 -2 -1 0 1 2 3 4y

—Ξ +

(d)

FIG. 12. Rapidity spectra for a central Pb+Pb collision at
40A GeV; comparison between PHSD results with the BB̄ ↔ 3M

reactions including strangeness (red solid line), UrQMD-2.3 [28]
(violet short-dashed line) and 3FD with a two-phase equation of
state [29] (blue dashed line). The experimental data are taken from
Refs. [55,56].

general, the 3FD model and PHSD appear to be similarly
capable of roughly describing the dynamics of baryons and
antibaryons with strangeness content in this energy range.

VI. SUMMARY

In this work we have recapitulated and extended the
quark rearrangement model for baryon-antibaryon annihilation
(BB̄ ↔ 3M) in the course of heavy-ion collisions. The approx-
imate validity of this model was motivated by the distribution
in the number of final state pions in pp̄ annihilation for
2.3 GeV � √

s � 4 GeV (cf. Fig. 1), where the three-body
channel πρρ, e.g., leads to five pions (on average) in the final
state. Additionally to the HSD calculations in Ref. [20], we
have included in the 2 ↔ 3 channels the strangeness sector

with a suppression factor for the matrix elements of particles
having strange and antistrange quarks. We have shown, using
simulations in a box with periodic boundary conditions, that
the numerical implementation of the quark rearrangement
model including the strangeness sector satisfies the detailed
balance 2 ↔ 3 relation on a channel-by-channel basis as well
as differentially as a function of the invariant energy

√
s.

We found that the earlier rates from HSD2.3 [20] differ
substantially from the present results from PHSD (version 4.0)
due to the different degrees of freedom in the initial phase of the
collision. Both rates (from HSD2.3 and PHSD4.0) differ only
slightly for times � 6 fm/c (after contact of Pb+Pb at b = 2
fm) but the huge rates (from HSD2.3) at the first few fm/c are
essentially missing in PHSD4.0. This is due to the fact that
at the top SPS energy the initial energy conversion goes to
interacting partons in PHSD4.0 and not to strings decaying to
hadrons (and partly to BB̄ pairs) in HSD2.3. Thus in PHSD4.0
(at the top SPS and higher energies) there are initially no BB̄
pairs that might annihilate nor mesons that might fuse! Due to
the very high hadron densities in HSD2.3 (after string decay)
both the annihilation and reproduction rates are very high
and about equal whereas in the hadronic expansion phase the
densities are sizeably lower. In this dilute regime the three-body
channels first dominate and decrease fast in time whereas the
two-body annihilation reactions still continue for some time.
However, in both transport calculations—incorporating the
2 ↔ 3 reactions—the time integrated rates for annihilation and
reproduction turn out to be about equal.

The influence of the newly implemented channels in the
strangeness sector on actual heavy-ion collisions has been
investigated in PHSD simulations (version 4.0) of central
Pb+Pb collisions from 11.7–158A GeV. The rapidity spectra
of antibaryons—using the quark rearrangement model with
and without the strangeness sector—have been compared to
experimental data where available. Changes could only be seen
for the antibaryons in the investigated energy regime whereas
the meson and baryon sector are practically unchanged [14].
Due to the chemical rearrangement between the baryons
and mesons considered in BB̄ ↔ 3M reactions an overall
higher antiproton production was observed for all energies
which pushed the PHSD results up thus overestimating the
experimental data. The other antibaryons got closer to the
experimental data when the strangeness sector was included
for the BB̄ ↔ 3M reactions. For the energies investigated
the strangeness sector has the largest impact at the lowest
energies. The results show that the BB̄ ↔ 3M reactions indeed
need the strangeness sector to describe the heavy-ion collisions
more properly. We note, however, that the quark rearrangement
model might be too crude to allow for robust conclusions.
We still need experimental information on baryon-antibaryon
annihilation cross sections other than pp̄ and pn̄ to achieve a
better description and understanding of heavy-ion collisions.

In addition to the rapidity spectra, we have shown the
transverse mass spectra for various antibaryons and have seen
that the low mt region is well described for all antibaryons
with the exception of the antiprotons that are overpredicted at
energies lower than 80A GeV. For higher transverse masses
some spectra fall off too fast thus underestimating the experi-
mental data to some extent. Accordingly, our understanding of

024913-12



BARYON-ANTIBARYON ANNIHILATION AND … PHYSICAL REVIEW C 97, 024913 (2018)

antibaryon dynamics is far from being complete and we might
still miss essential ingredients.

