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ABSTRACT 

A model is designed and implemented to construct a 

"flyable," least-risk route for strike aircraft from takeoff 

to target, through enemy radars, in a defined area of 

operations. A network is first constructed by discretizing 

the airspace into a three-dimensional grid of nodes and then 

connecting adjacent nodes with arcs. A shortest-path model in 

this network is then constructed with arc lengths that are a 

function of the probability of detection by radars monitoring 

the area of operations. A side constraint on fuel consumption 

ensures that routes are feasible. Lagrangian relaxation is 

used to incorporate this constraint into the problem and a 

shortest-path algorithm solves a sequence of shortest-path 

sub-problems to obtain a near-optimal route. 

AROMA (Automatic Route Optimization Model for Aircraft) 

is implemented in C++ on a Silicon Graphics Onyx computer with 

192 megabytes of memory. Test problems comprising 240,000 

nodes and more than 2 million arcs are used to evaluate the 

model. Realistic routes are generated in approximately 2 to 

3 minutes. A graphical interface displays the routes and 

facilitates interactive analysis and model evaluation. 
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EXECUTIVE SUMMARY 

For an air force, one of the main problems of mission 

planning is the selection of a route that a strike aircraft 

can use to reach a target from a base while flying through a 

group of enemy radars. At the tactical level, a solution to 

this problem would help pilots select "safe" potential routes 

and identify areas of enemy weakness prior to a mission. At 

the operational level, a solution would help planners derive 

"realistic" routes for decision-making purposes such as force- 

structuring and campaign analysis. 

This thesis designs and implements a prototypic Automatic 

Route Optimization Model for Aircraft (AROMA) . The model 

computes, approximately, a least risk route that a strike 

aircraft could use to reach a target from a base while flying 

through enemy radar coverage. The main considerations in this 

model are detection by the enemy radars, fuel consumption 

characteristics of the aircraft and the terrain in the area of 

operations. 

AROMA is formulated as a constrained shortest-path model.' 

The model discretizes the airspace into a three-dimensional 

grid of nodes and then connects adjacent nodes with arcs that 

represent potential flight segments. A shortest-path model in 

this network is then constructed with arc lengths that are a 

function of the probability of detection by radars monitoring 

the area of operations. 
xiii 



Radar detection, for any individual radar, is modelled as 

a region of constant detection probability. That is, the 

probablity of detection attached to a unit flight segment in 

the region is a given constant. Probablistic assumptions 

about the independence of detection events between flight 

segments and between different radars are also made. A fuel 

consumption constraint is introduced to ensure that routes are 

feasible. This is translated into a simplified fuel 

consumption model that accounts for different altitudes and 

profiles that an aircraft can fly. Terrain is also factored 

into the model so that the aircraft avoids colliding into 

obstructions. 

Because AROMA models a computationally difficult (NP- 

complete) problem, Lagrangian relaxation is used to 

incorporate the fuel constraint into the problem and a label- 

correcting shortest-path algorithm solves a sequence of 

relaxed shortest-path sub-problems to obtain a near-optimal 

route. The solution algorithm is coded in C++ and runs on a 

Silicon Graphics (SGI) computer. 

Test cases for areas of up to 200 square nautical miles 

(at intervals of 1 nautical mile) and six allowable height 

levels were evaluated. These problems comprise 240,000 nodes 

and more than 2 million arcs. Realistic routes are generated 

in approximately 2 to 3 minutes. 

A graphical evaluation suite (GES) was also developed for 

the modeller to visually evaluate the solution routes produced 
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AROMA. This suite allows routes generated to be displayed, 

and has features that permit interactive analysis of the 

algorithm, for instance, by allowing the algorithm to be run 

in a step-by-step mode. GES proved to be useful in analyzing 

how the algorithm converges to a solution, and in evaluating 

the "goodness" of solution routes. 

Four conclusions can be made after the evaluation of the 

model. First, there can exist a gap between a "good" solution 

and its theoretical lower bound.  Second, solution quality 

generally does not improve after 15 to 2 0 iterations for the 

test problems,  and the time taken for each successive 

iteration tends to increase.  Therefore, some fixed limit for 

the number of iterations, say 20, is probably sufficient for 

most similar problems.  Detection "costs" were computed using 

negative logarithms of non-detection probablities.  However, 

the  third  conclusion  is  that  simply  using  detection 

probablities as arc costs yields very similar solutions. 

Finally, due to discretization of the airspace, errors in the 

computation of fuel consumption are introduced into the 

problem, which directly affect the feasibility of solutions 

(giving fewer possible routes). Unlike other approximations, 

discretization is highly visible since it results in a jagged 

route with unnecessary turns.  Post-processing smoothing is 

suggested to alleviate this effect. 
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THESIS DISCLAIMER 

The reader is cautioned that computer programs developed 

in this research may not have been exercised for all cases of 

interest. While every effort has been made, within the time 

available, to ensure that the programs are free of 

computational and logic errors, they cannot be considered 

validated. Any application of these programs without 

additional verification is at the risk of the user. 
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I.  INTRODUCTION 

This thesis describes the design and implementation of a 

prototypic automatic route optimization model for aircraft 

mission planners. This model is called AROMA (Automatic Route 

Optimization Model for Aircraft). 

A.   BACKGROUND 

Military mission planning at the tactical and operational 

level is becoming increasingly complex. To help planners and 

decision-makers overcome some of the problems of planning, 

automated (computerized) systems have become popular. 

For an air force, one of the main problems of mission 

planning is the selection of a route that a strike aircraft 

can use to reach a target from a base while flying through 

enemy radar coverage. At the tactical level, a solution to 

this problem would help pilots select "safe" potential routes 

and identify areas of weak enemy radar coverage prior to a 

mission. At the operational level, a solution would help 

planners derive "realistic" routes for decision-making 

purposes such as force-structuring and campaign analysis. The 

incorporation of an automatic routing model into air mission 

planning systems would therefore be highly beneficial. 



B.   PROBLEM DESCRIPTION 

1.   Overview 

Route optimization provides an air planner the 

"best" route to take to attack a target and to return to base. 

For simplicity, only the attack leg of the route, from takeoff 

to target, is considered in this thesis. An optimal solution 

to this route planning problem will take into consideration 

the terrain, aircraft fuel consumption characteristics, enemy 

radar capabilities and general air planning doctrine. The 

generated output is a series of waypoints (cartesian 

coordinates) describing the profile of a route that 

approximately minimizes the risk of detection by enemy radars 

subject to fuel consumption constraints on the route. 

Three principal areas of development are identified 

as requirements for AROMA. First, the optimization algorithm 

must be able to compute near-optimal routes for realistically 

sized problems in a few minutes. Second, a decomposition 

technique (Lagrangian relaxation) must be employed to achieve 

quick solutions. Third, a graphical interface is needed to 

display the routes and facilitate interactive analysis and 

model evaluation. These three requirements were fulfilled in 

the development of AROMA. 

2.   Data Requirements 

AROMA, like most route planning systems use some 

form of digitally encoded terrain information data (Leary 



1994) . The format to be used for AROMA is DTED (Digital 

Terrain Elevation Data) which is the current standard format 

issued by DMA (Defense Mapping Agency). The basic information 

encoded in the data is the terrain height of equally spaced 

grid points for an area of operation. This information can be 

used to help determine enemy radar detection probabilities, 

line-of-sight for radars, and terrain avoidance by the 

aircraft. Only terrain avoidance is currently implemented in 

AROMA. 

General fuel consumption characteristics and 

aircraft maneuver capabilities are needed to constrain the 

routes generated by any route planning model. A realistic but 

simplified model is used in AROMA. Fuel consumption rates 

along flight segments are assigned linear costs depending on 

the aircraft's height, profile (climbing, diving, level 

flight) and the length of that segment. 

In the design of AROMA, it is assumed that 

intelligence on the area of operations includes terrain maps 

and the location and performance characteristics of all enemy 

radars. Enemy radar information is required to compute 

probability of detection based on geometry, terrain and 

aircraft characteristics. 

3.   Optimization Model 

AROMA computes a flyable, approximately least-risk 

route for strike aircraft from takeoff to target in a defined 



area of operations. The return route from the target to 

landing at the home base is not considered in this model. The 

MOE (measure of effectiveness) to be approximately minimized 

is the aggregate probability of detection by enemy radars. 

The main constraints of the model pertain to maintaining 

feasible routes both in terms of fuel and aircraft operating 

characteristics. Terrain avoidance is also considered, to 

avoid solutions that would cause the aircraft to crash into 

terrain. 

4.   Implementation 

The performance requirements for the model are that it 

must generate solutions for typical problems of 200 square 

nautical miles, in a reasonable amount of time, i.e., in a 

few minutes. An area of 200 square nautical miles covers the 

range of several typical strike aircraft. 

In order to meet performance requirements, the model 

is implemented on a Silicon Graphics Onyx computer with 192 

megabytes of memory. In addition, a Graphical Evaluation 

Suite (GES) is constructed to display the routes and 

facilitate interactive analysis and model evaluation. 

C.   LITERATURE SURVEY 

The general methodology of this thesis is to discretize 

the search space into a three-dimensional grid, connecting 

adjacent nodes with arcs, assign some form of arc costs and 



determine the least cost route from the start point to the 

designated goal.  This methodology has been used elsewhere. 

Leary (1994) models a helicopter route optimization 

problem that considers the minimization of detection by 

radars, without considering aircraft fuel constraints. 

However, a large part of Leary's work pertaining to the radar 

detection model is useful for this thesis. One of Leary's 

recommendations is that a side constraint on fuel consumption 

be incorporated into the problem using the Lagrangian 

relaxation. 

Boerman (1994) models a shortest-path AUV (Autonomous 

Underwater Vehicle) route through a mapped minefield. A side 

constraint on shock acceptable to the AUV is considered. A 

Lagrange multiplier \x is used to incorporate the constraint 

into the objective function. However, determination of an 

optimal value of \i is done experimentally. Boerman concludes 

that an automated visual means of analyzing routes would be 

useful for analysis of solutions. 

Ong (1990) models a AUV obstacle avoidance problem. 

Conceptually, this is equivalent to terrain avoidance by the 

aircraft modelled in this thesis. Wrenn's (1989) work on fuel 

consumption modelling for cruise-missile route planning 

provides some basic foundation for developing our fuel 

consumption model. 



D.   ORGANIZATION 

The remainder of this thesis explains how AROMA is 

developed, implemented and evaluated. Chapter II describes 

the general solution methodology, the mathematical formulation 

of AROMA, data requirements and construction of the network 

model. Chapter III explains the implementation of the model. 

This explanation covers the programming environment, data 

structures and algorithms used. Chapter IV evaluates the 

results and performance of the model. Finally, Chapter V 

states some important conclusions and observations, and 

recommends areas for future research. 



II.  DEVELOPMENT OF THE MODEL 

The key stages in developing AROMA are described in this 

chapter. First, the route optimization problem is defined and 

a mathematical representation of this problem is formulated. 

Next, an appropriate solution methodology is outlined. Then, 

data requirements are identified and requisite sub-models are 

developed. Finally, the network structure required for AROMA 

is developed in detail. 

A.   GENERAL PROBLEM STATEMENT 

The aircraft route optimization model to be developed in 

this thesis computes, approximately, a least risk route that 

a strike aircraft could use to reach a target from a base 

while flying through enemy radars, subject to a fuel 

consumption constraint. This can be formulated as a 

constrained shortest-path model. 

The constrained shortest-path model is an integer 

programming problem which is NP complete (Ahuja, et al. , 1993, 

pp. 600-601). This thesis will not attempt to solve the 

constrained shortest-path problem directly, but will use a 

decomposition strategy (see Section IIC) to compute a near- 

optimal solution. 



B.   MATHEMATICAL FORMULATION 

The key purpose of this formulation is to elucidate the 

route optimization problem and its associated data concisely. 

Section IID will elaborate on the data requirements. 