We have additionally addressed the question if the an-
tibaryon spectra (with strangeness) from central heavy-ion
reactions at SPS energies provide further information on the
issue of chiral symmetry restoration and deconfinement. By
comparing results from HSD (without partonic phase) with
those from PHSD (with partonic degrees of freedom) as well as
including/excluding effects from chiral symmetry restoration
(Fig. 11) we did not find convincing signals for either transition
due to the strong final-state interactions.
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APPENDIX A: MESON FUSION

To determine the probability for the three-meson fusion rate
we start with the Lorentz-invariant reaction rate for this process
[20],

dNcoll[3mesons → BB̄]

dt dV

=
∑

c

∑
c′

1

(2π )9

∫
d3p3

2E3

d3p4

2E4

d3p5

2E5
W2,3(

√
s)

× R2(p3 + p4 + p5; c′)Nc′
B f3(x,p3)f4(x,p4)f5(x,p5),

(A1)

where Nc′
B denotes the multiplicity of the final state and the

two-body phase-space integral R2 is given by

R2(
√

s; m1,m2) =
√

λ
(
s,m2

1,m
2
2

)
8πs

, (A2)

with λ defined in Eq. (5). The transition matrix element squared
W2,3 is not known but using Eq. (9) for our special problem of
2 ↔ 3 processes one gets∑

c

Pc→c′ (
√

s) =
∑

c

W2,3(
√

s)R3(
√

s,c)Nc
fin

= W2,3N
−1
3 (

√
s,c′)

= 4E1E2vrelσ
c′
ann(

√
s), (A3)

where we have taken W2,3 out of the sum over the baryon-
antibaryon pairs and end up with the expression for the nor-
malisation constant for the invariant energy

√
s from Eq. (7).

Inserting Eq. (A3) for the transition matrix element squared
into Eq. (A1) gives the result for the transition probability

for the meson fusion in Eq. (8). Note that all energies and
momenta in the calculations of the transition probabilities are
in the laboratory frame.

APPENDIX B: PHASE-SPACE INTEGRALS

The on-shell phase-space integrals occurring throughout
this work inhibit most of the dynamics of the system. As they
play a major role this section is dedicated to some more details
of phase-space integrals. We recall that the n-body phase-space
integral is generally defined by

Rn(P ; m1, . . . ,mn)

=
(

1

(2π )3

)n ∫ n∏
k=1

d4pkρk(pk)(2π )4δ4

⎛
⎝P −

n∑
j=1

pj

⎞
⎠,

(B1)

with ρ denoting the spectral function of the respective particle.
Since the phase-space integrals are Lorentz invariant we will
always work in the center-of-mass system. In the on-shell case
the spectral function takes the form

ρ(p) = δ
(
p2 − m2

1

)
, (B2)

with p denoting the 4-momentum in this case. Inserting the
spectral function Eq. (B2) into Eq. (B1) and integrating over
p0 yields the on-shell phase-space integral of Eq. (2). To show
(as an example) the behavior of the different n-body phase-
space integrals it is instructive to look e.g. at the consecutive
decays pp̄ → πρρ → 3πρ → 5π , which are essentially the
motivation for the QRM. Also, this example connects the three-
, four-, and five-body phase-space integrals as a function of the
invariant energy above threshold (see below).

For the sake of completeness, we start with the one-body
phase-space integral,

R1(
√

s; m) = 1

(2π )3

∫
d3p

2E
(2π )4δ4(

√
s − E) = π√

s
, (B3)

where E is the on-shell energy E =
√

m2 + p2 and the mass
m of the particle is equal to the invariant energy

√
s. This

result shows that the one-body phase-space decreases with
increasing

√
s. The two-body phase space can also be evaluated

analytically,

R2(
√

s; m1,m2)

= 1

(2π )2

∫ ∫
d3p1

2E1

d3p2

2E2
δ3( �p1 + �p2)δ(

√
s − E1 − E2)

(B4)

= 1

4(2π )2

∫
d3p1

E1E2
δ(

√
s − E1 − E2) (B5)

= 1

4(2π )2

∫ ∞

0

∫ π

0

∫ 2π

0

dφdθdp1p
2
1 sin θ

E1E2

× δ(
√

s − E1 − E2) (B6)

= 1

4π

∫ ∞

0

dp1p
2
1√

m2
1 + p2

1

√
m2

2 + p2
1

δ(
√

s − E1 − E2).