Model name .- 

Indices: 

i,j  e N : 
(i,j) e A : 

Note:  In this 
starts at node 

Data: 

ci: 

til 

Variables: 

Xij 

Formulation: 

Minimize 

subject to 

The constrained shortest-path problem 

Network nodes 
Network arcs 

formulation, it is assumed that the aircraft 
1 and the target is at node n. 

Detection "cost" of traversing arc (i,j). 

Fuel "cost" of traversing arc (i,j). 

Maximum fuel available for a mission. 

binary, variable that is 1 if arc (i,j) is in 
the optimal path, and 0 otherwise. 

E 
(i,j)eA 

cijxij 

j: (i,j)eA 
JO 

j:(j,i)eA 
31 

1 for i = 1 
«j 0 for i e N - {l,n} 

-1 for i = n 

E 
(i,j)eA 

tijXij      <   T 

x i:j   e   {0,1}   for  all    (i,j)eA 



C.   GENERAL SOLUTION METHODOLOGY 

An overview of the solution methodology is given below, 

and is elaborated in Chapter III. 

A network is first constructed by discretizing the 

airspace into a three-dimensional grid of nodes and then 

connecting adjacent nodes with arcs. A shortest-path model in 

this network is then constructed with arc lengths that are a 

function of the probability of detection by radars monitoring 

the area of operations. A side constraint on fuel consumption 

is introduced to ensure that routes are feasible. 

At this point, the model is a constrained shortest path 

problem as described in the previous section. However, 

because direct solution of the model would be difficult, 

Lagrangian relaxation is used to incorporate the fuel 

constraint into the objective function. Then, a fast label- 

correcting shortest-path algorithm solves a sequence of 

relaxed shortest-path sub-problems to obtain a near-optimal 

route. 



D.   COMPONENT MODELS AND DATA REQUIREMENTS 

1.   Terrain Model 

a. Purpose 

A terrain model for AROMA is required for two 

main purposes. First, aircraft should avoid terrain. This 

implies that feasible routes must not pass through terrain 

obstructions. The second purpose, which has not been modelled 

in this thesis, is to allow for the incorporation of radar 

line-of-sight calculation into the model. Radar line-of-sight 

calculations should be added to account for the inability of 

radar to detect a target masked by terrain. 

b. DTED Format 

DTED is used to represent terrain data mainly 

because it is commonly used in most mission-planning models, 

and also because it is easy to manipulate. A single DTED file 

is a digitized representation of ground elevations of a region 

with dimensions of one degree longitude by one degree latitude 

(about 60 nautical miles) . Each DTED file has about 16 

megabytes of terrain elevation data giving elevations at 

intervals of approximately 100 meters, as well as other 

"housekeeping" information such as the location of the grid 

square. 
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c.   Data Requirements 

Terrain data suitable for AROMA must be 

generated. Since the area of operations for the model 

developed here is defined as 200 square nautical miles, more 

than one DTED file is required to specify the terrain for the 

model. It was decided that each grid square in the terrain 

model should be one nautical mile because it can be reasonably- 

assumed that aircraft would not change headings or levels 

within one nautical mile (at typical speeds of 400 nautical 

miles per hour, one nautical mile equals about nine seconds). 

Also, one nautical mile provides reasonable resolution for the 

radar detection model (to be described later). 

To generate a 200 square nautical mile terrain 

file with a grid interval of one nautical mile, several DTED 

files must be processed together. This pre-processing is done 

only when areas of operation change. Otherwise, the same 

terrain file can be used repeatedly. Each terrain file used 

by the model contains about five megabytes of data. 

2.   Fuel Consumption Computations 

a.   Purpose 

Fuel consumption is modelled to ensure that 

routes generated are feasible in terms of the fuel capacity of 

the aircraft. In flight planning, fuel consumption rates are 

used to compute the amount of fuel required for different 

profiles such as climbing, high-level or low-level flight. 
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Each aircraft can carry different configurations of fuel and 

loads which will affect these rates, and thus the mission 

ranges. 

b.   Data Requirements 

For the purpose of this thesis, fuel 

consumption for a fictitious aircraft with a fixed load and 

fuel capacity (T) is used. These rates (in pounds of fuel per 

minute) pertain to different flight levels as well as climbing 

and diving profiles for a particular speed. Based on this 

speed, the fuel consumption rates are re-scaled from pounds 

per minute to pounds per nautical mile. Subsequently, fuel 

costs ti:j, for each arc in the network model, can be computed 

based on the product of these rates and the Euclidean length 

of that arc. In general, higher flight altitudes require less 

fuel than lower ones and a dive profile consumes less fuel 

than a climb. 

It is recognized that an even more 

sophisticated modelling of fuel consumption rates is possible, 

but in consultation with mission planners, it was agreed that 

the current approach is a reasonable approximation. 

3.   Radar Detection Model 

a.   Description 

To compute the risk of a route to the aircraft 

and pilot, the detection probability of all radars monitoring 

12 



that route must be quantified. AROMA uses a radar model 

commonly used in manual mission planning that employs a 

hemispherical region of constant radar detection probability. 

This means that each flight segment that is within the 

detection region of a radar will be assigned a fixed detection 

probability. 

b.   Arc Cost Assignment and Assumptions 

In the assignment of arc costs, ci;j, two key 

assumptions have been made. First, each radar detection event 

(along each arc) and between different radars is assumed to be 

independent. This allows the model to properly aggregate the 

detection costs, according to the procedure specified by Leary 

(1994, pp. 23). This involves the use of logarithms to 

linearize the detection costs. The aggregated probablity of 

non-detection on an arc is 

Q±J    = na - p^) 
reR 

where R is the set of all enemy radars and Pri;j is the 

probablity a radar r will detect an aircraft traversing arc 

(i,j) .  Since we seek to maximize the probability of non- 

detection, our objective function could be: 

maximize     II QijXlj 

(i,j)eA 

Leary shows this objective will yield the same solution as 

minimize  £   -log (Qi;j) xi;j 

(i,j)eA 
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Therefore, 

c±j = -log( n (1 - Pr±j)) 
reR 

may be used as the detection cost on arc(i,j). 

The second assumption is that the detection 

cost for an arc is that of the node from which it originates. 

Little effort would be required to modify this to be the 

average of the detection probabilities of the two nodes at the 

head and tail of the arc, or some more accurate approximation 

of reality. 

c.   Data requirements 

Currently, the essential data for each radar is 

its location, maximum and minimum range and probability of 

detection (Pd) .  The maximum range is the radius of the region 

within the Pd is constant.   The minimum range allows for 

close-in "blind regions" for each radar.  More sophisticated 

radar modelling like that described by Leary (1994) could be 

incorporated in AROMA without any major changes to the model. 

This is true because the assignment of "probability mass" to 

each arc of the network model is done as a pre-processing 

step, and the optimization model simply reads this mass and 

assigns the corresponding arc costs, cLi,  in the network. 

Therefore, even if a more sophisticated radar model is used, 

only minor changes have to be made to the pre-processing stage 

and no changes made to the optimization model itself. 

14 



E.   NETWORK 

1.   Construction 

A network representation of the area of operation 

(200 square nautical miles) is constructed using a three 

dimensional lattice structure. Each co-planar grid point is 

one nautical mile apart, as explained earlier. The altitude 

separation used (up to 6 levels in our model) is in intervals 

of 300 meters starting at 100 meters. This covers typical 

attack ingress altitudes, which are normally low (less than 

2000 meters) to avoid radar detection. 

The network is constructed by joining each lattice 

node to its nearest neighbors. There are 24 nearest neighbors 

to each node except for those nodes on the perimeter of the 

network. The nearest neighbors are geometrically defined to 

be the next node in the lattice, except those directly above 

and below, as illustrated in Figure 1. 

Figure 1.  Nearest Neighbor to a Node, 

15 



This means that an aircraft is allowed to fly in any 

of these possible directions.  Terrain avoidance is achieved 

by not constructing arcs that would pass through terrain. 

Depending on the terrain, this reduces the number of arcs 

substantially (15% in our example terrain). 

2.   Arc Costs 

Attached to each arc are the fuel "costs" ti;j, and 

detection "costs" ci;j. In the solution of each relaxed sub- 

problem, a new Lagrange multiplier /x (Ahuja, et al. , 1993, pp. 

599) is used. The significance of [i is explained below. The 

"composite cost" for arc (i,j) is defined as c±i + /iti;j and is 

recomputed each time \i  is changed. 

In terms of the model, \i represents the weight 

assigned to the importance of the fuel constraint. If \i is 

zero, the fuel constraint is ignored in the network since the 

"composite cost" for arc (i,j) becomes ci;j. As fi increases, 

fuel "costs" become increasingly important as the value of t±i 

begins to dominate c±j for arc (i,j). 
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III.  MODEL IMPLEMENTATION 

Model implementation (coding) forms a large part of this 

thesis. Selection of a suitable programming platform and 

language, as well as the appropriate algorithms and data 

structures are important. Algorithmic efficiency and the 

design of a suitable graphical interface are two main 

concerns. 

A. PROGRAMMING LANGUAGE AND PLATFORM 

A Silicon Graphics (SGI) Onyx computer with 192 megabytes 

of memory was used in program development. Appendix A gives 

a detailed hardware configuration. The reason for using the 

SGI machine is that the machine is relatively fast for both 

numerical computations and graphical applications. The 

program is coded in C++ but does not use any object-oriented 

features of C++. The graphical interface is coded in OpenGL 

(McMinds, 1993) and Motif (Neider, 1993) . 

B. ALGORITHMS AND DATA STRUCTURES 

1.   Hierarchical Adjacency List 

The network is stored as a hierarchical adjacency 

list (HAL) in forward star form (Ahuja, et al., 1993, pp. 35- 

37) . Each arc stores information on detection cost, fuel cost 

and other housekeeping information required by the label- 

correcting algorithm.  In addition, a pointer is attached to 
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each node pointing to all out-going arcs from that node. This 

structure is chosen because the network remains unchanged once 

it is defined. Only arc costs are recomputed on each 

iteration. The HAL is efficiently implemented in a static 

array and has to accommodate a maximum of 24 times the maximum 

number of nodes. 

2.   Lagrangian Relaxation 

Lagrangian relaxation can be used to incorporate the 

fuel consumption constraint into the objective function using 

a Lagrange multiplier /x. The resultant relaxed shortest-path 

sub-problem can then be solved efficiently using a label- 

correcting shortest-path algorithm, discussed in the next 

section. 

Since the original constrained problem is relaxed, 

the resultant solution may not be feasible. In the model, 

feasibility is obtained when: 

£      t±j     s     T (1) 
(i,j)eP 

where P is the shortest-path for the relaxed sub-problem and 

T is the maximum fuel allowed for the problem. 
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It can be proven (Ahuja, et al., 1993, pp. 600-601) 

that 

LB(/x)     =     £     ( ci;j + p   *   tij )   -  /xT 
(i,j)eP(/x) 

is a lower bound on the length of the constrained shortest- 

path, where P(/x) is the shortest-path for the relaxed sub- 

problem. 

The gap between the actual cost of the original 

constrained problem and the lower bound is defined as: 

gap(/x) E     cij   "   LB<M) (2) 
(i,j)eP(M) 

We can find a value of /x for the solution to the 

relaxed shortest-path sub-problem such that (1) holds and the 

gap specified by (2) is as small as possible. The basic idea 

is to employ a binary search to determine this "optimal" value 

of ix. Starting with an initial value of /x, the arc costs are 

computed as ci:j' = ci:j + /xti;j and the relaxed shortest-path 

problem is solved. Depending on the value of the computed 

lower bound, and the feasibility of the solution, /x is either 

increased or decreased. The arc costs are then re-computed 

and process repeated. This procedure can be terminated either 

after a fixed number of iterations or when the feasible 

solution is reasonably close to optimal. Figure 2 shows the 

pseudocode for this algorithm. 
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Algorithm Lagrangian Relaxation; 