(B7)
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FIG. 13. Two-body phase-space integral for particles with masses
m1 = 1 GeV and m2 = 2 GeV as a function of the invariant energy
above threshold.

The zeros of the delta function are given by

p0 = ±
√

λ
(
s,m2

1,m
2
2

)
2
√

s
, (B8)

where only the positive value has to be taken in our calculation.
Rewriting the δ function as

δ(
√

s − E1 − E2) = δ(p1 − p0)

p1/E1 + p1/E2
(B9)

and plugging Eqs. (B8) and (B9) into Eq. (B7) we obtain the
two-body phase-space integral

R2(
√

s; m1,m2) = 1

4π

∫ ∞

0

dp1p1

E1E2

E1E2δ(p1 − p0)

E1 + E2

=
√

λ
(
s,m2

1,m
2
2

)
8πs

, (B10)

with E1 + E2 = √
s from the original delta function. The

typical shape of R2(
√

s,m1,m2) is shown in Fig. 13 for the

FIG. 14. Illustration of the subsequent decay of an initial state
(black dot) into n particles. The initial state may consist of m particles
as only the invariant mass is relevant for the phase-space integral due
to Lorentz invariance.

masses m1 = 1 GeV and m2 = 2 GeV as a function of the in-
variant energy above threshold. The upper limit is independent
of the masses and is given by 1/8π .

The on-shell three-body phase-space integral
R3(

√
s,m1,m2,m3) is the most important one for our work and

a good example for the evaluation of phase-space integrals
of higher order since the n-body decay can be considered as
consecutive two-body decays, see Fig. 14 for an illustration.
Note that in Fig. 14 kn = p and k1 = p1. A prerequisite in
calculating the phase-space integral is that we do not have any
incoming momenta in between the first and final two-body
decay. For the calculation of the process we employ the
recursion relation for phase-space integrals,

Rn(P ) =
∫

d4pn

(2π )3
ρn(pn)Rn−1(P − pn), (B11)

and also insert two identities

1 =
∫

dM2
n−1δ

(
M2

n−1 − k2
n−1

)
, (B12)

1 =
∫

d4kn−1δ
4(P − pn − kn−1). (B13)

The first identity from Eq. (B12) gives the mass of the
first cluster from which the four-momentum pn splits. The
second identity ensures energy-momentum conservation in the
splitting process. Plugging both identities into Eq. (B11) we
find

Rn(P ) =
∫

dM2
n−1

∫
d4kn−1

∫
d4pn

(2π )3
δ4

(
k2
n−1 − M2

n−1

)
δ4

(
p2

n − m2
n

)
δ4(P − pn − kn−1)︸ ︷︷ ︸

R2(P ;mn,Mn−1)/(2π)

Rn−1(kn−1) (B14)

=
∫ (Mn−mn)2

(
∑n−1

i=1 mi )2
dM2

n−1
R2(P ; mn,Mn−1)

2π
Rn−1(kn−1). (B15)

With this expression any n-particle phase-space integral
can be calculated in a straight forward fashion as long as
the masses mi are known. Note that the last R2, which one
gets after applying Eq. (B15) several times, has no additional
factor 1/(2π ). In Fig. 15 the phase-space integrals for three,
four, and five particles are shown as a function of the invariant
energy above threshold for our example of initial πρρ with a
subsequent decay into 3πρ and a final decay to five pions.
All phase-space integrals share a similar shape, only the

magnitudes close to threshold vary substantially with the
number of particles.

APPENDIX C: IN-CELL METHOD: CELL-SIZE
DEPENDENCE

We here show the stability of our approach with respect
to the equilibrium state when changing the size of the cells.
For this investigation we keep the time step dt constant but
enhance the cell volume �V by 20% and compare the reaction
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FIG. 15. Illustration of the three-, four-, and five-body phase-
space integrals as a function of the invariant energy above threshold.
The red solid line shows the three-body phase-space integral for πρρ,
the blue dashed line shows the four-body phase-space integral for 3πρ

and the green dashed line shows the five-body phase-space integral
for five pions.

rate as a function of time to the default calculations in Fig. 16.
We observe that the change in the cell size does not have any
impact on the equilibration at all. For all times both cell sizes
produce the same results giving testimony to the stability of
the numerical implementation.