Inputs: 
G = (N,A) Network in HAL format 
Cij Detection "costs" 
ti:j Fuel "costs" 
T Fuel capacity 
/xmax Value of p  that ensures P(/x) will be feasible 
OptCr Stopping criteria  

{ 

Define arc lengths, c±i' =  c±i  +  p  *  ti:j, in network using \i 
= 0; 

Solve the relaxed shortest-path problem, to construct 
path P(0) ; 

If   E   ti:j  < T 
(i,j)eP(O) 

goto Print; 

else { 

Set Slower = 0 and /xupper = Limax; 
Set iterations = 0; 
Set isOptimal = FALSE; 

While (iterations '< max_iterations && not(isOptimal)) { 

iterations++; 

M =  (Supper + Mlower)  / 2 ] 

Recompute arc lengths, ci;j' = ci:j + \i  * ti;j; 

Solve the shortest-path problem, with arc length 
ci;j', giving path P(/x); 

Compute lower bound LB(/x) =   £ (c±i   +  (i  *  ti;j) 
/xT; 

(i,j)eP(/i) 

If (LB(/x) > LB) LB = LB(ii); 

Figure 2:  Pseudocode for Lagrangian Relaxation Algorithm. 
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Figure  2   continued. 

If E       tLi     <  T 
(i,j)eP(/i) 

Mupper    =    M ' 

Save  P(/x)   as  P; 

else 

M lower    =    M '" 

If ( (   E   Cij  - LB) < OptCr) isOptimal = TRUE; 
(i,j)eP(/i) 

}     // end while 

}      // end if 

}        // end algorithm 

Print     "Near-optimal solution path is 
"with value of \i  of " ; 
"Global lower bound is "; 
"Detection cost is "; 

"Fuel cost is "; 

;     P; 
M; 
LB; 
E cij 

(i,j)«rP 

E 
tij 

(i,j)eP 

Figure 2:  Pseudocode for Lagrangian Relaxation Algorithm. 

3.   Shortest-path Sub-problem 

The algorithm used to solve each relaxed shortest- 

path sub-problem is a version of a label-correcting algorithm 

which uses a dequeue (Double Ended Queue) (Ahuja, et al., 1993 

pp. 141-143). A dequeue allows elements to be added both at 

the front and back of a queue. The shortest-path algorithm 

stores nodes to investigate on the dequeue which represent 
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potentially shorter paths. This algorithm is known to work 

very efficiently in practice although it does have exponential 

worst-case complexity. 

A label-setting (Dijkstra's) algorithm (Ahuja, et 

al. , 1993, pp. 108-112) was also implemented to validate 

results of the label-correcting algorithm in the developmental 

stages of the model. 
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IV.  TESTING AND EVALUATION 

The Lagrangian relaxation algorithm was coded as 

described in the previous chapter. Testing and evaluation of 

this algorithm, and its shortest-path subroutine, is then 

achieved using a Graphical Evaluation Suite (GES). This 

chapter summarizes the methods and results of this testing. 

A. GRAPHICAL EVALUATION SUITE 

A Graphical Evaluation Suite (GES) was built to 

facilitate the analysis and evaluation of the optimization 

model. GES is a graphical interface that displays computed 

routes, and allows the user to perform interactive analysis. 

This interface was designed for use by the model developer and 

is not meant for final use in operational systems. Appendix 

B briefly describes the human-machine interface (HMI) of GES. 

Appendix C provides a summary of important information 

pertaining to files and variables used by GES and AROMA. 

B. LABEL-CORRECTING ALGORITHM 

Before integrating the label-correcting algorithm into 

the Lagrangian relaxation algorithm, the label-correcting 

algorithm was tested using several small example problems. 

These test problems were then checked against results obtained 

from the slower label-setting algorithm. 
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Next, several test cases in the actual network were set 

up using different radar databases. The label-correcting 

algorithm was tested on these cases for its speed and solution 

quality. Each iteration of the label-correcting algorithm on 

a network of more than 2 million arcs (200 x 200 x 3 nodes) is 

timed to take, on average, about four seconds. Validation is 

facilitated by GES which displays the solution path. Figures 

3 to 6 show screen printouts of four of these cases. 

Figure 3 illustrates an unconstrained solution that has 

many unnecessary turns. Figure 4 shows a solution where the 

fuel constraint is very important. Figures 5 and 6 show two 

near-optimal solutions that show that the label-correcting 

algorithm selects a "correct" solution. While problems with 

more than two radars were tested, the two-radar case is used 

as an example here to simplify the illustration. 
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Figure  3.     Typical   Solution Route   for  p  = =   0. 
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Figure 4.  Typical Solution Route for Large //. 
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Figure 5.  Typical Solution Route for p  Near-optimal for 
Two Non-overlapping Radars. 
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Figure 6.  Typical Solution Route for p  Near-optimal for Two 
Overlapping Radars. 
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The discretization of the airspace introduces errors in 

the computation of distances and thus fuel consumption. 

Figure 7 shows a solution which clearly illustrates this 

point. Geometrically, the best solution is a straight line. 

However, due to the discretization, the solution uses two 

legs, one straight and the other diagonal to achieve the same 

effect. This results in extraneous fuel consumption and 

depending on the scenario, unnecessary exposure to radar 

detections. 

Figure 7.  Illustration of Discretization Effect 
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C.   LAGRANGIAN RELAXATION 

Before incorporating Lagrangian relaxation into the 

actual model, it was first tested on an example problem taken 

from Ahuja, et al., 1993, pp. 599-609.  Table 1 contains the 

output generated by the algorithm and clearly shows that the 

algorithm works well and converges to the answer of 15 units 

after 21 iterations. It can also be observed that after about 

11 iterations, the solution is already "close" to the known 

optimal with a percentage deviation from the lower bound of 

114%.  This deviation (optimality gap) is defined as 

( £   ci:j  -    LB) /LB (3) 
(i, j)eP(/x) 

using the notation of Figure 2. 

Maximum Fuel capacity: 14 units 

Iter ß Feasible Lower Composite Detection Fuel % from 
Bound Cost Cost Cost Lower 

Bound 

1 5.00000 Yes -6.00000 64.00000 24.00 8.00 -5.00 
2 2.50000 Yes 5.00000 40.00000 15.00 10.00 2.00 
3 1.25000 No 6.25000 23.75000 5.00 15.00 -0.20 
4 1.87500 No 6.87500 33.12500 5.00 15.00 -0.27 
5 2.18750 Yes 6.25000 36.87500 15.00 10.00 1.40 
6 2.03125 Yes 6.87500 35.31250 15.00 10.00 1.18 
7 1.95312 No 6.95312 34.29680 5.00 15.00 -0.28 
8 1.99219 No 6.99219 34.88285 5.00 15.00 -0.28 
9 2.01172 Yes 6.95312 35.11720 15.00 10.00 1.16 
10 2.00195 Yes 6.99220 35.01950 15.00 10.00 1.15 
11 1.99707 No 6.99707 34.95605 5.00 15.00 -0.29 
12 1.99951 No 6.99951 34.99265 5.00 15.00 -0.29 
13 2.00073 Yes 6.99708 35.00730 15.00 10.00 1.14 
14 2.00012 Yes 6.99952 35.00120 15.00 10.00 1.14 
15 1.99982 No 6.99982 34.99730 5.00 15.00 -0.29 
16 1.99997 No 6.99997 34.99955 5.00 15.00 -0.29 
17 2.00005 Yes 6.99980 35.00050 15.00 10.00 1.14 
18 2.00001 Yes 6.99996 35.00010 15 . 00 10.00 1.14 
19 1.99999 No 6.99999 34.99985 5.00 15.00 -0.29 
20 2.00000 No 7.00000 35.00000 5.00 15.00 -0.29 
21 2.00000   | Yes 7.00000 35.00000 15.00     1 10.00 1.14 

Table 1. 
Algorithm. 

Results of Test Run of Lagrangian Relaxation 
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The results of this test problem demonstrate that the 

algorithm works correctly, but that there can be a large 

optimality gap, as defined in (3), even when an optimal 

solution is found. Improving the "tightness" of the lower 

bound is a topic that will require further study. 

After establishing correctness of the Lagrangian 

relaxation algorithm, testing was conducted on networks of 

sizes of from 0.5 million to 2.0 million arcs. Two key 

observations were made during testing. First, the algorithm 

gradually slows down as it approaches optimality. One 

possible explanation for this is that as the solution 

approaches optimality, there are more potential arcs to be 

considered in each sweep by the label-correcting algorithm, 

thus slowing the algorithm down. The second observation is 

that the final few solutions for a problem are often minor 

variations of one main theme. This can be clearly seen from 

Figure 8 which shows the best four solutions of a typical test 

run. These routes are all essentially the same with minor 

variations. 

Table 2 shows the textual output of a typical test run 

used in producing solutions shown in Figure 8. The fuel 

capacity is 100 units. After 15 iterations, the value of \i is 

0.41198 and the optimality gap is 305%. In this test run, the 

algorithm took about 75 seconds for 15 iterations. 
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Figure 8.  Best Four Solutions for a Typical Run. 
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Maximum Fuel Capacity : 100 units 

Iter M Feasible Lower Bound Composite Detection Fuel % from 
Cost Cost Cost Lower 

Bound 

1 50.00000 Yes -1256.63867 3743.36133 35.54 74.41 -1.028 
2 25.00000 Yes -616.99731 1883.00269 35.54 74.41 -1.057 
3 12.50000 Yes -297.17871 952.82129 35.54 74.41 -1.119 
4 6.25000 Yes -137.26984 487.73016 35.54 74.41 -1.258 
5 3.12500 Yes -57.31488 255.18512 35.54 74.41 -1.620 
6 1.56250 Yes -17.33739 138.91261 35.54 74.41 -3.050 
7 0.78125 Yes 1.45787 79.58287 26.88 76.75 17.439 
8 0.39062 No 6.12828 45.19078 5.49 109.54 -0.102 
9 0.58393 Yes 4.18404 62.77779 26.57 87.34 5.350 
10 0.48828 Yes 5.42002 54.24814 26.57 87.34 3.902 
11 0.43945 Yes 6.00206 49.94737 25.65 88.17 3.274 
12 0.41503 Yes 6.29083 47.79474 25.65 88.17 3.078 
13 0.40283 No 6.24480 46.52801 5.49 109.54 -0.119 
14 0.40893 No 6.30303 47.19659 5.49 109.54 -0.127 
15 0.41198 Yes 6.32694 47.52567 25.65 88.17 3.055 

Table 2.   Textual Output of the Test Run used in Producing 
Solutions Shown in Figure 8. 
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V.  CONCLUSION 

A prototypic automatic route optimization model was 

designed and implemented. This model is able to solve typical 

problems of (2 00 square nautical miles) in a reasonable amount 

of time (generally within two to three minutes). In addition, 

a Graphical Evaluation Suite (GES) was developed that allows 

the user to visualize the solutions easily and facilitates 

interactive analysis. 

A.   OBSERVATIONS 

The observations made during the testing and evaluation 

of AROMA are as follows: 

1.   Integrality Gap 

The gap between a near-optimal feasible solution and 

its lower bound can be quite large. Most of the results 

produced by the model exhibit this large gap. However, from 

visual feedback from GES, these solutions can hardly be far 

from optimal. In the analysis of this gap, results from the 

test example shown in Table 1 was investigated. In this case 

where the known optimal solution was found, it was still 114% 

from the lower bound of seven units. This demonstrates that 

a good solution can be very far from its lower bound. 
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The reason for this gap is explained in Ahuja, et 

al., 1993, pp. 614-419).  One possible reason why these gaps 

are large (greater than 3 0 0% in many cases in the problems 

tested)  can be explained using Table 2.   The numerical 

interpretation is that as fi   approaches optimal, it appears 

that two potential routes with composite costs of about 4 7 are 

being evaluated. The first has a detection "cost" of 5.49 but 

is infeasible while the other has a detection "cost" of 25.65 

but is feasible.  The low detection "cost" of 5.49 for the 

infeasible solution is possible since there are many arcs in 

the network that have zero probability "cost".  Depending on 

the value of p  and the scaling of ci;j and ti:j/ the algorithm is 

able to tradeoff detection "cost" for fuel "cost" for an 

approximately similar composite cost.  The large difference 

between the feasible and infeasible "costs" accounts for the 

large integrality gap. 