APPENDIX D: IN-CELL METHOD VERSUS
NEXT-NEIGHBOR INTERACTION

The in-cell method used for the description of the BB̄ ↔
3M reactions has been implemented cutting effectively the
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FIG. 16. Consistency check for a change in the cell size �V by
20%. (a) for �0 + �̄ and (b) for �− + �̄+ initalizations. The red solid
line shows the baryon-antibaryon annihilation for the cell volume �V ,
the green dashed line shows the baryon-antibaryon formation for �V ,
the blue short-dashed line shows the baryon-antibaryon annihilation
for 1.2�V and the violet dotted line shows the baryon-antibaryon
formation for 1.2�V .
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FIG. 17. Comparison of the reaction rates between the cell al-
gorithm (cell) and the next-neighbor (NN) realization of the in-cell
method. The systems shown are in (a) the p + p̄ and in (b) the
� + �̄0 initialization. The red solid line shows the baryon-antibaryon
annihilation for the cell method, the green dashed line shows the
baryon-antibaryon formation for the cell method, the blue short-
dashed line shows the baryon-antibaryon annihilation for the NN
method and the violet dotted line shows the baryon-antibaryon
formation for the NN method.

space-time into cells of cell-size �V × �t and letting only
particles of the same cell interact with each other. Another
possibility for the implementation of the baryon-antibaryon
annihilation (and recreation) is by defining the volume �V
by a sphere around the first particle and letting all particles
in the sphere interact with each other; this implementation we
denote by next-neighbor (NN) algorithm in the following. In
Fig. 17 we compare the results of these two choices. Due to
the large finite size effects for the NN method the volume of
the box had to be enhanced and filled with the same density
as the standard box but letting only the particles inside the
standard box volume be the particles from whose sphere the
partners are selected. After employing this minimization of
finite size effects we find that both methods give the same
reaction rates for times larger than ≈ 30 fm. A small deviation
between both methods is seen for smaller times. As expected
one might use in general also the NN method. The disadvantage
of the numerical implementation of the NN method is the
larger computational time in comparison to the discretization
of space-time. Thus PHSD uses the in-cell method not for the
individual cells from the NN method but for the fixed cells of
the space-time discretization.

APPENDIX E: STRANGENESS SUPPRESSION

A further point to discuss in our model is whether to
use the sum or the difference of the number of strange and
antistrange quarks in Eq. (9) for the strangeness suppression.
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FIG. 18. Comparison of the reaction rate between the sum and
the difference of the strange and antistrange quarks in the calculation
of transition probabilities in BB̄ ↔ 3M reactions (denoted by sum
and diff). (a) shows the p + p̄ and (b) the �− + �̄+ initialization.
The red solid line shows the baryon-antibaryon annihilation of the
sum, the green dashed line shows the baryon-antibaryon formation
of the sum, the blue short-dashed line shows the baryon-antibaryon
annihilation of the difference and the violet dotted line shows the
baryon-antibaryon formation of the difference.

Fig. 18 illustrates the deviation between the two suppression
models for the total reaction rate. For the system consisting
initially only of light quarks, p + p̄, we see no sizeable
differences between the sum and the difference of strange
and antistrange quarks in Eq. (9). The system with an initial
large difference between the number of strange and antistrange
quarks, �− + �̄+, converges to rather different equilibrium
states for the two assumptions. The suppression with the sum
leads to an overall larger total reaction rate and its equilibrium
value is twice as large as the suppression with the difference
assumption. However, both models produce rather similar
results for times t < 50 fm, which is of relevance for the
heavy-ion collisions considered in this work. Accordingly we
use in PHSD the suppression with the sum of the number
of strange and antistrange quarks since both models give
practically identical results in PHSD simulations of relativistic
heavy-ion reactions.

Another issue relates to the actual value of the strangeness
suppression factor λ which had been taken as λ = 0.5. To
demonstrate the impact of the parameter λ on antibaryon
spectra we show in Fig. 19 the rapidity distributions for central
Pb+Pb collisions at 30 A GeV for λ = 0.5 (dashed lines) and
λ = 1 (solid lines). Without strangeness suppression in 2 ↔ 3
reactions for hadrons with strange/antistrange quarks we find
at 30A GeV that the rapidity spectra of �̄ + �̄0 and �̄+ are
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FIG. 19. Rapidity spectra for a central Pb+Pb collision at
30A GeV; comparison between simulations with a strangeness sup-
pression factorλ = 0.5 (dashed lines) and no strangeness suppression,
i.e., λ = 1 (solid lines).

slightly shifted to lower values and broadened in comparison to
the standard value of λ = 0.5. The spectrum for �− + �̄+ very
slightly broadens and the p̄ spectrum is basically not influenced
by the change of λ.
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