2.   Solution Iterations 

It was observed that the label-correcting algorithm 

slows down as the solution approaches optimal. If no 

iteration limit is imposed, there are situations where the 

model takes a large amount of time to reach an "optimal" 

solution. However, it was also observed that in most of the 

cases tested, a reasonably good solution can be achieved 

within 15 to 20 iterations. As illustrated by Figure 8, 

further iterations normally give solutions that are not 
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significantly different. It is recommended some investigation 

be made into the effect of the following factors on the number 

of iterations required: number of radars (consequently, the 

number of arcs with non-zero arc costs) and scaling of ci;j and 

The heuristic selection of an appropriate value of 

/xmax (the maximum value that p can take) will also help reduce 

unnecessary iterations. Currently, the binary search for 

optimal p starts using a left and right limit. The left limit 

is zero and right limit is hard coded as itmax. Some heuristic 

method of intelligently choosing this value could save several 

iterations. /xmax must be large enough so that the optimal 

value of p falls within the search interval and yet small 

enough so that unnecessary iterations are reduced. 

3.   Probablistic Assumption 

To linearize the probability costs for each arc, 

logarithms of these costs (log costs) are used. The GES 

allows the user an option whether to use log costs. Tests 

comparing the solution using log costs with solutions without' 

log costs, showed no significant difference in solution 

routes, although the solution costs differed. One possible 

reason for this effect is that given the constant probability 

of detection, and the data sets used, solutions can always be 
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found through areas where only one radar had coverage. Thus, 

each arc along the path would contribute a fixed unit cost 

regardless of whether the log was used or not. More 

investigation has to be done to analyze this effect. 

4.   Discretization of Airspace 

As explained earlier, the discretization of the 

airspace introduces errors in the computation of distances and 

thus fuel consumption. More work needs to be done to 

investigate the effect of discretization on the quality of 

solutions. If much better solutions can be found when there is 

no fuel wastage, then further research into a way to overcome 

this problem must be found. The effect of a smaller grid 

interval can also be investigated. 

B.   AREAS FOR FUTURE RESEARCH 

During the course of developing AROMA, there have been 

some assumptions made for the sake simplicity. Some of these 

simplifications are areas for future research to make AROMA a 

more robust model. 

1.   Radar Model 

a.   Assignment of Probability Densities 

Using a constant probability of detection 

method to assign "probability mass" to nodes is just one 

method commonly used in planning.  The main purpose for doing 
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that here was to concentrate attention on the solution 

algorithm itself. Conceptually, a more complicated method of 

assigning "probability mass" (the one described by Leary 

(1994) being an example) can be incorporated into the pre- 

processing step. However, the method must subscribe to the 

probability assumptions that have been made earlier. 

b.   Time in Radar Coverage 

The detection cost is constant for an arc 

regardless of its Euclidean length. This implies that time in 

coverage is not accurately considered. Some apportionment 

method can be derived to factor this into the arc costs 

computation methodology. One possible but simplistic method 

is to use as the arc cost, the product of the current arc cost 

ci;j with the Euclidean length (with necessary scaling) . This 

will make it more costly to traverse a longer arc than a 

shorter one if detection cost for the two are similar. 

Arcs are assigned a probablity cost if the node 

from which it originates is within the radar detection region. 

Thus, some arcs that are partially in the region are assigned 

a cost while others are not. By using geometry, these arcs 

can be properly accounted for and some pro-rated costs be 

assigned accordingly. 
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c.   Radar Line-of-sight 

Further development should be made to the radar 

model to include line-of-sight computations and atmospheric 

effects. Certainly, this would make detection of lower level 

flight more difficult and encourage more low-level flight 

paths. Currently, most of our solutions involve a large 

segment of high level flight because there is no incentive to 

select lower routes which consume more fuel but offer no 

significant reduction in detection costs. 

2.   Model Efficiency 

a.   Improved Label-Correcting Algorithm 

The label-correcting algorithm currently runs 

quite efficiently. However, further development can be made 

to improve its performance. The node at the front of the 

dequeue is always selected as the next candidate from which to 

extend the shortest path. One suggestion to improve the 

performance of the algorithm is to expend some effort 

selecting the "best" node (with minimum distance) from the 

dequeue rather than the first node. Selecting the absolutely 

best node from the dequeue would yield Dijkstra's algorithm 

which will typically be less efficient. However, expending a 

modest amount of effort to find a "better than first" node may 

yield improved efficiency without undue overhead. 
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b.   Defined Area of Operations 

The system currently has provisions for the 

user to specify a more narrow area of operations. This can 

help eliminate large areas of search space, so that solution 

time can be reduced. Another possibility arising out of a 

smaller search space is a finer grid interval. However, the 

network setup routine does not now use this fact to eliminate 

nodes and arcs. Some vector algebra, similar to that done in 

computer graphics algorithms (Foley, 1990) to determine if a 

point is in a closed region, can be done to determine if 

nodes, and consequently arcs are within the defined area of 

operations. 

3.   Operational Implementation 

a.   Route Smoothing 

The discretization of the airspace causes some 

jaggedness in the solution route. One possible improvement 

would be to do post-processing smoothing of the solution route 

without increasing the fuel costs incurred. A plausible 

method that can be considered is as follows. First, a 

geometrical volume smaller than the original search space can 

be used to envelop the solution path. Next, a new network can 

be constructed by connecting nodes to their nearest neighbors 

as before, but also to all nodes within a specified distance 

beyond the nearest neighbors. Then, a shortest-path algorithm 

can be used to select a "smoother" route from this network. 
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Feasibilty  in  the  original  problem  is  assured  since 

geometrically, the original path forms an upper bound. 

Another alternative to achieve smoothing is to 

employ techniques used in computer graphics, e.g., splines or 

Bezier curves (Foley, 1990) . However, these routes will 

generally not be straight. 

b. Return Leg 

Operational route optimization has to consider 

both the attack and return phases of the mission. The model 

only considers the attack phase. From the modelling 

perspective, the main difference between the two phases is the 

change of data, for example, fuel capacity and fuel 

consumption rates (since load is either released or 

jettisoned). From the operational perspective, there are 

other considerations. For example, the early flight segments 

of the return phase should typically avoid the last flight 

segments of the attack phase within a defined perimeter. One 

of the reasons that this is done is to ensure de-confliction 

between incoming and outgoing planes in the target area. 

c. Designated Waypoints/Taboo Areas 

The model should incorporate the ability to 

accept locations in the network through which aircraft must 

fly through, for example, re-fuelling points. For a single 

re-fuelling point,  the problem can be considered as two 
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distinct sub-problems. 

There are also areas that must be avoided, for 

example, populated areas. This can be achieved by assigning 

large positive costs to the taboo nodes or simply eliminating 

these nodes all together, as with nodes occurring within 

terrain. 

4.   Graphical Evaluation Suite (GES) 

Although the current human-machine interface (GES) 

can already provide reasonable visual feedback and certainly 

facilitates interactive analysis, it is far from fully 

operational. Some of the data currently hard-coded in the 

program should be set interactively. Routes generated on each 

iteration of the algorithm could be displayed "on-the-fly" so 

that the user can visually appreciate how solutions are 

arrived at and make some intuitively assessment of the quality 

of the solutions. 
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APPENDIX A : DETAILED HARDWARE CONFIGURATION 

Silicon Graphics Onyx Computer 

4 x 150 MHZ IP19 Processors 

CPU: MIPS R4400 Processor Chip Revision: 5.0 

FPU: MIPS R4010 Floating Point Chip Revision: 0.0 

Data cache size: 16 Kbytes 

Instruction cache size: 16 Kbytes 

Secondary unified instruction/data cache size: 1 Mbyte 

Main memory size: 192 Mbytes, 1-way interleaved 
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APPENDIX B GRAPHICAL EVALUATION SUITE (GES) 

1.   Display Legend 

The graphical display on the left of the window shows all 
pertinent spatial information e.g., terrain, location of 
radars, their detection envelopes and routes. The legend for 
the display is as follows: 

Item Description 

Homebase Green square 

Target Red square 

Route Colored line joining homebase to target. 
Different flight levels are distinguished 
by different colors, i.e. a change of 
color implies a change of flight level. 

Radars Triangles 

Pd envelopes Yellow areas (darker => higher Pd) 

Terrain Blue areas (for a particular display 
height) 

Map Gray areas when map is turned on (lighter 
=> higher altitude) 

2.   Textual Outputs 

Textual output is printed in the command window and to an 
output file " results, out" . The details of this file are 
explained in Appendix C. 
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3.   Control Panel 

On the right of the window is the control panel. 
Description of the functionality of the controls are as 
follows: 

Toggle Buttons 

Boundary- 

Branching 

Log Cost 

Map 

Solutions 

Action Buttons 

Solve LC 

Not implemented. 

Not implemented. 

Toggles whether log detection costs are 
used in the construction of the 
network. 

Displays color coded map of underlying 
terrain. 

If a optimization run is made, 
selecting PI to P5 will display the 
five best routes generated. 

Read In 

Clear 

Optimize 

Exit 

Display Level 

Solves a single iteration of the 
network using label-correcting 
algorithm.  A value of p  is read from 
file "radar.dat" (see Appendix B for 
description of file) 

Reads updated inputs from "radar.dat". 
This has to be done whenever radar 
locations, maximum fuel, toll need to 
be changed. 

Clears path display. 

Run the optimization algorithm.  Output 
is saved into "results.out". 

Ends program. 

Since the graphical display is two 
dimensional, this slider allows the 
user to see different height levels, 
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APPENDIX C, PROGRAM FILES AND VARIABLES 

radar.dat File used to read in program data. This file 
contains the following information (and 
format): 

Field Format Comments 

maximum 
fuel 

float maximum fuel for mission. 

toll float Lagrangian multiplier used in single 
iteration label- correcting algorithm 
run. 

number of 
radars 

integer number of radars in the database.  The 
next rows of data contain the following 
information per row. 

radar 
number 

integer radar ID which is not used in the 
program. 

X 
position 

integer x position of radar in our area of 200 by 
200 nautical mile. 

y 
position 

integer y position of radar. 

minimum 
range 

float minimum range of radar for our defined 
probability of detection. 

maximum 
range 

float maximum range of radar for our defined 
probability of detection. 
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elevation.dat Terrain file generated by the pre-processing 
program printht.c which collates several DTED 
files into this 200 nautical mile by 200 
nautical mile format. This file is only 
changed if the area of operation changes. The 
first two data are the number of points in the 
x and y dimension. The next two are the 
minimum and maximum height in the datafile. 
The rest of the data points are integer 
elevations for the area in row order. 

results.out This file contains results generated from an 
optimization run given the data in radar.dat. 
The top row shows the maximum fuel allowed. 
Each subsequent row is formatted as follows: 

Field Comments 

Iter Iteration count. 

Toll Toll value (Lagrangian multiplier) used in this 
iteration. 

Feasible Indicates whether solution is feasible. 

Lower bound Lower bound for the current iteration. 

Composite 
cost 

Actual cost of the relaxed sub-problem. 

Cost Actual detection cost for current solution 
ignoring contribution of constraint. 

Fuel Fuel costs for current solution. 

Percentage Percentage away from lower bound of current 
solution. 
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Variables There are several variables which are 
important for the execution of the model. 
These are summarized below. 

Name Location Comments 

HT BASE 
HT_SEP 

radar.h base height and separation for 
lattice. 

Target.x 
Target. y 
Home.x 
Home.z 

planner.C target and home base location. 

PD_CURVE radar.h probability value of equal 
probability region. 

MAX X 
MAX Y 
MAX Z 

radar.h maximum dimensions of lattice 
which is currently set to 200 x 
200 x 3. 
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